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UNIVERSITY OF SGUTHAMPTON
ABSTRACT
FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

M&BIUS INVERSION OF SOME CLASSICAL GROUPS
AND THEIR APPLICATION TO THE ENUMERATION OF
REGULAR HYPERMAPS.

by M.L.N. Downs

For any group I' abstractly defined by some finite presentation, a
method (called Hall's method) is known for calculating the number

d (G) of normal subgroups N of T' for which the quotient group

T'/N is of some preset isomorphism type Go This technique is
dependent on the knofledge of the Mobius function pGon the subgroup
lattice of G. We apply this method by use of the following
proposition: if T' is any group with a finite 2-generator presentation
and with relator set R, then dT’(G) gives the number of regular
oriented hypermaps with automorphism group G which satisfy certain
well-defined local properties determined by the relators R.

In chapter 1 we review the established theories of Hall's method
and of regular hypermaps (including unoriented hypermaps) and
discuss their relationship as above.

In chapter 2 the function p is calculated for G = PSL,(q) or PGLQ_(q)
for any prime power ¢ (xtemding an existing result for primes). In
chapter 3 these results are applied to explicitly malke some -
enumerations of various specific categories of regular hypermaps.
(However some other enumerations are made by a different method,
based on traceo)

Chapters 4 and 5 specialise mostly to triangular maps. Chapter 4
examines the local properties of regular oriented triangular maps
with automorphism group G & PSL,(q) or PGL_(q) for some g, in
particular how to distinguish two such maps with the same auto-
morphism group. Chapter 5 describes how some of these same maps
may be constructed in a different way, each one as the unique

triangular imbedding of a graph with vertices defined as the elements

of a particular conjugacy class in G.



INTRODUCTION

To start, I give a preview of the description of the basic ideas which
form the motivation and foundation of all the subsequent work. This
is to give a précis of Chapter I, in which the group theoretic character
of maps is explained (by ideas mostly due to [ 12 J)as is the role of Mdbius
inversion in our calculations (by ideas mostly due to [ 7 ]. After this,

I summarise the rest of the content in this thesis, chapter by chapter.

An oriented map M is intuitively thought of as a graph & where each
set of edges incident with a particular vertex v in & is given a cyclic
order. (For our purposes, |& | is always finite). Clearly to express all
these cycles in some single permutation 2z, this permutation must act
on the set § of directed edges (which we call darts) of &. To give a
unique description of M then, it is evident that we need only specify
a set @ of darts, and the permutations x and z of §, where x is the
involution taking each dart to the opposite dart on the same edge. The
vertices of & then can be thought of just as the cycles of z. An isomor-
phism of maps then is a bijection between the respective sets of darts
that preserve both adjacency and cyclic ordering of darts at vértices.
A regular map is one for which the automorphism group is transitive

on the darts.

As one would expect (though of course it is technically messy to reconcile
the topology with the algebraic definition of a map as intimated above),
it is possible to represent M in some oriented surface S, and so we may
regard M as an imbedding of the graph & in the surface $. In this im-
bedding, the cycles of the permutations y::xz"l describe the ‘faces

of the map' in an obvious way.



The actual definition of a map M we use specifies @, x and y (rather
than z). If we no longer constrain the order of x to be two, the resultant
broader definition is that for oriented hypermaps. (We also consider un-
oriented hypermaps, where we specify three permutations of order two

acting on a given set Q).

For oriented hypermaps ¥ (but with analogous conventions and predicates
for regular unoriented hypermaps) we let G:= <x,y> and label the hyper-

map H by the quadruple (G, £,x,y). We shall see that if H is regular then

(i) G zAutH
(i) if 3—(1 = (G, @ ’Xl’yl) is another oriented hypermap defined on
the same set § of darts, then H = ‘Hl if and only if there is

a group automorphism ®of G such that

o x*-*x1 and a: yHyl,

In fact for any given finite group G, there Is a correspondence between
the regular oriented hypermaps with automorphism group G and the classes
under AutG of generating pairs (x,y) of elements of G. We endeavour

to count these classes.

The technique we use is one of methodical exhaustion, called Mobius
inversion. Suppose one has a set S of subsets of another set M for which

M itself is an element of S (for example, M could be the group G and

S the set of subgroups of G). Then the Mobius function u associated with

S is defined by

u (M) =1

and all other values WL) for L € S are defined inductively by

i



ZH(N) =0

LENeM
where the summation is over all elements N of S that contain L, as
subsets of M. Then it is soon evident that if o,9@: S »2Z are functions
such that YNeS

oN) = > g(L)

LeN
then  oM) = Ju(Lo@) .

LeS
For example, we have associated for the group G a Mdobius function
U defined on the set of subgroups of G. This function depends entirely
on the subgroup structure of Gj; if this is known, u can be calculated.

Now if we let for each subgroup H of G.

o (H) = the total number of pairs of elements in H :IH]2

and @ (H) = the number of generating pairs of elements in H
then 9 (G) =y uH)|H|?
H<G

and so we have the number of regular oriented hypermaps with auto-

morphism group G equals

To determine the number of these that are in fact maps we go through
the same process except we consider pairs (x,y) of group elements with
o(x) = 23 we can further enumerate other different types of oriented
hypermap by imposing varying relations that the pairs (x,y) we are coun-
ting must satisfy. The phil\oso.phy is that the direct calculation of the
total number of pairs (x,y) of elements of a group satisfying some speci-
fied relations is far easier in general than that just for the generating

pairs of the same sort. Once the Mobius function of a group G is known,

11



Mdbius inversion clearly becomes a very powerful tool.

In Chapter I, I present the ideas and techniques as described above
in more detail, in a slightly more general spirit. However the remainder
of the work almost exclusively deals with regular hypermaps (both orien-
ted and unoriented) with automorphism group G of isomorphism type
PSLZ(q) or PGLZ(q), defined over the finite field GF(q) for some prime
power q. In fact the dissertation could be regarded as predominantly

being just a study of these groups, 'dressed' in the terminology of maps.

Chapter 2 completely determines the Mobius function for all groups
PSLz(q) and PGLZ(q), q some prime power. It involves an intricate examin-
ation of the subgroup structures, and extends a result in [ 7 ] for which

answers for PSLZ(p) for any prime pare already given.

In Chapter 3 enumerations of certain categories of regular maps and
hypermaps with automorphism group G, for G any PSLZ(q) or PGLz(q),
are made. This is done in two sections: the first section follows exactly
the method of Mobius inversion as already described, but the enumera-
tions in the second section are done not referring to Mobius inversion
(the use of which in the cases dealt with would be inefficient). The
latter enumerations count the numbers of hypermaps (G, € ,x,y) with
specified orders for x, y and z::y_lx. They are achieved by developing
the results in an existing paper [ 14 ] ;\/hich already explores the pairs
of elements (x,y) of G with given values of order for x,y,z with respect
to the isomorphism type of the subgroup of G generated by x and y.
(It is in this section that the trace of the elements of G, thought of
as 2x2 matrices, is first used: trace is often a very useful tool when
examining G because of the near correspondence of the sets of elements

sharing the same value of trace and the conjugacy classes in G.)

v



In Chapter 4 we consider the problem, how given two non-isomorphic

oriented hypermaps
H o= (G9Q:X9Y)

) with G, =2 G

Hpz= (G 8 x |

1Y)

can one find a 'difference' between the two; this amounts to finding
a relation satisfied by the pair (x,y) in G not satisfied by the pair (Xl’yl)
in Gl (alternatively this may be thought of as finding relations that
are not mutually shared in two non-equivalent 2-generator presentations
for G). For simplicity, [ restrict my attention to the most intrinsically
interesting subcategory of hypermaps, that of triangular maps M, and
endeavour to construct an algorithm which systematically produces,
given M:= (G, £0,x,y), the relations satisfied by x and y in G. This is
effectively done by examining the trace of all the words in x and y.
Also I show, given the prime power q = pe, how the set { regular orient-
able triangular maps (RO A Ms) with automorphism group PSLZ(q) or
PGLZ(q)} may be characterised by the set of irreducible polynomials
of degree e over GF(p). Using this, I discuss how we might identify the
ROAMs WM = (G, 9,x,y) with automorphism group G isomorphic to PSLZ(q)
or PGL2(q), for some power q of a fixed prime p, for which a particular

relation holds for x and y. Examples are given.

Finally, in Chapter 5, I continue my specialisation to ROAMs by finding
alternative constructions for some of the ROAMs M with automorphism
group G = PSLz(q) or PGLZ(q), some q. We form the graph Y¥(G, %) := V¥

where £ is any conjugacy class of elements of G by setting

the vertex set V(V¥) as the set of elements in £,
the edge set E( ¥) as exactly those pairs (u,v) € %2 for which

o(uvz) = o~(vu2) = 2 in G.



Then we find, if the pair (G,%) satisfies one of

(i) G = PSLz(p) for some prime p, and the elements of § have

order p in G

(i) G = PGLz(q) for any g, and the elements of & have order

that ¥ has a unique orientable triangular imbedding and this is a ROAM

with automorphism group isomorphic to G.

Vi



CHAPTER 1

PRELIMINARIES

I expound the foundational theory and establish the broad techniques
which govern the approach of much of the work in the thesis. I also
give many notes which give examples, set a broader context, or explain

implications incidental to the central discussion.

I.  MOBIUS INVERSION
Let P be a finite partially ordered set with ordering >. Leto,¢ be func-

tions with domain P, codomain IR such that Vp eP

o(p) = Z o (q)

q st.q8p
Then — ¢(p) = > Hplq,p) 0(q) (1)
q st qsp
where up is a function associated with P (independent of ¢ or o)
Hp {ordered pairs (a,b) in P: ag<b} + 2Z
defined by:

Vae P, up(a,a) =1
then for fixed a € P, up(a,b) is defined recursively for of? a +b l:ry

Z up(a,x) =0 .

xe Pk,
asxgl

The function Hp is called the Mobius function of P; the process of

finding a single value ¢(p) in terms of gand j is called Mobius inversion,

and the expression (1) is called the Mobius formula. Its truth is trivially

seen by substituting Z ¢ (r) for o(q) for each g in the summation.

r st

?‘56‘,



This describes Mobius inversion in the broadest applicability of the con-
cept for finite systems (except that the codomain R of o , ¢ may be
replaced by any integral domain containing the rationals). We now special-

1ze to lattices.

Definitions

Let P be a poset, let T be a subset of P. Then let

M= {meP:m<tforeveryteT}

J ={jeP:j>tforeveryteT},

If (M3J) is non-empty and contains a (greatest; least) element (m's;j')
then (m'j') is called the (meet; join) of T in P. (The fagt stafement is read
L-y }chimj consisfen'l:ey either the fivst or second "—“J“’y in each bracket).

If every subset T of P has both a meet and join, then P is a lattice.
In particular P must then have a single greatest and a single least ele-

ment (consider T = P).

Mobius functions of lattices have been examined by combiniatoralists,

for example [ | J. An elementary general result is

Proposition

If P is a lattice and p € P then

Up(q,p) £+ 0 = q=por qis the meet of a subset of
{reP:r<pst. fsePsitor<s<pl,

(In fact we may relax condition that P is a lattice, we only need exis-

tence in P of meets).

Now the subgroup structure of any group G is a lattice, ordering given

2=



by inclusion, meets by intersections, joins by subgroups generated by
unions. So we may talk of finding the Mobius function of G, by consider-
ing its subgroup lattice P. But for groups we shall slightly adapt (in
fact restrict) the definition of Mobius function; we shall now mean a

function Mg e { subgroups of G} +2Z given by:

(Note that if wu_, is known for every subgroup H of G, then the complete

H

Mobius function of the lattice P is known.)

We have immediately from the proposition:

Corollary
If G is any group, then VH <G

pG(H) t0 #(H = G or H is the intersection of maximal sub-

groups of (is 'maxint' in) G)

So In calculating UG’ we need only consider the lattice of maxint sub-
groups of G. This observation is crucial to my calculations of e for

explicit G.

Most of the research conducted on Mobius inversion has been conducted
in the language of lattice theory, results concentrated on classes of
lattices satisfying certain strong conditions. The (maxint) subgroup lattice
of a group G (especially those with a 'large' simple group as homomorphic
image) tends to be complicated without (overall) following a discernible
pattern, and then these results seem to be of little use. So then the
only way of establishing He is to treat the maxint lattice 'by hand’,
l.e. calculating UG(H) for H £ G only when UG(K) is known VK £ G

s.t. H < K € G. If the lattice is known, this of course can always be



done, be it tedious.

Not a great deal of work has been done on the Mobius functions of
groups; P. Hall [ 7 ] was motivated to consider them by their application
In enumerating generating n-tuples of certain types of elements in G
(which was in effect also my motivation and will be explained in the
next section). Hall (paragraphs 2.7 and 2.8) finds a general expression
for . for those groups G whose Sylow subcjrou?s are afl’ se-ﬁtﬁ-‘-conjuaafe
(which J(hereﬁore covers alf Jf-‘ni’Ce nifpotent groups by [21] 2.6 ond

.3) ; this general expression is possible by the highly struc-
tured nature of these groups. He proceeds to get results for PSLZ(p),
for p any prime. A more recent paper is [ 13 ], which appeals much more
to combinatorial theory: it uses the Burnside ring theory of groups to
rediscover the result for nilpotent groups (proposition 2.4). It extends
this to deal with all soluble groups (theorem 2.6), but to apply the result
for any particular group is already quite involved. The results in [13]
depend heavily on the normal subgroup structure of the groups they
consider and so their techniques are unlikely to find much applicability
for non-cyclic simple groups, with which my research is largely involved.

I quote from the paper:

'"Thus, contrary to the case of soluble groups, the behaviour
of the Mobius function of simple groups seems more difficult

to understand.'

Example

This example is a trivial calculation of the Mobius function of a simple

lattice, but it also may be regarded as a preliminary result for we shall



often make use of it. (It occurs in paragraphs 2.5-2.6 of [ 7 ].

(a)

(b)

The Boolean lattice

Let G be a set of n objects, L the lattice of all 2" subsets (ordering
by inclusion). Let A,B e L s.t. A< B and |A| = a, |B] = b.

Then k: = b - a >0 and

u (AB) = (-DF

. ) . k
Forall ¢ ¢ N s.it. a < ¢ £ b, A is contalned in exactly (c—a\} sets

in L of order c¢ and so (using induction on k having fixed A)

7

|-k +(1§)(13<)+ e DR u (A,B) = 0

and the result is evident by comparing the left-hand side with

the binomial expansion of (l-l)k.

Let n be any natural number, and L be the finite lattice of sub-

groups of C_ which contains its subgroup X. of index n. Denote

np(X,C ) by um),

The maximal subgroups of C_ in L are those with prime index
that divide n, and intersections of these have square-free index,

hence

un) = 0 if n has a square divisor ,

If n is square-free, L 1s a Boolean lattice on its prime divisors,
and so

u(n) = (-1¥
where k is the number of prime divisors of n.

Of course we specify

p() =1



2.

We have in fact just recovered (in the context of a lattice) the
'classical' number theoretic Mobius function pw : N - Z defined

by
u(l) = 1 , then inductively E u(m) =0 |

Aiviursn\.

6’."[
This function will appear prominently in our results, and we shall
keep to the convention that a function denoted u without a subscript
will represent this classical, rather than any other, Mobius function.

I shall also refer to the lattice L as above (or one isomorphic to

it} as the number-theoretic lattice on n.

APPLICATION OF MOBIUS INVERSION TO ENUMERATION OF

NORMAL SUBGROUPS

In applying Mobius inversion to groups G we are interested In any pair

of functions o, ¢ on the subgroups of G s.t.

o(G)= Z o (H) .

H¢G

The most obvious candidates are number of n-tuples of a certain type

in H for o, and number of generating n-tuples of the same type in H

for @. We now exploit the idea, being more explicit.

The method we describe below is entirely due to Hall [ 7 1, and we

shall call it Hall's method. The method is for finding the number dF(G)

of normal subgroups of a finitely presented group [' with specified quo-

tient type G.

Definition

Let H be any group, and I' have finite presentation P

zp = <X

n

. >
[ oo X 8 Ry ey R

Then a P-base of H is a n-tuple of elements of H which satisfy the

relations R1 10 Rm and generate H.

-6-



Suppose P 1s fixed. Let
CPP(H) =4 P-bases of H ,
Then clearly cpP(H) = 4 epimorphisms p :I' > H and so is independent
of the particular presentation P chosen for I, and so the function cpr:.—.—cpP

on all groups H is well-defined.

Now

) T
(i) 3 N< Ts.t. NS @ 3 epimorphism p: I' = G with kernel N

i
(i)  two epimorphisms 0 and @ have the kernel N if and only if

1

P =Ppod where & € AutG

ﬂon-ié.en{:i\:y
(iit) Vyepimorphisms 0 and @ € AutG,

Poa § P

We conclude

¢ (G)
d Q) = | AutG]
Now let
of{H) : = 4 n-tuples of elements of H which satisfy R, to R_

but do not necessarily generate H (this is also independent of presenta-

tion of I). I call these n-tuples T'-strings of H.

Then

0 {G) = Z ¢ ({H)

H<G
and Mobius inversion gives
op(G) = > u (H) op(H) .
HEG
So if the Mobius function u -~ and On(H) are known VH <G, as well

as| AutG|, then d(G) is determined.



Notes and Examples

1)

2)

If G is non-trivial and simple, then the normal subgroups M of

r s.t.% = G (i.e. those groups counted by dI’(G)) are maximal

in the normal subgroup lattice of T'.
If I'is free of rank n, and M « T s.t.

TFA = G (some group G)

then M is free of rank (n-1)|G/| + 1. This is by the Nielsen-Schreier

theorem. (See e.g. =& p.16 of [10]).

Should we want to enumerate the normal subgroups of T' of rank

m, we could do so if we knew dl’(G) for all groups G of order

m-1
n-1

of these dF(G)' But of course if g happens to be prime this process

(rather ambitious for most values of g!) by summation

becomes somewhat trivial, and In the spirit of an example of Hall's

method I prove a result (easily proved by other arguments):

Theorem

If T is the free group of rank n, and
m = p(n-1) + I for some prime p
then the number N of normal subgroups of I which are free of

rank m is
n
N:E______l.'
p -1

Proof

The only group G of order p is the cyclic group CP. Its Mobius
function is

uG(CP) =1 , uG(I) = -1

’ OI‘(I)= L,

!
©

and © F(CP) =

-8-



3)

i)

Mobius inversion gives

(C)=p"-1
¢r p p
and [Auth[ =p- 1, s0
no
N = dp(C ) =B—==
pP p -1 0

If T is free of rank n, i.e. we are counting n-tuples of elements
in G with no relations, then Hall denoted dI‘(G) by dn(G) and ob-
served that dn(G) is the greatest number d for which the direct
product of d groups isomorphic with G can be generated by n ele-
ments. This function (consider group G fixed, vary n and redenote

again to dG(n)) is intrinsically related to the growth sequence gG(d)

of G defined by
gG(d) = the order of the minimum generating set of the direct
product Gd for d €N
and was studied by Wiegold in a series of papers [26-29,8]

The function d. determines &g (and vice-versa), but in practice

G
to calculate &g for a particular d € N using dG Is cumbersome
unless we already know close bounds for gG(d); this is what Wiegold
provides. For example, if G is a non-abelian 2-generator simple
group, Wiegold [24]identifies gG(d) to be one of the two integer
values {m, m + I} lesser than and nearest to log!G !d + 33 to
decide between m and m + I, calculate dG(m); if this result yields
dG(m) <d

we conclude that gG(d) = m + 1; otherwise gG(d) = m.

Another example of Hall's method.
I recover a result (proposition 2.8) in [ t3 ] with a neater proof.
It can also serve as a check for calculations of Mobius functions

of groups.



ProEosition

If G is any non-cyclic group, then

> H ug) =0,

H¢G

Proof
For using Hall's method, let T = C_ . Then VH <G

o f(H) :IHI 3
® I,(H):: # generating singletons in H = 0 1ff H is non-cyclic,

The Mobius inversion formula now immediately gives the result.

3. GROUP THEORY OF REGULAR MAPS AND HYPERMAPS

The theory (for maps, and also in a tentative way for hypermaps) is
centrally involved in constructing algebraic definitions which correspond
to the vague notion of a (hyper)-map being a (hyper)- graph imbedded

in a surface 8.1 deal with the two cases,

(i)  the orientable case where we require $ to be orientable.
(ii) the 'non-orientable' case, where there is no such restriction on
§ (but $ may still be orientable, however giving different definitions

to (i)).

(i) The Orientable Case

Definitions

By an oriented map M we mean a set § with permutations x, y of

s.t. both
D x2=1 (the identity of SQ)
2) G :=gp<x,y> is transitive on Q.

We denote M by the quadruple (G, ,x,y).

-10-



We call the elements of Q the darts of M. The cycles of darts of x,
y and z : = y_lx (i.e. apply the permutation x, then y“I) are called the

edges, faces and vertices of M respectively.

From now on and up to the start of case (ii) I shall often abbreviate

‘oriented map' to just 'map’.

A morphism ¢ from one map ‘M“l : = (Gl’ Ql’ X5 yl) to another map
.M,z : = (G2’ 2, X5 ¥,) Is a pair of functions (o,1)

g Gl ‘*G2

T szl > 522

where ¢ is the group homomorphism given by
o (x)) = x, aly)) =y,

and T satisfies vg ¢ Gl’ o € Ql :
T(ga) = (og)(ta)

(Notice that for an automorphism of a map M that o is the identity

automorphism of Gj; I will just denote it T as appropriate.)

In [ 12 ], which gives a comprehensive discourse on the basis of the rela-
tionship between groups and maps, a map as defined above is an algebraic
map (AM). The paper also defines a structure called a topological map
(TM); without going into the intricacies of the definition, it is a connec-
ted locally-finite [-dimensional simplicial complex & in IR3 imbedded
homeomorphically into an orientable surface S. (Strictly speaking we
should allow in § 'loops', i.e. topological circles with a given single point
considered as a O-face. Also we should specify a subset V of the 0O-faces

-11-



of € ; the O-faces not in V identify 'free edges', i.e. l-simplices (non-
loops) we shall consider as only having one vertex in the underlying

graph of € .)

Now given v € TM, it can clearly be identified with an algebraic map

(G, 2,x,y), call it AM(?), given by (assumina here ¥ has no Eoyops)
2= {pairs (e,v) : e is a l-simplex in€ , ve VandeNv = v}

x : (e,v) | (e,v") ifvev

(e,v) ifv' ¢y

where v' is the O-face of e other than v.

where

z : (e,v)—(e',V)

and e' 1s determined as the 'mext' l-simplex from e following the orienta-
tion around v in $. (F\ seicj‘\'t easy aAqP{ion oﬁ e J,eﬁ;n‘.l:n‘ans of £ and
X is needed to form AM(7Y) i has eoops).

[ 12 ] further showed (given some finiteness conditions) that every M
€ AM is isomorphic to AM(°T) for some °T € TM, and that (with the rule

of isomorphism for TM as given in that paper):

T, 27, in T™ & AMET)) 2 AM(T,) in AM

Thus we may sensibly identify M with the appropriate ° € TM and define

the genus g of M as that of the surface $ associated with°T .

For simplicity I shall restrict my attention from now on to finite maps,
i.e.| @] is finite; the last paragraph is then valid. (In fact all the maps

relevant to my calculations will be finite.)
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We now proceed to isolate a group associated with each map M. So
suppose S : = (G, ,x,y) is given.
Let o(y) = n and I'(n) be the free product C, & C.» lLe.

2 n

) : =gp<X,Y: X"=zY =1>

Then clearly 3 epimorphism p : T(n) *G given by:

P X*x , P:rYTy

and M determines the group K « T(n), the kernel of p .

However for our purposes it 1s not so much K that will interest us but

the set & of subgroups of T'(n):
L= {Mu : o €8 and M, = D_l(FixG(Oi))} where  Fixg () 1 = {356;3&0:«}.

As G is transitive on £, the Moc will be mutually conjugate in T{n);
conversely given M, € &, all conjugate groups in I'(n) must be the stabi-

lizer under p of a dart, and so also be in 2. Thus & is a conjugacy class

of subgroups of I(nj. Note that

K = ﬂ M, ., Le. the core of %.
Meed

We call any M € & a map-subgroup of M. The definition I use here

is not the same as that found in [ 12 1. In the latter a map subgroup

M is a subgroup of the triangle group

2

T(n,m) : =gp <X, Y:X =Y"= v oM -

1>

where m = o(z) in G. M is then the inverse image of a stabilizer of

a dart under the obvious epimorphism T'(n,m)—G.

Essentially the difference is that in 'my' definition the information

olz) = m
-13-



1s contained in the map subgroup itself, whereas this alternative has
the same information in the 'sponsoring' group. The rdle of the two

though In describing any particular map is effectively identical.

It is easy to see that any two maps with map-subgroups in the same
I'(n) and conjugate in that I'(n) must be isomorphic; also that every
subgroup in any I'(n) is a map-subgroup of some map (see [ 12 ] p.283-284).

Thus ¥n €N we have a bijection between

{ conjugacy classes of subgroups of T'(n) s.t. no non-trivial power
of Y is contained in their core K }

and
{ maps Ms.t. oly) = n }

Now I define regularity for maps:
a map M is regular if Aut(M) acts transitively on
and state a result (Theorem 6.3) in [ 12 ], reproducing the proof:
Proposition
M is regular if and only if its map-subgroup M is a normal subgroup

of I'(n) for suitable n.

Proof
() Let M be regular, and g € FixG(Ot) for some a € § . For any
T £ Aut(M),
T(ga) = g(ta)
= 1o =g(To)
= g fixes Ta and as Aut(M) is transitive on £, g fixes
every dart
= g=1 = FixG(OL) is trivial

= M=KdT() (K as before)

(i) Suppose map M has map-subgroup M & I(n). Then M = K and

ijG( o) is trivial. Then the permutations T, : € = § indexed

[



by the elements h of G given by
Tt B%F gh o (o some fixed dart, vg € G)
are well-defined and automorphisms of M (and evidently the only

automorphisms of M).

In particular Yh €G
Tt ho

and so Aut(M) acts transitively on .
O

Corollary 1

T
Mis regular & Aut M= G = %

Note

If M is regular, all the cycles of y (faces) in & must in themselves be
mutually conjugate in Sgz , and so have equal length = o(y) = n. We say
M is regular with n-gonal faces. Similarly the cycles of z (vertices)
will be equal in length (m say), and we say M has valency m. These
of course correspond to the actual properties of the relevant topological

map when thought of as a graph imbedded in a surface.

Corollary 2

Let G be any given finite group, let n € N.

The number of regular oriented maps (ROMs) M with n-gonal faces
s.t. AutM =z G equals the number of torsion-free normal subgroups M
of T'(n) s.t. —-11%;—-)— = G.
(Clearly if G is non-cyclic and n is prime, the condition 'torsion-free'

becomes vacuous.)

In the preceding section we gave a procedure which enables us to calcu-
late this number for the case in parenthesis, this being dF(n)(G)’ However
the method easily extends to all cases: we simply take ¢ to be

-15-



o} 1ﬂ(n)(H) = 4 pairs (x,y) in H s.t. o(x) = 2, oly) = n

(rather than number of pairs (x,y) in H s.t. x2 = y" = D, and proceed

exactly as before to obtain result d'n, \(G) say rather than d (G).
i I(n) | T(n)

o A e mqpv V(‘Jme' fe group T(e) is regardod as acking on iks

We need the distinction because YI'(n)"may be” considered as a universal

covering map of n-gonal maps (c.f. p.283 [ 12 ]): if we took into account

pairs (x,y) of G with oly) : = d strictly dividing n, we would also be

counting quotient maps with d-gonal faces.

Clearly to enumerate all ROMs with automorphism group G we may
sum d'r(n)(G) over all natural numbers n. But it is usually more efficient
to use the same sort of techniques to get the result directly as now

explained.

The map-subgroup M ¢ T(n) is .not the only group-theoretic way to re-

present a map M : = (G, Q,x,y). For let (for now) I' be the group

F::gp<X,Y:X2:I>

and form the epimorphism p : I ~G by
X=X s Yy

Then in the same way as before we may associate M with the conjugacy
class # of subgroups in T given by inverse images of stabilizers in G
consighs of (% Sinaet

of darts. Regularity again dictates that g V normal subgroup of T,

and vice-versa, and we come 1o

Theorem

Let T = C2 * C_» G any group. Then

(# ROMs M with AutM 2 Q) = dl"(G) .

-16-
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The.reasoning can be extended also to count more particular categories
of regulari maps having given automorphism group G. By this I mean
if we had a finite set of words { Ly oo s rs} for s € N in x and y
which we required to be identity in G (intuitively interpretated as 'routes'
in the map always taking you to the same dart to that from which you
started), then the number of such ROMs would equal dI‘ (G) where now

I'is the group with presentation

<X,Y:X2:R:...:R:I>
1 s
and Vi =1, «.. , s ) Ri is the same word in X and Y as r is in x and
y. However of course, in general the more complicated the relator set

of I'is, the more difficult it is to calculate dF(G) in practice.
Before going on to hypermaps, I include some

Notes

1) The map-subgroups (as [ have defined them) of triangular (i.e.
oly) = 3) oriented maps are exactly the subgroups of T : = C, * Cq
of finite index. But in this case I' is the much studied modular
group PSLZ( Z ) (see e.g. [ 20 ] chapter 8 ), and so this case is es-

pecially interesting.

In particular we may ask whether a subgroup of T : = PSLZ(Z)
appearing in this context 1s a congruence subgroup of I, i.e. does

it contain any principal congruence subgroup of TI'? (One of the

latter is defined for each pesitive 551%@?@? n as

Fn:{iAEF:AEiImOdn} ).

For regular maps we are considering normal subgroups of T ; the

-17-



2)

3)

4)

normal congruence subgroups have been classified by [ 16 ]. Hence
we may sometimes decide the question for the map-subgroup of

a given triangular ROM.

Unless G is cyclic, a ROM with automorphism group G cannot
contain free edges (i.e. x cannot fix any darts). For we showed
regularity meant the stabilizer in G of each dart was identity;

thus

x fixes a dart =  x is the identity permutation on £

@ G = <x,y>:<y>
[

& , the symmetric group on the finite set §. If G does not

G <5
have a subgroup of index 2, we have further G < AQ , the group
of even permutations on . If this is the case for ROM M with
AutM) = G, then (for example):
M has n-gonal faces with n even =% M has an even #
faces,

M has vertices with even valency =» WM has an even #

vertices.

Genus

Suppose an ROM WM is represented as an imbedding in a surface

of genus g. Then the valency of each vertex is constant = of(z):=m

say, as 1s the number of edges bounding each face = oly) : =m.

Assume also M has no free edges.

Then:

# vertices of M = [«

G|
2

1

# edges of M

~18-



H# faces of M = Gl

n

and by the Euler-Poincaré characteristic formula

I
)
TN
=l

1
NY e
+

I T
s

2-2g

@g 2

11
+—....
o
TN
NI
3
+
!
N e

When M has free edges (and so G is cyclic) the above formula
fails because there are now |G| edges, all free, and the associated
simplicial complex & has vertices at the 'free ends' of the free

edges not taken account of above. So

# vertices =|G| + 1, # edges =|G|, # faces = |

and g=0.

