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A FINITE PRESSURE ELEMENT APPROACH TO THE PLANING PROBLEM OF HIGH SPEED CRAFT
by Tsz Kin Jimmy Tong

A finite element method is presented for the steady motion of a craft
planing over the surface of calm water. The fiuid is assumed to be infinitely
deep, inviscid, incompressible and without surface tension and the free
surface is assumed to be of infinite extent. In addition, the angle of attack
is assumed to be small and linearized potential flow theory is used. The
method applies to the case of arbitrary Froude number and aspect ratio.

The presence of the craft is modelled by an unknown pressure distribution
on its wetted bottom projected on the plane of the undisturbed free surface.
This 1is represented by a finite element mesh consisting of a number of
pressure elements, each of constant but different strength. The shape of the
element can be arbitrary and therefore the theory can be applied to wetted
planforms of any shape or configuration. The shape and extent of the wetted
bottom is assumed to be known and the immersions along the transom are
determined together with the pressures by satisfying the kinematic hull
boundary condition at the centre of each element and the Kutta condition at a
discrete number of points along the transom.

The finite element method has been appiied to planing flat plate and
prismatic hulls of constant deadrise angle. The derived 1ifts, centie of
piressure locations and pressures have compared reasonably well with other
experimental and theoretical results. An interpolating scheme for determining
the operating trim angle and wetted length for a craft of specified loading
condition and speed has aiso been developed.

The work also comprises a study of the hydrodynamics of planing craft
under two conditions: firstly, when it 1is heeled at a small angle, and
secondly, when it is yawed at a small angle. For the heel case, the theory
predicts a decrease in roll stability when the craft is planing at high
speed. The computed hydrodynamic force and moment derivatives have shown
reasonably good agreement with the experiment data obtained by other authors.
The behaviours of these hydrodynamic derivatives at high speed have alsoc been
investigated. For the yaw case, the theory predicts an interesting feature of
the development of suctions under the outboard side of the hull at high
planing speed. The theory also predicts a change in the direction of the
induced roll moment which could well be d1rect1y"e1ated to the phenomena
that some high speed crafts bank inwards during turning while others bank
outwards.
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Please note that the subscripts of the variables in the

thesis may sometimes go from lower case t

lai)

upper case due Lo
typing inconsistencies - foir example; Lw and Luw. However,

both  Torms have the sane meaning according to the

Nomenclature.



Nomenclature

Alphabetic

Ar : Aspect ratio ( B/Lw )
Aw : Wetted bottom area of planing surface
Awu : Wetted area under heeled up side of a planing
hull
Awd : Wetted area under heeled down side of a planing
hull
B : Transom wetted beam
Bu : Transom half beam (heeled up side)
Bd : Transom half beam (heeled down side)
C : Forward planing speed
Cry : Sway force coefficient z Fy
1/2PgB3Cv2
Crz : Lift coefficient = Fz
1/2pgB3Cv?2
Cp : Bottom loading coefficient = B Lk
2/3
AV
Crm : Roll moment coefficient = Mr
1/2/0984
Cv : Beam Froude number = C/JEE
Cym : Yaw moment coefficient = My
1/2pgB*
f{X,y) : Local hull displacement above transom level
Fa(x,¥Y) : Free wave corner function at corner a
F2 : Coefficient of sway force derivative = _1 JFy
AgY’
Fn : Froude number in general
Fy : Sway force
Fz : Lift force
(Fz)d : Lift developed on heeled down side of the wetted

bottom



(Fz)u : Lift developed on heeled up side of the wetted

bottom

g 1 Acceleration due to gravity

H : Predicted vertical locations across transom

h{y) : Unknown transom rise heights above undisturbed free
surface

H* :  Mean transom vertical location

Hik : Immersion of transom at keel (deadrise surface)

Hez :  Immersion of transom at chine (heeled down side)

K 1 Wave number

Ko :  Fundamental wave number = g/C?

L* ¢ Non-dimensional distance of the longitudinal centre of
gravity forward of the transom = Lcg

B

Le 1 Wetted chine length for non-heeled constant deadrise
surface

Let 1 Wetted chine length for heeled flat plate or heeled
constant deadrise surface (up side)

Lec2 : Wetted chine length for heeled flat plate or heeled
constant deadrise surface (down side)

Lecg : Longitudinal centre of gravity forward of transom

Let : Longitudinal centre of 1ift forward of transom

LcrLd : Longitudinal centre of 1ift forward of transom

{(heeled down side of the wetted bottom)

LCcLR : Longitudinal centre of lateral resistance forward of
transom
leLu : Longitudinal centre of 1ift forward of transom

(heeled up side of the wetted bottom)

Lep : Longitudinal centre of pressure forward of transom
La(x,y) : Local wave corner function at corner a

Ls :  Immersed length for planing flat plate

Lc2j : Immersed chine length (heeled down side)

Lk : Wetted keel length for constant deadrise surface



Lk

Lw

M1

N2

N

Po

q(u,v,w)

Tm1

Tm2

Immersed keel length (deadrise surface)
Mean wetted length for flat plate
Mean wetted length for non-heeled constant deadrise

surface = (Lxtle)
2

Mean wetted length for heeled flat plate = (Leci+lce)
2

Mean wetted length for heeled constant deadrise

surface = (2Lk+lci+lcz)

4
Coefficient of roll moment derivative = _1  IMp
with respect to drift angle BA ¥
Coefficient of roll moment derivative = 1 oMr
with respect to heel angile BA 3¢
Rolling moment about keel Tine
Yawing moment about transom
Coefficient of yaw moment derivative = 1 My
with respect to heel angle BA 9

Froude number based on wetted keel length
= G/ gLk

Pressure above atmospheric

Constant Pressure inside an element

Fluid velocity vector

Rolling moment arm from keel line for heeled or
drifted planing surface

Minimum trim angle required for the transom running
beam to remain completely wetted at both sides of
the hull

Minimun trim angle required for the transom running
beam to remain completely wetted at the heeled down
side of the hull

Sway velocity

Craft weight in Newtons



w*

X, Y, Z
Z(X,Y)
Greek

B

8

T

Y

P
Ei(x,y)
, E0X,Y)
O(x,y,2)
Bi (X,Y,2)
, (X,v,2)
Arp

v

A

Non-dimensional craft weight = W
V/2pgB3

Cartesian Coordinates

Total hull displacement above undisturbed free
surface

Deadrise angle
Heel angle

Wave angle

Trim angle

Drift or yaw angle
Density of fluid

Free surface wave
elevation

Total velocity potential

Perturbation velocity
potential

Average wetted length to beam ratio for deadrise
surface in heel (used by Y.M.Jahangeer Ref.(66))

= 2let + Lk + Le2
4B

Craft displacement volume (m3)

Craft displacement in Newtons



CHAPTER (1) Introduction

1.1 General Background

wWhen a surface craft moves at low speed through water, the weight of
the craft is supported mainly by the hydrostatic forces. As the speed of
the craft 1> increased so that the water surface separates smoothly from
the tra11nng edge of the craft, the craft is said to be planing on the

water surface. During planing mo is dominated by the
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wydrodynamic pressure generated on the wetted bottom of the craft.
Another important role played by the hydrodynamic pressure load
developed during planing motion dis its influence on the dynamic

g

stability of the craft. There are two common types of instability

problems associated with hard chine planing surface operating at high
speed in calm water - the so called ’Chine Walking’, which 1is a
transverse instability resulting from a combination of rolling and

yawing oscillations, and the combined longitudinal pitch and heave

xT

tion which is better

nown as ’Porpoising’. Although these two
modes of instabilities frequently occur simultaneousiy, onily the
transverse instability will be considered 1in some details in this
thesis. Thus,>the roll, sway and yaw degree of’freedoms are decoupled

from the rest of the motions and the problem ca
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It is known from practical experience that a high speed craft can
lose transverse and course keeping stabilities at high speed even though
ity is adequate. The transverse dynamic stability of a

craft can depend on a number of factors such as speed, displacement,

[e]]

hull geometry and the position of centre of gravity. The forces and
torques generated by the propeller and rudder can also be significant
especially during turning. When a planing craft is turning, it will
011, yaw and sway. Roll, yaw and sway are strongly coupied modes of
motion. An introduction of heel angle results in net transverse loads
which cause the craft to sway and yaw. Similarly, the asymmetiic bottom
pressures associated with sway and yaw motions will cause the craft to
-011. Therefore, in order to carry out a thorough investigation into
this dynamic problem, it would be necessary to take the roll, sway and

yaw coupling into account.



1.2 Literature Review

Two of the earliest workers to studv the hydrodynamics of two
dimensional planing problem were Sretenskisi {(Ref.(1,2)) and Sedov
(Ref.(3)). Thev used Tlinearized potential flow thecry and rapresented
the pressure distributions under the surface of a planing plate by an
infinite series. The first term of the series gave rise to a sqguare root
type of singularity at the leading edge which is well Kknown in airfoil
theory. The same problem was also tacklesd by Maruo (Ret.(4,5,8,7)). The
experimental pressure results for planing flat plates presented in his
1859 paper were in good agreement with his theory, particularly at small
trim angles and away from the pressure singularity at the leading edge.
A similar approach to Sretenskii and Maruc was adopted by Squire
(Ref.(8)) and the importance of satisfying the Kutta Condition at the
trailing edge was outlined. In his solution, the transom rise height or
the wetted length was treated as unknown and obtained as part of the
solution together with the pressures, which satisfied the Kutta
Condition at the trailing edge. Cumberbatch {(Ref.(9)) solved the two
dimensional problem using a high Froude number approximation. In his
method, the kernel function of the integral equaticn was expanded into a
series in inverse powers of Froude number and the solution was obtained
by an iterative method. He also showed that an optimal shaped parabolic
plate could greatly reduce the drag by gliminating the pressure

singularity at the leading edge. More details of the above works were

D

reviewed later by wehausen and taitone (Ref.(10)). Doctors (Ref.{11))
used a finite element method to solve the linear two dimensional planing
problem at finite speed. In his method, the pressure distribution under
the planing surface was represented by a number of equivalent pressure
elements. In this way, the shape of the pilate could be arbitréry.
Several types of optimum forms based on maximizing the 1ift squared to
drag ratio and on the elimination of the forward thrown splash jet were
derived. These optimum forms were found to be similar to those obtained

by Cumberbatch with the splash removed from the leading edge.

The non-linear planing problem in two dimensions has also been

studied by a few authors with the restriction of zero gravitational



4

effect. Green (Ref.(12,13,14)) solved the two dimensional non-linear

planing problem of a flat plate at infinite Froude number in both finite

N

and infinite water depth using the method of conformal mapping. He

e
surface slope
approaches zero so slowly fTar away that there was no finite level
asyﬂptote.'The anomalous behaviour of the flow at infinity in Green’s
solution was first treated satisfactory by Rispin (Ref.(15)) and Wu
(Ref.(16)) using the method of matching asymptotic expansions. The flow
probiem was broken down into a ’near field’ problem, which represents
the flow close to the planing surface, and a ’far field’ problem, which
represents the free surface flow with waves, which could be solved
dividually and then matched. Other works related to this subject can
be referred to those by Wu and Whitney (Ref.(17)) and Ting and Keller
(

Ref.(18)). They nad also derived optimum shapes that resulted in a

Froude number. Wagner (Ref. (19
solved the problem using a
Froude number. Tulin {(Ref.(21)) and Shuford (Ref.(22)) also tackled the
problem of low aspect ratio planing. Maruo (Ref.(23)) solved the problem
for both high and low aspect ratio delta planing surfaces. However, a
nigh Froude number was required in his solution for the low aspect ratio
planing surface and the method was not applicable to a rectangular
pltaning planform. Shen (Ref.(24)) and Shen and Ogilive (Ref.(25))
tackled the problem with a high aspect ratio assumption. In the latter
paper, non—-iinearity effect was also inciuded for the case of infinite
Froude number by extending the method of matching asymptotic expansions
of Rispin (Ref.(i5)) and Wu (Ref.(16)) into three dimensions. Wang and
Rispin (Ref.(26)) extended Cumberbath’s method (Ref.(9)) to thiee
dimensions to solve the planing problem of rectangular plate with
moderate aspect ratio at high Froude number. In their solution, the
kerinel function 1in the integral equation was expanded asymptotically for
nigh Froude numbers, Fr=C2/gl, up to Fr-2. However, in the expansion,

singularities were introduced at the tips of the plate due to

(%)



the chosen pressure form. Tuck (Ref.(27)) extended the works of Maruo
(Ref.(23)) on low aspect ratio flat delta wing to finite Froude number.
In his work, a cusped parabolic water plane shape with arbitrary section
was considered and strong gravitational effects near the centre plane
were demonstrated. Oertel (Ref.(28)) discussed the aspect of unknown
wetted bottom area and its relation to the Kutta condition in some
details. He considered the problem at an infinite Froude number and
showed that the hull shape had to be determined as part of the solution
once the wetted area was prescribed and the Kutta condition was
satisfied. Doctors (Ref.(29)) extended his finite element method to
solve three dimensional planing problem without any restriction on
either aspect ratio or speed. In his solution, the weight and the
longitudinal centre of gravity position of the craft were first
prescribed, the wetted area, the transom rise height and the pressures
were then determined by an iterative procedure based on the change 1in
the trailing edge immersions with respect to the change 1in wetted
lengths across the transom. The amount of wetted area predicted for the
flat plates and the constant deadrise prismatic hulls were in good
agreement with that derived from the Savitsky’s empirical equations.
Standing (Ref.(30)) and Huang and Wong (Ref.(31)) applied linearized
potential flow theory to predict the free surface elevations induced by
a constant pressure disturbance moving over a free surface. Their works
was later extended by Wellicome and Jahangeer (Ref.(32)) to determine
the pressures under planing surfaces using constant pressure rectangular
elements. Various hull forms 1including flat plate, constant deadrise
prismatic hulls and delta wing were considered. Two dimensiocnal optimum
forms similar to those obtained by Doctors (Ref.(11)) were also derived.
His theory had also been appiied to predict the amount of rolling moment
induced by planing prismatic hulls and flat plate under heel condition,

though the sway force and the yawing moment had not been considered.

There were a number of experimental results published. Some of the
earliest experimental studies on planing surfaces were made by Baker
(Ref.(33)), Sottorf (Ref.(34)), Shoemaker (Ref. ((35)), Sambraus
(Ref.(36)), Sedov (Ref.(37)) and Locke (Ref.(38)). Much experimental

measurement and empirical analysis of planing phenomenon had been



onducted by the Davidson Laboratory of Stevens Institute of Technology
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surfaces. In 1949, a summary repoirt on these studies was pubiished by

of e

Neidinger (Ref.(40)) which increased the range of ap

beyond +those in (Ref.(39)). These so called Savitsky’s empirical
equations, which apply mainly to planing flat plate and constant
deadirise hulls, are frequently used for practical calculations owing to
their simplicity. Other published experimental results include the woiks

by Hadler (Ref.(41)), Kapryan and Boyd (Ref.(42)), Clement and Biount
(

It is known from practical experience that planing boats suffi
transverse instability when turning at high speed, even though the
static stability is adeguate. Thi behaviour can be explained in

Savitsky and Koelbel (Ref.(49)). Recently, partic

)
paid to round bilge semi displacement hull forms wnich firequently

encounter roll instability when operating at high speed. Marwood and
Bailey (Ref.(50)) conducted model tests on a NPL round bilge series form
fixed in sway and yaw. The model was allowed to roll freely and the

ationship between roll angles and vertical centre of gravity
positions were studied at various speeds. Sufirbier (Ref.(51)) also

conducted similar experiments but paid particular attention to the

Some researchers 1ike Baba, Asai and Toki (Ref.(52)) and Muellei-Graf
and Schmiechen (Ref.(53)) conducted captive model experiments to
determine the hydrodynmaic coefficients of a round bilge hull form. The

effects of rudder and spiray stiips on these coefficients had also been



investigated. Transverse stability criteria based on their experimental
results and the manoesuvring equations of roll, sway and yaw degrees of
freedom were derived. Other researchers 1ike Millward (Ref.(54)) and
wakeling, Sproston and Millward (Ref.(55)) paid paiticular attention to
the effect of hull form on the pressure distributions developed on the
hull bottom. The pressure measurements on a round bilge form reveaied
that the instability problem was due to the negative pressure developed
along the afterbody of the hull and was attributed to the unsatisfactory

hull shape of the round bilge form for high speed.

The studies on the transverse dynamic stability of hard chine
planing hull, particularly the constant deadrise prismatic hulls, have
received little attention. Gill (Ref.(56)) determined the rolling moment

n a prismatic hull when it is yawed relative to the flow. His theory,

lal]

the so called ’Deadrise Effect’, describes that the introduction of yaw

trim angle on one side of the hu11
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and to reduce it on the other. The rolling moment was calculated fium
the difference between the moments produced by the asymmetric 1ift loads
developed on the two sides of the hull; the moment arms were taken to be
a quarter of the beam from the keel. The empirical equations presented
by Savitsky were employed for deriving this 1ift. Wellicome and Campbell
(Ref.(57)) conducted model experiments similar to those of Mueller-Graf
and Schmiechen to determine the hydrodynamic coefficients for a series
of constant deadrise prismatic hulls. In their theory, however, all
-e assumed to act at the longitudinal centre of gravity
position of the craft so that no net yawing moment arises when the craft
is under either heel or yaw condition. Simple transverse stability

criteria were derived based on their experimental data and the coupled

us

way and roll manoeuviing eguations.

1.3 linearization of Planing Problem

The classical ship wave problem is a boundary value problem. The
free surface boundary conditions for this problem are non-linear and
lead to a complicated integral equation which is always difficult to

solve. In order to simplify the problem, it is customary to linearize



the boundary conditions on the free surface. In order to achieve this,
the disturbances to the fluid due to the motion of the ship are required
to be small and the ship should be slender in the direction of its
motion. The two most commonly Known types of ship wave problems that can
be linearized are the 'Thin Ship Problem’ treated by Michell (Ref.(58))
and the ’Slender Ship Problem’ treated by Vossers (Ref.(59)). The other
type of ship wave problem that can be linearized is the ’Flat Ship
Problem’ in which the draught of the ship is much smaller than its

length and width.

An important feature of planing motion is the development of a

(1]

spray sheet thrown ahead and sideways of the planing surface. This gives

rise to a region of highly non-linear flow near the spray root. Although

the high speed planing hull form is a typical example of ’'Flat Ship’,
the non-linear flow near the spray root region would make the small
ances assumption of a linear theory invalid. Green’s (Ref.(12} 13
) studies on the two dimensional non-linear flat piate pilaning at
infinite Froude number 1in the absence of gravity has shown that at
sufficiently small angle of attack (or trim angle), the thickness of the
splash 1is pioportional to the square of the angle of attack. Wagner
(Ref.(19)) studied both the two and three dimensicnal planing at
infinite Froude number with linearized free surface boundary conditions.
In his solution, the governing equations were shown to be identical to
those of the flows passing the lower surface of a thin airfoil with a
squaie root type of pressure singularity at the leading edge. Wagner
showed that linear planing theory can be adopted if the angle of attack
is sufficiently small and that the same type of pressure singularity can
be used to represent the splash at the 1leading edge and the

configuration of the forward thrown splash jet can be ignored.

Throughout the work in this thesis, the angle of attack (or trim
angle) is therefore assumed to be small so that the splash configuration
can be ignored in the linearization of the free surface boundary
conditions. In addition, the induced free surface elevations are also
assumed to be small so that the 1linearized free surface boundary

conditions can be applied on the mean free surface. The resulting

~



pressure distiributions will therefore contain a square root type of

singularity at the leading edge.

1.4 Present Work

The work in this thesis concerns a theoretical study of the steady
motion of a craft planing over the surface of cailm water. The water is
assumed to be infinitely deep, inviscid, incompressible and free of
surface tension. The free surface is assumed to extend to infinity and
the flow is irrotational. The trim angle or the angle of attack is
assumed to be small so that the splash configuration near the spiray root
can be ignored, and 1inviscid 1linearized potential flow theory is

adopted.

The presence of the planing surface is modelled by an unknown
pressure distribution on its wetted bottom projected on the plane of the
undisturbed free surface. The projected wetted bottom is represented by
an equivalent two dimensional finite element mesh which consists of a
number of constant pressure elements, each of different strength. The
elements derived in this thesis can be arbitrary in shape. In this way,
both the shape of the wetted planform and the planing speed can be

arbitrary, hence the restrictions of previous theories are avoided.

The solution to the problem consists of two parts. The first part of
the solution is to evaluate the free surface wave patterns induced by
these constant pressure elements. The theoretical derivation and
numerical method involved will be discussed in detail in chapter two.
The predicted wave patterns for various element shapes are to be
compared with the results of other authors. The second part of the
solution is to assemble these elements to form the projected wetted
bottom of the craft. The unknown pressures and the unknown transom
immersions are determined by satisfying the kinematic hull boundary
condition at each element’s centre and the Kutta condition at a discrete
number of points along the transom. In the present method, the shape of
the wetted planform and the planing speed are assumed to be known; the
pressures and the immersions along the transom, hence the output hull

shape, are determined as the solutions. More details of this method will

o



be discussed in chapter three.

The present finite element method will be applied particularly to
study the hydrodynamics of a planing flat plate and constant deadrise
prismatic surfaces, although the method can also be applied equally well
to other forms such as twin-hull and warp surface. The predicted
pressure distributions, 1ifts and Jongitudinal centre of pressure
positions will be compared with the results obtained by other authors in
chapter four and five. An interpolating procedure for determining the
running wetted length and running trim angle for a craft of specified
weight, longitudinal centre of gravity position and speed has also been

developed.

Another main area of study in this thesis is the performance of
planing craft under heel and drift (or yaw) conditions. The present
theory has been applied to predict the pressure distributions, rolling
moments, yawing moments and sway forces for planing craft under two
conditions: firstly, when it is heeled at a small angle, and secondly,
when it 1is yawed at a small angle. Again, flat plate and constant
deadrise surfaces were considered, though only a planing flat plate has
been studied -in the later case. Based on these forces and moments
results, an interpolating procedure to determine the hydrodynamic forces
and moments derivatives for a particular craft’s loading condition and
speed has been developed. The predicted hydrodynamic forces and moments
derivatives have been compared with the experimental measurements of
wallicome and Campbell (Ref.(57)) with reasonable agreement. These
forces and moments derivatives are essential for the analysis of
transverse stability of planing craft in turn. More details of these
studies will be discussed in chapter six to chapter eight. Although it
is a known fact that high speed planing craft can lose stability during
turning, little work has been done to understand this particular
phenomenon. It is hoped that the present studies can provide a better
insight into the transverse stability of planing craft turning at high

speed.



CHAPTER (2) Velocity Potential and Free Surface Elevation induced

by a Constant Pressure Element in an Uniform Free Stream

2.1 The Constant Pressure Polygon

In this chapter, we will derive an expression for the velocity
potential, ﬁ(x,y,z), and the free surface elevation, £(x,y), induced by
a constant pressure element in an uniform stream of speed, C. The fluid
is assumed to be inviscid, incompressible, infinitely deep and without
surface tension. The free suiface is assumed to be of infinite extent,
the flow is assumed to be irrotational and linearized potential flow

is adopted. The constant pressure element is assumed to cover an

C
~
o iy

e

arbitrary area on the undisturbed free surface with pressure equal to Po
inside that area and zero eisewhere. The x-y-z Cartesian coordination
oyed is snown in fig.(2.1), with the x-y plane lying on the

S
undisturbed free surface, the x-axis pointing in a direction opposite to

ct
=
@
~h
——d
o]
X
a
>
o
ot
o
N

-axis pointing vertical upward in a direction opposite

The arbitrary area of constant pressure on the free surface is then

approximated by an equivalent constant pressure polygon, as shown in

=h

ig.{(2.2a). The total velocity potential, @(x,y,z), at a point, (x,y,z),

he fluid due to this pressure disturbance can be considered as

ct

inside

the sum of a perturbation potential, ¢(x,y,z), and the disturbance due

8(x,y,2) = $(x,y,2) - Cx (2.1.1).

In order to further simplify the problem, it 1is more convenient to
breakdown this constant pressure polygon into a number of constant
pressure trapezia, each of pressure +Po extending downstream from the
side of the polygon to x=-c0, as shown 1in fig.(2.2b). Such a constant
pressure trapezium 1is shown in fig.(2.2c). For an anticlockwise nodal
numbering configuration, such as the one shown 1in fig.(2.2a), the

ressure of the ith trapezium is +Po if (Yi+1-yi)20 and is -Po if (yi+1-

T
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¥i)<0. The perturbation velocity potentiail, ¢(x,y,z), and the free
surface elevation, Efx,y), due to the constant pressure polygon are then
mathematically equivalent to the sums of the disturbances induced by

these individual constant pressure trapezia. Thus,

n
$x,v,2) = 2. $i(x,y,2) (2.1.2)
i=1
i
and Ex,y) = 1 Eiix,y) (2.1.3),
i=1
where n is the number of sides of the constant pressure polygon,
¢i(x,y,z) and £ i(x,y) are the perturbation velocity potential and the

‘ree suitTace elevation induced by the ith constant pressure trapezium of
pressiure +Po. An expression for ¢1(x,y,z) and £i (X,y) will be derived in

e following section.

2.2 Theoiretical Derivation of the Velocity Potential and the Free
Surface Elevation induced by a Constant Pressure Trapezium

In this section, an expression is derived for the free surface
tion, £i(x,y), and the velocity potential, ¢i(x,y,z), induced by a
constant pressure trapezium of pressure +Po in an uniform stream of
velocity, C. The geometry of the trapezium is shown in fig.(2.2¢c) with
s four corners defined by the points (xa,va), (xo,yp), (-%0,yp) and (-co
,Ya). The ordinate, yo, is assumed to be greater than ya so that the
area enclosed 1is positively defined. Making the usual assumptions, the
total velocity potential, _@j(x,y,z), induced by the constant pressure

trapezium can be wiitten as:

jﬁj(x,y,Z) = ¢ (x,y,2) - Cx (2.2.



where ¢i(x,y,z) 1is the perturbation potential and € 1is the uniform
stream speed. The fluid velocity, qiu,v,w), at a point, (x,y,z), inside

the fluid is then given by

P

U= goif{x,y,z) - C, v = $i (X Z and w = i (x z (2.2.2).

D% DYy dz

Inside the fluid, the velocity potential, ¢i(x,vy,z), has to satisfy the

Laplace equation:

D% + Ndi + XPds = O (2.2.3).
%2 dy2 dz°

On the fres surface, z=E&i(x,y), one must also satisfy the non-linear

free surface kinematic condition:

3bi = dEi bt - C ¢ o+ 254 s (2.2.4)
ar oM B y  dy
on z=£i(x,y)

and the non linear free surface pressure condition derived from the

Bernoulli equation:

P(x,v) + 1 f{gg@_ - 12+ D2+ 2 |+ g & =1 ¢z (2.2.5),
P 2 | lox dy oz 2

—t

on z=&i (x,y)

where P(x,y) 1is the pressure on the free surface (above atmospheric
pressure), g is the acceleration due to gravity and /3 is the density of

the fluid.

Assuming that the induced disturbances ¢i and &i are both small so
that the products of their derivatives, i.e. (a¢i/ax)®§i/ax) etc, are

also small and can be neglected in the formulation of the free surface



boundary conditions, conditions (2.2.4) and (2.2.5) can be linearized by
considering only the first order terms in ¢i and & and can be applied
on the undisturbed free surface, zz0, rather than on the actual free
surface, z= Ei(x,yj. It follows that the 1linearized free surface

Kinematic condition is

Abi (X, y) + Cd&(x.v¥) = 0 on z=0 (2.2.6)
dz X

and the linearized free surface pressure condition is

PIxX,y) — CRdilx.v) + g&ii{x,y) =0 on z=0 (2.2.7).
P dx

A combined free surface boundarvy condition can then be obtained by

eliminating E;(x,y) from conditions (2.2.6) and (2.2.7), thus,

i (X, Y) + Ko bilx.y) = i OP{x,y) on z=0 (2.2.8),
ox- oC PL Ox

where ke 1s the fundamental wave number, g/C?. For the case of
infinitely deep water, the velocity potential 1is also reguired to

satisfy an infinite depth condition,

9t = O as z —-> -0 (2.2.9),

which ensures that the disturbance die away as z -»> —oo, In addition, it

must alsc satisfy the radiation condition,

>

Tho= 0 as x ->+60 (2.2.10),

r



wnich ensures that gravity waves only exist downstream of the pressure.

The solution 1n ¢i(x,y,z) which satisfies the above conditions can
be obtained by a double Fourier transform in the x-y domain. The details
in deriving this velocity potential is given in appendix A and may also
be found in references such as Wehausen and Laitone (Ref.(10), pg. 598).

The solution is

$i(x,y,2) =

Z

2 Sec(e) de ekz {Re[P(k,8)] Sin(kw) - Img[P(k,8)] Cos(kw)} dk
(k kK1)
J

Pc

- [ 2T Sec(B)k1 _ek'z {Re[P(ki1,8)] Cos(kiw) + Img[P(k1,8) Sin(kiw)]} d@
|
J
z (2.2.11),

where 8 denotes the wave angle, Kk denotes the wave number,
ki = ko Sec?(&) (2.2.12)
and w = x Cos(8) + v Sin(®) (2.2.13).

The complex function, P(k,8), 1is the Fourier transform of the Tfree
surface pressure function, P(x,y), given by the following Fourier

inversion formula:

P(k,8) = Re[P(k,8)] + Img[P(k,B)] 1

14



- J Pix,y) eikv dxdy (2.2.14},

where s denotes the free surface. The wave elevation, &i(x,v), at a
field point, (X,y), on the undisturbed free surface, z=0, can be
cbtained by substituting the above solution in ¢a(x,y,z) into the free

surface pressure condition (2.2.7). This gives

¥ »
Eilx,y) = 2 k2 {Re[P(k,8)] Cos(kw) + Img{P(k,0)] Sin(kw)} dkde
Lalk-k1)
J )
-'21 o
?
+ 27 k12 {Re[P(k1,8)] Sin(kiw) - Img[P(ky,8)] Cos(kiw)} d6
| 7
Z
_ 5 (2.2.15),
where Si = P(x,y) (2.2.186)
A9
/

is the hydrostatic free surface wave elevation.

The velocity potential, ¢i(x,y,z), due to the present constant
pressure trapezium of pressure + Po can be obtained by substituting the

following Fourier transform (see appendix A) into expression (2.2.11).

Re{P(k,B8)] = =Po (Yo-Ya) Cos(kWp) - Cos{kWa) (2.2.17)
4772 (Wo-Wa) k2 Cos(8)

15



and  Img[P(k,8)] = =Po_ (Yb-Ya) | _Sin(kWb) — Sin(kWa) (2.2.18),
472 (Wp—Wa) k2 Cos(9)

where Wa = {xaCos(®) + yaSin(8)) (2.2.19)
and Wb = (xpCos(B) + ypSin(8)) (2.2.20).
Leading to

pi (x,y,2) =

8

My

Po | (Yp-Ya) Sec2?(8) dé ekz Sin(k(w-Wa))- Sin(k(w-We)) | dk-
{(Wo~Wa) 211“2/0C k (k-k1)
- [o]
- Po | (vyb-va) Sec?(8) ek'z {Cos(ki(w-Wa))- Cos(ki(w=Wp))} de

2TPC ki (Wb—Wa)

MHE———— M

(2.2.21).

Similarly, substituting expressions (2.2.17) and (2.2.18) into

expression (2.2.15) yields the free surface elevation,

Ei(x,y) =
%_Z o
Po (yb—va) Sec(8) d6 Cos(k(w-Wa)) = Cos(k(w=Wp)) dk
(Wo-Wa) 220 g (k-k1)
_‘er' o}

16



I
2
+  Po (Yb-va) Sec(8) {Sin(ki(w-Wa) — Sin(ki(w-Wp)} d® - §;
2T P g (Wo—Wa)
=T
2

(2.2.22),
where S§i = _Po for a field point (x,y) inside the trapezium
P9
§i = 0 for a field point (x,y) outside the trapezium
§i = _Po for a field point (x,y) on the boundary of the
Zﬁg trapezium.

As shown 1in appendix B, the inner k integrals in the above expression

can be transformed by means of a suitable substitution into:

o0
Cos(k(w-Wa) dk = g(]jAa}l) = Sin(jxal|) T (2.2.23),
(k-k1)
o)
where Aa = Kkt (w = Wa) (2.2.24)

and g(Z) is the auxiliary cosine integral function:

8

g(Z) = Cos(u) du (2.2.25),
(u+z)

(=4

which is given in the ’Handbock of Mathematical Functions’ by Abramowitz
and stegun (Ref.(60) pg.232). Replacing the inner k 1integral in

expression (2.2.22) by the form derived above gives

17



Ei(x,y) = ;o [ {La(x,y) + Fa(x,y)} - {Lb(x,y) +Fo(x,y)} - &i ]
g

(2.2.26),

where §i is now the non-dimensional hydrostatic free surface elevation:

Si = 1 for a field point (x,y) inside the trapezium,
§i = 0 for a field point (x,y) outside the trapezium
and S = 1 for a field point (x,y) on the boundary of the
2 trapezium,

La(x,y) and Lo(x,y) are the non-dimensional local wave corner functions

given by:
=
La(x,y) = | (yb - va) Sec(8) a(jAal) d6
2T2 (Wb - Wa)
~I
2
and Lb(X,Y) (yb = va) Sec(®) a({Ap}) d® (2.2.27),

2T2 (Wb - Wa)

1
M s M

Fa(x,y) and Fb(x,y) are the non-dimensional free wave corner functions

given by:

Fa(x,y) = [Sgn(Xa)-11 | (vyb = va) Sec(8) Sin({2Aal) dé

2T (Wp - Wa)

M e by

18



and  Fo{x,y) = [Sgn(As)-1] (yb = va) Sec(®) Sin(|Asl) d8 (2.2.28)

2T (Wo - Wa)

= A—E U2

with Sgn(u) =

i
+
—
-
-+
o
v
o

14
!
-
-
—
j
A
o

and Sgn{u) (2.2.29)

2.3 The Corner Wave Functions

The terms La(x,y) and Lb(x,y) in eguation (2.2.26) can be identified
as the non-dimensional local wave corner functions, which are the near
field disturbance generated by the pressure trapezium. The terms Fa(x,y)
and Fo(x,y) are the non-dimensional free wave corner functions which
contribute to the wave system progressing downstream. Since the free
wave sine term in Fa(x,y) and Fo(x,y) oscillates rapidly without
attenuation as ©->+ T2, it 1s more convenient to make the
transformation, t=Tan(&), 1in the evaluation of these integrals. The
functions, g(lAal) and g{|2Av]), are not oscillatory and decay through
Zero as e—xtg',therefore, this transformation is not essential for the
evaluation of the local wave corner functions. However, there are some
advantages in replacing the arguments 1in the sine and cosine functions
by algebraic ones. Thus, following Huang and Wong (Ref.(31)) and
Standing (Ref.(30)), the 1local and free wave corner functions are
transformed by wusing t=Tan(8). Also, following the discussion 1in
appendix G about the 1integrating 1limits of the free wave integral

(2.2.28), the local and free wave corner functions can be expressed as:

+o0
La(x,y) = i gilAal) dt (2.3.1)
22 (t - To)
J
)
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Ta

and Fa(x,y) 1 Sin{12al) dt for (y-va)>»0 (2.3.2)
m (t - To)

-

or Fa(x,y) -1 Sin(j2al) dt for (y-ya)<0 (2.3.3)

ar J (t - To)

Ta

+co

or Fa(x,y) = —_1_ Sin(JAal) dt for (y-va)=0 (2.3.4),
Rl (t - To)

i

and (x—xa)<0
where Aa = {(x-xa)+(y-ya)t} j(1 + t2) ko (2.3.5),

Ta e G Xa ) (236)
(Y = va)

and To = ={Xb = Xa) (2.3.7).
(Yo - va)

For (y-va)=0 and (x-xa)>0, the free wave corner function, Fa(x,y), is

equal to zero.

