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Abstract

Traditional manoeuvring and seakeeping theories do not usually include any study of the in-
teraction of the manoeuvring and seakeeping performances of a ship. A unified mathematical
model, which brings together both aspects of ship manoeuvring in a seaway, has been proposed
by Bailey, 1999 [9] and a time simulation has been developed on this basis.

This study sumnmarises the principles of the unified mathematical model and the verification
of software, in which preliminary results for a Mariner vessel are presented. Then it extends
the use of the model for another ship, the British Bombardier tanker, in order to further the
validation process. The influence of parameters of the model, such as the mesh or the viscous
ramp used at low frequencies, is investigated. Then, the predictions of circle manoeuvres and
zigzag manoeuvres are compared with full-scale trials results. The comparisons are detailed
and it shows that, although non linear effects have to be considered, the software predicts good
tendencies in the evolution of ship manoeuvring characteristics, when some parameters such as
rudder angle change. The investigation finally includes a preliminary study of the effect of waves
on the ship’s manoeuvring characteristics, for following and head seas.
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Introduction

The mathematical models developed to describe the manoeuvring and seakeeping of a rigid
vessel have evolved from different standpoints. No mathematical model existed in which both
aspects - manoceuvring and seakeeping - were considered. The manoeuvring characteristics were
usually studied in calm water and the seakeeping characteristics studied for a ship with a con-
stant straight course. But, from the viewpoint of operations and safety of a vessel, it is also
necessary to investigate the manoeuvring of a ship in a seaway. Few theories have been devel-
oped on this subject and they never considered the interactions between all the motions, usually
being restricted to yaw and sway motions.

A unified mathematical model has been proposed by Bailey, 1999 [9] to describe the motions
of a ship manoeuvring in a seaway. Then, it has been implemented in a software called Simulat.
Some preliminary results of a Mariner vessel performing circle and zigzag manoeuvres in calm
water and in waves were obtained. But the validation process was not further investigated.

This report presents briefly the principles of the unified mathematical model and the prin-
ciples of the time simulation and its implementation. Then, the software has been verified,
using the predictions for the Mariner vessel. It has then been extended to another vessel, the
British Bornbardier tanker, in order to further the validation process, comparing the predictions
with experimental data and investigating briefly the effects of waves on the ship manoeuvring
performance.



1 A unified mathematical model
describing the manoeuvring of a ship
travelling in a seaway

Two different mathematical models have been developed independently to describe the motions
of a ship. Manoeuvring theory is usually associated with calm water, whereas in a seakeeping
analysis the vessel operates at a specific speed and heading in a regular or irregular seaway.
A unified mathematical model describing the manoeuvring of a ship travelling in a seaway has
been developed by Bailey, 1999 [9).

1.1 Principles

The principles of this unified theory are the following :

e The equations of motions are expressed in a body fixed axis system and use impulse
response functions and convolutions to express the fluid actions.

¢ The impulse response functions are calculated with an hybrid method : hydrodynamic
coeflicients are generated by traditional seakeeping calculations and converted to the body
axis system. A viscous ramp may be added in order to correct the values at low frequencies,
where viscosity has a major role. This viscous ramp is based on experimental data.

The details concerning this unified mathematical model and its derivation are developed in
Appendix A.

1.2 Relations between the unified mathematical theory and tra-
ditional theories

The traditional seakeeping and manoeuvring theories can be obtained with the unified theory if
some assumptions are made.

The traditional seakeeping equations of motion are derived from the unified equations of
motions if it is assumed that :

* the motion is steady-state sinusoidal

e the waves are sinusoidal and encountered at a constant frequency (same as motion fre-
quency).



The traditional manoeuvring equations of motion are derived from the unified equations of
motions if it is assumed that :

¢ the motion is slow in some way. Under these circumstances, the frequency dependent
oscillatory derivatives approximate the slow motion derivatives of calm water manoeuvring.

e the water is calm, so that the wave excitation is set to zero.

These relations between the unified theory and the traditional theories will be used in order
to validate the model. In fact, if the conditions above are satisfied, the unified theory must
give the same results as traditional theory in the prediction of the motions of the ship.

1.3 Time simulation

A real time simulation has been developed by Bailey, 1999 [9] to predict the manoeuvring of a
vessel in a seaway. The method is based on the unified mathematical model presented above.

Calculation features and assumptions

e Heading of the vessel relative to waves may change substantially with time (e.g. a circle
manoeuvre).

e Influence of propelier, wave influences on rudder action and convolution of wave actions
are omitted.

o Wave excitation is assumed to be instantaneous and is determined by integrating pres-
sure of the instantaneous wetted surface to the waterline.

s The restoring and wave excitations are not necessary linear, but in the limiting case of
small motions and waves, the predictions are linear. The linear assumptions adopted in
the mathematical model are not violated.

e The instantaneous excitation is evaluated with the ship in the perturbed condition.

* Rudder actions are modelled using rudder slow motion derivatives of traditional manoeu-
vring theory.

e Spatial position is calculated by integrating component velocities over time.
Implementation (for details, see [10])

To implement a numerical time stepping scheme, the equations of motion are rearranged,
such that the second order integro-differential equations of motions could be expressed in terms
of a system of first order equations in the form (Runge Kutta scheme): X = F(X,t), where
X =T [u,v,w,p,q,7, X*,Y*, Z*,0, , ¥] and F contains not only the different actions, but also
some velocities in the spatial frame.

Simulation The simulation starts with the ship in the calm water equilibrium condition.
Thereafter, at each time step and at each step of the Runge Kutta scheme, the necessary con-
volutions are performed together with calculation of the relevant wave excitations and restoring
moment.



2 Description and verification of
the software - Mariner vessel

The aim of this chapter is to describe the role of each program involved in the time simulation of
a ship manoeuvring in waves. In order to understand these roles and to verify the software,
the same vessel as in Bailey, 1999 {9] is adopted, a Mariner type vessel, and the objective
is to obtain the same predictions as those in Bailey, 1999 [9] and to compare to predictions of
traditional manoeuvring theory.
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2.1 Architecture of the software

An overview of the structure of the software, with the different subprograms and their relations,
is presented in figure a.

ShipShape —,
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Figure a - Structure of the programs

2.2 Marner vessel

Figure b - Mariner type ship : USS Compass Island.

By way of example, the ship used in the simulation {(and so in the different programs) is a
Mariner type vessel, shown in figure b, having dimensions of :



Length L (m) 160.93
Draught (m) 7.47

Displacement {m?) 16652.4
LCG fwd midships (m) | -3.73
VCG above keel (m) 7.742

Iy (kgm?) 7.368¢8
Iss (kgm?) 1.916e10
Ise (kgm?) 1.946e10
Iss (kgm?) 0
Speed (m/s) - 7.716
Fn 0.19

2.3 ShipShape

The ship’s lines are defined initially using ShipShape, developed by the Wolfson Unit.

The initial frame of the Mariner ship is defined in a file containing the coordinates of curves
describing the ship up to the deck line. The frame is defined with the origin at midship on the
keel, with the following axis orientation : x forward, y port, and z up. (Figure 1)

2.4 Panshp program

From this point all the computational work is run with UNIX or LINUX. Bailey, 1999 [9] has
implemented the different programs and routines in C programs.

Role The role of this program is to mesh the ship.

Principles of panshp program To mesh the ship, Panshp favours the aspect ratio of the
panels. In fact, in hydrodynamic applications, this ratio has to be close to 1, in order to evaluate
correctly the fluid actions. The global number of panels is not a parameter of Panshp. When
the number of panels increases, the panels description is closer to the hull of the ship but the
aspect ratio may not be respected and it may be a bad option.

Panshp makes the mesh section by section, from the extremity to the midships. Starting
at the most forward section line, a panel height is calculated by dividing the perimeter of the
section line by the specified number of panels around a section. The spatial distance to the
next section line is calculated by multiplying this panel height by the aspect ratio. Panshp
repeats this until midships, and the longitudinal difference between midship and last calculated
section line is distributed back over the sections. The quadrilateral panels are formed using
panel corners at adjacent section lines.

The same procedure is applied for the aft part of the hull. Calculation of bow and stern
panels uses panel corners on the last section line and on the bow or stern line.

Output files Panshp program has to be used twice :

¢ Firstly, to create the mesh for Simulat input file, all the ship is meshed (up to the deck)
and the origin is at midships on the keel.

¢ Then, to create the mesh for traditional seakeeping calculation, the ship is meshed under
the water-line only and the origin is moved to the water-line.

The mesh used in the following programs is presented in the figure 2.



2.5 Gawbw program

Role The role of this program is to calculate the impulse response functions, with the hybrid
method presented in the mathematical model. The viscous ramp added is linear : the values at
zero frequency corresponds to the slow motion derivatives and the upper frequency (where the
viscous ramp equals zero) is chosen in reference to experimental data.

Input data The program uses, as input file, the frequency dependent hydrodynamic coeffi-
cients calculated with a traditional seakeeping theory. Here the file generated and used by Bailey,
1999 [9] is used directly. The seakeeping calculation has not been repeated. These coeflicients
are translated to the body fixed axis system, and then the viscous ramp is added in reference
to experimental data. The data used for the Mariner type ship are the data obtained by Van
Leeuwen and Glansdorp, 1966 [7]. The slow motion derivatives used at the start of the viscous
ramp {w = 0) are thus the following (non-dimensionalised) and the end of the viscous ramp is
fixed at w' = 34, where all the hydrodynamic coefficients seem to become constant (arbitrary):

Y} | —1010e~
Y] | 290e~3

NI | —349¢~°
N!'| —200e=°

Output files Figures 3, 4 show examples of the oscillatory derivatives obtained both experi-
mentally and theoretically, with or without adding the viscous ramp, and then the corresponding
impulse response functions.

For the data presented here, it is evident that better adjustment of the initial size of the vis-
cous ramp could bring the theoretical data in closer agreement with the oscillatory experimental
data, but the use of the slow motion derivatives to decide the initial value of the viscous ramp
is a good first approximation. The upper limit of the viscous ramp could also be improved, but
will depend on the coefficients. For example, the limit needs to be smaller for the coefficient N,
than for the coefficient Y,. Here the same limit is used for all the coefficients.

2.6 Simulat program

Role Simulat is the program which finally predicts the motions of the vessel in a seaway.

Principles The simulation starts with the ship in the calm water equilibrium condition (which
is calculated by the Itequilpos subroutine) and thereafter, at each time step and at each step of
the Runge Kutta scheme, the necessary convolutions are performed together with calculation
of the relevant wave excitations and restoring moment (calcfs subroutine), in order to solve the
equations of motion.

The program uses the impulse response functions calculated by Gewbw program, the infinite
frequency values of the hydrodynamic data, and obviously the mesh of the ship generated by
Panshp program.

2.7 First results : Manoeuvring - Steady turn diameter

As an example of the use of Simulat program, this section deals with a steady turn motion
(circle manoeuvre). These simulations were also performed by Bailey, 1999 [9]. They have two
main purposes :



¢ To compare the results of the unified theory to those of a traditional linear manoeuvring
theory. As explained previously, they must be similar in certain conditions.

e To make a preliminary investigation of the effect of waves and of the possibilities offered
by Simulat in this domain.

The version of Simulet used here is the version 6.0.

2.7.1 Calm water predictions

Predictions of traditional linear theory It has been shown [2] that, in a linear theory
of manoeuvring, the sway velocity of a ship during a steady turn is, using the slow motion
derivatives :

_ —6[},6Nr + (mﬁ - K-)NJ]
N,Y, + Ny(mU — Y.)N,

and the steady yaw rate is :
. _ __ OlYsN, — Y, Ny
N,Y, + Ny(mU — Y.)N,

The radius of the steady circle can then be written as :

_ U 1
cos(tan~(v/U)) r
The data concerning the Mariner ship and the slow motion derivatives (initialization of

the viscous ramp) are those presented in the previous sections. The slow motion derivatives
concerning the rudder actions are the following (standard non-dimensionalisation):

Y

N} | -110e-5

232e-5 [

If we dimensionalise these data and use the previous expressions, we obtain a prediction of
R =249m for a 5°(0.0873 rad) constant rudder angle (4).

Simulation For the simulation of a steady turn, surge perturbations are excluded. In order
to compare the results with the predictions of linear manoeuvring theory, predictions are made
with and without inclusion of roll motion {because it is excluded in the traditional manoeuvring
theory). The time step is 0.5 s and the number of time steps is 3000 (25 min).

The rudder application point is taken at the half draft level, and the x position is calculated,
using the value of the rudder slow motion derivatives : Y = Ng/(z/L) where x represents the
position of the application point relative to the centre of gravity.

The magnitude of the rudder action is also calculated with the dimensionalised slow motion
derivatives :

1 —
F= Y6’§pL2U26

The predictions in calm water are presented in figure 5.
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Observations

e First at all, it can be seen that the predictions with and without inclusion of roll motion
are very similar.

e The steady turn radius, predicted by Simulat, is approximatively R = 255m, which cor-
responds to the predictions of traditional linear manoeuvring theory (249 m ie. 2.5 %
error). This confirms that the unified theory produces the same results as traditional
linear manoeuvring theory for steady motions and calm water.

e The value of R = 249m, which suggests a diameter of only 3L for 5° rudder angle is
not realistic. This is due to the use of a linear theory, although it is generally accepted
that for such steady turn a non-linear mathematical model is required [9]. These simula-
tions just confirm the comparison between the unified mathematical model and the linear
manoeuvring theory.

e Although the predicted radius is not realistic, these simmulations can be use for a preliminary
investigation of the effect of waves on the ship motions.

2.7.2 Inclusion of waves

Roll motion excluded The parameters are the same as those used for the calm water simu-
lation. The wave amplitude is 1.0m and many simulations are made with different wavelengths
(A/L =1,0.5,0.25,0.1). The roll motion is excluded because of the lack of any accurate value
for the roll damping. The main step is 0.5 s and the number of time steps is 3000 (25 min). The
results obtained for high frequencies could be better with the use of more panels, or if we split
the panels, in order to have more precision in the predictions of the forces.

Figures 6, 7, 8, 9, 10 and 11 show the path of the ship in these different seaways and the
pitch and heave motions during the turn in waves. We can make some qualitative observations:

e The vessel still performs a turn but it is no longer a strict circle.
e The action of waves on the ship causes an average drift in the direction of wave propagation.

o When the wavelength decreases, this drift is reduced and at high frequencies, we approach
the results of calm water simulations.

The pitch and heave motion change in oscillatory frequency with time.

Roll motion included Figures 12 and 13 present the results obtained when the roll motion
is included.

Firstly, no viscous ramp is added to roll damping, and the vessel seems to reach a certain
heading relative to waves (about 40 degrees here) and then oscillates about it, but the vessel
does not perform a complete turn anymore. This may be caused by the lack of roll damping
in the viscous ramp. No data about the roll damping is available. A nominal value at zero
frequency is used to determine sensitivity to roll damping (K, = -2.5¢76). When the viscous
ramp is initialized with this value, the magnitude of the roll motion is reduced but the vessel
still oscillates about one heading value, so this strange behaviour is not only due to the roll
damping.

For the case in which no roll damping is added, we study the influence of wave amplitude on
the predicted behaviour of the vessel. We can observe that when the wave amplitude is smaller
the vessel performs a circle. The limit between the two sorts of track seems to be around 0.5 m
amplitude.

Further investigations have to be performed on the roll damping but also in the yaw-roll
coupling terms Ny and I, in order to obtain accurate predictions. These predictions have
highlighted the sensitivity of predictions to the inclusion of roll.
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2.8 Standard manoeuvres

Some standard manoeuvres are defined in the Standards for ship manceuvrability {5], published
by the International Maritime Organization (IMQO). “They should be used to evaluate the ma-
noeuvring performance of ships and to assist those responsible for the design, construction,
repair and operation of ships”. That is why these manoeuvres are particularly interesting in
this study.

e Firstly the manoeuvring trials perfbrmed on full-scale ships are based on these standard
manoeuvres. For reasons of comparison, all the model tests are also based on these ma-
noeuvres. Then, the experimental resuits could be used to compare with the predictions
of Simulat, and to complete the validation. Note that these tests are normally performed
in calm water conditions but the environmental conditions are well recorded and some
results in waves may be available.

e Then, the predictions of Simulat for these standard manoeuvres could be used by the
designer to anticipate the manoeuvring characteristics of the ship. This could be a major
application for the software.

For all these reasons, Simulat will be tested and used for the manoeuvres defined by the IMO.

