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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

MULTIVARIATE STATISTICAL OUTLIERS

by Chrysseis Caroni-Richardson

Most of the extensive literature on outliers refers to the
univariate case. This thesis takes up the topic of
outliers in multivariate data, examining the performance
of existing tests, and developing tests using other
procedures and tests for specific data structures.

Chapter 1 introduces key concepts and provides examples
to illustrate some of the main themes. Chapter 2
comprises a full review of previous work on outliers in
multivariate data. Wilks' test is examined in the third
chapter. It is confirmed by simulation that the
Bonferroni approximation used to provide percentage points
is accurate for testing for one outlier, but not for two
or more. Simulated percentage points are constructed for
up to four outliers, for sample sizes up to 100 and up to
5 dimensions. Chapter 4 presents sequential application
of Wilks' statistic based on Rosner's procedures for
univariate statistics which control the error level of the
test for different numbers of outliers.

Chapter 5 examines Rohlf s test using distances in the
minimum spanning tree. This is shown not to give a test
with good properties. In Chapter 6, a two-outlier test is
constructed by union-intersection methodology. This is
sometimes more powerful than Wilks' test, but much less
powerful under other data configurations. In Chapter 7,
tests are derived for outliers in normal data with
structured covariance matrices, specifically block
structure and equicorrelation. It is shown by simulation
that these tests are substantially more powerful than
Wilks'. The final chapter examines outliers in the
context of the multivariate linear model. Residuals are
defined and the related topic of influence on estimates of
regression coefficients is considered.
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CHAPTER 1

INTRODUCTION

1.1 The content of this thesis

The subject of this thesis is the study of outliers in

data and the related topic of the influence of particular

observations on the outcome of an analysis. Although the

history of the ideas can be traced back a long way, it is

in recent years that they have received a lot of attention

in the statistical literature, partly because their

implementation as a routine part of statistical analysis

needs modern computing facilities. This is especially

true when one considers applications in multivariate

problems, which are the particular theme of this thesis.

1. 2 General ideas

Because very substantial reviews of the topic of

outliers already exist (Barnett and Lewis, 1978 and 1984)

Hawkins, 1980a; Beckman and Cook, 1983), a full general

review will not be undertaken here. The present chapter

will introduce some of the main points, including a brief

discussion of some of the major univariate outlier

detection methods and examples of outlier problems in real

data. Chapter 2 will provide a full review of the

multivariate outlier problem, which will be seen to be a

relatively undeveloped aspect of outlier research despite

the general practical importance of multivariate data.

Subsequent chapters will then consider specific

multivariate outlier procedures. Chapter 3 investigates

the main existing test, due to Wilks, and Chapter 4

develops sequential test procedures based on statistics of

Wilks' type. The following two chapters look at different

methodologies for the same general problem: Chapter 5

examines Rohlf's gap test and Chapter 6 develops an

outlier test based on union-intersection test

construction. Attention then turns to structured data
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problems, with the development of tests for outliers in

data with particular patterns in the covariance matrix in

Chapter 7 and the extension of univariate analyses of

residuals and influence in the general linear model to the

multivariate case in Chapter 8.

We must first consider what are 'outliers', what is

'influence' and why do they matter? The definition of

outliers is discussed in detail in the major reviews.

Suggestions include,

"An outlying observation is one that appears different
from the rest of the sample."

(Kendall and Buckland, 1960)

"Outliers are values which are either too large or too
small compared with the rest of the observations."

(Gumbel, 1960)

"An outlier is an observation whose value is not in
the pattern of values produced by the rest of the data."

(Daniel, 1960)

"An outlying observation or outlier is one that
appears to deviate markedly from other members of the
sample in which it occurs."

(Grubbs, 1969)

The general idea of an outlier as a point which appears

to be substantially different from the remainder of the

sample is clear. Probably no more formal definition than

this is necessary, if it is even possible, but in fact two

distinct senses are often distinguished. To explain

these, it is best to think of statistical analysis as

consisting, in most situations, as the definition of a

model describing the population from which a sample is

available, followed by fitting the model and drawing

inferences about the population on the basis of the fit.

The central role of the model is clear, although in many

circumstances the actual model may not really be made

explicit and in fact may not be crucial to the validity of

the analysis. (For example, t-tests on means require the

normal distribution - the model - for the theory to be

exact, but are very acceptable approximations under a wide
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range of departures from this.) An outlier is an

observation which is, in this framework, different from

the rest of the sample. This could mean either that it is

generated by a different model or that it appears to be

different, for example as seen in a graphical

representation or in possessing an extreme value of some

statistic measuring some concept of distance between

members of the sample. An outlier in the former sense, a

point generated by a different model, need not be an

outlier in appearing different - though if it is not, it

probably cannot be detected. An outlier in the latter

sense is either an outlier in the former sense or is a

statistically improbable value arising because of an

unusually large random component. In this thesis,

'outlier' is generally taken to mean a point which has the

appearance of being different - the 'discordant

observation' of Barnett and Lewis. Sometimes it is

necessary to use the sense of an observation generated by

a different model, especially when such points are

generated in simulation studies of the power of test

statistics, and then the change in meaning will be made

clear in the text. Observations generated by a different

model from the remainder of the sample are sometimes

called 'model outliers' or 'contaminants' (Hawkins,

1980a).

The presence of outliers often indicates that something

is wrong. The model may be wrong; the population to which

the model is applied may be wrongly specified, so that

heterogeneity in the sample correctly reflects an

unrecognized heterogeneity in the population; the

measurement of the outlying observation may have been

incorrectly carried out or incorrectly recorded.

Recognition of this leads to allowing for the outlier in

some way - perhaps simply by discarding it - and this may

affect the final conclusions and hence any action to be

taken as a result of the statistical analysis. This is

not the only way of looking at the matter, as occasional
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examples can be found where the sole purpose of the

analysis was to pick out the interesting outliers from the

uninteresting mass of other points (Beckman and Cook's

example is of counts of radiation levels over an area of

central Canada in which a satellite had come to earth;

outlying counts from the general background radiation

indicated possible locations of satellite debris), but

serves for most situations. Thus outliers matter because

the outcome of the analysis may differ according to

whether or not they are recognized and, if recognized,

what is done about them.

At this point, it may be appropriate to comment on the

action that may be taken after identification of outliers.

This will vary, depending particularly on the purpose of

the analysis and the framework in which it is conducted.

It goes without saying that the first action should always

be a simple check that the data provided were correct.

Thereafter, the simplest - and possibly the commonest -

action is to reject outliers and carry out analysis on the

remaining data. This would be the more justified the more

firmly established was the basic, uncontaminated model.

It might also be justified in cases where a known

mechanism existed for contamination. For example, this

might arise in laboratory determinations of

concentrations, of micro-organisms in sea water; it is

usually necessary to dilute the original sample, and any

error in executing or recording the dilution will result

in a multiplicative error in the final value - which turns

into an additive slippage since analysis of such data is

often on the log scale. The other simple action is the

opposite of the first, namely to keep the outliers and

reject the rest of the data, which is what happens in the

relatively uncommon examples where the purpose of the

analysis is to identify these unusual points. If neither

form of rejection applies, then there must be some kind of

accommodation of the outliers. If the model is to be

retained, the outliers may be handled by a robust
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estimation procedure. Otherwise, the model will be

adapted in some way, so that these points cease to be

discordant - adopting a mixture model, for example.

However, the presence of outlying data values need not

have any practical effect on the outcome of an analysis.

Whether it does or not depends on various factors

including sample size and the way in which the outliers

differ from the other observations. Also, there may be

effects on some aspects of the analysis but not on others.

At this point, we are turning to the notion of influence

(Cook and Weisberg, 1982). This is an idea that can be

given mathematical expression for some purposes, as a

function describing the stability of estimates in relation

to changes in sample values. Such numerical expressions

of influence will be used at various points of this

thesis. Outliers and influence are closely related,

although by no means the same thing. An outlier need not

have much influence in the above sense (though it probably

should in the wider sense of aiding recognition of

shortcomings in the model), nor need an influential

observation be an outlier, at least in appearing as an

outlier in the way that outliers are usually investigated.

For example, Figure 1.2.1 is a commonly used illustration

of possible effects in regression. In the regression of y

on x, point B has very high influence since its distance

from the other points in x-space will tend to force the

regression line to pass close to B, whereas it would be

nearly horizontal were B not there. Point A does not have

such influence on the regression coefficients, though it

may well have the effect of influencing the residual mean

square, which might affect the results of tests of

significance.
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0-

Figure 1.2.1 Illustration of outliers and influential

points in a bivariate sample.

A conventional examination of the data for potential

outliers would look at standardized residuals from the

regression line: this would not indicate anything odd

about B, though it would for A. Widely available

computing packages now include influence measures (for

example, program P9R of BMDP and the regression procedure

of the microcomputer package SPSS/PC+), but older programs

offered only residuals, which would not have revealed

anything about point B.

The above illustration depends on our being interested

in the regression of y on x. If the simple correlation

between y and x were to be investigated, the approach

would be different. Outliers would now be assessed in

relation to the bivariate distribution, not to the

regression line, and the anomalous position of B would be

recognized instantly. The measure of influence on the
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sample correlation coefficient could be used, although the

standard packages do not provide this. Again we see the

importance of the model. Not only do our concepts of

outlier and influence involve comparison to a model, but

the way in which we look for outliers and examine

influence depends on the model assumed. The purpose of a

part of this thesis will be to develop methods suitable

for some particular models in multivariate problems.

After these general remarks, a number of specific

methods of univariate outlier declaration will now be

presented, the purpose being especially to illustrate

those ideas which will be found relevant in the

multivariate problem.

1.3 Some univariate outlier tests

In most of the literature, outlier detection is

approached as an outlier testing problem. In this

framework, the null hypothesis is that the sample

x ,...,x was generated as n independent realizations of a
1 n

random variable following an assumed model, the

distribution F:

H : x - F i=l/..•,n
0 i

A reasonable form of alternative hypothesis is one

which implies that most of the sample conforms to the

null, but a small number of points (perhaps only one) have

been generated by another model which tends to give values

much different from those obtained under the null. The

most popular choice is the slippage alternative. If F has

location and scale parameters, then there may be slippage

in the mean or slippage in the variance. Expressed for

the case of one possible outlier and a normal model,
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A: H : x ~ N(M,CT ) i=l,...,n
H : x ~ N(n,(T2)

1 i

x. ~ N(u+a,cr2)

or

B: H : x. ~ N(JH,CT2)

Ht : x. - N(M,O-2)

x. ~ N (n, bcr )

with b>l. The labelling recalls Ferguson's (1961)

definition of these alternatives as Models A and B. It

should be noted that the index j is unknown in nearly all

circumstances. While it is possible that there could be

prior grounds for suspecting that one particular sample

member has arisen from a different distribution, it is

much more usual for the testing to be either a routine

screening or a procedure carried out because an

observation looked suspiciously out of line with the rest.

In either case the formal framework has to allow for the

possibility that any j=l,...,n could give rise to an

outlier. The specific one under investigation will

presumably be the most extreme in relation to some

statistic, so that the test statistic will often be the

maximum or minimum of a set of (probably correlated)

values, which will give rise to difficulties in finding

distributions of test statistics. One way of coping with

the lack of specification of j is to use the two-stage

maximum likelihood method to construct a test. The idea

of this is that the likelihood ratio test of H against H
1 ^ o

is set up in the usual way for a specified j. This is the

first stage. The second is to take the extreme value of

the resulting test statistic over all choices of j. It is

clear that the applications of this method are many and

include the multivariate problem.

The above is not the only way of approaching the

detection of outliers (there is, for example, some
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Bayesian analysis described in Chapter 12 of Barnett and

Lewis, 1984, in which the work of I. Guttman is

prominent), nor are the above specifications the only

alternatives possible within this framework (Barnett and

Lewis, 1984, § 2.3). However, with very few exceptions,

it is the way that can be found in the multivariate

literature. Nor is it necessary, of course, to restrict

attention to the normal distribution but - as will be seen

in Chapter 2 - there is very little on any other

multivariate distribution apart from the normal, so this

restriction will be kept for the univariate case.

Before looking at examples of univariate test

statistics, it may be observed that the idea that an

outlier appears different from the rest of the sample

implies that outliers will occur as extreme order

statistics. Hence most statistics are expressed in terms

of ordered x s...sx rather than the original sample
(1) (n)

X , . . . , X .
1 n

Barnett and Lewis (1984) distinguish six basic types of

test statistics, as follows.

1) Excess/spread statistics

The outlier is characterized by being unusually distinct

from its neighbour, in relation to overall spread of the

sample. One example is

which tests for an upper outlier. This statistic and

several others of the same generic form are due to Dixon

(1950, 1951).

2) Range/spread statistics

An example is

due to David, Hartley and Pearson (1954), where s is the
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usual sample standard deviation. The curious feature of

such statistics, which do not seem to be widely used, is

that no particular point is being tested - is the outlier

X U ) ' X(n) ° r b ° t h ?

3) Deviation/spread statistics

The statistic testing for an upper outlier here is

which was probably used for many years before Thompson

(1935) produced exact results.

4) Sums of squares statistics

The simplest example here is S2/S2 where S2 denotes the
n n

sum of squares in the reduced sample obtained by omitting

x, and S2 is the sum of squares in the full sample. This
(n)

is actually equivalent to the statistic just given; in

fact, reduced sums of squares can always be expressed in

terms of deviations from the full sample mean x. Grubbs

(1950) gave various statistics of this kind.
5) High-order moment statistics

These are the statistics of sample skewness and sample

kurtosis. They are shown by Ferguson (1961) to have some

optimal properties. These statistics also do not test

specific points as outliers.

6) Extreme/location statistics

These statistics are relevant to distributions with a

fixed origin, such as the gamma which is confined to x^O,

since under these circumstances no shift in location is

possible. For a distribution such as the normal, a

statistic such as x /x is not invariant to arbitrary

shifts and appears to be useless.

A few remarks will now be made on the questions of

choice of statistic, distributional results and extension

to testing for two or more outliers. On the first of
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these issues, it can be seen from the above selection of

upper outlier test statistics that there are likely to be

several choices in any situation. The choice will seldom

be clear, for there are different grounds for judging the

performance of tests and the performance may anyway depend

on the type of outlier. Even where optimality can be

shown, it is of limited help. Thus, skewness and kurtosis

are only locally optimal for small shifts, which are

circumstances under which no test can have much power.

For greater shifts in the mean, tests based on the

studentized residuals do better.

Distributional results for test statistics are usually

not available explicitly because of the complexity

introduced by order statistics. However, in many cases, a

recurrence relation applies which enables the density

function of the outlier statistic in a sample of size n to

be derived in terms of the density in a sample of size

n-1. This method is illustrated in detail by Barnett and

Lewis (1984, p. 178). If it does not apply, then a

general way of obtaining percentage points for tests is to

obtain conservative points by using the Bonferroni

inequality. Because of its importance, this well known

method will be repeated here. Let T be the outlier

statistic

T=max T.
i

maximizing over choice of sample member i. Then

P(T>t)=P(U T.>t)

=P(U E.)

where E is the event T >t. Now
i i

P(U E i)= I P (E . ) - I I P(E i n Ej)+E I I P(E i f | E.n E J -
( 1 . 3 . 1 )

and Bonferroni's inequality in its most general form

states the fact that the partial sums formed by taking
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more and more terms on the right hand side are alternately-

above and below the left hand side, with absolute

differences becoming smaller. The usefulness of this

result arises when it is not possible to calculate the

distribution of T because the joint distribution of all

the E is intractable. In this case, it is probably

impossible even to obtain the distribution of pairs E , E

so that not even the second term above can be found. What

remains is the first Bonferroni inequality

P(U E.)^ £ PCE.^nPCE^.

Using this, the percentage points of T can be

approximated. If P(T >t . )=a/n, then

P(T>ta/n)=P(U E . ) ^ .

This use of the first Bonferroni bound is what is usually

meant when a test is called simply a 'Bonferroni test'.

It is a conservative test, so that when a null hypothesis

is rejected at nominal level of significance a using such

a procedure, the true significance level is even lower.

The value of this approximation is that it can be

applied in many problems, since all that is required is

the distribution of an ordinary, unoptimized statistic.

Furthermore, it is often a very good approximation, at

least for applications to one outlier.

For problems involving two or more outliers, the first

Bonferroni bound cannot be expected to be as good. The

reason is that (1.3.1) should now be rewritten so that the

event E. is labelled E in the two-outlier case meaning

that the statistic computed as if points i and j were

outliers has an extreme value (some multiple outlier

statistics will be discussed below). However, the second

term P(E n E ) will now include contributions that are

not small, as P(E..p E. ) where i,j are genuine outliers

and k is any other sample point. The test remains a
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conservative test, but may be very much so. The

difficulty of deriving exact distributions is greater for

multiple-outlier statistics than for the single outlier,

so the Bonferroni method, even if it is not very accurate,

may be the only real means of analytical progress. The

alternative will probably be simulation of percentage

points: even this may not be a simple proposition, because

for two outliers there will be fn] statistics to evaluate
I2J

in each sample, so a large-scale simulation will need very

heavy computation.

The case of two or more outliers will now be discussed

a little further before returning to the single outlier

tests to see what effect the possible existence of more

than one outlier may have on them. Some statistics

already mentioned may apply immediately to the case of

more than one outlier, such as the measures of skewness

and kurtosis. Others can be extended. For example, the

deviation/spread statistics for testing for two upper

outliers would be

(x(n)-x)/s

as before, and

A simultaneous test statistic for both x and x
(n) (n-l)

would have to combine these two values. The obvious way

to do this is to take the sum of squared values

so that in effect the sum of squares statistic S2 /S2

^ n,n-r

(Grubbs, 1950) has been obtained. An alternative

retaining the deviation/spread form would be:

fx +x -2x1/s

[ (n) (n-l) )'

(Murphy, 1951). This can be seen to be testing the

difference between the mean of the two hypothetical



- 14 -

outliers and the overall mean, and hence it is not

surprising that it has optimal properties against the

alternative that the outliers are generated from one

distribution (that is, have the same slippage). However,

McMillan (1971) showed that it was not robust against

departures from this alternative, and that the sum of

squares statistic would then be preferred. This

reiterates the point that such optimality results as are

known are of limited use.

A point concerning comparisons between tests that was

not elaborated on earlier is the grounds of comparison.

Barnett and Lewis (1984) select three useful performance

measures for the single outlier case from possibilities

proposed by David (1981). These are:

the power of the test in the usual sense of the

probability of accepting the alternative hypothesis when

it is true;

the probability of the contaminant (the point from the

contaminating distribution) being the extreme value and

being declared as an outlier by the test;

the probability of the contaminant being declared an

outlier given that it is the extreme value.

The last two are relevant because the issue is not only

whether or not a test declares an outlier to be present,

but if this is actually from the contaminating

distribution or is a point from the main distribution with

an unusually large random component. The number of

performance measures increases for the multiple outlier

problem: Beckman and Cook (1983) listed six criteria,

again incorporating the success of the method in

identifying the correct points as outliers. However,

published work in the multiple outlier problem largely

concentrates on simply the number of outliers detected, an

emphasis that will be shared by this thesis. This point

leads to the final topic of this section, the question of

how many outliers may be identified in one sample of data.
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In the first place, consider a test for a specified

number t2;l of outliers. (The only restriction on t is

that it is a small number relative to the sample size, for

otherwise another analysis, such as fitting a mixture

distribution, would be more suitable.) What happens if

the actual number of outliers is different from t? There

are two general phenomena which are relevant here, and the

sensitivity of a test to each of them is another criterion

relevant to test choice. These phenomena are masking and

swamping. The former is relevant when the actual number

of outliers exceeds the number being tested. This was

expounded by Pearson and Chandra Sekar (193 6) in relation

to the extreme studentized deviate

(x(n)-x)/s

for testing for a single upper outlier. They pointed out

that if there was a second outlier, x or x , then s

could be so much further inflated over what would be

expected in an uncontaminated sample, that the ratio would

no longer be big enough to declare x to be an outlier.
(n)

Hence, the presence of a further, less extreme, outlier

'masks' the presence of the most extreme point. Swamping

is the opposite effect: there are fewer outliers k than

the t^2 being tested for, but these are such extreme ones

that the t-outlier statistic is sufficiently large to

declare t outliers. The true outliers have carried along

t-k other points with them and these are falsely declared

to be outliers.

Since the commonest practical situation is not only

that it is not known which points may be outliers, but not

even known how many may be outliers, it must be regarded

as a proper function of outlier testing in general to

suggest the second decision as well as the first. Often,

this is not considered in a formal way. If the outlier

test is only being carried out because inspection of the

data suggested that it is necessary, then probably the
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same inspection suggests how many outliers to test for.

In these circumstances, though, the whole formal

hypothesis testing framework is dubious (see Collett and

Lewis, 1976, and Example 1 of the following section). On

the other hand, if outlier testing is treated as a routine

screening of data, then choice of number of outliers ought

to be allowed for formally. The most popular method of

selecting the number of outliers is to apply tests for

t=l,...,k outliers, where k is a chosen maximum, and to

select the final value by comparing the results. If

meaningful significance levels are to be obtained, this

needs to be set up as a proper sequential (also called

'consecutive') procedure, with significance levels at each

stage adjusted to allow for the other stages. This will

be discussed in detail in Chapter 4, where a multivariate

procedure of this type will be developed.

This overview of some of the main points of the study

of outliers will be supplemented in the following section

by a few examples, to be followed in Chapter 2 by a

detailed review of the subject in the multivariate case.

1.4 Some examples of applications

The four examples presented here have different

features as follows. The first is a fairly standard

example of a univariate single outlier test, carried out

because the sample appears heterogeneous. Example 2 shows

a case where data appear to have been wrongly treated as

if there were an outlier through failure to attempt a

statistical evaluation of an apparent difference. Example

3 moves to bivariate data and illustrates both a test in

this situation and the way in which the inclusion or

exclusion of certain points may influence the results.

Example 4 also is concerned with bivariate data and looks

at an influence analysis in more detail.
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Example 1

This example illustrates the simplest situation, of

testing for an outlier in a univariate sample. The data

(unpublished, provided by Prof. G.C.Lyketsos, University

of Athens) are the scores of patients with alopecia on the

"lack of self-confidence" subscale of the Personality

Deviance Scale (Foulds, 1976) and form part of a series of

studies of psychosomatic disorders. The scores for the 26

patients are:

6, 11, 13(2), 14(6), 15(9), 16(6), 18

where the number in brackets indicates how often the score

was recorded, if more than once.

In these data, the value 6 catches the eye as much

lower than the rest: perhaps some test should be conducted

to see if this impression is justified, probably leading

to omission of this patient if the test result is

positive. One possibility is to use the lower outlier

version of the maximum studentized deviate already

introduced:

This takes the value 3.89, well beyond the critical

value of the 1% level of statistical significance for a

one-tailed test (Table Villa of Barnett and Lewis,

1984, extracted from Grubbs and Beck, 1972). However,

the choice of a one-tailed test is based only on

inspection of the data, so it is more correct to use a

two-tailed test since an extreme upper order statistic

would have led to the same investigation. The statistic

is

max{ (x(n)-x)/s, (x-x(i))/s)

It too is significant beyond the 1% level (Barnett and



- 18 -

Lewis, 1984, Table VHIb, from Pearson and Hartley, 1972)

Another possibility is to use a Dixon-type

statistic,such as

for testing a lower outlier, or the two-sided version

max -

The value of either statistic is 5/12=0.417, which is

again statistically significant at 1% (two-tailed; Table

XlVb of Barnett and Lewis, 1984). Thus there appear to be

quite strong grounds for marking this observation as an

outlier. It may be repeated that, one-tailed or

two-tailed, the interpretation of any significance level

in outlier testing is somewhat dubious because the test

procedure is usually two-stage, the actual test following

upon the decision that (in the analyst's judgment) some

aspect of the data is surprising. Collett and Lewis (1976)

make this point and go on to investigate, in a designed

experiment, some of the factors affecting perception of

possible outliers.

Example 2

Besides indicating a discordant observation, outlier

tests may serve to indicate that an observation should not

be treated as different from the rest. In the following

example, attention seems to have been mistakenly

concentrated on a value that was rather lower than the

others. The data (Table 1.4.1) are the percentages of

employees with serological evidence of past infection with

hepatitis B, in six hospitals (Snydman et al, 1984).
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Table 1.4.1 Positive tests for evidence of hepatitis B

infection in screening hospital employees (Snydman et al,

1984) .

Hospital Number Screened Positive
n %

1
2
3
4
5
6

283
619
405
275
281
246

37
90
63
43
37
22

13.1
14.5
15.6
15.6
13.2
8.9

1-5 1863 270 14.5
combined

(Many epidemiological studies of this kind have been

published, because medical staff are at high risk of

infection with this dangerous disease but the vaccine is

so expensive that it is more economical to screen to

identify the susceptible than simply to vaccinate

everybody.) Although the overall test of homogeneity in

this table gave a non-significant result (X2= 7.19, p =

0.2) the authors selected hospital 6, observed that it

differed substantially from the other five combined (with

X = 5.16, p = 0.023 for this comparison) and hence

included a dummy variable to represent hospital 6 as one

of the explanatory factors in their logistic regression

model for infection rates. There were no grounds for this

beyond their inspection of the data.

Is the rate in hospital 6 really excessively low,

judged as the extreme of a set of six samples? There is

not much ready-made theory for this problem. Barnett and

Lewis (1984, p.200) give exact binomial theory for the

case of equal sample sizes - but here they are not nearly

equal. Instead (p.239) there is a conservative test, using

tail probabilities of the hypergeometric distribution,

which can easily be worked out on a microcomputer. The

tail probability for hospital 6 is 0.0090. This may be
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compared to 0.05/6 = 0.0083 for a Bonferroni test at the

5% level of the hypothesis of equal probabilities of past

infection in the six populations against the alternative

of downward slippage in one. Thus it is a one-tailed test

and, as there seems to be nothing to justify one-tailed

testing, it may be more appropriate to compare against

0.025/6 = 0.0042. So the calculated p-value appears to be

well above the level at which it is justified to talk of

hospital 6 as differing from the rest.

Example 3

This example is chosen partly because it is a

multivariate one and partly because it illustrates that it

is not sufficient to think only about a single outlier.

The data, consisting of the responses (in terms of level

of the hormone prolactin) of ten patients to

electroconvulsive therapy (ECT) and to thyrotropin-

releasing hormone (TRH), were published by Papakostas et

al (1986). The importance of the experiment is as a

contribution to the understanding of the mechanism of ECT,

which has been widely used in therapy for many years

without anyone really knowing why it works. The data used

in the following discussion were read from a graph in the

original publication, so do not correspond exactly to the

true values:

Patient 1 2 3 4 5 6 7 8 9 10

ECT response 11 13 10 12 39 19 16 29 24 69

TRH response 10 19 27 28 44 49 50 59 80 98

The product-moment correlation between ECT and TRH

responses is 0.794 (published value 0.824), statistically

significant beyond the 1% level. The simple scattergram

(Figure 1.4.1) suggests however that observation 10 is in

some way quite distinct from the rest.



- 21 -

I I I I I (

20 40 60

30-

0-

ECT

Figure 1.4.1 Prolactin in response to electroconvulsive

therapy (ECT) and thyrotropin-releasing hormone (TRH).

Source: Papacostas et al. (1986)

If this point is omitted, the correlation falls to 0.590

with p=0.095. A result like this, outside the usual

levels of statistical significance, might well have meant

that the report would not have been published, so the

question of whether or not observation 10 "belongs" with

the rest is an important one.

After omitting observation 10, observation 5 might now

catch the eye as substantially different from the others

and if this too is omitted the original high correlation

is restored, the value being 0.841 (p = 0.009). The

details of the relationship between the two responses are

changed, however: the regression slope for ECT on TRH

falls from 0.53 (standard error 0.14) in the original

sample to 0.25 (s.e. 0.07) on omission of points 5 and 10.
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Clearly, there is a need for objective procedures to

guide this discarding of points, when so many alternative

results are available. The basic test to be applied here

is Wilks' (1963) test for an outlier in a multivariate

normal sample, which will be discussed in detail in later

chapters. The minimum value of the statistic is 0.254, on

omission of observation 10, which is significant only at

the 10% level (conservative test using Bonferroni

bounds). This test extends easily to considering two or

more outliers, although the Bonferroni approximation

appears to be much less adequate in this case (Barnett and

Lewis, 1984; Hawkins, 1980a). For two outliers, the test

statistic is a minimum on omitting observations 5 and 10,

with the value of 0.0481 falling below the 5% level

(0.0585) but not quite the 2.5% level (0.0460).

There seem to be reasonable grounds therefore to

suspect the homogeneity of the sample, with two

observations appearing not to be from the same

distribution as the other eight. Notice that the

one-outlier test did not give a statistically significant

result, probably because the inclusion of the other

apparent outlier was inflating the variances and so

causing "masking" - the failure to identify extreme values

because of the presence of other extreme values. Notice

also that there was no adjustment of significance levels

of the two successive tests (for one or two outliers) to

allow for multiple testing.

Another way of looking at these data is from the point

of view of the idea of influence. Observation 10 is

initially singled out because it gives the impression of

strongly affecting the estimate of the correlation between

ECT and TRH, as indeed it does. Devlin et al (1975; see

§ 2.7 of this thesis) give graphical methods of

illustrating the influence of individual observations on

the sample correlation coefficient, one of which is

illustrated in Figure 1.4.2.
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ECT

Figure 1.4.2 Prolactin data with contours of sample

influence function for correlation coefficient.

In this diagram, the scatterplot is augmented by

contours of an approximation to the sample influence

function. These indicate by how much the correlation

coefficient would change were a point on the contour to be

deleted. The approximation does not seem to be very good

in this problem, possibly because the sample is small and

the calculation of the contours includes the effect of the

probable outliers.

Example 4

The final example is concerned more directly with

influence rather than outliers. It involves a linear
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regression and is thus connected with the problem

considered in Chapter 8. The context is a study of the

improvement in the condition of schizophrenics after a

course of treatment with the drug haloperidol (Smith et

al, 1984). The original analysis regressed improvement

(measured as percentage improvement on the psychosis

factor of the Brief Psychiatric Rating Scale) on the level

of haloperidol in the blood and found a need for a

quadratic term. This indicates that response falls away at

higher levels of haloperidol and therefore the medication

must aim to get the level into a certain range, the

'therapeutic window'. This was the major conclusion of the

paper and depended entirely on the statistical analysis.

Some correspondents were unhappy with this conclusion

(Van Putten et al, 1985; Kirch et al, 1985). In

particular, they looked at the graph of improvement

against haloperidol level (Figure 1.4.3) and saw one

extreme point which appeared to have a lot of influence in

determining the curvature. Moreover, the regression was a

weighted one (due to variable accuracy of measurement) and

it was this point which carried the highest weight.
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Figure 1.4.3 Percentage improvement in score on BPRS

psychosis factor against steady-state plasma haloperidol

level.

Source: Smith et al. (1984); data corrected in Smith

(1985)

This correspondence would have been unnecessary if the

original analysis had reported the influence analysis

which is now routinely available in the major statistical

packages. Fitting the regression using the program P9R in

the BMDP package, it is found that Cook's distance measure

of influence on the estimated regression coefficients

(Cook, 1977) is indeed the largest for the point called

into question by the correspondents, but is numerically

quite small. With this point included, the regression

equation for improvement is

-6.38 + 8.70 (level) - 0.38 (level)2

and without it

-12.13 + 10.31 (level) - 0.47 (level)2
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The 95% confidence interval for the "acceptable range"

of blood level of haloperidol (as defined by Smith et al)

changes only from 6.9 - 17.6 to 6.7 - 17.2.

This example illustrates the need for examining and

measuring influence in fitting a model. In

higher-dimensional problems, such as the multivariate

regression considered in Chapter 8, the need is all the

greater since simple plotting is not available. In such

cases, influence examination is particularly helpful in

indicating the points with undesirably high influence

instead of, as here, providing reassurance that a visually

suspect point does not affect matters unduly. The example

also illustrates that 'influence' can have many meanings.

Cook's distance looks at the change in the vector of

regression coefficients, but here the feature of more

direct interest is the location of the 95% confidence

interval indicating the therapeutic window: the influence

on this piece of output from the analysis is required.
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CHAPTER 2

MULTIVARIATE OUTLIER DETECTION : A REVIEW

2.1 Introduction

Relatively little has been written on the problem of

detecting outliers in multivariate data, in comparison to

the large literature for the univariate case. Barnett and

Lewis (1984) devote only 26 out of 288 pages of text to

the multivariate problem, and Hawkins (1980a) only 11 out

of 127. The main reason for this must be the greater

difficulty - both analytical and computational - of the

multivariate case. For the same reasons of difficulty,

the bulk of the literature on all aspects of multivariate

analysis is limited to the normal distribution and thus

there has been no cataloguing of outlier tests for

different distributions in the multivariate case as there

has been in the univariate.

Although an outlier in multivariate data might also

appear as an outlier on one or more of the univariate

marginal distributions, it does not necessarily do so. The

purely multivariate concept of correlation may be

involved, so that the outlier differs from the rest of the

data set in violating the pattern of relationships between

variables (as in the quotation from Daniel in the previous

chapter). Therefore new methods are needed for handling

the multivariate problem. There is also scope for new

methodology in considering an outlier as a point which

"appears" different from the rest of the sample. Taking

this to mean, literally, its appearance in a graphical

representation of the data, connects the problem of

detecting multivariate outliers to the problem of

obtaining a low-dimensional display of high-dimensional

data. There are thus two main themes to be found in the

literature on multivariate outliers: formal methodology

related to hypothesis testing and informal methodology
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linked to graphical displays.

At this point, it is appropriate to refer to the idea

of generalized distance, which appears in both formal and

informal methods, as will be seen subsequently. It arises

as a partial solution to the problem of ordering

multivariate data. Ordering is a basic part of outlier

testing in the univariate case: it is important because

the concept of an outlier as an observation noticeably

different from the rest implies that an outlier has to

appear at one or the other extreme of the list of ordered

sample values. In particular, Dixon's tests use only

these order statistics. In the multivariate problem,

there is no direct equivalent of univariate order

statistics, so tests of this type cannot be applied.

However, other univariate test statistics order points in

respect of distance from the mean of the sample, as in the

maximum studentized range

max |x -x| ._ . n.
. ' (2.1.1)

s

and this idea can be extended to the multivariate case,

because a sub-ordering (Barnett, 1976) of observations in

relation to the sample mean is provided by generalized

distances

(x.-x) 'S"1 (x.-x) (2.1.2)

where S is the sample covariance matrix.

The first candidate for an outlier in a multivariate

sample is that observation x. which maximizes (2.1.2).

This is equivalent to Wilks' statistic for testing for

outliers in multinormal data, which is to be discussed in

detail in the following chapter. Here, we note that this

choice of statistic can be justified in three ways:

1) (2.1.2) is the direct multivariate equivalent of

(2.1.1);
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2) the multivariate normal density N (n,Z) is given by
p

(27i)"p/2|Zr1/2exp{-(l/2) (x-n) 'S'^X-M) }

so that (2.1.2) provides estimates of probability

densities and the sample points are ordered in relation to

the contours of the p.d.f;

3) as will be shown in Chapter 3 a likelihood ratio

approach to a hypothesis testing problem leads to (2.1.2).

The second and third of these ways suggest general

methods of developing tests for use with multivariate

distributions. Furthermore, likelihood ratio is not the

only general method of test construction in common use in

multivariate analysis. There is also the union-

intersection method, and an application of this to

constructing a multivariate outlier test will be explored

in Chapter 6 of this thesis.

The following sections review existing formal methods

for testing for outliers in multivariate data and a later

section of this chapter looks at the available informal

methods.

2.2 Tests for a single outlier in multivariate normal data

With the exception of some work by Barnett to be

mentioned in the following section, the multinormal case

discussed here covers all the multivariate outlier

literature. To examine the outlier-testing problem

requires the setting up of null and alternative

hypotheses. The null will be

H : x ~ N (M,Z) i=l,...,n
0 i p

- that is, there are n independent observations from the

same multivariate normal distribution. In problems of

practical interest, both ii and £ are usually unknown.
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Hawkins (1980a) lists three possible alternative hypotheses

for contamination of the data by k outliers. Writing them

in general form for the k-outlier problem, they are

Model 1 - H : x - N (j-i,Z) i=k+l,...,n
1 j (i) p

x ~ N (ii ,Z) i=l, . . . ,k
j(i) P

v i ' ' ' '

where j(i) is an unknown permutation of the integers

A- f Z> f • • • f ii f

Model 2 - H : x - N (ju,Z) i=k+l,...,n
2 j(i) p

x.(i) ~ Np((Li,a.E) i=l# . . . ,k

where a. is a scalar; and

Model 3 - H : x ~ N (jLt,Z) i=k+l,...,n
3 j (i) p

Model 1 is a slippage of the mean, while models 2 and 3

both represent changes in the covariance matrix so are

analogous to a univariate slippage of the variance model.

Barnett and Lewis (1984) discuss models 1 and 2 for the

single-outlier case. Model 3 has not been investigated.

It will be shown in Chapter 3 that the likelihood ratio

test of model 1, for a single outlier and for a specified

outlier candidate j, leads to the statistic

A =|A I
j J

|A| (2.2.1)

where A is the sum of squares and products matrix of the

entire sample

A= E (x.-x) (x.-x) '
i

and A. is the equivalent quantity recalculated after

omitting observation x.. A reasonable choice of outlier

test statistic when it is not known beforehand which point

is the potential outlier is therefore to find that x

giving the extreme value of (2.2.1); thus
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min |A.|

|A| (2.2.2)

is the outlier test statistic. This is the two-stage

maximum likelihood method.

The statistic (2.2.2) was introduced by Wilks (1963)

and is the only multivariate outlier statistic in common

use. Wilks' paper will be discussed in more detail in the

following chapter: here it will simply be noted that Wilks

motivated this choice of statistic by an interpretation of

|A| in terms of volumes of simplexes formed by points from

the samples, so that the outlier is the point whose

removal most reduces this value and hence leaves as

compact a set of remaining points as possible. If the

problem is in fact one-dimensional, then IA |/|A| reduces
2 2

to a ratio of two ordinary sums of squares S./S and hence

gives Grubbs' statistic. It is well known that this is

equivalent to testing with studentized deviations from the

mean: for example, for testing for an upper outlier

S2 (n-l)S2

A similar result holds for the multivariate case. The

reduced sum of squares and products matrix is, (assuming

without loss of generality that the nth point has been

omitted)

n- 1 _

A = V (X -X ) (X -X ) '
n U V i n ' V i n '

i = 1

where _ n-1
x = I x.
n l

i = 1
(n-1)

Now because
nx=(n-l)x +x (2.2.3)

n n

we can substitute for x in A
n n
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n - l

A = 1
n

(n-l) 2 i =1

n - l

V {(n-l)x -nx+x }{(n-l)x -nx+x }'
i n i n

= 1
i = 1

{(n-l) (x -x)-x+x }{(n-l) (x -x)-x+x }'
i n i n

n - l

I (x.-x) (x,-x) '- 1 (xn-x) (xn-x) '

A-(x -x) (x -x) ' - 1 (x -x) (x -x) '
n n — n nn - l

= A- n (x -x) (x -x) '
=T n

( 2 . 2 . 4 )

This well-known updating formula now permits calculation

of an alternative form for A. Let B be the partitioned

matrix

B

n (x -x)
n-ln (x -x) ' 1

n
n-l

Then its determinant can be expressed in two alternative

ways:

|B| =|A|.{1- n (x -x) 'A-1(x -x) }
z- n nn-l

= |A- n (x -x) (x -x) '1 H= n

(Morrison, 1976, p.68)

Hence
A = A- n/(n-l) (x -x) (x -x) '

lAj

-i
= 1- n (x -x) 'A (x -x) (2.2.5)

Consequently, Wilks' A ratios are monotonic functions

of the generalized distances. This offers ease of

computing all the n ratios A. in a sample, since just one

matrix inversion is needed.
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Another alternative form can be obtained by observing

that (2.2.3) can be rewritten as

x -x= (n-1) (x -x )
n n nn

so that (2.2.4) is the same as

A=A + (n-1) (x -x ) (x -x ) '
n n n n n

n

The same device of partitioning a matrix as led to

(2.2.5) then gives

A-1=l+ n-1 (x -x ) 'A'^x -x )
n n n n n n

n

=1+ T2

n

n-2 (2.2.6)

where T is Hotelling's T statistic for testing the

hypotheses

H : x ~ N (M,£) i=l,...,n
0 i p

H : x ~ N (U,£) i=l,...,n-l
1 i p

x ~ N (n ,Z).
n p n

Thus the outlier testing problem is equivalent to a

two-group comparison.

One special variation on model 1 will be mentioned

before model 2 is discussed. This arises when the

covariance matrix V is either known or estimated

independently from the sample which is being investigated

for outliers. Tests have been suggested analogous to the

version (2.2.5) of Wilks' statistic, using distances

expressed in the general form

R(x;xo,r) = (x-XQ) T'^x-x^ (2.2.7)

in the notation of Barnett and Lewis (1984). In this
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notation, the generalized distances equivalent to Wilks'

test are R(x;jn,A) , or R(X;JJ,S) where S is the sample

covariance matrix. Siotani (1959) investigated R(x;x ,E)

for £ known and x =0, n (known) or x. Knowing JU gives a

very simple case, although entirely unrealistic, for the

R(X;JLI,Z) are then independent X2 variates and the outlier
p

problem requires only the order statistics of a chi-square

distribution. Barnett and Lewis (1984) give appropriate

tables, corrected from Gupta (1960). They also reproduce

Siotani's tabulations for the case R(x;x,E) and for

R(x;x,V) where V is an independent estimate of E. None of

these cases seem to be of sufficient practical importance

to be worth pursuing any further: however, distances of

the above form (2.2.7) will be seen again in the

subsequent section on graphical methods.

The analysis of model 2, for unknown \i, Z and a., was

investigated for a single outlier by Ferguson (1961). He

defined the problem as the search for the optimal decision

rule, in the sense of maximizing the probability p.(D.) of

declaring that x. is the contaminant when this is in fact

true. Within the class of decision rules which are

invariant under shifts of location and under rotation,

have size a (probability of correctly declaring that no

value is an outlier is 1-a) and for which p (D ) is

independent of i, Ferguson found that the optimal rule

again uses distances R(x. ;x,S). If j is that observation

with the greatest value of this distance in the sample,

then this observation is declared to be the contaminant if

R(x.;x,S) >k

where k is chosen so that the rule has the desired size.