The difference in integrating the limits between the above free wave
integrals, (2.3.2), (2.3.3) and (2.3.4), are inconvenient for
programing. It was decided tc make the transformation t=-t in the

integrals (2.3.1) and (2.23.3) when (y-ya)<0, though this transformation

20



is not essential for the evaluation of La(x,y). Following this
transformation, which is only applied when (y-ya)<0, the final forms of

the local and free wave corner functions are

+eo
La(x,y) = Ma a(JAal) dt (2.3.8)
27 2 (t - To)
-Cco
Ta
and Fa(x,Y) = - _Ma Sin(JAal) dt (2.3.9),
i (t - To)
- 00
where now To = -Ma (Xb — Xa) (2.3.10),
(Yo = va)
Ta = - (X - Xa) for |y-yal>0 (2.3.11),
Iy - va)l
Ta = + =0 for (y-va)=0 (2.3.12),
and (x-xa)<0
Aa = {(x=xa)+|(y-ya)|t} J(1 + t2) ko (2.3.13)
and Ma = 1 for (y-vya)20 (2.3.14)
Ma = -1 for (y-ya)<0 (2.3.15).

Note that, mathematically, the transformation t=-t maps the original

pressure trapezium, T, and the field point, p(x,y), to a mirror image

21



trapezium, T', and a mirror image field point, p’(x,-y), about the
reference x-axis, as shown in fig.(2.3). If the field point, p(x,y), is
located between the two sides of the trapezium, i.e. (y-ya)»0 and (y-vyb)
<0, the transformation t=-t is only applied for evaluating the corner
wave functions Lb(x,y) and Fo(X,y). For the case of (yb~ya) is zero, the
trapezoid area shrinks to a line without any wavemaking. In this case,
the wave elevation is taken to be zero. If the field point p(x,y) is
located at the corner (xa,ya) of the trapezium, the local wave integral
in (2.3.8) is undefined. One should also note that both the local wave
corner function, La(x,y), in (2.3.8) and the free wave corner function,
Fa(x,y), in (2.3.9) are independent of the length of the forward facing
segment of the pressure trapezium, i.e. the distance between the points
(Xxa,ya) and (xb,yb), but dependent only on the angle, Tan-1(To), it

makes with the reference y-axis.

2.4 Numerical Evaluation of the Local Wave Corner Function

In this section, we deal with the numerical method for evaluating
the Tlocal wave corner function, La(x,y), 1in expression (2.3.8). The
auxiliary cosine integral function, g(]Xal), in the expression can be
calculated quickly by using a rational polynomial approximation for +oo
>2af>1.0, or a series expansion for 1.0>]Aa)>0. Both approximations can
be found in the ’Handbook of Mathematical Functions’ by Abramowitz and
Stegun (Ref.(60) pg.232) and have also been enclosed in appendix C. The
denominator inside the integral varies slowly, and although g(jAal)->0
as |Aa|->t> , the decay may be slow and the infinite range often cannot
be truncated. The infinite integral is then split up into two infinite
ranges, - < <t<Ty1 and Ta<t< +2 |, and a finite range, Ti<t<Tz, which
contains the points of singularity. The number of singularities present
in the finite integrating range varies with the position of the field
point, (x,y), with respect to the trapezium. They can be categorized

into the following three cases and will be considered separately.

Case (i) 1Ta-Tol>0 and ly-val>0




The infinite integral 1is split up into three segments, -00<t«<Ty,

T1<t<T2, and T2<t< +20, where

T4 (Ta+To)/2 - !Ta—Tol/Z - 1.0

and Tz = (TatTo)/2 + [Ta-Tol/2 + 1.0

for |Ta-To{>3.0 and [Ta-Tol<2.0, or

T4

(Ta+To)/2 - !Ta"Tcl

and T2 (TatTo)/2 + |Ta-To]

for 2.0¢Ta~To;<3.0. There are two points of singularity in the finite
integrating range. There is a logarithmic singularity at t=Ta, as |Qa]

tends to zero and

g(Aal) => = ¥ - Log(Xal) (2.4.1)

(see equations (C.2) and (C.7) of appendix C), where § is the Euler
constant. The other singularity occurs at the pole, t=To, when the
denominator of the integrand, (t-To), tends to zero (for the definitions

of To, Ta and |Aal, see expressions (2.3.8), {(2.3.9) and (2.3.10)).
These two singularities can be removed by rewriting the integral into

the following form:

T =

g(]Aal) dt g(lAal) + Log(t-Tal) - H(To) dt
(t-To) (t-To)

T

=



Log(lt-Tal) dt + H(To) LogITz—To' (2.4.2),
(t-To) Ti-To

|
A

where H(t) = g(JAal) + Log(]t-Tal) (2.4.3).

As shown 1in appendix D, the compensating logarithmic integral in

equation (2.4.2) can be expressed as:

3 =T
n
Log(it-Tal) dt = Log(lu dt
(t - To) u-(To-Ta)
T T-Ta

H

119[—(T2"Ta)/(To—Ta)} - I)g[_(T1“Ta)/(To'Ta)]

+ LOg(‘TO_Ta|) Log ’ (To=Ta)-(To=Ta) (2.4.4),
(T1-Ta)-(To~Ta)

where the function I1g(x) 1s defined as:

X
I1g(x) = Log{(lul) du (2.4.5),
(1 + u)

which can be evaluated using the series approximations given in appendix

E. It should be noticed that although the function, g(|Aa]) + Log(]|t-
Tal) - H(To), 1is continuous at t=Ta, its slope 1is discontinuous.
Therefore, the integrating process stops and restarts at the point,

t=Ta, to minimize errors. At t=Ta, the value of the integrand inside the
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first integral on the right hand side of equation (2.4.2) can be

obtained by considering its Timiting value as t->Ta, thus,

Limit g(Aal) + log(}t-Tal) - H(To)
t:—)Ta (t - To)

= - ¥ - Loglkey(1+Ta2) ly-vall = H(To) (2.4.6).
(Ta - To)

Similarly, the Timiting value of the integrand at t=To is

Limit g(JAal) + LogUlt-Tal) ~ H(To)
t—)To (t - To)

= [ g(Aal)” [Aaf’Jt=t0o + _Mo (2.4.7),
(To_Ta)

where g(u)’ 1is the derivative of the function, g(u), with respect to u
and |Aa|’is the derivative of the function, |Aa), with respect to t. The
derivative, g(u)’, for positive real values of u can be evaluated by a
series approximation for 1>u>0 or by a rational polynomial approximation
for +o0>u>1. Both approximations are given in appendix F. The derivative

of |Aal with respect to t at t=To is

|Aa]’t=To = ko To [1(x=Xa)+](y=va)lToll + Mo(14T02) ty—yal
(1 + To2)1/2

(2.4.8),

where Mo = 1 if To > Ta

and Mo = -1 if To < Ta.
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Over the infinity ranges, - ®0<t<T1 and Tz<t<+ 00, the integrals are

transformed using 1/v = (t-Ta). It follows that

T e 5 (TR
_QLLA1L1 dt = gUAal) dv + g(JAal) dv
(t To (1‘(To‘Ta)V)V (1‘(To*Ta)V)V
v
-0k O-T) 0
(2.4.9),
where Aa = kolv ~ valJ v2 + (14Ta v)2 (2.4.10).
V2

There is no problem in evaluating the above integrals since there is no
singularity inside the integrating ranges. The integrating process stops
and restarts at v=0, though this 1is not essential since the integrand is
well behaved. At v = 0, as |Aal ->+% and g(|%al)-> 1/|Aal2, the value

of the integrand is given by:

Limit a(lAa 1) = Limit 1 = 0
v->0 (1-(To-Ta)v)v v->0 31312(1—(T0—Ta)V)V

(2.4.11).

Significant contributions to the local wave corner function, La(x,y),
are expected to come from the regions around the Jlogarithmic
singularity, t=Ta, and the pole, t=To. For the case of |Ta-To ]>3.0, the
finite integrating range may be large, therefore the integral over the
range, [(Ta+To)/2-{Ta~To|/2+1.0] >t> [(Ta+To)/2+|Ta-To}/2-1.01, is also
evaluated using the transformation, 1/v=(t-Ta). Note that the integral

over this range does not contain any singularity.

Case (i1) (Ta-Te)=0 and ly-val>0




For a field point, (x,y), lying on the line passing through the two
corners, (Xa,Ya) and (xo,yo), of trapezium, the logarithmic singularity
and the pole singularity occur simultaneously at t=Ta. In this case, we
have To=Ta and there 1is only one singularity 1in the range of

integration. The infinite integral is split up into three segments, -0

<E<T1 , Ti<t<T2 and Ta<t<+ 0 , where
T1 = Ta - 1.0
and Tz = Ta + 1.0

The singularity occurs in the finite integrating range, Ti1<t< T2, when
both |AXal and (t-To) tend to zero simultaneously at t=Ta can also be
removed by rewriting the integral in the form of (2.4.2) with the value

of H(Te) replaced by H{(Ta), where

H(Ta) = Limit [g(]Aa)) + Log(|t-Tal)]
t-)Ta

= - b"" Log [ ko“/—Yal\} 14Ta2 ] (2.4.12),

The Timiting value of the integrand inside the first integral on the

right hand side of equation (2.4.2) at t=Ta 1is now given by:

Limit g(lAa]) + Log(It-Tal) - H(Ta) = _- Ta (2.4.13).
t->T, (t - Ta) 1+ Ta?

Note that the integrands inside the second and third compensating
integrals of equation (2.4.2) are now odd function of t about the point
t=Ta. It follows that by taking the 1integrating ranges symmetrically

about the point, t=Ta, the contributions of these two integrals are both
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zero. As before, the integration process stops and restarts at t=Ta to
minimize errors. Over the infinity ranges, -o0<t<T1 and Tz2<t< + 0, the
integrals are evaluated by using the transformation, 1/v=(t-Ta). Note
that the value of (Ta-To) in (2.4.9) 1is now zero. Again, there 1is no
problem in evaluating these integrals since there is no singularity in
the integrating ranges and the integrating process stops and restarts at

v=0. At v=0, the Timiting value of the integrand is zero.

Case (iii) y-va=0 and [x-xal>0

For a field point, (x,y), lying on the side of the trapezium, (y-ya)
=0, the logarithmic singularity does not exist since the function, |Aal,
is greater than zero for all values of t. However, the singularity at
the pole, t=To, still exists. As before, the infinite integral is split

up into three segments, -oco<t<T1, T1<t<T2 and T2<t<+, with

T1 To - 1.0

and T2 To + 1.0

The singularity in the finite range, Ti1<t<T2, is removed by Monacella’s

method (Ref.(61)). Thus, the integral is made regular by writing

T T2
9(Qa]) dt = | gUAa]) - H(Te) dt + H(To) Log_]Tz—To
(t—To) (t“To) T1—Tof
K T (2.4.14),
where now H(t) = g(1Aal) (2.4.15)

and Aa = (x-xa)J(1 + t2) ko (2.4.16).
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At t=To, the limiting value of the integrand inside the first integral
on the right hand side of equation (2.4.14) is given by:

Limit g({da]) = H(To) = [9(iRal)’ 1Ral’lt=10 (2.4.17),
t—)To (t~To)

where g(u)’ is the derivative of g(u) with respect to u, which can be
computed by the methods given in appendix F, and |Aa|’ is the derivative
of |Aal with respect to t. Note that the value of (y-ya) in the
expression (2.4.8) for |Aal’ 1is now zero. Also note that if the
integrating range is taken to be symmetrical about the point, t=To, the
contribution of the second term on the right hand side of equation
(2.4.14) 1is zero. There is no singularity in the infinity ranges, - <t

<T1 and T2 <t <+, the integrals are transformed using 1/v=(t-To) into

‘n °0 0 (T'(-To)—’
g(JAal) dt = q(JAal) dv + a(1Aal) dv (2.4.18),
+ (t“To) v \
-0 -‘; (-r"_—!;)" 5
where Aa = kolx-—xalJ(v2+(14To v)2) (2.4.19).
v

The integration process stops and restarts at v=0. At v=0, the value of
the integrand is zero. Note that if both (x-xa) and (y-ya) are equal to

zero, the local wave corner function, La(x,y), is undefined.

2.5 Numerical Evaluation of the Free Wave Corner Function

Recapping from section (2.3), equations (2.3.9) to (2.3.15), the free

wave corner function, Fa(X,y), is
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Ta

Fa(X,Y) = - Ma Sjn(!?\all dt (2.5.1),
T (t - To)
~ 00
where Ta = = _(x=Xa) for Jy-ya|>0 (2.5.2)
[ (y-va)l
To = -Ma (Xb—Xa) (2.5.3),
(yp-ya)
2Aa = {(x-xa)+}(y-ya)|t} (1 + t2) ko (2.5.4),
and Ma = 1 for (y-ya)>0
Ma = -1 for (y-ya)<0 (2.5.5).

As explained in appendix G, the upper 1imit of the free wave
integral in (2.5.1) is equal to +c0 when (y-ya)=0 and (x-xa)<0, while
for (y-va)=0 and (x-xa)>0 the free wave integral is equal to zero. Thus,
the free wave corner integral, Fa(x,y), at a point upstream from the
corner (Xa,ya) along the 1line (y-vya)=0 1is zero. However, one should
notice that the free wave corner integral, Fo(x,y), along the line (y-
ya)=0 forward of the corner (xa,va) is not equal to zero. Also note
that, for the case of (y-va)=0 and (x-xa)<0, Ma 1is taken as +1 1in the
present program though the same numerical result can also be obtained by

taking Ma equal to -1.

The difficulties in evaluating the free wave corner function are
caused by a slow decay of the integrand combined with the highly
oscillatory behaviour resulting from the rapid rate of change of the
phase function |Aal as t->+ . Significant contributions to the integral

are expected to come from the regions around t=Ta, the pole t=To, and
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the points of stationary phase where the slope of the phase function,
[Aa|, changes sign. Thus, the points of stationary phase are given by

the real roots of the following quadratic equation:

dAa = ko |2ly-valt? + (x-xa)t + |y-val
dt (1 + t2)

0 (2.5.6).

The roots of the above equation for |y-val>0 are

t=14 { Ta iJ(Ta2 - 8) 1} (2.5.7).

There are two points of stationary phase inside the integrating range, -
<t<Ta, if Ta »2(2)'/2, one if Ta=2(2)'/2 and none otherwise. For
Ta=2(2)'/2, the point of stationary phase is located at t=1/(2)1/2 which
is at a distance 3/(2)1'/2 from the upper 1imit of the integral, Ta, in
descending values of t. Standing {(Ref.(30)) pointed out that when Ta is
Jjust smaller than 2(2)'/2, the influence of the complex stationary phase
points can still be felt around t=Ta/4, and this region may contribute
significantly fo the integral. Therefore, the integrating range starting
at t=Ta should include the region around t=Ta/4 when Ta is just smaller
than 2(2)'/2, Note that for the case of (y-ya)=0 and (x-xa)<0, the point
of stationary phase is located at t=0 and the integrating range is from

tz-00to t=+0,

Case (i) |Ta-Tol>0 and Jy-val>0

For the case where |[Ta-To|>0 and |y-ya|>0, there is a pole at t=To,
if Ta>To and none if Ta<To. The integrating range is divided intoc two
segments, - %2 <t<T1 and T1<t<Ta. The latter is arranged to incliude the
pole at t=To if Ta>To. The point t=T1+ is chosen to be at least two
complete wave cycles from the point t=Ta-2.5 if Ta<To, or from the point
t=To~2.5 if Ta>To, in descending values of t and located at a maximum or

minimum of the function, Sin(|Aal), where Cos(|Aal)=0. The point, t=Ta-
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2.5 or t=To-2.5, 1is chosen on the ground that the 1influence of the
complex stationary phase points around the region t=Ta/4 will be
included in the integrating range when Ta is just smalier than 2(2)'/2.
The singuiarity at the pole, t=To, if present in the range, Ti1<t<Ta, 18

removed by Monacella’s method (Ref.(61)). The integral is made regular

by writing
Ta Ta
Sin(lAal) dt = Sin(JAal) — H(To) dt + H(To) LOg.i.Ta'Tol
(t - To) (t - To) T1-To
T T (2.5.8),
where H(t) = Sin(|Aa]) (2.5.9).

As before, the value of the integrand in the first integral on the right
hand side of equation (2.5.8) at t=To can be obtained by considering its

limiting value as t->To. Thus,

Limit Sin(JAal) = H(Te) = { Cos(}jAal) |Aal’lt=7o (2.5.10),
t->T,4 (t-To)

where |Aa|’ is the derivative of the function |Aa] with respect to t

given in expression (2.4.8).

The integral over the infinite range, - o <t<Ti, 1is truncated using
the method proposed by Huang and Wong (Ref.(31)). The infinite range is
truncated after a few cycles at a maximum or minimum of the function
$in(]Aal). The resulting integral 1is roughly a ’'mean’ value and further
extension of the range results 1in oscillations about this mean Tlevel.
Suppose that |Aal varies monotonically with t and (t-To) has the same

sign for t<Ti1. The infinite range can be rewritten as:
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T

0

+ 0 Tk
sin(JAal) dt = > __ sin(IAa]) dt (2.5.11),
(t - To) k=1 {(t - To)
Tk+1

where the points Tk and Tk+i1 (Tk>Tk+1) are chosen to be at successive
half cycle apart of the function Sin({Aaf) in descending values of t,
and located at a maximum or a minimum of Sin(lAal), where Cos(|Aal)=0.
The contributions to the integral from successive half cycles can be
regarded as terms 1in an alternating series which are normally of
decreasing magnitude and the series has the property that the difference
between its exact sum and its partial sum is not greater than the first
neglected term. Thus, the error in truncating the integral at t=Tn can
be estimated by the value of the integral over the next successive half
cycle. The integrating process therefore starts at t=Ta, integrating
through descending values of t to the point t=Ti, then it starts to
estimate the error 1in truncating the infinite range at t=T1 by
integrating over the next.successive half cycle. The integration process
stops when the estimated error is less than 1.0E-5. The program then
checks whether the points of stationary phase are included in the
integrating range. If not, the integrating process starts again at the
points of stationary phase, integrates through descending and ascending
values of t in both directions for at least two complete wave cycles in
each direction to a maximum or minimum of Sin(]Aal). The truncating
process is then repeated in both directions. The integrating range 1is
checked in each stage throughout the above process to ensure that no

part of the range is covered twice.

Case (ii) (Ta-To)=0 and ly-val>0

For the case where Ta=To and |y-ya|>0, the pole is located at the
upper 1imit of the integral, t=Ta. However, the integrand itself 1is not
singular at t=Ta since both ]|Aa] and (t-Ta) tend to zero as t tends to
Ta. The 1imiting value of the integrand as t approaches Ta from t less

than Ta is
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Limit S1n(lgé[! = - koV(1+Ta2) {y-vyal (2.5.12).

t->T, (t-Ta)

Note that the integrand has a jump at the point t=Ta, where its value is
negative when t 1is just less than Ta and is positive when t is just
greater than Ta. As 1in case (i), the 1integral is divided into two
segments, -oXt<Ty and T1<t<Ta, where the point t=T1 is chosen to be at
least two complete wave cycles to the negative t direction from the
point t=Ta-2.5 and is located at a maximum or minimum of Sin(|Aal).
There is no problem in evaluating these integrals as there is no
singularity present in both integrating ranges. The methods of
truncating the infinite range, -co<t<T1, and the integrations around the

stationary phase points are the same as those in case (1).

Case (iii) (vy-va)=0 and |x-xal>0

For the case where y-ya=0 and |x-xa|>0, the upper limit of the
integration is +c. The integral 1is then divided into three segments, - ®
<t<Ti, Ti1<t<T2 and T2<t<+0 . The points, T2 and Ti, are chosen to be at
teast two complete wave cycles of the function, SinjAal, from the
points, t=To12.5, and are located at a maximum or minimum of Sin(JAa}).
The singularity at t=To presents in the range, T1<t<T2, is removed by
Monacella’s method (Ref.(61)) (see expression (2.5.8)) and the point
itself is stepped over symmetrically to minimize errors. The truncations
of the infinite ranges, - 0 <t<T1 and T2<t<+9, are proceed in both
directions from the points, T:1 and T2. The truncating process about
stationary phase point at t=0 is then followed, if this region has not

yet been covered by the above integrations.

2.6 Some Computational Results for the Free Surface Elevation

In order to validate the present computing program with respect to
the evaluation of the free surface wave pattern generated by a constant
pressure element 1in an uniform stream, longitudinal and transverse wave

profiles induced by elements of various shapes were computed and
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compared with the numerical results published by Standing (Ref.(30)),
Huang and Wong (Ref.(31)) and Everest and Hogben (Ref.(63)). The
computed wave profiles are presented in a non-dimensional form, @gz/Po,
where z 1is the free surface e]evation,,ois the density of the fluid, g
is the acceleration due to gravity and Po is the pressure inside the

element.

Fig.(2.5a), fig.(2.5b) and fig.(2.5c) show the longitudinal wave
profiles along the centre 1line, y=0, of a non-drifted rectangular
element { geometry shown in fig.(2.4a) ) of aspect ratijo, B/L, of 10.0,
1.0 and 4.0, at a Froude number, Fn=C/(glL)'/2, of 0.57, where B is the
element’s width, L is the element’s length and C is the uniform stream
speed. It can be seen that the profiles obtained by the present
computational method are in excellent agreement with the results
obtained by Standing (Ref.(30)). For the high aspect ratio rectangle of
B/L=10.0, the present profile also reproduces Lamb’s (Ref.(62)) two
dimensional result closely with the wave length of the downstream wave
eqgual to 2TFn2 L. The accuracy of the present computations is indicated
by the degree of smoothness of the curves and in particular, the way the
waves die away upstream of the elements. Note that for the case of
B/L=0.4 1in fig.(2.50), there is a region of ripples developed downstream
from the element. These ripples are a genuine feature of the free wave
system, which has also appeared in the computational results obtained by
Standing (Ref.(30)), and are not due to numerical inaccuracies of the
present computations. Fig.{(2.5d) shows a three dimensional plot of the
wave pattern produced by the same rectangular element of B/L=0.4 at
Fn=0.57. Since the wave pattern is symmetric about the element’s centre
Yine, y=0, only the results for positive valugs of y are shown in the
figure. It can be seen clearly from this plot that the ripples displayed
in fig.(2.5¢c) are part of the diverging wave systems which originate
from the corners of the rectangle. The formation of these ripples,
however, may be due to the absence of viscous and surface tension
effects in the present 1linearized theory. More details about these

corner wave systems will be discussed in section 3.6.

Fig.(2.6) shows the non-dimensional transverse wave profiles along

the lateral centre line, x=0, along the forward face, x=0.5L, and along
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the rearward face, x=-0.5L, of a non-drifted rectangular element of
aspect ratio of 0.4, at a higher Froude number of 2.12. Again, the
present profiles are in exact agreement with those obtained by Standing
(Ref.(30)). Good agreement also exists between the present computational
results and those from Huang and Wong (Ref.(31)). However, in Huang and
Wong’'s solution, there are some oscillations in the bow profile, along
x=0.5L, near the corner of the element. These oscillations may indicate
that there are some numerical instability problems in their solution
around the element’s corner. No such oscillations were found either in
the present computations or in Standing’s results. The transverse wave
profile at a distance x=-L downstream from the centre of the same
element is shown in fig.(2.7a). The present results confirm the ripples
developed around the element’s side, y=0.2L, 1in Standing’s solutions.
Similar sort of ripples were aisoc observed in the transverse wave
profile further downstream at a distance x=-2L from the element’s
centre, as shown in fig.(2.7b). Again, these ripples appear around the
element’s side are a genuine feature of the present solutions and are
not due to numerical inaccuracies. It can be seen from fig.(2.5d) that
they are also part of the diverging wave systems produced by the
pressure element although the two Froude numbers are not the same. The
reason for the formation of these ripples will be discussed further in
section (8.2). Note that these ripples are roughly antisymmetric about

the element’s side, y=0.2L.

Fig(2.8a) and fig.(2.8b) show the wave profiles around the periphery
of a rectangular element of aspect ratio of 2/3, at a drift angle of 30°
( geometry shown in fig.(2.4b) ) and at a Froude number of 0.6. Again,
the present results are 1in exact agreement with those obtained by
Standing (Ref.(30)). Generally good agreement alsd exists between the
present profiles and the free wave profiles obtained by Everest and
Hogben (Ref.(63)) for the same rectangle in a channel of finite width.
Note that the present wave profiles along the forward facing edges, AD
and AB, have different mean levels from those obtained by Everest and
Hogben. These differences may due to the contribution of the local wave
terms, which have been neglected in Everest and Hogben’s solutions.

However, a further computation of the profiles along AD and AB excluding
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the local wave terms has only produced a slightly better agreement

between the two results.

The final set of comparisons are for the longitudinal wave profiles
along y=0, y=0.24D and y=0.42D of a circular element of diameter D. As
shown in fig.(2.4c), the circle was represented by a 12-sided polygon
and two Froude numbers, Fn=C/(gD)'/2, of 0.4 and 0.5 were considered.
The profiles obtained by the present computational method together with
those obtained by Standing (Ref.(30)) are shown in fig.(2.9a,b,c) and
fig.(2.10a,b,c). Again, excellent agreement has been obtained between

the two results.

The generally good agreements between the present computational
results and those obtained by other authors confirm the validity of the
present computing program used in the evaluation of the free surface
elevations induced by constant pressure elements in an uniform stream.
The application of these elements to the determination of the pressure
distribution under a planing surface will be discussed in the following

chapter.



CHAPTER (3) The Application of Constant Pressure Elements

to Planing Problem

3.1 Formulation of the Problem

In this chapter, the constant pressure elements derived in the
preceding chapter will be applied to determine the pressures under the
wetted bottom of a planing craft. We will consider the steady state
motion of a craft gliding at a constant speed, C, over the surface of
calm water. The trim angle or the angle between the wetted surface and
the undisturbed free surface is assumed to be small so that the splash
configuration at the leading edge can be ignored and linearized

potential flow theory can be adopted.

when a craft is planing over a water surface, the wetted bottom of
the craft is divided into two regions. A sketch of the typical Qetted
bottom of a planing prismatic surface is shown in fig.(5.1). The area
forward of the spray root line (stagnation line) is known as the spray
area and the area behind the spray root line is the pressure area. The
pressure in the spray area is nearly atmospheric, therefore it only
contributes to the total drag and does not carry any portion of pressure
load. The pressure area is the load carrying area of the planing bottom.
The ’'wetted bottom area’ used in the present computations refer to this
load carrying area of the wetted bottom and does not include the forward

thrown spray sheet.

The x-y-z Cartesian coordinate system adopted is the same as that in
chapter two. The motion is made steady by fixing the frame of reference
in space and imposing an uniform stream of velocity, C, to the negative
x-direction. The presence of the planing surface is modelled by an
unknown pressure distribution on its wetted bottom projected on the
plane of the undisturbed free surface. Making the usual assumptions of
irrotational linearized potential flow, the flow field generated by
these unknown pressures can be represented by a total velocity
potential, O(x,y,z), given by a perturbation velocity potential,

¢(x,y¥,z), and the imposed uniform free stream of velocity, C. Thus,
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Dx,y,2) = p(x,y,2) - Cx (3.1.1)

and the corresponding fluid velocity vector, q(u,v,w), at the point

(x,¥,2) inside the fluid domain is given by:

au,v,w) =y ( ¢(x,y,z) - Cx ) (3.1.2).

By means of discretization, the unknown continuous pressure
distribution on the projected wetted bottom of the planing surface can
be replaced by an equivalent finite element mesh consisting of a number
of constant pressure elements, each of different strength. Typical
finite element meshes representing the projected wetted bottom of a
planing flat plate and a planing prismatic surface are shown 1in
fig.(4.2) and fig.(5.2). It has been shown in chapter two that the
perturbation velocity potential, ¢i(x,y,z), induced by the ith element
of constant pressure, Pi, which satisfied the Laplace equation (2.2.3),
the linearized free surface kinematic and pressure conditions (2.2.6)
and (2.2.7), the infinite depth condition (2.2.9) and the radiation

condition (2.2.10), can be expressed in the form of

$i (X,¥,2) = Pi gi(x,y,z) (3.1.3),

where a:(x,y,z) denotes the perturbation velocity potential induced by

the ith element of unit pressure. From the 1linearized free surface
pressure condition (2.2.6), the free surface elevation induced by the

ith element, E:(x,y), is

Eix,y) = Pi Ei(x,y) (3.1.4),
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where Six,y) = C 2 - §; (3.1.5)
g o X 220
and §$i = 1/pg for a field point (x,y) inside the element
éi = Q for a field point (x,y) outside the element

5i = 1/2/09 for a field point (x,y) on the boundary of the
element.

If the projected wetted bottom of the planing surface is represented
by a number of n constant pressure elements, the total velocity

potentia],j@&gy,z), induced by the discretized pressure distribution at
a point (x,y,z) inside the fluid domain is

Dx,y,2) = 2 P g?(x,y,z) - Cx (3.1.6).
iz=1

Similarly, the free surface elevation, &(x,y), at a point (X,y) on the

free surface due to the discretized pressure distribution is

n

Ex,y) = 2 i Ei(x,y) (3.1.7).

iz

Inside the fluid domain, the total velocity potential, 0(x,vy,z), is

required to satisfy the Laplace equation, thus
n
> e | P o= 0 (3.1.8).

i v x
1:1%6){2 ay2 822
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Assuming that the fluid disturbance generated by the planing motion and
the deformation of the free surface are both small, the linearized free

surface pressure condition applied on the undisturbed free surface, z=0,
is

™,

- PLLY) = 2 Pi &i(x,y) = E(x,Y) (3.1.9)

Cc bﬁ_jgx,y! P
g ax gp i=1

i=t

11

L 1

on z=0

and the linearized free surface kinematic condition applied on z=0 is

iz=1

2> dilxay) Pio= - C 3 Ei(x.v) Pi = —C E(x.v) (3.1.10),
oz i=1 DX dx
on z=0

where P(x,y) 1is the pressure on the free surface. It is clear that
P(x,y) is equal to zero, i.e. atmospheric pressure, on the part of the
free surface outside the projected planing wetted bottom. Inside the
projected wetted bottom, P(x,y) 1is the unknown pressure distribution
represented by the n unknown pressure strengths (P1 to Pn).E&(X,y) and
3E(x,y)/ 3x denote the free surface elevations and free surface slopes,
which are equal to the hull displacements and huli slopes on the part of
the free surface covered by projected planing wetted bottom. In

addition, the velocity potential, ﬁkx,y,z), is also required to satisfy
the infinite depth condition:

M.
=g

Pi = 0 as z -> -0 (3.1.11)

u
o
™

and the radiation condition:

41



n _
V2 ¢ Pi = 0 as x -> + 00 (3.1.12),
1

which assures that no gravity wave will propagate upstream.

Since the form of the velocity potentials, Pi&: (i=1 to n), of the n

elements is chosen in such a way that each potential satisfies the
Laplace equation, the infinite depth condition and the radiation
condition, conditions (3.1.8), (3.1.11) and (3.1.12) will be satisfied
by any arbitrary pressure distribution (Pi to Pn). Either the linearized
free surface pressure condition (3.1.9) or the free surface kinematic
condition (3.1.10) can be wused to set up the rigid hull boundary
condition under the planing bottom for solving the unknown pressures. In
addition, it s also required to satisfy a Kutta condition at the
trailing edge of the planing surface in order to ensure that the flow
separates smoothly from the transom. It should be noticed that the
pressure solution obtained from either rigid hull boundary condition
will satisfy both free surface conditions (3.1.9) and (3.1.10), since
both the linearized free surface pressure and kinematic conditions have
been satisfied in deriving the basic velocity potential, Pi ET, and the
corresponding free surface elevation, P é:. Both methods of solution

will be considered in the following section.

3.2 The Hull Boundary Condition

The total displacement, Z(x,y), of a planing hull above the
undisturbed free surface can be expressed as the sum of the local hull
displacement above the transom level, f(x,y), and the rise height along

the transom above the level of the undisturbed free surface, h(y). Thus,

Z(x,y) = f(x,y) + h(y) (3.2.1),
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where the distance, x, 1is measured forward from the transom and the
distance, y, is measured from the centre line of the projected wetted
bottom. Since the shape of the projected wetted bottom is assumed to be

known 1in the present computational method, the transom rise heights,
h(y), have to be treated as 'unknowns and determined as part of the
solution. If the projected wetted bottom is divided into ;m buttock
strips (as shown in fig.(4.2) for m=5 and in fig.(5.2) for m=4), this
will introduce an extra m number of unknown rise heights, one at the
trailing edge of each buttock. Thus, the known quantities are the local

hull displacement function, f(x,y), the speed, C, and the shape and
extent of the projected wetted bottom and the solutions required to be

determined are the n unknown pressures (P1 to Pn) and the m unknown

trailing edge rise heights (h1 to hm ).

As mentioned in section (3.1), there are two ways to set up the
rigid hull boundary condition under the wetted bottom for determining
these unknowns. The rigid hull boundary condition can be derived either
by equating the free surface slopes *o the hull slopes using the
linearized free surface kinematic condition (3.1.10), or by equating the
free surface elevations to the hull displacements using the linearized

free surface pressure condition (3.1.9).

