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CHAPTER 1

AN INTRODUCTION TO THE ACTIVE CONTROL
OF SOUND IN ENCLOSED SPACES

1.0. Introduction

It is a surprising but fortunate fact of nature that sounds which are perceived
as loud are in reality very small perturbations of the steady state pressure. It is generally
well known that in air, acoustic disturbances representing sound pressure levels up to about
120 dB combine linearly which in subjective terms represent very large, damaging
sensations of loudness at the ear. This linear behaviour of sound waves leads to the
fundamental property of linear superposition which is the underlying physical principle
behind active noise control.

Almost without exception, every paper published to date concerned with active
noise control deals primarily with low frequency sound, because it is at long wavelengths
where active control has been shown to be most successful. Herein lies the appeal of active
techniques, since it is precisely at low frequencies where conventional passive methods are
least effective. It is generally accepted that in an enclosed space, the performance of active
noise control degrades with increasing frequency. The reasons are two fold. The first and
certainly the most significant is due to the changing acoustic response of the enclosure,
generally becoming more spatially complicated as the number of acoustic modes excited
increases. The second is an artefact of the technology, usually arising from limitations in
the transducers and primarily constraints imposed by computing speed. As time
progresses, increasingly sophisticated hardware will be developed to the extent that
transducers and computing technology will eventually cease to be the limiting factor. The
limitations arising from the physical acoustics however, are fundamental to the problem
under consideration and are therefore insurmountable. It is these reasons which provide the
stimulus for the work in this thesis whose aim is to identify the limitations of active noise
control at high frequencies in enclosures and reveal the factors which influence these
limitations.

It is perhaps not unreasonable to suggest that in the last ten years, hardware
technology and the necessary software in the form of fast and efficient control algorithms
have developed at a much faster rate than has the understanding of the underlying principles
by which two complex sound fields can be made to destructively interfere which is of



course the objective of active noise control. While digital computer technology has
advanced at an astonishing rate, even today workers are still developing the simple
fundamental theories which define the limits governing the extent by which active control is
able to suppress a sound field of known spatial and temporal characteristics. The
development of active noise control has evolved steadily leading to its modern day
sophistication but can still considered to be an immature science. This is manifest by the
fact that there are still only a few commercial applications in operation today. This will
undoubtedly change over the next few years as more and more companies and universities
begin to take a commercial stake in its research and development.

1.1. A brief review of the relevant literature

1933 marks the serious beginning of active noise control in the form of a patent
filed by Paul Lueg in Germany called "The process of silencing sound oscillations'!. The
patent deals with the active control of duct borne noise which is still the classic problem
most frequently studied today. Unfortunately, as revealed in a historical review by
Swanson?, apart from this patent no other records of this work exists despite extensive
investigations by Guicking. Paul Lueg clearly didn't receive the appropriate recognition for
this work because active noise control remained un-researched for a further twenty years
(although part of this period was interupted by the war) until the publication of a classic
paper published in 1953 by Harry Olson and Everett May3. Olson's work is considered in
more detail in the next section. This paper is significant because in addition to describing
the design of a successful device, Olson is credited as the first person to possess the
foresight to realise the wide range of problems for which active noise control may be
suitable. Active noise control in head sets, automobiles and aeroplanes are all cited by
Olson as possible applications which as we realise today, thirty years later, are precisely the
situations proving to be the most successful4. Following on from Olson is a patent filed in
1966 by Jessel et-al> re-addressing the problem of controlling noise in air conditioning
ducts. This is probably the first work to demonstrate experimentally the active absorption
of sound. Since this early history, the interest in active techniques in the context of noise
control has increased at an ever growing rate, so much so that Guicking has compiled a
comprehensive bibliography (now in its 30 edition) containing all the work published to
early 1988, a total of 1708 referencesS. It is therefore sensible to consider only those which
have made a significant contribution to the development of active noise control in enclosed
spaces.

In the last twenty years, more effort has been directed towards the active control of
noise in ducts than in any other type of acoustic field. The reason is of course due to the



simplicity of the sound field which is variable depending upon the excitation frequency
relative to the various cut off frequencies in the duct. However, most work concemed with
duct noise appears to be concentrated at frequencies below the first cut off frequency for
which the sound field is limited to plane wave propagation. The work of Jessel”,
Swinbanks8 and Leventhall® have all contributed greatly in this area. These papers describe
an array of strategically placed secondary sources in various ingenious arrangements to
avoid reflections of the incident primary field. A good survey of the various mechanisms of
control in the one dimensional sound field is presented by Curtis!0 although the work was
primarily intended to illustrate the principles associated with the active control of acoustic
resonances. A celebrated commercial example of controlling the sound radiated from the
end of a gas turbine exhaust stack which supports a one dimensional sound field in
turbulent air flow is described by Swinbanks!1. Results are given for the reduction of noise
at the lowest audible octave (22 - 55 Hz) emitted from the 12 m high, 3.3 m diameter gas
turbine exhaust stack. This large scale experiment, started in 1980, includes the use of 72,
15 " bass loudspeakers requiring a total of 12 KW of amplification. In its final form, the
system was able to produce an overall broadband reduction of around 7.5 dB and a 13 dB
reduction from the largest spectral peak. The system is still in use today.

Attempts to control the more general three dimensional sound field have met with
varying degrees of success. Bullmore er-al2 have undertaken an extensive, systematic
computer based study of pure tone low modal density sound fields using the quadratic
minimisation theory set out by Nelson er-all3. These results are shown to be in close
agreement with experiments performed by Elliott er-al/14. Considerable global reductions of
the total acoustic potential energy are reported using only a small number of error sensors
and secondary loudspeakers. The possibilities for complete global quiet obtained through
active methods remains one of the ultimate objectives of active control. Central to this
concept is the principle that the sound field produced by a source and the source of sound
itself are not uniquely related from which one can postulate the non-uniqueness of sources.
An attempt to verify this fundamental principle was undertaken by Kempton!5 who was
able to approximately synthesise the far field produced by a free field point monopole
source located at the origin of coordinates using a multi-pole source expansion centred on a
point away from the origin. The goodness of fit between the real far field and the
synthesised far field was shown to increasingly improve as the order of the highest ordered
source included in the source array was increased. However, the notion of source
ambiguity has been recognised for some time and has been previously described by, for
example, Ffowcs Williams!6,



Recognising the practical and physical difficulties associated with trying to impose
global quiet in more complicated sound fields, many workers have sought to adopt a local
control strategy which will tend to confine the benefits of quiet to some pre-defined region.
One approach which has been tried by Keith and Scholaert!7 involves using the feedback
control system suggested by Olson in order to create a zone of quiet around the head of a
pilot in an aircraft cabin. A good level of noise reduction is reported over a frequency band
of more than 500 Hz at the control microphone reaching a maximum reduction of more than
30 dB at around 100 Hz. However, the reduction in the sound pressure level was observed
to diminish very quickly with increasing distance from the control point where at a distance
of 15 cm, the level of attenuation was found to fall to between 1 and 2 dB. Unfortunately,
no details relating to the cabin dimensions are reported. A similar experiment has also been
undertaken by Berge18 in a small van who describes an experiment which uses an 18"
loudspeaker to drive the pressure to zero at a microphone located 50 cm from the
loudspeaker. Berge reports that the level of attenuation was found to be insensitive to the
exact measurement position within an area of about 0.5 m?2 centred around the driver's head
position. Furthermore, a total sound power reduction of 14.5 dB is observed in the
frequency band 0 - 200 Hz. These findings are almost certainly due to the spatial simplicity
of the pressure field in the cabin since only the 'breathing' (0,0,0) mode of the enclosure is
present below 110 Hz for which the sound field may be regarded as spatially
homogeneous. Similar findings are reported by Brewer et-all? obtained from a series of
computer simulations.

The work of Chaplin ez-al is also worthy of mention20. Chaplin's experimental
arrangement involves the use of two loudspeakers mounted close to the floor of a tractor
whose noise is radiated into the cabin as a series of harmonically related tones. The
loudspeakers are driven by signals derived from the tractor engine, which are adjusted in
order to minimise the pressure at a microphone mounted close to the driver's head position.
This arrangement is therefore different from those described above because of the
remoteness of the loudspeaker from the region of local control. Another fundamental
difference is that this control scheme is an example of feedforward control which uses
some control signal to predict the response of the sound field at some future time. Between
10 and 20 dB of attenuation at each discrete frequency are reported. It is also acknowledged
that the level of attenuation diminishes with increasing distance from the control point
although satisfactory reductions were measured in all of the normal head positions.
However, no data is given relating to the effect on the sound field globally. Similar
feedfoward methods using multiple secondary sources to minimise the sound field at
multiple error microphones have more recently been found to be very effective in actively
controlling the low frequency, engine boom in cars?1.



The last five years have seen a significantly raised interest in active noise control.
Many workers are now beginning to perform expensive, large scale experiments in order to
test the feasibility of active methods in, for example, propeller aircraft. In particular, for
suppressing the noise radiated by the rotating propeller into the fuselage of the new range
of turbo-propeller aircraft. This problem is ideally suited to the new technology because of
the periodic, low frequency tonal nature of the sound field which predominates in the
fuselage. The fundamental frequency which is directly related to the blade passage
frequency is typically between 80 and 150 Hz, well within the capability of the current
technologies. Correspondingly, the sound field to be controlled is of low modal density
where global strategies have been shown to be most effective22,

Recently, Elliott er-a/23 and Dorling er-a/?4 have published concurrent papers
reporting the results of multi-channel active control of propeller induced cabin noise during
flight trials of a British Aerospace BAe 748, 48 seater twin turboprop aircraft. Elliott's
arrangement utilises an array of 16 loudspeakers to minimise the sum of the square
pressures at an array of 32 microphones located at the head height plane. The blade passage
frequency for this aircraft is 88 Hz for which an average sound pressure level reduction of
between 14 and 10 decibels over all control microphones are reported. The spatial
complexity of the sound field increases considerably at the first harmonic frequency of 176
Hz for which an average level of reduction of between 6 dB at the port side, falling to less
than 4 dB at the starboard side of the aircraft. Similarly, Dorling's data for the same aircraft
flying under identical conditions reveal similar results for an array of 24 loudspeakers
driven to minimise the pressures at a total 32 control microphones. At the fundamental
frequency, their results indicate an average reduction of between 11 and 8 decibels. The
average reduction at the first harmonic of 176 Hz increases to 13 dB at the port side of the
aircraft to 9 dB at the start board side.

Further large scale work has been carried out for the Douglas aircraft company by
an American - British parmership M. A. Simpson et - al?5 in the aft cabin of a full size DC -
9 aircraft inside a large anechoic test facility. This series of tests were confined to the
ground necessitating the need to simulate the primary excitation that would be observed in-
flight. This was provided by an array of primary loudspeakers external to the fuselage and
a series of shakers attached to each engine pylon. The control system is reported to use an
array of 16 'optimally’ positioned secondary loudspeakers driven by a controller according
to the error signals from 30 microphones located at the back rest of the seats. Good global
reductions of between 5 and 15 dB are reported for a range of tones excited by the
loudspeakers and shakers simultaneously in the frequency range between 100 and 200 Hz.



Above these frequencies however, the level of reductions were found to be reduced but still
useful nevertheless; 5 dB being typical. It is fair to suggest that these measured figures are
slightly optimistic estimates since they refer to reductions at the control microphones and
under laboratory conditions. The actual performance of the control system under flight
conditions remains to be demonstrated.

The last piece of work which will be cited here is that undertaken by M. Salikuddin
and K. K. Ahuja26 who describe an innovative application of active noise control aimed at
reducing sonic fatigue of the fuselage skin together with the added benefits of reducing the
interior cabin noise. The idea involves applying local control to a number of points inside
the aircraft fuselage using the Olson type monopole configuration for which the pressure is
driven to zero at a microphone close to the loudspeaker. The loudspeakers are located on
the outer side of the aircraft's skin while the error microphones are situated immediately
adjacent, but on the interior side of the fuselage skin. The advantage of this arrangement is
that each loudspeaker unit is said to be sufficiently well coupled to the pressure at its
adjacent microphone that each control unit may be adjusted independently. The authors
argue that acoustic fatigue is reduced by creating points of null pressure and therefore zones
of pressure reduction on the surface of the outer skin which will tend to lessen the
damaging acoustic forces thereby reducing acoustic fatigue. The authors also maintain that
since each point on the pressure waveform impacting with the outer skin is itself an
elementary source of sound radiating into the aircraft cabin (Huygen's principle), the
cancellation of the pressure at points placed at closely spaced periodic intervals will remove
these contribution thereby causing global suppression of the cabin interior noise field.

The proposed control scheme was investigated experimentally using four Olson
type units mounted flush to a 2 mm thick plate enclosed within an anechoic chamber. The
loudspeakers were fixed to the platé, but on the same side as the primary loudspeakers used
to simulate the exterior noise field. Their respective control microphones were mounted on
the opposite side from the primary loudspeaker. More than 20 dB of attenuation of the
primary wavefield are recorded across the plate on which the pressure is being controlled at
a pure tone of 400 Hz. This level of reduction was shown to gradually diminish across
increasingly distant parallel planes to the plate. In reality the presence of structural modes of
the outer skin will degrade the performance of this technique as will the high level of
reverberation inside the aircraft cabin also neglected in this experiment. The density of
control units required at high frequencies for good global pressure reductions was not not
discussed in this paper neither was a discussion of the performance of loudspeakers
travelling at 600 miles per hour.



This short survey of the active noise control literature is clearly not exhaustive but is
meant to convey the diversity of the field and the nature of the important work undertaken
in this interesting area of acoustics. For a more complete review of the physical principles
and related literature of active noise control, one is refered to good review papers by
Ffowcs Williams27, Wamaka28, and Swanson? of which the paper by Ffowcs Williams is
particularly good and an extensive review of the earlier work by Lindqvist29,

1.2. The work of Olson and May

Special attention to the work of Olson and May is justified not only for its historical
importance (since this work is among the most commonly cited in the active noise control
literature), but because it is the first published work to propose the concept of localised
regions of quiet or 'quiet zones' in enclosed sound fields. It is therefore the most closely
related work to this thesis. This work appears in two papers; the first published in 19533
entitled ‘Electronic sound absorber’ and a later paper providing more description of the
control arrangement and suggesting more applications published in 195630 entitled
‘Electronic control of noise, vibration and reverberation'. In these two companion papers,
Olson gives a discussion on the active control of acoustic fields which show considerable
insight into the mechanisms of active control. Ideas are suggested in these papers which
even to the present day have still not been satisfactorily resolved and explored to maximum
benefit.

A schematic diagram revealing the essence of the proposed single channel control
scheme is indicated in figure 1.1 which is taken from Olson's original 1953 paper. The
experimental arrangement consists simply of a single control microphone located close to,
and on-axis of a secondary loudspeaker via a power amplifier and gain controls.

AMPLIFIER

MICROPHONE

LOUDSPEAKER

CABINET ABSORBING
MATERIAL

Figure 1.1. A schematic diagram of the ‘sound pressure absorber’ proposed by Olson and
May in 1953 1aken from their original paper.



The underlying principle governing Olson's ‘Sound pressure reducer is in
principle very straightforward. On sensing the total sound pressure p at the control
microphone, the signal generated by the microphone is fed back via a power amplifier with
a gain -A to the neighbouring secondary loudspeaker to produce a volume velocity
q =-Ap / Z where Z is the transfer impedance from the secondary source to the
microphone. The total pressure p at the control microphone is formed from the sum of the
primary acoustic pressure Pp and the acoustic pressure from the secondary source to give
the total pressure p = pj, - Ap. One can therefore show that the ratio of the total pressure p
at the control microphone to the primary pressure py is given by (p/pp) = (1 + A)-l. The
gain of the inverting power amplifier is therefore set as high as possible with which to drive
the secondary loudspeaker, but not so high as to make the system unstable. The result is to
form a pressure at the control microphone which is as close as possible to zero over a broad
band of frequencies thereby creating a zone of quiet in the vicinity of the microphone. The
difficulties associated with trying to accurately control the phase change around the
feedback loop is dealt with by ensuring linearity in the electronics and by locating the
control microphone as close as possible to the loudspeaker. The proximity of the control
microphone to the loudspeaker appears to be principal design consideration in order to
ensure that the phase shift around the feedback loop is equal to the phase characteristics of
the amplifier. Cancelling the pressure at the surface of the source is sometimes known as
the acoustical virtual earth10 of which Olson's device is an approximation.

Olson suggests that this arrangement may be employed in two distinct
configurations. The first is as a 'Sound power absorber’ and the second is a 'Sound
pressure reducer’. On the basis of the paper title, one could reasonably suppose that it is as
an absorber of sound power that the arrangement shown in figure 1.1 is most successful.
While probably the first to suggest that a loudspeaker could be employed in these two
possible modes of operation, it is intriguing to observe that no details are reported relating
to how one might use this arrangement for sound power absorption or even whether this is
a desirable objective. It transpires that in some cases, this mode of operation can adversely
influence the total sound power output radiated into an enclosure12, Apart from a few
remarks regarding sound power absorption, much of the paper is dedicated to reducing the
sound pressure around the control microphone. In a later chapter of this thesis it is shown
that driving a loudspeaker in order to reduce the sound pressure level in the way Olson
describes can, in general, only produce an increase in the sound power output of the
secondary source and consequently does not cause sound power absorption. To call the
device a sound power absorber is therefore very much a misnomer and it is with a 'Sound
pressure reducer’ that these papers are primarily concerned.



One way in which Olson's sound pressure reducer could be configured as an
absorber of sound is to place a sheet of porous sound absorbent material located within the
point of null pressure and the loudspeaker cone itself. The large pressure gradient created in
the intervening space will tend to accelerate the particle velocity through the material thereby
causing an increase in its absorption efficiency. While this strategy will undoubtedly work,
it is questionable as to whether the amount of sound power absorbed resulting from
acoustic dissipation in the absorbent material is sufficiently great as to make this scheme
economically viable.

As a technological achievement, the work of Olson and May is broadly regarded as
outstanding given the technological limitations of the day. However, much of the
underlying physics is vaguely reported. For example, no details regarding the distance of
the microphone to the loudspeaker is reported, and the diameter of the loudspeaker is only
reported by implication which appears to suggest a value equal to 3". The control
arrangement is an example of feedback control which consequently does not require any
details of the sound field being controlled. In contrast, more sophisticated feedfoward
control schemes by necessity require accurate knowledge of the transmission paths of the
primary and secondary sound field which therefore tend to be more effective but more
difficult to implement31. The perfect cancellation of the pressure at a point therefore
naturally lends itself to feedback control in this tightly coupled configuration. However,
precisely how a sound field which impinges upon a secondary loudspeaker can be
absorbed through a simple feedback of some control signal remains to be explained.

One of the most appealing features of this feedback control arrangement which uses
control microphones located close to the loudspeaker, which to the author's knowledge has
never been publicly recognised, is that the problems associated with causality when dealing
with broadband noise radiated into a reverberant space are to a large degree overcome. This
is of course due to the close proximity of the control microphone to the secondary
loudspeaker so that the pressure field radiated by the secondary loudspeaker appears almost
instantaneously at the control microphone. It is therefore possible, in principle, to drive the
pressure at a point to zero which is close to the secondary source regardless of the level of
‘randomness’ of the primary sound field.

Recent attempts to duplicate this experiment by Ross32 has suffered from severe
stability problems. This is exemplified by Ross who remarks "The task of producing this
device proved to be more difficult than was originally believed". However, his experiment
has been shown to afford broadband control over more than two octaves with a maximum
attenuation of 20 dB. Ross partly attributes the success of his modern version of Olson's



device to digital filtering techniques which were of course not available to Olson. However,
despite the increased sophistication of modern methods, Ross reports the usual problem of
instability causing the system to 'how!l' whenever a system transfer function is slightly
altered. As Ffowcs Williams observes27, "This occurs whenever a human head is inserted
into the quiet zone to hear the benefit of the device!" Clearly this is because the
transmission path of high frequency sound from the loudspeaker to the microphone may
incur a phase shift greater than 180° which will turn negative feedback of the control signal
into positive feedback thereby causing the system to oscillate.

1.3. The structure and original contribution of this thesis

The ultimate task of active noise control in enclosures is the reduction of broadband
noise at high frequencies, factory noise is an important example. While the temporal
characteristics of random noise introduces its own difficulties from the point of view of
analysis, the reverberant nature of the enclosure presents further complications by
producing reflections at the boundary walls. If the number of reflections is large or if there
is a substantial level of scattering of the sound field by objects in the room, the interference
of a large number of 'elementary’ waves may cause the sound field to take on the
characteristics of a random process from point to point in the enclosure. It is easy to
understand why a sound field which is both random in time and space is extremely difficult
to control actively to any useful degree.

The work undertaken in the last three years has attempted to address this problem.
The task of trying to develop a theory which embodies both the spatial and temporal
random elements of the general problem is clearly formidable, therefore the two facets of
the problem are considered independently. This is not to say that the spatial and temporal
characteristics of the sound field may be treated independently in this way since they are
inter-dependent. Nevertheless, this approach helps to isolate the problems associated with
each type of random fluctuation and furthermore, helps to considerably simplify the
analysis.

Most of the work presented in this thesis is the result of original research
undertaken over a three year period by the author in close collaboration with his
supervisors, Drs S. J. Elliott and P. A. Nelson. However, important parts of this thesis is
the contribution of the supervisor's own work for which appropriate recognition is due.

The theory developed in Chapter 2 is essentially an extension of the free field sound
power minimisation problem for stationary random signals investigated by Dr P. A.

10



Nelson. The author’s own contribution to this problem has been to provide an
interpretation of the principles underlying free field sound power minimisation in terms of
the power spectral density. More importantly, the author has extended this single channel
theory to include reflections from a single reflecting surface. This study has highlighted the
recursive structure of the impulse response function of the optimal secondary source
strength. Steady state levels of sound power reduction obtained for the causally constrained
and unconstrained controller, which are pertinent to white noise signals and harmonic
signals respectively, are derived and compared. This chapter considers the minimum sound
power output of, and the interaction between two white noise sources radiating into a semi-
infinite duct assuming plane wave propagation. This model problem was chosen because of
the spatial simplicity of the sound field by virtue of being one dimensional. Reverberation
is simply introduced by way of a single termination at one end of the duct where dissipation
is introduced by means of a real, frequency independent reflection coefficient.

In chapter 3, the converse problem is contemplated whereby the sound field has a
simple variation in time but whose spatial variation appears random. In all of the diffuse
field work described in this thesis, the controller will be assumed to be feedforward in
operation so that the only restrictions on the level of reductions obtainable in principle are
imposed by the physical characteristics of the primary and secondary pressure fields
themselves. In this work the temporal characteristics of the noise source is kept deliberately
simple by considering only harmonic sources of sound at a frequency above the Schrider
frequency. Above this critical frequency, the number of normal modes making a significant
contribution to the total pressure response is sufficiently large that the spatially sampled
sound field to all practical purposes may be regarded as a random variable. Specifically, the
minimum sound power output of two closely spaced point monopole sources in an
enclosed sound field above this critical frequency is determined for which the first and
second order statistics are derived.

In developing the analysis in chapter 3, the author recognises the contribution of Dr
S. J. Elliott for providing the correct interpretation of the physical mechanisms of sound
power minimisation in a diffuse field environment. In particular, for showing that the
sound power output of a point secondary source driven to minimise the combined sound
power outputs from itself and a point primary source in a reverberant space is exactly zero.
The author would also like to acknowledge Dr Elliott for his help in recognising the
relationship between the normalised variance of the diffuse field reverberant pressure
contributions and the modal overlap factor.
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Recognising that this contrived model geometry is a special case and unrealistic of
the type of problem encountered in reality, the more practically orientated problem of local
control in the diffuse field is considered in chapter 4. The problem of cancelling the
pressure to zero at a point which is remote from all sources is investigated. Elementary
statistical methods are employed in order to derive expressions for the spatial extent of the
so called quiet zone, the secondary source strength requirements and the increase in the
potential energy well away from the point of cancellation. The derivation of the expression
for the space averaged diffuse field quiet zone is also attributed to Dr Elliott, although a
slightly modified version of his analysis is presented in this thesis. Despite the apparent
simplicity of this single channel control strategy, the results obtained turn out to be
surprisingly subtle. However, it is demonstrated that the size of the zone of quiet formed in
this high frequency enclosed sound field between successive experiments is extremely large
making it impossible to talk in terms of average values with any meaning. Moreover, the
increase in the potential energy formed by this process is shown to be sufficiently large that
the average value over all source and cancellation positions is infinite. The statistical ill-
conditioning of this unconstrained control scheme is the motivation for the work presented
in chapter 5.

Chapter 5 deals with the results of constrained diffuse field active control. In
particular, the effects of 'hard limiting' is examined. This quite severe constraint attempts to
mimic the behaviour of a real control system which will obviously impose some upper
value on the maximum secondary source strength it can deliver. Multi-channel control
schemes are also studied, both from an analytic view point and from the results obtained
from a systematic series of Monte-Carlo simulations which have yielded some enlightening
empirical results. As a special case, the zone of quiet formed around two diffuse field
points, which are close compared to the acoustic wavelength, has been studied using
computer simulations for which the sum of the squares of pressures has been minimised.

Undoubtedly, the most successful control strategy investigated so far in this thesis
for dealing with high frequency enclosed sound fields is that originally suggested by Olson;
namely the cancellation of the pressure at a point close to the secondary loudspeaker i.e.,
the 'Sound pressure reducer’. This is the subject of chapter 6. The size and shape of the
zone of quiet around a control microphone in this configuration is shown to be
predominantly governed by the free space, near field characteristics of the source whereas
previously, for the case discussed in chapter 4, the size of the quiet zone was shown to be a
sole function of the spatial cross correlation function of the diffuse sound field. The
principal advantage of this near field arrangement, compared with cancelling the pressure at
a point which is remote from the influence of directly transmitted sound, is that the energy
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radiated to the 'far field' of the secondary source is now significantly reduced. For
example, an increase in the overall sound pressure level of more than 10 dB was found to
be typical using a remote secondary source, whereas in this tightly coupled configuration,
the increase in sound pressure level well away from the point of cancellation is restricted, in
many cases to only a small fraction of 1 dB. In both cases however, the size of the quiet
zone within which the pressure has been reduced by 10 dB with respect to the primary
field, is shown to be about one tenth of a wavelength.

The theory developed in chapter 6 for the square pressure variation in the vicinity of
a point of null pressure in the loudspeaker's near field is supported by experimental results
presented in the same chapter. Measurements of the sound pressure level was made by a
single microphone which traversed along the axis of the secondary loudspeaker in the
direction of its motion through the point of cancellation. The electronics enabling the
experimentation to implemented antomatically was designed and built by Mr Ian Stothers,
who is gratefully acknowledged.
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CHAPTER 2

CAUSALLY CONSTRAINED MINIMUM SOUND POWER OUTPUT IN
THE PRESENCE OF REFLECTIONS

2.0. Introduction

This chapter is intended to provide a brief introduction to the active control
of broadband stationary random sound fields. Particular emphasis is given to the effects of
reverberation. The characteristic feature of this type of sound field is that at any point in
space, the acoustic pressure possesses a waveform which is time varying in a fashion
which is generally not wholly deterministic. Moreover the difficulty from the point of view
of analysis and control is compounded by an infinite succession of reflections by the
enclosure walls. The investigation reported here is motivated by the need to establish the
feasibility of active noise control in reverberant spaces when the primary sound field varies
randomly in time. The critical constraint on the controller when seeking to reduce this
sound field according to some prescribed criterion is that it must act causally with respect to
the action of the primary source. The appropriate condition on the optimal secondary source
gso(t) is that

gso(t) =0 for t<0 provided gp®) =0fort<0 (2.1)

where the origin of time t = 0 is taken from the first action of the primary source.
Depending on the statistics of the primary source output signal and the relative source
positions, this fundamental constraint may have a significant bearing on the levels of
reduction that ultimately may be achieved.

Surprisingly little work has been undertaken in this area. This is most probably due
to the difficulty of time domain analyses, where the causality of the controller may be
monitored directly, over corresponding frequency domain analyses where the causality of
the controller cannot be immediately verified. This is perhaps surprising since time domain
optimisation techniques form a large part of modern signal processing particularly since the
pioneering work of Wiener33 in the 1940's and later work by Kalman34 in the 1950's. To
the author's knowledge, the first person to apply classical time domain methods to the
realm of active noise control was Nelson33 who has used the theories developed by Wiener
to study a number of model problems in the active control of sound. One example is the
deduction of the causally constrained minimum sound power output of two closely spaced
point monopole sources in free field. Also derived are analogous results in matrix form for
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the multi-channel problem enabling causal constraints to be imposed on the optimal
secondary source strength seeking to minimise the total potential energy of the randomly
excited sound field in rooms. Each acoustic mode excited in the room is considered as an
independent source of variation so that the sound field in the room may be regarded as a
multi - degree of freedom system.

Inevitably, the solution for the optimal causal controller requires the inversion of a
large matrix whose size is determined by the number of acoustic modes considered to be
necessary to adequately represent the sound field. This may be hundreds of thousands of
modes in some cases, particularly when the acoustic damping and the excitation bandwidth
are simultaneously large. As a first approximation, Joplin36 has carried a numerical
investigation using this theory which incorporates just eight modes. However, the exercise
was performed more as an illustration of the governing physical principles than a serious
attempt to model the behaviour of a real system.

In this chapter, the causally constrained free field minimum sound power output of
two idealised plane sources radiating plane waves into an infinite hard walled duct is
investigated. This problem is considered from the point of view of the sound power
spectral density of each of the sources which quantifies the sound power output per unit
frequency bandwidth (this is not to be confused with power spectral density which is
defined for arbitrary signals of different physical origins which in general do not have the
units of Watts per unit frequency). The mutual interaction between the primary source and
secondary source is investigated by considering the power spectral density of each of the
sources in turn. Previous work has only considered the total time averaged sound power
output. Frequency decomposition of the power outputs of the sources offers a clearer
picture of broadband sound power minimisation and is valuable in being able to reveal the
subtle interaction between the source pair. The idea of predictability, which is central to the
active control of random noise, is investigated more closely and a qualitative, empirical
relationship between the 'predictability' bandwidth of the primary source signal and its
frequency bandwidth is proposed.

The equations are developed further to determine the optimal causal secondary
source strength which minimises the sound power radiated into a hard walled duct
terminated at one end. Dissipation is introduced by way of a real, frequency independent
reflection coefficient at the duct termination. The governing equations are shown to possess
an exact solution for the important limiting cases where the primary signal is either
Gaussian white noise or a harmonically varying pure tone. The two cases are considered
separately and compared.
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2.1 The unconstrained minimum sound power output in the free field

While this thesis is predominantly concerned with the active control of pure tone
reverberant sound fields, this section is given to a discussion concerned with the active
control of broadband noise radiated into free space. This is because the presence of
reflected sound profoundly complicates the analysis so that for the one dimensional
problem under consideration here, reflections from boundaries such as those from the walls
of rooms will initially be disregarded. A free field analysis is not entirely irrelevant to the
control of enclosed sound fields. In many cases, particularly at high frequencies, the levels
of sound power reduction which are physically achievable in free field are closely related to
the levels of sound power reduction which are possible in an enclosed space. This is
particularly true in three dimensional enclosed sound fields with large room absorption at
high frequencies where the level of reflected sound is, on average, much less than the level
of directly radiated sound. This is problem is addressed in detail in chapter 3.

As an example of a one dimensional free field problem, consider an infinite, hard
walled duct in which there are situated two idealised plane sources q4(t) and qp(t)

- — a0 | a®

y

Xp Xs

Control volume

Figure 2.1. An infinite hard walled duct containing a primary and secondary plane source

The acoustic pressure p(t,x) radiated by the volume velocity q(t.xg) which is located at
some point x are related via the inhomogeneous wave equation37

102 9q(t.xg)
(VZ, 282) (t )“ P‘“"a‘t"q* (2-2)

where V2 is the Laplacian operator, ¢, and p symbolise the sound speed and the ambient
density in the medium respective and where q(t.xg) represents the volume velocity density
in the volume acting to accelerate the fluid which therefore behaves as a source of sound.
The primary and secondary sources indicated in the figure above are intended to represent
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idealised plane sources whose source strength densities are concentrated in a plane normal
to the length of the duct according to

q(txg) = q(t) &(x - xg) (23)

where 6 symbolises a Dirac delta function which is only meaningful within the context of
integration. In an infinite one dimensional duct, assuming only plane waves are allowed to
propagate, the D'Alembert retarded time solution is given by

p(tx) = Zp q(t - -'-x—é-é—‘“l) 24)

where Z;, is the plane wave impedance for the duct pcy/2S. For a single tone at a frequency
o, g(1) = q(w)ed® 5o that the complex pressure may be obtained from equation (2.4) to give

P(@.x) = Zpq(w)edkix - xql (2.5)
where k is the wavenumber w/cy,.
We will now derive the minimum sound power output from the source pair
indicated in figure 2.1. For the elementary source types described by equation (2.3), the
total sound power output W from the two sources radiating simultaneously is given by38

W=1R {qipixy + q3p(xp)) 2.6)

where R denotes the process of taking the real part.

The volume velocity dependence on frequency and source position have been dropped for
brevity. The total acoustic pressure resulting from both sources p(x) assuming linear
superposition is given by

P(x) = qZ{x4Ix) + GpZ(X,x) @7

where Z(x4x) and Z(xplx) represent the complex acoustic transfer impedances relating the
secondary source at X and the primary source at x; to the complex pressure at some point x

respectively. Substitution of the total pressure p(x) into equation (2.6) for the total sound
power output yields a quadratic function of the complex secondary source strength g of the

general form
W =g Aqs + bgs +b* g +¢ (2.8)

whose coefficients may be identified in terms of the transfer impedances thus
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A= %R[Z(xslxs)} ,b= % qu{Z(Xp'xs) } ,C= % lqp'z R{Z(xplxp)} (29)

The properties of the general quadratic form given by equation (2.8) have been extensively
investigated with optimisation problems of this type13.39, A three dimensional plot of W
against the real part of the complex secondary source strength R {q,) and the imaginary part
1{qs) produces a bowl shape function whose minimum value is uniquely defined by the
bottom of the bowl. The existence of a well defined minimum solution follows from the
positive definiteness of the constant 'A' which is guaranteed since the source on its own is
unable to absorb sound power in the absence of any external sound field40. The value of g
= 4o Which identifies the minimum of this quadratic function must simultaneously satisfy

AL oW
———=0and ——— =0 (2.10)
dR {qs} 91{gs)

The solution to this equation has been derived40 and may be shown to be given by
dso=-A"lb (2.11)

For the current example, using equation (2.5) and (2.9) one can show that, A = % Z, and

b= -zl-qup cos kix - xpl such that from equation (2.11), one obtains the solution

Qso = - qp €0s kix; - xpl (2.12)

In its present frequency domain representation, the optimal secondary source strength dso
given above says very little about how the secondary source achieves optimal reductions in
total sound power output. The mechanism of control is revealed more clearly in the time
domain. The multiplicative term -cos kixg - xpl may be regarded as a transfer function

relating the optimal secondary source strength to the primary source strength according to
so = - GpHo(w). The corresponding impulse response function hy(t) may be obtained from
Hy(w) via the inverse Fourier transform given by

ho(t) =51;£ [Ho@)eiot do (2.13)

Given that Hyo(0) = -cos kix, - xpl, then taking the inverse Fourier transform gives

ho(t)=-3[8(t-1) + 8¢t +1)] 2.14)
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where |1 is simply the propagation time between the two sources Ix - Xpl/co.

In this form, the optimal secondary source strength as a function of time is derived from the
primary source time history qp(t) via a convolution with the impulse response function
according to

o= [ Bo(1) gyt - 1) dr @.15)

Using equations (2.14) and (2.15), the secondary source strength time history gg,(t) is
simply
Qso®) =- 3 [ ot~ 1) + gyt +11)] 2.16)

which has previously been derived in reference [41]. Equation (2.16) embodies two of the
most fundamental mechanisms of active noise control; sound power absorption and
primary source loading. It is important at the outset to understand the underlying physical
processes associated with free space sound power minimisation before considering the
more complicated effects of reverberation. This may be considerably assisted by using the
graphical representation shown in figure 2.2 of the evolution of acoustic pressures in the
duct due to the secondary source in response to a primary source signal consisting simply
of a unit pressure pulse att =0

(a) =—u+£
xriiE
(b) t=e
T |5
©) t=l+¢
<l =l I
9 q

Figure 2.2. A pulse diagram indicating the evolution of the pressure in response to a primary
source pulse of unit amplitude.

where € is used to denote a 'short time later’. This pulse interpretation of the mechanism of
sound power minimisation is due to Curtis10.
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As indicated in figure 2.2a, the secondary source starts by anticipating the action of
the primary source by a time . which then radiates an inverted replica of the primary source
pressure waveform, but one half its magnitude so as to arrive at the primary source just in
time to meet the pressure only just radiated at t = 0. This will have the effect of halving the
downstream radiation impedance of the primary source such that only half of the original
pressure is radiated for the same volume velocity in the absence of control as suggested by
figure 2.2b. The role of this component of the solution is to provide a prediction of the

primary signal for the purpose of loading the primary source.

The remaining term -1/2 g(t - W) of the optimal secondary source strength is
responsible for absorbing half of the primary source pressure radiated towards the
secondary source whose upstream radiation impedance is unaltered by the previous action.
The absorption of the incident primary source energy is indicated in figure 2.2c. The square
pressure amplitude in the absence of the secondary source is simply 12 (which for plane
waves is proportional to the radiated energy). Figure 2.2¢ indicates that the total energy
radiated by the source pair as result of active control is now equal to (1/2)2 + (1/2)2 +
(1/2)2 + (1/2)2 which is exactly one half the original energy radiated by the primary source.
This combination of sound power absorption and primary source loading is therefore able
to offer a reduction in the total sound power output exactly equal to one half of the original
primary source sound power output. It is emphasised that this level of sound power
reduction represents an average reduction over all frequencies since the system response to
a unit pulse may be considered to be the average harmonic system response taken over all
frequencies. This is because a pulse of infinitesimal duration possesses a 'flat' spectrum
where all frequencies are represented to the same degree. For pure tone sources, the actual
level of reduction is very dependent on its frequency. Substituting equation (2.11) for the
optimal secondary source strength into the general quadratic form of equation (2.8) yields
the minimum value W ;. which is given by

Wpin=C - bA-1b* (2.17)
Substituting the values of A, b and ¢ given in equation (2.9) gives

Win =5 Zp lgp2 [ 1- cos? kjt ] (2.18)

Constructing the primary source sound power output W, radiated in the absence of the
secondary source according to the formulation given in equation (2.6), one can show that

Wy =17, g2 (2.19)
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According to equation (2.18) and (2.19), the minimum total sound power output in terms of
the primary source sound power output is given by

Wi =W, [1- cos? k] (2.20)

By inspection, the average reduction in sound power output taken over all frequencies is
exactly one half the original primary sound power output which is consistent with the time
domain interpretation described by figure 2.2. The level of reduction at any single
frequency can therefore be seen to be highly dependent on the phase difference kit of the
tone between the two source positions. Equation (2.20) indicates that complete suppression
of the total sound power output is possible for source separation distances exactly equal to
an integer number of half wavelengths. Conversely, the total sound power output remains
unaltered for source separation distances exactly equal to an odd number of quarter
wavelengths.

The most significant property of the optimal secondary source strength time history
Qso(t) given by equation (2.16) is that it contains at least one term qp(t + 1) which requires
an apriori knowledge of the primary signal at an advanced time p. For most primary signals
therefore, this filter cannot be realised in practice. One can now immediately see that this
formulation of the minimum sound power output is, in general, only appropriate for
harmonic signals which are infinitely repetitive and is therefore not relevant for random
primary signals. The difficulty lies in the nature of frequency domain analysis which clearly
does not recognise negative time as a violation of physical laws. Since no distinction is
made between positive and negative time in the frequency domain, causality cannot be
readily incorporated into the solution and one must resort to time domain techniques where
the causality of the solution can be imposed directly.

2.2. Causally constrained minimum sound power
output in the free field

Now follows an exactly analogous formulation of the total sound power output in
the time domain using an approach suggested by Nelson33. The total time averaged sound
power radiated from the source pair may be written as

T
W= lim o J1as0ptas + gpprp0 T (221)

Totwo

21



The total pressure p(x,t) resulting from primary and secondary source contributions is
given by
|

Ix, - xl - xl
PO = Zp [ gyt - —2) + qs(t- —5—) ] (2.22)

Substitution of this equation into equation (2.21) yields

T

| g - %
W=z lim o [ {as0lap( - 2250 + qg(0)]
~T

Ixc - X
"+ (O] qp(t) + gyt --—’53563‘-&)] } dt (2.23)

We now assume that qy(t) and qy(t) are linearly dependent and related by a causal impulse
response function h(t) according to the relation

as(t) = d[ h(t) gp(t - 1) dt (2.24)

It is important to recognise that causality is introduced by setting the lower limit of the

integral to zero which ensures that
qs(t) =0 for t<0 provided qp(t) =0fort<0 2.1)

Substituting g,(t) into equation (2.23) produces an expression for the total sound power
output W solely in terms of the impulse response function h(t) and the primary source

signal g, (t) of the form
qp T

(-]

W:szli_x)xl f’il"f J{Jh(’tl)qp(t -11) dty Jh(t)qp(t - 1) dt
~T

+qp(t~u>Jh<x)qp<t- 1) dt + gy(t) OI h(t)gp(t - - T) dT + g3(D) }dt

(2.25)
where [ = Ix - xpl/cg as before.
Despite the apparent complexity of this expression, one can make considerable
simplifications by noting that the orders of integration may be re-arranged and terms which

subsequently appear such as
T
.1
Jm 27 [ ap0ap(t+ 0 ck = ppp(®) (226)
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are definitions of the primary signal temporal correlation function Ppp(T) evaluated at the
appropriate time delay (or advance) 1. This simplification is clearly only valid for stationary
random signals. Performing this sequence of operations yields

oo

W=7, f J h(Dh(T))ppp(T - T3) dT dTy + Jh(t) Ppp(T - ) dt
0

+ 0[ h(T)ppp(t + p) dt 1+ Wy .27

The term Wp, = Z,p,,(0) is the primary source sound power output radiated in the absence
of the secondary source. Using standard variational techniques42, it is left to Appendix 2.1
to show that this function is minimised for an optimal causal impulse response function

hy () which must satisfy the following relationship

26[ ho(’tl)ppp(’t -7y dry + ppp('c +J)+ Ppp(T - ) =0 fort>0 (2.28)

The inhomogeneous integral equation given above is a form of the well known Wiener -
Hopf equation whose solution, in this case, gives the optimal impulse response function
for determining the causally constrained minimum sound power output radiated by the
source pair. Some confidence regarding the correctness of this equation is derived if one
sets the lower limit of this integral to —ee and the Fourier transform is taken. This series of

operations recovers the original unconstrained optimal solution H,, = - cos ku derived
earlier in the frequency domain.

Following Nelson et-al35 the solution to equation (2.28) may be obtained partly by
inspection and partly with recourse to classical techniques in linear estimation theory. By
direct analogy with the optimal impulse response function obtained for the unconstrained
problem in equation (2.14), assume a solution hy(11) of the form

ho(t1) =- 3 (8(t1- W) +ug(t1)) (2.29)

The two terms are respectively a component for the absorption of the incident sound wave
as indicated before, plus an additional term u,(t1) which is now substituted in place of the
anticipatory term 8(1; + 1) appearing in equation (2.14) for the unconstrained case
signifying an advance in time. Substitution of the assumed form of the solution of equation
(2.29) into the Wiener - Hopf equation yields the following condition on the term u(11)

23



o0

J Uo(T1)Ppp(T - T1) dTy = ppp(t + 1) (2.30)

This equation has straightforward interpretation: Given a knowledge of all past values of
the time history qp(t), the filter uy(t;) is required which affords the optimal estimate of the
primary signal at some future time q(t + ). The form of this equation is appropriately
called the Wiener pure predictor equation whose solution is given in many standard texts on
linear estimation theory and signal processing3:44 but will only be cited here.

Assume that the primary source signal qp(t) may be represented by some shaping
filter X;(s) driven by white noise, where s is the Laplace variable, whose impulse response
function is x(t). This choice of model is clearly only valid for stationary random signals.
The optimal predictor Uy(s) which is the solution of equation (2.30) is given by

X
Uy(s) = “ngjl (2.31)

where X,.(s) is the one sided Laplace transform of the impulse response function of the
shaping filter advanced by the appropriate propagation time {1, namely xp(t + ). Thus

o0

xp(t) = 51; pr(s) estds and Xp+(s) = (5[ xp(t + W) e-stdt (2.32)

The process described above is discussed in many texts on time series analysis, see for
example Papoulis*. The solution to this equation for an important representative example
is now discussed. Consider the case where the primary source strength qp(t) is closely
represented by the output from a filter with the well known characteristic second order
frequency response described by equation (2.33) driven by unit amplitude white noise. The
Laplace transform of the shaping filter is given by4>

wf

X, (s) =
p(®) s2 + 2Lwps + ©F

for{ <1 (2.33)

where { and wj, are the filter damping and the undamped natural frequency of the filter
respectively. Equation (2.33) provides a good model of the frequency characteristics for
many commonly occurring noise spectra which exhibit this typical 27 order type response
described above. Tyre noise, for example, radiated into a car body will be distributed in
frequency roughly according to equation (2.33) since the excitation of the rough ground will



be approximately of the same level at all frequencies. Transmission of sound through the
tyre will therefore tend to filter the noise radiated into the car interior by virtue of its
associated mass, stiffness and damping. The impulse response function x(t) of this filter is
also well known#> and is given below

Xp(t) =ﬁ c'C@t sin gt (2.34)

where @y is the frequency at which peak response occurs, g = mn\J 1-{2 . Employing
equations (2.31) - (2.34), the optimal predictor Uy(s) may be solved to give

e-Lonp

Uy(s) = [ g cos g + (s +Lw,) sinwgp ] for{ <1 (2.35)

where the required Laplace transforms are standard results given in many texts#5, Putting
s = jo for the optimal predictor Uy(®) and substituting into the frequency response function
Ho(w) relating qgo(w) and gp() yields the result

e-Conp

Hy(w) = - % [ edon + [ @ cos wplt + (o +Lwy) sin wgu ] (2.36)

The quantities under consideration are now written as function of frequency w to indicate
that spectral decomposition has taken place. The causality of this optimal secondary source
strength g4, (1) as governed by Hy(w) is readily verified by inverse Fourier transforming
and convolving with gp(t) to give

c-Cwnll

Qo) =-7 [gplt-p) + { (0 cos it + Lwnsin @) qp(t) + sin ol (D)) ]

(2.37)
which is only dependent on past and present values of the primary source strength time
history qp(t). It is interesting to observe that the optimal predictor also depends on the
derivative of the primary signal with respect to time qy(t). For the sake of consistency with
the previous frequency domain analysis, g, (t) must tend to the unconstrained result given
in equation (2.16) as the damping of the shaping filter becomes increasingly narrower
eventually tending to zero. In this limit, the output of the shaping filter is a single tone
possessing a frequency equal to its centre frequency . The consistency of the time and
frequency domain analyses are immediately verified by letting { — 0 so that @y — @y, to
give

Qo) = -3 [yt~ 1) + cosgh g (® +5‘-“m-“;’~"ﬂ a0 ] (2:38)
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For { =0, q4,(t) is harmonically varying at a frequency ® equal to @y, which leads to Elp(t)
= joqp(t). In the limit of zero filter damping therefore, the optimal secondary source time

history converges to

Ui Qso(@) = - 5 [ eJm + ik ] (2.39)
where in the time domain

80 Qso(® =~ 3 [ gp(t - W) + gt + 1) ] (2.16)

which is equivalent to the unconstrained frequency domain result derived earlier in equation
(2.16). Consider first the sound power radiated by the secondary source W, when seeking
to minimise the total sound power output of the primary - secondary source pair. This may

be expressed as
T

Wyo= Jim ] i[ Qo) 1 dt (2.40)

Given that the time histories of optimal secondary source strength q¢,(t) and the total
acoustic pressure p(xs,t) are now known from equations (2.37) and (2.22) respectively, it is

left to Appendix 2.2 to show that

VY -2((on
Weo="7" [ £ UC% 2 ( wfcos2ogu + Lwywgsin2mgp + wa(1 + £2) sin®ogp - 1]
where as demonstrated in Appendix 2.2 (2.41)

Wy =Zpwy, / 8C (2.42)

Similarly, the primary source sound power output Wy, in the presence of qg,(t) is also
derived in Appendix 2.2 to give

-20npt . .
Wpo=Wp[1- £ o ( ©fcos?won + {2sin%wpp + {wpwpsin2wgi ) ]

(2.43)

Before considering the behaviour of these functions for arbitrary values of the filter
damping (, it is informative to consider the limiting case where { tends to zero at which the
filter output is a single tone whose frequency is equal to the filter's centre frequency. The
primary sound field along the infinite duct therefore reduces to a single frequency plane
wave of frequency ;. From equations (2.41) and (2.43), as { — 0, one obtains the
asymptotic expressions

W — 0 (2.44)

and
Wpo = W, (1 - cos?anit ) (2.45)
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In the limit of zero filter damping, the total source sound power output W therefore
varies as ( 1 - cos2wg}t ), a result already deduced according to a frequency domain
analysis in equation (2.20). For perfectly predictable signals therefore, all of the sound
power reduction is due entirely to the suppression of sound from the primary source since
the time averaged secondary source sound power output is zero as indicated by the form of
the asymptotic result in equation (2.44). From this result one can infer that the energy
expended by the secondary source through loading and absorption of the primary source
radiation are exactly equal and opposite. However, for bandlimited signals, this equilibrium
condition is destroyed and the net time averaged sound power output from the secondary
source will be negative. This is because the ability of the secondary source to load the
primary source is a sole function of the signal predictability. This contrasts the amount of
sound power absorbed by the secondary source which is entirely independent of the
primary signal predictability. The functions given by equations (2.41) and (2.43) for the total
primary source and secondary source sound power output are plotted overleaf in figure 2.3
for the representative values of the filter damping £ of 0.999, 0.5, 0.1 and 0.

