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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF SHIP SCIENCE 

Doctor of Philosophy 

A FINITE PRESSURE ELEMENT APPROACH TO THE PLANING PROBLEM OF HIGH SPEED CRAFT 

by Tsz Kin Jimmy Tong 

A finite element method is presented for the steady motion of a craft 

planing over the surface of calm water. The fluid is assumed to be infinitely 

deep, inviscid, incompressible and without surface tension and the free 

surface is assumed to be of infinite extent. In addition, the angle of attack 

is assumed to be small and linearized potential flow theory is used. The 

method applies to the case of arbitrary Froude number and aspect ratio. 

The presence of the craft is modelled by an unknown pressure distribution 

on its wetted bottom projected on the plane of the undisturbed free surface. 

This is represented by a finite element mesh consisting of a number of 

pressure elements, each of constant but different strength. The shape of the 

element can be arbitrary and therefore the theory can be applied to wetted 

planforms of any shape or configuration. The shape and extent of the wetted 

bottom is assumed to be known and the immersions along the transom are 

determined together with the pressures by satisfying the kinematic hull 

boundary condition at the centre of each element and the Kutta condition at a 

discrete number of points along the transom. 

The finite element method has been applied to planing flat plate and 

prismatic hulls of constant deadrise angle. The derived lifts, centre of 

pressure locations and pressures have compared reasonably well with other 

experimental and theoretical results. An interpolating scheme for determining 

the operating trim angle and wetted length for a craft of specified loading 

condition and speed has also been developed. 

The work also comprises a study of the hydrodynamics of planing craft 

under two conditions: firstly, when it is heeled at a small angle, and 

secondly, when it is yawed at a small angle. For the heel case, the theory 

predicts a decrease in roll stability when the craft is planing at high 

speed. The computed hydrodynamic force and moment derivatives have shown 

reasonably good agreement with the experiment data obtained by other authors. 

The behaviours of these hydrodynamic derivatives at high speed have also been 

investigated. For the yaw case, the theory predicts an interesting feature of 

the development of suctions under the outboard side of the hull at high 

planing speed. The theory also predicts a change in the direction of the 

induced roll moment which could well be directly related to the phenomena 

that some high speed crafts bank inwards during turning while others bank 

outwards. 
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Please note that the subscripts of the variables in the 

thesis may sometimes go from lower case to upper case due to 

typing inconsistencies - Tor example; Lw and Lw. However, 

both forms have the same meaning according to the 

Nomenclature. 



Nomenclature 

Alphabetic 

AR : Aspect ratio ( B/Lw ) 

Aw : Wetted bottom area of planing surface 

Awu : Wetted area under heeled up side of a planing 
hull 

Awd : Wetted area under heeled down side of a planing 
hull 

B : Transom wetted beam 

Bu : Transom half beam (heeled up side) 

Bd : Transom half beam (heeled down side) 

C : Forward planing speed 

Cfy : Sway force coefficient = Fv 
1/2f9B3Cv2 

Cfz : Lift coefficient = Fz 
/2yOgB3Cv2 

Cp : Bottom loading coefficient = B Lk 
172/3 

Crm : Roll moment coefficient = Mr 
1/2^98* 

Cv : Beam Froude number = C / T ^ 

Cym : Yaw moment coefficient = Mv 

i/2^gB4 

f(x,y) ; Local hull displacement above transom level 

F a ( X , y ) : Free wave corner function at corner a 

F2 ; Coefficient of sway force derivative = _j_ ;^Fv 
A 3)5 

Fn : Froude number in general 

Fy : Sway force 

Fz : Lift force 

(Fz)d : Lift developed on heeled down side of the wetted 
bottom 



(Fz)u : Lift developed on heeled up side of the wetted 
bottom 

g : Acceleration due to gravity 

H : Predicted vertical locations across transom 

h(y) : Unknown transom rise heights above undisturbed free 
surface 

H* : Mean transom vertical location 

Hk : Immersion of transom at keel (deadrise surface) 

He2 : Immersion of transom at chine (heeled down side) 

k : Wave number 

ko : Fundamental wave number = g /C? 

L* : Non-dimensional distance of the longitudinal centre of 

gravity forward of the transom = Leg 
B 

Lc : Wetted chine length for non-heeled constant deadrise 
surface 

Lci : Wetted chine length for heeled flat plate or heeled 
constant deadrise surface (up side) 

Lc2 : Wetted chine length for heeled flat plate or heeled 
constant deadrise surface (down side) 

Leg : Longitudinal centre of gravity forward of transom 

LCL ; Longitudinal centre of lift forward of transom 

LcLd : Longitudinal centre of lift forward of transom 
(heeled down side of the wetted bottom) 

L C L R : Longitudinal centre of lateral resistance forward of 
transom 

L C L U : Longitudinal centre of lift forward of transom 
(heeled up side of the wetted bottom) 

Lcp : Longitudinal centre of pressure forward of transom 

La(x,y) : Local wave corner function at corner a 

Li : Immersed length for planing flat plate 

Lc2i : Immersed chine length (heeled down side) 

Lk : Wetted keel length for constant deadrise surface 



Lki : Immersed keel length ( d e a d n s e surface) 

Lw : Mean wetted length for flat plate 

: Mean wetted length for non-heeled constant deadrise 

surface = (Lk+Lc) 
2 

: Mean wetted length for heeled flat plate = CLci+Lcz) 

2 

: Mean wetted length for heeled constant deadrise 

surface = (2Lk+Lci+Lc?) 
4 

: Coefficient of roll moment derivative = _J_ 3 ^ 
with respect to drift angle B 

M y 

Tm 1 

Mz : Coefficient of roll moment derivative = _\_ ^ 
with respect to heel angle B A 36 

Mr : Rolling moment about keel line 

Yawing moment about transom 

Nz : Coefficient of yaw moment derivative = 1 

with respect to heel angle b A (̂j> 

Np : Froude number based on wetted keel length 

= C/jgLk 

P : Pressure above atmospheric 

Po : Constant Pressure inside an element 

q(u,v,w) : Fluid velocity vector 

R : Rolling moment arm from keel line for heeled or 
drifted planing surface 

Minimum trim angle required for the transom running 
beam to remain completely wetted at both sides of 
the hull 

"̂̂ 2 : Minimun trim angle required for the transom running 
beam to remain completely wetted at the heeled down 
side of the hull 

v : Sway velocity 

W : Craft weight in Newtons 



W* : Non-dimensional craft weight = w 
i/2fgB3 

X, y, z ; Cartesian Coordinates 

Z(x,y) ; Total hull displacement above undisturbed free 
surface 

Greek 

^ : Deadrise angle 

(j) : Heel angle 

6 : Wave angle 

T : Trim angle 

^ : Drift or yaw angle 

P : Density of fluid 

£i(x,y) : Free surface wave 
, £(x,y) elevation 

l&(x,y,z) : Total velocity potential 

0i(x,y,z) : Perturbation velocity 
, (f>(x,y,z) potential 

^rp : Average wetted length to beam ratio for deadrise 
surface in heel (used by Y.M.Jahangeer Ref.(66)) 

- 2Lci + Lk + LC2 
4B 

V : Craft displacement volume (m^) 

A : Craft displacement in Newtons 



CHAPTER (1) Introduction 

1.. 1 General Background 

When a surface craft moves at low speed through water, the weight of 

the craft is supported mainly by the hydrostatic forces. As the speed of 

the craft is increased so that the water surface separates smoothly from 

the trailing edge of the craft, the craft is said to be planing on the 

water surface. During planing motion, the lift is dominated by the 

hydrodynamic pressure generated on the wetted bottom of the craft. 

Another important role played by the hydrodynamic pressure load 

developed during planing motion is its influence on the dynamic 

stability of the craft. There are two common types of instability 

problems associated with hard chine planing surface operating at high 

speed in calm water - the so called 'Chine Walking', which is a 

transverse instability resulting from a combination of rolling and 

yawing oscillations, and the combined longitudinal pitch and heave 

oscillation which is better known as 'Porpoising'. Although these two 

modes of instabilities frequently occur simultaneously, only the 

transverse instability will be considered in some details in this 

thesis. Thus, the roll, sway and yaw degree of freedoms are decoupled 

from the rest of the motions and the problem can be treated separately. 

It is known from practical experience that a high speed craft can 

lose transverse and course keeping stabilities at high speed even though 

the static stability is adequate. The transverse dynamic stability of a 

craft can depend on a number of factors such as speed, displacement, 

hull geometry and the position of centre of gravity. The forces and 

torques generated by the propeller and rudder can also be significant 

especially during turning. When a planing craft is turning, it will 

roll, yaw and sway. Roll, yaw and sway are strongly coupled modes of 

motion. An introduction of heel angle results in net transverse loads 

which cause the craft to sway and yaw. Similarly, the asymmetric bottom 

pressures associated with sway and yaw motions will cause the craft to 

roll. Therefore, in order to carry out a thorough investigation into 

this dynamic problem, it would be necessary to take the roll, sway and 

yaw coupling into account. 

1 



1.2 Literature Review 

Tvm of the earliest workers to study the hydrodynamics of two 

dimensional planing problem were Sretenskii (Ret.(1,2;) and Sedov 

(Ref.(3,)). They used linearized potential flow theory and represented 

the pressure distributions under surface of a planing plate by an 

infinite series. The first term of the series gave rise to a square root 

type of singularity at tl^ leading which is 1 known in airfoil 

theory. The same problem was also tackled by Maruo (Ref.(4,5,6,7)). The 

experimental pressure results for planing flat plates presented in his 

1959 paper were in good agreement with his theory, particularly at small 

trim angles and away from the pressure singularity at the leading edge. 

A similar approach to Sretenskii and Maruo was adopted by Squire 

(Ref.(8)) and the importance satisfying the Kutta Condition zU: the 

trailing edge was outlined. In his solution, the transom rise height or 

the wetted length was treated as unknown and obtained as part of the 

solution together with the pressures, which satisfied the Kutta 

Condition the trailing edge. Cumberbatch (Ref.(9)J solved the two 

dimensional problem using a high Froude number approximation. In his 

method, the kernel function of the integral equation was expanded into a 

series in inverse powers of Froude number and the solution was obtained 

by an iterative method. He also showed that an optimal shaped parabolic 

plate could greatly reduce the drag by eliminating the pressure 

singularity at the leading edge. More details of the above works were 

reviewed later by Wehausen and Laitone (Ref.ilO)l. Doctors (Ref.l1lj) 

used a finite element method to solve the linear two dimensional planing 

problem at finite speed. In his method, the pressure distribution under 

the planing surface was represented by a number of equivalent pressure 

elements. In this way, the shape of the plate could be arbitrary. 

Several types of optimum forms based on maximizing the lift squared to 

drag ratio and on the elimination of the forward thrown splash jet were 

derived. These optimum forms were found to be similar to those obtained 

by Cumberbatch with the splash removed from the leading edge. 

The non-linear planing problem in two dimensions has also been 

studied by a few authors with the restriction of zero gravitational 



effect. Green (Ref.(12,13,14)) solved the two dimensional non-linear 

planing problem of a flat plate at infinite Froude number in both finite 

and infinite water depth using the method of conformal mapping. He 

showed explicitly that the solution obtained by neglecting the 

gravitational effect was not unique and the free surface slope 

approaches zero so slowly far away that there was no finite level 

asymptote. The anomalous behaviour of the flow at infinity in Green's 

solution was first treated satisfactory by Rispin (Ref.(15)) and Wu 

(Ref.(16)) using the method of matching asymptotic expansions. The flow 

problem was broken down into a 'near field' problem, which represents 

the flow close to the planing surface, and a 'far field' problem, which 

represents the free surface flow with waves, which could be solved 

individually and then matched. Other works related to this subject can 

be referred to those by Wu and Whitney (Ref. (17)) and Ting and Keller 

(Ref.(18)). They had also derived optimum shapes that resulted in a 

splash free condition. 

The linearized three dimensional planing problem has been studied 

using potential flow theory but usually with some restrictions on aspect 

ratio and/or Froude number. Wagner (Ref.(19)) and Casling (Ref.(20)) 

solved the problem using a low aspect ratio assumption at infinite 

Froude number. Tulin (Ref.(21)) and Shuford (Ref.(22)) also tackled the 

problem of low aspect ratio planing. Maruo (Ref.(23)) solved the problem 

for both high and low aspect ratio delta planing surfaces. However, a 

high Froude number was required in his solution for the low aspect ratio 

planing surface and the method was not applicable to a rectangular 

planing planform. Shen (Ref.(24)) and Shen and Ogilive (Ref.(25)) 

tackled the problem with a high aspect ratio assumption. In the latter 

paper, non-linearity effect was also included for the case of infinite 

Froude number by extending the method of matching asymptotic expansions 

of Rispin (Ref.(15)) and Wu (Ref.(16)) into three dimensions. Wang and 

Rispin (Ref.(26)) extended Cumberbath's method (Ref.(9)) to three 

dimensions to solve the planing problem of rectangular plate with 

moderate aspect ratio at high Froude number. In their solution, the 

kernel function in the integral equation was expanded asymptotically for 

high Froude numbers, Fr=C2/gl, up to Fr-2. However, in the expansion, 

singularities were introduced at the tips of the plate due to 



the chosen pressure form. Tuck (Ref.(27)) extended the works of Maruo 

(Ref.(23)) on low aspect ratio flat delta wing to finite Froude number. 

In his work, a cusped parabolic water plane shape with arbitrary section 

was considered and strong gravitational effects near the centre plane 

were demonstrated. Oertel (Ref.(28)) discussed the aspect of unknown 

wetted bottom area and its relation to the Kutta condition in some 

details. He considered the problem at an infinite Froude number and 

showed that the hull shape had to be determined as part of the solution 

once the wetted area was prescribed and the Kutta condition was 

satisfied. Doctors (Ref.(29)) extended his finite element method to 

solve three dimensional planing problem without any restriction on 

either aspect ratio or speed. In his solution, the weight and the 

longitudinal centre of gravity position of the craft were first 

prescribed, the wetted area, the transom rise height and the pressures 

were then determined by an iterative procedure based on the change in 

the trailing edge immersions with respect to the change in wetted 

lengths across the transom. The amount of wetted area predicted for the 

flat plates and the constant deadrise prismatic hulls were in good 

agreement with that derived from the Savitsky's empirical equations. 

Standing (Ref.(30)) and Huang and Wong (Ref.(31)) applied linearized 

potential flow theory to predict the free surface elevations induced by 

a constant pressure disturbance moving over a free surface. Their works 

was later extended by Wellicome and Jahangeer (Ref.(32)) to determine 

the pressures under planing surfaces using constant pressure rectangular 

elements. Various hull forms including flat plate, constant deadrise 

prismatic hulls and delta wing were considered. Two dimensional optimum 

forms similar to those obtained by Doctors (Ref.(11)) were also derived. 

His theory had also been applied to predict the amount of rolling moment 

induced by planing prismatic hulls and flat plate under heel condition, 

though the sway force and the yawing moment had not been considered. 

There were a number of experimental results published. Some of the 

earliest experimental studies on planing surfaces were made by Baker 

(Ref.(33)), Sottorf (Ref.(34)), Shoemaker (Ref.((35)), Sambraus 

(Ref.(36)), Sedov (Ref.(37)) and Locke (Ref.(38)). Much experimental 

measurement and empirical analysis of planing phenomenon had been 



conducted by the Davidson Laboratory of Stevens Institute of Technology 

(1947) under the sponsorship of the office of Naval Research U.S. Navy. 

The aim of these studies was to utilize existing planing data (including 

those obtained in Davidson Laboratory) and to establish empirical 

equations for the prediction of hydrodynamic performance of planing 

surfaces. In 1949, a summary report on these studies was published by 

Korvin-Kroukovsky and Savitsky (Ref.(39)). Later in 1954, a more 

extensive set of empirical equations was developed by Savitsky and 

Neidinger (Ref.(40)) which increased the range of applicability well 

beyond those in (Ref.(39)). These so called Savitsky's empirical 

equations, which apply mainly to planing flat plate and constant 

deadrise hulls, are frequently used for practical calculations owing to 

their simplicity. Other published experimental results include the works 

by Hadler (Ref.(41)), Kapryan and Boyd (Ref.(42)), Clement and Blount 

(Ref.(43)) and Savitsky (Ref.(44,45,46)). 

It is known from practical experience that planing boats suffer from 

transverse instability when turning at high speed, even though the 

static stability is adequate. This behaviour can be explained in 

connection with the asymmetric hydrodynamic loads developed on the hull 

bottom as a result of roll, sway and yaw motions. This phenomenon had 

been studied by authors such as Du Cane (Ref. (47)), Lord (Ref. (43)) and 

Savitsky and Koelbel (Ref.(49)). Recently, particular attention has been 

paid to round bilge semi displacement hull forms which frequently 

encounter roll instability when operating at high speed. Marwood and 

Bailey (Ref.(50)) conducted model tests on a NPL round bilge series form 

fixed in sway and yaw. The model was allowed to roll freely and the 

relationship between roll angles and vertical centre of gravity 

positions were studied at various speeds. Suhrbier (Ref.(51)) also 

conducted similar experiments but paid particular attention to the 

effect of sway force on transverse stability. 

Some researchers like Baba, Asai and Toki (Ref.(52)) and Mueller-Graf 

and Schmiechen (Ref.(53)) conducted captive model experiments to 

determine the hydrodynmaic coefficients of a round bilge hull form. The 

effects of rudder and spray strips on these coefficients had also been 



investigated. Transverse stability criteria based on their experimental 

results and the manoeuvring equations of roll, sway and yaw degrees of 

freedom were derived. Other researchers like Millward (Ref.C54)) and 

Wakeling, Sproston and Millward (Ref.(55)) paid particular attention to 

the effect of hull form on the pressure distributions developed on the 

hull bottom. The pressure measurements on a round bilge form revealed 

that the instability problem was due to the negative pressure developed 

along the afterbody of the hull and was attributed to the unsatisfactory 

hull shape of the round bilge form for high speed. 

The studies on the transverse dynamic stability of hard chine 

planing hull, particularly the constant deadrise prismatic hulls, have 

received little attention. Gill (Ref.(56)) determined the rolling moment 

on a prismatic hull when it is yawed relative to the flow. His theory, 

the so called 'Deadrise Effect', describes that the introduction of yaw 

angle is effectively to increase the trim angle on one side of the hull 

and to reduce it on the other. The rolling moment was calculated from 

the difference between the moments produced by the asymmetric lift loads 

developed on the two sides of the hull; the moment arms were taken to be 

a quarter of the beam from the keel. The empirical equations presented 

by Savitsky were employed for deriving this lift. Wellicome and Campbell 

(Ref.(57)) conducted model experiments similar to those of Mueller-Graf 

and Schmiechen to determine the hydrodynamic coefficients for a series 

of constant deadrise prismatic hulls. In their theory, however, all 

lateral forces were assumed to act at the longitudinal centre of gravity 

position of the craft so that no net yawing moment arises when the craft 

is under either heel or yaw condition. Simple transverse stability 

criteria were derived based on their experimental data and the coupled 

sway and roll manoeuvring equations. 

1.3 Linearization of Planing Problem 

The classical ship wave problem is a boundary value problem. The 

free surface boundary conditions for this problem are non-linear and 

lead to a complicated integral equation which is always difficult to 

solve. In order to simplify the problem, it is customary to linearize 



the boundary conditions on the free surface. In order to achieve this, 

the disturbances to the fluid due to the motion of the ship are required 

to be small and the ship should be slender in the direction of its 

motion. The two most commonly known types of ship wave problems that can 

be linearized are the 'Thin Ship Problem' treated by Michel 1 (Ref.(5S)) 

and the 'Slender Ship Problem' treated by Vossers (Ref.(59)). The other 

type of ship wave problem that can be linearized is the 'Flat Ship 

Problem' in which the draught of the ship is much smaller than its 

length and width. 

An important feature of planing motion is the development of a 

spray sheet thrown ahead and sideways of the planing surface. This gives 

rise to a region of highly non-linear flow near the spray root. Although 

the high speed planing hull form is a typical example of 'Flat Ship', 

the non-linear flow near the spray root region would make the small 

disturbances assumption of a linear theory invalid. Green's (Ref.(12, 13 

and 14)) studies on the two dimensional non-linear flat plate planing at 

infinite Froude number in the absence of gravity has shown that at 

sufficiently small angle of attack (or trim angle), the thickness of the 

splash is proportional to the square of the angle of attack. Wagner 

(Ref.(19)) studied both the two and three dimensional planing at 

infinite Froude number with linearized free surface boundary conditions. 

In his solution, the governing equations were shown to be identical to 

those of the flows passing the lower surface of a thin airfoil with a 

square root type of pressure singularity at the leading edge. Wagner 

showed that linear planing theory can be adopted if the angle of attack 

is sufficiently small and that the same type of pressure singularity can 

be used to represent the splash at the leading edge and the 

configuration of the forward thrown splash jet can be ignored. 

Throughout the work in this thesis, the angle of attack (or trim 

angle) is therefore assumed to be small so that the splash configuration 

can be ignored in the linearization of the free surface boundary 

conditions. In addition, the induced free surface elevations are also 

assumed to be small so that the linearized free surface boundary 

conditions can be applied on the mean free surface. The resulting 



pressure distributions will therefore contain a square root type of 

singularity at the leading edge. 

1.4 Present Work 

The work in this thesis concerns a theoretical study of the steady 

motion of a craft planing over the surface of calm water. The water is 

assumed to be infinitely deep, inviscid, incompressible and free of 

surface tension. The free surface is assumed to extend to infinity and 

the flow is i rrotational. The trim angle or the angle of attack is 

assumed to be small so that the splash configuration near the spray root 

can be ignored, and inviscid linearized potential flow theory is 

adopted. 

The presence of the planing surface is modelled by an unknown 

pressure distribution on its wetted bottom projected on the plane of the 

undisturbed free surface. The projected wetted bottom is represented by 

an equivalent two dimensional finite element mesh which consists of a 

number of constant pressure elements, each of different strength. The 

elements derived in this thesis can be arbitrary in shape. In this way, 

both the shape of the wetted planform and the planing speed can be 

arbitrary, hence the restrictions of previous theories are avoided. 

The solution to the problem consists of two parts. The first part of 

the solution is to evaluate the free surface wave patterns induced by 

these constant pressure elements. The theoretical derivation and 

numerical method involved will be discussed in detail in chapter two. 

The predicted wave patterns for various element shapes are to be 

compared with the results of other authors. The second part of the 

solution is to assemble these elements to form the projected wetted 

bottom of the craft. The unknown pressures and the unknown transom 

immersions are determined by satisfying the kinematic hull boundary 

condition at each element's centre and the Kutta condition at a discrete 

number of points along the transom. In the present method, the shape of 

the wetted planform and the planing speed are assumed to be known; the 

pressures and the immersions along the transom, hence the output hull 

shape, are determined as the solutions. More details of this method will 



be discussed in chapter three. 

The present finite element method will be applied particularly to 

study the hydrodynamics of a planing flat plate and constant deadrise 

prismatic surfaces, although the method can also be applied equally well 

to other forms such as twin-hull and warp surface. The predicted 

pressure distributions, lifts and longitudinal centre of pressure 

positions will be compared with the results obtained by other authors in 

chapter four and five. An interpolating procedure for determining the 

running wetted length and running trim angle for a craft of specified 

weight, longitudinal centre of gravity position and speed has also been 

developed. 

Another main area of study in this thesis is the performance of 

planing craft under heel and drift (or yaw) conditions. The present 

theory has been applied to predict the pressure distributions, rolling 

moments, yawing moments and sway forces for planing craft under two 

conditions; firstly, when it is heeled at a small angle, and secondly, 

when it is yawed at a small angle. Again, flat plate and constant 

deadrise surfaces were considered, though only a planing flat plate has 

been studied in the later case. Based on these forces and moments 

results, an interpolating procedure to determine the hydrodynamic forces 

and moments derivatives for a particular craft's loading condition and 

speed has been developed. The predicted hydrodynamic forces and moments 

derivatives have been compared with the experimental measurements of 

Wellicome and Campbell (Ref.(57)) with reasonable agreement. These 

forces and moments derivatives are essential for the analysis of 

transverse stability of planing craft in turn. More details of these 

studies will be discussed in chapter six to chapter eight. Although it 

is a known fact that high speed planing craft can lose stability during 

turning, little work has been done to understand this particular 

phenomenon. It is hoped that the present studies can provide a better 

insight into the transverse stability of planing craft turning at high 

speed. 



CHAPTER (2) Velocity Potential and Free Surface Elevation induced 

by a Constant Pressure Element in an Uniform Free Stream 

2.1 The Constant Pressure Polygon 

In this chapter, we will derive an expression for the velocity 

potential, ^(x,y,z), and the free surface elevation, £ ( x , y ) , induced by 

a constant pressure element in an uniform stream of speed, C. The fluid 

is assumed to be inviscid, incompressible, infinitely deep and without 

surface tension. The free surface is assumed to be of infinite extent, 

the flow is assumed to be irrotational and linearized potential flow 

theory is adopted. The constant pressure element is assumed to cover an 

arbitrary area on the undisturbed free surface with pressure equal to Po 

inside that area and zero elsewhere. The x-y-z Cartesian coordination 

system employed is shown in fig.(2.1), with the x-y plane lying on the 

undisturbed free surface, the x-axis pointing in a direction opposite to 

the flow and the z-axis pointing vertical upward in a direction opposite 

to the gravitational acceleration. 

The arbitrary area of constant pressure on the free surface is then 

approximated by an equivalent constant pressure polygon, as shown in 

fig.(2.2a). The total velocity potential, ]|(x,y,z), at a point, (x,y,z), 

inside the fluid due to this pressure disturbance can be considered as 

the sum of a perturbation potential, <fi(x,y,z), and the disturbance due 

to the uniform free stream, thus, 

$(x,y,z) - ^(x,y,z) - Cx (2.1.1). 

In order to further simplify the problem, it is more convenient to 

breakdown this constant pressure polygon into a number of constant 

pressure trapezia, each of pressure J-Po extending downstream from the 

side of the polygon to x--oo, as shown in fig. (2.2b). Such a constant 

pressure trapezium is shown in fig.(2.2c). For an anticlockwise nodal 

numbering configuration, such as the one shown in fig.(2.2a), the 

pressure of the i^h trapezium is +Po if (yi+i-yi)lO and is -Po if (yi + i-
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yi)<0. The perturbation velocity potential, (}>(x,y,z), and the free 

surface elevation, £fx,y), due to the constant pressure polygon are then 

mathematically equivalent to the sums of the disturbances induced by 

these individual constant pressure trapezia. Thus, 

^(x,y,z) - ^ ^i(x,y,z) (2.1.2) 
i = 1 

and £ ( x , y ) = ZZ ' x,y) (2.1 

i = 1 

where n is the number of sides of the constant pressure polygon, 

^i(x,y,z) and £.i(x,y) are the perturbation velocity potential and the 

free surface elevation induced by the i^h constant pressure trapezium of 

pressure ±Po. An expression for ^i(x,y,z) and£i(x,y) will be derived in 

the following section. 

2.2 Theoretical Derivation of the Velocity Potential and the Free 
Surface Elevation induced by a Constant Pressure Trapezium 

In this section, an expression is derived for the free surface 

elevation, £i(x,y), and the velocity potential, ^i(x,y,z), induced by a 

constant pressure trapezium of pressure +Po in an uniform stream of 

velocity, C. The geometry of the trapezium is shown in fig. (2.2c) with 

its four corners defined by the points (xa,ya), (xb,yb), (-<»,yb) and (-oo 

,ya). The ordinate, yt, is assumed to be greater than ya so that the 

area enclosed is positively defined. Making the usual assumptions, the 

total velocity potential, J.n(x,y,z), induced by the constant pressure 

trapezium can be written as; 

(x,y,z) - (x,y,z) - Cx (2.2.1), 
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where 0i(,x,y,z) is the perturbation potential and C is the uniform 

stream speed. The fluid velocity, q(u,v,w), at a point, (x,y,z), inside 

the fluid is then given bv 

u = - C , V = (x.v.z) and w = Adifx.v.z) (2.2.2), 
3y az 

Inside the fluid, the velocity potential, ^M(x,y,z), has to satisfy the 

Laplace equation: 

Sfdi + y cii + {̂i = 0 
3x2 ayz az? 

(2.2.3), 

On the free surface, z-£i(x,y), one must also satisfy the non-linear 

free surface kinematic condition: 

M i = M i - C I + 361 M i 
5z 3x 3x J By 3y 

(2.2.4) 

on z=Ei(x,y) 

and the non linear free surface pressure condition derived from the 

Bernoulli eauation: 

P(x.Y) + 1 I - Cl 2 + + adjZ 
/° 2 ! LSx J 5y 5z 

+ g £i = 1 C2 (2.2,5), 

on z=£i(x,y) 

where P(x,y) is the pressure on the free surface (above atmospheric 

pressure), g is the acceleration due to gravity and ^ is the density of 

the fluid. 

Assuming that the induced disturbances h and Ei are both small so 

that the products of their derivatives, i.e. ( / g x ) / ax) etc, are 

also small and can be neglected in the formulation of the free surface 



boundary conditions, conditions (2.2.4) and (2.2.5) can be linearized by 

considering only the first order terms in and and can be applied 

on the undisturbed free surface, z=0, rather than on the actual free 

surface, z= £i(x,y). It follows that the linearized free surface 

kinematic condition is 

(X. V ) + C d£i (X. y) = 0 on z-O (2.2.6) 
3z Bx 

and the linearized free surface pressure condition is 

P(Xi v) - C dch (x,y) + g£.i(x,y) = 0 on z-O (2.2.7). 
r $>'. 

A combined free surface boundary condition can then be obtained by 

eliminating Ei(x,y) from conditions (2.2.6) and (2.2,7), thus. 

cf^i(x,y) + ko a^i(x.y) = _j_ 8P(x.v) on z=0 (2.2.8), 

fC 8x 

where ko is the fundamental wave number, g/C^. For the case of 

infinitely deep water, the velocity potential is also required to 

satisfy an infinite depth condition, 

= 0 as z -> (2.2.9) 
dz 

which ensures that the disturbance die away as z -> -oo. in addition, it 

must also satisfy the radiation condition, 

= 0 as X -> + (* (2.2.10), 



which ensures that gravity waves only exist downstream of the pressure. 

The solution in c/ii (x, y, z) which satisfies the above conditions can 

be obtained by a double Fourier transform in the x-y domain. The details 

in deriving this velocity potential is given in appendix A and may also 

be found in references such as Wehausen and Laitone (Ref.(10), pg. 598). 

The solution is 

4^(x,y,z) = 

; Sec(9) de 
/'C 

L U 
-r o 

k ekz {Re[P(k,0)] Sin(kw) - Img[P(k,0)] Cos(kw)} dk 
(k-ki) 

2irsec(9)ki ekiz { R e [ P ( k i , e ) ] Cos(kiw) + Img[P(ki,9) Sin(kiw)]} de 

lE ( 2 . 2 . n ) , 

where 9 denotes the wave angle, k denotes the wave number, 

ki z ko Sec2(9) (2.2.12) 

and w = X C o s ( e ) + y S i n ( e ) (2.2.13). 

The complex function, P(k,9), is the Fourier transform of the free 

surface pressure function, P(x,y), given by the following Fourier 

inversion formula: 

P(k,8) = Re[P(k,8)] + Img[P(k,e)] i 
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P l X . Y ^kw dxdy (2.2.14), 
471': 

where s denotes the free surface. The wave elevation, £ i ( x , y ) , at a 

field point, (x,y), on the undisturbed free surface, z=0, can be 

obtained by substituting th^ above solution in ^i(x,y,z) into the fnse 

surface pressure condition (2.2.7). This gives 

^ 00 
n r\ 

&i(x,y) = 2 {Re[P(k,0)] Cos(kw) + Irng[P(k,e)] Sin(kw)} dkdS 
/Og(k-ki) 

2"n" ki 2 {Re[P(ki,6)] Sin(kiw) - Img[P(ki,8)] Cos(kiw)} de 
/°9 

- X 

(2.2.15), 

where Si - P(X.Y) (2.2.16) 

is the hydrostatic free surface wave elevation. 

The velocity potential, •jii(x,y,z), due to the present constant 

pressure trapezium of pressure + Po can be obtained by substituting the 

following Fourier transform (see appendix A) into expression (2.2.11). 

Re[P(k,8)] = ~Po ( Y b ~ Y a ) 

4 T r 2 ( W b - W a ) 

C o s ( k W b ) - C o s ( k W a ) 
k2 C o s ( e ) 

(2.2.17) 
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and Img [ P(k , e ) ] = -Po (Yb-Ya) 
4 T 2 ( W b - W a ) 

S1n(kWb) - SinCkWa) 
k2 Cos(0) 

(2.2.18), 

where Wa = (xaCos(0) + yaSin(e)) (2 .2 .19 ) 

and Wb = (xbCos(e) + ybSin(9)) ( 2 . 2 . 2 0 ) . 

Leading to 

(x,y,z) = 

1 r\ 

Po ( V b - V a ) S e c ^ O ) d e 

( W b - W a ) 

ikz SinCkCw-Wa))- S1n(k(w-Wb)) 
k (k-ki) 

dk 

n 

Po 

U 
- X 

( V b - V a ) SeC^O) ekiz {Cos(kl (w-Wa)) - Cos(ki (w-Wb ))} de 
217/0 c k i ( W b - W a ) 

( 2 . 2 . 2 1 ) , 

Similarly, substituting expressions (2.2.17) and (2.2.18) into 

expression (2,2.15) yields the free surface elevation, 

£i (x,y) = 

2 Co 

Po ( Y b - Y a ) Sec(Q) de 
(Wb-Wa) 2TI2/D g 

Cos(k(w-Wa)) - Cos(k(w-Wb dk 
( k - k i ) 

-f 
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3L a. 

+ Po 

V 
-IL 

( V b ~ V a ) Sec(9) {Sin(ki(w-Wa) - S i n ( k i ( w - W b ) } d9 - Si 
2 T / O g ( W b - W a ) 

( 2 . 2 . 2 2 ) , 

where = Po 
^ 9 

5i = 0 

for a field point (x,y) inside the trapezium 

for a field point (x,y) outside the trapezium 

Si = Po for a field point (x,y) on the boundary of the 
2^9 trapezium. 

As shown in appendix B, the inner k integrals in the above expression 

can be transformed by means of a suitable substitution into: 

00 

A 

Cos(k(w-Wa) dk 
( k - k i ) 

= g ( l X a 1 ) - S i n ( i X a 1 ) IT (2.2.23), 

where k i (w - Wa) (2.2.24) 

and g(Z) is the auxiliary cosine integral function: 

GO 
n 

g (z) Cos(u) du 
(U+Z) 

(2.2.25), 

which is given in the 'Handbook of Mathematical Functions' by Abramowitz 

and stegun (Ref.(60) pg.232). Replacing the inner k integral in 

expression (2.2.22) by the form derived above gives 
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£i(x,y) = Po [ {La(x,y) + Fa(x,y)} - {Lb(x,y) +Fb(x,y)} - ] 

P9 

( 2 . 2 . 2 6 ) , 

where is now the non-dimensional hydrostatic free surface elevation; 

and 

Si = 1 for a field point (x,y) inside the trapezium, 

= 0 for a field point (x,y) outside the trapezium 

Si = 1 for a field point (x,y) on the boundary of the 
2 trapezium, 

La(x,y) and Lb(x,y) are the non-dimensional local wave corner functions 

given by: 

1 
n 

La(x,y) (Vb - Va) Sec(e) q(IXal) d9 
2 T 2 (Wb - Wa) 

- 5 

and 

X 

Lb(x,y) = (Vb - Va) SecOl q( lAb I) de 
2ir2 (Wb - Wa) 

Vj 

( 2 . 2 . 2 7 ) , 

Fa(x,y) and Fb(x,y) are the non-dimensional free wave corner functions 

given by: 

Fa(x,y) = [Sgn(Aa)-1] (vb - Va) Sec(9) SinClAal) de 
2 ? (Wb - Wa) 

u 
-I 
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and Fb(x,y) = [Sgn(Xb)-1] (Vb -

V 

-JL 

Ya) S e c O ) S i n f l A b t ) 0 9 ( 2 . 2 . 2 8 ) 

2 TT (Wb - Wa ) 

with 

and 

Sgn(u) = + 1 

Sgn(u) = - 1 

if u > 0 

if u < 0 (2.2.29) 

2.3 The Corner Wave Functions 

The terms La(x,y) and Lb(x,y) in equation ( 2 . 2 . 2 6 ) can be identified 

as the non-dimensional local wave corner functions, which are the near 

field disturbance generated by the pressure trapezium. The terms Fa(x,y) 

and Fb(x,y) are the non-dimensional free wave corner functions which 

contribute to the wave system progressing downstream. Since the free 

wave sine term in Fa(x,y) and Fb(x,y) oscillates rapidly without 

attenuation as e->+ " ^2 , i t is more convenient to make the 

transformation, t=Tan(6), in the evaluation of these integrals. The 

functions, g ( j A a l , ) and g( I), are not oscillatory and decay through 

zero as e - > +Z , therefore, this transformation is not essential for the 

evaluation of the local wave corner functions. However, there are some 

advantages in replacing the arguments in the sine and cosine functions 

by algebraic ones. Thus, following Huang and Wong (Ref.(31)) and 

Standing (Ref.(30)), the local and free wave corner functions are 

transformed by using t=Tan(8). Also, following the discussion in 

appendix G about the integrating limits of the free wave integral 

(2.2.28), the local and free wave corner functions can be expressed as: 

La(x,y) 
2'rr2 

-f-OO 

V 

— CO 

lAal) dt (2.3.1) 
(t - To) 
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and Fa(x,y) = J _ 
rr 

Ta 
A 

S i n u s a l ) dt 
(t - To) 

V 
- 00 

for (y-ya)>0 (2.3.2) 

or Fa(x,y) = 1 
i r 

t CO 

A 

Ta 

Sin(lAa1) dt 
( t - T o ) 

for (y-ya)<0 (2.3.3) 

or Fa(x,y) 

4co 
n 

V 
-co 

Sin(lAa I ) dt 
( t - T o ) 

for (y-ya)=0 

and (x-xa)<0 

( 2 . 3 . 4 ) , 

where {(X-Xa)+(y-ya)t} Y(1 + t 2 ) kc ( 2 . 3 . 5 ) 

• ( X - Xa ) 

(y - ya) 
( 2 . 3 . 6 ) 

and - ( X b - X a ) 

(yb - ya) 
( 2 . 3 . 7 ) 

For (y-ya)=0 and (x-xa)>0, the free wave corner function, Fa(x,y), is 

equal to zero. 

