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We propose an application of Genetic Algorithms to the output from Reliability
Availability & Maintainability models of complex (mainly industrial) systems to reduce
computational costs while maintaining a desired level of fidelity of the model. The
paper notes the fundamental difficulty of applying resource optimisation to models of
complex systems given the dimensional and computational costs involved in realising it.
To date, several analytic approaches have been suggested to provide solutions, which
are very fast, but fundamental question marks have arisen regarding their fidelity. By
their nature they are limited in the complexity of problems they can tackle. A hybrid
approach, which utilises Monte Carlo Simulations together with an analytic metric for
the search process has also been proposed. This hybrid approach preserves the model's
accuracy and fidelity, but as it involves a study of the model's physics is limited to spare
parts and repair teams as the resources, and to the availability as the objective function
in the optimisation. The approach proposed here also uses Monte Carlo Simulations,
but the difference is that the Genetic Algorithms approach does not require any prior
study of the model's underlying structure, instead referring to the Monte Carlo
Simulations as a black box engine, which yields an accurate set of outputs for a given
set of inputs. Hence, the Genetic Algorithms approach can be applied for the
optimisation of a wider resources space and for any desired objective function defined
and calculated in the model. At the same time, the application of the Genetic
Algorithms is found to be an efficient and relatively cheap search method for
optimisation.

1 - Introduction

In this work we are trying to reduce the computational costs of resources' optimisation in
Reliability, Availability & Maintainability (RAM) models of complex systems by applying
Genetic Algorithms (GA) for the search process. Optimisation processes in these types of
models are often prohibitively expensive since the resources space has many degrees of
freedom, consisting of a large number of solution points, where each solution requires a
complete Monte Carlo Simulations (MCS), which are often slow making the entire process
expensive. MCS must be applied in such problems since generally the form of the
equations which govern the solution is a multidimensional integral transport equation (the
System Transport Equation) or a set of simultaneous integral equations. The System
Transport Equation stems from the Boltzmann Transport Equation for neutral particles. A
full discussion can be found in Dubi, 2000. One way of bypassing this obstacle is to use a
hybrid process which uses fewer MCS runs to provide information to an analytic algorithm
using bulk parameters to search within the resources topology with reliable references. In

' Every logistic element, which can support the system availability (e.g. spare parts, depots, repair teams,
tools, vehicles etc.) may be regarded as resource. Resources may also be referred to as supporting other target
functions rather than Availability, such as power generation, profit etc.; in such cases, Resources can also be
'good weather', papers (on which a 'good contract' is put together) and so on.
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that manner, the analytic algorithm learns from the MCS and the analytic predictions are
verified and corrected.

Although the Hybrid optimisation is very effective and accurate, it requires a full
understanding and study of the model to set it up. Moreover, it is limited to spare parts and
repair teams as the resources and so far has been tailored only to availability as a response
function. We wish to expand the optimisation to any controlled parameter of the problem's
input, such as preventive maintenance (PM) plan or alternative management policies,
different logistic structures etc., and to apply the search process to other functions, such as
to Whole Life Cost (WLC), profit, safety related issues and so on.

We start with a definition to our optimisation problem. We then introduce the concept of
Sufficiency, which will be utilised also for the GA at a later stage. After that and, before
we introduce the Hybrid method we introduce and describe the studied model scenario. As
a starting point for the use of the GA we take a series of random samples from the
Resources space, which we follow by application of the GA, enabling a more efficient
search process.

