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THEORY OF EXPERIMENT DESIGN

1 Introduction

As a result of analysis of the propulsion system, it was concluded that a series of
laboratory experiments is required to determine the drag characteristics of the hull and
its appendages. However, it was demonstrated that the potential size of the
experimental space was such, that careful design is required to determine a series of
measurements that will produce useable results within a realisable level of resource. It
was shown that the experimental space to be explored is far too large to enable

investigation of all combinations of factors at all levels.

It has also been shown that for any experiment there will be factors that will affect the
results, but which will neither be under control, nor be specifically measured. The
effect of these will be to appear as errors in measurement of the principal effects.
These errors will need to be allowed for in any subsequent analysis. The primary issue
1s, therefore, how best to sample the experimental space such that the maximum
amount of information can be extracted from a realistic number of measurements. The
aim 1s to produce the minimum sample of measurements that will describe the
response surface with sufficient confidence. The levels for each factor need to be
chosen such that there is a high probability of detecting critical inflections in the

response surface.

2 Design Approach

Because of this complexity, a primarily statistical and descriptive approach, rather
than that based purely on physics, is proposed, (although, as always, the statistical
approach must be informed by knowledge of the underlying physics of the problem).
Because of the complexity of the real vehicle, and the limited number of runs feasible
for any realistic experiment, careful selection of the combinations of leveis for each
factor to be set for each experiment is required. As a result of the intention to reflect
complexity, the experiment may well expose unexpected interactions between factors
under certain conditions. The experiments are, therefore, designed based on the

experience of those fields of science that habitually deal with complexity and
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uncertainty in their experiments: those of the life sciences (Cox, 1992), (Underwood,
1997), and those associated with quality assurance (QA) (Davis and Grove, 1992)
(Taguchi, 1988). Those who practice in these fields have developed a body of
knowledge that enables the relationships between significant numbers of factors to be
established in the presence of unknown, and possibly many, uncontrolled or
uncontrollable factors, together with unknown interactions between the controlled

factors.

The experiment under consideration here has similar characteristics to those designed
for QA and life sciences in that it involves many factors at many potential levels.
However, it differs in some key aspects. The charactenistics of the experiments for
which designs are proposed in the literature were developed for two main classes of
work:

¢ Biological or agricultural experiments, where the aim is to quantify
repeatability. The number of controlled factors i1s chosen to be low, but
the number of uncontrolled factors may be high. Interaction between
factors is unknown and may be significant. The time required to
produce data can be long, but large numbers of data samples may be
generated relatively cheaply.

o Experiments to improve the quality of mass-produced components
where the aim is to identify the causes of critical differences in
performance between nominally identical items. Again the number of

. uncontrolled factors can be high, but the number of samples taken can

be large.

The experiment considered here, by contrast, is to be devised as a means of exploring
how the performance of a nominally consistent design changes as the detail of the
design varies, both with time, and between missions. To capture the full extent of
possible changes to detail, the number of factors is necessarily large and the number
of potential levels is high. The number of samples compared with the extent of the
interaction surface being explored is, therefore, likely to be significantly smaller than
would be expected in the other disciplines. On the other hand it should be possible, by
careful design of the apparatus, to ensure that the statistical variability between
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measurements is comparatively small. Additionally it should be possible to

characterise the residual noise so that it can be identified as such.
3 One at a time or all at once?

The instinctive reaction to the need for any scientific exploration is to maintain
maximum control by changing, so far as possible, only one parameter at a time. This
is done on the assumption that the accuracy of the measurement may otherwise be
degraded by unforeseen interference between factors. However, this approach is very
expensive in terms of the number of measurements required and enables only a
limited amount of information to be extracted from the data. For example, if in an
imaginary experiment, three non-interacting factors, A, B and C, may exist in either
of two states, 1 or 2, then the minimum set of experiment that measures the effect of
all combinations of levels and factors by varying one at a time is illustrated in Table
1.

Factor

1 Experiment A B C
1 1 1 1

2 1 2 1

3 1 2 2

4 1 1 2

B 2 i i

5] 2 2 1

7 2 2 2

8 2 1 2

Table 1 Varying one factor at a time
Thus, the minimum numbcr of cxperiments, 7, for f factors cach of which can takc
[ ievels is:
Poig =1 4

Clearly the number of experiments increases very rapidly as the number of factors and
‘levels grow. Thus, 5 factors, each of which can take 3 levels, would require 3° or 243
experiments. And this number assumes that the measurements made are perfect. If

measurement error is suspected then a number of measurements would be required for
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each set of circumstances so that some form of averaging could take place. Under

these circumstances the number of experiments required would increase pro rata.

However, if we make two bold assumptions then considerable economies in terms of

the number of measurements required becomes possible. The assumptions are:

o That none of the factors selected for the experiment interact i.e. their
effects are additive.

¢ That measurements are error free.

All that is necessary now is to make one measurement for each factor at each level,
with the other factors held constant. The number of experiments required then reduces
from that shown in Table 1 to that shown in Table 2. Notional results have been added
to Table 2 to illustrate calculation of the effects.