Hypermaps

The philosophy behind hypermaps is to relax the condition we find in
the definition of maps that an edge is incident with at most two vertices
(this being inherent in requiring x2 = I). For hypermaps, any edge may
be incident with any number of vertices (i.e. x is specified, but x2 =1
is relaxed). Note that according to this degree of freedom, maps are

themselves hypermaps. The definition is a natural extension to that

for (algebraic) maps:

An oriented hypermap (G, ,x, y) is a set & with permutations x and

y of Qs.t. G: = gp<x, y > is transitive on {.

The cycles in S of x, y and z : = (xy)'l are the edges, faces and vertices

respectively of the hypermap.

The definition for morphism is the natural extension of that given for
maps.
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Assume from now on | Q] finite.

If H is a hypermap with ofx) = r and oly) = n I will denote it an (r,n)-

hypermap.

Suppose H is a given (r,n)-hypermap. Let

n:I>

T(e,n) =gp <X, Y:X =Y
and o be the epimorphism from I'(r,n) to G determined by

X — X, Yr— vy

Then a map-subgroup M of H is any element of the conjugacy class

£ of subgroups of I(r,n) given by

L ={M, € Tn): o e Q, Mo(':p~1(FixG(oc))}

2 uniquely identifies H .

A regular hypermap H is one with automorphism group transitive on
23 exactly as for maps, a hypermap is regular 1ff its map subgroup
M is normal in T (r,n), and then j%n—)— ¢  Aut H. We may enumerate
the regular (r,n)-hypermaps with certain automorphism group type G
(with known Mobius function) by counting pairs (x,y) s.t. o(x) = r, oly)
= n (insisting on orders rather than relations x' = yn = I) of every sub-

group of G, and applying Hall's method.

Similarly we may identify all regular hypermaps with automorphism
group G with the set of normal subgroups M s.t. r_rq = G where T =
Ceo ¥ C, , the free group of rank 2. (This corresponds to summing

the results above for T(r,n) over Nz). So the number of such hypermaps

is dI‘(G) (in the notation of the last section).
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Note
It would be nice to associate with a hypermap H : = (G, Q, x, y) a (topo-
logical) map M which in some sense faithfully represents 3+ . We can

do this by a neat correspondence found by [25], which I state.

First a definition : a map is bipartite if its vertices can be coloured
with two colours (with the usual graph-theoretic meaning) such that
no two vertices joined by an edge have the same colour. A bipartite
map is a map together with such a 2-colouring. Call the colours a and
s; note that a map M which is bipartite has exactly two 2-colourings,

the second obtained by 'switching' a and s.

Theorem [ 25 ]

3 bijection p from the set of oriented hypermaps onto the set of oriented
bipartite maps. For a given hypermap H , 0 maps the vertices, the edges,
the darts and the faces of ¥  onto (respectively) the s-vertices, the

a-vertices, the darts incident with the s-vertices and the faces of the

map 0(H).

I will call p(*H) the bipartite representation of { and define the genus

g of H to be that of p(H). For example, if H is a regular (r,n)-hypermap
with valency (i.e. o(z)) = m then simple use of the Euler-Poincaré formula
gives

g =1+ ‘—%]- (l-i—i--l-)

r n m

Clearly from this we can build up another (essentially identical) topo-
logical representation of H , put naively like this: suppose p (H) is im-

bedded in the orientable surface $ (of genus g), then 'expand' each vertex
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in § to a face; a resultant face is an 'a-face' or an 's-face' depending
on the colour of the associated vertex; forgetting about the original
edges of p (¥ ) but preserving the faces, we construct a map on $ by
specifying that an a-face 1s incident with a s-face at a single point
(a 'mew vertex') iff they originate from an adjacent pair of vertices
in p(H). Otherwise the boundaries of the new faces are mutually disjoint.
This construction is always realisable and gives a unique map up to

i1somorphism.

This new representation WM then has a-faces and s-faces representing
edges and vertices of H respectively, and the remaining faces (f-faces)
representing the faces of ¥ ; the darts of { may be associated with
the vertices of M (these being exactly the a-face/s-face incidences).
An illustration of such a construction (imbedded in a torus) is given

on p.7-8 of [3 1

I will call this second representation of H its topological representation

(t.r.). Let H be an (r,n)-hypermap.

The useful aspect of this t.r. is that any path (connected succession
of edges) determines in a natural way a word in x and z : = (xy)_1 and
vice-versa. In particular if a path w(x,z) takes dart & to itself in WM
(i.e. is a loop based at a), then w(x,z) € FixG(oc) and the corresponding
element w(X,Z) in T (r,n) is in the map-subgroup M - Clearly this works
the other way, so such paths characterize Moc : 1 will exploit this iIn

the next section.

(i) The case where the (hyper)map may be non-orientable

Given a topological map imbedded in an orientable surface $, we depend

on the orientation of $§ to decide the cyclic order of the darts in the
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permutation y in the associated algebraic map. So if we want to represent
algebraicly a topological map imbedded in a non-orientable surface $
we need more 'information' in our model, very vaguely we need to specify
next dart around vertex as well as next dart around face in the defining
permutations (suggesting we need three of these rather than the two

for the orientable case).

What we in fact do (following an idea originally due to Tutte [ 24 ] is

consider permutations of oriented darts (face/edge/vertex incidences)

rather than darts (edge/vertex incidences). Let the set of the former

be §'. Then define the following three permutations of §":

ro takes oriented dart d to the other. oriented dart which shares

the same edge and face

rl takes oriented dart d to the other oriented dart which shares

the same vertex and face

rs takes oriented dart d to the other oriented dart which shares

the same vertex and edge.

We immediately see that for any topological map, be it orientable or
non-orientable (according to $), that fgr [» [, are naturally determined, <%,v,%h>

is transitive on & ' and that

2 2 o
(rOrz) =T =1 i=01,2 |,

Conversely it can be shown that any abstract transitve permutation
gixa&- \:a'mk gree_

group generated by threeVinvolutions such that the product of two of

them is also of order 2, is an algebraic representation of some unique

topological map (see [ 1t ])('Lf. we allow invelulions with f.ixe& fdm‘:s y We

should also be cons'ule‘rinﬂ mops with t.rounclo:ry , see [30]).
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We use these ideas for maps to motivate our approach to defining hyper-
maps in general. We know that the set of oriented bipartite maps faith-
fully represent the set of oriented hypermaps; it seems natural to con-
struct our definition of hypermap in such a way that hypermaps are
identified with the elements of the whole set of bipartite maps, orient-
able or not. Now given a bipartite map we may form its associated
3-face-coloured map M in the way described before (this second map
is certainly orientable if and only if the first is). In M we may naturally
identify (s-face)/(a-face)/(f-face) incidences with the 'ends' of the edges
that form the boundaries of the (s-faces). We form involutions Lgs Ty

r., on the set §' of these ends analogously to before (again the permuta-

2
tion group generated by Fgs T2 T is clearly transitive on £ ). These

permutations will form the basis of the algebraic definition of the associ-
ated hypermap (I shall discuss in the note later the reverse process,
l.e. how a bipartite map 1s associated to any given hypermap, after

the definition of the latter is formally given).
Our discussion then prompts the following definitions:

A hypermap (G, &, o )2 r2) is a set §' together with three permuta-

) O
tions fgr Ty and r of s.t. both

. 2 2 2
(i) rg =1, =1, =1

(i) G:

gp < Fgr T r2> is transitive on &',

If olr.r.) = r, o(rorl) = n and o(rlrz) = m, I will say the hypermap H

02
is of type (r,n,m) : the hypermap is a map iff r = 2, it is triangular

iff n = 3.
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The morphisms are defined as usual, in particular the automorphisms

are the elements of the centraliser of G in the symmetric group on

Q' H{ is regular iff Aut(H) is transitive on Q.

[
Let TI'= C2 * C2 * CZ’ the free product of three cyclic groupsforder 2
2 2

2
Rl,R:R = R :RZ:I>

I':= <R 2 Ry 1

O’
Define the epimorphismp : T » G by

R.— r. 1=0,1,2,
i i

A map-subgroup M of H is a subgroup of I':

M= o (Fixg (@) for some o & 0 .

M 1s determined up to conjugacy class in T.

Exactly analogous to the oriented case we find that H is regular if

and only if its map-subgroup M is normal in I'. Also

Theorem

Let G be a given finite group. Then the following are equal:

~

(i) # regular hypermaps H with Aut(H) =

G
. r
(ii) #£ normal subgroups M of T s.t. V) = G

(iii) the value o? e mx{;v,ession. ﬁor OLP(G) as rj’\\ren on ‘?.7.

Of course this theorem can be specialised, for example

2 2,2 2
(@ Let A:=gp <Rp Ry Ryt Ry =R “ =R, =(RyR)" =1 >,

Then

<:{:}‘- regular maps M with Aut(M) = G) dA(C) .
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Note that if G can be generated by two involutions, some of these maps

will be 'degenerate' in that the permutations ro and r5 will be equal,

so that the map may be thought of as a single vertex incident with

l—%—t free edges.

. - . - _ 2 _ 3
(b) Let A: = gp <RO, Rl’ RZ.Ri(l—O, 1, 2)—-(RR)—-(ROR1) >

Then A is PGL(Z)( [ 4 1, section 7.2).

the dibhadral group qg edar §
As long as G % I, Cz)Uae Klain L;ﬂfj‘foup crv, we have

ﬁ:p(regular triangular maps M with AutM) = G): d A(G) .

Note

Suppose we are given the hypermap H : = (G, ', Cor Ty rz). I will asso-

clate with it a bipartite map.
Let Q:= QU @
where Q" is any set disjoint from Q' s.t.|Q"] = | Q'].

Let S be a bijection Sy Q' > Q" then So will also denote the per-

mutation of @ with cycles (d, so(d)) for each d € Q.
Let 5| € S be the involution with transpositions
(d, rl(d)) ifde @
a 3 1t
(d, SOrl(rOrl) sO(d)) ifd e

where o + 1 is the least valuej s.t. (rorl)j so(d) = so(d) .
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Darts in red ie in \QAII
Darts in greea Bie n 2

(r,r,fx'(l)
()

shnn)* @)

(r.r.)s.(l)a

Let 526 S be the involution with transpositions:

(d, e  ifde @

(d, sorzso(d)) ifde Q.

g 8

Then clearly H : = gp S Sps S5> & is transitive on § and

(sosz)2 =, soM :=(H,R,s 1’ 52) defines a map. As Q' ﬂ Q" is

o’ S

empty, M is evidently bipartite; the colouring of M is determined as:
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the vertices corresponding to pairs of cycles of (rlrz) whose ele-

ments are in Q' will be colour s ; in $" will be colour a.

So we have constructed a bipartite map M from the hypermap H ; we

gave a procedure earlier to construct a hypermap 9 ' from M ; clearly

/

Y =z H

so we have a l:1 correspondence between bipartite maps and hypermaps
as desired. So as for the oriented case we have a bipartite representation

(and topological representation) for a hypermap.

We can now define a hypermap as being orientable iff its t.r. is orient-

able, otherwise It Is non-orientable.

However, if a hypermap is orientable, its algebraic definition here as
a hypermap is different to that of the oriented hypermap sharing the
same bipartite representation (b.r.). In particular the automorphism groups
in the two cases need not be isomorphic. For example if a hypermap
9 "' with orientable b.r. M is regular, then the oriented hypermap?‘(
with the same b.r. M will also be regular, but with automorphism group

half the order: in fact
AutH) = a subgroup of Aut(¥') of index 2.
One consequence of this is that any regular hypermap 9{' with Aut(H{")

a group G without a subgroup of index 2 (e.g. a simple group * C2)

cannot be orientable.
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4, Two further notes on the Groups of Maps

L. Type of map-subgroup of an oriented hypermap

For any oriented hypermap H , the characterization of the map-subgroup
MOL for any dart o in terms of loops in the surface $ might lead us to
expect the fundamental group T 1($) of $ (and hence genus g) would help
determine the isomorphism type of M, - With this in mind, I specialise
to normal torsion-free subgroups of T (r,n) (alternatively regular (r,n)-hyper-

maps) with genus g and prove, rather informally:

Theorem
A normal torsion-free subgroup M of finite index u in I'(r,n) : = Cr * Cn
is free with rank 1 + (1 - 1 i) u .

r n

Proof (all maps, hypermaps referred to are oriented)
Let M be associated with the regular (r,n)-hypermap H : = (G, ,x,y) and
this with its topological representation M . Then || =u and X is imbedded

in the surface $ with genus g,

g =1+ 7(1—-}:—%—-%)
Let

T(r,n)::gp<X,Y:Xr:Yn:I>
and

Z: = (><Y)'1 .

Then note that X and Z generate I'(r,n), so every element of M is express-
ible as a word in X and Z. A word w(X,Z) in M is free of a set W =
{WS(X,Z) € M : s € S}for some set S if and only if w cannot be ex-
pressed as a product of elements of W (and their inversions) together
with Insertions or deletions of ‘'syllables' that are conjugafes of X' and

n

Y = (X—IZ_I)n. These insertions/deletions only alter the word but not

the element of M the word represents. The insertion of one of Xr, X—r,
-29-



" or Y (where the insertion of X | is the same as deletion of Xr)

Y
can always be used to divert a path in W that at a certain point follows
part of a boundary B of either an a- or f-face F, to follow at that point

the other part of B.

original path diverted path

~-N

-r

For insertion of X' or X , F will be an a-face of M , for Y™ or Y

it will be a f-face.

Now isolate a € £ in M , then if w(x,z) is a loop in M , then w(X,Z)

is in M. Let the set of vertices of H be V.

Suppose @ € vertex v, choose for each other vertex u an incident dart

BU and let
w V(x,z) =1

t
wu(x,z) be any word that takes o to Bu in a non-self-intersecting

path for each vertex u (one always exists).

U

Define for each vertex u, including v,(of which there are = )

m

) 1 ']
wu(x,z) = w u(x,z) zo W (x,2) .

Then Vu ¢V, WU(X,Z) e M, and these are mutually free. They all rep-
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resent trivial loops on $. All other trivial loops in WM correspond (by 'col-
lapse' of faces as inherent above) to some product of these elements

(which I now denote cu).

Now let wigx,z) for 1 = 1, ..., 2g represent the 2g non-trivial inequivalent
topologicali)‘;gggps at a in M (the e:’xjstence of a loop of each kind is guaran-
teed by regularity). These loops cannot be obtained from each other
by collapse of faces so they are mutually free. Now suppose wi'(X,Z)
corresponds to a topological loop L' equivalent to that L of wi(X,Z):
multiplication by the c, glves a way of collapsing the s-faces, so we
may collapse L' to L and conclude Wi‘(X,Z) is a produgt of wi(X,Z) with
some cu)s as appropriate. Finally from the structure of TTl(S) we know
we may assign the wi(X,Z) as aj, bl’ ey @, b s.t.

g 8

3
W [a., b.] is a trivial loop.
3=i J J

9

In fact we may (w.l.o.g.) let —W [aj, bj] =c, .
j=t

No other combination of the wi(X,Z) is trivial, so we conclude

M

n

, 3
<a,,b,,...,a,b, c a., b.l=c >
8P Py g g JE£ u JL (3 v

= <a,,b,, w«.,a,b, c c - >
&P Ul gggu\v

il.e. M is free of rank Zg +r% -1
:2+u(1~%‘—é‘~r‘é‘)+r% -1
1 1
:1+U(1_F_H)'
O

This result generalises Theorem VIII.7 of [ 20 ], which states the formula

for ['(2,3), i.e. the classical modular group. The proof I have presented
not
here doesYuse the Nielsen-Schreier theorem (see p.8 ); by considering
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combinatorial topological representations of the normal subgroup as I
have, I have recovered a non-trivial theorem in combinatorial group theory
(c.f. proposition 6.1 in [ 12 ] which is the corresponding result using their

different defintion of map-subgroup).
2.  Groups with signature and Hurwitz groups
The construction of the t.r. of a hypermap is rather naive when placed

against the imbedding theory of groups with signature.

A group with signature T with periods (ml, ey mr) and quotient space

of genus g is a group with abstract definition

,...,X,a,b,...,a,b] x, Mo ox My
r’ 71771 g’ g 1

T':-= < X
&P b y oy

1

. 9
(I %) [T a1 >
j=t

i=1
Let G be any finite group, ® an epimorphism
o : T > G

such that the orders of Xl through Xr are preserved. Then a fundamental
result is that G acts as a group of automorphisms of a compact Riemann

surface $ of genus Y, where

Y = 1+i—§il— (2g—2+ 2(l~r—lﬁl)) .
i=1 '

This is the classical Riemann-Hurwitz formula.

In particular if T is a triangle group of type (r, n, m), i.e.

gp <X, Y : X =y =(xv™ =1 >
then

_ Gl _1_1_1
Y =1+ > (1 il m)'
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In fact, given T'(r, n, m), the normal subgroups N s.t.

T, n, m _ G

N = for given G

naturally give rise to the same regular hypermaps H of valency m as
do the appropriate map-subgroups M of T (r, n). The imbedding of H can

(more sophisticatedly) be viewed in this light.

(Note: how the classical Riemann-Hurwitz formula appears in the con-
text of the automorphisms of a hypermap and its relationship with its

standard setting in the theory of Riemann surfaces is discussed in [ 15]).

From the above Riemann-Hurwitz formula, given that G < Aut($), $ of
genus Y , we may find a bound for |G| by varying the parameters g, r, '
m.; it happens this bound is determined by g = 0, r = 3, m, =

2, m, = 3, my = 7. We conclude

|G| €84(vy-1)

and that this bound is attained by G iff G is the homomorphic image

of the triangular group (2, 3, 7). Such a group G is called a Hurwitz

group.

Clearly the Mobius function of G if known would be a very powerful
tool in deciding whether a particular group G is a Hurwitz group. How-
ever, as for any one application of Hall's method, this problem can often
be resolved without its direct use: for instance [ & ], Theorem 8,estab-
lishes which PSLZ(q), q a prime power, are Hurwitz groups. But if the
relevant Mobius function is known, the working will tend to be more

mechanical.
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5. Coverings of Riemann Surfaces

Finally, and not pursuing it at all, I give another example where the

regular objects C of a certain category € are in l:]1 correspondence
r|

with the normal subgroups M of a certain group T', with Aut, (C) = e
Again Hall's method may be used (given the requisite information) to

enumerate regular objects of < with a specified automorphism group

type.

The bijection € — M in the present case is In essence laid out in [17 ]

(although he doesn't explicitly mention automorphisms). I repeat:

Let S be a compact Riemann surface of genus g, then the category ¢
is the set { smooth coverings without boundary m: T + $ for any surface
T} .Let m e € , then AUTC/:TT is the group of covering transformations
of m, and 7 is regular iff Autgﬂ s transitive on the set of preimages
in T of any point in $. Then the objects of € correspond to classes of

conjugate subgroups of the fundamental group of $ = I' where

3
r = 8P <a17 b17 ""ag’bgl-‘,ﬂi[ai’bi]:1> for g = I and

1s trivial for g = O.

Very similarly to the problem for maps, we may prove the following
are equivalent:

i) a covering m is regular

ii)  The class of conjugate subgroups of I' corresponding to 7 is just

a normal subgroup M.

Furthermore, if M 4 T corresponds to regular m , then Aut m = r/m.

So in this respect it will be of interest to know the number o (G) of
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solutions for a bl’ ey ag, bg (g given) in any group G of the equation:

9
. [ap bl] =1
=1

A general answer is available in terms of a summation over the irre-

ducible representations A of G:

0(G) :]G{Z (lf%) 24-2
2

™)

where £ 7 is the i@fﬁm of A .

(The above result is a specialisation of Proposition 1 in [18 ].)

Then the number @(G) of these solutions generating G is calculated by
Mébius inversion, and the number of normal subgroups M of T such that
%/l =~ G is ascertained by dividing ¢(G) by|Aut(G)|.

We note that if g = 1, so that T" is abelian, but G is non-abelian then
there can be no epimorphims I' + G (i.e. there are no coverings of
the torus with non-abelian automorphism group). So in this case

¢ (G) = Z(UG(H) H] ;) - 0

H¢G

where the 'inner' summation is over the irreducible representations of
H. Thus we have for any non-abelian group Gt
E uG(H) .JH| . (# conjugacy classes of elements in H) = 0

H4G

(c.f. proposition on p.l0).
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CHAPTER 2

In this chapter I will complete the determination of the Mobius function
of the linear groups PSLZ(q) and PGLZ(q) over the finite field GF(q) of
prime power order g. This is already known (see [ 7 ] for PSLZ(p), p any

prime.

PSLz(q) 1s the group of 2 x 2 matrices with entries in GF(q) that have
determinant 1 and which has = A identitied fnr each nabvia A Dickson [ 5, chapter
XII] analysed its structure, with a full list of subgroups given in §260

of his book.

PGLz(q) is the group of 2 x 2 matrices with entries in GF(q) that have

non-zero determinant quotient by{(é‘ )?) A€ GF(q)} . If g is a power

of two, q = 2° say, then
PGLZ(ze) = PSLZ(Ze) for any e ¢ N
otherwise if q is odd then P’SLZ(q) may be regarded as a subgroup of index

2 in PGL(q)-

As the groups PSLZ(ZG) have structures not quite fitting in with a pattern
shared by the other PSLZ(q), the former will be dealt with separately.

The schedule will be

Section 1 :  PSL(p) ,  podd,  e>1
Section 2 : PSLz(Ze) , e >1

A e
Section 3 : PGLZ(p ) p odd.

But first I introduce some definitions and notation (which will carry through

to other chapters), and also state two rather trivial (but crucial) general
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lemmas, one for subgroup lattices, the second for all lattices.

Definitions

If H ¢ G, where H, G are groups, then K ¢ G is a supergroup of H (in

~

G) iff H < K. K is a contributing supergroup iff in addition G(K) + 0;

K in particular must be maxint (an intersection of maximal subgroups

of G, see p.3 ). A contributing set of H is any set of supergroups of

H that contains all contributing supergroups. A counting set of H means
any subset S of a contributing set of H such that

Ho(H) o+ Z R =0

Kes

having this last definition is useful because very often the ‘contributions'
(i.e. M G value) of certain categories of supergroups cancel, and so these

may be ignored.

The following lemma 1is particularly useful in enumerating supergroups
( iso:\xorpkis"\
of a certainytype. (The proof is simple and left to the reader.)

Lemma

Let G be any finite group; suppose G has subgroups of type K, and then
K has subgroupé of type H. Let ¥ ,¥ be classes under Aut(G) of subgroups
in G of type H, K, these classes being of length h, k respectively. Suppose

K €% contains m groups H €% . Then

the number of supergroups inX of any He¥ = aa

This lemma (I will call it the supergroup lemma) will often be used, usually

tacitly. Note also that if ¥ , X are simply conjugacy classes under G

(rather than classes under Aut(G)),an analogous result holds.
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I revert for a moment to lattices [ in general, with obvious extensions

of definitions.

Lemma
Suppose £ has maximum element G and other element H. There is an
"Induced' lattice P,I on any counting set S of H as long as S has a maxi-

mum element M. If further YK e S\{ M} the set Sk S S where
SK: {JeS:K<JgM}

1s a counting set for K in G, then
wp (Hy G) = 1y (M, G) L M/ (H,M)

In particular if S is a contributing set of H we always have

UE(H’ G) = Uﬁ’(H’ G) .

I shall call this lemma the sublattice lemma.

Proof

This is by induction on the ordering of L.

Suppose firstly that H < G and K s.it. H <K <G. Then the only counting
set S of H is the singleton {G} , and P’ is the lattice of two elements

{H, G} with H <G, with maximum element M = G. Then clearly

UE(H, G)=-1= “(’_’(H’ G) :UE(M, G) “E’(H’ M) .

Suppose now that H < G and that the result is true for all K in £ for

which H <K <G. Then taking S, £ and M as in the statement,
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r.s

1

- Z “Q(K’ G)

KeS

u?_(H, G)

1

= UE(M, G) . ; UE'(K’ M)  (by inductive supposition)
KeS

= ME(M, G . - u?_,(H, M)

(Finally when S is a contributing set, we have M = G)
0

Notation

D

The symbols C Vq for d ¢ N, q a prime power, will mean respec-

d> —2d’
tively the cyclic group of order d, the dihedral group of order 2d and

the elementary abelian group of order q.
The symbol g will always represent the prime p to the power e.
Merely to simplify subscripts I introduce the following functions
: N > Q which are defined (given prime p) by:
frfo— L (pjf -1
2
s:f +— —l—(pf+ 1.
2
Also the symbol pf as a subscript represents the prime power pf.
Now specialising more to the present case, I complete giving the notation

that will describe the types of subgroups of PSLZ(q) and PGLZ(q).

The elements of PSLZ(q), any odd q, can be regarded as the linear frac-

tional transformations

cz +d

(a b) : z az+b (recqff ai~lxc=1)
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with z ¢ GF(q) U {«} ; call the latter union the set of marks. It is con-
sideration of this action which largely informs us about the group's struc-
ture (although there is an alternative approach identifying trace with

conjugacy class, which we shall meet in Chapter 3, section 2).

each
The q + 1 subgroups of PSLZ(q) that areVthe stabilizer of a mark are con-

jugate and are metabelian, a Vq extended by a Cr(e) I 5 1 §250). Al
subgroups of PSLZ(q) fixing a mark will hence be elementary abelian,
cyclic or 'properly' metabelian, i.e. a fo extended by a Cd for some

pf | g 1 <d | rle) : we denote the latter M, , (or M_ , for f = e).
i,d q,d

Similarly PGLZ(q), any q, acts on the set of marks with metabelian stabi-
lizers, this time a Vq extended by a Cq—l' Again we denote subgroups

of this by Mf,d (or Mq,d for f = e) where d [(q - 1)as appropriate.
Sf will denote a group isomorphic to PSLZ(pf), given prime p.
G, will denote a group isomorphic to PGLz(pf), given prime p.
Finally, S" will denote the symmetric group on n elements ,
A" will denote tk{e alternating group on n elements,

I now proceed to discriminate some ‘'special’ fo and Mfd in G (G some
’

given S_or G_ over GF(q), q = pe).

(»)

If H< G fixes the mark A , we sometimes express this by writing H .
() 1 x)
N \Y) = : A e GF
ow q 0 1 (q
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Subgroups fo < for £ £ e are given by:
vV (o) _ | S SN
ot = : ) ranges over a subgroup (of type fo)

of the additive group of GF(q) }

Now suppose H is some fo ov Mfd for £ & e. Conjugate H to obtain
2
1 (e2) . . -l— B . .
H' < Mq,c(q-l) (wherec:.—(l,z)asG_(Ge,Se w1thpodd)).
Then

i
D
<<
8
1}
0
O -
o >

> : A € A for some additive subgroup A

of type fo in GF(q) }

and 1 define mult(H) to be the multiplier of A, i.e. the set of elements
a in GF(q) s.t. @A = A taken together with the zero element of GF(qg).

Mult(H) is well-defined, and is a subfield of GF(q).

If for some f| e and H = fo or M 4 (some d) we have mult(H) = GF(pf)
2
(the same f), then I call H special. In all such cases, H will be denoted

with an asterisk, H*, if I want to highlight the property.

1. MOBIUS FUNCTION OF G : = PSL(p), p odd, e > 1

First I review the subgroup types of G; for more detail see Dickson [ 5 ]

chapterl2, especially §260.

G clearly has a subgroup Sf for each f | e (simply take the matrices with
entries in GF(pf) C GF(q)); this S¢ Is its own normalizer except whenf

Is even when

n
O
L]

N (S,)

These subgroups Sy, Gf are the 'linear' subgroups of G.
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G is doubly transitive on its marks; the stabilizer of one mark is the meta-
belian Mq r(e)’ its normalizer is itself. The stabilizer of any two marks
b

isa C with
r(e)

NG(Cre) = Porie)

G also has subgroups Cs(e); G may be regarded as a subgroup of SZe’

and then these Cs(e) are Intersections of G with Cr(Ze) in S,.. Again

NG(Cs(e)) B DZs(e) :
Of the dihedral groups, the Klein-4's Vq are exceptional in that they alone

are subgroups of more than one maximal dihedral group DZr(e) or DZS(e)

in G (they are clearly subgroups of exactly three such groups).

G finally has the following 'exceptional' subgroups

A’ itf q = +1mods5
v

s* it q = +1 mod 8
AL; always,

A

Y2PGL,(3) ; A'=PSL0)

(Note: A° = PSL,(5) 5 S

so these can also appear as 'standard' subgroups of G if respectively:

. o . . 4
In the case p = 3, the exceptional and standard AL'L'S coincide; likewise the S''s
when kkewise e is even.)

The above account for all subgroups of G.

The maximal subgroups of G are those of type:

4=



<

S,f with f odd prime
if e even Gk where k = —;-

Mq,r(e)

Dq—l

Dq+l

and also for e = 2, p =z + 2 mod 5, an exceptional case dealt with after

the more general result, G has maximal subgroups /3\5.

My first objective is to distinguish those subgroups of G which could be
the intersection of maximal subgroups (are maxint by abuse of notation)
from those that are definitely not; the latter automatically have u G value

0.

1) Suppose cyclic Cd with d | % (g + 1) and d > 2 is maxint. Then Cq
evidently must be the intersection of maximal cyclic subgroups (of order *P
and greater than two) of maximal subgroups of G, i.e. the intersection of

groups of type

. e .
Cs(f) , Cr(f) s with T odd prime or f = e

Nl

if e even C25(k) , CZr(k) s where k =

Let h, g e N, £=hec.t. {h, g} , otherwise denoted (h, g). Then

14
(" - 1, p8 - 1) = p-1
(ph + 1, p8 -1 = pE + 1 if BE odd and % even
2 otherwise
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(Ph + 1, pg 1 = pE+ I if }gh odd and%odd

2 otherwise

(With the property that maximal cyclic subgroups of G are mutually disjoint

apart from the identity in mind) one immediately concludes that
d = (pf + 1) or (pf - 1) with fi even
OR %(pf + 1) or %(pf - 1) with % odd .

2) Suppose dihedral DZins maxint. Then D2d is the intersection of

maximal dihedral subgroups of the maximal subgroups of G containing

DZd’ and considering intersection of cyclic groups as in 1) we obtain

d = pf + 1 with _ef even
1, £ s €
or d = 5(p” + 1) with T odd or d =2
3)  First a note:

Note Let a be a primitive element of GF(p®).

For f | e, let A, be an additive subgroup of GF(pe) of type fo with multi-

i
e -—
plier GF(pf). 3 exactly Pf___l: = k such A, (see Dickson §71), each having
p -1
the form :
1 f .
a GF(p’) ioefly ey k)

The intersection of any Ag with any Ah is either 0 or is an AB where

£:=hect. {hgl.
O

Now suppose fo is maxint; then it is the intersection of maximal abelian

subgroups of maximal subgroups of G and thus of

v*h with % prime or h = e.
P
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But by the note, for any g, h [ e,

V*hIIV* :V*eorl.
g
p p p

Thus our V .is special, and in particular f | e.

p
5_)_ If Mf,d Is maxint, 1t is the intersection of groups of types Mh,r(h)
for % odd prime or h = e, and Mh,Zr(h) for h = 523— if e even. These groups

are in particular special in G.

By the note in 3), M is entitled to be denoted M. , and in particular

f,d f,d
f]e.
Let ¢ : = (23 1) as fg is (even j; odd). It is quickly checked by the super-

group lemma that Mf,d is contained In a unique Mf,cr(f) and all maximal

subgroups in G containing Mf,d also contain Mf cr(f) SO we conclude these

’

two groups are equal.

5) Suppose Sf is maxint. If fe_ is even, then its supergroups are exactly

a Gf and its respective supergroups in G. Thus f~ is odd.