In the first two examples, figures 2.3a and 2.3b, for which the filter damping is set
t0 0.999 and 0.5 respectively, a good level of sound power reduction can be observed for
source spacings up to about one half of a wavelength of the filter's centre frequency.
Above this separation distance however, the primary sound power output appears to remain
unchanged while the secondary source sound power is minus one quarter the primary
source sound power output. The total sound power reduction is therefore only one minus
one quarter of the original sound power level corresponding to a reduction of only - 1.25
dB. As the filter bandwidth becomes narrower, for { = 0.1 in figure 2.3c, an oscillatory
variation with source separation distance begins to appear owing to the onset of phase
interference associated with the strong tonal component at the centre frequency of the
shaping filter. As anticipated, the results derived in this section are fully consistent with
earlier findings since setting the filter damping to zero in figure 2.3d recovers the variation
established in the previous section for deterministic signals. These series of figures indicate
that no loading of the primary source is possible for source separation distances equal to
integer multiples of half wavelengths regardless of the signal bandwidth.
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Figure 2.3. A comparison of the total sound power output from the primary (solid line) and secondary
source (dashed line) versus separation distance for various values of the shaping filter damping.
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2.3. Interpretation of the minimum sound power output in
terms of power spectral density

In this section the sound power outputs of the primary source and the secondary
source derived in the previous section are decomposed into their spectral components in
order to deduce their sound power spectral densities. This exercise facilitates deeper
understanding of the complex interaction which necessarily occurs between the primary and
secondary sound fields in order to maximally reduce their combined radiated acoustic
energies.

From equation (2.21), the time averaged secondary source sound power output Wy

is determined from
T

W, = lim 5 ‘[[qs(t)p(xs,t)]dt = pep©®) (2.46)

where pqp(()) is the temporal cross correlation function between the secondary source

strength and the total pressure at the secondary source point evaluated for zero time lag.
The distribution in frequency of this source strength - pressure product may be determined
from the Fourier transform of the cross correlation function pqp('c) which is defined by

T
Pgp(®) = 2T l{ as()p(xg,t + 7) ] dt (247)

Taking the Fourier transform yields the cross spectral density Sqp(®) according o™

1 .
Sqp@) =2- [pgp(@) edot ar (2.48)
Taking the the inverse Fourier transform recovers the cross correlation function, namely
Pgp(D) = j S gp(®) €i9% dw (2.49)
-0

Equations (2.47) and (2.49) constitute a form of the Wiener - Kinchine equations4. The
total sound power output which has been shown to be given by Pqp(0) is now represented
by equation (2.49) for 1= 0 to give

o0

Pep0) = f Sgp(@) do (2.50)

hinad -]
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From this equation one can infer that S qp(®) represents the frequency distribution of the
sound power output over all frequencies. For convenience (since FFT analysers do not
recognise negative frequencies) it is useful to formulate the sound power spectral density in
terms of the one - sided cross spectral density function qu(co) defined from

qu(co) = zsqp(m) for w>0 (2.51)
qu(()) = qu(O) for w=0 (2.52)
qu(w) =0 for <0 (2.53)

Recalling the following even and odd properties for cross spectra®

R{ qu((l)) } = R{ qu(-(ﬂ) } (2.54)
USqp(@)) = -LSgp(-0)) 2.55)

so that the frequency distribution of sound power output may be written as
Wy(w) = [Sgp(®) +Sgp(-w)] =2 R{qu(w)) (2.56)
W) = R{qu(m)] (2.57)

A fuller discussion of the steps leading to these equations connected with a frequency
domain analysis of sound intensity is presented by Fahy46. Recall that the total pressure at
the secondary source point is given by qgo(W)Z(x,lxs) + qp((o)Z(xplxs). The secondary
source sound power spectral density W, (®) may thus be derived from

Wio(®) = Z(xglxg) R {Ggyg,(@)) + Zxplxg) R{Ggoq,(c)) (2.58)

where Ggq () and quqs(m) are respectively the one sided auto power spectral density of
the secondary source strength and the one sided cross power spectral density between the
secondary source and the primary source strength. Alternative but equivalent definitions
also exist in the form of#

I 2 *
Gigsqs(@) = im = T(m) L ang Gpqs(®) = lim E[%(m%qm(m)] (2.59)

where gr,(w) are Fourier transforms of qg,(t) of finite duration T and E denotes
expectation with respect to time. Putting Z(xplxs) = Zpeii“’l-l and Z(x4lx) = Zp for this
case, the secondary source sound power spectral density reduces to
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Wo(@) = Zy [ R{Geqs(0) + eI G (@) } ] (2.60)

The spectral densities given above may be re-written in terms of the primary source signal
by employing the following well known input - output relations for linear, time invariant
systems#4

Ggsgs(®) = Hy(w)2 Ggpgp(®@) and Ggpgs(@) = He(w) Ggpgp(®@)  (261)

The secondary source sound power spectral density may now be written in the simpler

form of
W) = Z, R { Hy(@)? + Hg(c) edon }Ggpap(©) (2.62)

Recalling that in this case Hy(®) = - -;- [ e-jot + Ugy(w) ] which upon substitution into

equation (2.62) yields the simpler expression
Weo@) = -5 Zp [ 1-1Up(@)? ] Ggpap(e) (2:63)

where ZpGgpq,(®) is the original primary source sound power spectral density W) so
that

M = ,_1_ 1-1 |2 2
Wiw -8 [1 - Ug(@)?] (2.64)

Equation (2.64) explicitly reveals the significance of the optimal prediction filter Uy(®)
which appears simply as a frequency dependent weighting function on the primary source
power spectral density Ggpqp(). The secondary source sound power output is therefore
determined by its own ability to predict the output signal of the primary source. One can see
that for any given frequency the minimum value of equation (2.64) is -1/4 while the
maximum value is zero. In terms of the two defining parameters of the shaping filter, { and
,, using equation (2.35) and (2.64) one can show that

W () 1 e-2L0np . . )
—\#:(_(T); =-z[1- —0—%” (eofcos?mglt + Lwnwgsin 2mpp + {2 sinZogu + w?sinZogu )]

(2.65)
Following an identical procedure for the primary source sound power output Wpo(w) after
control yields the relationship

Wpo(@) = ZU(xglxp) R{Gguqp(@)) + Z0kplxp) R{Gopap(@)) (2.66)
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Putting Z(xplxp) = Z,, Z(xglxp) = ch'j‘”l-l, Ggsqp(@) = Ho(0)G () and substituting for
Hy(w), gives

Wpo(@) = Zy R [ 1-7 e-20H - 2U(@)ed ] } Ggpa (@) (2.67)

Now substituting for Uy(®) and noting that Z,G,4,(c) is the primary source power
spectral density function before control Wp(w), gives the modified primary source sound
power output resulting from acoustic interaction with the secondary source pressure. This
gives

Wioo(®) 1
—P0 2 1 .2cos2
Wp(g)) 5 COScMlL
- §2 (onposacoson + Loysinaucosay + 0 sinogsinan) 269

Consider the asymptotic behaviour of Wy, and Wpo as the time [ over which the secondary
source is required to predict primary source output tends to infinity. In this limit most
signals, however narrow the frequency bandwidth, are unpredictable (except for { equal to
zero where the primary source signals are pure tones). Letting the travel time for sound to
propagate between the two sources tend to infinity i.e., L — e shows that the predictor
component of the solution tends to zero, Uy(w) — 0, from which the sound power
spectral density of each of the sources can be seen to converge to the consi&crably simpler
expressions

Weo(@) = - 3 Wy() (2.69)

and
Wipol@) — W) [3 - cos?op ] (2.70)

One can now evaluate, by inspection, the total sound power reduction for this limiting
geometry. The total secondary source sound power output taken at frequencies is minus
one quarter that of the primary source. Far more interesting however, is the behaviour of
Wpo(w) which is simply related to its original primary source power spectrum Wp(w) via
the frequency dependent modulation factor (1.5 - cos?jt). This phenomenon follows
directly from the shifting property of the Fourier transform# namely

Pxx(T- 1) & eOUS (o) (2.71)
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Consider again the important example where the primary source sound power output is
Gaussian white noise. One can immediately see from equation (2.70) that the presence of
the secondary source in the duct effectively 'colours' the previously white primary source
sound power spectrum. This finding arises because the transfer function describing the
passage of sound leaving the primary source to the secondary source and then back again
possesses memory by virtue of the finite time for the sound to make the round trip.

These asymptotic expressions describe the response of the secondary source and
the primary source power spectral densities to sound power absorption by the secondary
source. This is because primary source loading is not possible owing to the poor
predictability of the primary signal over the time interval required for sound to propagate
between the two sources at these separation distances. Assuming that the primary source
power spectral density varies much slowly with frequency than cos?wp (for example a
white noise spectrum does not change at all with frequency), the total primary sound power
output Wy, is unchanged since this function oscillates about unity so that

3’2— - cosap = 1 (2.72)

where the over-bar denotes expectation representing the average value over all frequencies.
At large source separation distances, the total sound power reduction from the source pair
is due solely to absorption by the secondary source which is approximately one quarter the
primary source sound power output with the secondary source turned off.

Some examples of the primary source and secondary source sound power spectral
densities are shown in figure 2.4 for various values of the filter damping { and the source

separation distance (X - xp). In the first set of figures 2.4a - 2.4d, the filter damping is set
to 0.1 while the source separation distance is systematically set at 0.1, 0.5, 1 and 5
wavelengths A, (= 2ncy/@,,) of the centre frequency of the filter ®,,. In the second example,
figures 2.4e - 2.4h, the damping of the shaping filter is set equal to 0.99 which is very
close to critically damped, consequently the sound power spectral density of the primary
source on its own appears to behave as a low pass filter and therefore exhibits no resonance
characteristics.
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In the first example shown in figure 2.4a in which the sources are closely spaced at
one tenth of a wavelength of the centre frequency of the shaping filter ay, the total sound
power reduction is mostly due to primary source loading since the secondary source power
spectral density is very close to zero over all frequencies. The total sound power reduction
is therefore very close to that radiated if the primary signal were completely periodic owing
to the high degree of determinism associated with this narrow band spectrum and the
comparatively short distances over which a prediction of the signal is required. As the
source separation distance is increased to one half of a wavelength shown in figure 2.4b,
the primary signal cannot be predicted as effectively and consequently the secondary source
sound power output equilibrium is destroyed resulting in a net sound power absorption.
Note that at some frequencies, the primary source sound power output is now beginning to
increase.

As the separation distance is increased still further to one wavelength, no further
pronounced change in power spectral density can be observed from either source.
However, as the source separation is increased to five wavelengths, the primary source
sound power spectral density can be observed to have undergone a pronounced re-
distribution of energy into into its constituent frequencies. This is of course due to the 3/2 -
cos2wyl type modulation of the primary source spectral output as explained earlier. One can
see that the increase in power output at some frequencies is roughly equal to the decrease in
sound power at neighbouring frequencies, so that the total sound power output after control
is approximately the same as before control. On the other hand, the secondary source
power spectral density remains nearly constant at minus one quarter times that of the

primary power spectral density.

Similar behaviour can be observed for the series of graphs shown in figures 2.4¢ -
2.4¢ for which the system frequency response is close to critically damped and therefore

behaves as a form of low pass filter. Comparison of figures 2.4a - 2.4d and the
corresponding graphs for the same source separation distance but for { =0.99 given in

figures 2.4e - 2.4h, suggests that active sound power minimisation is most effective for
narrow band signals. This observation is revealed more clearly in figure 2.2.

2.4. General aspects of predictability in the
active control of random sound

The notion of predictability is extremely important in the active control of random
sound fields. This is because it is not unusual for geometric constraints to demand that the
propagation time between a secondary source and the desired cancellation point is greater
than the propagation time between the primary source and the cancellation point. An

35



obvious but non-trivial example of where this occurs is the minimisation of the time
averaged square pressure at a single free field point. This problem is discussed in detail in
references [35] and [47]. When the point of cancellation is closer to the secondary source
than the primary source, the optimal secondary source strength is essentially a delay in time
equal to the difference in propagation times from the respective sources to the point of
cancellation. In this configuration the pressure may be driven to zero for all time. This
causal solution, which could have been written down by inspection, emerges quite simply
and naturally from the causally constrained Wiener Hopf equation. When the converse is
true however, such that the point of cancellation is closer to the primary source than the
secondary source, the optimal time averaged reduction in the square pressure which is
physically achievable is determined solely by the predictability of the primary source
output.

From reference [45], one can show that the time averaged minimum square
pressure at some free field point ry which is closer to the primary source than the secondary

source is given by

Ip(ro,®)? =Z 6[ [1 - IUo(@)1? 1Ggpqp(®@) dod (2.73)

where U,() is the optimal predictor defined according to equation (2.31), Zg is the free
space input impedance of the source and where Ggpgp(w) is the spectral decomposition of
the square pressure from the primary source with the secondary source turned off.

Equation (2.73) is closely akin to the expression for the secondary source sound power
output in equation (2.64). Just as the name suggests, the predictor filter U,(w) is the factor
which completely specifies the fraction of the primary source power spectral density which
may be perfectly predicted at any given frequency. For a primary source square pressure
spectral density given by Ggyq,(), the corresponding square pressure spectral density
which may be perfectly predicted Gyy(w) (and therefore by implication cancelled), is
simply

Gy (®) = Ug(0)? Ggpqp(®) (2.74)

Using equation (2.74), the total predictable ‘power’ of the signal as fraction 1(i) of the
original power can be written as

36



L] -

JGUU(m)dco J U (@) Ggpgp(@)d@
nw = — = (2.75)

J G gpqp(@)de> erqpqp(m)dm

where by definition 0 < n(u) < 1. Although it is customary to refer to spectra of these kinds
as 'powers', this does not of course refer to physical power in the conventional sense
which has the units of Watts since this representation may be used to characterise a wide
range of signals of various physical origins. Consider the original example where the form
of the shaping filter is given by equation (2.33) driven by unit amplitude white noise. The
power spectral density of the primary signal Gg,q,(e) may be obtained from X, (@)1 to
give
i
o) a0y + (@

(2.76)

for which the optimal predictor Uy(w) has been derived earlier. Using equations (2.35),
(2.75) and (2.76), the fraction 1(i) of the primary signal energy which may be perfectly
predicted at some time Y in the future is given by

e-25onp

e = e [ (@ocoswp + Lapsinwpu)? + wlsin?wg | (2.77)

The function above is less than, or equal to unity for all { and @y, For § which is equal to
zero, (W) is exactly equal to unity for all values of p and @y, signifying that harmonic
signals are perfectly predictable at any time in the future. For non zero values of ¢ for
which the primary signals are not wholly deterministic, it is extremely useful to be able to
identify some characteristic temporal bandwidth i 5 of the signal for which the absolute

predictability of the original primary source signal ‘power’ is less than, say, one half. One
can therefore define a 3 dB predictability bandwidth i, s according to

N(gs) = 0.5 (278)

which will obviously be a function of the frequency bandwidth of the signal. For the form
of spectrum given by equation (2.76), a convenient bandwidth of the signal is the 3 dB
bandwidth @y 5 defined as the frequency bandwidth within which the power spectral
density is less than 3 dB below its peak value at resonance. The 3 dB bandwidth for the
signal whose system frequency response function is given by equation (2.33) (or half
power points) is given in many texts*> and may be shown to be equal to
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useful guide-lines for the characteristic distances (in time) for which a given signal is
predictable to within 3 dB of its actual value. Inspection of figure 2.5 for small { suggests
that the constant in equation (2.80) may be estimated to be approximately equal to 0.5. The
actual value of the constant of proportionality will depend on the precise characteristics of
the primary source signal. As an example which reveals this reciprocal dependence
explicitly, consider another form of primary source power spectral density Gigpgp(@) given

below
1

14B-200%

quqp(m) = (2.81)
which is a form of low pass filter for which the time constant of the filter B characterises
the rate of roll-off with increasing frequency. Unlike the previous example, the parameter 8
may take all values thereby encompassing both completely predictable signals for § =0 and
completely unpredictable signals for f = ee. In the limit as B tends to infinity, the primary
source power spectral density Ggpq () tends to unity at all frequencies for which the signal
therefore has a white noise spectrum. On the other hand as f tends to zero, the shaping
filter begins to roll off infinitely quickly thereby converging to a low pass filter which only
allows d.c signals to pass. The 3 dB frequency bandwidth for this low pass shaping filter

Wy s, i.€., the frequency within which the response is less than one half of its peak
response at @ = 0, may be determined by inspection to give

quQp(mO.S) =0.5 quqP(m)max for wys=P (2.82)

One may follow an identical procedure as the previous example to show that the optimal
predictor U,(w) for this spectral shape is simply

Uy(w) =eBr (2.83)
which like the previous example in equation (2.77) is frequency independent. The total
predictable signal energy as a fraction of the original energy n(it) according to equation
(2.75) may therefore be written as

) = 2P (2.84)

The definition of the 3 dB predictability bandwidth p 5 defined by equation (2.78) therefore
gives an exact reciprocal relationship between the two signal bandwidths of the form

Hostgs =31n2 (2.85)

39



where %ln 2 is approximately 0.35. Equations (2.80) and (2.85) arise as a consequence of

the uncertainty principle. This is a statement of the physical law which says that the
frequency bandwidth - time bandwidth product cannot be less than a certain minimum
value®4. This is essentially a mathematical phenomenon which expresses the inter-
dependence of time and frequency which prevents arbitrary specification of signals in time
and frequency simultaneously. Since the equivalent bandwidth of a function and its
transform are reciprocal, it follows that

Equivalent duration x Equivalent bandwidth 2 constant (2.86)

In the case of the bandwidths under discussion, it follows from the above argument that

Mo 5Wq 5 2 constant (2.87)

where the constant of proportionality, the bandwidth product, depends on how the
bandwidths are defined. In the two cases considered, the bandwidth product appears to be
typically equal to 0.5, but may be determined exactly for the form of signal which has the

smallest bandwidth product. As Papoulis explains#4, the inequality is exactly satisfied for
the least predictable signal at a given frequency bandwidth ®, 5 which occurs for signals

which have a Gaussian power spectral density function for which the auto correlation
function, the Fourier transform is therefore also Gaussian. To a good useful working
approximation therefore, the characteristic time iy 5 over which a stationary random signal
is usefully predictable is governed by the approximate relationship

1
Hos 2 — (2.88)

Wo.5

although this formula will, in general, tend to provide a lower bound value according to the
general form of the inequality indicated in equation (2.86).

2.5. The unconstrained minimum sound power output
in a hard walled semi-infinite duct

As a simple model problem which embodies the essential features of sound power
minimisation in reverberant enclosures, consider the same hard walled duct as before.
Reflections are now introduced by means of a rigid termination added at one end shown in
figure 2.6. Acoustic losses in the enclosure are introduced by way of dissipation at the duct
termination which for simplicity is characterised by a real reflection coefficient r. Simple
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analysis is only possible by assuming that the mechanism of energy dissipation at the duct
termination is linear, causal and most importantly independent of frequency. The sound
field in the duct is actively attenuated by the action of a secondary source gg(t) located
downstream of the primary source qp(t) such that xg > xp- A secondary source located
upstream of the primary source would clearly be badly positioned since it would be unable
to absorb sound power radiated downstream of the figure.

Xs> Xp

. 0 | 40 .

Control volume

Figure 2.6 A semi-infinite duct with two idealised line sources of which one is a secondary
source placed upstream of a primary source.

This geometry is intended to represent the characteristics of a simple reverberant
space. The secondary source gs(t) is constrained to act causally with respect to the time
history of the primary source in a way which minimises the total sound power radiated
from the source pair. In doing so, the sound power radiated out of the control volume is
also minimised, taking into account energy carried by propagating and reflected waves.
Before investigating the causally constrained minimum sound power output, for
comparative purposes, it is first necessary to establish the best that can be physically
achieved when the secondary source is allowed to act non-causally and is therefore able to
predict perfectly the output of the primary source. As has already been emphasised, this
type of unconstrained optimisation is only relevant for harmonically varying sound fields.

Consider a frequency domain representation of the total sound power output from
the source pair. Assuming that only plane waves are allowed to propagate, the total primary
source pressure pp(®,x) in the duct from incident and reflected waves may be written thus

Pp(@,%) = Zpqp(@) (k% - xpl 4 re-ik(x + xp)) (2.89)

Similarly, the plane wave field from the secondary source pg(,x) may also be written as
the sum of incident and reflected waves in the form of
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Ps(@,%) = Zpqs(e) (eKIx - Xl 4 re-fk(x + x5) ) (2.90)

The total sound power W radiated into the duct from both sources acting simultaneously is
simply the sum of primary source and secondary source contributions so that

Recalling that only the component of the total acoustic pressure which is in-phase with the
source strengths is able to radiate any sound power in the time average sense, one can write

W= % R{ (ps(®,x5) + Pp(@,x5))qs () + (Ps(@,xp) + pp(d.xp))gp(@) }  (2.92)

The acoustic pressures at xp and xs may be related to the source strengths gp(w) and qs(w)
via their appropriate acoustic transfer impedances. We can thus introduce the following
notation

Z(xplxs) = Zp (e-3k(xs - xp) 4 re-jk(xs + xp) )

Z(xslxp) = Zp (e-Fk(xs - xp) 4 re-jk(xs +xp) )

Z(xglxs) = Zp (1 + re-2ikxs )
Z(xplxp) = Zp (1 + re-2ikxp)
for xs > Xp (2.93)

where reciprocity can be seen to apply. The total sound power W may now be written in
terms of the appropriate acoustic transfer impedances to give

W =3 R{(qs(@)Z(xslxs) + qp(@)Z(xplxs))q8(e)
+ (qs(@)Z(xslxp) + qp(w)Z(xplxp))qB(w) b (99)

As previously demonstrated in section 2.1, the total sound power output from two sources
acting together may be represented as a quadratic function of the complex secondary source

strength q4(®) which lends itself to re-arrangement into the following standard form

W =gs(0)Aqs(®) + b*qs(@) + bgs(w) + ¢ (2.95)

The coefficients A, b and ¢ may be identified as in the previous example to give

A =3 R{Z(xgx9)}, b =3 qp(@)R(Z(xplxs) + Z(xslxp))
and ¢ =3 Igp(@) 2R (Z(xplxp)} (2.96)
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where ¢ is the sound power from the primary source acting in isolation. The optimal
solution which minimises this function has previously been derived and is re-written below

gso(®) = -A-1b (2.11)

The existence of a unique minimum solution assumes the positive definiteness of A,
namely R {Z(x¢xs)} > 0 which follows directly from the conservation of energy. A
negative value would imply that more energy is flowing into the source from reflections at
the termination than was originally radiated. Now writing gso(®) = Ho(w)qp(w), from
equation (2.11) the optimal transfer function may be shown to be equal to

cos k(xg - xp) + r cos k(xg + xp)
1 + 1 cos 2kxg

Ho(®) =- (2.97)

Note that Ho(w), as in the free field case, is real indicating that the optimal secondary
source either acts exactly in phase or out of phase with the primary source. The behaviour
of the secondary source in this slightly more complex space can be visualised more easily

in the time domain in terms of the optimal impulse response function hy(t) which is related
to this frequency domain transfer function via the inverse Fourier transform

ho(t)=~2-1-— [ Ho(@)eiot do (2.13)
T

The optimal transfer function Ho(w) may be expanded as a power series expansion
providing |r!< 1 which gives

Ho(w) = - %2 (efk(xs - xp) + e-jk(xs - xp) 4+ p(efk(xs +xp) 4 e-jk(xs +xp)) ) x

(1 - 1 cos2kxg + r2cos?2kx - Pcos?2kxg - - - -+ (-r)"cos™2kxs )  (2.98)

Employing De-Moivres theorem and noting Fourier transform pairs of the type
F o1
cos ot F(w) > 3 (f(t-t9) + f(t+1g)) (2.99)

and after a little algebra one can show that hy(t) for minimising the total sound power
output in the enclosure is an infinite row of weighted Dirac delta functions of the form
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ho(t) = 2 Acd(ts B skp, 2 B b(s BtDxetxp,
k=0 k=0
(2.100)

where Ay = ay+rag1 and By = rag+ay,1 and where the terms ay are intimately related to
binomial coefficients according to

ag = ag(r) = -(1/2 + 21223 + 64125 + 2005027 - - - - .
ay=a1(r) = (1/2 + 3524 + 10r5/26 + 3517728 . . . ..
a2 = ag(r) = -(r2/23 + 4425 + 156527 + 56:872° - - - - - (2.101)

a3 =a3(r) = (1324 + 55/26 + 1507728 + 8419210 . . . .

ax = ak(r) = (-1)&*D z [11:,21“] ( )(k+2n)
where [;] ='3T'”(1‘i"“3')'f

This observation is significant since each set of coefficients in equation (2.101) forms a row
of one half of Pascal's triangle for which the following recurrence relation holds

TAg.1 + 2AK + 1A =0 V integer k (2.102)

The recursive structure of this equation follows directly from the presence of reflections in
the enclosure and offers some insight into the structure of the optimal control process. Any
amplitude term Ay appearing in the optimal impulse response function at some current time
t exactly cancels with the sum of amplitude terms before and after, weighted by an amount
equal to the reflection coefficient r. An identical recurrence relationship may also be written
for the set of amplitude terms represented by By. Note that consistcncy with earlier work

has been maintained since the free field result is recovered as the reflection coefficient r
tends to zero. Putting r — 0 in equation (2.98) yields

ho(®) = -3 [8(t- 1) +8(t+1)] (214)

where 1 again symbolises the propagation time between the two sources p = (x; - Xp) / Co-
There are several important features to observe from equations (2.100) and (2.101). First, the



impulse response function is perfectly symmetrical about the origin of time t = 0 so that the
optimal secondary source strength is necessarily non-causal with respect to the primary
source time history qp(t). This finding follows directly from the fact that Ho(w) is real.
Second, the optimal impulse response decays away with time at a rate determined solely by
the reflection coefficient r at the duct termination. It is important to recognise that hy(t)
given in equation (2.100) naturally lends itself to representation in terms of two independent
infinite series. Those terms relating to the series of amplitudes Ay are responsible for
controlling the radiation from the primary source radiated to the secondary source directly at
a separation distance (x - x). The terms associated with the series of amplitudes By, are
responsible for dealing with the reflected sound or equivalently, the sound field radiated
from the "image’ source located at a distance xg + xp from the secondary source. Recall that
the non-causal optimal secondary source qg(t) is related to the time history of the primary
source qp(t) via the convolution integral

g = [ho(t)gp(t- 1) dr 2.15)

The total time averaged minimum sound power output W, from the source pair can be

derived from
T

. l[ Qso()P(xs:t) + qp(p(xp,t) ] dt (2.103)

Wnin =00 7T

where p(x,t) refers to the total acoustic pressure at some position x and at some time t. Note
that this operation is equivalent to substituting () into the equation (2.94) for the
frequency dependent total sound power output W and averaging over all frequencies.
However, a time domain interpretation of the control process makes it possible to identify
the evolution of the total sound power from the source pair. This in turn enables one to
establish the mechanism of control by which the total sound power output is minimised in
this elementary reverberant space.

The cumulative total sound power output from the source pair E; (T) which
determines the total acoustic energy radiated by the source pair from t = e up fo some time
T is given by

T
Emin(D = [ [ dso®Pp(xs) +qp(Opxp,) 1 dit (2.104)
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The acoustic pressure p(x,t) as a function of time now involves four terms which may be
written as

POxD =ZP[qP("QE§?) * ’qp(“gnc%ﬁ) + qs(t - (xc;,X)') +rqs(t-“'(xc:x’) )]

for x¢ > Xp (2.105)

By way of example, the cumulative total sound power from the source pair as a
function of the time T is shown in figure 2.7 for r = 0.99. In this example the primary
source radiation is in the form of a simple unit impulse at t = 0. The secondary source is
placed at 2.12 m from the duct termination which is downstream of the primary source
located at 1.67 m from the termination. While this analysis is really only appropriate for
harmonic signals, the system response to a primary source emitting a unit pulse att =0
provides graphic illustration of the dynamic response of the control system. This will
hopefully provide an understanding of the physical processes concerned.
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Figure 2.7. The total normalised cumulative sound power output from a source pair in a
semi - infinite duct with a reflection coefficient r = 0.99 as a function of time T.

In this instance, negative time refers to the anticipatory action of the secondary
source. Figure 2.7 clearly reveals the non-causal response of the optimal secondary source
to the unit pressure pulse from the primary source at the origin of time. As a consequence
of the high reflection coefficient in this example, the secondary source requires the time
taken by many reflections to eventually attain the residual, steady state level of sound
power output which in this case is a reduction by a factor of approximately 0.072. One can
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establish more precisely the mechanism of control operating in the duct by resolving the
total cumulative sound power output into the respective primary and secondary source
contributions Ep(T) and E(T). These are plotted below
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Figure 2.8. The cumulative normalised sound power output from the primary source and
secondary source in a semi - infinite duct with a reflection coefficient r = 0.99 as a function of the
time T.

There are two important features of this graph one should observe. First, the total energy
radiated by the secondary source over a long time interval is exactly zero. Second, the
primary sound power output is appreciably less than unity, its value in the absence of
control. One is now able to draw some important conclusions relating to the optimal
mechanism of control in this simple geometry. The reductions in the total sound power
output from the source pair is due solely to the reduction in the sound power output from
the primary source. This result is evident from figure 2.8 which shows that the time
averaged secondary source contribution to the total energy in the duct is zero as previously
observed in figure 2.3. In order to illustrate further the rdle of the secondary source in the
minimisation process, the instantaneous secondary source sound power output W, (T) may
be derived from the cumulative sound power output Eg,;;, (T) via the relation

W= Jim Egpnin(T+AT/2) - B, . (T-AT/2) (2,106

—0 AT

= i‘%ﬁ“@—» (2.107)
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This function quantifies the time averaged acoustic energy radiated during the
infinitesimally small time interval T - (1/2)dT and T + (1/2)dT (instantaneous sound power
output) which for this example is plotted below
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Figure 2.9. The instantaneous sound power output from the secondary source pair in a
semi- infinite duct with a reflection coefficient r = 0.99.

The figure above provides graphic demonstration of the control mechanism from
the point of view of the secondary source. The process of control commences an infinite
time prior to t = 0 where the primary source starts radiating. In anticipation of this event,
the secondary source sound power output increases steadily with time, peaking at a
negative time equal to the propagation time . between the two sources. Building up the
secondary source sound power output gi'adually according to the behaviour indicated in
figure 2.9 therefore involves less total sound power expenditure by the secondary source
than achieving primary source loading with a single action as is necessary in free field, see
equation (2.16). Summing the squares of the pressure amplitudes radiated from the
secondary source along the infinite duct in figure 2.2¢ indicates that in free field, the total
normalised sound power radiated by the secondary source in loading the primary source is
exactly one half. This contrasts a value of only 0.27 in this simple reverberant space as
indicated by the secondary source cumulative sound power output shown in figure 2.8
evaluated at T = 0.
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This peak amplitude corresponds to the single pulse in the impulse response
function sent to arrive at the primary source at t = 0 whose purpose is to load the primary
source with the aim of reducing its sound power output. This process represents one of the
elementary mechanisms of active sound control and explains why the time averaged
primary source sound power output is less during control than before control. Taking this
action has the effect of partially destroying the pressure at the primary source point. The
acoustic pressure not cancelled at the primary source point is subsequently absorbed.

A short time after t = 1, only the secondary source acoustic pressure is remaining in
the duct. The secondary source is then observed to engage in an infinitely long process of
self absorption as revealed by the infinite series of infinitesimally short bursts of negative
sound power output. Negative sound power output refers to energy flowing into the source
which is the condition for sound power absorption. This infinite series of absorption terms
can be seen to be a mirror image of the infinite series of terms culminating in the loading of
the primary source at t = (.

Once steady state conditions have been attained, the residual level of sound power
output radiated from the source pair will ultimately depend upon the frequency and the level
of reverberation in the enclosure. The precise level of sound power reduction W, that can
be produced at any given frequency is readily derived by substituting equation (2.97) for
Qs0(w) into the expression for the total sound power output in equation (2.94) which gives

(cos k(x; - xp) + 1 €05 k(xg+ Xp))?
(1 + 1 cos 2kxg)?

Wmin = Wp {1- ] (2.108)

Putting r = 0 recovers the free field minimum sound power output derived previously
Whin(@) = Wp[1- cos? k(x, - Xp) ] (2.20)

The residual cumulative level of sound power reduction shown in figure 2.7 refers to the level
of reduction averaged over all frequencies since the unit pulse of infinitesimal duration
contains all frequencies to the same degree. One can show that the time averaged sound power
reduction converges to some finite value for all values of the reflection coefficient r less than
unity. For r which is exactly equal to unity, the cause of this apparent lack of convergence
with time is due to the presence of an infinite series of discrete frequencies satisfying the
relationship

1+ cos 2kxg=0 (2.109)
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where the corresponding value of W, (w) is equal to infinity. In physical terms, the
condition above defines the set of frequencies for which there is a standing wave
established between the secondary source and the completely hard walled termination (since
r = 1). This standing wave pattern forms a pressure node at the secondary source point
making it impossible to couple into the plane wavefield which therefore drives infinitely
hard. On solving for cos 2kx, = -1, the critical distances for which W, (®) is singular

corresponds to

Xg = _(_1._";"_?,222‘_ where n isinteger 0,1,2,3  (2.110)

2.6. The causally constrained minimum sound power output
in a semi-infinite duct

In this section an analogous time domain analysis is undertake with the aim of
constraining the secondary source strength to behave causally. As in the preceding section,
the purpose of the secondary source is to minimise the total sound power radiated into the
reverberant space. The time averaged sound power output from the source pair W is given

by
T

W= lim o [ [P + Gp0p0Kp0 1 (1)

Recalling that the total pressure in the duct p(x,t) is given by equation (2.107), the total
sound power output W written in full is determined from

T
. 2
W=z fim r [ [as®(a) +1ag(t - 29)
~T

+ 450yt - STe  gye- Lst2a)

+ gpO(qstt - -(—’-‘*‘5(—)-’-‘92 ) + 1yt - —(-’5%”2 )
2
+ qp(t)(qp(t) + rqp(t - "{;’én ) ]dt for x> Xp (2.111)

where qp(t) and q(t), the primary source and secondary source time histories are linearly
related by a causal impulse response function h(t) defined by



qs(t) = oj h(T)gp(t - 7) dt (2.24)

Noting that each source strength time history q(t) and its respective acoustic pressure p(t)
are linearly related according equations (2.89) and (2.90) providing that the reflection
coefficient is frequency independent. One can now derive the total sound power output
from the source pair in exactly the same way as in the previous example. Substitution of the
various terms produces

T
W=2 ij J{ o’ h(T1)gp(t - 71)dt [ J h(1)qp(t - T)d7 +r6( h(T)qp(t - 2xg/Co - T)d1]
-T

o0

+ J g nde Lapte- B 4 rgy-Beiady)

‘ (Xg - Xq) ‘ (xq + Xp)
+g,® [ G[ h(t)agp(t - - e+ rJh('r)qp(t X 0 )
+qp(t) [ gp(t) + 1 qp(t -%—ﬁl )] for x> x,, (2.112)

The minimum value of this function may be determined using exactly the same analytical
procedure as outlined in Appendix 2.1 for the analogous one dimensional free field
problem. It is a comparatively simple matter, if algebraically tedious, to show that the
optimal impulse response function h,(7;) which minimised the total sound power radiated

into this simple reverberant space is determined from the solution of the following integral
equation

-

2 2
[fho(Tl) [rppp(T -7y - —éx;)i) +2ppp(T - T3) +1ppp(T - g + %(65-)] dty
0
- +
- +
+ppp(1 +'(—E%'6—JEE')')+rppp(T +..£§Sc.;)_§D_).)] =0

for x> Xp and t>0 (2.113)
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Note that it is only the restriction on t; and 1 that imposes the constraint of causality.

The impulse response function given in equation (2.100) and (2.101) for the
unconstrained problem is essentially the solution of this equation for pure tone signals
owing to its perfect predictability. We have already seen that the concept of predictability
has a well defined meaning in this context. For current purposes, it is sufficient to
understand that harmonic signals represent one extreme of time history by virtue of being
perfectly predictable. Sinusoidal functions also constitute an infinite set of ortho-normal
functions for which all periodic signals may be de-composed. It therefore follows that all
periodic signals (which also satisfy Dirichlet's conditions*3) are completely predictable
which is implicit in their periodicity. At the other extreme, white noise is totally
unpredictable. By direct analogy with the impulse response function derived previously for
the unconstrained example, it is convenient to resolve the optimal causal solution h(t) into
two components according to

ho(T) = hg1(1) + hyy(7) (2.114)

which upon substitution into equation (2.113) yields two independent equations of the form

(-]

2 2
[ Bo1cer) [rppp(e - 11 - 22 + 20055 - 51) + 1ppy(e - 71 + 291 dry
0

(xc§ (—) Xp) )+ ppp(T - (x5 - xp) ) =0 forxs>xpand7>0 (2.115)

+ -X
+ ppp('t co

and

o0

2x 2
fhoz(tl) [rppp(t-171 - : ) + 2ppp(T - T1) +1ppp(T - 11 + —6’55»)] dty
0 0 0

(xg + xn) (X + Xp)
c Co

+1Ppp(T + ) + 1Pppp(t - ———P=) =0 forxs>x, and T> 0 (2.116)

The assignment of the right hand side of equation (2.113) to the two parts of the solution
ho1(11) and hyy(t)) indicated above is motivated by the form of the solution for the
unconstrained optimum in equation (2.100). In this example, h,(t) has been shown to
comprise two series of terms for dealing with the radiation from the real source and the
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radiation from the so called 'image’ source independently. The secondary source views the
radiation from the primary source and its image as independent sources of sound even
though one is just a delayed and diminished version of the other. This property is reflected
in the mathematics as a de-coupling of the governing equation into two equations which
may be solved independently.

For ease of analysis, consider the form of solution for which the primary signal
gp(t) is Gaussian white noise such that the signal is totally uncorrelated with itself at any
later time. In this case the control mechanism cannot rely on the predictability of the
primary signal which which to anticipate the primary source signal. Correspondingly, the
temporal correlation function for this limiting class of signal is a Dirac delta function so that
the equations (2.115) and (2.116) above reduce to

fhol('rl) [r8(t -1 - %ﬁ) +28(T1- 1)) +18(1 -1 + 2—}‘(;%)] dr
0

+8(t--£§55;—’592)=0 forxs>xpand >0 (2117)

and

o0

jhOZ(Tl) [rd(1 -1 - 2%505) +20(T-1)) +1d(T-1 + %ﬁ)] dty
0

+1d(t »155‘:—:—-’592) =0 for xs>xpand >0 (2.118)
Note that the two terms 8(T + %ﬂﬁﬁ) which appear in equations (2.115) and (2.116)

have been set equal to zero. This is because their arguments are positive (providing x, > Xp)
representing advances in time and are simply unit spikes which are only non - zero for
negative T and are therefore zero in accordance with the fundamental condition ©>0

S(t +—9550—§-’£92)=0 for Xs>Xp and t>0 (2.119)

Assume a solution consisting as before of an infinite row of Dirac delta functions for both
hy1(%) and hg)(1). Because of the white noise statistics of the primary signal, there is no

necessity to include an additional predictor term in the assumed form of the solution since
there can be no prediction and therefore no loading of the primary source. For this special
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case, the solution is assumed to comprise only delays in time with the appropriate
amplitudes Gy and Dy, which remain to be determined.

ho1(1) = z Cyd(1 - (%%?—'}-ﬂ) (2.120)
k=0

hoo(T) = 2 Dyd(t - (&ﬂg‘j—") (2.121)
k=0

First, consider the form of the solution for hy;(t). Substituting in equation (2.117)
the assumed form of the solution hq;(T1) given by equation (2.120) yields the following
recursion formula for the series of amplitude terms Cy

rCyy + 2C; + 1Cyyy = 0 forinteger k > 0 (2.122)

which is subject to the boundary condition
C; +2Cp +1 =0 (2.123)

This is the same recurrence relation which governed successive amplitudes in the
unconstrained problem discussed earlier in section 2.5. However, since this solution was
unconstrained there was no boundary condition to be satisfied since the series was allowed
to extend into negative time to minus infinity. Equation (2.122) constitutes a second order,
homogeneous difference equation whose solution is straightforward using standard
techniques*8. Assume a solution of the form of a geometric series

C, = rkak+1 (2.124)

Substitution of Cy into equation (2.122) yields the characteristic polynomial of the difference
equation which is a quadratic in @, thus

ro2 + 200 +1 =0 (2.125)

Solving for the negative root of this equation since the positive root has a modulus greater
than unity which therefore represents a divergent process which therefore cannot represent
the minimum. We thus choose the solution



_ -1+v1 - r2

o 2 (2.126)

Now since -1 < & < 0, each amplitude term in the optimal impulse response function is of
exactly opposite sign with the subsequent term and is therefore absorbed by it. The optimal
causal solution for this part of the impulse response function may be written thus

ho1(1) = 2 rkok+1 §(1 - (M~——%§1’—‘2) (2.127)
k=0

This function satisfies both the difference equation and the associated boundary condition
and is therefore the complete solution (i.e., complementary function and particular
integral). Performing an identical analysis for the part of the solution associated with
hyp(t), one can show that

Dy = rk+lgk+l (2.128)

satisfies the required recurrence relation
Dk + 2Dy + 1Dg,; = 0 forinteger k > 0 (2.129)
together with the additional boundary condition
; +2Dg+1r =0 (2.130)

The solution for hyy(T) which is responsible for acting to reduce the radiation from the
‘image’ source may now be written as

hgy(t) = z rk+1gk+1 §(t - (?—“—*—‘%’—;Siin) (2.131)
k=0

It is significant that Cy = rDy since the two processes associated with these terms operate

in cascade separated by one reflection at the termination at x = 0. The set of optimal terms
associated with h,»(T) are therefore identical to hy;(t) except for the additional muliplicative
factor 1. Assuming the uniqueness of the solution, the causally constrained optimal impulse
response function for minimising the total sound power from the source pair in the
presence of reflections is given by
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Notice that the terms in the impulse response functions above occur in pairs. These
exist in order to suppress the radiation from the source and the radiation from the image
source a short time later (for closely spaced sources where active control is most effective
for finite bandwidth signals). One is now able to envisage the complexity of the impulse
response functions for dealing with sound radiated into a fully enclosed sound field owing
to the contributions from an infinite number of image sources. It is important to recognise
that the causally constrained optimal impulse response function is not, in general the
windowed non-causal impulse response function as might be interpreted from the work of
some authors49,

It is instructive to consider the limiting case of this series for the case wherer — 0
thereby removing the presence of reflections as in free space. Employing L'hopital’s rule
for the limit of the ratio of two functions simultaneously tending to zero such as

fx)  F(x)
gx) 7 g

as x—0 (2.133)

then as r — 0, o takes the limiting form

- - 12)-1/72
a:rglr) }im

2r ()

i
!

(2.134)

™ =t

In a one dimensional free field space therefore, the optimal causal solution for white noise
is simply
ho(t) == 1 8(t - —Q’—‘S—Q’fﬁ ) (2.135)

The optimal mechanism of control for white noise is therefore to absorb one half of the
incident energy, a process which by summing the squares of the pressure amplitudes in the
manner indicated in figure 2.2 shows a 25 % reduction in the original primary sound power
output. This is shown again in a later graph. Again, it is instructive to calculate the
cumulative sound power output as a function of time in order to establish the precise
mechanism of control for this causally constrained controller. For this example however,
the mechanism is particularly simple since controlling white noise can only be
accomplished by a succession of delays which represent an infinite succession of
absorption terms. One is now able to evaluate the causally constrained secondary source
strength in response to a primary signal which is a unit spike of infinitesimal duration at t =
0. Evaluating the cumulative sound power output in the usual way forr=0.99 as a
function of time according to equation (2.106), yields the results shown in figure 2.11
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Figure 2.11. The total cumulative sound power ouiput from a source pair in response to a
unit pulse radiated by the primary source into a semi-infinite duct with a reflection coefficient r =
0.99.

The fact that the causally constrained optimal impulse response function is a simple
infinite series of delays in time indicates that the fotal primary source sound power output in
radiating white noise must remain unaltered by the causal action of the secondary source.
The mechanism of control for this special problem must therefore be limited to the
absorption of successive reflections since the secondary source is unable to anticipate the
primary source radiation. However, it is important to recognise that even though the total
primary source sound power is unchanged, the sound power radiated into its constituent
frequencies has undergone a pronounced re-distribution according to the behaviour typified
by equation (2.70).

The residual level of sound power reduction in the presence of reflections for
primary signals in the form of a unit pulse (which also quantifies the sound power
reduction for white noise signals) is evaluated from the type of numerical simulation
outlined above which produced the results presented in figure 2.11. This simulation was
repeated for a range of reflection coefficients r between 0 and 0.999, the results of which
are plotted below. Also shown by way of comparison is the corresponding average result
for harmonic primary sources.
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Figure 2.12. The time averaged total sound power output from a source pair in a semi-
infinite duct versus the termination reflection coefficient r: Gaussian white noise (dashed line),
completely predictable harmonic noise (continuous line).

Note that as the reflection coefficient tends to zero, in the case of white noise, the time
averaged level of sound power reduction is exactly one quarter that of the primary source
level, a result noted earlier. In the case of harmonic sources however, the averaged level of
sound power reduction is reduced by exactly one half. Although the level of sound power
reduction for arbitrary bandlimited signals has not been evaluated specifically, the results in
figure 2.12 serves to place an upper and lower bound on the exact levels of sound power
reduction which ultimately may be achieved for any stationary random signal.

2.7. Discussion and conclusion

This chapter has considered the active control of random, broadband noise giving
special emphasis to the effects of reverberation. For simplicity of analysis, only sound
propagating in one dimension has been investigated. Reverberation has been introduced in
the simplest possible way by means of a single reflecting surface on which the form of
acoustic dissipation is characterised by a real, frequency independent reflection coefficient.
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It is believed that this elementary geometry retains all the important physical features of the
more complicated three dimensional random sound field.

As a precursor to the more complex problem involving reflections, the total causally
constrained free field minimum sound power output from a primary - secondary source pair
has been derived. The primary source signal is mathematically modelled as the random
output from some second order shaping filter driven by unit amplitude white noise. This
choice of model enables the predominant frequencies in the signal to be varied according to
the centre frequency of the filter, while the bandwidth of the signal (the more crucial factor)
was adjusted according to the filter damping. Interpretation of the problem was approached
from the point of view of the spectral output of each of the two sources in turn. The level of
sound power reduction was found to diminish with increasing source separation distance
and primary signal bandwidth.

One surprisingly subtle finding to arise from this investigation is that at an infinite
series of harmonically related discrete frequencies, the total radiated sound power increases
by up to a maximum of 3 dB but appears to more than compensated by reductions in sound
power output at neighbouring frequencies which are also harmonically related. This re-
distribution of energy amongst the constituent frequencies of the signal is pronounced and
will certainly influence the subjective impression of the control procedure in accordance
with the ‘A’ weighting curve. However, the general trend in sound power reduction over
the entire frequency band is such that the total energy in the signal is less than in the
absence of the secondary source. More specifically, in the limit as the primary signal
bandwidth becomes increasingly greater eventually tending to an ‘all pass’ filter, the
primary source sound power spectrum becomes modulated in a way which preserves the
total original source sound power output. The secondary source power output on the other
hand tends to minus one quarter of the primary source level before control signifying the
absorption of one quarter of the incident energy. In the limit as the filter bandwidth
becomes increasingly narrower, the primary signal appears increasingly like a sine wave.
The total reduction in the sound power output was found to converge on the frequency
domain result derived earlier in this chapter which delineates the absolute level of sound
power reduction which may be physically achieved given perfect signal predictability.