First, we will consider the hull boundary condition derived from the
free surface kinematic condition. This hull boundary condition requires

that

1 29X, y) = =pZ(X.,y) = -2f(x,y) on z=0 (3.2.2a)
c oz OX X

to be satisfied at the field points, (x,y), on the part of the free
surface covered by the projected wetted bottom. By applying the
discretized form of condition (3.2.2a) to the control points of the n

elements, we have at the control point of the jtn element,
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1) abi(xiyi) Pio= - DF(xiLyi) on z=0 (3.2.2b),
c 3

for j = 1t ton

where (xj,yj) denotes the coordinates of the control point inside the
jth e]ement. These provided a number of n linear simultaneous equations
for solving the n unknown pressures. However, it can be seen that
equations (8.2.2b) do not involve the determination of the unknown
trailing edge rise heights (h1 to hm). The extra m equations required to
determine these unknown trailing edge rise heights can be derived from
the Kutta condition, which states that the flow should be separated
smoothly from the transom edge of the planing bottom. In order to
maintain the continuity of the flow from the planing bottom to the pait
of the free surface of atmospheric pressure, the rise heights along the
trailing edge must equal to the free surface elevations induced by the
pressure distribution there. Thus, by applying the linearized free
surface pressure condition (3.1.9) to the points lying just outside the
trailing edge of the m buttock strips where the pressures are

atmospheric, we have at each such points,

n
he = 2 C 2di(Xk.vk) Ps on z=0 (3.2.3),
i=1 g o X

for k= 1 tom

1

where m 1is the total number of buttock strips, (xk,vyk) 1is the
coordinates of the chosen point Tying just outside the trailing edge of
the k*h buttock strip and (Pi to Pn) are the pressure solution
determined from the system of 1linear simultaneous equations (3.2.2b).
The locations of the points, (xk,yk), with respect to the projected
wetted bottom are shown in fig.(4.2) and fig.(5.2), where the kth
buttock is denoted by Bk 1in the figures. The total hull displacement
along the kth buttock strip at a distance, x, from the transom is then
given by the sum of hk and f(x,yk). It should be noted that the above

method of solution involves the evaluation of two sets of integrals,
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35:/32 for solving the n unknown pressures and 35:/ax for determining

the m unknown trailing rise heights.

An alternative method of solution 1is to set up the rigid hull
boundary condition under the planing bottom using the linearized free
surface pressure condition (3.1.9). This approach is preferred to the
one discussed above since it only involves the evaluation of one set of
integrals, bg:/ax or é:} and the unknown trailing edge rise heights are
determined as part of the solution together with the unknown pressures.

To satisfy this rigid hull boundary condition, the total hull

(=

isplacement at a field point, (x,y), on the part of the free surface
covered by the projected wetted bottom must equal to the free surface
elevation induced by the unknown pressures there. Thus, on this part of

the free surface, we have

c aégx,y) - P(x,y) = f(x,y) + h(y) (3.2;4a).
9 X L9 .
on z=0

By applying the discretized form of (3.2.4a) to the control points of

the n elements, we then have at the control point of the jth element,

n n
L gasm%mm - Py = ) Py Eilxi,va) = flxs,ys) + hk
| i=1 g X

IOg i=1

1

on z=0 for j=t ton (3.2.4b),

where (xj,yj) 1s the coordinates of the control point inside the jth
element and hx is the trailing edge rise height of the k*h buttock strip
containing the jth element (see fig.(4.2) and fig.(5.2)). Condition
(3.2.4b) only provides n linear simultaneous equations. The extra m
equations required are obtained by satisfying the Kutta condition at the
trailing edge of each individual buttock strips, which eventually leads

to the m simultaneous linear equations given in (3.2.3). It should be
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noted that, now, the pressures (Pi1 to Pn) 1in (3.2.3) are unknowns and
have to be determined together with the unknown transom rise heights (h
to hm) by sé]ving the m+n linear simultaneous equations given in (3.2.3)
and (3.2.4b). Once again, the author would 1like to point out that
although only the linearized free surface pressure boundary condition
has been satisfied explicitly 1in setting up the above m#n linear
simultaneous equations, the linearized free surface kinematic boundary
condition will be satisfied implicitly since the chosen form of the
basic velocity potentials, P; E?, and the basic free surface
elevations, P; ET, individually satisfy both 1linearized free surface

boundary conditions.

3.3 The Kutta Condition

It has already been mentioned in the previous section that the
present method of solution requires the shape of the projected wetted
bottom to be prescribed, as well as the local hull displacement above
the transom level, f(x,y), and the planing speed, C. Therefore, an
unique pressure solution can only be obtained if the trailing edge rise
heights, h(y), are also treated as unknowns and determined as part of
the solution of the problem. This aspect of non-uniqueness can clearly
be seen by considering the set of n linear simultaneous equations
derived in (3.2.4b). One can solve this set of equations for the n
unknown pressures by prescribing arbitrary values of h(y), however, the
resulting pressure solution will not be necessarily correct and
unrealistic pressure distribution could result. This is due to the
incompatibility between the prescribed wetted bottom shape and the
prescribed transom rise heights. This aspect of non-uniqueness in the
solution has also been discussed by other authors such as Tuck

(Ref.(27)) and Oertel (Ref.(28)).

In the present method of solution, the extra equations required for
solving these unknown trailing edge rise heights are provided by the
Kutta condition at the trailing edge of the planing bottom. When a
surface 1is under planing condition, the Kutta condition requires that
the fluid under the planing bottom to separate smoothly from the transom

edge. The method adopted 1in section (3.2) to satisfy this condition is
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to ensure that the free surface wave profile induced by the unknown
pressures (P1 to Pn) is continuous at the trailing edge of the planing

bottom so that the smooth flow separation condition is maintained.

Alternatively, the Kutta condition can also be satisfied by ensuring
that the fluid pressures go to zero, i.e. atmospheric pressure, at the
trailing edge of the planing bottom sc that there is no discontinuity of
pressure as the fluid leaves the transom edge. This ’Kutta zero pressure
condition’ at the transom edge can be achieved by adding one extra
element of zero pressure to the trailing edge of each buttock strip.
Since the pressuie of these extra elements are prescribed to be zero,
the number of unknown pressures and unknown trailing edge rise heights
required to be determined are unaltered. By applying the rigid hull
boundary condition (3.2.4b) to the control points of the additional m
elements will then give the m extra equations required to solve for the
n unknown pressures and the m unknown trailing edge rise heights. If the
lengths of these extra elements are small so that their control points
tie just outside the trailing edge of tﬁe buttock strips, it can be
shown that the extra m equations obtained from this ’Kutta zero pressure
condition’ are identical to those obtained by the method adopted in

section (3.2).

In the present computational method, the Kutta condition 1is only
satisfied at the trailing edge of the planing bottom. From a physical
point of view, this seems to be sufficient. Doctors (Ref.(29)) suggested
that in the non-linear viscous situation with surface tension, there is
effectively a Kutta condition to be applied along the entire perimeter

of the planing surface.

In order to verify that the Kutta condition has been satisfied
satisfactory at the transom edge so that there is no discontinuity in
the flow as the fluid leaves the planing bottom, the wake depression
behind a planing flat plate of wetted length to beam ratio, Lw/B, of
2.0, at a beam Froude number, Cv, of 3.17 was computed. These wake
profiles were computed by substituting the pressure solution obtained by
the method discussed in section (3.2) into the linearized free surface

pressure condition (3.1.9) and evaluated on the undisturbed free
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surface, z=0. The rectangular wetted bottom of the planing flat plate
were divided into five equal sized buttock strips and the resulting
pressure distribution is shown in fig.(4.6d). It can be seen that the
resulting pressure distribution has a singularity at the leading edge
and the pressures go to zero at the trailing edge. This leading edge
pressuie singularity, which represents the splash configuration at the
spray root region and is ignored in a 1linear theory, 1is a common
characteristic of all the pressure distribution obtained by the present

theory.

The computed wake profiles along the centre line, y=0, along y=0.4B
and along y=0.7B cutside the planing bottom are shown in fig.(3.1a),
Ti1g(3.1b) and fig.(3.1¢c) in a non-dimensional form, z/(B Tan(T)), where

is the wetted beam.
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ocated at x=0 and the leading edge 1is located at x=2.0B. Note that
although the predicted pressure distribution is a step function, the
ree surface wave profiles dinduced by these discretized pressures are

he wake

ct

continuous along the free surface. It can be clearly seen that
arates smoothly from the transom which confirms that the Kutta
condition has been satisfied at the trailing edge of the plate. The
ormation of the splash 1is also observed in fig9.(3.1c). One can also
rat these wave profiles have died away smoothly upstream from the
jeading edge, indicating that the radiation condition has also been
satisfied. The present centre line wake profile has also been compared

ith the wake depression formula developed by Epshtein (Ref.(64)):

%
—t.

z = h Cos(kx) + Tc Sin(kx) (3.3.1),
K
where K = _(8/mM1/2 ,
B Cv2

z is the free surface depression (downward positive) at a distance x

downstream from the transom, h is the immersion of the transom below the

oS
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undisturbed free surface and Tc is the trim angle in radians. The
centire 1ine transom immersion predicted by the present theory, which is

h/(B T ¢) = 1.666, was used in the above formula to obtain the wake
profile. As shown 1in fig.(3.1a), reasonably good agreement exists
between the two results. In particular that the present wake profile
seems to confirm the zero crossing point given by the formula. The
accuracy of the present computations is also indicated by the degrees of

smoothness of these curves.

3.4 Output Hull Shapes

In the present computational method, the vertical locations at the

atise

(4]

trailing edge of the buttock strips, h{(y), cannot be prescribed be
the shape of the projected wetted bottom has already been assumed. As a
consequence, the transverse section shape of the planing surface will
also be part of the solution though the longitudinal hull profile can be
specified by the input 1local hull displacement function, f(x,y),.above
the transom level. The output vertical locations above the undisturbed
free surface, Z(x,y), across a transverse section at a distance, x,

forward of the transom are given by:

Z(x,y) = T(x,¥) + h(y) (3.4.1),

which are dependent on the output rise heights, h(y), along the transom
as well as the ﬁnput function, f(x,y). Note that h(y) 1is constant along

a given buttock strip.

The transverse transom shape is presumably dependent on the shape of
the prescribed projected wetted bottom and in particular, the geometry
of the spray root profile. For example, as shown 1in fig.(3.2a) and
fig.(3.2b), for an input local hull displacement above the transom level
defined by the function f(x,y)= xTan(T), a nearly flat transverse
transom will be obtained if the projected wetted bottom is rectangular
in shape, while a swept back spray root profile will result in a vee-
shape transverée transom. The predicted shape of the transoms shown in

these figures are slightly curved instead of being perfectly straight.
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This 1is due to the slight imperfection in the assumed spray root
profiles, which should have a slight curvature in practical situations.
The present computations also show that these output section shapes are
dependent on the spray root geometry but are independent of the planing

speed.

Obviously, a direct approach to the problem is to prescribe the hull
shape and to determine the required wetted bottom shape and transom rise
height, which 1is constant along the transom, as part of the solution
together with the pressure distribution. This can be achieved by an

teration process based on the change in transverse transom shape

—e

against the change in spray root geometry - 1i.e. the change in wetted
length of each buttock strip (also see section 3.7). However, such an
approach could be time consuming since it will require the recalculation
of the pressure distribution at each stage of the iteration. Further-
moire, the rate of convergence is dependent primarily on the 1n1t1a1
estimation of the wetted bottom shape and conseguently convergence might

be difficult to achieve.

3.5 Convergence Behaviour

In this section, we investigate the convergence behaviour of the
present finite element method on the determination of the pressure
distribution under a planing surface. As in any finite element scheme,
the fineness of the mesh has to be varied until the computed quantity
converges. It is of particular importance to have a good understanding
of the convergence behaviour of this method in order to optimize the
number of elements used in the finite element mesh, hence the computing
time, and to avoid any divergence in the computed gquantity. Both the
transverse and the longitudinal convergences of the  pressure
distribution will be investigated aiming to optimize the number of
buttock strips and the number of longitudinal elements in each buttock.
The longitudinal convergence of the pressure distribution for a given
wetted bottom is obtained by fixing the number of buttock strips and
increasing the number of elements in each strip until the pressure
distribution converges. Similarly, the transverse convergence of the

pressure distribution is achieved by fixing the number of elements in
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gach buttock strip and the number of buttocks 1is increased until the

pressure distribution converges.

It was found that for a fixed number of buttock strips, the computed
pressure distribution converged fairly rapidly with the increase in the
number of elements in each buttock. Fig.{(3.3a,b) and fig.(3.4a,b) show
the predicted pressure distributions along the centre line and along the
chine of a planing flat plate with wetted length to beam ratios, Lu/B,
of 2.7 and 1.2, at beam Froude numbers, C/(gB)'/2, of 3.5 and 2.42
respectively. The rectangular wetted bottom of the plate was divided
into five buttock strips, each of equal width, and each strip was sub-
divided into 5 to 50 equal sized elements. It can be seen from the
figures that the pressure distributions ccnvnge rapidly both along the
centre line and the chine of the plate. Even with only 10 elements in
each buttock, the pressures predicted are in good agreement with those
obtained when 50 elements are used. Equally fast convergence rates were
also evident in the predicted 1ifts, longitudinal centre of pressure
positions and transom rise heights. Fig.(3.5a,b,c) and fig.(3.6a,b,c)
show these computed quantities as a percentage of their respective
values computed using 50 elements in each buttock. It was found that
aven with only five equal sized elements 1in each buttock strip, the

results obtained were over 94% of those predicted by using 50 elements.

However, unfortunately, the convergence of the pressure distribution
in the transverse sense is not as well-behaved. It was found that the
pressure solutijons obtained by the present method have a divergent
tendency when the number of buttock strips is increased. For a planing
flat plate with a rectangular wetted bottom, this pressure divergence
was found to occur initially at the chine, near the trailing edge of the
plate. Fuither increases in the number of buttock strips resulted in the
spreading of this divergence toward the leading edge and the centre line
of the plate. It was also found that the number of buttock strips that
could be used before there is any sign of divergence in the pressure
distribution varies directly with the speed and the aspect ratio, B/Lw,
of the plate. Fig.(3.7a) and fig.(3.7b) show the 1lateral pressure
distributions at various distances along the length of a rectangular

wetted bottom of Lw/B ratio of 0.5, at beam Froude numbers of 1.5 and
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2.5, when different number of buttock strips are used. Again, equal size
rectangular elements were used in the computations with each buttock
divided into 15 elements. It can be seen that in the high beam Froude
number case, j.e. Cv=2.5, the present computational method is
comparatively more stable and there is no sign of pressure divergence up
to eleven buttock strips being used. However, at a lower beam Froude
Tumber of. 1.5, divergence 1in the predicted pressure distribution is
spotted at the chine at station {(A), at a distance of Lw/30 forward of
the trailing edge, when only seven buttock strips are wused. The
spreading tendency of this pressure divergence with the increase in the

number of buttocks is also demonstrated in fig.(3.7b).

Unrealistic oscillatory pressure results were also cbtained for
rectangular wetted bottom of large Lw/B ratio at low beam Froude number
when large number of buttocks were used. These oscillatory pressures are
shown in fig.(3.8a) and fig.(3.8b) for rectangular wetted bottom of. Lw/B
ratio of 1.8, at a beam Froude number of 1.5 when nine buttock strips
are used. Note that the pressure oscillation along the chine is more
violent than that along the centre 1line with a region of negative
pressure developed near the trailing edge. Also note that the
oscillation has completely died away both along the chine and the centre
Tine when the number of buttock strips is reduced to five. Similar
oscillatory and divergent behaviours were also observed in the pressure
solutions obtained from wetted bottoms with a swept-back spray root. But
in this case, as shown in fig.(5.9) of chapter five for Cv=1.512, the
divergence and the oscillation are originated from the region near the

centre line, where the wetted length is maximum.

3.6 The Causes of Pressure Divergence and Pressure QOscillation

Doctors’ finite element method (Ref.(29)) also showed a similar type
of deteriorated pressure distribution to those displayed in fig.(3.8),
especially for planing surfaces - his theory had only been applied to
flat plate and constant deadrise prismatic surfaces - of large wetted
length to beam ratio at low beam Froude number. Doctors suggested that
these deteriorated pressures were probably due to the imprecision of the

influence coefficients in the matrix, and this ipaccuracy coupled with
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the round-off error inherent in a large matrix system may be responsible
for the occurrence of this pressure divergence. However, when the
accuracy of the present integration was increased by assigning smaller
step sizes 1in the integrating process, there was no change 1in the
resulting pressure distribution nor 1in the free surface response
produced by a single element. Moreover, if there was any serious round-
off error problem, it should have manifested itself by preventing the

pressure distribution converging in the longitudinal sense.

Since the hull displacement vector - defined by the input local hull
displacement function f(x,y) - 1is not oscillatory, these pressure
oscillations can only be caused by some oscillatory patterns built into
the system matrix. For a rectangular projected wetted bottom divided
into equal sized rectangular pressure elements, the influence
coefficients 1in the system matrix are basically equal to the free
surface response produced by an element of unit pressure. A close
examination on the free surface wave profiles produced by such an
element reveals that a more 1likely cause for this divergence and
oscillation 1is the type of element wused. Fig.(3.9) shows the non-
dimensional free surface wave profiles along the centre 1line of a
constant pressure rectangular element of width 1/5 B and length 1/10 B
at various beam Froude numbers, where B is the beam of the rectangular
projected wetted bottom. It can be seen that there is an increase in the
number of wave cycles in the downstream wave profile as the beam Froude
number decreases from 5.0 to 1.5. One can also see from the non-
dimensional wave profiles presented in fig.(3.10a,b,c) that, for a fixed
beam Froude number and element’s 1length, the wave length of these
downstream waves decrease with the width of the element. It is now clear
that the oscillatory patterns in the system matrix are caused by these
short period downstream waves, and as a result, the pressure solution is
forced to oscillate in order to satisfy the hull boundary condition set
up on the planing wetted bottom. Wave profiles such as those shown in
fig.(3.9) and fig.(3.10) can therefore be used as a guide-line for
estimating the approximate number of buttocks that can be used for a
particular wetted length to beam ratio and beam Froude number before any
oscillation in the pressure distribution occurs. It was found that the

maximum buttock length has to be less than about three quarters of the
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first downstream wave length produced by the leading edge element in

order to avoid the pressure oscillation problem.

Perhaps a better way to understand the reason for the formation of
these short period downstream waves 1is to consider the wave pattern
produced by the corner wave function. The presence of a constant
pressure rectangular element can be represented by four corner wave
sources, each at a corner of the rectangle and each mathematically
equivalent to the sum of the 1local wave and the free wave corner
functions at that corner, as shown in fig.(3.11a). Thus, we can write
the free surface elevation at a field point (x,y) given by a rectangular

element of constant pressure, Po, as:

E(x,y) = _Po_ [ C(x-xa,y-ya) - C(x-x8,y-ys) + C(x—xc,y-yc)
P9 '

- C(x-Xp,y-yp) + & ] (3.6.1),

where (xa,ya), (xs,ys) etc are the coordinates of the corners of the
rectangle as shown in fig.(3.11a), § has its usual meaning of either 1,

/2 or 0 according to the location of field point (x,y) with respect to
the rectangle and C(X,Y) 1is the non-dimensional corner wave Tunction

given by:

C(X,Y) = L(X,Y) + F(X,Y) (3.6.2).

For a rectangular element with To equal to zero in expressions (2.3.8)
and (2.3.9), the non-dimensional local and free wave corner functions

can be written as:

54



LIX,Y) = M gl )d dt (3.6.3)
22 t
T
and F(X,Y) = - _M Sin(1A D) dt (3.6.4),
7 t
-
in which Az ko ( X+ JY)It ) (1 + t2)1/2 (3.6.5)

and, with (x-xa) and (y-ya) replaced by X and Y, M and T have the same
meanings as Ma and Ta in the expressions. For a rectangular e]ement, it
can be shown that C(X,Y) = -C(X,-Y). Further, as mentioned earlier in
section (2.3), the wave pattern produced by each corner wave function,
C{X,Y), is speed dependent but does not depend on the length and the

width of the element.

Fig.(3.11b) shows two three dimensional plots of the non-dimensional
corner wave function, C(X,Y), of a constant pressure rectangular element
at different view angles. The horizontal distances X and Y are non-—
dimensionized using the fundamental wave number, Ko=g/C?, as koX and koY
so that the function is independent of speed. It can be seen from these
3-D plots that there is a diverging wave system originating from the
corner (X=0 and Y=0). One can also see that, for large values of koY,
the transverse wave length is equal to 2TW/ko which is the downstream
wave length along the centre line of a rectangular element of infinitely
Jarge width to length ratio. This corresponds to a wave length of 2TCv2B
if B is the projected wetted beam of the planing plate and Cv is the
beam Froude number. It is clear that the wave length of these transverse
waves is much longer than those shown in fig.(3.9) and fig.(3.10) and

should not be responsible for producing the short period downstream
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waves shown in the figures. It was found that the diverging waves
produced by the four corner wave functions are responsible for the

formation of these short period downstream waves.

The interaction between the four corner diverging wave systems is a
complex phenomenon. However, for simplicity, we can combine the two
corner wave functions at corners A and D, and also the two at corners B
and C, to form two wave patteins originated from the corners A and B, as
shown in fig.(3.11c). Note that each of these combined wave patterns is
now a function of element length, but is still independent of the width
of the element. Now, it can be seen clearly from fig.(3.11c) that the
formation of the short period downstream waves along the element’s
centire line is caused by the interference between the two diverging wave
systems produced by the two combined corner wave functions at corners A
and B. Furthermore, for a fixed element length, the width of the element
can then be adjusted by varying the lateiral distance between the two
combined corner wave functions. It can be seen from fig.(3.11d) that the

reducing the element’s width is to produce more oscillations
1

Fig.(3.12a,b) demonstrates the effect of element’s length on the

resulting free surface wave profiles. At each of the two speeds

the eiement is allowed to vary from B
figures is measured from the centre o

there is no phase shift in the downstiream wave profiles for the range of
element’s lengths considered, while the wave amplitudes vary fairly
Tinearly with the area of the element. This would explain the goo
behaviour of the pressure solutions obtained when the number of elements

is increased in the longitudinal sense.

Returning to the pressure divergence and oscillation problems, since
the formation of these short period downstiream waves 1is a genuine
characteristic of the present constant pressure element and is not due
to numerical inaccuracy, a cure to the problem can only be sought by
deriving elements of different form or by considering alternative

approaches to the problem. For a Kelvin wavemaking source, it is known
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that in practice situation with viscous effects and surface tension
included, the diverging wave crests will not extend to the source
itself. It is therefore very Tikely that the neglect of these viscous
effect and surface tension in the present theory are responsible for the
formation of these short period waves at low speed. It would be tempting
to suggest that the re-formulation of the present theory by including
the effects of viscous and surface tension or some sort of artificial
damping 1in the governing equations could well be a direct way to
overcome the present convergence difficulty and oscillatory pressure
problem. In order to avoid the oscillation in the pressure solution, a
maximum number of six buttock strips will be used in the 1later
computations so that reasonably good results can be expected. On the
other hand, a few elements in each buttock strip will be adequate to

achieve reasonably good results.

3.7 The Determination of Wetted Lengths and Trim Angles for a given
Craft’s Loading Condition

For a particular craft, the hull geometry, displacement and centre
of gravity position are specified. At a given speed, the equilibrium of
the craft can only be maintained if the 1ift generated by the planing
motion 1is egual to the weight of the craft and the pitching moment
produced by the bottom pressures is zero about the craft’s centre of
gravity. Therefore, the direct approach to the problem 1is clearly to
determine the wunknown running trim, wetted bottom area, transom
immersion and bottom pressures which will provide for these equilibrium
conditions. As mentioned earlier in section (3.4), this direct problem
would be difficult to solve since it involves the integration over an
unknown wetted area and the convergence of the iteration process in
obtaining the right wetted bottom shape might also be difficult to

achieve,

However, such a direct approach to the problem has been achieved by
Doctor (Ref.(29)) who also used a finite element method. The pressure
elements used were rectangular in shape with a pyramidal pressure
distribution and the method has been applied to both planing flat plate

and prismatic hulls. In his solution, the weight and the longitudinal
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centre of gravity position of the craft were derived from its
hydrostatic condition. An initial estimation of the wetted length was
obtained from Savitsky’s empirical formula for the longitudinal location
of centre of pressure (4.4.1). The solutions were then determined by an
iterative procedure. For an estimated wetted bottom shape, the pressure
distribution, trim angle and trailing edge immersions were obtained by
satisfying the rigid hull boundary condition, the Kutta condition and
the equilibrium conditions of the craft. At each stage of iteration,
correction to each buttock length was made by considering the change in
the errors 1in not satisfying the Kutta condition at the trailing edge of
the buttocks due to an increment in the length of each buttock 1in turn.
The method predicted the amount of wetted area of flat plates and

prismatic hulls to within a few percent of those derived from the

Savitsky’s formula.

In the present approach, the shape of the wetted bottom, the trim
angle, the wetted beam and the speed are required to be prescribed and
the 1ift, the longitudinal centre of pressure location and the
immersions at the trailing edge of each buttock are determined as the
solution. In order to obtain the running trims and running wetted
lengths for a craft of specified loading condition for a given speed
range, it would be necessary to carry out computations for the 1ift and
Tongitudinal centre of pressure position for an assumed range of wetted
length to beam ratios and trim angles at each speed. The required
running trim and running wetted length can then be determined by an
interpolating method based on matching the weight and the 7longitudinal
centre of gravity position of the craft to the pre-calculated 1ifts and
Tongitudinal centre of pressure positions. For a heeled or vawed craft,
one can also pre-calculate the rolling moments, yawing moments and sway
forces arising from the asymmetric bottom pressures for the assumed
ranges of trim angles and wetted length to beam ratios. The required
rolling moment, vyawing moment and sway force for the heeled or yawed
craft at a particular Tloading condition can then be determined by a
similar interpolating process once the running trim and running wetted
length have been obtained. The following flow diagram outlines the
general procedures of the solution scheme. More details concerning this

interpolating method will be discussed in the later chapters.
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CHAPTER (4) Some Results for the Planing of a Flat Plate

4.1 Introduction

This chapter presents results derived from the present theory for
planing flat plates. As shown in fig.(4.1), the projected wetted bottom
of the planing plate was taken to be rectangular in shape and the slight
curvature at the spray root was ignored. A typical finite element
representation of this rectangular projected wetted bottom is shown in
fig.(4.2). The number of buttock strips used in the computations varied
from three at low Froude numbers to five at high Froude numbers. The
input local hull surface displacement above the transom level was
defined by the function, f(x,y)=x, instead of f(x,y)=Tan(T)x. Therefore,
the resulting solutions were P/Tan(T) and H/Tan(T), where P 1is the
pressure under the wetted bottom and H 1is the transom immersion of the

individual buttocks, both being independent of the trim angle, T.

The transom immersions, 1ift coefficients and longitudinal centre of
pressure positions predicted by the present theory will be compared with
the results obtained from the Savitsky’s empirical equations (Ref. (44))
and the theoretical predictions of Wang and Rispin (Ref.(26)) and
Doctors (Ref.(29)) in sections (4.2), (4.3) and (4.4). The Savitsky’s
empirical equations, which are applicable to both flat plate and
constant deadrise prismatic hulls, were derived by f1tt1ng- simple
formulae to a large collection of experimental data. The accuracy of
these equations is not exactly known; however they do give an overall
representation of the experimental values for a wide range of speeds,
trim angles and wetted Jlengths. Comparisons of the present pressure
distribution have been made with the experimental results of Sottorf
(Ref.(34)) and Jahangeer (Ref.(66)) and the theoretical curves of Wang
and Rispin (Ref.(26)), and these results will be presented in section
(4.5). Finally, the method to determine the running trim angle and
running wetted Jlength for a planing plate of specified weight and
longitudinal centre of gravity Jlocation will be discussed in section

(4.6).
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4.2 Output Transom Shape and Immersed Length

The results for the immersed length, i.e. the length of the plate
below the undisturbed free surface, and the predicted transom shape are
presented in this section. Five different beam Froude numbers, Cv, of
1.512, 2.309, 3.5, 5.0 and 8.0 and a wetted length to beam ratio, Lw/B,
up to 3.0 were considered. Five buttock strips of equal width were used
for the cases of Cv greater than 2.309 and three buttocks were used
otherwise. In order to save computing time, equal sized rectangular
elements were used. At each speed, the influence coefficients were
evaluated for a rectangular wetted bottom of Lw/B ratio of 3.0 with 60
elements along each buttock strip. Reduction 1in Lw/B ratio was then
achieved by discarding a single row of leading edge elements along the
length at a time. In this way, the results for the entire range of Lu/B
ratios can be cbtained by evaluating only the influence coefficients for
the case of Lw/B=3.0. As mentioned earlier 1in section (3.5), the
computed quantities converge very rapidly with the number of elements in
each buttock strip, hence reasonably good accuracy can also be expected

from the results obtained for wetted bottoms of small Lw/B ratioc.

Fig.(4.3) shows the predicted transom shapes and vertical locations
for various wetted length to beam ratios and beam Froude numbers. The
ordinate of the graph 1is the non-dimensional transom rise height,
H/(Tan(T) B), where H is the transom rise height above the undisturbed
free surface, B is the wetted beam and T is the trim angle. Note that at
small trim angles, Tan(T) 1is equivalent to the trim angle in radians. As
mentioned in section (3.4), the output transoms are slightly cambered as
a result of ignoring the curvature at the spray root. It can be seen
that the amount of camber remains fairly constant over the entire range
of Cv and Lw/B ratios. This suggests that the output transom shape is

only a function of the spray root geometry.

For planing flat plates, Savitsky (Ref.(44)) gave the following pair
of equations for the relationship between immersed length to beam ratio,

Li/B, and the wetted length to beam ratio, Lw/B:
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tw/B = Li/B + 0.3 for 1.0 £ Li/B £ 4.0
and Lw/B = 1.6 Li/B - 0.3 {(Li/B)? for 0.0 £ Li/B £ 1.0
(4.2.1),

which are applicable to trim angles ranging from 2° to 24°; Lu/B < 4.0;
and 0.6 £ Cv £ 25.0. Since in the present theory, the predicted trailing
edge immersion of the individual buttocks are of slightly different

values, a mean immersed length to beam ratio has to be defined:

Li = _H* = H* ( for Small T) (4.2.2),
B B Te B Tan(D)

where H* 1is the mean transom immersion obtained by fitting a Jleast-
squares straight line through the predicted immersions along the transom
and Tc denotes the trim angle in radians. The present predictions for
Li/B are shown in fig.(4.4) together with the Savitsky’s curve and the
theoretical predictions of Doctors (Ref.(29)). For Lw/B ratios greater
than 0.9, the present predictions are in excellent agreement with the
Savitsky’s curve but there is some discrepancies between the two results
at lower Lw/B ratios. On the other hand, the present results seem to
verify that the immersed lengths are independent of the planing speeds,

as was apparent in Savitsky’s curve.

4.3 Coefficient of Lift

Savitsky (Ref.(44)) derived the following empirical equation for the
1ift coefficient, Crz, of planing flat plate:

Crz = T 1 -1 0.012 (Lw/B)'/2 + 0.0055 (Lw/B)S5/2 (4.3.1),
Cv2
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which is valid for 0.6 < Cv ¢ 13.0; 20 ¢ T ¢ 15° and Lw/B £ 4.0,

where Cfz = Fz (4.3.2),
1/2 P Cv2gB3

F: is the 1ift, g is the acceleration due to gravity and T is the trim
angle in degrees. In order to make comparison with the results obtained
by the present linear theory, for small trim angles the term T*1' in
equation (4.3.1) 1is taken to be equal to T and is expressed in radians
(or Tan(T)) to give

Cez = 57.296 {0.012(Lw/B)'/2 + 0.0055(Ly/B)5/2 (4.3.3).
Tan(T) Cv2

Fig.(4.5a,b,c and d) compare the predicted 1ift slopes, Csz/Tan{(D),
with the empirical 1ift equation (4.3.3) for beam Froude numbers, Cv, of
1.512, 2.309, 3.5, 5.0 and 8.0. For Cv of 1.512 and Lw/B ratios greater
than about 2.2, the predicted pressure distributions have generally
deteriorated. As these deteriorated pressures might lead to unreliable
results, they have not been shown in fig.(4.5a). For Cv less than 3.5,
the 1ift slopes predicted by the present theory are generally larger
than those obtained from the Savitsky’s 1ift equation (4.3.3), but a
better agreement is observed at small Lw/B ratios. On the other hand, at
Cv=2.309, the theoretical predictions of Doctors (Ref.(29)) are around
30% less than the values obtained from equation (4.3.3), while the
present result is about 30% larger than the respective value given by
the empirical 1ift equation at Lw/B=3.0. For high beam Froude numbers,
the present theory gives results that are generally below the Savitsky’s
curve for Lw/B ratios greater than about 1.6, and an error of up to 30%

is observed at Lw/B=3.0 for Cv=8.0.

An interesting feature of equation (4.3.3) is that the gravitational

effect, which corresponds to the second term of the equation, gives an
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increase to the 1ift coefficient, Crz, regardless of the wetted length
to beam ratio. In the present predictions, however, it was found that
the 1ift coefficient increases with the decrease of Cv for large Lu/B
ratios, while the tendency is reversed at small Lw/B ratios (i.e. 1ift
coefficient decreases with Cv). The same tendencies have alsoc been
ved in the case of planing prismatic hulls and are clearly shown in
fig.(5.7)‘ of chapter five. These would imply that the gravitational
ect gives an increase to the 1ift coefficient for a large Lw/B ratio
planing surface but reduces it for a small Lw/B ratjo. These tendencies
gree with the theoretical predictions of Maruo (Ref.(23)) for the caseé
of high and low aspect ratio approximations as well as the experimental
results of Sambraus (Ref.(36)). The theoretical results of Jahangeer
{Ref.(66)) and Wang and Rispin (Ref.{(26)) also showed similar effects.
At high speed, the hydrodynamic effect becomes dominant and the 1ift

coefficient becomes independent of beam Froude number. This aspect of

(7]

planing is demonstrated by the results presented in fig.(4.5d) for the
cases of Cv=5.0 and 8.0 and 1is particularly true fTor small Lwu/B ratio
planing surfaces. This hydrodynamic effect is also indicated by the

Savitsky’s empirical 1ift equation (4.3.3).

Finally, the present results are comwpared with the theoretical
predictions of wWang and Rispin (Ref.(26)). In their theory, the unknown
pressure distribution, P(x,y), under the plate was expressed in the form

of:

0 o]
P(x,y) = Z_o E_o Amn y® (1 = y2)172 In(x) (4.3.4),

winere In(x) 1is the Birnbaum expansion (Ref.(65)) derived from thin
airfoil theory which contains a square root type of singularity at the
leading edge, Amn are unknown coefficients to be determined and all
distances are non-dimensionalized against the semi-span width of the
plate. The kernel function in the 1integral equation was expanded

asymptotically for large Froude number, Fr = €2/(gl) , up to Fr-2,
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wheire 1 is the half beam of the plate. In the expansion, singular
behaviourr was introduced at the tips of the plate, as y-»+1, by the
chosen pressure form, P(x,y). For large aspect ratio, B/Lw, the

expansions used in their theory are not valid, while for small aspect

ratio their theory becomes inaccurate as the tip effect predominates.