At this stage, we have 'eliminated' enough subgroups of G (by showing
they are not maxint) to make a systematic treatment of the remaining
subgroups manageable. We need only deal with the following categories:
. e e
i) a) Sy for & odd b) G for ¢ even

, e e
i1) a) Mf,r(f) for : odd b) Mf,2r(f) for T even

i) V¥ £
p
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iv)  the 'exceptional' subgroups of type AS, SQ and A[’L
e . e
V) a) DZr(f) forf odd c) D2.2r(f) forf even
e e
b) DZs(f) for F odd d) DZ.ZS(f) for { even
: e i<
vi) a) Cr(f) for : odd 9] CZr(f) for £ even
€ =
b) Cs(f) for F odd d) CZS(:E) for f even
vii) Vq
viil) C2

xi) I

The symbol K will always represent a subgroup of the category being

currently considered.

The number of groups in each category (and for each divisor f of e) is

given by|G| /|K]| except

) b) & ii) b) , also A° and S* of iv) : e
iii) c|G] where ¢ = (2 ; 1) as fg is (even ; odd)

q(pf~ 1)

vi) a), o), d) |Gl vi) b) 1G]

g-1 q+ 1

vii) ]_gl_
12

g



viii) G| (% as g z{ I mod &)
g ¥

ix) 1
Most conveniently the subgroups of a certain type as listed above all
form a single class under AutG, so we will always be able to apply the

supergroup lemma.

The ordering i) - ix) of the above categories is such that the supergroups

in G of a subgroup in a certain category all lie in the same or in a previous

category.
i) a) and b) K = S, for fg odd or G, for -?— even. A contributing
set of K 1s:

a unique S Vh > f s.t. £|h|e and —E odd

a unique G, Vh >f s.t. f|hle and % even .,

e

: (see p.6 ).

This contributing set forms a number-theoretic lattice on

Immediately, by the sublattice lemma,

e
.. e - . .
i) a) K = Mf,r(f) for T odd. A contributing set of K is:
a unique S, Vh s.t. f|h|e

a unique M Vh s.t. flhle, h > f ,

h,r(h)

But the supergroups Sh exactly constitute one Sf and its supergroups;
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supposing f < e, their total contribution thus is 0. These groups may thus
be ignored, leaving us with a counting set, the Mh e(h)° The latter form
b

. . e . .
a number-theoretic lattice on o with maximal element M But

g,rie)

Mq,r(e) iIs @ maximal subgroup of G, so

U G(Mq,r(e)> = -1 (dealing with case f = e),

By the sublattice lemma,

oK) = - U6 -

b) K=M for % even. A contributing set of K is:

1,2r(f)

a unique Mh,r(h) and S, Vh s.t. f|h| e and % even
a unique G Vhs.t. £|h| e and § even

a unique My 5 Vh >f s.t. f|h| e and % even

We may ignore the supergroups (as well as itself) of the unique MZf,r(Zf)

containing K : this leaves

a unique Gy Vh s.t. f|h| e and fh— odd

. h
a unique Mh,Zr(h) vh> f s.t. f|h| e and 7 odd .

Suppose f = % where if ZtH e then's <t,
2

1) + 1 (Gy) = 0

= u G(K) = - u(zs)

Now let f be any value less than %. Then we may discount Gf and its

supergroups, leaving the counting set
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. h
a unique My 5o VYh > f s.t. f|h|e and + odd.

Let Zt[]e, ZSH fandr =t -s>1.

Then the counting set forms a number-theoretic lattice on —— with max-
21

imal element Mh 2r(h) with h = __eF_. By sublattice lemma
’ 2

- r S Y
u () = —u(2).u(r ) @
2 1
(Note: for n, m €N, the only instance that
pmum §  phm)
is when n and m are both square free and share a prime divisor. We have

\
2 _._CL_)
+{2% }

iii) K = V¥

pft A contributing set of K is
a unique V¥ Vh >f s.t. f|hle
p
e-h e-h e
P My * P Sh Vh s.t. f|h|e and T odd
e-h

h

P Mh,Zr(h), p° G vh s.t. f|h|e and % even ,

h
The supergroups on the second, also the third, line have cancelling contri-
butions by 1) and ii). So we have a counting set, and a number-theoretic
lattice on % , with the abelian supergroups; we have uG(Vq) = 0 and so

also

it
(e

uG(K)

5

v) Let g + 1 mod 5, K = A~
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Unless e = 2, p = + 2 mod 5, 3 a power f of p s.t. fle, f < e and pf =
+ 1 mod 5. (I for the time being exclude the exceptional case from con-
sideration: it will be dealt with separately after the main result.) In this
case each AS is contained in some Sf < Gj it 1s quickly established that
K has a unique supergroup Sf and that the contributing supergroups of
K and this S, coincide (K can only have linear supergroups): so A’ cannot
be maxint.

Exactly the same sort of reasoning holds for g = =+ I mod §, K = Sq;
K = A* (as any supergroup A is non-contributing), so in all cases

n(K)=0.
0

I now identify and label some exceptional cases which occur because of
co-incidence of elements of categories vii), viii), ix) (i.e. V4, CZ’ I) with

some elements in categories v) and vi).

D p=23,eeven
Then Corqry ® C2 Do) = Vy
I p-=3,eodd
Then Cr(l) ~ I, DZ.r(l) o C2
Csny = C2 Dosy =V
I p=5,eodd,
Then () 2 Gy Dor(ry = Vy

In my treatment of categories v) and vi) following, these groups are tacitly
excluded and will be dealt with in vii), viii) and ix) as appropriate.
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V) The Dihedral Groups

Firstly note that Mq c(e) has no dihedral subgroups (except possibly some
’
sz).

a) K has contributing set:

a unigque D Vh > f s.t. f|hle

2r(h)
a unique Sy Yh > f s.t. f|hle

But the supergroups Sh exactly constitute a Sf and its supergroups and
so may be ignored (as long as f {4 e). This leaves us with a number-theoretic
lattice on % , with maximum element DZr(e) which is a maximal subgroup

of G and so has Hg value -1. Thus

u G = -u@

b) The argument and result as for a).

c) K has contributing set given by the following table (all subsequent
tables will be headed identically: I will sometimes omit to write the head-

ings down.)

%gir%p S/?amsj.ni'fog}g and... #KinJ Tk &7 ugK)
Sh fh even, % odd % 1 u (?
Gh —E— even v QKJT 2 u (-fe—
DZr(h) fﬁ even, % odd —% 1 -u (%)
D2.2r(h) f <h and not both }lKl-t )\ ?

(r%—even, % odd)
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We may ignore the unique D2r(2f) and its supergroups, leaving

. h
a unique D, » Vh > f s.t. flh|e and ¢ odd
two G Yh »f s.t. f|h|e and {l odd
s e
If 2°|e for some s > 1 and f = < then
2

po(K) = -2 u (G = 21 (@)

otherwise for other values of f we may ignore the supergroups Gh’ and

an argument identical to that at the end of ii) b) yields

d)  Similar situation and result to above.

vi) a) K= Cp for £ odd has 'contributing table':
— 1 7 1

Type of supergp. Number

i- s, ; 131/ 1) ©C-1)/Gp"-1) e
My i) - p" 2p%- 1/ 1) M
D,y - I (S-D/G"1) =)
Cr(h) h >f 1 1 ?

All supergroups D and Sh may be ignored as their contributions cancel.

2r(h)
It is then trivial to prove by induction on n : = 4¥ prime divisors counting
multiplicities of £ that
e
b = 2B =L u
G f i
p -1
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e L
b) K=C (f) for £ odd has contributing table:

Type of supergp. Number

1= s, - |3/p" D) (p+ /(p"+1) e
Y - 1 n 1)
Cs(h) h>f 1 1 ?

For each h, the (contributions of the) groups D2$(h) and Sh cancels this

means In particular

UG(Cs(e)) =0

and hence In general

uG(K) =0 .

c) K = C2r(f) with _ef even. Extracting the unique supergroup of K of

type Cr(2f) and its supergroups, K has counting set:

Type of supergp. Number
J= Gy fhodd 13]/2p"-1) pE-1)/(p"-1) e
h h (S h e

My, 2r(h) fodd p 2(°-1/(p"-1) e

h 1, e h _ _e_

D2.2r(h) T odd 1 —2(13 -D/(p -0 2“(h)

C h >] odd 1 1 o

2r(h) f :

e
Immediately, UG(K) =2 EY—”—l—)u (ie- .
p- -1

4 K = Czs(f) with % even. Extracting the unique supergroup of K of
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type Cr(Zf) and its supergroups, K has counting set:

Type of supergp. Number
1= G, Bodd  |a)/2™1)  (S-D/eMD) u)
1" e h e
D2 2s(h) ! (pS-1)/2(p"+1) 2u(®)
C h >1 odd 1 1 ”

2s(h) f

Immediately, uG(K) =0 .

vii) K =V

BE Yy

Firstly, suppose q is not exceptional case I), II) or III). Then K has contri-

buting set:
Type of supergp. Number
e * e
J= G L even |31/6 U HE
e e
S £ odd [3|/12 1 =)
e e
Dy 2e(h) - even [3|/4 3 -2u ()
e e
D € odd [3|/4 {3 -u@
2r(h) h 10 0 h
e -
D, 2s(h) f even [3]/u 3 -2u )
e e
D = odd 0 0 -u
2s(h) {
h { |3]/4 3 h

In the table and subsequently in this chapter unless otherwise indicated,

{: asqz{*ll mod

*presumes a result we shall derive in section 3 of this chapter, see p. 71.
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We have
e Z e
uG(v4)+Q§ (4 -6-6uE+ (1-3up=0
“ evan e/“wlcl.

But if e >1 and not a power of 2, then

<

LW = WE =0

2, wvan & odd

and so UG(V#) =0

However if e is a positive power of 2, 2" say, then

r-i
Zu(%) - Zu(zr'”) = U(2) = -1
Q/L\even n=1
z p@ =) =1
e/l\o"{&
Thus “G(VL,L) +8-2=0
= uglv,) = -6

Now I consider the exceptional cases:

) The contributing table of K is as before except it has no supergroups

of form D, 5y To compensate the value of UG(K) is decreased by 61U (e)

from standard result.

) Exclude D

2.5(1)’ decrease uG(K) by 3 1 (e).

) Exclude D

26(1)° decrease UG(K) by 3 ule),

viii) K = C,. Firstly suppose q is not exceptional 1), II) or III).

Then K has contributing table as on next page.
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Supergroup of C, Number MG %}1(%)

e 2h 2(g-1)p
Gh P even p (Zh L) 1
p” -1
s odd LM qxl I
h 2 h_
p =l
h 2(g-1)
Mh,Zr(h) even p h ~1
p -1
h
oh 2g-1/(p"-1) B
Mh,r(h) odd 0 0
D even h l—(—q_—l-)P—h 2
2.2¢(h) p h -
p -1
D odd Loh 1(qz "D |
2r(h) 2P * 2" h }
p -1
D h 1 (g-1)(p"+2)
2.2S(h) even p +2 _Z—iﬁ—g — -2
p +1
D odd Loh, {1 y L :cl)(ph+{3l ) -1
2s(h) 2P 13 2 h
p +1
q-1
C2r(h) even 1 1 2 H
p -1
C odd 1 1 g-1
r(h) {O {O 2 -
p -1
Vi - 3 %L(q:_l) See vii)

N.B. Where the 'double' signs #, ¥ occur in brackets (pkil) or (pk:,: 1)
for some k, one reads the 'top' sign if q = 1 mod &, the 'bottom' sign

if g = -1 mod 4. This convention shall be kept subsequently in this chapter.
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We obtain (eventually) the result:
If e >1 and not a power of 2, then
H(C) = 0-2qz D ugV,) = 0 .
If e = 2" withr > 1, then
bo(C)  =-(q-D-4q- D uv)

—é—(q-l).

Now to deal with the exceptional cases:

§) From the table we must exclude the CZr(l) and the D2.2r(l) and

compensate for change in UG(VZ,L)'

The total effect is to increase UG(K) by (g-Du(e) .
I) We exclude DZ.r(l)’ D25(1) and compensate for Vq.

Decrease UG(K) by —lé(q+l) u(e) .

[I) We exclude Cr(l)’ D 26(1) and compensate for V.

Increase uG(K) by %(q—l) u(e) .

ix) The supergroups of I in G are simply the non-trivial subgroups of

G; so the contributing table of I neatly summarizes the values of .~
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except uG(I), the latter however being directly determined by it. On
the next two pages, the whole result for Mg is tabulated. The set-out

is slightly different to previous tables and is more explicit.

For the contributing table of I we merely ignore the entries for I; we

(eventually) calculate that for the standard case

uG(I):O .

For the exceptional cases I), II) and III) as usual we must make adjustments
for the changes of value of UG(VAL) and UG(CZ) as appropriate and also

for the omissions of the following group types.

D Sy 0 Do
L ) s DPory 0 DPag
m o S

Resulting from this we find:

I) and III) (D = 0 m w0 =| G| ue)

Statement of result

For G : = PSLZ(pe), p odd prime, e > 1 and excluding the case e = 2,

p= + 2 mod>5.

The values of M, are as listed below; any subgroup K of G not mentioned

has UG(K) = 0.
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Vh s.t. hle and %even:

G M, 2r(h) D2.2e(h) Doasty  Cartn)
Exceptions - - p=3,e even,h=1 - p=3,e even,
. h:l
+ titled gp.J 2|G 2|G G G |G|
in G J J J J q-1
=) (& 2y (& oy (& - &
U@ ne ue® 2u6) ARG
Vh s.t. h|e and % odd:

>h M, e(h) Dor(n) Dasth) Ce(h)

Exceptions - - p=3 or 5,e odd,h=1  p=3, p=3or5,
e odd, e odd,
h=1 h=1

s titled gp.J G G G G 1G]
in G J J J J g-1

e e e e -1 e
TE) W@ - -1 () e

Also:

pG(Vq) = (-6 3 0) as (e = 2r, r >1 3 otherwise)

but subtract 6. pfe) if p=3, eeven

subtract 3.u(e) if p=3 or 5, e odd.

e(C,) = ((g-1)/2; 0) as (e=2", r > §; otherwise)
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but subtract -(g-1)y(e) if p=3,eeven
subtract  +(q+1)p(e)/2 if p = 3, e odd
subtract ~(q-1)y (e)/2 if p=35 eodd,

pG(I) =0

except
if p = 3, e odd when

ue =|Glute)
O

Determination of Result for G : = PSLZLQZ), p=+ 2 mod5

We now have maximal subgroups in G of type Aj; the results for the

case e > 2 found above carry through except for the subgroups of the

5 3
D ~S,V4,C5,C

4
9A!Dlo7 6:

Aj‘s, l.e. the subgroups of G of type A 3

C2 and 1.

Thus the values of Hg are as before apart from the following compensations

(entirely due to the lattice structure of the Aj's):

A5 subtract 1

Al,l

;ﬁ:/\j containing an A4 = 2; thus add 2

For both K=D,,or D,

10
=+ A5 containing a K = 2; thus add 2

Y,
+ A5 containing a V

1
N

4

3
.

E = Aq containing a Vq
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Thus UG(VQ) unaltered

Cs; (NB.gq =z -1 mod5 = 5|(q+1)/2)
+ A’ containing a Cg = (g+1)/5
# D, containing a C, = (g+1)/10

Thus UG(Cs) unaltered

C, (N.B.gisasquare = q = | mod 3 = 3|(q-1Y2)

3

A’ containing a C, = (g-1)/3
H At containing a C, = (g-1)/3
# D, containing a C, = (g-1)/6

Thus subtract 2(g-1)/3

=2
5 4
A A D10 D6 A\
#F titled (g-1)/2 (g-1/4 (g-1)/2 (g-1)/2 (g-1)/4
supergp.J
Change In -1 +2 +2 +2 0
ne)

Thus subtract 2(g-1)

It Add 2 |G|, concluded from following table (which also summarizes

result);
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5 4

A A DIO D6 C3 C2
# titled IGL G| 1G] G| 1G] 1G]
gp.J in G 30 2 10 6 -1 -1
Change in -1 +2 +2 +2 -2(q-1) -2(g-1)
v =) 3

2. MOBIUS FUNCTION OF G : = PSL(2%), e > 1
I review the subgroups of G (again see Dickson §260). The structure is
significantly simpler than the odd prime power case. Most importantly

there is less discrimination between groups associated with a divisor h

of e for which % 1s odd and those for which —% is even, due to the fact

vYh € N

So G has subgroups Sh Vh s.t. h|e, and these are their own normaliser
in G. The stabilizer of a mark is a metabelian Mq 2r(e)’ which again 1is

its own normaliser. The stabilizer of a pair of marks is a C2r(e) with

NG(CZr(e)) = Dar(e) :

G also has subgroups C2s(e) with

NG(C2s(e)) = Do) (c.f. odd prime power case),

G has no other 'exceptional' subgroups.

The maximal subgroups of G are those of type:
S with % prime

Mq,2r(e)
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D#r(e)

D#s(e)

Using exactly analogous arguments (involving intersections of maximal
subgroups) as used in the corresponding stage in section 1, we may elimi-

nate from consideration many of the subgroups of G. In fact K £ G has

u:(K) = 0 unless K lies in one of the following categories (for some
fle, £ > 1):
1) Sf
1 Mg o)
i) v* f
p
iv)  (a) DMf), £f>2 (b) D#S(f) (¢) D,
vi) C2
vil) 1

The ‘'small' subgroups D6’ C3, C2 are exactly the types if f = 1 (and
f = 2 if e even in iv) a) and v) a)) were allowed in the other categories;
then however each would fall into more than one category, and so they
must be dealt with separately as above. (In particular the categories above

are mutually disjoint.)

The number of groups in the categories above are|G|/|K| except:

i) |Gl
q.2r(f)
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v)  (a), (b) if % even , (c) if e even: IG|
tr(e)

v)(b) if 5 odd, (c) if e odd: |G|
4s(e)

vit) 1

All the sets of subgroups in a certain category (for a fixed f) form a
single conjugacy class in G, so we may again avail ourselves freely of

the supergroup lemma.
I deal with the categories in turn:

i) K = S;.  Contributing set:
a unique S Vh > f s.t. f|hle
AlsQ UG(Se) = UG(G) = 1. Immediately

€
HK) =1 )

i) K=M Contributing set:

f,2r(f)-

a unique S, Vh s.t. f|hle

a unique My o 1y Vh >f s.t. flhle
The second line alone forms a counting set.
Now UG(Mq,zr(e)) = -1,
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the
ByYsublattice lemma,

HA(K) = -u(@) -

1) K = V¥ £ Contributing set:
P

s, Vh s.t. f|h|e

e-h

27 My oy Yhst flhle

a unique V¥ h Vh > f s.t. f|hle
P

Immediately, pG(K) =0,
iv) a) K= D, sy =2 . Contributing set:

a unique S, Vh s.t. flhle
a unique D,y Vh > 1 s.t. flhle

(for f<e)
The second line alone forms a counting set¥ Also uG(D#r(e)) = -1,

iv) b)) K=D Contributing set:

4s(f) —=

a unique S, Yh s.t. f|hle

a unlque D#r(h) Vh s.t. f|h|e and fh even

a unique D,y Vh > f s.t. flhle and—:{rl odd

For f < e, the Sh may be ignored, leaving us with a number-theoretic
lattice on the dihedral supergroups with maximal element M either a
D#r(e) or a Dl}s(e)' Thus M is a maximal subgroup of G.
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UG(M) = -1 .

Observing that values UG(Dl,tr(h)) are consistent willy the result by (a), we

conclude

we(K) = -u@ -

(¢c) K=D Contributing set as in (b) for f = 1 except

6~
no S1
no D#r(Z) if e even ,
For e odd Sh cancels with Dl#s(h) Vvh>1. So
uG(K) =0 .
For e even Sh cancels with Dl.tr(h) or D#s(h) as appropriate Vh > 2.
Thus

UG(K) + }JG(SZ) =0

= M (K) =-uE .

v) (a) K= CZr(f) f >2. Contributing table (with format as that
on p.51).
Supergroup Number
h e
J = Sh - |3| /ur(h) (g-D/(2°-1) M)
h h e
Mh,Zr(h) 2 2(q-1)/(2"-1) - U(ﬁ)
h
Dy (h) 1 (q-1)/(2"-1) -1
CZr(h) h >f 1 1 ?
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The supergroups Sh’ D#r(h) cancel; by induction on the number of prime

divisors (counting multiplicities) of % we conclude

N L
G h h
2 -1
- £ ' ;
b) K = Czs(f)—'— If 5 is even, K has a unique supergroup C2r(2f)’

we may discount this CZr(Zf) and its supergroups leaving us the counting

table:
Supergroup Number
h h e
J = Sh T odd [3|/us(h) (q+1)/(27+1) U(h-)
h h e
Dy T odd 1 (q+1)/(27+1) “HE) -
C Nslodd 1 I 7
2s(h) f :
The DQs(h) and the Sh cancel: by trivial induction
“G(K) =0 .
() K= Cs.

For e odd. A counting set of C, is exactly as in table v) (b) for f = I,

3

except we exclude the Sl (otherwise they are counted twice). Thus

b+ By o0 = ww=o .

= = . .t. >

For e even. Now Cj = C, |y = C, ). For each even hle s.t. h > 2, K
has supergroups as in table v) (a) and these cancel; for each odd hle s.t.
h >1, K has supergroups as in table v) (b) and these cancel. We are left

with the counting set:
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(g-1)/3 D

6
2(g-1)/3 M, 5
(q-1)/3 S,

and we conclude

oo = 2L G

vi) K= C,. Contributing table:

Supergroup Number

3= s, . 13/2" 28h 1
M ey D7 13)/2" 2¢°h )
Dyqy h>2 132 261 -1
Dyy N1 13l 28! - )

The supergroups Sh and Mh,2r(h) cancel for each h > 1, leaving a counting

e-1
set on the 2 Sl = D,

For e odd: UG(D6) =0

Thus M (K) + 2.26‘12—

hle st.
LSS

= oK) = -2° u(e)

For e even:

hy2

by iv) (c)

e
U('E) =0

fas e >1).

now H.(Dy) = - W (§

u(K) 2.28'1( > W
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> + 2 UG(DQ.S(Z)) + 2

~ D, and the supergroups of the bottom two lines.



I

2

ho2

ue (K) - 26(

2

u(ﬁ)) - 26"111(2) -2

=N g = 2 ) u® - 2w

7

e-1 (g

vii) Again the contributing set for I is given by the statement of result

(less the entry for I) below. By straightforward but tedious algebra, it

is checked that for both cases e odd and e even that

B = |G| ule) .

Statement of result

For G : = PSLZ(Ze), and

I have already published this particular result in a joint paper with G.A.

Jones [ 6 1.

The values of

has uG(K) = Q.

are listed below; any subgroup K of G not mentioned

Isomorphism Y h s.t. hle Number of b oK)
type of K and ... subgroups in G K

S, ns GlIK] =

e

M 2 n> 61 /1] e

e

Pyr(n) h>1 |Gl /IK] S

Dys(h) h>1 G| /IK]| w6

6l 2g-1) e

Car(h) ol 2q-D K

C, n/a |G| / q -qu (e)

2
I n/a I q(q®-1)y (e)
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3. MOBIUS FUNCTION OF G : = PGL(p), p odd .

Review of subgroups of G

The structure of G may easily be deduced from that of its subgroup Se
of index 2 (and also from that of the group SZe In which G may be im-

bedded).

For every divisor h of e, G has subgroups both of type Gh and Sh’ with

No(S) =G No(G) = G

h °’ h
The stabilizer of a mark is a metabelian Mq q-1 (again it is its own nor-

malizer in G). The stabilizer of a pair of marks is a CZr(e) with

NG(CZr(e)) = DQr(e)

G also contains subgroups C23(e) with
NG(CZS(e)) ¥ Diyste) -

G finally contains exceptional subgroups type Aj, Sq, AL'L which all occur
simply in their rdle of subgroups of the S, <G (see p.42 ), except if p
= + 3 mod 8, when G contains a single conjugacy class of |G|/24 subgroups

of type S* which lie in the G, <G but not in the S .

1

An important feature of G (as compared to the special linear groups des-

cribed in section 1) is that both types C , C of maximal cyclic sub-
r(e)” “s(e)

groups have order divisible by 2, giving us two conjugacy classes of In-

volutions, one lying entirely in Se’ the other entirely in G\Se' A C2 < G

with generator in the former class is denoted aCZ, the latter bC2. We

have
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|

a .
g CZ in G q(qil)/z } as qz= zl mod 4 .

4 bC2 in G glgzl)/2

The presence of these two classes of involutions obviously is important

iIn any analysis of the dihedral subgroups: in fact it is easy to ascertain:

Lemma (and notation)

G has exactly |G|/2d subgroups of type D,y Yd>2s.t. d|(qz D).

Leth<D2d.

If d[(qz1)/2 (i.e. d]r(e) or d]s(e)), then these D2d are distributed in two

conjugacy classes of order |G |/4d, one class consisting of those lying

entirely 1in Se’ the other of those where DZd\Cd lies In G\Se' I denote

) a b
an element of the first class DZd’ the second D2d'

If d4(q:1)/2, then the |G|/2d subgroups D, form a single conjugacy class

in G.
]

Of the dihedral subgroups the V, are distinguished. This is because if

4

V4 < Se (such is denoted avu), then its normaliser is an exceptional sub-
group of type S[’L; the av4 form a single conjugacy class in G of length
|G |/24. However if Vq £ Se (such 1s denoted bVQ), then its normaliser is

a Dg (consistent in fact with the lemma for dihedral subgroups in general),

and the bV form a single conjugécy class of length |G|/8. In total there-

4
fore G contains |G |/6 subgroups Vy @ result presumed earlier (p.55 ).

Now to start tackling the problem; first I list
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The maximal subgroups of G

G with fgprime, f<e

f

S
e

Mq,2r(e)
D#r(e)
Dlﬁs(e)

Also if e = I, p =+ 3 mod 8 p + 3 (a case henceforth excluded until
afterVmain result; PGLZ(B) = 5* excluded too) we have maximal subgroups

of type Sq.

The techniques as employed in section 1 at the corresponding stage allow
us to say any maxint subgroup of G has one of the types as listed below.
The situation now though is still quite complicated. The table displayed
has rows labelled 1) to x) and two columns (a) and (b), and the entries
give twenty categories of groups i)(a) to x)(b) (except some will be empty).
A group in an (a) category has least linear supergroup of type Sh for

some h, in (b) type Gy . Also f runs through all divisors of e:

(a) (b)

1) S ¢ Gy
it) Me r() M or(f)
.. a

iti) DZr(f) Dl,tr(f)

. a

v) Do) Dys(s)
v) Ceif) Cor()
vi) Cs(f) CZS(f)
vii) v
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viii)
ix) ac C

X) I

Definitions and Notes

I shall call the (a) and (b) categories with the same Roman numeral com-

plementary.

We also have a natural subcategorization of each category € 1) to vii),

(a) or (b) by divisors f of e; denote this

e: U{Sf:fle}.

I shall call the (a) and (b) subcategories with the same Roman numerals

and the same divisor subscript f complementary.

Note that the elements aKf of an (a) - subcategory 1) to vi) are in I:l

correspondence with the elements be of the complementary subcategory:

¢ can be identified with the unique be that contains it with index
2. Such aKf and be I call complementary subgroups.

each aK

A subcategory i) to vii) is exceptional if it coincides with another sub-

category. The only such exceptional cases are:

D p=31=1

@]
w
—
[
~

|
[N

O
.
—~~
-
S
i
—
U
N
=
—_—~
-
e’
H



Co s Dy 2V

20(1) = %2

pad a o~
Cy = G2 o Do) = Vy

1
<<

These exceptional subcategories shall be tacitly excluded until we tackle

the Vi C2 and I in their own right.

Each of the subcategories exactly constitute a single conjugacy class
of subgroups in G except (possibly) iii)(b) and iv)(b), see lemma p.7l. However
if fe_ is odd, then there are no exceptions, which we see by 2) below is

all we need.

We now reduce the calculation by showing in turn:

1)  Any K < G in an (a) subcategory i) to vi) for + even is not maxint.

o HH o

2) Any K < G in a (b) subcategory i) to vi) for & even is not maxint.

3 1 %k, P

3) g Ky oare in complementary subcategories for some i) to vi)

a b

Proofs:

1) Let K:-= aKf be a maxint group in a (a) subcategory 1) to vi) with

divisor f. Then K < Se < G and so if

« - N ow

te S1

where the M, 1 € 2 ( Q just some indexing set), are maximal subgroups

of G, then
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ko= [V s.nm .
ite 2
Clearly if M i1s any maximal subgroup of G, then (Se N\ M) is a maximal
subgroup of Se; what the last expression for K then says is that K is

. . . . e .
maxint In S 3 we use our work in section | to conclude = .
o3 e ris odd

2) We denote by be any group in any (b) subcategory 1) to vi) with

.. e .
divisor f. Suppose = is even.

i

In all cases be has a unique supergroup 4K § iIn the complementary cate-

2
gory. It is straightforward to establish that In any maximal subgroup M
of G that contains be, be must have a (unique) supergroup aK'2f =
aKZf (I stress, in M). Necessarily
ay, _ a
Ke 7 Ky

l.e. all maximal subgroups containing be also contain aKzf, and the former

cannot be maxint.

3) It is trivially established (by supergroup lemma) that aKf (as in the
proposition) has a unique supergroup of type be. Also for every (a) sub-

category aCh s.t. h >f, f|h|e we have
4 supergroups of aKf in aeh

= = supergroups of aKf in the complementary bB he

Notice Se is maximal in G, so
UG(SG) = -1 = —UG(GG) °

The result now follows by induction (on the (a) subcategories ordered

as follows:
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a
e, > Ty

iff either the Roman numeral label of ¢ & h Is greater than that of aﬁ/f

or the Roman numerals are equal and h <f ).

I now proceed to tackle in turn (for ¥ odd on first line):

K= G M or) Dur) Pusr)d Crieyb Cste)’

aV'bV'aC'b

a’ q" 29 I

V¥ C.

pf’ Vi

) K=Gg

Contributing set:
a unique G ¥ h>f s.t. flhle

He(K) = 1 (9 .

it), iii), iv) K=K

£ 7= Mg o) Pur(s)’ Pustr)

Contributing set:
a unique G Vh s.t. f|hle
a unique Ky, vh >f s.t. flhle

The supergroups of the f{first line may be ignored; Ke 1s maximal in Gj
e
uo(K) = —u .
V), Vl) K = Cr(f); CS(f)

The contributing table of K in G is exactly the same as the contributing

table of K as a subgroup of S , see section 1 p.52 =53, except the contri-

bution of each supergroup now is the exact negative to what it was before.

We conclude
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tl

UG(Cr(f))

H

He (Cs(f))

vil) K = V*Pf

Contributing set:

pe—h G .S

a unique V¥

pi

e e

(pf~l)

h' >k Mirhy Mh, 2e(h)

Y h s.t. f|hle

Vh > s.t. flhle

The contributions of the supergroups in the top line cancel, we note then

G(Vq) =

(counting multiplicities) of -fe—that:

uG(K) =

viii) (@) and (b)

O @

0 and deduce by induction on the number of prime divisors

Recall (also for parts ix), x)) the convention

s and

{

unless otherwise stated.