Factor Results
Experiment A 8 C R
1 1 1 1 10
2 4 2 1 12
3 1 2 2 15
5 2 1 1 19

Table 2 Minimum number of experiments

The minimum number of experiments now only exceeds the number of factors by
onz. The effect of changing factor A ficin lovel 1o level 2 is the difference between
the results of those two experiments where factor A changes but both of the other two
factors remain. constant. In this case the difference is provided from the results for
experiments 1 and 5. Similarly the effect of changing factor B is the difference
between the results for experiments 1 and 2, and that for C is the difference between

results 2 and 3.
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4 Measurement Error or Noise

Now re-introduce the possibility of measurement error. The error will have some form
of distribution. For the sake of argument, assume that the distribution is normal,
(although the logic is equally valid for other forms of distribution). Then the
distribution of the total population, assuming that an infinite number of measurements
are made, will be defined by the population mean and the variance. The greater the
number of sample measurements we obtain, the greater the confidence we will have
that the mean and variance of the sample represents the actual population. But in the
previous example (Table 2) we already have 3 measurements for factor A at level 1,
albeit with the other two factors at varying levels. Ignoring for the moment that the
other two factors vary, we could subtract the mean figure obtained for the 3
measurements at level 1 from the single measurement at level 2. However, because
we have fewer measurements for level 2 we would have less confidence in that figure
and it would be difficult to ascribe an overall confidence to the magnitude of the net
effect. This could be corrected by introducing two more measurements at level 2. We
could then compare the mean of the measurements with the level set at 1, with the
mean of the measurements set at level 2, and quantify the confidence with which we

express the result.

Now let us address the little difficulty of having the other factors varying between
levels. Provided that we retain our assumption that there are no interactions between
the factors, then, if we ensure that the other factors change between their levels an
equal number of times, their effects on the factor in which we are interested will

cancel out. An example is given in Table 3.

This time the experiments have been designed to meet our two conditions. Thus,
factors A, B and C each occur twice at each level and, for example, when factor A is

at level 1, factors B and C each change between levels 1 and 2.

The effect of each factor is the difference between the mean results obtained when
they are set at each level. Thus, for experiment X the effect of changing factor B

from level 1 to 2 is;
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R3+R4_R1+R2 9+14_6+8

E, = = =4.5.
2 2 2 2
Experiment Factor Results
X A B Cc R
1 1 1 2 6
2 2 1 1 8
3 1 2 1 9
4 2 2 2 14
Mean level 1 7.5 7 B85
mean level 2 11 11.5 19
Effect 3.5 4.5} 15
Experiment Factor Results
Y A B C R
1 1 1 2 6
2 2 1 1 18
3 1 2 1 9
4 2 2 2 24
Mean level 1 7.5 12 13.5
mean level 2 21 16.5 15
Effect 13.5 45 15

Table 3 Effect of factors varying between levels

Now let us suppose that the effect of factor A is increased by 10. Thus, the results of
factor A at level 2 in experiment Y are increased to 18 and 24. However, provided the
experiment is balanced, the effect of the change in effect of factor A does not change
the measured effect of factor B. Thus, for experiment Y:

E,=2%24_6t18_,s.

Hence, provided that the experiment is consistent with the assumption, Ep is

unchanged. Equally, the effect of factor C is unchanged.

The independence of factors is analogous to functions in mathematics being
independent. Under such circumstances the functions are described as being
orthogonal. This analogy leads to the practice of describing the experimental factor

arrays as orthogonal,
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5 Balanced experiments and orthogonal arrays

The illustration just provided indicates that a balanced experiment may be defined as
one that satisfies the following two conditions:

¢ Each level for each factor is measured an equal number of times.

e For each measurement at one level the other factors are represented an equal

number of times.

Arranging the factors and levels in the form of an orthogonal array produces by
definition a balanced experimental programme. Arrays for different combinations of
factors and levels that satisfy these conditions have been published by a number of
authors (Davis and Grove, 1992, Taguchi, 1988, Underwood, 1997, Cox, 1992). They
have been formulated to enable balanced factorial experiments to be designed. Thus,
assuming that any noise (measurement error) is randomly (normally) distributed, the
standard statistical descriptors of mean, variance, etc, can be applied to provide a
sound representation of the signal level. Standard regression techniques may then be
applied to the results to fit a response surface to the levels and factors.

Orthogonal arrays are numbered according to the number of experiments to be
petformed. Each row of the matrix defines a combination of levels for the factors.
The orthogonal array for the balanced experiment in this case is designated an Lg2’
array (Taguchi, 1988) (Table 4). It allows for 8 experiments to identify a maximum of

7 effects, each with a2 maximum of 2 levels.

Factor 1 2 3 4 5 B 7
Experiment
1 1 1 1 1 1 1 1
2 2 1 2 1 2 1 2
3 1 2 2 1 1 2 2
4 2 2 1 1 2 2 1
5 1 1 1 2 2 2 2
8 2 1 2 2 1 2 1
7 1 2 2 2 2 1 1
8 2 2 1 2 1 1 2
Table 4 Lg2’ array

6 Interactions between factors

The argument to date has assumed that there are no interactions between factors and

that their effects are additive. However, in the experiment under consideration it is
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quite likely that items of detail on the hull will interact, especially when they are
placed in close proximity. Any interaction will reveal itself as an apparent
measurement error. It will, therefore, be important to be able to eliminate, or where
this is not possible, quantify as many of the noise sources as possible so that
unanticipated interactions can be identified and explored. The subject of noise

charactenisation is addressed in (Fallows, 2005).