The comparison between the present 1ift slopes and the theoretical
predictions of Wang and Rispin 1is shown in fig.{4.6a) for a Froude
number, Fn=C/(glw)'/2, of 2.24. It can be seen that there 1is a good
agreement exists between the two theories for the range of aspect ratios
considered. Fig.(4.6b) compares the present centre of pressure to wetted
Yength ratios, Lep/Lw, with their theoretical predictions. Reasonably
good agreement has been obtained between the two results for Jlarge
aspect ratios while the centre of pressure positions predicted by the
piresent theory are more forward from the transom for aspect ratios Jess
than about 1.0. The discrepancy between the two results at small aspect
ratios is probably due to the predominance of the tip effect in their

.t-_-

1eory.

Fig.(4.6c) and fig.(4.6d) compare the present centie line and chine

pressure distributions with the theoreti

(¢]
o

1 curves of Wwang and Rispin
for two Lw/B ratios of 1.0 and 2.0, both at a Froude numbeir of 2.24. In
both cases, good agreement is found along the centre line of the plate
but the chine pressure distributions of Wang and Rispin show higher
pressures at the region near the trailing edge. This could also due to
the singuiar behaviour introduced at the tips of the plate by their
theory. Of the two cases, the chine pressures of the smaller Lw/B ratio

(larger aspect ratio) plate shows better agreement.

4.4 longitudinal Centre of Pressure lLocation

The Savitsky’s empirical equation (Ref.(44)) for the location of the
tongitudinal centre of pressure forward of the transom, Lep, of planing

flat plate and planing constant deadrise prismatic hulls is

Lep = 0.75 - 1 Ly (4.4.1),
B (5.21 Cv2/(Lw/B)2 + 2.3% B
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which is independent of the trim and deadrise angles. This equation was
derived by considering the moments produced by the hydrodynamic 1ift,
i.e. the first term of equation (4.3.1), and the buoyant 1ift, 1i.e.
second term of (4.3.1), separately. The centre of pressure of the
hydrodynamic 1ift was taken to be at 75% of the mean wetted length
forward of the transom and the centre of pressure of the buoyant force
was taken to be at 33% of the mean wetted length forward of the transom.
Therefore, this empiriba] equation should be valid for the same working

ranges as those given in equation (4.3.1).

Fig.(4.7a) to fig.(4.7d) show the comparison between the present
predictions for Lep/B and the results obtained from equation (4.4.1) for
peam Froude numbers ranging from 1.512 to 8.0, together with the
theoretical predictions of Doctors (Ref.(29)). It can be seen that the
present centre of pressure positions are generally more forward from the
transom than those given by the Savitsky’s equation. However, a reverse
tendency is observed at large Lw/B ratio for Cv < 3.5. The maximum error
between the two results in the range of Cv and L«/B ratios considered
was found to be about 19%. On the other hand, Doctors’ results for Cv of
1.512 and 2.309 show very good agreements with the Savitsky’s curves
especially for Lu/B less than 2.0, despite the fact that his pressure

distribution curves have generally deteriorated.

At a high beam Froude number of 8.0 and tw/B ratio of 3.0, the
present theory gives a centre of pressure location at about 89% of the
wetted length forward of the transom. This corresponds to an increase of
about 14% of the wetted length when compared with the 75% given by the
Savitsky’s empirical equation (4.4.1), but a much better agreement of
about 76% was obtained for Lu/B ratios less than 0.5. This 1is not a
surprising outcome since the location of the hydrodynamic centre of
pressure in the Savitsky’s equation was based on the result derived from
two dimensional planing flat plate, which is at 75% of the wetted length
forward of the transom. At high speed, the present theory has actually

shown a very good agreement with this two dimensional Timit when the
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wetted length to beam ratio is small and the flow can be regarded as two
dimensional. Furthermore, it 1is a known fact that the hydrodynamic
centre of pressure of a flat plate airfoil will move toward the leading
edge from the 75% chord point when its chord length to width ratio is

increased from the two dimensional Timit.

4.5 Some Results for Pressure Distribution

Fig.(4.8) to fig.(4.10) show the predicted pressure results for
rectangular wetted boftoms with wetted length to beam ratios of 3.0, 2.0
and 1.0, at beam Froude numbers, Cv, of 2.309, 3.5 and 8.0. At
relatively 1low beam Froude numbers of 3.5 and 2.309, strong
gravitational effect can be seen in the predicted pressure
distributions, particularly for the case of Lw/B=3.0. This gravitational
effect is to increase the pressures toward the trailing edge and to
reduce the pressures along the forward half of the plate. At high speed,
the hydrodynamic pressures become dominant and, as shown 1in fig.(4.10)
for Cv=8.0, the ’pressure hump’ produced by the gravitational effect
near the trailing edge has disappeared even at a large wetted length to
beam ratio of 3.0. Comparing the pressure distributions 1in fig.(4.8a)
for Cv=2.309 with those 1in fig.(4.10a) for Cv=8.0, one can clearly see
that thebgrav1tat10na1 effect is to shift the centre of pressure toward
the transom as the speed decreases. The theoretical pressure results of
Wang and Rispin (Ref.(26)) have also demonstrated similar gravitational

effect.

Fig.(4.11a) and fig.(4.11b) compare the present centre line pressure
distributions with the experimental measurements of Sottorf (Ref.(34))
for two Lw/B ratios of 1.49 and 0.82, at a beam Froude number of 3.5.
For the higher wetted length to beam ratio case, the present theory
predicts pressure result that 1is over 50% higher than the experimental
measurements at the afterbody of the plate, but a better agreement is
obtained near the leading edge. For wetted length to beam ratio of 0.82,
the agreement between the two pressure results is generally better,
though a larger discrepancy is observed near the leading edge. However,

surprisingly, the integrated 1ift coefficient slopes, Crfz/Tan(T), are in
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much better agreement with Sottorf’s experimental values with an under
prediction of only 10% for the higher Lw/B ratic case and an over
prediction of only 2.5% for the lower Lw/B ratio case. These relatively
small discrepancies are probably due to the fact that, in the present
theory, most of the 1ift is generated by the pressures near the leading
egdge which are higher than the experimental pressures 1in both cases.
Also because of these relatively high leading edge pressures predicted
by the present theory, a more forward centre of pressure position could
be expected. The numerical values of both the present and Sottorf’s 1ift

coefficient slopes are displayed in the figures.

Fig.(4.12) shows the predicted pressure distribution along the
centre line of a flat plate of Lw/B ratic of 2.4, at a beawm Froude
numbeir of 2.42 and at a trim angle of 6° together with the experimental
measurements of Jahangeer (Ref.(66)). Reasonably good agreement can be
seen between the two pressure results, in particular that the
discrepancy near the leading edge is not as pronounced as that in the

comparisons with Sottorf’s results.

4.6 Determination of Running Wetted Length and Trim Angle

In this section, we consider the problem of predicting the running
wetted length, running trim angle and transom immersion of a planing
flat plate of specified weight, longitudinal centre of gravity position
and speed. It has been mentioned earlier in section (4.1) that, in the
present computational method, the predicted pressures, i.e. P/Tan(T),
and the predicted transom immersions, 1i.e. H/Tan(T), are independent of
the trim angles for a particular Lu/B ratio and beam Froude number. It
follows that both the 1ift coefficient, Crz, and the mean transom
immersion, H*, are directly proportional to the angle of trim and, if
the pressure drag is neglected at small trim angles, the longitudinal

centre of pressure ratio, Lep/B, is independent of trim angle.

Now, consider the equilibrium condition of the craft, at any given
speed the weight of the craft must be equal to the 1ift generated by the

bottom pressure and its longitudinal centre of gravity position must
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also match with the position of the 1longitudinal centre of pressure.
Based on the above equilibrium condition and the present computing
program, the following procedures were developed to predict the unknown
running wetted 1length, running trim angle and transom immersion for a
planing flat plate of specified weight, W, and specified longitudinal

centre of gravity position, Lcg, forward of the transom.

(1) Determination of running wetted length

If the minor effect of the drag force is ignored, the Lecp/B ratio of
a planing flat plate 1is only dependent on its wetted length to beam
ratio and the planing speed and is 1independent of the trim angle.
Therefore, the running wetted length to beam ratio at a particular beam
Froude number, say [Lw/Blo, can be obtained by matching the Lep/B ratio
to the Lcg/B ratio of the plate using the Lcp/B curve computed at that
speed, such as those presented in fig.(4.7a) to fig.(4.7d). This can be

easily achieved by some interpolating methods.

(2) Determination of running trim angle

With the running wetted length to beam ratio predicted from (1), the
respective 1ift coefficient slope, say [Cfz/Tan(T)]o, at that speed can
be obtained from the computed 1ift slope curve, such as those presented
in fig.(4.5a) to fig.(4.5d). The running trim angle, To, can then be

obtained from the relation:

Tan(T) = 2W 1 (4.6.1),
[Cez/Tan(T)]o ‘/Z/Ong283

where B is the wetted beam of the plate and Cv is the corresponding beam

Froude number.
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{3) Determination of unknown transom immersion

Similariy, with the running wetted length to beam ratio predicted
from (1), the respective non-dimensional mean transom immersion, say
[H*/(BTan(T))lo , can be determined from the computed results presented

in f1g9.(4.4). The required transom immersion, say Ho*, is then given by:

Ho* = H* B Tan(To) (4.6.2).
B Tan(T)lo

It should be noticed that the present linear theory 1is only valid
for small angles of trim as non-linear effects can be significant at
large angle of attack. The procedure discussed above is not applicable
to prismatic surfaces or other planing forms with a spray root geometry
that varies with the trim angle. This is because both the Lep/B ratio
and the 1ift slope, Cfz/Tan(T), are now dependent on the angle of trim
as well as the mean wetted length to beam ratio. A different approach
for the prismatic hulls will be discussed in the next chapter. Owing to
the 1limited number of speeds computed, the method has not been
demonstrated in this section. However, the method has been applied to
predict the running trim angles and wetted lengths of a heeled planing
flat plate and the results are presented in fig.(6.11a) and fig.(6.11b)

of chapter six.
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CHAPTER (5) Some Results for the Planing of Constant Deadrise

Prismatic Hulls

5.1 Introduction

The results for planing prismatic hulls of constant deadrise angle
are presented in this chapter. Since the present linearized theory is
only applicable for small free surface disturbances, both the trim and
deadrise angles are required to be small and only deadrise angles up to
15° will be considered. Fig.(5.1) shows a typical wetted bottom of a
planing prismatic surface. As mentioned earlier 1in section (3.1), the
forward thrown spray area, which only contributes drag forces, and the
slightly convex curvature at the swept-back spray root are both ignored
in the present theory. The mean wetted length to beam ratio, Lu/B, or
the wetted area to beam squared ratio of the wetted bottom pressure area

can therefore be defined as:

Lw = !Lk+Lc2 (5.1.1),

where Lk is the wetted keel 1length, Lc is the wetted chine length and B
is the transom wetted beam. The present finite element representation of
this wetted bottom area 1is shown 1in fig.(5.2). A different finite
element mesh consisting of triangular elements at the spray root and
rectangular elements along each buttock as the one shown in fig.(5.3)
has also been tried, but the pressure solution obtained has a region of
small negative pressures developed along the aft body, near the keel of
the wetted bottom. These unrealistic negative pressures were found to be
caused by the incompatibility between the phase angles of the downstream
waves generated by the rectangular and the leading edge triangular
elements. The finite element mesh shown 1in fig.(5.2) does not suffer
from this incompatibility problem simply because the triangular elements
are now TJlocated at the trailing edge so that the downstream waves of
these elements are no longer required in the formation of the system of

simultaneous Tinear equations for determining the unknown pressures. One
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should also note that the upstream waves do not cause any problem since

they die away quickly ahead of the elements and do not contain any phase

change.

Beam Froude numbers ranging from 1.512 to 8.0 and mean wetted length
to beam ratios up to 3.0 have been considered. Four buttock strips of
equal width were used in the computations. The solution procedure is the
same as that for planing flat plates and the input local hull surface
displacement above the transom level is defined by the function, f(x,y)
= X. In order to save computing time, the method of discarding leading
edge elements discussed in section (4.2) has also been employed. Section
(5.2) discusses the relation between the spray root geometry and the
output hull shape. In sections (5.3) and (5.4), the present 1ift
coefficients and 1longitudinal centre of pressure locations will be
compared with the Savitsky’s empirical equations (Ref.(44)) as well as
the theoretical and experimental results of Jahangeer (Ref.(66)). The
present pressure distributions will be compared with the experimental
measurements obtained by Sottorf (Ref.(34)) and Jahangeer (Ref.(66)) in
section (5.5). Finally, a method for determining the running trim angle
and the running mean wetted length of a planing prismatic hull under
specified Toading condition will be discussed in sections (5.6) and
(5.7), together with some work examples for the cases of beam Froude

number equal 3.0 and 5.0.

5.2 Output Transom Shape and Immersed Keel Length

Based on the T/2 wave-rise factor computed by Wagner (Ref.(19)) for
a two dimensional wedge penetrating vertically into a fluid surface,
Savitsky (Ref.(44)) derived the following relation for the spray root

geometry of a planing prismatic surface:

Lk = Le = _TanB) (5.2.1),
B T Tan(T)
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where B 1is the transom wetted beam, T 1is the trim angle, B is the
deadrise angle, Lk is the wetted keel 1line and Lc is the wetted chine
length.

Fig.(5.4) shows the predicted transom shapes and vertical locations
for various mean wetted length to beam ratios, Lw/B, and beam Froude
numbers, Cv. As before, the ordinate of the graph is H/(Tan(7) B), where
H is the transom rise height above the undisturbed free surface. The
geometry of the spray root used for the computations was defined by the
ratio, (Lk-Lc)/B=0.8115, which corresponds to a trim angle of 6° and a
deadrise angle of 15° according to the Savitsky’s expression (5.2.1).
This does not strictly agree with the present results. The finite
element method generally gives a trim angle slightly larger than that
suggested by expression (5.2.1) for a given spray root geometry and
deadrise angle and, 1in this particular case, the output trim angle is
about 6.6° for a deadrise angle of 15°. However, the present results
seem to agree with expression (5.2.1) that both the planing speed and
the mean Lw/B ratio have 1little effect on the output transom siope,
Tan(&8)/Tan(T). Over the range of beam Froude numbers and mean Lw/B
ratios considered, the variation in the output transom slopes is not
more than 2.5%. Note that the output transoms should be slightly curved
instead of perfectly straight (see fig.(3.2a)) as the curvature at the
spray root has been ignored. The results in fig.(5.4) do not display
this feature simply because only four buttock strips were used to

represent the wetted bottom.

Fig.(5.5) shows the non-dimensionalized immersed keel length, Lki/B,
as a function of mean Lw/B ratio for (Lk-Lc)/B = 0.8115 and 0.5340 at
various beam Froude numbers. For small angles of trim, the present
immersed keel length, Lki, 1is given by Hx/Tan(T) where Hk 1is the
predicted transom immersion at the keel. For prismatic surfaces,
Savitsky (Ref.(44)) noted that up to a trim angle of approximately 15°
there appears to be no noticeable pile-up of water at the keel line.
Thus, the immersed keel 1length in this case is equal to the wetted keel
length, Lk. However, the present theory has predicted that the immersed

keel lengths are less than the respective wetted keel lengths for both
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(Lk-Lc)/B ratios. This would imply that there is water piling up ahead
of the keel. The same tendency has also been predicted by Doctors
(Ref.(29)) and Jahangeer (Ref.(66)). For both (Lk-lc)/B, a difference of
around 0.3 was observed between the predicted Lki/B ratio and the Lx/B
ratio, regardless of the beam Froude numbers and the mean Lw/B ratios.
This result seems to agree better with Savitsky’s expression (4.2.1) -
for the relationship between the immersed wetted length, Li, and the
overall wetted length, Lw, of planing flat plates - when Ly and L;i 1in
the expression are replaced by Lk and Lki. The agreement is particularly
good for Lk >1.0. On the other hand, Savitsky’s observation about no

water piling up at the keel line might not be strictly accurate.

5.3 Coefficient of Lift

For a given trim angle and mean Lw/B ratio, the effect of increasing
deadrise angle is to reduce the planing 1ift. This is primarily due to
the reduction 1in the stagnation pressure at the leading edge of the
wetted bottom. Taking this 1ift reduction 1into account, Savitsky
(Ref.(44)) derived the following empirical 1ift equation for constant

deadrise prismatic planing surfaces:

Cfz = [sz]B:o - 0.0065 ( [sz]ﬁ:o )o.6 (5.3.1),

in which Csz is the 1ift coefficient of the constant deadrise surface,
[sz]ﬂ=o is the 1ift coefficient of a flat plate operating at the same
trim angle, wetted area to beam squared ratio (Lw/B) and beam Froude
number as the deadrise surface and g is the deadrise angle in degrees.
The expression for the 1ift coefficient of a planing flat plate is given
in equation (4.3.1). To compare with the results derived from the
present linear theory, the second term of equation (5.3.1) is neglected
in the 1limit of small deadrise angle. As in the case of planing flat
plate, for small trim angles, the term, [Cfzlg=o, in equation (5.3.1) is

expressed as:
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Ctz = 57.296 [ 0.012{Lw/B)1/2 4+ 0.0055(Ly/B)S/2 (5.3.2),
Tan() Cv2

wheire Lw/B in the above expression is the mean wetted length to beam

ratio of the prismatic surface given by expression (5.1.1).

Fig.(5.6a) to fig.(5.6h) compare the present 1ift coefficient slopes,
Crz/Tan(T), with expression (5.3.2) for beawm Froude numbers ranging from
1.512 to 8.0. Two deadrise angles of 10° and 15° are consid
shown in f1ig.(5.6a) and fig.(5.6f) are the theoretical predictions of
Jahangeer’s finite element method (Ref.(66)) at <Cv=1.512 and 5.0,
together with his experimental measurements at Cv=1.512. The compaiison
between the present predictions and expression (5.3.2) show similar
trends as those for the planing flat plates. On the other hand, the
present results show reasonably good agreement with the theoretical
predictions and the experimental measurements of Jahangeer. As shown in

0
)}, at a beam Froude number of 1.512 and mean Lw/B ratios greater

fig.(5.9
than 2.0, the predicted ©pressure distributions have — generally
deteriorated and violent oscillations have been observed as Lw/B

approaches 3.0. However, these deteriociated piressures do not seem to
affect the results for the 1ift coefficient slope and longitudinal
e of pressure location. In the later case, the results are in
unexpectedly good agreement with the Savitsky’s empirical equation for
the location of centre of pressure (5.3.1) as shown in fig.(5.7a). The
reason for these results not displaying the oscillatory behaviour of the

pressure solution is probably that they represent an integrated effect

of the pressures.

The results presented in fig.(5.6a,b,d,f and h) also demonstrate the
effect of deadrise angle on the 1ift coefficient slope. For the two
deadrise angles considered, the results show little effect of deadrise
on the 1ift coefficient slope for a given mean Lw/B ratio and beam
Froude number. Fig.(5.6g) shows that the 1ift coefficient becomes
independent of the beam Froude numbeir for Cv greater than 6.0. This

suggests that the hydrodynamic 1ift becomes predominant at high planing
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speed and the static pressure effect on 1ift coefficient can be ignored.
This aspect of planing is also apparent in the Savitsky’s 1ift equation

and the semi-empirical equation developed by Shuford (Ref.(22)).

It has been mentioned in section (4.3) that the Savitsky’s empirical
1ift equation (5.3.2) does not shows the gravitational effect of
reducing 1ift coefficient on a small Lw/B ratio planing surface. This
gravitational effect can be seen more clearly by plotting the 1ift
coefficient slopes, Crz/Tan(T), against the beam Froude numbers. Such a
plot is shown in fig.(5.7) for a 15° constant deadrise prismatic surface
with a (Lk-Lc)/B ratio of 0.8115. It can be seen clearly from the figure
that for a small mean L./B ratio surface the 1ift coefficient decreases
with decreasing beam Froude number due to the negative gravitational
effect, while the tendency reverses at large mean Lw/B ratios. The

dividing mean Lw/B ratio in this case is about 0.7.

5.4 lLongitudinal Centre of Pressure Location

As mentioned 1in section (4.4), the Savitsky’s empirical equation for
the 1location of the 1longitudinal centre of pressure forward of the

transom, Lcp, of constant deadrise prismatic planing surfaces is

Lep = 0.75 - 1 Lw (5.4.1),
B (6.21 Cv2/(Lw/B)2 + 2.39) B

which is 1independent of trim angle and deadrise angle for a given mean
Lw/B ratio and Cv.

The comparisons between the present predictions for Lep/B ratio and
the Savitsky’s empirical equation (5.4.1) are shown in fig.(5.8a) to
fig.(5.8h), for two deadrise angles of 10° and 15° and for beam Froude
numbers ranging from 1.512 to 8.0. As in the case of planing flat plate,
the present predictions are usually above the Savitsky’s curve, though,
for Cv < 3.0 and large mean Lw/B ratios, results below the Savitsky’s
curve have also been cbtained. On the other hand, as shown in fig.(5.8a)

and fig.(5.8f) for Cv=1.512 and 5.0, a very good agreement generally
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exists between the present predictions and the theoretical and
experimental results of Jahangeer (Ref.(66)). At Cv=1.512, excellent
agreement has been obtained between the present results and the
Savitsky’'s empirical equation, even though the predicted pressure
distributions for mean wetted length to beam ratios greater than 2.0
have generally deteriorated. These deteriorated pressure solutions are
shown in fig.(5.9). The results presented in fig.(5.8a,b,d,f and h) also
seem to verify that the deadrise angle has little effect on the centre
of pressure ratio, Lep/B, for a given mean wetted length to beam ratio
and beam Froude number. The reduction 1in static pressure effect on the
centre of pressure Jlocation at high planing speeds can be seen 1in
fig.(5.89), where the Lcp/B ratio has almost become independent of the

beam Froude number for Cv greater than 6.0.

5.5 Some Results for Pressure Distribution

Fig.(5.9) shows the pressure distribution curves obtained for a 15°
constant deadrise surface with (Lk-Lc)/B=0.8115 at various mean wetted
length to beam ratios and beam Froude numbers. At Cv=1.512, it is
observed that the pressure oscillation starts to build up for mean Lu/B
>2.0 and has become guite violent as Lw/B reached 3.0. At higher speeds,
the pressure solutions are well behaved and no such pressure oscillation
is evident up to a mean Lw/B ratio of 3.0. The cause of these pressure
oscillations has already been discussed in section (3.6), but it should
be pointed out that, unlike the pressure oscillations in the flat plate
cases, these oscillations originate at the region near to the centre
line rather than at the region near to the chine. As in the planing of
flat plate, the present pressure results have also demonstrated that
there is a strong gravitational effect on large mean Lw/B ratio planing
surfaces operating at 1low speed. Note that for beam Froude numbers
greater than 6.0, the shape of these non-dimensionalized pressure
distribution curves, P/(Y/2p C2Tan(T)), have almost become independent
of the beam Froude number for a given mean Lw/B ratio. This would imply
that the hydrodynamic bottom pressures are directly proportional to the

square of the planing speed.
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As shown in fig.(5.2), the present wetted bottom grid does not allow
us to prescribe a set of control points along the keel line, hence the
pressure distribution along the keel cannot be obtained. For comparison
purpose, however, the pressure distribution along the first buttock
strip from the keel 1ine will be used to compare with the keel pressure

distribution obtained by other authors.

Fig.(5.10) compares the present pressure distributions with the
experimental measurements of Sottorf (Ref.(34)) for a 15° constant
deadrise surface of mean Lw/B ratio of 1.754, (Lx-Le¢)/B ratio of 0.7012,
at a beam Froude number of 3.5. As 1in the flat plate pressure
distributions shown 1in fig.(4.11a,b), the present theory has predicted
pressure results that are more than 50% Jlower than Sottorf’s
experimental measurements both along the chine and along the keel (the
present keel pressure distribution refers to that along the line at a
distance of B/12 from the keel line), but the agreement is much better
near the Jleading edge of the chine. Comparison of the present keel
pressure distribution (B/8 from keel 1line) with the experimental
measurements of Jahangeer (Ref.(66)) 1is shown 1n fig.(5.11) for a
deadrise angle of 15°, mean Lw/B ratio of 2.87, trim angle of 6° and
beam Froude number of 2.54. The agreement between the two results is
reasonably good, considering that the pressures at the keel] should be
slightly higher than those at a distance B/8 from the keel, especially

around the region near to the leading edge.

5.6 Variation of Lift Coefficient and Centre of Pressure Ratio with
Trim_Angle

For a given constant deadrise surface, the effect of decreasing trim
angle is to increase the swept-back angle at the spray root. This alters
the shapes and sizes of the triangular fore-piece and the rectangular
tail of the wetted bottom even though the wetted bottom area is kept
constant. It follows that the Lep/B ratio and the 1ift coefficient
siope, Cfrz/Tan(T), of a constant deadrise hull are not necessarily
constant over the entire range of trim angles for a given mean wetted

length to beam ratio and speed.
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Fig.(5.12a and b) and fig.(5.13a and b) show the predicted 1ift
coefficients, Cfz, and centre of pressure ratios, Lep/B, as a function
of trim angle and mean Lw/B ratio for a 10° constant deadrise surface at
beam Froude numbers of 3.0 and 5.0. For each of the trim angles, T,
considered, an initial estimate of the swept-back angle, i.e. (Lk-Lc)/B,
was obtained from the Savitsky’s expression (5.2.1). The trim angle was
then determined from the output transom slope, Tan(B)/Tan(T), for the
given value of B. It can be seen that the slope of the 1ift coefficient
curve for each mean Lw/B ratio is fairly constant throughout the range
of trim angles considered. This aspect seems to agree with the
Savitsky’s empirical 1ift equation (5.3.2), although the exact values of
the two 1ift slopes are not the same. The predicted longitudinal centre
of pressure Tlocations, Lcp, have a tendency of shifting toward the
transom as the trim angle decreases. This tendency is particularly
pronounced at small trim angles. The overall decrease in Lep/B, however,
is not more than 0.1 over the ranges of trim angles and Lw/B ratios
considered. It would appear that this decrease in Lcp/B ratio is due to
the increase in the swept-back angle at the spray root (or (Lk-Lc)/B
ratio), which could result in a reduction 1in the pitching moment
produced by the pressures near the chines. On the other hand, the
Savitsky’s empirical equation (5.4.1) suggests that the centre of
pressure ratio, Lcp/B, is independent of the trim angle for a given mean
Ltw/B ratio and Cv. The slight unsmoothness of the curves can be ascribed

to the difference in the sizes of elements used in the computations.

An interesting feature about the planing wetted bottom of constant
deadrise hulls 1is that the trim angle and the deadrise angle can have an
infinite number of values that can produce a particular spray root
geometry (or (Lk-Lc¥B). This special feature is displayed explicitly in
expression (5.2.1) and would allow us to obtain the 1ifts and the
centres of pressure for a range of deadrise angles from the results
computed for a particular deadrise angle. For instance, if the predicted
trim angle, 1ift coefficient and longitudinal centre of pressure ratio
for a 10° constant deadrise surface of particular wetted bottom geometry
at a particular beam Froude number are Tio°, [Cfzlio and [Lep/Bl1o, then

the corresponding trim angle, say Ts ©°, for a surface of constant
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deadrise angle of 8° can simply be obtained from the relation:

Tan(Tg°) = Tan(Ti0°) Tan(Be) (5.6.1).
Tan (10°)

The 1ift -coefficient, say [Cr:z] Tor the B° constant deadrise surface
ks

at the trim angle of T[,° is

[Crzly = [Crzlio  Tan(ge) (5.6.2)
Tan{10°)

and the corresponding longitudinal centre of pressure ratio at 1%0 is
equal to [Lep/Blio if the pitching moment produced by the pressure drag

is ignored.

5.7 Determination of Running Mean Wetted Length and Running Trim Angle

The method for determining the running trim angle and running wetted
length for planing flat plate has aliready been discussed in section
(4.8). In this section, we will extend this method to constant deadrise
planing hulls (or any huil form in general). Again, the method developed
here 1is based on matching the craft’s weight and craft’s centre of
gravity position to the planing 1ift and centre of pressure position. A
simple interpolating program has been developed for this purpose and a
third order Lagrange interpolating polynomial has been employed in the

interpoiating procedures.

ror a particular constant deadrise hull, the weight, W, and the
distance of the longitudinal centre of gravity forward of the transom,

Leg, can be expressed in the following non-dimensional forms:

W* - W and L* = Lcg (5.7.1).
‘/2,0933 B



For & given beam Froude number, the program determines the possible
combinations of trim angle and mean Lw/B ratio that can provide the
required weight coefficient, Ww*, om the pre-calculated 1ift data shown
in fig.(5.12a) and fig.(5.13a). Similarly, the possible combinations of
trim angle and mean Lw/B ratio that can provide the required L* are
determined from the pre-calculated centre of pressuie data shown Jn
fig.(5.12b) and fig.(5.13b). For example, these trim angles and mean
Lw/B ratios predicted for W*=1.3, L*z1.6 and B=10° are shown in
fig.(5.14a) and fig.(5.14b) for beam Froude numbers of 3.0 and 5.0.
Curves (A) in these figures represent the possible combinations of trim
angle and mean Lw/B ratio for producing a weight coefficient, W*, of 1.3
and Cuives (B) represent those for producing a centre of gravity ratio
of 1.6. The trim angle and wean Lw/B ratio which satisfy both the
required weight and centre of gravity conditions are given by the

intersection of the two curves.

Fig.(5.15a) and fig.(5.15b) compare the predicted running trim
angies and running wetted length to beam ratios with the results
obtained from the Savitsky’s empirical equations (5.3.2) and (5.4.1) for
a 10° deadrise surface. For demonstration purposes, only two beam Froude
numbers of 3.0 and 5.0 have been considered. The weight coefficient, W*,

is fixed at 1.3 and the trim angle and mean Lw/B ratioc results are

plotted as a function of centre of gravity ratio, L*. Both the present
and Savitsky’s results show the tendencies of decrease in trim angle and
increase in mean Lw/B ratio as the centre of gravity moves toward the

bow. The agreement between the two results 1is reasonable with a
difference of not more than 1° for the trim angles and 0.3 for the mean
Lw/B ratios. However, for the two speeds considered, the present theory
usually gives a larger trim angle and a smaller mean Lw/B ratio than
those obtained from the empirical equations for a value of W* and L*.
This could be due to the fact that, as mentioned in section (4.4), the
hydrodynamic centre of pressure in the Savitsky’s empirical equation for
the centre of pressure location is taken to be at 75% of the mean wetted
length forward of the transom which 1is less than that one would expect

from a moderate aspect ratio 1ifting surface.
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CHAPTER (6) Some Results for the Planing of a Flat Plate in

Heel Condition

6.1 Introduction

In this chapter, we consider the planing motion of a flat plate in
heel condition. Again, only small heel and trim angles will be
considehed in the present 1linear theory. When a planing flat plate is
heeled, the wetted bottom becomes asymmetrical about the centre line.
This gives rise to an asymmetrical bottom pressure load about the plate
centre line, which can result in a net rolling moment, a net yawing
moment and a net sway force. A sketch of the wetted bottom of a planing
flat plate in heel condition 1is shown 1in fig.(6.1). As before, the
forward spray area is ignored in the present computations on the ground
that this area only contributes to the total drag and does not carry any
pressure load. 1In addition, the sightly convex curvature at the spray
root is also ignored and the running beam at the transom is assumed to
be completely wetted during the planing motion. Thus, the mean wetted
length to beam ratio, Lw/B, or the wetted area to beam squared ratio for

a planing flat plate in hee] can be defined as:

Lw = (le2 + Let) (6-1-1)1
B 2B

where B is transom wetted beam, Lc1 and Lcz are the wetted chine lengths
at the heeled up and the heeled down sides of the plate respectively. A
typical finite element mesh representing the wetted bottom pressure area
of a planing flat plate in heel 1is shown in ti9.(6.2). As in the case of
planing prismatic surfaces, the triangular elements have been located at
the trailing edge in order to avoid incompatibility in the phase angles
between the two types of element used. The input local hull displacement

function above the transom level is the same as before, thus, f(x,y)=x.

In section (6.2), an analytical expression is derived for estimating

the spray root geometry of a planing flat plate in heel condition.
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Sections (6.3) and (6.4) discuss the effect of heel angle on the induced
roll moment for a fixed trim condition and the effect of trim angle on
the roll moment for a fixed heel condition. Section (6.5) compares the
present computational results with the theoretical predictions and the
experimental measurements of Jahangeer (Ref.(66)). Finally, a method for
determining the derivatives of roll moment and sway force with respect
to the heel angle for a planing flat plate of specified loading

condition will be discussed in section (6.6).

6.2 Spray Root Geometry and Predicted Transom Shape

In this section, an analytical expression 1is derived for the
relationship between the spray root geometry, which can be defined by
the ratio of (Lecz-lLec1)/B, the heel angle and the trim angle for a
planing flat plate in heel condition. The analogy employed here is
similar to the one used by Savitsky (Ref.(44)) for deriving the . spray

root geometry of planing constant deadrise prismatic hulls.

For an observer fixed in space and Jocated at the vertical plane
thirough centre 1line of the heeled plate, the passage of the heeled
planing flat plate to the observer can be regarded as the motion of a
two dimensional wedge immersing vertically into the water surface. This
being the case, theT/2 wave rise factor computed by Wagner (Ref.(19))
for a two dimensional wedge penetrating vertically into a fluid surface
is applicable. Now, consider the cross section A-A in fig.(6.3a) of a
heeled planing flat plate, at a distance, X, from the calm water
intersection of the chine (heeled down side). According to the T/2 wave
irise factor computed by Wagner (Ref.(19)), the relationship between the
actual wetted width, B1, and the wetted width, Bz, defined by the calm

water intersection with the plate surface is

Bi = T B (6.2.1).
2
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Under the assumption of no pile-up of water at the chine line (heeled
down side), it can be shown from the wetted bottom geometries in
fig.(6.3b) and fig.(6.3c) that the wetted widths B2 and Bi are

B = d = X Tan(D) (6.2.2)
Tan(g¢) Tan(¢)
and Bt = Tan(e) X = B X (6.2.3).
(Lez = Let)

Thus, the difference between the wetted chine lengths, Le2z and Lec1, for

a planing flat plate in heel is given by:

be2 = Let = 2 Tan(¢) (6.2.4),
B T Tan(D)

where B is the transom wetted beam, T is the trim angle and ¢ is the
heel angle. A similar expression has also been derived by Jahangeer
(Ref.(66)).