Hence, because of (2.2.5), Ferguson's decision rule for

model 2 is just the same as Wilks' test for model 1. A

further point from Ferguson's analysis is that his

decision rule is the uniformly best procedure over all

values of the parameter a.
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Very little exists in the testing literature apart from

Wilks' statistic. Rousseeuw's robust version of the

statistic will be mentioned in § 2.7. A test based on

kurtosis will be presented in the following section, since

it is not specifically a test for one outlier. The only

remaining analytical method of investigating the presence

of a single outlier in multivariate normal data is

Guttman's (1973) Bayesian analysis. This appears to be

the only extension of the Bayesian methodology to the

multivariate case, which is not surprising since there

will often be formidable problems of evaluating integrals

in the univariate case which become excessive in the

multivariate case.

Guttman adopts the slippage in the mean model and

writes the likelihood as

where 0 is the usual multivariate normal density. This

form is adopted because the prior probability that any

specified observation x is the outlier is 1/n. The

technique is to impose a non-informative prior joint

distribution for ()n,cr ,a) which is simply proportional to

cr~2. If this is combined with the likelihood to yield the

posterior joint distribution of ju, cr and a, then u and <x

can be integrated out to give the posterior marginal

distribution of a. Its form is a weighted combination of

multivariate t distributions (one for each observation),

so that it is easy to find the posterior mean and variance

of the marginal distribution of a. It does not seem

possible to carry out a simultaneous assessment of all

components of a, but each component a can be looked at

just as in the univariate case, by finding the posterior

odds

t= P(a.>0)

P(a.<0)
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High values of such odds can be taken to indicate that

mean shift has occurred and in which component. The

values of the weights for each observation in the

posterior distribution of a indicate which observation

may be an outlier. These weights are

c= | A jr
( n- 2 ) / 2

I |Aj- ( n- 2 ) / 2

where A denotes as usual the sum of squares and products

matrix of the reduced sample obtained by omitting

observation x.. In other words, the relative values of

the quantity used to assess which observation may be an

outlier are simply the |A.|, exactly as in Wilks'

statistic.

2.3 Tests for two or more outliers in multivariate
normal data

The remarks on the derivation of Wilks' one-outlier

statistic suggest how to extend to the case of 2 or more

outliers. Wilks' volume argument applies equally well to

omitting a set T=(ijk...) of points from the original

sample as to omitting a single point. His statistic

therefore becomes in general

max IA I
T

This may also be derived by two-stage maximum likelihood

starting with the alternative hypothesis H of the

previous section and is equivalent to a one-way

multivariate analysis of variance between k+1 groups

(namely, k groups each consisting of a single point - the

outlier candidates - and one group consisting of the

remaining n-k points hypothesized to conform to the main

uncontaminated distribution). Wilks (1963) provided

Bonferroni percentage points for the two-outlier
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statistic, as for the single outlier, and discussed the

general case, giving distributions for some particular

cases with 3 or 4 outliers. Simple use of Wilks'

statistics for up to 4 outliers is discussed in detail in

Chapter 3 and consecutive application of these statistics

for different numbers of outliers in the same sample is

discussed in Chapter 4.

Bacon-Shone and Fung's (1987) graphical method for

detecting one or more outliers, based on Wilks' statistic,

will be discussed in the section on informal methods.

The decision rule approach of Ferguson appears not to

have been investigated for more than one outlier. In

fact, model 2 in general seems to have been considered

only for the single outlier case.

Another general multivariate outlier test statistic

will be mentioned at this point because it is a test for

any number of outliers. This is Schwager and Margolin's

(1982) test using the sample kurtosis proportional to

defined by Mardia (see Mardia, Kent and Bibby, 1979).

Exactly as in the univariate case, this has certain

optimality properties with normal data, although again

this is of limited practical importance. Schwager and

Margolin recommend their test as an overall test for the

presence of any outliers in the same way that an F test in

the analysis of variance serves to confirm the presence of

some differences which must then be identified in detail

by other means. This provides an overall significance

level irrespective of what is done in a subsequent

sequential procedure.

It may be noted that there is no multivariate

equivalent to the use of sample skewness to test for

outliers, which provides an optimal one-sided test in the
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univariate case. This is because the unidirectional

hypothesis has no multivariate equivalent.

2.4 Other multivariate distributions

Although a large number of multivariate distributions

have been defined (for example, Johnson and Kotz, 1972),

nothing apart from the multivariate normal appears to be

used very much. Only Barnett (1979) has investigated any

of these other distributions from the point of view of

outlier detection. He considered three distributions

- uniform, exponential and Pareto - all in the bivariate

case only. Test statistics are considered in relation to

two general principles for detection of multivariate

outliers, which he elsewhere (Barnett and Lewis, 1984)

labelled as principles A and B. Principle B is just the

statement of the two-stage maximum likelihood method for

testing the null hypothesis specifying some model F

against an alternative hypothesis specifying the

contaminated model F', where it is not known which

observation may be the contaminant. His principle A is

similar, but refers to no particular alternative

hypothesis:

"The most extreme observation is that one, x whose

omission from the sample x ,x x yields the largest
1 2 n

incremental increase in the maximized likelihood under F

for the remaining data. If this increase is surprisingly

large, declare x. to be an outlier." (Barnett and Lewis,

1984, p.246).

Barnett's first example is the case of two independent

uniformly distributed random variables with known ranges.

This may seem too simple to be useful, but he suggests an

application in a cancer diagnosis problem. An area is

being estimated, so that the relevant quantity is a

product of random variables: Barnett provides a short

table for testing a test statistic suitable for this
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particular problem, as well as tables for test statistics

based on distance criteria. However, despite this

practical illustration, the usefulness of this

distribution is probably very limited. Of much more

general interest are skew distributions, as shown by a few

examples of bivariate data extracted from the literature

by Barnett. In order to look at representations of such

data, he studied the two other distributions in his paper,

the exponential and the Pareto.

Quite a lot has been written on outlier detection in

the univariate exponential distribution, which is a

distribution with many practical applications (in lifetime

distributions, for example, and in connection with Poisson

processes). Being a long-tailed distribution, it is also

interesting from the point of view of studying outliers

since it naturally produces observations which may appear

to the eye to be extreme. The first difficulty in

extending the study to the multivariate problem is that

there is no one "multivariate exponential distribution".

Johnson and Kotz (1972) list 6 bivariate alternatives; the

one selected by Barnett is due to Gumbel (1960) and has

density

f (xi,x2)={ (l+eXi) (l+8x2)-0}exp(-xi-x2-exix2) (2.4.1)

for x >0, x >0 and 0<8<l. The marginal distributions of

X and X are both standard exponentials (that is, with

parameter 1). The product-moment correlation between X

and X is a function of 8, and varies from 0 to

approximately -0.40 as 8 increases from 0 to 1. If 8 is

zero, so that X and X are independent, then 2 (X +X )

follows the X distribution, so tables of gamma order

statistics (Gupta, 1960; Barnett and Lewis, 1984) can be

applied to this problem.

Now suppose that 8 is non-zero and its value is known

Applying Principle A, a suitable test statistic is the

maximum (or minimum, but the former is probably usually
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the more interesting, representing an "upper" outlier) of

U=Xi+X2+8XiX2 The distribution function of T=1+GU is

H(t)=l-{(tln t)/9+l}exp{-(t-l)/e} (2.4.2)

The distribution function of the sample maximum is

[H(t)]n

and hence simple iterative methods can produce exact

percentage points for the maximum of U. Barnett (1979)

gives tables of 5% and 1% points for a range of values of

8 and fresh tables can be found in Barnett and Lewis

(1984) .

The question now is how to proceed if 8 is unknown,

since this is the more realistic problem. Barnett does

not offer a complete solution. No analytical progress
A

appears possible with a statistic of the form x +x +0x x
A 1 2 1 2

for an estimator 9. Observing from simulations that

critical values do not seem to depend strongly on 8,

Barnett suggests that a conservative test might be carried

out - presumably by taking as critical value the most

extreme of all critical values for different 9. Another
suggestion is to use x +x +kx x for a selected constant

^ 1 2 1 2

k, so that 8 is ignored: this test statistic has not been

investigated.

A feature of the bivariate exponential distribution

considered above is that it only admits negative

correlations. On the other hand the bivariate Pareto

distribution (of the first kind; Mardia, 1962) has only

positive correlations. Its density is

f (x ,x )=a(a+l) (8 8 )a+1(9 x +0 x -9 9 )" ( a + 2 )

V 1 ' 2 ' V ' V 1 2 ' V 2 1 1 2 1 2 '

(2.4.3)

with x i 8 i 0 , x ^8 iO and a>0, or a>2 for the existence of
1 1 ' 2 2

second-order moments. The product-moment correlation is

a~ , so that 0<p<0.5. If, as before, the parameters are

assumed known and Principle A is applied, the test
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statistic obtained is

R=(X/8 ) + (X /8 )-l (2.4.4)

which has distribution function

G(r)=l-r'a(l+a-(a/r))

so that simple iteration again produces exact percentage

points for testing the sample maximum. (Note that this

function is given correctly in Barnett's paper, but

misprinted in Barnett and Lewis, 1984.) Barnett (1979,

reproduced in Barnett and Lewis, 1984) provides a table of

values. Again, this result is of limited interest in

itself because the more realistic case is when the

parameters of (2.4.3) are unknown. Some progress is

possible for the case of unknown 8 and 8 but known a.
1 2

Reasonable, although not maximum likelihood, estimators of

8 and 8 are the minima of the two marginal
1 2

distributions, X and X , so that it is obvious to

try substituting these for 8 and 8 in (2.4.4). The

distribution of the resulting quantity has not been found,

but since
lj + 2j - I S lj + 2j -1

X X 9 9
1(1) 2(1) 1 2

for any sample observation (X ,X ), it follows that the

percentage points obtained for the case of known 8 and 8

provide conservative bounds for unknown 8 and 8 , with a

known in both situations. Barnett's simulated percentage

points for unkown 8 and 8 appear quite close to the

exact percentage points for known 8 and 8 , so this test

is a good approximation. However, its usefulness is

limited by the assumption that a is known. Further work

to lift this restriction has not been carried out.

The common feature of these applications is that only

relatively uninteresting problems have been solved,

because the problems posed by the need to estimate
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parameters of the distributions have not been overcome.

This appears to be an inevitable consequence of attempting

to go beyond the multivariate normal distribution. The

point will be met again in relation to Rohlf's gap test,

introduced in the following section and studied further in

Chapter 5.

The fact that the normal distribution is relatively

straightforward to handle in comparison to other

distributions suggests the possibility of carrying out

transformations to multivariate normality to obtain tests

for other cases. This idea has also been considered by

Barnett (1983) . The principal limitation of his method is

that it is again necessary to take the distributions as

having known parameter values. If this is accepted, then

the method in the bivariate case is to transform the

random variable (X ,X ) to the pair of independent N(O,1)

random variables (U ,U ) by

F (x )=$(u )

F , (x )=$(u ) (2.4.5)
X | x V 2.' v 2.' V '

where F and F , denote marginal and conditional
A X I X
1 2 1

distribution functions and $ is as usual the standard

normal distribution function. The obvious outlier test

statistic in the space of (U ,U ) is U2+U2; half the

largest value of this is distributed as the largest order

statistic in an exponential sample, giving critical value

for a size a test

Barnett looks at some properties of this test for the

cases of bivariate exponential and Pareto distributions as

before. One point that emerges is that the asymmetric

treatment of the two original random variables X and X

in (2.4.5) is of little consequence in these two
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situations. However, these are relatively trivial matters

beside the fact that again it is not possible to take any

proper account of the need to estimate parameters of the

original distributions in order to carry out

transformations (2.4.5) as in most practical

circumstances.

In conclusion, it has to be said that little has yet

been achieved in the study of outliers from non-normal

multivariate distributions. Barnett (1979) introduced his

efforts as an "attempt to awaken interest" in the topic.

There seems not to have been much response so far.

2.5 Rohlf's gap test

The method introduced by Rohlf (1975) is placed at this

point because it links the formal methods of outlier

detection with the informal. It is formal to the extent

that a test of significance has been proposed, but

informal in not explicitly specifying any underlying

distribution and also in that it could be used simply as a

graphical display. Rohlf's method forms the subject of

detailed investigation in Chapter 5; it will only be

summarised here.

The idea behind the method is similar to that behind

Dixon's gap tests for univariate outliers. It will be

recalled that Dixon's tests use in various ways

differences x -x between successive order
(k) (k-1)

statistics. If such a "gap" is unusually large, there is

an indication that the point corresponding to x is not

from the same distribution as x , ...,x and, by

implication, neither are x ,...,x . These tests

therefore have some appeal for detecting "clusters" of

outliers, as well as single ones.

In the multivariate case, our inability to define order

statistics means that such gap tests cannot be applied

directly. However, the general idea still stands, that an
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outlier or cluster of outliers must be separated from the

main set of points by a distance which is relatively large

compared to distances within the main set. The question

is, how to identify these distances? Rohlf suggests

looking at the minimum spanning tree (MST) of the data

set, because if the largest distance in it is unusually

big (in relation to the other distances), then there

appears to be an outlier or cluster of outliers. The MST

may be examined through a probability plot of its elements

- a gamma plot is proposed on empirical grounds. On the

same grounds, the largest distance can be tested

approximately using tables of the gamma. The details of

these proposals will be filled in later in Chapter 5 and

the performance of Rohlf's test as a formal test will be

studied.

2.6 Graphical methods

Given the notion of an outlier as a point which appears

different from the rest, any of the many ways of producing

graphical and pictorial representations of multivariate

data is a potential aid in outlier detection. A specific

emphasis on graphical means of outlier detection will be

found in Gnanadesikan (1977), which draws especially on

Gnanadesikan and Kettenring (1972) among earlier work.

Probability plots of a set of observed distances in the

sample against expected order statistics of a theoretical

distribution provide one basic means of looking at the

homogeneity of a set of points. It seems that Healy

(1968) first advanced this idea. He pointed out that

squared generalized distances

D2=(x-M) 'S'^x-n) (2.6.1)

for known u and S follow the X2 distribution. In the
P 2

bivariate case, the expected order statistics of X are
(Cox and Lewis, 1966)
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, 1=1,...,n

so a probability plot is easily carried out. To make it

even simpler, Healy suggested a normal probability plot

using -J X or -1X In order to deal with the case of

unknown JI and Z, he proposes use of the familiar

(x-x) 'S'^x-x) (2.6.2)

but without comment on the effect of inserting these

estimates.

The expression (2.6.2) has been denoted earlier by

R(x;x,S). Gnanadesikan and Kettenring (1972) consider

similar graphical displays using the classes of measures

(x.-x) 'Sb(x -x)=R(x.;x,S"b) (2.6.3)

and

I ^^ ^™ ̂ ^ I ^\ I ̂ ŵ  ^™ ̂ *̂  ̂  f ( ̂ ^ ^™ ̂ k̂  \ ^ ( ̂ ^ ^™ ̂ "̂ 1
^ A. A. J O ^ J^ ^. J / I A. J\. I \ J\. A. J

j J j j

=R (x. ; x, S ~ b ) /R (x. ; x, I) .

Different values of b may serve to highlight different

outliers. These classes may be extended further by using

the sample correlation matrix R in place of the sample

covariance matrix S, and by using x -x (j^i) in place of

x-x, so that inter-point distances are examined. For

displaying these statistics, the basic tool is the gamma

probability plot, based on the argument that the R(x ;x,F)

for multivariate normally distributed data are

approximately a set of independent gamma variates,

whatever F is being used. (This was also employed by

Rohlf in the gap test.) To carry out a gamma plot it is

necessary to have an estimate of the parameter r in

the distribution

f(x) = (a/r(r))(ax)r"1e"ax/ x>0.

(It is not necessary to estimate the scale parameter a,
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because this only alters the slope of the entire plot, and

has no effect on the departures from linearity which one

is looking for in searching for outliers). Methods for

estimating the shape parameter r are provided by Wilk,

Gnanadesikan and Huyett (1962a, 1962b).

There is no closed-form estimator of r, so these plots

are not particularly convenient to use in practice. It

does not appear that much use is made of (2.6.3) for any

choice other than b=-l, the usual generalized distance.

The only recent contribution to graphical detection of

multivariate outliers is by Bacon-Shone and Fung (1987).

They use Wilks' statistic directly, for specified numbers

of outliers which can be greater than one (in which case,

of course, Wilks' statistic is the same as the generalized

distance). The methodology is as follows. To examine the

sample for a given number of outliers, t, all (n\ ratios

A are computed, where T is a set of t indices. If the

standard asymptotic result from likelihood ratio testing

is applied, the quantity

WT=-{n-(p+t+3)/2}ln A T (2.6.4)

follows approximately the distribution X2 for large n.
pt

Now Bacon-Shone and Fung observe that the interest for

outlier detection lies in the largest values of W

(smallest values of A ) . In particular, if there really

are t>l outliers, then there are (n-t+l) sets T containing

the most extreme t-1 of these plus one other point, and

these sets will contain the biggest values of W . Hence

interest can be focussed on just the (n-t+l) largest W .

Because most of these derive from sets with t-1

indices in common, Bacon-Shone and Fung say that the

distribution of the W can be partitioned as

X2 +X2
p(t-i) P

where the first term is due to the common indices.
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Consequently the largest n-t+1 expected quantiles of W

can be approximated as a constant plus the quantiles of

corresponding to upper tail probabilities

k/(n-t+2), k=l,...,n-t+1.

A plot of the (n-t+1) largest values of W against

these quantiles should give an approximately linear plot;

departures from linearity will suggest outliers. The

above argument does not apply for t=l outlier. In that

case, the suggestion is to plot the values of A

(j=l,...,n) against quantiles of the Beta distribution

which describes such a ratio. The plots in the article,

however, seem to use a plot for W again, not A.

The procedure is to produce a plot for each potential

number of outliers up to a chosen maximum. If inspection

of these does not clearly suggest how many and which

points are outliers, Bacon-Shone and Fung suggest a

sequential procedure, eliminating clear outliers and then

looking at the reduced sample. A more formal sequential

test procedure, based on Wilks' statistic, is the subject

of Chapter 4 of the present thesis.

All methods mentioned so far provide displays of

selected distances, rather than displays of the points

themselves. Of methods for displaying multivariate data

points, the most familiar is principal components analysis

and this can be found in various forms in the multivariate

outlier detection problem.

The customary use of principal components analysis

(PCA) leads to a plot of the points in the space of the

first two principal axes, if these account for a

satisfactory percentage of the data. If one point appears

to be well separated from the rest on this plot, it seems

to be indicated as a possible outlier. However, outliers

will not necessarily appear on the first few axes. The

first few axes represent those linear transformations of
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the original variables which have the largest variance.

Hence they must tend to incorporate those original

variables which have large variances or pairs with large

covariances, if the analysis has been carried out on the

covariance matrix, or to incorporate pairs of variables

with large correlations if the correlation matrix was used

for the analysis. Any outliers which affect variables

other than those which would be strongly represented in

the PCA of the uncontaminated data, are therefore unlikely

to be seen in the space of the first few components.

Outliers which are discernible there will tend to be those

outliers whose effect is to increase the uncontaminated

variances and covariances or correlations. It follows that

other outliers must be sought elsewhere than in the first

few components. These will be the outliers whose presence

creates an apparent correlation, where none existed in the

uncontaminated data, so add new dimensions to the

principal components. The last few components in

particular may also indicate another type of outlier, one

which breaks a pattern that is so strong as to amount

almost to collinearity. Since the last principal

component is that linear combination of the original

variables with minimum variance, any linear combination

which is almost constant will be close to the last

principal component. An outlier which breaks such patterns

will be seen only if the last few components are examined.

An application of this idea to provide a check on the

accuracy of records being added to a data base is given by

Hawkins (1974). The general topic of PCA and outliers is

discussed in most detail by Gnanadesikan and Kettenring

(1972). Note that the association of types of outliers

with the first or last few principal components is given

the wrong way round in Hawkins' (1980a) review.

The main drawback to use of PCA for outlier detection

is that, for sensitivity to all kinds of outliers and

outliers affecting all variables, it is necessary to
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inspect a lot of components. On the other hand, the main

advantage of PCA in most applications (with exceptions

such as its use in regression: see Jolliffe, 1982) is

that a large part of the information from a large number

of variables is represented in just the first few

components. Having lost this advantage, PCA is no longer

an especially helpful method for multivariate outlier

detection.

Besides plotting points in the space of selected

components, Gnanadesikan and Kettenring also suggest

probability plotting of scores on individual components.

Even if the original data are not normally distributed,

these scores may be reasonably close to normality and a

normal probability plot can be carried out. Hawkins

(1974, 1980a) looks at the possibility of more formal

testing on the basis of scaled principal components

residuals.

If X - N(JLI,Z) and the covariance (or correlation, in

most applications) matrix Z is diagonalized by the

transformation C, so that CZC'=A=diag(X.) , then the

principal component residuals of a vector X. are

Yi=C(Xi

Hawkins rescales to

-u)

Z =A'(1/2)Y
i i

and suggests statistics

max I z
i

such

- N(

-»<

as

E
j

o,

z

,A

,D

2

ij'

based on z and then maximized over i. In practice, the

above transformations will be carried out with estimates

of n and S rather than known values, so that the

distribution of z is not normal. Hawkins states that the
i

asymptotic normality result does not help for reasonable

values of n, so that the scope for formal testing is in
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fact very limited unless some distributional results

applicable to small samples are discovered. The exception

to this is the statistic

max ( V z2 )

since this is just Wilks' single-outlier statistic. PCA

will be mentioned further in the following section.

In conclusion, it cannot be said that any one graphical

method has emerged as being especially useful in the

detection of multivariate outliers. Few of the ideas

which have been suggested seem to be actually applied.

2.7 Robust estimation and influence

The inter-relationship of outliers and influence has

already been mentioned. Since the emphasis here is on the

topic of outliers, the relationship may be viewed here

from that point of view, so that one can say that an

outlier is usually influential in the sense that it has a

much larger impact than other points do on the estimation

of certain quantities. In particular, it is well known

that estimates of correlations can easily be distorted

substantially by the occurrence of outliers. It follows

that methods of detecting influential points have a

contribution to make to the detection of outliers,

although of course influential points are not necessarily

outliers.

One approach to the identification of influential

points is to quantify the influence of each point on the

statistic of interest. For a bivariate correlation

coefficient r, Devlin, Gnanadesikan and Kettenring (1975)

used as sample influence function simply

measuring the effect on the correlation of omitting x

from the sample of size n, thus changing the correlation
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from r in the full sample to r. in the reduced sample. In

the bivariate case, contours of constant I can then be

superimposed on the scattergram, as in Example 3 of

Chapter 1. Another suggestion is to look at the

equivalent function for Fisher's transformation

z=tanh-1(r). This is approximately distributed as the

product of two independent standard normals. A

probability plot could be carried out to detect extreme

values. If the greater familiarity of an ordinary normal

probability plot helps, this can be achieved by

transforming the ordered sample influence values i s...^i
1 n

to {v.} via

where G is the distribution function of the product of

standard normals and $ is the standard normal distribution

function (Gnanadesikan, 1977).

One difficulty in studying influence functions in

multivariate problems is that one is often interested in a

rather complex quantity, such as a largest eigenvalue in

principal components analysis, so that it is hard to

obtain distributional results. Nonetheless, there is some

published work on influence in such contexts, for example

Critchley (1985) on principal components analysis and

Campbell (1978) for discriminant analysis.

As with the direct detection of outliers, so the

detection of influential observations leaves the question

of what to do with them once found. Robust estimation may

provide the solution. A simple example of a robust

estimator is a trimmed mean for estimating a univariate

sample mean, in which a pre-selected number of the most

extreme points at each end of the list of order statistics

are discarded and only the remaining points are used.

Outliers hence do not contribute to the estimation.

Rousseeuw (1989) has defined robust outlier detection
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statistics which are simply the Mahalanobis distances

(2.2.1) but with x and S replaced by robust estimates.

Specifically, he recommends his minimum volume ellipsoid

(MVE) esimators, which are based on the ellipsoid of

smallest volume which contains at least half the points of

the sample. These estimators give protection against a

large proportion of contaminating points, so that masking

is almost impossible. However, he recommends that,

because of problems with collinearity, the MVE should not

be used unless n/p > 5 , so it is not a method applicable

to small samples unless the dimensionality is also low.

Also of interest are methods which retain the full

sample but may weight the points differently. If these

weights are calculated from the sample, as opposed to

being imposed, then a successful method downweights the

more influential observations. Examination of the final

weight for each point indicates which are the influential

ones.

A method of this kind has been successfully applied by

Campbell (1980) to the estimation of a covariance matrix,

using M-estimators (Maronna, 1976). The problem had

earlier been considered by Gnanadesikan and Kettenring

(1972), who did not go so far as to specify what weight to

use. Campbell takes as estimators of mean and

covariances:

x =

v = E w
i (

x
i "

x ) (xi~x)'

E w^ -1 (2.7.1)

where summations are over i=l,...,n and the weights w are

obtained from a function

w.=w(d.)=cj(d.)/di
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with _ _
d2=(x -x) 'V'^x -x)

i v i ' v i '

- an estimate of Mahalanobis distance. The equations

(2.7.1) need to be iterated to a solution. The function to

controls the contribution of each point and Campbell uses

the form:

w(d)=d , d*dQ

=dQexp{ (-1/2) (d-d^
2/^), d>dQ.

This means that influence increases linearly up to a

certain point, but levels off (b =m) or begins to decline

again to zero as distance from the mean increases further.

Campbell recommends (b ,b ) = (2,oo) or (2,1.25), where

d =Tp+b
o ^

Campbell goes on to consider a robust principal

component analysis (RPCA). Although the obvious thing to

do is carry out an ordinary PCA of the robust covariance

matrix in (2.7.1), he rejects this for the following

reason. A particular point's weight in (2.7.1) is a

function of its distance from the robust x. A given

distance may be made up in various ways from contributions

on different components. One way is for virtually all the

distance to be in the direction of one component. If this

is so, it is possible that a greater downweighting would

be desirable to counteract this point's influence on this

component. Consequently this method is used only to start

off an iterative procedure, as follows.

First, V from (2.7.1) is used to provide initial

estimates of the first eigenvector, giving associated

first principal component scores y . M-estimation of the

mean and variance of y is then carried out, giving a new

set of weights w. which are substituted into (2.7.1) to

obtain a new x and V. This is repeated until a stable

first principal component u is obtained. After the first

iteration, the weights w. are taken as the minimum of the
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current and previous weights, to avoid oscillation. The

data are then transformed into values orthogonal to the

space of u , the analysis repeated on the transformed data

matrix and so on until all components have been derived.

Ultimately, besides all the usual output of a PCA, the

RPCA provides a list for each point of its weight in the

estimation of each component.

Although this method looks fairly complex to carry out,

it requires only standard matrix operations and is now

easily available because Matthews (1984) has programmed it

as a GENSTAT macro. Both Campbell and Matthews provide a

full example of the application of the method. It seems

that the detailed information it offers, together with its

ease of use, may make RPCA the most valuable of all the

informal methods of outlier detection. It could be used in

all those situations where ordinary PCA is used for

examination of the data. Campbell (1982) also developed a

similar analysis for the more structured problem of

canonical variates analysis.

Finally, one related point will be mentioned.

Matthews' example used data published by Royston (1983)

who had used them to illustrate his Q test of multivariate

normality, an extension of the univariate Shapiro-Wilk W

test. Matthews discusses the relative merits of RPCA and

n. Of course, RPCA as with most informal methods does not

explicitly assume multivariate normality, but would not

make much sense with data that were seriously non-normal.

For this reason, and because the only practical general

test statistic is for the normal case, it is reasonable to

pay some attention to tests of multivariate normality as

contributing to testing for outliers. However, Matthews

suggests that these tests are not very powerful against

the alternative of a normal distribution contaminated by a

small number of outliers, and that the RPCA will be more

informative about the nature of extreme points.
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CHAPTER 3

WILKS' MULTIVARIATE OUTLIER TEST STATISTIC

3.1 A single outlier

As discussed in Chapter 2, the difficulties inherent in

multivariate analysis mean that there has been no

substantial addition to the literature on multivariate

outlier testing since Wilks' (1963) basic contribution.

His statistic can be expressed in various forms (see § 2.2)

and its choice can be motivated in various ways, including

Wilks' own volume argument and Ferguson's decision rule

under the alternative hypothesis of slippage of variance.

The derivation to be given here shows how the statistic is

obtained by the two-stage maximum likelihood analysis of

the popular slippage in the mean alternative, called model

1 in § 2.2. For a single outlier, the hypotheses are:

against

HQ: x. ~ Np(ju,Z) , i=i, . . . ,n

^ x. ~ Np(n,Z),

x ~ N (|LH-a,Z)
j p

where j, a, fi and £ are all unknown. The test statistic

is found for a particular j and then its extreme over all

choices of j is taken.

Under H , the likelihood is

n (|2TiZ|)"
1/2exp{(-l/2) (x - M ) '

so that the log-likelihood is

n

l(H#Z) = (-np/2)ln(2TT)-(n/2)ln|Z|-(l/2) £ (x -n) 'S'
1 (xt -u)

(3.1.1)

Now writing
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x -fi-x-
the summation in third term becomes

(x.-x)

Furthermore, the first term is a scalar so equals its

own trace,

tr{ I (xi-x)'Z"
1(xi-x)}

1 tr(xi-x)'Z"
1(x.-x)

i l

n

E tr Z'^x.-x) (x.-x) '
i l

= tr Z~'{ I (x.-x) (x.-x)'}
i = l

where each step uses standard properties of traces

Hence, writing

nS = £ (x.-x) (x.-x) '
i = l

for the sum of squares and products matrix, substituting

in (3.1.1) gives

,£)=- np_ln(2TT)-_n_ln|Z|-_n_tr(Z"1S)-_ji_(x-M) '

(3.1.2)

Now the last term involves a positive semi-definite

quadratic form, which takes the value zero if and only if

M=x. No other term involves jn and therefore the maximum
A

likelihood estimator of II is (j=x. The m.l.e. of £ may be

found by maximizing

1(2,Z)= - np_ln(2Ti)-_n_ln|£| - n tr(Z"1S)
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or

= - np_ln(27i)+_n_ln|V| - n tr(VS) (3.1.3)
2 2 2

where V=Z~ .

Standard matrix results (e.g. Mardia, Kent and Bibby,

1979, Appendix A) show that

ain[Vl = 2Z-diagZ
av

and

atr(VS) = 2S-diagS

av

Hence, from (3.1.3),

31 = 0 => 2M-diagM=0

av

where M=£-S, and this can only be satisfied by M=0. Thus

Z=S.

It can be seen that with these m.l.e.'s, the

maximized log-likelihood under the null hypothesis is

1= - np ln(2TT)- n lnlZI - np (3.1.4)
0 ~T~ ~2~ ~2

Under the alternative hypothesis, the log-likelihood is

(x . -JH) 'X~ 1 (x . -

- (x .-/j-a)'E~ (x -/u-

= - np ln(2n)- n ln|Z|- (n-1) tr(Z"1S )
j

-(n-1) (x-u) 'S'^x -u)-(x -u-a) 'Z'1 (x.-fi-a)
2 J j j J
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where the subscript j in x and S. denotes values in the

reduced sample computed after x. has been omitted from the

n points. By taking

and

the fourth and fifth terms vanish. The remaining terms

can be written as
A

1(£,£)= -np_ln(2Tr)-_n_ln|Z| - n tr{Z"1(n-l)S /n}
2 2 2 J

so that equation (3.1.3) applies again with S replaced by

(n-l)S./n. Consequently

Z =(n-l)S./n

and the maximized log-likelihood is
A A A

1 (u,Z)= -np ln(2TT)- n lnlZl - np
1 2 2 2

Comparing with (3.1.4), the change in maximized

log-likelihood is
A

1 -1 = -_n_ln|Z| + n ln|Z|
0 l 2 2

so that the likelihood ratio A is given by

A

X2/n= |Z| = n-1 |S.|= |A I = A

IZI n |S| |A|

where A. and A are the sums of squares and products

matrices for the reduced (by omission of x ) and full

samples. Thus the statistic A. provides a test for H

against H for specified j and, by taking its minimum over

all choices of j, gives the outlier test statistic for

unknown j.
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For given j , the ratio A. can be shown to have a beta

distribution. This follows immediately from the

well-known fact that Hotelling's T2 statistic follows an F

distribution, and from the relation (2.2.6) between A and

T2:

*= l+T2/(n-2)

where (n-p-1) T ~ F
p(n-2) j p

Hence
P(n-2)

(n-p-1) T2
n-p-1 , p

Now if x ~ F , then
a,b

that is

Therefore

ax ~ B(a/2,b/2)
(ax+b)

-l
(1+b/ax) ~ B(a/2,b/2)

p(n-p-l)T -l

j
~ B((n-p-l)/2,p/2)

(n-p-l)p(n-2)

and the left hand side is just

1+
j

= A

(n-2)

The outlier test statistic is the minimum over j of A .

The distribution of this quantity has never been found.

Wilks' answer was to use Bonferroni bounds, so that the

percentage points for a conservative test at the cx% level

of significance are given by the lower a/n % points of the

above Beta distribution. These values are tabulated by

Wilks, for a=.01, .025, .05, .10 for 1 to 5 dimensions and

for a selection of sample sizes up to 500. Parts of the
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table are reproduced in Hawkins (1980a) and in Barnett and

Lewis (1984).

It is generally accepted that, as in many other outlier

problems, the true significance levels of these Bonferroni

bounds are very close to the nominal ones. A partial

check is possible through the fact that Wilks' statistic

reduces to one of Grubbs' (1950) in the one-dimensional

case. For certain values of n and a, the exact

distribution is available and Wilks gives a table showing

very close correspondence between these and the Bonferroni

bounds. No exact distributions exist for two or more

dimensions, so any further check on the accuracy of these

bounds has to be by simulation. This check is included in

Section 3.4.

3.2 Distributions of A for two or more outliers

Wilks went on to consider testing for two or more

outliers in the sample. As indicated in Chapter 2, it is

easy to see that the test statistic suitable for testing

the hypothesis that a set T of points in the sample are

drawn from populations whose means have slipped from the

mean of the parent population (by amounts that are not

assumed equal for each point) is

A T = i A T 1 / IAI

where A denotes the sum of squares and products matrix of

the reduced sample consisting of the remaining points

after the members of T have been omitted. This could be

derived by the two-stage maximum likelihood procedure.

Wilks' analysis proceeded along the same lines as for

the one-outlier case. As will be seen below, a Beta

distribution again applies for the case of two outliers

and Wilks gives Bonferroni bounds for conservative tests

of significance. The distribution of a A ratio is more
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complicated for higher numbers of outliers. A simple

solution applicable for all p for each given number of

outliers cannot be found. Wilks gives solutions for a

small number of particular cases for 3 and 4 outliers.

The distribution of the criterion for a specified set of t

points is known to be the product of t independent

Beta-distributed random variables (Anderson, 1958)

t

A ~ n B / n-p-i , p \ (3.2.1)
1=1 \

and this may be called the A distribution with parameters

p, n-t-1 and t in the notation of Mardia, Kent and Bibby

(1979, p.82):

A(p,n-t-1,t).

It is possible to simplify this distribution, as follows.

In the first place, it is easy to write down the

moments of A. Because the terms in the product (3.2.1)

are independent, the rth moment of A is just the product

of the rth moments of each separate Beta in the product:

E(Ar)=E[(Xi...Xt)
r]=E(Xi

r) ...E(Xt
r)

Now any moment of a Beta-distributed random variable is

just a product of gamma functions:

I

E(Xr)= f xrr(a+b) x ^ l - x ^ d x
J r(a)T(b)

l

= r(a+b) f x ^ ' ^ l - x ^ d x
r(a)T(b) i

= T(a+b) r(a+r)T(b)
T(a)T(b) T(a+b+r)

T(a+b)T(a+r)
r(a)T(a+r+b)

(a+r-1)...(a+1)a

(a+b+r-1)...(a+b+1)(a+b)
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Hence E(Ar) can be explicitly expressed in terms of the

parameters a and b.

Secondly, it may be possible to recognize that the

moments of A are equal to the moments of another product

of random variables - particularly, the product of another

set of Beta random variables, different from (3.2.1). If

so, the standard theorem that equality of all moments

implies that two distributions are identical can be

applied. The point is that this second distribution may

be easier to work with. To see how the method applies to

the A distribution, consider two successive terms in the

product (3.2.1)

Bfn-p-(2j-l) , p].B[n-p-2j , p\
2 2/ \ 2 2)

This product has rth moment:

) rfn-p-2j + l +r"| rfn-2j] rfn-p-2j +
J I 2 J { 2 j [ 2

rfn-2j+l +r) rfn-p-2j + l] T fn-2j +r) rfn-p-2j]
I 2 J I 2 J I 2 J I 2 J
fn-p-2j + l +r-ll . . . fn-p-2j+l] . fn-p-2j +r-l"j . . . [rn-p-2j>]
V 2 J ^ 2 ^ ^ 2 > v. 2 >

fn-2j + l + r - l ) . . . fn-2j + l^ . fn-2j +r-l") . . . fn-2j"|
v 2 > I 2 > ^ * \~2 *

= (n-p-2j+l+2r-2)(n-p-2j

(n-2j+l+2r-2)(n-2j+l+2r-4)...(n-2j+l)

. (n-p-2j+2r-2)...(n-p-2j)

(n-2j+2r-2)...(n-2j)

= (n-p-2j+2r-l)...(n-p-2j)

(n-2j+2r-l)...(n-2j)

= r(n-p-2j+2r) T(n-2j)

T(n-p-2j) T(n-2j+2r)
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This is the (2r)th moment of B(n-p-2j,p), and this has the

same meaning as the rth moment of the square of

B(n-p-2j,p). Hence each pair of Beta's in (3.2.1) can be

expressed as the square of one Beta. If t is an odd

number, one Beta from the original product is left over

without another to be paired with. Hence the A

distribution can be rewritten as

A ~

s

n {B(n-p-2j,p)}2, t=2s

s

n {B(n-p-2j,p)}2.B(n-p-t,p), t=2s+l

The terms are still independent, as in the original

product.

This expression is simpler than the original because it

contains fewer terms. In particular for the case t=2,

A=U where

U ~ B(n-p-2,p) (3.2.2)

This is why in the two-outlier case only a single

distribution needs to be considered, as in the one-outlier

case.

Three outliers

For the three-outlier case, the result is

A(p,n-4,3) = U2V

where

U ~ B(n-p-2,p)

V ~ B(n-p-3,p)
2 2

The p.d.f. is
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f(u,v)= r(n-2) .u

r(n-p-2) r(p)

. T((n-3)/2)

r((n-p-3)/2) T(p/2)

Percentage points are found by solving

P(r)=P(U2V^r)=a

This does not lead to a simple general result along the

lines of (3.2.2), but solutions can be derived for each

particular case. Proceeding as in Wilks' paper

P(r)= f [ f(u,v)dudv

where D is the region shown in Figure 3.2.1

Figure 3.2.1 Transforming to (s,u), where s=u v, the

range of integration in D is s=0 to r and u=4~s (point B)

to 1 (point A).
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Substituting s=u v,

r 1

= r r3 = 0 u=^P(r) = ffu, s ] 1 duds
.*0 uMs

r 1

ex

I u2j
r 1

(n-p-5)/2

where the constant of proportionality is the product of

gamma functions. Now if p is even, the term

(1-s/u ) can be expanded in powers of (s/u ) and

the integration is easy. Wilks gives the solution for the

case p=2, namely

P(r)= (n-3) (n-4) (n-5) (•fr)n"5f 1 - 2̂ fr + r ̂1 (3.2.3)

2 [n-5 n-4 n-3J

For the case p=4, the distribution is a constant times

r 1

s (1-u) (1-s/u ) duds
•i-n ,,J-JTs = 0

The integral over u is

f (l-3u+3u2-u3) (1-s/u2) du
1 — 'N S

= 1 -2Ti+2s3/2- s2 - 3s ln(s)
4

leading to

r
(n-9) /2-2s (n-8) /2

+2s (n-6) /2-S
(n-5) /2-3s (n-7) /2ln (s)] ds

r r

2(n-7) n-6 n-4 2 (]
o

n - 3 ) / 2 1 , 3 f

[n-3) J 2 i
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The second integral is

[ *r^'i-j *s(n"5)/2 1 ds

= 2r("-5)/2ln(r)- 2 2 s'"'5172

n-5

Finally,

P(r)=kr

n-5 n-5

(n-7)/2| , 1/2 , . 3/2 2

- 4r + 4r - r 6r - 3rln(r)
2(n-7) n-6 n-4 2(n-3) (n-5) n-5

(3.2.4)
where k=r(n-2)T((n-3)/2)

r(n-p-2)r((n-p-3)/2)r(p)r(p/2)

= (n-3) (n-4)(n-5)2(n-6) (n-7)/24

since p=4.

If p is odd, Wilks' method does not work out. An

alternative given by Anderson can be used (1958, § 8.5.3).

In this method, the integral P(r) =P(U2V^r) is derived as

the sum of the areas A and B in Figure 3.2.2

Figure 3.2.2 Integration of P(U V^
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r 1

Area A = f (u,v)dudv= | f (v)dv
v=0 u=0 v=0

=Ir<(n-p-3)/2,p/2},

the incomplete Beta integral.

1 "I r/v

Area B = | | f(u,v) dudv

r/v

u-0

v(n-p-5)/2(1_v)(p-2)/2

p-1
Now expand (1-u) , so the integral over u becomes

r/v

u=0
un"P"3 Vfp-1] (-u)1 du

i=0

r/v

^IVP-IIC-I) 1 r un
i=o[ i J u = 0

-p-3+i
du

p-1

i=0 [ 1

p - 1

i=0 I 1

:

n-p-2+i u=0

p-l](-l)1r(n-p-2+n/2

I n-p-2+i

so Area B is

i=0 1 n-p-2+i

1

V•J; Vn-p-5) /2(l-v) (p-2) /2dv

and the integral is
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1v-(i+3)/2(l-v)(p-2)/2dv

For even p, (1-v) p could be expanded as before, just

as in Wilks' method. For odd p, expand (1-v) p~3 in

powers of v, leaving over a factor 41-v. The integrand is

therefore the sum of powers of v multiplied by this

factor, and can always be solved by standard substititions

and lengthy, routine algebra. Anderson works out the case

p=3:

J -(i + 3)/2 .. . (p-2)/2 ,

v (1-v) dv
v = r

1

f -3/2 ,„ , 1/2 ,

= v (1-v) dv ;

1 / 2
dv; and

v = r

1

f -5/2 , , . 1/2 ,

v (1-v) dv.
,rJ-r-

Finally

for i=0,l,2

r)=I fn-3,3\
r \2 2]

P(r)=

2r

where

2^~r{sin X (2r-l) - (TT/2) }

3 / 2

n-4 7 r 3(n-3)

k= (n-3)(n-4)(n-5)T((n-3)/2)
Tn r((n-6)/2)

(3.2.5)

Four outliers

Turning now to the case of 4 outliers, the A
2.,2

distribution can be rewritten as A=U V, where
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so that

U - B(n-p-2,p)

V - B(n-p-4,p)

P(r)=P(uVW)

= [ f f(u,v) dudv

where the area D is shown in Figure 3.2.3

Figure 3.2.3 Transforming to (s,u), where s=u v , the

range of integration in D is s=0 to r and u=<Ts (point B)

to 1 (point A).