2.8.1 Turning tests

A turning circle manoeuvre is to be performed for both starboard and port with 35" rudder
angle or the maximum design rudder permissible at the test speed. The following information
is obtained (Figure 14):

e Tactical diameter
o Advance

e Transfer

¢ Turning radius

The predictions for a such circle manoeuvre have been useful to validate some aspects of
the software as regards a traditional linear manoeuvring theory, but the Simulat predictions are
dramatically small, for example concerning the steady turn radius, because in such a manoeuvre,
a non linear theory has to be used.

Another turning manoeuvre is the spiral manoeuvre. It is an orderly sequence of turning
circle tests to obtain a steady turning rate versus rudder angle relation.

2.8.2 Zigzag tests

A zigzag test should be initiated to both starboard and port and begins by applying a specified
amount of rudder angle to an initially straight approach. The rudder angle is then alternatively
shifted to either side after a specified heading from the ship’s original heading is reached.

The 10°/10° zigzag test uses rudder angles of 10° and -10° and a heading deviation of 10°
from the original course. The following information is obtained (Figure 15):

e Overshoot angles
¢ Initial turning time to second execute

e Time to check yaw

We have already seen that. Simulat can predict the results of a circle manoeuvre. The zigzag
manoeuvre has also to be predicted, in order that we can use the two main standard manoeuvres
in the subsequent analysis.

12



2.8.3 First predictions of Simulat for a 10°/10° zigzag manoeuvre

For the predictions of such a zigzag manoeuvre, the seventh version of Simulat has to be used. In
fact, in the sixth version, we can only apply a predefined rudder action. In the zigzag manoeuvre,
the rudder action depends on the motions, since the rudder action is inverted when the
heading reaches a certain value. The manoeuvre has thus to be defined, with the rudder action,
in the source code.

For the predictions of the zigzag manoeuvre, it was assumed that the rudder action could be
applied instantaneously, as a first approximation. Figures 16 and 17 show the path of the ship
and the yaw angle, during the manoeuvre in calm water and in waves.

These predictions will be commented in a later chapter.

2.9 Conclusion

The same figures as those detailed in Bailey, 1999 [9] have been obtained.

. Thus, it has been shown that all the sub programs involved in the time simulation have been
successfully used. The programs have been verified. A User Guide, explaining all the
software process, was written and is included in appendix C.
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3 Investigations and extensions for
another vessel : British Bombardier

The previous chapter described the first step in studying the simulation program ; it consisted
in breaking down each subprogram and reproducing the results of Bailey, 1999 [9] .

The next step is to further the use and validation process. Indeed it has been used so far only
for one type of vessel, a Mariner. In this chapter, we will extend the study to the British
Bombardier tanker. The results obtained with this new vessel will prove useful in order to
better understand the role of several parameters.

All the data about the British Bombardier have been provided by J.M.J. Journee, from Delft
University of Technology, in a document called : Ezperimental Manoeuvring Data of Tanker
“British Bombardier” by J.M.J. Journee and D. Clarke [6].
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3.1 British Bombardier : characteristics and ShipShape lines

Figure c - British Bombardier’s sister ship : British Cavalier.

Here are the main characteristics of the British Bombardier (also see figure c) :

Length L (m) 220.98
Beam B {m) 29.566
Draught (m) 12.497

Displacement (m?) 65089
LCG fwd midships (m) | 3.094
VCG above keel (m) 6.49

Iy (kgm?) 8.42¢9
Iss (kgm?) 2.04e10
Iss (kgm?) 2.04e10
Iys (kgm?) 0
Speed (m/s) 7.974
Fn 0.17

The inertia moments are based on the radius of gyration k,, = 0.25L and k;, = 0.388
(I = m*k?).

The main curves of the British Bombardier, drawn in ShipShape are presented in figure
18. See Appendix B for the description of the hull form and the accuracy of the ShipShape
representation.

This ShipShape representation could be improved by using less water-lines and by checking
the water-line derivatives at the stern, in order to avoid crossed water-lines.

3.2 Mesh - Panshp program

For the mesh used in the seakeeping calculation (only the underwater part is meshed) as well
as for the mesh used in Simulat program (ship meshed up to deck), two main possibilities are
available. The stern could be meshed or not. In the first case, the mesh will be very precise,
with small panels at the stern (Figure 19); in the second case, there will be only large panels
between the first aft section and the stern section (Figure 20).

Although the first solution leads to a more precise mesh, the second solution was adopted
for different reasons :
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e Firstly, the more precise mesh had one section on the crossed water-lines just near the
stern and, for half of the ship we had some panels with a negative y-coordinate. The
second solution avoids this problem, since no section can be defined in this part of the
ship.

e Then, although the mesh was less precise, the results (hydrodynamic coefficients and final
radius in circle manoeuvres) were not a lot affected; thus, it is preferable to use the mesh
with less panels in order to save calculation time.

The number of panels around each section and the aspect ratio can be chosen in order to
increase or decrease the number of panels. The sensitivity of the results to the mesh is described
in a section below.

Finally, the mesh chosen for the seakeeping calculation has these characteristics (Figure 21):

Number of panels around each section 8
Aspect ratio 0.5
Number of panels for whole ship 2400

The mesh for the Simulat program (Figure 22 - up to the deck) has those characteristics :

Number of panels around each section | 12
Aspect ratio 1
Number of panels for half ship 876

3.3 Seakeeping calculation - THARBM program

The role of this program is to generate the hydrodynamic coefficients for a range of excitation
frequencies.

Note : This step has not been run for the Mariner predictions. The output file hydrocoef, which had been
generated when the programs were written by Bailey, 1999 [9] , has been used directly.

Principles of the program[3] The programs were originally developed by R.B. Inglis and
are based on three-dimensional linear potential flow. The fluid is assumed to be ideal (inviscid,
homogeneous and the fluid motion irrotational), and the fluid motion may be represented by
a velocity potential function, which satisfies the Laplace’s equation in the fluid’s domain and
some boundary conditions.

The Green’s theorem is used to reduce the problem to a distribution of velocity potential on
the boundaries of the fluid. Then by choosing appropriate singularities, the problem is reduced
to the hull surface as the only remaining fluid boundary.

A singularity of unknown strength is attributed to each panel (at its centre) and the condition
that there is no flow trough the surface hull gives the strength of these singularities.

Since the velocity potential is now known, the forces, the motions... can be obtained and
thus the hydrodynamic coefficients.

The range of values used in order to obtained the hydrocoef file, used by the gawbw program
to calculate the impulse response functions, is finally the following : the first frequency is 0.0008
(s71), the upper frequency is 2.4 (s~!) and there are 40 frequencies. If the non dimensionalisation
is used, we obtained the same range of frequencies as those used for the Mariner. The sensitivity
to the frequencies is developed in a section below.

Note : THARBM program can be used to determine the values of the restoring moments and the inertia
moments, if it is used without any frequency. But the valies obtained are not totally accurate.
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3.4 Calculation of the impulse response functions and steady
turn predictions

The frequency dependent hydrodynamic coefficients calculated by THARBM program are used
by Gawbw program to calculate the impulse response functions. The slow motions derivatives
used in the viscous ramp are detailed below. Then, predictions for a steady turn motion have
been carried out. (The seventh version of Simulat program was used.) In these predictions,
surge perturbations have been excluded, as well as roll motion - except in the last section -
in order to allow comparisons with traditional linear manoeuvring theory. The time step is 1
s for the 5° rudder angle predictions, and 0.5 s for the 15° rudder angle predictions, and the
number of time steps is 3000. By analysing these predictions, the sensitivity of some parameters
has been studied, such as the sensitivity to the range of frequencies used in the calculation of
hydrodynamic coefficients, the sensitivity to the viscous ramp and the sensitivity to the mesh.

3.4.1 Slow motion derivatives and viscous ramp

The viscous ramp is defined in the same manner as described in the Mariner chapter. The
report from J.M.J. Journee [6] provides two sets of data for the slow motions derivatives, which
have been obtained respectively with PMM tests (see definition in Appendix E) on a 1:55 model
and on a 1:100 model. These data are presented here :

1:100 Model | 1:55 Model
Y, -1634e-5 -1797e-5
Y, 342 6e-5 432,2e-5
N} -472,7e-5 -473,3e-5
N} -199.8¢-5 -251,7e-5
Yof' 279e-5 313e-5
N; -125,3e-5 -155,1e-5

Directional stability These slow motion derivatives enable an analysis of the directional
stability of the ship, in both cases. In respect of a linear theory, the stability condition is the
following [8]:

YoN, - N(¥/ - A) >0

where A’ = W%—g. The data obtained with the 1:100 model leads to an unstable ship, although
the data obtained with the 1:55 model leads to a stable ship.

Note : As a verification, the data used for the Mariner leads to a stable ship.

It seems that the simulation program can not predict the motions of an unstable ship : in
fact, the predictions of the 5° rudder angle manoeuvre with the slow motion derivatives of the
1:100 Model never leads to a steady turn motion.

Moreover, it is likely that the full scale British Bombardier is a stable ship. In the experi-
mental determination of the slow motions derivatives, there are a lot of scale effects, and the
results obtained with the larger model seem to be more accurate.

That is why the slow motion derivatives used for the initialisation of the viscous ramp and
the calculation of the rudder force are those of the 1:55 Model.

Radius predicted by the traditional linear theory With these values of slow motion
derivatives, the radius predicted by the traditional linear manoeuvring theory are : 520 m for
5° rudder angle and 199 m for 15° rudder angle.

A range of predictions has been carried out in order to study the influence of a list of
parameters.
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3.4.2 Sensitivity to the range of frequency values used in the THARBM
program

The first parameter to be studied is the range of frequencies for which the seakeeping calculation
program generates the hydrodynamic coefficients. The upper frequency and the number of
frequencies have not a lot of influence in the predictions but the lowest frequency seems to
be very important.

Two ranges of values have been tested : 0.0008 to 2.4 (s-1) with 40 values and 0.001 to 2.7
(s7!) with 40 values. For each range of frequencies, the first value has been deleted or not.
Then, the Gawbw and Simulat programs (5° rudder angle, constant) have run. The results are :

Frequencies Radius (m)
0,0008 to 24 518
0,001 to 2,7 519,56
0,0008 to 2,4; 0,0008 deleted 431,5
0,001 to 2,7; 0,001 deleted 428

Although the range of frequencies itself is not so important, it is fundamental that the first
value of frequency is as close as possible to zero. If it is not the case, the radius obtained is
different from the radius predicted by the traditional linear theory.

But, as explained for the Mariner example, the results of Simulat program in the case of a
steady turn motion, must be the same as those predicted by the traditional theory and that has
been verified for the Mariner.

The reason for this difference is that the initial value of the viscous ramp seems to be added
to the first frequency’s hydrodynamic coefficient, instead of strictly zero frequency because this
is not available. That is why deleting the first frequency value leads to differences only on
the impulse response functions in which a viscous ramp has been added. These differences are
illustrated in figures 23 and 24, where the hydrodynamic coefficient Bag is taken by way of
example.

Finally, as some hydrodynamic coefficients tend to infinite value close to zero, we have to find
an intermediate for the first value of frequency : not too close to zero because of the tendency
to infinity, not too far because of the initialisation of the viscous ramp.

When experimental data are available for the oscillatory derivatives (as for the Mariner), to
check the data obtained against the experimental data, enables the application of the viscous
ramp to be verified.

When there is no experimental data for the oscillatory derivatives available, the adequacy
of the obtained radius with respect to the predicted radius from linear theory is a
good test, since it has been verified that the Simulat program is the same as the traditional
linear theory for such a manoeuvre.

3.4.3 Sensitivity to the upper frequency value of the viscous ramp (w)

Concerning the viscous ramp, the sensitivity to the frequency chosen for the end of the viscous
ramp {w) has been studied. The value has been defined for the Mariner, in order that the
damping coefficients after adding the viscous ramp best correspond to the experimental data.
For the British Bombardier, for which no such experimental data are available, we have to study
the influence of this parameter.

Figures 25 and 26 show, as way of example, the damping coefficient Y, as function of en-
counter frequency and the corresponding impulse response function obtained for different values
of w (non-dimensionalized), for the British Bombardier. Figure 27 presents the correspondent
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tracks of the ship during the 5° rudder angle circle manoeuvre and figure 28 presents the results
of same experiences for the Mariner. Then figure 29 presents the radius obtained versus w for
both ships.

It can be seen that :

o The sensitivity to this parameter is comparable for both ships. It is more sensitive for
small values of w than for higher values of w.

s The higher w is, the larger is the radius.

o [f we choose the value of w just when the hydrodynamic data seems to become constant
(around 34 (non-dimensionalised) for both ships), we obtain a good comparison with the
predicted radius of the traditional linear manoeuvring theory.

Finally, we can choose the same value as for the Mariner and expect accurate results.
The viscous ramp ends for a non dimensionalised frequency of 34.

3.4.4 Sensitivity to the number of panels in the seakeeping calculation mesh

Finally the sensitivity to the mesh used in the seakeeping calculation was studied. Six different
meshes were tested but the results with only two of them are presented here, for clarity. Here
are the characteristics of the both meshes (Figures 21 and 30):

Mesh n°1 | Mesh n°2

Number of panels around each section 6 8
Aspect ratio 1 0,5
Number of panels for whole ship 684 2400

Some damping coefficients and impulse response functions obtained for each mesh are pre-
sented in figures 31 and 32 .

The main difference is at high frequencies. For the first mesh (684 panels), a resonance
frequency is observed, which seems to disappear with the second mesh (2400 panels). The
resonance is a purely numerical problem. During the seakeeping calculation, there is also
fluid in the hull form, although there is no flow through the hull form. This fluid can come
in resonance for some high frequency; that is what is observed here. This resonance decreases
when the mesh becomes more precise. The frequency of resonance also seems to increase.

That is why the resonance disappears with the mesh n°2. The impulse response functions
are also affected as we can see in figure 32. They also are less noisy.

For all these reasons, the second mesh will be used in the further applications of the simu-
lation.

Note : A mesh with even more panels is not used because of the calculation limits of the THARBM program.

3.5 Circle manoeuvres in calm water and in waves

3.5.1 Predictions in calm water

Finally, figures 33 and 34 present the predictions by Simulat for a circle manoeuvre with 5°
rudder angle and 15° rudder angle, with or without roll motion, without any waves. In calm
water, the results with and without roll motion are comparable, but not identical. The radius
obtained for 5° rudder angle is 221.5 m and for 15° rudder angle, 200 m. The errors in relation
to the radius predicted by the traditional manoeuvring linear theory are respectively 0.3 % and
0.5 %.
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3.5.2 Predictions in waves

Figure 35 presents the Simulat prediction for a 5° rudder angle circle manoeuvre in waves. The
roll motion has been excluded. For the highest frequencies, the panels have been split into four
to increase the precision.

The same qualitative observations as for the Mariner vessel can be made.

If the roll motion is included (Figure 36), the ship still performs a sort of circle but the
results are totally different from those excluding the roll motion. It seems to perform more an
ellipse than a circle. It has more difficulties to turn when it is approximatively perpendicular to
waves. If we have a look at the roll motion, we see that there is a sort of resonance when the
ship is perpendicular to waves. It confirms the sensitivity of the simulation to the inclusion of
roll.

Although the results are more accurate than for the Mariner, further investiga-
tions about the roll damping and the coupling inertia moments are required.

3.6 Conclusion

The model has thus been developed and used with another vesset : the British Bombardier
tanker. The understanding of the effects of several parameters involved in the model
has been improved. Then, the predictions obtained for British Bombardier will prove useful
in order to further the validation process.
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4 Comparisons with experimental
manoeuvring data

Full-scale accelerating, stopping and steering trials with the British Bombardier tanker were
carried out on 6 and 7 October 1963. These trials were conducted on behalf of the British Ship
Research Association by the Experiment Tank Department of Vickers-Armstrong Ltd. David
Clarke of the B.S.R.A. had published the experimental results, and they have been provided
here by J.M.J Journee [6]. .

These manoeuvring results will be used here in order to compare the Simulat predictions
with experimental data, both for circle manoceuvres and zigzag manoceuvres.

All the manoeuvres and predictions were performed in calm water.
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4.1 Circle manoeuvres

4.1.1 Manoeuvres description and Simulat predictions

Turning circle tests were performed at nominal 100 rpm speed (15.5 kn) for three different rudder
angles : -34°, +37° and -19°. The ship’s position was obtained from a shipborne Decca Hi-Fix
receiver. The propulsion and wind data were also recorded. It is assumed here that the wind
had little influence on the manoceuvres.

Predictions for these manoeuvres with the British Bombardier were performed using Simulat
7.0, at 15.5 kn forward speed, in calm water.