The second half of this chapter has considered the effects of reverberation on
broadband active noise control. Reflections are incorporated into the model problem by
way of a single dissipative surface characterised by a real reflection coefficient whose value
is independent of frequency. The model enclosure was chosen to take the form of a semi-
infinite, hard walled duct constrained to support only plane waves. Again the total



minimum sound power radiated out of some control volume completely enclosing the
primary - secondary source pair was sought. Despite the elementary nature of the chosen
geometry, the derivation of the governing equation was found to be simple but its closed
form solution for finite bandwidth primary signals was not. However, the optimal solution
in terms of the transfer function between the sources was found to be derivable for the two
limiting class of signals: Perfectly periodic signals, namely pure tones, and signals which
are completely absent of periodic component and are therefore completely random i.e.,
Gaussian white noise signals.

In each case, the level of sound power reduction radiated into the simple enclosure
was found to be highly dependent on the intensity of reverberation in the enclosure as
determined by the reflection coefficient, becoming greater with increasing reverberation. At
first glance it would appear paradoxical that the reduction in sound power increases with
increasing spatial complexity as the presence of reflections implies. But this finding is
readily explained when one realises that the dominant mechanism of energy reduction (both
passive and active) is the absorption of sound power. Increasing the level of reverberant
energy in the space therefore increases the amount of sound energy capable of being
absorbed. As the optimal impulse response functions reveal, the absorption of sound in the
presence of reflecting boundaries is not a single event, but is an infinite number of events
possessing, in the case of a simple acoustic space, a high degree of recursive structure.
Consequently, the steady state level of sound power reduction is a highly non-linear
function of the reflection coefficient. The recursive action of the optimal secondary source
strength time history may be exploited in a practical realisation, requiring only a small
number of elementary delay elements.

In comparing the two impulse response functions, it becomes clear that the
secondary source strength time history for the causally constrained minimum sound power
output is not simply a windowed version of the unconstrained minimum sound power
output. The inter-relationship between the two appears to considerably complex such that
the steady state level of sound power reduction for the causally constrained case bears no
immediately obvious relationship to the unconstrained minimisation in terms of the problem
parameters. However, it is extremely encouraging to observe that the steady state level of
sound power reduction for white noise at any value of the reflection coefficient is never less
than 3 dB of the corresponding average value for pure tone signals.
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APPENDIX 2

Appendix 2.1. The derivation of the Wiener - Hopf equation
governing causally constrained free field minimum sound power output

Given the time domain expression for total sound power output W given in equation (2.27)

o0 o0

W=7, f f h(t)h(ty) ppp(t - Ty) dr dt; + fh(t)ppp('c ——5-———4!-) dt

+ fh('c)ppp(t + l—&-c:aﬁl) dt] + W, (A2.1)

- for which the minimum is required with respect to the optimal impulse response function
hy(t). This may be accomplished using the variational technique?2, a technique common in

the calculus of variation. Assume that the impulse response function can be resolved into
the optimal function hy(1) plus some unknown ‘error’' term €h¢(1)

h(1) = hy(1) + €h(7) (A2.2)

Since any choice of the variational parameter € will cause an increase in W, the total sound
power output W must be stationary aboute=0i.e.,

(—%‘g—l}ﬂ =0 (A2.3)

On substitution of h,(t) + ehg(t) for h(t) into equation (A2.1) and performing the
differentiation with respect to € about € =0, only the term linear in € will remain. Thus
isolating the coefficient of € yields

o0

6[ (he(Tho(T) + ho(The(T2) Ippp(T - T2) dTydty

J he(t1)Ppp(Ty - ) d1y + thsm)pppmw) diy =0  (A24)
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Interchanging the dummy variables t; and 1, on the product hy(t;)h.(t,) facilitates
factorisation of the unknown error term h,(t;) which is completely arbitrary and, in
general, not equal to zero leaving the following condition on hy(ty)

ZJ ho(‘tl)ppp(‘t -ty dry + ppp('c + 1)+ ppp('t -u) =0 fort>0 (A2.5)

Appendix 2.2. The derivation of the total primary source, and secondary
source sound power output

Consider the secondary source sound power output thus

T
Weo = fim S ) l Qso(Dp(xet) dt (A26)

For the form of the second order primary signal given by equation (2.33), 4(t) has been
shown to take the form

Qsof®) =~ 3 [ Gpt - ) + Agp(®) + Bgp(®) ] (A2.7)
where
A= cbom ( ®gcoswght + Loysingll ) and B = etont S singlt (A2.8)
g Wy 82;
Further note that
Px) = Zp[ Qo) + qp(t - 1) ] (A29)

Given the relationships above, one can show that W, is derived from
Wso=11 (A2 1)p,(0) + B2 py(0) ] (A2.10)

where pp;(0) denotes the correlation function of the time derivatives of the primary signal
evaluated at zero time lag. The correlation function pp,(i) for this signal is given in

standard texts45

L .
Ppp(k) = iﬁi é%i (wgcoswolt + Lw,sinagh) (A2.11)

from which one can determine p;(0) via the following identity*4
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o) = . 9Ppp()
PppH) =~ o2 (A2.12)
which gives
Ppp(Ht) = '""o;;“ o (wpcosmpu + Lopsinagh) (A2.13)

Collectively, equations (A2.9) - (A2.13) are sufficient to determine Wj,, which after a little
algebra yields

W, . e2Lwoap . i
Wao =P [ 552 (wfeos?oo + LagopsinZogh + (1 + 12 sinogh - 1]
where (A2.14)
W) = Z00(0) = Z,00, / 8L (A2.15)

In a similar fashion the total sound power radiated by the primary source is given by

T
Wpo =2 lim 7 J9p® 190 + asoc-w 18 219

is also readily determincd by noting the general form of the optimal secondary source
strength qg,(t) = - 1 [ qp(t - 1) + Aqy(t) + Bgy(t) 1. Upon substitution of equation (A2.7)

into W, and cxpandmg gives
Wpo = % Zyl ppp(2n) + Appp(n) - Bppp(M) - 2ppp(0) ] (A2.17)

The correlation function between the primary source time history and its derivative with
respect to time, namely ppp(n) is derived from ppp(n) via the identity®4

0
ppp(}l) = Ppp(P-) (A2.18)

to give

foop :
Ppp) =- sincop (A2.19)

8¢
Substitution of the various terms yields the total primary source sound power output Wpo

~2Lenp ) )
Wpo=Wp[1- o (fcos?wop + L2sin?wop + onwgsin2wmon ) (A2.20)




CHAPTER 3

GLOBAL CONTROL OF HIGH FREQUENCY ENCLOSED
SOUND FIELDS AND THE DIFFUSE FIELD

3.0. Introduction

The scope for active noise control has to a large degree been quantified for
bounded spaces which support sound fields driven at low frequencies12-22.23, There has
been considerable success in actively manipulating pure tone, low frequency enclosed
sound fields for two reasons. First, the time taken between successive computing
instructions places an upper bound on the frequency that can accurately be manipulated in
real time. Second but more important is the spatial simplicity of the pressure distribution
over the enclosure at low frequencies. The recent, rapid advances in digital technology has
meant that the speed of computation is now no longer the severe constraint it once was.
However, the difficulties associated with the spatial complexity of a reverberant sound field
driven at high frequencies are inherent in the physical acoustics and consequently remain. It
is therefore the physical characteristics of the acoustic field which dictates the fundamental
limits on the levels of acoustic pressure attenuation that can be engineered via the use of
active control technology.

At high frequencies the number of acoustic modes of the enclosure excited is large.
On superposition, these modes interfere to form a pressure variation which is spatially
complex. The ultimate task of active control is to reproduce this spatial pressure pattern
exactly in anti-phase thereby nullifying the acoustic pressure throughout the entire space.
Clearly this is not practicable (although possible in principle), when the primary source of
noise is itself complex and distributed over distances which are large compared to the
acoustic wavelength. The secondary source geometry is, by contrast, typically composed
of compact, discrete transducer elements. The following few chapters are concerned with a
limiting case of an enclosed sound field namely the diffuse field. In many respects, the
idealised diffuse field represents a worst possible case from the point of view of applying
active noise control. This study was primarily stimulated by the need to be able to identify
an upper working frequency limit for which the application of active control within highly
reverberant enclosed spaces driven at high frequencies is worthwhile.

The thrust of the work presented in this chapter is concerned with an analysis of the
minimum sound power output of two closely spaced point monopole sources radiating into
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a diffuse field environment. Providing that the sources are sufficiently close on the scale of
the acoustic wavelength, destructive interference between the respective sound fields
extends beyond their immediate near fields to encompass the entire space. Complete global
suppression of the diffuse field is therefore a possibility for this rather unrealistic source
geometry. Nevertheless, an analysis of this problem is able to yield results which offers
considerable insight into the mechanisms by which the operation of one source can
maximally reduce the sound power of another.

Conceivably, one could envisage minimising the total sound power radiated into an
enclosure by appropriately adjusting the amplitude and phase of a secondary loudspeaker
with the aim of minimising the sum of the square outputs from an array of microphones
strategically located in representative points around the room. The sum of the squared
outputs from such an array of control microphones is an approximation to the total acoustic
potential energy in the enclosure at high frequencies. This follows directly from the linear
relationship which exists between the sound power output W of the source, the total energy
density ep in the enclosure, and the space averaged square pressure < Ip(r)2 > in the room
sustained by the source. From standard texts in acoustics30 we have the well known

relationships
AW _ <Ip(n)i? >
o e 1
€p Acy ZPC% G.D

where A is the total absorption in the enclosure in square metres, p and cg are the ambient
density and the sound speed in the medium respectively. The results above are derived on
the basis of an energy balance between the rate at which energy is supplied to the
enclosure, determined by the source sound power output, and the rate of dissipation
characterised by the total absorption A. Equation (3.1) is only valid when a state of energy
e&uilibx‘ium is achieved and is invalid for transient excitations. Real time algorithms and the
associated hardware are now available, sufficiently economically, to render this
methodology realistic enough to justify the lengthy, but enlightening analysis described in
this chapter which deals primarily with the minimum sound power output of two closely
spaced point monopole sources. This could be achieved in principle by driving one source
(the secondary) to minimise the sum of the squared outputs from an array of microphones
distributed around the room. Providing a large enough number of microphones were used,
the sum of the squared outputs will provide a reasonable approximation to the total potential
energy in the room which in turn is proportional to the total radiated sound power output as
suggested by equation (3.1). It is first necessary to review some of the important diffuse
field properties. Special emphasis is given to those properties which are known to dictate
the absolute performance limits on the active control of this limiting class of sound field.
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Details of the computer simulation, which involves the superposition of many room modes,
are left to chapter 4. Also plotted is the expression for the squared pressure high frequency
limit which is derived in Appendix 3.1.

At low frequencies, one can identify individual distinct resonances of the sound
field, each resonance being associated with a normal mode of the enclosure. At these
frequencies, the sound field is dominated by a only small number of modes whose natural
frequencies are close to, and centred around the excitation frequency. By virtue of the
simple geometry and the wavelength which is comparatively long at low frequencies, the
sound field may be fully characterised by a small number of orthogonal modes of the
enclosure. Each mode contributes two degrees of freedom to the wave field by virtue of its
complex amplitude. On superposition, the modes excited interfere to produce a simple
spatial pattern31. The low frequency enclosed sound field may be regarded as being
spatially deterministic in the sense that it can be described in terms of a few simple analytic
functions (providing of course that the enclosure is of a simple geometry and that the walls
are hard). In a reverberant space, a measurement of the acoustic pressure p(r) at a point r is
made up from two contributions. The first is the free space component Prreespace () Which
arrives at the measurement point directly from the source, assumed well away from the
enclosure walls. The second is the scattered component Pscanered () Which is radiated to the
measurement point vig wall reflections. One can therefore write

P(T) = Prreespace (F) + Pscantered () (32)

As the frequency is raised, the number of modes having a natural frequency below
a given frequency increases approximately as the cube of the excitation frequency37. The
resonances of the sound field now cease to be distinct and adjacent modes begin overlap
until individual resonances merge to form the characteristic high frequency spectrum shown
in figure 3.2. The amount of overlap from neighbouring modes will depend on the modal
bandwidth which is determined by the level of absorption in the room, compared with the
density of modes which is governed solely by the enclosure volume. Increasing the
acoustic damping therefore assists diffusion since the tails of each modal response curve
overlaps with those from neighbouring modes. Excitation frequencies lying between modal
resonant frequencies, therefore involve the tails of the responses from both upper and
lower neighbouring modes.

While the component of the sound field radiated directly to the measurement point
remains highly deterministic in the spatial sense, above some hitherto undefined critical
frequency, the scattered sound field becomes highly unpredictable32, The reverberant,



scattered field now no longer lends itself to simple description in terms of the normal
modes of the enclosure but is more appropriately represented as a random variable. Even
though the reverberant, high frequency sound field is governed by well understood, causal
deterministic laws, the spatially sampled sound field takes on all the characteristics of a
random process which is more appropriately expressed by statistical models. Owing to
random interference between simultaneously excited normal modes of the enclosure, point
to point measurements of the sound field constitute a pseudo-random ensemble. One can
now no longer speak in terms of the results obtained from single observations with
certainty, but only in terms of the expected result obtained from a large number of similar
experiments.

One can conceive of a sound field where scattering of the incident radiation by the
walls of the enclosure is sufficiently uniform, that statistically, the sound field appears to be
identical at all points within the bounded space. It is this basic property which forms the
notion of the diffuse sound field. One accepted definition is given by Beranek53; 'Ina
diffuse sound field, there is an equal probability of energy flow in all directions’. An
alternative but equivalent definition has also been cited by Balachandran4, ' A diffuse
sound field comprises an infinite number of propagating plane waves with random phase
relations arriving from uniformly distributed directions’. These definitions attempt to
define a sound field where there is no preferred location or direction such that all points in
the space appear to be acoustically similar. Inherent in these definitions are the ideas of
homogeneity and isotropy, the concepts of which form the basis of the last definition5;
The statistical parameters characterising a diffuse sound field are spatially homogeneous
and isotropic’. This last definition represents a more rigourous statement of diffuseness
and is the one that will be referred to in later work.

The concept of a diffuse sound field is clearly a convenient idealisation to which
real sound fields only approximate. Different reverberant wave fields will inevitably exhibit
different 'levels' of diffuseness. For example, a large, irregular room in which there are
irregularly shaped scattering objects excited by white noise, will satisfy the criteria for
diffuseness to a greater extent than a small, empty, regularly shaped enclosure excited by a
low frequency pure tone. Similarly, at the boundary walls of an enclosure, the sound field
must, by definition, comply with the boundary condition and so arrive at the walls with
some pre-destined complex amplitude. Nevertheless, the diffuse wavefield remains a
powerful concept in serving to model what would otherwise be an intangible problem from
the point of view of theoretical analysis.
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The principle of diffuseness applied to acoustic fields is frequently misunderstood.
It is not uncommon for the concepts of diffuseness and the spatial uniformity of pressure to
be confused. For example, a US standard test procedure maintains that perfect diffuseness
is guaranteed by uniform pressure6, In fact, quite the opposite is true. While the acoustic
pressure of a plane progressive plane propagating down a lossless, infinite waveguide is
spatially uniform, it is far from diffuse since it is made to propagate in a prefered direction.
Likewise, in a perfectly diffuse environment, the uniformity of pressure will be strongly
dependent on the bandwidth of excitation. Broadband, random noise sources will excite a
spatial pressure field that closely approaches spatial uniformity. But for pure tones, the
expected deviation from its mean square value in a perfectly diffuse sound field has been
shown to be % 5.5 dB37 which is roughly consistent with the behaviour of the computer
simulation shown in figure 3.2. Far from being uniform therefore, the spatial diffuse
wavefield represents a stochastic process which is both stationary and ergodic with respect
to position. The stationarity of the diffuse field points to the invariance of the statistics with
position while ergodic, refers to the equivalence of the statistics between an ensemble of
similar diffuse wavefields and point to point measurements in any one.

Experiments undertaken by Schroder38 analysing the behaviour of microwaves
inside a rectangular microwave cavity, suggest that the onset of ‘randomness’ of the field
variables appears above some critical frequency fgcp. This critical frequency, or Schroder
frequency as it is now known, is defined as the frequency for which the average 3 dB
bandwidth 5 (half power points) of each mode 2wy is equal to three times the average
mode spacing. However, the average spacing between neighbouring modes is
approximately equal to the reciprocal modal density. For the case when oblique modes are
completely dominant, the reciprocal modal density is given by37 1/n(w) = 2n%c3/Ve?.
Assuming that all modes are similarly damped such that {, = { we have the relationship

fsch = (co/2m) (3n2/LV)IA (3.3)

where @y, is the natural frequency of the n'? mode and { and V are the modal damping and
enclosure volume respectively.

The approach adopted in formulating the diffuse field Schroder frequency foc is
necessarily ad-hoc owing to the arbitrariness of the way the diffuse field has been defined.
Indeed, Schrider’s original diffuse field criterion was determined by the frequency in
which the average modal spacing corresponds to one tenth of the 3 dB bandwidth. This
was later ammended to one third in 196258 which is now the accepted criterion today. In
the absence of a more rigourous and universally accepted guide-line, the condition under
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equation (3.3) is derived must suffice as the standard by which reverberant sound fields are
calibrated for diffuseness. A further reason for this choice of critical frequency is that the
defining relation given by equation (3.3) may be conveniently re-written as a simple
engineering formula in terms of the reverberation time Teo®8

foch = 2000 NTeo/V (3.4)
where T¢p and V are in S.] units.

The subject of 'random wave acoustics' was established during the 1950's and 60's
mainly through the pioneering work of M. R. Schrider in what is now considered a classic
paper published in 195459. However, recognition of the statistical wave nature of high
frequency reverberant sound fields may be found in the literature as far back as 1935in a
paper by Wente®0, who presents a discussion of diffuse field frequency irregularity and
later in 1939 in a paper by Bolt and Roop®!, in which the distribution of natural frequencies
in a three dimensional enclosure are discussed.

Paradoxically, the complexity of the diffuse wavefield serves to aid its analysis. A
deterministic description of the diffuse sound field would render the form of the equations
unusably complicated by virtue of the intricate structure of the high frequency reverberant
field. A probabilistic approach turns out to be much simpler mathematically and has the
considerable advantage of generality.

The results presented in the next few sections have been derived previously in terms
of the acoustic pressure>® but they will discussed here in terms of transfer impedance.
Qualitative predictions concerning the levels of reduction afforded by active control
strategies in the diffuse field require details about the acoustical impedance coupling two
points in the sound field and not the absolute pressure at any one. Transfer impedance
fields and pressure fields represent two different view points of the same process. They are
only equivalent providing that the source has infinite internal impedance such that its
volume velocity is independent of the pressure loading on its surface. In practice this
assumption will be very nearly true. A description of the sound field in terms of the
acoustical transfer impedance is more fundamental than that of pressure since it identifies
the causal relationship between the source of excitation at one point, and the pressure
response at another. A knowledge of the acoustic pressure simply identifies the response.
We now consider some statistical properties fundamental to the diffuse wave field which
will be found to be of importance in later work.
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3.2. Statistical properties of the diffuse field transfer impedance

Consider a point source of sound with an elementary volume velocity density
distribution s(@,ry) = q(®,ry)d(r - ry) located randomly within a reverberant enclosure at
some point ry. The source excites a pressure field p(@w,rx). Any two points ry and ry in the
enclosure are therefore acoustically coupled via a transfer impedance Z(®,rylrx) which is
defined by

Z(w,rxlry) = p(e,ro / g(w,ry) (3.5)

where q(w,ry) is the volume velocity of the point source derived by integrating the volume
velocity density g(w,ry) = |s(w,ry)dy over the extent of the infinitesimal source

distribution S.

Here we assume that all acoustic parameters have been allowed to settle on their
steady state values which usually occurs after time scales of the order of the reverberation
time Tgo. Furthermore, all acoustic variables are assumed to be harmonically modulated in
time which may be introduced by the factor ei®®, For the sake of brevity, the dependence on
time will be omitted.

From the point of view of active noise control, a knowledge of the transfer impedance
connecting two points in space is of fundamental importance. Large transfer impedances
between control elements are desirable because secondary loudspeakers are required to exert a
large influence at the points of control while least affecting the regions in the sound field where
they are not required to act. Within the diffuse environment, the transfer impedance Z(w,rylry)
coupling two points ry and rx chosen at random is itself a random variable. We now seek to
determine the statistical distribution of complex values Z(w,rxIry) for measurement points well
away from the influence of directly transmitted sound, Irx - ry | >R, where R is the
reverberation radius37, the distance from the source for which the level of directly transmitted
acoustic preséure and reverberant pressure are exactly equal. This is the case in many practical
examples where the reverberant, scattered radiation completely dominates the direct field as is
the case for large vibrating bodies for which the near fields are weak.

A sound wave transmitted between two points in space generally undergoes change
in both its amplitude and phase. The transfer impedance coupling two points Z(w,rxlry) is
therefore complex and may be considered to be the superposition of two independen:
impedance fields which are in quadrature. These are the in-phase reverberant component
R{Z;} =R{Z(w,rxIry)} (real) and the quadrature reverberant component 1{Z;} =
U Z(w,rylry)) (imaginary), i.e., Z(©,rxIry) =R {Z;} + j L{Z,}. Sound fields which are of
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such complexity that they defy simple representation may be described as a superposition
of many elementary, scattered waves z,. Each elementary contribution z; has an associated
modulus Izl and phase @ which are assumed statistically independent. Moreover, @ is
assumed to be uniformly distributed between its principal arguments I(-x, %), providing of
course that the two points are well spaced and not too close to the walls (further away than
a half a wavelength). Each oblique mode excited in the enclosure, for example, is a source

of eight independent, elementary plane waves (four for tangential modes etc). The complex
impedance field Z(,rxiry) may therefore be represented by52

N
Z(m,rxtry)=:/.-1-_ﬁ T izl €0k 36)
k=1

The representation of the diffuse field given above is as equally valid whether one interprets
the elementary waves zx as being derived from modal contributions or contributions from a
large number of image sources. Equation (3.6) is intended to provide a qualitative
description of the impedance field as an aid to obtaining statistical predictions about the
diffuse field. It does not allow detailed quantitative staternents to be made about any one
wavefield, but embodies the statistical characteristics of a whole ensemble of similar
wavefields.

If the number of elementary contributions N is large, then the transfer impedance
Z(o,rylry) appears as a random function of both rx and ry which consequently do not
appear explicitly in equation (3.6). Furthermore, if one assumes that the excitation
frequency is greater than the Schroder frequency then the diffuse field representation given
above is also explicitly independent of frequency.

As the number of terms N approaches infinity, the statistical distribution of both the
in-phase and quadrature parts of the impedance field converges on the Normal distribution
(or Gaussian distribution) N(j2,62). A completely general result is therefore obtained
whose validity depends solely on the wavefield having the properties of 'diffuseness’.

For N—ee, the probability density function of the real and imaginary parts of the diffuse
field transfer impedance is therefore given by

£2R(25)) — ——_e-(R(21) - iRZ)?/ 2637 )
\j 2637
and
(7)) > ——= ez -2/ 203, 68
21C0'21Z
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where fz(R{z;}) and fz(1{z;}) represent probability density functions defined in
elementary texts on statistics, see for example Mood and Graybill63. The same notation will
be adopted here as adopted by Mood er-al whereby a subscripted upper case is used to
denote the physical variable in question while lower case variables are used to represent the
function variable. The terms i,z and pig7 are the means and 62, and 63, are the variances
of their respective probability density functions. This remarkable result follows from the
central limit theorem in statistics63 and applies whenever a single random event s itself the
sum of a large number of independent random events, in this case elementary scattered
waves.

Equations (3.7) and (3.8) describe how the probability of any one given value of the
transfer impedance occuring in the diffuse field diminishes with increasing magnitude. This
result is clearly intuitively correct since the likelihood of destructive interference between a
large number of randomly phased terms must vastly exceed that of constructive
interference. The form of the probability density function given by equations (3.7) and
(3.8), is totally independent of the distribution of its constituent waves providing there are
sufficient number of them. The Normal distribution is therefore a member of the
appropriately named asymptotic distributions. The relevance of the central limit theorem to
high frequency, reverberant pressure fields was first realised by Schroder9.

The probability density function (p.d.f) may be characterised by its various
moments. For a Normally distributed ensemble, all moments may be uniquely expressed in
terms of its principal moments, the mean yt and variance o2. The statistical representation of
the impedance field given by equation (3.6) suggests that within a diffuse field
environment, the phase relationship between the acoustic pressure at a point to that of its
source located further away than a wavelength, is completely random. The expectation of
the complex transfer impedance which acoustically couples two well spaced points in the
diffuse wavefield is therefore zero. Thus

<Z(wrxlry) >=<R{Z}>+j<VUZ)>=0 for Irx-ryI>R, (39)

where < > is used to denote expectation with respect to position. The mean values of the
distribution in equations (3.7) and (3.8) are therefore likewise zero

Hpz=<R{Z]}>=0 (3.10)

mz=<UHZ}>=0 (3.11)
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Waves emanating from the source at a single frequency are subsequently scattered
by the enclosure walls and therefore arrive at some distant point in the room with a change
of phase which is completely uncorrelated with the phase of its source, see for example
Ebeling62. This fact points to the statistical independence of the in-phase part of the transfer
impedance from the quadrature part, providing the two points are well separated. The real
and imaginary parts, R{Z} and 1{Z,} are therefore orthogonal which implies zero
Covariance between the zero mean random variables. That is

<R{ZIUZ}>=0 (3.12)

It is fundamentally important to recognise that R {Z;} and L{Z,} are only orthogonal as
random variables. The physical processes by which they arise are not. This is because the
physical system which enables the volume velocity at one point in space to give rise to
acoustic pressure at another point constitutes a linear and causal process. The real and
imaginary parts of the transfer impedance Z(,rylry) are therefore functionally related by

the Hilbert Transform64.

For points of observation well away from the source, it is implicit in the concept of
the diffuse field that R {Z;}and 1{Z;} must be governed by identical statistical laws. It
therefore follows that they must also exhibit identical levels of dispersion about their zero

mean values so that
02, =07 =0} (3.13)

This property can be infered because the distribution of phase differences between two well
separated points is uniform between the principal arguments. The joint probability density
function fz(R{z:}1{z]}) for independent random variables is simply the product of their
respective probability density functions fz(R{z}) and fz(1{z}) according to equations
(3.7) and (3.8) thus

f2R (2} M {z)) = 2R (z )z (z)) = 21:02 e (R2(z) +12(z)) /263 (3.14)
' A

A three dimensional representation of this equation is shown in figure 3.3 indicating that
part of the diffuse field transfer impedance field which is in-phase of the source and that
part of the diffuse field impedance field which is in quadrature with the source plotted on
orthogonal axis
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However, since R {Z,} and 1{Z,} are zero mean processes, it follows that the variance
must reduce to the expectation of the square of the value according to

o= <RYZ)>=<1*{Z)> (3.16)

The variance of both the real and the imaginary parts of the transfer impedance field are
therefore identically equal to the expectation of their squared values. The space average
modulus squared diffuse field impedance < 1Z;(r) > is given by <Ip(@,r) 2>/1q(@)?
where | p(w,r) 12 refers to peak pressure amplitude squared. An expression for the space
average high frequency square pressure < | p(,r) 2 > may be obtained if one replaces the
infinite summation of acoustic modes by the appropriate integral taken over all possible
modal natural frequencies. This is the basis of Schroder's principle37. The result of this
modal integral is central to the analysis presented in this chapter and an outline derivation
based on the analysis presented by Morse65 is given in Appendix 3.1. The modal integral
has been evaluated in order to obtain an expression for the space averaged squared pressure
< | p(w,r) ?> which from Appendix 3.1 is given by

p2w?c
8nVk,

<lp(w,r) 2> =Ig(w)? (3.17)

where V is the room volume and kg is the damping constant which is related to the total
room absorption A ( = Sa ) by the relationship6?

Ac
ky = V] (3.18)

In reality however, the total room absorption A (in m?) is frequency dependent and one
must refer to experimental data from representative absorbing materials in order to establish
the empirical relationship describing the variation of A with frequency. Some experimental
findings relating to the random incidence acoustic absorption coefficient O versus
logarithmic frequency for various acoustic materials are presented by Beranek33. Typical
representative examples have been taken from this data and re-plotted on a linear frequency
scale in figure 3.4 overleaf.
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Figure 3.4. Experimental data taken from Beranek>? indicating the variation of random incidence
absorption coefficient with frequency for two samples of acoustic lining re-plotted on a linear
frequency scale

The absorption coefficient plotted above appears to increase linearly with frequency up to
about 600 Hz, above which the dissipative mechanism appears to change. Below this
frequency however, which represents quite a large working bandwidth, one can reasonably
propose an empirical dissipation law by which the total area of absorption increases linearly

with frequency. This leads directly to the definition of a modal damping term { according

ko=Lw (3.19)

. This is precisely the dissipation law arrived at by Sepmeyer66. The space averaged
squared pressure may now be written as a linear function of frequency according to

p2awcy
8nlV

<Ip(w,r) 2> = lg(w)? (3.20)

Assuming that the space average squared pressure is equi-partitioned between its in-phase
and quadrature parts, one can therefore write
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<R%(Z}>= <1*{Z,}> 31116%1%3 (3.21)

As one may have anticipated, point to point measurements of the transfer impedance
Z{w,rylry) exhibit large variations in small enclosure volumes driven at low frequencies
where the wavefield still exhibits modal behaviour. The comparatively large scatter of
transfer impedance values arises from interference between single modes. Conversely, as
the enclosure volume approaches infinity, the variance a% tends to zero whereby the
wavefield becomes spatially uniform as the acoustics of the enclosure approach free field

~conditions. In this limiting case, each image source is located at infinity and mutually
uncorrelated. Many authors regard this hypothetical limit to be the only perfect idealisation
of diffuseness, see for example Bodlund67.

Strictly speaking, the normal distribution is only an exact representation of the
distribution of transfer impedance values as long as the number of random, independent
constituent components tends to infinity. In practice, a good approximation to this
asymptotic distribution is achieved from the summation of very few terms. In particular, a
statistical distribution of transfer impedances very closely approaching that of equation
(3.14) was obtained from a large random sample of transfer impedances calculated from a
computer simulated, one dimensional sound field in a finite hard walled duct. The sound
field was contrived to support only the first ten modes in ascending natural frequency, each
excited to comparable amplitude. The Gaussian distribution of the in-phase and quadrature
parts of the impedance field may therefore be regarded as a weak function of the wavefield
and is therefore a poor indicator of diffuseness. Alternatively this property may be
interpreted as a good descriptor of weakly diffuse fields.

3.3. The diffuse wavefield cross correlation function

While the spatially sampled diffuse wavefield exhibits all the characteristics of a
random process, it is not without a significant degree of spatial structure. Specifically, the
pressure at closely spaced neighbouring points in the diffuse wavefield may be shown to be
highly correlated. The spatial cross correlation function p(rj, r,w) is the parameter which
determines the degree of inter-dependence between adjacent points in the wavefield.
Furthermore, this function offers insight into the coarse, large scale structure of the wave
field upon which, the intricate, random spatial patterns occur arising from random
interference between highly coherent waves (at a single frequency). The complex, spatial
cross correlation function is defined by
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(3.23)

The imaginary part is equal to zero since - cos@ (the anti-derivative of sin@) is an even
function. The real part is readily evaluated by using the simple change of variable x=cos6.

This argument may be extended to deal with both two and one dimensional diffuse
sound fields. In a two dimensional wavefield, the elementary waves have equal probability
of arriving from any elemental angle located in a plane. Taking the average over all angles
of incidence between 0 - 2x in the plane yields the result

2%
p(ry, r2,m) = —;—J [ cos(kArcosB) - jsin(kArcos6) ] d@ = Jo(kAr) (3.24)
n

where Jo(kAr) is the zeroh order Bessel function which is a real function since the
imaginary part integrates to zero. Similarly in one dimension the spatial cross correlation
function may be written as

p(ri, r2,m) = cos(kAr) (3.25)

The spatial correlation functions derived here are second order statistical properties
of the diffuse field and depend only on the separation vector Ar between the points and not
on their absolute locations i.e., p(ry, r2,0) = p(Ar,w). This important result follows from
the stationarity (homogeneity) of the diffuse field. More specifically, the correlation
functions depend solely on the magnitude of the separation vector Ar which is a
consequence of the isotropy of the diffuse field. Unlike the theoretical probability
distribution function of complex impedance values in the diffuse field which is equally
valid for narrow and broadband sources of excitation, the spatial correlation function is
bandwidth sensitive. As Morrow explains70, the correlation functions given by equations
(3.23) - (3.25), may be inaccurate at a single frequency owing to the limited number of
modes which can be excited. The problem is compounded if the modes are lightly damped.
As the bandwidth is increased to admit more modes, the average correlation approaches the
theoretical result where k now represents the mean of the upper and lower wavenumbers k;
and kj respectively, k = (k; + ky)/2. A bandwidth sensitive discrepancy only appears for
large bandwidths.

Figure 3.6 shows a comparison of the theoretical one, two and three dimensional
diffuse field spatial correlation functions given by equations (3.23) - (3.25)
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interfere destructively. Ideally, the ultimate aim of any control strategy would be the
complete global extinction of the primary sound field over the entire space. Even in free
field where the evolution of the sound field in space is predictable in principle, this is
extremely difficult to arrange for the reasons discussed in chapter 1. In the presence of
reflecting boundaries, the problems are made substantially worse by complicated
interference patterns arising from waves radiated by an infinite number of 'image' sources.

For this model problem outlined above, a realistic control strategy from the point of
view of achieving good levels of global pressure reduction is to drive the secondary source
in order to reduce the space averaged square pressure over the entire enclosure. Owing to
the proportionality between the space averaged diffuse field square pressure and the sound
power output of the source given by equation (3.1), a reduction in the average square
pressure also implies a corresponding reduction in the potential energy density as sustained
by sound power injected into the medium by the primary source, see again equation (3.1).
In order to satisfy this requirement therefore, the secondary source must act at the primary
source point thereby inhibiting its outflow of energy. Conceivably, a closely located
secondary source could be driven with the same amplitude but in anti-phase of the primary
source. This source geometry would form a single dipole arrangement whose radiation
output is notoriously inefficient compared with a monopole source of the same source
strength. However, as Nelson has demonstrated from a free field analysis0, while this
arrangement does afford some reductions in sound power output, it is not optimal and
becomes progressively less optimal as the separation distance between the primary and
secondary source increases. Indeed, for separation distances greater than about one
wavelength, the primary and secondary source pressure fields are ill-matched thereby
causing a doubling in the original squared pressure. We now consider the statistics of the
optimal secondary source strength for minimising the sum of sound power outputs from
itself and a closely spaced point monopole primary source which are both situated in a pure
tone diffuse sound field.

3.4. The minimum sound power output from two closely spaced
point monopole sources

Consider two closely spaced point monopole sources qp and q; located in a diffuse
field environment at ry, and rg whose volume velocity densities are respectively
qp((n)S(r - rp) and qs(w)3(r - r). This source configuration is shown schematically in
figure 3.7 situated within an arbitrarily shaped control volume completely enclosing the
source pair
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P(r,0) = qp(0)Zp(w,rpir) + gs()Zs(w,rsir) (3.27)

From hereon, the dependence on o will be omitted since above the Schroder frequency,
acoustic variables have no explicit systematic frequency dependence. The monopole source
of sound may be physically visualised as a sphere pulsating about some mean position with
a small displacement amplitude whose time averaged volume input into the sound field is
therefore zero. The point monopole source is a limiting case of the finite monopole source
whose radius has collapsed to zero but whose source strength has nevertheless remained
finite. The pressure at the 'surface’ of this idealised point source is therefore infinite. In a
reverberant space at frequencies above the Schrider frequency, the transfer impedances
Zy(rplr) and Z(rglr) may be resolved into their direct, free field components and random,
reverberant components according to’3

Z(rplr) = Zg(rplr) + Z(rpir) (3.28)
Z(rglr) = Zg(rglr) + Z(rglr) (3.29)

where the subscripts 'd' and 'r' are used to denote the direct, and reverberant components
respectively.

The acoustic pressure in an unbounded medium pq (ro.r), radiated directly by a
point monopole source situated at a point rg of strength () to a point r is given by

pd (ro.,r) = q(w) Zg(rolr) (3.30)

where
smkAr coskAr

kAr

] (3.31)

Z4(rolr) = Zo

and where Ar=lrg-rl and Zyis the monopole point resistance for harmonically varying

sources given by40
_9%

332
4ncg (3:32)

Following the work of Levine2 for elementary point monopole sources, the sum of
primary source and secondary source sound power outputs yields

W =2 R{p(rs) g3 + p(rp) Gp ) (3.33)
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The total acoustic pressure p(r) has contributions from both the primary source and the
secondary source according to equation (327). In an identical manner to the procedure
followed in chapter 2, substituting equation (3.27) for p(r) yields the total sound power
output W as a quadratic function of the complex secondary source strength qs which may
be represented in the now standard form

W=gsAgs+bgs +b"qs+c (2.8)
where A =1R(Z(rdro), b= g R(Zrprs)) and c = 3 lgp? R(Zrprp))  (3:34)
The terms R {Z(rslrs)} and R{Z(rplrp)} are the radiation resistances of the secondary
source and primary source respectively. Recalling that the unique global minimum for this
equation Qs is given by

gs =Qso =-Alb (2.11)

which enables the optimal secondary source strength to be written as

= R{Zrjry)) 335
T T p ey P ¢33
. ZosinckAr + R {Z(rplrs) ) (3.36)
Zo+R{Z(rglrs))

where sinckAr = sinkAr/kAr and Ar is the source separation distance Irp - rgl.

The secondary source strength qso which minimises the total sound power output
radiated by the source pair will be susceptible to statistical fluctuations from point to point
in the enclosure according to equation (3.36). The origin of this random variation arises
from the presence of the terms R {Z(rplrs)} and R{Z(r¢rs)} which as discussed earlier in
this chapter, are mutually correlated normally distributed random variables. Scrutiny of
equation (3.36) reveals that the optimal secondary source strength Qs has the potential to
become singular. This would occur in the (unlikely but physically possibly) event that the
secondary source sound power output radiated via wall reflections, which is proportional to
R {Z(rrs)}, is exactly equal and opposite to the sound power directly radiated into the
enclosure which is proportional to Zg. This condition describes the simultaneous radiation
and absorption of sound power by exactly the same amount from which the net sound
power output of the secondary source is zero. Although this outcome is very rare, but
possible in principle, it is highly likely that this event is sufficiently common in relative
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terms to force the ill-conditioning of the statistics of the secondary source strength and
related acoustic variables. In this event expectations such as < g, >, for example, are equal
to infinity. This has yet to be proved formally, but a full discussion indicating the
conditions under which this is true is given in Appendix 3.2. However, in many respects
this difficulty is of academic importance only and arises because of the very small
probability of obtaining very large but negative values of the diffuse field source radiation
resistance R {Z(rslrg)}.

In the light of this difficulty we take a pragmatic approach and seek to obtain an

estimate for the expectation of the optimal secondary source strength < aso > for those
source positions within the enclosure where IR {Z(rsIrs)}| < Zg for which the secondary
source strength statistics are known to be ‘well behaved'. The expectation is now taken

over a modified, reduced ensemble of values in which 'rare’ events arbitrarily defined by
IR {Z(rslrs)}! 2 Z have been excluded. It is important to recognise that the probability

density function of diffuse field radiation resistance R {Z(rslrs)} must posses positive
skewness (third moment) owing to the fundamental condition’4

- Zo S R{Z(rglrg)} S oo (3.37)

which follows directly from the conservation of energy. However, for the range of diffuse
field resistance values defined by IR {Z(rglrg)}l < Zy, it is believed that for all practical

purposes R {Z(rslrs)} may still be closely represented as a zero mean Gaussian random
variable.

Following standard techniques for dealing with the quotient of random variables63,
the optimal secondary source strength gso may be rationalised by power series expansion
which is only valid within the radius of convergence defined by IR {Z(rslrs)}| <Z,. All

estimates of random quantities derived here therefore refer to the expectations of a finite

sample size which from hereon will be symbolised by a 'hat’, . To second order in
R {Z(rxlry)}/Zp, which will be denoted by 7, the optimal secondary source strength may
be approximated by

Qso = qp [ -sinckAr + sinckAr R{Zr(rslzs))] - R{Z(rpirs)}

. RAZ(rplrs) JR (Ze(rglr s)}z’ sinckAr R 2{ Z(rslrs)) 4

23 'l

for Iyl<1 (3.38)
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The first term in the series expansion ~qp sinckAr, is precisely the optimally
adjusted secondary source strength for minimising the sound power output from the source
pair in the free field40. One can therefore infer that this term only acts on the component of
the primary field which is radiated to the secondary source directly. The remaining terms
(which of obviously did not arise in the corresponding free field case) must therefore be
responsible for suppréssing the reverberant, scattered part of the primary sound power
output. The infinite series expansion of the terms clearly indicates the recursive nature of
the transfer function relating the optimal secondary source strength to the primary source.
In evaluating the expectation < aso >, we note that for transfer impedance fields which are
perfectly distributed zero mean Guassian random variables, one can write

<R{Zr(rxlry)}> = <R{Zr(rxlrx)}> = O (3.39)

Now invoking the principle of reciprocity, the fundamental theorem which describes the
invariance of the transfer impedance to interchange of measurement point and source
point37 one obtains the important result

Also noting that for a fully diffuse three dimensional sound field, the in-phase components
of the complex transfer impedance are spatially correlated according to%8 sinckAr, namely

<R{Z(rlrs) )R (Z(rslrp)} > = <R*Z(r)} > sinckAr (3.41)

where < R?{Z«(r)} > denotes the space average squared, in-phase component of diffuse
field radiation impedance. In order to extract the mean of the sum of terms given in
equation (3.38), we note an important result in statistics. The mean of a sum of random
variables is simply the sum of their respective means. This result is equally valid for
correlated and uncorrelated random variables. Incorporating the results of equations (3.39) -
(3.41) yields the following simple result

<Qso>=-psinckAr  for f2fgh and 1y1>1 (3.42)

Figure 3.8 shows a plot of the theoretical expectation given by equation (3.42) normalised
with respect to qp, as a function of the source separation Ar.
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Figure 3.8 The expectation of the normalised secondary source strength for minimising the
total sound power output of a closely spaced source pair in a diffuse sound field versus source
separation distance.

As a consequence of taking the average value over all source positions, the
components of the secondary source strength responsible for acting on the diffuse field part
of the acoustic pressure converges to zero. This is because sound arriving at the secondary
source via wall reflections undergoes a completely random phase change in relation to its
original phase on leaving its source. The secondary source must respond by being exactly
in-phase or out of phase with the primary source strength since only the resistive part of the
transfer impedance has any bearing on the sound power transported into the medium. The
averaging process will therefore cause this random component to vanish while the constant
free field component of the solution remains.

An identical result has been derived by Nelson ez-all3 for minimising the total
potential energy in the diffuse sound field. Indeed, this agreement should not be surprising
owing to the proportionality which exists between sound power output and the
corresponding potential energy in the diffuse field as given by equation (3.1). Nelson's
result was formulated according to modal standpoint whereby the total potential energy was
derived at by integrating over all modes to infinity. This formulation consequently produces
the result appropriate to the limiting case of an infinite frequency. It is therefore hardly
surprising to observe that the space average value converges on its equivalent free field
result in the absence of reverberation.
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This finding can be explained because in the limit as the frequency tends to infinity,
the wavelength becomes vanishingly small compared to a typical dimension of the
enclosure. In this limit, the wavefield therefore appears increasingly like a free field
environment whereby the enclosure walls are effectively located at infinity.

3.5. The variance of the optimal secondary source strength

At finite frequencies the optimal secondary source strength given by equation (3.42)
represents only an expected result which will be subject to a degree of statistical excursion

centred about its mean. The principal descriptor of statistical departure is the variance O%SO

defined by
/(\r%so =< (qQso - < aso >)2 > (3.43)

where again, the expectation only exists if one excludes the ‘rare’ events arbitrarily defined
by Iy !> 1. Substituting equations (3.38) and (3.42) for qso and < aso > respectively,
expanding and summing the expectations yields the result

2
82, = SBAZ> 1 _gnedar) + g
Z4

for lyl<1 and f2fgh (3.44)

All odd moments of the series expansion, i.e., the moments which characterise the
asymmetry of the probability distribution about the mean (skewness) have been set equal to
zero. Equation (3.44) represents only an approximate formula owing to the non-linearity of
the exact expression for g, given by equation (3.36). The second term €; in equation (3.44)
denotes the residual term, i.e., the term of next highest order which is non-vanishing
neglected in the series expansion which can be shown to be of the order O(y4).

Recalling that < R2({Z;}> is proportional to ® and that Zg is proportional to w2, the
residual term €1 appearing in equation (3.44) therefore has a frequency dependence which is
of the order O(w®). At high frequencies this term makes only an insignificant contribution
to the series summation compared with the leading term which is "3 dependent. Terms €;
and higher can therefore be omitted without incurring significant error at high frequencies.
To a good level of accuracy, it would appear that the variance of the optimal secondary
source strength for a given source separation distance is proportional to < R(Z:)>/ Z%
This term represents one half the ratio of the space average diffuse field square pressure to

the square of the in-phase, deterministic free field square pressure at the source point. At
any given source separation distance Ar, the degree of variability exhibited by qso from



point to point in the diffuse wavefield will therefore depend upon the level of acoustic
'signal to noise ratio' at the secondary source point.

In this context, 'signal' refers to the directly radiated contribution to the radiation
resistance field Zq which is of course independent of the secondary source position. By
contrast, the so called ‘noise’ term R {Z;} refers to the contribution to the radiation
resistance which occurs via reverberant paths and is therefore a purely random function of
the secondary source position. From equation (3.44), one can immediately verify that it is
the relative magnitude of these respective contributions to the total pressure which dictates
the absolute level of secondary source strength variance. This important ratio of terms
<R%Z)>/ Z% may be shown to have even more wide ranging significance which will

now be discussed.