2 - Optimisation Definition and Difficulty

The computational time needed to simulate a realistic RAM problem for which all the
input parameters are given is normally between minutes and days. Some of the input
parameters in such problems cannot be readily controlled to yield desirable results. For
example, it is not possible to reduce the lightning rate which may cause delays on vessels
on their way to support a failed wind turbine in an offshore wind farm. Some other input
parameters can be readily changed; for example, the number of spare parts of each
replaceable type of component, the number of repair teams, the number and frequency of
preventive maintenance tasks and any other controllable parameters representing
supportive Resources for the system performance. In such circumstances we try to find the
set of input values which will maximise performance. For example, for ageing systems,
preventive maintenance may be vital once in a while; but how much? "Not at all", will
result in a strongly increasing failure rate, but on the other extreme, too much will cause
the system to be always under maintenance and hence unavailable and therefore not
performing. So, there will be an optimal maintenance plan for which the performance will
maximise. Another example would be spare parts allocation. This is slightly different since
the performance is a monotonic function of the spare parts allocation. The more spares the
better the performance; so the optimum would be the maximum. But, spare parts cost
money, where the latter can be regarded as a constraint on the former. Then, we may
define spare parts optimisation as one of the following:

1. For a given budget, provide the best performance and find the spare parts
allocation which will yield it.

2. For a minimal required performance, find the cheapest spares mixture which
will maintain it.

For a minimal required performance, find the cheapest spares mixture which
will maintain it.

3. Minimise the entire cost (or maximise profit) and find the corresponding spare
parts mixture with the maintenance plan to provide it.
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The Resources space also has a great many degrees of freedom. In order to build up the
topology of the performance as function of all the Resources, one must execute an
unrealistic number of MCS, and each might last minutes, hours or days. Therefore, running
a search algorithm testing each and every possible combination of Resources, and for each,
obtaining the objective function, in order to find the optimum point, would be unrealistic.
So, we must compromise. In such circumstances a hybrid approach can be used. Here the
hybrid approach uses a fast analytic search algorithm which learns from MCS. This will be
introduced shortly, but it requires acquaintance with the idea of Sufficiency, which will be
used in the GA process as well, and is therefore defined next.

3 - Sufficiency

Let g denote the number of spare parts of type i that should be allocated in order to
achieve full confidence for never having lack of a spare. Given the stochastic nature of
spare parts consumption, g;" approaches infinity for any time interval and certainly for the

whole service time of the system. "Full confidence" however means with 100%
probability. This probability is known as 100% Sufficiency. One can ask though for a

smaller Sufficiency for which ¢;” would become a finite number. For example, 98.5%

sufficiency for 7 spare parts of type ‘Gearbox’, means that for ‘Gearbox’, given that 7
spares will be stored, with probability of 98.5% there will be never lack of a spare (upon
all demands from the storage). Due to the stochastic nature of the variables in the problem,
only when the number of allocated spare parts approaches infinity, does the sufficiency
approach 100%. Hence, going from infinity to 7 spare units, would mean giving up 1.5%
sufficiency. Therefore, in that case, allocating 7 spares or 7,000 spares is expected to have
a negligible difference in the effect on the spare parts availability and even smaller effect
on the performance.

Normally, when attempting to allocate more spare parts than the number which provides
95% sufficiency, the performance will become degenerated due to saturation concerning
spare parts. In most problems, 98.5% sufficiency can be regarded as the upper bound
allocation for spare parts.

It is important to note that this level of sufficiency does not provide an optimal solution to
the allocation, but rather an extremely expensive one. Again, this would be the highest
spares allocation, obtaining the best performance with regard to spares support, from which
the spare parts provisioning is to be reduced towards the optimum.

4 - The RAM System Model

The model studied here is complex with respect to any analytical calculation but fairly
simple when modelling using a simulation modellingr I\%)latform, The simulation modelling
tool used to build and calculate this model is SPAR ™ (courtesy of Clockwork Solutions
Ltd.).