The contributing tables of

all values s.t. hle and ¢ is odd):

ay

{ 1
always as q = -1

mod &

and bV# displayed in one (in which h takes

Type J of # J containing Excluding [#J containing Excluding uG(J)

supergroup 2y Cases bV Cases
4 4

e

Gh 1 - 1 - M (E)

e

Sh I - 0 - -u (ﬁ)

- _ _ _ (e

D#r(h) 3 p=3, h=1 | p=3, h=1 u(h—)
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Type J of #J containing  Excluding |#J containing Excluding  p .(J)

supergroup ay Cases bv Cases
4 4

“D 3 p=3 or 5 0 - e

2r(h) 0 he1 ’ h

e

Dish) ’ ] 1 - i

a 0 3 he &

D2sth) 3 p=3, h=1 0 - u )

We have (excluding the exceptional cases I and II):

— Z (1—1—3+{%—3+{§)M(§h‘)

i

a
uG( Vq)

H

a
= u vy

Similarly

For p = 3, e odd:

b a
subtract H(e) from UG( V#), do not alterUG( Vq) .

For p = 5, e odd:

—

h st.
/h odd

. r
ife=2,r=>=0
otherwise

ife=2r30
otherwise

a b
add 3ufe) to uG( VQ), do not alter uG( Vq) .
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ix)(a)

If aCZ has supergroup th in a (b) subcategory i) to vi), then the comple-
mentary group aKh I1s also a supergroup. Thus the supergroups of aC2
In categories i) to vi) come in complementary pairs, and so their contribu-

tions cancel. This leaves a counting set:

(g + /4 each of avq and bva

SO

uG(acz) = (g1 ife=2"r>0
0 otherwise

except if 1) p = 3, e odd:
the Dl;s(l) are no longer cancelled by the DZS(l)’

compensation is + 3(g+1) u(e) ,
4

u (bV ) decreased by u(e), compensation is + (g+l) ¥ (e)
a\ Vv P —QZF- ’

so in total we must add (q+1) u(e) to UG(aCZ)

or ID  p =5, e odd:
the D#r(l) are no longer cancelled by the D2r(l)’

compensation is + 3(g-1u(e)
4

UG(aVQ) increased by 3u (e), compensation is - 3(94—1)11(6) s

a .
SO uG( Cq) is unaltered.

x)(b) K = bc2

Contributing table (h takes all values s.t. h|e and % is odd):
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Type J of Exceptional 4 supergroups of 1)

supergroup Cases type J
- gzl =
p zl
Mp, 2e(h) - { 0 h - MR
’ 2(q-D/(p-1)
h_ e
Dyr(h) D (gilr)](g 7 1) - M
2(p -1)
D - (g+1) (" [3) ~u(
it w0 6" [ :
20p +1)
C 1 0 26-Du(®
2r(h) {1 pﬁﬁz
b~ . : : b
and also C,is contained in exactly (q+1)/2 Ve

So when p = | mod &4, we calculate :
b (g+1) e ~ : _r
UG( CZ) = > uE = (gr1)/2 if e = 2
h ot 0 otherwise
e/h odd
when p = -1 mod &
b _ (g-D e
HeCC) = > E MR
host.
e/h odd,
However we also have the exceptional cases:
)] We must compensate for the omission of the qu(l)’ CZr(l) and also

for the change in UG(bVQ). The total compensation is to add %——1— u(e)

to uG(bCZ).
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I) In fact in this instance no compensation is needed and the result

is as 'standard'.

x)  The contributing set of I is given in the statement of the final result
as below by ignoring the entry for I. Apart from the exceptional cases
) and 1I), the total contribution of all groups in a column headed i) to
v) in the table given there always cancel; this leaves a counting set on
the Ve and the C, and we calculate: UG(I) = 0.

For cases I), 1I), the appropriate compensations to above give:

D g = -Gl ue)/2 M we®=-Glule)

Statement of result

For G : = PGLZ(pe), p odd prime, e > 1 but excluding the case e = 1,

pgthodS.Letq:pe.

The values of B are as listed below and overleaf; any subgroup K of

G not mentioned has uG(K) = 0.

¥ h s.t. h|e and % odd:

i) ii) iii) iv) v)

C

Type J Gy, M 2rth)  Pur(h Dys(h) 2e(h)
Exceptions - - p=3,e odd,h=1 - p=3,e odd,h=1
# J in 1G] |Gl Gl |Gl Gl

G 13| |3 |3] |3] 2(q-1)
b () b®  e® ud U 2SO
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Again ¥ h s.t. h|e and § odd :

i) ii) iii) iv) v)

a

a
Type J Sh Mirh)  Parn) Dos(h) Crih)

Exceptions - - p=3,e odd,h=1 p=3 or 5, p=3 or 5,
e odd, h=1 e odd, h=1

amo W A 215t D

e e e, e, 2(q-1) (e
He (D) -u oy o ne) - ——‘%—'—u(ﬁ)

by ot length |G |/24

Also G has two conjugacy classes of 4-groups aVl‘L, L

and |G| /8 respectively:

a —_ 1 —-—
He(CV,) = 3 ife=2, r>0

3ule) if p=5, e odd

L 0 otherwise

b . r
He(CV,) = 1 ife=2,r>0
-u(e) if p=3, eodd

0 otherwise

Next, G has two conjugacy classes of cyclic groups of order 2, aCZ, bC2

which have length q(q#1)/2 and q(q 3 1)/2 respectively (as q = +1 mod &).

r

ue®cy = [ <@z ife=2, r»o0
(g+Due) if p =3, e odd
0 otherwise
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(qz1)/2 ife=2,r

Y
o

tH

b
uG( C2)

(g-Du(e)/2 ifp=3 eodd

0 otherwise
Finally,
He(D = | -|G]| ule)/2 if p=3, e odd
-|Glute) ifp=15 e odd
0 otherwise

The Case e = 1, p =+ 3 mod 8

Firstly PGLZ(B), l.e. the case q = 3, i1s standard as before except for bV#,

a b
C2’

be summed. In fact

C, where the entries for ‘e = 2, r >0 and 'p = 3, e odd' must

PGLZ(B) £ S

and is dealt with explicitly in Hall ([ 7 ] §3.63).

For p > 3, though, this case is exceptional in that G : = PGLZ(p) now has
maximal subgroups of type Sq. We must therefore make compensations
to the values of UG(K) as standard just for those subgroups K < G that

lie in a Sq <G. The subgroups involved are:

Type Number in G Number In each Sq ;;:psupergps.S#
s |G|/24 ! -
A |G|/24 1 1
Dg |G|/8 3 1
"D, 1G|/12 y 2
v, |G 24 1 |
b

Vy |G/8 3 1
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Type Number in G Number in each Sq ;ntsupergps.sl‘

C, p(p+1)/2 3 (px/u
C3 plpz1)/2 as p = +1 mod 3 4 (px1)/3
ac2 plp=1)/2 3 (px D/
bc, p(p3 1)/2 6 (p31)/2
I 1 1 |G| /24

*In any number involving C3's, + and 7 are read as p =z + 1 mod 3.

I now go through the types of subgroups as listed one by one; I stress
that UG(K) is as standard for all subgroups K of G not mentioned. The
case p = 5 gives special results: a pair of numbers (n; m) means n for

p = 5, m otherwise.

Type 'Standard ' Compensation for Total value of Actual
Mg value SUpPErgroups ... compensation Mg value
st 0 - § -1
I 0 one " vl 41
4

DS -15 0 one S +1 0y 1
"D, 0 two §* 42 2
aVQ 63 3 one SL‘L, one A['L, -3 33 0

three D

8

b

VQ | one Sq, one D8 0 1
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Type Standard Compensation for Total value of Actual
g value SUpergroups ... compensation He value
C, 2; 0 (pxh)/4 0 2; 0
each of 54,138
C 0 (px1)/3
3 b b
eachof S, A
- b -
(px1)/6 "Dy -(px1)/3 -(p71)/3
as p = £l mod 3
a -
o -(px1) (px /4
each of SL’L, A[’L, a
Apz )/ Dy 0 (pxl)
b 4
C, (p£1)/2 (p£l1)/2 of ST,
Dg,bD6 ~(pt1) ~(p£1)/2
I -|G|; 0 all of above! |G|/2 -|G|/2;|G|/2
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CHAPTER THREE

This chapter deals with the enumerations of maps and hypermaps. All
(oriented or non-oriented) maps or hypermaps referred to are to be assumed
regular, with automorphism group G : = PSLZ(q) or PGLZ(q) for prime
power q = pe in section I, and with automorphism group PSLz(q) in section

2. Also I use the abbreviations:

ROM for regular oriented map

RO AM for regular oriented triangular map

In section 1 I consider the following categories: maps, triangular maps,
hypermaps (for all three taking both the oriented and non-oriented case).
The enumerations involved here are in the most part routine, using the
methods explained in the preliminary chapter; in particular the results

in chapter 2 are used in applying Mobius inversion.

In section 2 I develop an existing exposition [ 14 ] of which pairs of elements
in G generate G so I can examine the number of regular oriented (a,b)-
hypermaps with valency ¢, for any (a,b,c) € N? This will not involve Mbius
inversion. I also deduce some Iidentities between the resuits as we vary

a, b and c.

I ENUMERATION OF REGULAR HYPERMAPS = PSLZ(q) or PGLz(q)
I immediately label six categories of oriented and non-oriented hypermaps
as below. As explained in chapter 1, the regular members of each category

correspond to the normal subgroups of the sponsor group T for that category:
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Label of category Objects in category T

N Maps V[’L*C2
er Oriented maps CZ*CO0
M3 Triangular maps PGL.(2)
m +3 Oriented triangular maps PSLZ(Z)
;) Hypermaps CZ*CZ*C2
g,; Oriented hypermaps Cx C,

For each category [ enumerate the regular objects with automorphism

group G where G 1s

a) PSLZ(pe) for p odd prime, e 21
b)  PSL(29) for e » 1
o) PGLZ(pe) for p odd prime, e > 1,

This in each case is equivalent to finding the number d  (G) of normal
subgroups N of T such that I'/NzG. This is done by applying Hall's method,

using Mobius inversion on  I-strings of G as explained in section l.Z.

' =~

This is generally straightforward (except for triangular maps where
PGLZ(Z), when enumerating  T-strings is not immediate), but tedious,
especially if one holds in mind all the exceptional cases to the form of
the Mobius function Mg of G. I will go through the whole calculation
in only a few instances, and will mostly just state results. As the category
]T[B is the most difficult in some respects, but the algebraic part is re-
latively not too long-winded, I will treat just this category in detail. The
scheme I follow is to take each category in turn, and give for each a

long result which covers all the groups a), b), ¢) above 'in one go'. However
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before [ start | 'process' the method of calculation for the groups (a)

to slightly simplify matters.

Processing of method for case a). Let G : = PSLZ_(R?) for p odd prime,

e 21

We start with some notes (l) to 3)) relevant to all G except those with

e =1l or(e=2andp ==+ 2 mod 5),i.e. all G whose U . function is given

G

by the main result on p.58-é0.1 firstly anticipate the form of the expression

for d (G) given by Hall's method for each I':
d @ AUG] = ) D@+ ) s + k¢ (o)
A odd
where (and subsequently) and /  means summation over all f divid-
evr odd
ing e s.t. fe_ 1s even and odd respectively. Also, r and s are some polynomials
over Z . The k € N Is the compensation needed if e is a power of two,
the £ € N that if (p = 3) or (p = 5, e odd). (See the statement of He)-

These three notes are concerned with simplifying this form in a general

way.
1) The 'even' summation is zero unless e is even: fe= suppose for the
moment 2|e.
e e
Let R:= { feN: f]e,feven and u(—f—) 10}

S:= { feN:fle,foddand u(@ f0}
Then

R :

[ feN:fle 2| £but zz+f9, and u(9 4 0}
= { feN:{f=h/2for somehegS}

By abuse of notation, I write r(f), s(f) instead of r(pf), s(pf) for any f ¢ N.

(Remember though that r(f) and s(f) mean something else when used as
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subscripts of cyclic or dihedral groups, see p.39. However this should

lead to no confusion.) Now if f € R, then

r(f)u(—fe—) r(h/2) u(z%) where f = h/2

= h/2uE .

Ths O d0u® = ) -w/2ul® .

Qv odd

From now on e may be odd or even. Let t : S ~Z be defined by

t(f) = s(f) if e is odd

s(f) - r(f/2) if e is even

then the form reduces to

D HOu® sk Bule) .

d {G).|AutG| =
odd,
2)  k = 0 if e is not a power of 2
k! if e =2 oc’ independent of the actual o € z"

Define the function w : S +~ Z by
w(f) = t(f) + k' .

Then for all e ( >1 remember),

zt(f)u @+ k Z wifu ()

odd. odd

since if e is not a power of 2, then k = 0 and

Z k'u(;e-) =0
odd

and if e is a power of 2, then
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Zt(f) WP k= te) + k!
odd
= w(e)
= Z w(f) u(—ef) .
odd

So we now have

1}

> o) ue + tute) .
odd

dr(G).!AutG]

3) In this I show the cases (p = 3) and (p = 5 and e odd) need not be
regarded as exceptional. I first note a trivial consequence of Fermat's

Little Theorem, that if z(x) is any finite polynomial over Z, then for

any n € Z
z(n 0‘) = 0 mod a for an Infinite number of primes o
if and only if z(n) = 0

Taking up the situation at the end of note 2, given the prime power pe,
we have the function w(f) on the set S of divisors f of e such that f is
odd. Now w(f) may be regarded as a polynomial expression in pf if e is

/2

odd; in p if e is even. This expression only has two forms (given p),

depending only on the parity of e. I take the two cases separately.

e odd: let w(x) be the polynomial over Z corresponding to the expression

of w(f) in pf. I stress w 1s independent of e as long as e is odd.
[ now let e be any odd prime & . Then

d {G).|AutG| = w(p®) - w(p) - € .
Let w(p) +LB=c ,

Now it is well known [ 2 ] that AutG = P FLz(pa) and so |AutG]| =

ap u(pZ O‘—l) .
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This means 0c|(w(pu) -¢) for every odd prime o

= wp)-c=0

= P-0

e even: let w(x) be the polynomial over Z corresponding to the expression

/2

of w(f) in pf . Now w is independent of e as long as e is even.
Let e = 2a where @ is an odd prime. Then S ={2a, 2} .

We have

d p(G).|AutG| = w(p2 % - W(pz) + B

Let w(pz) -P=c

As before, W(pza) -c = 0 modo for every odd prime o,
é w(pz) -c = 0
= =0
Conclusion: for all prime powers p° except the two cases (e = 1)

and (e = 2 and p = + 2 mod 5), the final form of the answers will be
4G AuG] = wHu® .
f
odd
where w(f) has one polynomial expression in pf whenever e is odd, and

/2

. . . f .
has another polynomial expression in p whenever e is even.

(A similar final form with a single polynomial expression in pf for all
e > 1 may be deduced for d I“(G) when G = PGL(q) for any g, but this
is trivial given just the argument of note 3 here; i.e. the cases (p = 3,

e odd) and (p = 5, e odd) need not be considered exceptional.)
]

Now I start to present the information (just for groups in category a)
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still) needed to make the specific calculations. Remember that if, for

given T, Or (H) represents the number of T-strings of a group H, then

d 1,(G).[AutG{ = Z M o (H) o R(H)
H<G

It

Z( 4 subgps. of G in %, with representative H).UG(H) . 0 p(H)
2

where the latter summation is over classes % of subgroups of G under
sulr

AutG. We keep the notion that a\Jgroup H < G is contributing if UG(H) £ 0;

we know that if H is contributing, all subgfoups of G of type H forms

a single class. Thus we have

d (@1AUG] = > F (H) o pH)
e H

where the summation is over types H of subgroups of G and
§G(H) = (gsubgroups of G of type H). Lb(H)

As a summary of the results in section 1 of chapter 2 and to incorporate
Hall's results for uG when G ¢ = PSLZ(p), i.e. e = 1, the table on page
94 gives values of §G(H), where H now denotes a class of subgroups.

There will be three cases:

1)  The standard case, as described in the preceding notes; the latter

two of these suggest that whatever e we may take:

uG(vq) = -6
Ho(C) = (g-D/2
uG(I) = 0

+ 2 mod 5, as described in section 1 of chapter 2.

m

2) Case e = 2, p
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3) Case e = 1, where there are four 'sub-cases' as specified by Hall:

i) pzz+1lmod5 and =+ 1 mod 8
i) pz+ 1l mod5 and =+ 3 mod 8
i) pz+2mod5 and + 1 mod 8
iv)] pz+2mod5 and + 3 mod 8

(I will completely ignore PSL(3) and PSL2(5) in the table as being 'trivial'.

Their Mobius inversion formula are given explicitly in Hall.)
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Values of ¢ G(H)/ |G|

Subgp. Type H for Case e=2, Case e=1

e odd e even Standard Case pz+2mod5> (i) (i) (iii) (iv)
f I

2 € N
e Gy o2 HE 2
" T2 \
Meewy  Me2r(e) ST Wy ?
D D d SIS N
2r(f) ur(f) (pf—l) ; 7
D D 1w >
2s(f) 4s(f) (Pf+ 1 f 7
2 € \
C ) C2e() o) M ’
v, -1/2 -1/2 0 1/4 0 1/4
o 1/2 -3/2 -5/2 -3/2 -1/2 1/2
I 0 2 2 1 0 -1
A° 0 ~1/30 1/30  -1/30 0 0
st 0 0 /120 1120
Al 0 1/6 /6 112 0  -1/12
D, 0 1/5 1/5 1/5 0 0
Dy 0 0 1/ 0 /4 0
D, 0 1/3 2/3 1/3 1/3 0
c3 0 -2/3 -2/3 -1/3 0 1/3
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The corresponding table for the cases G : = PGLZ(q), any prime power
g, may similarly be drawn up, but all the information is adequately dis-

played in chapter 2. My 'processing' is now complete.

In theory all 1 need do now is to calculate GI,(H) for each sponsor group
I'and for relevant subgroup types H < G; then I may apply the Mobius
inversion formula. This however often requires messy (if straightforward)
algebraic manipulation; even the statement of Op 1s too unwieldly to
write down except for our illustrative category .7]13. The whole of the
next page 1s taken by the statement of the result for J)]B: this is then
proved, and afterwards | state the results for the other five categories
without proof. (The result for JﬂB extends the main theorem in a paper
[ 22 ] which just identifies the prime powers q for which PSLZ(q) is not
a homomorphic image of PGLZ(Z) at all.) Then to round this section off,

there will be a few pages of notes on the results in general.

Some notation:

E means summation over all divisors f of e

f
d(G) is an abbreviation for d (G) when T is specified

SO

d(G) = a¢ regular objects in the current category with auto-

morphism group G.

q is always an alternative symbol for the prime power pe.
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ViKY

Table giving d(G) = 4 regular triangular maps with aut.group G

G:= PSLz(pe)

G : = PGL(p)

p =2
L. g 2
e f
f
p=3
f o [
0 i e=2 or is odd —el—Z(Bf-l)u(%) if e odd
< odd
i 1 e
1 /2 \2. & — Z(B -1) u) e even
L 2@;(3 _1) U(f) e >72 even 2e "y f
p>3,e=1
1 for p° = 5, else (3p-c)/4
(p-a)/u - b where
where C=3353739;51151351517

a=533315-1 as p=13-135;-5 mod 12

b=432;230 as  p in sub-case i)-iv)

as p=l;-13-7575-11511355-5 mod 24

p>3e>1

e odd:

1 f. e
e ;) M)

e even:
1 /2y 112 o e
qe;(p IX(p B)U(f)

except subtract | if e=2,p=+2 mod 5

All e:

2 ol

odd
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Proof

The sponsor group Tis

PGL,(2) : = gp <UV,W : U” = vZ = w” - wv)? = (vw)® = 1>

Then, adapting the strict definition slightly, a ( T' -)string of a group H

is a triple (u,v,w) of elements in H such that
o(u) = ofv) = olw) = ofuv) = 2, olvw) = 3

and we define o(H) to be the number of strings in H. (We may insist
on orders rather than relations because if (u,v,w) is a generating (T)-string
with the strict meaning in any of the G we consider except PSLZ(Z) = D,

then none of { u,v,w,uv,vw} can be the identity in G.)

We have
ARGIAG) = D u(H)o(H)
H<G
where  |AutG| = e|G]| as G z|PGL.(qQ) anyq
2e|G]| PSL,(q)  any odd g

So we are crucially concerned with calculating 0(H) for all contributing
groups H < G. However 1 give a general method for determining 0 (K),

K any finite group:

Given an involution v in K, then another involution w in K satisfies o(vw)
= 3 if and only if <v,w> = D6 < K. Let there be n subgroups D6 of K
containing v. Each of these D6 'supply' two involutions w: also two distinct
such D6 cannot share the same w, as v and w determine the D6' Thus
there are exactly 2n involutions w for our particular v. By a similar argu-

ment, if m 1s the number of subgroups VL} of K containing v, the number of

involutions u in K such that o(uv) = 2 will be 2m. Clearly the values of
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n and m for the original involution v Is invariant over the orbit of v

under Aut(K), so
o(K) =4y | 2] n(L)m(Q)
)

where the summation 1s over all the orbits £ of involutions in K under

Aut(K) and n( &), m( &) are the values of n, m for a representative v € £.

Specialising again to subgroups H of G, we know in particular that if
H is some Sf or Gf, then H has one or two oribits £ of involutions as
above, and we know the values of n( ) and m( %) straightaway in most
cases by our analysis of supergroups in chapter 2 (else we may make

fresh use of the supergroup lemma p.37).

I now take the different cases separately:

p=2
For e = 1, the number of generating triples (u,v,w) in G £ D, satisfying

the relations of I' is 12, implying d(G) = 2.

For e > 1, consider O'(Sf). S¢ has one orbit & of involutions v of length

i-1

(22f—l) with n( £) = 2° *. The normalizer in Sg of each v is an elementary

abelian group of order 2% 1 conclude m( %) = (zf-z)/z.

Thus

o(sp = 22702 @M2) - s 22
Also trivially, as none of these subgroups contain a Vq,

O Mg oeisy) = T Dypry) = IDygs) = 9 (Copgy) = O

lalaa = ) gk s @
?
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= de) - 2 > 2 @
$

which accommodates the case e = 1.

p=3

This time we have both O(Sf) and G(Gf) to calculate.

First O(Sf): if f is odd, Sf contains no D6 and immediately O(Sf) = 0.

Suppose f is even. Then Bf = 1 mod 4, and Sf contains Bf(3f+l)/2 involu-
tions v. The only D6 In Sf are contained in the Mf,r(f) < Sf; considering
Sf as a subgroup of index 2 in Gf, then these D6 are their own normaliser
and form a single conjugacy class under Gf. By the supergroup lemma
(p. 37 ), we now find that fixed v is contained in (Bf—l) D supplying

2(3f—1) involutions w; also we know (p.56) v is contained in (3f_1)/4 sub-

groups V,, supplying (3f~1)/2 involutions u. Thus

osp = 36nchnz = |s] 6h

Now G(Gf): G, has two orbits 2 and &' of involutions v, for § they all
lie in S; < Gy, for 2' they all lie in G\ S;. As f is { S5} we have

PIEEREVE. n(g) = {(3%) m(y) = 'z 1)/2
0
|27 = 3f(3f;1)/2 n(g") = { 0 m(g1) = (321)/2
i

and I conclude for all e:
o(Gy) = 3'6PnEhy - 6] G .

All other contributing subgroups of G (whether G = PSLZ(Be) for some

e > 2 or PGLZ(Be) for some e) clearly do not contain both a \ and a

D6’ so their ¢ value is zero.
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We are ready to apply Mobius inversion.

For G : = PSLZ(Be), e odd, O is zero on all subgroups and immediately

d(G) = 0. For e >2 even however (refer to p.94):

2e. d(G) :%{ ( > 360Gy +%§G(sf) op(S,) )

even
= 22 G Y Gl e®
even odd
- > G2 )
odd
The case e = 2 is as above except it needs compensation for the subgroups

of the maximal subgroups type A5 in G; as of all the subgroups of A5

only A5 itself has non-zero Ovalue, this being
o(A’) = 120

we must add § (A%, 0 (A”) = -4 to the right hand side which then be-

comes zero, so d(G) = 0.

For G : = PGLz(Be), e odd, only the subgroups of type G,f for fle come
into the calculation which is then more or less immediate. For e even,

both the G, and the Sf for % odd 'contribute':

f

\ e

o 1G] 16, G -6l s, GT-n } u®

e.d(G) _WZ(]#}. f %}—h f / i
il

Calculation of o for relevant group types for G : = PSLZLRe) or PGngge_)_

withp >3
Note (for our tacit application of the supergroup lemma to calculate
values of n) that the set of all D6 in H: = Gf or Sf forms a single class

under Aut H of length ]Gf|/12.

Now Sf has one orbit £ of involutions v:

-100-



o] = plpten)/2 n(2) = (s 1)/2 m(2) = (plx D/t

and
f_ f
o (Sf) = le[(p F1)/2 asp =z + 1 mod 4
Gf has two orbits &, &' of involutions v:
f, 1 i i
2] =p(p£1)/2 n(f) = (p x1/2 m(%) = (p 5 1)/2
, f, f_ . f . f
2] =p(p z1)/2 n(2) = (p x1)/2 m(L) = (p~x1)/2
and
_ f_ f f
U(Gf) = IGfI (przl/2 + fof (p+1)/2 asp = xl mod &
f
= 0 (Gp =[Gl p (always) .
Let H: = D2k for some k ¢ N. Then o(H) = 0 unless both 2 and 3 divide
k. If 6]}<, let
D, :=gp <a,b:ak:b2:(ab)2:1 > .

2k

Then H has two orbits of involutions under Aut(DZk):
Q, = { ak/z }

9= {a'brizl,ek } .

k/2 . .
Now a 1sﬂ'm no D6< DZk'

vie{l.,k} , a'b is in exactly one D6 and exactly one Vq < D2k'

Thus O(DZR) = 4k

and we conclude

f i
O(Dl.tr(f)) = 4p-1), G(Dus(f): 0 as p = 1 mod 3

0 wplel) _1 mod 3
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. i ~ £
o) (D2r(f)) - Z(P 1) ) U(DZS(f)) = O as p = 1 mod 12
G 2(Pfﬂ”l) -1 mod 12
0 0 + 5 mod 12
Also

It is trivial to see that all remaining relevant group types H have o (H)

= 0: in particular the only dihedral subgroups that a M or M

f,r(f)

can have are of type sz, so it contains neither a D6 or a Vq.

f,2r(f)

We can now finish the proof of the results.

G:=PSL.(p),podd >3

Inversion gives:

_ L Gl _LGJ_>
d(G) = o(§) - oD ) - oD ) - b
2[G] ( 1 2r(1) (b -1) 2s(1) (o +1)

where
. _1_(_ oA o6 or) . osh . O)
-2 30 1z *~ 30 712

as p in sub-case i) - iv) .

Now O(Sl) depends on the value of p mod 4, G(DZr(l))’ G(DZS(I)) on

p mod 12. We obtain:

dGQ) = 7D - {é - b

as pzxl mod 4 aspz | £+ 1 mod 12
£+ 5m
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G = PSLz_(ge), p>3,e>1

For e odd, analogously to the case e = | but now unconcerned with the

compensation term b, we have

ed(G):z<%(pf;l)~ {é).u@

f

as q=+l1 mod 4 asq—::‘{

- %gzpf“ e

For e even > 2, necessarily g = | mod 12 and also pf = 1 mod 12 whenever

£ odd. We have

f
1 I 1 e
2ed(G) = ( o(G) - ——0o(D, ) - ——F0c (D )> u
Z S f (oi-1) 4r(f) (pls1) 4s(f) P
even
42 Z (i— (pl-1) - 1) u
odd,
- S @ en® L D 6T
even odd
= ed@ - Z{( (6%-2) +§<pf-5>)u ©

LY %0625 0@
odd

H

If e =2 p=+ 2mod5 we must subtract 2 (as explained in corresponding
instance (e = 2) for case p = 3) from the last expression; for e = 2, p

= =+ 1 mod 5 it is unaltered.
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G : = PGL,(p%), p >3

For e >1,
oD, ey
ed(G) :Z( 1 o (G,) - 1 o(S,) - _ﬁ.l__ a(D ) - 4s(f)
. |G £ 71G, T TR € el
O(DZr(f)) ) G(D2S(f)) U(g)
f

2>p-1) 2(p+ 1)

foLf oy, L[] e
g{:(p q—(pj]:l) 2 {/\O) HE)

as g=x! mod 4 as g = {

"

1 mod 12
5 mod 12

o

i

1 f e
T iL:_ (3p™-d) U(f)

where d = 3353759 as q = l3-1353-53 mod 12

Now as e > 1, it does not matter what the actual value of e is, for the
purposes of substituting for d an integer giving the right answer we may
regard e as being a power of 2, l.e. e is even, g = 1 mod 12 and d =

3. (cf. note 2 on p.89).

For e = I, we must add a compensation = -48/24 = -2 for the maximal
subgroups of G type Sq when p = + 3 mod &. Thus solving congruences

we have

d(G) = _ZII(BP—C)

with ¢ as in display of results.
(]
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+ *
g_} (F::C2 C3)

Table giving d(G) =## ROMs with automorphism group G

G : = PSL(p°)

G : = PGL(p°)

p=2

L ;(2%) e

p>2,e=1

1 for p = 3 or 5, else

1 for p = 3, else

(p-a)/2 - b (p-c)/2
where where
a= 3l as p = +1525 mod 12 c = 133;335
b = 4;3;2;1 as p in sub-case i)-iv) as p = £13+7;2115¢5 mod 24
p 22, e >1
e odd: All e:
1 f e 1 f e
S 2ot u® 22 GRDE@
£ odd
e even:
1 Z £/2 \2. e
odd

except subtract 1 if (e=2,pz+2mod5)
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N (F::VQ*CZ)

Table giving d(G) =4t regular maps with automorphism group G

. = € . - €
G :=PSL(p") G:=PGL(p)
p=2
3 for e = 1, else
1 f f e
- Z (27-127-2) U('f—)
k4
p >2,e =1
3 for p = 5, else 3 for p = 3, else
(p%-ap+b)/8 - c/2 (7p2-dp+k)/8
where where
a=234 as p=l;-1mod4 d=22;20 as pzl;-Imod4
b=-3;-9 as p=l;-Imod4 k=-93-33;15521
c=15;9;3;-3 as p in sub-case i)-iv) as pz-3;3;15-1mod8
p>2,e>1
e odd: All e:
: Z plpl-a) u® LS paplaou®
§ odd
e even: where
Elfe 2 (p2f~10pf+24pf/2—15)u(fe—) d = 22;20 as g = l3-lmod4
odd
except subtract 3 if (e=2,pz+2mod5
and p > 3)
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! (I‘::CZ*COO)

Table giving d(G) =4 ROMs with automorphism group G

G : = PSL,(p9)

G: = PGLz(pe)

p=2

2 for e = 1, else

> @l au®
?

@ |~

p>2,e=1
133 for p = 335, else

(p-3p+a)/ - b/2
where
a=0;-2 as p=zl;-lmod4

b=15;1133;-1 as p in sub-case i)-iv)

2 for p = 3, else

(3p2—9p+c)/4
where
c=638;-2;0

as p=13-13-3;3mod8

p>2,e >1
e odd:

z&*e Z pi(pl-3) u(fg)
?

e even:

1 2f , 1 i/2 e
Ee% (p%E-7pte120726) ()

except subtract 3 if (e=2,p=+2mod5,

p >3).

