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CHAPTER 1

AN RfTRODUCTION TO THE ACTIVE (:()PQTR()]b 
OF SOUND IN ENCLOSED SPACES

1 .0. Introduction

It is a surprising but fortunate fact of nature that sounds which are perceived 

as loud are in reality very small pmurbations of the steady state pressure. It is generally 
well known that in air, acoustic disturbances representing sound pressure levels up to about 
120 dB combine linearly which in subjective terms represent very large, damaging 
sensations of loudness at the ear. This linear behaviour of sound waves leads to the 
fundamental property of linear superposition which is the underlying physical principle 
behind active noise control.

Almost without exception, every paper published to date concerned with active 

noise control deals primarily with low frequency sound, because it is at long wavelengths 
where active control has been shown to be most successful. Herein lies the appeal of active 
techniques, since it is precisely at low frequencies where conventional passive methods are 
least effective. It is generally accepted that in an enclosed space, the performance of active 
noise control degrades with increasing frequency. The reasons are two fold. The first and 
certainly the most significant is due to the changing acoustic response of the enclosure, 
generally becoming more spatially complicated as the number of acoustic modes excited 

increases. The second is an artefact of the technology, usually arising from limitations in 
the transducers and primarily constraints imposed by computing speed. As time 

progresses, increasingly sophisticated hardware will be developed to the extent that 

transducers and confuting technology will eventually cease to be the limiting factor. The 

limitations arising from the physical acoustics however, are fundamental to the problem 
under consideration and are therefore insurmountable. It is these reasons which provide the 
stimulus for the work in this thesis whose aim is to identify the limitations of active noise 
control at high frequencies to enclosures and reveal the factors which influence these 
limitations.

It is perhaps not unreasonable to suggest that in die last ten years, hardware 
technology and the necessary software in the form of fast and efficient ccmtrol algorithms 
have developed at a much faster rate than has the understanding of the underlying principles 

by which two complex sound fields can be made to destructively interfere which is of 
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course the objective of active noise control. While digital computer technology has 
advancedatan astonishingrate, eventoday workersaiestilldevelopingthe simple 
fundamental theories which define the limits governing die extent by which active control is 
able to suppress a sound field of known spatial and temporal characteristics. The 
development of active noise (xmtrol has evolved steadily leading to its modem day 

sophistication but can still considered to be an immature atimce. This is manifest by the 
fact that there are still caily a few ccanmerdal applications in t^peration today. This will 

undoubtedly change over the next few years as more and more companies and universities 
begin to takeacommercial stake irt its nescaomdh anddevekqimeoL

1.1. A brief review of the relevant literature

1933 marks the serious beginning of active noise control in the form of a patent 
filed by Paul Lueg in Germany called The process of silencing sound oscillations' k The 

patent deals with the active control of duct borne noise which is still the classic problem 

most firequently studied today. Unfortunately, as revealed in a historical review by 
Swanson^, apart fiom this patent no other records of this work exists despite extensive 

investigations by Guicking. Paul Lueg clearly didn't receive the appropriate recognition for 
this work because active noise control remained un-researched for a further twenty years 
(although part of this period was interupted by the war) until the publication of a classic 
paper published in 1953 by Harry Olson and Everett May3. Olson's wcffk is considered in 

more detail in the next section. This paper is significant because in addition to describing 
the design of a successful device, Olson is credited as the first person to possess the 

foresight to realise the wide range of problems for which active noise control may be 
suitable. Active noise control in head sets, automobiles and aeroplanes are all cited by 

Olson as possible applications which as we realise today, thirty years later, are precisely the 
situations proving to be die most successful^. Following on from Olson is a patent filed in 

1966 by Jessel et-afi re-addressing the problem of controlling noise in air conditioning 

ducts. This is probably the first work to demonstrate experimentally the active absorption 
of sound. Since this early history, the interest in active techniques in the context of noise 
control has increased at an ever growing rate, so much so that Guicking has compiled a 
comprehensive bibliography (now in its 3"* editiem) containing all the work published to 

early 1988, a total of 1708 references^. It is therefore sensible to consider only those which 

have made a significant ctmtribution to the development of active noise conuol in enclosed 
spaces.

In the last twenty years, more effort has been directed towards the active control of 
noise in ducts than in any other type of acoustic field. The reason is of course due to the 
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simplicity of the sound Geld which is variable depending upon the excitation frequency 

relative to the various cut off frequencies to the duct However, most woik concerned with 
duct noise appears to be concentrated at frequencies below the Grst cut off tocquency for 
which the sound Geld is limited to plane wave prtqragation. The work of JesseP, 
Swtobanks^ and Levenihall^ have all contributed greatly to this area. These papers describe 

an array of strategically placed secondary sources in various ingenious arrangements to 
avoid reflectitms of the incident primary field. A good survey of the various mechanisms of 
control to the one dimensional sound field is presented by CurtisiO although the work was 

primarily intended to illustrate the principles associated with the active control of acoustic 
resonances. A celebrated commercial exanple of controlling the sound radiated fixrm the 
end of a gas turbine exhaust stack which supports a (me dimensitxial sound field in 
turbulentairfiow isdescribedbySwinbanks^kResultsare given fbrthe reductiemofnoise 

at the lowest audible (x:tave (22 - 55 Hz) emitted fixxn the 12 m high, 3.3 m diameter gas 

turbine exhaust stack. This large scale experiment, started to 1980, includes the use of 72, 
15 " bass loudspeakers requiring a total of 12 KW of amplification. In its final form, the 
system was able to produce an overall broadband reduction of around 7.5 dB and a 13 dB 
reduction firom toe largest spectral peak. The system is still in use today.

Attempts to control the more genraal three dimensional sound field have met with 
varying degrees of success. BullmOTe et-al'^'^ have undertaken an extensive, systematic 

computer based study of pure tone low modal density sound fields using the quadratic 
minimisation theory set out by Nelson et-aJ^^. These results are shown to be to close 
agreement with experiments performed by Elliott et-ol^^. Considerable global reductions of 

the total acoustic potential energy are reported using only a small number of error sensors 

and secondary loudspeakers. The possibilities for complete global quiet obtained through 

active methods remains one of the ultimate objectives of active control Central to tins 

conceptis theprtociplethatthesoundfieldproducedbyasouiceandthe source ofsound 

itself are not uniquely related from which one can postulate the non-uniqueness of sources. 
An attempt to verify this fundamental principle was undertaken by KemptonlS who was 
able to approximately synthesise the far field produced by a free field point monopole 
source located at the origin of coordinates using a multi-pole source expansion centred on a 
p<}urt:uv^ryj&xxo3tlte()ri[jgui.Trhe gtxxtoessoffitbetwecnthercal farfieldandtiie 
synthesised far field was shown to increasingly improve as the order of the highest ordered 
source included to the source array was increased. However, the notion of source 

ambiguity has been recognised for some time and has been previously described by, for 
example, Ffowes Williams^®.

3



Recognising the practical and physical difGculdes associated with trying to impose 
global quiet in more complicated sound fields, many wcxkers have sought to adopt a local 
control strategy which will tend to confine the benefits of quiet to some pre-defined region. 
One iqypfoach wbidi has been tried by Keith and Scholacrt^^ involves using the feedback 

control system suggested by Olson in mder to create a zwie of quiet around the head of a 
pilot in an aircraft cabin. A good level of noise reduction is reported over a firequency band 
of more than 500 Hz at the control microphone reaching a maximum reduction of more than 
30 dB at around 100 Hz. However, the reduction in the sound pressure level was observed 
to diminish very quickly with increasing distance fiom the control point where at a distance 
of 15 cm, the level of attenuation was found to fall to between I and 2 dB. Unfortunately, 
no details relating to the cabin dimensions are reported. A similar experiment has also been 
undertaken by Berge^^ in a small van who describes an experiment which uses an 18" 

loudspeaker to drive the pressure to zero at a microphone located 50 cm fi’om the 
loudspeaker. Berge reports that the level of attenuation was found to be insensitive to the 
exact measurement position within an area of about 0.5 m2 centred around the driver’s head 

position. Furthermore, a total sound power reduction of 14.5 dB is observed in the 
firequency band 0 - 200 Hz. Hiese findings are almost certainly due to the spatial simplicity 
of the pressure field in the cabin since only the 'breathing' (0,0,0) mode of the enclosure is 
present below 110 Hz for which the sound field may be regarded as spatially 
homogeneous. Similar findings are reported by Brewer et-cd)^ obtained from a series of 
computer simulations.

"ITie woik of Chaplin et-al is also worthy of mention20. Chaplin's experimental 

arrangement involves die use of two loudspeakers mounted close to the floor of a tractor 
whose noise is radiated into the cabin as a series of harmonically related tones. The 
loudspeakers are driven by signals derived fiom die tractor engine, which are adjusted in 
order to minimise the pressure at a microphone mounted close to die driver's head position. 

This arrangement is therefore different fiom those described above because of the 
remoteness of the loudspeaker fiom the region of local control. Another fundamental 
difference is that this control scheme is an exarrgile of feedforward control which uses 
some control signal to predict the response of die sound field at some future time. Between 
1() and 210 dB ofattenuation ateachdiscretefiequencyarereported. Itis alsoacknowledged 

that die level of attenuation diminishes with increasmg distance fiom the control point 
although satisfactory reductions were measured in all of the normal head positions. 
Howevo", no data is given relating to the effect on the sound field globally. Similar 
feedfoward methods using multiple secondary sources to minimise the sound field at 

multiple error naicrophoues have more recendy been found to be very effective in actively 
controlling the low fiequency, engine boom in cars21
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The last five years have seen a significantly raised interest in active noise control. 
Many workers are now beginning to perform expensive, large scale experiments in order to 
test the feasibility of active methods in, for example, propeller aircraft In particular, for 
suppressing the noise radiated by die rotating prqieller into the fuselage of the new range 
of turbo-propeller aircraft This problem is ideally suited to the new technology because of 

the periodic, low frequency tonal nature of the sound field which predominates in the 

fuselage. The fundamental fiequency which is directly related to the blade passage 

fiequency is typically between 80 and 150 Hz, well within the capability of the current 

technologies. Correspondingly, the sound field to be controlled is of low modal density 
whereglobal strategieshavebcenshown tobe most^fectiv^.

Recently, Elliott et~aP^ and Dorling et-aP^ have published concurrent papers 

reporting the results of multi-channel active control of propeller induced cabin noise during 
flight trials of a British Aerospace BAe 748,48 seater twin turboprop aircraft. Elliott's 
arrangement utilises an array of 16 loudspeakers to miniooise the sum of the square 
pressures at an array of 32 microphones located at the head height plane. The blade passage 

fi-equency for this aircraft is 88 Hz for which an average sound pressure level reduction of 

between 14 and 10 decibels over all control microphones are reported. The spatial 

complexity of the sound field increases considerably at the first harmonic fiequency of 176 

Hz for which an average level of reduction of between 6 dB at the port side, falling to less 
than 4 dB at the starboard side of the aircraft Similarly, Dorling’s data for the same aircraft 
flying under identical conditions reveal similar results for an array of 24 loudspeakers 
driven to minimise the pressures at a total 32 control microphones. At the fundamental 
fiequency, their results indicate an average reduction of between 11 and 8 decibels. The 

average reduction at the first harmonic of 176 Hz increases to 13 dB at the port side of the 
aircraft to 9 dB at the start board side.

Further large scale work has been carried out for the Douglas aircraft company by 
an American - British partnership M. A. Sinysem er - aP^ in die aft cabin of a full size DC - 

9 aircraft inside a large anechoic test facility. This series of tests were confined to the 

ground necessitating the need to simulate the primary excitation that would be observed in­
flight This was provided by an array of primary loudspeakers external to the fuselage and 
a series of shakers attached to each engine pylon. The control system is reported to use an 
array of 16 'optimally' positioned secondary loudspeakers driven by a controller according 
to the error signals fiom 30 microphones located at the back rest of the seats. Good global 
reductions of between 5 and 15 dB are reported for a range of tones excited by the 

Iraidspeakers andshakers simultaneouslyindrefinequencyrangebetween 100 andZOOHz. 
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Above these hnequcncies however, the level of reductions were (bund to be reduced but still 
useful nevertheless; 5 dB bemg typical. It is fair to suggest that these measured figures are 
slightly optimistic estimates since they refer to reductions at the control microphones and 
under laboratory conditions. The actual performance of the control system under flight 
conditions remains to be demonstrated.

The last piece of work which will be cited here is that undertaken by M. Salikuddin 
and K. K. Ahuja^ti who describe an innovative application of active noise control aimed at 

reducing sortie fatigue of the fuselage skin together with the added benefits of reducing the 

interior cabin noise. The idea involves applying local control to a number of pobts inside 

the aircraft fuselage usbg the Olson type monopole configuration for which the pressure is 
driven to zero at a microphone close to the loudspeaker. The loudspeakers are located on 
the outer side of the aircraft's skin while the error microphones are situated immediately 
adjacent, but on the bterior side of the fuselage skb. The advantage of this arrangement is 
that each loudspeaker unit is said to be sufficiently well coupled to the pressure at its 
adjacent microphone that each control unit may be adjusted independently. The authors 
argue that acoustic fatigue is reduced by creating pobts of null pressure and therefore zones 
of pressure reduction on the surface of the outer skin which will tend to lessen the 

damagbg acoustic forces thereby reduebg acoustic fatigue. The authors also mabtab that 
sbee each pobt on the pressure waveform bg)actbg with the outer skb is itself an 

elementary source of sound radiating bto the aircraft cabin (Huygen's prbciple), the 
canccllaticm of the pressure at pobts placed at closely spaced periodic btcrvals will remove 
these contribution thereby causbg global suppression of the cabin interior noise field

The proposed control scheme was bvestigated experimentally usbg four Olson 
type units mounted (lush to a 2 mm thick plate enclosed withb an anechoic chamber. The 

loudspeakers were fixed to the plate, but on be same side as the primary loudspeakers used 

to simulate be exterior noise field. Their respective control microphones were mounted on 

be opposite side from be primary loudspeaker. More ban 20 dB of attenuation of be 
primary waveficld are recorded across be plate on wbeh be pressure is bebg controlled at 

a pure tone of400 Hz. This level of reduction was shown to gradually diminish across 
bcreasbgly distant parallel planes to be plate. In reality be presence of structural modes of 
be outer skb will degrade be performance of bis technique as will be bgh level of 

reverberation bside be aircraft cabb also neglected b bis cxperimenL The density of 
control units required at hi^ frequencies for good global pressure reductions was not not 
discussed b this paper neiber was a discussion of be performance of loudspeakers 
travellbg at 600 miles per hour.
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This short survey of the active noise control literature is clearly not exhaustive but is 
meant to convey the diversity of the field and the nature of the important work undertaken 
in this interesting area of acoustics. For a more complete review of the physical principles 
and related literature of active noise control, one is refered to good review papers by 
Ffowcs Williains27, Wamaka28, and Swanson^ of which the paper by Ffowcs Williams is 
particularly good and an extensive review of the earlier work by Lindqvist^^.

U. The work of Olson and May

Special attention to the work of Olson and May is justified not only for its historical 
importance (since this work is among the most commonly cited in the active noise control 
literature), but because it is the first published work to propose the concept of localised 
regions of quiet or 'quiet zones' in enclosed sound fields. It is therefore the most closely 
related work to this thesis. This work appears in two papers; the first published in 1953^ 

entitled 'Electronic sound absorber' and a later paper providing more description of the 
control arrangement and suggesting more applications published in 1956^0 entitled 

’Electronic control of noise, vibration and reverberation'. In these two companion papers, 
Olson gives a discussion on the active control of acoustic fields which show considerable 

insight into the mechanisms of active control. Ideas are suggested in these papers which 
even to the present day have still not been satisfactorily resolved and explored to maximum 
benefit.

A schematic diagram revealing the essence of the proposed single channel control 
scheme is indicated in figure 1.1 which is taken finom Olson's original 1953 paper. The 

experimental arrangement consists simply of a single control microphone located close to, 
and on-axis of a secondary loudspeaker via a power amplifier and gain controls.

Figure 1.1. A schemaiic diagram of the ’sound pressure absorber' proposed by Olson and 
May in 1953 taken from their original paper.
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The underlying principle governing Olson's 'Sound pressure reducer" is in 
principle very straightforward. On sensing the total sound pressure p at the control 
microphone, the signal generated by the microphone is fed back via a power amplifier with 
again -Ato the nei^bouringsectaidary loudspeakertoproduceavolumevelocity 

q = -^ / Z where Z is the transfer impedance firom the secondary source to the 

microphone. The total pressure p at the control microphone is fcHmed fiom the sum of the 
primary acoustic pressure pp and the acoustic pressure fiom the secondary source to give 

the total pressure p = pp - Ap. One can dierefbre show that the ratio of the total pressure p 
at the control microphone to the primary pressure pp is given by (pA>p) == (1 + A)*l. The 

gain of the inverting power amplifier is therefore set as hi^ as possible with which to drive 
the secondary loudspeaker, but not so high as to make the system unstable. The result is to 
form a pressure at the control microphone which is as close as possible to zero ovct a broad 
band of fiequencies thereby creating a zone of quiet in the vicinity of the microphone. The 

difficulties associated with trying to accurately control the phase change around the 
feedback loop is dealt with by ensuring linearity in the electronics and by locating the 

control microphone as close as possible to the loudspeaker. The proximity of the control 
microphone to the loudspeaker appears to be principal design consideration in order to 
ensure that the phase shift around the feedback loop is equal to the phase characteristics of 
the amplifier. Cancelling the pressure at the surface of the source is sometimes known as 
the acoustical virtual earthlO of which Olson's device is an approximation.

Olson suggests that this arrangement may be employed in two distinct 
configurations. The first is as a 'Sound power absorber" and the second is a 'Sound 

pressure reducer'. On the basis of the paper title, one could reasonably suppose that it is as 

an absorber of sound power that the arrangement shown in figure 1.1 is most successful. 

While probably the first to suggest that a loudspeaker could be employed in these two 

possible modes of operation, it is intriguing to observe that no details ate reported relating 

to how one might use this arrangement for sound power absorption or even whether this is 
a desirable objective. It transpires that in some cases, this mode of operation can adversely 
influence the total sound power ouqjut radiated bto an enclosurel2. Apart fiom a few 

remarks regarding sound power absorption, much of tire paper is dedicated to reducing the 
sound pressure around the control microphone. In a later chapter of this thesis it is shown 

that driving a loudspeaker in order to reduce the sound pressure level in the way Olson 

describes can, in general, only produce an increase in tire sound power ouqrut of the 
secondary sourceand consequently does notcausesound powerabsotption. To call the 

device a sound power absorber is therefore very much a misnomer and it is with a 'Sound 

pressure reducer" that these papers are primarily concerned.
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One way in which Olscm's soundpressuteieduccrcouldbe conAgured as an 
absoAcr of sound is to place a sheet of porous sound absorbent material located within the 
point of null pressure and the loudspeaker cone itself. The large pressure gradient created in 

the intervening qpace will tend to accelerate Ae particle velocity Arou^ Ae material Aereby 

causing an increase to its absorption efficiency. While this strategy will undoubtedly work, 
it is questionable as to wheAer Ae amount of sound power absorbed resulting from 

acoustic dissipation to Ae absorbent material is sufficiently great as to make this scheme 
economically viable.

As a technological achievement, Ae work of Olson and May is broadly regarded as 
outstanding given Ae technological limitations of Ae day. However, much of Ae 
underlying physics is vaguely reported. For example, no details regarding Ae Astance of 

Ae microphone to Ae loudspeaker is reported, and Ae diameter of Ae loudspeaker is only 
reported by implication which appears to suggest a value equal to 3". TTie control 
arrangement is an example of feedback control which consequently does not require any 

details of Ae sound field being controlled. In contrast, more sophisticated feedfoward 

control schemes by necessity require accurate knowledge of Ae transmission paAs of Ae 
primary and secondary sound field which Aeiefoie tend to be more effective but more 
Afficult to implement^!. The perfect cancellation of Ae pressure at a point Aerefore 

naturally lends itself to feedback control in this tightly coupled configuration. However, 
precisely how a sound field which impinges upon a secondary loudspeaker can be 
absorbed through a simple feedback of some control signal remains to be explained.

One of Ae most appealing features of Ais feedback control arrangement which uses 
control microphones located close to Ae loudspeaker, which to Ae auAor’s knowledge has 

never been publicly recognised, is Aat Ae problems associated wiA causality when dealing 

wiA broadband noise radiated into a reverberant space are to a large degree overcome. This 

is of course due to Ae close proximity of Ae control microphone to Ae secondary 
loudspeaker so Aat Ae pressure field radiated by Ae secondary loudspeaker appears almost 
instantaneously at Ae control microphone. It is Aerefore possible, to principle, to drive Ae 
pressure at a point to zero which is close to Ae secondary source regardless of Ae level of 
'randomness' of Ae primary sound field.

Recent attempts to duplicate tins experiment by Ross^^ has suffered from severe 

stability problems. This is exemplified by Ross who remarks "The task of producing this 

device proved to be more difficult Aan was originally believed". However, his experiment 

has been shown to afford broadband control over more Aan two octaves wiA a maximum 
attenuation of 20 dB. Ross partly attributes Ae success of his modem version of Olson's 
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device to digital filtering techniques which were of course not available to Olson. However, 
despite the increased sophistication of modem methods, Ross reports the usual problem of 
instabilitycausing the systemto'howr wheaevcrasystem mmsfcr function is slightly 
altered. As Ffowcs Williams observes^, "This occurs whenever a human head is inserted 

into the quiet zone to hear the benefit of the device!" Qeariy this is becauKs the 
transmission path of high firequency sound firom die loudspeaker to the microphone may 
incur a phase shift greater than 180° which will turn negative feedback of the control signal 

into positive feedback tfiereby causing the system to oscillate.

1 .3. The structure and original contribution of this thesis

The ultimate task of active noise control in enclosures is the reduction of broadband 

noise at high ftequencies, factory noise is an important example. While the temporal 

characteristics of random noise introduces its own difficulties from the point of view of 

analysis, the reverberant nature of the enclosure presents further complications by 
producing reflections at the boundary walls. If the number of reflections is large or if there 
is a substantial level of scattering of the sound field by objects in the room, the interference 

of a large number of ’elementary' waves may cause the sound field to take on the 
characteristics of a random process ft’om point to point in the enclosure. It is easy to 
understand why a sound field which is both random in time and space is extremely difficult 
to control actively to any useful degree.

The work undertaken in the last three years has attempted to address this problem. 
The task of trying to develop a theory which embodies both the spatial and temporal 

random elements of the general problem is clearly formidable, therefore the two facets of 
the problem are considered independently. Hiis is not to say that the spatial and temporal 

characteristics of the sound field may be treated independently in this way since they are 

inter-dependent. Nevertheless, this approach helps to isolate the problems associated with 
each type of random fluctuation and furthermore, helps to considerably simplify the 
analysis.

Most of the work presented in this thesis is the result of original research 
undertaken over a three year period by the author in close collaboration with his 

supervisors, Drs S. J. Elliott and P. A. Nelson. However, important parts of this thesis is 

the contribution of the supervisor's own work (or which appropriate recognition is due.

The theory devclcped in Chapter 2 is essentially an extension of the free field sound 

power minimisation problem for stationary random signals investigated by Dr P. A.



Nelson. The author's own contribution to this problem has been to provide an 
interpretation of the principles underlying free field sound power minimisation in terms of 
the power spectral doisity. More importantly, the author has extoided this single channel 
theory to include reflections from a sin^e reflecting surface. This study has highlighted the 
recursive structure of the impulse response function of the cptimal secondary source 
strength. Steady state levels of sound power reduction obtained for the causally constrained 

and unconstrained controller, which are pertinent to white noise signals and harmonic 
signals respectively, are derived and con^jared. This chapter considers the minimum sound 
power output of, and the interactitMi between two white noise sources radiating into a semi­
infinite duct assuming plane wave propagation. This model problem was chosen because of 

the spatial simplicity of the sound field by virtue of being one dimensional. Reverberation 
is simply introduced by way of a single termination at one end of the duct where dissipation 
is introduced by means of a real, firequency independent reflection coefficient

In chapter 3, the converse problem is contemplated whereby the sound field has a 
simple variation in time but whose spatial variation appears random In all of the diffuse 
field work described in this thesis, the controller will be assumed to be feedforward in 
operation so that the only restrictions on the level of reductions obtainable in principle are 

imposed by the physical characteristics of the primary and secondary pressure fields 
themselves. In this work the temporal characteristics of the noise source is kept deliberately 
simple by considering only harmonic sources of sound at a frequency above the Schroder 
firequency. Above this critical frequency, the number of normal modes making a significant 
contribution to the total pressure response is sufficiently large that the spatially sampled 
sound field to all practical purposes may be regarded as a random variable. Specifically, the 
minimum sound powCT output of two closely spaced point monopole sources in an 

enclosed sound field above this critical fiequency is determined for which tire first and 

Mxrondonkr^atiKksaretkrivML

In developing the analysis io chapter 3, the author recognises the contribution of Dr 
S. J. Elliott for providing the correct interpretation of the physical mechanisms of sound 
power rninimisati(minadifiuseficld«ivifonmcnL In;Mtrtiknilar,i&xrisb(ywnung thatthe 
sound power ouq)ut of a point secondary source driven to minimise the combined sound 
power outputs firom itself and a point primary source in a reverberant space is exactly zao. 
The author would also like to acknowledge Dr Elliott for his help in recognising the 
relationship between the normalised variance of the diffuse field reverberant pressure 
contributions and the modal overlap factor.
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RctogXtbkUigthjUtbis c%xotrryc%Ii:*3dk:l;p:oiix;trKib;fisi)ecial c&%andiuKeakMicof 
the type of problem encountered in reality, die more practically orientated problem of local 
control in the diffuse field is considered in chapter 4. The problem of cancelling the 
pressure to zero at a point which is remote fiom all sources is investigated. Elementary 
statistical methods are errployed in ord®- to derive expressions for the i^atial extent of the 
so called quiet zone, the sectxidary source strength requirements and the increase in the 
potential energy well away fiom the point of cancellation. The derivation of the eiqiression 
for the space averaged diffuse field quiet ztme is also attributed to Dr Elliott, although a 
slightly modified version of his analysis is presented in this thesis. Dei^ite the apparent 

simplicity of this single channel cmtrol strategy, the results obtained turn out to be 

surprisingly subtle. However, it is demonstrated that the size of the zone of quiet formed in 
this high fioquency mclosed sound field between successive experiments is extremely large 
making it impossible to talk in terms of average values with any meaning. Mra-eover, the 

increase in the potential energy formed by this process is shown to be sufficiently large that 
the average value over all source and cancellation positions is infinite. The statistical ill- 
conditioning of this unconstrained control scheme is the motivation for the work presented 
in chapter 5.

Chapter 5 deals with the results of constrained diffuse field active control. In 
particular, the effects of 'hard limiting' is examined. This quite severe constraint attempts to 

mimic the behaviour of a real control system which will obviously impose some upper 
value on the maximum secondary source strength it can deliver. Multi-channel control 
schemes are also studied, both from an analytic view point and fiom the results obtained 

firom a systematic series of Monte-Carlo simulations which have yielded some enlightening 
empirical results. As a special case, the zone of quiet fomed around two diffuse field 
points, which are close compared to the acoustic wavelength, has been studied using 
computer simulations for which the sum of the squares of pressures has been minimised.

Undoubtedly, the most successful control strategy investigated so far in this thesis 

for dealing with high firequency enclosed sound fields is that originally suggested by Olson; 
namely the cancellation of the pressure at a point close to the secondary loudspeaker i.e., 

the 'Sound pressure reducer*. Hiis is the subject of chapter 6. The size and shape of the 

zone of quiet around a control microphone in this configuration is shown to be 
predominantly governed by the fiee space, near field characteristics of the source whereas 
previously, for the case discussed in chapter 4, the size of the quiet zone was shown to be a 
sole function of the spatial cross correlation firnction of the diffuse sound field. The 
principal advantage of this near field arrangement, con^ared with cancelling the pressure at 

a point which is remote fiom the influence of directly transmitted sound, is that the energy 

12



radiated to the 'far Geld' of the secondary source is now significantly reduced. For 

exan^le,anincreasein the cn/eralls()un(l])resstaeleiMdcd'ra(xn5tlutH l()(lBiva^f(xin(lto 
be Q^M^alushM;arcox^K sec(mdatysource,whereasinthistighdycoupledconGguration,  
the increase in sound pressure level wdl away 6om the point of cancellation is restricted, in 
many cases to only a small fraction of 1 dB. In both cases however, the size of the quiet 
zone within which the pressure has been reduced by 10 dB with respect to the primary 
Geld, is shown to be about one tenth of a wavelength.

Thetheoiydevelopedin chapter 6 fbrthesquarepressurevariationinthevicinityof 
a point of nuU pressure in the loudspeaker's near Geld is supported by experimental results 

presented in die same chapter. Measurements of the sound pressure level was made by a 
single microphone which traversed along the axis of the secondary loudspeaker in the 
direction of its motion through the point of cancellation. The electronics enabling the 
experimentation to implemented automatically was designed and built by Mr Ian Stothers, 
who is gratefully acknowledged.
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CHAPTER 2

CAUSALLY CONSTRAINED MINIMUM SOUND POWER (IIJTJPIJTT IN 

THE PRESENCE OF REFLECTIONS

2.0. Introduction

This chapter is intended to provide a brief introduction to the active control 
of broadband stationary random sound fields. Particular emphasis is given to the effects of 
reverberation. The characteristic feature of this type of sound field is that at any point in 
space, the acoustic pressure possesses a waveform which is time varying in a fashion 
which is generally not wholly deterministic. Moreover the difficulty from the point of view 
of analysis and control is compounded by an infinite succession of reflections by the 
enclosure walls. The investigation reported here is motivated by the need to establish the 
feasibility of active noise control in reverberant spaces when the primary sound field varies 
randomly in time. The critical constraint on the controller when seeking to reduce this 

sound field according to some prescribed criterion is that it must act causally with respect to 
the action of the primary source. The appropriate condition on the optimal secondary source 
qso(t) is that

qso(t) = 0fort<0 provided qp(t) = 0fort<0 (2.1)

where the origin of time t = 0 is taken from the first action of the primary source. 
Depending on the statistics of the primary source output signal and the relative source 
positions, this fundamental constraint may have a significant bearing on the levels of 
reduction that ultimately may be achieved.

Surprisingly little work has been undertaken in this area. This is most probably due 
to the difficulty of time domain analyses, where the causality of the controller may be 
monitored directly, over corresponding fiequency domain analyses where the causality of 
the controller cannot be immediately verified. This is perhaps surprising since time domain 
optimisation techniques form a large part of modem signal processing particularly since the 
pioneering work of Wiener^^ in the 1940's and later work by Kalman^ in the 1950's. To 

the author's knowledge, the first person to apply classical time domain methods to the 
realm of active noise control was Nelson^S who has used the theories developed by Wiener 

to study a number of model problems in the active control of sound. One example is the 
deduction of the causally constrained minimum sound power output of two closely spaced 

point monopole sources in free field. Also derived are analogous results in matrix form for 
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the multi-channel problem enabling causal constraints to be imposed on the optimal 
secondary source strength seeking to minimise the total potential energy of the randomly 
excited sound field in rooms. Each acoustic mode excited in the room is considered as an 
independent source of variation so that the sound field in the room may be regarded as a 
multi - degree of freedom system.

Inevitably, the solutirai for the c^timal causal controller requires the inversion of a 
large matrix whose size is determined by the number of acoustic modes considered to be 
necessary to adequately represent the sound field. This may be hundreds of thousands of 
modes in some cases, particularly when the acoustic damping and the excitation bandwidth 
are simultaneously large. As a first approximation, JopUn36 has carried a numerical 

investigation using this theory which incorporates just eight modes. However, the exercise 
was performed more as an illustration of the governing physical principles than a serious 
attempt to model the behaviour of a real system.

In this chapter, the causally constrained fiee field minimum sound power output of 
two idealised plane sources radiating plane waves into an infinite hard walled duct is 
investigated. This problem is considered from the point of view of the sound power 
spectral density of each of the sources which quantifies the sound power output per unit 
frequency bandwidth (this is not to be confused with power spectral density which is 
defined for arbitrary signals of different physical origins which in general do not have the 
units of Watts per unit frequency). The mutual interaction between the primary source and 
secondary source is investigated by considering the power spectral density of each of the 
sources in turn. Previous work has only considered the total time averaged sound power 
output Frequency decomposition of the power outputs of the sources offers a clearer 
picture of broadband sound power minimisation and is valuable in being able to reveal the 

subtle interaction between the source pair. The idea of predictability, which is central to the 

active control of random noise, is investigated more closely and a qualitative, empirical 
relationship between the "predictability" bandwidth of the primary source signal and its 
frequency bandwidth is proposed.

The equatiems are develcyed further to determine the optimal causal secondary 
source strength which minimises the sound power radiated into a hard walled duct 
terminated at one end. Dissipation is introduced by way of a real, fiequency independent 
reflection coefficient at the duct termination. The governing equations arc shown to possess 
an exact solution fw the important limiting cases where the primary signal is either 
Gaussian white noise or a harmonically varying pure tone. The two cases are considered 

separately and compared.
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2.1 The unconstrained minimum sound power output in the free field

While this thesis is predominantly concerned with the active control of pure tone 
reverberant sound fields, this section is given to a discussion concerned with the active 
control of broadband noise radiated into ftee space. This is because the presence of 
reflected sound profoundly complicates the analysis so that for the one dimensional 
problem under consideration here, reflections from boundaries such as those fiom the walls 

of rooms will initially be disregarded. A fiee field analysis is not entirely irrelevant to the 

control of enclosed sound fields. In many cases, particularly at high frequencies, the levels 

of sound power reduction which are physically achievable in free field are closely related to 
the levels of sound power reduction which are possible in an enclosed space. This is 
particularly true in three dimensional enclosed sound fields with large room absorption at 
high fiequencies where the level of reflected sound is, on average, much less than the level 
of directly radiated sound. This is problem is addressed in detail in chapter 3.

As an example of a one dimensional free field problem, consider an infinite, hard 
walled duct in which there are situated two idealised plane sources q^fl) and qp(t)

Control volume

%Xt) %(0

xp xs

f igure 2,1. An irfinite hard walled duct containing a primary and secondary plane source

The acoustic pressure p(tp() radiated by the volume velocity q(tptq) which is located at 
some point Xq are related via the inhomogeneous wave equation^?

(2^)
Co dt

who-e V2 is the Laplacian operator, Cq and p symbolise the sound speed and the ambient 

density in the medium respective and where q(tptq) represents the volume velocity density 

in the volume acting to accelerate the fluid which therefore behaves as a source of sound. 
The primary and secondary sources indicated in tire figure above are intended to represent

16



idealisedplane souiceswbose sourccsirMigthdensidcsarcconccniratedinaplanenonnal 
to the length of the duct according to

qO^^P=q(0!Kx -Xq) (23)

where 5 symbolises a Dirac delta function which is only meaningful within the context of 

integration. In an infinite me dimensional duct, assuming only plane waves are allowed to 

propagate, the D'Alembat retarded time solution is given by

p(t,x)= Zpqa - ^<1 ) (24)

where Zp is tire plane wave impedance for the duct pco^. For a single tone at a ftequency 
m, q(t) = q(m)ei(')^ so that the complex pressure may be obtained from equation (2.4) to give

p(m,x) =Zpq(m)e-jWx -xq" (25)

where k is the wavenumber oVcg.

We will now derive the minimum sound power output from the source pair 

indicated in figure 2.1. For the elementary source types described by equation (2.3), the 

total sound power output W from the two sources radiating simultaneously is given by38

W= ^)l {q!p(Xs)+ q^p(xp)} (26)

where R denotes the process of taking the real part. 

Thevolumevelocity dependence onftequency andsourcepositim have been dropped for 

brevity. The total acoustic pressure resulting from both sources p(x) assuming linear 
superposition isgivenby

p(x)=: qsZ(Xslx)+^Xplx) (2.7)

where ZXxglx) and Z(Xplx) rqrreseot the cmoplex acoustic transfer impedances relating the 
secmdaiy sourceatXgandtheprimary source ^XptothectunphatpreManeiu: somepointx 

respectively. Substitutim of the total pressure p(x) into equatim (26) for tiie total sound 
power output yields a quadratic functim of the coaq)lex secmdaiy source strength q^ of the 
general form

W=:qgAqg + bq2 + b*qs + c (28)

whose coefficients may be identified in terms of the transfer impedances thus
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A= ^)l{Z(Xglxg)),b = ^qpR(Z(XplXs)),c = ^k^|2R{Z(XplXp)} (2.9)

The properties of Ae genaal quadratic form given by equation (2.8) have been extensively 
investigatedwithoptimisati(mpfoblemsafdustypel3^9A three dimensional plotofW 
against Aerealpaitoftbecomplcx sec%xo(hu]riM3a:%x:tAretq;tb:PL((h)aiMl the imaginary part 
1,(qs) produces a bowl shape function whose minimum value is uniquely defined by the 

bottom of the bowl. The existence of a well defined minimum solution follows from the 

positive definiteness of the constant 'A' which is guaranteed since the source on its own is 
unable to absorb sound power in die absence of any external sound field^. The value of q^ 

= qso which identifies the minimum of this quadratic function must simultaneously satisfy

9W 
a)l(qs)

= 0 and -^.0 
aitqsl

(2.10)

The solution to this equation has been derived^ and may be shown to be given by

qa) = -A4b (2.11)

For the current example, using equatiem (15) and (2.9) (me can show that, A = ^ Zp and 

b = qpZp cos klxg - Xpl such that from equation (111), one obtains the solution

qg(, = -qpcosldxg.xpl (112)

In its present frequency dtxnain representation, the tptimal secondary source strength q^^ 

given above says very little about how the secondary source achieves optimal reductions in 

total sound power output The mechanism of control is revealed more clearly in the time 
domain. The multiplicative term -cos Idxg - Xpl may be regarded as a transfer function 

relating the cptimal secondary source strength to die primary source strength according to 
(ko = - qpHo(m). The correqxrnding impulse reqxrnse functitm h^ft) may be obtained from 
Ho((D) via d)C inverse Fourier transform given by

= jHo(m)ej<')td(n (113)

Given that Hofm) = -cos IdXg - Xpl, then taking the inverse Fourier transform gives

ho(0 = -2[^(-l^) + ^i + Ki)] (2.14)
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wherc^iissimply (hepmpagaiion timebetween tbetvyosouroBsIb^;- Xpl/cQ.

In this form, die optimal secondary source strength as a function of time is derived from the 
primary source time history qp(t) via a convolution with the impulse response function 

according to

qao(t)= jhoCO qp(t - %) dt (2.15)

Using equations (2.14) and (2.15), the secondary source strength time history qso(t) is 
simply

qa)(t) =- ^[ qp(t It) + qp(t + it) ] (2.16)

which has previously been derived in reference [41]. Equation (2.16) embodies two of the 
most fundamental mechanisms of active noise control; sound power absorption and 

primary source loading. It is important at the outset to understand the underlying physical 
processes associated with free space sound power minimisation before considering the 
more complicated effects of reverberation. This may be considerably assisted by using the 
graphical representation shown in figure 2.2 of the evolution of acoustic pressures in the 
duct due to the secondary source in response to a primary source signal consisting simply 
of a unit pressure pulse at t - 0

(a) t= .|i + e 

4/21 14/2

Figure 2 J. j4 pufre digram indicating /Ae ewMba qf /Ae presrure ia rebase to a primaf} 
saarcg pwl% aw* amplitude.

where e is used to denote a 'short time later'. This pulse interpretation of the mechanism of 

sound power minimisation is due to Curtis^O
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As indicated in figure 2.2a, the secondary source starts by anticipating the action of 
the primary source by a time g which then radiates an inverted replica of the primary source 

pressure waveform, but cme half its magnitude so as to arrive at the primary source just in 
time to meet the pressure only just radiated at t = 0. Hiis wUl have the effect of halving the 
downstream radiation impedance of the primary source such that only half of the original 
pressure is radiated for the same volume velocity in the absence of control as suggested by 
figure 2.2b. The role of this component of the solution is to provide a prediction of the 

primary signal for the purpose of loading the primary source.

The remaining term -l/2qk/j:-|i) (iftlwstqptuiudseoorKlary source strengthis 

responsible for absorbing half of the primary source pressure radiated towards the 
secondary source whose upstream radiation impedance is unaltered by the previous action. 
The absorption of the incident primary source energy is indicated in figure 2.2c. The square 
pressure amplitude in the absence of the secondary source is simply 12 (which for plane 

waves is proportional to the radiated energy). Figure 2.2c indicates that the total energy 
radiated by the source pair as result of active control is now equal to (1/2)2 + (1/2)2 + 
(1/2)2 + (1/2)2 which is exactly one half the original energy radiated by the primary source. 

This combination of sound power absorption and primary source loading is therefore able 

to offer a reduction in the total sound power ouq)ut exactly equal to one half of the original 
primary source sound power output. It is emphasised that this level of sound power 

reduction represents an average reduction over all frequencies since the system response to 
a unit pulse may be considered to be the average harmonic system response taken over all 
frequencies. This is because a pulse of infinitesimal duration possesses a 'flat' spectrum 
where all frequencies are represented to the same depce. For pure tone sources, the actual 
level of reduction is very dependent on its frequency. Substituting equation (2.11) for the 
optimal secondary source strength into the general quadratic form of equation (2.8) yields 
the minimum value W^ which is given by

Wmin =C - bA'lb* (2.17)

Substituting the values of A, b and c given In equation (2.9) gives

Wmm = ^Zptqpt2[l-COs2kp] (2.18)

Constructing the primary source sound power output Wp radiated in die absence of the 

secondary source according to the formulaticai given in equation (2.6), one can show that

^P^2^*9pl^ (2.19)
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According to equation (2.18) and (2.19), the minimum total sound power output in terms of 
the;«itD^u]r:M)uit>:!X)uiMl]P(^^^=r(Mjqp^his]grvcfilyy

W:nhi=Wp [ 1 - cos2]qt] (2J0)

By inspection, the average reduction in sound power output taken over all frequencies is 
exactly one half the original primary sound power output which is consistent with the time 
domain interpretation described by figure 2.2. ITie level of reduction at any single 
fiequency can therefore be seen to be highly dcpraident on the phase difference kg of the 

tone between tire two source positions. Equation (2J0) indicates that cooylete suppression 
of the total sound power output is possible for source separation distances exactly equal to 
an integer number of half wavelengths. Conversely, the total sound power output remains 
unaltered for source separation distances exactly equal to an odd number of quarter 
wavelengths.

The most significant proper^ of the optimal secondary source strength time history 
qgq(t) given by equation (2.16) is that it contains at least one term qp(t + g) which requires 
an apriori knowledge of the primary signal at an advanced time g. For most primary signals 

therefore, this filter cannot be realised in practice. One can now immediately see that this 
formulation of the minimum sound power output is, in general, only appropriate for 
harmonic signals which are infinitely repetitive and is therefore not relevant for random 
primary signals. The difficulty lies in the nature of frequency domain analysis which clearly 
does not recognise negative time as a violation of physical laws. Since no distinction is 
made between positive and negative time in the frequency domain, causality cannot be 

readily incorporated into the solution and one must resort to time domain techniques where 

the causality of the solution can be imposed directly.

2.2. Causally constrained minimum sound power 
output in the free field

Now follows an exactly analogous formulation of the total sound power output in 
the time domain using an approach suggested by Nelson^S. The total time averaged sound 

power radiated from Ac source pair may be written as

W = lim
T
f [ qs(t)p(Xs,t) + qp(t)p(xp,t) ] dt (2.21)
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The total pressure p(x,t) resulting fiom primary and secondary source contributions is 

given by
pC^O = Zp[qpO--^g^^^) + (ka-'^^^^^)] (2^)

Substitution of this equation into equation (2.21) yields

T
w=ZpU2^^ /{qsO)[qp(t-^^^'^) + qs(»l

+ qp(t)[qp(t) + qs(t-----^^)] ) <^^ (2^)

We now assume that qgCt) and qp(t) are linearly dependent and related by a causal impulse 

response function h(t) according to the relation

qs(t) = J h(T) qp(t -1) dt (2.24)

It is important to recognise that causality is introduced by setting the lower limit of the 

integral to zero which ensures that
q^Ct) = 0 for t < 0 provided qp(t) = 0 for t < 0 (2.1)

Substituting q5(t) into equation (2.23) produces an expression for the total sound power 

output W solely in terms of the impulse response function h(x) and the primary source

signal qp(t) of the form 
T

oo

f h(T)qp(t - T) dt

(t-t)dT +

(2.25)
where It = Ixg - Xpl/cg as before.

Despite the apparent complexity of this expression, one can make considerable 
simplifications by noting that the orders of integration may be re-arranged and terms which 

subsequently appear such as
T
l4p(Oqp(^+'C)dt=ppp('[) (2J6)
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arcde(imdonsofAcpnmaiymgndi«igx)«^ concladwfuncticm ppp(T)evaIuatedat the 

t^)ptopnate tu]%B(iclagK(^)rtwiviinc%^)i% 1^185:0^^)11608*100 ischaaflyofih^iMalkl forAafiowz/)' 

random signals. Performing Ais sequence of opaations yields

h(T) Ppp(t - P) dt

+ Wp (2.27)

The term Wp=Z^pp(O) is Ae primary source sound power output radiated m Ae absence 
of Ac secondary source. Using standard variational techniques'^, it is left to Appendix 2.1 

to show that Ais function is minimised for an optimal causal impulse response function 
ho(T) which must satisfy Ae following relationship 

oo
^f bo('Cl)Ppp('[ - ^1) d":* + Ppp('c +P) + Ppp(i: - P) = 0 fort> 0 (2.28)

The inhomogeneous mtegral equation given above is a form of Ae well known Wiener - 
Hopf equation whose solution, b Ais case, gives Ae optimal impulse response function 
for determirung Ae causally constrabed minimum sound power output radiated by Ae 

source pab. Some confidence regardbg Ae correctness of Ais equation is derived if one 
sets Ae lower limit of this btegral to —oo and Ae Fourier transform is taken. This series of 

operations recovers Ae original unconstrained optimal solution Hq = - cos kg derived 

earlier b Ae frequency domab.

FoUowbg Nelson et-oP^ Ac solution to equation (228) may be obtained partly by 

bspection and partly wiA recourse to classical techniques b Ibear estimation Aeory. By 

direct analogy wiA Ae optimal impulse response function obtabed for Ae unconstrained 
problem b equation (2.14), assume a solution ho(Ti) of Ae form

ho('Cl) = - ^( 5(T1 - g) + Uo(Ti) ) (2.29)

The two terms arc rcqicctivcly a component for Ae abscsption of Ae bcident sound wave 
as indicated before, plus an additional term Uo(Ti) which is now substituted b place of Ae 
anticipatory term5(ti + g) a;q)caiinj;inc(iuation(2U14)jk)rtlwei:nc<)nstrainc<l(%ase 

signifying an advance b time. Substitution of Ae assumed form of Ae solution of equation 
(2.29) bto Ae Wiener - Hopf equation yields Ae foUowbg conAtion on Ae term Uo(ti)
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Ppp(T +P) (2.30)

This equation has straightforward interpretation: Given a knowledge of all past values of 
the time history qp(t), the filter Uo(ti) is required which affords the optimal estimate of the 
primary signal at some future time qp(t + g). The form of this equation is appropriately 

called the Wiener pure predictor equation whose solution is given in many standard texts on 
linear estimation theory and signal processing^3,44 {jut will only be cited here.

Assume that tire primary source signal qp(t) may be represented by some shaping 
filter Xp(s) driven by white noise, where s is the Laplace variable, whose impulse response 

function is x(t). This choice of model is clearly only valid for stationary random signals. 
The optimal predictor Uo(s) which is the solution of equation (2.30) is given by

(2.31)

where Xp+(s) is the one sided Laplace transform of the impulse response function of the 
shaping filter advanced by the appropriate propagation time |1, namely Xp(t + g). Thus

oo <x>
Xp(t) = 3^ f Xp(s) cs( ds and Xp+(s) = f Xp(t + g) e'^t dt (2.32)

The process described above is discussed in many texts on time series analysis, see for 
example Papoulis^. The solution to this equation for an important representative example 
is now discussed. Consider the case where the primary source strength qp(t) is closely 

represented by the output from a filter with the well known characteristic second order 

frequency response described by equation (2.33) driven by unit amplitude white noise. The 
Laplace transform of the shaping filter is given by^^

S^ + 2C0)nS + (OR
for C < 1 (2.33)

where ( and 0)^ are the filter damping and the undamped natural frequency of the filter 

respectively. Equation (2.33) provides a good model of the frequency characteristics for 
many commonly occurring noise spectra which exhibit this typical 2"d order type response 

described above. Tyre noise, for example, radiated into a car body will be distributed in 

frequency roughly according to equation (2.33) since the excitation of the rough ground will
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be approximately of the same level at all frequencies. Transmission of sound through the 
tyre will therefore tend to filter the noise radiated into the car interior by virtue of its 
associated mass, stiffness and damping. The impulse response function x(t) of this filter is 
alsowellknown^Sandisgivenbelow

Xp(t)=^ eC(»=^sio(0nt (2.34)

(QO 

where coq is the frequency at which peak response occurs, ©q = ©o'^ 1 C^ • Employing 

equations (2.31) - (2.34), the optimal predictor Uo(s) may be solved to give

e-^COnP-
Uo(s)= --------- [ ©0 cos ©011+ (s+(©h) sin ©oil] fbr( < 1 (2.35) 

mo

where the required Laplace transforms are standard results given in many texts^S. Putting 
s = jto for the optimal predictor UqC©) and substituting into the frequency response function 
Ho(©) relating qsof©) and qp(to) yields the result

Ho(©)= - [edo^u + 5.^— [ u)Qcos ©oil +(i© +^^5) sin ©oP] (2.36) 

mo

The quantities under consideration are now written as function of frequency © to indicate 

that spectral decomposition has taken place. The causality of this optimal secondary source 
strength qso(t) as governed by Ho(©) is readily verified by inverse Fourier transforming 
and convolving with qp(t) to give

J g-^(i)n|x
qso(0 = -2 [qp(*"l^) +-^—((moCOS©oll + CmnSin©oii)qp(t) + sin©oliqp(t))]

(2.37) 
which is only dependent on past and present values of the primary source strength time 
history qp(t). It is interesting to observe that the optimal predictor also depends on the 

derivative of the primary signal with respect to time qp(t). For the sake of consistency with 
the previous frequency domain analysis, qso(t) must tend to the unconstrained result given 

in equation (2.16) as the damping of the shaping filter becomes increasingly narrower 

eventually tending to zero. In this limit, the output of the shaping filter is a single tone 
possessing a frequency equal to its centre frequency ©n- The consistency of the time and 
frequency domain analyses are immediately verified by letting ( -+ 0 so that ©() —> ©h, to 

give

q%)(0 -> - ^ [ qp(t - H) + cos©nli qp(t) + ^(0 ] (1%)
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For C = 0, gso(0 is harmonically varying at a frequency m equal to (0^ which leads to ^(t) 

=jo)qp(t). In the limit of zero filter damping therefore, the optimal secondary source time 

historyconvergesto
^i% qsoN = ' ^ [ci<op + eimp ] (2.39) 

where in the time domain
(^48)(iso(t)=-&[ qp(( - M)+%)(*+i^) ] (^ ^^) 

which is equivalent to the unconstrained frequency domain result derived earlier in equation 
(2.16). Qmsider first the sound power radiated by the secondary source W^q when seeking 

to minimise the total sound power output of the primary - secondary source pair. This may 

be expressed as

Wgo = ,|^^ J [qso(OP(xs4) ] dt (2 .40)

Given that the time histories of optimal secondary source strength qso(t) and the total 
acoustic pressure pCxg.t) are now known from equations (2.37) and (2.22) respectively, it is 

left to Appendix 2.2 to show that

Wg) = ( cogcos^Wop + (O)nvn2moli +o)^(l + C^) sin^o)oP - 1 ]

where as demonstrated in Appendix 2.2 (2 41) 
Wp = ZpOh /S; (2.42)

Similarly, the primary source sound power output Wpg in the presence of qso(t) is also 

derived in Appendix 2.2 to give

Wpo= Wp[ 1 - ^^^ ( mgcos^mop. + ;2sin^mop +C(i)hmosin2(qop ) ] 

(2.43)
Before considering the behaviour of these functions for arbitrary values of the filter 
damping C, it is informative to consider the limiting case where C tends to zero at which the 

filter output is a single tone whose frequency is equal to the filter's centre frequency. The 
primary sound field along the infinite duct therefore reduces to a single frequency plane 
wave of frequency 0)^ From equations (2.41) and (2.43), as ^ -4 0, one obtains the 

asymptotic expressions
W^-^O (2.44)

and
Wpo-»Wp(l.COS^) (2.45)
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In the limit of zero filter damping, the total source sound power ouqjut W therefore 
varies as (1 - cos^co^p.), a result already deduced according to a frequency domain 

analysis in equation (220). For perfectly predictable signals therefore, all of the sound 
power reduction is due entirely to the suppression of sound from the primary source since 
the time averaged secondary source sound power ouqsut is zero as indicated by the form of 
the asymptotic result in equation (2.44). From this result one can infer that the energy 

expended by the seccwtidary source through loading and absorption of the primary source 

radiation are exactly equal and opposite. However, for bandlimited signals, this equilibrium 
condition is destroyed and the net time averaged sound power ouqjut from the secondary 
sourcewill benegative. Thisisbecause the ability oftiie secotxlary scwircetolotKitlie 

primary source is a sole function of the signal predictability. This contrasts the amount of 
sound power absorbed by the secondary source which is entirely independent of the 
primary signal predictability. The functions given by equations (2.41) and (2.43) for the total 
primary source and secondary source sound power ouqjut are plotted overleaf in figure 2.3 
for the representative values of the filter damping ^ of 0.999,0.5,0.1 and 0.

In the first two examples, figures 2.3a and 2.3b, for which the filter damping is set 

to 0.999 and 0.5 respectively, a good level of sound power reduction can be observed for 
source spacings up to about one half of a wavelength of the filter's centre frequency. 
Above this separation distance however, the primary sound power output appears to remain 

unchanged while the secondary source sound power is minus one quarter the primary 
source sound power output The total sound power reduction is therefore only one minus 
one quarter of the original sound power level corresponding to a reduction of only -1.25 
dB. As the filter bandwidth becomes narrower, for ( = 0.1 in figure 2.3c, an oscillatory 

variation with source separation distance begins to appear owing to the onset of phase 

interference associated with the strong tonal component at the centre fiequency of the 

shaping filter. As anticipated, the results derived in this section are fully consistent with 
earlier findings since setting the filter dancing to zero in figure 2.3d recovers the variation 

established in the previous section for deterministic signals. These series of figures indicate 
that no loading of the primary source is possible for source separation distances equal to 
integer multiples of half wavelengths regardless of die signal bandwidth.
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2.3. Interpretation of the minimum eound power output in 

terms of gxrwerspeetral density

In this section the sound power outputs of the primary source and the secondary 
source derived in the previous section are decomposed into their spectral components in 

order to deduce their sound power spectral densities. This exercise facilitates deeper 

understanding of the conplex interaction which necessarily occurs between die primary and 

secondary sound fields in order to maximally reduce their combined radiated acoustic 
energies.

