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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

MULTIVARIATE STATISTICAL OUTLIERS

by Chrysseis Caroni-Richardson

Most of the extensive literature on outliers refers to the
univariate case. This thesis takes up the topic of
outliers in multivariate data, examining the performance
of existing tests, and developing tests using other
procedures and tests for specific data structures.

Chapter 1 introduces key concepts and provides examples
to illustrate some of the main themes. Chapter 2
comprises a full review of previous work on outliers in
multivariate data. Wilks’ test is examined in the third
chapter. It is confirmed by simulation that the
Bonferroni approximation used to provide percentage points
is accurate for testing for one outlier, but not for two
or more. Simulated percentage points are constructed for
up to four outliers, for sample sizes up to 100 and up to
5 dimensions. Chapter 4 presents sequential application
of Wilks’ statistic based on Rosner’s procedures for
univariate statistics which control the error level of the
test for different numbers of outliers.

Chapter 5 examines Rohlf’s test using distances in the
minimum spanning tree. This is shown not to give a test
with good properties. In Chapter 6, a two-outlier test is
constructed by union-intersection methodology. This is
sometimes more powerful than Wilks’ test, but much less
powerful under other data configurations. In Chapter 7,
tests are derived for outliers in normal data with
structured covariance matrices, specifically block
structure and equicorrelation. It is shown by simulation
that these tests are substantially more powerful than
Wilks’. The final chapter examines outliers in the
context of the multivariate linear model. Residuals are
defined and the related topic of influence on estimates of
regression coefficients is considered.
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CHAPTER 1

INTRODUCTION

1.1 The content of this thesis

The subject of this thesis is the study of outliers in
data and the related topic of the influence of particular
observations on the outcome of an analysis. Although the
history of the ideas can be traced back a long way, it is
in recent years that they have received a lot of attention
in the statistical literature, partly because their
implementation as a routine part of statistical analysis
needs modern computing facilities. This is especially
true when one considers applications in multivariate

problems, which are the particular theme of this thesis.

1.2 General ideas

Because very substantial reviews of the topic of
outliers already exist (Barnett and Lewis, 1978 and 1984)
Hawkins, 1980a; Beckman and Cook, 1983), a full general
review will not be undertaken here. The present chapter
will introduce some of the main points, including a brief
discussion of some of the major univariate outlier
detection methods and examples of outlier problems in real
data. Chapter 2 will provide a full review of the
multivariate outlier problem, which will be seen to be a
relatively undeveloped aspect of outlier research despite
the general practical importance of multivariate data.
Subsequent chapters will then consider specific
multivariate outlier procedures. Chapter 3 investigates
the main existing test, due to Wilks, and Chapter 4
develops sequential test procedures based on statistics of
Wilks’ type. The following two chapters loock at different
methodologies for the same general problem: Chapter 5
examines Rohlf’s gap test and Chapter 6 develops an
outlier test based on union-intersection test

construction. Attention then turns to structured data



problems, with the development of tests for outliers in
data with particular patterns in the covariance matrix in
Chapter 7 and the extension of univariate analyses of
residuals and influence in the general linear model to the

multivariate case in Chapter 8.

We must first consider what are ‘outliers’, what is
*influence’ and why do they matter? The definition of
outliers is discussed in detail in the major reviews.

Suggestions include,

"An outlying observation is one that appears different
from the rest of the sample."
(Kendall and Buckland, 1960)

"Outliers are values which are either too large or too
small compared with the rest of the observations."
(Gumbel, 1960)

"An outlier is an observation whose value is not in
the pattern of values produced by the rest of the data."
(Daniel, 1960)

"An outlying observation or outlier is one that
appears to deviate markedly from other members of the

sample in which it occurs."
(Grubbs, 1969)

The general idea of an outlier as a point which appears
to be substantially different from the remainder of the
sample is clear. Probably no more formal definition than
this is necessary, if it is even possible, but in fact two
distinct senses are often distinguished. To explain
these, it is best to think of statistical analysis as
consisting, in most situations, as the definition of a
model describing the population from which a sample is
available, followed by fitting the model and drawing
inferences about the population on the basis of the fit.
The central role of the model is clear, although in many
circumstances the actual model may not really be made
explicit and in fact may not be crucial to the validity of
the analysis. (For example, t-tests on means require the
normal distribution - the model - for the theory to be

exact, but are very acceptable approximations under a wide



range of departures from this.) An outlier is an
observation which is, in this framework, different from
the rest of the sample. This could mean either that it is
generated by a different model or that it appears to be
different, for example as seen in a graphical
representation or in possessing an extreme value of some
statistic measuring some concept of distance between
members of the sample. An outlier in the former sense, a
point generated by a different model, need not be an
outlier in appearing different - though if it is not, it
probably cannot be detected. An outlier in the latter
sense is either an outlier in the former sense or is a
statistically improbable value arising because of an
unusually large random component. In this thesis,
’outlier’ is generally taken to mean a point which has the
appearance of being different - the ’‘discordant
observation’ of Barnett and Lewis. Sometimes it is
necessary to use the sense of an observation generated by
a different model, especially when such points are
generated in simulation studies of the power of test
statistics, and then the change in meaning will be made
clear in the text. Observations generated by a different
model from the remainder of the sample are sometimes
called ’‘model outliers’ or ‘contaminants’ (Hawkins,
1980a) .

The presence of outliers often indicates that something
is wrong. The model may be wrong; the population to which
the model is applied may be wrongly specified, so that
heterogeneity in the sample correctly reflects an
unrecognized heterogeneity in the population; the
measurement of the outlying observation may have been
incorrectly carried out or incorrectly recorded.
Recognition of this leads to allowing for the outlier in
some way - perhaps simply by discarding it - and this may
affect the final conclusions and hence any action to be
taken as a result of the statistical analysis. This is

not the only way of looking at the matter, as occasional



examples can be found where the sole purpose of the
analysis was to pick out the interesting outliers from the
uninteresting mass of other points (Beckman and Cook’s
example is of counts of radiation levels over an area of
central Canada in which a satellite had come to earth;
outlying counts from the general background radiation
indicated possible locations of satellite debris), but
serves for most situations. Thus outliers matter because
the outcome of the analysis may differ according to
whether or not they are recognized and, if recognized,
what is done about them.

At this point, it may be appropriate to comment on the
action that may be taken after identification of outliers.
This will vary, depending particularly on the purpose of
the analysis and the framework in which it is conducted.
It goes without saying that the first action should always
be a simple check that the data provided were correct.
Thereafter, the simplest - and possibly the commonest -
action is to reject outliers and carry out analysis on the
remaining data. This would be the more justified the more
firmly established was the basic, uncontaminated model.

It might also be justified in cases where a known
mechanism existed for contamination. For example, this
might arise in laboratory determinations of
concentrations, of micro-organisms in sea water; it is
usually necessary to dilute the original sample, and any
error in executing or recording the dilution will result
in a multiplicative error in the final value - which turns
into an additive slippage since analysis of such data is
often on the log scale. The other simple action is the
opposite of the first, namely to keep the outliers and
reject the rest of the data, which is what happens in the
relatively uncommon examples where the purpose of the
analysis is to identify these unusual points. If neither
form of rejection applies, then there must be some kind of
accommodation of the outliers. If the model is to be

retained, the outliers may be handled by a robust



estimation procedure. Otherwise, the model will be
adapted in some way, so that these points cease to be

discordant - adopting a mixture model, for example.

However, the presence of outlying data values need not
have any practical effect on the outcome of an analysis.
Whether it does or not depends on various factors
including sample size and the way in which the outliers
differ from the other observations. Also, there may be
effects on some aspects of the analysis but not on others.
At this point, we are turning to the notion of influence
(Cook and Weisberg, 1982). This is an idea that can be
given mathematical expression for some purposes, as a
function describing the stability of estimates in relation
to changes in sample values. Such numerical expressions
of influence will be used at various points of this
thesis. Outliers and influence are closely related,
although by no means the same thing. An outlier need not
have much influence in the above sense (though it probably
should in the wider sense of aiding recognition of
shortcomings in the model), nor need an influential
observation be an outlier, at least in appearing as an
outlier in the way that outliers are usually investigated.
For example, Figure 1.2.1 is a commonly used illustration
of possible effects in regression. 1In the regression of y
on X, point B has very high influence since its distance
from the other points in x-space will tend to force the
regression line to pass close to B, whereas it would be
nearly horizontal were B not there. Point A does not have
such influence on the regression coefficients, though it
may well have the effect of influencing the residual mean
square, which might affect the results of tests of

significance.
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Figure 1.2.1 1Illustration of outliers and influential

points in a bivariate sample.

A conventional examination of the data for potential
outliers would look at standardized residuals from the
regression line: this would not indicate anything odd
about B, though it would for A. Widely available
computing packages now include influence measures (for
example, program P9R of BMDP and the regression procedure
of the microcomputer package SPSS/PC+), but older programs
offered only residuals, which would not have revealed
anything about point B.

The above illustration depends on our being interested
in the regression of y on x. If the simple correlation
between y and x were to be investigated, the approach
would be different. Outliers would now be assessed in
relation to the bivariate distribution, not to the
regression line, and the anomalous position of B would be

recognized instantly. The measure of influence on the



sample correlation coefficient could be used, although the
standard packages do not provide this. Again we see the
importance of the model. Not only do our concepts of
outlier and influence involve comparison to a model, but
the way in which we look for outliers and examine
influence depends on the model assumed. The purpose of a
part of this thesis will be to develop methods suitable

for some particular models in multivariate problems.

After these general remarks, a number of specific
methods of univariate outlier declaration will now be
presented, the purpose being especially to illustrate
those ideas which will be found relevant in the

multivariate problemn.

1.3 Some univariate outlier tests

In most of the literature, outlier detection is
approached as an outlier testing problem. In this
framework, the null hypothesis is that the sample
X, y.-.,X_wWas generated as n independent realizations of a
random variable following an assumed model, the
distribution F:

H : x~F i=1,...,n
[¢] i !

A reasonable form of alternative hypothesis is one
which implies that most of the sample conforms to the
null, but a small number of points (perhaps only one) have
been generated by another model which tends to give values
much different from those obtained under the null. The
most popular choice is the slippage alternative. If F has
location and scale parameters, then there may be slippage
in the mean or slippage in the variance. Expressed for

the case of one possible outlier and a normal model,



A: H @ x =~ N(u,oz) i=1,...,n
O N(u,az) i#j
Py N(u+a,o”)
or
B: Ho Pox - N(u,az) i=1,...,n
O N(u,oz) i=j
x ~ N(u,bo’)

J
with b>1. The labelling recalls Ferguson’s (1961)
definition of these alternatives as Models A and B. It
should be noted that the index j is unknown in nearly all
circumstances. While it is possible that there could be
prior grounds for suspecting that one particular sample
member has arisen from a different distribution, it is
much more usual for the testing to be either a routine
screening or a procedure carried out because an
observation looked suspiciously out of line with the rest.
In either case the formal framework has to allow for the
possibility that any j=1,...,n could give rise to an
outlier. The specific one under investigation will
presumably be the most extreme in relation to some
statistic, so that the test statistic will often be the
maximum or minimum of a set of (probably correlated)
values, which will give rise to difficulties in finding
distributions of test statistics. One way of coping with
the lack of specification of j is to use the two-stage
maximum likelihood method to construct a test. The idea
of this is that the likelihood ratio test of H, against H
is set up in the usual way for a specified j. This is the
first stage. The second is to take the extreme value of
the resulting test statistic over all choices of j. It is
clear that the applications of this method are many and

include the multivariate procblem.

The above is not the only way of approaching the

detection of outliers (there is, for example, some



Bayesian analysis described in Chapter 12 of Barnett and
Lewis, 1984, in which the work of I. Guttman is
prominent), nor are the above specifications the only
alternatives possible within this framework (Barnett and
Lewis, 1984, § 2.3). However, with very few exceptions,
it is the way that can be found in the multivariate
literature. Nor is it necessary, of course, to restrict
attention to the normal distribution but - as will be seen
in Chapter 2 - there is very little on any other
multivariate distribution apart from the normal, so this

restriction will be kept for the univariate case.

Before looking at examples of univariate test
statistics, it may be observed that the idea that an
outlier appears different from the rest of the sample
implies that outliers will occur as extreme order
statistics. Hence most statistics are expressed in terms
of ordered x =...=x rather than the original sample

(1) (n)
X peees¥ .

Barnett and Lewis (1984) distinguish six basic types of
test statistics, as follows.
1) Excess/spread statistics

The outlier is characterized by being unusually distinct
from its neighbour, in relation to overall spread of the

sample. One example is

X - X -X
( (n) X(n-l))/( (n) (1))

which tests for an upper outlier. This statistic and
several others of the same generic form are due to Dixon
(1950, 1951).

2) Range/spread statistics

An example is

[Xnn"xu)]/s

due to David, Hartley and Pearson (1954), where s is the
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usual sample standard deviation. The curious feature of
such statistics, which do not seem to be widely used, is
that no particular point is being tested - is the outlier

-
1) Xun or both~

3) Deviation/spread statistics

The statistic testing for an upper outlier here is
(x“n-x)/s

which was probably used for many years before Thompson
(1935) produced exact results.

4) Sums of squares statistics

The simplest example here is Si/s2 where Si denotes the
sum of squares in the reduced sample obtained by omitting
x“ﬂand s® is the sum of squares in the full sample. This
is actually equivalent to the statistic just given; in
fact, reduced sums of squares can always be expressed in
terms of deviations from the full sample mean X. Grubbs

(1950) gave various statistics of this kind.

5) High-order moment statistics

These are the statistics of sample skewness and sample
kurtosis. They are shown by Ferguson (1961) to have some
optimal properties. These statistics also do not test

specific points as outliers.

6) Extreme/location statistics

These statistics are relevant to distributions with a
fixed origin, such as the gamma which is confined to x=0,
since under these circumstances no shift in location is
possible. For a distribution such as the normal, a
statistic such as Xuﬂ/i is not invariant to arbitrary

shifts and appears to be useless.

A few remarks will now be made on the questions of
choice of statistic, distributional results and extension

to testing for two or more outliers. On the first of
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these issues, it can be seen from the above selection of
upper outlier test statistics that there are likely to be
several choices in any situation. The choice will seldom
be clear, for there are different grounds for judging the
performance of tests and the performance may anyway depend
on the type of outlier. Even where optimality can be
shown, it is of limited help. Thus, skewness and kurtosis
are only locally optimal for small shifts, which are
circumstances under which no test can have much power.

For greater shifts in the mean, tests based on the

studentized residuals do better.

Distributional results for test statistics are usually
not available explicitly because of the complexity
introduced by order statistics. However, in many cases, a
recurrence relation applies which enables the density
function of the outlier statistic in a sample of size n to
be derived in terms of the density in a sample of size
n-1. This method is illustrated in detail by Barnett and
Lewis (1984, p. 178). 1If it does not apply, then a
general way of obtaining percentage points for tests is to
obtain conservative points by using the Bonferroni
inequality. Because of its importance, this well known
method will be repeated here. Let T be the outlier
statistic

T=max Ti
i

maximizing over choice of sample member i. Then
P(T>t)=P(U T >t)
=P(U E))
where E is the event T >t. Now

P(UE)= T P(E)-L L P(En EJFLZ I P(ENENE)-....
(1.3.1)

and Bonferroni’s inequality in its most general form

states the fact that the partial sums formed by taking



more and more terms on the right hand side are alternately
above and below the left hand side, with absolute
differences becoming smaller. The usefulness of this
result arises when it is not possible to calculate the
distribution of T because the joint distribution of all
the E1 is intractable. In this case, it is probably
impossible even to obtain the distribution of pairs E, E
so that not even the second term above can be found. What

remains is the first Bonferroni inequality
P(U E )= T P(E )=nP(E).

Using this, the percentage points of T can be

approximated. If P(T1>ta/n)=a/n, then

P(T>ta/n)=P(U E )=a.

This use of the first Bonferroni bound is what is usually
meant when a test is called simply a ’Bonferroni test’.

It is a conservative test, so that when a null hypothesis
is rejected at nominal level of significance « using such

a procedure, the true significance level is even lower.

The value of this approximation is that it can be
applied in many problems, since all that is required is
the distribution of an ordinary, unoptimized statistic.
Furthermore, it is often a very good approximation, at

least for applications to one outlier.

For problems involving two or more outliers, the first
Bonferroni bound cannot be expected to be as good. The
reason is that (1.3.1) should now be rewritten so that the
event E is labelled EiJ in the two-outlier case meaning
that the statistic computed as if points i and j were
outliers has an extreme value (some multiple outlier
statistics will be discussed below). However, the second
term P(Eun EH) will now include contributions that are
not small, as P(E”n Em) where i,j are genuine outliers

and k is any other sample point. The test remains a



conservative test, but may be very much so. The
difficulty of deriving exact distributions is greater for
multiple-outlier statistics than for the single outlier,
so the Bonferroni method, even if it is not very accurate,
may be the only real means of analytical progress. The
alternative will probably be simulation of percentage
points: even this may not be a simple proposition, because

for two outliers there will be [n] statistics to evaluate
2
in each sample, so a large-scale simulation will need very

heavy computation.

The case of two or more outliers will now be discussed
a little further before returning to the single outlier
tests to see what effect the possible existence of more
than one outlier may have on them. Some statistics
already mentioned may apply immediately to the case of
more than one outlier, such as the measures of skewness
and kurtosis. Others can be extended. For example, the
deviation/spread statistics for testing for two upper

outliers would be

(th_x)/s
as before, and
(X, 7%/

A simultaneous test statistic for both X and X0

would have to combine these two values. The obvious way

to do this is to take the sum of squared values

((x, -%)°

=, 2 2
+ (X - S
(n) ( (n-1) }() }//

so that in effect the sum of squares statistic s° /s°

n,n-1

(Grubbs, 1950) has been obtained. An alternative

retaining the deviation/spread form would be:

+ -2%x) /s
(Xun X(Wd) X)/

(Murphy, 1951). This can be seen to be testing the

difference between the mean of the two hypothetical
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outliers and the overall mean, and hence it is not
surprising that it has optimal properties against the
alternative that the outliers are generated from one
distribution (that is, have the same slippage). However,
McMillan (1971) showed that it was not robust against
departures from this alternative, and that the sum of
squares statistic would then be preferred. This
reiterates the point that such optimality results as are

known are of limited use.

A point concerning comparisons between tests that was
not elaborated on earlier is the grounds of comparison.
Barnett and Lewis (1984) select three useful performance
measures for the single outlier case from possibilities
proposed by David (1981). These are:

the power of the test in the usual sense of the
probability of accepting the alternative hypothesis when
it is true;

the probability of the contaminant (the point from the
contaminating distribution) being the extreme value and
being declared as an outlier by the test;

the probability of the contaminant being declared an

outlier given that it is the extreme value.

The last two are relevant because the issue is not only
whether or not a test declares an outlier to be present,
but if this is actually from the contaminating
distribution or is a point from the main distribution with
an unusually large random component. The number of
performance measures increases for the multiple outlier
problem: Beckman and Cook (1983) listed six criteria,
again incorporating the success of the method in
identifying the correct points as outliers. However,
published work in the multiple outlier problem largely
concentrates on simply the number of outliers detected, an
emphasis that will be shared by this thesis. This point
leads to the final topic of this section, the question of

how many outliers may be identified in one sample of data.



In the first place, consider a test for a specified
number tz1 of outliers. (The only restriction on t is
that it is a small number relative to the sample size, for
otherwise another analysis, such as fitting a mixture
distribution, would be more suitable.) What happens if
the actual number of outliers is different from t? There
are two general phenomena which are relevant here, and the
sensitivity of a test to each of them is another criterion
relevant to test choice. These phenomena are masking and
swamping. The former is relevant when the actual number
of outliers exceeds the number being tested. This was
expounded by Pearson and Chandra Sekar (1936) in relation

to the extreme studentized deviate

(x,,~%)/s

for testing for a single upper outlier. They pointed out

that if there was a second outlier, X,, Oor X then s

!
could be so much further inflated over what xggld be
expected in an uncontaminated sample, that the ratio would
no longer be big enough to declare X to be an outlier.
Hence, the presence of a further, less extreme, outlier
'masks’ the presence of the most extreme point. Swamping
is the opposite effect: there are fewer outliers k than
the t=2 being tested for, but these are such extreme ones
that the t-outlier statistic is sufficiently large to
declare t outliers. The true outliers have carried along
t-k other points with them and these are falsely declared

to be outliers.

Since the commonest practical situation is not only
that it is not known which points may be outliers, but not
even known how many may be outliers, it must be regarded
as a proper function of outlier testing in general to
suggest the second decision as well as the first. Often,
this is not considered in a formal way. If the outlier
test is only being carried out because inspection of the

data suggested that it is necessary, then probably the
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same inspection suggests how many outliers to test for.

In these circumstances, though, the whole formal
hypothesis testing framework is dubious (see Collett and
Lewis, 1976, and Example 1 of the following section). On
the other hand, if outlier testing is treated as a routine
screening of data, then choice of number of outliers ought
to be allowed for formally. The most popular method of
selecting the number of outliers is to apply tests for
t=1,...,k outliers, where k is a chosen maximum, and to
select the final value by comparing the results. If
meaningful significance levels are to be obtained, this
needs to be set up as a proper sequential (also called
’consecutive’) procedure, with significance levels at each
stage adjusted to allow for the other stages. This will
be discussed in detail in Chapter 4, where a multivariate

procedure of this type will be developed.

This overview of some of the main points of the study
of outliers will be supplemented in the following section
by a few examples, to be followed in Chapter 2 by a

detailed review of the subject in the multivariate case.

1.4 Some examples of applications

The four examples presented here have different
features as follows. The first is a fairly standard
example of a univariate single outlier test, carried out
because the sample appears heterogeneous. Example 2 shows
a case where data appear to have been wrongly treated as
if there were an outlier through failure to attempt a
statistical evaluation of an apparent difference. Example
3 moves to bivariate data and illustrates both a test in
this situation and the way in which the inclusion or
exclusion of certain points may influence the results.
Example 4 also is concerned with bivariate data and looks

at an influence analysis in more detail.
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Example 1

This example illustrates the simplest situation, of
testing for an outlier in a univariate sample. The data
(unpublished, provided by Prof. G.C.Lyketsos, University
of Athens) are the scores of patients with alopecia on the
"lack of self-confidence" subscale of the Personality
Deviance Scale (Foulds, 1976) and form part of a series of
studies of psychosomatic disorders. The scores for the 26

patients are:
6, 11, 13(2), 14(e6), 15(9), 16(6), 18

where the number in brackets indicates how often the score

was recorded, if more than once.

In these data, the value 6 catches the eye as much
lower than the rest: perhaps some test should be conducted
to see if this impression is justified, probably leading
to omission of this patient if the test result is
positive. One possibility is to use the lower outlier
version of the maximum studentized deviate already
introduced:

T=(x=x,)/s

This takes the value 3.89, well beyond the critical
value of the 1% level of statistical significance for a
one-tailed test (Table VIIIa of Barnett and Lewis,

1984, extracted from Grubbs and Beck, 1972). However,
the choice of a one-tailed test is based only on
inspection of the data, so it is more correct to use a
two-tailed test since an extreme upper order statistic
would have led to the same investigation. The statistic

is
max{ (x  ,=X)/s, (X=X )/s)

It too is significant beyond the 1% level (Barnett and
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Lewis, 1984, Table VIIIb, from Pearson and Hartley, 1972).

Another possibility is to use a Dixon-type

statistic,such as
X =X X -
( (2) u))/( (n) Xu))

for testing a lower outlier, or the two-sided version

X, - X _ =X
( (n) x(md)) ( ) (1J

’
X -X X -X
( (n) (1)] ( (n) (1))

The value of either statistic is 5/12=0.417, which is

max

again statistically significant at 1% (two-tailed; Table
XIVb of Barnett and Lewis, 1984). Thus there appear to be
quite strong grounds for marking this observation as an
outlier. It may be repeated that, one-tailed or
two-tailed, the interpretation of any significance level
in outlier testing is somewhat dubious because the test
procedure is usually two-stage, the actual test following
upon the decision that (in the analyst’s judgment) some
aspect of the data is surprising. Collett and Lewis (1976)
make this point and go on to investigate, in a designed
experiment, some of the factors affecting perception of

possible outliers.

Example 2

Besides indicating a discordant observation, outlier
tests may serve to indicate that an observation should not
be treated as different from the rest. In the following
example, attention seems to have been mistakenly
concentrated on a value that was rather lower than the
others. The data (Table 1.4.1) are the percentages of
employees with serological evidence of past infection with

hepatitis B, in six hospitals (Snydman et al, 1984).
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Table 1.4.1 Positive tests for evidence of hepatitis B

infection in screening hospital employees (Snydman et al,
1984) . '

Hospital Number Screened Positive
n %
1 283 37 13.1
2 619 90 14.5
3 405 63 15.6
4 275 43 15.6
5 281 37 13.2
6 246 22 8.9
1-5 1863 270 14.5
combined

(Many epidemiological studies of this kind have been
published, because medical staff are at high risk of
infection with this dangerous disease but the vaccine is
so expensive that it is more economical to screen to
identify the susceptible than simply to vaccinate
everybody.) Although the overall test of homogeneity in
this table gave a non-significant result (X?= 7.19, p =
0.2) the authors selected hospital 6, observed that it
differed substantially from the other five combined (with
f= 5.16, p = 0.023 for this comparison) and hence
included a dummy variable to represent hospital 6 as one
of the explanatory factors in their logistic regression
model for infection rates. There were no grounds for this

beyond their inspection of the data.

Is the rate in hospital 6 really excessively low,
judged as the extreme of a set of six samples? There is
not much ready-made theory for this problem. Barnett and
Lewis (1984, p.200) give exact binomial theory for the
case of equal sample sizes - but here they are not nearly
equal. Instead (p.239) there is a conservative test, using
tail probabilities of the hypergeometric distribution,
which can easily be worked out on a microcomputer. The

tail probability for hospital 6 is 0.0090. This may be



compared to 0.05/6 = 0.0083 for a Bonferroni test at the
5% level of the hypothesis of equal probabilities of past
infection in the six populations against the alternative
of downward slippage in one. Thus it is a one-tailed test
and, as there seems to be nothing to justify one-tailed
testing, it may be more appropriate to compare against
0.025/6 = 0.0042. So the calculated p-value appears to be
well above the level at which it is justified to talk of
hospital 6 as differing from the rest.

Example 3

This example is chosen partly because it is a
multivariate one and partly because it illustrates that it
is not sufficient to think only about a single outlier.
The data, consisting of the responses (in terms of level
of the hormone prolactin) of ten patients to
electroconvulsive therapy (ECT) and to thyrotropin-
releasing hormone (TRH), were published by Papakostas et
al (1986). The importance of the experiment is as a
contribution to the understanding of the mechanism of ECT,
which has been widely used in therapy for many years
without anyone really knowing why it works. The data used
in the following discussion were read from a graph in the
original publication, so do not correspond exactly to the

true values:

Patient 1 2 3 4 5 6 7 8 9 10
ECT response 11 13 10 12 39 19 16 29 24 69
TRH response 10 19 27 28 44 49 50 59 80 98

The product-moment correlation between ECT and TRH
responses is 0.794 (published value 0.824), statistically
significant beyond the 1% level. The simple scattergram
(Figure 1.4.1) suggests however that observation 10 is in

some way quite distinct from the rest.
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Figure 1.4.1 Prolactin in response to electroconvulsive

therapy (ECT) and thyrotropin-releasing hormone (TRH).
Source: Papacostas et al. (1986)

If this point is omitted, the correlation falls to 0.590
with p=0.095. A result like this, outside the usual
levels of statistical significance, might well have meant
that the report would not have been published, so the
question of whether or not observation 10 "belongs" with

the rest is an important one.

After omitting observation 10, observation 5 might now
catch the eye as substantially different from the others
and if this too is omitted the original high correlation
is restored, the value being 0.841 (p = 0.009). The
details of the relationship between the two responses are
changed, however: the regression slope for ECT on TRH
falls from 0.53 (standard error 0.14) in the original

sample to 0.25 (s.e. 0.07) on omission of points 5 and 10.
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Clearly, there is a need for objective procedures to
guide this discarding of points, when so many alternative
results are available. The basic test to be applied here
is Wilks’ (1963) test for an outlier in a multivariate
normal sample, which will be discussed in detail in later
chapters. The minimum value of the statistic is 0.254, on
omission of observation 10, which is significant only at
the 10% level (conservative test using Bonferroni
bounds). This test extends easily to considering two or
more outliers, although the Bonferroni approximation
appears to be much less adequate in this case (Barnett and
Lewis, 1984; Hawkins, 1980a). For two outliers, the test
statistic is a minimum on omitting observations 5 and 10,
with the value of 0.0481 falling below the 5% level
(0.0585) but not quite the 2.5% level (0.0460).

There seem to be reasonable grounds therefore to
suspect the homogeneity of the sample, with two
observations appearing not to be from the same
distribution as the other eight. Notice that the
one-outlier test did not give a statistically significant
result, probably because the inclusion of the other
apparent outlier was inflating the variances and so
causing "masking" - the failure to identify extreme values
because of the presence of other extreme values. Notice
also that there was no adjustment of significance levels
of the two successive tests (for one or two outliers) to

allow for multiple testing.

Another way of looking at these data is from the point
of view of the idea of influence. Observation 10 is
initially singled out because it gives the impression of
strongly affecting the estimate of the correlation between
ECT and TRH, as indeed it does. Devlin et al (1975; see
§ 2.7 of this thesis) give graphical methods of
illustrating the influence of individual observations on
the sample correlation coefficient, one of which is
illustrated in Fiqure 1.4.2.
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ECT

Figure 1.4.2 Prolactin data with contours of sample

influence function for correlation coefficient.

In this diagram, the scatterplot is augmented by
contours of an approximation to the sample influence
function. These indicate by how much the correlation
coefficient would change were a point on the contour to be
deleted. The approximation does not seem to be very good
in this problem, possibly because the sample is small and
the calculation of the contours includes the effect of the

probable outliers.

Example 4

The final example is concerned more directly with

influence rather than outliers. It involves a linear
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regression and 1is thus connected with the problem
considered in Chapter 8. The context is a study of the
improvement in the condition of schizophrenics after a
course of treatment with the drug haloperidol (Smith et
al, 1984). The original analysis regressed improvement
(measured as percentage improvement on the psychosis
factor of the Brief Psychiatric Rating Scale) on the level
of haloperidol in the blood and found a need for a
quadratic term. This indicates that response falls away at
higher levels of haloperidol and therefore the medication
must aim to get the level into a certain range, the
’therapeutic window’. This was the major conclusion of the

paper and depended entirely on the statistical analysis.

Some correspondents were unhappy with this conclusion
(Van Putten et al, 1985; Kirch et al, 1985). In
particular, they looked at the graph of improvement
against haloperidol level (Figure 1.4.3) and saw one
extreme point which appeared to have a lot of influence in
determining the curvature. Moreover, the regression was a
weighted one (due to variable accuracy of measurement) and

it was this point which carried the highest weight.
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Figure 1.4.3 Percentage improvement in score on BPRS

psychosis factor against steady-state plasma haloperidol
level.

Source: Smith et al. (1984); data corrected in Smith
(1985) ‘

This correspondence would have been unnecessary if the
original analysis had reported the influence analysis
which is now routinely available in the major statistical
packages. Fitting the regression using the program P9R in
the BMDP package, it is found that Cook’s distance measure
of influence on the estimated regression coefficients
(Cook, 1977) is indeed the largest for the point called
into question by the correspondents, but is numerically
quite small. With this point included, the regression

equation for improvement is

-6.38 + 8.70 (level) - 0.38 (level)?
and without it

-12.13 + 10.31 (level) - 0.47 (level)®



The 95% confidence interval for the "acceptable range"
of blood level of haloperidol (as defined by Smith et al)
changes only from 6.9 - 17.6 to 6.7 - 17.2.

" This example illustrates the need for examining and
measuring influence in fitting a model. In
higher-dimensional problems, such as the multivariate
regression considered in Chapter 8, the need is all the
greater since simple plotting is not available. In such
cases, influence examination is particularly helpful in
indicating the points with undesirably high influence
instead of, as here, providing reassurance that a visually
suspect point does not affect matters unduly. The example
also illustrates that ‘influence’ can have many meanings.
Cook’s distance looks at the change in the vector of
regression coefficients, but here the feature of more
direct interest is the location of the 95% confidence
interval indicating the therapeutic window: the influence

on this piece of output from the analysis is required.
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CHAPTER 2

MULTIVARIATE OUTLIER DETECTION : A REVIEW

2.1 Introduction

Relatively little has been written on the problem of
detecting outliers in multivariate data, in comparison to
the large literature for the univariate case. Barnett and
Lewis (1984) devote only 26 out of 288 pages of text to
the multivariate problem, and Hawkins (1980a) only 11 out
of 127. The main reason for this must be the greater
difficulty - both analytical and computational - of the
multivariate case. For the same reasons of difficulty,
the bulk of the literature on all aspects of multivariate
analysis is limited to the normal distribution and thus
there has been no cataloguing of outlier tests for
different distributions in the multivariate case as there

has been in the univariate.

Although an outlier in multivariate data might also
appear as an outlier on one or more of the univariate
marginal distributions, it does not necessarily do so. The
purely multivariate concept of correlation may be
involved, so that the outlier differs from the rest of the
data set in violating the pattern of relationships between
variables (as in the quotation from Daniel in the previous
chapter). Therefore new methods are needed for handling
the multivariate problem. There is also scope for new
methodology in considering an outlier as a point which
"appears" different from the rest of the sample. Taking
this to mean, literally, its appearance in a graphical
representation of the data, connects the problem of
detecting multivariate outliers to the problem of
obtaining a low-dimensional display of high-dimensional
data. There are thus two main themes to be found in the
literature on multivariate outliers: formal methodology

related to hypothesis testing and informal methodology



linked to graphical displays.

At this point, it is appropriate to refer to the idea
of generalized distance, which appears in both formal and
informal methods, as will be seen subsequently. It arises
as a partial solution to the problem of ordering
multivariate data. Ordering is a basic part of outlier
testing in the univariate case: it is important because
the concept of an outlier as an observation noticeably
different from the rest implies that an outlier has to
appear at one or the other extreme of the list of ordered
sample values. In particular, Dixon’s tests use only
these order statistics. In the multivariate problen,
there is no direct equivalent of univariate order
statistics, so tests of this type cannot be applied.
However, other univariate test statistics order points in
respect of distance from the mean of the sample, as in the
maximum studentized range

max Ix,—il
1
i

(2.1.1)

s
and this idea can be extended to the multivariate case,
because a sub-ordering (Barnett, 1976) of observations in
relation to the sample mean is provided by generalized

distances
(xi—;()'s‘l(xi—i) (2.1.2)

where S is the sample covariance matrix.

The first candidate for an outlier in a multivariate
sample is that observation X, which maximizes (2.1.2).
This is equivalent to Wilks’ statistic for testing for
outliers in multinormal data, which is to be discussed in
detail in the following chapter. Here, we note that this

choice of statistic can be justified in three ways:

1) (2.1.2) is the direct multivariate equivalent of
(2.1.1);



2) the multivariate normal density Np(u,Z) is given by

-p/2 -1/2
| 2]

(2m) exp{-(1/2) (x-1) 'S (x-1) )

so that (2.1.2) provides estimates of probability
densities and the sample points are ordered in relation to
the contours of the p.d.f;

3) as will be shown in Chapter 3 a likelihood ratio

approach to a hypothesis testing problem leads to (2.1.2).

The second and third of these ways suggest general
methods of developing tests for use with multivariate
distributions. Furthermore, likelihood ratio is not the
only general method of test construction in common use in
multivariate analysis. There is also the union-
intersection method, and an application of this to
constructing a multivariate outlier test will be explored

in Chapter 6 of this thesis.

The following sections review existing formal methods
for testing for outliers in multivariate data and a later
section of this chapter looks at the available informal
methods.

2.2 Tests for a single outlier in multivariate normal data

With the exception of some work by Barnett to be
mentioned in the following section, the multinormal case
discussed here covers all the multivariate outlier
literature. To examine the outlier-testing problem
requires the setting up of null and alternative
hypotheses. The null will be

HO D S Np(u,Z) i=1,...,n

- that is, there are n independent observations from the
same multivariate normal distribution. In problems of

practical interest, both p and X are usually unknown.
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Hawkins (1980a) lists three possible alternative hypotheses
for contamination of the data by k outliers. Writing themnm

in general form for the k-outlier problem, they are

Model 1 - H1 : ~ N?(u,Z) i=k+1,...,n

X
ji)
X ~ N (k%) i=1,...,k

j(i)
where j (i) is an unknown permutation of the integers
1,2,...,n;

Model 2 - H : X ~ Np(u,Z) i=k+1,...,n

2 )
sy Np(u,aiZ) i=1,...,k

where a_  is a scalar; and
1

Model 3 - H : x ~ Np(u,Z) i=k+1,...,n

3 j)
i Np(u,Zi) i=1,...,k

Model 1 is a slippage of the mean, while models 2 and 3
both represent changes in the covariance matrix so are
analogous to a univariate slippage of the variance model.
Barnett and Lewis (1984) discuss models 1 and 2 for the

single-ocutlier case. Model 3 has not been investigated.

It will be shown in Chapter 3 that the likelihood ratio
test of model 1, for a single outlier and for a specified
outlier candidate j, leads to the statistic

A =|A |
j j

|A| (2.2.1)

where A is the sum of squares and products matrix of the
entire sample

A= ¥ (xi—i)(xi—Q)'

i

and Aj is the equivalent quantity recalculated after
omitting observation X, A reasonable choice of outlier
test statistic when it is not known beforehand which point
is the potential outlier is therefore to find that X,

giving the extreme value of (2.2.1); thus
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min |A |
3 .
FN (2.2.2)
is the outlier test statistic. This is the two-stage

maximum likelihood method.

The statistic (2.2.2) was introduced by Wilks (1963)
and is the only multivariate outlier statistic in common
use. Wilks’ paper will be discussed in more detail in the
following chapter: here it will simply be noted that Wilks
motivated this choice of statistic by an interpretation of
|A] in terms of volumes of simplexes formed by points from
the samples, so that the outlier is the point whose
removal most reduces this value and hence leaves as
compact a set of remaining points as possible. If the
problem is in fact one~dimensional, then |A |[/|A| reduces
to a ratio of two ordinary sums of squares SZ./S2 and hence
gives Grubbs’ statistic. It is well known tﬁat this is
equivalent to testing with studentized deviations from the

mean: for example, for testing for an upper outlier

. _ _S\2
=1 n(x(n) x)

(n-1)s?

U)|U)
vis

A similar result holds for the multivariate case. The
reduced sum of squares and products matrix is, (assuming
without loss of generality that the nth point has been
omitted)

where n

Now because _ _
nx=(n—1)xn+xn (2.2.3)

we can substitute for x in A
n n
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n-1
Ah= 1 Y {(n—l)xi—n§+xn}{(n—l)xi—n§+xn}’
(n—l) 2 i=1
n-1
= 1 ¥ {(n-1) (xi-;()—>_<+xn}{ (n-1) (xi—>_<)—§+xn}’
(n—l) 2 i=1
n-1 _ _ _ _
= L (¥=X)(x-x)'- 1 (x-X)(x-X)'
i=1 n-1
= A-(X -X)(x -x)'- 1 (x -%) (x -X) "’
" " n-1 " "
=A- n (x-X)(x-x)' (2.2.4)
n__]"-' n n

This well-known updating formula now permits calculation
of an alternative form for A. Let B be the partitioned

matrix

B= A J:E: (xn—i)
n-1
J’_n—_ (xn—;() ’ 1
n-1 .

Then its determinant can be expressed in two alternative

ways:

IBl =IAl.{1- n (x -%)’A7 (x -¥)}
n—]_ n n

=|A—L1 (xn—;() (xn—i)'l
-

(Morrison, 1976, p.68)

Hence - _
Ah=lA— n/(n—l)(xn—x)(xn—x)’|
[A]
=1- n_ (xn—i)'A‘l(xn—i) (2.2.5)

n-1

Consequently, Wilks’ A ratios are monotonic functions
of the generalized distances. This offers ease of
computing all the n ratios Ai in a sample, since just one

matrix inversion 1is needed.



Another alternative form can be obtained by observing

that (2.2.3) can be rewritten as

X —X= (n-1) (xn—xn)
n
so that (2.2.4) is the same as

A=A + (n-1) (xn—in) (Xn"—‘n)'
n

The same device of partitioning a matrix as led to

(2.2.5) then gives

A'=1+ n-1 (x -%)’'AM(x -%)
n —'n_ n n n n n

=1+ T
n-2 (2.2.6)

2
n

where Ti is Hotelling’s T° statistic for testing the
hypotheses

H : X o~ Np(u,Z) i=1,...,n

H : X o~ Np(u,Z) i=1,...,n-1
X ~ N (u ,Z).
n P n

Thus the outlier testing problem is equivalent to a

two-group comparison.

One special variation on model 1 will be mentioned
before model 2 is discussed. This arises when the
covariance matrix V is either known or estimated
independently from the sample which is being investigated
for outliers. Tests have been suggested analogous to the
version (2.2.5) of Wilks’ statistic, using distances

expressed in the general form
—— — _1 —
R(x,xo,F)—(x xo)’r‘ (x xo) (2.2.7)

in the notation of Barnett and Lewis (1984). 1In this
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notation, the generalized distances equivalent to Wilks’
test are R(x;u,A), or R(x;u,S) where S is the sample
covariance matrix. Siotani (1959) investigated R(x;xO,Z)
for ¥ known and X =0, u (known) or x. Knowing u gives a
very simple case, although entirely unrealistic, for the
R(x;u,%) are then independent Xi variates and the outlier
problem requires only the order statistics of a chi-square
distribution. Barnett and Lewis (1984) give appropriate
tables, corrected from Gupta (1960). They also reproduce
Siotani’s tabulations for the case R(x;x,X) and for
R(x:X,V) where V is an independent estimate of £. None of
these cases seem to be of sufficient practical importance
to be worth pursuing any further: however, distances of
the above form (2.2.7) will be seen again in the

subsequent section on graphical methods.

The analysis of model 2, for unknown u, £ and a ., was
investigated for a single outlier by Ferguson (1961). He
defined the problem as the search for the optimal decision
rule, in the sense of maximizing the probability pi(Di) of
declaring that X, is the contaminant when this is in fact
true. Within the class of decision rules which are
invariant under shifts of location and under rotation,
have size a (probability of correctly declaring that no
value is an outlier is 1-«a) and for which pi(Di) is
independent of i, Ferguson found that the optimal rule
again uses distances R(xi;§,S). If j is that observation
with the greatest value of this distance in the sample,

then this observation is declared to be the contaminant if
R(xj;§,8)>k

where k is chosen so that the rule has the desired size.
Hence, because of (2.2.5), Ferguson’s decision rule for
model 2 is just the same as Wilks’ test for model 1. A
further point from Ferguson’s analysis is that his
decision rule is the uniformly best procedure over all

values of the parameter a.
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Very little exists in the testing literature apart from
Wilks’ statistic. Rousseeuw’s robust version of the
statistic will be mentioned in § 2.7. A test based on
kurtosis will be presented in the following section, since
it is not specifically a test for one outlier. The only
remaining analytical method of investigating the presence
of a single ocutlier in multivariate normal data is
Guttman’s (1973) Bayesian analysis. This appears to be
the only extension of the Bayesian methodology to the
multivariate case, which is not surprising since there
will often be formidable problems of evaluating integrals
in the univariate case which become excessive in the

multivariate case.