4.1.2 Comparisons between experimental data and Simulat predictions

The results of both full scale trials and Simulat predictions are presented in figures 37, 38 and
39. We can read the following manoeuvring information :

-19° Circle Manoeuvre

Full scale trial Simulat prediction Error
Advance 984 m 794 m -193 %
Transfer 629 m 462 m -26.5 %
Tactical diameter 1230 m 783 m -36.3 %
Turning radius 555 m 170 m (linear prediction : 169 m) | -69.4 %
-34° Circle Manoeuvre
Full scale trial . Stmulat prediction Error
Advance 723 m 592 m -18.1 %
Transfer 453 m 337 m -25.6 %
Tactical diameter 863 m 575 m -334 %
Turning radius 339 m 127 m (linear prediction : 127 m) | -62.5 %
+37° Circle Manceuvre
Full scale trial Simulat prediction Error
Advance 631 m 568 m -10 %
Transfer -419 m -322 m -23.1%
Tactical diameter -746 m -550 m -26.3 %
Turning radius 280 m 124 m (linear prediction : 124 m) | -55.7 %

It can be observed that :

¢ The more the manoeuvre runs, the more the manoeuvring data predicted by Simulat are
false : the error increases. There is between 10 % and 25 % error on the transfer and
advance, 30 % on the tactical diameter, and more than 55 % on the final turning radius.

» The main reason of these errors are the non linear effects, which are not included in the
Simulat prediction.

Simulat predicts, for each manoeuvre, the same radius as that predicted by the traditional
linear theory.

In fact, the non linear effects are more important at the end of the manoeuvre, that
explained the increase of the error.

It also comes from the steady forward speed. In Simulat, this forward speed is constant,
although in reality it decreases by more than a half during the circle manoeuvre.
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Finally, we have to keep in mind that the slow motion derivatives used to initialise
the viscous ramp, have been obtained with a model. But it has been seen that there was
a large scale effect in the determination of these derivatives. Since the predictions are
very sensitive to the viscous ramp, the errors in slow motion derivatives could have a large
effect on the predictions too.

e Although the errors on the manoeuvring data are quite important for these circle manoeu-
vres, we can observe that the evolution of these data with the rudder angle are
predicted correctly by Simulat.

As an example, let us have a look at the tactical diameter. When the rudder angle increases
from -19° to -34°, it decreases by 29.8 % in the full scale trials and by 26.6 % in the Stmulat
predictions.

4.1.3 Conclusion

The manoeuvres predicted by Simulat are far from the experimental data. This is as expected,
because, as said previously, the Simulat predicted radius were not realistic (less than the length
of the ship !}. In circle manoeuvres, a non linear theory is required. Furthermore, a more
accurate description of the forward speed is necessary, in order the surge motion to be better
calculated. Some solutions are briefly presented in the “further investigations”chapter. More
investigations about the values of slow motions derivatives are also required.

4.2 Zigzag manoeuvres

4.2.1 100 RPM trials
Manoeuvres description

Zigzag trials were run at nominal 100 rpm speed (15.5 kn), with nominal rudder angles 10°, 20°
and 30°. The rudder angle was held constant until the ship’s heading had swung through 20°
or -20°. Then the same amount of opposite rudder angle was applied as quickly and smoothly
as possible. The cycle was repeated several times. The ship’s heading and rudder angle were
recorded during the manoeuvres. Heading was taken from the ship’s gyrocompass. Information
about wind speed and direction are also available but not exploited here. Since the wind force
was around 10 kn, it is assumed that the effect on the ship’s behaviour is not too important.

The ship’s heading and rudder angle versus time are represented in figure 40, for the three
nominal rudder angle manoeuvres.

Experimental manoeuvring results

From these experimental results, we obtain the following manoeuvring information - overshoot
angles, initial turning time, times to next execute.

10°/20° Zigzag Manoeuvre
Initial turning time to second execute 829 s
First overshoot angle 9.2° Time to third execute 244.1 s
Second overshoot angle 12.4° Time to fourth execute 221 s
Third overshoot angle 16 Time to fifth execute
Fourth overshoot angle
Mean overshoot angle 12.5° Mean time to next execute | 232 s
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20°/20° Zigzag Manoeuvre

Initial turning time to second execute

46.8 s

First overshoot angle 12.5° Time to third execute 164.2 s
Second overshoot angle 11.2° Time to fourth execute 148 s
Third overshoot angle 13.7° Time to fifth execute 186 s
Fourth overshoot angle 10.7°
Mean overshoot angle 12.0° Mean time to next execute | 166 s

30°/20° Zigzag Manoeuvre
Initial turning time to second execute 41.1s

First overshoot angle 11.3° Time to third execute 133 s
Second overshoot angle 14° Time to fourth execute 136 s
Third overshoot angle 10.3° Time to fifth execute 146 s
Fourth overshoot angle 12.7°
Mean overshoot angle 12.1° Mean time to next execute | 138,3 s

It can be seen that :

e For each zigzag test, successive overshoot angles vary a little, although the trend seems
to be constant. This variation seems to be linked with the variation of the rudder angle,
where, in practice, it is not possible to achieve the desired rudder angle exactly. For
the exploitation of the results, in order to erase these little variations, we use the mean

overshoot angle.

e The same remark can be done about the time to next execute ; we use the mean time to

next execute.

» The initial time to second execute for the 20°/20° test is underestimated, because at the

beginning of the manoeuvre, the heading is already negative.

Stmulat predictions

Predictions for zigzag manoeuvres for the British Bombardier at full speed (15.5 kn) were per-
formed using Simulat 7.0. The predictions of the ship’s heading is presented in figure 42. The
rudder angle were successively 10°, 20° and 30° and the reference heading was 20°, as in the full

scale trials presentéd above. We obtain the following manoeuvring information :

10°/20° Zigzag Manoeuvre

Initial turning time to second execute

70.6 s

First overshoot angle 8.3° Time to third execute 168.4 s
Second overshoot angle 18.6° Time to fourth execute 208 s
‘Third overshoot angle 21.9 Time to fifth execute
Fourth overshoot angle
Mean overshoot angle 16.2° Mean time to next execute | 188,2 s
Limit overshoot angle 23.6° Limit time to next execute | 222 s

20°/20° Zigzag Manoeuvre
Initial turning time to second execute | | 45.5 s

First overshoot angle 7.7° Time to third execute 1135 s
Second overshoot angle 18.8° Time to fourth execute 143 s
Third overshoot angle 2.9 Time to fifth execute 153 s
Fourth overshoot angle 25.4°
Mean overshoot angle 18.7° Mean time to next execute | 136,5 s
Limit overshoot angle 25.4° Limit time to next execute | 158 s
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30°/20° Zigzag Manoeuvre

Initial turning time {o second execute 36 s

First overshoot angle 8.7 Time to third execute 92 s
Second overshoot angle 19.6° Time to fourth execute 116 s
Third overshoot angle . 22.8° Time to fifth execute 121 s
Fourth overshoot angle 24.7°

Mean overshoot angle 12.1° Mean time to next execute | 109,66 s
Limit overshoot angle 25.7° Limit time to next execute | 127 s

It can be seen that :

e During each prediction, the overshoot angle increases with time and seems to reach a
constant value after 5 to 6 cycles. In order to compare the results at the beginning of the
manoeuvre, we could use a mean value for the four first values. But we have to keep in
mind that the variations hidden by the mean are different to those observed in the full-scale
trials. Finally, the constant values reached for a long time may be more appropriate.

o The same observation can be made for the times to next execute.

Comparisons between experimental data and Simulat predictions

Figure 44 shows the comparison between the full scale trials data and the Simulat predictions
for the three zigzag manoceuvres. At first glance, these data seem not to correspond to each
other. The overshoot angles of Simulat predictions are larger, the times to next execute are
smaller. The comparisons details are below.

10°/20° Zigzag Manoeuvre

Full scale trial Simulat prediction Error

Initial turning time 82.9s Initial turning time 706s{- 148 %
Mean overshoot angle 12.5° Limit overshoot angle 236° | +47T%
Mean time to next execute { 232 s | Limit time to next execute | 222s | - 4.3 %

20°/20° Zigzag Manoeuvre

Full scale trial Simulat prediction Error
Initial turning time 46.8 s Initial turning time 4555 |-028 %
Mean overshoot angle 12.0° Limit overshoot angle 254° | +53%
Mean time to next execute | 166 s | Limit time to next execute | 158 s | - 4.8 %

30°/20° Zigzag Manoeuvre

Full scale trial Simulat prediction Error
Initial turning time 41.1 s Initial turning time 36s [-124%
Mean overshoot angle 12.1° Limit overshoot angle 25.7°| +53%
Mean time to next execute | 138 s | Limit time to next execute | 127s | - 8.2 %

To summarise, we have an error of approximatively -15 % on the initial turning time (the
result for 20°/20° manoeuvre is not good because it was underestimated in the full scale trial),
+50 % on the overshoot angles and -5 to -8 % on the times to next execute.

These errors may be due to several reasons :
¢ The use of a linear theory, hard turns with such rudder angles require a non-linear theory.

e The value of the slow motion derivatives used to initialise the viscous ramp.
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e The use of a constant forward speed, speed should decrease during the turns.

In fact, the reasons of the errors are the same as the reasons for which the predictions for
circle manoeuvres are not good.
But another comparison could be interesting : since we have three zigzag tests, with in-
creased rudder angle between each test, we could compare the evolution of the manoeuvring
characteristics when the rudder angle changes.

Initial turning time Here is presented the evolution of this manoceuvring characteristic :

Initial turning time | 10°/20° 20°/20° 30°/20°
Full scale trials 82.9s | —43.5% — | 46.8 s (underestimated) | —-12% — | 41.1s
Simulat predictions | 70.6 s | —35.5% — 45.5 s —-209% — | 36s

Since the second value of the full scale trials is underestimated, we can say that the evolutions
of the initial turning time are comparable.

Overshoot angles As regards the overshoot angles, we can observe that, when the rudder
angle changes, it does not vary significantly. As well as in the full scale trials, the predicted
overshoot angles, compared one after another, do not change significantly either, as well as the

limit overshoot angles.

Times to next execute Here is presented the evolution of this manoeuvring characteristic :

Time to next execute | 10°/20° 20°/20° 30°/20°
Full scale trials 232s | —284% — | 166s | —16.7% — | 138s
Simulat predictions 222s | —288% — | 158s | ~-196% — | 127s

One more time, the evolutions in the full scale trials and in the predictions are similar.

4.2.2 85 RPM trials

The same zigzag trials were also carried out at 85 rpm nominal speed, which corresponds to a
speed of 6.602 m/s (12.5 kn). The same analysis as for the 100 rpm trials is made here, in order

to compare the results.

The ship’s heading and rudder angle versus time are represented in figure 41, for the three
nominal rudder angle manoeuvres.

Experimental manoeuvring results

From these experimental results, the following manoeuvring information are obtained - over-
shoot angles, initial turning time, times to next execute.

10°/20° Zigzag Manoeuvre
Initial turning time to second execute 75.3 3
First overshoot angle 13.6° Time to third execute 288.8 s
Second overshoot angle 10.77 Time to fourth execute 235 s
Third overshoot angle 17.4° Time to fifth execute 283 s
Fourth overshoot angle 10.1°
Mean overshoot angle 12.9° Mean time to next execute | 269 s
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20°/20° Zigzag Manoeuvre

Initial turning time to second execute

67.8 s

First overshoot angle 12.2° Time to third execute 187.2 g
Second overshoot angle 8.7 Time to fourth execute 162 s
Third overshoot angle 13.5° Time to fifth execute 209 s
Fourth overshoot angle 8.2°

Mean overshoot angle 10.7° Mean time to next execute | 186 s

30°/20° Zigzag Manoeuvre

Initial turning time to second execute 46.6 s

First overshoot angle 14.5° Time to third execute 159.4 s
Second overshoot angle 10° Time to fourth execute 140 s
Third overshoot angle 13.4° Time to fifth execute 178 s
Fourth overshoot angle 9.4° _

Mean overshoot angle 11.8° Mean time to next execute | 159 s

The same observation about the variations, linked with the small variations of the rudder
angle and maybe the wind, can be done, that is why, once again, time mean values will be used.

Simulat predictions

Predictions for zigzag manoceuvres for the British Bombardier at this other speed (12.5 kn) were
performed using Simulat 7.0.

Note : All the programs have been used with the new speed value and prediction for a circle manceuvre (5°
rudder angle) was performed to verify the results. The radius obtained was 534 m instead of 520 m predicted by

the traditional linear theory, i.e. 2.6 % error.

The predictions of the ship’s heading is presented in figure 43. The rudder angle was suc-
cessively 10°, 20° and 30° and the reference heading was 20°, as in the full scale trials presented

above. The following manoeuvring information are obtained:

10°/20° Zigzag Manoeuvre

Initial turning time to second execute 84.7s

First overshoot angle 8.2° Time to third execute 206.3 s
Second overshoot angle 18.6° Time to fourth execute 252 s
Third overshoot angle 22.1° Time to fifth execute 265 s
Fourth overshoot angle 23.%°

Limit overshoot angle 24.0° Limit time to next execute | 270 s

20°/20° Zigzag Manoeuvre

Initial turning time to second execute 56.2 s

First overshoot angle 8.5° Time to third execute 140.8 s
Second overshoot angle 19.1° Time to fourth execute 175 s
Third overshoot angle 23.3° Time to fifth execute 186 s
Fourth overshoot angle 24.5°

Limit overshoot angle 25.2° Limit time to next execute | 190 s

27




30°/20° Zigzag Manoeuvre
Initial turning time to second execute 44 3
First overshoot angle 8.5° Time to third execute 1121 s
Second overshoot angle 19.1° Time to fourth execute 139 s
Third overshoot angle 22.6° Time to fifth execute 148 s
Fourth overshoot angle 24.1°
Limit overshoot angle 25.6° Limit time to next execute | 154 s

As in the previous section, the limit value of overshoot angles and times to next execute are -
used for the further comparisons.

Comparisons between experimental data and Simulat predictions

Figure 45 shows the comparison between the full scale trials data and the Simulaf predictions
for the three zigzag manoeuvres. As for the 100 rpm case, at first glance, these data seems not
to correspond to each other. The overshoot angles of Stmulat predictions are larger, but the
times to next execute are similar. The comparisons details are below.

10°/20° Zigzag Manoeuvre
Full scale trial Simulat prediction Error
Initial turning time 75.3 8 Initial turning time 84.7s |+ 11.1 %
Mean overshoot angle 12.9° Limit overshoot angle 24.0° | +46.2 %
Mean time to next execute | 269 s | Limit time to next execute | 270s | +04 %

20°/20° Zigzag Manoeuvre

Full scale trial Simulat prediction Error
Initial turning time 678 s Initial turning time 56.2s | -17.1 %
Mean overshoot angle 10.7° Limit overshoot angle 252°1+575%
Mean time to next execute | 186 s | Limit time to next execute | 190s { + 2.1 %

30°/20° Zigzag Manoeuvre

Full scale trial Simulat prediction Error

Initial turning time 46.6 s Initial turning time 44s [-56%
Mean overshoot angle 11.8° Limit overshoot angle 256° | +54%
Mean time to next execute | 159 s | Limit time to next execute | 154s | - 3.1 %

To summarise, we have an error of - 17 % to + 15 % on the initial turning time, +50 % on
the overshoot angle and 0 to 3 % on the times to next execute.

These errors are similar to those observed on the 100 rpm trials but the times to next execute
seems to be better. In the case of this lower speed, Simulaf program predicts well these times
between each action of the rudder.

We compare now the evolution of the manoeuvring characteristics when the rudder angle
changes.

Initial turning time Here is presented the evolution of this manoeuvring characteristic :

Initial turning time | 10°/20° 200 /20° 30°/20°
Full scale trials | 75.3s | —10% — | 67.8s | —31.3% — | 466 s
Simulat predictions | 84,7s | —33.7% — | 56.2s | -21.7% — | 44s
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Although this is less clear than with the 100 rpm trials, we can say that the general trends
of evolution of the initial turning time are comparable. The comparison of the initial turning
time are very difficult because it is very sensitive to the initial conditions, which is not known
exactly for the full scale trials.

Overshoot angles As well as in the 100 rpm trials, we can observe that, when the rudder
angle changes, overshoot angles do not vary significantly. As well as in the full scale trials, the
predicted overshoot angles, compared each after each other, do not change significantly either,
as well as the limit overshoot angles.

Times to next execute Here is presented the evolution of this manoeuvring characteristic :

Time to next execute { 10°/20° 20°/20° 30°/20°
Full scale trials 269s | —308% — | 186s | —145% — | 159s
Simulat predictions 270s | -296% — | 190s | —189% — | 154s

One more time, the evolutions in the full scale trials and in the predictions are similar.