Fig.(6.4) shows the transom shapes and vertical locations predicted
from wetted bottoms with a spray root profile defined by (Lc2-Lc1)/B
=1.0518 at various beam Froude numbers. As a result of neglecting the
curvature at the spray root, the output transoms are slightly cambered.
In order to determine the transom slope, Tan(g)/Tan(T), a least-squares
straight line was fitted through the predicted vertical locations along
the transom. As suggested by expression (6.2.4), for a given spray root
geometry, the output transom slopes are almost independent of the
planing speed and the mean Lw/B ratio. However, the present theory
always gives a smaller value of Tan(g$)/Tan(T) than that suggested by the
analytical expression. In the present case, with (Le2-Lc1)/B=1.0518, the
least-squares straight line fitting gives a transom slope,

Tan(¢)/Tan(T), of about 1.4. This corresponds to a reduction of 15% when
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compared with the value of 1.65 given by expression (6.2.4). The output
transom slope, however, 1is very much dependent on the way that a
straight line is fitted through the predicted vertical Jlocations along
the transom and an error of few percents between different fitting

methods is not unusual.

Fig.(6.5) shows the variation of immersed chine length to beam
ratios, Lc2i/B, against mean Lw/B ratios for (Lez-Lc1)/B  of 1.0518 and
0.4235, at two beam Froude numbers of 3.0 and 5.5. The immersed chine
length at the heeled down side of the plate, Lc2i, can be obtained from

the relation

Immersed Chine Length Le2i = He2 (6.2.5),
(heeled down side) Tan(T)

where Hez 1s the predicted transom immersion at the chine (heeled down
side). On the other hand, in deriving expression (6.2.4), it has been
assumed that there is no pile-up of water at the chine {heeled down
side). Based on this assumption, the 1immersed chine length, Lc2i, 1is
simply equal to the wetted chine length, Lcz. It can be seen from
fig.(6.5) that the present immersed chine length to beam ratios, Le2i /B,
are less than the assumed values of Lc2/B for both (Le2-Lc1)/B ratios.
This would suggest that there 1is water piling up at the chine of the

heeled down side of the plate during the planing motion.

6.3 Variation of Hydrodynamic Forces and Moments with Heel Angle

Strictly speaking, for a planing surface supported mainly by
hydrodynamic pressures on the wetted bottom, the introduction of a heel
angle results 1in a net transverse load which gives rise to a net rolling
moment, a net yawing moment and a net sway force. For a heeled planing
flat plate, however, both the sway force and the 1ift force are acting
at the centre of pressure (not in the case of prismatic surface),
therefore causing no net yawing moment about this point. It follows that
the introduction of heel angle will only cause the plate to sway but not

to yaw.
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Fig.(6.6a) shows the sign conventions for the sway force, Fy, the
rolling moment, Mr, and the heel angle, ¢. Rolling to the starboard and
swaying to the port are treated as positive. The sway force, Fy, can be

obtained from the simple relation

Fy = - Tan(¢) Fz (6.3.1),

where Fz 1is the bottom 1ift. The total roll moment about the centre
1ine, Mr, can be considered to be made up of two components - one is the
roll moment produced by the 1ift and the other is the roll moment
produced by the sway force. If R denotes the distance from the
transverse centre of pressure to the plate centre 1line as shown 1in
fig.(6.6b), it can be shown from the geometry of the heeled plate that
the roll moment produced by the 1ift is -R Tan(¢) Fz and the roll moment
produced by the sway force is -R Tan3(¢) Fz. Thus, for small heel
angles, the roll moment produced by the sway force is only a minor part
of the total roll moment. A non-dimensional roll moment coefficient,

Crm, is defined as:

Crm = Mr (6.3.2)
1/2 /0984

and the rolling moment arm ratio, R/B, is

ps)
1

Mr (6.3.3).
B (F22+Fy2)1/2 B

Fig.(6.7a) and fig.(6.7b) show the variations of R/(BTan(¢)) and
Crm/Tan(¢) against heel angle for various mean Lw/B ratios, at a trim
angle of 6° and beam Froude numbers of 3.0 and 5.5. It can be seen that,

up to a heel angle of 10.75°, the predicted roll moment coefficient
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slopes, Crm/Tan(¢), are almost independent of the heel angles for a
given mean Lw/B ratio, trim angle and beam Froude number. The predicted
R/(BTan(¢)) ratios also exhibit the same feature, although slightly
larger discrepancies have been observed at Cv=3.0 for large mean Lu/B
ratios. The corresponding 1ift coefficient slopes, C¢z/Tan(T), and
Tongitudinal centre of pressure ratios, Lecp/B, are shown in fig.(6.7¢)
and fig.(6.7d). The results in fig.(6.7c) show Tlittle effect of heel
angle on the 1ift coefficient for a given mean Lw/B ratio, trim angle
and beam Froude number. On the other hand, the centre of pressure tends
to shift toward the transom as the heel angle 1increases, but the

difference in any case is not more than 6%.

In an equilibrium condition at any given speed, the weight of the
plate must be equal to the planing 1ift and the longitudinal centre of
gravity must be at the same 1location as the longitudinal centre of
pressure. The above results would imply that the roll moment coefficient
slope, Crm/Tan(¢g), for a heeled planing flat plate of specified loading

condition is independent of the angle of heel.

6.4 Variation of Hydrodynamic Forces and Moments with Trim Angle

Another interesting feature about the predicted roll moment
coefficient slope, Crm/Tan(¢), 1is that, at a small trim and heel
condition, the trim angle also has a very minor effect on the roll
moment coefficient slope. Consider a set of input to the program

consisting of:

(1) a given projected wetted bottom geometry, in this case, defined by
the spray root profile, (Lcz2-lct1)/B, the transom wetted beam, B, and the

wetted bottom area, Aw,

(2) a given beam Froude number,

(3) a given local hull surface displacement above the ftransom level, in

this case, defined by the function, f(x,y) = x.
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The output solutions are the bottom pressures, P/Tan(T), and the
transverse section shape defined by the ratio, Tan(¢)/Tan(T). For a
small heel angle, ¢, the roll moment produced by the sway force can be
ignored on the ground that its magnitude is in the order of Tan2(¢) of
that produced by the 1ift. Thus, the roll moment coefficient slope,
Crm/Tan(¢), or to be precise, the roll moment coefficient slope due to

the 1ift force, [Crm/Tan{(¢)]lz, is given by:

Cr = P y dxdy Tan(D) 1 (6.4.1),
$)z Tan(D Tan(¢) 1/2 PgB*

where the distance, y, is measured from the centre line. It is clear
that both the pressure term, P/Tan(T), and the ratio, Tan(D/Tan(¢), in
expression (6.4.1) are independent of the trim angle. Therefore, for a
given set of input to the program, [Crm/Tan(¢)]z is constant for any
combinations of heel angle and trim angle provided that both angles are
small and their ratio is the same as the output Tan(¢)/Tan(T). Since we
have already shown 1in the previous section that Crn/Tan(¢) is
independent of the heel angle for a given trim angle, the above argument
would imply that, for a given beam Froude number and mean Lw/B ratio,

Crm/Tan(¢) is also independent of the trim angle.

Furthermore, for a given projected wetted bottom and beam Froude
number, the integrated 1ift coefficient, Crfz, varies 1linearly with the
trim angle and, if the drag is ignored, the Lcp/B ratio is independent
of the trim angle. It follows that, ignoring the minor effect due to the
sway force, the roll moment coefficient slope, Crm/Tan(¢), of a heeled
planing flat plate only depends on the planing speed and its
longitudinal centre of gravity position and is independent of its

weight.

Returning to the results in fig.(6.7b,c and d) computed from four

different spray root geometries. For each set of (Lc2-Lc1)/B ratio, beam
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Froude number and mean Lw/B ratio considered, the heel angle can be
fixed at a certain value and the trim angle can be altered according to
the predicted transom slope, Tan(¢)/Tan(T). Thus, the results in these
figures can also represent the roll moment coefficient slopes (ignoring
sway force effect), 1ift coefficient slopes and centre of pressure
ratios for different trim angles at a fixed heel condition. These
results therefore verify that the weight (or trim angle) of the plate
has little effect on Crm/Tan(¢) for a given Lcg position (or mean Lu/B
ratio) at a given beam Froude number. Note that although the 1ift
coefficient slope remains unchanged during this scaling process, the

1ift itself has been varied according to the changes in trim angle.

6.5 Comparison of Results

In this section, the results derived from the present theory are
compared with the theoretical predictions and the experimental
measurements of Jahangeer (Ref.(66)). Jahangeer also used a finite
element method to determine the bottom pressures of planing surfaces.
However, the constant pressure elements used 1in his solution are
rectangular in shape, therefore the spray root geometry cannot be
prescribed as accurately as in the present theory. The wetted bottom
used for the comparison has a (Lc2-lLc1)/B ratio of 1.0518 and a mean
wetted length to beam ratio of 2.36. Beam Froude numbers ranging from
2.0 to 10.5 are considered. Four buttock strips were used 1in the
computations, except in the comparison of pressure distributions where
five buttock strips were wused in order to obtain the pressure

distribution along the centre line of the plate.

Fig.(6.8a) compares the present predictions for the roll moment
coefficient slope, Crm/(Tan(¢)Tan(T)), with Jahangeer’s theoretical and
experimental results. The non-dimensional ordinate Crm/(Tan(g)Tan(T)) in
the figure was used in Jahangeer’s original graph and does not mean that
Crm/Tan(¢) varies 1linearly with the trim angle. It has already been
shown in the previous section that the trim angles have little effect on
Crm/Tan(¢) for a given mean Lw/B ratio and Cv. It can be seen that there

is an excellent agreement between the two theoretical curves beyond beam
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Froude number of 3.5, while the present theory predicts lower values at
smaller beam Froude numbers. On the other hand, the present result
agrees exactly with Jahangeer’s experimental measurement at Cv=2.42.
Fig.(6.8b) shows the variation of the non-dimensional rolling moment
arm, R/{BTan(¢)), against beam Froude number. As before, the present
non-dimensional rolling moment arms are smaller than the theoretical
predictions of Jahangeer for beam Froude numbers less than 3.5. At a
beam Froude number of 2.42, the present prediction is also smaller than
his experimental measurement. The discrepancy between the present
prediction and the experimental measurement, however, can be ascribed to
the difference between the 1ift obtained by the present theory and the
experiment. Both the Crm/(Tan(¢)Tan(T)) and the R/(BTan(¢)) curves have
a peak at beam Froude number of about 2.6 and decrease rapidly as the
speed 1is further increased. This would imply a decrease 1in roll

stability at high speeds.

The results for the 1ift coefficient slopes, Cfz/Tan(T), are shown
in fig.(6.8c). Excellent agreement has been obtained between the present
results and Jahangeer’s theoretical predictions. At Cv=2.42, the present
1ift coefficient slope is slightly larger than Jahangeer’s experimental
measurement. Fig.(6.8d) shows the results for the longitudinal centre of
pressure ratio, Lep/B. The 1Jongitudinal centre of pressure positions
predicted by the present theory are consistently less forward from the
transom than Jahangeer’s theoretical results for all the beam Froude
numbers considered. The discrepancy between the two theoretical curves
is rather 1large, but the present result agrees much better with his

experimental measurement at a beam Froude number of 2.42.

Fig.(6.9) compares the present pressure distributions with the
experimental measurements obtained by Jahangeer for a heeled planing
flat plate of mean Lw/B ratio of 2.36, at a trim angle of 62, heel angle
of 109 and at a beam Froude number of 2.42. Good agreement has been
obtained between the theoretical and the experimental pressure
distributions along the <centre 1line of the plate, while larger
discrepancies have been found along the chines. It has been observed

that the chine pressures obtained by using four buttock strips are in
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better agreement with the experimental measurements, and this could be
the reason for the very encouraging roll moment result obtained at
Cv=2.42. One should be aware that the chine pressures are more impoitant

1

ultation of rolling moment is concerned.

a
)
a

as far as the ¢

6.6 Determination of Hydrodynamic Forces and Moments acting on a Heeled
Planing Flat Plate of Specified Loading Condition

In this section, we consider the problem of determining the rolling
moment and the sway force acting on a heeled planing flat plate under a
specified loading condition. For a heeled planing flat plate, the sway
force, Fy, is independent of the speed and the position of the centre of
gravity and, according to the sign convention shown in fig.(6.6a), can

be obtained from the relation

Fy = - W Tan($) (6.6.1),

where W is the weight of the plate and ¢ is the angle of heel. rollowing
the earlier discussion in section (6.3), at sufficiently small heel and

trim angles, the roll moment coefficient, Crm, can be expressed as:

Crm = Crm ¢ (6.6.2),

where ¢ is the heel angle in radians and 3Crm/ b is the partial

derivative of the roll moment coefficient with "espect to the heel angle

which can be regarded as a function of the weight, the tongitudinal
centre of gravity position and the planing speed. At small heel angles
, 9Crm/ 3¢ is independent of $ and 1is equal to the roll moment

coefficient slope, Crm/Tan(d).

To determine these roll moment derivatives, 3Crm/3¢, one can fix the
angle of heel and carry out computations for an assumed range of mean

Lw/B ratios and trim angles at each beam Froude number, and then



interpolate between these results to obtain the right 1ift, longitudinal

centre of pressure position and roll moment. However, this could be a
time consuming process, since several trim angles will be required for
each assumed mean Lu/B ratio and beam Froude number. In order to save
computing time, a slightly different approach 1is adopted here. This
approach, which will be discussed later in this section, is based on the

results obtained from wetted bottoms of a fixed spray root geometry,
i.e. a fixed ratio of heel to trim angles, and therefore only requires

one computation for each assumed mean Lw/B ratio and beam Froude number.

Computations have therefore been carried ocut for a series of wetted
bottoms with spray root geometry defined by (Lcz-bLc1)/B=1.0518. The
computed 1ift coefficient slopes, centre of pressure ratios and roll
moment coefficient slopes are shown 1in fig.(6.10a), fig.(6.10b) and
fig.(6.10c) as a function of mean Lw/B ratio and beam Froude number. The
output transom slopes, Tan(¢)/Tan(T), of these wetted bottoms have a
mean value of 1.4 with a discrepancy, in any case, of not more than + 2%
about this mean Tevel. The roil moment coefficient slopes,
[Crm/Tan(¢) ]z, presented in fig.(6.10c) are the components due to the
1ift forces. These roll moment coefficient slopes, as discussed earlier
in section (6.4), are independent of the trim and the heel angles. The
total roll moment coefficient slope, [Crm/Tan(¢)]é=¢1, at a particular
heel angle, ¢1, including the effect of the sway force can be obtained

from the relation:

[ Crm ] = [ Cram ( 1.0 + Tan2(d1) ) (6.6.3).
Tan(¢) Jjé=¢1 Tan(¢) |z

Note that, according to the sign convention shown in fig.(6.6a), the
negative values of [Crm/Tan(¢)}z in the figure 1indicate positive
righting moments. At beam Froude number of 2.0 and mean Lw/B > 2.2, the
predicted centre of pressure ratios, Lep/B, have suffered badly from the
pressure divergence problem discussed in section (3.6), although
oscillations were not observed 1in the pressure solutions. However, the
effect of these deteriorated pressures on the 1ift coefficient slopes

and the roll moment coefficient slopes is less pronounced.
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The weight, W, and the position of the centre of gravity forward of
the transom, Lcg, of a heeled planing flat plate can be defined by the
weight coefficient, W*=W/(1/2PgB%), and the ratio, Lcg/B. The procedure
for determining the running mean Lw/B ratio (wetted bottom area to beam
squared ratio), the running trim angle, and the roll moment coefficient

.slope under this loading condition can be described as follows:

(1) Determination of running mean Lw/B ratio

For a given beam Froude number, the longitudinal centre of pressure
ratios, Lecp/B, predicted from wetted bottoms with a fixed spray root
geometry are only dependent on the mean wetted length to beam ratios.
The running mean wetted length to beam ratio at a given Cv, say [Lw/Bl1,
can therefore be obtained by matching the longitudinal centre of gravity
ratio, Lcg/B, of the plate to the computed centre of pressure ratios,
Lecp/B, presented in fig.(6.10b). This procedure is the same as the one

discussed in section (4.6) for a non-heeled planing flat plate.

(2) Determination of running trim and heel angles

The 1ift coefficient slope, say [Cez/Tan(T)]1, at the mean wetted
length to beam ratio, [Lw/Bl1, and the starting beam Froude number is
then obtained from the computed 1ift coefficient slopes shown in
fig.(6.10a). The running trim angle, say [1, can be obtained by matching
the weight of the plate to the planing 1ift. Since the 1ift varies
Tinearly with the angle of trim for a wetted bottom of fixed spray root

geometry, Tr is simply given by:

Tan(T1) = W* (6.6.4).
Cv2 [Cfz/Tan( D)1+

The heel angle, say ¢1, required to produce the spray root geometry,
(Lc2-Le1)/B=1.0518, is given by:
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Tan(¢1) = [ian;@nz:] Tan(T1) (6.6.5),
an

where [Tan(¢)/Tan(T)] is the output transom slope and, in this case, 1is

equal to 1.4.

{3) Determination of roll moment coefficient slope

We have shown in section (6.4) that, for a given mean Lu/B ratio,
spray root geometry and beam Froude number, the roll moment coefficient
slope, [Crm/Tan(¢)]z, produced by the 1ift is independent of both the
trim and the heel angles. Having determined the required running mean
wetted length to beam ratio, [Lw/BJ1, at the starting Cv from (1), the
[Crm/Tan(¢)]z at this running condition can be obtained by interpolating
between the computed [Crm/Tan($)]z results presented in fig.(6.10c). The
total roll moment coefficient slope, say [Crm/Tan(¢)le=¢1, at o¢=¢1 is

then obtained from the relation given in expression (6.5.3).

Although the above procedure places no restriction on the weight of
the plate, however, one must always be aware of the fact that both the
trim and the heel angles have to be small in order to satisfy the basic

assumptions of a linearized theory.

The method discussed above has been applied to heeled planing flat
plates of weight coefficient, W*=1.3, and Lcg/B ratios ranging from 1.05
to 1.45. Again, a third order Lagrange interpolating polynomial was
employed for the interpoiating processes. Since the heel angle has been
shown to have little effect on the 1ift and the longitudinal centre of
pressure position, the predicted running mean Lw/B ratios and running
trim angles will be compared with those obtained from the Savitsky'’s
empirical equations (4.3.3) and (4.4.1). The present predictions are
shown in fig.(6.11a) and fig.(6.11b) as a function of beam Froude
number, together with the results obtained from the empirical equations

for the cases of Lcg/B=1.05 and 1.45. Each of the predicted trim angle
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curves in fig.(6.11b) are extended backward to the point at Cv=0.0. The
1ift at rest is produced purely by buoyant effect, and the trim angle at

rest, To, is given by:

Tan(l) = W* (6.6.6),
(Lw/B)o?2

where (Lw/B)o is the wetted length to beam ratio at rest given by:

(Lw/B)o = 3 (ch/B) (6.6.7).

It can be seen from fig.(6.11a) that, for a fixed 1load and fixed
longitudinal centre of gravity position, both the present theory and the
Savitsky’s empirical equation (4.4.1) show the tendency of decreasing in
mean wetted TJength to beam ratio with the increase of speed. Generally
speaking, the present theory usually gives smaller mean Lw/B ratios than
the empirical equation, though this tendency seems to have reversed at
low speeds. At high beam Froude numbers, the present Lcg/Lw ratio
approaches a constant value of about 0.8. This corresponds to an
increase of about 7% when compared to the value of 0.75 given by the

empirical equation.

An interesting feature dispiayed in fig.(6.11b) is that the running
trim angle rises initially above its respective rest value as the plate
moves from rest. This initial rise in trim angle can be caused by two
factors; one is due to the rapid reduction in wetted length as the speed
increases from rest and the other is due to the negative hydrodynamic
effect on the 1ift at low speed. Savitsky (Ref.(44)) noted that at a
very low speed, the hydrodynamic reaction of the water actually reduced
the 1ift below the value which would be expected on a purely
displacement basis. At high beam Froude numbers, the present trim angles
agree very well with the values obtained from the Savitsky’s empirical

equations (4.3.3) and (4.4.1). At low beam Froude numbers, however, the

95



present theory has predicted trim angles that are much smaller than
those obtained from the empirical equations. On the other hand, it is
known that the Savitsky’s empirical equations are less accurate at low

speeds.

The results for the roll moment coefficient slopes, Crm/Tan(¢), are
shown in fig.(6.11c). It can be seen that, for a given load, the
predicted roll moment coefficient slope 1in general increases with the
centre of gravity ratio, Leg/B, of the plate. This would imply that the
roll stability can be improved by shifting the centre of gravity forward
from the transom. The results indicate that the improvement could be
quite significant at the 1lower speed range. However, one must also
notice that this might reduce the craft’s performance in other aspects -
for example, the increase in bottom drag. One can also see from
fig.(6.11c) that the roll moment slopes decrease continuously as the
speed increases. In particular, the rapid drop 1in roll moment
coefficient slope between beam Froude numbers of 2 and 4 suggests that a
rapid decrease in roll stability at this speeds. It should be noted that
the transom running beam of the heeled plate is assumed to be completely
wetted in the present solution. In the case of very low Lcg/B ratio, the
transom running beam at the heeled up side of the plate can become
partially dry. This could give rise to an increase in righting moment as
a result of the rapid loss 1in wetted area under the heeled up side of

the plate.
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CHAPTER (7) Some Results for the Planing of Constant Deadrise

Prismatic Hulls in Heel Condition

7.1 Introduction

In this chapter, we will apply the present finite element method to
predict the pressures under the bottom of a constant deadrise prismatic
hull when it 1is planing in a heel condition. Again, only small heel,
trim and deadrise angles will be considered. Fig.(7.1) shows a sketch of
the asymmetrical wetted bottom of a planing constant deadrise prismatic
hull in heel condition. As before, the forward thrown spray sheet and
the slightly curvature at the spray root will be ignored in the present
computations and the running beam at the transom is assumed to be
completely wetted during the planing motion. The mean wetted length to
beam ratio, Lw/B, or the wetted area to beam squared ratio for such a
wetted bottom can be defined in terms of its transom wetted beam, B, its
wetted keel Tlength, Lk, and its wetted chine lengths, tetr (heeled up

e
side) and Lecz (heeled down side), as:

Lw = 2Lk _+ le1 + Leo (7.1.1).
B 48

An ’average wetted length to beam ratio’, Arp, for planing prismatic

hulls in heel was used by Jahangeer (Ref.(66)):

Arp = 1 Lk + Lez + Let (7.1.2).
2B 2

This ’average wetted length to beam ratio’ is not the wetted area to
beam squared ratio of the wetted bottom and should not be confused with
the present definition. A typical finite element representation of the
projected wetted bottom of a planing prismatic hull in heel condition is
shown in fig.(7.2). The input local hull displacement function above the

transom level is the same as that for the zero heel angle case.
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An interesting feature of heeled planing prismatic hulls is that the
point associated with zero yawing moment (Tongitudinal centre of lateral
resistance) can be well separated from the point associated with zero
pitching moment (longitudinal centre of 1ift). Thus, 1in addition to a
rolling moment and a sway force, there is also a net yawing moment
acting about the centre of gravity of the craft. This is different from
a heeled planing flat plate in which the net yawing moment about the
centre of gravity 1is zero. This particular aspect of planing has been
confirmed by the experimental measurements of Wellicome and Campbel1

(Ref.(57)) and has also been observed in the present computational

results.

Section (7.2) discusses the relationship between the spray root
geometry, the heel angle, the trim angle and the deadrise angle. Section
(7.3) 1dnvestigates the effect of the heel angle on the induced sway
force, rolling moment and yawing moment for a fixed trim condition. The
computational results suggest that, for a given loading condition and
planing speed, these hydrodynamic force and moments vary linearly with
the angle of heel. Section (7.4) compares the present results with the
theoretical predictions and the experimental measurements of Jahangeer
(Ref.(66)) for a 15° constant deadrise hull 1in heel condition. The
application of the present finite element method to the determination of
the hydrodynamic forces and moments derivatives, oCry/3¢, 3Crm/39 and
oCym/ 3 ¢, for a prismatic hull of fixed loading condition will be
discussed in section (7.5). Finally, the hydrodynamic forces and moments
derivatives predicted for a 10° constant deadrise hull will be compared
with the experimental measurements of Wellicome and Campbell (Ref.(57))

in section (7.6).

7.2 Selection of Spray Root Profile

Based on the T/2 wave rise factor computed by Wagner (Ref.(19)) for
a two dimensional wedge penetrating vertically into a fluid surface and
the assumption of no water piling up at the keel line, it can be shown

analytically, as for the heeled planing flat plate discussed in section
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analytically, as for the heeled planing flat plate discussed in section
(6.2), that the spray root geometry of a planing constant deadrise

prismatic hull in heel condition is given by:

e = Lle1) = Sin(8+a) (7.2.1a)
B TCos(8) Tan(7)

and (L = Le2) = Sin(8-¢) (7.2.1b),
B T Cos(8) Tan(T)

where B is the deadrise angle, T is the trim angle, ¢ is the heel angle,
B is the transom wetted beam, Lk is the wetted keel length and Lec1 and
Lc2z are the wetted chine lengths at the heeled up and the heeled down

sides respectively.

Fig.(7.3) shows the shape of thas transoms obtained from a spray root
profile of (Lk-Lc1)/B=0.958 and (Lk-Lc2)/B=0.587 for various mean Lw/B
ratios and beam Froude numbers. The wetted bottoms were divided
symmetrically into six buttock strips, each of equal width, and it can
be seen that the predicted transoms are slightly curved as a result of
ignoring the curvature at the spray root. However, unfortunately,
oscillatory pressure solutions were observed at Cv=2.5 for moderate mean
Lu/B ratios, though, surprisingly, they have not manifested themselves
in the results for the vertical Jlocation along the transom. The number
of buttock strips was then reduced to four in the latter computations in
order to obtain more satisfactory pressure results at lower beam Froude

numbers.

Table (7.1) compares the computed trim angles and heel angles with
the estimations from expressions (7.2.1a) and (7.2.1b) for a 10°
constant deadrfse hull. For an assumed heel angle, trim angle and
deadrise angle, an initial estimate of the spray root geometry was first
obtained from the analytical expressions. The output trim and heel
angles for a given mean Lw/B ratio and beam Froude number were then
determined from the output transom slopes, Tan(8+$)/Tan(T) (heeled up
side) and Tan(B-¢)/Tan(T) (heeled down side). Four buttock strips of
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equal width were used in these computations. In general, the heel angles
predicted by the present theory are in very good agreement with those
obtained from expressions (7.2.1a) and (7.2.1b), with a difference of
not more that +1.4% between the two results. The computed trim angles,
however, have consistently shown an increase of about 11% when cbmpared
with the corresponding values given by the analytical expressions.
Again, a possible cause of these differences could be the assumption of
no water piling up at the keel 1line 1in deriving the analytical
expressions, which itself may not be strictly accurate. On the other
hand, the results presented in table (7.1) and fig.(7.3) seem to agree
with the the analytical expressions that the output transom shape 1is
only dependent on the geometry of the spray root but not dependent on

the mean Lw/B ratio and the planing speed.

7.3 Variation of Hydrodynamic Forces and Moments with Heel Angle

In this section, we investigate the effect of the heel angle on the
the sway force, the rolling moment and the yawing moment induced by the
planing motion of a heeled prismatic hull. The aim of this investigation
is to confirm the linear relationships between the heel angle and these

hydrodynamic forces and moments at small angle of heel.

The sign conventions for the 1ift force, the sway force, the rolling
moment, the yawing moment and the heel angle are shown in fig.(7.4). The
datum of these force and moments is taken to be at the intersection of
the keel 1line and the transom. Rolling to the starboard, swaying and
yawing to port are treated as positive. For a heeled constant deadrise
prismatic hull, the sway forces and the yawing moments, as well as the
rolling moments, contributed by the bottom pressures on the port and
starboard sides of the hull are acting in an opposite direction. Thus,
the relationship given in (6.3.1) is no longer applicable here. The
resultant sway force, yawing moment and rolling moment are therefore
obtained from the differences between their corresponding port and
starboard components. The non-dimensional sway force coefficient, Cey,
yaw moment coefficient, Cym, and roll moment coefficient, Crm, are

defined as follows:
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C'Fy = Fy (731),
1/2 PgB3 Cv2
Cym = My (7.32)
1/210984
and Crm = Mr (7.3.3),
1/2 pgB*

where Fy 1is the sway force, My 1is the yawing moment about the transom
and Mr 1is the rolling moment about the keel. As 1in the case of heeled
planing flat plate, a non-dimensional rolling moment arm, R/B, can be

defined as:

R = Mr (7.3.4).
B (Fz2+Fy2)1/2 B

It can alsoc be shown from the hull geometry of a heeled prismatic hull
that the sway force is not necessary acting at the same point as the
resultant of the drag and the 1ift forces. It follows that the net
yawing moment about the centre of gravity of the craft is not necessary
equal to zero. This suggests that the introduction of a heel angle will
cause the craft to roll, to sway and to yaw. Thus, there is a coupling
between the sway, yaw and roll motions. Neglecting the effect of
pressure drag at small trim angles, the longitudinal centre of Jlateral
resistance, LecLr, = 1i.e. the point associated with zero net vyawing

moment - forward of the transom is given by:

Lletr = Yawing Moment about Transom (My) (7.3.5)
Sway Force (Fy)
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and the longitudinal centre of 1ift, Ler, - 1i.e. the point associated

with zero pitching moment - forward of the transom is given by:

Ler = Pitching Moment about Transom (7.3.6).
Lift Force

Fig.(7.5a) to fig.(7.59) show the computational results obtained for
a 15° constant deadrise hull in heel condition. Two beam Froude numbers,
Cv, of 3.0 and 5.5 and heel angles ranging from 3° to 10° were
considered. The output transom shapes give a trim angle of about 7°. It
can be seen from fig.(7.5a) and fig.(7.5b) that for a given mean Lw/B
ratio, trim angle and beam Froude number, the predicted 1ift coefficient
slopes, Cfz/Tan(T), and longitudinal centre of 1ift ratios, Lecu/B, are
almost independent of the heel angles. Also shown 1in the same figures
are the 1ift coefficient slopes and the longitudinal centre of 1ift
ratios computed for the case of zero heel angle at the same angle of
trim and beam Froude numbers. These also nearly fall on the theoretical
curves for the heeled cases, justifying the present definition of mean
Lw/B ratio, i.e. wetted bottom area to beam squared ratio, rather than
Arp. For the mean Lu/B ratios and beam Froude numbers considered, the
discrepancies in 1ift coefficient slopes and longitudinal centre of 1ift

ratios between different heel angles are 1in the order of 3% and 4%

respectively.

The results for the roll moment coefficient slopes, Crm/Tan(¢), and
the rolling moment arm ratios, R/(BTan(¢)), are shown in fig.(7.5¢) and
fig.(7.5d). The very close agreement between the values of Crm/Tan(g)
obtained at different heel angles suggests that, for a given mean Lu/B
ratio, trim angle and beam Froude number, a Jinear relationship exists
between the rolling moment and heel angle. In general, the computed
rolling moment arm ratios, R/(BTan(¢)), also display the same feature,
although a slightly larger discrepancy of around 9% has been found at

large Lw/B ratio for the case of beam Froude number equal to 3.0.

Fig.(7.5e) and fig.(7.5f) show the variations of the sway force
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coefficient slopes, Cey/(Tan(T)Tan(¢)), and the yaw moment coefficient
slopes, Cym/(Tan(IﬁTan(¢)Cv3), against heel angles. The overall results
also seem to suggest that, for a given mean Lw/B ratio, trim angle and
beam Froude number, both the sway force and the yaw moment vary linearly
with the angle of heel. Again, for the sway force coefficient slopes, a
slightly larger discrepancy of about 6% has been found at large mean
Lu/B ratio for the case of beam Froude number equal to 3.0. Since both
the sway force and the vyawing moment about the transom vary linearly
with the heel angle, it can be expected that the corresponding
longitudinal centre of lateral resistance, Lcir/B, 1is independent of the
heel angle. This aspect also seems to be verified by the present
computations for Lcir/B, as shown in fig.(7.5g). Finally, the results
for the distance of the 1longitudinal centre of lateral resistance
forward of the longitudinal centre of 1ift, {Lctr—tcL)/B, are shown in
fig.(7.5h). As the vyawing moment about the centre of lift/centre of
gravity is eqgual the product of the distance, (Ler-Ler), and the sway
force, Fy, (LcLr-LcL)/B can be regarded as the non-dimensional yawing
moment arm for the net yawing moment about the centre of 1ift position.
The overall results for (Lcir-Lci)/B seem to suggest that the yawing
moment arm about the centre of Tift position is independent of the heel
angle for a given mean Lw/B ratio, trim angle and beam Froude number.
Furthermore, as the sway force varies linearly with the heel angle, the
results would imply that the yawing moment about the centre of 1ift
position also varies linearly with the heel angle. Note that at a beam
Froude number of 3.0, the present theory predicts positive values of
(Lcir-LeL)/B for large mean Lw/B ratios. This suggests that a reverse in
the direction of the yawing moment about the centre of 1ift position

(for sign convention, see fig.(7.4)).

To summarize, the above investigation indicates two important

aspects. They are

(1) for a given mean Lw/B ratio, trim angle and beam Froude number, the
sway force, the rolling moment and the yawing moment all vary Tlinearly

with the heel angle, and
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(2) for a given mean Lu/B ratio, trim angle and beam Froude number, both
the 1ift and the longitudinal centre of 1ift position are independent of

the heel angle.

These would imply that, for a given craft’s loading condition and speed,
these hydrodynamic forces and moments vary Tlinearly with the heel angle.
At sufficiently small heel angles, the sway force coefficient, Cey, the
roll moment coefficient, Crm, and the yaw moment coefficient, Cym, can

therefore be expressed as:

ny = aCfx ¢

Crm = 2Crm ¢

and Cym

yn ¢ (7.3.7),
39

where ¢ is the heel angle in radians, 3Cry/ 30, 3Crm/3¢ and 3Cym/ ¢ are

the partial derivatives of the sway force coefficient, the roll moment

coefficient and the yaw moment coefficient with respect to the hee]l
angle which are equal to Cry/Tan(g), Crm/Tan(¢) and Cym/Tan(¢). Each of

these derivatives can be regarded as a function of planing speed,
craft’s weight and craft’s longitudinal centre of gravity position
(running trim and running mean wetted length to beam ratio). The method

for determining these derivatives will be discussed further 1in section

(7.5).