The difference in integrating the limits between the above free wave 

integrals, ( 2 . 3 . 2 ) , ( 2 . 3 . 3 ) and (2.3.4), are inconvenient for 

programing. It was decided to make the transformation t=-t in the 

integrals (2.3.1) and ( 2 . 3 . 3 ) when (y-ya)<0, though this transformation 
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1s not essential for the evaluation of La(x,y). Following this 

transformation, which is only applied when (y-ya)<0, the final forms of 

the local and free wave corner functions are 

La(x,y) 
2T2 

•Ko 

U 
- CO 

9(P*I) dt 
( t - T o ) 

( 2 . 3 . 8 ) 

and Fa(x,y) Ma 
TT 

n 
n 

Sin( lAa1) 
( t - T o ) 

dt 

U 
-00 

( 2 . 3 . 9 ) , 

where now To - - M a (Xb - Xa ) 

( y b - y a ) 
( 2 . 3 . 1 0 ) , 

Ta = - (X - X a ) 

l(y - ya)l 
for |y-ya|>0 ( 2 . 3 . 1 1 ) , 

Ta = + oo for (y-ya)=0 
and (x-xa)<0 

( 2 . 3 . 1 2 ) , 

• ^ a - { ( X - X a ) + I ( y - y a ) 11 } \ / ( 1 + t ^ ) ko ( 2 . 3 . 1 3 ) 

and Ma = 1 for (y-ya)20 ( 2 . 3 . 1 4 ) 

Ma = - 1 for (y-ya)<0 ( 2 . 3 . 1 5 ) , 

Note that, mathematically, the transformation t=-t maps the original 

pressure trapezium, T, and the field point, p(x,y), to a mirror image 
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trapezium, T', and a mirror image field point, p'(x,-y), about the 

reference x-axis, as shown in fig.(2.3). If the field point, p(x,y), is 

located between the two sides of the trapezium, i.e. (y-ya)>0 and (y-yb) 

<0, the transformation t=-t is only applied for evaluating the corner 

wave functions Lb(x,y) and Fb(x,y). For the case of (yb-ya) is zero, the 

trapezoid area shrinks to a line without any wavemaking. In this case, 

the wave elevation is taken to be zero. If the field point p(x,y) is 

located at the corner (xa,ya) of the trapezium, the local wave integral 

in (2.3.8) is undefined. One should also note that both the local wave 

corner function, La(x,y), in (2.3.8) and the free wave corner function, 

Fa(x,y), in (2.3.9) are independent of the length of the forward facing 

segment of the pressure trapezium, i.e. the distance between the points 

(xa,ya) and (xb,yb), but dependent only on the angle, Tan-i(To), it 

makes with the reference y-axis. 

2.4 Numerical Evaluation of the Local Wave Corner Function 

In this section, we deal with the numerical method for evaluating 

the local wave corner function, La(x,y), in expression (2.3.8). The 

auxiliary cosine integral function, g ( l^ai), in the expression can be 

calculated quickly by using a rational polynomial approximation for +£» 

> ] % a | > 1 . 0 , or a series expansion for 1 . 0 > | A a | > 0 . Both approximations can 

be found in the 'Handbook of Mathematical Functions' by Abramowitz and 

Stegun (Ref.(60) pg.232) and have also been enclosed in appendix C. The 

denominator inside the integral varies slowly, and although g(KXa|)->0 

as |XaI->±00 , the decay may be slow and the infinite range often cannot 

be truncated. The infinite integral is then split up into two infinite 

ranges, - Go<t<Ti and T2<t< + «« , and a finite range, Ti<t<T2, which 

contains the points of singularity. The number of singularities present 

in the finite integrating range varies with the position of the field 

point, (x,y), with respect to the trapezium. They can be categorized 

into the following three cases and will be considered separately. 

Case (i) jTa~Tol>0 and iv~val>0 



The infinite integral is split up into three segments, -'=o<t<Ti, 

Ti <t<T2 , and T2<t< where 

T1 = ( T a + T o ) / 2 - | T a - T o | / 2 - 1 . 0 

a n d T2 = ( T a + T o ) / 2 + | T a - T o | / 2 + 1 . 0 

for | T a - T o | > 3 . 0 and | T a - T o | < 2 . 0 , or 

Ti = ( T a + T o ) / 2 - | T a ~ T o l 

and 72 = ( T a + T o ) / 2 + | T a - T o | 

for 2.0<1Ta-To1<3.0. There are two points of singularity in the finite 

integrating range. There is a logarithmic singularity at t=Ta, as |Aa| 

tends to zero and 

g ( U a | ) - > - ! ) - L o g ( l A a l ) ( 2 . 4 . 1 ) 

(see equations (C.2) and (C.7) of appendix C), where ^ is the Euler 

constant. The other singularity occurs at the pole, t=To, when the 

denominator of the integrand, (t -To) , tends to zero (for the definitions 

of To, Ta and | X a | , see expressions (2.3.8), (2.3.9) and (2.3.10)). 

These two singularities can be removed by rewriting the integral into 

the following form: 

A 

qClAaI) dt 
( t - T o ) 

V 

qCIXal) + Loq(lt-TaI ) - H(To) dt 
( t - T o ) 



Loq(It-TaI ) dt + H(To) Log 
( t - T o ) 

T 2 - T 0 

T i - T o 

( 2 . 4 . 2 ) , 

where H(t) z g ( | % a | ) + Log(|t-Ta1) ( 2 . 4 . 3 ) . 

As shown in appendix D, the compensating logarithmic integral in 

equation (2.4.2) can be expressed as: 

% T^-Ta 

Loq(It-TaI) dt 
(t - T o ) 

L 
T 

Loq(IUl ) dt 
u - ( T o - T a ) 

la. 

I l g [ - ( T 2 - T a ) / ( T o - T a ) ] - I l g [ - ( T l - T a ) / ( T o - T a ) ] 

+ L o g ( l T o - T a l ) Log } ( T 2 - T a ) - ( T n - T . ) 

I ( T i - T a ) - ( T o - T a ) 

( 2 . 4 . 4 ) , 

where the function Ilg(x) is defined as: 

IlgCx) = 

X 
A 

J 
n 

Loq(IuI) du 
(1 + u) 

( 2 . 4 . 5 ) , 

which can be evaluated using the series approximations given in appendix 

E. It should be noticed that although the function, g( |Xa|) + Log(|t-

T a j ) - H ( T o ) , is continuous at t = T a , its slope is discontinuous. 

Therefore, the integrating process stops and restarts at the point, 

t::Ta, to minimize errors. At t=Ta, the value of the integrand inside the 
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first integral on the right hand side of equation (2.4.2) can be 

obtained by considering its limiting value as t ->Ta, thus, 

Limit q(IAal) + Loq(it-Tal) - H(To) 
T - > T a ( t - To) 

Log[ kos/C 1+Ta^ ) I y -Va I 1 - H ( T o ) ( 2 . 4 . 6 ) . 

(Ta - T o ) 

Similarly, the limiting value of the integrand at t=To is 

Limit g ( I A a l ) + Log(lt -Ta l ) - H(To) 
T - > T 

O (t - To) 

- [ g( i X a I ) ' l A a l ' ] t = T o + Mo (2.4.7), 
( T o - T a ) 

where g(u)' is the derivative of the function, g(u), with respect to u 

and l/tal'is the derivative of the function, | % a | , with respect to t. The 

derivative, g(u)', for positive real values of u can be evaluated by a 

series approximation for 1>u>0 or by a rational polynomial approximation 

for +oo>u>1. Both approximations are given in appendix F. The derivative 

of lAal with respect to t at t=To is 

l ^ a l ' t = To - ko To [ I ( X - X a ) + I ( V~Va ) I To I 1 + Mo\/ ( 1+To^ ) 1 y ~ y a | 
(1 + To2)1/2 

( 2 . 4 . 8 ) , 

where Mo = 1 i f To > Ta 

and Mo = - 1 i f To < T a . 
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Over the infinity ranges, -^<t<Ti and T2<t(+C0, the integrals are 

transformed using i/v = (t-Ta). It follows that 

~n 'I-CO 
n n 

A( 17.91) dt 
(t-To) 

-00 \ CT-Ti) -I 

- I 

iP â I ) dV + 
( 1 - ( T o - T a ) v ) V 

A(L%a I ) dV 

( 1 ~ ( T o - T a ) v ) V 

( 2 . 4 . 9 ) , 

where A a - ko I V - Yals/yZ + (1+Ta v)^ ( 2 . 4 . 1 0 ) , 

There is no problem in evaluating the above integrals since there is no 

singularity inside the integrating ranges. The integrating process stops 

and restarts at v=0, though this is not essential since the integrand is 

well behaved. At v = 0, as |%a| ->+<* and g ( | % a | ) - > 1 / | % a | 2 , the value 

of the integrand is given by: 

q( IXa Limit 
(1 - ( T o - T a)v)v 

Limit 1 
^ ~ ̂  ° ! X a l ^ ( 1 - ( T o - T a ) v ) V 

(2.4.11), 

Significant contributions to the local wave corner function, La(x,y), 

are expected to come from the regions around the logarithmic 

singularity, t= T a , and the pole, t= T o . For the case of | T a - T o | > 3 . 0 , the 

finite integrating range may be large, therefore the integral over the 

range, [ ( T a + T o ) / 2 - 1 T a - T o 1 / 2 + 1 . 0 ] >t> [ ( T a + T o ) / 2 + | T a - T o 1 / 2 - 1 . 0 ] , is also 

evaluated using the transformation, 1/v=(t-Ta). Note that the integral 

over this range does not contain any singularity. 

Case (ii) (Ta-To ) = 0 and ly-val>0 
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For a field point, (x,y), lying on the line passing through the two 

corners, (xa,ya) and (xb,yb), of trapezium, the logarithmic singularity 

and the pole singularity occur simultaneously at t=Ta. In this case, we 

have To=Ta and there is only one singularity in the range of 

integration. The infinite integral is split up into three segments, -co 

<t<Ti , Ti <t<T2 and T2<t<+co , where 

Ti = Ta - 1.0 

and T2 = Ta + 1.0 

The singularity occurs in the finite integrating range, Ti<t< Tz, when 

both I%aI and (t-To) tend to zero simultaneously at t=Ta can also be 

removed by rewriting the integral in the form of (2.4.2) with the value 

of H(To) replaced by H ( T a ) , where 

H(Ta) = Limit [g(l^a l ) + Log(|t - T a | ) ] 
t->T. 

= - y - Log [ koly-yalV l+Ta? ] (2.4.12). 

The limiting value of the integrand inside the first integral on the 

right hand side of equation (2.4.2) at t=Ta is now given by: 

Limit q(l^l) + Log(lt-Tal) - H(Ta) = - Ta (2.4.13). 
t->T a ( t - Ta ) 1 + TaZ 

Note that the integrands inside the second and third compensating 

integrals of equation (2.4.2) are now odd function of t about the point 

t=Ta. It follows that by taking the integrating ranges symmetrically 

about the point, t=Ta, the contributions of these two integrals are both 
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zero. As before, the integration process stops and restarts at t=Ta to 

minimize errors. Over the infinity ranges, -oo<t<Ti and T2<t< + oo, the 

integrals are evaluated by using the transformation, 1/v=(t-Ta). Note 

that the value of ( T a - T o ) in (2.4.9) is now zero. Again, there is no 

problem in evaluating these integrals since there is no singularity in 

the integrating ranges and the integrating process stops and restarts at 

v=0. At v=0, the limiting value of the integrand is zero. 

Case (iii) v - v a = 0 and l x - x=l>n 

For a field point, (x,y), lying on the side of the trapezium, (y-ya) 

=0, the logarithmic singularity does not exist since the function, [7lal, 

is greater than zero for all values of t. However, the singularity at 

the pole, t=To, still exists. As before, the infinite integral is split 

up into three segments, -oo<t<Ti, Ti<t<T2 and T2<t<+co, with 

T i = To - 1 . 0 

and 12 To + 1 . 0 

The singularity in the finite range, Ti<t<T2, is removed by Monacella's 

method (Ref.(61)). Thus, the integral is made regular by writing 

n 

T, 

ft 

I ) dt 
(t-To) 

i; 

q( 1 ^ I) - H ( T o ) d t + H ( T o ) Log 
( t - T o ) 

T z - T c 

T i -Tc 

(2.4.14), 

where now H(t) = g ( | % a | ) (2.4.15) 

and X a = ( x - x a ) y ( l + t 2 ) kc (2.4.16), 
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At t=To, the limiting value of the integrand inside the first integral 

on the right hand side of equation (2.4.14) is given by: 

Limit q ( l ^ a I ) - H ( T o ) = [ g ( l A a t ) ' lAa|']t=To (2.4.17), 
t- >T, ( t - T o ) 

where g(u)' is the derivative of g(u) with respect to u, which can be 

computed by the methods given in appendix F, and l^al' is the derivative 

of |y\al with respect to t. Note that the value of (y-ya) in the 

expression (2.4.8) for |Aal' is now zero. Also note that if the 

integrating range is taken to be symmetrical about the point, t=To, the 

contribution of the second term on the right hand side of equation 

(2.4.14) is zero. There is no singularity in the infinity ranges, -oO<t 

<Ti and Tz <t <+OQ, the integrals are transformed using 1/v=(t-To) into 

17 
A 

V 
- 0 6 

A 

(n-l.)' 

g(lAaI) dt 
(t-To) 

q(l^al) dv 
V 

g( ]7Va I) dv 
V 

("II-TJ -I 

(2.4.18), 

where 7v.a = ko I X-Xa I s/( V^ + ( 1+To v)2) (2.4.19), 

The integration process stops and restarts at v=0. At v=0, the value of 

the integrand is zero. Note that if both (x-xa) and (y-ya) are equal to 

zero, the local wave corner function, La(x,y), is undefined. 

2.5 Numerical Evaluation of the Free Wave Corner Function 

Recapping from section (2.3), equations (2.3.9) to (2.3.15), the free 

wave corner function, Fa(x,y), is 

29 



Fa(x,y) 
IT 

Ta, 
A 

V 
- od 

Sin( lAa n dt 
( t - T o ) 

(2.5.1), 

where - ( X - X a ) 

l(y-ya)| 
for !y-ya|>0 (2.5.2) 

To - - M a ( X b ~ X a ) 

(yb-ya) 
(2.5.3) 

{ (x - X a )+I ( y - y a ) I t} \/( 1 + t2 ) kc (2.5.4), 

and Ma = 1 

Ma = - 1 

for 

for 

(y-ya)>o 

(y-ya)<o (2.5.5). 

As explained in appendix G, the upper limit of the free wave 

integral in (2.5.1) is equal to + co when (y-ya) = 0 and (x-xa)<0, while 

for (y-ya)=0 and (x-xa)>0 the free wave integral is equal to zero. Thus, 

the free wave corner integral, Fa(x,y), at a point upstream from the 

corner ( x a , y a ) along the line ( y - y a ) = 0 is zero. However, one should 

notice that the free wave corner integral, Fb(x,y), along the line (y-

y a ) = 0 forward of the corner ( x a , y a ) is not equal to zero. Also note 

that, for the case of (y-ya)=0 and (x-xa)<0, Ma is taken as +1 in the 

present program though the same numerical result can also be obtained by 

taking Ma equal to -1. 

The difficulties in evaluating the free wave corner function are 

caused by a slow decay of the integrand combined with the highly 

oscillatory behaviour resulting from the rapid rate of change of the 

phase function |Aa I as t->+co. Significant contributions to the integral 

are expected to come from the regions around t=Ta, the pole t=To, and 
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the points of stationary phase where the slope of the phase function, 

|Aa|, changes sign. Thus, the points of stationary phase are given by 

the real roots of the following quadratic equation: 

d J\a = ko 
d t 

2|y-yalt^ + ( X - X a ) t + ly - V a l 
(1 + t2) 

( 2 . 5 . 6 ) , 

The roots of the above equation for |y-ya|>0 are 

t = 1 / 4 { Ta ± \ f (TaZ - 8 ) } ( 2 . 5 . 7 ) . 

There are two points of stationary phase inside the integrating range, -00 

<t<Ta, if Ta >2(2)1/2, one if Ta=2(2)i/2 and none otherwise. For 

Ta=2(2)i/2, the point of stationary phase is located at t=1/(2)i/2 which 

is at a distance 3/(2)i/2 from the upper limit of the integral, Ta, in 

descending values of t. Standing (Ref.(30)) pointed out that when Ta is 

just smaller than 2(2)1/%, the influence of the complex stationary phase 

points can still be felt around t=Ta/4, and this region may contribute 

significantly to the integral. Therefore, the integrating range starting 

at t=Ta should include the region around t=Ta/4 when Ta is just smaller 

than 2(2)1/2. Note that for the case of (y-ya)=0 and (x-xa)<0, the point 

of stationary phase is located at t=0 and the integrating range is from 

t = - O O t O t =+<X) . 

Case (i) lTa-Tol>0 and lv-val>0 

For the case where | T a - T o | > 0 and |y-ya|>0, there is a pole at t= T o , 

if Ta>To and none if T a < T o . The integrating range is divided into two 

segments, -<=o<t<Ti and Ti<t<Ta. The latter is arranged to include the 

pole at t=To if T a > T o . The point t=Ti is chosen to be at least two 

complete wave cycles from the point t=Ta-2.5 if T a < T o , or from the point 

t=To-2.5 if Ta>To, in descending values of t and located at a maximum or 

minimum of the function, Sin( |7Vai) , where Cos(|Aa|)=0. The point, t=Ta-
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2.5 or t=To-2.5, is chosen on the ground that the influence of the 

complex stationary phase points around the region t=Ta/4 will be 

included in the integrating range when Ta is just smaller than 2(2)1/%. 

The singularity at the pole, t=To, if present in the range, Ti<t<Ta, is 

removed by Monacella's method (Ref.(61)). The integral is made regular 

by writing 

Ta~To s i n ( i ; i a l ) dt = 
(t - T o ) 

SinflAal) - H(To) dt + H(To) Log. 
(t - T o ) T i - T o 

T ^ (2.5.8), 
'' T, 

where H(t) = Sin(|%a|) (2.5.9). 

As before, the value of the integrand in the first integral on the right 

hand side of equation (2.5.8) at t=To can be obtained by considering its 

limiting value as t->To. Thus, 

Limit Sin( i:Xa I ) - H ( T o) = [ C o s ( | % a | ) |?b|']t = To ( 2 . 5 . 1 0 ) , 
t->To (t - T o ) 

where |Aa|' is the derivative of the function |Aal with respect to t 

given in expression (2.4.8). 

The integral over the infinite range, - co <t<Ti, is truncated using 

the method proposed by Huang and Wong (Ref.(31)). The infinite range is 

truncated after a few cycles at a maximum or minimum of the function 

Sin ( | A a | ) . The resulting integral is roughly a 'mean' value and further 

extension of the range results in oscillations about this mean level. 

Suppose that |%a| varies monotonically with t and (t-To) has the same 

sign for t<Ti. The infinite range can be rewritten as: 
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T J 
+ OQ 

Sin( l^a I) dt = YZ. 
( t - T o ) 

nTk 
SindAal) dt (2.5.11), 
(t - To) 

Tk + 1 

where the points Tk and Tk + i (Tk>Tk + i) are chosen to be at successive 

half cycle apart of the function SinCl^al) in descending values of t, 

and located at a maximum or a minimum of Sin ( | A a | ) , where Cos ( |Aal)=0. 

The contributions to the integral from successive half cycles can be 

regarded as terms in an alternating series which are normally of 

decreasing magnitude and the series has the property that the difference 

between its exact sum and its partial sum is not greater than the first 

neglected term. Thus, the error in truncating the integral at t=Tn can 

be estimated by the value of the integral over the next successive half 

cycle. The integrating process therefore starts at t=Ta, integrating 

through descending values of t to the point t=Ti, then it starts to 

estimate the error in truncating the infinite range at t=Ti by 

integrating over the next successive half cycle. The integration process 

stops when the estimated error is less than 1.0E-5. The program then 

checks whether the points of stationary phase are included in the 

integrating range. If not, the integrating process starts again at the 

points of stationary phase, integrates through descending and ascending 

values of t in both directions for at least two complete wave cycles in 

each direction to a maximum or minimum of Sin ( |PVa|) . The truncating 

process is then repeated in both directions. The integrating range is 

checked in each stage throughout the above process to ensure that no 

part of the range is covered twice. 

Case (ii) ( T a - T o)=0 and !v - v a l>0 

For the case where Ta=To and | y - y a | > 0 , the pole is located at the 

upper limit of the integral, t=Ta. However, the integrand itself is not 

singular at t=Ta since both | / \a j and (t-Ta) tend to zero as t tends to 

Ta. The limiting value of the integrand as t approaches Ta from t less 

than Ta is 
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Limit Sin( 1% I ) - - kov/d+Ta^) |y-ya| (2.5.12). 
(t-TaJ 

Note that the integrand has a jump at the point t=Ta, where its value is 

negative when t is just less than Ta and is positive when t is just 

greater than Ta. As in case (i), the integral is divided into two 

segments, -'>o<t<Ti and Ti<t<Ta, where the point t=Ti is chosen to be at 

least two complete wave cycles to the negative t direction from the 

point t=Ta-2.5 and is located at a maximum or minimum of Sin(|J\a|). 

There is no problem in evaluating these integrals as there is no 

singularity present in both integrating ranges. The methods of 

truncating the infinite range, -co<t(Ti, and the integrations around the 

stationary phase points are the same as those in case (i). 

Case (iii) (y-va)=0 and |x-xal>0 

For the case where y-ya = 0 and |x-xa|>0, the upper limit of the 

integration is +00. The integral is then divided into three segments, - co 

<t<Ti, Ti<t<T2 and T2<t<+oo. The points, Ta and Ti, are chosen to be at 

least two complete wave cycles of the function, Sin|vla|, from the 

points, t=To±2.5, and are located at a maximum or minimum of SinCiAal). 

The singularity at t=To presents in the range, Ti<t<T2, is removed by 

Monacella's method (Ref.(61)) (see expression (2.5.8)) and the point 

itself is stepped over symmetrically to minimize errors. The truncations 

of the infinite ranges, - <t<Ti and T2<t<+ oQ, are proceed in both 

directions from the points, Ti and T2. The truncating process about 

stationary phase point at t=0 is then followed, if this region has not 

yet been covered by the above integrations. 

2.6 Some Computational Results for the Free Surface Elevation 

In order to validate the present computing program with respect to 

the evaluation of the free surface wave pattern generated by a constant 

pressure element in an uniform stream, longitudinal and transverse wave 

profiles induced by elements of various shapes were computed and 
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compared with the numerical results published by Standing (Ref.(30)), 

Huang and Wong (Ref.(31)) and Everest and Hogben (Ref.(63)). The 

computed wave profiles are presented in a non-dimensional form, /Ogz/Po, 

where z is the free surface elevation, ̂  is the density of the fluid, g 

is the acceleration due to gravity and Po is the pressure inside the 

element. 

Fig.(2.5a), fig.(2.5b) and fig.(2.5c) show the longitudinal wave 

profiles along the centre line, y=0, of a non-drifted rectangular 

element ( geometry shown in fig.(2.4a) ) of aspect ratio, B/L, of 10.0, 

1.0 and 4.0, at a Froude number, Fn=C/(gL)i/2, of 0.57, where B is the 

element's width, L is the element's length and C is the uniform stream 

speed. It can be seen that the profiles obtained by the present 

computational method are in excellent agreement with the results 

obtained by Standing (Ref.(30)). For the high aspect ratio rectangle of 

B/L=10.0, the present profile also reproduces Lamb's (Ref.(62)) two 

dimensional result closely with the wave length of the downstream wave 

equal to 2irFn- L. The accuracy of the present computations is indicated 

by the degree of smoothness of the curves and in particular, the way the 

waves die away upstream of the elements. Note that for the case of 

B/L=0.4 in fig.(2.5c), there is a region of ripples developed downstream 

from the element. These ripples are a genuine feature of the free wave 

system, which has also appeared in the computational results obtained by 

Standing (Ref.(30)), and are not due to numerical inaccuracies of the 

present computations. Fig.(2.5d) shows a three dimensional plot of the 

wave pattern produced by the same rectangular element of B/L=0.4 at 

Fn=0.57. Since the wave pattern is symmetric about the element's centre 

line, y=0, only the results for positive values of y are shown in the 

figure. It can be seen clearly from this plot that the ripples displayed 

in fig.(2.5c) are part of the diverging wave systems which originate 

from the corners of the rectangle. The formation of these ripples, 

however, may be due to the absence of viscous and surface tension 

effects in the present linearized theory. More details about these 

corner wave systems will be discussed in section 3.6. 

Fig.(2.6) shows the non-dimensional transverse wave profiles along 

the lateral centre line, x=0, along the forward face, x=0.5L, and along 
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the rearward face, x=-0.5L, of a non-drifted rectangular element of 

aspect ratio of 0.4, at a higher Froude number of 2.12. Again, the 

present profiles are in exact agreement with those obtained by Standing 

(Ref.(30)). Good agreement also exists between the present computational 

results and those from Huang and Wong (Ref.(31)). However, in Huang and 

Wong's solution, there are some oscillations in the bow profile, along 

x=0.5L, near the corner of the element. These oscillations may indicate 

that there are some numerical instability problems in their solution 

around the element's corner. No such oscillations were found either in 

the present computations or in Standing's results. The transverse wave 

profile at a distance x=-L downstream from the centre of the same 

element is shown in fig.(2.7a). The present results confirm the ripples 

developed around the element's side, y=0.2L, in Standing's solutions. 

Similar sort of ripples were also observed in the transverse wave 

profile further downstream at a distance x=-2L from the element's 

centre, as shown in fig.(2.7b). Again, these ripples appear around the 

element's side are a genuine feature of the present solutions and are 

not due to numerical inaccuracies. It can be seen from fig.(2.5d) that 

they are also part of the diverging wave systems produced by the 

pressure element although the two Froude numbers are not the same. The 

reason for the formation of these ripples will be discussed further in 

section (8.2). Note that these ripples are roughly antisymmetric about 

the element's side, y=0.2L. 

Fig(2.8a) and fig.(2.8b) show the wave profiles around the periphery 

of a rectangular element of aspect ratio of 2/3, at a drift angle of 30° 

( geometry shown in fig.(2.4b) ) and at a Froude number of 0.6. Again, 

the present results are in exact agreement with those obtained by 

Standing (Ref.(30)). Generally good agreement also exists between the 

present profiles and the free wave profiles obtained by Everest and 

Hogben (Ref.(63)) for the same rectangle in a channel of finite width. 

Note that the present wave profiles along the forward facing edges, AD 

and AB, have different mean levels from those obtained by Everest and 

Hogben. These differences may due to the contribution of the local wave 

terms, which have been neglected in Everest and Hogben's solutions. 

However, a further computation of the profiles along AD and AB excluding 
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the local wave terms has only produced a slightly better agreement 

between the two results. 

The final set of comparisons are for the longitudinal wave profiles 

along y=0, y=0.24D and y-0.42D of a circular element of diameter D. As 

shown in fig.(2.4c), the circle was represented by a 12-sided polygon 

and two Froude numbers, Fn=C/(gD)i/2, of 0,4 and 0.5 were considered. 

The profiles obtained by the present computational method together with 

those obtained by Standing (Ref.(30)) are shown in fig.(2.9a,b,c) and 

fig.(2.10a,b,c). Again, excellent agreement has been obtained between 

the two results. 

The generally good agreements between the present computational 

results and those obtained by other authors confirm the validity of the 

present computing program used in the evaluation of the free surface 

elevations induced by constant pressure elements in an uniform stream. 

The application of these elements to the determination of the pressure 

distribution under a planing surface will be discussed in the following 

chapter. 



CHAPTER (31 The Application of Constant Pressure Elements 

to Planing Problem 

3.1 Formulation of the Problem 

In this chapter, the constant pressure elements derived in the 

preceding chapter will be applied to determine the pressures under the 

wetted bottom of a planing craft. We will consider the steady state 

motion of a craft gliding at a constant speed, C, over the surface of 

calm water. The trim angle or the angle between the wetted surface and 

the undisturbed free surface is assumed to be small so that the splash 

configuration at the leading edge can be ignored and linearized 

potential flow theory can be adopted. 

When a craft is planing over a water surface, the wetted bottom of 

the craft is divided into two regions. A sketch of the typical wetted 

bottom of a planing prismatic surface is shown in fig.(5.1). The area 

forward of the spray root line (stagnation line) is known as the spray 

area and the area behind the spray root line is the pressure area. The 

pressure in the spray area is nearly atmospheric, therefore it only 

contributes to the total drag and does not carry any portion of pressure 

load. The pressure area is the load carrying area of the planing bottom. 

The 'wetted bottom area' used in the present computations refer to this 

load carrying area of the wetted bottom and does not include the forward 

thrown spray sheet. 

The x-y-z Cartesian coordinate system adopted is the same as that in 

chapter two. The motion is made steady by fixing the frame of reference 

in space and imposing an uniform stream of velocity, C, to the negative 

x-direction. The presence of the planing surface is modelled by an 

unknown pressure distribution on its wetted bottom projected on the 

plane of the undisturbed free surface. Making the usual assumptions of 

irrotational linearized potential flow, the flow field generated by 

these unknown pressures can be represented by a total velocity 

potential, j&(x,y,z), given by a perturbation velocity potential, 

^(x,y,z), and the imposed uniform free stream of velocity, C. Thus, 
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$x,y,z) = ^(x,y,z) - Cx (3.1.1) 

and the corresponding fluid velocity vector, q(u,v,w), at the point 

Cx,y,z) inside the fluid domain is given by: 

q(u,v,w) = v ( ̂ (x,y,z) - Cx ) (3.1.2). 

By means of discretization, the unknown continuous pressure 

distribution on the projected wetted bottom of the planing surface can 

be replaced by an equivalent finite element mesh consisting of a number 

of constant pressure elements, each of different strength. Typical 

finite element meshes representing the projected wetted bottom of a 

planing flat plate and a planing prismatic surface are shown in 

fig. (4.2) and fig. (5.2). It has been shown in chapter two that the 

perturbation velocity potential, ^i(x,y,z), induced by the i^h element 

of constant pressure. Pi, which satisfied the Laplace equation (2.2.3), 

the linearized free surface kinematic and pressure conditions (2.2.6) 

and (2.2.7), the infinite depth condition (2.2.9) and the radiation 

condition (2.2.10), can be expressed in the form of 

^i(x,y,z) = Pi ^i(x,y,z) (3.1.3), 

where ^i(x,y,z) denotes the perturbation velocity potential induced by 

the i^^ element of unit pressure. From the linearized free surface 

pressure condition (2.2.6), the free surface elevation induced by the 

î "̂  element, £i (x,y), is 

£i(x,y) = Pi £i(x,y) (3.1.4), 
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where ;3(x,y) = C (3.1 J)] 
g & X 2=0 

and = i^og for a field point (x,y) inside the element 

= 0 for a field point (x,y) outside the element 

Si = V2yog for a field point (x,y) on the boundary of the 
element. 

If the projected wetted bottom of the planing surface is represented 

by a number of n constant pressure elements, the total velocity 

potential, J^(x,y,z), induced by the discretized pressure distribution at 

a point (x,y,2) inside the fluid domain is 

]^(x,y,z) = 2] Pi di(x,y,z) - Cx (3.1.6). 
i = 1 

Similarly, the free surface elevation, £(x,y), at a point (x,y) on the 

free surface due to the discretized pressure distribution is 

fiXx.y) = Pi ,Ei(x,y) (3.1.7), 
1 = 1 

Inside the fluid domain, the total velocity potential, 0(x,y,z), is 

required to satisfy the Laplace equation, thus 

i z 1 
^ di + y di 
h 8 yZ 3 z2 

Pi = 0 (3.1.8), 
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Assuming that the fluid disturbance generated by the planing motion and 

the deformation of the free surface are both small, the linearized free 

surface pressure condition applied on the undisturbed free surface, z-0, 

I S 

n c (x.v) Pi 
i = i g Sx 

- P(x.v) = 21 Pi 6i(x,y) = £(x,y) (3.1.9) 
9p i = i 

on z=0 

and the linearized free surface kinematic condition applied on z-0 is 

H (x,y) Pi = - C Y1 (x,y) Pi = -C "^£(x,y) (3.1.10), 
bz 3x Sx 

on z=0 

where P(x,y) is the pressure on the free surface. It is clear that 

P(x,y) is equal to zero, i.e. atmospheric pressure, on the part of the 

free surface outside the projected planing wetted bottom. Inside the 

projected wetted bottom, P(x,y) is the unknown pressure distribution 

represented by the n unknown pressure strengths (Pi to Pn).£(x,y) and 

&6(x,y)/&x denote the free surface elevations and free surface slopes, 

which are equal to the hull displacements and hull slopes on the part of 

the free surface covered by projected planing wetted bottom. In 

addition, the velocity potential, i[(x,y,z), is also required to satisfy 

the infinite depth condition: 

y Ticti Pi = 0 as z -> -co (3.1.11) 
i = 1 5 z 

and the radiation condition: 
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n _ 
2_ Pi = 0 as X -> + CO (3.1.12), 
1 = 1 

which assures that no gravity wave will propagate upstream. 

Since the form of the velocity potentials, Pic/i (1 = 1 to n), of the n 

elements is chosen in such a way that each potential satisfies the 

Laplace equation, the infinite depth condition and the radiation 

condition, conditions (3.1.8), (3.1.11) and (3.1.12) will be satisfied 

by any arbitrary pressure distribution (Pi to Pn). Either the linearized 

free surface pressure condition (3.1.9) or the free surface kinematic 

condition (3.1.10) can be used to set up the rigid hull boundary 

condition under the planing bottom for solving the unknown pressures. In 

addition, it is also required to satisfy a Kutta condition at the 

trailing edge of the planing surface in order to ensure that the flow 

separates smoothly from the transom. It should be noticed that the 

pressure solution obtained from either rigid hull boundary condition 

will satisfy both free surface conditions (3.1.9) and (3.1.10), since 

both the linearized free surface pressure and kinematic conditions have 

been satisfied in deriving the basic velocity potential, Pi (j>i , and the 

corresponding free surface elevation. Pi £ i. Both methods of solution 

will be considered in the following section. 

3.2 The Hull Boundary Condition 

The total displacement, Z(x,y), of a planing hull above the 

undisturbed free surface can be expressed as the sum of the local hull 

displacement above the transom level, f(x,y), and the rise height along 

the transom above the level of the undisturbed free surface, h(y). Thus, 

Z(x,y) = f(x,y) + h(y) (3.2.1), 
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where the distance, x, is measured forward from the transom and the 

distance, y, is measured from the centre line of the projected wetted 

bottom. Since the shape of the projected wetted bottom is assumed to be 

known in the present computational method, the transom rise heights, 

h(y), have to be treated as unknowns and determined as part of the 

solution. If the projected wetted bottom is divided into m buttock 

strips (as shown in fig.(4.2) for m=5 and in fig.(5.2) for m=4), this 

will introduce an extra m number of unknown rise heights, one at the 

trailing edge of each buttock. Thus, the known quantities are the local 

hull displacement function, f(x,y), the speed, C, and the shape and 

extent of the projected wetted bottom and the solutions required to be 

determined are the n unknown pressures (Pi to Pn) and the m unknown 

trailing edge rise heights (hi to hm). 