4.2.3 Conclusion
As a conclusion, it can be said that:

¢ As regards the initial turning time, the experimental results do not correspond to the
predictions very well, and although the general eveolution when the rudder angle
change is respected, the errors remain important. But, if we keep in mind that the mea-
sures of initial turning time are not precise because of the dependence of initial conditions,
errors less than 20 % are not too bad.

e As regards the overshoot angles, the Simulat predictions are more than a half higher, but
it respects the fact that these angles do not vary when the speed or the nominal
rudder angle change.

Simulat predicts that the overshoot angle increases with time during the zigzag manoeuvre,
that can not be observed in the full scale trials.

¢ As regards the times to next execute, Simulat predictions are good. The evolutions
with the nominal rudder angle and the values are close to the experimental values, partic-
ularly at lower speed.

4.3 Conclusion

As a conclusion, it can be said that, although the predictions are not totally accurate, the gen-
eral evolutions of manoeuvring characteristics as functions of certain parameters - for example,
the rudder angle - are well predicted. So the program has been partly validated with
experimental data.

We need to add that the waves representation had also been validated in [9], but is not
developed here.

To further the validation process, some improvements to the model are required. The main
domains of further investigation are developed in the corresponding chapter.
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5 Investigation of the influence of
waves on ship manoeuvrability

Since the software has been partly validated, the model can be used for a first investigation of

the influence of waves on ship manoeuvring performance. As for the rudder angle, we can expect

Simaulat to predict well the evolutions of manoeuvring characteristics when the waves vary.
Note : in all the simulations, the roll motion has been excluded, since it has been seen that further investigation

is required to predict it correctly.
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5.1 Circle manoeuvres

5.1.1 Following seas

Simulat predictions have been carried out for circle manoeuvres of the British Bombardier in
following seas. The amplitude of waves was 1.0 m. Several rudder angles (5°, 10°, 15°) and
several wave lengths (A/L = 1,0.75,0.5,0.35,0.25,0.1) have been tested.

The results are presented in figures 46 and 47, for rudder angles of 5° and 10°. The ship
performs circles but a drift in the direction of the wave propagation is observed. This de-
viation of the turning trajectory from that in calm water is studied in figure 48, which shows the
drifting distance as a function of wave length for different rudder angles. The drifting distance is
defined as the quantity of the deviation of the turning trajectory during one complete (360°) turn.

It can be seen that :
e The drifting distance tends to become larger as the rudder angle becomes smaller.

¢ The drifting distance also tends to become larger as the wavelength becomes larger. The
evolution seems to be quasi-linear. (For 5° rudder angle, this behaviour is observed if we
do not include the high values obtained around A/L = 0.8.)

e For 5° rudder angle, a special behaviour is observed : for around A/L = 0.8, the drifting
distance increases a lot (double). This may be a resonance frequency for the ship. But it
would be useful to investigate this behaviour, in order to explain why it is observed only
for the smallest rudder angle.
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5.1.2 Head seas

The same simulations have been carried out for head seas. The results are presented in figure
49 for a 5° rudder angle, and the drifting distance is shown as a function of wave length for
different rudder angles in figure 49.

It can be observed that :

s The drifting distance has exactly the same evolution and the same values as for the fol-
lowing seas.

s Concerning the resonance observed for 5° rudder angle, it can be seen in figure 49 that
the ship seems to have difficulties to make the first turn. Once again, further investigation
would be useful to explain this behaviour.

Comparisons with the predictions for the Mariner vessel The conclusions concerning
the effects of the waves on the manoeuvring performances, in circle manoeuvres, for the British
Bombardier are the same as the preliminary comments, which have been made for the Mariner.
Furthermore, a similar behaviour as previously has also been observed for the 5° rudder circle
manoeuvre of the Mariner. There seems to be a resonance phenomena around A/L = 0.8.

5.2 Zigzag manoeuvres

Some predictions have also been carried out for 10°/20° zigzag manoeuvres in waves, for the
British Bombardier. The amplitude of waves was 1m. Several wave lengths (A/L = 1,0.75,0.6,0.5)
have been tested, for following and head seas.

The results are presented in figures 50 (track of the ship) and 51 (yaw angle versus time). It
can be observed that :

e There is a drift in the direction of the waves, so that in following waves the track is
extended, and in head seas it is the contrary.

e The longer the wave length is, the larger is the drift.

s Concerning the yaw angle, the overshoot angles seems to remain constant whatever the
waves. But, for following seas, the times to next rudder execute become larger, when the
wave length becomes larger. In head seas, it is the contrary : they become smaller when
the wave length is longer.

Comparisons with the predictions for the Mariner vessel From figures 16 and 17, it can
be seen that, for the Mariner vessel, the waves have the same effects on the zigzag manoeuvres
as for the British Bombardier. The difference is that the overshoot angles seem to increase in
waves. This is certainly due to the smaller directional stability of the Mariner vessel.

5.3 Conclusion

The previous simulations thus present preliminary qualitative results about the effect of waves
on the ship manceuvring performances. In order to further the investigation, these results have
to be compared with experimental data. But, for the moment, no such data is available, for the
ships studied here.

To summarise, the main effects of the wave are :
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e The deviation of the trajectory in regular waves from that in calm water has the tendency
to become larger as the wave length become longer, or when the rudder angle
becomes smaller.

e The effects of head seas or following seas are similar. The drift is in the direction of
the wave propagation.

e There may exist a wave frequency for which the ship performance is more affected (reso-
nance frequency). But this appears only for small rudder angles.
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6 Conclusion and further
investigations

As a conclusion, the Simulat software, based on the unified theory of a ship travelling in a
seaway, has been verified for the Mariner vessel and extended to another ship : the British
Bombardier tanker. It has lead to a better understanding of the parameters of the model, such
as the viscous ramp or the mesh used to calculate the impulse response functions. Due to these
investigations, the software could now be used for any ship if experimental data for the slow
motion derivatives are available.

The comparison of Simulat predictions to experimental ma,uoeu\?ring data for the British
Bombardier has enabled the partial validation of the software. In fact, it predicts the evolution
of the manoeuvring characteristics as functions as the manceuvring conditions well, but the
model requires some improvements in order to predict effectively the track of the manoceuvring
ship.

Finally, a preliminary study concerning the effects of waves on the ship’s manoeuvring char-
acteristics has been carried out and shows that the manoeuvrability is affected by the wave
length and by the wave direction of propagation.

Further Investigations

The aim of the following sections is to present the future investigations which could be under-
taken to improve the time simulations and obtain results in better comparison to experimental
data.

It just defines the major subjects of the proposed future studies and it does not pretend
to be complete and precise. More important work is needed to elaborate and complete those
improvements.
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6.1 Introduction of non-linear terms

In the previous chapters we have seen that the most important problem in the simulation was
the use of a linear theory.

¢ The predictions for circle manoeuvres are not accurate, because such a manoeuvre requires
a non linear theory.

e The predictions for the zigzag manoeuvres are not accurate either. Because of the large
rudder angles generally used, non-linear theory is required to described the turns.

The time simulation could thus be considerably improved if non linear terms are included.

In the current description, using convolution integrals to describe the forces, only linear
convolutions have been considered. The non-linear contributions could be added through non-
linear convolution integrals, corresponding to the higher order terms in the Volterra series
expansion. The Volterra series expansion is identical to a Taylor’s series in which the constant
derivative terms are replaced by convolution integrals, introducing a ”memory effect”.

The sway force Y due to the sway motion v(t) may be expressed in the form :

o0 s ] o o]

Y[u(t) = Yo+ f yo{T)v(t — 71)dm +f / Yoo (71, T2)0(E — 71 )0{t — )dTidT2
roo poo poo T

+f / / Yoow (71, T2, 3)V(t — T )U(E — T2)v(t — 13)dTidT2dTs + ...

For the antisymmetric motion (for example, sway motion or yaw motion) one has to add the
third order terms, the second orders are zero. For the symmetric motion (for example, surge
motion) one add the second order terms. One also must not forget some cross terms (for example
impulse response functions such as Yypr OF Yryy).

Non-linear terms concerning the rudder action have also to be iniroduced.

Y[6(t)] = Y56 + Y3556° + Y3550° + crossterms + ...

The cross terms are terms including rudder action and motions, such as for example Y,5576°....
For the rudder action, no convolution integrals are used, i.e. no memory effect is considered.
Slow motion derivatives are used.

For the exact description of the equations using the non linear terms, one could refer to the
equations presented in {6]. In these equations, no convolution integrals are used but it gives the
non linear terms which have to be used for each force.

The main problem with the introduction of the non-linear convolutions would be the calcu-
lation of the impulse response functions, because no experimental frequency-dependent data are
available and because the seakeeping calculation may not be able to calculate such non linear
coeflicients.

In order to avoid this problem, in a first approach, we could introduce the linear terms with
a memory effect, and the non-linear without any memory effect. Although the linear terms
are introduced as in the linear theory presented in this report, the non linear terms
could be introduced with slow motion derivatives only, using the zero frequency
value.

The data for the higher order of slow motion derivatives may be easier to find. For the
British Bombardier, they are available in [6].
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6.2 Modelling of the propulsion

The second main problem in the simulation concerns the surge motion. In the previous model, a
constant forward speed is imposed. During the circle manceuvre this forward speed remains
constant, although in the full scale trial it can be seen that it decreases for more than the half.
In the zigzag manoeuvre, there is the same problem: the forward speed remains constant during
the turns, although in reality it would decrease.

In order to solve this problem the propulsion would have to be defined differently. Instead
of defining a speed, a propulsion force could be defined. In order to do that properly the
propeller and the rudder and their interactions have to be studied precisely.

Furthermore, in the current model we use the forward speed to dimensionalise all the slow
motion derivatives (and then the forces), although it must be the water speed at the rudder,
for the rudder forces.

6.3 Wind forces

In the time simulation, the effect of waves are considered but not the effects of wind. But the
wind can have lots of influence on the manoeuvring characteristics of the ship, especially for a
ship with large superstructure. Moreover, during full scale trials the wind conditions are always
recorded. It could be useful to add the wind forces in the model to predict wind influence
and to compare with experimental results.

Since the manoeuvring trials are relatively short, one could start with one direction and
one spe_e}d chr_> the rea,l_’wind : ay and V,,. The relative wind could be written as follows :
Viw = Vi + U where U is the instantaneous speed of the ship. The direction and the speed of
the relative wind (@, and V,.,) are then deduced.

The wind forces acting on the ship can be written as follows :
o Fx = CxpairV2AT/2 for the longitudinal wind force.

o Fy = CypairV2AL/2 for the lateral wind force.

o N = CnpairV,2ALLoa/2 for the yawing wind moment.

in which : Cx is the longitudinal force coefficient, C'y the lateral force coefficient, Cy the yawing
moment coefficient, gq; the density of air, V. the mean relative wind speed between water level
and top of superstructure, Ar the transverse projected area, Ay the lateral projected area, and
Lo the length overall.

The wind-related data for the ship (projected wind areas), could be obtained from the ship’s
lines. The wind resistance coefficients can then be obtained as function of the relative wind angle
Qpy,. For the British Bomberdier they have been obtained from lines plan and photographs and
are presented in [6].

The wind effects could thus be introduced in the model :
s The user enters V, and a,,.

e The user enters a list of values for the wind resistance coefficients corresponding to intervals
of relative wind incidence angles.

¢ V., and a,., are calculated in the equilibrium position using ship’s speed and heading.
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e The corresponding to ay., wind resistance coefficients are selected in the tables entered by
the user. Then, the wind forces are calculated.

e The forces are included in the equations of motion which are solved for the equilibrium
position.

o At each step of the simulation, the same scheme is used. V., and a,, are calculated using
the ship’s speed and heading obtained at the previous step.

The introduction of these wind forces is very simple - since for example it is assumed that
the wind is constant ! - but the results could be compared with the experimental results for
which the relative wind has been recorded.

6.4 Roll motion

In the previous chapter it has been observed that the predictions were very sensitive to roll
motion, particularly when the ship is manoeuvring in waves. If one considers the 5° rudder
angle circle manoeuvre in waves (amplitude = 1.0 m and A/L=1), the predictions obtained for
the Mariner vessel or the British Bombardier tanker are totally different (Figures 12 and 36).

It has been seen that the results obtained with the Mariner vessel were sensitive to addition
of a roll damping but also to wave height (Figure 13). The results obtained are not satisfactory,
because they do not seem to represent the reality.

Considering the roll angle (Figure 52), it can be seen that the roll angle increases very quickly
at the beginning to reach more than 15 when the ship is perpendicular to the waves. This value
is far too large for such a ship in these conditions of waves but it explains why the ship does
not perform a circle anymore in the prediction.

For the British Bombardier (Figure 53), the roll angle increases, in the same way as for the
Mariner, at the beginning but the highest value is less than 10°, which is more realistic - even
if the ship may not roll like that in such waves. With such a roll motion, the ship can perform
circles. But it can be seen that the roll motion increases when the ship is perpendicular to waves
and in these positions the ship turns more slowly.

All these observations underline that when the ship is perpendicular to waves,
the roll motion increases and it may reach a sort of resonance. These large roll oscil-
lations prevent the ship from turning efficiently. It is well known that such a behaviour occurs
in reality.

But, even if the behaviour predicted for the British Bombardier seems to be closer to reality,
the values remain far too large for both ships. This may be due to the lack of roll damping
and due to the coupling inertia moments for which no accurate values are known.
Further investigations in this domain may be useful in order to better predici the roll motion
and its consequences on the manoeuvring characteristics.
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Appendix A : A unified

mathematical model
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A-1 Manoeuvring theory

In the manoeuvring theory, we consider a set of axes Cxyz (see figure d), fixed to the rigid body.
C is fixed at the centre of mass and Cy, is a plane of symmetry. The space fixed system is
0XoYyZy (see figure e). The ship has six degrees of freedom. The Euler angles describing the
position of the body axes system are ¥ (swing or yaw), © (pitch) and ® (roll). It is easy to
change the reference axes system in the equations through these angles.

A-1.1 Equations of motion

In the relative frame CX)E, the velocity of the_) ship can be written as ff =U7 + V? + W?
— —
and the angular velocity @& =P ¢ +Q j + Rk, where P, Q, R are related to the Euler angles.

37



Ay . X
pirch & 2, ot ™~
yawe)
1
sway

hewve

Figure d - Body fixed axis system and degrees of freedom

Xo

o

Figure e - Space fixed axes system, Position of the ship {1]

Step 1 : Second Newton’s Law

—

F=Xi+Yj+Zk=mUi+Vji+Wk)+mQ xU
G=Ki+Mj+Nk=Z(Pi+Qj +Rk}+Q xIQ
Step 2 : Linearisation The hypotheses adopted in this study are :
e Steady reference motion (U =T 4 )
e Small perturbations to the reference motion

e Linear mathematical model

Furthermore, due to symmetry, Ipy = Iy = Iz, = I,z =0

As a consequence of the linearisation procedure, the forces and the moment in a plane of sym-
metry depend only on the symmetric motion variables {and the equivalent for the perpendicular
actions and the antisymmetric motion variables).

Step 3 : Equations of motion Therefore the equations of motion can be written as.
For the symmetric motions :

mi = AX(1)
miir — mUgq = AZ(t)
lyyg = AM(t) (Eq 1)
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For the antisymmetric motions :

mi +mUr = AY(t)
Ipep — Iyt = AK(2)
—Lgp+ L7 = AN(t) (Eq 2)

Position of the ship The position of the ship is meaningless in the relative frame of reference.
It is obtained by integrating the velocity between an initial time and time t in the space fixed
frame.

¢
X*=/(U+u)dt
0
t —_—
y*=f (v+¥U)dt
0
t —
z*:j(w—GU)dt
0

A-1.2 VForces and moments acting on a ship

The forces and moments acting on the ship must be expressed i order to complete the equations
of motions.

These actions are a summation of weight, hydrostatic actions, hydrodynamic actions and
other actions specific to the problem (for example a rudder action).

Hydrostatic and hydrodynamic actions are exerted on the ship by the surrounding fluid
through two mechanisms : skin friction and pressure, both mechanisms depend directly on the
shape of the wetted surface.

For this study, in the case of small displacements, the buoyancy force (integration of pressure
on the wetted surface) is expressed as a constant coefficient (restoring coefficient) of the motion
displacement.

Since the hydrodynamic forces depend on motion, which in turn will depend on these actions,
the hydrodynamic forces may only be expressed in a simplified form if assumptions are made in
advance regarding the form of motion and the likely nature of the fluid response.