Hence,

r 1

P(r)= f f f (u,«Ti/u) (2û Ts) * duds
s-0 n-is

r 1
f f n-p-3 , - . p-1 , I— . . n-p-5 , , i— . . p-1 -1 -1/2 - .

=k u (1-u) (-Ts/u) v (1—\S/M) U S duds
S^O U=N S

=k I s
(n"P-6)/2 f u{(l-u)(l--l¥/u)}p"1 duds

as given by Wilks (eq. 4.18), where
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k= 1 T(n-2) T(n-4)
2 r(n-P-2)r(p) r(n-P-4)r(p)

As in the three-outlier problem, each particular case can

be solved explicitly. Wilks gives the solution for p=2,

namely

P(r) = (n-3) i (-Tr)n~6( 1 - 3£r_+ 3r -
6(n-7)! \n-6 n-5 n-4 n-3 J (3.2.6)

For p=3,
r 1

P(r)« f s
( n-9 ) / 2f U(l-2u+u2) (l-2^Ts/u+s/u2) duds

s = 0

Expanding and integrating over u gives

. . f ( n - 9 ) / 2 „ ( n - 8 ) / 2 , _ ( n - 6 ) / 2 ( n - 5 ) / 2

'(r) o< _ i {s -8s +8s - s
12 sio

_ (n-7) / 2 - , . , ,-6s ln(s)} ds

_J, r(n-7)/2( 2 - 164T + 16r^? - 2 r 2 ] - l f
12 \n-7 n-6 n-4 n-3 J 2 ŝ

r
(n-7)/2.

ln(s) ds

The second term integrates by parts to give

2r(n-5)/2ln(r)- 4 r(n"5)/2

n-5 (n-5)

so finally

P(r)=kr(n"7)/2f 2_ - 16-fr + 16r̂ Tr - 2r2 - 12rln(r) + 24r
\ n-7 n-6 n-4 n-3 n-5 (n-5)

where k = 1 (n-3) (n-4) (n-5)2(n-6) (n-7)
96

This is exactly the same as the result (3.2.4) for the

case p=4 and t=3. This equivalence is a particular

illustration of the result (3.3.3) to be given in the next

section.

For the case p=4,
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r 1

S=o

r

/ \ f (n-10)/2 f ... . . , i— . . .3 , ,

(r) « s u{ (1-u) (1-̂ Ts/u) } duds
••in ,,̂ =J o

r

"I (n-10)/2
S

ŝ o [ 2 0 4 4 20

and the integration gives finally

P(r)= kr(n"8)/2 f 1 - 15-Tr - 80r + 60r + 80rfr+ 15r2-[" 1 - 15-Tr - 80r + 6

[n-8 n-7 n-6 (n-6) 2 n-5 n-4 n-3

+_60r£r2- 30rln(r) - 30r^Trln(r)"| (3.2.8)
(n-5)2 n-6 n-5 J

where k=(n-3)(n-4)(n-5)2(n-6)2(n-7)(n-8)/720

The performance of Bonferroni percentage points derived

from the distributions worked out for these particular

cases will be examined below in § 3.4.

3.3 Exact and approximate F distributions for A

Because of the close relationship between the Beta and

F distributions, it is not surprising that the F

distribution can be used in relation to A. One special

case, wherein the F distribution applies exactly to a

simple function of A, is provided by the case p=2 and any

number of outliers. In general, the distribution A(2,r,s)

can be transformed exactly to F as follows:

~ S F (3.3.1)
^ 2,2(r-l)

(e.g. Mardia, Kent and Bibby, 1979, equation 3.7.10). In

the present application, we have A(2,n-t-l,t) for the

t-outlier problem, so that

~ t F
2t,2(n-t-2)n-t-2
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A ~ fl+ t F_ „, t 1~
2 (3.3.2)

or

Percentage points for A obtained in this way for t=3 are

exactly the same as can be derived from (3.2.3).

The above result can be derived by applying the result

A(p,r,s)=A(s,r+s-p,p) (3.3.3)

which can be shown by rewriting the ratio of determinants

in A as the ratio of determinants of two other matrices

after a suitable orthonormal rotation, as shown in Theorem

3.7.4 of Mardia, Kent and Bibby (1979). In the t-outlier

application,

A(2,n-t-1,t)=A(t,n-3,2)

But this is the A criterion for a two-outlier problem, and

we have already seen that its distribution, given by the

product of two independent Beta's, can be re-expressed in

terms of a single Beta. Specifically, A(t,n-3,2)=U2 where

U ~ B(n-t-2,t)

from (3.2.2). Now the standard definition of the Beta

distribution as a transformation of the F distribution

gives

2tU F
2(n-t-2)(1-U)

or, taking the reciprocal,

2(n-t-2),2t

so

a s

that

above.

(n-t-2)
tu

1--TA

(1-U)

t
n-t-2

F
2t,

F
2t

2(n-

,2(n-t-2)

-t-2)

For the A criterion with other parameters (excepting
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the cases p=l and t=l), exact distributional results in

terms of the F or related distributions do not exist.

However, approximations may be found. An obvious one

exploits the derivation of A as a likelihood-ratio

criterion, which implies that the standard asymptotic

result applies, expressing the log-likelihood ratio as

proportional to a X2. Specifically, for the t-outlier

problem,

-{n-t-l-(p-t+l)/2} In A(p,n-t-l,t) - X^

as n -> oo. The multiplying factor includes an adjustment

given by Box (1949). Further adjustments are given in the

tables of Pearson and Hartley (1972). This result was

seen earlier as (2.6.4) and was used by Bacon-Shone and

Fung (1987) in their graphical method of searching for

outliers.

A better approximation, due to Rao (1951, 1973), gives

an asymptotic F distribution for a function of A. Applied

to the t-outlier criterion, A(p,n-t-l,t), the result is

ms-2A. (1-A1/S)~ F , (3.3.4)
-i — - ' pt,ms-2A ^ '

, , 1 /spt A

where A=(pt-2)/4

m=n-l-(p+t+l)/2

s2=(p2t2-4)/(p2+t2-5)

The degrees of freedom are not necessarily integers.

This approximation is employed to test the A criterion

when it is used in other multivariate problems (for

example, MANOVA and discriminant analysis) in well-known

statistical packages such as BMDP and SPSS.

The following illustrative results give an idea of the

accuracy of Rao's approximation by comparing approximate

percentage points from (3.3.4) with exact ones obtained

from particular cases for t=3 and 4 outliers worked out in
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§ 3.2. Notice that the approximation (3.3.4) reduces to

the exact expression (3.3.1) for p=2, so this case will

not be considered further. Results from the F

approximation in Table 3.3.1 were obtained by obtaining

percentage points of F using the IMSL routine MDFI, then

transforming to percentage points of A as in (3.3.4).

Exact percentage points were obtained by solving equations

(3.2.4), (3.2.5), (3.2.8) using Newton-Raphson iteration

(Appendix I).

Table 3.3.1 Percentage points for A derived from Rao's F

approximation (upper line), in comparison to points

derived from exact distributions (lower line).

Case

n=10

1% 2.5% 5% 10% 1%

n=20

2.5% 5% 10%

p=3, t=3

p=4, t=4

(l)

(2)

(3)

0155 .0262 .0397 .0615 .2448 .2909 .3336 .3858
0155 .0262 .0396 .0614 .2448 .2909 .3336 .3858

0029 .0058 .0100 .0176 .1709 .2078 .2429 .2872
0029 .0057 .0098 .0174 .1709 .2077 .2429 .2872

00019 .00049 .0010 .0023 .1064 .1330 .1591 .1932
00016 .00043 .0009 .0021 .1064 .1329 .1591 .1932

(1) Exact distribution from equation (3.2.5)
(2) Equation (3.2.4)
(3) Equation (3.2.8)

3.4 Simulation studies of Wilks' statistic

The purpose of the studies described in this section is

twofold - to provide a check on the accuracy of Bonferroni

bounds for Wilks' statistic and to provide tables of

simulated percentage points as an alternative to the

Bonferroni bounds for one or two outliers. The design of

the simulations for examining the one-outlier and

two-outlier cases was as follows. Samples of size n= 10,

15, 20, 25, 30, 40, 50, 75 and 100 were examined, with p= 2,

3, 4 and 5. For each combination of n and p, 40,000



- 75 -

samples were generated, in five batches of 8,000. Each

batch started from a different seed for the IMSL

subroutine GGNSM which was used for the generation of

multivariate normal data. For each sample of n

independent and identically distributed vectors, the

following were recorded:

the value of Wilks' one-outlier statistic;

the value of Wilks' two-outlier statistic;

whether or not the Bonferroni bound was exceeded by

the one-outlier statistic;

whether or not the Bonferroni bound was exceeded by

the two-outlier statistic.

From the distributions of the values of the one- and

two-outlier statistics, 1, 2.5, 5 and 10% points were

obtained. These are presented in Tables 3.4.1 (a-d) and

3.4.2 (a-d). The correspondence to the Bonferroni bounds

is very close for t=l (Table 3.4.1) but less so for t=2

(Table 3.4.2). How important the discrepancies are is

illustrated by Tables 3.4.3 (a-d) and 3.4.4 (a-d), which

shows how often the Bonferroni percentage points were in

fact exceeded. For t=l, these percentages are extremely

close to the nominal values. For t=2, on the other hand,

it can be seen that there are sizeable departures,

becoming more marked as n increases. Even at n=20, the

nominal 10% level test actually is at only a little over

half of that. As claimed by Hawkins, these are indeed

rather poor approximations.

Because of the very heavy computing which is involved,

the cases of three and four outliers have been

investigated in less detail. Results (simulated

percentage points and simulated exceedence probabilities)

were obtained for the particular cases whose distributions

were worked out in § 3.2. That is, for 3 outliers,

simulations were carried out for p= 2, 3 and 4 dimensions,

using sample sizes of n=10 and 20. For 4 outliers,
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samples of size 10 were not considered because it is not

very realistic to test for 4 outliers in 10 points. Also,

the case of p=3 for 4 outliers is identical to p=4 for 3

outliers: hence simulations for 4 outliers were carried

out only for p=2 and p=4, for n=20. Simulations were

carried out as for one and two outliers, but using single

batches of 2000 samples for each combination of n and p.

Simulated percentage points are shown in Table 3.4.5

and exceedence probabilities in Table 3.4.6. It can be

seen that the exceedence probabilities for given n and p

continue to decrease as the number of outliers being

examined increases, although the differences in results

between 3 and 4 outliers or between 2 and 3 outliers

(comparing with Table 3.4.2) generally seem to be less

dramatic than between 1 and 2 outliers. The slight

improvement as the number of dimensions p increases for

fixed n and number of outliers can also be seen, as in

Table 3.4.2.

Discrepancies of this kind do not render Wilks' test

with Bonferroni bounds unusable for practical purposes.

The Bonferroni bound has the great virtue of providing a

conservative test: that is, the true significance level

does not exceed the nominal level. If a test result

clearly gives evidence against the null hypothesis, say

with p=0.01, then the true situation is that the evidence

is even stronger than this. The difficulty comes when the

evidence appears less clear. A poor Bonferroni bound

means that these cases are not being held to be as good

evidence against the null hypothesis as they in fact are,

so that sensitivity is lost here for t>l. Consequently it

is desirable to look for other tests, or for other,

improved ways of implementing this test.
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Table 3.4.1a Simulated percentage points for Wilks'

one-outlier test statistic based on 40,000 simulations,

a=0.01. Bonferroni bounds in parentheses.

Sample
size n

10

15

20

25

30

40

50

75

100

Table 3

Dimensions,p
2

.13712
(.13895)
.29303
(.29556)
.40614
(.40893)
.49229
(.49102)
.55570
(.55263)
.64052
(.63870)
.69596
(.69598)
.78057
(.78048)
.82810
(.82704)

.4.lb. S imulated

3

.07753
(.07781)
.22458
(.22330)
.34473
(.34019)
.42859
(.42815)
.49735
(.49547)
.58942
(.59091)
.65491
(.65514)
.75197
(.75062)
.80191
(.80352)

percentage

4

.03809
(.03866)
.16698
(.16678)
.28456
(.28354)
.37315
(.37513)
.44573
(.44663)
.54808
(.54949)
.61910
(.61947)
.72259
(.72432)
.78214
(.78271)

points for

5

.01604
(.01523)
.12089
(.12128)
.23258
(.23506)
.32618
(.32861)
.39850
(.40320)
.50976
(.51217)
.58554
(.58711)
.69860
(.70026)
.76150
(.76361)

Wilks'

one-outlier test statistic, a=0.025. Bonferroni bounds in

parentheses.

Sample
size, n

10

15

20

25

30

40

50

75

100

2

.17942
(.18053)
.34454
(.34433)
.45361
(.45547)
.53195
(.53367)
.59218
(.59144)
.67226
(.67113)
.72405
(.72365)
.80030
(.80060)
.84337
(.84281)

Dimensions,
3

.10541
(.10601)
.26479
(.26485)
.38503
(.38281)
.46936
(.46860)
.53237
(.53303)
.62473
(.62301)
.68258
(.68286)
.77250
(.77108)
.81949
(.81967)

P
4

.05492
(.05606)
.20181
(.20171)
.32477
(.32239)
.41214
(.41336)
.48233
( .48287)
.57988
(.58117)
.64652
(.64715)
.74465
(.74503)
.79867
(.79916)

5

.02442
(.02420)
.14952
(.14998)
.26718
(.27020)
.36208
(.36460)
.43486
(.43806)
.54279
(.54333)
.61403
(.61466)
.72003
(.72116)
.77848
(.78030)
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Table 3.4.1c. Simulated percentage points for Wilks'

one-outlier test statistic, a=0.05. Bonferroni bounds in

parentheses.

Sample
size. n

Dimensions, p
3 4

10

15

20

25

30

40

50

75

100

.21947
(.22007)
.38716
(.38650)
.49340
(.49417)
.56646
(.56838)
.62288
(.62260)
.69678
(.69675)
.74497
(.74532)
.81572
(.81616)
.85500
(.85494)

.13396
(.13408)
.30272
(.30154)
.42034
(.41876)
.50299
(.50188)
.56302
(.56347)
.64892
(.64857)
.70579
(.70472)
.78804
(.78700)
.83218
(.83214)

.07424
(.07438)
.23472
(.23319)
.35661
(.35558)
.44477
(.44513)
.51183
(.51248)
.60737
(.60654)
.66907
(.66909)
.76068
(.76122)
.81203
(.81192)

.03461
(.03440)
.17666
(.17642)
.29885
(.30060)
.39437
(.39477)
.46402
(.46674)
.56801
(.56843)
.63609
(.63659)
.73700
(.73754)
.79267
(.79329)

Table 3.4.Id. Simulated percentage points for Wilks'

one-outlier test statistic, a=0.10. Bonferroni bounds in

parentheses.

Sample
size, n

10

15

20

25

30

40

50

75

100

2

.26941
( .26827)
.43524
(.43383)
.53606
(.53615)
.60564
(.60535)
.65673
(.65540)
.72387
(.72335)
.76768
(.76763)
.83265
(.83203)
.86759
(.86725)

Dimensions,
3

.17018
(.16978)
.34415
(.34358)
.46031
(.45832)
.53940
(.53774)
.59642
(.59583)
.67636
(.67531)
.72880
( .72738)
.80488
(.80331)
.84561
(.84486)

P
4

.10003
(.09888)
.27175
(.26995)
.39481
(.39255)
.48098
(.47967)
.54477
( .54420)
.63487
(.63326)
.69214
(.69195)
.77835
(.77787)
.82538
(.82497)

5

.05014
(.04901)
.20846
(.20789)
.33535
(.33484)
.42835
(.42784)
.49673
(.49768)
.59500
(.59499)
.65978
(.65955)
.75482
(.75446)
.80707
(.80663)
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Table 3.4.2a. Simulated percentage points for Wilks'

two-outlier test statistic, based on 40,000 simulations,

a=0.01. Bonferroni bounds in parentheses.

Sample
size, n

10

15

20

25

30

40

50

75

100

Table 3

2

.19038
(.18308)
.36909
(.35641)
.48081
(.46935)
.56085
(.54722)
.61999
(.60409)
.69701
(.68184)
.74569
(.73276)
.81708
(.80704)
.85581
(.84771)

Dimensions, p
3

.10923
(.10490)
.28633
(.27605)
.41003
(.39764)
.49622
(.48390)
.56010
(.54778)
.64818
(.63596)
.70421
(.69411)
.78898
(.77928)
.83370
(.82601)

4

.05397
(.05181)
.21784
(.21050)
.35061
(.33655)
.43996
(.42895)
.50813
(.49839)
.60598
(.59527)
.66935
(.65962)
.76267
(.75434)
.81357
(.80645)

.4.2b. Simulated percentage points

5

.01949
(.01887)
.16237
(.15589)
.28856
(.28296)
.38769
(.37975)
.46319
(.45370)
.56906
(.55804)
.63730
(.62789)
.73906
(.73124)
.79457
(.78828)

for Wilks'

two-outlier statistic, a=0.025. Bonferroni bounds in

parentheses.

Sample
size, n

10

15

20

25

30

40

50

75

100

2

.22653
(.21444)
.40748
(.38897)
.51505
(.49859)
.59166
(.57307)
.64598
(.62707)
.71790
(.70050)
.76347
(.74841)
.82964
(.81815)
.86552
(.85632)

Dimensions,
3

.13374
(.12703)
.31875
(.30468)
.44148
(.42504)
.52457
(.50887)
.58485
(.57036)
.66907
(.65465)
.72287
(.70994)
.80233
(.79066)
.84398
(.83487)

P
4

.06845
(.06572)
.24637
(.23522)
.37700
(.36203)
.46714
(.45292)
.53450
(.52046)
.62717
(.61389)
.68860
(.67555)
.77544
(.76593)
.82396
(.81552)

5

.02706
(.02579)
.18559
(.17670)
.31769
(.30642)
.41476
(.40262)
.48690
(.47517)
.59004
(.57651)
.65623
(.64386)
.75254
(.74299)
.80567
(.79753)
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Table 3.4.1c. Simulated percentage points for Wilks'

two-outlier test statistic, a=0.05. Bonferroni bounds in

parentheses.

Sample
size, n

10

15

20

25

30

40

50

75

100

Table 3.4.Id

2

.25802
(.24188)
.43786
(.41573)
.54389
(.52205)
.61560
(.59354)
.66633
(.64513)
.73393
(.71501)
.77782
(.76052)
.83975
(.82670)
.87367
(.86292)

Simulated

Dimensions, p
3

.15787
(.14702)
.34582
(.32853)
.46764
(.44722)
.54863
(.52878)
.60716
(.58821)
.68707
(.66926)
.73819
(.72224)
.81290
(.79944)
.85237
(.84169)

percentage

4

.08448
(.07881)
.27082
(.25609)
.40133
(.38282)
.49019
(.47215)
.55529
(.53799)
.64451
(.62850)
.70293
(.68798)
.78662
(.77489)
.83271
(.82251)

points for

5

.03508
(.03273)
.20578
(.19451)
.34062
(.32571)
.43706
(.42108)
.50720
(.49230)
.60701
(.59106)
.67097
(.65635)
.76394
(.75210)
.81434
(.80467)

Wilks'

one-outlier test statistic, a=0.05. Bonferroni bounds in

parentheses.

Sample
size, n

Dimensions, p
3 4

10

15

20

25

30

40

50

75

100

.29495
(.27305)
.47341
(.44453)
.57396
(.54676)
.64128
(.61487)
.69012
(.66380)
.75260
(.72990)
.79251
(.77288)
.85073
(.83537)
.88220
(.86960)

.18555
(.17039)
.37748
(.35452)
.49673
(.47079)
.57500
(.54966)
.63077
(.60677)
.70556
(.68431)
.75448
(.73485)
.82382
(.80837)
.86095
(.84859)

.10396
(.09468)
.29925
(.27909)
.42848
(.40506)
.51571
(.49243)
.57852
(.55631)
.66393
(.64361)
.71883
(.70074)
.79849
(.78403)
.84152
(.82961)

.04607
(.04161)
.23001
(.21439)
.36685
(.34649)
.46230
(.44064)
.53009
(.51026)
.62586
(.60614)
.68725
(.66921)
.77547
(.76141)
.82377
(.81193)
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Table 3.4.3a. Simulated null probability of obtaining a

value of Wilks'one-outlier test statistic less than the

Bonferroni approximation at a=0.01, based on 40,000

simulations.

Sample
size, n

10
15
20
25
30
40
50
75

100

Table 3.4.3b.

2

.0109

.0105

.0107

.0098

.0093

.0094

.0100

.0098

.0092

Simulated

Dimensions, p
3

.0101

.0098

.0091

.0099

.0098

.0103

.0101

.0095

.0108

null probability

4

.0103

.0101

.0097

.0104

.0104

.0103

.0103

.0107

.0105

5

.0090

.0101

.0109

.0108

.0113

.0109

.0105

.0109

.0114

of obtaining a

value of Wilks' one-outlier test statistic less than the

Bonferroni approximation at a=0.025.

Sample
size, n

Dimensions, p
3 4

10
15
20
25
30
40
50
75
100

0256
0250
0258
0260
0249
0240
0250
0251
0245

.0254

.0250

.0236

.0245

.0256

.0239

.0253

.0236

.0253

.0263

.0250

.0238

.0259

.0255

.0260

.0256

.0256

.0256

.0245

.0253

.0266

.0264

.0272

.0255

.0256

.0264

.0274
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Table 3.4.3c. Simulated null probability of obtaining a

value of Wilks' one-outlier test statistic less than the

Bonferroni approximation at a=0.05.

Sample
size, n

10
15
20
25
30
40
50
75
100

2

0507
0497
0506
0515
0497
0563
0503
0506
0500

Dimensions, p
3

.0503

.0493

.0488

.0489

.0506

.0498

.0489

.0482

.0493

4

.0505

.0483

.0492

.0502

.0507

.0489

.0499

.0512

.0496

5

.0499

.0500

.0519

.0506

.0530

.0503

.0506

.0513

.0519

Table 3.4.3d. Simulated null probability of obtaining a

value of Wilks' one-outlier test statistic less than the

Bonferroni approximation at cc=0.10.

Sample
size, n

Dimensions, p
3 4

10
15
20
25
30
40
50
75
100

0988
0979
1001
0996
0978
0985
0996
0976
0982

.0994

.0993

.0970

.0970

.0985

.0975

.0962

.0937

.0962

.0973

.0971

.0962

.0978

.0990

.0958

.0995

.0981

.0974

.0962

.0989

.0991

.0991

.1021

.1001

.0993

.0988

.0978
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Table 3.4.4a. Simulated null probability of obtaining a

value of Wilks' two-outlier test statistic less than the

Bonferroni approximation at a=0.01, based on 40,000

simulations.

Sample
size, n

Dimensions, p
3 4

10
15
20
25
30
40
50
75
100

0082
0071
0067
0061
0051
0054
0051
0051
0046

.0085

.0072

.0070

.0066

.0063

.0059

.0058

.0048

.0052

.0090

.0080

.0074

.0068

.0068

.0063

.0062

.0057

.0055

.0094

.0079

.0081

.0077

.0070

.0063

.0064

.0056

.0058

Table 3.4.4b. Simulated null probability of obtaining a

value of Wilks' two-outlier test statistic less than the

Bonferroni approximation at cx=0.025.

Sample
size, n

10
15
20
25
30
40
50
75

100

2

.0187

.0162

.0160

.0145

.0127

.0116

.0119

.0108

.0102

Dimensions, p
3

.0202

.0167

.0157

.0153

.0153

.0137

.0131

.0117

.0110

4

.0215

.0174

.0165

.0156

.0158

.0142

.0134

.0132

.0117

5

.0223

.0183

.0174

.0169

.0159

.0142

.0136

.0136

.0129
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Table 3.4.4c. Simulated null probability of obtaining a

value of Wilks' two-outlier test statistic less than the

Bonferroni approximation at a=0.05.

Sample
size, n

10
15
20
25
30
40
50
75

100

2

.0359

.0306

.0295

.0264

.0244

.0221

.0215

.0210

.0198

Dimensions,
3

.0374

.0329

.0297

.0283

.0280

.0251

.0244

.0209

.0207

P
4

.0401

.0335

.0299

.0290

.0284

.0265

.0242

.0240

.0223

5

.0417

.0346

.0330

.0311

.0303

.0263

.0252

.0244

.0230

Table 3.4.4d. Simulated null probability of obtaining a

value of Wilks' two-outlier test statistic less than the

Bonferroni approximation at a=0.10.

Sample
size, n

Dimensions, p
3 4

10
15
20
25
30
40
50
75
100

0668
0573
0523
0491
0460
0426
0392
0368
0348

.0698

.0607

.0539

.0514

.0496

.0448

.0432

.0377

.0367

.0743

.0623

.0550

.0530

.0518

.0484

.0453

.0425

.0398

.0777

.0644

.0587

.0555

.0552

.0484

.0465

.0437

.0415
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Table 3.4.5 Simulated percentage points for particular

cases for 3 and 4 outliers from 2000 simulations;

Bonferroni bounds in parentheses.

Case
Significance level

0.01 0.025 0.05 0.10

3 outliers

p=2, n=10

p=4, n=10

.00880
(.00733)

p=2, n=20 .13920
(.12224)

p=3, n=10 .00135
(.00120)

p=3, n=20 .08564
(.07537)

.00012
(.00010)

p=4, n=20 .05397
(.04614)

4 outliers

.01278
(.01071)

.16341
(.13937)

.00235
(.00193)

.10828
(.08716)

.00023
(.00019)

.06437
(.02218)

.01762
(.01430)

.18502
(.15400)

.00346
(.00277)

.12104
(.09739)

.00037
(.00030)

.07292
(.02533)

.02459
(.01914)

.20788
(.17028)

.00568
(.00400)

.13838
(.10893)

.00062
(.00049)

.08359
(.02897)

p=2, n=20 .08169 .09991 .11303 .13329
(.06842) (.07879) (.08773) (.09775)

p=4, n=20 .02465 .02875 .03405 .03994
(.01865) (.02218) (.02533) (.02897)
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Table 3.4.6 Simulated exceedence probabilities of

Bonferroni percentage points derived from certain exact

distributions for 3 and 4 outliers (2000 simulations).

Nominal significance level
Case 0.01 0.025 0.05 0.10

3 outliers

p=2, n=10
p=2, n=2 0
p=3, n=10
p=3, n=2 0
p=4, n=10
p=4, n=2 0

4 outliers

p=2, n=2 0
p=4, n=2 0

.0075

.0045

.0090

.0060

.0080

.0035

.0035

.0030

.0165

.0105

.0165

.0105

.0215

.0105

.0070

.0080

.0345

.0175

.0335

.0150

.0370

.0185

.0150

.0115

.0610

.0305

.0600

.0265

.0710

.0370

.0235

.0260
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CHAPTER 4

SEQUENTIALLY APPLIED TESTS

4.1 Introduction

The bulk of the large number of outlier test statistics

to be found in the literature is designed for use when the

number of possible outliers is specified. For example, a

test for two outliers is usually a test of the null

hypothesis of no outliers against the alternative

hypothesis of two outliers. In itself, it has nothing

directly to say about the possibilities of one outlier or

three or more outliers being in the sample. If, in fact,

the information that there are either two or no outliers

is wrong and the number of outliers is not two, then the

two-outlier test could be a very poor means of detecting

any outliers, as when "masking" occurs. However, it is

surely the exception for such firm knowledge to be

available. A test for two outliers is usually made because

an inspection of the data has suggested either that this

is the number present or that this falls in a range of

possible numbers of outliers. For example, there could be,

graphically, one very clear outlier and two less distinct

from the body of the sample; tests for one, two and three

outliers might then all be carried out.

Therefore, except for the rare occasions when some a

priori specification of the possible number of outliers

exists, testing for outliers is part of a multistage

process, as Collett and Lewis (1976) point out. Even if a

display of the data has very clearly suggested k outliers,

then the k-outlier test has been preceded at least by the

stage of deciding to use this test and, before that, by

choosing that particular display and perhaps by deciding

to look for outliers at all. This means that the

structure of the test is not as simple as it appears to
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be, so that the significance levels may not have their

claimed meanings. When there is no clear indication of

the possible number of outliers, and instead tests are

made over a range of possible numbers, it is even more

obvious that each particular k-outlier test is part of a

multistage procedure. Since results at each stage must be

conditional to some extent on results at earlier stages,

this dependence ought to be built into a proper testing

procedure. There have been various suggestions for

outlier-testing methodologies which do specify the

successive application of tests for different numbers of

outliers. (Barnett and Lewis, 1984, chapter 5, p.136-143;

Hawkins, 1980b, chapter 5). The purpose of this chapter

is to develop procedures of this kind for multivariate

data. The procedures to be examined will be multivariate

applications of tests introduced by Rosner (1975, 1977,

1983) for univariate data.

4.2 Testing Strategies

As this section must include some comments on the terms

used for describing different approaches to testing over a

range of possible numbers of outliers, it is appropriate

to first remark on another point of terminology. It is

quite common to speak of such tests as "sequential tests":

this is the label used by Hawkins (1980a) and is found in

many of the journal articles. Barnett and Lewis (1984,

p.13 6) object to this use of "sequential", because they

assert that "sequential test" in statistics means a test

in which the sample size is not fixed - each stage

involves the accumulation of more data. They prefer to

speak of "consecutive" testing for outliers. In fact,

since sequential testing in its original sense does not

have any application in outlier testing, there doesn't

really seem to be any problem caused by talking of

sequential tests. In this thesis, the terminology

"sequentially applied tests" is used, to retain the
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connection with the most widely used terminology.

In sequential tests in their original meaning, the

testing process can only be carried out in one

"direction", namely, on successively bigger sample sizes.

A procedure working on reducing sample sizes would be

pointless. In general, however, where a statistical

procedure involves multiple testing, there are different

paths to follow. In multiple regression, for example,

identification of a subset of significant predictors

usually proceeds either by choosing the best single

predictor, then the next best conditional on the first

choice and so on (the forward selection procedure), or by

starting with all the potential predictors and eliminating

the one making least contribution, then the conditionally

next worst and so on (the backward elimination procedure).

Besides these two common procedures, there are others,

such as procedures aiming to define the best subset of

predictors of a given size and procedures which can move

both backwards and forwards. There is never any guarantee

that these various procedures will reach the same

conclusion. The multiple regression example is

particularly apt, because Hawkins (1980a) borrows its

terminology to describe different strategies in the

outlier problem. The basic alternatives in testing

sequentially for, say, one up to four outliers, are either

to start at four and work downwards - which Hawkins calls

backward elimination - or to start at one and work upwards

- forward selection. He chooses these terms because he

actually has in mind a multiple regression formulation of

the outlier problem (his section 7.3). In this, each

observation is represented by a dummy variable and an

associated regression coefficient, so that "forward

selection" in the usual regression sense means

successively identifying which coefficients are

significantly different from zero so that the

corresponding observation is to be regarded as an outlier:
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in other words, forward selection identifies increasing

numbers of outliers. On the other hand, backward

elimination removes points from the set of those being

considered as outliers.

Barnett and Lewis (1984) also avoid this terminology,

speaking instead of inward and outward consecutive

procedures, corresponding to forward selection and

backward elimination. These terms refer to direction of

movement: inward means starting at the extreme of the

sample, the most outlying point, and successively

examining points lying closer to the centre of the

distribution; outward means moving away from the centre.

This thesis adopts the Barnett and Lewis terminology in

preference to that of Hawkins in this case. The reason is

that the term backward elimination seems too confusing,

because 'elimination' seems to suggest the removal of

points from the sample, since this is in a sense the

intention of the outlier testing procedure, just as well

as it suggests removal from the set of possible outliers.

The procedures for sequential application of tests for

different numbers of outliers which will be used here are

outward testing procedures, starting with a test for a

chosen number, k, of outliers and then testing for k-1 and

so on if necessary. However, the test statistics employed

are derived by inward construction. These procedures will

be described in the following sections.

Are there any general grounds for preferring either the

inward or the outward procedures over the other? One

point is that the inward procedures generally do not avoid

the danger of masking, although they can do if a test

statistic such as that of Rosner (1975) is used, wherein

trimming of the mean and standard deviation ensures that

any outliers, up to a specified number, cannot contaminate

these estimates. On the other hand, there is no question
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of masking in the outward procedures, unless in fact there

are actually more than the k outliers at which the testing

procedure is started. Hawkins (1980a), as discussed in

the next section, finds a problem in the statistical size

of the current outward procedures, but eventually comes

down in favour of such procedures employed in conjunction

with his definitions of critical regions. The calculation

of critical regions unfortunately may require simulations;

inward procedures, on the other hand, only require

standard percentage points.

4.3 Rosner's first procedure for sequentially applied

tests

The procedure to be applied here to the case of

multivariate data is that introduced by Rosner (1975,

1977) and applied by Prescott (1978, 1979) to use of

Grubb's statistic in univariate samples and by Kimber

(1982) to testing for outliers in univariate exponential

samples. The steps of the method are as follows:

(1) A maximum k is specified as the greatest number of

outliers one is prepared to consider.

(2) A single outlier statistic is computed to identify

the most extreme member of the sample (without

testing), which is then removed from the sample.

(3) The step (2) is repeated on the reduced sample and

so on until the k most extreme points have been

identified.

(4) The significance test for the kth possible outlier

(from step 3) is carried out. If this point is

confirmed as an outlier, so too are 1,2,...,(k-1)

without further testing. Percentage points are

obtained as described below.
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(5) Otherwise, test the (k-l)th possible outlier, and

so on.

As mentioned in the preceding section, the test

statistics used here are constructed 'inwards'. The test

itself, however, is an outward test when it comes to

actual declaration of outliers.

The percentage points for the tests of significance are

determined from the joint distribution of the k outlier

test statistics at (2) and (3). This almost inevitably

calls for simulations. Rosner proposes the following

definition of the size of the test, to which his

calculation of percentage points corresponds. Let the

test statistics be D ,...,D . Critical values X , . . . ,X

are required so that under the null hypothesis of no

outliers,

k
Pr[ U {D<A.}]=a (4.3.1)

j = I J

for chosen significance level a. (The notation D <X is

used here because Wilks' statistic, which will be used in

the multivariate application, looks for values in the

lower tail of the distribution; the statistic used by

Rosner declares values in the upper tail to be

significant, so his notation is D >X .) This can be

satisfied in many ways: the condition chosen for a unique

solution is to impose equality at each step, so that

P r f D . ^ } ^ , j = l,...,k (4.3.2)

The idea will be that in the simulation study, the

marginal and joint distributions of the D are recorded in

sufficient detail that different values of /3 in (4.3.2)

can be tried and those critical values X (/3) finally

selected are those which lead to (4.3.1) being satisfied.

This definition of critical regions for the test is
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disliked by Hawkins (1980a, 1980b). Its interpretation is

that a is the probability of declaring that there are any

outliers (the actual number declared being between one and

k) when in fact there are none. Hawkins' objection is

that nothing is said about the result when there are

outliers. He proposes the alternative definition that, if

there are actually m<k outliers, the test should declare

more than m outliers with probability a, which is to be

the same for all m. This subsumes Rosner's definition

(case m=0), so the question is whether or not its extra

conditions are as desirable as Hawkins claims. Perhaps it

is a matter of basic opinions about what is the purpose of

outlier testing. In seeking to control the probability of

declaring too many outliers, while not apparently being

concerned to control the probability of declaring too few,

Hawkins seems to be feeling that the danger to avoid is

overenthusiastic rejection of points from the sample. This

ties in with some introductory remarks in his book (1980a,

p8):

"It is this author's experience that statisticians tend

to detect outliers that are not present, and to regard the

non-significance of outlier test statistics as a

reflection on the poor power of the tests rather than an

indication that the suspicious-looking observation is

statistically quite plausible."

On the other hand, Prescott (1980) responds that

further investigation of all the indicated points ought to

be the rule anyway - it is not just a question of using

this test, throwing away the 'outliers' and then doing on

the reduced sample the analysis one had in mind in the

first place.
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4.4 Rosner/s second procedure

The second procedure published by Rosner (1983)

recomputes critical values to adopt Hawkins' definition of

size. As with his first procedure, the application is to

univariate data; the test statistic is max (x -x)/s. The

size definition (4.3.1) needs to be rewritten as

k

Pr{ U (D<X|H)}=a (4.4.1)
J J m

j=ra + l

for m=0,1,...,k-1

where H is the hypothesis that there are m outliers. (As
m

in the previous section, the event D.<X. is sought because

Wilks' statistic looks for values in the lower tail.)

Equivalently to (4.4.1),

Pr{ n (D.^A.IHJ }=l-a (4.4.2)
j = m + 1

and Rosner conjectures that this probability depends

essentially on D ; that is, if
m+l

Pr(D X̂ |H )=l-a' (4.4.3)
m+l m+l m v '

then a' is close to a.

The number of outliers declared by the test is the

highest value m for which D ^X is true, or zero if this3 mm
is never true for any m up to the maximum considered. For

the purpose of discussion, it may be convenient to talk as

if the test is executed by starting from m=l and carrying

out every test up to the maximum value of m allowed. In

practice, a computer program might start at the maximum

value and decrease m until a result which is statistically

significant at the chosen level arises, after which point

no more tests are made.

In fact, it is obvious from (4.4.2) and (4.4.3) that
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1-a' exceeds 1-a, so that a' is less than a. The error in

using (4.4.3) to approximate is (4.4.2) is the probability

of the event

k

(D £A. ) n ( U (D <\ ) } (4.4.4)
V m+l m+1' ' ' l j J

j=m+2

under H . To take a specific situation, if there are 2
m

outliers (H holds), then the error of approximation is

the probability of the event that the test statistic for

examining three outliers (which means examining the most

extreme member of the sample of size n-2 after the two

most extreme have been eliminated) is not significant at

the chosen level, but that one of the statistics for 4, 5

or more outliers, _is_ significant at the same chosen level.

In other words, after deleting two apparent outliers, the

remaining sample of n-2 points must contain at least two

more apparent outliers but none of these must be

sufficiently extreme to avoid being masked by the rest in

the test for one outlier in n-2 points. It seems quite

reasonable to suppose that this probability is small;

Rosner (1983) in his Table 1 gives simulation results

which show that the approximation is very good for n^2 5

under H in his univariate application. This being so, a

very valuable procedure has been obtained, which is very

simple because the approximate critical values found from

(4.4.3) by putting <x'=a are nothing more than the usual

critical values for the chosen test statistic in samples

of size n-m. In the end, no adaptation of the levels for

the sequential application of the test statistic has been

made. An equivalent procedure for multivariate data is a

very attractive proposition, to avoid the extremely heavy

computing demands of multivariate simulation. As will be

seen below, however, rather more should be said about the

performance of the test than Rosner's simple conclusion

suggests.

Some simulation results will now be presented, showing
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further details of the performance of Rosner's test in the

univariate application given by Rosner himself. These

runs were carried out for confirmation after corresponding

features had been observed in the simulations for the

multivariate case, described below in § 4.6. The

investigation looks at the performance of the test in the

presence of one or two outliers. This is the situation

examined by Rosner in his Table 2, and the details of the

simulation are the same, namely, 2000 runs are made for

each case and the sample size is 25.

Table 4.4.1 shows the proportion of samples in which

outliers were declared, at nominal 1% and 5% levels

(Rosner presents only the latter), under two versions of

the test. In one, the maximum number of outliers allowed

was two. Rosner looked at this for a direct comparison

with his earlier procedure. In the other, up to 10

outliers were allowed. If there are two contaminating

points, only this second version provides any information

about the probability of declaring "too many" outliers,

but Rosner did not examine this at all.

Comparison between the results here for the 5% level

test with up to 2 outliers allowed, and Rosner's results

in his Table 2, shows good agreement. One particularly

interesting result is the probability of 0.0190 of

declaring two outliers when there is actually just one,

with a slippage of 2. Rosner gives 0.01 at this point.

The results for up to 10 outliers, and at the 1% level,

agree that the probability here is substantially below the

nominal level. Since Rosner presents results for the

two-outlier case only for testing for up to two outliers,

he gives no corresponding information about the

probability of declaring more than two outliers in this

case. This information is now supplied by the extreme

right-hand column of Table 4.4.1. It can be seen that the

probability is again well below the nominal level, except
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when both slippages are very large (-4 and 6). It

therefore seems that Rosner's test can sometimes be very

conservative.

This result, when first seen in the multivariate case,

was rather a surprise because the evidence of Rosner's

Table 1 (under H ) suggested a liberal test, not a

conservative one. The use of (4.4.3) to approximate

(4.4.2) also makes it seem that the test at each stage

separately should be liberal: under H , there is an a%
m

probability of declaring one further outlier at this stage

plus the probability of not declaring one at this stage

but declaring more than one at a later stage. The true

error probability therefore exceeds a% (and the use of the

conservative Bonferroni bounds has relatively little

impact, because they are known to be quite accurate in the

single-outlier tests which are carried out at each stage.)

However, this reasoning applies strictly only to the very

first step, under H . Under H , for example, the

distribution theory for the test for an outlier in the

reduced sample of size n-1 depends on the contaminating

observation having been identified correctly in the first

test and removed from the sample. In fact, except when

the slippage is so large that the contaminant is virtually

always found, removing the most extreme point slightly

truncates the distribution. Thus the distributional

assumptions do not apply for H , H ,... as they do for H .
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Table 4.4.1. Proportion of times that given numbers of

outliers were declared by Rosner's procedure in 2000

simulations: n=25.

(a) Nominal 1% level

Outl- Sl ip- Up to 2 allowed
iers page(s) 0 1 2

Up to 10 allowed
0 1 2 >3 >true

0
1
1
2
2
2

2,
-2,
-4,

-
2
6
2
6
6

.9830

.9555

.0515

.9620

.0830

. 1340

.0160

.0420

.9390

.0320

.8830

.4325

.0010

.0025

.0095

.0060

.0340

.4335

.9905 .0085 .0010 0 .0095

.9700 .0280 .0010 .0010 .0020

.0590 .9260 .0130 .0020 .0150

.9625 .0295 .0065 .0015 .0015

.0815 .8765 .0390 .0030 .0030

.1240 .4250 .4445 .0065 .0065

(b) Nominal 5% level

0
1
1
2
2
2

2,
_ 9

-4,

-
2
6
2
6
6

.9390

.8665

.0110

.8500

.0130

.0245

. 0510

.1145

. 9335

. 1190

.8815

.3160

.0100

.0190

.0555

.0310

. 1055

.6595

.9415 .0425 .0070 .0090 .0585

.8770 .1050 .0100 .0080 .0180

.0130 .9205 .0495 .0170 .0665

.8485 .1055 .0300 .0160 .0160

.0165 .8520 .1010 .0305 .0305

.0195 .3045 .6175 .0585 .0585

A further possible factor making the performance of the

test rather unpredictable is that the sequential removal

of points does not necessarily lead to the "best" set of

points being removed (that is, the ones that would have

been removed if all were tested simultaneously in a set of

appropriate size). This again should not arise if the

slippages are very large. Both factors may be more

important when the sample size is small.