From equation (221), the time averaged secondary source sound power output Wg 
is determined from

1 7 
f[9s(Op(Xs4)]dt = pqp(0) (2.46)

where pqp(O) is the tenporal cross correlation functiem between die secondary source 

strength and the total pressure at the secondary source point evaluated for zero time lag. 
The distribution to fi-equency of this source strength - pressure product may be determined 
fi-om the Fourier transform of the cross correlation function pqp(t) which is defined by

T) ] dt (2.47)

Taking the Fourier transform yields the cross spectral density Sqp(co) according to'^

^qp(('*) JpqpW dt (2 .48)

Taking the the inverse Fourier transform recovers the cross correlation function, namely

Pqp(':) = JSqp((D) ei(M dm (2.49)

Equatiems (2.47) and (2.49) constitute a form of the Wiener - Ktochtoc equations^. The 
total soundpoweroutput whichhas bear shown to begivenby pqp(0) isnowrepresented 
byequation (2/t9)fx)rt:=O togive

P(n)(0) = JSqp(m)dm (2jo)

^00
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From Ais equation erne can infer that Sqp(m) represents Ac frequency Astribution of Ac 

sound power output over all frequencies. For convenience (since FFT analysers do not 

recognise negative frequencies) it is useful to fonnulate Ae sound power spectral density in 
terms of Ae one - SKkd cross q)ectral density function Gqp(eo) defined firom

Gqp(m) = 2Sqp(m) for (D>0 (2.51)

Gqp(0)- Sqp(0) for (D = 0 (2.52)

Gqp((D) = 0 for m<0 (233)

Recalling Ae following even and odd properties for cross spectra^

)L(Sqp(m)) .)l(Sqp(-m)) (2.54)

l(Sqp(m)) = -t(Sqp(.m)) (2. 55)

so Aat Ae frequency Astiibution of sound power output may be written as

W,(m). [Sqp(m) +Sqp(.m)] = 2)l(Sqp(m)) (2.56)

W/m)=5l(Gqp(m)) (157)

A fuller Ascussion of Ae steps leading to Aese equations connected wiA a frequency 
domAn anAysis of sound totensity is presented by Fahy46. Recall Aat Ae totA pressure at 
Ae secondary source point is given by q5o(©)Z(Xsixs) + qp(co)Z(xplxs). The secondary 
source sound power spectrA density Wso(co) may Aus be derived from

WM,(m)= Z(x,bg)l(Gq^(m)) + Z(XplX:))l(Gqpq,(m)) (2.58)

where Gq^ggCco) and Gqpqg(tt)) are respectively Ae one sided auto power spectrA density of 

Ae secondary source strengA and the one sided cross power spectrA density between Ae 
secondary source and the primary source strengA. Alternative but cqAvAcnt definitions 
Aso exist in Ae form of^

G^,(„,, fa, 5te^ „d G^,«,) = Ihn S9»«»&W1 (2.59) 

where qisofA) are Fourier transforms of q^oft) of finite duration T and E darotes 
expectation wiA respect to time. PuAng Zfxplxg) = ZpcW and Z(XglXg) = Zp for this 

case, Ae secondary source sound power spectrA denAty reduces to
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W:o(m). Zp[)l(Gq^.(m)+rNGqpq,(m) )] (2.60)

The spectral densities given above may be ra-writtea in tenns of the primary source signal 
by employing the following well known input - <xiq)ut relations for Unear, time invariant 
systems^

^qsqs(®) ~ IH0(co)l^ Gqpqp(Qj) and GqpqgCto) = H^CO) Gqpqp(Ci)) (2.61) 

The seccHidary source sound power spectral density may now be written in the simpler 
form of

W„«0) = ZpR( IH„(CO)|2 + H;(O)) C-jW )Gqpqp((0) (2.62)

Recalling that in this case Ho(co) = - 5 [ e-i“^ + Uo(co) ] which upon substitution into 

equation (2.62) yields the simpler expression

Ws„(to)= -tZp[l-IU„(m)|2 ]G^(o» (2.63)

where ZpGqpqp(to) is the original primary source sound power spectral density Wp(co) so 

that

(2.64)

Equation (2.64) explicitly reveals the significance of the optimal prediction filter UqC©) 

which appears simply as a frequency dependent weighting function on the primary source 
power spectral density Gqpqp(to). The secondary source sound power output is therefore 

determined by its own ability to predict the output signal of the primary source. One can see 
thatfbranygivenfiequencytheminimumvalueofequatirai (2.64) is -l/4whiletiie 
maximumvalueis zero. In terms offhet%%)definang]xuao^Mersofthesluqnng filter, ( and 

cOn, using equation (2.35) and (2.64) one can show that

v^^ 1
Wp(m) 4

e-%(&#
(ti^^3os^^U(^i+(/r^^%^yaui:Z(pQ*iF ^^sin^mop+m^sin^tuop)]

(165) 
FbUowing an identical procedure for the primary source sound power output Wpo(to) <^r 

ctxitrol yields the relatitmship

WpQ((D) — Z(XglXp)5l(Gqgqp((i)))+ Z(XpiXp) RfGqpqpfto)} (2.66)
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PutlingZ(XplXp) = Zp, Z(XglXp)= ZpCM^, Gq:qp(m)= Ho(0))Gqpqp((D) and subsdtudngfdr 
Ho((i)), gives

Wpo(m) = Zp)l( [ 1 -le-^N . 1 Uo(m)e-j«# ] ) Gqpqp(m) (267)

Now substituting for Uo(co) and noting that ZpGqpqp(®) is the primary source power 
spectral density function before control Wp(tt>), gives the modified primary source sound 

power output resulting from acoustic interaction with the secondary source pressure. This 
gives

WgoN
Wp(m)

= 1 -Tcos2(0|i

1 e<(W
^ (OO

(ooiQCOsdOopcostnn + (mgsinmopcosm^i +(Dsin(i)()^isin(D^i) (268)

Consider the asymptotic behaviour of Wgo and Wpo as the time |i over which the secondary 

source is required to predict primary source output tends to infinity. In this limit most 
signals, however narrow the frequency bandwidth, are unpredictable (except for ( equal to 

zero where the primary source signals are pure tones). Letting the travel time for sound to 
propagate between the two sources tend to infinity i.e., p. -» »= shows that the predictor 
component of the solution tends to zero, Uo(to) --^ 0, from which the sound power 

spectral density of each of the sources can be seen to converge to the considerably simpler 
expressions

W»(®).^-|Wp(0)) (2.69)

and
V^A^^-4W^^0[^- cos^cop] (270)

One can now evaluate, by inspection, the total sound power reduction for this limiting 
geometry. The total secondary source sound power ouq^ut taken at frequencies is minus 

one quarter that of the primary source. Far more interesting however, is the behaviour of 
Wpo(m) which is singly related to its original primary source power spectrum Wp(m) via 
the frequency dependent modulation factor (1.5 - cos^mp). This phenomenon follows 

directly from the shifting property of the Fourier transform^ namely

P\%C[-pL)44ed^PS^^^m) (271)
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Consider again the important example where the primary source sound power output is 
Gaussian white noise. One can immediately see hrom equation (170) that the presence of 
the secondary source in the duct effectively ’colours' the previously white primary source 
soundpowa-spectrum. Thisffnding arises becausetiietransfer functiondescribing the 
passage of sound leaving the primary source to the secondary source and then back again 

possesses memory by virtue of tire ffnite time for the sound to make the round trip.

These asymptotic expressions describe the response of the secondary source and 
theprimary sourcepower q)ectraldensitiesto soundpowerabsorptionby the sectmdary 

source. This is because primary source loading is not possible owing to the poor 
predictability of the primary signal over the time interval required for sound to propagate 
between the two sources at these separation distances. Assuming that the primary source 
power spectral density varies much slowly with frequency than cos^opL (for example a 

white noise spectrum does not change at all with frequency), the total primary sound power 
output Wp is unchanged since this function oscillates about unity so that

^ - cos^cop. = 1 (2.72)

where the over-bar denotes expectaticm representing the average value over all frequencies. 
At large source separation distances, the total sound power reduction from the source pair 
is due solely to absorption by the secondary source which is approximately one quarter the 
primary source sound power output with the secondary source turned off.

Some examples of the primary source and secondary source sound power spectral 
densities arc shown in figure 2.4 for various values of the filter damping ^ and the source 

separation distance (Xg - Xp). In the first set of figures 2.4a - 2.4d, the Alter damping is set 

to 0.1 while the source separation distance is systematically set at 0.1,0.5,1 and 5 
wavelengthsXn (= 2nc(/mh)ofthecentrefrequencyofthefilter(0h.lnthesecondexample, 

figures 2.4e - 2.4h, the damping of the shaping filter is set equal to 0.99 which is very 
close to critically damped, consequently the sound power spectral density of the primary 
source on its own appears to behave as a low pass Alter and therefore exhibits no resonance 
characteristics.
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C = 0.1,f=150Hz

Frequency (Hz) Frequency (Hz)

Figure 2.4. FAe primary source pmw apeciro/ denjizy 6(^r« confroZ (joM line) corrywed wiiA lAaf i^r coniroZ 
(grey Zine) a/wi lAal aflAe jecanifary jaarce (lower daiAej Zine) ^r variaiu vaZaes of lAe scarce separofian 
disfance wAere % is 1 Ae waveZengfA of the ^Zier's cenfre ^e  ̂aency. fawer speclraZ densifies are fAe source 
rejpanses fa a primary shaping filter driven Ay anif anyZifade wAife noise.
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In the first example shown in figure 2.4a in which the sources are closely spaced at 
one tBrnli()ftiiA^ividkaa*pli(yfilhei:ein]i;fr(xiiK%nc)t()fllte shapingfiltcr((\,, Aetotal sound 

power reduction is mostly due to primary source loading since the secondary source power 
spectral density is very close to zero over all frequencies. The total sound power reduction 
is therefore very close to that radiated if the primary signal were oonpletely periodic owing 
to the high degree of determinism associated with this narrow band spectrum and the 
comparatively short distances over which a prediction of the signal is required. As the 
source separation distance is increased to one half of a wavelength shown in figure 2.4b, 

the primary signal cannot be predicted as effectively and consequently the secondary source 

sound power output equilibrium is destroyed resulting in a net sound power absorption. 

Notethatat some 6equencies,thepfimaiy source scwmtlipowtartNitptuis nowbeginningto 

increase.

As the separation distance is increased still further to one wavelength, no further 
pronounced change in power spectral density can be observed from either source. 
However, as the source separation is increased to five wavelengths, the primary source 
sound power spectral density can be observed to have undergone a pronounced re­

distribution of energy into into its constituent frequencies. This is of course due to the 3/2 - 
cos^cop. type modulation of the primary source spectral output as explained earlier. One can 

see that the increase in power output at some frequencies is roughly equal to the decrease b 
sound power at neighbourbg frequencies, so that the total sound power output after control 

is approximately the same as before control. On the other hand, the secondary source 

power spectral density remains nearly constant at minus one quarter times that of the 
primary power spectral density.

Similar behaviour can be observed for the series of graphs shown b figures 2.4c - 

2.4e for which the system fi:equency response is close to critically damped and therefore 

behaves as a form of low pass filter. Comparison of figures 2.4a - 2.4d and the 
correspondbg graphs for the same source separation distance but for ( = 0.99 given b 

figures 2.4e - 2.4b, suggests that active sound power minimisation is most effective for 
narrow band signals. This observation is revealed mote clearly in figure 2.2.

2.4. General aspects of predictability in the 
active control of random sound

The notion of predictability is extremely important b the active control of random 

sound fields. This is because it is not unusual for geometric eonstrabts to demand that the 
propagationtime betweenasecondarysourceandthedesiredcancdlationpobtisgteater 
than the propagation time between the primary source and the cancellation pobt. An 
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obvious but non-trivial example of where this occurs is the nunimisation of die time 
averaged square pressure at a single bee Geld point This problem is discussed in detail in 
references [35] and [47]. When the point of cancellatim is closer to the secondary source 
than the primary source, the qitimal secondary source strength is essentially a delay b time 
equal to the difference b propagation times from the respective sources to the pobt of 
carxrellation. In this configuration die pressure may be drivoi to zero for all time. This 
causal solution, which could have been written down by bspection, emerges quite simply 
and naturally from the causally constrabed Wiener Hopf equation. When die converse is 
true however, such that the pobt of cancellation is closer to the primary source than the 
secondary source, the optimal time averaged reduction b die square pressure which is 
physically ac1twyval)h;isdetc3trnrwxisolely bythepredictabilityofthe primaiysource 
output

Rtan reference [45], one can show that the time averaged minimum square 
pressure at some free field pobt tg which is closer to the primary source than the secondary 

source is given by

lp(ro,m)P = Zo f[1 - IUo(m)P]Gqpqp(m) dm (2.73)

where Uo(m) is the optimal predictor defined accordbg to equation (231), 2^0 is the free 

space bput impedance of the source and where Gqpqp(m) is the spectral decomposition of 

the square pressure from the primary source with the secondary source turned off. 

Equation (2.73) is closely akb to the expression for the secondary source sound power 
output b equation (2.64). Just as die name suggests, the predictor filter Uo(m) is the factor 

which completely specifies the fraction of the primary source power spectral density which 
may be perfectly predicted at any given frequency. For a primary source square pressure 
spectral density given by Gqpqp(m), the correspondbg square pressure spectral density 

which may be perfecdy predicted Guu(m) (and dicrefbre by implication cancelled), is 

simply

Guu(m)=IUo(m)I^Gqpqp(m) (2.74)

Usbg equation (2.74), the total predictable 'power' of the signal as fraction T|(p) of the 

origbal power can be written as
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I Guu(m)dm 

nW = — ---------------- 
fGqpqp(m)dm

#0

f IUo((D)|:Gqpqp(m)dm

(2.75)
I Gqpqp(m)dm

whereby definitionO^ n(ki)^ l.Altboughit iscustxxoaiytoiefer to spectraofAese kinds 

as 'powers', this does not of course refer to physical power in the conventional sense 
which has the units of Watts since this rqiresMitaticm may be used to dtaracteiise a wide 
rangeofsignalsofvariousphysical origins. Considertheoriginal eauanogxkeiNdiere^ttMejkxnoa 
cd'tbesh^^pingrfihxarisgivcrityy equadmi (233)drivaaby unitang)litude white noise.The 
power q)ectral density of the primary signal Gqpqp((D) may be obtained Aom IXp(m)P to 

give

(On

for which the optimal predictor Uo(co) has been derived earlier. Using equations (235), 
(2.75) and (2.76), the fraction T)(p) of the primary signal energy which may be perfectly 
predicted at some time p. in the future is given by

g*2^0^np.
Tl(lt) = : [ (moCOSCOop. + ((OnSinOOoP)^ + (i^in^O)oP ] (2.77)

The function above is less than, or equal to unity for all ^ and coh. Fw ^ which is equal to 

zero, n(li) is exactly equal to unity for all values of p and (0^ signifying that haimonic 
signals are perfectly predictable at any time in the future. For non zero values of (for 

which the primary signals are not wholly deterministic, it is extremely useful to be able to 
identify some characteristic teoqxiral bandwidth Poj of the signal for which the absolute 

predictability of the original primary source signal powef is less than, say, one half. One 
can therefore define a 3 dB predictabili^ bandwidth po^ according to

Tl(Po.5) = 0.5 (2.78)

which will obviously be a function of the frequency bandwidth of the signal For the form 
of spectrum given by equation (2.76), a convenient bandwidth of the signal is the 3 dB 
bandwidth cOg^ deGned as the frequency bandwidth within which the power spectral 

density is less than 3 dB below its peak value at resonance. The 3 dB bandwidth for the 
signal whose system frequency response function is given by equation (2.33) (or half 
power points) is given in many texts45 and may be shown to be equal to
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0>o^ = 2^0)n (2.79)

The solution to equation (2.78), obtained numerically, is plotted below for various values of 
the filter damping ^ fiom which the filter 3 dB fiequency bandwidth is obtained according 

to equation (2.79)

Figure 2.5. The time /z^j/br w/ucA AaZf (Ae zo(o/ primary agnaZ e/Krgy w peT/eczZy 
predZczoAZe vcrsziy dzw^big rozia/hr jeco/zd order primary source spccfrwm.

For small ^, the relationship between the 3 dB fiequency bandwidth 0)o^ and the 

corresponding 3 dB predictability bandwidth of the signal, as defined from 11(1105) = 0.5, 

is nearly reciprocal suggesting an approximate relationship of the form

110.56)0.5 = constant (2.80)

For large values of the filter damping ^, the observed deviation from reciprocal behaviour 

in figure 2.5 can be explained due to the fact that the fiequency bandwidth becomes 

increasingly ill-defined as the fiequency response function of the shaping filter starts to 

become critically damped. For practical purposes, it is important to identify the order of 

magnitude of the constant on the right hand side of equation (2.80) so that one may obtain
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useful guide-IinesfbfAecharactensticdistances(in*ime)forwhichagivensignaIis 
predictable to within 3 dB of its actual value. Inspection of figure 2.5 for small ^ suggests 

that the constant in equation (2.80) may be estimated to be approximately equal to 0.5. The 
actual value of the constant of proportionality will dqiend on die precise characteristics of 
the primary source signal As an example which reveals this reciprocal dependence 
explicitly, consider another form of primary source power spectral daisity G(gxg)((o) given 
below

which is a form of low pass filter for which the tuM constant of die filter p characterises 
the rate of roll-off with Increasing fiequency. Unlike the previous example, die parameter p 

may take all values thereby encompassing both corqiletely predictable signals for P = 0 and 
completely unpredictable signals for p = «*. In the limit as P tends to infinity, the primary 
source power spectral density Gqpqp(m) tends to unity at all frequencies for which the signal 
therefore has a white noise spectrum. On the other hand as p tends to zero, the shaping 

filtCT begins to roll off infinitely quickly thereby convergmg to a low pass filter which only 
allows d.c signals to pass. The 3 dB frequency bandwidth for this low pass shaping filter 
coo5, i.e., the fiequency within which the response is less than one half of its peak 

response at m=0, may be determined by inspection to give

GqpqpftOojt) — 05 Gqpqp((0)g,g% for 0)05 = P (2.82)

One may follow an identical procedure as the previous example to show that the optimal 
predictor Uo(to) for this spectral shape is simply

Uo(m)=c-Pl^ (2.83)

which like the previous example in equation (2.77) is fiequency independent The total 
prexiachibles^gnalienca^ry asafiacti(moftheoriginalenergyT|(^i)accofdingtoequation 

(2.75) maythaefore bewritien as

n(it) «e'%t (184)

The definition of the 3 dB predictability bandwidth po j defined by equation (2.78) therefore 

gives ancxact reta^xnoc^drela^ic^tshlfilxatvyeeritlieibNM) sigxuillxiiKiv/idth&cKftlMsftirni

P^5@^5 = &ln2 (2.85)
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where %In 2 isapproxunately OJlEquadons C2j)D)iarKl(gL!UOaaia^;au5*i(*)ruM)qiw:nc>e()f 

tb«;iaac%al3u^rrf]p(in(i|^k;.Trhis is*k:Aatefn*a%t(^rthep1iysicai]krMrivIu(ji:wrys Aat Ac 
frequency bandwidA - Ane bandwldA product cannot be less than a certain minimum 
valued. This is essentially a mathematical pbMXMnenon which expresses Ac mter- 

dq)endenoe of time and fiequency which prevents arbitrary specification of signals to time 
and frequency simultaneously. Since Ae equivalent bandwldA of a function and its 
transfatmarerecq)rocal,it(bUows that

Equivalentduratloo x EquivalentbandwldA ^constant (2.86)

In Ae case of the bandwidths under Ascusslcm, it follows 6om the above argument that

PojOoj constant (2.87)

where Ae constant of proportionality, Ae bandwldA product, depends on how Ae 

bandwidAs are defined. In Ae two cases considered, Ae bandwidA product appears to be 

typically equal to 0.5, but may be determined exactly fear Ae fonn of signal which has Ae 
smallest bandwidA product As Papoulis explains^, Ae inequality is exactly satisfied for 
the Zeasr predictable signal at a given frequency bandwldA tooj which occurs for signals 

which have a Gaussian power spectral density function for which Ae auto correlation 
function, Ae Fourier transform is Aerefore also Gaussian. To a good useful working 
approximation Aerefore, Ae characteristic time py 5 over which a stationary random signal 

is usefully predictable is governed by Ae approximate relationship

1103 (IM)

alAough this formula will, to general, tend to provide a lower bound value according to Ae 
general form of Ae inequality toAcated to equation (2.86).

23. The unconstrained minimum sound power output 
In a hard walled semi-infinite duct

As a simple model problem which embodies the essential features of sound power 

minimisation in reverberant enclosures, consider Ae same hard walled duct as before. 

Reflections are now Introduced by means of a rigid termination added at one end shown in 

figure 2.6. Acoustic losses in the enclosure are introduced by way of Asslpation at Ae duct 

termination which for simplicity is characterised by a real reflection coefficient r. Simple 
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analysis is only possible by assuming that the mechanism of energy dissipation at the duct 
tenninaiitMiis tuiear.icamMdaiki inmost impoftantlyindq)cmdMitof6equency.niesound 
fieklintiNBduct isacdvelyattMtuatcdbyAeaciioaafasecoodaty  souiceqs(t)located 
dbtwiAreamofthe ptimarysoutce qp(t) stK:litlntt%4>%{^ Asecondaiysourcelocated 

tq)stieamofAepnmaiysoutcewouIdclearlybebadlypositiooed sinctittvcMikilbe unable 

toabsod) soundpowertadiateddownsueamofthefigure.

f(gwrf 2.^ X femf-u;^(e ducr w^rA nw WM&red fwe sourcw <^ wfArcA on^ u a seco/kkry 
wwrcg pZaced ryaream <  ̂a primary saarcf.

This geometry is intended to represent the characteristics of a simple reverberant 
space. The sectmdary source qs(t) is emtstrained to act causally wiA respect to Ac time 
history c^Fth(;])ruaiar)f:M)uir>cir)iai*^aytvlu(dh minimises die totalsoundpowerradiated 
hromAe source pair.Adomg schtbestiurwjkptyM/er ladiatedoutofAecontrolvolumeis 

also minimised, taking mA account energy carried by propagating and reflected waves. 
Before mvestigating Ae causally constrained minimum sound power output, for 
crxnparaiivepurposes, itis flrstnecessary Aestablish thelmesttliatcanlmc physically 

achieved when Ae secondary source is allowed A act non-causally and is Acreforc able A 

predict perfectly Ae output of Ae primary source. As has already been emphasised, this 

type of unconstrained optimisation is only relevant for harmonically varying sound fields.

Consider a frequency dtxnain rqrresentation of Ae Atal sound power output fiom 
Ae source pair. Assuming that only plane waves are allowed A propagate, Ac Atal primary 
source pressure Pp(mpt) m Ae duct fiom mcidoit and reflected waves may be written Aus

pp(m,x) = Zpt^((D)(cjkk -^ +n..^%+iq))) (2.89)

Similarly, Ae plane wave field from Ae secondary source psfmpt) may also be written as 

Ac sum of Acident and reflected waves m Ac form of
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p,(m^) =Zp(k(m) (e-fdx-x,l +K.ji[(x + x.) ) (2.90)

The total sound power W radiated into the duct 6otn both sources acting simultaneously is 
simply the sum of primary source and secondary source contributions so that

w= Wp+Wg (2.91)

Recalling that only the component of the total acoustic pressure which is in-phase with the 
sourcestrengthsis alxk:tC)ttMiutteian]/{xyufMi powerinthetimeavaage s«isc,<me can write

W =^R.( (ps(mpts) +pp((D,Xs))qs(m) + (ps(mptp) +Pp(m,Xp))qp(m) } (2.92)

The acoustic pressures at Xp and Xg may be related to the source strengths qp(ci)) and qs(co) 

via their appropriate acoustic transfer impedances. We can thus introduce the following 
notation

Z(xplxs)= Zp (e'jk(»- xp) +n.-jk(x, + xp) )
Z(xglxp) =Zp(ejk(x' - xp) + ;^.jk(x,+xp) )

Zfxglxg) = Zp (1 +re-2^)
Z(xplxp) = Zp (1 +rc2jkxp )

fbrxg> Xp (2.93)

where reciprocity can be seen to apply. The total sound power W may now be written in 
terms of the appropriate acoustic transfer impedances to give

W =:]^jt.((qg((o):Z(%«lxg) + qp(0))Z(xplx:))q;(m)

+ (qs(m)Z(xglxp) +qp(0))Z(Xplxp))q^(0) ) (2.94)

As previously demonstrated in section 2.1, the total sound power output from two sources 

acting together may be represented as a quadratic function of the complex secondary source 
strength qs(to) which lends itself to re-arrangement into the following standard form

W =:q^(m)Aqs(m) + b*qs(m) + bq^(m) + c (2.95)

The coefficients A, b and c may be identified as m the previous example to give

A=:^)l(Z(xglxs)), b=lqp((D))l(Z(xplxg) + Z(xglxp))

and c = ^ lqp(m)I^R.(2Xxplxp)) (2.96)
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where c is the sound power 6om the pinmry source acting in isdadon. The optimal 
soludonwhich minimisesthis funedonhas pnynous^/beendkaTwxIand isre-wnttenbelow

qx/m) = -A'lb (211)

The existence of a unique minimum solution assumes the positive definiteness of A, 
namely )l(Z(xglxg)) > 0 which follows directly fiom the conservation of energy. A 

negative value would imply that more energy is flowing into the source firom reflections at 
the termination than was originally radiated. Now writing qso(o)) = Ho((u)qp(o)), from 

equation (2.11) the optimal transfer function may be shown to be equal to

Hm(m) =._cosk(XjLLXil±rcgs^^ 
1 + r cos Zkxg (2.97)

NotcthatHo((i)),asinthe6eefieldcase,is realindicadngdiattheppdmalsecondaty 

source either acts exactly in phase or out of phase with the primary source. TTie behaviour 
of the secondary source in this slightly more complex space can be visualised more easily 
in the dme domain in terms of the optimal impulse response fiincdon ho(t) which is related 
to this fiequency domab transfer function via the inverse Fourier transfonn

ho(t) = :^ fHo((i))eja)idm (2.13)
27C

The optimal transfer function Ho(m) may be expanded as a power series expansion 

providing I r I < 1 which gives

Ho(m) = - ^ (d^("' *p) + e'j][(x« - xp) + r(eik(%: + xp) + e'jk(x« + xp))) %

(1 - r coslkxs + r^s^Zkxs - i^cos^Zkxg........(-ry\x)s"21cxs ) (2.98)

Emplcying De-Moivres theorem and noting Fourier transfram pairs of the type

cos mot F(0)) A ^ (f(t - to) + f(t + to)) (2.99)

and after a little algebra we can show tiiat ho(t) for minimising the total sound power 

output in die enclosure is an inflnite row of weighted Dirac delta functiems of the form 
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oo

ho(t) = 2At5(,±(^'=^) + 

W)

^ B^5(tj.(2k+D^S±2^)

(2.100)

v/tMan:jA^g=*^g44nWc+l andB|[=:raktak+iandwhercdic*cnnsakareintimatelyfclaiedto  

binmnial coefGcients according to

ao= ao(r) = (1/2 + 21^/23 + 6^/2^ +20i^/27

ai =ai(r)* (r/2+ 31^/24 + lOr^/2^ +35^/2^

82 =a2(r) = -(1^/23+ 4%4/25 + iSr^/Z? +561^/29 (2.101) 

ag =:a3(r)= (r3/24 + Sr^/Z^ + 15^/2^ +84r^/210

k=O \ /

This observation is significant since each set of coefficients in equation (2.101) forms a row 
of one half of Pascal's triangle for which the following recurrence relation holds

'Aki +^k + 'Ak+i =0 Vinteger k (2.102)

The recursive structure of this equation follows directly from the presence of reflections in 
the enclosure and offers some insight into the structure of the optimal control process. Any 
amplitude term Aj^ appearing in the optimal impulse response function at some current time 

t exactly cancels with the sum of amplitude terms before and after, weighted by an amount 

equal to die reflection coefficient r. An identical recurrence relationship may also be written 
for the set of amplitude terms represented by Bj^. Note that consistency with earlier work 

has been maintained since the fire field result is recovered as die reflection coefficient r 
tends to zero. Putting r -* 0 in equation (2.98) yields

ho(t) = -j [ 5(t - p) + 8(t + p) ] (2.14)

where p again symbolises the propagation time between die two sources p = (Xg - xJ / Cg. 

There are several important features to observe from equations (2.100) and (2.101). First, die 
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impulse response function is petfectly symmetrical about the origin (^ time t = 0 so that the 
optimal seemtdary source arength is necessarily non-causal with respect to the primary 
source time history qp(t). This finding follows directly fixm the fact that HoCco) is real. 

Second, the (^)timal inqmlse lespmtse decays away with time at a rate determined solely by 

the reflection coefficient r at the duct teminatim. It is impcatant to recognise that ho(t) 
given in equation (2.100) naturally lends itself to representation in terms of two independent 
infinite series. Those terms relating to the series of arrplitudes Aj^ are responsible for 

controlling the radiation from the primary source radiated to the secondary source directly at 
a sqraration distance(%g -Xp). The tBraisi^sso(iatC(livitiktlteiManwM;(irariq)UtiKles B^are 

responsible for dealing with the reflected sound or equivalently, the sound field radiated 
firomthe'image' sourcelocated atadistancexgf XpfhxntheseoMKhuy source.Recall that 
tire ixrn'Causal optimal secondary source qsoCO is related to the time history of the primary 
source qp(t) via the convolution integral

qs(0= Iho(T)qp(t.T)dT (2.15)

The total time averaged minimum sound power output W^^ from the source pair can be 

derived from
1 7

Wmm = Hm^j[qso(t)p(Xs,0 + qp(0p(Xp,t)]dt (2.103)

where p(x,t) refers to the total acoustic pressure at some position x and at some time t. Note 
that this operation is equivalent to substituting qso((:)) "tio Ae equatimr (2.94) for the 

frequorcy depoidart total sound power output W and averaging over all frequencies. 

However, a time domain interpretation of the control process makes it possible to identify 

the evolution of the total sound power from the source pair. This in turn enables one to 

establish the mechanism of control by which the total sound power output is minimised in 
this elementary reverberant space.

Hie cumulative total sound power output from the source pair Eg^(T) which 
determines tire total acoustic energy radiated by the source pair from t = m some time 
T is given by

T
Emin(T)= J[qso(0p(Xs4) + qp(t)p(Xp,t)]dt (2.104)
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The acoustic pressure p(x,t) as a function of time now involves four terms which may be 
written as

p(x,„=Zp[qp(,-<^). n^(,-^) . q,(,-5^) .rq,(,-^^^)]

fbrxg > Xp (2.105)

By way of example, the cumulative total sound power finom the source pair as a 
function of the time T is shown in figure 2.7 for r = 0.99. In this example the primary 
source radiation is in the form of a simple unit impulse at i = 0. The secondary source is 
placed at 2.12 m from the duct termination which is downstream of the primary source 
located at 1.67 m from the termination. While this analysis is really only appropriate for 
harmonic signals, the system response to a primary source emitting a unit pulse at t = 0 

provides graphic illustration of the dynamic response of the control system. This will 
hopefully provide an understanding of the physical processes concerned.

f igure 2.7. The rofaZ aormaZiffd camaWw wamZ power oafpar ^om a faarcf pair w a 
KIMI - iM/iiwfg dacf wifA a r^gcrioM cagg'kigMl r = 0.99 af a function i^ fiiMg T

In tins instance, negative time refers to the anticipatory action of the secondary 

source. Figure 2.7 clearly reveals the non-causal respemse of tire optimal secondary source 

to the unit pressure pulse from the primary source at tire origin of time. As a ctxrsequence 
of the high reflection coefficient in this example, the secondary source requires the time 

taken by many reflections to eventually attain tire residual, steady state level of sound 

power output which in this case is a reduction by a factor of approximately 0.072. One can
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establish more precisely the mechanism of otmtiol operating in die duct by resolving the 
total cumulative sound power output into the respective primary and secondary source 
contributions Ep(T) and Eg(T). These are plotted below

Figure 2.8. TAf cwMidutiw normalised round poww oiupur/>^om rA< pnnuzry source ond 
rgcondwy rource w a rend - ir^nite duel wTA a r^edan ca^gTckn/ r = 03)9 ar aAwcfion of (Ae 
dme T.

There are two important features of this graph one should observe. Rrst, the total energy 
radiated by the secondary source over a long time interval is exactly zero. Second, the 
primary sound power output is appreciably less than unity, its value in the absence of 

control. One is now able to draw some impOTant conclusions relating to the optimal 
mechanismofcwtrol inthissinqile geometry. Thereductionsindietotal soundpower 

output &om die source pair is due solely to the reduction in the sound power ouqiut brom 
the primary source. This result is evident bom bgure 2.8 which shows diat die time 
averaged secondary source contribution to die total energy in die duct is zero as previously 

observed in figure 2.3. In order to illustrate further the rble of the secondary source in the 
minimisation process, the instantaneous secondary source sound power output Wg^fD may 
be derived bom the cumulative sound power output Ef^(T) via the relation

W m. Km E:mi.(T+AT/2).E^Cr.AT/2)
AT-»0 AT (2.106)

(2.107)
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This function quantifies the time averaged acoustic energy radiated during the 
infinitesimally small time interval T - (l/2)dT and T + (l/2)dT instantaneous sound power 
ouqMn)vdnch(brtiuse«anq^kisp^mKMlbeknv

Figure 2J^. The instantaneous wumd power ow(pw/ /rom fAg Mcomfary jowcg pmr in a 
^mi- in/wiiff dwcf *wiA a ruction CA^cigmi r » O.#9.

The figure above provides graphic demonstration of the control mechanism from 
the point of view of the secondary source. The process of control commences an infinite 
time prior to t = 0 where the primary source starts radiating. In anticipation of this event, 
the secondary source sound power output increases steadily with time, peaking at a 
negative time equal to the propagation time p. between the two sources. Building up the 

secondary source sound power output gradually according to the behaviour indicated in 
figure2.9 thereforeinvolves lesstotal soundpowcrexpenditure bythesecondarysource 

than achieving primary source loading with a single action as is necessary in free field, see 
equation (2.16). Summing the squares of tire pressure amplitudes radiated fiom tire 

secondary source along the infinite duct in figure 12c indicates tiiat in fiee field, the total 
normalised sound power radiated by the secondary source in loading tire primary source is 
exactly one half. This contrasts a value of only 0.27 in this simple reverberant space as 
indicated by tire secondary source cumulative sound power output shown in figure 2.8 
evaluated at T = 0.
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This peak amplitude corresponds to the single pulse in the ing)ulse response 
function serrttoariivtitntheiniitutry source at t=Owhosepurposeistoload theprimaiy 
source with the aim of reducing its sound power output. This process represents one of the 
elementary mechanisms of active sound ccmtrol and explains why the time averaged 
primary source sound power ouq)ut is less during control than before cmitrol. Taking this 

action has the effect of partially destroying the pressure at the primary source point The 
acoustic pressure not cancelled at the primary source point is subsequently absorbed.

Ashorttimeafkert =14 c«dj^th<;s(%*an(hnnyiM)taT%;arx)ustlc]presstneis]naaiainingin 

the duct The secondary source is then observed to engage in an infinitely long process of 

self absorption as revealed by the infinite series of infinitesimally short bursts of negative 
sound power output Negative sound power output refers to energy flowing into the source 
which is the condition for sound power absorption. This infinite series of absorption terms 
can be seen to be a mirror image of the infinite series of terms culminating in tire loading of 
the primary source at t = 0.

Once steady state conditions have been attained, the residual level of sound power 

output radiated fiom the source pair will ultimately depend upon the fiequency and the level 
ofreverberatlon in the enclosure.Theprecise lev^dc^FstrutKlipcrw^KrrxxltMcticrn W^hithatcan 

be produced at any given firequency is readily derived by substituting equation (2.97) for 
qso(m) into the expression for the total sound power ouqrut in equation (2.94) which gives

W.. = W, (, - -(£^.&«.;^)^;-k(x,.x,,)2 , (^ _^^)

Putting r = 0 recovers the fice field minimum sound power output derived previously

WmhiN = Wp[ 1 - COs2k(Xg - Xp) ] (120)

The residual cumulative level of sound power reduction shown in figure 2.7 refers to the level 

of reduction averaged over all fiequencies since the unit pulse of infinitesimal duration 

cmttainsall fiequencies to tbesame degree. Onecanshow thattbetime averagedsoundpower 
reduction converges to some finite value for all values of the reflection coefficient r less than 
unity. For r which is exactly equal to unity, the cause of this apparent lack of convergence 
with time is due to the presence of an infinite series of discrete frequencies satisfying the 
relationship

l+cos2kxs = 0 (1109) 
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where the ewresponding value (^ Wm{n(<o) is equal to inBnity. In physical terms, the 

condition above defines the set of frequencies for which there is a standing wave 
established between the secondary source and the completely hard walled termination (since 
r = 1). This standing wave pattern forms a pressure node at the secondary source point 
making it impossible to couple into the plane wavefield which therefore drives infinitely 
haitLOn solvingfbr cos2kxg=-l, thecriticaldistancesfar v/hiclt1^/gjgX<^)i^*^"1^^i^^^ 

corresptmdsto

Xg = wheren is integer 0, 1,2,3 (2.110)

2.6. The causally constrained minimum sound power output 

in a semi-infinite duct

In this section an analogous time domain analysis is undertake with the aim of 
constraining the secondary source strength to behave causally. As in the preceding section, 
the purpose of the secondary source is to minimise the total sound power radiated into the 

reverberant space. The time averaged sound power output from the source pair W is given 
by

1 7
w = hm ^ |[ qs(t)p(Xg,t) +qp(t)p(Xp,t) ] dt (2.21)

Recalling that the total pressure in die duct p(x,t) is given by equation (1107), the total 
sound power output W written in full is determined fix>m

T
f [ qs(0(qs(0 + fqs(t - ^)) 

_T

+ qp(')(q,(t-^^^^) + rqs('- '^'''h)

+ qp(t)(qp(O + rqp(t- ^))]di
farxg>Xp (1111)

where qp(t) and qs(t), the primary source and scccmdary source time histories are linearly 
related by a causa/ impulse respcxise function h(t) defined by
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oo

Qs(O = fh(T)qp(t.%) dt (2^)

Noting that each source strength time histoty q(t) and its reqiective acoustic pressure p(t) 
are linearly related according equadais (189) and (190) providing that the reflection 
coeffleient is flequency indq)eodenL One can now derive die total sound power output 
6om die source pair in exactly the same way as in the previous exaople. Substitution of the

vanoustomspnxhKxs

W =

T

oo
+ JhWqp(t-%)dt [qp(,__(?^^) + rqp(l-^^^:^)]

fqp(,)[JhMqp(t-'^^^^^-',)d%+r fhWqp(t-^^^:^.T)dT ))

+ qp(0 [qp(t) +rqp(t- ^^ ^^)] forXs>Xp (2.112)

The minimum value of this function may be determined using exactly the same analytical 
procedure as outlined in Appendix 2.1 for the analogous one dimensional free field 
problem. It isacomparatively sinqile matter, ifalgebraically tech(M]s,iosl)owdiatdie 
optimal impulse response functitxi ho(ti) which minimised the total sound power radiated 

into this simple reverberant space is determined flom the solution of the following integral 

equation

[ ^ho(i:i) [ rpppCr - %! - ^) + 2ppp(i: - ii) + rppp(T . t^ + ^) ] dti

+ Ppp(^-4^) + Vpp(%--^^)

4i^)+VMX' +4^)] 0

fbrx^i^Xp and T>0 (2.113)
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Note that it is Mily the restriction cm Xj and x that imposes the constraint of causality.

The inyulse response function given in equation (2.100) and (2.101) for the 
unconstrained problem is essentially the soluticm of this equation for pure tone signals 

owing to its perfect predictability. We have already seen that the concept of predictability 
has a well defined meaning in this context Fot current purposes, it is sufficient to 
understand that harmonic signals represent one extreme of time history by virtue of being 
perfectly predictable. Sinusoidal functions also constitute an infinite set of ortho-normal 
functions for which all periodic signals may be de-composed. It therefore follows that all 
periodic signals (which also satisfy Dirichlet's conditicms^) are completely predictable 

which is implicit in their periodicity. At the other extreme, white noise is totally 

unpredictable. By direct analogy with the impulse response function derived previously for 
the unconstrained example, it is convenient to resolve the optimal causal solution ho(t) into 

two components according to

ho(x) = hoi(x) + ho2(x) (2.114)

which upon substitution into equation (2.113) yields two independent equations of the form

/ 2x 2x 
J hoi(xi) [ rppp(x - Ti - -^) + 2ppp(x - xi) + rppp(x - Xi + -^) ] dxi 

0

+ Ppp(T + ^*g^*^^) + Ppp(t -'^^^^^^) =0 fbrxs>Xpandx>0 (2.115) 

and

ho2(ti) [ rppp(t - Ti - + 2ppp(x - Xi) + rppp(x - + .^) ] dxi

+ rppp(T +"^^^%^^) + n)pp(T - ^y *^\ =0 farxs>Xp andx>0 (2.116)

The assignment of the right hand side of equation (2.113) to the two parts of the solution 
hoi(xi) and ho2(xi) Indicated above is motivated by die form of the solution for the 

unconstrained optimum in equation (2.100). In this example, bo(x) has been shown to 

comprise two scries of terms for dealing with the radiation fiom the real source and the 
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radiation 6om the so called 'image' source independently. The secondary source views the 
radU^uicMij&CMiillMBiyruintry sourceanditsimageasindcpendentsourcesofsoundeven 
though (me is just a delayed and diminished version of the other. This property is reflected 

in die mathematics as a de-coupling (d^ die govoning equation into two equadons which 
may be solved independently.

F(* ease of analysis, consider the form (^ solution for which the primary signal 
qp(t) is Gaussian white noise such that the signal is totally uncorrelated with itself at any 

later time. In this case the control mechanism cannot rely on the predictability of the 
primary signal which which to anticipate the primary source signal. Correspondingly, the 
temporal ccmrelation function for this limiting class of signal is a Dirac delta function so that 
the equations (1115) and (1116) above reduce to

jf hoi(ti) [ r8(t. %! - ^) + 25(t - ti) + r5(t - ti + ^) ] dti

" ^^cn *^^ ) -^ ^°^ Xg>Xpand t > 0 (2.117)

and

f ho2CTi) [ r5(T - %! - ^) + 25(t - ti) + r5(t - ti + ^) ] dti

+ rf^T - ) =0 for Xs>Xp and t>0 (2.118)

Note that the twoterms5(t + ^^^ *^^ ) whichappearin equad(ms(1115) and (1116) 

have been seteqiudtozxao. This isbecausetheu-argumentsareposidve (providingXg>x, 

representing advances in time and are singly unit spikes which are only non - zero fw 
rK^g:^iv(;i[tuidareth(anEfbrez%aK)irifkcc(x%larK)e wiihdie Amdamortal condidon 'i>0

g(^ + (*^^ ^p) )_Q (^ Xs>Xp and t >0 (1119)

Assume a soludtm consisting as before of an infinite row of Dirac delta functions for both 
hoi(t) and ho2(T). Because of the white noise statistics of the primary signal, there is no 

necessity to include an additional predictor term in die assumed form of the solution since 
therecanbe n()]^re(dcii(«iian(ltlk:refbrerM) loadingoftheprimarysource.Fbr this special 
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case, the solution is assumed to coaqnise only dkAg^f in time wiA Ac appippriate 
arnplitudesC^andDigWhichremaintobedetemnned.

oo

hoiW. ^Ck5(T/^^''')yP) (2.120) 

k=0

OO 
ho2(t) = ^Dk5(T-(^^^:!^^) (2.121)

First, consider Ae form of Ae solution for hgift). Substituting m equation (2.117) 
Ac assumed form of Ac solution hoi(i:i) given by equation (2.120) yields Ae following 
recursion formula for Ae series of amplitude terms Q

iCk-i + ZQc + fCt+i = 0 fbrmteger k > 0 (2.122)

which is subject to Ae boundary conAtion

rCi +:%^+l =0 (2.123)

This is the same recurrence relation which governed successive amplitudes m Ae 
unconstrained problem Ascussed earlier b section 2.5. However, smce Ais solution was 
unconstrained Acre was no boundary conAtion to be satisfied smce Ae series was allowed 

to extend bto negative time to mbus infinity. Equation (1122) ctmstitutcs a second order, 
homogeneous difference equation whose solution is straightforward using standard 
techniques'^. Assume a solution of Ac form of a geometric series

Ck = r^^+^ (1124)

Substitution of C^ bto equation (2.122) yields Ae characteristic polynomial of Ae Afference 
equatitm which is a quadratic b ot, Aus

+ 2ct + 1 = 0 (1125)

Solvbg for Ae negative root of this equation since Ae positive root has a modulus greater 

Aan unity which Acrefore represents a Avergent process which Aerefbre cannot represent 
the minimum. We Aus choose the solution
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-1 + V1 - r^
(2.126)

Now since -1 < a < 0, each amplitude term in the optimal impulse response function is of 

exactly opposite sign with the subsequent term and is therefore absorbed by it The optimal 
causal solution for this part of the impulse response function may be written thus

^1W = V 1*“‘*' 8(t - (“tlten ) (2.127)

This (unctionsatisflesboth the diffemioecquationandtheassociatedbmmdarycondition 

and is tiierefdre the complete solution (i.e., conplementary function and particular 
integral). Performing an identical analysis for the part of the solution associated with 
h^^^Cc),<)acc:io showthat

Dk = t^+^ot'^+l (2.128)

satisfies the required recurrence relation

rD^.l + 2I\ + rD]^+i = 0 for integer k > 0 (2.129) 

together with the additional boundary condition

rD^ + ZDg + r = 0 (2.130)

The solution for bo2(T) which is responsible for acting to reduce the radiation from the 

'image' source may now be written as

Wt)" ^rk7-iak718(t-'2ttl^s±iE) (2.131)

It issignificant that C^ = rD^sinccthetwoptocesscs associated with theseterms operate 

in cascade separatedbyonereflection attheterminatiw atx=O.Thesetofoptimalterms 
associated with hogft) are therefore identical to hgift) excq)t for the additional muliplicative 

factor r. Assuming the uniqueness of the solution, tire causally constrained optimal impulse 

response functitat for minimising the total sound power from the source pair in tire 
presence of reflections is given by
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ho(t) = 2 r^ak+i 5(t - (—-V’^s-Xp) + X^ r^+iak+l 5(t - ^--t.-^5±?42.)

where a = (-1 + V1 - r^ ) / r^ (2.132)

It is instructive to compare ±e form of this causally constrained impulse response function 
with the analogous unconstrained function for the same geometry. These are compared 

below for r = 0.99

Figure 2.10. The unconstrained Ofk/ coujaZZy co/wfraZwd Z?yywZsf respoMjg _^c(ion/br 
minimising f/K fofoZ jowwZ power output tn o jemZ-im/tutte duct wifA a r^ecttot: coefficient r 
= 0j)9.
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Nodcc that the terms in the uqpulse response functioas above occur in pairs. These 
exist in order to suppress the radiatiem fiiom the source and the radiation from the image 
source a short time later (for closely ^aced sources where active control is most effective 
for finite bandwidth signals). One is now able to envisage the ccanplexity of the impulse 

response functions for dealing with sound radiated into a fully enclosed sound field owing 

to the contributions fiom an infinite number of image sources. It is ineportant to r«:ognise 

that the causally constrained optimal impulse response function is not, in general the 
windowed non-causal impulse response function as might be intapreted fi^om the work of 
some aufhors^9.

It is instractive to consider the limiting case of this series fOT the case where r —> 0 

thereby removing the presence of reflections as in fiee space. Employing L’hopital's rule 
for the limit of the ratio of two functions simultaneously tending to zero such as

then as r —> 0, ot takes the limiting form

:r (1^2) 1/2 ^ ^ _1 (2.134)

In a (Xie (hmensional fire field space therefore, the optimal causal solution for white noise 
is simply

5(t . ) (2.135)

The optima] mechanism of (xmtrol for white noise is therefore to absorb one half of the 
incident energy, a process which by summing the squares of die pressure amplitudes in the 

manner indicated in figure 2.2 shows a 25 % reduction in the original primary sound power 
output. This is shown again in a later graph. Again, it is instructive to calculate the 

cumulative sound power output as a function of time in order to establish the precise 

mechanism of control for this causally constrained controller. For this example however, 
diemechanism ispardcularly simplesince controlling white noisecan only be 
accomplished by a succession of delays which represent an infinite succession of 
absorption terms. One is now able to evaluate the causally constrained sectxidaiy source 
strength in response to a primary signal which is a unit spike of infinitesimal duratiem at t = 
0. Evaluating die cumulative sound power output in the usual way for r = 0.99 as a 

function of time according to equation (2.106), yields the results shown in figure 2.11
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1.0

Figure 2JI. The 6)(aZ cumWafiw wwmjpoww ow(pw/rom a wurcg pair ia rejpaajg (a a 
MwV paZM radiaiaii fg; i/K primay} warc^ iaia a faai-a^ai* daai waiA a reflection aa€;g!aigai r = 
0.P9.

0.5

The fact that the causally constrained optimal impulse response function is a simple 

infinite series of delays in time indicates that the total primary source sound power output in 
radiating white noise must remain unaltered by the causal action of the secondary source. 
The mechanism of control for this special problem must therefore be limited to the 
absorption of successive reflections since the secondary source is unable to anticipate the 

primary source radiation. However, it is important to recognise that even though the total 
primary source sound power is unchanged, the sound power radiated into its constituent 
firequencies has undergone a pronounced re-distribution according to the behaviour typified 
by equation (2.70).

The residual level of sound power reduction in the presence of reflections for 
primary signals in the form of a unit pulse (which also quantifies the sound power 

reduction for white noise signals) is evaluated firom die type of numerical simulation 

outlined above which produced the results presented in figure 2.11. This simulation was 
repeated for a range of reflection coefficients r between 0 and 0.999, the results of which 
are plotted below. Also shown by way of comparison is tire corresponding average result 
for harmonic primary sources.
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Figure 2.12. The fimf (zvfraggd (ofof fowmd pow%f ow(pW#om o aowrcf pmr im a femw- 
infinite dwcf vgrauf fAe (enmhafibM r(/kc<w)m coefficient r. GaajinaM wAik maue fdiafAAf Zw^J, 
completely prgdZcfaAk Aanmawc wauK fcanfiwauf ZwiaJ.

Note that as the reflection coefficient tends to zero, in the case of white noise, the time 

averaged level of sound power reduction is exactly (me quarter drat of Ac primary source 
level, a result noted earlier. In Ae case of harmonic sources however, Ae averaged level of 
sound power reduction is reduced by exactly one half. AlAough Ae level of sound power 

reduction for arbitrary bandlimited signals has not been evaluated specifically, Ae results m 

figure 2.12 serves to place an upper and lower bound on Ae exact levels of sound power 
reduction which ultimately may be achieved for any stationary random signal.

2.7. Discussion and conclusion

This chapter has considered Ae active control of random, broadband noise giving 
special emphasis to Ae effects of reverberation. For simplicity of analysis, only sound 

propagating m one dimension has been mvestigated. Reverberation has been mtroduced m 
Ae simplest possible way by means of a smgle reflecting surface on which Ae form of 

acoustic dissipation is characterised by a real, frequency mdependent reflection coefficienL 
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It is believed that this elementary geometry retains all the inqxxtant physical features of the 
mote complicated three dimensional random sound field.

As a precursor to the more complex problem involving reflections, the total causally 
constrained free field minimum sound power output firom a primary - secondary source pair 
has been daived. The primary source signal is mathematically modelled as the random 
output fiom some second order shaping filter driven by unit amplitude white noise. This 
choice of model enables the predominant finequencies in the signal to be varied according to 

the centre frequency of the filter, while the bandwidth of the signal (the more crucial factor) 

was adjusted according to the filter damping. Interpretation of the problem was approached 

from die point of view of the spectral output of each of the two sources in turn. The level of 
sound power reduction was found to diminish with increasing source separation distance 
and primary signal bandwidth.

One surprisingly subtle finding to arise fiom this investigation is that at an infinite 
series of harmonically related discrete finequencies, the total radiated sound power increases 
by up to a maximum of 3 dB but appears to more than compensated by reductions in sound 

power output at neighbouring frequencies which are also harmonically related. This re­

distribution of energy amongst the constituent finequencies of the signal is pronounced and 

will certainly influence the subjective impression of the control procedure in accordance 
with the 'A* weighting curve. However, the general trend in sound power reduction over 
the entire fiequency band is such that the total energy in the signal is less than in the 
absence of the secondary source. More specifically, in the limit as the primary signal 
bandwidth becomes increasingly greater eventually tending to an 'all pass' filter, the 
primary source sound power spectrum becomes modulated in a way which preserves the 

total original source sound power output The secondary source power output on the other 
hand tends to minus one quarter of the primary source level before control signif^g the 

absorption of one quarter of the incident energy. In the limit as the filter bandwidth 

becomes increasingly narrower, the primary signal appears increasingly like a sine wave. 
The total reduction in the sound power output was found to converge on the frequency 
domain result derived earlier in this chapter which delineates the absolute level of sound 

power reduction which may be physically achieved given perfect signal predictability.

Thesecondhalfofdiischapterhasconsidaed the effectsofieverberationon 

broadband active noise control. Reflections are incorporated into the model problem by 

way of a single dissipative surface characterised by a real reflection coefficient whose value 
is independent of frequency. The model enclosure was chosen to take the form of a semi- 
infinite, hard walled duct constrained to support only plane waves. Again the total 
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minimum sound powcT radiated out of some control volume coaq)letcly enclosing the 
primary - secondary source pair was sought Despite die elementary nature of the chosen 
geometry, the derivation of the governing equation was found to be simple but its closed 
form solution for finite bandwidth primary signals was not However, the optimal solution 
in terms of the transfer function between the sources was found to be derivable for the two 
limiting class of signals: Perfectly periodic signals, namely pure tones, and signals which 
are completely absent of periodic corcponent and are therefore completely random Le., 

Gaussian white noise signals.

In each case, the level of sound power reduction radiated into the simple enclosure 
was found to be highly dependent on the intensity of reverberation in the enclosure as 
determined by the reflection coefficient, becoming greater with increasing reverberation. At 
first glance it would appear paradoxical that the reduction in sound power increases with 
increasing spatial complexity as die presence of reflections implies. But this finding is 
readily explained when one realises that the dominant mechanism of energy reduction (both 
passive and active) is the absorption of sound power. Increasing the level of reverberant 

energy in the space therefore increases the amount of sound energy capable of being 

absorbed. As the optimal impulse response functions reveal, the absorption of sound in the 
prescnceofrefiectingboundarics isnot a singleevent, butis aninfinitenumberofevents 
possessing, in the case of a simple acoustic space, a high degree of recursive structure. 
Consequently, the steady state level of sound power reduction is a highly non-lbear 
function of the reflection coefficient The recursive action of the optimal secondary source 
strength time history may be exploited in a practical realisation, requiring only a small 
number of elementary delay elements.

In comparing the two impulse response functions, it becomes clear that the 

secondary source strength time history for the causally constrained minimum sound power 

output is not simply a windowed version of the unconstrained minimum sound power 
output The inter-relationship between the two appears to considerably complex such that 
the steady state level of sound power reduction for the causally constrained case bears no 
immediately obvious relationship to the unconstrained minimisation in terms of the problem 

parameters. However, it is extremely encouraging to observe dial die steady state level of 
sound power reduction for white noise at any value of the reflection coefficient is never less 
than 3 dB of the corresponding average value for pure tone signals.
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APPENDIX 2

Appendix 2.1. The derivation of the Wiener - Hopf equation 
governing causally constrained free field minimum sound power output

Given the time domain expression for total sound power ouqmt W given in equation (2.27)

w = Zp [ J^ J^ h(T)h(%i) Ppp(t . ti) dt dTi + f h(t)ppp(t - ) dt

0 0 0

+ f h('C)ppp(T + 

0

^^^^)dt] +Wp
(A2.1)

for which the minimum is required with respect to the optimal impulse response function 
ho(t). This may be accomplished using the variational technique42, a technique common in 

the calculus of variation. Assume that the impulse response function can be resolved into 
the optimal function h^fx) plus some unknown 'error* term ehg(x)

h(x) = ho(t) + ehg(T) (A2.2)

Since any choice of the variational parameter e will cause an increase in W, the total sound 

power output W must be stationary about E = 0 i.e.,

(A2.3)

On substitution of l\)(t) + ehg(x) for h(T) into equation (A2.1) and performing the 
differentiation with respect to e about E = 0, only the term linear in E will remain. Thus 
isolating the coefficient of e yields

f f (he(ti)hp(t2) + ho('ti)hg(T2) )Ppp(ti - %%) dtidt^

= 0 (A2.4)
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Interchanging the dummy variables tj and % on the product bo(Ti)hg(T2) facilitates 
factorisation of the unknown error term hgCtj) which is completely arbitrary and, in 
general, not equal to zero leaving the following condition on ho(ti)

2fho(ti)ppp(t-ti)dTi+ppp(t+p) + ppp(%-p)=0 fort>0 (A2.5)

Appendix 2.2. The derivation of the total primary source, and secondary 
source sound power output

Consider the secondary source sound power output thus

Wgo = ^ ^ I qso(0p(Xs4) dt (A2.6)

For the form of the second order primary signal given by equation (2.33), qs(t) has been 

shown to take the form 
qso(t) = -^[qp(t-p) + Aqp(t) + Bqp(t)] (A2.7)

where

^ _ -------- ^ mocosn\)P + gonsincooii) and B -- ---------- sinoop (A2.8) 
(Of)----------------------------------------------------- (Do 8y

Further note that
p(X{;,t) = Zp[qgo(t) + qp(t-p)] (A2.9)

Given the relationships above, (me can show that Wgg is derived from

WM.^[(AZ.l)Ppp(O) + B:ppp(O)] (A2.10) 

where pm(0) (knotes die conclation function (^ the time derivatives of die primary signal 
evaluated at zero time lag. The correlation function ppp(p) for this signal is given in 
standard texts^S

e-CtiHt CDn
PppOi) = —----- ((DoCOStDoP + ^CDnSinmoP) (All 1)

6om %iiich (xie can determine p^(0) via the following ickaidty^
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pppw=-“
(A2.12)

which gives

Ppp(^^) = ^ (c^ocosmop. + ((OnSmcoop) (A2.13)

Collectively, equations (A2.9) - (A2.13) are sufficient to determine WgQ, which after a little 

algebra yields

Wso= -^ [ — — ( mgcos^mo^i +(mn(Dosin2moKi +mg(l + (%) sin^mop. - 1 ]

where (A2.14)
^P " ^)Ppp(^) — ^^ / ^( (^ 1^)

In a similar fashion the total sound power radiated by the primary source is given by

T
^po ^^T^^ f ^p(*) [9p(^) ^ ^so(* - 1^) ] dt (A2.16)

is also readily determined by noting the general form of the optimal secondary source 
strength qs^ft) = - ^ [ qp(t - p) + Aqp(t) + Bqp(t) ]. Upon substitution of equation (A2.7)

into Wpo and expanding gives

Wpo = iZp[ppp(2Tl)+Appp(n)-Bppp(n)-2ppp(0)] (A2.17)

The correlation function between the primary source time history and its derivative with 
respect to time, namely ppp(T|) is derived ftom ppp(Tl) via the identity^

to give

Ppp(l^)=:^Ppp(li) (A2.18)

Ppp(P)-- ^sm0>op (A2.19)
(Qo Ky

Substitution of the various terms yields the total primary source sound power output Wp^

Wpo = Wp[ 1 - ' '".'" (m^cos^mop + (Zgin^oaop. + CmgmosinZmoii) (A2.20)
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CHAPTER 3

GLOBAL (:()rfTrR()Ib OF HIGH IPRI2QUI2^4(:^^ ENCLOSED 
SOUND FIELDS AND THE DIFFUSE FIELD

3.0. Introduction

Thesoopeforaodwenoke (xxitrolhasioalaigcdegreebeenquantiGcdfof 
bounded spaces which support sound fields driven at low frequencies^2.22^3. There has 

been considerable success in actively manipulating pure tone, low finequency enclosed 
sound Geldsfbrtworeasons.Hrst, thetime taken betwecnsuccessivecompuiing 
instructions places an upper bound on the ftequency that can accurately be manipulated in 
real time. Second but imre important is the spatial simplicity of the pressure distribution 
over the enclosure at low frequencies. The recent, rapid advances in digital technology has 

meant that the speed of computation is now no longer the severe constraint it once was. 
However, the difficulties associated with the spatial complexity of a reverberant sound field 

driven at high frequencies are inherent in the physical acoustics and consequently remain. It 
is therefore the physical characteristics of the acoustic field which dictates the fundamental 

limits on the levels of acoustic pressure attenuation that can be engineered via the use of 
active control technology.

At high frequencies the number of acoustic modes of the enclosure excited is large. 
On superposition, these modes interfere to form a pressure variation which is spatially 

complex. The ultimate task of active control is to reproduce this spatial pressure pattern 

exactly in anti-phase thereby nullifying the acoustic pressure throughout the entire space. 

Clearly this is not practicable (although possible in principle), when the primary source of 

noise is itself complex and distributed over distances which are large compared to the 

acoustic wavelength. The secondary source geometry is, by contrast, typically composed 

of compact, discrete transducer elements. The following few chapters are concerned with a 
limiting case of an enclosed sound field namely the diffuse field. In many respects, the 
idealised diffuse field represents a worst possible case from the point of view of applying 
active noise control. This study was primarily stimulated by the need to be able to identify 
an upper working fiequency limit for which the application of active control within highly 

reverberant enclosed spaces driven at high frequencies is wmthwhile.

The thrust of the work presented in this chapter is concerned with an analysis of the 

minimum sound power output of two closely spaced point moncqwle sources radiating into 
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a diffuse field environment Providing that the sources are sufficiently close on the scale of 
the acoustic wavelength, destructive interference between the respective sound Gelds 
extends beyond their immediate near fields to encompass the entire space. Complete global 
suppression of the diffuse field is therefore a possibility for this rather unrealistic source 
geometry. Nevertheless, an analysis of this problem is able to yield results which offers 

considerable insight into the mechanisms by which the operation of one source can 

maximally reduce the sound power of another.