For a ship manceuvring slowly in calin water, the hydrodynamic actions are dominated by
viscous contributions. To represent these motion dependent hydrodynamic actions, it is usual to
use slow motion derivatives. In a linear theory they are assumed to be constant coefficients of the
velocity and acceleration perturbation terms. The fluid action represented is instantaneous. No
influence of the past motions are included (that is the definition of the “slow”motion.) It will be
shown later how these past motions may be considered in a more general case. The contributions
to each degree of freedom are then summed, noting the separation between symmetric and
antisymmetric actions and motions.

Slow motion derivatives For example, considering the sway motion.
The motion is considered as slow when the following condition is satisfied:

bl il L
Bl T
If the variation of the dynamic motion variables is well behaved mathematically, we can
write (first order Taylor series)- the derivatives are evaluated at the reference motion :
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For a slow motion the higher derivatives are ignored (assumed small).
These derivatives, denoted Y, = %vl, are the slow motion derivatives. In the present model,
they are assumed to be constant.

Equations of motion with the actions and moments For the symmetric motions (X(t),
Z(t) and M(t) represent external actions such as wave excitation or the rudder action):

m 0 0 ) 00 0 u
0 m O W |+ |0 0 —mU w | =
0 0 Lyt 4 00 0 ||[a]
Xo X X; ] F @ } Xy Xo X[ u
Zy Zy Zg w |+ | Zu Zy Zg w | +
M, My M; || ¢ M, My, Mg} | q |
0 0 0 X(t)
0 Z,.. Zy [ % } + | Z(¥) (Eq 3)
0 M, My M(t)

For the antisymmetric motions (Y(t), K(t) and N(t) represent external actions such as the
wave excitation or the rudder action}):

m, 0 ] 0 0 mU P
0 Izm IZ p + 0 O 0 p =
| 0 1. Izz T 00 0 J[r]
Y, Y, Y [0 Yo Y, % ][v]
Ky Kﬁ K, pi+1] Ky Kp K, ?|+
| Ny Ny N: 7 N, Ny N, | T
0 0 0 y* Y(¢t)
0 K, 0 v |+ K({) (Eq 4)
0O 0 0 N(t)

Oscillatory derivatives In the case of a steady state sinusoidal motion (of a linear system),
the motion and the action have the same frequency but differ in phase and amplitude. The
hydrodynamic actions can be written in the same way as previously but the derivatives depend
on the frequency w, and are denoted Yy,(w.). They are referred to as oscillatory derivatives.

The equation of motion remain the same with the slow motion derivatives being replaced by
the oscillatory derivatives.

A-2 Seakeeping theory

In the manoeuvring theory, a set of axes Afn( is considered : the equilibrium axes system. A
is placed in the calm water surface with C, centre of mass, at a distance ¢ below A in a vertical
plane. The space fixed system is OXg¥pZo. The axes systems are parallel to one another. The
distance OA is such that at time t, OA = Ut.
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A-2.1 Equations of motion

The motions are small translations : 71(t), 72(¢) and n3(¢) parallel to the axes A£, An and A( ;
and small rotations : n4(t), n5(t) and ng¢(t) about the axes A€, An and AC.

The steps to obtain the equations of motion are the same as those used for the manoeuvring
theory.

A-2.2 Forces and moments acting on a ship

For the seakeeping theory, we consider the case where the excitation is sinusoidal (wave excita-
tion) and the response of the ship is at the same frequency (linear behaviour).

For a wave frequency w, and for a forward speed U, the frequency of the excitation (and
thus the frequency of response) is the encounter frequency, given by :

Uw?
We == W — ——COSX0

where X is the heading to waves.

Hydrodynamic coefficients Just as for the manoeuvring theory, oscillatory derivatives and
restoring moments may be used to express the hydrodynamic actions.

In seakeeping theory, the coefficient of the acceleration term, A;;, is the hydrodynamic added
mass and the coefficient of the velocity, By; is the hydrodynamic damping. These coefficients
depend on the encounter frequency.

Equations of motion with the actions and moments For the symmetric motions (where
H,(t), Ho(t), H3(t) are the components of the wave excitation i.e. Hj(t) = Hje "

m 0 —m{ | [ o]

0 m 0 i3 | =
—m{ 0 Iy+ml | L]
An Az Agps T Bnn Biz Bis | [ m ]

— | Az1 Asz Az fis | — | Ba1 Bsz Bss s | —
Asy Asz Ass 75 Bsi Bsz Bss | | 15 |
0 0 O |[m H(t)

0 C33 Css n3 | + | Hs(t) (Eq 5)

0 Cs3 Css M5 Hs(t)
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For the antisymmetric motions :

[ m m¢ , 0 T2
m{ Ipe +m( —Ip, ?4 =
| O ~I.z 1., ]
Agg Agy Ay | [ 12 By By Bag 72
— | As2 Ass Ass 4 | — | Baa Baa Bgs 4
Agy Aes Ass | | 7o Bgz Bgs Degg Uy
0 0 0] [m Hy(t)
-0 Cyu O ne | + | Ha(t) (Eq 6)
0 0 0 76 He(t)

A-3 Relations between seakeeping and manoeuvring theory

It has been shown that both the body axes system and equilibrium axes system are suitable for
describing the equations of motion. We may also obtain simplified relations between the two
formulations (manoceuvring theory and seakeeping theory), if it is assumed that the movements
of the axes system are small related to each other.

A-3.1 Kinematic conditions

Firstly, relations between the different components of the motion used in each theory may be
obtained.

In order to do that, the reference frame must be changed, using the relations between the
relative reference frame and the space fixed reference frame, which are known through the
definition of the relative reference frame. The matrix, linking the two reference frames, are
simplified in the case of small displacements.

For example, the matrix T may be used tg relate components of the body fixed and space
fixed axis systems. For example : U space = LU retative

1 —¢ 0
T=| v 1 -¢
8 ¢ 1

If this is done for each representation (manoeuvring theory, then seakeeping theory) then
two different expressions of the components of motion in the same space fixed axes system are
obtained. Thus, by equating them, we obtain the relationship between motions in the seakeeping
and manoeuvring theory.

By rearranging the relations obtained, in the case of sinusoidal motions, we obtain the
following :

m=4+{§ m=u+g m=x*
fa=w—Uq fs=w+qU/w) ns=2x (Eq 7)
s = d B =g = =0

f=0-(p+Ur m=v—(p—HU/E) ny =y
fig =P ﬂ4=P=¢f m=¢ (Eq 8)

iig = 7 e =1=1 g =
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A-3.2 Representation of the forces and moments acting on a ship

By using the same method (and the same matrix) relations between the external actions (i.e.
between AX, AY... and AH;) may be obtained. These actions are expressed through the
oscillatory derivatives and the hydrodynamic coefficients, related to the components of motion
linked to their respective axis system. Thus the previous relations may be used to express these
actions with the same components of the motion and finally identify the terms between the
different components of motion, since this is true whatever the motion. Therefore a relationship
between hydrodynamic coefficients and oscillatory derivatives is obtained.

For example : with the matrix T, we obtain for the sway action AY = AH;. By using the
previous relations : B
AHy = — At — Byv + ((Azz — A)p
+({Byz — Baa)p + {(U/w?) Baz — Ase}7
—(UA22 + Bog)r + Ha(t) = AY =
Yoo+ Yy + Ypp + Ypu 4+ Yer + Yor + Y(8)

By identifying the terms, we obtain the followings relations :

Yo =—Ax Y, = —Bx
Y = (A — An Y, = (B2 — By (Eq 9)
Y; = (U/w?)By2 — Ao Yy = —(U Az + Byg)

These relations are true for both the calm water situation and sinusoidal motions.
It is easy to do the same for all the coeflicients. These relations are very important
since they enable a link between manceuvring theory and seakeeping theory.

A-4 Impulse response functions

It was noted previously that the representations of the fluid actions consider the actions as
instantaneous. In fact, it is known that the past motion of the ship influences the motion
dependent hydrodynamic actions. A representation of these actions which includes past motions
is therefore needed.

Hydrodynamic coefficients and oscillatory derivatives are specific to sinusoidal motions. The
new representation has to be appropriate for arbitrary motions.

A-4.1 Definition

In fact, any fluid action can be expressed, within the bounds of a linear theory, by a convolution
integral. for example, for an arbitrary motion v(t) :

t
f h(r)o(t — 7)dr
0

where the impulse response function is zero for 7 < 0 and 7 > t. As a consequence, the integral
can be extend to a —oo, co integral.
In this convolution formulation, the sway force (for example) can be written :

oo o0

AY(t) = /00 Yo(TIv(t — T)d7 + j yp(T)p(t — T)dT + fwy,(r)r(t — 1) +Y(t)

—oo —oo -
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A-4.2 Relation with the oscillatory derivatives and the hydrodynamics coef-
ficients

It was shown [9] that the impulse response functions can be related to the hydrodynamic coeffi-
cient, using the Fourier transform and its inverse, in order to link both functional and frequency
domains.

In order to explain and illustrate this, lets take an example and consider a Planar Motion

Mechanism experiment involving sway motion only : y(t) = yosin(wet).
The sway action can be expressed in two different manners :

AY(t) = f > Yo (T 0(t — T)dT = Y(we)t + Yy(we)v

This leads to : o
Volwe) = f o(7)cos(wer)dr

?ﬁ(we) = - j;oo Tyu(f)%ifﬂ-))dfr

The relations to the hydrodynamic coefficients can be maid trough the previous relations
between oscillatory derivatives and those coefficients.

It may be useful to modify the form of this representation, introducing the value of the
hydrodynamic coefficients for an infinite frequency [10].

fw yo(T)v(t — 7)dr = —i;}{(oo)ﬁ + ﬁ,(oo)v + /00 Y *y (T)0(t — T)dT

—00 —oo

The action appears then as the sum of an instantaneous action and a "memory” of the fluid.

A-4.3 Determination : experimental and theoretical

Planar Motion Mechanism experiments are usually used to measure oscillatory derivatives.
These measurements could be used to find the impulse response functions through the inverse
transform, as follows :

wir) == [ Tolwe)oostwer)a,

But due to inertial forces exerted on the ship model, the frequency data cannot be measured
to high enough frequencies for the previous equation to converge.

On the other hand, the hydrodynamic coefficients may be determined using a three di-
mensional potential low panel code. These coefficients may then be related to the oscillatory
derivatives, and the impulse response function calculated as above.

However, it is well-known that such a model is deficient, for it cannot account for viscous flow
influences. But the viscosity is the most important fluid action in the case of low frequencies.
Thus, the results obtained with this model at low frequencies are far from the experimental
results. On the contrary, the results obtained at high frequencies are good.

A-4.4 An hybrid method

In order to obtain the best approach of the impulse function, it has been proposed {1] to use an
hybrid approach, which uses the potential flow model at high frequencies and the experiments
at low frequencies.



Firstly the hydrodynamic coefficients are generated with the potential flow panel code, and
they are transformed in oscillatory derivatives through the relations established in the previous
section.

Then a viscous “ramp”is added to these results ; the differences between theoretical and
experimental data are in fact assumed to be due only to viscous contributions. The values of
these viscous “ramp”are adjusted using the experimental data at low frequencies.

With this hybrid method we can then obtain a good approximation of the impulse response
functions.

A-5 Representation of wave action

The wave action can be divided into three components. The first one is the direct action of the
wave, the second one is the indirect action - in fact, the waves modify the heading of the ship,
thus the wave action is modified ; that is why this second term is expressed with the derivatives
of the direct action relative to the heading - and finally a rudder action, which tries to oppose
the wave excitation.

Y(t) = Ya(xo, t) — ¥(1)¥5(x0, 1) + Yi(t)

A-6 A unified mathematical model describing the manoeuvring
of a ship travelling in a seaway

As we have already seen above, the impulse response functions are determined from a combina-
tion of the oscillatory data derived from a PMM experiment and the theoretical evaluation of
the frequency dependent seakeeping coeflicients.

They are then included in the convolution terms of the fluid actions and the following equa-
tions of motion can used to describe the manoeuvring of a ship in a seaway (using the body
fixed axis system). These equations could easily be translated in the equilibrium axes system
used in the seakeeping theory.

Equations of motion For surge motion :
t

ma(t) = [) zy(T)u(t — 7)dr +/D Tq(T)g(t — 7)d7
+ A :.-:w(‘r)w(t - T)dT + XC!(X*) Y*’ '(Jbv X0.%, t) + Xﬁ(t) + XO(t) (Eq 10)

For heave motion :
t

t
mw(t) — Ug(t)] = /0 zu(T)u(t — 7)dT + ./0 Zq(T)g(t — T)dr

t
+ [ 2 (TYw(t — 7)dT + Z, 2 (1)
0
+Zﬂg(t) + ZC!(X*s Y*: lb, Xo0,%, t) + le(t) + Zﬂ(t) (Eq 11)
For pitch motion :
¢ 2
Lyg(t) = ]0 my(T)u(t — 7)dr —I-/O my(T)g(t — 7)dr
¢
+/ My{T)w(t — 7)dT + M+ 2*(t)
0
+M99(t) + Ma(X*: Y*7 "J}: X0, W, t) + Mﬁ(t) + Mﬂ(t) (Eq 12)
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For sway motion :
t t
m[o(t) + Ur(t)] = /(; yu(T)u(t — T)dT +/D yp(T)p(t — T)dT

t
+ [ =i+ YolX Y xa0 ) + Y50 +Yo))  (Ba13)
For roll motion :
t ¢
Ioop(t) — L7 () = /0 kv(T)v(t — 7)dT + /(: kp(T)p(t — T)dT
t
+ fo ke (T)r(t — 7)dT + Kpd(t) + Ko X™, Y*, 9, x0,w, t) + Ks(t) + Ko(t) (Eq 14)
For yaw motion :
¢ t
—L.p(t) + I.#(t) = ./o ny(TIv(t — 7)dr +f0 i (T)p(t — T)dT

+ fu ne(T)r(t — 7)dT + No(X*, Y™, 9, X0, w, t) + N5(t) + No(t) (Eq 15)
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Appendix B : British Bombardier

hull form

The aim of this appendix is to describe the main dimensions of the the British Bombardier

tanker and to compare the real hull form with that drawn with ShipShape (see figures g and h).

British Bombardier tanker | Computed hull form by Shipshape
LPB (m) 220.98 220.98
LWL (m) 227.106
B (m) 29.566 29.566
T (m} 12.497 12.497
A (m?) 65089 64337
Cp 0.797 0.788
Cm 0.987
Cp 0.799
C above baseline (m) 6.562
G above baseline (m) 6.49 6.49
M above baseline (m) 12.228

The ShipShape calculated displacement is only 1.2 % less than the displacement given for the
British Bombardier tanker. This is good indication about the accuracy of the representation.

ogls

-150

-1 0 x

x
W0 e

Figure g - Sectional area curve as predicted by Shipshape for the British Bombardier
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Figure h - Representation of British Bombardier by Shipshape.




Appendix C : Simulat User Guide
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1 Introduction

This user guide presents the different programs used in the time simulation of a ship
manoeuvring in waves, developed by Bailey, 1999 [9}, and the methods to use them. In
particular, the input files of each program are detailed and explained when necessary. The
ship used as an example is a Mariner ship.

Principles and Structure The time simulation uses the unified mathematical model
presented in Bailey, 1999 [9](1].

The equations of motions are expressed in a body fixed axis system and use impulse
response functions and convolutions to express the fluid actions.

The impulse response functions are calculated with an hybrid method : hydrodynamic
coefficients are generated by traditional seakeeping calculations and converted to the body
axis system. A viscous ramp may be added in order to correct the values at low frequencies,
where viscosity has a major role.

An overview of the structure of the programs is presented in figure 1.1.

ShipShape —_

mariner3.hig PanShp
i marinerS.pan
Panshp nsing the real draft
marinerS, \
wstng the depth of the ship mariners.in
instead of draft THARBM (R qu%:) inpret file
Sbip meshed under waierline
mariner3.inp
UCD file
Ship mieshed up to the deck . -
, Seakeeping calculation
marinerS.ing
+
smooth-RINA.dat or hydrocoef.dat
: Hydrodynamic data
Simulat =
masiner.sim
dampimp.dat Gawbw
infhyd.dat * maniner.gaw
impulse response fundions

Figure 1.1: Structure of the programs

For the time simulation, different programs are needed before the main program, called
Simulat. These programs are presented in the Pre-Programs chapter.

You can also find here a description of the global structure of the programs, and their
relations.

The principles of the Simulat program are presented in the Simulat chapter.
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2 Pre-programs

2.1 ShipShape

Initially ship’s curves, sections, length and water lines are designed using a software called
ShipShape, developed by the Wolfson Unit.