Another interesting feature of the results in Table

4.4.1 lies in the comparison of the results for two

outliers with slippages of -2 and 6 against those for -4

and 6. It might be expected that an outlier test should

be more likely to declare outliers in the second case than
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the first, and in fact it can be seen to be far more

likely to declare two outliers in the second case. But it

turns out that it is also more likely not to declare any

at all. The reason for this behaviour is that the tests

in the two different cases are not comparable, since they

have different sizes as seen in the final column of the

table.

4.5 Sequential application of Wilks' test statistic

In using Wilks' test statistic with the methods

proposed by Rosner, the first step is the construction of

the statistics D ,...,D , from the most extreme to the kth

most extreme points in the sample. The most extreme point

is the point j such that the ratio

A
->- (4.5.1)

is the minimum over such ratios for all sample points,

where A and A. are the sample sums of squares and

products (SSP) matrices respectively before and after

deletion of point j for the sample. The value of this

ratio is the statistic D . The corresponding point j is

now removed from the sample and the most extreme of the

remaining n-1 points identified. This is point h, such

that

(4.5.2)

A

is a minimum over all n-1 choices of points, where A

denotes the SSP matrix of the n-2 points remaining from

the sample after deletion of both j and h. This ratio is

D . Similar minimizations and deletions lead to
2

D , . . . ,D .
3' ' k

In fact, calculation is a little simpler if an
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alternative form is used for the Wilks statistic. As

shown in § 2.2, (4.5.1) can also be written as

l-(n/ (n-1)) (x.-x) 'A"1 (x -x)

and similarly (4.5.2) as

where x denotes the mean of the sample of n-1 points

remaining after deletion of point j. Similar expressions

follow for the rest of the D-statistics. The advantage of

this form is that the usual updating formula gives A

in terms of A"1 without the need for an actual matrix

inversion. Specifically,

A"1 = A~1+ nA"1 (x.-x) (x.-x)'A"1

(n-l){l-(n/(n-l)) (x^x) 'A'1 (x.-x) }

(e.g. Morrison, 1976, p.69), with similar expressions for

A~ in terms of A~ and so on.
jh j

Computation of critical values for tests at chosen

levels of significance using D ,...,D follows the

methodology described in the previous sections. In the

more complicated case of the first method (§ 4.3), results

were derived by simulation for tests at the 10, 5, 2.5 and

1% levels for maximum number of outliers k=2 and 3.

Within each chosen combination of sample size n and

dimensionality p, results for both values of k and all

values of significance level were obtained from the same

simulated data. At each of these combinations, 40000

samples of the required size n were generated for

calculation of the distribution of the {D }. These

samples were obtained as 5 lots of 8000, each lot starting

with a different seed for the IMSL pseudo-random generator

GGNSM for multivariate normal vectors.
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The simulated c r i t i c a l values are displayed in Tables

4 .5 .1 for k=2 and 4.5.2 for k=3.

TABLE 4.5.1 Critical values for testing for up to 2 outliers

using the sequentially applied version of Wilk's test.

Dimensions:

a

0.01

.025

.05

. 10

n

15

20

25

30

50

100

15

20

25

30

50

100

15

20

25

30

50

100

15

20

25

30

50

100

X1

.2606

.3775

.4588

.5246

.6726

.8153

.3065

.4230

.4983

.5623

.7031

.8323

.3453

.4588

.5342

.5936

.7258

.8442

.3889

.4996

.5730

.6267

.7487

.8574

2

X2

.3131

.4509

.5457

.6093

.7482

.8622

.3579

.4915

.5792

.6370

.7669

.8713

.3971

.5236

.6071

.6618

.7816

.8786

.4385

.5592

:"6354

.6869

.7966

.8861

X1

.2007

.3103

.4026

.4724

.633 7

.7902

.2383

.3514

.4409

.5052

.6611

.8085

.2703

.3858

.4719

.5349

.6842

.8217

.3082

.4248

.5084

.5680

.7073

.8352

3

X2

.2361

.3765

.4802

.5542

.7081

.8388

.2733

.4163

.5132

.5806

.7268

.8500

.3090

.4480

.5391

.6036

.7421

.8572

.3480

.4819

.5672

.6282

.7578

.8653

X1

.1467

.2594

.3497

.4236

.5983

.7707

.1754

.2938

.3878

.4567

.6275

.7875

.2023

.3248

.4168

.4844

.6501

.8014

.23 73

.3605

.4502

.5172

.6741

.8148

4

X2

.1707

.3174

.4208

.5001

.6737

.8201

.2032

.3508

.4549

.5295

.6928

.8304

.2320

.3780

.4796

.5508

.7081

.8388

.2667

.4110

.5076

.5764

.7245

.8464

5

X1

.1020 .

.2126 .

.3044 .

.3781 .

.5694 .

.7510 .

.1290 .

.2433 .

.3371 .

.4115 .

.5958 .

.7679 .

.1525 .

.2721 .

.3667 .

.4393 .

.6175 .

.7819 .

.1816 .

.3055 .

.4001 .

.4707 .

.6408 .

.7964 .

X2

1172

2569

3726

4505

6408

8023

1470

2870

4007

4789

6601

8119

1715

3170

4264

5034

6743

8203

2002

3482

4530

5279

6908

8290
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TABLE 4.5.2Critical values for testing for up to 3 outliers using

sequentially applied version of Wilk's test .

Dimensions:

a n A - A » A_ A - A _ A - A - A * A - A - A - A -

0.01 15 .2458 .2956 .2895 .1854 .2212 .2083 .1359 .1560 .1364 .0899 ..1063 .0903

20 .3611 .4344 .4566 .2960 .3620 .3724 .2451 .3003 .2948 .2026 .2451 .2434

25 .4419 .5322 .5589 .3877 .4637 .4873 .3366 .4092 .4220 .2900 .3556 .3643

30 .5080 .5958 .6284 .4578 .5432 .5643 .4112 .4893 .5137 .3641 .4394 .4610

50 .6632 .7417 .7707 .6236 .6997 .7314 .5896 .6657 .6918 .5559 .6322 .6608

100 .8095 .8587 .8769 .7839 .8358 .8544 .7648 .8159 .8372 .7448 .7986 .8175

0.025 15 .2856 .3348 .3315 .2207 .2563 .2438 .1623 .1875 .1664 .1169 .1338 .1145

20 .4040 .4748 .4935 .3333 .3987 .4057 .2800 .3360 .3344 .2305 .2734 .2741

25 .4836 .5663 .5922 .4239 .4985 .5194 .3725 .4412 .4561 .3207 .3875 .3984

30 .5470 .6261 .6547 .4897 .5687 .5921 .4431 .5178 .5387 .3968 .4675 .4910

50 .6923 .7598 .7850 .6529 .7191 .7448 .6162 .6849 .7096 .5853 .6520 .6779

100 .8257 .8680 .8839 .8020 .8460 .8623 .7816 .8265 .8446 .7618 .8083 .8265

0.05 15 .3231 .3751 .3707 .2519 .2892 .2779 .1881 .2137 .1956 .1386 .1568 .1380

20 .4404 .5059 .5246 .3668 .4309 .4361 .3057 .3635 .3640 .2558 .2995 .3013

25 .5147 .5877 .6170 .4553 .5253 .5458 .4011 .4660 .4802 .3489 .4120 .4238

30 .5780 .6496 .6749 .5192 .5917 .6155 .4694 .5396 .5590 .4243 .4895 .5121

50 .7143 .7739 .7966 .6725 .7512 .7708 .6387 .7008 .7230 .6064 .6671 .6909

100 .8389 .8751 .8896 .8157 .8538 .8687 .7950 .8351 .8351 .7754 .8165 .8327

0.10 15 .3661 .4155 .4155 .2881 .3259 .3163 .2171 .2480 .2326 .1652 .1845 .1652

20 .4778 .5405 .5575 .4040 .4639 .4701 .3407 .3936 .3983 .2873 .3312 .3322

25 .5538 .6211 .6425 .4899 .5524 .5717 .4327 .4924 .5071 .3835 .4390 .4515

30 .6098 .6745 .6972 .5519 .6162 .6371 .5000 .5641 .5831 .4551 .5162 .5345

50 .7382 .7896 .8092 .6984 .7512 .7708 .6632 .7170 .7373 .6301 .6836 .7045

100 .8520 .8830 .8956 .8297 .8619 .8751 .8090 .8429 .8566 .7902 .8254 .8395
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The performance of the test procedure using these

critical values was investigated by simulation (2000

samples at each combination of n and p) in the presence of

different numbers of outliers with different amounts of

slippage in the mean. The results are discussed in the

following section. Some comments on the choice of

slippage in this and other simulations in this thesis will

be found in Appendix II.

For the second of Rosner's methods, simulation was used

only to examine the performance of the method. Critical

values were obtained from (4.4.3). Specifically, since

D + is the value of Wilks' statistic in the sample of n-h

points remaining after h extreme points have been deleted

from the original sample of n points, the rest at this

step consists of comparing D to the a/(n-h)% point of

the Beta distribution with parameters (n-h-p-l)/2 and p/2.

These are the standard Bonferroni approximations, just as

Rosner (1983) employs in his univariate application.

The simulations presented below involved generating

2 000 samples for each combination of n, p and number and

type of outliers. Tests were made for all numbers of

outliers up to the minimum of n/2, 10 and n-p-1; the first

two of these conditions were used by Rosner and the third

is a detail which ensures that the matrices being examined

remain non-singular.

4.6 Performance of the two procedures

The results of simulation studies of the two methods

are presented here in tables showing the proportion of

simulated samples in which outliers were declared, under

various conditions. Such results would normally be called

size and power; however, this terminology is liable to

become confused because a whole sequence of hypotheses

(H :k=0, 1, 2,...} is under consideration. The first
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table (Table 4.6.1) studies the first procedure, in the

versions testing for up to 2 and up to 3 outliers, in the

presence of either one (H ) , two (H ) or three (H )

contaminating observations. No study under H is needed,

because the error level is fixed by construction. The

second procedure is examined under H in Table 4.6.2 and

under H , H and H in Table 4.6.3. Some results for
l' 2 3

those combinations of n, p and number and type of

contaminants which were examined under both methods are

gathered together in Table 4.6.5: the intervening table,

4.6.4, augments the results of 4.6.3.

Table 4.6.1 shows the proportion of simulated samples

in which outliers are declared, in the presence of either

one, two or three contaminants.
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Table 4.6.la Performance of f irs t sequentially applied

procedure in presence of one or two outliers, at 1% level.

Outliers tested
Squared

Out- slippage
p n liers distance Type1

<2 ^3
Outliers declared Outliers declared
0 1 0 1

2

2

4

4

15

25

15

25

1

2

1

2

1

2

1

2

15
30

20
20
20

15
30

20
20
20

15
30

20
20
20

15
30

20
20
20

+

+

+ +

+ -

+±

+

+

+ -

+ ±

+

+

+ +

+-

+ ±

+

+

+ -

++

.8710

.5580

.7690

.7555

.6150

.7925

.3370

.5235

.4960

.3690

.9525

.8165

.9405

.9280

.8255

.9045

.5740

.7790

.7660

.6200

. 1110

.4165

.0155

.0210

.2155

. 1780

.6225

.0465

.0660

.2315

.0365

. 1675

.0045

.0150

. 1205

.0750

.3875

.0185

.0370

. 1875

.0180

.0255

.2155

.2235

. 1695

.0295

.0405

.4300

.4380

.3995

.0110

.0160

.0550

.0570

.0540

.0205

.0385

.2025

. 1970

. 1925

8930 .0905 .0120 .0045
6100 .3700 .0160 .0040

.7755 .0100 .1815 .0330
7750 .0160 .1850 .0240
6655 .1985 .1240 .0120

.8170 .1515 .0225 .0090

.3835 .5750 .0290 .0125

.5380 .0355 .3760 .0505

.5285 .0530 .3705 .0480

.4155 .2065 .3335 .0445

.9615 .0275 .0060 .0050

.8480 .1390 .0090 .0040

.9390 .0030 .0435 .0145

.9380 .0095 .0385 .0140

.8585 .0955 .0400 .0060

.9190 .0575 .0160 .0075

.6155 .3465 .0285 .0095

.7660 .0150 . 1700 .0490

.7760 .0290 .1605 .0345

.6590 .1595 .1550 .0265

Key : + equal slippage added to each dimension

equal slippage subtracted to each dimension

± equal slippage added to 1st dimension (to 1st

and 3rd for p=4) and subtracted from the 2nd

dimension (from 2nd and 4th for p=4).

(Details of slippage calculations in Appendix II)
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Table 4. 6. lb Performance of first sequentially applied procedure

in presence of one or two outliers, at 5% level.

Outliers tested

Squared
Out- slippage

p n liers distance Type
Outliers declared Outliers declared
0 1 2 0

2 15

2 25

4 15

4 25

15
30

20
20
20

15
30

20
20
20

15
30

20
20
20

15
30

20
20
20

+
+

++

+-

+±

+

+

+ +

+ -
+ +

+

+

++
+ —

+ ±

+

+

++

+-
+ +

.6545

.2800

.5520

.4870

.2775

.5735

. 1380

.2830

.2410

. 1495

.8320

.5695

.8165

.7905

.5830

.7245

. 3290

.5770

.5110

.3425

.2695

.6270

.0405

.0655

.3035

.3275

.7335

.0885

. 1135

.2295

. 1175

. 3490

.0250

.0525

.2430

. 2065

. 5495

.0660

.0965

.2500

.0760

.0930

.4075

.4475

.4190

.0990

. 1285

.6285

.6455

.6210

.0505

.0815

. 1585

. 1570

. 1740

.0690

. 1215

. 3570

.3925

.4075

7110 .2125 .0535 .0230
3350 .5715 .0675 .0260

.5430 .0290 .3360 .0920

.5150 .0550 .3560 .0740

.3510 .2745 .3190 .0555

,6125 .2860 .0580 .0435
.1760 .7005 .0770 .0465

.3050 .0715 .4735 . 1500

.2655 .1045 .4890 . 1410

.1855 .2220 .4505 . 1420

.8445 .0945 .0320 .0290

.6275 .3100 .0440 .0185

.8165 .0170 .1140 .0525

.8025 .0360 .1115 .0500

.6260 .2215 .1135 .0390

.7590 .1615 .0445 .0350

.3635 .5080 .0795 .0490

.5540 .0510 .2705 .1245

.5360 .0705 .2915 . 1020

.3920 .2235 .2790 . 1055
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Table 4.6.lc Performance of first sequentially applied procedure
in presence of three outliers, all with squared generalized
distance 20; 1% significance level.

Outliers tested

n Type

<2 ^3
Outliers declared Outliers declared
0 1 0 1

15 9835 .0030 .0135
9635 .0060 .0305
7235 .1760 .1005
6830 .1895 .1275

.8670 .0025 .0075 .1230

.8365 .0040 .0180 . 1415

.6365 .1105 .0755 . 1775

.6275 . 1295 .0930 . 1500

25

+ + ±

8360 .0105 . 1535
7820 .0160 .2020
4435 .2370 .3195
3900 .1545 .4655

.5630 .0055 .0555 .3760

.5320 .0065 .0815 .3800

.3400 .1180 .1515 .3905

.3270 .0890 .2050 .3790

15 .9885 .0060 .0055
.9815 .0085 .0100
.8915 .0760 .0325
.8855 .0740 .0405

.9770 .0060 .0030 .0140

.9670 .0070 .0060 . 0200

.8845 .0610 .0225 .0320

.8920 .0550 .0245 .0285

25

+ + ±

9435 .0110 .0455
9130 .0155 .0715
6915 .1565 .1520
6570 .1395 .2035

.8520 .0075 .0240 . 1165

.8100 .0100 .0455 . 1345

.6355 .1090 .1025 . 1530

.6135 .0975 .1345 . 1545

Table 4. 6.Id Performance of first sequentially applied procedure
in presence of three outliers, all with squared generalized
distance 20; 5% significance level.

Outliers tested

Type

<2 S3
Outliers declared Outliers declared
0 1 0 1

15

+ + ±

9155 .0155 .0690
8420 .0315 . 1265
4280 .3400 .2320
3530 .2945 .3525

.6990 .0065 .0320 .2625

.6025 .0175 .0625 .3175

.3360 .1815 .1365 .3460

.3165 .1695 .1750 .3390

2 25

+- +

5790 .0370 .3840
4570 .0545 .4885
1580 .2355 .6065
1280 .1250 .7470

3385 .0175 .0925 .5515
2845 .0205 .1125 .5825
1225 .1090 .1755 .5930
1140 .0710 .2110 .6040

4 15 9485 .0230 .0285
9245 .0330 .0425
7070 .1785 .1145
6615 .1920 .1465

9110 .0175 .0150 .0565
8870 .0230 .0275 . 0625
7020 .1315 .0680 .0985
6805 .1405 .0885 .0905

4 25 8165 .0410 .1425
7575 .0565 .1860
4255 .2395 .3350
3610 .2090 .4300

6670 .0215 .0620 .2495
6065 .0300 .0815 .2820
3625 .1510 .1800 .3065
.3365 .1300 .2080 .3255
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The two versions of the test, for a maximum of either

two (T ) or three (T ) outliers, are considered, so that

the possible number of outliers which can be declared are

zero, one and two (in test T ) , or zero, one, two and

three (in T ) . A variety of distances and directions are

covered for the slippage vectors. The table first shows

results at the 1% and 5% levels for one or two

contaminants. The following observations can be made:

a) in most cases, the test T for up to 2 outliers

is more likely to declare any outliers than the test T

for up to 3, if in fact there are one or two contaminants;

b) the opposite is true if there are three

contaminants;

c) if there is one contaminant, the result in a) is

due to a greater probability of declaring exactly one

outlier with test T than with test T - the probability

of declaring more than one outlier is about the same under

both tests;

d) the probability of declaring more than the true

number of contaminants can go up to about 5% for the test

at the 1% level (under H ) and 15% for the test at the 5%

level: these figures depend on the test (T or T ) and the

nature of the outliers, but in almost all cases exceeds

the size under H .
o

The result a) is to be expected because some of the,

say, 5% error probability which is all "used up" in

testing for one or two outliers in the test T must be

allotted to testing for three outliers in the test T .

This means reducing the probability of declaring outliers

in the tests for one and two outliers, and this is not

made up for by the small probability of declaring three

outliers (since there are actually only one or two

contaminating points). On the other hand, if there are in

fact three outliers, only the test T can declare this,
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and - with the test T suffering from masking - the result

b) follows. Result c) is also entirely as expected;

changes in the critical value have a bigger absolute

effect at the level of one outlier since declaring two or

three outliers is a relatively rarer event.

Result d) illustrates the point of Hawkins' criticism

of the construction of critical values at each level of

the test, that error levels under H , H , . . . are not
' 1' 2'

controlled. The fact that the error level increases over

that applying to H bears out the remark in Rosner (1983)

and the example in Hawkins (1980a).

For the second sequentially applied procedure, Table

4.6.2 shows the proportion of samples in which outliers

were declared, when in fact there were no contaminants.
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Table 4.6.2a Performance of second sequentially applied procedure

under H (no outliers), at nominal 1% level. (Blanks denote
o

values that are the same as the preceding ones in the same row;

dashes denote tests which were not carried out.)

Outliers declared (cumulative proportions)

1 2 3 4 5 6 7 8 9 10

10 .0090 .0130 .0150 .0205 - - - - - -
15 .0075 .0095 .0095 .0105 .0115 .0115 .0130 - - -
20 .0130 .0140 .0145 .0150 .0150 .0150 .0150 .0150 .0155
25 .0150 .0160 .0175 .0175 .0175 .0175 .0175 .0175 .0180
30 .0095 .0105
50 .0130
100 .0110

10 .0100 .0145 .0185 .0230 - - - - - -
15 .0105 .0105 .0120 .0135 .0140 .0165 .0190 - - -
20 .0120 .0125 .0125 .0130 .0135 .0140 .0145 .0150 .0150 .0165
25 .0100 .0115
30 .0090
50 .0110
100 .0120

10 .0100 .0135 .0200 .0245 - - - - - -
15 .0075 .0090 .0095 .0105 .0125 .0130 .0150 -
20 .0090 .0105 .0105 .0105 .0105 .0110 .0110 .0115 .0125 .0150
25 .0120 .0130 .0130 .0130 .0130 .0135
30 .0115 .0120
50 .0090 .0145
100 .0140

10 .0075 .0120 .0160 .0250 - - - - - -
15 .0085 .0115 .0125 .0145 .0180 .0245 .0290 -
20 .0100 .0105 .0105 .0105 .0115 .0115 .0125 .0140 .0145 .0170
25 .0110 .0120 .0120 .0125 .0125 .0125 .0125 .0130 .0135
30 .0120
50 .0095
100 .0080
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Table 4.6.2b Performance of second sequentially applied procedure

under H (no outliers), at nominal 57. level. (Blanks denote

values that are the same as the preceding ones in the same row;

dashes denote tests which were not carried out.)

n

Outliers declared (cumulative proportions)

2 3 4 5 6 7 8 9 10

10
15
20
25
30
50
100

10
15
20
25
30
50
100

10
15
20
25
30
50
100

10
15
20
25
30
50
100

0460 .0695 .0885 .1090 - - - - - -
0470 .0605 .0625 .0705 .0760 .0865 .0950 -
0445 .0510 .0535 .0580 .0595 .0625 .0640 .0660 .0690 .0745
0475 .0555 .0585 .0600 .0600 .0600 .0610 .0615 .0625 .0630
0390 .0460 . 0470 .0470 .0475 .0480 .0485
0495 .0515 .0520
0530 .0560

0480 .0655 .0865 . 1110 -
0450 .0540 .0650 .0735 .0800 .0930 .1025 -
0415 .0495 .0525 .0545 .0585 .0620 .0640 .0670 .0690 .0765
.0450 .0535 .0565 .0570 .0570 .0580 .0585 .0590 .0590 .0610
.0500 .0525 .0535 .0535 .0540 .0545 .0555
0540 .0575 .0580
.0390 .0400

.0440 .0665 .0900 .1150 - - - - - -

.0375 .0490 .0535 .0645 .0720 .0850 .0980 -

.0490 .0560 .0590 .0605 .0645 .0700 .0735 .0790 .0860 .0945

.0470 .0545 .0560 .0600 .0605 .0610 .0615 .0625 .0625 .0635

.0470 .0520 .0545 .0550 .0550 .0550 .0550 .0560 .0560 .0565
0485 .0535
0530 .0535

.0455

0540

0380 .0590 .0845 .1230 - - - - - -
0415 .0545 .0620 .0720 .0820 .1065 .1240 - - -
0460 .0520 .0555 .0590 .0635 .0675 .0695 .0765 .0820 .0915
0540 .0605 .0640 .0670 .0675 .0695 .0710 .0730 .0740 .0745

0530 .0535 .0540 .0545 .0550 .0560 .0570
0480

0455 .0530 .0530
0450 .0475 .0475

(Note, as a check, that the first column - one outlier

declared - simply gives the size of Wilks' test using

Bonferroni bounds at the nominal level of 1% and 5%, as

investigated in more detail in Chapter 3.) This table

Y
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suggests that one needs a sample size of about 25 to 30

before the true significance levels are very close to the

nominal 1% and 5% levels. This result appears not to

depend on the dimensionality, p. The finding agrees very

well with Rosner's (1983) recommendation that the

approximation (4.4.3) is acceptable for ni25 in his

univariate application of the methodology.

It might also be expected that Table 4.6.3 would

similarly confirm, at least for sufficiently large n, the

adequacy of approximation (4.4.3) in the presence of

outliers.
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Table 4.6.3a Performance of second sequentially applied

procedure in presence of one or two outliers, at nominal 1% level.

Squared
Out- slippage

p n liers distance Type

Outliers declared

0 1
More than
correct no

2 15 15
30

20
20
20 +±

8125 .1725 .0075 .0010 .0065 .0150
4600 .5240 .0085 .0010 .0065 .0160

.8195 .0245 .1285 .0185 .0090 .0275
7995 .0530 .1270 .0085 .0080 .0165
.5070 .3930 .0870 .0550 .0075 .0130

2 25 15
30

.2795 .7055 .0125 .0000 .0025 .0150
0115 .9770 .0100 .0005 .0010 .0115

20
20
20

.1575 .4460 .3865 .0050 .0010 .0060

.1195 .4635 .4095 .0070 .0005 .0075

.1320 .4935 .3680 .0055 .0010 .0065

2 50 15
30

.1865 .8050 .0085 .0000 .0000 .0085

.0015 .9885 .0100 .0000 .0000 .0100

4 15

4 25

20 ++ .0435 .4705 .4810 .0050 .0000 .0050
20 +- .0420 .4580 .4945 .0055 .0000 .0055
20 +± .0430 .4655 .4875 .0040 .0000 .0040

15 + .9230 .0670 .0005 .0015 .0080 .0100
30 + .7490 .2285 .0085 .0030 .0110 .0225

20 ++ .9290 .0160 .0330 .0075 .0145 .0220
20 +- .9240 .0245 .0320 .0050 .0145 .0195
20 +± .8665 .1950 .0225 .0050 .0110 .0160

15 + .8790 .1130 .0050 .0000 .0030 .0080
30 + .5155 .4775 .0050 .0015 .0005 .0070

20 ++ .8595 .0480 .0820 .0085 .0030 .0105
20 +- .8450 .0695 .0815 .0035 .0005 .0040
20 +± .6135 .3330 .0520 .0010 .0005 .0015

4 50 15
30

8090 .1895 .0015 .0000 .0000 .0015
3490 .6460 .0040 .0010 .0000 .0050

20
20
20

6895 .1530 .1545 .0030 .0000 .0030
6580 .2120 .1250 .0050 .0000 .0050
4485 .4305 .1190 .0020 .0000 .0020



- 114 -

Table 4.6.3b Performance of second sequentially applied

procedure in presence of one or two outliers, at nominal 5% level.

Squared
Out- slippage

p n liers distance Type 0

Outliers declared

1
More than

2:4 correct no

2 15 1 15
30

20
20
20

5590 .3580 .0320 .0145 .0365 .0830
1885 .7200 .0415 .0130 .0370 .0915

5345 .0690 .2915 .0480 .0570 .1050
.4730 .1240 .3110 .0370 .0550 .0920
.1825 .4715 .2650 .0300 .0510 .0810

2 25 15
30

.1105 .8315 .0440 .0065 .0075 .0580

.0000 .9295 .0550 .0050 .0105 .0705

20
20
20 + ±

.0395 .3135 .5985 .0355 .0130 .0485

.0200 .3110 .6145 .0385 .0160 .0545

.0205 .3220 .6030 .0380 .0165 .0545

2 50 15
30

.0710 .8795 .0465 .0030 .0000 .0495

.0000 .9495 .0475 .0030 .0000 .0505

20
20
20 + ±

.0090 .2855 .6650 .0360 .0045 .0405

.0090 .2885 .6610 .0380 .0035 .0415

.0095 .2895 .6580 .0395 .0035 .0430

4 15 15
30

.7385 .1870 .0195 .0115 .0435 .0745

.4425 .4585 .0305 .0140 .0545 .0990

20
20
20

.7515 .0580 .0950 .0315 .0640 .0955

.7230 .0835 .1020 .0315 .0600 .0915

.4625 .3615 .1015 .0180 .0565 .0745

4 25 15
30

20
20
20 + ±

7030 .2520 .0270 .0045 .0135 .0450
2645 .6790 .0365 .0075 .0125 .0565

.6015 .1180 .2195 .0380 .0235 .0615

.5805 .1895 .1865 .0270 .0165 .0435

.3190 .4690 .1765 .0185 .0170 .0355

4 50 15
30

.6335 .3440 .0205 .0015 .0005 .0225

.1805 .7825 .0335 .0020 .0015 .0370

20
20
20 + ±

4385 .2455 .2940 .0195 .0025 .0220
.3860 .3185 .2760 .0175 .0020 .0195
.2180 .4885 .2785 .0125 .0025 .0150
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Table 4.6.3c Performance of second sequentially applied

procedure in presence of three outliers (all with squared

generalized distance = 20), at nominal 1% level.

Outliers declared
Outlier —
types 0 1

More than
correct number

2 15 +++ .8885 .0060 .0020 .0670 .0205 .0160 .0365
++- .8990 .0145 .0065 .0630 .0120 .0050 .0170
++± .6130 .2480 .0415 .0825 .0120 .0030 .0150
+-± .6105 .2545 .0500 .0765 .0050 .0035 .0085

2 25 +++ .2065 .0530 .3200 .4085 .0100 .0020 .0120
++- .1990 .0535 .3430 .3935 .0085 .0025 .0110
++± .1940 .0700 .3460 .3775 .0095 .0030 .0125
+-± .1815 .0775 .3505 .3805 .0080 .0020 .0100

2 50 +++ .0340 .0795 .4295 .4515 .0045 .0010 .0055
++- .0255 .0615 .4455 .4645 .0025 .0005 .0030
++± .0280 .0525 .4255 .4880 .0050 .0010 .0060
+-± .0245 .0680 .4100 .4905 .0065 .0005 .0070

4 15 +++ .9615 .0085 .0020 .0125 .0035 .0120 .0155
++- .9600 .0110 .0045 .0080 .0035 .0130 .0165
++± .8430 .1100 .0160 .0120 .0060 .0130 .0190
+-± .8430 .1040 .0250 .0140 .0095 .0045 .0140

4 25 +++ .9225 .0160 .0090 .0295 .0130 .0100 .0230
++- .9125 .0235 .0135 .0315 .0130 .0060 .0190
++± .6715 .2295 .0530 .0310 .0105 .0045 .0150
+-± .6670 .2345 .0590 .0330 .0055 .0010 .0065

4 50 +++ .8025 .0925 .0430 .0555 .0065 .0000 .0065
++- .7725 .1000 .0630 .0605 .0040 .0000 .0040
++± .4665 .3420 .1340 .0555 .0020 .0000 .0020
+-± .4405 .3620 .1450 .0510 .0015 .0000 .0015
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Table 4.6.3d Performance of second sequentially applied procedure

in presence of three outliers (all with squared generalized

distance 20), at nominal 5% level.

n

Outliers declared
Outlier —
types 0 1

More than
cor rec t number

2 15 +++ .6580 .0295 .0235 .1630 .0600 .0660 .1260
++- .6085 .0475 .0410 .2070 .0470 .0490 .0960
++± .2415 .3270 .1050 .2390 .0455 .0420 .0875
+-± .2275 .3330 .1670 .2020 .0305 .0400 .0705

2 25 +++ .0355 .0290 .2730 .6085 .0395 .0145 .0540
++- .0285 .0265 .3005 .5915 .0365 .0165 .0530
++± .0240 .0330 .3050 .5780 .0440 .0160 .0600
+-± .0255 .0350 .2970 .5825 .0440 .0160 .0600

2 50 +++ .0030 .0200 .2935 .6435 .0370 .0030 .0400
++- .0020 .0180 .2850 .6545 .0360 .0045 .0405
++± .0035 .0110 .2795 .6655 .0355 .0050 .0405
+-± .0035 .0140 .2775 .6645 .0370 .0035 .0405

4 15 +++ .8130 .0375 .0190 .0445 .0250 .0610 .0860
++- .7890 .0585 .0220 .0470 .0295 .0540 .0835
++± .6195 .2445 .0605 .0605 .0270 .0525 .0795
+-± .5530 .2480 .0715 .0565 .0240 .0470 .0710

4 25 +++ .7325 .0590 .0340 .0940 .0400 .0405 .0805
++- .6855 .0870 .0510 .1035 .0415 .0315 .0730
++± .3660 .3220 .1350 .1170 .0360 .0240 .0600
+-± .3310 .3525 .1570 .1190 .0210 .0195 .0405

4 50 +++ .5095 .1605 .1375 .1680 .0185 .0060 .0245
++- .4360 .2005 .1765 .1660 .0175 .0035 .0210
++± .2135 .3375 .2670 .1650 .0160 .0010 .0170
+-+ .2005 .3490 .2895 .1475 .0120 .0015 .0135

The relevant results will be found in the last column

of each section of the table, giving the proportion of

simulated samples in which the number of outliers declared

exceeds the true number of outliers. As expected, these

proportions substantially exceed the nominal 1% and 5% in

the sets of simulations for n=15, but are at about the

right value for n=25. However, for n=50 they are

substantially below these nominal levels. This finding

leads to the re-examination of Rosner's own application as

described in § 4.4.
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It was shown in that section that results depended on

the amount of the slippage. It will be noted that in

Table 4.6.3 the slippages are not particularly large:

simulation (2000 runs) shows that Wilks' ordinary test for

one outlier has a power of about 89% (at the nominal 5%

level using Bonferroni bounds) for the combination of

n=2 5, p=2 and squared distance=3 0, while the ordinary test

for two outliers has a power of about 71% to 9 0%

(depending on the directions of slippages) for the

combination of n=25, p=2 and squared distance=2 0 (in this

cases using simulated 5% critical values, from Chapter 3).

For the latter combination, but with n=50, the power

becomes 85% to 93%. Most of these powers are well below

the 99% for Rosner's univariate sequential procedure with

a slippage of 6 (see Table 4.4.1). Some supplementary

runs for the multivariate case were therefore undertaken

with a larger slippage, namely 50 in each dimension.

Results are shown in Table 4.6.4.

Table 4

n

15
50
50
50

n

15
50
50
50

.6.4

Outliers declared at

outliers(s) 0

+ 0
+ 0
+- 0
+± 0

1

.9835

.9920
0
0

Outliers declared at

outlier(s) 0

+ 0
+ 0
+- 0
+ ± 0

1

.9170

.9560
0
0

1%

2

.0090

.0080

.9840

.9890

5%

2

.0395

.0415

.9300

.9340

3

.0020

.0000

.0135

.0100

3

.0110

.0025

.0520

.0510

4 +

.0055

.0000

.0025

.0010

4 +

.0325

.0000

.0180

.0150

(Note: 2 000 simulations; p=2 throughout)

One would hope to be able to predict the results of
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this investigation on the following argument. If there is

one contaminant and the slippage is very large, the

outlier should be identified correctly by the test for one

outlier with high probability. The contaminant is removed

and the test in the reduced sample is now an application

of a single-outlier test in a sample which strictly

conforms to the null hypothesis. The error level should

therefore be close to the nominal level, with a small

excess due to the possibility of declaring two or more

outliers in cases where the single-outlier test is not

significant. Similar remarks apply to the case of two

outliers, assuming that two successive separate

identifications of the most extreme single outlier have

the same effect as directly detecting the most outlying

pair. The results in Table 4.6.4 do seem to agree with

these predictions, remembering that the critical values

are based on simulations for the case of two outliers, so

introduce some inaccuracy.

Finally, Table 4.6.5 gathers together some results

already presented in earlier tables, in order to give

side-by-side comparisons between the performance of the

two test procedures. However, the meaningfulness of

thesecomparisons is limited, because of the restricted

scope of the first procedure (inability to declare more

than 2 or 3 outliers, depending on the version) and the

different sizes of the procedures.
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Table 4.6.5a Comparative performance of first and second outlier
detection procedures in presence of one or two contaminants:
proportion of times in 5000 simulations that less than correct
number, correct number or more than corect number of points
declared as outliers, at nominal 1% level.

Procedure: First, up to 2 First, up to 3 Second

Outl. declared Outl. declared Outl. declared
Squared

Out- dist-
p n liers ances Type < Correct > < Correct > < Correct >

2 15 15 + .8710 .1110 .0180 .8930 .0905 .0165 .8125 .1725 .0150

30 + .5580 .4165 .0255 .6100 .3700 .0200 .4600 .5240 .0160

2

4

4

2

2

4

4

25

15

25

15

25

15

25

2

1

2

1

2

1

2

3

3

3

3

20
20
20

15

30

20

20

20

15

30

20

20

20

15
30

20

20

20

20

20

20

20

++

+-

+±

+

+

++

+-

+±

+

+

+ +

+—

+ ±

+

+

++

+ -
+ ±

+++

++-

++±

+ -±

+ + +

+ + -

++±

+-±

+ + +

+ + -

+ + ±

+ -±

++ +

++-

++±

+ -±

.7845

.7765

.8305

.7925

.3370

.5700

.5620

.5605

.9525

.8165

. 9450

. 9430

.9460

.9045

.5740

.7975

. 8030

.8075

1

1
1

1

1

1

1
1

1

1

1
1

1

1
1

1

.2155

.2235

. 1695

. 1780

.6225

.4300

.4380

.3995

.0365

. 1675

.0550

.0570

.0540

.0750

.3875

.2025

. 1970

. 1925

_

-

-

-

-

-

-

-

-

-
-

-

_

-
-

_

-
-

-

.0295

.0405

_

-

-

.0110

. 0160

_

-

-

.0205

.0385

_

-

-

_

-

-

-

_

-

-

-

_

-
-

-

_

-
-

_

.7855

.7910

.8640

.8170

.3835

.5735

. 5815

.6220

. 9615

.8480

. 9420

.9475

.9540

.9190

.6155

.7810

.8050

.8185

. 8770

.8585

. 8225

.8500

. 6240

. 6200

.6095

.6210

.9860

.9800

.9680

.9715

.8835

.8655

.8470

.8455

. 1815

. 1850

. 1240

. 1515

.5750

.3760

.3705

.3335

.0275

. 1390

.0435

.0385

.0400

.0575

.3465

. 1700

. 1605

. 1550

. 1230

. 1415

. 1775

. 1500

.3760

.3800

.3905

.3790

.0140

.0200

.0320

.0285

. 1165

. 1345

. 1530

. 1545

.0330

.0240

.0120

.0315

.0415

.0505

.0480

.0445

.0110

.0130

.0145

.0140

.0060

.0235

.0380

.0490

.0345

.0265

-

-

-

-

-

-

-

-

—

-
-

-

_

-
-

_

.8440

.8525

.9000

.2795

.0115

.6035

.5830

.6255

.9230

.7490

.9450

.9485

.9615

.8790

.5155

. 9075

.9145

.9465

.8965

.9200

.9025

.9150

.5795

. 5955

.6100

.6095

.9720

.9755

.9690

.9720

.9475

.9495

.9540

.9605

. 1285

. 1270

.0870

.7055

.9770

.3865

.4095

.3680

.0670

.2285

.0330

.0320

.0225

. 1130

. 4775

.0820

.0815

.0520

.0670

.0630

.0825

.0765

.4085

.3935

.3775

.3805

.0125

.0080

.0120

.0140

.0295

.0315

.0310

.0330

.0275

.0165

.0130

.0150

.0115

.0060

.0075

.0085

.0100

.0225

.0220

.0195

.0160

.0080

.0070

. 0105

.0040

.0015

.0365

.0170

.0150

.0085

.0120

.0110

.0125

.0100

.0155

.0165

.0190

.0140

.0230

.0190

.0150

.0065
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Table 4.6.5b Comparative performance of first and second outlier
detection procedures in presence of one or two contaminants:
proportion of times in 5000 simulations that less than correct
number, correct number or more than corect number of points
declared as outliers, at nominal 5% level.

Procedure: First, up to 2 First, up to 3 Second
Outl. declared Outl. declared Outl. declared

Squared
Out- dist-

p n liers ances Type < Correct > Correct > Correct

2 15 1 15 + .6545 .2695 .0760 .7110 .2125 .0765 .5590 .3580 .0830
30 + .2800 .6270 .0930 .3350 .5715 .0935 .1885 .7200 .0915

20 ++ .5925 .4075
20 +- .5525 .4475
20 +± .5910 .4190

.5720 .3360 .0920 .6035 .2915 .1050

.5700 .3560 .0740 .5970 .3110 .0920

.6255 .3190 .0555 .6540 .2650 .0810

2 25

4 15

4 25

2 15

2 25

4 15

4 25

15
30

20
20
20

15
30

20
20
20

15
30

20
20
20

20
20
20
20

20
20
20
20

20
20
20
20

20
20
20
20

+
+

++

+-
+ +

+

+

+ +

+-
+ ±

+

+

+ +

+-

+±

+++
++-

+ + ±

+ -±

+ + +

+ + -

++±

+ -±

+ + +

++-

+ + ±

+-±

++ +

+ + -

++±

+ -±

.5735

. 1380

.3715

.3545

.3780

.8320

.5695

.8415

.8430

.8260

.7245

.3290

.6430

.6075

.5925

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

.3275

.7335

.6285

.6455

.6210

. 1175

.3490

. 1585

. 1570

. 1740

.2065

. 5495

.3570

.3925

.4075

_

-
-
-

_

-
-
-

_

-
-
-

_

-
-
-

.0990

. 1285

_

-
-

.0505

. 0815

_

-
-

.0690

. 1215

_

-
-

_

-
-
-

—

-
-
-

-
-
-

_

-
-
_

.6125

. 1760

.3765

.3700

.4075

.8445

.6275

.8335

.8385

.8475

.7590

.3635

.6050

.6065

.6155

.7375

.6825

.6540

.6610

.4485

.4175

. 4070

.3960

.9435

.9375

. 9015

. 9095

.7505

.7180

.6935

.6745

.2860

.7005

.4735

.4890

.4505

.0945

.3100

. 1140

. 1115

. 1135

. 1615

.5080

.2705

.2915

.2790

.2625

.3175

.3460

.3390

.5515

.5825

.5930

.6040

.0565

.0625

.0985

.0905

.2495

.2820

.3065

.3255

. 1015

. 1235

. 1500

. 1400

. 1420

.0610

.0625

.0525

.0500

. 0390

.0795

. 1285

. 1245

. 1020

. 1055

_

-
-
-

-

-
-
-

_

-
-
-

—

-
-
—

. 1105

.0000

.3530

.3310

.3425

.7385

. 4425

.8095

.8065

.8240

.7030

.2645

.7190

.7700

.7880

.7110

.6970

.6735

.7275

.3375

.3555

.3620

.3575

.8695

.8695

.9245

.8725

.8255

.8235

.8230

.8405

.8315

.9295

.5985

.6145

.6030

. 1870

.4585

.0950

. 1020

. 1015

.2520

.6790

.2195

. 1865

. 1765

. 1630

.2070

.2390

. 2020

.6085

.5915

.5780

. 5825

.0445

.0470

. 0605

.0565

. 0940

. 1035

. 1170

.1190

.0580

.0705

.0485

. 0545

.0545

.0745

.0990

. 0955

. 0915

.0745

. 0450

.0565

.0615

.0435

.0355

. 1260

.0960

.0875

. 0705

.0540

.0530

.0600

. 0600

. 0860

.0835

.0795

.0710

.0245

.0210

.0170

.0135
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4.7 Use of sequentially applied test statistics

One role for outlier detection methods is in the

automatic screening of the data, advocated by Gentleman

and Wilk (1975). This is particularly valuable when the

data are unlikely to be inspected closely by a trained eye;

this situation might arise for various reasons including

the automation of data collection and data reporting.