Guttman adopts the slippage in the mean model and
writes the likelihood as

n

L (1/n) 1 ¢(xiu,2).¢(xX inta, x)

j=1 i#j
where ¢ is the usual multivariate normal density. This
form is adopted because the prior probability that any
specified observation X, is the outlier is 1/n. The
technique is to impose a non-informative prior joint
distribution for (u,oz,a) which is simply proportional to
0 °. If this is combined with the likelihood to yield the
posterior joint distribution of u? o and a, then up and o’
can be integrated out to give the posterior marginal
distribution of a. Its form is a weighted combination of
multivariate t distributions (one for each observation),
so that it is easy to find the posterior mean and variance
of the marginal distribution of a. It does not seem
possible to carry out a simultaneous assessment of all
components of a, but each component a, can be loocked at
just as in the univariate case, by finding the posterior
odds

71= P(ai>0)

P(ai<0)
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High values of such odds can be taken to indicate that
mean shift has occurred and in which component. The
values of the weights for each observation in the
posterior distribution of a indicate which observation

may be an outlier. These weights are

c= 1A l—(n—2)/2
b] J

n

L 1Al

i=1

-(n-2)/2

where Aj denotes as usual the sum of squares and products
matrix of the reduced sample obtained by omitting
observation xj. In other words, the relative values of
the quantity used to assess which observation may be an
outlier are simply the IAjI, exactly as in Wilks’

statistic.

2.3 Tests for two or more outliers in multivariate
normal data

The remarks on the derivation of Wilks’ one-outlier
statistic suggest how to extend to the case of 2 or more
outliers. Wilks’ volume argument applies equally well to
omitting a set T=(ijk...) of points from the original
sample as to omitting a single point. His statistic

therefore becomes in general

max IATI
T

[A] .

This may also be derived by two-stage maximum likelihood
starting with the alternative hypothesis H of the
previous section and is equivalent to a one-way
multivariate analysis of variance between k+1 groups
(namely, k groups each consisting of a single point - the
outlier candidates - and one group consisting of the
remaining n-k points hypothesized to conform to the main
uncontaminated distribution). Wilks (1963) provided

Bonferroni percentage points for the two-outlier



- 37 -

statistic, as for the single outlier, and discussed the
general case, giving distributions for some particular
cases with 3 or 4 outliers. Simple use of Wilks’
statistics for up to 4 outliers is discussed in detail in
Chapter 3 and consecutive application of these statistics
for different numbers of outliers in the same sample is

discussed in Chapter 4.

Bacon-Shone and Fung’s (1987) graphical method for
detecting one or more outliers, based on Wilks’ statistic,

will be discussed in the section on informal methods.

The decision rule approach of Ferguson appears not to
have been investigated for more than one outlier. 1In
fact, model 2 in general seems to have been considered

only for the single outlier case.

Another general multivariate outlier test statistic
will be mentioned at this point because it is a test for
any number of outliers. This is Schwager and Margolin’s
(1982) test using the sample kurtosis proportional to

n

L ((x-%)'8 (x -%)}°

et j J
defined by Mardia (see Mardia, Kent and Bibby, 1979).
Exactly as in the univariate case, this has certain
optimality properties with normal data, although again
this is of limited practical importance. Schwager and
Margolin recommend their test as an overall test for the
presence of any outliers in the same way that an F test in
the analysis of variance serves to confirm the presence of
some differences which must then be identified in detail
by other means. This provides an overall significance
level irrespective of what is done in a subsequent

sequential procedure.

It may be noted that there is no multivariate
equivalent to the use of sample skewness to test for

outliers, which provides an optimal one-sided test in the
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univariate case. This is because the unidirectional

hypothesis has no multivariate equivalent.

2.4 Other multivariate distributions

Although a large number of multivariate distributions
have been defined (for example, Johnson and Kotz, 1972),
nothing apart from the multivariate normal appears to be
used very much. Only Barnett (1979) has investigated any
of these other distributions from the point of view of
outlier detection. He considered three distributions
- uniform, exponential and Pareto - all in the bivariate
case only. Test statistics are considered in relation to
two general principles for detection of multivariate
outliers, which he elsewhere (Barnett and Lewis, 1984)
labelled as principles A and B. Principle B is just the
statement of the two-stage maximum likelihood method for
testing the null hypothesis specifying some model F
against an alternative hypothesis specifying the
contaminated model F’, where it is not known which
observation may be the contaminant. His principle A is
similar, but refers to no particular alternative

hypothesis:

"The most extreme observation is that one, X, whose
omission from the sample XXX yields the largest
incremental increase in the maximized likelihood under F
for the remaining data. If this increase is surprisingly
large, declare X, to be an outlier." (Barnett and Lewis,
1984, p.246).

Barnett’s first example is the case of two independent
uniformly distributed random variables with known ranges.
This may seem too simple to be useful, but he suggests an
application in a cancer diagnosis problem. An area is
being estimated, so that the relevant quantity is a
product of random variables: Barnett provides a short

table for testing a test statistic suitable for this



particular problem, as well as tables for test statistics
based on distance criteria. However, despite this
practical illustration, the usefulness of this
distribution is probably very limited. Of much more
general interest are skew distributions, as shown by a few
examples of bivariate data extracted from the literature
by Barnett. 1In order to look at representations of such
data, he studied the two other distributions in his paper,

the exponential and the Pareto.

Quite a lot has been written on outlier detection in
the univariate exponential distribution, which is a
distribution with many practical applications (in lifetime
distributions, for example, and in connection with Poisson
processes). Being a long-tailed distribution, it is also
interesting from the point of view of studying outliers
since it naturally produces observations which may appear
to the eye to be extreme. The first difficulty in
extending the study to the multivariate problem is that
there is no one "multivariate exponential distribution".
Johnson and Kotz (1972) list 6 bivariate alternatives; the
one selected by Barnett is due to Gumbel (1960) and has
density

f(xl,x2)={(1+8X1)(1+8x2)—e}exp(—xl—xz—exlxz) (2.4.1)

for X >0, x2>0 and 0<6<1. The marginal distributions of
X and X, are both standard exponentials (that is, with
parameter 1). The product-moment correlation between X1
and X2 is a function of 8, and varies from 0 to
approximately -0.40 as 6 increases from 0 to 1. If @ is
zero, so that X1 and X2 are independent, then 2(X1+X2)
follows the Xi distribution, so tables of gamma order
statistics (Gupta, 1960; Barnett and Lewis, 1984) can be
applied to this problem.

Now suppose that 6 is non-zero and its value is known.
Applying Principle A, a suitable test statistic is the

maximum (or minimum, but the former is probably usually



the more interesting, representing an "upper" outlier) of
U=X +X +6X X The distribution function of T=1+6U is

H(t)=1-{(tln t)/6+1l}exp{-(t-1)/8} (2.4.2)

The distribution function of the sample maximum is

[H(t)]"

and hence simple iterative methods can produce exact
percentage points for the maximum of U. Barnett (1979)
gives tables of 5% and 1% points for a range of values of
6 and fresh tables can be found in Barnett and Lewis
(1984) .

The question now is how to proceed if 6 is unknown,
since this is the more realistic problem. Barnett does
not offer a complete solution. No analytical progress
appears possible Yith a statistic of the form xﬁﬁ%+§x8%
for an estimator 6. Observing from simulations that
critical values do not seem to depend strongly on 8,
Barnett suggests that a conservative test might be carried
out - presumably by taking as critical value the most
extreme of all critical values for different 6. Another
suggestion is to use xﬂﬁ%+kx3% for a selected constant
kX, so that 6 is ignored: this test statistic has not been

investigated.

A feature of the bivariate exponential distribution
considered above is that it only admits negative
correlations. On the other hand the bivariate Pareto
distribution (of the first kind; Mardia, 1962) has only

positive correlations. Its density is

a+1 -(a+2)

f(xl,xz)za(a+1)(8182) (92x1+81x2—8182)

(2.4.3)
with x;i%zo, >%28220 and a>0, or a>2 for the existence of
second-order moments. The product-moment correlation is

a', so that 0<p<0.5. If, as before, the parameters are

assumed known and Principle A is applied, the test
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statistic obtained 1is
R=(X,/6,)+(X,/6,) -1 (2.4.4)

which has distribution function

G(r)=1-r *(1+a-(a/r))

so that simple iteration again produces exact percentage
points for testing the sample maximum. (Note that this
function is given correctly in Barnett’s paper, but
misprinted in Barnett and Lewis, 1984.) Barnett (1979,
reproduced in Barnett and Lewis, 1984) provides a table of
values. Again, this result is of limited interest in
itself because the more realistic case is when the
parameters of (2.4.3) are unknown. Some progress is
possible for the case of unknown 81 and 82 but known a.
Reasonable, although not maximum likelihood, estimators of
8, and 6, are the minima of the two marginal

distributions, Xlu)and XZU)' so that it is obvious to

try substituting these for 8, and e, in (2.4.4). The
distribution of the resulting quantity has not been found,

but since

le + ij -1 = 15 + “25 -1

X
1 2(1) 1 2

for any sample observation (XU’Xa)’ it follows that the
percentage points obtained for the case of known 61 and 8,
provide conservative bounds for unknown 8, and 0, with a
known in both situations. Barnett’s simulated percentage
points for unkown e, and 6, appear quite close to the
exact percentage points for known 8, and 6,, so this test
is a good approximation. However, its usefulness is
limited by the assumption that a is known. Further work

to 1ift this restriction has not been carried out.

The common feature of these applications is that only
relatively uninteresting problems have been solved,

because the problems posed by the need to estimate
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parameters of the distributions have not been overcome.
This appears to be an inevitable consequence of attempting
to go beyond the multivariate normal distribution. The
point will be met again in relation to Rohlf’s gap test,
introduced in the following section and studied further in
Chapter 5.

The fact that the normal distribution is relatively
straightforward to handle in comparison to other
distributions suggests the possibility of carrying out
transformations to multivariate normality to obtain tests
for other cases. This idea has also been considered by
Barnett (1983). The principal limitation of his method is
that it is again necessary to take the distributions as
having known parameter values. If this is accepted, then
the method in the bivariate case is to transform the
random variable (X1’X2) to the pair of independent N(0,1)
random variables (Uﬁ'Uz) by

F, (x)=8(u,)

E&zlxl(x2)=¢(u2) (2.4.5)

where annd Fx|x denote marginal and conditional

1 2’1
distribution functions and & is as usual the standard
normal distribution function. The obvious outlier test
statistic in the space of (U1’U2) is Uf+U2; half the
largest value of this is distributed as the largest order
statistic in an exponential sample, giving critical value
for a size a test

—2In{1-(1-a) "™y,

Barnett looks at some properties of this test for the
cases of bivariate exponential and Pareto distributions as
before. One point that emerges is that the asymmetric
treatment of the two original random variables X, and X2

in (2.4.5) is of little consequence in these two



situations. However, these are relatively trivial matters
beside the fact that again it is not possible to take any
proper account of the need to estimate parameters of the
original distributions in order to carry out
transformations (2.4.5) as in most practical

circumstances.

In conclusion, it has to be said that little has yet
been achieved in the study of outliers from non-normal
multivariate distributions. Barnett (1979) introduced his
efforts as an "attempt to awaken interest" in the topic.

There seems not to have been much response so far.

2.5 Rohlf’s gap test

The method introduced by Rohlf (1975) is placed at this
point because it links the formal methods of outlier
detection with the informal. It is formal to the extent
that a test of significance has been proposed, but
informal in not explicitly specifying any underlying
distribution and also in that it could be used simply as a
graphical display. Rohlf’s method forms the subject of
detailed investigation in Chapter 5; it will only be

sumnmarised here.

The idea behind the method is similar to that behind
Dixon’s gap tests for univariate outliers. It will be
recalled that Dixon’s tests use in various ways
differences x _ -X

& (k-1)
statistics. If such a "gap" is unusually large, there is

between successive order

an indication that the point corresponding to X0 is not
from the same distribution as Xy ¥, and, by
implication, neither are x , X These tests

(k+1) " ° (n)*
therefore have some appeal for detecting "clusters" of

outliers, as well as single ones.

In the multivariate case, our inability to define order
statistics means that such gap tests cannot be applied

directly. However, the general idea still stands, that an
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outlier or cluster of outliers must be separated from the
main set of points by a distance which is relatively large
compared to distances within the main set. The question
is, how to identify these distances? Rohlf suggests
looking at the minimum spanning tree (MST) of the data
set, because if the largest distance in it is unusually
big (in relation to the other distances), then there
appears to be an outlier or cluster of outliers. The MST
may be examined through a probability plot of its elements
- a gamma plot is proposed on empirical grounds. On the
same grounds, the largest distance can be tested
approximately using tables of the gamma. The details of
these proposals will be filled in later in Chapter 5 and
the performance of Rohlf’s test as a formal test will be
studied.

2.6 Graphical methods

Given the notion of an outlier as a point which appears
different from the rest, any of the many ways of producing
graphical and pictorial representations of multivariate
data is a potential aid in outlier detection. A specific
emphasis on graphical means of outlier detection will be
found in Gnanadesikan (1977), which draws especially on

Gnanadesikan and Kettenring (1972) among earlier work.

Probability plots of a set of observed distances in the
sample against expected order statistics of a theoretical
distribution provide one basic means of looking at the
homogeneity of a set of points. It seems that Healy
(1968) first advanced this idea. He pointed out that

squared generalized distances
2 -1
D= (xX-u)’2Z (x—U) (2.6.1)

for known g and X follow the XE distribution. 1In the
bivariate case, the expected order statistics of Xz are
(Cox and Lewis, 1966)
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2

= 2
(i)

j=1 n-=J+1 !

> -

i=1,...,n

so a probability plot is easily carried out. To make it
even simpler, Healy suggested a normal probability plot

using JXZ or 3JX2 In order to deal with the case of

unknown g and %, he proposes use of the familiar

(x-%) '8 (x-%) (2.6.2)

but without comment on the effect of inserting these

estimates.

The expression (2.6.2) has been denoted earlier by
R(x;i,S). Gnanadesikan and Kettenring (1972) consider

similar graphical displays using the classes of measures

(xj—;{)’Sb(xj—;<)=R(xj;;<,S'b) (2.6.3)
and

-, b = =\, =
(xj—x) S (xj x)/(xj X) (xj X)
=R (x, ;>'<,s"")/R(xj 3%, 1) .

Different values of b may serve to highlight different
outliers. These classes may be extended further by using
the sample correlation matrix R in place of the sample
covariance matrix S, and by using xj—xi (j=i) in place of
X,~X, S0 that inter-point distances are examined. For
displaying these statistics, the basic tool is the gamma
probability plot, based on the argument that the R(XJ;Q,F)
for multivariate normally distributed data are
approximately a set of independent gamma variates,
whatever I' is being used. (This was also employed by
Rohlf in the gap test.) To carry out a gamma plot it is
necessary to have an estimate of the parameter r in

the distribution
£(x)=(a/T(x)) (ax) '™, x>0.

(It is not necessary to estimate the scale parameter «,
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because this only alters the slope of the entire plot, and
has no effect on the departures from linearity which one
is looking for in searching for outliers). Methods for
estimating the shape parameter r are provided by Wilk,
Gnanadesikan and Huyett (1962a, 1962b).

There is no closed-form estimator of r, so these plots
are not particularly convenient to use in practice. It
does not appear that much use is made of (2.6.3) for any

choice other than b=-1, the usual generalized distance.

The only recent contribution to graphical detection of
multivariate outliers is by Bacon-Shone and Fung (1987).
They use Wilks’ statistic directly, for specified numbers
of outliers which can be greater than one (in which case,
of course, Wilks’ statistic is the same as the generalized

distance). The methodology is as follows. To examine the

t

sample for a given number of outliers, t, all [n] ratios
AT are computed, where T is a set of t indices. If the
standard asymptotic result from likelihood ratio testing

is applied, the quantity

W£=—{n—(p+t+3)/2}ln AT (2.6.4)

follows approximately the distribution Xst for large n.
Now Bacon-Shone and Fung observe that the interest for
outlier detection lies in the largest values of W
(smallest values of AT). In particular, if there really
are t>1 outliers, then there are (n-t+1) sets T containing
the most extreme t-1 of these plus one other point, and
these sets will contain the biggest values of WT. Hence
interest can be focussed on just the (n-t+1) largest W_.
Because most of these derive from sets with t-1
indices in common, Bacon-Shone and Fung say that the
distribution of the WT can be partitioned as

2 +x2

p(t-1) “p

where the first term is due to the common indices.
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Consequently the largest n-t+1 expected quantiles of WT
can be approximated as a constant plus the quantiles of Xi

corresponding to upper tail probabilities

K/ (n-t+2), k=1,...,n-t+1.

A plot of the (n-t+1) largest values of WT against
these quantiles should give an approximately linear plot;
departures from linearity will suggest outliers. The
above argument does not apply for t=1 outlier. In that
case, the suggestion is to plot the values of AJ
(3J=1,...,n) against quantiles of the Beta distribution
which describes such a ratio. The plots in the article,

however, seem to use a plot for W again, not A.

The procedure is to produce a plot for each potential
number of outliers up to a chosen maximum. If inspection
of these does not clearly suggest how many and which
points are outliers, Bacon-Shone and Fung suggest a
sequential procedure, eliminating clear outliers and then
looking at the reduced sample. A more formal sequential
test procedure, based on Wilks’ statistic, is the subject

of Chapter 4 of the present thesis.

All methods mentioned so far provide displays of
selected distances, rather than displays of the points
themselves. Of methods for displaying multivariate data
points, the most familiar is principal components analysis
and this can be found in various forms in the multivariate

outlier detection problem.

The customary use of principal components analysis
(PCA) leads to a plot of the points in the space of the
first two principal axes, if these account for a
satisfactory percentage of the data. If one point appears
to be well separated from the rest on this plot, it seems
to be indicated as a possible outlier. However, outliers
will not necessarily appear on the first few axes. The

first few axes represent those linear transformations of
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the original variables which have the largest variance.
Hence they must tend to incorporate those original
variables which have large variances or pairs with large
covariances, if the analysis has been carried out on the
covariance matrix, or to incorporate pairs of variables
with large correlations if the correlation matrix was used
for the analysis. Any outliers which affect variables
other than those which would be strongly represented in
the PCA of the uncontaminated data, are therefore unlikely
to be seen in the space of the first few components.
Outliers which are discernible there will tend to be those
outliers whose effect is to increase the uncontaminated
variances and covariances or correlations. It follows that
other outliers must be sought elsewhere than in the first
few components. These will be the outliers whose presence
creates an apparent correlation, where none existed in the
uncontaminated data, so add new dimensions to the
principal components. The last few components in
particular may also indicate another type of outlier, one
which breaks a pattern that is so strong as to amount
almost to collinearity. Since the last principal
component is that linear combination of the original
variables with minimum variance, any linear combination
which is almost constant will be close to the last
principal component. An outlier which breaks such patterns
will be seen only if the last few components are examined.
An application of this idea to provide a check on the
accuracy of records being added to a data base is given by
Hawkins (1974). The general topic of PCA and outliers is
discussed in most detail by Gnanadesikan and Kettenring
(1972) . Note that the association of types of outliers
with the first or last few principal components is given

the wrong way round in Hawkins’ (1980a) review.

The main drawback to use of PCA for outlier detection
is that, for sensitivity to all kinds of outliers and

outliers affecting all variables, it is necessary to
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inspect a lot of components. On the other hand, the main
advantage of PCA in most applications (with exceptions
such as its use in regression: see Jolliffe, 1982) is
that a large part of the information from a large number
of variables is represented in just the first few
components. Having lost this advantage, PCA is no longer
an especially helpful method for multivariate outlier

detection.

Besides plotting points in the space of selected
components, Gnanadesikan and Kettenring also suggest
probability plotting of scores on individual components.
Even if the original data are not normally distributed,
these scores may be reasonably close to normality and a
normal probability plot can be carried out. Hawkins
(1974, 1980a) looks at the possibility of more formal
testing on the basis of scaled principal components
residuals.

If X ~ N(¢,Z) and the covariance (or correlation, in
most applications) matrix ¥ is diagonalized by the
transformation C, so that CZC'=A=diag(Ai), then the

principal component residuals of a vector X are
1

Y =C(X -u) ~ N(O,A )
Hawkins rescales to

f/;i=A'“’2’Yi ~ N(0,TI)

and suggests statistics such as

m?x |ZU|, § z
based on z and then maximized over i. In practice, the
above transformations will be carried out with estimates
of u and ¥ rather than known values, so that the
distribution of z, is not normal. Hawkins states that the
asymptotic normality result does not help for reasonable

values of n, so that the scope for formal testing is in
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fact very limited unless some distributional results
applicable to small samples are discovered. The exception
to this is the statistic

max ( T z°)
ij
i j
since this is just Wilks’ single-outlier statistic. PCA

will be mentioned further in the following section.

In conclusion, it cannot be said that any one graphical
method has emerged as being especially useful in the
detection of multivariate outliers. Few of the ideas

which have been suggested seem to be actually applied.

2.7 Robust estimation and influence

The inter-relationship of outliers and influence has
already been mentioned. Since the emphasis here is on the
topic of outliers, the relationship may be viewed here
from that point of view, so that one can say that an
outlier is usually influential in the sense that it has a
much larger impact than other points do on the estimation
of certain quantities. 1In particular, it is well known
that estimates of correlations can easily be distorted
substantially by the occurrence of outliers. It follows
that methods of detecting influential points have a
contribution to make to the detection of outliers,
although of course influential points are not necessarily
outliers.

One approach to the identification of influential
points is to quantify the influence of each point on the
statistic of interest. For a bivariate correlation
coefficient r, Devlin, Gnanadesikan and Kettenring (1975)

used as sample influence function simply
I(xi;r)=(n—l)(r—rﬂ

measuring the effect on the correlation of omitting X,

from the sample of size n, thus changing the correlation



from r in the full sample to r, in the reduced sample. In
the bivariate case, contours of constant I can then be
superimposed on the scattergram, as in Example 3 of
Chapter 1. Another suggestion is to look at the
equivalent function for Fisher’s transformation
z=tanhﬂ(r). This is approximately distributed as the
product of two independent standard normals. A
probability plot could be carried out to detect extreme
values. If the greater familiarity of an ordinary normal
probability plot helps, this can be achieved by
transforming the ordered sample influence values ils...Si

n
to {vj} via

Q(vj)=G(ij), j=1,...,n

where G is the distribution function of the product of
standard normals and & is the standard normal distribution

function (Gnanadesikan, 1977).

One difficulty in studying influence functions in
multivariate problems is that one is often interested in a
rather complex quantity, such as a largest eigenvalue in
principal components analysis, so that it is hard to
obtain distributional results. Nonetheless, there is some
published work on influence in such contexts, for example
Critchley (1985) on principal components analysis and

Campbell (1978) for discriminant analysis.

As with the direct detection of outliers, so the
detection of influential observations leaves the question
of what to do with them once found. Robust estimation may
provide the solution. A simple example of a robust
estimator is a trimmed mean for estimating a univariate
sample mean, in which a pre-selected number of the most
extreme points at each end of the list of order statistics
are discarded and only the remaining points are used.

Outliers hence do not contribute to the estimation.

Rousseeuw (1989) has defined robust outlier detection
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statistics which are simply the Mahalanobis distances
(2.2.1) but with x and S replaced by robust estimates.
Specifically, he recommends his minimum volume ellipsoid
(MVE) esimators, which are based on the ellipsoid of
smallest volume which contains at least half the points of
the sample. These estimators give protection against a
large proportion of contaminating points, so that masking
is almost impossible. However, he recommends that,
because of problems with collinearity, the MVE should not
be used unless n/p > 5 , so it is not a method applicable

to small samples unless the dimensionality is also low.

Also of interest are methods which retain the full
sample but may weight the points differently. If these
weights are calculated from the sample, as opposed to
being imposed, then a successful method downweights the
more influential observations. Examination of the final
weight for each point indicates which are the influential

ones.

A method of this kind has been successfully applied by
Campbell (1980) to the estimation of a covariance matrix,
using M-estimators (Maronna, 1976). The problem had
earlier been considered by Gnanadesikan and Kettenring
(1972), who did not go so far as to specify what weight to

use. Campbell takes as estimators of mean and

covariances:
X =LW¥
Y ow
2 ¥ <) 7
v = ¥ wi(xi—x)(xi—x)
);wf -1 (2.7.1)
where summations are over i=1,...,n and the weights w are

obtained from a function

wi=w(di)=w(di)/di
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with ) _ 9 _
d’=(x -x)'V (% -x%)
i i i
- an estimate of Mahalanobis distance. The equations
(2.7.1) need to be iterated to a solution. The function w

controls the contribution of each point and Campbell uses

the form:

w(d)=d , d=d_

=d_exp{ (-1/2) (d—do)z/bz} , d>d .

This means that influence increases linearly up to a
certain point, but levels off (b2=m) or begins to decline
again to zero as distance from the mean increases further.
Campbell recommends (bl,b2)=(2,m) or (2,1.25), where
do=»l’§+b1 /42,

Campbell goes on to consider a robust principal
component analysis (RPCA). Although the obvious thing to
do is carry out an ordinary PCA of the robust covariance
matrix in (2.7.1), he rejects this for the following
reason. A particular point’s weight in (2.7.1) is a
function of its distance from the robust x. A given
distance may be made up in various ways from contributions
on different components. One way is for virtually all the
distance to be in the direction of one component. If this
is so, it is possible that a greater downweighting would
be desirable to counteract this point’s influence on this
component. Consequently this method is used only to start

off an iterative procedure, as follows.

First, V from (2.7.1) is used to provide initial
estimates of the first eigenvector, giving associated
first principal component scores Y, M-estimation of the
mean and variance of y is then carried out, giving a new
set of weights LA which are substituted into (2.7.1) to
obtain a new x and V. This is repeated until a stable
first principal component u, is obtained. After the first

iteration, the weights w are taken as the minimum of the



current and previous weights, to avoid oscillation. The
data are then transformed into values orthogonal to the
space of u, the analysis repeated on the transformed data
matrix and so on until all components have been derived.
Ultimately, besides all the usual output of a PCA, the
RPCA provides a list for each point of its weight in the

estimation of each component.

Although this method looks fairly complex to carry out,
it requires only standard matrix operations and is now
easily available because Matthews (1984) has programmed it
as a GENSTAT macro. Both Campbell and Matthews provide a
full example of the application of the method. It seems
that the detailed information it offers, together with its
ease of use, may make RPCA the most valuable of all the
informal methods of outlier detection. It could be used in
all those situations where ordinary PCA is used for
examination of the data. Campbell (1982) also developed a
similar analysis for the more structured problem of

canonical variates analysis.

Finally, one related point will be mentioned.

Matthews’ example used data published by Royston (1983)
who had used them to illustrate his Q test of multivariate
normality, an extension of the univariate Shapiro-Wilk W
test. Matthews discusses the relative merits of RPCA and
Q. Of course, RPCA as with most informal methods does not
explicitly assume multivariate normality, but would not
make much sense with data that were seriously non-normal.
For this reason, and because the only practical general
test statistic is for the normal case, it is reasonable to
pay some attention to tests of multivariate normality as
contributing to testing for outliers. However, Matthews
suggests that these tests are not very powerful against
the alternative of a normal distribution contaminated by a
small number of outliers, and that the RPCA will be more

informative about the nature of extreme points.
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CHAPTER 3

WILKS’ MULTIVARIATE OUTLIER TEST STATISTIC

3.1 A single outlier

As discussed in Chapter 2, the difficulties inherent in
multivariate analysis mean that there has been no
substantial addition to the literature on multivariate
outlier testing since Wilks’ (1963) basic contribution.
His statistic can be expressed in various forms (see § 2.2)
and its choice can be motivated in various ways, including
Wilks’ own volume argument and Ferguson’s decision rule
under the alternative hypothesis of slippage of variance.
The derivation to be given here shows how the statistic is
obtained by the two-stage maximum likelihood analysis of

the popular slippage in the mean alternative, called model

1 in § 2.2. For a single outlier, the hypotheses are:
HO: X -~ Np(u,Z), i=1,...,n

against
H: x -~ Np(u,Z), 1#]

X ~ N (ut+a,x)
J P

where j, a, g and £ are all unknown. The test statistic
is found for a particular j and then its extreme over all

choices of j is taken.

Under H , the likelihood is

m(l2nz)) ™

“exp{ (=1/2) (x,=1) 'T " (¥ ~1) }
1

i

so that the log-likelihood is

1 (1, 2)=(-np/2)1n(2m) - (n/2) InlZI1=(1/2) L (x -u) "= (% ~K)
i=1
(3.1.1)

Now writing



- 56 -

X ~U=X =X+X=[
1 1

the summation in third term becomes

n
¥ (x,=%) =7 (x=X) +n(x-u) = (X-u) .
i=1
Furthermore, the first term is a scalar so equals its
own trace,
n - 1 _
tr{ L (x,-x)'Z " (x,-%)}
i=1
n _ 1 _
=) tr(x -x) 'y (%, ~X%)
i=1

=L tr =7 (x,-%) (x,-X) ’
i=1

= tr (L (x,-X) (x,-%) "’}
i=1

where each step uses standard properties of traces.
Hence, writing

ns =)r5 (%,-X) (%,-%)
i=1

for the sum of squares and products matrix, substituting
in (3.1.1) gives

1(i,%)=- np 1ln(2m)- n 1n|El- n tr(s7's)- n (x-u) ' " (x-u)
2 T2 2 2
(3.1.2)

Now the last term involves a positive semi-definite
quadratic form, which takes the value zero if and only if
u=x. No other term involves p and therefore the maximum
likelihood estimator of p is ﬁ=§. The m.1l.e. of X may be

found by maximizing

1(¢,£)= - np 1n(2m)- n 1nlE| - n tr(s’s)
5 = N



or

1(,V)= - np 1n(2m)+ n 1n|V| - n tr(vs) (3.1.3)
2 2 2

where v=5"

Standard matrix results (e.g. Mardia, Kent and Bibby,
1979, Appendix A) show that

dln|V| = 2Z-diagx
av
and

dtr(vs) = 2S-diags
aov

Hence, from (3.1.3),

8l = 0 = 2M-diagM=0
av

where M=X-S, and this can only be satisfied by M=0. Thus
2=S.

It can be seen that with these m.l.e.’s, the

maximized log-likelihood under the null hypothesis is

1= - np 1ln(2m)-_n 1nlg| - np (3.1.4)
= 3 2

Under the alternative hypothesis, the log-likelihood is
1(u,%)= -np 1n(2m)- n 1ni|=_1 F (x;=4) ' (x;-K)
2 2 2 1# 3
-(x,-u-a) 'T7 (x -u-a)

= - np In(2m)- n ln|XZ|- (n-1) tr(Z_lsj)

2 2 2

-(n-1) (X -u) ' 7' (X -w)-(x -p-a) ‘T (x -p-a)
2 ] ] ] j
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where the subscript j in x and Sj denotes values in the
J
reduced sample computed after xj has been omitted from the

n points. By taking

A
A -
=X
uj
and

A
A A
a=xj—u

the fourth and fifth terms vanish. The remaining terms

can be written as

A

1(i,S)= -np 1ln(2m)- n 1nIS| - n tr(z” (n-1)S /n)
2 2 2

so that equation (3.1.3) applies again with S replaced by
(n—l)Sj/n. Consequently

5 =(n-1)S /n

and the maximized log-likelihood is

AA A
11(“’2): -np ln(2m)- n 1nl|X] - np
2 2 2
Comparing with (3.1.4), the change in maximized

log-likelihood is

so that the likelihood ratio A is given by

A
AT = 1Zl = n-1 |Ss |= [A ] = A,
j j 3

M>

21 n |s| IA]

where Aj and A are the sums of squares and products
matrices for the reduced (by omission of xj) and full
samples. Thus the statistic Aj provides a test for H,
against H for specified j and, by taking its minimum over
all choices of j, gives the outlier test statistic for

unknown j.
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For given j, the ratio Aj can be shown to have a beta
distribution. This follows immediately from the
well-known fact that Hotelling’s T° statistic follows an F

distribution, and from the relation (2.2.6) between Aj and
2

T :

A;1= 1+T32./(n—2)
where (n-p-1) T% ~ F
Hence

p(n-2) ~ F )

(n-p-1)T° TR

p J

Now if x ~ F _, then

a,b

ax ~ B(a/2,b/2)

(ax+b)
that is

(1+b/ax) ' ~ B(a/2,b/2)
Therefore

(1+ p(n-p-1)T; ]‘1 ~ B((n-p-1)/2,p/2)
(n=p-1)p(n-2)

and the left hand side is just

[1+ T?

j
(n-2)

_1= A
J

The outlier test statistic is the minimum over j of AJ.
The distribution of this quantity has never been found.
Wilks’ answer was to use Bonferroni bounds, so that the
percentage points for a conservative test at the a% level
of significance are given by the lower a/n % points of the
above Beta distribution. These values are tabulated by
Wilks, for «=.01, .025, .05, .10 for 1 to 5 dimensions and

for a selection of sample sizes up to 500. Parts of the
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table are reproduced in Hawkins (1980a) and in Barnett and
Lewis (1984).

It is generally accepted that, as in many other outlier
problems, the true significance levels of these Bonferroni
bounds are very close to the nominal ones. A partial
check is possible through the fact that Wilks’ statistic
reduces to one of Grubbs’ (1950) in the one-dimensional
case. For certain values of n and «, the exact
distribution is available and Wilks gives a table showing
very close correspondence between these and the Bonferroni
bounds. No exact distributions exist for two or more
dimensions, so any further check on the accuracy of these
bounds has to be by simulation. This check is included in

Section 3.4.

3.2 Distributions of A for two or more outliers

Wilks went on to consider testing for two or more
outliers in the sample. As indicated in Chapter 2, it is
easy to see that the test statistic suitable for testing
the hypothesis that a set T of points in the sample are
drawn from populations whose means have slipped from the
mean of the parent population (by amounts that are not

assumed equal for each point) is
AT= iATI/IAI

where AT denotes the sum of squares and products matrix of
the reduced sample consisting of the remaining points
after the members of T have been omitted. This could be

derived by the two-stage maximum likelihood procedure.

Wilks’ analysis proceeded along the same lines as for
the one-outlier case. As will be seen below, a Beta
distribution again applies for the case of two outliers
and Wilks gives Bonferroni bounds for conservative tests

of significance. The distribution of a A ratio is more



complicated for higher numbers of outliers. A simple
solution applicable for all p for each given number of
outliers cannot be found. Wilks gives solutions for a
small number of particular cases for 3 and 4 outliers.

The distribution of the criterion for a specified set of t
points is known to be the product of t independent

Beta-distributed random variables (Anderson, 1958)

A~ E'B { n-p-i , p } (3.2.1)
i=1 2 2
and this may be called the A distribution with parameters
p, n-t-1 and t in the notation of Mardia, Kent and Bibby
(1979, p.82):
A(p,n-t-1,t).

It is possible to simplify this distribution, as follows.

In the first place, it is easy to write down the
moments of A. Because the terms in the product (3.2.1)
are independent, the rth moment of A is just the product

of the rth moments of each separate Beta in the product:
r, __ r.o__ r r
E(A)=E[(X ...X ) 1=E(X )...E(X )

Now any moment of a Beta-distributed random variable is
just a product of gamma functions:

1
E(X")= l T (at+b) x* 1 (1-x)"lax
F(a)T (b)
1

T (a+b) l 7 (1-x) " lax
(a)T (b)

['(a+b) TI'(a+r)(b)
T(a)L (b) T (a+b+r)

I'(a+b)I" (a+r)
I'(a)I' (a+r+b)

il

(a+r-1)...(atl)a
(a+b+r-1) ... (a+b+1) (a+b)
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Hence E(A") can be explicitly expressed in terms of the
parameters a and b.

Secondly, it may be possible to recognize that the
moments of A are equal to the moments of another product
of random variables - particularly, the product of another
set of Beta random variables, different from (3.2.1). If
so, the standard theorem that equality of all moments
implies that two distributions are identical can be
applied. The point is that this second distribution may
be easier to work with. To see how the method applies to
the A distribution, consider two successive terms in the
product (3.2.1)

B(n-p-(2j-1) , p|.B{n-p-2j , p
2 2 2 2

This product has rth moment:

I'(n- 23+1] [n p-2j+1 +r} F[n—2j] F{n—p—zj +r]
2 2 2

2 2

n-p- 2]+1 +r- 1) (n—p;2j+1).(n—§—2j +r—1)...(n—p—2j)

n- 2]+1 +r-1 n-2j+1 . (n-2j +4r-1}...(n-2j
) (23] - ) (252

(

P[n 23+1 +r] F{n—§—2j+1] r {E:Zi +r] F[E:E:Zi]
e
(Pgott

2

= (n-p-2j+14+2r-2) (n-p-2j+1+2r-4) ... (n-p-2j+1)
(n-23+1+2r-2) (n=-2j+1+2r~4) ... (n-2j+1)

(n-p-2j+2r-2)...(n-p-273)

(n-2j+2r-2)...(n-23)

(n-p-2j+2r-1)...(n-p-2j)
(n-23j+2r-1) ... (n-23)

I'(n-p-2j+2r) TI'(n-23)
F'(n-p-23) I'(n-2j+2r)




This is the (2r)th moment of B(n-p-23j,p), and this has the
same meaning as the rth moment of the square of
B(n-p-2j,p). Hence each pair of Beta’s in (3.2.1) can be
expressed as the square of one Beta. If t is an odd
number, one Beta from the original product is left over
without another to be paired with. Hence the A

distribution can be rewritten as

P
S

I {B(n-p-23,p)}°, t=2s
A~ | i=1

s

M {B(n-p-2j,p) }°.B(n-p-t,p), t=2s+1
ji=1 2 2

The terms are still independent, as in the original

product.

This expression is simpler than the original because it
contains fewer terms. 1In particular for the case t=2,
A=U° where

U ~ B(n-p-2,p) (3.2.2)

This is why in the two-outlier case only a single
distribution needs to be considered, as in the one-outlier

case.

Three outliers

For the three-outlier case, the result is

A(p,n-4,3) = UV

where
U ~ B(n-p-2,p)
vV o~ B(D—P‘3:E)

2

2
The p.d.f. is
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£(u,v)= I'(n-2) ahTPT3) ()Pt
I'(n-p-2) T'(p)
I"((n—3)/2) V((n-p-3)/2)-1(l_v)(p/2)-1

I'((n-p-3)/2) T'(p/2)

Osus<l, 0=sv=1

Percentage points are found by solving
P(r)=P(U°V=r)=a

This does not lead to a simple general result along the
lines of (3.2.2), but solutions can be derived for each

particular case. Proceeding as in Wilks’ paper
P(r)= J J £ (u,v)dudv
D

where D is the region shown in Figure 3.2.1

Figure 3.2.1 Transforming to (s,u), where s=uav, the

range of integration in D is s=0 to r and u={s (point B)
to 1 (point A).



Substituting s=u2v,

P(r) = Io l{_ f[u, §é] 1 duds

u

x

f—_— =
“;’ [

s

s=0 u

-p-3 -1 _(n-p-5)/2._- (n-p-5)
WP (1-u)P s P u r [1—
2

/2)-1 -2
s Y P21 42 Quas
u

2
u

o ] S(m¢—&/2 J (1_u)p4[1_ s ]uvm—1 duds

s20 u=q's

where the constant of proportionality is the product of
gamma functions. Now if p is even, the term
(1—s/u2)(1°/2)_1 can be expanded in powers of (s/uz) and

the integration is easy. Wilks gives the solution for the

case p=2, namely

2 n-%5 n-4 n-3

P(r)= (n-3) (n-4) (n-5) (E)"‘S{ 1 -2{r +r } (3.2.3)

For the case p=4, the distribution is a constant times

1

r
J gn9)/2 J (1-u)®(1-s/u’) duds
s=0 u

=As
The integral over u is

1

I (1—3u+3u?—u3)(1—s/u2) du

u= s

-24s+2s¥%- s - 3s 1n(s)
z 2

leading to

e———— ™

-9)/2 -8)/2 -6)/2 (n-5)/2 (n-7)/2
S(n 9) _zs(n 8) +ZS(n -s n 35 n-7)
4 4 2

0

ln(s)} ds

_ S(n-?)/2_4S(n—6)/2+4s(n—4)/2_ S(n—3)/2 _3 r[ S(n—?)/21n(s) ds
2(n-7) n-6 n-4 2(n-3) 2

(o]
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The second integral is

r r

5 (n-s)/zln(s) _ 5 s(n—S)/Z__lds
n-5 o n-5 S

— 2r(n—S)/Zln(r)_. 5 2 S(n—S)/Z
n-5

n-5 n-5 -
0]
Finally,
P(r)=kr(’n—7)/2 1 - 4ar'”® + 4r®”? - r® + 6r - 3rln(r)
2(n-7) n-6 n-4 2(n-3) (n-5) n-5
(3.2.4)

where k=I'(n-2)I"((n-3)/2)
['(n-p-2)I'((n-p-3)/2)I(p)I'(p/2)

=(n-3) (n-4) (n-5)%(n-6) (n-7) /24

since p=4.

If p is odd, Wilks’ method does not work out. An
alternative given by Anderson can be used (1958, § 8.5.3).
In this method, the integral P(r)=P(U2V5r) is derived as
the sum of the areas A and B in Figure 3.2.2

Figure 3.2.2 Integration of P(UZVsr)
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r 1 r

Area A = j I f(u,v)dudv= J f(v)dav
v=0

v=0 u=0
=I {(n-p-3)/2,p/2},

the incomplete Beta integral.

