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For any group P abstractly defined by some finite presentation, a 

method (called Hall's method) is known for calculating the number 

dy (c) of normal subgroups N of P for which the quotient group 

F / n is of some preset isomorphism type Go This technique is 

dependent on the knowledge of the Mobius function on the subgroup 

lattice of G. We apply this method by use of the following 

proposition: if T is any group with a finite 2—generator presentation 

and with relator set R, then d ̂  (G) gives the number of regular 

oriented hypermaps with automorphism group G which satisfy certain 

well-defined local properties determined by the relators Ro 

In chapter 1 we review the established theories of Hall's method 

and of regular hypermaps (including unoriented hypermaps) and 

discuss their relationship as above. 

In chapter 2 the function is calculated for G = P8L%(q) or PGL^(q) 

for any prime power q (extending an existing result for primes). In 

chapter 3 these results are applied to explicitly make some ' 

enumerations of various specific categories of regular hypermapso 

(However some other enumerations are made by a different method, 

based on traceo) 

Chapters 4 and 5 specialise mostly to triangular maps. Chapter 4 

examines the local properties of regular oriented triangular maps 

with automorphism group G = PSL^(q) or PGL^(q) for some q, in 

particular how to distinguish two such maps with the same auto-

morphism group. Chapter 5 describes how some of these same maps 

may be constructed in a different way, each one as the unique 

triangular imbedding of a graph with vertices defined as the elements 

of a particular conjugacy class in Go 



INTRODUCTION 

To s t a r t , I give a preview of t he descr ip t ion of t h e basic ideas which 

f o r m the mot iva t ion and founda t ion of all the subsequen t work. This 

is to give a precis of C h a p t e r 1, in which the group t h e o r e t i c c h a r a c t e r 

of maps is explained (by ideas mostly due to [ 12 ] )as is t h e role of Mobius 

inversion in our ca l cu la t ions (by ideas most ly due t o [ 7 ]). A f t e r this , 

I s u m m a r i s e the res t of t h e c o n t e n t in this thes i s , c h a p t e r by c h a p t e r . 

An o r i en ted map A is in tu i t ive ly thought of as a g raph 6 where each 

set of edges incident with a pa r t i cu l a r ve r t ex v in 5 is given a cyc l ic 

o rde r . (For our purposes, | 6 | is a lways f in i t e ) . C lea r ly to express all 

t h e s e cyc les in some single p e r m u t a t i o n z, this p e r m u t a t i o n must a c t 

on t he se t Q of directed edges (which we call d a r t s ) of iS. To give a 

unique descr ip t ion of then , it is ev ident t h a t we need only spec i fy 

a se t 9, of dar t s , and t h e p e r m u t a t i o n s x and z of 0 , where x is t he 

involut ion taking each da r t to t h e oppos i te da r t on t h e s a m e edge . The 

ve r t i ce s of G then can be thought of just as t he c y c l e s of z . An i somor-

phism of maps then is a b i j ec t ion b e t w e e n t h e r e s p e c t i v e se t s of d a r t s 

t h a t p re se rve both a d j a c e n c y and cycl ic order ing of da r t s a t v e r t i c e s . 

A regular map is one for which the a u t o m o r p h i s m group is t r a n s i t i v e 

on the da r t s . 

As one would expec t ( though of course it is t e c h n i c a l l y messy to reconc i l e 

t h e topology with t he a lgebra ic def in i t ion of a m a p as i n t i m a t e d above), 

it is possible to r ep re sen t A in some o r i en ted s u r f a c e $, and so we may 

regard A as an imbedding of t h e graph S in t h e s u r f a c e $. In th is im-

bedding, the cyc les of t h e p e r m u t a t i o n s y:=xz ^ desc r ibe t he ' f a c e s 

of t h e map ' in an obvious way . 



The actual definition of a map we use s p e c i f i e s ^ , x and y (rather 

than z). If we no longer constrain the order of x t o be two, the resultant 

broader de f in i t ion is t h a t fo r o r i en ted hype rmaps . (We also consider un-

oriented hypermaps, where we speci fy three permutations of order two 

ac t i ng on a given se t f j) . 

For o r i e n t e d hypermaps 9-C (but wi th analogous convent ions and p r e d i c a t e s 

for r egu la r unor ien ted hypermaps) we le t G:= <x,y> and label t h e hype r -

map "X by t h e quadruple (G, fi,x,y). We shall see t h a t if M is r egu la r then 

(i) G = Aut5-( 

(ii) if = (G, ^ ,x^,y^) is ano the r o r i en t ed hype rmap de f ined on 

the s ame se t ^ of d a r t s , t hen "H = if and only if t h e r e is 

a group au tomorph i sm a of G such t h a t 

a : X ^ and a : y y ^ 

In f a c t fo r any given f i n i t e group G, t h e r e is a c o r r e s p o n d e n c e b e t w e e n 

t h e regu la r o r i en ted hype rmaps wi th au tomorph i sm group G and the c lasses 

under AutG of gene ra t i ng pa i rs (x,y) of e l e m e n t s of G. We endeavour 

to count t h e s e c lasses . 

The t e c h n i q u e we use is one of me thod ica l exhaus t ion , ca l led Mobius 

invers ion. Suppose one has a s e t S of subse ts of a n o t h e r se t M fo r which 

M itself is an e l e m e n t of S (for example , M could be t he group G and 

S t h e se t of subgroups of G). Then the Mobius f u n c t i o n M as soc i a t ed wi th 

S is de f ined by 

W (M) = 1 

and all o t h e r values p(L) for L e S a r e def ined induc t ive ly by 

a 



/ L _ W ( N ) = 0 
LCN9M 

where the summation is over all e lements N of S that contain L, as 

subse ts of M. Then it is soon ev iden t t h a t if a , c p : S a r e f u n c t i o n s 

such t h a t V N e S 

o(N) = / (p (L) 

LSN 

then cp(M)= / j ^ ( L ) o ( L ) 
LcS 

For e x a m p l e , we have a s s o c i a t e d for t he group G a Mobius func t i on 

y de f ined on the se t of subgroups of G. This f u n c t i o n depends en t i r e ly 

on t h e subgroup s t r u c t u r e of G; if th is is known, M can be c a l c u l a t e d . 

Now if we le t fo r each subgroup H of G. 

2 

a (H) = t he t o t a l number of pa i rs of e l e m e n t s in H = | H | 

and cp (H) = t he number of gene ra t i ng pairs of e l e m e n t s in H 

then 

and so we have the number of regular o r i en t ed hypermaps wi th a u t o -

morphism group G equals 

i2 1 _ ^ W(H)|H| 

To d e t e r m i n e t h e number of t h e s e t h a t a r e in f a c t maps we go through 

the s a m e process e x c e p t w e cons ider pai rs (x,y) of group e l e m e n t s wi th 

o(x) = 2; we can f u r t h e r e n u m e r a t e o the r d i f f e r e n t types of o r i en ted 

h y p e r m a p by imposing varying re l a t ions t h a t t he pa i r s (x,y) we a r e coun-

t ing must s a t i s f y . The philosophy is t h a t t he d i r e c t ca l cu la t ion of t he 

t o t a l number of pairs (x,y) of e l e m e n t s of a group sa t i s fy ing some spec i -

f i ed r e l a t ions is f a r ea s i e r in genera l than t h a t just fo r t he g e n e r a t i n g 

pa i rs of t h e s a m e sor t . Once t h e Mobius func t ion of a group G is known, 

iii 



Mobius inversion c lear ly b e c o m e s a very powerful t oo l . 

In Chapter 1, I present the ideas and techniques as described above 

in more de ta i l , in a sl ightly m o r e gene ra l sp i r i t . H o w e v e r the r ema inde r 

of t h e work a lmos t exclus ively deals wi th regular h y p e r m a p s (both or ien-

ted and unor iented) with a u t o m o r p h i s m group G of isomorphism type 

PSL2(q) or PGL2(q), de f ined over t he f i n i t e f ie ld GF(q) for some pr ime 

power q. In f a c t t h e d i s s e r t a t i on could be r e g a r d e d as predominant ly 

being just a study of t h e s e groups , ' d ressed ' in the t e rminology of maps. 

C h a p t e r 2 comple t e ly d e t e r m i n e s t he Mobius funct ion for all groups 

PSL2(q) and PGL2(q), q some p r i m e power . It involves an intricate examin-

a t ion of t h e subgroup s t r u c t u r e s , and e x t e n d s a r e s u l t in [ 7 ] fo r which 

answers fo r PSL2(p) fo r any p r i m e p are a l ready given. 

In C h a p t e r 3 e n u m e r a t i o n s of c e r t a i n c a t e g o r i e s of regular maps and 

hype rmaps with au tomorph i sm group G, fo r G any PSL2(q) or PGL2(q), 

a r e made . This is done in t w o sec t ions : t h e f i r s t s e c t i o n fol lows exac t ly 

t he me thod of Mobius invers ion as a l ready desc r ibed , but the e n u m e r a -

t ions in t h e second sec t ion a r e done not r e f e r r i n g to Mobius inversion 

( the use of which in t h e c a s e s dea l t wi th would be ine f f i c i en t ) . The 

l a t t e r e n u m e r a t i o n s coun t t h e numbers of h y p e r m a p s (G, ^ ,x,y) with 

spec i f ied o rders for x, y and z:=y ^x. They a r e a c h i e v e d by developing 

the resu l t s in an exis t ing paper [ 14 ] which a l r e a d y explores t h e pairs 

of e l e m e n t s (x,y) of G with given values of order f o r x,y,z wi th r e spec t 

t o t he i somorphism type of t h e subgroup of G g e n e r a t e d by x and y. 

(It is in th is sec t ion t h a t t h e t r a c e of t he e l e m e n t s of G, thought of 

as 2x2 m a t r i c e s , is f i r s t used: t r a c e is o f t e n a very useful tool when 

examining G because of t h e near c o r r e s p o n d e n c e of t h e se ts of e l e m e n t s 

shar ing t h e s a m e value of t r a c e and t h e con jugacy c l a s s e s in G.) 

iv 



In C h a p t e r 4 we consider t he p rob lem, how given t w o non- isomorphic 

oriented hypermaps 

'H := (G, f2,x,y) 

(G^, with G^ = G 

can one find a 'difference' be tween the two; this amounts to finding 

a re la t ion sa t i s f i ed by the pair (x,y) in G not s a t i s f i e d by the pair (x^,y 

in G^ (alternatively this may be thought of as f inding relations that 

a r e not mutual ly shared in two non-equ iva len t 2 - g e n e r a t o r p r e s e n t a t i o n s 

fo r G). For s impl ic i ty , 1 r e s t r i c t my a t t e n t i o n to t h e most in t r ins ical ly 

in te res t ing subca tegory of hype rmaps , t h a t of t r i a n g u l a r maps v4, and 

endeavour to cons t ruc t an a lgor i thm which s y s t e m a t i c a l l y p roduces , 

given A : = (G, 0 ,x,y), t he r e l a t i ons sa t i s f i ed by x and y in G. This is 

e f f e c t i v e l y done by examining t h e t r a c e of all t h e words in x and y. 

Also I show, given the p r ime power q = p^, how t h e s e t { regula r o r ien t -

ab le t r i angula r maps (RO A Ms) wi th a u t o m o r p h i s m group PSL2(q) or 

PGL^Cq) 1 may be c h a r a c t e r i s e d by the s e t of i r r educ ib l e polynomials 

of deqnse e over GF(p). Using this, I discuss how w e might identi fy the 

ROAMs -li = (G, n,x,y) wi th au tomorph i sm group G i somorph ic to PSL2{q) 

or PGL2(q), for some power q of a f ixed p r ime p, f o r which a pa r t i cu l a r 

r e l a t i on holds for x and y. Examples a r e g iven. 

Final ly , in C h a p t e r 5, I con t inue my spec ia l i sa t ion t o ROAMs by f inding 

a l t e r n a t i v e cons t ruc t ions for s o m e of t h e ROAMs M wi th au tomorph i sm 

group G s PSL2(q) or PGL2(q), some q. We form t h e g raph Y(G, 2 ) := Y 

w h e r e I is any conjugacy c lass of e l e m e n t s of G by s e t t i n g 

t h e ver tex se t V( Y) as t h e se t of e l e m e n t s in I , 

2 

t h e edge se t E( Y) as e x a c t l y t hose pairs (u,v) e I fo r which 

o(uv^) :: o(vu^) = 2 in G. 



Then we find, if the pair (G,&) sat i s f ies one of 

(i) G = PSL2(p) for some p r ime p, and t h e e l e m e n t s of £ have 

order p in G 

(ii) G s PGL2(q) for any q, and the e l e m e n t s of H have order 

(q +1), 

t h a t Y has a unique o r i en t ab i e t r i angu la r imbedding and this is a ROAM 

wi th au tomorph i sm group isomorphic to G. 

VI 



CHAPTER 1 

PRELIMINARIES 

I expound the founda t iona l t heo ry and es tab l i sh t he broad t echn iques 

which govern t h e approach of much of t h e work in the thes is . I also 

give many no tes which give example s , se t a b roade r c o n t e x t , or explain 

impl ica t ions inc iden ta l t o t he c e n t r a l discussion. 

1. MOBIUS INVERSION 

L e t P be a f i n i t e pa r t i a l ly o rde red se t wi th o rder ing >. Le t a , cp be f u n c -

t ions with domain P, codomain IR such t h a t Vp e P 

o(p) = 9(q) . 

Thien q)(pO = Up((q,p) o((q) (1) 
P 

1 i.t. <}Sp 

where y p is a f u n c t i o n a s soc i a t ed wi th P ( independent of a or cp) 

y pi {ordered pairs (a,b) i n P : a ^ b } ^ Z 

de f ined by: 

Va E P, yp(a,a) = 1 

then for f ixed a e P, yp(a ,b) is de f ined recurs ive ly for ait a by 

*£ Pt.l. 

yp(a ,x ) = 0 

The func t i on y p is ca l led t h e Mobius f u n c t i o n of P; t he process of 

f inding a single value cp(p) in t e r m s of a and Pp is ca l led Mobius inversion, 

and the express ion (1) is ca l led t h e Mobius f o r m u l a . Its t r u t h is t r ivial ly 

seen by subs t i tu t ing / cp(r) for o (q) fo r each q in t he s u m m a t i o n . 
r s.V. 

- 1 -



This desc r ibes Mobius inversion in t h e broades t app l i cab i l i ty of t he con-

c e p t fo r f i n i t e sys t ems ( excep t t h a t t h e c o d o m a i n R of a , cp may be 

r e p l a c e d by any in tegra l domain con ta in ing the r a t iona l s ) . We now spec ia l -

ize to l a t t i c e s . 

Defini t ions 

Le t P be a pose t , le t T be a subse t of P. Then let 

M = (m G P : m < t fo r every t e T } 

J = {j £ P : j ^ t fo r every t e T } . 

If (M;3) is non-empty and con ta in s a ( g r e a t e s t ; least) e l e m e n t (m' ; j ' ) 

then is called the (meet ; join) of T in P. (The is feofl 

Ir^ taking ConsistsrAS^ eltket- i k e ^ivst or S€COni erct«-y In. aack lrro.cke"t). 

If eve ry subse t T of P has both a m e e t and join, then P is a l a t t i c e . 

In p a r t i c u l a r P must then have a single g r e a t e s t and a single l eas t e l e -

m e n t (consider T = P). 

Mobius f u n c t i o n s of l a t t i c e s have been examined by combinlatorai is ts , 

fo r e x a m p l e [ I ] . An e l e m e n t a r y gene ra l resul t is 

Proposition 

If P is a l a t t i c e and p e P then 

Mp(q,p) :{: 0 = ^ q = p o r q i s t he m e e t of a subset of 

{ r e P : r < p s . t . ^ s e P s . t . r < s < p} 

(In f a c t we may relax condi t ion t h a t P is a l a t t i c e , we only need exis-

t e n c e in P of mee t s ) . 

Now the subgroup s t r u c t u r e of any group G is a l a t t i c e , order ing given 



by inclusion, meets by intersect ions, joias by subgroups generated by 

unions. So we may talk of finding the Mobius funct ion of G, by consider-

ing its subgroup l a t t i c e P. But f o r groups we shall slightly adapt (in 

f a c t r e s t r i c t ) t h e de f in i t ion of Mobius func t ion ; we shall now mean a 

f u n c t i o n : {subgroups of G} given by: 

W (_(H) = Wp(H,G) VH $ G . 

(Note t h a t if is known for eve ry subgroup H of G, then t h e c o m p l e t e 

Mobius function of the la t t i ce P is known.) 

We have immed ia t e ly f r o m the propos i t ion: 

Corollary 

If G is any group, then VH $ G 

]_t^(H) 0 = G or H is t he i n t e r s e c t i o n of max ima l sub-

groups of (is 'max in t ' in) G j 

So in calculating we need only consider the lat t ice of maxint sub-

groups of G. This obse rva t ion is c ruc ia l to my ca l cu la t ions of y ^ for 

expl ic i t G. 

Most of t h e r e s e a r c h conduc t ed on Mobius inversion has been conducted 

in the language of l a t t i c e t heo ry , resu l t s c o n c e n t r a t e d on c lasses of 

l a t t i c e s s a t i s fy ing c e r t a i n s t rong condi t ions . The (maxin t ) subgroup l a t t i c e 

of a group G (especia l ly those wi th a ' l a rge ' s imple group as homomorphic 

image) t ends to be c o m p l i c a t e d wi thou t (overall) fol lowing a d iscernible 

p a t t e r n , and then t h e s e resu l t s s e e m to be of l i t t l e use. So then the 

only way of es tabl i sh ing y ^ is t o t r e a t t he max in t l a t t i c e 'by hand' , 

i .e . ca l cu la t ing y ^ ( H ) for H < G only when y Q(K) is known VK ^ G 

s . t . H < K $ G. If t h e l a t t i c e is known, this of course can a lways be 



done, be it t ed ious . 

Not a g r e a t deal of work has been done on t h e Mobius func t ions of 

groups; P. Hall [ 7 ] was m o t i v a t e d to consider t h e m by their appl ica t ion 

in enumerating generating n-tuples of certain types of e lements in G 

(which was in e f f e c t also my motivation and will be explained in the 

next section). Hall (paragraphs 2.7 and 2.S) f inds a general expression 

fo r iJQ f o r those yroups G" wkose Syfow a r e aPE -conjugata 

(wk'icK t k e r e ^ o r e covers f in i t e niPprfteat g roups , Iry C2II 8.6 and. 

I ' .3 ) ; this genera l express ion is possible by the highly s t ruc -

tu red n a t u r e of t he se groups . He p roceeds to g e t resul ts fo r PSL2(p), 

for p any prime. A more recent paper is [ 13 ], which appeals much more 

t o combina to r i a l theory: it uses t he Burnside ring theory of groups to 

red iscover t h e resu l t fo r n i lpo ten t groups (proposi t ion 2.4). It ex tends 

this to deal wi th all soluble groups ( t h e o r e m 2.6), bu t to apply t he resul t 

fo r any p a r t i c u l a r group is a l r eady qu i te involved. The resu l t s in [ 1 3 ] 

depend heavi ly on the normal subgroup s t r u c t u r e of the groups they 

consider and so the i r t echn iques a r e unlikely to f ind much appl icabi l i ty 

for non-cyc l ic s imple groups, with which my r e s e a r c h is largely involved. 

I quo t e f r o m t h e paper : 

'Thus, c o n t r a r y to t h e c a s e of soluble groups, t h e behaviour 

of t h e Mobius f u n c t i o n of s imple groups seems m o r e d i f f i cu l t 

t o unde r s t and . ' 

Example 

This e x a m p l e is a t r iv ia l c a l cu l a t i on of t h e Mobius func t i on of a simple 

l a t t i c e , bu t it also may be r ega rded as a p re l imina ry resul t f o r we shall 



of ten make use of it. (It occurs in paragraphs 2 .5 -2 .6 of [ 7 ]). 

(a) The Boolean lat t ice 

Let G be a set of n objects , L the lat t ice of all 2" subsets (ordering 

by inclusion). Le t A,B e L s . t . A c B and | A| = a, |B| - b. 

Then k: = b - a 0 and 

W ^(A,B) = (-1)'" . 

For all c E N s.t . a < c ^ b, A is contained in exact ly f c > a ] se t s 

in L of order c and so (using induction on k having f ixed A) 

' k \ / k ' 
1 - k 2 / - I 3 / + ... + (-1)*^"^ k + ^^(A,B) = 0 

and t h e resul t is ev iden t by comparing t h e l e f t - h a n d side wi th 

t h e binomial expansion of (1-1)^. 

(b) L e t n be any na tu ra l number, and L be t h e f i n i t e l a t t i c e of sub-

groups of which con ta ins i ts subgroup X of index n. Deno te 

W ^ ( X , C J by ^(n) . 

The max ima l subgroups of C ^ in L a r e t h o s e with p r i m e index 

t h a t divide n, and intersect ions of t he se h a v e s q u a r e - f r e e index, 

h e n c e 

y(n) = 0 if n has a square divisor . 

If n is s q u a r e - f r e e , L is a Boolean l a t t i c e on its p r ime divisors, 

and so 

w(n) = (-1)^ 

w h e r e k is t he number of p r ime divisors of n. 

Of c o u r s e we spec i fy 

y (1) = 1 
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We have in fac t just recovered (in the c o n t e x t of a latt ice) the 

'classical' number theoret ic Mobius function : N 2" defined 

by 

M(1) = 1 , t hen induct ive ly / y (m) = 0 . 
rt\ 

«t n 

This f u n c t i o n will appear p rominen t ly in our resul t s , and we shall 

keep to the convention that a function denoted without a subscript 

will r e p r e s e n t this c lass ica l , r a t h e r than any o t h e r , Mobius func t ion . 

I shall also refer to the la t t i ce L as above (or one isomorphic to 

it) as t he n u m b e r - t h e o r e t i c l a t t i c e on n. 

2. APPLICATION OF MOBIUS INVERSION TO ENUMERATION OF 

NORMAL SUBGROUPS 

In applying Mobius inversion to groups G we are i n t e r e s t e d in any pair 

of f u n c t i o n s a , cp on the subgroups of G s . t . 

(G) = ^ cp(H) a' 

The mos t obvious c a n d i d a t e s a r e number of n - tup les of a c e r t a i n type 

in H fo r a , and number of g e n e r a t i n g n- tup les of t h e s ame type in H 

fo r cp. We now exploi t t h e idea , being more explicit . 

The method we desc r ibe below is en t i r e ly due to Hall [ T ], and we 

shall cal l it Ha l l ' s m e t h o d . The method is for finding t he number dp(G) 

of normal subgroups of a f in i t e ly p r e s e n t e d group F wi th spec i f i ed quo-

t i e n t type G. 

Definit ion 

Le t H be any group, and T have f i n i t e p r e s e n t a t i o n P 

r S P = , , . . . , X : R , , . . . , R > . 
I n r m 

Then a P - b a s e of H is a n - tup l e of e l e m e n t s of H which s a t i s f y t he 

r e l a t ions R^ to R ^ and g e n e r a t e H. 



Suppose P is f ixed. Let 

cp p(H) = # P -bases of H . 

Then c lea r ly cpp(H) = # ep imorph i sms p : T ^ H and so is independent 

of t h e pa r t i cu la r p r e s e n t a t i o n P chosen fo r r , and so the func t ion : = (p 

on all groups H is we l l -de f ined . 

Now 

Y 
(i) 3 N <3 r s . t . 5 G 3 epimorphisnn p : T G with kernel N 

(ii) two epimorphisms P and P have t h e kernel N if and only if 

p = p o a where a e AutG 

n o n -

(iii) V^epimorphisms P and a E AutG, 

P o a P . 

We conc lude 

Vp(G) 

^ I AutG I 

Now let 

Op(H) : = # n - tup les of e l e m e n t s of H wh ich sa t i s fy to R 

but do not necessa r i ly g e n e r a t e H (this is also i ndependen t of p r e s e n t a -

t ion of r) . I ca l l t h e s e n-tuples T-s t r ings of H. 

Then 

o p(G) - 2 9 p(H) 
Hi & 

and Mobius inversion gives 

cpp(G) = y p^(H) Op(H) , 

H^G 

So if the Mobius function and a^(H) are known VH -$G, as well 

as I AutG I, then d^(G) is d e t e r m i n e d . 
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Notes and Examples 

1) If G is non- t r iv ia l and s imple , then the n o r m a l subgroups M of 

p 

r s . t . E G (i .e. t hose groups coun ted by d^(G)) a r e max imal 

in t he normal subgroup l a t t i c e of T. 

2) If r is f r e e of rank n, and M < r s .t . 

^ = G (some group G) 

t hen M is f r e e of rank (n-1) | G | + 1. This is by the Nie lsen-Schre ier 

t h e o r e m . (See e .g . p.16 of [ 1 0 ] ) . 

Should we wan t to e n u m e r a t e t h e normal subgroups of f of rank 

m, we could do so if we knew d ^ G ) for all groups G of order 

g : = (rather amb i t i ous for mos t values of g!) by summat ion 

of t h e s e d p(G). But of c o u r s e if g happens t o be pr ime this process 

b e c o m e s somewha t t r iv ia l , and in t h e spir i t of an example of Hal l ' s 

me thod I p rove a r e su l t (easi ly proved by o the r a rguments ) : 

Theorem 

If r is t he f r e e group of rank n, and 

m = p(n- l ) + 1 f o r some p r i m e p 

t hen the number N of no rma l subgroups of T which a r e f r e e of 

rank m is 

Proof 

The only group G of o rder p is t h e cycl ic group C . Its Mobius 

f u n c t i o n is 

and o p(Cp) = p , cr p(I) = 1 , 



Mobius inversion gives 

(p r ( c ) ^ p " - 1 

and AutC = p - 1, so 
I pi 

n 

P' " P - 1 
N = dp(C_) = ^ 7 

• 

3) If r is f r e e of rank n, i .e . we a r e coun t ing n- tup les of e l e m e n t s 

in G with no re la t ions , then Hall denoted d (G) by d^(G) and ob-

served t h a t d^(G) is t h e g r e a t e s t number d fo r which the d i rec t 

product of d groups isomorphic with G can be generated by n e le -

ment s . This func t ion (consider group G f i x e d , vary n and r e d e n o t e 

again to d^(n)) is in t r ins ica l ly r e l a t e d to t h e g r o w t h s equence g^(d) 

of G def ined by 

g^(d) = t he order of t h e min imum g e n e r a t i n g set of t h e d i r ec t 

p roduc t G^ fo r d e N 

^ ucLci mines g ^ (and v i c e - v e r s a ) , but in p r a c t i c e 

and was s tudied by Wiegold in a se r ies of p a p e r s ,M] 

The func t ion d ^ d e t e r 

t o c a l c u l a t e g ^ f o r a p a r t i c u l a r d e N us ing d ^ is c u m b e r s o m e 

unless we a l ready know c lose bounds for g^(d); this is wha t Wiegold 

provides . For example , if G is a non-abe l i an 2 - g e n e r a t o r s imple 

group, Wiegold [ M ] i d e n t i f i e s g^ (d ) to be o n e of t h e two in teger 

values { m, m + l ) lesser than and n e a r e s t t o log | Q | d + 3; to 

dec ide be tween m and m + 1, c a l c u l a t e d ^ ( m ) ; if th is resu l t yields 

d ^ ( m ) < d 

we conclude t h a t g^(d) = m + 1; o t h e r w i s e g ^ ( d ) = m. 

4) Another example of Hal l ' s m e t h o d . 

I r ecove r a resul t (proposi t ion 2.8) in [ 13 ] wi th a n e a t e r proof . 

It can also serve as a check fo r c a l c u l a t i o n s of Mobius func t i ons 

of groups. 



Proposit ion 

If G is any non-cycl ic group, then 

| H | y ^ ( H ) = 0 . 

Proof 

For using Hal l ' s me thod , let F = . Then V H ^ G 

a p(H) =|H| , 

cp p(H):= # g e n e r a t i n g s ingle tons in H = 0 iff H is n o n - c y c l i c . 

The Mobius inversion f o r m u l a now i m m e d i a t e l y gives t h e r e s u l t . 

3. GROUP THEORY OF REGULAR MAPS AND HYPERMAPS 

The t h e o r y ( for maps , and a lso in a t e n t a t i v e way fo r hypermaps ) is 

c e n t r a l l y involved in c o n s t r u c t i n g a lgeb ra i c d e f i n i t i o n s which co r respond 

t o t h e vague not ion of a ( h y p e r ) - m a p being a ( h y p e r ) - g r a p h imbedded 

in a s u r f a c e $. I dea l wi th the t w o cases , 

(i) t h e o r i e n t a b l e c a s e w h e r e we r equ i re $ t o be o r i e n t a b l e . 

(li) t h e ' n o n - o r i e n t a b l e ' c a s e , whe re t h e r e is no such r e s t r i c t i o n on 

$ (but $ may st i l l be o r i en t ab l e , however giving d i f f e r e n t de f in i t ions 

t o (i)). 

(i) The Orientable Case 

Def in i t ions 

By an o r i e n t e d map Ji we mean a se t 0 wi th p e r m u t a t i o n s x, y of 0 

s . t . both 

1) = I ( the iden t i ty of ) 

2) G : = gp <x,y > is t r a n s i t i v e on 0 . 

We d e n o t e by t h e quadrup le (G,f2,x,y) . 
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We call the e lements of the darts of /!.. The cyc les of darts of x, 

y and z : = y (i.e. apply the permutation x, then y are cal led the 

edges , f a c e s and v e r t i c e s of Ji r e spec t i ve ly . 

F r o m now on and up t o t he s t a r t of c a se (li) I shall o f t en a b b r e v i a t e 

' o r i en t ed map ' t o just ' m a p ' . 

A morphism cp from one map : = (G^, x^, y^) to ano the r map 

: = (^2' y2) is a pair of functions ( a,T ) 

O : 

where a is the group homomorphism given by 

a ( x p = X2 cr(y^) = y2 

and T s a t i s f i e s Vg e G ^ a e 2̂̂  : 

T ( g a ) = ( a g ) ( T a ) . 

(No t i ce t h a t for an a u t o m o r p h i s m of a map / t t h a t a is t h e iden t i ty 

a u t o m o r p h i s m of G; I will jus t denote it T as a p p r o p r i a t e . ) 

In [ 12 ], which gives a c o m p r e h e n s i v e discourse on t h e basis of t h e r e l a -

t ionship be tween groups and maps , a map as de f ined above is an a lgeb ra i c 

map (AM). The paper also d e f i n e s a s t r u c t u r e c a l l e d a topologica l map 

(TM); wi thou t going in to t h e i n t r i c ac i e s of t h e de f in i t i on , it is a c o n n e c -

t ed loca l ly - f in i t e 1 -d imens iona l s impl ic ia l complex ^ in IR^ imbedded 

homeomorph ica l ly in to an o r i en t ab l e s u r f a c e $. (S t r ic t ly speaking we 

should allow in § ' loops ' , i .e . topologica l c i r c l e s w i th a given single point 

cons ide red as a 0 - f a c e . Also we should spec i fy a s u b s e t V of t h e 0 - f a c e s 
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of S ; the 0- faces not in V identify 'free edges' , i.e. 1-simplices (non-

loops) we shall consider as only having one v e r t e x in the underlying 

graph of § .) 

Now given "Y e TM, it can c lear ly be ident i f ied with an a lgebraic map 

(G, fi,x,y), call it AM(°r), given by ( a s s u m i n g kare V Kas no Eoops) 

^ = { p a i r s (e,v) : e is a 1-simplex in § , v e V and e H v = v ] 

X : (e,v) f (e,v') if v' £ V 

(e,v) if v' i V 

where v' is the 0 - f a c e of e o ther than v. 

- 1 

y : = z X 

where 

z : (e,v)^-> (e',v) 

and e' is de t e rmined as the ' nex t ' 1-s implex f r o m e following the o r ien ta -

tion around v in $. (A sfigkt easy oiap^'oa IW ie|in."iti<3ns Si and-

X is neeAaA to AM ( T ) T kas foops ) . 

[ 12 ] f u r t h e r showed (given some f in i t eness condit ions) t h a t every Ji 

e AM is isomorphic to A M ( T ) for some T e TM, and tha t (with the rule 

of isomorphism for TM as given in t h a t paper): 

in TM ^ AMCT^) = AM(T^) in AM . 

Thus we may sensibly iden t i fy .At with the app rop r i a t e V e TM and def ine 

the genus g of A. as tha t of t h e s u r f a c e $ assoc ia ted with T . 

For s implici ty I shall r e s t r i c t my a t t e n t i o n f r o m now on to f in i t e maps, 

i .e. I I is f in i t e ; the last pa ragraph is then valid. (In f a c t all the maps 

re levant to my ca lcula t ions will be f in i te . ) 

- 1 2 -



We now proceed to isolate a group associated with each map So 

suppose /{, : :: (G,0 ,x,y) is given. 

Let o(y) = n and r(n) be the free product C , i .e . 

r(n) : = gp < X,Y : . V" = I > . 

Then clear ly 3 epimorphism p : r(n) G given by: 

P : X"-*- X , P : Y'-*' y 

and determines the group K < r(n), the kernel of P . 

However for our purposes it is not so much K that will interest us but 

the set & of subgroups of r(n): 

^ : = : a £ and = p ^ ( F i x ^ ( a ) ) j vWe 

As G is transitive on 0 , the M will be mutually conjugate in r(n); 

conversely given E & , all conjugate groups in r(n) must be the stabi-

i izer under p of a da r t , and so also be in & . Thus & is a conjugacy c lass 

of subgroups of iXn). Note that 

K M , I.e. t he co re of & . 

We call any M e £ a map-subgroup of Ji. The definition I use here 

is not the same as t ha t found in [ 11 ]. In the l a t t e r a map subgroup 

M is a subgroup of the triangle group 

r(n,m) : = gp < X, Y : X^ = V" = (Y '^X)^ ^ I > 

where m = o{z) in G. M is then the inverse image of a stabil izer of 

a da r t under the obvious epimorphism r(n,m) —^G. 

Essent ial ly the d i f ference is t ha t in 'my' def ini t ion the information 

o(z) = m 
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IS contained in the map subgroup itself , whereas this alternative has 

the s ame in format ion in the 'sponsoring' group. The role of the two 

though in describing any par t icu la r map is e f f e c t i v e l y ident ical . 

It is easy to see t h a t any two maps with map-subgroups in the s ame 

r(n) and con juga t e in t ha t r{n) must be i somorphic ; also t h a t every 

subgroup in any r ( n ) is a map-subgroup of some m a p (see [ !2 ] p.283-284). 

Thus Vn e N we have a b i jec t ion be tween 

{ conjugacy c lasses of subgroups of r(n) s . t . no non-t r ivia l power 

of Y is conta ined in the i r co re K } 
and 

{ maps A s . t . o(y) = n } . 

Now I de f ine regular i ty for maps: 

a map A is regular if Aut(A) a c t s t rans i t ive ly on ^ 

and s t a t e a resul t (Theorem 6.3) in [ i l ], reproducing t h e proof: 

Proposition 

A is regular if and only if i ts map-subgroup M is a normal subgroup 

of r(n) for su i table n. 

Proof 

(i) Le t A be regular , and g e F ix^ ( a ) for some a e . For any 

T E Aut(J4), 

TQso) = g ( ? a ) 

x a = g( x a ) 

g f ixes x a and as Aut( / t ) is t r a n s i t i v e on ^ , g f ixes 

every da r t 

g = I F ix^(c t ) is t r iv ia l 

=4> M = K ^ r ( n ) (K as before) 

(ii) Suppose map JA, has map-subgroup M ^ r(n). Then M = K and 

FixQ^ a ) is t r iv ia l . Then the pe rmuta t ions x ^ 0 indexed 
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by t h e e l e m e n t s h of G given by 

T ^ : go(i-+ gh a ( a some f ixed d a r t , Vg e G) 

a r e we l l -de f ined and a u t o m o r p h i s m s of 71 (and evident ly t h e only 

a u t o m o r p h i s m s of A ) . 

In pa r t i cu l a r Vh e G 

T , : a h a 
h 

and so Aut ( / t ) a c t s t r ans i t i ve ly on 2̂ . 
• 

Corollary 1 

A is regular Aut Ji=G~ M 

Note 

If Ji is r egu la r , all t h e cyc l e s of y ( faces ) in ^ mus t in t h e m s e l v e s be 

mutual ly c o n j u g a t e in , and so have equal l eng th - o(y) = n. We say 

A is regu la r wi th n-gonal f a c e s . Similar ly t he cyc les of z (ver t ices ) 

will be equa l in length (m say), and we say Ji has valency m. These 

of course cor respond to t h e a c t u a l p rope r t i e s of t h e re levan t topologica l 

map when though t of as a g raph imbedded in a s u r f a c e . 

Corollary 2 

Let G be any given f i n i t e group, le t n e N. 

The number of r egu la r o r i e n t e d maps (ROMs) Ji with n - g o n a l f a c e s 

s . t . AutvA s G equa l s t h e number of t o r s i o n - f r e e normal subgroups M 

of r(n) s . t . ^ = G . 

(Clear ly if G is non-cyc l i c and n is p r ime , t he condi t ion ' t o r s i o n - f r e e ' 

b e c o m e s vacuous.) 

In t h e p reced ing sec t ion we gave a p rocedure which enables us to c a l c u -

l a t e th is number f o r t h e c a s e in pa ren thes i s , th is be ing dp^^^(G). However 

t h e me thod easi ly e x t e n d s to all c a se s : we simply t a k e a to be 
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o = # pairs (x,y) in H s . t . o(x) = 2, o(y) = n 

(rather than number of pairs (x,y) in H s.t . = y" = I), and proceed 

e x a c t l y as b e f o r e t o obta in resu l t d'p^^^(G) say r a t h e r than d 

•tKe map fivAare, fla w e t p T M 'S rgg&nWl a s en i t ie f ip) 

We need the distinction because Vr(n)''^may be considered as a universal 

covering map of n-gonai maps (c . f . p.283 [ I I ] ) : if we took into account 

pairs (x,y) of G with o(y) : = d strictly dividing n, we would also be 

count ing quotient maps wi th d-gonal f a c e s . 

C lea r ly to e n u m e r a t e aJJ_ ROMs with au tomorph i sm group G we may 

sum d' over all na tu ra l numbers n. But it is usually more e f f i c i e n t 

to use the same sort of techniques to get the result directly as now 

expla ined . 

re-The map-subgroup M (I r(n) is not t he only g r o u p - t h e o r e t i c way to 

p r e s e n t a map VI : = (G, f i ,x ,y) . For le t ( for now) T be t he group 

r : = gp < X,Y : = I > 

and form t he ep imorph i sm p : T -> G by 

X"-*- X , y . 

Then in t h e s a m e way as before we may a s soc i a t e Ji with t h e con jugacy 

c la s s £ of subgroups in r given by inverse i m a g e s of s t ab i l i ze r s in G 
ef * 

of d a r t s . Regu la r i ty again d i c t a t e s t h a t I V normal subgroup of r , 

and v i ce -ve r sa , and we c o m e to 

Theorem 

L e t r = C2 * C ^ , G any group. Then 

( # ROMs JI with A u t ^ = G) = d ^G) . 
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The reasoning can be extended also to count more particular categories 

of regular! maps having given automorphism group G. By this I mean 

if we had a f i n i t e se t of words ( r^, ... , ^ f o r s e N in x and y 

which we required to be iden t i ty in G (intuitively i n t e r p r e t a t e d as ' r ou te s ' 

in t h e map always taking you to the s a m e dar t t o t h a t f r o m which you 

s t a r t e d ) , then the number of such ROMs would e q u a l d p (G) whe re now 

r is t h e group with presentation 

< X,Y : = R, = ... = R = I > 

1 s 

and Vi = 1, ... , s , R. is t h e s a m e word in X and Y as r. is in x and 

y. Howeve r of course , in genera l t he more c o m p l i c a t e d t he r e l a to r se t 

of r is, t h e more d i f f i c u l t it is t o c a l c u l a t e dp(G) in p r a c t i c e . 

B e f o r e going on t o hype rmaps , I include some 

N o t e s 

1) The map-subgroups (as I have def ined t h e m ) of t r i angu la r (i .e. 

o(y) = 3) o r i en ted maps a r e exac t l y t h e subgroups of T : = 

of f i n i t e index. But in th is case F is t he much s tudied modular 

group PSL2( Z ) (see e .g . [ 20 ] c h a p t e r 8 ), and so th is c a se is e s -

pec ia l ly i n t e r e s t i ng . 

In pa r t i cu l a r we may ask whe the r a subgroup of T : = PSL^i'Z) 

appea r ing in th is c o n t e x t is a cong ruence subgroup of F , i .e . does 

it con ta in any pr inc ipa l congruence subgroup of F ? (One of t h e 

latter is defined for each pogibwt n Af 

F ^ = {+ A E F: A = ± I m o d n } ). 

For regular maps we a r e consider ing normal subgroups of F ; t h e 
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normal congruence subgroups have been c lass i f ied by [ 16 ]. Hence 

we may some t imes decide the quest ion f o r the map-subgroup of 

a given t r iangular ROM. 

2) Unless G is cycl ic , a ROM with automorphism group G cannot 

contain free edges (i.e. x cannot fix any darts). For we showed 

regular i ty mean t t he s tab i l izer in G of e a c h dart was ident i ty ; 

thus 

X f ixes a da r t x is t he ident i ty p e r m u t a t i o n on ^ 

G = <x,y > = <y > 
• 

3) G ^ , the s y m m e t r i c group on the f i n i t e se t Q . If G does not 

have a subgroup of index 2, we have f u r t h e r G ^ A ^ , t he group 

of even pe rmuta t i ons on . If this is t he c a s e for ROM Ji with 

AutiJi) = G, then (for example) : 

J i has n-gonal f a c e s with n even has an even # 

faces , 

/ I has ve r t i ce s with even valency J i has an even # 

ve r t i ce s . 

4) Genus 

Suppose an ROM J \ is r ep re sen ted as an imbedding in a su r f ace 

of genus g. Then the valency of each v e r t e x is cons tan t = o(z): = m 

say, as is t h e number of edges bounding each f a c e = o(y) : = -ri. 

Assume also has no f r e e edges . 

Then: 

IGI 
# ve r t i ces of v/1 = 

# edges of A = 1 ^ 
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faces of 1 ^ 
n 

and by the Euler-Poincare c h a r a c t e r i s t i c f o r m u l a 

2 - 2 s -- | G | ( 4 - 7 - W 

1 + |G | 1 j_ _ m + n 
2 1 2 mn 

When M has f r e e edges (and so G is cyc l i c ) t h e above fo rmula 

f a i l s because t h e r e a r e n o w | G | edges , all f r e e , and t h e assoc ia ted 

simplicial complex § has ver t i ces at the ' f ree ends' of the free 

edges not t aken accoun t of above . So 

vert ices = |G| + 1, # edges = | G | , # f a c e s = 1 

and g = 0 . 

Hypermaps 

The philosophy behind h y p e r m a p s is t o re lax t he condi t ion we f ind in 

t he def in i t ion of maps t h a t an edge is inc iden t wi th a t most two ve r t i ces 

2 
( this being inheren t in requir ing x = I). For h y p e r m a p s , any edge may 

2 

be incident wi th any number of v e r t i c e s ( i .e . x is s p e c i f i e d , bu t x = I 

is re laxed) . N o t e t h a t accord ing t o th i s deg ree of f r e e d o m , maps a r e 

t hemse lves hype rmaps . The de f in i t i on is a n a t u r a l ex tens ion t o t h a t 

fo r (a lgebraic) maps: 

An o r i en ted h y p e r m a p (G, ^ ,x, y) is a se t ^ w i th p e r m u t a t i o n s x and 

y of S s . t . G : = g p < x , y > is t r a n s i t i v e on 

The cyc les in SI of x, y and z : = (xy) ^ a r e t h e edges , f a c e s and ve r t i ce s 

respec t ive ly of t he hype rmap . 