Routine use of these methods also removes the difficulties

over significance level introduced by the subjective

decision to employ outlier testing in the light of some

impression gathered from inspection of the data (Collett

and Lewis, 1976).

Under these circumstances, the only difficulty

remaining with the sequentially applied test is the choice

of k, the maximum possible number of outliers. This too

is effectively avoided if the test is used repeatedly in

the same situation, for example with batches of similar

data from the same laboratory. In this situation, it is

possible to estimate the frequency of outlying values in

the long run. The upper limit k could then be chosen so

that the probability of a sample containing more than k

outliers is sufficiently small. Table 4.7.1 shows the

probability of having more than 2 or 3 contaminants in a

sample of given size, given the probability that a

randomly selected point is a contaminant.
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Table 4.7.1 Probability of more than k discordant points in a

sample of size n if a randomly selected point is discordant

with probability p.

P

n

10
k=2 3 0

50
100

10
k=3 3 0

50
100

0.01

.000114

.003317

.013817

.079372

.000030

.000996

.004651

.033623

0.02

.000864

.021717

.078427

.323313

.000239

.007599

.032925

.186606

0.05

.011504

.187822

.459465

.881737

.003648

.092535

.294562

.777056

These are simply binomial probabilities. Since a

contaminant is not necessarily an outlier, and vice versa,

this is not precisely the same as predicting the number of

outliers, but should serve as close guide. Probably the

test with k=3 would be thought very adequate with sample

sizes of 10 even if the probability of a discordant

observation were as big as 0.05. With p=0.01, perhaps a

much more realistic value than 0.05 in most circumstances,

k=3 seems adequate even for n=50.

As an illustration, however, the sequentially applied

test is used here on a unique set of data rather than one

from a series, in order to compare to another published

method. Bacon-Shone and Fung (1987) illustrated their

graphical method with a set of three-dimensional data

(n=36) on milk transportation costs which they attribute

to Johnson and Wichern (1982). These data are given here

as Table 4.7.2.
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Table 4.7.2 Transportation cost data (Johnson and Wichern,

(1982), copied from Bacon-Shone and Fung, 1987): costs in

dollars per mile of transporting milk from farm to dairy

plant.

Fuel
16.44
7.19
9.92
4.24
11.20
14.25
13.50
13.32
29.11
12.68
7.51
9.90
10.25
11.11
12.17
10.24
10.18
8.88
12.34
8.51
26.16
12.95
16.93
14.70
10.32
8.98
9.70
12.72
9.49
8.22
13.70
8.21
15.86
9.18
12.49
17.32

Repair

12
2
1
5
5
5

10
14
15
7
5
3
5
6

14
2
6
2
7

14
17
8

13
10
5
4

11
8
2
7
11
9

11
9
4
6

.43

.70

.35

.78

.05

.78

.98

.27

.09

.61

.80

.63

.07

.15

.26

.59

.05

.70

.73

.02

.44

.24

.37

.78

.16

.49

.59

.63

.16

.95

.22

.85

.42

.18

.67

.86

Capital

11.23
3.92
9.75
7.78
10.67
9.88
10.60
9.45
3.28
10.23
8.13
9.13
10.17
7.61
14.39
6.09

12.14
12.23
11.68
12.01
16.89
7.18
17.59
14.58
17.00
4.26
6.83
5.59
6.23
6.72
4.91
8.17
13.06
9.49
11.49
4.44

Bacon-Shone and Fung obtain (their Table 3.2) the following

results for Wilks' test, with a indicating the unconditional

significance levels:
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Table 4.7.3

No of outliers Wilks' Observations
tested statistic a selected

1
2
3
4

0.481
0.278
0.196
0.148

<0.
« 0
« 0
« 0

005
.005
.005
.005*

9
9
9
9

,21
,21,
,21,

36
36,20

*
This value, not given by Bacon-Shone and Fung, was

computed here from 1000 simulations.

They then employ their graphical method and assert that

there is no evidence for more than two outliers, the

result of the three outlier test being due to the effect

known as swamping. They interpret their graphs as

indicating that definitely point 9 and probably point 21

should be regarded as outliers. Evidence for point 21 is

drawn too from what they call a sequential procedure. That

is, point 9 is eliminated and the standard Wilks tests for

one, two, and more outliers are carried out on the

remaining 3 5 points in the reduced sample, giving (their

Table 3.3, with the addition of the result for three

outliers, computed from 4000 simulations):

Table 4

No. of

1
2
3

.7.4

outliers Wilks'
statistic

0.577
0.407
0.287

0
0
0

a

.02

.04

.028

Observations
selected

21
21,36
21,36,20

The significant result of the two-outlier test

presumably indicates that swamping is still in effect,

although Bacon-Shone and Fung make no remark on this

result.
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To obtain comparative results using Rosner's first

sequentially applied test, critical values have been

computed for n=36 and p=3. These are as follows:

Table 4.7.5

Max. no of
outliers

3

2

outliers

1
2
3

1
2

0.01

0.5201
0.6063
0.6375

0.5335
0.6134

0.025

0.5527
0.6287
0.6575

0.5656
0.6385

a

0.05

0.5794
0.6488
0.6741

0.5954
0.6594

0.10

0.6096
0.6702
0.6926

0.6237
0.6808

Alternatively, these could be obtained approximately by

interpolation from the previous tables.

The three most extreme points are numbers 9, 21 and 3 6

in the data file, with test statistics D =0.4815,

D =0.5770 and D =0.7058. All these details match the
2 3

results of Bacon-Shone and Fung. It can be seen that D

is so large that we would not accept the existence of

three outliers even at the 10% level. Testing therefore

passes to D , which is below the 1% critical value of

0.6063. Consequently, the evidence seems to be very clear

that this set of data contains two outliers, points 9 and

21.

Rosner's second procedure simply uses the unadjusted

critical values of Wilks' statistic test at each step.

The results, for testing for up to 3 outliers, are set out

in Table 4.7.6. Details of tests beyond 3 outliers (up to

10) are not presented because all calculated values of

Wilks' statistic were above 0.7, whereas even the 10%

critical value was only 0.64 or less.
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Table 4.7.6

Critical values of

Wilks' statistic

Sample
size

36

35

34

Omit
point

9

21

36

Wilks'
statistic

.481

.577

.706

1%

.558

.548

.539

2.5%

.592

.583

.574

5%

.619

.611

.602

10%

.648

.640

.632

Accepting the validity of the approximation involved in

the use of these unadjusted significance levels, the

conclusion would be that the existence of two outliers

(9,21) can be accepted at the 2.5% level, but three

outliers would not be accepted even at 10%.

The results from either version of Rosner's test

indicate the same conclusion, that 9, 21 can be regarded

as outliers; this is without needing graphical supplement

to overcome the swamping problem.
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CHAPTER 5

ROHLF'S GENERALIZED GAP TEST FOR MULTIVARIATE

OUTLIERS

5.1 Introduction

In univariate problems, any outliers must lie at the

extremes of the ordered sample values. This simple

observation makes possible certain characterizations of

outliers. In particular, if there are exactly k upper

outliers, then the gap between the successive order

statistics X. .-X, . should be unusually large: this
(n-k+l) (n-k) J ^

test was proposed by Irwin (1925). The idea was revived by

Tietjen and Moore (1972) and Tiku (1975), who propose

using the gaps to see how many outliers to test for and

then using an optimal test for that number. The gap tests

themselves are not optimal but, as Hawkins (1980a) says,

they are very attractive if there is reason to believe

that the contaminants all follow the same distribution,

for then the data ought to fall into two well-separated

clusters. Various other tests using gaps were proposed by

Dixon (1950). His test criteria are ratios of differences

between order statistics: one example was shown in Example

1 of § 1.4. Hawkins (1980a) comments that these criteria

have lost favour, partly because they do not extend to

other situations, such as linear models.

Gap tests thus form, or have formed, a significant part

of the theory on testing for outliers in univariate

samples. For multivariate data, on the other hand, they

cannot fill the same role. It is difficult to define gaps

in terms of order statistics, because of the lack of a

convenient concept of ordering (Barnett, 1976).

Nonetheless, a form of gap test has been proposed for

multivariate data, by Rohlf (1975). Far from having lost

favour, this seems from the literature never to have had

any. But potentially it has advantages over the main
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general-purpose test, the Wilks test, if there is more

than one outlier. Rohlf claims that his test should be

less susceptible to masking than the Wilks test and points

out that it requires the same computational effort

whatever number of outliers is examined, whereas the Wilks

procedure requires a rapidly increasing number of

comparisons. (The reason for this is that Rohlf's test is

not in fact a test for any particular number of outliers:

if the test results in the declaration of the presence of

outliers, then their number is inferred from the structure

of the sample, as described below.) A third possible

advantage which could be added is that the Bonferroni

bounds usually used for the Wilks test are poor

approximations for more than one outlier (Hawkins, 1980a;

see also Chapter 3 of this thesis). For these reasons, it

is worth investigating Rohlf's test in some detail.

Rohlf's procedure starts by defining a distance measure

between the points in a sample of independent

p-dimensional data vectors, and constructing the minimum

spanning tree (MST) for these distances. A spanning tree

of a set of n points is a set of n-1 out of the

possible edges (connections between pairs of points) such

that:

(i) each point is connected to at least one another;

(ii) every point is accessible from every other point

by following some path along edges of the tree;

(iii) there are no closed loops - for any (i,j), there

is a unique path of edges by which point j can be reached

from point i.

The MST is that spanning tree which has minimum sum of

length of edges. It has a wide variety of applications in

operational research problems. Its importance in

multivariate data analysis is due to its equivalence to

single linkage cluster analysis and its usefulness as a

supplement to graphical displays in two dimensions (Gower
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and Ross, 1969) .

Rohlf then suggests that the distances (or edges) in

the MST be taken as analogous to gaps in a univariate

sample. In particular, the presence of an outlier would be

indicated by the fact that the largest distance in the MST

was unusually large in comparison to the rest. Rohlf's

idea is basically to examine this largest distance in the

MST. This might be done informally in a probability plot,

but Rohlf also gives a more formal, significance testing

approach (although in subsequent correspondence, he seems

rather defensive about this and claims that the plot was

intended to be the main method; Rohlf, 1977). One reason

for the lack of popularity of this procedure may be that

its theoretical basis is not very sound. Rohlf argues for

a gamma distribution for the set of distances from the MST

and proposes estimating the parameters of this gamma,

followed by a test using these parameter estimates as if

they were true values. He presents a table of Bonferroni

upper bounds for the ratio of maximum to average distance

in the MST. Strangely, Barnett and Lewis (1984) refer to

this table without pointing out that it is the same,

except for multiplying each entry by the sample size, as

the first table in their book, for testing discordancy in

a gamma sample.

The contents of the analysis of Rohlf's gap test are as

follows. Firstly, the performance of the test in the form

suggested by Rohlf is investigated. Secondly, a modified

testing procedure, using simulated rather than

approximated percentage points, is considered. Finally, a

further variation, replacing Rohlf's Euclidean distances

by generalized distances, is examined.

5.2 Examination of Rohlf's procedure

5.2.1 Choice of distance measure

Rohlf's first step is the selection of a distance
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measure. He opts for a Euclidean distance on standardized

variables, so that given the nxp data matrix X=(x ) and

sample standard deviation s for variable k, the distance

between points i and j is

where x' =x /s . The standardization is to equalize the
i k i k k

impacts of variables with differing variances. Rohlf

actually suggests using some unspecified form of robust

estimator of s , his description of the first step of his

procedure being:

"Perform a univariate test for outliers (such as Dixon's

[1950] gap test) so that one can obtain fairly good

estimates of the standard deviations for each variable."

Robust estimation seems logically necessary after

choosing to use standardization in (5.2.1). Otherwise, no

matter how large an outlier might be in a particular

dimension k on the original scale of measurement, its

inclusion in the computation of s means that distances to

this outlier in this dimension are constrained to be of

only the same order of magnitude as distances between

points on other dimensions where no outliers appear. This

would mean a very severe lack of sensitivity.

The robust estimation was carried out in the present

study by simply trimming the sample (separately in each

dimension) by omitting either the most extreme observation

at each end of the ordered sample values or the two most

extreme at each end. The standard deviation of the

remaining n-2 or n-4 observations was then computed and

used in place of s in (5.2.1). This quantity does not of

course estimate the population standard deviation unless

it is adjusted; however, the adjustment would be the same

for each dimension, so has no effect in the analysis.

Rohlf also remarked that the familiar generalized
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squared distances

d2 — fv —v ̂  '<Z~1(Y —v } I R 9 ">\

could be used in place of those given by (5.2.1), without

elaborating on this. The analysis presented here will

first be in terms of (5.2.1), before considering use of

(5.2.2).

5.2.2 Distribution of distances

Rohlf argues that if the data were independent vectors

from N (n,I), then the squared Euclidean distance between

two randomly selected points would be distributed as 2X .
p

In fact this applies more generally than Rohlf states,

to standardized squared distances from N (ti.'Z) where
2 2 P

Z=diag(cr , . . . ,<x ) , since
i p

X -X N(0,2cr2)
ik jk x k

independently in each dimension k=l, . .

(x -x )

k

P
y (x —x )

a n d Li x i k jk ' V 2
k=l ~ A

2cr2

k

(However, the same distribution cannot hold when a is

replaced by a sample estimate s , when the N(O,1)

quantities are replaced by t distributions.) The

distribution 2X is the same as the gamma distribution
p

G(l/4,p/2) with scale parameter A=l/4 and shape parameter

7)=p/2. Rohlf then says that, if the variables are

correlated, a randomly selected d2 should still

approximately follow the gamma distribution, but with

different parameter values.(Note that Rohlf divides the

squared distance by p; this is not important, because a
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constant multiple of a gamma distributed random variable

is also gamma distributed.)

Some of the details behind Rohlf's statement can be

found in Gnanadesikan (1977; p.233). If A is a non-random

matrix and vectors Y are a random sample from N(0,$),

then squared distances Y 'AY are distributed as the

linear combination c^2+...+c^2, where the c are
1 1 r r i

positive eigenvalues of A$, the £2's are independent

chi-squared values each with one d.f. and r is the rank of

A. It is then a well-known approximation that a gamma

distribution comes close to this combination of

chi-squared variates, for suitable choice of parameters.

The same result is used, as a further approximation, when

A is an estimate from the sample. To apply this to

distances between points x distributed as N(JH,£), one

looks at d2 =Y 'AY where Y =x -x ~ N(0,2E).
ij i j ij ij i j

Further approximation is introduced through the Y 's

not being independent. In fact the sample of n points

provides n(n-l)/2 values of d2 and clearly their heavy

interdependence could mean that it is unlikely that this

entire set of values follows the gamma distribution at all

well. However, interest here lies only in the selected

subset of n-1 distances which make up the MST. These are

certainly not a random sample of all distances, and Rohlf

(1977) gives some simulation results showing that their

statistical properties are quite different from those of

randomly selected distances. Rohlf also claims that

empirically a gamma distribution does fit the squares of

these distances quite well. Because the MST distances

tend to be among the smaller values of d ., the

theoretical parameters of the gamma distribution would not

apply even if the variables were independent, so the

parameters A and TJ need to be estimated from the data,

that is, from the MST.

In the special case of generalized distances, given by
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A=S in Y 'AY an exact distributional result is known.
i i

For a randomly selected pair of points, d /2(n-1) follows

the Beta distribution with parameters p/2 and (n-p-l)/2

(Gnanadesikan and Kettenring, 1972). There are also some

results on correlations between distances within the same

sample. Specifically, any squared distances d2 and d2, ,

have asymptotic correlation 0 if i*i' and j*j' but 0.5 if

one index is in common (Gnanadesikan and Kettenring,

1972). Again, these results seem to have little bearing on

the special sample of distances making up the MST. A

gamma approximation may be tried, as with the standardized

Euclidean distances. Rohlf remarks that "preliminary

simulation runs do not seem to indicate any distinct

advantage" in using generalized rather than Euclidean

distances. This appears to be correct: Figures 5.2.1 to

5.2.4 show examples of gamma probability plots of MST

distances for both Euclidean and generalized distances.

These plots were not selected; they are simply the first

of a number of runs. The general indication seems to be

that a gamma distribution is a reasonably good

approximation and that this holds just as well for either

form of distance measure.

5.2.3 Testing procedure

Following the above discussion, Rohlf's procedure is

based on the fit of a gamma distribution to the distances

of the edges in the MST. Since theory does not supply

values for the parameters of the distribution, they must

be estimated. These parameter estimates can then be used

either to construct a gamma probability plot for visual

assessment of the MST distances or to permit formal

testing of some aspect of the MST. Attention here will be

focused on the formal testing, which is carried out for

the length of the longest edge in the MST in relation to

the total length, because visual assessment is impractical

with the large-scale simulation study which will be called

for. In any case, Rohlf claims advantages for his
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Figure 5.2.1 Q-Q plot of Euclidean MST distances (ordinate)

against expected gamma order statistics (abscissa): n=20,

p=2, p=0.6.

10

Figure 5.2.2 Gamma Q-Q plot of Euclidean MST distances:

n=20, p=4, p=0.6.



- 135 -

,0 O

Figure 5.2.2 Gamma Q-Q plot of generalized MST distance:

n=3 0, p=4, p=0.
8

Figure 5.2.4 Gamma Q-Q plot of generalized MST distance:

n=2 0, p=5, p=0.
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procedure over that of Wilks and so, since Wilks' is a

formal test, it is this aspect of Rohlf's procedure which

must be examined.

Rohlf's procedure depends on the following argument.

Suppose that the MST distances {d.} follow the gamma

distribution G(A,7]), with known parameters. Then if

Y =d., any ratio

Y

follows a beta distribution with parameters i) and (m-l)7).

Here, m is being used to denote the number of edges in the

MST, so equals the sample size minus one. The m such

ratios are not independent, so, as usual, obtaining the

distribution of the maximum ratio is not possible, but the

first Bonferroni approximation can be used. Rohlf

presents a table of these approximations to the 1% and 5%

points, for the test statistic max Y /Y, for a range of

values of m and of 77. He proposes using this table (by
A

interpolation) with the sample estimate TJ substituted for

the true unknown 7). There are consequently three

approximations involved in the test procedure:

(i) the gamma distribution is an approximation to

the distribution of distances in the MST;

(ii) the theory cannot take account of the use of

an estimate of 17;

(iii) Bonferroni approximations are needed for

the percentage points.

Any one of these might be a good approximation on its

own. Unfortunately, their cumulative effect seems to

result in unacceptably imprecise values for the tests.

This can be seen from the following results of simulation

comparisons to Wilks' test for one outlier.

The details of the computation of the test statistic
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are as follows. The algorithm of Ross (1969) was used to

obtain the MST, using standardized Euclidean distances

with trimmed estimates of standard deviations. Maximum

likelihood estimates of the parameters A and TJ of the

gamma distribution fitted to the MST distances were found

by Newton-Raphson iteration, incorporating Bernardo's

(1976) algorithm to compute the psi (digamma) function.

Probabilities from the beta distribution were obtained by

using the IMSL subroutine MDBETA to evaluate the

incomplete beta integral. Direct computation of the

probabilities seemed more convenient for a simulation study

than interpolation in the published table. In fact, it

seems the best option for use of the test in practice,

since anyone with the facilities to evaluate the MST and

fit the gamma distibution can also evaluate the incomplete

beta integral.

5.2.4 The number of outliers declared

As mentioned earlier, Rohlf's test is not a test for

any specific number of outliers: it is applied in the same

form in all circumstances and does not have different

variants depending on the hypothesized possible number of

outliers. If the significance test leads to a declaration

that the sample is not homogeneous, then the number of

outliers must be determined by inspection of the MST. If

the largest edge links a single point to the rest of the

sample, then one outlier is indicated. Otherwise, the

number of outliers is the minimum of the number of points

making up the two isolated clusters which would result on

removing the longest edge of the MST. Notice that this

means that multiple outliers can only be detected if they

form a cluster in this sense. Hence the presence of

outliers in opposite directions away from the main body of

data would never be detectable.

Determination of the number of points in a cluster is a

trivial matter by eye, but for a simulation study,
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inspection must be automated. An algorithm to determine

the number of outliers is as follows. Ross' (1969)

algorithm to construct the MST from a sample of size n

returns a vector B of dimension n, in which element B(i)

contains the index of one of the points to which sample

member i is joined in the MST (i^2). Distances between i

and B(i) are held in array C. The first step in

determining the number of outliers is to search through C

to identify the points k and l=B(k) which are joined by

the longest edge of the MST. The algorithm then operates

on k, but first the special case 1=1 has to be checked.

In this case, search B to see if B(i)=l for any other i^2.

If not, then 1 is not connected to any point other than k,

so there is only one outlier. Otherwise, the procedure

continues as in the general case.

The steps are as follows:

1. Let OUTL=1.

2. Search through B for î 2 for the first time that

B(i)=k, at i=m, say. If it does not happen at all,

then go to step 4.

3. Set B(m)=O

Set OUTL=OUTL+1

Run through B for is2 and for every j with B(j)=m,

set B(j)=k.

Go to 2.

4. Number of outliers=min(OUTL,n-OUTL).

The logic behind step 3 is the identification of any

other points m, besides 1, which are linked to k in the

MST. Points linked to m must also be counted as falling

in the same cluster of points as k and setting B(j)=k for

such points ensures that this will be done, while setting

B(m)=O prevents the recounting of this point. The logic

of step 4 is that it is not known whether, in choosing to
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work with k rather than 1, one has selected a member of

the main body of points or a member of the smaller cluster

of outliers.

A Fortran coding of this algorithm is as follows. The

input arrays C and B of dimension N are as in Ross7

algorithm. The parameter NOUT holds the number of

outliers on output.

SUBROUTINE NOUTL(N,C,B,NOUT)
C

REAL C(N)
INTEGER B(N),HALFN

C
K=2
L=B(2)
XMAX=C(2)

C
DO 200 1=3,N

IF(C(I).GT.XMAX) GO TO 21
GO TO 2 00

21 XMAX=C(I)
K=I
L=B(K)

2 00 CONTINUE
IF(L.EQ.l) GO TO 33
GO TO 2

3 3 DO 210 1=2,N
IF(I.EQ.K) GO TO 210
IF(B(I).EQ.l) GO TO 2

210 CONTINUE
NOUT=1
GO TO 500

2 NOUT=1
1 DO 260 1=2,N

IF(B(I).EQ.K) GO TO 23
GO TO 260

23 B(I)=0
NOUT=NOUT+1
DO 270 J=2,N

270 IF(B(J).EQ.l) B(J)=K
GO TO 1

2 60 CONTINUE
HALFN=N/2
IF(NOUT.GT.HALFN) NOUT=N-NOUT

500 CONTINUE
C

RETURN
END
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5.

5.

3

3.1

Simulation studies of

modifications

Comparison between

Rohlf

Rohlf'

' s procedure

s and Wilks'

and

tests

In the first study, Rohlf's original test (standardized

Euclidean distances, robust estimation of dispersion by

trimming, Bonferroni bounds for the largest distance of

the MST) was compared to Wilks' test. The comparison was

in terms of the power in detecting a single outlier, at

the 5% significance level, and also using Bonferroni

bounds for Wilks' test. Table 5.3.1 shows results for

various combinations of sample size n, dimensionality p

and correlation p between dimensions (taken to be equal

for all pairs of dimensions). Each figure is based on

8,000 simulations, with the two statistics computed from

the same data. The data were generated from the

multivariate normal distribution with mean zero and unit

variances, with a single contaminant created by adding u

units to each dimension for the first point in the sample,

where u was determined so that the squared generalized

distance of the slippage from the origin in the metric of

the population covariance matrix was 30.

Table 5.3.1 Powers of Rohlf's and Wilks' statistics at

nominal 5% level in the presence of a single outlier.

Data description
n p p

of times outlier declared
Rohlf Wilks

10
10
10
10
50
50

2
2
3
3
2
4

-.4
.4
.5
0
.4
.4

64.1
84.6
89.5
75.0
98.7
97.7

64.3
63.0
41.2
40.5
92.4
82.2

At first sight, the selection of results in Table 5.3.1

might be taken to indicate that Rohlf's test is a very

good one, with power vastly in excess of that of Wilks'
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test, in most circumstances. However, it should be

remembered that the Wilks' test is obtained by maximum

likelihood under the model used in the data simulation.

Furthermore, the conservative Bonferroni percentage points

for the Wilks' test are, as discussed in Chapter 3, quite

good. For example, a nominal 5% test appears from table

3.2.3c to be actually at about 4.9%. These two facts, that

Wilks' test is based on maximum likelihood and that its

percentage points are quite accurate, imply that Rohlf's

test can only appear to be vastly better if its percentage

points are quite inaccurate and not conservative, but in

the opposite direction. For example, a nominal 5% test

might be a true 10% test. Differences of this kind, and

in this direction, render the test in this form unusable

as a formal test statistic.

It should be noted that this conclusion is not

dependent on the use of Euclidean rather than any other

distance measure. The simulations selected in Table 5.3.1

include a case of p=0, where sample differences between

different measures ought to be very small.

To which of the three approximations listed in § 5.2.3

is the inaccuracy of these percentage points owing? It

cannot be to the fact that they are Bonferroni bounds,

since that would cause conservatism. Nor, from the

empirical plots, does it appear to be due to the

assumption of a gamma distribution. It must therefore

arise from the use of the estimated parameters of the

gamma as if they were known values.

5.3.2 Use of an average value of r\

Since the approximations involved in Rohlf's testing

procedure appear to be too inaccurate and since no

superior approximation presents itself, the investigation

now turns to the use of simulation results to provide an

improved procedure.
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Figure 5.3.1 Sampling distribution of 17: 500 simulations,

n=10, p=2, p=.2.

Figure 5.3.2 Sampling distribution of TJ: 500 simulations,

n=3 0, p=4, p=.4.
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The stage of Rohlfs method which seems to be the

particularly important source of inaccuracy is the use of
A

the sample TJ as if it were the true 7). Figures 5.3.1 and

5.3.2 show two examples of sampling distributions of TJ,

illustrating that this quantity is extremely variable

between samples. Matters might therefore be improved if
A

the average T? for given n and p can be found and this used
A

in place of the specific sample 7). This presumably only

works if other aspects of the structure of the problem do
A

not affect TJ, including the correlations between the

different dimensions. However, this seems unlikely to be

the case with Euclidean distances and the results in Table

5.3.2 show that this is indeed so. If p is the

correlation between any pair of dimensions, then the
A

average value of 77 falls as p moves away from zero in

either direction. The fall is rather large when p becomes

large, such as 0.8. Usually, the covariance matrix is

unknown and, consequently, the appropriate value of i) -

which is being selected to avoid sampling effects - could

only be found if sample estimates of the covariances were

used. In other words, one sampling effect is replaced by

another, which is unlikely to lead to any advantage.
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Table 5.3.2. Average values of gamma shape parameter estimated

in minimum spanning tree of equicorrelated multivariate normal

data, using Euclidean distances of the form 5.2.1 with trimmed

standard deviations : 500 simulations.

P
-0.4 0 0.2 0.4 0.8

p=2

p=3

p=4

n=10
20
30

n=10
20
30

n=10
20
30

1.3226
1.0003
.9028

2.1107
1.6420
1.5610

p=-.3

3.2780
2.2996
2.1739

1.4236
.9881
.8938

2.5170
1.8775
1.6590

3.9612
2.9705
2.5192

1.3923
1.0133
.9064

2.4424
1.8141
1.6695

3.7871
2.7548
2.5008

1.3608
.9768
.9042

2.3195
1.7616
1.5739

3.5280
2.6905
2.3924

1.0845
.9138
.8466

1.7806
1.5118
1.4269

2.4985
2.2409
1.9928

5.3.3 Simulated percentage points

A A

Since procedures based on TJ or an average of 7] seem to

be ineffective, attention will now be turned away away

from attempting to construct percentage points using the

gamma distribution; instead, the possibility of simulating

percentage points will be investigated.

The investigation was carried out in the context of

equicorrelated normal data, with

Z=o-2{(l-p)I+pJ}

where J is the pxp matrix whose entries are all ones.

Data were generated for different combinations of n, p and

p, as follows:

p=2; n=10, 2 0 and 3 0; p=0,±.1,±.2,±.4,±.6,±.8,±.9
p=3; n=2 0; p=-.4 5,0,±.2,±.4,.6,.8,.9
p=4; n=2 0; p=-.3,0,±.2,.4,.6,.8,.9

At each combination, 2000 samples were simulated.

1, 2.5, 5 and 10% critical values of maxY /Y were

recorded; these are shown in Table 5.3.3 (a-c).

The
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Table 5.3.3a Percentage points of max Y /Y statistic for

minimum spanning tree in equicorrelated normal data,

obtained from 2000 simulations.

-.9
-.8
-.6
-.4
-.2
-.1

0
.1
.2
.3
.4
.5
.6
.8
.9

1%

.8246

.7799

.7226

.6898

.6969

.6720

.6856

.6806

.6766

.6721

.6764

.6991

.7191

.8142

.8024

p=2

2.5%

.7677

.7233

.6568

.6182

.6224

.5945

.6042

.6164

.6169

.6119

.6226

.6451

.6470

.7547

.7531

n=10

5%

.7133

.6591

.5935

.5607

.5523

.5428

.5490

.5512

.5498

.5639

.5782

.5760

.5865

.6858

.6968

10%

.6341

.5799

.5212

.4987

.4816

.4800

.4696

.4953

.4945

.4921

.5049

.4978

.5174

.5984

.6251

1%

.6983

.6425

.5797

.5480

.5046

.5181

.5135

.5002

.5181

.5320

.5463

.5841

.5949

.6681

.6879

p=2

2.5%

.6434

.5757

.5176

.4805

.4442

.4516

.4651

.4498

.4657

.4693

.4705

.4996

.5190

.6022

.6346

n=2 0

5%

.5706

.5161

.4525

.4281

.3966

.4016

.4115

.4079

.4147

.4223

.4202

.4322

.4719

.5297

.5625

10%

.4949

.4385

.3889

.3663

.3455

.3533

.3493

.3536

.3634

.3672

.3690

.3688

.3869

.4422

.4855

Table 5.3.3b Percentage points of max Y /Y statistic for

minimum spanning tree in equicorrelated normal data,

obtained from 2000 simulations.

-.9
-.8
-.6
-.4
-.2
-.1

0
.1
.2
.3
.4
.5
.6
.8
.9

1%

.6588

.5638

.4983

.4987

.4514

.4514

.4363

.4435

.4585

.4699

.4822

.5372

.5150

.6053

.6672

p=2

2.5%

.5646

.4964

.4431

.4221

.4008

.3836

.3912

.3921

.3998

.3904

.3982

.4407

.4348

.5064

.6007

n=3 0

5%

.5049

.4574

.3942

.3669

.3571

.3463

.3485

.3445

.3467

.3467

.3524

.3879

.3845

.4438

.5373

10%

.4297

.3936

.3366

.3151

.3091

.2999

.2988

.3006

.3022

.2971

.3025

.3232

.3210

.3666

.4485
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Table 5.3.3c Percentage points of max Y /Y statistic for

minimum spanning tree in equicorrelated normal data,

obtained from 2 000 simulations.

-.45
-.4
-.3
-.2

0
.2
.4
.6
.8
.9

1%

.4449

.4169

.3644

.3330

.3750

.4010

.4497

.5447

.6720

p=3

2.5%

.3864

.3687

.3224

.3028

.3313

.3438

.3968

.4845

.5928

n=2 0

5%

.3514

.3198

.2895

.2770

.2842

.3059

.3368

.4206

.4985

10%

.3045

.2758

.2499

.2393

.2498

.2595

.2922

.3570

.4180

1%

.3180

.2924

.2769

.2754

.3219

.3871

.5156

.6005

p=4

2.5%

.2810

.2523

.2461

.2469

.2790

.3250

.4454

.5385

n=2 0

5%

.2523

.2315

.2238

.2239

.2489

.2783

.3777

.4714

10%

.2254

.2054

.1983

.2018

.2160

.2385

.3134

.3864

The power of Rohlf's test was investigated first under

the assumption that p was known, so that data were

generated from a population with given p and the value of

Rohlf's test statistic was then compared to the simulated

percentage points for the same p. Powers in comparison to

Wilks' test calculated from the same data are shown in

Table 5.3.4. In this comparison, the simulated percentage

points for Wilks' test, obtained in Chapter 3, are used

rather than the conservative Bonferroni points. It

appears that Rohlf's test is much more powerful,

especially in those cases (n small compared to p) where

Wilks' test is not very effective.
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Table 5.3.4 Power comparisons for detection of one outlier

between Rohlf's and Wilks' tests in 5000 simulated samples for

each combination of n, p and p, using simulated percentage

points for both tests and treating p as known: outlier slippage

equal in each dimension, squared generalized distance 30.

% of times outlier declared
p n p Rohlf Wilks Rohlf- Wilks-

At

2

2

4

4

At

2

2

4

4

1%

10

20

10

20

5%

10

10

10

20

level

0
0.6

0
0.6

0
0.6

0
0.6

level

0
0.6

0
0.6

0
0.6

0
0.6

54.80
68.68

77.54
83.88

44.18
81.04

71.60
89.38

82.62
87.84

88.88
92.76

75.36
91.74

84.70
94.84

31
31

65
66

7
7

39
39

64
63

86
86

25
25

66
65

.68

.52

.56

.34

.42

.28

.42

.86

.06

.92

.80

.14

.66

.44

.04

.70

not

24.
37.

13.
18.

37.
73.

32.
49.

19.
24.

4.
7.

51.
66.

19.
29.

Wilks

32
34

68
58

70
84

70
60

42
22

70
70

06
76

68
38

not Rohlf

1.20
1.80

1.70
1.04

0.94
0.08

0.52
0.08

0.86
0.30

2.70
1.08

1.36
0.46

1.02
0.24

One reason for the better performance of Rohlf's test

in this comparison is that it exploits the information

concerning p. Wilks' test, on the other hand, is a

general test for any correlation structure. A more

appropriate comparison, therefore, could be between

Rohlf's test and a version of Wilks' test which did

benefit from knowledge of the correlation structure. An

approximation to this is to take the case p=0, and use
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V (v —v \ //r — Y i —1 n
/ j V " " / / ^ • " • / -*• — J. / • • • f 111 1 1 i p

j = l

where x ,...,x are independent vectors from N (/i,X!) with
I n p

=diag(cr2, . . . ,a2) . Since a2 is unknown, it is replaced by
1 p j

its estimate s2, giving the statistic

I (x^-x.jVs2

This is the statistic suggested by Healy (1968) for

probability plotting. Although it does not itself follow

the X2 distribution, this distribution can be kept as an

approximation. For this outlier detecting application,

the maximum value of the statistic over choices of x from

(x ,...,x ) is taken, and Bonferroni % points from X are
I n p

used for significance testing. A power comparison between

Rohlf's test statistic and this new test is shown in Table

5.3.5. The difference between the powers is, as expected,

much less than was the case in the comparison with the

standard Wilks' test statistic. This comparison could be

refined further, by constructing simulated percentage

points for the new test statistic instead of taking

Bonferroni approximations to the critical values of an

approximate distribution, but the effort does not seem to

be worthwhile since the case of known p is seldom

realistic. Instead, the use of unknown p will be looked

at further.

Table 5.3.5 Power comparison for detection of one outlier

between Rohlf's test and a Wilks'-type test statistic: details

as Table 5.3.4., n=2 0, p=4, p=0.

% of times outlier declared by
Level of Rohlf Wilks Rohlf- Wilks-
significance not Wilks not Rohlf

1%
2.5%
5%

10%

71.60
79.00
84.70
88.70

59.82
72.86
81.30
88.20

14.18
9.72
6.86
4.36

2.40
3.58
3.46
3.86
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The assumption of equicorrelation structure was

maintained for this analysis. Under this assumption, p

was estimated in each sample and critical values for this

value of p interpolated from those obtained earlier and

shown in Table 5.3.3. This estimate of p was thus being

used as if it were a known value, since no better

alternative procedure presented itself. Curves for

interpolating critical values were obtained by fitting

polynomials in p to the critical values for each

combination of n, p and significance level. Coefficients

for quartic fits are shown in Table 5.3.6 and Figure 5.3.3

illustrates observed and fitted values for the cases

n=2 0, p=2, p=0,±.9,±.8,±.6,±.4,±.2,±.l,.3,.5
n=2 0, p=3, p=-.4 5,±.4,±.2,0,.6,.8,.9

Table 5.3.6 Coefficients for quartic in p fitted to simulated

100% percentage points (p3 term omitted for n=20, p=3 and p=4

because tolerance limit in the regression exceeded).

Coefficients x 10~

p

2

2

2

3

4

n

10

20

30

20

20

a

.01
.025
.05
.10
.01

.025
.05
.10
.01

.025
.05
.10
.01

.025
.05
.10
.01

.025
.05
. 10

constant

67506
60510
54718
48297
50594
45154
40388
35346
44735
39269
34856
30298
35405
31524
28061
24266
27385
24597
22694
19872

P

-1668
624

1167
604

1183
204
1031
691
105

-2411
-1700
-1551
-4083
-3536
-3933
-3378
-3734
-3079
-2886
-3227

P2

10752
11497
9530
5729

26587
16133
11789
4267
21013
7748
4147
-607
27115
20524
17272
15415
33882
19611
9848
10462

3
P

2980
-737
-1444
-574
153

1174
-857
-926
4896
6341
3131
1366

-
-
-
-
-
-
-

4
P

8331
10815
12782
15331
-6228
7213
9821
14735
1107
16737
20832
21992
18324
20348
16596
11826
13116
24389
28474
19470

R2

0.9238
0.9480
0.9691
0.9699
0.9867
0.9852
0.9838
0.9875
0.9616
0.9733
0.9766
0.9741
0.9769
0.9870
0.9898
0.9881
0.9992
0.9977
0.9956
0.9904
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-1-0 --5 1-0

Figure 5.3.3

fits.

Simulated 5% critical values with quartic

Firstly, it will be confirmed that it is necessary in

practice to use different critical values for each value

of p. It would not matter that p ought theoretically to be

taken into account if the effect of, say, using the p=0

percentage points in a population with p=0.9 was only of

the order of altering a 5% significance level into a 5.5%

one. This is clearly not the case, however. The

differences seen above for different values of p have

large effects, as illustrated in the following power

comparison between Rohlf's and Wilks' tests - (Table

5.3.6) - in which the percentage points for p=0 are

applied to samples generated with p=0.6 as well as to the

case p=0. The differences are so large that it would be

unacceptable not to take p into account.
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Table 5.3.7 Power comparison between Rohlfs and Wilks' tests

in 1000 simulated samples with n=10, p=4 and p=0 or 0.6;

outlier slippages= 4.5826 in each component (squared

generalized distance 30); critical values of Rohlf's test are

those simulated for p=0.

% of times outliers are declared at
1% level 5% level

p no. of Rohlf Wilks Rohlf Wilks
outliers

0

0 . 6

1
2

1
2

44.2
18.8

88.9
71.5

7 . 4
2 . 3

7 . 3
2 . 3

75.4
53.9

96.6
91.6

25.7
10.0

25.4
10.3

The performance of a test using these simulated

percentage points was investigated by simulating further

sets of data, estimating p assuming the equicorrelation

model and using the polynomial in p to obtain critical

values to be used as if this value of p were the true

value. Samples were first generated under the null

hypothesis (no outliers) to check the exceedance

probabilities of this procedure. Results are shown in

Table 5.3.8. It can be seen that this test is generally a

little conservative. Some dependence on p is evident,

with the most extreme values of the exceedence

probabilities being associated with the extreme values of

p. This might be expected, because the slopes of the

curves in Figure 5.3.3 show that this is where the

critical values are most sensitive to the value of p.

Since these results show that the size of this

procedure is acceptably well controlled, it is reasonable

to go on to power studies. These are again based on 2000

simulated samples at each combination of n, p, p and

slippage vectors for one and two outliers. Wilks' test

was computed (using simulated percentage points) on the

same data for comparison to the above version of Rohlf's

gap test.
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Table 5.3.8 Exceedance probabilities obtained on

estimating p.

Observed exceedance probabilities at nominal level

p n p 1% 2.5% 5% 10%

2

2

2

3

1 0

2 0

3 0

2 0

- . 8
- . 2

0
. 4
. 9

- . 8
- . 2

0
. 4
. 9

- . 8
- . 2

0
. 4
. 9

- . 4 5
- . 2

0
. 4
. 9

.008

.004

.007

.006

.010

.010

.014

.009

.005

.016

.013

.009

.009

.008

.007

.017

.010

.011

.010

.006

. 0 2 1

.015

.018

.019

. 0 2 1

.027

.029

.024

.021

.029

.030

.023

. 0 2 1

.029

.022

.036

.024

.022

.028

.018

.050

.045

.038

.038

.042

.045

.057

.044

.046

.062

.050

.047

.047

.055

.044

.067

.047

.045

.055

.055

.099

.089

.086

.085

.092

.094

.120

.097

.089

.113

.097

. 0 9 1

.099

.110

.095

.123

.095

.103

.103

.117

In the first instance, slippage vectors consisted of an

equal quantity added to each dimension, the quantity being

a function of p chosen so that the generalized distance of

the slippage vector from the origin was constant over p.

This meant that the power of Wilks' test was also constant

over p. However, it was found that the power of Rohlf's

test depended very strongly on p, being very low for large

negative values of p, increasing steeply as p approaches

zero and then increasing slightly as p increases through

positive values. This behaviour is illustrated in Table

5.3.9 and Figure 5.3.4 for one outlier only.
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Table 5.3.9 Power comparison for one outlier between Rohlfs
and Wilks' tests in 2000 simulated samples for different n's,

p's and p's; outlier slippages = -I (l+(p-l)p) .D2/-Tp; (squared

generalized distance D2=30); critical values of Rohlf's test
are interpolated from the quartic fit.