In the problem studied here there are twenty three systems deployed in three different
fields. All twenty three systems have identical structure and for each of which the
operational condition is represented by the Reliability Block Diagram (RBD) shown in
figure 1, where the generic name for a component is a Line Replaceable Unit (LRU)
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Figure 1 - Reliability Block Diagram (RBD) of the system - operational configuration

Every system comprises eleven LRUs selected from six different types. The distinction
among different types is a matter of the design of the model concept. Every type may have
unique properties such as failure data, repair data etc.; on the other hand, there can be
different types of LRUs with similar inherent properties and other attributes such as
identical cost or, there can be two LRUs of the same type which may have different
inherent properties (e.g. two engines operating at different loads). However, the attribute
according to which a type will unify a set of different LRUs will be whether or not all
members of that type share the same spare parts. Hence, the number of types in a problem
will be the different number of spare parts types. In this problem, eleven LRUs in a system
"consume" six different types of spare parts.

The system composition along with the failure data, repair/replacement data, repair at level
B depot and shipment times are given in table 1. Note that only mean values are shown in
the table, however, essentially each process should have a descriptive distribution as well.
In the current model all the failure distributions are Exponential where the mean appears as
the Mean Time To Failures (MTTF — sometimes appears as MTBF for Mean Time
Between Failures), all Replacement distributions are Normal where the mean appears as
Mean Time To Repair (MTTR) with relatively small standard deviations and all Repairs at
the depot and the shipment times are assumed Constants.

Shipment to level B
LRU # Type | MTTF MTTR Repair times at | FIELD1 FIELD2 | FIELD3
level B
1 1 3000 8 88 0 24 72
2 2 12000 12 74 0 18 54
3-5 3 500 8 16.8 0 45 135
6-7 6 6400 62 36 0 72 216
8-9 4 18000 24 100 0 24 72
10-11 5 -2400 6 74 0 12 36

Table 1 - Failure repair and recycling data of the proposed model

Each field contains a local storage. Additionally, there is a repair Depot located at Field 1,
but which serves equally all fields. The Depot has also its own storage. A diagram of the
logistic cycle is shown in figure 2:
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LEVEL A

Figure 2 - Diagram of the logistic cycle of the proposed model.

This logistic cycle is a typical’ supply chain structure for almost any industrial (civil or
military) enterprise. Although enterprises may have different operating environments or
management with their own special rules, still the general logistic structure can be
described as such and any exceptions are implied through data or additional logical rules.

In this model, upon failure, the failed LRU is shipped to level B for a repair. At the same
time two demands arise: one demand is for a spare part of the same type from the local
storage (the field storage). The other demand is made by the field storage, for a spare of
that type, from the level B storage; this will balance the cycle since it is expected that the
repaired LRU at the depot will return into the depot's storage. There are two possibilities
for each demand:

A) There is a spare available (instantly), in which case it responds to the demand and
the demand is erased. With regard to the demand of the field from its local storage,
a replacement/installation process will start whereas in the case of the field's
storage, a spare will be sent off from the depot's storage to the storage of the
demanding field.

B) There aren't any spares available, in which case the demand will hold until a spare
arrives at the corresponding storage.
Upon arrival of the failed LRU at the depot, a demand for a repair team arises as
well and the same logic is then applied. '

S - a Proposed Solution — the Hybrid Approach
Let us propose a spare parts optimisation, which complies with definition 1 and 2.

Analytic prediction of the Waiting Time

? The generic structure can change to multiple levels (not necessarily limited to A and B) and
multiple fields. There can also be multiple depots in each level. The levels are also known as
echelons.
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The starting point of the analytic approach (Waiting Time) suggests a single component
that reaches a storage facility at a rate 4. This rate is assumed to be constant’, representing
the flow of units from the field. Upon arrival the failed unit is repaired and returned to
storage. The time required for this process is the recycling time T..

If there are initially q spares in the storage, then a lack of spares will be caused only if
upon the arrival of the (q+1)th unit to the storage the first one has not yet returned from the
recycling process, namely,

g
T=t,<T, gzl
i=1
t; is the time interval between the arrival of the i™ and the (i-+-1)th unit.

Since #; may be assumed to be exponentially distributed, 7" has a Gamma distribution with
g degrees of freedom. Hence,

AAT)T e
=G (Ty=222_ %
FTy=G, (D) @

where I'(g)=(g-1)! for g>1 and g is an integer.