The def in i t ion for morphism is t h e n a t u r a l ex t ens ion of t h a t given for 

maps. 
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Assume from now on f in i te . 

If "K is a hypermap with o(x) = r and o(y) = n I wil l denote it an (r,n)-

hype rmap . 

Suppose M is a given ( r ,n) -hypermap. Le t 

r(r ,n) = gp <X, Y : X'' = ^ I > 

and p be the epimorphism f r o m r ( r , n ) t o G d e t e r m i n e d by 

X ^ X, Y I—*- y . 

Then a map-subgroup M of M is any e l e m e n t of t h e conjugacy class 

& of subgroups of r ( r , n ) given by 

& :: { ^ r(r,n) : a E 0 , ^(Fix^W) } 

£ uniquely iden t i f ies 5^ . 

A regular hypermap K is one wi th a u t o m o r p h i s m group t r ans i t i ve on 

fl; exac t ly as for maps, a hypermap is regular iff i ts map subgroup 

M is normal in T (r,n), and then — s. Aut 9-f. We may e n u m e r a t e 

t h e regular ( r ,n) -hypermaps wi th c e r t a i n a u t o m o r p h i s m group type G 

(with known Mobius func t ion) by count ing pairs (x,y) s . t . o(x) = r, o(y) 

= n (insisting on orders r a t h e r than re la t ions x"" = y"̂  = I) of every sub-

group of G, and applying Hal l ' s me thod . 

Similarly we may iden t i fy aJJ^ regular hype rmaps with au tomorph i sm 

p 

group G with t h e se t of normal subgroups M s . t . — s G where F = 

Coo * Coo ' t he f r e e group of rank 2. (This co r responds to summing 

t h e resul t s above for r ( r ,n ) over N ). So t h e number of such hypermaps 

is d ^ ( G ) (in the nota t ion of t h e last sect ion) . 
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N o t e 

It would be nice t o a s s o c i a t e wi th a h y p e r m a p X : = (G, 0 , x, y) a ( topo-

logical) map which in s o m e sense f a i t h f u l l y r e p r e s e n t s ^ . We can 

do th is by a n e a t c o r r e s p o n d e n c e found by [25] , w h i c h I s t a t e . 

F i r s t a de f in i t i on : a map is b i p a r t i t e if i ts v e r t i c e s can b e co loured 

wi th t w o colours (with t h e usual g r a p h - t h e o r e t i c meaning) such t h a t 

no t w o v e r t i c e s joined by an edge have t h e s a m e co lour . A b i p a r t i t e 

map is a map t o g e t h e r w i th such a 2 -co lour ing . C a l l t h e co lou r s a and 

s; n o t e t h a t a map J i which is b i p a r t i t e has e x a c t l y two 2-co lour ings , 

t h e second ob ta ined by ' sw i t ch ing ' a and s. 

Theorem [15 ] 

3 b i j e c t i o n p f r o m the se t of o r i e n t e d h y p e r m a p s o n t o t h e s e t of o r i en t ed 

b i p a r t i t e maps . For a given h y p e r m a p °hi , p maps t h e v e r t i c e s , t h e edges , 

t h e d a r t s and t h e f a c e s of *)-( onto ( r e s p e c t i v e l y ) t h e s - v e r t i c e s , t h e 

a - v e r t i c e s , t he d a r t s i nc iden t w i th the s-vertices and t h e f a c e s of t h e 

m a p p ( ^ ). 

I will ca l l PC^-() t h e b i p a r t i t e r e p r e s e n t a t i o n of M and d e f i n e t h e genus 

of }-{ t o be t h a t of PCM). For e x a m p l e , if "M is a r e g u l a r ( r , n ) - h y p e r m a p 

wi th va l ency (i .e. o(z)) = m then s imple use of t h e E u l e r - P o i n c a r e f o r m u l a 

g ives 

C lea r ly f r o m this we can build up a n o t h e r ( e s s en t i a l l y i den t i ca l ) t o p o -

logica l r e p r e s e n t a t i o n of , pu t naively like th is : suppose p ("M) is im-

bedded in t h e o r i e n t a b l e s u r f a c e $ (of genus g), t h e n ' expand ' e a c h v e r t e x 
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in $ to a face; a resultant f a c e is an 'a-face' or an 's-face' depending 

on the colour of the associated vertex; forget t ing about the original 

edges of p CH ) but preserving the faces , we construct a map on $ by 

spec i fy ing t h a t an a - f a c e is incident wi th a s - f a c e a t a single point 

(a 'new ve r t ex ' ) iff they originate f r o m an a d j a c e n t pair of v e r t i c e s 

in pCH). O t h e r w i s e t he boundar ies of t h e new f a c e s a r e mutually d is jo int . 

This c o n s t r u c t i o n is a lways r ea l i sab le and gives a unique map up to 

i somorph i sm. 

This new r e p r e s e n t a t i o n A then has a - f a c e s and s - f a c e s r ep resen t ing 

edges and v e r t i c e s of 9-t r e spec t ive ly , and the r e m a i n i n g f a c e s ( f - f a c e s ) 

r e p r e s e n t i n g the f a c e s of '}-( ; t he d a r t s of M m a y be assoc ia ted wi th 

t h e v e r t i c e s of J i ( these being e x a c t l y the a - f a c e / s - f a c e incidences) . 

An i l lus t r a t ion of such a cons t ruc t i on ( imbedded in a torus) is given 

on p. 7-8 of [ 3 ]. 

I will cal l th is second r e p r e s e n t a t i o n of ^ i ts t opo log ica l r e p r e s e n t a t i o n 

( t . r . ) . Let "X be an ( r ,n ) -hypermap . 

The use fu l a s p e c t of this t . r . is t h a t any pa th ( c o n n e c t e d success ion 

of edges) d e t e r m i n e s in a na tu r a l way a word in x and z : = (xy) ^ and 

v i c e - v e r s a . In pa r t i cu l a r if a pa th w(x,z) t a k e s d a r t C( to itself in Ji . 

( i .e. is a loop based a t a ) , t hen w(x,z) e F i x ^ ( a ) and the corresponding 

e l e m e n t w(X,Z) in P (r,n) is in t h e map-subgroup M . C lear ly th is works 

t h e o t h e r way, so such pa ths c h a r a c t e r i z e : I will exploi t this in 

t h e next sec t ion . 

(ii) The c a s e where the (hyper)map may be non-orientable 

Given a topologica l map imbedded in an o r i en tab le s u r f a c e $, we depend 

on t h e o r i e n t a t i o n of $ to dec ide t h e cyc l ic order of t he d a r t s in t h e 
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permutation y in the associated algebraic map. So if we want to represent 

algebra ic ly a topological map imbedded in a non-or ien tab le s u r f a c e $ 

we need more ' i n fo rma t ion ' in our model, very vague ly we need to spec i fy 

next da r t around ver tex as well as next dar t a round f a c e m the def ining 

p e r m u t a t i o n s (suggesting we need t h r ee of t h e s e ra the r than the two 

for t h e o r ien tab le case) . 

What we in f a c t do (fol lowing an idea originally due to Tu t te [ 21+ ]) is 

consider pe rmuta t ions of o r ien ted da r t s ( f a c e / e d g e / vertex incidences) 

r a t h e r than da r t s ( edge /ve r t ex incidences). Let t h e set of t he f o r m e r 

be 0 ' . Then de f ine the fol lowing t h r ee pe rmuta t i ons of ^ ' : 

rg t a k e s or ien ted da r t d to the o t k e r o r i e n t e d dar t which shares 

the s ame edge and f a c e 

r ^ t akes or iented da r t d to the otker o r i e n t e d dart which shares 

t h e s ame ver tex and f a c e 

r^ t akes or ien ted da r t d to the otKer o r i e n t e d dart which shares 

t h e s ame ver tex and edge. 

We immed ia t e ly see t h a t for any topological map, be it o r i en tab le or 

non-or ien tab le (according to $), t ha t r^, r^ , r^ a r e natural ly de t e rmined , <'I, 

is t r ans i t i ve on ' and t h a t 

(r^r^)^ = r.^ = I (i = 0, 1, 2) . 

Converse ly it can be shown tha t any abs t r ac t transitive p e r m u t a t i o n 

group g e n e r a t e d by t h r e e ^ involutions such tha t t h e product of two of 

them is also of order 2, is an a lgebra ic r ep re sen t a t i on of some unique 

topologica l map (see [II ]) .(1 | . wt, a£fow IrvvoSuhions u-l&k , we 

ikoaSd a^so Le. cons<.Ji«,Tin^ ma|>s w"»lk lj-oun<iaTy , s e e TSOl ). 



We use t he se ideas for maps to m o t i v a t e our a p p r o a c h to defining hyper-

maps in genera l . We know t h a t t h e s e t of o r i e n t e d b ipa r t i t e maps f a i t h -

ful ly r e p r e s e n t t he se t of o r i e n t e d hypermaps ; i t s e e m s na tura l to con-

s t r u c t our def in i t ion of h y p e r m a p in such a w a y t h a t hypermaps a r e 

iden t i f i ed with the e l e m e n t s of t h e whole se t of b i p a r t i t e maps, o r i en t -

able or not . Now given a b i p a r t i t e map we m a y f o r m its a s soc ia ted 

3 - f a c e - c o I o u r e d map Ji in t h e way descr ibed b e f o r e (this second map 

is c e r t a in ly o r i en tab le if and only if t h e f i r s t is). In Ji we may na tura l ly 

i den t i fy ( s - f a c e ) / ( a - f a c e ) / ( f - f a c e ) inc idences with t h e 'ends ' of t h e edges 

t h a t f o r m the boundar ies of t h e ( s - faces ) . We f o r m involutions r^, r^, 

r^ on the set of these ends analogously to b e f o r e (again the permuta-

t ion group g e n e r a t e d by r^, r^ , r^ is c lea r ly t r a n s i t i v e on ifi' ). These 

p e r m u t a t i o n s will f o r m t h e basis of t h e a lgebra ic d e f i n i t i o n of t h e associ-

a t ed hype rmap (I shall discuss in t h e no te l a t e r t h e reverse process , 

I.e. how a b i p a r t i t e map is a s s o c i a t e d to any g iven hypermap, a f t e r 

t he def in i t ion of t h e l a t t e r is f o r m a l l y given). 

Our discussion then p r o m p t s t he fo l lowing de f in i t i ons : 

A h y p e r m a p (G, r^ , r^ , r^) is a se t ^ ' t o g e t h e r wi th t h r e e p e r m u t a -

tions Tg, and of s . t . both 

(0 = = = I 

(ii) G : = gp < TQ, Tp r^ > is t r a n s i t i v e on fi'. 

If o(rQr2) = r, o(rQr^) = n and o ( r^ r^ ) = m, I will say the hypermap M 

is of t ype (r ,n,m) : t h e h y p e r m a p is a map iff r = 2, it is t r i angu la r 

iff n = 3. 
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The morphisms are defined as usual, in particular the automorphisms 

are the e lements of the centraliser of G in the symmetr ic group on 

M is regular iff AutCH) is transit ive on fl'. 

4 

Let r = * C2 * Cg, the f ree product of three c y c l i c groups'order 2 

r : = <RQ, R^, : R^^ = R^^ = R^^ = I > . 

Def ine t h e epimorphism p : T -> G by 

R. 1-^ r. i = 0, 1, 2 . 

A map-subgroup M of ^ is a subgroup of r : 

M : = p ^(Fix^(a)) for some a e . 

M is d e t e r m i n e d up to con jugacy c lass in F . 

Exac t ly analogous to the o r i en ted c a s e we find t h a t M is r egu la r if 

and only if i ts map-subgroup M is normal in T . Also 

Theorem 

Le t G be a given f i n i t e group. Then t h e fol lowing a r e equa l : 

(i) # r egu la r hypermaps ^ wi th AutCM) 5 G 

p 
( i i ) j f no rma l subgroups M of T s . t . — 5 G 

(iii) tke. vcL&ne, 1:^ txprassion ^or imn on. . 7 

Of course this t h e o r e m can be spec ia l i sed , fo r e x a m p l e 

(a) Let A : = gp <Ro, R^, Rg = ^0^ = = ^2^ = (RgRg)^ " I > 

Then 

regular maps / t with Aut(A) s G^ = d ^ ( G ) . 
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Note that if G can be generated by two involutions, some of these maps 

will be 'degenerate' in that the permutations r^ and r^ will be equal, 

so that the map may be thought of as a s ingle vertex incident with 

I Q I 
i-yL f r e e edges . 

(b) Let A : = gp <R^, R^, : R . % = 0, 1, 2) = ( R g R ^ ) ^ = ( R g R ^ ) ^ - % > 

Then A is PGL2(Z) ( [/f ] , s ec t ion 7.2). 

tW 9'""^ ^ 

As long as G ^ I, C2)tke. KEt'in or^, w e have 

c#:(regular t r i angu la r maps A wi th A u t { v M ) s G)= d .(G) . 

Note 

Suppose we a r e given t h e hype rmap "H : = (G, 5 ' , r ^ , r r ^ ) . I will asso-

c i a t e wi th it a b i p a r t i t e map . 

Le t : = 0 ' U " 

whe re 0 " is any se t dis joint f r o m s . t . j 0 " | = | ^5'|. 

Le t SQ be a b i j ec t ion s^ : ^ fi", t hen s ^ will also d e n o t e t h e p e r -

mu ta t i on of n wi th cyc les (d, SgCd)) fo r e a c h d e Q'. 

Le t s^ e S ^ be t he involut ion with t r anspos i t i ons 

(d, r^(d)) if d E 0' 

(d, SQr^(rQr^)°'sQ(d)) if d e 2̂" 

where a + 1 is t h e l eas t value j s . t . ( r^r SQ(d) = s^Cd) . 
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(v.) S,(l) 

^<a,Tbs in, reA 6 ic m ifii 

iDoyts ie* £»« Sh 

(Vi)5,(i) 

Le t $2 E S ^ be t h e involu t ion wi th t ranspos i t ions : 

(d, r^Cd)) # d e 0' 

(d, SgraSofd)) H d E 0". 

9. is t r a n s i t i v e on 0 and Then c lear ly H : = gp < SQ, S p s^ > ^ 

(SgS^)^ = I, so vA( : = (H, 0 ,SQ, s ^ s^) de f ine s a m a p . As O " is 

e m p t y , i / i is ev ident ly b i p a r t i t e ; t he colour ing of v/i is d e t e r m i n e d as: 

- 2 7 -



the vert ices corresponding to pairs of c y c l e s of (r^r^) whose e le-

ments are in will be colour s ; in will be colour a. 

So we have c o n s t r u c t e d a b i p a r t i t e map Ji from t h e hypermap W. ; we 

gave a p rocedure ea r l i e r to c o n s t r u c t a hype rmap %( ' f r o m \H ; c lear ly 

SO we have a 1:1 correspondence between bipartite maps and hypermaps 

as desired. So as for the oriented case we have a bipart i te representation 

(and topologica l r ep re sen ta t ion ) for a h y p e r m a p . 

We can now de f ine a hype rmap as being o r i e n t a b l e iff i ts t . r . is o r i e n t -

ab le , o the rwi se it is non-o r i en tab le . 

H o w e v e r , if a hype rmap is o r i en tab le , i ts a l geb ra i c de f in i t ion he re as 

a h y p e r m a p is d i f f e r e n t t o t h a t of t h e o r i en ted h y p e r m a p shar ing t h e 

s a m e b i p a r t i t e r e p r e s e n t a t i o n (b.r.) . In pa r t i cu l a r t he a u t o m o r p h i s m groups 

in t h e two cases need not be i somorphic . For e x a m p l e if a hype rmap 

^ ' w i th o r i en t ab l e b.r . lAl is regu la r , then the o r i e n t e d h y p e r m a p °H 

wi th t h e s ame b.r . Ji. will also be r egu la r , but wi th a u t o m o r p h i s m group 

half t h e order : in f a c t 

AutCM) E a subgroup of AutCM') of index 2. 

One consequence of th is is t h a t any regula r h y p e r m a p ^ ' w i th AutCH') 

a group G wi thou t a subgroup of index 2 (e.g. a s i m p l e group ^ C^) 

c a n n o t be o r i en tab le . 
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4. Two further notes on the Groups of Maps 

i . Type of map-subgroup of an oriented hypermap 

For any oriented hypermap "X , the characterizat ion of the map-subgroup 

M for any dart a in terms of loops in the surface $ might lead us to 

expect the fundamental group TT ^($) of $ (and hence genus g) would help 

determine the isomorphism type of M . With this in mind, I specialise 

to normal t o r s i o n - f r e e subgroups of T (r,n) (alternatively regular ( r ,n)-hyper-

maps) with genus g and prove, r a the r informally: 

Theorem 

A normal t o r s i o n - f r e e subgroup M of f in i te index y in r ( r ,n ) : = * C 

IS f r e e with rank 1 + ( 1 - — - — ) u . 
r n 

Proof (all maps, hypermaps r e f e r r e d to a r e oriented) 

L e t M be assoc ia ted with t h e regular ( r ,n ) -hypermap M : = (G, ^ ,x,y) and 

this wi th i ts topological r ep re sen t a t i on / I . Then | | = y and Jl is imbedded 

in the s u r f a c e $ wi th genus g, 

g = l + 2 ( ^ " r " n - ^ ) ' 

L e t 

and 

r(r,n) : = gp < X, Y : X"" = Y" = I > 

Z : = (XY)"^ . 

Then no te t h a t X and Z g e n e r a t e r ( r ,n) , so every e l e m e n t of M is express -

ible as a word in X and Z. A word w(X,Z) in M is f r e e of a se t W = 

{w (X,Z) e M : s e S} fo r some se t S if and only if w canno t be ex-

pressed as a p roduc t of e l emen t s of W (and the i r inversions) t o g e t h e r 

with inser t ions or deletions of ' syl lables ' t h a t a r e con juga t e s of x"" and 

y " = (X '^Z b " . These inse r t ions /de le t ions only a l t e r the word but not 

t h e e l e m e n t of M t h e word r ep resen t s . The insertion of one of X , X , 
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y " or Y " (where the insertion of X is the s a m e as deletion of x"̂ ) 

can a lways be used to d iver t a pa th in / I t h a t a t a c e r t a i n point fol lows 

part of a boundary B of either an a - or f - f a c e F, to follow at that point 

t h e other pa r t of B. 

original pa th d ive r t ed path 

For inser t ion of x"" or X F will be an a - f a c e of </t , f o r or Y~" 

it will be a f - f a c e . 

Now i so la t e a e in uM, , then if w(x,z) is a loop in Ji , t hen w(X,Z) 

is in M. Le t t he set of v e r t i c e s of "W be V. 

Suppose a e ve r t ex v, choose for each other v e r t e x u an inc iden t da r t 

3. and let 

w (x,z) = I 

w ^(x,z) be any word t h a t t a k e s a to 6 in a non-se l f - intersect ing 

pa th for each ve r t ex u (one a lways exists) . 

D e f i n e fo r each ve r t ex u, including v, (of which t h e r e a r e — ): 

w (x,z) = w (x,z) w ^(x,z) . 

Then Vu e V, w^(X,Z) e M, and t he se a r e m u t u a l l y f r e e . They all rep-
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resent trivial loops on $. All other trivial loops in correspond (by 'col-

lapse' of f a c e s as inherent above) to some product of these e l ements 

(which I now denote c ). 

Now let w.(X,Z) for i = 1, ... , 2g represent the 2g non-trivial inequivalent 

topological^loops a t a in ^ ( the e x i s t e n c e of a loop of each kind is gua ran -

teed by regularity). These loops cannot be obtained from each other 

I 

by co l lapse of f a c e s so they a r e mutual ly f ree . Now suppose w. (X,Z) 
f 

co r r e sponds to a topological loop L equiva lent t o t h a t L of w^(X,Z): 

mu l t ip l i ca t ion by the c gives a way of collapsing t he s - f a c e s , so we 
I ! 

may col lapse L to L and conclude w. (X,Z) is a product of w^(X,Z) with 

s o m e c 5 as appropriate. Final ly f r o m the s tructure of TT ^($) we know 

we may assign t h e w (X,Z) as a , , b , , a , b s . t . 
^ ^ ^ 8 § 

9 
~[J [a. , b . ] is a t r iv ia l loop. 

j=i ^ ^ 

9 

In f a c t we may (w.l.o.g.) le t ] T [a. , b.] = c 
^ J 

No other combina t ion of t h e w^(X,Z) is t r iv ia l , so we conc lude 

9 

M = gp < a , , b , , ... , a , b , U c : ]T [a;, b.] = c > 

6 6 utV ]-± > > 

gp < a , , b , , ... , a , b , U c \ c : - > 
5 6 u-eV 

i .e . M is f r e e of rank 2? + — - 1 
° m 

= 2 + w ( l - 1 

• 

This r e su l t gene ra l i s e s Theo rem VIII.7 of [ 20 ], which s t a t e s t he f o r m u l a 

fo r r (2,3), i .e. t he c lassical modula r group. The proof I have p re sen t ed 
not 

h e r e d o e s u s e t h e Nie l sen -Schre ie r t h e o r e m (see p. % ); by cons ider ing 
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combinatorial topological representations of the normal subgroup as I 

have, I have recovered a non-trivial theorem in combinatorial group theory 

(c . f . proposition 6.1 in [ 12 ] which is t h e co r r e spond ing resul t using their 

d i f f e r e n t de f in t ion of map-subgroup) . 

2. Groups with signature and Hurwitz groups 

The cons t ruc t i on of t he t . r . of a h y p e r m a p is r a t h e r naive when placed 

aga ins t t h e imbedding theory of groups with s i g n a t u r e . 

A group with s igna tu re r with periods (m ,̂ ... , m ) and quo t i en t space 

of genus g is a group wi th a b s t r a c t de f in i t ion 

r : = gp < X , , ... , X , a , , b,, ... , a , b | ... x / ^ r 

(TT I T k j , b ] 
1.1 j.l ^ ^ 

> 

Le t G be any f i n i t e group, cp an ep imorph i sm 

cp : r G 

such t h a t t he o rde r s of th rough X a r e p r e s e r v e d . Then a f u n d a m e n t a l 

resu l t is t h a t G a c t s as a group of a u t o m o r p h i s m s of a c o m p a c t Riemann 

s u r f a c e $ of genus y , w h e r e 

Y = 1 + ^ ^2g - 2 + ^ ( 1 . 

This is t he c lass ica l R i e m a n n - H u r w i t z f o r m u l a . 

In pa r t i cu l a r if F is a t r i ang l e group of t y p e (r, n, m), i .e . 

gp < X , Y : X"" = V" = (XY)"^ = i > 

t hen 

Y = 1 + (1 
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In fac t , given r ( r , n, m), the normal subgroups N s . t . 

- G for given G 

na tura l ly give r ise to t he s a m e regula r h y p e r m a p s °y( of va lency m as 

do t h e a p p r o p r i a t e map-subgroups M of P (r, n). The imbedding of V. can 

(more sophis t ica ted ly) be viewed in th is l ight . 

(Note: how the c lass ica l Riemann-Hurwitz f o r m u l a appea r s in t he con-

t e x t of t he au tomorph i sms of a h y p e r m a p and i t s re la t ionsh ip with i ts 

s t anda rd se t t ing in t he theory of R i e m a n n s u r f a c e s is d iscussed in [ 15]). 

F rom the above R i e m a n n - H u r w i t z f o r m u l a , g iven t h a t G < Aut($), $ of 

genus Y , we may f ind a bound for | G | by va ry ing t h e p a r a m e t e r s g, r, 

m^ ... m^; it happens this bound is d e t e r m i n e d by g = 0, r = 3, m^ = 

2, m^ = 3, m^ = 7. We conclude 

|G| < g4(Y - 1) 

and t h a t this bound is a t t a i n e d by G iff G is t h e h o m o m o r p h i c image 

of t he t r i angu la r group (2, 3, 7). Such a group G is ca l l ed a Hurwi tz 

KrouP-

Clear ly t h e Mobius func t ion of G if known would be a very power fu l 

tool in deciding w h e t h e r a p a r t i c u l a r g roup G is a Hurwi t z g roup . How-

ever , as for any one appl ica t ion of Ha i l ' s m e t h o d , th i s p rob lem can o f t e n 

be resolved wi thou t i ts d i r ec t use: fo r i n s t ance [ 14 ], T h e o r e m 8 , e s t a b -

lishes which PSL2(q), q a p r ime power , a r e H u r w i t z groups . But if the 

r e l evan t Mobius func t i on is known, t h e working will t end t o be more 

mechan ica l . 
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5. Coverings of Riemann Surfaces 

Final ly , and not pursuing it a t all, I give a n o t h e r example where t he 

regu la r ob j ec t s C of a c e r t a i n c a t e g o r y C a r e in 1:1 co r re spondence 

with t h e normal subgroups M of a c e r t a i n group T , w i t h Aut^ (C) 5 . 

Again Hal l ' s method may be used (given the r e q u i s i t e in fo rmat ion) to 

e n u m e r a t e regular ob jec t s of Gf wi th a spec i f i ed au tomorph i sm group 

type. 

The b i j ec t ion C M in t he p r e s e n t ca se is in e s s e n c e laid out in [ 1 7 ] 

(a l though he doesn ' t expl ic i t ly ment ion au tomorph i sms) . I r e p e a t : 

Le t $ be a c o m p a c t Riemann s u r f a c e of genus g, t h e n the c a t e g o r y (i 

is t h e se t { smooth cover ings wi thou t boundary IT : T ^ $ for any s u r f a c e 

t ] . Le t 7T e C , then Aut ir is t h e group of c o v e r i n g t r a n s f o r m a t i o n s 

of IT , and IT is regular iff Aut ir is t r ans i t i ve on t h e set of p re images 

in T of any point in $. Then t h e o b j e c t s of (L c o r r e s p o n d t o c lasses of 

c o n j u g a t e subgroups of t h e f u n d a m e n t a l group of $ s F w h e r e 

3 
r = gp < a , , b , , b I Ba:, b j = 1 > fo r g % 1 and 

^ ^ 6 6 Ul 

is t r iv ia l fo r g = 0. 

Very s imi lar ly to t h e problem for maps , we may prove t h e fol lowing 

a r e equ iva l en t : 

i) a cover ing TT is regular 

ii) The class of conjugate subgroups of T corresponding to 7r is just 

a normal subgroup M. 

Furthermore, if M < T corresponds to regular ir , then Aut w = T /M . 

So in th is r e s p e c t it will be of i n t e r e s t t o know t h e number a (G) of 
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solutions for b^, ... , a , b (g given) in any group G of the equation: 

IT ' 

A gene ra l answer is ava i lab le in t e r m s of a s u m m a t i o n over t h e i r r e -

ducib le r e p r e s e n t a t i o n s X of G: 

a ( G ) = l G ' ^ ' 'G 

where is the of X 

(The above resul t is a spec ia l i sa t ion of Proposi t ion 1 in [ 18 ].) 

Then t h e number cp(G) of t h e s e solut ions g e n e r a t i n g G is c a l c u l a t e d by 

Mobius inversion, and the number of normal subgroups M of F such t h a t 

r 
= G is a s c e r t a i n e d by dividing cp(G) b y | A u t ( G ) | . 

We n o t e t h a t if g = 1, so t h a t F is abe l ian , but G is non-abe l ian then 

t h e r e can be no ep imorph ims F ^ G (i .e. t h e r e a r e no cover ings of 

t h e t o rus with non-abel ian au tomorph i sm group). So in t h i s c a se 

cp (G) = ^ f w ^ ( H ) . | H | y I ^ = 0 
U / /- V % I H4G 

w h e r e t h e ' inner ' s u m m a t i o n is over t h e i r r educ ib l e r e p r e s e n t a t i o n s of 

H. Thus we have for any non-abel ian group G: 

(c . f . p ropos i t ion on p.10) 

M^(H) . |H I . ( # con jugacy c lasses of e l e m e n t s in H) = 0 
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CHAPTER 2 

In this chapter I will comple te the determination of the Mobius function 

of the linear groups PSL2(q) and PGL2(q) over t h e f ini te f ie ld GF(q) of 

prime power order q. This is already known (see [ 7 ]) for PSL2(p), p any 

prime. 

PSL2(q) is the group of 2 x 2 matrices with entr i e s in GF(q) that have 

determinant 1 and which has ±A Dickson [ 5 ,chapter 

XII] analysed its s t r u c t u r e , wi th a fu l l l ist of subgroups given in §260 

of his book. 

PGL_(q) is the group of 2 x 2 matrices with entr i e s in GF(q) that have 

non-ze ro determinant quo t i en t by 

of two , q = 2^ say, then 

0 "1: ^ ^ . If q is a power 

PGL2(2^) H PSL2(2^) f o r any e E N 

o t h e r w i s e if q is odd then PSL2(q) may be r e g a r d e d as a subgroup of index 

2 in PGL2(q)-

As t h e groups PSL2(2^) have s t r u c t u r e s not qu i t e f i t t i n g in wi th a p a t t e r n 

shared by the o ther PSL2(q), t h e f o r m e r will be d e a l t with s e p a r a t e l y . 

The schedu le will be 

Sect ion 1 : PSL2(p^) , p odd, e > 1 

Sec t ion 2 : PSL2(2^) , e > 1 

Section 3 : PGL2(p^) , p odd. 

But f i r s t I in t roduce some def in i t ions and no ta t i on (which will c a r ry th rough 

to o t h e r chap te r s ) , and also s t a t e t w o r a t h e r t r i v i a l (but c ruc ia l ) gene ra l 

-36-



in 

lemmas, one for subgroup lat t ices , the second for all la t t i ces . 

Definit ions 

If H ^ G, where H, G are groups, then K ^ G is a superRroup of H ( 

G) iff H < K. K is a c o n t r i b u t i n g supergroup iff in addi t ion y Q(K) ^ 0; 

K in particular must be maxint (an intersection of maximal subgroups 

of G, s e e p. 3 ). A contributing set of H is any s e t of supergroups of 

H that contains a ^ contributing supergroups. A counting set of H means 

any subse t S of a con t r i bu t i ng se t of H such t h a t 

U (H) + X ; G « ' = ° • 

KeS 

having this last definit ion is useful because very o f t e n the 'contributions' 

( i .e. y ^ value) of c e r t a i n c a t e g o r i e s of supergroups cance l , and so t he se 

may be ignored. 

The fo l lowing l e m m a is p a r t i c u l a r l y usefu l in e n u m e r a t i n g supergroups 
(isom.of-pKism") 

of a c e r t a i n ^ t y p e . (The proof is s imple and l e f t t o t he r eade r . ) 

Lemma 

Let G be any f i n i t e group; suppose G has subgroups of type K, and then 

K has subgroups of type H. Le t ^ , X be c lasses under Aut(G) of subgroups 

in G of t ype H, K, t h e s e c lasses being of length h, k r e spec t i ve ly . Suppose 

K e 9s con t a in s m groups H E M . Then 

t h e number of supergroups in X of any H e M , 

This l e m m a (I will cal l it t h e supergroup l emma) will o f t e n be used, usually 

t a c i t l y . No te also t h a t if , % a re s imply c o n j u g a c y c lasses under G 

( ra the r than c lasses under Aut(G))^an analogous resul t holds . 

-37-



I revert for a moment to la t t ices & in general, wi th obvious extensions 

of de f in i t ions . 

Lemma 

Suppose 6, has maximum e lement G and other e l e m e n t H. There is an 

'induced' la t t ice 2.' on any counting set 5 of H as long as S has a maxi-

mum e l e m e n t If further V K e S \ { M } the set S ^ C S where 

IS a counting se t fo r K m G, then 

IJ ^ (H, G) = Wg (M, G) , M (H,M) . 

In p a r t i c u l a r if S is a con t r ibu t ing se t of H we a lways h a v e 

y ^ (H, G) = y (H, G) 

I shall ca l l this lemma t h e sub la t t ice l e m m a . 

Proof 

This is by induct ion on t h e order ing of t . 

Suppose f i r s t ly t h a t H < G and $ K s . t . H < K < G. Then the only count ing 

se t S of H is the singleton ( G) , and £ is t he l a t t i c e of t w o e l e m e n t s 

{ H, G} with H < G, with max imum e l e m e n t M = G. Then c lea r ly 

y g^(H, G) = - 1 = y £/ ( H , G ) = y ( M , G) ( H , M) 

Suppose now t h a t H < G and t h a t t h e resul t is t r u e fo r all K in E fo r 

which H < K < G. Then taking S, and M as in t he s t a t e m e n t , 
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Wp(H, G) ^ p (K, G) 

KeS 

p (M, G) . p (K, M) (by inductive supposition) 

KeS 

M^(M, G) . - p ,(H, WO 

(Finally when S i s a con t r ibu t ing s e t , we have M = G) 

• 

Notation 

The symbols C^, V for d e N, q a prime power, will mean respec-

t ively the cycl ic group of o rder d, t h e d ihedra l group of order 2d and 

the e l e m e n t a r y abel ian group of order q. 

The symbol q will a lways r e p r e s e n t t h e prime p t o t h e power e . 

Merely to s impl i fy subscr ip ts I i n t r o d u c e the fo l lowing func t i ons 

r,s : N Q which a r e def ined (given p r i m e p) by: 

r : f '—» ^ 

s : f I—^ ' 

Also the symbol pf as a subscr ip t r e p r e s e n t s t he p r i m e power p^. 

Now special is ing more to the p r e s e n t c a s e , I c o m p l e t e giving t h e no ta t ion 

t h a t will descr ibe t he types of subgroups of PSL2(q) and PGL^Cq)-

The e l e m e n t s of PSL2(q), any odd q, c an be r e g a r d e d as t h e l inear f r a c -

t ional t r a n s f o r m a t i o n s 

a b \ a z + b 

c d p ' " ^ 

- 3 9 -

( re C 408 - |yc = 1 ) 



with z E GF(q) U {(»} ; call the latter union t h e se t of marks. It is con-

s ide ra t ion of th is ac t ion which l a rge ly i n fo rms us a b o u t the group ' s s t r uc -

t u r e (al though t h e r e is an a l t e r n a t i v e a p p r o a c h ident i fy ing t r a c e with 

con jugacy class, which we shall m e e t in C h a p t e r 3, s e c t i o n 2). 

eacK 

The q + 1 subgroups of PSL2(q) that are^the s tab i l i zer of a mark are con-

j uga te and a r e me tabe l i an , a V e x t e n d e d by a ([ 5 ], §250). All 

subgroups of PSL2(q) f ixing a mark will h e n c e be e l e m e n t a r y abel ian, 

cycl ic or ' p roper ly ' me tabe l i an , i .e . a e x t e n d e d by a fo r some 

p^ I q, 1 < d I r(e) : we deno t e t h e l a t t e r M. , (or M , for f = e). 
I , a q ,d 

Similar ly PGL2(q), any q, a c t s on t h e se t of m a r k s wi th me tabe l i an s tab i -

l izers , this t i m e a V e x t e n d e d by a Aga in we deno te subgroups 

of th is by M. , (or M , fo r f = e) w h e r e d | (q - l ) a s a p p r o p r i a t e . 
I;U 

f 

S j will d e n o t e a group i somorphic to PSL2(p ), given p r ime p. 

Gjg will deno t e a group i somorphic to PGL2(p^)j g iven p r ime p. 

Finally, s " will deno te t h e s y m m e t r i c group on n e l e m e n t s , 

A " will deno t e t h e a l t e r n a t i n g group on n e l e m e n t s . 

I now proceed to d i s c r im ina t e s o m e ' spec ia l ' and ^ in G (G some 

given S or G^ over GF(q), q = p^) . 

If H ^ G f ixes t h e mark X , we s o m e t i m e s e x p r e s s this by wr i t ing 

Now = j f g ^ ^ ^ GF(q) ^ . 
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(co ) ( oo) 
Subgroups ^ V for f ^ e are g iven by: 

l ) ' ^ ranges over a subgroup (of type 

of the add i t ive group of GF(q) f 

Now suppose H is some o r ^ for f ^ e. Conjugate H to obtain 

q,c(q-l) 

Then 

H' < M (where c : = (1 ; ^) as G = (G^ ; with p odd) ) 

H ' f l ^ = |"|'Q l ) ' ^ ^ ^ for some addi t ive subgroup A 

of type in GF(q) 

and I de f ine mult(H) to be the mult ipl ier of A, i .e . t he set of e l emen t s 

a in GF(q) s . t . a A = A t aken t oge the r with the zero e l ement of GF(q). 

Mult(H) is wel l -def ined , and is a subfield of GF(q). 

If for some f | e and H = or ^ (some d) we have mult(H) = GF(p^) 

( the s ame f), then I call H specia l . In all such cases , H will be denoted 

with an asterisk, H*, if I want to highlight the property. 

1. MOBIUS FUNCTION OF G : = PSLj^p% p odd, e > 1 

Firs t I review t h e subgroup t ypes of G; for more de ta i l see Dickson [ 5 ] 

chap t e r 12, especia l ly §260. 

G c lea r ly has a subgroup for each f | e (simply t a k e the mat r i ces with 

f G 

en t r i e s in GF(p ) C GF(q)); this is i ts own normal izer excep t when | -

is even when 

Nq(Sj ) s G ^ 

These subgroups Sj, G^ a r e the ' l inear ' subgroups of G. 
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G is doubly transitive on its marks; the stabil izer of one mark is the meta-

beiian M its normalizer is i tse l f . The s tabi l izer of any two marks 

is 21 CZ / \ \vith 
r(e) 

^G(^r(e)) " '^2r(e) ' 

G also has subgroups G may be regarded as a subgroup of 62^, 

and then these are intersect ions of G with ^2e' ^8^^" 

'^G(^s(e)) ^ ^2s(e) ' 

Of t h e dihedral groups, t he Kle in-4 ' s a r e e x c e p t i o n a l in t h a t t h e y alone 

a r e subgroups of more than one maximal dihedral g roup D2r(e) '^2s(e) 

in G ( they a r e c lea r ly subgroups of e x a c t l y t h r e e such groups). 

G finally has the following 'exceptional' subgroups 

iff q = ± 1 mod ^ 

iff q E + 1 mod 8 

a lways . 

(Note: A^ = PSL2(5) ; = PGL^O) ; Â ^ = PSL^O) , 

so t h e s e can also appea r as ' s t a n d a r d ' subgroups of G if r e spec t ive ly : 

p = j ; p = 3 , e even ; p = 3 

In t h e c a s e p = 3, the excep t iona l and s t a n d a r d A^ ' s c o i n c i d e ; l ikewise the S^ 's 

when itkewisc- e is even.) 

The above accoun t for all subgroups of G. 

The maximal subgroups of G a r e those of t y p e : 
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with Y odd p r ime 

if e even G|^ where k = 

IVl , \ 
q,r(e) 

V i 

and also for e = 2, p = ± 2 mod an except ional case dealt with af ter 

the more general result, G has maximal subgroups A^. 

My f i r s t ob jec t ive is to dis t inguish those subgroups of G which could be 

t h e i n t e r s ec t i on of maximal subgroups (a re max in t by abuse of notat ion) 

f r o m those t h a t a r e de f in i t e ly not; t h e l a t t e r a u t o m a t i c a l l y have y ^ value 

0. 

1) Suppose cycl ic with d | ^ (q ± 1) and d > 2 is maxint. Then 

evidently must be the intersection of maximal c y c l i c subgroups (of order 

a,nl g r e a t e r t han two) of maximal subgroups of G, i . e . t he i n t e r s e c t i o n of 

groups of t ype 

, ^ r ( f ) ' with J odd p r ime or f = e 

if e even , where k = § 

Let h, g E N, E = h .c . f . { h, g} , o t h e r w i s e d e n o t e d (h, g). Then 

(p^ - 1, p® - i) = p^ - 1 

(p^ + 1, p® - 1) = r p^ + 1 if y odd and & even 

o t h e r w i s e 
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(p^ + 1, p^ + 1) = p^ + 1 if ^ odd and ^ odd 

2 o t h e r w i s e 

(With t he p roper ty t h a t max ima l cyc l i c subgroups of G a r e mutual ly disjoint 

a p a r t f r o m the ident i ty in mind) one i m m e d i a t e l y c o n c l u d e s t h a t 

d = ( p ^ + 1) or (p^ - 1) wi th j even 

OR ^ p ^ + 1) or ^ p ^ - 1) wi th Y odd . 

(|or 

2) Suppose dihedral is max in t . Then ^ is t he i n t e r sec t ion of 

maximal dihedral subgroups of t he max ima l subgroups of G containing 

and consider ing i n t e r s e c t i o n of cyc l i c groups as in we obta in 

f 0 
d = p ± 1 wi th even 

L f 
or ^ p ± 1) wi th J odd or d = 2 . 

3) F i r s t a note : 

Note Le t a be a p r imi t ive e l e m e n t of GF(p^) . 

For f I e, let be an add i t ive subgroup of GF(p^) of t ype wi th mul t i -

plier GF(p^). 3 exac t ly ^ ^ : = k such A . (see Dickson §71), each having 
P - 1 

t he f o r m : 

a^GF(p/) i k ) 

The in t e r sec t ion of any A wi th any Aj_̂  is e i t h e r 0 or is an Ag where 

£ : = h .c . f . { h, g } . 
• 

Now suppose Vpj is maxin t ; then it is t h e i n t e r s e c t i o n of max ima l abel ian 

subgroups of maximal subgroups of G and thus of 

V* with ^ p r ime or h = e . 
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But by the note, for any g, h | e, 

V* , Pi V* = V* p or I 
P pG P 

Thus our V ^is spec ia l , and in pa r t i cu l a r f | e . 

— d rnaxint, it is the intersect ion of groups of types 

pr ime or h = e , ai 

are in particular special in G. 

fo r ^ odd p r ime or h = e , and 2r(h) h = ^ if e even. These groups 

By the no t e in 3^, ^ is en t i t l ed to be deno ted ^ and in pa r t i cu l a r 

f I e . 

Le t c ; = (2 ; 1) as ^ is (even ; odd). It is quickly c h e c k e d by t h e super -

group l e m m a t h a t ^ is con ta ined in a unique c r ( f ) all max ima l 

subgroups in G conta in ing ^ also con ta in c r ( f ) we conc lude t h e s e 

t w o groups a r e equal . 

5) Suppose is maxint. If ^ is even, then its supergroups are exact ly 

a Gr and its r e s p e c t i v e supergroups in G. Thus ^ is odd . 

At th i s s t a g e , we have ' e l im ina t ed ' enough subgroups of G (by showing 

they a r e not maxin t ) t o make a s y s t e m a t i c t r e a t m e n t of t h e r ema in ing 

subgroups m a n a g e a b l e . We need only deal wi th t h e fol lowing c a t e g o r i e s : 

i) a) fo r — odd b) G^ for p e v e n 

li) a) fo r - j odd b) 2r{f) T 

iii) V* ^ 

P 
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iv) t he ' excep t iona l ' subgroups of t ype A^, and A^ 

v) a) ^2r(f) f ^ 2 2r(f) f 

'^2s(f) for ^ odd d) D 2 . 2 s ( f ) ^ ° ' f ^ ' ' ^ ^ 

vi) a) for ^ odd c) ^2r ( f ) f 

b) ^s( f ) F ^ 2 s ( f ) f 

vii) V^ 

viii) C^ 

xi) I 

The symbol K will a lways r e p r e s e n t a subgroup of t h e c a t e g o r y being 

cu r r en t ly cons ide red . 