At any given point in an enclosure, the sound power W radiated by a point
monopole source on its own into a reverberant environment is given by

W =319 (Zo+ R(Z(rslr9)) (3.45)

From an earlier discussion it was argued that above the Schroder frequency the term

R {Z(rslrs)} constitutes a zero mean Gaussian random process. By inspection, one can
show that the mean Jy, of the source sound power output is simply (1/2) | g 2 Zg which is
equal to the free space value. Similarly, the variance o of the sound power output is given
by (1/4)iqB < R2{Z.}>. The ratio of the terms < Rz{Z,}>/Z% appearing in equation
(3.44) therefore symbolises the variance of the sound power output from a point monopole
source normalised with respect to the square of its mean value according to

uw ZO

This quotient is commonly refered to as the 'relative variance' of the sound power output
and has been discussed by a number a workers?5:76, The discussion by Davy7 is a
particularly good review of the various theoretical approaches directed towards trying to
evaluate this expression for real sound fields. Comparison with experimental data is also
presented. Substituting equation (3.21) for the variance of the radiation resistance
<R?%{Z,}> and equation (3.32) for the mean value Z, gives the result

<RYZ)> _ on
z2 (Vw3

(347)
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Further simplification is possible by noting that the cube of the Schrider radian frequency
@3y, is given by ( 3n2c3 / V). By direct comparison with equation (3.3) the relative
variance of the sound power output given by equation (3.47) may be re-written as a function
of frequency normalised with respect to the Schrider frequency according to the
surprisingly simple result

2 3
SRAZ)> 1 TfsanP o gy (3.48)
v 4 amlf

It must emphasised that this relationship is only valid at frequencies above the Schroder
frequency for which the diffuse field assumptions are satisfied but below the frequency for
which the room absorption ceases to increase linearly with frequency. This is about 600 Hz
for some materials, see figure 3.4. Above this frequency, it may be shown from equation
(3.17) that the relative variance varies as the square of the frequency. The factor of 1/3
which appears in equation (3.48) is an artefact of the arbitrary manner in which the Schroder
frequency is defined. A more universal constant of the random wave field is the Modal
overlap factor M(w), an important parameter is statistical energy analysis, which is defined
as the number of modes contained within the bandwidth Aw. The average number of
modes in a unit frequency band is closely approximated by the reciprocal of the modal
density 1/n(w). It therefore follows that

M(w) = Aon(m) (3.49)

Two modal overlap factors are commonly defined depending upon the frequency
bandwidths one chooses to employ. One is the 3 dB bandwidth @y 5 and the other is the
noise bandwidth wy. Consider first the 3 dB bandwidth () 5 defined in chapter 2 which for
the modal response function given by equation (A3.2), is equal to 2w,{ where wy, and { are
the natural frequency and the damping ratio of the nth mode respectively. It is well known
that the asymptotic modal density in a three dimensional enclosure is given by (V&?/
2n2c3) enabling the 3 dB modal overlap factor M 5() to be determined from equation
(3.49) to give

_ gn?
where direct comparison with equation (3.47) reveals that
<R%Z:)> 1
= 3.51
z§ M 5() —
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The factor & appearing in the denominator of this equation may be absorbed into another
modal overlap factor namely the 'noise’ bandwidth modal overlap factor My(w) which is
again defined according to equation (3.49) but whose bandwidth wy, is known as the noise
bandwidth defined from

oy = J A@P2d0 / IA®) 2 (352)

where A(w) is the modal response function given in equation (A3.2). According to their

respective definitions, the different modal overlap factors, when they exist, may be shown
to be directly related through My(®) = tM, s(@)7. The relative variance of the real part of
the radiation impedance may now be written as

ok _<RYZ)> _ _ 1
i zg Mp(w)

(3.53)

The relative sound power variance has been rewritten in terms of the noise bandwidth to
enable direct comparison with the result obtained by other workers. For example, Lyon7’3
concludes that 63 /g =27/ 16My(w). Jacobsen6 on the other hand arrives at the
similar, but nevertheless different result 6@ /g = 1/2Mp(w). Although the various
expressions differ, neither expression is more correct than the other. This is because the
actual relative variance of the sound power output observed in practice has a frequency
variation which is considerably more complex than either result suggests. See again the
experimental results presented by Davy’’. The arbitrariness of these various expressions
arises from the differing assumptions relating to the modal spacing of the enclosed sound
field which is exemplified by Maling’8, who, following the work of Lyon?, gives the
more general expression

oh _ 2750M) (350
Wy 16My(@)

where g(M) is a function which varies from 1 to 0.5 as M, the modal overlap factor varies
from zero to infinity. This function takes account of the difference between the two most
popular models namely, the 'next neighbour’ model and the Poisson model. In reality, the
sound power variance will depend on the room geometry, inhomogeneities in the room
absorption and other factors which will depend on the nature of the source. However, it is
reassuring to observe that all of the various expressions predict a reciprocal dependence on
the modal overlap factor and the result developed here in equation (3.53) will continued to
be used.
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The variance of the optimal secondary source strength 03, increases rapidly with
increasing source separation Ar. As the sources move further apart, the level of random
coupling between the source pair remains constant independent of the separation distance.
The magnitude of the direct coupling however, progressively diminishes according to
sinckAr. Consequently, the acoustic signal to noise at the secondary source, and
correspondingly the source variance o2, steadily increases with increasing Ar. The source
variance o?;so rapidly converges to its asymptotic value (1/37%) (fsch / f)3 for separation
distances greater than about half a wavelength. However, at large source separation
distances the control strategy is largely ineffective as made clear in the next section.

3.6. Minimum sound power output

The minimum sound power output Wy, as a consequence of the extremely
complicated interaction between the secondary source gso and the primary source qp may be
readily evaluated. Recall that the minimum value of the quadratic function given by
equation (2.8) is equal to

Wpin=c-b*A-1b (2.17)
where all terms have previously been defined to give
Wmin =
g2 [z + R{ ,
Hiap? [ Zg + RiZitrprp)

Z35inc2kAr+2Z,sinckArR {Z(rplrs) } + R Z(rprs)) ]
Zy+R{Z(rglrs)}

(3.56)

Note again the appearance of the term (Zy + R{Z(rglrs)}) in the denominator of equation
(3.56) which therefore also has a finite probability of being equal to zero causing W, to
become singular. At frequencies above the Schrider frequency however, the usual
inequality can be applied for the vast majority of source positions within the enclosed
sound field, Zg > IR {Z(rglrs) }I so that under this restriction, Wy, lends itself to power
series representation within the radius of convergence | Y} < 1. To second order in

R {Z(rrs)}/Zp, the minimum sound power output may be approximated by

Wi = -;- lgpi2[Zy(1 - sinc2kAr) + R (Zy(rplirp)) + sinc2kAr R (Zy(rlrs))

o ,
- 2sinckAr R {Zy(rplrs)} + 2R (Z(rplr s)}R{Zq(rslrsz)gsmckAr—R {Z(rplrs))

R 2{Z(rlrs)}sincZkAr
. 7 4on-]

for 1yl<1 (3.57)
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The first term, 1/2 Igpl2 Zg(1 - sinc2kAr) is recognisable as the equivalent free space
minimum sound power output in the absence of reverberation?0. During the expectation
process < Wy >, all odd moments have been set equal to zero, the diffuse field properties
given by equations (3.39) - (3.41) have been employed, and the equalities

< R2{Zr(rp|rs)}> =<R{ Ze(rsirp)}> =< R2(Z.)> (3.58)

have been noted to produce the considerably simpler expression

2
< Winin > = %tqp|220(l-sinc2kAr)(1~<RZ§ > )+52
0

for 1yl<1 and f2fgh (3.59)

The residual term €3 again denotes the order of the next highest non-vanishing term which
can be shown to be of the order g2 = O(w™), which is clearly insignificant compared with
the leading term which varies as 2. Recognising that

1
Wp= izo|qp|2 (3.60)

and recalling equation (3.48) for the relative source power variance, yields an expression for

A
the expectation of the minimum sound power output < Wy, > as a function of the
normalised frequency of the form

< \’r\Vm;m >=Wp(l- sinczkAr) (1 - 5-1*— [-&f&hr )
7

for lyl<1 and f2fgh (3.61)

Note that the free field limit is rapidly recovered as the excitation frequency tends to infinity
i.e.

< Winin> — Wp (1 - sincZkAr) as £/ fgch = oo (.62)

where Wp (1 - sinc?kAr) is the minimum sound power output in the absence of
reverberation. This result may be regarded as the free field limit for the limiting case where
the wavelength becomes vanishingly small corresponding to the frequency tending to
infinity. However, at frequencies which are greater but comparable to the Schroder
frequency, the expectation < Wy > is appreciably less than can be achieved in free field.
This finding helps to explain the presence of the terms additional to the free field solution in
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3.7. The variance of the minimum sound power output

The statistical fluctuations of the secondary source strength from point to point in
the enclosure described by equation (3.55) will be ultimately exhibited as an uncertainty in
the total sound power output. The variance associated with the optimally minimised sound
power output may be derived directly from its defining relation given below

A2 2 2
OWnin = < (Wmin - < Wpin >)° > (3.64)

A
Substituting equations (3.57) and (3.59) for Wy, and < W, > respectively yields the
surprisingly simple result

G%,m = %lqpl"' <R%(Z;}>[1-sinc*kAr] + €3 (3.65)

The derivation of this equation has necessitated the evaluation of the expectation
<R{Z(rpirp) JR{Z(rsrs)}> where both measurement points and source points are
identically displaced. The quantities R {Z(rpirp)} and R {Z(r;lrs)} may be shown to be
spatially correlated according to < R2{Z,}> sinc2kAr, the derivation of which is given in
Appendix 3.3. The residual term €3 can be shown to be three orders of magnitude in
frequency below the leading term i.e £3 = O(w2) which may therefore be neglected at high

frequencies without incurring significant error. The sound power variance O%Imin can be

conveniently expressed non-dimensionally as a fraction of the primary sound power output
squared W2 according to

AL 2 |
"\‘\;’n%m - [S—&ZL%QZ] [1 - sincAkAr] (3.66)

where from equation (3.48)
A2 1 fsen 13 .
OWmin = -S;W% [—sth} [1 - sinc?kAr]

for Iyl<1 and f2fgh (3.67)

This function is plotted below evaluated at one, two and three times the Schrider frequency
for Ar ranging between zero and A.

98



0.12

0.1
e 0.08
B -
Nbaﬁ f=2fsch .
0.04 f=3fsch
0.02

J T e i e aadiadiy
-

Source separation distance Ar

Figure 3.11 The theoretical variance of the minimum total sound power output of a closely
spaced source in a diffuse sound field evaluated at one, two and three times the Schréder

frequency.

Observe that the minimum sound power output from the source pair is highly
susceptible to statistical fluctuations for source separation distances greater than about half a
wavelength. These are the distances for which the level of sound power reduction is least
such that the source pair is least constrained. The resulting sound power output therefore
exhibits maximum variability as the source pair is moved around the enclosure reaching a
maximum relative variance equal to 1/3n(fsch / £)3. The dependence of the variance on the
fourth power of sinckAr is purely coincidental since both the real part of the transfer
impedance and the three dimensional spatial correlation function vary as sinckAr. This will
clearly not be the case at frequencies below the Schrider cut off frequency i, where it is
in general not possible to identify a spatially stationary correlation function. For source
separation less than about one half of a wavelength however, the converse is true and the
level of variance is diminished but highly sensitive to the source separation distance. The
relative variance of both qso and Wy can be observed to converge to the same value at
any given frequency as the source separation distance steadily increases.

A2 I\2

OW,p; G 1 [f ]3

—Wmin _ 29s0 2 |2s¢ch oo

W% qulz - ALt for Ar— o (3.68)

The relative variance derived here in equation (3.68) for the sound power output of
the coupled, well separated source pair is identically equal to the relative variance exhibited
by an isolated point monopole source allowed to radiate freely in the diffuse field, see
equations (3.46) and (3.48). It would therefore appear, to the level of of accuracy afforded
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by the truncated Taylor series expansion, that the introduction of a remotely positioned
secondary source seeking to minimise the combined sound power outputs does not alter the
original variance in primary source sound power output radiating in isolation. However, it
is shown in the next section that the secondary source sound power output in any single
experiment is exactly equal to zero from which the variance must also be equal to zero.
Thus, the variance of the total sound power output is therefore equal to the sum of the
variances of the primary and secondary source power contributions which indicates that the
primary source sound power output is statistically independent of the presence of the
secondary source providing they are well separated.

3.8. Mechanisms of sound power reduction in the diffuse field

The derivation of the optimal secondary source strength qs, and the corresponding
diffuse field minimum sound power output W, have yielded expressions which comprise
the free field solution derived in reference {40], plus additional terms which depend on, and
are simple functions of the reverberant field. It is therefore not unreasonable to suppose that
the terms are responsible for acting on the direct field and reverberant field respectively. On
the basis of this assumption it should be possible to identify the mechanism of diffuse field
sound power minimisation.

Under free field conditions, an isolated point monopole source may have its total
sound power output minimised by the introduction of a closely spaced secondary source of
source strength -qpsinckAr. This result is also the expected result in a diffuse field
environment taken over all source positions. Surprisingly, the secondary source radiates no
time averaged sound power itself since the fotal pressure at the secondary source point is
arranged to be perfectly out of phase with its volume velocity39. The secondary source
simply acts to present an additional pressure loading to the primary source thereby causing
a reduction in its radiation efficiency. The same optimal control mechanism also operates in
an enclosed space but the principal difference is that there are now both direct and indirect
(via reflections from the walls) transmission paths connecting the two sources.

Some insight into the mechanisms of sound power minimisation are obtained if one
considers the sound power output of the primary source and the secondary source in turn.
The sound power output from the secondary source Wy in the presence of the primary
source is given by

Ws=3R(q} p(rs) (3.69)
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where p(rs) is the total acoustic pressure evaluated at the secondary source point rg given
by
p(rs) = gpZ{rplrs) + gsZ(rslrs) (3.70)

From equation (3.35), the optimal secondary source strength gso has been shown to be
equal to

z_j_";{_z_(fﬂlzs_).lqp (3_71)

s =0 R(Z(rglrs))

The secondary source sound power output given in equation (3.69) can therefore be written
as

_ g R{Z(rpiry) _R{(Z(rpiry)} 2
Ws=sR{ R(Z(rdro) [ Z(rpirs) R(Z(rro) Z(rgrs) ] iqpi?} (3.72)

Taking the real part, one can shown that the term in square brackets is equal to zero
Weo =0 (3.73)

We now have formal verification of the behaviour observed in figure 2.8 of chapter 2 for
the analogous one dimensional problem. From these findings, one can infer that even in a
reverberant sound field, the total pressure at the secondary source point is arranged to be in
quadrature to the complex secondary source strength. From the point of view of the
governing equations, there is no distinction between free field transfer impedances and
transfer impedances which involve reflections. The time averaged sound power output
radiated by the secondary source when seeking to minimise the total sound power output is
therefore zero in both free and enclosed sound fields. The same conclusion was arrived by
Nelson et-al 39 for the analogous problem in free field. The reduction in the radiated sound
power from the source pair is therefore due solely to pressure loading of the primary source
by the secondary source. Clearly, this arrangement strives to achieve the optimal balance
between the sound power outputs from the two sources which is obviously attained by
setting the secondary source contribution to zero for pure tone fields.

Given that the time averaged secondary source sound power output is zero
indicates that the secondary source sound power output associated with the loading of the
primary source exactly balances with the sound power subsequently absorbed by
secondary source.

Just as for the one dimensional sound power minimisation problem detailed in
Chapter 2, the optimal transfer function relating the secondary source strength to the
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primary source strength given in equation (3.36) is real. The Fourier transform of this real
function of frequency is therefore perfectly symmetrical about t = 0 which is therefore non-
causal with respect to the time history of the primary source signal. It would appear
reasonable that the interpretation placed on the mechanism of sound power minimisation in
the one dimensional example also directly applies to the control mechanism in this
considerable more complex space. This is despite the fact that the time domain
interpretation of the transmission response function in the three dimensional enclosed space
is considerable more complicated.

Consider the system response to a unit primary pressure pulse at t = 0. For pure
tone sound fields, the secondary source begins the process of reducing the total sound
power output from the source pair an infinite time prior to the action of the primary source.
The secondary source starts by continually building up its own power output such that
successive terms in the optimal impulse response function are increasingly larger in
magnitude. This infinite succession of events conspire to anticipate the action of the
primary source which eventually culminate in the radiation of a pressure pulse just in time
to meet the pulse leaving the primary source at t = 0. Note that the process of loading the
primary source which takes place for t < 0 is achieved for minimum secondary source
sound power expenditure. This has the effect of partially loading the primary source whose
radiation impedance is consequently diminished. It is strongly suspected that figure 2.8 for
the plane wave example in chapter 2 is therefore directly relevant to the three dimensional
problem described here.

The acoustic energy which is radiated by the primary source is subsequently
absorbed by the secondary source. However, since the secondary source is situated within
a reverberant environment, it has the opportunity to continually absorb successive
reflections. The precise details of how this is achieved in this more complicated three
dimensional space is contained in the infinite series of recursive terms generated by the
inverse Fourier transform of (Zg + R {Z,(rlrs) })'! which appear in equation (3.36).
Successive terms in the series expansion have alternate signs so that each term is exactly in
anti-phase with the previous term and is therefore absorbed under steady state conditions
The general form of this behaviour in reverberant fields has been investigated numerically
by Hough80.

Consider the sound power from the primary source alone, namely

Wpo =3 R{qp p(rp)) (3.74)
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One can readily show that this expression recovers the original result given in equation
(3.58) whose statistics have already been investigated. Given that W, = W, + W, where
it has been shown that W, = 0, one can now state the following important result

Wnin = Wpo (3.75)

which is an exact relationship for point sources and is valid for individual experiments and
is therefore not in any sense an average result. So far we have shown that the problem
discussed in this chapter is simply a three dimensional extension of the considerably
simpler one dimensional example discussed at length in chapter 2. In chapter 2, one
observed that for random broadband sources of noise, the causally constrained secondary
source was limited to the absorption of sound. This restriction must also be true for this
three dimensional example when the two sources are well separated. This is the subject of
the next section.

3.9. The maximum sound power absorption of a point monopole
source in the pure tone diffuse field

The previous section was concerned with the zotal minimum sound power output
from a closely spaced source pair situated within a diffuse field. Whilst the secondary
source acted to reduce its own sound power output in accordance with the criterion of
minimisation, the secondary source also took equal account of the sound power output
from the primary source. In this section we consider the closely related problem of
minimising the secondary source sound power output taking no account of the effects on
the primary source. This example constitutes a particularly important problem since it is
highly relevant to the large number of cases where the primary source signal is random
broadband noise and its predictability is consequently poor. This example is also pertinent
to the large number of real cases for which the primary source is a large distributed body
such that pressure loading on it will be largely ineffective for these more representative
source types. In both cases, the optimal control mechanism will be restricted to the active
absorption of the incident primary sound field.

Assume that the secondary source is irradiated by some monochromatic primary
source field py(r) of hitherto unspecified spatial characteristics. The sound power output
W from the point secondary source may be constructed from the expression

W; =3 R (g} p(rs)) (3.76)
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It is important to recognise that in the cost function W of equation (3.76) (the secondary
source sound power output), there is no account taken of the sound power radiated by the
primary source and therefore does not respond to the action of the primary source in any
systematic anticipatory fashion. There is therefore a possibility that in some cases the
secondary source may inadvertently ‘suck’ energy from the primary source while in other
cases, inhibit the pressure radiated from the primary source. This was the finding of
Bullmore according to the results obtained from a series of systematic computer simulations
of the sound field in a shallow box of low modal density>1.

Putting p(r) = py(rs) + q<Z(rslrs) in equation (3.76) and following exactly the same
procedure as before, the secondary source sound power output as expressed by equation
(3.76) may be constructed as a quadratic function of the secondary source strength
according to

W= 1 QR(Zngld} + ; GPp(rs) + 5 GsPp(rs) 3.77)

where comparison with equation (2.8) and its solution gg = g, given in equation (2.11)

yields the completely general result
v _ ___Pp(rs)
o = - (3.78)
2R (Zp4}

where for the sake of brevity Z,4 = Z(rslrs) denoting the secondary source radiation
impedance. All quantities for which only the secondary source sound power has been
minimised will now be referenced with the symbol (') so as to make the distinction
between the former problem for which the minimum of the total sound power was sought.
In this example, the secondary source strength is exactly in anti-phase with the primary
source pressure arriving at the secondary source point. The minimum secondary source
sound power output Wy, may be derived from equation (2.17) to give the expression

2
- -

The maximum sound power capable of being absorbed by a given source type is therefore
inversely proportional to its radiation resistance. Although this result is only valid for point
monopole sources, equation (3.79) helps to explain why a quadrupole source of sound is a
more efficient absorber of sound than a dipole source, which in turn is a more efficient
absorber than a monopole source40, The primary square pressure Ipp(rs)l2 may be re-
written in terms of the sum of the squares of the resistive and reactive part of the transfer
impedance between the two sources according to
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_RH(Z(rplry)) +1V(Z(rgiry)) |
8R (Zgaa)

Wy = qpi2 (3.80)

Most importantly note that Wy, is negative providing that the radiation resistance of the
point secondary source R{Z,4} is positive which is of course guaranteed by the
conservation of energy principle. Now consider the influence on the primary source sound
power output W, where .
W, =3 R{qp prp) (3.81)

On substitution of equation (3.78) for qg,, one can show that the primary source sound
power output W, is modified by the behaviour of the secondary source which is now

equal to
1V Z(r ry) - R Z(rry) ]

2R (Zya4)

Wy = 7 lgp2 [ R{Z(rpirp) + (3.82)

The first term is the primary source sound power output radiated into the reverberant space
in the absence of the secondary source. The second term therefore quantifies the change in
the primary source sound power output due to the sound field from the secondary source.
It is emphasised that any modification to the primary source sound power output is wholly
inadvertent. By inspection, this additional term may be positive or negative depending on
whether the primary source pressure at the secondary source is mostly reactive or resistive.
It is enlightening to consider the behaviour of this function for the two well defined cases
corresponding to when the secondary source is located very close to the primary source,
and very far from the primary source.

When the sources are very close compared to the acoustic wavelength, to a good
approximation the source pair behave as if they were in free field so that one can omit
diffuse field terms to a good level of accuracy. One can therefore show that the sound
power output of the primary source is considerably increased at these distances. This
increase is overwhelming due to the very large reactive component of pressure at the
secondary source point compared with the resistive contribution
1VH{Z(ryiry)} >> R*{Z(rplrs)}which will have the effect of 'sucking' energy from the
primary source. This phenomenon has also been observed by Nelson ez-a81.

Now, consider the more important and practically orientated problem where the

points sources are well separated and outside the influence of directly transmitted sound.
Clearly, the squared reactive component of primary pressure lqplzlz{Z(rplrs)} will on
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average equal the square resistive pressure !qpl2 RZ{Z(rplrs)} so that when the space
average is taken, the second set of terms in equation (3.82) averages to zero. For this
limiting geometry, the primary source sound power output is, on average, unchanged and
therefore equal to its average diffuse field value Wp,, the free field sound power output

<W'p>=Wp for Irs-rpl>>x (3.83)

The control mechanism is now limited to the absorption of the sound field which is
scattered close to the secondary source. Recalling that Z4 = Zg + Z(r o), taking equation
(3.80) as a series expansion to second order, neglecting small terms and then performing the
expectation in the usual way shows the maximum secondary source sound power
absorption may be closely approximated by

| 12
<\%‘D>=~S—EL~“£;2—‘>’(1 +’h"d“:“(“g)’;) (384)

where the hat 'V is used to denote that the usual restriction, namely IR{Z(rdr9}! <Zg
has been applied. The subscript 'r’ has been again used to indicate diffuse field pressures
outside the influence of directly radiated sound. One can immediately verify that

< Wy > <0 which indicates that the primary sound field which is incident on the
secondary source is absorbed, or at worst left unchanged corresponding to Wy, = 0. The
secondary source cross sectional area of absorption can be readily evaluated by recognising
that the average diffuse field sound intensity modulus < I (r)l > is properly defined even
though the average net sound intensity vector < I,(r) > is zero. One can envisage a
hypothetical surface of unit area randomly orientated in the field. The sound field on one
side of this notional surface may be regarded as semi-diffuse which is perfectly
counteracted by an identical sound field on the other side. The net sound intensity passing
through one side of this hypothetical surface has been related to the space average square
pressure in the field. From standard acoustical texts63

2
< Myl > = —5—'—‘;?;(9—'—3 (3.85)
0

where < Ipp,(r)l2> refers to the space averaged diffuse field square pressure amplitude
sustained by the primary source. Substituting equation (3.85) for < ﬂp,(r)l > into equation
(3.84) and recalling that Zg = @2p / 4ncy, yields the important result
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A A2 1
W = . l l h— 1 .
<Wyg > <Ipr(r)>n( + m)) (3.86)

where A is the acoustic wavelength. The expectation of the secondary source sound power
output < Wy, > is now in the form of an acoustic intensity times a cross sectional area of
absorption. At frequencies well above the Schrider frequency therefore, the maximum
secondary source sound power absorption may therefore be accurately represented by

A A2
<Wg>=-< llpr(r)l >— (3.87)
T

One can employ exactly the same approach to derive an approximate expression for the
relative variance of the maximum sound power absorption which is given by

o%p _ 1
bdn M)

(3.88)

where the mean value py, given by equation (3.87) has been used.

The isotropy of the diffuse wavefield suggests that the diffuse field bombards the
secondary source from all angles equally. The area of absorption Spgort, must therefore
take the form of a sphere of surface area 4na2 which has the point secondary source at its
centre. Equating 4ma2 to A2/ & enables one to solve for the radius of absorption of the
hypothetical sphere 'a’ on the surface of which all sound is absorbed on average. Solving
for 'a’ gives

2
A A = k-1 (3.89)
yi

S absorb = "1[— and a=

This diffuse field cross sectional area of absorption S,bsorb given by equation (3.89)
is exactly four times the area of absorption for a free field plane wave incident on the
optimally absorbing point monopole source, namely A2/ 4x. This result was deduced by
Nelson et-al82. In this case, the cross sectional area of absorption takes the form of a circle,
normal to the plane wave front, whose radius is also equal to A/2x. Despite the fact that the
point monopole secondary source can only match itself to the acoustic pressure at a single
point in the wavefield, the effective cross sectional area of absorption has a linear
dimension which is comparable to the acoustic wavelength. This finding suggests that the
influence of the perfectly absorbing source extends much further than its physical
dimension which indicates that acoustic energy is somehow diffracted towards the point
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source. An optimal absorber of sound is therefore an optimal diffractor. See, for example,
the diffraction intensity patterns given in reference [39] for the free field plane wave
example.

The free and diffuse field cross sectional areas of absorption are fully consistent
with the idea that the optimally absorbing point source creates around itself, a sphere of
influence of radius A / 2% on whose surface, all sound is absorbed. In the case of an

incident plane wave, the normal projection of the sphere onto the plane wave front is
precisely the circle of absorption of radius k-! identified by Nelson ez-al in reference [82].
A fully diffuse field however, will see the full benefit of the hypothetical sphere of
influence and its cross sectional area of absorption is increased accordingly. One can
therefore infer that the total cross sectional area of absorption of a point monopole source is
an intrinsic property of the source type, completely characterised by its radiation resistance,
and is independent of the form of the primary pressure field.

Inspection of equation (3.78) shows that the optimal secondary source cross
sectional area of absorption S is also insensitive to the proximity of the enclosure
walls. Consider, for example, the case of a point secondary source situated at a distance d
from a perfectly rigid wall of an enclosure supporting a diffuse field. Assuming that the
source is well away from other sources and boundaries, the average square pressure
<Ip)I2,, > is given by37

<Ip(r)i2 > = < Ip) > [ 1 + sinc2kd ] (3.90)

Similarly, superposition of the directly radiated field and the field radiated from the 'image’
source, which is effectively separated by a distance 2d, gives equation (3.91) for the
increased radiation resistance of a point source near to a perfectly reflecting boundary

(Zrad)wan = Zrag [ 1 + sinc2kd ] (3.91)

where diffuse field terms are negligible providing 2d is small compared to the wavelength.
The ratio of the terms near to the wall, which determines the maximum sound power
capable of being absorbed, is therefore independent of the source position relative to the
enclosure boundaries. Similar scaling rules also exist for sources in the corners and other
wall intersections of the room. From equation (3.79), one can therefore write

<Ipmi?> _ <Ip®)igy >
Ri{Zag)  RAZadwa)

<Wp>= (3.92)
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The optimal absorption of sound is only possible by presenting to the oncoming
primary wavefield an apparent optimal impedance. From the point of view of the incident
sound field, it is entirely irrelevant whether this impedance is active or passive in origin. The
optimised passive absorption of acoustic energy is the function of the Helmholtz resonator48.
This device consists simply of a rigid enclosure of air communicating with the external medium
through a small opening which is usually in the form of a narrow neck. The Helmholtz
resonator has the properties of mass by virtue of the oscillating slug of air in the neck of the
device, stiffness by virtue of the compliance of the enclosed gas and an associated resistance as
a consequence of viscous forces at the opening. This arrangement may be optimally tuned to a
single given frequency and the absorption of sound maximised at that frequency. It is generally
well established that the absorption cross sectional area of this device in the diffuse field at
resonance is also A2/ T where A is the acoustic wavelength83.

A further discussion on the absorption of sound by a passive ‘receiver’ is presented by
Shaw84 who shows that the maximum sound power absorbed at a given frequency is given by
( A2/x ) (ip(r)12 / 8pcy) which is identical to the expression derived in equation (3.87). Shaw
proceeds to demonstrate that the maximum area of absorption occurs when the radiation
resistance of the secondary source equals the internal resistance of the source. This condition
defines the resonance of the device which is precisely the definition for the Helmholtz resonator
to be maximally effective. However, Shaw appears to use the plane wave intensity to obtain a
value for the diffuse field cross sectional area of absorption which differs from the value
derived here in equation (3.89) by a factor of four. The obvious advantage of using an active
source is that in principle, one is able obtain maximum sound power absorption over a band of
frequencies simultaneously whereas the Helmholtz resonator is a high Q system carefully tuned
to a single frequency30. The Helmholtz resonator may therefore be regarded as the passive
analogue of the optimally absorbing point monopole source.

The reduction in the total radiated sound power from the source pair W, ;. even
though only the secondary source contribution has been included in the cost function of
equation (3.76), is simply the sum of individual source outputs Wy, + Wy, From
equations (3.80) and (3.81)
3R Z(rry)} - 1 Zrgr

4R {Z(r lry)}

] (3.93)

Intriguingly, this expression gives a disproportionate weighting to the resistive part of the
transfer impedance in favour of the reactive part by a factor of three. The total sound power
output from the source pair may therefore be dramatically increased for closely spaced

109



sources where the reactive transfer impedance vastly exceeds the resistive part. This remark
is particularly relevant to point sources. However for well separated sources, taking a
series expansion and then the expectation in the usual way yields the anticipated result

2
> =Wy 1 - <R {ZZZ%(r)) S (3.94)
where from equations (3.84) - (3.86), one can write
A A2
<Woin> = Wy - <lIp(0)l > — (3.95)
n

as expected. This expression contrasts with the previous result for the minimum fotal sound
power reduction given by equation (3.59). Using equation (3.87), for large separation
distances one can now write

2
< Wi > = < Wiy > - <L)l > M (3.96)
1

The additional reduction of sound power output when the fotal sound power output is
minimised is of course due to the ability of the secondary source to load the primary
source since the transmission path of sound from the secondary source to the primary
source is known in this case as part of the information fed into the cost function of
equation (3.33). In the present example, however, where only the secondary source sound
power output is minimised, this transfer function is not known to the cost function of
equation (3.74) and the action of the secondary source is limited to the absorption of the
incident primary source energy. It is no coincidence that the extra sound power reduction
acquired through optimal loading of the primary source is exactly equal to the sound
power reduction attained through optimal absorption by the secondary source. Thus the
mechanisms of sound power absorption and reductions in sound power caused by
pressure loading possess strong similarities. One principal difference is that pressure
loading takes place at the primary source while sound power absorption invariably takes
place at the secondary source.

In order to illustrate further the interchangability of the secondary source as a source
of sound and as an equivalent area of absorption, consider the energy balance equation
below. This fundamental relation expresses the equivalence between the rate at which
energy is injected into the enclosure to the rate of increase in potential energy plus the rate
of dissipation of energy determined by the total area of absorption A. We now apply this
equation to the expected values of the sound power and potential energy (this is usually
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implied in most texts books on acoustics37 but usually not stated). In this example there are
two sources of sound power input into the enclosure < Wg, > and < W, > so that

c
Vd<§f°> %A<epo>=<Wb + Wy > (3.97)

According to equation (3.87), for well separated sources Wy, merely acts to absorb the
incident scattered energy whose minimum value is given by the equation

2. 32
<W’S,>==—5-!289——~—;(:)l~3% (3.98)
0

The total diffuse field potential energy density in the enclosure is linearly related to the
space averaged squared pressure via, < epo > = < Ippr(r)i2> / 2pcf and so equation (3.97)

may be re-arranged to give

v——‘—’m-— ~Q(A+-—-—)<epo> <W > (3.99)

Thus, when the secondary is optimally driven with the aim of minimising the secondary
source sound power output, it becomes indistinguishable from an additional element of
passive absorption. Equation (3.99) describes the dynamic growth of sound from a source
which is switched on at some time t = 0. The effect of the secondary source is to cffectively'
slow down this exponential increase in sound pressure level in the enclosure. More
importantly however, the steady state equilibrium potential energy level is now less than in
the absence of control since acoustic energy is now dissipated at a faster rate. From
standard texts37, the steady state solution of this equation is simply

Im < €po> = .‘_4__5..‘%27_3. (3.100)

(A + ;)Co

Now dividing by the level of potential energy Ep, sustained in the absence of the secondary
source, namely 4<Wp> / Acg, and noting that < W’p >= Wp from equation (3.83), gives the
average steady state reduction in potential energy resulting from sound power absorption

-1
<epo> _ (1 4 X 3,101
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Figure 3.13. The residual potential energy in a medium sized room (100 m3) as afforded by an
optimally absorbing point monopole source in a diffuse field.

At high frequencies, the additional area of active absorption provides only a negligible
supplement to the existing passive absorption provided by the acoustic tiles. At frequencies
close to 100 Hz however, both the active and passive elements of absorption are, on
average, observed to be roughly comparable in effective size (although physically of very
different sizes). For this size of enclosure and damping characteristics, the benefits derived
from the active absorber are only significant at frequencies below 75 Hz whereby the total
absorption in the room is predominantly active in origin. However, it must be remembered
that it is not strictly correct to extrapolate these results for frequencies very far below the
Schroder frequency. Nevertheless, these results at least serve to identify the average
maximum level of sound power absorption at low frequencies to within an order of
magnitude even though they are susceptible to extremely large levels of variance as
identified by equation (3.88). At frequencies well above the Schroder frequency, only small
departures from the expected level of sound power absorption given by equation (3.87) is
anticipated. Figure 3.12 nicely illustrates the philosophy behind active noise control, clearly
demonstrating how active and passive control may be employed simultaneously to provide
noise reduction over opposite ends of the frequency spectrum.

At the Schréder frequency, according to figure 3.13, the optimal absorption of
sound affords a level of reduction in the potential energy which is of the order of only 10
%. This value appears to be characteristic of the typical levels of reduction obtainable at this
frequency, falling to about 1 % at twice the Schrider frequency, when seeking to minimise
energetic quantities in a diffuse field environment, see again figure 3.10.
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3.10. The préssure changes in the vicinity of a perfectly
absorbing point monopole

The preceding section was given to the investigation of the optimally absorbing
point monopole source in a pure tone diffuse sound field. For well spaced sources, it was
shown that the mechanism of sound power reduction was restricted to the absorption of
sound which impinges upon the source. Just as in the case of a free field plane wave
incident on a perfectly absorbing point monopole source3?, the absorption of sound in a
reverberant field will, on average, influence the otherwise uniform spatial distribution of
pressure throughout the enclosure. An intensity plot showing the flow of energy in and
around a point monopole source seeking to optimally absorb an incident harmonic plane
wave is presented by Bullmore31. In this section we seek to establish the size and extent of
similar spatial effects on the near field pressure from a perfectly absorbing point monopole
in a pure tone diffuse sound field.

For well separated sources, the source strength of the optimally absorbing point
monopole has been derived in equation (3.78)

Co Z(rpirs) 3.78
o 2R{Z(rglrg)} % C79

For ease of analysis, it is necessary to restrict the range of secondary source positions
within the room for which the direct field from the secondary source is much greater than
the reverberant field such that Zg >> R {Z(rglrs) }. For these cases the secondary source

strength qg, is closely approximated by
Qo = -qp Z(rplrs) / 224 (3.102)

which is therefore small compared to qp.

This not unreasonable simplification ensures that the algebra remains manageable which
otherwise would tend to obscure the underlying physics. Neglecting the reverberant
contribution from the secondary source and using equation (3.102) enables the total pressure
p(rs + Ar) at a distance Ar from the secondary source to be written as

».

e’)

- 3.103
2kAr (3.103)

p(rs + Ar) = pp(rs + Ar) - pp(ry) j

Taking the square of the modulus Ip(rg + Ar)2 yields
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e jkAr

Ip(rs + Ar)i2 = Ipy(rs + Ar)2 - pp(rs + Ar) pp(rs) j

2kAr
* . 2
+ pp(rs + Ar) pp(rs) j ;’i::_ + lqpl2 1(%‘;%?)—'2- (3.104)

Now taking the expectation < Ip(rs + Ar)i2 > and using the relationships
< pp(rs + Ar) pp(rs) > + < pp(rs + Ar) pp(rs) > = < Ippr(r)i2 >p(Ar) (3.105)

yields the simplified result

<Ip(rs + Ar)2> = < Ippr(r)i2 > (1 . 1 sinkAr

(kAT - p(Ar) TAr—_ ) (3.106)

Now putting p(Ar) = sinkAr / kAr for pure tone three dimensional diffuse sound fields, the
expectation for the square pressure in the vicinity of a perfectly absorbing point monopole

source can now be written as
1 + 4 [(kAr)? - sin?kAr]

(2kAr)?

<Ip(rs + A > = < Ipp(r)IZ > ( ) (3.107)

A plot of this function is given below for rg= 0. Also indicated is a circle of radius A/21
symbolising the sphere whose surface is the average cross sectional area of absorption.

§ <ipan)®>/ <lp (A > (aB)

5dB

Radial distance from source Ar

L '

M4 A2

Figure 3.14. The expected square pressure ratio on axis of a perfectly absorbing point monopole
source in a pure tone diffuse sound field shown as a solid line. The circle denotes a cross section
through the maximum sphere of absorption.
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The average effect of sound power absorption in the immediate vicinity of the point source
is quite clearly a sinusoidal modulation the square pressure well into the far field of the
source but whose amplitude diminishes inversely as the square of the radial distance from
the source. Beyond a few wavelengths from the source however, the square pressure has
recovered the original primary source value in the absence of control. Observe that the
maximum level of attenuation is only about 3 dB. This contrasts the equivalent free field
plane wave example39 where a maximum reduction of approximately 5 dB is apparent at a
distance of 0.05 A from the source. This level of difference arises because in the diffuse
field, the reduction in the square pressure is now distributed equally in all radial directions
owing the isotropy of the field whereas for the plane wave example, the reduction in
pressure is concentrated on the side of the source which firsts impacts with the plane wave.

3.11. Discussion and conclusion

This chapter has studied the possibilities for active noise control in diffuse fields for
producing reductions in the acoustic pressure which extend considerably further than the
immediate near fields of the sources to encompass the entire space bounded by the
enclosure walls. This is what is meant by global control. Recognising that this is an
unrealistic objective for the vast majority of real primary sources which are commonly,
large and irregularly shaped vibrating bodies, the total minimum sound power output of
two closely spaced elementary point sources has been derived. Although this source
configuration is in many respects an over simplification of the type of control problem
encountered in reality, the problem embodies all of the important features of the more
general high frequency enclosed sound field problem.

The early part of this chapter has been given to clarification Ot: what is meant by
'diffuseness' together with a brief survey of some of its important characteristic properties.
According to the relevant literature, it would appear that there are two popular conceptions
of diffuseness. One envisages a definite state of perfect diffuseness as might be true of the
pressure at a single point surrounded by an infinite number of uncorrelated point sources.
The other is more useful and less rigourous which conceives only of a probabilistic state of
diffuseness which says that energy has an equal probability of arriving from any angle
equally. This is fundamentally different from the first idealisation where energy is arriving
from all angles equally. It is the latter definition which will be used in this thesis.

In many respects, the derivation of the minimum sound power output of two
closely spaced diffuse field point sources is simply an extension of the free field analysis
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presented by Nelson et-a0, There are, however, many fundamental differences which will
be summarised here by way of conclusion. In the free field, the minimum sound power
output is a deterministic function of the source separation distance and the frequency of
excitation. Carrying out an identical experiment in the diffuse field introduces random
uncertainties which arise due to extremely complicated interference patterns formed by the
superposition of a large number of simultaneously excited acoustic modes of the enclosure.
One can therefore only identify the levels of sound power reduction by way of a
mathematical expectation with respect to varying source position. As in the one dimensional
example discussed in chapter 2, the presence of reflected sound enhances the performance
of the control process inasmuch that more sound power can be reduced than in the free
field. This is of course due to the absorption of reflected sound.

Diffuse field quantities are also subject to levels of dispersion from point to point in
the enclosure whereas free field quantities are not. It has been generally found that the
secondary source strength and the minimum sound power output are susceptible to levels
of variation which are highly dependent on the source separation distance. The results
obtained in the two environments are reconciled at high frequencies where the means of the
diffuse field quantities approach their free field counterparts as the frequency is raised.
Similarly, the expected level of excursion from the mean, characterised by the variance,
becomes systematically lessened as the frequency is increased, indicating that the diffuse
field is, in essence, approaching free field conditions.

One other fundamental property of diffuse field sound power minimisation is the
absorption of reverberant acoustic energy. The absorption of diffuse field energy is
considered to be sufficiently important and fundamental to the active control of enclosed
sound fields that it has been investigated separately in this chapter. There has always been
an element of uncertainty surrounding the ability of elementary sources to extract energy
from rooms, although it is generally accepted that it is an inefficient strategy at high
frequencies. In an attempt to address this problem directly, the maximum high frequency
sound power absorption has been derived. Fortunately, the diffuse field is one of the small
number of sound fields where there exists a simple relationship between the average sound
intensity in the field and the space average diffuse field square pressure. This relationship
has enabled the cross sectional area of absorption to be derived which is shown to take the
form of a sphere whose radius is approximately equal to k-1 where k is the acoustic

wavenumber,

This important relationship is by no means original and has been previously
deduced by a number of workers seeking to derive the maximum cross sectional of

117



absorption for a Helmholtz resonator at resonance in a diffuse field. It is therefore
gratifying to observe the consistency between the two cases, since it is entirely irrelevant
whether the impedance condition necessary for optimal absorption of sound power is
obtained actively or passively. The significant difference is of course that the passive device
is only effective at resonance which therefore only occurs at a single frequency. By
contrast, the active device offers the possibility for broadband suppression of acoustic
energy as highlighted by Olson3.

In practical terms, the optimal absorption of sound power has only a negligible
influence on the global sound field which is simple to evaluate. The sound power absorbed
by the secondary source is ultimately manifest as a re-distribution of the square pressure
which become sinusoidally modulated along radial lines from the source. The modulation
amplitude diminishes as the square of the radial distance from the source such that the
influence of the point source is negligible further than about a wavelength. Extrapolating
the cross sectional area of absorption down to low frequencies (where it is not strictly
valid) reveals that for medium sizes rooms, of the order of 100 m3, the reduction in
potential energy is only significant, say less than 3 dB, for frequencies below about 50 Hz.
However, the variance between successive measurements of the source sound power
absorption at these frequencies is extremely large making the mean value an inappropriate
indicator of central tendency
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APPENDIX 3

Appendix 3.1. The derivation of the space averaged squared
pressure in the high frequency limit

This Appendix presents in more detail the derivation outlined by MorseS5 for the
squared pressure high frequency limit. For a point monopole sources located at some point
rg, the acoustic pressure at r is given by

p(ro) =q Z an(@Wn(rg)Yn() (A3.1)

n=0

where Yy(rq) is the n'! normal mode of the enclosure evaluated at the source position.

For a three dimensional enclosure, n represents a triple index set denoting a trio of modal
integers (nj,n2,n3). The modal response function ap(w) is is given by

(1/Ap) @
2k - j(0F - ®2)

pc%

ap(w) = Ap(w) where Ap(w) = (A32)

where kj is the room damping which is related to the total room absorption A by

ko = (Acy/ 8V) and where A, is a source factor which is equal to unity for sources well
away from boundaries. The average square pressure < Ip(r,0)I2 > taken over all points in
the room (keeping rg fixed) is determined from equation (A3.1) and (A3.2) to give

L]

2 2_22_ (l//\n)2 w?
(2k0m)2 + (0F -

<lp(r,0)2>=1g 02)2 \v%(rq)‘f VA(r) dV  (A33)

n=0

where it has been assumed that only modes of the same modal index n do not integrate to
zero due to the orthogonality of the modes normalised thus

J y2(r)dV = A,V (A3.4)

J Va(Ym(@)dV =0 (A35)

The average square pressure over all space is therefore determined from
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pcd Z o’ 2 -1
< lp(r,w)i2> = g2 v Qoo+ (k- @2)? Yi(rg) Ay (A3.6)
n=0

The product of terms y(ry) Al is defined as the 'source factor’ E(S)65 whereby

ES)=1 for sources well away from room boundaries.
ES)=2 " " on walls.

ES)=4 " " onedges.

ES)=8 " " in corners.

The space averaged square pressure is now given by

2c4 2 w2
<Ip(r@i2>=1 2820 gs A3.7

The modal summation written above may be shown to take a well defined form in the high
frequency limit. Equation (A3.7) is as summation over all modal natural frequencies ;. At
'high' frequencies, the modal density is sufficiently high that the discrete variable wy, may
be replaced by the continuous variable u and the summation replaced by an integral. This is
the essence of Schroder's principle37. Assuming that only terms @y, close to ® make

significant contributions to the summation, one can therefore write

204 =
<lp(r,w)2>= lql2-p—%Q E(S) f < lA,,(co)l?l > dN du (A3.8)
V s dw ko=u

The term (dN / dw) is the asymptotic modal density ( @2V / 2n2c3) evaluated at the centre
frequency @ = u and the term < lAn(m)lﬁ > is the average modal coupling factor given by
equation (A3.2) also evaluated at @ = u. This approximation gives

2(:(1)2 . uzdu
<ipi2> = 1qi2 0% g(s A39
P a 2Vn2 ®) (2kqu)? + (u? - @2)2 (A39)
)
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Assuming that kg << @, then small error is incured if one sets the lower limit of the integral
to —o and if one puts (u? - ©2) = (u - ®)2u (since the only u =~ @ contributes greatly to the
integral). Also putting x = u - ®, the integral now reduces to

u?du 1 r dx
J (2k0u)2 + (u2 - ©2)2 =4 f k% + x2 (A3.10)

which is a standard integral whose solution is given by

P

[ gt &

—0

The space averaged squared pressure < Ip(r,)i2 > in the high frequency limit is therefore
closely approximated by63

< Ip(r,0)12 > = IgI2 ‘;if;g E(S) (A3.12)

Appendix 3.2. A discussion on the existence of the space averaged
secondary source strength for minimising the conbined sound power
outputs from itself and a closely spaced point primary source

One can demonstrate the ill-conditioning of qgo as determined from equation (3.36)
by showing that its expectation value over all space is equal to infinity. Re-writing equation
(3.36) as the sum of two terms yields

ZosinckAr _ _R{Z(rpirg)}

A3.13
Zo+ RAZrdre)) P Zo+ R(Zilrgrs)) T (3.3

Qso =~

Consider the mathematical expectation of the first term in equation (A3.13). It is sufficient to
show that if the expectation of either term is infinite, then < qg > is also infinite. Earlier
work has argued that R {Z(rglrs)}, which for brevity will be represented by R {Z(r)},isa
zero mean normally distributed random variable whose probability density function is given
by

f2(R (7)) = —— e-R7(2:}/0% (A3.14)
2no?
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Unlike the behaviour of a perfect Gaussian random variable, the probability density
function of the diffuse field radiation resistance R {Z(rlrs)} must have positive skewness
(third moment) by virtue of the fundamental restriction’4

-ZoSR{Z(rgrg)} S e (A3.15)

which follows directly from energy conservation. It is obvious that in the absence of any

external primary sound field, the sound power flowing into the secondary source through
absorption of the reflected sound cannot exceed the original power radiated into the space
directly.

The mean (or first moment) of the first term in equation (A3.13) may be formally
evaluated from the integral of the function taken over all possible radiation resistance values
R {Z(r))} given in equation (A3.13) weighted by the probability density function as
indicated below

o0

-ZosinckAr oo j fz(R{z;})ZosinckAr dR
Zo+ R{Z(r)) Zo+R{Z:(r))

zr} (A3.16)
-Zy

which upon substitution of fz(R{z} in equation (A3.16) yields

i - R (z) - -x2
_. ZpsinckAr € o AR (z) ~ f%dx - - (A3.17)
’\/ 210, 7, Zo+ R{Zr(l')} -1

Reference to tables of integrals® indicates that this expectation does not exist inasmuch that
the integral fails to converge. One can therefore infer that the proper mathematical
expectation of the optimal secondary source < gso > is also equal to infinity. This is of
course unhelpful and very misleading since the closely spaced source pair is tightly coupled
at close separation distances and consequently only a small departure in the secondary
source strength from one source position to the next is anticipated. This surprising and
unfortunate result is an artefact of the mathematical model and not some ill-conditioning in
the governing physics as will soon become apparent. In terms of the mathematics, a plot of
the general form of the integrand I = e*x2(14x)-1 appearing in the divergent integral of
equation (A3.17) indicates the cause of this unfortunate ill-conditioning.
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70 0 Zo R{Z:}

Figure A3.1 The general form of the integrand in equation (A3.17)

Observe from equation (A3.17) that as R {Z,} tends to plus infinity, the integrand decays to
zero faster than e"R(Zr) and is therefore well behaved in this limit. The ill-conditionin g of
the integral is therefore almost certainly due to the singularity in the integrand I and the
corresponding behaviour of the probability density function in the vicinity of R{Z.} = -Z.
In physical terms, this condition describes the situation where the sound power radiated
into the medium directly is exactly counterbalanced by sound power flowing into the source
by absorption. Unfortunately, the behaviour of the assumed form of the probability density
function in this region does not assist the convergence of the integral. It is of course
arguable that the distribution of radiation resistances is not Gaussian in the immediate
vicinity of -Z but some other more rapidly varying function for which the integral in
equation (A3.17) is convergent. To the authors knowledge, there are no references made to
this phenomenon in the published literature, in the absence of which, the distribution of
radiation resistances of a point source radiating into a diffuse field environment will
continue to be assumed Gaussian. However, convergence of this integral is only
guaranteed providing the probability density function fz(R {z}) behaves like xP in the
vicinity of -Zg, where a necessary and condition on 'n' is thatn > 1.