If T<T. it means that the system is awaiting a spare and the time it would take is 7c-T .
Thus, the average waiting time in a history would be

AATYT e
['(g)

T, = [@.-1) a7

_ q
- Tch(Tc)—zD(qﬂ)(Tc)

where Dy (X) represents the cumulative Gamma distribution. K is the order of the
distribution and X = A7, is the scale parameter.

If the component is a discarded component (namely is condemned upon failure) it will
have a slightly different development, but essentially its turn around time can be regarded
as infinity or even by considering it as the length of the service time (further developments
of this theme can be found in Dubi, 2003).

Unavailability Sensitivity calculation by MCS

The ability of a Monte Carlo calculation to obtain time dependent statistical quantities
enables the calculation of additional important metrics other than the system performance.
One of these quantities is the Sensitivity. Here the Sensitivity is an array of fractions, such
that every type has its own sensitivity. The Sensitivity can be related to any defined
performance target. For example, the Unavailability Sensitivity of type i is defined as the
relative portion of the down time (the time at which the system is unavailable), contributed
by any component of type i. The following examples may further clarify this definition.
Consider a system which comprises five components of three different types as shown in
Figure 3. A dark component represents a failed component. The sensitivity will be

® A "Constant failure rate" leads to an exponentially distributed PDF.
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calculated as follows. Each time the system is failed, for each failed component in the
system, repair the component ad hoc, and if the system is repaired as a result of this, then
this component is responsible for the failure. If the Sensitivity is a Failure Sensitivity then
a unity is added to the type of the component. If the Sensitivity is an Unavailability
Sensitivity then when the system will be repaired again, the downtime since the last failure
will be added to all those types which were responsible for the failure. The following three
cases in figure 3 are examples for three different Sensitivity outcomes.

Figure 3 - Different system failure configurations and responsible components.

In case A, components 1 and 5 are failed. However, repairing (ad hoc) component 5 will
not bring the system back to operation, so this component is not regarded as "responsible”
for the system failure. Only component 1 (Radio type) is. In case B, 2 and 5 are failed.
Repairing either one of them will repair the system. Hence, both (Antenna and Radar
types) are regarded as responsible for the system failure. In case C, 2, 4 and 5 are failed.
Note that this can happen only if 2 failed last or else the failure point of the system would
have been when 2 failed and only one of 4 or 5 failed too (as in case B). In this case
repairing 4 or 5 will not repair the system, so only 2 (Antenna type) will be held the failure
cause.

This concept does not have a simple explicit mathematical definition but experience
indicates that it is an excellent measure of the relative contribution of each type to systems
failures. The average system down time for each type, 7, ., accumulated by the above
process is then normalised by dividing it by the sum of all types, to obtain the sensitivity of
type i, namely:

T,
5. = di

i _n—
DTy
=

(n is the number of different components types in the system).

The total average down time of the system, over the system's life time 7,,, is now assumed

to be 7, =ZTay <7, and the average unavailability is the ratio of the down time to the

i=1

mission time U = %d— .
In fact, the Sensitivity array is an output related to the system. It summarises the whole
scenario, with data, system structure, logical rules, Resources policy and whatever else
affects the system performance through its life history. Therefore, the analytic calculation
does not "care" about the system structure or any of the problem complexities. The
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sensitivity and the unavailability are the only quantities, which are relevant for the
optimisation process as parameters.

Let us define a new quantity u;, that is the unavailability contributed by type i, as
u;=Uxs; .

DT
Approximately U = IT and by its definition u, =—TT"" ,

max max

The former is thus a function of the latter:

the Hybrid Link

The assumption is that ; is a linear function of the Waiting Time (the average time interval
since demanding a spare, until the spare is available) of type i, T, namely:
u;(q,)= 4; Ty (q;)+ B, where 4; and B; are constants to be determined in the course of the
optimisation.