Conceivably, one could envisage minimising the total sound power radiated into an 
enclosure by appropriately adjusting the amplitude and phase of a secondary loudspeaker 
with the aim of minimising the sum of the square outputs from an array of microphones 
strategically located in representative points around the room. The sum of the squared 
outputs from such an array of control microphones is an approximation to the total acoustic 
potential energy in the enclosure at high frequencies. TTiis follows directly fiiom the linear

relationship which exists between the sound power output W of the source, the total energy 
density Cp in the enclosure, and the space averaged square pressure < lp(r)|2 > in the room 

sustained by the source. From standard texts in acoustics^O we have the well known

relationships
4W < lp(r)r

#»_ •— I   «—» III— A,i,,,I f,   

""AS, - 2pc8 (3.1)

where A is the total absorption in the enclosure in square metres, p and Cq are the ambient 

density and the sound speed in the medium respectively. The results above are derived on 
the basis of an energy balance between the rate at which energy is supplied to the 

enclosure, determined by the source sound power output, and the rate of dissipation 

characterised by the total absorption A. Equation (3.1) is only valid when a state of energy 

equilibrium is achieved and is invalid for transient excitations. Real time algorithms and the 

associated hardware are now available, sufficiently economically, to render this 

methodology realistic enough to justify the lengthy, but enlightening analysis described in 
this chapter which deals primarily with the minimum sound power output of two closely 
spaced point monopole sources. This could be achieved in principle by driving one source 
(the secondary) to minimise the sum of the squared outputs from an array of microphones 

distributed around the room. Providing a large enough number of microphones were used, 
the sum of the squared outputs will provide a reasonable approximation to the total potential 
energy in the room which in turn is proportional to the total radiated sound power output as 

suggested by equation (3.1). It is first necessary to review some of the important difr^use 

field properties. Special emphasis is given to those properties which are known to dictate 

the absolute performance limits on the active control of this limiting class of sound field.
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3.1 The diffuse sound field.

Consider a hard walled rectangular room with dimensions k x e x Im as indicated 

in figure 3.1. These values provide for an irrational aspect ratio and therefore prevent 
modal degeneracy.

Figure 3.1 A three dimensional, hard woZ/g^f gncZowe w/ucA Aar Aeem assigned on irrofionoZ 
ospgcf rozio. A rgcZonguZor piston %% fowcg tr Zocofg j of o/ig cor/igr.

The transfer impedance between a source of sound located in one comer of the room and 
the pressure response at the opposite diagonal is evaluated according to a superposition of 
acoustic modes as a function of frequency to give the spectrum shown in figure 3.2.

F^ure 32 A typical Transmission rgspo/we jpgctnon w o zArgg dirngfirzo/wZ fowid^^Zd 
coZcwZofgzZ AeZow onzZ oAovg (Ag Schrdder ^g^ugncy. Ako jAown k fAg AigA /rgfugmcy Anwf dgnvgzf 
in Appgndk S.2 which vongj ZingorZy wkA^ggwgncy.
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Details of the computer simulation, which involves the superposition of many room modes, 
are left to chzpter 4. Also plotted is the expression for the squared pressure high frequency 
limit which is derived in Appendix 3.1.

At low frequencies, one can identify individual distinct resonances of the sound 
neld,eachresonance beingassocIatedwithanonnalmodet^Aeeoclosure. Atdtese 

frequencies, the sound field is dominated by a only small number of modes whose natural 
frequencies are close to, and centred around the excitation frequency. By virtue of the 

simple geometry and the wavelength which is comparatively long at low frequencies, the 
sound field may be fully characterised by a small number of orthogonal modes of the 
<encd(*M^re.]3a(jtiiNodectMitdlMitesi^v()(hegyec&cdHfpee(k)oal%)tlM:ivtn4eiicl(ltrKi/hiite()fits 
complex amplitude. On suj^rposition, the modes excited interfere to produce a simple 
^atial pattemSl. •phe low frequency enclosed sound field may be regarded as being 

spatially deterministic in the sense that it can be described in tenns of a few simple analytic 
functions (providing of course that the enclosure is of a simple geometry and that the walls 
are hard). In a reverberant space, a measurement of the acoustic pressure p(r) at a point r is 
made up from two contributions. The first is the free space component ppreespacc (f) which 
arrives at the measurement point directly from the source, assumed well away from the 

enclosure walls. The second is the scattered component p&^oaed (r) which is radiated to the 
measurement point via wall reflections. One can therefore write

P(r) =Ppr««Sp«%(r) +Psc.a«Md(r) 0 2)

As the frequency is raised, the number of modes having a natural frequency below 
a given frequency increases approximately as the cube of the excitation frequency^^. The 

resonances of the sound field now cease to be distinct and adjacent modes begin overlap 
until individual resonances merge to form the characteristic high frequency spectrum shown 

in figure 3.2. The amount of overlap from neighbouring modes will depend on the modal 

bandwidth which is determined by the level of absorption in the room, compared with the 
density of modes which is governed steely by the enclosure volume. Increasing the 
acoustic damping therefore assists diffusion since the tails of each modal response curve 
overlaps with those from neighbouring modes. Excitation frequencies lying between modal 
resonant frequencies, therefore involve the tails of the responses from both upper and 

lower neighbouringnaodes.

Whilethecompmrentofthcsoundfreldradiateddiiectlytothemeasuremcntpoint  

remains highly deterministic in the spatial sense, above some hitherto undefined critical 
frequency, the scattered sound field becomes highly unpredictable^^ The reverberant. 
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scattered field now no longer lends itself to simple description in terms of the normal 
modes of the enclosure but is more appropriately represented as a random variable. Even 
though the reverberant, high frequency sound field is governed by well understood, causal 
deterministic laws, the spatially sampled sound field takes on all the characteristics of a 

random process which is more appropriately expressed by statistical models. Owing to 

nuxkxnintiafiaenoebebweeasunuhanomndycxched n(xnaialiiN3dk%;(xftlM;taaclcMHire,])oint 
to point measurements of the sound field constitute a pseudo-random ensemble. One can 
now no longer speak in terms of the results obtained from single observations with 
certainty, but only in terms of the expected result obtained from a large number of similar 
experiments.

One can conceive of a sound field where scattering of the incident radiation by the 
walls of the enclosure is sufficiently uniform, that statistically, the sound field appears to be 
identical at all points within the bounded space. It is this basic property which forms the 
notion of the diffuse sound field. One accepted definition is given by Beranek53; in a 

diffuse sound field, there is an equal probability of energy fiow in all directions’. An 
alternative but equivalent definition has also been cited by Balachandran^^, 'A diffuse 

sound field conyrises on fq/%Mtte number qfpropagating plane waves wfrti rantib/n ptiase 
relations arriving A^m un^mt^ tiirirtbtaeti tifrectians'. These definitions attempt to 
define a sound field where there is no preferred location or direction such that all points in 
the space appear to be acoustically similar. Inherent in these definitions are the ideas of 
homogeneity and isotropy, the concepts of which fonn the basis of the last definitions^; 

The statistical parameters ctiaracferistng a ti%)hse saunti^W are jpatiaZ^ Aatnageneaws 
anti isotropic'. This last definition represents a more rigourous statement of diffuseness 
and is the one that will be referred to in later work.

The concept of a diffuse sound field is clearly a convenient Idealisation to which 

real sound fields only approximate. Different reverberant wave fields will inevitably exhibit 
different levels' of diffuseness. For example, a large, irregular room in which there are 
irregularly shaped scattering objects excited by white noise, will satisfy the criteria for 
diffuseness to a greater extent than a small, empty, regularly shaped enclosure excited by a 
low frequency pure tone. Similarly, at tire boundary walls of an enclosure, the sound field 
must, by definition, comply with the boundary condition and so arrive at the walls with 
some pre-destined complex amplitude. Nevertheless, the diffuse wavefield remains a 

powerful concept in serving to model what would otherwise be an intangible problem from 

the point of view of theoretical analysis.
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The principle of diffuseness applied to acoustic fields is Aequently misunderstood. 
It is not uncommon for the concepts of diffuseness and die spatial uniformity of pressure to 
be confused. For example, a US standard test procedure maintains that perfect diffuseness 
is guaranteed by uniform pressure^. In fact, quite the opposite is true. While the acoustic 

pressure of a plane progressive plane propagating down a lossless, infinite waveguide is 

spatially uniform, it is far from diffuse since it is made to propagate in a prefered direction. 
Likewise, in a perfectly diffuse environment, the uniformity of pressure will be strongly 
dependent on the bandwidth of excitation. Broadband, random noise sources will excite a 

spatial pressure Geld that closely approaches spatial uniformity. But for pure ttmes, the 
expected deviation from its mean square value in a perfectly diffuse sound field has been 
shown to be ± 5.5 dB57 which is roughly consistent with the behaviour of the computer 
simulation shown in figure 3.2. Far from being uniform therefore, the spatial diffuse 

wavefield represents a stochastic process which is both stationary and ergodic with respect 

to position. The stationarity of the diffuse field points to the invariance of the statistics with 
position while ergodic, refers to the equivalence of the statistics between an ensemble of 

similar diffuse wavefields and point to point measurements in any one.

Experiments undertaken by Schroder^S analysing the behaviour of microwaves 

inside a rectangular microwave cavity, suggest that the onset of 'randomness' of the field 

variables appears above some critical frequency fsch- TTus critical frequency, or Schroder 
frequency as it is now known, is defined as the frequency for which the average 3 dB 
bandwidth coq 5 (half power points) of each mode 2o)nC ^s equal to three times the average 

mode spacing. However, the average spacing between neighbouring modes is 

approximately equal to the reciprocal modal density. For the case when oblique modes are 
completely dominant, the reciprocal modal density is given by37 l/n(to) = 27e2c^co^ . 

Assuming that all modes are similarly damped such that ^n » ( we have the relationship

fsch = (co/2m) (3t[2/C\/)i/3 (13)

where ton is the natural frequency of the n* mode and ^ and V are the modal damping and 

enclosure volume respectively.

The approach adopted in formulating the diffuse field SchrSder frequency fsch is 

necessarily ad-hoc owing to the arbitrariness of die way the diffuse field has been defined. 
Indeed, Schrdder"s original diffuse field criterion was determined by the frequency in 
which the average modal spacing corresponds to one tenth of the 3 dB bandwidth. This 
was later ammended to one third in 1962^8 which is now the accepted criterion today. In 

the absence of a more rigourous and universally accepted guide-line, the condition under

70



equation (3.3) is derived must suffice as the standard by which reverberant sound fields are 
calibrntedfardifTuseness. Afurther reasonfbrtiuschmceofcriticalficquMtcyisthatthe 
defining relation given by equation (3.3) may be conveniently re-wntten as a simple 
engineering formula in terms of the reverberation time Tgo^^ 

fgch = 2000 V1^ (3.4)

where Tgo and V are in S.I units.

The subject of "random wave acoustics' was established during the 1950's and 60's 
mainly through the pioneering work of M. R. Schrddo^ in what is now considered a classic 

paper published in 195439. However, recognition of die statistical wave nature of high 
frequency reverberant sound fields may be found in the literature as far back as 1935 in a 
paper by Wente^O, who presents a discussion of diffuse field frequency irregularity and 
later in 1939 in a paper by Bolt and Roop^l, in which the distribution of natural frequencies 

in a three dimensional enclosure are discussed.

Paradoxically, the complexity of the diffuse wavefield serves to aid its analysis. A 

deterministic description of the diffuse sound field would render the form of the equations 

unusably complicated by virtue of the intricate structure of the high fiequency reverberant 

field. A probabilistic approach turns out to be much simpler mathematically and has the 

considerable advantage of generality.

The results presented in the next few sections have been derived previously in terms 
of the acoustic pressure59 but they will discussed here in terms of transfer impedance. 

Qualitative predictions concerning the levels of reduction afforded by active control 

strategies in the diffuse field require details about the acoustical impedance coupling two 

points in the sound field and not the absolute pressure at any one. Transfer impedance 
fields and pressure fields represent two different view points of the same process. They are 
(Wily equivalent providing that the source has infinite internal impedance such that its 
volume velocity is independent of the pressure loading on its surface. In practice this 

assumption will be very nearly true. A description of the sound field in terms of the 
acoustical transfer impedance is more fundamental than that of pressure since it identifies 
the causal relationship between the source of excitation at one point, and the pressure 
response at another. A knowledge of tiie acoustic pressure simply identifies the response. 
We now consider some statistical properties fundamental to the diffuse wave field which 

will be found to be of importance in later work.
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3.2. Statistical properties of the diffuse field transfer impedance

Consider a point source of sound with an elementary volume velocity density 
distribution s(0)4'y) = q(o)f y)5(r - ry) located randomly within a reverberant enclosure at 
some point ry. The source excites a pressure field p(to.rx). Any two points rx and ry in the 
enclosure are therefore acoustically coupled via a transfer impedance Z(ti),rylrx) which is 

defined by
Z(m4'xlry)= p(mfx) /<l((D;ry) (3.5)

where q(co,ry) is the volume velocity of the point source derived by integrating the volume
velocity density q(m,ry) = js(m,ry)dy over the extent of the infinitesimal source

distribution S.

Here we assume that all acoustic parameters have been allowed to settle on their 
steady state values which usually occurs after time scales of the order of the reverberation 

time Teo- Furthermore, all acoustic variables are assumed to be harmonically modulated in 
time which may be introduced by the factor ei“*. For the sake of brevity, the dependence on 

time will be omitted.

From the point of view of active noise control, a knowledge of the transfer impedance 
connecting two points in space is of fundamental importance. Large transfer impedances 
between control elements are desirable because secondary loudspeakers are required to exert a 
large influence at the points of control while least affecting the regions in the sound field where 
they are not required to act. Within the diffuse environment, the transfer impedance Z(a),rxiry) 

coupling two points Fy and Fx chosen at random is itself a random variable. We now seek to 
determine the statistical distribution of complex values Z(co,rxlry) for measurement points well 

away from the influence of directly transmitted sound, I Fx - Fy I > R^ where R^ is the 
reverberation radius^^, the distance firom the source for which the level of directly transmitted 

acoustic pressure and revorberant pressure are exactly equal. This is the case in many practical 

examples where the reverberant, scattered radiation completely dominates the direct field as is 
the case for large vibrating bodies for which the near fields are weak.

A sound wave transmitted between two points in space generally undergoes change 
in both its amplitude and phase. The transfer impedance coupling two points 2X(oyxlry) is 

therefore complex and may be considered to be the superposition of two independent 
impedance fields which are in quadrature. These are the in-phase reverberant component 
)l(Zr) = R.(Z(ci),rxlry)) (teal) and the quadrature reverberant component 1(2^) = 

T(Z(m,rxlry)) (imaginary), i.e., Z(o),rxlry) =A.(Zr) + j 1(2^}. Sound fields which are of
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such complexity that they defy simple representation may be described as a superposition 
of many elementary, scattered waves;%. Each elementary contribution z^ has an associated 
modulus 1^1 and phase <pk which are assumed statistically independent. Moreover, (pk is 

assumed to be uniformly distributed between its principal arguments I(-k, te), providing of 

course that the two pobts are well spaced and not too close to the walls (further away than 

a half a wavelength). Each oblique mode excited b the enclosure, for example, is a source 
of eight bdependent, elementary plane waves (four for tangential modes etc). The complex 
impedance field Z(ti),rxlry) may therefore be represented by62

Z(ci),rxlry)
N
^ IzkI eJfk (3.6)

The representation of the diffuse field given above is as equally valid whether one bterprets 
the elementary waves 2k as being derived from modal contributions or contributions from a 

large number of image sources. Equation (3.6) is btended to provide a qualitative 

description of the impedance field as an aid to obtaining statistical predictions about the 
diffuse field. It does not allow detailed quantitative statements to be made about any one 

wavefield, but embodies the statistical characteristics of a whole ensemble of similar 
wavefields.

If the number of elementary contributions N is large, then the transfer impedance 
Z(to,rxlry) appears as a random function of both Fx and Fy which consequently do not 

appear explicitly in equation (3.6). Furthermore, if one assumes that the excitation 
frequency is greater than the SchrMer ftequency then the diffuse field representation given 

above is also explicitly bdependent of frequency.

As the number of terms N approaches bfmity, the statistical distribution of bob be 

b-phase and quadrature parts of be impedance field converges on be Normal distribution 
(or Gaussian distribution) N(p.z.ctz)- A completely general result is berefore obtained 

whose validity depends solely on the wavefield having the properties of 'diffuseness'. 
For N-->»o, be probability density function of be real and imagbary parts of be diffuse 

field transfer impedance is berefore given by

fy()l(Zf)) -4 ^ e-(*L(Zr) - It)iz)^/2G% (3.7)

and
fy(l(zr)) -4 . — e-a(z^) -Miz)^/24z (3.8) 
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where ^(Afzy)) and ^(1(4)) rq)resent probability density functions dcGncd in 
elementary texts on statistics, see for example Mood and Graybill®^. The same notation will 

beadt^ted hereasadopted by h/b)OKlt!^<rftvlaKretr^tt:nitMM:n{)tedu])p<TC«tsc isusedto 
daiote the physical variable in question while lower case variables are used to represent the 
function variable. The terms p^^ ^d I^rZ ®^ ^® means and <^ and o^ are the variances 

of their respective probability density functions. This remarkable result follows from the 
central limit theorem in statistics®^ and ^plies whenever a single random evoit is itself the 

sum of a large number of independent random events, in this case elen^ntaiy scattered 
waves.

Equations (3.7) and (3.8) describe how the probability of any one given value of the 
transfer impedance occuring in the diffuse field diminishes with increasing magnitude. This 
result is clearly intuitively correct since the likelihood of destructive interference between a 
large number of randomly phased terms must vastly exceed that of constructive 
interference. The form of the probability density function given by equations (3.7) and 
(3.8), is totally independent of the distribution of its constituent waves providing there are 
sufficient number of them. The Normal distribution is therefore a member of the 
appropriately named asymptotic distributions. The relevance of the central limit theorem to 
high frequency, reverberant pressure fields was first realised by Schrdder®^.

The probability density function (p.d.f) may be characterised by its various 
moments. For a Normally distributed ensemble, all moments may be uniquely expressed in 
terms of its principal moments, the mean p and variance o^. The statistical representation of 

the impedance field given by equation (3.6) suggests that within a diffuse field 

environment, the phase relationship between the acoustic pressure at a pomt to that of its 

source located further away than a wavelength, is completely random. The expectation of 

the complex transfer impedance which acoustically couples two well spaced points b the 
diffuse wavefield is therefore zero. Thus

<Z((i)fxlry)> = <)l(Zf)>+j<1'(Zr)> = 0 forlrx-ryl>Rg (3.9) 

where < > is used to denote expectation with respect to position. The mean values of the 
distribution b equations (3.7) and (3.8) are therefore likewise zero

Pj^ = <R{Zr)> = 0 (3.10)

PlZ = <T(Zf)> = 0 (3.11)
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Waves emanating &om the source at a single frequency ate subsequently scattered 
by the enclosure walls and therefore arrive at some distant point in the room with a change 
ofphasewhichisc(mq)letelyunconelatedwiththephaseofitssource,seefofexample 
Ebeling^. This fact points to the statistical independence of the in-phase part of the transfer 
impedance firom the quadrature part, providing the two points are well separated. The real 

and imaginary parts, )l{Zf) and T(Z^) are therefore orthogonal which inches zero 

(]o^qiruinc<;lNetM4eentbt;a%a%)iiieanrarMicMiiiMtrutblcs.'riiatis

<)l(Zf)l(Z,)>=0 (3. 12)

It is fundamentally important to recognise that )l(Z,) and l(Zf) are only orthogcmal as 
random variables. The physical processes by which they arise are not This is because the 
physical system which enables the volume velocity at one point in space to give rise to 
acoustic pressure at another point constitutes a linear and causal process. The real and 
imaginary parts of the transfer impedance Z(o)f xlfy) are therefore functionally related by 

the Hilbert Transform^.

For points of observation well away from the source, it is implicit in the concept of 

the diffuse field that $t{Zr}and 1(2,} must be governed by identical statistical laws. It 
therefore follows that they must also exhibit identical levels of dispersion about their zero 

mean values so that
o^ - o^ - (^ (3 13)

This property can be infered because the distribution of phase differences between two well 
separated points is uniform between the principal arguments. The joint probability density 
function fz()l(Zf) J{zr)) (w independent random variables is simply the product of their 

respective probability density functions (z()l(Zf)) and 12(1(4)) according to equations 

(3.7) and (3.8) thus

fz(l(.(4),l{4)) = fz(lt(4})fz(T(4)) = e-()l^(Zr) +1^(41)/2G^ (3.14)

A three dimensional representation of this equation is shown in figure 3.3 indicating that 
part of the diffuse field transfer inq)edance field which is in-phase of the source and that 

part of the diffuse field impedance field which is in quadrature with the source plotted on 

orthogonal axis
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Figure 3 J A (Argg dtmgnjio/wz/ rgprgjgTWofiom of fAg /owf froAoAzZify density function Aenveen 
zAf zn-pAa% onzf ^wodrofwg po/ly of (Ag (ron^r wygdomog Agfwggn fwo weZZ spocezZ poznW zn zAg 
pzzrg Zozig dzg^g jozzzid^gZd.

While the form of the probability density function given by equation (3.14) is valid 

for all values of the transfer impedance and is therefore unbounded, more than 99.9 % of 
the complex transfer impedances that can possibly arise are contained within about three 
standard deviations from the mean value namely R{Zr}, T{Zr}= ± 3az. Not only is the 

mean of the probability density function zero according to equation (3.10) and (3.11), but 
also the most frequently occurring value (or modal value) which is identified from the peak 
of the joint probability density function. In accordance with equation (3.14) therefore, all 

measures of central tendency such as the mean, mode and median etc, are located on zero. 

This has important implications from the point of view of applying active noise control in 

diffuse fields. A control system attempting to engineer reductions in the sound pressure 
level could conceivably be unable to supply the necessary volume velocity in order to drive 
the point pressure to zero owing to poor coupling between the secondary source and the 

chosen point of cancellation. Moreover, in some instances, the secondary source strength 
required to perform the point pressure cancellation may be arbitrarily large which could 
have unfortunate consequences on the rest of the sound field.

The variance of both the in-phase and quadrature parts of the transfer impedance o^ 

may be obtained from the defining equation

Oz™ <1^^{^}> ■ <1^{Zr} >^ — <X2{Zr}> - <T{Zr} >^ (3.15)
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However, since R(Zr} and 1(2^) are zero mean processes, it follows that the variance 
must reduce to the expectation of the square of the value according to

o: = <)l^(Zf)> = <l^(Zf)> (3.16)

The variance of both the real and the imaginary parts of the transfer ingredance Geld are 

therefore identically equal to the expectation of their squared values. The space average 
modulus squared diffuse field impedance < I ^r) 1^ > is given by <! p(to,r) 1^ > /1 q(co)P 

where IpCmflPreferstopeakpressureamplitude squared. An expressionfbrthespace 
average hi^ firequency square pressure < i p(ci),r) 1^ > may be obtained if one replaces the 

infinite summation of acoustic modes by the appropriate integral taken over all possible 
modal natural frequencies. This is the basis of Schroder's principle^^. The result of this 

modal integral is central to the analysis presented in this chapter and an outline derivation 
based on the analysis presented by Morsels is given in Appendix 3.1. The modal integral 

has been evaluated in order to obtain an expression for the space averaged squared pressure 
< I p((i),r) 1^ > which from Appendix 3.1 is given by

(3.17)

where V is the room volume and kq is the damping constant which is related to die total 
room absorption A (= Sa) by the relationship^^

. Ac
ko = gv (3.18)

In reality however, die total room absorption A (in m^) is frequency dependent and one 

must refer to experimental data from representative absorbing materials in order to establish 

the empirical relationship describing die variation of A with fiequency. Some experimental 
findings relating to the random incidence acoustic absorption coefficient a versus 
logarithmic frequency for various acoustic materials are presented by Beranek^^ Typical 

representative examples have been taken from this data and re-plotted on a linear fiequency 

scale in figure 3.4 overleaf.
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1.0

Frequency (Hz)

Figure 3.4. Experimental data taken^om ^growet^^ imdicafing zAc wonzzzzom (^f rzwdom zzzczzknce 
oAfOZpZzom cog$icKnZ with frequency  /or Zwo fumpkj of ooowfZzo lining rg-p/ozzed oz: a ZZzigor 
^g^wg/K} fcaZg

The absorption coefficient plotted above appears to increase linearly with frequency up to 
about 600 Hz, above which the dissipative mechanism appears to change. Below this 
frequency however, which represents quite a large working bandwidth, one can reasonably 
propose an empirical dissipation law by which the total area of absorption increases linearly 
with frequency. This leads directly to the definition of a modal damping term ^ according 
to45

kg = ^to (3.19)

. This is precisely the dissipation law arrived at by Sepmeyei^. The space averaged 

squared pressure may now be written as a linear function of frequency according to

< I p(m,r) P > = lq(co)l^ R_^E& 
grt^V

(3.20)

Assuming that the space average squared pressure is equi-partitioned between its in-phase 
and quadrature parts, one can therefore write
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<)i^{Zf)>= <i^(Zf)> =^!s^ 

ie<v
(3^1)

As onemayhaveanticipaied,pomttopointmeasur«nentsofdietransferimpedance 
Z((i)f xiry) exhibit large variations b small enclosure volumes driven at low frequencies 

where the wavcSeld still exhibits modal behaviour. The comparatively large scatter of 
transfer impedance values arises from btcrference between sbgle modes. Conversely, as 
the enclosure volume approaches infinity, the variance o^ tends to zero whereby the 

wavefield becomes spatially unifbrm as the acoustics of the enclosure approach fiee field 

conditions. In this limiting case, each image source is located at infinity and mutually 

uncanelated. Many authors regard this hypothetical limit to be the only perfect idealisation 
of diffuseness, see for example Bodlund^?.

Strictly speaking, the normal distribution is only an exact representation of the 
distribution of transfer impedance values as long as the number of random, bdependent 
constituent components tends to infinity, to practice, a good ^proximation to this 
asymptotic distribution is achieved from the summation of very few terms, to particular, a 
statistical distribution of transfer impedances very closely approachbg that of equation 
(3.14) was obtabed fiom a large random sample of transfer impedances calculated from a 

computer simulated, one dimensional sound field to a finite hard walled duct. The sound 
field was contrived to support only the first ten modes to ascendbg natural frequency, each 

excited to comparable amplitude. The Gaussian distribution of the in-phase and quadrature 
parts of the impedance field may therefore be regarded as a weak function of the wavefield 
and is therefore a poor bdicator of diffuseness. Alternatively tins property may be 
interpreted as a good descriptor of weakly diffuse fields.

3.3. The diffuse wavefield cross correlation function

Whilethespatiallysanpleddiffusewaveficld exhibits allthecharacteristicsofa 
random process, it is not without a significant degree of spatial structure. Specifically, the 
pressure at closely spaced neighbouring points to the diffuse wavefield may be shown to be 
highly correlated. The spatial cross correlation function p(ri, r2,m) is tire parameter which 

determbes the degree of bter-dependence between adjacent potots b the wavefield. 
Furthermore, this function offers bsight bto the coarse, large scale structure of tire wave 
field upon which, the btricate, random spatial patterns occur arising frmn random 
btcrference between highly coherent waves (at a stogie frequency). The complex, spatial 

cross correlation function is defined by
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(3J2)p(ri, ri,©) =
< Z(©.rQlri)Z*(m,rqlr2) >

< IZ(a),rqlri)p>i/2 < IZ(to,rqlr2)|^i/2

Note that all transfer impedances are refCTed to a common source of sound at Fq.

The information contained in p(ri, r2,to) emerges as one of the key parameters for 

determining the absolute performance limits on the active control of sound fields. A 

knowledge of the correlation function enables one to identify a c<mrelation length, a 
characteristic distance which determines the extent over which the wave field is well 
correlated. The properties described by this function will be shown to be sufficiently 
fundamental to the mechanisms of diffuse field active control to warrant a brief discussion 
of some of its properties. The derivation summarised here is due to Cook et-al^ although 
identical results have been derived fiom a modal viewpoint52,69.

Consider a single frequency plane wave passing between two points ri and r2 at an 
angle 6 according to figure 3.5

Z(ri) = e Z(r2) = eJ“^

f (gwrf 3.5 A jiTigZf^g^wgncy pZamg wove pojjwg tgr^ggn hvo poinff uf on ongZg 6.

From equation (322), two points ri and r2 are linearly correlated according to 
p(ri, r2,©) = exp-j(kArcos6) where Ar = I ri - r21. However, far fi-om being a single 

plane wave arriving at any one single angle, the notional diffuse field comprises an infinite 
number of plane waves arriving from all elemental solid angles with equal probability. The 
diffuse field correlation function may be considered to represent the average value over 
waves arriving firom all possible solid angles over 4k steradians. Taking a spherical co­

ordinate system and averaging over all angles equally yields the result
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% 2« sinkAr
p(ri, r2,to) = — f f [cos(kArcos8) - jsin(kArcos0)]sin6d6d<j> = ------- - (3 23)

4% J kAr

The imaginaiy pait is equal tozemsmoe -<3O^^)0d)eHa«uiHdkanh/alive(*rsir^3) isanevcn 
function. The real part is readily evaluated by using the single change of variable x=cos6.

This argument may be extended to deal with both two and one dimensional diffuse 

sound fields. In a two dimensional wavefield, the elementary waves have equal probability 
of arriving fiiom any elemental angle located in a plane. Taking the average over all angles 
of incidence between 0 - 2k in the plane yields the result

p(ri, rz.m) = — f [ cos(kAreos8) - jsin(kArcos8) ] d6 = Jo(kAr) (3.24) 
2% J

where Jo(kAr) is the zero* order Bessel function which is a real function since the 

imaginary part integrates to zero. Similarly in one dimension the spatial cross correlation 
function may be written as

p(ri, ^2,0)) = cos(kAr) (3.25)

The spatial correlation functions derived here are second order statistical properties 
of the diffuse field and depend only on the separation vector ^ between the points and not 

on their absolute locations i.e., p(ri, r2,©) = pfAr.co). This important result follows from 

the stationarity (homogeneity) of the diffuse field. More specifically, the correlation 
functions depend solely on the magnitude of the separation vector Ar which is a 

consequence of the isotropy of the diffuse field. Unlike the theoretical probability 

distribution function of complex impedance values in the diffuse field which is equally 
valid for narrow and broadband sources of excitation, the spatial correlation function is 
bandwidth sensitive. As Morrow explains^®, the correlation functions given by equations 

(3.23) - (3J25), may be inaccurate at a single firequ^cy owing to the limited number of 
modes which can be excited. The problem is compounded if the modes are li^tly damped. 
As the bandwidth is increased to admit more modes, die average correlation approaches the 

theoretical result where k now represents the mean of the upper and lower wavenumbers ku 
and ki respectively, k = (ki + ku)/2. A bandwidth sensitive discrepancy only appears for 

large bandwidths.

Figure 3.6 shows a comparison of the theoretical one, two and tiitee dimensional 
diffuse field spatial correlation functions given by equations (3.23) - (3.25)
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Figure 3.6 The fAgorgficoZ ong, (wo (wd (Arce dimgmaonoZ Effuse/ieZd apozioZ co/reZorion 
^oK(iOMJ verjztr sepororion distance.

The rate at which the correlation function decays with increasing separation distance 

provides some insight into the wave structure of the field. While a three dimensional 
diffuse field is 'held' together more tightly at close distances, points separated by more than 

say half a wavelength, possess less linear inter-dependence than either of the simpler fields. 
However, points which are located within one fifth of a wavelength of each other possess 

80% mutual correlation. This property will be shown to be significant when we come to 
consider the zone of silence formed by the active cancellation of the pressure at a single 
point in the diffuse field. The spatial correlation function for various three dimensional 
anisotropic sound fields have been derived by Baxter^l for which the form of the 

correlation functions indicate only small departure from the isotropic result given by 
equation (323). The differences are even less pronounced for small Ar, consequently the 

spatial correlation function may also be regarded as a poor indicator of diffuseness or 

again, a good descriptor of weakly diffuse fields.

In the next section, we consider the possibilities for obtairung global suppression of 
the sound field in a diffuse field environment for the rather special case where the primary 
source is compact and of monopole order. This problem was chosen because of the 
elementary nature of the primary source. A single discrete secondary loudspeaker is able to 
mimic the point monopole primary source by getting sufficiently 'close' such that the 

respective sound fields become highly correlated but in anti-phase and therefore tend to 
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interfere destructively. Ideally, the ultimate aim of any control strategy would be the 

complete global extinction of the primary sound field over the entire space. Even in free 
field where the evolution of the sound field in space is predictable in principle, this is 

extremely difficult to arrange for the reasons discussed in chapter 1. In the presence of 
reflecting boundaries, the problems are made substantially worse by complicated 
interference patterns arising firom waves radiated by an infinite number of 'image' sources.

For this model problem outlined above, a realistic control strategy from the point of 
view of achieving good levels of global pressure reduction is to drive the secondary source 
in order to reduce the space averaged square pressure over the entire enclosure. Owing to 

the proportionality between the space averaged diffuse field square pressure and the sound 
power output of the source given by equation (3.1), a reduction in the average square 

pressure also implies a corresponding reduction in the potential energy density as sustained 
by sound power injected into the medium by the primary source, see again equation (3.1). 
In order to satisfy this requirement therefore, the secondary source must act at the primary 
source point thereby inhibiting its outflow of energy. Conceivably, a closely located 
secondary source could be driven with the same amplitude but in anti-phase of the primary 
source. This source geometry would form a single dipole arrangement whose radiation 
output is notoriously inefficient compared with a monopole source of the same source 
strength. However, as Nelson has demonstrated from a free field analysis'^®, while this 

arrangement does afford some reductions in sound power output, it is not optimal and 
becomes progressively less optimal as the separation distance between the primary and 

secondary source increases. Indeed, for separation distances greater than about one 
wavelength, the primary and secondary source pressure fields are Ui-matched thereby 
causing a doubling in the original squared pressure. We now consider the statistics of the 

optimal secondary source strength for minimising the sum of sound power outputs from 
itself and a closely spaced point monopole primary source which are both situated in a pure 
tone diffuse sound field.

3.4. The minimum sound power output from two closely spaced 
point monopole sources

Consider two closely spaced point monopole sources qp and qs located in a diffuse 
field environment at rp and rg whose volume velocity densities are respectively 
qp(a>)5(r - rp) and qs(®)S(r - rs). This source configuration is shown schematically in 

figure 3.7 situated within an arbitrarily shaped control volume completely enclosing the 
source pair
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Figure 3.7. Two cZojcZ)' jpocgj mowpoZe fozfrcgj aifuo/gd wffAfn o dig^g /IgZ(Z gnvfroTZTMcnf 
com^ZgfgZy juTTOiwdied Z^ sozng wAifraT]' comfroZ wZumg.

We will now derive the minimum total sound power radiated 6om the closely 
spaced primary source and secondary source. As indicated in figure 3.7, this is equivalent 
to minimising the total sound power W radiated out of the control volume which may be 
calculated by integrating the acoustic intensity vector I(r) normal to the arbitrary surface of 
the control volume thus.

W=JI(r).ndS (3.26)
S

where h is an outward unit vector normal to the surface of the control volume. This 

convention is adopted so that negative sound power refers to acoustic energy flowing into 
the source which is of course the condition for sound power absorption. The absorption of 
acoustic energy is clearly a possibility in a reverberant space as highlighted by the work in 
chapter 2. Equivalently, Levine^^ has shown that for elementary point sources, the sound 

power output may be constructed from the real part of the product of the source volume 

velocity and the pressure at the source point This is because only the component of the 
acoustic pressure which is in-phase of the volume velocity makes any contribution to the 
time averaged sound power output. The orthogonal in-quadrature conponent, when 

multiplied by the source strength and averaged over a long time interval therefore converges 

to zero. Even though the acoustic pressure at the source point is infinite, only the resistive 
part of the pressure, which remains finite, transfers any energy to the medium since no 
energy is transported by the reactive part of the pressure.

The total acoustic pressure p(r,©) at some point r in the field is given by the linear 

superposition of their respective sound fields according to

84



p(r,m) =qp(m)Zp(m,rplr)+qs((D)Zs(mfslr) (3J7)

From hereon, the dependence on co will be omitted since above the Schroder frequency, 

acoustic variables have no explicit systematic frequency dependence. The monopole source 
of sound may be physically visualised as a sphere pulsating abmit some mean position with 

a small displacement amplitude whose time averaged volume input into the sound field is 

therefore zero. The point monopole source is a limiting ease of the finite monopole source 

whose radius has collapsed to zero but whose source strength has nevertheless remained 

finite. The pressure at the 'surface' of this idealised point source is therefore infinite. In a 

revCTberant space at frequencies above the Schrbder fiequency, the transfer impedances 
Zp(rplr) and Zs(rslr) may be resolved into their direct, free field components and random, 
reverberant components according to73

Z(rplr) =Zd(rplr) + Z/rpIr) (3J8)

Z(rslr) =Zd(rslr) + Z^rglr) 0^) 

where the subscripts'd' and 'r' are used to denote the direct, and reverberant components 

respectively.

The acoustic pressure in an unbounded medium pd (ro,r), radiated directly by a 
point monopole source situated at a point ro of strength q(to) to a point r is given by 

Pd(ro,r)=: q(<0) Zd(rolr) (3.30)

where 
^n,k).Z6j^.Zo[^+j^] (»,) 

kAr kAr kAr

and where Ar = Iro - rl and % is the mont^le point resistanoe for harmonically varying 
sources given by^

47CC0
(3.32)

Following the work of Levine^^ for elementary point monopole sources, the sum of 

primary source and secondary source sound power outputs yields

W = 1 $l(p(rs) q^ + p(rp) qg ) (3.33)
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The total acoustic pressure p(r) has contributions from both the primary source and the 
secondary source according to equation (3J27). In an identical manner to the procedure 
followed in chapter 2, substituting equation (327) for p(r) yields the total sound power 
output W as a quadratic function of the complex secondary source strength qg which may 

be represented in the now standard form

W = (^Aqs + bq^ +b*qs + c (2.8)

where A = ^R(Z(rslrs)),b=^qpP.(Z(rplrs))andc=^k)/R(Z(rplrp)) (3.34)

The terms $l(Z(rslrs)) and R{Z(rplrp)} are the radiation resistances of the secondary 
source and primary source respectively. Recalling that the unique global minimum for this 

equation qso is given by
% = qso = -A'^b

which enables the optimal sectmdaiy source strengtii to be written as

R(Z<rslrs))

ZosinckAr + H (ZKrpIrs)) 
Zo + )l(Zr(rslrs))

(2.11)

(3.35)

(3.36)qp

where sinckAr = sinkAr/kAr and Ar is the source separation distance Irp - rgl.

The secondary source strength qso which minimises the total sound power output 

radiated by the source pair will be susceptible to statistical fluctuations from point to pomt 

in the enclosure according to equation (3.36). The origin of this random variation arises 
from the presence of the terms 5t{Zr(rp!rs)} and R.{Z5(r^rs)} which as discussed earlier in 
this chapter, are mutually correlated normally distributed random variables. Scrutiny of 

equation (3.36) reveals that the optimal secondary source strength qso has the potential to 
become singular. This would occur in the (unlikely but physically possibly) event that the 
secondary source sound power output radiated via wall reflections, which is proportional to 
R{Zr(rslrs)), is exactly equal and opposite to the sound power directly radiated into the 
enclosure which is proportional to Zq. This condition describes the simultaneous radiation 

and absorption of sound power by exactly the same amount from which the net sound 

power output of the secondary source is zero. Although this outcome is very rare, but 

possible in principle, it is highly Ukely that this event is sufficiently common in relative 

86



terms to force the ill-conditioning of the statistics of the secondary source strength and 
related acoustic variables. In this event expectations such as < q^g >, for example, are equal 

to infinity. ITiis has yet to be proved foimally, but a full discussion indicating the 

conditions under which this is true is given in Appendix 3.2. However, in many respects 

this difficulty is of academic importance only and arises because of the very small 
probability of obtaining very large but negative values of the diffuse field source radiation 

resistance R {Z^s’s^f's)} •

In the light of this difficulty we take a pragmatic approach and seek to obtain an 

estimate for the expectation of the optimal secondary source strength < qso > for those 
source positions within the enclosure where lR{Zr(rslrs))l < Zg for which the secondary 

source strength statistics are known to be 'well behaved'. The expectation is now taken 
over a modified, reduced ensemble of values in which 'rare' events arbitrarily defined by 
IR{Zr(rs!rs))l ^ Zg have been excluded. It is important to recognise that the probability 

density function of diffuse field radiation resistance R(Zr(rslrs)} must posses positive 
skewness (third moment) owing to the fundamental condition^^

- Zo^R(Zr(rslrs)) ^.* (3.37)

which follows directly fiom the conservation of energy. However, for the range of diffuse 
field resistance values defined by IRlZ/rglrs)}! < Zg, it is believed that for all practical 

purposes R{Zr(rslrs)} may still be closely represented as a zero mean Gaussian random 

variable.

Following standard techniques for dealing with the quotient of random variables^^, 

the optimal secondary source strength qso may be rationalised by power series expansion 
which is on/y valid within the radius of convergence defined by lR{Zr(rslrs)}l < Zg. AU 

estimates of random quantities derived here therefore refer to the expectations of a finite 
sample size which from hereon will be symbolised by a *hat'. ^. To second order in 

RfZrfrxIryll/Zg, which will be denoted by y, the optimal secondary source strength may 

be approximated by

qso"qp [-sinckAr + ----------------------- ------

fw lyl< 1 (3.38)
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TbeCrsttennmtbescnesexpansion-(^sinckAr,ispMciseIytheoptimally 

adjusted secondary source strength for minirnising the sound power output from the source 
pair in the free field^. Chie can therefore infer that this term rally acts on the component of 

the primary field which is radiated to the secondary source directly. The remaining terms 

(which of obviously did not arise in the corresponding fiw field case) must therefore be 
responsible for suppressing the reverberant, scattraed part of the primary sound power 
output The infinite series expansion of the terms clearly indicates the recursive nature of 
the transfer function relating the optimal secondary srairce strraigth to the primary source. 
In evaluating the expectation < ^ >, we note that for transfer impedance fields which are 

perfectly distributed zero mean Guassian random variables, rate can write

.cfL(:Z,(rxlry)):> = <)l(ZKr%lr%))> = 0 (3J9)

Now invoking the principle of reciprocity, the fundamental theorem which describes the 
invariance of the transfer impedance to interchange of measurement point and source 
point37 one obtains the important result

R{ZKrxlry)) = )l(%ylrx)} (3.40)

Also noting that for a fully diffuse three dimensional sound field, the in-phase components 
of the complex transfer impedance are spatially correlated according to^ sinckAr, namely

<)l{ZKrslrs)))l(Zr(rslrp)) >= < )l^(ZKr)} > sinckAr (3.41)

where < $?,^{Zr(r)) > denotes the space average squared, in-phase component of diffuse 

field radiation impedance. In order to extract the mean of the sum of terms given in 
equation (3.38), we note an important result in statistics. The mean of a sum qf random 

vartah/es u Awpfy fAe fam <^rAe*r respective means. This result is equally valid for 
correlated and uncorrelated random variables. Incorporating the results of equations (3.39) - 

(3.41) yields the following simple result

<qso>" -qpsinckAr for f^f^b and Iyl > 1 (3.42)

Figure 3.8 shows a plot of the theoretical expectation given by equation (3.42) normalised 
with respect to qp, as a function of the source separation Ar.
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Figure 3^ The 6ipfc&%<M)« 4f fAg monMo/uej fgcomiyy fOMfcg f(rgmg(A/br minimising (A< 
k)(o/ wwmd powgr owpwf of a closely spaced saia-ce pair im a diffuse saaad/kW versus source 
separadon disUMce.

As a consequence of taking the average value over all source positions, the 
components of the secondary source strength responsible for acting on the diffuse field part 
of the acoustic pressure converges to zero. This is because sound arriving at the secondary 

source via wall reflections undergoes a completely random phase change in relation to its 
original phase on leaving its source. The secondary source must respond by being exactly 
in-phase or out of phase with the primary source strength since only the resistive part of the 

transfer impedance has any bearing on the sound power transported into the medium. The 

averaging process will therefore cause this random component to vanish while the constant 

free field component of the solution remains.

An identical result has been derived by Nelson et-d"^^ for minimising the total 

potential energy in the diffuse sound field. Indeed, this agreement should not be surprising 
owing to the proportionality which exists between sound power output and the 
corresponding potential energy in the diffuse field as given by equation (3.1). Nelson's 
result was formulated according to modal standpoint whereby the total potential energy was 
derived at by integrating over all modes to infinity. This formulation consequently produces 
thercstdt i^prcqniatctothe limitingcaseofanlnfinitefrequMtcy.Itis thcrefwehaidly 
suai»isinf;tool>servethat the spaceaverage valueconvergeson itsequivalentfiee field 

result in the absence of reverberation.
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This finding can be explained because in the limit as the Aequency tends to infinity, 

the wavelength becomes vanishingly small compared to a typical dimension of the 
enclosure, in this limit, die wavefield therefore appears increasingly like a free field 

environment whereby the enclosure walls are effectively located at infinity.

3.5. The variance of the optimal secondary source strength

At finite frequencies the optimal secondary source strength given by equation (3.42) 
represents only an expected result which will be subject to a degree of statistical excursion 
centredaboutitsmean.Theprincipaldescnptorofstatlsticaldepartureis thevaiianceo^ 

defined by
%o =<(qso- <qso>)^> 0-43)

where again, the expectation only exists if one excludes the Yare" events arbitrarily defined 
bylYl>lSubstitutingcquations(3.38)and(3.42)forqsoand<^>respectively, 

expanding and summing the expectations yields the result

for IYI < 1 and f > fsch (3.44)

AU odd moments of the series expansion, i.e., the moments which characterise the 
asymmetry of the probability distribution about the mean (skewness) have been set equal to 

zero. Equation (3.44) represents only an approximate formula owing to the non-linearity of 
the exact expression for q^o given by equation (3.36). The second term ei in equation (3.44) 

denotes the residual term, i.e., the term of next highest order which is non-vanishing 
neglected in the series expansion which can be shown to be of the order O( y^).

Recalling that < R^{Zr}> is proportional to co and that Zq is proportional to co^, the 

residual term ei appearing b equation (3.44) therefore has a frequency dependence which is 
of the order O(C0‘^). At high frequencies this term makes only an insignificant contribution 
to the series summation compared with the leadbg term which is co"^ dependent Terms ej 

and higher can therefore be omitted without incurring significant error at high frequencies. 

To a good level of accuracy, it would appear that the variance of the optimal secondary 
source strength for a given source separation distance is proportional to < R.^(Zr}> / Z^. 

This term represents one half the ratio of the space average diffuse field square pressure to 

the square of the b-phase, deterministic free field square pressure at the source point At 
any given source separation distance Ar, the degree of variability exhibited by qso from 
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point to point in the diffuse wavefield will therefore depend upon the level of acoustic 

'signal to noise ratio'at the secondary source point

In this context, 'signal' refers to the directly radiated contribution to the radiation 
resistance field Zq which is of course independent of the secondary source position. By 

contrast the so called 'noise' term St(Zr) refers to the contribution to the radiation 
resistance which occurs via reverberant paths and is therefore a purely random function of 
the secondary source position, from equation (3.44), one can immediately verify that it is 
therelativcmagnitudeofthescrcspcctivecontributi(mstoActotaIpressine%4uch dictates 

the absolute level of secondary source strength variance. This important ratio of terms 
<)l^{Zr)>/Z§may b<;s^)O\viitr)ltav(;(ryenirK)re wide ranging significanccwhich will 

now be discussed.

At any given point in an enclosure, the sound power W radiated by a point 
monopole source on its own into a reverberant environment is given by

W = I q|2 (Zo+1l(Zr(rslrs))) (3.45)

From an earlier discussion it was argued that above the Schrbder frequency the term 
3?,{Zr(rslrs)} constitutes a zero mean Gaussian random process. By inspection, one can 
show that the mean gw of the source sound power output is simply (1/2) I q |2 Zq which is 

equal to the ftee space value. Similarly, the variance o^ of the sound power output is given 
by (1/4) I q |4 < R^(Zr)>. The ratio of the terms < $l^{Zr)> / Z§ appearing in equation 

(3.44) therefore symbolises the variance of the sound power output from a point monopole 

source normalised with respect to the square of its mean value according to

05, _<R^|Zr)>
(3.46)

This quotient is commonly refered to as the 'relative variance' of the sound power output 
and has been discussed by a number a workers'75.76. The discussion by Davy77 is a 

particularly good review of the various theoretical approaches directed towards trying to 

evaluate this expression for real sound fields. Comparison with experimental data is also 
presented. Substituting equation (3.21) for the variance of the radiation resistance 
<R.^(Zf)>andequation (3/32)ik)rtlie mean valueZ^ givestheresult

<R2iZd> . J^ (3.47)
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Further shrplification is possible by noting that the cube of the Schrdder radian frequency 
G^ch is given by (Sic^c^ / V^). By direct ctsnparison with equation (33) the relative 

variance of the sound power output givm by equaticm (3.47) may be re-written as a function 

of frequency normalised with respect to the Schroder firequency according to the 
surprisingly siniple result

It must emphasised that this relationship is only valid at fiequencies above the Schroder 
frequency for which the diffuse field assurrptions are satisfied but below the firequency for 
which the room absorption ceases to increase linearly with fiequency. This is about 6(X) Hz 
for some materials, see figure 3.4. Above this frequency, it may be shown from equation 
(3.17) that the relative variance varies as the square of the fiequency. The factor of 1/3 
which appears in equation (3.48) is an artefact of the arbitrary manner in which the Schroder 

firequency is defined. A more universal constant of the random wave field is the Modal 
overlap factor M(C!)), an important parameter is statistical energy analysis, which is defined 

as the number of modes contained within the bandwidth Ato. The average number of 

modes in a unit fiequency band is closely approximated by the reciprocal of the modal 
density l/n(to). It therefore follows that

M(to) =Aton(to) (3.49)

Two modal overlap factors are commonly defined depending upon the fiequency 
bandwidths one chooses to employ. One is the 3 dB bandwidth too 5 and the other is the 

noise bandwidth to^. Consider first the 3 dB bandwidth tooj defined in chapter 2 which for 
the modal response function given by equation (A33), is equal to 2ton^ where ton and ^ are 

the natural frequency and the damping ratio of the n* mode respectively. It is well known 
that the asymptotic modal density in a three dimensional enclosure is given by (Vco? / 

Ik^c^) enabling the 3 dB modal overlap factor Mo5(to) to be determined from equation 

(3.49) to give

(3.50)

where direct comparison with equation (3.47) reveals that

Z^ jlMoj(to)
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The factor K appearing in the denominator of this equation may be absorbed into another 
modal overlap factor narmly the 'noise' bandwidth modal overlap factor M]sr(to) which is 
again defined according to equation (3.49) but whose bandwidth co^ is known as the noise 

bandwidth defined from

«^= j IA(m)l^d(D/ IA(m)l^ (3J2)

where A(to) is the ntodal response function given in equation (A32). According to their 

respective definitions, the different modal overlap factors, when they exist, may be shown 
to be directly related through Mj^(co) = JcMojC©)'^. The relative variance of the real part of 

the radiation impedance may now be written as

o& _ <R^(Z,)> 1
|1^ Z§ MnW (3.53)

The relative sound power variance has been rewritten in terms of the noise bandwidth to 
enable direct comparison with the result obtained by other workers. For example, Lyon^S 
concludes that g^ / ii^ = 27 / 16MM((i)). Jacobsen^^ on tite otiter hand arrives at the 

similar, but nevertheless different result a^ / p^ = 1 / 2Mjq(eo). Although the various 

expressions differ, neither expression is more correct than the other. This is because the 
actual relative variance of the sound power output observed in practice has a firequency 
variation which is considerably more complex than either result suggests. See again the 
experimental results presented by Davy77. The arbitrariness of these various expressions 

arises fiom the differing assumptions relating to the modal spacing of the enclosed sound 
field which is exemplified by Maling78, who, following the work of Lyon75, gives the 

more general expression
°&= 27gW

g{> 16Mn((0)
(3.54)

where g(M) is a function which varies from 1 to 0.5 as M, the modal overlap factor varies 
from zero to infinity. This function takes account of the difference between the two most 

popular models namely, the 'next neighbour model and the Poisson model. In reality, the 
sound powCT variance will depend on the room geometry, inhomogeneities in the room 
absoiption and other factors which will depend on the nature of the source. However, it is 

reassuring to observe that all of the various expressions predict a reciprocal dependence on 

the modal overlap factor and the result developed here in equation (353) will continued to 
be used.
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Returning to the variance of the secondary source strength which may now be 
written in terms of the Schroder frequency according to

Oqso = ~ iQp*^ tl - sinc2kAr]

for lyRl and f^fsch. (355)

It would appear that for a given source separation distance Ar, the variance of the optimal 

secondary source strength is governed solely by the fiequency of excitation relative to the 
Schroder fiequency of the room. This function is plotted in figure 3.9 as a function of the 

source separation distance evaluated at one, two and three times the Schroder fiequency

Figure 3.9 TAg theoretical vwMmcf of fAg jgcon<Ary jowce strength rg^ufrgff (o miruwje (A^ 
foroZ sowkf power ou^wf ofo cZojg/y spoced fozo-cf pozr fwzZworg<f or o/K, fwo o/kf fAreg Ames 
fAe ScAr&fgr ̂ rg^mey.

The optimally adjusted secondary source strength qso for minimising the total sound 
power output of a closely spaced source pair in a diffuse field environment has been shown 
to be susceptible to a level of variance which factorises into frequency dependent and 
source geometry dependent parts. The variance is observed to diminish inversely as the 
cube of the excitation fiequency. This fiequency dependence can be explained if one takes 
the view that the pressure loading at the secondary source, as it moves from point to point 

within the diffuse wavefield, has the characteristics of a signal superimposed on 
background noise to which one can attribute a signal to noise ratio.
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The variance of the optimal seotmdary source strength o^ increases rapidly with 

increasing source separation Ar. As the sources move further apart, the level of random 

coupling between the source pair remains constant independent of the separation distance. 

The magnitude of the direct coupling however, progressively diminishes according to 
sinckAr. Consequently, the acoustic signal to noise at the secOTidary source, and 
correspondingly die source variance c^, steadily increases with increasing Zff. The source 
variance c^ rapidly converges to its asymptotic value (1/3je) (fsch / f)^ for separation 

distances greater than about half a wavelength. However, at large source separation 
distances the control strategy is largely ineffective as made clear in the next section.

3.6. Minimum sound power output

The minimum sound power output Wmm as a consequence of the extremely 
complicated interaction between the secondary source qso and the primary source qp may be 
readily evaluated. Recall that the minimum value of the quadratic function given by 

equation (2.8) is equal to

Wmm= C - b* A'l b (117)

where all terms have previously been defined to give

Wmin=

Zo + )l(Zr(rslrs)}

(3.56)

Note again the appearance of the term (Zo + R(Zr(rsIrs)}) in the denominator of equation 

(3.56) which therefore also has a finite probability of being equal to zero causing Wmm to 

become singular. At frequencies above the Schroder fi^uency however, the usual 

inequality can be applied for the vast majority of source positions within the enclosed 
sound field, Zq > UtlZKrslrs)}! so that under this restriction, Wmin lends itself to power 
series representation within the radius of convergence I y | < 1. To second order in 

R,{Zr(rslrs)}/Zo, the minimum sound power output may be approximated by

Wmin " ^ lqpl^[Zo(l - sintAcAr) +jqL(2:djrplrp)} +sin(>Zk/krjRL(2^K:"slrs))
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ThcArsttcnn, 1/2 Iqpl^Z^l - anc4[Ar)isiccognisableas6ccquivalcnt6cespace 

minimum sound power output in the absence of reverberation'^. During the expectation 

process < W^m >, aU odd moments have been set equal to zero, the diffuse Acid properties 

given by equations (3.39) - (3.41) have been employed, and the equalities

<lRL^(:2f(rplrs)):> = <)l:(ZKr,lrp))> = <)l^(Zr)> (3J8)

huav(;l)eeriirot(xllK)]pro(lu<>cidie C(waaid(aTtbIysico{d(Te)qprc{wd(xn

l|qp|2 Zo(l - mnc^kAr)| 1 - + G2

for I Y I < 1 and f^ (Kh (359)

The residual term % again denotes the order of the next highest non-vanishing term which 
can be shown to be of the order e2 * O(to'4), which is clearly insignificant compared with 
the leading term which varies as 0)2. Recognising that

Wp= jZokj/ (3.60)

and recalling equation (3.48) for the relative source power variance, yields an expression for 
A 

the expectation of the minimum sound power output < Wmm > as a function of the 

normalised fiequency of the form

< Wmin> " Wp (1 - sin(?kAr) fl J_ M3 ) 
3%L f J

for lYl< 1 and f^fsch (3.61)

Note that the free field limit is rapidly recovered as the excitation fiequency tends to infinity 

i.e.

<Wmm> -4 Wp (1 - sinc2kAr) as f/fgeh -» «^ (3.62)

where Wp (1 - sinc^kAr) is the minimum sound power output in the absence of 

reverberation. This result may be regarded as the free field limit for the limiting case where 
thewavelengthbecwiesvanishlnglysmallcorrespondingtothefiequencytMiding to 

infinity. However, at frequencies which are greater but comparable to the Schroder 

frequency, the expectation < Wmm > is appreciably less than can be achieved in free field. 
This finding helps to explain the presence of the terms additional to the free field solution in 
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equation (3.57). It is therefore reasonable to assume that the extra terms exist to suppress 
the component of the primary sound field scattered by the enclosure walls. The mechanism 
of control for this problem will be discussed in the next section. For excitation frequencies 

greater than the Schroder frequency, consider the ratio of terms given below

<JW^y^J^Wmin)ff J_ rM3 ^^^ ^^^^^ ^^ ^^^
(Winin)ff 3k L * J

which has been evaluated from equations (3.69) and (3.70). This function determines the 
sound power reduction achieved by acting on the diffuse field part of the primary sound 

field as a fraction of the sound power reduction achieved through the attenuation of directly 

radiated sound. This equation shows that the addition of an optimally driven secondary 

source proximately located to a primary source radiating a pure tone at the Schroder 
frequency is only able to suppress an additional l/(37t)^ (approximately 10 %) of the total 

sound power output than would be possible in the absence of enclosure walls under diffuse 
field conditions.