As mentioned in section (3.1), there are two ways to set up the 

rigid hull boundary condition under the wetted bottom for determining 

these unknowns. The rigid hull boundary condition can be derived either 

by equating the free surface slopes to the hull slopes using the 

linearized free surface kinematic condition (3.1.10), or by equating the 

free surface elevations to the hull displacements using the linearized 

free surface pressure condition (3.1.9). 

First, we will consider the hull boundary condition derived from the 

free surface kinematic condition. This hull boundary condition requires 

that 

_ L 8#(x,Y) = -5Z(x.v) = -5f(x.v) on z=0 (3.2.2a) 
C 3z 3x Bx 

to be satisfied at the field points, (x,y), on the part of the free 

surface covered by the projected wetted bottom. By applying the 

discretized form of condition (3.2.2a) to the control points of the n 

elements, we have at the control point of the jth element. 
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J _ H (x,i ,yi) Pi = - fxi .Vi) on z=0 (3.2.2b), 
c 1=1 3z ax 

for j = 1 to n 

where (xj,yj) denotes the coordinates of the control point inside the 

jth element. These provided a number of n linear simultaneous equations 

for solving the n unknown pressures. However, it can be seen that 

equations (3.2.2b) do not involve the determination of the unknown 

trailing edge rise heights (hi to hm). The extra m equations required to 

determine these unknown trailing edge rise heights can be derived from 

the Kutta condition, which states that the flow should be separated 

smoothly from the transom edge of the planing bottom. In order to 

maintain the continuity of the flow from the planing bottom to the part 

of the free surface of atmospheric pressure, the rise heights along the 

trailing edge must equal to the free surface elevations induced by the 

pressure distribution there. Thus, by applying the linearized free 

surface pressure condition (3.1.9) to the points lying just outside the 

trailing edge of the m buttock strips where the pressures are 

atmospheric, we have at each such points, 

n 

hk = ZI C (Xk ,Vk) Pi on z-0 (3.2.3), 
' = g 3x 

for k- 1 to m 

where m is the total number of buttock strips, (xk,yk) is the 

coordinates of the chosen point lying just outside the trailing edge of 

the kth buttock strip and (Pi to Pn) are the pressure solution 

determined from the system of linear simultaneous equations (3.2.2b). 

The locations of the points, (xk,yk), with respect to the projected 

wetted bottom are shown in fig.(4.2) and fig.(5.2), where the kth 

buttock is denoted by Bk in the figures. The total hull displacement 

along the k^h buttock strip at a distance, x, from the transom is then 

given by the sum of hk and f(x,yk). It should be noted that the above 

method of solution involves the evaluation of two sets of integrals. 
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^(pi/dz for solving the n unknown pressures and 3^i/3x for determining 

the m unknown trailing rise heights. 

An alternative method of solution is to set up the rigid hull 

boundary condition under the planing bottom using the linearized free 

surface pressure condition (3.1.9). This approach is preferred to the 

one discussed above since it only involves the evaluation of one set of 

integrals, or £i, and the unknown trailing edge rise heights are 

determined as part of the solution together with the unknown pressures. 

To satisfy this rigid hull boundary condition, the total hull 

displacement at a field point, (x,y), on the part of the free surface 

covered by the projected wetted bottom must equal to the free surface 

elevation induced by the unknown pressures there. Thus, on this part of 

the free surface, we have 

C - PCx.v") - f(x,y) + h(y) (3.2.4a). 
g 3x /Og 

on z=0 

By applying the discretized form of (3.2.4a) to the control points of 

the n elements, we then have at the control point of the jth element. 

^ C ̂ <f>i (X.i , V.i ) Pi 
i = i g 3x 

n 

Pi = H Pi £i(xj,yj) = f(xj,yj) + hk 
jOg i = 1 

on z-0 for j=1 to n (3.2.4b), 

where (xj,yj) is the coordinates of the control point inside the jth 

element and hk is the trailing edge rise height of the k-"̂  buttock strip 

containing the jth element (see fig.(4.2) and fig.(5.2)). Condition 

(3.2.4b) only provides n linear simultaneous equations. The extra m 

equations required are obtained by satisfying the Kutta condition at the 

trailing edge of each individual buttock strips, which eventually leads 

to the m simultaneous linear equations given in (3.2.3). It should be 
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noted that, now, the pressures (Pi to Pn) in (3.2.3) are unknowns and 

have to be determined together with the unknown transom rise heights (hi 

to hm) by solving the m+n linear simultaneous equations given in (3.2.3) 

and (3.2.4b). Once again, the author would like to point out that 

although only the linearized free surface pressure boundary condition 

has been satisfied explicitly in setting up the above m+n linear 

simultaneous equations, the linearized free surface kinematic boundary 

condition will be satisfied implicitly since the chosen form of the 

basic velocity potentials, P, , and the basic free surface 

elevations, Pi Si, individually satisfy both linearized free surface 

boundary conditions. 

3.3 The Kutta Condition 

It has already been mentioned in the previous section that the 

present method of solution requires the shape of the projected wetted 

bottom to be prescribed, as well as the local hull displacement above 

the transom level, f(x,y), and the planing speed, C. Therefore, an 

unique pressure solution can only be obtained if the trailing edge rise 

heights, h(y), are also treated as unknowns and determined as part of 

the solution of the problem. This aspect of non-uniqueness can clearly 

be seen by considering the set of n linear simultaneous equations 

derived in (3.2.4b). One can solve this set of equations for the n 

unknown pressures by prescribing arbitrary values of h(y), however, the 

resulting pressure solution will not be necessarily correct and 

unrealistic pressure distribution could result. This is due to the 

incompatibility between the prescribed wetted bottom shape and the 

prescribed transom rise heights. This aspect of non-uniqueness in the 

solution has also been discussed by other authors such as Tuck 

(Ref.(27)) and Oertel (Ref.(28)). 

In the present method of solution, the extra equations required for 

solving these unknown trailing edge rise heights are provided by the 

Kutta condition at the trailing edge of the planing bottom. When a 

surface is under planing condition, the Kutta condition requires that 

the fluid under the planing bottom to separate smoothly from the transom 

edge. The method adopted in section (3.2) to satisfy this condition is 
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to ensure that the free surface wave profile induced by the unknown 

pressures (Pi to Pn) is continuous at the trailing edge of the planing 

bottom so that the smooth flow separation condition is maintained. 

Alternatively, the Kutta condition can also be satisfied by ensuring 

that the fluid pressures go to zero, i.e. atmospheric pressure, at the 

trailing edge of the planing bottom so that there is no discontinuity of 

pressure as the fluid leaves the transom edge. This 'Kutta zero pressure 

condition' at the transom edge can be achieved by adding one extra 

element of zero pressure to the trailing edge of each buttock strip. 

Since the pressure of these extra elements are prescribed to be zero, 

the number of unknown pressures and unknown trailing edge rise heights 

required to be determined are unaltered. By applying the rigid hull 

boundary condition (3.2.4b) to the control points of the additional m 

elements will then give the m extra equations required to solve for the 

n unknown pressures and the m unknown trailing edge rise heights. If the 

lengths of these extra elements are small so that their control points 

lie just outside the trailing edge of the buttock strips, it can be 

shown that the extra m equations obtained from this 'Kutta zero pressure 

condition' are identical to those obtained by the method adopted in 

section (3.2). 

In the present computational method, the Kutta condition is only 

satisfied at the trailing edge of the planing bottom. From a physical 

point of view, this seems to be sufficient. Doctors (Ref.(29)) suggested 

that in the non-linear viscous situation with surface tension, there is 

effectively a Kutta condition to be applied along the entire perimeter 

of the planing surface. 

In order to verify that the Kutta condition has been satisfied 

satisfactory at the transom edge so that there is no discontinuity in 

the flow as the fluid leaves the planing bottom, the wake depression 

behind a planing flat plate of wetted length to beam ratio, Lw/B, of 

2.0, at a beam Froude number, Cv, of 3.17 was computed. These wake 

profiles were computed by substituting the pressure solution obtained by 

the method discussed in section (3.2) into the linearized free surface 

pressure condition (3.1.9) and evaluated on the undisturbed free 
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surface, z-Q. The rectangular wetted bottom of the planing flat plate 

were divided into five equal sized buttock strips and the resulting 

pressure distribution is shown in fig.(4.6d). It can be seen that the 

resulting pressure distribution has a singularity at the leading edge 

and the pressures go to zero at the trailing edge. This leading edge 

pressure singularity, which represents the splash configuration at the 

spray root region and is ignored in a linear theory, is a common 

characteristic of all the pressure distribution obtained by the present 

theory. 

The computed wake profiles along the centre line, y-0, along yz0.4B 

and along y=0.7B outside the planing bottom are shown in fig.(3.la), 

fig(3.1b) and fig.(3.1c) in a non-dimensional form, z/(B TanCT)), where 

T is the trim angle, z is the wave elevation and B is the wetted beam. 

In these figures, the trailing edge of the projected wetted bottom is 

located at x=0 and the leading edge is located at x=2,0B. Note that 

although the predicted pressure distribution is a step function, the 

free surface wave profiles induced by these discretized pressures are 

continuous along the free surface. It can be clearly seen that the wake 

separates smoothly from the transom which confirms that the Kutta 

condition has been satisfied at the trailing edge of the plate. The 

formation of the splash is also observed in fig. (3.1c). One can also 

seen that these wave profiles have died away smoothly upstream from the 

leading edge, indicating that the radiation condition has also been 

satisfied. The present centre line wake profile has also been compared 

with the wake depression formula developed by Epshtein (Ref.(64)): 

z z h Cos(kx) + Tc Sin(kx) (3.3.1), 
k 

where k = (B/mi/z 
B Cv2 

z is the free surface depression (downward positive) at a distance x 

downstream from the transom, h is the immersion of the transom below the 
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undisturbed free surface and Tc is the trim angle in radians. The 

centre line transom immersion predicted by the present theory, which is 

h/(B T c) - 1.666, was used in the above formula to obtain the wake 

profile. As shown in fig.(3.1a), reasonably good agreement exists 

between the two results. In particular that the present wake profile 

seems to confirm the zero crossing point given by the formula. The 

accuracy of the present computations is also indicated by the degrees of 

smoothness of these curves. 

3.4 Output Hull Shapes 

In the present computational method, the vertical locations at the 

trailing edge of the buttock strips, h(y), cannot be prescribed because 

the shape of the projected wetted bottom has already been assumed. As a 

consequence, the transverse section shape of the planing surface will 

also be part of the solution though the longitudinal hull profile can be 

specified by the input local hull displacement function, f(x,y), above 

the transom level. The output vertical locations above the undisturbed 

free surface, Z(x,y), across a transverse section at a distance, x, 

forward of the transom are given by: 

Z(x,y) = f(x,y) + h(y) (3.4.1), 

which are dependent on the output rise heights, h(y), along the transom 

as well as the input function, f(x,y). Note that h(y) is constant along 

a given buttock strip. 

The transverse transom shape is presumably dependent on the shape of 

the prescribed projected wetted bottom and in particular, the geometry 

of the spray root profile. For example, as shown in fig.(3.2a) and 

fig.(3.2b), for an input local hull displacement above the transom level 

defined by the function f(x,y)= xTan(T), a nearly flat transverse 

transom will be obtained if the projected wetted bottom is rectangular 

in shape, while a swept back spray root profile will result in a vee-

shape transverse transom. The predicted shape of the transoms shown in 

these figures are slightly curved instead of being perfectly straight. 
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This is due to the slight imperfection in the assumed spray root 

profiles, which should have a slight curvature in practical situations. 

The present computations also show that these output section shapes are 

dependent on the spray root geometry but are independent of the planing 

speed. 

Obviously, a direct approach to the problem is to prescribe the hull 

shape and to determine the required wetted bottom shape and transom rise 

height, which is constant along the transom, as part of the solution 

together with the pressure distribution. This can be achieved by an 

iteration process based on the change in transverse transom shape 

against the change in spray root geometry - i.e. the change in wetted 

length of each buttock strip (also see section 3.7). However, such an 

approach could be time consuming since it will require the recalculation 

of the pressure distribution at each stage of the iteration. Further-

more, the rate of convergence is dependent primarily on the initial 

estimation of the wetted bottom shape and consequently convergence might 

be difficult to achieve. 

3.5 Convergence Behaviour 

In this section, we investigate the convergence behaviour of the 

present finite element method on the determination of the pressure 

distribution under a planing surface. As in any finite element scheme, 

the fineness of the mesh has to be varied until the computed quantity 

converges. It is of particular importance to have a good understanding 

of the convergence behaviour of this method in order to optimize the 

number of elements used in the finite element mesh, hence the computing 

time, and to avoid any divergence in the computed quantity. Both the 

transverse and the longitudinal convergences of the pressure 

distribution will be investigated aiming to optimize the number of 

buttock strips and the number of longitudinal elements in each buttock. 

The longitudinal convergence of the pressure distribution for a given 

wetted bottom is obtained by fixing the number of buttock strips and 

increasing the number of elements in each strip until the pressure 

distribution converges. Similarly, the transverse convergence of the 

pressure distribution is achieved by fixing the number of elements in 
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each buttock strip and the number of buttocks is increased until the 

pressure distribution converges. 

It was found that for a fixed number of buttock strips, the computed 

pressure distribution converged fairly rapidly with the increase in the 

number of elements in each buttock. Fig.(3.3a,b) and fig.(3.4a,b) show 

the predicted pressure distributions along the centre line and along the 

chine of a planing flat plate with wetted length to beam ratios, Lw/B, 

of 2.7 and 1.2, at beam Froude numbers, C/(gB)i/2, of 3.5 and 2.42 

respectively. The rectangular wetted bottom of the plate was divided 

into five buttock strips, each of equal width, and each strip was sub-

divided into 5 to 50 equal sized elements. It can be seen from the 

figures that the pressure distributions converge rapidly both along the 

centre line and the chine of the plate. Even with only 10 elements in 

each buttock, the pressures predicted are in good agreement with those 

obtained when 50 elements are used. Equally fast convergence rates were 

also evident in the predicted lifts, longitudinal centre of pressure 

positions and transom rise heights. Fig.(3.5a,b,c) and fig.(3.6a,b,c) 

show these computed quantities as a percentage of their respective 

values computed using 50 elements in each buttock. It was found that 

even with only five equal sized elements in each buttock strip, the 

results obtained were over 94% of those predicted by using 50 elements. 

However, unfortunately, the convergence of the pressure distribution 

in the transverse sense is not as well-behaved. It was found that the 

pressure solutions obtained by the present method have a divergent 

tendency when the number of buttock strips is increased. For a planing 

flat plate with a rectangular wetted bottom, this pressure divergence 

was found to occur initially at the chine, near the trailing edge of the 

plate. Further increases in the number of buttock strips resulted in the 

spreading of this divergence toward the leading edge and the centre line 

of the plate. It was also found that the number of buttock strips that 

could be used before there is any sign of divergence in the pressure 

distribution varies directly with the speed and the aspect ratio, B/Lw, 

of the plate. Fig.(3.7a) and fig.(3.7b) show the lateral pressure 

distributions at various distances along the length of a rectangular 

wetted bottom of Lw/B ratio of 0.5, at beam Froude numbers of 1,5 and 
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2.5, when different number of buttock strips are used. Again, equal size 

rectangular elements were used in the computations with each buttock 

divided into 15 elements. It can be seen that in the high beam Froude 

number case, i.e. Cv=2.5, the present computational method is 

comparatively more stable and there is no sign of pressure divergence up 

to eleven buttock strips being used. However, at a lower beam Froude 

number of 1.5, divergence in the predicted pressure distribution is 

spotted at the chine at station (A), at a distance of Lw/30 forward of 

the trailing edge, when only seven buttock strips are used. The 

spreading tendency of this pressure divergence with the increase in the 

number of buttocks is also demonstrated in fig.(3.7b). 

Unrealistic oscillatory pressure results were also obtained for 

rectangular wetted bottom of large Lw/B ratio at low beam Froude number 

when large number of buttocks were used. These oscillatory pressures are 

shown in fig.(3.8a) and fig.(3.8b) for rectangular wetted bottom of Lw/B 

ratio of 1.8, at a beam Froude number of 1.5 when nine buttock strips 

are used. Note that the pressure oscillation along the chine is more 

violent than that along the centre line with a region of negative 

pressure developed near the trailing edge. Also note that the 

oscillation has completely died away both along the chine and the centre 

line when the number of buttock strips is reduced to five. Similar 

oscillatory and divergent behaviours were also observed in the pressure 

solutions obtained from wetted bottoms with a swept-back spray root. But 

in this case, as shown in fig. (5.9) of chapter five for Cv-1.512, the 

divergence and the oscillation are originated from the region near the 

centre line, where the wetted length is maximum. 

3.6 The Causes of Pressure Divergence and Pressure Oscillation 

Doctors' finite element method (Ref.(29)) also showed a similar type 

of deteriorated pressure distribution to those displayed in fig.(3.8), 

especially for planing surfaces - his theory had only been applied to 

flat plate and constant deadrise prismatic surfaces - of large wetted 

length to beam ratio at low beam Froude number. Doctors suggested that 

these deteriorated pressures were probably due to the imprecision of the 

influence coefficients in the matrix, and this inaccuracy coupled with 
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the round-off error inherent in a large matrix system may be responsible 

for the occurrence of this pressure divergence. However, when the 

accuracy of the present integration was increased by assigning smaller 

step sizes in the integrating process, there was no change in the 

resulting pressure distribution nor in the free surface response 

produced by a single element. Moreover, if there was any serious round-

off error problem, it should have manifested itself by preventing the 

pressure distribution converging in the longitudinal sense. 

Since the hull displacement vector - defined by the input local hull 

displacement function f(x,y) - is not oscillatory, these pressure 

oscillations can only be caused by some oscillatory patterns built into 

the system matrix. For a rectangular projected wetted bottom divided 

into equal sized rectangular pressure elements, the influence 

coefficients in the system matrix are basically equal to the free 

surface response produced by an element of unit pressure. A close 

examination on the free surface wave profiles produced by such an 

element reveals that a more likely cause for this divergence and 

oscillation is the type of element used. Fig.(3.9) shows the non-

dimensional free surface wave profiles along the centre line of a 

constant pressure rectangular element of width 1/5 B and length 1/10 B 

at various beam Froude numbers, where B is the beam of the rectangular 

projected wetted bottom. It can be seen that there is an increase in the 

number of wave cycles in the downstream wave profile as the beam Froude 

number decreases from 5.0 to 1.5. One can also see from the non-

dimensional wave profiles presented in fig.(3.10a,b,c) that, for a fixed 

beam Froude number and element's length, the wave length of these 

downstream waves decrease with the width of the element. It is now clear 

that the oscillatory patterns in the system matrix are caused by these 

short period downstream waves, and as a result, the pressure solution is 

forced to oscillate in order to satisfy the hull boundary condition set 

up on the planing wetted bottom. Wave profiles such as those shown in 

fig.(3.9) and fig.(3.10) can therefore be used as a guide-line for 

estimating the approximate number of buttocks that can be used for a 

particular wetted length to beam ratio and beam Froude number before any 

oscillation in the pressure distribution occurs. It was found that the 

maximum buttock length has to be less than about three quarters of the 
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first downstream wave length produced by the leading edge element in 

order to avoid the pressure oscillation problem. 

Perhaps a better way to understand the reason for the formation of 

these short period downstream waves is to consider the wave pattern 

produced by the corner wave function. The presence of a constant 

pressure rectangular element can be represented by four corner wave 

sources, each at a corner of the rectangle and each mathematically 

equivalent to the sum of the local wave and the free wave corner 

functions at that corner, as shown in fig.(3,11a). Thus, we can write 

the free surface elevation at a field point (x,y) given by a rectangular 

element of constant pressure, Po, as: 

E(x,y) - Po [ C(x-XA,y-yA) - C(x-XB,y-yB) + C(x-xc,y-yc) 
P 2 

- C(x-XD,y-yD) + 5 ] (3.6.1), 

where (xA.ym), (xB.ys) etc are the coordinates of the corners of the 

rectangle as shown in fig.(3.11a), S has its usual meaning of either 1, 

'/2 or 0 according to the location of field point (x,y) with respect to 

the rectangle and C(X,Y) is the non-dimensional corner wave function 

given by: 

C ( X , Y ) = L ( X , Y ) + F ( X , Y ) ( 3 . 6 . 2 ) , 

For a rectangular element with To equal to zero in expressions (2.3.8) 

and (2.3.9), the non-dimensional local and free wave corner functions 

can be written as: 
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( 3 . 6 . 4 ) , 

in which ko ( X + |Y|t ) (1 + t2)i/2 ( 3 . 6 . 5 ) 

and, with (x-xa) and (y-ya) replaced by X and Y, M and T have the same 

meanings as Ma and Ta in the expressions. For a rectangular element, it 

can be shown that C(X,Y) = -C(X,-Y). Further, as mentioned earlier in 

section (2.3), the wave pattern produced by each corner wave function, 

C(X,Y), is speed dependent but does not depend on the length and the 

width of the element. 

Fig,(3.11b) shows two three dimensional plots of the non-dimensional 

corner wave function, C(X,Y) , of a constant pressure rectangular element 

at different view angles. The horizontal distances X and Y are non-

dimensionized using the fundamental wave number, ko=g/C2, as koX and koY 

so that the function is independent of speed. It can be seen from these 

3-D plots that there is a diverging wave system originating from the 

corner (X=0 and Y=0). One can also see that, for large values of koY, 

the transverse wave length is equal to 2"n'/ko which is the downstream 

wave length along the centre line of a rectangular element of infinitely 

large width to length ratio. This corresponds to a wave length of 2 T C v ' B 

if B is the projected wetted beam of the planing plate and Cv is the 

beam Froude number. It is clear that the wave length of these transverse 

waves is much longer than those shown in fig.(3.9) and fig.(3.10) and 

should not be responsible for producing the short period downstream 
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waves shown in the figures. It was found that the diverging waves 

produced by the four corner wave functions are responsible for the 

formation of these short period downstream waves. 

The interaction between the four corner diverging wave systems is a 

complex phenomenon. However, for simplicity, we can combine the two 

corner wave functions at corners A and D, and also the two at corners B 

and C, to form two wave patterns originated from the corners A and B, as 

shown in fig.(3.11c). Note that each of these combined wave patterns is 

now a function of element length, but is still independent of the width 

of the element. Now, it can be seen clearly from fig. (3.11c) that the 

formation of the short period downstream waves along the element's 

centre line is caused by the interference between the two diverging wave 

systems produced by the two combined corner wave functions at corners A 

and B. Furthermore, for a fixed element length, the width of the element 

can then be adjusted by varying the lateral distance between the two 

combined corner wave functions. It can be seen from fig.(3.lid) that the 

effect of reducing the element's width is to produce more oscillations 

in the downstream wave profile along the centre line of the element. 

Fig,(3.12a,b) demonstrates the effect of element's length on the 

resulting free surface wave profiles. At each of the two speeds 

considered, the width of the element is fixed at B/5 and the length of 

the element is allowed to vary from B/40 to B/5. The distance, x, in the 

figures is measured from the centre of the elements. It can be seen that 

there is no phase shift in the downstream wave profiles for the range of 

element's lengths considered, while the wave amplitudes vary fairly 

linearly with the area of the element. This would explain the good 

behaviour of the pressure solutions obtained when the number of elements 

is increased in the longitudinal sense. 

Returning to the pressure divergence and oscillation problems, since 

the formation of these short period downstream waves is a genuine 

characteristic of the present constant pressure element and is not due 

to numerical inaccuracy, a cure to the problem can only be sought by 

deriving elements of different form or by considering alternative 

approaches to the problem. For a Kelvin wavemaking source, it is known 
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that in practice situation with viscous effects and surface tension 

included, the diverging wave crests will not extend to the source 

itself. It is therefore very likely that the neglect of these viscous 

effect and surface tension in the present theory are responsible for the 

formation of these short period waves at low speed. It would be tempting 

to suggest that the re-formulation of the present theory by including 

the effects of viscous and surface tension or some sort of artificial 

damping in the governing equations could well be a direct way to 

overcome the present convergence difficulty and oscillatory pressure 

problem. In order to avoid the oscillation in the pressure solution, a 

maximum number of six buttock strips will be used in the later 

computations so that reasonably good results can be expected. On the 

other hand, a few elements in each buttock strip will be adequate to 

achieve reasonably good results. 

^ — T h e Determination of Wetted Lengths and Trim Angles for a given 
Craft's Loading Condition 

For a particular craft, the hull geometry, displacement and centre 

of gravity position are specified. At a given speed, the equilibrium of 

the craft can only be maintained if the lift generated by the planing 

motion is equal to the weight of the craft and the pitching moment 

produced by the bottom pressures is zero about the craft's centre of 

gravity. Therefore, the direct approach to the problem is clearly to 

determine the unknown running trim, wetted bottom area, transom 

immersion and bottom pressures which will provide for these equilibrium 

conditions. As mentioned earlier in section (3.4), this direct problem 

would be difficult to solve since it involves the integration over an 

unknown wetted area and the convergence of the iteration process in 

obtaining the right wetted bottom shape might also be difficult to 

achieve. 

However, such a direct approach to the problem has been achieved by 

Doctor (Ref.(29)) who also used a finite element method. The pressure 

elements used were rectangular in shape with a pyramidal pressure 

distribution and the method has been applied to both planing flat plate 

and prismatic hulls. In his solution, the weight and the longitudinal 
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centre of gravity position of the craft were derived from its 

hydrostatic condition. An initial estimation of the wetted length was 

obtained from Savitsky's empirical formula for the longitudinal location 

of centre of pressure (4.4.1). The solutions were then determined by an 

iterative procedure. For an estimated wetted bottom shape, the pressure 

distribution, trim angle and trailing edge immersions were obtained by 

satisfying the rigid hull boundary condition, the Kutta condition and 

the equilibrium conditions of the craft. At each stage of iteration, 

correction to each buttock length was made by considering the change in 

the errors in not satisfying the Kutta condition at the trailing edge of 

the buttocks due to an increment in the length of each buttock in turn. 

The method predicted the amount of wetted area of flat plates and 

prismatic hulls to within a few percent of those derived from the 

Savitsky's formula. 

In the present approach, the shape of the wetted bottom, the trim 

angle, the wetted beam and the speed are required to be prescribed and 

the lift, the longitudinal centre of pressure location and the 

immersions at the trailing edge of each buttock are determined as the 

solution. In order to obtain the running trims and running wetted 

lengths for a craft of specified loading condition for a given speed 

range, it would be necessary to carry out computations for the lift and 

longitudinal centre of pressure position for an assumed range of wetted 

length to beam ratios and trim angles at each speed. The required 

running trim and running wetted length can then be determined by an 

interpolating method based on matching the weight and the longitudinal 

centre of gravity position of the craft to the pre-calculated lifts and 

longitudinal centre of pressure positions. For a heeled or yawed craft, 

one can also pre-calculate the rolling moments, yawing moments and sway 

forces arising from the asymmetric bottom pressures for the assumed 

ranges of trim angles and wetted length to beam ratios. The required 

rolling moment, yawing moment and sway force for the heeled or yawed 

craft at a particular loading condition can then be determined by a 

similar interpolating process once the running trim and running wetted 

length have been obtained. The following flow diagram outlines the 

general procedures of the solution scheme. More details concerning this 

interpolating method will be discussed in the later chapters. 
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CHAPTER (4) Some Results for the Planing of a Flat Plate 

4.1 Introduction 

This chapter presents results derived from the present theory for 

planing flat plates. As shown in fig.(4.1), the projected wetted bottom 

of the planing plate was taken to be rectangular in shape and the slight 

curvature at the spray root was ignored. A typical finite element 

representation of this rectangular projected wetted bottom is shown in 

fig.(4.2). The number of buttock strips used in the computations varied 

from three at low Froude numbers to five at high Froude numbers. The 

input local hull surface displacement above the transom level was 

defined by the function, f(x,y)=x, instead of f(x,y)=Tan(T)x. Therefore, 

the resulting solutions were P/Tan(I) and H/Tan(T), where P is the 

pressure under the wetted bottom and H is the transom immersion of the 

individual buttocks, both being independent of the trim angle, T. 

The transom immersions, lift coefficients and longitudinal centre of 

pressure positions predicted by the present theory will be compared with 

the results obtained from the Savitsky's empirical equations (Ref,(44)) 

and the theoretical predictions of Wang and Rispin (Ref.(26)) and 

Doctors (Ref.{29)) in sections (4.2), (4.3) and (4.4). The Savitsky's 

empirical equations, which are applicable to both flat plate and 

constant deadrise prismatic hulls, were derived by fitting simple 

formulae to a large collection of experimental data. The accuracy of 

these equations is not exactly known; however they do give an overall 

representation of the experimental values for a wide range of speeds, 

trim angles and wetted lengths. Comparisons of the present pressure 

distribution have been made with the experimental results of Sottorf 

(Ref.(34)) and Jahangeer (Ref.(66)) and the theoretical curves of Wang 

and Rispin (Ref.(26)), and these results will be presented in section 

(4.5). Finally, the method to determine the running trim angle and 

running wetted length for a planing plate of specified weight and 

longitudinal centre of gravity location will be discussed in section 

(4.6). 
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4.2 Output Transom Shape and Immersed Length 

The results for the immersed length, i.e. the length of the plate 

below the undisturbed free surface, and the predicted transom shape are 

presented in this section. Five different beam Froude numbers, Cv, of 

1.512, 2.309, 3 .5 , 5.0 and 8 .0 and a wetted length to beam ratio, Lw/B, 

up to 3.0 were considered. Five buttock strips of equal width were used 

for the cases of Cv greater than 2 . 3 0 9 and three buttocks were used 

otherwise. In order to save computing time, equal sized rectangular 

elements were used. At each speed, the influence coefficients were 

evaluated for a rectangular wetted bottom of Lw/B ratio of 3 .0 with 60 

elements along each buttock strip. Reduction in Lw/B ratio was then 

achieved by discarding a single row of leading edge elements along the 

length at a time. In this way, the results for the entire range of Lw/B 

ratios can be obtained by evaluating only the influence coefficients for 

the case of L w / B = 3 . 0 . As mentioned earlier in section ( 3 . 5 ) , the 

computed quantities converge very rapidly with the number of elements in 

each buttock strip, hence reasonably good accuracy can also be expected 

from the results obtained for wetted bottoms of small Lw/B ratio. 

Fig.(4.3) shows the predicted transom shapes and vertical locations 

for various wetted length to beam ratios and beam Froude numbers. The 

ordinate of the graph is the non-dimensional transom rise height, 

H/(Tan(T) B), where H is the transom rise height above the undisturbed 

free surface, B is the wetted beam and I is the trim angle. Note that at 

small trim angles, Tan(T) is equivalent to the trim angle in radians. As 

mentioned in section (3.4), the output transoms are slightly cambered as 

a result of ignoring the curvature at the spray root. It can be seen 

that the amount of camber remains fairly constant over the entire range 

of Cv and Lw/B ratios. This suggests that the output transom shape is 

only a function of the spray root geometry. 

For planing flat plates, Savitsky (Ref.(44)) gave the following pair 

of equations for the relationship between immersed length to beam ratio, 

L i / B , and the wetted length to beam ratio, Lw/B; 
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L w / B z L i / B + 0 . 3 for 1 . 0 1 L i / B 1 4 . 0 

and Lw/B = 1.6 L i / B - 0.3 (Li/B)2 for 0.0 1 L i / B 1 1.0 

( 4 . 2 . 1 ) , 

which are applicable to trim angles ranging from 2° to 24°; Lw/B 1 4.0; 

and 0.6 1 Cv 1 25.0. Since in the present theory, the predicted trailing 

edge immersion of the individual buttocks are of slightly different 

values, a mean immersed length to beam ratio has to be defined; 

Li. z _H1 = H* ( for Small t ) (4.2.2), 
B B Tc B Tan(t) 

where H* is the mean transom immersion obtained by fitting a least-

squares straight line through the predicted immersions along the transom 

and Tc denotes the trim angle in radians. The present predictions for 

L i / B are shown in fig.(4.4) together with the Savitsky's curve and the 

theoretical predictions of Doctors (Ref.(29)). For Lw/B ratios greater 

than 0.9, the present predictions are in excellent agreement with the 

Savitsky's curve but there is some discrepancies between the two results 

at lower Lw/B ratios. On the other hand, the present results seem to 

verify that the immersed lengths are independent of the planing speeds, 

as was apparent in Savitsky's curve. 

4.3 Coefficient of Lift 

Savitsky (Ref.(44)) derived the following empirical equation for the 

lift coefficient, Cfz , of planing flat plate: 

C f z z X 1 . 1 0 . 0 1 2 ( L w / B ) i / 2 + 0 . 0 0 5 5 ( L w / B ) 5 / : 

Cv2 
(4.3.1), 

62 



which is valid for 0.6 1 Cv i 13.0; 2° 1 Z L 15° and Lw/B 1 4.0, 

where C f z = Fz ( 4 . 3 . 2 ) 
i/2/0Cv2gB3 

Fz is the lift, g is the acceleration due to gravity and I is the trim 

angle in degrees. In order to make comparison with the results obtained 

by the present linear theory, for small trim angles the term T'-'• in 

equation (4.3.1) is taken to be equal to T and is expressed in radians 

(or Tan (T ) ) to give 

Cfz = 57.296 
Tan(T) 

0.012(Lw/B)i/2 + Q.0055('LW/B)5/2 
Cv2 

(4.3.3) 

Fig.(4.5a,b,c and d) compare the predicted lift slopes, Cfz/Tan (T) , 

with the empirical lift equation (4.3.3) for beam Froude numbers, Cv, of 

1.512, 2.309, 3.5, 5.0 and 8.0. For Cv of 1.512 and Lw/B ratios greater 

than about 2,2, the predicted pressure distributions have generally 

deteriorated. As these deteriorated pressures might lead to unreliable 

results, they have not been shown in fig. (4.5a). For Cv less than 3.5, 

the lift slopes predicted by the present theory are generally larger 

than those obtained from the Savitsky's lift equation (4.3.3), but a 

better agreement is observed at small Lw/B ratios. On the other hand, at 

Cv=2.309, the theoretical predictions of Doctors (Ref.(29)) are around 

30% less than the values obtained from equation (4.3.3), while the 

present result is about 30% larger than the respective value given by 

the empirical lift equation at Lw/B=3.0, For high beam Froude numbers, 

the present theory gives results that are generally below the Savitsky's 

curve for Lw/B ratios greater than about 1.6, and an error of up to 30% 

is observed at Lw/B=3.0 for Cv=8.0. 

An interesting feature of equation (4.3.3) is that the gravitational 

effect, which corresponds to the second term of the equation, gives an 
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increase to the lift coefficient, Cfz , regardless of the wetted length 

to beam ratio. In the present predictions, however, it was found that 

the lift coefficient increases with the decrease of Cv for large Lw/B 

ratios, while the tendency is reversed at small Lw/B ratios (i.e. lift 

coefficient decreases with Cv). The same tendencies have also been 

observed in the case of planing prismatic hulls and are clearly shown in 

fig.(5.7) of chapter five. These would imply that the gravitational 

effect gives an increase to the lift coefficient for a large Lw/B ratio 

planing surface but reduces it for a small Lw/B ratio. These tendencies 

agree with the theoretical predictions of Maruo (Ref.(23)) for the cases 

of high and low aspect ratio approximations as well as the experimental 

results of Sambraus (Ref.(36)). The theoretical results of Jahangeer 

(Ref.(66)) and Wang and Rispin (Ref.(26)) also showed similar effects. 

At high speed, the hydrodynamic effect becomes dominant and the lift 

coefficient becomes independent of beam Froude number. This aspect of 

planing is demonstrated by the results presented in fig.(4.5d) for the 

cases of Cv=5.0 and 8.0 and is particularly true for small Lw/B ratio 

planing surfaces. This hydrodynamic effect is also indicated by the 

Savitsky's empirical lift equation (4.3.3). 

Finally, the present results are compared with the theoretical 

predictions of Wang and Rispin (Ref.(26)). In their theory, the unknown 

pressure distribution, P(x,y), under the plate was expressed in the form 

of; 

oo oo 

P(x,y) = H H Amn y" (1 - y2)1/2 Jn(x) (4.3.4), 
m = 0 n = 0 

where In(x) is the Birnbaum expansion (Ref.(65)) derived from thin 

airfoil theory which contains a square root type of singularity at the 

leading edge, Amn are unknown coefficients to be determined and all 

distances are non-dimensionalized against the semi-span width of the 

plate. The kernel function in the integral equation was expanded 

asymptotically for large Froude number, Fr = C2/(gl) , up to Fr-z, 
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where 1 is the half beam of the plate. In the expansion, singular 

behaviour was introduced at the tips of the plate, as y->+1, by the 

chosen pressure form, P(x,y). For large aspect ratio, B/Lw, the 

expansions used in their theory are not valid, while for small aspect 

ratio their theory becomes inaccurate as the tip effect predominates. 