1 'Jr/v
Area B = I ~[ f(u,v) dudv

vZr u=0

1 ‘J r/v
= k f J' un—p—3(l_u)p-—1du V(n--p—S)/Z(l_v) (p-2)/2 av
v=Er u=0

Now expand (1—u)p4, so the integral over u becomes

'Jr/v 1
P- <

j PP Y (p-1) (-u)' du
uZo i=o| 1i

4 r/v
_p =1 i n-p-3+i
= p-1) (-1) du
i=o( 1 | uZ0

p-1 . e N gy
=Z p_lw (_l)x[un P 2+x:l r/v
i=0 1 ) n—p—2+l w=0
p-1 i_(n-p-2+1i)/2 ~(n-p-2+i)/2
=Y (p-1)(-1)'r™" Y
i=o| 1 n-p-2+1

so Area B is

p-1
i -p-2+1i)/2
k Z p-1 (_l)lr(n p +1 .
izo| i n-p-2+1
1
- (n-p-2+i)/2 -p-5)/ -2)/2
v (n-p-2+i)/ V(np )Z(l_v) (p-2) av

and the integral is



-(i+3)/2
v 2094y

r

(p-2)/2
P av

e—— =

v

P-2)72 .ould be expanded as before, just

(p-3)/2
P in

For even p, (1-v)
as in Wilks’ method. For odd p, expand (1-v)
powers of v, leaving over a factor {1-v. The integrand is
therefore the sum of powers of v multiplied by this
factor, and can always be solved by standard substititions
and lengthy, routine algebra. Anderson works out the case

p=3:

1
-(i+3)/2 -2)/2 .
J v 372 g gy 2 4y for i=0,1,2
Vv=r
1
F -3/2 1/2
= |V (1-v) dv ;
vEr
1
f -2 1/2
v T (1-v) dv; and
vEr
1
i 5/2 1/2
v (1-v) dv
v=r

Finally

P(r)=I [n-3,3)\+kr™®7?[ 2{TI-r + 2dT{sin”'(2r-1)-(1/2)}
12 2 (n-42) (n-5) (n-5)

+ 2r ln(1+~ll—r)+2(l—r)3/2
n-4 Ar 3(n-3) (3.2.5)

where

k= (n-3) (n-4) (n-5)I"((n-3)/2)
A1 I'((n-6)/2)

Four outliers

Turning now to the case of 4 outliers, the A

distribution can be rewritten as A=U2Vf where
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U ~ B(n—p_zlp)
vV ~ B(n'p'4:p)
so that

P(r)=P (UV’sr)

= JDI £(u,v) dudv

where the area D is shown in Figure 3.2.3.

Figure 3.2.3 Transforming to (s,u), where s=u’v®, the

range of integration in D is s=0 to r and u=i{s (point B)
to 1 (point A).

Hence,

r 1

P(r)=[ { £(u,45/u) (2u{s) ™! duds
=0 u »E

=k[
%0

s

1
[ WP -0 P (s /u) " P (=15 /w) P s TP duds
s

r 1

k I gnpme)2 I u{ (1-u) (1-{s/u)}*"' duds

s=0 u=4As

u

i

as given by Wilks (eq. 4.18), where



k= 1 I'(n-2) I'(n-4)
2 TI'(n-p-2)I'(p) I'(n-p-4)I'(p)

As in the three-outlier problem, each particular case can
be solved explicitly. Wilks gives the solution for p=2,
namely

P(r)=(n-3)! ({T)"°( 1 - 3{f + 3r - (d1)°
6(n-7)! n-6 n-5 n-4 n-3 (3.2.6)

For p=3,

r 1

P(r) J s“*g“zl u(1-2u+u?) (1-24S/u+s/u?) duds
0 ={s

s =

Expanding and integrating over u gives

-9)/2 -8)/2 -6)/2 (n-5)/2
{S(n 9) _8S(n ) +8S(n ) -s n )

0

P(r) « 1
12 s

fomm—y ™

(n-7)/2

-658 In(s)} ds

r
r® 772 2 - 16T + 16rdT - 2r l_.[ s™ 21 (s)ds
n-7 n-6 n-4 n- 2 s=0

S|
N =

The second term integrates by parts to give

2r(n—5)/21n(r)___ 4 , r(n—S)/Z
n-5 (n-5)
so finally
(n-7)/2 2
P(r)=kr 2 - 16dr + 16r{r - 2r° - 12rln(r) + 24r 5
n-7 n-6 n-4 n-3 n-5 (n-5)
where k= 1 (n—3)(n—4)(n—5)2(n—6)(n—7)

96

This is exactly the same as the result (3.2.4) for the
case p=4 and t=3. This equivalence is a particular
illustration of the result (3.3.3) to be given in the next

section.

For the case p=4,



- 71 -

r 1

P(r) « f gfrm1072 _[ u{ (1-u) (1-4s/u) }°® duds
{s

s=0 u=

r
= I:;nqovz 1 ~3I§—4s+4s(§+3sz—szJ§—3§1n(s)—3sf§ln(s) ds
s=0 20 4 4 20 2 2

and the integration gives finally

P(r)= kr™®”2 11 - 15{F - 80r + 60r + 80r{T+ 15r°- r'Ar
n-8 n-7 n-6 (n—6)2 n-5 n-4 n-3
+ 60r4'1‘»2— 30rin(r) - 30rdrin(r) (3.2.8)
(n-5) n-6 n-5
where k=(n—3)(n—4)(n—5)2(n—6)2(n—7)(n—8)/720

The performance of Bonferroni percentage points derived
from the distributions worked out for these particular

cases will be examined below in § 3.4.

3.3 Exact and approximate F distributions for A

Because of the close relationship between the Beta and
F distributions, it is not surprising that the F
distribution can be used in relation to A. One special
case, wherein the F distribution applies exactly to a
simple function of A, is provided by the case p=2 and any
number of outliers. In general, the distribution A(2,r,s)

can be transformed exactly to F as follows:

1-{A ~ s Fo et (3.3.1)
JA r-1 e
(e.g. Mardia, Kent and Bibby, 1979, equation 3.7.10). 1In

the present application, we have A(2,n-t-1,t) for the
t-outlier problem, so that

1-iA ~ t
4 A n-t-2

2t,2(n-t-2)
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or

A~ [+ _t F, T (3.3.2)
n-t-2 e

Percentage points for A obtained in this way for t=3 are

exactly the same as can be derived from (3.2.3).
The above result can be derived by applying the result

A(p,r,s)=A(s,r+s-p,Dp) (3.3.3)

which can be shown by rewriting the ratio of determinants
in A as the ratio of determinants of two other matrices
after a suitable orthonormal rotation, as shown in Theorem
3.7.4 of Mardia, Kent and Bibby (1979). In the t-outlier
application,

A(2,n-t-1,t)=A(t,n-3,2)

But this is the A criterion for a two-outlier problem, and
we have already seen that its distribution, given by the
product of two independent Beta’s, can be re-expressed in

terms of a single Beta. Specifically, A(t,n—3,2)=U2 where
U ~ B(n-t-2,t)

from (3.2.2). Now the standard definition of the Beta
distribution as a transformation of the F distribution
gives

2tU

F
2 (A=t-2) (1-0) 2(n-t-2),2t

or, taking the reciprocal,

(n-t-2) (1-U) ~ meﬂn%fm

tu
so that
1-4A t
_—J_[\— ~ m 2t,2(n-t-2)

as above.

For the A criterion with other parameters (excepting
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the cases p=1 and t=1), exact distributional results in
terms of the F or related distributions do not exist.
However, approximations may be found. An obvious one
exploits the derivation of A as a likelihood-ratio
criterion, which implies that the standard asymptotic
result applies, expressing the log-likelihood ratio as
proporticnal to a X2, Specifically, for the t-outlier

problem,

-{n-t-1-(p-t+1)/2} 1ln A(p,n-t-1,t) ~ X°

pt
as n - o, The multiplying factor includes an adjustment
given by Box (1949). Further adjustments are given in the

tables of Pearson and Hartley (1972). This result was

seen earlier as (2.6.4) and was used by Bacon-Shone and
Fung (1987) in their graphical method of searching for

outliers.

A better approximation, due to Rao (1951, 1973), gives
an asymptotic F distribution for a function of A. Applied

to the t-outlier criterion, A(p,n-t-1,t), the result is

1/s

ms-ZA.(l—llx/ ) ~ bt me-zh (3.3.4)
pt AE
where A=(pt-2)/4

m=n-1-(p+t+1) /2

s®=(p°t®-4)/ (p*+t>-5)

The degrees of freedom are not necessarily integers.
This approximation is employed to test the A criterion
when it is used in other multivariate problems (for
example, MANOVA and discriminant analysis) in well-known

statistical packages such as BMDP and SPSS.

The following illustrative results give an idea of the
accuracy of Rao’s approximation by comparing approximate
percentage points from (3.3.4) with exact ones obtained

from particular cases for t=3 and 4 outliers worked out in



§ 3.2. Notice that the approximation (3.3.4) reduces to
the exact expression (3.3.1) for p=2, so this case will
not be considered further. Results from the F
approximation in Table 3.3.1 were obtained by obtaining
percentage points of F using the IMSL routine MDFI, then
transforming to percentage points of A as in (3.3.4).
Exact percentage points were obtained by solving equations
(3.2.4), (3.2.5), (3.2.8) using Newton-Raphson iteration
(Appendix I).

Table 3.3.1 Percentage points for A derived from Rao’s F

approximation (upper line), in comparison to points

derived from exact distributions (lower line).

n=10 n=20
Case 1% 2.5% 5% 10% 1% 2.5% 5% 10%
p=3, t=3<1) .0155 .0262 .0397 .0615 .2448 .2909 .3336 .3858

L0155 .0262 .0396 .0614 .2448 .2909 .3336 .3858

p=3, t=4}'® 0029 0058 .0100 .0176 .1709 .2078 .2429 .2872
p=4, t= .0029 .0057 .0098 .0174 .1709 .2077 .2429 .2872

T
1l
IS
o+
il
=

.00019 . 00049 .0010 .0023 .1064 .1330 .1591 .1932
. 00016 .00043 .0009 .0021 .1064 .1329 .1591 .1932

(1) Exact distribution from equation (3.2.5)
(2) Equation (3.2.4)
(3) Equation (3.2.8)

3.4 Simulation studies of Wilks’ statistic

The purpose of the studies described in this section is
twofold - to provide a check on the accuracy of Bonferroni
bounds for Wilks’ statistic and to provide tables of
simulated percentage points as an alternative to the
Bonferroni bounds for one or two outliers. The design of
the simulations for examining the one-outlier and
two-outlier cases was as follows. Samples of size n= 10,
15, 20, 25, 30, 40, 50, 75 and 100 were examined, with p= 2,

3, 4 and 5. For each combination of n and p, 40,000



samples were generated, in five batches of 8,000. Each
batch started from a different seed for the IMSL
subroutine GGNSM which was used for the generation of
multivariate normal data. For each sample of n
independent and identically distributed vectors, the
following were recorded:

the value of Wilks’ one-outlier statistic;

the value of Wilks’ two-outlier statistic;

whether or not the Bonferroni bound was exceeded by
the one-outlier statistic;

whether or not the Bonferroni bound was exceeded by

the two-outlier statistic.

From the distributions of the values of the one- and
two-outlier statistics, 1, 2.5, 5 and 10% points were
obtained. These are presented in Tables 3.4.1 (a-d) and
3.4.2 (a-d). The correspondence to the Bonferroni bounds
is very close for t=1 (Table 3.4.1) but less so for t=2
(Table 3.4.2). How important the discrepancies are is
illustrated by Tables 3.4.3 (a-d) and 3.4.4 (a-d), which
shows how often the Bonferroni percentage points were in
fact exceeded. For t=1, these percentages are extremely
close to the nominal values. For t=2, on the other hand,
it can be seen that there are sizeable departures,
becoming more marked as n increases. Even at n=20, the
nominal 10% level test actually is at only a little over
half of that. As claimed by Hawkins, these are indeed

rather poor approximations.

Because of the very heavy computing which is involved,
the cases of three and four outliers have been
investigated in less detail. Results (simulated
percentage points and simulated exceedence probabilities)
were obtained for the particular cases whose distributions
were worked out in § 3.2. That is, for 3 outliers,
simulations were carried out for p= 2, 3 and 4 dimensions,

using sample sizes of n=10 and 20. For 4 outliers,
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samples of size 10 were not considered because it is not
very realistic to test for 4 outliers in 10 points. Also,
the case of p=3 for 4 outliers is identical to p=4 for 3
outliers: hence simulations for 4 outliers were carried
out only for p=2 and p=4, for n=20. Simulations were
carried out as for one and two outliers, but using single

batches of 2000 samples for each combination of n and p.

Simulated percentage points are shown in Table 3.4.5
and exceedence probabilities in Table 3.4.6. It can be
seen that the exceedence probabilities for given n and p
continue to decrease as the number of outliers being
examined increases, although the differences in results
between 3 and 4 outliers or between 2 and 3 outliers
(comparing with Table 3.4.2) generally seem to be less
dramatic than between 1 and 2 outliers. The slight
improvement as the number of dimensions p increases for
fixed n and number of outliers can also be seen, as in
Table 3.4.2.

Discrepancies of this kind do not render Wilks’ test
with Bonferroni bounds unusable for practical purposes.
The Bonferroni bound has the great virtue of providing a
conservative test: that is, the true significance level
does not exceed the nominal level. If a test result
clearly gives evidence against the null hypothesis, say
with p=0.01, then the true situation is that the evidence
is even stronger than this. The difficulty comes when the
evidence appears less clear. A poor Bonferroni bound
means that these cases are not being held to be as good
evidence against the null hypothesis as they in fact are,
so that sensitivity is lost here for t>1. Consequently it
is desirable to look for other tests, or for other,

improved ways of implementing this test.



Table 3.4.1a

- 77

Simulated percentage points for Wilks’

one-outlier test statistic based on 40,000 simulations,

a=0.01. Bonferroni bounds in parentheses.

Sample Dimensions,p
size n 2 3 4 5
10 .13712 .07753 .03809 .01604
(.13895) (.07781) (.03866) (.01523)
15 .29303 .22458 .16698 .12088
(.29556) (.22330) (.16678) (.12128)
20 .40614 .34473 .28456 .23258
(.40893) (.34019) (.28354) (.23506)
25 .49229 .42859 .37315 .32618
(.49102) (.42815) (.37513) (.32861)
30 .55570 .49735 .44573 .39850
(.55263) (.49547) (.44663) (.40320)
40 .64052 .58942 .54808 .50976
(.63870) (.59091) (.54949) (.51217)
50 .69596 .65491 .61910 .58554
(.69598) (.65514) (.61947) (.58711)
75 .78057 .75197 .72259 .69860
(.78048) (.75062) (.72432) (.70026)
100 .82810 .80191 .78214 .76150
(.82704) (.80352) (.78271) (.76361)

Table 3.4.1b.

Simulated percentage points for Wilks’

cne-outlier test statistic, «=0.025. Bonferroni bounds in
parentheses.
Sample Dimensions, p
size, n 2 3 4 5
10 .17942 .10541 .05492 .02442
(.18053) (.10601) (.05606) (.02420)
15 .34454 .26479 .20181 .14952
(.34433) (.26485) (.20171) (.14998)
20 .45361 .38503 .32477 .26718
(.45547) (.38281) (.32239) (.27020)
25 .53195 .46936 .41214 .36208
(.53367) (.46860) (.41336) (.36460)
30 .59218 .53237 .48233 .43486
(.59144) (.53303) (.48287) (.43806)
40 .67226 .62473 .57988 .54279
(.67113) (-62301) (.58117) (.54333)
50 .72405 .68258 .64652 .61403
(.72365) (.68286) (.64715) (.61466)
75 .80030 .77250 .74465 .72003
(-80060) (.77108) (.74503) (.72116)
100 .84337 .81949 .79867 .77848
(.84281) (.81967) (.79916) (.78030)
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Table 3.4.1c. Simulated percentage points for Wilks’

one-outlier test statistic, «=0.05. Bonferroni bounds in
parentheses.
Sample Dimensions, p
size, n 2 3 4 5
10 .21947 .13396 .07424 .03461
(.22007) (.13408) (.07438) (.03440)
15 .38716 «.30272 .23472 .17666
(.38650) (.30154) (.23319) (.17642)
20 .49340 .42034 .35661 .29885
(.49417) (.41876) (.35558) (.30060)
25 .56646 .50299 .44477 .39437
(.56838) (.50188) (.44513) (.39477)
30 .62288 .56302 .51183 .46402
(.62260) (.56347) (.51248) (.46674)
40 .69678 .64892 .60737 .56801
(.69675) (.64857) (.60654) (.56843)
50 . 74497 .70579 .66907 .63609
(.74532) (.70472) (.66909) (.63659)
75 .81572 .78804 .76068 .73700
(.81616) (.78700) (.76122) (.73754)
100 .85500 .83218 .81203 .79267
(.85494) (.83214) (.81192) (.79329)

Table 3.4.1d. Simulated percentage points for Wilks’

one-outlier test statistic, «a=0.10. Bonferroni bounds in

parentheses.
Sample Dimensions, p
size, n 2 3 4 5
10 .26941 .17018 .10003 .05014
(.26827) (.16978) (.09888) (.04901)
15 .43524 .34415 .27175 .20846
(.43383) (.34358) (.26995) (.20789)
20 .53606 .46031 .39481 .33535
(.53615) (.45832) (.39255) (.33484)
25 .60564 .53940 .48098 .42835
(.60535) (.53774) (-47967) (.42784)
30 .65673 .59642 .54477 .49673
(.65540) (.59583) (.54420) (.49768)
40 .72387 .67636 .63487 .59500
(.72335) (.67531) (.63326) (.59499)
50 .76768 .72880 .69214 .65978
(.76763) (.72738) (.69195) (.65955)
75 .83265 .80488 .77835 .75482
(.83203) (.80331) (.77787) (.75446)
100 .86759 .84561 .82538 .80707
(.86725) (.84486) (.82497) (.80663)
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Table 3.4.2a. Simulated percentage points for Wilks’

two-outlier test statistic, based on 40,000 simulations,

a=0.01. Bonferroni bounds in parentheses.

Sample Dimensions, p
size, n 2 3 4 5
10 .19038 .10923 .05397 .01949
(.18308) (.10490) (.05181) (.01887)
15 .36909 .28633 .21784 .16237
(.35641) (.27605) (.21050) (.15589)
20 .48081 .41003 .35061 .28856
(.46935) (.39764) (.33655) (.28296)
25 .56085 .49622 .43996 .38769
(.54722) (.48390) (.42895) (.37975)
30 .61999 .56010 .50813 .46319
(.60409) (.54778) (.49839) (.45370)
40 .69701 .64818 .60598 .56906
(.68184) (.63596) (.59527) (.55804)
50 .74569 .70421 .66935 .63730
(.73276) (.69411) (.65962) (.62789)
75 .81708 .78898 . 76267 .73906
(.80704) (.77928) (.75434) (.73124)
100 .85581 .83370 .81357 .79457

(.84771) (.82601) (.80645) (.78828)

Table 3.4.2b. Simulated percentage points for Wilks’

two-outlier statistic, «=0.025. Bonferroni bounds in

parentheses.
Sample Dimensions, p
size, n 2 3 4 5
10 .22653 .13374 .06845 .02706
(.21444) (.12703) (.06572) (.02579)
15 .40748 .31875 .24637 .18559
(.38897) (.30468) (.23522) (.17670)
20 .51505 .44148 .37700 .31769
(.49859) (.42504) (.36203) (.30642)
25 .59166 .52457 .46714 .41476
(.57307) (.50887) (.45292) (.40262)
30 .64598 .58485 .53450 .48680
(.62707) (.57036) (.52046) (.47517)
40 .71790 .66907 .62717 .59004
(.70050) (.65465) (.61389) (.57651)
50 .76347 .72287 .68860 .65623
(.74841) (.70994) (.67555) (.64386)
75 .82964 .80233 .77544 .75254
(.81815) (.79066) (.76593) (.74299)
100 .86552 .84398 .82396 .80567

(.85632) (.83487) (.81552) (.79753)
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two-outlier test statistic, a=0.05.

Simulated percentage points for Wilks’

Bonferroni bounds in

parentheses.
Sample Dimensions, p
size, 2 3 4 5
10 .25802 .15787 .08448 .03508
(.24188) (.14702) (.07881) (.03273)
15 .43786 .34582 .27082 .20578
(.41573) (.32853) (.25609) (.19451)
20 .54389 .46764 .40133 .34062
(.52205) (.44722) (.38282) (.32571)
25 .61560 .54863 .49019 .43706
(.59354) (.52878) (.47215) (.42108)
30 .66633 .60716 .55529 .50720
(.64513) (.58821) (.53799) (.49230)
40 .73393 .68707 .64451 .60701
(.71501) (.66926) (.62850) (.59106)
50 .77782 .73819 .70293 .670987
(.76052) (.72224) (.68798) (.65635)
75 .83975 .81290 .78662 .76394
(.82670) (.79944) (.77489) (.75210)
100 .87367 .85237 .83271 .81434
(.86292) (.84169) (.82251) (.80467)

Table 3.4.1d Simulated percentage points for Wilks’

one-outlier test statistic, «=0.05.

parentheses.

Bonferroni bounds in

Sample Dimensions, p
size, n 2 3 4 5
10 .29495 .18555 .10396 .04607
(.27305) (.17039) (.09468) (.04161)
15 .47341 .37748 .29925 .23001
(.44453) (.35452) (.27909) (.21439)
20 .57396 .49673 .42848 .36685
(.54676) (.47079) (.40506) (.34649)
25 .64128 .57500 .51571 .46230
(.61487) (.54966) (.49243) (.44064)
30 .69012 .63077 .57852 .53009
(.66380) (.60677) (.55631) (.51026)
40 .75260 .70556 .66393 .62586
(.72990) (.68431) (.64361) (.60614)
50 .79251 .75448 .71883 .68725
(.77288) (.73485) (.70074) (.66921)
75 .85073 .82382 .79849 . 77547
(.83537) (.80837) (.78403) (.76141)
100 .88220 .86095 .84152 .82377
(.86960) (.84859) (.82961) (.81193)
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Table 3.4.3a. Simulated null probability of obtaining a

value of Wilks’one-outlier test statistic less than the

Bonferroni approximation at «=0.01, based on 40,000

simulations.
Sample Dimensions, p
size, n 2 3 4 5
10 .0109 .0101 .0103 .0090
15 .0105 .0098 .0101 .0101
20 .0107 .0091 .0097 .0109
25 .0098 .0099 .0104 .0108
30 .0093 .0098 .0104 .0113
40 .0094 .0103 .0103 .01069
50 .0100 .0101 .0103 .0105
75 .0098 .0095 .0107 .010%
100 .0092 .0108 .0105 .0114

Table 3.4.3b. Simulated null probability of obtaining a

value of Wilks’ one-outlier test statistic less than the

Bonferroni approximation at o=0.025.

Sample Dimensions, p

size, n 2 3 4 5
10 .0256 .0254 .0263 .0245
15 .0250 .0250 .0250 .0253
20 .0258 .0236 .0238 .0266
25 .0260 .0245 .0259 .0264
30 .0249 .0256 .0255 .0272
40 .0240 .0239 .0260 .0255
50 .0250 .0253 .0256 .0256
75 .0251 .0236 .0256 .0264

100 .0245 .0253 .0256 .0274
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Table 3.4.3c. Simulated null probability of obtaining a
value of Wilks’ one-outlier test statistic less than the

Bonferroni approximation at a=0.05.

Sample Dimensions, p

size, n 2 3 4 5
10 . 0507 .0503 .0505 .0499
15 .0497 .0493 .0483 .0500
20 . 0506 .0488 .0492 .0519
25 .0515 .0489 .0502 .0506
30 . 0497 .0506 .0507 .0530
40 .0563 .0498 .0489 .0503
50 .0503 .0489 . 0499 .0506
75 .0506 .0482 .0512 .0513
100 .0500 .0493 .0496 .0519

Table 3.4.3d. Simulated null probability of obtaining a

value of Wilks’ one-outlier test statistic less than the

Bonferroni approximation at «=0.10.

Sample Dimensions, p

size, n 2 3 4 5
10 .0988 .0994 .0973 .0962
15 .0979 .0993 .0971 .0989
20 .1001 .0970 . 0962 .0991
25 . 0996 .0970 .0978 .0991
30 .0978 .0985 .0990 .1021
40 .0985 .0975 .0958 .1001
50 .0996 .0962 .0995 .0993
75 .0976 .0937 .0981 .0988

160 .0982 .0962 .0974 .0978



Table 3.4.4a. Simulated null probability of obtaining a
value of Wilks’ two-outlier test statistic less than the
Bonferroni approximation at a=0.01, based on 40,000

simulations.

Sample Dimensions, p

size, n 2 3 4 5
10 .0082 .0085 .0090 .0094
15 .0071 .0072 .0080 .0079
20 .0067 .0070 .0074 .0081
25 .0061 .0066 .0068 .0077
30 .0051 .0063 .0068 .0070
40 .0054 . 0059 .0063 .0063
50 .0051 .0058 .0062 .0064
75 .0051 .0048 .0057 .0056
100 .0046 .0052 .0055 .0058

Table 3.4.4b. Simulated null probability of obtaining a
value of Wilks’ two-outlier test statistic less than the

Bonferroni approximation at a=0.025.

Sample Dimensions, p

size, n 2 3 4 5
10 .0187 .0202 .0215 .0223
15 .0162 .0167 .0174 .0183
20 .0160 .0157 .0165 .0174
25 .0145 .0153 .0156 .0169
30 .0127 .0153 .0158 .0159
40 .0116 .0137 .0142 .0142
50 .0119 .0131 .0134 .0136
75 .0108 .0117 .0132 .0136

100 .0102 .0110 .0117 .0129



Table 3.4.4c. Simulated null probability of obtaining a

value of Wilks’ two-outlier test statistic less than the

Bonferroni approximation at «=0.05.

Sample Dimensions, p

size, n 2 3 4 5
10 .0359 .0374 .0401 .0417
15 .0306 .0329 .0335 .0346
20 .0295 .0297 .0299 .0330
25 .0264 .0283 .0290 .0311
30 .0244 .0280 .0284 .0303
40 .0221 .0251 .0265 .0263
50 .0215 .0244 .0242 . 0252
75 .0210 .0209 .0240 .0244
100 .0198 .0207 .0223 .0230

Table 3.4.4d. Simulated null probability of obtaining a

value of Wilks’ two-outlier test statistic less than the

Bonferroni approximation at «=0.10.

Sample Dimensions, p

size, n 2 3 4 5
10 .0668 .0698 .0743 .0777
15 .0573 .0607 .0623 .0644
20 .0523 .0539 . 0550 . 0587
25 .0491 .0514 .0530 . 0555
30 .0460 .0496 .0518 .0552
40 .0426 .0448 .0484 .0484
50 .0392 .0432 .0453 . 0465
75 .0368 .0377 . 0425 . 0437

100 .0348 .0367 .0398 .0415
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Table 3.4.5 Simulated percentage points for particular

cases for 3 and 4 outliers from 2000 simulations;

Bonferroni bounds in parentheses.

Significance level
Case 0.01 0.025 0.05 0.10

3 outliers

p=2, n=10 .00880 .01278  .01762 .02459
(.00733) (.01071) (.01430) (.01914)
p=2, n=20 .13920 .16341  .18502 .20788
(.12224) (.13937) (.15400) (.17028)
p=3, n=10 .00135 .00235  .00346 .00568
(.00120) (.00193) (.00277) (.00400)
p=3, n=20 .08564 .10828  .12104 .13838
(.07537) (.08716) (.09739) (.10893)
p=4, n=10 .00012 .00023  .00037 .00062
(.00010) (.00019) (.00030) (.00049)
p=4, n=20 .05397 .06437  .07292 .08359
(.04614) (.02218) (.02533) (.02897)

4 outliers

p=2, n=20 .08169 .09991  .11303 .13329
(.06842) (.07879) (.08773) (.09775)
p=4, n=20 .02465 .02875  .03405 .03994

(.01865) (.02218) (.02533) (.02897)




Table 3.4.6 Simulated exceedence probabilities of

Bonferroni percentage points derived from certain exact

distributions for 3 and 4 outliers (2000 simulations).

Nominal significance level
Case 0.01 0.025 0.05 0.10

3 outliers

P=2, n=10 .0075 .0165 .0345 .0610
pP=2, n=20 .0045 .0105 .0175 .0305
p=3, n=10 .0090 .0165 .0335 .0600
p=3, n=20 .0060 .0105 .0150 .0265
=4, n=10 .0080 .0215 .0370 .0710
p=4, n=20 .0035 .0105 .0185 .0370

4 outliers

2, n=20 .0035 .0070 .0150 .0235
=4, n=20 .0030 .0080 .0115 .0260
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CHAPTER 4

SEQUENTIALLY APPLIED TESTS

4.1 Introduction

The bulk of the large number of outlier test statistics
to be found in the literature is designed for use when the
number of possible outliers is specified. For example, a
test for two outliers is usually a test of the null
hypothesis of no outliers against the alternative
hypothesis of two outliers. In itself, it has nothing
directly to say about the possibilities of one outlier or
three or more outliers being in the sample. If, in fact,
the information that there are either two or no outliers
is wrong and the number of outliers is not two, then the
two-outlier test could be a very poor means of detecting
any outliers, as when "masking" occurs. However, it is
surely the exception for such firm knowledge to be
available. A test for two outliers is usually made because
an inspection of the data has suggested either that this
is the number present or that this falls in a range of
possible numbers of outliers. For example, there could be,
graphically, one very clear outlier and two less distinct
from the body of the sample; tests for one, two and three

outliers might then all be carried out.

Therefore, except for the rare occasions when some a
priori specification of the possible number of outliers
exists, testing for outliers is part of a multistage
process, as Collett and Lewis (1976) point out. Even if a
display of the data has very clearly suggested k outliers,
then the k-outlier test has been preceded at least by the
stage of deciding to use this test and, before that, by
choosing that particular display and perhaps by deciding
to look for outliers at all. This means that the

structure of the test is not as simple as it appears to



be, so that the significance levels may not have their
claimed meanings. When there is no clear indication of
the possible number of outliers, and instead tests are
made over a range of possible numbers, it is even more
obvious that each particular k-outlier test is part of a
multistage procedure. Since results at each stage must be
conditional to some extent on results at earlier stages,
this dependence ought to be built into a proper testing
procedure. There have been various suggestions for
outlier-testing methodologies which do specify the
successive application of tests for different numbers of
outliers. (Barnett and Lewis, 1984, chapter 5, p.136-143;
Hawkins, 1980b, chapter 5). The purpose of this chapter
is to develop procedures of this kind for multivariate
data. The procedures to be examined will be multivariate
applications of tests introduced by Rosner (1975, 1977,
1983) for univariate data.

4.2 Testing Strategies

As this section must include some comments on the terms
used for describing different approaches to testing over a
range of possible numbers of outliers, it is appropriate
to first remark on another point of terminology. It is
quite common to speak of such tests as "sequential tests":
this is the label used by Hawkins (1980a) and is found in
many of the journal articles. Barnett and Lewis (1984,
p.136) object to this use of "sequential", because they
assert that "sequential test" in statistics means a test
in which the sample size is not fixed - each stage
involves the accumulation of more data. They prefer to
speak of "consecutive" testing for outliers. In fact,
since sequential testing in its original sense does not
have any application in outlier testing, there doesn’t
really seem to be any problem caused by talking of
sequential tests. In this thesis, the terminology

"sequentially applied tests" is used, to retain the
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connection with the most widely used terminology.

In sequential tests in their original meaning, the
testing process can only be carried out in one
"direction", namely, on successively bigger sample sizes.
A procedure working on reducing sample sizes would be
pointless. In general, however, where a statistical
procedure involves multiple testing, there are different
paths to follow. 1In multiple regression, for example,
identification of a subset of significant predictors
usually proceeds either by choosing the best single
predictor, then the next best conditional on the first
choice and so on (the forward selection procedure), or by
starting with all the potential predictors and eliminating
the one making least contribution, then the conditionally
next worst and so on (the backward elimination procedure).
Besides these two common procedures, there are others,
such as procedures aiming to define the best subset of
predictors of a given size and procedures which can move
both backwards and forwards. There is never any guarantee
that these various procedures will reach the same
conclusion. The multiple regression example is
particularly apt, because Hawkins (1980a)} borrows its
terminology to describe different strategies in the
outlier problem. The basic alternatives in testing
sequentially for, say, one up to four outliers, are either
to start at four and work downwards - which Hawkins calls
backward elimination - or to start at one and work upwards
- forward selection. He chooses these terms because he
actually has in mind a multiple regression formulation of
the outlier problem (his section 7.3). In this, each
observation is represented by a dummy variable and an
associated regression coefficient, so that "forward
selection” in the usual regression sense means
successively identifying which coefficients are
significantly different from zero so that the

corresponding observation is to be regarded as an outlier:



in other words, forward selection identifies increasing
numbers of outliers. On the other hand, backward
elimination removes points from the set of those being

considered as outliers.

Barnett and Lewis (1984) also avoid this terminology,
speaking instead of inward and outward consecutive
procedures, corresponding to forward selection and
backward elimination. These terms refer to direction of
movement: inward means starting at the extreme of the
sample, the most outlying point, and successively
examining points lying closer to the centre of the
distribution; outward means moving away from the centre.
This thesis adopts the Barnett and Lewis terminology in
preference to that of Hawkins in this case. The reason is
that the term backward elimination seems too confusing,
because ’‘elimination’ seems to suggest the removal of
points from the sample, since this is in a sense the
intention of the outlier testing procedure, just as well

as it suggests removal from the set of possible outliers.

The procedures for sequential application of tests for
different numbers of outliers which will be used here are
outward testing procedures, starting with a test for a
chosen number, k, of outliers and then testing for k-1 and
so on if necessary. However, the test statistics employed
are derived by inward construction. These procedures will

be described in the following sections.

Are there any general grounds for preferring either the
inward or the outward procedures over the other? One
point is that the inward procedures generally do not avoid
the danger of masking, although they can do if a test
statistic such as that of Rosner (1975) is used, wherein
trimming of the mean and standard deviation ensures that
any outliers, up to a specified number, cannot contaminate

these estimates. On the other hand, there is no question



of masking in the outward procedures, unless in fact there
are actually more than the k outliers at which the testing
procedure is started. Hawkins (1980a), as discussed in
the next section, finds a problem in the statistical size
of the current outward procedures, but eventually comes
down in favour of such procedures employed in conjunction
with his definitions of critical regions. The calculation
of critical regions unfortunately may require simulations;
inward procedures, on the other hand, only require

standard percentage points.

4.3 Rosner’s first procedure for sequentially applied

tests

The procedure to be applied here to the case of
multivariate data is that introduced by Rosner (1975,
1977) and applied by Prescott (1978, 1979) to use of
Grubb’s statistic in univariate samples and by Kimber
(1982) to testing for outliers in univariate exponential

samples. The steps of the method are as follows:

(1) A maximum k is specified as the greatest number of

outliers one is prepared to consider.

(2) A single outlier statistic is computed to identify
the most extreme member of the sample (without

testing), which is then removed from the sample.

(3) The step (2) is repeated on the reduced sample and
so on until the k most extreme points have been
identified.

(4) The significance test for the kth possible outlier
(from step 3) is carried out. If this point is
confirmed as an outlier, so too are 1,2,...,(k-1)
without further testing. Percentage points are

obtained as described below.



(5) Otherwise, test the (k-1)th possible outlier, and

SO On.

As mentioned in the preceding section, the test
statistics used here are constructed ‘inwards’. The test
itself, however, is an outward test when it comes to

actual declaration of outliers.

The percentage points for the tests of significance are
determined from the joint distribution of the k outlier
test statistics at (2) and (3). This almost inevitably
calls for simulations. Rosner proposes the following
definition of the size of the test, to which his
calculation of percentage points corresponds. Let the
test statistics be D1""’Dk' Critical values Al,...,hk
are required so that under the null hypothesis of no

outliers,

k
Pr{ U {D<a }]=« (4.3.1)
j=1

for chosen significance level a. (The notation DJ<Aj is
used here because Wilks’ statistic, which will be used in
the multivariate application, looks for values in the
lower tail of the distribution; the statistic used by
Rosner declares values in the upper tail to be
significant, so his notation is DJ>AJ.) This can be
satisfied in many ways: the condition chosen for a unique

solution is to impose equality at each step, so that
Pr(D <A )=, j=1,...,k (4.3.2)

The idea will be that in the simulation study, the
marginal and joint distributions of the Dj are recorded in
sufficient detail that different values of g in (4.3.2)
can be tried and those critical values AJ(B) finally

selected are those which lead to (4.3.1) being satisfied.

This definition of critical regions for the test is
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disliked by Hawkins (1980a, 1980b). Its interpretation is
that a is the probability of declaring that there are any
outliers (the actual number declared being between one and
k) when in fact there are none. Hawkins’ objection is
that nothing is said about the result when there are
outliers. He proposes the alternative definition that, if
there are actually m<k outliers, the test should declare
more than m outliers with probability «, which is to be
the same for all m. This subsumes Rosner’s definition
(case m=0), so the question is whether or not its extra
conditions are as desirable as Hawkins claims. Perhaps it
is a matter of basic opinions about what is the purpose of
outlier testing. In seeking to control the probability of
declaring too many outliers, while not apparently being
concerned to control the probability of declaring too few,
Hawkins seems to be feeling that the danger to avoid is
overenthusiastic rejection of points from the sample. This
ties in with some introductory remarks in his book (1980a,
p8):

"Tt is this author’s experience that statisticians tend
to detect outliers that are not present, and to regard the
non-significance of outlier test statistics as a
reflection on the poor power of the tests rather than an
indication that the suspicious-looking observation is

statistically quite plausible."

On the other hand, Prescott (1980) responds that
further investigation of all the indicated points ought to
be the rule anyway - it is not just a question of using
this test, throwing away the ‘outliers’ and then doing on
the reduced sample the analysis one had in mind in the
first place.



— 94 —

4.4 Rosner’s second procedure

The second procedure published by Rosner (1983)
recomputes critical values to adopt Hawkins’ definition of
size. As with his first procedure, the application is to
univariate data; the test statistic is max (xi—i)/s. The

size definition (4.3.1) needs to be rewritten as

k

Pr{ U (D<A |H)}=a (4.4.1)
j=m+1 . "
for m=0,1,...,k-1
where Hm is the hypothesis that there are m outliers. (As

in the previous section, the event DJ<Aj is sought because
Wilks’ statistic looks for values in the lower tail.)
Equivalently to (4.4.1),

k
Pr{ n (D=A IH))=1-a (4.4.2)

j=m+1

and Rosner conjectures that this probability depends

essentially on D i that is, if

= —y’
Pr(D = |H)=1-« (4.4.3)

then o’ is close to «a.

The number of outliers declared by the test is the
highest value m for which DmSAm is true, or zero if this
is never true for any m up to the maximum considered. For
the purpose of discussion, it may be convenient to talk as
if the test is executed by starting from m=1 and carrying
out every test up to the maximum value of m allowed. 1In
practice, a computer program might start at the maximum
value and decrease m until a result which is statistically
significant at the chosen level arises, after which point

no more tests are made.

In fact, it is obvious from (4.4.2) and (4.4.3) that
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1l-a’ exceeds 1l-a, so that «’ is less than «. The error in
using (4.4.3) to approximate is (4.4.2) is the probability
of the event

k
(D=0 n (U (D<x)) (4.4.4)

m
j:m+2

under H. To take a specific situation, if there are 2
outliers (H2 holds), then the error of approximation is
the probability of the event that the test statistic for
examining three outliers (which means examining the most
extreme member of the sample of size n-2 after the two
most extreme have been eliminated) is not significant at
the chosen level, but that one of the statistics for 4, 5
or more outliers, is significant at the same chosen level.
In other words, after deleting two apparent outliers, the
remaining sample of n-2 points must contain at least two
more apparent outliers but none of these must be
sufficiently extreme to avoid being masked by the rest in
the test for one outlier in n-2 points. It seems dquite
reasonable to suppose that this probability is small;
Rosner (1983) in his Table 1 gives simulation results
which show that the approximation is very good for nz25
under H/ in his univariate application. This being so, a
very valuable procedure has been obtained, which is very
simple because the approximate critical values found from
(4.4.3) by putting a’=a are nothing more than the usual
critical values for the chosen test statistic in samples
of size n-m. In the end, no adaptation of the levels for
the sequential application of the test statistic has been
made. An equivalent procedure for multivariate data is a
very attractive proposition, to avoid the extremely heavy
computing demands of multivariate simulation. As will be
seen below, however, rather more should be said about the
performance of the test than Rosner’s simple conclusion

suggests.

Some simulation results will now be presented, showing
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further details of the performance of Rosner’s test in the
univariate application given by Rosner himself. These
runs were carried out for confirmation after corresponding
features had been observed in the simulations for the
multivariate case, described below in § 4.6. The
investigation looks at the performance of the test in the
presence of one or two outliers. This is the situation
examined by Rosner in his Table 2, and the details of the
simulation are the same, namely, 2000 runs are made for

each case and the sample size is 25.

Table 4.4.1 shows the proportion of samples in which
outliers were declared, at nominal 1% and 5% levels
(Rosner presents only the latter), under two versions of
the test. In one, the maximum number of outliers allowed
was two. Rosner looked at this for a direct comparison
with his earlier procedure. In the other, up to 10
outliers were allowed. If there are two contaminating
points, only this second version provides any information
about the probability of declaring "too many" outliers,

but Rosner did not examine this at all.

Comparison between the results here for the 5% level
test with up to 2 outliers allowed, and Rosner’s results
in his Table 2, shows good agreement. One particularly
interesting result is the probability of 0.0190 of
declaring two outliers when there is actually just one,
with a slippage of 2. Rosner gives 0.01 at this point.
The results for up to 10 outliers, and at the 1% level,
agree that the probability here is substantially below the
nominal level. Since Rosner presents results for the
two-outlier case only for testing for up to two outliers,
he gives no corresponding information about the
probability of declaring more than two outliers in this
case. This information is now supplied by the extreme
right-hand column of Table 4.4.1. It can be seen that the

probability is again well below the nominal level, except
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when both slippages are very large (-4 and 6). It
therefore seems that Rosner’s test can sometimes be very

conservative.

This result, when first seen in the multivariate case,
was rather a surprise because the evidence of Rosner’s
Table 1 (under HO) suggested a liberal test, not a
conservative one. The use of (4.4.3) to approximate
(4.4.2) also makes it seem that the test at each stage
separately should be liberal: under H, there is an o%
probability of declaring one further outlier at this stage
plus the probability of not declaring one at this stage
but declaring more than one at a later stage. The true
error probability therefore exceeds «% (and the use of the
conservative Bonferroni bounds has relatively little
impact, because they are known to be quite accurate in the
single-outlier tests which are carried out at each stage.)
However, this reasoning applies strictly only to the very
first step, under HO. Under H1’ for example, the
distribution theory for the test for an outlier in the
reduced sample of size n-1 depends on the contaminating
observation having been identified correctly in the first
test and removed from the sample. In fact, except when
the slippage is so large that the contaminant is virtually
always found, removing the most extreme point slightly
truncates the distribution. Thus the distributional

assumptions do not apply for H1’ H2,... as they do for HO.
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Table 4.4.1. Proportion of times that given numbers of

outliers were declared by Rosner’s procedure in 2000

simulations: n=25.