Thus, it is assumed that the unavailability as function of spare parts is a surface in the spare
parts domain, having the form:

)1( U=Z(Ai’TWi(qz')+Bi)
i=1

Let UY denote a specific MCS calculation with a given storage strategy. Let »/ and uf be

the partial type unavailability in the jth and ™ calculations respectively, then the following
equations provide two unknowns 4; and B,.

uij1 =4, 'TWi(qijl)“”Bi
uzk =4, ’TWi(qz'k)““Bi

One extreme, U~ denotes a calculation with unlimited spares (the calculation provides the
maximum number of spares used, and this finite number is denoted by ¢°). In this case,

Twi(g7°) =0 since it will result in never needing to wait for spares. The other extreme would
be zero spares ¢; = 0, denoted by U°.

The equations then take the forms

2( { u =5

uio = 4,Ty; (0)+ B,

Eq. (2) is the starting point of the process, 4; and B; are inserted into expression (1) and
marginal analysis is performed analytically. Moreover, an additional benefit of U* and U°
is that they indicate the boundaries of the performance. The process is then to search the
cheapest way while progressing towards U*. It is worth mentioning that the MC
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simulation provides the lower bound U~ with the least cost out of the very large number of
combinations. Therefore, it suggests that progressing towards that, doing the "best" step
every time, wil Every logistic element, which can support the system availability (e.g. spare parts,
depots, repair teams, tools, vehicles etc.) may be regarded as resource. Resources may also be
referred to as supporting other target functions rather than Availability, such as power generation,
profit etc.; in such cases, Resources can also be 'good weather', papers (on which a 'good contract'
is put together) and so on.l end up in meeting the optimum.

Marginal Analysis

Once the unavailability can be predicted for any given allocation, the optimisation
algorithm is carried out by marginal analysis; that is allocating at each step a resource (a
spare parts or a repair team) to the type which seems to contribute the highest availability
per cost unit. So, the more sensitive and cheaper a certain type is, the more likely that this
kind is to be added.

Let us denote the unavailability as function of its Resources by U(Q), and ¢, is the i

element in the /™ row of the matrixQ, representing the number of Resources of type i in
field j. Denote by U(Q?) the unavailability with a unit added to the ;™ element in the

U@Q-U(Q")

matrix Q, then its marginal contribution to the availability will be g, =
C

Ji

where ¢, is the cost of the unit added. The optimisation algorithm will select the element
with the maximal marginal contribution and will add one unit to it. Then, this process will
keep going until a new simulation will provide accurate results with the yielded
unavailability and its corresponding set of sensitivities. This will be repeated until the

required criteria have been reached.
thePenalty of the Compromise

Notwithstanding the optimum may never be found, since a level of accuracy must be
sacrificed by making the analytical predictions, however, the justification for this sacrifice
lays in the argument that the optimum point is lying in a flat-wide valley, and reaching that
valley is as effective. This argument can be supported by the idea that a system which does
not have such a flat-wide valley but a rather dramatic behaviour around the real optimum
would be too sensitive to survive a justifiable period of service time, particularly where the
metrics are stochastic. :

The Limitation to Spare Parts and Repair Teams

The Hybrid Optimizer is very efficient for problems involving spare parts and repair teams
optimisation in multi-field and multi-echelon logistic environment. Yet, it is limited to
optimise only those resources since it does not consider other supportive resources or
parametric factors, such as preventive maintenance or different policy of management etc.
This stems from the difficulty in developing analytic approaches for predicting the
performance for multi-variable environment. It demands an extensive study of how
dependently or independently each resource generically influences the performance
whereas the nature of every model can be totally different from another, which makes the
development of a general recipe unrealistic.
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6 - Obtaining the Density of the Resources Space by Random
Samples

Our starting point for an improved approach is to sample points in the Resources space to
create Unavailability density in that space. By doing so, we should be able to perceive
what the density of the average unavailability in the Resources space is, and to
comprehend what the order of magnitude of the computational cost is of building up such
scaffoldings for optimisation or search process (a deeper discussion can be found in Keane
and Nair, 2005).