The comparison between the present lift slopes and the theoretical 

predictions of Wang and Rispin is shown in fig.(4.6a) for a Froude 

number, F n - C / ( g L w , of 2.24. It can be seen that there is a good 

agreement exists between the two theories for the range of aspect ratios 

considered. Fig.(4.6b) compares the present centre of pressure to wetted 

length ratios, L c p / L w , with their theoretical predictions. Reasonably 

good agreement has been obtained between the two results for large 

aspect ratios while the centre of pressure positions predicted by the 

present theory are more forward from the transom for aspect ratios less 

than about 1.0. The discrepancy between the two results at small aspect 

ratios is probably due to the predominance of the tip effect in their 

theory. 

Fig.(4.6c) and fig.(4.6d) compare the present centre line and chine 

pressure distributions with the theoretical curves of Wang and Rispin 

for two Lw/B ratios of 1.0 and 2.0, both at a Froude number of 2.24. In 

both cases, good agreement is found along the centre line of the plate 

but the chine pressure distributions of Wang and Rispin show higher 

pressures at the region near the trailing edge. This could also due to 

the singular behaviour introduced at the tips of the plate by their 

theory. Of the two cases, the chine pressures of the smaller Lw/B ratio 

(larger aspect ratio) plate shows better agreement. 

4.4 Longitudinal Centre of Pressure Location 

The Savitsky's empirical equation (Ref.(44)) for the location of the 

longitudinal centre of pressure forward of the transom, Lcp, of planing 

flat plate and planing constant deadrise prismatic hulls is 

Lgp -
B 

0.75 - 1 
(5.21 C v 2 / ( L w / B ) 2 + 2.39) 
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which is independent of the trim and deadrise angles. This equation was 

derived by considering the moments produced by the hydrodynamic lift, 

i.e. the first term of equation (4.3.1), and the buoyant lift, i.e. 

second term of (4.3.1), separately. The centre of pressure of the 

hydrodynamic lift was taken to be at 75% of the mean wetted length 

forward of the transom and the centre of pressure of the buoyant force 

was taken to be at 33% of the mean wetted length forward of the transom. 

Therefore, this empirical equation should be valid for the same working 

ranges as those given in equation (4.3.1). 

Fig.(4.7a) to fig.(4.7d) show the comparison between the present 

predictions for L c p / B and the results obtained from equation (4.4.1) for 

beam Froude numbers ranging from 1.512 to 8.0, together with the 

theoretical predictions of Doctors (Ref.(29)). It can be seen that the 

present centre of pressure positions are generally more forward from the 

transom than those given by the Savitsky's equation. However, a reverse 

tendency is observed at large Lw/B ratio for Cv <_ 3.5. The maximum error 

between the two results in the range of Cv and Lw/B ratios considered 

was found to be about 19%. On the other hand, Doctors' results for Cv of 

1.512 and 2.309 show very good agreements with the Savitsky's curves 

especially for Lw/B less than 2.0, despite the fact that his pressure 

distribution curves have generally deteriorated. 

At a high beam Froude number of 8.0 and Lw/B ratio of 3.0, the 

present theory gives a centre of pressure location at about 89% of the 

wetted length forward of the transom. This corresponds to an increase of 

about 14% of the wetted length when compared with the 75% given by the 

Savitsky's empirical equation (4.4.1), but a much better agreement of 

about 76% was obtained for Lw/B ratios less than 0.5. This is not a 

surprising outcome since the location of the hydrodynamic centre of 

pressure in the Savitsky's equation was based on the result derived from 

two dimensional planing flat plate, which is at 75% of the wetted length 

forward of the transom. At high speed, the present theory has actually 

shown a very good agreement with this two dimensional limit when the 
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wetted length to beam ratio is small and the flow can be regarded as two 

dimensional. Furthermore, it is a known fact that the hydrodynamic 

centre of pressure of a flat plate airfoil will move toward the leading 

edge from the 75% chord point when its chord length to width ratio is 

increased from the two dimensional limit. 

4.5 Some Results for Pressure Distribution 

Fig.(4.8) to fig.(4.10) show the predicted pressure results for 

rectangular wetted bottoms with wetted length to beam ratios of 3.0, 2.0 

and 1.0, at beam Froude numbers, Cv, of 2.309, 3.5 and 8.0. At 

relatively low beam Froude numbers of 3.5 and 2.309, strong 

gravitational effect can be seen in the predicted pressure 

distributions, particularly for the case of Lw/B=3.0. This gravitational 

effect is to increase the pressures toward the trailing edge and to 

reduce the pressures along the forward half of the plate. At high speed, 

the hydrodynamic pressures become dominant and, as shown in fig.(4.10) 

for Cv=8.0, the 'pressure hump' produced by the gravitational effect 

near the trailing edge has disappeared even at a large wetted length to 

beam ratio of 3.0. Comparing the pressure distributions in fig.(4.8a) 

for Cv=2.309 with those in fig.(4.10a) for Cv=8.0, one can clearly see 

that the gravitational effect is to shift the centre of pressure toward 

the transom as the speed decreases. The theoretical pressure results of 

Wang and Rispin (Ref.(26)) have also demonstrated similar gravitational 

effect. 

Fig.(4.11a) and fig.(4.lib) compare the present centre line pressure 

distributions with the experimental measurements of Sottorf (Ref.(34)) 

for two Lw/B ratios of 1.49 and 0.82, at a beam Froude number of 3.5. 

For the higher wetted length to beam ratio case, the present theory 

predicts pressure result that is over 50% higher than the experimental 

measurements at the afterbody of the plate, but a better agreement is 

obtained near the leading edge. For wetted length to beam ratio of 0.82, 

the agreement between the two pressure results is generally better, 

though a larger discrepancy is observed near the leading edge. However, 

surprisingly, the integrated lift coefficient slopes, Cfz/Tan(T), are in 
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much better agreement with Sottorfs experimental values with an under 

prediction of only 10% for the higher Lw/8 ratio case and an over 

piedictioii of only 2.5% for the lower Lw/B ratio case. These relatively 

small discrepancies are probably due to the fact that, in the present 

theory, most of the lift is generated by the pressures near the leading 

edge which are higher than the experimental pressures in both cases. 

Also because of these relatively high leading edge pressures predicted 

by the present theory, a more forward centre of pressure position could 

be expected. The numerical values of both the present and Sottorf's lift 

coefficient slopes are displayed in the figures. 

Fig.(4.12) shows the predicted pressure distribution along the 

centt e line of a flat plate of Lw/B ratio of 2.4, at a beam Froude 

itUiiibei of 2.42 and at a trim angle of 6° together with the experimental 

measurements of Jahangeer (Ref.(66)). Reasonably good agreement can be 

seen between the two pressure results, in particular that the 

discrepancy near the leading edge is not as pronounced as that in the 

comparisons with Sottorf's results. 

4i6 Determination of Running Wetted Length and Trim Angle 

In this section, we consider the problem of predicting the running 

wetted length, running trim angle and transom immersion of a planing 

flat plate of specified weight, longitudinal centre of gravity position 

and speed. It has been mentioned earlier in section (4.1) that, in the 

present computational method, the predicted pressures, i.e. P/TanCt), 

and the predicted transom immersions, i.e. H/Tan(T), are independent of 

the trim angles for a particular Lw/B ratio and beam Froude number. It 

follows that both the lift coefficient, Cfz , and the mean transom 

immersion, H*, are directly proportional to the angle of trim and, if 

the pressure drag is neglected at small trim angles, the longitudinal 

centre of pressure ratio, Lcp/B, is independent of trim angle. 

Now, consider the equilibrium condition of the craft, at any given 

speed the weight of the craft must be equal to the lift generated by the 

bottom pressure and its longitudinal centre of gravity position must 
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also match with the position of the longitudinal centre of pressure. 

Based on the above equilibrium condition and the present computing 

program, the following procedures were developed to predict the unknown 

running wetted length, running trim angle and transom immersion for a 

planing flat plate of specified weight, W, and specified longitudinal 

centre of gravity position. Leg, forward of the transom. 

(1) Determination of running wetted length 

If the minor effect of the drag force is ignored, the Lcp/B ratio of 

a planing flat plate is only dependent on its wetted length to beam 

ratio and the planing speed and is independent of the trim angle. 

Therefore, the running wetted length to beam ratio at a particular beam 

Froude number, say [Lw/B]o, can be obtained by matching the Lcp/B ratio 

to the Lcg/B ratio of the plate using the Lcp/B curve computed at that 

speed, such as those presented in fig.(4.7a) to fig.(4.7d). This can be 

easily achieved by some interpolating methods. 

(2) Determination of running trim angle 

With the running wetted length to beam ratio predicted from (1), the 

respective lift coefficient slope, say [Cfz/Tan(r)]o, at that speed can 

be obtained from the computed lift slope curve, such as those presented 

in fig. (4.5a) to fig.(4.5d). The running trim angle, , can then be 

obtained from the relation: 

Tan(TJ)) = 2W 1 (4.6.1), 
[Cfz/Tan(T)]o i/z^gCv^BS 

where B is the wetted beam of the plate and Cv is the corresponding beam 

Froude number. 
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(3) Determination of unknown transom immersion 

Similarly, with the running wetted length to beam ratio predicted 

from (1), the respective non-dimensional mean transom immersion, say 

[H*/(BTan ( I ) ) ]o , can be determined from the computed results presented 

in fig. (4 .4 ) . The required transom immersion, say Ho*, is then given by: 

H' 
B Tan ( I ) 

B Tan(Ib) (4.6.2), 
O 

It should be noticed that the present linear theory is only valid 

for small angles of trim as non-linear effects can be significant at 

large angle of attack. The procedure discussed above is not applicable 

to prismatic surfaces or other planing forms with a spray root geometry 

that varies with the trim angle. This is because both the L c p / B ratio 

and the lift slope, Cfz/Tan (T) , are now dependent on the angle of trim 

as well as the mean wetted length to beam ratio. A different approach 

for the prismatic hulls will be discussed in the next chapter. Owing to 

the limited number of speeds computed, the method has not been 

demonstrated in this section. However, the method has been applied to 

predict the running trim angles and wetted lengths of a heeled planing 

flat plate and the results are presented in fig.(6.11a) and fig.(6.lib) 

of chapter six. 
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CHAPTER (5) Some Results for the Planing of Constant Deadrise 

Prismatic Hulls 

5.1 Introduction 

The results for planing prismatic hulls of constant deadrise angle 

are presented in this chapter. Since the present linearized theory is 

only applicable for small free surface disturbances, both the trim and 

deadrise angles are required to be small and only deadrise angles up to 

15° will be considered. Fig.(5.1) shows a typical wetted bottom of a 

planing prismatic surface. As mentioned earlier in section (3.1), the 

forward thrown spray area, which only contributes drag forces, and the 

slightly convex curvature at the swept-back spray root are both ignored 

in the present theory. The mean wetted length to beam ratio, Lw/B, or 

the wetted area to beam squared ratio of the wetted bottom pressure area 

can therefore be defined as: 

Lw - (Lk + Lc) (5.1.1), 
B 2 B 

where Lk is the wetted keel length, Lc is the wetted chine length and B 

is the transom wetted beam. The present finite element representation of 

this wetted bottom area is shown in fig.(5.2). A different finite 

element mesh consisting of triangular elements at the spray root and 

rectangular elements along each buttock as the one shown in fig.(5.3) 

has also been tried, but the pressure solution obtained has a region of 

small negative pressures developed along the aft body, near the keel of 

the wetted bottom. These unrealistic negative pressures were found to be 

caused by the incompatibility between the phase angles of the downstream 

waves generated by the rectangular and the leading edge triangular 

elements. The finite element mesh shown in fig.(5.2) does not suffer 

from this incompatibility problem simply because the triangular elements 

are now located at the trailing edge so that the downstream waves of 

these elements are no longer required in the formation of the system of 

simultaneous linear equations for determining the unknown pressures. One 
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should also note that the upstream waves do not cause any problem since 

they die away quickly ahead of the elements and do not contain any phase 

change. 

Beam Froude numbers ranging from 1.512 to 8.0 and mean wetted length 

to beam ratios up to 3.0 have been considered. Four buttock strips of 

equal width were used in the computations. The solution procedure is the 

same as that for planing flat plates and the input local hull surface 

displacement above the transom level is defined by the function, f(x,y) 

= X. In order to save computing time, the method of discarding leading 

edge elements discussed in section (4.2) has also been employed. Section 

(5.2) discusses the relation between the spray root geometry and the 

output hull shape. In sections (5.3) and (5.4), the present lift 

coefficients and longitudinal centre of pressure locations will be 

compared with the Savitsky's empirical equations (Ref.(44)) as well as 

the theoretical and experimental results of Jahangeer (Ref.(66)). The 

present pressure distributions will be compared with the experimental 

measurements obtained by Sottorf (Ref.(34)) and Jahangeer (Ref.(66)) in 

section (5.5). Finally, a method for determining the running trim angle 

and the running mean wetted length of a planing prismatic hull under 

specified loading condition will be discussed in sections (5.6) and 

(5.7), together with some work examples for the cases of beam Froude 

number equal 3.0 and 5.0. 

5.2 Output Transom Shape and Immersed Keel Length 

Based on the ~̂ /2 wave-rise factor computed by Wagner (Ref.(19)) for 

a two dimensional wedge penetrating vertically into a fluid surface, 

Savitsky (Ref.(44)) derived the following relation for the spray root 

geometry of a planing prismatic surface: 

Lk - Lc = Tan ( 6 ) ( 5 . 2 . 1 ) , 
B IT Tan (T) 
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where B 1s the transom wetted beam, T is the trim angle, /3 is the 

deadrise angle, Lk is the wetted keel line and Lc is the wetted chine 

length. 

Fig.(5.4) shows the predicted transom shapes and vertical locations 

for various mean wetted length to beam ratios, Lw/B, and beam Froude 

numbers, Cv. As before, the ordinate of the graph is H/(Tan(Z) B), where 

H is the transom rise height above the undisturbed free surface. The 

geometry of the spray root used for the computations was defined by the 

ratio, (Lk-Lc)/B=0.8115, which corresponds to a trim angle of 6° and a 

deadrise angle of 15° according to the Savitsky's expression (5.2.1). 

This does not strictly agree with the present results. The finite 

element method generally gives a trim angle slightly larger than that 

suggested by expression (5.2.1) for a given spray root geometry and 

deadrise angle and, in this particular case, the output trim angle is 

about 6.6° for a deadrise angle of 15°. However, the present results 

seem to agree with expression (5.2.1) that both the planing speed and 

the mean Lw/B ratio have little effect on the output transom slope, 

Tan(/S)/Tan(%3. Over the range of beam Froude numbers and mean Lw/B 

ratios considered, the variation in the output transom slopes is not 

more than 2.5%. Note that the output transoms should be slightly curved 

instead of perfectly straight (see fig.(3.2a)) as the curvature at the 

spray root has been ignored. The results in fig. (5.4) do not display 

this feature simply because only four buttock strips were used to 

represent the wetted bottom. 

Fig,(5.5) shows the non-dimensionalized immersed keel length, L k i / B , 

as a function of mean L w / B ratio for ( L k - L c ) / B = 0,8115 and 0.5340 at 

various beam Froude numbers. For small angles of trim, the present 

immersed keel length, Lki, is given by Hk/Tan(T) where Hk is the 

predicted transom immersion at the keel. For prismatic surfaces, 

Savitsky (Ref.(44)) noted that up to a trim angle of approximately 15° 

there appears to be no noticeable pile-up of water at the keel line. 

Thus, the immersed keel length in this case is equal to the wetted keel 

length, Lk. However, the present theory has predicted that the immersed 

keel lengths are less than the respective wetted keel lengths for both 
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( L k - L c ) / B ratios. This would imply that there is water piling up ahead 

of the keel. The same tendency has also been predicted by Doctors 

(Ref.(29)) and Jahangeer (Ref.(66)). For both ( L k - L c ) / B , a difference of 

around 0.3 was observed between the predicted L k i / B ratio and the L k / B 

ratio, regardless of the beam Froude numbers and the mean Lw/B ratios. 

This result seems to agree better with Savitsky's expression (4.2.1) -

for the relationship between the immersed wetted length, L i , and the 

overall wetted length, Lw, of planing flat plates - when Lw and Li in 

the expression are replaced by Lk and L k i . The agreement is particularly 

good for Lk >1.0. On the other hand, Savitsky's observation about no 

water piling up at the keel line might not be strictly accurate. 

5.3 Coefficient of Lift 

For a given trim angle and mean Lw/B ratio, the effect of increasing 

deadrise angle is to reduce the planing lift. This is primarily due to 

the reduction in the stagnation pressure at the leading edge of the 

wetted bottom. Taking this lift reduction into account, Savitsky 

(Ref.(44)) derived the following empirical lift equation for constant 

deadrise prismatic planing surfaces; 

C f z = [ C f z ] g = o - 0 . 0 0 6 5 ( [ C f z ] / S = o ) 0 - 6 ( 5 . 3 . 1 ) , 

in which Cfz is the lift coefficient of the constant deadrise surface, 

[Cfz]^=o is the lift coefficient of a flat plate operating at the same 

trim angle, wetted area to beam squared ratio (Lw/B) and beam Froude 

number as the deadrise surface and jQ is the deadrise angle in degrees. 

The expression for the lift coefficient of a planing flat plate is given 

in equation (4.3.1). To compare with the results derived from the 

present linear theory, the second term of equation (5.3.1) is neglected 

in the limit of small deadrise angle. As in the case of planing flat 

plate, for small trim angles, the term, [ C f z ] ^ = o , in equation (5.3.1) is 

expressed as; 
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C f z z 5 7 . 2 9 6 

Tan(f) 
0.012(Lw/B)i/2 + 0.0055fLw/B)5/2 

Cv2 
(5.3.2), 

where Lw/B in the above expression is the mean wetted length to beam 

ratio of the prismatic surface given by expression (5.1.1). 

Fig.(5.6a) to fig.(5.6h) compare the present lift coefficient slopes, 

Cfz/Tan(T), with expression (5.3.2) for beam Froude numbers ranging from 

1.512 to 8.0. Two deadrise angles of 10° and 15° are considered. Also 

shown in fig.(5.6a) and fig.(5.6f) are the theoretical predictions of 

Jahangeer's finite element method (Ref.(66)) at Cv=1.512 and 5.0, 

together with his experimental measurements at Cv=1.512. The comparison 

between the present predictions and expression (5.3.2) show similar 

trends as those for the planing flat plates. On the other hand, the 

present results show reasonably good agreement with the theoretical 

predictions and the experimental measurements of Jahangeer. As shown in 

fig.(5.9), at a beam Froude number of 1.512 and mean Lw/B ratios greater 

than 2.0, the predicted pressure distributions have generally 

deteriorated and violent oscillations have been observed as Lw/B 

approaches 3.0. However, these deteriorated pressures do not seem to 

affect the results for the lift coefficient slope and longitudinal 

centre of pressure location. In the later case, the results are in 

unexpectedly good agreement with the Savitsky's empirical equation for 

the location of centre of pressure (5.3.1) as shown in fig.(5.7a). The 

reason for these results not displaying the oscillatory behaviour of the 

pressure solution is probably that they represent an integrated effect 

of the pressures. 

The results presented in fig.(5.6a,b,d,f and h) also demonstrate the 

effect of deadrise angle on the lift coefficient slope. For the two 

deadrise angles considered, the results show little effect of deadrise 

on the lift coefficient slope for a given mean Lw/B ratio and beam 

Froude number. Fig.(5.6g) shows that the lift coefficient becomes 

independent of the beam Froude number for Cv greater than 6.0. This 

suggests that the hydrodynamic lift becomes predominant at high planing 
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speed and the static pressure effect on lift coefficient can be ignored. 

This aspect of planing is also apparent in the Savitsky's lift equation 

and the semi-empirical equation developed by Shuford (Ref.(22)). 

It has been mentioned in section (4 .3 ) that the Savitsky's empirical 

lift equation ( 5 . 3 . 2 ) does not shows the gravitational effect of 

reducing lift coefficient on a small Lw/B ratio planing surface. This 

gravitational effect can be seen more clearly by plotting the lift 

coefficient slopes, Cfz/Tan(r), against the beam Froude numbers. Such a 

plot is shown in fig.(5.7) for a 15° constant deadrise prismatic surface 

with a ( L k - L c ) / B ratio of 0 . 8 1 1 5 . It can be seen clearly from the figure 

that for a small mean Lw/B ratio surface the lift coefficient decreases 

with decreasing beam Froude number due to the negative gravitational 

effect, while the tendency reverses at large mean Lw/B ratios. The 

dividing mean Lw/B ratio in this case is about 0 .7 . 

5.4 Longitudinal Centre of Pressure Locati on 

As mentioned in section ( 4 . 4 ) , the Savitsky's empirical equation for 

the location of the longitudinal centre of pressure forward of the 

transom, Lcp, of constant deadrise prismatic planing surfaces is 

Lcp - 0 . 7 5 - 1 
( 5 . 2 1 C v 2 / ( L w / B ) 2 + 2 . 3 9 ) 

Lw 
B 

(5.4.1), 

which is independent of trim angle and deadrise angle for a given mean 

Lw/B ratio and Cv. 

The comparisons between the present predictions for L c p / B ratio and 

the Savitsky's empirical equation (5.4.1) are shown in fig.(5.8a) to 

fig.(5.8h), for two deadrise angles of 10° and 15° and for beam Froude 

numbers ranging from 1.512 to 8.0. As in the case of planing flat plate, 

the present predictions are usually above the Savitsky's curve, though, 

for Cv 1 3.0 and large mean Lw/B ratios, results below the Savitsky's 

curve have also been obtained. On the other hand, as shown in fig.(5.8a) 

and fig.(5.8f) for Cv=1.512 and 5.0, a very good agreement generally 
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exists between the present predictions and the theoretical and 

experimental results of Jahangeer (Ref.(66)). At Cv=1.512, excellent 

agreement has been obtained between the present results and the 

Savitsky's empirical equation, even though the predicted pressure 

distributions for mean wetted length to beam ratios greater than 2.0 

have generally deteriorated. These deteriorated pressure solutions are 

shown in fig.(5.9). The results presented in fig.(5.8a,b,d,f and h) also 

seem to verify that the deadrise angle has little effect on the centre 

of pressure ratio, L c p / B , for a given mean wetted length to beam ratio 

and beam Froude number. The reduction in static pressure effect on the 

centre of pressure location at high planing speeds can be seen in 

fig.(5.8g), where the L c p / B ratio has almost become independent of the 

beam Froude number for Cv greater than 6.0. 

5.5 Some Results for Pressure Distribution 

Fig.(5.9) shows the pressure distribution curves obtained for a 15° 

constant deadrise surface with (Lk-U)/B=0.8115 at various mean wetted 

length to beam ratios and beam Froude numbers. At Cv=1.512, it is 

observed that the pressure oscillation starts to build up for mean Lw/B 

>2.0 and has become quite violent as Lw/B reached 3.0. At higher speeds, 

the pressure solutions are well behaved and no such pressure oscillation 

is evident up to a mean Lw/B ratio of 3.0. The cause of these pressure 

oscillations has already been discussed in section (3.6), but it should 

be pointed out that, unlike the pressure oscillations in the flat plate 

cases, these oscillations originate at the region near to the centre 

line rather than at the region near to the chine. As in the planing of 

flat plate, the present pressure results have also demonstrated that 

there is a strong gravitational effect on large mean Lw/B ratio planing 

surfaces operating at low speed. Note that for beam Froude numbers 

greater than 6.0, the shape of these non-dimensionalized pressure 

distribution curves, P / ( V 2 C ^ T a n d ) ) , have almost become independent 

of the beam Froude number for a given mean Lw/B ratio. This would imply 

that the hydrodynamic bottom pressures are directly proportional to the 

square of the planing speed. 
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As shown in fig.(5.2), the present wetted bottom grid does not allow 

us to prescribe a set of control points along the keel line, hence the 

pressure distribution along the keel cannot be obtained. For comparison 

purpose, however, the pressure distribution along the first buttock 

strip from the keel line will be used to compare with the keel pressure 

distribution obtained by other authors. 

Fig.(5.10) compares the present pressure distributions with the 

experimental measurements of Sottorf (Ref.(34)) for a 15° constant 

deadrise surface of mean Lw/B ratio of 1.754, ( L k - L c ) / B ratio of 0.7012, 

at a beam Froude number of 3.5. As in the flat plate pressure 

distributions shown in fig.(4.11a,b), the present theory has predicted 

pressure results that are more than 50% lower than Sottorf's 

experimental measurements both along the chine and along the keel (the 

present keel pressure distribution refers to that along the line at a 

distance of B/12 from the keel line), but the agreement is much better 

near the leading edge of the chine. Comparison of the present keel 

pressure distribution (B/8 from keel line) with the experimental 

measurements of Jahangeer (Ref . (66).) is shown in fig.(5.11) for a 

deadrise angle of 15°, mean Lw/B ratio of 2.87, trim angle of 6° and 

beam Froude number of 2.54. The agreement between the two results is 

reasonably good, considering that the pressures at the keel should be 

slightly higher than those at a distance B/8 from the keel, especially 

around the region near to the leading edge. 

^ — V a r i a t i o n of Lift Coefficient and Centre of Pressure Ratio with 
Trim Angle 

For a given constant deadrise surface, the effect of decreasing trim 

angle is to increase the swept-back angle at the spray root. This alters 

the shapes and sizes of the triangular fore-piece and the rectangular 

tail of the wetted bottom even though the wetted bottom area is kept 

constant. It follows that the L c p / B ratio and the lift coefficient 

slope, Cfz/TanCX), of a constant deadrise hull are not necessarily 

constant over the entire range of trim angles for a given mean wetted 

length to beam ratio and speed. 
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Fig. (5.12a and b) and fig. (5.13a and b) show the predicted lift 

coefficients, Cfz, and centre of pressure ratios, Lcp/B, as a function 

of trim angle and mean Lw/B ratio for a 10° constant deadrise surface at 

beam Froude numbers of 3.0 and 5,0. For each of the trim angles, T, 

considered, an initial estimate of the swept-back angle, i.e. ( L k - L c ) / B , 

was obtained from the Savitsky's expression (5.2.1). The trim angle was 

then determined from the output transom slope, Tan(,g)/Tan(Z), for the 

given value of It can be seen that the slope of the lift coefficient 

curve for each mean Lw/B ratio is fairly constant throughout the range 

of trim angles considered. This aspect seems to agree with the 

Savitsky's empirical lift equation (5.3.2), although the exact values of 

the two lift slopes are not the same. The predicted longitudinal centre 

of pressure locations, Lcp, have a tendency of shifting toward the 

transom as the trim angle decreases. This tendency is particularly 

pronounced at small trim angles. The overall decrease in L c p / B , however, 

is not more than 0.1 over the ranges of trim angles and Lw/B ratios 

considered. It would appear that this decrease in L c p / B ratio is due to 

the increase in the swept-back angle at the spray root (or ( L k - L c ) / B 

ratio), which could result in a reduction in the pitching moment 

produced by the pressures near the chines. On the other hand, the 

Savitsky's empirical equation (5.4.1) suggests that the centre of 

pressure ratio, L c p / B , is independent of the trim angle for a given mean 

Lw/B ratio and Cv. The slight unsmoothness of the curves can be ascribed 

to the difference in the sizes of elements used in the computations. 

An interesting feature about the planing wetted bottom of constant 

deadrise hulls is that the trim angle and the deadrise angle can have an 

infinite number of values that can produce a particular spray root 

geometry (or ( L k - L cV B ) . This special feature is displayed explicitly in 

expression (5.2.1) and would allow us to obtain the lifts and the 

centres of pressure for a range of deadrise angles from the results 

computed for a particular deadrise angle. For instance, if the predicted 

trim angle, lift coefficient and longitudinal centre of pressure ratio 

for a 10° constant deadrise surface of particular wetted bottom geometry 

at a particular beam Froude number are rio°, [Cfz]io and [Lcp/B]io, then 

the corresponding trim angle, say Zfi °, for a surface of constant 
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deadrise angle of/S® can simply be obtained from the relation: 

Tan(%*o) = Tan( ho°) Tan(/3°) (5.6.1), 
Tan (10°) 

The lift coefficient, say [Cfz^ , for the /3° constant deadrise surface 

at the trim angle of Xs° is 

[Cfz]g - [Cf z 110 Tan(/S°) (5.6.2) 
Tan(10°) 

and the corresponding longitudinal centre of pressure ratio at 7^ ° is 

equal to [Lcp/B]io if the pitching moment produced by the pressure drag 

is ignored. 

5.7 Determination of Running Mean Wetted Length and Running Trim Angle 

The method for determining the running trim angle and running wetted 

length for planing flat plate has already been discussed in section 

(4.6). In this section, we will extend this method to constant deadrise 

planing hulls (or any hull form in general). Again, the method developed 

here is based on matching the craft's weight and craft's centre of 

gravity position to the planing lift and centre of pressure position. A 

simple interpolating program has been developed for this purpose and a 

third order Lagrange interpolating polynomial has been employed in the 

interpolating procedures. 

For a particular constant deadrise hull, the weight, W, and the 

distance of the longitudinal centre of gravity forward of the transom, 

Leg, can be expressed in the following non-dimensional forms: 

W* - W and L* = Leg (5.7.1), 
Vz^gB^ B 
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l-or a given beam Froude number, the program determines the possible 

combinations of trim angle and mean Lw/B ratio that can provide the 

required weight coefficient, W* , from the pre-calculated lift data shown 

in fig.(5.12a) and fig.(5.13a). Similarly, the possible combinations of 

trim angle and mean Lw/B ratio that can provide the required L* are 

determined from the pre-calculated centre of pressure data shown in 

fig.(5.12b) and fig.(5.13b). For example, these trim angles and mean 

Lw/B ratios predicted for W* = 1.3, L*zi.6 and ,8 = 10° are shown in 

fig. (5.14a) and fig. (5.14b) for beam Froude numbers of 3.0 and 5.0. 

Curves (A) in these figures represent the possible combinations of trim 

angle and mean Lw/B ratio for producing a weight coefficient, W*, of 1.3 

and Curves (B) represent those for producing a centre of gravity ratio 

of 1.6. The trim angle and mean Lw/B ratio which satisfy both the 

required weight and centre of gravity conditions are given by the 

intersection of the two curves. 

Fig. (5.15a) and fig.(5.15b) compare the predicted running trim 

angles and running wetted length to beam ratios with the results 

obtained from the Savitsky's empirical equations (5.3.2) and (5.4.1) for 

a 10° deadrise surface. For demonstration purposes, only two beam Froude 

numbers of 3.0 and 5.0 have been considered. The weight coefficient, W*, 

is fixed at 1.3 and the trim angle and mean Lw/B ratio results are 

plotted as a function of centre of gravity ratio, L*. Both the present 

and Savitsky's results show the tendencies of decrease in trim angle and 

increase in mean Lw/B ratio as the centre of gravity moves toward the 

bow. The agreement between the two results is reasonable with a 

difference of not more than 1° for the trim angles and 0.3 for the mean 

Lw/B ratios. However, for the two speeds considered, the present theory 

usually gives a larger trim angle and a smaller mean Lw/B ratio than 

those obtained from the empirical equations for a value of W* and L*. 

This could be due to the fact that, as mentioned in section (4.4), the 

hydrodynamic centre of pressure in the Savitsky's empirical equation for 

the centre of pressure location is taken to be at 75% of the mean wetted 

length forward of the transom which is less than that one would expect 

from a moderate aspect ratio lifting surface. 
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CHAPTER (6) Some Results for ttiA Planing of ^ Fiat pi.to -in 

Heel Condition 

6.1 Introduction 

In this chapter, we consider the planing motion of a flat plate in 

heel condition. Again, only small heel and trim angles will be 

considered in the present linear theory, when a planing flat plate is 

heeled, the wetted bottom becomes asymmetrical about the centre line. 

This gives rise to an asymmetrical bottom pressure load about the plate 

centre line, which can result in a net rolling moment, a net yawing 

moment and a net sway force. A sketch of the wetted bottom of a planing 

flat plate in heel condition is shown in fig.(6.1). As before, the 

forward spray area is ignored in the present computations on the ground 

that this area only contributes to the total drag and does not carry any 

pressure load. In addition, the sightly convex curvature at the spray 

root is also ignored and the running beam at the transom is assumed to 

be completely wetted during the planing motion. Thus, the mean wetted 

length to beam ratio, U/B, or the wetted area to beam squared ratio for 

a planing flat plate in heel can be defined as: 

_LL_ = (6.1.1), 

where B is transom wetted beam, Lci and Lc2 are the wetted chine lengths 

at the heeled up and the heeled down sides of the plate respectively. A 

typical finite element mesh representing the wetted bottom pressure area 

of a planing flat plate in heel is shown in fig.(6.2). As in the case of 

planing prismatic surfaces, the triangular elements have been located at 

the trailing edge in order to avoid incompatibility in the phase angles 

between the two types of element used. The input local hull displacement 

function above the transom level is the same as before, thus, f(x,y)=x. 

In section (6.2), an analytical expression is derived for estimating 

the spray root geometry of a planing plate in heel condition. 
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Sections (6.3) and (6.4) discuss the effect of heel angle on the induced 

roll moment for a fixed trim condition and the effect of trim angle on 

the roll moment for a fixed heel condition. Section (6.5) compares the 

present computational results with the theoretical predictions and the 

experimental measurements of Jahangeer (Ref.(66)). Finally, a method for 

determining the derivatives of roll moment and sway force with respect 

to the heel angle for a planing flat plate of specified loading 

condition will be discussed in section (6.6). 

6.2 Spray Root Geometry and Predicted Transom Shape 

In this section, an analytical expression is derived for the 

relationship between the spray root geometry, which can be defined by 

the ratio of (Lc2-Lci)/B, the heel angle and the trim angle for a 

planing flat plate in heel condition. The analogy employed here is 

similar to the one used by Savitsky (Ref.(44)) for deriving the.spray 

root geometry of planing constant deadrise prismatic hulls. 

For an observer fixed in space and located at the vertical plane 

through centre line of the heeled plate, the passage of the heeled 

planing flat plate to the observer can be regarded as the motion of a 

two dimensional wedge immersing vertically into the water surface. This 

being the case, the"0/2 wave rise factor computed by Wagner (Ref.(19)) 

for a two dimensional wedge penetrating vertically into a fluid surface 

is applicable. Now, consider the cross section A-A in fig.(6.3a) of a 

heeled planing flat plate, at a distance, X, from the calm water 

intersection of the chine (heeled down side). According to the T r / 2 wave 

rise factor computed by Wagner (Ref.(19)), the relationship between the 

actual wetted width, Bi, and the wetted width, 02, defined by the calm 

water intersection with the plate surface is 

Bi = J L Bz (6.2.1). 
2 
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Under the assumption of no pile-up of water at the chine line (heeled 

down side), it can be shown from the wetted bottom geometries in 

fig.(6.3b) and fig.(6.3c) that the wetted widths B2 and Bi are 

Bz = d = X Tan(r) (6.2.2) 
Tan(0) Tan(^) 

and Bi = Tan(c<) X = B X (6.2.3). 
( L c 2 - L c l ) 

Thus, the difference between the wetted chine lengths, Lcz and Lc i, for 

a planing flat plate in heel is given by: 

U 2 - L c l = 2 Tan(d) ( 6 . 2 . 4 ) , 

B TTTanCO 

where B is the transom wetted beam, T is the trim angle and (j) is the 

heel angle. A similar expression has also been derived by Jahangeer 

(Ref.(66)). 

Fig.(6.4) shows the transom shapes and vertical locations predicted 

from wetted bottoms with a spray root profile defined by ( L c 2 - L c i ) / B 

=1.0518 at various beam Froude numbers. As a result of neglecting the 

curvature at the spray root, the output transoms are slightly cambered. 

In order to determine the transom slope, Tan(?5)/Tan(T), a least-squares 

straight line was fitted through the predicted vertical locations along 

the transom. As suggested by expression ( 6 . 2 . 4 ) , for a given spray root 

geometry, the output transom slopes are almost independent of the 

planing speed and the mean Lw/B ratio. However, the present theory 

always gives a smaller value of Tan(ji5)/Tan(T) than that suggested by the 

analytical expression. In the present case, with (Lc2 -Lc i ) /B=1.0518, the 

least-squares straight line fitting gives a transom slope, 

Tan(0)/Tan(D, of about 1 .4. This corresponds to a reduction of 15% when 

8 4 



compared with the value of 1.65 given by expression (6.2.4). The output 

transom slope, however, is very much dependent on the way that a 

straight line is fitted through the predicted vertical locations along 

the transom and an error of few percents between different fitting 

methods is not unusual. 

Fig.(6.5) shows the variation of immersed chine length to beam 

ratios, Lczi/B, against mean Lw/B ratios for (Lc2-Lci)/B of 1.0518 and 

0.4235, at two beam Froude numbers of 3.0 and 5.5. The immersed chine 

length at the heeled down side of the plate, Lc2i, can be obtained from 

the relation 

Immersed Chine Length Lc2i = He2 (6.2.5), 
(heeled down side) Tan(T) 

where He2 is the predicted transom immersion at the chine (heeled down 

side). On the other hand, in deriving expression (6.2.4), it has been 

assumed that there is no pile-up of water at the chine (heeled down 

side). Based on this assumption, the immersed chine length, Lc2i, is 

simply equal to the wetted chine length, Lcz. It can be seen from 

fig.(6.5) that the present immersed chine length to beam ratios, Lc2i/B, 

are less than the assumed values of Lc2/B for both (Lc2-Lci)/B ratios. 