The initial frame of the Mariner ship is defined in a file called mariner5.hfg. It contains
the coordinates of curves describing the ship up to the deck line. The frame is defined
with the origin at midships on the keel, with the following axis orientation : x forward, y
port, and z up.

LU

=

Figure 2.1: Representation of mariner ship by Shipshape, different views
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2.2 Panshp program

From this point all the computational work is run with UNIX. Bailey, 1999 [9] has imple-
mented the different programs and routines in C programs.

Role The role of this program is to mesh the ship.

Principles of panshp program To mesh the ship, Panshp favours the aspect ratio
of the panels. In fact, in hydrodynamic applications, this ratio should ideally be close
to 1, in order to evaluate correctly the fluid actions. The global number of panels is not
a parameter of Panshp. When the number of panels increases, the panels description is
closer to the hull of the ship but the aspect ratio may not be respected and it may be a
bad option.

Panshp creates the mesh section by section, from the extremity to the midships. Start-
ing at the most forward section line, a panel height is calculated by dividing the perimeter
of the section line by the specified number of panels around a section. The spatial distance
to the next section line is calculated by multiplying this panel height by the aspect ratio.
Panshp repeats this until midships, and the longitudinal difference between midships and
the last calculated section line is distributed back over the sections. The quadrilateral
panels are formed using panel corners at adjacent section lines.

The same procedure is applied for the aft part of the hull. Calcuiation of bow and
stern panels uses panel corners on the last section line and on the bow or stern line.

Used version The version of the panshp program used herein is panshpl4.
Command ~ philipb/bin/panshpl4 mariner.pan

Required files
e marinerb.hfg; ShipShape definition of the Mariner ship

e mariner.pan; Input file, described below.

Description of the input file

Yo Aok e ok o o oo o o o ok o o bk ook o oo ook ok

Y #kksxkkekxr PANSHP14.C INPUT FILE **##xkkksees
AR T Y T R P PR PR

% Date writtem 14/2/98, modified 4/05
Written by Phil Bailey, modified by Lauremce Letki

o

% Numbers entered in the file MUST NOT start at the first character position
% Lines that start with a "%" in the first character position will be ignored
% Filenames and directories must be followed by a space (not a tab!!)

% Axis system used : x fud,y to port z up. Origin placed at midhips on the keel.

x oo o ko s ok ok o ok ok o e ok i ol e ok ook ool ke ok o o ok ok ko ok ok ok ok Aok ok ok

%

//home/1pl104/simulat/panshp % directory to the data files
2 % use standard data directory to

A find shipshape file (2=yes,1=no)
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mariner5.hfg % filename of shipshape input filename

2 % add a patch for the keel (1=no, 2=yes)

1 % add a patch for the bow (l1=no, 2 = yes) ;
% it has been decided that this optiop is particularly bad ;
% It is recommend that you put the additionnal
% patch by hand using ShipShape

Don’t forget to change the name of the directory to the data files or the name of the
ShipShape file, if you work on another ship.

% penfsid.c requires a length which it uses to decide what "big" is
% This length should usually be the draft, but in some cases a standard length
% other than the draft is required

2 % specify draft (1=no,2=yes)

14000 % draft or standard length value
A (If you change draft, or tramslations here
% check ouput routines to make
A sure that origin translations are still correct)
% The origin of the coordimate system must be placed at MIDSHIPS
% and on the KEEL line.
A The origin used in shipshape may need to be translated.
% (+ve z up +ve x fwds)

0.0 4 x translation required to put origin at midships
0.0 % z translation required to put origin on the keel
0.0 % roll rotation about panshpil axis (degrees)

0.0 % pitch rotation about panshpll axis {(degrees)

0.0 % yaw rotation about panshpii axis (degrees}

If you use Panshp to create the mesh for Simulat input file (UCD output file), enter
the depth of the ship instead of the real draft : then, all the ship will be meshed (up to
deck).

If you use Panshp to create the mesh for traditional seakeeping calculation (e.g THARBM
(Robert Ingliss) output file), enter the real draft of the ship. Only the part of the ship
under the water line will be meshed.

% Adaxdxikakdkax Panel beight options #*¥xx¥ssxsskx

% Option 1 = express panel height as a fraction of section perimeter

% The number of panels around each section will the same all along the ship
% Option 2 = express pamel height as a fraction of draft

% The height of the panels will remain fixed, but the number around

% each section will vary

1 % No of Panel height option to use
% Option 1 :

8 % Number of pamels around each section
% Dption 2 :

2 % Min number of panels to allow around each section

6 % Max number of panels to allow arcund each section
0.3 % Panel height as a fraction of height (or std length)

% ***xtxxrrxsxr+ Panel length options sxsssssrsesrex

% Dption 1 = Express panel length as a fraction of draft

% The length of the panels will remain fixed

% Option 2 = Express panel length using aspect ratio

% Al11 panels in ship will have approx same aspect ratio (panel size varies)

2 % No of Panel length option to use
% Dption 1: Express panel length using fracticn of draft

1.0 % Min allowable section spacing as a fraction of draft
% Option 2 :

1 % Aspect ratio of panels (length/height)
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78.5 % x value of first proper bow section on PORT side

2 % Try and fit bow type section at stern
% (Not recomended for transom sterms)
=74 % x value of first proper stern section on PORT side
2 % Add transom (1=no, 2=yes) PORT side
%
%
1 % Generate both sides of the ship (1=no,2=yes)
% (Note that if the roll or yaw angles are not zero,
% both sides of the shipwill automatically be generated)

Here above, you can change the parameters of the mesh you want to generate. In fact,
as described previously, the global number of panel is not an argument : you can change
the number of panels around each section and the aspect ratio of the panels (which
has to be closed to 1 for the hydrodynamic applications). _

For Simulat program (UCD file), it is not necessary to generate both sides of the ship.

% The following 3 line apply only to cases where other side of ship is entered

79.0 % x value of first proper bow section on STB side
2 % Try and fit bow type section at stern
% (Not recomended for transom sterms)
-74 % x value of first proper stern section on STB side
1 % Add transom (1=no, 2=yes) STB side
RLALLLLAAUAAIAL LAY ANAY end of add other side optioms YAANAUKANUGALAY
1 % Swap port and starboard sides (l=no,2=yes)
%4 (Only use this option if you want to generate half the
%4 bull and want the starboard side only)
‘/' .
1.0 % Scale factor for the ship (allows scaling of pamel output)
%
A *hkx CQUTPUT CHOICES #*##x

% stxsxestxserxrxs  Robert Ingliss file output *#sssxssksss**

h

%  The Robert Ingliss coordinate system Oxyz will have :

% 0 at the bow in the still water plane

% positive x pointing aft

% positive z pointing down

% positive y to port

% When looking along an INWARD pointing panel normal, the panels are
% entered in a clockwise semnse.

% The mesh should contain only panels below calm water line
%

2 % write Robert Ingliss output file (2=yes, 1 = no)

25 % No of lines which describe Robert Ingliss file (excluding comment lines)
v -

2 % Use standard data directory (i=no,2=yes)
mariner5.ing % Filename of Robert Ingliss file

1.0 % speed of ship in m/s

160.93 % length of ship in m

83.92 % LCG aft of FP

0.0 % Height of VCG above waterline

1660.0 % displacement in m™3

0.0 % i44

0.0 % i85

0.0 % i66

0.0 % 146

0.0 % ¢33
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0.0 % cad

0.0 % b5

0.0 % €34

0.0 % ¢35
% The coordinate system for Robert Ingliss seakeeping
% needs to be centred at the bow
% and at the calm water level.
A Need to know the distance of the bow from midships
% NOTE : If this is an outrigger themn
i3 require the x distance from the centre of the outrigger to the
% bow of the main hull
)

80 % x translation of origin from midships

14.000 % z translation of origin from keel ...should be same as draft!!
4 % Choice of frequency data :

“ 1=  Enter wavelength at zero encounter frequency
% 2=  Enter range of encounter frequencies
% 3= Enter range of vavelengths
% 4= Enter range of wave frequencies

1.0 % wave amp (not needed for option 2)

180.C # wave heading (180 degrees = head seas) (not needed for option 2)
200.0 % wavelength (only needed for option 3}

0.001 %4 lower frequency (used for options 2 and 4)

7.0 % upper frequency (used for options 2 and 4)

30 % number of values (used options 2,3 and 4)

The Robert Inglis file is generated. Do not forget to enter the correct draft above, and
the correct ship parameters, in order to use the file in seakeeping calculations.

% owrrkrrrrdpborrrsrrsscr UCD file output #wkdokkkkkskiokikkdmbibh
kA

2 % write UCD output file (2=yes, 1 = no)

2 % No of lines which describe UCD output file (excluding separators) (>1)
%

2 % Use standard data directory (1=no,2=yes)

mariner5.inp ¥ Filename of UCD file

The UCD output file contains the mesh used in the Simulat input file (if you have
entered the depth of the ship in the draft input above).

% srskkexrrrrersiarss BARR file output kkkdkkisssdkkiorhhissnes
%

2} write BARR output file (2=yes, 1 = no)

3 % No of lines which describe BARR output file (excluding separators) (>1)
” .

2 % Use standard data directory (1=mno,2=yes)

marinerS.bar } Filename of BARR file

160.93 % Length of ship in m

The file mariner5.bar is created but it is an empty file 7! This file is not needed in the
next step.

% sAdkrxrerxseeibesk  postscript file output **¥**¥++
3 % write POSTSCRIPT output file (3=yes and the next, 2=yes, 1 = no)
7 % No of lines which describe postscript output file {(excl comment lines) (>1)

%

2 % Use standard data directory {1=no,2=yes)
shipl.ps Y% Filename of Postscript file
0.0 % yaw rotation (degrees)
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0.0 % pitch rotation (degrees)

0.0 % roll rotation (degrees)
0.625 % scalefac (scale to 100 *100)
1 Y automatically scale to 100+#100 (i=no 2=yes)

%
% End of required input for pamshipl4d.c

This part is repeated four times in order to create four PS output files, with different
views of the ship. Unfortunately, these files are not created and it is not clear why.

The last message of the execution is : ”I don’t seem to have any data about draft
or baseline of this ship”. Since these files (.bar and .ps) are not used after for the time
simulation, this problem remains unsolved.

Output files

¢ mariner5.inp (UCD file); Description of the mesh for one side of the ship (if this
option is chosen in the input file} , with the origin at midships of the keel. The
points are first listed and counted, then the panels (quad) are listed with the number
of each of the four corners of that panel. The file begins with the number of points,
and the number of panels.

¢ mariner5.ing (THARBM (Robert Inglis} file); description of the mesh for both sides
of the ship, which can be used by traditional seakeeping calculations (developed by
Robert Inglis). '

T TR e b _innﬁ

Figure 2.2: Discretisation of one side of Mariner Ship ; number of panels around each section : 8 - Aspect
ratio : 1, resulting in 507 panels for one side.

Visualisation In order to see the panels, use PanVisel2. Firstly, the UCD file mariner.inp
has to be modified as follows : add a line just below the first line (with the number of
points and panels), with 0000 and add one to the number of points. In fact, points with
zero coordinates is added. Then you can open this file with PanVisel2 and see the mesh
with different orientations.
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Note A Windows version of this program has been developed : PanelGen. The param-
eters are the same but the user interface is easier to use and the visualisation is included.

2.3 Gawbw program

Role The role of this program is to calculate the impulse response functions, with the
hybrid method briefly presented in the introduction.

 Used version The version of gawbw program used herein is gawbw6.
Command ~ philipb/bin/gawbw6 vfullbod.gaw

Required files

e hydrocoef.dat; frequency dependent hydrodynamic data, obtained with a traditional
seakeeping calculation (and a THARBM (Robert Inglis) file).

o vfullbod.gaw; Input file, described below.

Description of the input file

Y% *rsexererxx GAWBWE.C INPUT FILE #ssxsxstaxxe

A

% Numbers entered in the file MUST NOT start at the first character position
% Lines that start with a % in the first character position will be ignored
% Filenames and directories must be followed by a space (not a tab!!)

% This program reads in hydrodynamic data from a number of sources.

% The first job it does is to undo any non-dimensiomalisation

% that may have been performed

% on the hydrodynamic data.

% For this reason it needs to know some information about the full size ship.

% The hydrodynamic data that it reads in is assumed to be referenced
% to the Robert Ingliss equilibrium axes.

‘6 Aversion
%

160.93 ¥ Length between perpendiculars of full scale ship
-3.73 J, LCG of full scale ship fwd of midships
0.000 % distance of C ABOVE equilibrium axis origin (+ve = UP)
7.716 7% Speed of ship in m/s
%

% Standard data directory

2 % Use Standard data directory to read in hydrodynamic data (1=no,2=yes)
hydrocoef .dat % Filename of hydrodynamic data file

1 % Source of hydrodynamic data (l=definebismp.f, 2=all of DOMS versions)
%

% It is assumed that the data is referenced to upright equilibrium axes
% with the origin in the flat water plame

4

2 Y Axis system to reference output data to {i=equilbrium axes,
4 2= jnverted body axes (z axis pointing up))

A

0.000 % Distance of new axis system origin fwd of present input
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% equilibrium origin.

% For body axes centred at CofG this should be the distance of the CofG
% fwd of input equilibrium origin (should be zero for rbismp and ndbsafp)
% For equilibrium axis output it is simply the distance of the output
% equilibrium axes fwd of the input equilibrium axes
)
1 % Type of non-dimensionalisation used for output
% 1=no non-dimensionalisation
% 2=Robert Ingliss style non-dimensionalisation
% 3=ITIC non-dimensionalisatiomn

1 % Scale the the hydrodynamic data read from hydrodynamic input file (1=mo,2=yes)
For Simulat 6, the output data need to be NO non dimensionalised.

% kkxkkkkdkikex Low Frequency viscous damping data FEErkErrEEseeeresek
2 % Add a viscous ramp (1=no,2=yes)
%
3 4 Type of non-dimensionalisation used for viscous data
A (1=ncne, 2=Robert Ingliss Non-dimensionalisation, 3=Standard)
34 Y upper omega to take viscous ramp to
kA (must be non-dimensionalised according to last option)
%
% IMPORTANT : The following viscous data MUST be referenced
% to the OUTPUT AXIS SYSTEM
% In the case of body axes this will be an INVERTED body axis system
% add wvisc (1=no,2=yes)
.0 % wisc[01(0]
% add wisc (1=no,2=yes)
.0 % wvisc[0][1]
% add visc (1=po,2=yes)
.0 % visc[0][2]
% add visc (1=no,2=yes)
visc(0] (3]
4 add visc (i=no,2=yes)
.0 % visc[0]([4]
% add visc (1=no,2=yes)
.0 % visc[0]1[5]
% add visc {1=no,2=yes)
.0 % visc[11[0]
% add visc (1=no,2=yes)
.1e-3 4 viscl[1][1]
% add visc (i=no,2=yes)
.0 % wisc[11(2}
% add visc (1=no,2=yes)
.0 % wisc[11[3]
% add visc (1=no,2=yes)
.0 % visc[1]{4]
% add visc (1=no,2=yes)
.90e-3 % visc[1]i5]
% add visc (1=mo,2=yes)
visc[2] [0]
% add visc (1=no,2=yes)
.0 4 wviscl[2]{1]
% add visc (1=no,2=yes)
.0 % wvisc[2][2]
% add visc (1=no,2=yes)
.0 % wvisc[2][3]
% add visc (1=no,2=yes)
.0 % visc[2][4]
% add visc (l=no,2=yes}
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0.0 % visc[2][5]

i 4 add visc (i=no,2=yes)
0.0 % visc[3]1[0]

1 % add visc (1=no,2=yes)
0.0 % wvisc[3][1]

1 % add visc (1=po,2=yes)
0.0 % wvisc{31[2]

1 % add visc (1=no,2=yes)
0.0 % wvisc[3]1[3]

1 % add visc (1=no,2=yes)
0.0 % visc[31[4]

1 % add visc (i=mo,2=yes)
0.0 % wisc[3][S]

1 % add visc (1=no,2=yes)
0.0 % visc[4](0]

1 % add visc (1=no,2=yes)
0.0 % viscl4][1]

1 % add visec (1=no,2=yes)
0.0 % visclal([2]

1 % add visc (1=mo,2=yes)
0.0 % wvisc[4]1[3)

1 % add visc (1=no,2=yes)
0.0 % vwisc[4][4]

1 %4 add visc (i=no,2=yes)
0.0 % visc[4][5]

1 % add visc (1=no,2=yes)
0.0 % visc[5] 0]

2 % add visc (1=no,2=yes)
-3.49e-3 % wvisc[5][1]

1 % add visc (1=no,2=yes)
0.0 % wisc[s8](2]

1 % add visc (1=no,2=yes)
0.0 % wvisc[8][3]

1 % add visc (i=no,2=yes)
0.0 % vwisc[5]1[4]

2 % add visc (l=no,2=yes)
-2_.0e-3 4 wvisc[5][5]

A LT T T T R S R
1 % Invert the output data (multiply all the data by -1) {1=no,2=yes)

The part above defines the viscous ramp which may be added to the hydrodynamic
data generated by seakeeping calculations, in order that it corresponds to experimental
data at low frequencies (where the viscosity is more important). The viscosity coefficients
correspond in fact to the slow motion derivatives, obtained experimentally for the ship
(zero frequency data).