The number of groups in each category (and for each divisor f of e) is 

given by |G | / | K | except 

i) b) & ii) b) , also and of iv) : 
K 

iii) C |G | w h e r e c - (2 ; 1) as ^ is ( even ; odd) 

q(p^- 1) 

vi) a), c), d) | G | vi) b) | G [ 

q - 1 q + 1 

vii) | _ ^ 
12 
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viii) |G | ( + as q =j i mod 4) 
q + 1 [-1 

ix) 

Most convenien t ly t h e subgroups of a c e r t a i n t y p e as l is ted above all 

f o r m a single c lass under AutG, so we will a l w a y s be able to apply the 

supergroup l emma. 

The order ing i) - ix) of t h e above c a t e g o r i e s is such t h a t t h e supergroups 

in G of a subgroup in a c e r t a i n c a t e g o r y all lie in t h e s a m e or in a previous 

category. 

i) a) and b) K = fo r p odd or G^ f o r j even . A con t r ibu t ing 

se t of K is: 

unique Vh > f s . t . f | h | e and ^ odd 

a unique Vh > f s . t . f | h | e and ^ even 

This con t r ibu t ing se t f o r m s a n u m b e r - t h e o r e t i c l a t t i c e on y (see p. 6 ). 

Immedia te ly , by t h e s u b l a t t i c e l e m m a , 

y ^ (K) = y (y) 

iU a) K = IW 

a unique Sĵ  Vh s . t . f | h | e 

r(f) F ^ c o n t r i b u t i n g se t of K is: 

a unique Vh s . t . f | h | e , h > f , 

But the supergroups e x a c t l y c o n s t i t u t e one and i ts supergroups; 
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supposing f < e, their total contribution thus is 0. These groups may thus 

be ignored, leaving us with a counting set , the The latter form 

a n u m b e r - t h e o r e t i c l a t t i c e on r , with maximal e l e m e n t M , But 
I q,r(e) 

M is a maximal subgroup of G, so 

y = -1 (deal ing with c a s e f = e ) . 

By t h e s u b l a t t i c e l emma, 

U Q ( K ) = - l i ( j ) . 

b) K = 2r{i) T ^ contributing s e t of K is: 

a unique and 5^ Vh s . t . f | h | e a n d j even 

a unique Vh s . t . f | h | e and ^ even 

a unique 2r(h) Vh > f s . t . f | h | e and ^ even 

We may ignore t h e supergroups (as well as i t se l f ) of t h e unique 

containing K : this leaves 

a unique G^̂  Vh s . t . f | h | e a n d odd 

a unique Vh > f s . t . f | h | e and j odd . 

G t i l 
Suppose f = — w h e r e if 2 11 e t hen s < t 

2^ 

p^(K) + ijQ(G^) - 0 

=:^ \1 /-(K) = - |J (2^) 

Now let f be any value less t han —. Then we may discount G j and its 

supergroups , leaving t h e count ing se t 
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unique 2[.(h) Vh > f s .t . f | h | e and odd. 

L e t 2^1 | e , 2^ | | f and r = t - s ^ 1. 

Then t h e count ing set f o r m s a n u m b e r - t h e o r e t i c l a t t i c e on wi th max-

imal e l e m e n t 2r(h) h - ——. By sublatt ice l e m m a 

M Q ( K ) = - ]J (2^) . = - W (p) « 

(Note: fo r n, m e N, the only i n s t ance t h a t 

p ( n ) u ( n O f u(nm) 

is when n and m are both square free and share a prime divisor. We have 

' W 

iii) K = V* A con t r ibu t ing se t of K is 
— p i -

a unique V* Vh >f s . t . f | h | e 

P 

, p^"^ Vh s.t . f | h | e and ^ odd 

P ^h ,2 r (h ) , p^"^ Vh s . t . f | h | e and j- even . 

The supergroups on the second, also t he th i rd , l ine have cance l l ing con t r i -

but ions by i) and ii). So we have a count ing s e t , and a n u m b e r - t h e o r e t i c 

l a t t i c e on ^ , with t he abel ian supergroups; we h a v e y ^(V ) = 0 and so 

also 

p ^ ( K ) = 0 . 

iv) Le t q = ± 1 mod 3, K = 
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Unless e = 2, p E ± 2 mod 5, 3 a power f of p s . t . f | e , f < e and p^ = 

± 1 mod 5. (I fo r t he t ime being exc lude the e x c e p t i o n a l c a s e f r o m con-

s ide ra t ion : it will be dea l t wi th s e p a r a t e l y a f t e r t h e main resul t . ) In this 

c a se e a c h is con ta ined in some < G; it is quickly es tab l i shed t h a t 

K has a unique supergroup and t h a t t he con t r i bu t i ng supergroups of 

f̂ K and th is Sr co inc ide (K can only have linear supergroups) : so canno t 

be m a x i n t . 

Exac t ly t h e s a m e sor t of reasoning holds for q = ± 1 mod 8, K s S^; 

K = (as any supergroup A^ is non-cont r ibu t ing) , so in all c a se s 

W (,(K) = 0 

• 

I now iden t i fy and label some excep t iona l cases which occur because of 

c o - i n c i d e n c e of e l e m e n t s of c a t e g o r i e s vii), viii), ix) ( i .e . V^, I) with 

some e l e m e n t s in c a t e g o r i e s v) and vi). 

I) p = 3 , e even . 

Then ('2r(l) - ^ 2 ' '^2.2r(l) ' ^4 

II) p = 3 , e odd. 

Then = I , '^2.r(l) " ^ 2 

^ s ( l ) - ^̂ 2 ' ° 2 . s ( l ) - ^4 

III) p = 5 , e odd, 

Then 

In my t r e a t m e n t of c a t e g o r i e s v) and vi) fol lowing, t h e s e groups a r e t a c i t l y 

exc luded and will be dea l t wi th in vii) , viii) and ix) a s a p p r o p r i a t e . 
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v) The Dihedral Groups 

Firstly note that M has no dihedral subgroups (except possibly some 

°2p' -

a) K has cont r ibu t ing 

a unique 

a unique S|_̂  

s e t : 

Vh > f s . t . f | h | e 

Vh ^ f s . t . f j h j e 

But t h e supergroups Sĵ  e x a c t l y c o n s t i t u t e a and supergroups and 

so may be ignored (as long as f e). This l eaves us wi th a number-theoretic 

l a t t i c e on -

of G and so has value -1 . Thus 

with maximum e lement which is a maximal subgroup 

^ ^ (K) = - )j(Y) 

b) The a r g u m e n t and resu l t as fo r ^ 

c) K has cont r ibu t ing se t given by t h e fo l lowing t a b l e (all subsequent 

t ab l e s will be headed iden t ica l ly : I will s o m e t i m e s o m i t to w r i t e t he head -

ings down.) 

Supergp. Condns. on h 
Type 3 Vh s . t . f | h | e and . df K in J supergps. 

] of K P(^(K) 

h e , , 
Y even , odd w(f) 

even 

D 2r(h) 
h e , , 
Y even , y odd 

• 2 f < h and not both 

Gy even , ^ odd) 

U 
K| 

l i i 
iKl 

w(r) 
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We may ignore the unique supergroups, leaving 

a unique 2r(h) Vh > f s . t . f | h | e a n d ^ odd 

two Gj_̂  Vh s . t . f | h | e a n d p odd 

If 2^ |e fo r some s 3. I and f = — , then 
2^ 

= -2 = - 2 ^ (2^) 

o the rwise for o the r values of f we may ignore t h e supergroups Gj^, and 

an a r g u m e n t ident ica l t o t h a t a t t h e end of i i ) b) y i e lds 

M^(K) . -2w (y) 

d) Similar s i tua t ion and resu l t t o above . 

vi) K = for p odd has ' con t r i bu t i ng t ab le" : 

Type of supergp. N u m b e r 

a = s , - | j | / ( p ^ - l ) (p^- l ) / (p^- l ) 
^ 0 

^h,r(h) - 2(p^-l)/(p*^-l) _M(^) 

'^2r(h) - 1 (p^- l ) / (p^- l ) 

^'r(h) h >f 1 1 7 

All supergroups and S|_̂  may be ignored as t h e i r c o n t r i b u t i o n s c a n c e l . 

It is t hen t r iv ia l t o p rove by induct ion on n : = p r i m e divisors coun t ing 

mul t ip l i c i t i e s of ^ t h a t 

G pf _ 1 * 

-52-



b) K = '^3(f) p odd has con t r ibu t ing t ab l e : 

Type of supergp. Number 

] = - | j | / ( p ^ + l ) ( p ^ + l ) / ( p \ i ) W(^) 

Csm) h 1 

For each h, t he (con t r ibu t ions of the) groups and cance l ; this 

means in pa r t i cu la r 

G^^s(e)) - ° 

and hence in genera l 

^ ^ ( K ) = 0 

c) K = ^ 2 r ( f ) T even . E x t r a c t i n g t h e un ique supergroup of K of 

t ype C^^2f) i ts supergroups , K has coun t ing s e t : 

Type of supergp. N u m b e r 

J = ^ o d d | ] | /2(p'^- l ) (p^-DAp*^-!) W(^) 

M^2r(h) 2(p^- l ) / (p^- l ) -H(^) 

^2.2r(h) 1°"^^ ^ -^p^- l ) / (p^- l ) " ^ ^ 0 

C2r(h) r >1 odd 1 

Immedia t e ly , Mq(K) = 2 
/ e ^ 
p - 1 

Ip - V 

d) K = C 2c{f) wi th Y even . E x t r a c t i n g t h e un ique supergroup of K of 
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t y p e C^^2f) its supergroups , K has count ing se t : 

Type of supergp. N u m b e r 

Y odd | ] | / 2 ( p \ l ) ( p ^ - l ) / ( p \ l ) 

^2.2s(h) 1 ( p ^ - l ) / 2 ( p \ l ) - 2 y ( £ ) 

^2s (h) J > 1 odd 1 1 7 

I m m e d i a t e l y , y q(K) = 0 , 

vii) K = V,, 

Fi r s t l y , suppose q is not exceptional case I), in or HIX Then K has con t r i -

but ing s e t : 

Type of supergp. N u m b e r 

even | j | / 6 4 

^ o d d | ] | / 1 2 1 p f ) 

^2.2r(h) 
G 1 T 1 / f 
pj- even | 3 | / 4 3 - 2 u ( | ) 

^2r(h) g o d d f ^r| /4 
" 1 0 {: - M ( S ) 

^2.2s(h) 
^ even | 3 | / 4 3 - 2 p ( 2 ) 

^2s(h) 
— odd r 0 
h l | ] | / 4 { 3 

-

h 

In t h e t a b l e and subsequent ly in th is c h a p t e r un le s s o the rwise ind ica ted , 

1 
as q E 1 2 mod 4 

^presumes a resul t we shall der ive in sec t ion 3 of t h i s c h a p t e r , see p. 71. 
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We have 

PQCV^) + ( 4 - 6 - 6 ) p (^) + / (1 - 3) }i (•^) = 0 

G-varv OAJL 

But if e > 1 and not a power of 2, then 

% ««>n % ""U. 

W ( ^ = = 0 

and so P^(V^) = 0 , 

However if e is a posi t ive power of 2, ' f say, then 

r - i 

w ^ H(2' '"") = W(2) = -1 
Sven = 1 

= w( i ) = 1 

Vk oil 

Thus |J^(V^) + 8 - 2 = 0 

=7" WQ(V^) = -6 

Now I cons ider t h e excep t iona l cases : 

I) The con t r ibu t ing t a b l e of K is as b e f o r e e x c e p t i t has no supergroups 

of f o r m 2 r ( l ) ' c o m p e n s a t e t h e value of W^(K) is d e c r e a s e d by 6 W (e) 

f r o m s t a n d a r d resu l t . 

II) Exclude d e c r e a s e ]J^(K) by 3 ] j ( e ) . 

III) Exclude D 2r ( l ) ' d e c r e a s e W^(K) by 3 W(e). 

viii) K = C^ . F i rs t ly suppose q is not excep t iona l I), II) or III). 

Then K has con t r ibu t ing t a b l e as on next page . 
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Supergroup of N u m b e r 

G , £ even p ' " 1 
P — 1 

S, odd 1 
p + 1 

even p - h 

M, /, \ odd 

h 2 (q- l ) 

P ^ i 

P 
h r 2 ( q - l ) / ( p ^ - l ) 

'h,Kh) [ 0 L 0 

h 

D2.a.(h) even p , ^ 
h 1 ( q - l ) p 

° 2 K h , 

D2.2s(h) even p K l l i a z M ^ l A 

' P ^ l 

i(ph I I , i ( a ^ ( p \ p ) 
°2s(h) " 13 ' 2 h^j 

=2r(h) ^ h 

- 1 

g b l 
h , 

p -1 

=r(h, i i 2 3 ^ 
^ ^ P - 1 

- 3 l^q + i ) See vu) 

N.B. Where t he 'double ' signs +, + occur in b r a c k e t s (p^±l) or (p^ + 1) 

f o r s o m e k, one reads t h e ' t o p ' sign if q = 1 mod 4, the ' b o t t o m ' sign 

if q = -1 mod 4. This conven t ion shall be kept subsequen t ly in th is c h a p t e r . 
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We ob ta in (eventual ly) t h e r e su l t : 

If e > 1 and not a power of 2, then 

= 0 - + I) )i^(V^) - 0 

If e = 2"" wi th r ^ 1 , then 

= - (q - 1) - - 1) 

Now t o dea l wi th t he excep t iona l cases : 

I) F r o m t h e t ab l e we mus t exc lude the ^ 2 ^ ^ ^ and the 2r{l) 

c o m p e n s a t e fo r change in 

The t o t a l e f f e c t is t o i n c r e a s e l i^ (K) by (q-i) i i (e) . 

11) We exc lude and c o m p e n s a t e f o r V^. 

D e c r e a s e y ^ ( K ) by - ^q+ l ) y(e) 

HI) We exclude D 2 r ( l ) compensate for V^. 

.(^(K) by i Inc rease y ^ ( K ) b y - ^ q - 1 ) y (e ) , 

ix) The supergroups of 1 in G a r e simply t he non- t r iv i a l subgroups of 

G; so t h e con t r ibu t ing t a b l e of I nea t ly s u m m a r i z e s t h e values of 
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excep t y ^(I) , t h e l a t t e r however being d i rec t ly d e t e r m i n e d by i t . On 

the next two pages, the whole resu l t for y ^ is t a b u l a t e d . The se t -ou t 

is sl ightly d i f f e r e n t to previous t a b l e s and is more e x p l i c i t . 

For t he con t r ibu t ing t ab le of I we mere ly ignore t h e en t r i e s for I; we 

(eventual ly) c a l c u l a t e t h a t fo r t h e s t a n d a r d case 

= 0 

For t he excep t iona l cases I), II) and III) as usual we m u s t make a d j u s t m e n t s 

for the changes of value of ) j^ (V^) and ^ ^ ( C ^ ) a s a p p r o p r i a t e and also 

for the omissions of t h e fol lowing group types . 

Resul t ing f r o m this we f ind: 

I) and III) W (̂I) = 0 II) W^(I) = |G| w(e) 

S ta tement of result 

For G : = PSL2(p^), p odd p r ime , e > 1 and exc lud ing t h e case e = 2, 

p E ± 2 mod 5. 

The values of a r e as l is ted below; any subgroup K of G not ment ioned 

has M_(K) = 0. 
Li 
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Vh s.t . h | e and ^ e v e n : 

G, 
h,2r(h) D 2.2r(h) ^2.2s(h) ^2r(h) 

Except ions p=3,e even,h= 1 p=3,e even , 
h=l 

# t i t l e d gp.J 2 | G | 2 | ( ] | 
i n G jJl q - l 

- 2 u ( ^ ) -2vi 0 2(q- l )^ 0 
1 ^ 

Vh s . t . h | e and ^ odd: 

M h,r(h) D 2r(h) D 2s(h) C r(h) 

Except ions p=3 or 5,e o d d , h = l p=3, p = 3 o r 5 , 
e odd, e odd, 
h=l h=l 

t i t led g p . ] 
in G 

G L 

3l 
M 
q - l 

W(^) W(^) .w(^) 

Also: 

Vi^(V^) = ( -6 ; 0) as (e = 2"", r >> i ; o the rwise ) 

but s u b t r a c t 6 . p(e) if p = 3, e even 

s u b t r a c t 3.]_i(e) if p=3 or 5, e odd. 

^G^^2^ = ( (q - l ) /2 ; 0) as (e=2^, r ^ 1; o the rwise ) 
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but s u b t r a c t - (q - l )p (e) if p = 3, e even 

s u b t r a c t + (q+ l )y (e ) /2 if p = 3, e odd 

s u b t r a c t - (q - l )y (e) /2 if p = 5, e odd . 

1Jq(I) = 0 

e x c e p t 

if p = 3, e odd when 

y ^(I) = |G | y (e) , 

• 

2 

Determination of Result for G : = PSL^(p ), p E ± 2 mod 5 

We now have maximal subgroups in G of t ype A^; t he resu l t s fo r t he 

case e > 2 found above c a r r y th rough e x c e p t f o r t he subgroups of the 

A^ 's , i .e . t h e subgroups of G of t y p e A^, A^, = 5^, V^, C^, C y 

and I. 

Thus t he values of a r e as b e f o r e a p a r t f r o m t h e fol lowing compensa t ions 

(en t i re ly due to the l a t t i c e s t r u c t u r e of t h e A^'s): 

5 
A s u b t r a c t 1 

A^ 

5 4 
A conta in ing an A = 2 ; thus add 2 

For both K = or 

conta in ing a K = 2; thus add 2 

V 
-14 

A^ conta in ing a V. = 2 

A^ conta in ing a = 1 

4 
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Thus liQ(V^) unal te red 

(N.B. q = -1 mod 5 5 | (q+l) /2) 

containing a = (q+l ) /5 

# containing a = (q+l) / iO 

Thus iJ^(C^) unal tered 

(N.B. q is a square q = 1 mod 3 =%» 3 | (q - iy2 ) 

# containing a = ( q - l ) / 3 

j f A^ containing a = (q - l ) /3 

jzf Dg containing a = (q - i ) / 6 

Thus s u b t r a c t 2 (q- i ) /3 

^ 2 

A^ A^ 
^10 ^^6 

df t i t led 
supergp.3 

(q- l ) /2 (q- l ) /4 (q - l ) /2 ( q - n / 2 (q-1)/4 

Change in -1 + 2 +2 + 2 0 

Thus sub t r ac t 2(q-l) 

I: Add 2 |G I, concluded f r o m following t a b l e (which also summar izes 

result) ; 
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^ 1 0 ^ 3 ^ 2 

t i t l ed I M 1 ^ 
gp.J in G 30 12 10 6 q - l q - l 

Change in -1 + 2 + 2 +2 -2 (q- i ) -2 (q- l ) 
3 

2. MOBIUS FUNCTION OF G : = PSL^(2^), e > 1 

I review the subgroups of G (again see Dickson §260). The structure is 

s ign i f i can t ly s impler than the odd p r ime power c a s e . Most impor t an t ly 

t h e r e is less d i sc r imina t ion b e t w e e n groups a s s o c i a t e d with a divisor h 

of e for which ^ is odd and those for which ^ is even, due to the fac t 

Vh E N . 

So G has subgroups Vh s . t . h | e , and t h e s e a r e the i r own normal i se r 

in G. The s tab i l i ze r of a mark is a me tabe l i an M 2r(e) ' again is 

i ts own normaliser. The stabil izer of a pair of marks is a with 

^G^^2r(e)^ - °4r (e ) ' 

G also has subgroups '^2s{e) 

^G^^2s(e)^ = ^4s(e) prime power c a s e ) . 

G has no o the r ' e x c e p t i o n a l ' subgroups. 

The max ima l subgroups of G are those of type : 

Sr wi th J- p r ime 

^q,2r(e) 
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^ 4 r ( e ) 

^4s(e) 

Using e x a c t l y analogous a r g u m e n t s (involving i n t e r s e c t i o n s of maximal 

subgroups) as used in the corresponding stage in s e c t i o n 1, we may e l imi-

n a t e f r o m cons ide ra t ion many of t h e subgroups of G. In f a c t K ^ G has 

y ^ ( K ) = 0 unless K lies in one of t he fo l lowing c a t e g o r i e s (for some 

f | e , f > 1); 

i) S; 

iii) V* J 

P 

iv) (a) f > 2 (b) (c) 

v) (a) f > 2 (b) (c) 

vO C2 

vii) I 

The ' smal l ' subgroups D^, Cy are exac t l y t h e t ypes if f = 1 (and 

f = 2 if e even in iv) a) and v) a)) w e r e al lowed in t h e o the r c a t e g o r i e s ; 

then however e a c h would fa l l in to more than one c a t e g o r y , and so they 

mus t be d e a l t wi th s e p a r a t e l y as above . (In p a r t i c u l a r t h e c a t e g o r i e s above 

a r e mutua l ly dis joint . ) 

The number of g roups in t h e c a t e g o r i e s above a r e | G | /1 K | e x c e p t : 

iii) | G | 
q .2r( f ) 
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v) (a), (b) if 4 even , (c) if e even : | G | 
'fr(e) 

v)(b) if ^ odd, (c) if e odd: | G | 
4s(e) 

vi) 
q 

Vll) 1 

All t h e s e t s of subgroups in a c e r t a i n c a t e g o r y ( for a f ixed f) f o r m a 

single con jugacy c lass in G, so we may again ava i l ourse lves f r ee ly of 

t h e supergroup l e m m a . 

I dea l wi th t h e c a t e g o r i e s in tu rn : 

i) K = Sr. Con t r ibu t ing s e t : 

a unique S|_̂  Vh > f s . t . f | h | e 

Also p ^ ( S ) = M^(G) = 1. I m m e d i a t e l y 

11 ^ (K) = M (^) . 

ii) K - 2 r ( f ) ' - Con t r ibu t ing se t : 

a unique Vh s . t . f | h | e 

a unique 2T{h) Vh >f s . t . f | h | e 

The second line a lone f o r m s a coun t ing s e t . 

Now Pc<"q,2r(e)> = 
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•Hie 
By^subla t t i ce l emma, 

W^(K) = - p ( ^ ) 

111) K = V* J. Con t r ibu t ing se t : 

P 

2^ ^ S, Vh s . t . f l h l e 
h ' ' 

'^h.2r(h) s-t-

a unique V* ^ Vh > f s . t . f | h | e 

P 

Immediately, ^^(K) = 0 . 

iv) a) K = f >2 . Con t r i bu t i ng se t : 

a unique Vh s . t . f | h | e 

a unique Vh > f s . t . f | h | e 

(for 
The second l ine a lone f o r m s a coun t ing setV.Also = - i 

iv) b) K = . C o n t r i b u t i n g se t : 

a unique Vh s . t . f | h | e 

\ r ( h ) f 

\ s ( h ) 

a unique D, /, % Vh s . t . f | h | e and ^ even 

a unique D. \ Vh > f s . t . f | h | e and j odd 

For f < e, t he may be ignored , leaving us w i t h a n u m b e r - t h e o r e t i c 

l a t t i c e on the d ihedra l supergroups wi th max ima l e l e m e n t M e i t he r a 

'^^r(e) ^ ^ '^s(e) ' ^hus M is a m a x i m a l subgroup of G. 
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p ^ (M) = -1 . 

Observing that values W consistent the result by (a), we 

conclude 

W ^ ( K ) . -W (y) 

(c) K = D^. Contributing se t as in (b) fo r f = 1 e x c e p t 

no 

no G even . 

For e odd c a n c e l s wi th Vh > 1. So 

^ ^ (K) = 0 . 

For e even c a n c e l s wi th or a s app ropr i a t e Vh > 2. 

Thus 

y Q(K) + = 0 

^(K) ^ - ^ 0 . 

v) (a) K = ^2r(f) , ^ ^ 

on p.51). 

Con t r i bu t i ng t ab l e (wi th f o r m a t as t h a t 

Supergroup N u m b e r 

J = S^ | ] | /4r(h) (q - l ) / ( 2^ - l ) p ® 

'^h,2r(h) 2^ 2(q-l)/(2'^-l) - p ( S ) 

'^4r(h) 1 (q- l ) / (2h_i ) -M(£) 

C2r(h) h > f 1 1 7 
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The supergroups S^, cancel; by induction on the number of prime 

divisors (count ing mul t ip l ic i t i es ) of p we conc lude 

p^(K) = ^ P<|) 
z - 1 

(b) J5__=_92s(f)— T even , K has a un ique supergroup ^ 2 r { 2 t y 

we may discount this C2^^2f) supergroups leaving us the counting 

t ab l e : 

Supergroup Number 

3 
- \ 

h 
f 

odd | ] | / 4 s ( h ) (q+i) / (2^+l) 

°4s(h) 
h 
f 

odd 1 ( q + l ) / ( 2 \ l ) 

^2s(h) 
h 
f 

>1 odd 1 1 ? 

The and t h e S|^ c a n c e l : by trivial induction 

^ ^ ( K ) = 0 

(c) K = ^ 

For e odd. A count ing se t of is e x a c t l y as in t a b l e v) (b) fo r f = 1, 

e x c e p t we exc lude the (o the rwise they a r e c o u n t e d twice) . Thus 

W^(K) + ° ° ' 

For e even . Now = ^2r{2y e a c h even h | e s . t . h > 2, K 

has supergroups as in t a b l e v) (a) and t h e s e c a n c e l ; fo r each odd h | e s . t . 

h > 1, K has supergroups as in t a b l e v) (b) and t h e s e cance l . We a r e l e f t 

wi th t h e count ing se t : 
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2(q- l ) /3 M 

and we conc lude |JQ(K) = 2^3z i l y (£) 

vi) K - CQ. Con t r ibu t ing t ab le : 

Supergroup Number 

3 = Sh - p | / 2 h ^e-h 
P ( f ) 

'^h,2r(h) 
h > 1 | j | / 2 h -P (£ ) 

^^ r (h ) 
h > 2 | 3 | / 2 

^e - l 
- P ( f ) 

h > 1 | : | / 2 2®-' 
- ^"h-' 

The supergroups and 2r(h) c a n c e l fo r e a c h h > 1 , leaving a count ing 

s e t on t h e 2^ ^ S, = D ^ = '-'g and t h e supergroups of t h e bo t t om two lines. 

For e odd: = 0 by iv) (c) 

Thus P^(K) + 2.2^ = 0 
^ KU j.l. 

K>1 

^ ^(K) = -2^ w(e) (as e > 1) 

F o r e e v e n : n o w P q ( D ^ ) = _ W (^) 

y^{K) . 2.2=-'!^ ^ - p ( £ ) j * 2^- ' + 2^"' ^ ^ ( 0 ^ 

- 0 
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/ P c ( K ) - 2 ^ - 2 = ' V ( f ) - 2 " - ' p ( f ) = 0 
V K>2. ' 

r~^ MQ(K) = 2^ M(^) = -2^ ii(e) . 

k>l 

vii) Again t h e con t r ibu t ing se t fo r I is given by t h e s t a t e m e n t of r e su l t 

(less t h e e n t r y fo r I) below. By s t r a i g h t f o r w a r d bu t tedious a lgebra , it 

is c h e c k e d t h a t fo r both ca se s e odd and e even t h a t 

S t a t e m e n t of result 

For G : = PSL2(2^), and e > 1 , 

I have a l r eady published th is pa r t i cu l a r resu l t in a jo int paper with G.A. 

J o n e s [ 6 ]. 

The va lues of y ^ a r e l is ted below; any subgroup K of G not men t ioned 

has ^^(K) = 0. 

I somorphism V h s . t . h | e Number of y ^ (K) 
t y p e of K and ... subgroups in G ~ K 

h > l | G | / | K | V<i~) 

"h,2r(h) h > l i G l / l K l - p ( £ ) 

D«r(h) 1 |G| / | K | - u f ) 

V h ) h > 1 | G | / | K | - p f ) 

S r ( h ) h > i 

C2 iVa |G| / q 

I n / a I q (q^- l )y (e) 
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3. MOBIUS FUNCTION OF G : = PGL^(p^), p o d d . 

Rev iew of subgroups of G 

The s t r u c t u r e of G may easily be deduced f r o m t h a t of its subgroup S 

of index 2 (and also f r o m t h a t of t he group $2^ m which G may be im-

bedded) . 

For eve ry divisor h of e , G has subgroups both of type G^ and with 

The s t ab i l i z e r of a mark is a m e t a b e l i a n M , ( aga in it is i ts own nor-

ma l i ze r in G). The s t ab i l i ze r of a pair of marks is a wi th 

^G^^2r(e )^ - '^4r(e) ' 

G also c o n t a i n s subgroups wi th 

^G(^2s(e) ) - ° 4 s ( e ) 

G f ina l ly con t a in s excep t iona l subgroups type A^, S^, A^ which all occur 

simply in t h e i r role of subgroups of t h e S. < G ( see p.42 ), e x c e p t if p 

3 mod 8, when G con ta in s a single con jugacy c l a s s of | G | / 2 4 subgroups 

^ < G but not in t h e S^. of t y p e which lie in t h e G , < G but not in t h e S , . 

An i m p o r t a n t f e a t u r e of G (as c o m p a r e d to t h e s p e c i a l l inear groups des -

c r ibed in s ec t ion 1) is t h a t both types ^s (e ) max ima l cyc l i c sub-

groups have o rder divisible by 2, giving us two c o n j u g a c y c lasses of in-

volut ions , one lying en t i r e ly in S , t h e o the r e n t i r e l y in G \ S ^ . A < G 

' 2 ' 
with g e n e r a t o r in t h e f o r m e r c lass is deno ted t h e l a t t e r We 

have 
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q ( q i l ) / 2 1 as q E 11 mod 4 . 

in G = q(q + i ) / 2 J 

The p r e s e n c e of t h e s e two c lasses of invo lu t ions obviously is i m p o r t a n t 

m any analysis of t he d ihedra l subgroups: in f a c t it is easy to a s c e r t a i n : 

Lemma (and notation) 

G has e x a c t l y | G | / 2 d subgroups of t y p e V d > 2 s . t . d | (q± l ) . 

< 0 2 ^ . 

If d | (q+ l ) /2 (i .e. d | r ( e ) or d |s(e);), t hen t h e s e a r e d i s t r ibu ted in two 

con jugacy c lasses of order |G | /4d , one c lass cons is t ing of those lying 

en t i re ly in S , t h e o the r of those w h e r e lies in G\S^. I d eno t e 

an e l e m e n t of t h e f i r s t c lass the second 

If d ' f ( q ± l ) / 2 , then t h e |G | /2d subgroups f o r m a single con jugacy c lass 

m G . 
• 

Of the d ihedra l subgroups t he a r e d i s t ingu i shed . This is because if 

V, < S (such IS deno ted ^V, ) , t hen i t s n o r m a l i s e r is an excep t iona l sub-
4 6 4 

4 a 

group of t y p e S ; t h e f o r m a s ingle c o n j u g a c y class in G of length 

|G 1/24. However if ^ S (such is deno ted ^V^) , then i t s normal i se r is 

a Dg (cons i s t en t in f a c t wi th t h e l e m m a fo r d ihed ra l subgroups in genera l ) , 

and t h e f o r m a single con jugacy c lass of l eng th |G | / 8 . In t o t a l t h e r e -

f o r e G con t a in s |G | / 6 subgroups V , , a resu l t p r e s u m e d ea r l i e r (p. 55 ). 

Now to s t a r t t ack l ing t h e problem; f i r s t I list 
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The maximal subgroups of G 

with ^ prime, f < e 

Se 

^q,2r(e) 

if e = 1, p 2 ± 3 rnod 8, p ^ 3 (a case hence for th (^(eluded untH 

^ 4 
after* main result; PGL2(3) = S excluded too) we have maximal subgroups 

of t ype S^. 

The techniques as employed in sect ion 1 at the corresponding stage allow 

us t o say any maxint subgroup of G has one of t h e t ypes as l is ted below. 

The situation now though is sti l l quite c o m p l i c a t e d . The t a b l e displayed 

has rows label led i) t o x) and two co lumns (a) and (b), and t h e en t r i e s 

give t w e n t y c a t e g o r i e s of groups i)(a) t o x)(b) ( e x c e p t some will be empty) . 

A group in an (a) c a t e g o r y has leas t l inear s u p e r g r o u p of type for 

some h, in (b) type G^. Also f runs th rough all d iv isors of e: 

(a) (b) 

l) 5f Gf 

n) 
'^f ,2r(f) 

111) *D2r(f) 

iv) 
^^Zstf) 

v) (^r(f) C2r ( f ) 

vi) 
*^s(f) ^ '2s(f) 

vn) V*pf 
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(a) (b) 

viii) ^V,, 
4 ' 4 

2 ^ 2 
Ix) ''C 

x) 

Defini t ions and Notes 

I shall ca l l the (a) and (b) c a t e g o r i e s with t h e s a m e Roman numera l c o m -

p l e m e n t a r y . 

We also have a na tu ra l s u b c a t e g o r i z a t i o n of e a c h c a t e g o r y 6 i) t o vii), 

(a) or (b) by divisors f of e ; d e n o t e th i s 

e = U { . 

I shall cal l the (a) and (b) s u b c a t e g o r i e s wi th t h e s a m e Roman numera l s 

and the s a m e divisor subscr ip t f c o m p l e m e n t a r y . 

No te t h a t t h e e l e m e n t s of an (a) - s u b c a t e g o r y i) t o vi) a r e in 1:1 

c o r r e s p o n d e n c e with t he e l e m e n t s of t h e c o m p l e m e n t a r y subca t ego ry : 

e a c h can be iden t i f i ed wi th t he unique t h a t con t a in s it wi th index 

2. Such and I cal l c o m p l e m e n t a r y subgroups . 

A subca t ego ry i) to vii) is excep t iona l if it c o i n c i d e s wi th a n o t h e r sub-

c a t e g o r y . The only such excep t iona l c a s e s a re : 

0 P = 3, f = i; 

c ^ ^ ) - (^2 ' 

^ h U ) = I ' ^ 2 ^ ^ ) = ' 

-73 -



^ 2 ^ 1 ) - ^ 2 ' 

n) p = 5, f = 1 : 

These except ional subcategories shall be tacitly excluded until we tackle 

t he V^, and I in their own right. 

Each of the subcategories exact ly const i tute a single conjugacy class 

of subgroups in G excep t (possibly) iii)(b) and iv)(b), s e e l emma p.71. However 

if ^ is odd, then there are no exceptions, which we see by 2) below is 

all we need. 

We now r e d u c e the calculation by showing in turn: 

1) Any K < G in an (a) subcategory i) t o vi) f o r p even is not maxin t . 

2) Any K < G in a (b) subca t ego ry i) t o vi) f o r ^ even is not max in t . 

3) If ^Kr , a r e in c o m p l e m e n t a r y s u b c a t e g o r i e s for some i) t o vi) 

then 

P r o o f s : 

1) L e t K: = be a maxin t group in a (a) s u b c a t e g o r y i) t o vi) with 

divisor f . Then K < S < G and so if 
e 

K ^ A M. 
l e a ^ 

w h e r e t h e M., i e ( Q just some indexing se t ) , a r e maximal subgroups 

of G, t hen 
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K = 0 ( 5 ^ ( 1 M.) . 

Clearly if M is any maximal subgroup of G, then (S H M) is a maximal 

subgroup of S ; wha t t h e last express ion for K t h e n says is t ha t K is 

max in t in S^; we use our work in sec t ion 1 to c o n c l u d e j is odd. 

2) We d e n o t e by any group in any (b) s u b c a t e g o r y i) to vi) wi th 

e 
divisor f . Suppose is even 

In all c a s e s has a unique supergroup in t h e c o m p l e m e n t a r y c a t e -

gory. It is s t r a i g h t f o r w a r d to es tab l i sh t h a t in any maximal subgroup M 

of G t h a t con ta in s mus t have a (unique) supergroup = 

s t r e s s , in M). Necessa r i ly 

*K^!f = *K2f 

i .e . all max ima l subgroups con ta in ing also c o n t a i n and t he f o r m e r 

canno t be max in t . 

3) It IS t r iv ia l ly es tab l i shed (by supergroup l e m m a ) t h a t (as in t he 

proposi t ion) has a unique supergroup of type Also for every (a) sub-

c a t e g o r y s . t . h > f , f | h | e we have 

j f supergroups of in ^ 6 ^ 

a b 
= supergroups of K, in t h e c o m p l e m e n t a r y 6 , . 

No t i ce S is max ima l in G, so 

The resu l t now fo l lows by induction (on t he (a) s u b c a t e g o r i e s o rde red 

as fo l lows: 
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- e , > 

iff e i ther the Roman numeral label of ^ is g r e a t e r than that of ^ 6 ^ 

or t h e Roman n u m e r a l s a r e equal and h < f ). 

I now proceed to t a c k l e in t u rn ( for j- odd on f i r s t l ine) : 

^ " ^ f ' ' ^ f ,2 r ( f ) ' ° 4 r ( f ) : ^ 4 s ( f ) ' ^ r ( f ) ' ^ s ( f ) ' 

V ' p r " = 2 ' ' 

i) K = <̂ 2 

Cont r ibu t ing se t : 

a unique V h > f s .t . f | h | e 

W(^(K) = w (^) 

ii), ill), iv) K - Kj : - Mj^2r(f)5 °«fr(f)' ^4s( f ) ' 

Contributing set: 

a unique V h s . t . f | h | e 

a unique K, V h >f s . t . f | h | e 

The supergroups of t h e f i r s t l ine may be ignored; is max ima l in G; 

M^(K) = -M(^) . 

v), vi) K _ 

The con t r ibu t ing t ab l e of K in G is e x a c t l y t h e s a m e as the con t r i bu t i ng 

t a b l e of K as a subgroup of S , s ee s ec t i on 1 p.52 - 5 3 , e x c e p t t h e c o n t r i -

but ion of each supergroup now is t h e e x a c t n e g a t i v e t o wha t it was b e f o r e . 

We conc lude 
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2 ^ 
(p*-!) * 

vii) K = V * ^ 

Cont r ibu t ing se t : 

M, 
h' h ' h,r(h) ' h,2r(h) 

a unique 

V h s . t . f | h | e 

V h > f s . t . f Ih le 

The con t r ibu t ions of t h e supergroups in t h e top l i ne cance l , we no te then 

W^(V ) = 0 and deduce by induct ion on t h e n u m b e r of p r ime divisors 

(counting mul t ip l ic i t ies) of t h a t : 

y ^ ( K ) = 0 . 

viii) (a) and (b) 

Reca l l (also for p a r t s ix), x)) t h e conven t ion 

and always as q mod 4 

unless o the rwi se s t a t e d . 

The con t r ibu t ing t ab l e s of and displayed in one (in which h t akes 

all values s . t . h i e and % is odd): 

Type 3 of 
supergroup 

# J con ta in ing Excluding 
C a s e s 

c o n t a i n i n g Excluding 
Cases 

M^O) 

Gh 1 - 1 - U ( f ) 

1 - 0 - -U (p) 

'^4r(h) 
3 p=3, h=l 1 p=3, h=i - p ( f ) 

-77-



Type 3 of 
supergroup 

if-3 conta in ing Excluding 
C a s e s 

# ] c o n t a i n i n g Excluding 
Cases 

^2r(h) 
p=3 or 5, 
h=I 

0 - u f ) 

'^4s(h) 
3 - 1 - - M f ) 

^2s(h) 
p=3, h=l 0 -

We have (excluding t h e excep t iona l ca se s I and II) 

(1 - 1 - 3 -

k 
Q-/K ojJL 

- 3 + i g ) (-̂ ) 

3 if e = Z , r ^ 0 
0 o the rwi se 

Similar ly 

1 1 f e = 2 , r > 0 
0 o the rwi se 

For p = 3, e odd: 

s u b t r a c t y (e) f r o m U^('^V^), do not a l t e r y ^ ( ^ V ^ ) 

For p = 5, e odd: 

add 3 y ( e ) t o y ^ ( V^), do not a l t e r y ^ ( V^) 
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ix)(a) 

If has supergroup in a (b) subcategory i) t o vi), then the c o m p l e -

mentary group is a lso a supergroup. Thus t h e supergroups of 

in c a t e g o r i e s i) t o vi) c o m e in c o m p l e m e n t a r y p a i r s , and so t h e i r c o n t r i b u -

t lons c a n c e l . This l eaves a counting set : 

(q ? l ) / 4 e a c h of and 

so 

= r -(q + 1) if e = 2% r $>0 
0 otkarwise. 

e x c e p t if I) p = 3, e odd: 

the are no longer cance l l ed by t h e 

c o m p e n s a t i o n is + 3(q+l) y (e) , 
4 

d e c r e a s e d by y (e), c o m p e n s a t i o n is + (q+1) y (e) ^ 
4 

so m t o t a l w e m u s t add (q+1) y(e) t o ^ ^ ( ^ € 2 ) 

or II) p = 5, e odd: 

t h e a r e no longer c a n c e l l e d by t h e 

c o m p e n s a t i o n is + 3 ( q - l ) y (e) , 
4 

yx^( V . ) increased by 3 y (e), c o m p e n s a t i o n is - 3 (q- l ) y (e) ^ 
4 

so P ( - ( ^ C ^ ) is u n a l t e r e d . 

ixXb) K = 

C o n t r i b u t i n g t a b l e (h t a k e s al l va lues s . t . h | e and ^ is o d d ) : 

- 7 9 -



Type ] of 
supergroup 

Excep t iona l 
Cases 

# supergroups of 
t ype 3 

Gh -
q±l 

p^+1 
W(̂ ) 

^h,2r(h) -

2(q- l ) / (p^- l ) 
-

^4r(h) 
I) (q± l ) (p^T I) 

2(p^-l) 

^4s(h) - (q±l) {p^+ f3) 

2(ph+n 

'^2r(h) 
I) [? p -1 

and also is con ta ined in e x a c t l y (q± l ) / 2 '^V^. 

So when p = 1 mod 4, we c a l c u l a t e 

(q+^l 
2 

when p % -1 mod 4 

C^) -
( q - 1 ) 

2 

^(#) 
k s.t. 

k sA. 
€/k 

( q + l ) / 2 if e = 2"" 
0 o t h e r w i s e 

However we also have t h e e x c e p t i o n a l c a s e s : 

I) We mus t c o m p e n s a t e fo r t h e omiss ion of t h e ^ 2 r ( l ) 

fo r t h e change in The t o t a l c o m p e n s a t i o n is t o add li (e) 

to |j^(*^C2). 
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II) In f a c t in this i n s t ance no c o m p e n s a t i o n is needed and the resul t 

is as ' s t a n d a r d ' . 

x) The con t r ibu t ing se t of I is given in t h e s t a t e m e n t of t h e f inal resul t 

as below by ignoring the entry for I. Apart f r o m the exceptional cases 

I) and II), the to t a l con t r ibu t ion of all groups in a column headed i) to 

v) in the table given there always cancel; this l e a v e s a counting set on 

t he and the and we c a l c u l a t e : U ^ d ) = 0. 