All e:

%e}: (pf—l)(pf—z) u(—?—)
odd
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i (r:=C,*C,*C)

Table giving d(G) =4 regular hypermaps with aut.gp. G

G : = PSL(p°) G : = PGL(p%)

D=2

7 for e = |, else

1 f,,2f f e
-2~E£Zz<z 2y u

p>2,e=1
19 for p = 5, else 13 for p = 3, else
1 3+{2 2+{-7 _{8~£ 1 73_{10 2’{17 BEL
g \P"le PV Pl ” 2 s\P L4 P7l2s Pflge ) @
where where a = 0313
c=97;713215-5 as p in sub-cases i)-iv) as pzzl;x3mod8
p22,e>1
e odd: All e:
1 flf20 12 £ }-7 e i 3f J10 2f J17 % e
'g'ezp (P +{-4 P *”{1 ) M) e (7" '{4 P ‘{25 P +20> HE)
§ odd
e even:

LY p7heapgp® 2082 220 4
odd

except subtract 19 if e=2,p=+2mod5,p > 3

Note: {x in this table means x for qzlmod4, y for q=-lmod4 ,
y
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h' (r:=c,xcC,)

Table giving d(G) = # regular oriented hypermaps with aut. gp. G

G : = PSL,(p%)

G : = PGL(p")

p=2

3 fore =1, else

| O f,.2f f
78/32_2(2 -2 -3)u(—fe—)

p>2,e=1

4, 19 for p = 3,5 else

é(p+l)(p2-2p—l) - a

where

a=49,40,11,2 as p in sub-cases i)-iv)

9 for p = 3, else

2 (p-1(p%-3) - b
where

b=0,9 as p=t 1,+3mod3

p>2,e>1
e odd:

%eg(pf+ 1)(p2f—2pf-l) u (—?—)

e even:

1 3f 2f , 3f/2 f /2
'Ee;([) -p7-bp / +p +12p / —9)11(%2]
[+

except subtract 19 if (e=2,p=+2mod5,p >3)

All e:

3 f 2f
Ee;(p -Dp™-3)u (fe-)
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Notes on the previous results

I.  All the results for G : = PSLZ(Ze) with any e have already been
published in [ 6 1. Also Hall [ 7 ] explicitly gave the values of d(G) for

G: = PSLZ(p), any prime p, for the categories m;, f, K

2. If, in the table covering any of the six categories concerning us,
we add a left-hand entry to the corresponding right-hand entry, the sum
tends to be of a neater form than that of its two ‘'components'. 1 will
now be more specific, without being completely general. Suppose we
are dealing with the category ¢ , and that d(G) for G : = PSL2(Ze) with

e > 1 is given by the expression

L ﬁZ w2 ©

where w is a polynomial with integral coefficients.

Suppose also that e is odd, take any prime p > 2 and let

d(G) :é Z r(pf)}.l(e) for G : = PSLZ(pe)
f
and
d(G) =é }: S(pf)}i(}?—> for G : = PGL2(pe)
$

where r, s are polynomials with rational coefficients (which are indepen-

dent of p and e as long as e is odd and Pmpci/; s SPeciffeA ).

Then

r+s=w+k

where k is a rational constant (and may in fact be regarded as 0 for

we are free to incorporate the term in any of w, r or s).
For example, for € : = m3+, we have
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1) forq:Zewithe>l,

2 (ROM's 2L with Aut() = PSL,2%) = 1% 2
f

i)  for q = p%, p an odd prime with e > | odd,
# (ROM's M with Aut(M) = PSL (q))

+#(ROMM's M with Aut(M) = PGL,(q)= ei Z plu (—f—) .
$

These particular expressions i) and ii) will interest us in regard of irre-

ducible polynomials as discussed in section # of chapter 4.

We can see that the general property is in fact more or less inherent
in the form of the Mobius function for the groups involved, should we
compare them. I make further observations about these summations in

the next note.

3) I partition our categories into three pairs of complementary cate-

gorles thus

{m.m} | {m,,my , (A,

We may easily check from the preceding tables that for any prime power

q > 3 and for any category € of our six that

# (regular objects in € with automorphism group PSLZ(q) or PGLZ(q))
= ## (regular objects in the complementary category of ¢

with automorphism group PSLZ(q) or PGLZ(q)) .

This of course is no accident: as soon as we translate the equality into

strictly group theoretic terms, the result seems natural if not obviously
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true. [ illustrate with the complementary pair of categories Jll , and

m;. Fix q > 3 and let ’
St = {subgroups N4 PSL(2) s.t. PSL(Z)/N = PSL(q) }
T : = {subgroups MI PSL(Z) s.t. PSL(Z}/M = PGL (q)}
U : = { subgroups N'q PGLZ(Z) s.t. PGL,(Z)/N' = PSL(q) }
Vi = {subgroups M'<q PGL(Z) s.t. PGL.(Z)/M'= PGL.(q)},

Then the equality reads
S|+ 1Tl = Jul + [Vv] |

I explain how we might deduce this directly.

Take an element N' of U. Then N' is the kernel of an epimorphism
¢': PGL(Z) » PSL,(q9 .

Now PSLZ(Z) is a subgroup of PGL2(Z) of index 2. I restrict ¢ to a homo-

morphism
cp:PSLZ(Z) - PSLz(q) .

which 1n fact must be an epimorphism since PSLZ(q) is simple. Let N
€ S be the kernel of ¢ . Then we have associated to each element N'

of U an element N of S.
Now take an element M' of V, the kernel of the epimorphism

p': PGL,(Z) ~» PGL.(q)

and restricting p' to PSLZ(Z) we have the homomorphism

ot PSLZ(Z) - PGLz(q) with kernel K say
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whose image must necessarily be either PGLZ(q) or PSLz(q) $ PGL(q).

We have thus associated to each element M' of V an element K of SuT.
Taken together, we have established a function f
f:UuV > SuT

by restriction of epimorphisms. If f is a bijection, our desired equality
Is automatic; it is in this sense I say the result 'seems natural'. An exactly
analogous situation holds for the other two pairs of complementary cate-

gories.

Just for the specific case {\m 3 Jng} I now go as far as proving that
t is one-to-one. This proof also provides the basis for proving that f

1s also onto.

For fixed q, let G : = PSLZ(q), G': = PGLz(q) and regard G ¢ G' (equality
only when g is a power of two).
Also let T: = PSLZ(Z/) , e = PGLZ(Z) be given by:

gp <X,Y:X2: Y3:1>

s
H

Yogp <U, v, Wi UZ=vZ s wlo vl vw) = o

|
1

If N eSuT, then N is the kernel of a homomorphism ¢ : T + G' given

X X Y > y
for some x, y € G' such that <x,y> = Gor G',
For the same x, y , consider the solutions (u, v, w) in G' to the system
of equations:

uv = X, vw =y, olu) = olv) = olw) = 2
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and for any one of these solutions let N' be the kernel of the homomor-

phism ¢@: ' + G' given by

Ur—u Vi oy W w
Then clearly N £ N',
This means that if for each N in (S u T)a solution (u, v, w) as above exists,

then f 1s onto. If also this solution 1s In all cases where one exists is

unique, then f is one-to-one.

So the problem of proving that f is a bijection reduces to showing that
for each generating pair (x, y) in G, and then in G', for which x is an
involution and y has order 3, there exists a unique triple of involutions

(u, v, w) in G' such that
uv = X and vw =y .
So take any such pair (x, y) in G' generating either G or G'. Suppose

firstly p > 3.

Let D‘)(, Dy be the maximal dihedral subgroups of G' that contain x and
y respectively in their 'cyclic parts'. Then it is clear (because the 'cyclic

parts' of D, and Dy intersect trivially) that
Dxﬂ Dy e Vq, C2 or I,

But in fact Dx M Dy i Vq, else x is an element of Dy and so <x,y >

cannot be G or G'.

(Note: the case p = 3 is slightly exceptional in that Dy £ D6’ but this

need not worry us.)
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Suppose now p = 2 .

Let DX be the elementary abelian subgroup of G' of type Vq containing x

Let Dy be as before.

Again, just by consideration of the group types of DX and Dy (remember

that the 'cyclic part' of Dy now has no involution), we have

DNMND = C,orl,
X y 2

Whatever the value of q, DX and Dy have been constructed such that
the involutions v of G' for which there is a solution (u, v, w) as desired
-are exactly the involutions in DX M Dy' Note that v then determines

u and w by

So the number of solutions we have is always 1 or O, depending on whether

Dxﬂ Dy = C2 or L.

This immediately tells us that f is one-to-one, and to show that f is

onto S u T, we need only prove in all cases

bnbD = C, ,
X y 2

This may be deduced directly from the action of G' on the set of marks
(alternatively by judicious use of the supergroup tables of subgroups
of G' found in chapter 2). However the details are fiddly; I'll leave them

to the reader.
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2. FURTHER ENUMERATION OF REGULAR HYPERMAPS °H WITH
AUT(H) = PSL.(q)
There are two major techniques that may be employed to understand

the structure and properties of the groups PSLZ(q).

The first is to examine PSLZ(q) by its action on the 'set of marks', i.e.
GF(q) u {=}

(otherwise denoted by the projective line PGl(q)). It is this technique

I have hitherto almost exclusively used.

The second is to form arguments based on the trace of the elements
of G : = PSLZ(q) when these elements are represented in the standard
form of 2 x 2 matrices with entries in GF(q) and determinant . (Note
though, as the matrices +I and -1 are identified in G, that the trace of
an element of G is defined only up to plus or minus a certain value in
GF(q)). Trace as it happens gives a good description of the conjugacy
classes in G (see later) and we can use the algebra of the field GF(q)

to deduce many properties of the group.

For a comprehensive analysis of the subgroup lattice of G, we tend to
use only the first technique because the action gives a faithful represen-
tation preserving all the structure, and this is why in chapter 2 the notion
of trace does not occur at all. However it is once the structure is under-
stood that trace is often the most powerful tool in examining further
more particular properties. For example using largely the trace, Macbeath
in a paper [ 14 ] gave a theorem effectively giving a way to calculate
the number of torsion-free normal subgroups N of I' such that I'/N =z G

where T is any triangle group (a, b, c¢); in other words, the number of
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regular oriented (a, b)-hypermaps of valency ¢ with automorphism group
G (see p. 20). However no such enumerations are expressed explicitly
(except for the single case (a, b, ¢) = (2, 3, 7), of special interest because
of the relevance of the triangle group (2, 3, 7) in relation to Hurwitz
groups, see p. 32 - 33). In this section I review the paper with the aim
of obtaining actual numerical expressions (to compare with some of the
results in the previous section). These however will not be quite general.
(1 shall also indicate later, see p.129, why I no longer use Mobius inversion

in this case.)

For clarity. and economy of space, I shall in fact only consider G : =
PSLz(q) for q odd > 5; with a few adaptions, similar results may be derived

for PSLZ(q) for q even or indeed for PGLz(q) for q odd.

Firstly it is probably worthwhile just for insight to explain the exact
connection between trace and the conjugacy classes of the elements
of G. Let GF(qZ) be the field extension of GF(q); let o be a primitive

field element of GF(q%). Then (see Dickson)
2
G <G': = PSL(q%)

and all the elements of G are conjugate in G' to an element of one of

the following three subgroups of G'":

i) Cr(q): = { (s {;)"l} : Bisa ,Fgwﬁfﬂ’*’ ot a iy GF(qz) }

The values of B of course range over GF(q) < GF(qz). The trace

is (B + 8—1) e GF(q).
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I L Y O . 1 s sy, f A S q—l 1 2
i) Cs(q) : = { . Y_l tyis a E;Mi of « in GF(q") } .

The trace of these elements is (y + Ynl) € GF(qZ). As

(v+ yha=yhe y

we conclude (v + vy —l) e GF(q). (By conjugacy this had to be the

case.)

iii) vq : = {(é f) :cSeGF(q)}

and the trace is +2.

. : ! H i 1N
Suppose A € Cr(q) u Cs(q)' then the conjugacy class & '(A) in G' containing

A intersects with C u Cs(q) only in A and AL Also L(A) n G forms

r(q)
a single conjugacy class in G: it is clear from the above that each con-
jugacy class in G obtained in this way (by varying A) must have a distinct
trace. The number of these classes in G is straightforwardly calculated

as

(g + 1)/2

and so each possible value of trace in GF(q) is taken by exactly one

of the classes.

However there are two more conjugacy classes in G, the elements of
which are the conjugates in G to the elements of Vq\{I} . (We have
already 'accounted for' I). Thus it is only for the value k = +2 that we
have more than one conjugacy class in G with elements with trace equal
to k: in this exceptional case, we have{ I} and the two classes of elements

of order p.

Now given G (i.e. given q) 1 define the set @ of non-trivial orders of
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elements in G:
Q:= {deN:(-=pord|(qg+ 1)2ord| (qg-1)/2) and d > 1},

Also let @ denote the classical Eulerian function.

Then, if the function ¢®': Q -+ N is given by the number of values of

trace taken by elements of order d in G for each d € £, we have

@'(d) = 1 ifd=2orp

e (d)/2 for all other d €

Now coming to Macbeath's work, his program is as follows: take all
ordered triples (A, B, C) of elements of G such that ABC = 1 (let's call
these the set of G-triples), and then analyse and categorise them so it
1s known what type of subgroup of G that each G-triple generates. In
particular he identifies those G-triples generating the whole of G. The
analysis of the G-triples (A, B, C) is done largely through considering

two associated triples:
1) the trace-triple (a, Byy) where ¢ = tr A, etc.

ii)  the order-triple (a, b, ¢) , where a is the order of A, etc.

(Strictly speaking Macbeath considers triples (A, B, C) of elements in
SLz(q) rather than PSLZ(q); this has the advantage that each element
in SLz(q) has a uniquely defined trace in GF(q), and so the associated
trace-triples are simpler to handle. However all his results are easily
adapted to describe G-triples as I have defined them by using the natural

projective homomorphism from SLz(q) to PSLZ(q).)

The G-triples generating G are determined by an elimination process,
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'discarding’ the G-triples that generate some proper subgroup until this
has been done for all the proper subgroups of G. This means we need
to have a good idea of the form taken by the whole set of G-triples.
The framework of the information is contained in the following crucial

result in[ K41

i) For every triple (a,B,v) € (GF(q))3 there is a G-triple (A, B, C)
which has ( o, B, y) as its trace-triple (where in the latter triple o is

read as +a, etc.).

Let Mat (o ,B,Y) be the set of G-triples with trace-triple (a ,B,y ). Then

the totality of the G-triples in G is given by the union of Mat (a,B,7Y)
as a, B,y range freely over the values of trace. We only need to know
the conjugacy classes making up each Mat (a , B, y) to complete our

picture.

However we can afford now to specialise more to the G-generating G-
triples. Clearly any conjugacy class under PGLz(q) of such G-triples

must have length ]PGLZ(q)I. I state a result again implicit in [ 14].

i) a) Suppose (a,B ,y) ¥ (£2, +2, +2) is a trace-triple of some G-
generating G-triple. Then the set of all G-triples (A, B, C) which have
associated to them the same trace-triple (a ,B ,y ) constitutes two con-
jugacy classes under PGLZ(q) (where we conjugate 'componentwise'),

except if any of A, B and C has order 2 when it constitutes just one.

b) For ( a, B, v) = (+2, +2, +2), associated G-triples may generate

subgroups of G of type I, CP, \% e also exactly one conjugacy class of

p
such G-triples have elements generating subgroups of type PSLz(p) (i.e.

G itself if e = 1).
-120-



With this result known, we need only analyse which are the trace-triple
values (a, B, Y) for which the elements of Mat (o ,8,v) do not generate
G (in order to understand which G-triples are 'left' and so are G-genera-
ting). It is more or less these values (a,B ,Y ) that Macbeath determined;
let me for the moment crudely lump these together as the set S (without

for the moment identifying its elements).

I determine to go further by attempting to translate S into terms of
order-triples. I explain now the motivation for this, first introducing

some notation.

If a, b, ¢ are all elements of @ , I will denote by Mat(a, b, ¢) the set
of all G-triples with associated order-triple (a, b, c¢). Also let n(a, b, ¢)
be the number of elements of Mat (a, b, ¢) that generate G and _d_'F (GQ)

be Ehe number of torsion-free normal subgroups N of the triangular group
Jpe
I‘ofv(a, b, ¢) such that T/N = G. What concerns me is the identity

n(a, b, ¢) = |AutG]| . d'F(G) .

Remember that |AutG| = |[PGL,(q)] . e (where q = p%).

3

Now for any (a, b, ¢) € @, the elements of Mat(a, b, ¢) have exactly

¢ '(a) 9'(b) 9'(c)
distinct values of trace-triple.

Suppose exactly s of these values of trace-triple lie in S. Then the pre-

vious result (ii) gives

n(a, b, ) _ ) ' ' '
}PGLZ(qI = (152 . (9@ ¢'(b) 9'(c) - )
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(where (1; 2) means | if any of a, b and ¢ equal 2, and means 2 otherwise)

(p, p» P when

1t

except if (a, b, ¢)

n(p, p, p) = IPGLZ(q)I for e = |

0 for e > 1
Thus if we know the function s : 93 + N given by
s(a, b, ¢) = | S Tr(a, b, d)]

where Tr(a, b, ¢) is the set of trace-triples taken by elements of Mat
(a, b, ¢), then we know n{a, b, ¢) for all (a, b, ) ¢ 523. (Note that

s(p, p, p) does not concern us.)

So I endeavour to calculate s. I do this in sections i) - iv), each one deal-
ing with a different category of order-triples. All information [ use is

to be found in [ 4 ].

i) An exceptional order-triple of G is an existing order-triple of G

that 1s a re-arrangement of one of the following:

(2, 2, d) foranyd e
(27 3’ 3) b (37 39 3) b (37 47 L") b (27 37 L)L) b (2’ 5’ 5) b

(5, 5,5, (3,3, 5, (3, 5,5, (2, 3, 5)

Assuming (from now on) that q > 5, then any G-triple with an exceptional
order-triple (a, b, c) associated to it cannot be G-generating (any such
G-triple will in general generate either a dihedral sub-group of G, or

4

one isomorphic to Au, ST or AS). This is to say

9'(a) 9'(b)o ()

H

5(a7 b, ©)

and

§
(@]
e

n(a, b, ¢)
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it) A linear order-triple of G is a triple (a, b, ¢) ¢ QB for which Mat

(a, b, ¢) contains a G-triple with associated trace-triple ( a,B ,v) satisfying

one of
D a,B, Y does not generate GF(q)

I)  (this is only relevant if e is even). One of {a,B,y} is contained

e/?2

in GF(p™ ") and the two other components independently are

either square roots in GF(g) of non-squares in GF(pe/z) or

are zero.

Every G-triple with a linear order-triple (a, b, ¢) must generate a subgroup

of a proper linear subgroup of G, and so again
n(a, b, ¢) = 0 .

But I desire a description of the set of linear order-triples of G indepen-
dent of trace. It is not hard to see that the following somewhat awkward

construction gives exactly the same set.
Letr: § > N be given by:
r(p) : = 1
Va e @\ {P},
r(a) : = the least divisor f of e such that a| (pfil)/Z

(Note : any element of G of order a has its trace lying in GF(pr(a)) <

GF(q) and no smaller subfield.)

Then I define the rank R(a, b, ¢) of an order-triple (a, b, ¢) in G as the

least common multiple of { r(a), r(b), r(c) } . Thus R(a, b, ¢) divides

e.
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I assert the set of linear order-triples of G is given by those (a, b, ¢)

e 9 3 such that one (or both) of

§) R(a, b, ¢) is strictly less than e

II) e is even, all three elements of { a, b, ¢} are independently

either p or divide (p/2:1).

3

i1i)  An affine order-triple of G is a triple (a, b, ¢) € £ ~ such that

Mat(a, b, ¢) contains a G-triple (A, B, C) for which
<A, B> is commutative ,

Suppose (a, b, ¢) is an affine order-triple that is not also a linear order-
triple. Then Tr(a, b, c¢) intersects S only in the following subset S' of

S:

S': = {trace-triples (a,B,Y) in G : Mat(a,B, Y) contains a G-triple

(A, B, C) s.t. <A, B> is commutative } ,
(Given (a, B, v) € S', all the elements of Mat(a, B,Y) generate subgroups
of G that fix a mark in the action of G on GF(q) u {=},)
Then by definition
s(a, b, c) = | SATr(a, b, )| = |S'"Trla, b, )] >1 .
So we need both to identify in a more numerical way which (a, b, <)

e ° are affine, and then to calculate s(a, b, ¢) as above.

We do this by considering the different types of maximal commutative
subgroups M of G, in particular we consider which order-triples (a, b, c)

have solutions (A, B, C) in M to
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of(A) = a, oB) =b, olC) =c, ABC =1

and then the number of such solutions for given (a, b, ¢). For M = Cr(q)
or Cs(q)’ each of these solutions (A, B, C) (together with its allied solution

1

(A", B—l, ng)}corresponds to an element of S'.

D M::=V
- T
Triples of elements in Vq all have order-triples of one of the following

values (or rearrangements):

(19 1, 1) ; (Pa P 1) ; (P7 P, P)
Trivially,

n(l, 1, 1) =nlp, p, 1) =0 .

(In fact if 1 € {a, b, c }, all Mat(a, b, ¢) would be cyclic and immediately
n(a, b, ¢) = 0. This is why we could afford to omit 1 (the ‘trivial order’)

in the definition of § and tacitly ignore G-triples containing I).

Finally, we already know n(p, p, p).

_I_L)_ M::Cr()orco(

q q)

Consider M as C_, a cyclic group of order m. Suppose Cm iIs generated

by X. Let a and b divide m.

Then the set E of elements in Cm that are the product of an element

of order a and one of order b In Cm is given by

w

E:= {X":w-= klm/a + kzm/b for some kl’ k2 coprime to

a, b respectively} .
We want to examine the orders of elements in E. If we fix w = klm/a

+ kzm/b, then it is clear
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w
S Y CYON N )

Consider more specifically now the affine order-triples with fixed first
two components a, b € § , which necessarily must both divide r(q) :
= (g-1)/2 or both divide s(q) : = (g+1)/2. These order-triples are exactly

the set:

{ (a, b, ¢) : the set E as defined above for appropriate C contains

an element of order ¢}

and for each of them

s(a, b, ¢) = —é— 4 (elements in E of order ¢) .,

I shall be more explicit only in two restricted cases (and this is why

I earlier said my results were not quite general).

The first case is when a and b are coprime. Then it is simply shown

that
|E| = ¢(a) o(b) = ¢ (ab)
and that every element of E has order ab. So we have:

(a, b, ) € 93 is an affine order-triple in G & c = ab

and

s(a, b, ab) = @(ab)/2 = ¢'(ab)

from which we calculate

nx(v%Lb ’(c?)b ) ¢ (ab)[(132)-(¢ '(a) @'(B)) - 1]
2

H

¢ (ab) [CP(ab) ] }
2 2
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I give an example, for a = 2, b = 3 : if the triple (2, 3, 6) is an existing
order-triple in G (i.e. if 6 ¢ @, or alternatively if 2 and 3 both divide

r(q) or both divide s(q)) then
n(2, 3,6) =0 ,

This may be interpreted that there can never be a ROAM of valency

6 with automorphism group G.

The second case is when a = 2 (so 1 get a complete result for maps if
not for hypermaps). The case b odd is covered above, so suppose b is

even >2 (remember (2, 2, ¢) for any c is exceptional).
|[E|] = o(b)

and every element of E has order b if b = 0 mod &

has order b/2 if b = 2 mod 4 ,

1

Correspondingly define

€t = b ifb=0 modt

Z2 mod &

1§

b/2 itb

Then
5(25 b9 Cb) = (P(b)/z

giving (with a little work):

n(2, b, c) _ @) [CP(b)_ 1}
—0" © T2 2
|PGL ,(q)|

Finally, 1 should perhaps emphasise that all the relationships I have given
for n(a, b, ¢) for an affine order-triple (a, b, ¢) are valid only if the

same order-triple (a, b, ¢) is neither exceptional or linear as well.
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iv) A G-generating order-triple of G is a triple (a, b, ¢) € 3 for

which every element of Mat(a, b, c) generates G. The set of these are

3

exactly the triples (a, b, ¢) € Q7 that are not exceptional, linear, affine

or equal to (p, p, p).

By definition

1l
[

s{a, b, ©)

and

n(a, b, ¢)

| PGLZ(q)

1

(132).(0 (a) 9'(b) 0'(c))

_ e@ebel)
) I

where © is the Eulerian function except we from now regard @ (p) = 2.

I have now completed my examination of the functions s and n on the

order-triples of G : = PSLZ(q), for a given odd prime power q = pe >

3 I have an expression d'(a, b, ¢) for the

5. Thus for every (a, b, ¢) € £
number of torsion-free normal subgroups N of the triangular group T

of type (a, b, ¢) such that I'/N=z G:

. _ 1 nfa, b, )
d(a, b, C) = e.—]—l:—)E‘L-z‘('a)—]

(I extend d' to be a function d' : N3 + N by defining d'(a, b, ¢) = 0

whenever (a, b, ¢) # 93.)

We know that d'(a, b, ¢) also represents the number of regular oriented

(a, b)-hypermaps of valency ¢ with automorphism group G.

We have obtained entirely explicit expressions for n{a, b, ¢) only when

a and b are coprime or when a = 2 (though it should not be difficult
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to extend my analysis of affine order-triples to be quite general). To
give a partial résumé, I now state the values of d'(2, b, ¢) for all pairs
(b,c) in QZ, In other words I enumerate all ROMs that have b-gonal faces

and valency equal to ¢ and have automorphism group isomorphic to G.

Supose (2, b, ¢) € o’ is not an exceptional, linear or affine order-triple,

then

d'(2, b, ¢) = %ecp(b) o(c) (where o (p) = 2),

Suppose (2, b, ¢) = (2, b, 2b) ¢ 523 for b odd or (2, b, b) ¢ S23 for b
3 and &2

= 0 mod 4 or (2, b, b/2) € Q7 for b = 2 mod 4Y.If this triple is non-linear
(i.e. b| (gqz1)/2 but b does not divide (pfil) for any proper divisor f

of e) then

(20,0 = 2w -2,

For all other (2, b, ¢) € 823,

d{(2, b, ¢) = o .
1 end with some notes.

1) The reader may wonder at my abandonment of the use of Mobius
inversion in this section. This 1s not simply because I believe that he
or she will be glad for a rest from the technique by now! The serious
reason is that the inversion involved (if we tackled the problem of finding
the number of G-generating G-triples with a given order triple-order
(a, b, ¢) by the standard Hall type method) would make the calculation

3

unnecessarily long and clumsy. This is because for most (a, b, ¢) & 7,

all the elements of Mat(a, b, ¢) are readily identified either as generating
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a subgroup in G lying in a specified class of proper subgroups of G or

as generating G itself. This really makes the inversion approach redundant.

2) I refer back to my discussion of affine order-triples (a, b, ¢) for
which a G-triple of Mat(a, b, c) lies in a subgroup of type Cr(q) or Cs(q)

in G.

There, for fixed (a, b) ¢ (Z+)2, and for any positive integer m that is
a multiple of both a and b, I defined the set E (as a subset of the cyclic
group Cm). Well it is clear that both |E| and the number of elements
in E of any particular order in Ch have values independent of m (condi-

tional to a|m and b|m).

This means that if for a certain G we have an affine order-triple with
first two components equal to (a, b) € (Z+)2, then the following are deter-

mined entirely by a and b (and no further by G):

) the set of integers ¢ such that (a, b, ¢) is an affine order-triple

in G.

II) the values of s(a, b, ¢), and hence the values of ed'(a, b, c) for the

triples in 1)

This leads me to the following

Proposition

Fix a triple (a, b, ¢) of positive integers, and suppose i is the number

of distinct odd primes that occur in{a, b, ¢} (soi =10, 1, 2 or 3).
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Then the number n of different non-zero values thated'(a, b, ¢) takes
as we vary G : = PSLZ(q) (i.e. vary q over all odd prime powers greater

than 5) satisfies

n <1+1

Proof

We now know that if (a, b, ¢) is an affine (non-linear) order-triple in
a certain PSLZ(q‘), then for all PSLZ(q) for which (a, b, ¢) is also an
existing order-triple it will be affine again and will have the same value
for e.d'(a, b, ¢) (or this value could possibly become zero). So in this case

n=1or 0

If (a, b, ¢) is not an affine order-triple in any of the PSLZ(q), then the

only non-zero values that d'(a, b, ¢) can take are given by the expression

¢ (a) o (b) olc)
le

where ¢ represents the classical Eulerian function except for any single
odd prime p we might chose (strictly speaking, p varies according to
q), which we take as ¢{p) = 2. This gives us a maximum of (1 + i) values

for e.d'(a, b, ),

3) Let us fix G (for all this note).
If we take the sum d' for any fixed (a, b) ¢ (Z’L)2 as follows:

d'(a, b) = Z d'(a, b, ¢)

ceN

then d' represents the number of regular oriented (a, b)-hypermaps with
automorphism group G. (I have already determined d'(2, 3) explicitly

in the previous section, but not d'(a, b) for any other pairs (a, b)).
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This summation 1s messy to actually write down and refine. However,
as suggested in the preceding note, the forms of expression for d'(a,
b, ¢) are very limited: this means we can often find useful relations
between the values of d' for varying (a, b, ¢). For example if (a, b, ¢)

and (a, b', ¢) are both G-generating order-triples in G, then

1 —_ M_b_)_ 1 1
d'(a, b, ¢) = o (b,)d(a, b', ) .

Making use of these, we may establish some neat relationships between
the different d'(a, b). I concentrate again only on maps, i.e. a = 2, and
to give an example show that if G : = PSLZ(pe) for an odd prime p with

e > 2 then
d(2, 3) = d'(2, p) .
I do this by demonstrating that Vc €N,

d(2, 3, ¢) = d"(2, p, ©) .

Proof
The results are truisms if p = 3, so suppose p > 3,
Now
(2, 3, ¢) is exceptional & c=2,3,40r5
= (2, p, ©) is linear

(this implication has been manufactured by imposing the condition e > 2).

(2, p, ©) is exceptional = c¢c=2,3,4o0r5
ﬁ (2, 3, ¢) is exceptional
(2, 3, ¢ is linear <ﬁﬁ> (2, p, © is linear

(2, 3, ©) is affine = c=6andd(2 3, 6) =0

Necessarily (2, p, 6) is linear.
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Finally no (2, p, ¢) can be affine.
The above identifications tell us that
d(2,3,¢c) =0 it d(2,p,0) =0

and that if d'(2, 3, ¢) 4 0, then both (2, 3, ¢) and (2, p, c) are G-generating
and so

(2,3, = 500 = d2p0 ,

Exactly the same sort of arguments give extensions to this result. I will
present one such extension now without proof. Remember that for an

element b § p of § that

J.ivisar

r(b) = the least¥f of e such that b] (pfﬁl)/Z

Theorem

Let e >1 and the prime decomposition of e be

b e O\{pl} has

1 t
_ 1 k ‘ .
r(b) = Py - Py with t.<s, Vi=l, ., k

then

a2, b) = 2B 42, p)
2

(with the further condition e >2 needed if b = &4 or 5), -

Generalising further (i.e. letting some of the to=s; in the statement
of the theorem) is not difficult but the form of the relationships become
more involved, so [ call a halt here. Note that we can now use our explicit
values we have for d'(2,3) to obtain explicit values for d'(2, p) and then

for d'(2, b) (for those b covered in the theorem).
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CHAPTER FOUR

1. INTRODUCTION (Problems of cycling round a regular map)

The term 'map' obviously (to my mind anyway!) is motivated by thinking
of the map as a system of roads (edges) and roundabouts (vertices) on
the surface of a planet (with genus > 0). I suppose the map M (and hence
the planet) is oriented. Just for this section, I press the analogy further
and suppose B is a bicyclist (ecologist and mathematician) who sets
out from home which is situated at the end of a road (the dart o say).