The space averaged sound power output < Wmin > as a fraction of the primary 
source sound power output Wp is plotted below in figure 3.10 for integer multiples of the 
Schroder frequency. This function can be observed to rapidly converge to the free field 
limit at frequencies greater than about two times the Schroder frequency.

Figure 3.10 The expectation o/ the minimum sound power of a closely spaced source pair in a 
diffuse sound field versus source separation dzsfwzce.
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3.7. The variance of (he minimum sound power output

The statistical fluctuations of the secondary source strength from point to point in 
the enclosure described by equation (355) will be ultimately exhibited as an uncertainty in 
the total sound power output The variance associated with the optimally minimised sound 
power output may be derived directly from its defining relation given below

®Wmin — ^ (Wgjn - < Wmim ^)^ (3.64)

A
Substituting equations (357) and (359) for Wmin and < Wmin > respectively yields the 
surprisingly simple result

^ndn" i'q/ <:3R'^(:Zf}:> [1 - sinc^kAr] +63 (3.65)

-Win „
W2

The derivation of this equation has necessitated the evaluation of the expectation 
< R{ZT(rplrp)}5t{Zr(rslrs)}> where both measurement points and source points are 
identically displaced. The quantities JtfZXrpIrp)} and jkfZXrsIrs)} may be shown to be 
spatially correlated according to < Jt2{Zr}> sinc^kAr, the derivation of which is given in 

Appendix 3.3. The residual term £3 can be shown to be three orders of magnitude in 
frequency below the leading term i.e £3«" O(or^) which may therefore be neglected at high 

frequencies without bcurring significant error. The sound power variance OWmin ^^ ^® 

conveniently expressed non-dimensionally as a fraction of the primary sound power output 
squared W^ according to

< [1 . smc4kAr] (3.66)

where from equation (3.48)

^mb ' sinc4kAr]

for lyl < 1 and f^ ^h (367)

This function is plotted below evaluated at one, two and three times the Schroder frequency 
for zfr ranging between zero and X.
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Figure 3.1 J The theoretical variance ((f fA^ wuwmwm A,6%Z jOMwd power owQ;wf of o ckfe/) 
qwcej wwrce w: o dg^kfe sowkf ̂ W evaZMOfed a* one, fwo amd fAree (wmej fAe ScAr&Zer 
frequency.

Observe that the minimum sound power output from the source pair is highly 
susceptible to statistical fluctuations for source separation distances greater than about half a 

wavelength. These are the distances for which the level of sound power reduction is least 
such that the source pair is least constrained. The resulting sound power output therefore 
exhibits maximum variability as the source pair is moved around the enclosure reaching a 
maximum relative variance equal to l/37t(fsch / f)^- The dependence of the variance on the 

fourth power of sinckAr is purely coincidental since both the real part of the transfer 

impedance and the three dimensional spatial correlation function vary as sinckAr. This will 
clearly not be the case at frequencies below the Schroder cut off frequency fgch where it is 

in general not possible to identify a spatially stationary correlation function. For source 

separation less than about one half of a wavelength however, the converse is true and the 

level of variance is diminished but highly sensitive to the source separation distance. The 
relativevaiiancct^botiiqgoandWmm cam Ike obseved toctmvergetothe samevalue at 
any given frequency as the source separation distance steadily increases.

A 2

The relative variance derived here in equaticm (3.68) for the sound power output of 

the coupled, well separated source pair is identically equal to the relative variance exhibited 

by an isolated pobt monopole source allowed to radiate freely in the diffuse field, see 
equations (3.46) and (3.48). It would therefore appear, to the level of of accuracy afforded 
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by the truncated Taylor series expansion, that the introduction of a remotely positioned 
secondary source seeking to minimise the combined sound power outputs does not alter the 
original variance in primary source somd power output radiating in isolation. However, it 
is shown in the next section that the secondary scairce smnd power output in any single 

experioKnt is exactly equal to zero firom which the variance must also be equal to zero. 
Thus, the variance of the total sound power ouqjut k therefore equal to the sum of the 

variances of the primary and secondary source power contributions which indicates that the 
primary source sound power output k statistically indqtendent of the presence of the 

secondary source providing they are well separated.

3.8. Mechanisms of sound power reduction in the diffuse field

The derivation of the optimal secondary source strength qso and the corresponding 
diffuse field minimum sound power output Wmm have yielded expressions which comprise 
the free field solution derived in reference [40], plus additional terms which depend on, and 
are sircple functions of the reverberant field. It is therefore not unreasonable to suppose that 
the terms are responsible fw acting on the direct field and reverberant field respectively. On 

the bask of thk assumption it should be possible to identify the mechanism of diffuse field 

sound power minimisation.

Under fiee field conditions, an isolated point monopole source may have its total 
sound power output minimised by the introduction of a closely spaced secondary source of 
source strength -qpSinckAr. This result is also the expected result in a diffuse field 

environment taken over all source positions. Surprisingly, the secondary source radiates no 
time averaged sound power itself since the total pressure at the secondary source point k 
arranged to be perfectly out of phase with its volume velocity^^. The secondary source 

simply acts to present an additional pressure loading to the primary source thereby causing 

a reduction in its radiation efficiency. The san» optimal control mechankm also operates b 

an enclosed space but the principal difference is that there are now both direct and bdbect 
(via reflections from the walls) transmksion paths connecting the two sources.

Some insight mto the mechanisms of sound power minimisation are obtamed if one 
considers the sound power ouqrut of the primary source and the secondary source b turn. 
The sound power output from the sectxidary source Wg m the presence of the primary 
source is given by

Wg=^)l(q:p(rg)) (3.69) 
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where p(rs) is the total acoustic pressure evaluated at the secondary source point r^ given 

by

From equation (3.35), the optimal secondary source strength Qso has been shown to be

equal to

Qs ~ Qso
)l(Z(rDlr,))
)l(Z(rslrs))

(3.71)

The sectxidary source sound power output given in ^uation (3.69) can therefore be written 

as

Taking the real part, one can shown that the term in square brackets is equal to zero

WM = 0 (3.73)

We now have formal verification of the behaviour observed in figure 2.8 of chapter 2 for 

the analogous one dimensional problem. From these findings, one can infer that even in a 
reverberant sound field, the total pressure at the secondary source point is arranged to be in 

quadrature to the complex secondary source strength. From the point of view of the 
governing equations, there is no distinction between free field transfer impedances and 
transfer impedances which involve reflections. The time averaged sound power output 
radiated by the secondary source when seeking to minimise the total sound power output is 
themforezero in both free and enclosed soundfields.The sameconclusion was arrived by 

Nelson er-aZ 39 for the analogous problem in free field. The reduction in the radiated sound 

power fforn the source ptiik is therefbredue solelytopressure loadingoftheprimary source 

by the secondary source. Clearly, this arrangement strives to achieve the optimal balance 
between the sound power outputs from the two sources which is obviously attained by 
setting the secondary source contribution to zero for pure tone fields.

Given that the time averaged secondary source sound power output is zero 
indicates that the secondary source sound power output associated with the loading of the 
primary source cmcrZyboZoncerwith die soundpower subsequendyabsorbedby 

secondary source.

Just as for the one dimensional sound power minimisation problem detailed in 

Chapter 2, the optimal transfer function relating the secondary source strength to the 
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primary source strength given in equation (3.36) is real The Fourier transform of this real 
function of frequency is therefore perfectly symmetrical about t = 0 which is therefore non- 
causal with respect to the time history of the primary source signal. It would appear 
reasonable that the interpretation placed on the mechanism of sound power minimisation in 

the one dimensional exan^le also directly ^plies to the control acechanism in this 
considerable more con^lex space. This is despite the fact that the time domain 
interpretation of the transmission response function in the three dimensional enclosed space 
is considerable more cotEplicated^^.

Consider the system response to a unit primary pressure pulse at t = 0. For pure 
tone sound fields, the secondary source begins the process of reducing the total sound 
power output from the source pair an infinite tune prior to the action of the primary source. 
The secondary source starts by continually building up its own power output such that 
successive terms in the optimal impulse response function are increasingly larger in 
magnitude. This infinite succession of events conspire to anticipate the action of the 

primary source which eventually culminate in the radiation of a pressure pulse just in time 

to meet the pulse leaving the primary source at t = 0. Note that the process of loading the 

primary source which takes place for t < 0 is achieved for minimum secondary source 
sound power expenditure. This has the effect of partially loading the primary source whose 

radiation impedance is consequently diminished. It is strongly suspected that figure 2.8 for 
the plane wave example in chapter 2 is therefore directly relevant to the three dimensional 

problem described here.

The acoustic energy which is radiated by the primary source is subsequently 
absorbed by the secondary source. However, since the secondary source is situated within 

a reverberant environment, it has the opportunity to continually absorb successive 

reflections. The precise details of how this is achieved in this more complicated three 

dimensional space is contained in the infinite series of recursive terms generated by the 
inverse Fourier transform of (Zq + ^{Zr(fslfs)})'^ which appear in equation (3.36). 

Successive terms in the series expansicm have alternate signs so that each term is exactly in 
anti-phase with the previous term and is therefore absorbed under steady state conditions 

The general form of this behaviour in reverberant fields has been investigated numerically 
by Hough^O.

Consider the sound power from the primary source alone, namely

Wpo =i)l(qpP(rp)) (3.74)
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One can readily show that this expression recovers the original result given in equation 
(3.58) whose statistics have already been investigated. Given that W„i„ = Wgg + Wpg where 
it has been shown that Wgg = 0, one can now state the following important result

Wmin=Wpo (3.75)

which is an exact relationship for point sources and is valid for individual ejqjeriments and 
is therefore not in any sense an average result So far we have shown that the problem 
discussed in this chapter is simply a three dimensional extension of the considerably 
simpler one dimensional example discussed at length in chapter 2. In chapter 2, one 
observed that for random broadband sources of noise, the causally constrained secondary 
source was limited to the absorption of sound. This restriction must also be true for this 
three dimensional example when the two sources are well separated. This is the subject of 

the next section.

3.9. The maximum sound power absorption of a point monopole 

source In the pure tone diffuse field

The previous section was concerned with the total minimum sound power output 

from a closely spaced source pair situated within a diffuse field. Whilst the secondary 
source acted to reduce its own sound power output in accordance with the criterion of 

minimisation, the secondary source also took equal account of the sound power output 
firom the primary source. In this section we consider the closely related problem of 

minimising the secondary source sound power output taking no account of the effects on 

the primary source. This example constitutes a particularly important problem since it is 
highly relevant to the large number of cases where the primary source signal is random 

broadband noise and its predictability is consequently poor. This example is also pertinent 

to the large number of real cases fw which the primary source is a large distributed body 
such that pressure loading on it will be largely ineffective for these more representative 
source types. In both eases, tiie c^timal control mechanism will be restricted to the active 

absorption of the incident primary sound field.

Assume that the secondary source is irradiated by some monochromatic primary 
source field Pp(r) of hitherto unspecified spatial characteristics. The sound power output 

Ws from the point secondary source may be constructed firom the expression

W, = iR.(q;p(rs)) (3.76)
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It is important to recognise that in the cost function Wg of equation (3.76) (the secondary 

source sound power output), there is no account taken of the sound power radiated by the 
primary source and therefore does not respond to the action of the primary source in any 
systematic anticipatory fashion. There is therefore a possibility that in some cases the 
secondary source may inadvertently 'suck' energy from the primary source while in other 
cases, inhibit the pressure radiated from the primary source. This was the finding of 
Bullmore according to the results obtained from a series of systematic computer simulations 
of the sound field in a shallow box of low modal density^l.

Putting p(rg) = Pp(rg) + qgZfrsIrg) In equation (3.76) and following exactly the same 

procedure as before, the secondary source sound power output as expressed by equation 

(3.76) may be constructed as a quadratic function of the secondary source strength 

according to
W,. qA(Zmd)q; + i qj<(r^ + ^ q^PpW (377)

where comparison with equation (2.8) and its solution qg = qgg given in equation (2.11)

yields the completely general result

2R.{Z„a)
(3.78)

where for the sake of brevity Z^d = Z(rslrs) denoting the secondary source radiation 

impedance. All quantities for which only the secondary source sound power has been 

minimised will now be referenced with the symbol (') so as to make the distinction 
between the former problem for which the minimum of the total sound power was sought. 
In this example, the secondary source strength is exactly in anti-phase with the primary 
source pressure arriving at the secondary source point. The minimum secondary source 

sound power output Wg) may be derived from equation (2.17) to give the expression

. lpp(r^P
01(4^)

(3.79)

The maximum sound power capable of being absorbed by a given source type is therefore 

inversely proportional to its radiation resistance. Although this result is only valid for point 
monopole sources, equation (3.79) helps to explain why a quadrupole source of sound is a 

more efficient absorber of sound than a dipole source, which in turn is a more efficient 
absorber than a monopole source^. The primary square pressure lpp(rg)|7 may be re- 

written in terms of the sum of the squares of the resistive and reactive part of the transfer 

impedance between the two sources according to
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, 1l:(Z(rolr.)) + l:(Z(rolr,)) ,2
(3.80)

Most impcxtantly note that Wg is negative providing that the radiation resistance of the 
point secondary source 3^,(2^} is positive which is of course guaranteed by the 

conservation of energy principle. Now consider the influence on the primary source sound 
power output Wp where *

W^ = i3l(q;p(rp)} (3 .81)

On substitution of equation (3.78) for q^, one can show that the primary source sound 
power output Wp is modified by the behaviour of the secondary source which is now 

equal to

Wp = 1 lqp|2[R|Z(rplrp)) + , (3.82)

The first term is the primary source sound power output radiated into the reverberant space 
in the absence of the secondary source. The second term therefore quantifies the change in 

the primary source sound power output due to the sound field firom the secondary source. 
It is emphasised that any modification to the primary source sound power output is wholly 

inadvertent. By inspection, this additional term may be positive or negative depending on 
whether the primary source pressure at the secondary source is mostly reactive or resistive. 
It is enlightening to consider the behaviour of this function for the two well defined cases 
corresponding to when the secondary source is located very close to the primary source, 

and very far from the primary source.

When the sources are very close compared to the acoustic wavelength, to a good 

approximation the source pair behave as if they were b free field so that one can omit 

diffuse field terms to a good level of accuracy. One can therefore show that the sound 
power output of the primary source is considerably increased at these distances. This 
bcrease is overwhelmbg due to the very large reactive component of pressure at the 

secondary source pobt coirpared with the resistive contribution 
l^fZfrpIrs)) » R2(Z(rplrs)}which will have the effect of'suckbg' energy from the 

primary source. This phenomenon has also been observed by Nelson et-o^^.

Now, consider the naorc important and practically oncntated problem where the 

pomts sources are well separated and outside the influence of directly transmitted sound. 
Clearly, the squared reactive conponent of primary pressure lqpl^^{Z(rplrg)) will on
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average equal the square resistive pressure IqpF )t^( Z(rplrg) ] so that when the space 

average is taken, the second set of terms in equation (3.82) averages to zero. For this 
limiting gemnetry.thepiimaTysourcesoundpower CMaqpauis,on a^4era^;c,uncjiang(xi and 
therefore equal to its average diffuse field value Wp, the firee field sound power output

< w;,> = Wp for lr%- rpl» % (383)

The control mechanism is now limited to the absOTption of the sound field which is 
scattered close to the secondary source. Recalling that Z^ - Zq + ZrCrglrg), taking equation 

(3.80) as a series expansion to second order, neglecting small terms and then performing the 
expectation in the usual way shows the maximum secondary source sound power 
absorption may be closely approximated by

< *k >»
< lpor(r)l^> 

8Zc
A + _J__
I MN(m)

(3.84)

where the hat '^' is used to denote that the usual restriction, namely DLIZ/rgltg))! < Zo 

has been applied. The subscript Y has been again used to indicate diffuse field pressures 
outside the influence of directly radiated sound. One can immediately verify that 
< Wsa > < 0 which indicates that the primary sound field which is incident on the 

secondary source is absorbed, or at worst left unchanged corresponding to W® = 0. The 

secondary source cross sectional area of absorption can be readily evaluated by recognising 
that the average diffuse field sound intensity modulus < !Ij^(r)l > is properly defined even 

though the average net sound intensity vector < Ip/r) > is zero. One can envisage a 

hypothetical surface of unit area randomly orientated in the field. The sound field on one 

side of this notional surface may be regarded as semi-diffuse which is perfectly 
counteracted by an identical sound field on the other side. The net sound intensity passing 

through one side of this hypothetical surface has been related to the space average square 
pressure in the field. From standard acoustical texts^S

<„p,(r„>=^IP=I<I>!^ (3.85)

where <hpp,(r)f^>rej%ai;toth^;!q)ac<;fryera^;ed (Uffiu^efk^klsqtrarepMiMtsiuxgfUDaplitu^le  

sustained by the primary source. Substituting equation (3.85) for < !Ipr(r)l > into equation 
(3.84) and recalling tiiat Zo-m^ / 4)tCo,yields theimportantresult
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(3.86)1 \
&^m) J

where X is the acoustic wavelength. The expectation of the secondary source sound power 

output < Wg} > is now in the form of an acoustic intensity times a cross sectional area of 
absorption. At firequencies well above the Schroder frequency therefore, the maximum 
secondary source sound power absorption may therefore be accurately represented by

<^^>»-<IIp,(r)l >^ (3.87)

One can employ exactly the same approach to derive an approximate expression for the 

relative variance of the maximum sound power absorption which is given by

1
M-Wm MfXco)

(3.88)

where the mean value Pwo given by equation (3.87) has been used.

The isotropy of the diffuse wavefield suggests that the diffuse field bombards the 
secondary source from all angles equally. The area of absorption Sabsmb ™ust therefore 
take the form of a sphere of surface area 4na2 which has the point secondary source at its 

centre. Equating 47ta2 to X^ / % enables one to solve for the radius of absorption of the 

hypothetical sphere a' on the surface of which all sound is absorbed on average. Solving 

for 'a' gives
X

SabBorb " — and a«— = H (3.89) 
« 2%

This diffuse field cross sectional area of absorption Sabsorb given by equation (3.89) 
is exactly four tines the area of absorption for a free field plane wave incident on the 
optimally absorbing point monopole source, namely X^/ 4k. This result was deduced by 

Nelson er-o/^. In this case, the cross sectional area of absorptitxi takes the form of a circle, 
nwmaltotheplanewave front, whose radius isako equal toX/2K.Despite thefactthatthe 

point monopole secondary source can only match itself to the acoustic pressure at a single 
point in the wavefield, the effective cross sectional area of absorption has a linear 

dimension which is comparable to the acoustic wavelength. This finding suggests that the 
influence of the perfectly absorbing source extends much further than its physical 

dimension which indicates that acoustic energy is somehow diffracted towards the point 
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source. An optimal absorber of sound is therefore an optimal difffactor. See, for example, 

the diffraction intensity patterns given in reference [39] for the free field plane wave 

example.

The free and diffuse field cross sectional areas of absorption are fully consistent 
with the idea that the optimally absorbing point source creates around itself, a sphere of 
influence of radius X / 2% on whose surface, all sound is absorbed. In the case of an 

incident plane wave, the normal projection of the sphere onto the plane wave front is 
precisely the circle of absorption of radius k*l identified by Nelson et-al in reference [82]. 

A fully diffuse field however, will see the full benefit of the hypothetical sphere of 
influence and its cross sectional area of absaption is increased accordingly. One can 

therefore infer that the total cross sectional area of absorption of a point monopole source is 
an intrinsic property of the source type, completely characterised by its radiation resistance, 

and is independent of the form of the primary pressure field.

Inspection of equation (3.78) shows that the optimal secondary source cross 
sectional area of absorption Sabsoibts also insensitive to the proximity of the enclosure 
walls. Consider, for example, the case of a point secondary source situated at a distance d 
from a perfectly rigid wall of an enclosure supporting a diffuse field. Assuming that the 
source is well away from other sources and boundaries, the average square pressure 
<lp(r)lwaii>isgivenby37

< lp(r)l^^ > = < lp(r)l^ > [ 1 + sinc2kd ] (3.90)

Similarly, superposition of the directly radiated field and the field radiated from the 'image' 
source, which is effectively separated by a distance 2d, gives equation (3.91) for the 

increased radiation resistance of a point source near to a perfectly reflecting boundary

(ZMd)wdl= Zrad [ 1 + OAcZkd ] (3.91)

where diffuse field terms are negligible providing 2d is small compared to the wavelength. 

The ratio of the terms near to the waU, which determines the maximum sound power 
capable of being absorbed, is therefore independent of the source position relative to the 

enclosure boundaries. Similar scaling rules also exist for sources in die comers and other 
wall intersections of the rotxn. From equation (3.79), one can therefore write

< W„ > = ^jElr)!l> , 5JE(£&lZ (3.,2) 

R|Z„d) R|(Z,ad).d]l
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The optimal absoiption of sound is only possible by presenting to the oncoming 

primary wavefield an apparent qjtimal impedance. From the point of view of the incident 
sound field, it is entirely irrelevant whether this impedance is active or passive in origin. The 
optimised passive absorption of acoustic energy is the function of the Helmholtz resonator^^. 

This device consists simply of a rigid enclosure of air communicating with the external medium 
through a small opening which is usually in the form of a narrow neck. The Helmholtz 
resonatOT has the properties of mass by virtue of the oscillating slug of air in the neck of the 
device, stiffness by virtue of the compliance of the enclosed gas and an associated resistance as 
a consequence of viscous forces at the opening. This arrangement may be optimally tuned to a 
single given frequency and the absorption of sound maximised at that frequency. It is generally 

well established that the absorption cross sectional area of this device in the diffuse field at 
resonance is also X^ / % where X is the acoustic wavelength83.

A further discussion on the absorption of sound by a passive 'receiver' is presented by 
Shaw84 who shows that the maximum sound power absorbed at a given frequency is given by 
(X^ / %) (ip(r)|2 / 8pCo) which is identical to the expression derived in equation (3.87). Shaw 

proceeds to demonstrate that the maximum area of absorption occurs when the radiation 
resistance of the secondary source equals the internal resistance of the source. This condition 

defines the resonance of the device which is precisely the definition for the Helmholtz resonator 
to be maximally effective. However, Shaw appears to use the plane wave intensity to obtain a 

value for the diffuse field cross sectional area of absorption which differs from the value 
derived here in equation (3.89) by a factor of four. The obvious advantage of using an active 
source is that in principle, one is able obtain maximum sound power absorption over a band of 
frequencies simultaneously whereas the Helmholtz resonator is a high Q system carefully tuned 
to a single frequency^O. The Helmholtz resonator may th^efore be regarded as the passive 

analogue of the optimally absorbing point monopole source.

The reduction in the total radiated sound power from the source pair W^ even 

though only the secondary source contribution has been included in the cost function of 
equation (3.76), is simply the sum of individual source ouqmts Wp + Ws- From 

equations (3.80) and (3.81)

<3.3,

Intriguingly, this expression gives a disproportionate weighting to the resistive part of the 
transfer impedance in favour of the reactive part by a factor of three. The total sound power 

output from the source pair may therefore be dramatically increased for closely spaced 
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sources where the reactive transfer impedance vastly exceeds the resistive part This remark 
is particularly relevant to point sources. However for well separated sources, taking a 
series expansion and then the expectation in the usual way yields the anticipated result

<Wk»,> .Wp[l . w

where from equations (3.84) - (3.86), one can write

<W;6.>.=Wp .<IIp^r)l>— (3.95)

as expected. This expression contrasts with the previous result for the minimum total sound 
power reduction given by equation (359). Using equation (3.87), for large separation 

distances one can now write

<W„i„>-<WV„>-<IIpr(r)l>- (3.96)

The additional reduction of sound power output when the total sound powe* output is 

minimised is of course due to the ability of the secondary source to load the primary 

source since the transmission path of sound from the secondary source to the primary 
source is known in this case as part of the information fed into the cost function of 
equation (333). In the present example, however, where only the secondary source sound 

power output is minimised, this transfer function is not known to the cost function of 
equation (3.74) and the action of the secondary source is limited to the absorption of the 
incident primary source energy. It is no coincidence that the extra sound power reduction 
acquired through optimal loading of the primary source is exactly equal to the sound 
power reduction attained through optimal absorption by the secondary source. Thus the 

mechanisms of sound power absorption and reductions in sound power caused by 

pressure loading possess strong similarities. One principal difference is that pressure 
loading takes place at the primary source while sound power absorption invariably takes 

place at the secondary source.

In OTder to illustrate further the interchangability of the secondary source as a source 
of sound and as an equivalent area of absorption, consider the energy balance equation 
below. This fundamental relation expresses the equivalence between the rate at which 
energy is injected into the enclosure to the rate of increase in potential energy plus the rate 
of dissipation of energy determined by the total area of absorption A. We now apply this 

equation to the expected values of the sound power and potential energy (this is usually
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inq)lied in most texts books on acoustics^? but usually not stated). In this example there are 
two sources of sound power input into the enclosure < Wg, > and < Wp > so that

V + 4 <epo>"=<W^ +W^ > (3.97)

According to equation (3.87), (or well sq)aTated sources W^ merely acts to absorb the 

incident scattered energy whose minimum value is given by the equation

(3.g8) 
8pco %

The total diffuse field potential energy density in the enclosure is linearly related to the 
space averaged squared pressure via, < Cp© > = < lppi(r)l^ / ^pc^ &i*d so equation (3.97) 

may be re-arranged to give

V^^ + 4(A+ ^)<epo>= <W;, > (399)

Thus, when the secondary is optimally driven with the aim of minimising the secondary 

source sound power output, it becomes indistinguishable from an additional element of 
passive absorption. Equation (3.99) describes the dynamic growth of sound from a source 
which is switched on at some time t = 0. The effect of the secondary source is to effectively 
slow down this exponential increase in sound pressure level in the enclosure. More 

importantly however, the steady state equilibrium potential energy level is now less than in 
the absence of control since acoustic energy is now dissipated at a faster rate. From 
standard texts^^, the steady state solution of this equation is simply

4 <w;, > 

(A+ -)co
(3.100)

Now dividing by the level of potential energy Ep sustained in the absence of the secondary 

source, namely 4<Wp> / Acg, and noting that < Wp > = Wp from equation (3.83), gives the 

average steady state reduction in potential energy resulting from sound powCT absorption

(3.101)
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For large enclosures at high frequencies in which there is a high level of absorption by the 
enclosure walls or other objects in the room, die additional active term X^/k will be 

negligible. However, for small rooms where the Schroder fi^uency is low, this additional 
active contribution may be significant compared to the existing passive absoiption before 

active control. By way of example, consider a medium size cubical room with an internal 
volume of 100 m^ whose walls are evenly lined with a 0.5 ” thick acoustic tiles. Using 
values of absoiption coefficient a taken fiom Beranek53 plotted in figure 3.4, and noting 

equations (3.18) and (3.19) suggests that for this size room the Schroder frequency fgch is 
approximately equal to 160 Hz. The total room absoiption as determined from Sa is shown 
below together with the area of active absoiption X^/zt plotted down to 0 Hz even though 

the theoiy is clearly invalid below the Schroder frequency. However, significant departure 
from this value at low firequencies is anticipated according to the form of the relative 
variance given in equation (3.88). Equation (3.89) is therefore plotted to 0 Hz merely to 

suggest that the active absorpton of sound is considerably more effective as a mechanism of 
control at low frequencies due to the resonant nature of the sound field. The active absorber 

simply acts to damp out the resonance for which the effective area of absoiption appears 

extremely large

Figure 3.12. A comparison of the total passive absorption in a medium sized room (100 m^) 
with the orgo of ocifvg otjo/pfion cfforde4 ty on opfim^Zy atwr^wg poi/u monopoZg jourcg.

The level of potential energy reduction achievable for this illustrative example has been 

calculated in accordance with equation (3.101) and is plotted in figure 3.13 overleaf, 

where again experimental data presented by Beranek has been used.
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Figure 3.13. The rgJwfMaZ poffwfw:/ gw^rgy im a mgd^wm size j room (700 m^J oj ({O'o^^^ ^ ^ 
op(imo/(y objortwg poim monopole jowrcg im o d^(yiwe/kW.

At high frequencies, the additional area of active absorption provides only a negligible 
supplement to the existing passive absorption provided by the acoustic tiles. At frequencies 
close to 100 Hz however, both the active and passive elements of absorption are, on 
average, observed to be roughly comparable in effective size (although physically of very 

different sizes). For this size of enclosure and damping characteristics, the benefits derived 
from the active absorber are only significant at frequencies below 75 Hz whereby the total 
absorption in the room is predominantly active in origin. However, it must be remembered 
that it is not strictly correct to extrapolate these results for frequencies very far below the 

Schroder frequency. Nevertheless, these results at least serve to identify the average 
maximum level of sound power absorption at low frequencies to within an order of 

magnitude even though they are susceptible to extremely large levels of variance as 

identified by equation (3.88). At frequencies well above the Schrdder firequency, only small 
departures from the expected level of sound power absorption given by equation (3.87) is 
anticipated. Figure 3.12 nicely illustrates the philosophy behind active noise control, clearly 

demonstrating how active and passive control may be employed simultaneously to provide 
noise reduction over opposite ends of the frequency spectrum.

At the Schrdder frequency, according to figure 3.13, the optimal absorption of 
sound affords a level of reduction in the potential energy which is of the order of only 10 

%. This value appears to be characteristic of the typical levels of reduction obtainable at this 

frequency, falling to about 1 % at twice the Schrdder frequency, when seeking to minimise 
energetic quantities in a diffuse field environment, see again figure 3.10.
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3.10. The pressure changes in the vicinity of a perfectly 

absorbing point monopole

The preceding section was given to the investigation of the optimally absorbing 
point monopole source in a pure tone diffuse sound field. For well spaced sources, it was 
shown that the mechanism of sound power reduction was restricted to the absorption of 
sound which impinges upon the source. Just as in the case of a fiee field plane wave 
incident on a perfectly absorbing point monopole source^^, the absorption of sound in a 

reverberant field will, on average, influence the otherwise uniform spatial distribution of 
pressure throughout the enclosure. An intensity plot showing the flow of energy in and 
around a point monopole source seeking to optimally absorb an incident harmonic plane 
wave is presented by Bullmore^i. In this section we seek to establish the size and extent of 

similar spatial effects on the near field pressure from a perfectly absorbing point monopole 

in a pure tone diffuse sound field.

For well separated sources, the source strength of the optimally absorbing point 
monopole has been derived in equation (3.78)

ZR.|Z(rslrs))
(3.78)

For ease of analysis, it is necessary to restrict the range of secondary source positions 
within the room for which the direct field from the secondary source is much greater than 

the reverberant field such that Zq » R{Zr(rsIrs)J. For these cases the secondary source 

strength q's, is closely approximated by
qk) “ ~qp Z(rplrs) / 2Zq (3.102)

which is therefore small compared to qp.
This not unreasonable simplification ensures that the algebra remains manageable which 
otherwise would tend to obscure the underlying physics. Neglecting the reverberant 
contribution from the secondary source and using equation (3.102) enables the total pressure 
p(rs + Ar) at a distance Ar from the secondary source to be written as

e*jkAr
p(rs + Ar) - pp(rs + Ar) - pp(rs) j —— (3.103)

Taking the square of the modulus lp(rs + Ar)l^ yields 
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Ip(rs + Ar)l^"lpp(rs + Af)l^.p;(rs + Ar)pp(rs)j^^

+pp(rs+Ar) i^W j^ +'qp'^^^^ (3 ^°*)

Now taking the expectation < lp(rs + Ar)!^ > and using the relationships

< Pp(rs+ Ar)p^(rs)> + <p^(rs +Ar)pp(rs) > = < IppKr)!^ >p(Ar) (3.105) 

yields the simplified result
< ip(rs + Ar)|2> . <lppKr)l^>fl + - P(Ar)

1 (2kAr)^ kAr
(3.106)

Now putting p(Ar) = sinkAr / kAr for pure tone three dimensional diffuse sound fields, the 

expectation for the square pressure in the vicinity of a perfectly absorbing point monopole
source can now be written as 

<lp(rs + Ar)l^>-<lppr(r)l^>
'' 14-4 [(kAr)^ - sin^kAr]

, (2kAr)2
(3.107)

A plot of this function is given below for Fg = 0. Also indicated is a circle of radius "KJlu 

symbolising the sphere whose surface is the average cross sectional area of absorption.

Figure JJ4 7%^ eapected f^fwur< prewurg ratio am am qf a pe^ctfy ahforhitig pamt mamapak 
sauTM :fi a pure tons ti((yarg sawnti^W f Aawa ar a soZ/d tine. ]%; eZrek tigmarer a cra&r section 
rArawgA (Ag maiwmaM ^Aarg <^ absorption.
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The average effect of sound power absorption in the immediate vicinity of the point source 
is quite clearly a sinusoidal modulation the square pressure well into the far field of the 
source but whose amplitude diminishes inversely as the square of the radial distance from 
the source. Beyond a few wavelengths from the source however, the square pressure has 
recovered the original primary source value in the absence of control. Observe that the 
maximum level of attenuation is only about 3 dB. Hiis contrasts the equivalent free field 
plane wave example^^ where a maximum reduction of approximately 5 dB is apparent at a 
distance of 0.05 X from the source. Hus level of difference arises because in the diffuse 

field, the reduction in the square pressure is now distributed equally in all radial directions 
owing the isotropy of the field whereas for the plane wave example, the reduction in 
pressure is concentrated on the side of the source which firsts impacts with the plane wave.

3.11. Discussion and conclusion

This chapter has studied the possibilities for active noise control in diffuse fields for 
producing reductions in the acoustic pressure which extend considerably further than the 

immediate near fields of the sources to encompass the entire space bounded by the 
enclosure walls. This is what is meant by global control. Recognising that this is an 

unrealistic objective for the vast majority of real primary sources which are commonly, 
large and irregularly shaped vibrating bodies, the total minimum sound power output of 
two closely spaced elementary point sources has been derived. Although this source 
configuration is in many respects an over simplification of the type of control problem 
encountered in reality, the problem embodies all of the important features of the more 
general high frequency enclosed sound field problem.

The early part of this chapter has been given to clarification of what is meant by 

'diffuseness' together with a brief survey of some of its important characteristic properties. 

According to the relevant literature, it would appear that there are two popular conceptions 
of diffuseness. One envisages a definite state of perfect diffuseness as might be true of the 
pressure at a single point surrounded by an infinite number of uncorrelated point sources. 
The other is more useful and less rigourous which conceives only of a probabilistic state of 

diffuseness which says that energy has an equal probability of arriving from any angle 
equally. This is fundamentally different from the first idealisation where enCTgy is arriving 
from all angles equally. It is the latter definition which will be used in this thesis.

In many respects, the derivation of the minimum sound power output of two 

closely spaced diffuse field point sources is simply an extension of the free field analysis 
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presented by Nelson et-a1^^. There are, however, many fundamental differences which will 

be summarised here by way of conclusion. In the &ee field, the minimum sound power 
output is a deterministic function of the source separation distance and the frequency of 
excitation. Carrying out an identical experiment in the diffuse field introduces random 

uncertainties which arise due to extremely complicated interfermce patterns formed by the 

superposition of a large number of simultaneously excited acoustic modes of the enclosure. 
One can therefore only identify the levels of sound power reduction by way of a 

mathematical expectation with respect to varying source position. As in the one dimensional 
example discussed in chapter 2, the presence of reflected sound enhances the performance 
of the control process inasmuch that more sound power can be reduced than in the free 
field. This is of course due to the absorption of reflected sound.

Diffuse field quantities are also subject to levels of dispersion from point to point in 

the enclosure whereas free field quantities are not. It has been geno-ally found that the 
secondary source strength and the minimum sound power output are susceptible to levels 

of variation which are highly dependent on the source separation distance. The results 

obtained in the two environments are reconciled at high frequencies where the means of the 
diffuse field quantities approach their free field counterparts as the frequency is raised. 

Similarly, the expected level of excursion from the mean, characterised by the variance, 
becomes systematically lessened as the frequency is increased, indicating that the diffuse 
field is, in essence, approaching free field conditions.

One other fundamental property of diffuse field sound power minimisation is the 
absorption of reverberant acoustic energy. The absorption of diffuse field energy is 

considered to be sufficiently important and fundamental to the active control of enclosed 

sound fields that it has been investigated separately in this chapter. There has always been 

an element of uncertainty surrounding the ability of elementary sources to extract energy 

from rooms, although it is generally accepted that it is an inefficient strategy at high 
frequencies. In an attempt to address this problem directly, the maximum high frequency 
sound power absorption has been derived. Fortunately, the diffuse field is one of the small 
number of sound fields where there exists a simple relationship between the average sound 
intensity in the field and the space average diffuse field square pressure. This relationship 
has enabled the cross sectional area of absorption to be derived which is shown to take the 
form of a sphere whose radius is approximately equal to k"! where k is the acoustic 

wavenumber.

This important relationship is by no means original and has been previously 

deduced by a number of workers seeking to derive the maximum cross sectional of 
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absorption for a Helmholtz resonator at resonance in a diffuse field- It is therefore 
gratifying to observe the consistency between the two cases, since it is entirely irrelevant 
whether the impedance condition necessary for optimal absorption of sound power is 
obtained actively or passively. The significant difference is of course that the passive device 
is only effective at resonance which therefore only occurs at a single frequency. By 

contrast, the active device offers the possibility for broadband suppression of acoustic 
energy as highlighted by Olson^.

In practical terms, the optimal absorption of sound power has only a negligible 
influence on the global sound field which is simple to evaluate. The sound power absorbed 
by the secondary source is ultimately manifest as a re-distribution of the square pressure 
which become sinusoidally modulated along radial lines from the source. The modulation 
amplitude diminishes as the square of the radial distance from the source such that the 
influence of the point source is negligible further than about a wavelength. Extrapolating 

the cross sectional area of absorption down to low frequencies (where it is not strictly 
valid) reveals that for medium sizes rooms, of the order of KX) m^, the reduction in 

potential energy is only significant, say less than 3 dB, for frequencies below about 50 Hz. 
However, the variance between successive measurements of the source sound power 
absorption at these frequencies is extremely large making the n^an value an inappropriate 
indicator of central tendency
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APPENDIX 3

Appendix 3.1. The derivation of the space averaged squared 
pressure in the high frequency limit

This Appendix presents in more detail the derivation outlined by Morse®^ for the 

squared pressure high frequency limit For a point monopole sources located at some point 

rq, the acoustic pressure at r is given by

p(r,m) =qIja^^0Vn^q^^^  ̂
n=0

(A3.1)

where Vn(rq) k the n* normal mode of the enclosure evaluated at the source position. 

For a three dimensional enclosure, n represents a triple index set denoting a trio of modal 
integers (ni,n2,n3). The modal response function an(oj) is is given by

an(o)= ^AQ(m) whcfeAQ(m)= (1/An) m
2kom - j(m2 - w^)

(A3.2)

where kq is the room damping which is related to the total room abscnption A by 

kq = (Acq / 8V) and where A^ is a source factor which is equal to unity for sources well 
away from boundaries. The average square pressure < lp(r,co)|2 > taken over all points in 

the room (keeping rq fixed) is determined from equation (A3.1) and (A3J2) to give

lp(r,C0)|2> = lq|2^ (A3.3)

n=0

where it has been assumed that only modes of the same modal index n do not integrate to 
zero due to the cuthogonality of the modes normalised thus

Yn(r)Ym(r)dV = 0

(A3.4)

(A3.5)

The average square pressure over all space is therefore determined from
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lp(r,(D)P>=lqP ^^ 

n=0

(2koma): + (mg - m^): V&(rq) Aj (A3.6)

The product of terms i|^rq) A;^ is deGned as the 'source £80101* E(S)65 whereby

E(S)= 1
E(S) =2
E(S) = 4

E(S) = 8

for sources well away from room boundaries. 

H

on walls, 
on edges, 
incomers.

The space averaged square pressure is now given by

eo
W>=*^E®2 (2^2 “(cog-0,2,2 (A3.7)

n=0

The modal summation written above may be shown to take a well defined form in the high 
firequency limit. Equation (A3.7) is as summation over all modal natural frequencies cOn. At 

'high' frequencies, the modal density is sufficiently high that the discrete variable 0)^ may 

be replaced by the continuous variable u and the summation replaced by an integral. This is 
the essence of Schroder's principle^^. Assuming that only terms cOn close to co make 

significant contributions to the summation, one can therefore write

< h3(r,m)P:>'= IqP ^^ < IAn(m)l2 > du (A3.8)

The term (dN / dm) is the asynqAotlc modal doisity ((o^V / Irt^c^) evaluated at the centre 
frequency m=u and the term < IA„(m)^ > is the average modal coupling factor given by 

equation (A32) also evaluated at m - u. This approximation gives

< lp|2 > = |q|2
P^CpCO^ 

ZVrt:
u^ du

(2kQu)^ + (u^ - m^)^
(A3.9)
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Assuming that ky «co, then small error is incuied if <me sets the lower limit of the integral 
to —and if cme puts (u^ - 0)2) = (u - co)2u (since the only u * to contributes greatly to the 

integral). Also putting x = u - to, the integral now reduces to

oo
u2 du______  * dx

(2koU)2 + (u2 . @2)2 "4 J kg + x2 (A3.10)

which is a standard integral whose solution is given by

7 F 4x _ JL
4 J kg + x2 - 4ko (A3.11)

The space averaged squared pressure < lp(r,to)!2 > in the high frequency limit is therefore 

closely approximated by®^

< ip(r,to)|2 > N lq|2 E(S) (A3.12)

Appendix 3.2. A discussion on the existence of the space averaged 
secondary source strength for minimising the conbined sound power 

outputs from itself and a closely spaced point primary source

One can demonstrate the ill-conditioning of qso as determined from equation (3.36) 
by showing that its expectation value over all space is equal to infinity. Re-writing equation 
(3.36) as the sum of two terms yields

ZnsinckAr q -----------------------------
Zo+ )l(ZTOslrs))

)l(Zt(rplr:)}
Zo+jl(Zr(rslrs))

(A3.13)

Ccmsider the mathematical expectation of tire first term b equation (A3.13). It is sufficient to 

show that if the expectation of either term is infinite, then < qso > is also infinite. Earlier 

work has argued that Jl{Zi<rsirs)}, which for brevity will be represented by R{Zr(r)), is a 
zero mean normally distributed random variable whose probability density function is given 

by
fz(R(Zr)) = --=l===_e-$l?(%r)A33: (A3.14)

V^ttOz
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Unlike the behaviour of a perfect Gaussian ramiom variable, the probability density 
function of the diffuse field radiation resistance StfZtfrglrs)} must have positive skewness 
(third moment) by virtue of the fundamental restriction^^

- 2^)g:jt(2;<in^rs)) ^oo (A3.15)

which follows directly firtm energy conservation. It is obvious that in the absence of any 
external primary sound field, the sound power flowing into the secondary source through 

absorption of the reflected sound cannot exceed the original power radiated into the space 
directly.

The mean (or first moment) of the first term in equation (A3.13) may be formally 
evaluated from the integral of the function taken over all possible radiation resistance values 
R,{Zr(r)} given in equation (A3.13) weighted by the probability density function as 
indicated below

-ZpsinckAr

Zo +jRL(:Zr(r) )

fz()l{Zf))ZosinckAr 

Zo + 11 (Zr(r) )
(A3.16)

which upon substitution of fz(1i(Zf) in equation (A3.16) yields

ZosinckAr f
.^ J Zo+1l(ZKr)) J 1+x 

-1
(A3.17)

Reference to tables of integrals^ indicates that this expectatitxi does not exist inasmuch that 

the integral fails to converge. One can therefore infer that the proper mathematical 
expectation of the optimal secondary source < qso > is also equal to infinity. This is of 
course unhelpful and very misleading since the closely spaced source pair is tightly coupled 
at close separation distances and consequently only a small departure in the secondary 
source strength from one source position to the next is anticipated. This surprising and 

uiifortunate result is an artefact of the mathematical model and not scKne ill-conditioning in 
the governing physics as will soon become apparent In terms of the mathematics, a plot of 
the general form of the integrand I = e'’^2(l+x)'^ appearing in the divergent integral of 

equation (A3.I7) indicates the cause of this unfortunate ill-conditioning.
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Figure A3.1 The ggm^ro^ /bn* <;f fAf wfegramd irn g^wadbrn 643.77)

Observe from equation (A3.17) that as JtfZj.} tends to plus infinity, the integrand decays to 
zero faster tiian e"^ {2:r) and is tiiCTefore well behaved in this limit The ill-conditioning of 

the integral is therefore almost certainly due to the singularity in the integrand I and the 
corresponding behaviour of the probability density function in the vicinity of R{Zj} =® -Zq. 

In physical terms, this condition describes the situation where the sound power radiated 
into the medium directly is exactly counterbalanced by sound power flowing into the source 
by absorption. Unfortunately, the behaviour of the assumed form of the probability density 
function in this region does not assist the convergence of the integral. It is of course 

arguable that the distribution of radiation resistances is not Gaussian in the immediate 
vicinity of -Zq but some other more rapidly varying function for which the integral in 

equation (A3.I7) is convergent To the authors knowledge, there are no references made to 

this phenomenon in the published Uteratuie, in the absence of which, the distribution of 

radiation resistances of a point source radiating into a diffuse field environment will 

continue to be assumed Gaussian. However, convergence of this integral is only 

guaranteed providing the probability density function fz(5t(zr)) behaves like x” in the 
vicinity of -Zq, where a necessary and condition on 'n* is that n > 1.

Assuming a Gaussian probability density function for the distribution of diffuse 

field radiation resistances, one may obtain a very appro^dmate estimate (within an order of 
magnitude) of how likely qgo is of being singular. This may be obtained by re-writing the 

term in the expression for the secondary source strength qgo in the form of

Zosinckzk sinckAr
——-------------- =----------- (A3.18)
Zo 4]RL(:Zr(r) ) 1+Y
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where y represents the real part of the ratio of reflected to directly transmitted sound 
3^{Zi(r)}/Zo. Assume that y is a zero mean, normally distributed random variable whose 
variance is given by the nean of the square < "^^ >. The standard deviation Oy is therefore 
given by <^>^^. For convenience of computation, further assume that y extends from 

minus infinity to plus infinity. Given that the cause of the non-convergence of the integral 
in equation (A3.17) is due to a singularity in the integral appearing at y = 1, one can readily 
show that dus is a remote occurrence. The probability that y will equal, ot exceed unity is 
equivalent to evaluating the probability that y will equal, or exceed a number < y^ >4/2 

standard deviations from the mean. For normally distributed random variables, this 
exceedance likelihood is determined from the complementary error function given by

P(y^ l) = l-Erf(<y^>'^^) (A3.19)

where the Error function Erf(x) is the cumulative normal distribution defined by

Erf(x) u^du (A3 JO)

This function is not expressible in terms of elementary functions and is therefore 
tabulated^S. The tendency of y to take small values less than unity is best illustrated by way 

of example. Consider the case of two closely spaced point sources in which the average 
resistive part of the scattered sound is one half the directly radiated part namely 
<y2>i/2 _ 1/2. Tables indicate that the probability that y is equal or greater than unity 

namely P(y5 1), is given by
P(y^ 1)= 1 -Erf(2) »0.04 (A3J1)

In this example, less than 4 % of diffuse field source positions have more sound power 

radiated into the medium via wall reflections than sound power radiated directly. However, 
it is only when the sound power contributions from the two transmission paths are exactly 
equal (and opposite) which causes the integral to diverge. The probability that this 
condition is exactly satisfied and consequently the secondary source strength is equal to 

infinity is considerable less than 4 %.

Appendix 3.3. The derivation of the expectation <R{Zr(rplrp))R(Zr{rslrs)) >

Consider die expectation < R(Zr(rplrp))R(Zr{rslrs)} >, where the subscripts "p" 

and "s" denote the transfer impedance from the primary source at rp evaluated at rp and the 

transfer impedance from the secondary source at rg evaluated at r, respectively.
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The point transfCT impedance R{ ZfCrglrs)) may be e)qrassed relative to 
Sl.{Zr(rslrp)}, the transfer impedance from the sectrndary source at tg to the point rp in 
terms of its correlated and uncorrelated parts $l-{Zr(rslrp))cs and 1l.{Z,(rslrp)}us 

respectively

R(Z/rslrs))=P.(Zr(rglrp))cs+)l(Z^rglrp))us  (A3^) 

where the subscripts ”cs" and *'us" denote perfectly correlated and perfectly uncorrelated 
with respect to the pressure from the secondary source at tg.

<)l{ZT(rplrp)))l(ZKrslrs)} > = <R(Z/r;^rp))R(ZT<rglrp))cg>

+ <)l(Z((rplrp)))l(^(rglrp))iis> (A3.23)

Invoking the principle of reciprocity, the source and point of observation may be 
interchanged thus

<R(Zr(rplrp)))l(ZKrslrs)} > <R(ZT<rplrp))R(Zr(rplrs)}cp >

+ <)l{Zf(rplrp)))l{Zr(i"plrs))up> (A3.24)

By definition, one can write

<R(Z^rplrp))R(Zr(rplrs))up> = 0 (A3^)

where now )l(Z^rplrg))q) rq)resents that part of the pressure at r, perfectly correlated 
with the pressure at rp fix>m the source at Fp. Following the work of Cook et-al ^

<)l(%plrp)}A,(Z^rplrg))cp > = <)l(ZT(rplrp)))l(ZT(rplrs))> sinckAr 

(A3J6)
Equation (3JZ3) may now be re-written

<)l(ZKrplrp)))l(ZKrglrs)} > = <)l(Zr(rplrp))1l(Z,(rplrg)}>sinckAr

(A3.27)
where by deGnitlon of the spatial correlation function given by equation (A3.23)

<)l(ZKrplrp)))l(Z,(rglrg)}> = <fl2(z^)>sinc2k6r (A3J8)
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CHAPTER 4

LOCAL CONTROL IN THE PURE TONE DIFFUSE 
SOUND FIELD

4.0. Introduction

Global reductions in the acoustic pressure of a diffuse field has been shown 
to be physically possible for the geometry discussed in chapter 3 in which the primary 
source of noise is an elementary point monopole and the secondary source is also a point 
monopole but close to the primary source. This contrived source geometry is blatantly not 

representative of typical noise sources which are often large, irregularly shaped complex 
vibrating bodies. For these more realistic kind of sources, global silence is only guaranteed 
providing the primary source and secondary source are geometrically similar and exactly 
superposed, or if there are an infinite number of secondary sourcesl^. One other approach 

for global reductions in the sound pressure level is the absorption of diffuse field sound 
power but this strategy is found to be ineffective at high firequencies. It soon becomes clear 
that global extinction of the pressure field over the entire space is unrealistic for this kind of 
wave field and one must seek to apply active noise control in a more pragmatic fashion.

One of the simplest and most obvious ways to engineer reductions in the sound 
pressure level in any harmonically excited sound field is to employ a single secondary 
loudspeaker in order to drive the acoustic pressure at a single point to zero. In this chapter 
we consider this active control strategy for those cases where the secondary source is 
remote (many wavelengths) from the primary source. In the case of an infinite duct 
supporting only plane waves, this control strategy is sufficient, in principle, to secure 
complete silence downstream of the secondary source^. Surprisingly, the spatial extent of 

the reduction in the sound pressure level for the important limiting case of the diffuse field 
has only recently been quantified^^. The phrase' zone of quiet * is coined here to describe 

the spatial region of pressure reduction centred on the point of control in the diffuse field. 
The term 'zone' is carefully used to suggest that the region of attenuation does not extend 
appreciably far from the control point, but is confined to localised regions within the 

diffuse field compared to the acoustic wavelength. Not only is a quantitative assessment of 
the diffuse field zone of quiet important in that it identifies a worst possible case, but also 

because it has considerable practical implications. It is worth noting that in the two 

enclosures where active noise control has been contemplated (the interior of cars and the 

interior of medium size propeller aircraft), the Schroder frequency has been experimentally 
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esdmated atbeingbetween 100 Hz and 150Hz. This frequency bandis well widiinthe 
frequency range of many important noise sources such as an aeroplane propeller which 
radiates a series of pure tones harmonically related to the blade passage frequency, or the 
firing frequency of four cylinder internal combustion engines in cars^S. When applying 

localised active control to this type of sound field, one must address three important 

considerations, namely:

(i) The local effects: The shape and size of the space averaged square pressure profile 
around the point of cancellation where the respective sound fields are highly 
correlated, and ultimately a full quantification of the diffuse field quiet zone.

(ii) Global changes: The effect on the average square pressure weU away fiom the 
point of control where the respective sound fields are uncorrelated (the change 

in the potential energy of the sound field).

(iii) Secondary source strength requirements: The statistical distribution of 
secondary source strengths required to bring about the point cancellation at 

any arbitrary point generated by a source located at some arbitrary position.

Clearly, the facets of the problem listed above are inextricably inter-related. For 
example, haimonic secondary source strengths which are necessarily large compared with 
the primary source strength are able to cause significant increases in the average square 
pressure in the enclosure. This in turn has a detrimental effect on the size of the quiet zone 

about the control point. In this chapter, all three considerations are systematically 

investigated from a theoretical standpoint and subsequently validated using computer 

simulated models.

4.1. The cancellation of the pressure at a single point

Consider the enclosed sound field shown in figure 4.1 in which there are two 
harmonic sources qp(ei)) and qs(©) located at rg and rp respectively radiating at a single 

frequency which is presumed to be greater than the Schroder frequency. The secondary 
source is driven from the primary source with the aim of cancelling the acoustic pressure at 
some arbitrarily chosen point rg in the enclosure to zero.
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Figure 4.1 A jcAgma/ic rgprescnfofion of fAf pHrnaf? owf jeco/kfog' sowces rodiorwg wir/un on 
gncZojzo-g where fAg jeco/wfoT} wurce w dnvgn Zy fAg pHrnory fowcg vio o fron^rfunction Ho((i)) 
fo oi (0 dnvg fAg presjwg of ro (o zgro.

No assumption is made here concerning the nature of the source distributions. For 
small amplitude oscillations, linear supeiposition applies so that

p(r) = qp Z(rplr) + Qs Z(rslr) (4.1)

where the current notation has been introduced in Chapter 3. Again the dependence on 
frequency has been omitted since all acoustic variables of interest are statistically similar 

above the Schroder frequency. In principle, the linearity of the supeiposed acoustic fields 
allows for any one point fq in the sound field to be driven to zero i.e., p(ro) = 0 for a 
unique secondary source strength qso which is given by

Qso = Hoqp (4.2)

The optimal secondary source strength has been written in this way to indicate that it is 

derived from the primary source strength via a linear transformation which is the transfer 
function of the notional electronic controller. By inspection of equation (4.2), the transfer 
function Hq which secures the complete cancellation of the acoustic pressure at Fq is simply 

given by
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Z(rplro)
Z(rslro) (4.3)

Writing r = rg + Ar, the acoustic pressure p(ro + Ar) at a distance Ar from the point of 

cancellation on rg is now given by

p(ro+Ar)=qp[ Z(rplro+Ar) - ^^^ Z(rslro+Ar)] (4.4)

With reference to equatitm (4.4), (me can identify two distinct spatial regimes. The first is 
broadly defined by Ar < X/2, the region in which the primary field pp(r) and the secondary 

field ps(r) are highly conelated. The second is where the point of observation is far from 
the point of cancellation roughly defined by Ar > %, the region in which the sound fields 

are generally unconstrained and therefore uncorrelated such that < pp(r)ps(r) > = 0. Both 

regions have been investigated with the aid of a computer model whose details are the 

subject of the next section.

4.2. Computer model of the pure tone diffuse sound field

A good diffuse field model must be able to emulate the properties discussed in the 
first half of Chapter 3. There are perhaps three such mathematical models which comply 
with these requirements, namely the stochastic model, the fiiee wave model and the 
geometrical acoustical model or ray model. All three are surveyed in an excellent review 
paper by Jacobsen^S. For current purposes, our requirements are best served by the 

normal mode model. The acoustic pressure at any arbitrary point in the sound field is 

evaluated fiom a summation of acoustic modes which although computer intensive, is able 
to afford a statistical representation of the sound field that is not possible firom either 

geometric or ray models. This model has proved successful for performing low frequency 

computer simulations for aiding the prediction of sound pressure level reductions in low 
modal density sound fields^K The same model will continue to be used here and is outlined 

below.

The model starts with the homogeneous wave equation of equation (2.2) whose 
solution leads to a generalised expression for the sound field in terms of an infinite sum of 
the normal modes of the room Vn weighted with the appropriate complex amplitude an(£o). 

For computational convenience, the series is truncated to N modes which is taken to be 
sufficiently large that the residual pressure contained by the higher order neglected in the 
finite summation is negligible. Each mode is an eigenfunction of the wave equation which 

in addition satisfies the boundary conditions of the room. Each eigenfunction has an 
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associated eigenvalue which is closely related to the natural firequency of the n* mode cOn- 

The acoustic pressure p(r,©) in the enclosure may therefore be approximated by the finite 

summation of the modes thus
N

p(i',(o) =E'hi((ii))Vn(r) (4^) 
n=0

Fbr a three dimensional mclosure, n represents a triple index set d^roting a trio of modal 
integers (ni^2,n3)- The amplitude of modal excitation an(co) is calculated from the sum of 

primary source and secondary source contributions which for generalised source strength 
density distributions OsC^A) atid Qp(o>Xp) is given by^^

an(m)= An(m) [ jQp((i),rp)v(rp)drp + J Qs(m,rs)Vn(rs)(irs ] (46) 

Sp S:

where the integration is taken over the respective source surfaces S. For the simplest 
possible source geometry in which the source distributions are simple point monopoles 
Qp((Df p) = qp(m)6(r - rp) and Qs(o)A) = qs(G))5(r - rg), the integrations reduce to 

straightforward multiplications

an(m) =An(m) [ qp(m,rp)v(rp)+ qg(m,rs)Vn(rs) ] (4 7)

The term An(co) is the frequency dependent modal coupling factor

An(m) y 2^(0n(0 - j(m2 - m2) (4.8)

By comparison with equaticm (4.1), the transfer impedances may be represented as a series 

summation in terms of the orthogonal modes of the enclosure

N
Z(rplr)= 2^n(('))Vn(:^p)Vn(r) (4.9)

n=o 

and
N

Z(rslr)= 2 An(m)Vn(rs)Ya(r) (4.10) 
n=0

The diffuse field transfer impedance may now be considered to comprise a large 

series of second order resonators each associated with an orthogonal modes of the 
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enclosure. It is the assumption of a large number of significantly contributing terms which 

forms the basis of statistical diffuse field theory.