Assuming a Gaussian probability density function for the distribution of diffuse
field radiation resistances, one may obtain a very approximate estimate (within an order of
magnitude) of how likely g, is of being singular. This may be obtained by re-writing the
term in the expression for the secondary source strength gso in the form of

ZosinckAr - sinckAr
Zo+R{Z(r)}  1+y

(A3.18)
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where y represents the real part of the ratio of reflected to directly transmitted sound
R{Z«(r)}/Zp. Assume that yis a zero mean, normally distributed random variable whose
variance is given by the mean of the square <¥2 >. The standard deviation Gyis therefore
given by <y2>12, For convenience of computation, further assume that y extends from
minus infinity to plus infinity. Given that the cause of the non-convergence of the integral
in equation (A3.17) is due to a singularity in the integral appearing at Y= 1, one can readily
show that this is a remote occurrence. The probability that y will equal, or exceed unity is
equivalent to evaluating the probability that ¥ will equal, or exceed a number < y2>12
standard deviations from the mean. For normally distributed random variables, this
exceedance likelihood is determined from the complementary error function given by

P(y21)=1-Erf( <y2>17) (A3.19)

where the Error function Erf(x) is the cumulative normal distribution defined by

X
Erf(x) = /—2~ Jc-uz du (A3.20)
T

This function is not expressible in terms of elementary functions and is therefore
tabulated85. The tendency of ¥ to take small values less than unity is best illustrated by way
of example. Consider the case of two closely spaced point sources in which the average
resistive part of the scattered sound is one half the directly radiated part namely
<y2>12 = 1/2. Tables indicate that the probability that y is equal or greater than unity
namely P(y 2 1), is given by

P(y21)=1-Erf(2) = 0.04 (A3.21)

In this example, less than 4 % of diffuse field source positions have more sound power
radiated into the medium via wall reflections than sound power radiated directly. However,
it is only when the sound power contributions from the two transmission paths are exactly
equal (and opposite) which causes the integral to diverge. The probability that this
condition is exactly satisfied and consequently the secondary source strength is equal to
infinity is considerable less than 4 %.

Appendix 3.3. The derivation of the expectation < R {Z(rplrp)}R {Z{rglrg)} >
Consider the expectation <R { Z,—(rplrp)}R{Zr(rsirs)] >, where the subscripts "p"

and "s" denote the transfer impedance from the primary source at rp evaluated at rp and the
transfer impedance from the secondary source at rg evaluated at rg respectively.
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The point transfer impedance R{Z{rglrs)} may be expressed relative to
R {Z(rslrp)}, the transfer impedance from the secondary source at rs to the point rp in
terms of its correlated and uncorrelated parts R {Z(rslrp) )} cs and R{Z(rglrp) }us

respectively
R(Zdrgrg)} = ﬂ'{Zr("s'l'p)}cs + R{Z(rdrp)}us (A3.22)

where the subscripts "cs" and "us" denote perfectly correlated and perfectly uncorrelated
with respect to the pressure from the secondary source atrg,

<R{Z(rpirp) }R{Z(rslrs)} > = <R(Z(rplrp) IR {Z(rslrp)) cs >
+ <R{Z(rplrp) IR (Z{rIrp) Jus > (A3.23)

Invoking the principle of reciprocity, the source and point of observation may be
interchanged thus

<R{Z(rplrp) )R AZ(rslrs)} > = < R{Z(rplrp) R {Z(rplrs) ) cp >
+ < R{Z(rpirp) JRAZe(rpirs) Yup > (A3.24)
By definition, one can write
< R{Z(rplrp) )R Ze(rplrs) Jup > = 0 (A3.25)

where now R{Z{(rpirs)}cp represents that part of the pressure at rg perfectly correlated
with the pressure at rp from the source at rp. Following the work of Cook ez-al 68

< R{Zq(l’p'rp) }R{Zr(rplrs) )cp >=< R(Zr(fplfp)}ﬂ{Zf(l’pll’s)}) sinckAr

(A3.26)
Equation (3.23) may now be re-written
<RAZ(rplrp) JR{Z(rdlrs)} > = < R{Z(rplrp) )R {Z(rpirs)} > sinckAr
(A3.27)
where by definition of the spatial correlation function given by equation (A3.23)
<R{Z(rplrp) JR{Zc(rlrs)} > = <R2(Z;)> sinc2kAr (A3.28)
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estimated at being between 100 Hz and 150 Hz. This frequency band is well within the
frequency range of many important noise sources such as an aeroplane propeller which
radiates a series of pure tones harmonically related to the blade passage frequency, or the
firing frequency of four cylinder internal combustion engines in cars88. When applying
localised active control to this type of sound field, one must address three important
considerations, namely:

@ The local effects: The shape and size of the space averaged square pressure profile
around the point of cancellation where the respective sound fields are highly
correlated, and ultimately a full quantification of the diffuse field quiet zone.

(ii) Global changes: The effect on the average square pressure well away from the
point of control where the respective sound fields are uncorrelated (the change
in the potential energy of the sound field).

(i)  Secondary source strength requirements: The statistical distribution of
secondary source strengths required to bring about the point cancellation at
any arbitrary point generated by a source located at some arbitrary position.

Clearly, the facets of the problem listed above are inextricably inter-related. For
example, harmonic secondary source strengths which are necessarily large compared with
the primary source strength are able to cause significant increases in the average square
pressure in the enclosure. This in turn has a detrimental effect on the size of the quiet zone
about the control point. In this chapter, all three considerations are systematically
investigated from a theoretical standpoint and subsequently validated using computer
simulated models.

4.1. The cancellation of the pressure at a single point

Consider the enclosed sound field shown in figure 4.1 in which there are two
harmonic sources gp(w) and qs(w) located at rs and rp respectively radiating at a single
frequency which is presumed to be greater than the Schroder frequency. The secondary
source is driven from the primary source with the aim of cancelling the acoustic pressure at
some arbitrarily chosen point ryin the enclosure to zero.
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Z(rpirg)
Hy=- 'z‘(}ﬁ}‘fi (4.3)

Writing r = rg + Ar , the acoustic pressure p(rg + Ar) at a distance Ar from the point of
cancellation on rg is now given by

p(ro + Ar) = gp [ Zirgiro+ar) - ZEEY Z(e roran) @)

With reference to equation (4.4), one can identify two distinct spatial regimes. The first is
broadly defined by Ar < A/2, the region in which the primary field pp(r) and the secondary
field ps(r) are highly correlated. The second is where the point of observation is far from
the point of cancellation roughly defined by Ar > A, the region in which the sound fields
are generally unconstrained and therefore uncorrelated such that < pp(r)ps(r) > = 0. Both
regions have been investigated with the aid of a computer model whose details are the
subject of the next section.

4.2, Computer model of the pure tone diffuse sound field

A good diffuse field model must be able to emulate the properties discussed in the
first half of Chapter 3. There are perhaps three such mathematical models which comply
with these requirements, namely the stochastic model, the free wave model and the
geometrical acoustical model or ray model. All three are surveyed in an excellent review
paper by Jacobsen76. For current purposes, our requirements are best served by the
normal mode model. The acoustic pressure at any arbitrary point in the sound field is
evaluated from a summation of acoustic modes which although computer intensive, is able
to afford a statistical representation of the sound field that is not possible from either
geometric or ray models. This model has proved successful for performing low frequency
computer simulations for aiding the prediction of sound pressure level reductions in low
modal density sound fields>1. The same model will continue to be used here and is outlined
below.

The model starts with the homogeneous wave equation of equation (2.2) whose
solution leads to a generalised expression for the sound field in terms of an infinite sum of
the normal modes of the room Yy, weighted with the appropriate complex amplitude aj(w).
For computational convenience, the series is truncated to N modes which is taken to be
sufficiently large that the residual pressure contained by the higher order neglected in the
finite summation is negligible. Each mode is an eigenfunction of the wave equation which
in addition satisfies the boundary conditions of the room. Each eigenfunction has an
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associated eigenvalue which is closely related to the natural frequency of the nh mode wy.
The acoustic pressure p(r,m) in the enclosure may therefore be approximated by the finite
summation of the modes thus

N |
p(r,®) =Y, an(@)yn(r) 4.5)
n=0

For a three dimensional enclosure, n represents a triple index set denoting a trio of modal
integers (n1,n2,n3). The amplitude of modal excitation ap(®) is calculated from the sum of

primary source and secondary source contributions which for generalised source strength
density distributions Qs(®,r's) and Qp(e,rp) is given by6>

an(@) = A@) [ [Qplorpwirpdry + [Qs@rdwnrodrs]  (46)
Sp Ss

where the integration is taken over the respective source surfaces S. For the simplest
possible source geometry in which the source distributions are simple point monopoles

Qp(®,rp) = gp(w)3(r - rp) and Qs(w,rs) = gs(W)d(r - rs), the integrations reduce to
straightforward multiplications

an(0) = Ap(w) [ gp(@,rp)Y(rp) + gs(@,rs)Yn(rs) ] 4.7)

The term Ap(w) is the frequency dependent modal coupling factor

Ap(w) = pc% =

V 2E0,0 - j(03 - ©2) “8

By comparison with equation (4.1), the transfer impedances may be represented as a series
summation in terms of the orthogonal modes of the enclosure

N
Z(rpit) = Y, An(@)WaTp)¥a(T) (4.9)
n=0
and
N
Zrsr) = ), An(@)Wa(rs)Yn(r) (4.10)
n=0

The diffuse field transfer impedance may now be considered to comprise a large
series of second order resonators each associated with an orthogonal modes of the
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enclosure. It is the assumption of a large number of significantly contributing terms which
forms the basis of statistical diffuse field theory.

In principle, the properties of the diffuse wavefield are insensitive to the exact form
of the constituent room modes y, which are a function of the room geometry and boundary
conditions only. For computational simplicity, the room supporting the diffuse field was
chosen to be a hard walled rectangular enclosure whose mode shapes are known to be
simple three - fold sinusoids65. The room dimensions were chosen to be the independent,
fundamental constants % x € x 1m so as to provide for an irrational aspect ratio and
therefore prevent modal degeneracy. This precaution ensures that the room modes
encompass the frequency range more uniformly so that the sound field appears less
resonant since the acoustic response comprises significant contributions from a large
number of modes. The reverberation time Tgg was set to 0.5s corresponding to a modal
damping { equal to about 0.0014. Using the simple engineering formula given in equation
(3.4), the Schroder frequency fgop, for this sound field can be calculated to be 738 Hz. The
frequency of excitation was set to 1500 Hz, more than twice the Schroder frequency which
hopefully will compensate for the high degree of symmetry associated with the rectangular
geometry which will tend to focus the sound field. The international standard which
advises on the construction of reverberation rooms for diffuse field measurements, ISO
2638, strongly recommends against the use of parallel walls.

The acoustic pressure was computed according to equation (4.5). Incorporating all
modes with a natural frequency below 2 kHz was found to be sufficient to ensure a series
representation of the acoustic pressure to within 0.2 dB of its value using many tens of
thousand modes. Modal convergence is further assured by ensuring that the measurement
point is well away from the enclosure boundaries and not close to the point source of
sound. In practice, satisfactory modal convergence was achieved from the summation N,
of nearly 8000 room modes. Before proceeding to simulate the effects of active control of
diffuse fields, the simulated sound field was tested for diffuseness inasmuch as it complies
with the properties discussed in the first half of chapter 3.

First, an estimate of the average square pressure < | p 12 > was obtained from over
200 simulations of the sound field. The hat 'A’ is used to denote random quantities which
are not true expectations but estimates owing to the finite sample size. In each case, both
the source position and the measurement position were randomly altered within the
enclosure with the constraint that for each simulation they remain further than a wavelength
apart and further than half a wavelength from the walls. The mean value of the relatively
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small sample was calculated to be within 0.1 dB of the theoretically predicted result given
by equation (320) <!p 2> =1 q 2pZwc, / 8nLV.

Second, the spatial cross correlation function p(Ar) was computed according to
equation (3.22) for 440 simulations of the sound field. In each case, both the source
position and the measurement position were randomly positioned within the enclosure
although the orientation of Ar remained fixed with respect to the enclosure. The result,
calculated for Ar between zero and two wavelengths at 100 equal intervals, is shown in
figure 4.2 together with the theoretically predicted result p(Ar) = sinckAr.

[
1

cross correlation function p(Ar)

o
W
-
.
-
b

Ar

Figure 4.2 The simulated cross correlation function of the simulated diffuse sound field
obtained from 440 measurements (dashed line), together with the theoretical result p(Ar) =
sinckAr (solid line).

A good fit to the expected form is obtained for Ar up to about one wavelength,
above which, the curves begin to exhibit appreciable departure. This is a common
experience in diffuse field correlation measurement which can usually be resolved by the
incorporation of more measurements into the space average8? or taking the correlation
between pressures which comprise a narrow band of frequencies?0. For Ar less than half a
wavelength however, a good fit to the theoretical expectation is achieved from an average
comprising less than twenty simulations. This is precisely the region which governs the
variation in square pressure about the point of cancellation as will become clear in the next
section. However, these standard tests serve to validate the diffuseness of the hypothetical
sound field in so far as they allow an objective assessment for which other fields may be

132



compared. Neither test permits an unequivocal appraisal of the sound field diffuseness and
it is therefore generally accepted that these properties are fairly insensitive diffuse field
indicators.

4.3. Zones of quiet (Ar < AJ/2)

This section presents a derivation of the expected value of the square pressure
<1p(ro + Ar) I2 > in the vicinity of the cancellation point. This is the region where Ar is
small compared to the acoustic wavelength such that the primary and secondary sound
fields are highly correlated and therefore destructively interfere to a substantial degree.
Assuming linearity of the primary and secondary source pressures, one can write

p(ro + Ar) = pp(ro + Ar) + ps(ro + Ar) 4.11)

Consider the expectation < | p(ro + Ar) 12 >. Multiplying out the terms and then taking the
expectation yields four terms

<lp(rg+Ar) 12> = <1 p,(ro + Ar) 2> + <1 py(ro+ Ar) I >
+ < pp(ro+Ar) py(ro+Ar) > + < pp(ro+Ar) pg(ro+Ar) > (4.12)

The first two terms may be summed together to produce the sum of the squared 'self
pressures’ in mutual isolation, assumed uncorrelated which takes the form of

<Ip(ro+ Ar) Zopressure > = <I pp(ro + Ar) P> + <Ipyro + A > (4.13)

The second set of two terms, denoted by < p(rp + Ar)%,.,e,fe,my, describes the manner in
which the partially correlated sound fields interact about the point of cancellation thus

< p(rg+Arﬁm,fe,em >= < p;(ro+Ar) ps(ro+Ar) > + < pp(ro+Ar) p;'(ro+Ar) >  (4.14)

This is the crucial term which must be negative for destructive interference to occur and
ultimately determines the shape of the quiet zone. However, the size of the diffuse field
zone of quiet and the increase in the pressure well away from the point of cancellation are
predominantly governed by the statistical inter-dependence between the pressure fields
ps(r) and pp(r) of which nothing has hitherto been presumed.

At the point of cancellation on rg, the pressure fields are arranged to exactly cancel.
The expectation < p(ro+Arﬁ,,;e,fam > must therefore be negative in the region of the
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quiet zone roughly identified by Ar < A/2. Within this region, the primary and secondary
sound fields are negatively correlated thereby causing partial destructive interference.

In terms of a quantitive description of the diffuse field quiet zone, the interference
term < p(rmAr)%m,f”m > is of principal interest since it governs exactly how the
combined sound fields recover from being exactly in antiphase on rg, to being totally
uncorrelated at points well away from the point of cancellation. Consider the expectation of
the first term in equation (4.14), namely

< pp(ro+Ar) py(ro+Ar) > (4.15)

Each pressure term appearing in equation (4.15) may be resolved into two orthogonal
pressure components. The first, given by p(rg+Ar), is perfectly correlated with the
pressure at ro. The second is the component of the pressure p(ro+Ar), which is perfectly
uncorrelated with the pressure at rg. These pressure components are formally defined by

P (ro)p(ro+Ar)e = Ip(r)i? p(Ar) (4.16)
and

<p*(ro)p(ro+Ar)y >=0 (4.17)

Note that the right hand side of equation (4.16) has been directly related to the spatial
correlation function of the sound field p(Ar). This is because it is precisely this function
which, by definition, characterises the causal mechanism describing the linear inter-relation
between the correlated pressure at ro+Ar with the pressure at some other point rp. The
decomposition of the signal into correlated and uncorrelated parts is usually a technique
reserved for time histories0. However, the analogies between random time sequences and
the spatially sampled transfer impedances between two randomly position points in the
diffuse wavefield have already been recognised in chapter 3 where it was found to be
convenient to describe the spatially sampled diffuse wavefield as a stochastic process that
was both stationary and ergodic with respect to position. Thus, for the purpose of the
analysis, some of the ideas usually associated with random time histories are carried over to
the randomly sampled, spatial sound field. Time t is now replaced by r denoting
measurement position. Substituting the decomposed pressures into expression (4.15) gives

< pp(ro+Ar) py(ro+Ar) > =
< [pp(ro+Ar)c + pp(ro+Ar)y] [ps(ro+Ar)e + ps(ro+Ar)y] > (4.18)

Writing pp(ro+Ar)c = pp(ro)p(Ar) and ps(ro+Ar)c = ps(ro)p(Ar) one obtains
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< pp(ro+Ar) ps(ro+Ar) > =
< {pp(ro)p(Ar) + pp(ro+Ar), } {ps(ro)p(Ar) + ps(ro+Ar)y} > (4.19)

On multiplication and expansion of the terms, to a good level of approximation, three of the
four terms which subsequently appear may be set equal to zero. The first is the term
< pp(ro+Ar)y ps(ro+Ar), > which for well separated sources signifies the product of small

terms and is therefore very close to zero in the region of the quiet zone where the primary
and secondary are highly correlated. The two remaining terms, < pp(ro+Ar)y ps(ro) > and
< ps(ro+Ar)y pp(ro) > are identically zero following directly from equation (4.17)
providing that ps(rp) and pp(ro) are equal and opposite at rp according to

Ps(ro) = -pp(ro) (4.20)
This leaves just one non-zero term, namely
< pp(ro+Ar) pg(ro+Ar) > = < pp(ro)ps(ro) > p2(Ar) (4.21)

In exactly the same way, an identical result can also be obtained for the second term in
equation (4.14) thus

< pp(ro+Ar) ps(ro+Ar) > = < pp(ro)ps (ro) > p%(Ar) (4.22)

Only the parts of the primary and secondary sound fields which are perfectly correlated cause
destructive interference. The residual pressure that one ultimately perceives < | p(r) 12 > is
therefore formed from the parts of the primary and secondary pressure fields which are
mutually uncorrelated. The uncorrelated fraction of the total square pressure becomes
progressively greater with increasing Ar while the correlated part correspondingly
diminishes.

The expectations < pp(ro)ps(ro) > and < pp(ro)ps(ro) > are readily evaluated by
recognising that the total pressure at the point of cancellation is identically zero. This is both
true in any one single experiment and also true in the average sense from a large number of
similar experiments. The two pressure contributions ps(ro) and pp(ro) are therefore exactly
in anti-phase in accordance with equation (4.20) and so form a new boundary condition of
the sound field given by

<1 pg(ro) + pplro) 2 >=0 (4.23)
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Simple re-arrangement of equation (4.23) leads to
< pp(ro)p3(ro) > = < pp(roIps(ro) > =-3 [ <Ip@) 2> +<Ip(r) 2>]  (424)

Noting that < | py(ro) 2 > = <1pp(r) 12 > and <! p(ro) 12> = <1 pg(r) 12 > and substituting
equation (4.24) into equation (4.12) gives the important final result87

<Ipro+Ar) P> =[ <Ipy) P> +<Ipr)2>][1-pXAn)]  (4.29)

Further simplification follows from the proportionality between gso and qgp so that the space
averaged square secondary pressure < | p(r) I2 > is a simple scalar multiple of the space

averaged primary square pressure < | py(r) 12 >. From equation (3.20)

26¢ p2ax
<o) 2>=10, 2220 and <Ipr) 2> =gy 12 < Hy2 >EL0 (426
Pp(r) qp 8Tnv ps(r) qp | < Ho 8C1tV( )

where from equation (4.25), one can write

<M>= [1+<Ho2>][1-p¥aAD)] 4.27)
Ipp(r)i2

This expression for the space averaged zone of quiet in a generalised sound field which is
characterised by the spatial correlation function p(Ar), is an important result in the theory of
active noise control. The usefulness of the result stems from its generality since no
assumption has yet been made concerning the diffuseness of the wave field. The validity of
the analysis therefore extends to all sound fields which are stationary with respect to
position such that p(ri,r2) = p(Iry - ral ). This result is particularly relevant to diffuse
sound fields whose spatial correlation functions are well defined, see Chapter 3. Equation
(4.27) is therefore important in determining the size and extent of the quiet obtained in the
high frequency limit, enablin g one to make judgements relating to the effectiveness of
active control in this type of acoustic environment.

Following from the stationarity of the diffuse field (see chapter 3), the level of
square pressure attenuation steadily decreases with the absolute distance from the control
point. The space averaged quiet zone about the point of null pressure is therefore a sphere.
At the origin of the hypothetical sphere defined by Ar = 0, the secondary sound field is
arranged to be perfectly correlated, but in anti-phase with the primary field consequently
<1 p(ro) 2s>=0. Moving a short distance away from ro however, and the residual square
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pressure increases, not instantaneously, but smoothly owing to the correlated inter-
dependence of neighbouring diffuse field points. The respective pressures pp(r) and ps(r)
therefore become increasingly uncorrelated with increasing Ar until the residual square
pressure <| p(ro + Ar) 12> is eventually raised above that of the original square pressure in
the absence of control.

This simple result provides an intuitively correct description of the way in which
two sound fields, which are constrained to be exactly in anti-phase at a single point, interact
around the immediate vicinity of the point of null pressure. The result describes how the
square pressure recovers smoothly from zero at rg, to eventually attaining its asymptotic
value <| py(r) 12>+ <1 py(r) 2> as Ar — . This implicitly assumes that the correlation
function between two points tends to zero as the distance between them tends to infinity.
This assumption is generally valid for most sound fields although there are exceptions,
notably the one dimensional sound field which is discussed in Appendix 4.1. With
reference to figure 3.6 showing plots of the correlation functions for simple diffuse sound
fields, the three dimensional diffuse field quiet zone will, on average, exhibit a more
gradual change in the sound pressure level about the point of null pressure than either of the
simpler sound fields. Nevertheless, the differences in the behaviour of the correlation
functions are not pronounced for small Ar. While both [H,J2 and the spatial correlation
function p(Ar) influence the size of the diffuse field quiet zone, it is the square of the
transfer function IH,J2 (and ultimately, the square of the secondary source strength) which
emerges as by far the most important factor away from the point of control. As refered to
earlier, it is the value of IHOI2 which quantifies the statistical inter-dependence between the
primary and secondary pressure fields. The statistical properties of this function will be
studied in detail shortly.

By way of verification, computer simulations were undertaken. The amplitude and
phase of the secondary source strength qg, was calculated so as to drive the pressure at a
point 3/8 along the longest diagonal to zero. The computer simulated experiment was
repeated 200 times where in each case, both primary and secondary point sources were
randomly positioned in the enclosure under the condition that they were not allowed within
one wavelength of any of the enclosure boundaries, or one of the longest diagonal of the
enclosure. The modulus square pressure was calculated at 100 equally spaced points, one
and half wavelengths either side of the point of control along the longest diagonal. The
average value from 200 simulations of the square pressure, as a fraction of the primary
square pressure in the absence of control, is shown in figure 4.3. Also shown is the
function < | p(ro+Ar) 2> =4 </| pp(r) 12> [1 - sinc2kAr ] which appears to provide good
agreement to the simulated curve.
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linearly couples into the secondary square pressure contribution to the sound field and
ultimately the total potential energy in the enclosure. One can nevertheless make some
important remarks on the basis of a small number of computer simulations regarding the
behaviour of the diffuse field pressure in the vicinity of the point of null pressure

For 'sensibly’ behaved values of the secondary source strength (of the order of the
primary source strength), the zone of quiet 2Arg j, the distance over which the residual
sound pressure level is 10 dB below the primary sound pressure level, is typically one
tenth of the acoustic wavelength. Furthermore, according to figure 4.3 the residual space
averaged square pressure is less than the original space average primary square pressure
within a sphere of diameter equal to about one third of the acoustic wavelength. Outside of
this sphere however, active control is observed to have a detrimental effect on the rest of
the sound field. It must be emphasised that these values are only intended to provide
general guideline relating to the characteristic distances involved in canceling the pressure at
a point to zero in a pure tone diffuse sound field. Experience has shown that individual
simulations can exhibit very large variations in the predicted square pressure well away
from the point of cancellation, an explanation for which is given in section 4.4.

In forcing the pressure at a single point to zero, one is imposing a degree of
certainty into the random pressure field which otherwise would be absent. It therefore
seems intuitively plausible that this additional constraint must be at the expense of increased
levels of pressure well away from the point of cancellation. While this finding is true in this
case, this generalisation need not necessarily be true. Consider, for example, the case of a
small solid ball bearing located within a room. Even though the particle velocity of the
enclosed sound field is constrained to be zero at the surface of the solid sphere, experience
has shown that this localised constraint has no measurable influence on the rest of the
sound field.

It is instructive to consider the form of 1 - p2(Ar) for the one, two and three
dimensional diffuse wave ficlds in the region of small Ar where the spatial correlation
functions are respectively coskAr, Jo(kAr) and sinckAr. Employing standard power series
expansions to leading term, for Ar < A/10

P(AT) = coskAr, 1-p2(Ar) ~ (kAr)? (4.28)
P(AI) = Jo(KAT), 1 - p%(Ar) = 3 (kAr)? (4.29)
P(AT) = sinckAr, 1 - p(Ar) = 3 (kAr)? (4.30)
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where a systematic relationship appears to exist relating the coefficients of (kAr)?, the
leading term in the series expansion, to the number of dimensions characterising the sound
field. The space averaged zone of quiet in the three dimensional diffuse field therefore
recovers from zero at a rate approximately three times slower than the one dimensional
diffuse sound field for the same square pressure increase.

The expression for the quiet zone about a point of cancellation in a generalised
sound field has been further substantiated by considering the form of the quiet zone
obtained in a simple one dimensional sound field. The details of the derivation are left to
Appendix 4.1. The expression is derived first from first principles, and then again using
the generalised formula of equation (4.27). Both approaches are shown to lead to equation

(4.31) given below
<< Ip(Ax)? >> = 2 << Ip,? >> sin’kAx (431)

where Ax is the distance from the point of cancellation. This exercise is useful in
highlighting the need to average over both the position of the point of cancellation and the
positions of the sources (which in this case is determined by the duct length). Double
parentheses have therefore been used to indicate two-fold averaging. Using the 10 dB level
of sound pressure level reduction as the criterion of quiet, the quiet zone 2Axg ; may
therefore be calculated according to

<< Ip(Ax)1? >>
<< Ipyl? >>

= 0.1 for 2Axg; = 0.072A. (4.32)

Equation (4.32) suggests that the one dimensional zone of quiet is periodic along the length
of the duct repeating every wavelength by virtue of the periodicity implicit in the one
dimensional diffuse field spatial correlation function coskAx. Further verification of the
general result in equation (4.27) for the three dimensional diffuse field has been established
experimentally, the results and details of which are left to chapter 6.

4.4. Secondary source strength statistics

The findings of the earlier sections were useful in serving to establish the size and
extent of the sound pressure level reductions one could expect as a consequence of driving
a diffuse field pressure at a point to zero. The level of attenuation was found to be
sufficiently localised around the point of cancellation to justify the description, 'quiet zone'.
Having roughly quantified this region, the next step must then be an appraisal of the
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necessary hardware requirements in terms of the power amplification and the secondary
source volume velocity requirements. This exercise provides some idea as to the acoustic
input needed into the existing sound field in order to bring about the point cancellation of
the acoustic pressure. This is the purpose of the current section.

Ideally of course, one would like to achieve the cancellation of the pressure while
expending least effort. However, experience has shown that in some cases the optimal
secondary source strength Iqg,l is very much less than that of the primary source strength
Igp!, while in other cases, very much more. The optimal source strength lqs! is therefore a
random quantity which is some unpredictable random function of both primary and
secondary source positions and point of cancellation positions. Ultimately, one would like
to know the exact theoretical probability density function of Iqsy!, enabling all measures of
central tendency such as the mean, mode and median to be calculated. Furthermore, this
information would enable a precise quantification of the likelihood of failure to cancel
perfectly the pressure, assuming that any reasonable control strategy would include some
upper bound value, above which the control system could not operate.

The linear relationship between the complex secondary source strength g and that
of the primary source qp was established in section 4.1 and shown to be equal to

_ _ Z(rplro)
Ho(®) —%ﬂ;--z—(;g',;g; “3)

For the purpose of this analysis, it is assumed that rp, rs and ro are located further that a
wavelength from each other so that Z(rglrp) and Z(rplro) are statistically independent.
Furthermore, it is assumed that the point of cancellation ry is well away from the influence
of directly transmitted radiation. From previous work, we know that Z(rplro) and Z(rslro)
are complex quantities which may change independently in each of its degrees of freedom,
the real and imaginary parts. Using established notation one can write

_R(Z@girg))+ {Z(rpirg)
R (Z(rglro))+j L{Z(rsiro))

(4.33)

Rationalising equation (4.33) in terms of its real and imaginary parts, R {qso} and 1{qso}
respectively, yields a quotient whose numerator has an equal probability of being less than,
or greater than zero while the denominator remains positive definite. We can therefore
reasonably conclude that the expectation of the complex source strength gso, taken over all
possible secondary source positions and points of cancellation, is zero
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<Qs>=0 (4.34)

This result is consistent with experience since the secondary source is only able to drive
any arbitrary point pressure to zero providing it can change freely and independently in
both its amplitude and phase. This is in many respects a trivial, commonsense result. More
important is the expectation value of the secondary source strength modulus < Iqg,l > which
is by definition phase insensitive and a measure of the effort provided by the control system
as well as having obvious practical implications. We start by considering the statistical
properties of Iqsol? which from equation (4.33) is given by

2
lasol? = R (qso}+ 13{qso) = 2RO 1q, 2 435)

1Z(rdro)?

Now each of the square impedance terms lZ(rxlry)lz, in the numerator and denominator of
equation (4.35) comprise the sum of the squares of its real and imaginary parts according to

1Z(rxlry)? = R Z(rxiry)} +1%(Z(ryIry)) (4.36)

both of which are assumed to be zero mean Gaussian random variables. To test this
hypothesis for consistency with the computer simulated model, both the real and imaginary
parts of the transfer impedance between two well spaced points in the enclosure was
calculated according to equation (4.9) and (4.10) for a total of 15,000 times. In each case, all
source positions were prevented from being closer than a wavelength, both from each
other, and all of the enclosure boundaries. The resulting probability density function for the
real part and imaginary parts of the transfer impedance was calculated from the 15,000
point ensembles. The probability density function appropriate to the real part, normalised
with respect to the standard deviation 6, is shown in figure 4.4 together with the
theoretical Gaussian probability density function according to the central limit theorem
given by equation (3.7).

A good fit to the expected form is observed between the distribution obtained from
the computer simulated ensemble and the theoretically expected result. Similar agreement
was also obtained for the quadrature part of the transfer impedance, 1{Z(rxlry)}. The
general form of the probability density function can be explained because the likelihood of
destructive interference between a large number of randomly phased contributions exceeds
that of constructive interference. Zero is therefore the mean value and also the most
commonly occurring value.
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The variance calculated from the 15,000 point sample has also indicated a good fit to the
theoretical result given by equation (4.37). Note that this probability density function is a
monotonically, exponentially decreasing function whereby small values of the squared
transfer impedance are systematically more likely to occur than large values.

With reference to equation (4.35) for the square of the modulus of the optimal
secondary source strength lgsol2, the ease with which two well separated points in the
diffuse sound field can become weakly coupled may give rise to practical difficulties if the
secondary impedance term 1Z(rglro)i2 happens to be small compared with that of the primary
transfer impedance term IZ(rplro)l2. In this event, Iqsol? will be required to be
proportionately greater than that of the primary lqplz, in order to overcome the weaker
impedance that couples the secondary source to the chosen point of cancellation at rg
according to equation (4.35). One could therefore anticipate the ill-conditioning of the
statistics associated with the square pressure and square pressure related energetic
quantities as observed in computer simulations. One can therefore write IH,/? as the ratio of
two Chi squared random variables, each possessing two degrees of freedom which are
presumed independent providing the primary source and secondary source are further than
a wavelength apart. From equation (4.35), one can write

lgsa? _ O
;H0!2=.95£L. = A~ap (4.38)
IC]p|2 (x%)qs

It is a fairly straightforward matter to derive the resulting probability density
function from the ratio of random variables although usually, the integrals which result
cannot usually be solved in closed form. However, much tedious algebra can be avoided
by recognising that all random quantities which comprise the ratio of independent Chi
square random variables have been extensively investigated in connection with problems of

statistical inference where the variance is unknown63. Random quantities of this type have
a known probability density function denoted by F(v1,v2), where v) refers to the number

of degrees of freedom in the numerator. In the present case, the defining parameters of the
probability density function, vy =v2 =2 are an intrinsic property of the complex wavefield

(possessing independent amplitude and phase). From standard texts in statistics, the F(2,2)
probability density function is given by

fy(v) = where V = [Hy? _ (4.39)

1
(1+v)?
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Given a random quantity X whose probability density function is fx(x), the mean
value iy is formally defined by

u
ux= bm fxfx(x)dx (4.40)
u—yeo ___
For the present example
u
2 = 2 . X
<lgso> =lgyP lim_ f Ty & @.41)
0

- 2 1 U - .

= Iqp! u11___1;::@3[111(1+u)—1_‘_“]--0@ (4.42)

The expectation < lqsol? > therefore fails to converge but diverges very slowly to infinity like
In(x) and is therefore undefined. Strictly speaking, the spatial averaging operation should be
indicated by the use of double parentheses << (.) >> to denote that the average value is taken
over all primary source and secondary source positions. However, as demonstrated overleaf
it is the average taken over all secondary source positions which causes the expectation value
not to converge and is entirely independent of the statistical behaviour of the primary source
transfer impedance. The implications for active noise control in the diffuse sound field are
significant. Any quadratic function of the pressure after the cancellation of the pressure at a
point, such as the square pressure, potential energy, acoustic intensity and sound power ezc
all have a linear dependence on Iqsol? and are therefore similarly undefined. All higher
moments of the F(2,2) probability density function such as the variance, are likewise
undefined and diverge even more rapidly than < lgsol? >.

The result also has important engineering implications from the point of view of
contriving diffuse field control strategies. Any additional constraint made on the secondary
source, however weak, will assist the convergence of the ensemble mean value. While this
is generally true, there are some control configurations (see chapter 6) which despite being
very well behaved from point to point within the diffuse field, posses a mathematical
expectation which is also equal to infinity. For these cases the mean value is a misleading
indicator of first order behaviour as discussed at length in chapter 6. Nevertheless, trying to
establish a control technique which is less prone to large secondary source strength
requirements is the motivation for the work presented in chapters 5 and 6.

In appraising the current problem, it is important to recognise that it is the inability

of the secondary source to couple well into the point of cancellation that is the sole cause of
the ill-conditioning of the statistics of all square pressure related variables. The observed ill-
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conditioning is dependent on the acoustic coupling between the primary source and the
point of cancellation. This conclusion can be asserted because of the following basic result
in statistics. The expectation of the product of independent random variables X and Y,
< XY > is simply the product of their expectations, < X > < Y >. From equation (4.35)

<IHpl? > = <|Z(rplro)? > < 1Z(rgro) 2 > (4.43)

The first factor < lZ(rpIr())l2 > is certainly well behaved whose mean is convergent and
determined from equation (3.21). The observed lack of convergence must therefore be
attributed to the second factor which only involves the expectation of the secondary source
transfer impedance term < lZ(rslro)l'2 >. This is the term which is solely responsible for the
ill-conditioning of the statistics associated with Iqso/2 whereby < IZ(rdro)2 > =00, Any
control strategy aimed at circumventing this difficulty must focus on the inability of the
secondary source to couple into the chosen point of cancellation by imposing on the
secondary source additional constraints, see Chapter 5.

The second important feature worthy of note, is that the form of the F(2,2)
probability density function according to equation (4.39) is completely insensitive to the
properties of the sound field such as the enclosure volume, room damping and the
frequency of excitation etc (providing it is higher than the Schroder frequency). This is
manifest by the complete absence of the impedance variance c% in equation (4.39) which is
of course sound field specific according to equation (3.21), where c% = c% (V, {, w). This
property is fundamental to the F distribution which also explains why this probability
density function is so useful in problems of hypothesis testing. The simple function
governing the theoretical distribution of Iqsof2, therefore has surprising generality and
applies equally to all diffuse fields. The explanation is simple and lies in the way the
variance 62 of a normally distributed ensemble N(j1,62), merely acts to linearly scale the
distribution according to

N(u,062) = oN(u,1) (4.44)

As a consequence of this basic identity, the variance 6% of the diffuse field transfer
impedance emerges as a common factor in both the numerator < lZ(rplro)l2 > and the
denominator < IZ(rglrp)l? > which therefore cancels in the quotient. It follows that all
quotients containing functions of normally distributed random variables are therefore
independent of its variance provided they are the same for the numerator and denominator.
The results which follow for the secondary source strength statistics are completely
general, independent of either enclosure volume, source geometry or frequency of
excitation, but a sole property of the diffuseness of the wavefield inasmuch as the in-phase

148



and quadrature part of the acoustic impedance are normally distributed and independent.
This result has even greater generality since it not only applies to the elementary system
under discussion here, but is equally valid to more sophisticated control control schemes
which utilise an array of secondary loudspeakers and microphones, see chapter 5. One is
now in a position to state an important result in the theory of active control. All secondary
source strength statistics in the high frequency, enclosed sound field are invariant to the
details of the sound field as long as the spatially sampled complex sound field is distributed
as a bivariate Gaussian distribution between its in-phase and quadrature parts. This
condition is certainly satisfied at frequencies above the Schroder frequency and most likely
valid for a significant range of frequencies below.

The probability density function of the transfer function modulus [Hyl may be
obtained directly from that of [Hol? by a simple change of variable U = VV in equation
(4.39) following an analysis exactly analogous to the change of variable in an indefinite
integral. The probability density function fy(v) is formally defined by

fyv)= B F(v-Av/2 , v+Av/2)

(4.45)
Av—0 Av

where F(v) is the cumulative distribution function such that F(v-Av/2 , v+Av/2) denotes the
probability of V lying somewhere between v-Av/2 and v+Av/2. One can therefore write

F(v-Av/2 , v+Av[2) = fy(v)Av (4.46)

where Av is small. From equation (4.39), it follows that

F(v-Av/2 , v+AV/2) = Av (4.47)

(1+v)?

Putting u = Vv where U =1H,|, then v=u? and Av = 2uAu for small u one can now

write )
u
F(u-Au/2 , u+Au/2) = T2 Au (4.48)

From the definition of the probability density function

fu) = Aﬁm F(u-Au/2,,u+Au/2)  2u (4.49)

u—0 Au T (1+u?)y?
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The probability density function of the optimal secondary source strength lqsol has been
derived. For the sake of completeness, the square root of each of the 15,000 points in the
ensemble employed to verify the distribution of IH(,I2 was taken. The resulting probability
density function obtained from the computer simulated ensemble is shown in figure 4.7
together with the theoretical result of equation (4.49).

1.0

e
=

Probability density function
1
p -

0.2

|Hol

Figure 4.7 The probability density function of the secondary source strength [gsof necessary
to drive a point pressure to zero in a pure tone diffuse sound field. Results from computer
simulations(dashed line) and the theoretical result (solid line).

As expected, the distribution obtained from the simulated data and the distribution
function denoting the theoretical curve of convergence as the ensemble size tends to
infinity, are in good agreement.

The behaviour of the function shown in figure 4.7 is observed to be a radical

departure from the behaviour of the F(2,2) density function owing to the non-linearity of
the transformation X — YX. It is interesting to observe that while the most probable value

of lHol2 is zero according to equation (4.39), [Hy! takes zero as its least probable value. In
fact [Hyl, (and therefore by implication Iqso!) can never be zero where from equation (4.49)

fu(0)=0 (4.50)
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This quite surprising result can be explained if one considers the form of the probability
density function of the root mean square (r.m.s) diffuse field pressure Ip,(r)l. Making the
same change of variable, namely X — vX in the probability density function for the
modulus of the square of the pressure Ip(r)I2 given in equation (4.37), one can show that
independent samples of the root mean square diffuse field pressure are distributed as a
Rayleigh random variable whose probability density function is written below

fx(x) = 2xeX* where X = Ip(r)l / < Ip(r)l > (4.51)

This function is plotted in most texts on statistics63. The same conclusion was arrived by
Waterhouse for example73. This function suggests that even though both the in-phase and
the quadrature part of the diffuse field pressure have a most likely (or modal) value equal to
zero, the modulus of the complex pressure can never be zero since fx(0) = 0. A traverse of
a measurement microphone along some arbitrary trajectory in the diffuse field will never
encounter a pressure null. One can therefore infer that there is therefore never any one point
of cancellation position where the secondary source is required to switch off and
consequently there will always be some residual pressure which requires cancellation. This
point of view is wholly consistent with form of the probability density function for the
modulus of the optimal secondary source strength given in equation (4.49).

Inspection of the probability density function f{;(u) in equation (4.49), reveals that
the distribution of qgq is uni-modal thereby possesses a single maximum value which
therefore suggests that there is only one single most likely occurring value Iqsolmode. At the
modal value, fiy(u) is stationary with respect to u

D _ 0 ot e = somoce (452)

Performing the differentiation and solving yields

Holmode =;-/1—-3~ (4.53)
Further noting that Igso! = lqp! [Hol leads to
I9solmode = :I-l..g qp! (4.54)
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The most probable value of the secondary source strength for driving a randomly chosen
diffuse field point to zero is appreciably smaller (by a factor of 0.577) than the primary
source strength whose wavefield it is attempting to cancel. This result is in complete
agreement with the most commonly occurring simulated value shown in figure 4.7. The
mean value of the probability density function given by equation (4.49) also exists and may
be formally calculated from equation (4.40) to give

oo

- 202 0= gyl
<lqsol>—-lqp|0f m du = Iqpl 3 (4.55)

The ensemble mean actually obtained from the 15,000 computer simulated values was
calculated to be 1.563 times that of the primary source strength , i.e., within 1/2 % of the
theoretical expectation given by equation (4.55). This result, at first glance appears to be
surprising since one could have reasonably anticipated some kind of reciprocal process to
exist between the primary source and the secondary source. Specifically, the pressure at a
point is driven to zero regardless of whether one regards the primary source to be acting on
the secondary source to impose the point of cancellation, or vica-versa. In this event the
mean of the transfer function {Hy! would be therefore unity. This is obviously not the case
and the active (secondary) source is subject to a level of statistical constraint which, on
average, requires a source strength which is slightly more than one and a half times that of
the primary source strength. Unfortunately however, a formal assessment of the source
strength variance as conventionally defined does not exist.

Consider the cumulative distribution function Fyy(u). This function defines the
probability that U lies between 0 and u, i.e., P(0 £ U < u) which is derived from the

probability density function fyy(u) as indicated below

u
Fy(u) = f fy(y) dy (4.56)

-0

For the form of the probability density given by equation (4.49), the cumulative distribution
function is determined from

u
- —2y
Fu(u) Of Toomr @.57)
Fy(u) =1/2 - 1/2 cos( 2tan"lu) where U =IH,| (4.58)
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Igsolmed = Igp! (4.59)

This is clearly a general finding which is equally valid for all sound fields for which no
restriction is imposed on the positioning of either the primary source or secondary source.
This is because Z(rplr) and Z(rlr) are taken from the same ensemble of values in any
given sound field such that there is an equal probability of either the primary source or
secondary source impedance being less than, or greater than the other. Increasing Igsol to
twice that of the primary source strength raises the number of points at which the complete
cancellation of the pressure is possible to 80 %. Further increasing the secondary source-
primary source strength ratio to exactly seven now means that exactly 98 % of all point
cancellations that may be demanded of the secondary source are possible, although most
likely at the expense of significantly raised potential energy levels. However, there still
remains exactly 2 % of cases which defy complete cancellation owing to the inability of the
secondary source to provide sufficient influence at the chosen point of cancellation owing
to the weak acoustic coupling between them.

All three descriptors of the central tendency of the modulus of the optimal
secondary source strength have been shown to be simply related to elementary
mathematical constants. More significantly is that all of these first order statistics are
typically of the order of the primary source strength itself. These results indicate that on
average, active control of diffuse fields is within the physical capabilities of commonly
available acoustic transducers which helps to provide some important guide-lines for the
necessary secondary source strength requirements. In general terms, one should ensure that
the maximum volume velocity of the secondary loudspeaker is at least equal to the volume
velocity of the primary source strength in order to guarantee a reasonable chance of
ensuring the perfect cancellation of the pressure at the chosen point of cancellation.

4.5. The potential energy statistics before and after
the active cancellation at a point

In addition to having important practical relevance, it is useful to be able to provide
a statistical description of the response of the enclosure to the active cancellation of the
pressure at a single point, in terms of its potential energy. A knowledge of the enclosure
potential energy before and after control serves to provide a single index relating to the cost
of driving the pressure in the enclosure to zero. Furthermore, it enables one to asses the
benefits of localised acoustic attenuation around the point of control set against the
probabilistic rise in the potential energy level. Unlike for low modal density case where the
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change in potential energy is in many respects predictableSl, in the case of the diffuse field
one can only make general statistical statements about the probability of increased levels of
potential energy. This is the aim of the current section. ‘

The potential energy Ep in a harmonically excited enclosure, can be closely
approximated by the finite sum of square modal amplitudesS5 according to

\Y N 7
= — lal (4.60)
=10 ng.:oa“

Equation (4.60) simply expresses the total potential energy in the enclosure to the sum of the
potential energies of its constituent modes. Each complex modal amplitude ap, comprises
the sum of primary and secondary modal amplitudes according to equation (4.7)

an = An(®) [ gp(@)¥n(rp) + gs(@)Yn(rs) ] (CY))

When the primary source and secondary source are related such that cancellation of the
pressure is assured at some chosen point in the field, the residual potential energy Epres

under these conditions is given by
V X 2
Epres = 4pch . Z |An(@)? | qp¥n(rp) + QsoWn(rs) ‘ (4.61)

Providing the primary and secondary sources are well separated, then apart from the small
sphere of pressure reduction centred on the point of cancellation where the respective sound
fields are highly correlated (typically a small fraction of a wavelength), the primary and
secondary sound fields are everywhere else uncorrelated. The primary and secondary
sources may be regarded as two mutually uncorrelated sources radiating into the enclosure
such that the enclosure potential energy is simply the sum of their individual contributions.
This approximation is equivalent to assuming that the space average of the cross modes

< Wn(rs)¥n(rp) > is equal to zero which is of course only valid when all the linear
dimensions of the enclosure are much greater than the acoustic wavelength. Recalling that
qso and qp are linearly related by the transfer function Ho, the residual potential energy

Eppes Can be approximated as
N

N
Epres = — Iap? [ | X, An(@)y(rp) P + Ho? 1 X, An(@)yn(rs)l” J4.62
n=0 n=0

4pc}
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If Epp denotes the primary source contribution to the enclosure potential energy in the
enclosure according to

S

N
2 1Y Ap(@)ya(ry) 12 (4.63)
apcg P xZ'o nt®¥alp

then to a good approximation one can write
Epres = Epp [ 1+Hg?] (4.64)

where it is been assumed that in any single simulation
N N
| Y An@walrp) 2 = | Y An(@)yn(rs) 12 (4.65)
n=0 n=0

Assuming that the potential energy in the room is proportional to the sound power output,
following from equation (3.1) in chapter 3, the potential energy generated by a single point
monopole source will also exhibit a level of variance which is inversely proportional to the
modal overlap factor 1 / My(w). Above the Schrider frequency therefore, the likelihood of
significant departure between successive measurements of the potential energy for different
source positions is very small. More will be said about this shortly. This simplification is
therefore a good approximation in diffuse sound fields supported by large enclosure
volumes which are driven at high frequencies.