7.4 Comparison of Results

In this secticon, the present computational results are compared with

the theoretical predictions and experimental measurements of Jahangeer
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the projected wetted bottom used in the
present computations is divided into four buttock strips, each of equal
width. In Jahangeer’s calculations, however, the projected wetted bottom
was diviged in an asymmetrical fashion with three buttock strips on the
heeled up half of the wetted bottom and two buttocks on the other, as
shown in fig.(7.6). As mentioned in the previous section, the resultant

sway force, rolling moment and yawing moment are calculated from the

differences between the pressure forces and moments acting on the port

n
=

aind starboard sides of th

9

null about the keel line. By arranging the
buttock strips symmetrically about the keel, the errors in calculating
these pressure forces and moments on the two sides of the hull should be

of the same order and therefore the eirrors in calculating the resultant

the subtracting process. Thus, as far as the calculations of these
orces and moment are concerned, a symmetrical buttocks
configuration should give a better accuracy. This aspect could be
important in particular that when a small number of buttock strips are

used.

Fig.(7.7a) and fig.(7.7b) compare the present 1ift coefficient
siopes, Crz/Tan(T), and longitudinal centre of 1ift ratios, Lci/B, with
the theoretical predictions and experimental measurements of Jahangeer.

In eneral, there 1is a reasonable agreement between the present

w
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1ift coefficient slopes and Jahangeer’s results, although the present
theory has predicted larger values than his theoretical predictions for

beam Froude numbers less than 3.0 and his experimental measurement at
Cv=2.52 and Lw/B=2.67. As in the planing of a heeled flat plate, for
both mean Lw/B ratios, the Tongitudinal centre of 1ift positions

predicted by Jahangeer are generally more forward from the transom than

those predicted by the present theory. However, as before, the present

result is 1in better agreement with his experimental measurement at
Lw/B=2.67 and Cv=2.52.

Good agreement also exists between the present roll moment
coefficient slopes, Crn/(Tan(¢)Tan(T)), non-dimensional rolling moment
arms, R/(BTan(¢)), and Jahangeer’s experimental results as shown in
fig.(7.7¢) and fig.(7.7d). However, at high beam Froude numbers, the
righting moments predicted by the present theory are considerably larger
than Jahangeer’s theoretical predictions. As mentioned earlier in this
section, the heeled up half of the wetted bottom in Jahangeer’s
calculation was divided into three buttock strips and this could produce
a larger negative righting moment, i.e. positive Mr, about the keel due
to the increase 1in the moment arms of the pressures at outer most
buttock. The large discrepancy between the two theoretical predictions
at high speeds might be due to the difference in the element
arrangements of the present and Jahangeer’s wetted bottom grids. Note
that the wetted bottom grid in fig.(6.2) used for the heeled planing
flat plate calculations has the same buttocks layout, i.e. four buttocks
arranged symmetrically about the centre 1ine, as that wused in
Jahangeer’s calculations. The results for the roll moment coefficient
slope presented in fig.(6.8a) are, not surprisingly, in good agreement

with Jahangeer’s predictions.

The predicted sway force coefficient slopes, Cry/(Tan(¢)Tan(T)), yaw
moment coefficient slopes, Cym/(Tan(¢)Tan(T)Cv®), and Tlongitudinal
centre of lateral resistance ratios, LcLr/B, are shown 1in fig.(7.7e),
fig.(7.7f) and fig.(7.79g) respectively. Like the longitudinal centre of
1ift, the longitudinal centre of lateral resistance for each mean Lw/B

ratio has approached a constant distance forward of the transom at high
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beam Froude numbers. However, the later computational results and the
experimental measurements of Wellicome and Campbell (Ref.(57)) have
shown that the centre of lateral resistance can be situated at a point
behind the transom at high speed when the associated trim angle and mean

wetted Tength to beam ratio are small. The Jlater computational results
also suggest that both Cry/Tan(¢) and Cym/Tan(¢) do not vary linearly
with the trim angle for a given mean Lw/B ratio and beam Froude number.

That is to say the results presented in these figures are only valid for

the present wetted bottom. These sway forces, yawing moments and
fongitudinal centre of lateral resistance ratios had not been computed

or measured by Jahangeer.

Fig.(7.8) compares the present pressure distributions with the
experimental measurements of Jahangeer for a  mean Lw/B ratio of 2.67
and a beam Froude number of 2.54. Reasonable agreement has been obtained

ween the predicted and measured pressure distributions along the

bet

chines, especially at the heeled up side where the present computations

confirmed the experimental measurements closely. As shown in fig.(7.2),

the present wetted bottom grid does not allow a set of control points to
er,

be Jocated along the keel line. Howevet judging from the means of the
pressiures predicted along the Jlines + B/8 from the keel, the present
theory seems to have under-estimated the experimental pressure

measurements along the forward half of the keel.

7.5 Determination of Hydrodynamic Forces and Moments acting on a Heeled
Planing Prismatic Hull of Specified Loading Condition

As mentioned in the preceding chapters, the shape and extent of the
projected wetted bottom is required to be prescribed in the present
computational method, therefore, the hydrodynamic forces and moments
derivatives, JCry/39, BCrm/b¢ and 3Cym/3¢, for a craft of specified
loading condition cannot be directly predicted. Again, these forces and
moments derivatives can be determined by means of interpolating methods.
For a given deadrise hull, this would require computations for an

assumed range of trim angles, mean wetted length to beam ratios and
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speeds to be carried out at a fixed heel condition. For each beam Froude
number considered, the following parameters are required to be computed

as a function of mean Lw/B ratio and trim angle:

(a) 1ift coefficient (Crz),

(b) longitudinal centre of 1ift ratio (LcL/B),

(c) sway force coefficient siope (Cey/Tan(g)),

(d) yaw moment coefficient slope about the transom (Cym/Tan(¢)),

(e) roll moment coefficient slope about the keel (Crm/Tan(g)).

The computed 1ift coefficients (a) and longitudinal centre of 1ift
ratios (b) allow us to determine the running trim angle and the running
mean wetted Jlength to beam ratio for a particular craft’s loading
condition. The interpolating procedure for matching the computed 1ift
and Tongitudinal centre 1ift position to the craft’s weight and the
craft’s longitudinal centre of gravity position is the same as the one
discussed in section (5.7) for the non-heeled case. Once the running
trim angle and the running mean wetted length to beam ratio have been
obtained, the corresponding hydrodynamic forces and moments derivatives |
can be easily determined from the computed sway force coefficient slopes
(c), yaw moment coefficient slopes (d) and roll moment coefficient
slopes (e) by interpolation. The 1longitudinal centre of lateral
resistance ratio, LcuLr/B, can be obtained by dividing the predicted
yawing moment by the predicted sway force. Note that the method to scale
the trim angle and the heel angle using a fixed spray root geometry, as
discussed in section (6.5) for a heeled planing flat plate, cannot be
applied in the present case. This 1is because, now, for a fixed spray
root  geometry, i.e. fixed output transom slopes Tan(B+¢)/Tan(T) and
Tan{8~¢)/Tan(T), there could only be one solution in the heel angle, ¢,

and the trim angle, 7, for a given deadrise angle,f .

Computations have been carried out to determine the above (a), (b),
(c), (d) and (e) for a 10° constant deadrise prismatic hull. Beam Froude

numbers ranging from 2.0 to 6.5 (increasing at 0.25 increment) have been
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considered. The spray root geometries used for the computations together
with the output trim angles (ranging from 2.5° to 7.2°) and the output
heel angles (mean value of about 3.62°) are shown 1in table (7.1). For
Cv>4.0, however, the trim range has been reduced to 2.5° to 6° simply
because the running trim angle required to produce a given craft’s
weight reduces with the planing speed. A range of mean Lw/B ratios from
1.65 to 2.85 have been considered for all beam Froude numbers, with the
exception of the cases of Cv = 2.25 and 2.0 in which the range has been
reduced to 1.65 to 2.40 and 1.65 to 2.15 due to the oscillatory pressure
solutions encountered at higher mean Lw/B ratios. Note that a further

reduction in mean Lw/B ratio at small trim angle can result in partial

Some of these computational results are shown in fig.(7.9.1) and

fig.(7.9.2). It can be seen from the results in these figures that, for

a given mean Lw/B ratio and beam Froude number, the computed 1ift
coefficient, Crz, varies linearly with the trim angle and the location
of the longitudinal centre of 1ift gradually moves toward the transom as

the trim angle decreases. These tendencies have also been observed in

the zero heel angle case and are shown in fig.(5.12) and fig.(5.13).

-
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ike the longitudinal centie of 1ift, the longitudinal centre of lateral

resistance, LcLr, also moves toward the transom as the trim angle
decireases. However, the rate of decrease of the longitudinal centre of
lateral resistance to beam ratio, LcLr/B, is considerabiy higher than

that of the longitudinal centre of 1ift to beam ratio, LcL/B, and this
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ack angle at the spray root becomes large. Strictly speaking,
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ot a given mean Lw/B ratio and beam Froude numbeir, both the sway force
coefficient slope, Cry/Tan(¢), and the yaw moment coefficient siope,
Cym/Tan(¢), do not vary linearly with the trim angle. Fig.(7.10a) and
fig.(7.10b) show the variation of roll moment coefficient slope,
Crm/Tan($), against trim angle for beam Froude numbers of 3.0 and 5.5.
For a heeled planing flat plate, it has been shown in section (6.3) that
the trim angle has little effect on the roll moment coefficient slope.
The present results also display this feature to some extent, though a

difference of up to + 20% about the mean level (denoted by the solid
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lines in the figures) has been observed between the values of Crm/Tan(¢)
at different trim angles. These differences, however, might be due to
the variation in the shape and the size of the elements used in the
computations. For interpolating purpose, the roll moment curves have
been smoothed out by plotting Crm/(Tan(¢)Tan(T)), instead of Crm/Tan(¢),
against the trim angles as shown in fig.(7.9.1f) and fig.(7.9.2f).

Although computations have only been carried out for a 10° constant
deadrise hull, the results for other planing surfaces can also be
obtaine in a similar manner. The ’data-base’ for feeding the

interpolating program can be expanded to cover a wide range of deadrise

O

angles, mean Lw/B ratios, trim angles and speeds. This would allow users
to estimate the hydrodynamic forces and moments derivatives together
with the running trim and the running wetted length gquickly for a wide
range of craft’s displacements and craft’s longitudinal centre of
gravity positions without going through the tedious integration process.
This 1implies that the use of the present interpolation scheme in

-1

ngineering design would be a practical proposition.

1]

7.6 Comparison of Hydrodynamic Forces and Moments Derivatives for fixed
Bottom Loading Coefficient and Wetted Keel length to Beam Ratio

The hydrodynamic forces and moments derivatives derived from the
present theory for a 10°® constant deadiise hull have been compaired with
the experimental measurements obtained by Wellicome and Campbell
(Ref.(57)). wWellicome and Campbell conducted model tests to measure the
hydrodynamic forces and moments for a series of constant deadrise
prismatic hulls under restrained roll and yaw conditions. Models with
deadrise angles ranging from 10° to 30° were tested. The roll restrained
models 1in their experiments were free to heave and trim but were
restrained to a given heel angle. The displacement of the model was

defined by a non-dimensional bottom loading coefficient,

Cp = _Lk B (7.6.1),
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where 7 is the static displacement volume. The value of Cp was chosen to
be constant over the range of wetted keel length to beam ratios, Lk/B,
with Cp=5.7 for Lk/B=2.0, 2.5, 3.0, 3.5 and 4.0, Cp=7.8 for Lk/B=2.0,
3.0 and 3.5 and Cp=8.1 for Lk/B=4.0. For each deadrise angle, bottom
loading coefficient, speed and wetted keel length, the roll moments and
the sway forces were measured using force and moment dynamometers at a
number of different heel angles between + 7.5°. The roll moment and sway
force derivatives were then determined from the slopes of the roll
moment against heel angle curve and the sway force against heel angle
curve by fitting straight lines to the experimental data. The sway force

and roll moment derivatives were presented in non-dimensional forms,

Fa = 2afFy _1_ and M2 = QJMr

M (7.6.2),
3 B 29

1
AB

where A is the weight of the model 1in Newtons. These results were
plotted against Froude numbers based on the wetted keel 1length,
Ne=C/(gLk )1/2. Some results for the location of the longitudinal centre
of Tateral resistance for the 25° deadrise model were also recorded.
Note that although the bottom loading ccefficient, Cp, was kept constant
for the entire range of wetted keel length to beam ratios, the actual
model displacement, A , for each L«/B ratio was not the same. Also note
that, for a given Lk/B ratio and Cp, the longitudinal centre of gravity

Tocation of the craft is a function of planing speed.

In order to compare with these experimental results, it was necessary
to convert the characteristic 1length ratio, Lw/B, of the ’pre-
calculated’ data to Lk/B. Since the relationship between Lw/B and Lk/B
at each calculated trim angle was known from the geometry of the input
wetted bottom, there was no problem 1in obtaining the corresponding
results for a particular Lk/B ratio. Again, this was achieved by an
interpolating process which employed a third order Lagrange
interpolating polynomial. For the cases of Lk/B=3.0 and Cv ¢ 2.25 (N <
1.3), however, extrapolation was used as the ’pre-calculated’ data did
not extend up to this particular (k/B ratio for these speeds (see

section 7.5).

11 ?Lienany
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The 1ift coefficient, Cfz, required to produce a given Cp for a
given Lk/B ratio and beam Froude number can be obtained from the

relation

Crz = {(Lx/B)1-5 (7.6.3)
1/2 Cpl-5 Cv2

and the trim angle required to produce this 1ift was determined by
interpolating the 1ift coefficient against trim angle curve for the
given Lk/B ratio and beam Froude number. The sway force, roll moment and
yaw moment derivatives and the Lciu/B ratio at the predicted trim angle
were then obtained from their respective relations with the trim angles.,
The predicted yaw moment derivatives (about the transom) are also

presented in a non-dimensional form,

Nz = My (7.6.4).
og

.
AB

Unfortunately, no yaw moment data is available in Wellicome and Campbel1
report (Ref.(57)). The centre of lateral resistance ratic, LciLr/B, was
then calculated from the predicted sway force and yaw moment
derivatives. Extrapolation had alsc been used in some high beam Froude
number cases if the running trim angle required to produce the given Cp

exceeded the lower 1imit of the assumed trim range.

As shown in fig.(7.11), the roll moment results presented in
Wellicome and Campbell report are referred to a datum point which is
Tocated at the intersection of the keel 1line and the vertical plane
through the centre of gravity of the craft. This is different from the
present case where the roll moment is computed about the keel line (see
fig.(7.4). In order to transform the predicted roll moment derivatives
to the datum point shown 1in fig.(7.11), it was necessary to know the

Tongitudinal centre of gravity locations and trim angies measuied during
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the experiments. However, these values are not presented 1in the report
so the values predicted by the present theory were used instead. The
predicted roll moment derivatives were then corrected, by taking into
account of the interaction between the sway force, yawing moment and
rolling moment, using the predicted trim angles and longitudinal centre

of 1ift locations.

Following the above procedures, the coefficients, F2, M2 and N2, and
the ratios, LcuLr/B and LcL/B, for a 10° deadrise hull have been obtained
for three bottom loading coefficients, Cp=7.8, 5.7, and 3.3, and for two
wetted keel 1length to beam ratios, Lk/B=2.5 and 3.0. Due to the
oscillatory pressure solutions associated with large Lk/B ratios at low
speeds, the results for L«/B >3.0 have not been computed, although the
present theory 1is quite capable to obtain results for Lkx/B=3.5 and 4.0
at higher speeds, say Cv>4.0. The experiment measurements presented in
(Ref.(57)) for the 10° deadrise model lie between the speed range 0.85<
NF <1.35 for Lk/B=3.0 and 1.0< Nr <1.48 for Lk/B=2.5, therefore only a
few data spots are available for comparing with the present results. The
present predictions together with the experimental measurements are
shown in fig.(7.12a to e) to fig.(7.16a to e). The dotted curves shown
in fig.(7.12) to fig.(7.14) for Cp=5.7 and 7.8 denote results obtained
by extrapolation because the trim angles required to produce these Cp
have exceeded the lower 1imit of the assumed trim range at these high
speeds (trim angle reduces with the increase of speed for a given Cp).
The trim angles associated with these extrapolated results are, in all
cases, within 0.85° beyond the lower 1limit of the assumed trim range,
therefore reasonable accuracy could still be expected. No extrapolation

was required for the higher displacement case of Cp=3.3.

Fig.((7.12a), fig.(7.13a) and fig.(7.14a) compare the computed sway
force derivative coefficients, Fz, with the experimental measurements of
Wellicome and Campbell (Ref.(57)). 1In general, there 1is a reasonable
agreement between the computational and the experimental results,
although a rather large discrepancy of 30% 1is observed in the case of
Cp=5.7 and Lk/B=3.0. The computed results indicate an overall increase

in F2 with the increase in displacement for a given Lk/B ratio. A1l the
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computed F2 curves (fig.(7.12a) to fig.(7.16a)) have reached a peak
value at high speed. For the case of Lk/B=2.5, as shown fig.(7.14a) and
fig.(7.16a), a declining tendency in Fz 1is spotted at high speed. This
declining tendency 1is shown explicitly in the experimental results of
Wellicome and Campbell for models with higher deadrise angles, in which

the declination occurs at a lower speed.

This declining tendency, which only seems to occur at high speed,
could be related to the geometry of the planing wetted bottom. The sway

force to planing 1ift ratio, Fy/Fz, can be obtained from the relation

Fy = (Fz)u Tan(,8+¢) - (Fz)a Tan(B—(b) (7.6.5),
Fz (Fz)ut+(Fz)d (Fz)ut+{(Fz)da

where (Fz)u and (Fz)a denote the planing 1ifts under the heeled up and
the heeled down halves of the hull respectively. If we assume that (Fz)u
and (Fz)d are equal to one half of the planing 1ift of a constant
deadrise surface of deadrise angles (8+¢)° and (B-¢)°, then, at small
trim angles, (Fz)u and (Fz)a can be estimated from the Savitsky’s
empirical 1ift equation (5.3.2). As we are only interested in the sway
force to planing 1ift ratio at high speed, the buoyant force term in the
equation will be ignored and the planing 1ifts, (Fz)u and (Fz)d,

produced by pure hydrodynamic effect are given by:

(Fz)u = Tan(T) 57.296 (0.012 [AWu/28u2]1/2)f>Bu2C2

and (Fz)d

Tan(T) 57.296 (0.012 [AWd/23d2]1/2)f)Bd2C2 (7.6.86),

where Awu and Awd denote the wetted bottom areas under the heeled up and
heeled down halves of the planing hull and Bu and Bg denote their
respective half beams. Fig.(7.17) shows the typical variation in wetted
bottom shape with the decrease of trim angle (or increase in speed) for

a constant deadrise hull planing in heel condition. As shown in the
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figure, for T > Tm1, the transom running beam is completely wetted at
both sides of the hull and in this case Bu = Ba = B/2. If Tnz < T < Tan,
however, the transom running beam at the heeded up side of the hull will
be partially dried and therefore Bu< B/2. The minimum trim angle, Tmi,
in degrees required to keep the transom running beam completely wetted

at both sides of the hull can be estimated using expression (7.2.1a):

Tmi = Tan"' | B gin(8+e) | (7.6.7).
Lk TICOS(IB)_}

Similarly, from expression (7.2.1b), the minimum trim angle, Tmz, in
degrees required for just the transom running beam at the heeled down

side to remain completely wetted is

Tm2 = Tan“1(—5_ Sin(B-¢) (7.6.8).
L Lk  TCos(B)

The wetted area to beam squared ratios, Awu/B2 and Awa/B2, for T >Tmi1

can be obtained from expressions (7.2.1a) and (7.2.1b):

i
Awy = (Lit+le1) B 1 = | Lk - SinB+d) 1 {(for T >Tm1)
B2 2 2 Bz B 2T Cos(B)Tan(T) | 2
and
i ]
Awd = (Lktle2) B 1 = | Lk - Sin(B-9) | 1 (for T >Ta1)
B2 2 2 B2 ; B NTCOS(B)Tan("C)’J 2

(7.6.9).

For Tmz < T < Tm1, the wetted keel length to half beam ratio, Lk/Bu, can
be derived, as discussed in section (6.2), from the T/2 wave rise factor
computed by Wagner (Ref.(19)) for a two dimensional wedge penetrating

vertically into a fluid surface. This gives
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Lk = 2_S8in(8+d¢) (7.6.10),
Bu TCosiB)Tan(])

(for Tmz < T < Ta1)

and the corresponding wetted area to beam squared ratio, Awu/B?, is

Awy = 1 Bu Lk = Cos@B)Tan(D T (Lk/B)2 (7.6.11).
B2 2B2 4 Sin(B+¢)

(for Tmz < T( Tm1)

Substituting expression (7.6.6) into (7.6.5), we then have

Fy = (Awu/B2)1/2 (Bu/B) Tan@B+d) - (Awa/B2)1/2 (Bg¢/B) TanB-0¢)
Fz {(Awu/B2)1/2 (By/B) + (Awa/B2)1/2 (Ba/B)

(7.6.12),

where the parameters Awu/B2, Bu/B, Awda/B2 and BRg4/B can be evaluated
using the above expressions according to the trim condition. Expression
(7.6.12) suggests that, at high speed, the sway force to 1ift ratio is
governed by the wetted bottom geometry and is not directly dependent on

the planing speed.

The tabulated results in table(7.2) (for8 =10° and 20°, Lk/B=2.5 and
$=3.62°) show that the area difference, (Awa—Awu)/B2, increases with the
decrease of trim angle and it is not surprise that the sway force to
planing 1ift ratio, which 1is calculated from expression (7.6.11) for
high speed consideration, decreases with the trim angle. Since the
decrease in trim angle can be interpreted as the increase in p]én1ng
speed, the results would imply that, at high speed, Fz ( or
[Fy/Fz2]1/Tan(¢) ) decreases with the 1increase of planing speed. The
results in table(7.2) also indicate that the direction of the sway force
could be reversed, i.e. positive Fz, at very small trim angles. It would
appear that the reverse in the direction of Fz displayed in fig.(25) and
fig.(28) of Ref.(57) for the 30° deadrise model is due to the rapid loss
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in the wetted area under the heeled up side of the hull at small running
trim condition. Note that the minimum trim angle, Tmi, for a 30°
deadrise surface is considerably larger than that for a 10° deadrise
surface and this could encourage the above mentioned reverse tendency to

occur at a lower speed.

The comparison between the present roll moment derivative
coefficients, Mz, and the experimental results of Wellicome and Campbell
(Ref.(57)) are shown 1in fig.(7.12b) to fig.(7.14b). The agreement
between the two results is reasonable, though not as good as that for
F2. Again, a rather large error of about 27% is spotted at Cp=5.7 and
Lk/B=3.0. The present theory predicts a peak value in Mz around 1.26
<NF< 1.58 (depending on the values of Cp and Lk/B), with the exception
of Cp=5.7 and Lk/B=2.5 where the peak does not occur inside the speed
range considered. This is followed by a rapid decline in M2z as the speed
is further increased. There 1is an overall decrease 1in Mz with the
increase of displacement for a given Lk/B ratio. Note that a possible
cause of the differences between the computational and experimental
values of Mz could be the differences in the computed and the measured

longitudinal centre of gravity locations and running trim angles.

The results for the yaw moment derivative coefficients, N2, and the
longitudinal centre of lateral resistance ratios, LcLr/B, are shown 1in
fig.(7.12¢c) to fig.(7.16c) and fig.(7.12d) to fig.(7.16d) respectively.
Both the computed Nz and LcLr/B curves increase initially with the
planing speed. This is followed by a rapid decline at higher speeds.
Negative values of LcLr/B, i.e. centre of lateral resistance behind the
transom, have been obtained in the lower displacement cases of Cp=5.7
and 7.8. The same tendency also appears in the experimental results of
Wellicome and Campbell (Ref.(57)) for the 25° deadrise model with Cp=5.7
and Lk/B=3.0 as shown in fig.(7.13d). For a given Lk/B ratio, the rates
of decline of N2 and LcLr/B have been found to reduce with the increase
of displacement and the LcLr/B ratios predicted for the higher
displacement case of C(Cp=3.3 remain positive for the speed range

considered.
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These negative Lcir/B, which seem to occur only at high speed, might
also be related to the geometry of the planing wetted bottom. The yawing
moment (about the transom) to 1lift-beam ratio, My/(FzB), can be

calculated from the relation

My = (Fz)u Lciu Tan(B+¢) - (Fz)d Lcid Tan(8-¢)
B Fz (Fz)u+(Fz)d B (Fz)ut+(Fz)a B

(7.6.13),

where Lcitu and Lcid denote the distances of the centres of pressure
forward of the transom and the subscripts u and d have their usual
meanings of representing parameters with respect to the heeled up and
the heeled down sides of the hull. Ignoring the buoyant effect at high
speed, the locaticns of these centres of pressure can be taken at 75% of

the respective mean wetted lengths forward of the transom, thus,

Lectu = 0.75 (Ik + Let) (for T > Tmi)
B 2B

or Lctu = 0.75 Lk (for Tmi> T2> Tm2) (7.6.14)
B8 2B

and Letd = 0.75 (Lk + te2) (for T > Tm2) {(7.6.15).
B 2B

Under thece assumptions together with the hydrodynamic 1ifts given in
expression (7.6.6), the yawing moment to lift-beam ratio, My/(FzB), can

be written as:

My = 0.75 | (Awu/B2)3/2 Tan(8+d) - (Awg/B2)3/2 Tan(B-¢)
B Fz (Awu/B2)1/2 (Bu/B) + (Awa/B2)1/2 (Bg/B)

(7.6.16),
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which would indicate that My/(F:B) is also dependent primarily on the
wetted bottom geometry at high speed. The tabulated results for
N2=My/(Tan(¢)FzB) 1in table(7.2) suggest that the yawing moment can also
reverse in direction, 1i.e. N2 becomes positive, at small running trim
condition (or high planing speed). This would imply negative value of
LcLr/B which seems to agree with the trends of the present computational
results and the experimental measurements of Wellicome and Campbel1l
(ref.(57)). Note that the trim angle for N2 to reverse in direction is
larger than that for F2 to reverse in direction. Therefore, if the trim
angle decreases continuously (increase 1in speed), both the sway force
and the yawing moment will eventually become negative and hence there
will appear a sudden Jjump in the LcLr/B ratio from a large negative
value to a positive one. On the other hand, the results shown 1in
table(7.2) suggest that, for a given displacement and Lk/B ratio, the
increase 1in deadrise angle could encourage these positive Nz and
negative Lcir/B ratio to appear at a smaller trim angle, hence at a
Tower planing speed. Although only the hydrodynamic effect is considered
in the above analyses, the buoyant effect, if required, can also be
easily included. In this case, the full expressions for the 1ift and the

centre of pressure location in (5.3.2) and (5.4.1) should be used.

The results for the longitudinal centre of 1ift ratios, LeL/B, are
shown in fig.(7.12e) to fig.(7.16e). As mentioned earlier in this
section, for a given Lk/B ratio and craft’s displacement, the
tongitudinal centre of 1ift position is a function of speed. An unusual
feature displayed in these figures is that the longitudinal location of
the centre of 1ift moves toward the transom at high speeds. This is due
to the Toss in wetted bottom area, i.e. decrease in mean Lw/B ratio,
resulted from the reduction 1in the trim angle as the speed increases.
One should note that, although the Lk/B ratio is kept constant, the
corresponding mean Lw/B ratio decreases with the angle of trim. The
deduction 1in Lw/B can be of significant amount as indicated by the
tabulated results in table(7.2). This effect of decreasing in mean Lw/B
ratio, however, has not manifested itself at the lower speed range

because the effect of the speed, which moves the centre of 1ift forward
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from the transom, 1is predominant. If the characteristic length ratio,
Lw/B, was wused instead of Lk/B, the Lciu/B ratio would approach a

constant value at high speed.

One of the assumptions of the present theory is that the transom
running beam remains completely wetted on both sides of the hull during
the planing motion. The forces and moments derivatives, however, can
behave quite differently once the transom wetted beam at the heeled up
side of the hull starts to run dry. The most obvious phenomena that
would result is the reverse in the direction of the sway force which is
due to the loss in wetted area under the heeled up side of the hull.

Clearly, there is scope for further investigation in this area.

The computed coefficients F2 and Mz are terms related to the
transverse dynamic stability criteria derived by Wellicome and Campbell
(Ref.(57)) for planing craft. Other hydrodynamic terms involved in these
criteria are the derivatives of sway force and rolling moment with
respect to the vyaw/drift angle obtained from their vyaw restrained
models. These transverse stability criteria, however, were derived based
on the coupled sway and roll manoeuvring equations in which the vyaw
coupling has been ignored. The present computational results as well as
their later experimental measurements for the 25° deadrise model have
shown that the net yawing moment about the longitudinal centre of
gravity position are, 1in fact, not =zero. This implies that the vyaw
coupling will be present 1in the dynamic problem. Including this yaw
coupling, the characteristic equation for deriving the transverse
dynamic stability criteria will become more complicated and will involve
additional terms such as the yawing moment derivative with respect to
heel angle (Nz), the yawing moment derivative with respect to yaw angle
and the sway force, rolling moment and yawing moment derivatives with
respect to yaw rate. The computational method developed in this chapter,
however, can be regarded as a useful tool to provide some of the
information essential for determining the transverse dynamic stability
of a high speed craft. Some considerations of a planing flat plate in

drift/yaw condition will be discussed in the next chapter.
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CHAPTER (8) Some Results for the Planing of a Flat Plate in

Drift Condition

8.1 Introduction

In this chapter, we consider the motion of a drifted planing flat
plate. When a planing craft is turning, it will sway and yaw as well as
heel. The resultant of the sway motion and the forward motion of the
craft will cause it to plane at a drift angle. The 1initial onset of the
sway motion can be the introduction of dynamic sway forces produced by
the reaction of the water on a heeled planing hull or/and the sway
forces produced by the rudder during turning. As shown in fig.(8.1),
with respect to a reference axes system fixed in space, the drifting
motion is a translational motion in which no rotational motion about the
centre of gravity of the craft is involved. The hydrodynamic forces and
moments induced by this motion should not be confused with those induced
by the introduction of yaw velocity at the centre of gravity of the

craft.

When a craft is planing at a drift angle, the flow under the bottom
of the craft will become asymmetric about the centre line. This gives
rise to an asymmetric bottom pressure load, resulting 1in a net sway
force, a net yawing moment and a net rolling moment. However, the
problem can be less complicated for a drifted planing flat plate. Thus,
if the plate remains perfectly upright during the planing motion, both
the sway force and the yawing moment will be equal to zero. Furthermore,
as the sway force induced by the motion of a drifted and heeled planing
flat plate is always acting at the centre of pressure, thus causing no
net vyawing moment about the centre of gravity, the yaw motion can be
decoupled from the sway and roll motions in treating the transverse

stability problem.

Fig.(8.2) shows a sketch of the wetted bottom of a drifted planing
flat plate together with the body axes and the global axes systems.
These global axes are defined in such a way that the global x-axis is
always pointing 1in the direction of the resultant motion. Drift angle

measured from the plate centre line to the starboard side of the plate
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is treated as positive. As 1in the heel cases in chapter six, rolling
moments were computed about the centre line of the plate and rolling to
the starboard side is treated as positive. If swaying to port is treated
as positive, then at a small drift angle (or yaw angle), ¥, the sway

velocity, v, can be related to the planing speed, C, by the equation:

vV = —]$ C (8.1.1),

where qs is in radians. The derivative of roll moment with respect to

sway velocity, aMr/3v, is therefore given by:

oMr = - 1 aMe (8.1.2),
c Sy

where 3Mr/3y is the derivative of roll moment with respect to drift or
vaw angle. At small drift angles, the projected wetted bottom of the
drifted plate was taken to be rectangular in shape. Drifted constant
pressure rectangular elements were used to assemble this rectangular
wetted area as shown in fig.(8.3). Note that the coordinates of the
wetted bottom grid must be defined with respect to the global axes
system. In addition to the usual restriction in the number of buttock
strips that can be used to represent the wetted bottom (see section
3.6), it was also necessary to restrict the drift angle to a very small

value. The reason for this will be explained in the following section.

It 1is hoped that the present drift investigation together with the
results obtained from the heel investigation in the preceding chapters
can provide a better insight into the transverse stability of a planing

craft turning at high speed.

8.2 Free Surface Ripples induced by a Drifted Constant Pressure
Rectangular Element

In the attempt to compute the pressure solutions for a flat plate

planing at small drift angle (3° to 7°), periods of highly oscillatory
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pressures were always found in the predicted pressure distributions
along the length of the plate, regardless of the beam Froude number.
This pressure oscillation problem was particularly serious for wetted
bottom of Jarge wetted length to beam ratio at large drift angle. A
close examination 1into the free surface wave profiles produced by a
single drifted constant pressure rectangular element revealed that these

osc111atofy pressure solutions are caused by the short period ripples

developed in the wave profiles downstream from the element.

Fig.(8.4) shows a sketch of the diverging wave systems produced by
the four corner wave functions of a drifted constant pressure
rectangular element of length 7 and width 6. Like the non-drifted

constant pressure rectangular element discussed in section (3.6), the

b
@

ve system produced by a drifted constant pressure rectangular element
can also be represented by four corner wave souices, each mathematically
equivalent to the sum of the corner wave functions at a coirner of the
rectangle. The interaction between the four corner wave systems is a
complex pnenomenon, however, one can predict the approximate locations
of the ripples 1in the downstream waves by simply considering the
geometry of the diverging wave envelopes of these coiner wave systems.
For instance, let us consider the wave profiles along the lines y=bh, y=0
and y=-b with respect to the element’s axes system as shown in
fig.(8.4). It can be seen from the figure that the 1line y=b6 has cut
through the four corner diverging wave systems at the regions around the

points
Arv(-[6/(2Tan(y))-1/21,b), Az (-[&6/(2Tan(¥))+1/21,6),
B1(-[3b/(2Tan(¥))-1/21,b) and Bz (-[36/(2Tan({r) )+ 1/21, b)

from the element’s centre, where ¢ is the drift angle. This suggests
that shoirt period ripples will appear in the wave profile along the line
y=b at these intersecting regions. For shoirt element length and small
drift angle, the ripples around Ay and Az, and similarly for those
around B1 and Bz, will merge into a single whole due to the interference

between the corner waves at the overlapping region. Thus, two
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distinct patterns of ripples will appear in the wave profile along the
line y=b. Similarly, for the wave profile along the line y=0, a single

period of ripples will spread around the points
Cr(-[b/(2Tan(¥))-1/2],0) and Ca(-[b/(2Tan(P))+1/2],0)

from the element’s centre. Clearly, the locations of these points, i.e.
A1, Az etc, are speed independent though the actual bandwidths of these
ripples, i.e. distances Da, Ds and Dc in fig.(8.4), can vary slightly
with the speed. Unfortunately, these bandwidths cannot be easily
predicted. Note that no such ripples will appear in the wave profiles
along any lines with y <-b, therefore, these wave piofiles are not

responsible for producing the oscillatory pressures.