In principle, the properties of the diffuse wavefield are insensitive to the exact form 
of the constituent room modes Vn which are a function of the room geometry and boundary 

conditions only. For conqiutational simplicity, the room supporting the diffuse field was 
chosen to be a hard walled rectangular enclosure whose mode shapes are known to be 
simple three - fold sinusoids®^. The room dimensions were chosen to be the independent, 
fundamental constants ?c x e x Im so as to provide for an irrational aspect ratio and 

therefore prevent modal degenCTacy. This precaution ensures that the room modes 
encompass the frequency range more uniformly so that the sound field appears less 

resonant since the acoustic response comprises significant contributions from a large 
number of modes. The reverberation time Teo was set to 0.5s correqx>nding to a modal 
damping ^ equal to about 0.0014. Using the simple engineering formula given in equation 

(3.4), the Schroder frequency fgeh for this sound field can be calculated to be 738 Hz. The 
frequency of excitation was set to 15(X) Hz, more than twice the Schroder frequency which 
hopefully will compensate for the high degree of symmetry associated with the rectangular 

geometry which will tend to focus the sound field. The international standard which 
advises on the construction of reverberation rooms for diffuse field measurements, ISO 
2638, strongly recommends against the use of parallel walls.

The acoustic pressure was computed according to equation (4.5). Incorporating all 
modes with a natural frequency below 2 kHz was found to be sufficient to ensure a series 

representation of the acoustic pressure to within 0.2 dB of its value using many tens of 
thousand modes. Modal convergence is further assured by ensuring that the measurement 
point is well away from the enclosure boundaries and not close to the point source of 

sound. In practice, satisfactory modal convergence was achieved from the summation N, 
of nearly 8000 room modes. Before proceeding to simulate the effects of active control of 
diffuse fields, the simulated sound field was tested for diffuseness inasmuch as it complies 
with the propaties discussed in the first half of chapter 3.

First, an estimate of the average square pressure < I p P > was obtained from over 

200 simulations of the sound field. The hat 'a' is used to denote random quantities which 

are not true expectations but estimates owing to the finite sample size. In each case, both 

the source position and the measurement position were randomly altered within the 
enclosure with the constraint that for each simulation they remain further than a wavelength 
apart and further than half a wavelength from the walls. The mean value of the relatively 
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small sample was calculated to be within 0.1 dB of the theoretically predicted result given 
by equation (320) < 1 p 1^ > = I q l^p^cocg / SuCV.

Second, the spatial cross correlation function p(Ar) was computed according to 

equation (322) for 440 simulations of the sound field. In each case, both the source 
position and the measurement position were randomly positioned within the enclosure 
although the orientation of Ar remained fixed with respect to the enclosure. TTie result, 

calculated for Ar between zero and two wavelengths at 1(X) equal intervals, is shown in 

figure 4.2 together with the theoretically predicted result p(Ar) = sinckAr.

Ar
Figure 42 TAg aoMU&x/gd crofj cwrgfatioA .^metion of tA« fwnw/oted dggkre jowmdyieZd 
ohtrnngd/y-o* 440 meawAMgmtf (darAed Zing), togetAer witA tA< tAgorgddzZ readt p(Ar) = 
sinckAr (solid Zing).

A good fit to the expected form is obtained for Ar up to about one wavelength, 

above which, the curves begin to exhibit appreciable departure. This is a common 
experience in diffuse field correlation measurement which can usually be resolved by the 
incorporation of more measurements into the space average^^ or taking the correlation 
between pressures which comprise a narrow band of firequencies^O. For Ar less than half a 

wavelength however, a good fit to the theoretical expectation is achieved fiom an average 

comprising less than twenty simulations. This is precisely the region which governs the 
variation m square pressure about the point of cancellation as will become clear in the next 

section. However, these standard tests serve to validate the diffuseness of the hypothetical 

sound field in so far as they allow an objective assessment for which other fields may be 
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compared. Neither test permits an unequivocal appraisal of the sound field diffuseness and 
it is therefore generally accepted that these properties are fairly insensitive diffuse field 
indicators.

4.3. Zones of quiet (Ar < X/2 )

This section presents a derivation of the ejqpected value of the square pressure 
< I p(ro + Ar) |2 > in the vicinity of the cancellation pobt This is the region where Ar is 

small compared to the acoustic wavelength such that the primary and secondary sound 
fields are highly correlated and therefore destructively interfere to a substantial degree. 

Assuming linearity of the prim^ and secondary source pressures, one can write

p(ro + Ar) = pp(ro +2\r)4i)s(ro+Ztr) (4.11)

Consider the expectaticm < I p(ro + Ar) P > Multiplying out the terms and then taking the 

expectation yields four terms

< I p(ro + Ar) |2 > = < I pp(ro + Ar) P > + < i ps(ro + Ar) 1^ >

+ <pp(ro+Ar) ps(ro+Ar)> + <pp(ro+Ar) ps(ro+Ar) > (4.12)

The first two terms may be summed together to produce the sum of the squared 'self 
pressures' in mutual isolation, assumed uncorrelated which takes the form of

< I p(ro + Ar) lj«yprafwg>= clp^/jno+ZlrJir^ > + < Ip/ro + Ar) l^> (4.13)

The second set of two terms, denoted by < p(ro + ^r)3rtfeifercnce>i describes the manner in 

which the partially correlated sound fields interact about the point of cancellation thus

<p(ro+Ar))Mr«^«KK >= <pp(ro+Ar) Ps(ro+Ar) >+ < pp(ro+Ar)p2(ro+Ar) > (4.14)

This is the crucial term which must be negative for destructive interference to occur and 
ultimately determines the shape of the quiet zone. However, the size of the diffuse field 
zone of quiet and the increase in the pressure well away from the point of cancellation are 
predominantly governed by the statistical inter-dependence between the pressure fields 
Ps(r) and pp(r) of which nothing has hitherto been presumed.

At the point of cancellation on ro, the pressure fields are arranged to exactly cancel. 
The expectation < p(ro+Ar))^e/crencc > must therefore be negative in the region of the 
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quiet zone roughly identified by zk < X/2. Within this region, the primary and secondary 

sound fields arc negatively COTrclated thercby causbg partial destructive interference.

In terms of a quantitive description of the diffuse field quiet zone, the interference 
term < p(ro+Ar)/^^g,etoe > is of principal interest since it governs exactly how the 

combined sound fields recover from being exactly in antiphase on fq, to being totally 
uncorrelated at points well away from the point of cancellation. Consider the expectation of 
the first term in equation (4.14), namely

<Pp^^H^^p/r^^^9> (4.15)

Each pressure term appearing in equation (4.15) may be resolved into two orthogonal 
pressure components. The first, given by p(ro+Ar)c is perfectly correlated with the 
pressure at Fq. The second is the component of the pressure p(ro+AF)u which is perfectly 

uncorrelated with the pressure at fq. These pressure components are formally defined by

p'(ro)p(ro+Ar)c = lp(Fo)P p(Ar) (4.16)
and

<]P*(:Y,)l)(r(rhaur)u > -0 (4.17)

Note that the right hand side of equation (4.16) has been directly related to the spatial 
correlation function of the sound field p(Ar). This is because it is precisely this function 

which, by definition, characterises the causal mechanism describing the linear inter-relation 
between the correlated pressure at ro+Zur with the pressure at some other point fq. The 

decomposition of the signal into correlated and uncorrelated parts is usually a technique 
reserved for time histories^O. Howevo", the analogies between random time sequences and 

the spatially sampled transfer impedances between two randomly position points in the 

diffuse wavefield have already been recognised in chapter 3 where it was found to be 

convenient to describe the spatially sampled diffuse wavefield as a stochastic process that 
was both stationary and ergodic with respect to position. Thus, for the purpose of the 
analysis, some of the ideas usually associated with random time histories are carried over to 
the randomly sampled, spatial sound field. Time t is now replaced by r denoting 

measurement position. Substituting the deconqxrsed pressures into expression (4.i5) gives

<:]}p(Fo-kdur)]ps(F(rhZir) > =
< [pp(ro+Ar)c +pg(ro+Ar)u] [fk;0n)4,Af')^4h]ps(r(rhZir)u] > (4.18)

Writing p^Fo+Ar)c = p^(ro)p(Ar) and ps(Fo+Ar)c = ps(ro)p(Ar) one obtains
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<Pp(ro+Ar) pg(ro+Ar) >=
< {p^(ro)p(Ar) + pp(ro+Ar)u} (ps(ro)p(Ar) + ps(ro+Ar)u} > (4.19)

On multiplication and expansion of the terms, to a good level of ^proximation, three of the 
four terms which subsequently appear may be set ^^ual to ssoo. The first is the term 
< pp(ro+Ar)u ps(ro+Ar)u > which for well separated sources signifies the product of small 

terms and is therefore veary close to zero in the region of the quiet zone where the primary 
and secondary are highly correlated. The two remaining terms, < pp(ro+Ar)u ps(fo) > and 
< ps(ro+Ar)u pp(ro) > are identically zero following directly fiom equation (4.17) 

providing that ps(ro) and pp(ro) are equal and opposite at fq according to

Ps(ro)= -Pp(ro) (4^)

This leaves just one non-zero term, namely

<pg(ro+Ar) pg(ro+Ar) >= < pp(ro)ps(ro) > P^(Ar) (4.21)

In exactly the same way, an identical result can also be obtained for the second term in 
equation (4.14) thus

<:I>p(ro-hAur)]Ps(ilrf/^r) > =<pp(ro)ps(ro)> p^(Ar) (4.22)

Only the parts of the primary and secondary sound fields which arc perfectly correlated cause 
destructive interference. The residual pressure that one ultimately perceives < I p(r) |2 > is 

therefore formed fiom the parts of the primary and secondary pressure fields which are 

mutually uncorrelated. The uncoirelated fraction of the total square pressure becomes 
progressively greater with increasing Ar while the correlated part correspondingly 

diminishes.

The expectations < pp(ro)pl(ro) > and < pp(ro)ps(ro) > are readily evaluated by 

recognising that the total pressure at the point of cancellation is identically zero. This is both 
true in any one single experiment and also true in the average sense fiom a large number of 
similar experiments. The two pressure contributions ps(ro) and pp(ro) are therefore exactly 
in anti-phase in accordance with equation (4.20) and so form a new boundary condition of 

the sound field given by
<lps(ro) + Pp(ro) >=0 (4J3)
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Simple re-arrangement of equation (4J23) leads to

<Pp(ro)ps(ro)> = <Pp(ro)Ps(ro)> = -^[<lpp(r)l^> + <lps(r)l^>] (4^)

Noting that < I Pp(ro) P > $= < I pp(r) |2 > and < I pg(ro) |2 > = < I pg(r) |2 > and substituting 

equation (4J24) into equation (4.12) gives the important final result®^

<lp(ro+Ar)P>=:[<|pp(r)|2> + <|pg(r)|2>][l-p2(Ar)] (4J5)

Further slnqilificatimi follows fiom the proportionality between qso and q^ so that the space 
averaged square secondary pressure < I ps(r) i^ > is a simple scalar multiple of the space 
averaged primary square pressure < I pp(r) P >. From equation (3.20)

<lpp(r)l^> = lqpl^^^^ and <lps(r)|2>=:|qp|2<IHol^>^^*(4.26)

where from equation (4.25), one can write

= [l+<IHol^>][l-P^(Ar)] (4.27) 
IPp(r)P

This expression for the space averaged zone of quiet in a generalised sound field which is 
characterised by the spatial correlation function p(Ar), is an important result in the theory of 

active noise control. The usefulness of the result stems from its generality since no 
assumption has yet been made concmung the diffuseness of the wave field. The validity of 
the analysis tho-efore extends to all sound fields which are stationary with respect to 
position such that p(ri,r2) = p( Iri - r2l). This result is particularly relevant to diffuse 

sound fields whose spatial correlation functions are well defined, see Chapter 3. Equation 
(4J27) is therefore important in determining the size and extent of the quiet obtained in the 
high frequmcy limit, enabling one to make judgements relating to the effectiveness of 

active control in this type of acoustic environment

Following fi-om the stationarity of the diffuse field (see chapter 3), the level of 
square pressure attenuation steadily decreases with the absolute distance fi'om the control 
point The space averaged quiet zone about the point of null pressure is therefore a sphere. 
At the origin of the hypothetical sphere defined by Ar = 0, the secondary sound field is 

arranged to be perfectly correlated, but in anti-phase with the primary field consequently 
< I p(ro) |2 > = 0. Moving a short distance away fi-om ro however, and the residual square 
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pressure increases, not instantaneously, but smoothly owing to the correlated inter- 
dependence of neighbouring diffuse field points. The respective pressures pp(r) and ps(r) 
therefore becrane increasingly unconrelated with increasbg Zb until the residual square 
pressure < I p(ro + Ar) 1^ > is eventually raised above that of the original square pressure in 

the absence of control.

This single result provides an intuitively correct description of the way in which 

two sound fields, which are constrained to be exactly in anti-phase at a single point, interact 
around the immediate vicinity of the point of null pressure. The result describes how the 
square pressure recovers snKXJthly fix»m zero at r©, to eventually attaining its asymptotic 
value < I pp(r) |2 > + <! pg(r) |2 > as Zb -> <*>. This implicitly assumes that the correlation 

function between two points tends to zero as the distance between them tends to infinity. 

This assumption is generally valid for most sound fields although there are exceptions, 
notably the one dimensional sound field which is discussed in Appendix 4.1. With 

reference to figure 3.6 showing plots of the correlation functions for simple diffuse sound 
fields, the three dimensional diffuse field quiet zone will, on average, exhibit a more 
gradual change in the sound pressure level about the point of null pressure than either of the 

simpler sound fields. Nevertheless, the differences in the behaviour of the correlation 
functions are not pronounced for small Ar. While both !Hol2 and the spatial correlation 

function p(Zb) influence the size of the diffuse field quiet zone, it is the square of the 
transfer function IHo|2 (and ultimately, the square of the secondary source strength) which 

emerges as by far the most important factor away from the point of control. As refered to 
earlier, it is the value of IHol2 which quantifies the statistical inter-dependence between the 

primary and secondary pressure fields. The statistical properties of this function will be 
studied in detail shortly.

By way of verification, computer simulations were undertaken. The amplitude and 

phase of the secondary source strength qso was calculated so as to drive the pressure at a 

point 3/8 along the longest diagonal to zero. The computer simulated experiment was 
repeated 200 times where in each case, both primary and secondary point sources were 

randomly positioned in the enclosure under the condition that they were not allowed within 
one wavelength of any of the enclosure boundaries, or one of the longest diagonal of the 
enclosure. The modulus square pressure was calculated at 1(X) equally spaced points, one 
and half wavelengths either side of the point of control along the longest diagonal. The 

average value from 200 simulations of the square pressure, as a fraction of the primary 

square pressure in the absence of control, is shown in figure 4.3. Also shown is the 
function < I p(ro+Ar) P > = 4 < 1 pp(r) P > [1 - sinc^kZb ] which appears to provide good 

agreement to the simulated curve.
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Figure 43 TAg average j^wore prejjwre oAoaf a painf (^caaceWofian as a rafia affAe square 
prepare m (Ae aAje/ice af control aAfazned/ram 200 campafer amaZafia/u in a pare fane 
dfg^e jaamf/Ze/^f. A/ja shown ;j fAe^aicfZan 4 [1 - sinc^kAr ].

One can therefore infer that for this siniulation the average square pressure contribution 

from the secondary source is approximately three times the average primary source 
contribution namely < I Ps(r) |2 > = 3< I Pp(r) |2 >.

The computer simulated experiment was repeated for another set of 200 simulations 

corresponding to a completely different set of 200 random primary and secondary source 

positions. While the general shape of the new diffuse field quiet zone was found to be 
preserved compared to the first simulation, the increase in square pressure well away from 
the control point was observed to change. In fact, the first computer simulation was found 
to be unrepeatable from one set of ensemble averages to the next While the result presented 
in figure 4.3 is specific to this computer simulation, it was generally found that good 
agreement to the general theoretical result given by equation (427) was obtained provided 

that the values of < I Ps(r) |2 > were suitably adjusted to fit the simulated data. Values of the 
square secondary pressure lps(r)|2 in any one computer simulation, were frequently found 

to deviate significantly from the averaged square primary pressure < I Pp(r) |2 >. In order to 

explain this lack of repeatability one is compelled to investigate the statistics of the square 
of the modulus of the optimal secondary source strength I qso 1^. This is the quantity which 
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linearly couples into the secondary square pressure ctmtribution to the sound field and 
ultimately die total potential energy in the enclosure. One can nevertheless make some 
important remarks on the basis of a small number of computer simulations regarding the 

behaviour of the diffuse field pressure in the vicinity of the point of null pressure

For 'sensibly' behaved values of the secondary source strength (of the order of the 
primary source strength), the zone of quiet 2Aro.b the distance over which the residual 

sound pressure level is 10 dB below the primaiy sound pressure level, is typically one 
tenth of the acoustic wavelength. Furthermore, according to figure 4.3 the residual space 
averaged square pressure is less than the original space average primary square pressure 
within a sphere of diameter equal to about one third of the acoustic wavelength. Outside of 
this sphere however, active control is observed to have a detrimental effect on the rest of 
the sound field. It must be emphasised that these values are only intended to provide 
general guideline relating to the characteristic distances involved in canceling the pressure at 
a point to zero in a pure tone diffuse sound field. Experience has shown that individual 
simulations can exhibit vay large variations in the predicted square pressure well away 

ft-om the point of cancellation, an explanation for which is given in section 4.4.

In forcing the pressure at a single point to zero, one is imposing a degree of 
certainty into the random pressure field which otherwise would be absent. It therefore 
seems intuitively plausible that this additional constraint must be at the expense of increased 
levels of pressure well away from the point of cancellation. While this finding is true in this 

case, this generalisation need not necessarily be true. Consider, for example, the case of a 

small solid ball bearing located within a room. Even though the particle velocity of the 
enclosed sound field is constrained to be zero at the surface of the solid sphere, experience 

has shown that this localised constraint has no measurable influence on the rest of the 

sound field.

It is instructive to consider the form of 1 - p^(Ar) for the one, two and three 

dimensional diffuse wave fields in the region of small Zu* where the ^atial correlation 
functions are respectively coskAr, Jo(kAr) and sinckAr. Employing standard power series 
expansions to leading term, for Ar < X/10

p(Ar)= coskAr, 1 -p^(Ar) » (kAr)^ (4.28)

p(Ar) =Jo(kAr), 1 - p^(Ar)"'^ (kAr)^ (4.29)

p(Ar) = sinckAr, 1 - p^(Ar)'"^ (kAr)^ (4.30) 

139



where a systematic relationship appears to exist relating the coefficients of (kAr)^, the 

leading term in the series expansion, to the number of dimensions characterising the sound 
field. The space averaged zone of quiet in the three dimensional diffuse field therefore 
recovers from zero at a rale approximately three turns slower than the (me dimensional 

diffuse sound field for the same square pressure increase.

The expression for the quiet zone about a pobt of cancellation in a generalised 
sound field has been further substantiated by considering the form of the quiet zone 
obtained in a simple one dimensional sound field. The details of the derivation are left to 
Appendix 4.1. The expression is derived first from first principles, and then again using 

the generalised formula of equation (427). Both approaches are shown to lead to equation 

(4.31) given below
«lp(Ax)l^ » = 2 «IppP » sin^kAx (4.31)

where Ax is the distance from the point of cancellation. This exercise is useful in 

highlighting the need to average over both the position of the point of cancellation and the 
positions of the sources (which in this case is determined by the duct length). Double 
parentheses have therefore been used to indicate two-fold averaging. Using the 10 dB level 
of sound pressure level reduction as the criterion of quiet, the quiet zone IdkXo.i may 

therefore be calculated according to

« lp(A^P. >> 2Axoi=(Un2X. 
«lpp|2 » (4.32)

Equation (4.32) suggests that the one dimensional zone of quiet is periodic along the length 

of the duct repeating every wavelength by virtue of the periodicity implicit in the one 
dimensional diffuse field spatial correlation function coskAx. Further vmfication of the 

general result in equation (427) for the three dimensional diffuse field has been established 
experimentally, the results and details of which are left to chapter 6.

4.4. Secondary source strength statistics

The findings of the earlier sections were useful in serving to establish the size and 

extent of the sound pressure level reductions one could expect as a consequence of driving 

a diffuse field pressure at a point to zero. The level of attenuation was found to be 
sufficiently localised around the point of cancellation to justify the description, 'quiet zone'. 

Having roughly quantified this region, the next step must then be an appraisal of the 
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necessary hardware requirements in terms of the power amplification and the secondary 
source volume velocity requirements. This exearcise provides some idea as to the acoustic 
input needed into the existing sound field in order to bring about the point cancellation of 
the acoustic pressure. This is the purpose of the current section.

Ideally of course, one would like to achieve the cancellation of the pressure while 
expending least effort However, experience has shown that m some cases the optimal 
secondary source strength Iqsol is very much less than that of the primary source strength 

Iqpl, while in other cases, very much more. The optimal source strength Iqsol is therefore a 
random quantity which is some unpredictable random function of both primary and 
secondary source positions and point of cancellation positions. Ultimately, one would like 

to know the exact theoretical probability density function of Iqsol, enabling all measures of 
central tendency such as the mean, mode and median to be calculated. Furthermore, this 
information would enable a precise quantification of the likelihood of failure to cancel 
perfectly the pressure, assuming that any reasonable control strategy would include some 
upper bound value, above which the control system could not operate.

The linear relationship between the complex secondary source strength qso and that 

of the primary source qp was established in section 4.1 and shown to be equal to

For the purpose of this analysis, it is assumed that rp, Fg and fq are located further that a 
wavelength from each other so that Zfrglro) and Z(rplro) are statistically independent. 
Furthermore, it is assumed that the point of cancellation fq is well away fiom the influence 
of directly transmitted radiation. From previous work, we know that Z(rplro) and Zfrglro) 
are complex quantities which may change independently in each of its degrees of fieedom, 
the real and imaginary parts. Using established notation one can write

Rationalising equation (4.33) in terms of its real and imaginary parts, Rfqso) and T{qso) 
respectively, yields a quotient whose numerator has an equal probability of being less than, 
or greater than zero while the denominator remains positive definite. We can therefore 
reasonably conclude that the expectation of the complex source strength qso, taken over all 

possible secondary source positions and points of cancellation, is zero

141



"^ Oso > ” 0 (434)

This result is consistent with experience since the seccmdary source is only able to drive 
any arbitrary point pressure to zero providing it can change fireely and independently in 
both its amplitude and phase. This is in many respects a trivial, commonsense result. More 
important is the expectation value of the secmdary source strength modulus < iqsol > which 
is by definition phase insensitive and a measure of the effort provided by the control system 
as well as having obvious practical implications. We start by considering the statistical 
properties of IqsoI^ which from equation (433) is given by

lq«,l^ = R^(qso)+T^lqso)- i^j^ V <«S)

Now each of the square impedance terms IZ(rxlry)l^, in the numerator and denominator of 

equation (4.35) comprise the sum of the squares of its real and imaginary parts according to

K^(r^Jry)l^=::PL2(2:(rxlry)) 4 lL^(:5(rxlry)) (4.36)

both of which are assumed to be zero mean Gaussian random variables. To test this 
hypothesis for consistency with the computer simulated model, both the real and imaginary 
parts of the transfer impedance between two well spaced points in the enclosure was 

calculated according to equation (4.9) and (4.10) for a total of 15,(XX) times. In each case, all 
source positions were prevented from bebg closer than a wavelength, both from each 
other, and all of the enclosure boundaries. The resulting probability density function for the 

real part and imaginaiy parts of the transfer impedance was calculated from the 15,(XX) 
point ensembles. The probability density function appropriate to the real part, normalised 
with respect to the standard deviation o^, is shown in figure 4.4 together with the 

theoretical Gaussian probability density function according to the central limit theorem 

given by equation (3.7).

A good fit to the expected form is observed between the distribution obtained from 

the computer simulated ensemble and the theoretically expected result. Similar agreement 
was also obtained for the quadrature part of the transfer impedance, T{Z(rxiry)). The 
general form of the probability density function can be explained because die likelihood of 
destructive interference between a large number of randomly phased contributions exceeds 

that of constructive bterference. Zero is therefore the mean value and also the most 

commonly occurring value.
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As a practical aside note that the computer simulated data presented in this chapter was 
obtained from a single computer run lasting nearly 72 c.p.u hours on a VAX 11-750 

computer. The rectangular enclosure chosen for the computer simulations has dimensions 
equal to tc x e x Im whose volume is therefore equal to slightly more than 700 cubic 

wavelengths at 1.5 kHz. Assuming that this also corresponds to the number of independent 

source and measurement positions, 15,000 values of all the appropriate acoustic variables 

were calculated in order to provide for a good statistical sample and therefore ensure good 
statistical representations of all possible outcomes.

Now Iqsol^ is derived from the ratio of the squares of the absolute values of transfer 

impedance terms according to equation (435). Writing IZ(rxlry)P as the sum of the squares 

of its real and imaginary parts according to equation (4.36), suggests that IZ(rxlry)P is 

subject to statistical fluctuation from point to point in the enclosure which varies as the sum 

of the squares of two independent normally distributed random variables. Clearly, the 
independence of the terms relies on Fx and Fy being separated by more than a wavelength. 
This is precisely the definition of the Chi squared distribution x^ which are assigned two 

degrees of freedom by virtue of the number of its independent parts, in this case the real 
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and imaginary parts (or equivalently, amplitude and phase). From standard texts63, the Chi 

squared random variable with two degrees of fireedom has a probability density function 
given by

fx(x) = I exp(-xZ2) where X = IZ(rxlry)P / o^ (4.37)

where c^ is the variance of IZ(rxlry)P which has already been defined in equation (3.16) and 

(321). This distribution function is also known as the Poisson or exponential probability 

density function. Note that equation (4.37) could have equally been derived by substituting 
IZ(rxlry)P = R2{Z(rxlry)} + V{Z(rxlry)} into the joint density function between 

R{Z(rxlry)} and T{Z(rxlry)) given by equation (3.14). The theoretical result was again 
tested against the distribution of values obtained from a large computer simulated ensemble. 
The number of samples in the ensemble was again 15,(XX) where all source positions and 
cancellations positions were subject to the usual constraints. The resulting probability 
density function normalised with respect to the variance G^, is shown in figure 4.5 together 

with the expected distribution given by equation (4.37). Good agreement is observed.

Figure 4.5 The probability density function (^ fAg modulus j^worg voZwg of fAg fro/z^r 
(mygdancg coupling two wgZZ spocgd powK in (Ag diffuse ^W oAfoimgd/rom o compwfgr 
simulated jonzp/g (dosAgj czzrwg), (oggfAgr wifA fAg theoretical czovg FS (Agory (joiid iingj
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The variance calculated from the 15,000 point sample has also indicated a good fit to the 

theoretical result given by equation (4.37). Note that this probability density function is a 
monotonically, exponentially decreasing function whereby small values of the squared 
transfer impedance are systematically more likely to occur than large values.

With reference to equation (4.35) for the square of the modulus of die qitimal 
secondary source strength Iqsol^. the ease with which two well separated points in the 

diffuse sound field can become weakly coupled may give rise to practical difficulties if the 
secondary impedance term !Z(rslro)P happens to be small compared with that of the primary 
transfer impedance term IZXrj^ro)P. In this event, Iqsol^ will be required to be 
proportionately greater than that of the primary Iqpl^, in order to overcome the weaker 

impedance that couples the secondary source to the chosen point of cancellation at ro 
accOTding to equation (4.35). One could therefore anticipate the ill-conditioning of the 

statistics associated with the square pressure and square pressure related energetic 
quantities as observed in computer simulations. One can therefore write IHqP as the ratio of 

two Chi squared random variables, each possessing two degrees of fiieedom which are 
presumed independent providing the primary source and secondary source are further than 

a wavelength apart. From equation (4.35), one can write

^ ' iqpi' " (x^)„ (4.38)

It is a fairly straightforward matter to derive the resulting probability density 
function from the ratio of random variables although usually, the integrals which result 

cannot usually be solved in closed form. However, much tedious algebra can be avoided 

by recognising that all random quantities which comprise the ratio of independent Chi 

square random variables have been extensively investigated in connection with problems of 
statistical inference where the variance is unknown^). Random quantities of this type have 

a known probability density function denoted by F(vi,V2), where Vi refers to the number 

of degrees of fieedom in the numerator. In the present case, the defining parameters of the 
probability density function, Vi = V; = 2 are an intrinsic property of the complex wavefield 

(possessing independent amplitude and phase). From standard texts in statistics, the F(2,2) 

probability density function is given by

(4.39)
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The F(2^) probability density function can be observed to provide good agreement with 
distribution of 15,000 conputer simulated values shown in figure 4.6. The details of the 
simulation remain as before.

Figure 4.6 The calculated density function of the square modz^uj oftAg fra/u/gr /wncfzoM 
///of6]|0 obtained /rom o 75.000 co/7^ufgr a?Mi4afg4 sompfg (dashed ZingJ, (oggfAgr wzf/z fAg 
7^(2.2) dg/inryAction (solid fingj.

The distribution obtained from the computer simulated ensemble and the theoretical 
result are observed to closely agree.

Firstly note that the F(2,2) density function is also a monotonically decreasing, 

unbounded function which can, in principle, take arbitrarily large values and whose modal 
(most likely) value is zero. Now since the square pressure contribution firom the secondary 
field < IpjP > is linearly related to < Iqsol^ > via IHqP according to equation (426), one can 

conclude that the most likely increase in the square pressure as a result of driving a point 
pressure to zero in a diffuse sound field is zero. While this surprising result is clearly 
unexpected, it disguises the fact that extremely large values of IHJ^ are sufficiently likely 

to arise, as a consequence of unfortunate coupling between the secondary source and the 
chosen point of cancellation, to force the ill-conditioning of the associated statistics. This 

conclusion is borne out by the mean value of the F(2,2) probability density function.
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Given a random quantity X whose probability density function is fx(x), the mean 
value Px is formally defined by

u
Px= Km fx^(x)dx (4.40)

For die present example 
u

<l4sol^> =lqpl^ hm f (^ (^'^^) 

0

=lqpl^ hm [ln(l+u) - . " ]=oo (4.42)

The expectaticMi < Iqsol^ > therefore fails to cmivcrge but diverges very slowly to infinity like 

ln(x) and is therefore undefined. Strictly speaking, the spatial averaging operation should be 
indicated by the use of double parentheses «(.)»to denote that the average value is taken 
over all primary source and secondary source positions. However, as demonstrated overleaf 
it is the average taken over all secondary source positions which causes the expectation value 

not to convCTge and is entirely independent of the statistical behaviour of the primary source 
transfer impedance. The implications for active noise control in the diffuse sound field are 
significant. Any quadratic function of the pressure after the cancellation of the pressure at a 

point, such as the square pressure, potential energy, acoustic intensity and sound power etc 
all have a linear dependence on iqsol^ and are therefore similarly undefined. All higher 

moments of the F(2,2) probability density function such as the variance, are likewise 
undefined and diverge even more rapidly than < Iqsol^ >•

The result also has important engineering implications from the point of view of 

contriving diffuse field control strategies. Any additional constraint made on the secondary 

source, however weak, will assist the convergence of the ensemble mean value. While this 

is generally true, there are some control configurations (see chapter 6) which despite being 
very well behaved from point to point within the diffuse field, posses a mathematical 
expectation which is also equal to infinity. For these cases the mean value is a misleading 
indicator of first order behaviour as discussed at length in chapter 6. Nevertheless, trying to 
establish a control technique which is less prone to large secondary source strength 
requirements is the motivation for the work presented in chapters 5 and 6.

In appraising the current problem, it is important to recognise that it is the inability 

of the secondary source to couple well into the point of cancellation that is the sole cause of 

the ill-conditioning of the statistics of all square pressure related variables. The observed ill- 
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conditioning is dependent on the acoustic coupling between the primaiy source and the 
point of cancellation. This conclusion can be assCTted because of the following basic result 
in statistics. ITie expectation of the product of independmt randcMH variables X and Y, 
< XY > is simply the product of their expectations, < X >< Y >. Rom equation (4.35)

<IHoP > =< IZ(rplro)l^ > < IZ(rglro)r^ > (4.43)

The first factor < IZ(rplro)l^ > is certainly well behaved whose mean is convergent and 

determined from equation (3.21). The observed lack of convergence must therefore be 
attributed to the second factor which only involves the expectation of the secondary source 
transfer impedance term < IZ(rslro)r2 >. This is the term which is solely responsible for the 
ill-conditioning of the statistics associated with Iqso!^ whereby < IZ(rslro)r2 > = ®o. Any 

control strategy aimed at circumventing this difficulty must focus on the inability of the 
secondary source to couple into the chosen point of cancellation by imposing on the 
secondary source additional constraints, see Chapter 5.

The second important feature worthy of note, is that the fonn of the F(2,2) 

probability density function according to equation (4.39) is completely insensitive to the 
properties of the sound field such as the enclosure volume, room damping and the 
frequency of excitation etc (providing it is higher than the Schroder frequency). This is 
manifest by the complete absence of the impedance variance a^ in equation (4.39) which is 
of course sound field specific according to equation (3.21), where a^" ®z ^^’ ^’ ®)' '^^^ 

property is fundamental to the F distribution which also explains why this probability 
density function is so useful in problems of hypothesis testing. The simple function 
governing the theoretical distribution of Iqsol^. therefore has surprising generality and 

applies equally to dll diffuse fields. The explanation is simple and lies in the way the 
variance a^ of a normally distributed ensemble N(|I,g2), merely acts to linearly scale the 

distribution according to
N(&i,G2) = GN(g,l) (4.44)

As a consequence of this basic identity, the variance a^ of the diffuse field transfer 

impedance emerges as a common factor in both the numerator < lZ(r|^ro)P > and the 

denominator < IZ(rslro)|2 > which therefore cancels in the quotient It follows that all 

quotients containing functions of normally distributed random variables are therefore 

independent of its variance provided they are the same for the numerator and denominator. 

The results which follow for the secondary source strength statistics are completely 

general, in^kKp<MadkMntt]f(Kitiheri@nKJ()Surt\^)iutDW^scMirceg^>orDKM])f()rfr(xiiw;nc^^(]f 

excitation, but a sole property of the diffuseness of the wavefield inasmuch as the in-phase 
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and quadrature part of the acoustic impedance are normally distributed and independent. 
This result has even greater generality since it not only applies to the elementary system 
under discussion here, but is equally valid to more sophisticated control control schemes 
which utilise an array of secondary loudspeakers and microphones, see chapter 5. One is 

now in a positicMi to state an important result in the theory of active control. All secondary 

source strength statistics in the high frequency, enclosed sound field are invariant to the 

details of the sound field as long as the spatially sampled complex sound field is distributed 
as a bivariate Gaussian distribution between its in-phase and quadrature parts. This 
condition is certainly satisfied at frequencies above the Schrbder finequency and most likely 
valid for a significant range of firequencies below.

The probability density function of the transfer function modulus IHy may be 
obtained directly from that of IHJ^ by a simple change of variable U = VV in equation 

(4.39) following an analysis exactly analogous to the change of variable in an indefinite 
integral. The probability density function fv(v) is formally defined by

F(v-Av/2,v.Av/2) ,^^^)
Av-40 Av

where F(v) is the cumulative distribution function such that F(v-Av/2, v+Av/2) denotes the 

probability of V lying somewhere between v-Av/2 and v+Av/2. One can therefore write

F(v-Av/2 , v+Av/2) - fv(v)Av

where Av is small. From equation (4.39), it follows that

F(v-Av/2 , v+Av/2) - ^2^)2 ^^

(4.46)

(4.47)

Putting u = Vv where U = IHok then v = u^ and Av » 2uAu for small u one can now 

write
F(u-Au/2 , u+Au/2) * q^^zd ^^ (^'^^)

From the definitirai of the probability density function

fu(u) =
,. F(u-Au/2, u+Au/2) 2uhna -------------------- -------- ---  -——

Au-»0 Au (1+u'^)''
(4.49)
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Thepmbability densi^ fimcdoaafdieoptimalsecwdafysouicc sticngthiqsolhas been 
derived. For the sake of completeness, the square root of each of the 15,000 points in the 
ensemble employed to verify the distribution of IHqI^ was taken. The resulting probability 

density function obtained from the computer simulated ensemble is shown in figure 4.7 

together with the theoretical result of equation (4.49).

Figure 4.7 The probability deariiy /imetwm (^rA< secondary wwree AreagfA /^w/ Mgce^wy 
fa dWvg a pouu prefw^ fo zero in a pure &)n< 4(g%<r( fwnd^W. Results j^om canywfgr 
WMw/atibMffdliwAAi iiw) and (Af theoretical rewA (jioAd Ane).

As expected, die distribution obtained from die simulated data and the distribution 
function denoting the thecrotical curve of convergence as the ensemble size tends to 
infinify.aieingoodagreemenL

The behaviour of the function shown in figure 4.7 is observed to be a radical 
departure from the behaviour of the F(2,2) density fimction owing to the non-linearity of 
the transformation X ™> VX. It is interesting to observe that while the most probable value 

of IHqI^ is zero according to equation (4.39), IHq! takes zero as its /easr probable value. In 

fact IHqI, (and therefore by implication Iqsol) can never be zero where from equation (4.49)

fu(0) = 0 (4j0)
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This quite surprising result can be explained if one considers the form of the probability 
density function of the root mean square (r.m.s) diffuse field pressure lpr(r)l. Making the 
same change of variable, namely X -> VX in the probability density function fw the 

modulus of the square of the pressure Iprfr)!^ given in equation (4.37), one can show that 

independent samples of the root mean square diffuse field pressure are distributed as a 
Rayleigh random variable whose probability density function is written below

^(x) = Ixer^ where X = Ip/r)! / < lpr(r)l > (4.51)

This functimi is]pIottediam(x;tte)rb(Mi statistics^. The samecooclusion wasanivedby 

Waterhouse fw example^. This functitm suggests that even though both the in-phase and 

the quadrature part Of the diffuse field pressure have a most likely (or modal) value equal to 

zero, the modulus of the complex pressure can never be zero since fx(0) = 0. A traverse of 

a measurement microphone along some arbitrary trajectory in the diffuse field will never 
encounter a pressure null. One can therefore infer that there is therefore never any one point 
of cancellation position where the secondary source is required to switch off and 
consequently there will always be some residual pressure which requires cancellation. This 
point of view is wholly consistent with form of the probability density function for the 

modulus of the optimal secondary source strength given in equation (4.49).

Inspection of the probability density function fu(u) in equation (4.49), reveals that 
the distribution of qso is uni-modal thereby possesses a single maximum value which 
therefore suggests that there is only one single most likely occurring value Iqsolmode- At the 

modal value, fu(u) is stationary with respect to u

jy — 0 st kjsol " iqsJmode (4.52)

Performing the differentiation and solving yields

IHolmofk (4.53)

Further noting that Iqsoi = Iqpi iHol leads to
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The most probable value of the secondary source strength for driving a randomly chosen 
diffuse field point to zero is appreciably smaller (by a factor of 0.577) than the primary 
source strength whose wavefield it is attempting to cancel This result is in complete 
agreanent with the most commonly occurring simulated value shown in figure 4.7. The 
mean value of the probability density function given by equation (4.49) also exists and may 
be formally calculated from equation (4.40) to give

<lqsol > =k]pl JT nV&jZ *^" '^ "^ y (4.55)

0

The ensemble mean actually obtained from the 15,000 computer simulated values was 
calculated to be 1.563 times that of the primary source strength, i.e., within 1/2 % of the 

theoretical expectation given by equation (4.55). This result, at first glance appears to be 
surprising since one could have reasonably anticipated some kind of reciprocal process to 
exist between the primary source and the secondary source. Specifically, the pressure at a 
point is driven to zero regardless of whether one regards the primary source to be acting on 
the secondary source to impose the point of cancellation, or vica-versa. In this event the 
mean of the transfer function IHq! would be therefore unity. This is obviously not the case 

and the active (secondary) source is subject to a level of statistical constraint which, on 
average, requires a source strength which is slightly more than one and a half times that of 

the primary source strength. Unfortunately however, a formal assessment of the source 
strength variance as conventionally defined does not exist.

Consider the cumulative distribution function Fu(u). This function defines the 
probability that U lies between 0 and u, i.e., P(0 < U < u) which is derived from the 

probability density function fu(u) as indicated below

u
Fu(u) = J fyCy) dy (4.56)

For the form of the probability density given by equation (4.49), the cumulative distribution 
function is determined from

u
Fu(u) = I 

0
(4.57)

Fu(u)=l/2. l/2cos(2tan'^u) where U =IHol (4.58)
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The theoretically derived result given above and the cumulative distribution of computer 
simulated data are of course in close agreement as shown by figure 4.8

Figure 4.8 The cumulative distribution of computer simulated values o/IHol fdos/Kd Zine) 
foggfAgr wirA (Ag (AgorgficaZZy denved cwiwZafivg dufriAwfion fimction 1/2 - l/2cos(2tan'^x) 
fwZid ZmgJ

Despite the unlikely form of the function Fu(u) given in equation (4.58), rational 
values are obtained for u = 1/V3,1,2,3 and 7 which are tabulated below

IHol 1/V3 1 2 3 7

Fu(u) 0.25 0.5 0.8 0.9 0.98

By virtue of the identity Fx(x) = 1 - Fx(l/x) which exists for cumulative distribution 
functions^^, further rational values are also obtained for u = V3,1/2,1/3 and 1/7. By 

inspection, the median value of the absolute value of the transfer function IHolmgd is unity 

which implies that Iqsol has equal probability of being less than, or greater than that of the 

primary source strength Iqpl such that
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^<Wmed — ®<V (4.59)

This is clearly a general Gnding which is equally valid for all sound fields for which no 

restriction is imposed on the positioning of either the primary source or secondary source. 
This isbecause Z(rplr) andZ(r^r)aretaken frornfbesagiNStaascrrd^hcimfi/alueNsinaiiy 

given sound field such that there is an equal probability of either die primary source or 
secondary source impedance being less than, or greater than the other. Increasmg Iqsol to 

twice that of the primary source strength raises the number of points at which the complete 
cancellation of the pressure is possible to 80 %. Further increasing the secondary source- 
primary source strength ratio to exactly seven now means that exactly 98 % of all point 
cancellations that may be demanded of the secondary source are possible, although most 
likely at the expense of significantly raised potential energy levels. However, there still 
remains exactly 2 % of cases which defy complete cancellation owing to the inability of the 

secondary source to provide sufficient influence at the chosen point of cancellation owing 

to the weak acoustic coupling between them.

All three descriptors of the central tendency of the modulus of the optimal 
secondary source strength have been shown to be simply related to elementary 
mathematical constants. More significantly is that all of these first order statistics are 
typically of the order of the primary source strength itself. These results indicate that on 
average, active control of diffuse fields is within the physical capabilities of commonly 
available acoustic transducers which helps to provide some important guide-Unes for the 

necessary secondary source strength requirements. In general terms, one should ensure that 
the maximum volume velocity of the secondary loudspeaker is at least equal to the volume 

velocity of the primary source strength b order to guarantee a reasonable chance of 

ensurbg the perfect cancellation of the pressure at the chosen point of cancellation.

4.5. The potential energy statistics before and after 
(he active cancellation at a point

In addition to havbg important practical relevance, it is useful to be able to provide 
a statistical description of the response of the enclosure to the active cancellation of the 
pressure at a sbgle pobt, m terms of its potential energy. A knowledge of the enclosure 
potential energy before and after control serves to provide a sbgle bdex relating to the cost 

of drivbg the pressure b the enclosure to zero. Furthermore, it enables one to asses the 

benefits of localised acoustic attenuation around be pobt of control set agabst be 

probabilistic rise b the potential energy level Unlike (or low modal density case where the 
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change in potential energy is in many respects predictable^^ in the case of the diffuse field 

onecanonlymakegeneral staiistlcMstaiemcntsabouttheprbbabiliQfofincreasedlevelsof 

potential energy. This is the aim of the current section.

ThepotMitlalatcrgyEpinaharmonicallyexcited«x;Iosufe,canbeclosely 
approximated by the finite sum of square modal amplitudes®^ according to

N

n=0
(4.60)

]Gquadon(4/»)shmplyexpreM%sthetohdixXendaleocn5rhidM;enckMmretothesunaofthe 

potential energiesofits constituentnaodes. Eachcoinplexix%xialanq)litudean,coaq)rises 

the sum of primary and secondary modal amplitudes according to equation (4.7)

an=An(m) [qp(m)VhOiO-FqsOa^ynO^)] (47)

When the primary source and secondary source are related such that cancellation of the 
pressure is assured at some chosen point in the field, the residual potential energy Ep^gg 

under these conditions is given by

N
Ep_ = y IAn((0)l^ I qpVn(rp) + qsoVn(rs) I (4.61)

Providing the primary and secondary sources are well separated, then apart fiom the small 
spheieofpressure redbrctk)ncerure(l()nldte]point ofcancdladon wherethe nw^xedvesound 

fields are highly correlated (typically a small fraction of a wavelength), the primary and 

secondary sound fields are everywhere else uncorrelated. The primary and secondary 

sources may be regarded as two mutually uncorrelated sources radiating into the enclosure 

such that the enclosure potential energy is simply the sum of their individual contributions. 
This approximation is equivalent to assuming that the space average of the cross modes 
< Vn(rs)Vn(rp) > is equal to zero which is of course only valid when all the linear 

dimenKimns of the enclosure are much greater than the acousticwaveIength.Recallingthat 
qgo and qp are linearly related by the transfer function Ho. Ae residual potential energy 

can be approximated as

4pcg

N
lqpl^[l ZAa(m)Yn(rp)F

n=0

+ IHol^ I % An((i))Yn(rs)F ](4.62) 
n=0
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If ILnpficfKyKM^thGfMirnai^rscMurce ODnuHnAkxiK)dx;cnckMun;poAaMhd energy in ±e 
enclosure according to

Em = lqp|2 I % An(m)Va(rp) r (4^)

6en to a good approximation one can write

Ep^- Epp[l + IH„|2]

where it is been assumed that in any single simulation

N
I ^ An((n)Vn(rp)' 

n=0

N
" I Z An(m)Vn(rs) 1^ 

n=0

(4.64)

(4.65)

Assuming that the potential energy in the room is proportional to the sound power output, 
following from equation (3.1) in chapter 3, the potential energy generated by a single point 

monopole source will also exhibit a level of variance which is inversely proportional to the 
modal overlap factor 1 / Miq(to). Above the Schroder frequency therefore, the likelihood of 

significant departure between successive measurements of the potential energy for different 
source positions is very small. More will be said about this shortly. This simplification is 
therefore a good approximation in diffuse sound fields supported by large enclosure 
volumes which are driven at high frequencies.

Equation (4.64) represents a considerable simplification over the exact expression 

given by equation (4.61). Further justification for this approximation follows because the 
variance of the square transfer function IHqI^ compared with unity, is much larger than the 

variance of the primary source potential energy Epp compared with its mean value. The 
extremely large statistical variation in the residual potential energy is therefore 
predominantly due to the large variance of the square of the secondary source strength as 
compared to the variance incured fimm varying the source positions. As will soon become 

clear, all moments of the probability density function associated with the primary source 
potential energy E^ are formally defined where by contrast, none of the moments arc 
defined for the F(2,2) probability density function which governs the statistical behaviour 
of IHqP. The residual potential energy statistics are therefore predominantly dictated by 

IHqP which arc subject to extremely large variations from point to point within the diffuse 

wavefield while those of Epp remain negligible by comparison.
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For the case of a single source radiating freely within an enclosed space, the 
primary potential energy Epp, is simply the sum of a large number of squared terms la„|2. 

Invoking the central limit theorem suggests that in the limit as the number of significantly 
contributing tenns tends la^P to infinity, the distribution of values of Epp approaches the 
normal distribution N(|iE.<yE) centred about its mean value pE with a variance <^ 

according to
^(x) = e • (* ■ ^^)^ / ^E (4.66) 

■V27tOE

where X = Epp/<Epp> defined by equation (4.63), and pE = < Epp >, the ensemble 

mean arising fiom the finite sample size.

By way of verification, the primary (monopole) source potential energy was 
computed according to equation (4.63) for 15,000 random source positions although not 
within half a wavelength of the walls in any one simulation. The probability density 
function of the resultant ensemble is shown in figure 4.9 together with the theoretical curve 
with the same relative variance namely o^ / Pg = 0.0246.

Figure 4J9 The distribution of15,000 compwfgr jfmw/ore^ voZwgj of tAg pri/nwy wwrcf 
po(g/:noZ energy hf/brg confro/ (dofAgj &mg) (oggfAgr wfA zAc zAgorgzzco/ /w)/?»oZ czzrve wzfA 
zAf somg variance - j^wore mean rozio (^ 0.0246 (solid line).
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Reasonable agreement is observed saving to demonstrate the small degree of dispersion 
associated with measurements of source potential energy in die diffuse sound field. Before 
proceeding to evaluate the influence of the secondary source, it is instructive to consider the 
origin of the potential energy variance Og. On the basis of an energy balance relating the 

sources and sinks of acoustic energy in a room, one can write down a direct relationship 
between the sound power of a source W and the steady state level of potential energy Ep 

subsequently sustained by the source. This result is given in many acoustical texts and is 
given below

<Ep > <W> (4.67)

All of the results derived in chapter 3 for the relative variance of the sound power output are 
now directly relevant to the potential energy. From equations (3.56) and (3.61), the relative 
variance of the potential energy is given by

Itg It^ 3% L f for f^fsch (4.68)

g*____ L_ 
pg MN(m)

(4.69)

The distribution of primary source potential energies shown in figure 4.9 was obtained at a 
frequency of 1500 Hz within an enclosure whose Schroder frequency was estimated to be 
738 Hz. From equation (4.68), the theoretically predicted value of the relative variance may 

be calculated to be 0.013 which is clearly an underestimate of the observed value of 

0.0246. The possible ambiguities in relating the relative variance of the sound power 
output, which in turn is equal to the relative variance of the potential energy is discussed in 

chapter 3. In this example, the simulated value is considerably closer to Lyon's formula 

which gives a value for the relative variance equal to 0.022.

The figure above shows that the source potential energy Ej^ rarely deviates by more 

than about two standard deviations from the mean value which for this room geometry, 
A 

modal damping etc, is about 0.3 < Epp >. However computer simulations have shown that 
the observed level of excursion about the mean value is profoundly altered once the 
secondary source has been introduced into the wavefield seeking to drive some diffuse field 
point pressure to zero. A theoretical justification for this finding now follows.
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Assuming that equation (4.64) is a good approximation to Ac residual potential energy after 
Ae active control at a point wiAb Ae AflFuse sound field, we now seek to determbe Ae 
resulting probabAty density fimetion fyCy). Given Aat Ae probabAty density function of 
boA Epres anti IHol^ are now known and have each been shown to be a good fit to computer 

simulated data, we require Ae probabAty density function of Aeb product namely 
Epp [ IHqP -4-1 ]. From an analysis exactly analogous to Ae transformation of variables b 

a double btegral whose details are left to Appendix 4.2, it can be shown Aat

ffbO -r^ J "A' (y" " l^E)^/ogju where Y = Ep^/<Epp> (4.70) 
"VZno^ 0

This btegral may be fiirAer expanded m terms of the tabulated error function Erf(x) 

defined b chapter 3 to give

fY(y) = 2y2
[Erf "^y - PE^ 

^V2 OEy

y^ (4.71)

By way of comparison wiA computer simulated data, Ep^ was computed for 15,(XX) 

primary source, secondary source and cancellation positions all of which were constrained 
to lie further Aan a wavelengA fiom each other or Ae walls. Figure 4.10 shows Ae 
probability density function of Ae residual potential energy as computed fiom equation 
(4.61) 15,000 times, together with Ae Aeoretical curve of equation (4.70) shown overleaf. 
Note Aat as before in Ae absence of control, Ae ensemble has been normalised with

A 
respect to Ae space averaged primary potential energy < Epp >

The curves are observed to be in close agreement Comparing figure 4.10 wiA Ae 
previous graph, figure 4.9 for Ae Astribution of primary source potential energies 
demonstrates how even this simple elementary control scheme can have potentially 

disastrous consequences b terms of Ae global sound pressure level. Previously, Ae 
primary source radiating in isolation was shown to excite a level of potential energy Aat 
was only capable of small excursions from the mean. On Ae btroduction of Ae secondary 
source however, Ae enclosure potential energy is observed to fiequently reach levels many 

times Aat of < Epp >. This behaviour is exemplified by Ae mean and standard deviation of 

Ae potential energy boA before and after control as calculated fiwn Ae 15,000 pobt 

ensemble.
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Before active control:
A A A A

<Epp> = <Epp> and aEp = 0.16<Epp> (4.72) 
and after active control:

A A A A
<Epres>” 10<Epp> and o^es ” 175 < Epp > (4.73)

figure 4.70 7Ag dkiriAufioi: (gf couyufer simulated vo/ues <;( fAe resi^Z poieniiaZ 
eiMrgy occordkg to eguoiton (4.07) (daiAed ZuK o/uZ theoretical curve i^egualtoi: (4.70J

The close match between the distribution of simulated values and the theoretical 
probability density function given by equation (4.70) is perhaps not surprising given that the 
statistics of the residual potential energy are predominantly governed by the statistics of 
IHqP whose probability density function has already been shown to provide a good fit to 

the simulated data.

A
^°^ Epres greater than < Epp >, the probability density function falls off as y'^ for 

large y where the probability density function of IHqI^ is dominant. Near Ep^ = < Epp > 

however, where the secondary source contribution to the total potential energy is 

negligible, the resulting density function is predominantly governed by that of Epp. This 
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accounts for the small tail on Ac probability density function for Ep^s less than < Epp > 
Now since linear expectation is commutative for independent random variables such as

< Eprw > =< Epp > [ < IHJ^ + 1 >] (4.74)

where

< IHJ^f 1 > = <|Hj2 :^+ 1 (^jg)

One can dierefbre conclude diat the expectation of the potential energy produced as a 
consequence of diivbg a point pressure to zero in a pure tone diffuse sound field is also 
infinite

(4.76)

One can apply similar reasoning to the space averaged square pressure and all square 
pressure related variables so that with reference to equation (4.27), the true expectation of 
r/ie df^yitre/Ze/d zone of <?wfet ;s zero.

The most likely increase in enclosure potoitial energy however, is only firactionaUy 
above that of the primary contribution. Inspection of figure 4.10 indicates that

^Pres )n:o4g " 1 15 < Epp > (4.77)

Note that putting 9fY(y) / 9y = 0 and rearranging the orders of differentiation and 
integration indicates that the peak of the probability density function (Ep^ ')mode must 
always be greater than < Epp > for all o^ > 0. Equation (4.77) is clear verification that 

despite the overall poor conditioning of the control scheme, it is possible to find a source 

and cancellation position whereby a point of null pressure can be actively imposed on the 
existing sound field without significantly influencing the rest of the sound field. Indeed, it 
is the most probable outcome.

From equation (4.56), the information implicit in equation (4.70) for the probability

density function of Epres can be more meaningfully expressed as the cumulative distribution
function given below

FY(y) = -7=

1
Ue-(x“-|iE)^/<’2dudx (4.78)

161



The function above together with the cumulative distributicm (Stained fiom computer 
simulated values is shown in figure 4.11, where it is not surprising to observe that the two 

graphs are in excellent agreement Small statistical fluctuations due to the finite sample size 
are now smoothed due to the integration process.

Figure 4.11 The cumulative distribution function of <A< readuol poteatio/ energy ^er drfwng 
n random point preMure to zero In o pure tone 4((yu« zoitn4^W. JteWti /)^oni a conywter 
wnw/ated enjet^e fdofAed line) and tAe tAeoretiea/ neadt ^{f e^totlon f4.78) (solid line).

The principal feature to no^ from tire above figure is how slowly the curves 
approach unity. Specifically, observe that there is a 10 % chance that driving some 
randomly selected point in the diffuse sound field to zero will incur a penalty of at least a 
ten fold increase in the residual potential energy. A further illustration of the unfortunate 

consequences of imposing point control b the diffuse field is that there is now a less than 
10 % chance that the residual potential energy will be less than the averaged primary source 
potential energy Epp. Previously, with the primary source b isolation it was exactly 50 %. 

Lastly, note that the median of the probability density function is very nearly twice < Epp > 

that is
( Epreslmed ” 2 < Epp > (4.79)
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This can be explained if one considers the important asynptotic case whereby the enclosure 

volume V tends to infinity. Q)rrespondingly, the transfer impedance variance tends to zero, 
c^ —> 0 as indicated by equations (3.16) and (321). In this hypothetical limit, the variance 

of the potential energy generated by a single source in the enclosure tends to a Dirac delta 
function centred on the mean Pe value according to

fxOO->GOt-P^J for V-4«# (4.80)

where X = Epp. It is a straightforward matter to show that in the limit of infinite enclosure 
volume, the probability density function of the residual potential energy takes on the 
particularly sircple form

fY(y)-> ^ as V for y^l (4.81) 

where Y = Epres / Epp. Furthermore, the cumulative distribution function FY(y) is 
correspondingly simple

FyCO -> ^^^ &S for y^l (4.82)

For this limiting case, the modal value is unity and the median value is exactly two. Figure 
4.9 therefore represents graphic illustration of the difficulties connected with applying 
active noise control to sound radiated into diffuse field environment

4.6. Discussion and conclusion

The physics relating to the dec^tively simple problem of actively cancelling a point 
pressure to zero in a pure tone diffuse sound field has been extensively investigated. The 

simplicity of the single channel control scheme employing just a single loudspeaker and a 

single microphone has been acknowledged. Nevertheless, the simple analyses presented in 
this chapter has served to provide considerable insight into the mechanisms by which two 
highly complex, incongruous sound fields superpose, where one is pre-arranged to be 
equal and opposite with the other at some pre-determined point in space.

Elementary statistical methods have been employed in ordear to establish the 

theoretical variability of all the key physical parameters connected with the diffuse sound 
field. Primarily, a theoretical assessment of the so called diffuse field 'zone of quiet' about 

the point of control and equally importantly, a probabilistic description of the diffuse field 

potential energy as a result of the secondary sound field. Subsequent verification of all the 

postulated results ware obtained fiom the statistical behaviour of a large number of 
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computer simulations, which is thought to provide a teasonable alternative to real 
experimental data. In all cases, the theoretical results were shown to provide good 

agreement with computer simulated experiments.

The space averaged square pressure profile about the point of cancellation was 
evaluated and shown to be solely determined by the ^tial correlation of the sound field. 
However, it was found to be impossible to make any general, universal predictions 
concerning the actual size of the diffuse field quiet zone (of say the -10 dB level). The 
average behaviour of one set of ensemble averages consisting of fifty simulations was 
found to be quite different from another set, although the shape of the square pressure 
profile remained preserved in each case. As a general guideline, a 10 dB reduction was 
found to typical within a region confined to about one tenth of the acoustic wavelength, 
with the important prowso that the secondary source strength is typically of the order of the 
primary source strength for which there was found to be no guarantee.