Equation (4.64) represents a considerable simplification over the exact expression
given by equation (4.61). Further justification for this approximation follows because the
variance of the square transfer function lHo|2 compared with unity, is much larger than the
variance of the primary source potential energy Epp compared with its mean value. The
extremely large statistical variation in the residual potential energy is therefore
predominantly due to the large variance of the square of the secondary source strength as
compared to the variance incured from varying the source positions. As will soon become
clear, all moments of the probability density function associated with the primary source
potential energy Epy are formally defined where by contrast, none of the moments are
defined for the F(2,2) probability density function which governs the statistical behaviour
of IHOIZ. The residual potential energy statistics are therefore predominantly dictated by
!HOI2 which are subject to extremely large variations from point to point within the diffuse
wavefield while those of Epp remain negligible by comparison.
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Reasonable agreement is observed serving to demonstrate the small degree of dispersion
associated with measurements of source potential energy in the diffuse sound field. Before
proceeding to evaluate the influence of the secondary source, it is instructive to consider the
origin of the potential energy variance c% On the basis of an energy balance relating the
sources and sinks of acoustic energy in a room, one can write down a direct relationship
between the sound power of a source W and the steady state level of potential energy E,
subsequently sustained by the source. This result is given in many acoustical texts and is
given below

A
<Ep>=z—c—6<W> 4.67)

All of the results derived in chapter 3 for the relative variance of the sound power output are
now directly relevant to the potential energy. From equations (3.56) and (3.61), the relative
variance of the potential energy is given by

OF _ oW _ 1 [fxn]
Rl e [ f] for £2fn (4.68)
of 1
= (4.69)
pE Mn(o)

The distribution of primary source potential energies shown in figure 4.9 was obtained at a
frequency of 1500 Hz within an enclosure whose Schrider frequency was estimated to be
738 Hz. From equation (4.68), the theoretically predicted value of the relative variance may
be calculated to be 0.013 which is clearly an underestimate of the observed value of
0.0246. The possible ambiguities in relating the relative variance of the sound power
output, which in turn is equal to the relative variance of the potential energy is discussed in
chapter 3. In this example, the simulated value is considerably closer to Lyon's formula
which gives a value for the relative variance equal to 0.022.

The figure above shows that the source potential energy Epyp rarely deviates by more
than about two standard deviations from the mean value which for this room geometry,
modal damping etc, is about 0.3 < ﬁpp >. However computer simulations have shown that
the observed level of excursion about the mean value is profoundly altered once the
secondary source has been introduced into the wavefield seeking to drive some diffuse field
point pressure to zero. A theoretical justification for this finding now follows.
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Assuming that equation (4.64) is a good approximation to the residual potential energy after
the active control at a point within the diffuse sound field, we now seek to determine the
resulting probability density function fy(y). Given that the probability density function of
both Epres and [H,f2 are now known and have each been shown to be a good fit to computer
simulated data, we require the probability density function of their product namely

Epp [ IHOI2 +1]. From an ana.lysis‘ exactly analogous to the transformation of variables in
a double integral whose details are left to Appendix 4.2, it can be shown that

1

2nok

1
fy(y) = J ue u - HE/0Z gy where Y = Epres/ <Epp>  (4.70)

This integral may be further expanded in terms of the tabulated error function Erf(x)
defined in chapter 3 to give

fy(y) 2_-\_/_;__%5. [Erf(y_.l_g_g) -Erf(n'—l-g—)] +

2y V2 og V20§
or e 0-#p220k - e HERGE ]
2V2 y2

(4.71)

By way of comparison with computer simulated data, Ep . was computed for 15,000
primary source, secondary source and cancellation positions all of which were constrained
to lie further than a wavelength from each other or the walls. Figure 4.10 shows the
probability density function of the residual potential energy as computed from equation
(4.61) 15,000 times, together with the theoretical curve of equation (4.70) shown overleaf.
Note that as before in the absence of control, the ensemble has been normalised with

respect to the space averaged primary potential energy < ﬁpp >,

The curves are observed to be in close agreement. Comparing figure 4.10 with the
previous graph, figure 4.9 for the distribution of primary source potential energies
demonstrates how even this simple elementary control scheme can have potentially
disastrous consequences in terms of the global sound pressure level. Previously, the
primary source radiating in isolation was shown to excite a level of potential energy that
was only capable of small excursions from the mean. On the introduction of the secondary
source however, the enclosure potential energy is observed to frequently reach levels many

times that of < ﬁpp >. This behaviour is exemplified by the mean and standard deviation of
the potential energy both before and after control as calculated from the 15,000 point
ensemble.
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accounts for the small tail on the probability density function for Epres less than < Epp >.
Now since linear expectation is commutative for independent random variables such as

<Epps>=<Epp>[<Hy? +1>] (4.74)
where

<HP2Z+1> = <HP2>+1=0o (4.75)

One can therefore conclude that the expectation of the potential energy produced as a
consequence of driving a point pressure to zero in a pure tone diffuse sound field is also
infinite

<Epes> = (4.76)

One can apply similar reasoning to the space averaged square pressure and all square
pressure related variables so that with reference to equation (4.27), the true expectation of
the diffuse field zone of quiet is zero.

The most likely increase in enclosure potential energy however, is only fractionally
above that of the primary contribution. Inspection of figure 4.10 indicates that

(Eprcs )mode =1.15< Epp > (4.77)

Note that putting dfy(y) / dy = 0 and rearranging the orders of differentiation and
integration indicates that the peak of the probability density function (Ep . Jmode must
always be greater than < Epp > for all 0'125 > 0. Equation (4.77) is clear verification that
despite the overall poor conditioning of the control scheme, it is possible to find a source
and cancellation position whereby a point of null pressure can be actively imposed on the
existing sound field without significantly influencing the rest of the sound field. Indeed, it
is the most probable outcome.

From equation (4.56), the information implicit in equation (4.70) for the probability
density function of Epreg can be more meaningfully expressed as the cumulative distribution

function given below
1

y
2
Fy(y) = ! J Jue'(x“ - HE)* /O qu dx (4.78)

\J 21O
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The function above together with the cumulative distribution obtained from computer
simulated values is shown in figure 4.11, where it is not surprising to observe that the two
graphs are in excellent agreement. Small statistical fluctuations due to the finite sample size
are now smoothed due to the integration process.
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Figure 4.11 The cumulative distribution function of the residual potential energy after driving
a random poinl pressure to zero in a pure tone diffuse sound field. Results from a computer
simulated ensemble (dashed line) and the theoretical result of equation (4.78) (solid line).

The principal feature 1o note from the above figure is how slowly the curves
approach unity. Specifically, observe that there is a 10 % chance that driving some
randomly selected point in the diffuse sound field to zero will incur a penalty of at least a
ten fold increase in the residual potential energy. A further illustration of the unfortunate
consequences of imposing point control in the diffuse field is that there is now a less than
10 % chance that the residual potential energy will be less than the averaged primary source
potential energy Epp. Previously, with the primary source in isolation it was exactly 50 % .
Lastly, note that the median of the probability density function is very nearly twice < Epp >

that is
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This can be explained if one considers the important asymptotic case whereby the enclosure
volume V tends to infinity. Correspondingly, the transfer impedance variance tends to zero,
0% —» 0 as indicated by equations (3.16) and (3.21). In this hypothetical limit, the variance

of the potential energy generated by a single source in the enclosure tends to a Dirac delta
function centred on the mean g value according to

fx(x) — 8(x - pg) for V-—roo (4.80)

where X = Epp,. It is a straightforward matter to show that in the limit of infinite enclosure
volume, the probability density function of the residual potential energy takes on the
particularly simple form

fy(y) = ;}'2- as V—eo for y21 (4.81)

where Y = Epres / Epp. Furthermore, the cumulative distribution function Fy(y) is
correspondingly simple
Fy(y) — l);—l— as Voo for y21 (4.82)

For this limiting case, the modal value is unity and the median value is exactly two. Figure
4.9 therefore represents graphic illustration of the difficulties connected with applying
active noise control to sound radiated into diffuse field environment.

4.6. Discussion and conclusion

The physics relating to the deceptively simple problem of actively cancelling a point
pressure to zero in a pure tone diffuse sound field has been extensively investigated. The
simplicity of the single channel control scheme employing just a single loudspeaker and a
single microphone has been acknowledged. Nevertheless, the simple analyses presented in
this chapter has served to provide considerable insight into the mechanisms by which two
highly complex, incongruous sound fields superpose, where one is pre-arranged to be
equal and opposite with the other at some pre-determined point in space.

Elementary statistical methods have been employed in order to establish the
theoretical variability of all the key physical parameters connected with the diffuse sound
field. Primarily, a theoretical assessment of the so called diffuse field 'zone of quiet' about
the point of control and equally importantly, a probabilistic description of the diffuse field
potential energy as a result of the secondary sound field. Subsequent verification of all the
postulated results were obtained from the statistical behaviour of a large number of
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computer simulations, which is thought to provide a reasonable alternative to real
experimental data. In all cases, the theoretical results were shown to provide good
agreement with computer simulated experiments.

The space averaged square pressure profile about the point of cancellation was
evaluated and shown to be solely determined by the spatial correlation of the sound field.
However, it was found to be impossible to make any general, universal predictions
concerning the actual size of the diffuse field quiet zone (of say the -10 dB level). The
average behaviour of one set of ensemble averages consisting of fifty simulations was
found to be quite different from another set, although the shape of the square pressure
profile remained preserved in each case. As a general guideline, a 10 dB reduction was
found to typical within a region confined to about one tenth of the acoustic wavelength,
with the important proviso that the secondary source strength is typically of the order of the
primary source strength for which there was found to be no guarantee.

The cause of this apparent lack of consistency was traced to the ill-conditioning of
the statistics associated with the square of the secondary source strength Iqsol2, the quantity
which couples linearly into the square pressure of the sound field. Significantly, the mean
of Iqsol2 was shown to be undefined in the mathematical sense and was therefore proved to
be infinite. Moreover, the expectation value of the unconstrained optimum < Igsol? > was
shown to be on the borderline of convergence as governed by the integral of the probability
density function, multiplied by x, integrated to infinity. It therefore seems reasonable that
convergence of < lgsol2 > can therefore be assured by imposing additional constraints on
the secondary source strength which, in principle could be arbitrarily small. This would
would force the convergence of the expectation value and therefore the expectation value of
all square pressure related variables. This hypothesis forms the basis of the work presented
in Chapter 5 and 6.

A consideration of the statistics relating to the secondary source strength required to
impose the point of null pressure in the diffuse sound field has also yielded some valuable
results. Perhaps the most important, is that the probability density function of the
secondary source strength is completely independent of the details of the sound field such
as acoustic damping, room volume and excitation frequency, assumed greater than the
Schroder frequency. The validity of the result rests solely on the sound field being in a state
of 'diffuseness’.

Last, an analysis of the theoretical probability density function of the diffuse field
potential energy before and after control was undertaken. These results were particularly
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informative inasmuch as they provide a single global index relating to the penalty incurred
as a consequence of the driving a point pressure to zero. One can consider the enclosure
potential energy to represent a measure of the average diffuse field square pressure.
Inspection of the probability density function reveals how easily the imposition of control
can force the residual potential energy to reach many times its value in the absence of the
secondary source. In fact, the mean value of the potential energy calculated from 15,000
computer simulations, exhibits a ten fold increase as a consequence of the control, although
this value is not particularly meaningful given that its standard deviation was even larger by
another order of magnitude. The true expectation of both the mean and the variance of the
optimal secondary source strength were both calculated to be equal to infinity which
therefore serve as a caution regarding the consequences of applying active noise control to
the diffuse sound field.

Although specific tests have not been carried out, it is strongly suspected that many
of the results established in this chapter may be applied to other types of sound field which
do not comply with the rigourous requirements of diffuseness. Indeed, the formula
describing the space averaged zone of quiet about a point of cancellation is valid for any
sound field whose spatial correlation function is properly defined and which is stationary
with respect to measurement position. Furthermore, it is generally acknowledged that the
Gaussianity of both the real and imaginary parts of the complex transfer impedance is not
restricted to only the diffuse impedance field but is a reasonable description of less
reverberant wave fields. The precise area of validity remains to be identified.

As a closing remark, it is probably worth noting the implications for driving a point
pressure to zero which comprises a broadband range of frequencies. The analysis the
outlined in this chapter appears to show that the unconstrained optimum (s is a poorly
conditioned random variable which has a significant likelihood of ‘blowing' up.

Attempting to control a broadband range of frequencies at a point suggests that the
difficulties are compounded since ill-conditioning may occur any one frequency. The
problems are not as severe as at first they appear because all the physical variables
associated with the diffuse field are highly correlated in frequency as well as in space9.
Thus, establishing satisfactory behaviour at one frequency wp will ensure sensible results at
another frequency g + A, as governed by the form of the frequency dependent
correlation function < qso(®0)qso(o + Aw) > which remains to be determined.
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The radiation impedance of the primary source in the absence of the secondary source is
therefore determined from

(Zm)p=h§‘?9-)'= -j%gsgcotkL (A4.3)

which is purely reactive. Equation (A4.3) is the radiation impedance of a closed pipe with
rigid terminations as discussed in detail by Kinsler er-al>0. The resonances of the duct fp,
can be identified with the singularities of cotkL to give

(gs=0=77 (As.4)

Now consider the one dimensional sound field in the duct where both the primary and
secondary sources are radiating simultaneously, but whose source strengths are linearly
related such that the pressure at xg is driven to zero. Following from equations (4.2) and
(4.3), the total acoustic pressure at xg may be driven to zero for a secondary source strength
given by gso = qpH, where the transfer function Ho is given by

H, = - cos k(L - xg) (A45)

cos kxg

The total pressure in the duct is now equal to

p(x) = 2P0 [ cos k(L - x) - i‘fﬁ%x—aﬁ kx ] (A46)

The primary source radiation impedance is profoundly altered by the presence of the
secondary sound field which has now changed to

_Pp(x=0) _ pco coskL coskxg - cosk(L - x0)
Zrad)p = dp [ sinkL coskxg ]

(A4.7)

Employing standard trigonometric identities, one can show that all terms which are
dependent on the length of the duct L, cancel in the quotient of equation (A4.7), leaving the
primary source radiation impedance (Zrad)p as a sole function of the point of cancellation xg
to give

Zraddp = i 522 tan kxg (A1)

Equation (A4.8) is precisely the radiation impedance of an open ended pipe of length xg.
The result of the point cancellation therefore, is to effectively isolate the remainder of the
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pipe x > L from the influence of the primary source. A similar result has been derived by
Trinder et-alP1. The addition of the secondary source, from the point of view of the primary
source, has been to create a new boundary condition since the new sound field is
effectively 'clamped' at xg. This was also the conclusion arrived at by Curtis et-al.10, The
new resonances are now more sparsely located in frequency which may be identified from
the values of kxg which cause tankxg to be infinite. Physically, this arises from the infinite
build up of reflected sound which constructively interfere on each reflection and eventually
form an anti-node of infinite magnitude at the primary source position. In practice acoustic
damping will tend to regulate the response at the anti-node in which event this idealised
model will no longer be accurate. The new resonant frequencies of the primary source

(fn)gs=qso now correspond to

1
(fgs=qso = (n:xo)c" (A4.9)

From the point of view of the primary source, the closed, finite duct is indistinguishable
from a shortened duct of length xo with an open end. An alternative, but equivalent acoustic
space is that of a duct with some hypothetical infinitesimally thin pressure release
mechanism located around the perimeter walls at a distance x¢ from the primary source.
This arrangement of passive elements would also form a pressure null across a cross
section of the duct at xg. Thus, the effect of applying active control is to alter the boundary
conditions of the space which previously were determined solely by the properties of the
walls of the enclosure. Being able to identify an equivalent acoustic space with the same
effective boundary conditions begs the question as to whether one can describe the new
sound field in terms of new acoustic modes i.e., new eigenfunctions appropriate to the
geometry and the new equivalent boundary conditions. Depending of course on the extent
of the active control applied throughout the space, the new modes shapes would be
correspondingly modified and therefore by implication, the new resonant frequencies of the
enclosure would also differ from their values in the absence of control. A shift in the new
resonant frequencies of the enclosure could have unfortunate consequences in terms of the
overall sound pressure level in the enclosure.

Attempts to reconcile the mode shapes derived from finite element analysis in an
enclosure with the same effective boundary conditions in terms of an array of pressure
nulls, and the square pressure response at resonance due to the action of the secondary
sources has so far been inconclusive. The spectrum of the radiation impedance of a plane
piston type source in a shallow rectangular box at low frequencies was shown to change in
the presence of an array secondary sources driven to cancel the pressure at an equal number
of points. Unfortunately, the new resonances of the primary source radiation impedance
were poorly correlated with the finite element predictions. However, for the purposes of
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the problem under discussion here, the cancellation of the pressure at a point in a three

dimensional enclosure is believed to cause only a minor perturbation of the mode shapes.
At high modal densities such that M(w) >> 1, where modal behaviour is obscured owing to

the large number of overlapping modes, the frequency response of the enclosure is identical
in the statistical sense both before and after control.

Proceeding to calculate the space averaged zone of quiet for this one dimensional
sound field, the total acoustic pressure in the duct p(x) may be calculated from equation
(A4.6). Putting x = xg + Ax, expanding and collecting terms yields

p()i2 = Ig,2 2% [ sin? k(L - xg) + 2cos k(L - xo)sin k(L - xp)tan kxg
+ cos’k(L - xg)tan?kxg ] sin® kAx  (A4.10)

Keeping the point of cancellation on xq fixed, and averaging over all duct lengths L, yields
the simplified expression

<Ip(x + Ax)2 > = <Ip,? > [ 1 + tankxo ] sin’kAix (A4.11)

where < > denotes the expectation over L and where the following relations have been
used, < sin k(L - xq) cos k(L - xg) > = 0 due to the orthogonality of the elementary
functions and

lg,i? 2% < cos’k(L - xg) > = gy 2% < sin?k(L - xg) > =< Ip?>  (a4.12)

Now averaging over all points of cancellation on xg, one can show that the average value of
tankxg is finite. This is despite the finite number of singularities in one period of the
function arising from those points where the secondary source is completely unable to

couple into the sound field.
2n

1
<tanu>=-— Itanzu du=1 (A4.13)
» 2

where < > now denotes the expectation over x,. Further noting that < tanxg > = 0, the one

dimensional quiet zone when averaged over all duct lengths and cancellation positions
<< Ip(Ax)I2 >>, may be shown to be equal to

<<Ip(Ax)2>> =2 < Ip ;2 > sin?kAx (A4.14)
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Equation (A4.14) indicates that as a consequence of nullifying the pressure at a single point
in the duct the square pressure is, on average, increased by a maximum of 3 dB. This
relationship is indicated in figure A4.1. This result could equally have been derived from
the more general relationship obtained in the early part of this chapter in equation (4.27).

The one dimensional quiet zone has the same dependence on the separation distance
Ax as that predicted by the general formula given by equation (4.27) in terms of the one
dimensional diffuse field correlation function coskAx since 1 - p%(Ax) = sin?kAx. Also

note that from equation (A4.5)

H2 = cos%kL + sin2kLtankx, + sin’kx, (A4.15)
Further noting that
<cos’kL>=< sinzkxo > =% (A4.16)
and
< sin2kL tankxy > =0 (A4.17)

One can therefore show that < [Hyl? > = 1 so that according to equation (A4.15)

< lpp|2 >=<lpf?> (A4.18)

Putting 1 - pX(Ar) = sin’kAx and < Ip|? > = < Ip{? > into equation (4.27) recovers the
result originally in equation (A4.14) derived from first principles.

Appendix 4.2

The probability density function of the residual potential energy after the
cancellation of the pressure at a point

Given X; = IH0|2 whose probability density function is fxj(x1) = (1+x1)2 (A4.19)

and Xp=Epp, whose density functionis fxo(x2) = 1 = e'(xz'PE)zﬂ"% (A4.20)
2n E

The probability density function fy(y) is required where Y =Ep .. defined by

Y = X7(14X1) (A4.21)
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From an analysis exactly analogous to the transformation of variables in the
evaluation of a double integral, it may be shown63 that if X1 and X are jointly continuous
random variables with a probability density function fx;,x, (x1,x2) and Y1 = g1(x1,x2)
and Y7 = ga(x1,x2) define one to one transformations, then the joint probability density
function fy1,y2 (y1,y2) may be obtained from equation (A4.22)

fy1y2 O1y2) =11 fx1.x2 (€171671.y2), £271(v1,y2)) (A4.22)
where | J| is the Jacobian determinant of the transformation defined by
it
71
171 =

ox
5,

(A4.23)

Ay #¥

However, in the present case, only one transformation is required, the one relating to the
residual potential energy defined from equation (A4.21). It is therefore necessary to
introduce some elementary dummy transformation whose density function function will
remain undetermined

Yo2=X2 (A4.24)

enabling the Jacobian | J | of the transformations to be constructed according to equation
(A4.23)

1
Ji= -1"_;-)-,-2‘ for y2>0 (A4.25)

The joint probability function fy,,y, (y1,y2) is readily constructed since fy;(yj)
and fy7(y2) are independent which is therefore simply their product

,.__JI (X Up)2/20%
21t0’125

fy1.y2 Y1y2) = £ = A4.26
Y2 (Y1,y2) = fy1(y1) fya(y2) V2% 08 (L1722 (A4.26)
Incorporating the results of equations (A4.19), (A4.20) and (A4.25)
OV 12 a2
e [,y e! /202
(A4.27)

fyi,y2 (y1.y2) = Vo7 o (19y2)°
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The marginal density function fy;(yj) of the residual potential energy may be determined
by integrating out y, over the joint density function

Lo

fyi(y1) = Qj fy1v2 (y1,¥2) dy2 (A4.28)
e [ 13- -ne /207
fyi(y1) = 1 heZ! 3 dy> (A4.29)
ﬁfoao (1+y2)

which may be considerably simplified by the change of variable u = (1+y3)-1

1
o‘[ ue- u -kE)/of gy (A4.30)

fy,(y) =
21OE
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CHAPTER 5

ENGINEERING ZONES OF QUIET IN THE PURE TONE
DIFFUSE SOUND FIELD

5.0. Introduction

The potential difficulties inherent in using active control to cancel the
pressure at a point in diffuse fields were exposed in Chapter 4. In that chapter the results of
a study of the behaviour of the unconstrained optima were presented in terms of the
secondary source strength, zone of quiet and the residual potential energy. The variables
are necessarily unconstrained because the cancellation of the point pressure is achieved with
no regard for the magnitude of effort required, or the subsequent effect on the sound field
globally. In this respect, the problem is artificially formulated and is therefore wholly
unrealistic of the type of approach one would ultimately employ in practice.

One of the principal results to emerge so far in this thesis is an expression for the
region of confinement in which the acoustic pressure is attenuated below that of the primary
level. The so called diffuse field quiet zone has been shown to be restricted to length scales
which are typically a small fraction of the acoustic wavelength. Unfortunately, this was only
achieved at the expense of significantly raised levels of the potential energy over the entire
enclosure. The best one can do therefore, is to try to extend this region of attenuation over a
wider region as possible while at the same time leaving the rest of the sound field as least
affected as possible. It soon becomes clear that these requirements are to a certain degree
inconsistent when using a secondary source which is remote from the cancellation point.

The work presented in this chapter comprises an investigation into some various
contro] schemes which attempt to capitalise on the diffuse field properties with the aim of
improving on the typical levels of attenuation documented in the last chapter. It was
demonstrated that extremely large values of the diffuse field square pressure were
sufficiently likely to occur that the average value over all space is equal to infinity. The
cause of this ill-conditioning was attributed to the inability of the secondary source to
provide, on average, sufficient influence at the chosen point of cancellation. It is this
unexpected result which forms the starting point behind the control strategies presented in
this chapter. The strategies investigated include constraining the secondary source strength
to be below some limiting value (hard limiting), minimising a cost function which includes
control effort as well as measured error signals (soft limiting) and minimising the sum of
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the squares of the pressures at two closely spaced microphones. An initial discussion of
these strategies was presented in reference [92]. Some empirical findings pertinent to multi-
channel control are also presented.

5.1. Hard Limiting

Up until now, the necessary secondary source strengths have been allowed to take
arbitrarily large values so that all of the probability density functions associated with the
physical variables under discussion were of course unbounded. That is to say, for
éxamplc, that the probability of the secondary source strength required to be say, many
thousands times greater than the primary source strength is finite. This would result in
correspondingly large increases in the potential energy by roughly the same order of
magnitude. The outcome described here is clearly absurd, however, the example serves to
highlight the fallacious assumptions giving rise to these unfortunate statistics.

Any real control system powered by a real amplifier and subject to the finite
dynamic range of its transducers will possess an upper-bound value in terms of its
maximum acoustic power output. Above this maximum value, the control system would
fail to operate satisfactorily. Furthermore, driving a secondary loudspeaker above some
critical level will inevitably introduce non-linearities into the response of the loudspeaker as
well as having an adverse affect on the sound field globally. Clearly, with each control
systemn one can associate a maximum source strength Iqgolmay, €ither built into the control
system by the engineer according to some pre-determined criterion, or as an unfortunate
artefact of the limited hardware. The purpose of this section is to examine the consequences
of this limitation, known as 'hard limiting', both in terms of the quiet zone and the
corresponding increase in the space averaged square pressure level.

In the case where the secondary source strength is completely unconstrained, the
probability density function of the square of the absolute value of the transfer function
V =[Ht is given by

fy(v) = for 0 SV £ o0 (5.1)

(1+v)?2
where the interval within which the probability density function is non-zero is now stated
explicitly. Now suppose that the distribution of secondary source strengths is prevented

from being greater than some pre-determined maximum value, say Iqsolmar Such that

I9solmax. = qp'Holmax (5.2)
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In statistical terms, the F(2,2) probability density function is now truncated to some
maximum value Vg Where Vg = Hol2mar. All values of V less than V,,,, still have
the same relative likelihood of occurrence although the absolute likelihood is increased by a
factor o at the expense of a zero probability of V being greater than V.., . Truncation of
the ensemble of values has the effect of 'stretching' the probability density function in the
interval of validity as described by equation (5.3) below

1
(14v)?

fvv)=0a for 0 £V £ Vourx (5.3)

where o remains to be determined and represents some linear, dimensionless scaling
constant greater than unity. One can conceive of a real situation where the position of the
secondary loudspeaker is re-adjusted until perfect cancellation of the acoustic pressure is
achieved while ensuring that the secondary source strength required lies within the allowed
interval. In nearly all cases, the primary source position will be fixed and the point of
cancellation will also be fixed, being largely dictated by, for example, the car driver’s ear
position.

The value of o is obviously determined by the value of V4, which may be readily
evaluated by exploiting the fact that the area under under a probability density function is
equal to unity. From equation (5.3)

VYmax
1
aquyM_l (54)
0
Solving for o yields
- 1+
a=[Fy(me) ]! = = 5.5)
where obviously
a1 (5.6)

The resulting probability density function of the hard limited ensemble may now be written

as
wm=1;X“u;p for V € Vpa. .7)

and
fy(v)=0 for V> Vpa (5.8)

By way of illustration, the ensemble of unconstrained values employed in the
distribution of values shown in figure 4.6 was edited to exclude all those values greater
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The hat 'A' is used to suggest that the random variables are now only estimates owing to the
finite sample size so as to make the distinction from proper expectations due to the fact that
some of the possible outcomes have been excluded. For a fully diffuse, three dimensional
sound field, for kAr << 1 the term 1 - Sz(Ar) has a particularly simple power series

1- p2(Ar) =~ 3 (Ary? (5.12)

1+ vmax
Vmax

the right hand side of equation (5.11) to 0.1 and solving for 2Arg ; shows that to a good

Recalling that 1 + < [Ho%4a> = 1n (1 + Vpmay) from equation (5.10), setting

approximation, the -10 dB zone of quiet may be written as

2< Arg > - Umax 0.3
A T (14022 In(1+u2 )

(5.13)

where U,nax = IHolmax. This expression is plotted in figure 5.3 versus the reciprocal transfer
function Iqp! / Iqsolmax . Below this figure is shown the cumulative distribution function also
plotted against the reciprocal transfer function (Upax )
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Figure 5.3 The expected value of the diffuse field quiet zone versus Iqp! / Wgg),qr- Also shown
is the cumulative distribution function of equation (4.58), also as a function of \qp! / Iqgqly4x-
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Values of the secondary source strength which are prevented from exceeding, say
ten times that of the primary source strength where Igpl / Iqgolmay = 0.1 (Which accounts for
more than 99% of cases) gives rise to an expected value for the size of quiet zone typically
equal to one tenth of a wavelength. For this example the expected increase in potential
energy is by a factor of 2.4 (approximately equal to 4 dB). In the absence of any upper-
bound value imposed on the distribution of secondary source strengths corresponding to
Igp! / Igsolmax = O, the true, unconstrained expectation is zero. However, upper bound
values of the secondary source strength which are of the order of the primary source
strength, are sufficient to secure an expectation value for the diffuse field quiet zone of
about 0.15 wavelengths. Unfortunately, the probability of achieving perfect cancellation of
the pressure diminishes rapidly.

The statistical distribution of hard limited secondary source strengths can also be
derived. Following an analysis identical to that presented in the last chapter, one can show
that

_1+uk,  2u <
and
fuu) =0 for u > U, (5.15)

where Upmax = Hglpax
Of principal interest from this theoretical probability density function is the mean

which may be calculated from

) Umax

1+u 2u?

< Iqsohhara > = g -2 f G d (5.16)
max g

where the simple change of variable u =tan u' yields

(1+u,2rgx)tan-lu”_!gx - Umax ]

Wi, (5.17)

< Iqsolhara > = Iqpll

The variance is now also defined according to equation (5.18), providing some useful
information relating to the typical variation one can expect from successive experiments

Otisol = < G50l hara > - < Wqsolhara > (5.18)

where < Iqsol24r4 > can be evaluated from
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with the distribution are now properly defined. As anticipated, the function asymptotes to
infinity as the level of constraint is gradually removed such that Iqp! / Iqsolmax approaches
zero. However, for a upper-bound value of Iqsolmax = 2lqpl there is an 80 % chance of
perfectly canceling the pressure for which the expected increase in the mean square
pressure is only raised by a factor of 1.38.

The analysis in this section is, in essence, an investigation into the divergence and
convergence properties of the relevant variables. It nevertheless serves to demonstrate that
the active control of the diffuse sound field is not as poorly conditioned as the former
analysis has initially indicated. Indeed, upper bound values for the secondary source
strength which are only slightly greater than the primary source strength, provide sufficient
input into the sound field to be able to cancel the pressure at the majority of cancellation
point positions while incurring only small increases in the space averaged square pressure
over the sound field globally. Figure 5.3 indicates that for Iqsolmax = 2igpl the size of the
quiet zone is approximately 0.13A. However, upper bound values of the secondary source
strengths which are reasonably large exhibit only small variations from point to point
within the diffuse sound field enabling the optimal secondary source strength requirements
to be anticipated to within an acceptable level of accuracy. For the current example, the
secondary source variance is approximately 0.25 qu12 corresponding to a standard deviation
of about 0.5 Igpl. Not surprisingly, the level of variance depends strongly on the level of
freedom assigned to the control system which is of course determined by the size of the
upper bound value Iqgolna - The difficulty in applying these figures to any real example
however, is being able to quantify the primary source strength. This is a notoriously
difficult measurement for large, complex vibrating bodies.

In practice, one should allow for a maximum secondary source volume velocity
when seeking to cancel the pressure in a high frequency, enclosed sound field to be
typically twice that of the primary source. This ratio strives to achieve a level of
compromise between standing a reasonable chance of accomplishing perfect cancellation of
the pressure at the desired point, forming a reasonable size quiet zone while ensuring
against too large an increase in the average diffuse field square pressure.

5.2. The under determined problem: Employing

many secondary sources to minimise the pressure at a single point

In the next two sections, elementary multi-channel control schemes are considered
from the point of view of their statistical behaviour in a diffuse field environment. In all of
the following, it is assumed that the in-phase part, and quadrature part of the complex
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tend to dominate the cost function. In this event the effort would be directed towards
regulating its own volume velocity output and the reduction in the pressure would emerge as
a minor priority by comparison. The level of attenuation produced at the control point will
therefore be somewhat diminished. For most source positions however, the additional term
ﬁgsﬂgs will represent only a minor perturbation on the actual square pressure Ip(ro)l? and only
small losses in the actual achievable pressure reduction will be incurred. The process just
described is sometimes refered to as soft limiting

Specifying the problem more precisely, the vector of optimally adjusted secondary
source strengths gs is now required which satisfies the optimisation criterion

Op _p _ ... _% _, (5.22)
dqs1  0gs2 dqs;

where it is now tacitly assumed that setting the differential of the cost function with respect
to a complex secondary source strength zero represents the following operations

aJp: olp _ dlp -0
a‘lej aR(Qsj} asj)

(5.23)

The solution to this multi-variable optimisation problem is accomplished using the
following procedure: The cost function Jp in equation (5.21) is expanded into the standard
Hermitian quadratic form using p(ro) = pp(ro) + Z(rslro) gs

Jp = pp(ro)*Pp(ro) + pp(ro)® Z(rslro)gs +gs™ Z™(rsiro) pp(ro) +
g [ Zrsro)? Z(rdro) + Bl 1gs  (5.24)

where in this case Z(rglro) is a (1 x M) vector and where the superscript H is used to denote
the Hermitian transpose which is an operation composed of taking the transpose and the
complex conjugate successively and where | is the identity matrix whose order is
determined by the number of points of cancellation. Inspection of equation (5.24) shows
that it has precisely the quadratic form considered in Chapter 3. However, in this multi-
variable problem, scalar quantities are now replaced by their corresponding vector and
matrix equivalent variables. The coefficient A, is now a matrix of transfer impedances
coupling each of the secondary sources to the point of cancellations and the vectors b and ¢
may be identified in a similar way. Recognising this property13 enables the unique, global
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minimum of this complex function to be determined in an exactly analogous way to the
single channel case from the formula
gs=gso=-Alb (5.25)

which leads to the general solution
gs = -[ Z(rgro)"Z(rslro)+BI 11 Z(rslro)"pp(ro) (5.26)

This generalised formula reduces to the following simple expression for the single source

case(L=M=1)
M qp (5‘27)
Z(rgro)+p

Qso =~
One can verify immediately that the result of constructing the cost function in this manner is
to simulate an effective transfer impedance from the secondary source to the point of
cancellation which is identical to the physical transfer impedance with some constant
impedance impedance term P superimposed. All the first order diffuse field transfer
impedance statistics discussed in chapter 3, are effectively translated from zero to some pre-
determined non-zero value B.

For the two source case, the optimal secondary source strength vector according to
equation (5.26) gives

Z" (rg1lrg)Z(rplro)
- 5.28
Gs1 IZ(rsilrg)+ IZ(rsglrg)?+B o
*
G5y = Z (rolrg)Z(rplro) (5.29)

1Zrsilro)?+ 1Z(relrg)?+B T

Equations (5.28) and (5.29) reveals the inter-dependence between the two secondary
sources. The respective magnitudes of the two sources correspond, in some sense, to the

ease with which each source is able to couple into the point of cancellation at rg. In the
extreme case where IZ(rg;lro)! is much greater then IZ(rglrp)l, then correspondingly, Igs;!

will be much greater than Iqs,! such that s, will tend to turn off. In the event that 1Z(rg;Iro)!
=1Z(rslrg)l, the total effort will be equi-partitioned between the two sources so that Igs;| =

'qszl.
Unfortunately, the statistical behaviour of the secondary source strengths defined

by equations (5.28) and (5.29) is not amenable to simple analysis. Particularly, the
expectation [ <lgs,?> + <lIqs,I? >1/1qpl?, is required which is of principal interest since
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it determines the expected increase in the diffuse field square pressure. Nevertheless, this
expectation may be closely approximated using very simple numerical techniques. The real
and imaginary parts of the complex transfer impedance Z(rg;lro), Z(rglre) and Z(rpire)
were each assigned a value taken from an independent, normally distributed ensemble
produced with the aid of a random number generator. The secondary source strengths gs;
and qs, were then evaluated according to equations (5.28) and (5.29) and the exercise
repeated a total of 15,000 times for each value of B. The average value

[ <lgg,l? >+ <lgs,l* >]/lqpi? was subsequently calculated from the resulting ensemble as
a function of B between 0 and 0.1 which is shown plotted in figure 5.6.

Consistent with the underlying control philosophy, the expectation of the sum of
the square source strengths remains within acceptable limits over the range of f.
Introducing an additional source has the effect of adding to the controller an additional
degree of freedom which enables the total effort required to be distributed between the two
sources according to a least squares criterion specified in equation (5.21). The total volume
velocity directed towards driving the point pressure to zero will shift towards the secondary
source which is best coupled to the control point.
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Figure 5.6 The expectation of the sum of the squares of the two secondary sources both of
which are constrained to act at the same point in a pure tone diffuse sound field versus the soft
limiting parameter B.
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According to figure 5.6, the ensemble mean remains unexpectedly well behaved
even as B tends to zero. The normalised sample mean eventually converges on two for a
value of B which is exactly equal to zero. The result is particularly surprising because for
B = 0, the optimal solution to Jp =0 is now longer unique, but equally satisfied for an
infinite set of values corresponding to

Qs Z(rs1lro) + qs,Z(relro) = -p(ro) (5.30)

The solution to this apparent paradox lies in the fortunate choice of cost function Jj,.
Employing a technique common in the calculus of variations for finding the extrema of
constrained functions48, we now seek to show that posing the problem in this way and
letting P tend to zero has unwittingly lead us to an important limiting case. In the next
section it is shown that for the particular case where B = 0 corresponds to the unique set of
source strengths for achieving perfect cancellation of the point pressure for minimum least
squares effort. In the diffuse sound field, the minimum total square source strength also
corresponds to the minimum secondary source sound power output.

5.3. Cancellation of the pressure at a point using multiple
secondary sources for least squares effort

Consider again the configuration in which two secondary sources qs, and s, are

made to act at the same point rg, the total pressure is therefore given by
p(ro) = qpZ(rplro) + qs; Z(rsilro) + gs,Z(rsolro) (5.31)

Now consider the usual cost function Jp which is constructed from the square of the
pressure at the point of cancellation

Jp = p(ro)*p(ro) (5.32)

The aim of this section is to derive the vector of optimal secondary source strengths

gso! = [ Gso;» Gsop ] which makes Jp = 0 subject to the additional constraint that gsHgsisa
minimum. Note that it is only this additional constraint which ensures the consistency of
putting p(ro) = 0. Employing the method of Lagrange's undetermined multipliers, consider
some new real cost function ¢ which is constructed from

¢ = gsH gs + A*p(ro) + Ap*(ro) (5.33)
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On substituting for p(rg), one can therefore write

¢ = g5t gs + Al qp Z* (rplro) + g Z*(rlro) ] + A*[ qpZ(rplro) + gsT Z(rglro) ]

(5.34)
The term A is some arbitrary complex scalar constant known as the Lagrange multiplier.
The vector of optimal secondary source strengths s, must further satisfy

*a—(P- = a(p +j a(p =0 (5.35)
d1{A}

oh  oR[A)

which is equivalent to setting J, =0 which puts the pressure at the control point equal to
zero. On performing the differentiation one obtains

GpZ(rpiro) + gso! Z(rsire) =0 (5.36)

which is of course precisely the original condition on the secondary source strengths for
achieving perfect cancellation at ro whose solution was found to correspond to an infinite
set of non-unique secondary source strengths. Equation (5.35) can be made consistent by
ensuring that the pressure is only driven to zero for an optimal secondary source strength
vector gso which maintains least squares effort. However since at gg = gso the pressure
p(ry) = 0, equation (5.36) is equivalent to setting derivative of the cost function ¢ to zero

with respect to the vector of secondary source strengths according to

% _o (5.37)
ags

Equation (5.33) is a standard Hermitian quadratic form in g5 which may be readily solved
to give
Ggso + AZ (rgro) =0 (5.38)

Together, equations (5.35) and (5.38) form a pair of consistent set of simultaneous equations
in gso which are readily solved to produce the unique, solution for the vector of optimal
secondary source strengths which sets the vector of pressures p(ro) to zero while
maintaining a minimum value for the sum of squared source strengths of the form given by
equation (5.39)

Gso = - Z*(rsirg) [ Z(rsiro) Z*(rsiro)l! Z(rpiro)gp (5.39)
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where there is no requirement to determine A and is therefore undetermined. Equation (5.39)
is precisely the form of equation (5.25) for vanishingly small f. For the case where two
sources are acting at one point, performing the matrix inverse is trivial so one can therefore
write

Z* (rs1lro)Z(rplr)
=~ 5.40
901 =~ |7 ralro) P+ IZ(r alrg)? (5.40)

__ Z(rolrgZ(ryirg)
902 =~ 12 e arlrg)P+ 1Z(rgylro) (5:41)

Consider the sum of squares of the moduli of the secondary source strengths as a ratio of
the square of the primary source strength as indicated below

Igs011? + Igs0p® _ \Z(rpirg)? (5.42)
Iqpl? 1Z(rs1lro)? + 1Z(rslro)? '

From previous work, it has been established that in a diffuse field, the numerator is a
random variable which is distributed as a Chi squared distribution with two degrees of
freedom. By similar reasoning the denominator is, by definition, a Chi squared random
variable with four degrees of freedom. Assume that all sources are located further than a
wavelength apart so that the numerator will be independent from the denominator. One can
therefore infer that the quotient of Chi squared random variables given in equation (5.42)
has the probability density function of an F(2,4) random variable. From standard statistical
texts63, the F(2,4) probability density function takes the form of

fy(v) = where V =[lqso,? +1gs05?1/1gpl2  (5.43)

1
(1+v/2)3

Notice the similarity in the form of this function with the F(2,2) probability density
function for the single channel unconstrained problem. The mean value of this distribution
now exists and may be determined in the usual way to give

(-]

<1 2 + g2 > =1 |2f v
qSOl q502 qp 3 (1+V/2)3

dv = 2 Igpl? (5.44)

For well spaced secondary sources, the average effort will be equally distributed between
the two sources from which one can infer that < Iqso;/? > = < lqsy/? > = Igpl2 The

variance is not defined however.
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A single secondary source acting alone to cancel the pressure at a point in the
diffuse field has a space averaged square source strength which is infinite. Now dividing
the total effort between two independently positioned sources according to the least squares
criterion specified in equation (5.33) has been proved to be considerably more beneficial in
terms of the total sound power injected into the sound field. The expectation of the sum of
the square values in this two source case is less than when only one source is used even
though the outcomes are identical inasmuch as the diffuse field point pressure is driven to
zero in both cases. The total square effort is now mathematically convergent and of a
magnitude which makes the scheme viable for many practical applications although clearly
costly in terms of hardware and computational resources.

For two well separated secondary sources, each source makes the same
contribution to the space averaged square pressure as the primary source in isolation
thereby causing a three fold increase in the space averaged diffuse field square pressure
which is approximately equal to 5 dB. The 10 dB quiet zone 2Arg ; for this two source
problem can be calculated to be about approximately one tenth of an acoustic wavelength.
In contrast, the expected value for the quiet zone in the single source case is zero.

Anidentical argument can be reasoned for the three source case. The probability
density function of the sum of the squares of a trio of well separated sources
V = [Igsoy? + Iqsopl? + Iqsosi? ] / Igpl? which are driven to cancel the pressure at a point to
zero, while maintaining least squares effort, can be shown to randomly distributed with the
F(2,6) probability density function given below

fy(v) = V = [Igsoy? + Iqsop? + 1gsosi? 1 /lgpl2 (5.45)

(14v/3)?

Both the mean and the variance are now defined for three independently positioned
secondary sources owing to the rapidity with which the probability density function decays
away. The argument can be generalised for M well separated secondary sources acting at ‘
the same point for the least squares effort. The probability density function of the sum of
the squares of the optimal source strengths is given by the F(2,2M) function whose
probability density function is of the general form

fy(v) = where V=2 Igsom!? / lqpl? (5.46)

1
(1+V/M)M+l

A plot of this function is shown below for M = 1, 2, 3 and 4.
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Figure 5.7. Plots of the F(2,2M) probability density function for M = 1,2, 3 and 4

Using equation (4.40), it is a simple matter to show that the mean of the F(2,2M)
distribution is M/(M - 1) which for independently positioned secondary source corresponds
to an expectation value for the square of each of the secondary source strengths individually
< Igsomi? > which are equal to

<lgsomi? > =lgpl2/ (M - 1) (547)

which is finite providing M > 1. Despite the fact that dividing the total effort between a
number of independently positioned points appears to have only a (surprisingly) small
effect on the probability density function of the sum of the squares of the secondary source
strengths as indicated in figure 5.7, the effect on the average value is significant. Not
surprisingly, this mean value steadily diminishes as the number of secondary source M
introduced to cancel the point pressure increases. However, the benefits obtained in terms
of the global sound field derived from increasing the number of sources quickly depreciates
and the principle of 'diminishing returns’ soon starts to apply. It is interesting to observe
that as the number of secondary sources introduced to assist in cancelling the same diffuse
field pressure is increased, the total square pressure contribution from the cluster of
secondary sources M / (M - 1) tends to unity which therefore equals the primary source
square pressure contribution acting in isolation < Ipp(r)I2 >. This important limiting case
represents a doubling, or 3 dB increase in the average global square pressure. A two fold
increase in the diffuse field square pressure therefore represents the smallest increase
physically achievable when one seeks to cancel the pressure at a point in a diffuse field by a
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loudspeaker or loudspeaker array which is remote from the point of cancellation. The
expected value for the quiet zone for this best possible case can be calculated to be about
one eighth of the acoustic wavelength. A doubling in the global square pressure will be
shown to be also the least possible increase possible when we come to consider the
problem of minimising the sum of the squares of the pressures at a number of well spaced
points using a multiplicity of secondary sources.

By way of illustration, the square pressure was calculated one and a half
wavelengths either side of a point of cancellation produced by two well separated
secondary source optimally driven so as to maintain a total least squares secondary source
strength. The computer simulated experiment was repeated twenty times in the computer
simulated sound field where for each simulation, both the primary source and the
secondary source pair was randomly positioned although prevented from being closer than
one wavelength from each other and all of the enclosure boundaries in each case. The
average square pressure reduction obtained from twenty such simulations is shown below
in figure 5.8. In this example, good agreement is established by the theoretical curve
2.7(1 - sinc?kAr) indicating that the mean square pressure contribution from the secondary
source is approximately < lasﬂ >=17< tqpﬂ >. Note that this is close to the expected

value of two as predicted by equation (5.47).

10

~10L.

Average square pressure reduction (dB)

~3\2 0 32
Ar

Figure 5.8 The zone of quiet about a point of cancellation formed by two independently
positioned secondary sources seeking to maintain a least squares secondary source strength.
The computer simulation is shown as solid line and the theory is represented by a dashed line.
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Comparison of figure 5.8 with the zone of quiet produced by a single unconstrained
source shown in figure 4.3 demonstrate the benefits derived from using two well spaced
sources. On average, the square pressure level produced well away from the point of
cancellation is approximately 2 dB below the single source unconstrained level. The
benefits obtained here in terms of the pressure increase well away from the point of
cancellation are of course transfered to the size of the quiet zone which is now nearly 0.15
of the acoustic wavelength. This value compares with one tenth of a wavelength for the
single source case. Introducing the number of secondary sources still further to three is not
expected to produce a dramatic improvement on this result.

5.4. The over-determined problem

In the preceding section, a number of secondary sources were employed over and
above the single source absolutely necessary to cancel the pressure at a point. The
redundancy of sources were shown to be useful in order to ensure that the expected
increase in the diffuse field square pressure remains low.

This section is concerned with the converse problem where a number of secondary
sources are used to minimise the sum of the squared pressures at an even greater number of
microphones. Where there are more points of minimisation than secondary sources, the
control configuration is known as over-determined. Obviously, the perfect cancellation of
the acoustic pressure at each point is no longer achievable. Undoubtedly, the most
successful approach for achieving a reduction in the sound pressure level which extends
over a wide area is to minimise the sum of the square pressures at a distributed number of
points. This type of least squares approach forms the basis of a large part of modern
control theory which may be cast in the guise of a quadratic minimisation problem for
which there exists a well defined, unique solution. We will first consider the statistics of
the secondary source strength and the subsequent degree of acoustic reduction in the field
will then be discussed.

Consider the case where M secondary sources are required to minimise the sum of
the square pressures at L points in the sound field. It is assumed that the problem is over
determined so that M < L, otherwise the control geometry is under determined. The vector
of L complex pressures p(r) is related to the vector of M complex secondary source
strengths gs via

p(r) = qsZ(rglro) + qpZ(rplre) (5.48)
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where Z(rslrg) now represents an (L X M) matrix of complex transfer impedance terms
coupling each of the measurement points to each of the secondary sources and where
Z(rpiro) denotes a (1 X L) vector of transfer impedance terms which couple each of the
measurement points to the primary source (only one primary source is assumed). Writing
equation (5.48) in full gives

p(r1) Zy(rylrs)) Zg(ralrs) . . Zs(rmirs) qs(rs1) (r1irp)
p(ra) . . ... qs(rs2) (ralry)
: =!. i .. : +1 p()
prp) 4 LZgrirgy) Zordre) - . Zrmire) dlasraw Zy(rurp)
(5.49)

The problem of finding the vector of optimal secondary source strengths g, is reduced to a
standard problem in linear algebra. Now given that there are more equations (points of
minimisation) than unknowns (secondary sources), one is compelled to seek a least squares
solution. An exact solution to the equation p(r) = 0 is only possible for M 2 L. The vector
of optimal secondary source strengths qs, for minimising the sum of the squares of the
acoustic pressures p(r)Hp(r) is well known and given by14

gso = -[ ZrslrQ)HZ(rglro) 17 Z(rglro)H py(r) (5.50)

which is the familiar least squares regression formula. This result has successfully been
applied to a wide range of active control problems!4.39.51, Typically, the best possible
reduction of some energetic quantity is usually desired which readily lends itself to this
kind of analysis since energy related variable naturally arise as quadratic functions of the
source strengths. The total acoustic potential energy in an enclosure is just such an
example.