This would suggest that there is water piling up at the chine of the 

heeled down side of the plate during the planing motion. 

—Variation of Hvdrodvnamic Forces and Moments with Heel Analo 

Strictly speaking, for a planing surface supported mainly by 

hydrodynamic pressures on the wetted bottom, the introduction of a heel 

angle results in a net transverse load which gives rise to a net rolling 

moment, a net yawing moment and a net sway force. For a heeled planing 

flat plate, however, both the sway force and the lift force are acting 

at the centre of pressure (not in the case of prismatic surface), 

therefore causing no net yawing moment about this point. It follows that 

the introduction of heel angle will only cause the plate to sway but not 

to yaw. 
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Fig. (6.6a) shows the sign conventions for the sway force, Fy, the 

rolling moment, Mr, and the heel angle, (ji. Rolling to the starboard and 

swaying to the port are treated as positive. The sway force, Fy, can be 

obtained from the simple relation 

Fy - — Tan(Cj&) Fz (6.3.1), 

where Fz is the bottom lift. The total roll moment about the centre 

line, Mr, can be considered to be made up of two components - one is the 

roll moment produced by the lift and the other is the roll moment 

produced by the sway force. If R denotes the distance from the 

transverse centre of pressure to the plate centre line as shown in 

fig. (6.6b), it can be shown from the geometry of the heeled plate that 

the roll moment produced by the lift is -R Tan(^) Fz and the roll moment 

produced by the sway force is -R Tan^(^) Fz. Thus, for small heel 

angles, the roll moment produced by the sway force is only a minor part 

of the total roll moment. A non-dimensional roll moment coefficient, 

Crm, is defined as: 

Mr (6.3.2) 

/z/sgB* 

and the rolling moment arm ratio, R/B, is 

R = Mr (6.3.3), 
B (Fz2+Fy2)1/2 B 

Fig.(6.7a) and fig.(6.7b) show the variations of R/(BTan(^)) and 

Crm/Tan(^) against heel angle for various mean Lw/B ratios, at a trim 

angle of 6° and beam Froude numbers of 3.0 and 5.5. It can be seen that, 

up to a heel angle of 10.75°, the predicted roll moment coefficient 
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slopes, Crm/Tan(^), are almost independent of the heel angles for a 

given mean Lw/B ratio, trim angle and beam Froude number. The predicted 

R/(BTan(^)) ratios also exhibit the same feature, although slightly 

larger discrepancies have been observed at Cv=3.0 for large mean Lw/B 

ratios. The corresponding lift coefficient slopes, Cfz/TanCD, and 

longitudinal centre of pressure ratios, Lcp/B, are shown in fig.(6.7c) 

and fig.(6.7d). The results in fig.(6.7c) show little effect of heel 

angle on the lift coefficient for a given mean Lw/B ratio, trim angle 

and beam Froude number. On the other hand, the centre of pressure tends 

to shift toward the transom as the heel angle increases, but the 

difference in any case is not more than 6%. 

In an equilibrium condition at any given speed, the weight of the 

plate must be equal to the planing lift and the longitudinal centre of 

gravity must be at the same location as the longitudinal centre of 

pressure. The above results would imply that the roll moment coefficient 

slope, Crm/Tan(c^), for a heeled planing flat plate of specified loading 

condition is independent of the angle of heel. 

6.4 Variation of Hvdrodvnamic Forces and Moments with Trim Angle 

Another interesting feature about the predicted roll moment 

coefficient slope, Crm/Tan((|)), is that, at a small trim and heel 

condition, the trim angle also has a very minor effect on the roll 

moment coefficient slope. Consider a set of input to the program 

consisting of: 

(1) a given projected wetted bottom geometry, in this case, defined by 

the spray root profile, ( L c 2 - L c i ) / B , the transom wetted beam, B, and the 

wetted bottom area. Aw, 

(2) a given beam Froude number, 

(3) a given local hull surface displacement above the transom level, in 

this case, defined by the function, f(x,y) = x. 
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The output solutions are the bottom pressures, P/Tan(T), and the 

transverse section shape defined by the ratio, Tan(^)/Tan(T). For a 

small heel angle, cj), the roll moment produced by the sway force can be 

ignored on the ground that its magnitude is in the order of Tan2(0) of 

that produced by the lift. Thus, the roll moment coefficient slope, 

Crm/Tan(^), or to be precise, the roll moment coefficient slope due to 

the lift force, [Crm/Tan(#)]z, is given by: 

y dxdy TanCt) 1 (6.4.1), 
Tan(^) Tan(D Tan(^) V 2 /OgB* 

Aw 

where the distance, y, is measured from the centre line. It is clear 

that both the pressure term, P/Tan(T), and the ratio, Tan(I)/Tan(c|i), in 

expression (6.4.1) are independent of the trim angle. Therefore, for a 

given set of input to the program, [Crm/Tan(^)]z is constant for any 

combinations of heel angle and trim angle provided that both angles are 

small and their ratio is the same as the output Tan((i)/Tan(T). Since we 

have already shown in the previous section that Crm/Tan(^) is 

independent of the heel angle for a given trim angle, the above argument 

would imply that, for a given beam Froude number and mean Lw/B ratio, 

Crm/Tan(c/)) is also independent of the trim angle. 

Furthermore, for a given projected wetted bottom and beam Froude 

number, the integrated lift coefficient, C fz , varies linearly with the 

trim angle and, if the drag is ignored, the L c p / B ratio is independent 

of the trim angle. It follows that, ignoring the minor effect due to the 

sway force, the roll moment coefficient slope, Crm/Tan(^), of a heeled 

planing flat plate only depends on the planing speed and its 

longitudinal centre of gravity position and is independent of its 

weight. 

Returning to the results in fig. (6.7b,c and d) computed from four 

different spray root geometries. For each set of ( L c 2 - L c i ) / B ratio, beam 
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Froude number and mean Lw/B ratio considered, the heel angle can be 

fixed at a certain value and the trim angle can be altered according to 

the predicted transom slope, Tan(^)/Tan(r). Thus, the results in these 

figures can also represent the roll moment coefficient slopes (ignoring 

sway force effect), lift coefficient slopes and centre of pressure 

ratios for different trim angles at a fixed heel condition. These 

results therefore verify that the weight (or trim angle) of the plate 

has little effect on Crm/Tan(^) for a given Leg position (or mean Lw/B 

ratio) at a given beam Froude number. Note that although the lift 

coefficient slope remains unchanged during this scaling process, the 

lift itself has been varied according to the changes in trim angle. 

6.5 Comparison of Results 

In this section, the results derived from the present theory are 

compared with the theoretical predictions and the experimental 

measurements of Jahangeer (Ref.(66)). Jahangeer also used a finite 

element method to determine the bottom pressures of planing surfaces. 

However, the constant pressure elements used in his solution are 

rectangular in shape, therefore the spray root geometry cannot be 

prescribed as accurately as in the present theory. The wetted bottom 

used for the comparison has a (Lc2-Lc i)/B ratio of 1.0518 and a mean 

wetted length to beam ratio of 2.36. Beam Froude numbers ranging from 

2.0 to 10.5 are considered. Four buttock strips were used in the 

computations, except in the comparison of pressure distributions where 

five buttock strips were used in order to obtain the pressure 

distribution along the centre line of the plate. 

Fig.(6.8a) compares the present predictions for the roll moment 

coefficient slope, Crm/(Tan(^)Tan(T)), with Jahangeer's theoretical and 

experimental results. The non-dimensional ordinate Crm/(Tan(^)Tan(T)) in 

the figure was used in Jahangeer's original graph and does not mean that 

Crm/Tan(^) varies linearly with the trim angle. It has already been 

shown in the previous section that the trim angles have little effect on 

Crm/Tan(^) for a given mean Lw/B ratio and Cv. It can be seen that there 

is an excellent agreement between the two theoretical curves beyond beam 
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Froude number of 3.5, while the present theory predicts lower values at 

smaller beam Froude numbers. On the other hand, the present result 

agrees exactly with Jahangeer's experimental measurement at Cv=2.42. 

Fig.(6.8b) shows the variation of the non-dimensional rolling moment 

arm, R/(BTan(0)), against beam Froude number. As before, the present 

non-dimensional rolling moment arms are smaller than the theoretical 

predictions of Jahangeer for beam Froude numbers less than 3.5. At a 

beam Froude number of 2.42, the present prediction is also smaller than 

his experimental measurement. The discrepancy between the present 

prediction and the experimental measurement, however, can be ascribed to 

the difference between the lift obtained by the present theory and the 

experiment. Both the Crm/(Tan(c/))Tan(T)) and the R/(BTan(c/i)) curves have 

a peak at beam Froude number of about 2.6 and decrease rapidly as the 

speed is further increased. This would imply a decrease in roll 

stability at high speeds. 

The results for the lift coefficient slopes, Cfz/Tan(r), are shown 

in fig.(6.8c). Excellent agreement has been obtained between the present 

results and Jahangeer's theoretical predictions. At Cv=2.42, the present 

lift coefficient slope is slightly larger than Jahangeer's experimental 

measurement. Fig.(6.8d) shows the results for the longitudinal centre of 

pressure ratio, Lcp/B. The longitudinal centre of pressure positions 

predicted by the present theory are consistently less forward from the 

transom than Jahangeer's theoretical results for all the beam Froude 

numbers considered. The discrepancy between the two theoretical curves 

is rather large, but the present result agrees much better with his 

experimental measurement at a beam Froude number of 2.42. 

Fig.(6.9) compares the present pressure distributions with the 

experimental measurements obtained by Jahangeer for a heeled planing 

flat plate of mean Lw/B ratio of 2.36, at a trim angle of 6°, heel angle 

of 10° and at a beam Froude number of 2.42. Good agreement has been 

obtained between the theoretical and the experimental pressure 

distributions along the centre line of the plate, while larger 

discrepancies have been found along the chines. It has been observed 

that the chine pressures obtained by using four buttock strips are in 

90 



better agreement with the experimental measurements, and this could be 

the reason for the very encouraging roll moment result obtained at 

Cv-2.42. One should be aware that the chine pressures are more important 

as far as the calculation of rolling moment is concerned. 

6.6 Determination of Hydrodvnamic Forces and Moments acting on a Heeled 
Planing Flat Plate of Specified Loading Condition 

In this section, we consider the problem of determining the rolling 

moment and the sway force acting on a heeled planing flat plate under a 

specified loading condition. For a heeled planing flat plate, the sway 

force, Fy, is independent of the speed and the position of the centre of 

gravity and, according to the sign convention shown in fig.(6.6a), can 

be obtained from the relation 

fy - - W Tan(^) (6.6.1), 

where W is the weight of the plate and (fi is the angle of heel. Following 

the earlier discussion in section (6.3), at sufficiently small heel and 

trim angles, the roll moment coefficient, Crm, can be expressed as: 

- %Crm (ji (6.6.2), 

where (fi is the heel angle in radians and 3Crm/ 3^ is the partial 

derivative of the roll moment coefficient with respect to the heel angle 

which can be regarded as a function of the weight, the longitudinal 

centre of gravity position and the planing speed. At small heel angles 

, 3Crm/ is independent of <f) and is equal to the roll moment 

coefficient slope, Crm/Tan(#). 

To determine these roll moment derivatives, aCrm/a^, one can fix the 

angle of heel and carry out computations for an assumed range of mean 

Lw/B ratios and trim angles at each beam Froude number, and then 
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interpolate between these results to obtain the right lift, longitudinal 

centre of pressure position and roll moment. However, this could be a 

time consuming process, since several trim angles will be required for 

each assumed mean Lw/B ratio and beam Froude number. In order to save 

computing time, a slightly different approach is adopted here. This 

approach, which will be discussed later in this section, is based on the 

results obtained from wetted bottoms of a fixed spray root geometry, 

i.e. a fixed ratio of heel to trim angles, and therefore only requires 

one computation for each assumed mean Lw/B ratio and beam Froude number. 

Computations have therefore been carried out for a series of wetted 

bottoms with spray root geometry defined by ( L c 2 -Lc i ) /B=1 .0518 . The 

computed lift coefficient slopes, centre of pressure ratios and roll 

moment coefficient slopes are shown in fig.(6.10a), fig.(6.10b) and 

fig.(6.10c) as a function of mean Lw/B ratio and beam Froude number. The 

output transom slopes, Tan(^)/Tan(T), of these wetted bottoms have a 

mean value of 1.4 with a discrepancy, in any case, of not more than + 2% 

about this mean level. The roll moment coefficient slopes, 

[Crm/Tan(^)]z, presented in fig.(6.10c) are the components due to the 

lift forces. These roll moment coefficient slopes, as discussed earlier 

in section (6.4), are independent of the trim and the heel angles. The 

total roll moment coefficient slope, [Crm/Tan(^)]d=6i, at a particular 

heel angle, , including the effect of the sway force can be obtained 

from the relation: 

(6.6.3). Crm 1 Crm ~j (1.0 + 
_ Tan(c/)) _ _ Tan((^) Jz 

Note that, according to the sign convention shown in fig.(6.6a), the 

negative values of [Crm/Tan(^)]z in the figure indicate positive 

righting moments. At beam Froude number of 2.0 and mean Lw/B > 2.2, the 

predicted centre of pressure ratios, L c p / B , have suffered badly from the 

pressure divergence problem discussed in section (3.6), although 

oscillations were not observed in the pressure solutions. However, the 

effect of these deteriorated pressures on the lift coefficient slopes 

and the roll moment coefficient slopes is less pronounced. 
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The weight, W, and the position of the centre of gravity forward of 

the transom, Leg, of a heeled planing flat plate can be defined by the 

weight coefficient, W*=W/(i/2fgB3), and the ratio, U g / B . The procedure 

for determining the running mean Lw/B ratio (wetted bottom area to beam 

squared ratio), the running trim angle, and the roll moment coefficient 

slope under this loading condition can be described as follows: 

(1) Determination of running mean Lw/B ratio 

For a given beam Froude number, the longitudinal centre of pressure 

ratios, L c p / B , predicted from wetted bottoms with a fixed spray root 

geometry are only dependent on the mean wetted length to beam ratios. 

The running mean wetted length to beam ratio at a given Cv, say [ L w / B ] i , 

can therefore be obtained by matching the longitudinal centre of gravity 

ratio, L c g / B , of the plate to the computed centre of pressure ratios, 

Lcp/B, presented in fig. (6.10b). This procedure is the same as the one 

discussed in section (4.6) for a non-heeled planing flat plate. 

(2) Determination of running trim and heel angles 

The lift coefficient slope, say [Cfz/Tan(T)]i , at the mean wetted 

length to beam ratio, [ L w / B ] i , and the starting beam Froude number is 

then obtained from the computed lift coefficient slopes shown in 

fig.(6.10a). The running trim angle, say Ti, can be obtained by matching 

the weight of the plate to the planing lift. Since the lift varies 

linearly with the angle of trim for a wetted bottom of fixed spray root 

geometry, %i is simply given by: 

TanCrO = W! (6.6.4). 
Cv2 [ C f z / T a n ( D ] i 

The heel angle, say (j)i , required to produce the spray root geometry, 

(Lc2-Lci)/B=1.0518, is given by; 
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Tan(^i) = I m l A l 1 T a n ( r i ) ( 6 . 6 . 5 ) , 
Tan(T) J 

where [Tan(9i)/Tan(T) ] is the output transom slope and, in this case, is 

equal t o 1.4. 

(3) Determination of roll moment coefficient slope 

We have shown in section (6.4) that, for a given mean Lw/B ratio, 

spray root geometry and beam Froude number, the roll moment coefficient 

slope, [Crin/Tan((jS)]z, produced by the lift is independent of both the 

trim and the heel angles. Having determined the required running mean 

wetted length to beam ratio, [ L w / B ] i , at the starting Cv from (1), the 

[Crm/Tan(c/))]2 at this running condition can be obtained by interpolating 

between the computed [Crm/Tan(0)]z results presented in fig.(6.10c). The 

total roll moment coefficient slope, say [Crm/Tan((/)) = , at is 

then obtained from the relation given in expression (6.5.3). 

Although the above procedure places no restriction on the weight of 

the plate, however, one must always be aware of the fact that both the 

trim and the heel angles have to be small in order to satisfy the basic 

assumptions of a linearized theory. 

The method discussed above has been applied to heeled planing flat 

plates of weight coefficient, W*=1.3, and Ug/B ratios ranging from 1.05 

to 1.45. Again, a third order Lagrange interpolating polynomial was 

employed for the interpolating processes. Since the heel angle has been 

shown to have little effect on the lift and the longitudinal centre of 

pressure position, the predicted running mean Lw/B ratios and running 

trim angles will be compared with those obtained from the Savitsky's 

empirical equations (4.3.3) and (4.4.1). The present predictions are 

shown in fig.(6.11a) and fig.(6.lib) as a function of beam Froude 

number, together with the results obtained from the empirical equations 

for the cases of Lcg/B=1.05 and 1.45. Each of the predicted trim angle 
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curves in fig.(6.11b) are extended backward to the point at Cv=0.0. The 

lift at rest is produced purely by buoyant effect, and the trim angle at 

rest, Jo, is given by: 

Tan(T%) = W* (6.6.6), 
(Lw/B)o^ 

where (Lw/B)o is the wetted length to beam ratio at rest given by: 

( L w / B ) o = 3 ( L c g / B ) ( 6 . 6 . 7 ) . 

It can be seen from fig. (6.11a) that, for a fixed load and fixed 

longitudinal centre of gravity position, both the present theory and the 

Savitsky s empirical equation (4.4.1) show the tendency of decreasing in 

mean wetted length to beam ratio with the increase of speed. Generally 

speaking, the present theory usually gives smaller mean Lw/B ratios than 

the empirical equation, though this tendency seems to have reversed at 

low speeds. At high beam Froude numbers, the present U g / L w ratio 

a p p r o a c h e s a c o n s t a n t v a l u e o f a b o u t 0 . 8 . T h i s c o r r e s p o n d s t o an 

increase of about 7% when compared to the value of 0.75 given by the 

empirical equation. 

An interesting feature displayed in fig.(6.lib) is that the running 

trim angle rises initially above its respective rest value as the plate 

moves from rest. This initial rise in trim angle can be caused by two 

factors; one is due to the rapid reduction in wetted length as the speed 

i n c r e a s e s f r o m r-esM: a n d t h e o t h e r i s d u e t o t l ^ n e g a t i v e h y d r o d y n a m i c 

effect on the lift at low speed. Savitsky (Ref.(44)) noted that at a 

very low speed, the hydrodynamic reaction of the water actually reduced 

the lift below the value which would be expected on a purely 

displacement basis. At high beam Froude numbers, the present trim angles 

agree very well with the values obtained from the Savitsky's empirical 

equations (4.3.3) and (4.4.1). At low beam Froude numbers, however, the 
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present theory has predicted trim angles that are much smaller than 

those obtained from the empirical equations. On the other hand, it is 

known that the Savitsky's empirical equations are less accurate at low 

speeds. 

The results for the roll moment coefficient slopes, Crm/Tan(^), are 

shown in fig. (6.11c). It can be seen that, for a given load, the 

predicted roll moment coefficient slope in general increases with the 

centre of gravity ratio, L c g / B , of the plate. This would imply that the 

roll stability can be improved by shifting the centre of gravity forward 

from the transom. The results indicate that the improvement could be 

quite significant at the lower speed range. However, one must also 

notice that this might reduce the craft's performance in other aspects -

for example, the increase in bottom drag. One can also see from 

fig.(6.11c) that the roll moment slopes decrease continuously as the 

speed increases. In particular, the rapid drop in roll moment 

coefficient slope between beam Froude numbers of 2 and 4 suggests that a 

rapid decrease in roll stability at this speeds. It should be noted that 

the transom running beam of the heeled plate is assumed to be completely 

wetted in the present solution. In the case of very low L c g / B ratio, the 

transom running beam at the heeled up side of the plate can become 

partially dry. This could give rise to an increase in righting moment as 

a result of the rapid loss in wetted area under the heeled up side of 

the plate. 
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CHAPTER (7) Some Results for the Planing of Constant Deadrise 

Prismatic Hulls in Heel Condition 

7.1 Introduction 

In this chapter, we will apply the present finite element method to 

pi edict the pressures under the bottom of a constant deadrise prismatic 

hull when it is planing in a heel condition. Again, only small heel, 

tnm and deadrise angles will be considered. Fig. (7.1) shows a sketch of 

the asymmetrical wetted bottom of a planing constant deadrise prismatic 

hull in heel condition. As before, the forward thrown spray sheet and 

i-ne slightly curvature at the spray root will be ignored in the present 

uomputations and the running beam at the transom is assumed to be 

completely wetted during the planing motion. The mean wetted length to 

beam ratio, Lw/B, or the wetted area to beam squared ratio for such a 

wetted bottom can be defined in terms of its transom wetted beam, B, its 

wetted keel length, Lk, and its wetted chine lengths, Lci (heeled up 

side) and Lcz (heeled down side), as: 

- 2Lk T Lci + Lc2 (7.1.1). 
B 4B 

Mn avetage wetted length to beam ratio', Xrp, for planing prismatic 

hulls in heel was used by Jahangeer (Ref.(66)): 

A r p 

2B 
Lk + Lc2 + Lc1 

2 
( 7 . 1 . 2 ) , 

This 'average wetted length to beam ratio' is not the wetted area to 

beam squated latio of the wetted bottom and should not be confused with 

the present definition. A typical finite element representation of the 

projected wetted bottom of a planing prismatic hull in heel condition is 

shown in fig.(7.2). The input local hull displacement function above the 

transom level is the same as that for the zero heel angle case. 
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An interesting feature of heeled planing prismatic hulls is that the 

point associated with zero yawing moment (longitudinal centre of lateral 

resistance) can be well separated from the point associated with zero 

pitching moment (longitudinal centre of lift). Thus, in addition to a 

rolling moment and a sway force, there is also a net yawing moment 

acting about the centre of gravity of the craft. This is different from 

a heeled planing flat plate in which the net yawing moment about the 

centre of gravity is zero. This particular aspect of planing has been 

confirmed by the experimental measurements of Wellicome and Campbell 

(Ref.(57)) and has also been observed in the present computational 

results. 

Section (7.2) discusses the relationship between the spray root 

geometry, the heel angle, the trim angle and the deadrise angle. Section 

(7.3) investigates the effect of the heel angle on the induced sway 

force, rolling moment and yawing moment for a fixed trim condition. The 

computational results suggest that, for a given loading condition and 

planing speed, these hydrodynamic force and moments vary linearly with 

the angle of heel. Section (7.4) compares the present results with the 

theoretical predictions and the experimental measurements of Jahangeer 

(Ref.(66)) for a 15° constant deadrise hull in heel condition. The 

application of the present finite element method to the determination of 

the hydrodynamic forces and moments derivatives, Kfv/h(p, aCrm/a# and 

aCym/a for a prismatic hull of fixed loading condition will be 

discussed in section (7.5). Finally, the hydrodynamic forces and moments 

derivatives predicted for a 10° constant deadrise hull will be compared 

with the experimental measurements of Wellicome and Campbell (Ref.(57)) 

in section (7.6). 

7.2 Selection of Spray Root Profile 

Based on the 11/2 wave rise factor computed by Wagner (Ref.(19)) for 

a two dimensional wedge penetrating vertically into a fluid surface and 

the assumption of no water piling up at the keel line, it can be shown 

analytically, as for the heeled planing flat plate discussed in section 

98 



analytically, as for the heeled planing flat plate discussed in section 

(6.2), that the spray root geometry of a planing constant deadrise 

prismatic hull in heel condition is given by: 

(Lk - Lci) = Sin09+dl (7.2.1a) 
B lTCos^9) Tan(T) 

(Lk - Lpg) = Sin($-6) (7.2.1b), 
B TTCos^S) Tan(D 

where /S is the deadrise angle, X is the trim angle, cjj is the heel angle, 

B is the transom wetted beam, LK is the wetted keel length and Lci and 

Lc2 are the wetted chine lengths at the heeled up and the heeled down 

sides respectively. 

Fig.(7.3) shows the shape of the transoms obtained from a spray root 

profile of (Lk-Lci ) /B=0.958 and (Lk-Lc2)/B=0.587 for various mean Lw/B 

ratios and beam Froude numbers. The wetted bottoms were divided 

symmetrically into six buttock strips, each of equal width, and it can 

be seen that the predicted transoms are slightly curved as a result of 

ignoring the curvature at the spray root. However, unfortunately, 

oscillatory pressure solutions were observed at Cv=2.5 for moderate mean 

Lw/B ratios, though, surprisingly, they have not manifested themselves 

in the results for the vertical location along the transom. The number 

of buttock strips was then reduced to four in the latter computations in 

order to obtain more satisfactory pressure results at lower beam Froude 

numbers. 

Table (7.1) compares the computed trim angles and heel angles with 

the estimations from expressions (7.2.1a) and (7.2.1b) for a 10° 

constant deadrise hull. For an assumed heel angle, trim angle and 

deadrise angle, an initial estimate of the spray root geometry was first 

obtained from the analytical expressions. The output trim and heel 

angles for a given mean Lw/B ratio and beam Froude number were then 

determined from the output transom slopes, Tan(,6+0)/Tan(t) (heeled up 

side) and Tan(/6-^)/Tan(T) (heeled down side). Four buttock strips of 
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equal width were used in these computations. In general, the heel angles 

predicted by the present theory are in very good agreement with those 

obtained from expressions (7.2.1a) and (7.2.1b), with a difference of 

not more that +1.4% between the two results. The computed trim angles, 

however, have consistently shown an increase of about 11% when compared 

with the corresponding values given by the analytical expressions. 

Again, a possible cause of these differences could be the assumption of 

no water piling up at the keel line in deriving the analytical 

expressions, which itself may not be strictly accurate. On the other 

hand, the results presented in table (7.1) and fig.(7.3) seem to agree 

with the the analytical expressions that the output transom shape is 

only dependent on the geometry of the spray root but not dependent on 

the mean Lw/B ratio and the planing speed. 

7.3 Variation of Hvdrodvnamic Forces and Moments with Heel Angle 

In this section, we investigate the effect of the heel angle on the 

the sway force, the rolling moment and the yawing moment induced by the 

planing motion of a heeled prismatic hull. The aim of this investigation 

is to confirm the linear relationships between the heel angle and these 

hydrodynamic forces and moments at small angle of heel. 

The sign conventions for the lift force, the sway force, the rolling 

moment, the yawing moment and the heel angle are shown in fig.(7.4), The 

datum of these force and moments is taken to be at the intersection of 

the keel line and the transom. Rolling to the starboard, swaying and 

yawing to port are treated as positive. For a heeled constant deadrise 

prismatic hull, the sway forces and the yawing moments, as well as the 

rolling moments, contributed by the bottom pressures on the port and 

starboard sides of the hull are acting in an opposite direction. Thus, 

the relationship given in (6.3.1) is no longer applicable here. The 

resultant sway force, yawing moment and rolling moment are therefore 

obtained from the differences between their corresponding port and 

starboard components. The non-dimensional sway force coefficient, Cfy, 

yaw moment coefficient, Cym, and roll moment coefficient, Crm, are 

defined as follows: 
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C f y - Fx,; ( 7 . 3 . 1 ) , 

1/2 fgB3 Cv? 

:ym = My ( 7 . 3 . 2 ) 
1/2/ogB* 

and Crm = Mr ( 7 . 3 . 3 ) , 
i/2/0gB4 

where Fy is the sway force, My is the yawing moment about the transom 

and Mr is the rolling moment about the keel. As in the case of heeled 

planing flat plate, a non-dimensional rolling moment arm, R/B, can be 

defined as: 

Mr ( 7 . 3 . 4 ) . 
( F z 2 + F y 2 ) 1 / 2 B 

It can also be shown from the hull geometry of a heeled prismatic hull 

that the sway force is not necessary acting at the same point as the 

resultant of the drag and the lift forces. It follows that the net 

yawing moment about the centre of gravity of the craft is not necessary 

equal to zero. This suggests that the introduction of a heel angle will 

cause the craft to roll, to sway and to yaw. Thus, there is a coupling 

between the sway, yaw and roll motions. Neglecting the effect of 

pressure drag at small trim angles, the longitudinal centre of lateral 

resistance, L C L R , - i.e. the point associated with zero net yawing 

moment - forward of the transom is given by: 

L C L R = Yawing Moment about Transom (My) ( 7 . 3 . 5 ) 

Sway Force (Fy) 
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and the longitudinal centre of lift, Leu, - i .e. the point associated 

with zero pitching moment - forward of the transom is given by: 

Lci - Pitching Moment about Transom (7.3.6), 
Lift Force 

Fig.(7.5a) to fig.(7.5g) show the computational results obtained for 

a 15° constant deadrise hull in heel condition. Two beam Froude numbers, 

Cv, of 3.0 and 5.5 and heel angles ranging from 3° to 10° were 

considered. The output transom shapes give a trim angle of about 7°. It 

can be seen from fig. (7.5a) and fig. (7.5b) that for a given mean LW/B 

ratio, trim angle and beam Froude number, the predicted lift coefficient 

slopes, Cfz/Tand), and longitudinal centre of lift ratios, L c l / B , are 

almost independent of the heel angles. Also shown in the same figures 

are tk^ lift coefficient slopes and lLhe longitudinal centre of lii^ 

ratios computed for the case of zero heel angle at the same angle of 

trim and beam Froude numbers. These also nearly fall on the theoretical 

curves for the heeled cases, justifying the present definition of mean 

Lw/B ratio, i.e. wetted bottom area to beam squared ratio, rather than 

Arp. For the mean Lw/B ratios and beam Froude numbers considered, the 

discrepancies in lift coefficient slopes and longitudinal centre of lift 

ratios between different heel angles are in the order of 3% and 4% 

respectively. 

The results for the roll moment coefficient slopes, Crm/Tan(0), and 

the rolling moment arm ratios, R/(BTan(40), ar^ shown in fig.(7.5c) amd 

fig.(7.5d). The very close agreement between the values of Crm/Tan(^) 

obtained at different heel angles suggests that, for a given mean Lw/B 

ratio, trim angle and beam Froude number, a linear relationship exists 

between t ^ rolling moment and huwal angle. In general, the computed 

rolling moment a m ratios, R/(BTan(40), also display 1:^ same feature, 

although a slightly larger discrepancy of around 9% has been found at 

large Lw/B ratio for the case of beam Froude number equal to 3.0. 

Fig.(7.5e) and fig.(7.5f) show the variations of the sway force 
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coefficient slopes, CFy/(Tan(DTANC^)), and the yaw moment coefficient 

slopes, Cym/(Tan(%3Tan(^)Cv3), against heel angles. The overall results 

also seem to suggest that, for a given mean Lw/B ratio, trim angle and 

beam Froude number, both the sway force and the yaw moment vary linearly 

with the angle of heel. Again, for the sway force coefficient slopes, a 

slightly larger discrepancy of about 6% has been found at large mean 

Lw/B ratio for the case of beam Froude number equal to 3 .0 . Since both 

the sway force and the yawing moment about the transom vary linearly 

with the heel angle, it can be expected that the corresponding 

longitudinal centre of lateral resistance, L C L R / B , is independent of the 

heel angle. This aspect also seems to be verified by the present 

computations for L C L R / B , as shown in fig.(7.5g). Finally, the results 

for the distance of the longitudinal centre of lateral resistance 

forward of the longitudinal centre of lift, ( L C L R - L C L ) / B , are shown in 

fig.(7.5h). As the yawing moment about the centre of lift/centre of 

gravity is equal the product of the distance, ( L C L R - L C L ) , and the sway 

force, Fy, ( L C L R - L C L ) / B can be regarded as the non-dimensional yawing 

moment arm for the net yawing moment about the centre of lift position. 

The overall results for ( L C L R - L C L ) / B seem to suggest that the yawing 

moment arm about the centre of lift position is independent of the heel 

angle for a given mean Lw/B ratio, trim angle and beam Froude number. 

Furthermore, as the sway force varies linearly with the heel angle, the 

results would imply that the yawing moment about the centre of lift 

position also varies linearly with the heel angle. Note that at a beam 

Froude number of 3 .0 , the present theory predicts positive values of 

( L C L R - L C L ) / B for large mean Lw/B ratios. This suggests that a reverse in 

the direction of the yawing moment about the centre of lift position 

(for sign convention, see fig.(7.4)). 

To summarize, the above investigation indicates two important 

aspects. They are 

(1) for a given mean Lw/B ratio, trim angle and beam Froude number, the 

sway force, the rolling moment and the yawing moment all vary linearly 

with the heel angle, and 
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(2) for a given mean Lw/B ratio, trim angle and beam Froude number, both 

the lift and the longitudinal centre of lift position are independent of 

the heel angle. 

These would imply that, for a given craft's loading condition and speed, 

these hydrodynamic forces and moments vary linearly with the heel angle. 

At sufficiently small heel angles, the sway force coefficient, Cfy, the 

roll moment coefficient, Crm, and the yaw moment coefficient, Cym, can 

therefore be expressed as: 

C f y - BC f V 
3 6 

Crm - 5Crm ffl 

Cym = ^Cvm ^ ( 7 . 3 . 7 ) , 

Where 4 is the heel angle in radians, BCfy/a?, 3Crm/3^ and 3Cym/b^ are 

the partial derivatives of the sway force coefficient, the roll moment 

coefficient and the yaw moment coefficient with respect to the heel 

angle which are equal to Cfy/Tan(#), Crm/Tan(#) and Cym/Tan(0), Each of 

these derivatives can be regarded as a function of planing speed, 

craft's weight and craft's longitudinal centre of gravity position 

(running trim and running mean wetted length to beam ratio). The method 

for determining these derivatives will be discussed further in section 

(7.5). 

7.4 Comparison of Results 

In this section, the present computational results are compared with 

the theoretical predictions and experimental measurements of Jahangeer 
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(Ref.(66)) for a 15° constant deadrise hull in heel condition. The spray 

root geometry of the projected wetted bottom is defined by (Lk-

Lci)/B=1.325 and ( L k - L c 2 )/B=0.273, which corresponds to a trim angle of 

6° and heel angle of 10° according to expressions (7.2.1a) and (7.2.1b). 

The trim angles and heel angles determined from the output transom 

slopes have a mean value of about 7° and 9.7° respectively. Two mean 

wetted length to beam ratios, Lw/B, of 2.67 and 2.08 and a range of beam 

Froude numbers, from 2.0 to 10.5, are considered. Note that the 

corresponding 'average wetted length to beam ratios ( A r p ) ' in 

Jahangeer's paper were 2.38 and 1.7 respectively. 

Besides the differences in element types and sizes, there is another 

major difference between the present and Jahangeer's wetted bottom 

grids. As shown in fig.(7.2), the projected wetted bottom used in the 

present computations is divided into four buttock strips, each of equal 

width. In Jahangeer's calculations, however, the projected wetted bottom 

was divided in an asymmetrical fashion with three buttock strips on the 

heeled up half of the wetted bottom and two buttocks on the other, as 

shown in fig.(7.6). As mentioned in the previous section, the resultant 

sway force, rolling moment and yawing moment are calculated from the 

differences between the pressure forces and moments acting on the port 

aiiu starboard sides of the hull about the keel line. By arranging the 

buttock strips symmetrically about the keel, the errors in calculating 

these pressure forces and moments on the two sides of the hull should be 

of the same order and therefore the errors in calculating the resultant 

sway force, rolling moment and yawing moment will be largely reduced by 

the subtracting process. Thus, as far as the calculations of these 

hydrodynamic forces and moment are concerned, a symmetrical buttocks 

configuration should give a better accuracy. This aspect could be 

important in particular that when a small number of buttock strips are 

used. 

Fig.(7.7a) and fig.(7.7b) compare the present lift coefficient 

slopes, Cfz/Tan(T), and longitudinal centre of lift ratios, L c l / B , with 

the theoretical predictions and experimental measurements of Jahangeer. 

In general, there is a reasonable agreement between the present 
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lift coefficient slopes and Jahangeer's results, although the present 

theory has predicted larger values than his theoretical predictions for 

beam Froude numbers less than 3.0 and his experimental measurement at 

Cv=2.52 and Lw/B=2.67. As in the planing of a heeled flat plate, for 

both mean Lw/B ratios, the longitudinal centre of lift positions 

predicted by Jahangeer are generally more forward from the transom than 

those predicted by the present theory. However, as before, the present 

result is in better agreement with his experimental measurement at 

Lw/B=2.67 and Cv=2.52. 