{a) Nominal 1% level

Outl- Slip- Up to 2 allowed Up to 10 allowed

lers  page(s) 0 1 2 0 1 2 =3 >true
0 - .9830 .0160 .0010 .9905 .0085 .0010 0 .0095
1 2 . 9555 .0420 .0025 .9700 .0280 .0010 .0010 .0020
1 6 .0515 .9390 .0095 .0590 .9260 .0130 .0020 .0150
2 2, 2 . 9620 .0320 .0060 .9625 . 0295 .0065 .0015 .0015
2 -2, 6 .0830 .8830 .0340 .0815 .8765 .0390 .0030 .0030
2 -4, 6 . 1340 .4325 .4335 .1240 .4250 .4445 .0065 .0065

(b) Nominal 5% level

0 - .93%0 .0510 .0100 .9415 .0425 .0070 .0090 .0585
1 2 .8665 .1145 .0190 .8770 .1050 .0100 .0080 .0180
1 6 .0110 .9335 .0555 .0130 .9205 .0495 .0170 .0665
2 2, 2 .8500 .1190 .0310 .8485 . 1055 .0300 .0160 .0160
2 -2, 6 .0130 .8815 .1055 .0165 .8520 .1010 .0305 .0305
2 -4, 6 . 0245 .3160 .6595 .0195 .3045 .6175 .0585 .0585

A further possible factor making the performance of the
test rather unpredictable is that the sequential removal
of points does not necessarily lead to the "best" set of
points being removed (that is, the ones that would have
been removed if all were tested simultaneously in a set of
appropriate size). This again should not arise if the
slippages are very large. Both factors may be more

important when the sample size is small.

Another interesting feature of the results in Table
4.4.1 lies in the comparison of the results for two
outliers with slippages of -2 and 6 against those for -4
and 6. It might be expected that an outlier test should

be more likely to declare outliers in the second case than
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the first, and in fact it can be seen to be far more
likely to declare two outliers in the second case. But it
turns out that it is also more likely not to declare any
at all. The reason for this behaviour is that the tests
in the two different cases are not comparable, since they
have different sizes as seen in the final column of the
table.

4.5 Sequential application of Wilks’ test statistic

In using Wilks’ test statistic with the methods
proposed by Rosner, the first step is the construction of
the statistics D1"“’Dk’ from the most extreme to the kth
most extreme points in the sample. The most extreme point

is the point j such that the ratio

|
J

|2]

(4.5.1)

is the minimum over such ratios for all sample points,
where A and Aj are the sample sums of squares and
products (SSP) matrices respectively before and after
deletion of point j for the sample. The value of this
ratio is the statistic D.. The corresponding point j is
now removed from the sample and the most extreme of the
remaining n-1 points identified. This is point h, such
that

|

J_hl (4.5.2)

| 2l

is a minimum over all n-1 choices of points, where Ajh
denotes the SSP matrix of the n-2 points remaining from
the sample after deletion of both j and h. This ratio is
D,. Similar minimizations and deletions lead to
D,...,D.

In fact, calculation is a little simpler if an
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alternative form is used for the Wilks statistic. As

shown in § 2.2, (4.5.1) can also be written as
1-(n/ (n-1)) (x,-X) 7\ (%,-X)
and similarly (4.5.2) as
— _1 -
1-((n-1)/(n-2)) (x,~%,) A} (x,-% )

where §j denotes the mean of the sample of n-1 points
remaining after deletion of point j. Similar expressions
follow for the rest of the D-statistics. The advantage of

this form is that the usual updating formula gives AT
in terms of A™' without the need for an actual matrix
inversion. Specifically,

ATl = ATl nA_l(xj—}_() (xj—>'<)'A"1

(n=1) {1-(n/(n-1)) (x -X) ‘A7 (x,-%) )

(e.g. Morrison, 1976, p.69), with similar expressions for

-1 . -1
Aw;ln terms of A~ and so on.
j j

Computation of critical values for tests at chosen
levels of significance using Dk,...,D1 follows the
methodology described in the previous sections. 1In the
more complicated case of the first method (§ 4.3), results
were derived by simulation for tests at the 10, 5, 2.5 and
1% levels for maximum number of outliers k=2 and 3.

Within each chosen combination of sample size n and
dimensionality p, results for both values of k and all
values of significance level were obtained from the same
simulated data. At each of these combinations, 40000
samples of the required size n were generated for
calculation of the distribution of the {DJ}. These
samples were obtained as 5 lots of 8000, each lot starting
with a different seed for the IMSL pseudo-random generator

GGNSM for multivariate normal vectors.
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The simulated critical values are displayed in Tables
4.5.1 for k=2 and 4.5.2 for k=3.

TABLE 4.51 Critical values for testing for up to 2 outliers

using the sequentially applied version of Wilk's test.

Dimensions: 2 3 4 5

0.01 15 <2606 .3131 .2007 .2361 L1467 1707 .1020 1172
20 .3775 .4509 .3103 .3765  .2594 .3174 . 2126 2569
25 L4588 .5457 L4026 .4802  .3497 .4208 .3044 ,3726
30 .5246 .6093 L4724 ,5542 ,4236 .5001 .3781 .4505
50 .6726 .7482 .6337 .7081 .5983 .6737 .5694 .6408
100 .8153 .8622 .7902 .8388 .7707 .8201 .7510 .8023

.025 15 .3065 .3579 .2383 .2733 L1754 ,2032 .1290 .1470
20 .4230 .4915 3514 .4163 .2938 .3508 .2433 ,2870
25 .4983 .5792 L4409 .5132  .3878 .4549 .3371 .4007
30 .5623 .6370 .5052 .5806 .4567 .5295 L4115 .4789
50 .7031 .7669 .6611 .7268 .6275 .6928 .5958 .6601
100 .8323 .8713 .8085 .8500 .7875 .8304 .7679 .8119

.05 15 .3453 .3971 .2703 .3090 .2023 .2320 .1525 1715
20 .4588 .5236 .3858 .4480  ,3248 .3780 .2721 .3170
25 .5342 .6071 L4719 .5391 L4168 .4756 .3667 .4264
30 .5936 .6618 .5349 .6036  .4844 .5508 .4393 ,5034
50 .7258 .7816 L6842 ,7421 .6501 ,7081 L6175 .6743
100 .8442 .8786 .8217 .8572 .8014 .8388 .7819 ,8203

.10 15 .3889 .4385 .3082 .3480 .2373 .2667 .1816 .2002
20 .4996 .5592 L4248 4819 .3605 .4110 .3055 .3482
25 .5730 (6354 .5084 .5672 .4502 ,5076 .4001 .4530
30 .6267 .6869 .5680 ,6282 .5172 .5764 L4707 .5279
50 .7487 .7966 .7073 .7578 6741 7245 .6408 .6908
100 .8574 .8861 .8352 .8653 .8148 .8464 .7964 ,8290




— 102 —

TABLE 4.5.2Critical values for testing for up to 3

outliers using

sequentially applied version of Wilk's test.

Dimensions: 2 3 4 5

a n X, A, Ay A, A, Ay A, A, A X, A, Ay

0.01 15 .2458 .2956 .2895 1854 .2212 .2083 .1359 .1560 .1364 .0899 ..1063 ,0903
20 .3611 .4344 4566 .2960 .3620 ,3724 .2451 .3003 .2948 .2026 .2451 .2434
25 4419 .5322 ,5589 .3877 .4637 .4873 .3366 .4092 .4220 .2900 .3556 .3643
30 .5080 .5958 .6284 .4578 .5432 .5643 .4112 .4893 .5137 .3641 .4394 .4610
50 .6632 ,7417 .7707 .6236 .6997 .7314 ,5896 .6657 .6918 .5559 .6322 .6608
100 .8095 .8587 .8769 .7839 .8358 .8544 .7648 .8159 .8372 .7448 .7986 .8175

0.025 15 .2856 .3348 .3315 ,2207 .2563 .2438 .1623 .1875 .1664 .1169 .1338 .1145
20,4040 .4748 .4935 .3333 .3987 .4057 .2800 .3360 .3344 ,2305 .2734 .2741
25 4836 .5663 .5922 .4239 .4985 .5194 3725 .4412 4561 .3207 .3875 .3984
30 5470 .6261 .6547 .4897 .5687 .5921 4431 .5178 .5387 .3968 .4675 .4910
50 .6923 .7598 .7850 .6529 .7191 .7448 .6162 .6849 .7096 .5853 .6520 .6779
100 .8257 .8680 .8839 .8020 .8460 .8623 .7816 .8265 .8446 .7618 .8083 .8265

0.05 15 .3231 .3751 .3707 .2519 .2892 .2779 .1881 .2137 ,1956 .1386 .1568 .1380
20,4404 .5059 .5246 .3668 .4309 .4361 .3057 .3635 .3640 .2558 .2995 .3013
25 .5147 .5877 .6170 .4553 .5253 .5458 .4011 ,4660 .4802 3489 .4120 .4238
30 .5780 .6496 .6749 .5192 .5917 .6155 .4694 .5396 ,5590 .4243 .4895 .5121
50 .7143 ,7739 ,7966 .6725 .7512 .7708 .6387 .7008 .7230 .6064 .6671 .6909
100 .8389 .8751 .8896 .8157 .8538 .8687 .7950 .8351 .8351 .7754 .8165 .8327

0.10 15 ,3661 .4155 .4155 ,2881 ,3259 .3163 .2171 ,2480 .2326 .1652 .1845 .1652
20,4778 ,5405 .5575 .4040 .4639 .4701 .3407 .3936 .3983 .2873 .3312 .3322
25,5538 .6211 .6435 4899 .5524 .5717 .4327 .4924 .5071 .3835 .4390 .4515
30 .6098 .6745 .6972 .5519 ,6162 .6371 5000 .5641 .5831 .4551 .5162 .5345
50 ,7382 .7896 .8092 .6984 .7512 ,7708 .6632 .7170 .7373 .6301 .6836 .7045
100 8520 .8830 .8956 .8297 .8619 .8751 .8090 .8429 .8566 .7902 .8254 .8395
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The performance of the test procedure using these
critical values was investigated by simulation (2000
samples at each combination of n and p) in the presence of
different numbers of outliers with different amounts of
slippage in the mean. The results are discussed in the
following section. Some comments on the choice of
slippage in this and other simulations in this thesis will

be found in Appendix II.

For the second of Rosner’s methods, simulation was used
only to examine the performance of the method. Critical
values were obtained from (4.4.3). Specifically, since
D .. is the value of Wilks’ statistic in the sample of n-h
points remaining after h extreme points have been deleted
from the original sample of n points, the rest at this
step consists of comparing Dh+1 to the «/(n-h)% point of
the Beta distribution with parameters (n-h-p-1)/2 and p/2.
These are the standard Bonferroni approximations, just as

Rosner (1983) employs in his univariate application.

The simulations presented below involved generating
2000 samples for each combination of n, p and number and
type of outliers. Tests were made for all numbers of
outliers up to the minimum of n/2, 10 and n-p-1; the first
two of these conditions were used by Rosner and the third
is a detail which ensures that the matrices being examined

remain non-singular.

4.6 Performance of the two procedures

The results of simulation studies of the two methods
are presented here in tables showing the proportion of
simulated samples in which outliers were declared, under
various conditions. Such results would normally be called
size and power; however, this terminology is liable to
become confused because a whole sequence of hypotheses

(Hk:k=0, 1, 2,...) is under consideration. The first
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table (Table 4.6.1) studies the first procedure, in the
versions testing for up to 2 and up to 3 outliers, in the
presence of either one (H1)’ two (Hz) or three (HJ
contaminating observations. No study under H, is needed,
because the error level is fixed by construction. The
second procedure is examined under H0 in Table 4.6.2 and
under H1’ H2 and H3 in Table 4.6.3. Some results for
those combinations of n, p and number and type of
contaminants which were examined under both methods are
gathered together in Table 4.6.5: the intervening table,
4.6.4, augments the results of 4.6.3.

Table 4.6.1 shows the proportion of simulated samples
in which outliers are declared, in the presence of either

one, two or three contaminants.



Table 4.6.1a

Performance

- 10

of

5 —

first

sequentially

applied

procedure in presence of one or two outliers, at 1% level.

Qutliers tested

Squared =2 =3

Out- slippage Outliers declared Outliers declared

p n liers distance Type 0 1 2 0 1 2 3
2 15 1 15 + .8710 .1110 .0180 .8930 .0905 .0120 .0045
30 + .5580 .4165 .0255 .6100 .3700 .0160 .0040
2 20 ++ L7690 .0155 .2155 .7755 .0100 .1815 .0330
20 +- L7555 .0210 .2235 .7750 .0160 .1850 .0240
20 +t .6150 .2155 .1695 .6655 .1985 .1240 .0120
225 1 15 + L7925 .1780 .0295 .8170 .1515 .0225 .0090
30 + .3370 .6225 .0405 .3835 .5750 .0290 .0125
2 20 ++ .5235 .0465 .4300 .5380 .0355 .3760 .0505
20 +- .4960 .0660 .4380 .5285 .0530 .3705 .0480
20 +# .3690 .2315 .3995 .4155 .2065 .3335 .0445
4 15 1 15 + .9525 .0365 .0110 .9615 .0275 .0060 .0050
30 + .8165 .1675 .0160 .8480 .13%90 .0090 .0040
2 20 ++ . 9405 .0045 .0550 .93%90 .0030 .0435 .014S5
20 +- .9280 .0150 .0570 .9380 .0095 .0385 .0140
20 +% .8255 .1205 .0540 .8585 .0955 .0400 .0060
4 25 1 15 + .9045 . 0750 .0205 .9190 .0575 .0160 .0075
30 + .5740 .3875 .0385 .6155 .3465 .0285 0095
2 20 ++ L7790 .0185 .2025 .7660 .0150 .1700 .0490
20 +- L7660 .0370 .1970 .7760 .0290 .1605 .0345
20 +% .6200 . 1875 .1925 .6590 .1595 .1550 .0265

1 Key : + equal slippage added to each dimension

(Details of slippage calculations in Appendix II)

i+

equal slippage
equal slippage

subtracted to each dimension
added to 1st dimension (to 1st
and 3rd for p=4) and subtracted from the 2nd

dimension (from 2nd and 4th for p=4).
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in presence of one or two outliers,

Squared
Out- slippage

Performance of first sequentially applied procedure

Outliers declared Outliers declared

at 5% level.
Outliers tested
=<2 =3

p n liers distance Type 0] 1 2 0 1 2 3
2 15 1 15 + .6545 .2695 .0760 .7110 .2125 .0535 .0230
30 + .2800 .6270 .0930 .3350 .5715 .0675 .0260
2 20 ++ .5520 .0405 .4075 .5430 .0290 .3360 .0920
20 +-  .4870 .0655 .4475 .5150 .0550 .3560 .0740
20 +x 2775 .3035 .4190 .3510 .2745 .3190 .0555
2 25 1 15 + .5735 .3275 .0990 .6125 .2860 .0580 .0435
30 + 1380 .7335 .1285 .1760 .7005 .0770 .0465
2 20 ++ 2830 .0885 .6285 .3050 .0715 .4735 .1500
20 +- 2410 .1135 .6455 .2655 .1045 .4890 .1410
20 +* 01495 .2295 .6210 .1855 .2220 .450S .1420
4 15 1 15 + .8320 .1175 .0505 .8445 .0945 .0320 .0290
30 + .5695 .3490 .0815 .6275 .3100 .0440 .0185
2 20 ++ .8165 .0250 .1585 .8165 .0170 .1140 .0525
20 +-  .7905 .0525 .1570 .802S .0360 .1115 .0500
20 ++ 5830 .2430 .1740 .6260 .2215 .1135 .0390
4 25 1 15 + 7245 2065 .0690 .7590 .1615 .0445 .0350"
30 + .3290 .5495 .1215 .3635 .5080 .0795 .0490
2 20 ++ 5770 .0660 .3570 .5540 .0510 .2705 .1245
20 +-  .5110 .0965 .3925 .5360 .0705 .2915 .1020
20 +f 3425 .2500 .4075 .3920 .2235 .2790 .1055
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distance 20;
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Performance of first sequentially applied procedure
in presence of three outliers,

1% significance level.

all with squared generalized

Outliers tested
=<2 =3
Outliers declared Outliers declared
p n Type 0 1 2 0 1 2 3
2 15 +++ .9835 .0030 .0135 .8670 .0025 .0075 .1230
- .9635 .0060 .0305 .8365 .0040 .0180 .1415
++% L7235 1760 . 1005 .6365 .110S .07S5 .1775
+-% .6830 .1895 .1275 .6275 .1295 .0930 .1500
2 25 +++ .8360 .0105 .1535 .5630 .0055 .0555 .3760
++- .7820 .0160 .2020 .5320 .0065 .0815 .3800
++% .4435 .2370 .3195 .3400 .1180 .1515 .3905
+-2 .3900 .1545 .4655 .3270 .0890 .2050 .3790
4 15 +++ .9885 .0060 .0055 .9770 .0060 .0030 .0140
++- .9815 .0085 .0100 .9670 .0070 .0060 .0200
++3 .8915 .0760 .0325 .8845 .0610 .0225 .0320
+-% .8855 .0740 .0405 .8920 .0550 .0245 .0285
4 25 4+ .9435 .0110 .0455 .8520 .0075 .0240 .1165
++- .9130 .0155 .0715 .8100 .0100 .0455 .1345
++x .6915 .1565 .1520 .6355 .1090 .1025 .1530
+=% .6570 . 1395 .2035 .6135 .0975 .1345 .1545
Table 4.6.1d Performance of first sequentially applied procedure

in presence of three outliers,
distance 20; 5% significance level.
Qutliers tested

all with squared generalized

=2 =3

Outliers declared Outliers declared

P n Type 0 1 2 0 1 2 3
2 15 +++ .9155 .0155 .0690 .6990 .0065 .0320 .2625
++- .8420 .0315 .1265 .6025 .017S .0625 .3175
++1 L4280 . 3400 .2320 .3360 .1815 .1365 .3460
+-% . 3530 .2945 .3525 .3165 .1695 .1750 .3390
2 25 +++ .5790 .0370 .3840 .3385 .0175 .0925 .5515
++- .4570 .0545 4885 .2845 .0205 .1125 .5825
+++ 1580 .2355 .6065 .1225 .1090 .1755 .5930
+-% .1280 .1250 .7470 .1140 .0710 .2110 .6040
4 15 +++ .9485 .0230 .0285 .9110 .0175 .0150 .0565
44 .9245 .0330 .0425 .8870 .0230 .0275 .0625
++% L7070 .1785 .1145 .7020 .131S .0630 .0985
+-+ L6615 .1920 .1465 .6805 .1405 .0885 .0905
4 25 +++ .8165 .0410 .1425 .6670 .0215 .0620 .2495
+4- L7575 0565 .1860 .6065 .0300 .0815 .2820
+++ L4255 2395 .3350 .3625 .1510 .1800 .3065
+-% .3610 .2090 .4300 .3365 .1300 .2080 .3255
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The two versions of the test, for a maximum of either
two (Tz) or three (T3) outliers, are considered, so that
the possible number of outliers which can be declared are
zero, one and two (in test Tz)’ or zero, one, two and
three (in T3). A variety of distances and directions are
covered for the slippage vectors. The table first shows
results at the 1% and 5% levels for one or two

contaminants. The following observations can be made:

a) 1in most cases, the test T2 for up to 2 outliers
is more likely to declare any outliers than the test T,

for up to 3, if in fact there are one or two contaminants;

b) the opposite is true if there are three

contaminants;

c) 1if there is one contaminant, the result in a) is
due to a greater probability of declaring exactly one
outlier with test T, than with test T, - the probability
of declaring more than one outlier is about the same under
both tests;

d) the probability of declaring more than the true
number of contaminants can go up to about 5% for the test
at the 1% level (under Ho) and 15% for the test at the 5%
level: these figures depend on the test (T2 or T3) and the
nature of the outliers, but in almost all cases exceeds

the size under HO.

The result a) is to be expected because some of the,
say, 5% error probability which is all "used up" in
testing for one or two outliers in the test T, must be
allotted to testing for three outliers in the test T,.
This means reducing the probability of declaring outliers
in the tests for one and two outliers, and this is not
made up for by the small probability of declaring three
outliers (since there are actually only one or two
contaminating points). On the other hand, if there are in

fact three outliers, only the test T3 can declare this,
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and - with the test T, suffering from masking - the result
b) follows. Result c) is also entirely as expected;
changes in the critical value have a bigger absolute
effect at the level of one outlier since declaring two or

three outliers is a relatively rarer event.

Result d) illustrates the point of Hawkins’ criticism
of the construction of critical values at each level of

the test, that error levels under H1’ H are not

NERE
controlled. The fact that the error level increases over
that applying to HO bears out the remark in Rosner (1983)

and the example in Hawkins (1980a).

For the second sequentially applied procedure, Table
4.6.2 shows the proportion of samples in which outliers

were declared, when in fact there were no contaminants.
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Performance of second sequentially applied procedure

under Ho {no outliers), at nominal 1% level. (Blanks denote

values that are the same as the preceding ones in the same row;

dashes denote tests which were not carried out.)

Outliers declared (cumulative proportions)

P n 1 2 3 4 5 6 7 8 9 10
2 10 .0090 .0130 .0150 .0205 - - - - - -
15 .0075 .0095 .0095 .0105 .0115 .0115 .0130 - - -
20 .0130 .0140 .0145 .0150 .0150 .0150 .0150 .0150 .0155
25 .0150 .0160 .0175 .0175 .0175 .0175 .0175 .0175 .0180
30 .0095 .0105
50 .0130
100 .0110
3 10 .0100 .0145 .0185 .0230 - - - - - -
15 .0105 .0105 .0120 .0135 .0140 .0165 .0190 - - -
20 .0120 .0125 .0125 .0130 .0135 .0140 .0145 .0150 .0150 .0165
25 .0100 .0115
30 .0090
50 .0110
100 .0120
4 10 .0100 .0135 .0200 .0245 - - - - - -
15 .0075 .0090 .0095 .0105 .0125 .0130 .0150 - - -
20 .0090 .0105 .0105 .0105 .0105 .0110 .0110 .0115 .0125 .0150
25 .0120 .0130 .0130 .0130 .0130 .0135
30 .0115 .0120
50 .0090 .0145
100 .0140
5 10 .0075 .0120 .0160 .0250 - - - - - -
15 .0085 .0115 .0125 .0145 .0180 .0245 .0290 -~ - -
20 .0100 .0105 .0105 .0105 .0115 .0115 .0125 .0140 .0145 .0170
25 .0110 .0120 .0120 .0125 .0125 .0125 .0125 .0130 .0135
30 .0120
50 . 0095
100 .0080
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Table 4.6.2b Performance of second sequentially applied procedure
under HO (no outliers), at nominal 5% level. (Blanks denote
values that are the same as the preceding ones in the same row;

dashes denote tests which were not carried out.)

Outliers declared (cumulative proportions)

p n 1 2 3 4 S 6 7 8 9 10

2 10 .0460 .0695 .0885 .1090 - - - - - -
15 .0470 .0605 .0625 .0705 .0760 .0865 .0950 - - -
20 .044S5 .0510 .0535 .0580 .0595 .0625 .0640 .0660 .0690 .0745
25 .0475 .0555 .0585 .0600 .0600 .0600 .0610 .0615 .0625 .0630
30 .0390 .0460 .0470 .0470 .0475 .0480 .0485
50 .0495 .051S .0520
100 .0530 .0560

3 10 .0480 .0655 .0865 .1110 - - - - - -
15 .0450 .0540 .0650 .0735S .0800 .0930 .1025 - - -
20 .0415 .0495 .0525 .0545 .0585 .0620 .0640 .0670 .0690 .0765
25 0450 .0535 .0565 .0570 .0570 .0580 .0585 .0590 .0590 .0610
30 .0500 .0525 .0535 .0535 .0540 .0545 .0555
50 .0540 .0575 .0580
100 .03%0 .0400

4 10 .0440 .0665 .0900 .1150 - - - - - -
15 .0375 .0490 .0535 .0645 .0720 .0850 .0980 - - -
20 .0490 .0560 .0590 .0605 .0645 .0700 .0735 .0790 .0860 .0945
25 .0470 .0545 .0560 .0600 .060S .0610 .0615 .0625 .0625 .0635
30 .0470 .0520 .0545 .0550 .0S50 .0550 .0550 .0560 .0560 .0565
50 .0485 .0535 .0540
100 .0530 .0535

S 10 .0380 .0590 .0845 .1230 - - - - - -
15 .0415 .0545 .0620 .0720 .0820 .1065 .1240 - - -
20 .0460 .0520 .0555 .0590 .0635 .0675 .0695 .0765 .0820 .0915
25 .0540 .0605 .0640 .0670 .0675 .0695 .0710 .0730 .0740 .0745
30 .0455 .0530 .0530 .0530 .0535 .0540 .0545 .0550 .0560 .0570
50 .0450 .0475 .0475 .0480
100 .045S

(Note, as a check, that the first column - one outlier
declared - simply gives the size of Wilks’ test using
Bonferroni bounds at the nominal level of 1% and 5%, as

investigated in more detail in Chapter 3.) This table
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suggests that one needs a sample size of about 25 to 30
before the true significance levels are very close to the
nominal 1% and 5% levels. This result appears not to
depend on the dimensionality, p. The finding agrees very
well with Rosner’s (1983) recommendation that the
approximation (4.4.3) 1is acceptable for nz25 in his

univariate application of the methodology.

It might also be expected that Table 4.6.3 would
similarly confirm, at least for sufficiently large n, the
adequacy of approximation (4.4.3) in the presence of
outliers.
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Table 4.6.3a Performance of second sequentially applied

procedure in presence of one or two outliers, at nominal 1% level.

Squared Outliers declared

Out- slippage 1 More than
p n liers distance Type 0 1 2 3 z4 correct no
2 15 1 15 + .8125 . 1725 .0075 .0010 .0065 . 0150
30 + .4600 .5240 .0085 .0010 .0065 . 0160

2 20 ++ .8195 .0245 .1285 .0185 .0090 . 0275

20 +- . 7995 .0530 .1270 .0085 .0080 .0165

20 +* .5070 .3930 .0870 .0550 .0075 .0130

2 25 1 15 + L2795 .7055 .0125 .0000 .0025 . 0150
30 + .0115 .9770 .0100 .0005 .0010 .0115

2 20 ++ . 1575 . 4460 .3865 .0050 .0010 . 0060

20 +- . 1195 .4635 . 4095 .0070 .0005 . 0075

20 ++ .1320 .4935 .3680 .0055 .0010 . 0065

2 50 1 15 + . 1865 . 8050 .0085 .0000 .0000 . 0085
30 + .0015 .9885 .0100 .0000 .0000 .0100

2 20 ++ .0435 .4705 .4810 .0050 .000C . 0050

20 +- .0420 4580 .4945 .0055 .0000 . 0055

20 +% .0430 .4655 .4875 .0040 .0000 . 0040

4 15 1 15 + .9230 .0670 .0005 .0015 .0080 . 0100
30 + . 7490 .2285 .0085 .0030 .0110 . 0225

2 20 ++ .9290 .0160 .0330 .0075 .0145 . 0220

20 +- .9240 .0245 .0320 .0050 .0145 .0195

20 +* . 8665 .1950 .0225 .0050 .0110 .0160

4 25 1 15 + .8780 . 1130 .0050 .0000 .0030 . 0080
30 + .5155 .4775 .0050 .0015 .0005 . 0070

2 20 ++ . 8595 .0480 .0820 .0085 .0030 .0105

20 += . 8450 .0695 .0815 .0035 .000S . 0040

20 +# .6135 . 3330 .0520 .0010 .0005 . 0015

4 50 1 15 + .8090 .1895 .001S .0000 .0000 . 0015
30 + . 3490 .6460 .0040 .0010 .0000 . 0050

2 20 ++ . 6895 . 1530 .1545 .0030 .0000 . 0030

20 +- . 6580 .2120 .1250 .0050 .0000 . 0050

20 +* . 4485 4305 .1190 .0020 .0000 . 0020
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Table 4.6.3b  Performance of second sequentially applied

procedure in presence of one or two outliers, at nominal 5% level.

Squared Outliers declared

Out- slippage More than
p n liers distance Type 0 1 2 3 z4 correct no
2 15 1 15 + . 5590 .3580 .0320 .0145 .0365 .0830
30 + . 1885 . 7200 .0415 .0130 .0370 .0915

2 20 ++ .5345 . 0690 .2915 .0480 .0570 . 1050

20 +- L4730 .1240 .3110 .0370 .0S50 .0920

20 +* .1825 . 4715 .2650 .0300 .0510 .0810

2 25 1 15 + .1105 .8315 .0440 .0065 .0075 . 0580
30 + .0000 .9295 .0550 .0050 .0105 .0705

2 20 ++ .0395 .3135 .5985 .0355 .0130 . 0485

20 +- .0200 .3110 .6145 .0385 .0160 . 0545

20 +* .020S .3220 .6030 .0380 .0165 . 0545

2 50 1 15 + .0710 .8795 .0465 .0030 .0000 . 0495
30 + . 0000 .9495 .047S .0030 .0000 . 0505

2 20 ++ . 0090 .2855 .6650 .0360 .0045 . 0405

20 +~ . 0090 .2885 .6610 .0380 .0035 . 0415

20 +% . 0095 .2895 .6580 .0395 .0035 .0430

4 1S 1 15 + .7385 .1870 .0195 .0115 .0435 . 0745
30 + .4425 4585 .0305 .0140 .0545 .0990

2 20 ++ . 7515 . 0580 .0950 .0315 .0640 . 0955

20 += . 7230 .0835 .1020 .0315 .0600 .0915

20 +* . 4625 .3615 .101S .0180 .0565 .0745

4 25 1 15 + .7030 .2520 .0270 .0045 .0135 . 0450
30 + .2645 .6790 .0365 .0075 .0125 . 0565

2 20 ++ .6015 .1180 .2195 .0380 .0235 .0615

20 +- .5805 .1895 .1865 .0270 .0165 .0435

20 +* .3190 .4690 .1765 .0185 .0170 . 0355

4 50 1 15 + . 6335 .3440 .0205 .0015 .0005 . 0225
30 + . 1805 . 7825 .0335 .0020 .0015 . 0370

2 20 ++ .4385 .2455 .2940 .0185 .0025 .0220

20 +- . 3860 .3185 .2760 .0175 .0020 .0195

20 +* .2180 .4885 .2785 .0125 .0025 .0150
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Table 4.6.3c Performance of second sequentially applied

procedure in presence of three outliers {all with squared

generalized distance = 20), at nominal 1% level.

QOutliers declared
Outlier More than
p n types 0 1 2 3 4 =5 correct number

2 15 +++ 8885 .0060 .0020 .0670 .0205 .0160 . 0365
++- . 8990 .0145 .0065 .0630 .0120 .0050 .0170

* .6130 .2480 .0415 .0825 .0120 .0030 . 0150
+-* 6105 .2545 .0500 .0765 .0050 .0035 . 0085

2 25 +++ . 2065 .0530 .3200 .4085 .0100 .0020 . 0120
++-  .1990 .0535 .3430C .3935 .0085 .0025 . 0110

+++ .1940 .0700 .3460 .3775 .0095 .0030 . 0125
* .1815 .0775 .3505 .3805 .0080 .0020 . 0100

2 50 +++ . 0340 .0795 .4295 .4515 .0045 .0010 . 0055
++- . 0255 .0615 .4455 4645 .0025 .0005 . 0030

+++ . 0280 0525 .4255 .4880 .0050 .0010 . 0060
+ .0245 .0680 .4100 .4905 .0065 .0005 . 0070

4 15 +++ 9615 .0085 .0020 .0125 .0035 .0120 . 0155

++-  .9600 .0110 .0045 .0030 .0035 .0130 . 0165
.8430 .1100 .0160 .0120 .0060 .0130 . 0190
.8430 .1040 .0250 .0140 .0095 .0045 .0140

4 25 +++ .9225 .0160 .0090 .02985 .0130 .0100 . 0230
++-  .9125 .0235 .0135 .0315 .0130 .0060 .0190

++r 6715 .2295 .0530 .0310 .0105 .0045 . 0150
* .6670 .2345 .05%0 .0330 .0055 .0010 . 0065

4 50 +++ . 8025 .0925 .0430 .0555 .0065 .0000 . 0065
++— 7725 .1000 .0630 .060S .0040 .0000 . 0040

* 4665 .3420 .1340 .0555 .0020 .0000 . 0020
+-+ 4405 .3620 .1450 .0510 .0015 .0000 . 0015
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Table 4.6.3d Performance of second sequentially applied procedure

in presence of three outliers (all with squared generalized

distance 20), at nominal 5% level.

QOutliers declared
Outlier More than
p n types 0 1 2 3 4 =5 correct number

2 15 +++ . 6580 .0295 .0235 .1630 .0600 .0660 . 1260
++- . 6085 .0475 .0410 .2070 .0470 .0490 . 0960

+  .2415 .3270 .1050 .2390 .0455 .0420 . 0875
+-f 2275 .3330 .1670 .2020 .0305 .0400 . 0705

2 25 +++ 0355 .0290 .2730 .6085 .0395 .0145 . 0540

++- . 0285 .0265 .3005 .5915 .0365 .0165 . 0530
.0240 .0330 .3050 .5780 .0440 .0160 . 0600
.0255 . 0350 .2970 .5825 .0440 .0160 . 0600

2 50 +++ . 0030 .0200 .2935 .6435 .0370 .0030 . 0400
++- . 0020 .0180 .2850 .6545 .0360 .0045 . 0405

++% 0035 .0110 .2795 .6655 .0355 .0050 . 0405
* .0035 .0140 .2775 .6645 .0370 .0035 . 0405

4 15 +++ 8130 .0375 .0190 .0445 .0250 .0610 . 0860
++- 7890 .0585 .0220 .0470 .0295 .0540 . 0835

++r . 6195 2445 .0605 .0605 .0270 .0525 . 0795
+ .5530 .2480 .0715 .0565 .0240 .0470 .0710

4 25 +++ 7325 .0590 .0340 .0940 .0400 .0405 . 0805
++- .6855 .0870 .0510 .1035 .0415 .0315 . 0730

+++ .3660 .3220 .1350 .1170 .0360 .0240  .0600
* .3310 .3525 .1570 .1190 .0210 .0195 . 0405

4 50 +++  .509S .1605 .1375 .1680 .0185 .0060 . 0245
++- 4360 2005 .1765 .1660 .0175 .0035 . 0210

++* 2135 3375 .2670 .1650 .0160 .0010 . 0170
+ .2005 .3490 .2895 .1475 .0120 .0015 .0135

The relevant results will be found in the last column
of each section of the table, giving the proportion of
simulated samples in which the number of outliers declared
exceeds the true number of outliers. As expected, these
proportions substantially exceed the nominal 1% and 5% in
the sets of simulations for n=15, but are at about the
right value for n=25. However, for n=50 they are
substantially below these nominal levels. This finding
leads to the re-examination of Rosner’s own application as

described in § 4.4.
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It was shown in that section that results depended on
the amount of the slippage. It will be noted that in
Table 4.6.3 the slippages are not particularly large:
simulation (2000 runs) shows that Wilks’ ordinary test for
one outlier has a power of about 89% (at the nominal 5%
level using Bonferroni bounds) for the combination of
n=25, p=2 and squared distance=30, while the ordinary test
for two outliers has a power of about 71% to 90%
(depending on the directions of slippages) for the
combination of n=25, p=2 and squared distance=20 (in this
cases using simulated 5% critical values, from Chapter 3).
For the latter combination, but with n=50, the power
becomes 85% to 93%. Most of these powers are well below
the 99% for Rosner’s univariate sequential procedure with
a slippage of 6 (see Table 4.4.1). Some supplementary
runs for the multivariate case were therefore undertaken
with a larger slippage, namely 50 in each dimension.

Results are shown in Table 4.6.4.

Table 4.6.4

Outliers declared at 1%

n outliers(s) 0 1 2 3 4+
15 + 0] .9835 .0090 .0020 . 0055
50 + 0 .9920 .0080 .0000 .0000
50 +- 0 0 .9840 .0135 .0025
50 ++ 0 0] .9890 .0100 .0010

Outliers declared at 5%

n outlier (s) 0 1 2 3 4+
15 + 0 .9170 .0395 .0110 .0325
50 + 0 .9560 .0415 .0025 .0000
50 +- 0 0] .9300 .0520 .0180
50 +* 0 0 .9340 .0510 .0150

(Note: 2000 simulations; p=2 throughout)

One would hope to be able to predict the results of
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this investigation on the following argument. If there is
one contaminant and the slippage is very large, the
outlier should be identified correctly by the test for one
outlier with high probability. The contaminant is removed
and the test in the reduced sample is now an application
of a single-outlier test in a sample which strictly
conforms to the null hypothesis. The error level should
therefore be close to the nominal level, with a small
excess due to the possibility of declaring two or more
outliers in cases where the single-outlier test is not
significant. Similar remarks apply to the case of two
outliers, assuming that two successive separate
identifications of the most extreme single outlier have
the same effect as directly detecting the most outlying
pair. The results in Table 4.6.4 do seem to agree with
these predictions, remembering that the critical values
are based on simulations for the case of two outliers, so

introduce some inaccuracy.

Finally, Table 4.6.5 gathers together some results
already presented in earlier tables, in order to give
side-by-side comparisons between the performance of the
two test procedures. However, the meaningfulness of
thesecomparisons is limited, because of the restricted
scope of the first procedure (inability to declare more
than 2 or 3 outliers, depending on the version) and the

different sizes of the procedures.
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detection procedures in presence of one or two contaminants:
proportion of times in 5000 simulations that less than correct

number,
declared as outliers,

level.

correct number or more than corect number of points
at nominal 1%

Cemparative performance of first and second outlier

Procedure: First, up to 2 First, up to 3 Second
Qutl. declared Outl. declared Outl. declared
Squared
Out- dist-

p n liers ances Type < Correct > < Correct > < Correct >
2 15 1 15 + .8710 .1110 .0180 .8930 .0905 .0165 .8125 .1725 .0150
30 + .5580 .4165 .0255 .6100 .3700 .0200 .4600 .5240 .0160
2 20 ++ .7845 .2155 - . 7855 .1815 . 0330 .8440 .1285 .0275
20 +- 7765 .2235 - .7910 .1850 .0240 .8525 .1270 .016S
20 +* .8305 .1695 - .8640 .1240 .0120 .9000 .0870 .0130
2 25 1 15 + .7925 .1780 .0295 .8170 .1515 .031S .2795 .7055 .0150
30 + .3370 .6225 .0405 .3835 .5750 .0415 .0115 .9770 .0115
2 20 ++ .5700 .4300 - .5735 .3760 .0505 .6035 .3865 .0060
20 +- .5620 .4380 - .5815 .3705 .0480 .5830 .4095 .0075
20 +x 5605 .3995 - .6220 . 3335 .0445 .6255 .3680 .0085
4 15 1 15 + .9525 .0365 .0110 .9615 .0275 .0110 .9230 .0670 .0100
30 + .8165 .1675 .0160 .8480 .1390 .0130 .7490 .2285 .0225
2 20 ++ 9450 .0550 - . 9420 .0435 .0145 .9450 .0330 .0220
20 +-  .9430 .0570 - .9475 .0385 .0140 .9485 .0320 .0195
20 +* 9460 .0540 - . 9540 .0400 .0060 .9615 .0225 .0160
4 25 1 15 + .9045 .0750 .0205 .9190 .0575 .0235 .8790 .1130 .0080
30 + 5740 .3875 .0385 .6155 .3465 .0380 .5155 .4775 .0070
2 20 ++ 7975 .2025 - .7810 .1700 .0490 .9075 .0820 .0105
20 +- .8030 .1970 - .8050 .1605 .0345 .9145 .0815 .0040
20 +*x 8075 .1925 - .8185 . 1550 .0265 .9465 .0520 .0015
2 15 3 20 +++ 1 - - .8770 .1230 - .8965 .0670 .0365
++- 1 - - . 8585 .1415 - .9200 .0630 .0170
++% 1 - ~ .8225 1775 - .9025 .0825 .0150
+-% 1 - - . 8500 .1500 - .9150 .0765 .0085
2 25 3 20 +++ 1 - - . 6240 . 3760 - .5795 .4085 .0120
++- 1 ~ - . 6200 . 3800 - .5955 .3935 .0110
+++ 1 - - .6095 . 3905 - .6100 .3775 .0125
+-% 1 - - .6210 . 3790 - .6095 . 3805 .0100
4 15 3 20 +++ 1 - - . 9860 .0140 - .9720 .0125 .0155
+4- 1 - - . 9800 .0200 - .9755 .0080 .0165
++3 1 - - .9680 .0320 - .9690 .0120 .0190
+-% 1 - - .9715 .028S - .9720 .0140 .0140
4 25 3 20 +++ 1 - - .8835 . 1165 - . 9475 . 0295 .0230
++- 1 - - . 8655 .1345 - .9495 0315 .0190
++% 1 - - .8470 . 1530 - .9540 .0310 .0150
+-% 1 ~ - .8455 . 1545 - . 9605 .0330 .0065
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Table 4.6.5b Comparative performance of first and second outlier
detection procedures in presence of one or two contaminants:
proportion of times in S000 simulations that less than correct

number, correct number or more than corect number of points
declared as outliers, at nominal 5% level.
Procedure: First, up to 2 First, up to 3 Second
Qutl. declared Qutl. declared OQOutl. declared
Squared
Out- dist-
p n liers ances Type < Correct > < Correct > < Correct >
2 15 1 15 + .6545 .2695 .0760 .7110 .2125 .0765 .5590 .3580 .0830
30 + .2800 .6270 .0930 .3350 .5715 .0935 .1885 ,7200 .0915
2 20 ++ .5925 . 4075 - .5720 .3360 .0920 .6035 .2915 .1050
20 +- .5525 .4475 - .5700 .3560 .0740 .5970 .3110 .0920
20 +  .5910 .4190 - .6255 . 3190 .0555 .6540 .2650 .0810
2 25 1 15 + 5735 .3275 .0990 .6125 .2860 .1015 .1105 .8315 .0580
30 + .1380 .7335 .1285 .1760 .7005 .1235 .0000 .9295 .(Q705
2 20 ++ 3715 .6285 - .3765 .4735 . 1500 .3530 .5985 .0485
20 +- .3545 .6455 - .3700 .4890 .1400 .3310 .6145 .0545
20 ++ 3780 .6210 - . 4075 .4505 . 1420 .3425 .6030 .0545
4 15 1 15 + .8320 .1175 .0505 .8445 .0945 .0610 .7385 .1870 .0745
30 +  .5695 .3490 .0815 .6275 .3100 .0625 .4425 .4585 .0990
2 20 ++ .8415 .1585 - .8335 .1140 .0525 .8095 .0950 .0955
20 +- 8430 .1570 - .8385 .1115 .0S500 .8065 .1020 .0915
20 ++ 8260 .1740 - .8475 . 1135 .0390 .8240 .1015 .0745
4 25 1 15 + 7245 2065 .0690 .7590 .1615 .0795 .7030 .2520 .0450
30 +  .3290 .5495 .1215 .3635 .5080 .1285 .2645 .6790 .0565
2 20 ++ .6430 .3570 - .6050 .2705 .1245 .7190 .2195 .0615
20 +-  .6075 .3925 - .6065 .2915 .1020 .7700 .1865 .043S
20 +x 5925 . 4075 - .6155 .2790 .1055 .7880 .1765 .0355
2 15 3 20 +++ 1 - - L7375 .2625 - .7110 .1630 .1260
20 ++- 1 - - . 6825 . 3175 - .6970 .2070 .0960
20 ++¢ 1 - - . 6540 . 3460 - L6735 .23%90 .0875
20 +-% 1 - - .6610 .3390 - L7275 2020 .0705
2 25 3 20 +++ 1 - - . 4485 5515 - . 3375 . 6085 .0540
20 ++- 1 ~ - L4175 . 5825 - . 3555 .5915 .0530
20  ++% 1 -~ - . 4070 .5930 - . 3620 .5780 .0600
20 +-% 1 - - . 3960 .6040 - .3575 .5825 .0600
4 15 3 20 +++ 1 - - . 9435 . 0565 - . 8695 .0445 .0860
20 ++- 1 - - . 9375 .0625 - .8695 .0470 .0835
20 ++¢% 1 - - .9015 .0985 - . 9245 . 0605 .0795
20 +-t 1 - - . 9095 .0905 - .8725 .0565 .0710
4 25 3 20 +++ 1 - - . 7505 .2495 - . 8255 .0%940 .0245
20 ++- 1 - - .7180 .2820 - .8235 . 1035 .0210
20 ++% 1 - - .6935 . 3065 - .8230 .1170 .0170
20 +-% 1 - - .6745 . 3255 - .8405 .1190 .0135
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4.7 Use of sequentially applied test statistics

One role for outlier detection methods is in the
automatic screening of the data, advocated by Gentleman
and Wilk (1975). This is particularly valuable when the
data are unlikely to be inspected closely by a trained eye;
this situation might arise for various reasons including
the automation of data collection and data reporting.
Routine use of these methods also removes the difficulties
over significance level introduced by the subjective
decision to employ outlier testing in the light of some
impression gathered from inspection of the data (Collett
and Lewis, 1976).