For Simulat 6, the output data need to be NOT inverted.

% seexiasssskssrksis Impulse response function generation #ksx

)

% Evemn if the next option is no, you still need the data lines that follow

% it otherwise it gets very confused

%

2 % Generate impulse response functions and other hydro data

%

% NOTE : impulse response functions are calculated using full scale hydro data

% If the input data was non-dimensionalised gawbw6.c will give it the full
% scale dimensions before generating impulse response functions

% Therefore, time steps and intervals for impulse response functions are for
% full scale ship
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%
100 % number of frequency values to generate for new hydro data
40 % upper frequency for new hydro data (output non-dimensionalisation scheme)

2 % Generate h{t) from damping and create new added mass

2000 % number of time steps for h(t) from damping (FULL SCALE)
0.15 % time step interval for h(t) from damping (FULL SCALE)
% P

2 % Generate h(t) from added mass and create nev damping

2000 % number of time steps for h(t) from added mass (FULL SCALE)
0.16 % time step interval for h(t) from added mass (FULL SCALE)

%

il

Y asdbdksdikekk kb akk it etk (UtPut OPLIons #dkssedstsdiitintibihbietbrrtits
%A1l filenames are needed here even though options have been switched off earlier

%

2 % type of output

//home/1pl104/similat/gawbw % standard output directory
%

2 % Use standard output directory (1=mo,2=yes)
vdamping.dat }% damping filename

2 % Use standard output directory (1=no,2=yes)
vadded.dat % added mass filename

2 % Use standard output directory (1=mo,2=yes)

vinfhyd.dat % Infinite frequency added mass and damping data file
%(version 6 and above only)
2 % Use standard output directory (i=mo,2Z=yes)}
vnewdamp.dat J damping created from added mass impulse response
%function filename

2 % Use standard output directory (1=mo,2=yes}
vaddimp.dat % h(t) data from added mass filename

2 % Use standard output directory (1=mo,2=yes)
vnevadded.dat ¥ added mass data from damping h(t) filename
2 % Use standard output directory (1=no,2=yes)

vdampimp.dat ¥ h{t) data from damping filename

Qutput files

e vdamping.dat

e vadded.dat

e vnewdamp.dat
e vaddimp.dat

e vnewadded.dat
e vdampimp.dat
s vinfhyd.dat

Only files vdampimp.dat and vinfhyd.dat, and maybe vdamping.dat and vadded.dat
are used by Simulat program. They contain respectively the impulse response functions,
the value of hydrodynamic data at infinite frequency and the frequency dependent coeffi-
cients (damping and added mass).
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3.

3.1

Simulatl program

Principles of Simulat program

The simulation starts with the ship in the calm water equilibrium condition {which is
calculated by the Ifequilpos subroutine). Thereafter, at each time step and at each step of
the Runge Kutta scheme [9][10], the necessary convolutions are performed together with
calculation of the relevant wave excitations and restoring moments (calcfs subroutine), in
order to solve the equations of motion.

Calculation features and assumptions

Spatial position is calculated by integrating component velocities over time.

Heading of the vessel relative to waves changes substantially with time {(e.g. a circle
manoceuvre).

Wave excitation is assumed to be instantaneous and is taken as that due to the
Froude-Kriloff components alone (i.e. diffraction excitation is neglected).

The restoring and wave excitation are not necessarily linear, but in the limiting case
of small ship motions and waves, the predictions of calcfs routine are linear. The
linear assumptions adopted in the mathematical model are not violated.

The instantanecus excitation is evaluated with the ship in the perturbed condition.

Two different versions can be used : Simulat 6, which runs on a UNIX machine or on
a LINUX machine, and Simulat 7, which runs on a LINUX machine.

3.2

Simulat 6

Command ~ philipb/bin/simulaté newmesh.sim 160.93 (wavelength)

Required files

vdampimp.dat; this file contains the immpulse response functions, needed to calculate
the fluid actions on the ship at each step.

o vinfhyd.dat; this file contains the hydrodynamic data at infinite frequency, also

needed to calculate the fluid actions.

¢ (vdamping.dat)
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o (vadded.dat)

¢ newmesh.sim; Input file, described below.

Description of the input file The file described below is the input file for the simula-
tion, in calm water (no amplitude for the waves), for a constant rudder action of 5° (spiral
manoeuvre), with surge perturbations and roll motion excluded.

%

%

%

In Simulat 6, you can, among other things:
e Choose the motions you want to be included or excluded
e Use a constant or a sinusoidal rudder action

e Use different wave amplitudes and wavelengths

skkkkkkkkkk SIMULATSE.C INPUT FILE #®##%dkkkkkkkk

Numbers entered in the file MUST NOT start at the first character position
Lines that start with a % in the first character position will be ignored
Filenames and directories must be followed by a space (not a tab!!)

Axis system used for input : x fwd,y to port z up. Origin
Placed at midships on the keel.
The program will move the axis system to the center of mass

e LT S PP T ST T PSR
% Standard data directory

160.93 % length of ship in m
-3.73 % Ship LCG position fwd of midships
7.742 }, Ship VCG position above keel
16652.4 Y Displacement of ship (z"3)
736790141.95666 % 144
19160346751.60949 % iS55
19464567513.94932 % i66
-18292386.51613 % 146

1 % Number of divisions to split each panel into

0.0 % Initial trim (about CG) (Ship entered in untrimmed state) (in degress)
%Have to be careful with this. The mesh may

% already be trimmed.
7.467 ¥ Initial draft at midships

7.716 % speed of ship in m/s

% Find flat vater equilibrium oriemtation at start (1=mo, 2=yes)
% Do surge

% Do sway

Do heave

% Do roll

%4 Do pitch

% Do yaw

RN N =N
>

3000 % Number of time steps for run
0.5 % Time step
Fxrpakibkkbbbkdiiiis Wave EXcitation ®kbikrddkskbiirtihiibthtrrttit
160.93 } Wavelength
0.000 % Initial heading of waves relative
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%to ship’s initial heading (degrees)
0.000 % Amplitude of wave {(m)

1 % Linear Froude Krylov (up to equil waterline)} (1=no,2=yes)
1 % Put ship in equil position to calculate FK excitation
% saakrkkkbkakrasnkeiid Rudder/Dther Excitation #ksskskbksmikikdskkskiks
%  All excitations are referenced the a body fixed axis system
1 % Number of excitations to read

% Excitation number 1:

0.00 % Magnitude of Force im x direction

0.1599881e6 % Magnitude of Force in y direction

0.00 % Magnitude of Force in z direction

-80.033 % x position of force application point
Yreferenced to inmput axis system (origin at midships on keel)
0.00 % y position of force application point
Yreferenced to input axis system (origin at midships on keel)
4.04 % z position of force application point
Yreferenced to input axis system (origin at midships on keel)
10.0 % time (s) when force first applied

30000.0 % Time (s) for which force applied

0.00 % Frequency of applied force (using cos[w*(t-start time)] )
0.0 % Time (s) to ramp up force

0.0 % Time (s) to ramp doen force

%

% wrrerpirsssnissnsir impulse response data dErrrekkkskkkkkkdbbdEbik
% Read in impulse data (as output by gawbw6)

% Impulse data must be referenced to upright body axes

% Have the viscous ramp included
% Have no non-dimensionalisation
% Not be inverted
4
2 % Use standard data directory (1=no,2=yes)

vdampimp.dat % filename of impulse data
%

% Fkokskok ok okok ok ko ok frequency dependent coefficients *®*sekkxdEygx

1 % Read in frequency dependent coefficients
2 % Use standard data directory (1=no,2=yes)
vadded.dat ¥ filename of added mass data

2 % Use standard data directory (1=no,2=yes)

vdanping.dat % filename of damping
A Exrxsskskkkksksaxss infinite frequency added hydrodynamic data *¥x
% File of linee containing infinite frequencyvalues

2 A Use standard data directory (i=no,2=yes)

vinfhyd.dat % filename of impulse data
% rEreebbbbak bk OULPUL Tile sdkdkiohdkdkk bk k Rk bk kR Rk b

2 % Use standard data directery (l=no,2=yes)
temp.dat ¥ filename of impulse data
Y ks T panel information *Htstssexssststidsshtbstsitss
507 % number of panels for HALF the ship
7.85e+01 6.73e-01 1.22e+01
8.10e+01 3.33e-16 1.23e+01
8.16e+01 2.22e-16 1.40e+01
7.85e+01 1.20e+00 1.40e+01
7.85e+01 3.22e-01 1.05e+01
8.05e+01 0.00e+00 1.05e+01
8.10e+01 3.33e-16 1.23e+01

The panel information must be the same as in the UCD file, generated by Panshp. The
origin is at midships on the keel. Check the Z values : they must all be positive. In order
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to obtain the description of the panels in three columns, copy the UCD file, marinerd.inp,
to Excel and then delete the first column and copy the coordinates of the points into a
text file with an empty first column. You can use this file in Unix and copy the panels to
the input file of Simulet.

Output file

e temp.dat ; The values of the six displacements versus time and the velocities are
listed in a big table, each column is decribed at the beginning of the file.

e temp.inp ; This file (UCD file) contains the coordinates of the points of the mesh,
numbered by panel.

3.3 Swimulat 7

Simulat 7 runs on a LINUX machine.
Command ~ philipb/bin/linux/simulat7 -n runl newallruns.sim

Needed files

e vdampimp.dat; this file contains the impulse response functions, needed to calculate
the fluid actions on the ship at each step.

o vinfhyd.dat; this file contains the hydrodynamic data at infinite frequency, also
needed to calculate the fluid actions.

¢ (vdamping.dat)
¢ (vadded.dat)

e newmesh-panels.sim; This file contains the coordinates of the panels of the mesh (in
the same format as required by Simulat 6)

s newallruns.sim; Input file, described below.

Description of the input file The file described below is the input file for the sim-
ulation, for a constant rudder action of 5° (spiral manoeuvre), in different conditions of
waves or with different parameters for the ship. In fact, the input file contains many "sub
- input files” and with the command you can choose the one you want to run (runl only,
in the example of command above).

In Simulat 7, you have the same possibilities of changes as in Simulat 6, but you can
furthermore generate a zigzag manoeuvre, which has been defined in the source code.
An extract of the corresponding input file is shown below.

% SIMULAT7.C INPUT FILE

% Lines that start with a ¥ in the first character position will be ignored
% Axis system used for input : x fwd,y to port z up.

% Origin placed at midhips on the keel.

A The program will move the axis system to the centre of mass

\gname{runi}
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Calm water results Check that the method still give the same
answers as Simulat6
\comline{all}{newallruns.sim}
\comline{5deg_rudder}{newallruns.sin}
\motfilename{runl.dat}

\k{0.5}

\i44{736790141.95666 }
\i155{19160346761.60949}
\166{19464567513.94932 }
\i46{-18292385.51613}

\endplt

\gname{run2}

same as runl, but replace all the values with the new interias
(based on radius of gyration =- 0.24 1 etc. etc.
\comline{all}{newallruns.sim}
\comline{bdeg_rudder}{newallruns.sim}

\motfilename{run2.dat}

\h{0.5}

\endplt

\gname{run3}

Same as run?, but put in waves of 1.0m amplitude, lambda/L=1.0
\comline{run2}{newallruns.sim}

\motfilename{run3.dat}

\h{0.5}

\amp{1.0}

\wavelen{160.93}

\endplt

\gname{multi_w}

\multi_w{all}{newallruns.sim}{15} {0.139413} {0.208656} {0.27780}
{0.34706} {0.416231} {0.4854452)} {0.554639} {0.62386} {0.693030}
{0.762272)} {0.831452} {0.900662} {0.569858} {1.039079} {1.108287}
\endplt

Note For runl, you call the parts all and 5deg-rudder, which are described just after
and you then only define the parameters which are different from those in these predefined
parts. For example, in runl, it has been decided to use different inertias values. Then for
the other runs, you can call the previous run and just change some parameters.

all
\gname{all}
principal dimensions
\lbp{ 160.93 } length between perpendiculars of ship (m)
\lcg{ -3.73 } lcg of ship forwvard of midships

\vcg{7.742)}vcg above the keel
\disp{ 16652.4} displacement(m"3)
inertias

inertias are measured about cofg. These are the old inertias as
used in the thesis i44{ 736790141.95666 } i55{ 19160346751.60949}
i66{ 19464567513.94932 } i46{-18292385.51613 }. Now use the new
inertias, iS55 and i66 based on a radius of gyration = 0.241, i44
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based on radius of gyration = 0.3b \id4{ 0.8247e¢9 1}
\i55{2.5462e10 }

\i66{ 2.5462e10 }

\iq6{ 0.000 1}

initial condition of ship

\initial_trim{0.0} initial trim {(about cg) (ship entered in
untrimmed state) (in degress) have to be careful
with this. the mesh is already trimmed by -0.434
degrees (i.e. by the stern) (degrees)

\initial_draft{7.467 } initial draft at midships (m)

\speed{7.716 } forvard speed of ship (m/3)

\use_itequil{ 2 } find flat water equilibrium orientation at
start (l=no, 2=yes)

simulation setup

\divis{1} number of divisions to split each panel into
\do_mots{1} do surge motions {(l=no, 2=yes}

{2} do sway motions (l=nmo, 2=yes)

{2} do heave motions (1=no, 2=yes)

{2} do roll motions (1=no, 2=yes)

{2} do pitch motions (1=no, 2=yes)

{2} do yawv motions (1=no, 2=yes)
\ntime{3000} number of time steps to use in simulation
\h{0.20} time step (s)
wave excitation

\wavelen{160.93} wavelength (m) will be overridden
omegaf{0.1}wvave frequency - will be overridden
\headin{0.0}initial

heading of waves relative to ship’s initial heading (degrees)
\amp{0.0} amplitude of wave (m)

\linearfk{1} linear froude

krylov (up to equil waterline) (1=no,2=yes)

have withdrawn the eq_calcfs option as it doen’t work
eq_caicfs{1}put ship in equil position to calculate fk excitation

impuise respense data

read in imuplse data (as output by gawbw6)
impulse data must be referenced to upright body axes
have the viscous ramp included
have no non-dimensionalisation
not be inverted
\impfilename{vdampimp.dat} filename of impulse data
\infhydfilename{vinfhyd.dat} infinite frequency added mass and
damping

frequency dependent coefficients

use frequency dependent coefficients rather than use convolution
integrals
omega{10.0} freq_coeffs{padded.dat}

{pdamping.dat}

\comline{panels}newmesh_panels.sim}
\endplt
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\gname{5deg_rudder} rudder and other excitations

all excitations are referenced the a body fixed axis system.
Rudder angle of 5 degrees : \excite{ 0.00} magnitude of force in x

direction
{ ©.1599881e6 } magnitude of force in y direction
{0.00} magnitude of force in z direction
{-80.033} x position of force application point

referenced to input axis system
(origin at midships on keel)

{0.00} y position of force application point
referenced to input axis system
(origin at midships on keel)

{3.735} z position of force application point
referenced to input axis system
(origin at midships on keel)

{10.0} time (s) when force first applied
{30000.0} time (8) for which force applied
{0.00} frequency of applied force (using cos[wx{t-start time)] )
{0.0} time (s) to ramp up force
{0.0} time (s) to ramp down force
\endplt

Finally, here is an example for a run with a zigzag manoeuvre.

\gname{runi}

% Run using simulat7 -n runl allruns.sim

% Quick test of zig zag manoeuvre

% Calm water 10-10 zigzag manoeuvre.

\comline{all}{newallrunsi.sim}

\motfilename{runl.dat}

\zigzag{1833328.607} v delta full scale
{-139888504.3} n delta full scale
{15} time in seconds to start
{10} rude ang
{10} head ang

\ntime{2000}

\h{0.5}

\endplt

Qutput file

¢ run.dat ; The values of the six displacements versus time and the velocities are listed
in a big table, each column is decribed at the beginning of the file. The output file
is the same as in Simulat 6.