% of times outliers are declared at
the 5% level

p n p Rohlf Wilks Rohlf-not Wilks Wilks-not Rohlf

10 -.9 10.85 62.80 1.00 52.95
36.55
14.20
6.15
3.10
2.05
1.70
1.25
1.10
.95

1.00
1.60
1.85
1.60
2.45

20 - . 9 12.20 86.70 .30 74 .80
49 .65
21 .05

9.85
6.55
4 .55
4 .15
4 .00
2 .15
2.60
2.80
2 .75
2.90
2.30
3.20

20 - . 4 5 7 .85 76 .65 .55 69 .35
55.35

9.55
2.10
1.10
1.15
1.60
1.15

.90

-.9
-.8
-.6
-.4
-.2
-.1

0
.1
.2
.3
.4
.5
.6
.8
.9

-.9
-.8
-.6
-.4
-.2
-.1

0
.1
.2
.3
.4
.5
.6
.8
.9

-.45
-.4
-.2

0
.2
.4
.6
.8
.9

10.85
29.30
56.40
66.55
72.60
74.40
76.15
76.35
76.85
78.20
79.30
77.25
79.25
79.15
80.55

12.20
36.50
65.75
78.60
82.90
85.30
85.10
85.40
88.85
87.25
88.70
90.40
87.95
89.60
89.55

7.85
22.65
72.10
85.00
88.00
88.35
89.35
91.05
93.00

62
64
64
64
62
62
62
62
63
62
62
62
63
63
64

86
85
85
85
85
86
85
85
86
85
86
87
84
85
86

76
77
76
77
76
75
75
77
77

.80

.00

.50

.10

.85

.25

.15

.70

.70

.65

.20

.60

.50

.90

.30

.70

.50

.95

.95

.80

.85

.30

.40

.45

.50

.20

.85

.80

.70

.20

.65

.25

.25

.40

.50

.40

.80

.90

.50

1.00
1.85
6.10
8.60
12.85
14.20
15.70
14.90
14.25
16.50
18.10
16.25
17.60
16.85
18.70

.30

.35

.85
2.50
3.65
3.00
3.95
4.00
4.55
4.35
5.30
5.30
6.05
6.20
6.55

.55

.75
5.40
9.70
12.60
14.10
15.15
14.30
16.40



- 154 -
100 -i

50-

(20.3)

-I 1--

..^ .,, . . ,,.... II
(10.2]

/do

I W

o R
.2)

/ (20.3)

/

-1.0 -0.5 0.5 1.0

Figure 5.3.4 Powers of Wilks' (W) and Rohlfs (R) tests
as a function of p, for (n,p)=(10,2) and (20,3).

The reason for this behaviour is easy to find. In the

two-dimensional case, the generalized distance represented

by the slippage vector (5,5) is easily shown to be

252/(l+P)

if variances are unity. It follows that, for constant

generalized distances, the value 5 must be proportional to

A (1+p). This is a monotonically increasing function of p.

Moreover its slope is a Tnonotonically decreasing function

of p. Consequently, the slippage is, as p increases, an

increasing distance from the origin, with the rate of

increase being greatest for the larger negative values of

p. Since Rohlf's test uses Euclidean distance, this

behaviour of the chosen slippage vector entirely agrees

with the observed behaviour of the power function. As a

check, it can be predicted that if slippages of (5,-5) are

used, then the desired a is proportional to 4(1-p): in

this case, the opposite relation between the power of

Rohlf's test and p should be observed, as indeed it is

(Table 5.3.10).
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Table 5 . 3 .10 Power comparison for one outlier between Rohlfs
and Wilks' tests in 2000 simulated samples for different n's,

p's and p's; outlier slippages = A (1+ (p-1) p) . D /*Tp; (squared

generalized distance D =30); critical values of Rohlf's test
are interpolated from the quartic fit.

% of times outliers are declared at
the 5% level

p n p Rohlf Wilks Rohlf-not Wilks Wilks-not Rohlf

2 10 -.9 80.30 63.45 18.90 2.05
-.8 77.05 62.35 16.70 2.00
-.6 79.95 63.40 18.05 1.50
-.4 78.25 62.10 17.35 1.20
-.2 77.10 62.05 16.15 1.10
-.1 78.70 63.05 16.95 1.30

0 76.70 63.70 14.85 1.85
.1 75.45 62.30 15.55 2.40
.2 74.60 63.95 13.35 2.70
.3 70.75 62.85 11.75 3.85
.4 67.40 62.75 9.95 5.30
.5 61.10 63.20 7.20 9.30
.6 53.45 63.60 4.90 15.05
.8 29.20 64.80 1.75 37.35
.9 12.10 62.05 .80 50.75

2 20 -.9 90.90 86.70 6.70 2.50
-.8 90.70 87.65 5.65 2.60
-.6 89.75 87.25 5.35 2.85
-.4 88.55 87.00 4.50 2.95
-.2 87.75 85.55 4.85 2.65
-.1 87.95 86.35 4.30 2.70

0 87.45 86.40 3.80 2.75
.1 86.35 86.05 4.30 4.00
.2 85.15 86.60 3.10 4.55
.3 79.90 86.10 2.15 8.35
.4 77.95 87.05 1.80 10.90
.5 74.20 87.05 1.55 14.40
.6 65.10 85.80 .50 21.20
.8 35.35 85.55 .45 50.65
.9 11.75 86.40 .25 74.90

2 30 -.9 91.55 90.30 3.90 2.65
-.8 90.75 90.90 3.00 3.15
-.6 91.45 91.35 2.75 2.65
-.4 90.50 89.75 3.90 3.15
-.2 89.35 89.65 3.20 3.50
-.1 89.70 90.95 2.10 3.35

0 89.10 91.50 1.50 3.90
.1 88.15 91.20 2.25 5.30
.2 85.50 90.25 1.95 6.70
.3 82.45 91.00 .60 9.00
.4 80.55 90.60 .80 9.40
.5 76.80 90.70 .60 14.50
.6 70.45 90.65 .40 20.60
.8 39.15 90.20 .35 51.40
.9 12.25 90.05 .10 77.90
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5.4 Rohlf/s test: Conclusion

The results of the previous sections have shown that it

is not very difficult to modify Rohlf's original procedure

to achieve controlled size, but that the power of the

resulting test in relation to Wilks' test is very heavily

dependent on the correlation structure of the data and is

very much lower than the power of Wilks7 test over a

substantial region of parameter space. Strictly, this has

been shown for the equicorrelation case but it is

reasonable to infer that it applies more generally. It

is, of course, a result which is entirely to be expected,

with hindsight. The test was set up ignoring correlations

between variables, but it is very optimistic to hope that

the outcome would also be independent of correlations.

The only question could be how strong would be the impact

of correlations and the answer here is, very strong. It

is concluded that Rohlf's test, in a form along the lines

described, is not effective.

Can a useful test be obtained by retaining the

structure of his procedure, but replacing the Euclidean

distance by generalized distance so that correlations are

taken into account? The difficulty lies in obtaining a

robust estimate of the covariance matrix. The necessity

for robust estimation will be demonstrated by first

showing what happens if it is not employed.

Table 5.4.1 shows simulated 5% percentage points for

Rohlf's statistic based on generalized distances, obtained

from 8,000 simulations of samples of uncorrelated

multivariate normal data at each combination of n and p.

It also shows powers of the test using these percentage

points, in comparison to Wilks' tests for one and two

outliers. The striking result is that the power of

Rohlf's test to detect any outliers when there are

actually two outliers quickly becomes very low in

comparison to the power of Wilks' test as the sample size
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increases. Furthermore, only in the minority of cases

where Rohlf's test declares any outliers does it declare

that there are two outliers. Thus Rohlf's test is rather

poor at detecting two outliers, even though in the

situation simulated these are very distinct from the main

body of the sample. Moreover, they have the same slippage,

so are the only kind of multiple outliers in a cluster

which can be detected by Rohlf's test; see § 5.2.4.

Table 5.4.1 Simulated powers of Rohlf's and Wilks' tests for

one and two outliers at 5% level with p=5, in 8000 simulated

samples. Slippage vector(s) 2.4495 in each component (squared

generalized distance 3 0). R=Rohlf's test; W =Wilks/

one-outlier test; W =Wilks' two-outlier test.

Critical value

One outlier:
% of times
declared by

W

R
W not R

R not W

10

.23695

15.1

12.8
8.0

5.7

sample size

20

.16890

54.8

44.8
14.5

4.5

n

30

.13040

69.5

58.9
13.8

3.2

50

.09238

77.3

67.5
12.2

2.5

Two outliers:
% of times any
outliers are
declared by

W
2

R
W not R
R not W

R declares 2:

6.4 42.5 68.8 85.9

6.
4.

4.

0

1
8

5

15.8
29.2

2.7

0.2

28.2
42.0

1.3

3.7

45.8
40.6

0.5

14.1

The problem can be demonstrated by considering the set
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of data shown in Table 5.4.2 and Figure 5.4.1, consisting

of ten points generated from the bivariate normal N(O,I),

with slippages of (12,12) added to two of the points.

Table 5.4.2 Illustrative data (n=10,p=2) for problem of

failure of Rohlf's test to declare two outliers.

Point 1 10

x 12.73 -0.45 0.24 -0.18 -0.51 -1.02 0.98 0.52 0.25 10.29
l

x 11.63 0.13 0.35 0.47 -1.20 -0.08 -0.17 -0.44 2.10 13.32

Figure 5.4.1 Scattergram of data of Table 5.4.2



- 159 -

A reasonable test for outliers would surely be expected

to declare that both the points to which the slippages

have been added, A and B, are outliers from the main

sample comprising the remaining 8 points. This is what

happens with Wilks' test for two outliers. The value of

the ratio

|A 1/ |A| =0.069
1 AB ' ' I '

omitting these 2 points is significant well beyond the 1%

level (simulated critical value = .19038, n=10, p=2).

However, the MST using generalized distances (superimposed

on Figure 5.4.1) does not link A and B, so it is not

possible for both of them to be declared outliers.

Rohlf's test statistic Y /Y takes the value of 0.503,
max

which falls between the simulated critical values (from

40,000 samples) of 0.518 (5%) and 0.463 (10%), so there is

not even very strong evidence to declare one outlier using

Rohlf's test.

The reason for this behaviour is that the two large

outliers induce a high correlation in the full sample of

10 points : r=0.967 in fact. The effect of this can be

seen be comparing the standardized Euclidean distance

E"= 1
ij 2

.2 , .2
c -x ) +(x -x )
11 jl' v 12 j2'

t o the general ized d is tance

D = 1 f(x -x ) +(x -x ) - 2r (x -x ) (x -x ))
ij V i l j l ' V 1 2 J 2 ' v i l j l ' v 1 2 J 2 '

1-r'

1 - r

s s
1 2

! - r (x -x ) (x -x )
i j V i 1 j l ' v 12 J2 '

S S
1 2

Since r is large, the second term can have a big effect.

If the ith and jth points x and x both lie along the
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direction from the origin to the vicinity of A and B, then

(x -x ) (x -x ) is positive, so that D is much
K 11 jl' V 12 j2' * ' 1 j

reduced in comparison to E2 . If on the other hand, the

line joining x to x is orthogonal to that direction,

then (x -x ) (x -x ) is negative, so D2 is
V 11 jl' V 12 j2' ^ ' 1j

substantially increased over E 2 . This is what happens to

the distance AB in this example.

It is obvious that this version of Rohlf's test fails

to work in such cases because the geometry of the sample

is distorted so severely by the outliers which the test is

trying to detect. Wilks' two-outlier test can succeed
because it also evaluates an undistorted statistic IA I

1
 AB '

for comparison to the distorted one |A|. To be effective

in this situation, Rohlf's test also needs an undistorted

statistic, which was the point of using robust estimators

of dispersion in the case of the standardized Euclidean

distance. The equivalent idea here would be to employ a

robust estimator of the covariance matrix from which to

construct generalized distances. However, a little

reflection shows that this is not a direction worth

pursuing. Calculating a robust covariance matrix is not

such a simple matter as trimming, as employed earlier. It

has been seen earlier that one way of doing it, as

described in Chapter 2, section 2.7, actually reveals a

great deal of information directly related to detecting

outliers in the sample, in the form of the weights

attached to each point. Consequently, there is no need to

go on to Rohlf's test after making such a calculation; the

MST would only be useful for its customary purpose of data

display.

The conclusion of this chapter therefore remains

negative towards Rohlf's test, which is not seen to be

usable as an effective outlier test.
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CHAPTER 6

UNION-INTERSECTION TESTING

6.1 Introduction

The union-intersection method of test construction is,

along with likelihood ratio, one of the two principal

approaches to hypothesis testing in the multivariate case.

When likelihood ratio is applied to the slippage of the

mean model used in outlier problems, it leads to the Wilks

statistic via the two-stage procedure described earlier:

the purpose of this chapter is to apply tests by the

alternative methodology and to compare against the Wilks

test to find possible advantages.

The following discussion relates to the usual slippage

model in multivariate normal populations:

vs

H : x. ~ N
0 i p

H : x ~ N
1 i p

x ~ N (M
j p j

xk ~ N (u+a^,X)

Wilks' test for declaring a set of points j,k,... of

specified size as outliers requires the minimization over

choices of j,k,... of the statistic

IA I
I jk. .. I (6.1.1)

where the denominator and numerator are the determinants

of respectively, the sum of squares and products (SSP)

matrices of the sample before and after deletion of the

points j,k,.... Now suppose that each one of the points

j,k,... is considered as belonging to a group on its own,

while the remaining points form another group. Then the

within-group SSP matrix receives no contribution from the

groups which consist of a single point and so is given by
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the SSP matrix of the remainder of the sample, that is,

A . In other words, the Wilks statistic is the ratio
jk. . .

of the determinants of the within-groups and total(A) SSP

matrices. In the terminology of the multivariate analysis

of variance (MANOVA) between these groups, the Wilks

outlier statistic (6.1.1) is the minimum over choices of

the set of potentially outlying points of Wilks' lamda

statistic in the one-way MANOVA (Mardia, Kent and Bibby,

1979) :

A = |W| /|T| (6.1.2)

where W is the within-groups, error or residual SSP (under

H ) and T is the total SSP, identical to A above. The

usual definitions are

m n _
w= I I1 (x -x ) (x -x ) '

i=l j=l

-x) (x..

where there are m groups, with n. observations

x. , ...,x in group i with mean x , the overall mean
i1 in_ i

being x. T is often written as B+W, where B is called the

between-groups or hypothesis SSP matrix. B and W are

often denoted by H and E respectively.

The A statistic (6.1.2) may be written as

|T~*W| = | B+W | ~ 1 1 W |

where X ,...,A are the eigenvalues of W-1B. The
1 p

distribution of A has already been discussed in Chapter

3.

The general idea of the union-intersection approach to
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hypothesis testing in multivariate data (Roy, 1957) is

that, given a problem involving the vector random variable

x, it is projected onto the direction of the vector a and

the equivalent univariate problem for the random variable

a'x is solved. Then the test statistic for this

univariate problem is maximized or minimized, as

appropriate, over choices of a: this optimum value is the

union-intersection test statistic for the multivariate

problem. Applied to the one-way MANOVA, where H :

l± =n =. . .=11 against H : not all equal, m being the
1 2 m 1

number of groups, the vector random variable x ~ N (n ,£)
i p i

is projected onto a to give the scalar random variable

y =a'x ~ N (oc'ii ,a'Za)
i i p i

and reduces the hypotheses to H : a'jn =a'u =. . .=a'\i
J c 0 1 2 m

against not all equal, i.e., the univariate situation.

The univariate analogue of H would be tested using the

analysis of variance statistic proportional to
m in

I n.(y.-y)2/ I n.s2,

where the ith group has sample size n. and variance s .

The corresponding formula for the linear combination y=a'x

is

m m

z2=En.(a'(x.-x))2/ [n.o'S.a,
i l * 1 i l

where S.=A./n. is the within-group sample

variance-covariance matrix. The rejection region is

{z >c}=R . The rejection region for the initial H is

then R=U R , that is, at least one H (a) is rejected.

Therefore if max z2>c, then H is rejected. It is
o

a
straightforward to carry out the maximisation over a and

show that A =max z is the largest eigenvalue of
a
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"X( I ̂ S , ) " 1 I n. (x.-x) (x.-x) '=W"XB.
i = l i = l

The test may be expressed equivalently in terms of the

largest eigenvalue of other functions of B and W . For

example, Morrison (1976) uses the greatest root of

(W+B) B, which may be written

Its distribution is denoted by 8(p,n-m,m-l), where n-m are

the error degrees of freedom and m-1 are the hypothesis

degrees of freedom. As with the A statistic, the

distribution of 8(p,r,s) can sometimes be transformed

exactly to F - in fact, this can be done for 8(1,r,s) and

8(p,r,l) (Mardia, Kent and Bibby, 1979). Otherwise, its

distribution is complicated, and there appear to be no

simple approximations.

If percentage points of this distribution can be

obtained, Bonferroni bounds can be constructed for the use

of this statistic as an outlier test statistic by taking

its maximum value over all choices of sets of points

tested as outliers. The construction of such bounds is

discussed in the next section.

In general, the likelihood ratio and union-intersection

methodologies give different statistics. In simple cases,

however, they lead to the same statistic. One such

situation is the comparison between two groups, since then

the hypothesis matrix B (that is, the between-group SSP

matrix) has rank one (since it is calculated from two

group means), so that W~ B has just one non-zero

eigenvalue, A , and both A and 8 are functions of this

alone. As the two-group comparison underlies the test

for a single outlier, the two approaches give the same

result in that case. In testing for more than one
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outlier, however, the analogous situation is the MANOVA

between 3 or more groups, in which case the approaches do

result in different tests. (This assumes that the

outlying points are not all from the same distribution,

that is, not all slippages are the same - otherwise, the

problem is a comparison between two groups again.) The

test derivation and comparisons in the following sections

will therefore be on the basis of testing for two or more

outliers, with unequal slippages in the mean.

6.2. Bonferroni bounds and their accuracy

Construction of a Bonferroni bound for the percentage

point for an a% level two-outlier test by the

union-intersection method in a sample of size n requires

the a/ fn"] % percentage point of the greatest root

distribution. Some tables of percentage points are already

available (Pearson and Hartley, 1972) but the significance

levels selected for tabulation usually do not match the

values a/fn] required. Percentage points can also be read

from charts (Heck, 1960), but with lower accuracy, while

this graphical method is unsuitable for use in a computer

simulation study. Therefore, the a/(n\% percentage points
UJ

required here were specially computed by using the series

expansion of Khatri (1972). This gives the distribution

function F(x) of the greatest root statistic as a

polynomial in (1-x), and is published as a Fortran

algorithm by Venables (1975).

Although the algorithm as given only returns the value

of F(x) given x, in other words the level of significance,

it can be modified so that it returns the coefficients of

the powers of (1-x), enabling its use to determine

percentage points. The series is
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n p/2 rap ,

F(x)=x1 I y (n/2) (l-x)kC (I )/k!
K 1 K. K. p

k = 0

where n and n are the degrees of freedom in B nd W

respectively, there are p dimensions and m=(n-p-l)/2,
2 i

which must be an integer. The inner summation £ is over

all partitions K of k; a partition is a set of r^p

integers k^ki...ik>0 whose total is k. The coefficient

(n /2) is to be evaluated from the definitions
1 K,

i = 1

and (b). = [ 1 j=0

b(b+l)...(b+j-1) jai

and C (I ) is the zonal polynomial
K. p

C (I )=22k(p/2) n ( . .
K p K i<i<j<r J

Writing the series as

n p/2 mp
F(x)=x1 lG(k)(l-x)k

k=0

it is possible to compute the coefficients

G(k)= l'(n
i / c K p

which depend on n , n and p but not on x, and hence

iteratively solve

F(x)=a

for x given a. Because F(x) is expressed as a polynomial

in x, it is easy to calculate its gradient and carry out a

Newton-Raphson iteration.

One difficulty with Khatri's method is that it is

necessary for n-p, the difference between sample size and
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dimensionality, to be an even number. In the cases where

this restriction meant that the required sample size could

not be used in the algorithm, percentage points were

calculated for adjacent usable values and a smooth curve

fitted to obtain the desired percentage point by

interpolation.

Specifically, suppose the test for k outliers is being

carried out in a sample of size n p-dimensional vectors.

Then, carrying out the MANOVA (between k+1 groups) after

specifying a particular set of k points as potential

outliers, the SSP matrices B and W have Wishart

distributions

B ~ W (Z,k)
p

and W ~ W (E,n-k-l)
p

independently of B. Consequently 8, the greatest

eigenvalue of (B+W)~ B is the greatest root statistic 9

with distribution

6(p,n-k-l,k)

(Mardia, Kent, and Bibby, 1979). It is usual to assume

that n-k-l>p in defining this distribution: otherwise, the

identity

9(P,r,s)=8(s,r+s-p,p)

gives the distribution

e(k,n-l-p,p).

However, for the small values of k met in outlier

tests, the former situation will usually be the applicable

one, for realistic sample sizes. The restriction of

Khatri's method for computing this distribution is that

n-k-p-2 must be even: for k=2 outliers, this means that

n-p must be even. Suppose then that the percentage point
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for n=2 0, p=5 is required. This was obtained by finding

percentage points for n=17,19,21 and 23, all for p=5, then

fitting a cubic to these four points to interpolate for

n=2 0. In certain cases, a quadratic was used, if the four

points corresponding to the ones in this example could not

be obtained. For example, for p=5, the requirement that

the error degrees of freedom be at least equal to the

number of dimensions, n-3ap, means that n must be at least

8. Therefore, to find the percentage point for n=10, it is

not possible to fit through the points for n=7,9,ll and

13, since the first of these does not exist. In such

cases, a quadratic was fitted through the remaining three

points.

The Bonferroni bounds computed as above are shown in

parentheses in Table 6.2.1 for dimensions 2 to 5, selected

sample sizes from 10 to 100 and significance levels 0.01,

0.025, 0.05, and 0.10.

Since this test is for two outliers, it may be expected

that, as is the case with Wilks' test, the Bonferroni

bounds will not be very good. Consequently, simulated

percentage points were constructed and are also shown in

Table 6.2.1 for comparison. These are averages over 5

percentage points each based on 8000 sets of data for each

combination of sample size and dimensionality, even though

the lack of a simple updating formula in this eigenvalue

problem means that the repeated computations are very much

heavier than in the determinant calculations underlying

Wilks' statistic.

The same sets of simulated data were used to estimate

exceedence probabilities for the Bonferroni percentage

points and thus indicate the importance of the numerical

differences between simulated and Bonferroni points. The

exceedence probabilities are shown in Table 6.2.2. It can

be seen that the Bonferroni bounds are very conservative,

as predicted. For a sample size of 30, the true size of
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Table 6.2.1a Simulated percentage points for
union-intersection two-outlier test statistic, with
Bonferroni

Sample
size, n

10

15

20

25

30

40

50

75

100

Table 6.2.:

bounds in

2

.95504
(.95861)
.84382
(.85524)
.74189
(.75772)
.65819
(.67725)
.58850
(.61175)
.48784
(.51312)
.41918
(.44287)
.31301
(.33238)
.25186
(.26784)

parentheses, a=0.01.

Dimensions, p
3

.98121
(.98288)
.89260
(.90079)
.79568
(.80892)
.71288
(.72847)
.64201
(.66108)
.53781
(.55739)
.46282
(.48235)
.34558
(.36297)
.27820
(.29268)

4

.99420
(.99471) 1
.92805
(.93377) |
.83708
(.84936) I
.75601
(.77045) 1
.68537
(.70232) I
.57688
(.59517) i
.49759
(.51642) i
.37238
(.38970)
.29976
(.31452)

lb Simulated percentage points

5

.99902
[.99932)
.95264
(.95789)
.87142
(.88245)
.79432
(.80620)
.72336
(.73818)
.61141
(.62871)
.52758
(.54696)
.39687
(.41395)
.32020
(.33443)

for
union-intersection two-outlier test statistic, with
Bonferroni

Sample
size, n

10

15

20

25

30

40

50

75

100

bounds in parentheses

Dimensions, p
2

.93742
(.94367)
.81232
(.82849)
.70767
(.72763)
.62312
(.64705)
.55597
(.58261)
.45916
(.48695)
.39335
( .41955)
.29337
(.31439)
.23563
(.25329)

3

.97264
(.97536)
.86932
(.88029)
.76471
(.78316)
.67992
(.70128)
.61147
(.63408)
.50869
(.53237)
.43793
(.45968)
.32436
(.34513)
.26144
(.27813)

, a=0.025.

4

.99066
(.99161)
.90979
(.91836)
.81092
(.82732)
.72742
(.74591)
.65574
(.67723)
.55018
(.57120)
.47333
(.49435)
.35269
(.37200)
.28275
(.29996)

5

.99818
(.99839)
.93944
(.94674)
.85018
(.86376)
.76820
(.78410)
.69681
(.71487)
.58313
(.60570)
.50433
(.52547)
.37728
(.39640)
.30331
(.31989)
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Table 6.2.1c Simulated percentage points for
union-intersection two-outlier
Bonferroni

Sample
size, n

10

15

20

25

30

40

50

75

100

Table 6.2.

test statistic, with
bounds in parentheses, a=0.05.

2

.91964
(.92884)
.78401
(.80493)
.67579
(.70232)
.59315
(.62075)
.52923
(.58264)
.43542
(.46616)
.37305
(.40121)
.27673
(.30043)
.22164
(.24208)

Dimensions, p
3

.96345
(.96749)
.84832
(.86190)
.73891
(.76126)
.65378
(.67879)
.58544
(.61212)
.48619
(.51241)
.41620
(.44180)
.30840
(.33125)
.24819
(.26688)

4

.98663
(.98811)
.89335
(.90427)
.78930
(.80840)
.70243
(.72547)
.63262
(.65672)
.52714
(.55200)
.45228
(.47688)
.33636
(.35820)
.26955
(.28869)

Id Simulated percentage points

5

.99700
(.99721)
.92708
(.93631)
.83087
(.84754)
.74459
(.76558)
.67402
(.69573)
.56188
(.58727)
.48436
(.50842)
.36060
(.38269)
.28989
(.30861)

for
union-intersection two-outlier test statistic, with
Bonferroni bounds in parentheses, a=0.10

Sample

size, n

Dimensions, p

3 4

10

15

20

25

30

40

50

75

100

.89620
(.91004)
.75059
(.77804)
.64149
(.67455)
.56025
(.59564)
.49804
(.53409)
.40952
(.44447)
.35000
(.38224)
.25924
(.28614)
.20800
(.23066)

.95013
(.95701)
.82137
(.84057)
.70935
(.73700)
.62401
(.65448)
.55703
(.58873)
.46013
(.49150)
.39321
(.42323)
.29084
(.31702)
.23349
(.25542)

.98060
(.98312)
.87211
(.88763)
.76358
(.78725)
.67447
(.70324)
.60456
(.63476)
.50238
(.53182)
.43012
(.45870)
.31860
(.34403)
.25552
(.27719)

.99510
(.99537)
.91120
(.92374)
.80760
(.82924)
.71935
(.74529)
.64859
(.67513)
.53820
(.56780)
.46188
(.49063)
.34362
(.36859)
.27598
(.29707)
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Table 6.2.2a Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at a=0.01.

Sample
size, n

10
15
20
25
30
40
50
75

100

Table 6.2.2b

2

.0079

.0071

.0066

.0058

.0047

.0043

.0044

.0047

.0042

Simulated

Dimensions, p
3

.0082

.0069

.0065

.0061

.0055

.0056

.0050

.0047

.0044

4

.0086

.0073

.0063

.0052

.0055

.0052

.0044

.0048

.0045

null probability of

5

.0060

.0066

.0060

.0062

.0056

.0051

.0050

.0043

.0046

obtaining

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at a=0.025.

Sample
size, n

10
15
20
25
30
40
50
75

100

2

.0186

.0159

.0154

.0135

.0120

.0104

.0098

.0098

.0093

Dimensions,
3

.0200

.0167

.0150

.0138

.0129

.0117

.0116

.0099

.0101

P
4

.0210

.0168

.0143

.0137

.0133

.0128

.0114

.0102

.0100

5

.0210

.0160

.0145

.0147

.0141

.0125

.0112

.0102

.0103
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Table 6.2.2c Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at cx=0.05.

Sample
size, n

10
15
20
25
30
40
50
75

100

2

.0355

.0303

.0284

.0257

.0229

.0202

.0188

.0181

.0177

Dimensions,
3

.0388

.0319

.0278

.0256

.0247

.0226

.0223

.0187

.0186

P
4

.0392

.0324

.0273

.0267

.0244

.0240

.0223

.0194

.0187

5

.0453

.0303

.0276

.0273

.0262

.0218

.0215

.0198

.0190

Table 6.2.2d Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at a=0.10.

Sample
size, n

Dimensions, p
3 4

10
15
20
25
30
40
50
75
100

0689
0573
0515
0472
0441
0391
0370
0344
0318

.0728

.0617

.0528

.0493

.0454

.0429

.0404

.0343

.0349

.0782

.0613

.0530

.0492

.0470

.0439

.0403

.0365

.0338

.0922

.0600

.0527

.0491

.0488

.0418

.0408

.0369

.0346

the test using the Bonferroni bound is only about half the

nominal size. For a sample size of 15, the true size is

about two-thirds of the nominal size. The true size

decreases as sample size increases and increases slightly

as dimensionality increases.
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6.3 Comparison between likelihood ratio and union-

intersection tests

There is no general answer as to which form of testing

is better in MANOVA - otherwise one of the methods would

have been discarded. There have been several comparative

studies from the point of view of power and the main

features of their results can be found in general texts

such as Mardia, Kent and Bibby (1979), Morrison (197 6) and

Chatfield and Collins (1980). One result often quoted is

that the union-intersection test is much the more powerful

if differences between the groups in the MANOVA are nearly

one-dimensional: that is, if the population means lie

nearly on a straight line. In the outlier problem with

slippage of the mean as the model, this situation would

represent slippages of different magnitudes in the same

direction. This is not an implausible structure. One

example could be of data referring to a group of animals

contaminated by one or two individuals at different stages

of growth from the rest: if the rates of growth of

different parts of the body are equal, these outlying

individuals would be drawn from populations with means

differing only by scale factors from the mean of the main

group and so all the slippages would be in the same

direction.

Given this expectation of a particular way in which the

test statistic based on union-intersection may surpass the

Wilks statistic in performance, the simulated data in the

power studies described here include data constructed for

models with slippages of this kind.

The power studies require the simulation of data under

the alternative hypothesis of slippage of the mean by

unequal amounts in two sample members. Two basic

situations were considered. In one, the slippages were

along the same axis through the origin (the mean of the

generating distribution). In the second, the directions
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of the two slippages were at right angles to each other.

Data were generated from the distribution N (0,1) and
p

outliers (slippage of the mean) were simulated by adding a

suitable quantity to the first and last members of each

sample. For slippages along the same axis, the quantity

added was plus or minus the vector with each component

equal to d/4"p, where d is the desired generalized distance

from the origin and p the dimensionality. Three

combinations were taken: first, the slippages were both

with squared generalized distance equal to 30 and in the

same direction; second, one squared distance was 3 0 and

the other 15, again in the same direction; thirdly, one

squared distance was 3 0 and the other was 15 in the

opposite direction from the origin (that is, one vector

was positive in each component and the other was

negative). For the case of slippages at right angles to

each other, both were given squared generalized distance

of 3 0 from the origin. The first slippage had the equal

component of d/^ in each dimension. To be orthogonal to

a vector x in the metric of Z, a vector y must satisfy

y/Z"1x=0

which gives

y'x=0

for £=I. Since x « l, this means that y should be a

vector whose components add up to zero and are scaled to

give the correct distance. Suitable vectors are as

follows:

p=2 y=d(l,-l)/4~2

p=3 y=d(l,-2,l)'/<T6

p=4 y=d(l,-1,1,-1)'/2

p=5 y=d(l,-l,0,-1,1)'/2

where d =3 0.

In each simulated set of data, the Wilks and
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union-intersection statistics were computed and compared

to the simulated percentage points. The simulated

percentage points (obtained for Wilks' test in Chapter 3.)

provide the appropriate basis for comparison, because the

conservative Bonferroni bounds are a poor approximation

for either test. The results are displayed in Table

6.3.1.

Table 6.3.1 Comparison of powers of Wilks' test and the

union-intersection test for two outliers: proportion of

times that two outliers are declared by the

union-intersection test (U), Wilks' test (W),

union-intersection but not Wilks' (UW) and Wilks' but not

union-intersection (WU).

In the following tables the squared generalized

distances corresponding to the two outliers, the first and

last observations in a sample, are expressed as distl and

dist2. For the one outlier slipl=H distl/4~p is the slippage

added to all components of 1st observation for all

dimensions, where distl=3 0. For the other outlier in the

same direction, slipn=*l dist2/A|~p is added to all components

of the last observation for all dimensions. Dist2=15 or

30. For the opposite direction slipn=-*l dist2/4~p is added

to all components of last observation for all dimensions

and dist2=15. When the outliers are at right angles to

each other, the slippages added to the components of the

last observation vary, slippage added to each i-component

is denoted by slipn., so for

P=2,
slipn =4 dist2/*Tp, slipn =-slipn

P=3,
slipn =slipn =«ldist2/<l~6~, slipn =-2 (slipn )

P=4,
slipn =slipn =4dist2/2, slipn =slipn =-slipn

slipn =slipn =Ndist2/2, slipn =slipn =-slipn , slipn =0
for dist2=30.
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p=2 ,

a

.01

.025

.05

.10

P=2,

(i)

n

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

(ii)

distl=dist2=30,
(same direction)

U

13.23
70.66
89.23
95.95

26.06
82.68
94.51
97.71

40.61
90.24
96.83
98.76

59.06
94.96
98.50
99.34

W

12.
64.
85.
94.

24.
78.
92.
97.

38.
87.
95.
98.

55.
93.
98.
99.

distl=30, dist2=15

43
83
86
55

91
96
74
14

41
76
86
35

28
78
11
21

slipl=slipn=3.

UW

3.00
7.31
4.13
1.64

4.65
5.01
2.15
0.74

5.96
3.48
1.29
0.55

7.10
1.76
0.60
0.24

slipl=3.87298,

87298

WU

2.20
1.48
0.76
0.24

3.50
1.30
0.38
0.16

3.76
1.00
0.33
0.14

3.31
0.58
0.21
0.11

slipn=2.7386

a n
(same direction)

U w UW WU

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

8.00
48.24
69.98
82.75

17.15
63.14
80.99
89.26

28.36
75.01
87.61
92.75

43.29
84.64
92.91
95.84

7.70
43.68
66.84
80.50

16.28
59.55
78.79
87.89

27.51
72.23
85.99
92.06

42.29
83.01
92.44
95.34

1.86
6.93
5.45
3.71

3.61
6.33
4.05
2.74

4.40
5.23
3.04
1.64

5.25
3.31
1.54
1.04

1.56
2.36
2.31
1.46

2.74
2.74
1.85
1.36

3.55
2.38
1.41
0.95

4.25
1.69
1.06
0.54
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p=2 , (iii) distl=30, dist2=15, slipl=3.87298, slipn=-2.73861
(opposite direction) _ _

a n U W UW WU

.01

.025

.05

.10

P=2, (iv)

a

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

12.44
56.51
75.10
85.43

24.19
71.53
84.83
91.19

38.30
82.03
90.64
94.68

55.69
89.94
95.03
97.10

distl=dist2=30,

slipn =

(right
n

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

=-3.87298

angles)
U

29.26
77.36
88.79
93.79

49.43
89.26
94.76
97.31

67.20
95.14
97.54
98.75

82.58
98.24
99.11
99.55

11.64
51.41
71.95
82.83

23.48
68.18
82.89
89.78

36.71
79.81
89.20
93.89

54.00
88.86
94.40
96.75

slipl=slipn =3

W

61.33
94.08
97.20
98.36

77.90
97.46
98.55
99.35

87.56
98.86
99.29
99.68

94.51
99.46
99.73
99.81

2.93
7.61
5.26
3.75

4.03
5.90
3.53
2.46

5.45
4.10
2.39
1.55

6.06
2.66
1.31
0.90

.87298,

UW

8.38
0.39
0.11
0.10

1.00
0.13
0.09
0.05

0.66
0.15
0.13
0.01

0.43
0.03
0.03
0.04

2.13
2.51
2.11
1.15

3.31
2.55
1.59
1.05

3.86
1.89
0.95
0.76

4.38
1.59
0.69
0.55

WU

32.90
17.10
8.53
4.68

29.48
8.33
3.88
2.09

21.03
3.88
1.88
0.94

12.36
1.25
0.64
0.30
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p=3 , (i) distl=dist2=30, slipl=slipn=3.16228
(same direction) _

a n U W UW WU

.01

025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

5.18
51.38
78.36
91.78

10.75
67.58
87.36
95.31

19.44
78.28
92.71
97.55

32.33
87.24
96.09
99.00

5.14
44.94
70.41
87.35

10.65
60.19
81.36
92.90

18.94
72.81
88.64
96.05

31.54
83.53
94.35
98.01

1.54
9.03
9.50
4.90

2.90
9.75
7.05
2.84

4.39
7.68
4.75
1.89

5.89
5.30
2.28
1.10

1.50
2.59
1.55
0.48

2.80
2.36
1.05
0.43

3.89
2.21
0.68
0.39

5.10
1.59
0.54
0.18

p=3, (ii) distl=30, dist2=15, slipl=3.16228, slipn=2.23607
(same direction) _ _

a n U W UW WU

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

3.55
30.86
54.66
73.20

7.96
46.04
68.21
81.49

14.23
59.13
76.88
87.83

25.99
72.81
85.55
92.69

3.56
27.69
48.79
67.79

8.41
42.41
62.46
78.30

14.93
55.83
73.61
85.60

25.39
69.63
82.99
91.79

1.24
6.68
9.06
7.74

1.91
7.75
8.83
5.24

3.14
8.05
6.06
4.14

5.14
6.78
4.66
2.51

1.25
3.50
3.19
2.33

2.36
4.13
3.08
2.05

3.84
4.75
2.80
1.91

4.54
3.59
2.10
1.60
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P=3,

a

. 0 1

.025

. 0 5

. 1 0

p=3 f

(iii)

n

1 0
2 0
3 0
5 0

1 0
2 0
3 0
5 0

1 0
2 0
3 0
5 0

1 0
2 0
3 0
5 0

(iv)

distl=30, dist2=15, slipl=3.16228,
(opposite direction)

U

4.71
38.15
61.70
76.55

10.81
54.89
73.81
84.80

19.10
67.36
82.18
90.26

32.64
80.00
89.73
94.58

W

5.05
30.70
55.34
71.11

10.84
50.15
68.78
82.14

19.63
63.81
78.95
88.74

32.61
77.03
87.69
93.41

UW

1.50
7.51
9.45
7.64

2.93
8.85
7.81
4.94

4.28
7.55
5.90
3.19

5.99
6.38
3.83
2.05

dis t l=dis t2=30, s l ipl=3.16228,

sliDnl=£3linn3=2.23607. slinn-

s l ipn=-2 .23607

WU

1.84
4.06
3.09
2.20

2.95
4 .11
2.78
2.28

4.80
4.00
2.68
1.66

5.96
3.40
1.79
0.89

2=-4.47214.

n
(right angles)

U w UW WU

. 0 1

.025

. 0 5

. 1 0

1 0
2 0
3 0
5 0

1 0
2 0
3 0
5 0

1 0
2 0
3 0
5 0

1 0
2 0
3 0
5 0

13.94
57.49
77.99
86.63

26.08
75.36
88.51
93.03

41.60
86.29
93.90
96.40

60.36
93.05
97.40
98.31

32.20
85.40
93.01
95.64

49.89
91.76
96. 63
97.85

65.63
95.40
98.24
98.89

79.74
97.80
99.15
99.46

1.54
0.45
0.28
0.29

1.69
0.41
0.30
0.14

1.70
0.46
0.13
0.06

1.69
0.26
0.11
0.08

19.80
28.36
15.30

9.30

25.50
16.81

8.41
4.96

25.73
9.58
4.46
2.55

21.06
5.01
1.86
1.23
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p=4

a

(i) distl=dist2=3 0,

(same direction)
n U w

slipl=slipn=2.73861

UW WU

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

2.18
36.89
67.11
86.41

5.06
53.18
78.38
91.80

9.64
65.10
85.44
95.09

18.13
77.30
91.53
97.33

2.11
30.41
55.74
78.78

4.99
43.48
69.48
87.29

10.14
56.40
78.55
92. 14

18.74
74.11
87.24
95.48

0.76
9.81
13.40
8.54

1.66
12.69
10.61
5.38

2.56
11.89
8.23
3.58

4.46
7.15
5.48
2.23

0.70
3.34
2.03
0.90

1.59
2.99
1.71
0.86

3.06
3.19
1.34
0.63

5.08
3.96
1.19
0.38

p=4, (ii) distl=30, dist2=15, slipl=2.73861, slipn=l.93649
(same direction) _ _

a n U W UW WU

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

1.74
20.96
40.95
63.21

4.00
32.89
55.50
73.36

8.13
44.44
66.21
80.99

15.91
58.85
77.30
87.66

1.89
18.76
34.83
55.81

4.11
29.35
49.63
69.28

8.45
41.28
61.66
78.06

16.26
55.43
74.11
85.83

0.55
6.08

10.21
10.45

1.14
8.19
10.69
7.63

2.38
8.73
9.31
6.23

4.05
9.00
7.15
4.09

0.70
3.88
4.09
3.05

1.25
4.65
4.81
3.54

2.70
5.56
4.76
3.30

4.40
5.58
3.96
2.25
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p=4, (iii) distl=30, dist2=15, slipl=2.73861, slipn=-l.93649

a

.01

.025

.05

.10

n

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

(opposite
U

2.18
25.59
48.48
66.46

5.50
39.64
62.49
76.31

9.79
51.90
72.86
83.85

18.65
65.44
82.86
89.90

direction)
W

2.51
23.43
41.59
60.14

5.71
34.99
56.30
71.99

11.03
47.83
68.10
80.18

19.91
62.25
79.85
87.78

UW

0.73
6.70
10.93
9.16

1.66
9.70
10.46
7.29

2.33
9.28
8.88
6.34

4.45
8.66
6.29
4.13

WU

0.70
4.54
4.04
2.84

1.88
5.05
4.28
2.96

3.56
5.20
4.11
2.66

5.71
5.48
3.28
2.00

p=4, (iv) distl=dist2=30, slipl=slipn =slipn =2.73861,

slipn =slipn =-2.73861

a

.01

.025

.05

.10

(right
n

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

angles)
U

6.15
42.01
64.19
78.64

13.50
60.58
78.16
87.51

23.54
73.68
86.61
93.16

39.15
85.25
93.44
96.60

W

13.89
74.03
86.35
92.45

25.11
83.21
92.30
96.00

38.90
90.01
95.56
97.61

56.04
94.70
97.73
98.74

UW

1.16
0.59
0.61
0.30

1.89
1.03
0.41
0.33

2.58
0.85
0.45
0.28

2.85
0.61
0.24
0.16

WU

8.90
32.60
22.78
14.11

13.50
23.66
14.55
8.81

17.94
17.19
9.40
4.73

19.74
10.06
4.53
2.30
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p=5, (i) distl=dist2=30, slipl=slipn=2.44949
(same direction) _

a n U W UW WU

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

1.29
25.45
55.94
80.30

2.85
39.05
69.21
87.30

63.38
51.60
78.56
91.51

12.33
65.93
87.18
95.13

1.41
16.93
43.49
70.14

3.39
29.68
57.56
79.39

65.38
42.30
68.70
85.94

13.21
56.68
79.76
91.91

0.39
11.14
15.11
11.56

0.71
12.85
14.31
9.24

2.00
13.14
12.04
6.71

2.91
12.99
9.01
4.05

0.51
2.61
2.66
1.40

1.25
3.48
2.66
1.33

2.20
3.84
2.18
1.14

3.80
3.74
1.60
0.84

p=5, (ii) distl=30, dist2=15, slipl=2.44949, slipn=l.73205
(same direction) _ _

a n U W UW WU

.01

.025

.05

.10

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

1.15
11.90
31.33
53.43

2.96
21.14
43.85
64.53

5.91
32.11
55.61
73.76

11.50
46.38
68.00
82.45

1.30
9.70
26.19
46.34

2.96
18.66
39.08
59.51

5.86
28.90
51.11
69.85

12.16
43.19
64.60
79.65

0.34
4.76
9.44
11.24

0.90
7.10
10.08
10.00

1.75
8.90
10.11
8.21

2.91
9.74
9.06
6.49

0.49
2.56
4.30
4.15

0.90
4.63
5.30
4.99

1.70
5.69
5.61
4.30

3.58
6.55
5.66
3.69
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P=5,

a

.01

.025

.05

.10

(ill)

n

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

distl=30, dist2=15, slipl=2
(opposite direction)

U

1.28
17.15
37.33
58.25

3.43
28.33
51.40
77.16

6.65
40.00
62.84
77.16

12.63
54.51
74.36
85.18

W

1.33
12.84
31.21
50.96

3.53
24.26
44.65
73.59

7.08
35.71
57.09
73.59

13.91
50.76
70.44
83.03

.44949,

UW

0.48
7.31
10.45
11.09

1.14
9.09
11.66
7.85

1.81
10.39
10.76
7.85

2.79
10.24
8.65
5.60

slipn=-

0
3
4
3

1
5
4
4

2
6
5
4

4
6
4
3

1.73205

WU

.53

.00

.34

.80

.24

.03

.91

.28

.24

.10

.01

.28

.08

.49

.73

.45

p=5,(iv) distl=dist2=30, slipl=2.44949, slipn =slipn =2.73861,

slipn =slipn =-slipn , slipn =0.

a

.01

.025

.05

-, -10

(right
n

10
20
30
50

10
20
30
50

10
20
30
50

10
20
30
50

angles)
U

2.99
29.21
50.80
70.95

6.93
45.50
66.43
81.39

13.25
59.64
78.14
88.40

23.35
75.10
87.78
94.19

W

5.10
56.65
78.50
88.80

11.38
72.06
87.00
93.20

20.43
81.55
91.75
95.84

34.05
89.55
95.59
97.73

UW

0.75
1.45
0.95
0.68

1.66
1.40
0.89
0.60

2.43
1.30
0.71
0.44

3.53
1.11
0.55
0.36

WU

2.86
28.89
28.65
18.53

6.11
27.96
21.46
12.41

9.60
23.21
14.33
7.88

14.23
15.56
8.36
3.90
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In the first situation, of slippages along the same

axis, it can be seen that the power of the

union-intersection test is higher than that of Wilks'

test, in each of the three combinations of size and

direction of slippage and for each dimensionality

considered, except when the sample size is the smallest

included in the study (n=10). For such a small sample

size, both tests have very low power and the difference

between them is small. McNemar's test confirms that there

are statistically significant differences between the

powers of the two tests, in most of the comparisons for

n=10, and in most of these cases it is Wilks' test which

is the more powerful (Table 6.3.2). This point will be

returned to later.