Good agreement also exists between the present roll moment 

coefficient slopes, Crm/(Tan((^)Tan(T)), non-dimensional rolling moment 

arms, R/(BTan(^)), and Jahangeer's experimental results as shown in 

fig.(7.7c) and fig.(7,7d). However, at high beam Froude numbers, the 

righting moments predicted by the present theory are considerably larger 

than Jahangeer's theoretical predictions. As mentioned earlier in this 

section, the heeled up half of the wetted bottom in Jahangeer's 

calculation was divided into three buttock strips and this could produce 

a larger negative righting moment, i.e. positive Mr, about the keel due 

to the increase in the moment arms of the pressures at outer most 

buttock. The large discrepancy between the two theoretical predictions 

at high speeds might be due to the difference in the element 

arrangements of the present and Jahangeer's wetted bottom grids. Note 

that the wetted bottom grid in fig. (6.2) used for the heeled planing 

flat plate calculations has the same buttocks layout, i.e. four buttocks 

arranged symmetrically about the centre line, as that used in 

Jahangeer's calculations. The results for the roll moment coefficient 

slope presented in fig.(6.8a) are, not surprisingly, in good agreement 

with Jahangeer's predictions. 

The predicted sway force coefficient slopes, Cfy/(Tan(^)Tan(D), yaw 

moment coefficient slopes, Cym/(Tan(^)Tan(T)Cv3), and longitudinal 

centre of lateral resistance ratios, L C L R / B , are shown in fig.(7.7e), 

fig.(7.7f) and fig.(7.7g) respectively. Like the longitudinal centre of 

lift, the longitudinal centre of lateral resistance for each mean Lw/B 

ratio has approached a constant distance forward of the transom at high 
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beam Froude numbers. However, the later computational results and the 

experimental measurements of Wei Income and Campbell (Ref.(57)) have 

shown that the centre of lateral resistance can be situated at a point 

behind the transom at high speed when the associated trim angle and mean 

wetted length to beam ratio are small. The later computational results 

also suggest that both Cfy/Tan((/)) and Cym/TanC^) do not vary linearly 

with the trim angle for a given mean Lw/B ratio and beam Froude number. 

That is to say the results presented in these figures are only valid for 

the present wetted bottom. These sway forces, yawing moments and 

longitudinal centre of lateral resistance ratios had not been computed 

or measured by Jahangeer. 

Fig,(7.8) compares the present pressure distributions with the 

experimental measurements of Jahangeer for a mean Lw/B ratio of 2.67 

and a beam Froude number of 2.54. Reasonable agreement has been obtained 

between the predicted and measured pressure distributions along the 

chines, especially at the heeled up side where the present computations 

confirmed the experimental measurements closely. As shown in fig.(7,2), 

the present wetted bottom grid does not allow a set of control points to 

be located along the keel line. However, judging from the means of the 

pressures predicted along the lines + B/8 from the keel, the present 

theoi y seems to have under-estimated the experimental pressure 

measurements along the forward half of the keel. 

— D e t e r m i n a t i o n o f Hvdrodvnamic Forces and Moments a c t i n g on a Hee led 
P l a n i n g P r i s m a t i c H u l l o f S p e c i f i e d l o a d i n g Condition 

As mentioned in the preceding chapters, the shape and extent of the 

projected wetted bottom is required to be prescribed in the present 

computational method, therefore, the hydrodynamic forces and moments 

det ivauives, SCfy/5^, 3 C r m / a n d SCym/9^, for a craft of specified 

loading condition cannot be directly predicted. Again, these forces and 

moments derivatives can be determined by means of interpolating methods. 

For a given deadrise hull, this would require computations for an 

assumed tange of trim angles, mean wetted length to beam ratios and 
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speeds to be carried out at a fixed heel condition. For each beam Froude 

number considered, the following parameters are required to be computed 

as a function of mean LW/B ratio and trim angle: 

(a) lift coefficient (Cfz), 

(b) longitudinal centre of lift ratio ( L c l / B ) , 

(c) sway force coefficient slope (CF y/Tan(tj))), 

(d) yaw moment coefficient slope about the transom (Cym/Tan(^)), 

(e) roll moment coefficient slope about the keel (Crm/Tan(^)). 

The computed lift coefficients (a) and longitudinal centre of lift 

ratios (b) allow us to determine the running trim angle and the running 

mean wetted length to beam ratio for a particular craft's loading 

condition. The interpolating procedure for matching the computed lift 

and longitudinal centre lift position to the craft's weight and the 

craft's longitudinal centre of gravity position is the same as the one 

discussed in section (5.7) for the non-heeled case. Once the running 

trim angle and the running mean wetted length to beam ratio have been 

obtained, the corresponding hydrodynamic forces and moments derivatives 

can be easily determined from the computed sway force coefficient slopes 

(c), yaw moment coefficient slopes (d) and roll moment coefficient 

slopes (e) by interpolation. The longitudinal centre of lateral 

resistance ratio, L c l r / B , can be obtained by dividing the predicted 

yawing moment by the predicted sway force. Note that the method to scale 

the trim angle and the heel angle using a fixed spray root geometry, as 

discussed in section (6.5) for a heeled planing flat plate, cannot be 

applied in the present case. This is because, now, for a fixed spray 

root geometry, i.e. fixed output transom slopes Tan(/S+^)/Tan(T) and 

Tan(^-0)/Tan(T), there could only be one solution in the heel angle, 

and the trim angle, T, for a given deadrise angle,. 

Computations have been carried out to determine the above (a), (b), 

(c), (d) and (e) for a 10° constant deadrise prismatic hull. Beam Froude 

numbers ranging from 2.0 to 6.5 (increasing at 0.25 increment) have been 
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considered. The spray root geometries used for the computations together 

with the output trim angles (ranging from 2.5° to 7.2°) and the output 

heel angles (mean value of about 3.62°) are shown in table (7.1). For 

Cv>4.0, however, the trim range has been reduced to 2.5° to 6° simply 

because the running trim angle required to produce a given craft's 

weight reduces with the planing speed. A range of mean Lw/B ratios from 

1.65 to 2.85 have been considered for all beam Froude numbers, with the 

exception of the cases of Cv = 2.25 and 2.0 in which the range has been 

reduced to 1.65 to 2.40 and 1.65 to 2.15 due to the oscillatory pressure 

solutions encountered at higher mean Lw/B ratios. Note that a further 

reduction in mean Lw/B ratio at small trim angle can result in partial 

dryness of the transom running beam at the heeled up side of the hull. 

Some of these computational results are shown in fig.(7.9.1) and 

fig. (7.9.2). It can be seen from the results in these figures that, for 

a given mean Lw/B ratio and beam Froude number, the computed lift 

coefficient, C fz , varies linearly with the trim angle and the location 

of the longitudinal centre of lift gradually moves toward the transom as 

the trim angle decreases. These tendencies have also been observed in 

the zero heel angle case and are shown in fig. (5.12) and fig. (5.13). 

Like the longitudinal centre of lift, the longitudinal centre of lateral 

resistance, L C L R , also moves toward the transom as the trim angle 

decreases. However, the rate of decrease of the longitudinal centre of 

lateral resistance to beam ratio, L C L R / B , is considerably higher than 

that of the longitudinal centre of lift to beam ratio, L C L / B , and this 

is particular true for small mean Lw/B ratio and small trim angle when 

the swept back angle at the spray root becomes large. Strictly speaking, 

for a given mean Lw/B ratio and beam Froude number, both the sway force 

coefficient slope, Cfy/Tan(^), and the yaw moment coefficient slope, 

Cym/Tan(i/)), do not vary linearly with the trim angle. Fig. (7.10a) and 

fig.(7.10b) show the variation of roll moment coefficient slope, 

Crm/Tan(#), against trim angle for beam Froude numbers of 3.0 and 5.5. 

For a heeled planing flat plate, it has been shown in section (6.3) that 

the trim angle has little effect on the roll moment coefficient slope. 

The present results also display this feature to some extent, though a 

difference of up to + 20% about the mean level (denoted by the solid 
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lines in the figures) has been observed between the values of Crm/Tan(^) 

at different trim angles. These differences, however, might be due to 

the variation in the shape and the size of the elements used in the 

computations. For interpolating purpose, the roll moment curves have 

been smoothed out by plotting Crm/(Tan((^)Tan(t)), instead of Crm/Tan(^), 

against the trim angles as shown in fig.(7.9.1f) and fig.(7.9.2f). 

Although computations have only been carried out for a 10° constant 

deadrise hull, the results for other planing surfaces can also be 

obtained in a similar manner. The 'data-base' for feeding the 

interpolating program can be expanded to cover a wide range of deadrise 

angles, mean Lw/B ratios, trim angles and speeds. This would allow users 

to estimate the hydrodynamic forces and moments derivatives together 

with the running trim and the running wetted length quickly for a wide 

range of craft's displacements and craft's longitudinal centre of 

gravity positions without going through the tedious integration process. 

This implies that the use of the present interpolation scheme in 

engineering design would be a practical proposition. 

7 . 6 C o m p a r i s o n o f H v d r o d v n a m i c F o r c e s a n d Momen ts D e r i v a t i v e s f o r f i x e d 

B o t t o m L o a d i n g C o e f f i c i e n t a n d W e t t e d K e e l L e n g t h t o Beam R a t i o 

The hydrodynamic forces and moments derivatives derived from the 

present theory for a 10° constant deadrise hull have been compared with 

the experimental measurements obtained by Weilicome and Campbell 

(Ref.(57)). Wellicome and Campbell conducted model tests to measure the 

hydrodynamic forces and moments for a series of constant deadrise 

prismatic hulls under restrained roll and yaw conditions. Models with 

deadrise angles ranging from 10° to 30° were tested. The roll restrained 

models in their experiments were free to heave and trim but were 

restrained to a given heel angle. The displacement of the model was 

defined by a non-dimensional bottom loading coefficient, 

Cp = Lk 8 ( 7 . 6 . 1 ) , 
^,2/3 
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where v is the static displacement volume. The value of Cp was chosen to 

be constant over the range of wetted keel length to beam ratios, Lk/B, 

with Cp = 5.7 for Lk/B=2.0, 2 ,5 , 3 .0 , 3.5 and 4 .0 , Cp = 7.8 for Lk/B=2.0, 

3 . 0 and 3 . 5 and Cp = 8 . 1 for L k / B = 4 . 0 . For each deadrise angle, bottom 

loading coefficient, speed and wetted keel length, the roll moments and 

the sway forces were measured using force and moment dynamometers at a 

number of different heel angles between + 7 . 5 ° . The roll moment and sway 

force derivatives were then determined from the slopes of the roll 

moment against heel angle curve and the sway force against heel angle 

curve by fitting straight lines to the experimental data. The sway force 

and roll moment derivatives were presented in non-dimensional forms, 

F2 = >Fv 1 and Mz = ^ Mr 1 ( 7 . 6 . 2 ) , 

3^ A A B 

where A is the weight of the model in Newtons. These results were 

plotted against Froude numbers based on the wetted keel length, 

NF=C/(gLk)i/2. Some results for the location of the longitudinal centre 

of lateral resistance for the 25° deadrise model were also recorded. 

Note that although the bottom loading coefficient, Cp, was kept constant 

for the entire range of wetted keel length to beam ratios, the actual 

model displacement, A , for each Lk/B ratio was not the same. Also note 

that, for a given Lk/B ratio and Cp, the longitudinal centre of gravity 

location of the craft is a function of planing speed. 

In order to compare with these experimental results, it was necessary 

to convert the characteristic length ratio, Lw/B, of the 'pre-

calculated' data to Lk/B. Since the relationship between Lw/B and Lk/B 

at each calculated trim angle was known from the geometry of the input 

wetted bottom, there was no problem in obtaining the corresponding 

results for a particular Lk/B ratio. Again, this was achieved by an 

interpolating process which employed a third order Lagrange 

interpolating polynomial. For the cases of L k / B = 3 . 0 and Cv 1 2 . 2 5 ( N F <_ 

1 . 3 ) , however, extrapolation was used as the 'pre-calculated' data did 

not extend up to this particular Lk/B ratio for these speeds (see 

section 7 . 5 ) . 
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The lift coefficient, Ctz, required to produce a given Cp for a 

given Lk/B ratio and beam Froude number can be obtained from the 

relation 

Cfz = (Lk/B)i•5 (7.6.3) 
V 2 Cpi 5 Cv2 

and the trim angle required to produce this lift was determined by 

interpolating the lift coefficient against trim angle curve for the 

given Lk/B ratio and beam Froude number. The sway force, roll moment and 

yaw moment derivatives and the L C L / B ratio at the predicted trim angle 

were then obtained from their respective relations with the trim angles. 

The predicted yaw moment derivatives (about the transom) are also 

presented in a non-dimensional form, 

N2 = 1_ (7.6.4). 

Unfortunately, no yaw moment data is available in Wellicome and Campbell 

report (Ref.(57)). The centre of lateral resistance ratio, L C L R / B , was 

then calculated from the predicted sway force and yaw moment 

derivatives. Extrapolation had also been used in some high beam Froude 

number cases if the running trim angle required to produce the given Cp 

exceeded the lower limit of the assumed trim range. 

As shown in fig.(7.11), the roll moment results presented in 

Wellicome and Campbell report are referred to a datum point which is 

located at the intersection of the keel line and the vertical plane 

through the centre of gravity of the craft. This is different from the 

present case where the roll moment is computed about the keel line (see 

fig.(7.4). In order to transform the predicted roll moment derivatives 

to the datum point shown in fig.(7.11), it was necessary to know the 

longitudinal centre of gravity locations and trim angles measured during 
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the experiments. However, these values are not presented in the report 

so the values predicted by the present theory were used instead. The 

predicted roll moment derivatives were then corrected, by taking into 

account of the interaction between the sway force, yawing moment and 

rolling moment, using the predicted trim angles and longitudinal centre 

of lift locations. 

Following the above procedures, the coefficients, Fz, M2 and N2, and 

the ratios, L C L R / B and L C L / B , for a 10° deadrise hull have been obtained 

for three bottom loading coefficients, Cp=7.8, 5.7, and 3.3, and for two 

wetted keel length to beam ratios, Lk/B=2.5 and 3.0. Due to the 

oscillatory pressure solutions associated with large Lk/B ratios at low 

speeds, the results for Lk/B >3.0 have not been computed, although the 

present theory is quite capable to obtain results for Lk/B=3.5 and 4.0 

at higher speeds, say Cv>4.0. The experiment measurements presented in 

(Ref.(57)) for the 10° deadrise model lie between the speed range 0.85i 

NF <.1.35 for Lk/B=3.0 and I.Oi NF <.1.48 for Lk/B=2.5, therefore only a 

few data spots are available for comparing with the present results. The 

present predictions together with the experimental measurements are 

shown in fig.(7.12a to e) to fig.(7.16a to e). The dotted curves shown 

in fig.(7.12) to fig.(7.14) for Cp=5.7 and 7.8 denote results obtained 

by extrapolation because the trim angles required to produce these Op 

have exceeded the lower limit of the assumed trim range at these high 

speeds (trim angle reduces with the increase of speed for a given Cp). 

The trim angles associated with these extrapolated results are, in all 

cases, within 0.85° beyond the lower limit of the assumed trim range, 

therefore reasonable accuracy could still be expected. No extrapolation 

was required for the higher displacement case of Cp=3.3. 

Fig.((7.12a), fig.(7.13a) and fig.(7.14a) compare the computed sway 

force derivative coefficients, F2, with the experimental measurements of 

Wellicome and Campbell (Ref.(57)). In general, there is a reasonable 

agreement between the computational and the experimental results, 

although a rather large discrepancy of 30% is observed in the case of 

Cp=5.7 and Lk/B=3.0. The computed results indicate an overall increase 

in Fz with the increase in displacement for a given Lk/B ratio. All the 
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computed Fa curves (fig.(7.12a) to fig.(7.16a)) have reached a peak 

value at high speed. For the case of Lk/B=2.5, as shown fig. (7.14a) and 

fig.(7.16a), a declining tendency in F2 is spotted at high speed. This 

declining tendency is shown explicitly in the experimental results of 

Wellicome and Campbell for models with higher deadrise angles, in which 

the declination occurs at a lower speed. 

This declining tendency, which only seems to occur at high speed, 

could be related to the geometry of the planing wetted bottom. The sway 

force to planing lift ratio, F y / F z , can be obtained from the relation 

(Fz ) u Tan( /S+(^) - (Fz ) d T a n C 8 - ^ ) ( 7 . 6 . 5 ) , 

( F z ) u + ( F z ) d ( F z ) u + ( F z ) d 

where (Fz)u and (Fz)d denote the planing lifts under the heeled up and 

the heeled down halves of the hull respectively. If we assume that (Fz)u 

and (Fz)d are equal to one half of the planing lift of a constant 

deadrise surface of deadrise angles (/S+c/))° and (/S-0)°, then, at small 

trim angles, (Fz)u and (Fz)d can be estimated from the Savitsky's 

empirical lift equation (5.3.2). As we are only interested in the sway 

force to planing lift ratio at high speed, the buoyant force term in the 

equation will be ignored and the planing lifts, (Fz)u and (Fz)d, 

produced by pure hydrodynamic effect are given by: 

(Fz)u = Tan(T) 57.296 (0.012 [Awu/2Bu2] 1/2)^ Bu^cz 

and (Fz)d = Tan(T) 57.296 (0.012 [Awd/2Bd2]1/2Bd^cz (7.6.6), 

where Awu and Awd denote the wetted bottom areas under the heeled up and 

heeled down halves of the planing hull and Bu and Bd denote their 

respective half beams. Fig.(7.17) shows the typical variation in wetted 

bottom shape with the decrease of trim angle (or increase in speed) for 

a constant deadrise hull planing in heel condition. As shown in the 
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figure, for t 2 ~mi, the transom running beam is completely wetted at 

both sides of the hull and in this case Bu = Bd = B/2. If 7*2 1 T < Tmi, 

however, the transom running beam at the heeded up side of the hull will 

be partially dried and therefore Bu < B/2. The minimum trim angle, 7m 1 , 

in degrees required to keep the transom running beam completely wetted 

at both sides of the hull can be estimated using expression (7.2.1a): 

Tm 1 Tan-1 B SinCS+d)l 
Lk ITCosQS) J 

(7.6.7), 

Similarly, from expression (7.2.1b), the minimum trim angle, Tmz , in 

degrees required for just the transom running beam at the heeled down 

side to remain completely wetted is 

Tmz = Tan-1 B_ Sin(̂ -(̂ ) 
Lk TTCosCyS) 

(7.6.8), 

The wetted area to beam squared ratios, Awu/B^ and Awd/B^, for Ti/mi 

can be obtained from expressions (7.2.1a) and (7.2.1b): 

Awu 
B2 

(Lk+Lc1) B 
2 2 B2 

Lk - SinC8+d) 
B 2irCosC8)Tan(T3 

(for r >.Tm̂  ) 

and 

Awd = (Lk+Lc2) B 
B2 2 2 82 

Lk - SinC6-d) 
B 2lTCosOS)Tan(% 

(for r iTmi ) 

(7.6.9), 

For 7m2 1 r < 7m 1 , the wetted keel length to half beam ratio, Lk/Bu, can 
be derived, as discussed in section (6.2), from the "n/2 wave rise factor 

computed by Wagner (Ref.(19)) for a two dimensional wedge penetrating 

vertically into a fluid surface. This gives 
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Lk = 2 S1n(^^6] I7JL10;, 
Bu lTCosu6)Tan(%3 

(for 7"rti2 1 T < Fmi ) 

and the corresponding wetted area to beam squared ratio,Awu/B?,is 

= _ J L Bu Lk = Cos(/3 )Tan(7:) TT ( L k / B ) 2 ( 7 . 6 . 1 1 ) . 
62 2B2 4 S i n 0 6 + # ) 

(for Tm2 1 T < ) 

Substituting expression ( 7 . 6 . 6 ) into ( 7 . 6 . 5 ) , we then have 

Fv = (Awu/B2)i /2 (Bu /B ) Tan(/3+d)) - (Awd/BZ)^^ (Bd /B ) Tan(^-6) 
Fz ( A W u / B 2 ) i / 2 ( B u / B ) + ( A w d / B 2 ) i / 2 ( B d / B ) 

( 7 . 6 . 1 2 ) , 

where the parameters A w u / B ? , B u / B , Awd/B? and B d / B can be evaluated 

using the above expressions according to the trim condition. Expression 

(7.6.12) suggests that, at high speed, the sway force to lift ratio is 

governed by the wetted bottom geometry and is not directly dependent on 

the planing speed. 

The tabulated results in table(7.2) (for.̂ S =10° and 20°, Lk/B=2.5 and 

# = 3 . 6 2 ° ) show that the area difference, (Awd-Awu)/B2, increases with the 

decrease of trim angle and it is not surprise that the sway force to 

planing lift ratio, which is calculated from expression (7.6.11) for 

high speed consideration, decreases with the trim angle. Since the 

decrease in trim angle can be interpreted as the increase in planing 

speed, the results would imply that, at high speed, F2 ( or 

[Fy/Fz]/Tan(^) ) decreases with the increase of planing speed. The 

results in table(7.2) also indicate that the direction of the sway force 

could be reversed, i.e. positive F2, at very small trim angles. It would 

appear that the reverse in the direction of F2 displayed in fig.(25) and 

fig.(28) of Ref.(57) for the 30° deadrise model is due to the rapid loss 
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in the wetted area under the heeled up side of the hull at small running 

trim condition. Note that the minimum trim angle, Ttrn , for a 30° 

deadrise surface is considerably larger than that for a 10° deadrise 

surface and this could encourage the above mentioned reverse tendency to 

occur at a lower speed. 

The comparison between the present roll moment derivative 

coefficients, M2, and the experimental results of Wellicome and Campbell 

(Ref.(57)) are shown in fig.(7.12b) to fig.(7.14b). The agreement 

between the two results is reasonable, though not as good as that for 

F2. Again, a rather large error of about 27% is spotted at Cp = 5.7 and 

L k / B = 3 . 0 . The present theory predicts a peak value in Ma around 1.26 

< N F < 1.58 (depending on the values of Cp and L k / B ) , with the exception 

of Cp = 5.7 and Lk/B=2.5 where the peak does not occur inside the speed 

range considered. This is followed by a rapid decline in M2 as the speed 

is further increased. There is an overall decrease in M2 with the 

increase of displacement for a given Lk/B ratio. Note that a possible 

cause of the differences between the computational and experimental 

values of M2 could be the differences in the computed and the measured 

longitudinal centre of gravity locations and running trim angles. 

The results for the yaw moment derivative coefficients, N2, and the 

longitudinal centre of lateral resistance ratios, L C L R / B , are shown in 

fig.(7.12c) to fig.(7.16c) and fig.(7.12d) to fig.(7.16d) respectively. 

Both the computed N2 and L C L R / B curves increase initially with the 

planing speed. This is followed by a rapid decline at higher speeds. 

Negative values of L C L R / B , i.e. centre of lateral resistance behind the 

transom, have been obtained in the lower displacement cases of Cp=5.7 

and 7.8. The same tendency also appears in the experimental results of 

Wellicome and Campbell (Ref.(57)) for the 25° deadrise model with Cp=5.7 

and Lk/B=3.0 as shown in fig. (7.13d). For a given Lk/B ratio, the rates 

of decline of N2 and L C L R / B have been found to reduce with the increase 

of displacement and the L C L R / B ratios predicted for the higher 

displacement case of Cp=3.3 remain positive for the speed range 

considered. 
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These negative L C L R / B , which seem to occur only at high speed, might 

also be related to the geometry of the planing wetted bottom. The yawing 

moment (about the transom) to lift-beam ratio, My/(FzB), can be 

calculated from the relation 

( F z ) u 

( F z ) u + ( F z ) d B 

LCLU T A N ( ^ + ^ J ( F z ) d 

( F z ) u + ( F z ) d B 

LcLd TanijS-^) 

(7.6.13), 

where LCLU and Lctd denote the distances of the centres of pressure 

forward of the transom and the subscripts u and d have their usual 

meanings of representing parameters with respect to the heeled up and 

the heeled down sides of the hull. Ignoring the buoyant effect at high 

speed, the locations of these centres of pressure can be taken at 75% of 

the respective mean wetted lengths forward of the transom, thus. 

LcLu - 0 . 7 5 (Lk + Lc1 ) 

B 2B 
(for T I TmO 

or LCLU 0 . 7 5 _Lk_ 

2B 
(for Tml > r >. 7m 2 ) (7.6.14) 

and I C L d = 0 . 7 5 (Lk + Lc2) 
2B 

(for X l 7m2 ) (7.6.15). 

Under these assumptions together with the hydrodynamic lifts given in 

expression (7.6.6), the yawing moment to lift-beam ratio, My/(FzB), can 

be written as; 

B Fz 

0 . 7 5 (Awu/B2)3/2 Tan(6+6) - ( A w r i / B 2 ) 3 / 2 TanCg-d) 
(Awu/B2)i/2 (Bu/B) + (AWd/B2)i/2 (Bd/B) 

(7.6.16), 
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which would indicate that M y / C F Z B ) is also dependent primarily on the 

wetted bottom geometry at high speed. The tabulated results for 

N2=My/(Tan(^)FzB) in table(7.2) suggest that the yawing moment can also 

reverse in direction, i.e. N2 becomes positive, at small running trim 

condition (or high planing speed). This would imply negative value of 

L C L R / B which seems to agree with the trends of the present computational 

results and the experimental measurements of Wellicome and Campbell 

(ref.(57)). Note that the trim angle for Nz to reverse in direction is 

larger than that for F2 to reverse in direction. Therefore, if the trim 

angle decreases continuously (increase in speed), both the sway force 

and the yawing moment will eventually become negative and hence there 

will appear a sudden jump in the L C L R / B ratio from a large negative 

value to a positive one. On the other hand, the results shown in 

table(7.2) suggest that, for a given displacement and Lk/B ratio, the 

increase in deadrise angle could encourage these positive Nz and 

negative L C L R / B ratio to appear at a smaller trim angle, hence at a 

lower planing speed. Although only the hydrodynamic effect is considered 

in the above analyses, the buoyant effect, if required, can also be 

easily included. In this case, the full expressions for the lift and the 

centre of pressure location in (5.3.2) and (5.4.1) should be used. 

The results for the longitudinal centre of lift ratios, L C L / B , are 

shown in fig.(7.12e) to fig.(7.16e). As mentioned earlier in this 

section, for a given Lk/B ratio and craft's displacement, the 

longitudinal centre of lift position is a function of speed. An unusual 

feature displayed in these figures is that the longitudinal location of 

the centre of lift moves toward the transom at high speeds. This is due 

to the loss in wetted bottom area, i.e. decrease in mean Lw/B ratio, 

resulted from the reduction in the trim angle as the speed increases. 

One should note that, although the Lk/B ratio is kept constant, the 

corresponding mean Lw/B ratio decreases with the angle of trim. The 

deduction in Lw/B can be of significant amount as indicated by the 

tabulated results in table(7.2). This effect of decreasing in mean Lw/B 

ratio, however, has not manifested itself at the lower speed range 

because the effect of the speed, which moves the centre of Tift forward 
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from the transom, is predominant. If the characteristic length ratio, 

L W / B , was used instead of L k / B , the L C L / B ratio would approach a 

constant value at high speed. 

One of the assumptions of the present theory is that the transom 

running beam remains completely wetted on both sides of the hull during 

the planing motion. The forces and moments derivatives, however, can 

behave quite differently once the transom wetted beam at the heeled up 

side of the hull starts to run dry. The most obvious phenomena that 

would result is the reverse in the direction of the sway force which is 

due to the loss in wetted area under the heeled up side of the hull. 

Clearly, there is scope for further investigation in this area. 

The computed coefficients Fa and Mz are terms related to the 

transverse dynamic stability criteria derived by Wellicome and Campbell 

(Ref.(57)) for planing craft. Other hydrodynamic terms involved in these 

criteria are the derivatives of sway force and rolling moment with 

respect to the yaw/drift angle obtained from their yaw restrained 

models. These transverse stability criteria, however, were derived based 

on the coupled sway and roll manoeuvring equations in which the yaw 

coupling has been ignored. The present computational results as well as 

their later experimental measurements for the 25° deadrise model have 

shown that the net yawing moment about the longitudinal centre of 

gravity position are, in fact, not zero. This implies that the yaw 

coupling will be present in the dynamic problem. Including this yaw 

coupling, the characteristic equation for deriving the transverse 

dynamic stability criteria will become more complicated and will involve 

additional terms such as the yawing moment derivative with respect to 

heel angle (Nz), the yawing moment derivative with respect to yaw angle 

and the sway force, rolling moment and yawing moment derivatives with 

respect to yaw rate. The computational method developed in this chapter, 

however, can be regarded as a useful tool to provide some of the 

information essential for determining the transverse dynamic stability 

of a high speed craft. Some considerations of a planing flat plate in 

drift/yaw condition will be discussed in the next chapter. 
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CHAPTER (8) Some Results for the Planing of a Flat Plate in 

Drift Condition 

8.1 Introduction 

In this chapter, we consider the motion of a drifted planing flat 

plate. When a planing craft is turning, it will sway and yaw as well as 

heel. The resultant of the sway motion and the forward motion of the 

craft will cause it to plane at a drift angle. The initial onset of the 

sway motion can be the introduction of dynamic sway forces produced by 

the reaction of the water on a heeled planing hull or/and the sway 

forces produced by the rudder during turning. As shown in fig.(8.1), 

with respect to a reference axes system fixed in space, the drifting 

motion is a translational motion in which no rotational motion about the 

centre of gravity of the craft is involved. The hydrodynamic forces and 

moments induced by this motion should not be confused with those induced 

by the introduction of yaw velocity at the centre of gravity of the 

craft. 

When a craft is planing at a drift angle, the flow under the bottom 

of the craft will become asymmetric about the centre line. This gives 

rise to an asymmetric bottom pressure load, resulting in a net sway 

force, a net yawing moment and a net rolling moment. However, the 

problem can be less complicated for a drifted planing flat plate. Thus, 

if the plate remains perfectly upright during the planing motion, both 

the sway force and the yawing moment will be equal to zero. Furthermore, 

as the sway force induced by the motion of a drifted and heeled planing 

flat plate is always acting at the centre of pressure, thus causing no 

net yawing moment about the centre of gravity, the yaw motion can be 

decoupled from the sway and roll motions in treating the transverse 

stability problem. 

Fig.(8.2) shows a sketch of the wetted bottom of a drifted planing 

flat plate together with the body axes and the global axes systems. 

These global axes are defined in such a way that the global x-axis is 

always pointing in the direction of the resultant motion. Drift angle 

measured from the plate centre line to the starboard side of the plate 
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is treated as positive. As in the heel cases in chapter six, rolling 

moments were computed about the centre line of the plate and rolling to 

the starboard side is treated as positive. If swaying to port is treated 

as positive, then at a small drift angle (or yaw angle), \jy, the sway 

velocity, v, can be related to the planing speed, C, by the equation: 

v = - -ijf C (8.1.1), 

where Ijy is in radians. The derivative of roll moment with respect to 

sway velocity, ̂ Mr/Bv, is therefore given by: 

T̂ Mr = - 1 ^ Mr (8.1.2), 

9v C 3l)f 

where SMr/S\ji" is the derivative of roll moment with respect to drift or 

yaw angle. At small drift angles, the projected wetted bottom of the 

drifted plate was taken to be rectangular in shape. Drifted constant 

pressure rectangular elements were used to assemble this rectangular 

wetted area as shown in fig. (8.3). Note that the coordinates of the 

wetted bottom grid must be defined with respect to the global axes 

system. In addition to the usual restriction in the number of buttock 

strips that can be used to represent the wetted bottom (see section 

3.6), it was also necessary to restrict the drift angle to a very small 

value. The reason for this will be explained in the following section. 

It is hoped that the present drift investigation together with the 

results obtained from the heel investigation in the preceding chapters 

can provide a better insight into the transverse stability of a planing 

craft turning at high speed. 

8 . 2 F r e e S u r f a c e R i p p l e s i n d u c e d bv a D r i f t e d C o n s t a n t P r e s s u r e 
R e c t a n g u l a r E l e m e n t 

In the attempt to compute the pressure solutions for a flat plate 

planing at small drift angle (3° to 7°), periods of highly oscillatory 
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pressures were always found in the predicted pressure distributions 

along the length of the plate, regardless of the beam Froude number. 

This pressure oscillation problem was particularly serious for wetted 

bottom of large wetted length to beam ratio at large drift angle. A 

close examination into the free surface wave profiles produced by a 

single drifted constant pressure rectangular element revealed that these 

oscillatory pressure solutions are caused by the short period ripples 

developed in the wave profiles downstream from the element. 

Fig.(8.4) shows a sketch of the diverging wave systems produced by 

the four corner wave functions of a drifted constant pressure 

rectangular element of length 7 and width b. Like the non-drifted 

constant pressure rectangular element discussed in section (3.6), the 

wave system produced by a drifted constant pressure rectangular element 

can also be represented by four corner wave sources, each mathematically 

equivalent to the sum of the corner wave functions at a corner of the 

rectangle. The interaction between the four corner wave systems is a 

complex phenomenon, however, one can predict the approximate locations 

of the ripples in the downstream waves by simply considering the 

geometry of the diverging wave envelopes of these corner wave systems. 

For instance, let us consider the wave profiles along the lines y=b, y-0 

and y - - b with respect to the element's axes system as shown in 

fig. (8.4). It can be seen from the figure that the line y - b has cut 

through the four corner diverging wave systems at the regions around the 

points 

Ai(-[6/(2TanCf))- 1/2], b), A2(-[ib/(2Tan(l|r))+ 7 /2] , 6 ) , 

Bi(-[3V(2Tan(ljj))-7/2],ib) and B2 (-[3fc/(2Tan(i|r))+7/2], 6) 

from the element's centre, where is the drift angle. This suggests 

that short period ripples will appear in the wave profile along the line 

y=b at these intersecting regions. For short element length and small 

drift angle, the ripples around Ai and Az, and similarly for those 

around Bi and Bz, will merge into a single whole due to the interference 

between the corner waves at the overlapping region. Thus, two 
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distinct patterns of ripples will appear in the wave profile along the 

line y-b. Similarly, for the wave profile along the line y=0, a single 

period of ripples will spread around the points 

Ci(-[A/(2TanOf))-7/2],0) and C2(-[/5/(2Tan(^))+7/2] ,0) 

from the element's centre. Clearly, the locations of these points, i.e. 

Ai , A2 etc, are speed independent though the actual bandwidths of these 

ripples, i.e. distances DA, DB and Dc in fig. (8.4), can vary slightly 

with the speed. Unfortunately, these bandwidths cannot be easily 

predicted. Note that no such ripples will appear in the wave profiles 

along any lines with y j - b , therefore, these wave profiles are not 

responsible for producing the oscillatory pressures. 

In order to verify the above phenomenon, longitudinal wave profiles 

induced by a drifted constant pressure rectangular element were computed 

at a number of drift angles and speeds. Drifted rectangular element of 

length 7 -B/10 and width b -B/4, which is the typical element size used 

in the pressure calculations, was used in the computations. Wave 

profiles were computed along the lines y-b, y=0 and y - - b with respect to 

the element's axes. The computational results for the drift angles and 

the beam Froude numbers ( Cv=C/(gB)i/2 ) considered are shown in the 

figures listed in the table below. 

Locations of Ripples predicted from fig.(8.4) 

Along V=b Along V=0 
Fig. Cv V 

A i A z Bi 8 2 Ci C? 

8.5 
( a , b , c ) 

4.0 7° -0.978 -1.07B -3.00B -3.108 -0.978 -1.078 

8.6 
( a , b , c ) 

2.5 7° -0.97B -1.078 -3.008 -3.108 -0.978 -1.078 

8.7 
( a , b , c ) 

4.0 4 0 -1.748 -1.848 -5.318 -5.418 -1.748 -1.848 

Table (8.1) Predicted Locations of Ripples in the Wave Profiles 
along v=b and v-0 
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As expected, in each of the cases considered, there are two distinct 

patterns of short period ripples in the wave profile computed along the 

line y=b, one in the wave profile along the line y=0 and none in the 

wave profile along the line y=-b. The computational results closely 

confirm the predicted locations of these ripples, i.e. Ai, Aa etc, given 

in the above table. The wave profiles shown in fig.(8.5) and fig.(8.6) 

for Cv=2.5 and 4.0, at a drift angle of 7°, also seem to agree with the 

earlier prediction that the locations of these ripples are independent 

of the speed. Note that for the case of Cv=4.0 and ij; =4°, the second 

period of ripples in the wave profile along y=/b has not been shown in 

fig. (8.7a). The computational results suggest that the bandwidth of 

these ripples decreases with the increases of speed and drift angle. 

Recalling from fig.(2.7a) and fig.(2.7b), the same sort of ripples 

have also appeared in the transverse wave profiles downstream from a 

non-drifted constant pressure rectangular element. These ripples and 

those obtained from the present drifted rectangular elements are a 

genuine feature of the present solution and are not due to numerical 

inaccuracies. However, as mentioned in section (3.6), the formation of 

these ripples might be due to the absence of viscous damping and surface 

tension in the present linear theory. Once again, the author would like 

to point out that these ripples are formed by the four corner diverging 

wave systems but not the transverse wave systems. In the viscous 

situation with surface tension, these diverging waves will not extend to 

the corners of the rectangle. 