In order to verify the above phenomenon, longitudinal wave profiles
induced by a drifted constant pressure rectangular element were computed
at a number of drift angles and speeds. Drifted rectangular e]emént of
tength 7 =B/10 and width b =B/4, which is the typical element size used
in the pressure calculations, was used in the computations. Wave
profiles were computed along the lines y=b, y=0 and y=—b with respect to
the element’s axes. The computational results for the drift angles and
the beam Froude numbers ( Cv=C/(gB)'/2 ) considered are shown 1in the

figures listed in the table below.

Locations of Ripples predicted from fig.(8.4)

Along v=b Along v=0
Fig Cv xp
A1 Az B1 B2 C1 Cz
8.5 4.0 70 -0.978 -1.07B -3.008B -3.108 -0.97B -1.078B
(a,b,c)
8.6 2.5 70 -0.97B -1.07B -3.00B -3.108B -0.97B -1.078
(a,b,c)
8.7 4.0 40 -1.74B -1.84B -5.31B -5.41B -1.748 -1.848B
(a,b,c)

Table (8.1) Predicted Locations of Ripples in the Wave Profiles
along y=b and y=0
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As expected, in each of the cases considered, there are two distinct
patterns of short period ripples in the wave profile computed along the
line y=b, one in the wave profile along the line y=0 and none in the
wave profile along the 1line y=-b. The computational results closely
confirm the predicted locations of these ripples, i.e. Ay, A2 etc, given
in the above table. The wave profiles shown in fig.(8.5) and fig.(8.6)
for Cv=2.5 and 4.0, at a drift angle of 79, also seem to agree with the
earlier prediction that the locations of these ripples are independent
of the speed. Note that for the case of Cv=4.0 and w =40, the second
period of ripples in the wave profile along y=b has not been shown in
fig.(8.7a). The computational results suggest that the bandwidth of

these ripples decreases with the increases of speed and drift angle.

Recalling from fig.(2.7a) and fig.(2.7b), the same sort of ripples
have also appeared in the transverse wave profiles downstream from a
non-drifted constant pressure rectangular element. These ripples and
those obtained from the present drifted rectangular elements are a
genuine feature of the present solution and are not due to numerical
inaccuracies. However, as mentioned in section (3.6), the formation of
these ripples might be due to the absence of viscous damping and surface
tension in the present linear theory. Once again, the author would like
to point out that these ripples are formed by the four corner diverging
wave systems but not the transverse wave systems. In the viscous
situation with surface tension, these diverging waves will not extend to

the corners of the rectangle.

In order to avoid the oscillations in the pressure solutions, the
influence of these ripples in the system matrix for solving the unknown
pressures must be removed. This would require the ripples produced by
the pressure elements 1in the finite element mesh to be shifted to a
distance far downstream from the trailing edge so that their effects
cannot be felt around the part of the free surface covered by the
projected wetted bottom of the plate. Mathematically, this implies that

a condition of

b - / >>  Lw (8.2.1)
2Tan() 2
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has to be placed upon the selection of element size for a given drift
angle and wetted length, where b/(2TanC¢))—7/2 denotes the approximate
location of the first ripples, i.e. Ay and Ci, produced by the leading
edge elements downstream from their centres. In addition, except for
very small Lw/B ratio or very large beam Froude number, the number of
buttock strips that can be used are restricted to three to five,
therefore, condition (8.2.1) usually can only be achieved by reducing
the drift angle, V.

Fig.(8.8a,b and ¢) show the longitudinal wave profiles along y=b,
y=0 and y=-b/ for the same rectangular element at a even smaller drift
angle of '/29 and at a beam Froude number of 4.0. The first period of
ripples in the wave profiles along y=0 and y=b are expected to develop
at a distance around 14.25B downstream from the element’s centre. As can
be seen from fig.(8.8a) and T1g.(8.8b), the wave profiles along y=0 and
y=b are, indeed, free of ripples within a distance of 3B downstream from
the centre of the element. Note that the ripples 1in the wave profiles
along any lines with vy>b will be developed at a distance further
downstream from x=-14.25B, hence their effects on the pressure solution
are comparatively less significant than those in the wave profiles along

y=b and y=0.

Due to the formation of these ripples, the drift angle has to be
restricted to very small values, usually less than 1o for a Lw/B ratio
of about 3.0 when four buttock strips are used, in order that more
realistic pressure results can be obtained. Although the drift angle is
small, it appears that significant difference stil] exists between the
predicted pressures on the port and the starboard sides of the plate.
The theory in its present form, 1i.e. without viscous damping and surface
tension, may not be an ideal method for treating the problem of a
drifted planing surface. However, the results obtained at this small
drift angle could still provide some useful information for predicting

the behaviour of a planing craft in turn.
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8.3 Output Transom Shapes

As shown 1in fi9.(8.3), the projected wetted bottom of the drifted
planing flat plate was taken tc be rectangular in shape. The vertical
locations along the transom predicted from such a rectangular wetted
bottom can be expected to be asymmetric about the centre 1line. Thus, as
well as having drifted, the plate will also be slightly heeled instead
of perfectly upright.

Fig.(8.9) shows the output transom shapes predicted from rectangular
wetted bottoms of Lw/B ratios of 1.5, 2.0 and 2.5, at a drift angle of
0.5° and at beam Froude numbers of 2.5, 4.5 and 6.5. Again, it can be
seen from the figure that the predicted transoms are slightly cambered
as a result of neglecting the curvature at the spray root. For the
present small drift angle the output transoms are almost perfectly
upright. However, the least-squares straight 1lines fitted through the
predicted vertical locations along the transoms suggest a transom slope,
Tan(¢)/Tan(7T), of about 0.013. This would imply that the plates have
actually heeled very slightly to the starboard side. For a given Lw/B
ratio, the output vertical locations along the transom are almost

independent of speed as shown in fig.(8.9).

Strictly speaking, if a planing plate is heeled as well as drifted,
the rolling moment will consist of two components - one due to the
introduction of the drift angle (or sway velocity) and the other due to
the introduction of the heel angle. In order to obtain the roll moment

derivative with respect to the drift angle, gMr/3Y, the relation

Total Rolling Moment = Rolling Moment + Rol1ling Moment
Computed due to Heel due to Drift
= Me ¢+ oMe ¢ (8.3.1)
¢ Py

has been assumed, where ¢ and ﬁy are the heel and drift angles in



radians. The term oMr/3¢ in expression (8.3.1) denotes the roll moment
derivative with respect to the heel angle for a heeled planing flat
plate whose 1ift and longitudinal centre of pressure location are equal

to those predicted from the drifted rectangular planform. This 3Mr/2¢
can be obtained by the interpolating method discussed 1in section 6.5
together with the results presented 1in fig.(6.10a) to fig.(6.10c).
Although the predicted heel angle in the present case is so small that
the rolling moment due to heel should not be a significant portion of
the total moment, the effect of heel will nevertheless be taken into

account in section (8.5).

8.4 Some Results for Pressure Distribution

Fig.(8.10a,b,c) to fig.(8.12a,b,c) show the pressure distributions
along the Tlength of the 0.5° drifted flat plates, for wetted length to
beam ratios of 1.5, 2.0 and 2.5 and for beam Froude numbers of 2.5, 3.5
and 6.5. It can be seen from these figures that the pressures on the
port side of the plate are significantly different from those on the
starboard side. At relatively low beam Froude numbers of 2.5 and 3.5, as
shown in fig.(8.10) and fig.(8.11), there is a region of high pressures
developed near the trailing edge on the starboard side of the plate.
These pressures are particularly pronounced at large wetted length to
beam ratio and are considerably higher than those developed on a non-
drifted planing plate. The most interesting result of all perhaps is the
development of suctions, i.e. negative pressures, on the starboard side
of the plate at high speeds. These suctions are shown in fig.(8.12) for
a beam Froude number of 6.5. The development of these suctions is
presumably due to the increase in cross flow velocity, lp C, on the
wetted bottom. It has been found that these suctions increase with the

increase of drift angle.

8.5 Some Results for Hydrodynamic Forces and Moments

The predicted 1ift coefficient slopes, Cez/Tan(T), and longitudinal
centre of pressure ratios, Lcp/B, for the 0.5° drifted flat plates are

shown in fig.(8.13a) and fig.(8.13b), for Lw/B ratios of 1.5, 2.0 and
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2.5 and for beam Froude numbers ranging from 2.5 to 7.0. Also shown in

+
=
6]

-ty

igures are the results for non-drifted planing flat plates of the

-4

same Lw/B ratios. As ar as small drift angle 1is concerned, the
introduction of drift angle seems to have 1little effect on the 1ift
coefficient slopes, though the reduction in 1ift due to the suctions
developed at high speed is recognizable. On the other hand, the drift
effect on the centre of pressure location is more pronounced, and the
longitudinal centre of pressure of the drifted plates tend to be further

forward from the transom than those of the non-drifted ones.

It has been mentioned earlier 1in section (8.2) that the plates
predicted from the present 0.5° drifted rectangular wetted planforms are
stightly heeled as well as drifted. In order to obtained the rol]l moment
due to drift only, di.e. ( aMr/alyhy, the predicted moment has beaen
corrected by subtracting the componant due to heel, i.e. ( IMr/39)3,

using expression (8.3.1),

The roll moment components due to heel and due to drift are shown in
fi9.(8.13¢) for a Lu/B ratio of 2.0. These roll moments are presented in

the following non-dimensional forms:

Cem _& for the heel component
¢ T
and ACrm W for the drift compcnent (3.5.1),
ol T

where Crm 1is the coefficient of roll moment, 4, w and T are the heel,
drift and trim angles in radians. As expected, the roll moments due to
heel are quite insignificant when compared with the components due to
drift. Note that the cutput transom slope, ¢/T, is constant for a given
Llw/B ratio and beam Froude number. Also note that, as explained in
section (6.3), 1if the sway force is neglected at small heel angle the
roll moment coefficient derivative, 5Crm/&¢, is independent of the trim

angle. Therefore the term, (3Crm/3¢) ¢/T, can be regarded as constant
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for a given longitudinal centre of pressure ratio (or Lw/B) and beam

Froude number.

¢

Perhaps a better way to present the results for the roll moment
derivative with respéct to drift angle is to non-dimensionalize them

using the 1ift, Fz, and the wetted beam, B. Thus,

IMr 1 = 2Crm Y 1 1 = My (8.5.2),
N Fz B o T ¥ Cv2 (Crz/D)

where Cr2/T is the 1ift coefficient slope and all the angles are in
radians. Fig.(8.13d) shows the variation of My (with the correction of
the roll moment due to heel) against beam Froude number for Lw/B ratios
of 2.5, 2.0 and 1.5. It can be seen that, for a given load, the roll
moment for each Lw/B ratio has approached a constant value at high
speeds. The results for Lw/B ratios of 2.5 and 2.0 also display an
interesting feature of the change in the direction of the roll moment -
initially rolling the plate to the port side at low speeds while rolling
it to the starboard side at hiah speeds. This could well be cne of the
explanations for the phenomenon that some high speed crafts bank inwards

during turning, while others bank outwards.

Although the present theory can alsc be applied equally well to
drifted constant deadrise hulls (with the restriction of small drift
angle), . unfortunately, the problem has not been studied due to the
limitation of time. It would be of great interest if the sway forces,
rolling moments and yawing moments for the constant deadrise hulls could
be obtained to compare with the experimental measurements of Wellicome

and Campbell (Ref.(57)).
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Chapter (9) Conclusion and Further Work

9.1 Conclusion of Present Work

A finite element procedure has been presented in this thesis for the
prediction of the hydrodynamic performance of planing craft in calm
water. An important feature in planing motion 1is the development of a

pray sheet thrown ahead and sideways of the planing surface which gives

[74]

rise to a region of highly non-linear flow near the spray root. In order

to simplify the problem, however, it has been necessary to assume a
small angle of attack (or trim angle) so that the splash configuration
can be ignored in the linearization of the problem. In addition, the
viscous effects and surface tension have also been neglected in the

present linear theory.

The main advantage of the present theory over most of the previous
planing theories 1is that the present theory has no restrictiéns oh
either the aspect ratio or/and the planing speed. Further, although it
has not been demonstrated in this work, the present finite element
metnod can be applied to crafts with multi-planform configuration which

has also been restricted in most of the other theories.

In the present work, the finite element method has been applied
particularly to study the hydrodynamics of planing flat plate and
constant deadrise hulls. The results derived from the theory have
compared favourably with other theoretical and experimental data.
Reasonably good agreement has also been obtained with the empirical
equations developed by Savitsky (Ref.(44)). However, in contrast with
the empirical 1ift equation, the present results have indicated that the
gravitational effect reduces the 1ift coefficient of large aspect ratio
(B/Lw) planing surfaces but increases it for small aspec
tendencies confirm the experimental results of Sambraus (Ref.(36)) as
well as the theoretical predictions of Maruo (Ref.(23)), wWang and Rispin

(Ref.(26)) and Jahangeer (Ref.(66)).

For the longitudinal centre of pressure location, the Savitsky

empirical equation does not seem to have correctly taken into account of



the location of the hydrodynamic centre of pressure. The present theory
has shown that the effect of increasing the wetted length to beam ratio
(Lw/B) of a planing surface 1is to move the hydrodynamic centre of
pressure further forward from the transom - from 75% of the wetted
iength forward of the transom for very small Lw/B ratiocs to about 90% of
the wetted length forward of the transom for a Lw/B ratic of 3.0. In
comparisoh with the empirical equation, in which the hydrodynamic centre
of pressure 1is taken to be at 75% of the wetted length forward of the
transom regardiess of the wetted 1length to beam ratio, the present
results would seem to be more reasonable. This is certainly so, when one
considers the fact that the hydrodynamic centre of pressure of a flat
plate airfoil moves toward the leading edge from the 75% chord point
with the increase in the chord length to width ratio. Further, one must
always bear 1in mind that empirical equations themselves are fitted
curves; although they are frequently used in practical calculations

because of their simplicity.

In practical design calculations, it is often reguired to predict the
running trim angle and the running wetted area (mean wetted length) for
a craft of specified loading condition at certain speeds. The direct
approach to the problem is obviously to determine these unknown
parameters such that the 1ift generated by the bottom pressures and the
centre of pressure location are correctly matched with the weight and
the centre of gravity location of the craft. In the present method of
solution, however, because the shape and extent of the projected wetted
bottom, the trim angle as well as the planing speed are assumed to be
knowi, the pressures and the immersions along the transom are determined
as the solution, these running trim angle and running wetted area cannot
be directly predicted. Instead, they have been determined by an
interpolating method based on matching the craft’s weight and craft’s
centre of gravity position to the computed 1ifts and computed centre of
pressure positions. This would of course require computations to be
carried out for an assumed range of trim angles, mean wetted lengths and
speeds for the given craft. However, once these results have been
obtained, it would allow users to estimate the operating trim angle and

mean wetted 1length for a wide range of craft displacements and craft
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centre of gravity locations without going through the tedious
integration process. This implies that the wuse of the present
interpolation scheme would be a practical proposition in engineering
design. The results obtained in such a way have compared reasonably well

with those obtained from the Savitsky’s empirical equations for a 10°
constant deadrise hull. A similar interpolation scheme has also been
developed for determining the hydrodynamic derivatives of a heeled

planing surface.

Another topic studied in this thesis has been the hydrodynamics of
planing hulls wunder heel condition. Again, flat plate and constant
deadrise hulls have been considered. The computational results have
shown that, for a given craft’s loading condition (or a given trim angle
and mean wetted length to beam ratio) and speed, the induced sway force,
rolling moment, and yawing moment vary linearly with the angle of heel
up to an angle of about 10°, this being the largest heel. angle
considered in this work. For the case of a heeled planing flat plate, it
has been further shown that the craft’s weight (or trim angle) has very
Tittle effect on the rolling moment as far as small heel angle is

concerned.

The pressure distributions, the roll moment coefficients, the 1ift
coefficients and the centre of 1ift locations predicted for a flat plate
and a 15° constant deadrise hull in heel condition have been compared
with the theoretical and experimental results of Jahangeer (Ref.(66))
with reasonably close agreements. However, for the constant deadrise
hull, the agreement between the two theories on the roll moment
coefficients was not particular good though the present results agreed
very well with his experimental measurements. As mentioned in section
7.4, this could due to the difference in the element arrangement between
the present and Jahangeer’s wetted bottom grids. The present theory has
predicted a decrease in righting moment with the increase 1in planing
speed and this would imply a decrease in roll stability at high speed.
In addition, the sway force coefficients and the yaw moment coefficients
for the heeled constant deadrise hull have also been derived. These
force and moment coefficients had not been considered by Jahangeer
(Ref.(66)).
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Results for the hydrodynamic forces and moments have been derived as
a function of planing speed, trim angle and mean wetted length to beam
ratio for a 10° constant deadrise hull under heel condition. Based on
these results and the interpolating procedure developed in section 7.5,
non-dimensional sway force, roll moment and yaw moment derivatives have
been obtéined for craft with fixed bottom 1loading coefficients and
wetted keel length to beam ratios at various speed coefficients. These
force and moment derivatives have shown reasonable agreement with the
experimental data of Wellicome and Campbell (Ref.(57)), though,
unfortunately, there 1is no experimental result for the yaw moment

derivative in Ref.(57) available for compaiison.

The most interesting result of all has been the behaviour of these
hydrodynamic force and moments at high speed. The present theory has
"edicted that both the sway force and the yaw moment have a tendency of
reversing in direction at high speed. Tkese were found to be in 1ine
with the experimental measurements obtained by Wellicome and Campbell
(Ref.(57)) for models with higher deadrise angles, in which this reverse
tendency occurred at lower speeds. It should be pointed out that
although there are no yaw moment result presented in Ref.(57), the
reverse tendency of the yaw moment 1is c¢learly indicated by their
experimental mweasurements for the Jongitudinal centre of lateral
resistance (the point associated with zero yawing moment) obtained fiom
a 25° deadrise model. Negative centre of lateral resistance, i.e. behind
the transom position, has also been obtained, a feature which has also
been evident in their experimental measurements. The analogy using the
Savitsky’s empirical equations discussed 1in section 7.6 has indicated
that the reverse tendency of the sway force and the yaw moment at high
speed could be directly related to the rapid loss of wetted area under
the heeled up side of the hull when the craft is operating at small trim

angle and wetted bottom area.

The motion of a planing flat plate under drift/yaw condition has
also been considered. The results displayed an interesting feature of

the development of suctions (negative pressures) on the outboard side of



the wetted bottom at high speed. This 1is presumably due to the increase
in cross flow velocity under the wetted bottom. The present theory has
predicted a change in the direction of the induced rolling moment with
the increase 1in planing speed, and this could well be one of the
expianations for the phenomenon that some high speed crafts bank inwards
during turning, while others bank outwards. It would be of great
interest ﬁf the hydrodynamic forces and moments derivatives for a yawed
constant deadrise hull could be obtained to compare with the

experimental results of wWellicome and Campbell (Ref.{(57)).

The hydrodynamic force and moment derivatives derived in this thesis
are terms related to the transverse dynamic stability criteria for
planing craft. The present results have shown that the net yawing moment
about the centre of gravity of the craft is not zero (except for flat
plate). This would imply that, in addition to the sway and roll coupling
as treated by Wellicome and Campbell (Ref.(57)), the yaw coupling will
also be present 1in this dynamic problem. In order to have a thorough
investigation into this dynamic problem, However, additional terms such
as the hydrodynamic forces and moments derivatives with respect to the
yaw angle and the yaw rate would need to be determined. Although these
hydrodynamic terms have not been derived 1in this thesis, the present
computational method can nevertheless be regarded as a tool to provide
some of the information essential for determining the transverse dynamic

1

stability of high speed craft. Clearly, there 1is scope for further

9.2 Further Work

Whilst the present finite element method has woirked reasonably well
with respect to the determination of the pressures and the hydrodynamic
forces and moments developed under the wetted bottom of a planing hull,

there is room for further improvement and development.

There have been two major difficulties associated with the present
method of solution. First, as mentioned in section 3.5, the pressure

solution obtained by the present method has a divergent tendency when a
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large number of buttock strips are used in the representation of the
projected wetted planform. For planing surfaces of large wetted length
to beam ratio, oscillatory pressure results have also been obtained at
Tow speed. In order to avoid the noted divergence and oscillation, a
maximum number of six buttock strips could only be used. As a
consequence, the transverse hull shape could not be prescribed as
accurate1y as it should be and detailed lateral pressure distributions
could not be obtained. A similar type of oscillatory pressure solution

had also been obtained by Doctors’ finite element method (Ref.(29)).

Secondly, for the drifted/yawed planing surface discussed in chapter
gight, in addition to this restriction, it has aiso been necessary to
restrict the drift angle to an usually small value of less than 1° due

to the highly oscillatory pressures obtained at larger drift angles.

The reasons for these difficulties have been fully traced and have
already been discussed in detail in sections 3.6 and 8.2. The
investigation of the free surface responses produced by the present
constant pressure element has revealed that the viscous effects and
surface tension neglected in the present theory are most likely to be
responsible for the convergence and the pressure oscillation problems.
It has been suggested that the reformulation of the theory by including
these viscous and surface tension effects or some sort of artificial
damping in the governing equations could be a direct way to overcome
these problems. The non-linear effects, which have been strictly ignored
in the present linear theory, might also have a part to play but this is
very unlikely since the pressure divergence and oscillation did not

always occur near the chine

On the other hand, the projected wetted planform can be assembled
using a different type of element. Recalling from section 3.6, the
unrealistic pressure oscillations were caused by some unwanted
sscillatory patterns inherent in the system matrix. These unwanted
oscillatory patterns are formed by the interaction between the diverging
wave systems produced by the corrner wave functions of each individual
element. It may perhaps be worthwhile to divide the projected planform
into a number of transverse strips, each has a continuous but unknown

pressure distribution across the width of the planform. It should be



pointed out that the discontinuity of the pressure between the elements
in the longitudinal sense should not produce any convergence difficulty
since the pressure solutions obtained by the present theory converged
fairly rapidly and was well behaved when the number of elements was

increased in the longitudinal sense.

Alternatively, based on the Green’s second identity, a boundary
element method of solution could be derived. In such a method, it will
be necessary to layout elements on the boundaries of the fluid domain as
well as on the wetted surface of the body. In a three dimensional
situation, however, it may be difficult to allocate a suitable boundary
limit away from the body and the representation of the far field
disturbances could alsoc be a problem. Furthermore, the size of the
matrix involved could be Tlarge, but the method can nevertheless be

amenable to solution.

Although the work in this thesis only concerns the motion of planing
craft in calm water, the theory could well be extended to cover rough
water. On the other hand, if the interest 1is 1in the added mass and
damping coefficient, elements with oscillating pressure strength could
be used. Rectangular element of constant but oscillating pressure
distribution has been derived by Chen (Ref.(67)) and would be well

suited for this particular purpose.
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Appendix A Velocity Potential and Free Surface Elevation induced by a
Pressure Disturbance in _an Uniform Free Stream

The velocity potential, ¢r, which satisfies the Laplace equation
(2.2.3) and the infinite depth condition (2.2.9) can be represented by a

double Fourier integral:

T + 0
$r(x,y,2) = Re A(k,B) ekz g-ikw dkdB (A. 1),

_'ﬂ'o

where k is the wave number, 6 is wave angle and

w = X Cos(8) + vy Sin(8) (A.2).

For a linear theory, this velocity potential must also satisfy the
linearized kinematic condition (2.2.6) and the linearized pressure
condition (2.2.7) on the wundisturbed free surface. A combined free
surface boundary condition derived from expressions (2.2.6) and (2.2.7)

to be satisfied on the undisturbed free surface, z2=0, is

D20r(X,¥) + ko Qdr(x,y) = 1 dP(x.,y) on z=0 (A.3),
Ix@ Jz PC X

where P(x,y) is the pressure disturbance on the free surface, ko 1is the
fundamental wave number given by g/C2, and C is the speed of the uniform
free stream. The free surface pressure disturbance, P(x,y), can be

represented by the double Fourier integral:
T +00

P(x,y) = Re k P(k,B8) e-iku dkds (A.4),

-T o
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where the Fourier transform of the pressure, P(k,8), is given by the

following Fourier inversion formula:

oo

Re[P(k,8)] + Img[P(k,8)] i = _1_
472

J\P(x,y) eikv dxdy (A.5).
o0

The function, A(k,8), can be obtained by substituting (A.1) and (A.4)
into condition (A.3) and evaluated on the undisturbed free surface, z=0.

This gives

1.

¢r(x,y,z) = Re

od
ik Sec(8) P(k,0) ekz e-ikw  dkd® (A.6),
PC (K - ki)

HC

where ki=ko Sec2(8). One can reduce the‘ integrating range of the ©
integral in the above expression from -T<8<+T to -T/2<0<+ 2. This can
be achieved by dividing the 6 integral into three ranges; I+ (-T< 8 ¢
-W2), I2 (-T2 <8 <+T2) and Is (+T/2¢< @ <+ T); the integrals Iy and Is
are then transformed by making the substitutions 8=T+ 6 and B= 6 - T

respectively into:

0 +My 2

Iz + I1 = Re + —ik Sec(B) P(k.B) ekz e-ikw | dkd8 (A.T),
/OC (k - ki)

-T2 0

where P(k,8) and e-ik¥ are the complex conjugates of the functions

P(k,ﬁ) and e-ikv gobtained from the relations

P(k,gt ) = P(k,B) (A.8),
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which is a property of the inversion formula (A.5), and

exp[-ik {xCos(B+M+ySin(@+M}] = exp[-ik {xCosQB)+ySinQB)}] (A.9).
After making use of the identity

Re[ P(k,B) e-ikw ] = Re[- P(k,B) e ikvw i] (A.10)

and summing up the three 1integrals, Ii+, I2 and I3, the velocity

potential becomes

+

o

+o0

¢r(x,y,2) = Re

21 k Sec(B) P(k,0) ekz p-ikw dkde (A.-11).
,°C (k - k1)
o

PR

The above solution for ¢r(x,y,z) is not unique and it generates both
the downstream waves and the unwanted upstream waves. In order to
satisfy the ’radiation condition’, which ensures that gravity waves only
exist downstream of the pressure disturbance, a cancelling potential,
dbp(x,y,2), has to be 1introduced. This cancelling potential can be
obtained by considering the 1limit of ¢r(x,y,z) as x tends to positive
1nf1n1t5. As x -> +00, the inner k integral in (A.11) is dominated by

the contribution at the pole, k=ki, and its Timiting value is

+oo

Limit k P(k,8) ekz e-ikw gk = + Tkt P(ki,0) eklz e-ikiw 4 (A.12),
X=>4+00 (k - k1)

[

where the pole value should be taken as positive if w<0 and negative if

w>0. Since in the present case where - W/z <8< + W2, the negative value
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is then chosen. It follows that the 1limit of ¢r(x,y,z) as x tends to

positive infinite is

2TSec(B) ki P(k1,B) eklz g-iklw dg

PC

S{)P(X,y,z) = Limit ¢F(X7Y7Z) =+

X=>+0

(A.13).

MR M

Finally, the velocity potential with the upstream waves cancelling term

is given by:
$i(x,y,2) = Re [$r(x,y,2) - dp(x,y,2)] (A.14)
and the resulting velocity potential is

$i(X,Y,2)

+
+ 0o

>
= f 2 Sec(B) de k _ekz {Re{P(k,e)] Sin(kw) - Img[P(k,8)] Cos(kw) |dk

RC (k=k1) L

[
H
o

e L

- [ 2ﬂ'SeC(6) ki ek1z {Re[P(k1,8)] Cos(kiw) + Img[P(k1,8)] Sin(kiw) | d&
U
3

(A.15).

The corresponding free wave elevation, Ei(x,y), can be obtained by
substituting the above potential into the 1linearized free surface
pressure condition (2.2.7) and evaluated on the undisturbed free

surface, z=0. This gives
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Eilx,y) = _C_ i{x.y,z2) - P(x,y) (A.16)
g ax z2=0 /09

k

M ey

<+ o0

Eilx,y) =
Pg(k—Kk1)

[
J ok Re[P(k,e)] Cos(kw) + Img[P(k,8)] sin(kw)| dkde
o}

-+
N

2T k12 |Re[P(k1,8)] Sin(kiw) ~ Img[P(k1,8)] Cos(kiw)| dB

Pa

-+
M ey

- P(x.Y) (A.17).

For the constant pressure trapezium shown in fig.(2.2c), the pressure

is defined as:

+Po if vya <y< yp and -oo<x< my + ¢

P(x,y)

if ya<y or y>yb or x> my + ¢ (A.18),

!
o

and P(x,y) =

where xzmy+c is the equation of the straight line passing through the

two corners, (Xa,Ya) and (xo,yp), of the trapezium and

m= (Xb — Xa) (A.19).
(yp - va)
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The Fourier transform, P(k,8), of the this pressure function can be

obtained by substituting (A.18) into the inversion formula (A.5):

Y XEMY+C

r
Re[P(k,8)] + Img[P(k,8)] 1 = _1_ Po eikvw dxdy (A.20),
412
Ya - 00
this gives
Re[P(k,8)] = -Po {(Yb=va) Cos(kWp) - Cos(kWa) (A.21)
4T2  (Wo-Wa) k2 Cos(®)
and Img[P(k,8)] = =Po_ (yb-va) | _Sin(kWp) - Sin(kWa) (A.22),
4T 2  (Wb-Wa) k2 Cos(8)
where Wo = xb Cos(8®) + yb Sin(8) (A.23)
and Wa = Xa Cos(B8) + ya Sin(8) (A.24).

Having derived the function, P(k,8), for the constant pressure
trapezium, the velocity potential, di(x,y,z), and the free surface
elevation, E£i(x,y), can then be obtained by substituting (A.21) and
(A.22) into (A.15) and (A.17). The results are

$i(x,y,z) =

+F +

(Wo—Wa) 2T2PC k (k=k1)

%]
Po J\LYb‘Ya) Sec?(8) d8 ekz | Sin(k{w-Wa )— Sin(k{w=Wb) | dk
-1 0
2
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- Po {vb~ya) Sec?(8) ek1z {Cos(k1t(w-Wa) - Cos(k1(w-Wp)} dB

ZTY/OC ki (Wb=-Wa)

e O

(A.25)
and
Eilx,y) =
+3 +00
Po {¥o-vya) Sec(Q) do [ (&os(k(w—Wa) - Cos(k(w-Wn) | dk
| (WD—Wa) 2-”_2/09 ' (k"k1)
0 J
_::’11 o
rZ
A
+ Po (yb-va) Sec(B) {Sin(ki(w-Wa) - Sin(kt(w-wWo)} d& - 51
2TR g (Wo—Wa)
T F (A.26),
where Si = _Po for a field point (x,¥) lying inside the trapezium

§i = 0 for a field point (x,¥) lying outside the trapezium

$i = _Po for a field point (x,¥) lying on the periphery of

the trapezium.

Note that the pressure is discontinuous around the periphery of the
trapezium. From the double Fourier pressure integral (A.20), however, it
can be shown that the pressure at the periphery is equal to +Po/2, which

is the average of the pressures P(X,y)=+Po inside the trapezium and
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P(x,y)=0 outside the trapezium. Therefore, when evaluating the free
surface elevation at the element’s periphery, the hydrostatic pressure

term in expression (A.26) should be taken as +Po/2/)3,
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Appendix B The Inner k Integral

Recapping from expression (2.2.23) of section (2.2), the inner k
integral of the free surface elevation integral (2.2.22) can generally

be expressed as:

+ 0 +00
I = f Cos(k(w — Wa)) dk = Cos(klw — Wal) dk (B.1),
\ (k - k1) (k = ki)
J
o o]
where w = X Cos(B) + vy Sin(®) (B.2),
Wa = xa Cos(8) + va Sin(8) (B.3)
and ki = ko Sec2(8) (B.4).

The integral, I, is transformed by making the substitution, uzkjw-Wal-Z,

into:
-+ Q0
I = Cos(u+Z) du (B.5),
u
-z
where Z = kK1 (W — Wa) (B.6)

and Z is not equal to zero. The function, Cos(u+Z), in (B.5) is then

expanded to give
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I = Cos(2) Cos(u) du - 8Sin(2) Sin(u) du (B.7).
u u

The cosine and sine integrals in expression (B.7) can be written as:

+ 00 100 -z
Cos(u) du = Cos(uw) du - Cos(u) du (B.8)
u u u
-Z ~c0 ~ 60
+00 + 00 —Z
and Sin(u) du = Sin(u) du - Sin(u) du (B.9).
u u u
-z - % o

Since Cos(u)/u is an odd function of U, it follows that

+00
Cos(u) du = 0 (B.10).
u

-0

By means of an integration around a suitable contour in the complex

plane, it can be shown that

+ o0

Sin(u) du = +T (B.11).
u

The results derived in (B.10) and (B.11) are then substituted back into

(B.7) and after making use of the relationships,
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+z + 00

Cos(u) du = Cos(u) du = -~ Cos(u) du (B.12)
u u u
- 0 + o0 +2
-z +Z + 00
fa)
and Sin(u) du = - Sin(u) du = Sin{u) du (B.13),
u u u
-0 +00 +Z

the integral, I, becomes

+ O -+ 00
I = Cos(2Z) Cos(u) du + 8in(2) j\81n§u) du ~ TSin(2) (B.14).
u u
P Z

tz

The cosine and sine integrals 1in the above expression can be
identified as the cosine and sine integral functions, Ci(Z) and si(2),
given 1in Abramowitz and Stegun (Ref.(60)) for positive non-zero values

of Z. The integral is rewritten as:

4
it

= Ci(Z) Cos(Z) - si(Z) Sin(Z) - T sin(2) (B.15)

or 1 g(2) - Tsin(2) (B.16).

The methods for evaluating the integral functions, Ci(Z), si(Z) and g(2)
are given 1in appendix C and can also be found in the "Handbook of

Mathematical Functions’ by Abramowitz and Stegun (Ref.(60)),p 232).



Appendix C_Evaluation of the Integral Functions g(Z) and f(2)

The auxiliary cosine and sine integrals, g(Z) and f(2), given 1in
Abramowitz and Stegun (Ref.(60)),p 232) for non-zero positive values of

Z are defined as:

+00 + @0
g(2) = Cos(u) du = Cos(u-Z) du (c.1)
(u+z) u
0 z
or g(2) = - Ci(Z) Cos(Z) - si (Z) Sin(2) (Cc.2)
+ 080 + <0
and f(Z) = Sin(u) du = Sin(u-7) du (C.3)
(u+2) u
0 z
or f(z) = Ci(Z) Sin(Z) - si(2) Cos(2) (Cc.4),
where Ci(Z) = - Cos(u) du (C.5)
u
+ o0
and si(Z) = - Sin(u) du (C.6).
u

N

For 0 <Z <1.0, g(Z) and f(Z) can be evaluated by using the following

infinite series approximations for Ci(Z) and si(Z) given in Ref. (60):
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(o]

Ci(z) = § + In(2) + Y (=1)n z2n (c.7)
n=1 (2r)! 2n
o0
and si(z) = - T + ) __ (=1)n 72n+1 (c.8),
2 n=0 (en+i)t(2n+1)

where § is the Euler Constant equal to 0.5772156649 and n is integer.
Both of the above alternating series converge rapidly and are truncated

when the value of their nth terms is less than 1.0E-6.