For ca se s I), II), t he a p p r o p r i a t e c o m p e n s a t i o n s to a b o v e give: 

I) w^(I) = - | G | . w ( e ) / 2 11) w^(I) = - | G | . w ( e ) 

S ta tement of result 

For G : = PGL2(p^), p odd p r ime , e :>. 1 but e x c l u d i n g t h e case e = 1, 

p 5 ± 3 mod 8. Le t q = p^. 

The values of a r e as l is ted below and o v e r l e a f ; any subgroup K of 

G not men t ioned has l i^(K) = 0. 

V h s . t . h i e and ^ odd: 
h 

i) ii) 111) iv) v) 

Type ] Gh ^h,2r(h) ^4r(h) ^4s(h) ^2r(h) 

Except ions - - p=3,e odd,h=l - p=3,e odd,h=l 

# ] in 1 ^ [ G l 1 ^ 
G |]| |]| |]| |]| 2(q-l) 
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Again V h s . t . h | e and h 

1) 11) ill) iv) v) 

T y p e ] 
^h ^h,r(h) ^2r(h) U2s(h) (^r(h) 

Exceptions - - p=3,e odd,h=l p=3 or 5, 
e odd, h=l 

p=3 or 5, 
e odd, h=l 

in 
G 

|G | 
2'[§f j ' f i f 

1 ^ 
2(q-l) 

- p ( f ) u ( f ) u (£ ) 

Also G has two con jugacy c lasses of 4-groups of length |G | /24 

and |G | / 8 r e spec t ive ly : 

3 

^ 3w(<^ 

. 0 

if e = 2 , r ^ 0 

if p = 5, e odd 

o t h e r w i s e 

[ if e = 2 , r 0 

•p(e) if p = 3, e odd 

) o t h e r w i s e 

Nex t , G has two con jugacy c l a s ses of cyc l i c g roups of order 2, 

which have length q (q±l ) /2 and q(q + l ) / 2 r e s p e c t i v e l y (as q E ±1 mod 4). 

-(q +1) if e = 2 , r ^ 0 

(q+l)w(e) if p = 3, e odd 

0 o t h e r w i s e 
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Finally, 

(q±l ) /2 

(q- l )p (e) /2 

0 

- G M(e)/2 

G p(e) 

if e = 2^, r ^ O 

if p = 3, e odd 

o t h e r w i s e 

if p = 3, e odd 

if p = 5, e odd 

otherwise 

The Case e = 1, p e ± 3 mod 8 

Firstly PGL2(3), i .e . the case q = 3, is standard as be fore except for 

w h e r e t h e e n t r i e s for 'e = 2% r ^ 0' and 'p = 3, e odd' must 

be s u m m e d . In f a c t 

PGL2D) 

and is d e a l t wi th expl ic i t ly in Hall ( [ 7 ] §3.63). 

For p > 3, though, this c a s e is except ional in that G : = PGL2(p) now has 

m a x i m a l subgroups of t y p e 5^. We mus t t h e r e f o r e m a k e c o m p e n s a t i o n s 

to t h e values of W^(K) as s t anda rd just fo r those subgroups K < G t h a t 

lie in a <G. The subgroups involved a r e : 

Type 

A 

D 

b 
D, 

Number in G 

| G | / 2 4 

| G | / 2 4 

| G | / g 

| G | / 1 2 

4 4 
Number in e a c h S j p supergps .S 

1 

1 

3 

4 

1 

1 

2 

V, 

V, 

|G|/&4 

| G | / 8 
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Type Number in G Number in each jf supergps.s'^ 

p(p+l)/2 3 (p + l)/4 

^ 3 
p(p±l) /2 as p = ±1 mod 3 4 (p + lV3 

' ^ 2 
p(p±i)/2 3 (p + l ) / 4 

p(p:; l)/2 6 (p+ l)/2 

I 1 1 |G| /24 

*In any number involving C^ 's , ± and + a re read as p = ± 1 mod 3. 

I now go through the types of subgroups as l i s ted one by one; I s t ress 

t h a t y ^ ( K ) is as s tandard for all subgroups K of G not ment ioned . The 

ca se p - 5 gives special resul ts : a pair of n u m b e r s (n; m) means n for 

p = 5, m o therwise . 

Actual 
value 

Type 'S t anda rd ' 
y ^ value 

Compensa t ion fo r To ta l value of 
supergroups ... c o m p e n s a t i o n 

-i 

A 

Dc •1; 0 

one S 

one S 

+ 1 

+ 1 

+ 1 

0; 1 

D, two S 

V, 6; 3 one S^, one A^, 
t h r e e Do 

3; 0 

V, one S , one D, 
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Type S tandard Compensa t i on f o r Total va lue of Actua l 
value supergroups ... c o m p e n s a t i o n ^ value 

2 ; 0 (p + lV4 0 2 ; 0 

e a c h of S^, D„ 

C j 0 (p + l V 3 

e a c h of S^, 

( p + l ) / 6 ' ^ D ^ - ( p + l ) / 3 - ( p T l ) / 3 

a 
C2 4 p + ^ ) (p + i V 4 

(p±l ) /2 (p±l ) /2 of s \ 

a s p = ±1 rnod 3 

each of S^, A^, 

% p + l V 4 D 2 0 4 p + l) 

Dg, 4 p ± D - (p±lV2 

- | G | ; 0 all of above! | G | / 2 - | G | / 2 ; | G | / 2 
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CHAPTER THREE 

This c h a p t e r deals wi th t h e e n u m e r a t i o n s of m a p s and hype rmaps . All 

(or ien ted or non-or ien ted) maps or h y p e r m a p s r e f e r r e d t o a r e to be assumed 

regular, with automorphism group G : = PSL2(q) or PGL2(q) for prime 

power q = p^ in sec t ion 1, and wi th a u t o m o r p h i s m g r o u p PSL2(q) in sec t ion 

2. Also. I use t h e abbrev ia t ions : 

ROM for regular o r i e n t e d map 

RO AM for regular o r i e n t e d t r i angu l a r map 

In sec t ion 1 I consider t h e fo l lowing c a t e g o r i e s : m a p s , t r i angu la r maps, 

hype rmaps ( for all t h r e e t ak ing bo th t h e o r i e n t e d a n d non-o r i en ted case) . 

The e n u m e r a t i o n s involved h e r e a r e in t h e mos t p a r t rou t ine , using the 

me thods expla ined in t h e p re l imina ry c h a p t e r ; in p a r t i c u l a r t h e resu l t s 

in c h a p t e r 2 a r e used in applying Mobius invers ion . 

In sec t ion 2 I develop an ex i s t ing expos i t ion [ 14 ] of w h i c h pairs of e l e m e n t s 

in G g e n e r a t e G so I can e x a m i n e t h e n u m b e r of r e g u l a r o r i en ted (a,b)-

hypermaps wi th valency c, fo r any (a ,b ,c) e N? This wi l l not involve Mobius 

invers ion. I a lso deduce s o m e i d e n t i t i e s b e t w e e n t h e r e su l t s as we vary 

a, b and c . 

1 ENUMERATION OF REGULAR HYPERMAPS 5 PSL2(q) or PGL^Cq) 

I i m m e d i a t e l y label six c a t e g o r i e s of o r i e n t e d and n o n - o r i e n t e d hype rmaps 

as below. As expla ined in c h a p t e r 1, t h e r egu la r m e m b e r s of each c a t e g o r y 

cor respond to t he normal subgroups of t h e sponsor g r o u p r for t h a t c a t e g o r y : 
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Label of category Objects in category 

Maps 

Orien ted maps 

^4*^2 

C 2 * C . 

Triangular maps PGL2(29 

Oriented t r iangular m a p s PSLgOO 

Hypermaps C *n *c 
2 2 2 

Orien ted hypermaps 

For each ca t egory 

group G where G Is 

I e n u m e r a t e t h e regular o b j e c t s with au tomorphism 

a) PSL2^C) for p odd prime, e 1 

b) PSLgf/l^) for e 3̂  1 

c) PGL2(p^) fo r p odd p r ime , e ^ 1 . 

This in each case is equiva lent to f inding the n u m b e r d p (G) of normal 

subgroups N of r such that r/N=G. This is done by applying Hall's method, 

using Mobius inversion on F-str ings of G as exp la ined in sec t ion 1.2. 

This is genera l ly s t r a igh t fo rward (excep t for t r i a n g u l a r maps where ^ E 

P G h ^ l ) , when enumera t ing F- s t r ings is not i m m e d i a t e ) , but tedious , 

especial ly if one holds in mind all t h e excep t iona l c a s e s to t h e f o r m of 

the Mobius func t ion of G. I will go through t h e whole ca lcu la t ion 

in only a f e w ins tances , and will most ly just s t a t e r e s u l t s . As the c a t e g o r y 

is t he most d i f f i cu l t in some r e s p e c t s , but t h e a lgeb ra i c pa r t is r e -

lat ively not too long-winded, I will t r e a t just this c a t e g o r y in de ta i l . The 

scheme I follow is to t a k e each c a t e g o r y in tu rn , and give for each a 

long resul t which covers all t h e groups a), b), c) above 'in one go ' . However 
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before I start I 'process' the method of ca lcu la t ion for the groups (a) 

t o s l ight ly s impl i fy m a t t e r s . 

Processing of method for c a s e a). Let G : = PSL^(p^) for p odd prime, 

e :3>1 

We s t a r t wi th some no tes ( l ) to 3)) r e l e v a n t to a l l G e x c e p t those wi th 

e = 1 or (e = 2 and p = ± 2 mod 5), i .e . all G w h o s e f u n c t i o n is given 

by t h e main re su l t on p.58-60.1 f i r s t ly a n t i c i p a t e t h e f o r m of t he express ion 

f o r d p(G) given by Hal l ' s me thod fo r e a c h T: 

d p ( G ) . | A u t G | = ^ 2 r(p^)w(^ + ^^s(p^)n(Y) + k + En(e) 
tv odd 

w h e r e (and subsequent ly) / and / means s u m m a t i o n over all f divid-
ev odi 

ing e s . t . Y is even and odd r e spec t ive ly . Also, r and s a r e some polynomials 

over Z • The k £ N is t h e compensa t i on needed if e is a power of two, 

t h e £ e N t h a t if (p = 3) or (p = 5, e odd). (See t h e s t a t e m e n t of y ^ ) . 

These t h r e e notes a r e concerned wi th s impl i fy ing t h i s f o r m in a gene ra l 

way . 

1) The ' even ' s u m m a t i o n is z e ro unless e is e v e n : suppose fo r t he 

m o m e n t 2 l e . 

L e t R : = { f e N : f | e , ^ even and y(-^) :)= 0 } 

S : = { f e N : f ( e , J- odd and ^ ( j ) ij: 0 } . 

Then 

R : = { f E N : f | e , 2| but p and y (-j) 0 } 

= { f c N : f = h /2 for some h e S } 

By abuse of n o t a t i o n , I w r i t e r(f) , s(f) ins tead of r(p^), s(p^) fo r any f e N. 

( R e m e m b e r though t h a t r(f) and s(f) mean s o m e t h i n g e l se when used as 



subscripts of cyc l ic or dihedral groups, see p.39. However this should 

lead to no confus ion . ) Now if f e R, then 

r ( f ) y ( j ) = r(h/2) l i2^) w h e r e f = h/2 

- r (h /2 ) i j ( ^ ) . 

Thus i'(f)w(Y) = / -r(f/2)|j(2-) . 

%v-. cxU 

F r o m now on e may be odd or even . Le t t : S Z be d e f i n e d by 

t ( f ) = f s(f) if e is odd 

s(f) - r(f/2) if e is even 

t h e n t h e f o r m reduces t o 

d r ( G ) . | A u t G | = ^ t ( f ) w ( Y ) + k + f w ( e ) . 
odd 

2) k = j 0 if e is no t a power of 2 

k' if e = 2 , i ndependen t of t h e a c t u a l a e 

D e f i n e t h e f u n c t i o n w : S -> Z by 

w(f) = t(f) + k' . 

Then f o r all e ( >i r e m e m b e r ) , 

t(f)w (^) + k = 2 _ w(f)w (y) 
oAi odd. 

s ince if e is not a power of 2, then k = 0 and 

odd 

and if e is a power of 2, t h e n 
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t ( f ) + k = t(e) + k' 

odd 

vXe) 

w(f) ^(Y) 

So we now have 

dp(G) . |AutG| = / w(f) p(Y) + (p (e ) . 

oAi 

3) In th is I show t h e c a s e s (p = 3) and (p = 5 a n d e odd) need not be 

r ega rded as excep t i ona l . I f i r s t n o t e a t r iv ia l c o n s e q u e n c e of F e r m a t ' s 

L i t t l e T h e o r e m , t h a t if z(x) is any f i n i t e po lynomia l over Z, then for 

any n ElZ 

z(n = 0 mod a f o r an i n f i n i t e number of p r i m e s a 

if and only if z(n) = 0 . 

Taking up t h e s i tua t ion a t t h e end of no t e 2, g iven t h e p r ime power p^, 

we have t h e f u n c t i o n w(f) on t h e s e t S of divisors f of e such t h a t p is 

odd. Now w(f) may be r e g a r d e d as a polynomial exp re s s ion in p^ if e is 

i/2 

odd; in p if e is even . This express ion only has t w o f o r m s (given p), 

depending only on t h e pa r i t y of e . I t a k e t h e t w o c a s e s s e p a r a t e l y . 

e odd: le t w(x) be t h e polynomia l over Z c o r r e s p o n d i n g to t he express ion 

of w(f) in p^. I s t r e s s w is i ndependen t of e as long a s e is odd. 

I now let e be any odd p r i m e a . Then 

d p (G) . |Au tG | = w ( p ^ ) - w(p) - £ . 

Le t w(p) + E = c , 

Now it is well known [ 2 ] t h a t AutG = P r L 2 ( p ° ' ) and so | AutG 

ap , 
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This means a |{w(p° ' ) - c) f o r every odd p r i m e a 

w(p) - c = 0 

= 4 ' E = 0 . 

e even : le t w(x) be t h e polynomia l over Z c o r r e s p o n d i n g to the expression 

f / 2 

of w(f) in p . Now w is i ndependen t of e as long a s e is even. 

L e t e = 2 « where a is an odd p r i m e . Then S = { 2 a , 2 } . 

We have 

d p ( G ) . | A u t G | = w(p^ " ) - w(p^) + £ . 

L e t w(p^) - £ = c . 

2ct 
As b e f o r e , w(p ) - c e 0 mod a fo r e v e r y odd pr ime a 

\ 2 
= y W(p ) - C = 0 

=#> E = 0 . 

Conclusion; fo r all p r i m e powers p^ e x c e p t t h e t w o cases (e = 1) 

and (e = 2 and p = ± 2 mod 5), t h e f i na l f o r m of t h e a n s w e r s will be 

d Ti(G).| AutG| = y _ w(f) li(^) . 
oli 

w h e r e w(f) has one po lynomia l express ion in p^ w h e n e v e r e is odd, and 

f / 2 
has a n o t h e r polynomial express ion in p whenever e is even . 

(A s imilar f i na l f o r m wi th a s ingle po lynomia l e x p r e s s i o n in p^ fo r all 

e > 1 may be deduced fo r d (G) when G E PGL^Cq) for any q, bu t th i s 

is t r iv ia l given just t h e a r g u m e n t of n o t e 3 he re ; i . e . t h e cases (p = 3, 

e odd) and (p = 5, e odd) need not be cons ide red e x c e p t i o n a l . ) 

• 

Now I s t a r t t o p r e s e n t t h e i n f o r m a t i o n ( jus t fo r g roups in c a t e g o r y a) 
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still) needed to make the spec i f i c ca l cu la t ions . R e m e m b e r t h a t if , for 

given r , Up (H) r e p r e s e n t s t he number of F-s tr ings of a group H, then 

dp(G) . |AutG| = 2 _ W Q ( H ) O p ( H ) 

= / _ _ { subgps. of G in I , wi th r e p r e s e n t a t i v e . CJjn(H) 

w h e r e t he l a t t e r s u m m a t i o n is over c lasses & of subgroups of G under 
•Sulj 

AutG. We keep the notion t h a t a^group H ^ G is c o n t r i b u t i n g if :{: 0; 

we know t h a t if H is con t r ibu t ing , all subgroups of G of type H fo rms 

a s ingle c lass . Thus we have 

d^(G) . |AutG| = } 

V H 

w h e r e t h e summat ion is over types H of subgroups of G and 

^ ^(H) - (#subgroups of G of type H). )^(H) . 

As a summary of t h e resu l t s in sec t ion 1 of c h a p t e r 2 and to i n c o r p o r a t e 

Ha l l ' s r e su l t s for when G : = PSL^Cp), i .e . e = 1, t h e t ab l e on page 

94 g ives values of 1 ^(H), w h e r e H now deno te s a c lass of subgroups. 

The re will be th ree cases : 

1) The s tandard ca se , as descr ibed in t h e p r e c e d i n g notes ; t he l a t t e r 

t w o of t h e s e suggest t h a t w h a t e v e r e we may t ake : 

y c ( v , ) = - 6 

= ( q - l ) / 2 

2) C a s e e = 2, p = ± 2 mod 5, as desc r ibed in s e c t i o n 1 of c h a p t e r 2 
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3) Case e = 1, where there are four 'sub-cases' as specif ied by Hall: 

i) p = ± 1 mod 5 and ± 1 mod 8 

ii) p = ± 1 mod 5 and ± 3 mod 8 

iii) p = ± 2 mod 5 and ± 1 mod 8 

iv) p E ± 2 mod 5 and ± 3 mod 8 

(I will complete ly ignore PSL2(3) and PSL2(5) in the tab le as being 'trivial'. 

Their Mobius inversion f o r m u l a a r e given expl ic i t ly in Hal l . ) 
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Values of j '^(H) / |G | 

S ^ n d a r d C a , , , , , , , , 

f f 

Sf f , 2f 
p ( p - 0 

*^f,r(f) ^*f,2r(f) pf^pf ^ 

° 2 r ( f ) D^rCf) ^ 

° 2 s ( « D , a ( « " 7 ^ 4 ' > 

S ( f ) ^2r(f) (pf_i) ^ 

V - U 2 ^ ^ 2 0 1 / 4 0 1 / 4 

CXg 1 / 2 - 3 / 2 - 5 / 2 - 3 / 2 - 1 / 2 1 / 2 

I 0 2 2 1 0 - 1 

0 - 1 / 3 0 - 1 / 3 0 - 1 / 3 0 0 0 

0 0 -1 /12 0 -1/12 0 

0 1 ^ 1/6 1/12 0 -1/12 

D ^ o 0 1 / 5 1 / 5 1 / 5 0 0 

D , 0 0 1 / 4 0 1 / 4 0 

O 

0 1 / 3 2 V 3 1 / 3 1 / 3 0 

c : ^ 0 - : 2 / 3 - 2 / 3 - 1 / 3 0 1 / 3 
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The corresponding table for the cases G : = PGL2(q); any prime power 

q, may s imilar ly be drawn up, but all t he i n f o r m a t i o n is adequa te ly dis-

played in c h a p t e r 2. My 'p rocess ing ' is now c o m p l e t e . 

In t heo ry all I need do now is t o c a l c u l a t e a ^ (H) f o r each sponsor group 

r and fo r r e l evan t subgroup types H ^ G; then I may apply the Mobius 

inversion f o r m u l a . This however o f t e n r equ i res m e s s y (if s t r a igh t fo rward ) 

a lgebra ic manipula t ion; even t h e s t a t e m e n t of Op is too unwieldly to 

w r i t e down e x c e p t for our i l l u s t r a t i ve c a t e g o r y JJl y The whole of the 

next page is taken by the s ta tement of the result for this is then 

proved, and a f t e r w a r d s I s t a t e t h e resu l t s fo r t h e o the r f i ve c a t e g o r i e s 

w i t h o u t proof . (The resu l t fo r e x t e n d s t he m a i n t h e o r e m in a paper 

[ 22 ] which just i den t i f i e s the p r i m e powers q f o r which PSL2(q) is not 

a homomorph i c image of P C L ^ I ) a t all.) Then t o round th is sec t ion o f f , 

t h e r e will be a f ew pages of no tes on t h e resu l t s in g e n e r a l . 

Some notation: 

means s u m m a t i o n over all divisors f of e 

f 

d(G) is an abbrev ia t ion fo r d p(G) when T is spec i f i ed 

so 

d(G) - r egu la r ob j ec t s in t h e c u r r e n t c a t e g o r y wi th au to -

morphism group G. 

q is a lways an a l t e r n a t i v e symbol f o r t h e p r ime power p^. 
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^ 3 

Table giving d(G) - j f regular triangular maps with aut .group G 

G : = PSL2(p ) G : = PGL2(p ) 

p = 2 

e 
2^ P(^) 

p = 3 

if e=2 or is odd 

< 
1 

L 2e odd 
e > 2 e v e n 

^ 2 ^ (3^-1) W(r) 

2-5 A " ' - " 
ocidl 

if e odd 

e even 

p > 3, e = 1 

l i : o r p ^ = 5, e ^ e 

(p-a)/4 - b 

w h e r e 

a = 5 ; 3 ; l ; - l as p=l ; - l ;^; -5 mod 12 

b=4;2;2;0 as p in s u b - c a s e i)-iv) 

(3p-c ) /4 

w h e r e 

c = 3 ; 5 ; 7 ; 9 ; l l ; i 3 ; 1 5 ; 1 7 

as PE1; -1 ; -7 ;7 ; -11 ;11 ;5 ; -5 mod 24 

p > 3, e > 1 

e odd: All e: 

I 
4e 

e even: 

oM 

4e 
y ( p " ^ - i ) ( p " ^ - 3 ) p ( f - ) 

ojJL 

e x c e p t s u b t r a c t 1 if e=2,p=±2 mod 5 
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Proof 

The sponsor group F is 

PGL2(Z) : = gp <U,V,W : = (UV)^ = (VW)^ . I> . 

Then, adapting the str ict definit ion slightly, a ( T -)string of a group H 

is a triple (u,v,w) of e l ement s in H such that 

o(u) = o(v) = o(w) = o(uv) = 2 , o(vw) = 3 

and w e d e f i n e a(H) t o be t h e number of s t r ings in H. (We may insist 

on orders rather than relations because if (u,v,w) is a generating (r)-string 

with the str ict meaning in any of the G we consider except PSL2(2) s Dg, 

t hen none of { u ,v ,w,uv ,vw} can be t h e iden t i ty in G.) 

We have 

|AutG|.d(G) = ^ p ^ ( H ) o (H) 

w h e r e | A u t G | = [ e ( G | as G s j P G L 2 ( q ) any q 

2 e | G | PSL_(q) any odd q 

So we a r e c ruc ia l ly concerned wi th ca l cu l a t i ng a (H) f o r all con t r ibu t ing 

groups H $ G. However I give a g e n e r a l method f o r de te rmin ing o (k) , 

K any f i n i t e group: 

Given an involut ion v in K, then a n o t h e r involut ion w in K sa t i s f i e s o(vw) 

= 3 if and only if <v,w > = ^ K. Le t t h e r e be n subgroups of K 

con ta in ing v. Each of t h e s e ' supply ' t w o involut ions w: also two d i s t i nc t 

such D , c a n n o t sha re t h e s a m e w, as v and w d e t e r m i n e t h e D , . Thus 
o o 

t h e r e a r e e x a c t l y 2n involut ions w f o r our pa r t i cu l a r v. By a s imilar a r g u -

m e n t , if m is t h e number of subgroups of K c o n t a i n i n g v, t he number of 

involut ions u in K such t h a t o(uv) = 2 will be 2m. C l e a r l y t h e va lues of 
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n and m for t he or iginal involut ion v is i n v a r i a n t over t he orbi t of v 

under Aut(K), so 

O (K) = 4 ^ 1 £ I n( £)m( &) 
i 

w h e r e t h e s u m m a t i o n is over all t he o rb i t s I of involut ions in K under 

Aut(K) and n( &), m( I ) a r e t he values of n, m for a r e p r e s e n t a t i v e v E &. 

Special is ing again to subgroups H of G, we know in pa r t i cu la r t h a t if 

H is s o m e or G^, t hen H has one or two o r i b i t s & of involut ions as 

above , and we know t h e values of n ( & ) and m( & ) s t r a i g h t a w a y in most 

ca se s by our analysis of supergroups in chap t e r 2 (else we may make 

f r e s h use of t h e supergroup l e m m a p . 3 7 ) . 

I now t a k e t h e d i f f e r e n t c a s e s s e p a r a t e l y : 

P = 2 

For e = 1, t h e number of g e n e r a t i n g t r ip l e s (u,v,w) in G - s a t i s fy ing 

t h e r e l a t i ons of T is 12, implying d(G) = 2. 

For e > 1, cons ider a ( S j ) . S^ has one orb i t I of involu t ions v of length 

2f f — i 
(2 -1) wi th n( £) = 2 . The n o r m a l i z e r in S^ of e a c h v is an e l e m e n t a r y 

f f 
abel ian group of order 2 : I conc lude m( £) = (2 -2 ) /2 . 

Thus 

a(S^) = 2(2^^-l)2^"^(2^-2) = |S^|(2^-2) 

Also t r iv ia l ly , as none of t h e s e subgroups con ta in a V^, 

so 

e | G | d(G) = y | S J ( 2 f - 2 ) n ( $ 
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d(G) = ^ ^ 2^ W (^) 

which a c c o m m o d a t e s t he c a s e e = 1. 

This t i m e we have both G(S^) and o(G^) t o c a l c u l a t e . 

F i r s t o(S^): if f is odd, con ta in s no and i m m e d i a t e l y o(S^) = 0. 

f f f 

Suppose f is even . Then 3 E 1 mod 4, and c o n t a i n s 3 (3 + i ) /2 involu-

t ions V. The only in a r e con t a ined in t he < 5^; considering 

Sj as a subgroup of index 2 in G^, t hen t h e s e a r e the i r own normal iser 

and f o r m a single con jugacy c lass under G^. By t h e supergroup l e m m a 

(p. 37 ), we now find that f ixed v is contained in (3^-1) D^, supplying 

f f 

2(3 -1) involut ions w; also we know (p.5 6 ) v is c o n t a i n e d in (3 - l ) / 4 sub-

groups V^, supplying (3^ - l ) / 2 involut ions u. Thus 

G(S^) = 3%^^- l ) (3^- l ) /2 = |S^| (3^-1) . 

Now o ( G ^ : G^ has t w o o rb i t s & and of invo lu t ions v, fo r 1 they all 

lie in < G^, f o r t hey all l ie in G^ \ S^. As f is { we have 

| 2 | = 3 ^ ( 3 ^ ± l ) / 2 n ( j l ) = i ( 3 ^ - l ) m ( & ) = ( 3 ^ + l ) / 2 
0 

l&'l = 3^(3^ + l ) / 2 n(&') = / 0 m ^ ' ) = (3^±l)/2 

(3^-1) 

and I conc lude fo r all e: 

G(G^) = 3^(3^^-1X3^-1) = |G^| (3^-1) . 

All o t h e r con t r ibu t ing subgroups of G (whe the r G = PSL2(3^) f o r some 

e > 2 or PGL2(3^) f o r some e) c l ea r ly do not c o n t a i n both a and a 

Dg, so the i r a va lue is z e r o . 
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We a re ready to apply Mobius invers ion. 

For G : = PSL2(3^), e odd, c is zero on all subgroups and immediately 

d(G) = 0. For e > 2 even however ( r e f e r t o p.94 ): 

2 e . d(G) - I ^ ^^f^ ^ f̂̂  
\ e>)«,n odUL 

2 ^ ( 3 ^ - 1 ) ^ 0 + ^ ( 3 ^ . 1 ) ^ 0 

oAA 

y ( 3 ^ - 2 . 3 ^ / ^ + l ) ^ ( f ) 

The c a s e e = 2 is as above e x c e p t i t needs c o m p e n s a t i o n for t h e subgroups 

of t he max ima l subgroups t ype A in G; as of a l l t h e subgroups of A 

only itself has non-zero cr value, this being 

o(A^) . 120 

we must add ^ ^ ( A ) . o (A ) = -4 to t h e r ight h a n d side which t hen be-

c o m e s ze ro , so d(G) = 0. 

For G : - PGL2(3^), e odd, only t h e subgroups of t y p e G^ for f | e c o m e 

in to t h e ca lcu la t ion which is t hen m o r e or less i m m e d i a t e . For e even, 

both t h e G j and the fo r y odd ' c o n t r i b u t e ' : 

odUL 

Calculation of a for relevant group types for G : = PSL2(p^) or PGL^Cp^) 

with p > 3 

Note ( for our t a c i t app l ica t ion of t h e supe rg roup l e m m a t o c a l c u l a t e 

values of n) t h a t t h e se t of all in H : = G^ or S j f o r m s a s ingle c lass 

under Aut H of length | G . | / 1 2 . 

Now S j has one orb i t & of involut ions v: 
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I &| = p^(p^±i)/2 n(&) = (p^ + l ) / 2 m ( 2 ) = (p^:p l ) /4 

and 

- - l-'f a (Sr) = | S . | ( p ^ + l ) / 2 as p^ = + 1 mod 4 

and 

G j has two orbi ts I , £' of involut ions v: 

| 2 | = p W ± l ) / 2 n(&) = ( p ^ + l ) / 2 m(&) = ( p ^ ? l ) / 2 

Is,'! = p^(p^+l)/2 n^ ' ) = (p^±l)/2 mOl') = (p^±l)/2 

cr(G^) = |G^| (p^:;:l)/2 + |G^| (p^±l)/2 as p^ = ±1 mod 4 

f o ( G J = |Gr| p (always) . 

L e t H : = for some k E N. Then a (H) = 0 unless bo th 2 and 3 divide 

k. If 6 |k, let 

^ 2 k • ~ BP <a,b:a'^=b^=(ab)^=I > . 

Then H has two orbi t s of involut ions under Aut(D2]^): 

& = { } 

&' = { a^b:i=l , . . . ,k } . 

Now is in no . 

V i £ { l , . . . , k } , a^b is in exac t l y one and e x a c t l y one < D^j^-

Thus G (D2k^ " 

and we conc lude 

" J 4 ( p ^ - l ) i a s p ^ E r i m o d 3 

0 ^4 (p^+ l ) ^ - 1 mod 3 
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2 ( p - l ) , c^(D2s(f)) = 

< 0 

0 0 

a s p = 

< 
1 mod 12 

-1 mod 12 

+ 5 mod 12 

Also 

G(A^) = ^(PSL^D)) =: 120 o(s '^) = ^ ( P G L ^ O ) ) = 48 

It is t r iv i a l t o see t h a t all remaining r e l evan t g r o u p types H have a (H) 

= 0: in pa r t i cu la r t h e only d ihedra l subgroups t h a t a or 

can have a r e of type , so it con ta ins ne i ther a or a V^. 

We can now finish t he proof of t he resu l t s . 

G ; = PSL^Cp) , p odd > 3 

Inversion gives: 

d(G) = 2 j ^ ( G(S^) -
(p -1) 

" " ^ 2 5 ( 1 ) ' 
G 

(P +1) 

w h e r e 

-b 
o(A^) 

30 
o t S ^ ) 

12 
g (A^) 

30 12 ' 

as p in s u b - c a s e i) - iv) 

Now a(Sj^) depends on t h e value of p mod 4, ^^2r ( l )^ ' ^^2s(I)^ on 

p mod 12. We obtain: 

d(G) = i r ( p + l ) 
/T\ 

1 
0 

as pE+1 mod 4 a s p s ± 1 mod 12 
± 5 mod 12 
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G = PSL2(p^), p > 3, e > 1 

For e odd, analogously to the ca se e = 1 but now unconce rned with the 

c o m p e n s a t i o n t e r m b, we have 

ed(G)= - { o ) . M(f) 

as q=±i mod 4 a s q = J ± 1 mod 12 
1 ± 5 mod 12 

1 

I 

For e even > 2, necessarily q s 1 mod 12 and also = 1 mod 12 whenever 

J odd. We have 

2ed(G) = \ I — a ( G . ) 
/ _ ^ (p -1) (p^+1) 
ev-etv 

o4i 

(2p^ - 4 ) n ( ^ ) + - 5)n(Y) 

ed(G) = (p^/^-2) + ^ (p^-5)) W (^) 

8<lji \ / 

odj. 

If e = 2, p 5 + 2 mod 5 we must s u b t r a c t 2 (as exp la ined in cor responding 

i n s t ance (e = 2) for c a s e p = 3) f r o m t h e last expres s ion ; fo r e = 2, p 

= + 1 mod 5 it is u n a l t e r e d . 
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G : = PGL^(p^), p > 3 

For e >1, 

ed(G) o (GJ - o ( S j ^ G(D„ , J 

oiA. 
G, i ' i = f i ^ V - , ) 

2(p -1) 2 < p + l ) / ' 

( p ' - 1) - 2 • { o ] " ^ 0 

\ , 
rnod 4 a s q = I ± 1 rnod 12 

odd 

as q 
5 mod 12 

= ^ ^ ( 3 p ^ - d ) w(p) 

oAi 

where d = 3;5;7;9 as q = l;-l-,5;-5 mod 12 

Now as e > 1, i t does not m a t t e r wha t t h e ac tua l va lue of e is, for the 

purposes of subs t i tu t ing for d an in teger giving the r igh t answer we may 

regard e as being a power of 2, i .e. e is even, q e 1 mod 12 and d = 

3. (cf . no t e 2 on p. 89) . 

For e = 1, we must add a compensa t ion = -48 /24 = - 2 f o r the maximal 

subgroups of G type when p = ± 3 mod 8. Thus solving congruences 

we have 

d(G) = •^3p-c) 

with c as in display of resu l t s . 
• 
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( r : = * C^) 

Table giving d(G) = R O # l s w i th au tomorph i sm g r o u p G 

(1 : = PSL_Xp^^ G : = PGL2(p^) 

p = 2 

; ^ ^ ( 2 ^ - l ) W(Y) 

f 

p > 2, e = 1 

1 f o r p = 3 or 5, e l se 1 for p = 3, e lse 

(p-a) /2 - b (p-c) /2 

w h e r e whe re 

a - 3;1 a s p = ± l ; + 5 mod 12 c = 1;3;3;5 

b = 4;3;2;1 as p in s u b - c a s e i )- iv) a s p E ±1;+7;±11;±5 mod 24 

p >2, e > 1 

e odd: All e: 

i X p ' « f > 
1 

e even: 
o i i 

i X ; f ' 
©id 

e x c e p t s u b t r a c t 1 if (e=2,p=±2mod5) 
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Table giving d(G) = # regular maps with automorphism group G 

G : = PSLJp^) G : = PGL2(p ) 

p = 2 

3 for e = 1, e lse 

^ (2 - l )(2^-2) p (-j) 

p > 2, e - 1 

3 for p = 5, e l se 

(p^-ap+b)/& - c / 2 

where 

a - 2 ; 4 as p= i ; - lmod4 

b=-3;-9 as p = i ; - l m o d 4 

c=i5;9;3;-3 as p in sub-case i)-iv) 

3 fo r p = 3, e l s e 

(7p^-dp+k) /8 

w h e r e 

d=22;20 a s p = i ; - l m o d 4 

k=-9;-3;15;21 

as p H - 3 ; 3 ; l ; - l m o d 8 

p > 2, e > 1 

e odd: 

8e 

e even: 

All e: 

1 
8e 

^ p % ^ - a ) 

( p ^ ^ - l O p ^ + 2 4 p ^ ^ ^ - 1 5 ) w 0 

odcL 

w h e r e 

d = 22;20 as q = l ; - lmod4 

oAA 

e x c e p t subtract 3 if {e=2,p=±2mod5 

and p > 3) 
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( r : = * C J 

Table giving d(G) ROMs wi th au tomorphism g r o u p G 

G : = PSL^XpC) G : = PGL2(p^) 

p = 2 

2 fo r e = 1, e lse 

^ y (2^-1X2^-2) w(Y) 

p > 2, e = 1 

1;3 fo r p = 3;5, e lse 2 for p = 3, e l se 

(p^-3p+a)/4 - b /2 (3p^-9p+c) /4 

where whe re 

a=0;-2 as p = l ; - l m o d 4 c=6;8; -2 ;0 

b = i 5 ; l i ; 3 ; - i as p in sub-case i)-iv) as p = l ; - l ; - 3 ; 3 m o d 8 

p > 2, e >1 

e odd: All e: 

(p^- lXp^-2) w(Y) 

e even: 

^ (p^^-7p^+12p^/^-6) p(^) 

e x c e p t s u b t r a c t 3 if (e=2,p=±2mod5, 

p >3X 
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^ ( r : = ^ c ^ ) 

Table giving d(G) regu la r hype rmaps wi th a u t . g p . G 

G : = P S L 2 ( p l G : = PGL2(p ) 

p = 2 

7 f o r e = 1, e l se 

I 
2e 

y " 2^(2^^-2^-3) p (^) 

p > 2, e = 1 

19 f o r p = 5, e l se 

1 (pKI p'Ar p- 2 

13 for p = 3, e l se 

25 126 - a 

where 

c=97;71;21;-5 as p in sub -ca se s i)-iv) 

where a = 0;13 

as p = ± l ; ± 3 m o d 8 

p > 2, e > 1 

e odd: 

e even: 

All e: 

p ( f ) i 
8ez 

0̂ 4. 

i 
8e 

^ ( p ^ ^ + 2 p ^ ^ - g p ^ ^ / ^ + p ^ 4 . 2 4 ^^^-20) 
odd. 

e x c e p t s u b t r a c t 19 if e=2,p=±2mod5,p > 3 

Note : f x in t h i s t a b l e m e a n s x fo r q= lmod4, y f o r q E - l m o d 4 

l y 
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£ ( r : = C „ » C J 

Table giving d(G) = if regu la r o r i en ted hypermaps w i t h au t . gp. G 

G : = P S L J p l G : = P G L J p ^ ) 

p = 2 

3 for e = 1, e l se 

Yg ^ 2^(2^^-2^-3) W(y) 

I 

p > 2, e = 1 

4, 19 fo r p = 3,5 e l se 

(p+ l ) (p^-2p- l ) - a 

where 

a=49,40, l 1,2 as p in sub -cases i)-iv) 

9 for p = 3, e lse 

(p - l ) (p^ -3 ) - b 

whe re 

b=0,9 a s p= + i ,±3mod8 

p > 2, e > 1 

e odd: All e: 

(p^+1 )(p^^-2p^-1) W (y) 
3 
4e ̂ ( p ^ - l ) ( p ^ ^ - 3 ) w 0 

e even: 

(p^^-p^^-4p^^^^+p^+12p^^^-9) W 0 
oJUL 

e x c e p t s u b t r a c t 19 if (e=2,p=±2mod5,p >3) 
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Notes on the previous results 

1. All the results for G : = PSL2(2^) with any e have already been 

published in [ 6 ]. Also Hall [ 7 ] explicit ly gave t h e values of d(G) for 

G : = PSL2(p), any p r ime p, f o r t h e ca tegor ies , f ) , 

2. If , in t h e t ab l e covering any of t he six c a t e g o r i e s concern ing us, 

we add a l e f t - h a n d en t ry to t h e corresponding r i g h t - h a n d en t ry , t he sum 

t ends to be of a n e a t e r f o r m than t h a t of i ts t w o ' c o m p o n e n t s ' . I will 

now be more spec i f i c , wi thou t being comple t e ly g e n e r a l . Suppose we 

are dealing with the category (Z , and that d(G) for G : = PSL2(2^) with 

e > 1 is given by t h e express ion 

f 

w h e r e w is a polynomial with integral c o e f f i c i e n t s . 

Suppose also t h a t e is odd, t a k e any p r ime p > 2 and l e t 

i ^ r ( p l p C ^ ) for G : = PSL2(p^) 

and 

d(G) = ^ ^ s ( p ^ ) } i ( ^ for G : = PGL2(p^) 

w h e r e r , s a r e polynomials wi th r a t iona l c o e f f i c i e n t s (which a r e indepen-

den t of p and e as long as e is odd and pmoci4 is ) . 

Then 

r + s = w + k 

w h e r e k is a r a t iona l c o n s t a n t (and may in f a c t b e r ega rded as 0 fo r 

we a r e f r e e to i n c o r p o r a t e t he t e r m in any of w, r or s). 

For e x a m p l e , fo r GT : = we have 
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i) f o r q = 2^ wi th e > 1 , 

df (RO/Wl's / I with Aut( / l ) = PSL2(2^)) ^ ^ 2^w(y) 

f 

ii) f o r q = p®, p an odd p r i m e wi th e > I odd, 

# (ROAM'S / l with Aut(/I) = PSL2(q)) 

+ #(ROAM's with A u t W = PGL2(q))= ^ (^) . 

I 

These p a r t i c u l a r expres s ions i) and ii) will i n t e r e s t us in r ega rd of i r r e -

duc ib le po lynomia l s as d i scussed in s e c t i o n 4 of c h a p t e r 4. 

We can s e e t h a t t h e g e n e r a l p r o p e r t y is in f a c t m o r e or less i n h e r e n t 

in t h e f o r m of t h e Mobius f u n c t i o n f o r t h e g r o u p s involved, should w e 

c o m p a r e t h e m . I m a k e f u r t h e r o b s e r v a t i o n s a b o u t t h e s e s u m m a t i o n s in 

t h e n e x t n o t e . 

3) I p a r t i t i o n our c a t e g o r i e s i n to t h r e e pa i rs of c o m p l e m e n t a r y c a t e -

go r i e s t h u s 

We may eas i ly c h e c k f r o m t h e p r e c e d i n g t a b l e s t h a t f o r any p r i m e p o w e r 

q ^ 3 and f o r any c a t e g o r y (C of our six t h a t 

# ( r egu la r o b j e c t s in (£ wi th a u t o m o r p h i s m g r o u p P5L2(q) or PGL2(q)) 

= # (regular o b j e c t s in t h e c o m p l e m e n t a r y c a t e g o r y of GT 

wi th a u t o m o r p h i s m group PSL2(q) or PGL2(q)) . 

This of c o u r s e is no a c c i d e n t : as soon as we t r a n s l a t e t h e equa l i t y into 

s t r i c t l y g roup t h e o r e t i c t e r m s , t h e r e s u l t s e e m s n a t u r a l if not obviously 
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t r u e . I i l l u s t r a t e wi th t h e c o m p l e m e n t a r y pair of c a t e g o r i e s JJL ^ and 

Fix q > 3 and let 

S : = {subgroups N<] PSL2(Z) s . t . PSL2(Z)/N = PSL2(q)} 

T : = { subgroups M < PSL2(2) s . t . PSL2(Z)/M = PGL2(q)} 

U : = { subgroups N'<| PGL2(Z) s . t . PGL2(Z)/N' = PSL2(q)} 

V : = {subgroups M ' o PGL2(2) s .t . PGL2(Z)/M' = PGL^Cq)} . 

Then t h e equa l i ty r eads 

|S| + |T| = |U | + |V| . 

I expla in how we might d e d u c e th is d i r ec t l y . 

Take an e l e m e n t N ' of U. Then N' is t h e kerne l of an ep imorph i sm 

cp' : PGL2(Z) PSL2(q) . 

Now PSL^CZ) is a subgroup of PGL2(Z) of index 2. I r e s t r i c t cp' to a homo-

morphism 

cp : PSL2(Z) PSL2(q) . 

which in f a c t mus t be an ep imorph i sm since PSL2(q) is s imple . L e t N 

e S be t h e ke rne l of cp . Then we have assoc ia ted t o each e l e m e n t N' 

of U an e l e m e n t N of S. 