The cause of this apparent lack of consistency was traced to the ill-conditioning of 
the statistics associated with the square of the secondary source strength Iqso!^, the quantity 

which couples linearly into the square pressure of the sound field. Significantly, the mean 
of Iqsol^ was shown to be undefined in the mathematical sense and was therefore proved to 
be infinite. Moreover, the expectation value of the unconstrained optimum < iqgj^ > was 

shown to be on the borderline of convergence as governed by the integral of the probability 

density function, multiplied by x, integrated to infinity. It therefore seems reasonable that 
convergence of < IqsoI^ > can therefore be assured by imposing additional constraints on 

the secondary source strength which, in principle could be arbitrarily small. This would 
would force the convergence of the expectation value and therefore the expectation value of 

all square pressure related variables. This hypothesis forms the basis of the work presented 

in Chapter 5 and 6.

A consideration of the statistics relating to the secondary source strength required to 

impose the point of null pressure in the diffuse sound field has also yielded some valuable 
results. Perhaps the most important, is that the probability density function of the 
secondary source strength is completely independent of the details of the sound field such 
as acoustic damping, room volume and excitation frequency, assumed greater than the 
Schrbder frequency. The validity of the result rests solely on the sound field being in a state 

of 'diffuseness'.

Last, an analysis of the theoretical probability density function of the diffuse field 
potential energy before and after control was undertaken. These results were particularly 
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informative inasmuch as they provide a single global index relating to the penalty incurred 
as a consequence of the driving a point pressure to zero. One can consider the enclosure 
potential energy to represent a measure of the average diffuse field square pressure. 
Inspection of the probability density function reveals how easily the imposition of control 
can force the residual potential energy to reach many tinKss its value in the absence of the 
secondary source. In fact, the mean value of the potential energy calculated from 15,(XX) 
computer simulations, exhibits a ten fold increase as a consequence of the control, although 
this value is not particularly meaningful given that its standard deviation was even larger by 
another order of magnitude. The true expectation of both the mean and the variance of the 

optimal secondary source strength were both calculated to be equal to infinity which 
therefore serve as a caution regarding the consequences of applying active noise control to 

the diffuse sound field.

Although specific tests have not been carried out, it is strongly suspected that many 
of the results established in this chapter may be applied to other types of sound field which 
do not comply with the rigourous requirements of diffuseness. Indeed, the formula 
describing the space averaged zone of quiet about a point of cancellation is valid for any 
sound field whose spatial correlation function is properly defined and which is stationary 
with respect to measurement position. Furthermore, it is generally acknowledged that the 

Gaussianity of both the real and imaginary parts of the complex transfer impedance is not 

restricted to only the diffuse impedance field but is a reasonable description of less 

reverberant wave fields. The precise area of validity remains to be identified.

As a closing remark, it is probably worth noting the implications for driving a point 
pressure to zero which comprises a broadband range of frequencies. The analysis the 

outlined in this chapter appears to show that the unconstrained optimum qso is a poorly 
conditioned random variable which has a significant likelihood of 'blowing' up. 

Attempting to control a broadband range of fiequencies at a point suggests that the 
difficulties are compounded since ill-conditioning may occur any one fiequency. The 
problems are not as severe as at first they appear because all the physical variables 
associated with the diffuse field are highly correlated in fiequency as well as in space59. 

Thus,establishing satisfactorybehaviour attont^fit^iuefMzyHO^oadllt^n^ainetMsnsibilerestihsat 
another frequency coq + Ato, as governed by the form of the fiequency dependent 
correlationfunction <q9o(too)qso(0)0+ Ato) >which remains to bedetermined.
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APPENDIX 4

Appendix 4.1

The cancellation of the pressure at a single point in a one 
dimensional disuse sound field

Consider a hard walled, lossless duct of length L which is constrained to support 
only plane waves, figure A4.1. At either end of the duct defined by x=0 and x=L, are 
situated idealised piston soinces pulsating about their mean positions.

Figure A4.1 A conceptual model ofo hard woZW dwcf w/ucA w contrived fo m^fyorf onfy 
p/oTig WOV6J. A( either g/i^f org pTimofy 07:4 jeco/kfoTy tizic joorcgj, of wAicA fAg jgcoTkioTy w dTivgT: 
to coTKgf fAg prgfswrg of %o to zgro. Avgrogg residual f^woT-g prgjwg fJoZf4 A/K). Awgrqgg pTwwy 
square prg&wg kvgZ f4o,9Ag4 AtK).

Assuming that the duct is hard walled with a uniform cross sectional area S and the 

acoustic particle velocity is equal to the respective source velocities at the ends. The 
pressure p(x) inside the duct is given by^^

7
P^’^^ = ^^i^ *^ SpCOskCL - x) + QsCOS kx ] (A4.1)

where Z is the duct, plane wave impedance Z = -jpco / 2S.

Equation (A4.1) is consistent with the 'travelling wave' model of the sound field which is 
built up following an infinite succession of reflections at the terminations. Consider the 
radiation impedance of the primary source (Zrad)p i” the absence of the secondary source. 
Putting qs = 0, the primary pressure pp(x = 0) may be represented as

Pp(*=O) - ^^ coskL (A4.2)
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The radiation impedance of the primary source in the absence of the secondary source is 
therefore determined fiom

(Zrad)p ~ qp --J2S cotkL (A4J)

which is purely reactive. Equation (A43) is the radiation impedance of a closed pipe with 
rigid terminations as discussed in detail by Kinsler A-of^. The resonances of the duct fn, 

can be identified with the singularities of cotkL to give

(fn)qs=0 = 7j^ (A4.4)

Now consider the one dimensional sound field in the duct where both the primary and 
secondary sources are radiating simultaneously, but whose source strengths are linearly 
related such that the pressure at xq is driven to zero. Following from equations (43) and 
(4.3), the total acoustic pressure at xq may be driven to zero te a secondary source strength 
given by qso = qpHo where the transfer function Ho is given by

Ho - <A4.=)

The total pressure in the duct is now equal to

PW = iS^ [ cos k(L - X) . 1

The primary source radiation impedance is profoundly altered by the presence of the 

secondary sound field which has now changed to

PD(x=0) .pCorCOskLcoskxo-cosk(L-xo)x 
qn J 2S sinkLcoskxo J

Employing standard trigonometric identities, one can show that all terms which are 

dependent on the length of the duct L, cancel in tire quotient of equation (A4.7), leaving the 
primary source radiation impedance (Zrad)p as a sole function of the point of cancellation xq 

to give
(Zmd)p=j^tankxo (A4.8)

Equation (A43) is precisely the radiation inqredance of an (^)«i ended pipe of length xQ. 

The result of the point cancellation therefore, is to effectively isolate the remaind®’ of the 
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pipe X > L from the influence of the primaiy source. A similar result has been derived by 
Trinder et-oP^. The addition of the secondary source, from the point of view of the primaiy 

source, has been to create a new boundary ccmdition since the new sound field is 
effectively 'clamped' at xq. This was also the conclusion arrived at by Curtis et-al3^. The 

new resonances are now mere sparsely located in frequency which may be identified fix>m 
the values of kx© which cause tankxo to be infinite. Physically, this arises from the infinite 
build up of reflected sound which constructively interfere on each reflection and eventually 
form an anti-node of infinite magnitude at the primary source position. In practice acoustic 

damping will tend to regulate the response at the anti-node in which event this idealised 
model will no longer be accurate. The new resonant frequencies of the primary source 

(fn)qs=qso now correspond to
(fn)qs=qso =~5^^ (A4.9)

From the point of view of the primary source, the closed, finite duct is indistinguishable 
from a shortened duct of length xq with an open end. An alternative, but equivalent acoustic 
space is that of a duct with some hypothetical infinitesimally thin pressure release 
mechanism located around the perimeter walls at a distance xq from the primary source. 
This arrangement of passive elements would also form a pressure null across a cross 
section of the duct at xq. Thus, the effect of applying active control is to alter the boundary 

conditions of the space which previously were determined solely by the properties of the 
walls of the enclosure. Being able to identify an equivalent acoustic space with the same 
effective boundary conditions begs the question as to whether one can describe the new 
sound field in terms of new acoustic modes i.e., new eigenfunctions appropriate to the 
geometry and the new equivalent boundary conditions. Depending of course on the extent 
of the active control applied throughout the space, the new modes shapes would be 
correspondingly modified and therefore by implication, the new resonant frequencies of the 

enclosure would also differ fixim their values in the absence of control. A shift b the new 

resonant frequencies of the enclosure could have unfortunate consequences b terms of the 
overall sound pressure level b the enclosure.

Attempts to reconcile the mode shapes dmved from finite element analysis b an 

enclosure with the same effective boundary conditions b terms of an array of pressure 
nulls, and the square pressure response at resonance due to the action of the secondary 
sources has so far been bconclusive. Tlie spectrum of the radiation impedance of a plane 
piston type source b a shallow rectangular box at low frequencies was shown to change b 
the presence of an array secondary sources driven to cancel the pressure at an equal number 

of pobts. Unfortunately, be new resonances of the primary source radiation impedance 
were poorly correlated with be finite element predictions. However, ft* be purposes of 
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AeiKoblem underdiscussimi h^anB,ltM:(3arM)clLitw]m(^Ftkw;i%rcsaiin:: atapomtinaArce 

dimensional enclosure is believed to cause only a minor poturbation of the mode shapes. 
;itliu;hgocxial(len^aties!MaclithaA)d[((D) » 1, ^teremodalbdiaviour isobscuredowingto 

the large number of overlapping modes, the frequency response of the enclosure is identical 

in the statistical sense both before and after control.

Proceeding to calculate the space avaaged zone of quiet for this one dimensional 
sound field, the total acoustic pressure in the duct p(x) may be calculated from equation 
(A4.6).Putting x= XQ + Zbt,(a(pajndingarMl<Dolhectung&erDas:yMdkds

lp(x)P = |qp|2z? [sin^k(L-xo) + 2c(«k(L-xo)sink(L-xo)tankxo 
+co^k(L- xo)tan^kxo ] sln^kAx (A4.10)

Keeping the point of canccUatitm on xq fixed, and averaging over all duct lengths L, yields 

the simplified expression

< !p(xo + Ax)i2 > = < |pp|2 > [ 1 + tan^kxQ ] sin^IcAx (A4.11)

where < > denotes the expectation over L and where the following relations have been 
used, < sin k(L - xq) cos k(L - xy) > = 0 due to the orthogonality of the elementary 
functions and

IqpP Z^ < cos^kCL - xy) > - Iqpl^ Z^ < sin^kfL - xy) > = < Ippl^ > (A4.12)

Now averaging over all points of cancellation on xy, one can show that the average value of 
tan^kxy is finite. This is despite the finite number of singularities in one period of the 

function arising from those points where the secondary source b completely unable to 

couple into the sound field.
2x

<tan^u > ftan^udu = 1 (A4.13)

where < > now denotes the expectation over Xy. Further noting that < tanxy > = 0, the one 

dimensional quiet rone when averaged ovct all duct lengths and cancellation positions 
«ip(Zkx)|2 », may be shown to be equal to

«lp(Zix)|2 » = 2 < lpp|2 > sin^kAx (A4.14)
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Equation(A4.14) indicates that as a consequenceofnuUi^gthepiessurc atasingle point 
in the duct the square pressure is, on average, increased by a maximum of 3 dB. This 
relationship is indicated in Ggure A4.1. This result could equally have been derived brom 
the more general relationship obtained in the early part of this chapter in equation (4.27).

The one dimensional quiet zone has the same dependence on die separation distance 
Ax as that predicted by the general formula given by equation (427) in terms of the one 
dimensional diffuse field correlation function coskAx since 1 - p^fAx) = sin^kAx. Also 

note that from equation (A4 J)

Ho =cos^kL+sin2kLtankxo+sin^kxo (A4.15)

Furths noting that 

and

<cos^kL> = <sin^kxo> =^

< sin2kL tankxo > = 0

(A4.16)

(A4.17)

One can therefore show that < IHqI^ > = 1 so that according to equation (A4.15)

<lp/ >= < lpf> (A4.18)

Putting 1 - p^(Ar) = sin^kAx and < Ip-P > = < Ipgl^ > into equation (427) recovers the 

result originally in equation (A4.14) derived from first principles.

Appendix 4.2

The probability density function of the residual potential energy after the 
cancellation of the pressure at a point

Given Xi = IHol^ whose probability density function is fxi(xi) = (l+xi)"2 (A4.19)

and X2 = Epp, whose density function is fx2(x2) = -t==™"':;. e^f^i-PE^^^E (A420)

The probability density (unction (yfy) is required where Y = Ep,^ defined by

Y =X2(1+Xi) (A421)
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From an analysis exactly analogous to the transformation of variables in the 
evaluation of a double integral, it may be shown^^ that if Xi and X2 are jointly continuous 
random variables with a probability density function fxpXi (xbX2) and Yj = gi(xi,X2) 

and Y2 = g2(xi,X2) define one to one transformations, then the joint probability density 

function fYi,Y2 (yby2) may be obtained from equation (A422)

fYi,Y2(yby2) = IJI fxi,X2(gr^(yby2),g2"^(yby2)) (A4^)

where IJI is the Jacobian determinant of the transformation defined by

(A4^)

However, in the present case, only one transformation is required, the one relating to the 

residual potential energy defined from equation (A421). It is therefore necessary to 

introduce some elementary dummy transformation whose density function function will 
remain undetermined

Y2 = X2 (A4^)

enabling the Jacobian IJI of the transformations to be constructed according to equation 

(A4^)
'^'=b^ fm'y2>0 (A4.25)

The joint probability function fyi.Yz (yby2) is readily constructed since fyifyi)

and fY2(y2) are independent which is therefore simply their product

^YbY2 (yby2) = fYi(yi) fy2(y2)

-—L A-(Xo ^p)2/2a%

OE (l+y2)^
(A4J6)

Incmporating the results of equations (A4.19), (A4^) and (A4^)

fYl,Y2 (yby2) V^GE(l+y2p (A4jn)

171



The marginal density function fyiCyi) of the residual potential energy may be determined 
by integrating out y2 over the joint density function

f fYi,Y2 (YhYz) dy2 (A4J8)

e-1 i^-^E'Vzoi

(A4J9)

0

which may be considerably sinq)lified by the change of variable u = (l+y2)'^

1
fy2(y) = f ue'(y2U4^E)^/ogdu

(A4.30)
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CHAPTER 5

IS^f(:ITg]2l2RI^f(; ZONES OF QUIET IN THE PURE TONE 
DIFFUSE SOUND FIELD

5.0. Introduction

The potential difficulties inherent in using active control to cancel the 
pressure at a point in diffuse fields were exposed in Chapter 4. In that chapter the results of 
a study of the behaviour of the unconstrained optima were presented in terms of the 
secondary source strength, zone of quiet and the residual potential energy. The variables 
are necessarily unconstrained because the cancellation of the point pressure is achieved with 
no regard for the magnitude of effort required, or the subsequent effect on the sound field 

globally. In this respect, the problem is artificially formulated and is therefore wholly 

unrealistic of the type of approach one would ultimately employ in practice.

One of the principal results to emerge so far in this thesis is an expression for the 

region of confinement in which the acoustic pressure is attenuated below that of the primary 
level. The so called diffuse field quiet zone has been shown to be restricted to length scales 
which are typically a small fraction of the acoustic wavelength. Unfortunately, this was only 
achieved at the expense of significantly raised levels of the potential energy over the entire 
enclosure. The best one can do therefore, is to try to extend this region of attenuation over a 

wider region as possible while at the same time leaving the rest of the sound field as least 

affected as possible. It soon becomes clear that these requirements are to a certain degree 

inconsistent when using a secondary source which is remote from the cancellation point

The woric presented in this chapter comprises an investigation into some various 
control schemes which attempt to capitalise on the diffuse field properties with the aim of 
improving on the typical levels of attenuation documented in the last chapter. It was 
demonstrated that extremely large values of the diffuse field square pressure were 
sufficiently likely to occur that the average value over all space is equal to infinity. The 
cause of this ill-conditioning was attributed to the inability of the secondary source to 

provide, on average, sufficient influence at the chosen point of cancellation. It is this 

unexpected result which forms the starting point behind the control strategies presented in 

this chapter. The strategies investigated include constrainmg the secondary source strength 

to be below some limiting value (hard limiting), minimising a cost function which includes 

control effort as well as measured error signals (soft limiting) and minimising the sum of 
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the squares of the pressures at two closely spaced microphones. An initial discussion of 
these strategies was presented in reference [92]. Some enq>irical findings pertinent to multi­
channel control are also presented.

M. Hard Limiting

Up until now, the necessary secondary source strengths have been allowed to take 
arbitrarily large values so that all of the probability density functions associated with the 

physical variables under discussion were of course unbounded. That is to say, for 
example, that the probability of the secondary source strength required to be say, many 
thousands times greater than the primary source strength is finite. This would result in 
correspondingly large increases in the potential energy by roughly the same order of 
magnitude. The outcome described here is clearly absurd, however, the example serves to 
highlight the fallacious assumptions giving rise to these unfortunate statistics.

Any real control system powered by a real amplifier and subject to the finite 

dynamic range of its transducers will possess an upper-bound value in terms of its 
maximum acoustic power output Above this maximum value, the control system would 
fail to operate satisfactorily. Furthermore, driving a secondary loudspeaker above some 
critical level will inevitably introduce non-linearities into the response of the loudspeaker as 
well as having an adverse affect on the sound field globally. Clearly, with each control 

system one can associate a maximum source strength Iqsu^mx, either built into the control 
system by the engineer according to some pre-determined criterion, or as an unfortunate 

artefact of the limited hardware. The purpose of this section is to examine the consequences 
of this limitation, known as 'hard limiting', both in terms of the quiet zone and the 
corresponding increase in the space averaged square pressure level.

In the case where the secondary source strength is completely unconstrained, the 

probability density function of the square of the absolute value of the transfer function 
V = IHqP is given by

^vM=q:^ fwO^v ^oo (5.1)

where the interval within which the probability density function is non-zero is now stated 
explicitly. Now suppose that the distribution of secondary source strengths is prevented 

fiom being greater than some pre-determined maximum value, say Iqgoimm such that

iQsoimsx. ~ QpIHolmax (5J)
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In statistical terms, the F(2,2) probability density function is now truncated to some 
maximum value N^ax where V^ax * IHoi^^^x- AU values of V less than Nmox stiU have 

the same relaAve likelihood of occurrence although the okofidK likelihood is increased by a 
factor a at the expense of a zero probabiUty of V being greater than N^ax. Truncation of 

the ensemble of values has the effect of 'stretching' the probability density function in the 

interval of validity as described by equation (53) below 

where a remains to be determined and represents some linear, dimensionless scaling 

constant greater than unity. One can conceive of a real situation where the position of the 
secondary loudspeaker is re-adjusted until perfect canceUation of the acoustic pressure is 

achieved while ensuring that the secondary source strength required lies within the aUowed 

interval. In nearly all cases, the primary source position wiU be fixed and the point of 
cancellation wiU also be fixed, being largely dictated by, for example, the car driver’s ear 
position.

The value of a is obviously determined by the value of N^ax which may be readily 

evaluated by exploiting the fact that the area under under a probability density function is 
equal to unity. From equation (5.3)

''^max

0
Solving for a yields

a=[Fv(Vma%)]'^ = -^-^^^ (530 

where obviously
a^l (5.6)

The resulting probability density function of the hard limited ensemble may now be written 
as

'vM = -^^^ for V a V^. (5.7)

and

fv(v)=0 for V>Vmax. (5.8)

By way of illustration, the ensemble of unconstrained values employed in the 
distribution of values shown in figure 4.6 was edited to exclude all those values greater 
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than 3 so that N^ax = 3 in which case a = 4/3. In this example therefore, IqsoI/zmx. = V3 

Iqpl. The theory and the simulated distribution of values are con^ared in figure 5.1.

Figure 5.1 7/zg pro6a6iZzfy dcnjzfy /uMcfion of o/i ensgmtk of voZuof of IHol^ cowfroined 
MOZ zo ecceed 3. Szmzz/ozed dozo fdasW fzmgj, theoretical czove fjoZzd ZzmoJ.

It is instructive to consider the mean of this hard limited probability density function 
which now must converge on some finite value since all of the moments associated with the 

truncated distribution are now derived from integrals evaluated within finite limits. From 

equation (4.40), the mean value of the distribution is readily obtained from
Vfliax

< •Hol^/uyd> = Y^ J (bi^ ^^ ^5'^^ 

0

= In (1 + v^) - 1 (5.10)

As previously remarked, < IHol^*ard > will tend to infinity as the level of constraint is 

gradually lifted such that v^ax tends to infinity. A graph showing the expectation of the 
normalised potential energy as calculated from < IHol^Aard > + 1 is shown below versus 

IqsoImzK • Also indicated for integer fractions of Iqpl / Iqsolmmc k the cumulative distribution 

function determined from equation (4.58) for the unconstrained problem. These values are 

exact except when a decimal point is indicated! The graph is most meaningful for values of 
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Iqpl / Iqso'/nax greater than unity for which the corresponding variance in the normalised 
potential energy is small in relative terms.

Figure 5.2. The expectation of fAg normofwed pofgmfioZ energy, WM/fing ^om dnving o 
poznr prgjjwrg to zero wAen Aord Am/fing if imposed.

The graph is valuable in providing guide-lines relating to the first order behaviour 

of the residual diffuse field square pressure together with the likelihood of achieving its 
perfect cancellation at a single point. It is extremely encouraging to note that for even quite 

useful values of Nmax- the corresponding expectation value of the normalised potential 

energy remains within tolerable limits. This behaviour is an immediate consequence of how 
slowly the mean value diverges to infinity as governed by equation (5.10). In fact 

logarithmic increase is the slowest of all elementary functions just as exponential growth 
(the inverse function) is the fastest For example, setting an upper bound for the maximum 

secondary source strength to say twice the primary source strength i.e., Iqsol/wax = 2 Iqpl, 
provides for an 80 % chance of being able to cancel perfectly some pressure at an arbitrarily 
chosen point to zero. Providing the secondary source strength is not allowed to exceed this 
value, the expectation in the diffuse field potential energy will increase by only 1.8 dB.

Precisely how this simple theory translates to the actual space averaged diffuse field 
quiet zone is readily evaluated. Recalling equation (425), which for the case when hard 

limiting is being applied, is given by

<lp(ro + Ar)P> = <lpp(r)|2>[l+<IHo|2/^rf>](l-p2(Ar)) (5.11)



The hat ’a* is used to suggest that the random variables are now only estimates owing to the 

finite sample size so as to make the distinction from proper expectations due to the fact that 
some of the possible outcomes have been excluded. For a folly diffuse, three dimensional 
sound field, for kAr « I the term 1 - p^fAr) has a particularly simple power series

1 - p^(Ar) - ^ (kAr)^ (5.12)

Recallingthat 1 + <IHopAar^> ="' 1» (1 +v#w%)6omequ&iion(S.10), setting

the right hand side of equation (5.11) to 0.1 and solving for 2Aro.i shows that to a good 

approximation, the -10 dB zone of quiet may be written as

2< Arp.i > ^ ^2aa& 0.3 (5.13)
(l+uL%) ln(l+u^)

where U^ax = IHol/nax- This expression is plotted in figure 5.3 versus the reciprocal transfer 
function iqpl / Iqsolmax • Below this figure is shown the cumulative distribution function also 
plotted against the reciprocal transfer function (Umax )’^

Figure 3 J 7VK expected wafwe of the dlghre^W ^wet awae werxwx Iqpl / Iqsol/nax- ^^^ xAowa 
if (Ae cwwdotfve distribution /iwetiba qf equatiba (4_58), aZfo ax a.^tactioa qf Iqpl / Iqs^lmar
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Values of Ac secondary source strength which arc prevented from exceeding, say 
ten times Aat of Ac primary source strengA where iqjJ /10,01^^% -0.1 (which accounts for 
more Aan 99% of cases) gives rise to an expected value for Ae size of quiet zone typically 
equal to one tenA of a wavelengA. For Ais example Ae expected mcrease m potential 
energy is by a factor of 2.4 (approximately equal to 4 dB). In Ae absence of any upper­

bound value imposed on Ae Astribution of secondary source sffengAs corresponding to 
iQpl / IqsJ/TMx == 0, Ae true, unconstrained expectation is zero. However, upper bound 
values of Ae secondary source strengA which are of Ae order of Ae primary source 
sAengA, are sufficient to secure an expectation value for Ae diffuse field quiet zone of 
about 0.15 wavelengAs. Unfortunately, Ae probability of achieving perfect cancellation of 
Ae pressure diminishes rapiAy.

The statistical distribution of hard limited secondary source strengths can also be 
derived. Following an analysis identical to Aat presented m Ae last chapter, one can show 

Aat
fu(u)=l^ foruSU^ (5.14)

and
fu(u)=0 for u > Um^zx (5.15) 

where Umd%=:

Of principal mterest from Ais theoretical probability density function is Ae mean 

which may be calculated from
Umax

< kbolAar4>" du (5.16)

where Ac simple change of variable u = tan u yields

< lqsolA^>=: klpl[ ] (g^) 
Umax

The variance is now also defined according to equation (5.18), proviAng some useful 
mformation relating to Ae typical variation one can expect from successive experiments

^^sol — ** iqsol^/izirrf > - < iqsoi/Mrd ^ (518)

where < lqsol^Aar<r > can be evaluated from
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Umax
< Iqsol^Aard > = *<lp’^^;if^ J (l+u2)2 ^“ (5.19)

From equation (5.17) and (5.19) the variance of the unconstrained secondary source strength 

can be shown to have the complicated form

OmsoI = [ ^^^ Ind + u^) + 2tan ' u^
Umax Umax

, dtAai! 1 . J ]|qp,2 (5 20)
Umax Umax

The mean value according to equation is plotted below for U^ax between zero and four 

and the region, shaded gray, represents the interval between plus and minus one standard 
deviation O|qsoi from the mean value according to equation (5.21).

Figure 5.4. The mean of (/K hard firnztcd secondary soorce sfrengfA pfoned ago/nsf fAe 
reciprocal tranter jhncdon /^p/ / /?sc/ma%- ^^^^ shaded region denotes (Ae voZues contained wttAzn 
p/us ond nunos one standard deviation /rom tAe mean.

The function plotted in the figure above falls surprisingly slowly from its unconstrained, 
asymptotic value of n / 2 at Iqpl / Iqsolmox = 0. Such is the gradual rate of descent of this 

function that varying Iqsolmox from infinity down to a value equal to the primary source 
strength Iqpl results in little more than a halving of its associated mean value. Now that all 

possible outcomes are constrained to lie in a finite interval, all of the moments associated 
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with the distribution are now properly defined. As anticipated, the function asymptotes to 
infinity as the level of constraint is gradually rmioved such that Iqpl / Iqsol/nax approaches 
zero. However, for a upper-bound value of iqsJmax == 2lqpl there is an 80 % chance of 
perfectly canceling the pressure for which the erqrected increase in the mean square 
pressure is only raised by a factor of 1.38.

The analysis in this section is, in essence, an investigation into the divergence and 
convergence properties of the relevant variables. It nevertheless serves to demonstrate that 
the active control of the diffuse sound field is not as poorly conditioned as the former 

analysis has initially indicated. Indeed, upper bound values for the secondary source 
strength which are only slightly greater than the primary source strength, provide sufficient 
input into the sound field to be able to cancel the pressure at the majority of cancellation 
point positions while incurring only small increases in the space averaged square pressure 
over the sound field globally. Figure 5.3 indicates that for Iqsolmax = 2lqpl the size of the 
quiet zone is approximately 0.13X. However, upper bound values of the secondary source 

strengths which are reasonably large exhibit only small variations from point to point 
within the diffuse sound field enabling the optimal secondary source strength requirements 

to be anticipated to within an acceptable level of accuracy. For the current example, the 
secondary source variance is approximately 0.25 Iqpl^ coiresponding to a standard deviation 

of about 0.5 Iq^l. Not surprisingly, the level of variance depends strongly on the level of 
freedom assigned to the control system which is of course determined by the size of the 
upper bound value Iqsolmax • The difficulty in applying these figures to any real example 
however, is being able to quantify the primary source strength. This is a notoriously 
difficult measurement for large, complex vibrating bodies.

In practice, one should allow for a maximum secondary source volume velocity 

when seeking to cancel the pressure in a high frequency, enclosed sound field to be 

typically twice that of the primary source. This ratio strives to achieve a level of 

compromise between standing a reasonable chance of accomplishing perfect cancellation of 
the pressure at the desired point, forming a reasonable size quiet zone while ensuring 
against too large an increase in the average diffuse field square pressure.

5 J. The under determined problem: Employing 
many secondary sources to minimise the pressure at a single point

In the next two sections, elementary multi-channel control schemes are considered 

from the point of view of their statistical behaviour in a diffuse field environment In all of 

the following, it is assumed that the in-phase pan, and quadrature part of the complex 
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transfer impedance between two well separated diffuse field points are bivariate Gaussian 
random variables. Consider a pure tone diffuse sound field in which there are many 
independently positioned secondary sources employed to reduce the square pressure at the 
same point r© according to some hitherto unspecified criterion. This arrangement is shown 

schematically in figure 5.5.

Ho(co)

Figure 5.5 An illustration of a number of secondary sources acting to nu/wmwe (Ag J^wore 
prgf jwrg of one rmgk pofof m o pwe (ong digifse jownd/IeW.

In terms of a proper control formalism, consider the cost function Jp constructed 

according from the sum of 'cost' and 'effort' terms

Jp = lp(ro)l^ + Pastas (5-21)

The term P is a user determined 'effort' weighting constant The term qs denotes a vector of 
secondary source strengths gj = [qsi qs2 Qss, . . Qsjl and H' denotes the Hermitian 
conjugate transpose. This new cost function Jp now includes an additional term Pqs^qs 

which is the sum of the modulus squared secondary source strengths, the control effort, 
which ensures that the effort provided by the control system by way of the secondary source 
strengths required to perform the reduction in the acoustic pressure are fully accountable. The 

secondary source strengths can no longer take arbitrary large values since this would now 
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lend to dominate the cost function. In this event the dfcMt would be directed towards 
regulating its own volume velocity output and the reduction in the pressure would emerge as 
a minor priority by comparison. The level of attenuation produced at the control point will 

therefore be somewhat diminished. For most source positions however, the additional term 
Pfls^Qs will represent only a minor perturbation on the actual square pressure lp(ro)l^ and only 

small losses in the actual achievable pressure reduction will be incurred. The process just 
described is sometimes refered to as soft limiting

Specifying the problem more precisely, the vector of optimally adjusted secondary 
source strengths qs is now required which satisfies the optimisation criterion

---- = .......... ^"
8qsi 8qs2

(5J2)

where it is now tacitly assumed that setting the differential of the cost function with respect 
to a complex secondary source strength zero represents the following operations

(5.23) 
dqsj d$t{qsj) l-(qsj)

The solution to this multi-variable optimisation problem is accomplished using the 
following procedure: The cost function Jp in equation (5.21) is expanded into the standard 
Hermitian quadratic form using p(ro) = pp(ro) + Z(rslro) gs

Jp-Pp(ro)*Pp(ro) + pp(ro)*Z(rslro)gs +gs"z"(rslro)pp(ro) +

g^^^[2:(rsk'o)f'Z<ij:lro)+ pljg, (5^)

where in this case Z(rslro) is a (1 x M) vector and where the superscript H is used to denote 
the Hermitian transpose which is an operation composed of taking the transpose and the 
complex conjugate successively and where I is the identity matrix whose order is 
determined by the number of points of cancellation. Inspection of equation (5.24) shows 

that it has precisely the quadratic form considered in Chapter 3. However, in this multi­
variable problem, scalar quantities are now replaced by their corresponding vector and 

matrix equivalent variables. The coefficient A, is now a matrix of transfer impedances 

coupling each of the secondary sources to the point of cancellations and the vectors h and £ 
may be identified in a similar way. Recognising this propertyi^ enables the unique, global 

183



minimum of this complex functicm to be determined in an exactly analogous way to the 
single channel case fiom the formula

(5^) 

which leads to the general solution

g^'='lHZX)slro)"^:(r«kY»>kf«]'^2P0n^^Y0'^Pp(fo) (5^

This generalised formula reduces to the following simple expression for the single source 
case (L = M = 1)

(bo—^(5^
Z(r,lro)+P

(5^)

One can verify immediately that the result of constructing the cost function in this manner is 

to simulate an ^ective transfer impedance from the secondary source to the point of 

cancellation which is identical to the physical transfer impedance with some constant 
impedance impedance term p superimposed. All the first order diffuse field transfer 

impedance statistics discussed in chapter 3, are effectively translated from zero to some pre­
determined non-zero value p.

For the two source case, the optimal secondary source strength vector according to 

equation (5.26) gives
Q  Z*(rg,lro)Z(rplrg)

IZ(rsilro)l4lZ(rs2lro)l^+P

2^(r^ro)Z(rDlro) 
IZ(rsilro)l4 IZ(rs2lro)l4p

(5J8)

(5.29)

Equations (5 J8) and (5:29) reveals die inter-dependence between the two secondary 
sources. The respective magnitudes of the two sources correspond, in some sense, to the 
ease with which each source is able to couple into the point of cancellation at fq. In the 
extreme case where IZ(rsilro)l is much greater then !Z(rs2lro)l, then correspondingly, Iqsj! 
will be much greater than Iqs2l such that qs2 will tend to turn off. In the event that IZ(rsilro)! 
= IZ(rs2lro)l, the total effort wiU be equi-partitioned between the two sources so that iqsji = 

iqs^L

Unfortunately, the statistical behaviour of the secondary source strengths defined 

by equations (5.28) and (5.29) is not amenable to simple analysis. Particularly, the 
expectation [ < IqsJ^ > + < Iqs2l^ > J / Iqpl^, is required which is of principal interest since
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it determines the expected increase in die diffuse Geld square pressure. Nevertheless, this 
expectation may be closely qiproxunated using very simple numerical techniques. The real 

and imaginary parts of the complex transfer impedance Z(rsilro), Z(rs2lro) and Z(rplro) 
were each assigned a value taken from an independent, normally distributed ensemble 
produced with the aid of a random number generator. The setXMidary source strengths qsj 
and qs2 were then evaluated according to equations (528) and (5.^) and the exercise 

repeated a total of 15,000 tinaes for each value of p. The average value 
[ < Iqsil^ > + < IqsJ^ > ] / Iqpl^ was subsequently calculated from the resulting ensemble as 

a function of P between 0 and 0.1 which is shown plotted in figure 5.6.

(Consistent with the underlying control philosophy, the expectation of die sum of 
the square source strengths remains within acceptable limits over the range of p. 

Introducing an additional source has the effect of adding to the controller an additional 
degree of freedom which enables the total effort required to be distributed between the two 

sources according to a least squares criterion specified in equation (5.21). The total volume 
velocity directed towards driving the point pressure to zero wiU shift towards the secondary 
source which is best coupled to the control point.

Figure S.6 The expectation of the sum of the f^MUrej qf the nw) fecoadmy AMircej 6ofA <!f 
wAicA ore cofurrowed (o oc( or fAe sow powu w o pore roae d(ghse sound/kW wsws (Ae sqf) 
limirMg porowrer p.
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According to Ggurc 5.6, the ensemble mean remains unexpectedly well behaved 
even as p tends to zero. The ncsmalised sanple mean eventually converges on two for a 

value of p which is exactly equal to zero. ITie result is particularly surprising because for 
P = 0, the optimal solution to Jp = 0 is now longer unique, but equally satisfied for an 

infinite set of values corresponding to

qsiZ(rsilro)+qs2Z(r«2lro)=-p(ro) (5.30)

The solution to this apparent paradox lies in the fortunate choice of cost function Jp. 
Employing a technique common in the calculus of variations for finding the extrema of 
constrained functions^^, we now seek to show that posing the problem in this way and 
letting p tend to zero has unwittingly lead us to an important limiting case. In the next 

section it is shown that for the particular case where p = 0 corresponds to the unique set of 

source strengths for achieving perfect cancellation of the point pressure for minimum least 
squares effort. In the diffuse sound field, the minimum total square source strength also 
corresponds to the minimum secondary source sound power output

5.3. Cancellation of the pressure at a point using multiple 
secondary sources for least squares effort

Consider again the configuration in which two secondary sources qgj and qs2 are 

made to act at the same point ro, the total pressure is therefore given by

p(ro) = qpZ(rplro) + qs2Z(rsilro) + qs2Z(rs2lro) (5.31)

Now consider the usual cost function Jp which is constructed from the square of the 
pressure at the point of cancellation

Jp = P(ro/p(ro) (5.32)

The aim of this section is to derive the vector of optimal secondary source strengths 
flso^ = [ qsob Qso2 1 which makes Jp = 0 subject to the additional constraint that qg^ qg is a 

minimum. Note that it is only this additional constraint which ensures the consistency of 

putting p(ro) = 0. Employing the method of Lagrange's undetermined multipliers, consider 
some new real cost function (p which is constructed from

(p=gs"gs + X*P(ro)+Xp*(ro) (5.33)
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On substituting for p(ro), one can therefore write

9 = gs" gs + X[ qp z* (rpiro) + gg"Z*(rW ] + X*[ qpZ(rplro) + ggT'Z(r8lro) ] 

(5J4)
The term % is some arbitrary complex scalar constant known as the Lagrange multiplier. 

The vector of optimal secondary source strengths qso must further satisfy

which is equivalent to setting Jp = 0 which puts die pressure at the control point equal to 

zero. On performing the differentiation one obtains

qpZ(rplro)+ gso^Zfrglro) -0 (5J6)

which is of course precisely the original condition on the secondary source strengths for 
achieving perfect cancellation at fq whose solution was found to correspond to an mfinite 
set of non-unique secondary source strengths. Equation (5.35) can be made consistent by 
ensuring that the pressure is only driven to zero for an optimal secondary source strength 
vector qso which maintains least squares effort. However since at gs = gso the pressure 

PCfq) = 0, equation (5.36) is equivalent to setting derivative of the cost function <p to zero 

with respect to the vector of secondary source strengths according to 

^=0 (5.37) 
9gs

Equation (5.33) is a standard Hermitian quadratic form in gs which may be readily solved 

to give
gso "^ ^Z (fs^t'o) ™ ® (5.38)

Together, equations (5.35) and (5.38) form a pair of consistent set of simultaneous equations 
in Qso which are readily solved to produce the unique, solution for the vector of optimal 

secondary source strengths which sets the vector of pressures p(ro) to zero while 
maintaining a minimum value for the sum of squared source strengths of the form given by 

equation (5.39)

gso=- Z^(n^%0[2XrjF^Fz*(n^Y0]'^ZXn^^^qp (^^9) 
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where there is no requirement to determine X and is therefore undetermined. Equation (5.39) 
is precisely the form of equation (525) for vanishingly small p. For the case where two 

sources are acting at one point, performing the matrix inverse is trivial so one can therefore 
write

^‘ " IZ(rs,lro)l^+^Fsi^o)!^ ’’"

Z*(r52lrQ)2Xrplr(,)
IZ(r„lro)I^IZ(r,2lro)l’ ^

(5^)

(5/41)

Consider the sum of squares of the moduli of the secondary source strengths as a ratio of 
the square of the primary source strength as indicated below

Iqsoil^ + lqsozl^ IZ(fDlro)P
lqp|: IZ(r:ilro)l^+IZ(r:2lro)P (5^)

From previous work, it has been established that in a diffuse field, the numerator is a 

random variable which is distributed as a Chi squared distribution with two degrees of 
fireedom. By similar reasoning the denominator is, by definition, a Chi squared random 

variable with four degrees of fi-eedom. Assume that aU sources are located further than a 
wavelength apart so that the numerator will be independent from the denominator. One can 
therefore infer that the quotient of Chi squared random variables given in equation (5.42) 

has the probability density function of an F(2,4) random variable. From standard statistical 
texts63, the F(2,4) probability density function takes the form of

fv(v)= ^. . where 'V = [kko^^+kko^^]/lq^^ (5.43)
(l+v/2)^

Notice the similarity in the form of this function with the F(2,2) probability density 
function for the single channel unconstrained problem. The mean value of this distribution 
now exists and may be determined in the usual way to give

< iqsoil^ "^ *0502'^ ” dv = 2 iqpP (5^)

For well spaced secondary sources, the average effixl will be equally distributed between 
the two sources from which one can infer that < Iqsoil^ > = < Iqso2l^ > = Iqpl^* The 

variance is not defined however.
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A singlesecondmysourccactingalone tocanceldieprcssumatapoint in±e 
diffuse field has a space averaged square source strength which is infinite. Now dividing 
the total effort between two independently positioned sources according to the least squares 
criterion specified in equation (533) has been proved to be considerably more beneficial in 

terms of the total sound power injected into the sound field. The expectation of the sum of 

the square values in this two source case is less than when only one source is used even 

though the outcomes are identical inasmuch as the diffuse field point pressure is driven to 
zero in both cases. The total square effort is now mathematically convergent and of a 
magnitude which makes the schero viable for many practical applications although clearly 

costly in terms of hardware and computational resources.

For two well separated secondary sources, each source makes the same 
contribution to the space averaged square pressure as the primary source in isolation 

thereby causing a three fold increase in the space averaged diffuse field square pressure 
which is approximately equal to 5 dB. Ihe 10 dB quiet zone 2Aro.i for this two source 

problem can be calculated to be about approximately one tenth of an acoustic wavelength. 
In contrast, the expected value for the quiet zone in the single source case is zero.

An identical argument can be reasoned for the three source case. The probability 
density function of the sum of the squares of a trio of well separated sources 
V = [ Iqsoil^ + Iqso2’^ + iqsosl^ ] / Iqpl^ which are driven to cancel the pressure at a point to 

zero, while maintaining least squares effort, can be shown to randomly distributed with the 
F(2,6) probability density function given below

Mv) = ^^[:;^ V= [ IqsoiPf Iqso2p+kko3p ] /IqpP (5.45)

Both the mean and the variance are now defined for three independently positioned 

secondary sources owing to the rapidity with which the probability density function decays 
away. The argument can be generalised for M well separated secondary sources acting at 
the same point for the least squares effort. The probability density function of the sum of 
the squares of the optimal source strengths is given by the F(2,2M) function whose 
probability density function is of the general form

where V=ZlqsoMl’/lqpl’ (5.46)

A plot of this function is shown below for M = 1,2,3 and 4.
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Figure S.7. Ptots of fAe ff2;2MJ pro6o6*/toi (kRnl).^wcfiof: A'^ ^ » /, 2, J omd 4

Using equatlcm (4.40), it is a sinq)le matter to show that the mean of the F(2,2M) 
distribution is M/(M - I) which for independently positioned secondary source corresponds 
to an expectation value for the square of each of the secondary source strengths individually 
< IqsomI^ > which are equal to

<lq%Ml^>"=lqpP/(M-l) (5.47)

which is Gnite providing M > 1. Despite the fact that dividing the total effort between a 

number of independently positioned points appears to have only a (surprisingly) small 
effect on the probability density function of the sum of the squares of the secondary source 

strengths as indicated in figure 5.7, the effect on the average value is significant Not 
surprisingly, this mean value steadily diminishes as the number of secondary source M 
introduced to cancel the point pressure increases. However, the benefits obtained in terms 
of tire global sound field derived from increasing the number of sources quickly depreciates 

and the principle of 'diminishing returns’ soon starts to apply. It is interesting to observe 
that as the number of secondary sources introduced to assist in cancelling the same diffuse 
field pressure is increased, the total square pressure contribution fix>m the cluster of 

!XXxm(bry!xnnoesK(/(M-l) tends to tmi^vdnchthendkfetxpndsdtcprhnarfsounae 
square pressure contribution acting in isolation < lpp(r)|2 >. This important limiting case 

represents a doubling, or 3 dB increase in the average global square pressure. A two fold 

increaseinthcdiffuscfieldsquarepressurediaefbrereprcsents Ac smallestincreasc 
physically achievable when one seeks to cancel the pressure at a point in a diffuse field by a 
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loudspeaker or loudspeaker array which is remote from the point of cancellation. The 
expected value for the quiet zone for this best possible case can be calculated to be about 

one eighth of the acoustic wavelength. A doubling in the global square pressure will be 

shown to be also the least possible increase possible when we come to consider the 
problem of minimising the sum of the squares of the pressures at a number of well spaced 
points using a multiplicity of secondary sources.

By way of illustration, the square pressure was calculated one and a half 
wavelengths eitfier side of a point of cancellation produced by two weU separated 
secondary source optimally driven so as to maintain a total least squares secondary source 
strength. The computer simulated experiment was repeated twenty times in the computer 

simulated sound field where for each simulation, both the primary source and the 
secondary source pair was randomly positioned although prevented from being closer than 

one wavelength from each other and all of the enclosure boundaries in each case. The 
average square pressure reduction obtained from twenty such simulations is shown below 
in figure 5.8. In this example, good agreement is established by the theoretical curve 
2.7(1 - sinc^kAr) indicating that the mean square pressure contribution from the secondary 

source is approximately < IqgP > * 1.7 < Iqp!^ >. Note that this is close to the expected 

value of two as predicted by equation (5.47).

Ar

Figure S.8 The xone of quiet about a point of cancellation formed by two independently 
positioned secondary sources seeking to maintain a least squares secondeuy source strength. 
TAf compWff WMuWoa t$ fAmvm of jio&d liw omd *A< tA^yy if represented ^ a dafAgd fwK.
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Conparison of figure 5.8 with the zme of quiet produced by a single unconstrained 
source shown in figure 4.3 demonstrate the benefits derived firom using two well spaced 
sources. On average, the square pressure level produced well away from the point of 
cancellation is approximately 2 dB below the single source unconstrained level. The 
benefits obtained here in terms of the pressure increase well away from the point of 
cancellation are of course transfered to the size of the quiet zone which is now nearly 0.15 
of the acoustic wavelength. This value compares with one tenth of a wavelength for the 
single source case. Introducing the number of secondary sources still further to three is not 
expected to produce a dramatic improvement on this result

5.4. The over-determined problem

In the preceding section, a number of secondary sources were employed over and 
above the single source absolutely necessary to cancel the pressure at a point The 
redundancy of sources were shown to be useful in order to ensure that the expected 
increase in the diffuse field square pressure remains low.

This section is concerned with the converse problem where a number of secondary 
sources are used to minimise the sum of the squared pressures at an even greater number of 
microphones. Where there are more points of minimisation than secondary sources, the 
control configuration is known as over-determined. Obviously, the perfect cancellation of 
the acoustic pressure at each point is no longer achievable. Undoubtedly, the most 
successful approach for achieving a reduction in the sound pressure level which extends 

over a wide area is to minimise the sum of the square pressures at a distributed number of 

points. This type of least squares approach forms the basis of a large part of modem 

control theory which may be cast in the guise of a quadratic minimisation problem for 

which there exists a well defined, unique solution. We will first consider the statistics of 
the secondary source strength and the subsequent degree of acoustic reduction in the field 
will then be discussed.

Consider the case where M secondary sources are required to minimise the sum of 
the square pressures at L points in the sound field. It is assumed that the problem is over 
determined so that M < L, otherwise the control geometry is under determined. The vector 
of L complex pressures p(r) is related to the vector of M complex secondary source 
strengths gs via

E(r) =gsZ(rslro)+qpZ(rplro) (5.48)
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where Z(rslro) now represents an (L X M) matrix of coaq)lcx transkr impedance terms 
coupling each of the measurement points to each of the secondary sources and where 
Z(rplro) denotes a (1 X L) vector of transfer inpedance terms which couple each of the 

measurement points to die primary source (only one primary scwirce is assumed). Writing 
equation (5.48) in full gives

"'P(ri)
P(r2)

rZs(rilfsi) ZsWrsl) .

-p(rL) "^ LZg(rilr^ Z(r2lrsL)

Zs(rMlrsi) "]rqs(rsl) 
qs(rs2)

Zs(n^r^ - -qs(rsM)
(5X9)

The problem of rinding die vector of optimal secondary source strengths qso is reduced to a 

standard problem in linear algebra. Now given that there are more equations (points of 
minimisation) than unknowns (secondary sources), one is compelled to seek a least squares 
solution. An exact solution to the equation g(r) = 0 is only possible for M 2: L. The vector 
of optimal secondary source strengths qso for minimising the sum of the squares of the 
acoustic pressures p(r)^p(r) is well known and given byi^

gso = -[Z(rslro)"Z(rslro) ]'* Z(rslro)Hgp(r) (530)

which is die familiar least squares regression formula. This result has successfully been 
applied to a wide range of active control problemsi4'3931. Typically, the best possible 

reduction of some energetic quantity is usually desired which readily lends itself to this 
kind of analysis since energy related variable naturally arise as quadratic functions of the 
source strengths. The total acoustic potential energy in an enclosure is just such an 

example.

In a diffuse field environment, each of the ctmplex transfer impedance terms 

appearing in equation (5.49) exhibits well defined statistical behaviour. The in-phase and 
quadrature parts of the respective terms Z(rsjlrj) are known to form a joint Gaussian 

process according to the argument proposed in (Chapter 3 providing that the secondary 
sources and the control points are well separated namely I rgj - rj I > X. Further assuming 

diat all of the secondary sources are separated by more than a wavelength (which in practice 
means that all error microphones are well separated) enables one to make the further 
simplifying assun^jtion that all of the complex impedance terms are themselves mutually 

uncorrelated. Considerable effort was directed towards attempting to determine 

theoretically, the probability density function of the square of the optimal secondary source 
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strengths defined via equation (550). Unfortunately without success. Nevertheless, 
considerable insight into the multi-channel diffuse field problem was gained by the use of 

Monte-Carlo methods.

The fact that all of the impedance terms appearing in equation (5.49) may be 
described in terms of independent, normally distributed random variables forms the basis 

of Monte-Carlo simulatitMis. The level of statistical fluctuation experienced by any one 
single diffuse field secondary source seeking to minimise the sum of the squares of the 
pressures at a number of well separated points was simulated on the computer. Each of the 
real and imaginaiy parts of the transfer ircpedance terms appearing in equation (5.50) were 
assigned a normally distributed, zero mean random value taken fiom a random number 
generator. The variance of the random number series was pre-determined and arranged to 
be approximately equal to that obtained from the computer simulated model. This in turn 
was in approximate agreement with the variance predicted by equation (321), although, this 
precaution is of course not strictly necessary. For the case of L sensors and M secondary 

sources, this procedure is represented symbolically below

Irori=lJL
Fk«j = l,M

)l( Z(rdlrj) ) s Ni(0,(^: 1( ^Irj) } = N2(0,(^

Nextj 
Nexti 

(5.51)

For j= IJ,

R-f Z(rplrj) ) = N3(0,(^: %( Z(rplrj) ) = N4(0,o^

Nextj
whne c^^:=|p2(Dc^/ 16%(V

The source strength of a single secondary source necessary to minimise the sum of 
the Kjuare pressures at one, two, three and four independent points was evaluated 
according to equation (5-50). In each case, the simulation was repeated 5,000 times for 
different transfer impedance values and the modulus of the secondary source strength Iqs^l^ 

was calculated for each. The probability density functions for each ensemble of values was 

calculated. Each computer simulated distributions of values appears to be in close 
agreement with the Pareto probability density function fv(vJN) given by^^
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N 
fv(vW =^i^ (5.52)

where N is the Pareto parameter. In this set of four examples, the Pareto variable N, the 
sole descriptor of the distribution, appears to correspond to the number of points of 
minimisation such that N = L. The calculated probability density function of the squares of 
the secondary source strength together with their respective Pareto distributions are shown 
in figure 5.9 for N equal to two, three and four. Also shown for comparison is the F(2,2) 
probability density function for the single charmel case. By inspection of equation (552), 
the F(2,2) probability density function is a special case of the Pareto distribution for N = 1.

Figure 5S 7%€ coZcwkfgd pro^otzfiO' dc/wify ^cfiom of r/K sguore of (Ag ggcondory jowce 
jfrgngfA rg^uo-gd to mt/umufg fAg ao» of fAg f^ttorg pressure of fo) OfK point, fAg ff22J dgTuify 
ywict/on, fA). Two wgO fgwotgd poimtr, fc). TArgg pomtr ond ftf), four poinw oii jAown ^ o 
(iojAgfi iing. Ako fAown k fAgir rgspgcfivg forgfo/wcfionr/br 7\A = 7,2, S ond 4 rgjpgcfivgi}, 
fAown or o roitd Zing.

195



It is instructive to consider the mean value of the Pareto probability density function 

as a function of the governing variable N which has been found to have meaningful 
physical significance b this case. It is a simple matter to show that the mean value of the 
random variable x^ namely < x^ > which is governed by the Pareto probability density 

function with a Pareto variable N accordbg to equation (552) is singly

which remains finite for N > 1.

On the basis of this set of Monte-carlo simulations, the expectation of the square of 
the secondary source strength < iqsoj^ > necessary to minimise the sum of the square 

pressures at L mdependent diffuse field pobts may therefore be written as

<l(koLl^>=lqp|2/(L-l) (554)

Notice the resemblance to the form of the expectation b equation (5.47) for each secondary 
source strength in the overdeteimbed problem Iqpl^ / (M-1). b the under-determined case, 

the pressure is set to zero and the sum of square efforts is minimised. In the over- 
determbed case, the sum of square pressures is minimised although the no constraint is 
imposed on the secondary source strength. The apparent bterchangability between the 
number of sources M and the number of pobts of mbimisation L between the over- 

determbed and under-detcrmbed source configurations suggests the existence of some 

kbd of reciprocal process between the two control schemes.

b the absence of any formal analysis, one cannot be absolutely certab that the Pareto 
function is the correct generalised probability density function for describing the variation of 

square secondary sources constrained b this fashion. However, a high degree of confidence in 
this choice of function is justified for several reasons. First, The Pareto distribution provides a 
good fit to the simulated data; second, the function reduces to the F(2,2) probability density 
function which is known to be correct for the special case where N = 1, and last, statistical 

trends are correctly predicted as the number of secondary sources are bcreased.

The effect of usbg a multiplicity of secondary sources to minimise at a number of 

well separated pobts was also bvestigated usbg the same Monte-Carlo technique. 
Equation (5.50) was evaluated 5,000 times with the appropriate complex transfer 

impedances so as to mimic the behaviour of two secondary sources mbimisbg the square 

pressure at three pobts (M = 2, L = 3) and three secondary sources minimisbg the sum of 

square pressure at five points (M = 3, L = 5). btriguingly, the Pareto density function
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seems to have suiprising generality and even appears to adequately describe the variation of 
square secondary source strengths for this higher order system. In this case however, the 
Pareto variable N now appears to correspond to the ratio of the number of points of 

cancellation to the number of secondary soturces

(5.55)

where the generalised formula of equation (552) is valid as a probability density function 
even for firactional values of N. The distribution of simulated values for the two examples 
together with their respective Pareto density functions is shown below. Figure 5.10a and 
figure 5.10b show the probability density functions for the M = 2, L = 3 and M = 3, L = 5 
examples respectively where good agreement is apparent in each case.

Figure 5.10 The calculated probability density fimction for the square of the secondary source 
strength wAgn fo) nw ffco/id^ sources org fo mwimwe fAg wm of s^warg p-gswgj of
fArgg wg// jg/wofgd poinff owf (6) (Argg fgcondory Jowcgs mwimiiMg of^vg %%/? j«porofgd 
poimfr w o dfg'iwg wimd^W, gocA fAown or o dorAgj fwg. ^o jAown or o roZfj Cmg org fAg 
forgfo dgorify funcdonfor Af = 3/2 ond A/ = 5/3.

To test this hypothesis further, the appropriate random transfer uiq)edances were 
generated in order to mimic the statistical behaviour of three well sq)arated secondary 

sources seeking to minimise the sum of the square pressures at three well separated points 
in a diffuse fi[eld environment This arrangement is a representative example of a 'square 

system* (as is the single channel case) where the number of secondary sources is chosen to 

equal the number of points of minimisation i.e., L = M where perfect cancellation of the 
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pressure at all points is always achievable. This simulation was repeated a total of 1,700 
times so as to ensure an ensemble of more than 5,000 values of the secondary source 
strength. The probability density function for the square of the source strength was 
calculated which indicate a good fit to the F(2,2) probability density function. This apparent 
agreement, shown below in figure 5.11 is totally in keeping with the original premise since 

both this square geometry and the single channel case share the same Pareto parameter

Figure 5.11 The calculated probability density function for the square of the secondary 
source strength as pwf (^ o frio of second^ sowcc sfrcmgfAj rg<?!nred fo cwiceZ (Ag prgjjwe o/ 
(Argg weZf separated poznfs fddsAed Anf) mgefAfr wifA (Af F(2,2J proAoAf/ffy dcTwryAncfion 
jAow/i os a joZfd /zne.

The Pareto probability density function has been shown to provide a good empirical 

description of the statistical behaviour of the square of the secondary source strength 
necessary to minimise the sum of the square pressures at a number of well spaced points. 
What is significant however, is that the sole descriptor of the distribution N, corresponds 
simply to the number of independent points of minimisation per secondary source. This of 

course implies that the susceptibility of each of the secondary source strengths to statistical 
uncertainty in the diffuse field, depends only on the severity of constraints imposed upon 
it Consequently, the expectation of the sum of the squares of the secondary source 

strength for this higher order system is given by
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As the ratio of the number of secondary sources to the number of points of control 
increases, the variable N correspondingly increases. The form of the Pareto probability 
density function given by equation (552) indicates that the level of excursion exhibited by 
each of the secondary sources from the mean value decreases as N increases, taking a 
minimum value of unity in the case of a square system. This is exemplified by the 
succession of figures 5.9 - 5.11. One interpretation of the parameter N appearing in 
equation (552) therefore, is that it maybe be regarded as a measure of the average constraint 

imposed on each secondary source.

When N is large for example, the sources have greater scope for distributing their 
effort over a larger number of points and so the distribution of square source strengths has 
less tendency to deviate. As a consequence, the secondary source strengths are loosely 
constrained and the level of sound pressure level reductions at the points of control are 
therefore variable. When N = 1 however, the source or sources are highly constrained 
because the perfect cancellation of the pressure is always achieved with no account taken of 
the effort required and so there is less scope for manoeuvrability. The sinq)le relationship N 
= L / M (which has been only validated empirically) is clear indication that each source b 

an array of sources is as equally constrained as if it were acting in isolation to cancel at one 
point. All of the results presented in Chapter 4 therefOTe equally apply to this higher order 

square system.

Perhaps the broadest mterpretation of the govembg variable N is that it represents 
the effective number of independent diffuse field points of minimisation for each secondary 
source. The notion of fractional points of pressure minimisation is clearly not easily 

visualised but wiU be found to a conceptually useful b the next section.