In order to avoid the oscillations in the pressure solutions, the 

influence of these ripples in the system matrix for solving the unknown 

pressures must be removed. This would require the ripples produced by 

the pressure elements in the finite element mesh to be shifted to a 

distance far downstream from the trailing edge so that their effects 

cannot be felt around the part of the free surface covered by the 

projected wetted bottom of the plate. Mathematically, this implies that 

a condition of 

2Tan($) 
_ L >> Lw ( 8 . 2 . 1 ) 
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has to be placed upon the selection of element size for a given drift 

a n g l e and w e t t e d l e n g t h , w h e r e 6 / ( 2 T a n C p O ) - 7 / 2 d e n o t e s a p p r o x i m a t e 

location of the first ripples, i.e. Ai and Ci , produced by the leading 

edge elements downstream from their centres. In addition, except for 

very small Lw/B ratio or very large beam Froude number, the number of 

buttock strips that can be used are restricted to three to five, 

therefore, condition (8.2.1) usually can only be achieved by reducing 

the drift angle, T|f. 

Fig.(8.8a,b and c) show the longitudinal wave profiles along y=b, 

y=0 and y=-6 for the same rectangular element at a even smaller drift 

angle of 1/2° and at a beam Froude number of 4.0. The first period of 

ripples in the wave profiles along y-O and y=b are expected to develop 

at a distance around 14.25B downstream from the element's centre. As can 

be seen from fig. (8.8a) and fig. (8.8b), the wave profiles along y=0 and 

y-b are, indeed, free of ripples within a distance of 38 downstream from 

the centre of the element. Note that the ripples in the wave profiles 

along any lines with y>b will be developed at a distance further 

downstream from x=-14.25B, hence their effects on the pressure solution 

are comparatively less significant than those in the wave profiles along 

y=b and y=0. 

Due to the formation of these r i p p l e s , the drift angle has to be 

restricted to very small values, usually less than 1° for a Lw/B ratio 

of about 3.0 when four buttock strips are used, in order that more 

realistic pressure results can be obtained. Although the drift angle is 

small, it appears that significant difference still exists between the 

predicted pressures on the port and the starboard sides of the plate. 

The theory in its present form, i.e. without viscous damping and surface 

tension, may not be an ideal method for treating the problem of a 

drifted planing surface. However, the results obtained at this small 

drift angle could still provide some useful information for predicting 

the behaviour of a planing craft in turn. 
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8.3 Output Transom Shapes 

As shown in fig. (8.3), the projected wetted bottom of the drifted 

planing flat plate was taken to be rectangular in shape. The vertical 

locations along the transom predicted from such a rectangular wetted 

bottom can be expected to be asymmetric about the centre line. Thus, as 

well as having drifted, the plate will also be slightly heeled instead 

of perfectly upright. 

Fig.(8.9) shows the output transom shapes predicted from rectangular 

wetted bottoms of Lw/B ratios of 1.5, 2.0 and 2.5, at a drift angle of 

0.5° and at beam Froude numbers of 2.5, 4.5 and 6.5. Again, it can be 

seen from the figure that the predicted transoms are slightly cambered 

as a result of neglecting the curvature at the spray root. For the 

present small drift angle the output transoms are almost perfectly 

upright. However, the least-squares straight lines fitted through the 

predicted vertical locations along the transoms suggest a transom slope, 

Tan(^)/Tan(D, of about 0.013. This would imply that the plates have 

actually heeled very slightly to the starboard side. For a given Lw/B 

ratio, the output vertical locations along the transom are almost 

independent of speed as shown in fig.(8.9). 

Strictly speaking, if a planing plate is heeled as well as drifted, 

the rolling moment will consist of two components - one due to the 

introduction of the drift angle (or sway velocity) and the other due to 

the introduction of the heel angle. In order to obtain the roll moment 

derivative with respect to the drift angle, 3Mr/ $1)1, the relation 

Total Rolling Moment = Rolling Moment + Rolling Moment 
Computed due to Heel due to Drift 

r^Mr (p + f) Mr ijj ( 8 . 3 . 1 ) 
3^ 

has been assumed, where (j) and l|y are the heel and drift angles in 
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radians. The term in expression (8.3.1) denotes the roll moment 

derivative with respect to the heel angle for a heeled planing flat 

plate whose lift and longitudinal centre of pressure location are equal 

to those predicted from the drifted rectangular planform. This 3Mr/3^ 

can be obtained by the interpolating method discussed in section 6.5 

together with the results presented in fig.(6.10a) to fig.(6.10c). 

Although the predicted heel angle in the present case is so small that 

the rolling moment due to heel should not be a significant portion of 

the total moment, the effect of heel will nevertheless be taken into 

account in section (8.5). 

8.4 Some Results for Pressure Distribution 

Fig.(8.10a,b,c) to fig.(8.12a,b,c) show the pressure distributions 

along the length of the 0.5° drifted flat plates, for wetted length to 

beam ratios of 1.5, 2.0 and 2.5 and for beam Froude numbers of 2.5, 3.5 

and 6.5. It can be seen from these figures that the pressures on the 

port side of the plate are significantly different from those on the 

starboard side. At relatively low beam Froude numbers of 2.5 and 3.5, as 

shown in fig.(8.10) and fig.(8.11), there is a region of high pressures 

developed near the trailing edge on the starboard side of the plate. 

These pressures are particularly pronounced at large wetted length to 

beam ratio and are considerably higher than those developed on a non-

drifted planing plate. The most interesting result of all perhaps is the 

development of suctions, i.e. negative pressures, on the starboard side 

of the plate at high speeds. These suctions are shown in fig.(8.12) for 

a beam Froude number of 6.5. The development of these suctions is 

presumably due to the increase in cross flow velocity, ijr C, on the 

wetted bottom. It has been found that these suctions increase with the 

increase of drift angle. 

8.5 Some Results for Hvdrodvnamic Forces and Moments 

The predicted lift coefficient slopes, Cfz/Tan(T), and longitudinal 

centre of pressure ratios, Lcp/B, for the 0.5° drifted flat plates are 

shown in fig.(8.13a) and fig.(8.13b), for Lw/B ratios of 1.5, 2.0 and 
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2.5 and for beam Froude numbers ranging from 2.5 to 7.0. Also shown in 

the figures are the results for non-drifted planing flat plates of the 

same Lw/B ratios. As far as small drift angle is concerned, the 

introduction of drift angle seems to have little effect on the lift 

coefficient slopes, though the reduction in lift due to the suctions 

developed at high speed is recognizable. On the other hand, the drift 

effect on the centre of pressure location 1s more pronounced, and the 

longitudinal centre of pressure of the drifted plates tend to be further 

forward from the transom than those of the non-drifted ones. 

It has k%#n mentioned earlier in section (8.2) that plates 

predicted from the present 0.5° drifted rectangular wetted planforms are 

slightly heeled as well as drifted. In order to obtained the roll moment 

due to drift only, i.e. ( 5 Mr/5l|J,)i}r, the predicted moment has been 

corrected by subtracting the component due to heel, i.e. (3Mr/3^0#, 

using expression (8.3.1). 

The roll moment components due to heel and due to drift are shown in 

fig.(8.13c) for a Lw/B ratio of 2.0. These roll moments are presented in 

the following non-dimensional forms: 

9Crm i for the heel component 

r 

and 3Crm ^ for the drift component (3.5.1) 
TT 

where Crm is the coefficient of roll moment, 6, ij; and T are the heel, 

drift and trim angles in radians. As expected, the roll moments due to 

heel are quite insignificant when compared with the components due to 

drift. Note that the output transom slope, g i / T , is constant for a given 

Lw/B ratio and beam Froude number. Also note that, as explained in 

section (6.3), if the sway force is neglected at small heel angle the 

roll moment coefficient derivative, aCrm/d#, is independent of the trim 

angle. Therefore the term, (3Crm/9gU 0/r, can be regarded as constant 
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for a given longitudinal centre of pressure ratio (or Lw/B) and beam 

Froude number. 

Perhaps a better way to present the results for the roll moment 

derivative with respect to drift angle is to non-dimensionalize them 

using the lift, Fz, and the wetted beam, B. Thus, 

- J - "M i rm . _ M L 1 1 = ML ( 8 . 5 . 2 ) , 

Fz B T ^ cv2 (Cfz/D 

where C f z / T is the lift coefficient slope and all the angles are in 

radians. Fig.(8.13d) shows the variation of Mi (with the correction of 

the roll moment due to heel) against beam Froude number for Lw/B ratios 

oi 2.5, 2.0 and 1.5. It can be seen that, for a given load, the roll 

moment for each Lw/B ratio has approached a constant value at high 

speeds. The results for Lw/B ratios of 2.5 and 2.0 also display an 

interesting feature of the change in the direction of the roll moment -

initially rolling the plate to the port side at low speeds while rolling 

it to the starboard side at high speeds. This could well be one of the 

explanations for the phenomenon that some high speed crafts bank inwards 

during turning, while others bank outwards. 

Although the present theory can also be applied equally well to 

drifted constant deadrise hulls (with the restriction of small drift 

angle), unfortunately, the problem has not been studied due to the 

limitation of time. It would be of great interest if the sway forces, 

rolling moments and yawing moments for the constant deadrise hulls could 

be obtained to compare with the experimental measurements of Wellicome 

and Campbell (Ref.(57)). 
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Chapter (9) Conclusion and Further Work 

9.1 Conclusion of Present Work 

A finite element procedure has been presented in this thesis for the 

prediction of the hydrodynarnic performance of planing craft in calm 

water. An important feature in planing motion is the development of a 

spray sheet thrown ahead and sideways of the planing surface which gives 

rise to a region of highly non-linear flow near the spray root. In order 

to simplify the problem, however, it has been necessary to assume a 

small angle of attack (or trim angle) so that the splash configuration 

can be ignored in the linearization of the problem. In addition, the 

viscous effects and surface tension have also been neglected in the 

present linear theory. 

The main advantage of the present theory over most of the previous 

planing theories is that the present theory has no restrictions on 

either the aspect ratio or/and the planing speed. Further, although it 

has not been demonstrated in this work, the present finite element 

method can be applied to crafts with multi-planform configuration which 

has also been restricted in most of the other theories. 

In the present work, the finite element method has been applied 

particularly to study the hydrodynamics of planing flat plate and 

constant deadrise hulls. The results derived from the theory have 

compared favourably with other theoretical and experimental data. 

Reasonably good agreement has also been obtained with the empirical 

equations developed by Savitsky (Ref.(44)). However, in contrast with 

the empirical lift equation, the present results have indicated that the 

gravitational effect reduces the lift coefficient of large aspect ratio 

( B / L w ) planing surfaces but increases it for small aspect ratios. These 

tendencies confirm the experimental results of Sambraus (Ref.(36)) as 

well as the theoretical predictions of Maruo (Ref.(23)), Wang and Rispin 

(Ref.(26)) and Jahangeer (Ref.(66)). 

For the longitudinal centre of pressure location, the Savitsky 

empirical equation does not seem to have correctly taken into account of 
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the location of the hydrodynamic centre of pressure. The present theory 

has shown that the effect of increasing the wetted length to beam ratio 

( L w / B ) of a planing surface is to move the hydrodynamic centre of 

pressure further forward from the transom - from 75% of the wetted 

length forward of the transom for very small Lw/B ratios to about 90% of 

the wetted length forward of the transom for a Lw/B ratio of 3 .0 . In 

comparison with the empirical equation, in which the hydrodynamic centre 

of pressure is taken to be at 75% of the wetted length forward of the 

transom regardless of the wetted length to beam ratio, the present 

results would seem to be more reasonable. This is certainly so, when one 

considers the fact that the hydrodynamic centre of pressure of a flat 

plate airfoil moves toward the leading edge from the 75% chord point 

with the increase in the chord length to width ratio. Further, one must 

always bear in mind that empirical equations themselves are fitted 

curves; although they are frequently used in practical calculations 

because of their simplicity. 

In practical design calculations, it is often required to predict the 

running trim angle and the running wetted area (mean wetted length) for 

a craft of specified loading condition at certain speeds. The direct 

approach to the problem is obviously to determine these unknown 

parameters such that the lift generated by the bottom pressures and the 

centre of pressure location are correctly matched with the weight and 

the centre of gravity location of the craft. In the present method of 

solution, however, because the shape and extent of the projected wetted 

bottom, the trim angle as well as the planing speed are assumed to be 

known, the pressures and the immersions along the transom are determined 

as the solution, these running trim angle and running wetted area cannot 

be directly predicted. Instead, they have been determined by an 

interpolating method based on matching the craft's weight and craft's 

centre of gravity position to the computed lifts and computed centre of 

pressure positions. This would of course require computations to be 

carried out for an assumed range of trim angles, mean wetted lengths and 

speeds for the given craft. However, once these results have been 

obtained, it would allow users to estimate the operating trim angle and 

mean wetted length for a wide range of craft displacements and craft 
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centre of gravity locations without going through the tedious 

integration process. This implies that the use of the present 

interpolation scheme would be a practical proposition in engineering 

design. The results obtained in such a way have compared reasonably well 

with those obtained from the Savitsky's empirical equations for a 10° 

constant deadrise hull. A similar interpolation scheme has also been 

developed for determining the hydrodynamic derivatives of a heeled 

planing surface. 

Another topic studied in this thesis has been the hydrodynamics of 

planing hulls under heel condition. Again, flat plate and constant 

deadrise hulls have been considered. The computational results have 

shown that, for a given craft's loading condition (or a given trim angle 

and mean wetted length to beam ratio) and speed, the induced sway force, 

rolling moment, and yawing moment vary linearly with the angle of heel 

up to an angle of about 10°, this being the largest heel, angle 

considered in this work. For the case of a heeled planing flat plate, it 

has been further shown that the craft's weight (or trim angle) has very 

little effect on the rolling moment as far as small heel angle is 

concerned. 

The pressure distributions, the roll moment coefficients, the lift 

coefficients and the centre of lift locations predicted for a flat plate 

and a 15° constant deadrise hull in heel condition have been compared 

with the theoretical and experimental results of Jahangeer (Ref.(66)) 

with reasonably close agreements. However, for the constant deadrise 

hull, the agreement between the two theories on the roll moment 

coefficients was not particular good though the present results agreed 

very well with his experimental measurements. As mentioned in section 

7.4, this could due to the difference in the element arrangement between 

the present and Jahangeer's wetted bottom grids. The present theory has 

predicted a decrease in righting moment with the increase in planing 

speed and this would imply a decrease in roll stability at high speed. 

In addition, the sway force coefficients and the yaw moment coefficients 

for the heeled constant deadrise hull have also been derived. These 

force and moment coefficients had not been considered by Jahangeer 

(Ref.(66)). 
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Results for the hydrodynamic forces and moments have been derived as 

a function of planing speed, trim angle and mean wetted length to beam 

ratio for a 10° constant deadrise hull under heel condition. Based on 

these results and the interpolating procedure developed in section 7.5, 

non-dimensional sway force, roll moment and yaw moment derivatives have 

been obtained for craft with fixed bottom loading coefficients and 

wetted keel length to beam ratios at various speed coefficients. These 

force and moment derivatives have shown reasonable agreement with the 

experimental data of Wellicome and Campbell (Ref.(57)), though, 

unfortunately, there is no experimental result for the yaw moment 

derivative in Ref.(57) available for comparison. 

The most interesting result of all has been the behaviour of these 

hydrodynamic force and moments at high speed. The present theory has 

predicted that both the sway force and the yaw moment have a tendency of 

reversing in direction at high speed. These were found to be in line 

with the experimental measurements obtained by Wellicome and Campbell 

(Ref.(57)) for models with higher deadrise angles, in which this reverse 

tendency occurred at lower speeds. It should be pointed out that 

although there are no yaw moment result presented in Ref.(57), the 

reverse tendency of the yaw moment is clearly indicated by their 

experimental measurements for the longitudinal centre of lateral 

resistance (the point associated with zero yawing moment) obtained from 

a 25° deadrise model. Negative centre of lateral resistance, i.e. behind 

the transom position, has also been obtained, a feature which has also 

been evident in their experimental measurements. The analogy using the 

Savitsky's empirical equations discussed in section 7.6 has indicated 

that the reverse tendency of the sway force and the yaw moment at high 

speed could be directly related to the rapid loss of wetted area under 

the heeled up side of the hull when the craft is operating at small trim 

angle and wetted bottom area. 

The motion of a planing flat plate under drift/yaw condition has 

also been considered. The results displayed an interesting feature of 

the development of suctions (negative pressures) on the outboard side of 
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the wetted bottom at high speed. This is presumably due to the increase 

in cross flow velocity under the wetted bottom. The present theory has 

predicted a change in the direction of the induced rolling moment with 

the increase in planing speed, and this could well be one of the 

explanations for the phenomenon that some high speed crafts bank inwards 

during turning, while others bank outwards. It would be of great 

interest if the hydrodynamic forces and moments derivatives for a yawed 

constant deadrise hull could be obtained to compare with the 

experimental results of Wellicome and Campbell (Ref.(57)). 

The hydrodynamic force and moment derivatives derived in this thesis 

are terms related to the transverse dynamic stability criteria for 

planing craft. The present results have shown that the net yawing moment 

about the centre of gravity of the craft is not zero (except for flat 

plate). This would imply that, in addition to the sway and roll coupling 

as treated by Wellicome and Campbell (Ref.(57)), the yaw coupling will 

also be present in this dynamic problem. In order to have a thorough 

investigation into this dynamic problem, however, additional terms such 

as the hydrodynamic forces and moments derivatives with respect to the 

yaw angle and the yaw rate would need to be determined. Although these 

hydrodynamic terms have not been derived in this thesis, the present 

computational method can nevertheless be regarded as a tool to provide 

some of the information essential for determining the transverse dynamic 

stability of high speed craft. Clearly, there is scope for further 

research in this area. 

9.2 Further Work 

Whilst the present finite element method has worked reasonably well 

with respect to the determination of the pressures and the hydrodynamic 

forces and moments developed under the wetted bottom of a planing hull, 

there is room for further improvement and development. 

There have been two major difficulties associated with the present 

method of solution. First, as mentioned in section 3.5, the pressure 

solution obtained by the present method has a divergent tendency when a 
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large number of buttock strips are used in the representation of the 

projected wetted planform. For planing surfaces of large wetted length 

to beam ratio, oscillatory pressure results have also been obtained at 

low speed. In order to avoid the noted divergence and oscillation, a 

maximum number of six buttock strips could only be used. As a 

consequence, the transverse hull shape could not be prescribed as 

accurately as it should be and detailed lateral pressure distributions 

could not be obtained. A similar type of oscillatory pressure solution 

had also been obtained by Doctors' finite element method (Ref.(29)). 

Secondly, for the drifted/yawed planing surface discussed in chapter 

eight, in addition to this restriction, it has also been necessary to 

restrict the drift angle to an usually small value of less than 1° due 

to the highly oscillatory pressures obtained at larger drift angles. 

The reasons for these difficulties have been fully traced and have 

already been discussed in detail in sections 3.6 and 8.2. The 

investigation of the free surface responses produced by the present 

constant pressure element has revealed that the viscous effects and 

surface tension neglected in the present theory are most likely to be 

responsible for the convergence and the pressure oscillation problems. 

It has been suggested that the reformulation of the theory by including 

these viscous and surface tension effects or some sort of artificial 

damping in the governing equations could be a direct way to overcome 

these problems. The non-linear effects, which have been strictly ignored 

in the present linear theory, might also have a part to play but this is 

very unlikely since the pressure divergence and oscillation did not 

always occur near the chine. 

On the other hand, the projected wetted planform can be assembled 

using a different type of element. Recalling from section 3.6, the 

unrealistic pressure oscillations were caused by some unwanted 

oscillatory patterns inherent in the system matrix. These unwanted 

oscillatory patterns are formed by the interaction between the diverging 

wave systems produced by the corner wave functions of each individual 

element. It may perhaps be worthwhile to divide the projected planform 

into a number of transverse strips, each has a continuous but unknown 

pressure distribution across the width of the planform. It should be 
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pointed out that the discontinuity of the pressure between the elements 

in the longitudinal sense should not produce any convergence difficulty 

since the pressure solutions obtained by the present theory converged 

fairly rapidly and was well behaved when the number of elements was 

increased in the longitudinal sense. 

Alternatively, based on the Green's second identity, a boundary 

element method of solution could be derived. In such a method, it will 

be necessary to layout elements on the boundaries of the fluid domain as 

well as on the wetted surface of the body. In a three dimensional 

situation, however, it may be difficult to allocate a suitable boundary 

limit away from the body and the representation of the far field 

disturbances could also be a problem. Furthermore, the size of the 

matrix involved could be large, but the method can nevertheless be 

amenable to solution. 

Although the work in this thesis only concerns the motion of planing 

craft in calm water, the theory could well be extended to cover rough 

water. On the other hand, if the interest is in the added mass and 

damping coefficient, elements with oscillating pressure strength could 

be used. Rectangular element of constant but oscillating pressure 

distribution has been derived by Chen (Ref.(67)) and would be well 

suited for this particular purpose. 
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Appendix A—Velocity Potential and Free Surface Elevation induced by a 
Pressure Disturbance in an Uniform Free Stream 

The velocity potential, cjir, which satisfies the Laplace equation 

(2.2.3) and the infinite depth condition (2.2.9) can be represented by a 

double Fourier integral: 

(j)r(x,y,z) = Re A(k,6) e^z g-ikw dkdG 

-T 0 

where k is the wave number, 9 is wave angle and 

(A.1), 

w = X Cos(e) + y Sin(e) (A.2), 

For a linear theory, this velocity potential must also satisfy the 

linearized kinematic condition (2.2.6) and the linearized pressure 

condition (2.2.7) on the undisturbed free surface. A combined free 

surface boundary condition derived from expressions (2.2.6) and (2.2.7) 

to be satisfied on the undisturbed free surface, z=0, is 

( X . V ) + ko ̂ (br ( X . V ) 
3 x 2 g Z 

1_ ^P(X.V) 
3x 

on 2 = 0 (A.3), 

where P(x,y) is the pressure disturbance on the free surface, ko is the 

fundamental wave number given by g/C?, and C is the speed of the uniform 

free stream. The free surface pressure disturbance, P(x,y), can be 

represented by the double Fourier integral: 

-+TT + oO 

P(x,y) = Re k P(k,e) e-ikw dkde (A.4), 

-IT 0 
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where the Fourier transform of the pressure, P(k,8), is given by the 

following Fourier inversion formula: 

+ A6 -t OO 

Re[P(k,e)] + Img[P(k,e)] i = 1 
4112 

P(x,y) eikw dxdy (A.5), 

V U 
do -

The function, A(k,9), can be obtained by substituting (A.I) and (A.4) 

into condition (A.3) and evaluated on the undisturbed free surface, z=0. 

This gives 

tT 00 
h 0 

^r(x,y,z) = Re 

V 
-TI 

ik Sec("9) P(k.9) e^z e-ikw 
/>C (k - ki) 

dkde (A.6), 

where ki=ko Sec2(e). One can reduce the integrating range of the 9 

integral in the above expression from -Tr<9<+T to -'F/2<0<+ tpz. This can 

be achieved by dividing the 9 integral into three ranges; I i ( - i r < 9 < 

-TT/a), I2 (-11/2 <9 <+"">2) and I3 (+"''/2 < 9 <+ TT); the integrals Ii and I3 

are then transformed by making the substitutions /6 = Tr+ 6 and /g= 9 - IT 

respectively into: 

+T/2 

I 3 + Ii = Re 

- T / 2 
V 
0 

-ik S e c ( B ) Pfk.Al e^z 
/oc (k - ki) 

dkcJS (A.7) 

where P(k,^) and e-ikw are the complex conjugates of the functions 

P(k,^) and e-ikw obtained from the relations 

P(k,^ir) = P(k,#) (A.8), 
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which is a property of the inversion formula (A.5), and 

exp[-ik {xCos(^+TT)+ySin(/S±¥)}3 = exp[-ik {xCos(/S)+ySin(/S)}] (A.9). 

After making use of the identity 

Re[ P(k,/S) e-ikw 1 ] = Re[- P(k,,6) e-ikw -j] (A.10) 

and summing up the three integrals, Ii, I2 and I3, the velocity 

potential becomes 

t =0 

^r(x,y,z) = Re 

-3 

2i k Sec(9) P(k.9) e-^xw dkd8 
/AC (k - ki) 

(A.11). 

The above solution for (j)r(x,y,z) is not unique and it generates both 

the downstream waves and the unwanted upstream waves. In order to 

satisfy the 'radiation condition', which ensures that gravity waves only 

exist downstream of the pressure disturbance, a cancelling potential, 

^p(x,y,z), has to be introduced. This cancelling potential can be 

obtained by considering the limit of (|)r(x,y,z) as x tends to positive 

infinity. As x -> +00, the inner k integral in (A.11) is dominated by 

the contribution at the pole, k=ki, and its limiting value is 

-j-CO 
n 

Limit 
X - > + 0 0 

k P(k.9) e*̂ ^ e-ikw 

( k - k i ) 

= ±¥ki P(ki ,6) ekiz e-iki, (A.12), 

J 
o 

where the pole value should be taken as positive if w<0 and negative if 

w>0. Since in the present case where - "̂ /2 <6< + ^ 2 , the negative value 
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is then chosen. It follows that the limit of ^r(x,y,z) as x tends to 

positive infinite is 

^p(x,y,z) = Limit ^r(x,y,z) = 
X - > + 0 0 

V -% 

2TTSec(e) ki P ( k i , e ) ekiz e-^k iw 
/OC 

(A.13). 

Finally, the velocity potential with the upstream waves cancelling term 

is given by: 

9Si(x,y,z) = Re [0r(x,y,z) - ?5p(x,y,z)] (A.14) 

and the resulting velocity potential is 

^M(x,y,z) 

+ i 
+ CO 
A 

2 SecO) de 

u 
-i 
z 

k ekz 
(k-ki) 

Re[P(k,0)] Sin(kw) - Img[P(k,9)] Cos(kw) dk 

y 
0 

_2J Sec(e) ki ekiz Re[P(ki,9)] Cos(kiw) + Img[P(ki,©)] Sin(kiw) de 

u 
-JL 

(A.15). 

The corresponding free wave elevation, £i(x,y), can be obtained by 

substituting the above potential into the linearized free surface 

pressure condition (2.2.7) and evaluated on the undisturbed free 

surface, z=0. This gives 
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6i(x,y) = _C_ 

9 

U (X.v,z) 

3^ z = 0 

P ( X . V ) 

/og 
(A.16) 

+5 -t oo 

£ i(x,y) = 2 kZ 
f'g(k-ki) 

Re[P(k,9)] Cos(kw) + Img[P(k,e)] sin(kw) dkd9 

-I 0 

21T ki2 

P 9 

Re[P(ki,0)] Sin(kiw) - Iing[P(ki ,6) ] Cos(kiw) de 

u 
-1 

P(x,y) (A.17), 

For the constant pressure trapezium shown in fig.(2.2c), the pressure 

is defined as: 

P(x,y) = +Po if Ya <y< yb and - co <x< my + c 

and P(x,y) = 0 if ya<y or y>yb or x> my + c (A.18), 

where x=my+c is the equation of the straight line passing through the 

two corners, (xa,ya) and (xb,yb), of the trapezium and 

m = ( X b - X a ) 

(yb - ya) 
(A.19), 
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The Fourier transform, P(k,0), of the this pressure function can be 

obtained by substituting (A.18) into the inversion formula (A.5): 

yb x=my+c 

Re[P(k ,e)] + Inig[P(k,e)] i = 1 
4TP 

Po eikM dxdy 

ya - oO 

this gives 

(A.20), 

Re[P(k,9)] = - P o ( V b - V a ) 

4 IT ^ ( W b - W a ) 
Cos(kWb) - C o s f k W a ) 

k^ Cos(9) 
(A.21) 

and Img [P(k ,e) ] = - P o ( V b - V a ) 

4 IT 2 ( W b - W a ) 
SinfkWbl - SinCkWa") 

k2 cos(e ) 
(A.22), 

where Wb = Xb Cos(8) + yb Sin(&) (A.23) 

and Wa = Xa Cos(6) + ya Sin(8) (A.24). 

Having derived the function, P(k,8), for the constant pressure 

trapezium, the velocity potential, ^i(x,y,z), and the free surface 

elevation, £ i(x,y), can then be obtained by substituting (A.21) and 

( A . 2 2 ) into ( A . 1 5 ) and ( A . 1 7 ) . The results are 

^h(x,y,z) = 

Po 

•t °o 

( V b - V a ) Sec?(8) de 
( W b - W a ) 2TT2/5C 

V 
- X 

akZ Sin(k(w-Wa )- Sin(k(w-Wb) 
k (k-ki) 

dk 
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(Vb-Va) Sec?(6) ek1z {Cos(kl(w-Wa) 
2TL0C ki iWb-Wa) 

Cos(ki(w-Wb)} de 

u 
- 3 

(A.25) 

and 

(x,y) = 

Po 

too 
A 

( V b - V a ) SRCf f l - ) d e 

(Wb-Wa) 
Cos(k(w-Wa) - Cosfkfw-Wh') 

(k-ki) 
dk 

-r 
2. 

+ Po (Vb-Va) SecO) 
(Wb-Wa ) 

{Sin(ki(w-Wa) - Sin(ki(w-Wb)} dG 

u 
- JL 

h 

(A.26), 

where g, = ^]r a field point (x,y) lying inside the trapezium 

Si - 0 for a field point (x,y) lying outside the trapezium 

Si = for a field point (x,y) lying on the periphery of 

the trapezium. 

Note that the pressure is discontinuous around the periphery of the 

trapezium. From the double Fourier pressure integral ( A . 2 0 ) , however, it 

can be shown that the pressure at the periphery is equal to + P o / 2 , which 

is the average the pressures P(x,y)=+Po inside t ^ trapezium etrxi 
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P(x,y)=0 outside the trapezium. Therefore, when evaluating the free 

surface elevation at the element's periphery, the hydrostatic pressure 

term in expression (A.26) should be taken as + P o / 2 p ^ . 
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Appendix B The Inner k Integral 

Recapping from expression (2.2.23) of section (2.2), the inner k 

integral of the free surface elevation integral (2.2.22) can generally 

be expressed as: 

^ 00 
0 

Cos(k(w - Wa)) dk 
(k- ki) 

Cos(klw - WaI) dk (B.1), 
(k - ki) 

where w = X Cos(e) + y Sin(9) (B.2), 

Wa = Xa Cos(9) + Ya Sin(8) (B.3) 

and ki = ko Sec2(e) (8.4). 

The integral, I, is transformed by making the substitution, u=kjw-Wal-Z, 

into: 

Cos(u+Z) du 
u 

(B.5), 

where Z z ki (w - Wa) (B.6) 

and Z is not equal to zero. The function, Cos(u+Z), in (8.5) is then 

expanded to give 
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+ c<5 > fOO 

I = Cos(Z) Cos(u) du 
u 

- Sin(Z) 

u 
- Z 

Sinful du 
u 

(B.7) 

V 
-z 

The cosine and sine integrals in expression (B.7) can be written as: 

+ 00 i CO 
n 

- 2 

Cos(u") du 
u 

Cos(u') du 
u 

V 

-CO 

Cos(u) du 

V 
Oo 

(B.8) 

+ 00 

0 

and 

•i 00 
A 

Sin(u) du 
u 

- z 
n 

SinCu) du 
u 

U 
00 

Sin(u) du 
u 

V 

00 

(B.9), 

Since Cos(u)/u is an odd function of u, it follows that 

too 

V 
• OO 

Cos(u) du = 0 (B.10). 

By means of an integration around a suitable contour in the complex 

plane, it can be shown that 

•too 
A 

Sinful du 
u 

= +1 (B.11), 

\J 
- 00 

The results derived in (B.10) and (B.11) are then substituted back into 

(B.7) and after making use of the relationships, 
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u 
00 

-̂ Z 
A 

Cos(u) du 
u 

Cos(u) du 
u 

+ oO 

Cos(u) du 
u 

u 
+ 2 

(B.12) 

- z 

and Sin(u) du 
u 

U 

-hZ 
r\ 

Sin(u) du 
u 

+ 00 

-h oo 

Sin(u) du 
u 

U 
+Z 

(B.13), 

the integral, I, becomes 

-h CO 
n 

Cos(Z) Cos(u) du 
u 

u 
-t- z 

• CO 
A 

Sin(Z) Sin(u) du 
u 

TSin(Z) (B.14), 

The cosine and sine integrals in the above expression can be 

identified as the cosine and sine integral functions, Ci(Z) and Si(Z), 

given in Abramowitz and Stegun (Ref.(60)) for positive non-zero values 

of Z. The integral is rewritten as; 

Ci(Z) Cos(Z) - S i(Z) Sin(Z) - TSinCZ) (B.15) 

or I = 9(Z) - irSin(Z) (B.16) 

The methods for evaluating the integral functions, Ci(Z), Si(Z) and g(Z) 

are given in appendix C and can also be found in the 'Handbook of 

Mathematical Functions' by Abramowitz and Stegun (Ref.(60)),p 232). 
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Appendix C Evaluation of the Integral Functions a(Z) and ffZl 

The auxiliary cosine and sine integrals, g(Z) and f(Z), given in 

Abramowitz and Stegun (Ref.(60)),p 232) for non-zero positive values of 

Z are defined as: 

+ 00 
n 

g(z) = Cos(u) du 
(u+Z) 

+ 00 
0 

Cos(u-Z) du 
u 

(C.1) 

or 9(Z) = - Ci(Z) Cos(Z) - Si (Z) S1n(Z) (C.2) 

and 

+ 
r \ 

f ( z ) = 

+ CO 
n 

Sinful du 
(u+Z) 

Sin(u-Z) du 
u 

(C:3) 

or f(Z) = Ci(Z) S1n(Z) - si(Z) Cos(Z) (C.4), 

where 

+ CO 

n 

C i ( Z ) = - Cos(u) du 
u 

(C.5) 

and Si(Z) = -

+ CO 
A 

Sin(u) du 
u 

(C.6), 

For 0 <Z il.O, g(Z) and f(Z) can be evaluated by using the following 

infinite series approximations for Ci(Z) and Si(Z) given in Ref.(60); 
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Ci(Z) = % ln(Z) n 
n = 1 (2n)! 2n 

(C.7) 

oo 

and Si(Z) = TT 
n = 0 

(-1)" Z2n+1 

(2n+1)! (2ri+1) 
(C.8), 

where X is the Euler Constant equal to 0.5772156649 and n is integer. 

Both of the above alternating series converge rapidly and are truncated 

when the value of their n^h terms is less than 1.0E-6, 

For 1.01 Z <+oo , g(Z) and f(Z) are evaluated by using the following 

rational approximation formulae given in Ref.(60): 

g(Z) - (Z3 + AiZS + AzZ* + AsZZ + + f(Z) (C.9), 
Z2 (zs + BiZ5 + BzZ* + BaZZ + BA) 

where 

Ai=42.242855 A2=302.757865 A3=352.018498 A4= 21.821899 

Bi=48.196927 62=482.485984 83=1114.978885 84=449.690326 

, with the error term £(Z)< 3.0E-7 and 

f(Z) = (ZS + CiZ6 + C,Z4 T CsZZ T Cal + 
Z (Z8 + DiZ6 + DzZ" + DaZZ + D4) 

F(Z) (C.10), 

where 

Ci=38.027264 Cz=265.187033 03=335.677320 04= 38.102495 

Di=40.021433 02=322.624911 03=570.236280 04=157.105423 

, with the error term f(Z)< 5.0E-7. 
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Appendix D The Compensating Logarithmic Integral 

Recapping from equation (2.4.4) of section (2.4), the compensating 

logarithmic integral can generally be expressed as: 

L o g ( I t - T a I ) d t 
( t - To) 

( D . 1 ) , 

u 
a 

where b is greater than a and Ta is not equal to To. The integral is 

first transformed by using the substitution, v=(t-Ta), into: 

b- It 
l\ 

Log (1vl) dv 
(v ) 

(D.2) 

a - X 

where /9 = (To - Ta) (D.3), 

A further transformation using the substitution, v = <8 u, gives 

I = 

X2 
r> 

Log( I ̂  ul) du 
(u - 1) 

I = 

x 2 
n 

Log( 1 81 ) du + 
(u - 1) 

0 
A 

X 1 

x2 
f\ 

Loq(IuI ) du + 
(U - 1) 

Loq(IuI) du 
(u - 1) 

(D.4), 
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where XI = a - Ta 
/S 

and X2 = b - Ta 

/6 
(D.5), 

The first integral on the right hand side of equation (D.4) can be 

evaluated analytically, and the second and third integrals are 

transformed by using u=-u. It follows that 

Log(!/Sl) Log(|u-11 ) 

X 1 

0 

-"x 1 

x 2 
n 

Loq(Iui) du + 
(u + 1) 

u 
0 

Loq(Iul) du 
(u + 1) 

I Log( 1^1) Log (X2 - 1) - Ilg(-xi) + 
(xi - 1) 

(D.6), 

where Ilg(x) = 

U 
0 

Loq(IuI) du 
(u + 1) 

(D.7), 

The method for evaluating the logarithmic integral, Ilg(x), is given in 

appendix E. 
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Appendix E Evaluation of the Integral Function Tlafx^ 

Ths logarithmic integral function, Ilg(x), 1n equation (2.4.5) (3f 

section (2.4) is defined as: 

iig(x) Loq(Iul) du 
(1 + u) 

(E.I) 

and integrating by parts gives 

Ilg(x) = Log(|l+x|) Log(|x|) Loq( I 1+un du 
u 

U 
0 

(E.2), 

For the case of |x|<1.0 , the term Log(|l+u|) in the above integral can 

be expanded into an infinite series in u, thus, 

Ilg(x) = Log(|i+x|) Log(|x|) -

X 

f\ oo 

H (-l)n-l iuln-1 du 
n = l n 

(E.3), 

The series is then integrated term by term to give 

Il9(x) = Log(|l+x|) Log(|x|) + I] f-x)" 
n = 1 n2 

for ]xi<1.0 (E.4), 

Note that the above series is also convergent at x=1.0, where 
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H (-1)" 
n=1 n2 

J H 
12 

(E.5), 

and at x=-1, where 

r 
n = 1 n2 

JIL 
6 

(E.5) 

(also see Abramowitz and Stegun (Ref.(60)), equ. 4.1.55 and 4.1.56). For 

X >1.0, expression (E.2) is rewritten as: 

Ilg(x) = Log(ll+xl) Log(|x]) - Loq(I 1 + 1/uI) du 

Loq(IuI) du Loq(ll+ul) du 

ng(x) = Log(|1+xl) Log(|x|) - Log(11 + 1/ul ) du 

(Loq( 1x1 ))2 - -n-2 

2 12 
(E.7), 

The term Log(|1 + 1/u|) in the above expression is then expanded into an 

infinite series in inverse power of u: 
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Ilg(x) = Log( |x| ) Log. (1+x) 
xi/z 

1 0̂  
L (-1/u)n+i du - F 

n 12 

(E.8) 

and the series is integrated term by term to give 

IlgCx) = Log(]x|) Log](1+x) 
I xi/2 

H (-1/x)" 
n = 1 n 2 

H ( - 1 ) " 
n = 1 

Jli. 
12 

(E.9), 

Using the result in (E.5), the above infinite series can be further 

simplified into: 

Ilg(x) = Log(lxl) Logl(1+x) 
Xl/2 

- H f-1/x)n - JLi (E.10) 
n = 1 

for x >1.0 

For the case of x<-1.0, the indefinite integral is written as: 

Ilg(x) = Log(|1+xl) Log(|x|) - Log(I1+1/ul) du 

-1 

Loq(Iul) du 
u 

Loq(i1+ul ) du (E.11), 
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Similarly, the term Log(|1+u|) can be expanded in inverse power of u to 

give 

Ilg(x) - Log(lxi) Log, (1+x) 
Xl/2 

X 
DO 

H (-1/uln+1 du + irz 
n = 1 

(E.12). 