Now t a k e an e l e m e n t M' of V, t h e ke rne l of t he ep imorph i sm 

p' : PGLgCZ) PGL2(q) 

and r e s t r i c t i n g p' t o PSL2(Z) we have t h e homomorph i sm 

p : PSL2(Z) PGL2(q) wi th kerne l K say 
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whose image must necessarily be either PGL2(q) or PSL^(q) ^ PGL^Cq). 

We have thus associated to each e l ement M' of V an e lement K of SuT. 

Taken t o g e t h e r , we have es tab l i shed a f unc t i on f 

f : U u V S u T 

by restrict ion of ep imorph i sms . If f is a b i j ec t ion , our desired equal i ty 

is a u t o m a t i c ; it is in this sense I say t he result ' s e e m s na tu ra l ' . An exac t ly 

analogous s i tua t ion holds fo r t h e o t h e r two pairs of c o m p l e m e n t a r y ca te -

gories. 

Just for the speci f ic case {J7l ^ } I now go as far as proving that 

f is one- to-one . This proof also provides the basis for proving that f 

is also on to . 

For f i xed q, let G : = PSL2(q), G' : = PGL2(q) and r e g a r d G ^ G' (equal i ty 

only when q is a power of two) . 

Also let r : = PSL2(Z) , T ' : = PGL2(Z) be given by: 

r : = gp <X, Y : ^ = I> 

r': = gp < U , V, W : = (UV)^ = (VW)^ = I > 

If N e S u T, then N is t he ke rne l of a h o m o m o r p h i s m cp : r G ' given 

by 

Xi-*- X Yi-»- y 

fo r s o m e x, y e G' such t h a t <x ,y> s G or G' . 

For t h e s a m e x, y , cons ider t h e so lu t ions ( u, v, w ) in G' t o t he sys tem 

of equa t ions : 

uv = x, vw = y, o(u) = o(v) = o(w) = 2 
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and for any one of these solutions let N' be the kernel of the homomor-

phism cp': F' G' given by 

U I — u V V W I — w 

Then clearly N < N ' . 

This means t h a t if for e a c h N in (s u T^a solut ion (u , v, w) as above exis ts , 

then f is onto. If also th i s solut ion is in all c a s e s w h e r e one ex is ts is 

unique, then f is one- to-one . 

So the problem of proving that f is a biject ion reduces to showing that 

fo r e a c h gene ra t i ng pair (x, y) in G, and then in G ' , fo r which x is an 

involut ion and y has o rder 3, t h e r e ex i s t s a un ique t r i p l e of involutions 

(u, V, w) in G' such t h a t 

uv = x and vw = y . 

So t a k e any such pair (x, y) in G' g e n e r a t i n g e i t h e r G or G'. Suppose 

f i r s t ly p >^3. 

Let D^, D be t h e m a x i m a l d ihedra l subgroups of G ' t h a t con ta in x and 

y r e spec t ive ly in the i r ' cyc l i c p a r t s ' . Then it is c l e a r (because t he ' cyc l ic 

pa r t s ' of and D i n t e r s e c t t r iv ia l ly) t h a t 

Dy S or I . 

But in f a c t D H D i V , , e l se x is an e l e m e n t of D and so <x,y > 
X y ^ 4 y 

canno t be G or G'. 

(Note: t h e c a s e p = 3 is s l ight ly e x c e p t i o n a l in t h a t D = D^, but th i s 

need not worry us.) 
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Suppose now p = 2 

L e t D be t he e l e m e n t a r y abel ian subgroup of G' of t y p e V conta in ing x 
X q 

Let D be as before. 
y 

Again, just by cons ide ra t ion of t he group types of and D ( r e m e m b e r 

t h a t t h e ' cyc l ic p a r t ' of D now has no involution), w e have 

n Dy = or I . 

Whatever t h e value of q, and D have been c o n s t r u c t e d such t h a t 

the involutions v of G' for which there is a solut ion (u, v, w) as desired 

- a r e e x a c t l y the involut ions in D O D . N o t e t h a t v then d e t e r m i n e s 
X y 

u and w by 

u = XV , w = vy 

So t h e number of solutions we have is a lways 1 or 0, depending on w h e t h e r 

D n D s C - or I. 
X y 2 

This i m m e d i a t e l y te l l s us t h a t f is o n e - t o - o n e , a n d to show t h a t f is 

on to S u T, we need only prove in all c a s e s 

This may be deduced d i r ec t ly f r o m t h e ac t ion of G ' on t h e s e t of m a r k s 

( a l t e r n a t i v e l y by judicious use of t h e supergroup t a b l e s of subgroups 

of G' found in c h a p t e r 2). However t h e de ta i l s a r e f idd ly ; I'll l e ave t h e m 

t o t h e r e a d e r . 
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2. FURTHER ENUMERATION OF REGULAR HYPERMAPS "X WITH 

AUTW) s PSLgCq) 

There a r e two major techniques t h a t may be e m p l o y e d to understand 

the s t r u c t u r e and p roper t i e s of t h e groups PSL2(q)-

The f i r s t is to examine PSL2(q) by i ts ac t ion on t h e ' s e t of marks ' , i .e . 

GF(q) u ^ 4 

(o therwise denoted by the p ro j ec t i ve line PG^(q)). It is this technique 

I have h i t h e r t o a lmos t exclusively used. 

The second is to f o r m a rgumen t s based on the t r a c e of the e l emen t s 

of G : = PSL2(q) when these e l e m e n t s a re r e p r e s e n t e d in the s tandard 

form of 2 X 2 m a t r i c e s with en t r i e s in GF(q) and d e t e r m i n a n t 1. (Note 

though, as the m a t r i c e s +I and -I a r e ident i f ied in G , t h a t the t r a c e of 

an e l e m e n t of G is def ined only up to plus or minus a ce r t a in value in 

GF(q)). T race as it happens gives a good descr ip t ion of the conjugacy 

c lasses in G (see l a te r ) and we can use the a lgebra of t he f ield GF(q) 

t o deduce many p rope r t i e s of t he group. 

For a comprehens ive analysis of t h e subgroup l a t t i c e of G, we tend to 

use only the f i r s t t echn ique because t h e action gives a f a i t h f u l r ep resen-

t a t ion preserving all t he s t r u c t u r e , and this is why in c h a p t e r 2 the notion 

of t r a c e does not occur a t all . However it is once t h e s t r u c t u r e is under -

stood t h a t t r a c e is o f t e n the most power fu l tool in examining f u r t h e r 

more pa r t i cu la r p rope r t i e s . For example using largely t h e t r a c e , Macbea th 

in a paper [ 14 ] gave a t heo rem e f f e c t i v e l y giving a way to c a l c u l a t e 

t h e number of t o r s i o n - f r e e normal subgroups N of F such t h a t T/N s G 

where T is any t r i ang le group (a, b, c); in o ther words , t he number of 
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regular oriented (a, b)-hypermaps of valency c w i th automorphism group 

G (see p. 20 ). However no such e n u m e r a t i o n s a r e expressed explici t ly 

(except for the single case (a, b, c) = (2, 3, 7), of spec ia l interest because 

of t h e r e l e v a n c e of t h e t r i ang l e group (2, 3, 7) in re la t ion to Hurwi tz 

groups, s ee p. 32 - 33). In th is s ec t ion I review t h e paper with t he aim 

of obta in ing a c t u a l n u m e r i c a l express ions ( to c o m p a r e with some of the 

resu l t s in t h e previous sect ion). These however will no t be qu i te genera l . 

(I shall also ind ica t e l a t e r , see p. 129, why I no longer use Mobius inversion 

in th is case . ) 

For c lar i ty , and economy of space , I shall in f a c t only cons ider G : = 

PSL2(q) fo r q odd > 5; wi th a f e w adap t ions , s imilar r e s u l t s may be der ived 

fo r PSL2(q) for q even or indeed for PGL2(q) for q odd . 

F i r s t ly i t is probably wor thwhi l e just fo r insight t o explain t h e e x a c t 

connec t ion b e t w e e n t r a c e and t h e con jugacy c l a s s e s of t h e e l e m e n t s 

2 
of G. L e t GF(q ) be t h e f ie ld ex tens ion of GF(q); l e t a be a p r imi t ive 

2 
f ie ld e l e m e n t of GF(q ). Then (see Dickson) 

G < G' : = PSL2(q^) 

and all t h e e l e m e n t s of G a r e c o n j u g a t e in G' t o an e l e m e n t of one of 

t he fo l lowing t h r e e subgroups of G ' : 

i) ^ r ( q ) ' ofa^^^in GF(q^) 

The values of 3 of course r ange over GF(q) < GF(q ). The t r a c e 

is ( e + B "^) E GF(q). 
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ii) ^ ^ j z y i s a p : of o ^ - l GF(q^) 

The trace of these e l ements is ( y + y ^ ) ^ GF(q^). As 

( y + + y 

we conclude ( y + y ^ E GF(q). (By conjugacy this had to be the 

case . ) 

Hi) Vq : = { ( 0 1 ) : ^ GF(q) 

and the trace is ±2. 

Suppose A £ u then t h e c o n j u g a c y c la s s £ '(A) in G' conta in ing 

A i n t e r s e c t s w i th u only in A and A K Also £ '(A) n G f o r m s 

a single con jugacy c lass in G: i t is c l e a r f r o m t h e above t h a t e a c h con-

jugacy c la s s in G ob ta ined in th is way (by varying A) mus t have a d i s t inc t 

t r a c e . The number of t h e s e c l a s ses in G is s t r a i g h t f o r w a r d l y ca l cu l a t ed 

as 

(q + l ) / 2 

and so e a c h possible value of t r a c e in GF(q) is t a k e n by e x a c t l y one 

of t h e c l a s ses . 

However t h e r e a r e two m o r e c o n j u g a c y c lasses in G, t he e l e m e n t s of 

which a r e t h e c o n j u g a t e s in G t o t h e e l e m e n t s of V \ {1} . (We have 

a l ready ' a c c o u n t e d f o r ' I). Thus i t is only fo r t h e va lue k = ±2 t h a t we 

have more t han one con jugacy c lass in G wi th e l e m e n t s wi th t r a c e equal 

to k: in th i s e x c e p t i o n a l c a se , we h a v e { 1} and the t w o c lasses of e l e m e n t s 

of order p. 

Now given G ( i .e . given q) I d e f i n e t h e s e t of non - t r i v i a l o rde r s of 
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e l e m e n t s in G: 

fi: = { d G N : (d = p or d | (q + l ) /2 or d | (q - l ) /2 ) and d > 1}, 

Also le t cp deno t e t h e c lass ica l Euler ian f u n c t i o n . 

Then, if t h e func t i on cp ' : 5 ^ N is given by t h e n u m b e r of values of 

t r a c e t aken by e l e m e n t s of order d in G fo r e a c h d e 0 , we have 

cp'(d) = 1 if d = 2 or p 

cp (d)/2 f o r all o t h e r d e Q 

Now coming to M a c b e a t h ' s work , his p r o g r a m is a s fo l lows: t a k e all 

o rde red t r i p l e s (A, B, C) of e l e m e n t s of G such t h a t ABC = I ( l e t ' s cal l 

t h e s e t h e se t of G- t r ip les ) , and t hen ana lyse and c a t e g o r i s e t h e m so i t 

is known wha t type of subgroup of G t h a t e a c h G - t r i p l e g e n e r a t e s . In 

pa r t i cu l a r he iden t i f i es those G - t r i p l e s g e n e r a t i n g t h e whole of G. The 

analysis of the G-triples (A, B, C) is done largely through considering 

two a s soc i a t ed t r ip les : 

i) t h e t r a c e - t r i p l e ( a , 3,Y ) , w h e r e a = t r A, e t c . 

ii) t h e o rde r - t r i p l e (a, b, c) , w h e r e a is t h e o r d e r of A, e t c . 

(S t r ic t ly speaking Macbea th cons ide r s t r ip l e s (A, B, C) of e l e m e n t s in 

SL2(q) r a t h e r than PSL2(q); th i s has t h e a d v a n t a g e t h a t e a c h e l e m e n t 

in SL2(q) has a uniquely de f ined t r a c e in GF(q), a n d so t h e a s soc ia t ed 

t r a c e - t r i p l e s a r e s impler t o hand le . Howeve r all h i s r e s u l t s a r e easi ly 

a d a p t e d to desc r ibe G- t r i p l e s as I have de f ined t h e m by using t h e n a t u r a l 

p r o j e c t i v e homomorphism f r o m SL2(q) t o PSL2(q)-) 

The G- t r i p l e s gene ra t i ng G a r e d e t e r m i n e d by an e l i m i n a t i o n p rocess , 
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'discarding' the G-triples that generate some proper subgroup until this 

has been done for all t he proper subgroups of G . This means we need 

to have a good idea of t he f o r m t a k e n by the w h o l e se t of G- t r ip l e s . 

The f r a m e w o r k of t he i n fo rma t ion is con ta ined in t h e fol lowing c ruc ia l 

resu l t in [ 14 ]: 

_i)_ For eve ry t r ip le ( a , B ? Y ) e (GF(q))^ t h e r e is a G - t r i p l e (A, B, C) 

which has ( a , 8 , Y ) as i ts t r a c e - t r i p l e (where in t h e l a t t e r t r ip le a is 

read as + a , e t c . ) . 

Le t Mat ( a , B , Y ) be t h e se t of G - t r i p l e s with t r a c e - t r i p l e ( a , B ,Y )• Then 

t h e t o t a l i t y of t h e G- t r i p l e s in G is given by the union of Mat ( a , g , y ) 

as a , B, Y range f r e e l y over t h e values of t r a c e . We only need t o know 

t h e con jugacy c lasses making up e a c h Mat ( a , 6 , Y ) to c o m p l e t e our 

p i c t u r e . 

However w e can a f f o r d now to spec ia l i se more t o t h e G - g e n e r a t i n g G-

t r ip les . C lea r ly any conjugacy c lass under PGL^Cq) of such G - t r i p l e s 

mus t have length |PGL2(q) | . I s t a t e a r e su l t again i m p l i c i t in [14] . 

ii) a) Suppose ( a , B , y ) ^ (±2, ±2, +2) is a t r a c e - t r i p l e of s o m e G -

g e n e r a t i n g G - t r i p l e . Then t h e se t of all G- t r ip l e s (A, B, C) which have 

a s soc i a t ed t o t h e m the s a m e t r a c e - t r i p l e ( a ,B ,Y ) c o n s t i t u t e s t w o con -

jugacy c l a s ses under PGL^(q) (where we c o n j u g a t e ' componen twi se ' ) , 

e x c e p t if any of A, B and C has o rder 2 when i t c o n s t i t u t e s just one . 

b) For ( a , B, Y) = (±2, ±2, ±2), associated G - t r ip les may genera te 

subgroups of G of type I, C , V 2? also exactly one conjugacy class of 
^ P 

such G - t r i p l e s have e l e m e n t s g e n e r a t i n g subgroups of t y p e PSL2(p) ( i .e . 

G itself if e = 1). 
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With th is resu l t known, we need only ana lyse w h i c h a r e t he t r a c e - t r i p l e 

values ( a , 3 , Y ) fo r which the e l e m e n t s of Mat ( a , 3 , y ) do not g e n e r a t e 

G (in o rder to unders tand which G- t r i p l e s a r e ' l e f t ' and so a r e (^ -genera-

ting). It is more or less t he se values ( a , 3 ,Y ) t h a t M a c b e a t h d e t e r m i n e d ; 

le t me fo r t he m o m e n t c rudely lump t h e s e t o g e t h e r a s t h e se t S (wi thout 

for the moment identifying its e lements) . 

I d e t e r m i n e t o go f u r t h e r by a t t e m p t i n g to t r a n s l a t e S in to t e r m s of 

o r d e r - t r i p l e s . I explain now the m o t i v a t i o n for t h i s , f i r s t in t roduc ing 

s o m e no ta t i on . 

If a, b, c a r e all e l e m e n t s of 5 , 1 will d e n o t e by Mat(a , b, c) t h e se t 

of all G - t r i p l e s wi th a s soc ia t ed o r d e r - t r i p l e (a, b, c ) . Also let n(a, b, c) 

be t h e number of e l e m e n t s of Mat (a, b, c) t h a t g e n e r a t e G and d ' p (G) 

be t h e number of t o r s i o n - f r e e normal subgroups N of t h e t r i angu la r group 

r of (a, b, c) such t h a t r / N = G. What c o n c e r n s me is t h e iden t i ty 

n(a, b, c) = I Au tGj . d' (G) , 

R e m e m b e r t h a t | A u t G | = |PGL^(q) | . e ( w h e r e q = p^) 

Now f o r any (a, b, c) e t he e l e m e n t s of Ma t ( a , b, c) have e x a c t l y 

cp '(a) cp'(b) cp'(c) 

d i s t i nc t values of t r a c e - t r i p l e . 

Suppose e x a c t l y s of t h e s e values of t r a c e - t r i p l e l ie in S. Then t h e pre-

vious resu l t (ii) gives 

n(a, b, c) 
|PGL j q ] 

(1; 2) . (cp'(a) cp'(b) cp'(c) - s) 
2 ' 
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(where (l; 2) means 1 if any of a, b and c equal 2, and means 2 otherwise) 

e x c e p t if (a, b, c) = (p, p, p) when 

n(p, p, p) = I" |PGL2(q) | f o r e = 1 

0 for e > 1 

3 
Thus if we know t he f u n c t i o n s : N g iven by 

s(a, b, c) M- I S n Tr(a, b, c) | 

w h e r e Tr(a, b, c) is t h e se t of t r a c e - t r i p l e s t a k e n by e l e m e n t s of Mat 

(a, b, c), then we know n(a, b, c) for ail (a, b, c) e (Note that 

s(p, p, p) does not concern us.) 

So I endeavour to c a l c u l a t e s. I do th is in sec t ions i) - iv), each one dea l -

ing with a d i f f e r e n t c a t e g o r y of o r d e r - t r i p l e s . All i n f o r m a t i o n I use is 

to be found in [ 14 ]. 

i) An excep t iona l o r d e r - t r i p l e of G is an e x i s t i n g o r d e r - t r i p l e of G 

t h a t is a r e - a r r a n g e m e n t of one of t h e fol lowing: 

(2, 2, d) for any d e 0 

(2, 3, 3) , (3, 3, 3) , (3, 4, 4) , (2, 3, 4) , (2, 5, 5) , 

(5, 5, 5) , (3, 3, 5) , (3, 5, 5) , (2, 3, 5) 

Assuming ( f r o m now on) t h a t q > 5, t hen any G - t r i p l e wi th an e x c e p t i o n a l 

o r d e r - t r i p l e (a, b, c) a s soc ia t ed to i t c a n n o t be G - g e n e r a t i n g (any such 

G - t r i p l e will in gene ra l g e n e r a t e e i t h e r a d ihedra l sub-group of G, or 

one i somorphic to A^, or A^). This is to say 

s(a, b, c) = cp'(a) cp'(b)cp'(c) 

and 

n(a, b, c) = 0 . 
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ii) A linear order-triple of G is a triple (a, b, c ) E 2̂̂  for which Mat 

(a, b, c) con ta ins a G - t r i p l e wi th a s soc i a t ed t r a c e - t r i p l e ( a , g , y ) sa t i s fy ing 

one of 

I) a , B , Y does not generate GF(q) 

II) ( this is only r e l evan t if e is even) . One of { a , 3 , y) is con t a ined 

e / 2 

in GF(p ) and t h e two other c o m p o n e n t s independent ly a r e 

e i the r square roo ts in GF(q) of n o n - s q u a r e s in GF(p^^^) or 

a r e zero . 

Every G - t r i p l e with a l inear o r d e r - t r i p l e (a, b, c) m u s t g e n e r a t e a subgroup 

of a p roper l inear subgroup of G, and so again 

r^a, b, c) = 0 . 

But I des i r e a descr ip t ion of t h e s e t of l inear o r d e r - t r i p l e s of G indepen-

den t of t r a c e . It is not hard to see t h a t t h e f o l l o w i n g s o m e w h a t awkward 

c o n s t r u c t i o n gives exac t l y t h e s a m e s e t . 

L e t r : ^ N be given by: 

r(p) : = 1 

Va E O \ { p } , 

r(a) : = t h e leas t divisor f of e such t h a t a | ( p ^ ± l ) / 2 

r(a) 

(No te : any e l e m e n t of G of o rder a has i ts t r a c e lying in GF(p ) ^ 

GF(q) and no smal ler subf ie ld . ) 

Then I d e f i n e t he rank R(a, b, c) of an o r d e r - t r i p l e (a , b, c) in G as t h e 

l ea s t c o m m o n mul t ip le of { r(a), r(b), r(c) } . Thus R(a, b, c) d iv ides 

e . 
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I assert the set of linear order-triples of G is g i v e n by those (a, b, c) 

£ Q ^ such t h a t one (or both) of 

I) R(a, b, c) is s t r i c t l y less t han e 

II) e is even , all t h r e e e l e m e n t s of { a, b , c } a r e independent ly 

e i t he r p or divide (p^^^+l) . 

iii) An a f f i n e o r d e r - t r i p l e of G is a t r ip le (a, b , c) e n such t h a t 

Mat(a , b, c) con ta in s a G - t r i p l e (A, B, C) fo r which 

< A, B > is commutat ive . 

Suppose (a, b, c) is an a f f i n e o r d e r - t r i p l e t h a t is n o t also a l inear o r d e r -

t r i p l e . Then Tr(a, b, c) i n t e r s e c t s S only in t he fo l lowing subset S' of 

S: 

S' : = { t r a c e - t r i p l e s ( a , B, y ) in G : M a t ( a , 3 , y) con ta ins a G - t r i p l e 

(A, B, C) s . t . <A, B> is c o m m u t a t i v e } . 

(Given ( a , 3, y) e S ' , all t h e e l e m e n t s of M a t ( a , 3 , y ) g e n e r a t e subgroups 

of G t h a t f ix a mark in t h e ac t ion of G on GF(q) U {°°} . ) 

Then by de f in i t ion 

s(a, b, c) = I S n Tr(a, b, c) | = | S ' r \ Tr(a, b, c) | . 

So we need both t o i den t i f y in a m o r e numer ica l way which (a, b, c) 

e a r e a f f i n e , and t hen t o c a l c u l a t e s(a, b, c) as a b o v e . 

We do th is by cons ider ing t h e d i f f e r e n t types of m a x i m a l c o m m u t a t i v e 

subgroups M of G, in pa r t i cu l a r we cons ider which o r d e r - t r i p l e s (a, b, c) 

have solut ions (A, B, C) in M t o 
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o(A) = a, o(B) = b, o(C) = c, ABC = I 

and then the number of such solut ions fo r given (a , b, c). For M s C 
r(q) 

or y each of these solutions (A, B, C) ( together with its allied solution 

(A B \ C *])corresponds to an e l ement of S'. 

I) M : = V 
— q 

Triples of e l e m e n t s in V all have o r d e r - t r i p l e s of one of t h e fol lowing 

values (or r e a r r a n g e m e n t s ) : 

(1, 1, 1) , (p, p, 1) , (p, p, p) 

Trivial ly, 

n ( l , 1, 1) = n(p, p, 1) = 0 . 

(In f a c t if 1 e { a, b, c } , all Mat(a , b, c) would be c y c l i c and i m m e d i a t e l y 

n(a, b, c) = 0. This is why we could a f f o r d to o m i t 1 ( t he ' t r iv ia l o rder ' ) 

in t h e de f in i t ion of ^ and t ac i t l y ignore G - t r i p l e s c o n t a i n i n g I). 

F ina l ly , we a l ready know n(p, p, p ) . 

iO 

Consider M as C , a cyc l ic group of order m. Suppose C ^ is generated 

by X. L e t a and b divide m. 

Then t h e se t E of e l e m e n t s in C t h a t a r e t h e p r o d u c t of an e l e m e n t 

of o rder a and one of order b in C ^ is given by 

E : - { X : w _ k^m/a + k^m/b for some k^, coprime to 

a , b r e s p e c t i v e l y } . 

We wan t to e x a m i n e the o rde r s of e l e m e n t s in E. If w e f ix w = k ^ m / a 

+ k^nxlh, then i t is c lear 
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o(x") 
K.c.|.(ab, k^b + k^a) 

Cons ide r m o r e spec i f i c a l l y now t h e a f f i n e o r d e r - t r i p l e s wi th f ixed f i r s t 

two components a, b E , which necessari ly nnust both divide r(q) : 

= ( q - l ) / 2 or b o t h d iv ide s(q) : = (q+ l ) /2 . These o r d e r - t r i p l e s a r e e x a c t l y 

t h e s e t : 

{ (a, b, c) : t h e s e t E as d e f i n e d a b o v e f o r a p p r o p r i a t e C c o n t a i n s 

an e l e m e n t of o r d e r c } 

and f o r e a c h of t h e m 

s(a , b, c) = ^ ( e l e m e n t s in E of o rder c) , 

I shal l be m o r e exp l i c i t only in t w o r e s t r i c t e d c a s e s (and th is is why 

I e a r l i e r said my r e s u l t s w e r e no t q u i t e gene ra l ) . 

The f i r s t c a s e is when a and b a r e c o p r i m e . T h e n it is s imply shown 

that 

|E | = = ^(ab) 

and t h a t e v e r y e l e m e n t of E has o r d e r ab . So w e h a v e : 

3 

(a , b, c) E 5 is an a f f i n e o r d e r - t r i p l e in G 4=^ c = ab 

and 

s(a, b, ab) = cp(ab)/2 = cp'(ab) 

f r o m which w e c a l c u l a t e 

' ( ^ ^ ^ '(ab)[(l;2).(cp'(a) cp'(b)) - 1] 

9(ab) 
2 

(p(ab) 
2 
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I g ive an example, for a = 2, b = 3 : if the triple (2, 3, 6) is an existing 

o r d e r - t r i p l e in G (i .e. if 6 e , or a l t e r n a t i v e l y if 2 and 3 both divide 

r(q) or both divide s(q)) then 

n(2, 3, 6) = 0 . 

This may be i n t e r p r e t e d t h a t t h e r e can never b e a ROAM of va lency 

6 wi th au tomorph i sm group G. 

The second ca se is when a = 2 (so I g e t a c o m p l e t e resu l t fo r maps if 

not fo r hypermaps) . The case b odd is covered a b o v e , so suppose b is 

even > 2 (remember (2, 2, c) for any c is except ional) . 

|E| = (p(b) 

and every e l e m e n t of E has order b if b e 0 mod 4 

has order b /2 if b = 2 mod 4 , 

Correspondingly de f ine 

I 
b/2 

if b = 0 mod 4 

if b = 2 mod 4 

Then 

s(2, b, Cy) = (p(b)/2 

giving (with a l i t t l e work): 

n(2, b, c^) 

|PGL_(q)| 

(P(b) (P(b) 

Final ly , I should pe rhaps emphas i se t h a t all t h e r e l a t i o n s h i p s I have g iven 

fo r n(a, b, c) fo r an a f f i n e o r d e r - t r i p l e (a, b, c) a r e valid only if t h e 

s a m e o rde r - t r i p l e (a, b, c) is ne i ther e x c e p t i o n a l or l i nea r as well . 
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iv) A G-ReneratinR o r d e r - t r i p l e of G is a t r i p l e (a, b, c) e Q ^ for 

which every e l ement of Mat(a, b, c) generates G. The set of these are 

exact ly the triples (a, b, c) e ^ that are not except iona l , linear, a f f ine 

or equa l t o (p, p, p). 

By de f in i t i on 

s(a, b, c) = 0 

and 

I P G L ^ ^ q f " (l;2).((p'(a)(p'(b)cp'(c)) 

V(a)9(b)9(c) 
4 

w h e r e 9 is t h e Euler ian f u n c t i o n e x c e p t we f r o m now rega rd cp(p) c 2. 

I have now c o m p l e t e d my e x a m i n a t i o n of t he f u n c t i o n s s and n on the 

o r d e r - t r i p l e s of G : - PSL2(q), fo r a given odd p r i m e power q = p^ > 

3. Thus f o r eve ry (a, b, c) e fl ^ I have an exp re s s ion d ' (a , b, c) f o r t he 

number of t o r s i o n - f r e e normal subgroups N of t h e t r i angu la r group F 

of t y p e (a, b, c) such t h a t F/N s G: 

d'(a, b, c) = g . | |%L2(qj| 

(I e x t e n d d' t o be a f u n c t i o n d' : N -> N by def in ing d ' ( a , b, c) = 0 

w h e n e v e r (a, b, c) ^ Q^,) 

We know t h a t d ' (a , b, c) a lso r e p r e s e n t s t h e n u m b e r of regula r o r i en t ed 

(a, b ) -hype rmaps of valency c wi th a u t o m o r p h i s m group G. 

We h a v e ob ta ined en t i r e ly expl ic i t express ions fo r n(a, b, c) only when 

a and b a r e c o p r i m e or when a = 2 ( though it should not be d i f f i c u l t 
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to extend my analysis of a f f ine order-triples t o be quite general). To 

give a partial resume, I now s ta te the values of d'(2, b, c) for all pairs 

(b,c) in ^ , in o the r words I e n u m e r a t e all ROMs t h a t have b-gonal f a c e s 

and va lency equal t o c and have au tomorph i sm g r o u p isomorphic to G. 

Supose (2, b, c) E 0 is not an except ional , l inear or a f f ine order-triple, 

then 

d'(2, b, c) = ^ (P(b)(p(c) (where (p(p) = 2), 

Suppose (2, b, c) = (2, b, 2b) e 9.^ f o r b odd or (2, b, b) e for b 

= 0 mod 4 or (2, b, b/2) e $7 fo r b = 2 mod 4^.If t h i s t r ip le is non- l inear 

(i .e. b I (q± l ) /2 bu t b does not d ivide (p^±l) f o r any proper divisor f 

of e) then 

d'(2, b, c) = - ^ [ ( p ( b ) - 2] . 

For all other (2, b, c) e 

d ' (2, b, c) = 0 . 

1 end wi th some n o t e s . 

1) The r e a d e r may wonder a t my a b a n d o n m e n t of t h e use of Mobius 

invers ion in th is s ec t i on . This is no t simply b e c a u s e I be l ieve t h a t he 

or she will be glad for a r e s t f r o m t h e t e c h n i q u e by now! The ser ious 

reason is t h a t t h e invers ion involved (if we t ack l ed t h e problem of f ind ing 

t h e number of G - g e n e r a t i n g G - t r i p l e s wi th a g iven o rder t r i p l e - o r d e r 

(a, b, c) by t h e s t anda rd Hall t y p e method) would m a k e t h e c a l c u l a t i o n 

3 

unnecessa r i ly long and c lumsy . This is b e c a u s e for m o s t (a, b, c) e 0 , 

all t h e e l e m e n t s of Mat(a , b, c) a r e read i ly i d e n t i f i e d e i t h e r as g e n e r a t i n g 
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a subgroup in G lying in a spec i f ied c lass of proper subgroups of G or 

as gene ra t i ng G i t s e l f . This rea l ly makes t h e inve r s ion approach redundant . 

2) I r e f e r back to my discussion of a f f i n e o r d e r - t r i p l e s (a, b, c) for 

which a G - t r i p l e of Mat(a , b, c) l ies in a subgroup of type or 

i n G . 

There , fo r f ixed (a, b) e and fo r any p o s i t i v e i n t ege r m tha t is 

a mul t ip le of both a and b, I de f ined t h e se t E ( a s a subse t of t h e cycl ic 

group C ). Well i t is c l ea r t h a t both | E | and t h e number of e l emen t s 

in E of any pa r t i cu l a r order in C have values i n d e p e n d e n t of m (condi-

tional t o a i m and b im) . 

This means t h a t if fo r a c e r t a i n G we have an a f f i n e o r d e r - t r i p l e with 

f i r s t t w o c o m p o n e n t s equal t o (a, b) £ (2^)^ , t hen t h e fo l lowing a r e de t e r 

mined en t i r e ly by a and b (and no f u r t h e r by G): 

I) t h e se t of i n t e g e r s c such t h a t (a, b, c) is an a f f i n e o rde r - t r i p l e 

in G. 

II) t h e values of s(a, b, c), and h e n c e t h e va lues of e.d'(a, b, c) fo r t he 

t r ip les in I) 

This leads me to t h e fol lowing 

Proposition 

Fix a t r ip le (a, b, c) of pos i t ive i n t e g e r s , and suppose i is t h e number 

of d i s t inc t odd p r i m e s t h a t occur in {a , b, c } (so i = 0, 1, 2 or 3). 
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Then the number n of d i f ferent non-zero values thate.d'(a, b, c) takes 

as we vary G : = PSL2(q) (i .e. vary q over all odd prime powers greater 

t h a n 5) s a t i s f i e s 

n ^ 1 + i . 

Proof 

We now know t h a t if (a, b, c) is an a f f i n e (non- l inea r ) o rde r - t r i p l e in 

a c e r t a i n PSL2(q'), then for all PSL2(q) fo r which (a , b, c) is also an 

ex is t ing o rde r - t r i p l e it will be a f f i n e again and will h a v e t h e s ame value 

f o r e .d ' (a , b, c) (or th is value could possibly b e c o m e z e r o ) . So in th i s case 

n = 1 or 0. 

If (a, b, c) is not an a f f i n e o r d e r - t r i p l e in any of t h e PSL2(q), t hen t h e 

only non -ze ro values t h a t d ' (a , b, c) can t a k e a r e g i v e n by t h e express ion 

cp(a)cp(b) cp(c) 
4e 

w h e r e cp r e p r e s e n t s t he c lass ica l Euler ian f u n c t i o n e x c e p t f o r any single 

odd p r i m e p we might chose ( s t r i c t ly speaking, p v a r i e s acco rd ing to 

q), which we t a k e as cp (p) = 2. This g ives us a m a x i m u m of (1 + i) va lues 

f o r e . d X a , b, c ) . 
• 

3) Let us f ix G (for all this note). 

If we t a k e t h e sum d ' fo r any f ixed (a, b) e (Z^)^ as f o l l o w s : 

d ' (a , b) = d ' (a , b, c) 

c iN 

t hen d ' r e p r e s e n t s t h e number of r egu la r o r i en t ed (a , b ) - h y p e r m a p s wi th 

a u t o m o r p h i s m group G. (I have a l r eady d e t e r m i n e d d ' (2 , 3) exp l ic i t ly 

in t h e previous sec t ion , but not d ' (a , b) f o r any o the r p a i r s (a , b)). 
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This summation is messy to actually write down and refine. However, 

as sugges ted in t h e p reced ing no te , t he f o r m s of expression fo r d ' (a , 

b, c) a r e very l imi ted : th is means we can o f t e n f ind useful r e l a t ions 

between the values of d' for varying (a, b, c). For example if (a, b, c) 

and (a, b ' , c) a r e both G - g e n e r a t i n g o rde r - t r i p l e s in G , t hen 

d'(a, b, c) = ^^-|^d'(a, b', c) . 

Making use of t hese , we may es tab l i sh some n e a t re la t ionsh ips b e t w e e n 

t h e d i f f e r e n t d'(a, b). 1 c o n c e n t r a t e again only on maps, i .e . a = 2, and 

to give an example show that if G : = PSL2(p^) for an odd prime p with 

e > 2 then 

d'(2, 3) = d'(2, p) . 

I do th is by d e m o n s t r a t i n g t h a t Vc e N, 

d'(2, 3, c) = d'(2, p, c) . 

Proof 

The re su l t s a r e t ru i sms if p = 3, so suppose p > 3 , 

Now 

(2, 3, c) is excep t iona l 4=^ c = 2, 3, 4 or 5 

(2, p, c) is l inear 

( this impl ica t ion has been m a n u f a c t u r e d by imposing t h e condi t ion e > 2). 

(2, p, c) is excep t iona l c = 2, 3, 4 or 5 

(2, 3, c) is e x c e p t i o n a l 

(2, 3, c) is l inear 4 = ^ (2, p, c) is l inear 

(2, 3, c) is a f f i n e c = 6 and d '(2, 3, 6) = 0 

Necessa r i ly (2, p, 6) is l inear . 
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Finally no (2, p, c) can be a f f ine . 

The above iden t i f i ca t i ons te l l us t h a t 

dX2, 3, c) = 0 H f d ^ 2 , p, c) = 0 

and t h a t if d '(2, 3, c) 0, then both (2, 3, c) and (2 , p, c) a r e G-gene ra t i ng 

and so 

d%2, 3, c) = 9(c) = dX2, c) . 

Exact ly t h e s ame sort of a r g u m e n t s give e x t e n s i o n s t o th is resu l t . I will 

p r e s e n t one such extens ion now wi thou t p roof . R e m e m b e r t h a t fo r an 

e l e m e n t b ^ p of 0 t h a t 

divisor r 

r(b) = t h e least^f of e such t h a t b | (p ± l ) / 2 

Theorem 

Le t e > 1 and t h e p r ime decompos i t ion of e be 

e = p 1 Pk 

H b E ! ^ \ { p } has 

^1 

r(b) = p^ ... pj^ wi th t . < s. Vi = 1, . . . , k 

then 

d^2, b ) = ^^^^d%2, p) 

(with t h e f u r t h e r condi t ion e > 2 needed if b = 4 or 5 ) . 
• 

Genera l i s ing f u r t h e r (i .e. l e t t ing s o m e of t he t. = s. in t h e s t a t e m e n t 

of t he t h e o r e m ) is not d i f f i c u l t but t h e f o r m of t h e r e l a t i onsh ips b e c o m e 

more involved, so I cal l a ha l t he r e . N o t e t h a t we c a n now use our exp l ic i t 

values we have for d'(2,3) t o ob ta in exp l i c i t va lues f o r d ' (2, p) and then 

for d ' (2 , b) ( for those b cove red in t h e t h e o r e m ) . 
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CHAPTER FOUR 

1. INTRODUCTION (Problems of cycl ing round a regular map) 

The t e r m 'map ' obviously (to my mind anyway!) is m o t i v a t e d by thinking 

of the map as a sys tem of roads (edges) and roundabouts (vert ices) on 

the surface of a planet (with genus 0). I suppose the map /f (and hence 

the planet) is o r ien ted . Jus t for this sec t ion , I press the analogy f u r t h e r 

and suppose B is a bicyclist (ecologist and m a t h e m a t i c i a n ) who se ts 

out f r o m home which is s i tua ted a t t h e end of a road ( the dar t a say). 

B is given a s t r ing of d i rec t ions W for his journey 

W(x, z) = z ' " X z ' s - ' X . . . x z ' 2 X z ' l s c N ' 

^ 1' ' ŝ ^ ^ 

where z is the f i r s t d i rec t ion which says ' t ake t h e i^th turning going 

clockwise round the roundabout you a r e cur rent ly a t ' (if i^ is negat ive , 

t h a t is to be i n t e r p r e t e d to t a k e the | i ^ | t h turning going ant i -c lockwise) . 

The d i rec t ion x simply says ' t r ave l t o the next roundabout on the road 

you a r e on ' . What concerns B is will he end up back home again a f t e r 

comple t ing his journey? Or, put t he o ther way, he would like to know 

which s t r ings of d i rec t ions W will desc r ibe c i rcui t s f r o m a ; and he wan t s 

to know this b e f o r e se t t i ng out! 

Now not to make it too chao t i c for B, we suppose t h e map Ji is regular . 

(This makes the ' s t a r t i ng ' da r t a non-cr i t i ca l ) . But d e s p i t e the symmet ry , 

things a re stil l not easy for B. Even if B is given t h e au tomorphism type 

G of Vt ; B cannot d e t e r m i n e the c i r cu i t s because in genera l t he r e a r e 

many regular maps with the same au tomorphism type . B needs to know 

a s tandard p resen ta t ion (G, fl, x, y) for / t . Le t t ing z : = y ^x, W is a 

c i rcu i t if and only if W(x, z) = I in G. If B knows t h e set of c i r cu i t s 

for A. , then B knows the whole r e l a to r se t for a 2 - g e n e r a t o r p resen ta t ion 
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of G: if G is a 'complicated' group, this might be qu i t e an achievement. 

(He would have solved Dehn ' s word p rob lem f o r t he p a r t i c u l a r p resen ta t ion . ) 

Suppose now G = PSL^(q) or PGL^(q) fo r s o m e p r i m e power q = p® and 

t h a t Vi is a ROAM (i.e is t r i angu la r ) . Then c h e c k i n g whe the r W(x, z) = 

I by brute force (i .e. by matrix multiplication) can b e done but is clearly 

unwieldy- What th i s c h a p t e r does , a f t e r s e t t i n g up t h e problem (including 

hype rmaps initially) a l i t t l e more f o r m a l l y , is t o d e s c r i b e a far n e a t e r 

p rog ram to dec ide which W a r e c i r c u i t s . This is d o n e by f inding we may 

c h a r a c t e r i z e t he map vt by G and t h e min imal p o l y n o m i a l r in Z of k 

: = t r (z) . Then an a lgo r i t hm is c o n s t r u c t e d by which t h e value of tr(W(x,z)) 

is given in t e r m s of a po lynomia l P(W) over 2 in p o w e r s of k ( these poly-

nomials being independen t of q). If r is a f a c t o r of e i t h e r P(W) + 2 or 

P(W) - 2 working mod p, then 

W(x, z) - I or is of o rder p, 

(and converse ly) Final ly a s imple decis ion process is de sc r ibed to d i sc r im-

ina t e b e t w e e n the two c a s e s . So in t h i s way B can f a i r l y easily r eas su re 

himself t h a t he ' l l g e t back home! And should he w a n t to , he ' l l be able 

to g e n e r a t e a c i r c u i t in 'his ' ROAM (wi th a u t o m o r p h i s m type G) t h a t 

is not shared by some o t h e r ROAM (whichever one h e may choose) wi th 

t h e s a m e a u t o m o r p h i s m t y p e . 

2. ROUTES, CIRCUITS AND PRESENTATIONS 

Suppose Ji is any o r i en t ed map , g iven a lgeb ra i ca l ly in t h e s t andard way 

as (G, X , y), and l e t 

- 1 / \ 
z : = y X ^ d : = o ( z ) . 

Then t h e r e is t h e obvious (graphica l ) c o n c e p t of a p a t h P in / I which is 
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a (f inite) sequence of vert ices in 

VQ, V p v^, .. . , f o r some n e 

for which (v., v.^^) is an edge fo r all i = 0, .. . , n - 1 . If t h e sequence 

has (n+I) e l e m e n t s , then we say P is of length (n+1). 

Now, using the map p rope r t i e s of Ji ( r a t h e r than just t h e ' w e a k e r ' g raphica l 

p rope r t i e s ) , we may r e p r e s e n t t h e pa th P in a d i f f e r e n t way: suppose 

t h a t t h e d a r t w is t he d i r e c t e d edge f r o m in to v^ , then it is c lear 

t h a t 

3 SQ, S p ... ; s E Z j s . t . Vi = 0, ... , n-1 

i S . 

w. : = ( J | " ( x z )̂) X (w) is the directed edge from 
j.O 

\ V i • 

cal l t h e word W in x and z given by 

s i _ , s . 
W(x, z) = X Z X . . . X z x 

a route which induces the path P at w. 

The de f in i t i on of a route is simply a word W in x and z of t h e f o r m 

^m tj^ t 
W(x; z) = z X ... X z X z t ^ , , tg e Z . 