5.5. Employing a single secondary source to minimise the sum of (he 
square pressures at two closely spaced points

Some empirical findbgs relevant to multi-channel control b the diffuse field have 
been presented. Simple theoretical analysis and computer simulations were carried out 
which were only possible by virtue of the assumed bdependence between transfer 
impedances evaluated between well separated pobts. In this section, the problem of 
mbimisbg the sum of square pressure at two pobts which are closely spaced compared 

with the acoustic wavelength is bvestigated. This problem demands special attention 

because the bdependence assumption in this case is no longer valid.
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ItisnowwcUcstablidiedthat AesqmutofAA secondarysourcc strengthicquired 
to cancel the presstwe at a point in a diffuse stxmd field varies as a Pareto distribution for 
N = 1. Similarly, one can be reasonably confident that when the same secondary source is 
driven with the aim of minimising the sum of the squares at two well separated pomts, the 
variation of the square of the secondary source strength has now changed to that of a Pareto 

distribution with N = 2. However, when the control objective is to employ a single 
secondary source with the goal of minimising the sum of the square pressures at two points 
which are close compared to a wavelength, it is extremely unlikely that the form of the 
probability density function will change from the Pareto distribution. Assuming that this 
hypothesis is correct, the number of effective points of minimisation N, the Pareto variable, 
must now lie somewhere between one and two, 1 S N S 2.

As the separation distance Ar between the points of minimisation increases from 

zero to infinity, the number of effective points of minimisation N must vary srooothly from 
one in the case where Zkr = 0, up to a maximum value of two for the limiting case for Ar -^ 

#o. We rtow seek to determine the functional dependence of N with the separation distance 

Ar, N = N(Ar). It is instructive to consider the ensemble of independent, unique square 
pressure evaluated at all points in the diffuse field lp(ri)P and Ip(r2)l^ as representing sets. 

Each of the two sets is constructed from the square of diffuse field pressures which is 
completely unique to the point at which it is evaluated. Clearly when Ar the sqraration 

distance between the two pressures Iri - r2l is much larger than the wavelength, then 
!p(ri)P and Ip(r2)l^ are distinct and mutually independent so that their respective sets are 

non-overlapping as suggested by figure 5.12.

Figure SJ2 Tww widlepeadleMr. moa-m«r&ypwf ^** of J^worg prgMwrer/hr ^ > A,

When Ar is small however, typically a fraction of a wavelength, there will be a component 

of die square pressure that will be perfectly correlated with the pressure at both points and 
consequently will not belong exclusively to any one set but will lie to the intersection of the 

now overlapping sets as indicated to figure 5.13.
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Figure 5.13 7^ correZofaf, mwkippwg aed qf f^uare pfejawref^br ^ < A.

A ligoumus definition of the cost function Jp is now possible aided by the Venn 
diagram of figure 5.13. The cost function Jp is now formally defined as the sum of the 

squares of independent points of minimisation. In terms of the sets of square pressures

Jp = lp(ri)l^u|p(r2)l^ (5.57)

where u simply represents the union of the sets which in physical terms signifies the 

components of the square pressure which is unique to their respective points ri and r2. 
Employing a common result in Set theory: If f(A) and f(B) represent the additive sets of A 

and B then
f(/lijB) = f(A) + f(B) - f(A n B) (5.58)

The expectation of the cost function < Jp > may now be written as

< Jp > = < lp(ri)l^ > + < Ip(r2)l^ > - < lp(ri)P n |p(r2)P > (5.59)

The term < lp(ri)l^ n |p(r2)|2 > simply defines the intersection of the sets, shaded grey, 

which in physical terms represents that part of the square pressure which is perfectly 

correlated with the square pressures at both points. From previous work we have seen that 

the pressure at r2 which is perfectly correlated with the pressure at r i in the three 
dimensional diffuse field (and vica-verso owing to reciprocity) is simply

Pc(r2) =p(ri)sinckAr (5.60)

where rz = n + Ar and the subscript *c' denotes perfectly correlated. Now given that the 

spatially sampled diffuse field forms an ensemble of values which are zero mean Gaussian 
random variables, then it has been shown by, for example Pierce^^ gnj Lubman^^, that the 

component of the square pressure Pc(r2) at r2 which is perfectly correlated with the square 
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pressure at ri varies spatially as sinc^kAr. Hie auto-cxjnrelation function of the diffuse field 

square pressure pjpj2(Ar) is therefore given by

p|p|2(Ar) =sinc^kAr (561)

From equation (5J59),tfN:(;x;K:ctc<loo@t functitm is nowsingily

< Jp> =< lp(ri)l^> + <lp(r2)l^> -<lp(ri)l^>sinc^kAr (5.62)

now noting that <lp(ri)P> = <lp(r2)l^> = <lp(r)P> yields

Jp =< lp(r)l^> [2 -siniAcAr ] (5.63)

The e^ctive number of independent square pressures < lp(r)|2 > whose minimum is 

required, N is therefore given by 
N = 2- sinc^kAr (5.64)

This functimi has precisely the anticipated properties in that it varies smoothly fiom two to 
one as Ar, the separation distance varies from zero in the single channel case to two where 

the points of minimisation are very far apart.

By way of verification, the square of secondary source strength was calculated 
according to equation (5.50) with the aim of minimising the sum of the squares of the 
pressures at ten separation distances Ar ranging from O.IX to one wavelength in increments 

of one tenth of a wavelength. The simulations were performed using the modal model of 

the diffuse sound field simulated on the computer which has been discussed in chapter 4. 

For each separation distance, the optimal secondary source strength was calculated a total 
of 3,000 times and the probability density function tv(v) was evaluated for each ensemble 

of values. Assuming that lv(v) will eventually tend to the Pareto probability density 

function with die appropriate value of N as the ensemble size tends to infinity, f/vj^), the 
Pareto variable N appearing in equation (552) was chosen to minimise the mean square 
error e2(N) defined by

^(N) f [ t(v) - fv(v.N) ]^ dv (5.65)

The integral was evaluated numerically and the minimisation of the error e^fN) performed 

on the basis of trial and error. The variation of N, the Pareto variable is shown in figure 
5.14 compared with the expected function 2 - sinc^kAr.
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2.25

Ar
Figurc S.14 The iwiofibf: ^f/K forgfo wiaAk jV wAicA (^rdk a kai< fy<ar«/If to (Ag 
diffnAiatoM (^ jimafafgd vaZwgf as a .^mcfi^n of (Ae wparafton ffutoftog Ar Aghwgm fAg pamfs (^ 
wuwmwafton. Aka shown as a camfimtows fina is fAf tspacfai^mafiaa 2 - sifto^AAr.

The expected function, which has been derived more on the basis of a plausibility 

argument than formal reasoning, is observed to provide convincing agreement with the 

simulated data. Some examples of the probability density functions calculated as a function 
of various -Ar are reported in an internal LS.V.R memorandum^.

The space averaged zone of quiet formed about the centre of the microphone pair 

was also investigated. Using the diffuse field model which utilises a modal summation as 

outlined in chapter 4, the optimal secondary source necessary to minimise the sum of the 
squares of the pressures at a range of microphone spacings was calculated. For -Ar ranging 
firom X/10 to X in increments of X/10, the residual square pressure was evaluated along 
the line joining the two points of minimisation b bcrements of X/50, one and a half 

wavelengths either side of the geometric centre of the closely spaced microphone pair. For 
each value of Ar, the residual square pressure was evaluated a total of one hundred times 

for the same set of one hundred random primary source and secondary source positions 
and the average taken for each. Figure 5.15 gives two graphical representations of the 
result obtained from this simulation are shown. One is an isometric plot where a 
polynomial 'best fit' curve has been used to connect each of the pobts for the same Ar, the 

second is a contour plot showbg Ibes of equal square pressure reduction.
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Figure S.1S The space averaged j^uwe prgsjMre prq/i/g oAowf fwo cfo«/y spaced poinrj ((f mwwufofiby: 
M fAg pzzrg (OM diffuse wwwf^gfj. faj, /fomeirk p/of o/k^ (6), jAowmg coRfowrj ofg^waZ prgjfwg 
rgdwcfion of 0 dB, -3 (iB owf -70 dB.
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TheseriesofcuTvesdiownin this6gureexhibitthecharactcnsticsln(x)/xtypc 
behaviour well away from the points of minimisation as originally predicted by Elliott et- 
a^'^. Near the points of minimisation however, a single unique region of quiet is clearly 
apparent for error sensor spacings up to about Zir = 0.5 X. Above this critical distance, two 

distinct troughs of quiet begin to emCTge which follow the points of minimisation and are at 
least 3 dB below the primary level Nevertheless, a 10 dB reduction (which has the been 
the criterion of quiet in this thesis) is possible for the range of separation distances up to 
about 0.2 X. Most significantly however and which certainly warrants further investigation, 

is tfiat the spatial extent of attenuation (i.e., any value below 0 dB) remains as a single 
region for microphone spacings Ar almost exactly equal to one half of a wavelength to 

within the accuracy of the numerical example and the finite sample size. Above this critical 

distance however, the 0 dB level only just begins to divide to form two independent zones 

thereby forcing an increase in the square pressure in the region between.

Microphone separation distances equal to one tenth of a wavelength can be 
observed to produce a 10 dB zone of quiet nearly equal to 0.1 X. Unfortunately, the 

increase in pressure well away from the control points is still unacceptably high at nearly 6 
dB. For a microphone separation distance equal to exactly one half of a wavelength where 
the respective pressure are perfectly uncorrelated, the zone of pressure reduction remains as 

a single region peaking at slightly less than 0 dB. The Pareto variable N for this 
arrangement is 2 since the pressures at two points separated by half a wavelength in the 

diffuse field are exactly uncorrelated, see figure 5.14. Moving the control microphones still 
further apart to exactly one wavelength for which the Pareto parameter is also equal to 2, 

one can see that the spatial extent of reduction is confined to two very small regions which 
a maximum reduction of less than 2dB. As a direct consequence of constraining the 

pressure to be a minimum at these two points, the square pressure at the centre of the 

microphone pair is raised up above the primary square pressure by nearly 4 dB in this case.

The control strategy under consideration here is similar in principle to the pulling 
apart of a soap bubble. The forces pulling at the bubble can be Ukened to constraining the 

square pressure at each of two closely spaced points in the diffuse field to a minimum. The 
surface tension of the bubble which resists the puUbg force and which holds the bubble 
together, is analogous to the spatial correlation fiinction of the sound field which holds the 

quiet zone together. Just as a soap bubble retains a similar shape for pulling forces which 
are less than the critical force necessary to overcome the surface tension of the bubble, the 
diffuse field quiet zone retains a single trough up to the critical separation distance of about 
O.5)L/\l)on/e thesecritical values, boththe bubbleandthedifrusc field quietzonecoilapse 

tofbrmtwodistinct parts.
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Some special cases of the square pressure profiles shown isometrically on the preceding 
page are shown in the figure below for microphone separation distances equal to exactly 

one tenth, one fifth and one wavelength

Figure 5.16. The space averaged profiles of the square prejswg orow/wf (Ag cenfrg (^ two points 
of mi/u/MWofzoT; seporofed 6} a dtsfoneg 0.7 A, 0J A 07:^7 7 A.

Notice that the increase in the square pressure well away firom the points of 
minimisation are nearly equal for the case where the Pareto variables are both equal to two. 
The expected increase in the square pressure for these configuration of error microphones 
is 3 dB where fix)m equation (5.54), the secondary source contribution to the total square 

pressure is equal to that of the primary source contribution. This prediction is close to the 
observed simulated increase shown in figure 5.16.

5.6. Discussion and conclusions

In view of the relative success of the results reported in this chapter, the remote 
unconstrained cancellation of the pressure at a point, discussed at length in the conclusions 

reached for chapter 4, seems ill-considered. This is because the control schemes 
investigated here seeks purposefully to restrain the mean square pressure of the diffuse 

field either by self limiting of the secondary source strength, or by seeking to bring about 

the point cancellation of the pressure in a manner in which is less prone to statistical 
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uncertainty and therefore better conditioned. The principal finding of this investigation is 
the emergence of some upper-bound limit on the size and extent of the region of quiet one 
is able to engineer in the diffuse sound field. This finding appears to have generally validity 
over the range of control procedures investigated. In general terms, the size of the diffuse 
field quiet zone at the 10 dB level has been found to be confined to length scales which are 
typically one tenth of the acoustic wavelength. This figure will also emerge in the next 
section when the effect of cancelling the pressure at a point in the near field of a secondary 

source are investigated

Initial control strategies considered in this chapter involve simple modifications to 
the cost function. For example, it was demonstrated that placing upper bounds on the 
maximum secondary source strength only a few times that of the primary source strength, 
allows for the vast majority of points in the diffuse field to be driven to zero. Moreover, 
this hard limited control system was shown to restrain the mean square pressure in the 
diffuse sound field to levels which are not significant compared with the original primary 
level. The mean and the variance of the hard limited secondary source strength was 
evaluated as a function of the upper-bound value.

Simple analysis of the so called 'under determined' problem was also shown to 

prove more advantageous than the elementary unconstrained single channel configuration. 
While in principal, both can achieve the perfect cancellation of the pressure at a point, 
employing more independently positioned secondary sources than points of minimisation 
enables one to impose constraints on the secondary source strengths in addition to the 
pressure field. Specifically, the redundancy of secondary sources has enabled the pressuie 
at some point to be set to zero under the condition that the sum of the squares of the 
secondary source strength is a minimum. This secondary source arrangement has an 

effective source distribution which possesses multiple independent channels to the point of 

cancellation such that it is able to distributes its effort along the transmission path offering 

greatest impedance according to a least squares criterion.

With real time computing becoming increasingly faster, one can envisage 

employing an array of tiny loudspeakers remotely distributed around the enclosure, each 
constrained to act at the same point The source strength of each of these transducers would 
need only to be a disproportionately smaller fraction of the secondary source required than 
if it were acting alone. It was found that the combined secondary source strength of an 
array of independently positioned secondary sources is less than that for single source case. 

However, the implementation of this scheme is clearly costly both in terms of computing 

time and hardware resources.
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Most control configurations currently employed23^,25, gj^ over determined and so 

employ less secondary sources than there are points of minimisation. While this 
arrangement is useful for low modal density sound fields, such a scheme could be 
ineffectual depending on the number of independent points per secondary source. Statistical 
considerations have shown (if only empirically) that it b precisely this ratio which dictates 
the statistical distribution of the square of each of the secondary source strengths. Perhaps 

not surprisingly for example, each of the secondary sources in an array of three sources 
minimising the sum of the square pressures at say five points b as equally liable to a given 

statistical fluctuation and has the same mean value as say six secondary sources acting at 
ten points. This was found to be true despite the increased number of transfer impedance 
paths in the latter arrangement. By way of a summary, the expectation of the square of the 
total secondary source strength for the under-determined, over-determined and the square 
system are tabulated below for comparison

Z<lqs;P>/lqpl^

L>M

L = M

L<M
(forW)

M^/(L-M)

oo

M/(M-L)

It remains to be shown whether the undetermined result is a general result valid for 
all values of L. Inspection of the table above indicates a degree of symmetry between the 

respective results. This suggests that there may be some generalised formula for predicting 

the expectation for the square of the secondary source strength, and ultimately the increase 
in potential energy for all multi-channel control schemes whether over determined or under 

determined. This of course assumes that the Pareto function b the correct choice of 
probability density function for the over determined arrangement

In terms of the size and spatial extent of the zone of quiet, complete cancellation of 
the pressure is possible for ratios of values L / M S 1 corresponding to the case where the 

number of secondary sources equals, or out numbers the number of points of cancellation, 
for these ratios of secondary source to points of minimisation, one can reasonably expect a 
10 dB level of reduction which extends in space for at least one tenth of a wavelength. The 

problem of minimising the sum of the square pressure at two closely spaced points to the 

diffuse field corresponds to the range 1 < L/M < 1/2 where of course L = I in this case. 
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The extent of the quiet zone fcr this arrangement is less than 10 dB in most cases but has 
the advantage of being extended over a broader region.

When one seeks to impose active control within a enclosed sound field which may 

be tending to 'diffuseness', at least a two to one correspondence between the number of 

points of minimisation and the number of secondary sources employed is strongly 

recommended (N = L/M < 2). For ratios of L to M less than two, the total effort directed 
towards controlling the sound field is too thinly spread over the spatially complex 
wavefield to be very effective. This is particularly true given that the level and confinement 
of the quiet zone formed by the square system where L/M = 1 has already been shown to 
be poor.

A recent paper by Mioshi and Kaneda^^ have shown that introducing one more 

secondary source than is absolutely necessary (therefore being under determined) is, in 

principle, sufficient to circumvent the obvious difficulties imposed by causality 
considerations and is mentioned for completeness. The author has not been able to fully 

understand why an additional source should be able to do this but is thought to incorporate 
a modelling delay into the controller. A scheme of this nature is not realisable in practice but 
has only been noted here for completeness.
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CHAPTER 6

NEAR FIELD ZONES OFQUIET INTHEPURE TONE 
DIFFUSE SOUND FIELD

6.0. Introduction

Previous investigations in this thesis have suggested that the active 
attenuation of diffuse field pressures in regions which are remote fiom the secondary 
source may cause substantial global pressure increases. For example tire previous chapter 
has indicated that the implementation of a multi-channel control scheme in diffuse fields 
incurs an average square pressure increase at least equal to 3 dB. This level of increase 
corresponds to the limiting cases where either the number of secondary sources vastly 
exceeds the number of control microphones, ot visa-versa. When the numbers of sources 
and control microphones are roughly equal, for which the control configuration starts to 
approach a square system, the expected increase in pressure well away firom the control 
point is considerably higher than 3 dB.

Active control in diffuse fields using secondary sources remote firom the control 
point is further limited by the fact that the shape of the quiet zone is dictated solely by the 

functional form of the sound field's spatial cross correlation function. The difficulty here is 
that the correlation function is, by definition, only an expectation quantity and is therefore 
susceptible to unpredictable variations between individual measurements. This function is 

of fundamental importance in describing the inter-dependence between acoustic pressures at 
neighbouring points and is therefore intrinsically bound up with the large scale 

characteristics of the wavefield. This property is therefore not amenable to manipulation by 
the engineer.

In this chapter a control strategy for overcoming these difficulties is discussed 
which seeks to capitalise on the near field characteristics of the radiation firom a secondary 
loudspeaker. This active control scheme utilises a single secondary loudspeaker in order to 

drive the acoustic pressure at a point in its immediate geometric near field to zero. This 
principle is certainly not original and was first proposed by Olson^ in a historically 

important paper published in 1953. Although very few acoustic considerations were 
discussed, the potential of this arrangement was demonstrated by using it to suppress 

fieely propagating plane waves over a fi^equency range of more than three octaves. Olson 

was also the first to suggest that a tightly coupled microphone - loudspeaker pair could 
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have two possible distinct modes of operation: that of an 'electnxiic sound absorbed and 
that of a 'sound pressure reducer'. However, no information was provided about how 
these modes of operation differ in their governing physical principles.

The potential benefits derived firom fliis loudspeaker - microphone configuration are 
three-fold. First, and perhaps die most significant is die increased ease with which the 

secondary source is able to couple into the acoustic pressure at the cancellation point 
thereby ensuring that the enargy radiated to the 'far field' is small in relation to that 
transmitted by the primary source. Second, the shape of the near field quiet zone is, to a 
large degree, deterministically governed by geometric factors relating to the secondary 

source near field radiation characteristics. Last, the difficulties imposed by causality 

considerations when dealing with broadband radiation are to a large degree circumvented. 
This is because the time delay firom the secondary source to the control microphone will be 
considerable less than the time delay from the primary source.

The transfer impedance which couples the secondary source to the closely spaced 
point of cancellation now comprises a large directly transmitted near field component which 
is superimposed on the purely random part arising from wall reflections. The uncertainty 
arising previously for remote points of cancellation is now largely removed. In this 

configuration the secondary source strength necessary to bring about the pressure 
cancellation is now very much less than that of the primary source strength. By the same 

argument, the sound power output from the 'tightly coupled* system is also small in 

relation to that of the primary sound power output.

This control methodology has already been applied by Salikudin et-aP^ to the exterior 

of jet aircraft in preliminary experiments aimed at trying to reduce acoustic fatigue. The 

general philosophy behind this approach is outlined in chapter I. This work is predominantly 

experimental however, and is supfx>rted by only a limited amount of theoretical discussion. It 
is hoped that this chapter will go some way to extend the present level of understanding and 
help clarify some of the physics associated with this control principle.

6.1. Near field zones of quiet

Figure 6.1 shows a baffled circular secondary source qs(ci),y,z) within a radius 'a' 

acting to drive the pressure to zero at some closely spaced point xo represented within a 
cartesian coordinate system.
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Figure 6.1 A Ix^ed secondary source disfn6unon represe/ued wif/un a Carfcsian coordinate 
sysfem.

Figure 6.1 represents a baffled secondary source radiating within an enclosed space 

in which there is a diffuse field Ppr(r) sustained by a primary source. For the purpose of 

this analysis it is assumed that the directly transmitted component of acoustic pressure from 
the primary source everywhere in the near field of the secondary source is negligible. This 

will be a valid assumption for a large number of real cases for which the primary source 
distribution is often a large, irregularly shaped vibrating body. Reverberation chamber 

experiments (which are reported in section 6.5) reveal that the increase in the sound 
pressure level is not perceptible to the ear well away from a near field point of cancellation 

for a wide range of microphone separation distances and different loudspeakers. This 

experimental finding serves to provide experimental justification for this important 

simplifying assumption.

Resolving the secondary sound field ps(r) into its directly radiated pressure field 
qsZd(rslr) and diffuse pressure field qsZr(rslr) yields

Ps(r) = qsZd(rslr) + qsZr(rslr) (6.1)
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where Z($(rs!r) is the finee space transfer impedance that would be generated by the 

secondary source in the absence of reflecting surfaces. The diffuse field pressure qsZrfrglr) 
is the pressure transmitted to the field point r by reflections from the enclosure walls. By 
superposition the total pressure p(r) at the point of observation may therefore be written as

P(r)=qs[ Zd(rslr) +Zf(rslr)] +pp(r) (6.2)

For harmonic sources, the pressure at some point fq can always be driven to zero 
for a secondary source strength Qso which is given by

= _____ PpKrp)_____
^ Zd(r:lro)+Z^rW (6J)

For points of cancellation which are close to the secondary source, the configuration in 
which we are most interested, the acoustic pressure radiated to the near field point of 
cancellation via wall reflections will in most cases be very small compared to both the 

primary source diffuse field pressure contribution pj^r), and the directly radiated 
secondary source pressure qsZdfrsIrg) at the same point In this tightly coupled
configuration the secondary source strength q^g is largely insensitive to the secondary 
source diffuse field impedance Zr(rslro). One can therefore closely approximate the total 
secondary source transfer impedance ZCrglro) by its corresponding fiiee space impedance

value to give

qso =
PpKrp) 

ZdfFsIro) (6.4)

It is anticipated that only a small error is incurred as a consequence of this simplification 
particularly for compact secondary sources. Omitting the secondary source diffuse field 

pressure enables the total pressure p(r) at some arbitrary point in the enclosure, in most 
cases, to be closely approximated by

P('-)-Ppr(r)-Pp,(ro)^^ (6.5)

Consider some point r in the vicinity of the point of cancellation fq where r = Fo + AF such 
that AF is small compared witii the wavelength i.e. Ar < L One can therefore write

p(ro + AF) "Ppr(Fo +AF) - pp^Fo) ^^^^^^^ (6.6)

213



Consider the modulus of die square of the total pressure p(ro + Ar) p*(ro + Ar) which may 

be expanded to give

lp(ro+Ar)l^ " IppKro +Ar)l^ + IppKro)!^ ^^^g^^

. ppKro +Ar)p^ro) ^"^^^i^^ " Ppr(ro)l(r(ro+ Ar) ^(fgirg) M

"Die average respemse of the square pressure in die vicini^ of die control point to the 
cancellation of the pressure at rg may be obtained by averaging over all possible square 
pressure responses at all points in the field keeping the separation distance Itg - rg! fixed. 
Taking the expectation < tp(ro + Ar)P > over the stochastic part of die cquadcai and noting 

that
(6.8)

together with the defining relation for the cross correlation function

< Ppr(rg + Ar)p^i(ro) > = < lppr(r)l^ > p(Ar) (6.9)

yields the simplified expression

< lp(ro + Ar)l^ > Zd(rslro + Ar) 
^(rslro)

Zdfrglro + Ar) 
Zd(rslro)

2

(6.10)

where p(Ar) is the three dimensional, pure tone diffuse sound field spatial conelation 
function which is (sinkAr)/kAr.

It is anticipated that any quiet rxMie formed according to this control principle will not 
extend beyond about Ar = O.IX at the -10 dB level (corresponding to a quiet zone 2Z!krg j 

equal to one fifth of a wavelength). The change in the spatial correlation function over this 
interval can be calculated to be approximately 6 %. The corresponding variation in the term 
2R{Zd(rslrg+Ar) / Zd(rslro)) it) cquadcai (6.10) for compact sources according to equation 
(3.3) however, may be shown to vary like 2krgcoskArg / (krg -t- kArg). Over the same 

interval therefore, the variation in this function is typically 20 % providing kirg - rg! is small 
compared to unity. ITie spatial cross correlation p(Ar) can therefore be set to unity whUe 

incurring only small errors in the region of the quiet zone. This simplification is equivalent 

to assuming that die diffuse field pressure is, on average, spatially homogeneous 
throughout the volume of the quiet zone. For Ar less than O.IX, one can therefore write
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< lp(ro + Ar)P >
< lppr(r)l^ >

ZdCrglrp + Ar)l 
Z^Wro) J

Zd(rslro + Ar) 
ZdWro)

2

(6.11)

Further siirg)lificaticm of this expressioQ is possible. Noting that rp = (xp,yo,zp) and 
rp + Ar = (xp+zXx, yp+Ay, zp+Az), to first order in Zd, one obtains the first order Taylor 

series approximation

Zd(rslrp + Ar)" Zd(rslrp) + VZd(rslrp)^ (6.12)

for Ar <X/10

3 3 3
where V is the Gradient operator V = g^ i + gz j + ^ k and Ar = Ax: + Ayj + Azk,

where x, y and z are cartesian coordinates and i, j and k are their associated unit vectors.

The ratio of free space impedance terms can therefore be approximated by

Zd(rslrp + Ar) VZd(rslrp).Ar
Zd(rjro) + Zd(r,|ro)

for Ar < X/10

Substituting this approximate expression into equation (6.11) yields

< lp(rp + Ar)l^ >
< lppr(r)F >

1.2)l{l+ 9Zd(rslrp).Arl _ 2l^Zd(rslrp).Arl
Zd(r.lro) Ji Zdfrglro) 1

+ )l^11 +
9Zd(rslrp)^rl

Zdlfslfo) J (6.14)

fbrAr <X/10

Expanding and collecting the terms facilitates the further considerable simplification

< lp(rp + Ar)l^ > « < lppr(r)l^ > "^^^^^^ (^-1^)

for Ar <X/10

This surprisingly simple result implies that the pressure near die control point 

recovers from zero at a rate which is determined by the absolute value of the gradient of the
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impedance field in the oeasuiement direction, as a fraction of its absolute value at fq. It is 

tempting to look for some geometrical interpretation of this result in tmns of the free space 
transfer impedance function Zd(rslro), however none was immediately apparent Equation 
(6.15) says that large quiet zones are formed around near field points of nuU pressure for 
those sources whose transfer impedance to the point of cancellation is large and unchanging 

with respect to small deviations from the cancellation position. A large transfer impedance 
between the secondary source to the chosen point of cancellation is therefore desirable on 
two accounts. First, it directly influences the shape and therefore the sice of the near field 

quiet zone. But more importantly in practical terms is that the coupling inq>edance governs 
the magnitude of the secondary source strength and therefore the energy radiated into the 
enclosure. This important aspect of the problem is addressed m the next section.

An unfortunate consequence of disregarding the secondary source diffuse field 

pressure is that one has also removed any facility for incorporating the secondary source 
contribution to the average square pressure increase < ipsr(F)P > well away from the 

cancellation point For most cases, this contribution will be negligible compared with the 
primary source diffuse field contribution < lppr(r)P > as will soon become apparent from 

remote sound pressure level measurements made in a reverberation chamber. Strictly 

speaking, however, this term should be included.

The diffuse field quiet zone very close to a source of sound is an essentially free 
field result by virtue of the important approximation p(Ar) = 1 where pp/Fo) = Ppr(^o + ^) 

which says that the primary sound field is homogeneous in the region of the quiet zone. 
Indeed, one of the reasons why the notion of the diffuse field is so useful conceptually is 

that many of the properties of a source radiating within it, on average, reduce to their 
equivalent free field results. Sound power output is an important example^S. As an 

immediate consequence of neglecting the dependence on the secondary source diffuse field, 

the square pressure variation around the near field point of cancellation behaves, on 
average, as if in a fiee field environment. In retrospect, this finding is perhaps not 
surprising since the reverberant, diffuse field will tend to impose small statistical 
fluctuations on the free field result which when averaged over all space will tend to cancel.

Atpoints ofcanceUationalongAexaxisasindicatedinfigure  6.1,Ay=Az=0.

In accordance with equation (6.15), the expected axial square pressure variation may now 

be written as

< lp(xo+Ax,yo,zo)l^ > .2

forAx<%/10
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Setting equation (6.16) equal to some fraction a say, enables one to solve for the zone of 
quiet 2Axa for which the average square pressure is a fraction a of the primary source 

level. The zone of quiet along the axis of the piston motion can be therefore be 
approximated by

2Axa«= 2
eZd(r,lro)

(6.17)

Similarly in the y and z directions

and

2Ay(% —2
^Zd(r:lro)

(6.18)

2Aza =2
&Zd(r,lro) (6.19)

for small Ax, Ay and Az. Surfaces of equal pressure reduction around Fq therefore describe 
concentric ellipsoids with semi - axes (AxocAyaA^Zot). This analysis is not valid when the 

gradient of the impedance field is zero, in which event, fiirtiier terms in the Taylor series 

expansion of equation (6.12) must be taken.

6.2. Examples of near field quiet zones

It is instructive to consider the behaviour of the quiet zone as described by equation 

(6.17) for representative examples of real secondary sources which in most cases will be 

circular loudspeakers. However, as a simple model problem first consider the form of the 

quiet zone for a point monopole source for which the complex impedance field is simple 
and can be analytically manipulated. From equation (3.31), the axial free space transfer 

impedance Zd(0ix) is given by
Zd(()lx) =jZd^ (6.20)

where it is assumed that the point secondary source is located at the origin. Performing the 
differentiation, one can readily show that die derivative evaluated in the radial direction is 

given by
&ZdW=jZo^|:j^] (6.21)
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The size of the quiet zone is therefore proportional to

2Axqj ~ 2^01x0) 
^Zd(0l%0)

___ XQ
^/l+(kxo)2

(6J2)

Frcmi equation (6.17), the size of the quiet zone may be written as

26x0.1 XQ 
'Vl+(kxo)^

(6.23)

Assuming that the average square pressure contiibutimi 6x«n the secondary source remains 
small, the axial zone of quiet converges to VoTX / k for large xq which is equal to 0.1(K)7X 

or about one tenth of a wavelength to an excellent approximation.

Despite the fact that the transfer impedance and its derivative are both infinite at the 
secondary source point where xq = 0, one can verify by inspection that the gradient of the 

transfer impedance goes to infinity faster with decreasing xq than the value itself. The size 

of the quiet zone therefore becomes increasingly smaller, monotonically tending to zero. In 

this limit, the form of the quiet zone may be regarded as an infinitesimally small 'pin prick' 
in the primary sound field as will also become apparent fiom experimental results. 
Unfortunately, Olson fails to report the dimensions of the loudspeaker used or the 
separation distance of the point of cancellation so that verification of his experimental 
findings with the simple theory developed here is not possible.

Returning now to the form of quiet zones generated by more realistic sources of 

sound. As a first order approximation to the firee space radiation from a real, baffled 
circular loudspeaker, consider the related analogous model problem of the acoustic 
radiation from a rigid piston oscillating in an infinite baffle^®. Surrounding the piston 

source with a hypothetical baffle of infinite extent ensures against the interference of the 

forward radiated sound from diffracted waves fiom the rear of the source. This geometry is 
indicated in figure 6.1. All points on the source may be regarded as elementary, compact 
monopole type sources whose sound field radiates spherically out in all directions. The 
contributions from aU the elemental sources at some point r can be integrated to produce the 
Rayleigh integral given below

Zd(rslr)=j I -ipi- dS (6.24)
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The integration is taken over the entire source distribution qgo which is assumed to be 
uniform to give 'piston like' motion, where tg now denotes the centre of the piston and Ir'i 
is the distance from each elemental source to the point of observation at r. It is relatively 
straightforward to shown that this integral reduces to an exact solution^o providing the 

point of observation is 'on axis' such that r = (x,0,0). Putting the secondary source at the 

origin of co-ordinates Fg = (0,0,0) and performing the integration one can show that

Zd(0lx)=  ̂[ e'j^ - cjkV*^41^
(6^)

where S is the surface area of the piston rca^. Equation (625) indicates that the free space 

transfer impedance 2^(rglr) generated by a piston type source in an infinite baffle comprise 
only those contributions which are on the centre and the circumference of the circular 
source. Contributions from elemental sources in the disc itself clearly cancel. This 
simplified model is generally regarded as a reasonable approximation to the acoustic 
behaviour of real baffled, circular loudspeakers radiating at mid frequencies, see for 
example the loudspeaker vibration patterns presented in the book by Fahy83. This is the 

frequency range where diffraction effects around the oscillating loudspeaker are small but 
where the loudspeaker cone remains as a rigid body and has not yet begun to oscillate in its 
various normal modes of vibration. All points on the cone therefore oscillate with the same 

phase. The form of equation (625) suggests the possibility of using a closely spaced array 
of appropriately phased point monopole sources in order to simulate an effective secondary 
source distribution with the desired transfer impedance characteristics. This idea remains to 

be investigated.

We now seek to determine the variation of the expected value of the 10 dB quiet 
zone 2Axo.i as a function of the microphone separation distance fq evaluated for various 

values of the loudspeaker radius 'a* modelled as a piston b an infinite baffle. This may be 

determbed from equations (6.17) and (625) assumbg that the bcrease b the square 
pressure arisbg from the secondary source contribution is close to zero and can therefore 

be neglected. Hie 'on axis' quiet zone was evaluated in accordance with equation (6.17) for 
a range of microphone separation distances varybg from zero, up to a maximum of one 
wavelength. A range of loudspeaker radii rangbg from near zero (for the case of the 
elementary point monopole) up to a maximum of erne wavelength were also considered, b 
all cases, the secondary source contribution to the square pressure is assumed to be 

negligible and has therefore been set equal to zero.
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For some values of the loudspeaker radius ’a', there appears to an 
optimum separation distance Fq for which the quiet zone takes a maximum value. 

Figure 6.2 indicates that this usually occurs at separation distances approximately 

equal to one tenth of a wavelength. This peak in the series of curves corresponds 

to the critical distance, below which, the 10 dB quiet zone extends into the 
loudspeaker itself thereby reducing the effective width of the quiet zone. Another 

equally notable feature of this figure is that the curves asymptote to approximately 
the same value as the separation distance increases. By inspection, this quiet zone 

limit is approximately one tenth of a wavelength as observed previously for the 

behaviour of the quiet zone formed in the vicinity of a point monopole source.
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TTie simplifying assumptions leading to the derivations of the governing equations 

at these large distances become invalid owing the contribution from a significant level of 
reflected sound. We have already seen in chapter 5, however, that when the secondary 

source transfer inqjedance contribution is dominated by the diffuse field part of the 
impedance field, but the source strength is reasonably constrained, the zone of quiet limited 
by the spatial conelation properties of the sound field, is also equal to one tenth of a 
wavelength. We thus have the interesting observation that the average size of the 10 dB 
quiet zone appears to remain approximately constant at about one tentfi of a wavelength 
even as the point of cancellation is moved from being close to the secondary source so 
being determined by the near field, to being very distant so being detamined by the diffuse 

field. The likelihood of deviation from the average value of the quiet zone steadily 
increases. The crucial difference between the two cases is that the expectation value of the 
square pressure increase varies fiom a small fraction of one decibel in the former case, to 

tens of decibels for the remote case.

The succession of curves plotted fcff various values of the loudspeaker radius 
indicate that the largest zone of quiet is achieved by the loudspeaker which is one 
wavelength in diameter acting to cancel the pressure at a point located at approximately one 
tenth of a wavelength from its centre. From a practical view point, even at say 500 Hz 

which may be regarded as being b the mid-frequency range, the loudspeaker diameter is 
approximately equal to 0.7 m which is already unrealistically large for most practical 

purposes, to many real applications, the excitation frequency will be fixed and the size and 
location of the secondary loudspeaker will be dictated by constrabts imposed by limited 
space such as for example, the size of the head rests b vehicles. The only parameter which 
remabs variable to the engbeer is therefore the separation distance of the point of 
cancellation fiom the secondary source which may be optimised by the use of figure 6.2.

The discussion so far has talked only b terms of the spatial extent of the zone of 
quiet along the axis b the direction of the piston motion. One may utilise the existing 
theoretical framework to derive similar results for quiet zones b the orthogonal directions. 
However, it is worth noting that in these directions the drcular piston source has cylindrical 
symmetry for which the piston free space transfer impedance ZdCrglr) is the identical for all 
values of the azimuthal angle 0 (see figure 6.3a) namely

Zd(rslr,0i) = Zd(rslr,02) (6J6)

where 0% and 02 are arbitrary azimuthal angles. This remark has important implications for 

the geometry of the quiet zone. A secondary source driven to cancel be pressure at some 
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some point which is off-axis, will similarly cancel the pressure at an infinite number of 

points lying on a circle whose origin is on the pistcm axis passing through the original point 

of cancellation, see figure 6.3a again assuming that the primary sound field is reasonably 
uniform over this region. Clearly, when the point of cancellation is closer to the piston axis 

than some critical distance, the circle of pressure cancellation will form a 'ring' of quiet 
which will tend to coalesce to produce one unique distinct zone which is symmetric about 
the piston axis. The spatial extent of this quiet zone in the direction perpendicular to the 
piston axis will therefore be greater than if it were on axis. Points of cancellation which 
deviate slightly fi’om the on-axis position are not expected to significantly affect the size of 
the quiet zone in the axial direction. Similarly, a point monopole secondary source has 
spherical symmetry so that cancelling the pressure at one point at a given distance from the 

centre, will cancel the pressure at all points at the same radial distance thereby creating a 

'shell' of quiet as suggested by figure 6.3b. A simple sketch indicating these various 
symmetries for these two source types and the consequences in terms of the quiet zone are 

given below

(a) Piston source has cylindrical symmetry (b) Point source has sphoical symmetry 
thereby forming a 'ring' of quiet thereby forming a 'shell' of quiet

Point of cancellation

Figure 63. A simple sketch indicating the impedzince field symmetries of (a), the piston source 
and (b), the point source and the corresponding effect on the quiet sone.

The size and extent of pressure reductions in these directions remains to be investigated.

6.3. Secondary source strength statistics

The most likely consequence of driving the pressure at some point ro to zero 

which is close to the secondary source atTg is that sound power is injected into the medium 

by the secondary source which will sustain an increase in the acoustic pressure. In the next 

section this is shown to true on average for the point monopole source. The usual 
proportionality between the total potential energy in the room to the square of the volume 
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velocity will no longer be valid in this case. This is because the secondary source is now 
radiating into an acoustic impedance which differs fiom the usual diffuse field impedance 
necessary for these relationships to be valid. In this tightly coupled configuration the 
secondary source will now 'see' some effective impedance mechanism which forces its 

pressure at some closely spaced point to zero and it is therefore inevitable that its sound 
power output will be modified in some sense. The details of this process is addressed in the 
next section for compact secondary sources. The expectation of the square transfer function 
< IHqI^ > now no longa* quantifies the expected value of the added energy in the enclosure 

but is simply an indication of the average secondary source strength requirements. This 
quantity is also a good indicator of the degree of acoustic coupling between the loudspeaker 
and the microphone, which as we have seen b chapter 5, goes to infinity as the pomt of 
cancellation is moved outside of the influence of directly transmitted sound. The transfer 
function Ho has previously been derived in terms of the primary source and secondary 
source impedance contributions according to

Ho =^ = - Zd(r,i%'^^r,lro) ^^^

It is left to Appendix 6.1 to show that in the case of the diffuse sound field, < IHo(<5^>)P > 

is determined from the following integral
oo 2n

<IHe«52»P> = i f l"=-<r^-2r=os8.1 )/2<8^> ^^^^ ^^^^^

0 0

where the term <8^ on which < IHo(<5^>)l^ > solely depends is the average of the square 

of the real part (or imaginary part) of the diffuse field transfer impedance < R^{Zr(r)) > as 
a fraction of the square impedance radiated directly IZd(rslro)P. b the present case, <5^> 

symbolises the relative variance of the diffuse field transfer impedance at the pobt of 
cancellation according to equation (6.28) below

<8^ = -^ <R:|Zr(f)|>
IZdWro)F (6.28)

Just as this factw was shown to govern the mean and variance of the mbimum sound 
power output from two closely spaced sources (chapter 3), so it also emerges in this 
problem as the factor which completely determines the behaviour of < IHo(<8^>)l^ >.
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Unfortunately, equation (627) does not lend itself to analytic evaluation. Moreover 
it would appear from a study of the behaviour of the dummy variable r in the vicinity of r = 
0 in this equation that the mathematical expectation < IHo(<8^)P > does not formally exist 

and is therefore infinite. An unfortunate consequence of this unexpected and surprising 
result is that one is unable to talk meaningfully and unambiguously about the true 
mathematical expectation of this well behaved, tightly coupled system. Just as the 
secondary source strength seeking to minimise the total sound power of a closely spaced 
point primary source has the potential to become singular, this observation is also true of 
IHo(<5^)P. The ill-conditioning of this expectation is perhaps more surprising since now 

the denominator of equation (6.3) comprises two degrees of freedom by virtue of the real 
and imaginary parts of the impedance field which simultaneously must now go to zero for 

this to occur.

The cause of this potential singularity occurs when both the in-phase, and 
quadrature parts of the directly radiated transfer impedance simultaneously destructively 
interfere with the impedance contributions from subsequent reflections. In the event of this 
unfortunate (and very unlikely) occurrence, the complex secondary source transfer 
impedance is zero such that it has no influence at the chosen point of cancellation and is 
therefore required to be infinitely large. In terms of the integral in equation (6.27), the 
outcome described here is manifest as a singularity at the origin r = 0, by virtue of which 
the average value of the square of the transfer function < IHo(<5^>)P> is infinite.

In view of this misleading and ambiguous result, we will now endeavour to use 
previously established techniques in order to obtain a good estimate for the expectation of 

the square of the modulus of the transfer function < IHqP >. It is shown in Appendix 6.2, 

that for those source positions for which 5^ < 1, < IHoP > may be expanded as a 
polynomial in <5^> of the form

< IHol^ >» 2 <52> + 4<52>2+ 16 <52>3+ % <52>4 (g^g) 
for 52 < 1

where <52> = < R^{Zr(r)} > / !Zd(rs!ro)l^. Thus, < IHqP > is a highly non-linear function 

of the impedance variance <52>. This function is plotted below and compared with the 

expectation value obtained from a 15,{X)0 point ensemble of values generated from 
computer simulations. The real and imaginary parts of the impedance terms appearing in 

equation (6.3) were arbitrarily assigned an independent, normally distributed random 
variable with a pre-determined variance <5^> taken from a random number generator. The 
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process was repeated 15,000 times for a range of values of <5^, < IHJ^ evaluated, and 

the sample mean calculated for each value of <5^. Also shown is the linearised 

approximation < IHqP > = 2<52> representing the predicted mean when the diffuse field 

secondary source transfer impedance is neglected. This approximation is used to calculate 

the secondary source sound power output in the next section.

Figure 6.4. The estimate of zAf jfzzare of zA< znoduZizj z^ zAg optimal Zrom^r/ioiczzo7i/br 
dnwzg o c/ofefy spaced poznZ presozre Zo zero denvcd os o scries opo/ision fsoAd ZzncJ ZogezAer 
wz'zA zAe mezM vzz/zze oAzozncd/rom co/Mpzzzer jz/MuZoZzo/u ZdzzsAcd ZzzicJ. A/so sAowzi zs zAe 
fmczzrzsezf zzpprowMzzZzoz: taking zAc /zrsz zerm onZy.

Good agreement between the estimated average square transfer function < IHqP > 
and the computer simulated ensemble mean is apparent for <5^ over the entire range of 

values. For values of <5^> greater than 0.05 the inherent ill-conditioning of the system, 

which compelled one to take the series expansion in the first place, begins to emerge as 
sudden departures from the theoretical curve. Deviation from the expected value occurs 
whenever a given ensemble of values (for a given <5^) violates the simplifying 
assumptions. This will of course become increasingly frequent as the relative variance <5^> 

of the impedance coupling the source to the point of cancellation increases. Note also that 

taking the series expansion of < IHol^ > to the leading linear term also provides a reasonable 

approximation to the observed, simulated mean. This finding should be home in mind for 
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the next section when the sound power output of a point monopole secondary source is 
derived.

For small <52> where the coupling mechanism between the secondary source and 

the point of cancellation is predominantly via directly radiated sound, < IHgl^ > is small in 

relation to unity. In this configuration, there is small likelihood that the secondary source 

will experience difficulties in coupling into the near field point of cancellation. This is 

because the secondary impedance term is contrived to contain a large fiee field component 

The corresponding primary impedance term however, comprises only a reverberant 
contribution which is of course subject to uncertain statistical fluctuation from point to point 
in the diffuse wave field. This helps to explain why the parameter <52> is so important 

since it is this term which exactly characterises the likelihood of departure of the complex 
transfer impedance from its mean value. As a general guide-line, one should aim to locate 
the error microphone sufficiently close to the secondary source such that the ratio of 
reflected sound to directly transmitted sound is less than about 0.1. In this configuration, 
the system is tightly coupled and the probability of departure from this assumption is small.

By way of illustration, consider again the special case of a point monopole source. 

The square of the modulus of the free space transfer impedance is determined from 

equation (3.31) to give

(kAr)^

where Ar = Ir^ - rol. From equation (6.28), the ratio of impedance terms <5^ is therefore 

equal to
<52>=.^^^(^'")) ^ (kAr)2 

Zo

Recalling equation (3.5i), one can write

<52>= 
KMo^(m)

At frequencies greater than the SchrSder frequency, the relative variance of the diffuse field 
transfer field transfer impedance is very much less than unity. For example, at a frequency 
equal to the Schroder frequency where Mo^fo)) = 3 and for a cancellation distance equal to 
one tenth of a wavelength, <52> may be calculated to be equal 0.05, from which the 

corresponding value of < IHqI^ > according to figure 6.4 is 0.1 which is small compared to 

unity. For small kTg therefore, taking the leading term in equation (6.29), the avmge

(6.31)

(6j2)
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sec(xidary source strength may be shown to be proportional to the distance 6om the point 
of cancellation thus

(6.33)

fbrkAr«X

6.4. The sound power output of a point monopole source 
in driving a closely spaced point pressure to zero

The considerable insight into the mechanisms of active noise control shown by 
Olson in his now classic paper 'Electronic Sound Absorber' has already been mentioned. 

In the paper written as far back as 1953, it was postulated that a secondary source could be 
used in one of two possible modes of operation: that of a 'Sound pressure reducer' and a 
'Electronic Sound Absorber". The purpose of this section is to provide further evidence that 
in the diffuse sound field, these possible modes of operation are distinct and exclusive 
inasmuch that a loudspeaker functioning to drive a point pressure to zero must necessarily 
radiated sound power into a room. It is strongly suspected that the same principle also 
holds for other non-diffuse sound fields. We now consider the sound power output of a 
point monopole source driven to cancel the pressure at a closely spaced point in a diffuse 

sound field.

Consider a point monopole source of sound acting to drive the acoustic 
pressure at some closely spaced point to zero. As usual, consider the total acoustic pressure 
p(r) as comprising the superposition of directly radiated sound and scattered sound. 
However, consider only those points of observation r and points of cancellation ro for 

which the diffuse field due to the secondary sound field is negligible in comparison to the 

diffuse field contribution from the primary source. This simplifying assumption has been 
validated in the previous section where a linearised power series approximation to the 

expectation < IHqI^ > was found to be adequate for small klrg - rgl. Neglecting the 

secondary source diffuse field pressure, to a good level of accuracy, the total pressure may 

be represented by
p(r) - OsiZo ^p+ppr (r) (6.34) 

where r^ = 0. The pressure at some point ro (also assumed to be small compared with the 

wavelength), may therefore be driven to zero p(ro) = 0 for a secondary source strength qso 

which is given by
(bo=jPpr(ro)^e)km (6.35)
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so that
P(r) - -PpKro) ^ c-jk(r'«)) + p^. (r) (6.36)

The sound power output from the secondary source Wg as a consequence of performing the 
point pressure cancellation may be derived from

Ws = ^)l(;^p(r)q;o) (6.37)

where the sound power output for this infinitesimal point source distribution, assumed to 
be at the origin of coordinates r = 0, is evaluated from the product of the complex source 
strength and the acoustic pressure at the source point. On substitution of the terms one 
obtains

Ws=|R.( )toj(-ppXro)Se-j«r-n» +pp,(r))(-jpp,<ro)§c-M) ) (6.38)

= lpr<ro)l’ ly y ^!^ - 5 R(,^ p^(ro) PpXr) ^ je-i*™ | (6.39)

Taking the expectation only affects the stochastic part of the equation as indicated below

< Wg > = < lpr(ro)l^ > ^ - 2^% <(P^(ro) PpKr) ^j c'^o )> (6.40)

Note that

<(p^(ro)ppr(r)^je-j^)> = <(p^(ro)ppr(r)>^jc-jkro (6.41)

and also the result < p*(ro) pr(r) > = < ipr(r)l^ > sine klrg - rl which is real and further that 

< lpr(ro)l^ > = < lpr(r)(^ > These results may be combined to produce die following 

expression for the space averaged secondary source sound power output < Wg >

< Wg > = < lpr(r)P >^ ( ^^ ' ^^ sine kiro - rl sinkro) (6.42)

< W. > - < wr)p > {Qaif^!!^} (^3)
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Equation (6.43) can be conveniently nonnaliscd with respect to die primary source free 
space sound power output Wp, which is also equal to the space averaged diffuse Geld 

sound power output given by equation (3.45)
Wp=^lqp|2Zo (3.45)

Further noting that < lpr(r)!^ > = iQpl^ < IZpKr)!^ > gives

<WL> < iZ:^)!i> |q^^)2_ ^^2^^^ (g_^) 
p

This ratio of square impedance terms in equation (331) is now familiar and is equal to

<IZc[(rf> _ 2_rMT _
Z% - 3,L f J -

2 
KMoj(m)

(6.45)

which upon subsdtutitai into equadtm (6.41) yields

" ^r'lf^f^^l^(()°n^^-si"^^°ro } (6.46) 
'^P 3)tL I J

Since we are only concerned with the range of separation distances in the region of rg for 
which to « %, the following small angle approximation sin^x « x^ - x^/3 may be applied 

to give
< W, > 

Wp (6.47)9 L f J k

for rg «%

Equation (6.47) shows that on average, a secondary source driven to cancel the 

pressure at a closely spaced point to zero cannot absorb any energy since < Wg > is always 
positive. This follows directly from equation (6.41) by virtue of the basic identity x S sinx. 

This finding is roughly consistent with Olson's origbal hypothesis which says that a 
'Sound pressure reducer' and a 'Sound power absorber' are independent secondary source 

configurations; namely that a sound pressure reducer cannot absorb any sound power and 
visa - versa. Whilst this is a valid generalisation for all practical purposes, strictly speaking 
this is not entirely correcL Specifically, in chapter 3 it was shown that the minimum square 
pressure in the vicinity of a perfectly absorbing point monopole source is approximately 3 
dB below the primary source level signifying a sound pressure reduction. It is interesting to 

contrast the modes of operation for the case of a point monopole secondary source. By 

driving a point pressure very close to the source to zero, die extent of die quiet zone is 
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negligible. However, even though the point secondary source is infinitesimal, as an 
absorber of sound it has an effective area of absorption equal to X^ / jt. This is despite the 

fact that the source can only match itself to the acoustic pressure at a single point in the Geld 
which can be explained in terms of diffraction of the incident wavefield.

The sound power radiated by a secondary source acting as a near field "pressure 
reducer’ is only small for separation distances which are very close to the secondary source 
compared with the acoustic wavelength. Hus follows fiom the constant of proportionality 
in equation (6.47), 2^1^19 which can be calculated to be approximately IIO. The sound 

power radiated by a secondary source in this role is therefore small in comparison to the 
original primary source level. For example, a point of cancellation which is say, one tenth 
of a wavelength fiom a compact source radiating at a frequency equal to the Schroder 
fi’equency, is sufficiently well coupled to ensure that the sound power radiated into the 
enclosure by the secondary source as a fraction of the primary contribution is about 0.01 

conesponding to an increase in the total potential in the enclosure of about 0.01 dB. From 
figure 6.2, the corresponding 10 dB quiet zone for a point monopole source in this 

configuration is nearly one tenth of the acoustic wavelength.

As the cancellation point is brought closer to the point secondary source, the size of 
the quiet zone tends to zero and is identically zero in the limit where rg = 0. The sound 
power output from the secondary source is Ukewise zero. This is consistent with the 

underlying philosophy behind active control whereby b general, the degree of reduction 

attained is broadly b Ibe with the level of pressure bcrease caused elsewhere. Most 
significantly, the level of secondary source sound power output radbted bto the enclosure 
is extremely sensitive to the separation distance of the cancellation pobt of which a fourth 
power dependence has been ascertained. It is interesting to note that if the secondary source 
sound power output had been assumed to be proportional to Iqsoi^. then the predicted 

dependence would have been on the square of the microphone separation distance 
accordbg to equations (6.29) and (6.32).

This idealised model is believed to provide a reasonable description of the energetic 

processes that govern a real system which utilises a finite size loudspeaker. As already 
shown b the previous section, the diameters of typical loudspeaker operating at reasonably 
high fiequencies is a small fiaction of the acoustic wavelength so that the compactness 

assumption ka < 1 remains valid even for real loudspeakers. Appreciable departure from 
this model is therefore not anticipated b practice.
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6.S. Experimental determination of the quiet zone in the near field of a 
secondary loudspeaker in a reverberation Chamber

Ultimately, theoretical analyses arc only meaningful when considered in the light 
of corresponding experumntal results. The aim of this section therefore is to present some 
experimental findings relating to the zone of quiet measured around a control microphone in 
the near field of a secondary loudspeaker at which the pressure is driven to zoo in a 

reverberation chamber.

An attempt to validate the predictions of the near field quiet zones made in section 
6.3 was carried out within an non-rectangular 13.3 m^ reverberant enclosure excited by a 

harmonically driven loudspeaker as a primary source. By adjusting the quantity of sound 

absorbing foam in the enclosure, the reverberation time was arranged to be approximately 

0.4 s corresponding to a Schroder frequency of about 330 Hz. The pressure at a 
microphone close to, and on axis of a secondary loudspeaker was set to zero by adjusting 
the relative gain and phase between the two ouqjuts of a variable phase oscillator through 
which the primary and secondary loudspeakers were driven. The frequency was chosen to 
be 572 Hz (such that X = 0.6m), well above the Schroder frequency for the room.

For each control configuration investigated, corresponding to a given loudspeaker 

diameter and microphone - source separation distance, the primary source position was 

randomly positioned at ten different locations. At each primary source position the acoustic 

pressure about the point of cancellation was measured over a distance equal to one 
wavelength with the aid of a small computer controlled trolley which was made to support 
a measurement microphone. The trolley was made to run along a track down which were 
drawn regularly spaced alternating black and white strips of tape. The measurement 

position of the trolley was determined by a light sensitive switch mounted on the fiont of 

the trolley which was made to send the appropriate control signal to the microcomputer 
depending upon the received brightness level reflected from the strips. With the aid of 
some electronic logic and a microcomputer, tire trolley was made to traverse along the axis 
of the loudspeaker stopping at each of the regularly spaced measurement positions.

On arrival at each of the measurement stations identified by a black strip separated 1 

cm apart, the trolley was made to stop and a measurement of the acoustic pressure was 
made which was then sent to the microcomputer via an A / D converter for subsequent 
processing. One complete traverse of the trolley corresponding to sixty measurement 
positions was made before and after control and the ratio evaluated for each primary source 

position. Complete automation of the measurement process meant that it was possible to 
make a total of eighteen sets of ten averages ctxresponding to three loudspeaker diametos 
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for each of six cancellation positions. Hie location of the points of cancellation were varied 
from the position of the loudspeaker cone itself where Ar = 0, up to a maximum separation 
distance equal to me fifth of the acoustic wavelength in regular increments of 0.05X (equal 
to 3 cm at 572 Hz). A schematic representation of the expcaimental arrangement is shown 

below.

Figure f J A schematic representation of the experimental arroMgem^wt emy^/aygd w 
mfAwnm^ lAg war /kZd zaw <  ̂^wz im a rewerAgraziOM cAawAgr (Wwew akwe the ScArAkr

Before cmamencing near field measurements in the reverberation chamber, the 
opportunity was taken to measure the zone of quiet formed well away from the influence of 
directly transmitted sound as described at length in chapter 4. The relative gain and phase of 
the secondary loudspeaker was adjusted with respect to the primary source so as to form a 
pressure null at a randomly positioned microphone located many wavelengths fiom both 

loudspeakers. The sound pressure level was recorded one and a half wavelengths about the 

point of cancellation along some randomly chosen axis relative to the room This was 
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achieved by a single traverse of the measurement microphone supported by the computer 
controlled trolley orientated through the point of cancellation. Performing tiie measurement 
procedure both before and after control enabled the sound pressure level ratio to be 
determined. The average from fifty such measurement ratios corresponding to fifty random 
primary source, secondary source and point of cancellation positions is shown below in 

figure 6.6 together with the theoretical curve of equation (425). For this set of fifty 
measurement averages, good agreement is established for < ipgP > » 3.8< lppP>.

Figure 6.6 The mvrugg variahbn Aom 50 mearwemerntf (^ f/K rofw <)f J^worg pressures fx^re 
and <{^r t/K cancf//atfon o/ (A( prgfwd at pawu remafg ^am sources <^jawnd in a 
reverAeradan cAamber at a freqiiency af fsalid Iwe). Alfa fAawn w fAe (Aaaretical curve J.&/7 - 
fwc^Adr/ (clashed line).