B is given a string of directions W for his journey

2 where
W(x, z) = z° X z X we XZ ° X Z seN,

Iiy eee o 1
1’ ,SeZ

where z11 1s the first direction which says 'take the ilth turning going
clockwise round the roundabout you are currently at' (if il is negative,
that is to be interpreted to take the |il [th turning going anti-clockwise).
The direction x simply says 'travel to the next roundabout on the road
you are on'. What concerns B is will he end up back home again after
completing his journey? Or, put the other way, he would like to know

which strings of directions W will describe circuits from a3 and he wants

to know this before setting out!

Now not to make it too chaotic for B, we suppose the map M is regular.
(This makes the 'starting' dart o non-critical). But despite the symmetry,
things are still not easy for B. Even if B is given the automorphism type
G of M , B cannot determine the circuits because in general there are
many regular maps with the same automorphism type. B needs to know
a standard presentation (G, 2, x, y) for M . Letting z : = y_lx, W is a
circuit if and only if W(x, z) = 1 in G. If B knows the set of circuits

for M, then B knows the whole rel?gzr set for a 2-generator presentation



of G: if G is a 'complicated' group, this might be quite an achievement.
(He would have solved Dehn's word problem for the particular presentation.)

e

Suppose now G = PSLL,L(q) or PGLz(q) for some prime power q = p and

that M is a ROAM (i.e is triangular). Then checking whether W(x, z) =
I by brute force (i.e. by matrix multiplication) can be done but is clearly
unwieldy. What this chapter does, after setting up the problem (including
hypermaps initially) a little more formally, is to describe a far neater
program to decide which W are circuits. This is done by finding we may
characterize the map M by G and the minimal polynomial r in ZP of k
: = tr(z). Then an algorithm is constructed by which the value of tr(W(x,z))
is given in terms of a polynomial P(W) over Z in powers of k (these poly-
nomials being independent of q). If r is a factor of either P(W) + 2 or

P(W) - 2 working mod p, then
W(x, z) =1 or is of order p,

(and conversely). Finally a simple decision process is described to discrim-
inate between the two cases. So in this way B can fairly easily reassure
himself that he'll get back home! And should he want to, he'll be able
to generate a circuit in ‘'his' ROAM (with automorphism type G) that
is not shared by some other ROAM (whichever one he may choose) with

the same automorphism type.

2. ROUTES, CIRCUITS AND PRESENTATIONS
Suppose M is any oriented map, given algebraically in the standard way

as (G, &, x, y), and let

z::y‘lx , d:i=0(2) .

Then there is the obvious (graphical) concept of a path P in M which is
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a (finite) sequence of vertices in M
Voo Vs Vo s V) for some n g N

for which (v, Vi+l) is an edge for all i = 0, ... , n-1. If the sequence

has (n+1) elements, then we say P is of length (n+1).

Now, using the map properties of M (rather than just the 'weaker' graphical
properties), we may represent the path P in a different way: suppose

that the dart w is the directed edge from vy into v, then it is clear

0
that

I s ,snEst.t. Vvi=0, ..., n-l

0 Sy
i S.
w. = (W(xz 1)) x (w) is the directed edge from
j=0
v. to v.
1 +1 -

I call the word W in x and z given by

Sn—l
W(x, z) = xz X e X Z X

a route which induces the path P at w.

The definition of a route is simply a word W in x and z of the form

tm tl t
W(x,2) =2 X..X2zZ X2z ’f,---,tOEZ.

An important feature of a route is that, unlike a path, it is defined inde-
pendently of any map being considered. If we take the route W as above
and the map M = (G, 2, x, y), we may take the values of LSRR
modular to d, and W induces a different path in M at every w ¢ Q In
the natural way. However, whatever M and w € Q , the induced path
will have length tm—l. Correspondingly we also say the route W has the
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length tm-l (i.e. the length is the number of x's in W(x, z)).

So, contextually, we call the word W a route whenever we think of it
as inducing paths for certain maps M at certain darts w of M . But we
shall be particularly interested in the instances when for a particular

M and w, W satisfies
Wix, z) (w) = w ,

Then we say the route W is a circuit at w (in M).

Now I constrain M to be regular. This means Aut M = G. Also if W is

a route, and for any dart w of M

Wix, z) (w) = w
then in G,

Wix, z) = I .
In particular

Wix, z) (w) = w' vw' € Q

and I call W just a circuit in M (with no reference to ‘base' dart).

So, given M , we can 'read off' from its topological representation a presen-

tation G(WM) for the group G:

GWM) : = <X, Y] XZ, W(X, Y) s.t. W is a circuit in M >

Note that the relator set here is as inefficient as possible in that all
the relations are included (of which there are of course an infinite num-
ber). For two different regular maps M , M' with the same automorphism

group G, there will be a relation W in the presentation G(M ) that is
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not a relation in the presentation G(M'): this gives us a property for
the topological representation of M not shared by that of M', the property

being 'W is a circuit'.

For an oriented hypermap H , the concepts of path and route are not
so natural, but in chapter 1 we saw that{ can be represented by a map
M , so the ideas can carry through using M . Despite this, our georr;tric
insight for hypermaps in general tends to be far less concrete than that
for maps in particular, and there is little intuitive motive to interpret
each algebraic property as a property of some topological representation.
However there is always the possibility to exploit the topological proper-
ties of the surface of imbedding to give information aboutH (or indeed
its map subgroup, see p. 29 ).Just for this it is worthwhile to extend the
notion of a route to hypermaps (but we no longer stress that of path);
a route is a word W in two letters, and the term is used in the context

of testing whether for a particular hypermap H: = (G, Q, x, y) with

z: = (xy)_l, and w ¢ Qthat

W(x, z) (W) =w 3

if the above holds, W is a circuit inH at w. If H is regular, the abstract

group given by the presentation

GH) : = <X, Z | WX, Z) s.t. W is a circuit inH >

is isomorphic to G.

Clearly, if H is the set of oriented regular hypermapsH with automorphism
group G, then the set of mutually non-equivalent 2-generator presentations

of G is given by
(GO : HeH?
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(Exactly the same attitude and comments apply for unoriented maps
and hypermaps, but then one is concerned with the presentations of groups
with three generators constrained to be involutions. I do not concern

myself with this case: all hypermaps referred to henceforth are oriented.)

So if H: = (G,Q, x, y) is a regular hypermap, we are interested to find

all the words W In two letters such that in G
W(x, z) = I

as these words exactly form the relator set R of the presentation G(¥)
for G. For the special case,H{ is a ROM, G = PSLz(q) or PGLZ(q) for
some prime power ¢, a manageable algorithm that generates the circuits

in a systematic way is developed in the next section.

But for now, I suppose we 'know' R. Then we could try to find finite,
and then minimal, subsets S of R that constitute a defining set of relations
for G. This is something that does not primarily engage us in this chapter,
we will be involved mostly in simply finding a relation in one 2-generator
presentation for a group G that is not a relation in another 2-generator
presentation for the same group G; In other words to find a circuit that
occurs in just one of a pair of given regular hypermaps with the same
automorphism group. (I will in fact, for simplicity, mostly restrict myself
to triangular maps). However, to end this section, I discuss finite presen-

tations a bit further, in the form of a couple of notes.

Note 1
Hall's method, see §1.2, gives us a method (given a finite group G) for
calculating the number N of regular hypermaps with automorphism group

G that share a certain set S of prescribed circuits W. Then N is the
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number of non-equivalent 2-generator presentations of G for which the
relator set R contains S. If N > 2, S cannot form a defining relator set

for G.

Note 2

Here I try to utilise the genus g (supposing that this is greater than 1)
of the surface § (H) of imbedding, in particular to find a finite present-
ation of G with (2g+2) relations given in terms of circuits representing
topologically different simple loops in the imbedding. This is done sketchily
and in reference to a note in Chapter 1, p.22 , where the isomorphic

type of the map-subgroup of H is identified.
So suppose H : = (G, Q, x, y) is a regular (r, n, m)-hypermap (that is
o(x) = ryoly) = n and o(z) = m where z : = (xy)—l) and that

T :=gp <X, Y:X,Y" >,

Then the map-subgroup M of % is free of rank | + (l—ri - %)[G[ given

by
- < o
M=gp <a;, b}, ., ag, bg, uLng CU\CV : >
where al, bl’ ceny 8 4 bg are words In X and Y such that the same words

in x and y are circults representing the set of simple non-trivial loops
of § (based at vertex v), and where the generators c, are indexed by
the vertex set V and are words in X and Y which are conjugates of zm

(as explained on p.30-31).

Now each word in X and Y that represents an element in M Is a word
product of the free generators. Also such a word in X and Y has its
exact analogue in x and y as a relation in G(H), and vice-versa. We con-

clude that the words of the generator set for M as above together with
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the relations
x =1 y =1

provide a defining set of relations for G(¥ ). But the words <y In x and
y express conjugates of zm, which itself describes a trivial simple loop
in $ and is dependent on the set of relations {al,bl,...,a ,bg,xr,yn}

g
(if the genus g > 1). Thus

~ ..ro.n
G(‘?{)_<x,y.x,y,al,bl,...,ag,bg>

which has a relator set of order 2g + 2

_ 1 1 15
(where 2g = 2 + |G| I-Z-=-2) .

Note this presentation we have just derived is not necessarily minimal:
if w(x, z) is any circuit, then a conjugate word of w(x, z), which also
of course is a circuit, need not be topologically equivalent as a loop
in § to w(x, z). So, in this respect, there i1s a strong possibility of some

mutual dependence within the relator set.

3. AN ALGORITHM TO PRQDUCE CIRCUITS FOR ANY ROAM WM
WITH AUT M = PSL.(q) OR PGL.(q), SOME q

I return to the main problem as I left it in the previous section: suppose
H: = (G, R, x, y) is any regular hypermap, for which we know o(x) = r,
o(y) = n and o(z) = d (where z : = (xy)~l). Can we find a feasible algorithm

to generate those routes W(x,z) which are circuits in H , i.e. for which
Wix, z) =Iin G ?

Our ability to do this of course depends a lot on the group G (and the
form in which it is given to us). But for matrix groups we may always
of course use the brute force of matrix multiplication, testing first the
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routes of length [, then the routes of length 2, and so on, to see which

ones are circuits.

Fortunately, when 1 now specialise to G = PSLZ(q) or PGLz(q) for some
q = pe, we can be a lot more efficient than this, by use of trace. Instead
of having to determine the whole matrix represented by W(x, z), we
may simply calculate its trace: if the trace is 2, W(x, z) is either a circuit
or is a route of order p in H (i.e. the route formed by juxtaposing p
copies of W(x, z) is a circuit, whereas juxtaposing any fewer copies is
not a circuit). However it is fairly easy to construct a decision criterion
between the two possibilitles that works in every case. But we can do
better: whatever the value of the trace of W(x, z), we can use it to
calculate the order of W(x, z) as a group element of Gj; thus we need
not 'waste' any calculations (as for each route we consider, we find a

circuit).

I now give an example of how these ideas may be put into practice by
restricting my attention further to just ROAMs (so (r, n) = (2, 3)). The
methods [ present here do not necessarily have natural extensions perti-
nent to hypermaps with associated pair (r, n) ¥ (2, 3). Thus the arguments
here must be regarded as being special to ROAMs. However it should
not be difficult to adapt them for the other cases, but the process in

whole will be more complicated.
So suppose we are given a ROM M : = (G, 9, x, y) with G = PSLZ(q) or
PGLz(q) for some q. I want to generate its circuits.

We in fact do not work in words in x and z (routes) but in words in v

and z where
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V= yX and z::yzx .

(From now on, whenever 1 refer to a word, I will mean a word in 2 letters)

Noticing that
2 -1.2 -1
X = yxxy y'x=2zv 'z
(= v = zxz)

clearly <v, z > = G, so this can be done. Whenever we find for a certain

word W that
Wiv, z) = 1

we need only substitute zxz for each v to obtain the associated circuit,
which then will be of length equal to the exponent sum exp(W; v) of
v in W. But we also define another ‘measure of size' for W(v, z): the
rank X (W) of W(v, z) is the total number of letters in the word, i.e.

equals

exp(W; v) + exp(W; z) ,

For insight, notice that the action of v and z by multiplication on the
darts of M can intuitively be thought of as rather like the mechanical
actions of a pair of scissors at the tip of the blades and at the joint
respectively, but with these two actions working In opposite senses to

each other;
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Now we shall be talking about trace: I ought to clarify what I mean
by this when G = PGLZ(q) for any odd q. What we have to do is choose
and fix any non-square B in GF(q). Then for any g e G, we represent

g by a pair (plus and minus) of 2 x 2 matrices +M, where

it
f—

det(M) if ge PSL,(q) < PGL.(q)

I
w0

det(M) if g4 PSL,(q) ,

This pair exists and is unique. We set
tr(g) = +tr(M)

One can easily check, whether G = PSLz(q) or PGLZ(q), that trace is

preserved both under taking inverses and taking conjugates. As

v = yx s conjugate to xy which is inverse to yzx = z we conclude

that tr(v) = tr(z), let us say the shared value being +k, where k ¢ GF(q).

But our program shall be to calculate in terms of k values of trace of
elements of G when these are given simply by words W in v and z; evi-
dently to perform this operation we may fix our values of tr(v) and tr(z)
to single values in GF(q) (by fixing the sign of the matrices representing

v and z). For instance, we will set

tr(z) = k tr(v) = -k

Thus we find the one value of trace for W(v, z) which we can then pair
with its negative value in GF(g). (In essence what we are doing is defining
trace on the set of words in v and z as l-valued, and trace on the set
of elements of G as 2-valued; an element g € G may be represented

by two different words with trace of opposite sign).
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In this system of uniquely valued traces tr(W) for words W, we see that
trace is still preserved under conjugacy (of words), but now the inverse

word W'l satisfies

tr(W_l) = tr(W) if X(W) is even

-tr(W) if X(W) is odd
From this we easily see that for all words W,

tr(W(v, 2) = 2te(Wv, 2)7) = +tr(W'(z, v))

where W' is the word with letters occuring in reverse order to W, and

+ or - as X (W) is even or odd again.

This means that in our efforts to find the value of trace for every word

W(v, z), we need only consider those satisfying &
exp(W; v) < exp(W; z) (1)

Also we shall soon develop a method to calculate tr(W') (for any integer
1) given tr(W). (By W' I mean of course the word formed by juxtaposing

i copies of W). So we also need only consider W for which
W is not the juxtaposition of copies of a shorter word. (2)

Thirdly we can partition the set of all words into subsets consisting of
the words which are cyclic permutations of letters of each other. Each
such subset I call a cycle (of words). Trace is constant under cycle, so

we need only consider one word (a 'representative') of any one cycle.

Let 2 be the set of cycles C for which

(1) the words in C satisfy exp(W; v) < exp(W; 2)

(2) there are no words W in C such that W is the juxtaposition of copies

of a shorter word.
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Let% be a set of representatives of the cycles C of &. Then by calculating

tr(W) for W € % we have effectively dealt with tr(W) for all words W.

As an illustration, the words in v and z as presented below may be regar-

ded (without loss of generality) as the elements of W of rank less than

eight:
X Words W(v, z) inW with rank X
1 z
2 vz
3 vz2
4 sz, vzzv

b 3 2
5 Vz , vZTV, VvZ VZ
¢ 5 4 3 2 3.3

vz~, vz 'V, VZ'VvZ, VZ vZV, Vv Z

6 5 4 3.2 3 2.2 2 3.4

7 vz , vz'v, vz vz, vz'vz , vz vzv, vz vz v, vz vzvz, V' z

Now suppose we have determined the trace function on W; we need an
algorithm to calculate the order of a word W just from the value of
tr(W). (The method shall also show what is the value of tr(Wi), for
i € N, given tr(W)). To proceed we need the following lemmas and corol-
laries (where G' : = PGLz(q) if G is PSLz(q) or PGLz(q), same g, and

we regard G' >G).

Lemma 1
(We regard the word W as the element of G' represented by W(v, z))
Let W be a word.

Let Ty = 2, then for all j 215 T, = tr(W) |

0
Then Vj > 2,
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T. = T,T. , -T. 1f j1sodd or W € PSLz(q)

%l‘Tj—i - Tj—2 if j is even and W ¢ PSL.(q)
Lemma 2

Let W be a word such that tr(W) does not equal +2 or -2. Then the order
o(W) of W is given by the smallest natural number n for which Tn(as

in the previous lemma) equals +2 or -2.

If G = PGL.(q) with q odd and W g PSL(q) < PGL,(q) then further o(W)

is given by the least even natural number n for which Tn = 2 or -2.

Lemma 3

Suppose tr(W) = 2. Then W(v, z) = I in G if and only if both

1
>

i) tr(W(v, z)z) tr z

i) tr(W(v, z)v) tr v = -k ,

Similarly if tr(W) = -2, then W(v, z) = -I if and only if both
i) tr(W(v, z)z) = -tr z = -k

-tr v

1
1

i) tr(Wlv, z)v) k.

In both cases, if the conditions are not satisfied, then o(W) = p.

I now give the proofs:

l/ I split the proof into two cases

Case 1: W € PSL_(q)

If T, = +2, the lemma yields Tj = +2 for all j. But T, : = tr(W) = 2

1
is equivalent to W being either the Iidentity or of order p, which means
any power W is also identity or of order p, and so Te(W)) = 2. Thus in

this case the lemma is true. We may assume T Ls2,
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Let T =y f 22,

Then due to the correspondence of values of trace { :2 (where here
plus and minus values are identified) with the conjugacy classes of non-
identity elements of PSLZ(q) not of order p, we may assume that W is

Y 1

conjugate to the matrix (_1 O) . Because of the invariance of trace

under taking conjugates, we may as well let W equal(__T (l)>

For any j 22 let

- ay-b+c

=
f—
1
TN
jad)
<
1

w
S
4
!
3

W) = (ayg-by—a ay—b) $ T. = yf(ay - b + <
J
cy  -dy -¢c cy -d

-(a + d)

The lemma is proved in this case.

Case 2: W ¢ PSL_(q@) ( = q is odd)

The conjugacy classes of elements in PGLZ(q) that lie outside the subgroup
PSLZ(q) are characterised by trace. Thus the proof in this case is very
similar to that of case 1; if T1 = Yy we may take W = (_T g)(with no
more worrying about confusion between the identity and elements of
order p, all these lie in PSLz(q)). We perform analogous matrix multi-
plications as before (this time keeping tabs of determinants and adjusting

by division as appropriate). The remaining results in the lemma are seen

to be true.
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2., Suppose tr(W) + +2  and tr(W") = 12,
/
Now tr(W") = :2 = W" is either identity or of order p.
But w" is of order p:}W“p =1
= wP -
(as G has no elements with order of a multiple of p, except p itself).

= tr(W) = £2 X-

The first statement of the lemma is thus obviously valid.

The second statement of the lemma comes from the first, and from the

observation that elements of PGLZ(q)\ PSLZ(q) all have even order.

3/ Suppose tr(W) = 2; we prove the relevant assertion of the lemma
(the proof of the other case, tr(W) = -2, is exactly similar). The implica-

tion one way is evident. To prove the converse, we suppose both:
i) tr(W(v, z) z) = tr z
i) tr(Wlv, z)v) = tr v

Now if W is not the identity, then W has order p. We suppose this is

the case; without loss of generality we may take

w(v, z) ) for some u € GF(q\{0},

1"
N
O b
b T

Let Z

H
,—-—-\'
0w
Q.o
—~——

Then W(v, z)z

1

a+uc b+ud
C d

and i) implies ¢ = 0. In the action of G on marks, this is to say 'z fixes

o', Clearly v will have to share this same property. But G is transitive
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on the set of marks and <v, z> = G. We have a contradiction, and con-
clude that if W satisfies tr(W)=2 andi),ii) above, it must represent the
identity in G.
.l

Note

In the preceding lemmas, it is clear that in the case of G = PGLZ(q)
(g not a power of 2) we need a way of distinguishing those words W(v,z)
that represent elements of G lying in the subgroup PSLz(q) from those
that do not. This is in fact easy: as G = <v, z >, and v and z are con-
jugate to each other, both v and z'do not lie in PSLZ(q). It is thus exactly

those words with even rank that do.

The algorithm we use to find o(W) from the trace tr(W) of a word W
1s more or less stated in the propositions of Lemmas | to 3 themselves.
If tr(W) = £2, then we can decide whether W(v, z) = :I or if o(W) = p
by lemma 3; if tr(W) £ +2, then o(W) can be found by repeated application

of lemma 1 to find the least j s.t. Tj = +2 and then invoking lemma 2.

Note that if G = PGLZ(q) and W is of odd rank (i.e. W ¢ PSLz(q)) it is
obviously more efficient to find (using lemma 1) the values of trace

just of powers of W2 (rather than W itself).

Also another short-cut that will sometimes be available is if ever tr(W))
is found to be 0 (or #1) and j is the least value for which this is true,

then immediately o(W) = 2j (or 3j).

Finally on this topic, I develop the statement of lemma 1, but this shall
be incidental to our purposes. Let us consider just the case W € PSLZ(q),

so that Vj > 2
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Now if we leave Tl as a variable, let us rename it t, then clearly the
expression for each Tj is an integral polynomial of degree j in powers of

t. For example

TO = 2 , Tl = t
T, = 22,
2
T3 = t(t™-2) -t
= t3—3t °

For all j and for each i(>, 0 and < ])we define T}.(i) as the coefficient
of t' in the polynomial Tj' For i > j, we define Tj(i) as 0. Then clearly

Vj 22 and for all 1, we have the difference equation:
T.(1) = T. . (i-1) - T. (1
)( ) i-1 ) }_2( )
As Tl(O) = 0, it is easy to prove by induction that
Tj(i) =0 whenever i + j is odd ,

But if (i + j) is even, we readily detect 'Pascal triangle characteristics'

in the values of Tj(i) which suggest the presence of some binomial co-

efficient [n}, where [n} : = n: __,in any general expression. In fact
r r ri(n-r)!
we find
T = (002y A )iz
j i j+i

(which can again be checked by induction:
TO(O) =0 Tl(l) =1

and all other Tj(i) satisfy the difference equation),
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Thus we can calculate Tj for a particular word without necessarily knowing

and T.

Tj—l and TJ._2: but as in the algorithms we use we find T, -1

j-2

In any case, this result 1s only of passing interest.

So far in this section we have specified a set®™W of words for which if
we know the trace for all W € , we have effectively found the set
of circuits for M by using an algorithm for finding the order of a word
from its trace. We have seen in passing that the trace of a given power
of a word W may be regarded as a polynomial in powers of tr(W); we
shall now adopt the same sort of idea to form a second algorithm, to
express the trace of any word W €°W as an integral polynomial in powers
of k:= tr(z). This gives us a simple form by which our required values

of trace may be calculated.

For constructing this, the crucial results are

Lemma &
irvz) = [ 1-K2 if G = PSL.(q)
B - Kk° if G = PGL.(q), q odd
B
Lemma 5

Suppose W €W and W(v, z) + v, z, vz or zv ,
Then
i) W(v, z) contains two z's juxtaposed or equals (zv)'z for some i

Thus by cycling the letters of W, there exists a word W1 such that we

may take
2
W(v, z) = Wl(v, z)z
Let Wz(v, z) = Wl(v, z)z

-152-



Then

ii) G = PSL,(q)
ktr(Wz) - tr(Wl) if
trW = G = PGL,(q) and X (W) odd
% (W) - (W)  if G = PGL(q) and X(W) even

Proof of lemmas

4, We may without loss of generality suppose

X = r s wheredet x = —rz - st = (138)

t o-r as G = (PSLz(q); PGL(q)q odd)
y = 11

-1 0

V= -yx = -r-t -S+r zZ = y2x = t -r

Thus k =t +r - s and

tr{vz) = 1 (~t2 —2r2 —52 +2sr +st -2rt)
138
- 1 (-k2 —r2 -st)
15 B
- 1 (K2 (15 9)
138 O

5. 1) Suppose W ¢W . Then by definition

exp(W; v) <exp(W; z) .
so if two v's are juxtaposed in W then two z's must also be juxtaposed
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(or possibly W 'starts' and 'ends' with z, but then w.l.o.g. we make take
z—le instead of W). So if W has no z's juxtaposed, it must be of the
form

V, Z, vz or (zv) for some j e Z

but again W €% constrains j = 1.

ii) The proof is similar to that of lemma I. I deal just with G = PGLZ(q);

the case G = PSLZ(q) is analogous and simpler.

Without loss of generality we may let z = (k R
-1 0
Also let Wl(v, z) = a b
c d

with ad - bc = (138) as X (W) = X(Wl) + 2 is (even; odd).

Then by matrix multiplication ,

Wz(v,z) = 1 (ak—b aB)
158 ck-d cB

and we calculate

tr(W) - -é (k(ak - b) - aB + B(ck - d))
k
= B‘(ak'*'CB"b)—(a“{“d)
_ BE tr(WZ) - tr(Wl) if X(W) is even
ktr(WZ) - tr(Wl) if X(W) is odd
]

By lemmas 4 and 5 it is clear that we can (inductively on rank of words)
determine a polynomial P(W) in powers of k giving tr(W) for each W €%,
The polynomial P(W) is of degree X (W). As an illustration, the following

table gives P(W) for W €% (and also a few W not in W) with X(W) <

~

7, when G = PSL,(q), any q.
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Word W P(W) Word W P(W)
z K xz KO-k k22
¥y -k vz —k6+5ku~6k2+l
%72 K%-2 vzty KOsk 7K 2-2
vZ —k2+l v23vz k6—4kq+3k2+1
%z - G *vz2vz? K& uk*uk?o2
vz? K2k vz2vzy 1 ukt e
—*.z; - —l; :.4!:2+~2 - *yzvzvz —k6+3k4 -2
vz® ¥kl V2 Sadada
*yzvz K*2K%-1 %7 K77k 1 14k>-7k
vZz? K 31242 vz ¢ L6kP-10K> 4k
:z; - ;5——;ki5; I S k7674 11k>-6Kk
vzq —k5+4k3—3k vz#vz k7—5k5+6k3
vzov K-tk ik vzivz? k’-5k2+7k>-3K
vz vz k —3k3+k v23vzv -k7+5k5—7k3+2k
——————————————— vzvz2y k7 sk2-8K 7+ 5k
vzzvzvz —k7+l+k5—31<3—k
v i 6k -1 1K+ 5k

The entries marked with an asterisk * denote the words W that do not

lie in W (as set in the table on p.146).
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If G = PGLz(q), the polynomials P(W) are as in the table but with each
2n K0 2n+1 2n+1
k™" (any n) replaced by — , and k replaced by

g" g"

The table suggests that the coefficient of K" in P(W) is zero if either

i) n is odd and X (W) is even

or ii) n is even and X (W) is odd.

This is easily verified by induction.

Finally notice that P(z)) gives the sams polynomial, but in powers of
k, as T}. in powers of t on p.151. This means that if in P(z') we substitute

P(W) for k, then the resulting polynomial will be P(Wi). For example

3 2

PzY) = ko - 3k P(vz) = 1 - k

(1-k97 - 301 - K9

11

= P(vzvzvz)

R

We are now equipped to come back to our initial objective; to find the
circuits of the given ROAM WM : = (G, @ , x, y). We firstly calculate
k(:=tr(z)) as a value of GF(q). Then for each word W €% , tr(W) e GF(q)
may be ascertained by substituting the particular value of k for M in
P(W). Our first algorithm then enables us to determine the least natural

. n . . .
number n for which W is a circuit.

This schedule demonstrates that the set of circuits for M , and hence
the relator set of the presentation G(M ) for G, is determined entirely
by the value of k. This gives us an indirect proof of something already
known, that is for fixed G, k determines the ROAM M uniquely (see p120).

(However, if q = pe for some prime p, then the e images of k under
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the field automorphisms of GF(q) will determine the same map M as
k, so M does not conversely determine k). Interestingly this comment,
we also already know, does not apply if instead of ROAMs we consider
the set of hypermaps H(r, n) (for fixed r, n € N both not equal to two)

defined by
H(r, n) = {H: = (G,9, x, y)|o(x) =r, o(y) =n} .

If one such hypermap X satisfies tr(xy)_l: = k*(*)t},\en there is exactly one
other hypermap in H(r, n) which shares this same property. This shows
we cannot hope to represent values of trace In terms of polynomials
in powers of k for hypermaps in general in quite the same way as for

ROMs in particular.

The way I have described the program to find the circuits of M has been
termed rather biased to the case when G is defined over a finite field
of prime order p. For then one can work entirely in Zp’ and the method
is entirely clear. However if q = pe with e > 1, the elements of GF(q)
are themselves expressed in terms of polynomials over Zp' So substituting
k into P(W) and then finding expressions for Tr(Wi) will only produce
more polynomials over Zp' How then do we know when tr(Wi) = 227 The

answer will be in terms of the minimal polynomial of k in GF(qg): it shall

be explained in the next section.

4.  MINIMAL POLYNOMIALS

Before discussing maps again, it is as well to indulge in a revision of
some basic finite field theory. First we need a definition; a polynomial
over a field F is monic if and only if the coefficient of the term of

highest exponent is the multiplicative identity of F.
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Suppose we are given the prime power q = pe and the finite field GF(q).
Then 1 regard Zp to be the subfield GF(p) of GF(q). For every element
v of GF(q) there exists a unique monic polynomial r, over Zp of least
degree such that rY (y) = 0. This polynomial ry is called the minimal
polynomial of v . For all v in GF(q), ry is irreducible over ZP; also the
degree arY of rY divides e. Conversely every irreducible monic poly-
nomial r over Zp with dr dividing e is assumed as the minimaf .
polynomial of some element ¢ of GF(q), in fact it is assumed by all the

elements in the class containing & under the field automorphisms (but

by no other elements of GF(q)).

Now the element y of GF(q) lies in no proper subfields of GF(q) if and
only if BrY = e. Thus we may relate the number N(q) of irreducible
monic polynomials over Zp of degree e with the number n(g) of elements

in GF(q) which lie in no proper subfield thus
N(g) = 1, (q)
o .

But to calculate n(q) we may invoke Mobius inversion. Let C o represent
p -l
the multiplicative cyclic group of GF(q) and C ¢ the cyclic subgroup
‘ p-1
of order (pf—l) for any f|e. Then we establish the Mobius function Hp

on the poset P : = {C, fle} where ordering is given by inclusion,
p -1
equivalently C PN C h iff f|h. Evidently
p -1 p -l
Vile, u_(C,; ) =u@ .
P pf-l f

(where p as usual is the classical Mobius function). Now define Vf |e,

olC; ) = pf—l
p -l
o(C £ ) = 4 elements of C £ that do not lie
p -1 p -1
in C

h | for any proper divisor h|f ,
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Then O(Ce ) :Z@(Cf )

= nlg = oC _ ) z u (C . )o(C )
pe—l }Ze P pf—l pf—l
> 6
fle

DL .
fle

and so N(q) = L

e
We now come back to maps again, and start by remarking (in reference
to the table of enumerations on p.l05) that if q is a power of 2 (let us
say 2°), then the number d(G) of ROAMs with automorphism group G

= PSL 2(q) satisfies

4@ = =5 doud N .
£le

Now all polynomials over GF(2) are monic, so this is paramount to saying
that the set Jﬂ;(G) of ROAMs with automorphism group G and the set
Ir(q) of irreducible polynomials of degree e over GF(2) have the same
cardinality. Can we construct some sort of natural bijection between
the two? We In fact use the material of the previous section.