Here the Resources space is transformed into cost with a simple Cost function. Therefore,
the density diagram will show Unavailability against Cost. It is worth mentioning that the
graphic illustration of the density as a function of the Cost is not as informative as that of
the Resources, because some similar Costs may result from completely different Resources
allocations (distant in the Resources space). However, it is straight forward to break down
the Costs to their corresponding Resources allocations when required. Also, apparently it is
the only way for viewing that density in a two-dimensional diagram.

the Sampling Process

The number of allocated Resources strongly affects system performance and for every
single allocation, a complete Monte Carlo simulation which comprises a significant
number of Histories must be carried out. In the current process we randomly sample the
number of each Resource and execute a simulation. Of course, if we sample each Resource
independently and uniformly in its corresponding region then the resulting Cost will not be
uniformly distributed since the Cost is a summation over 25 independent variables and
hence has the properties of the Sample Average where according to the Central Limit
Theorem its probability density function approaches a Normal distribution around the
mean value. Then, certainly this would not be a uniform distribution. In order to gain a
more even coverage we carry out conditional sampling, starting with the Cost (Uniformly)
as illustrated in figure 4 and walking backwards. The range of Costs lays between zero and
the maximum Cost. The finite maximum Cost is determined by the Cost function applied
for the 98.5% Sufficiency point. Each type is then allocated with maximum needed spares
(with 98.5% probability of never having a lack when required), and the same principle is
applied for the repair teams.

Figure 4 - Sampling the Cost uniformly between zero to Max.

Having sampled the Cost we then investigate what the distribution among the types would
need to be. This is done by sampling a random number for each type and normalising it
with the sampled cost. The Pie chart in figure 5 illustrates an example for the cost
distribution.
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Figure 5 - Pie chart of the Cost distribution among the different Line Replaceable Units types in the
problem.

The number of spares of each type will be the size of its corresponding segment divided by
the cost of that type and rounded. The same principle is then applied to obtain the
distribution among the four different storages of spares of a given type.

Having done that, we have a spares allocation for all storages and we obtain the
Unavailability as a function of the Cost using Monte Carlo simulation. Repeating this
process many times, each time with new sampled allocation, we then create the topology of
the Unavailability in the Resources space. This is clearly seen in figure 6.
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Figure 6 - Unavailability in the Resources space when sampled uniformly, from which the resulting Pareto
Front is compared with the Hybrid Curve, AT is added to illustrate a common allocation which is far away
with respect to the optimum.
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These results show the Unavailability density in the Cost space, plus the optimisation curve
obtained by the Hybrid Optimizer and a Pareto front fitted on the sampled space for
comparison. One can conclude that most points in the space are far away from the optimal
region and indeed it is not trivial to obtain the optimum and that indeed the Hybrid
optimisation curve meets this pattern quite well. Still, the Hybrid curve is not the best
curve and some better allocations can be proposed.

7 - Search Process Using Genetic Algorithms

The above diagram shows that the Hybrid optimisation can be improved upon. However,
computation-wise it demands many more simulations. The good news is that the majority
of the simulations are "redundant”. We are interested only in those which are close to the
optimal curve (if that indeed is the optimal one). So, if we could "get rid" of them we
would be able to study the process with considerably cheaper computational cost. The next
step is to sample significantly less points in the Resources space and instead of proceeding
to sample randomly, we use GA to create more new points as descendants of existing ones.
These descendants are the result of bringing together two points, where the closer a point is
to the optimum the better chance it has to be selected for reuse. The GA "pushes" the
density towards lower Unavailability and cheaper Cost. By doing so, it is expected that less
calculations will have to be carried out since most of the "unnecessary" ones are unlikely
to take part. Still, one of the underlying principles of GA is that there should not be
deterministic decisions when selecting new points, but to give some chance to the "less
promising" points. This prevents degeneration or dead-ends in the process.