For sample sizes of 2 0 and more, the advantage to the

union-intersection test increases as the dimensionality

increases, for a given sample size and combination of

slippage sizes and directions (along the same axis). The

biggest differences in the study occur for p=5 and sample

sizes of 20 and 30, where the union-intersection test has

a power up to 12 percentage points greater than Wilks'

test.

As predicted, the union-intersection test does have

higher power than Wilks' test for slippages along the same

axis, and again as predicted, it can be seen that the

opposite is true for slippages at right angles to each

other. In this case the differences hold for all sample

sizes considered and are much larger. For example, if

Wilks' test had power of about 70% for slippages along the

same axis, then the union-intersection test would have

power not more than 75%, whereas if the union-intersection

test had power of 70% for orthogonal slippages, then

Wilks' test has power of around 90%. It also appears that

it is rare for two outliers to be declared by the

union-intersection test but not by Wilks' test.
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Since it appears that the union-intersection test holds

the advantage when the slippages are along the same axis

but not when they are at right angles to each other, it is

interesting to see how big the angle between two slippage

vectors can be before Wilks' test becomes the more

powerful. This was investigated in a further simulated

power study. The comparison was restricted to one case,

with n=2 0, p=2 and both slippages having a squared

generalized distance of 20 from the origin. One slippage

vector was taken as d/-T2(l,l)' where d2=20; the other was

taken in varying positions on the perimeter of a circle of

radius d, as in Figure 6.3.1. Because the vector OA is at

Figure 6.3.1 Positions of slippages A (fixed) and B

(varying).

45° to the x axis, the angle 9 between the slippage

vectors is G=(TT/4)-0.

Hence cos<£=cos ( (TT/4 ) -8)

=cos(7r/4) cos8+sin(7T/4) sine
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and

sin0=sin( (TT/4) -8)

=sin(TT/4) cos0-cos (TT/4) sine

= (cos8 -sin8

so that B should be taken as

d/*T2~ (cose+sine, cose-sine)

in order for the angle between A and B to be e.

Simulations were carried out for various values of 9,

from 0° up to 18 0°, as shown in Table 6.3.3. Although all

slippage vectors were of the same length, from the origin,

the powers of both tests vary with 9. For example, Wilks'

test must be more powerful when the two slippages are at

right angles than when they are on the same axis, because

in the latter case there is a greater probability that one

extreme value in the rest of the sample can mask the two

outlying points (that is, the two points with slippages

added): see Figure 6.3.2. Against these varying powers,

it can be seen in the Table and in Figure 6.3.3, that the

relatively small power advantage to the union-intersection

test applies until the angle between the slippage vectors

is nearly 20°. Thereafter, the advantage to Wilks' test

quickly becomes large. The union-intersection test

becomes the more powerful again at about 160°.
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A
o

o

c
o
B

Figure 6.3.2 An extreme value from the null distribution

at point C, can have a masking effect on the outlier pair

AB (same axis), whereas masking arises less easily for

the pair AB (orthogonal).

Table 6..3.3 Comparison of

union-intersection test for

Angle

0
10
20
40
60
80
90

100
120
140
160
170
180

U

38.8
38.5
38.2
38.6
42.3
47.0
47.8
47. 8
46.0
45.0
46.3
47.1
47.1

1%

w

34.3
35.5
39.0
50.8
61.7
67.9
69.1
69. 0
64.7
55.9
46.6
43.2
41.9

2.
U

53.9
53.5
53.3
54.0
58.4
63.3
64.7
64.3
62.4
61.0
61.1
61.5
61.8

powers of Wilks'

# varying from 0°

5%
W

49.4
51.1
54.3
64.9
74.5
79.5
80.3
80.0
76.4
69.7
62.2
59.5
57.9

U

66.7
66.6
66.6
67.6
72.0
76.2
77.0
77.2
75.2
73.3
73.5
74.0
74.1

5%
W

63.0
63.9
67.0
76.2
83.0
86.7
87.5
87.2
84.9
79.7
73.6
71.7
70.6

test and the

to 180

U

78.5
78.5
78.4
79.8
83.1
86.8
87.5
87.5
86.0
84.4
83.9
83.9
84.2

0

10%

w

75.4
76.8
78.7
84 .7
90.0
92.8
93.2
93.1
91.2
87.9
83.5
82. 1
82.2
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Figure 6.3.3 Powers between Wilks' test and the

union-intersection test at the a=0.05 level for p=2, n=20 and

for varying angles.

The fact that it appears that a quite close approach to

collinearity is necessary in order for the

union-intersection test to be more powerful probably

explains why Wilks' test was earlier found to be often the

more powerful even for slippages along the same axis, for

a small sample size, n=10. Because the sample after

selection of two outlying points then contains only 8

points, the position of the mean is much less accurately

determined than for larger sample sizes. There is

therefore extra variation, besides the variation of the

positions of the generated outliers, and therefore a

greater chance that there will be a substantial departure

from collinearity.

To summarize the power comparison between the

union-intersection and Wilks' tests, it is suggested that
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there is no very good reason to prefer the former. It is

true that in some circumstances, it may offer a large

increase in power over Wilks' test. However, the

difference between the tests is much larger when Wilks'

test is superior than when the union-intersection test is

superior; furthermore, Wilks' test is the more powerful

for most relative positions of the two slippage vectors.

Consequently, unless there is specific reason to expect

that the slippages are nearly collinear so that the

union-intersection test will be superior, it is

recommended that Wilks' test be used, as it is generally

more powerful.

One other disadvantage of the union-intersection test

may be seen as follows. The test was introduced here

along the lines of a MANOVA between 3 groups (with 1, 1

and n-2 members). Rejecting the null hypothesis in the

MANOVA implies that not all three means (of the

populations from which these samples have been drawn) are

equal. It does not say that all three differ from each

other: it could be that two are the same and the third

differs. In this sense, the union-intersection two-outlier

test might not seem to really be a test for two outliers.

However, if one of the two selected points is not distinct

from the main body of the sample and the significant

result is due to the more extreme isolation of the other

point, then this is just the usual "swamping" effect as

occurs with other multiple outlier tests, including

Wilks'. A way to avoid swamping is offered by proper

sequential application of outlier tests for different

numbers of outliers. In principle this could be done for

the union-intersection test as it was for Wilks' test.

However, the heavy computations required seem to be

prohibitive. The same applies to extending the

union-intersection test to any other situation, such as

for three outliers. The amount of computation will always

be very much heavier than for equivalent uses of Wilks'

test and seems unlikely to be worthwhile.
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In concluding this chapter, it may be remarked that,

although union-intersection construction of outlier test

statistics seems not to have been considered before,

Fieller (1976, 1989) has discussed a property of

one-dimensional projection of a multivariate sample. He

shows that the value of Wilks' statistic for observation

x in the full p dimensions is the same as its value in

the univariate projected sample, when the projection is

onto the direction of the eigenvector of S~ (x -x)(x -x)'.

He calls this direction the outlier-displaying component

for that observation. The direction corresponding to the

maximum is the outlier-projecting component for the

sample: it holds all the information on one outlier.

There is no directly equivalent result for two outliers

(unless they are assumed to have the same slippage), which

is the case considered in this chapter.
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CHAPTER 7

OUTLIER TESTS WITH STRUCTURED COVARIANCE MATRICES

7.1 Introduction

Methods of multivariate statistical analysis are often

presented as having the purpose of examining the structure

of data. Sometimes this may refer to the relationships

within the cases (observational units), as in most cluster

analyses, but more often it refers to relationships

between the variables. Whenever the multivariate normal

distribution applies to the variables, their inter-

relationships will be described by the correlation matrix

(which, together with the means and variances, is

sufficient for the multinormal distribution).

Investigating the structure of a set of multivariate data

therefore often means investigating the structure of a

correlation matrix, either as a purely exploratory

analysis (no structure has been hypothesized beforehand)

or as a confirmatory analysis (a particular structure has

been proposed and is to be tested). Textbooks on

multivariate analysis consequently include several methods

for investigating and testing particular structures. One

example is provided by factor analysis. The observed

variates x are assumed to be linearly related to a set of

unobserved variates y via a matrix of coefficients (factor

loadings) A:

x=Ay+e

where e is an error term. Applying this model means that

the covariance matrix Z of x is being represented as

where $ (often taken to be I) is the matrix of

correlations between the unobserved factors y and f=var(e)

is diagonal.

Although the factor analysis model is widely used,
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there are other much simpler structures which may be

presented for illustration. One is the equicorrelation

structure

o-2R = a2
1 p . . . p
p 1 p . . . p

P P

This is important in the analysis of repeated measures

data, since it is a sufficient condition for a

straightforward analysis of variance (treating the data as

a split-plot design) to give statistics with exact

F-distributions. In a genuine split-plot design, this

covariance structure arises because of randomization, but

it is less likely to apply to measurements repeated in

time, which cannot be randomized (Rowell and Walters,

1976) .

A related form of correlation structure may be more

appropriate when the variables form a time series, since a

measurement may be expected to be most highly correlated

with those closest to it in time, instead of equally

correlated with all others. If a first-order

autoregressive model

X =p|TlX-fc
t+T K t t+T

describes the process (X }, then the correlation between

X and X is p , so that if observations are made at

times t t , . . . ,t with x =t -t , then the correlation
1, 2.' ' p i i+l i'

matrix is
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R =

p-i

Z x
X X +X i = 1 i

1 p i p i 2 . . . p

Xp 2

p-2

Z x
i = 1 i

1 P P-I
p-1

£ T

' 1

Morrison (1976, 9.11) discusses this model and also

processes which lead to the same covariance structure,

including a Wiener stochastic process where

X =X +Y
t+i t t+i

and successive increments Y , Y are uncorrelated. This
t' t+i

is a model for Brownian motion or any other process where

the outcome can be thought of as the sum of independent

contributions. A Guttman scaling model, where the

variables can be thought of as occupying positions along a

continuum, also gives rise to this correlation structure.

All of the structures mentioned above have practical

importance in describing multivariate data structures.

But of course none is applicable if there is no structure

at all, in other words if the variates are independent.

This is the simplest structure : R=I. In many

applications it is obvious on sight that there are

significant correlations, so independence would not be

tested. However, there are plenty of fields of research

where high correlations are never achieved, often because

the measuring instruments are very imprecise, as may be

the case with scales in many sociological and

psychological applications. For this reason, the factor

analysis procedure in the widely used SPSS package - which

is commonly used with just this kind of data - includes a

test for complete independence of the variates.
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A more common variation of independence arises when

only certain parts of the correlation matrix are zero, and

particularly important is the case when a block, rather

than specified elements, is zero. This happens as

follows.

A frequent aim of statistical analyses is to

demonstrate an association. In the context of two

normally-distributed random variables, this may be done by

testing the null hypothesis of zero correlation between

them. It is not unusual to come across similar hypotheses

in data of higher dimensionality, where, however, the

correlations are zero between sets of variates rather than

just pairs. For one example, in a multivariate regression

analysis, the overall test of significance examines

whether all the dependent variables are independent of all

the predictors. For another, in canonical correlation

analysis, linear combinations are found within each set of

variates so that the correlation between the two

combinations, one from each set, is maximized; further

combinations may then be derived with maximal correlations

subject to orthogonality to preceding linear combinations.

The test of significance for the first, maximized

correlation, against the null hypothesis of zero

correlation, tests whether all the variables of one set

are uncorrelated with all those of the other set.

Formally, suppose that the p-dimensional random vector x

follows the multivariate normal distribution N (u,S) and
p

can be partitioned into two sets of variates of dimension

p and p (p +p =p) with covariance matrix correspondingly

partitioned as
Z Z
11 12

z z
21 22

The test is for £^=£^=0.

Morrison (1976, p.254) suggests that investigation of
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block structures of this kind is interesting when the

variates divide into two groups, so that the variates

within each group are characterized by a common feature

which distinguishes them from the other group. He gives

an example where the measurements are the responses in a

stress experiment, with one group consisting of

physiological observations (such as blood pressure and

skin conductivity) and the other consisting of behavioural

measurements. The purpose would be to see if there were

any connection between the physiological and behavioural

data.

In this chapter, a slightly different problem is

examined, in which it is assumed that the block structure

holds and that there may be outliers distorting this

picture. In testing for outliers in a simple random

sample of data from this distribution, two alternatives

will be considered. These are Wilks' test, which treats

the data simply as p-dimensional random vectors with Z

unrestricted, and a test which will be developed

specifically to incorporate the information that £ has

this block structure. This new test will, like Wilks'

test, be based on maximum likelihood for slippage of the

mean. The main purpose of this comparison, which will be

made for a single outlier only, is to demonstrate the kind

of increase in power that might be obtained by applying

knowledge of the covariance structure.

7.2 A Wilks-type statistic when Z has block structure

The derivation of a new test statistic, utilizing

information on the block structure, employs the same

calculation as leads to the usual Wilks statistic. Given

independent p-dimensional random vectors x. (i=l,...,n)

and the hypotheses
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H : x ~ N (M,Z), j=l,...,n
0 j p

and H : x ~ N (ji,Z) , j*i
1 j P

x ~ N (/i+a,Z)
i P

for known i, but unknown ii,a and Z, then the likelihood

ratio for H against H. reduces to |A |/|A|, as discussed

before. Now consider how the likelihood changes when Z has

the block structure. Under H , the likelihood is

proportional to

|Z|~n/2exp{( -1/2) I (X.-MJ'Z'^X.-ILI)}

n

I 1 1 I I 22| P L v / ) L \ \ j ! ^ 1 ) 11 j X V-1)
j = 1

+ (X -Vi ) 'Z" 1 (X -11 ) }]v j 2 2 2 2 V j 2 2 J

where x.=(x. ,x. )' when partitioned in the same way as

li and Z. By writing this as

|Znr
/2exp{(-l/2) I (x.^/i^'Z^tx.^)}

n

. | Z I " n / 2 e x p { ( - 1 / 2 ) V ( x - J U J ' Z ' ^ X -jn ) }l 2 2 l t ^ v v / y z . V j 2 ^ 2 ^ 2 2 ^ j 2 M - 2 ^ /
j = i

the likelihood is seen to be the product of two

independent terms, each with the same structure as the

simple likelihood for the unrestricted case. The same

reasoning applies under H., and hence the likelihood ratio

is

|A I . I A I
1 1 i ' ' 2i '

|A I |A I
1 1 ' ' 2 '

where subscripts 1 and 2 denote SSP's for the first and

second sets of variates.

Any one such ratio has as null distribution the product

of the two independent betas
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B{ (n-pi-l)/2,pi/2) .B{ (n-p2-l)/2,P2/2)

which has p.d.f.

1

P(w)= I f(y)g(w/y)y"1dy, O=sw=sl (7.2.1)

where f and g are the density functions of the two beta

variables. That is,

p(w) « w(B-V3)/2 f y(p2-
pi)/2-1(l-y)pi/2-1(l-w/y)p2/2-1dy

(7.2.2)

where p ̂ p (otherwise, the roles of f and g in (7.2.1)

should be reversed). The constant of proportionality is

r{(n-l)/2) }2

r{ (n-pri)/2}n (n-p2-i)/2}r(Pi/2)r(p2/2) (7.2.3)

The integral (7.2.2) does not seem to have a general

solution, but in certain special cases it can be solved

straightforwardly. Two cases will be taken here, for

illustration. Firstly, suppose p =p =2. Then the

integrand in (7.2.2) reduces to y"1 and the density

becomes

P(w)=-{ (n-3)2/4}.w(n 5)/2.ln w,

with distribution function

P(w)=w(n~3)/2{l-(n-3)/2.1n w} , O^w^l (7.2.4)

Secondly suppose p =2, p =4. The integrand in (7.2.2)

becomes (1-w/y) and the density is

p(w) = (n-3)2(n-5)/8.w(n~7)/2. {1-w+w.ln w)

with distribution function
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P(w)=w(n5)/2 [ (n-3)2-(n-5)w{n-l-(n-3)ln w}]/4 (7.2.5)

Knowing these distributions permits the construction of

Bonferroni tests for outliers when the test statistic

min IA I. IA | , i=l,...,n
1 1 i ' ' 2 1 ' ' ' '

M |A2|

is employed. As usual, for the a% Bonferroni bound the

a/n% points of the distributions (7.2.4) and (7.2.5) are

taken. This is easily done in a few program lines on a

microcomputer, solving

P(w)= a/n

by Newton-Raphson iteration (Appendix I). Some values are

given in Table 7.2.1. These bounds can now be used in

testing in

Table 7.2.1a Percentage points for Bonferroni test using

block matrix structure, p =p =2:

a

n 0.01 0.025 0.05 0.10

.15007

.41722

.55748

.69762

.82665

block matrix structure, p =2, p =4:

a

n 0.01 0.025 0.05 0.010

10
20
30
50

100

Table 7

.07150

.30841

.46134

.62614

.78474

.2.1b

.09572

.34744

.49713

.65346
,80105

Percentage

.11968

.38056

.52630

.67509

.81370

points fc

10
20
30
50

100

.02401

.22620

.38514

.56719

.74884

.03511

.25891

.41829

.59414

.76556

.04696

.28720

.44564

.61564

.77861

.06306

.31909

.47522

.63822

.79202
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comparison to the ordinary Wilks tests for 4 dimensions

(case p =p =2) and 6 dimensions (case p =2, p =4) . For

this purpose Wilks' Bonferroni table for one outlier

(1963) was extended for p=6, n=10, 20, 30, 50, 100, as

given in Table 7.2.2.

Table 7.2.2 Percentage points for Bonferroni test using

Wilks' statistic for one outlier.

a

n 0.01 0.025 0.05 0.10

10
20
30
50

100

7.3

.00375

.19286

.36380

.55712

.74571

Power comparisons

.00692

.22433

.39721

.58448

.76261

between the

.01103

.25188

.42488

.60634

.77580

tests

.01760

.28328

.45491

.62932

.78936

The powers of the ordinary Wilks test and the new test

incorporating the information on block structure were

compared by simulation study. Multivariate normal

samples, of the required dimension p=p +p and of chosen

size n, were generated with the block structure £ =0 for

chosen £ and £ and mean zero. A chosen vector was
11 22

then added to the first member of the sample, representing

a slippage of the mean. Both the Wilks statistic and the

new statistic were computed and compared to their

respective Bonferroni bounds at the same significance

level. This procedure was repeated 8000 times for each

combination of p and n, for each chosen £ and slippage.

For each combination of p and n, two types of slippage

were used, and two distances with each type. The first

type consisted of slippage in each dimension, represented

by adding a multiple of the p-dimensional unit vector /31'

to the first member of the sample. The multiplier /3 was

chosen so that the squared generalized (Mahalanobis)

distance of the size of slippage, in the metric of the
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block Z, namely

was equal to 30 or 15. The second type consisted of

slippage affecting only the p dimensions making up the

first block of variables. This was represented by adding

a vector Au, where u consisted of p ones followed by p

zeros, with the multiplier chosen so that

\Zu' or 15.

The computation of £ and X is given in Appendix II. The

required values can be computed easily, because when £

is block diagonal

X = Z
11

0 Z

0

22

then so is its inverse

Z
n
0 Z

0
-1

The inverse of a 2x2 block can be computed easily

1 P

P 1

-l
1 -p

-P 1

and the 4x4 block (in the case p =2, p =4) could also be

inverted analytically, because the equicorrelation form

1 p p p
p 1 p p
p p 1 p
p p p 1

was used; its inverse has elements

l+2p
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along the diagonal and

-P
(1-p)(l+3p)

in all off-diagonal positions.

Tables 7.3.1 and 7.3.2 display results for Bonferroni

levels of significance a=0.01, 0.025, 0.05 and 0.10 for the

two types of slippage and the two distances, for cases

pi=p2=2 (Table 7.3.1) and p^2, P2=4 (Table 7.3.2). The

following conclusions are clear:

(i) the modified test is the more likely to declare

that an outlier is present, for both types and amounts of

slippage, for all sample sizes;

(ii) the advantage to the modified test, which is very

large for small samples, decreases as n increases; the

advantage falls away faster as n increases for the second

type of outlier than for the first type;

(iii) the modified test is less likely to declare an

outlier with the second type of slippage than with the

first type, especially in samples of size 10, 20 and 30.

The performance of the unmodified test is the same for

both types of outlier.

(iv) the degrees of difference between the tests are

broadly similar for both sizes of slippages considered;

(v) Wilks' test declares an outlier in a small

percentage of cases when the modified test does not.

The first two conclusions would be expected from the

nature of the difference between the two tests. They

differ only in that one uses the extra information that

certain parameters of the model, namely the correlations

in S , can be set equal to zero, instead of having to be

estimated. As less information has therefore to be lost

to the estimation of parameters, it follows that the

modified test must be the more sensitive, on average, to
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real differences. The increased sensitivity will be

greatest when the sample is small, for then the efficiency

of the estimation is lowest and so the imposition of the

constraint has the greatest quantitative effect. Point (v)

holds however because the argument of increased

sensitivity applies only on the average and not to each

particular sample.

The dependence on type of outlier, mentioned in (iii),

is also as would be expected. The performance of Wilks'

test depends only on the generalized distance, as

reproduced by these simulations. With the second type of

outlier, the second set of variables is actually

irrelevant to the problem, so that their inclusion should

not (if n is big enough) affect the test. Since their

inclusion should not affect the test, the way they are

treated should also not have any effect: in other words,

the modified and unmodified tests should be the same, for

large enough n, for the second type of outlier. The

tables confirm that there is little difference at n=50, or

even at n=30. Such difference as there is, is again due

to the need to estimate fewer parameters in the modified

test, which has a larger impact when the sample size is

small. With the first type of outlier, on the other hand,

both sets of variables are relevant to the problem.

The chief conclusion of this illustrative study is

that, since such a large increase in power can be obtained

in small- to medium-sized samples by using a more suitable

outlier test statistic than the standard Wilks statistic,

it is very much worthwhile to construct these alternative

statistics. In the remainder of this chapter, statistics

for some other particular structured matrices will be

considered.
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Table 7.3.1 Power comparison between the Wilks test and the

Wilks test modified to incorporate block structure information.

Case p =p =2, with

1 -.
- 4

Outlier type 1:

slipHdist/M 2{1/ (1+p )+l/(l+p )}, is the slippage added to each

component where p and p are the correlations corresponding to

the first and second blocks of the variance-covariance matrix.

Dist is the squared generalized distance. In this case p =.4

and p =-.4. Slippage for (i) dist=30 is 2.50998 and for (ii)

dist=15 is 1.77482 in each component.

Outlier type 2:

SlipHdist(1+p )/2 is the slippage added to the first two

components of 1st observation which for (i) dist=30 is 4.58258

and (ii) dist=15 is 3.24037.
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a) a=0.01

% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(i) Sq. gen. distance=30, outlier type 1.

1.49
1.83
1.59
1.73
1.36

10
20
30
50

100

35.98
63.49
70.19
75.21
76.01

7.18
39.14
54.48
66.91
72.10

30.29
26.18
17.30
10.03
5.28

(ii) Sq. gen. distance=30, outlier type 2.

10
20
30
50

100

15.58
46.01
58.83
68.44
72.68

6.76
38.61
54.55
66.04
71.95

11.28
10.55
7.01
4.15
2.19

(iii) Sq. gen. distance=15, outlier type 1.

10
20
30
50
100

10.75
18.98
21.55
23.48
22.59

2.64
9.80
14.38
18.25
20.05

9.29
10.95
9.06
7.21
4.46

(iv) Sq. gen. distance=15, outlier type 2.

10
20
30
50

100

6.11
12.61
16.91
20.06
19.84

3.13
10.01
14.56
18.31
18.96

4.54
5.13
4.34
3.56
2.21

2.46
3.15
2.74
1.75
1.46

1.18
1.78
1.89
1.99
1.93

1.55
2.53
1.99
1.81
1.34
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n

b) a=0.025

% of times an outlier detected by:

Mod. Wilks Wilks Mod. Wilks only Wilks only

(i)

10
20
30
50

100

(ii)

10
20
30
50

100

(iii)

10
20
30
50

100

(iv)

10
20
30
50

100

Sq. gen.

51.63
74.75
79.78
83.13
82.84

Sq. gen.

28.19
59.88
70.99
78.04
80.70

Sq. gen.

18.53
28.30
30.50
32.66
30.49

Sq. gen.

11.78
21.50
25.78
28.25
27.15

distance=3 0,

15.18
54.14
66.71
76.76
79.85

distance=3 0,

14.44
53.04
66.99
76.30
80.05

distance=15,

6.45
17.53
22.69
27.35
28.25

distance=15,

6.74
17.45
22.60
27.03
26.68

outlier type 1.

38.46
22.38
14.63
7.61
4.14

outlier type 2.

17.63
10.11
6.11
3.51
1.70

outlier type=l.

14.54
13.46
10.51
7.88
4.53

outlier type=2.

8.00
7.33
5.80
3.76
2.26

2.01
1.76
1.56
1.25
1.15

3.88
3.28
2.11
1.78
1.05

2.46
2.69
2.70
2.56
2.29

3.88
3.28
2.63
2.54
1.79
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n

c) <X=0.05

% of times an outlier detected by:

Mod. Wilks Wilks Mod. Wilks only Wilks only

(i)

10
20
30
50

100

Sq. gen.

63.51
82.39
86.05
88.31
87.36

distance=3 0,

25.18
65.20
75.88
83.23
85.10

outlier type=l.

40.75
18.79
11.45
6.18
3.34

2.41
1.60
1.28
1.09
1.08

(ii) Sq. gen. distance=3 0, outlier type=2.

10
20
30
50

100

40.59
70.36
79.24
83.74
85.78

24.34
64.16
76.63
82.78
85.13

20.99
9.46
4.71
2.49
1.49

4.74
3.26
2.10
1.53
0.84

(iii) Sq. gen. distance=15, outlier type=l.

10
20
30
50

100

27.44
36.85
39.29
41.11
37.96

11.51
25.85
31.31
35.75
35.61

19.61
14.41
11.36
8.44
4.98

3.69
3.41
3.39
3.08
2.63

(iv) Sq. gen. distance=15, outlier type=2

10
20
30
50

100

19.05
30.76
33.84
36.84
35.04

12.34
26.31
31.53
34.83
34.13

11.29
8.33
6.31
4.64
3.15

4.58
3.88
4.00
2.63
2.24
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n

d) a=0.10

% of times an outlier detected by:

Mod. Wilks Wilks Mod. Wilks only Wilks only

(i)

10
20
30
50

100

(ii)

10
20
30
50

100

(iii)

10
20
30
50

100

(iv)

10
20
30
50

100

Sq.

75.
88.
91.
92.
91.

Sq.

55.
81.
86.
89.
89.

Sq.

39.
48.
49.
51.
47.

Sq.

29.
41.
45.
46.
44.

gen.

84
46
19
16
24

gen.

58
20
29
10
90

gen.

53
08
79
23
38

gen.

56
68
54
80
39

distance=30,

39.68
76.30
84.26
88.98
89.78

distance=3 0,

39.16
75.85
84.24
88.23
89.54

distance=15,

21.09
37.00
42.66
46.39
44.91

distance=15,

22.43
37.41
42.74
45.38
43.64

outlier

outlier

outlier

outlier

type=l.

38.75
13.56
7.96
4.18
2.39

type=2.

22.31
7.81
3.75
1.98
1.21

type=l.

24.09
15.25
11.11
8.40
5.36

type=2.

14.13
9.26
7.04
5.06
3.61

2
1
1
0
0

5
2
1
1
0

5
4
3
3
2

6
0
4
3
2

.59

.40

.04

.99

.93

.90

.46

.70

.10

.85

.65

.18

.99

.56

.90

.99

.50

.24

.64

.86
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Table 7.3.2 Power comparison between the Wilks test and the

Wilks test modified to incorporate block structure information.

Case p =2, p =4, with

.4

Outlier type 1 :

2 2 1 -.2 -.2 -.2

-.2 1 -.2 -.2

-.2 -.2 1 -.2

-.2 -.2 -.2 1

Slippage added to 1st observation of sample is

slip=*Jdist/«l {2/(l+pi)+4/(l+3p2) } where p and p2 are the

corresponding correlations of the first and second blocks of

the variance-covariance matrix. In this case p =.4 and p =-.2.

Dist is the squared generalized distance. This gives slippage

(i) for dist=30, slip=l.62019 and (ii) for dist=15,

slip=l.14564 in each component.

Outlier type 2 :

Slip=-J dist (1+p )/2 is the slippage added to the first two

components of 1st observation. For (i) dist=30, slippage is

slip=4.58258 and for (ii) dist=15, it is slip=3.24037.
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n

a) a=0.0l

% of times an outlier detected by:

Mod. Wilks Wilks Mod. Wilks only Wilks only

(i) Sq. gen. distance=30, outlier type 1.

10 10.53 1.81 9.79 1.08

20
30
50
100

(ii)

10
20
30
50

100

(iii)

10
20
30
50

100

(iv)

10
20
30
50

100

38.79
51.49
60.40
64.03

Sq. gen.

6.40
29.58
43.83
56.13
61.78

Sq. gen.

3.43
9.24
12.80
14.18
15.01

Sq. gen.

2.50
7.46
10.25
12.65
14.50

21.40
38.61
52.31
60.53

distance=30,

1.70
20.54
37.63
51.85
60.15

distance=15,

1.13
5.10
9.21
11.86
13.81

distance=15,

1.48
4.85
7.93
11.18
13.71

19.88
15.00
10.20
5.25

outlier type 2.

6.01
13.33
10.59
7.09
3.79

outlier type 1.

3.21
5.50
5.45
3.98
2.59

outlier type 2.

2.28
4.35
4.51
3.69
2.36

2
2
2
1

1
4
4
2
2

0
1
1
1
1

1
1
2
2
1

.49

.12

.11

.75

.31

.29

.39

.81

.16

.91

.36

.86

.66

.39

.25

.74

.19

.21

.58
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b) a=0.025

n

10
20
30
50
100

% of times an outlier detected by:

Mod.Wilks Wilks Mod. Wilks only Wilks only

10
20
30
50

100

19.63
52.18
63.24
70.65
73.39

4.83
33.69
50.99
63.56
70.28

17.25
21.46
14.44
8.88
4.59

(ii) Sg. gen. distance=30, outlier type 2

10
20
30
50

100

12.88
43.55
56.39
66.94
70.53

4.43
32.75
50.74
63.95
69.49

11.43
15.38
10.25
6.35
3.21

(i) Sg. gen. distance=3 0, outlier type 1.

2.45
2.98
2.19
1.79
1.48

2.98
4.58
4.60
3.36
2.18

2.31
2.68
2.75
2.33
1.68

2.45
3.04
3.53
3.18
2.38

(iii) Sg. gen. distance=15, outlier type 1.

7.18
15.78
20.09
21.74
22.10

3.08
10.16
14.79
18.28
19.83

6.41
8.29
8.05
5.79
3.95

(iv) Sg. gen. distance=15, outlier type 2

10
20
30
50

100

5.49
13.93
16.80
19.95
20.98

3.31
9.71
14.29
18.25
20.44

4.63
7.25
6.04
4.88
2.91
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c) a=0.05

% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(i)

10
20
30
50

100

(ii)

10
20
30
50

100

(iii)

10
20
30
50

100

(iv)

10
20
30
50

100

Sq. gen.

30.21
62.80
71.76
77.41
79.59

Sq. gen,

21.35
55.39
66.71
75.48
77.35

Sq. gen.

12.74
23.51
27.76
29.94
28.56

Sq. gen.

10.29
20.58
24.69
27.75
27.55

distance=3 0,

8.95
45.46
61.53
71.99
77.01

. distance=3 0

8.38
45.29
61.20
72.98
76.24

distance=15,

6.30
15.51
22.19
25.70
26.83

distance=15,

6.25
15.55
21.68
25.78
27.03

outlier type

25.28
20.55
12.45
7.16
3.91

, outlier type

17.75
15.15
9.65
5.38
3.23

outlier type

10.71
11.71
9.31
7.20
4.16

outlier type

8.35
9.63
7.74
5.89
3.66

1.

2.

1.

2.

4
3
2
1
1

4
5
4
2
2

4
3
3
2
2

4
4
4
3
3

.01

.21

.21

.74

.34

.78

.05

.14

.88

.11

.28

.71

.74

.96

.43

.31

.60

.73

.91

.14
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d) a=0.10

% of times an outlier detected by:

Mod. Wilks Wilks Mod. Wilks only Wilks only

(i) Sq. gen. distance=3 0, outlier type 1.

1 0
2 0
3 0
5 0

1 0 0

44.64
73.61
80.00
84.10
85.28

16.76
58.66
72.08
80.03
83.33

33.55
17.84
10.10

5.63
3.15

(ii) Sq. gen. distance=30, outlier type 2.

1 0
2 0
3 0
5 0

1 0 0

34.30
67.80
76.03
82.66
83.76

16.25
58.70
72.39
80.80
83.29

25.04
13 .81

7.58
4.23
2.48

(iii) Sq. gen. distance=15, outlier type 1.

1 0
2 0
3 0
5 0

1 0 0

21.38
33.55
38.11
39.66
38.00

12.51
25.14
32.49
35.41
35.76

15.91
13.81
10.30

7.88
5.24

(iv) Sq. gen. distance=15, outlier type 2

1 0
2 0
3 0
5 0

1 0 0

18.13
30.80
34.75
38.11
37.28

11.78
25.20
31.26
35.30
36.66

13.81
12.08

9.01
7.05
4.50

5.68
2.89
2.18
1.55
1.20

6.99
4.71
3.94
2.36
2.00

7.05
5.40
4.68
3.63
3.00

7.46
6.48
5.53
4.24
3.89
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7.4 Testing for one outlier when T. is the equicorrelation

matrix

One motivation for interest in the equicorrelation

matrix

1 p ... p
p 1 . . . p

p ... 1

was mentioned in § 7.1. Another arises frequently in

sociological and psychological research, where scales of

measurement are often set up which consist of the sum of

scores on a number of related items which are all answered

in the same way (such as "strongly agree" to "strongly

disagree" on a 5-point scale). One question about such a

scale is whether it is a reliable measurement of whatever

it is that it does measure, in the sense that a ruler

provides a reliable measurement of length because it will

give the same answer when applied to the same object under

the same conditions; if the scale is reliable, then the

researcher can go on to study its validity - whether the

thing that it measures is what he would like it to

measure. A basic coefficient assessing reliability is

Cronbach's alpha (e.g. Carmines and Zeller, 1979). This

is usually computed as

a=Np/{l+(N-l)p)

where the scale consists of N items and p is the average

of all the N(N-l)/2 inter-item correlations. The

derivation of this involves the assumption that the items

are parallel measures of the same concept, all possessing

exactly the same properties, including equal means and

variances, and hence having equal correlations with each

other. In the equicorrelation matrix thus assumed, the

maximum likelihood estimator of the common correlation p

is just p: the proof of this will now be seen in the

derivation of an outlier test statistic for data supposed

to follow the equicorrelation model.
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A two-stage maximum likelihood statistic will be found

for testing sample homogeneity against an alternative of a

single outlier with slippage in the mean. The hypotheses

are

H : x ~ N (fi.E) i=l,...,n
0 i p

H : x ~ N (M,2) i*j
1 i p

x ~ N (jLt+a,Z)
j P

where fi, a and j are unknown, and Z=u R has the

equicorrelation form with unknown cr and p.

The log-likelihood under H has already been given as

equation (3.1.2). Apart from a constant, it is

l(/i,V)=nln|V|-ntr(VS)-n(x-fi) 'V(X-AI) (7.4.1)
2 2 2

where V=E~1 and nS= £ ( x . - x ) ( x . - x ) '
i

As before, taking derivatives of the log-likelihood

maximized over /_i at /_i=x (whereupon the third term

vanishes),

SI = nfsinj
3V 2 [ c\

|V|-atr(VS)l

?v av J

= n (2S-diagZ-2S+diagS) (7.4.2)
2

using results from Mardia, Kent and Bibby (1979) quoted in

§ 3.1. Now in this particular problem,

V=a(I+/3J)

where <x(p,cr )=cr~ (1-p)" and |3(p)= -p{ 1+(p-1) p}~ . In order

to obtain 81/da and 81/8(3, we first prove the

following lemma.
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Lemma :

Proof:

If the matrix Q=Q(0) with 0 scalar, then

31 =tr( 31 3Q''
30 [ 3Q 30

For matrix Q=(q..) , 31/3Q means the matrix

(81/dq .) . Now

£1 = E E £1 3q. .
30 i j 3q. . 30 1 J

1 j flQ U 8 e U

= E E fai
1
f f

= t r f a i 3QM
[3Q 30

Applying this lemma to V=a(I+/3J) in (7.4.2),

a n d

31 =
3a av

3V] because V is symmetric
j

= tr/31
\8V J

= tr fai] +/3tr fai J
[svj (_av

= n t r Z - n t r S +
2 2

31 = trfSJL 3V
3/3 IsV 3/3

flV ( 7 . 4 . 3 )

[av
( 7 . 4 . 4 )

Since 31/3a=0 and 31/3/3= 0 at the maximum likelihood

estimates,

| i J l = 0 from (7 .4 .4) , and

n ( t r E - t r S ) = 0 from (7 .4 .3 )
2

giving
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n (pcr2-trS) = 0
2

from which

<T2 = (l/p)trS.

Returning to (7.4.4), at the m.l.e.

trfal J] = 0
lav J

which gives

tr{2EJ-(diag£)J-2SJ+(diagS)J}=0

2p{l+(p-l)p}(X2-pcr2-2 E Y. s..+trS=O
i j U

p{l+(p-l)p}cr2 = I E s. . = E E s^+trS
i j i * j

so finally

Going back to the log-likelihood maximized over \i and

writing V=cr~ R" ,

1= -np lno-2-n ln|R|-ncr'2tr (R^S)

it can immediately be seen, by differentiating with

respect to <j , that

so that the maximized log-likelihood is

A2

1 = - np Incr - n ln |R| - np
0 ~2 2 ~~2

under H .o

Under H for specified j, the log-likelihood is (omitting

the same constant)
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1(H,V)= n ln|V|-(n-l)tr(VS.)-ntr{V(x,-n) (x,
2 2 J 2 j j

- l(x.-u-a)'V(x.-M-a)
2 J

A _ A A

so that, once m.l.e.'s fi=x and a=x -/j. have been
j j

inserted, the log-likelihood differs from the null case

only in replacing S by (n-l)S./n. Consequently

or = n-l tr(S.)
j np J

A

P, = n-l

np(p-l)o\

(S )

using the j subscript to show that point x was omitted.

With these estimates, the maximized log-likelihood is

Ap A

1 = -np Incr - n In IR I
1 2 j 2 ' j

and hence the likelihood ratio A, for given j is,

2/n_
A —

A2

^2
cr

R.