Define the function 0 : JH;(G) > Ir(g) as follows

M+ the minimal polynomial of k : = tr(z) ,

This is well-defined, but we have to justify this on two counts

1) ® is into Ir(g) because <x,z > = G, and we have seen that the value

of trace of every word in x and z is given by some polynomial expression
in powers of k and coefficients iIn ZP; this means that the values of

trace taken by elements of G form a subset of the {field generated by
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k. But every element of GF(q) is assumed as the trace of some element
of G, hence k must generate GF(q), and so the minimal polynomial of

k obliges us by belonging to Ir(q).

i)  The map M of m;(G) 1s represented by any one of e different
values of k, these forming an orbit of field elements under the field
automorphisms. But the exactly analogous statement obtained by substi-
tuting 'The map M of m3+(G)' by 'The polynomial r in Ir(g)' also holds.

Thus 8 1s consistent.

Certainly 6 is one-to-one (see the remarks towards the end of the last

section) and we have already noted that
| \m;(G)] = | Ir(q)]
so 0 is a bijection.
Now I go on to the odd prime power case. So let q = pe be odd and extend
the definition of Ir(q) thus:
Ir(g) = { monic irreducible polynomials over GF(p) with degree e }

and 1 ask what relationships can we find between Ir(q) and the set
m3+(G) of ROAMs of automorphism group G when G is in the first case

isomorphic to PSLz(q) and in the second isomorphic to PGLz(q)?

i) Suppose G = PSL.(gq) with e > 1 and e odd

Then we know

M@= —— > D@ = i)
fle

Now we can identify the elements of Ir(q) in pairs { r, r'} where if
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r(t)

it

E 1
a.t for some ags sy 2 e Z

€ P
e
2 (—l)Hl aitl i
(=0

then

r'(t)

I denote this set of pairs Ir'(q). The significance of this set is that if
Y is a generating element of GF(q), then the minimal polynomial ofy

together with that of -y forms an element of Ir'(q).

Now we define the function 6 : m;(G) -+ Ir'(G) thus:

M P the element of Ir'(q) containing the minimal polynomial

of k:=1tr(z) .

Then © is clearly well-defined and a bijection. (The essential difference
of this to the 'q is even' case is that if the trace k = Y represents the
ROMM WM , then k = -y  will also represent M ; when q is even, -Y =
Y and we need not take this into account; but when q is odd, -Y #

Y , and we have to introduce the set Ir'(q)).

i)  Suppose G = PSL.(q) with e >2 and even

For all elements Y of GF(g), we define Mat(0,1,Y ) as the set of triples

of matrices (x,y,z) in G satisfying
ox) =2, oly) =3, tr(z)=7vY, xyz=1inG ,

Then if for some Y and some triple (x,y,z) € Mat(0,1,Y) we have
<x,z> =G

necessarily Y generates GF(g). However the converse is untrue (unlike

the case when e is odd). If Y generates GF(q) then Mat(0,1,Y ) is non-

empty and any (x,y,z) € Mat(0,1,v) satisfies
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e/2)

<x,z> =G or <x,z > PGLz(p

So we need to partition the generators of GF(q) into two sets A and B,

A : those Y such that <x,z > 2 PGL,,(pe/z)

This set is given to use by a result on p.28 of [ 14 ] (concerning what
is termed there as 'irregularity' of trace-triples; c.f. my definition on

p-183 of 'linear order-triples').

A = {Y € GF(q) : Y generates GF(q) and is a square root of a non-

square in the subfield GF(pe/z) }

What is |A|? Well clearly the condition put on Y € GF(q) to be an element

of A 1s equivalent to

'Y is a square root of a non-square that generates GF(pe/z)' .

But it is easy to ascertain that a square of a generator of a finite field
is also a generator; additionally, it is certainly true that a square root

of a generating square in GF(q) will be generating. We deduce that

4 non-squares that generate GF(pe/z)

e/ 2))

t

2—1 (# generators of GF(p
1 i-1

- 5 6" ue/a .

$1%

e/2)

Then for each non-square generating GF(p , there are two square

roots lying in GF(q), so

Al = > D e |
fley
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B : those ysuch that <x,z> =G

B = {y €& GF(q) :Y generates GF(q) but Y f A}
Then
Bl = > G - Al
e
- ) "7
fle st.
e/ odd

(the last line needs a little straightforward manipulation to justify it,

left to the reader).

Now e is even, we define Ir'(q) slightly differently ¥vam the case of e odd.

Now Ir'(q) is the set of pairs (r,r') in Ir(g) s.t.

. i

if rt) :Z ait a, € ZP
=0
& i

then r'(t) :}io -0 at,
L=

Let Ir'(B) be the subset of Ir'(q) that comprises =# those pairs of minimal
polynomials for elements Y and -Y of GF(q) that lie in B. (Obviously
B 1s closed under taking negative values and under the action of field

automorphisms). Then

@ = =8| .

Now define the function 6 :\m;(G) > Ir'(B) by

M > the element of Ir'(B) containing the minimal polynomial

of k:=1r(z) .

0 is well-defined and a bijection.

Clearly we should finally like a way of distinguishing an element of Ir(qg)
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which represents the minimal polynomial of generating elements of GF(q)
in B from one which represents elements in A. However this in fact

is very simple and more or less self evident:

a generating element Y of GF(q) is in A iff the minimal polynomial

rY of Y only has terms of even degree, i.e. has the form

e/2
_ 21
ry (0 = Z %t
1=0
for some ﬁO’wul’ ey o<e/2 € /zpq

iili)  Suppose G = PGLZ(q), e >1

This case is evidently more complicated, and 1 shall not attempt here
to obtain a characterisation of ROAMs in JH;(G) by irreducible poly-
nomials as I have done for m3+(PSL2(q)). The difficulty is that (when

e is even) we no longer have the property
(x,y,z) € Mat(0,1,Y) generates G = Y generates GF(q).

(This is because of the existence of matrices in G with determinant

B)-

So for the groups G = PSLZ(q) (any q) at least we have found a very

useful identification for the elements /f of m3+(G) in terms of the minimal

k

I will change how we denote the map M:

polynomial r, in Zp for k + = tr(z). In fact from now on in this chapter

M: = (G9 Q,X’Y)
now becomes

J%: = (Gyrk) °

Note that r, is necessarily an element of Ir(g). Then, to review the situ-

k
ation,

-164-



For G =z PSL(2)
Vr e Ir(q), (G,r) represents a map M and r is unique in Ir(q) by represen-

ting M.

For G 2 PSL,(p%), p odd, e > 2
Vr € Ir(q) s.t. r does not only have terms of even degree, (G,r) represents
a map M ; Ja second element r' of Ir(q) (for which (r,r') € Ir'(g) s.t.

(G,r') also represents M, but there exist no others.

But we can easily adapt this characterisation of the elements of
m3+(G) to further cover the case when p > 3 and G = PSLZ(pz) or G
e PSLz(p) (i.e. e < 2). From our work on exceptional and affine order-
triples in the last chapter, it is easily seen that the set m3+(G) in these
cases is as standard to the set Jﬂ;(PSLz(pe)) for higher exponent e
except we must discount those maps where representing G-triples (x,y,z)

satisfy (both)

oz) + p and) o(z) < 6 .

Now, from our table on p.l155 , and not worrying too much about the

sign of trace and whether we take r, or r'k in each case, we have:

ofz) =1 =» kzzﬁfv‘rk(t) = 12
However r (1) =12 = ofz) = L or p
oz) =2 & k=0 ) 0
oz) =3 & k=1 =
o) =t & @D -2 & kP 0
& r (v

1

"

if pz+Ilmod&

H
f"-A—:\
|
8

t7-2 if p=+3mod8
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ofz) = 5 = KO-5k+5k-2 =0 or K-5k3+5ks2 = 0
:> (k2+k—1)2(k—2)
Hence o(z) = 5 ¢i> k2+k—l

1t

0 or (K2-k-1)Zks2) = 0

0 (for one sign of k),

Now PSLZ(q) has an element of order 5 iff q = +1mod5.

Thus k2+k—1 i1s reducible iff p = +Imod5,
olz) = 6 & o(z)) - 2 & K3
<é:§> r, (t)

H
O

t-J/3 if pz+1mod12

2.3 if pz+5mod12

Collecting this information we conclude

11

for G = PSL_(p?)

LetS:={r EIr(pZ) : r does not only have terms of even degree}

I
~+
t
N

Then neither r{t)

i1
—t

{
W

nor r(t)

belong to S (even if they are irreducible),

Also if f) = tletel

then r € S iff p = +2mod5. In this case there is not a mapWM in m3+(G)
given by (G, t2+t—l), and consequently | m3+(G)l is one less than the

standard result for exponent e > 2.

for G EPSLZ(E)
Ir(p) = {polynomials ro: ra(t) = t-a for some a € ZP\ {o0}}.

Now (G,ra) for r € Ir(p) represents a map WM in JJl;(c;) except if
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1 mod 8 and a =31 /2

Pp==
b=+l mods5 and (tza)|(t%+t-1)
pz=+1I1 modl2 and a:i‘/—?.

(Note that if (G,ra) does represent a map M in \m3+(G), then only (G,ra)
represents the same map. From this we may calculate | ]]’[;(G)[ and

check that this agrees with our earlier enumeration on p.l105).

Finally we have for p = 3,
+ 2 -
N5 (PSL,(37) is empty

M5 (PSL(3)) = {(Gyt-1)} |

Suppose G = PSLZ(q), any g, and M: = (G,r) is any map in J_H;(G). [ return
to the problem of determining the circuits of M . Suppose k is an element
of GF(q) which has the minimal polynomial r. Let z be an element of

G with trace k, let x,y €G satisfy
olx) = 2, oly) = 3, xyz-=1

and v : = zxz. Then <v,z> = G and we know In terms of a polynomial
P(W) with coefficients in Zp and in powers of k the value of trace of

each word W in v and z when this is considered as an element of G.

For a particular W and P(W) we want firstly to be able to check whether,

when we substitute a k appropriate to M,

P(W) = 2 or -2,

Let P+(W) = P(W)-2 , P (W) = P(W)+2
then we are in fact checking whether
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P+(W) or P (W) is zero .

But a polynomial s over Zp yields zero when k is substituted in it if

and only if the minimal polynomial r is a factor of s.

Thus P(W) = 2 or -2 (or in other words W(v,z) is the identity or has order

p in G) iff r[P (W) or r|P_(W).

By the same token, we can use the decision process as described in Lemma
3 (p.147) to determine, given P(W) = 2 or -2, whether W(v,z) = I or has

order p.

In this way we can, for any word W, check if W(v,z) constitutes a circuit

in M or not. This is independent of the z and x chosen.

From the preceding discussion, we may easily deduce the following

Proposition
If G = PSLz(pe), and W(v,z) = I in G, then the rank X (W) of W is greater

than or equal to e.

Proof
The degree of P(W) equals X (W) and so the same is true for P+(W) and
P (W). For the minimal polynomial of k, which has degree e, to divide

P+(W) or P (W), we clearly need
XW) > e .

(Clearly in fact this proposition may be extended. Suppose m is a natural
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number dividing pzl or m = p. Then the trace of any element of G with

N

order m will lie in ZP. Thus if W(v,z) has order m, again X(W) > e).
5. EXAMPLES
In this section I illustrate the ideas of the chapter put in practice, by

considering a few simple examples.

Example 1 Examination of m3+(G) for G : = PSL2(52) .

First we want to determine the irreducible polynomials over 25 of form:

r(t):t2+at+b

wherea=1or 2 , b€Z5\{O}.
(For a, we do not consider a = 0, else r only has terms of even power;
we do not consider a = -1 or -2, else we count maps twice),
We find there are exactly four such polynomials and deduce the following
inventory of maps in fm;(G):
2
‘Ml : = (G,t7+t+1)
2
Moy = (G,t7+t+2)
2
‘MB : = (G,t7+2t-1)
2
M, o = (Gyt7+2t-2)

Now the valency of each map (i.e. the order of a suitable z € G) must

divide %(SZH) and must be greater than six; thus it must be 12 or 13.

Defining r for 1 = Il,...,44 as the polynomial describing JVLi, we have the

valency of M. is 12 if and only if riIP(zs). But
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P(z%) = k

6t k%2 o (KPrke DKk D(K2-2)

SO ./"'Ll has valency 12 whereas ‘MZ’ "M'B’ \Mu all have valency 13.

[ set out to distinguish the maps ‘MZ’ \M3, \Mq by finding circuits for
each one not shared by the other two. I do this not strictly following
the algorithms as given in section 3 of this chapter, but in a rather more

selective manner working from the known P(W) for words of low rank

as listed on p.I55.

For ‘MZ

But

KEk*2k%2 = (KPke DK Pk 2 (KP-2) .

rz(t) = t%4t+2 is the minimal polynomial of k, so

Kotk = o
P(v23vz) = k6+k4—2k2+1 = -1
o(v23vz) = 3

Furthermore, observing that

P(vzovz) = 1 = KAK*+k2-2) = KAK2-1)(K%+2) = 0

we can see that ‘MZ is unique in \m;((}) in having this circuit.

KO22k ksl = (k24 2k-1)(k2-k+ 1)(k-1)

K5 13

P(vz2yz) +2k74k = -1

H

H
W

o(vzzvz)
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Also P(vz?vz) = 1 =5 (kK%-2k-1)(k’+k+ D(k+1) and so 4 5 shares this circuit

with M 1> but not with M, or J‘lq.

For J“l!
K¥2k2o1 = (2 2k-2)(Kk2-2K-2)
= Phvz) = k*eakZe)) = 2
'-:> sz = I or o(sz) = 5

But v =z = G = <v,z> is cyclic X

Thus o(sz) =5,

Now P(vz?) = 2 =>k*2k-2 = 0

It can be checked that(k4+2k2—2) is Irreducible.

Thus the circuit implicit in o(vza) = 5 1s unique to M, in m3+(G).

Example 2 Considering circuits of length less than four.
Recall that initially we thought of a route as being a word in x and z,
and the length of the route being the number of x's occuring in that

word. The route W(x,z) is a circuit iff
W(x,z) = I.

Now substituting x = z_lvz_l in W(x,z) we obtain another word W' such
that W'(v,z) = I; conversely if W' is any word for which W'(v,z) = I and
we substitute v = zxz, the result is a circuit. Evidently we may as well

consider W' itself being a circuit, with length equal to exp(W';v).

Now in the next chapter (§2) I shall use some basic properties of G :
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= PSLz(q) for any g > 3, to show that once we have taken into account
the order ofz) of z (so that in any word, no exponent of z is greater

than or equal to o(z))we have 3
i) there are no circuits of length 1 or 2

i) all circuits of length 3 are conjugate as words to (vz_3)3,

this representing the relation y3: L.

This has implications for the trace polynomial P(W) for every word W(v,z)
with exp(W;v) < 3, in the following manner. We fix the prime p but now
give freedom to the 'group' G to vary over the types PSLZ(pe) with differ-
ing e. (So really G is a function G : N~ {groups} given by Gle) : =
PSLZ(pe)). Then if we take the polynomials P (W) and P (W) (or indeed
any other integral polynomial) and factorise these over Zp, the irreduc-

ible factors r fall into three categories:

I r is a factor of one of:

kD), (K2-2), (KPsk-1), (K2-3)
) r is of even degree and only has terms of even power
III) r is neither in category I) or II) .

Only if r is in category III) is the map M : = (G( 3 r),r) defined. If r is
so, and if we have as said exp(W;v) < 3, then clearly we must have in

G( 3r)

o{W(v,z))

il
0

rather than

W(v,z)

it
[—
-

If in fact exp(W;v) = 1 (and so we may without loss of generality assume
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1 .
that W(v,z) = vz' for some i e N), we may extend essentially the same

idea a little further: for we cannot have

1) o(W) = 2 unless W is a conjugate of x = 2yl
= W(v,2) = vz 2
or i) ofW) = 3 unless W is a conjugate of y = xz b= 27y

= W(v,2) = va ">
and so if r Is an irreducible factor of
i) P(W)
or i) P(W) =1

such that r is in category III as before, then the pair (G(3 r),r) determines
a map of JN 3+(G( ar)) with valency (i+2) for case i) and (i+3) for case

i1). An obvious converse also holds.

To illustrate this by an explicit example, let Gle) = PSL2(7e) for all

natural e, let W(v,z) vz* and ask for which M ¢ U m3+(G(e)) does
e

o(W) = 3, lL.e. P(vz#) = =+ 1? From the preceding paragraph this is equiva-

lent to finding which M has valency 7 (and so we are checking our current

knowledge that there is just one such map given by (PSL.(7), t = 2)).

Now

P(vzh)+1 K33kl = (ke 2K Pak-1)

O3kl = ~(ke2) (KPk-1)

I

P(vz-1

so the only irreducible polynomials r which are factors of P(qu)il and

for which (G(3r),r) is a map of m3+(G(8 r)) are indeed
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r(t) = t+ 2

confirming the only map M is (G(1), t + 2).

Example 3 The maps with least Petrie polygon length.

A Petrie polygon (P.p.) in any oriented map WM (regular or not, and in

spirit even oriented or not, though the algebra to model it in the unorien-
ted case will be different) is a circuit in WM whose path takes the basic
zig-zag form. If WM is triangular, then algebraically the P.p. through the

dart a of M is the word W which is the least power i of (vz) such that
(v2)'(a) = a |

I shall call 2i the length of the P.p. through o (2i rather than i because,
to describe the zig-zag, the route that represents the P.p. is (xz—lxz)l:
it 1s easy to check xz_lxz = vz. Then remember that the length of a

route is the number of x's it contains.)

For a crude pictorial idea, suppose the diagram below represents part
of a triangular oriented map containing the dart & 3; then the P.p. through

0 'follows' the dotted path.




For a regular map of course all the P.p.s will have the same length.

Now | return to ROAMs WM with automorphism type PSLZ(q) for some
q > 3. Then because we know there are no circuits W such that exp(W;v)

< 3, and all circuits W s.t. exp(W;v) = 3 are conjugates to

-3, -3 -3
vz “vz “vz

we conclude that in all cases the P.p. length must be greater or equal
to eight. I set myself the question: for which of these maps is the P.p.

length exactly eight?

The even case (for q) is quickly dispensed with by the observation that
PSLZ(Ze) for any e does not contain elements of order four. So we may
suppose M : = (G,r) where G 2 PSLz(pe) for some odd prime p, and r
is a suitable irreducible polynomial of degree e over Zp. Then M has

P.p. length 8 iff (vz)q = [ in G and the latter is so iff r divides P(vzvz).

Now by the table on p. 155,

P(vzvz) = k* - 2k% - 1 |

We suppose that r (associated with M ) is a factor. Straightaway we
see dr < 4, and further if P(vzvz) has a factor of the form (k-a) for
some a € Zp\ {01} , it is clear (k+a) is also a factor, so in fact or

< 3. I consider the two remaining possibilities for 3r separately.

Case | ar = 1

Suppose r(k) = k-a for some a € Zp \N{o}

Then k*2k%-1 = (KB-aD)(K%4a?)
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In particular the square root of 2 exists in ZP, so necessarily p = + 1mod§;

but this is not sufficient to guarantee the existence of a, we also require
square roots In Zp of ( /2'+ 1) or ( =/2 + 1), and it is more difficult
to determine which primes p fit this constraint. I leave this particular

problem as it stands except for the following observation:
(JZ+ D2+ ) = -1

so if -1 is a square in ZP, and so p £ 1mod8, then both (/?+ 1) and
( =/ 2 + 1) are squares or both are not: however if -1 is a non-square
in Zp’ and so p = -1mod8, then exactly one of ( /2 + 1) and (- /2 +

1) is a square.

Finally we need to check that given p = +lmod8, that the values of a
do not assume In Zp one of the 'forbidden' values =1, iﬁ, iﬁ(if these
exist), and that (k-a) is not a factor of either (kzik—l). This is very easily
done, and I leave it to the reader. (Another easy exercise would be to
prove that 7 =amd=2% js- the only prime p such that the unique ROAM

with valency p and automorphism group PSLZ(p) has P.p. length 8).

Case 2 or = 2

Suppose r(k) = kZ+bksc for some b, c € ZP \ {0},

Then K*-2k%-1 = (kZ+bksc)(k2-bk-c™ b
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where c-bz—c“ = =2

and b(c+c"l) =0,

The last equation implies C2 = -1, and so necessarily p = Imod4. Further-

more if we denote one root of -1 by /-1 we have
b2 = 2./ T + 2 or 2T+ 2

so we require at least one of these to be a square in ZP. But it is easy
to check (by the quadratic formula) that if both are squares then r is
reducible (and of course conversely); therefore we require exactly one

to be a square. Now

QT+ 2./T+2) = st+u = 8

thus this product is a square iff 2 is a square in ZP, equivalently p =
+Imod8. But in this case both (2.V -1 + 2) and (-2.¢ -1' + 2) are squares

or both are non-squares. Thus we require p = z3mod8 (which guarantees

exactly one of our proponents are square as desired), and as also p

-

Imod#4, we conclude p = -3mod8. Conversely given any such prime,

does exist as specified and
P(vzvz) = k*-2k%-1 = (KZsbke V(K 2-bk+/=T)
so exactly one map is represented.
I now collect our results to present them as a
Theorem
Let G = PSLZ(pe) for any prime power pe, and let n(pe) be the number

of maps In m3+(G) for which the Petrie polygon length is eight. Then

n(p®) = 0 unless:
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i) p = -3mods, e =2 when n(pz) =1
i)  p =z -lmods, e =1 when nlp) =1
ii)  p = lmods, e =1 and (/2'+ 1) is a square in ZP

when n(p) = 2 .
O

I end with examples to show that for primes p = lmod§, (\/’—2_‘ + 1) can

indeed be either a square or a non-square In ZP., Let (?) for a ¢ Z

be the classical Legendre symbol.

)p=17
\[_‘:6 $ (ﬁ+1):7

Now by quadratic reciprocity,
7\ L (3} L. (_1_ L
7] - 7 - 3 N

so(y2'+ 1) is a non-square in 217, and n(17) = 0.

2) p =4l
Z'=17 = (J2+1) = 18

But 10° = 18, so (J2'+ 1) is square. Also
W2 16=(VZ- D 0 tfUEer = Tk =2k =TS

which means

Plvzvz) = (k-10)(k+10)Kk-5)(k+5)

and both the maps (PSLZ(M), t-10) and (PSLZ(&I), t-5) have Petrie polygon

length eight.
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CHAPTER FIVE

1. INTRODUCTION

In the previous chapter I had started to restrict my attention to RCAMs,
these being perhaps the most interesting subcategory JJ| 3+ of all the
oriented hypermaps. This specialisation is continued in the present chapter
in which [ consider some alternative ways for constructing some of the
objects In .m; (where as normal we in fact only consider maps with
automorphism group G isomorphic to PSLZ(q) or PGLZ(q) for some q:
from now on, whenever [ use the symbol Jﬂ;, [ in fact will mean just

these particular ROAMs. To stress this I will sometimes write 'restricted’

.

The originalbimpetus for the work presented here came from coming
across in the existing literature [23] a description of some oriented tri-
angular maps. These were strongly related to a rather narrow section
of the groups PSLZ(q) and PGLZ(q) and looked likely to be ROAMs though
not presented as such. This motivated an attempt to form actual map
isomorphisms between objects in lﬂ; and these 'new' maps. This was
successful, and the methods used clearly displayed that the range of
application of the construction (of regular maps) is wider than that ex-
ploited by Surowski, and in fact involves all the groups PSLZ(p), for some
prime p and all the PGLZ(q). (We shall see that maps can be constructed
analogously for any other PSLZ(q) for g odd, but this case never results

in regular maps.)

Not to tantalise the reader further, I now state the type of construction

involved:

Let G be PSLZ(q) or PGL,(q) for some g, and let & be a conjugacy class
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of elements in G. (Let T denote the set of all such pairs (G, %)). Then
I define the graph Y¥(G, %), abbreviated to ¥ when ambiguity is unlikely,

as follows:
the vertex set V( ¥) is the set of elements in %

the edge set E( ¥) is given exactly by those pairs (u, v) € 22 for

which o(uvz) = o(vuz) = 2 in G.

Let S be the subset of T which consists of the pairs (G, &) in T that

satisfy one of

1) G = PSLZ(p) for some prime p, and the elements of % have order

p in G.

i) G = PGLZ(q) for any g, and the elements of 2% have order (q 3 I).

Then the main result of this chapter is that for all pairs (G, %) in S,

¥ (G, %) can be imbedded as a ROAM with automorphism group G.

The reader rﬁay feel some consternation in that I have talked of construc-
ting maps whereas the actual construction mentioned is for graphs. The
resolution of this apparent anomaly is by introducing the concept of a
vertex-transitive triangulation (VTT). As to what exactly a VTT is, I
discuss more in the next section, but suffice it to say for the moment
that a VTT is a graph with automorphism group transitive on its vertices
and with a particularly simple local structure which guarantees it has
a unique triangular imbedding (up to taking the mirror-image). Now I

shall show in due course that all objects M of (m3+ satisfy both

1) The underlying graph & of M isa VTT
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2) M is isomorphic to its mirror-image (i.e. M is reflexible).

These two facts, taken together, are extremely useful in that if we have
just a graph isomorphism between ® and some other graph ® ' we
know that any triangular imbedding of @ ' must in fact be isomorphic
to M . This saves having to construct map isomorphisms, which are more

unwieldly to handle.

So, to press the point, if I can prove that any graph @' is isomorphic
to the underlying graph of some M €m3+, [ may in fact without ambi-

guity regard the graph ' as being isomorphic to the map M.

The idea of VTT's is taken from Surowski's paper (ibid), though he didn't
concern himself with regularity as such. Indeed the main purpose of
that paper over and above the introduction of the concept itself is to
demonstrate that a couple of given categories H and B of graphs are

VTT's:

& is the set of Y¥(G, %) for the pairs (G,%) € S which satisfy G = PGLZ(Ze)
for any é > 3 and % i1s any conjugacy class of elements of order 2°-1

in G.

B is the set of graphs A (G, %) where G = PSLZ(p) for any prime p satis-
fying 16|(p2-1), % is a conjugacy class of elements of order p in G. The

vertex set of A is £ and
(u,v) ¢ 22 is an edge in A <::> ofuv) = 2in G.

By considering the regularity of the graphs V¥ (G, & ) for all pairs (G, )
in S, I will clearly greatly extend the category & of VTTs. In the body

of the chapter, I will also devote a section, §8, to show the VTTS AG,2)
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in 8 are ROAMs with automorphism group G as well, but in this case
the definition for adjacency is more 'tailormade' for the particular types
of pairs (G, ) covered and we can't expect to extend this category in

the same sort of way as with & .

Now béfore I can be more precise about how the isomorphisms needed
are actually formed, I need to describe VTTs in more detail which 1
do in the coming section, §2, which starts with some preamble. After
this, there is a short section §3 dealing with the question of reflexibility
for the maps in m;. In §4, then armed with the necessary ammunition,

I describe how we proceed.

2. SOME BASIC PROPERTIES OF ROAMs

(In this section M will always represent an ROAM with arbitrary auto-
morphism group G unless otherwise stated. Many of the comments here
are of relevance for other categories of regular oriented hypermaps.
It will involve, in the language of chapter 4, examining circuits in M
of length less than or equal to three, and interpreting what these repre-

sent. It is the circuits of length 3 that are critically related to VTTs.)

Speaking naively, the regularity of the maps we are considering would
suggest some simplicity in the graphical structure of their topological
representations, but the availability of surfaces with genus as high a
value as desired tends to counteract this. Here 1 examine some local
(graph-theoretic) properties of WM , all of which are concerned with what
could be regarded as aspects of basic good behaviour for graphs in gen-
eral. Each property is translated into terms of relations in G involving

a generating pair (x,y) € G? which represents M in the usual way. As
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usual, we let:

zZ:=Yy X

) Free edges

As already explained in chapter 1 (p.18) M does not contain free edges

unless

x =1

in which case G = <x,y > is cyclic.

II) Loops

We say that M has a loop if there is a dart o and an integer i + 0 such

that
1
zx(a) = a .

The regularity of W gives that

and so in G,
<x,z > Is cyclic ,

But XK,y > = <x,ynlx > = <x,z> =G |,
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So if the automorphism group G is not cyclic, M cannot contain any

loops.

Thus in all but a few very trivial cases, a ROAM does not contain free
edges or loops. Free edges and loops are very often not regarded as
legitimate features of a graph, so this is useful. However there is a third
type of local structure that can occur in an imbedding which would not

normally be allowed in a graph:

III) Multiple Edges

M has multiple edges if

xzixzJ = I for some 1,j € z
= zixzj = X
:} zixszri xzj = I
:> (Zj+i X)Z - I
:> <szri ,»X > 1s dihedral or cyclic in G .

Hence compared with free edges and loops it is harder to decide precisely
which RO AMs contain multiple edges and which are the types of auto-
morphism group G that are thus represented. However for G : = PSLZ(C[)
j+i

or PGLZ(q), any q > 3,suppose xz'xz) = I. Then <2z, x > is dihedral

or cyclic :> <z,x > is dihedral or cyclic unless j = -1. But
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i i
XZx =z

—>  both zx € Ne <z' >, which is either dihedral or elementary

abelian

é <x,z2> <G X

Also for q = 2, the graph underlying the unique ROAM with automorphism

group PSL2(2) =1 D6 is just a straightforward triangle.

Thus none of the ROAMs with G = PSL,(q) or PGL.(q) (for any g) can
have multiple edges: this means the underlying graph of each map is

in every way a bona-fide graph.
O

To recap, we have shown that a certain M has no loops or free-edges
by proving that

Viez , Z'x 1
and that it has no multiple edges by proving

Vijez , zxzx § 1 .

We now go further and consider the solutions in G of

zlxz]xzkx =1

as i,j,k vary independently over the integers.

Note that necessarily we always have

-1 -1 -1
ZXZXZX = Z Xz Xz 'x =1 ,

these relations being nothing more than statements that M is triangular.

However how should we interpret other solutions? This question motivates

the following:
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IV) Non-simple spans

Definitions
The span ® (v) of a vertex v in a graph ® is the induced graph on

the vertices adjacent to v in @

The span @ (v) is simple if it is an ordinary n-gon for some positive
integer n (where I regard a line-segment as a 2-gon and a point as a

l-gon). If a span is simple and n-gonal then I call it an n-span.

Now for an arbitrary graph, a non-simple span can take many forms:
for example it need not be connected. But for the underlying graph
® of a ROAM M , the type of possible 'violation' causing non-simple

spans is more particular:

Suppose () has constant valency d. Without loss of generality we may

regard a vertex v in () as the following set of permutations of darts:

{1, z, 22, e zd—l}

and the following permutations as representing the vertices adjacent

. 2 d-1
tovin ® 1 X, XZy XZ75 eeey XZ~ .
bod sz
X
o<
 xzat LT

But clearly for eachie {0, ... , d-1} ,
xzi is adjacent to xziJrl in @
for
gt = (xz)zi = xzit!
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Thus the vertices of the span () (v) all lie in an ordinary d-gon in
® (v): the only way in which ® (v) can be non-simple given this is
if an 'additional' edge exists between two of the adjacent vertices. So

pictorially we would have this sort of situation:

where the bold vertices and edges form the span of v.