3.4 Results

In order to use the output files temp.dat or run.dat, generated by Simulat 6 or Simulat
7, open the data file in Excel, defining the columns well. Do not forget to check the cells,
in order to verify the format. If there are cells without numbers, but ffff, just change the
cell format to "scientific”.

Then you can, for example, plot the path of the ship, using the graphic tools of Excel
(i-e. plot sway versus surge).
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Figure 3.1: Example of a track obtained with the use of two different temp.dat files (Simulat6), in Excel.
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Figure 3.2: Example of a track of a zigzag manoeuvre obtained with the use of a run.dat file (Simulat7),
in Excel

70




4 Conclusion

Modifying the parameters of the ship and of the waves, we can thus obtain significant
results for the prediction of the manoeuvring of a ship in a seaway in different conditions,
and study each of the six degrees of freedom. For more details about the uses of the
Simulat program, see [9] and relevant papers [10].

In April 2005, these different programs have been used with the same hypothesis and
parameters are those used by Bailey, 1999 [9] and the results obtained have been checked
against those obtained by Bailey, 1999 [9]. They show short agreement. Thus the programs
have been verified.
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L ]
Figures
Note : In several figures concerning impulse response functions and oscillatory derivatives, the
Y have been omitted, the notation Y has been used instead, when no confusion was possible.

Chapter 2 : Description and verification of the software - Mariner
vessel

=

Figure 1: Representation of a Mariner ship by Shipshape, different views
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Figure 2: Discretisation of one side of a Mariner Ship ; number of panels around each section : 8 - Aspect ratio
: 1, resulting in 507 panels for one side
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Figure 3: Theoretical and experimental hydrodynamic data for a Mariner ship with and without a viscous
ramp included in the theoretical prediction of the damping - coefficient —Y, and — N} versus w’, standard non-
dimensionalisation
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Figure 5: Circle manoeuvre of a Mariner ship in calm water - Simulat prediction
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Figure 6: Circle manoeuvre of a Mariner ship in waves (1m, A/L = 1), roll motion excluded - Simulat prediction
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Figure 7: Circle manoeuvre of a Mariner ship in waves (1m, A/L = 0.5), roll motion excluded - Simulat
prediction
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Figure 8: Circle manoceuvre of a Mariner ship in waves (1m, A/L = 0.25), roll motion excluded - Simulat
prediction
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Figure 9: Circle manoeuvre of a Mariner ship in waves (1m, A/L = 0.1), roll motion excluded - Simulat
prediction
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Figure 10: Heave response of a Mariner ship during a circle manoeuvre in waves (1m, A/L = 1), roll motion
excluded - Simulat prediction
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Figure 11: Pitch (degrees) response of a Mariner ship during a circle manoeuvre in waves (1m, A/L = 1), roll
motion excluded - Simulat prediction |
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Figure 12: Predicted course of a Mariner ship in waves (1m, A/L = 0.1), roll motion included, with and without

the inclusion of a nominal roll damping - Simulat prediction
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Figure 13: Predicted course of a Mariner ship in waves (various wave heights, A\/L = 0.1), roll motion included,

without the inclusion of a nominal roll damping - Simulat prediction
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Figure 15: 10°/10° zigzag test [5]
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Figure 16: 10°/10° zigzag manoeuvres of a Mariner ship in calm water, following seas and head seas (1m,
A/L = 1), as predicted by Simulat.
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Figure 17: Yaw angle (*) during 10°/10° zigzag manoeuvres of a Mariner ship in calm water and in waves, as
predicted by Simulat
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Figure 18: Representation of British Bombardier by Shipshape, different views
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Figure 19: Panshp - Discretisation of the stern of the British Bombardier up to the water-line, with small panels

Figure 20: Panshp - Discretisation of the stern of the British Bombardier up to the water-line, with large panels
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Figure 21: Discretisation of one side of the British Bombardier up to the water-line; number of panels around
each section : 8 - Aspect ratio : 0,5, resulting in 2400 panels for one side. At bottom, view of the both sides of
the discretisation
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Figure 22: Discretisation of one side of the British Bombardier up to the deck; number of panels around each
section : 12 - Aspect ratio : 1, resulting in 876 panels for one side. At bottom, view of the both sides of the
discretisation

83



¥Yr (Ns)

3 E+08

2E+08

%

1,E+08

0,E+00

-1 E+08

-2 E+08

-3 E+08

-4 E+08

—— lowest frequency deleted— with the lowest frequency

Figure 23: Theoretical hydrodynamical data Y, (w) for the British Bombardier predicted for a range of frequen-
cies between 0,0008 and 2,4 s-1, with and without the lowest frequency - full scale
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Figure 24: Impulse response function y.(7) calculated using ¥;(w.), with and without the lowest frequency in
the calculation of hydrodynamical data - full scale
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Figure 25: Theoretical hydrodynamical data —Y, (we) for the British Bombardier predicted for different values
of the non-dimensionalised frequency at which the viscous ramp ends - full scale
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Figure 26: Impulse response function —y,(7) calculated using Y, (w), predicted for different values of the non-
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Figure 27: Circle manoeuvre (5° rudder angle) of the British Bombardier in calm water for different viscous ramp
(different upper frequencies) included in the calculation of the impulse response functions - Simulat prediction
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Figure 28: Circle manoeuvre (5° rudder angle) of a Mariner ship in calm water for different viscous ramp ‘
(different upper frequencies) included in the calculation of the impulse response functions - Simulat prediction i
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Figure 29: Simulat predicted radius of a 5° rudder angle circle manoeuvre versus w, upper frequency of the
viscous ramp, for a Mariner and the British Bombardier
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Figure 30: Discretisation of one side of the British Bombardier up to the water-line; number of panels around
each section : 6 - Aspect ratio : 1, resulting in 684 panels for one side. At bottom, view of the both sides of the
discretisation
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Figure 31: Theoretical hydrodynamical data —Y,(w.) and Y;(w.) predicted with two different meshes - full

scale
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Figure 32: Impulse response function —y,(7) and y.(7) calculated using Y, (w) and Y, (w) predicted with two
different meshes - full scale
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Figure 33: Circle manoeuvre of the British Bombardier in calm water for 5° rudder angle - Simulat prediction
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Figure 34: Circle manoeuvre of the British Bombardier in calm water for 15° rudder angle - Simulat prediction
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Figure 35: Circle manoeuvres of the British Bombardier in following waves (1m, A/L = 1,0.5,0.25,0.1), roll
motion excluded - Simulat prediction
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Figure 36: Circle manoeuvre of the British Bombardier in following waves (1m, A/L = 1), roll motion included
- Simulat prediction
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Chapter 4 : Comparisons with experimental manoeuvring data
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Figure 37: Circle manoeuvre of the British Bombardier in calm water for -19° rudder angle - Simulat prediction
and full manoeuvring trial (taken from [6])
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Figure 38: Circle manoeuvre of the British Bombardier in calm water for -34° rudder angle - Simulat prediction
and full-scale manoeuvring trial (taken from [6])

-~ ot
(m) m;l-sm-.sm ance
i
. O i S A R TR
[1] ; A
| i
1
: Transfer
100 1 :
1
I
1
-200 1
| Tactical
: diameter
1
]
]
1
-400 4
1
1
]
]
500 :
1 N
!
!
600 !
1
1
|
1
-T00 1
1
!
!
-800 i - X-Sim. X" {m)
0 +100 +200 +300 +100 +500 +600 +700

Figure 39: Circle manoeuvre of the British Bombardier in calm water for 37° rudder angle - Simulat prediction
and full-scale manoeuvring trial (taken from [6])
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Figure 40: Ship’s heading and rudder angle during zigzag manoeuvres of the British Bombardier in calm water
(10°/20°, 20°/20°, 30°/20°) at 100 rpm - Full-scale manoeuvring trial (taken from [6])
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Figure 41: Ship’s heading and rudder angle during zigzag manoeuvres of the British Bombardier in calm water
(10°/20°, 20°/20°, 30°/20°) at 85 rpm - Full-scale manoeuvring trial (taken from [6])
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Figure 42: Ship’s heading during zigzag manoeuvres of the British Bombardier in calm water (10°/20°, 20°/20°,
30°/20%) at 100 rpm - Simulat predictions
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Figure 43: Ship’s heading during zigzag manoeuvres of the British Bombardier in calm water (10°/20°, 20°/20",
30°/20°) at 85 rpm - Simulat predictions

94




+40.00

+20.00

+40.00

I
|
] ’F Psi - 10°/20(temps), Psi 10° Sim(Tps)
+20.00 |

pN

+200 +400 +600 +800
(9 | Psi-30°/200emps), Psi 30° Sim(Tps)

Tpsts) .

+40.00
|

I

+20.00

-20.00

-40.00

Tps (s)

7

+200 +400 +600 +800

Figure 44: Ship’s heading during zigzag manoeuvres of the British Bombardier in calm water (10°/20°, 20°/20°,
30°/20°%) at 100 rpm - Simulat predictions (Psi °- Sim) and full-scale manoeuvring trials (Psi °/20°) (taken from
(61)
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Figure 45: Ship’s heading during zigzag manoeuvres of the British Bombardier in calm water (10°/20°, 20°/20°,

30°/20°) at 85 rpm - Simulat predictions (Psi °- Sim) and full-scale manoeuvring trials (Psi °/20°) (taken from
[61)
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Chapter 5 : Investigation of the influence of waves on ship ma-
noeuvrability
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Figure 46: Circle manoeuvres of the British Bombardier in following waves (1m, A\/L = 1,0.75,0.5,0.25), roll
motion excluded, 5° rudder angle - Simulat prediction
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Figure 47: Circle manoeuvres of the British Bombardier in following waves (1m, A/L = 1,0.75,0.5,0.35), roll
motion excluded, 10° rudder angle - Simulat prediction
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Figure 48: Drifting distance as function of the wavelength (for different rudder angles), during circle manoeuvres
in following seas for the British Bombardier, as predicted by Simulat
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Figure 49: Circle manoceuvres of the British Bombardier in head waves (lm, A/L = 1,0.75,0.5,0.35), roll
motion excluded, 5° rudder angle - Simulat prediction (left) and Drifting distance as function of the wavelength
(for different rudder angles), during circle manoeuvres in head seas for the British Bombardier, as predicted by
Simulat (right)
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Figure 50: 10°/20° zigzag manoeuvres of the British Bombardier in calm water, following seas (up) and head
seas (down)(1m, different wave lengths), as predicted by Simulat.
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Figure 51: Yaw angle (*) during 10°/20° zigzag manoeuvres of the British Bombardier in calm water, following
seas (up) and head seas (down)(1m, different wave lengths), as predicted by Simulat.




Chapter 6 : Further Investigations
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Figure 52: Roll response of a Mariner ship during a 5° rudder angle circle manoeuvre in waves (lm, A/L = 1)
- Simulat prediction
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Figure 53: Roll response of the British Bombardier tanker during a 5° rudder angle circle manoeuvre in waves
(1m, A/L = 1) - Simulat prediction
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Nomenclature

(iJ.k)

A

I:c:l:, Iyy: Izz

I:CZ) sz

(K,M.N),(AK, AM, AN
ki(7)

(K0: MO: NO)

K;

K;

k.’EI! kZZ
(Kay Mo, No)

Equilibrium axis system

Added mass coefficients , with i, j between 1 and 6

Damping coefficients , with i, j between 1 and 6

Restoring moment coefficients , with i, j between 1 and 6

Body fixed axis system with origin at center of mass C

Froude number = T/\/Lg

Acceleration due to gravity = 9,81ms?

Unit vectors defined in the Cyy, body axis system

Inertial moments matrix

Roll, pitch and yaw inertias, referenced to the C.y, body fixed
axis system (kgm?)

Cross products of inertia, referenced to the Cyzy, body fixed axis
system (kgm?)

Components of the global moment acting on the ship, referenced
to the Cygy, body fixed axis system (Nm)- A used for perturbations
Roll moment impulse response function, where i is a motion ve-
locity, referenced to the C.,, body fixed axis system

External moment on ship, referenced to the C,y. body fixed axis
system (Nm)

Roll slow motion derivative, where i is a velocity or acceleration,
referenced to the Cyy, body fixed axis system

Roll oscillatory derivative, where i is a velocity or acceleration,
referenced to the Cyy, body fixed axis system

gyration radius, used for the inertial moments (mn}

Wave excitation moment, referenced to the Cpy, body fixed axis
system (Nm)

Roll moment hydrostatic derivative

Ship length (m)

Ship mass (kg)

Pitch moment impulse response function, where i is a motion ve-
locity, referenced to the Cyy, body fixed axis system

Pitch slow motion derivative, where i is a velocity or acceleration,
referenced to the Cyy, body fixed axis system

Pitch oscillatory derivative, where i is a velocity or acceleration,
referenced to the Cy,, body fixed axis system

Pitch moment hydrostatic derivatives

Yaw moment impulse response function, where i is & motion ve-
locity, referenced to the Cy,, body fixed axis system
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N;
N;
Ns

O0XoYoZo
(p,q1), (P,Q,R)

R
t
(u,v,w), (U,V,W)

U
(X,Y,Z),(AX,AY,AZ)

(X*’y* ,Z*)’ (X* ,Y*,Z*)
zi(7)

(Xo, Yo, Zo)

X

X

(Xa, Yo, Za)

¥i(T)

Zrer D

>R g

Yaw slow motion derivative, where i is a velocity or acceleration,
referenced to the Cyy. body fixed axis system

Yaw oscillatory derivative, where i is a velocity or acceleration,
referenced to the Cyy, body fixed axis system

Yaw moment rudder derivative with respect to rudder angle, ref-
erenced to the Cyy, body fixed axis system (Nm)

Earth fixed (or spatial) axis system

Angular velocity of ship, referenced to the Czy, body fixed axis
system (lower case used to denote small quantities) (rads™!)
Turning radius in circle manoeuvres {m)

Time (s)

Velocity of ship, referenced to the C,, body fixed axis system
(lower case used to denote small quantities) (ms™!)

Steady forward speed of ship (ms™!)

Components of the global force acting on the ship, referenced to
the Cyy. body fixed axis system (N)- A used for perturbations
Position of ship center of mass C relative to origin of earth fixed
frame (lower case used to denote small quantities){m)

Surge force impulse response function, where i is a motion velocity,
referenced to the C,,, body fixed axis system

External force on ship, referenced to the Cgy, body fixed axis
system (N)

Surge slow motion derivative, where i is a velocity or acceleration,
referenced to the Cy,, body fixed axis system

Surge oscillatory derivative, where i is a velocity or acceleration,
referenced to the Cyy, body fixed axis system

Wave excitation force, referenced to the Cyy, body fixed axis sys-
tem (N)

Sway force impulse response function, where i is a motion velocity,
referenced to the Cj,, body fixed axis system

Sway slow motion derivative, where i is a velocity or acceleration,
referenced to the Cpy. body fixed axis system

Sway oscillatory derivative, where i is a velocity or acceleration,
referenced to the Cygy, body fixed axis system

Sway force rudder derivative with respect to rudder angle, refer-
enced to the Cyy, body fixed axis system (N)

Heave force impulse response function, where i is a motion velocity,
referenced to the Cyy, body fixed axis system

Heave slow motion derivative, where i is a velocity or acceleration,
referenced to the C;y. body fixed axis system

Heave oscillatory derivative, where i is a velocity or acceleration,
referenced to the C,y. body fixed axis system

Heave force hydrostatic derivatives

Incident wave amplitude {m)

Wave height at time ¢ (m)

Rudder angle (rad})

Ships displacement (m?)
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0,6
7,23

4,56

A

P
T
®,¢
Xo
v,
W

We
Ty e
Ey e

Euler pitch angle (lower case used to denote small quantity)
Small translations, referenced to the Agy: equilibrium axis system
(m)

Small rotations, referenced to the Agy equilibrium axis system
(rad)

Wave length (m)

Salt water density (1025kgm—3)

Time variable used in convolution integrals (s)

Euler roll angle (lower case used to denote small quantity)
Prescribed heading relative to waves

Euler yaw angle (lower case used to denote small quantity)
Incident wave frequency (rads—!)

Wave encounter frequency or oscillation frequency {rads™!)
Temporal derivatives

Temporal double derivatives

Non-dimensionalisation

’

e

=weVLlg A= 85 L=

Yi=—2t— Ni=-—D&

pL2T" f2 pL3T* 2
(A D 3 b Ny Ny
Yy pL2U j2 Y, pl3U /2 Ny pL3U /2 Ny pLAU /2
I Yy r . Y 1 Ny + __ Ny
Y, = pLé?Q Y; = pLifQ Ny = pLi/Q N = pLA]2
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