In a diffuse field environment, each of the complex transfer impedance terms
appearing in equation (5.49) exhibits well defined statistical behaviour. The in-phase and
quadrature parts of the respective terms Z(rglr;) are known to form a joint Gaussian
process according to the argument proposed in Chapter 3 providing that the secondary
sources and the control points are well separated namely | r; - rj | > A. Further assuming
that all of the secondary sources are separated by more than a wavelength (which in practice
means that all error microphones are well separated) enables one to make the further
simplifying assumption that all of the complex impedance terms are themselves mutually
uncorrelated. Considerable effort was directed towards attempting to determine
theoretically, the probability density function of the square of the optimal secondary source
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strengths defined via equation (5.50). Unfortunately without success. Nevertheless,
considerable insight into the multi-channel diffuse field problem was gained by the use of
Monte-Carlo methods.

The fact that all of the impedance terms appearing in equation (5.49) may be
described in terms of independent, normally distributed random variables forms the basis
of Monte-Carlo simulations. The level of statistical fluctuation experienced by any one
single diffuse field secondary source seeking to minimise the sum of the squares of the
pressures at a number of well separated points was simulated on the computer. Each of the
real and imaginary parts of the transfer impedance terms appearing in equation (5.50) were
assigned a normally distributed, zero mean random value taken from a random number
generator. The variance of the random number series was pre-determined and arranged to
be approximately equal to that obtained from the computer simulated model. This in turn
was in approximate agreement with the variance predicted by equation (3.21), although, this
precaution is of course not strictly necessary. For the case of L sensors and M secondary
sources, this procedure is represented symbolically below

Fori=1,L
Forj=1M

R{ Zrglrj) } =N1(0,62): V{ Z(rglrj) } = N2(0,6%)

Next j
Nexti
(5.51)

Forj=1L

R{ Z(rpirj) } =N3(0,62): U Z(rplrj) } = N4(0,062)

Next j
where 62 = pZwcy / 1688V

The source strength of a single secondary source necessary to minimise the sum of
the square pressures at one, two, three and four independent points was evaluated
according to equation (5.50). In each case, the simulation was repeated 5,000 times for
different transfer impedance values and the modulus of the secondary source strength Igs.?
was calculated for each. The probability density functions for each ensemble of values was
calculated. Each computer simulated distributions of values appears to be in close
agreement with the Pareto probability density function fy(v,N) given by03
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It is instructive to consider the mean value of the Pareto probability density function
as a function of the governing variable N which has been found to have meaningful
physical significance in this case. It is a simple matter to show that the mean value of the
random variable xy namely < x); > which is governed by the Pareto probability density
function with a Pareto variable N according to equation (5.52) is simply

<XN>= "Nl'f (5.53)

which remains finite for N> 1.

On the basis of this set of Monte-carlo simulations, the expectation of the square of
the secondary source strength < lqsq; 12 > necessary to minimise the sum of the square

pressures at L independent diffuse field points may therefore be written as
<lgsop 2> =lgpi2/ L - 1) (5.54)

Notice the resemblance to the form of the expectation in equation (5.47) for each secondary
source strength in the overdetermined problem qu12 / (M-1). In the under-determined case,
the pressure is set to zero and the sum of square efforts is minimised. In the over-
determined case, the sum of square pressures is minimised although the no constraint is
imposed on the secondary source strength. The apparent interchangability between the
number of sources M and the number of points of minimisation L between the over-
determined and under-determined source configurations suggests the existence of some
kind of reciprocal process between the two control schemes.

In the absence of any formal analysis, one cannot be absolutely certain that the Pareto
function is the correct generalised probability density function for describing the variation of
square secondary sources constrained in this fashion. However, a high degree of confidence in
this choice of function is justified for several reasons. First, The Pareto distribution provides a
good fit to the simulated data; second, the function reduces to the F(2,2) probability density
function which is known to be correct for the special case where N = 1, and last, statistical
trends are correctly predicted as the number of secondary sources are increased.

The effect of using a multiplicity of secondary sources to minimise at a number of
well separated points was also investigated using the same Monte-Carlo technique.
Equation (5.50) was evaluated 5,000 times with the appropriate complex transfer
impedances so as to mimic the behaviour of two secondary sources minimising the square
pressure at three points (M = 2, L = 3) and three secondary sources minimising the sum of
square pressure at five points (M = 3, L = §). Intriguingly, the Pareto density function
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As the ratio of the number of secondary sources to the number of points of control
increases, the variable N correspondingly increases. The form of the Pareto probability
density function given by equation (5.52) indicates that the level of excursion exhibited by
each of the secondary sources from the mean value decreases as N increases, taking a
minimum value of unity in the case of a square system. This is exemplified by the
succession of figures 5.9 - 5.11. One interpretation of the parameter N appearing in
equation (5.52) therefore, is that it maybe be regarded as a measure of the average constraint
imposed on each secondary source.

When N is large for example, the sources have greater scope for distributing their
effort over a larger number of points and so the distribution of square source strengths has
less tendency to deviate. As a consequence, the secondary source strengths are loosely
constrained and the level of sound pressure level reductions at the points of control are
therefore variable. When N = 1 however, the source or sources are highly constrained
because the perfect cancellation of the pressure is always achieved with no account taken of
the effort required and so there is less scope for manoeuvrability. The simple relationship N
=L / M (which has been only validated empirically) is clear indication that each source in
an array of sources is as equally constrained as if it were acting in isolation to cancel at one
point. All of the results presented in Chapter 4 therefore equally apply to this higher order
square system.

Perhaps the broadest interpretation of the governing variable N is that it represents
the effective number of independent diffuse field points of minimisation for each secondary
source. The notion of fractional points of pressure minimisation is clearly not easily
visualised but will be found to a conceptually useful in the next section.

5.5. Employing a single secondary source to minimise the sum of the
square pressures at two closely spaced points

Some empirical findings relevant to multi-channel control in the diffuse field have
been presented. Simple theoretical analysis and computer simulations were carried out
which were only possible by virtue of the assumed independence between transfer
impedances evaluated between well separated points. In this section, the problem of
minimising the sum of square pressure at two points which are closely spaced compared
with the acoustic wavelength is investigated. This problem demands special attention
because the independence assumption in this case is no longer valid.
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It is now well established that the square of the secondary source strength required
to cancel the pressure at a point in a diffuse sound field varies as a Pareto distribution for
N = 1. Similarly, one can be reasonably confident that when the same secondary source is
driven with the aim of minimising the sum of the squares at two well separated points, the
variation of the square of the secondary source strength has now changed to that of a Pareto
distribution with N = 2. However, when the control objective is to employ a single
secondary source with the goal of minimising the sum of the square pressures at two points
which are close compared to a wavelength, it is extremely unlikely that the form of the
probability density function will change from the Pareto distribution. Assuming that this
hypothesis is correct, the number of effective points of minimisation N, the Pareto variable,
must now lie somewhere between one and two, 1 SN < 2.

As the separation distance Ar between the points of minimisation increases from

zero to infinity, the number of effective points of minimisation N must vary smoothly from
one in the case where Ar = 0, up to a maximum value of two for the limiting case for Ar —

oo, We now seek to determine the functional dependence of N with the separation distance
Ar, N = N(Ar). It is instructive to consider the ensemble of independent, unique square
pressure evaluated at all points in the diffuse field Ip(r;)I2 and Ip(r)I? as representing sets.

Each of the two sets is constructed from the square of diffuse field pressures which is
completely unique to the point at which it is evaluated. Clearly when Ar the separation

distance between the two pressures iry - rol is much larger than the wavelength, then
Ip(r1)1? and lp(r)? are distinct and mutually independent so that their respective sets are
non-overlapping as suggested by figure 5.12.

00

Figure 5.12 Two independent, non-overlapping sets of square pressures for Ar > A.

When Ar is small however, typically a fraction of a wavelength, there will be a component
of the square pressure that will be perfectly correlated with the pressure at both points and
consequently will not belong exclusively to any one set but will lie in the intersection of the
now overlapping sets as indicated in figure 5.13.
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Figure 5.13 Two correlated, overlapping sets of square pressures for Ar < A.

A rigourous definition of the cost function Jp is now possible aided by the Venn
diagram of figure 5.13. The cost function Jp, is now formally defined as the sum of the
squares of independent points of minimisation. In terms of the sets of square pressures

Jp=Ip(r1)? U ip(ro)? (5.57)

where U simply represents the union of the sets which in physical terms signifies the
components of the square pressure which is unique to their respective points rj and ra.
Employing a common result in Set theory: If f(A) and f(B) represent the additive sets of A

and B then
f(AUB) = f(A) + f(B) - f(A N B) (5.58)

The expectation of the cost function < Jp > may now be written as
<Jp>=<Iprpi? >+ <Ip(ry)? > - <Ip(r)i2 M [p(r)? > (5.59)

The term < Ip(r1)I2 M Jp(rp)i2 > simply defines the intersection of the sets, shaded grey,
which in physical terms represents that part of the square pressure which is perfectly
correlated with the square pressures at both points. From previous work we have seen that
the pressure at ro which is perfectly correlated with the pressure at rj in the three
dimensional diffuse field (and vica-versa owing to reciprocity) is simply

pe(r2) = p(ry)sinckAr (5.60)

where r) = rj + Ar and the subscript 'c’ denotes perfectly correlated. Now given that the
spatially sampled diffuse field forms an ensemble of values which are zero mean Gaussian

random variables, then it has been shown by, for example Pierce37 and Lubman?3, that the
component of the square pressure p&(r2) at rp which is perfectly correlated with the square
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pressure at ry varies spatially as sinc2kAr. The auto-correlation function of the diffuse field
square pressure pipr(Ar) is therefore given by

Pipi2(Ar) = sinc?kAr (5.61)
From equation (5.59), the expected cost function is now simply
<lJp>=<Ip(r)? >+ <Ip@)? > - <Ip(ry)i? >sinc?kAr (5.62)
now noting that <Ip(r)i? > = < Ip(ry)i2 > = < Ip(r)l > yields
Jp=<Ip(®)?>[2 - sinc’kAr] (5.63)

The effective number of independent square pressures < Ip(r)i2 > whose minimum is

required, N is therefore given by
N = 2 - sincZkAr (5.64)

This function has precisely the anticipated properties in that it varies smoothly from two to
one as Ar, the separation distance varies from zero in the single channel case to two where

the points of minimisation are very far apart.

By way of verification, the square of secondary source strength was calculated
according to equation (5.50) with the aim of minimising the sum of the squares of the
pressures at ten separation distances Ar ranging from 0.1A to one wavelength in increments
of one tenth of a wavelength. The simulations were performed using the modal model of
the diffuse sound field simulated on the computer which has been discussed in chapter 4.
For each separation distance, the optimal secondary source strength was calculated a total
of 3,000 times and the probability density function ’f\v(v) was evaluated for each ensemble
of values. Assuming that ,f\v(v) will eventually tend to the Pareto probability density
function with the appropriate value of N as the ensemble size tends to infinity, f,(v,N), the
Pareto variable N appearing in equation (5.52) was chosen to minimise the mean square
error £%(N) defined by

X(N) = df [ 2vv) - fy(v.N) 12 dv (5.65)

The integral was evaluated numerically and the minimisation of the error e2(N) performed

on the basis of trial and error. The variation of N, the Pareto variable is shown in figure
5.14 compared with the expected function 2 - sincZkAr.
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Figure 5.14 The variation of the Pareto variable N which affords a least squares fit 10 the
distribution of simulated values as a function of the separation distance Ar between the points of

minimisation. Also shown as a continuous line is the expected function 2 - sinc2kAr.

The expected function, which has been derived more on the basis of a plausibility
argument than formal reasoning, is observed to provide convincing agreement with the
simulated data. Some examples of the probability density functions calculated as a function
of various Ar are reported in an internal L.S.V.R memorandum®4.

The space averaged zone of quiet formed about the centre of the microphone pair
was also investigated. Using the diffuse field model which utilises a modal summation as
outlined in chapter 4, the optimal secondary source necessary to minimise the sum of the
squares of the pressures at a range of microphone spacings was calculated. For Ar ranging
from A/10 to A in increments of A/10, the residual square pressure was evaluated along
the line joining the two points of minimisation in increments of A/50, one and a half
wavelengths either side of the geometric centre of the closely spaced microphone pair. For
each value of Ar, the residual square pressure was evaluated a total of one hundred times
for the same set of one hundred random primary source and secondary source positions
and the average taken for each. Figure 5.15 gives two graphical representations of the
result obtained from this simulation are shown. One is an isometric plot where a
polynomial ‘best fit' curve has been used to connect each of the points for the same Ar, the

second is a contour plot showing lines of equal square pressure reduction.
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The series of curves shown in this figure exhibit the characteristic sin(x)/x type
behaviour well away from the points of minimisation as originally predicted by Elliott ez-
al87. Near the points of minimisation however, a single unique region of quiet is clearly
apparent for error sensor spacings up to about Ar = 0.5 A. Above this critical distance, two
distinct troughs of quiet begin to emerge which follow the points of minimisation and are at
least 3 dB below the primary level. Nevertheless, a 10 dB reduction (which has the been
the criterion of quiet in this thesis) is possible for the range of separation distances up to
about 0.2 A. Most significantly however and which certainly warrants further investigation,
is that the spatial extent of attenuation (i.e., any value below 0 dB) remains as a single
region for microphone spacings Ar almost exactly equal to one half of a wavelength to
within the accuracy of the numerical example and the finite sample size. Above this critical
distance however, the 0 dB level only just begins to divide to form two independent zones
thereby forcing an increase in the square pressure in the region between.

Microphone separation distances equal to one tenth of a wavelength can be
observed to produce a 10 dB zone of quiet nearly equal to 0.1 A. Unfortunately, the
increase in pressure well away from the control points is still unacceptably high at nearly 6
dB. For a microphone separation distance equal to exactly one half of a wavelength where
the respective pressure are perfectly uncorrelated, the zone of pressure reduction remains as
a single region peaking at slightly less than 0 dB. The Pareto variable N for this
arrangement is 2 since the pressures at two points separated by half a wavelength in the
diffuse field are exactly uncorrelated, see figure 5.14. Moving the control microphones still
further apart to exactly one wavelength for which the Pareto parameter is also equal to 2,
one can see that the spatial extent of reduction is confined to two very small regions which
a maximum reduction of less than 2dB. As a direct consequence of constraining the
pressure to be a minimum at these two points, the square pressure at the centre of the
microphone pair is raised up above the primary square pressure by nearly 4 dB in this case.

The control strategy under consideration here is similar in principle to the pulling
apart of a soap bubble. The forces pulling at the bubble can be likened to constraining the
square pressure at each of two closely spaced points in the diffuse field to a minimum. The
surface tension of the bubble which resists the pulling force and which holds the bubble
together, is analogous to the spatial correlation function of the sound field which holds the
quiet zone together. Just as a soap bubble retains a similar shape for pulling forces which
are less than the critical force necessary to overcome the surface tension of the bubble, the
diffuse field quiet zone retains a single trough up to the critical separation distance of about
0.5 A. Above these critical values, both the bubble and the diffuse field quiet zone collapse

to form two distinct parts.
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uncertainty and therefore better conditioned. The principal finding of this investigation is
the emergence of some upper-bound limit on the size and extent of the region of quiet one
is able to engineer in the diffuse sound field. This finding appears to have generally validity
over the range of control procedures investigated. In general terms, the size of the diffuse
field quiet zone at the 10 dB level has been found to be confined to length scales which are
typically one tenth of the acoustic wavelength. This figure will also emerge in the next
section when the effect of cancelling the pressure at a point in the near field of a secondary
source are investigated

Initial control strategies considered in this chapter involve simple modifications to
the cost function. For example, it was demonstrated that placing upper bounds on the
maximum secondary source strength only a few times that of the primary source strength,
allows for the vast majority of points in the diffuse field to be driven to zero. Moreover,
this hard limited control system was shown to restrain the mean square pressure in the
diffuse sound field to levels which are not significant compared with the original primary
level. The mean and the variance of the hard limited secondary source strength was
evaluated as a function of the upper-bound value.

Simple analysis of the so called 'under determined’ problem was also shown to
prove more advantageous than the elementary unconstrained single channel configuration.
While in principal, both can achieve the perfect cancellation of the pressure at a point,
employing more independently positioned secondary sources than points of minimisation
enables one to impose constraints on the secondary source strengths in addition to the
pressure field. Specifically, the redundancy of secondary sources has enabled the pressure
at some point to be set to zero under the condition that the sum of the squares of the
secondary source strength is a minimum. This secondary source arrangement has an
effective source distribution which possesses multiple independent channels to the point of
cancellation such that it is able to distributes its effort along the transmission path offering
greatest impedance according to a least squares criterion.

With real time computing becoming increasingly faster, one can envisage
employing an array of tiny loudspeakers remotely distributed around the enclosure, each
constrained to act at the same point. The source strength of each of these transducers would
need only to be a disproportionately smaller fraction of the secondary source required than
if it were acting alone. It was found that the combined secondary source strength of an
array of independently positioned secondary sources is less than that for single source case.
However, the implementation of this scheme is clearly costly both in terms of computing
time and hardware resources.



Most control configurations currently employed?3.24.25, are over determined and so
employ less secondary sources than there are points of minimisation. While this
arrangement is useful for low modal density sound fields, such a scheme could be
ineffectual depending on the number of independent points per secondary source. Statistical
considerations have shown (if only empirically) that it is precisely this ratio which dictates
the statistical distribution of the square of each of the secondary source strengths. Perhaps
not surprisingly for example, each of the secondary sources in an array of three sources
minimising the sum of the square pressures at say five points is as equally liable to a given
statistical fluctuation and has the same mean value as say six secondary sources acting at
ten points. This was found to be true despite the increased number of transfer impedance
paths in the latter arrangement. By way of a summary, the expectation of the square of the
total secondary source strength for the under-determined, over-determined and the square
system are tabulated below for comparison

X <lgs?> /gy

L>M| M2/@L-M)
L=M oo

L<M| M/(M-L)
(for L=1)

It remains to be shown whether the undetermined result is a general result valid for
all values of L. Inspection of the table above indicates a degree of symmetry between the
respective results. This suggests that there may be some generalised formula for predicting
the expectation for the square of the secondary source strength, and ultimately the increase
in potential energy for all multi-channel control schemes whether over determined or under
determined. This of course assumes that the Pareto function is the correct choice of
probability density function for the over determined arrangement.

In terms of the size and spatial extent of the zone of quiet, complete cancellation of
the pressure is possible for ratios of values L / M < 1 corresponding to the case where the
number of secondary sources equals, or out numbers the number of points of cancellation.
for these ratios of secondary source to points of minimisation, one can reasonably expect a
10 dB level of reduction which extends in space for at least one tenth of a wavelength. The
problem of minimising the sum of the square pressure at two closely spaced points in the
diffuse field corresponds to the range 1 < L/M < 1/2 where of course L = 1 in this case.
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The extent of the quiet zone for this arrangement is less than 10 dB in most cases but has
the advantage of being extended over a broader region.

When one seeks to impose active control within a enclosed sound field which may
be tending to 'diffuseness', at least a two to one correspondence between the number of
points of minimisation and the number of secondary sources employed is strongly
recommended (N = L/M < 2). For ratios of L to M less than two, the total effort directed
towards controlling the sound field is too thinly spread over the spatially complex
wavefield to be very effective. This is particularly true given that the level and confinement
of the quiet zone formed by the square system where L/M = 1 has already been shown to
be poor.

A recent paper by Mioshi and Kaneda® have shown that introducing one more
secondary source than is absolutely necessary (therefore being under determined) is, in
principle, sufficient to circumvent the obvious difficulties imposed by causality
considerations and is mentioned for completeness. The author has not been able to fully
understand why an additional source should be able to do this but is thought to incorporate
a modelling delay into the controller. A scheme of this nature is not realisable in practice but
has only been noted here for completeness.



CHAPTER 6

NEAR FIELD ZONES OF QUIET IN THE PURE TONE
DIFFUSE SOUND FIELD

6.0. Introduction

Previous investigations in this thesis have suggested that the active
attenuation of diffuse field pressures in regions which are remote from the secondary
source may cause substantial global pressure increases. For example the previous chapter
has indicated that the implementation of a multi-channel control scheme in diffuse fields
incurs an average square pressure increase at least equal to 3 dB. This level of increase
corresponds to the limiting cases where either the number of secondary sources vastly
exceeds the number of control microphones, or visa-versa. When the numbers of sources
and control microphones are roughly equal, for which the control configuration starts to
approach a square system, the expected increase in pressure well away from the control
point is considerably higher than 3 dB.

Active control in diffuse fields using secondary sources remote from the control
point is further limited by the fact that the shape of the quiet zone is dictated solely by the
functional form of the sound field's spatial cross correlation function. The difficulty here is
that the correlation function is, by definition, only an expectation quantity and is therefore
susceptible to unpredictable variations between individual measurements. This function is
of fundamental importance in describing the inter-dependence between acoustic pressures at
neighbouring points and is therefore intrinsically bound up with the large scale
characteristics of the wavefield. This property is therefore not amenable to manipulation by
the engineer.

In this chapter a control strategy for overcoming these difficulties is discussed
which seeks to capitalise on the near field characteristics of the radiation from a secondary
loudspeaker. This active control scheme utilises a single secondary loudspeaker in order to
drive the acoustic pressure at a point in its immediate geometric near field to zero. This
principle is certainly not original and was first proposed by Olson3 in a historically
important paper published in 1953. Although very few acoustic considerations were
discussed, the potential of this arrangement was demonstrated by using it to suppress
freely propagating plane waves over a frequency range of more than three octaves. Olson
was also the first to suggest that a tightly coupled microphone - loudspeaker pair could
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have two possible distinct modes of operation: that of an ‘electronic sound absorber' and
that of a 'sound pressure reducer’. However, no information was provided about how
these modes of operation differ in their governing physical principles.

The potential benefits derived from this loudspeaker - microphone configuration are
three-fold. First, and perhaps the most significant is the increased ease with which the
secondary source is able to couple into the acoustic pressure at the cancellation point
thereby ensuring that the energy radiated to the far field' is small in relation to that
transmitted by the primary source. Second, the shape of the near field quiet zone is, to a
large degree, deterministically governed by geometric factors relating to the secondary -
source near field radiation characteristics. Last, the difficulties imposed by causality
considerations when dealing with broadband radiation are to a large degree circumvented.
This is because the time delay from the secondary source to the control microphone will be
considerable less than the time delay from the primary source.

The transfer impedance which couples the secondary source to the closely spaced
point of cancellation now comprises a large directly transmitted near field component which
is superimposed on the purely random part arising from wall reflections. The uncertainty
arising previously for remote points of cancellation is now largely removed. In this
configuration the secondary source strength necessary to bring about the pressure
cancellation is now very much less than that of the primary source strength. By the same
argument, the sound power output from the 'tightly coupled' system is also small in
relation to that of the primary sound power output.

This control methodology has already been applied by Salikudin ez-al26 to the exterior
of jet aircraft in preliminary experiments aimed at trying to reduce acoustic fatigue. The
general philosophy behind this approach is outlined in chapter 1. This work is predominantly
experimental however, and is supported by only a limited amount of theoretical discussion. It
is hoped that this chapter will go some way to extend the present level of understanding and
help clarify some of the physics associated with this control principle.

6.1. Near field zones of quiet
Figure 6.1 shows a baffled circular secondary source gs(®,y,z) within a radius 'a’

acting to drive the pressure to zero at some closely spaced point xg represented within a
cartesian coordinate system.
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where Zy(rglr) is the free space transfer impedance that would be generated by the
secondary source in the absence of reflecting surfaces. The diffuse field pressure qgZ(rsir)
is the pressure transmitted to the field point r by reflections from the enclosure walls. By
superposition the total pressure p(r) at the point of observation may therefore be written as

P(r) = qs[ Zy(rglr) + Zy(rslr) ] + ppe(r) (6.2)

For harmonic sources, the pressure at some point ro can always be driven to zero
for a secondary source strength qg which is given by

= Ppr(ro)
950= " Z e dror 2o ©63)

For points of cancellation which are close to the secondary source, the configuration in
which we are most interested, the acoustic pressure radiated to the near field point of
cancellation via wall reflections will in most cases be very small compared to both the
primary source diffuse field pressure contribution ppr(r), and the directly radiated
secondary source pressure qsZg(rsirg) at the same point. In this tightly coupled
configuration the secondary source strength g, is largely insensitive to the secondary
source diffuse field impedance Z;(rgry). One can therefore closely approximate the total
secondary source transfer impedance Z(rlry) by its corresponding free space impedance
value to give

ro)
Gso= - T (64)

It is anticipated that only a small error is incurred as a consequence of this simplification
particularly for compact secondary sources. Omitting the secondary source diffuse field
pressure enables the total pressure p(r) at some arbitrary point in the enclosure, in most
cases, to be closely approximated by

(rglr

B(r) = Bpr(F) - Bye(r0) 2SS ©9)

Consider some point r in the vicinity of the point of cancellation ro where r = rg + Ar such
that Ar is small compared with the wavelength i.e. Ar < A. One can therefore write

I
(o + A1) = pprro + &) - ppro) 75T o)
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Consider the modulus of the square of the total pressure p(rg + Ar) p*(ro + Ar) which may
be expanded to give

Z4(rglro + Ar)|?
Ip(ro+ Ar)? = Ippr(ro + Ar)I2+ Ippr(ro)® dzs(r:iro)

. 1(rsir + Ar) *
- Porro+ Arpire) LS A0 | o o ppe(ro + AT) Za(rsro)

Zﬁ(rsh‘o) 67
The avcrégc response of the square pressure in the vicinity of the control point to the
cancellation of the pressure at ro may be obtained by averaging over all possible square
pressure responses at all points in the field keeping the separation distance Irg - rol fixed.
Taking the expectation < lp(ro+ Ar)? > over the stochastic part of the equation and noting
that
< Ipprlro)i? > = < Ippr(ro + Ar)? > = < Ippe(r)i > (6.8)

together with the defining relation for the cross correlation function
< ppr(ro)p;‘,r(rg +4r) >= <ppro+ Ar)p,’;,(ro) >= < lppr(r)l2 >p(Ar)  (6.9)

yields the simplified expression

Zy(rglrg + Ar) Zy(rglrg + Ar) 2

<Ip(ro+ Ar)i? >
Za(rgro) }P(Af) * = ZaGrdro)

< Ippr(r)* >

1]
(6.10)

where p(Ar) is the three dimensional, pure tone diffuse sound field spatial correlation
function which is (sinkAr)/KAr.

It is anticipated that any quiet zone formed according to this control principle will not
extend beyond about Ar = 0.1A at the -10 dB level (corresponding to a quiet zone 2Ar ,
equal to one fifth of a wavelength). The change in the spatial correlation function over this
interval can be calculated to be approximately 6 %. The corresponding variation in the term
2R {Z4(rdro+Ar) / Zg(rslro)} in equation (6.10) for compact sources according to equation
(3.3) however, may be shown to vary like 2krocoskArg / (krg + kArg). Over the same
interval therefore, the variation in this function is typically 20 % providing kirg - rol is small
compared to unity. The spatial cross correlation p(Ar) can therefore be set to unity while
incurring only small errors in the region of the quiet zone. This simplification is equivalent
to assuming that the diffuse field pressure is, on average, spatially homogeneous
throughout the volume of the quiet zone. For Ar less than 0.1A, one can therefore write
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<Ip(ro+ An)i? >
< Ippe(0)1? >

Zy(rglro + Ar)} Zy(rglrg + Ar) 2

=1- m{ Za(rdro) Zg(Tsiro)

(6.11)

Further simplification of this expression is possible. Noting that ro = (x0,y0,20) and
ro + Ar = (xo+AXx, yo+Ay, zg+Az), to first order in Z4, one obtains the first order Taylor

series approximation
Z4(rslrg + Ar ) = Zg(rglrg) + VZg(rslre).Ar (6.12)

for Ar < A/10

where V is the Gradient operator V =—-§a;i + %j + % k and Ar = Axi + Ayj + Azk,

where x, y and z are cartesian coordinates and i, j and k are their associated unit vectors.
The ratio of free space impedance terms can therefore be approximated by

VZ4(rgre).Ar
Za(rsiro) 613)
for Ar<A/10

Zy(rglrg + Ar) 1+
Z4(rglro) -

Substtuting this approximate expression into equation (6.11) yields

<Ip(ro+An)i> > _ { VZd(rs!ro).Ar} ) {VZd(rslro).Ar}
<t > AR TZgegrg 1Y T Ztero)
VZ4(rgr ).Ar}
24y , VZd(rglro).Ar
+R {1 + Za(rairo) (6.14)
for Ar < M/10

Expanding and collecting the terms facilitates the further considerable simplification

VZd(rslro).ArI 2

<Ip(ro + Ar)i? > = < Ipp(r)* > ~Zadry (6.15)

for Ar <A/10

This surprisingly simple result implies that the pressure near the control point
recovers from zero at a rate which is determined by the absolute value of the gradient of the
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impedance field in the measurement direction, as a fraction of its absolute value at rg. It is
tempting to look for some geometrical interpretation of this result in terms of the free space
transfer impedance function Zg(rslrg), however none was immediately apparent. Equation
(6.15) says that large quiet zones are formed around near field points of null pressure for
those sources whose transfer impedance to the point of cancellation is large and unchanging
with respect to small deviations from the cancellation position. A large transfer impedance
between the secondary source to the chosen point of cancellation is therefore desirable on
two accounts. First, it directly influences the shape and therefore the size of the near field
quiet zone. But more importantly in practical terms is that the coupling impedance governs
the magnitude of the secondary source strength and therefore the energy radiated into the
enclosure. This important aspect of the problem is addressed in the next section.

An unfortunate consequence of disregarding the secondary source diffuse field
pressure is that one has also removed any facility for incorporating the secondary source
contribution to the average square pressure increase < Ipsc(r)i? > well away from the
cancellation point. For most cases, this contribution will be negligible compared with the
primary source diffuse field contribution < Ippr(r)l2 > as will soon become apparent from
remote sound pressure level measurements made in a reverberation chamber. Strictly
speaking, however, this term should be included.

The diffuse field quiet zone very close to a source of sound is an essentially free
field result by virtue of the important approximation p(Ar) = 1 where pp(ro) = Ppr(ro + Ar)
which says that the primary sound field is homogeneous in the region of the quiet zone.
Indeed, one of the reasons why the notion of the diffuse field is so useful conceptually is
that many of the properties of a source radiating within it, on average, reduce to their
equivalent free field results. Sound power output is an important example. As an
immediate consequence of neglecting the dependence on the secondary source diffuse field,
the square pressure variation around the near field point of cancellation behaves, on
average, as if in a free field environment. In retrospect, this finding is perhaps not
surprising since the reverberant, diffuse field will tend to impose small statistical
fluctuations on the free field result which when averaged over all space will tend to cancel.

At points of cancellation along the x axis as indicated in figure 6.1, Ay = Az = 0.
In accordance with equation (6.15), the expected axial square pressure variation may now

be written as

2 Zy(rdro)|?

Zg(rslro)
for Ax <A/10

< Ip(xg+Ax,yo,zo)|2 > _ A2
< lppr(xo,),'o,zo)l2 >

X (6.16)
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Setting equation (6.16) equal to some fraction ¢ say, enables one to solve for the zone of
quiet 2Axq for which the average square pressure is a fraction o of the primary source
level. The zone of quiet along the axis of the piston motion can be therefore be
approximated by

(6.17)

/ (rglr
2Axg =2 _Zy(rgrg)
lax Zy(rslro)

Similarly in the y and z directions

24 _2\/ _Zi(rdrg) (6.18)
Yo I 2 74(rdro)

and

IAZey =2 M"‘Lﬂ
o \/ ' 2 Za(rdro) (6.19)

for small Ax, Ay and Az. Surfaces of equal pressure reduction around r therefore describe
concentric ellipsoids with semi - axes (Axq,Aya,Azq). This analysis is not valid when the
gradient of the impedance field is zero, in which event, further terms in the Taylor series
expansion of equation (6.12) must be taken.

6.2. Examples of near field quiet zones

It is instructive to consider the behaviour of the quiet zone as described by equation
(6.17) for representative examples of real secondary sources which in most cases will be
circular loudspeakers. However, as a simple model problem first consider the form of the
quiet zone for a point monopole source for which the complex impedance field is simple
and can be analytically manipulated. From equation (3.31), the axial free space transfer
impedance Zy4(0lx) is given by

Zo(0h) = Z0 S (620

where it is assumed that the point secondary source is located at the origin. Performing the
differentiation, one can readily show that the derivative evaluated in the radial direction is

given by jkxo
-jkxg - 1
ax Zd(mx()) =jZo ekxO ! ig ] (6.21)
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The size of the quiet zone is therefore proportional to

Zy(Oixg) XQ
2Axqg ~ = (6.22)
YT 2 za0m0) | Vrto?

From equation (6.17), the size of the quiet zone may be written as

2A%01 = 2, ——ﬁ—;_x—(?—_k_x.—_?_;—i (6.23)

Assuming that the average square pressure contribution from the secondary source remains
small, the axial zone of quiet converges to V0.1 A/ & for large xo which is equal to 0.1007A

or about one tenth of a wavelength to an excellent approximation.

Despite the fact that the transfer impedance and its derivative are both infinite at the
secondary source point where xg = 0, one can verify by inspection that the gradient of the
transfer impedance goes to infinity faster with decreasing xg than the value itself. The size
of the quiet zone therefore becomes increasingly smaller, monotonically tending to zero. In
this limit, the form of the quiet zone may be regarded as an infinitesimally small 'pin prick’
in the primary sound field as will also become apparent from experimental results.
Unfortunately, Olson fails to report the dimensions of the loudspeaker used or the
separation distance of the point of cancellation so that verification of his experimental
findings with the simple theory developed here is not possible.

Returning now to the form of quiet zones generated by more realistic sources of
sound. As a first order approximation to the free space radiation from a real, baffled
circular loudspeaker, consider the related analogous model problem of the acoustic
radiation from a rigid piston oscillating in an infinite baffle30. Surrounding the piston
source with a hypothetical baffle of infinite extent ensures against the interference of the
forward radiated sound from diffracted waves from the rear of the source. This geometry is
indicated in figure 6.1. All points on the source may be regarded as elementary, compact
monopole type sources whose sound field radiates spherically out in all directions. The
contributions from all the elemental sources at some point r can be integrated to produce the
Rayleigh integral given below

-jk.r'
Zy(rgr) =j -‘2?% ; E—:ﬁm ds (6.24)
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The integration is taken over the entire source distribution gs, which is assumed to be
uniform to give 'piston like' motion, where rg now denotes the centre of the piston and Ir'l
is the distance from each elemental source to the point of observation at r. It is relatively
straightforward to shown that this integral reduces to an exact solution30 providing the
point of observation is 'on axis' such that r = (x,0,0). Putting the secondary source at the
origin of co-ordinates rs = (0,0,0) and performing the integration one can show that

Z4(0Ix) =%3[e°5‘°‘ kX2 + a2y (6.25)

where S is the surface area of the piston na2. Equation (6.25) indicates that the free space
transfer impedance Zg(rglr) generated by a piston type source in an infinite baffle comprise
only those contributions which are on the centre and the circumference of the circular
source. Contributions from elemental sources in the disc itself clearly cancel. This
simplified model is generally regarded as a reasonable approximation to the acoustic
behaviour of real baffled, circular loudspeakers radiating at mid frequencies, see for
example the loudspeaker vibration patterns presented in the book by Fahy83. This is the
frequency range where diffraction effects around the oscillating loudspeaker are small but
where the loudspeaker cone remains as a rigid body and has not yet begun to oscillate in its
various normal modes of vibration. All points on the cone therefore oscillate with the same
phase. The form of equation (6.25) suggests the possibility of using a closely spaced array
of appropriately phased point monopole sources in order to simulate an effective secondary
source distribution with the desired transfer impedance characteristics. This idea remains to
be investigated.

We now seek to determine the variation of the expected value of the 10 dB quiet
zone 2Axg as a function of the microphone separation distance rg evaluated for various
values of the loudspeaker radius 'a’ modelled as a piston in an infinite baffle. This may be
determined from equations (6.17) and (6.25) assuming that the increase in the square
pressure arising from the secondary source contribution is close to zero and can therefore
be neglected. The 'on axis' quiet zone was evaluated in accordance with equation (6.17) for
a range of microphone separation distances varying from zero, up to a maximum of one
wavelength. A range of loudspeaker radii ranging from near zero (for the case of the
elementary point monopole) up to a maximum of one wavelength were also considered. In
all cases, the secondary source contribution to the square pressure is assumed to be
negligible and has therefore been set equal to zero.
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Figure 6.2 The theoretical expectation for the near field zone of quiet shown plotted as a
function of the point of cancellation distance and also the loudspeaker radius.

For some values of the loudspeaker radius 'a’, there appears to an
optimum separation distance r for which the quiet zone takes a maximum value.
Figure 6.2 indicates that this usually occurs at separation distances approximately
equal to one tenth of a wavelength. This peak in the series of curves corresponds
to the critical distance, below which, the 10 dB quiet zone extends into the
loudspeaker itself thereby reducing the effective width of the quiet zone. Another
equally notable feature of this figure is that the curves asymptote to approximately
the same value as the separation distance increases. By inspection, this quiet zone
limit is approximately one tenth of a wavelength as observed previously for the
behaviour of the quiet zone formed in the vicinity of a point monopole source.
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The simplifying assumptions leading to the derivations of the governing equations
at these large distances become invalid owing the contribution from a significant level of
reflected sound. We have already seen in chapter 5, however, that when the secondary
source transfer impedance contribution is dominated by the diffuse field part of the
impedance field, but the source strength is reasonably constrained, the zone of quiet limited
by the spatial correlation properties of the sound field, is also equal to one tenth of a
wavelength. We thus have the interesting observation that the average size of the 10 dB
quiet zone appears to remain approximately constant at about one tenth of a wavelength
even as the point of cancellation is moved from being close to the secondary source so
being determined by the near field, to being very distant so being determined by the diffuse
field. The likelihood of deviation from the average value of the quiet zone steadily
increases. The crucial difference between the two cases is that the expectation value of the
square pressure increase varies from a small fraction of one decibel in the former case, to
tens of decibels for the remote case.

The succession of curves plotted for various values of the loudspeaker radius
indicate that the largest zone of quiet is achieved by the loudspeaker which is one
wavelength in diameter acting to cancel the pressure at a point located at approximately one
tenth of a wavelength from its centre. From a practical view point, even at say 500 Hz
which may be regarded as being in the mid-frequency range, the loudspeaker diameter is
approximately equal to 0.7 m which is already unrealistically large for most practical
purposes. In many real applications, the excitation frequency will be fixed and the size and
location of the secondary loudspeaker will be dictated by constraints imposed by limited
space such as for example, the size of the head rests in vehicles. The only parameter which
remains variable to the engineer is therefore the separation distance of the point of
cancellation from the secondary source which may be optimised by the use of figure 6.2.

The discussion so far has talked only in terms of the spatial extent of the zone of
quiet along the axis in the direction of the piston motion. One may utilise the existing
theoretical framework to derive similar results for quiet zones in the orthogonal directions.
However, it is worth noting that in these directions the circular piston source has cylindrical
symmetry for which the piston free space transfer impedance Zg(rglr) is the identical for all
values of the azimuthal angle ¢ (see figure 6.3a) namely

Zy(rgr,01) = Zg(rsir,¢2) (6.26)

where ¢1 and ¢, are arbitrary azimuthal angles. This remark has important implications for
the geometry of the quiet zone. A secondary source driven to cancel the pressure at some
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velocity will no longer be valid in this case. This is because the secondary source is now
radiating into an acoustic impedance which differs from the usual diffuse field impedance
necessary for these relationships to be valid. In this tightly coupled configuration the
secondary source will now 'see’ some effective impedance mechanism which forces its
pressure at some closely spaced point to zero and it is therefore inevitable that its sound
power output will be modified in some sense. The details of this process is addressed in the
next section for compact secondary sources. The expectation of the square transfer function
<[Hy? > now no longer quantifies the expected value of the added energy in the enclosure
but is simply an indication of the average secondary source strength requirements. This
quantity is also a good indicator of the degree of acoustic coupling between the loudspeaker
and the microphone, which as we have seen in chapter 5, goes to infinity as the point of
cancellation is moved outside of the influence of directly transmitted sound. The transfer
function Hy, has previously been derived in terms of the primary source and secondary
source impedance contributions according to

—9s0 __ Zy(rplrg)
Ho=4p = Za(rsiro) + Z(rsire) (63)

It is left to Appendix 6.1 to show that in the case of the diffuse sound field, < [Hq(<8%>)12 >
is determined from the following integral

eo 21

f J e (12 -2rcos8 +1 )/2<82>
0 0

< [Ho(<82>)12 > = 1
T

. drde (6.27)

where the term <8%> on which < [Ho(<8%>)1 > solely depends is the average of the square
of the real part (or imaginary part) of the diffuse field transfer impedance < R2(Z(r)} > as
a fraction of the square impedance radiated directly !Zd(rslro)lz. In the present case, <%
symbolises the relative variance of the diffuse field transfer impedance at the point of
cancellation according to equation (6.28) below

_ 0% <RYZur)) >
<% = 5 = Zarro)? (6.28)

Just as this factor was shown to govern the mean and variance of the minimum sound
power output from two closely spaced sources (chapter 3), so it also emerges in this
problem as the factor which completely determines the behaviour of < IHo(<8%>)1% >.
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Unfortunately, equation (6.27) does not lend itself to analytic evaluation. Moreover
it would appear from a study of the behaviour of the dummy variable r in the vicinity of r =
0 in this equation that the mathematical expectation < IHo(<8%)12 > does not formally exist
and is therefore infinite. An unfortunate consequence of this unexpected and surprising
result is that one is unable to talk meaningfully and unambiguously about the true
mathematical expectation of this well behaved, tightly coupled system. Just as the
secondary source strength seeking to minimise the total sound power of a closely spaced
point primary source has the potential to become singular, this observation is also true of
IHo(<8%)2. The ill-conditioning of this expectation is perhaps more surprising since now
the denominator of equation (6.3) comprises two degrees of freedom by virtue of the real
and imaginary parts of the impedance field which simultaneously must now go to zero for
this to occur.

The cause of this potential singularity occurs when both the in-phase, and
quadrature parts of the directly radiated transfer impedance simultaneously destructively
interfere with the impedance contributions from subsequent reflections. In the event of this
unfortunate (and very unlikely) occurrence, the complex secondary source transfer
impedance is zero such that it has no influence at the chosen point of cancellation and is
therefore required to be infinitely large. In terms of the integral in equation (6.27), the
outcome described here is manifest as a singularity at the origin r = 0, by virtue of which
the average value of the square of the transfer function < IHo(<5%>)12 > is infinite.

In view of this misleading and ambiguous result, we will now endeavour to use
previously established techniques in order to obtain a good estimate for the expectation of
the square of the modulus of the transfer function < lﬁolz >. It is shown in Appendix 6.2,
that for those source positions for which 82 < 1, < IH|2 > may be expanded as a
polynomial in <8%> of the form

< I}IEIC,I2 > =2 <82> + 4 <8252 + 16 <82>3 + 96 <§2>4 (6.29)
for 82<1

where <8%> = < R}{(Zy(r)} >/ 1Z4(rslro)’%. Thus, < IHl? > is a highly non-linear function
of the impedance variance <82>. This function is plotted below and compared with the
expectation value obtained from a 15,000 point ensemble of values generated from
computer simulations. The real and imaginary parts of the impedance terms appearing in
equation (6.3) were arbitrarily assigned an independent, normally distributed random
variable with a pre-determined variance <8%> taken from a random number generator. The
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the next section when the sound power output of a point monopole secondary source is
derived.

For small <82> where the coupling mechanism between the secondary source and
the point of cancellation is predominantly via directly radiated sound, < [Hol? > is small in
relation to unity. In this configuration, there is small likelihood that the secondary source
will experience difficulties in coupling into the near field point of cancellation. This is
because the secondary impedance term is contrived to contain a large free field component.
The corresponding primary impedance term however, comprises only a reverberant
contribution which is of course subject to uncertain statistical fluctuation from point to point
in the diffuse wave field. This helps to explain why the parameter <82> is so important
since it is this term which exactly characterises the likelihood of departure of the complex
transfer impedance from its mean value. As a general guide-line, one should aim to locate
the error microphone sufficiently close to the secondary source such that the ratio of
reflected sound to directly transmitted sound is less than about 0.1. In this configuration,
the system is tightly coupled and the probability of departure from this assumption is small.

By way of illustration, consider again the special case of a point monopole source.
The square of the modulus of the free space transfer impedance is determined from
equation (3.31) to give
2
Za(rgro)?=—20— 6.30

where Ar = Ir - r¢l. From equation (6.28), the ratio of impedance terms <8%> is therefore

equal to
2> < SRAZM) > 4o (631)
Z§
Recalling equation (3.51), one can write
(kAr)?
<§2> = ——F— (6.32)
Mg 5(®)

At frequencies greater than the Schroder frequency, the relative variance of the diffuse field
transfer field transfer impedance is very much less than unity. For example, at a frequency
equal to the Schroder frequency where M 5(®) = 3 and for a cancellation distance equal to
one tenth of a wavelength, <82> may be calculated to be equal 0.05, from which the
corresponding value of < II/-\loI2 > according to figure 6.4 is 0.1 which is small compared to
unity. For small krg therefore, taking the leading term in equation (6.29), the average
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secondary source strength may be shown to be proportional to the distance from the pomt
of cancellation thus

kAT Ig,) (6.33)

N<Ia?> - \/
<iqso Mg 5(©)

for kAr<< A

6.4. The sound power output of a point monopole source
in driving a closely spaced point pressure to zero

The considerable insight into the mechanisms of active noise control shown by
Olson in his now classic paper "Electronic Sound Absorber' has already been mentioned.
In the paper written as far back as 1953, it was postulated that a secondary source could be
used in one of two possible modes of operation: that of a 'Sound pressure reducer' and a
'Electronic Sound Absorber'. The purpose of this section is to provide further evidence that
in the diffuse sound field, these possible modes of operation are distinct and exclusive
inasmuch that a loudspeaker functioning to drive a point pressure to zero must necessarily
radiated sound power into a room. It is strongly suspected that the same principle also
holds for other non-diffuse sound fields. We now consider the sound power output of a
point monopole source driven to cancel the pressure at a closely spaced point in a diffuse
sound field.