It is easy to see that such a construction occurs in (& if and only if

there exists (i,j,k) $ =(1,1,1) e(Z/d)3 such that in G : = <x,z >

zllexzkx = 1.

I will say that M has simple or non-simple spans according to whether

such a triple (i,j,k) does not or does exist.
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(Note that this means, from our previous discourse, that if M has free-

edges, loops or multiple edges, then M has non-simple spans).

It is this description of spans that I've really been working towards.
It interests me primarily In relation to a class of graphs, called vertex-
transitive triangulations (VTTs), introduced in [23]. Roughly speaking,
they are defined as finite, connected graphs with (simple) n-spans for
some n > 4, with automorphism group transitive on the vertices (and
finally with a technical condition to guarantee an orientable imbedding).
Trivially, any ROAM WM is bound to satisfy all these conditions except
perhaps that of the n-spans. In other words if M does have n-spans for

some n >4, then it is a VTT.

The condition n > 4 may seem a little artificial, but I adhere to it to
be consistent with [23]. Note that the only ROAM with 2-spans has under-
lying graph an ordinary triangle and automorphism group isomorphic to
D6 = PSL2(2) and the only ROAM with 3-spans is a tetrahedron and has
automorphism group N =1 PSLZ(B). In addition the term 'vertex-transitive
triangulation', also adopted from [23], is perhaps a little unsatisfactory
in that perfectly good triangulations exist which are vertex-transitive

but certainly do not have simple spans. Consider for example the well-

known regular imbedding of the complete graph K. in the torus:




Opposite sides of the parallelogram are identified in the usual way.

(Note that the complete graphs are in an obvious sense the graphs with
the 'most complicated' spans. It may interest the reader that all regular

orientable imbeddings of complete graphs have been analysed in [9])

But we shall see in due course that the concept of a VTT has merit:
the conditions imposed on a VTT clearly ensures a single triangular im-
bedding of the graph, and it is simply this property which will interest

us.

I now show that all M with automorphism group G : = PSLZ(q) or PGLZ(q)
(any g > 3) must have simple spans, and so are VTTs. I do this by proving

the following:

Theorem

In algebraic map language (see p.10 ad.seq.) let
M :(G,Q, Xy )’)

be a ROAM with automorphism group G : = PSLZ(q) or PGLZ(q) for any

q>3. Alsolet z-= y—lx and o(z) = d.

(Necessarily d > 6 except for q = 5 when there is only the one relevant

map, this with d = 5; anyway d > 4. See p.129.)

The conclusicn is  that,in G,

zlxzszkx =1 =i zj=z k= zlmodd,

Proof

First note that
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1
Xz X

1

= 2ixz) = ZXz

= szt xz)"1 I
= i=j=1 (as we know WM has no multiple edges).

Similarly

i

XZX

This means we need only prove

zlxz)xzkx =1 é any one of {i,j,k} is I or

{
[

&

We now 'split' the proof, partitioning the maps into 2 classes and consider-

ing each separately.

Class 1t those M with G = PSLZ(p), d = p.

W.Lo.g. x:((l) é) y:(? i) z:<(l) w

Then
2wz = [ -ij+1 xz®x = (-1 0
-1 -j -k -1
i jok .
Thus zxz)xz'x =1 = i=:l,

Class 2:  those J{ with i) G = PSL_(q) and dl(q ® /2

i)G = PGL.(q) and dl(qzD.

Let X be a primitive element of GF(qz), the extension of GF(q).
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W.l.o.g. we may take z = (B O)
0 1

for some poWer. B of ol o a9 in GF(qz) (such that the order of

B in the multiplicative group of GF(qZ) is d).

Suppose x:(r s rw -st=v € GF(q) , w=-r.
t w
Then
z'xz) = r8') 5Bt with determinant BJHY ,
tBJ w
xz X = [ 2 8~k+st srg Kisw with determinant B—k YZ .
tr B_k+tw tsg K, w?
Noting that Band y are both squares in GF(qZ), we have
T
zZ Xz’ = Xz X
:;(} B(1+]+k)/2 Y-1/2 r25~k+st srB_k+sw _ rBH—] SBI
tr B_k+tw tsB Kew? t gl W
If we multiply leading diagonals we get:
g ik -1 2 K s Kiwd) = 81w
= (r2+st 85)(tsg Kew?) = yrw
(= (8%8™ = @) ),
r2
This last statement allows a maximum of two values for 8 but we

~ know B and B_1 must be solutions, and certainly B $ B8 1. We conclude

that k must be plus or minus one, as required.

O
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3 REFLEXIBILITY OF THE MAPS IN T;"
Given any map M , the mirror-image M of W is given by reversing the
cyclic order of the 'darts' at each vertex. If M s isomorphic to M as

a map, then M is termed reflexible.

Specialising to M € \m;, we know from §2 that the underlying graph
@ of M is a VIT. If 4 is shown to be reflexible, then we know that
M is the only triangular imbedding of ® . Thus the significance of

the

Theorem

All ROAMs with corresponding map-subgroup N ¢ T : = C, * C3 such
that T /N = PSLZ(q) or PGLZ(q) (any q) are reflexible. (Remember that
the quotient group T'/N 'gives' the automorphism group of the map,

see p. 13-15, so this applies exactly to those maps in our restricted cate-

gory ;.

Proof

Let I' : = gp <X,Y:X2:Y3:I>

and let Z = Y"lX .

In general, if a ROAM M has the map-subgroup ™M < T which is the

kernel of the epimorphism o I - Aut M , then\/q has the map-subgroup

M , given by the kernel of the following epimorphism /E I > AutM:
FRO= px . p@=lp@I,

Let /)(X) = x,jo(Z) = z. Then

P00 = x , p@ - 2!
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Now take our more particular case M = N, where N is as in the statement

n

of the theorem. Fix the value of q for which T/N PSLZ(q) or PGLZ(q)

and let

G:-= PSLZ(q) ; G': = PGLZ(q) .

Then we may regard Aut M as being equal to G or G', in particular regard

x and z as elements of G'.

Let CX ,CZ denote the maximal cyclic subgroups of G' containing x and
z respectively. Then we have already intimated in a previous problem

(p.115) that

DXﬂDZE C2

where Dx’Dz are the maximal dihedral subgroups of G' containing CX,CZ
respectively, except in the case of q being a power of 2 where DX is
the maximal abelian subgroup (of type Vq) containing x. This immediately
tells us {as is also proved in lemma 2.8 of [SJ)that there is an involution

x' in G'such that

x'x(x‘)_1 =X and X'z (x')'l =z

which means that ker/D = kerﬁ ,ie. M=Mand M = M

4. THE SCHEME OF THE APPROACH LEADING TO THE MAIN RESULT
I now give an explanation of the two stages I shall use in the sections
§5 and §6 to construct the desired graph isomorphisms between underlying
graphs of the maps in Jn; and the appropriate  Y(G,2 )Jas proposed
in §1. Without this overview, the 'drift' of the more technical parts

reserved to §5 and §6 might seem obscure.

The first step (§5) is to construct a category R' of maps according to
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the following ethos:

Given Me M 3+, the darts of M may be regarded as the elements
of G : = Aut{M ) and the vertices as the cycles in G induced by z € G
when z is multiplied on the left (z is as usual, and is identified up to

a conjugacy class in G under PGLz(q)). So typically the set S, of darts

comprising a vertex v will be of the form

S, = { g, zg, zzg, vees 41 gl

for some g € G, and with d : = o(z) in G,

Now let (& be the underlying graph of M : to give a description of
@ in more standard graphical terms we need to express each dart as
an ordered pair of vertices (u,v), in particular this expression for each
of the darts in Sv must have the same 'incoming' component v. But there
is an obvious way to derive a constant entity from each of the elements

of Sv by taking conjugates of z:
VseS, , sTlzs = g-lzg .

This begs the question can one, given M, identify the conjugates of
z with the vertices of & and further construct a graph ®' isomorphic
to @ by taking the vertex set of @' as the elements of the conjugacy
class of G containing z and defining adjacency in @& ' in some 'natural’
way? If the answer is yes, we may regard @& ' as a VTT, which then
has only a mirror-image pair of triangular imeddings: one of these im-
beddings is M, which is reflexible, so in fact M is the only triangular

imbedding and in this sense we may regard

e =M.

In §5 therefore I determine which WM € m; can be recovered in this
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sort of way, and call the set of them R'. (What the 'natural' rule of
adjacency should be is easy to see, though to write down it is a little

technical: 1 shall leave the statement of it to §5.)

To give a convenient way of describing R', I now introduce the class-
triple (G, %,d) associated with each M € m;, where G is the auto-
morphism group type of M , & is the conjugacy class of G containing

any z as appropriate to M , and d is the order of z.

Then (we shall see) R' is given exactly by those WM € JN 3+ with class-
triple (G, 2,d) satisfying one of

1) G = PSLZ(p) for any prime p and d = p

i) a G =PSLyq,q odd, and d = —%(q ol )]

1

b) G

PGL.(q), any q, and d = gz 1),

Now let R be the subset of R' given by those M € J| 3+ satisfying one
of just i) or ii) b) as above. Then in section §6 we make use of the newly
formed graph ®& ' by proving that if W € R' has class-triple (G, £ ,d),

then the graphs ®' and Y¥(G, %) are equal iff further M ¢ R.

Hence through the medium of &' we conclude that for M € R

® = Y(G,e) ,

Remembering again that an isomorphism of VTTs may be regarded as
an isomorphism of triangulations, we arrive at the major result of the

chapter already mentioned in §l.
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Theorem
V(G, &) € S, ¥(G, %) has a unique imbedding as a triangulation, and

this is a ROMM with automorphism group G.

(In the final section, §9, I review the whole procedure by considering
what conditions we need to impose on a pair (G,%) now with G an arbi-
trary finite group (and  Y(G, %) defined analogously) to be able to come

to the same conclusion as in the theorem for ¥(G,%) in general.)

5. ISOMORPHISM BETWEEN & AND ®°

Before we start, please note that I will adopt the convention that
g _ -1
vge G, z° =g "zg

Let M be any map in .fm;, and suppose that M has class-triple (G,

g ,d).
I define two graphs connected with M :

1) ® (the underlying graph of M )

The vertices V( ® ) of & are the following subsets of G (which par-

tition G):

Ve ={g, zg, zzg, veey zd_lg} for some g € G .

If hd vg, then i % vg and (Vh’vg) is an edge in ® (i.e. is an element

of (@ ) iff 3i,jeZmodd s.t.

(Notice that zllehg_1 =1 = z‘sz—lgh_1 = I, so we have the required

symmetry for the edge set).
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ii) CH

The vertices V( ®') of ©@' are the elements of 2 .

The edges E( ® ') of @' are those pairs (u',v') € X which satisfy:

Vh,g €¢G s.t. u' = zh and v' = zg, 31,j € Z mod d s.t. zixzjhg~l =1,

(So again we have symmetry for the edge set).

I now make a couple of remarks about the graph ®'

Remark 1

E( ®') is empty if <z> $ <a> where a is a generator of the maximal

cyclic group containing z in G. For let z = a", and h,g € G. Then

(Zh, z8) e E®') = zixzjhg'l =1 for some i,j
4
(Zah,zag) e E ®') = zkxzﬁahg'laul =1 for some k,t
Thus
2%z = a"lzknga
=gt akr-lxaﬁr+1

= xar(i-k)+1xar(j-i)-1 _

But certainly, as <x,z > = G we also have <x,a> = G and by the same
reasoning by which we concluded that W has no multiple edges, see p. |3k

we have immediately
ar(1—k)+l _ ar(J—f)—l 1
= r(-D = I mod d' where d' : = ofa)

—> r is coprime to d'

= <z >= <a> X
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Remark 2
If <z> = <a>, the quantifier V in the definition of E( &' ) may be

replaced by the quantifier 3. For suppose (u',v') e E( @' ).

Then I h,g ¢ G st u' = zh, v' = z8  and zlxzjhg—1 = I for some i,j .
1 1 r h' L. g'
Suppose also h', g' € G are s.t. u'=z ,v' =2z%,
h'  _h hh”!
Now z' =z = z =z
-l k
= h'h =z for some k ,

(The only case for which the last implication perhaps needs a word of
justification is when o(z) = p; then the centraliser CG(z) of z in G is
of elementary abelian type Vq' But <x,z > must generate G, which implies

that in fact q = p, and so CG(z) is indeed cyclic.)

So we have h' = zkh. Similarly g' = zeg for some L.

Thus

1B ke -i-t

h'(g')_1 = zkhg' z =z

Now remark 1 tells us that unless z generates a maximal cyclic subgroup
of G then ® ' is just a set of unconnected vertices: this does not interest
us. So we restrict our attention to those maps M for which the associated

class-triple (G, 2,d) satisfies one of:

)] G = PSLZ(p) for any prime p and d = p

i) a G

PSLZ(q), q odd, and d = é{q F1)

b) G = PGLz(q), any q, and d = (q 1)

I term the set of such M the category R' of ROAMs.
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I now prove that for any M € R!', its two associated graphs ® and

® ' are isomorphic.

Define the functions a¢: V( & ) + V( ®') and B: E( ® )+ E(®'")
by

o vg > z8 Vg €G
. h_g
B : (vh,vg) — (2 ,29) V(vh,Vg) el ® ).,
Now a clearly is well-defined and onto. But

| V( ® )] |G|/d

1

| v( @)

i1

|¢] = |G|/d (as C-(2) = <z> ),

Thus @ is a bijection.

Also B is well-defined (by remark 2) and is one-to-one (as o js). Clearly
B is onto, and so B is a bijection as well.

Thus @ (and B) provide a graph ismorphism between ® and ® ',

6. THE EQUALITY OF @' AND Y¥(G,%)

Taking up the situation at the end of §5, if we let M be a map in R

with associated class-triple (G, £ ,d) then we have defined for M a graph

@' isomorphic to the underlying graph of M .

For the same G and &, I define the graph Y(G,%) = Y by
V(¥) = 2
E(Y) = {@uv) € 2%:ow?d = olvud) = 2},

Then @' and Y have the same vertex set. We show that
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® ! = Y

in the following two cases:

8

D G=PSL(p),d=p

i) G

I

PGL.(q), d = (g3 1)
We do this by proving:

Theorem

Let (G, %,d) satisfy i) or ii) as above. Let (u,v) € 22.

Then (u,v) is an edge in ® ' if and only if (u,v) is an edge in Y.

Proof

(u,v)e E( @) *—:>u:zh,v:zg for some h,g € G s.t.

zlszhg—1 =1 for some L,j € Z mod d

= w? = h'lzhg'lzzg = h_l(zhg_lzzgh-L)h
= h i sz 2xadh
= (zjh)—l(zxzzx)(zjh)
But zxz2x = yxy_l, so
uv? - (y_lz,jh)—l(x)(y_lzjh)
= o(uvz) = ofx) = 2
Exactly analogously, o(vuz) = 2, and hence (u,v) € E(Y).
Now the valency of the vertices of ® ' is d, and so all we need do

to prove the inverse implication is to show that there are at most d
vertices adjacent to any vertex in ¥, in other words given any element
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v of % show that there exist at most d elements u of £ such that
o(uvz) =2 .

Clearly though, by conjugacy considerations in 2, the graph Y has constant

valency, so it suffices just to consider one particular v in 2.
I split the remainder of the proof into the two cases i) and ii).
i) G = PSLz(p) for some prime p and d = p.

There are exactly two conjugacy classes, £ and £' say, of elements of

order p in G, so strictly we have two graphs
‘1’ T = \Y(G’Q/) \P':: \{J(G’Qz')
to consider.
However all the elements of G of order p are conjugate under PGL2(p):

by conjugating the vertices of ¥ by an element of PGLZ(p)\PSL2(p) we

obviously have a graph ismorphism giving ¥ & VY'.

Thus we need only examine one of the graphs, take ¥ , and without

loss of generality we may let

be an element of ¢.

Letu = (r S ) be any element of & < G; this means
t w

1) rw - st = |

2) r+w = £2 .

-201-



We calculate
uv2 = r 2r+s
(t 2t+w>
Thus o(uvz) = 2 puts a third condition on u:
3) r+2t+w=20,

Trivially, if we set r + w = -2 in equation 2), we deduce from 1), 2)

and 3) that u must be of the form (for some r € GF(p)):

u=/r —r2—2r-1 )
1 =2-r

Similarly, if we set r + w = 2 in equation 2), u must have the form:

u=/r 2o - ( 1) B2 )
-1 2-r -1 2+(-r)
But as #I are identified in G, u as above has already been accounted

for.

Thus there are at most |GF(p)| = p = d elements u of & for which oluv?)

= 2.

i) G =PGL,(q), qodd, d =(qx D).

Let o be a primitve element of GF(qz), the field extension of GF(g). With-
out loss of generality we may assume that the following element v of

PGLz(qZ) represents % :
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(where B = oK and k = (q+1),(q-1) respectively as d = (g-1), (g+1)).

Let u = (r s) with 1) rw - st = B be another element of &, so in
t W

fact

2) r+w=z(B +1).

Note that if d|(q-1), we require the components {r, s, t, w} of u to

lie in GF(q) < GF(qZ). However if d|(q+1) we require:

w:rqB and t:—qu.
Now, uv2 = (r 82 s ) with determinant 83
2
tB W

so demanding that o(uvz) = 2 imposes the condition

3) r82 +w =0 .
As in the case 1) we may take just one sign in the RHS of 2):
r+wz= B+ 1

Then solving the system of equations 1), 2) and 3) we get

- B(B%B 4
(8 -1)2

r:—-g—-:*l—,w: B -1 y St =

(It is easy to check that if d|(q+1) then w = r9g)

and we conclude that the number of elements u of & such that o(uvz)
= 2 is given by the number of solutions for (s, t) above: clearly this is

at most d (as required) as long as
B2-g 414t 0,

So I set out to prove the last statement, by contradiction.
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O

Suppose 82 - B+ 1 .
Then B (1 -R) = |

% (B 0 ) € PSLZ(q) and has order 3 (as its trace 1s 1)
0 1-8

= 8 = -
= d = q3xl =6
éq = 7o0r 5 .

But we know (p.105) that there are no ROAMs M with automorphism group

G = PGL2(5).

Also there exist exactly two ROAMs M with G = PGL2(7), and it can
be shown that for both of these that d = &.
Thus, whatever our initial M , a contradiction is acquired.

o}
Now we have available the graph & ' isomorphic to the underlying
graph of M ¢ m; with class-triple (G, & ,d) (as described in §5) for the

case

|

G =PSL.(q@Q and d=3(q3l)

as well as those cases dealt with in the preceding theorem. But in contrast

to that theorem, in this instance

®@' + WG,e),

This will become evident in the next section, in which I consider ¥ (G, )

for the remaining (G,2) ¢ T.
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7. THE GRAPHS ¥(G,%) FOR (G,2) € T\'S

I remind the reader that

T:={(G,2):G = PSLz(q) or PGLZ(q) for some g, and & is a con-

jugacy class in G},
For given (G,%) in T, the graph ¥(G,%):= ¥ is given by
V(Y¥) = &

EY) = {uve £2: owv?) = ovud) = 2in G},
Also for given (G, % ), and supposing G is defined over the finite field

GF(q) where q = pS, let
G': = PGL,(Q) -

Then we may regard G < G'.

We may readily check that the subset S of T defined earlier is alternatively

expressed as

S:= {(G,%) : each element of & generates a maximal abelian

subgroup in G'} .

We know from the work to date that for all pairs (G, &) in S, ¥(G, )
is a VTIT (and further may be regarded as a ROAM). What can we say
for ¥(G, %) when (G,%) e T\S?

So fix (G,2) € T\Sand let v € &.

Suppose that o(v) = p. Then analogously to case i) in the proof of the

theorem in §6, we may take
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and then the elements of u of £ such that o(uv2) = 2 are given exactly

by the matrices of form

u = r —(r+l)2
I -2-r
where r is any element of GF(q),

Now
u‘ = -2r-1 2(r+1)2

-2 2r+3

from which it is easy to check that o(vuz) =2,

Thus, whatever the value of r, (u,v) is an edge in ¥ : we concude that
¥ has constant valency q.

Now given u adjacent to v, which u' € & are adjacent to both u and
v? Let

u' = s —(s+1)2

for some s € GF(q).

Then we calculate
tr(u‘uz) = 2(s—r)2 -2

and so u' adjacent to u implies
(s-)% - 1=0

= s=rsl.
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This means that the subgraph of ¥ induced by the set of vertices adjacent
to v, i.e. the span of v, Is a collection of pe_1 mutually unconnected
p-gons. The same comment, by conjugacy, is evidently true for any vertex
v of ¥.Now (G,2) ¢ S implies e > 1, and so ¥ is not a VTT and further-

more cannot be imbedded as a ROAM.

Suppose now that d : = o(v) divides (q F 1) (I take just the case d > 2).
Let Cv be the maximal cyclic subgroup of G' containing v: this will

be of order (g 7 1). Let a € G' be a generator of C,-

Now, analogous to case 1i) in the proof of the theorem in §6, we may

take

where B 1s the appropriate field element of GF(qz) with multiplicative

order d.

Then all adjacent u € £ must have the form

u = (8 -1)"! s
t -g4p-n7t
2
where st = - BB -B+l) |
(8-1)2

Conversely, all matrices of the said form must represent adjacent vertices
in ¥ : it is easily verified that o(vuz) = 2. The only point that needs a
little justification is that when d|(g+1), we require t = -s3B and so we
must have the equation

arl 8 2 gl
(8-1)2
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having roots for s.

To check that the roots exist we need simply show

B2 pet| Th
(8-1)°

in the multiplicative group GF(qz).

Now B = ocl(q_l) for some i € N, where a is a primitive element of GF(qz).

Thus

., 2 . .

(q"-q) (I-q9)  -ig-1 -1
g8 = la-a i q:al(q ):8

(3

So
(8-1)? (g9-1)2 (g~ l1?
2
= B - B+l as required ,
(8-1)%

Thus as long as d § 6 (and so (B 2 g4l 1 0),¥ has the constant valency

of q ¥ I. It is easily ascertained now that 1f u is one of the vertices

adjacent to v, then the set A of all vertices adjacent to v is given by
A = { alua' s = Oylyeeesg s 131 &

So if g is an element of G for which
u = 8—1"8

we have In fact

A = { a_lg_lvgai :1=0,l4egxll}.
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Fix W o= a—lg—lvga1 for some 1 € {0,1,...,q 51}
-1 -1 1 -1
w,=va g vgav .

2 _ -1 -1 -1.2 1 -
Then W w," =a ‘g vgvg vigav

1

which is conjugate in G to

-1 -1 41 -1 2
Vg vgv g vig

But u being adjacent to v in ¥ implies
o(vgulvzg) =2
-12 -1 -2 -1
= vg vVg=g Vv gv
_____> -1 -1 41 -1 2 -1 -1 -1 -1
Vg vgvy g vg=v g v gv
and the latter is conjugate to

-2 -1 -1
vigvog .

Thus (again as u Is adjacent to v)

o(w,w 5 o(g_lvgvz) = 2

2

and so W i1s adjacent to W, in ¥,

This evidently means that the span of v in ¥ contains (q 3 1)/d polygons
with d sides (such that each vertex in the span is contained in exactly
one of these polygons). As (G, 2) ¢ S, we know that d is a proper divisor
of g 1, and so we may (again) conclude that ¥ is not a VIT and cannot

be imbedded as a ROAM.
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8. TO CONSIDER THE CATEGORY B OF VTTs IN RELATION TO R
Let A be a graph in B. Then there is a prime p with 16|(p2—1) such that

G : = PSLZ(p), % is a conjugacy class of elements of order p in G and

[l
=

V(A)

{ (uv) € & oluv) = 2},

1

E(A)

Now in R there is exactly one map JM for which the associated graph

¥ has % as the vertex set. However the edge set E(V¥) is
2 2
E(Y) = {(uv) € 27 :o(uv?) = 2}
so evidently A + V.
However [ use this section to demonstrate that A is isomorphic as a

graph to ¥, and so (as VTT's) we may regard N\ and y as representing

the same map M.

Now it is clear that both the graph V¥ and the graph A formed from one
conjugacy class of elements of order p in G = PSLZ(p) is isomorphic to
the respective analogous graphs formed from the other conjugacy class
of ’elements of order p. Thus we may without loss of generality choose

% to be conjugacy class containing the element z of G, where

Let x be an involution in G such that
<x,z> =G and olxz”ly = 3

Such an element always exists in G.
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I now construct another generating pair of G.

The relevance of the condition 16|(p2—1) is that it guarantees (by the
quadratic reciprocity theorem) that square roots of two exist in GF(q),
one of which I shall denote by J2' (the other is then - /Z'). This means

that G contains the involution X where

x =[o 27!
_f? 0

\/_2_'_l we have

Also, letting 1 :

z_i = 1 —f?—l
0 1

and of course

oz = ofz) = p.

Now, taking the matrix product,

Xz_i:<0 \/_2_"1
-J2 1

H
—

= tr(’Xz_i)

= o(Xz) 3.

Thus (using the terminology of part 2 of chapter 3) both the G-triples
(x, xz—l, z—l) and (X, Xz, 27" have associated to them the same trace-

triple (0, 1, 2), and by a result in chapter 3 (p.120) we conclude

dc ePGLz(p) S.t.

1
and czc = z ,

-211-



[ now define the function f : G + G,
vg €G, fg) +— c_lgc

and from this I form the functiona: & > £ given by
Vg €G, o z8 zf(g).

(Note that Vj €Z mod p,

f(zig) = zjif(g)
j
= q:2z° 8 1®)

and so o is well-defined).

I will show that & provides us with a graph isomorphism between ¥ and

A

Firstly, from the trivial observation that c~1gc takes every value in G
as g is varied through G, we see that a is onto. Also, for a reason similar
to that showing a is well-defined, o 1is clearly one-to-one. It remains
to check that the induced function
2 . h_ g
B : E(¥) = &7 given by V(z ,z°) ¢ E(V¥),

B(z"28) — (a(zD), a(z8)

is in fact into and onto the subset E(/A) of the codomain. (That B is well-

defined and one-to-one is automatic from a having the same properties).

Now (by the proof of the theorem in §6) we have an alternative expression

for the set E(Y¥):
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E(Y) = {(uv) e RZ:EJh,g e G s.t. (u:zh,v:zg and

Phg_1 =D},

Ik,le Z mod p s.t. zkxz
. h_g h g
So when we consider B(z ,z°) for (z ,z%) € E(Y) we may assume that

zknghg—1 =1 for some k,L e Z mod p.

[ show that B(zh,zg) e E(A) by proving that

o(zf(h).zf(g)) =2

Now f(h)((g)~} - g ™he
= c—l(z_Exz_k)c
_ Z-Pix ki
and so
AW @~ ! 2 s ! 2ig)

= o M@y - o ! zemEe) o)

o(zkiX zXz 1-ki)

H

= oXz¥z) .
But, X z :( 0 /?“1)
7 "

and so

X222 = (-1 -1
2 +1

= tr(XzXz) = 0

# o(zf(h).zf(g)) = 2 as required.

Thus we have ascertained that B is into E(/A ). But we know that B is

one-to-one, so to prove that B is onto E(A) we need only show that
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| E(¥)] = |E(A)

But referring to Surowski's paper, we are told that A (like¥ ) has constant
valency p, and the above equality is immediate as the two vertex sets

are ldentical.

9. A NOTE CONCERNING OTHER GROUPS G

Of course there is nothing really inherently special to the automorphism
groups in the restricted ,])1; when using the techniques as described
in §4 to §7 (the same cannot be said for the argument of §8). It just
happens that this category of groups (i.e. PSLz(q) and PGLz(q) for all
prime powers q) gives some positive results as already shown, and are
the groups principally examined in this volume. But one can extend the
definition of the graph ¥(G,%) : = ¥ to any finite group G and conjugacy

class £ of G in the expected way:
The vertex set V(¥) of ¥ is given by the elements of £

The edge set E( ¥) of ¥ is given exactly by those pairs (u,v) € 82

for which o(uvz) = o(vuz) = 2 in G.

Now one can ask for which pairs (G, &) can we use an analogous method
to that we used for our limited case to deduce that Y(G, %) has a unique
triangular imbedding which is a ROAM (with automorphism group G)?

Let us call every pair (G, ) for which we can do this a solution (of the

method).

[ attempt here to determine the set of solutions by identifying it as
consisting exactly of those pairs (G, &) which satisfy some specific group
theoretic conditions depending only on G and % . To do this I first write

down a sequence of six questions 1) to 6) all of which involve map or
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graph properties allied to (G, %), and usefully summarises the different
components of the whole argument (which is done mostly at this level).
If for particular (G, ) the answer to each question is 'yes', this is suffi-
cient to guarantee the unique imbedding of ¥ as desired. We then translate
the map/graph theoretic conditions inherent in these questions into six

purely group theoretic conditions on (G, 2 ) which taken together are

equivalent. (The appropriate group theoretic conditions resulting from
the six map/graph theoretic conditions are already known, or at least

are evident, from our previous work).

The six questions involving map and graph properties allied to given (G,):

1) Does there exist a ROAM M such that M is given by a quadruple

(G,Qx, y) for which z : = y—lx is an element of 27

Assume for the other questions that the answer to 1) is yes, and that

M is any ROM satisfying the condition expressed in 1).

2)  Is M uniquely determined?

3)  Can the underlying graph & of M be described (in terms of an
isomorphic graph @' ) with the elements of & as the vertex set (as
in §5)7

4) Is the answer to 3) yes, and ¥= @' ? (c.f. §6)

5 Is () a VTT?

6) Is M reflexible?
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The Associated Conditions, on G and & for given (G, 2) to be a solution,

Let z be any element of %, and d : = o(z) >6.

1) There exist a pair (x,y) of elements of G such that

<xy> =G olx) = 2 ofly) = 3 y x=2z

2) The set of pairs (x,y) of G satisfying the conditions in 1) above

form a single class under Stab(z) in AutG.

3)  The centralizer CG(Z) of z in G must be the cyclic group generated
by z (in particular <z > £ G must be a maximal cyclic subgroup

of G.)
4) There exist at most d elements w in & for which o(wzz) = 2 in G.

5) If x is an involution in G such that <x,z> = G with o(xz—l) =3

and if i,j,k € Z,, then

AxxzKx = 1in G =>izjzkzz:lmodd.

6) If (x,y) is a pair of elements of G satisfying the conditions in 1)
above, then there exists an automorphism a of G such that

-1
o X X s oz oz

Evidently the above list form quite a formidable set of conditions to
check for any given (G, £) and I do not propose here to find more examples
that do give solutions. However I note that conditions 2), 5) and 6) are
of relevance only to ensure the uniqueness part of the imbedding: if
the pair (G, %) satisfies conditions 1), 3) and %), then ¥ can be imbedded
as a ROAM with automorphism group G but may have other triangular

imbeddings.

A final interesting note is that condition 2) in fact is redundant; if for
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a particular (G, 2) the conditions 1), 3), %), 5) and 6) hold, then 2) auto-
matically is satisfied. This then may be regarded as a purely group theor-

etic result. My proposition here may be justified thus:

Suppose there are two ROAMs M , M' both with automorphism group
G and associated values of z lying in & . Then the answer 'yes' to questions
3) and 4) imply the underlying graphs of M and M' are both isomorphic
to Y(G, £ ) and hence isomorphic to each other: but if for any one of
M or  M' the map is reflexible and its .underlying graph is a VTT, there

i1s only one triangular orientable imbedding for the latter and so necess-

1

arily M M ' contrary to our original stipulation. Hence if condition
2) is not satisfied, some other of the conditions must be not satisfied

as well.
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