An i m p o r t a n t f e a t u r e of a r o u t e is t h a t , unlike a p a t h , i t is de f ined inde-

penden t ly of any map being cons ide red . If we t a k e t h e r o u t e W as above 

and t h e map Ji = (G, , x, y), we may t a k e t he v a l u e s of t ^ , . . . , t ^ 

modular t o d, and W induces a d i f f e r e n t pa th in A a t eve ry w e in 

t he n a t u r a l way. However , w h a t e v e r ,A and w e , t h e induced pa th 

will have length t -1. Correspondingly we also say t h e r o u t e W has t h e 
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length t -1 (i.e. t he length is t he number of x ' s in W(x, z)). 

So, con tex tua l ly , we cal l the word W a rou te w h e n e v e r we think of it 

as inducing pa ths fo r ce r t a in maps Ji a t c e r t a in d a r t s w of . But we 

shall be par t icu la r ly in te res ted in the ins tances when for a par t i cu la r 

and w, W sat isf ies 

W(x, ^ ( w ) = w . 

Then we say the rou te W is a c i rcu i t a t w (inM). 

Now I cons t ra in vM to be regular . This means Aut Ji ^ G. Also if W is 

a rou te , and fo r any da r t w ot Ji 

W(x, z ) ( w ) = w 

then in G, 

z) = I . 

In pa r t i cu la r 

W(x, z) (w') = w' Vw' E 

and I call W just a c i rcu i t in Ji (with no r e f e r e n c e to ' ba se ' dar t ) . 

So, given Ji , we can ' read o f f f rom i ts topological r e p r e s e n t a t i o n a p re sen -

ta t ion G(xA() for t h e group G: 

G(,^) : = <X, Y| X^, W(X, Y) s.t . W is a circuit in vAl > 

Note t h a t t h e r e l a to r set here is as i ne f f i c i en t a s possible in t h a t 

t h e re la t ions a re included (of which t h e r e a re of c o u r s e an in f in i t e num-

ber). For two d i f f e r e n t regular maps Ji , Ji' with t h e s ame au tomorph i sm 

group G, t h e r e will be a re la t ion W in the p r e s e n t a t i o n G(i/1 ) t h a t is 
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not a relation in the presentation G( y t t h i s g i v e s us a property for 

t h e topo log ica l r e p r e s e n t a t i o n of A not shared by t h a t of t he p roper ty 

being 'W is a c i r c u i t ' . 

For an oriented hypermap , the concepts of path and route are not 

so natural, but in chapter 1 we saw that'X can be represented by a map 

Ji , so t h e ideas can ca r ry th rough using A . D e s p i t e th is , our geometric 

insight fo r h y p e r m a p s in g e n e r a l t e n d s to be f a r less c o n c r e t e than t h a t 

fo r maps in p a r t i c u l a r , and t h e r e is l i t t l e intuit ive m o t i v e to i n t e r p r e t 

each a l g e b r a i c p r o p e r t y as a p r o p e r t y of some t o p o l o g i c a l r e p r e s e n t a t i o n . 

However t h e r e is a lways t h e possibi l i ty t o exploi t t h e topologica l p rope r -

t i e s of t h e s u r f a c e of imbedding t o g ive i n f o r m a t i o n abou t (or indeed 

i t s map subgroup, s ee p. 29 ) . Jus t f o r th is i t is w o r t h w h i l e to ex t end the 

not ion of a r o u t e to hype rmaps (but we no longer s t r e s s t h a t of path) ; 

a r o u t e is a word W in two l e t t e r s , and the t e r m is used in t h e c o n t e x t 

of t e s t i n g w h e t h e r fo r a p a r t i c u l a r h y p e r m a p *)-(; = (G, ^ , x, y) wi th 

z : = (xy) \ and w e fithat 

W(x, z) (w) = w ; 

if t h e above holds, W is a c i r c u i t in°H a t w. If V, is r egu l a r , t he a b s t r a c t 

group given by t h e p r e s e n t a t i o n 

GCH) : = < X , Z I W(X, Z) s . t . W is a circuit in'X > 

is i somorph ic t o G. 

C lea r ly , if H is t h e se t of o r i en t ed regu la r h y p e r m a p s M wi th a u t o m o r p h i s m 

group G, t h e n t h e se t of mutua l ly non-equ iva len t 2 - g e n e r a t o r p r e s e n t a t i o n s 

of G is given by 

{ GCX) : E H } 
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(Exac t ly t h e same a t t i t u d e and c o m m e n t s apply f o r unor iented maps 

and hypermaps , but then one is c o n c e r n e d with the p r e s e n t a t i o n s of groups 

with t h r e e g e n e r a t o r s cons t r a ined to be i nvo lu t ions . I do not conce rn 

myself wi th this case : all hype rmaps r e f e r r e d to h e n c e f o r t h a re or ien ted . ) 

So if 9-{ : = (G, n , X, y) is a regu la r hype rmap , we a r e in t e re s t ed to f ind 

all t h e words W in two l e t t e r s such t h a t in G 

z) = I 

as t h e s e words exac t l y f o r m the r e l a t o r se t R of t h e p r e sen t a t i on G(X) 

for G. For t he specia l c a s e , i s a ROAM, G = PSL2(q) or PGL2(q) for 

some p r ime power q, a m a n a g e a b l e a lgo r i t hm t h a t g e n e r a t e s t he c i r cu i t s 

in a s y s t e m a t i c way is deve loped in t h e nex t s ec t i on . 

But fo r now, I suppose we 'know' R. Then we c o u l d t ry to f ind f i n i t e , 

and then minimal , subse ts S of R t h a t c o n s t i t u t e a d e f i n i n g set of r e l a t i ons 

fo r G. This is someth ing t h a t does not pr imar i ly e n g a g e us in this c h a p t e r , 

we will be involved most ly in simply f inding a r e l a t i o n in one 2 - g e n e r a t o r 

p r e s e n t a t i o n for a group G t h a t is not a r e l a t ion in ano the r 2 - g e n e r a t o r 

p r e s e n t a t i o n for t he s a m e group G; in o the r words t o f ind a c i r cu i t t h a t 

occurs in just one of a pair of given regula r h y p e r m a p s with t he s a m e 

au tomorph i sm group. (I will in f a c t , fo r s impl ic i ty , m o s t l y r e s t r i c t myself 

to t r i angu la r maps). However , t o end th is s ec t ion , I d i scuss f i n i t e p r e s e n -

t a t i ons a bit f u r t h e r , in t h e f o r m of a couple of n o t e s . 

N o t e 1 

Hal l ' s me thod , see §1.2 , gives us a me thod (given a f i n i t e group G) f o r 

ca l cu l a t i ng the number N of regula r h y p e r m a p s wi th a u t o m o r p h i s m group 

G t h a t sha re a c e r t a i n se t S of p resc r ibed c i r c u i t s W. Then N is t h e 

-139 -



number of non-equiva len t 2 - g e n e r a t o r p r e s e n t a t i o n s of G for which t h e 

r e l a t o r se t R con ta ins S. If N ^ 2, S c a n n o t f o r m a def in ing r e l a t o r se t 

fo r G. 

N o t e 2 

H e r e I t ry t o ut i l ise t he genus g (supposing t h a t t h i s is g r e a t e r t han 1) 

of t h e s u r f a c e $ (9-() of imbedding, in pa r t i cu l a r t o f i nd a f i n i t e p r e s e n t -

a t ion of G with (2g+2) re la t ions given in t e r m s of c i r c u i t s r ep re sen t i ng 

topologica l ly d i f f e r e n t s imple loops in t h e imbedding . This is done ske tch i ly 

and in r e f e r e n c e to a no t e in C h a p t e r 1, p. 29 , w h e r e t he i somorphic 

t y p e of t h e map-subgroup of "X is i den t i f i ed . 

So suppose "K : = (G, , x, y) is a regu la r (r, n, m ) - h y p e r m a p ( t h a t is 

o(x) = r, o(y) = n and o(z) = m where z : = (xy) and t h a t 

r : = gp <X, Y : X% Y" > . 

Then t h e map-subgroup M of 9-( is f r e e of rank 1 + (1 - p - IG | given 

by 

M = g p < a , , b , , . . . , a , b , U c \ c : 
6 6 ugy 

w h e r e a , , b , , a , b a r e words in X and Y such t h a t t h e s a m e words 
1 1 g g 

in X and y a r e c i r cu i t s r ep re sen t ing t h e se t of s i m p l e non- t r iv ia l loops 

of $ (based a t ve r t ex v), and w h e r e t h e g e n e r a t o r s c a r e indexed by 

t h e v e r t e x se t V and a r e words in X and Y which a r e c o n j u g a t e s of 

(as expla ined on p. 3 0 - 3 1 ) . 

Now e a c h word in X and Y t h a t r e p r e s e n t s an e l e m e n t in M is a word 

p r o d u c t of t h e f r e e g e n e r a t o r s . Also such a word in X and Y has i t s 

e x a c t ana logue in x and y as a r e l a t i on in GCH), and v i c e - v e r s a . We con -

c lude t h a t t h e words of t h e g e n e r a t o r se t fo r M as a b o v e t o g e t h e r wi th 
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t h e r e l a t i ons 

x'' = I, y" = I 

provide a def in ing se t of r e l a t ions fo r GCH )• But t h e words c in x and 

y express conjugates of which itself describes a trivial simple loop 

in $ and is dependen t on t he se t of r e la t ions { a . , b . , . . . , a ,b ,x'',y'^} 
^ § § 

(if t h e genus g > 1). Thus 

GCX) = <x, y : x"̂ , y", a , , b , , ... , a , b > 
6 6 

which has a r e l a to r se t of order 2g + 2 

(where 2g = 2 + ICl (1 - — - — . 
° ' ' r n m 

N o t e th is p r e s e n t a t i o n we have just der ived is no t necessa r i ly min imal : 

if w(x, z) is any c i r c u i t , t hen a c o n j u g a t e word of w(x, z), which also 

of c o u r s e is a c i r c u i t , need not be topological ly e q u i v a l e n t as a loop 

in $ t o w(x, z). So, in th is r e s p e c t , t h e r e is a s t rong possibi l i ty of some 

mu tua l dependence wi th in t h e r e l a to r s e t . 

3. AN ALGORITHM TO PRODUCE CIRCUITS F O R ANY ROAM ^ 

WITH AUT H S PSLgCq) OR PGL^(q), SOME q 

I r e t u r n to t h e main p rob lem as 1 l e f t it in t he p r ev ious sec t ion : suppose 

: = (G, 0 , X, y) is any regula r hype rmap , for which w e know o(x) = r, 

o(y) = n and o(z) = d (where z : = (xy) b - Can we f ind a f ea s ib l e a l g o r i t h m 

t o g e n e r a t e those r o u t e s W(x,z) which a r e c i r cu i t s in "X , i .e. fo r which 

V^x, = I in G ? 

Our abi l i ty to do th is of cou r se depends a lot on t h e group G (and t h e 

f o r m in which it is given to us). But fo r mat r ix g roups we may a lways 

of c o u r s e use t h e b r u t e f o r c e of m a t r i x mu l t ip l i ca t ion , t e s t ing f i r s t t h e 
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routes of length 1, then the routes of length 2, and so on, to see which 

ones a r e c i r cu i t s . 

F o r t u n a t e l y , when I now specia l i se t o G s PSL2(q) or PGL2(q) for some 

q = p®, we can be a lot more e f f i c i e n t than this, by use of t r a c e . Instead 

of having to determine the whole matrix represented by W(x, z), we 

may simply c a l c u l a t e its t r a c e : if t h e t r a c e is 2, W(x, z) is e i ther a c i r cu i t 

or is a rou t e of o rde r p in "H ( i .e . t h e rou t e f o r m e d by juxtaposing p 

copies of W(x, z) is a c i r cu i t , w h e r e a s jux tapos ing any f ewer copies is 

not a c i rcu i t ) . However it is f a i r ly easy to c o n s t r u c t a decision c r i t e r ion 

b e t w e e n t h e two poss ibi l i t ies t h a t works in eve ry c a s e . But we can do 

better: whatever the value of the t race of W(x, z) , we can use it to 

c a l c u l a t e t h e order of W(x, z) as a group e l e m e n t of G; thus we need 

not ' w a s t e ' any c a l c u l a t i o n s (as for each rou t e w e consider , we f ind a 

c i r cu i t ) . 

I now give an e x a m p l e of how t h e s e ideas may b e put into p r a c t i c e by 

r e s t r i c t i n g my a t t e n t i o n f u r t h e r to just ROAMs (so (r, n) = (2, 3)). The 

m e t h o d s I p r e s e n t h e r e do not necessa r i ly have n a t u r a l extens ions p e r t i -

nen t t o hype rmaps wi th a s soc i a t ed pair (r, n) (2, 3). Thus t he a r g u m e n t s 

h e r e must be r e g a r d e d as being spec ia l t o ROAMs. However it should 

not be d i f f i c u l t t o a d a p t t h e m fo r t h e o the r c a s e s , but the p rocess in 

whole will be more c o m p l i c a t e d . 

So suppose we a r e g iven a ROAM : = (G, 0 , x, y) wi th G s PSL^Cq) or 

PGL2(q) for some q. I w a n t t o g e n e r a t e i t s c i r cu i t s . 

We in f a c t do not work in words in x and z ( rou te s ) but in words in v 

and z whe re 
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V : = yx and z : = y X 

(From now on, whenever I r e f e r t o a word , I will m e a n a word in 2 l e t t e r s ) 

Noticing that 

2 ^ 2 - 1 
x = y xxy y x = zv z 

( V = zxz) 

c lear ly < v, z > = G, so th is can be done . Whenever w e f ind for a c e r t a i n 

word W t h a t 

we need only s u b s t i t u t e zxz fo r e a c h v to obta in t h e a s soc i a t ed c i r cu i t , 

which then will be of length equa l t o t h e e x p o n e n t sum exp(W; v) of 

v in W. But we also d e f i n e a n o t h e r ' m e a s u r e of s i z e ' f o r W(v, z): t he 

rank (W) of W(v, z) is t h e t o t a l number of l e t t e r s in t he word, i .e . 

equals 

exp(W; v) + exp(W; z) , 

For insight , no t i ce t h a t t h e ac t ion of v and z by mu l t i p l i c a t i on on t h e 

d a r t s of JH can in tui t ively be t h o u g h t of as r a t h e r l ike t h e mechan i ca l 

ac t ions of a pair of sc issors a t t h e t i p of t h e b l a d e s and a t t h e joint 

r e spec t ive ly , but wi th t h e s e two a c t i o n s working in oppos i te senses t o 

each o the r ; 
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Now we shall be ta lking about t r a c e : I ought to c l a r i f y what I mean 

by this when G = PGL^(q) f o r any odd q. What we h a v e to do is choose 

and f ix any non-square 3 in GF(q). Then for any g e G, we r ep re sen t 

g by a pair (plus and minus) of 2 x 2 m a t r i c e s ±M, w h e r e 

det(M) = i if gE PSL2(q) < PGL2(q) 

det(M) = 6 if g ^ PSL^Cq) . 

This pair exis ts and is unique. We se t 

tr(g) = ±tr(Rd) 

One can easi ly check , whe the r G = PSL2(q) or PGL2(q) , t h a t t r a c e is 

p re se rved both under taking inverses and tak ing c o n j u g a t e s . As 

2 

v = yx is c o n j u g a t e to xy which is inverse to y x = z we conc lude 

t h a t tr(v) = tr(z) , let us say t h e shared value being ±k, w h e r e k e GF(q). 

But our p rog ram shall be to c a l c u l a t e in t e r m s of k va lues of t r a c e of 

e l e m e n t s of G when the se a r e given s imply by words W in v and z; ev i -

dent ly to p e r f o r m this opera t ion w e may f ix our va lue s of tr(v) and tr(z) 

t o single values in GF(q) (by f ix ing t h e sign of t h e m a t r i c e s r ep re sen t ing 

V and z). For ins tance , we will se t 

t r (z) = k tr(v) = -k , 

Thus we f ind t h e one value of t r a c e f o r W(v, z) which w e can then pair 

wi th i ts n e g a t i v e value in GF(q). (In e s s e n c e what we a r e doing is def in ing 

t r a c e on the se t of words in v and z as 1-va lued , and t r a c e on the se t 

of e l e m e n t s of G as 2-valued; an e l e m e n t g e G m a y be r e p r e s e n t e d 

by two d i f f e r e n t words with t r a c e of oppos i t e sign). 

-144-



In this sys tem of uniquely valued traces tr(W) for words W, we see that 

t r a c e is sti l l p r e se rved under con jugacy (of words) , b u t now the inverse 

word W ^ s a t i s f i e s 

tr(W"b = r tr(W) if 'X(W) is even 

-tr(W) if %(W) is odd 

F r o m th is we easi ly see t h a t fo r all words W, 

tr(W(v, z)) = ±tr(W(v, z ) " ' / - +tr(W'(z, v)) 

w h e r e W is t h e word wi th l e t t e r s occur ing in r e v e r s e order to W, and 

+ or - as % (W) is even or odd aga in . 

This means t h a t in our e f f o r t s t o f ind the value of t r a c e for every word 

W(v, z), w e need only consider t hose sa t i s fy ing % 

exp(W; v) ^ exp(W; z) (1) 

Also w e shall soon develop a me thod to c a l c u l a t e tr(W^) (for any in teger 

i) g iven tr(W). (By I mean of cou r se t h e word f o r m e d by juxtaposing 

i copies of W). So we also need only cons ider W for w h i c h 

W is no t t h e jux tapos i t ion of copies of a shor te r w o r d . (2) 

Thirdly we can p a r t i t i o n t h e se t of all words in to s u b s e t s cons is t ing of 

t h e words which a r e cyc l ic p e r m u t a t i o n s of l e t t e r s of e a c h o the r . Each 

such subse t I cal l a cyc l e (of words) . T r a c e is c o n s t a n t under cyc le , so 

we need only cons ider one word (a ' r e p r e s e n t a t i v e ' ) of any one c y c l e . 

Le t Z be t h e se t of cyc l e s C fo r which 

(1) t h e words in C s a t i s f y exp(W; v) ^ exp(W; z) 

(2) t h e r e a r e no words W in C such t h a t W is t he j ux t apos i t i on of cop ie s 

of a s h o r t e r word. 
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Let V be a se t of r e p r e s e n t a t i v e s of t h e cyc les C of Z. Then by ca lcu la t ing 

tr(W) fo r W e V we have e f f e c t i v e l y dea l t with tr(W) for words W. 

As an i l lus t ra t ion , t h e words in v and z as p r e s e n t e d below may be r e g a r -

ded (wi thou t loss of genera l i ty ) as t h e e l e m e n t s of V of rank less than 

e igh t : 

"X Words W(v, z) i n V w i t h rank % 

1 z 

2 vz 

3 vz^ 

4 v z \ 
2 

vz V 

5 Vz^, 
3 

VZ V, 
2 

vz vz 

6 vz^, 
4 

vz V, 
3 2 3 3 vz vz, vz VZV, V z 

7 vz^, 
5 

vz V 
4 3 2 3 2 2 2 3 4 

, v z VZ, v z VZ , v z VZV, v z VZ V, v z VZVZ, V z 

Now suppose we have d e t e r m i n e d t h e t r a c e f u n c t i o n on % f ; we need an 

a lgo r i t hm t o c a l c u l a t e t h e order of a word W j u s t f r o m t h e value of 

tr(W). (The method shall also show w h a t is the v a l u e of tr(W^), fo r 

i E N, g iven tr(W)). To p roceed we need the fo l lowing l e m m a s and co ro l -

lar ies (whe re G ' : = PGL2(q) if G is PSL2(q) or PGL2(q) , s a m e q, and 

we r e g a r d G' ^G). 

Lemma 1 

(We r e g a r d t h e word W as t h e e l e m e n t of G' r e p r e s e n t e d by W(v, z)) 

Le t W be a word . 

Le t TQ = 2, t hen f o r all j T. = t r ( w b . 

Then Vj > 2 , 
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T. = T T. , - T. _ if j IS odd or W E PSLJq) 
j ^ ^ j ^ ^ 

I - T. _ if j is even and W ^ PSLJq) 
g i 2 ^ 

Lemma 2 

Let W be a word such that tr(W) does not equal +2 or -2 . Then the order 

o(W) of W is given by the sma l l e s t n a t u r a l n u m b e r n for which T (as 

in t he previous l emma) equals +2 or -2 . 

If G = PGL^Cq) wi th q odd and W 4 PSL^Cq) < PGL^(q) then f u r t h e r o(W) 

is given by t h e l eas t even na tu ra l number n fo r which T = 2 or -2 . 

Lemma 3 

Suppose tr(W) = 2. Then W(v, z) = I in G if and only if b o t h 

i) tr(W(v, z)z) = t r z = k 

ii) tr(W(v, z)v) = t r v = -k . 

Similar ly if tr(W) = -2 , then W(v, z) = -I if and only if both 

i) tr(W(v, z)z) = - t r z = -k 

ii) tr(W(v, z)v) = - t r v = k . 

In bo th ca se s , if t h e condi t ions a r e not s a t i s f i e d , t h e n o(W) = p. 

I now give t h e proofs : 

I spl i t t h e proof in to t w o ca se s 

Case 1: W e PSL^(q) 

If T^ = ±2, t he l e m m a yields T. = ±2 fo r all j. Bu t T^ : = tr(W) = ±2 

is equ iva len t t o W being e i t he r t h e i d e n t i t y or of o r d e r p, which m e a n s 

any power is a lso iden t i ty or of o rde r p, and so Tr(W^) = 2. Thus in 

th i s c a s e t h e l e m m a is t r ue . We may a s s u m e T | ^ ±2 . 

- 1 4 7 -



Let T 1 = Y t ±2 

Then due to t he co r r e spondence of values of t r a c e ^ ±2 (where he re 

plus and minus values a r e iden t i f i ed ) wi th t h e c o n j u g a c y c lasses of non-

identity e lements of PSL2(q) not of order p, we may assume that W is 

conjugate to the matrix . Because of t h e in variance of trace 

f Y 1 
under taking con juga te s , we may as well le t W equal I ^ ^ 

For any j ^ 2 let 

^ ^ a b ^ Tj 2 = 3 + d 
c d 

Then 

; i - l = / a y - b T. , = a y - b + c 
i c y - d c / ^ 

w) ay^ - b y - a a y - b j T. = y ( a y - b + c) 
c y - d y - c c y - d l ' 

(a + d) 

The l e m m a is proved in th is c a s e . 

Case 2; W j: PSL^(q) ( 4> q is odd) 

The con jugacy c lasses of e l e m e n t s in PGL2(q) t h a t l ie ou t s ide t h e subgroup 

PSL2(q) a r e c h a r a c t e r i s e d by t r a c e . Thus t h e proof in th i s c a s e is very 

s imilar t o t h a t of c a s e 1; if T^ = y w e may t a k e W = ^ ^ j ( w i t h no 

more worrying about confus ion b e t w e e n t h e i d e n t i t y and e l e m e n t s of 

order p, all t h e s e lie in PSL2(q)). We p e r f o r m a n a l o g o u s m a t r i x m u l t i -

p l i ca t ions as b e f o r e ( this t i m e keeping t abs of d e t e r m i n a n t s and a d j u s t i n g 

by division as appropr i a t e ) . The remain ing r e su l t s in t h e l e m m a a r e seen 

to be t r u e . 
• 
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2 ^ Suppose tr(W) ±2 and tr(w") = ±2 . 

Now t r (w" ) = ±2 w " is e i t he r iden t i ty or of order p. 

But is of order p=^ W np 
I 

wP = I 

(as G has no e l e m e n t s wi th order of a mul t ip le of p, excep t p i t se l f ) . 

tr(W) = +2 'X-

The f i r s t s t a t e m e n t of t he l e m m a is t hus obviously v a l i d . 

The second s t a t e m e n t of t h e l e m m a comes f r o m t h e f i r s t , and f r o m t h e 

obse rva t ion t h a t e l e m e n t s of PGL_(q) \ PSL_(q) all h a v e even order . 

3 y , Suppose tr(W) = 2; we prove t h e r e l evan t a s s e r t i o n of t h e l e m m a 

( the proof of t he o the r case , tr(W) = -2 , is exac t l y s imi la r ) . The impl i ca -

t ion one way is ev iden t . To prove t h e conver se , we suppose both: 

i) tr(W(v, z) z) = tr z 

ii) tr(W(v, z)v) = t r v 

Now if W is not t h e iden t i ty , then W has order p . We suppose th is is 

t h e c a s e ; w i thou t loss of gene ra l i t y we may t a k e 

W(v, z) 

L e t 

fo r some y e G F ( q ) \ { 0 } 

Then W(v, z)z a + p c b + Tjd 
c d 

and i) impl ies c = 0. In t he ac t ion of G on marks , t h i s is t o say 'z f i xe s 

CO Clea r ly v will have to sha re th i s s a m e p r o p e r t y . But G is t r a n s i t i v e 
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on the set of marks and < v, z > - G. We have a contradict ion, and con-

clude that if W sat i s f i e s tr(W) = 2 a n d i ) , ii) above, i t must represent the 

i den t i ty in G . 

• 

N o t e 

In t h e p reced ing l e m m a s , i t is c l ea r t h a t in t he c a s e of G = PGL2(q) 

(q not a power of 2) we need a way of dis t inguishing t h o s e words W(v,z) 

t h a t r e p r e s e n t e l e m e n t s of G lying in t h e subgroup PSL2(q) f r o m those 

t h a t do no t . This is in f a c t easy: as G = < v, z > , a n d v and z a r e con-

j u g a t e to e a c h o t h e r , both v and z ' d o not lie in PSL^Cq). It is thus exac t l y 

those words wi th even rank t h a t do. 

The a lgo r i thm we use to f ind o(W) f r o m t h e t r a c e tr(W) of a word W 

is m o r e or less s t a t e d in t h e propos i t ions of L e m m a s 1 to 3 t hemse lves . 

If tr(W) = ±2, then we can dec ide w h e t h e r W(v, z) = ±I or if o(W) - p 

by l e m m a 3; if tr(W) f ±2, then o(W) can be found by r e p e a t e d app l i ca t ion 

of l e m m a 1 to f ind t h e l eas t j s . t . T. = ±2 and then invoking l e m m a 2. 

N o t e t h a t if G = PGL^Cq) and W is of odd rank (i .e . W ^ PSL2(q)) i t is 

obviously more e f f i c i e n t t o f ind (using l e m m a 1) t h e values of t r a c e 

2 
just of powers of W ( r a t h e r t han W i t se l f ) . 

Also a n o t h e r s h o r t - c u t t h a t will s o m e t i m e s be ava i l ab l e is if ever tr(W^) 

is found to be 0 (or ±1) and j is t h e l ea s t va lue fo r which th is is t r u e , 

t hen i m m e d i a t e l y o(W) = 2j (or 3j). 

Final ly on th is top ic , I develop the s t a t e m e n t of l e m m a 1, but th is shal l 

be inc iden ta l t o our purposes . L e t us cons ider just t h e c a s e W e PSL2(q), 

so t h a t V j ^ 2 
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Tj = T j T j . i - T._2 . 

Now if we l e a v e as a v a r i a b l e , l e t us r e n a m e i t t , t h e n c l ea r l y t h e 

exp re s s ion f o r e a c h T. is an i n t e g r a l po lynomia l of degree j in p o w e r s of 

t . For e x a m p l e 

To = 2 ' T j 

^ 2 = t ' - 2 

3 

t ^ - 3t . 

For all j and fo r e a c h i 0 and ^ j ) w e d e f i n e T^(i) as t h e c o e f f i c i e n t 

of t^ in t h e po lynomia l T.. For i > j, w e d e f i n e T.( i ) a s 0. Then c l e a r l y 

Vj ^ 2 and f o r all i, we have t h e d i f f e r e n c e e q u a t i o n : 

T x n = T. , a - n - T . 

As T^(0) = 0, i t is ea sy t o p r o v e by i n d u c t i o n t h a t 

T.(i) = 0 w h e n e v e r i + j is odd . 

But if (i + j) is even , we r ead i ly d e t e c t ' P a s c a l t r i a n g l e c h a r a c t e r i s t i c s ' 

in t h e va lues of T.(i) which s u g g e s t t h e p r e s e n c e of s o m e b inomia l c o -

e f f i c i e n t / n \ , w h e r e ( n \ : = nl . in any g e n e r a l e x p r e s s i o n . In f a c t 
[ r / r!(n-r): 

w e f ind ; 

f ( j+ i ) / 2 | 2i / 
T-jfi) I , J+i 

\ 

(which c a n aga in be c h e c k e d by i n d u c t i o n : 

TgCO) : 0 T | n ) = 1 

and all o t h e r T.(i) s a t i s f y t h e d i f f e r e n c e e q u a t i o n ) . 
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Thus we can c a l c u l a t e T̂  fo r a pa r t i cu l a r word w i t h o u t necessa r i ly knowing 

T. , and T. but as in t h e a lgo r i thms we use w e f ind T. _ and T. , 
) - i J - / j-2 ) - l 

in any ca se , this resul t is only of passing i n t e r e s t . 

So f a r in th is sec t ion we have spec i f i ed a se t V of words for which j i 

we know t h e t r a c e for all W e\f , we have e f f e c t i v e l y found the set 

of c i r cu i t s fo r Ji by using an a lgo r i thm for f inding t h e o rder of a word 

f r o m Its t r a c e . We have seen in passing t h a t t he t r a c e of a given power 

of a word W may be regarded as a polynomial in p o w e r s of tr(W); we 

shall now adopt the s a m e sor t of idea to f o r m a s e c o n d a lgor i thm, to 

express t he t r a c e of any word W e V as an in tegra l po lynomia l in powers 

of k ; = t r (z) . This gives us a s imple f o r m by which our requi red values 

of t r a c e may be c a l c u l a t e d . 

For c o n s t r u c t i n g this , t he c ruc ia l resu l t s a r e 

L e m m a 4 

tr(vz) 1 - if G = P S L J q ) 

3 - k^ if G = PGL_(q), q odd 

'2 ' 

'2^ 

L e m m a 5 

Suppose W eV and W(v, z) v, z, vz or zv . 

Then 

i) W(v, z) con ta ins two z ' s jux taposed or equals (zv)^z for s o m e i. 

Thus by cycl ing t h e l e t t e r s of W, t h e r e ex i s t s a word such t h a t we 

may t a k e 

W(v, z) = W^(v, z)z^ 

L e t W2(v, z) = W^(v, z)z 
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Then 

11) 

trW 
ktr(W^) - t r ( w p if 

G = PSL2(q) 

j c = PGL2(q) and X (W) odd 

^ tr(W2) - tr(W^) if G . PGL^Cq) and X(W) even 

Proof of l emmas 

4. We may wi thou t loss of g e n e r a l i t y suppose 

X = / r s \ w h e r e d e t x = -r^ - s t = ( l ; g ) 

t -r j as G = (PSL2(q); PGL^Cq),^^ o j j ) 

1 1 

-1 0 

Then we c a l c u l a t e 

V : = -yx = I - r - t -s+r 

r s 

\ 2 » z : = y x 

- r - t -s+r 

Thus k = t + r - s and 

tr(vz) 1 ( - t ^ - 2 r ^ - s^ +2sr +st -2 r t ) 
l ; 3 

1 ("k^ - r ^ -St) 
1;3 

1 ( -k^ +(1; B)) 
i ; B o 

5. i) Suppose W e V . Then by de f in i t i on 

exp(W; v) ^ exp(W; z) . 

SO if t w o v 's a r e jux taposed in W t h e n two z ' s m u s t a lso be jux taposed 
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(or possibly W 'starts' and 'ends' with z, but then w . l . o .g . we make take 

z'^Wz i n s t ead of W). So if W has no z ' s j ux taposed , i t mus t be of t h e 

f o r m 

V, z , (vz)^ or (zv)^ for some j E Z 

but again W e V cons t r a in s j = 1. 

ii) The proof is s imilar to t h a t of l e m m a 1. I deal j u s t wi th G = PGL2(q); 

t h e c a s e G = PSL2(q) is analogous and s impler . 

Without loss of gene ra l i t y we may le t z - f k 3 \ 

\ -1 0 ) 

Also l e t Wj|(v, z) a b 

c d 

with ad - be = ( 1 ; g ) a s X ( W ) = % (W^) + 2 is (even; odd) , 

Then by m a t r i x mul t ip l i ca t ion , 

W2(v, z) 
1; 

ak - b a 3 
ck - d c 6 

and w e c a l c u l a t e 

tr(W) (k(ak - b) - a g + g(ck - d)) 

^ (ak+ c 3 - b) - (a + d) 

g- tr(W^) - tr(Wj^) 

ktr(W2) - t r ( w p 

if %(W) is even 

if X(W) is odd 

• 
By l e m m a s 4 and 5 it is c l ea r t h a t w e can ( induc t ive ly on rank of words) 

d e t e r m i n e a polynomial P(W) in power s of k giving tr(W) for each W £°W, 

The polynomia l P(W) is of d e g r e e X (W). As an i l l u s t r a t i on , t h e fo l lowing 

t a b l e gives P(W) fo r W e V (and a l so a f ew W n o t in V* ) wi th 'X(W) < 

7, when G = PSL2(q), any q. 
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Word W Word W P(W0 

z k ^z^ k^^6k4+9k2-2 

-k vz^ -k^+5k^-6k^+i 

vz^v k^^jk^+Zk^-Z 

vz -k^+l vz^vz k6_4k4+3k^^l 

*vz^vz^ kG_4k4+4k^^2 

vz^ -k3+2k 2 
vz vzv -kG+4k4-4k2+l 

*z4 k^-4k2+2 * v z v z v z -k^V3k^ - 2 

vz^ -k^+Sk^^l v3z3 -k^+Sk^-Zk^+l 

*vzvz k^^Zk^-l k7_7k^+14k^^7k 

v2z2 k4^3k2+2 vz^ 4<7+6k^^lOk3+4k 

k^^jk^+jk vz^v k7_6k^+llk^^6k 

vz^ -k^V4k^^3k 
4 

vz vz k7_5k^+6k3 

vz^v k^L4k3+4k 3 2 vz vz k7_5k^+7kr^3k 

2 vz vz k^^Sk^+k 
3 

vz vzv -k7+5k^-7k3+2k 

2 2 
vz vz V -k^+jk^-Sk^+jk 

2 
vz vzvz -k7+4k^-3k^-k 

v^z^ - k ^ + S k ^ - l l k ^ + S k 

The e n t r i e s marked wi th an as te r i sk * d e n o t e t h e words W t h a t do not 

lie in V (as s e t in t h e t a b l e on p.l46). 
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If G = PGL^(q), the polynomials P(W) are as in t h e table but with each 

, 2 n , \ . , 2 n + l , . . 
k (any n) r ep laced by , and k r ep l aced by — 

e " e " 

The t a b l e sugges ts t h a t t h e c o e f f i c i e n t of k" in P(W) is ze ro if e i the r 

i) n is odd and 'X(W) is even 

or ii) n is even and %(W) is odd. 

This is easi ly ve r i f i ed by induc t ion . 

Final ly not ice t h a t P(z^) g ives t h e s a m e po lynomia l , bu t in powers of 

k, as Tj in powers of t on p. 151. This means t h a t if in P(z^) we subs t i t u t e 

P(W) fo r k, then t h e resu l t ing polynomial will be P ( w \ For example 

P(z^) = k^ - 3k P(vz) = 1 - k^ 

=#> P(vzvzvz) = (1 - k^)^ - 3(1 - k^) 

- k ^ + 3k^ - 2 

We a r e now equipped to c o m e back to our ini t ia l o b j e c t i v e ; to find t he 

c i r c u i t s of t h e given ROAM Ji : = (G, 0 , x, y). We f i r s t ly c a l c u l a t e 

k(:=tr(z)) as a value of GF(q). Then for each word W £ V , tr(W) e GF(q) 

may be a s c e r t a i n e d by subs t i tu t ing t h e pa r t i cu la r v a l u e of k for Ji in 

P(W). Our f i r s t a lgor i thm then enab les us to d e t e r m i n e t h e least n a t u r a l 

number n fo r which W^ is a c i r c u i t . 

This schedu le d e m o n s t r a t e s t h a t t h e s e t of c i r c u i t s f o r iH , and hence 

t h e r e l a t o r se t of t h e p r e s e n t a t i o n G(Ji ) fo r G, is d e t e r m i n e d en t i r e ly 

by t h e value of k. This g ives us an ind i rec t proof of someth ing a l r eady 

known, t h a t is fo r f ixed G, k d e t e r m i n e s t he RO^M iM uniquely (see p i 2 0 ) . 

(However , if q = p® f o r s o m e p r ime p, then t h e e images of k under 
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the f ie ld automorphisms of GF(q) will determine t h e same map as 

k, SO Ji does not converse ly d e t e r m i n e k). I n t e r e s t i n g l y this comment , 

we a lso a l r eady know, does not apply if ins tead of ROAMs we consider 

t h e s e t of hype rmaps H(r, n) ( for f ixed r, n e N b o t h not equal to two) 

de f ined by 

H(r, n) - I'M: = (G ,^ , x, y) |o(x) = r , o(y) = n } . 

- i ^ 0 ) 

If one such hype rmap M s a t i s f i e s tr(xy) : = k then t h e r e is exac t ly one 

o t h e r h y p e r m a p in H(r, n) which sha re s th is s a m e p r o p e r t y . This shows 

we c a n n o t hope to r e p r e s e n t va lues of t r a c e in t e r m s of polynomials 

in powers of k fo r hype rmaps in g e n e r a l in qu i t e t h e s ame way as fo r 

ROAMs in p a r t i c u l a r . 

The way I have desc r ibed the p r o g r a m t o f ind t h e c i r c u i t s of A has been 

t e r m e d r a t h e r biased t o t h e c a s e when G is d e f i n e d over a f i n i t e f i e ld 

of p r ime order p. For then one can work en t i r e ly in Z , and the me thod 

is en t i r e ly c l e a r . However if q = p^ wi th e > 1, t h e e l e m e n t s of GF(q) 

a r e t h e m s e l v e s expressed in t e r m s of polynomials ove r Z . So subs t i tu t ing 

k into P(W) and then f inding express ions fo r Tr(W^) will only p roduce 

more polynomia ls over Z . How t h e n do we know when tr(W^) = ±2? The 

answer will be in t e r m s of t h e min ima l polynomial of k in GF(q): it shal l 

be expla ined in t h e next sec t ion . 

4. MINIMAL POLYNOMIALS 

B e f o r e discussing maps again , i t is as well to indulge in a revision of 

some bas ic f i n i t e f i e ld t heo ry . F i r s t we need a d e f i n i t i o n ; a polynomial 

over a f i e ld F is monic if and only if t h e c o e f f i c i e n t of t he t e r m of 

h ighes t exponen t is t h e m u l t i p l i c a t i v e i den t i t y of F. 
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Suppose we a r e given t h e p r ime power q = p^ and t h e f i n i t e f ie ld GF(q). 

Then I r e g a r d Z t o be t h e subf ie ld GF(p) of GF(q) . For every e l e m e n t 

Y of GF(q) t h e r e ex is t s a unique monic polynomial r ^ over Z of leas t 

deg ree such t h a t r ( y ) = 0. This polynomial r ^ is cal led the minimal 

po lynomia l of y . For all y in GF(q), r ^ is i r r e d u c i b l e over Z ; also t he 

d e g r e e 9r ^ of r ^ divides e . Converse ly every i r r educ ib le monic poly-

nomial r over Z with 9r dividing e is assumed as the _ 

polynomial of s o m e e l e m e n t 5 of GF(q), in f a c t i t is assumed by all the 

e l e m e n t s in t h e c lass conta in ing 6 under the f i e l d au tomorph i sms (but 

by no o t h e r e l e m e n t s of GF(q)). 

Now the e l e m e n t y of GF(q) l ies in no proper s u b f i e l d s of GF(q) if and 

only if 9 r ^ = e. Thus we may r e l a t e t he n u m b e r N(q) of i r r educ ib le 

monic po lynomia ls over Z of deg ree e wi th t h e n u m b e r n(q) of e l e m e n t s 

in GF(q) which lie in no proper subf ie ld thus 

N(q) = n (q) , 

But t o c a l c u l a t e n{q) we may invoke Mobius invers ion . L e t C r e p r e s e n t 

P 
t he mu l t i p l i c a t i ve cyc l ic group of GF(q) and C . t h e cycl ic subgroup 

f , .. 
of order (p -1) fo r any f | e . Then we es tabl i sh t h e Mobius f u n c t i o n U p 

on the poset P : - { C r : f | e } w h e r e order ing is given by inclusion, 
p -1 

equ iva len t ly C . < C , iff f | h . Evident ly 
p i - l p, - 1 

V f | e , w (C . ) = W(# . 
P [ / - i f 

(where y as usual is t he c lass ica l Mobius func t ion ) . Now d e f i n e V f j e , 

a ( C f ) = p - I 
P -1 

9 ( C r ) = ^ e l e m e n t s of C r t h a t do not lie 
p - 1 p l - l 

^ h ^ for any p rope r divisor h | f . 
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Then a ( C ^ \ ^ ( C ^ ) 
P -1 P -1 

n(q) = cp(C ) = W (C , ) o (C . ) 

P -1 j ^ T P P - i P ^ 

= (p^-1) 11(4) 
__ 

and so N(q) = ^ )> (p^-1) w . 
| ! e 

We now come back to maps again, and s t a r t by r emark ing (in r e f e r e n c e 

to the t ab l e of enumera t ions on p. 105 ) t h a t if q is a power of 2 (let us 

say 2^), then the number d(G) of ROAMs with au tomorph i sm group G 

= PSL2(q) sat isf ies 

Now all polynomials over GF(2) a r e monic, so this is pa ramount to saying 

t h a t t he se t JJl ^^(G) of ROAMs with au tomorph i sm group G and the set 

Ir(q) of i r reducible polynomials of d e g r e e e over GF(2) have the same 

card ina l i ty . Can we c o n s t r u c t some sor t of n a t u r a l b i jec t ion be tween 

the two? We in f a c t use the m a t e r i a l of t h e previous sec t ion . 

Def ine t h e func t ion 8 : JJ[ ^^(G) ^ Ir(q) as fol lows 

Ji t h e minimal polynomial of k : = t r(z) , 

This is wel l -def ined , but we have to jus t i fy th is on t w o counts 

i) 6 is into Ir(q) because <x,z > = G, and we h a v e seen tha t t he value 

of t r a c e of every word in x and z is given by some polynomial expression 

in powers of k and c o e f f i c i e n t s in this m e a n s t h a t the values of 

t r a c e t aken by e l e m e n t s of G f o r m a subset of t h e f ie ld g e n e r a t e d by 
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k. But every e lement of GF(q) is assumed as the t r a c e of some element 

of G, hence k must g e n e r a t e GF(q), and so t h e m i n i m a l polynomial of 

k obliges us by belonging to Ir(q). 

ii) The map of J}l^^(G) is r e p r e s e n t e d by a n y one of e d i f f e r e n t 

values of k, t he se fo rming an orb i t of f ie ld e l e m e n t s under the f ie ld 

au tomorph i sms . But the exac t ly analogous s t a t e m e n t obta ined by subst i -

tu t ing 'The map v/i of ZR ^^(G)' by 'The polynomial r in Ir(q)' also holds. 

Thus 9 is cons i s t en t . 

Cer ta in ly 0 is one - to -one (see t h e r e m a r k s t o w a r d s t h e end of the last 

sect ion) and we have a l ready noted t h a t 

I a / ( G ) I = I Ir(q)| 

so 6 is a b i jec t ion . 