Consider a point monopole source of sound acting to drive the acoustic
pressure at some closely spaced point to zero. As usual, consider the total acoustic pressure
p(r) as comprising the superposition of directly radiated sound and scattered sound.
However, consider only those points of observation r and points of cancellation rq for
which the diffuse field due to the secondary sound field is negligible in comparison to the
diffuse field contribution from the primary source. This simplifying assumption has been
validated in the previous section where a linearised power series approximation to the
expectation < [Hf? > was found to be adequate for small kir - ryl. Neglecting the
secondary source diffuse field pressure, to a good level of accuracy, the total pressure may
be represented by

p(r) = qgZo %‘1 + Ppr (1) (6.34)

where rg = 0. The pressure at some point rg (also assumed to be small compared with the
wavelength), may therefore be driven to zero p(rg) = 0 for a secondary source strength qgq
which is given by

dso = jPpr(ro) %eﬂm (635)
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so that
P(r) = -Pprlro) L ek -10) 4 po (r) (6:36)

The sound power output from the secondary source W as a consequence of performing the
point pressure cancellation may be derived from

W =3 R {lim p(r) 3o ) ©6:37)

where the sound power output for this infinitesimal point source distribution, assumed to
be at the origin of coordinates r =0, is evaluated from the product of the complex source
strength and the acoustic pressure at the source point. On substitution of the terms one
obtains

We=2R{ lim (-Ppr(ro) Lk -10) + ppr (1) (-jPpr(ro) %’ ed0) }  (638)

k23 si . :
= Ipr(ro)? liy 50 S - LR (lig i () ppr®) B2 jed0 ) (639)

Taking the expectation only affects the stochastic part of the equation as indicated below

k2r2 . o
< Ws > =< Ip(ro)i2 > -2-—2-3 - %R{ }1_()13 <{ Ppr("O) ppr(r) %Q j eko }> (6.40)

Note that
* kro. ko 1s = <fn® kro . ks
<{Pp,(ro) ppr(r) 7 }> = <{pp,(ro) ppr(r) > 7o ) €770 (6.41)
and also the result < p’;(ro) prr)>=< lpr(r)12 > sinc kirg - rl which is real and further that

< Ip(ro)? > = < Ip(r)1? >. These results may be combined to produce the following
expression for the space averaged secondary source sound power output < Wg >

(k) K .
<Wg>=< lpr(r)l2 >rh_% { -(-i—ZQg—- - -2% sinc kirg - rl sinkrg} (6.42)

(6.43)

2 2
< Ws> =< Ip(r)? >{ (kro)” - sinkro }
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Equation (6.43) can be conveniently normalised with respect to the primary source free
space sound power output Wp, which is also equal to the space averaged diffuse field

sound power output given by equation (3.45)
Wp=1lg? Zo (3.45)

Further noting that < Ip{(r)i2 > = Iqpi2 < IZp(r)i > gives

<Wg>  <IZy(n)P>
- 2

W 7 { (kr)? - sin’krg } (6.44)

This ratio of square impedance terms in equation (3.51) is now familiar and is equal to

2
<\Zp()’> _Z__[E%n]?’ -2 (6.45)
Z5 3n M, 5(w)
which upon substitution into equation (6.41) yields
3
5__%;;_2 - %[f%h] { (krg)® - sin%krp ) (6.46)

Since we are only concerned with the range of separation distances in the region of ry for

which rg << A, the following small angle approximation sin’x = x2- x*3 may be applied
to give
<Wg> 257 [fenP
il ; -5 [-%h] [ff (6.47)

forryp<< A

Equation (6.47) shows that on average, a secondary source driven to cancel the
pressure at a closely spaced point to zero cannot absorb any energy since < Wy > is always
positive. This follows directly from equation (6.41) by virtue of the basic identity x 2 sinx.
This finding is roughly consistent with Olson's original hypothesis which says that a
‘Sound pressure reducer’ and a "Sound power absorber' are independent secondary source
configurations; namely that a sound pressure reducer cannot absorb any sound power and
visa - versa. Whilst this is a valid generalisation for all practical purposes, strictly speaking
this is not entirely correct. Specifically, in chapter 3 it was shown that the minimum square
pressure in the vicinity of a perfectly absorbing point monopole source is approximately 3
dB below the primary source level signifying a sound pressure reduction. It is interesting to
contrast the modes of operation for the case of a point monopole secondary source. By
driving a point pressure very close to the source to zero, the extent of the quiet zone is
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negligible. However, even though the point secondary source is infinitesimal, as an
absorber of sound it has an effective area of absorption equal to A2/ x. This is despite the
fact that the source can only match itself to the acoustic pressure at a single point in the field
which can be explained in terms of diffraction of the incident wavefield.

The sound power radiated by a secondary source acting as a near field 'pressure
reducer’ is only small for separation distances which are very close to the secondary source
compared with the acoustic wavelength. This follows from the constant of proportionality
in equation (647), 2°13/9 which can be calculated to be approximately 110. The sound
power radiated by a secondary source in this role is therefore small in comparison to the
original primary source level. For example, a point of cancellation which is say, one tenth
of a wavelength from a compact source radiating at a frequency equal to the Schroder
frequency, is sufficiently well coupled to ensure that the sound power radiated into the
enclosure by the secondary source as a fraction of the primary contribution is about 0.01
corresponding to an increase in the total potential in the enclosure of about 0.01 dB. From
figure 6.2, the corresponding 10 dB quiet zone for a point monopole source in this
configuration is nearly one tenth of the acoustic wavelength.

As the cancellation point is brought closer to the point secondary source, the size of
the quiet zone tends to zero and is identically zero in the limit where rg = 0. The sound
power output from the secondary source is likewise zero. This is consistent with the
underlying philosophy behind active control whereby in general, the degree of reduction
attained is broadly in line with the level of pressure increase caused elsewhere. Most
significantly, the level of secondary source sound power output radiated into the enclosure
is extremely sensitive to the separation distance of the cancellation point of which a fourth
power dependence has been ascertained. It is interesting to note that if the secondary source
sound power output had been assumed to be proportional to lqg,/?, then the predicted
dependence would have been on the square of the microphone separation distance
according to equations (6.29) and (6.32).

This idealised model is believed to provide a reasonable description of the energetic
processes that govern a real system which utilises a finite size loudspeaker. As already
shown in the previous section, the diameters of typical loudspeaker operating at reasonably
high frequencies is a small fraction of the acoustic wavelength so that the compactness
assumption ka < 1 remains valid even for real loudspeakers. Appreciable departure from
this model is therefore not anticipated in practice.
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6.5. Experimental determination of the quiet zone in the near field of a
secondary loudspeaker in a reverberation chamber

Ultimately, theoretical analyses are only meaningful when considered in the light
of corresponding experimental results. The aim of this section therefore is to present some
experimental findings relating to the zone of quiet measured around a control microphone in
the near field of a secondary loudspeaker at which the pressure is driven to zero in a
reverberation chamber.

An attempt to validate the predictions of the near field quiet zones made in section
6.3 was carried out within an non-rectangular 13.3 m3 reverberant enclosure excited by a
harmonically driven loudspeaker as a primary source. By adjusting the quantity of sound
absorbing foam in the enclosure, the reverberation time was arranged to be approximately
0.4 s corresponding to a Schréder frequency of about 330 Hz. The pressure at a
microphone close 1o, and on axis of a secondary loudspeaker was set to zero by adjusting
the relative gain and phase between the two outputs of a variable phase oscillator through
which the primary and secondary loudspeakers were driven. The frequency was chosen to
be 572 Hz (such that A = 0.6m), well above the Schréder frequency for the room.

For each control configuration investigated, corresponding to a given loudspeaker
diameter and microphone - source separation distance, the primary source position was
randomly positioned at ten different locations. At each primary source position the acoustic
pressure about the point of cancellation was measured over a distance equal to one
wavelength with the aid of a small computer controlled trolley which was made to support
a measurement microphone. The trolley was made to run along a track down which were
drawn regularly spaced alternating black and white strips of tape. The measurement
position of the trolley was determined by a light sensitive switch mounted on the front of
the trolley which was made to send the appropriate control signal to the microcomputer
depending upon the received brightness level reflected from the strips. With the aid of
some electronic logic and a microcomputer, the trolley was made to traverse along the axis
of the loudspeaker stopping at each of the regularly spaced measurement positions.

On arrival at each of the measurement stations identified by a black strip separated 1
cm apart, the trolley was made to stop and a measurement of the acoustic pressure was
made which was then sent to the microcomputer via an A /D converter for subsequent
processing. One complete traverse of the trolley corresponding to sixty measurement
positions was made before and after control and the ratio evaluated for each primary source
position. Complete automation of the measurement process meant that it was possible to
make a total of eighteen sets of ten averages corresponding to three loudspeaker diameters
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for each of six cancellation positions. The location of the points of cancellation were varied
from the position of the loudspeaker cone itself where Ar = 0, up to a maximurn separation
distance equal to one fifth of the acoustic wavelength in regular increments of 0.05A (equal
to 3 cm at 572 Hz). A schematic representation of the experimental arrangement is shown
below.

]

T\,
L4|:>to-8wnch \

Difjuse Environment G,
f>f

ng phase
== A/D o HCOmputer e Eg;tzol
!
rmea;‘fx'::rng Pre-Amp |
A
Oscilloscope;

Figure 6.5 A schematic representation of the experimental arrangement employed in
measuring the near field zone of quiet in a reverberation chamber driven above the Schrder

frequency.

Before commencing near field measurements in the reverberation chamber, the
opportunity was taken to measure the zone of quiet formed well away from the influence of
directly transmitted sound as described at length in chapter 4. The relative gain and phase of
the secondary loudspeaker was adjusted with respect to the primary source so as to form a
pressure null at a randomly positioned microphone located many wavelengths from both
loudspeakers. The sound pressure level was recorded one and a half wavelengths about the
point of cancellation along some randomly chosen axis relative to the room. This was
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achieved by a single traverse of the measurement microphone supported by the computer
controlled trolley orientated through the point of cancellation. Performing the measurement
procedure both before and after control enabled the sound pressure level ratio to be
determined. The average from fifty such measurement ratios corresponding to fifty random
primary source, secondary source and point of cancellation positions is shown below in
figure 6.6 together with the theoretical curve of equation (4.25). For this set of fifty
measurement averages, good agreement is established for < Ipg?2 > = 3.8< !pp12>.
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Figure 6.6 The average variation from 50 measurements of the ratio of square pressures before
and after the cancellation of the pressure at point remote from sources of sound in a
reverberation chamber at a frequency of (solid line). Also shown is the theoretical curve 3.8[1 -

sinc2kAr] (dashed line).

The 10 dB zone of quiet for this set of measurements can be observed to be
approximately one tenth of the acoustic wavelength. This experimental finding is roughly
consistent with the 10 dB quiet zone obtained from computer simulations described in
chapter 4. In both cases however, this localised region of quiet appears to be at the expense
of a four fold increase in the average square pressure globally.

The experiment was repeated at the lower frequency of 343 Hz which is close to the
Schrider frequency for the enclosure and is therefore on the borderline of 'diffuseness’. The
square pressure was monitored along some randomly chosen axis orientated through the
point of cancellation which was repeated fifty times for a different set of fifty primary source,
secondary source and cancellation point positions. Owing to the increased wavelength at this
lower frequency, the variation of the square pressure was only measured one half of a
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wavelength either side of the point of cancellation. The averaged result from fifty such
measurements is shown below in figure 6.7. For this set of averages, the theoretical curve
provides a good fit to the experimental curve for < Ipg?> = 2.0< Ippi?>[1 - sincZkAr].
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Figure 6.7 The results of fifty measurement averages of the square pressure ratio for another set
of random source positions evaluated at the lower frequency of 343 Hz between plus and minus one
half of a wavelength.

For this set of fifty measurement averages, fortuitous positioning of the sources and
point of cancellations positions has produced a 10 dB quiet zone which is approximately
one eighth of the acoustic wavelength corresponding to about 12 cm at 343 Hz.

Having established the size of the typical zone of quiet one can expect from the
remote cancellation of the acoustic pressure at a point experimentally, it remains to be
shown that the near field contribution from the secondary source can improve on this
uncertain arrangement which is known to produce large global pressure increases. As
representative examples of typical loudspeakers, three were selected whose radii in
descending order of diameter were chosen to be 0.11 m, 0.055 m and a third loudspeaker
whose cone was enclosed by a rigid plastic funnel with a 1 cm aperture. The purpose of the
latter arrangement was to produce a source of sound whose source distribution was
concentrated into a very small volume in an attempt to mimic the acoustic behaviour of a
point monopole. Thus, it was hoped that the funnelled source would behave as an
oscillating slug of air although leakage of sound radiated from the sides was anticipated.

Each of the three loudspeakers were systematically driven so as to null the
pressure at six on-axis microphone positions ranging from the centre of the loudspeaker
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cone itself, up to a maximum of one fifth of the acoustic wavelength at regular increments
of 0.05 L. The frequency was again set to 572 Hz and the near field quiet zone was
measured along the loudspeaker axis a total of ten times corresponding to ten random
primary source positions. For the sake of consistency, the set of ten primary source
positions in the enclosure were kept the same for each configuration tested. The variation in
the pressure measurements close to the point of cancellation between successive
measurements was found to be sufficiently small so as to indicate that an average result
comprising of only ten independent measurements would be sufficient to characterise the
representative behaviour of each configuration. This contrasts the previous example where
the zone of quiet was controlled remotely from the point of cancellation where it was found
that one set of fifty averages was found to behave very differently from another.

Some examples of the results obtained from this measurement procedure are shown
below. Firstly, consider the cancellation of the pressure at a point on the surface of the
source itself such that | rg - rgl = 0. According to figure 6.2, one can expect a quiet zone
which is of infinitesimal extent for the limiting case of a point monopole although this
should increase to about 0.07A for the medium size loudspeaker (a = 0.092A) and still
further to about 0.1A for the largest loudspeaker (a = 0.19A). The results for this set of
loudspeaker-control microphone combinations are shown below. The experimental results
are shown as a solid line while the corresponding theoretical results are shown as a dashed
line.
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Figure 6.8 The square pressure ratio formed from the average of ten measurements around the

point of cancellation on the surface of a secondary loudspeaker of radius (a) 1 cm, (b) 0.055 m,
(c)0.1lm
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The average result obtained from ten secondary source positions shown above
indicate good agreement with the theory. More important is that general trends in the
behaviour of the near field quiet zones are correctly predicted. Wholly consistent with the
theory, the quiet zone formed near the funnelled source is observed to be negligible.
Moreover, the fact that any region of quiet is formed which is of finite extent can be
attributed to the finite volume of the source and to a lesser degree, leakage of sound from
the sides of the funnel. In the limiting case of a hypothetical point source, the impedance
field is known to be strongly divergent very close to the source whose strength decays
inversely as distance from its centre.

The most significant feature of this series of results is that the increase in the square
pressure well away from the point of cancellation is small in contrast to the case where the
point of cancellation is remote from the secondary source, which may be many decibels.
This is true even for the largest loudspeaker where the remote square pressure increase is
only a fraction of one decibel. In this respect, it would appear that this strategy is capable of
producing something for nearly nothing inasmuch as one is able to selectively impose
regions of quiet in the diffuse sound field while leaving the global sound field largely
unchanged. Unfortunately, it soon becomes clear that as the point of cancellation is moved
away from the source, the size of the quiet zone increases only at the expense of an
expected increase in the square pressure far from the source as indicated by the increased
secondary source sound power output given in equation (6.47).

As a technical aside, it is worth recording the difficulty experienced trying to reduce
the pressure at a microphone very close to loudspeakers to levels of more than about 15
dB. This is almost certainly attributable to the large pressure gradient, and therefore the
non-uniformity of pressure across the finite diaphragm of the control microphone at these
positions thereby introducing inaccuracies owing to the non-zero pressure integrated over
the diaphragm. Close to the funnelled source for example, a 15 dB variation in the square
pressure was measured over a distance of 3 cm corresponding to an average change of 5
dB over the 1 cm diaphragm of the control microphone. A minimum of -15 dB in the
square pressure level at this position therefore corresponds to the average square pressure
over a 1 cm region. This is an additional reason why one should choose to cancel the
pressure at a point in the sound field where the rate of transfer impedance with distance is
small.
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Figure 6.9 show three plots of the experimentally determined square pressure
profile about a point of cancellation one tenth of a wavelength from the centre of the three
secondary loudspeakers averaged over ten measurements.
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Figure 6.9 The square pressure ratio formed from the average of ten measurements around the
point of cancellation at an ‘on axis’ point one tenth of a wavelength from the cone of a
secondary loudspeaker of radius (a) I cm, (b) 0.055 m, (c) 0.11 m.

Again the simple theory appears to provide satisfactory description of the series of
results obtained experimentally although perhaps less convincingly for the quiet zone
formed around the funnelled source. This is almost certainly due to sound radiated from the
sides of the funnel whose contribution to the total acoustic pressure is now significant and
perhaps non-linear owing to the increased volume velocity required to perform the point
cancellation. For the two remaining loudspeakers, good agreement between the theory and
experiment is obtained.

The 10 dB quiet zone formed around the middle size loudspeaker shown in figure
6.9b can be seen to be slightly less than one tenth of a wavelength while the zone of quiet
formed around the largest size loudspeaker is slightly more as indicated in figure 6.9¢.
Moving the point of cancellation away from the surface of the source can be seen to have
the effect of producing a substantial increase in the average square pressure between the
source and the point of cancellation. This is due to the near field contribution from the
secondary loudspeaker which progressively diminishes as the size of loudspeaker
increases. In practice, one should take steps to ensure that the listener's ear cannot enter
this region where the increase in the square pressure can be typically as high as 15 dB.
Nevertheless, the average square pressure increase well away from the point of cancellation
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still remains small for these finite size loudspeakers. Moreover, there are small regions far
from the point of cancellation which have also undergone a reduction in the pressure
although this is probably more fortuitous than by design.

As further vindication of the underlying philosophy behind this control scheme, the
results obtained from the cancellation of the pressure at a point exactly one quarter of a
wavelength from the centre of the secondary loudspeaker is shown in the last series of
figures below
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Figure 6.10 The square pressure ratio formed from the average of ten measurements around the
point of cancellation at an ‘on axis’ point one quarter of a wavelength from the cone of a
secondary loudspeaker of radius (a) I cm, (b) 0.055 m, (c) 0.11 m.

The predicted result obtained between the theory and experiment for this
combination of funnelled source and cancellation position now fail to agree to any
reasonable degree. However, good agreement is obtained for the remaining two
loudspeakers. Consistent with the theory, the size of the quiet zone continues to increase
with increasing loudspeaker size and cancellation position. For the largest loudspeaker
seeking to cancel the pressure at the furthest distance which is a quarter of a wavelength for
this set of measurements, is able to produce a quiet zone nearly equal to one eighth of a
wavelength. The effect on the square pressure well away from the control point still
remains less than 2 dB.
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6.6. Discussion and conclusion

Undoubtedly, the size and shape of the diffuse field quiet zone benefits appreciably
from the large, highly correlated, deterministic secondary source near field pressure
contribution before being scattered by the walls of the enclosure. However what is most
significant, is that the form of the quiet zone benefits twice over from this large near field
contribution to the pressure at the point of cancellation. First and most unexpectedly, the
size of the quiet zone depends proportionately on the magnitude of the transfer impedance
at this point and secondly, the near field impedance contribution as a ratio of the reverberant
contribution governs the energy radiated by the secondary source into the enclosure.

Simple expressions have been developed which seek to describe the size and shape
of the zone of quiet formed around a point of cancellation in the near field of a secondary
loudspeaker. Unfortunately, no unified analysis has been possible which encompasses
both the two extreme cases which have had to be considered separately in this thesis. At
one extreme where the point of cancellation is close to the source, the direct field
completely dominates the reflected sound field so that a free field analysis for the quiet zone
becomes appropriate. At the other extreme where the point of cancellation is far from the
sources, the direct fields are negligible compared with the reverberant contribution so that
one can talk entirely of random quantities in order to derive expressions for the quiet zones
and related statistics. However, in the intermediate region where the total pressure
contributions is roughly shared between the free field and reverberant contribution, the
form of the quiet zone is indeterminate. Although most likely at these positions, the form of
the quiet zone will comprise some unspecified combination of the two.

One of the features of this control strategy which makes it most appealing as a
viable technique for high frequency, reverberant sound fields is that it is tightly coupled and
therefore the level and spatial extent of the pressure reductions does not depart significantly
from one position in the sound field to another. From a practical viewpoint, this offers the
considerable advantage that each source can be adjusted independently to cancel the
pressure at their respective microphone. One can envisage installing an array of identical
systems operating at high frequencies in order to produce a localised quiet zone about the
ears of the seated passengers while simultaneously radiating at low frequencies in order to
suppress individual modes of the enclosure. One practical complication might be the
changing acoustic space due to the moving head of the passenger. However, this could in
principle be removed by an adaptive controller which responds rapidly to the changing
acoustic space. One may of course argue that the presence of a near spherical rigid body
which is large compared with the wavelength will destroy the diffuseness of the sound field
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thereby violating the underlying diffuse field assumptions. This problem should provide an
interesting area of research which is probably better tackled experimentally.

Another interesting area of research which remains to be investigated is that of high
frequency broadband control at a point in an enclosed space. This problem has been
neglected here mainly because of its complexity and also not wanting to obscure the
underlying physics. The control configuration advocated here is ideally suited to broadband
control which is probably the motivation behind Olson's experimental arrangement.
Causality considerations are largely overcome since the pressure at the point of cancellation
will respond almost instantaneously to the action of the secondary source while the primary
pressure takes the entire propagation time from an infinite number of image sources to
reach the point of cancellation.

The results reported in this chapter also goes some way to clarifying the relationship
between the two possible modes of operation of a secondary source vaguely alluded to in
Olson's paper. The work of chapter 3 has already shown that a source of sound can absorb
energy in a diffuse sound field which has been shown to effect a small area of pressure
reduction in the vicinity of the source. However, in this chapter the converse problem has
been contemplated where the sound power output of a point secondary source which acts to
produce a point of null pressure close to the source has been derived. A simple analysis has
established the sensitivity of the sound power output from compact sources to the
separation distance of the point of cancellation of which a fourth power dependence has
been ascertained.

In summary therefore, the cancellation of the pressure in the near field of a
secondary loudspeaker acts to produce zones of quiet which are broadly in line with those
attained when the point of cancellation is remote from the sources. However, the advantage
of this this control geometry is that it adds a high degree of determinism into what would
otherwise be an ill-conditioned and uncertain arrangement. Moreover, the levels of square
pressure produced far from the point of cancellation are reduced from typically 6 dB in the
case of the former arrangement to negligible fractions of 1 dB for some combinations of
loudspeaker diameter and microphone separation distances.
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APPENDIX 6

Appendix 6.1. A formal calculation of the space averaged
squared transfer function < |Ho[* >

Consider the transfer function H,, defined in equation (6.3)

_ Z(rplro)
Ho = - Zatearo) + Z4(r o) (e

where Z(rpiro) and Z(rplro) are the diffuse field transfer impedances whose real and
imaginary parts are independent and normally distributed random variables. In terms or
more concise notation, [Hyl? can be written as

Z

= A6.2
(1 + x)2+y? (452)

IHot?

where Z = 1Zy(rplro)? / 1Zg(rgro)?, x = R{Z(rglr) / 1Zy(rglrg)}l and y = 1{Z(rlro) /
IZy(rglro)!. For well separated primary and secondary sources, the expectation < [Hoi? > is
given by the product of the independent factors

1

2,2 _—
<Hg>=<Z>< a +x)2+y2 >

(A6.3)

It has been shown previously that Z is a Chi squared random variable with two degrees of
freedom whose mean value may be determined from equation (6.28) to give

_<IZrplr)?> .,
<Z>= Zardro? = 2< 82> (A6.4)

The mean of the second factor may be determined by recalling that (x+1) and y in equation
(A6.3) are normally distributed random variables whose variance are equal to < 82 > and
whose mean values are equal to unity and zero respectively. Putting X1 = x+1, one can

write
fx1(x1)=-———-l—-~— e-(x -1Y22< 82>: Vx; (A6.5)
2n<d2>
fy(y) = 1 e-y2< 82>, Vy (A66)
2n<d2>
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In terms of the current notation, we require the expectation value < g(x;,y) > where g(x;,y)
is the function

g(xpy) = 55—z 1 (A6.7)

xl+y2

A well known result is that the expectation of some multi-variable function g(x;,y) is
determined from63

< g(x1,y) > = [ g(x1,y) fxl,y(xl,y) dxdy (A6.8)
where fyy y(x1,y) is the joint probability density function between the random variables x1
and y which is simply the product of their respective density functions by virtue of their
mutual independence which can be assumed for well separated sources. One can therefore

write
1 expl-(x? + y2 - 2x, + 1)/2<82>]
< g(x1,y>= dx,dy(A6.9
B0y 2n<d2> J f x} + y? 10y (469)
-00 ~00

This double integral may be simplified by the change of variable x; = rcos8, y = rsin8
which may be substituted into equation (A6.9) and combined with equations (A6.3) and
(A6.4) to produce

oo 2

- - 2
< Hy(<82)2 > = 1 J Jc (r? -2rcosf +1)/2<82> dede (AG.10)
n
0

r

0

Appendix 6.2. A power series approximation to the space averaged
squared transfer function < |[Hof* >

Equation (6.3) may be re-written as

Z(rylrg) ( y Z_L(_r_sl_r_q_)_)'l

Ho=" Zatrdro (1 * Zgtrdro (.11

from which the expectation of the square of the transfer function may be derived according
to

(rplro) |2 R{Z(rJry)} UZ(rdre) -1
< Hol*> =< l%ﬁﬁl ><[ (1 oyl ( Zrirg) T ] >

(A6.12)
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The expectation of the first factor in this equation is just 2< 8% > according to equation
(3:21). The considerably more complicated second factor may be more concisely
represented by the function g(x,y) = ((1+x)2 + y2)-1. The variables x and y are respectively
the normalised real part and normalised imaginary part of the diffuse field impedance. Both
x and y are therefore mutually uncorrelated, zero mean random variables whose relative
variances are equal according to <x2>=<y2> =< 8>,

The expectation < g(x,y) > has previously been shown to be infinite. An identical
procedure to that proposed in chapter 3 for overcoming the singularities in the expression
relating to the problem of diffuse field sound power minimisation is now employed. One
can immediately see that g(x,y) goes to infinity when (x+1) and y are simultaneously zero.
An estimate for the expectation < g(x,y) > is now sought based on behaviour of the
function ((1+x)2 + y2)-1 for which Ix+11 < 1 and lyl < 1. It is believed that this condition is
sufficiently un-restrictive to enable one to derive a mean value which is representative of the
average behaviour of the vast majority of possible out-comes. This will be particularly true
when < 82> is very much less than unity such as is the case for compact sources seeking to
cancel the pressure at a very closely spaced point.

A good approximation to the first order behaviour of f(x,y) for those commonly
occurring cases where Ix+1/ < 1 and lyl < 1 may be obtained by expanding the function as a
two dimensional power series centred about the origin (0,0). A power series representation
of the function about x = 0 and y = 0 (Maclaurin series) in x and y is given by

g og
X,y) = 0,0 + X +y
g(x,y) = g(0,0) Ix I(o,o) y dy I(0,0)

1 d2g d2g
+5={ x2—= + 2xy —=— +y2—2
7 { Ix2 l(o,o) y xdy l(0,0) y ay2 I(0.0) }

n n n

oo gl %{i oo + (1) =y 53’."%; ooy - - () ¥ %“y% ooy )
(A6.13)

Strictly speaking the order of the power series n should be taken to infinity to ensure an

exact representation of the desired function g(x,y). However, in practice only a few terms

are required in order to provide a good approximation to the function providing x and y are

simultaneously small. For the function under consideration here, a program capable of

symbolic differentiation was used to generate all the necessary partial derivatives in x and y
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in order to evaluated the power series expansion of the function to sixth order. The
derivatives were evaluated at the origin (0,0) and substituted into equation (6.31) to produce

gxy) =1 - 2x + (3x2-y2) + (-4x3 +4xy?) + (5x4- 10x2y2 + y4) +
(-6x3 + 20x3y2 - 6xy4) + (7x6 - 35x4y2 + 21x2y4 - y6) (A6.14)

Recall that x and y are independent, Gaussian random variables where all odd moments are
equal to zero. Further note that the moments of x and y are equal, so that taking the
expectation < >, one can shown that to sixth order

<gxy)>=1+2<x2>+6<x4>-10<x2>2
+6<x6>-14<xd>5<x2> (A6.15)

where < x2 >, < x4 > and < x6 > symbolise the second moment (variance), the fourth
moment (Kurtosis) and the sixth moment of the Gaussian distribution. Since the Gaussian
distribution is completely specified by its mean p and standard deviation <32>172, all higher
moments may be written in terms of these principal moments. According to standard
texts63, if x is a Gaussian random variable, then the rth moment namely pi; may be derived
from <82> via

1! <§2>1/2
U = W) 27 (A6.16)
where 1 is even. Note that yi; = 0 for odd r. One can therefore write
<x2>=<82>, <x4>=3<§2>2 and <x6>=15<52>3 (A6.17)
Providing <&2> is small compared with unity, the function g(x,y) may be closely
approximated by
<g(x,y) > =1+ 2<82> + 8<32>2 + 48<§2>3 (A6.18)

Returning to equation (A6.12) for < IHy/2 > and noting that < !Z,(rplro)!2 >/ 1Zy(rro)? =
2<82> enables the expectation of the square of the transfer function to be written
completely in terms of a power series expansion in the relative variance <82> of the transfer
impedance written below
< lﬁol"’ >=2 <82> + 4 <8252 + 16 <8253 + 96 <§2>4 (A6.19)
for Ix+1l, lyl<1



CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

7.0. General remarks

It is hoped that the work described in the preceding pages has gone
some way to revealing the potential and the limitations of active control technology to
produce reductions of the acoustic pressure in high frequency enclosed sound fields.
As an objective assessment of the contribution to this field, it is first necessary to put
this work into a proper perspective amongst the more conventional main stream type of
research which deals almost exclusively with low modal density sound fields. It is
unlikely that one would choose to install an active control system with the sole purpose
of controlling high frequency sound. With this in mind, the investigation has been
undertaken with the understanding that in reality, high frequency active control would
probably only be carried out as an added benefit over and above the main objective,
namely the suppression of low frequency sound, where active control is already known
to be considerably more effective. One can conceive of a practical controller which
contains perhaps a separate dedicated micro-processor which is independently
programmed with the task of performing high frequency active control. Constraints
imposed by cost, size and weight would necessitate that the high frequency controller
utilise the same array of loudspeakers and error microphones at all frequencies whose
positions in the enclosure would be heavily biased by those source and microphone
locations which gave maximum observability and controllability at low frequencies.
Those factors which govern the level of reductions at high frequencies would therefore
come only as a secondary consideration.

The ineffectiveness of the active control of high frequency enclosed sound
fields derives from its spatial complexity. Paradoxically however, it is precisely this
spatial disorder which enables one to accurately describe the statistical behaviour of a
large number of similar, independent diffuse field measurements. One can no longer
make definite statements relating to the outcome of a single experiment, but only
generalisations regarding the average behaviour of a large number of similar
experiments. It turns out that above some critical frequency, which is particular to each
enclosure, the statistical properties of the high frequency enclosed sound field are well
defined. Perhaps one of the most important contributions of this thesis is the bringing
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together of simple optimisation techniques and elementary statistical methods for
determining the absolute performance limits, in an average sense, of active control in
diffuse fields. To the author's knowledge, this is the first time active noise control has
been treated from a such a probabilistic view point although it is difficult to envisage
how else one could tackle this problem theoretically.

7.1. Conclusions

It is recognised early on in this thesis that sound fields in which there is a
‘random’ relationship between acoustic pressure measurements made at different field
points will lessen the performance of active control. In practice, randomness appears as
either unsteady fluctuations in the temporal characteristics of the signal such as jet
noise, or spatial randomness which occurs by virtue of the seemingly random
interference from a large number of acoustic modes in the enclosure even for harmonic
sources. The most complex active noise control problem from the point of view of
analysis is the situation whereby a broadband source of sound is radiating into a large
three dimensional enclosure. Measurements of the acoustic pressure would therefore be
random functions of both time and space. For ease of analysis, the temporal and spatial
aspects of this more general problem are treated independently in this thesis.

Chapter 2 focuses on the temporal aspects of active noise control. Well
established time domain techniques are applied with the aim of determining the causally
constrained minimum sound power output from a pair of sources situated within an
infinite duct. At the expense of over simplification, the difficulties arising from
complicated spatial pressure variations in the room are essentially removed by
considering only sound propagation in one dimension in the absence of reflections. The
difference between the levels of reduction obtained for sound fields excited at a single
frequency, and the reductions obtained for random broadband noise, is determined by
the degree of predictability associated with each signal. Just as the name suggests,
predictability is that property of a signal which enables it to be pre-determined on the
basis of a knowledge of all its past values. It would appear intuitively correct that the
predictability of the signal, as defined in some systematic fashion, somehow bears a
simple relationship to the bandwidth of the signal. In chapter 2 a reciprocal relationship
between the two quantities is proposed.

The time domain theory developed in the first part of chapter 2 for free space

radiation is extended to include reflections. The most elementary kind of reverberation
is considered in the form of a single reflecting surface. It is recognised that the level of
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reduction physically achievable in the acoustic pressure for some arbitrary broadband
signal is bounded somewhere between the level of reduction obtainable for pure tone
signals and the corresponding level obtainable for Gaussian white noise signals. The
steady state level of reduction for each limiting class of signal is therefore evaluated as a
function of the reflection coefficient. It is shown that the level of reduction is more
dependent on the level of reverberation in the space (as governed by the reflection
coefficient) than the bandwidth of the signal for this geometry. The amount of sound
power reduction obtainable for white noise signals, even in this reverberant space, is
found to be never less than about 50 % of the corresponding average value obtained for
pure tones.

Analysis has shown that for broadband primary signals, the emphasis of the
control mechanism is towards sound power absorption whereas for narrow band
signals, the mechanism of energy reduction is roughly shared between sound power
absorption and primary source loading. In the simple acoustic space investigated, the
difference in sound power reduction levels for the two signals types at any given value
of the reflection coefficient, is found to be never less than 3 dB. The active control of
broadband noise is therefore possible in principle for simple reverberant spaces
although no mention is given to practical considerations such as, for example, the filter
length or how might realise such an optimal filter in practice. A discussion concerned
with practical details is thought to be outside the scope of interest of this thesis and is
extensively dealt with in the literature, particularly for simple duct borne noise.

The work described in chapter 2 is very much a digression from the main
emphasis of this thesis which has been predominantly concerned with the active control
of diffuse sound fields. A discussion of the various interpretations of diffuseness is
given at the start of chapter 3 for which even today there is not complete general
agreement. This thesis has chosen to adopt the probabilistic definition of diffuseness
which says that the pressure at any point in space has an equal probability of energy
arriving from all elemental solid angle. This contrasts the more restrictive, idealised
definitions of diffuseness, some of which envisage the sound field inside of a sphere
generated by an infinite number of incoherent point sources on the sphere surface. The
pressure at the centre of the hypothetical sphere is regarded as being perfectly diffuse,
and points slightly away from the centre are regarded as being substantially diffuse.
One can immediately see that the two points of view are fundamentally different
inasmuch that the first talks in terms of likelihoods while the second talks in terms of a
definite state of diffuseness at some pre-determined point in space.
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The idealised concept of a diffuse sound field is extremely important in that it
identifies the asymptotic form of sound field to which all enclosed sound fields
converge as the frequency is increased. In considering active noise control in diffuse
sound fields, one is identifying the upper bound frequency limit on the active control of
sound in enclosed spaces which in many respects, signifies the worst possible case.
Although in essence a physical, non-realisable idealisation, the diffuse sound field is
characteristic of the acoustic behaviour of a large number of real sound fields which
quite often, are irregularly shaped, posses inhomogeneous absorption properties and in
general, contain a large number of randomly shaped scattering objects. For example,
inside some vehicles and aeroplanes where active control has already been applied, the
Schrider frequency has been experimentally estimated to be between 100 Hz and 200
Hz. Even at frequencies well below the Schroder frequency, this type of low modal
density sound field is more appropriately described by statistical methods to which the
diffuse sound field is a useful idealisation.

In all of the work presented in this thesis concerned with active control in
diffuse sound fields, a feedfoward controller has been assumed. This type of controller
is presumed to have access to some control signal which is perfectly coherent with the
primary source whose radiation can therefore be predicted perfectly. The levels of
reduction predicted by these results in no way refer to inadequacies of the controller,
but serve to identify the absolute performance limits on the active control of diffuse
fields which are dictated solely by the unique spatial characteristics of this type of
sound field.

Chapter 3 has considered the possibilities for the global attenuation of diffuse
field pressures using compact sources. By virtue of the vast number of contributing
modes which conspire to produce the state of diffuseness, reductions in the pressure
can only be accomplished globally if ones's secondary source is able to couple into all
the modes simultaneously. This is precisely what happens when two point monopole
sources are closely situated in an enclosed space. The scenario outlined here therefore
provides the basis of a convenient model problem which readily lends itself to simple
analysis in terms of optimisation techniques and elementary statistical theory. Using the
diffuse field statistical theory set out by Schrider, the minimum sound power output of
two closely spaced sources has been deduced together with the secondary source
strength requirements. Converse to the problem in chapter 2, the analysis is restricted to
single frequencies thereby removing the obvious complications arising from causality
considerations.
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This exercise has served to locate the first and second order moments of the
secondary source strength and the total minimum sound power output from the source
pair. An attempt to determine the statistical behaviour of the diffuse field variables in the
conventional manner, via a specification of the mean and variance, was shown to be
impossible. These moments were found not to exist inasmuch as the integrals from
which they are derived fail to converge. In physical terms, this complication arises from
the very small probability of obtaining very large values, whose product will tend to
dominate, say, the much larger probability of obtaining commonly occurring values.
This finding raises the important fundamental question about what information
statistical moments are meant to convey. In a large number of cases (although not all), a
formal assessment of the expectation value is an inappropriate estimator of statistical
behaviour which says more about the ill-conditioning of the actual integral from which
the expectation value is derived than the first order behaviour of the random variable
itself.

In the light of this fundamental difficulty, a pragmatic solution was sought. It
was decided to take the expectation over an ensemble of values comprising only those
results obtained at source positions for which the sound power flowing from the
secondary source into the medium directly, is less than the power radiated into the
medium via wall reflections. While it is acknowledged that this criterion is essentially
ad-hoc, the new ensemble is believed to be more representative of the occurrences
observed in reality, furthermore, helps to simplify the analysis at the same time. All of
the various moments associated with the random distribution are now gauranteed to
converge to meaningful and consistent expressions.

The same approach has been used to deduce the maximum sound power
absorption for an elementary point monopole source in a diffuse sound field. The
efficiency with which sources of sound are able to extract energy from a given sound
field is fully characterised by their cross sectional areas of absorption. For an optimally
absorbing point monopole source in a diffuse sound field, this area takes the form of
the surface of a sphere which has been shown to vary according to the square of the
acoustic wavelength. This additional area of active absorption evaluated at typical
values of the Schréder frequency compared with the existing area of passive absorption
is clearly small. For example, inside a medium size room of about 100 m3 evenly lined
with typical sound absorbent tiles excited at the Schréder frequency, the optimal
absorption of sound has been shown to provide only about a 10 % level of reduction in
the total potential energy. This control strategy is therefore not advocated at high
frequencies. Extrapolating this result down to low frequencies, although it is not strictly
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valid, indicates that the optimal absorption of sound is very effective. This is the
frequency region for which the modal overlap factor is less than unity and so the modal
responses of the enclosure are non-overlapping. The sound field now comprises
distinct, isolated resonances for which active control has been shown to be most
effective. However, the relative variance associated with the maximum sound power
absorption at low frequencies has been show to be large at low frequencies so that the
mean value is therefore not particularly meaningful.

Global control in diffuse sound fields is generally acknowledged to be an
unrealistic objective for most commonly occuring noise sources. Chapter 4 has
therefore considered the possibilities for localised active control. The simplest control
strategy possible has been investigated which involves using a remotely positioned
secondary source in order to drive the acoustic pressure at a point to zero. Statistical
approaches have been adopted in order to deduce expressions for the space averaged
quiet zone, the statistical behaviour of the secondary source strength and the resulting
increase in the potential energy. Unlike low modal density sound fields, the space
averaged zone of quiet created about a point of null pressure in the diffuse field limit
has been shown to converge to a well defined expression as a function of the spatial
correlation function.

The study undertaken in chapter 4, which uses elementary statistical techniques,
has been most useful in highlighting the ill-conditioning of a controller secking to apply
active control to diffuse fields. This arises from the spatial random behaviour intrinsic
to this type of sound field. More specifically, the difficulty lies in the form of the
probability density function for describing the distribution of diffuse field complex
transfer impedances evaluated between two well spaced points. Outside the influence of
directly transmitted sound, all of the principal indicators of central location such as the
mean, mode and medium are exactly equal to zero. Thus, on average, a remotely
positioned secondary source is poorly coupled to the primary pressure at the desired
point of cancellation. This property is explicitly revealed in results obtained from
computer simulations of the total diffuse field potential energy. A single source allowed
to radiated freely in a diffuse field environment has been found to sustain a level of
potential energy in the room as it moves from point to point in the enclosure which is
normally distributed and subject to a normalised variance which is considerable less
than unity (varying approximately as the inverse of the modal overlap factor). On the
introduction of a secondary source into the enclosure for the purpose of driving the
pressure at some random remotely positioned point to zero, the normalised mean of the
combined potential energies from 15,000 computer simulations has been found to be
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approximately equal to ten indicating a substantial average increase. Formally however,
the predicted space averaged potential increase is equal to infinity. While this study has
been enlightening from the point of view of gaining insight into diffuse field pressure
cancellation, this is not an approach one would be advised to implement in practice.
Better behaved control schemes are investigated in chapter 5.

The work of Olson ez-al has featured largely in this thesis. Despite being widely
acknowledged as an important work in active noise control, it is perhaps surprising to
realise that in nearly forty years, nobody has sought to provide a more rigourous
theoretical basis by which to understand these ideas even though a comparatively large
amount of experimentation has been performed. The investigation reported in chapter 6
represents just such an initial attempt. The considerable advantage in controlling the
sound field close to the secondary source is that the total secondary acoustic pressure is
dominated by the near field of the source superimposed on which, the diffuse field
contribution can be neglected. The diffuse, reverberant field therefore only appears as a
small random fluctuation on the deterministic near field of the source which tends to
average to zero as the average over all source positions is evaluated. In this closely
spaced configuration, one has managed to circumvent the fundamental restrictions
imposed by the random, diffuse field as discussed at length in chapter 4 so that the
analysis only involves free field terms. Moreover, because the acoustic coupling
between the secondary source to the desired point of cancellation is now much greater
compared to the acoustic coupling from the primary source, the ratio of secondary
source strength to primary source strength is therefore small compared to unity. Using
this technique, one is now able to engineer reductions in the sound pressure level in a
diffuse field environment which are of the same spatial extent as that obtained froma
remotely positioned control secondary source, if not greater, but now the global
increases in the sound pressure level are now restricted, in most cases, to a fraction of
one dB.

The two results which more than any exemplify the extent to which active
control may be applied to diffuse fields are the values for the zone of quiet around a
point of null pressure, defined at the 10 dB level of reduction, and the cross
sectional area of absorption for a perfectly absorbing point monopole source. The
former result characterises the scope for cancelling diffuse field pressures. Both
theory and experiment have indicated that for sensibly behaved values of the
secondary source strength, say, of the order of the primary source strength, the size
of the diffuse field quiet zone is limited to approximately one tenth of a wavelength.
This value reflects both the correlation structure of the diffuse field and to perhaps
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10 a greater extent, the statistical inter-dependence between the primary and
secondary diffuse pressure fields as governed by the inter-relations between their
source strengths. It was found to be not uncommon to measure, both from results

obtained from computer simulations and experimentation, increases in the sound
pressure level well away from the control point is typically eq»ai-fgﬂlo dB.

Alternatively, if one chooses to adopt a global strategy so as, for example,
to maximise the sound power absorption of a secondary source, the efficiency with
which this can be achieved is fully characterised by the cross sectional area of
absorption which is approximately given by square of the wavelength divided by
pi. This value must of course be compared with the existing effective area of
passive absorption for a given enclosure, in order to asses the level of reductions in
the steady state level of potential energy which ultimately may be achieved.

7.3 Suggestions for further work

Active control is widely perceived as a possible solution to low frequency noise
control problems. However, the precise area of applicability still remains to be
identified as manifest by the diversity of approaches and situations currently been
studied. Given the infancy of the technology and understanding of active noise control
at the present time, it is unlikely that very much research will be undertaken in the near
future specialising in frequencies greater than about 300 Hz. This is despite the fact that
there is clearly a large amount of work remaining in this area of research as indicated in
the thesis.

It is envisaged that the development of high frequency active noise control in the
long term will evolve on two fronts. The first concems technological advancements in
the form of real time dedicated digital signal processors. The fundamental task of these
devices will be to compute the optimal secondary source strengths required to minimise
the signals received by an array of strategically placed microphones according to some
optimal criterion. Presently, the upper working frequency limit, set by the maximum
sampling rate, and the number of secondary sources and error microphones is limited
by computing speed. The second area for potential advance concerns increasingly
sophisticated experiments aimed at optimising the source strength, or strength source
array for determining the largest size quite zone while least affecting the global sound
field, where chapter 6 is an initial attempt investigating single channel control schemes
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The application of active control to the idealised diffuse field provides a fruitful
area of research where new results can be obtained relatively easily. It is probably fair
to suggest that in a large number of cases these findings are of academic interest only
and are not particularly relevant to real life implementations. It is believed that high
frequency active control can be advanced furthest by adopting a more experimental
approach although the necessity of a thorough understanding of the underlying physical
principles is recognised. Undoubtedly, active control at high frequencies will be
restricted to local control which involves creating zones of quiet around the head of a
listener whose movements must inevitably be restricted. This might be, for example,
the seated passenger of an aeroplane or the driver of an automobile. It is in this
objective where most effort should be directed.

Whilst the results derived in this thesis provide general guidelines relating to the
principle of localised diffuse field control, the analyses are necessarily simplistic,
neglecting important considerations such as the effect of the listener's head on the
sound field which will tend to act as a large diffracting body. The moving head will
cause the sound field to be in a constant state of change which will therefore require an
adaptive control scheme which constantly adjusts itself to the changing acoustic
response of the enclosure. Each control unit will require two control points, one for
each ear. This raises the important issue concerning the psycho-acoustic impression
given to the recipient of the device as the perceived phase change accompanying the
pressure cancellation may appear unnatural. This is an important departure from the
main thrust of active noise control research which to the author’s knowledge, has never
been investigated.

Some of the ideas suggested by Olson would also benefit from further
investigation. In particular, the notion that active methods may be used to enhance the
efficiency of passive absorption of acoustic energy should also be explored further. The
control strategy suggested by Olson involves driving the pressure at a point to zero in
the near field of a secondary source with the aim of establishing a large pressure
gradient between the source and the point of null pressure. Chapter 6 has shown that
for very compact sources, pressure gradients of up to 5 dB cm-! are readily obtainable
for which, following from the momentum equation, the particle velocity is
correspondingly large. It was suggested by Olson that a resistive screen in the form of
sound absorbent foam in the region of this increased particle velocity would be highly
efficient as a passive absorber of sound. While this control arrangement will
undoubtedly be efficient in absorbing the energy radiated by the secondary source, it
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remains to demonstrated either experimentally, or theoretically whether this scheme will
be efficient in absorbing incident primary energy.

Another interesting area for future research would be to use the same
probabilistic treatment used in chapter 3 to investigate high frequency active noise
control to study the active absorption of sound at low frequencies whose effectiveness
is considerably greater. It is anticipated that the expression for the area of absorption for
an optimally absorbing point monopole source derived for the high frequency limit, is
also a good estimate to the average area of active absorption afforded at low
frequencies. A probabilistic approach would enable one to investigate the variance
associated with the maximum sound power absorption obtained between successive
measurements as the secondary source position is varied. This is believed to vary
inversely as the modal overlap factor, although formal verification obtained from
computer simulations would be valuable and revealing. This approach would also
enable such effects as the influence of enclosure boundaries on the sound absorbing
capabilities to be studied, although it is anticipated that the optimal absorption of sound
power is statistically independent of the proximity of enclosure walls.

The last control principle worthy of note, which is attracting growing
attention, involves shaking the intermediary structure through which noise is
known to be transmitted. This technique is appropriate, for example, the structure
borne noise radiated into an aircraft fuselage which is thought to predominate over
air-borne transmission paths. Consider, for example, the case when two large,
highly damped rooms are separated by an elastic panel capable of vibration. Noise
on one side of the room will be transmitted to the adjoining room via structural
vibration of the partition. It is conceivable that although the acoustic field in each of
the enclosures may contain many thousands of significantly contributing acoustic
modes, acoustic energy is only transmitted between them via the energy carried by
only a few structural modes of the plate. In this case, a more appropriate control
strategy would be to apply vibration control to the plate directly, with the objective
of minimising the potential energy radiated to the other side of the room. This
approach is already beginning to yield promising results97.98 although there still
remains a large amount of work to be performed. A particularly interesting aspect of
this work is the complicated structural - acoustical interactions which arise from the
use of double partitions when active control is applied in the air space in between.

So far we have only considered short term objectives for active control, say,
over the next ten years. In the long term however, it is inevitable that active control will
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attain a new level of sophistication, particularly for controlling unwanted structural
vibrations. Active control in the future will combine very fast, real time, parallel signal
processing capabilities, together with the new generation of distributed type transducers
such as the piezo ceramic, or magneto-strictive devices to form intelligent, or 'smart
structures’. These high stress transducers are able to provide large in-plane forcing over
a wide frequency range so that when bonded to a structure, they are able to modify its
structural characteristics in response to changing external stimuli which could be either
acoustical or mechanical in origin. Furthermore, the problem often encountered with
modal spillover are lessened due to the distributed nature of these types of transducers
whereas the more conventional type of shakers, which act at a point, tend to excite a
uniform wavenumber response thereby exciting many modes over and above the
desired modes required for optimal control. Some authors?? are already beginning to
study the use of this new technology for active control in for example, applications in
space vehicles, commercial aircraft design and automotive applications and in many
other examples where weight is an important consideration.
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