R (7.4.5)

Using the two-stage method, the minimum value of this over

all j=l,...,n gives the outlier test statistic for unknown

j, called EC for equicorrelation

EC= min
A 2

A Q

cr

A

R 1
j '

A

R

It can be seen that it has a form analogous to Wilks'

statistic, which is based on |A |/|A| and hence is
A A J

proportional to |E.|/|Z|. This is the ratio of

determinants of the m.l.e's of the covariance matrix under

the two hypothesis, which is the same structure as

(7.4.5).
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It does not seem possible to find the distribution of

the above test statistic EC for an outlier from the

equicorrelation model. In order to investigate its

performance the following simulation studies were

undertaken. Firstly, simulated percentage points were

obtained under the null hypothesis. Secondly, these

percentage points were used to examine the power of the EC

test in comparison to the power of Wilks' test, which can

be applied to the same data but does not utilize the extra

information that the covariance matrix has the

equicorrelation structure.

Simulated 1, 2.5, 5 and 10% critical values are shown

in Table 7.4.1 (a)-(d). The entries in the tables are

based on 30,000 simulated samples from N (0,R) with the
p

given combination of n and p=2; 18,000 simulations for

p=3; 16,000 for p=4 and 14,000 for p=5. The different

numbers of simulations arose because data under the null

hypothesis were generated for different values of p in the

range (p (p),0.9), where

P0(P)= _ ^ _
p-1

is the lowest possible value of p at which the

equicorrelation matrix ceases to be positive definite.

This was done to confirm that the percentage points do not

depend on p.

Simulated powers are shown in Table 7.4.2 (a)-(d). In

this case, each entry is based on 6,000 runs, and is the

average of three lots of 2,000 simulations each for

different values of p (again, to confirm that results were

independent of p). A simple outlier was generated by

adding the quantity XI to the first member of the sample,

where X was chosen so that the generalized distance of the

slippage from the mean (the origin) was 20 in the metric

of equicorrelation covariance matrix R:, the computation
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is shown in Appendix II. Wilks' statistic and the EC

statistic were both evaluated on the same data.

In examining the powers it should first be noted that

in the case p=2 there is only one correlation, so the

imposition of the equicorrelation structure actually

refers to imposing the single condition of equality

between the two variances. The number of parameters to be

estimated is always 2 in the equicorrelation matrix for

any number of dimensions, in comparison to p(p+l)/2 in the

unrestricted matrix:

p

2
3
4
5

P(P+l)/2

3
6

1 0
15

From this, it is obvious that for a given sample size

the power of the new EC test statistic will decline much

less steeply as p increases than will the power of Wilks'

test, so that the difference in powers of the tests will

increase quite sharply from the rather small difference

which should exist at p=2 (where a single restriction is

imposed). This is borne out by the tables. In testing at

the 5% level in a sample of size n=2 0, the power of the

new procedure is only 4.7% greater than that of Wilks7

statistic (0.467 to 0.447) for p=2, increasing to 18.1%

for p=3, 31.1% for p=4 and 46.0% for p=5 (0.285 to 0.195).

The conclusion to be drawn from the data in the tables

is that utilizing the information on equicorrelation, by

using the EC test statistic, makes a substantial

difference to the power of the single outlier test in

small and moderate samples, say up to at least n=30 for

the range of dimensions considered. Hence it is of

practical importance to exploit this information wherever

possible. Since it would probably be necessary in some
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applications to confirm the applicability of the

equicorrelation hypothesis, a test for this structure

should also be carried out. Following the derivation

above, it can be shown that a likelihood ratio test for

equicorrelation against an unrestricted alternative is

(Wilks, 1946; Morrison, 1976)

L = \Z\/(a2)p\R\

where X is the unrestricted m.l.e. Then -In L times the

factor

n-l-p(p+l)2(2p-3)/{6(p-l)(p2+p-4)}

is asymptotically X2 with [p(p+l)/2]-2 degrees of freedom:

this is the usual asymptotic result, incorporating a

correction due to Box (1949, 1950). This test could be

applied to the reduced sample obtained by omitting the

suspected outlier x and significance levels would not be

affected if x. is a genuine outlier.

Table 7.4.1(a) Simulated 1% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation

model.

Dimensions p
Sample size
n

10
20
30
50

100

2

0.1670
0.4216
0.5601
0.7003
0.8286

3

0.1315
0.3750
0.5141
0.6673
0.8046

4

0.1007
0.3263
0.4722
0.6359
0.7872

5

0.0801
0.2961
0.4433
0.6038
0.7685
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Table 7.4.1(b) Simulated 2.5% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation

model.

Dimensions p
Sample size
n

10
20
30
50

100

2

0.2078
0.4674
0.5983
0.7270
0.8438

3

0.1658
0.4151
0.5507
0.6922
0.8212

4

0.1306
0.3678
0.5084
0.6603
0.8026

5

0.1027
0.3328
0.4737
0.6310
0.7838

Table 7.4.1 (c) Simulated 5% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation

model.

Dimensions p
Sample size

n

10
20
30
50

100

2

0.2489
0.5052
0.6291
0.7479
0.8564

3

0.1992
0.4479
0.5796
0.7123
0.8348

4

0.1581
0.4014
0.5370
0.6806
0.8151

5

0.1247
0.3617
0.5038
0.6525
0.7974

Table 7.4.1 (d) Simulated 10% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation

model.

Dimensions p
Sample size

n

10
20
30
50

100

2

0.2979
0.5477
0.6628
0.7704
0.8685

3

0.2373
0.4891
0.6106
0.7345
0.8469

4

0.1908
0.4379
0.5707
0.7038
0.8289

5

0.1533
0.3969
0.5341
0.6760
0.8115
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Table 7.4.2 (a) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model

and Wilks' statistic: a=0.01

Proportion of times that an outlier is declared
Sample
size
n

10

20

30

50

100

Dimensions
P

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

EC
test

0.1417
0.1137
0.0885
0.0747

0.2580
0.1953
0.1682
0.1238

0.2942
0.2272
0.1863
0.1635

0.3202
0.2498
0.2215
0.1785

0.3107
0.2552
0.2162
0.1623

Wilks'
test

0.0942
0.0503
0.0268
0.0165

0.2258
0.1658
0.1060
0.0632

0.2890
0.2112
0.1403
0.1017

0.3070
0.2388
0.1832
0.1417

0.3102
0.2405
0.1965
0.1485

Only EC
test

0
0
0
0

0
0
0
0

0
0
0
0

o
 o

 o
 

o

0
0
0
0

.0640

.0803

.0768

.0695

.0490

.0553

.0817

.0810

.0267

.0450

.0667

.0828

.0262

.0352

.0555

.0585

.0107

.0287

.0350

.0325

Only Wilks'
test

0.0165
0.0170
0.0152
0.0113

0.0168
0.0257
0.0195
0.0203

0.0215
0.0290
0.0207
0.0210

0.0130
0.0242
0.0172
0.0217

0.0102
0.0140
0.0153
0.0187
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Table 7.4.2 (b) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model

and Wilks' statistic: a=0.025

Proportion of times that an outlier is declared
Sample
size
n

10

20

30

50

100

Dimensions
P

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

EC
test

0.2403
0.1985
0.1660
0.1362

0.3715
0.3050
0.2587
0.2072

0.4037
0.3282
0.2758
0.2525

0.4308
0.3573
0.3012
0.2622

0.4070
0.3408
0.2947
0.2382

Wilks'
test

0.1855
0.1098
0.0632
0.0427

0.3337
0.2482
0.1843
0.1233

0.3845
0.2975
0.2283
0.1790

0.4188
0.3325
0.2693
0.2212

0.4045
0.3353
0.2790
0.2233

Only EC
test

0.0850
0.1220
0.1333
0.1210

0.0595
0.0892
0.1110
0.1170

0.0385
0.0588
0.0805
0.1037

0.0298
0.0480
0.0562
0.0680

0.0147
0.0247
0.0395
0.0408

Only Wilks'
test

0.0302
0.0333
0.0305
0.0275

0.0217
0.0323
0.0367
0.0332

0.0193
0.0282
0.0330
0.0302

0.0178
0.0232
0.2433
0.0270

0.0122
0.0192
0.0238
0.0260
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Table 7.4.2 (c) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model

and Wilks' statistic: a=0.05

Proportion of times that an outlier is declared
Sample
size
n

10

20

30

50

100

Dimensions
P

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

EC
test

0.3438
0.2818
0.2482
0.2228

0.4673
0.4075
0.3553
0.2845

0.5008
0.4215
0.3630
0.3298

0.5157
0.4442
0.3835
0.3417

0.4938
0.4300
0.3720
0.3210

Wilks7

test

0.2915
0.1865
0.1148
0.0837

0.4465
0.3450
0.2712
0.1950

0.4850
0.3880
0.3163
0.2590

0.5090
0.4338
0.3568
0.2985

0.4832
0.4157
0.3650
0.3017

Only EC
test

0.0905
0.1477
0.1833
0.1842

0.0497
0.1042
0.1273
0.1392

0.0388
0.0687
0.0905
0.1147

0.0270
0.0425
0.0628
0.0777

0.0208
0.0360
0.0380
0.0530

Only Wilks'
test

0.0382
0.0523
0.0500
0.0450

0.0288
0.0417
0.0432
0.0497

0.0230
0.0352
0.0438
0.0438

0.0203
0.0322
0.0362
0.0345

0.0102
0.0217
0.0310
0.0337
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Table 7.4.2 (d) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model

and Wilks' statistic: a=0.10

Proportion of times that an outlier is declared
Sample
size
n

10

20

30

50

100

Dimensions
P

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

2
3
4
5

EC
test

0.4743
0.4130
0.3635
0.3292

0.5908
0.5228
0.4723
0.4142

0.6167
0.5373
0.4815
0.4387

0.6228
0.5480
0.4888
0.4467

0.5910
0.5248
0.4787
0.4212

Wilks'
test

0.4290
0.2955
0.2155
0.1630

0.5663
0.4658
0.3887
0.3055

0.5980
0.5050
0.4270
0.3638

0.6123
0.5383
0.4615
0.4047

0.5843
0.5222
0.4643
0.4038

Only EC
test

0.0888
0.1780
0.2223
0.2435

0.0550
0.1025
0.1358
0.1727

0.0403
0.0745
0.1043
0.1275

0.0277
0.0477
0.0672
0.0495

0.0225
0.0315
0.0485
0.0553

Only Wilks'
test

0.0435
0.0605
0.0743
0.0773

0.0305
0.0455
0.0522
0.0640

0.0217
0.0422
0.0498
0.0527

0.0172
0.0380
0.0398
0.0915

0.0158
0.0288
0.1342
0.0380
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CHAPTER 8

RESIDUALS AND INFLUENCE IN THE MULTIVARIATE LINEAR

MODEL

8.1 Introduction

The examination of structured data is also the topic of

this final chapter, since it deals with the relationship

of a response vector to a vector of predictors via a

linear model. Specifically, the model considered is

Y=XB+U (8.1.1)

where the nxq matrix Y holds n independent observations of

the q-dimensional response vector, the nxp matrix X holds

the corresponding observations of the p-dimensional vector

of predictors, B is a pxq matrix of coefficients and U is

an nxq matrix of random disturbances. X usually includes a

column of ones. After replacing B by an estimate B, the
A A

matrix U=Y-XB holds the residuals: the ith row of this

matrix, ur. , contains the residuals for the ith case on

each of the q response dimensions. The topic of residuals

from the univariate linear model (q=l) has been studied

extensively (Cook and Weisberg, 1982). The basic purpose

of examining residuals is to assess the adequacy and

appropriateness of the model; this may include

identification of outlying values, but a proper

examination of residuals should assess the entire set and

not just some extreme values. Along with the study of

residuals, there has also been a lot of attention to the

question of influence. This has been touched on already -

see Figure 1.2.1 and the relevant discussion in the text

of § 1.2.

In this chapter, these ideas are applied to the

multivariate linear regression problem. Although ordinary

least squares estimates of regression coefficients are the
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same in the multivariate analysis as in q separate

univariate analyses, so that the residuals for a

particular response dimension are the same whether this is

analyzed separately or together with the other responses,

there are obvious reasons for carrying out the

multivariate analysis to consider simultaneously the

different response variables. One is the possibility that

the residual for one response variable in a particular

case may not seem to be out of the ordinary in relation to

other residuals for that response, but only in relation to

the residuals for other responses on the same case.

Another is that interest may lie in specifically

multivariate aspects of the data. For example, in the

problem that prompted this investigation, the main item of

interest was the matrix of inter-correlations between five

indicators of pollution from sampling stations in the

Aegean Sea. This was calculated as the matrix of

correlations between the residuals from the regressions of

the indicators on covariates including temperature and pH

of the seawater. Correlations are particularly vulnerable

to distortion by outlying values (Gnanadesikan &

Kettenring, 1972), so examination of the multivariate

residuals to protect against this was essential.

In the following two sections, multivariate residuals

and influence measures are presented. Section 4 outlines

an application to illustrate the usefulness of the

methodology.

8.2 Residuals

It is useful to start by recalling some results from

the univariate linear model as may be found in Cook and

Weisberg or many other sources. Write the model as y=X/3+e

where y is the nxl vector of n independent observations of

the dependent variable, X is the nxp matrix of predictors,

usually including a column of l's, (3 is the pxl vector of

regression coefficients and e is the nxl vector of
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residuals, with variance var(e)=<r I. Estimation of /3 is

usually carried out by ordinary least squares, which is

the same as maximum likelihood when the normal

distribution is assumed for e. The estimator is

The observed least-squares residuals are

e=y-y=y-x/3

= (I-X(X'X)"1X')y

=(I-V)y

where V=X(X7X) ~1X/, is often called the "hat matrix".

Substituting y=X/3+e, this expression for e reduces to

e=(I-V)e

From this, it can be seen immediately that the variance of

the observed residuals is

Var(e)=o-2(I-V)

In particular, the variance of the residual for case i

is <J (1-v..), where v.. is the ith diagonal element of V.

Therefore, in general, these residuals do not have the

same variance and this inequality must be removed before

comparing residuals between cases. One may do this by

constructing the internally studentized residuals

r=e./{a(l~vn)
1/z) (8.2.1)

where a is the usual residual mean square, or the

externally studentized residuals

t.=ei/{^(.)(l-v..)
1/2} (8.2.2)

where <x is the residual mean square obtained from

fitting the regression to all cases except case i. The two

versions are related by
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t*=r* (n-p-1)/(n-p-r*) (8.2.3)

which indicates that outlying residuals will appear even

more widely separated from the rest on the scale of t

than of r . This is one reason for preferring the

externally studentized form; another is that its

distribution is a very familiar one, since t follows the

t distribution with n-p-1 degrees of freedom, whereas

r/(n-p) follows the Beta distribution with parameters 1/2

and (n-p-1)/2.

Equivalent results will now be developed for the

multivariate linear model Y=XB+u. Row i of U is u' with

covariance matrix Z=(cr ). The ordinary least squares

estimator is, analogously to the univariate case,

B^X'X^X'Y

(for example, Mardia, Kent and Bibby, 1979). Hence, the

observed residuals work out as

U=(I-V)U (8.2.4)

by the same matrix manipulations as in the univariate

case, with V=X(X'X)~ X' as before. It is easy to derive

the variances and covariances of elements of U from first

principles. Rewriting (8.2.4) for an individual element,

A

u..= Y. aik
u
k-

where the summation range is 1 to n and A=(ct )=I-V.

Hence
A A

cov(u ,u )= cov( Y a u , Y a u )
v i j ' i 1 ' v u i k k j ' ^ i k k l '

= Y a cov(u ,u )
u i k v k j ' k l '
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because the independence of different cases implies that

covfu ,u )=0 for m*k. Hence
k j ml

A A 2
covfu ,u ) =cr V a

v ij' il' jl U ik
k

Now

and (I-V)2=I-2V+V2

=I-V

because, as can easily be checked from its definition, V

is idempotent, that is V2=V. Therefore

A A
covfu ,u ) = (l-v )cr (8.2.5)

For the case l=j, this means

which is, of course, exactly the univariate regression

result (as given earlier) for the variable of dimension j,

with variance a =cr.. Rewriting (8.2.5) in vector form,

var(u.) = (l-v )£ (8.2.6)

A A

where uf is the ith row of U and holds the observed

residuals for case i on the q responses.

The question now is how to examine these residuals.
A

One obvious way is to reduce each residual vector u to a

scalar, which can conveniently be done by taking the

quadratic form

From (8.2.6), the expression is

R^u'Z^u /(1-v ) (8.2.7)

A

where S is the usual mean residual sums of squares and
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products matrix, U/U/(n-p). This expression is a matrix

equivalent of (8.2.1). An externally studentized version

analogous to (8.2.2) is

(i)
u /(1-v ) (8.2.8)

V v i i y v '

where Z is the mean residual SSP matrix from the linear

model fitted to the data after deletion of case i.

Another version of residuals from the multivariate

linear model can be found in Gnanadesikan (1977, § 6.4).

This is ufS u., where S is a robust estimate of the

covariance matrix of residuals. As it lacks the

standardizing factor 1-v.., this would not offer an

adequate basis for assessing the regression model except

in the case when the v were all similar.
ii

Distributions for both forms of residuals, (8.2.7) and

(8.2.8), can be found under the assumption of a normal

distribution for the random disturbances. The residual

SSP matrix from the regression with case i omitted follows

the Wishart distribution

(Mardia, Kent and Bibby, 1979). Also, the observed
A

residual u from the full regression has the distribution

^(1-v..)"172 ~ Nq(O,E)

Hence the residual T defined in (8.2.8) is distributed

proportionally to Hotelling's T2 distribution (Mardia, Kent

and Bibby, 1979, § 3.5), so

(n-p-q)T2/{q(n-p-l)} ~ F ^ ^

The distribution of R is found from the relationship

between R2 and T2 and between the F and Beta
i i
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distributions. From the usual updating formula, it can

easily be shown that

T2 = R2 (n-p-1)/ (n-p-R2)

which is exactly the same as the result (8.2.3) for the

univariate residuals. It follows that

R2/(n-p) - B(q/2, (n-p-q)/2)

Thus both common forms of univariate residual can

readily be extended to the multivariate case. T2 might

again be preferred to R. because of its exaggeration of

the separation of outliers, but the advantage of easy

reference to a very familiar distribution no longer

applies. As in the univariate case, however, the joint

distribution of residuals is intractable and so the

emphasis would anyway be on informal, chiefly graphical,

methods rather than formal significance testing.

Possibilities include Q-Q plots with simulated envelopes

superimposed (Cook & Weisberg, 1982, section 2.3.4), as

illustrated in the example below.

Other useful forms of residual might be developed. A

referee for a published version of this material (Caroni,

1987) remarked that the multivariate residual vectors

could be examined in ways other than by reducing to a

distance. One possibility could be to rotate to principal

axes, although strictly speaking this is not applicable

because of the correlations between the vectors. In fact,

a robust principal components analysis (Campbell, 1980,

using the GENSTAT macro from Matthews, 1984, as mentioned

in chapter 2) had been applied to the example of section

8.4 below, and was helpful in understanding in what way

the outlying point identified there differed from the

rest.
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8.3 Influence

Cook & Weisberg (1982, Chapter 3) review methods of

examining the influence of a case, or group of cases, on

the univariate regression in the sense of the effect on

the estimate of deleting the case or cases from the data.

A basic measure is the sample influence curve, which here
A A A A

is proportional to fi-fi where /3 is the estimate of /3

with case i deleted. As usual, one way of assessing this

vector would be by reducing it to a scalar as a distance

in some norm. There are various choices of norm, including

that introduced by Cook (1977) which results in measures

D.= (£(1)-/3) ' (X'X) (/3(i)-/3)/(p^
2)

This choice is motivated by analogy to the confidence
A

ellipsoids for /3. To convert to a familiar scale, if the

value of D equals the 100(l-a)% percentile of the F

distribution with p and n-p degrees of freedom, the effect

of the deletion of case i can be described as moving the

estimate to the edge of a lOO(l-oc)% confidence ellipsoid.

This device is employed in the BMDP regression program

P9R. Arguing along exactly the same lines in the

multivariate case leads to a sample influence curveA A

proportional to B-B . . This is a pxq matrix and so its

assessment is not easy. Critchley (1985), in the context

of examining the matrix of principal component scores,
1/2

suggests that a norm such as (tr(A'A)} could be used:
A A

in this application, A would be B-B .

In the same work, however, he develops influence curves

separately for each sample eigenvector, rather than

attempting to examine them together as a matrix.

Following this line means investigating particular vectors
A A

extracted from B-B . Choosing a column of this matrix is

equivalent to looking at the regression coefficients for

the univariate regression, so requires only the

established univariate theory. Another choice, peculiar
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to the multivariate problem, is to take a row of the

matrix. This corresponds to the regression coefficients

for all response variables on a particular predictor and

was a natural choice in all the applications tried so far,

in which either there was only one predictor or only one
A

predictor was of real interest to the experimenter. Let /3'
A J

be row j of B. Then, under normality assumptions,

where g is the jth diagonal element of (X'X)"1 (Mardia,

Kent and Bibby, 1979). This indicates how to construct a

distance measure similar to Cook's, based on confidence

ellipsoid analogies. Specifically

D. = (£.(i)-£.) ' (g.jZ)"
1(p.(i)-^j) (n-p-q+l)/{q(n-p) }

A

where /3. is the estimate of /3 after deletion of case

i, and this measure can be converted to a percentile of

the F distribution with q and n-p-q+i degrees of freedom.

Other versions of influence measurement, particularly
A A

replacing £ by £ , could easily be developed,

analogously to the choices listed in Table 3.5.4 of Cook

and Weisberg. Graphical aids to the assessment of the set

of all D for i=l...n could again include plots with

simulated envelopes, as in Atkinson (1981).

Since the publication of the above material (Caroni,

1987), another paper has appeared on the topic of

residuals from the multivariate linear model (Hossain &

Naik, 1989). These authors also give the two forms of

multivariate residual (8.2.7) and (8.2.8), as their

equation (9), and present several influence measures by

writing down matrix expressions equivalent to some of the

measures which have been suggested for the linear model

with a single response variable. They do not discuss the

relative merits of the measures. The emphasis in their
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example is on detecting influential observations, using

cut-off values.

8.4 An Example

In order to i l lus t ra te the above methods and the

circumstances in which they are useful, an example will

now be described. The data (Table 8.4.1) come from a

study of foetal development. Various dimensions were

measured on the jaw bones of 9 foetuses and from these

were calculated nine angles indicating alignment of the

jaw bones. The only covariate recorded was the age of the

foetus. The univariate regressions of angle against age

are summarized in Table 8.4.2.

Table 8.4.1 Measurements of nine angles Yl..,Y9 on jaws of
19 foetuses, with age in weeks.

Case Age Yl Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

1 16 139.33 84.70 87.18 134.81 156.79 182.18 172.55 95.39 60.97
2 17 141.31 59.02 61.19 123.43 143.45 175.92 178.54 81.58 42.72
3 18 132.51 96.25 133.57 135.39 172.73 207.92 159.41 88.77 75.34
4 19 139.33 101.91 123.85 126.92 161.19 191.89 144'58 105.08 86.31
5 20 133.33 94.54 88.32 128.03 146.99 180.03 155.21 111.22 61.32
6 21 128.60 77.21 83.39 113.53 137.77 171.46 143.61 102.20 63.69
7 22 139.74 96.79 125.76 152.03 170.25 214.81 185.25 87.50 61.27
8 23 135.25 95.23 121.43 141.05 151.97 189.69 169.70 104.40 80.69
9 24 132.09 89.29 123.18 120.21 170.55 206.67 151.21 79.08 63.76

10 25 119.42 97.77 89.38 139.64 166.58 204.71 162.38 90.72 30.92
11 26 126.52 87.22 88.80 133.75 152.17 197.92 160.79 93.78 35.65
12 27 128.67 98.51 131.22 159.03 167.22 217.03 182.53 89.15 58.03
13 30 111.35 89.76 107.92 153.60 147.31 183.19 177.13 97.86 64.25
14 31 136.02 105.90 125.37 148.10 163.26 201.77 161.30 97.22 61.74
15 32 136.61 99.24 121.66 150.23 163.90 205.85 169.85 89.10 52.61
16 33 119.20 95.34 99.18 153.42 169.26 199.66 182.83 79.03 34.98
17 34 133.76 99.51 113.58 139.68 181.09 210.50 156.96 70.69 37.09
18 35 130.11 84.43 129.56 162.08 181.39 213.71 181.89 54.34 48.60
19 36 125.72 108.09 140.71 131.50 161.52 195.17 156.43 97.10 76.89
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Table 8.4.2 Univariate regressions on age for data of Table

8. 4. 1

Dependent

angle

Y

Y
2

Y
3

Y
4
Y

Y
6

Y
7

Y
8

Y
9

Regression coefficients

Constant

145.65

72.71

71.48

108.66

138.87

172.11

155.72

113.83

76.70

-0.569

0.775

1.507

1. 190

0.873

0.982

0.396

-0.917

-0.737

Age

(0.263)*

(0.374)

(0.729)

(0.422)

(0.406)

(0.459)

(0.482)

(0.447)

(0.576)

1,17

4.70

4.31

4.28

7.93

4.62

4.57

0.67

4.20

1.64

P

0.045

0.053

0.054

0.012

0.046

0.047

0.423

0.056

0.218

R2

0.216

0.053

0.201

0.318

0.214

0.212

0.038

0. 198

0.088

cr

7.224

10.270

20.029

11.612

11.157

12.622

13.257

12.295

15.833

standard error in parentheses

The regression was clearly statistically significant for

the fourth angle, non-significant for the seventh and

ninth angles and round about the 5% level for the

remainder. Q-Q normal plots of the residuals from each

separate regression were drawn, as illustrated in Figure

8.4.1 for the second angle. The residuals are listed in

Table 8.4.3.
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-2.14 -1.6 -0.8 -0.0 0.8 1.6 2.1

Figure 8.4.1 Normal probability plot for internally

studentized residuals r from regression of second angle

on age, with simulated 95% envelope.

A 95% envelope from 200 simulations of pseudo-randomly

normally distributed residuals with the same structure is

superimposed (Atkinson, 1981); this serves the purpose of

indicating what shape of plot is acceptable, since these

are not 19 independent observations as required for

probability plotting. As the observed residuals fall

within the envelope there is no evidence of violation of

assumptions. In particular, the point at the bottom left

of the plot does not seem to be excessively large

numerically, even though this was the most extreme of all

residuals from the nine univariate regressions. On the

basis of these and other examinations of the regression

fits, it seems that all is well with these univariate

regressions.

The multivariate regression of the nine-dimensional

response variable against age resulted in a large residual

for case 3, with T2=169.5 (F =9.42, p=0.00217): all
•J 9 i o
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residuals are given in Table 8.4.3. Using a Bonferroni

upper bound for the significance of this considered as the

maximum of a set of 19 values, gives p=0.00217x19=0.041.

Figure 8.4.2 shows the same point falling outside the 95%

envelope from 2 00 simulations of a probability plot for

residuals (Atkinson, 1981), confirming that it is unlikely

to be from the same normal distribution as the rest.

u>
in

o
0.0 0.1 0.8 1.2 1.6 2.0 2.U

Figure 8.4.2 Probability plot for externally studentized

residuals T2 with simulated 95% envelope.

(Because the F Q-Q plot has a very awkward scale for

plotting, this plot was constructed by mapping the

F-deviates onto normal deviates. If

p=F(x)=S(y)

where F is the F distribution function and $ the normal

distribution function, then

y=$"1(F(x))

gives probability plotting positions for a normal Q-Q
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plot.) The residuals for case 3 in the nine univariate

regressions did not have unusual values. However, the

recorded value for the third angle in this observation was

the second largest in the data set and it appears that,

although not excessively large in itself (the externally

studentized univariate residual is 2.04), it violated the

pattern of the data since it was not accompanied by

particularly large values of other angles which were

positively correlated with the third angle. Therefore

this suspicious data value was only to be seen by

employing the multivariate residual analysis developed

here.

Influence on regression coefficients could be assessed

by the method of Section 8.3 because attention focussed on

one particular row of the coefficient matrix, namely the

coefficients of age. The constant terms, forming the

first row of the matrix, were not of interest. In fact

calculation of the distance measure defined above showed

that no point had undesirably high influence on the

regression coefficients and, in particular, the point with

the large residual did not even have the largest

influence.



Case

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19

Table 8

1

.416

.795
-.419
.650

-. 131

-.725
.948
.376
.015

1 .818

-.603
-.222

-3.012
1.177
1 .379

-1 . 142
1 . 126
0.654
0.085

.4.3.

2

-.044
-3.811
1 .001
1 .557
.636

-1 .215
.698
.460

-. 198
.556

-.554
.476
.618
.930
. 171

-.299
.044

-1.740
.800

External 1

3

-.453
-2.146
2.040
1 .281
-.688

-1.031
1 . 101
.779
.789

-1.016

-1.131
.976

-.445
.365
.099

-1.189
-.482
.283
.823

-

-
—

_ •>

1

-1

_

1

-
1

-2

Dimension

4

.664

.500

.480

.388

.391

.953

.606

.436

.572

. 106

.506

.704

.820

.224

.309

.494

.872

. 1 18

.099

5

.381
-1.000
1 .869
.534

-.874

-1.965
1 . 142
-.634
.989
.531

-.859
.430

-1 .753
-.244
-.267

. 147
1 .233
1 . 189
-.869

y studentized residuals

6

-.481
-1.117
1 .614
.092

-.975

-1.886
1 .885
-.399
.892
.645

.023
1 .563

-1 .580
-.062
. 189

-.399
.419
.617

-1.088

from uni

7

.867
1 .351
-.270

-1 .555
-.657

-1.694
1 .721
.370

-1.094
-.243

-.394
1 .274
.739

-.517
. 114

1 . 142
-.995
1 .019

-1.146

variate

8

-.328
-1 .529
-.736
.739

1 .382

.637
-.507
.979

-1.071
-.014

.309

.007

.976
1 .008
.387

-.383
-1.054
-2.935
1 .531

and multi

9

-.267
-1.529

.799
1 .664
-.041

. 158

.050
1 .405
.301

-1 .908

-1.467
.078
.624
.51 1

-.032

-1.187
-.992
-.154
2.047

variate

Multi-
vari ate

24.32
29.75
169.49
19.62
4.25

16.32
91 .71
4.69

22.89
18.00

12.72
25.89
28.02
6.54
6.48

1 1 .77
10.03
32.60
41 .64

regressions

I

CO
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CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

The main purpose of this thesis has been to study the

field of outlier detection methodology with multivariate

data. This has involved detailed examination of the few

existing methods, and the development of alternatives and

of new methods for particular problems. The emphasis has

been heavily on the multivariate normal distribution (and

on the model of slippage in the mean); other multivariate

distributions are not met very frequently in practice,

while their treatment from the point of view of outlier

detection is very difficult, as shown by Barnett's first

steps.

"Existing methods" effectively means Wilks' test.

Unfortunately, while the existence of accurate Bonferroni

approximations to the percentage points makes this a good

test for one outlier, the situation is less satisfactory

for two or more (Chapter 3). Simulated percentage points

can be obtained, so that the test becomes accurate for the

situations covered in the simulation study. However, it is

surely unusual for a hypothesis test for, say, two

outliers versus none to be properly justified. It is for

this reason that the procedure for sequential application

of Wilks7 statistic, developed here in Chapter 4, is

valuable. It enables the choice of the number of outliers

to be accounted for within the framework of the test.

Rohlf's test is an "existing method", but one that

seems to be cited more than used. It avoids the question

of the number of outliers, because it is not a test for a

specific number. However the analysis here (Chapter 6)

shows that Rohlf's test is not a good one. One objection

is that the approximations suggested by Rohlf are very
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inaccurate. This would not necessarily prevent its use as

a graphical procedure, but the performance of the method

in the presence of more than one outlier turns out to be

poor, since it may be unable to declare the correct number

of outliers in situations where it seems that any

worthwhile method should not have any difficulty. The

desirable modification would involve robust estimation of

the sample covariance matrix. However, this can be a

useful analysis in its own right, as in Campbell's method,

and so Rohlf's method then appears to be redundant.

There is no reason for Rohlf's method to continue to be

suggested in the literature as a potential alternative to

Wilks' test.

Wilks' statistic can be derived by a likelihood ratio

analysis, among other methods. This is only one of the

standard techniques for testing multivariate hypotheses.

The other is union-intersection: application of this

methodology is considered here in Chapter 5. The results

of the study of the two-outlier problem confirm that the

outlier test based on union-intersection can be more

powerful than Wilks' test, depending on the configuration

of the outlier slippages. However, the advantage usually

lies with Wilks' statistic, so this will be more useful in

general.

Likelihood ratio provides the basis for the tests

suggested in Chapter 7, applicable to multivariate normal

data where the covariance matrix has a specified

structure. (Wilks' test makes use of no specification.)

It is generally true in statistics that a more powerful

analysis can be obtained by incorporating knowledge of

this kind into the analysis. The results here show the

considerable extent of this improvement in these

particular problems. Consequently these are methods which

can be recommended for use, so long as the assumption of

the covariance structure is justified. The analysis of
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residuals from the multivariate general linear model,

considered in Chapter 8 here, is also an analysis of a

structured problem (although in this case the structure

refers to the mean rather than the covariance of the

observations). The results here are useful because there

will always be regression problems where it is necessary

to take the multidimensional view.

Taken as a whole, the results in this thesis tend to

confirm the value of Wilks' statistic - either in its

conventional form or applied sequentially - for general

use, since Rohlf's method appears to be unsatisfactory

and the union-intersection alternative does not offer

sufficient advantages to compensate for its greater

computational complexity. However, the results also show

that one can do considerably better than using Wilks'

ordinary statistic in problems where some structure behind

the multivariate normal covariance can be specified. One

line for further research which can be suggested is

therefore the development of outlier detection statistics

for other multivariate structures which arise in practice.

A related point is the development of influence measures

for particular structures: this has been touched on in

this thesis only in respect of influence in the

multivariate general linear model.

Further needs for future research can be seen from the

emphasis of this thesis on outlier detection in

multivariate normal data. Little has been said about what

to do once outliers have been found. Alternative actions

suggested in the literature include use of an alternative

model, such as a mixture model - which could be mixtures

of normals - or an entirely different distribution (skew,

or longer-tailed than the normal) in relation to which the

supposed outliers no longer appear to be extreme. The

difficulty in these options is the same as the difficulty

of taking any other distribution than the multivariate
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normal as the null distribution: that is, the analysis

tends to be very difficult if not impossible. Some

progress in the area of non-normal distributions would be

desirable in extending the range of multivariate data

problems which can be treated.
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APPENDIX I Newton-Raphson iteration

The Newton-Raphson method is a simple iterative

procedure for the numerical solution of an equation. It

can be applied to solve a system of equations for several

unknowns, but the applications in this thesis are all for

a single unknown so the corresponding details will be

given here.

A simple geometrical illustration (Figure AI.l)

explains the method; algebraically this is equivalent to a

linear approximation from a Taylor series expansion.

Suppose that

f(x)=0

is to be solved for x, and an initial guess is x=x . The

slope of the curve y=f(x) at x is f' (x ) , so that in

triangle ABC in the figure

tan tf = f'(xQ)

where CB is tangent to y=f(x) at x=x .

Figure A.I.I Illustration of Newton-Raphson method



- 247 -

But from the sides of the same triangle

tan •& = f (x )
x o'

x -x
0 1

where x is the coordinate of point C where the tangent

meets the x-axis. Equating these two expressions and

re-arranging

x = x - f (x )
1 0 V 0 '

f'(xQ) (A.I.I)

Now, as seen in the figure, x is closer than x to the

solution. Repeated application of (A.I.I) will therefore,

under certain conditions, provide a sequence of values

converging towards the solution; in other words, the

Newton-Raphson iteration scheme consists of applying the

iterative scheme

x , = x ~ f (x ) r,-n i ->

n+1 n n n—0 ,1,2,...

f (x )n

to generate a sequence x , x , ... converging to the

solution of f(x)=O. In practice, the solution will be

taken to be the first x for which
k

|f(xk)| < 5

where 5 is a pre-determined constant, such as 10~9.

In this thesis, the method was applied to obtain

Bonferroni percentage points. This requires the solution

of equations such as

g(r)=a/n

where a is the desired Bonferroni significance level, n
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the sample size and g a probabilty density function. The

above method is then applied to solve f(r)=O where

f(r)=g(r)-a/n
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APPENDIX II: The construction of slippages

II.1 General

In § 2.2, it was shown that Wilks' lamda statistic is a

monotonic function of generalized distance. Specifically,

equation (2.2.5) gave the relationship

A = 1 - n (x -x) 'A~ (x -x)
"H=I-

 n

for testing point x ; equation (2.2.6) then gave the
n

equivalent expression

A"1=l+T2/(n-2)
n nwhere

T2 « (x -x )'A *(x -x ) (II.1.1)
n n n n n n

with x , A calculated after omitting x . Thus A is
n n n n

proportional to the generalized distance of the point

being tested from the remainder of the sample.

This indicates that the appropriate way to generate a

slippage of the mean in the multivariate problem is to fix

the generalized distance of the slipped mean vector from

the original. Therefore, given the hypotheses

H Q: x. ~ Np(ju,Z)

Ha: x. ~ Np
x. ~ N
j P

the slippage a should be defined so that

a'X^a = d2 (II.1.2)

where d2 is the desired squared distance. (Values of

d2=15 or 30 are used at most points of this thesis.) The
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vector a can then be chosen in any convenient way to

satisfy this equation; the closeness of results for

different choices is illustrated in § II.3. For example,

a simple choice for a is a constant a times the vector 1

consisting of ones. The necessary a is given by

The quantity in the denominator is the sum of all the

elements of E-1* In the special case Z=o~2I, this is per"2,

so that

a=d<T/"Tp

This is the quantity which would be added to each element

of, say, the last member of each simulated sample, in a

power study with a single outlier.

Use of the result (II.1.2) makes it possible to ensure

that equivalent slippages are being used, either when

different directions of slippage are being used with the

same £ (as in the study of the union-intersection

statistic in Chapter 6) or when different Z's are being

used. This facilitates the comparison of results. It is

actually possible to obtain identical results in the

simulations with different Z's, as follows.

In the method of generating multivariate normal data

used by the IMSL routine GGNSM employed in this research,

suppose that vectors x from N(0,Z) are required. The

first step is to construct the Cholesky factorization of

Z; that is, the lower triangular matrix L is obtained

satisfying

Z=LL'

Vectors z are then generated from the uncorrelated

multivariate normal distribution N(0,I), which requires

only the same methods as are employed for the generation
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of univariate normal deviates. Finally, the desired

vectors x are obtained by transforming

x=Lz

since

V(x)=LV(z)L'=LIL/=LL/=E

Consequently, if vectors x ~ N (0,Z ) and y ~ N (0,Z ) are
pi p 2

being generated, and the same seed is used in each sample

so that the

being used,

so that the same sequence of vectors z from N (0,1) is

so that

but

x=L z

=L~ x

=L L"Xx
2 1

Hence if the slippage a is used in the sample of x

vectors, then applying the slippage L L~ a to the

corresponding vector in the sample of y vectors will mean

that all details of the two samples are the same. For

example, it is trivial to check that generalized distances

as in (II.l.l) are identical.

The above result is illustrated below in § II.3 for the

case of block S.

II.2 Slippages in the equicorrelation model

In the equicorrelation model, with all variances taken

as equal to unity,

Z=(l-p)I+pJ

where J is the matrix whose every element is equal to

unity. The inverse is
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so that a generalized distance is

d2=a'Z"'a

This equation must be solved to find a suitable vector a

for chosen d , in a simu]

where a=<xl will be used,

for chosen d2, in a simulation with given p. In the case

d2= (1-p) -1 [p«2-p {1+ (p-1) p }~Vp2]

and this simplifies to give

g=dni+(p-i)p}
4 p

as the quantity to be added to each element of a

prespecified member of the sample.

II.3 Slippages in the block structure model

When £ has block structure, so does its inverse and

this simplifies the computation of slippages corresponding

to a desired d2 in (II.1.2). Special cases are employed

in the simulations in Chapter 7:

a) the blocks have equicorrelation structure; and

b i) the slippages are equal in each component, /31, or

b ii) equal in each component corresponding to the

first block and zero for the remainder:

A(1,1,...,O,O,...) •

As in II.1, in the case (b i)
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where the denominator is the sum of all elements in Z"1,

which is

for an equicorrelation matrix. Hence for the case of two

equicorrelated blocks, with dimensions p and p and

correlations p and p ,

-1 Pl P2
* 1 2-

l'Z
l+(p2-l)p2

For p =p =2

' 2 , 2

(outlier type 1 in Table 7.3.1), and for p =2, p =4:

/3=d/—?— +—-— I
ll+p l+3p j

(outlier type 1 in Table 7.3.2).

For the case (b ii), when the slippage is only in the

components affecting the first block,

n

S° t h a t " — • r (II.3.2)

for the case p =2: this is outlier type 2 in Tables 7.3.1

and 7.3.2.

Some extra simulations were run for the block

covariance structure, to illustrate the similarity of

results obtained for different choices of a satisfying

(II.1.2) with the same Z. The result in § II.1 showing

how to obtain identical results from different Z's is also
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applied here. The necessary calculations are easy to

carry out, since the Cholesky factorization matrix also

has block structure, and the factorization of E=LL' of

* - M
P l

is given by

1 0

It can then easily be worked out that given the two block

matrices

and

the matrix L L is
2 1

V1 —

1

p 11

p

1

11

1

p

p

12

12

1

1

P21

P

1

21

1

P

P

22

2 2

1
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P2

1

1 - / :

1-f

2

2

0

1

P "PK 2 2 * 1 2

-

n 2
1 —P

1 - P 2
K 12

0

1-P 2

K 22
. 2
1 — P

Some results are presented in Table II.3.1, for simulated

powers of Wilks' ordinary statistic. Each line of the

table is generated from 8000 simulations, starting from

the same seed for the pseudorandom generator.

The slippage 3(1,1,1,1)' in the last line of the table

corresponds to d2=30.857142. The slippage in the

penultimate line was computed using the Cholesky

factorization to give identical results for different X.

Other slippages a were then computed to satisfy a'S a=d ;

in particular, the slippage in the first line corresponds

to (II.3.1) and that in the third line to (II.3.2). It

can be seen how small are the diferences in results

between the different choices.
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Table II.3.1 Simulated power of Wilks' statistic in the

presence of one outlier: block covariance matrix with

p =p2=2, n=50. Slippage vector added to first member of

the sample.

% of times outlier declared
at level

slippage vector 5%

.4

.4

.4

.4

.4

.4

-.4

-.4

-.4

-.4

-.4

0

2.54558(1,1,1,1)'

(3,3,1.8,2.74955) '

3.04256(0,0,1,1)'

(0,0,0,5.909167) '

(3,3,3,1.54955) '

3(1,1,1,I)7

69.5375

68.1500

69.3375

68.9875

68.9125

68.9125

84.8625

84.2625

84.5125

84.3625

84.6750

84.6750
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