Under these circumstances, the only difficulty
remaining with the sequentially applied test is the choice
of k, the maximum possible number of outliers. This too
is effectively avoided if the test is used repeatedly in
the same situation, for example with batches of similar
data from the same laboratory. In this situation, it is
possible to estimate the frequency of outlying values in
the long run. The upper limit k could then be chosen so
that the probability of a sample containing more than k
outliers is sufficiently small. Table 4.7.1 shows the
probability of having more than 2 or 3 contaminants in a
sample of given size, given the probability that a

randomly selected point is a contaminant.
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Table 4.7.1 Probability of more than k discordant points in a

sample of size n if a randomly selected point is discordant

with probability p.

p

n 0.01 0.02 0.05

10 .000114 .000864 .011504

k=2 30 .003317 .021717 .187822
50 .013817 .078427 .459465

100 .079372 .323313 .881737

10 .000030 .000239 .003648

k=3 30 .000996 .007599 .092535
50 .004651 .032925 .294562

100 .033623 .186606 .777056

These are simply binomial probabilities. Since a
contaminant is not necessarily an outlier, and vice versa,
this is not precisely the same as predicting the number of
outliers, but should serve as close guide. Probably the
test with k=3 would be thought very adequate with sample
sizes of 10 even if the probability of a discordant
observation were as big as 0.05. With p=0.01, perhaps a
much more realistic value than 0.05 in most circumstances,

k=3 seems adequate even for n=50.

As an illustration, however, the sequentially applied
test is used here on a unique set of data rather than one
from a series, in order to compare to another published
method. Bacon-Shone and Fung (1987) illustrated their
graphical method with a set of three-dimensional data
(n=36) on milk transportation costs which they attribute
to Johnson and Wichern (1982). These data are given here
as Table 4.7.2.
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Table 4.7.2 Transportation cost data (Johnson and Wichern,

(1982), copied from Bacon-Shone and Fung, 1987): costs in

dollars per mile of transporting milk from farm to dairy

plant.
Fuel Repair Capital
16.44 12.43 11.23
7.19 2.70 3.92
9.92 1.35 9.75
4.24 5.78 7.78
11.20 5.05 10.67
14.25 5.78 9.88
| 13.50 10.98 10.60
| 13.32 14.27 9.45
i 29.11 15.09 3.28
| 12.68 7.61 10.23
7.51 5.80 8.13
9.90 3.63 9.13
10.25 5.07 10.17
11.11 6.15 7.61
12.17 14.26 14.39
10.24 2.59 6.09
10.18 6.05 12.14
8.88 2.70 12.23
12.34 7.73 11.68
8.51 14.02 12.01
‘ 26.16 17.44 16.89
1 12.95 8.24 7.18
* 16.93 13.37 17.59
14.70 10.78 14.58
10.32 5.16 17.00
8.98 4.49 4.26
9.70 11.59 6.83
12.72 8.63 5.59
9.49 2.16 6.23
8.22 7.95 6.72
13.70 11.22 4.91
8.21 9.85 8.17
15.86 11.42 13.06
9.18 9.18 9.49
12.49 4.67 11.49
17.32 6.86 4.44

Bacon-Shone and Fung obtain (their Table 3.2) the following
results for Wilks’ test, with « indicating the unconditional

significance levels:
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Table 4.7.3

No of outliers Wilks’ Observations
tested statistic o selected
1 0.481 <0.005 9
2 0.278 <<0.005 9,21
3 0.196 <<0.005 9,21,36
4 0.148 <<0.005+* 9,21,36,20

This value, not given by Bacon-Shone and Fung, was

computed here from 1000 simulations.

They then employ their graphical method and assert that
there is no evidence for more than two outliers, the
result of the three outlier test being due to the effect
known as swamping. They interpret their graphs as
indicating that definitely point 9 and probably point 21
should be regarded as outliers. Evidence for point 21 is
drawn too from what they call a sequential procedure. That
is, point 9 is eliminated and the standard Wilks tests for
one, two, and more outliers are carried out on the
remaining 35 points in the reduced sample, giving (their
Table 3.3, with the addition of the result for three

outliers, computed from 4000 simulations):

Table 4.7.4

No. of outliers Wilks'’ Observations
statistic o selected
1 0.577 0.02 21
2 0.407 0.04 21,36
3 0.287 0.028 21,36,20

The significant result of the two-outlier test
presumably indicates that swamping is still in effect,
although Bacon-Shone and Fung make no remark on this
result.
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To obtain comparative results using Rosner’s first
sequentially applied test, critical values have been

computed for n=36 and p=3. These are as follows:

Table 4.7.5

Max. no of
outliers cutliers 0.01 0.025 0.05 0.10

3 1 0.5201 0.5527 0.5794 0.6096
2 0.6063 0.6287 0.6488 0.6702
3 0.6375 0.6575 0.6741 0.6926
2 1 0.5335 0.5656 0.5954 0.6237
2 0.6134 0.6385 0.6594 0.6808

Alternatively, these could be obtained approximately by

interpolation from the previous takles.

The three most extreme points are numbers 9, 21 and 36
in the data file, with test statistics D =0.4815,
D =0.5770 and D =0.7058. All these details match the
results of Bacon-Shone and Fung. It can be seen that D3
is so large that we would not accept the existence of
three outliers even at the 10% level. Testing therefore
passes to D_, which is below the 1% critical value of
0.6063. Consequently, the evidence seems to be very clear
that this set of data contains two outliers, points 9 and
21.

Rosner’s second procedure simply uses the unadjusted
critical values of Wilks’ statistic test at each step.
The results, for testing for up to 3 outliers, are set out
in Table 4.7.6. Details of tests beyond 3 outliers (up to
10) are not presented because all calculated values of
Wilks’ statistic were above 0.7, whereas even the 10%

critical value was only 0.64 or less.
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Table 4.7.6

Critical values of
Wilks’ statistic

Sample Oomit Wilks’ 1% 2.5% 5% 10%
size point statistic
36 9 .481 .558 .592 .619 .648
35 21 .577 .548 .583 .611 .640
34 36 .706 .539 .574 .602 .632

Accepting the validity of the approximation involved in
the use of these unadjusted significance levels, the
conclusion would be that the existence of two outliers
(9,21) can be accepted at the 2.5% level, but three
outliers would not be accepted even at 10%.

The results from either version of Rosner’s test
indicate the same conclusion, that 9, 21 can be regarded
as outliers; this is without needing graphical supplement
to overcome the swamping problen.
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CHAPTER 5

ROHLF’S GENERALIZED GAP TEST FOR MULTIVARIATE
OUTLIERS

5.1 Introduction

In univariate problems, any outliers must lie at the
extremes of the ordered sample values. This simple
observation makes possible certain characterizations of
outliers. In particular, if there are exactly k upper
outliers, then the gap between the successive order

statistics X should be unusually large: this

(n-k+1) X (n-k)
test was proposed by Irwin (1925). The idea was revived by
Tietjen and Moore (1972) and Tiku (1975), who propose
using the gaps to see how many outliers to test for and
then using an optimal test for that number. The gap tests
themselves are not optimal but, as Hawkins (1980a) says,
they are very attractive if there is reason to believe
that the contaminants all follow the same distribution,
for then the data ought to fall into two well-separated
clusters. Various other tests using gaps were proposed by
Dixon (1950). His test criteria are ratios of differences
between order statistics: one example was shown in Example
1 of § 1.4. Hawkins (1980a) comments that these criteria
have lost favour, partly because they do not extend to

other situations, such as linear models.

Gap tests thus form, or have formed, a significant part
of the theory on testing for outliers in univariate
samples. For multivariate data, on the other hand, they
cannot fill the same role. It is difficult to define gaps
in terms of order statistics, because of the lack of a
convenient concept of ordering (Barnett, 1976).
Nonetheless, a form of gap test has been proposed for
multivariate data, by Rohlf (1975). Far from having lost
favour, this seems from the literature never to have had

any. But potentially it has advantages over the main
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general-purpose test, the Wilks test, if there is more
than one outlier. Rohlf claims that his test should be
less susceptible to masking than the Wilks test and points
out that it requires the same computational effort
whatever number of outliers is examined, whereas the Wilks
procedure requires a rapidly increasing number of
comparisons. (The reason for this is that Rohlf’s test is
not in fact a test for any particular number of outliers:
if the test results in the declaration of the presence of
outliers, then their number is inferred from the structure
of the sample, as described below.) A third possible
advantage which could be added is that the Bonferroni
bounds usually used for the Wilks test are poor
approximations for more than one outlier (Hawkins, 1980a;
see also Chapter 3 of this thesis). For these reasons, it

is worth investigating Rohlf’s test in some detail.

Rohlf’s procedure starts by defining a distance measure
between the points in a sample of independent
p-dimensional data vectors, and constructing the minimum
spanning tree (MST) for these distances. A spanning tree

of a set of n points is a set of n-1 out of the (n
‘ 2
possible edges (connections between pairs of points) such

that:

(i) each point is connected to at least one another;

(ii) every point is accessible from every other point
by following some path along edges of the tree;

(iii) there are no closed loops - for any (i,]j), there
is a unique path of edges by which point j can be reached

from point i.

The MST is that spanning tree which has minimum sum of
length of edges. It has a wide variety of applications in
operational research problems. Its importance in
multivariate data analysis is due to its equivalence to
single linkage cluster analysis and its usefulness as a

supplement to graphical displays in two dimensions (Gower
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and Ross, 1969).

Rohlf then suggests that the distances (or edges) in
the MST be taken as analogous to gaps in a univariate
sample. In particular, the presence of an outlier would be
indicated by the fact that the largest distance in the MST
was unusually large in comparison to the rest. Rohlf’s
idea is basically to examine this largest distance in the
MST. This might be done informally in a probability plot,
but Rohlf also gives a more formal, significance testing
approach (although in subsequent correspondence, he seens
rather defensive about this and claims that the plot was
intended to be the main method; Rohlf, 1977). One reason
for the lack of popularity of this procedure may be that
its theoretical basis is not very sound. Rohlf argues for
a gamma distribution for the set of distances from the MST
and proposes estimating the parameters of this gamma,
followed by a test using these parameter estimates as if
they were true values. He presents a table of Bonferroni
upper bounds for the ratio of maximum to average distance
in the MST. Strangely, Barnett and Lewis (1984) refer to
this table without pointing out that it is the same,
except for multiplying each entry by the sample size, as
the first table in their book, for testing discordancy in
a gamma sample.

The contents of the analysis of Rohlf’s gap test are as
follows. Firstly, the performance of the test in the form
suggested by Rohlf is investigated. Secondly, a modified
testing procedure, using simulated rather than
approximated percentage points, is considered. Finally, a
further variation, replacing Rohlf’s Euclidean distances

by generalized distances, is examined.

5.2 Examination of Rohlf’s procedure

5.2.1 Choice of distance measure

Rohlf’s first step is the selection of a distance
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measure. He opts for a Euclidean distance on standardized
variables, so that given the nxp data matrix X=(xm) and
sample standard deviation S, for variable k, the distance

between points i and j is

P
d3j={k£1(x;k—xgk)2/p}l/2 (5.2.1)
where x;k=x;k/sk. The standardization is to equalize the
impacts of variables with differing variances. Rohlf
actually suggests using some unspecified form of robust
estimator of S, 1 his description of the first step of his

procedure being:

"Perform a univariate test for outliers (such as Dixon’s
{1950} gap test) so that one can obtain fairly good

estimates of the standard deviations for each variable."

Robust estimation seems logically necessary after
choosing to use standardization in (5.2.1). Otherwise, no
matter how large an outlier might be in a particular
dimension k on the original scale of measurement, its
inclusion in the computation of s means that distances to
this outlier in this dimension are constrained to be of
only the same order of magnitude as distances between
points on other dimensions where no outliers appear. This

would mean a very severe lack of sensitivity.

The robust estimation was carried out in the present
study by simply trimming the sample (separately in each
dimension) by omitting either the most extreme observation
at each end of the ordered sample values or the two most
extreme at each end. The standard deviation of the
remaining n-2 or n-4 observations was then computed and
used in place of s, in (5.2.1). This quantity does not of
course estimate the population standard deviation unless
it is adjusted; however, the adjustment would be the same

for each dimension, so has no effect in the analysis.

Rohlf also remarked that the familiar generalized
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squared distances
d® =(x.-x)’s (x.-x) (5.2.2)
ij i i e

could be used in place of those given by (5.2.1), without
elaborating on this. The analysis presented here will
first be in terms of (5.2.1), before considering use of
(5.2.2).

5.2.2 Distribution of distances

Rohlf argues that if the data were independent vectors
from Np(u,I), then the squared Euclidean distance between

two randomly selected points would be distributed as 2X2.

In fact this applies more generally than Rohlf states,
to standardized squared distances from Np(u,Z) where

: 2 2 .
Z=d1ag(01,...,d ), since
P

2
X xjk N(O,ZUQ

independently in each dimension k=1,...,p, so

(xi k—xjk)

>~ N0, 1)
k

2

N~ o

(x. =X )

and ik jk

2
20
k

(However, the same distribution cannot hold when o is
replaced by a sample estimate S, s when the N(0,1)
quantities are replaced by t distributions.) The
distribution 2X° is the same as the gamma distribution
G(1/4,p/2) withpscale parameter A=1/4 and shape parameter
n=p/2. Rohlf then says that, if the variables are
correlated, a randomly selected dfj should still
approximately follow the gamma distribution, but with
different parameter values. (Note that Rohlf divides the

squared distance by p; this is not important, because a
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constant multiple of a gamma distributed random variable

is also gamma distributed.)

Some of the details behind Rohlf’s statement can be
found in Gnanadesikan (1977; p.233). If A is a non-random
matrix and vectors Yi are a random sample from N(0,9),
then squared distances YxlAYi are distributed as the
linear combination caxf+...+crxf, where the c, are
positive eigenvalues of A®, the x%’s are independent
chi-squared values each with one d.f. and r is the rank of
A. It is then a well-known approximation that a gamma
distribution comes close to this combination of
chi-squared variates, for suitable choice of parameters.
The same result is used, as a further approximation, when
A is an estimate from the sample. To apply this to
distances between points X, distributed as N(u,%), one
looks at d? =Y 'AY where Y =x -x ~ N(0,2Z).

ij 1] ij i] 1 j

Further approximation is introduced through the Y1 ’'s
not being independent. 1In fact the sample of n points
provides n(n-~1)/2 values of dfj and clearly their heavy
interdependence could mean that it is unlikely that this
entire set of values follows the gamma distribution at all
well. However, interest here lies only in the selected
subset of n-1 distances which make up the MST. These are
certainly not a random sample of all distances, and Rohlf
(1977) gives some simulation results showing that their
statistical properties are quite different from those of
randomly selected distances. Rohlf also claims that
empirically a gamma distribution does fit the squares of
these distances quite well. Because the MST distances
tend to be among the smaller values of dU’ the
theoretical parameters of the gamma distribution would not
apply even if the variables were independent, so the
parameters A and n need to be estimated from the data,
that is, from the MST.

In the special case of generalized distances, given by
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a=s™' in Yi’AYi an exact distributional result is known.
For a randomly selected pair of points, dfj/Z(n-l) follows
the Beta distribution with parameters p/2 and (n-p-1)/2
(Gnanadesikan and Kettenring, 1972). There are also some
results on correlations between distances within the same
sample. Specifically, any squared distances dfj and df,j,
have asymptotic correlation 0 if i#i’ and j#j’ but 0.5 if
one index is in common (Gnanadesikan and Kettenring,
1972). Again, these results seem to have little bearing on
the special sample of distances making up the MST. A
gamma approximation may be tried, as with the standardized
Euclidean distances. Rohlf remarks that "preliminary
simulation runs do not seem to indicate any distinct
advantage" in using generalized rather than Euclidean
distances. This appears to be correct: Figures 5.2.1 to
5.2.4 show examples of gamma probability plots of MST
distances for both Euclidean and generalized distances.
These plots were not selected; they are simply the first
of a number of runs. The general indication seems to be
that a gamma distribution is a reasonably good
approximation and that this holds just as well for either

form of distance measure.

5.2.3 Testing procedure

Following the above discussion, Rohlf’s procedure is
based on the fit of a gamma distribution to the distances
of the edges in the MST. Since theory does not supply
values for the parameters of the distribution, they must
be estimated. These parameter estimates can then be used
either to construct a gamma probability plot for visual
assessment of the MST distances or to permit formal
testing of some aspect of the MST. Attention here will be
focused on the formal testing, which is carried out for
the length of the longest edge in the MST in relation to
the total length, because visual assessment is impractical
with the large-scale simulation study which will be called

for. In any case, Rohlf claims advantages for his
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Figure 5.2.1

0~-Q plot of Euclidean MST distances (ordinate)

against expected gamma order statistics (abscissa): n=20,
p=2, p=0.6.

Figure 5.2.2

Gamma Q-Q plot of Euclidean MST distances:
n=20, p=4, p=0.6.
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Figure 5.2.

2 Gamma Q-Q plot of generalized MST distance:

n=30, p=4,
8 r

p=0.

A A " 1 i e 1 1

[

Figure 5.2.4

n=20, p=5,

p=0.

2 4 6 8
Gamma Q-Q plot of generalized MST distance:
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procedure over that of Wilks and so, since Wilks’ is a
formal test, it is this aspect of Rohlf’s procedure which
must be examined.

Rohlf’s procedure depends on the following argument.
Suppose that the MST distances {di} follow the gamma
distribution G(A,7n), with known parameters. Then if

2 .

Yi=di, any ratio

Y
i

Ly,
follows a beta distribution with parameters m and (m-1)7.
Here, m is being used to denote the number of edges in the
MST, so equals the sample size minus one. The m such
ratios are not independent, so, as usual, obtaining the
distribution of the maximum ratio is not possible, but the
first Bonferroni approximation can be used. Rohlf
presents a table of these approximations to the 1% and 5%
points, for the test statistic max Y;/?, for a range of
values of m and of n. He proposes using this table (by
interpolation) with the sample estimate % substituted for
the true unknown 7m. There are consequently three

approximations involved in the test procedure:

(i) the gamma distribution is an approximation to

the distribution of distances in the MST;

(ii) the theory cannot take account of the use of

an estimate of 7

(1ii) Bonferroni approximations are needed for

the percentage points.

Any one of these might be a good approximation on its
own. Unfortunately, their cumulative effect seems to
result in unacceptably imprecise values for the tests.
This can be seen from the following results of simulation

comparisons to Wilks’ test for one outlier.

The details of the computation of the test statistic
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are as follows. The algorithm of Ross (1969) was used to
obtain the MST, using standardized Euclidean distances
with trimmed estimates of standard deviations. Maximum
likelihood estimates of the parameters A and n of the
gamma distribution fitted to the MST distances were found
by Newton-Raphson iteration, incorporating Bernardo’s
(1976) algorithm to compute the psi (digamma) function.
Probabilities from the beta distribution were obtained by
using the IMSIL subroutine MDBETA to evaluate the
incomplete beta integral. Direct computation of the
probabilities seemed more convenient for a simulation study
than interpolation in the published table. In fact, it
seems the best option for use of the test in practice,
since anyone with the facilities to evaluate the MST and
fit the gamma distibution can also evaluate the incomplete

beta integral.

5.2.4 The number of outliers declared

As mentioned earlier, Rohlf’s test is not a test for
any specific number of outliers: it is applied in the same
form in all circumstances and does not have different
variants depending on the hypothesized possible number of
outliers. If the significance test leads to a declaration
that the sample is not homogeneous, then the number of
outliers must be determined by inspection of the MST. If
the largest edge links a single point to the rest of the
sample, then one outlier is indicated. Otherwise, the
number of outliers is the minimum of the number of points
making up the two isoclated clusters which would result on
removing the longest edge of the MST. Notice that this
means that multiple outliers can only be detected if they
form a cluster in this sense. Hence the presence of
outliers in opposite directions away from the main body of

data would never be detectable.

Determination of the number of points in a cluster is a

trivial matter by eye, but for a simulation study,



- 138 -

inspection must be automated. An algorithm to determine
the number of outliers is as follows. Ross’ (1969)
algorithm to construct the MST from a sample of size n
returns a vector B of dimension n, in which element B(1i)
contains the index of one of the points to which sample
member i is joined in the MST (iz2). Distances between 1i
and B(i) are held in array C. The first step in
determining the number of outliers is to search through C
to identify the points k and 1=B(k) which are joined by
the longest edge of the MST. The algorithm then operates
on k, but first the special case 1=1 has to be checked.
In this case, search B to see if B(i)=1 for any other i=z2.
If not, then 1 is not connected to any point other than k,
so there is only one outlier. Otherwise, the procedure

continues as in the general case.

The steps are as follows:

1. Let OUTL-1.

2. Search through B for iz2 for the first time that
B(i)=k, at i=m, say. If it does not happen at all,
then go to step 4.

3. Set B(m)=0
Set OUTL=OUTL+1
Run through B for iz2 and for every j with B(j)=m,
set B(Jj)=k.
Go to 2.

4. Number of outliers=min(OUTL,n-0OUTL).

The logic behind step 3 is the identification of any
other points m, besides 1, which are linked to k in the
MST. Points linked to m must also be counted as falling
in the same cluster of points as k and setting B(j)=k for
such points ensures that this will be done, while setting
B(m)=0 prevents the recounting of this point. The logic

of step 4 is that it is not known whether, in choosing to



work with k rather than 1,

the main body of

of outliers.

A Fortran coding of this algorithm is as follows.
input arrays C and B of dimension N are as in Ross’

algorithm. The parameter NOUT holds the number of
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points or a member of the smaller cluster

outliers on output.

21

200

33

210

23

270

260

500

SUBROUTINE NOUTL(N,C,B,NOUT)

REAL C(N)
INTEGER B(N),HALFN

K=2
L=B(2)
XMAX=C (2)

DO 200 I=3,N
IF(C(I).GT.XMAX) GO TO 21
GO TO 200
XMAX=C (I)

K=I
L=B (K)

CONTINUE

IF(L.EQ.1) GO TO 33

GO TO 2

DO 210 I=2,N
IF(I.EQ.K) GO TO 210
IF(B(I).EQ.1) GO TO 2

CONTINUE

NOUT=1

GO TO 500

NOUT=1

DO 260 I=2,N
IF(B(I).EQ.K) GO TO 23
GO TO 260
B(I)=0
NOUT=NOUT+1
DO 270 J=2,N

IF(B(J).EQ.I) B(J)=K
GO TO 1
CONTINUE
HALFN=N/2

IF(NOUT.GT.HALFN) NOUT=N-NOUT

CONTINUE

RETURN
END

one has selected a member of
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5.3 Simulation studies of Rohlf’s procedure and

modifications

5.3.1 Comparison between Rohlf’s and Wilks’ tests

In the first study, Rohlf’s original test (standardized
Euclidean distances, robust estimation of dispersion by
trimming, Bonferroni bounds for the largest distance of
the MST) was compared to Wilks’ test. The comparison was
in terms of the power in detecting a single outlier, at
the 5% significance level, and also using Bonferroni
bounds for Wilks’ test. Table 5.3.1 shows results for
various combinations of sample size n, dimensionality p
and correlation p between dimensions (taken to be equal
for all pairs of dimensions). Each figure is based on
8,000 simulations, with the two statistics computed from
the same data. The data were generated from the
multivariate normal distribution with mean zero and unit
variances, with a single contaminant created by adding u
units to each dimension for the first point in the sample,
where u was determined so that the squared generalized
distance of the slippage from the origin in the metric of

the population covariance matrix was 30.

Table 5.3.1 Powers of Rohlf’s and Wilks’ statistics at

nominal 5% level in the presence of a single outlier.

Data description % of times outlier declared
n P P Rohlf Wilks
10 2 -.4 64.1 64.3
10 2 .4 84.6 63.0
10 3 .5 89.5 41.2
10 3 0 75.0 40.5
50 2 .4 98.7 92.4
50 4 .4 97.7 82.2

At first sight, the selection of results in Table 5.3.1
might be taken to indicate that Rohlf’s test is a very

good one, with power vastly in excess of that of Wilks’
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test, in most circumstances. However, it should be
remembered that the Wilks’ test is obtained by maximum
likelihood under the model used in the data simulation.
Furthermore, the conservative Bonferroni percentage points
for the Wilks’ test are, as discussed in Chapter 3, quite
good. For example, a nominal 5% test appears from table
3.2.3c to be actually at about 4.9%. These two facts, that
Wilks’ test is based on maximum likelihood and that its
percentage points are quite accurate, imply that Rohlf’s
test can only appear to be vastly better if its percentage
points are quite inaccurate and not conservative, but in
the opposite direction. For example, a nominal 5% test
might be a true 10% test. Differences of this kind, and
in this direction, render the test in this form unusable

as a formal test statistic.

It should be noted that this conclusion is not
dependent on the use of Euclidean rather than any other
distance measure. The simulations selected in Table 5.3.1
include a case of p=0, where sample differences between

different measures ought to be very small.

To which of the three approximations listed in § 5.2.3
is the inaccuracy of these percentage points owing? It
cannot be to the fact that they are Bonferroni bounds,
since that would cause conservatism. Nor, from the
empirical plots, does it appear to be due to the
assumption of a gamma distribution. It must therefore
arise from the use of the estimated parameters of the

gamma as if they were known values.

5.3.2 Use of an average value of 7

Since the approximations involved in Rohlf’s testing
procedure appear to be too inaccurate and since no
superior approximation presents itself, the investigation
now turns to the use of simulation results to provide an

improved procedure.
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Figure 5.3.1 Sampling distribution of 7: 500 simulations,

n=10, p=2, p=.2.

—
4

] 2 3

A
Figure 5.3.2 Sampling distribution of n: 500 simulations,

n=30, p=4, p=.4.
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The stage of Rohlf’s method which seems to be the
particularly important source of inaccuracy is the use of
the sample % as if it were the true 7m. Figures 5.3.1 and
5.3.2 show two examples of sampling distributions of %,
illustrating that this quantity is extremely variable
between samples. Matters might therefore be improved if
the average % for given n and p can be found and this used
in place of the specific sample %. This presumably only
works if other aspects of the structure of the problem do
not affect %, including the correlations between the
different dimensions. However, this seems unlikely to be
the case with Euclidean distances and the results in Table
5.3.2 show that this is indeed so. If p is the
correlation between any pair of dimensions, then the
average value of % falls as p moves away from zero in
either direction. The fall is rather large when p becomes
large, such as 0.8. Usually, the covariance matrix is
unknown and, consequently, the appropriate value of 7 -
which is being selected to avoid sampling effects - could
only be found if sample estimates of the covariances were
used. In other words, one sampling effect is replaced by

another, which is unlikely to lead to any advantage.
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Table 5.3.2. Average values of gamma shape parameter estimated

in minimum spanning tree of equicorrelated multivariate normal
data, using Euclidean distances of the form 5.2.1 with trimmed

standard deviations : 500 simulations.

P
-0.4 0 0.2 0.4 0.8
p=2 n=10 1.3226 1.4236 1.3923 1.3608 1.0845
20 1.0003 .9881 1.0133 .9768 .9138
30 .9028 .8938 .9064 .9042 .8466
p=3 n=10 2.1107 2.5170 2.4424 2.3195 1.7806
20 1.6420 1.8775 1.8141 1.7616 1.5118
30 1.5610 1.6590 1.6695 1.5739 1.4269
p=-.3
p=4 n=10 3.2780 3.9612 3.7871 3.5280 2.4985
20 2.2996 2.9705 2.7548 2.6905 2.2409
30 2.1739 2.5192 2.5008 2.3924 1.9928
5.3.3 Simulated percentage points

Since procedures based on % or an average of % seen to
be ineffective, attention will now be turned away away
from attempting to construct percentage points using the
gamma distribution; instead, the possibility of simulating

percentage points will be investigated.

The investigation was carried out in the context of

equicorrelated normal data, with

S=0{ (1-p) I+pJ}

where J is the pxp matrix whose entries are all ones.
Data were generated for different combinations of n, p and

p, as follows:

At each combination, 2000 samples were simulated. The
1, 2.5, 5 and 10% critical values of main/Q were

recorded; these are shown in Table 5.3.3 (a-c).
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Table 5.3.3a Percentage points of max Y /Y statistic for

minimum spanning tree in equicorrelated normal data,

obtained from 2000 simulations.

p=2 n=10 p=2 n=20

1% 2.5% 5% 10% 1% 2.5% 5% 10%

~-.9 .8246 .7677 .7133 .6341 .6983 .6434 .5706 .4949
-.8 .7799 .7233 .6591 .5799 .6425 .5757 .5161 .4385
-.6 .7226 .6568 .5935 .5212 .5797 .5176 .4525 .3889
-.4 .6898 .6182 .5607 .4987 .5480 .4805 .4281 .3663
-.2 .6969 .6224 .5523 .4816 .5046 .4442 .3966 .3455
-.1 .6720 .5945 .5428 .4800 .5181 .4516 .4016 .3533
0 .6856 .6042 .5490 .4696 .5135 .4651 .4115 .3493
.1 .6806 .6164 .5512 .4953 .5002 .4498 .4079 .3536
.2 .6766 .6169 .5498 .4945 .5181 .4657 .4147 .3634
.3 .6721 .6119 .5639 .4921 .5320 .4693 .4223 .3672
.4 .6764 .6226 .5782 .5049 .5463 .,4705 .4202 .3690
.5 .6991 .6451 .5760 .4978 .5841 .4996 .4322 .3688
.6 .7191 .6470 .5865 .5174 .5949 .5190 .4719 .3869
.8 .8142 .7547 .6858 .5984 .6681 .6022 .5297 .4422
.9 .8024 .7531 .6968 .6251 .6879 .6346 .5625 .4855

Table 5.3.3b Percentage points of max Y1/§ statistic for
minimum spanning tree in equicorrelated normal data,

obtained from 2000 simulations.

-.9 .6588 .5646 .5049 .4297
-.8 .5638 .4964 .4574 .3936
-.6 .4983 .4431 .3942 .3366

-.4 .4987 .4221 .3669 .3151
-.2 .4514 .4008 .3571 .3091
-.1 .4514 .3836 .3463 .2999
0 .4363 .3912 .3485 .2988
.1 .4435 .3921 .3445 .3006
.2 .4585 .3998 .3467 .3022
.3 .4699 .3904 .3467 .2971
.4 .4822 .3982 .3524 .3025
.5 .5372 .4407 .3879 .3232
.6 .5150 .4348 .3845 .3210
.8 .6053 .5064 .4438 .3666

.9 .6672 .6007 .5373 .4485
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Table 5.3.3c Percentage points of max Y1/§ statistic for
minimum spanning tree in equicorrelated normal data,
obtained from 2000 simulations.

p=3 n=20 p=4 n=20
1% 2.5% 5% 10% 1% 2.5% 5% 10%

~.45 .4449 .3864 .3514 .3045

-.4 .4169 .3687 .3198 .2758

-=.3 .3180 .2810 .2523 .2254

-.2 .3644 .3224 .2895 .2499 .2924 .2523 .2315 .2054
0 .3330 .3028 .2770 .2393 .2769 .2461 .2238 .1983
.2 .3750 .3313 .2842 .2498 .2754 .2469 .2239 .2018
-4 .4010 .3438 .3059 .2595 .3219 .2790 .2489 .2160
.6 .4497 .3968 .3368 .2922 .3871 .3250 .2783 .2385
-8 .5447 .4845 .4206 .3570 .5156 .4454 .3777 .3134
.9 .6720 .5928 .4985 .4180 .6005 .5385 .4714 .3864

The power of Rohlf’s test was investigated first under
the assumption that p was known, so that data were
generated from a population with given p and the value of
Rohlf’s test statistic was then compared to the simulated
percentage points for the same p. Powers in comparison to
Wilks’ test calculated from the same data are shown in
Table 5.3.4. In this comparison, the simulated percentage
points for Wilks’ test, obtained in Chapter 3, are used
rather than the conservative Bonferroni points. It
appears that Rohlf’s test is much more powerful,
especially in those cases (n small compared to p) where

Wilks’ test is not very effective.
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Table 5.3.4 Power comparisons for detection of one outlier

between Rohlf’s and Wilks’ tests in 5000 simulated samples for

each combination of n, p and p, using simulated percentage
points for both tests and treating p as known: outlier slippage

equal in each dimension, squared generalized distance 30.

[+

% of times outlier declared
P n o} Rohlf Wilks Rohlf- Wilks-
not Wilks not Rohlf

At 1% level

210 O 54.80 31.68 24.32 1.20
0.6 68.68 31.52 37.34 1.80
220 O 77.54 65.56 13.68 1.70
0.6 83.88 66.34 18.58 1.04
4 10 O 44.18 7.42 37.70 0.94
0.6 81.04 7.28 73.84 0.08
4 20 O 71.60 39.42 32.70 0.52
0.6 89.38 39.86 49.60 0.08

At 5% level

210 O 82.62 64.06 19.42 0.86
0.6 87.84 63.92 24.22 0.30
2 10 O 88.88 86.80 4.70 2.70
0.6 92.76 86.14 7.70 1.08
4 10 O 75.36 25.66 51.06 1.36
0.6 91.74 25.44 66.76 0.46
4 20 O 84.70 66.04 19.68 1.02
0.6 94.84 65.70 29.38 0.24

One reason for the better performance of Rohlf’s test
in this comparison is that it exploits the information
concerning p. Wilks’ test, on the other hand, is a
general test for any correlation structure. A more
appropriate comparison, therefore, could be between
Rohlf’s test and a version of Wilks’ test which did
benefit from knowledge of the correlation structure. An

approximation to this is to take the case p=0, and use
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p -

Y (x, -x)%/¢° ~ X%, i=1,...,n

- ij 3 b P

j=1
where X ree. /X are independent vectors from Np(u,Z) with
=diag(of,...,oi). Since o? is unknown, it is replaced by
its estimate s?, giving the statistic

p -—
Y (x, —%)°/s?
j=1 ij j ]

This is the statistic suggested by Healy (1968) for
probability plotting. Although it does not itself follow
the X° distribution, this distribution can be kept as an
approximation. For this outlier detecting application,

the maximum value of the statistic over choices of X, from

(xl,...,xn) is taken, and Bonferroni % points from XE are
used for significance testing. A power comparison between
Rohlf’s test statistic and this new test is shown in Table
5.3.5. The difference between the powers is, as expected,
much less than was the case in the comparison with the
standard Wilks’ test statistic. This comparison could be
refined further, by constructing simulated percentage
points for the new test statistic instead of taking
Bonferroni approximations to the critical values of an
approximate distribution, but the effort does not seem to
be worthwhile since the case of known p is seldom
realistic. 1Instead, the use of unknown p will be looked
at further.

Table 5.3.5 Power comparison for detection of one outlier

between Rohlf’s test and a Wilks’-type test statistic: details
as Table 5.3.4., n=20, p=4, p=0.

% of times outlier declared by
Level of Rohlf Wilks Rohlf- Wilks-
significance not Wilks not Rohlf
1% 71.60 59.82 14.18 2.40
2.5% 79.00 72.86 9.72 3.58
5% 84.70 81.30 6.86 3.46

10% 88.70 88.20 4.36 3.86
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The assumption of equicorrelation structure was

maintained for this analysis.

Under this assumption, p

was estimated in each sample and critical values for this

value of p interpolated from those obtained earlier and

shown in Table 5.3.3.

used as if it were a known value,

alternative procedure presented itself.

interpolating critical values were obtained by fitting

polynomials
combination
for quartic

since no better

Curves for

in p to the critical values for each

of n, p and significance level.

This estimate of p was thus being

Coefficients

fits are shown in Table 5.3.6 and Figure 5.3.3

illustrates observed and fitted values for the cases
n=20, p=2, p=0,%+.9,+.8,+.6,+.4,+.2,+.1,.3,.5
n=20, p=3, p=-.45,%*.4,%*.2,0,.6,.8,.9

Table 5.3.6 Coefficients for quartic in p fitted to simulated

100% percentage points (p3 term omitted for n=20, p=3 and p=4

because tolerance limit in the regression exceeded).

Coefficients x 10~

jo) n o constant p p2 p3 p4 R?

2 10 .01 67506 -1668 10752 2980 8331 0.9238
.025 60510 624 11497 =737 10815 0.9480
.05 54718 1167 9530 —-1444 12782 0.9691
.10 48297 604 5729 =574 15331 0.9699

2 20 .01 50594 1183 26587 153 -6228 0.9867
.025 45154 204 16133 1174 7213 0.9852
.05 40388 1031 11789 -857 9821 0.9838
.10 35346 691 4267 -926 14735 0.9875

2 30 .01 44735 105 21013 4896 1107 0.9616
.025 39269 -2411 7748 6341 16737 0.9733
.05 34856 -1700 4147 3131 20832 0.9766
.10 30298 -1551 -607 1366 21992 0.9741

3 20 .01 35405 -4083 27115 - 18324 0.9769
.025 31524 -3536 20524 - 20348 0.9870
.05 28061 -3933 17272 - 16596 0.9898
.10 24266 -3378 15415 - 11826 0.9881

4 20 .01 27385 ~-3734 33882 - 13116 0.9992
.025 24597 -3079 19611 - 24389 0.9977
.05 22694 -2886 9848 - 28474 0.9956
.10 19872 -3227 10462 - 19470 0.9904
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-1-0 --5 0 -5 1-0

Figure 5.3.3 Simulated 5% critical values with quartic
fits. '

Firstly, it will be confirmed that it is necessary in
practice to use different critical values for each value
of p. It would not matter that p ought theoretically to be
taken into account if the effect of, say, using the p=0
percentage points in a population with p=0.9 was only of
the order of altering a 5% significance level into a 5.5%
one. This is clearly not the case, however. The
differences seen above for different values of p have
large effects, as illustrated in the following power
comparison between Rohlf’s and Wilks’ tests - (Table
5.3.6) - in which the percentage points for p=0 are
applied to samples generated with p=0.6 as well as to the
case p=0. The differences are so large that it would be

unacceptable not to take p into account.
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Table 5.3.7 Power comparison between Rohlf’s and Wilks’ tests
in 1000 simulated samples with n=10, p=4 and p=0 or 0.6;
outlier slippages= 4.5826 in each component (squared
generalized distance 30); critical values of Rohlf’s test are

those simulated for p=0.

Q,

% of times outliers are declared at

1% level 5% level
p no. of Rohlf Wilks Rohlf Wilks
outliers
0 1 44.2 7.4 75.4 25.7
2 18.8 2.3 53.9 10.0
0.6 1 88.9 7.3 96.6 25.4
2 71.5 2.3 91.6 10.3

The performance of a test using these simulated
percentage points was investigated by simulating further
sets of data, estimating B assuming the equicorrelation
model and using the polynomial in p to obtain critical
values to be used as if this value of p were the true
value. Samples were first generated under the null
hypothesis (no outliers) to check the exceedance
probabilities of this procedure. Results are shown in
Table 5.3.8. It can be seen that this test is generally a
little conservative. Some dependence on p is evident,
with the most extreme values of the exceedence
probabilities being associated with the extreme values of
p. This might be expected, because the slopes of the
curves in Figure 5.3.3 show that this is where the

critical values are most sensitive to the value of p.

Since these results show that the size of this
procedure is acceptably well controlled, it is reasonable
to go on to power studies. These are again based on 2000
simulated samples at each combination of n, p, p and
slippage vectors for one and two outliers. Wilks’ test
was computed (using simulated percentage points) on the
same data for comparison to the above version of Rohlf’s
gap test.
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Table 5.3.8 Exceedance probabilities obtained on
estimating p.

Observed exceedance probabilities at nominal level

p n [o] 1% 2.5% 5% 10%
2 10 -.8 .008 .021 .050 . 099
-.2 .004 .015 .045 .089

0 .007 .018 .038 .086

.4 .006 .019 .038 .085

.9 .010 .021 .042 .092

2 20 -.8 .010 .027 .045 .094
-.2 .014 .029 .057 .120

0 .009 .024 .044 .097

.4 . 005 .021 .046 .089

.9 .016 .029 .062 .113

2 30 -.8 .013 .030 .050 . 097
-.2 .009 .023 .047 .091

0 .009 .021 .047 .099

.4 .008 .029 . 055 .110

.9 .007 .022 .044 . 095

3 20 -.45 .017 .036 .067 .123
-.2 .010 .024 .047 . 095

0 .011 .022 . 045 .103

.4 .010 .028 .055 .103

.9 .006 .018 .055 117

In the first instance, slippage vectors consisted of an
equal quantity added to each dimension, the quantity being
a function of p chosen so that the generalized distance of
the slippage vector from the origin was constant over p.
This meant that the power of Wilks’ test was also constant
over p. However, it was found that the power of Rohlf’s
test depended very strongly on p, being very low for large
negative values of p, increasing steeply as p approaches
zero and then increasing slightly as p increases through
positive values. This behaviour is illustrated in Table

5.3.9 and Figure 5.3.4 for one outlier only.
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Table 5.3.9 Power comparison for one outlier between Rohlf’s
and Wilks’ tests in 2000 simulated samples for different n’s,

p’s and p’s; outlier slippages = I(1+(p-1)p).D2/T§; (squared

generalized distance D2=30); critical values of Rohlf’s test
are interpolated from the quartic fit.

o

of times outliers are declared at
the 5% level

P n p Rohlf Wilks Rohlf-not Wilks Wilks-not Rohlf

2 10 -.9 10.85 62.80 1.00 52.95
-.8 29.30 64.00 1.85 36.55
-.6 56.40 64.50 6.10 14.20
-.4 66.55 64.10 8.60 6.15
-.2 72.60 62.85 12.85 3.10
-.1 74.40 62.25 14.20 2.05

0 76.15 62.15 15.70 1.70
.1 76.35 62.70 14.90 1.25
.2 76.85 63.70 14.25 1.10
.3 78.20 62.65 16.50 .95
.4 79.30 62.20 18.10 1.00
.5 77.25 62.60 16.25 1.60
.6 79.25 63.50 17.60 1.85
.8 79.15 63.90 16.85 1.60
.9 80.55 64.30 18.70 2.45

2 20 -.9 12.20 86.70 .30 74.80
-.8 36.50 85.50 .35 49.65
-.6 65.75 85.95 .85 21.05
-.4 78.60 85.95 2.50 9.85
-.2 82.90 85.80 3.65 6.55
-.1 85.30 86.85 3.00 4.55

0 85.10 85.30 3.95 4.15
.1 85.40 85.40 4.00 4.00
.2 88.85 86.45 4.55 2.15
.3 87.25 85.50 4.35 2.60
.4 88.70 86.20 5.30 2.80
.5 90.40 87.85 5.30 2.75
.6 87.95 84.80 6.05 2.90
.8 89.60 85.70 6.20 2.30
.9 89.55 86.20 6.55 3.20

3 20 -.45 7.85 76.65 .55 69.35
-.4 22.65 77.25 .75 55.35
-.2 72.10 76.25 5.40 9.55

0 85.00 77.40 9.70 2.10
.2 88.00 76.50 12.60 1.10
.4 88.35 75.40 14.10 1.15
.6 89.35 75.80 15.15 1.60
.8 91.05 77.90 14.30 1.15

.9 93.00 77.50 16.40 .90
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Figure 5.3.4 Powers of Wilks’ (W) and Rohlf’s (R) tests
as a function of p, for (n,p)=(10,2) and (20,3).