As before, the series is integrated term by term to give 

Ilg(x) = Log(|x|) Log. 
CO 

(1+x) 
Xl/2 

H . (-1/X)n + y 1 
n ^ n = 1 p Z n= 1 

+ JI£ 
6 

(E.13) 

Using the result in (E.6), the above infinite series can be written as: 

Ilg(x) = Log(lxl) Log, 
CO 

(1+x) 
xi/: 

- Z_ (-1/x)n + JTf. (E.14). 
n = 1 

for X <-1.0 

The series given in (E.4), (E.10) and (E.14) all converge as n tends to 

infinity, however, the rate of convergence varies with the value of x. 

Standing (Ref.(30)) has pointed out that the maximum error when the 

series is summed to N terms is occur at x=-1.0 and can be estimated by 

considering 

r ^ = r + r g _ L 
n = H + 1 ^ 2 n = N + 1 ^ 2 n = 2 N + 1 ^ 2 n = 4 N + 1 p 2 

N + 2N + 4N + 
N2 (2N)2 (4N)2 
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1/N (1 T 1/2 + 1/4 + 1/8 + 

2/N (E.15), 

Thus, the maximum error in summing the series to N terms is less than 

2/N. In the present program, the series are truncated when the n'*:̂  term 

is less than 1.0E-6 and this is equivalent to a maximum error of less 

than 2.0E-3 for x=-1.0. However, the actual error at X--1.0 was found to 

be approximately equal to one half of the maximum error deduced from 

(E.15). The details presented above are based on reference (30), and are 

included for completeness. 
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Appendix F Evaluation of the Derivatives of q(Z) and ffZ) 

As mentioned in appendix C, the auxiliary cosine and sine integral 

functions, g(Z) and f(z), are defined as: 

g(Z) = -Ci(Z) Cos(Z) - Si(Z) Sin(Z) (F.I) 

and f(Z) = Ci(Z) Sin(Z) - Si(Z) Cos(Z) (F.2), 

in which the integrals Ci(Z) and Si(Z) are given in expressions (C.5) 

and (C.6). The non-zero positive value Z in the above expressions is now 

treated as a function of t: 

ko Ji + t2 { (x-xa) + |(y-ya)|t } (F.3). 

The derivatives of g(Z) and f(Z) with respect to t may be obtained by 

means of a numerical differentiation procedure, such as the finite 

difference method. In the present case, however, they are obtained by 

directly differentiating the functions themselves. Using the chain rule 

of differentiation, the derivatives of g(Z) and f(Z) with respect to t 

can be written as: 

dq(Z) 
dt 

dZ dq(Z) 
dt dZ 

(F.4) 

and df(Z) 
dt 

dZ df(Zl 
dt dZ 

(F.5), 

where dZ - ko 
dt 

(x-xa)+!(v-va)It 

(1 + t2)1/2 
t + Mo(1 + t2)i/2 Iy-yaI 

(F.6) 
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and MO = 1 for t > -(x-XA) CF.7) 

I y - y * I 

Mo = -1 for t < -fx-xa) (F.8) 
ly-ya| 

From expressions (F.1) and (F.2), the derivatives of g(Z) and f(Z) with 

respect to Z can be written as: 

daiZl = - dCi(Z) Cos(Z) + Ci(Z) Sin(Z) - dsifZ) Sin(Z) - si(z) Cos(Z) 
dZ dZ dZ 

(F.9) 

and 

dflll - dCi(Z) Sin(Z) + Ci(Z) Cos(Z) - dsi(Z) Cos(Z) + si(Z) Sin(Z) 
dZ dZ dZ 

(F.10), 

where the functions Ci(Z) and Si(Z) are evaluated by the methods 

discussed in appendix C. For 0< Z < 1.0, dCiCZ)/dZ and dsi(Z)/dZ can be 

evaluated by directly differentiating the series expansions given in 

(C.7) and (C.8), thus, 

dCi(Z) - 1 + Y1 (-1)n Z 2 n - 1 (F.11) 
dZ Z r,= i (2n)! 

oo 

3 r i d d S i ( Z ) - y f — 2 ^ 2 n ^ p 1 2 ) 

dZ n=o (2n+1)! 

Both of the above alternating series are truncated when the value of 

their n^h terms is less than 1.0E-6. For 1. Oj Z <+oo, dg(Z)/dZ and 
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df(Z)/dZ are evaluated by directly differentiating the rational 

approximation formulae for g(Z) and f(Z) given in expressions (C.9) and 

(C.10). Thus, 

dq(Z) = ' (8Z6 + 6AiZ4 + 4A?Z2 + 
dZ Z (Z8 + B1Z6 + BzZ* + BsZZ + 84) 

- (Z= + A1Z6 + A2Z4 + A3Z2 + A4) (10Z8 + 8 B 1 Z 6 + 6B,Z4 + 4B3Z2 + PRal 

Z3 (Z8 + B1Z6 + BzZ* + B3Z2 + 64)2 

df(Z) = (8Z6 + 6CiZ4 + 4C2ZZ + 2C.O 
dZ (ze + D1Z6 + DzZ* + DsZ? + D*) 

- (Z8 + C1Z6 + CzZ* + C3Z2 + C4) (9Z8 + 7DiZ6 + 5D,74 + 30%7% + 1 

Z2 (Z8 + D1Z6 + DzZ" + D3Z2 + 04)2 

(F.14), 

where the coefficients Ai, Bi, Ci and Di etc have the same meanings as 

those in expressions (C.9) and (C.10). 
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Appendix G Integrating Limits of the Free Wave Corner Function 

Following the transformation, t-Tan(8), the free wave integral, 

Fa(x,y), in expression (2.2.28) is transformed into: 

+ 00 
n 

Fa(x,y) z 

2 IT 
[Sgn(Xa)-1] Sin(lAaI) dt 

(t - To) 

V 
- oa 

(G.1), 

where Aa - {(x-Xa)+(y-ya)t} 1 + t-) ko (G.2), 

To - ~(Xb ~ Xa ) 

(yb - ya) 

(G.3) 

and 

or 

Sgn (Xa) - + 1 

Sgn(^a) = - 1 

for ( A a ) > 0 

for ( % a ) < 0 
(G.4), 

For |(y-ya)|>0, (Aa) is equal to zero at t=Ta, where 

Ta - -(X - Xa ) 

(y - ya) 

(G.5). 

First, let us consider the variations of the functions (x-Xa)+(y-ya)t 

and Sgn(Aa) in expression (G.I) with t for the case of (y-ya)>0. 

t = Ta 

Function (x-xa)+(y-ya)t 
for (y-ya)>0 

+ 1 

t = + 00 t = -oO t = T a : = + oO 

Function Sgn(?^) for (y-ya)>0 
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As shown in the diagrams above, the value of (%a) is less than zero for 

t<Ta and greater than zero for t>Ta, it follows that [Sgn(Aa)-1]=-2 for 

t<Ta and [Sgn(^a)-1 ]=0 for T>Ta. In this case, the free wave corner 

function, Fa(x,y), in expression ( G . I ) becomes 

Fa(x,y) = - 1 

TT 

Ta 
n 

V 
-00 

SinClXal) 
( t - T o ) 

dt for (y-ya)>0 (G.6), 

Now, consider the case of (y-ya)<0 where the variations of the functions 

(x-xa)+(y-ya)t and Sgn(Aa) against t are shown in the diagrams below. 

+ 1 

t = -oO t = Ta t = +oO t = -oo t = Ta t = + Co 

-1 

Function (x-xa)+(y-ya)t 
for (y-ya)<0 

Function Sgn(Xa) for (y-ya)<0 

In this case, [Sgn(Aa)-1 ]=0 for t<Ta and [Sgn(Aa)-1 ]=-2 for t > T a , 

therefore the free wave corner function, Fa(x,y), in expression ( G . I ) 

becomes 

Fa(x,y) = -1 

TT 

+ oO 

Sin ( l A a l ) dt 
( t - T o ) 

u 
Ta 

for (y-ya)<0 (G.7), 
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For the case of (y ya)-0 and (x-xa)<0, Sgn(7\a)=-1 for all values of t, 

therefore the free wave corner function, Fa(x,y), in expression (G.I) 

becomes 

Fa(x,y) = 

ir 

Sin(lAa I) dt for (y-ya) = 0 
(t - To) and (x-xa)<0 

(G.8), 

Finally for the case of (y-ya)=0 and (x-xa)>0, where C\a)>0 and Sgn(Xa)= 

+ 1 for all values of t, the free wave corner function, Fa(x,y), in 

expression (G.I) is equal to zero. 
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Fig.(2.1) x-y-z Cartesian Coordination System with the 

Undisturbed Free Surface Lies on the x-y Plane 
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Fig.(2.2b) Breakdown of a Constant Pressure Polygon into 

Constant Pressure Trapeziums 
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Fig.(2.3) Constant Pressure Trapezium, T, and Field point 
, P, and the Mirror Imaged Trapezium, T', and 
Mirror Imaged Field Point, P", about the x-Axis 
(Note that the surface elevation at P due to T 
is equal to that at P' due to T') 
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Fig.(2.5a) Longitudinal Wave Profile for Rectangular Element 

N 
a 

Present Theo 
: © Standing Ref 

r . t • r—T f . 

ry B/L=10 Fn=0.57 
.(30) y/L=0 ! 

L jg (g) 

X/L 

Fig.(2.5b) Longitudinal Wave Profile for Rectangular Element 

N 
U 

: Present Theo 
[ © standing Ref 

ry B/L=1 Fn=0.57 
.(30) y/L=0 ; 

1 / \ , / "" 
-2.50 -2.00 -1.50 -1.00 -0.50 0.00 

X/L 

0.50 1 .00 1 .50 

Fig.(2.5c) Longitudinal Wave Profile for Rectangular Element 
. I I I . ' . • I . : 

— P r e s e n t Theory B/L=0.4 Fn=0.57 
© © Standing Ref.(30) y/L=0 

-2.50 -2.00 -1.50 - 1 . 0 0 -0.50 0.00 0.50 1.00 1.50 



* 
@ •y o o o o ca N N N CM c m >. C 6 d d •a L 
§ 

cr c (0 
o 4J u 0 01 CK —1 o o o o L. "x. o o o o e Q- X c 0 o d 
L 0 u 

<D 
L. 
3 
(/) 
(/) 
(D 
u 
0_ 

+J 
C 
(0 
+J 
(/) 
c 
o 
CJ 

CT3 

o 
-Q 

II 
13 
Q) 
U 
3 CO 
"O 
o 
u 
Q. 

C 
o 
-p +J o 
(Q C 
> m II 
Q) E 

0) c 
LU LL 

LU 
O U L. 
03 (0 
4-
L_ 3 
3 cn 
C/3 c 

(Q 
Q) •P 
0) U 
L. Q) 
UL o: 

"O 
LO 

LL 

oj/ZGo/ 



1 . 1 0 

^ Present Theory 
' Present Theory 

x/L=0.00 
x /L=0.50 

, Present Theory x / L = - 0 . 5 
0.90L Q Standing Ref.(30) x /L=0.00 

: @ Standing Ref.(30) x /L=0.50 
: @ Standing Ref.(30) x / L= -0 .5 
• Huang and Wong Ref.(3i) 

0.70H 

Fn=2.12 B/L=0.4 

0.50 

0 . 3 0 

o 0 . 1 0 1 

.. -I 

W ? U V VV V V V W V W W V T 

-0. i Or 

0.30L 

I -0.50 

0 .70 

-0.90 

0.00 0 . 1 0 0 . 2 0 

Non-dimensional Distance 

0.30 O.iO 

Fig.(2.6) Transverse Wave Profiles for non-drifted Rectangular 

Element 



^d/zBc/ UOLq,BAa[3 9ABM [BUOLSUaWLp-UON 

c 
<D 
i 

(0 
3 
O) 
c 
(0 -p 
o 
0) 
d 

o 

G ) 

o 

0) 
> 
(U 

(D 
w 
L . 
0) 
> 
w 
c 
CO 
L. 

(0 
h-

Ui 

0) 
o 
c 
(Q 
4-) 
(/) 

(0 
c 
0 
(/) 
c 
0) 
E 
"D 
1 
c 
o 

oj/zGy UOL^EASL] 3ABM [eUOlSUBWip-UON 



a 

g o u u u 
c£ < 03 2 CD Q) Q) 
01 CT) 01 OT 01 
s s s s s (0 LU 

Q) (0 

Q) O) 
(/) (0 
CO O 

2 g ̂  

4 @ * @ 0 

o o o o c O ir CO ^ in c in o m 
c o o (N r\i 

0d/z6c/ uoL^eAaj] 9ABM leuoLsuawip-uoN 

0) 0) 
«3 (D 

cn m D) m 

© + 0 D 

0) 
m 
T3 
0) 
(/) 
%) 

g I 
LU 
O) 
c 
o 

cd 
0) 
u 
c 
(Q 

4-) 
(/) 

oj/zGo/ UOL%eA8l3 8ABM [EUOLSUeWLp-UON 



Fig.(2.9a) Longitudinal Wave Profile for Circular Element (Fn=0.4) 
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Fig.(3.5) and Fig.(3.6) Longitudinal Convergence of Lift Coefficient, 
Centre of Pressure Ratio and Transom Immersion for Rectangular Wetted 
Bottom 
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JO sjiuao (a/don) 0!.:iBj sjnssajd Ĵo eĵ uag (a/dol) o i ^ E j e j n s s e j y 



o 

N 

a > o 
o 
CO 

CM CO 

> * 
o 

u 

Q) 
. c 
- p 

4 -
O 

• a 
L_ 
( 0 
3 
C 
O 

4 -

0 ) 
u 
c 
(0 

(/) 

- D 

r— 
( 0 
c 
o 

(/) 
c 
Q) 
E E 
O 

"O (A 
1 C 

c ( 0 
o L_ 
c +J 

n 

1 X X 

[ ( l ) U B i z O ( / z / i ] / d 

O) 
c 

c 
(0 

L. 
(2 
c/) 
c 
o 
-p 
3 
+J 
(/) 

g 
3 
C/5 
M 
0) 

u 
xT 
(0 
CO 

O) 
L i . 

0) 

O o 

O ) o 
o 
CO CO 

M 
CM CD 

> X 
o 

<0 

[ U ) U B i z O c / z / i ] / d 

"^O 
O 

O ) o 
o 
CO CM 

I I 
CM CO 
I I 
> * 

a 

[ U ) U B i zO </z/J/d 



t o o 

CO 

II 
II CD 

> X 
o — i 

u 

c 
r c. 

li. u I 

(0 
a LL 
x : 
•p D) 

c 
t+-
o c 

(0 

L_ a. 
(0 
3 L_ 
L. o 
O y-
y-

(/) 
OJ c 
u o 
c 
(0 

3 
(/) 

•a U 
+J 
(/) 

(0 
c Q 
O 

G) 
(/) U 
c 3 
0) (A 

(/) a g 
0) 

"U (f) L. 
1 c CL 
C (0 
O 
c +-> 

U 

II 
j » (J 

X -J O) 

Q) 
4-) 
(0 

[(l)UBi 20 c/z/a/6 Ui 
LL 

o 
c 

If) o 

CO CO 
il 

II m 

> s 
o 

CO 

oc 

c 

J 
X 

lO o 
CO CM 

II 
II CD 

> * 
c 1 

c 
00 

c 

o 
L3 

O X 

C 

[(i)UBi 20 c/z/J/d [(JJUBI 20 (/z/J/d 



4-) 
(3 

o o 

03 
II 

II CD 

> X 
C —1 

u 

\ \ \ 

w 
\ 

s 

X 

I 

0) 
SI 
4̂  
4-
O 
"O 
L_ 
<0 
3 
L. 
o q-

0) o 
c 
(0 •p 
(/) 

"O 
r -
cd c 
o 
(C 
c 
0) 
E £ 

o 
"O (/) 
1 c c CO 
o L_ 
c 4-> 

II 

* 

O) 
c 
c 
(0 

o 
4-
t/) 
c 
o 
-p 
3 
.o 
L. 
4J 
(/) 

0) 
L. 
3 
(/) 
(/) 
Q) 
L_ 
CL 

O 
xT 

(0 
o 

0) 

[(l)UBi 23 /z/i]/d 

D) 

c 
c 

O o 

03 CO 
II 

II CD 
> * 
C _ l 

(0 

o o 
CO CVJ 

II 
II CD 

> S 
c -J 

n 

? ! 

II 

o 
. 3 
Ic 

-c 

P jo 

I 

c 
e 

11 g 

^ ̂  t 

|o 
fc 

i 
[(2)UBi zO c/z/i]/d [U)UBi 20 c/z/a/d 



O) 
c 

c 
(0 

L. 

c 
o 

• p 

3 
Xi 

4-> 
to 

2 
3 
(/) 
(/) 

2 
OL 
0) 
c <u •r-

—J (0 

0) CL 

C ffl 
d) r— 

O LL 

© 

J 
JC 

o 
t 
(M 

!g 
CM 

C\j 
II > 
C 

0) 
s: 
- p 

4 -
O 

T3 
i_ 
(0 
5 
s_ 
O 

<+-

0) 
o 
c 
(0 

+J 
w 

X ! 

(0 
c 
o 

(/) 
c 
0) 
E E 

o 
• 5 t/) 

1 c 
c (0 
o L_ 
c • p 

O) 
LL 

0 

c 
fN 
c 

[zO (/Vi]/d 

s 

c 

c 

r 
:'c X 

[U)UBi 20 l/z/J/d [(l)UBi 20 o'z/il/d 



Pressure Area 

Keel Line 

Spray Area 

(Ignored in the Present Theory) 

Stagnation 
Line 

Mean Wetted Length (Lw) = (Lk + Lc) 
2 

0 .65 . 

Fig.(5.1) Projected Wetted Bottom of Planing Constant 

Deadrise Surface 

+ Hull Boundary Condition is applied to these Points 
o Kutta Condition is applied to these Points 

( L k - L c ) / B L k / B = 3 .4083 0 . 8 1 1 5 

0 .52 

0.39 

0.2G 

0.13 

- .00 

- 0 . 3 1 0 .19 1 .30 2.12 2.91 3.76 

Fig.(5.2) Finite Element Representation of Projected Wetted 

Bottom 



L_ 
o 
+J u 
CO 
4-
(/) 
-P 
(0 
(/) 
c 
3 
CO 
Q) > 

+J 
(0 
JZ 
4-J 

L. 
a 

i 
-u -p 
o 
m 
TJ 0) +J 
+J 
G) 

0) > 

+J 
a 
c 
L. 
(U •p 

c < 

10 +J 

3 
to 
Q) 
Q: 

2 
3 
M 
(/) 
O 
L_ 
0_ 

CO 

cn 
LL 



1 . 0 0 

0.5 

0 . 0 0 

c 
<0 
i— _ 

CQ 
0 . 5 0 

+J sz 
O) 
03 
X 

1 . 0 0 

0) 
M 

§ -
(/) 
c 
ro 
t_ 
t -

. 5 0 

w 
c 
0) 
B 

- 3 . 0 0 

- 3 . 5 0 

i C v = l . 5 1 2 

7 C v = 2 . 5 0 0 
Cv=3.000 

X C v = 3 . 5 0 0 
• C v = 4 . 0 0 0 

o C v = 5 . 0 0 0 
o C v = S . 0 0 0 
* C v = 7 . 0 0 0 
ra CV=8.000 

(Q ) Lw/B=3.002507 < b 
(d) Lw/E=2.2721S7 <e 
(q ) Lw/B=l .541826 (h 
(J ) Lw/B=G.8l1185 (k 

L w / B = 2 . 7 5 9 0 6 1 ( c ) Lw 
L w / B = 2 . 0 2 8 7 2 0 ( F ) Lw 
Lw/B= 1 . 2 9 8 3 7 9 ( i ) Lw-f 8 = 1 .05-1932 
L w / B = 0 . 5 6 8 0 3 8 

8 = 2 . 5 1 5 5 1 4 

8=1 . 7 8 5 2 7 3 

\ 

-.80 -.40 •00 0.40 0.80 

V 

Non-dimensional Distance from Centre Line B 

( Number of Buttock Strips = 4 ) 

Fig.(5.4) Transom Shapes and Vertical Locations computed from 

Wetted Bottoms with ( L K - L C ) = 0.8115 

B 



3 . 5 0 

3 . 0 0 

CO 2 . S O L 

4J 
CO 

cr 
§ 

0) CQ 
o 
+J 
s: 
O) 
c 
0) 

2 . 0 0 

1 . 5 0 

0) 
0) 
it: 

"S 1 . 0 0 
(/] 
L. 

I 

0 . 5 0 

0 . 0 0 

Savitsky Ref.(X4) Lki=Lk 

Present Theory Cv=1.512 

Present Theory 

Present Theory 

Present Theory 

Present Theory 

Savitsky Ref.(44) Lki=Lk 

Cv=2.5 

Cv=3.5 

Cv=5.0 

Cv=a.O 

(Lk-Lc)/B 

r = 6 . 7 1 ° 

r = 6.63° 
Z = 6.57° 
T= 6.52° 

Tz 6.47° 

(Lk-Lc)/B 5340 
% Present Theory Cv=1 .512 T = 6, . 96° 
2 Present Theory Cv=2, .5 T = 6. .93° 30 

3 Present Theory Cv=3. .5 T = 6. .89° DO 

6 Present Theory Cv=5. .0 r = 6. ,86° 30 

S Present Theory Cv=B. .0 r = 6. 83° 30 

0 . 2 0 0 . 9 0 I . 6 0 2 . 3 0 

Mean Wetted Length to Beam Ratio [ (Lk+Lc)/2B ] 

3 . 0 0 

Fig.(5.5) Immersed Keel Length below Undisturbed Free Surface 

to Beam Ratio for Constant Deadrise Surfaces 



Fig.(5.6a) Lift Coefficient Slopes for Constant Deadrise Hull (Cv=1.51 
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—Savitsky Ref.(44) 
' Present Theory 15° T r 6.6° 

N 
4-
o 

Q) 
D. 
O 

1 . 5 0 

" 1 .00 
+J c 
OJ 
o 
<4-
4 -
0) 
O 
O 

0.50 

0 . 0 0 
0 . 0 0 0 . 5 0 1 - 0 0 1 . 5 0 2 . 0 0 2 . 5 0 

Mean Wetted Length to Beam Ratio (Lk+Lc)/2B 
3 . 0 0 

1 .75 

U 1.50: 
c 
(0 

Fig.(5.6d) Lift Coefficient slopes for Constant Deadrise Hull (Cv=3.5) 

N 

o 

0) 
a 
o 

CO 
+j 
c 
0) 

4 -
0) 
O 
o 

1 . 2 5 

1 .00 

0 . 7 5 

0 . 5 0 

0.25 

0 .00 

Savitsky Ref.(44) 
" Present Theory /3 - 150 r = 6 . 5 7 0 

Present Theoty = 10° r z 6 89° 

0 . 0 0 0 . 5 0 \ . 0 0 1 , 5 0 2 . 0 0 2 . 5 0 

Mean Wetted Length to Beam Ratio (Lk+Lc)/2B 

3 . 0 0 



Fig.(5.6e) Lift Coefficient Slopes for Constant Deadrise Hull (Cv=4.0) 
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Fig.(5.6g) Lift Coefficient slopes for Constant Deadrise Hull 
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Fig.(5.8a) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=1.512) 
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Fig.(5.8c) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=3.0) 
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ig.(5.8e) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=4.0) 
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Fig.(6.7c) Lift Coefficient Slopes for Heeled Flat Plate 
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< e> + X a ©(5)® 

r 

> o 

L 
E 

I 
U. 

i 
£ 

o X eiGuv mt-Jl 



% 

CM -C u 
O) c + 
_J 

u 
n —I o 

+ 
4J m 
3C 

CSJ 
C 
CO 
G) M 
X 

0) 
V) 

u 
T3 
to 
0) 
o 
+J 
c 
<a +j 
w 
c 
o 
o 
05 
c 
c 
to 
a. 
(0 
<+-
o 

+-> +j 
o 

CO 

TJ 
0) 

• P 
- P 

to 
o 
Q. 
>. 
t-

C 
o 

•O 
c 
o 
o 

0) 

o 
o 
Q 
u 
3 
(/) 

O) 
U . 



(/] 
•p 
c 

(O o o a. (/) 
4J CO OJ C II (/) jC (D o - J 

J= CL +; 
0) o (/) CO •p 0) M J= 

XJ 
0) o 
ct3 I I 

CL CO a O 
(0 
cn TJ u 
(1) 

+ c 
o Q. _j d 

4-) (0 
"O CO C o LO c c 

o CO >, L. 4^ 
(0 I I 
"O "O CO c c 
3 o o (_) 
CO u 

CO _J 
+J 1 4J 

3 3 
X h: 

4- o 

0) •p 

(1) 

"O 
0) 
•p 
u 
a 
•r-5 
o 

0) 
-C 
4-: 
O) 
c 
-p 
c 
a 
to 
0) 
L. 
a. 
0) 

(/) 
c 
z 
-p 

i 
— LLl 

0) 
+-J 
c 
LL 

(J 

o. 
> \ 

CSj 

c 
o 

"O 
c 
o 
c 

G 
(1) 
X 

u 
(0 
4-
L. 
3 
CO 

u 
4-) 
(3 

L-
O. 
cn 
c 
c 
(U 
ol 
CO 
tp 
0 

1 +j 

I 



-0.20̂  

c 
(0 

CO 

c 
o 
(/) 
u 
0) 

i if) 
c 
<0 
u 

(0 
c 
0 
w 
c 
Q) 
£ 
•a 
1 
c 
o 

@ Cv=2.50 
V Cv=1.50 
. Cv=S.50 

<Lk-Lcl )/B=0.95 
(1 ) Lw^B = 2.9655 < 
<1> LWXB=2.0085 < 

-0.7G, 

- 1 . 20 

-1 .70 

-2.20̂  

-2.70^ 

ass (Lk-Lc2)'B=0.58SS2S 
) Lw/B=2.G172 (3) Lw/B=2.3279 
) Lw/B-t.6893 

-.GO -.40 -.20 -.00 0.20 0.40 O.GO 

Non-dimensional Distance Y/B 

Fig.(7.3) Predicted Transom Shapes for Prismatic Surfaces 

in Heel 



o " 

a ^ 

IIB 

1^3 

C 

H i H i 

(/) 
C 
o 
(0 
(/) 
0) 
u 
Q. 
X 
Q) 

(/) 
0) 
CD 
C 

< 

"O 
c 
CO 

0) 
o 
(0 
M-
L. 
3 
(A 

0) 

U 
•o 
CO 
0) 
"O 
c 
cd 
•P 
(/] 
c 
o 
u 
0 
o 

I I ? 
0) 
0) 
X 
T3 
0) +J 
3 
Q. 
i 
u 

L. 
O 
4-

C 
o 

to 

u 
(0 
a 

TD 
c 
CO 

CO. 

H i o 

H i 0) 

<fl 

H i 
Z ci 
I -

f f l ffl 
1 

J 



X 
03 
I 

>^ 

c 

K 
83 
a. 
o 

x : - p 

• p 
3 
O 
C75 
C 
•P 
c 

Q. 

X 
03 
I 
X 

10 ® 
C o 

QJ (q c 
(U L R3 :< t - 'W 

(/] 
• u • u T— 
2 3 w 
Q Q Ql 

-Q -Q % 
R3 03 

4J • u 03 
C C L. 
O C) + j 03 

e V - • u 
o 03 

3 : —1 - J 

r-^ i S -
j q o o 

Q 
% CJ tu 

L. L. 
II I I •lo • u II 

C C 
L >. 0) Q) 

3 : zc o CJ 

tc (9 
c c 

Qi OJ •Q "O 
U o z 
L L. • u 

,Q Q 
U . U , CD 

C c 
- u o o 
*+-. 03 - J 

i 
CO II 

I I 
II I I o: 

-J u 
N >< o u 

LL LL _ J —1 

M 
X 
to 
I 
N 

§ 
o 

<0 
c 

2 

to 
X « 
I 
X 

a 

•"2 

4J 
C 
(0 +J 
M 
C 
o 
o 
to 

4 -
O 
M 
•P 
c 
Q) 

•a 
c 
IS 
(/) 
0) u 
o 
LL 

0) r_ 
JZ o 
4-3 o 

X 
L. 
o c 

1-
«/) Q) C u 
o (3 

i+-
+J l_ c 3 o CO 
> 
c Q) 
o M 
CJ 

i -
c -D cn CO a 

CO o 

Tf 
r-

cn 
u. 

N u. 



Fig,(7.5a) Lift Coefficient Slopes for Heeled 15° Constant Deadrise H u l l 
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Fig.(7.5c) Roll Moment Coefficient Slopes for Heeled 15° Constant 
Deadrise Hull 
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Fig.(7.5g) Centre of Lateral Resistance Ratios for Heeled 15° Constant 
Deadrise Hull 
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Fig.(7.7e) Variation of Sway Force Coefficient Slope against Beam 
Froude Number for 15° Constant Deadrise Hull 
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Fig.(7.10a) Variation of Roll Moment Coefficient Slope against Trim Angle 
for 10° Constant Deadrise Hull in Heel Condition (Cv=3.0) 
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Fig.(7.10b) Variation of Roll Moment Coefficient Slope against Trim Angle 
for 10° Constant Deadrise Hull in Heel Condition (Cv=5.5) 
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3 
X 

L 
% 
g 

% 
L. 
£ 
CO 
s. 
(£ 

N 
II 

CO 
"S. 

u. 

c 
0 
4-> tc 
0 o. 
(0 L 

. >\ •P 
L. X 
0 UJ (D £ >. h- a 
+J C 
@ 

" (0 3 
0) a 

CD 
c . CC 

© 

£ 

•o 

I 
CO 

® 
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eAî BAijea ĉ uemoM MBA io ẑ ueioî êoo 
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T a b l e ( 7 . 2 ) F Z , MZ and L C L R / B calculated from Savitsky's Empirical 

Equations ( 5 . 3 . 2 ) and ( 5 . 4 . 1 ) for High Speed Approximation 

Tab le (7 .2a) Lk/B = 2.5 ^ = 3.62° /S= 10° 

1 ° Bu 
B 8 B2 

Awi 
B2 

L*. 
B 

(Awd-Awij 
B2 

) Fz Nz LCLR 
B 

10.00 0 .500 0 .500 1.142 1 .199 2 .341 0.057 - 0 .997 - 1 .632 1 .636 

9.000 0 .500 0 .500 1.130 1 .193 2 .323 0.063 - 0 .993 - 1 .598 1 .609 

8.000 0 .500 0 .500 1.115 1 . 186 2 .301 0.072 - 0 .988 - 1 .555 1 .574 

7.000 0 .500 0 .500 1.095 1 .177 2 .272 0.082 - 0 981 - 1 .501 1 .530 

6.000 0 500 0 .500 1.069 1 .165 2 .234 0.096 - 0 971 -1 .428 1 .470 

5.000 0 500 0 500 1.033 1 .147 2 .180 0.115 - 0 957 - 1 .327 1 386 

4.000 0 500 0 500 0.978 1 .122 2 099 0. 144 - 0 935 - 1 175 1 256 

3.000 0. 500 0 500 0.887 1 079 1 966 0.192 - 0 . 894 - 0 923 1 032 

2.000 0. 500 0 500 0.705 0 993 1 698 0.288 - 0 . 792 - 0 424 0. 535 

1.744 0. 500 0. 500 0.625 0 955 1. 580 0.330 - 0 . 736 - 0 206 0. 280 

1.437 0. 412 0. 500 0.515 0. 892 1. 407 0.377 - 0 . 388 0. 072 - 0 . 186 

1.130 0. 324 0. 500 0.405 0. 795 1. 200 0.390 - 0 . 003 0. 305 -101 .6 

0.823 0. 236 0. 500 0.295 0. 625 0. 920 0.330 0. 397 0. 372 0. 938 

Note: T m = 1.744° and Tmz = 0.823° 

Tab1e(7.2b) Lk/B = 2 . 5 ^ = 3.62° /&= 20° 

11° Bu 
B B 

Ajiii 
8% 

Awi 
B2 

ia. 
B 

(Awd-Awu) 
B2 

Fz Nz LCLR 
B 

10.00 0 .500 0 .500 1.058 1 .115 2 .172 0.057 - 1 .057 - 1 .476 1.396 

9 .000 0 500 0 .500 1 .036 1 .099 2 . 135 0.063 - 1 .047 - 1 .403 1.339 

8 .000 0 500 0 .500 1 .009 1 .080 2 .089 0.072 - 1 .034 - 1 .311 1.268 

7 000 0 500 0 .500 0 .974 1 .055 2 .029 0.082 - 1 .016 - 1 .194 1.174 

6 000 0. 500 0 .500 0 927 1 .023 1 .950 0.096 - 0 991 - 1 037 1.046 

5 000 0. 500 0 500 0 862 0 .977 1 839 0.115 - 0 952 - 0 819 0.860 

4. 000 0. 500 0 500 0 765 0 908 1 673 0.144 - 0 884 - 0 492 0.557 

3. 107 0. 500 0 500 0.625 0 810 1 435 0.185 -0 .759 - 0 025 0.032 

2. 801 0. 451 0. 500 0. 563 0 762 1 325 0.199 - 0 . 400 0. 162 -0 .406 

2. 495 0. 401 0. 500 0. 502 0 702 1. 203 0.200 - 0 . 026 0. 295 -11 .35 

2. 188 0. 352 0. 500 0. 440 0. 625 1. 065 0.185 0. 355 0. 333 0.938 

Note: Tmi = 3.107° and Tmz = 2.188° 

F2 = SFy 1 
) ̂  Fz 

Nz = 3My 1 
) ̂  B Fz 

Lx/B = To ta l Wetted Area t o Beam Square (B?) Ra t io 
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(Resultant Vel ocity) 
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F i g . ( 8 . 2 ) G l o b a l Axes and Body Axes o f D r i f t e d P l a n i n g F l a t P l a t e 

Y 

A 

^ C 

+ Hull Boundary Condition is 
applied to these points 

o Kutta Condition is applied 
to these points 

Global Axes 
-> X 

Fig.(8.3) Finite Element Mesh representing the Projected Wetted 
Bottom of a Drifted Planing Flat Plate 
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Fig.(8.5a,b,c) Surface Wave Profiles of drifted Rectangular Element 
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Fig. (8.8a,b,c) Surface Wave Profiles of drifted Rectangular Element 
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