Now I go on to the odd p r ime power c a s e . So let q = be odd and ex tend 

t h e def in i t ion of Ir(q) thus: 

Ir(q) = { monic i r reduc ib le polynomials over GF(p) with deg ree e } 

and I ask what re la t ionships can we f ind b e t w e e n Ir(q) and t h e se t 

JJ]_ 2^(G) of ROAMs of au tomorph i sm group G when G is in t h e f i r s t case 

isomorphic to PSL2(q) and in t h e second i somorphic t o PGL2(q)? 

i) Suppose G s PSL2(q) wi th e > 1 and e odd 

Then we know 

I J 7 l / ( G ) | = ^ ( p ^ - l ) W 0 = j | l r ( q ) | . 

Now we can iden t i fy t h e e l e m e n t s of Ir(q) in pa i rs { r, r ' } w h e r e if 
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e 

r(t) = ^ 2 some ag.a^, . . . , a^ e Z 
^ 0 

then 
e 

r'(t) = ^ (-1)̂ "^^ a.t^ . 
i=0 

I d e n o t e th is se t of pairs Ir '(q). The s ign i f i cance of th is se t is t h a t if 

Y IS a gene ra t i ng e l e m e n t of GF(q), t hen t h e m i n i m a l polynomial o f y 

t o g e t h e r wi th t h a t of - y f o r m s an e l e m e n t of Ir'(q). 

Now we d e f i n e t he func t i on 6 : Ir'(G) t hus : 

j\[ I—^ the e l e m e n t of Ir'(q) con ta in ing t h e min imal polynomial 

of k : = tr(z) . 

Then 8 is c lea r ly we l l -de f ined and a b i j e c t i on . (The e s sen t i a l d i f f e r e n c e 

of this t o t h e 'q is even ' c a se is t h a t if t h e t r a c e k = Y r e p r e s e n t s t h e 

ROAM Ji. , t hen k = -Y will also r e p r e s e n t VX, ; w h e n q is even, - Y = 

Y and we need not t a k e this in to a c c o u n t ; but w h e n q is odd, - Y \ 

Y , and we have to in t roduce t h e se t Ir '(q)). 

ii) Suppose G s PSL2(q) wi th e > 2 and even 

For all e l e m e n t s Y of GF(q), we d e f i n e M a t ( 0 , l , Y ) as t h e se t of t r ip les 

of m a t r i c e s (x,y,z) in G sa t i s fy ing 

o(x) = 2, o(y) = 3, t r(z) = Y, xyz = 1 in G , 

Then if f o r some y and some t r i p l e (x,y,z) e M a t ( 0 , l , Y ) w e have 

< x ,z > = G 

necessar i ly Y g e n e r a t e s GF(q). Howeve r t h e c o n v e r s e is u n t r u e (unlike 

t h e c a s e when e is odd). If Y g e n e r a t e s GF(q) t h e n M a t ( 0 , i , Y ) is non-

e m p t y and any (x,y,z) e M a t ( 0 , l , Y ) s a t i s f i e s 
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< x , z > = G or <x,z > = PGL2(p^^^) . 

So we need to pa r t i t ion t he g e n e r a t o r s of GF(q) into two se t s A and B . 

e/? 
A : t hose Y such t h a t <x ,z > ^ PGL^(p ) 

This se t is given to use by a resu l t on p.28 of [ 14 ] (concerning wha t 

is t e r m e d t h e r e as ' i r r egu la r i t y ' of t r a c e - t r i p l e s ; c . f . my def in i t ion on 

p.123 of ' l inear o rde r - t r ip le s ' ) . 

A = {Y E GF(q) : Y g e n e r a t e s GF(q) and is a s q u a r e roo t of a non-

square in t h e subf ie ld GF(p^^^) 1 

What is | A | ? Well c lear ly t he condi t ion put on Y E GF(q) t o be an e l e m e n t 

of A IS equ iva len t to 

'Y is a square root of a non-square t h a t g e n e r a t e s GF(p^^^) ' , 

But it is easy to a s c e r t a i n t h a t a square of a g e n e r a t o r of a f i n i t e f i e ld 

is a lso a g e n e r a t o r ; addi t ional ly , it is c e r t a i n l y t r u e t h a t a square roo t 

of a g e n e r a t i n g square in GF(q) will be g e n e r a t i n g . We d e d u c e t h a t 

non-squares t h a t g e n e r a t e GF(p^^^) 

^ ( * g e n e r a t o r s of GF(p^^^)) 

Then fo r each non-square g e n e r a t i n g GF(p®^^), t h e r e a r e t w o s q u a r e 

roots lying in GF(q), so 

|A | = ^ 2 W(e/2f) . 
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B : those y such tha t <x,z > = G 

B = {y E GF(q) : y g e n e r a t e s GF(q) but Y ^ A } 

Then 

|B| = \ (p^- l )w(% - |A | 

w(Y) 
f i e s.L 
e/^ OAA 

( the las t line needs a l i t t le s t r a i g h t f o r w a r d man ipu la t ion to jus t i fy it, 

l e f t to t h e reader ) . 

Now e is even, we define Ir'(q) slightly differently the case of e odd. 

Now Ir'(q) is t he set of pai rs (r ,r ' ) in Ir(q) s .t . 

e 

if r(t) = a:t^ a. E _ r(t) 

L = 0 
e 

then r ' ( t ) (-1)^ a-t^ . 

1=0 

Le t Ir'(B) be the subset of Ir'(q) t h a t compr i ses a t t h o s e pairs of minimal 

polynomials for e l emen t s Y and - Y of GF(q) t h a t lie in B. (Obviously 

B is closed under taking nega t ive values and under t h e ac t ion of f ie ld 

automorphisms) . Then 

|lr'(B)| = ' 

Now def ine the func t ion 8 : J]%^^(G) Ir'(B) by 

JA. I — t h e e l emen t of Ir'(B) conta in ing t h e minimal polynomial 

of k : = tr(z) , 

6 is wel l -def ined and a b i j ec t ion . 

Clearly we should f inal ly like a way of dist inguishing an e l e m e n t of Ir(q) 
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which represents the minimal polynomial of generat ing e l ements of GF(q) 

in B f r o m one which r e p r e s e n t s e l e m e n t s in A. H o w e v e r this in f a c t 

is very s imple and more or less self ev iden t : 

a g e n e r a t i n g e l e m e n t y of GF(q) is in A iff t h e min imal polynomial 

r of y only has t e r m s of even d e g r e e , i .e . has t h e f o r m 

e/s 

r ^ ( t ) = 

1 = 0 

f o r some « ... cx e 2 . 
0' 1 e / 2 p 

iii) Suppose G s PGL^(q), e > 1 

This ca se is evidently more c o m p l i c a t e d , and I sha l l no t a t t e m p t he re 

t o obta in a c h a r a c t e r i s a t i o n of ROAMs in by i r reduc ib le poly-

nomials as I have done for J7lg^(PSL2(q)). The d i f f i c u l t y is t h a t (when 

e is even) we no longer have the p rope r ty 

(x,y,z) e M a t ( 0 , l , y ) generates G Y generates GF(q) . 

(This is b ecause of t he e x i s t e n c e of m a t r i c e s in G wi th d e t e r m i n a n t 

So for t h e groups G s PSL2(q) (any q) a t l eas t we h a v e found a very 

use fu l i d e n t i f i c a t i o n for t h e e l e m e n t s J i of JR^^(G) in t e r m s of t h e minimal 

polynomial r̂ ^ in Z fo r k : - t r(z) . In f a c t f r o m now on in th is c h a p t e r 

I will change how we d e n o t e the map : 

Ji: - (G, fi,x,y) 

now b e c o m e s 

= (G,r^^) . 

N o t e t h a t r̂ ^ is necessar i ly an e l e m e n t of Ir(q). Then, t o review t h e s i tu-

a t ion , 
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F o r G = P S L j : 2 f ) 
/r 

Vr e Ir(q), (G,r) r e p r e s e n t s a m a p A and r is u n i q u e in Ir(q) by r e p r e s e n -

t ing . 

For G s P S L ^ ( p ^ ) , p odd, e > 2 

Vr e Ir(q) s . t . r does not only have t e r m s of even d e g r e e , (G,r) r e p r e s e n t s 

a map A ; 3 a second e l e m e n t r ' of Ir(q) (for w h i c h (r ,r ' ) e Ir'(q)) s . t . 

(G,r ' ) a lso r e p r e s e n t s iM, but t h e r e ex is t no o the rs . 

But we can easi ly a d a p t th i s c h a r a c t e r i s a t i o n of t h e e l e m e n t s of 

t o f u r t h e r cove r t h e c a s e when p > 3 a n d G s PSL^Cp^) or G 

^ PSL2(p) ( i .e . e ^ 2). F r o m our work on e x c e p t i o n a l and a f f i n e o r d e r -

t r ip l e s in t h e las t c h a p t e r , i t is easi ly seen t h a t t h e s e t JT^^^(G) in t h e s e 

c a s e s is as s t a n d a r d to t h e se t J]]^^^(PSL2(p^)) f o r higher exponen t e 

e x c e p t we mus t d i scount t hose maps where r e p r e s e n t i n g G- t r i p l e s (x,y,z) 

s a t i s f y (both) 

&Kz) t p and) o(z) ^ 6 , 

Now, f r o m our t a b l e on p. 155 , and not worry ing t o o much a b o u t t h e 

sign of t r a c e and w h e t h e r we t a k e r̂ ^ or r'j^ in each c a s e , we have: 

o(z) = 1 k = 2 4 = ^ rj^(t) = t - 2 

However rj^(t) = t - 2 o(z) = 1 or p 

o(z) = 2 k = 0 4 ^ i'i^(t) = 0 

o(z) = 3 4=^ k = 1 = 1>1 

2 o(z) = 4 (z ) = 2 k -2 = 0 

t - J~T if p = ± i m o d 8 

t^ -2 if p=±3mod8 
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^ +5k-2 - 0 or k - 5 k +5k+2 = 0 

z=^ (k^+k-l)^(k-2) = 0 or (k^-k- l )^ (k4 

Hence o(z) = 5 k^+k-] 

o(z) = 5 ==^ k^^5k^4 

2 . ^ 0 

2 

k +k- l = 0 ( for one s i gn of k), 

Now PSL2(q) has an e l e m e n t of order 5 i f f q = ± lmod5 2 

Thus k +k- l IS reduc ib le iff p = ± l m o d 5 

>(z) = 6 o(z^) - 2 4—Y k^-3 = 0 
r a ) = t - / ? 

2 
t - 3 

if p=± lmodi2 

if p=±5modl2 

Co l l ec t ing th i s i n fo rma t ion we conc lude 

for G = PSL^(p^) 

L e t S : = { r e Ir(p ) : r does not only have t e r m s of e v e n degree ) 

Then n e i t h e r r(t) = 

nor r(t) -

belong t o S (even if they a r e i r r educ ib l e ) . 

Also if r(t) 

t hen r e S iff p £ ±2mod5. In th is c a s e t h e r e is n o t a map / I in (G) 

given by (G, t ^ + t - i ) , and consequen t ly | JTl^^iG) | is one less t h a n t h e 

s t a n d a r d r e su l t fo r exponen t e > 2. 

fo r G £PSL^(p) 

Ir(p) = { polynomials r^ : r^(t) = t - a fo r some a e Z \ { 0 ) ) . 

Now (G,r ) fo r r e Ir(p) r e p r e s e n t s a map J i in ^ _ ^ ( G ) e x c e p t if 

cl - ± 1 
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p = ± 1 mod 8 and a = ± y ? 

p = ± 1 mod 5 and ( t ± a ) | ( t ^ + t - l ) 

1 mod 12 and a = ± / T . 

(Note t h a t if (G,r^) does r e p r e s e n t a map JA in then only (G,r ) 

r e p r e s e n t s t h e s a m e map. F r o m th is we may c a l c u l a t e | | and 

check t h a t th i s ag ree s wi th our e a r l i e r e n u m e r a t i o n on p. (05). 

Finally we have for p = 3, 

is empty 

= { (G,t-1) } . 

Suppose G = PSL^Cq), any q, and : = (G,r) is any m a p in J]]^'*'(G). I r e tu rn 

to t he p rob lem of d e t e r m i n i n g t h e c i r c u i t s of / I . Suppose k is an e l e m e n t 

of GF(q) which has t h e min imal po lynomia l r . L e t z be an e l e m e n t of 

G with t r a c e k, l e t x,y E G s a t i s f y 

o(x) = 2, o(y) = 3, xyz = I 

and V : - zxz . Then <v,z > = G and we know in t e r m s of a polynomial 

P(W) with c o e f f i c i e n t s in Z and in powers of k t h e value of t r a c e of 

each word W in v and z when th is is cons ide red as an e l e m e n t of G. 

For a p a r t i c u l a r W and P(W) we w a n t f i r s t l y t o be a b l e t o check w h e t h e r , 

when we s u b s t i t u t e a k a p p r o p r i a t e t o J i , 

P(W) = 2 o r - 2 , 

Let P (W) = P(W)-2 , P (W) = P(W)+2 
+ -

then we a r e in f a c t check ing w h e t h e r 
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P (W) or P (W) is zero 
+ 

But a polynomial s over 2" yields ze ro when k is subs t i tu ted in it if 

and only if t h e minimal polynomial r is a f a c t o r of s . 

Thus P(W) = 2 or -2 (or in o the r words W(v,z) is t h e iden t i ty or has order 

p in G) iff r|P^(W) or r|P_(W). 

By the s ame token, we can use the decis ion p r o c e s s a s descr ibed in L e m m a 

3 (p.147) to d e t e r m i n e , given P(W) = 2 or -2 , w h e t h e r W(v,z) = I or has 

order p. 

In this way we can, fo r any word W, check if W(v,z) c o n s t i t u t e s a c i rcu i t 

in vAl or not . This is independen t of t h e z and x c h o s e n . 

F r o m the p reced ing discussion, we may easi ly d e d u c e t h e fol lowing 

Proposition 

If G = PSL2(p^), and W(v,z) = I in G, then t h e rank X(W) of W is g r e a t e r 

than or equal t o e. 

Proof 

The deg ree of P(W) equals %(W) and so t he s a m e is t r u e fo r P^(W) and 

P (W). For t he minimal polynomial of k, which h a s d e g r e e e , t o divide 

P (W) or P (W), we c lea r ly need + -

%<W) e . 

(Clear ly in f a c t this propos i t ion may be e x t e n d e d . Suppose m is a na tu r a l 
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number dividing or m = p. Then the trace of any element of G with 

order m will lie in Z . Thus if W(v,z) has order m, a g a i n X(W) ^ e). 

5. EXAMPLES 

In this sec t ion I i l lus t ra te t he ideas of t he c h a p t e r put in p rac t i ce , by 

consider ing a few simple examples . 

Example 1 Examinat ion of for G ; - PSL^(5^) . 

F i r s t we want to d e t e r m i n e the i r reducib le po lynomia l s over of fo rm: 

7 
r(t) = t + a t + b 

where a = 1 or 2 , b e { 0 } . 

(For a, we do not consider a = 0, e lse r only has t e r m s of even power; 

we do not consider a = -1 or -2, else we count maps twice ) . 

We find t h e r e a re exac t ly four such polynomials and deduce the fol lowing 

inventory of maps in 

: = (G, t^+t+l ) 

: = (G,t^+t+2) 

: = (G,t^+2t-l) 

: = (G,t^+2t-2) 

Now the valency of each map (i.e. t h e order of a su i t ab l e z e G) mus t 

1 2 

divide ^ 5 +1) and must be g r e a t e r than six; thus i t must be 12 or 13. 

Defining r. for i = as the polynomial descr ib ing we have t h e 

valency of is 12 if and only if r J P ( z ^ ) . But 
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P(z^) = k^-k'^-k^-2 = (k^+k+l)(k^-k+l)(k^-2) 

so has valency 12 whe reas all h a v e va lency 13. 

I s e t ou t to dist inguish t h e maps v4 2» ^ 3 ' by f inding c i r c u i t s fo r 

e a c h one not shared by t h e o ther two . I do t h i s not s t r i c t ly fo l lowing 

t h e a lgo r i t hms as given in sec t ion 3 of th i s c h a p t e r , but in a r a t h e r more 

s e l e c t i v e manner working f r o m the known P(W) f o r words of low rank 

as l is ted on p. IS?. 

For 

k*fk4_2k2+2 = (k^+k+ZXk^-k+ZKk^-Z) 

2 

But r^Ct) = t +t+2 is t he minimal polynomial of k, so 

k*+k^^2k2+2 ^ 0 
P(vz^vz) = k^+k^-2k^+l = -1 

o(vz^vz) = 3 

F u r t h e r m o r e , observing t h a t 

P(vz^vz) = 1 k ^ ( k \ k ^ - 2 ) = k^(k^-l)(k^+2) = 0 

we can see t h a t is unique in in having t h i s c i r c u i t . 

For 

k^V2k3+k+l = ( k ^ 4 2 k - l X k 2 - k + l X k - l ) 

P ( v z ^ v z ) = k^+2k^+k = -1 

o(vz^vz) = 3 
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Also P(vz vz) - 1 (k^-2k-l)(k^+l<+l)(k+l) and so shares this c i r cu i t 

wi th Ji p bu t not with ,/i 2? or 

For 

k^+2k2- l = (k^V2k-2Xk2-2k-2) 

P(vz^) = - (k^+2k^+l) = -2 

vz^ = I or o(vz^^ = 5 

But V = z ^ G = <v,z > is cycl ic 

3 
Thus o(vz ) = 5 . 

Now = 2 :^>k4+2k2_2 = 0 . 

It can be checked tha t{k^+2k^-2) is i r r educ ib le . 

Thus t he c i r cu i t impl ic i t in o(vz^) = 5 is unique to in 

E x a m p l e 2 Consider ing c i r c u i t s of length less than f o u r . 

Reca l l t h a t ini t ial ly we though t of a r o u t e as being a word in x and z, 

and t h e length of t he r o u t e being t h e number of x ' s occur ing in t h a t 

word . The r o u t e W(x,z) is a c i r cu i t iff 

v4:x,z) = I . 

Now subs t i tu t ing x = z ^vz ^ in W(x,z) we obtain a n o t h e r word W such 

t h a t W'(v,z) = I; converse ly if W is any word for which W'(v,z) = I and 

we s u b s t i t u t e v = zxz , t h e resu l t is a c i r cu i t . Ev iden t ly we may as well 

cons ider W itself being a c i r c u i t , wi th length equal t o exp(W';v). 

Now in t h e nex t c h a p t e r (§2) I shall use some bas i c p r o p e r t i e s of G : 
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= PSL2(q) for any q > 3, to show that once we h a v e taken into account 

the order o(z) of z (so that in any word, no e x p o n e n t of z is greater 

t han or equa l to o(z))we have ; 

i) t h e r e a r e no c i r c u i t s of length 1 or 2 

- 3 1 
ii) all c i r cu i t s of length 3 a r e c o n j u g a t e a s words to (vz ) , 

3 
this r ep re sen t ing t h e r e l a t i on y = I. 

This has impl ica t ions fo r t h e t r a c e polynomial P(W) f o r every word W(v,z) 

with exp(W;v) < 3, in t h e fo l lowing m a n n e r . We f ix t h e p r i m e p but now 

give freedom to the 'group' G to vary over the types PSL2(p^) with d i f fer-

ing e . (So real ly G is a f u n c t i o n G : N -> { g r o u p s } given by G(e) : = 

PSL2(p^)). Then if we t a k e t h e po lynomia ls P^(W) a n d P (W) (or indeed 

any o t h e r in tegra l polynomial) and f a c t o r i s e t h e s e o v e r Z , t he i r r educ -

ible fac tors r f a l l into t h r e e c a t e g o r i e s : 

I) r is a fac to r of one of : 

(k±l), (k^-2), (k^±k-l) , (k^-3) 

II) r is of even d e g r e e and only has t e r m s of e v e n power 

III) r is ne i ther in c a t e g o r y I) or II) . 

Only if r is in c a t e g o r y III) is t h e m a p J i : = (G( 3 r) , r ) de f ined . If r is 

so, and if we have as said exp(W;v) ^ 3, t hen c l e a r l y we mus t have in 

G( 3r) 

o(W(v,z)) = p 

r a t h e r than 

W(v,z) = I , 

If in f a c t exp(W;v) = 1 (and so we may wi thou t loss of g e n e r a l i t y a s s u m e 
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that W(v,z) = vz^ for some i E N), w e may e x t e n d essentially the same 

idea a l i t t l e f u r t h e r : fo r we c a n n o t have 

i) ©(W) = 2 unless W is a c o n j u g a t e of x = 

W(v,z) = vz ^ 

-i -I 
or ii) o(W) = 3 unless W is a c o n j u g a t e of y = xz = z vz 

W(v,z) = vz 
- 3 

and so if r is an i r reduc ib le f a c t o r of 

i) P(W) 

or u) P(W)± 1 

such t h a t r is in c a t e g o r y III as b e f o r e , then the p a i r (G( 8 r),r) d e t e r m i n e s 

a map of JJl ^^(G( 9 r)) wi th va lency (i+2) for c a s e i) and (i+3) fo r c a s e 

ii). An obvious conve r se also holds. 

To i l l u s t r a t e th is by an exp l ic i t e x a m p l e , let G(e) = PSL2(7^) fo r all 

na tu ra l e , l e t W(v,z) = vz^ and ask fo r which ^ E U JOl ,^(G(e)) does 

o(W) = 3, i .e . P(vz ) = ± 1? F r o m t h e p reced ing p a r a g r a p h this is equ iva-

lent to f inding which has va lency 7 (and so we a r e check ing our c u r r e n t 

knowledge t h a t t h e r e is just one such map g iven by (PSL2(7), t ± 2)). 

Now 

P ( v z \ l = -k^-3k^-3k+l = -(k+2)^(k^+k-l) 

P(vz^)-1 = -k^-3k^-3k-l = - (k-2)^(k^-k- l ) 

so the only i r reduc ib le polynomia ls r which a r e f a c t o r s of P(vz^)± 1 and 

for which (G(3r ) , r ) is a map of J}l^^(G( 3 r)) a r e i n d e e d 
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r(t) t ± 2 

con f i rming the only map J i is (G(i) , t ± 2). 

Example 3 The maps wi th l eas t P e t r i e polygon l eng th . 

A P e t r i e polygon (P.p.) in any o r i en t ed map Ji ( r e g u l a r or not , and in 

sp i r i t even o r i en t ed or no t , though t h e a lgeb ra to m o d e l it in t he unor ien-

ted case will be dif ferent) is a circuit in whose path takes the basic 

z ig -zag f o r m . If Ji is t r i angu la r , then a lgeb ra i ca l ly t h e P.p . through t h e 

d a r t a, ot Ji is t he word W which is t h e l ea s t p o w e r i of (vz) such t h a t 

( v z / ( a ) = a . 

I shal l ca l l 2i t h e length of t he P.p . th rough a (2i r a t h e r than i because , 

t o desc r ibe t h e z ig -zag , t h e r o u t e t h a t r e p r e s e n t s t h e P.p . is (xz~^xz)S 

i t is easy to check xz ^xz = vz. Then r e m e m b e r t h a t t h e length of a 

r o u t e is t h e number of x ' s i t conta ins . ) 

For a c r u d e p i c to r i a l idea , suppose t h e d i ag ram be low r e p r e s e n t s p a r t 

of a t r i angu la r o r i en t ed map con ta in ing t h e d a r t a ; t h e n t h e P.p . th rough 

a ' fo l lows ' t h e d o t t e d p a t h . 



For a r egu la r map of c o u r s e all the P.p.s wi l l have t h e s ame length . 

Now I r e t u r n to ROAMs with a u t o m o r p h i s m t y p e PSL^Cq) for some 

q > 3. Then because we know t h e r e a r e no c i r c u i t s W such t h a t exp(W;v) 

< 3, and all c i r cu i t s W s . t . exp(W;v) = 3 a r e c o n j u g a t e s to 

- 3 - 3 -3 
vz vz vz 

we conc lude t h a t in all c a s e s t h e P.p. length m u s t be g r e a t e r or equal 

to e igh t . I s e t myself t h e ques t ion : fo r which of t h e s e maps is the P.p . 

length e x a c t l y e igh t? 

The even c a s e (for q) is qu ick ly dispensed wi th by t h e observa t ion t h a t 

PSL2(2®) fo r any e does no t contain e l e m e n t s of o r d e r f o u r . So we may 

suppose JA : = (G,r) w h e r e G = PSL2(p^) for s o m e odd p r i m e p, and r 

is a su i t ab l e i r reduc ib le po lynomia l of deg ree e ove r Z . Then JA has 

P.p. length 8 iff (vz)^ = I in G and the l a t t e r is so iff r divides P(vzvz). 

Now by t h e t a b l e on p. 155, 

P(vzvz) = k^ - 2k^ - 1 , 

We suppose t h a t r ( a s soc i a t ed wi th Vt ) is a f a c t o r . S t r a i g h t a w a y we 

see 3 r < 4, and f u r t h e r if P(vzvz) has a f a c t o r of t h e f o r m (k-a) fo r 

some a E Z \ { 0 } , i t is c l e a r (k+a) is also a f a c t o r , so in f a c t 9r 

<3. I cons ider t he two r ema in ing possibi l i t ies for 3 r s e p a r a t e l y . 

Case 1 3r = 1 

Suppose r(k) = k-a for s o m e a E Z \ { 0 } 

Then k^^2k^- l = (k^-a^)(k^+a~^) 
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2 - 2 
a - a = 2 

- 2a^ - 1 = 0 

( a ^ - ^ 2 ^ 2 

< ^ a = ± J ± J~? + 1 ^ 

In pa r t i cu l a r t he square root of 2 ex i s t s in Z^, so n e c e s s a r i l y p = ± ImodS; 

but th is is no t s u f f i c i e n t to g u a r a n t e e t h e e x i s t e n c e of a, we also r equ i re 

square r o o t s in Z of ( / ? + 1) or ( + 1), a n d i t is more d i f f i c u l t 
P 

to d e t e r m i n e which p r imes p f i t th i s c o n s t r a i n t . I l e a v e th is pa r t i cu l a r 

p roblem as i t s t ands e x c e p t fo r t h e fo l lowing o b s e r v a t i o n : 

( V ? + 1) (- / ? + 1) = -1 

so if -1 is a square in and so p = ImodS, t h e n both ( + 1) and 

( - y ? + 1) a r e squares or both a r e not : however if -1 is a non- squa re 

in Z , and so p = - I m o d S , then e x a c t l y one of ( + 1) and ( - + 

1) is a squa re . 

Final ly we need to check t h a t given p = + ImodS, t h a t t h e va lues of a 

do not a s s u m e in Z one of t h e ' f o rb idden ' values ±1, ± ± Y ? (if t h e s e 

exis t ) , and t h a t (k-a) is not a f a c t o r of e i t h e r (k ± k - l ) . This is very eas i ly 

done, and I l eave i t to the r e a d e r . (Ano the r easy e x e r c i s e would be to 

prove that 7 is r the only prime, p such t h a t the unique ROAM 

with va lency p and au tomorph i sm group PSL2(p) has P . p . length 8). 

Case 2 3r = 2 

Suppose r(k) = k^+bk+c for some b, c e \ { 0 } . 

Then k '^-2k^-l = (k^+bk+c)(k^-bk-c 
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2 - 1 
where c -b - c = -2 

and b(c+c b = 0 

2 

The las t equa t ion implies c = -1 , and so necessa r i ly p 5 lmod4 . F u r t h e r -

more if we deno t e one root of -1 by we have 

b^ = 2 . / ^ + 2 or - 2 . / ^ + 2 

so we requ i re a t l eas t one of t h e s e to be a s q u a r e in Z . But it is easy 

to check (by the q u a d r a t i c fo rmula ) t h a t if both a r e squares t hen r is 

r educ ib le (and of course converse ly) ; t h e r e f o r e w e r e q u i r e e x a c t l y one 

to be a square . Now 

( 2 . / ^ + 2 ) ( - 2 . / : ? + 2 ) = 4 + 4 = 8 

thus th is p roduc t is a square iff 2 is a square in equ iva len t ly p e 

± l m o d 8 . But in th is c a s e both ( 2 . 7 - l ' + 2) and ( -2 . \/ -1 ' + 2) a r e squa re s 

or both a r e non-squares . Thus we r equ i r e p = ± 3 m o d 8 (which g u a r a n t e e s 

e x a c t l y one of our p roponen t s a r e squa re as d e s i r e d ) , and as a lso p = 

lmod4, we conclude p = - 3 m o d 8 . Converse ly g iven any such p r i m e , r 

does ex i s t as spec i f i ed and 

P(vzvz) - k ^ - 2 k ^ - l = ( k ^ + b k + / ^ ( k ^ - b k + / ^ ) 

so e x a c t l y one map is r e p r e s e n t e d . 

I now c o l l e c t our resu l t s t o p r e s e n t t h e m as a 

Theorem 

L e t G s PSL2(p^) fo r any p r i m e power p^, and l e t n(p^) be t h e n u m b e r 

of maps in fo r which t h e P e t r i e polygon l eng th is e i g h t . Then 

n(p^) = 0 unless: 
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2 
i) p = -3mod8, e = 2 when n(p ) = 1 

ii) p E - I m o d S , e = 1 when n(p) = 1 

iii) p E ImodS, e = 1 and ( / ? + 1) is a s q u a r e in 

when n(p) = 2 . 
• 

I end wi th examples to show t h a t fo r p r i m e s p E ImodS , ( + 1) can 

indeed be e i t he r a square or a non- squa re in Z^. L e t fo r a e 2 

be t he c lass ica l Legendre symbol . 

l ) p = 17 

/ ? = 6 ( / ? + 1) = 7 

Now by q u a d r a t i c r ec ip roc i ty , 

17 ) = f " - i 

so ( / T + 1) is a non-square in and n(17) = 0. 

2 ) p = 41 

17 ^ ( / T f 1) = ig 

But 10^ = 18, so { / T + 1) is squa re . Also 

4^ = 1 6 . ( / F - 1) ^ t / - y r + i ' = = ± 9.L = - 5 

which means 

P(vzvz) = (k-10)(k+10)(k-5;)(k+5) 

and both t h e maps (PSL^C^l), t -10) and (PSL^l^ l ) , t -5) h a v e P e t r i e polygon 

length e igh t . 

178-



CHAPTER FIVE 

1. INTRODUCTION 

In the previous chap te r I had s t a r t e d to r e s t r i c t m y a t t e n t i o n to RCA Ms, 

these being perhaps the most in te res t ing subca tegory JJ\ ^ of all the 

or iented hypermaps . This specia l isa t ion is cont inued in the present chap te r 

in which I consider some a l t e r n a t i v e ways for c o n s t r u c t i n g some of the 

ob jec ts in JR ^ (where as normal we in f a c t only consider maps with 

au tomorphism group G isomorphic to PSL^Cq) or PGL^Cq) for some q: 

f r o m now on, whenever I use the symbol I in f a c t will mean just 

these pa r t i cu la r ROAMS. To s t ress this I will s o m e t i m e s wr i t e ' r e s t r i c t e d ' 

The original impetus for t he work p resen ted h e r e c a m e f rom coming 

across in the exist ing l i t e r a tu re [23] a descr ipt ion of some or iented t r i -

angular maps. These were s trongly r e l a t ed to a r a t h e r narrow sect ion 

of the groups PSL2{q) and PGL2(q) and looked likely t o be ROAMs though 

not p resen ted as such. This mot iva t ed an a t t e m p t t o fo rm ac tua l map 

isomorphisms be tween ob jec t s in JJ\ ^ and these ' new ' maps. This was 

successfu l , and the methods used c lear ly displayed t h a t the range of 

appl icat ion of t he cons t ruc t ion (of regular maps) is wider than t h a t ex-

ploited by Surowski, and in f a c t involves all the g roups PSL2(p), for some 

pr ime p and all the PGL2(q). (We shall see t ha t m a p s can be cons t ruc t ed 

analogously for any other PSL2(q) for q odd, but th i s case never resu l t s 

in regular maps.) 

Not to t an t a l i s e the reader f u r t h e r , I now s t a t e t h e type of cons t ruc t ion 

involved: 

Le t G be PSL2(q) or PGL2(q) for some q, and let & be a conjugacy c lass 
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of e l e m e n t s In G. (Let T d e n o t e t h e s e t of all s u c h pairs (G, & )). Then 

I d e f i n e t h e g raph Y(G, &), a b b r e v i a t e d to Y w h e n ambigui ty is unlikely, 

as fo l lows: 

t h e v e r t e x s e t V( is t h e s e t of e l e m e n t s in ^ 

2 
t he edge se t E ( Y ) is given e x a c t l y by those p a i r s (u, v) E & for 

2 2 
which o(uv ) = o(vu ) = 2 in G. 

L e t S be t h e subse t of T which cons i s t s of t h e p a i r s (G, &) in T t h a t 

s a t i s f y one of 

i) G = PSL2(p) fo r s o m e p r i m e p, and t h e e l e m e n t s of & have order 

p in G. 

ii) G = PGL2(q) fo r any q, and t h e e l e m e n t s of 2 have order (q + 1). 

Then t h e main re su l t of th is c h a p t e r is t h a t fo r al l pa i rs (G, &) in S, 

Y (G, &) can be imbedded as a ROAM wi th a u t o m o r p h i s m group G. 

The r eade r may f e e l s o m e c o n s t e r n a t i o n in t h a t I h a v e t a lked of c o n s t r u c -

t ing maps w h e r e a s t h e a c t u a l c o n s t r u c t i o n m e n t i o n e d is fo r g raphs . The 

resolution of th i s a p p a r e n t anomaly is by in t roduc ing t h e c o n c e p t of a 

v e r t e x - t r a n s i t i v e t r i angu l a t i on (VTT). As to w h a t e x a c t l y a VTT is, I 

discuss m o r e in t h e nex t sec t ion , bu t s u f f i c e it t o say for t h e m o m e n t 

t h a t a VTT is a g raph wi th a u t o m o r p h i s m group t r a n s i t i v e on i t s v e r t i c e s 

and wi th a p a r t i c u l a r l y s imple local s t r u c t u r e wh ich g u a r a n t e e s i t has 

a unique t r i angu la r imbedding (up t o tak ing t h e m i r r o r - i m a g e ) . Now I 

shall show in due c o u r s e t h a t all o b j e c t s / ! of s a t i s f y both 

1) The under lying graph @ of is a VTT 
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2) J i is isomorphic to i t s m i r r o r - i m a g e ( i .e . \M. is r e f lexible) . 

These two f a c t s , t aken t o g e t h e r , a r e e x t r e m e l y u s e f u l in t h a t if we have 

just a graph isomorphism b e t w e e n © and some o t h e r graph ® ' we 

know t h a t any t r i angula r imbedding of @ ' mus t in f a c t be isomorphic 

to . This saves having to construct map isomorphisms, which are more 

unwieldly to handle. 

So, to press the point , if I can prove t h a t any g r a p h @ ' is i somorphic 

to t he underlying graph of some v/t e j f l , I may in f a c t wi thout ambi -

gui ty r ega rd the graph ^0 ' as being i somorphic to t h e m a p / I . 

The idea of VTT's is t aken f r o m Surowski 's paper ( ibid), though he d idn ' t 

conce rn himself with r egu la r i ty as such. Indeed t h e main purpose of 

t h a t paper over and above the i n t roduc t ion of t h e c o n c e p t i tself is to 

d e m o n s t r a t e t h a t a couple of given c a t e g o r i e s ^ and (B of graphs a r e 

VTT's: 

^ is the se t of Y(G, &) fo r t h e pairs ( G , £ ) e S which s a t i s f y G = PGL2(2^) 

for any e ^ 3 and £ is any con jugacy c lass of e l e m e n t s of order 2^-1 

in G. 

(B is t h e se t of graphs A (G, £ ) w h e r e G = PSL2(p) f o r any p r ime p s a t i s -

2 

fy ing 16 | (p -1), £ is a con jugacy c lass of e l e m e n t s of order p in G. The 

ve r t ex se t of A is & and 

(u,v) e 9? is an edge in A 4 ^ o(uv) = 2 in G . 

By consider ing the r egu la r i ty of t h e g raphs Y (G, £ ) fo r all pa i r s (G,£ ) 

in S, I will c lear ly g rea t ly ex tend t h e c a t e g o r y A of VTTs. In t h e body 

of t he c h a p t e r , I will also d e v o t e a sec t ion , §8, to show the VTTs A ( G , & ) 
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in IB are ROAMs with automorphism group G as wel l , but in this case 

t h e de f in i t i on for a d j a c e n c y is more ' t a i l o r m a d e ' f o r t h e pa r t i cu la r types 

of pairs (G, & ) covered and we c a n ' t expec t to e x t e n d this ca t egory in 

t h e s a m e so r t of way as wi th A • 

Now b e f o r e I can be more p rec i se about how t h e i somorphisms needed 

a r e a c t u a l l y f o r m e d , I need to desc r ibe VTTs in m o r e de ta i l which I 

do in t h e coming sec t ion , §2, which s t a r t s with s o m e p reamble . A f t e r 

this , t h e r e is a shor t sec t ion §3 deal ing with the q u e s t i o n of re f lex ib i l i ty 

fo r t he maps in 331^^. In §4, then a r m e d with t h e n e c e s s a r y ammuni t ion , 

I desc r ibe how we p roceed . 

2. SOME BASIC PROPERTIES OF RO^Ms 

(In this s ec t ion lA will a lways r e p r e s e n t an ROAM with a r b i t r a r y au to -

morphism group G unless o t h e r w i s e s t a t e d . Many of t he c o m m e n t s here 

a r e of r e l e v a n c e for o the r c a t e g o r i e s of r egu la r o r i en t ed hype rmaps . 

It will involve, in t he l anguage of c h a p t e r 4, e x a m i n i n g c i r cu i t s in J i 

of length less than or equal t o t h r e e , and i n t e r p r e t i n g what t he se r e p r e -

sen t . It is t h e c i r cu i t s of length 3 t h a t a r e c r i t i c a l l y r e l a t e d to VTTs.) 

Speaking naively , the r egu la r i ty of t h e maps we a r e consider ing would 

sugges t s o m e s impl ic i ty in t he g raph ica l s t r u c t u r e of the i r topologica l 

r e p r e s e n t a t i o n s , but the ava i lab i l i ty of s u r f a c e s w i t h genus as high a 

value as des i red t ends to c o u n t e r a c t th is . Here I e x a m i n e s o m e local 

( g r aph - theo re t i c ) p rope r t i e s of lAl , all of which a r e conce rned with w h a t 

could be r ega rded as a s p e c t s of bas ic good behav iou r for graphs in gen -

e ra l . Each p rope r ty is t r a n s l a t e d in to t e r m s of r e l a t i o n s in G involving 

a g e n e r a t i n g pair (x,y) e G which r e p r e s e n t s JA in t h e usual way . As 
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usua^ we le t : 

- 1 

z : = y X 

I) F r e e edges 

As a l r eady expla ined in c h a p t e r 1 (p. 18) M does n o t conta in f r e e edges 

unless 
X = I 

in. wKick case. G = <x,y > is cyc l ic . 

II) Loops 

We say t h a t Ji has a loop if t h e r e is a d a r t a a n d an in teger i 0 such 

t h a t 

zV( a) = a . 

The r egu la r i t y of gives t h a t 

z^x = I 

and so in G, 

<x ,z> ^ c y c h c 

- 1 But <x,y > = <x,y x > = <x ,z > = G 
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So if t he au tomorph i sm group G is not cyc l ic , Ji c anno t contain any 

loops. 
^ O 

Thus in all but a f ew very t r iv ia l cases , a ROAM d o e s not conta in f r e e 

edges or loops. F r e e edges and loops a r e very o f t e n not regarded as 

l e g i t i m a t e f e a t u r e s of a g raph , so this is u se fu l . H o w e v e r t h e r e is a th i rd 

t y p e of local s t r u c t u r e t h a t can occur in an imbedd ing which would not 

normal ly be al lowed in a g raph: 

III) Mult iple Edges 

Ji has mul t ip le edges if 

xz^xz^ = I fo r some i,j e 

Z^XZ^ = X 

xz^ = I 

(z i+ix)2 = I 

< z ^ ^ ,x > is d ihedra l or cyc l ic in G . 

H e n c e c o m p a r e d with f r e e edges and loops it is h a r d e r to dec ide p rec i se ly 

which RO AMs con ta in mul t ip le edges and which a r e t h e types of a u t o -

morphism group G t h a t a r e thus r e p r e s e n t e d . H o w e v e r fo r G : = PSL2(q) 

or PGL2(q), any q ^ 3 , suppose xz^xz^ = I. Then < z^^^, x > is d ihedra l 

or cyc l ic < z,x > is d ihedra l or cyc l i c unless j = - i . But 
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1 1 
XZX = z 

both Z;X E <z^ > , which is e i t he r d ihed ra l or e l e m e n t a r y 

abel ian 

< x ,z > < G 

Also for q = 2, t he graph under ly ing the unique ROAM with au tomorphism 

group PSL2(2) s is just a s t r a i g h t f o r w a r d t r i a n g l e . 

Thus none of t h e ROAMs wi th G 5 PSL2(q) or PGL^(q ) (for any q) can 

have mul t ip le edges: th is means t h e underlying g r a p h of each map is 

in every way a bona - f ide g raph . 
• 

To recap , we have shown t h a t a c e r t a i n Ji has no loops or f r e e - e d g e s 

by proving t h a t 

Vi E Z , z \ :(: I 

and t h a t it has no mul t ip le edges by proving 

Vi , j e Z , z^xz^x j: I . 

We now go f u r t h e r and cons ider t h e so lu t ions in G of 

i i k , 
z x & \ z x = I 

as i , j ,k vary independent ly over t h e i n t e g e r s . 

No te t h a t necessar i ly we a lways have 

-1 -1 -1 , 
zxzxzx = z xz xz x = I , 

t he se r e l a t i ons being noth ing m o r e than s t a t e m e n t s t h a t lAl is t r i angu la r . 

However how should we i n t e r p r e t o t h e r solut ions? This ques t ion m o t i v a t e s 

t he fol lowing: 
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IV) Non-s imple spans 

Def in i t i ons 

The span 0 (v) of a ve r t ex v in a g raph @ is t h e induced graph on 

t h e v e r t i c e s a d j a c e n t t o v in ® 

The span @ (v) is s imple if i t is an ord inary n - g o n for some posi t ive 

in teger n (where I r egard a l i ne - segmen t as a 2 - g o n and a point as a 

1-gon). If a span is s imple and n-gonal then I cal l i t a n n-span. 

Now for an a r b i t r a r y graph, a non-s imple span c a n t a k e many f o r m s : 

fo r e x a m p l e i t need not be c o n n e c t e d . But for t h e underlying graph 

(h) of a ROAM i/ t , t h e type of possible ' v i o l a t i on ' causing non-s imple 

spans is m o r e pa r t i cu l a r : 

Suppose (H) has c o n s t a n t valency d. Without loss of gene ra l i t y we may 

rega rd a v e r t e x v in (h) as t h e fo l lowing se t of p e r m u t a t i o n s of da r t s : 

{ I , z, z^, , z ^ *} 

and the fol lowing p e r m u t a t i o n s as r ep re sen t i ng t h e v e r t i c e s a d j a c e n t 

• ^ 2 d-1 
to V in (h) : X, xz , xz , xz , 

But c lea r ly fo r each i e { 0, .. . , d-1} , 

xz^ is a d j a c e n t t o xz^^^ in @ 

for 

-1 -1 i , I i i+1 
z xz xz = (xz)z = xz 
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xx"-

Z X2 XZ XX 

2"%Z XZ* 

Thus t h e v e r t i c e s of t h e span O (v) all l ie in an ordinary d-gon in 

® ( v ) : t h e only way in which ® (v) c a n be non - s imp le given th is is 

if an ' add i t iona l ' edge ex i s t s b e t w e e n t w o of t he a d j a c e n t ve r t i ce s . So 

p ic tor ia l ly w e would have th is sor t of s i tua t ion : 

w h e r e t h e bold v e r t i c e s and edges f o r m t h e span of v. 