The reason for this behaviour is easy to find. 1In the
two-dimensional case, the generalized distance represented

by the slippage vector (§,8) is easily shown to be

28°/ (1+p)

if variances are unity. It follows that, for constant
generalized distances, the value 8 must be proportional to
{(1+p). This is a monotonically increasing function of p.
Moreover its slope is a monotonically decreasing function
of p. Consequently, the slippage is, as p increases, an
increasing distance from the origin, with the rate of
increase being greatest for the larger negative values of
p. Since Rohlf’s test uses Euclidean distance, this
behaviour of the chosen slippage vector entirely agrees
with the observed behaviour of the power function. As a
check, it can be predicted that if slippages of (&,-8) are
used, then the desired a is proportional to {(1-p): in
this case, the opposite relation between the power of
Rohlf’s test and p should be observed, as indeed it is
(Table 5.3.10).
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Table 5.3.10 Power comparison for one outlier between Rohlf’s
and Wilks’ tests in 2000 simulated samples for different n’s,

p’s and p’s; outlier slippages = J}1+(p—1)p).D2/f§; (squared

generalized distance D2=30); critical values of Rohlf’s test
are interpolated from the quartic fit.

times outliers are declared at
the 5% level

% of

9] n p Rohlf Wilks Rohlf-not Wilks Wilks-not Rohlf
2 10 -.9 80.30 63.45 18.90 2.05
-.8 77.05 62.35 16.70 2.00
-.6 79.95 63.40 18.05 1.50
-.4 78.25 62.10 17.35 1.20
-.2 77.10 62.05 16.15 1.10
-.1 78.70 63.05 16.95 1.30
0 76.70 63.70 14.85 1.85
.1 75.45 62.30 15.55 2.40
.2 74.60 63.95 13.35 2.70
.3 70.75 62.85 11.75 3.85
.4 67.40 62.75 9.95 5.30
.5 61.10 63.20 7.20 9.30
.6 53.45 63.60 4.90 15.05
.8 29.20 64.80 1.75 37.35
.9 12.10 62.05 .80 50.75
2 20 -.9 90.90 86.70 6.70 2.50
-.8 90.70 87.65 5.65 2.60
-.6 89.75 87.25 5.35 2.85
-.4 88.55 87.00 4.50 2.95
-.2 87.75 85.55 4.85 2.65
-.1 87.95 86.35 4.30 2.70
0 87.45 86.40 3.80 2.75
.1 86.35 86.05 4.30 4.00
.2 85.15 86.60 3.10 4.55
.3 79.90 86.10 2.15 8.35
.4 77.95 87.05 1.80 10.90
.5 74.20 87.05 1.55 14.40
.6 65.10 85.80 .50 21.20
.8 35.35 85.55 .45 50.65
.9 11.75 86.40 .25 74.90
2 30 -.9 91.55 90.30 3.90 2.65
-.8 90.75 90.90 3.00 3.15
-.6 91.45 91.35 2.75 2.65
-.4 90.50 89.75 3.90 3.15
-.2 89.35 89.65 3.20 3.50
-.1 89.70 90.95 2.10 3.35
0 89.10 91.50 1.50 3.90
.1 88.15 91.20 2.25 5.30
.2 85.50 90.25 1.95 6.70
.3 82.45 91.00 .60 9.00
.4 80.55 90.60 .80 9.40
.5 76.80 90.70 .60 14.50
.6 70.45 90.65 .40 20.60
.8 39.15 980.20 .35 51.40
.9 12.25 90.05 .10 77.90
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5.4 Rohlf’s test: Conclusion

The results of the previous sections have shown that it
is not very difficult to modify Rohlf’s original procedure
to achieve controlled size, but that the power of the
resulting test in relation to Wilks’ test is very heavily
dependent on the correlation structure of the data and is
very much lower than the power of Wilks’ test over a
substantial region of parameter space. Strictly, this has
been shown for the equicorrelation case but it is
reasonable to infer that it applies more generally. It
is, of course, a result which is entirely to be expected,
with hindsight. The test was set up ignoring correlations
between variables, but it is very optimistic to hope that
the outcome would also be independent of correlations.

The only question could be how strong would be the impact
of correlations and the answer here is, very strong. It
is concluded that Rohlf’s test, in a form along the lines

described, is not effective.

Can a useful test be obtained by retaining the
structure of his procedure, but replacing the Euclidean
distance by generalized distance so that correlations are
taken into account? The difficulty lies in obtaining a
robust estimate of the covariance matrix. The necessity
for robust estimation will be demonstrated by first

showing what happens if it is not employed.

Table 5.4.1 shows simulated 5% percentage points for
Rohlf’s statistic based on generalized distances, obtained
from 8,000 simulations of samples of uncorrelated
multivariate normal data at each combination of n and p.
It also shows powers of the test using these percentage
points, in comparison to Wilks’ tests for one and two
outliers. The striking result is that the power of
Rohlf’s test to detect any outliers when there are
actually two outliers quickly becomes very low in

comparison to the power of Wilks’ test as the sample size
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increases. Furthermore, only in the minority of cases
where Rohlf’s test declares any outliers does it declare
that there are two outliers. Thus Rohlf’s test is rather
poor at detecting two outliers, even though in the
situation simulated these are very distinct from the main
body of the sample. Moreover, they have the same slippage,
so are the only kind of multiple outliers in a cluster

which can be detected by Rohlf’s test; see § 5.2.4.

Table 5.4.1 Simulated powers of Rohlf’s and Wilks’ tests for

one and two outliers at 5% level with p=5, in 8000 simulated

samples. Slippage vector(s) 2.4495 in each component (squared
generalized distance 30). R=Rohlf’s test; W1=Wi1ks’

one-outlier test; W2=Wi1ks' two-outlier test.

sample size n

10 20 30 50
Critical value .23695 .16890 .13040 . 09238
One outlier:
% of times
declared by
W1 15.1 54.8 69.5 77.3
R 12.8 44 .8 58.9 67.5
W1 not R 8.0 14.5 13.8 12.2
R not W1 5.7 4.5 3.2 2.5
Two outliers:
% of times any
outliers are
declared by
W2 6.4 42.5 68.8 85.9
R 6.1 15.8 28.2 45.8
W2 not R 4.8 29.2 42.0 40.6
R not W2 4.5 2.7 1.3 0.
R declares 2: 0 0.2 3.7 14.1

The problem can be demonstrated by considering the set
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of data shown in Table 5.4.2 and Figure 5.4.1, consisting
of ten points generated from the bivariate normal N(0,I),
with slippages of (12,12) added to two of the points.

Table 5.4.2 Illustrative data (n=10,p=2) for problem of
failure of Rohlf’s test to declare two outliers.

Point 1 2 3 4 S 6 7 8 9 10

X, 12.73 -0.45 0.24 -0.18 -0.51 -1.02 0.98 0.52 0.25 10.29
X, 11.63 0.13 0.35 0.47 -1.20 -0.08 -0.17 -0.44 2.10 13.32

104

Figure 5.4.1 Scattergram of data of Table 5.4.2.
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A reasonable test for outliers would surely be expected
to declare that both the points to which the slippages
have been added, A and B, are outliers from the main
sample comprising the remaining 8 points. This is what
happens with Wilks’ test for two outliers. The value of

the ratio
|a, |/ |a| =0.069

omitting these 2 points is significant well beyond the 1%
level (simulated critical value = .19038, n=10, p=2).
However, the MST using generalized distances (superimposed
on Figure 5.4.1) does not link A and B, so it is not
possible for both of them to be declared outliers.

Rohlf’s test statistic Ym“/§ takes the value of 0.503,
which falls between the simulated critical values (from
40,000 samples) of 0.518 (5%) and 0.463 (10%), so there is
not even very strong evidence to declare one outlier using
Rohlf’s test.

The reason for this behaviour is that the two large
outliers induce a high correlation in the full sample of
10 points : r=0.967 in fact. The effect of this can be

seen be comparing the standardized Euclidean distance

2 2
— - + -
ij % (xil le) (XiZ Xj2)
52 52

1 2

to the generalized distance

2 2 2
= - + -— - -— -
D” 1 (Xn Xﬂ) (Xm xp) er 0%1 Xn)(xm xp)
1—r2 52 52 s s
1 2 172
= 2 E° - r (X, . -x )Y (x _-x )
1] i1 T i j2
1—r2 s s

Since r is large, the second term can have a big effect.

If the ith and jth points X, and xj both lie along the
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direction from the origin to the vicinity of A and B, then
(x“—xﬂ)(xm—xﬂ) is positive, so that ij is much

reduced in comparison to Efj. If on the other hand, the
line joining X, to xj is orthogonal to that direction,

then (x“—xﬂ)(x —xﬁ) is negative, so D° is

i2 1]
substantially increased over Efj. This is what happens to

the distance AB in this example.

It is obvious that this version of Rohlf’s test fails
to work in such cases because the geometry of the sample
is distorted so severely by the outliers which the test is
trying to detect. Wilks’ two-outlier test can succeed
because it also evaluates an undistorted statistic |a ]|
for comparison to the distorted one |A|. To be effective
in this situation, Rohlf’s test also needs an undistorted
statistic, which was the point of using robust estimators
of dispersion in the case of the standardized Euclidean
distance. The equivalent idea here would be to employ a
robust estimator of the covariance matrix from which to
construct generalized distances. However, a little
reflection shows that this is not a direction worth
pursuing. Calculating a robust covariance matrix is not
such a simple matter as trimming, as employed earlier. It
has been seen earlier that one way of doing it, as
described in Chapter 2, section 2.7, actually reveals a
great deal of information directly related to detecting
outliers in the sample, in the form of the weights
attached to each point. Consequently, there is no need to
go on to Rohlf’s test after making such a calculation; the
MST would only be useful for its customary purpose of data

display.

The conclusion of this chapter therefore remains
negative towards Rohlf’s test, which is not seen to be

usable as an effective outlier test.
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CHAPTER 6

UNION-INTERSECTION TESTING

6.1 Introduction

The union-intersection method of test construction is,
along with likelihood ratio, one of the two principal
approaches to hypothesis testing in the multivariate case.
When likelihood ratio is applied to the slippage of the
mean model used in outlier problems, it leads to the Wilks
statistic via the two-stage procedure described earlier:
the purpose of this chapter is to apply tests by the
alternative methodology and to compare against the Wilks

test to find possible advantages.

The following discussion relates to the usual slippage

model in multivariate normal populations:

H: x ~ N (i,2), i=1,...,n
0] i p
Vs
H: x - Np(u,Z), i#zj,k,...
.~ N (H'*'a.,z),
J P J
X, ~ N (uta ,T), ...
Wilks’ test for declaring a set of points j,k,... of
specified size as outliers requires the minimization over
choices of j,k,... of the statistic
12, | (6.1.1)
2|

where the denominator and numerator are the determinants
of respectively, the sum of squares and products (SSP)
matrices of the sample before and after deletion of the
points j,k,.... Now suppose that each one of the points
j,k,... is considered as belonging to a group on its own,
while the remaining points form another group. Then the
within-group SSP matrix receives no contribution from the

groups which consist of a single point and so is given by
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the SSP matrix of the remainder of the sample, that is,
Aﬂ.“. In other words, the Wilks statistic is the ratio
of the determinants of the within~groups and total(A) SSP
matrices. In the terminology of the multivariate analysis
of variance (MANOVA) between these groups, the Wilks
outlier statistic (6.1.1) is the minimum over choices of
the set of potentially outlying points of Wilks’ lamda
statistic in the one-way MANOVA (Mardia, Kent and Bibby,
1979) :

A= |Ww| /|T] (6.1.2)

where W is the within-groups, error or residual SSP (under
H1) and T is the total SSP, identical to A above. The
usual definitions are

W=

i

n
1 - - ’
I Ox, <% ) (%, %)
1 =1

I~ 8

T=F T (x %) (¢, -X)
i=1 j=1

where there are m groups, with n observations
1

X reeorX, in group i with mean x , the overall mean
1in 1

i
being x. T is often written as B+W, where B is called the
between-groups or hypothesis SSP matrix. B and W are

often denoted by H and E respectively.

The A statistic (6.1.2) may be written as

|T7W| = |B+w| " |W|
= |I+w 'B| 7}
P -1
=1 (1+a )
j=1 ’
where Al,...,hp are the eigenvalues of W 'B. The

distribution of A has already been discussed in Chapter
3.

The general idea of the union-intersection approach to
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hypothesis testing in multivariate data (Roy, 1957) is
that, given a problem involving the vector random variable
X, it is projected onto the direction of the vector a and
the equivalent univariate problem for the random variable
a’x is solved. Then the test statistic for this
univariate problem is maximized or minimized, as
appropriate, over choices of «: this optimum value is the
union-intersection test statistic for the multivariate
problem. Applied to the one-way MANOVA, where HO:

Mo=H=. .o =1 against H1: not all equal, m being the
number of groups, the vector random variable X - NPUH,Z)

is projected onto o to give the scalar random variable
= ! ~ ’ ’
Yy, ma’'x, Np(a Moo za)

and reduces the hypotheses to HO: a’u1=a’u2=...=a’um
against not all equal, i.e., the univariate situation.
The univariate analogue of H would be tested using the
analysis of variance statistic proportional to

2 - =.2 o 2

L n(y-¥)°/ L ns?,

i=1 i=1
where the ith group has sample size n and variance s?.

The corresponding formula for the linear combination y=a’x

is

m m
z°= Y niUx’(xi—x))z/ ¥ nia’sia,
- .

i= i=1

where SizAﬂ”H is the within-group sample
variance-covariance matrix. The rejection region is
{22>c}=Ra. The rejection region for the initial H_ is
then R=U Ra’ that is, at least one Ho(a) is rejected.

Therefore if max zz>c, then H, is rejected. It is
o
straightforward to carry out the maximisation over o and

show that A =max z° is the largest eigenvalue of
a
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m m
(Y niSi)_l Ln (X -%) (X -X) r=W'B.
i=1 i=1
The test may be expressed equivalently in terms of the
largest eigenvalue of other functions of B and W . For
example, Morrison (1976) uses the greatest root of
(Ww+B) 'B, which may be written

6= /(1+x).

Its distribution is denoted by 6(p,n-m,m-1), where n-m are
the error degrees of freedom and m-1 are the hypothesis
degrees of freedom. As with the A statistic, the
distribution of &(p,r,s) can sometimes be transformed
exactly to F - in fact, this can be done for 8(1,r,s) and
8(p,r,1l) (Mardia, Kent and Bibby, 1979). Otherwise, its
distribution is complicated, and there appear to be no

simple approximations.

If percentage points of this distribution can be
obtained, Bonferroni bounds can be constructed for the use
of this statistic as an outlier test statistic by taking
its maximum value over all choices of sets of points
tested as outliers. The construction of such bounds is

discussed in the next section.

In general, the likelihood ratio and union-intersection
methodologies give different statistics. In simple cases,
however, they lead to the same statistic. One such
situation is the comparison between two groups, since then
the hypothesis matrix B (that is, the between-group SSP
matrix) has rank one (since it is calculated from two
group means), so that W 'B has just one non-zero
eigenvalue, A, and both A and 6 are functions of this
alone. As the two-group comparison underlies the test
for a single outlier, the two approaches give the same

result in that case. 1In testing for more than one
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outlier, however, the analogous situation is the MANOVA
between 3 or more groups, in which case the approaches do
result in different tests. (This assumes that the
outlying points are not all from the same distribution,
that is, not all slippages are the same - otherwise, the
problem is a comparison between two groups again.) The
test derivation and comparisons in the following sections
will therefore be on the basis of testing for two or more

outliers, with unequal slippages in the mean.

6.2. Bonferroni bounds and their accuracy

Construction of a Bonferroni bound for the percentage
point for an «a% level two-outlier test by the
union-intersection method in a sample of size n requires

the o/ n]% percentage point of the greatest root
2

distribution. Some tables of percentage points are already
available (Pearson and Hartley, 1972) but the significance
levels selected for tabulation usually do not match the

values a/[n] required. Percentage points can also be read
2

from charts (Heck, 1960), but with lower accuracy, while

this graphical method is unsuitable for use in a computer

simulation study. Therefore, the o/ n]% percentage points
2

required here were specially computed by using the series

expansion of Khatri (1972). This gives the distribution

function F(x) of the greatest root statistic as a

polynomial in (1-x), and is published as a Fortran

algorithm by Venables (1975).

Although the algorithm as given only returns the value
of F(x) given %, in other words the level of significance,
it can be modified so that it returns the coefficients of
the powers of (1-x), enabling its use to determine

percentage points. The series is
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F(x)—xnlp/2 s v 2) (1-x)*c_ (I )/k!
=T Tn/2), (00 (1) /)

where n, and n,6 are the degrees of freedom in B nd W
respectively, there are p dimensions and m=(n2—p71)/2,
which must be an integer. The inner summation Zn is over
all partitions k of k; a partition is a set of r=p
integers kfﬂ%z...zkr>0 whose total is k. The coefficient

(111/2)K is to be evaluated from the definitions

P
(@), =1 (a-(i-1)/2),

i=1 i

and (b)j = 1 j=0
b(b+1)...(b+j-1) j=1
and CK(Ip) is the zonal polynomial

2k - i .
CK(Ip)=2 (p/2)K T (Zki_ij—l+j)/1U1(2ki+p—l)!

1<i<j=r =
Writing the series as

r B nlp/2 mp K
(%)=x L G(k) (1-x)
k=0

it is possible to compute the coefficients
4
= !
G (k) E (n,/2) C, (I )/k!

which depend on n, n, and p but not on %, and hence

iteratively solve
F(x)=«x
for x given a. Because F(x) 1s expressed as a polynomial

in X, it is easy to calculate its gradient and carry out a

Newton-Raphson iteration.

One difficulty with Khatri’s method is that it is

necessary for n-p, the difference between sample size and
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dimensionality, to be an even number. In the cases where
this restriction meant that the required sample size could
not be used in the algorithm, percentage points were
calculated for adjacent usable values and a smooth curve
fitted to obtain the desired percentage point by

interpolation.

Specifically, suppose the test for k outliers is being
carried out in a sample of size n p-dimensional vectors.
Then, carrying out the MANOVA (between k+1 groups) after
specifying a particular set of k points as potential
outliers, the SSP matrices B and W have Wishart

distributions

B ~ wp(Z,k)
and W ~ Wp(Z,n-k—l)

independently of B. Consequently 68, the greatest
eigenvalue of (B+W)4B is the greatest root statistic 6

with distribution
6(p,n-k-1,k)

(Mardia, Kent, and Bibby, 1979). It is usual to assune
that n-k-1>p in defining this distribution: otherwise, the
identity

8(p,r,s)=6(s,r+s-p,p)
gives the distribution

e(k,n-1-p,p).

However, for the small values of k met in outlier
tests, the former situation will usually be the applicable
one, for realistic sample sizes. The restriction of
Khatri’s method for computing this distribution is that
n-k-p-2 must be even: for k=2 outliers, this means that

n-p must be even. Suppose then that the percentage point



- 168 -

for n=20, p=5 is required. This was obtained by finding
percentage points for n=17,19,21 and 23, all for p=5, then
fitting a cubic to these four points to interpolate for
n=20. In certain cases, a quadratic was used, if the four
points corresponding to the ones in this example could not
be obtained. For example, for p=5, the requirement that
the error degrees of freedom be at least equal to the
number of dimensions, n-3zp, means that n must be at least
8. Therefore, to find the percentage point for n=10, it is
not possible to fit through the points for n=7,9,11 and
13, since the first of these does not exist. In such
cases, a quadratic was fitted through the remaining three

points.

The Bonferroni bounds computed as above are shown in
parentheses in Table 6.2.1 for dimensions 2 to 5, selected
sample sizes from 10 to 100 and significance levels 0.01,
0.025, 0.05, and 0.10.

Since this test is for two outliers, it may be expected
that, as is the case with Wilks’ test, the Bonferroni
bounds will not be very good. Consequently, simulated
percentage points were constructed and are also shown in
Table 6.2.1 for comparison. These are averages over 5
percentage points each based on 8000 sets of data for each
combination of sample size and dimensionality, even though
the lack of a simple updating formula in this eigenvalue
problem means that the repeated computations are very much
heavier than in the determinant calculations underlying
Wilks’ statistic.

The same sets of simulated data were used to estimate
exceedence probabilities for the Bonferroni percentage
points and thus indicate the importance of the numerical
differences between simulated and Bonferroni points. The
exceedence probabilities are shown in Table 6.2.2. It can
be seen that the Bonferroni bounds are very conservative,

as predicted. For a sample size of 30, the true size of
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Table 6.2.1la Simulated percentage points for
union-intersection two-outlier test statistic, with
Bonferroni bounds in parentheses, a=0.01.

Sample Dimensions, p
size, n 2 3 4 5
10 .95504 .98121 .99420 .99902
(.95861) (.98288) (.99471) (.99932)
15 .84382 .89260 .92805 .95264
(.85524) (.90079) (.93377) (.95789)
20 .74189 .79568 .83708 .87142
(.75772) (.80892) (.84936) (.88245)
25 .65819 .71288 .75601 .79432
(.67725) (.72847) (.77045) (.80620)
30 .58850 .64201 .68537 .72336
(.61175) (.66108) (.70232) (.73818)
40 .48784 .53781 .57688 .61141
(.51312) (.55739) (.59517) (.62871)
50 .41918 .46282 .49759 .52758
(-44287) (.48235) (.51642) (.54696)
75 .31301 .34558 .37238 .39687
(-33238) (.36297) (.38970) (.41395)
100 .25186 .27820 .29976 .32020

(.26784) (.29268) (.31452) (.33443)

Table 6.2.1b Simulated percentage points for
union-intersection two-outlier test statistic, with
Bonferroni bounds in parentheses, a=0.025.

Sample Dimensions, p
size, n 2 3 4 5
10 .93742 .97264 .99066 .99818
(.94367) (.97536) (.99161) (.99839)
15 .81232 .86932 .90979 .93944
(.82849) (.88029) (.91836) (.94674)
20 .70767 .76471 .81092 .85018
(.72763) (.78316) (.82732) (.86376)
25 .62312 .67992 .72742 .76820
(.64705) (.70128) (.74591) (.78410)
30 . 55597 .61147 .65574 .69681
(.58261) (.63408) (.67723) (.71487)
40 .45916 .50869 .55018 .58313
(.48695) (.53237) (.57120) (.60570)
50 .39335 .43793 .47333 .50433
(.41955) (.45968) (.49435) (.52547)
75 .29337 .32436 .35269 .37728
(.31439) (.34513) (.37200) (.39640)
100 .23563 .26144 .28275 .30331

(.25329) (.27813) (.29996) (.31989)
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Table 6.2.1c Simulated percentage points for
union-intersection two-outlier test statistic, with
Bonferroni bounds in parentheses, «a=0.05.

Sample Dimensions, p
size, n 2 3 4 5
10 .91964 .96345 .98663 .98700
(.92884) (.96749) (.98811) (.99721)
15 .78401 .84832 .89335 .92708
(.80493) (.86190) (.90427) (.93631)
20 .67579 .73891 .78930 .83087
(.70232) (.76126) (.80840) (.84754)
25 .59315 .65378 .70243 .74459
(.62075) (.67879) (.72547) (.76558)
30 .52923 .58544 .63262 .67402
(.58264) (.61212) (.65672) (.69573)
40 .43542 .48619 .52714 .56188
(.46616) (.51241) (.55200) (.58727)
50 .37305 .41620 .45228 .48436
(.40121) (.44180) (.47688) (.50842)
75 .27673 .30840 .33636 .36060
(.30043) (.33125) (.35820) (.38269)
100 .22164 .24819 .26955 .28989
(.24208) (.26688) (.28869) (.30861)

Table 6.2.1d Simulated percentage points for
union-intersection two-outlier test statistic, with
Bonferroni bounds in parentheses, «a=0.10

Sample Dimensions, p
size, n 2 3 4 5
10 .89620 .95013 .98060 .99510
(-91004) (.95701) (.98312) (-99537)
15 .75059 .82137 .87211 .91120
(.77804) (.84057) (.88763) (.92374)
20 .64149 .70935 .76358 .80760
(.67455) (.73700) (.78725) (.82924)
25 .56025 .62401 .67447 .71935
(.59564) (.65448) (.70324) (.74529)
30 .49804 .55703 .60456 .64859
(.53409) (.58873) (.63476) (.67513)
40 .40952 .46013 .50238 .53820
(.44447) (.49150) (.53182) (.56780)
50 .35000 .39321 .43012 .46188
(.38224) (.42323) (.45870) (.49063)
75 .25924 .29084 .31860 .34362
(.28614) (.31702) (.34403) (.36859)
100 .20800 .23349 .25552 .27598
(.23066) (.25542) (.27719) (.29707)
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Table 6.2.2a Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at «=0.01.

Sample Dimensions, p

size, n 2 3 4 5
10 .0079 .0082 .0086 .0060
15 .0071 . 0069 .0073 .0066
20 .0066 .0065 .0063 .0060
25 .0058 .0061 .0052 .0062
30 .0047 .0055 . 0055 .0056
40 .0043 .0056 .0052 .0051
50 .0044 .0050 .0044 .0050
75 .0047 .0047 .0048 .0043
100 .0042 .0044 .0045 .0046

Table 6.2.2b Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at a=0.025.

Sample Dimensions, p

size, n 2 3 4 5
10 .0186 .0200 .0210 .0210
15 .0159 .0167 .0168 .0160
20 .0154 .0150 .0143 .0145
25 .0135 .0138 .0137 .0147
30 .0120 .0129 .0133 .0141
40 .0104 .0117 .0128 .0125
50 .0098 .0116 .0114 .0112
75 .0098 .0099 .0102 .0102

100 .0093 .0101 .0100 .0103
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Table 6.2.2c Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at a=0.05.

Sample Dimensions, p

size, n 2 3 4 5
10 .0355 .0388 .0392 .0453
15 .0303 .0319 .0324 .0303
20 .0284 .0278 .0273 .0276
25 . 0257 .0256 .0267 .0273
30 .0229 .0247 .0244 .0262
40 .0202 .0226 .0240 .0218
50 .0188 .0223 .0223 .0215
75 .0181 .0187 .0194 .0198
100 .0177 .0186 .0187 .0190

Table 6.2.24d Simulated null probability of obtaining a

value of union-intersection two-outlier test statistic

more than the Bonferroni approximation at a=0.10.

Sample Dimensions, p

size, n 2 3 4 5
10 .0689 .0728 .0782 .0922
15 .0573 .0617 .0613 .0600
20 .0515 .0528 .0530 .0527
25 .0472 .0493 .0492 .0491
30 .0441 . 0454 .0470 .0488
40 .0391 .0429 .0439 .0418
50 .0370 .0404 .0403 .0408
75 .0344 .0343 .0365 .0369
100 .0318 .0349 .0338 .0346

the test using the Bonferroni bound is only about half the
nominal size. For a sample size of 15, the true size is
about two-thirds of the nominal size. The true size
decreases as sample size increases and increases slightly

as dimensionality increases.
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6.3 Comparison between likelihood ratio and union-

intersection tests

There is no general answer as to which form of testing
is better in MANOVA - otherwise one of the methods would
have been discarded. There have been several comparative
studies from the point of view of power and the main
features of their results can be found in general texts
such as Mardia, Kent and Bibby (1979), Morrison (1976) and
Chatfield and Collins (1980). One result often quoted is
that the union-intersection test is much the more powerful
if differences between the groups in the MANOVA are nearly
one-dimensional: that is, if the population means lie
nearly on a straight line. In the outlier problem with
slippage of the mean as the model, this situation would
represent slippages of different magnitudes in the same
direction. This is not an implausible structure. One
example could be of data referring to a group of animals
contaminated by one or two individuals at different stages
of growth from the rest: if the rates of growth of
different parts of the body are equal, these outlying
individuals would be drawn from populations with means
differing only by scale factors from the mean of the main
group and so all the slippages would be in the same
direction.

Given this expectation of a particular way in which the
test statistic based on union-intersection may surpass the
Wilks statistic in performance, the simulated data in the
power studies described here include data constructed for

models with slippages of this kind.

The power studies require the simulation of data under
the alternative hypothesis of slippage of the mean by
unequal amounts in two sample members. Two basic
situations were considered. In one, the slippages were
along the same axis through the origin (the mean of the

generating distribution). In the second, the directions
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of the two slippages were at right angles to each other.
Data were generated from the distribution Np(O,I) and
outliers (slippage of the mean) were simulated by adding a
suitable quantity to the first and last members of each
sample. For slippages along the same axis, the quantity
added was plus or minus the vector with each component
equal to d/{p, where d is the desired generalized distance
from the origin and p the dimensionality. Three
combinations were taken: first, the slippages were both
with squared generalized distance equal to 30 and in the
same direction; second, one squared distance was 30 and
the other 15, again in the same direction; thirdly, one
squared distance was 30 and the other was 15 in the
opposite direction from the origin (that is, one vector
was positive in each component and the other was
negative). For the case of slippages at right angles to
each other, both were given squared generalized distance
of 30 from the origin. The first slippage had the equal
component of d/{p in each dimension. To be orthogonal to

a vector x in the metric of ¥, a vector y must satisfy

y'= 7 x=0
which gives

y’x=0

for ¥=I. Since x « 1, this means that y should be a
vector whose components add up to zero and are scaled to
give the correct distance. Suitable vectors are as

follows:
p=2 y=d(1,-1) /42
p=3 y=da(1,-2,1) /6
p=4 y=d(1,-1,1,-1)'/2

p=5 yzd(ll—llol_lll) '/2
where d?=30.

In each simulated set of data, the Wilks and
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union-intersection statistics were computed and compared
to the simulated percentage points. The simulated
percentage points (obtained for Wilks’ test in Chapter 3.)
provide the appropriate basis for comparison, because the
conservative Bonferroni bounds are a poor approximation
for either test. The results are displayed in Table
6.3.1.

Table 6.3.1 Comparison of powers of Wilks’ test and the

union-intersection test for two ocutliers: proportion of
times that two outliers are declared by the
union-intersection test (U), Wilks’ test (W),
union-intersection but not Wilks’ (UW) and Wilks’ but not
union-intersection (WU).

In the following tables the squared generalized
distances corresponding to the two outliers, the first and
last observations in a sample, are expressed as distl and
dist2. For the one outlier slipl={distl/dp is the slippage
added to all components of 1st observation for all
dimensions, where distl1=30. For the other outlier in the
same direction, slipn={dist2/{p is added to all components
of the last observation for all dimensions. Dist2=15 or
30. For the opposite direction slipn=-{dist2/{p is added
to all components of last observation for all dimensions
and dist2=15. When the outliers are at right angles to
each other, the slippages added to the components of the
last observation vary, slippage added to each i-component

is denoted by slipni, so for

p=2,

slipn1=4dlst2/fﬁ, slipn2=—slipn1
p=3,

slipn1=slipn3=4dlst2/fg, slipn_=-2(slipn )
p=4,

slipn1=slipn3=4dlst2/2, slipn2=slipn4=—slipn1
p=5,

slipn1=slipns=4dlst2/2, slipn2=slipn4=—slipn1, slipn3=0

for dist2=30.
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p=2 (1) distl=dist2=30, slipl=slipn=3.87298
(same direction) _ _
o n U 1Y Uw WU
.01 10 13.23 12.43 3.00 2.20
20 70.66 64.83 7.31 1.48
30 89.23 85.86 4.13 0.76
50 95.95 94 .55 1.64 0.24
.025 10 26.06 24.91 4.65 3.50
20 82.68 78.96 5.01 1.30
30 94.51 92.74 2.15 0.38
50 97.71 97.14 0.74 0.16
.05 10 40.61 38.41 5.96 3.76
20 90.24 87.76 3.48 1.00
30 96.83 95.86 1.29 0.33
50 98.76 98.35 0.55 0.14
.10 10 59.06 55.28 7.10 3.31
20 94.96 93.78 1.76 0.58
30 98.50 98.11 0.60 0.21
50 99.34 99.21 0.24 0.11
p=2, (ii) dist1=30, dist2=15, sl1ipl1=3.87298, slipn=2.73861
(same direction) _ _
o n U w UwW WU
.01 10 8.00 7.70 1.86 1.56
20 48.24 43.68 6.93 2.36
30 69.98 66.84 5.45 2.31
50 82.75 80.50 3.71 1.46
.025 10 17.15 16.28 3.61 2.74
20 63.14 59.55 6.33 2.74
30 80.99 78.79 4.05 1.85
50 89.26 87.89 2.74 1.36
.05 10 28.36 27.51 4.40 3.55
20 75.01 72.23 5.23 2.38
30 87.61 85.99 3.04 1.41
50 92.75 92.06 l1.64 0.95
.10 10 43.29 42.29 5.25 4.25
20 84.64 83.01 3.31 1.69
30 92.91 92.44 1.54 1.06
50 95.84 95.34 1.04 0.54
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p=2 (iii) dist1=30, dist2=15, slipl=3.87298, slipn=-2.73861
(opposite direction) _ _
a n U W Uw WU
.01 10 12.44 11.64 2.93 2.13
20 56.51 51.41 7.61 2.51
30 75.10 71.95 5.26 2.11
50 85.43 82.83 3.75 1.15
.025 10 24.19 23.48 4.03 3.31
20 71.53 68.18 5.90 2.55
30 84.83 82.89 3.53 1.59
50 91.19 89.78 2.46 1.05
.05 10 38.30 36.71 5.45 3.86
20 82.03 79.81 4.10 1.89
30 90.64 89.20 2.39 0.95
50 94.68 93.89 1.55 0.76
.10 10 55.69 54.00 6.06 4.38
20 89.94 88.86 2.66 1.59
30 95.03 94.40 1.31 0.69
50 97.10 96.75 0.90 0.55
p=2, (iv) distl=dist2=30, slip1=slipn1=3.87298,
slipn2=—3.87298
(right angles) _ _
a n U W Uw WU
.01 10 29.26 61.33 8.38 32.90
20 77.36 94.08 0.39 17.10
30 88.79 97.20 0.11 8.53
50 93.79 98.36 0.10 4.68
.025 10 49,43 77.90 1.00 29.48
20 89.26 97.46 0.13 8.33
30 94.76 398.55 0.09 3.88
50 97.31 99.35 0.05 2.09
.05 10 67.20 87.56 0.66 21.03
20 95.14 98.86 0.15 3.88
30 97.54 99.29 0.13 1.88
50 98.75 990.68 0.01 0.94
.10 10 82.58 94.51 0.43 12.36
20 98.24 99.46 0.03 1.25
30 99.11 99.73 0.03 0.64
50 99.55 99.81 0.04 0.30
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p=3 , (1) distl=dist2=30, slipl=slipn=3.16228
(same direction)

a n U 17 Uw WU
.01 10 5.18 5.14 1.54 1.50
20 51.38 44.94 9.03 2.59

30 78.36 70.41 9.50 1.55

50 91.78 87.35 4.90 0.48

.025 10 10.75 10.65 2.90 2.80
20 67.58 60.19 9.75 2.36

30 87.36 81.36 7.05 1.05

50 95.31 92.90 2.84 0.43

.05 10 19.44 18.94 4.39 3.89
20 78.28 72.81 7.68 2.21

30 92.71 88.64 4.75 0.68

50 97.55 96.05 1.89 0.39

.10 10 32.33 31.54 5.89 5.10
20 87.24 83.53 5.30 1.59

30 96.09 94.35 2.28 0.54

50 99.00 98.01 1.10 0.18

p=3, (ii) dist1=30, dist2=15, slipl=3.16228, slipn=2.23607
(same direction)

a n U W uw WU
.01 10 3.55 3.56 1.24 1.25
20 30.86 27.69 6.68 3.50

30 54.66 48.79 9.06 3.19

50 73.20 67.79 7.74 2.33

.025 10 7.96 8.41 1.91 2.36
20 46.04 42.41 7.75 4.13

30 68.21 62.46 8.83 3.08

50 81.49 78.30 5.24 2.05

.05 10 14.23 14.93 3.14 3.84
20 59.13 55.83 8.05 4.75

30 76.88 73.61 6.06 2.80

50 87.83 85.60 4.14 1.91

.10 10 25.99 25.39 5.14 4.54
20 72.81 69.63 6.78 3.59

30 85.55 82.99 4.66 2.10

50 92.69 91.79 2.51 1.60
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p=3, (iii) dist1=30, dist2=15, slip1=3.16228, slipn=-2.23607
(opposite direction) _ _
o n U W UW WU
.01 10 4,71 5.05 1.50 1.84
20 38.15 30.70 7.51 4.06
30 61.70 55.34 9.45 3.09
50 76.55 71.11 7.64 2.20
.025 10 10.81 10.84 2.93 2.95
20 54.89 50.15 8.85 4.11
30 73.81 68.78 7.81 2.78
50 84.80 82.14 4.94 2.28
.05 10 19.10 19.63 4,28 4.80
20 67.36 63.81 7.55 4.00
30 82.18 78.95 5.90 2.68
50 90.26 88.74 3.19 1.66
.10 10 32.64 32.61 5.99 5.96
20 80.00 77.03 6.38 3.40
30 89.73 87.69 3.83 1.79
50 94.58 93.41 2.05 0.89
p=3, (iv) distl=dist2=30, slipl=3.16228,
slipnl=slipn3=2.23607, slipn2=-4.47214.
(right angles) _ _
o n U W Uw WU
.01 10 13.94 32.20 1.54 19.80
20 57.49 85.40 0.45 28.36
30 77.99 93.01 0.28 15.30
50 86.63 95.64 0.29 9.30
.025 10 26.08 49.89 1.69 25.50
20 75.36 91.76 0.41 16.81
30 88.51 96.63 0.30 8.41
50 93.03 97.85 0.14 4.96
.05 10 41.60 65.63 1.70 25.73
20 86.29 95.40 0.46 9.58
30 93.90 98.24 0.13 4.46
50 96.40 98.89 0.06 2.55
.10 10 60.36 79.74 1.69 21.06
20 93.05 97.80 0.26 5.01
30 97.40 99.15 0.11 1.86
50 98.31 99.46 0.08 1.23
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p=4 (i) distl=dist2=30, slipl=slipn=2.73861
(same direction) _ _
o n U W Uw WU
.01 10 2.18 2.11 0.76 0.70
20 36.89 30.41 9.81 3.34
30 67.11 55.74 13.40 2.03
50 86.41 78.78 8.54 0.90
.025 10 5.06 4.99 1.66 1.59
20 53.18 43.48 12.69 2.99
30 78.38 69.48 10.61 1.71
50 91.80 87.29 5.38 0.86
.05 10 9.64 10.14 2.56 3.06
20 65.10 56.40 11.89 3.19
30 85.44 78.55 8.23 1.34
50 95.09 92.14 3.58 0.63
.10 10 18.13 18.74 4.46 5.08
20 77.30 74.11 7.15 3.96
30 91.53 87.24 5.48 1.19
50 97.33 95.48 2.23 0.38
p=4, (ii) distl1=30, dist2=15, slipl=2.73861, slipn=1.93649
(same direction) _ _
o n U W Uw WU
.01 10 1.74 1.89 0.55 0.70
20 20.96 18.76 6.08 3.88
30 40.95 34.83 10.21 4.09
50 63.21 55.81 10.45 3.05
.025 10 4.00 4.11 1.14 1.25
20 32.89 29.35 8.19 4.65
30 55.50 49.63 10.69 4.81
50 73.36 69.28 7.63 3.54
.05 10 8.13 8.45 2.38 2.70
20 44.44 41.28 8.73 5.56
30 66.21 61.66 9.31 4.76
50 80.99 78.06 6.23 3.30
.10 10 15.91 16.26 4.05 4.40
20 58.85 55.43 9.00 5.58
30 77.30 74.11 7.15 3.96
50 87.66 85.83 4.09 2.25
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p=4, (iii) dist1=30, dist2=15, slipl=2.73861, slipn=-1.93649
(opposite direction) . _
o n W Uw wU
.01 10 2.18 2.51 0.73 0.70
20 25.59 23.43 6.70 4.54
30 48 .48 41.59 10.93 4.04
50 66.46 60.14 9.16 2.84
.025 10 5.50 5.71 1.66 1.88
20 39.64 34.99 9.70 5.05
30 62.49 56.30 10.46 4.28
50 76.31 71.99 7.29 2.96
.05 10 9.7¢9 11.03 2.33 3.56
20 51.90 47 .83 9.28 5.20
30 72.86 68.10 8.88 4.11
50 83.85 80.18 6.34 2.66
.10 10 18.65 19.91 4.45 5.71
20 65.44 62.25 8.66 5.48
30 82.86 79.85 6.29 3.28
50 89.90 87.78 4.13 2.00
p=4, (iv) distil=dist2=30, slip1=slipn1=slipn3=2.73861,
slipn2=slipn4 -2.73861
(right angles) _ _
o n U w Uw WU
.01 10 6.15 13.89 1.16 8.90
20 42.01 74.03 0.59 32.60
30 64.19 86.35 0.61 22.78
50 78.64 92.45 0.30 14.11
.025 10 13.50 25.11 1.89 13.50
20 60.58 83.21 1.03 23.66
30 78.16 92.30 0.41 14.55
50 87.51 96.00 0.33 8.81
.05 10 23.54 38.90 2.58 17.94
20 73.68 90.01 0.85 17.19
30 86.61 95.56 0.45 9.40
50 93.16 97.61 0.28 4.73
.10 10 39.15 56.04 2.85 19.74
20 85.25 94.70 0.61 10.06
30 93.44 97.73 0.24 4.53
50 96.60 98.74 0.16 2.30
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p=5, (i) distl=dist2=30, slipl=slipn=2.44949
(same direction) _ _
fod n U W UW WU
.01 10 1.29 1.41 0.39 0.51
20 25.45 16.93 11.14 2.61
30 55.94 43.49 15.11 2.66
50 80.30 70.14 11.56 1.40
.025 10 2.85 3.39 0.71 1.25
20 39.05 29.68 12.85 3.48
30 69.21 57.56 14.31 2.66
50 87.30 79.39 9.24 1.33
.05 10 63.38 65.38 2.00 2.20
20 51.60 42.30 13.14 3.84
30 78.56 68.70 12.04 2.18
50 91.51 85.94 6.71 1.14
.10 10 12.33 13.21 2.91 3.80
20 65.93 56.68 12.99 3.74
30 87.18 79.76 9.01 1.60
50 95.13 91.91 4.05 0.84
p=5, (ii) distl1=30, dist2=15, slipl=2.44949, slipn=1.73205
(same direction) _ _
o n U W UW WU
.01 10 1.15 1.30 0.34 0.49
20 11.90 9.70 4.76 2.56
30 31.33 26.19 9.44 4.30
50 53.43 46,34 11.24 4.15
.025 10 2.96 2.96 0.90 0.90
20 21.14 18.66 7.10 4.63
30 43.85 39.08 10.08 5.30
50 64.53 59.51 10.00 4.99
.05 10 5.91 5.86 1.75 1.70
20 32.11 28.90 8.90 5.69
30 55.61 51.11 10.11 5.61
50 73.76 69.85 8.21 4.30
.10 10 11.50 12.16 2.91 3.58
20 46.38 43.19 9.74 6.55
30 68.00 64.60 9.06 5.66
50 82.45 79.65 6.49 3.69
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p=5, (iii) dist1=30, dist2=15, s1ip1=2.44949, slipn=-1.73205
(opposite direction)

o n U W Uw WU
.01 10 1.28 1.33 0.48 0.53
20 17.15 12.84 7.31 3.00

30 37.33 31.21 10.45 4.34

50 58.25 50.96 11.09 3.80

.025 10 3.43 3.53 1.14 1.24
20 28.33 24.26 9.09 5.03

30 51.40 44 .65 11.66 4.91

50 77.16 73.59 7.85 4.28

.05 10 6.65 7.08 1.81 2.24
20 40.00 35.71 10.39 6.10

30 62.84 57.09 10.76 5.01

50 77.16 73.59 7.85 4.28

.10 10 12.63 13.91 2.79 4.08
20 54.51 50.76 10.24 6.49

30 74.36 70.44 8.65 4.73

50 85.18 83.03 5.60 3.45

p=5, (iv) distl=dist2=30, slipl=2.44949, slipn1=slipn5=2.73861,
slipn2=slipn4=—slipn1, slipn3=0.
(right angles)

a n U W Uw WU
.01 10 2.99 5.10 0.75 2.86
20 29.21 56.65 1.45 28.89

30 50.80 78.50 0.95 28.65

50 70.95 88.80 0.68 18.53

.025 10 6.93 11.38 1.66 6.11
20 45.50 72.06 1.40 27.96

30 66.43 87.00 0.89 21.46

50 81.39 93.20 0.60 12.41

.05 10 13.25 20.43 2.43 9.60
20 59.64 81.55 1.30 23.21

30 78.14 91.75 0.71 14.33

50 88.40 95.84 0.44 7.88

.10 10 23.35 34.05 3.53 14.23
20 75.10 89.55 1.11 15.56

30 87.78 95.59 0.55 8.36

50 94.19 97.73 0.36 3.90
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In the first situation, of slippages along the same
axis, it can be seen that the power of the
union-intersection test is higher than that of Wilks’
test, in each of the three combinations of size and
direction of slippage and for each dimensionality
considered, except when the sample size is the smallest
included in the study (n=10). For such a small sample
size, both tests have very low power and the difference
between them is small. McNemar’s test confirms that there
are statistically significant differences between the
powers of the two tests, in most of the comparisons for
n=10, and in most of these cases it is Wilks’ test which
is the more powerful (Table 6.3.2). This point will be

returned to later.