The 10 dB zone of quiet for this set of measurements can be observed to be 

approximately one tenth of the acoustic wavelength. This experimental finding is roughly 
consistent with the 10 dB quiet zone obtained from computer simulations described in 
chapter 4. In both cases however, this localised region of quiet appears to be at the expense 
of a four fold increase in the average square pressure globally.

The experiment was repeated at the lower frequency of 343 Hz which is close to the 
Schroder frequency for the enclosure and is therefore on the borderline of 'diffuseness'. The 
square pressure was monitored along some randomly chosen axis orientated through the 
point of cancellation which was repeated fifty times for a different set of fifty primary source, 

secondary sourceandcancellation pointpositions-OwingtoAeincreasedwavelengthatthis 

lower frequency, the variation of the square pressure was only measured one half of a 
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wavelength either side of the point of cancellation. The averaged result &om Afty such 
measurements is shown below in figure 6.7. For this set of averages, the theoretical curve 
provides a good fit to the experimental curve for < IpsP > = 2.0< lppl^>[l - sinc^kAr].

Ar
Figure 6.7 7%< rgfw/w o//^y mgaswrernffU ovgragM of tA< ^uar« pressure ratio /or omotAfr set 
(^ random fowrog poritiofu (woluotfd at t& lower frequency t^S4J //z tetweem pM ood mtmtt; one 
^yt)f 0 wovelem^tA.

For this set of fifty measurement averages, fortuitous positioning of the sources and 

point of cancellations positions has produced a 10 dB quiet zone which is approximately 
one eighth of the acoustic wavelength corresponding to about 12 cm at 343 Hz.

Having established the size of the typical zone of quiet one can expect from the 
remote cancellation of the acoustic pressure at a point experimentally, it remains to be 

shown that the near field contribution from the secondary source can improve on this 
uncertain arrangement which is known to produce large global pressure increases. As 

representative examples of typical loudspeakers, three were selected whose radii in 
descending order of diameter were chosen to be 0.11 m, 0.055 m and a third loudspeaker 

whose cone was enclosed by a rigid plastic funnel with a 1 cm aperture. The purpose of die 
latter arrangement was to produce a source of sound whose source distribution was 
concentrated into a very small volume in an attempt to mimic the acoustic behaviour of a 

point monopole. Thus, it was hoped that the funnelled source would behave as an 
oscillating slug of air although leakage of sound radiated from the sides was anticipated.

Each of the three loudspeakers were systematically driven so as to null the 
pressure at six on-axis microphone positions ranging from the centre of the loudspeaker 
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cone itself, up to a maximum of one fifth of the acoustic wavelength at tegular increments 
of 0.05 X. The frequency was again set to 572 Hz and the near field quiet zone was 

measured along the loudspeaker axis a total of ten times corresponding to ten random 
primary source positions. For the sake of consistency, the set of ten primary source 
positions in the enclosure were kept the same for each configuration tested. The variation in 
the pressure measurements close to the point of cancellation between successive 
measurements was found to be sufficiently small so as to indicate that an average result 
comprising of only ten independent measurements would be sufficient to characterise the 
representative behaviour of each configuration. This contrasts the previous example where 
the zone of quiet was controlled remotely fiom the point of cancellation where it was found 

that one set of fifty averages was found to behave very differently from another.

Some examples of the results obtained from this measurement procedure are shown 
below. Firstly, consider the cancellation of the pressure at a point on the surface of the 
source itself such that I tg - rg I = 0. According to figure 6.2, one can expect a quiet zone 
which is of infinitesimal extent for the limiting case of a point monopole although this 
should increase to about 0.07X for the medium size loudspeaker (a = 0.092X) and still 
further to about O.lX for the largest loudspeaker (a = 0.19X). The results for this set of 

loudspeaker-control microphone combinations are shown below. The experimental results 

are shown as a solid line while the corresponding theoretical results are shown as a dashed 

line.

figure 6^ The square pressure ratio formed from the average of ten measurements around the 
point of ccmcellation on the surface of a secoruiary loudspecdcer of radiuf faj J em, (6) 0.0S5 m, 
fcj 0.27m
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The average result obtained firom ten secondary source positions shown above 
indicate good agreement with the theory. Mcae important is that general trends in the 
behaviour of the near field quiet zones are correctly predicted. Wholly consistent with the 
theory, the quiet zone formed near the funnelled source is observed to be negligible. 
Moreover, the fact that any region of quiet is formed which is of finite extent can be 

attributed to the finite volume of the source and to a lesser degree, leakage of sound from 
the sides of the funnel. In the limiting case of a hypothetical point source, the impedance 

field is known to be strongly divergent very close to the source whose strength decays 

inversely as distance from its centre.

The most significant feature of this series of results is that the increase hi the square 
pressure well away fiom the point of cancellation is small in contrast to the case where the 
point of cancellation is remote from the secondary source, which may be many decibels. 
This is true even for the largest loudspeaker where the remote square pressure increase is 
only a fraction of one decibel. In this respect, it would appear that this strategy is capable of 

producing something for nearly nothing inasmuch as one is able to selectively impose 
regions of quiet in the diffuse sound field while leaving the global sound field largely 

unchanged. Unfortunately, it soon becomes clear that as the point of cancellation is moved 

away from the source, the size of the quiet zone increases only at the expense of an 

expected increase in the square pressure far from the source as indicated by the increased 
secondary source sound power output given in equation (6.47).

As a technical aside, it is worth recording the difficulty experienced trying to reduce 
the pressure at a microphone very close to loudspeakers to levels of more than about 15 
dB. This is almost certainly attributable to the large pressure gradient, and therefore the 

non-uniformity of pressure across the finite diaphragm of the control microphone at these 

positions thereby introducing inaccuracies owing to the non-zero pressure integrated over 
the diaphragm. Close to the funnelled source for example, a 15 dB variation in the square 
pressure was measured over a distance of 3 cm corresponding to an average change of 5 

dB over the 1 cm diaphragm of the control microphone. A minimum of -15 dB in the 

square pressure level at this position therefore corresponds to the average square pressure 
over a 1 cm region. TTiis is an additional reason why one should choose to cancel the 
pressure at a point in the sound field where the rate of transfer impedance with distance is 

small.
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Figure 6.9 show three plots of the experimentally determined square pressure 
profile about a point of cancellation one tenth of a wavelength from the centre of the three 
secondary loudspeakers averaged over ten measurements.

Figure 6J> The square pressure ratio jbrmgd/r^omi z/k average z^ zea ZMeanzremeziZj arazzad zAe 
point af eaaaei/azzaa az aa aa axfr'pazaZ azie ZezizA afa waveZeagzA^aai zAe eaae z;fa 
^eaazizry iazzd^ajker z)f radzzw faj 7 eaz, f6J 0.055 m, fej 0.72 za.

Again the simple dieory appears to provide satisfactory description of the series of 
results obtained experimentally although perhaps less convincingly for the quiet zone 
formed around the funnelled source. This is almost certainly due to sound radiated from the 
sides of the funnel whose contribution to the total acoustic pressure is now significant and 
perhaps non-linear owing to the increased volume velocity required to perform the point 

cancellation. For the two remaining loudspeakers, good agreement between the theory and 

experiment is obtained.

The 10 dB quiet zone formed around the middle size loudspeaker shown in figure 
6.9b can be seen to be slightly less than one tenth of a wavelength while the zone of quiet 

formed around the largest size loudspeaker is slightly more as mdicated m figure 6.9c. 

Moving the point of cancellation away from the surface of the source can be seen to have 
the effect of producing a substantial increase in the average square pressure between the 
source and the point of cancellation. This is due to the near field contribution from the 
secondary loudspeaker which progressively diminishes as the size of loudspeaker 

increases. In practice, one should take steps to ensure that the listener's ear cannot enter 

this region where the increase in the square pressure can be typically as high as 15 dB. 
Nevertheless, the average square pressure increase well away from the point of cancellation 
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still remains small for these finite size loudspeakers. Moreover, there are small regions far 
from the point of cancellation which have also undergone a reduction in the pressure 
although this is probably more fortuitous than by design.

As furtiiCT vindication of the underlying philosophy behind this control scheme, the 
results obtained from the cancellation of the pressure at a point exactly one quarter of a 
wavelength firom the centre of the secondary loudspeaker is shown in the last series of 
figures below

figure 6JO The square pressure ratio formedAum tA< ovgrage <;( fga maowrgmfnff wound (A^ 
pomf of conce/Zodon a/ on 'on mif'point onf ^uorter of o wwgigt^tA /(-om tik cono of o 
fgcomizry iowd^oAgr of radius foj 7 cm, fAJ O.Qjij m, fcj 0.77 m.

The predicted result obtained between the theory and experiment for this 

combination of funnelled source and cancellation position now fail to agree to any 
reasonable degree. However, good agreement is obtained for the remaining two 
loudspeakers. Consistent with the theory, die size of die quiet zone continues to increase 
with increasing loudspeaker size and cancellation position. For the largest loudspeaker 

seeking to cancel the pressure at the furthest distance which is a quarter of a wavelength for 
this set of measurements, is able to produce a quiet zone nearly equal to one eighth of a 

wavelength. The effect on die square pressure well away fitxn die control point still 

remains less than 2 dB.
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6.6. Discussion and conclusion

Undoubtedly, the size and shq)c of the diffuse Geld quiet zone beneGts ^preciably 

from the large, highly correlated, deterministic secondary source near Geld pressure 
contribution before being scattered by the walls of the enclosure. However what is most 
signiGcant, is that the form of the quiet zone beneGts twice over from this large near Geld 
contribution to the pressure at the point of cancellation. First and most unexpectedly, the 
size of the quiet zone depends proportionately on the magnitude of the transfer impedance 
at this point and secondly, the near Geld impedance contribution as a ratio of the reverberant 
contribution governs the energy radiated by the secondary source into the enclosure.

Simple expressions have been developed which seek to describe the size and shape 

of the zone of quiet formed around a point of cancellation in the near Geld of a secondary 
loudspeaker. Unfortunately, no uniGed analysis has been possible which encompasses 
both the two extreme cases which have had to be considered separately in this thesis. At 
one extreme where the point of cancellation is close to the source, the direct Geld 

completely dominates the reflected sound Geld so that a free Geld analysis for the quiet zone 
becomes appropriate. At the other extreme where the point of cancellation is far from the 

sources, the direct Gelds are negligible compared with the reverberant contribution so that 
one can talk entirely of random quantities in order to derive expressions for the quiet zones 

and related statistics. However, in the intermediate region where the total pressure 
contributions is roughly shared between the free Geld and reverberant contribution, the 
form of the quiet zone is indeterminate. Although most likely at these positions, the form of 
the quiet zone will comprise some unspeciGed combination of the two.

One of the features of this control strategy which makes it most appealing as a 
viable technique for high frequency, reverberant sound Gelds is that it is tightly coupled and 

therefore the level and spatial extent of the pressure reductions does not depart significantly 
from one position in the sound Geld to another. From a practical viewpoint, this offers the 

considerable advantage that each source can be adjusted independently to cancel the 

pressure at their respective microphone. One can envisage bstaUing an array of identical 
systems operating at high frequencies in order to produce a localised quiet zone about the 
ears of the seated passengers while simultaneously radiating at low frequencies in order to 
suppress individual modes of the enclosure. One practical complication might be the 
changing acoustic space due to the moving head of the passenger. However, this could in 
principle be removed by an adaptive controller which responds rapidly to the changing 

acoustic space. One may of course argue that the presence of a near spherical rigid body 

which is large compared with the wavelength will destroy the diffuseness of the sound field 
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thereby violating the underlying diffuse field assumptions. This problem should provide an 
interesting area of research which is probably better tackled experimentally.

Another interesting area of research which remains to be investigated is that of high 
fi’equency broadband control at a point in an enclosed space. This problem has been 

neglected here mainly because of its complexity and also not wanting to obscure the 
underlying physics. The control configuration advocated here is ideally suited to broadband 

control which is probably the motivation behind Olson's experimental arrangement. 

Causality considerations are largely overcome since the pressure at the point of cancellation 

will respond almost instantaneously to the action of the secondary source while the primary 
pressure takes the entire propagation time from an infinite number of image sources to 
reach the point of cancellation.

The results reported in this chapter also goes some way to clarifying the relationship 
between the two possible modes of operation of a secondary source vaguely alluded to in 
Olson's paper. The work of chapter 3 has already shown that a source of sound can absorb 

energy in a diffuse sound field which has been shown to effect a small area of pressure 

reduction in the vicinity of the source. However, in this chapter the converse problem has 

been contemplated where the sound power output of a point secondary source which acts to 
produce a point of null pressure close to the source has been derived. A simple analysis has 

established the sensitivity of the sound power output fiom compact sources to the 
separation distance of the point of cancellation of which a fourth power dependence has 
been ascertained.

In summary therefore, the cancellation of the pressure in the near field of a 
secondary loudspeaker acts to produce zones of quiet which are broadly in line with those 
attained when the point of cancellation is remote from the sources. However, tire advantage 

of this this control geometry is that it adds a high degree of determinism into what would 

otherwise be an ill-conditioned and uncertain arrangemenL Moreover, the levels of square 

pressure produced far fiom the point of cancellation are reduced fiom typically 6 dB in the 
case of the former arrangement to negligible firactions of 1 dB for some combinations of 
loudspeaker diameter and microphone separation distances.
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APPENDIX 6

Appendix 6.1. A formal calculation of the space averaged 
squared transfer function < |Ho|^>

Consider the transfer function Ho defined in equation (63)

Ho ZKrph-o) 
Zd(rslro) + ZKrglro) (A6.1)

where Z^rplro) and ZKrpIro) are the diffuse field transfer impedances whose real and 
imaginary parts are independent and normally distributed random variables. In terms or 
more concise notation, IHol^ can be written as

(A6.2)

whereZ = IZr(rplro)P/IZd(rslro)l^,x=R(ZKrslro)/IZd(rslro))land y = l(ZKrslro)/ 

IZd(rslro)L For well separated primaiy and secondary sources, the expectation < IHol^ > is 

given by the product of the independent factors

<IHol^> = <Z>< 1
(1 + x)^+y^ (A6.3)

It has been shown previously that Z is a Chi squared random variable with two degrees of 

freedom whose mean value may be determined from equation (6.28) to give

<IZr(rplro)P> 
IZd(r,lro)P

= 2<52> (A6.4)

The mean of the second factor may be determined by recalling that (x+1) and y in equation 
(A6.3) are normally distributed random variables whose variance are equal to < 8^ > and 
whose mean values are equal to unity and zero respectively. Putting x^ = x+1, one can

write
(Xl(xl) = -p==: 6' ('^' "^)^^< ^ : 

"V 2jt<S2>
V xi (A6.5)

fY(y) = "; ' ^ '/"' e' y^/^< ^^ >:
V y (A6.6)
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In terms of the current notation, we require the expectation value < g(xpy) > where g(xi,y) 

is the function

6(*by) = (A6.7)

A well known result is that the expectation of some multi-variable function g(xi,y) is 
determined from^3

00 ©o

<g(xi,y)>= j } g(xby)([i/%by)dxidy (A6.8)

where fxijfxi.y) is the joint probability density function between the random variables xl 

and y which is simply the product of their respective density functions by virtue of their 
mutual independence which can be assumed for well separated sources. One can therefore 
write

f

-00 *00

This double integral may be simplified by the change of variable xj = rcosG, y = rsinO 

which may be substituted into equation (A6.9) and combined with equations (A6.3) and 
(A6.4) to produce

00 2?r

0 0

Appendix 6.2. A power series approximation to the space averaged 
squared transfer function < |Ho|^>

Equation (6.3) may be re-written as

Ho = S6z!!^ 
?d(fs^fo)

Z,(rslro))-' 
ZdWro)) (A6.11)1 +

from which the expectation of die square of the transfer function may be derived according
to

< IHol^ > = <
ZyWrp) ^ 
Zd(rslro)

r )l(Z,(r,lro))Y 
IZd(rW

r%(4(rW)Y
IZ^frglrt]^ J

(A6.12)
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The expectation of the first factor in this equation is just 2< 5^ > according to equation 

(321). The considerably more complicated second factor may be more concisely 
represented by the function g(x,y) = ((l+x)2 + y2)-l. The variables x and y are respectively 

the normalised real part and normalised imaginary part of the diffuse field impedance. Both 
X and y are therefore mutually uncorrelated, zero mean random variables whose relative 
variances are equal according to < x2 > = < y2 > = < g^ >.

The expectation < g(x,y) > has previously been shown to be infinite. An identical 
procedure to that proposed in chapter 3 for overcoming the singularities in the expression 
relating to the problem of diffuse field sound power minimisation is now employed. One 
can immediately see that g(x,y) goes to infinity when (x+I) and y are simultaneously zero. 

An estimate for the expectation < g(x,y) > is now sought based on behaviour of the 
function ((I+x)2 + y2)-l for which Ix+ll < I and lyl < 1. It is believed that this condition is 

sufficiently un-restrictive to enable one to derive a mean value which is representative of the 
average behaviour of the vast majority of possible out-comes. This will be particularly true 
when < > is very much less than unity such as is the case for compact sources seeking to 

cancel the pressure at a very closely spaced point.

A good approximation to the first order behaviour of f(x,y) for those commonly 
occurring cases where Ix+ll < 1 and lyl < 1 may be obtained by expanding the function as a 

two dimensional power series centred about the origin (0,0). A power series representation 
of the function about x = 0 and y = 0 (Maclaurin series) in x and y is given by

g(x,y) = g(0.0) + x^|„„, + y|S|,„„,

" HT f 1(0,0) + (1) *" 'y 9x0 %'

(A6.13) 
Strictly speaking the order of the power series n should be taken to infinity to ensure an 

exact representation of the desired function g(x,y). However, in practice only a few terms 

are required in order to provide a good approximation to the function providing x and y are 
simultaneously small. For the function under consideration here, a program capable of 

symbolic differentiation was used to generate all the necessary partial derivatives in x and y 
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in order to evaluated the power series expansion of the function to sixth order. The 
derivatives were evaluated at the origin (0,0) and substituted into equation (6.31) to produce

g(x,y)" 1 - 2x + (3x2 _ y2) + (-4x3 + 4xy2) + (5x4.10x2y2 + y4) +

(-6x^ + 20x3y2.6xy4) + (Vx^ - 35x4y2 + 21x2y4 - y6) (A6.14)

Recall that x and y are independent, Gaussian random variables where all odd moments are 

equal to zero. Further note that the moments of x and y are equal, so that taking the 
expectation < >, one can shown that to sixth order

< g(x,y) >wl+2<x2> + 6<x4> - 10< x^ >2

+ 6< x^ > -14< x4 X x2 > (A6.15)

where < x^ >, < x4 > and < x^ > symbolise the second moment (variance), the fourth 

moment (Kurtosis) and the sixth moment of the Gaussian distribution. Since the Gaussian 
distribution is completely specified by its mean p and standard deviation <52>i/2, all higher 

moments may be written in terms of these principal moments. According to standard 
texts63, if X is a Gaussian random variable, then the r* moment namely Pr may be derived 
from <82> via

r! <52>f/2
- (r/2)! 2^/2 (A6.16)

where r is even. Note that Pr - 0 for odd r. One can therefore write

< x2 > = <52>, < x4 > = 3<52>2 and < x^ > = 15<82>3 (A6.17)

Providing <52> is small compared with unity, the function g(x,y) may be closely 

approximated by
< g(x,y) > = 1 + 2<52> + g<52>2 + 4g<82>3 (A6.18)

Returning to equation (A6.12) for < IHqI^ > and noting that < iZr(rplro)!2 > / K^(rglrQ)|2 = 

2<52> enables the expectation of the square of the transfer function to be written 

completely in terms of a power series expansion in the relative variance <52> of the transfer 

impedance written below

< IHol^ > " 2 <52> + 4 <52>2 + 16 <52>3 + g^ <52>4 (A6.19) 

for Ix+ll, lyl < 1
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

7.0. General remarks

It is hoped that the work described in the preceding pages has gone 
some way to revealing the potential and the limitations of active control technology to 
produce reductions of the acoustic pressure in high frequency enclosed sound frelds. 
As an objective assessment of the contribution to this field, it is first necessary to put 
this work into a proper perspective amongst the more conventional main stream type of 

research which deals almost exclusively with low modal density sound fields. It is 
unlikely that one would choose to install an active control system with the sole propose 
of controlling high frequency sound. With this in mind, the investigation has been 

undertaken with the understanding that in reality, high frequency active control would 
probably only be carried out as an added benefit over and above the main objective, 
namely the suppression of low frequency sound, where active control is already known 
to be considerably more effective. One can conceive of a practical controller which 
contains perhaps a separate dedicated micro-processor which is independently 

programmed with the task of performing high frequency active control. Constraints 
imposed by cost, size and weight would necessitate that the high frequency controller 
utilise the same array of loudspeakers and error microphones at all frequencies whose 

positions in the enclosure would be heavily biased by those source and microphone 

locations which gave maximum observability and controllability at low fiequencies. 
Those factors which govern the level of reductions at high frequencies would therefore 
come only as a secondary consideration.

The ineffectivcnesst^Acactivectmtrol ofhi^frequencyenclosed sound 
fields derives from its spatial complexity. Paradoxically however, it is precisely this 

spatial disorder which enables one to accurately describe the statistical behaviour of a 
large number of similar, independent diffuse field measurements. One can no longer 
make definite statements relating to the outcome of a single experiment, but only 

generalisations regarding the average behaviour of a large number of similar 
experiments. It turns out that above some critical frequency, which is particular to each 

enclosure, the statistical properties of the high frequency enclosed sound field are well 

defined. Perhaps one of the most important contributions of this thesis is the bringing 
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together of simple optimisation techniques and elementary statistical methods for 

determining the absolute performance limits, in an average sense, of active control in 
diffuse fields. To the author's knowledge, this is the first time active noise control has 
been treated from a such a probabilistic view point although it is difficult to envisage 
how else one could tackle this problem theoretically.

7.1. Conclusions

It is recognised early on in this thesis that sound fields in which there is a 
'random' relationship between acoustic pressure measurements made at different field 

points will lessen the performance of active control In practice, randomness appears as 
either unsteady fluctuations in the temporal characteristics of the signal such as jet 

noise, or spatial randomness which occurs by virtue of the seemingly random 

interference from a large number of acoustic modes in the enclosure even for harmonic 
sources. The most complex active noise control problem from the point of view of 
analysis is the situation whereby a broadband source of sound is radiating into a large 
three dimensional enclosure. Measurements of the acoustic pressure would therefore be 
random functions of both time and space. For ease of analysis, the temporal and spatial 

aspects of this more general problem are treated independently in this thesis.

Chapter 2 focuses on the temporal aspects of active noise control. Well 

established time domain techniques are applied with the aim of determining the causally 
constrained minimum sound power output fiom a pair of sources situated within an 
infinite duct At the expense of over simplification, the difficulties arising from 
complicated spatial pressure variations in the room are essentially removed by 

considering only sound propagation in one dimension in the absence of reflections. The 

difference between the levels of reduction obtained for sound fields excited at a single 
frequency, and the reductions obtained for random broadband noise, is determined by 
the degree of predictability associated with each signal. Just as the name suggests, 

predictability is that property of a signal which enables it to be pre-determined on the 

basis of a knowledge of all its past values. It would appear intuitively correct that the 
predictability of the signal, as defined in some systematic fashion, somehow bears a 
simple relationship to the bandwidth of the signal. In chapter 2 a reciprocal relationship 
between the two quantities is proposed.

The time domain theory developed in the first part of chapter 2 for free ^ace 

radiation is extended to include reflections. The most elementary kind of reverberation 
is considered in the form of a single reflecting surface. It is recognised that the level of 
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reduction physically achievable in the acoustic pressure for some arbitrary broadband 
signal is bounded somewhere between the level of reduction obtainable for pure tone 
signals and the corresponding level obtainable for Gaussian white noise signals. The 
steady state level of reduction for each limiting class of signal is therefore evaluated as a 
function of the reflection coefficient It is shown that the level of reduction is more 
dependent on the level of reverberation in the ^ace (as governed by the reflection 
coefficient) than the bandwidth of the signal for this geometry. The amount of sound 

power reduction obtainable for white noise signals, even in this reverberant q)ace, is 
found to be never less than about 50 % of the corresponding average value obtained for 
pure tones.

Analysis has shown that for broadband primary signals, the enqjhasis of the 
control mechanism is towards sound power absorption whereas for narrow band 
signals, the mechanism of energy reduction is roughly shared between sound power 
absorption and primary source loading. In the simple acoustic space investigated, the 
difference in sound power reduction levels for the two signals types at any given value 
of the reflection coefficient, is found to be never less than 3 dB. The active control of 

broadband noise is therefore possible in principle for simple reverberant spaces 
although no mention is given to practical considerations such as, for example, the filter 

length or how might realise such an optimal filter in practice. A discussion concerned 

with practical details is thought to be outside the scope of interest of this thesis and is 

extensively dealt with in the literature, particularly for simple duct borne noise.

The work described in chapter 2 is very much a digression from the main 
emphasis of this thesis which has been predominantly concerned with the active control 
of diffuse sound fields. A discussion of the various inteipretations of diffuseness is 

given at the start of chapter 3 for which even today there is not complete general 

agreement This thesis has chosen to adopt the probabilistic definition of diffuseness 
which says that the pressure at any point in space has an equal probability of energy 
arriving from all elemental solid angle. This contrasts the more restrictive, idealised 
definitions of diffuseness, some of which envisage the sound field inside of a sphere 

generated by an infinite number of incoherent point sources on the sphere surface. The 
pressure at the centre of the hypothetical sphere is regarded as being perfectly diffuse, 
and points slightly away finom the centre are regarded as being substantially diffuse. 
One can immediately see that the two points of view are fundamentally different 
inasmuch that the first talks in terms of likelihoods while the second talks in terms of a 

definite state of diffuseness at some pre-determined point in space.
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The idealised concept of a diffuse sound Geld is extremely ingxxtant in that it 
identifies the asymptotic fonn of sound Geld to which all enclosed sound Gelds 
converge as the frequency is increased. In considering active noise control in diffuse 
sound Gelds, one is identifying the upper bound frequency limit on the active control of 
sound in enclosed spaces which in many respects, signiGes the worst possible case. 

Although in essence a physical, non-realisable idealisation, the difGise sound Geld is 
characteristic of the acoustic behaviour of a large number of real sound Gelds which 

quite oGen, are irregularly shaped, posses inhomogeneous absorption properties and in 

general, contain a large number of randomly shaped scattering objects. For example, 
inside some vehicles and aeroplanes where active control has already been applied, the 
Schroder frequency has been experimentally estimated to be between 100 Hz and 200 
Hz. Even at frequencies well below the Schroder frequency, this type of low modal 
density sound Geld is more appropriately described by statistical methods to which the 
diffuse sound Geld is a useful idealisation.

In all of the work presented in this thesis concerned with active control in 
diffuse sound Gelds, a feedfoward controller has been assumed. This type of controller 

is presumed to have access to some control signal which is perfectly coherent with the 
primary source whose radiation can therefore be predicted perfectly. The levels of 

reduction predicted by these results in no way refer to inadequacies of the controller, 

but serve to identify the absolute performance limits on the active control of diffuse 
Gelds which are dictated solely by the unique spatial charactoistics of this type of 
sound Geld.

Chapter 3 has considered the possibilities for the global attenuation of diffuse 
Geld pressures using compact sources. By virtue of the vast number of contributing 

modes which conspire to produce the state of diffuseness, reductions in the pressure 

can only be accomplished globally if ones's secondary source is able to couple into all 

the modes simultaneously. This is precisely what happens when two point monopole 
sources are closely situated in an enclosed space. The scenario outlined here therefore 
provides the basis of a convenient model problem which readily lends itself to simple 
analysis in terms of optimisation techniques and elementary statistical theory. Using the 

diffuse Geld statistical theory set out by Schrdder, the minimum sound power output of 
two closely spaced sources has been deduced together with the secondary source 
strength requirements. Converse to the problem in chapter 2, the analysis is restricted to 

single frequencies thereby removing the obvious complications arising from causality 

considerations.
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This exercise has served to locate the first and second order moments of the 
secondary source strength and the total minimum sound power output from the source 

pair. An atten^t to determine the statistical behaviour of the diffuse field variables in the 
conventional manner, via a specification of the mean and variance, was shown to be 

iccpossible. These moments were found not to exist inasmuch as the integrals from 
which they are derived fail to converge. In physical terms, this complication arises from 
the very small probability of obtaining very large values, whose product will tend to 
dominate, say, the much larger probability of obtaining commonly occurring values. 
This finding raises the important fundamental question about what information 
statistical moments are meant to convey. In a large number of cases (although not aU), a 
formal assessment of the expectation value is an inappropriate estimator of statistical 
behaviour which says more about the ill-conditioning of the actual integral from which 

the expectation value is derived than the first order behaviour of the random variable 

itself.

In the light of this fundamental difficulty, a pragmatic solution was sought. It 
was decided to take the expectation over an ensemble of values comprising only those 
results obtained at source positions for which the sound power flowing fiom the 
secondary source into the medium directly, is less than the power radiated into the 

medium via wall reflections. While it is acknowledged that this criterion is essentially 
ad-hoc, the new ensemble is believed to be more representative of the occurrences 

observed in reality, furthermore, helps to simplify the analysis at the same time. AU of 
the various moments associated with the random distribution are now gauranteed to 
converge to meaningful and consistent expressions.

The same approach has been used to deduce the maximum sound power 

absorption for an elementary point monopole source in a diffuse sound field. The 

efficiency with which sources of sound are able to extract energy from a given sound 
field is fully characterised by their cross sectional areas of absorption. Fer an optimaUy 
absorbingpoint nxrnopolesonrceinadiffuse s(Mintd:fwtki,tltisfuta takestheform of 
the surface of a sphere which has been shown to vary according to the square of the 

acoustic wavelength. This additional area of active absorption evaluated at typical 

values of the Schrdder fi'equency compared with the existing area of passive absorption 
is clearlysmalL For exanqrle, insideainediumsizeroomofabout ICNIm^ evenly lined 

with typical sound absorbent tiles excited at the Schroder frequency, the optimal 
absorption of sound has been shown to provide only about a 10 % level of reduction in 

the total potential energy. This control strategy is therefore not advocated at high 
frequencies. Extrapolating this result down to low frequencies, although it is not strictly 
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valid, indicates that the optimal absorption of sound is very effective. This is the 
frequency region for which the modal overlap factor is less than unity and so the modal 
responses of the enclosure are non-overlapping. The sound field now comprises 

distinct, isolated resonances for which active control has been shown to be most 
effective. However, the relative variance associated with the maximum sound power 
absorption at low frequencies has been show to be large at low frequencies so that the 
mean value is therefore not particularly meaningful.

Global control in diffuse sound fields is generally acknowledged to be an 
unrealistic objective for most commonly occuring noise sources. Chapter 4 has 

therefore considered the possibilities for localised active control. The simplest control 
strategy possible has been investigated which involves using a remotely positioned 
secondary source in order to drive the acoustic pressure at a point to zero. Statistical 
approaches have been adopted in order to deduce expressions for the space averaged 
quiet zone, the statistical behaviour of the secondary source strength and the resulting 
increase in the potential energy. Unlike low modal density sound fields, the space 
averaged zone of quiet created about a point of null pressure in the diffuse field limit 
has been shown to converge to a well defined expression as a function of the spatial 
correlation function.

The study undertaken in chapter 4, which uses elementary statistical techniques, 

has been most useful in highlighting the ill-conditioning of a controller seeking to apply 
active control to diffuse fields. This arises from the spatial random behaviour intrinsic 
to this type of sound field. More specifically, the difficulty lies in the form of the 
probability density function for describing the distribution of diffuse field complex 

transfer impedances evaluated between two well spaced points. Outside the influence of 

directly transmitted sound, all of the principal indicators of central location such as the 

mean, mode and medium are exactly equal to zero. Thus, on average, a remotely 
positioned secondary source is poorly coupled to the primary pressure at the desired 
point of cancellation. This property is explicitly revealed in results obtained from 

computer simulations of the total diffuse field potential energy. A single source allowed 

to radiated freely in a diffuse field environment has been found to sustain a level of 
potential energy in the room as it moves from point to point in the enclosure which is 
normally distributed and subject to a normalised variance which is considerable less 
than unity (varying approximately as the inverse of the modal overlap factor). On the 

introduction of a secondary source into the enclosure for the purpose of driving the 

pressure at some random remotely positioned point to zero, the normalised mean of the 

combined potential energies from 15,000 computer simulations has been found to be 
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approximately equal to ten indicating a substantial average increase. Formally however, 
the predicted space averaged potential increase is equal to infinity. While this study has 
been enlightening from the point of view of gaining insight into diffuse field pressure 
cancellation, this is not an approach one would be advised to implement in practice. 
Better behaved control schemes are investigated in chapter 5.

The work of Olson et-al has featured largely in this thesis. Despite being widely 
acknowledged as an important work in active noise control, it is perhaps surprising to 

realise that in nearly forty years, nobody has sought to provide a more rigourous 
theoretical basis by which to understand these ideas even though a comparatively large 

amount of experimentation has been performed. The investigation reported in chapter 6 
represents just such an initial attempt The considerable advantage in controlling the 
sound field close to the secondary source is that the total secondary acoustic pressure is 
dominated by the near field of the source superimposed on which, the diffuse field 
contribution can be neglected. The diffuse, revo-berant field therefore only appears as a 
small random fluctuation on the deterministic near field of the source which tends to 

average to zero as the average over all source positions is evaluated. In this closely 
spaced configuration, one has managed to circumvent the fundamental restrictions 
imposed by the random, diffuse field as discussed at length in chapter 4 so that the 

analysis only involves free field terms. Moreover, because the acoustic coupling 
between the secondary source to the desired point of cancellation is now much greater 
compared to the acoustic coupling firom the primary source, the ratio of secondary 
source strength to primary source strength is therefore small compared to unity. Using 
this technique, one is now able to engineer reductions in the sound pressure level in a 
diffuse field environment which are of the same spatial extent as that obtained from a 

remotely positioned control secondary source, if not greater, but now the global 

increases in die sound pressure level are now restricted, in most cases, to a fraction of 

one dB.

The two results which more than any exemplify the extent to which active 
control may be applied to diffuse fields are the values for the zone of quiet around a 
point of null pressure, defined at the 10 dB level of reduction, and the cross 
sectional area of absorption for a perfectly absorbing point monopole source. The 

former result characterises the scope for cancelling diffuse field pressures. Both 
theory and experiment have indicated that for sensibly behaved values of the 
secondary source strength, say, of the order of the primary source strength, the size 
of the diffuse field quiet zone is limited to approximately one tenth of a wavelength. 

This value reflects both the correlation structure of the diffuse field and to perhaps 
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to a greater extent, the statistical inter-dependence between the primary and 
secondary diffuse pressure fields as governed by the inter-relations between their 
source strengths. It was found to be not uncommon to measure, both from results 
obtained fiom computer simulations and experimentation, increases b the sound 
pressure level well away from the control pobt is typically equaitWO dB.

Alternatively, ifone chooses toadkqitag^k^baliminejgy soas,(brexample, 
to maximise the sound power absorption of a secondary source, the efficiency with 
which this can be achieved is fully characterised by the cross sectional area of 
absorption which is approximately given by square of the wavelength divided by 
pi. This value must of course be compared with the existing effective area of 
passive absorption for a given enclosure, in order to asses the level of reductions in 
the steady state level of potential enCTgy which ultimately may be achieved.

7.3 Suggestions for further work

Active control is widely perceived as a possible solution to low frequency noise 
control problems. However, the precise area of applicability still remabs to be 
identified as manifest by the diversity of approaches and situations currently been 
studied. Given the infancy of the technology and understanding of active noise control 
at the present time, it is unlikely that very much research will be undertaken in the near 

future specialising b frequencies greater than about 300 Hz. This is despite the fact that 
there is clearly a large amount of work lemabbg in this area of research as bdicated b 
the thesis.

It is envisaged that the development of high frequency active noise control in the 

long term will evolve on two fronts. The first concerns technological advancements in 
the form of real time dedicated digital signal processors. The fundamental task of these 

devices will be to compute the optimal secondary source strengths required to mbimise 
the signals received by an array of strategically placed microphones accordbg to some 
optimal criterion. Presently, the upper workbg frequency limit, set by the maximum 

sampibg rate, and the number of secondary sources and error microphones is limited 
by computing speed. The second area for potential advance concerns bcreasbgly 

sophisticated experiments aimed at optimisbg the source strength, or strength source 
array for determining the largest size quite zone while least affecting the global sound 

field, where chapter 6 is an initial attempt investigating single channel control schemes
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The application of active control to the idealised diffuse field provides a fruitful 
area of research where new results can be obtained relatively easily. It is probably fair 

to suggest that in a large number of cases these findings are of academic interest only 
and are not particularly relevant to real life implementations. It is believed that high 
frequency active control can be advanced furthest by adopting a more experimental 
approach although the necessity of a thorough understanding of the underlying physical 
principles is recognised. Undoubtedly, active control at high frequencies will be 
restricted to local control which involves creating zones of quiet around the head of a 
listener whose movements must inevitably be restricted. This might be, for example, 
the seated passenger of an aeroplane or the driver of an automobile. It is in this 
objective where most effort should be directed.

Whilst the results derived in this thesis provide genial guidelines relating to the 
principle of localised diffuse field control, the analyses are necessarily simplistic, 
neglecting important considerations such as the effect of the listener’s head on the 
sound field which will lend to act as a large diffracting body. The moving head will 
cause the sound field to be in a constant state of change which will therefore require an 
adaptive control scheme which constantly adjusts itself to the changing acoustic 
response of the enclosure. Each control unit will require two control points, one for 
each ear. This raises the important issue concerning the psycho-acoustic impression 
given to the recipient of the device as the perceived phase change accompanying the 

pressure cancellation may appear unnatural. This is an important dqiartuie from the 
main thrust of active noise control research which to the author's knowledge, has never 
been investigated.

Some of the ideas suggested by Olson would also benefit from further 
irrvts^ig;ttti()n.]ri]particu]ar,ii)e notionthatactive methods maybe used to enhancethe 

efficiency of passive absorption of acoustic energy should also be explored further. The 

control strategy suggested by Olson involves driving the pressure at a point to zero in 
the near field of a secondary source with the aim of establishing a large pressure 
gradient between the source and the point of null pressure. Chapter 6 has shown Aat 
for very compact sources, pressure gradients of up to 5 dB cm'l are readily obtainable 

for which, following from the momentum equation, the particle velocity is 

correspondingly large. It was suggested by Olson that a resistive screen in the form of 
sound absorbent foam in the region of this increased particle velocity would be highly 
efficient as a passive absorber of sound. While this control arrangement will 

undoubtedly be efficient in absorbing the energy radiated by the secondary source, it 
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remains to demonstrated either experimentally, or theoretically whether this scheme will 
be efficient in absorbing incident primary energy.

Another interesting area for future research would be to use the same 
probabilistic treatment used in chapter 3 to investigate high frequency active noise 

control to study the active absorption of sound at low frequencies whose effectiveness 
is considerably greater. It is anticipated that the expression for the area of absorption for 
an optimally absorbing point monopole source derived for the high frequency limit, is 

also a good estimate to the average area of active absorption afforded at low 
frequencies. A probabilistic approach would enable one to investigate the variance 
associated with the maximum sound power absorption obtained between successive 

measurements as the secondary source position is varied. This is believed to vary 
inversely as the modal overlap factor, although formal verification obtained from 
computer simulations would be valuable and revealing. This approach would also 
enable such effects as the influence of enclosure boundaries on the sound absorbing 
capabilities to be studied, although it is anticipated that the optimal absorption of sound 
power is statistically independent of the proximity of enclosure walls.

The last control principle worthy of note, which is attracting growing 
attention, involves shaking the intermediary structure through which noise is 

known to be transmitted. This technique is appropriate, for example, the structure 

home noise radiated into an aircraft fuselage which is thought to predominate over 
air-borne transmission paths. Consider, for example, the case when two large, 

highly damped rooms are separated by an elastic panel capable of vibration. Noise 
on one side of the room will be transmitted to the adjoining room via structural 

vibration of the partition. It is conceivable that although the acoustic field in each of 

the enclosures may contain many thousands of significantly contributing acoustic 

modes, acoustic energy is only transmitted between them via the energy carried by 
only a few structural modes of the plate. In this case, a more appropriate control 
strategy would be to apply vibration control to the plate directly, with the objective 
of minimising the potential energy radiated to the other side of the room. This 
approach is already beginning to yield promising results9758 although there stiU 

remains a large amount of work to be performed. A particularly interesting aspect of 
this work is the complicated structural - acoustical interactions which arise from the 
use of double partitions when active control is applied in the air space in between.

So far we have only considered short term objectives for active control, say, 

over the next ten years. In the long term however, it is inevitable that active control will
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attainanew level ofsophisticadon,paTticulaily for cMitmllingunwanledstructural 
vibrations. Active control in the future will combine very fast, real time, paraUel signal 
processing capabilities, together with the new generation of distributed type transducers 
such as the piezo ceramic, or magneto-strictive devices to form intelligent, or 'smart 
structures'. These high stress transducers are able to provide large in-plane forcing over 

a wide fiequency range so that when bonded to a structure, they are able to modify its 
structural characteristics in response to changing external stimuli which could be either 

acoustical or mechanical in origin. Furthermore, the problem often encountCTed with 
modal spillover are lessened due to the distributed nature of these types of transducers 
whereas the more conventional type of shakers, which act at a point, tend to excite a 
uniform wavenumber response thereby exciting many modes over and above the 
desired modes required for optimal control. Some authors^ are already beginning to 

study the use of this new technology for active control in for example, applications in 
space vehicles, commercial aircraft design and automotive applications and in many 
other examples where weight is an important consideration.

255



. SU
M

M
A

R
Y

 O
F I

M
PO

R
TA

N
T R

ES
U

LT
S

00



C
a
s
t
 

V
a
r
i
a
b
l
y
 

M
s
a
n
 

N
or

m
al

ise
d s

ta
nd

ar
d 

C
om

m
en

ts
de

vi
at

io
n o

 / u
.

(h
e 

av
er

ag
e 

re
su

lt 
ob

ta
in

ed
 in

 p
ra

ct
ic

e 
fr

om
 a

 la
rg

e,
 b

ut
 fi

ni
te

 
nu

m
be

r 
of

 co
m

pu
te

r 
sim

ul
at

io
ns

 (s
ee

 m
ai

n t
ex

t f
or

 d
et

ai
ls)

II



REFERENCES

1. Lueg. P. 1933. Process of silencing sound oscillations. US Patent No 
2,043,416.

2. Swanson. D.G. 1988. Active attenuation of acoustic noise: past, present, and 
future. Submitted to the American Society of Heating, Refrigeration and Air 
conditioning Engineering.

3. Olson. H.F, May. E.G. 1953. Electronic sound absorber, Journal of the 
AcoMrtica/Sockiy of America, 25(6), 1130- 1136.

4. Doyle. C. 1988. Vogue magazine (British edition). July, Volume 152,150 - 154.

5. Jesse!. MJf.M. 1967. Procede electroacoustque d'absorption des sons et bruits 
genants dans des zones etendues. Brevet d'Invension (French patent) 
No 1 494 967. Filed Aug 4, 1966. Patented: Aug 7,1967.

6. Guicking. D. 1988. Active noise and Vibration Control Reference Bibliography. 
3^ edition. Drittes Phystkalisces Institut. University of Gottenburg.

7. Jessei. M.J.M, Mangiante. G. 1972. Active sound absorbers in an air duct. 
Journal of Sowmi owi Vibration 23, 383 - 390.

8. Swinbanks. M.A. 1973. The active control of sound propagation in long ducts. 
Journal of Soonti anti Vibration 27,411 - 436.

9. Leventhal!. H.G, Eghtesadi. Kh. 1979. Active attenuation of noise: Dipole 
and monopole systems. Intemoise 79, Warsaw, Poland. Proceedings 175 - 180.

10. Curtis. A.R.D, Nelson. P.A, Elliott. S.J, Bullmore, A.J. 1987. Active 
suppression suppression of acoustic resonances. Journal ofrAc AcotwticoiSocicry 
of America, 81, 624 -631.

11. Swinbanks. M.A. 1982. The active control of low frequency sound in a gas 
turbine compressor turbine compressor installation. Intemoise, San Francisco 
Proceedings 423 - 426.

12. Bullmore. A J, Nelson. P.A, Curtis. A.R.D, Elliott. SJ. 1987. The 
active minimisation of harmonic enclosed sound fields. Part H: A computer 
simulation. Journal of Soimti anti Vibration 117,15 - 33.

13. Nelson. P.A, Curtis. A.R.D, Elliott. S.J, Bullmore. A.J. 1987. The 
active minimisation of harmonic enclosed sound fields. Part I: Theory. Journal of 
Soonti anti Vibration lit 1 -13.

14. Elliott. S.J, Curtis. A.R.D, Bullmore. A J, Nelson. P.A. 1987. The 
active minimisation of harmonic enclosed sound fields. Part HI: Experimental 
verification. Journal qfSoonti anti Vibration 117, 35 - 58.

15. Kempton. A.J. 1976. The ambiguity of acoustic sources - a possibility for active 
control, /oornai of Soonti anti Vibration 48,475 - 483.

258



16, Ffowcs Williams. J.E. 1978. The theoretical modelling of noise sources. 
Proceedings of the Indian Academy of sciences IC 57 - 72.

17. Keith. S.E, Scholaert, H.S.B. 1981. A study of the performance of an Olson 
type Active Noise Controller and the possibility of the reduction of cabin noise. 
University of Toronto, Institute for Aerospace Sciences (UTIAS). Technical note 
No.228.

18. Berge. T.S. 1983. Active noise cancellation of low frequency sound inside 
vehicle cabs. Intemoise 83. Edinburgh. Proceedings 457 - 460.

19. Brewer. P.A, Leventhall. H.G. 1985. Active attenuation in small enclosures. 
Proceedings of the Institute of Acoustics (lOA), 7 113 -114.

20. Chaplin. G.B.B. 1980. The cancellation of repetitive noise and vibration. 
Intemoise 80, Miami, Proceedings 699 - 702.

21. Elliott. SJ, Stothers. i.M, P. A. Nelson. 1988. The active control of 
engine noise inside cars. Intemoise 88, Avignion, France. 987 - 990.

2 2. Ross. C.F. 1981. A demonstration of active control of broadband sound. Journal 
qf Sound a/^f Ff^ratioM 74,411- 417.

23. Elliott. S.J, Nelson. P.A, Stothers. I.M, Boucher. C.C. 1989. 
Preliminary results of in-flight experiments on the active control of propeller- 
induced cabin noise Journal of Sound uwf PlbroftoM 128(2), 355-357.

24. Dorling. CM, Eatwell. G.P, Hutchins. S.M, Ross. C.F, Sutciiff. 
S.G.C. 1989. A demonstration of active noise control reduction in an aircraft 
cabin. Journal of Sound and VitrudoM 128(2), 358-360.

25. Simpson. M.A, Luong. T.M, Swinbanks. M.A, Russell. M.A, 
Leventhall. H.G. 1989. Full scale demonstration tests of cabin noise reduction 
using active noise. Intemoise 89, Newport Beach California, U. S. A. Proceedings 
459-462.

26. Salikuddin. M, Ahuja. K.K. 1989. Application of localised active control to 
reduce propeller noise transmitted through fuselage surface. Jourrud of Sozud and 
Vibradan 133(3), 467-481.

27. Ffowcs Williams. J.E. 1984. Anti-Sound. Review lecture. Proceedings of the 
Royal. Society. London. 395, 63 - 88.

2 8. Wameka. G.E. 1982. Active attenuation of noise: The state of the art. Noise 
control engineering May - June.

2 9. Lindqvist. E. 1983. Active sound reduction: a study of its recent developments 
and some future possibilities, Chalmers school of technology, Gotenborg, Sweden.

3 0. Olson. H.F. 1956. Electronic control of noise, Vibration and reverberation. 
Journal of the Acoustical Sactefy qf America, 28(5) 9&S-972.

31. Elliott. S.J, Nelson. P.A. 1985. Algorithm for multi-channel LMS adaptive 
filtering. Electronic letters 21,979 - 981.

32. Ross. C.F. 1980. Active control of sound, Ph.D thesis. University of 
Cambridge.

259



3 3. Wiener. N. 1949. Extrapolation, interpolation and smoothing and stationary time 
series. John Wiley.

34. Bozic. M. 1979. Digital and Kalman filtering. Edward Arnold.

35. Nelson. P.A, Hammond. J.K, Joseph. P, Elliott. S.J. 1990. Active 
control of stationary random sound fields. Jdunwl of rAe AconsdcaZ Socteiy ^f 
America, (in press).

3 6. Joplin. P.M, Nelson. P. A. 1990. Active control of low frequency random 
sound in enclosures. Jdamo/ of rAe Acawsfica/ Socie^ qf America (In press).

3 7. Pierce. A.R 1981. Acoustics: An introduction to its physical principles and 
applications. McGraw Hill.

38. Nelson. P.A, Elliott. S.J. 1989. M.Sc Course notes. I. S. V. R, University 
of Southampton.

39. Nelson. P.A, Elliott. S.J. 1989. Active minimisation of acoustic fields. 
Journal de Mechanique theoretique et applique, special issue supplement to 
VoI6(7).

40. Nelson. P.A, Curtis. A.R.D, Elliott. S.J, Bullmore. A.J. 1987. The 
minimum power ouqiut of free field point sources and the active control of sound. 
Journal of Saimd and VtAradaM 116 1987, 397 - 414.

41. Elliott. S.J, Nelson. P.A. 1986. The implications of causality in active 
control. Intemoise 86, Cambridge MA. proc 583 - 588.

4 2. Hildebrand. P. 1965. Methods of applied mathematics. Prentice Hall.

43. Lanning. J.H, Battin. R.H. 1965. Random processes in automatic control, 
McGraw Hill - Control system Engineering.

44. Papoulis. A. 1977. Signal analysis. International students edition. McGraw Hill.

45. Bendat. J, Piersol. M. 1986. Random data 2"<^edition. Analysis, measurement 
procedures. John Wiley.

46. Fahy. F.J. 1988. Sound intensity. Elsever.

47. Joseph. P, Nelson. P.A, Elliott. S«J. 1987. Causality, filtering and 
prediction in active noise control. I.O.A. Autumn conference, Portsmouth.
295 - 238.

48. Wylie C.R, Barrett L.C. 1977. Advanced engineering mathematics. 
International students edition. McGraw HUI.

4 9. Roure. A. 1985. Self adaptive broadband active sound control system. Journal of 
Satmd and VfArodan 101(2), 429 -441.

50. Kinsler. L.E, Frey. A.R. 1967. Fundamentals of acoustics 2*^4edition. John 
Wiley.

51. Bullmore. A j. 1988. The active minimisation of harmonic sound fields with 
particular reference to propeUer induced cabin noise. Ph.D thesis, university of 
Southampton.

260



5 2. Chu. W.T. 1981. Comments on the the coherent and incoherent nature of 
reverberant sound fields. Journal of the Acoustical Sockfy (>f Am^nca, 69(6), 
1710-1715.

S3. Beranek. L.L. 1971. Noise and Vibration control. McGraw Hill.

54. Balanchandran. C.G, Robinson. D.W. 1967. Diffusion of the decaying 
sound field. Acustica 19,245 - 257.

5 5. ASTM E90-55. Recommended practice for laboratory measurement of the 
airborne sound transmission loss of building floors and walls.

5 6. American standard acoustical technology. 1960. A.N.S 1.1 - 1960.

5 7. Doak. P.E. 1959. Fluctuations of the sound pressure levels in rooms. Acu^ftcu, 
9(1). 1-9.

58. Schroeder. M.R, Kutruff. K.H. 1962. On frequency response curves in 
rooms. Comparison of experimental, theoretical and, Monte-Orlo results for the 
average frequency spacing between them. Journal of rAe AcowstfcuZ Soctery qf 
Amenca, 34 1819- 1823.

5 9. Schroeder. M.R. 1954. Die stadsdschen parameter der frequcnzkurven von 
grossen ruamen. Acustica 4, 594 - 600.

6 0. Wente. E.C. 1935. The characteristics of sound transmission irregularity in 
rooms. Journal qffAe Acowsdco/ Soctery of Amenco, 7,123 - 126.

61. Bolt. R H. Roop, R.W. 1950. Frequency response fluctuations in rooms. 
/oWTtuZ qf rAe Acowfdco/ Society qf America, 22,280.

6 2. Ebeling. K.J. 1984. Statistical properties of random wave fields. Chapter 4, 
"Physical Acoustics; principles and methods", XVII.

6 3. Mood. A M, Graybill. F A, Boes. D C. 1974. Introduction to the theory of 
statistics 3^ edition. McGraw Hill (international students edition).

64. Skudrzyk. E. 1971. The foundations of acoustics. Springer Verlag.

65. Morse. P.M. 1936. Vibration and sound 2"^edition. McGraw Hill.

6 6. Sepmeyer. L.W. 1965. Computer frequency and angular distribution of the 
normal modes of vibration in a rectangular room. Journal of the Acousdco/ Society 
qf America, 37,414 - 420.

6 7. Bodlund. K. 1976. A new quantity of comparitive measurement concerning the 
diffusion of stationary sound fields. Journal qf SawKf and ViArofian 44,191-207.

68. Cook. R.J, Waterhouse. R.V, Berendt. RD, Edelman. S, 
Thompson M.C. 1955. Measurement of correlation functions in reverberant 
sound fields. Journal qf fAe Acaicrficoi Society qf America, 27,1072.

6 9. Chien. C.F, Soroka. W.W. 1976. Spatial cross correlation of acoustic 
pressure in steady and decaying reverberant sound fields. Journal of Sound and 
VibrofiaM 48(2), 235 - 242.

261



7 0. Morrow. C.T. 1971. Point to point correlation of sound pressures in reverberant 
chambers. Journal of Sound ww yi^rdfioM 16,28-42

71. Baxter. S.M, Morfey. C.L. 1986. Angular distribution analysis in acoustics. 
Springer Verlag, Lecture notes in engineering 17.

7 2. Levine. H. 1980. On source radiation. Journal <)f tAe Acoarfico/ Sodery of 
Amenca, 68,1199-1205.

7 3. Waterhouse. R.V. 1968. Statistical properties of reverberant sound fields, 
/oumd of rAe Aoourfzcaf Soctefy 4f America, 43 1436.

7 4. Waterhouse. R.V. 1963. Radiation impedance of a source near reflectors. 1963. 
Journal of rAe Acouftica/ Society (%f America, 35(8) 1144 -1151.

7 5. Lyon. R.H. 1969. Statistical analysis of power injections and responses in 
structures and rooms. Journal egf rAe Acourdcai Society <%f America, 
45(3) 545-565.

7 6. Jacobsen. F. 1979. The diffuse sound field. The acoustics laboratory, Technical 
university of Denmark. Report No 27.

7 7. Davy. J.L. 1981. The relative variance of the transmission function of a 
reverberation room. Journal of Sound and ViAradon 1976 77(4), 455 - 479.

7 8. Maling. G.C. 1973. Guidelines for determination of average sound power 
radiated by a discrete frequency source in a reverberation room. Journal af rAc 
Acawrdcai Sacicry af America, 53(4) 1064 - 1069.

79. Allen. J. B, Berkley. D. A. 1979. Image model method of simulating small 
room acoustics. Journal af rAe Acoustical Saciery (^America, 65(4) 943 - 950.

80. Hough. S.P. 1988. Some implications of causality in the active control of 
sound. Ph.D thesis, University of Southampton.

81. Nelson. P.A, Hammond. J.K, Joseph. P, Elliott. S.J. 1989. The 
calculation of causally constrained optima in the active control of sound. I.S.V.R. 
Technical report No 145.

82. Nelson. P.A, Curtis. A.R.D, Elliott. S.J. 1986. On the active absorption 
of sound. Intemoise 86, Cambridge. MA. Proceedings 601 - 606.

83. Fahy. FJ. 1987. Sound and structural vibration. Academic press.

84. Shaw. E.A.G. 1988. Diffuse field response, receiver impedance and the 
acoustical reciprocity principle. Letter to the editor of the Journal of the Acourdca/ 
Society of America, M(6) 2284 - 2287.

85. Gradshteyn. J.S, Ryzhik. J.M. 1965. Table of integrals, series and 
products. Academic press.

86. Elliott. S.J, Nelson. P.A. 1984. Models for describing active noise control in 
ducts. I.S.V.R Technical report No 127.

87. Elliott. S.J, Joseph. P, Bullmore. A.J, Nelson. P.A. 1988. Active 
cancellation at a point in a pure tone diffuse sound field. 120(1) 183 - 187.

88. Sargent. C. 1990. Sunday times, Motoring section, 4th February.

262



89. Koyasu. M, Yamashita. M. 1971. Evaluation of the degree of the diffuseness 
in reverberation chambers by spatial correlation techniques. Journal of the 
Acoustical Society qf/qpan. 27,132 - 143.

90. Oppenheim. A.V, Schafer. R.N. 1985. Digital signal processing. Prentice 
HaU.

91. Trinder. M.C J, Nelson. P.A. 1983. Active noise control in finite length 
ducts. Journal qf Sound and Yibradan 89(1), 95 -105.

92. Elliott SJ. Joseph. P. Nelson P.A. 1988. Active control in diffuse sound 
fields. Proceedings of the Institute of Acoustics, Cambridge.

9 3. Lubman. D. 1971. Spatial averaging in a diffuse field. Journal of f/zc Acausdeaf 
Sacfcry qf Amenca, 16,43 - 58.

9 4. Joseph. P. 1988.1.S.V.R, internal Memorandum No 645. Active noise control 
in high frequency enclosed sound fields.

9 5. Myoshi. M, Kaneda. Y. 1988. Active noise control in a reverberant three 
dimensional sound field, Intemoise 88,983 - 986.

9 6. Mating. G.C. 1967. Calculation of acoustics power radiated by a point 
monopole in a reverberation chamber. Journal of the Acaz<sdcaZ Saciery qf Aazanca, 
42(4), 859 - 865, 1967.

9 7. Fuller. C.R. 1990. Active control of sound transmission/radiation from elastic 
plates by vibration inputs. I. Analysis. Journal of Saund and V;6radan 136(1), 1 - 
15.

98. Thomas. D R, Nelson. P.A, Elliott. S.J. 1990. The active control of the 
transmission of sound. Proc of the Institute of acoustics 605 - 612.

99. Fuller. C.R, Rogers. C.A, Robertshaw. H.H. 1989. Active structural 
acoustic control with smart structures. Paper submitted to the S.P.I.E conference 
1170 on Fiber Optics smart structures and skins H, Boston, MA.

263