It IS easy to see t h a t such a c o n s t r u c t i o n occurs in (h) if and only if 

t h e r e ex i s t s (i,j ,k) :{= ±(1,1,1) such t h a t in G : = <x,z > 

i j k , 
ZXZ^CZ X = I . 

I will say t h a t lAl has s imple or non-s imple spans a c c o r d i n g t o w h e t h e r 

such a t r i p l e (i ,j ,k) does not or does ex i s t . 
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(Note that this means, from our previous discourse, that if has f r e e -

edges , loops or mul t ip le edges , then / t has non-s imple spans ) . 

It is th i s descr ip t ion of spans t h a t I 've rea l ly b e e n working towards . 

It i n t e r e s t s me pr imar i ly in r e l a t ion to a c lass of g r a p h s , cal led v e r t e x -

t r a n s i t i v e t r i angu la t ions (VTTs), in t roduced in [23]. Roughly speaking, 

they a r e de f ined as f i n i t e , connected g raphs with (s imple) n-spans fo r 

s o m e n >> 4, with a u t o m o r p h i s m group t r a n s i t i v e on t h e ve r t i ces (and 

f ina l ly wi th a t echn ica l condi t ion to g u a r a n t e e an o r i e n t a b l e imbedding). 

Trivial ly, any ROAM Ji is bound to s a t i s f y all t h e s e condi t ions e x c e p t 

pe rhaps t h a t of t h e n-spans . In o the r words if A d o e s have n-spans for 

some n >,ii, then it is a VTT. 

The condi t ion n ^ 4 may s e e m a l i t t l e a r t i f i c i a l , b u t I adhe re to it t o 

be c o n s i s t e n t wi th [23]. N o t e t h a t t h e only ROAM w i t h 2-spans has unde r -

lying g raph an ord inary t r i a n g l e and au tomorph i sm g roup isomorphic to 

Dg s PSL2(2) and t h e only ROAM with 3-spans is a t e t r a h e d r o n and has 

a u t o m o r p h i s m group s. PSL^O). In addi t ion t h e t e r m ' v e r t e x - t r a n s i t i v e 

t r i a n g u l a t i o n ' , a lso adop ted f r o m [23], is pe rhaps a l i t t l e u n s a t i s f a c t o r y 

in t h a t p e r f e c t l y good t r i angu la t i ons ex is t which a r e v e r t e x - t r a n s i t i v e 

but c e r t a i n l y do not have s imple spans . Cons ider f o r e x a m p l e t h e we l l -

known regu la r imbedding of t h e c o m p l e t e g raph Ky in t h e to rus : 



Opposi te s ides of t he pa ra l l e log ram a r e i den t i f i ed in t h e usual way. 

(Note t h a t t h e c o m p l e t e graphs a r e in an obvious s e n s e t h e graphs wi th 

t h e 'mos t c o m p l i c a t e d ' spans . It may i n t e r e s t t h e r e a d e r t h a t all regular 

o r i en t ab l e imbeddings of c o m p l e t e g raphs have b e e n analysed in [9].) 

But we shall see in due cou r se t h a t t h e c o n c e p t of a VTT has mer i t : 

t h e condi t ions imposed on a VTT c lea r ly ensures a s ing le t r i angu la r im-

bedding of t h e graph, and i t is s imply th is p r o p e r t y which will i n t e r e s t 

us. 

I now show t h a t all Ji wi th a u t o m o r p h i s m group G : s PSL2(q) or PGLgfq) 

(any q > 3) must have s imple spans , and so a r e VTTs. I do th is by proving 

t h e fol lowing: 

Theo rem 

In a lgebra ic map language (see p. 10 ad.seq.) l e t 

Ji : = (G, Q, X, y) 

be a ROAM with au tomorph i sm group G : E PSL2(q) or PGL2(q) f o r any 

q > 3. Also le t z = y and o(z) = d . 

(Necessar i ly d > 6 e x c e p t fo r q = 5 when t h e r e is only t h e one r e l e v a n t 

map, th is wi th d = 5; anyway d ^ 4. See p. 129.) 

The ccrvcEuslcn, is t h a t , i n G, 

z^xzLz^x = I i = j E k = ±1 mod d , 

Proof 

F i r s t no t e t h a t 
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1 j -1 
ZXZ^ = XZ X 

1 I 
ZX^/ = ZXZ 

XZ^ *XZI ^ = I 

i = j = 1 (as we know J i has no mul t ip le edges) 

Similar ly 

z^xz^ = xzx 

^ i = i = -1 

This means we need only prove 

z^xzLz^x = I any one of { i ,j,k} is 1 or - 1 

We now ' sp l i t ' t h e p roof , pa r t i t ion ing t h e maps in to 2 c l a s s e s and cons ide r -

ing each s e p a r a t e l y . 

Class 1: t hose Ji, wi th G E PSL_(p), d = p. 

W.l.o.g. x = / 0 11 y = 0 - l \ z = / l 1 
4 0 1 1 VO 1 

z^xz^ = / - i - i j + 1 \ xz '^x = ( - 1 0 

Then 

z\z^ = f 

- i ^ / l - k - 1 

Thus z \ z ^ x z ^ x = I i = ±1 

Class 2: t hose Ji wi th i) G E PSL^Cq) and d | (q + l ) /2 

ii)G 5 PGL^(q) and d | (q +1). 

2 
L e t (X be a p r imi t i ve e l e m e n t of GF(q ), t h e ex tens ion of GF(q). 
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W.l.o.g. we may t a k e B 0 
0 1 

for some . B of or ^ in GF(q^) (such that the order of 

2 
3 in t h e m u l t i p l i c a t i v e group of GF(q ) is d ) , 

Suppose X = r s 
t w 

rw - St = Y e GF(q) , w 

Then 

z^xz^ = / r3^^^ s P 

w 

wi th d e t e r m i n a n t i+ i . 

xz 3 ^+st sr3 ^+sw 

-k -k 2 
t r 3 +tw t s 3 +w 

w i t h d e t e r m i n a n t 

Not ing t h a t 3 and y a r e both squares in GF(q ), we h a v e 

i i -k 
Z XẐ  = XZ X 

,(i+j+k)/2 - i / 2 -k 
3 +st srg +sw 

tr 3 ^+tw ts 3 

S3 

W 

1 \ 

} 

If we mul t ip ly leading diagonals we g e t : 

3 ('+j+'"\"^(r^3"''+st)(ts3"''+w^) 3 

^ (r^+st 3 ^ ) ( t s 3 '^+w^) = y r w 

( = ^ ( 3 ^ + 3 = ( 2 r ^ + y ) ) . 
2 

This las t s t a t e m e n t al lows a max imum of two v a l u e s fo r 3 '• bu t we 

know 3 and 3 ^ must be solut ions , and ce r t a in ly 3 ^ 3 We c o n c l u d e 

t h a t k mus t be plus or minus one, as r equ i red . 
O 
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3 REFLEXIBILITY OF THE MAPS IN 31^ 

Given any map vH , t he mi r ro r - image JA oi Ji is g iven by reversing the 

cycl ic order of t he ' da r t s ' a t each ve r t ex . If is isomorphic to J i as 

a map, then / t is t e r m e d re f iex ib le . 

Specialising t o A E JJl , we know f r o m §2 t h a t t h e underlying graph 

@ of A is a VTT. If is shown to be r e f i e x i b l e , then we know tha t 

A is t he only t r iangular imbedding of ® . Thus t h e s ignif icance of 

the 

Theorem 

All R O A M S with corresponding map-subgroup N <] R : = C2 * such 

t h a t r / N E PSL2(q) or PGL2(q) (any q) a r e r e f i e x i b l e . (Remember t h a t 

t he quot ien t group T /N 'gives ' t h e au tomorph i sm group of t he map, 

see p. 13-15, so this applies exac t ly t o those maps in our r e s t r i c t ed c a t e -

gory 

Proof 

Let r : = gp <X,Y : = I > 

and le t Z = Y 

In genera l , if a ROAM H has t h e map-subgroup M O T which is t he 

kernel of t h e epimorphism y ) : r Aut Ji , then Ji has the map-subgroup 

M , given by the kerne l of t he fol lowing ep imorphism : T A u t J ^ : 

j p ( ) 0 = j o ( x ) , = ^ 9 ( z ) r * . 

Let yo(X) = XfjDiZ) = z . Then 

yOXX) = x , J p ( Z j = z " * . 
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Now take our more particular case M = N, where N is as in the statement 

of the t h e o r e m . Fix the value of q for which F /N 2 PSL2(q) or PGL2(q) 

and le t 

G : = PSL2(q) , G' : = PGL2(q) . 

Then we may regard Aut as being equal to G or G ' , in par t icular regard 

X and z as e l e m e n t s of G' . 

Le t C ,C^ deno te the maximal cyc l ic subgroups of G ' containing x and 

z respec t ive ly . Then we have a l ready i n t ima ted in a previous problem 

(p.115) t h a t 

where D ,D^ a r e t he maximal dihedral subgroups of G ' containing C ,C 

respec t ive ly , e x c e p t in t h e case of q being a power of 2 where D is 

t he maximal abel ian subgroup (of type V^) conta in ing x. This immedia te ly 

te l ls us (as is also proved in l emma 2.8 of [8 ] ) tha t t h e r e is an involution 

x' in G ' such t h a t 

x'x(x') ^ = X and x ' z *(x') ^ = z 

which means t h a t k e r p - kerJ) , i .e. M = M and Ji = xK • 

4. THE SCHEME OF THE APPROACH LEADING TO THE MAIN RESULT 

I now give an explanat ion of t he two s t ages I shall use in t h e sec t ions 

§5 and §6 to cons t ruc t t he desired graph i somorphisms be tween underlying 

graphs of t he maps in and t h e appropr ia t e Y(G, proposed 

in §1. Without this overview, the ' d r i f t ' of the m o r e t echn ica l p a r t s 

reserved to §5 and §6 might seem obscure . 

The f i r s t s tep (§5) is to cons t ruc t a c a t e g o r y R' of maps accord ing t o 
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t he following ethos: 

Given vM E ITl t he da r t s of may be r e g a r d e d as the e lements 

of G ; = Aut( iM ) and the ve r t i ces as t he cyc les in G induced by z e G 

when z is multiplied on t h e l e f t (z is as usual, and is ident i f ied up to 

a conjugacy class in G under PGL2(q)). So typica l ly t h e set S of dar t s 

comprising a ver tex v will be of t he fo rm 

C f 2 d-1 I 
5 ^ = t g , zg, z g , z g ) 

fo r some g e G, and with d : = o(z) in G . 

Now let @ be the underlying graph of : to g ive a descr ipt ion of 

© in more s tandard graphica l t e r m s we need to express each dar t as 

an ordered pair of ve r t i ce s (u,v), in pa r t i cu la r th is expression for each 

of t he da r t s in S must have the s ame ' incoming ' c o m p o n e n t v. But t he r e 

is an obvious way to der ive a cons t an t en t i ty f r o m e a c h of t he e l emen t s 

of S by taking con juga tes of z: 

W C - 1 -1 V s e S y , s 25 = g z g . 

This begs the quest ion can one, given A , i d e n t i f y t h e con juga tes of 

z with the ver t i ces of ® and f u r t h e r cons t ruc t a g r a p h © ' isomorphic 

to © by taking the ve r tex se t of © ' as the e l e m e n t s of t he conjugacy 

class of G containing z and defining ad j acency in @ ' in some ' na tu ra l ' 

way? If the answer is yes, we may regard (g) ' a s a VTT, which then 

has only a mir ror - image pair of t r i angular imeddings : one of t he se im-

beddings is Ji , which is re f lex ib le , so in f a c t A is t h e only t r iangular 

imbedding and in this sense we may regard 

0 ' = ^ . 

In §5 therefore I determine which Vt e be recovered in this 
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sort of way, and call the set of them R'. (What t h e 'natural' rule of 

ad jacency should be is easy to see, though to w r i t e down it is a l i t t l e 

t echn ica l : I shall leave the s t a t e m e n t of it to §5.) 

To give a convenient way of describing R ' , I now in t roduce the c lass-

t r ip le (G, & ,d) associated with each e JTI ^ , w h e r e G is the au to -

morphism group type of , & is the conjugacy c l a s s of G containing 

any z as appropr i a t e to Ji , and d is t h e order of z. 

Then (we shall see) R' is given exac t ly by those vH £ JTl with c lass-

triple (G, &,d) satisfying one of 

i) G = PSL^(p) for any pr ime p and d = p 

ii) a) G = PSL2(q), q odd, and d = -^q q: 1) 

b) G = PGL2(q), any q, and d = (q + 1) . 

Now let R be the subset of R' given by those <M ^ J7l sa t i s fy ing one 

of just i) or ii) b) as above. Then in sect ion §6 we m a k e use of t he newly 

fo rmed graph @ ' by proving t h a t if kAI e R' has c l a s s - t r i p l e (G, & ,d), 

then the graphs (h) ' and Y(G, £) a r e equal iff f u r t h e r e R. 

Hence through the medium of © ' we conclude t h a t f o r E R 

@ = Y(G,&) . 

Remember ing again t h a t an isomorphism of VTTs may be r ega rded as 

an isomorphism of t r iangula t ions , we ar r ive a t t h e ma jo r resul t of t h e 

chap t e r a l ready mentioned in §1. 
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Theorem 

V(G, a ) e 5, f (G, Z) has a unique imbedding as a t r iangula t ion , and 

this is a ROAM with automorphism group G. 

(In the f ina l sec t ion , §9, I review the whole p r o c e d u r e by considering 

what condi t ions we need to impose on a pair (G, £ ) now with G an arb i -

t r a ry f i n i t e group (and W(G, £) def ined analogously) t o be able t o come 

to the s ame conclusion as in the t heo rem for Y(G,&) in genera l . ) 

5. ISOMORPHISM BETWEEN @ AND © ' 

Before we s t a r t , p lease note t ha t I will adopt the c o n v e n t i o n t h a t 

Vg E G , = g'^zg . 

Let \H be any map in JJl ^ , and suppose t ha t lAl ha s c lass - t r ip le (G, 

A,dX 

I de f ine two graphs connec ted with A : 

i) .(5> (the underlying graph of J j ) 

The ve r t i ce s V( @ ) of (3) a r e the following s u b s e t s of G (which pa r -

t i t ion G): 

V ={g, zg, z^g, z"̂  ^g} for some g e G . 

If h 4 V , then v, t v and (v, ,v ) is an edge in 0 (i .e. is an e l e m e n t 
^ g h r g h' g a 

of E( (w) )) iff 3 i,j e 2' mod d s . t . 

iu -i 
xz 'h = z g . 

(Not ice t h a t z^xz^hg ^ = I z ^xz ^gh ^ = I, so w e have t h e requi red 

symmet ry for t he edge set) . 
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ii) 0 ' 

The ve r t i c e s V( © ' ) of © ' a re the e l e m e n t s of I . 

The edges E( ® ' ) of © ' a re those pairs (u',v') e which sa t i s fy : 

Vh,g e G s . t . u' = and v' = z®, 3 i,j £ Z mod d s . t . z^xz^hg'^ = I 

(So again we have symmet ry for the edge set) . 

I now make a couple of r emarks about t h e graph © ' : 

Remark 1 

E( ® ' ) is emp ty if <z > ^ <a > where a is a g e n e r a t o r of t h e maximal 

cyc l ic group containing z in G. For let z = a"", and h,g e G. Then 

(z^, z®) e E( @ ' ) z^xz^hg"^ = I for some i,] 

(L 

(z^^,z^^) E E( ® ' ) z^xz^ahg ^a ^ = I for some k,£ 

Thus 

i i -1 k 6 
z xz-' = a z xz a 

4 - a'-'xa'"" = 

But ce r t a in ly , as <x,z > = G we also have <x,a> = G and by the s a m e 

reasoning by which we concluded t h a t vM, has no m u l t i p l e edges, see p. 

we have immed ia t e ly 

^r(i-k)+l ^ ^ ^ 

Kj-O E 1 mod d' where d' : = o(a) 

r is copr ime to d' 

<z > = <a> ^ 
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Remark 2 

If <z> = <a> , t he quan t i f i e r V in the def in i t ion of E( ® ' ) may be 

rep laced by the quan t i f i e r 3 . For suppose (u ' ,v ') e E( ® ' ). 

Then 3 h,g e G s . t . u' = z^ , v' = z® and z/xz^hg"* = I for some i,j 

h' H' 
Suppose also h ' , g ' e G a r e s . t . u' = z , v' = z ° . 

Now z'"' = z h ' h ' ' = z 

h'h ^ = z^ for some k . 

(The only case for which the las t impl icat ion p e r h a p s needs a word of 

ju s t i f i ca t ion is when o(z) = p; then t h e cen t r a l i s e r C ^ ( z ) of z in G is 

of e l e m e n t a r y abel ian type V . But < x , z > must g e n e r a t e G, which implies 

t h a t in f a c t q = p, and so C^{z) is indeed cyclic.) 

k £ 
So we have h' = z h. Similarly g ' = z g for some 

Thus 

h'(g')-^ = z'<hg-^z-^ = z'^-ixz-'-^. 

Now remark 1 te l ls us t h a t unless z g e n e r a t e s a m a x i m a l cycl ic subgroup 

of G then ® ' is just a se t of unconnec ted ve r t i ces : th is does not in te res t 

us. So we r e s t r i c t our a t t e n t i o n to those maps J i f o r which the assoc ia ted 

c lass - t r ip le (G, i l ,d) s a t i s f i e s one of: 

i) G = PSL2(p) for any p r ime p and d = p 

ii) a) G = PSL^Cq), q odd, and d = -^q + 1) 

b) G = PGL^(q), any q, and d = (q qr 1) 

I t e r m the se t of such t h e c a t e g o r y R' of ROAMs. 
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I now prove that for any Jt E R', its two associated graphs © and 

@ ' a r e i somorphic . 

Def ine t h e func t ions a : V( ® ^ V( 0 ' ) and B : E{ (P) ) ^ E( (3)' ) 

by 

a : V I—>- z® Ve e G 
g ^ 

B I—+ ^ E( © ) . 

Now a c lea r ly is wel l -def ined and onto . But 

I V( e )| = iGl/d 

I V( © ' ) | = I 2-1 = | G | / d (as C ^ ( z ) = <z> ) 

Thus a is a b i jec t ion . 

Also 3 is wel l -def ined (by r e m a r k 2) and is o n e - t o - o n e (as a is). Clearly 

3 is onto , and so 3 is a b i jec t ion as well . 

Thus a (and 3) provide a graph ismorphism be tween ® and ® ' . 

6. THE EQUALITY OF & ' AND Y(G,&) 

Taking up t h e s i tua t ion a t t h e end of §5, if we l e t Ji he a map in R ' 

with assoc ia ted c lass - t r ip le (G, & ,d) then we have d e f i n e d for vM a graph 

i somorphic t o t h e underlying graph of iM . 

For the s a m e G and £ , I de f ine t h e graph ¥ ( G , £ ) = Y by 

v( y) = & 

E( y) = {(u,v) e : o(uv^) = o(vu^) = 2} . 

Then ® ' and Y have the s a m e ve r t ex s e t . We show t h a t 
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CD' = Y 

in the following two cases : 

i) G = PSL2(p), d = p 

ii) G = PGL2(q), d = (q + 1) 

We do this by proving: 

Theorem 

2 
Le t (G, &,d) sa t i s fy i) or ii) as above. Le t (u,v) e & . 

Then (u,v) is an edge in © ' if and only if (u,v) is an e d g e in 

Proof 

(u,v) e E( ® ^ u - z^, V = for some h,g £ G s.t. 

z^xz^hg ^ = I fo r some i,j e Z mod d 

uv^ = h ^zhg ^z^g = h *Xzhg ^ z ^ g h h h 

= h ^(z^ jxz^xzbh 

= (z^h) *(zxz^x)(z^h) 

o . 2 ^ 
But zxz X = yxy , so 

uv^ = (y ^z^h) ^(x)(y ^z^h) 

2 
o(uv ) = o(x) = 2 

2 
Exact ly analogously, o(vu ) = 2, and hence (u,v) e E( V). 

Now the valency of t he ve r t i ces of ® ' is d, and so all we need do 

to prove the inverse impl icat ion is to show t h a t t h e r e a re a t most d 

ve r t i ces adjacent to any ver tex in Y, in o ther words given any e l e m e n t 
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V of £ show that there exist at most d elements u of £ such that 

o(uv^) = 2 . 

Clear ly though, by conjugacy cons idera t ions in I , t h e g raph Y has cons tan t 

va lency, so it su f f i ces just to consider one par t i cu la r v i n &. 

I split t h e remainder of t he proof into t he two cases i) and ii). 

i) G = PSL^Cp) for some pr ime p and d = p. 

There a r e exac t ly two conjugacy c lasses , £ and 3,' say , of e l emen t s of 

order p in G, so s t r ic t ly we have two graphs 

Y : = Y(G,&) Y ' : = 

to cons ider . 

However a ^ the e l emen t s of G of order p a re c o n j u g a t e under PGL2(p): 

by conjuga t ing the ver t i ces of Y by an e l e m e n t of PGL2(p)\PSL2(p) we 

obviously have a graph ismorphism giving Y = Y'. 

Thus we need only examine one of t he graphs, t a k e ¥ , and wi thout 

loss of genera l i ty we may let 

V : = / i 1 
0 1 

be an e l e m e n t of £ . 

Le t u = / r s \ be any e l e m e n t of £ < G; this m e a n s 
\ t w j 

1) rw - St = I 

2) r + w = ±2 . 
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We c a l c u l a t e 

uv^ = / r 2r+s 

I t 2t+w 

2 
Thus o(uv ) = 2 puts a third condit ion on u: 

3) r + 2t + w = 0 . 

Trivially, if we se t r + w = -2 in equat ion 2), w e deduce from 1), 2) 

and 3) t h a t u must be of t he fo rm (for some r e GF(p)): 

u = / r - r ^ - 2 r - l \ 

\ 1 / 

Similarly, if we se t r + w = 2 in equat ion 2), u mus t have the fo rm: 

u = / r r^ -2 r+ l \ = / -(-r) (-r)^+2(-r)+1 

-1 2-r -1 2+(-r) 

But as ±I a r e ident i f ied in G, u as above has a l r e a d y been accoun ted 

f o r . 

2 
Thus t h e r e a re a t most |GF(p) | = p = d e l emen t s u of & for which o(uv ) 

ii) G = PGL2(q), q odd, d = (q + 1). 

2 

Le t a be a primitive e l emen t of GF(q ), t he f ie ld ex t ens ion of GF(q). With-

out loss of genera l i ty we may assume t h a t t he fo l lowing e l e m e n t v of 

2 
PGL2(q ) r e p r e s e n t s & : 

V = / e 0 

, 0 1 

- 2 0 2 -



(where G = and k - (q+i ) , (q - l ) respec t ive ly as d = (q - l ) , (q+l)). 

Let u = [ r s \ with 1) rw - st = 6 be ano the r e l emen t of & , s o in 
1 1 w y 

fact 

2) r + w = ±( 3 + 1) . 

Note t h a t if d | (q- i ) , we requ i re t h e components { r, s, t , w } of u to 

2 
lie in GF(q) < GF(q ). However if d | (q+l ) we require: 

w = r ^ g and t = -s*^ 3 • 

2 ! 2 \ 3 
Now, uv = / r g s \ with d e t e r m i n a n t g 

w j 

2 
so demanding t h a t o(uv ) = 2 imposes the condition 

3) r g ^ + w = 0 . 

As in the ca se i) we may t a k e just one sign in the RHS of 2): 

r + w = 3 + 1 

Then solving t h e sys tem of equa t ions 1), 2) and 3) w e g e t 

1 „ _ . - e ( s ^ - B + i ) 
, W - Q 1 ; OL -.1 • - - B - l • - - (3 . , ) 2 

(It is easy to check t ha t if d | (q+l ) then w = r ^ 3 ) 

2 

and we conclude t ha t t h e number of e l emen t s u of & such tha t o(uv ) 

= 2 is given by the number of solut ions for (s, t) above: c lear ly this is 

at most d (as required) as long as 

6 ^ - g + 1 0 . 

So I set out t o prove the last s t a t e m e n t , by con t r ad i c t i on . 
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2 
Suppose B - B + 1 

Then g (1 - g ) 

=2^ / g o \ e PSL_(q) and has order 3 (as its t r a c e is 1) 

—y g = -1 

d = q + 1 = 6 

q = 7 or 5 . 

But we know (p. 105) t h a t t h e r e a re no R O A M S Ji w i t h automorphism group 

G = PGL2(5). 

Also t h e r e exist exac t ly two ROAMs Ji with G = PGL2(7), and it can 

be shown tha t for both of t he se t h a t d = 8. 

Thus, wha teve r our initial , a con t rad ic t ion is a c q u i r e d . 
O 

Now we have avai lable the graph Q ' i somorphic to the underlying 

graph of vM. E with c l a s s - t r i p l e (G, £ ,d) (as descr ibed in §5) for t h e 

case 

G = PSL J q ) and d = -|(q + 1) 

as well as those cases dea l t with in t he preceding t h e o r e m . But in c o n t r a s t 

t o t h a t t heo rem, in this ins tance 

0 ' + Y(G,&) , 

This will b e c o m e evident in t h e next sec t ion , in which I consider Y(G,&) 

for the remaining (G, A) e T. 
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7 . T H E G R A P H S Y ( G , & ) F O R ( G , & ) e T \ S 

I remind the reader t ha t 

T ; = { ( G , & ) : G = PSL2(q) or PGL^Cq) for s o m e q, and £ is a con-

jugacy class in G} . 

For given (G, &) in T, the graph Y(G, &):= Y is given by 

V ( Y ) = A 

E ( ^ ) = { (u,v) e 2^ : o(uv^) = o(vu^) = 2 in G } . 

Also for given (G, I ), and supposing G is d e f i n e d over the f in i te field 

GF(q) where q = p^, let 

G ' : . P G L 2 ( q ) . 

Then we may regard G <: G \ 

We may readily check t h a t t h e subset S of T d e f i n e d ear l ier is a l ternat ively 

expressed as 

S : - { (G, &) : each e l e m e n t of & g e n e r a t e s a maximal abelian 

subgroup in G ' } . 

We know f r o m t h e work to d a t e t h a t for all pa i r s (G, i ) in S, Y(G, &) 

is a VTT (and f u r t h e r may be r ega rded as a ROAM). What can we say 

for Y ( G , & ) w h e n ( G , 2 ) E T \ S ? 

So fix (G,&) e T \ S and let v e Si. 

Suppose t ha t o(v) = p. Then analogously t o c a s e i) in t he proof of the 

theorem in §6, we may t a k e 
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1 1 
0 1 , 

2 

and then the e l e m e n t s of u of £ such t h a t o(uv ) = 2 are given exact ly 

by the ma t r i ce s of f o r m 

u - / r -(r+1)^ \ 

where r is any e l emen t of GF(q). 

Now 

= / -2r- l 2(r+l)2 

- 2 

2 
f rom which it is easy to check t h a t o(vu ) = 2 

Thus, wha teve r the value of r, (u,v) is an edge in W : we concude tha t 

y has cons t an t valency q. 

Now given u a d j a c e n t t o v, which u' e l a r e a d j a c e n t to both u and 

V? Let 

-(s+1)^ 

—2-s 

for some s e GF(q). 

Then we c a l c u l a t e 

t r(u 'u^) = 2(s-r)^ - 2 

and so u' a d j a c e n t t o u implies 

(s-r)^ - 1 = 0 

s = r ± 1 . 
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This means that the subgraph of Y induced by the s e t of vertices adjacent 

to V, i .e. the span of v, is a co l lec t ion of p® ^ mutual ly unconnected 

p-gons. The same comment , by conjugacy, is ev ident ly true for any vertex 

V of Y . Now ( G , £ ) 4 S implies e > 1, and so Y is n o t a VTT and further-

more canno t be imbedded as a ROAM. 

Suppose now tha t d : = o(v) divides (q :p l) (I t a k e jus t t he case d > 2). 

Let C be the maximal cyc l ic subgroup of G' containing v: this will 

be of order (q + 1). Let a e G' be a gene ra to r of C . 

Now, analogous to case ii) in t he proof of t he t h e o r e m in §6, we may 

t a k e 

V : = / g 0 \ 

\ 0 1 / 

2 

where g is the appropriate f ie ld e l e m e n t of GF(q ) with mul t ip l ica t ive 

order d. 

Then all ad j acen t u e £ must have the form 

u = / (3 -1) ^ s ^ 

where s , = - . 
( g - 1 ) 

Conversely , all ma t r i ces of t he said f o r m must r e p r e s e n t a d j a c e n t ve r t i c e s 

2 

in Y : it is easily verified t h a t o(vu ) = 2. The only point t h a t needs a 

l i t t le jus t i f i ca t ion is t ha t when d | ( q + i ) , we r equ i r e t = - s^ 3 and so we 

must have the equation 

q+i 3 ^ - 3 + 1 
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having roo t s for s. 

To check t h a t the roots exis t we need simply show 

6+1 

( e - 1 ) ' 

q - l 
= I 

in the mul t ip l ica t ive group GF(q ). 

Now 6 = for some i e N, where a is a p r i m i t i v e e l emen t of GF(q^). 

Thus 

q _ i(q^-q) _ i ( l -q) _ - i (q- l ) _ -1 
e = a a a 

So 

g + 1 

( 6 - l X 

6 ^ ^ - 6 ^ + 1 3 

G ^ - 6 + 1 

( 6 - 1 ) 2 

as r equ i r ed , 

Thus as long as d ^ 6 (and so (3 - 3 + 1 O), Y h a s t h e cons t an t valency 

of q + 1. It is easily a sce r t a ined now t h a t if u is one of t h e ve r t i ces 

a d j a c e n t to v, then the set A of all ve r t i ce s a d j a c e n t to v is given by 

A { a *ua/ : i = 0 , l , . . . ,q + 1 } 

So if g is an e l emen t of G for which 

u = g vg 

we have in f a c t 

A = { a * g *vga* : i = 0,1,. . . ,q + 1 } 
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Fix - a ^vga^ for some i E + l } 

- i -1 i -1 
W g ^ v a g v g a v . 

T. 2 -1 -1 -1 2 i - 1 
Then = a g vgvg v ga v 

which is con juga t e in G to 

- 1 - 1 + 1 - 1 2 V g vgv g V g , 

But u being a d j a c e n t to v in Y implies 

o(vg ^v^g) = 2 

\ - 1 2 -1 -2 -1 
= ? vg V g = g V gv 

- 1 - 1 + 1 - 1 2 - 1 - 1 - 1 - 1 V g vgv g v g = v g V gv 

and t h e l a t t e r is con juga t e to 

- 2 - 1 - 1 
V g V ( 

Thus (again as u is ad j acen t to v) 

o(WjW2^) = o(g *vgv^) = 2 

and so Wj is a d j a c e n t to w^ in Y , 

This evident ly means t ha t t he span of v in Y c o n t a i n s (q + l ) /d polygons 

with d sides (such t ha t each ve r t ex in the span is con ta ined in exac t ly 

one of t h e s e polygons). As ( G , & ) ^ S, we know t h a t d is a proper divisor 

of q + 1 , and so we may (again) conclude tha t ^ is not a VTT and canno t 

be imbedded as a ROAM. 
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8. ino (ZCXysrOESt T l l E (ZATI^SCyRY 03 C%F VTTs IRI BUBLAnCWN TX) Tt 

L e t A be a graph in (B . Then t h e r e is a p r i m e p w i t h 16 | ( p^ - l ) such t h a t 

G : = PSL^Cp), is a con jugacy c lass of e l e m e n t s of order p in G and 

V(&)= & 

E(A) = { (u,v) e ^ ; o(uv) = 2} . 

Now in R t h e r e is e x a c t l y one map i / t f o r which t h e assoc ia ted graph 

W has & as t h e ve r t ex s e t . However t h e edge s e t E( W) is 

E ( ^ ) = {(u,v) e ; o(uv^) = 2 } 

so ev iden t ly ^ Y . 

However I use th is s ec t i on t o d e m o n s t r a t e t h a t A. is i somorphic as a 

graph to Y , and so (as VTT's) we may r ega rd A. a n d y as r ep resen t ing 

t h e s a m e map J i . 

Now it is c lea r t h a t both t h e g raph Y and t h e g r a p h A f o r m e d f r o m one 

con jugacy c lass of e l e m e n t s of order p in G = PSL2(p) is i somorphic to 

t h e r e s p e c t i v e analogous g raphs f o r m e d from t h e o t h e r con jugacy c lass 

of e l e m e n t s of o rder p. Thus we may wi thou t loss of gene ra l i t y choose 

& to be con jugacy c lass con ta in ing t h e e l e m e n t z of G, w h e r e 

z : = / 1 1 
0 1 

Le t X be an involut ion in G such t h a t 

< x,z > = G and o(xz"^) = 3 

Such an e l e m e n t a lways e x i s t s in G. 
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I now c o n s t r u c t a n o t h e r g e n e r a t i n g pair of G. 

2 

The r e l e v a n c e of t h e condi t ion 16 |(p -1) is t h a t i t g u a r a n t e e s (by the 

q u a d r a t i c r ec ip roc i t y t h e o r e m ) t h a t s q u a r e roo ts of t w o exis t in GF(q), 

one of which I shall d e n o t e by ( t he o t h e r is t h e n - J T ) . This means 

t h a t G con t a in s t h e involut ion X w h e r e 

y ? 0 

Also, l e t t i ng i : = ^ we have 

= / 1 - J ? -

0 1 

and of c o u r s e 

o(z b = o(z) - p 

Now, t ak ing t h e m a t r i x p roduc t , 

X z - ' = / o 

l - / ? 1 

t r ( X z 4 - 1 

o i X z h = 3 , 

Thus (using t h e t e rmino logy of p a r t 2 of c h a p t e r 3) both t h e G - t r ip les 

(x, xz \ z b and (% , % z \ z 4 h a v e a s s o c i a t e d t o t h e m the s a m e t r a c e -

t r ip le (0, 1, 2), and by a r e su l t in c h a p t e r 3 (p. 120) w e conc lude 

3 c EPGL^(p) s . t . 

- 1 
c xc = X 

and c ^zc = z* 
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I now de f ine the func t ion f : G ^ G, 

Vg E G , f(g) I—»- c ^gc 

and f r o m this I fo rm the func t ion a I I given by 

Vg E G , a : . 

(Note t h a t V j e Z mod p, 

f(z^g) = z^^f(g) 

a : I—*-

and so a is wel l -def ined) . 

I will show t h a t a provides us with a graph i somorph ism be tween W and 

A . 

Firs t ly , f r o m the tr ivial observa t ion t h a t c ^gc t a k e s every value in G 

as g is varied through G, we see t h a t a is onto . Also, f o r a reason similar 

t o t h a t showing a is we l l -def ined , a is c lear ly o n e - t o - o n e . It r emains 

t o check t h a t t he induced func t ion 

B : E ( Y ) + given by V(z^,z^) e E(Y), 

e {zh,z6) I - . ( o ( z \ a ( z g ) ) = 

is in f a c t in to and onto the subset E ( A ) of t he c o d o m a i n . (That 0 is wel l -

def ined and one- to-one is a u t o m a t i c f r o m a having t h e s a m e proper t ies ) . 

Now (by t h e proof of the t h e o r e m in §6) we have an a l t e r n a t i v e express ion 

for t he se t E( ¥): 
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E( ¥) = { (u,v) e £ : 3 h,g e G s . t . (u = z , v = z® and 

3 k,Be 1 mod p s . t . z^xz^hg ^ = l)} . 

So when w e cons ider B (z^ ,z^) fo r (z^,z^) e E ( Y ) w e may assume t h a t 

z^xz4 ig ^ = I fo r some k,£ £ Z mod p . 

I show t h a t 6(z^ ,z^) £ E(A) by proving t h a t 

o(z^(h)_^f(g)) 2 . 

Now f(h)(f(g)) ^ = c ^(hg b e 

= c ^(z ^xz ^)c 

and so 

= (f(h)) ^ z f(h)(f(g))"^ zf(g) 

o(z^^^\z^^^^) = o(f(g)(f(h))"^ zf(h)(f(g)) ^z) 

o(z'"'x:z'Xz^-'<') 

= o(X z X z ) . 

But , X z - f 0 ^ 

/ ? - / r 

and so 

(%z) - ( - I - 1 

2 +1 

z=^ t r ( % z X z ) = 0 

o = 2 as r equ i red . 

Thus we have a s c e r t a i n e d t h a t 3 is into E ( A )• But w e know t h a t g is 

o n e - t o - o n e , so to p rove t h a t 3 is on to E(A) we need on ly show t h a t 
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I E(Y^ = |EC&H. 

But r e f e r r i n g to Surowski's paper , we a re told t h a t A (like Y ) has cons tan t 

valency p, and the above equal i ty is immed ia t e a s t h e two ver tex se t s 

a r e iden t ica l . 

9. A NOTE CONCERNING OTHER GROUPS G 

Of course t h e r e is nothing real ly inherent ly spec ia l t o the automorphism 

groups in t h e r e s t r i c t ed when using the t e c h n i q u e s as descr ibed 

in §4 CO §7 ( the same canno t be said for t he a r g u m e n t of §8). It just 

happens t h a t this c a t ego ry of groups (i.e. PSL2(q) and PGL2(q) for all 

p r ime powers q) gives some posi t ive resul ts as a l r e a d y shown, and a re 

the groups principally examined in this volume. But one can extend t h e 

def in i t ion of the graph W(G,Z) : = ¥ t o any f i n i t e group G and conjugacy 

class £ of G in the expec t ed way: 

The v e r t e x se t V( W) of Y is given by the e l e m e n t s of Z 

2 
The edge se t E( V) of f is given exac t ly by those pairs (u,v) e £ 

2 2 
fo r which o(uv ) = o(vu ) = 2 in G. 

Now one can ask for which pa i rs (G, %) can we use an analogous method 

to t h a t we used for our l imi ted c a s e t o deduce t h a t W(G,&) has a unique 

t r iangular imbedding which is a RO AM (with au tomorph i sm group G)? 

Le t us cal l every pair (G, H) for which we can do th i s a solution (of t h e 

method) . 

I a t t e m p t he re to d e t e r m i n e t h e se t of solutions by ident i fying it as 

consis t ing exac t ly of those pairs (G, A ) which s a t i s f y some spec i f i c group 

t h e o r e t i c condi t ions depending only on G and & . To do this I f i r s t w r i t e 

down a sequence of six ques t ions 1) t o 6) all of which involve map or 
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graph proper t i es allied to (G, a ) , and useful ly s u m m a r i s e s the d i f f e r e n t 

componen t s of the whole a r g u m e n t (which is done most ly a t this level). 

If for par t i cu la r (G, £ ) t he answer t o each ques t ion is 'yes ' , this is su f f i -

c ien t to gua ran t ee the unique imbedding of Y as d e s i r e d . We then t r ans l a t e 

t h e map/graph theo re t i c condi t ions inheren t in t h e s e questions into six 

purely group t heo re t i c condi t ions on (G, I ) wh ich taken toge the r a re 

equiva len t . (The appropr ia te group t h e o r e t i c cond i t i ons result ing f r o m 

the six map/graph t h e o r e t i c condi t ions a r e a l r e a d y known, or a t least 

a r e ev iden t , f rom our previous work). 

The six questions involving map and graph p r o p e r t i e s allied to given iG,l): 

1) Does t he r e exist a ROAM J i such t h a t Ji is given by a quadruple 

(G,Op(, y) for which z : = y ^x is an e l e m e n t of 2 ? 

Assume for the other quest ions t h a t t he answer t o 1) is yes, and t h a t 

Ji is any ROAM sat isfying t h e condi t ion expressed in 1). 

2) Is Ji uniquely d e t e r m i n e d ? 

3) Can the underlying graph (H) of be d e s c r i b e d (in t e r m s of an 

isomorphic graph © ' ) with t h e e l e m e n t s of & as t h e ver tex se t (as 

in §^)? 

4) Is t he answer to 3) yes, and Y = © ' ? (c . f . §6) 

5) k aVTT? 

6) Is X re f lex ib le? 
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The Associated Conditions, on G and I for given (G, &) to be a solution, 

Le t z be any e l emen t of &, and d : = o(z) > 6 . 

1) There exis t a pair (x,y) of e l e m e n t s of G such t h a t 

<x ,y > = G o(x) = 2 o(y) = 3 y~^x = z 

2) The se t of pairs (x,y) of G sa t i s fy ing the cond i t ions in 1) above 

form a single class under Stab(z) in AutG. 

3) The cen t r a l i ze r C^ (z ) of z in G must be the c y c l i c group genera ted 

by z (in par t i cu la r <z > G must be a m a x i m a l cycl ic subgroup 

of GJ 

2 
4) There exis t a t most d e l e m e n t s w i n & for wh ich o(wz ) = 2 in G. 

5) If X is an involution in G such t h a t < x,z > = G with o(xz h - 3 

and if i,j,k e Zy, then 

i i k 
z x z ^ ^ : X = I in G = ^ 1 5 ] E k = ± 1 mod d . 

6) If (x,y) is a pair of e l e m e n t s of G sa t i s fy ing t h e condit ions in 1) 

above, then t h e r e ex is t s an au tomorph i sm a of G such t ha t 

- 1 

a : X \—*- X , a : z i — z 

Evidently the above list f o r m qu i te a fo rmidab le se t of condi t ions to 

check fo r any given (G, £) and I do not propose he re t o f ind more examples 

t ha t do give solutions. However I no t e t h a t cond i t ions 2), 5) and 6) a r e 

of r e l evance only to ensure t h e uniqueness pa r t of t h e imbedding: if 

the pair (G, A) sa t i s f i es condi t ions 1), 3) and 4), t h e n Y can be imbedded 

as a ROAM with au tomorph i sm group G but may have o ther t r iangular 

imbeddings. 

A f ina l in te res t ing note is t h a t condi t ion 2) in f a c t is redundant ; if for 
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a pa r t i cu la r (G, £ ) t he conditions 1), 3), 4), 5) and 6) hold, then 2) au to -

mat ica l ly is sa t i s f i ed . This then may be regarded as a purely group theo r -

e t i c resu l t . My proposit ion here may be jus t i f ied thus: 

Suppose t h e r e a r e two ROAMs ' both wi th automorphism group 

G and as soc ia t ed values of z lying in H . Then the a n s w e r 'yes ' to quest ions 

3) and 4) imply the underlying graphs of v4 and ,M' a r e both isomorphic 

to Y(G, I ) and hence isomorphic t o each other : b u t if for any one of 

Ji or t h e map is r e f l ex ib le and i ts underlying g raph is a VTT, t h e r e 

is only one t r iangular o r i en tab le imbedding for t h e l a t t e r and so necess-

arily jvt 2 vK ' con t r a ry t o our original s t ipu la t ion . Hence if condit ion 

2) is not sa t i s f i ed , some o ther of t h e condit ions m u s t be not sa t i s f ied 

as well . 
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