For sample sizes of 20 and more, the advantage to the
union-intersection test increases as the dimensionality
increases, for a given sample size and combination of
slippage sizes and directions (along the same axis). The
biggest differences in the study occur for p=5 and sample
sizes of 20 and 30, where the union-intersection test has
a power up to 12 percentage points greater than Wilks’
test.

As predicted, the union-intersection test does have
higher power than Wilks’ test for slippages along the same
axis, and again as predicted, it can be seen that the
opposite is true for slippages at right angles to each
other. 1In this case the differences hold for all sample
sizes considered and are much larger. For example, if
Wilks’ test had power of about 70% for slippages along the
same axis, then the union-intersection test would have
power not more than 75%, whereas if the union-intersection
test had power of 70% for orthogonal slippages, then
Wilks’ test has power of around 90%. It also appears that
it is rare for two outliers to be declared by the

union-intersection test but not by Wilks’ test.
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Since it appears that the union-intersection test holds
the advantage when the slippages are along the same axis
but not when they are at right angles to each other, it is
interesting to see how big the angle between two slippage
vectors can be before Wilks’ test becomes the more
powerful. This was investigated in a further simulated
power study. The comparison was restricted to one case,
with n=20, p=2 and both slippages having a squared
generalized distance of 20 from the origin. One slippage
vector was taken as d/42(1,1)’ where d°=20; the other was
taken in varying positions on the perimeter of a circle of

radius d, as in Figure 6.3.1. Because the vector OA is at

Figure 6.3.1 Positions of slippages A (fixed) and B

(varying).

45° to the x axis, the angle 8 between the slippage
vectors 1is 6=(n/4)-¢.

Hence cos¢=cos ((n/4)-6)

=cos(n/4)cosB+sin(n/4)sind
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=(cosB8+sinb) /42
and
sing=sin((m/4)-6)
=sin(n/4)cos6-cos(n/4)sind
=(cos6-sind) /{2

so that B should be taken as
d/42 (cosB8+sind,cos6-sins)
in order for the angle between A and B to be 8.

Simulations were carried out for various values of 8,
from 0° up to 180°, as shown in Table 6.3.3. Although all
slippage vectors were of the same length, from the origin,
the powers of both tests vary with 8. For example, Wilks’
test must be more powerful when the two slippages are at
right angles than when they are on the same axis, because
in the latter case there is a greater probability that one
extreme value in the rest of the sample can mask the two
outlying points (that is, the two points with slippages
added): see Figure 6.3.2. Against these varying powers,
it can be seen in the Table and in Figure 6.3.3, that the
relatively small power advantage to the union-intersection
test applies until the angle between the slippage vectors
is nearly 20°. Thereafter, the advantage to Wilks’ test
quickly becomes large. The union-intersection test

becomes the more powerful again at about 160°.
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Figure 6.3.2 An extreme value from the null distribution

at point C, can have a masking effect on the outlier pair
AB1 (same axis), whereas masking arises less easily for

the pair AB2 (orthogonal).

Table 6.3.3 Comparison of powers of Wilks’ test and the

union-intersection test for ¢ varying from 0° to 180°.

0 1% 2.5% 5% 10%

Angle U Y U W U w U W
0 38.8 34.3 53.9 49.4 66.7 63.0 78.5 75.4
10 38.5 35.5 53.5 51.1 66.6 63.9 78.5 76.8
20 38.2 39.0 53.3 54.3 66.6 67.0 78.4 78.7
40 38.6 50.8 54.0 64.9 67.6 76.2 79.8 84.7
60 42.3 61.7 58.4 74.5 72.0 83.0 83.1 90.0
80 47.0 67.9 63.3 79.5 76.2 86.7 86.8 92.8
90 47.8 69.1 64.7 80.3 77.0 87.5 87.5 93.2
100 47.8 69.0 64.3 80.0 77.2 87.2 87.5 93.1
120 46.0 64.7 62.4 76.4 75.2 84.9 86.0 91.2
140 45.0 55.9 61.0 69.7 73.3 79.7 84.4 87.9
160 46.3 46.6 61.1 62.2 73.5 73.6 83.9 83.5
170 47.1 43.2 61.5 59.5 74.0 71.7 83.9 82.1

180 47.1 41.9 61.8 57.9 74.1 70.6 84.2 82.2
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Figure 6.3.3 Powers between Wilks’ test and the

union-intersection test at the a=0.05 level for p=2, n=20 and

for varying angles.

The fact that it appears that a quite close approach to
collinearity is necessary in order for the
union-intersection test to be more powerful probably
explains why Wilks’ test was earlier found to be often the
more powerful even for slippages along the same axis, for
a small sample size, n=10. Because the sample after
selection of two outlying points then contains only 8
points, the position of the mean is much less accurately
determined than for larger sample sizes. There is
therefore extra variation, besides the variation of the
positions of the generated outliers, and therefore a
greater chance that there will be a substantial departure

from collinearity.

To summarize the power comparison between the

union-intersection and Wilks’ tests, it is suggested that
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there is no very good reason to prefer the former. It is
true that in some circumstances, it may offer a large
increase in power over Wilks’ test. However, the
difference between the tests is much larger when Wilks’
test is superior than when the union-intersection test is
superior; furthermore, Wilks’ test is the more powerful
for most relative positions of the two slippage vectors.
Consequently, unless there is specific reason to expect
that the slippages are nearly collinear so that the
union-intersection test will be superior, it is
recommended that Wilks’ test be used, as it is generally

more powerful.

One other disadvantage of the union-intersection test
may be seen as follows. The test was introduced here
along the lines of a MANOVA between 3 groups (with 1, 1
and n-2 members). Rejecting the null hypothesis in the
MANOVA implies that not all three means (of the
populations from which these samples have been drawn) are
equal. It does not say that all three differ from each
other: it could be that two are the same and the third
differs. In this sense, the union-intersection two-outlier
test might not seem to really be a test for two outliers.
However, if one of the two selected points is not distinct
from the main body of the sample and the significant
result is due to the more extreme isoclation of the other
point, then this is just the usual "swamping" effect as
occurs with other multiple outlier tests, including
Wilks’. A way to avoid swamping is offered by proper
sequential application of outlier tests for different
numbers of outliers. In principle this could be done for
the union-intersection test as it was for Wilks’ test.
However, the heavy computations required seem to be
prohibitive. The same applies to extending the
union-intersection test to any other situation, such as
for three outliers. The amount of computation will always
be very much heavier than for equivalent uses of Wilks’

test and seems unlikely to be worthwhile.
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In concluding this chapter, it may be remarked that,
although union-intersection construction of outlier test
statistics seems not to have been considered before,
Fieller (1976, 1989) has discussed a property of
one-dimensional projection of a multivariate sample. He
shows that the value of Wilks’ statistic for observation
X, in the full p dimensions is the same as its value in
the univariate projected sample, when the projection is
onto the direction of the eigenvector of Snl(xk—i)(xk—i)’.
He calls this direction the outlier-displaying component
for that observation. The direction corresponding to the
maximum is the outlier-projecting component for the
sample: it holds all the information on one outlier.
There is no directly equivalent result for two outliers
(unless they are assumed to have the same slippage), which

is the case considered in this chapter.
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CHAPTER 7

OUTLIER TESTS WITH STRUCTURED COVARIANCE MATRICES

7.1 Introduction

Methods of multivariate statistical analysis are often
presented as having the purpose of examining the structure
of data. Sometimes this may refer to the relationships
within the cases (observational units), as in most cluster
analyses, but more often it refers to relationships
between the variables. Whenever the multivariate normal
distribution applies to the variables, their inter-
relationships will be described by the correlation matrix
(which, together with the means and variances, is
sufficient for the multinormal distribution).
Investigating the structure of a set of multivariate data
therefore often means investigating the structure of a
correlation matrix, either as a purely exploratory
analysis (no structure has been hypothesized beforehand)
or as a confirmatory analysis (a particular structure has
been proposed and is to be tested). Textbooks on
multivariate analysis consequently include several methods
for investigating and testing particular structures. One
example is provided by factor analysis. The observed
variates x are assumed to be linearly related to a set of
unobserved variates y via a matrix of coefficients (factor
loadings) A:

x=Ay+e

where € is an error term. Applying this model means that

the covariance matrix ¥ of x is being represented as
2=APA’+T

where & (often taken to be I) is the matrix of
correlations between the unobserved factors y and ¥=var(eg)

is diagonal.

Although the factor analysis meodel is widely used,
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there are other much simpler structures which may be
presented for illustration. One is the equicorrelation

structure

This is important in the analysis of repeated measures
data, since it is a sufficient condition for a
straightforward analysis of variance (treating the data as
a split-plot design) to give statistics with exact
F-distributions. In a genuine split-plot design, this
covariance structure arises because of randomization, but
it is less likely to apply to measurements repeated in
time, which cannot be randomized (Rowell and Walters,
1976) .

A related form of correlation structure may be more
appropriate when the variables form a time series, since a
measurement may be expected to be most highly correlated
with those closest to it in time, instead of equally
correlated with all others. If a first-order

autoregressive model

Xt+'t=p X +¢&

describes the process {Xt}, then the correlation between
Xt+tand X, is plrl, so that if observations are made at
times t t_,...,t with T =t -t , then the correlation

1, 2 P i i+1 i

matrix is
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Morrison (1976, 9.11) discusses this model and also
processes which lead to the same covariance structure,

including a Wiener stochastic process where

X =X +Y
t+1 t t+1

and successive increments Yt, Yt+1 are uncorrelated. This
is a model for Brownian motion or any other process where
the outcome can be thought of as the sum of independent
contributions. A Guttman scaling model, where the
variables can be thought of as occupying positions along a

continuum, also gives rise to this correlation structure.

All of the structures mentioned above have practical
importance in describing multivariate data structures.
But of course none is applicable if there is no structure
at all, in other words i1f the variates are independent.
This is the simplest structure : R=I. In many
applications it is obvious on sight that there are
significant correlations, so independence would not be
tested. However, there are plenty of fields of research
where high correlations are never achieved, often because
the measuring instruments are very imprecise, as may be
the case with scales in many sociological and
psychological applications. For this reason, the factor
analysis procedure in the widely used SPSS package - which
is commonly used with just this kind of data - includes a

test for complete independence of the variates.
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A more common variation of independence arises when
only certain parts of the correlation matrix are zero, and
particularly important is the case when a block, rather
than specified elements, is zero. This happens as
follows.

A frequent aim of statistical analyses is to
demonstrate an association. In the context of two
normally~-distributed random variables, this may be done by
testing the null hypothesis of zero correlation between
them. It is not unusual to come across similar hypotheses
in data of higher dimensionality, where, however, the
correlations are zero between sets of variates rather than
just pairs. For one example, in a multivariate regression
analysis, the overall test of significance examines
whether all the dependent variables are independent of all
the predictors. For another, in canonical correlation
analysis, linear combinations are found within each set of
variates so that the correlation between the two
combinations, one from each set, is maximized; further
combinations may then be derived with maximal correlations
subject to orthogonality to preceding linear combinations.
The test of significance for the first, maximized
correlation, against the null hypothesis of zero
correlation, tests whether all the variables of one set
are uncorrelated with all those of the other set.
Formally, suppose that the p-dimensional random vector x
follows the multivariate normal distribution Np(u,Z) and
can be partitioned into two sets of variates of dimension
P, and P, (p1+p2=p) with covariance matrix correspondingly

partitioned as

1 =7 =
The test is for Zm 24 0.

Morrison (1976, p.254) suggests that investigation of
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block structures of this kind is interesting when the
variates divide into two groups, so that the variates
within each group are characterized by a common feature
which distinguishes them from the other group. He gives
an example where the measurements are the responses in a
stress experiment, with one group consisting of
physiological observations (such as blood pressure and
skin conductivity) and the other consisting of behavioural
measurements. The purpose would be to see if there were
any connection between the physiological and behavioural
data.

In this chapter, a slightly different problem is
examined, in which it is assumed that the block structure
holds and that there may be outliers distorting this
picture. 1In testing for outliers in a simple random
sample of data from this distribution, two alternatives
will be considered. These are Wilks’ test, which treats
the data simply as p-dimensional random vectors with I
unrestricted, and a test which will be developed
specifically to incorporate the information that ¥ has
this block structure. This new test will, like Wilks~’
test, be based on maximum likelihood for slippage of the
mean. The main purpose of this comparison, which will be
made for a single outlier only, is to demonstrate the kind
of increase in power that might be obtained by applying

knowledge of the covariance structure.

7.2 A Wilks~-type statistic when ¥ has block structure

The derivation of a new test statistic, utilizing
information on the block structure, employs the same
calculation as leads to the usual Wilks statistic. Given
independent p-dimensional random vectors X, (i=1,...,n)

and the hypotheses
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HO: xj ~ Np(u,Z), j=1,...,n
and Hi: xj ~ Np(u,Z), J#i

x = Np(u+a,Z)

for known i, but unknown p,a and ¥, then the likelihood
ratio for H, against H reduces to |Ai|/|A|, as discussed
before. Now consider how the likelihood changes when X has
the block structure. Under Ho, the likelihood is
proportional to

|21 Pexp(( -1/2) T (x -w)’Z"
j=1
“exp( (-1/2) PRICTRR P X i)

(xj-u)}

=|Z I-n/2|Z -n/

11 22I

-1
- 4 -
X, T (X ) Y]

where x;=0%1,xﬁ)' when partitioned in the same way as
g and . By writing this as

-/ 1

|£,, | Pexp((-1/2) IOy ) B O )
e

Z,, 1T Pexp((-1/2) T () PED (% ) )

j=1

22|

the likelihood is seen to be the product of two
independent terms, each with the same structure as the
simple likelihocod for the unrestricted case. The same

reasoning applies under H, and hence the likelihood ratio

is
|Ali |- IAZiI

a1 14l

where subscripts 1 and 2 denote SSP’s for the first and

second sets of variates.

Any one such ratio has as null distribution the product

of the two independent betas
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B{(n-p,-1)/2,p,/2) .B{(n-p,-1)/2,P,/2) }

which has p.d.f.

1
p (W)= l £(y)g(w/y)y 'dy, O=w=l (7.2.1)

where f and g are the density functions of the two beta
variables. That is,

1
p (W) o w(n-p2—3)/2 Y[ y(p2—p1)/2—1 (l_y)pl/Z—l (1-w/y) p2/2— 1dy
(7.2.2)

where P,ZP, (otherwise, the roles of f and g in (7.2.1)

should be reversed). The constant of proportionality is

C{(n-1)/2)}"
I'{(n-p,-1)/2)T{(n-p,~1)/2)T(p /2)T(p,/2) (7.2.3)

The integral (7.2.2) does not seem to have a general
solution, but in certain special cases it can be solved
straightforwardly. Two cases will be taken here, for
illustration. Firstly, suppose pﬁq2=2. Then the
integrand in (7.2.2) reduces to y ' and the density

becomes

(n-5)/2

p(w)=-{(n-3)%/4).w 1n w, 0=w=1
with distribution function

P(w)=w"""2(1-(n-3)/2.1n w}, O<w=1 (7.2.4)

Secondly suppose p,=2, p=4. The integrand in (7.2.2)

becomes (1-w/y) and the density is

p(w)=(n-3)%(n-5)/8.w" "% {1-w+w.1ln w)

with distribution function
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(n-5)/2

P(w)=w [ (n-3)%-(n-5)w{n-1-(n-3)1n w}]/4 (7.2.5)

Knowing these distributions permits the construction of

Bonferroni tests for outliers when the test statistic

min |A11L|A2i| , i=1,...,n
1

12,1 12,1

is employed. As usual, for the a% Bonferroni bound the
o/n% points of the distributions (7.2.4) and (7.2.5) are
taken. This is easily done in a few program lines on a

microcomputer, solving
P(w)= a/n

by Newton-Raphson iteration (Appendix I). Some values are
given in Table 7.2.1. These bounds can now be used in

testing in

Table 7.2.1a Percentage points for Bonferroni test using

block matrix structure, p1=p2=2:

o
n 0.01 0.025 0.05 0.10
10 .07150 .09572 .11968 .15007
20 .30841 .34744 .38056 .41722
30 .46134 .49713 .52630 .55748
50 .62614 .65346 .67509 .69762
100 .78474 .80105 .81370 .82665

Table 7.2.1b Percentage points for Bonferroni test using

block matrix structure, p1=2, p2=4:

o
n 0.01 0.025 0.05 0.010
10 .02401 .03511 .04696 .06306
20 .22620 .25891 .28720 .31909
30 .38514 .41829 .44564 .47522
50 .56719 .59414 .61564 .63822

100 .74884 . 76556 .77861 .79202
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comparison to the ordinary Wilks tests for 4 dimensions
(case p1=p2=2) and 6 dimensions (case p1=2, p2=4). For
this purpose Wilks’ Bonferroni table for one outlier
(1963) was extended for p=6, n=10, 20, 30, 50, 100, as
given in Table 7.2.2.

Table 7.2.2 Percentage points for Bonferroni test using

Wilks’ statistic for one outlier.

o
n 0.01 0.025 0.05 0.10
10 .00375 .00692 .01103 .01760
20 .19286 .22433 .25188 .28328
30 .36380 .39721 .42488 .45491
50 .55712 .58448 .60634 .62932
100 .74571 .76261 .77580 .78936

7.3 Power comparisons between the tests

The powers of the ordinary Wilks test and the new test
incorporating the information on block structure were
compared by simulation study. Multivariate normal
samples, of the required dimension pP=p,+p, and of chosen
size n, were generated with the block structure Zm=0 for
chosen Zu and Zzzand mean zero. A chosen vector was
then added to the first member of the sample, representing
a slippage of the mean. Both the Wilks statistic and the
new statistic were computed and compared to their
respective Bonferroni bounds at the same significance
level. This procedure was repeated 8000 times for each
combination of p and n, for each chosen £ and slippage.
For each combination of p and n, two types of slippage
were used, and two distances with each type. The first
type consisted of slippage in each dimension, represented
by adding a multiple of the p-dimensional unit vector g1’
to the first member of the sample. The multiplier B was
chosen so that the squared generalized (Mahalanobis)

distance of the size of slippage, in the metric of the
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block %, namely
a’=g°1/'z""1

was equal to 30 or 15. The second type consisted of
slippage affecting only the p, dimensions making up the
first block of variables. This was represented by adding
a vector au, where u consisted of p, ones followed by P,

zeros, with the multiplier chosen so that

A2u’s'u=30 or 1s.

The computation of 8 and A is given in Appendix II. The
required values can be computed easily, because when X

is block diagonal

The inverse of a 2x2 block can be computed easily

1p|7'_ | 1-p

p 1l -0 1

(1-p%) 7"

and the 4x4 block (in the case p1=2, p2=4) could also be

inverted analytically, because the equicorrelation form

1ppep
plLpp
ppPplp
pppl

was used; its inverse has elements

1+2p
(1-p) (1+3p)
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along the diagonal and

-p
(1-p) (1+3p)

in all off-diagonal positions.

Tables 7.3.1 and 7.3.2 display results for Bonferroni
levels of significance a=0.01, 0.025, 0.05 and 0.10 for the
two types of slippage and the two distances, for cases
p1=p2=2 (Table 7.3.1) and p1=2, p2=4 (Table 7.3.2). The

following conclusions are clear:

(i) the modified test is the more likely to declare
that an outlier is present, for both types and amounts of

slippage, for all sample sizes;

(ii) the advantage to the modified test, which is very
large for small samples, decreases as n increases; the
advantage falls away faster as n increases for the second

type of outlier than for the first type;

(iii) the modified test is less likely to declare an
outlier with the second type of slippage than with the
first type, especially in samples of size 10, 20 and 30.
The performance of the unmodified test is the same for

both types of outlier.

(iv) the degrees of difference between the tests are

broadly similar for both sizes of slippages considered;

(v) Wilks’ test declares an outlier in a small

percentage of cases when the modified test does not.

The first two conclusions would be expected from the
nature of the difference between the two tests. They
differ only in that one uses the extra information that
certain parameters of the model, namely the correlations
in Zm’ can be set equal to zero, instead of having to be
estimated. As less information has therefore to be lost
to the estimation of parameters, it follows that the

modified test must be the more sensitive, on average, to
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real differences. The increased sensitivity will be
greatest when the sample is small, for then the efficiency
of the estimation is lowest and so the imposition of the
constraint has the greatest quantitative effect. Point (v)
holds however because the argument of increased
sensitivity applies only on the average and not to each
particular sample.

The dependence on type of outlier, mentioned in (iii),
is also as would be expected. The performance of Wilks’
test depends only on the generalized distance, as
reproduced by these simulations. With the second type of
outlier, the second set of variables is actually
irrelevant to the problem, so that their inclusion should
not (if n is big enough) affect the test. Since their
inclusion should not affect the test, the way they are
treated should also not have any effect: in other words,
the modified and unmodified tests should be the same, for
large enough n, for the second type of outlier. The
tables confirm that there is little difference at n=50, or
even at n=30. Such difference as there is, is again due
to the need to estimate fewer parameters in the modified
test, which has a larger impact when the sample size is
small. With the first type of outlier, on the other hand,

both sets of variables are relevant to the problem.

The chief conclusion of this illustrative study is
that, since such a large increase in power can be obtained
in small- to medium-sized samples by using a more suitable
outlier test statistic than the standard Wilks statistic,
it is very much worthwhile to construct these alternative
statistics. In the remainder of this chapter, statistics
for some other particular structured matrices will be

considered.
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Table 7.3.1 Power comparison between the Wilks test and the

Wilks test modified to incorporate block structure information.

le = 1 .4 222 = 1 -.4
.4 1 ~.4 1l

Case p =p_=2, with

Outlier type 1:

slip=fdist/(2{1/(1+p1)+1/(1+p2)}, is the slippage added to each
component where piand p, are the correlations corresponding to
the first and second blocks of the variance-covariance matrix.
Dist is the squared generalized distance. In this case p,=-4
and p==-4. Slippage for (i) dist=30 is 2.50998 and for (ii)
dist=15 is 1.77482 in each component.

Outlier type 2:

Slip=Jaist(1+p1)/2 is the slippage added to the first two
components of 1st observation which for (i) dist=30 is 4.58258
and (ii) dist=15 is 3.24037.
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a) a=0.01
% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(1) Sg. gen. distance=30, outlier type 1.

10 35.98 7.18 30.29 1.49
20 63.49 39.14 26.18 1.83
30 70.19 54.48 17.30 1.59
50 75.21 66.91 10.03 1.73
100 76.01 72.10 5.28 1.36

(ii) Sg. gen. distance=30, outlier type 2.

10 15.58 6.76 11.28 2.46
20 46.01 38.61 10.55 3.15
30 58.83 54 .55 7.01 2.74
50 68.44 66.04 4.15 1.75
100 72.68 71.95 2.19 1.46

(iii) Sg. gen. distance=15, outlier type 1.

10 10.75 2.64 9.29 1.18
20 18.98 9.80 10.95 1.78
30 21.55 14.38 9.06 1.89
50 23.48 18.25 7.21 1.99
100 22.59 20.05 4.46 1.93

(iv) Sg. gen. distance=15, outlier type 2.

10 6.11 3.13 4.54 1.55
20 12.61 10.01 5.13 2.53
30 16.91 14.56 4.34 1.99
50 20.06 18.31 3.56 1.81

100 19.84 18.96 2.21 1.34
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a=0.025

of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only
(1) Sq. gen. distance=30, outlier type 1.
10 51.63 15.18 38.46 2.01
20 74.75 54.14 22.38 1.76
30 79.78 66.71 14.63 1.56
50 83.13 76.76 7.61 1.25
100 82.84 79.85 4.14 1.15
(ii) Sq. gen. distance=30, outlier type 2.
10 28.19 14.44 17.63 3.88
20 59.88 53.04 10.11 3.28
30 70.99 66.99 6.11 2.11
50 78.04 76.30 3.51 1.78
100 80.70 80.05 1.70 1.05
(iii) Sg. gen. distance=15, outlier type=1.
10 18.53 6.45 14.54 2.46
20 28.30 17.53 13.46 2.69
30 30.50 22.69 10.51 2.70
50 32.66 27.35 7.88 2.56
100 30.49 28.25 4.53 2.29
(iv) Sq. gen. distance=15, outlier type=2.
10 11.78 6.74 8.00 3.88
20 21.50 17.45 7.33 3.28
30 25.78 22.60 5.80 2.63
50 28.25 27.03 3.76 2.54
100 27.15 26.68 2.26 1.79
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c) a=0.05

[

% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(1) Sq. gen. distance=30, outlier type=1.

10 63.51 25.18 40.75 2.41
20 82.39 65.20 18.79 1.60
30 86.05 75.88 11.45 1.28
50 88.31 83.23 6.18 1.098
100 87.36 85.10 3.34 1.08

(ii) Sg. gen. distance=30, outlier type=2.

10 40.59 24.34 20.99 4.74
20 70.36 64.16 9.46 3.26
30 79.24 76.63 4.71 2.10
50 83.74 82.78 2.49 1.53
100 85.78 85.13 1.49 0.84

(iii) Sqg. gen. distance=15, outlier type=1.

10 27.44 11.51 19.61 3.69
20 36.85 25.85 14.41 3.41
30 39.29 31.31 11.36 3.39
50 41.11 35.75 8.44 3.08
100 37.96 35.61 4.98 2.63

(iv) Sg. gen. distance=15, outlier type=2.

10 19.05 12.34 11.29 4.58
20 30.76 26.31 8.33 3.88
30 33.84 31.53 6.31 4.00
50 36.84 34.83 4.64 2.63

100 35.04 34.13 3.15 2.24
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d) ®=0.10

% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(1) Sqg. gen. distance=30, outlier type=1l.

10 75.84 39.68 38.75 2.59
20 88.46 76.30 13.56 1.40
30 91.19 84.26 7.96 1.04
50 92.16 88.98 4.18 0.99
100 91.24 89.78 2.39 0.93

(ii) Sqg. gen. distance=30, outlier type=2.

10 55.58 39.16 22.31 5.90
20 81.20 75.85 7.81 2.46
30 86.29 84.24 3.75 1.70
50 89.10 88.23 1.98 1.10
100 89.90 89.54 1.21 0.85

(iii) Sg. gen. distance=15, outlier type=1.

10 39.53 21.09 24.09 5.65
20 48.08 37.00 15.25 4.18
30 49.79 42.66 11.11 3.99
50 51.23 46.39 8.40 3.56
100 47.38 44.91 5.36 2.90

(iv) Sqg. gen. distance=15, outlier type=2.

10 29.56 22.43 14.13 6.99
20 41.68 37.41 9.26 0.50
30 45.54 42.74 7.04 4.24
50 46.80 45.38 5.06 3.64

100 44.39 43.64 3.61 2.86
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Table 7.3.2 Power comparison between the Wilks test and the

Wilks test modified to incorporate block structure information.
Case p1=2, p2=4, with
.= [ 1 .4] == 1-.2 -.2 -.2
4 1 -.2 1 -.2 =-.2
-.2 =.2 1 -.2
-.2 -.2 -.2 1

Outlier type 1 :

Slippage added to 1st observation of sample is
slip=¢dist/¢{2/(1+p1)+4/(1+3p2)} where P, and p, are the

corresponding correlations of the first and second blocks of

the variance-covariance matrix. In this case p1=.4 and p2=-.2.
Dist is the squared generalized distance. This gives slippage
(i) for dist=30, slip=1.62019 and (ii) for dist=15,

slip=1.14564 in each component.

Outlier type 2 :

Slip=¢dist(1+p1)/2 is the slippage added to the first two
components of 1st observation. For (i) dist=30, slippage is

slip=4.58258 and for (ii) dist=15, it is slip=3.24037.
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a) a=0.01
% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(1) Sq. gen. distance=30, outlier type 1.

10 10.53 1.81 9.79 1.08
20 38.79 21.40 19.88 2.49
30 51.49 38.61 15.00 2.12
50 60.40 52.31 10.20 2.11
100 64.03 60.53 5.25 1.75

(ii) Sg. gen. distance=30, outlier type 2.

10 6.40 1.70 6.01 1.31
20 29.58 20.54 13.33 4.29
30 43.83 37.63 10.59 4.39
50 56.13 51.85 7.09 2.81
100 61.78 60.15 3.79 2.16

(iii) Sqg. gen. distance=15, outlier type 1.

10 3.43 1.13 3.21 0.91
20 9.24 5.10 5.50 1.36
30 12.80 9.21 5.45 1.86
50 14.18 11.86 3.98 1.66
100 15.01 13.81 2.59 1.39

(iv) Sg. gen. distance=15, outlier type 2.

10 2.50 1.48 2.28 1.25
20 7.46 4.85 4.35 1.74
30 10.25 7.93 4.51 2.19
50 12.65 11.18 3.69 2.21

100 14.50 13.71 2.36 1.58
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b) «=0.025

=)

% of times an outlier detected by:

n Mod.Wilks Wilks Mod. Wilks only Wilks only

(i) Sg. gen. distance=30, outlier type 1.

10 19.63 4.83 17.25 2.45
20 52.18 33.69 21.46 2.98
30 63.24 50.99 14.44 2.19
50 70.65 63.56 8.88 1.79
100 73.39 70.28 4.59 1.48

(ii) Sqg. gen. distance=30, outlier type 2.

10 12.88 4.43 11.43 2.98
20 43.55 32.75 15.38 4.58
30 56.39 50.74 10.25 4.60
50 66.94 63.95 6.35 3.36
100 70.53 69.49 3.21 2.18

(iii) Sg. gen. distance=15, outlier type 1.

10 7.18 3.08 6.41 2.31
20 15.78 10.16 8.29 2.68
30 20.09 14.79 8.05 2.75
50 21.74 18.28 5.79 2.33
100 22.10 19.83 3.95 1.68

(iv) Sg. gen. distance=15, outlier type 2.

10 5.49 3.31 4.63 2.45
20 13.93 9.71 7.25 3.04
30 16.80 14.29 6.04 3.53
50 19.95 18.25 4.88 3.18
100 20.98 20.44 2.91 2.38
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c) =0.05

% of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(i) Sqg. gen. distance=30, outlier type 1.

10 30.21 8.95 25.28 4.01
20 62.80 45.46 20.55 3.21
30 71.76 61.53 12.45 : 2.21
50 77.41 71.99 7.16 1.74
100 79.59 77.01 3.91 1.34

(ii) Sq. gen. distance=30, outlier type 2.

10 21.35 8.38 17.75 4.78
20 55.39 45.29 15.15 5.05
30 66.71 61.20 9.65 4.14
50 75.48 72.98 5.38 2.88
100 77.35 76.24 3.23 2.11

(iii) Sg. gen. distance=15, outlier type 1.

10 12.74 6.30 10.71 4.28
20 23.51 15.51 11.71 3.71
30 27.76 22.19 9.31 3.74
50 29.94 25.70 7.20 2.96
100 28.56 26.83 4.16 2.43

(iv) Sq. gen. distance=15, outlier type 2.

10 10.29 6.25 8.35 4.31
20 20.58 15.55 9.63 4.60
30 24.69 21.68 7.74 4.73
50 27.75 25.78 5.89 3.91

100 27.55 27.03 3.66 3.14
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d) =0.10

oe

of times an outlier detected by:

n Mod. Wilks Wilks Mod. Wilks only Wilks only

(1) Sg. gen. distance=30, outlier type 1.

10 44.64 16.76 33.55 5.68
20 73.61 58.66 17.84 2.89
30 80.00 72.08 10.10 2.18
50 84.10 80.03 5.63 1.55
100 85.28 83.33 3.15 1.20

(ii) Sg. gen. distance=30, outlier type 2.

10 34.30 16.25 25.04 6.99
20 67.80 58.70 13.81 4.71
30 76.03 72.39 7.58 3.94
50 82.66 80.80 4.23 2.36
100 83.76 83.29 2.48 2.00

(iii) Sg. gen. distance=15, outlier type 1.

10 21.38 12.51 15.91 7.05
20 33.55 25.14 13.81 5.40
30 38.11 32.49 10.30 4.68
50 39.66 35.41 7.88 3.63
100 38.00 35.76 5.24 3.00

(iv) Sg. gen. distance=15, outlier type 2.

10 18.13 11.78 13.81 7.46
20 30.80 25.20 12.08 6.48
30 34.75 31.26 9.01 5.53
50 38.11 35.30 7.05 4.24

100 37.28 36.66 4.50 3.89



- 214 -

7.4 Testing for one outlier when ¥ is the equicorrelation

matrix

One motivation for interest in the equicorrelation
matrix

]
Rele!

© ol
)

was mentioned in § 7.1. Another arises frequently in
sociological and psychological research, where scales of
measurement are often set up which consist of the sum of
scores on a number of related items which are all answered
in the same way (such as "strongly agree" to "strongly
disagree" on a 5-point scale). One question about such a
scale is whether it is a reliable measurement of whatever
it is that it does measure, in the sense that a ruler
provides a reliable measurement of length because it will
give the same answer when applied to the same object under
the same conditions; 1f the scale is reliable, then the
researcher can go on to study its validity - whether the
thing that it measures is what he would like it to
measure. A basic coefficient assessing reliability is
Cronbach’s alpha (e.g. Carmines and Zeller, 1979). This

is usually computed as

a=Np/ {1+ (N-1)p}

where the scale consists of N items and p is the average
of all the N(N-1)/2 inter-item correlations. The
derivation of this involves the assumption that the items
are parallel measures of the same concept, all possessing
exactly the same properties, including equal means and
variances, and hence having equal correlations with each
other. In the equicorrelation matrix thus assumed, the
maximum ljkelihood estimator of the common correlation p
is just p: the proof of this will now be seen in the
derivation of an outlier test statistic for data supposed

to follow the equicorrelation model.
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A two-stage maximum likelihood statistic will be found
for testing sample homogeneity against an alternative of a

single outlier with slippage in the mean. The hypotheses
are

H0 S Np(u,Z) i=1,...,n

H1 O Np(u,Z) 1]

X ~ N (p+a,)
J p

where p, a and j are unknown, and ¥=0°R has the

equicorrelation form with unknown o° and P.

The log-likelihood under H has already been given as

equation (3.1.2). Apart from a constant, it is
1(u,V)=nln|V|=-ntr(Vs)-n(x-u) 'V(x-u) (7.4.1)
2 2 2

where y=x"1

and nS= Y (xi—§)(xi—§)’
i
As before, taking derivatives of the log-likelihood
maximized over p at p=x (whereupon the third term

vanishes),

81 = n[3ln|V|-4tr (VS)
av 2 &V ov

= n (2Z-diagzZ-2S+diags) (7.4.2)
2

using results from Mardia, Kent and Bibby (1979) quoted in

§ 3.1. Now in this particular problem,
V=o (I+BJ)

where a(p,o°)=02(1-p) ! and B(p)= -p{1l+(p-1)p) ‘. 1In order
to obtain 81/6a and 81/8B8, we first prove the

following lemma.
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If the matrix Q=Q(8) with 6 scalar, then

31 =tr[ 8l 6Q']

EC) 8Q a6

For matrix Q=(qn)’ 81/8Q means the matrix

(al/aqn). Now

91 =YY 81 aq .
3® 1y 2q 36’

[ al] [aQ]
Q| . 198| .
ij ij

} [ ,)
0Q) 196 .
ji

1]

tr({8l a8Q’
8Q 86

I
= ™
- ™

I
- ™
— ™
—
@
|

Applying this lemma to V=« (I+BJ) in (7.4.2),

3l = tr(al av because V is symmetric
da vV da
= tr[3l (I+RJ)
av
= tr(dl}+ptr(sl J
av av
=n trX - n trS + Btr(dl J
2 2 av (7.4.3)
and
8l = tr(al av
I v 3B
~ atr(al J (7.4.4)
av

Since 81/8a=0 and 8l1/8B= 0

estimates,

tr(sl J
av

n (trﬁ—trS) =0

2

giving

from (7.4.3)

] = 0 from (7.4.4), and

at the maximum likelihood
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n (p&z—trS) =0
2

from which
A2
o = (1/p)trs.

Returning to (7.4.4), at the m.l.e.

tr(dl J) =0
av

which gives
tr{28T- (diags)JI-28J+ (diagS)JT}=0

2p{1+(p-1) p}0°~po-2 ¥ ¥ s, +trs=0
i

P(1+(p=1)p)0° = L ¥ s, =L L s +trs
Py T iy
so finally
p=__ 1 LY s,
N2 i#Ej
p(p-1)o

Going back to the log-likelihood maximized over p and

writing v=c R,

1= -np 1no®-n 1n|R|-no ’tr (R'S)
2 2 2

it can immediately be seen, by differentiating with
respect to 02, that

o?=tr(R'S) /p
so that the maximized log-likelihood is

A2
lo = - np lnoc - n In|{R| -
2 2

IS
[Sire]

under HO.

Under H for specified j, the log-likelihood is (omitting
the same constant)
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1(p, V)=

N3

1n|V|-(n=-1)tr (VS )-ntr{V(x -u) (X ~u)’}
5 j 3 j j

~ 1(x _-p-a) 'V(x -u-a)
E J J

A A A
so that, once m.l.e.’s ﬁ=§j and $=xj—ﬁ have been
inserted, the log-likelihood differs from the null case

only in replacing S by (n—l)Sj/n. Consequently

A2
)

= n-1 tr(s))

3 ———-np J
pj B e A2 Elzatg (Sj)ik

np(p-1)0"

using the j subscript to show that point X, was omitted.

With these estimates, the maximized log-likelihood is

A
In |R |

A2
l=-np lno, - n
2 ) )

1

and hence the likelihood ratio A, for given j is,

A2/n= 32 I ﬁ ' |
J j
7\3 A
o |R] (7.4.5)

Using the two-stage method, the minimum value of this over
all j=1,...,n gives the outlier test statistic for unknown
j, called EC for equicorrelation

p

A2 A

EC= min | IRjI
3 /\2 A
o’} IR|

It can be seen that it has a form analogous to Wilks’
statistic, which is bafed on |Aj|/|A| and hence is
proportional to ]2j|/|2|. This is the ratio of
determinants of the m.l.e’s of the covariance matrix under
the two hypothesis, which is the same structure as
(7.4.5).
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It does not seem possible to find the distribution of
the above test statistic EC for an outlier from the
equicorrelation model. In order to investigate its
performance the following simulation studies were
undertaken. Firstly, simulated percentage points were
obtained under the null hypothesis. Secondly, these
percentage points were used to examine the power of the EC
test in comparison to the power of Wilks’ test, which can
be applied to the same data but does not utilize the extra
information that the covariance matrix has the

equicorrelation structure.

Simulated 1, 2.5, 5 and 10% critical values are shown
in Table 7.4.1 (a)-(d). The entries in the tables are
based on 30,000 simulated samples from Np(O,R) with the
given combination of n and p=2; 18,000 simulations for
p=3; 16,000 for p=4 and 14,000 for p=5. The different
numbers of simulations arose because data under the null
hypothesis were generated for different values of p in the

range (po(p),0.9), where

py,(P)= _-1
p-1
is the lowest possible value of p at which the
equicorrelation matrix ceases to be positive definite.