Recall that in the current example problem there are 25 different entries, each of which can
vary between zero to its maximum, we break down this vector to a binary vector which
represents the same values. Therefore, each resource will thereby be allocated with a stack
of binary bits, where the number of bits of every resource should cover the corresponding
maximum allocation® (sufficiency), and all the stacks together create a string of binary
values. The next step is ranking the strings according to a criterion. There are many ways
to determine the criterion by which the strings should be sorted. At this stage we attribute
each allocation with a "mark" which is derived from the simulation. The mark is a relative
(normalised) function value a(é), of the Resources allocation 5 of each string (spares
4!

U, xC

i i

allocation in binary units) in the form: «, (5,) =a,;U, (& ),C; (5,. ) = , wWhere ¢, is a the

normalising constant ¢, = such that » o, =1
7

1
y ijCj

Hence, the set & can be regarded as set of probabilities of mutually exclusive and
complementary events such that it is possible to sample a string from the entire population

* 1t is worth noting that upon allocating the stack for each resource, it may increase the degree of
freedom since the maximum values of binary stacks are greater or equal the corresponding
sufficiencies; however, this only slightly increases the search process.
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with probability % for the ith string. Next, two strings are selected, with the condition that
they are different, and merged as described below.

Then we select for both strings, the place at which they will cut. If each string is built up
from Z binary elements, then the current sampling is with uniform distribution between 1
to Z-1. Let the cut point be A, then we cut both strings to two pieces, piece A from 1 to
M and piece B from M+1 to Z. We then switch between piece B of the two strings and
create two new-born strings. We repeat this process until we have created an equal number
of strings as per the original population (we maintain the same number in the population),
and simulate for each new-born string. We should say that a genuine parent can be sampled
multiple times as long as it does not get merged with itself. By this method (see more in
Goldberg, 1989), the population will evolve to obtain results more and more toward lower
Unavailability and lower Cost at the same time (note that these two objectives are in
competition).

Figure 7 shows the results of the above described GA process for the same model:
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Figure 7 - Unavailability in the Resources space produced by GA, from which the resulting Pareto Front is
compared with the Hybrid Curve, and AT is added again.

Figure 7 clearly shows that the space has been extended. As explained above, this is caused
by the replacement of the allocation vector with binary one which covers more values. It is
clearly seen that less "wasteful" samples were carried out and that the population
approaches massively towards better (lower) Unavailability and to lower Cost.

Still, these results are not completely satisfying and we believe can be improved upon.
Two main factors can be suggested for improvement: changing the determination of « and
attempting to increase the dispersion of the points. This requires a further study that may
consider other search methods, such as the Ranking method.
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8 - Summary & Conclusions

We have seen that current state-of-the-art optimisation techniques in the RAM problems
arena can be improved upon. This was illustrated by comparing random samples with the
Hybrid optimisation (as illustrated in figure 6). Sampling the Resources space randomly
clearly shows that better designs can be found. Still, the random sample is not regarded as
a competitive search technique, since we achieved that through a considerably high
computational cost. Hence, better search algorithms could be explored, which would allow
for better designs while maintaining a reasonable execution time.

We proposed Genetic Algorithms as these benefit from a degree level of random sampling
but at the same time channel this randomness towards a desired direction in an educated
manner. As a result, we saw that fewer random points were shown in the results and that
the search channelled towards the desired objective. However, since that brought up a
competition between two objectives, we identified that the optimal results were not as good
as those of the random search. This implies that the Genetic Algorithms technique can be
improved upon, with an alternative search technique, such as Ranking,

Apart from the improvement of the results and of the effectiveness of the search process,
the benefit of applying GA as the search engine to the RAM problems makes the -
optimisation process useful for any model scenario, because it does not require a
preliminary knowledge of the physics of the problem. As a result, the optimisation is valid
for any desired objective function and for any factors without regard to their effect on that
objective function.
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