For 1.08 Z <+e0, g(Z) and f(Z) are evaluated by using the following

rational approximation formulae given in Ref.(60):

g(z) = (Z8 + A1Z5 + A274% + AsZ
72 (7% + B1Z5 + B27% + BaZ

2 + Ad)  + E(2) (C.9),
2 + Bs)

vwhere

A1=42.242855 A2:=302.757865  A3=352.01849 As= 21.821899

03]

B1-48.196927 Bz=482.485984 B3=1114.978885 B4=449.690326

o

, With the error term E(Z)< 3.0E-7 and

(z) = _(z°®

2 + Ca) + E(Z) {C.10),
2 + D4)

where

€1=38.027264 C2=265.187033 C3=335.677320 Ca= 38.102495

D1-40.021433 Dz2=322.624911 D3=570.236280 Da=157.105423

, with the error term E(Z)< 5.0E-7.
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Appendix D The Compensating Logarithmic Integral

Recapping from equation (2.4.4) of section (2.4), the compensating

logarithmic integral can generally be expressed as:

o

I = Log(jt-Tal) dt (b.1),
(t - To)

i

where b is greater than a and Ta is not equal to To. The integral is

first transformed by using the substitution, v=(t-Ta), into:

b-Ta
I = Log (Jvl) dv (D.2)
(v -8)
a-Tqo
where B = (To - Ta) (D.3).

A further transformation using the substitution, v = Bu, gives

I = Log(1R ul) du
(u-1)

pry

X2 0 X2
I = Log(lgt) du + Log(lul) du + Log(lul) du
(u-1) (u - 1) (u - 1)
X1 x 1 0

(D.4),
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where X1 = a - Ta and X2 = b - Ta {(D.5).

The first integral on the right hand side of equation (D.4) can be

evaluated analytica11y, and the second and third integrals are

transformed by using u=-u. It follows that

-x1 -X2

I =1Log(i|Bl) Log(lu-1}) - Log(lul) du + Log(lul) du
(u+ 1) (u+ 1)
x 1
0 0
I = Log(|BR]) Logl{xz - 11! - Ilg(-x1) + Ilg(-x2) (D.6),
(x1 = 1)
where Ilg(x) = r Log(lu]) du (D.7).
} (u+1)
U
o]

The method for evaluating the logarithmic integral, I1g(x), is given in
appendix E.
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Appendix E  Evaluation of the Integral Function Ilg(x)

The Togarithmic integral function, I1g(x), 1in equation (2.4.5) of

section (2.4) is defined as:

Ilg(x) = Log(lul) du (E.1)
(1 + u)

and integrating by parts gives

x

I1g(x) = Log(}1+x]) tog(|x]) - Log(li+ul) du (E.2).
u

(=]

For the case of |x|<1.0 , the term Log(|1+u]) in the above integral can

be expanded into an infinite series in u, thus,

x

ITg(x) = Log(|1+x]) Log(}x|) - >
n=1

(=1)n-1 (Wr-* du (E.3).
n

=]

The series is then integrated term by term to give

o0
T1g(x) = Log(]1#x]) Log(}x]) + »_  (=x)n for |x]<1.0 (E.4).
n=1 n2

Note that the above series is also convergent at x=1.0, where
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o0
Z (=1)n = - ¢ (Es))

and at x=-1, where

nz=1 n2

Y1 = T (E.6)
6

(also see Abramowitz and Stegun (Ref.(60)), equ. 4.1.55 and 4.1.56). For

X >1.0, expression (E.2) is rewritten as:

x

Ilg(x) = Log(|1+x]) Log(|x]) - Log(ti+1/uly du
u
1
X 1
n
- Log(lul) du - Log(J1+u]) du
u u
1 0
X
ITg(x) = Log(]1+x]) Log(}x]) - Log(l1+1/u]) du
u
4]
_ Log(|x]))2 - T2 (E.7).
2 12

The term Log(|1+1/u]) in the above expression is then expanded into an

infinite series in inverse power of u:
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Ilg(x) = Log(|x]) Logl(1+x)| - Y (=1/wntt du - T2
| x‘/zl n

and the series is integrated term by term to give

o0 o0 -
ITg(x) = Log( L 14X - -1 no - —-1)n
g g(1x]) og% Z1 (=1/x) Z (=1

n2 1 n<

- e (E.9).
12

Using the result in (E.5), the above infinite series can be further

simplified into:

o0
Ilg(x) = tLog(]x!) Logl(1+x ~ z: (-1/x)n - 12 (E.10).
1 x’/Z! n=1 n2 6
for x >1.0

For the case of x<-1.0, the indefinite integral is written as:

x

Ilg(x) = Log(|1+x]) Log(]x]) - Log(J1+1/ul) du

u
-1
X -1
)

- Log(lul) du - Log(l1+ul]) du (E.11).

U u

-1 o}
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Similarly, the term Log(,1+u;) can be expanded in inverse power of u to

give
X
oo
INg(x) = Log(]x{) Log](1+x - (z1/u)r+t du + T2
x1/2 n=1 n 6
~1
(E.12).
As before, the series is integrated term by term to give
o
ITg(x) = Log(|x]) Log)(1+x - z: (=1/x)r  + 1
x1/2 n=1 n2 n=1 ne
+ e (E.13).

S

Using the result in (E.6), the above infinite series can be written as:

iz (E.14).

2
=i

R
>
T |
>
+

o0
I1g(x) = Log(]x]) LogJ[w_xL} - >
x1/2 n=1

for x <-1.0

The series given in (E.4), (E.10) and (E.14) all converge as n tends to
infinity, however, the rate of convergence varies with the value of x.
Standing (Ref.(30)) has pointed out that the maximum error when the
series is summed to N terms is occur at x=—1.0 and can be estimated by

considering

3
M8
T
-
= -
N
1
3
i
¥
-
s T IOPY
[t
+
3
Hi
N
=
+
-y
—
4
—
-+




< 1/IN (1 + 4'//2 + 1/4 + 1/8 B L

< 2/N (E.15).

Thus, the maximum error in summing the series to N terms is Jess than
2/N. In the present program, the series are truncated when the nth term
is less than 1.0E-6 and this is equivalent to a maximum error of less
than 2.0E-3 for x=-1.0. However, the actual error at x=—-1.0 was found to
be approximately equal to one half of the maximum error deduced from

d above are based on reference (30), and are

N
m
—
(6]
N~
~
o
]
C
(1]
ct
o
-
—
/7]

T
)
4]
[74)
[
pu}
s
(]
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Appendix F Evaluation of the Derivatives of g(Z) and f(2)

As mentioned 1in appendix C, the auxiliary cosine and sine integral

functions, g(Z) and f(z), are defined as:

g(Z) -Ci(2) Cos{Z) - si(Z) Sin(2) (F.1)

and f(Z)

Ci(Z) 8in(Z) - si(Z) Cos(Z) (F.2),

in which the integrals Ci(Z) and si(Z) are given in expressions (C.5)
and (C.6). The non-zero positive value Z in the above expressions is now

treated as a function of t:

7 = | ko 1+ t2 { (x-xa) + | (y-ya)lt } ‘ (F.3).

The derivatives of g(Z) and f(Z) with respect to t may be obtained by
means of a numerical differentiation procedure, such as the finite
difference method. In the present case, however, they are obtained by
directly differentiating the functions themselves. Using the chain rule
of differentiation, the derivatives of g(Z) and f(Z) with respect to t

can be written as:

da(Z) = dzZ dg(Z) (F.4)
dt dt dz
and df(2) = dZ df(z) (F-é),
dt dt dz
where dZ = ko (x=xa)+{(y=vya)lt |t + Mo(1 + t2)1/2 |y-ya]|
dt (1 +t2)1/2
(F.86)
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and Mo

n
—
-t
O
i

t > —(x=xa) (F.7)
|y-va|

or Mo = -1 for t ¢ ~(x=Xa) (F.8).
ly-vyal

From expressions (F.1) and (F.2), the derivatives of g(Z) and f(Z) with

respect to Z can be written as:

da(Z) = - dCi(Z) Cos(Z) + Ci(Z) Sin(Z) - dsi(Z) Sin(Z) - si(z) Cos(2)
dz dz dz
(F.9)
and
df(Z) = dCi(Z) Sin(Z) + Ci(Z) Cos(Z) - dsi(Z) Cos(Z) + si(Z) Sin(2)
dz dz dz

(F.10),

where the functions Ci(Z) and si(Z) are evaluated by the methods
discussed in appendix C. For 0< 7 £ 1.0, dCi(Z)/dZ and dsi(Z)/dZ can be

evaluated by directly differentiating the series expansions given 1in
(C.7) and (C.8), thus,

[e%e)
dei(7) = 4 + ) (=i)n z2n-1 (F.11)
dz Z n=1 (2n)!
(o)
and dsi(2) = ) _(=1)n 72n (F.12).
dz n=0 (2n+1)!

Both of the above alternating series are truncated when the value of

their nth terms is 1less than 1.0E-6. For 1.0¢ Z <+, dg(Z)/dZ and
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df(Z)/dZ are evaluated by directly differentiating the rational
approximation formulae for g(Z) and f(Z) given in expressions (C.9) and
(C.10). Thus,

dg(Z) = - (875 + 6A174% + 4A272 + 2A3)
dz Z (78 + B1Z% + Bz2Z% + B3Z2 + B4)

- (Z8 + A1Z5 + A27% + A3Z2 + A4) (1078 + 8B1765 + 6B27% + 4B3ZZ + 2Bs)
Z3 (Z8 + B1Z% + B2Z% + B3Z2 + B4)2

(F.13)
and
daf(7) = (875 + 6C17% + 4C272 + 2C3)
dz (Z% + D1Z85 + D274 + D3Z2 + Dg)

= (Z8 + C1Z% + C2Z% + €322 + C4) (978 + 7D176 + 50274 + 3Da7Z2 + D4)
Z2 (Z8 + D125 + D2Z% + DaZ2 + D4)2

(F.14),

where the coefficients A1, Bi, C1 and Di etc have the same meanings as

those in expressions (C.9) and (C.10).
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Appendix G Tntegrating Limits of the Free Wave Corner Function

rollowing the transformation, t=Tan(8), the free wave integral,

Fa(x,y¥), in expression (2.2.28) is transformed into:

+00
Falx,y) = _1_ [SgnAa)-11  _Sin(JAal) dt (G.1),
2T (t - To)
Y
where Aa = {(x-xa)+(y-ya)t} J(1 + t2} ko (G.2),
To = —=(Xp_— Xa (G 3)
(yo - ya)
and Sgn(Qa) = + 1 for (Pa) » 0O
(G.4).
or Sgn(Aa) = - 1 for (ha) < O
For |(y-va)|»0, (Aa) is equal to zero at t=Ta, where
Ta = (X - Xa) (G.5).

(y - ya)

First, let us consider the variations of the functions {(x-xa)+(y-ya)t

and Sgn(Aa) in expression (G.1) with t for the case of (y-ya)>»0.

+1
t
]
\
t=+00 tz-o0 E t=Ta tz+o0d
i
:
-1 N
Function (x-xa)+(y-ya)t Function Sgn{(Aa) for (y-ya)»0

for {y-vya)>0
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As shown in the diagrams above, the value of (Aa) is less than zero for
t<Ta and greater than zero for t>Ta, it follows that [Sgn(Aa)-1]1=-2 for
t<Ta and [Sgn(Aa)-1]=0 for T>Ta. In this case, the free wave corner

function, Fa(x,y), in expression (G.1) becomes

Ta
Fa(x,y) = =1_ Sin(1Aal) dt for (y-ya)>0 (G.6).
T (t - To)
-

Now, consider the case of (y-ya)<0 where the variations of the functions

(x-xa)+(y-ya)t and Sgn{Aa) against t are shown in the diagrams below.

+1

\
t
]
i
1
1
]
1
t=-00 t=Ta tz+ 00 t=-00 : t=Ta t=+0
1
i
1
t
1
1

Function (x-xa)+(y-vya)t Function Sgn(Xa) for (y-ya)<0
for (y-ya)<0

In this case, [Sgn(Aa)-11=0 for t<Ta and [Sgn(Aa)-11=—-2 for 1>Ta,

therefore the free wave corner function, Fa(x,y), in expression (G.1)

becomes
+ o0
Fa(x,y) = -=1_ Sin(JAal) dt for (y-ya)<0 (G.7).
R (t - To)
Ta
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For the case of (y~ya)=0 and (x-xa)<0, Sgn(%a)=-1 for all values of t,

therefore the free wave corner function, Fa(x,y), in expression (G.1)

becomes
+ 00
Fa(x,y) = =1 Sin(JAa]) dt for (y-ya)=0 (G.8).
U (t - To) and (x-xa)<0
~

Finally for the case of (y-ya)=0 and (x-xa)>0, where (A\a)>0 and Sgn(ia)=
+1 for all values of t, the free wave corner function, Fa(x,y), in

expression (G.1) is equal to zero.
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to Gravity
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Fig.(2.1) x-y-z Cartesian Coordination System with the

Undisturbed Free Surface Lies on the x-y Plane

Nodal Point

Fig.(2.2a) Representing an Irregular Area by an Equivalent

Polygon and Nodal Numbering System



1 +Po
Fig.(2.2b) Breakdown of a Constant Pressure Polygon into
Constant Pressure Trapeziums
(xb,yb)
(_co:yb) y
Po
x Ce——ro
(_w: Ya)

(Xxa,ya)

Fig.(2.2c) A constant Pressure Trapezium



(xo,yp)

(_w!yb)
Tragezium 7T
(-,ya) - -~-q
(Xa,Ya) 1
|
formaticn t=-t
. TranSTprma T A P(x,y)
X - Axis ,' ¢
L <
{/ P’ (x,-v)
(Xxa,~Ya) l
(*C’O,‘Ya) —_———
Imaged Trapezium T’
_m -— . .
( ,Y5) (xb.-y5)

Fig.(2.3) Constant Pressure Trapezium, T, and Field point
» P, and the Mirror Imaged Trapezium, T’, and
Mirror Imaged Field Point, P’, about the x-Axis
(Note that the surface elevation at P due to T
is equal to that at P’ due to T')
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Fig.(2.9a) Longitu

dinal Wave Profile for Circular Element (Fn=0.4)
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F1g (2 10a) Long1tud1na1 Wave Profile for C1rcu1ar E]ement (Fn 0. 5)
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Fig.(3.1a) Computed Wake Profile for Planing Flat

Plate (Centre Line)
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& Le =‘ Spray Area

(Ignored in the Present Theory)

Pressure Area Stagnation

Line

——_—..—-———-——-—.——.-——-.—.—_——-—_——-—-

Keel Line

I Lk >

Mean Wetted Length (Lw) = (Lx + Lc)

Fig.(5.1) Projected Wetted Bottom of Planing Constant

Deadrise Surface

+ Hull Boundary Condition is applied to these Points
o Kutta Condition is applied to these Points

65 (Lk~Lc)/B = 0.8115 Lk/B = 3.40823

T T T

Y

- .69 1 1 1 1
-0.34 0.48 1.30 2.12 2.94 ] 3.76

Fig.(5.2) Finite Element Representation of Projected Wetted

Bottom
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.00

B Tan(T)

Non-dimensional Transom Rise Height

Non-dimensional Distance from Centre Line

Fig.(5.4) Transom Shapes and Vertical Locations computed from

( Number of Buttock Strips

4)

Wetted Bottoms with (Lk-L¢) = 0.8115

B

B

s Cv=1.512] (o) Lw 823.002507 <o Lw/B=2.752061 éCBIL;%E:Z.SISSi%
v Cv=2.500| (a) Lw/B=2.272167 (e} LwsB=2.028720 (F > LwfB=1.785273
[+ Cv=3.000 (g) Lw/B=1.541826 (h) Lw/B=1.298378 (i) LwiB=1. 054922
[ x Cv=3.500 | (j) Lw/B=0.811485 (K} Lws3=0.568038
.50L o Cv=4.000
 , Cv=5.000 (k)
o Cv=6.000
« Cv=7.000 )
s Cv=8.000 ////
.00L //
k 1
[ a
[ Ch>
=l A
DO? a (g)
A
//5 (F)
.00 8 (e)
(d»
.50L //g ////5 (e
///// /// (b>
oot //!////i////&' .
500 /////5/////;////'
%/////
.0CL /////l
'SO- - A Py 1 - i
-.80 -.40 -.00 0.40

.80



[ Lki/B ]

Immersed Keel Length to Beam Ratio

to Beam Ratio for Constant Deadrise Surfaces

S — , S—— .
s Savitsky Ref.(44) LkizLk (Lk-Lc)/B=0.8115 B=15°

. ¢ Present Theory Cv=1.512 T =6.71°
[+ Present Theory Cv=2.5 T = 6.63° >
| x Present Theory Cv=3.5 T= 6.57° 1
I o Present Theory Cv=5.0 T= 6.52° ]

l » Present Theory Cv=8.0 T= 6.47°
-00L o Savitsky Ref.(44) LkizLk (Lk-lLc)/B=0.5340 A=10° ]
i ¥ Present Theory Cv=1,512 T = 6.96° 1
[ = Present Theory Cv=2.5 T = 6.93° 20 )
| @ Present Theory Cv=3.5 T = 6.88° 30 :
" © Present Theory Cv=5.0 T = 6.86° 20 1
t ® Present Theory Cv=8.0 T = 6.83° 1
SoL .
.00L ]
i 1
d
soL 1
000 ]
1 j
i / 1
v * 4
L v Sx E )
[ 3 § ;
X I
soL° ¢ J

r
00 . . N ; P ]
0.20 0.80 i.60 2.20 3
Mean Wetted Length to Beam Ratio [ (Lk+Lc)/2B ]

Fig.(5.5) Immersed Keel Length below Undisturbed Free Surface

.00



Crz/Tan(T)

Lift Coefficient Slope

Crz/Tan(T)

Lift Coefficient Slope

Fig.(5.6a) Lift Coefficient Slopes for Constant Deadrise Hull (Cv=1.512)

4

f Savitsky Ref.(44).

v Present Theory B=150 T=6.710 o 1
| + Present Theory B=100° T=6.96° v o+ ]
- & Jahangeer Ref.(66) #8=15° (Theoretical) @

s Jahangeer Ref.(66) A&=150 (Experimental) . ]

5[ @ Janangeer Ref.(66) #&=10° (Theoretical) 1

L v o

+V@ 1

Q) )

v ]

b v = 4

f . ]

[ v ]

2l v @ :

' L @ :

v 4

N ]

+v 1

R o ]

A-v~ x j

v’ 4

1L 2 * ]

[ = - 5

| 0 + ]

L X 1

[ i ]
0.00 0.50 1.00 1.50 2.00 2.50

Mean Wetted Length to Beam Ratio (Lx+lc)/2B

~3.00

Fig.(5.6b) Lift Coefficient Slopes for Constant Deadrise Hull (Cv=2.5)

Mean Wetted Length to Beam Ratio

(Lx+Lle)/2B

L — — ,

| — Savitsky Ref.(44) 1

v Present Theory B =150 T=6.630 . ]
+ Present Theory 8 =100 T=6.93° ¥

[ r v ]
10L v ]
] . ]

v
+V
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. v ]
40 ot ]
- v‘ -

¢

L + by = g :

| + 2y ]
.70[ oty 2 ]
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L {
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Crz/Tan(T)

Lift Coefficient Slope

Crz/Tan(T)

Lift Coefficient Slope

Fig.(5.6¢c) Lift Coefficient slopes for Constant Deadrise Hull (Cv=3.0)

Fig.(5.6d) Lift Coefficient slopes for Constant Deadrise Hull
.75

00 O — —_ U ;

| — Savitsky Ref.(44) ]

v Present Theory B= 150 T= 6.60° v
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.50[ v i
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Savitsky Ref.(44)
Present Theory
Present Theoty

1 N . : . 1
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Crz/Tan(T)

Lift Coefficient Slope

Crz/Tan(T)

Lift Coefficient Slope

]

1

Fig.(5.6e) Lift Coefficient Slopes for Constant Deadrise Hull (Cv=4.0)

Mean Wetted Length to Beam Ratio (Lx+Lc)/2B

.50 I — — ,
Savitsky Ref.(44)
v Present Theory B =150 T=6.550
v
v
v
v
v
v v
v
i Lo
O0L v v b
v
v v 7
v v
v v Y ) ' v
. ]
v 4
v
. ]
sol. .
o R
0.00 0.50 1.00 1.50 2.00 2.50 3.00
Mean Wetted Length to Beam Ratio (Lk+Lc)/2B
Fig.(5.6f) Lift Ccoefficient Slopes for Constant Deadrise Hull {Cv=5.0)
.50 i e —— — ——
Sav1tsky Ref (44)
v Present Theory B =150 T=6.520
- Present Theory 8=10° T=6.860
| ® Jahangeer Ref.(66) &=150 (Theoretical)
. (@ Jahangeer Ref.(66) &=10° (Theoretical) ]
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Cez/Tan(T)

Lift Coefficient Slope

Cez/Tan(xT)

Lift Coefficient Slope

Savitsky Ref.(44) Cv=8.0

v Present Theory Cv=8.0 B= 150 T= g.470°

+ Present Theory cv=8.0 KB = 100 T= §.830
.ool ]
e @ vruttete W Y ¢ T T
so| ]

a.0of . , o , » L
0.00 0.50 1.00 1.50 2.00 Z.50 3.
'Mean Wetted lLength to Beam Ratio (Lk+lLc)/2B

.50

ool

Fig.(5.6g9) Lift Coefficient slopes for Constant Deadrise Hull

o 0 X + 4«

......

Present Theory
Savitsky Ref.(44)
Present Theory

Savitsky Ref.(44)
Present Theory

Cv=6.
Cv=6.
Cv=7.
Cv=T7.
Cv=8.

OO0 QOQOO0OO0O

T

8= 150

8= 150

T T YT

T= 6.49°

T= 6.48°

050
Mean Wetted Length to Beam Ratioc

00

1

.'50.,

200 T z50 T3
(Lk+lc)/2B

Fig.(5.6h) Lift Coefficient slopes for Constant Deadrise Hull
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Lep/B

Centre of Pressure Ratio

Lep/B

Centre of Pressure Ratio

.75

N

Fig.(5.8a) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=1.512)
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t v Present Theory B =150 T=6.71° 3
<oE + Present Theory B =100 T=6.96° -1
"I ® Jahangeer Ref.(66) B=150 (Theoretical) ® @ f
t = Jahangeer Ref.(66) g=150 (Experimental) 5 ]
() Jahangeer Ref.(66) g=10° (Theoretical) ® .
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Fig.(5.8b) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=2.50)
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Lep/B

Centre of Pressure Ratio

Lcp/B

Centre of Pressure Ratio

Fig.(5.8¢c) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=3.0)

.00 S— : . N — S—
i Savitsky Ref.(44)
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- Fig.(5.8d) Centre of Pressure Ratios for Constant Deadrise Hull (Cv=3.5)
.00

—————

1 Savitsky Ref.(44) e =

v Present Theory B= 150 T= 6.570 Lv v ES
+ Present Theory B = 100 T= 6.89° N v
+v+v

L + v

L + v
.S0L + ¥ .

b . v 4

v
.
v
9
+y
+v

.00L . v i

L +V

v
.
v
§
)

.SaL h
ookl e L e A . . )

0.00 0.50 1.00 1.50 2.00 2.50 3.00

" Mean Wetted Length to Beam Ratio (Lk+Lc) /2B



ch/B

Centre of Pressure Ratio

ch/B

Centre of Pressure Ratio

.25,
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P/[1/2p C2 Tan(T)]

" . B/12 from Chine (Present Theory) |

' v B/12 from Keel (Present Theory)
© Chine (Sottorf Ref.(34))
Keel (Sottorf Ref.(34)) : &®
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Non—~-dimensional Distance forward of Transom ( x/Lk )

( Cv=3.5 (Lk+Le)/2B=1.754 (Lk-Lc)/B=0.7017 )

Fig.(5.10) Comparison of Pressure Distribution with Experimental

P/[1/2p C2]

Measurements of Sottorf for a 15° (Constant Deadrise
x10-1 Surface

2.50 —
. v B/8 from Keel (Present Theory)
| © Keel (Jahangeer Ref.(66))
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.00l -
) B 3 ®
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0 L ) . . L
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Non-dimensionai Distance forward of Transom ( x/Lk )

( Cv=2.54 (Lx+lc)/2B=2.87 (Lk-Lc)/B=0.81156 T=6° )
Fig.(5.11) Comparison of Keel Pressure Distribution with

Experimental Measurements of Jahangeer for a
15° Constant Deadrise Surface
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Mean Wetted Length to Beam Ratioc (Lw/B)

Mean Wetted Length to Beam Ratio (Lw/B)

(a) W*=1.3 ch/B=1:6 Cv=3.0
Present Theory (T=6.21° Lw/B=2.34)
Savistky Ref.(46) (T=5.88° Ly/B=2.45)

Required
Solution
] .SO ] L i 1 A
4,80 5.85 5.80 7.75 8.70
Trim Angle in Degrees
(b) wW*=1.3 Lcg/B=1.6 Cv=5.0
2.90 .
Present Theory (T=3.22° Lw/B=2.00)
Savistky Ref.(46) ('f:2.65°‘ Lu/B=2f24)
(B)
2.00L - . / . i -
Required
Solution
10 : X . . . X
2.85 3.10 3.35 3.60

Trim Angle in Degrees

(A) Line of Constant Weight Coefficient (W*)
(B) Line of Constant Lcg/B

Fig.(5.14a,b) Matching Process for determining the Running Trim Angle

and Mean Lw/B Ratio for 10° Constant Deadrise Surface



Mean Wetted Length to Beam Ratio (Lw/B)

Trim Angle in Degrees

0.4C

.60

8ol
PRV N

; Preseﬁt fheory l Cv=3.0
I ©@ Savitsky Ref.(44) Cv=3.0
L + Present Theory Cv=5.0

o Savitsky Ref.(44) Cy=5.0
10L

56 T T 30 7750 T .50
Craft’s Longitudinal Centre of Gravity Ratio (L*=Lcg/B)

Fig.(5.15a) Variation of Running Trim Angle with Centre of gravity

Ratio for 10° Constant Deadrise Surface ( W*=1.3 )

s Present Theory ‘ Cv=3.0
- @ Savitsky Ref.(44) Cv=3.0
. + Present Theory Cv=5.0
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Fig.(5.15b) Variation of Running Mean Wetted Length to Beam Ratio
with Centre of Gravity Ratio for 10° Constant Surface

( W*=1.3 )
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Non—-dimensional Transom Immersion
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Fig.(6.4) Predicted Transom Shapes and Vertical Locations for Planing

Flat Plate in Heel Condition Le2-L 1.0518
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Fig.(6.5) Immersed Chine Length to Beam Ratios (heeled down side)

for Heeled Flat Plate
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\\ Mr = Rolling Moment about
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Fy = Sway Force
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Fig.(6.6a) Sign Conventions for the Forces and Moments acting

on a Heeled Planing Flat Plate

Centre of Pressure

Fig.(6.6b) Hydrodynamic Forces acting on Plate Bottom
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Fig.(6.7a) Roll Moment Arm to Beam Ratio for Heeled Flat Plate
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Fig.(6.7¢c) Lift Coefficient Slopes for Heeled Flat
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Crz/Tan(T)

Lift Coefficient Slope

Fig.(6.10a) Computed Lift Coefficient Slopes as a Function of Cv and
mean Lw/B for Heeled Planing Flat Plate
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Lep/B

Centre of Pressure Ratio

Fig.(6.10b) Computed Centre of Pressur

mean Lw/B for Heeled Planing Flat Plate
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[Crm]z/Tan(¢)

Ro11 Moment Coefficient Slope

Fig.(6.10c) Computed Roll Moment Coefficient Slope as a Function of Cv

X101 and mean Lw/B for Heeled Planing Flat Plate
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B Tan(1)

Non—dimensional Transom Immersion

T T v

Cv=2.50 (Lk-Lc1)/B=0.957%886
v Cv=4.50 (1) LwsB=2.9665 (2) LwsB=2.6472 €3) LwsB=2.3279
¢+ Cv=6.50 “4) LwsB=2.0086 (3> LwsB=1.6893

LI T
(Lk-Lc2)/B=0.58562¢

(S)H

-2.700 o
[ 1
@
‘3 20 i L i " 1 " 1 “
-60 -.40 -.20 -.00 0.20 0.40 g
Non-dimensional Distance Y/B
Fig.(7.3) Predicted Transom Shapes for Prismatic Surfaces

in Heel
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Lift Coefficient Slopes for Heeled 15° Constant Deadrise Hull
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Fig.(7.5¢c) Roll Moment Coefficient Slopes for Heeled 15° Constant
Deadrise Hull
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Sway Force Coefficient Slope
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Ro11l Moment Coefficient Slope Crm/Tan(d)

Fig.(7.10a) Variation of Rol1l Moment Coefficient Slope against Trim Angle
for 10° Constant Deadrise Hull in Heel Condition (Cv=3.0)
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Fig.(7.10b) variation of Roll Moment Coefficient Slope against Trim Angle
for 10° Constant Deadrise Hull in Heel Condition (Cv=5.5)
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Table(7.2) Fz2, M2 and Lcir/B calculated from Savitsky’s Empirifcal

Equations (5.3.2) and (5.4.1) for High Speed Approximation

Table(7.2a) Lk/B = 2.5 $ = 3.620 B= 100
T° _By _Bg Awy Avd L (Awg-Awy) F2 N2 Leir
B B B2 B2 B B2 B

10.00 0.500 0.500 1.142 1.199 2.341 0.057 -0.997 -1.632 1.636
9.000 0.500 0.500 1.130 1.193 2.323 0.063 -0.993 ~-1.598 1.609
8.000 0.500 0.500 1.115 1.186 2.301 0.072 ~-0.988 -1.555 1.574
7.000 0.500 0.500 1.095 11.177 2.272 0.082 -0.981 -1.501 1.530
6.000 0.500 0.500 1,069 1.165 2.234 0.096 -0.971 -1.428 1.470
5.000 0.500 0.500 1.033 1.147 2.180 0.115 -0.957 -1.327 1.386
4.000 0.500 0.500 0.978 1.122 2.099 0.144 -0.935 -1.175 1.256
3.000 0.500 0.500 0.88% 1.079 1.966 0.192 -0.894 -0.923 1.032
2.000 0.500 0.500 0,705 0.993 1.698 0.288 -0.792 -0.424 0,535
1.744 0.500 0.500 0.625 0.955 1.580 0.330 -0.736 -0.206 0.280
1.437 0.412 0.500 0.515 0.892 1.407 0.377 -0.388 0.072 -0.186
1.130 0.324 0.500 0.405 0.795 1.200 0.390 -0.003 0.305 -101.6

0.823 0.236 0.500 0.295 0.625 0.920 0.330 0.397 0.372 0.938

Note: Twi = 1.744° and Twz = 0.823°

Table(7.2b) Lk/B = 2.5 $ = 3.620 A= 200
R By Bd Ay Awg Ly (Awg-Awy) F2 Nz Lelr
B B B2 B2 B B2 B

10.00 0.500 0.500 1,058 1.115 2.172 0.057 -1.057 -1.476 1.396
9.000 0.500 0.500 1.036 1.099 2.135 0.063 -1.047 -1.403 1.339
8.000 0.500 9.500 1.009 1.080 2.089 0.072 -1.034 -1.311 1.268
7.000 0.500 0.500 0.974 1.055 2.029 0.082 -1.016 -1.194 1.174
6.000 0.500 0.500 0.927 1.023 1.950 0.096 -0.991 -1.037 1.046
5.000 0.500 0.500 0.862 0.977 1.839 0.115 -0.952 -0.819 0.860
4.000 0.500 0.500 0.765 0.908 1.673 0.144 -0.884 -0.492 0.557
3.107 0.500 0.500 0.625 0.810 1.435 0.185 -0.759 -0.025 0.032
2.801 0.451 0.500 0.563 0.762 1.325 0.199 -0.400 0.162 -0.406
2.495 0.401 0.500 0.502 0.702 1.203 0.200 -0.026 0.295 =-11.35

2.188 0.352 0.500 0.440 0.625 1.065 0.185 0.355 0.333 0.938

Note: Tmy = 3,107° and Twz = 2.188°

Fz = aFy _1 N2 = My _1_
d¢ Fz 3¢ B F:

Lw/B = Total Wetted Area to Beam Square (B2) Ratio
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Global Axes

B X

Fig.(8.2) Global Axes and Body Axes of Drifted Planing Flat Plate

Hull Boundary Condition is
applied to these points

6\
0 Kutta Condition is applied
to these points

> X

Global Axes

Fig.(8.3) Finite Element Mesh representing the Projected Wetted
Bottom of a Drifted Planing Flat Plate
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F1g (8 5a b,c¢) Surface Wave Pr0f11es of dr1fted Rectangu]ar E]ement
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Fig.(8.6a,b,c) Surface Wave Profiles of drifted

Rectangular Element
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Non-dimensional Transom Immersion
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Output Transom Shapes predi'cted from 0.59°

Drifted Rectangular Wetted Bottom
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Fig.(8.13a) Computed Lift Coefficient Slopes for Drifted

Rectangular Wetted Planforms
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Longitudinal Centre of Pressure Ratio
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~ Fig.(8.13b)

a LwsB = 2.30 Drift ong‘;Le = 0.5(deg.>
v LwsB = 2.00
+ LwsB = 1.50
® LwsB = 2.30 Zero drift angle
© LwsB = 2.00
20 © LwsB = 1.50
.00
.80l
.60[
.40L
i ©
.20[ v//A/”*/”&ﬂ—d”~—+—_*——ﬁ ® ® ® @
@ ® ®® O
@ ©
@
» ©
I ®
-Oo . 1 i A i 1
2 3 4 5] 6 7
Beam Froude Number Cv

Computed Longitudinal Centre of Pressure Ratios

for Drifted Rectangular Wetted Planforms



Non-dimensional Rol1l Moments
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Fig.(8.13c)

Computed Ro11 Moment Components due to Drift
and due to Heel for 0.5° Drifted Rectangular

Wetted Planform
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Fig.(8.13d) Computed Rol1l Moment Derivative Coefficients (Mi)

for Drifted Rectangular Wetted Planforms