This was done to confirm that the percentage points do not
depend on p.

Simulated powers are shown in Table 7.4.2 (a)-(d). In
this case, each entry is based on 6,000 runs, and is the
average of three lots of 2,000 simulations each for
different values of p (again, to confirm that results were
independent of p). A simple outlier was generated by
adding the quantity Al to the first member of the sample,
where A was chosen so that the generalized distance of the
slippage from the mean (the origin) was 20 in the metric

of equicorrelation covariance matrix R:, the computation
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is shown in Appendix II. Wilks’ statistic and the EC

statistic were both evaluated on the same data.

In examining the powers it should first be noted that
in the case p=2 there is only one correlation, so the
imposition of the equicorrelation structure actually
refers to imposing the single condition of equality
between the two variances. The number of parameters to be
estimated is always 2 in the equicorrelation matrix for
any number of dimensions, in comparison to p(p+1l)/2 in the

unrestricted matrix:

p p(p+l)/2
2 3
3 6
4 10
5 15

From this, it is obvious that for a given sample size
the power of the new EC test statistic will decline much
less steeply as p increases than will the power of Wilks’
test, so that the difference in powers of the tests will
increase quite sharply from the rather small difference
which should exist at p=2 (where a single restriction is
imposed). This is borne out by the tables. 1In testing at
the 5% level in a sample of size n=20, the power of the
new procedure is only 4.7% greater than that of Wilks’
statistic (0.467 to 0.447) for p=2, increasing to 18.1%
for p=3, 31.1% for p=4 and 46.0% for p=5 (0.285 to 0.195).

The conclusion to be drawn from the data in the tables
is that utilizing the information on equicorrelation, by
using the EC test statistic, makes a substantial
difference to the power of the single outlier test in
small and moderate samples, say up to at least n=30 for
the range of dimensions considered. Hence it is of
practical importance to exploit this information wherever

possible. Since it would probably be necessary in some
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applications to confirm the applicability of the
equicorrelation hypothesis, a test for this structure
should also be carried out. Following the derivation
above, it can be shown that a likelihood ratio test for
equicorrelation against an unrestricted alternative is
(Wilks, 1946; Morrison, 1976)

L = |£|/(c")"|R]

where ¥ is the unrestricted m.l.e. Then -1ln L times the
factor

n-1-p(p+1)*(2p-3) /{6 (p-1) (p°+p-4) )

is asymptotically X® with [p(ptl)/2]-2 degrees of freedom:
this is the usual asymptotic result, incorporating a
correction due to Box (1949, 1950). This test could be
applied to the reduced sample obtained by omitting the
suspected outlier X, and significance levels would not be

affected if xj is a genuine outlier.

Table 7.4.1(a) Simulated 1% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation
model.

Dimensions p
Sample size

n 2 3 4 5
10 0.1670 0.1315 0.1007 0.0801
20 0.4216 0.3750 0.3263 0.2961
30 0.5601 0.5141 0.4722 0.4433
50 0.7003 0.6673 0.6359 0.6038

100 0.8286 0.8046 0.7872 0.7685
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Table 7.4.1(b) Simulated 2.5% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation
model.

Dimensions p
Sample size

n 2 3 4 5
10 0.2078 0.1658 0.1306 0.1027
20 0.4674 0.4151 0.3678 0.3328
30 0.5983 0.5507 0.5084 0.4737
50 0.7270 0.6922 0.6603 0.6310

100 0.8438 0.8212 0.8026 0.7838

Table 7.4.1 (c) Simulated 5% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation
model.

Dimensions p
Sample size

n 2 3 4 5
10 0.2489 0.1992 0.1581 0.1247
20 0.5052 0.4479 0.4014 0.3617
30 0.6291 0.5796 0.5370 0.5038
50 0.7479 0.7123 0.6806 0.6525

100 0.8564 0.8348 0.8151 0.7974

Table 7.4.1 (d) Simulated 10% points for two-stage maximum

likelihood test for a single outlier from the equicorrelation
model.

Dimensions p
Sample size

n 2 3 4 5
10 0.2979 0.2373 0.1908 0.1533
20 0.5477 0.4891 0.4379 0.3969
30 0.6628 0.6106 0.5707 0.5341
50 0.7704 0.7345 0.7038 0.6760

100 0.8685 0.8469 0.8289 0.8115
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Table 7.4.2 (a) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model
and Wilks’ statistic: «=0.01

Proportion of times that an outlier is declared

Sample

size Dimensions EC Wilks’ Only EC Only Wilks’

n P test test test test

10 2 0.1417 0.0942 0.0640 0.0165

3 0.1137 0.0503 0.0803 0.0170

4 0.0885 0.0268 0.0768 0.0152

5 0.0747 0.0165 0.0695 0.0113

20 2 0.2580 0.2258 0.0490 0.0168

3 0.1953 0.1658 0.0553 0.0257

4 0.1682 0.1060 0.0817 0.0195

5 0.1238 0.0632 0.0810 0.0203

30 2 0.2942 0.2890 0.0267 0.0215

3 0.2272 0.2112 0.0450 0.0290

4 0.1863 0.1403 0.0667 0.0207

5 0.1635 0.1017 0.0828 0.0210

50 2 0.3202 0.3070 0.0262 0.0130

3 0.2498 0.2388 0.0352 0.0242

4 0.2215 0.1832 0.0555 0.0172

5 0.1785 0.1417 0.0585 0.0217

100 2 0.3107 0.3102 0.0107 0.0102

3 0.2552 0.2405 0.0287 0.0140

4 0.2162 0.1965 0.0350 0.0153

5 0.1623 0.1485 0.0325 0.0187
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Table 7.4.2 (b) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model
and Wilks’ statistic: a=0.025

Proportion of times that an outlier is declared

Sample
size Dimensions EC Wilks’ Only EC Only Wilks’
n P test test test test
10 2 0.2403 0.1855 0.0850 0.0302
3 0.1985 0.1098 0.1220 0.0333
4 0.1660 0.0632 0.1333 0.0305
5 0.1362 0.0427 0.1210 0.0275
20 2 0.3715 0.3337 0.0595 0.0217
3 0.3050 0.2482 0.0892 0.0323
4 0.2587 0.1843 0.1110 0.0367
5 0.2072 0.1233 0.1170 0.0332
30 2 0.4037 0.3845 0.0385 0.0193
3 0.3282 0.2975 0.0588 0.0282
4 0.2758 0.2283 0.0805 0.0330
5 0.2525 0.1790 0.1037 0.0302
50 2 0.4308 0.4188 0.0298 0.0178
3 0.3573 0.3325 0.0480 0.0232
4 0.3012 0.2693 0.0562 0.2433
5 0.2622 0.2212 0.0680 0.0270
100 2 0.4070 0.4045 0.0147 0.0122
3 0.3408 0.3353 0.0247 0.0192
4 0.2947 0.2790 0.0395 0.0238
5 0.2382 0.2233 0.0408 0.0260
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Table 7.4.2 (c) Comparison between simulated powers of EC test
statistic for a single outlier from the equicorrelation model
and Wilks’ statistic: «=0.05

Proportion of times that an outlier is declared

Sample
size Dimensions EC Wilks’ Only EC Only Wilks’
n o) test test test test
10 2 0.3438 0.2915 0.0905 0.0382
3 0.2818 0.1865 0.1477 0.0523
4 0.2482 0.1148 0.1833 0.0500
5 0.2228 0.0837 0.1842 0.0450
20 2 0.4673 0.4465 0.0497 0.0288
3 0.4075 0.3450 0.1042 0.0417
4 0.3553 0.2712 0.1273 0.0432
5 0.2845 0.1950 0.1392 0.0497
30 2 0.5008 0.4850 0.0388 0.0230
3 0.4215 0.3880 0.0687 0.0352
4 0.3630 0.3163 0.0905 0.0438
5 0.3298 0.2590 0.1147 0.0438
50 2 0.5157 0.5090 0.0270 0.0203
3 0.4442 0.4338 0.0425 0.0322
4 0.3835 0.3568 0.0628 0.0362
5 0.3417 0.2985 0.0777 0.0345
100 2 0.4938 0.4832 0.0208 0.0102
3 0.4300 0.4157 0.0360 0.0217
4 0.3720 0.3650 0.0380 0.0310
5 0.3210 0.3017 0.0530 0.0337



- 226 -

Table 7.4.2 (d) Comparison between simulated powers of EC test

statistic for a single outlier from the equicorrelation model
and Wilks’ statistic: a=0.10

Proportion of times that an outlier is declared

Sample

size Dimensions EC Wilks’ only EC Only Wilks’

n p test test test test

10 2 0.4743 0.4290 0.0888 0.0435

3 0.4130 0.2955 0.1780 0.0605

4 0.3635 0.2155 0.2223 0.0743

5 0.3292 0.1630 0.2435 0.0773

20 2 0.5908 0.5663 0.0550 0.0305

3 0.5228 0.4658 0.1025 0.0455

4 0.4723 0.3887 0.1358 0.0522

5 0.4142 0.3055 0.1727 0.0640

30 2 0.6167 0.5980 0.0403 0.0217

3 0.5373 0.5050 0.0745 0.0422

4 0.4815 0.4270 0.1043 0.0498

5 0.4387 0.3638 0.1275 0.0527

50 2 0.6228 0.6123 0.0277 0.0172

3 0.5480 0.5383 0.0477 0.0380

4 0.4888 0.4615 0.0672 0.0398

5 0.4467 0.4047 0.0495 0.0915

100 2 0.5910 0.5843 0.0225 0.0158

3 0.5248 0.5222 0.0315 0.0288

4 0.4787 0.4643 0.0485 0.1342

5 0.4212 0.4038 0.0553 0.0380
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CHAPTER 8

RESTIDUALS AND INFLUENCE IN THE MULTIVARIATE LINEAR
MODEL

8.1 Introduction

The examination of structured data is also the topic of
this final chapter, since it deals with the relationship
of a response vector to a vector of predictors via a

linear model. Specifically, the model considered is
Y=XB+U (8.1.1)

where the nxg matrix Y holds n independent observations of
the g-dimensional response vector, the nxp matrix X holds
the corresponding observations of the p-dimensional vector
of predictors, B is a pxq matrix of coefficients and U is
an nxq matrix of random disturbances. X usually includes a
column of ones. After replacing B by an estimate ﬁ, the
matrix U=Y-XB holds the residuals: the ith row of this
matrix, ai, contains the residuals for the ith case on
each of the g response dimensions. The topic of residuals
from the univariate linear model (g=1) has been studied
extensively (Cook and Weisberg, 1982). The basic purpose
of examining residuals is to assess the adequacy and
appropriateness of the model; this may include
identification of outlying values, but a proper
examination of residuals should assess the entire set and
not just some extreme values. Along with the study of
residuals, there has also been a lot of attention to the
question of influence. This has been touched on already -
see Figure 1.2.1 and the relevant discussion in the text
of § 1.2.

In this chapter, these ideas are applied to the
multivariate linear regression problem. Although ordinary

least squares estimates of regression coefficients are the
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same in the multivariate analysis as in g separate
univariate analyses, so that the residuals for a
particular response dimension are the same whether this is
analyzed separately or together with the other responses,
there are obvious reasons for carrying out the
multivariate analysis to consider simultaneously the
different response variables. One is the possibility that
the residual for one response variable in a particular
case may not seem to be out of the ordinary in relation to
other residuals for that response, but only in relation to
the residuals for other responses on the same case.
Another is that interest may lie in specifically
multivariate aspects of the data. For example, in the
problem that prompted this investigation, the main item of
interest was the matrix of inter-correlations between five
indicators of pollution from sampling stations in the
Aegean Sea. This was calculated as the matrix of
correlations between the residuals from the regressions of
the indicators on covariates including temperature and pH
of the seawater. Correlations are particularly vulnerable
to distortion by outlying values (Gnanadesikan &
Kettenring, 1972), so examination of the multivariate

residuals to protect against this was essential.

In the following two sections, multivariate residuals
and influence measures are presented. Section 4 outlines
an application to illustrate the usefulness of the

methodology.

8.2 Residuals

It is useful to start by recalling some results from
the univariate linear model as may be found in Cook and
Weisberg or many other sources. Write the model as y=XB+¢
where y is the nxl vector of n independent observations of
the dependent variable, X is the nxp matrix of predictors,
usually including a column of 1’s, B is the px1l vector of

regression coefficients and € is the nx1 vector of
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residuals, with variance var(s)=021. Estimation of B is
usually carried out by ordinary least squares, which is
the same as maximum likelihood when the normal

distribution is assumed for €. The estimator is
I -1
B=(X'X)"'X"y.
The observed least-squares residuals are
A A
e=y-y=y-XB

=(I-X(X'X)7'X")y
=(I-V)y

where V=X(X’X) 'X’, is often called the "hat matrix".

Substituting y=XB+g, this expression for e reduces to
e=(I-V)e

From this, it can be seen immediately that the variance of

the observed residuals is

Var(e)=02(I—V)

In particular, the variance of the residual for case i
is 02(1_Vn)’ where V.. is the ith diagonal element of V.
Therefore, in general, these residuals do not have the
same variance and this inequality must be removed before
comparing residuals between cases. One may do this by

constructing the internally studentized residuals
r=e /{o(1-v )%} (8.2.1)

A
2 .
where ¢” is the usual residual mean square, or the

externally studentized residuals
_ ~ _ 1/2
t{4a/{0“)(1 v“) } (8.2.2)

A
2 . . .
where Oy 1S the residual mean square obtained from

fitting the regression to all cases except case i. The two

versions are related by
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t?=rf(n—p-l)/(n—p—r?) (8.2.3)

which indicates that outlying residuals will appear even
more widely separated from the rest on the scale of ti
than of r. This is one reason for preferring the
externally studentized form; another is that its
distribution is a very familiar one, since t, follows the
t distribution with n-p~1 degrees of freedom, whereas
rf/(n-p) follows the Beta distribution with parameters 1/2
and (n-p-1)/2.

Equivalent results will now be developed for the
multivariate linear model Y=XB+U. Row i of U is u; with
covariance matrix Z=(Gﬂ). The ordinary least squares

estimator is, analogously to the univariate case,
2 -1
B=(X’X)"X'Y

(for example, Mardia, Kent and Bibby, 1979). Hence, the
observed residuals work out as

U=(I-V)U (8.2.4)

by the same matrix manipulations as in the univariate
case, with V=X(X’X) 'X’ as before. It is easy to derive
the variances and covariances of elements of U from first

principles. Rewriting (8.2.4) for an individual element,

A
u = Q. u
ij %{ ik kj

where the summation range is 1 to n and A=(am)=I—V.

Hence
A

A
cov(uij,ull)

cov (Y} aikukj, Y aikukl)

Y o’ cov(u ,u )
ik kj'

ki
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because the independence of different cases implies that

cov(u ,u )=0 for m#k. Hence
kj ml

A A 2
cov(uij,u“)—ajl E o
2 _ i 2
Now Y ai{—((I V) ]ii
k
2 2
and (I-V) =I-2V+V
=1~V

because, as can easily be checked from its definition, V

is idempotent, that is V°=V. Therefore
cov(uij,uil)=(1—vii)crjl (8.2.5)
For the case 1=j, this means
var(uij)=(1—vii)djj

which is, of course, exactly the univariate regression
result (as given earlier) for the variable of dimension j,

with variance G”=G§. Rewriting (8.2.5) in vector form,

var(ai)=(l—vii)2 (8.2.6)

where G; is the ith row of ﬁ and holds the observed

residuals for case i on the g responses.

The question now is how to examine these residuals.
One obvious way is to reduce each residual vector u, to a
scalar, which can conveniently be done by taking the
quadratic form

A A -1
u’{var(u)} u
i i i

From (8.2.6), the expression is

=0/57 / (1-v ) (8.2.7)
11

A
where ¥ is the usual mean residual sums of squares and
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AA ’
products matrix, U’U/(n-p). This expression is a matrix
equivalent of (8.2.1). An externally studentized version
analogous to (8.2.2) is

A
4 -—
12,0,/ (1=v,) (8.2.8)

A

where Z“) is the mean residual SSP matrix from the linear
model fitted to the data after deletion of case i.

Another version of residuals from the multivariate
linear model can be found in Gnanadesikan (1977, § 6.4).
This is G;s‘*ﬁi, where S is a robust estimate of the
covariance matrix of residuals. As it lacks the
standardizing factor 1=V, this would not offer an
adequate basis for assessing the regression model except

in the case when the v, were all similar.
11

Distributions for both forms of residuals, (8.2.7) and
(8.2.8), can be found under the assumption of a normal
distribution for the random disturbances. The residual
SSP matrix from the regression with case i omitted follows
the Wishart distribution

A A
U’ U
(i) (i

y = W&(Z,n—p—l)

(Mardia, Kent and Bibby, 1979). Also, the observed

residual Gi from the full regression has the distribution
N -1/2
ui(l—vn) ~ Nq(O,Z)

Hence the residual T? defined in (8.2.8) is distributed
proportionally to Hotelling’s T° distribution (Mardia, Kent
and Bibby, 1979, § 3.5), so

(n-p-q)T-/{g(n-p-1)} ~ F

q,n-p-q

The distribution of R? is found from the relationship

between Rf and Tf and between the F and Beta
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distributions. From the usual updating formula, it can
easily be shown that

T, = R] (n-p-1)/ (n-p-R))

which is exactly the same as the result (8.2.3) for the

univariate residuals. It follows that

Rf/(n—p) ~ B(4/2, (n-p-q)/2)

Thus both common forms of univariate residual can
readily be extended to the multivariate case. T? might
again be preferred to R? because of its exaggeration of
the separation of outliers, but the advantage of easy
reference to a very familiar distribution no longer
applies. As in the univariate case, however, the joint
distribution of residuals is intractable and so the
emphasis would anyway be on informal, chiefly graphical,
methods rather than formal significance testing.
Possibilities include Q-Q plots with simulated envelopes
superimposed (Cook & Weisberg, 1982, section 2.3.4), as

illustrated in the example below.

Other useful forms of residual might be developed. A
referee for a published version of this material (Caroni,
1987) remarked that the multivariate residual vectors
could be examined in ways other than by reducing to a
distance. One possibility could be to rotate to principal
axes, although strictly speaking this is not applicable
because of the correlations between the vectors. In fact,
a robust principal components analysis (Campbell, 1980,
using the GENSTAT macro from Matthews, 1984, as mentioned
in chapter 2) had been applied to the example of section
8.4 below, and was helpful in understanding in what way
the outlying point identified there differed from the

rest.
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8.3 Influence

Cook & Weisberg (1982, Chapter 3) review methods of
examining the influence of a case, or group of cases, on
the univariate regression in the sense of the effect on
the estimate of deleting the case or cases from the data.
A basic measure is the sample influence curve, which here
is proportional to §—§(” where éﬁ) is the estimate of é
with case i deleted. As usual, one way of assessing this
vector would be by reducing it to a scalar as a distance
in some norm. There are various choices of norm, including

that introduced by Cook (1977) which results in measures
A A A A /\2
D=(B,,,~B) " (X'X) (B ,,~B)/ (pT°)

This choice is motivated by analogy to the confidence
ellipsoids for é. To convert to a familiar scale, if the
value of Di equals the 100(1l-x)% percentile of the F
distribution with p and n-p degrees of freedom, the effect
of the deletion of case i can be described as moving the
estimate to the edge of a 100(1-«)% confidence ellipsoid.
This device is employed in the BMDP regression program
P9R. Arguing along exactly the same lines in the
multivariate case leads to a sample influence curve
proportional to g—ﬁu). This is a pxqg matrix and so its
assessment is not easy. Critchley (1985), in the context
of examining the matrix of principal component scores,
suggests that a norm such as {tr(A’A)}l/2 could be used:
in this application, A would be %—%U).

In the same work, however, he develops influence curves
separately for each sample eigenvector, rather than
attempting to examine them together as a matrix.

Following this line means investigating particular vectors
extracted from g—ﬁu). Choosing a column of this matrix is
equivalent to looking at the regression coefficients for
the univariate regression, so requires only the

established univariate theory. Another choice, peculiar
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to the multivariate problem, is to take a row of the
matrix. This corresponds to the regression coefficients
for all response variables on a particular predictor and
was a natural choice in all the applications tried so far,
in which either there was only one predictor or only one
predictor was of real interest to the experimenter. Let é;

be row j of B. Then, under normality assumptions,
9?8 ~B) ~ N (0,%)
jj i q' !

where 95, is the jth diagonal element of (X'X)_1 (Mardia,
Kent and Bibby, 1979). This indicates how to construct a
distance measure similar to Cook’s, based on confidence

ellipsoid analogies. Specifically

- A -/\ R A _l A _/\ _ _ _
D, (Bj“) Bj) (g”Z) (Bj“) Bj)(n p-g+1)/{a(n-p)}
where éj“) is the estimate of Bj after deletion of case

i, and this measure can be converted to a percentile of

the F distribution with g and n-p-g+l1 degrees of freedom.

Other versions of influence measurement, particularly
A

replacing % by s could easily be developed,

W’
analogously to the choices listed in Table 3.5.4 of Cook
and Weisberg. Graphical aids to the assessment of the set
of all D for i=1...n could again include plots with

simulated envelopes, as in Atkinson (1981).

Since the publication of the above material (Caroni,
1987), another paper has appeared on the topic of
residuals from the multivariate linear model (Hossain &
Naik, 1989). These authors also give the two forms of
multivariate residual (8.2.7) and (8.2.8), as their
equation (9), and present several influence measures by
writing down matrix expressions equivalent to some of the
measures which have been suggested for the linear model
with a single response variable. They do not discuss the

relative merits of the measures. The emphasis in their
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example is on detecting influential observations, using

cut-off values.

8.4 An Example

In order to illustrate the above methods and the
circumstances in which they are useful, an example will
now be described. The data (Table 8.4.1) come from a
study of foetal development. Various dimensions were
measured on the jaw bones of 9 foetuses and from these

were calculated nine angles indicating alignment of the

jaw bones. The only covariate recorded was the age of the

foetus. The univariate regressions of angle against age

are summarized in Table 8.4.2.

Table 8.4.1 Measurements of nine angles Y1...Y9 on jaws of

19 foetuses, with age in weeks.

Case Age Y1 Y2 Y3 Y4 YS Yé Y7 Y8 YS

1 16 139.33 84.70 87.18 134.81 156.79 182.18 172.55 95.39 60.97
2 17 141.31 59.02 61.19 123.43 143.45 175.92 178.54 81.58 42.72
3 18 132.51 96.25 133.57 135.39 172.73 207.92 159.41 88.77 75.34
4 19 139.33 101.91 123.85 126.92 161.19 191.89 144.58 105.08 86.31
5 20 133.33 94.54 88.32 128.03 146.99 180.03 155.21 111.22 61.32
6 21 128.60 77.21 83.39 113.53 137.77 171.46 143.61 102.20 63.69
7 22 139.74 96.79 125.76 152.03 170.25 214.81 185.25 87.50 61.27
8 23 135.25 95.23 121.43 141.05 151.97 189.69 169.70 104.40 80.69
9 24 132.09 89.29 123.18 120.21 170.55 206.67 151.21 79.08 63.76
10 25 119.42 97.77 89.38 139.64 166.58 204.71 162.38 90.72 30.92
11 26 126.52 87.22 88.80 133.75 152.17 197.92 160.79 93.78 35.65
12 27 128.67 98.51 131.22 159.03 167.22 217.03 182.53 89.15 58.03
13 30 111.35 89.76 107.92 153.60 147.31 183.19 177.13 97.86 64.25
14 31 136.02 105.90 125.37 148.10 163.26 201.77 161.30 97.22 61.74
15 32 136.61 99.24 121.66 150.23 163.90 205.85 169.85 89.10 52.61
16 33 119.20 95.34 99.18 153.42 169.26 199.66 182.83 79.03 34.98
17 34 133.76 99.51 113.58 139.68 181.09 210.50 156.96 70.69 37.09
18 35 130.11 84.43 129.56 162.08 181.39 213.71 181.8% 54.34 48.60
19 36 125.72 108.09 140.71 131.50 161.52 195.17 156.43 97.10 76.89
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Table 8.4.2 Univariate regressions on age for data of Table

8.4.1

Dependent Regression coefficients

angle Constant Age F1,17 p R® ;
Y1 145.65  -0.569 (0.263)‘ 4.70 0.045 0.216 7.224
‘{2 72.71 0.775 (0.374) 4.31 0.053 0.053 10.270
Y3 71.48 1.507 (0.729) 4.28 0.054 0©.201 20.029
Y4 108. 66 1.190 (0.422) 7.93 0.012 0.318 11.612
YS 138.87 0.873 (0.406) 4.62 0.046 (0.214 11.157
Y6 172. 11 0.982 (0.459) 4.57 0.047 0.212 12.622
Y7 155.72 0.396 (0.482) 0.67 0.423 0.038 13.257
Y8 113.83 -0.917 (0.447) 4.20 0.056 0.198 12.295
Y 76.70  -0.737 (0.576) 1.64 0.218 0.088 15.833

0

* standard error in parentheses

The regression was clearly statistically significant for
the fourth angle, non-significant for the seventh and
ninth angles and round about the 5% level for the
remainder. Q-Q normal plots of the residuals from each
separate regression were drawn, as illustrated in Figure
8.4.1 for the second angle. The residuals are listed in
Table 8.4.3.
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3.0

Figure 8.4.1 Normal probability plot for internally

studentized residuals r from regression of second angle

on age, with simulated 95% envelope.

A 95% envelope from 200 simulations of pseudo-randomly
normally distributed residuals with the same structure is
superimposed (Atkinson, 1981); this serves the purpose of
indicating what shape of plot is acceptable, since these
are not 19 independent observations as required for
probability plotting. As the observed residuals fall
within the envelope there is no evidence of violation of
assumptions. 1In particular, the point at the bottom left
of the plot does not seem to be excessively large
numerically, even though this was the most extreme of all
residuals from the nine univariate regressions. On the
basis of these and other examinations of the regression
fits, it seems that all is well with these univariate

regressions.

The multivariate regression of the nine-dimensional
response variable against age resulted in a large residual
for case 3, with T§=169.5 (F, ,=9.42, p=0.00217): all

1
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residuals are given in Table 8.4.3. Using a Bonferroni
upper bound for the significance of this considered as the
maximum of a set of 19 values, gives p=0.00217x19=0.041.
Figure 8.4.2 shows the same point falling outside the 95%
envelope from 200 simulations of a probability plot for
residuals (Atkinson, 1981), confirming that it is unlikely

to be from the same normal distribution as the rest.

o T T T T T l

0.0 0.4 0.8 1.2 1.6 2.0 2.4

Figure 8.4.2 Probability plot for externally studentized

residuals Tf with simulated 95% envelope.

(Because the F Q-Q plot has a very awkward scale for
plotting, this plot was constructed by mapping the

F-deviates onto normal deviates. If

p=F (x)=2%(y)

where F is the F distribution function and ¢ the normal

distribution function, then

y=0"" (F(x))

gives probability plotting positions for a normal Q-Q
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plot.) The residuals for case 3 in the nine univariate
regressions did not have unusual values. However, the
recorded value for the third angle in this observation was
the second largest in the data set and it appears that,
although not excessively large in itself (the externally
studentized univariate residual is 2.04), it violated the
pattern of the data since it was not accompanied by
particularly large values of other angles which were
positively correlated with the third angle. Therefore
this suspicious data value was only to be seen by
employing the multivariate residual analysis developed
here.

Influence on regression coefficients could be assessed
by the method of Section 8.3 because attention focussed on
one particular row of the coefficient matrix, namely the
coefficients of age. The constant terms, forming the
first row of the matrix, were not of interest. In fact
calculation of the distance measure defined above showed
that no point had undesirably high influence on the
regression coefficients and, in particular, the point with
the large residual did not even have the largest
influence.



Dimension

Multi~
Case 1 2 3 4 5 6 7 8 9 variate
1 .416 -.044 ~-.453 .664 . 381 -.481 .867 -.328 -.267 24.32
2 .795 =-3.811 -=-2.146 -.500 -1.000 -1.117 1.351 -1.529 -1.529 29.75
3 ~-.419 1.001 2.040 .480 1.869 1.614 -.270 -.736 .799 169.49
4 .650 1.557 1.281 -.388 .534 .092 -1.5585 .739 1.664 19.62
5 -.131 .636 -.688 -,.391 -.874 -.975 -.657 1.382 -.041 4.25
6 -,725 -1.,215 -1.031 -1.953 -1.965 -1.886 -1.694 .637 .158 16.32
7 .948 .698 1.101 1.606 1.142 1.885 1.721 -.507 .050 91.71
8 .376 .460 .779 .436 -.634 -.399 .370 .979 1.4056 4.69
9 .015 -.198 .789 -1.572 . 989 .892 -1.094 -1.071 .301 22.89
10 1.818 .556 =-1.016 .106 .531 .645 -.243 -.014 -1.908 18.00
11 -.603 -.554 -1.131 -.506. -.859 .023 -.394 .309 ~1.467 12.72
12 -.222 .476 .976 1.704 .430 1.563 1.274 .007 .078 25.89
13 =-3.012 .618 -.445 .820 -1.753 -1.580 .739 .976 .624 28.02
14 1.177 .930 . 365 .224 -.244 -,062 -.517 1.008 .511 6.54
15 1.379 171 .099 .309 -.267 .189 .114 . 387 -.032 6.48
16 -—-1.142 -.299 -1.189 .494 . 147 -.399 1.142 -.383 -1.187 11.77
17 1.126 .044 -.482 ~-.872 1.233 .419 -.995 -1.054 -.992 10.03
18 0.654 -1.740 .283 1.118 1.189 .617 1.019 -2,935 -.154 32.60
19 0.085 .800 .823 -2.099 -.869 -1.088 -1.146 1.531 2.047 41.64

Table 8.4.3. Externally studentized residuals from univariate and multivariate regressions

- 1¥e -



- 242 -

CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

The main purpose of this thesis has been to study the
field of outlier detection methodology with multivariate
data. This has involved detailed examination of the few
existing methods, and the development of alternatives and
of new methods for particular problems. The emphasis has
been heavily on the multivariate normal distribution (and
on the model of slippage in the mean); other multivariate
distributions are not met very frequently in practice,
while their treatment from the point of view of outlier
detection is very difficult, as shown by Barnett’s first

steps.

"Existing methods" effectively means Wilks’ test.
Unfortunately, while the existence of accurate Bonferroni
approximations to the percentage points makes this a good
test for one outlier, the situation is less satisfactory
for two or more (Chapter 3). Simulated percentage points
can be obtained, so that the test becomes accurate for the
situations covered in the simulation study. However, it is
surely unusual for a hypothesis test for, say, two
outliers versus none to be properly justified. It is for
this reason that the procedure for sequential application
of Wilks’ statistic, developed here in Chapter 4, is
valuable. It enables the choice of the number of outliers

to be accounted for within the framework of the test.

Rohlf’s test is an "existing method", but one that
seems to be cited more than used. It avoids the question
of the number of outliers, because it is not a test for a
specific number. However the analysis here (Chapter 6)
shows that Rohlf’s test is not a good one. One objection

is that the approximations suggested by Rohlf are very
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inaccurate. This would not necessarily prevent its use as
a graphical procedure, but the performance of the method
in the presence of more than one outlier turns out to be
poor, since it may be unable to declare the correct number
of outliers in situations where it seems that any
worthwhile method should not have any difficulty. The
desirable modification would involve robust estimation of
the sample covariance matrix. However, this can be a
useful analysis in its own right, as in Campbell’s method,
and so Rohlf’s method then appears to be redundant.

There is no reason for Rohlf’s method to continue to be
suggested in the literature as a potential alternative to
Wilks’ test.

Wilks’ statistic can be derived by a likelihood ratio
analysis, among other methods. This is only one of the
standard techniques for testing multivariate hypotheses.
The other is union-intersection: application of this
methodology is considered here in Chapter 5. The results
of the study of the two-outlier problem confirm that the
outlier test based on union-intersection can be more
powerful than Wilks’ test, depending on the configuration
of the outlier slippages. However, the advantage usually
lies with Wilks’ statistic, so this will be more useful in

general.

Likelihood ratio provides the basis for the tests
suggested in Chapter 7, applicable to multivariate normal
data where the covariance matrix has a specified
structure. (Wilks’ test makes use of no specification.)
It is generally true in statistics that a more powerful
analysis can be obtained by incorporating knowledge of
this kind into the analysis. The results here show the
considerable extent of this improvement in these
particular problems. Consequently these are methods which
can be recommended for use, so long as the assumption of

the covariance structure is justified. The analysis of
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residuals from the multivariate general linear model,
considered in Chapter 8 here, is also an analysis of a
structured problem (although in this case the structure
refers to the mean rather than the covariance of the
observations). The results here are useful because there
will always be regression problems where it is necessary

to take the multidimensional view.

Taken as a whole, the results in this thesis tend to
confirm the value of Wilks’ statistic - either in its
conventional form or applied sequentially - for general
use, since Rohlf’s method appears to be unsatisfactory
and the union-intersection alternative does not offer
sufficient advantages to compensate for its greater
computational complexity. However, the results also show
that one can do considerably better than using Wilks’
ordinary statistic in problems where some structure behind
the multivariate normal covariance can be specified. One
line for further research which can be suggested is
therefore the development of outlier detection statistics
for other multivariate structures which arise in practice.
A related point is the development of influence measures
for particular structures: this has been touched on in
this thesis only in respect of influence in the

multivariate general linear model.

Further needs for future research can be seen from the
emphasis of this thesis on outlier detection in
multivariate normal data. Little has been said about what
to do once outliers have been found. Alternative actions
suggested in the literature include use of an alternative
model, such as a mixture model - which could be mixtures
of normals - or an entirely different distribution (skew,
or longer-tailed than the normal) in relation to which the
supposed outliers no longer appear to be extreme. The
difficulty in these options is the same as the difficulty

of taking any other distribution than the multivariate



-~ 245 -

normal as the null distribution: that is, the analysis
tends to be very difficult if not impossible. Some
progress in the area of non-normal distributions would be
desirable in extending the range of multivariate data
problems which can be treated.
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APPENDIX I : Newton-Raphson iteration

The Newton-Raphson method is a simple iterative
procedure for the numerical solution of an equation. It
can be applied to solve a system of equations for several
unknowns, but the applications in this thesis are all for
a single unknown so the corresponding details will be
given here.

A simple geometrical illustration (Figure AI.1)
explains the method; algebraically this is equivalent to a
linear approximation from a Taylor series expansion.
Suppose that

£ (x)=0
is to be solved for x, and an initial guess is X=X . The
slope of the curve y=f(x) at %, is f’(xo), so that in

triangle ABC in the figure
tan ¥ = f'(xo)

where CB is tangent to y=f(x) at X=X .

y y=f(x)
B
[:]
e
0 / X‘ Xo

Figure A.I.1 Illustration of Newton-Raphson method
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But from the sides of the same triangle

tan ¢ = f(xo)

X —X
0 1

where X, is the coordinate of point C where the tangent
meets the x-axis. Equating these two expressions and
re-arranging

Xx=x - f(x)
1 0 0
f'(xo) (A.I.1)

Now, as seen in the figure, X, is closer than X, to the
solution. Repeated application of (A.I.1l) will therefore,
under certain conditions, provide a sequence of values
converging towards the solution; in other words, the
Newton-Raphson iteration scheme consists of applying the

iterative scheme

Xn+1 = Xn - f(Xn) n=0,1,2,...
£ (x)

to generate a sequence Ror Ry e converging to the

1
solution of f(x)=0. In practice, the solution will be

taken to be the first X, for which
[f(xk)l < 8
where § is a pre-determined constant, such as 107°.

In this thesis, the method was applied to obtain

Bonferroni percentage points. This requires the solution

of equations such as

g(r)=o/n

where o is the desired Bonferroni significance level, n
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the sample size and g a probabilty density function. The
above method is then applied to solve f(r)=0 where

f(r)=g(r)-a/n
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APPENDIX IT: The construction of slippages

II.1 General

In § 2.2, it was shown that Wilks’ lamda statistic is a
monotonic function of generalized distance. Specifically,
equation (2.2.5) gave the relationship

— - _— —‘1 _—
An =1 n (xn X)'A (xn X)
n-1

for testing point X ; equation (2.2.6) then gave the
equivalent expression

-1_ 2 _
An-—1+Tn/(n 2)

where

- (xn—;c ) (IT.1.1)

with in, A calculated after omitting x . Thus A is
n
proportional to the generalized distance of the point

being tested from the remainder of the sample.

This indicates that the appropriate way to generate a
slippage of the mean in the multivariate problem is to fix
the generalized distance of the slipped mean vector from

the original. Therefore, given the hypotheses
HO: X -~ Np(u,Z) i=1,...,n

H: x - Np(u,Z) i#)
X, ~ N (pu+a,z)
j p

the slippage a should be defined so that

a’s'a = @° (II.1.2)

where d° is the desired squared distance. (Values of

d°=15 or 30 are used at most points of this thesis.) The
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vector a can then be chosen in any convenient way to
satisfy this equation; the closeness of results for
different choices is illustrated in § II.3. For example,
a simple choice for a is a constant a times the vector 1

consisting of ones. The necessary « is given by
a’=a’/175711

The quantity in the denominator is the sum of all the

elements of ¥ °

so that

In the special case Z=021, this is pdq,
a=do/dp

This is the quantity which would be added to each element
of, say, the last member of each simulated sample, in a

power study with a single outlier.

Use of the result (II.1.2) makes it possible to ensure
that equivalent slippages are being used, either when
different directions of slippage are being used with the
same ¥ (as in the study of the union-intersection
statistic in Chapter 6) or when different Z’s are being
used. This facilitates the comparison of results. It is
actually possible to obtain identical results in the

simulations with different Z’s, as follows.

In the method of generating multivariate normal data
used by the IMSL routine GGNSM employed in this research,
suppose that vectors x from N(0,X) are required. The
first step is to construct the Cholesky factorization of
Z; that is, the lower triangular matrix L is obtained
satisfying

2=LL'

Vectors z are then generated from the uncorrelated
multivariate normal distribution N(0,I), which requires

only the same methods as are employed for the generation
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of univariate normal deviates. Finally, the desired

vectors x are obtained by transforming

x=1z
since

V(x)=LV(z)L/’=LIL’=LL‘=%

Consequently, if vectors x ~ Np(o,zl) and y ~ Np(O,ZZ) are
being generated, and the same seed is used in each sample
so that the same sequence of vectors z from Np(O,I)'is

being used,

x=le
so that
z=1 "%
1
but
y=Ibz
=L L 'x
2 1

Hence if the slippage a is used in the sample of x
vectors, then applying the slippage IbLfa to the
corresponding vector in the sample of y vectors will mean
that all details of the two samples are the same. For
example, it is trivial to check that generalized distances
as in (II.1.1) are identical.

The above result is illustrated below in § II.3 for the
case of block X=.

I1.2 Slippages in the equicorrelation model

In the equicorrelation model, with all variances taken

as equal to unity,

Z=(1-p) I+pJ

where J is the matrix whose every element is equal to

unity. The inverse is
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- -1 -1
== (1-p) " [T-p{1+(p-1)p) ' J]
so that a generalized distance is

d®=a’z'a

-1 -1
=(1-p) (a’a-p{l+(p-1l)p} a’Ja]
This equation must be solved to find a suitable vector a

for chosen d2, in a simulation with given p. 1In the case
where a=al will be used,

a%=(1-p) ' {pa®-p 1+ (p-1) p} 'a’p?]

and this simplifies to give

a=dJ{l+(p—l)p}
P

as the quantity to be added to each element of a

prespecified member of the sample.

IT.3 Slippages in the block structure model

When ¥ has block structure, so does its inverse and
this simplifies the computation of slippages corresponding
to a desired d&° in (II.1.2). Special cases are employed

in the simulations in Chapter 7:

a) the blocks have equicorrelation structure; and
b i) the slippages are equal in each component, 1, or
b ii) equal in each component corresponding to the
first block and zero for the remainder:
A(1,1,...,0,0,...)".

As in II.1, in the case (b i)

ge=a°/1/s7"1
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where the denominator is the sum of all elements in Zq,
which is
p/{1+(p-1)p}

for an equicorrelation matrix. Hence for the case of two
equicorrelated blocks, with dimensions P, and p, and

correlations P, and P

17371 = it + Pe
1+(P1‘1)P1 1+(P2—1)P2
For p1=p2=2
-1/2
_ 2 2
B_d{i15;+fiﬁé} (IT.3.1)

(outlier type 1 in Table 7.3.1), and for p1=2, p2=4:

-1/2
2 4
(s x )
l+p1 1+3p2
(outlier type 1 in Table 7.3.2).

For the case (b ii), when the slippage is only in the
components affecting the first block,

A°= dz/l'Zlil

5 -1/2
so that ’ A=d{~——-}
l+p1

(II.3.2)
for the case p =2: this is outlier type 2 in Tables 7.3.1
and 7.3.2.

Some extra simulations were run for the block
covariance structure, to illustrate the similarity of
results obtained for different choices of a satisfying
(II.1.2) with the same X. The result in § II.1 showing

how to obtain identical results from different X’s is also
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applied here. The necessary calculations are easy to
carry out, since the Cholesky factorization matrix also

has block structure, and the factorization of Z=LL’ of
== (1P
p 1

1 O
o {1-p

It can then easily be worked out that given the two block
matrices

is given by

1 p11 )
Z1= p11 1
1 p12
p12 1)
and
(1 p21 3\
Z2= p21 1
1 pzz
p% 1

the matrix IbL? is



— 255 —

1 0 )
2 2
pzl—pl 1 l—p21 l—p21
2 2
1—p11 1_p11
1 0
2 2
Paa™Pi2 l—p22 l—p22
1—p2 l—p2

Some results are presented in Table II.3.1, for simulated
powers of Wilks’ ordinary statistic. Each line of the
table is generated from 8000 simulations, starting from

the same seed for the pseudorandom generator.

The slippage 3(1,1,1,1)’ in the last line of the table
corresponds to d°=30.857142. The slippage in the
penultimate line was computed using the Cholesky
factorization to give identical results for different X.
Other slippages a were then computed to satisfy a’x 'a=d";
in particular, the slippage in the first line corresponds
to (II.3.1) and that in the third line to (II.3.2). It
can be seen how small are the diferences in results

between the different choices.
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Table II.3.1

Simulated power of Wilks’

statistic in the
presence of one outlier: block covariance matrix with

p1=p2=2, n=50. Slippage vector added to first member of
the sample.
% of times outlier declared
at level
Py Pa slippage vector 1% 5%
4 -.4 2.54558(1,1,1,1)" 69.5375 84.8625
4 -4 (3,3,1.8,2.74955)’ 68.1500 84.2625
4 —-.4 3.04256(0,0,1,1) " 69.3375 84.5125
4 -.4 (0,0,0,5.909167) "’ 68.9875 84.3625
.4 -.4 (3,3,3,1.54955) 68.9125 84.6750
.4 0 3(1,1,1,1)" 68.9125 84.6750
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