It should be possible to quantify the effect of interactions a priori provided that: the
interaction is anticipated; meets cerfain conditions; and is allowed for in the
experiment from the beginning. In particular, if it is assumed that the effect of the
interaction is itself additive, the interaction can be treated as if it is an independent
factor. In this case, the method outlined previously is used, with the interaction
allocated to another column in the orthogonal array. The net effect is then the sum of
the individual effects and the interactions. The disadvantage is that to identify
interactions the number of measurements must increase. In the case under
consideration we will, therefore, adopt the strategy of placing considerable emphasis
on reducing and quantifying noise, and using any increase in the overall noise level to
indicate significant interactions. Once interactions have been identified, the method

for assessing the effects of interactions is as follows.

Consider the Lg2” array at Table 4. When originally presented, one factor was
allocated to each column subject to there being a maximum of 7 factors, each of
which can occupy 2 levels, from a minimum of 8 runs. But as observed above, not all

effects need be due to independent factors. Columns can be allocated to interactions.

To illustrate how interactions are included in an orthogonal array, suppose that we
revert to 3 factors and allocate the first two factors, A and B, to columns 1 and 2. On
the assumption that the interaction is reversible, then two levels of interaction are
possible. Moving from both factors at level 1 to both at level 2 will be the same as
moving from both at level 2 to both at level 1. Cali this interaction level 1. Similarly
holding A constant and changing the level of B will produce an interaction identical to
that of holding B constant and changing A. Call this interaction level 2. We can now
apply this convention to the array to produce the interaction column A x B, as shown
in Table 5.
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™ Factor A B AxB
Experiment
1 1 1 1
2 2 1 2
3 1 2 2
4 2 2 1
5 1 1 1
6 2 1 2
7 1 2 2
8 2 2 1

Table 5 Single interaction

This just happens to generate a column identical to the third column of the Ls2’ array
at Tabie 4.

If we now allocate factor C to column 4 of the Lg2” array we find that columns 5 and
6 provide the interactions between A & C and B & C as shown in Table 6. Applying
the same rule to any of the factors, A, B or C, with the interaction columns, A x B, B
x C or A x C, gives the third order interaction A x B x C in column 7. The notation A
xB, AxC,BxCand A x B x Cis quite dehberate and reflects the fact that column A

x B equates to the product of the contents of column A and column B.

— Factor A B AxB C AXC BxC AXBxC
Experiment ‘
1 1 1 1 1 1 1 1
2 2 1 2 1 2 1 2
3 1 2 2 1 1 2 2
4 2 2 1 1 2 2 1
5 1 1 1 2 2 2 2
6 2 1 2 2 1 2 1
7 1 2 2 2 2 1 1
8 2 2 1 2 1 1 2

Table 6 Multiple interactions

1t should be noted that if we wish to measure all 4 possible interactions as well as the
principal effects of 3 factors, then the number of runs required increases from 4 to 8
{compare Tables 3 and 6). The total experiment then becomes as shown in Table 7,

with the analysis being performed as in Table 6.
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Table 7 Experiment design enabling interaction measurement

From Chapter 1.7 it is clear that the number of factors and levels required for this
investigation are such that it is highly desirable to limit the number of interactions to
be investigated, and hence the number of additional runs required, to a minimum.
Reliance will be made on detecting unsuspected interactions by detecting increase in
signal noise. For this to be possible the background noise will need to be kept very
low. Thus, the experiment will need to be designed such that the effect of
uncontrolled factors is far less significant than is the norm for those designed for QA
and Life Sciences. This will necessitate, so far as possible, control of the environment
under which the experiment is conducted. Where this is not possible the relevant
factors will need to be monitored. Additionally the experimental facilities will need
to be characterised in detail, so that the remaining sources of extraneous signals may
be identified and quantified in advance. Finally likely interactions between the factors
will need to be identified in advance so that they can be catered for in the design and

not appear as additional noise.

7 Fractional Experiments

Fortunately, it is not necessary to explore all interactions. A mixture of purely main
effect and interactions can be designed into an experiment or, alternatively, an
experiment may be designed to enable the extraction of the maximum amount of
information from a limited number of measurements. However, the number of
independent measurements made does limit the number of contrasts that can be
derived. Thus, if only n independent measurements can be taken, then only a
maximum of (n-1) contrasts can be measured. Any interactions not allowed for in the

experiment will appear as an addition to a main effect.
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Consider the plan of Table 6. An additional factor D can be introduced in lieu of the
second order interaction A x B x C. We now have an increase in the number of
possible interactions, with A x D, B x D, etc, as well as additional 3-way interactions
and now a 4-way interaction. But the maximum number of contrasts that can be
measured remains at 7. These contrasts are said to be ‘confounded’ by the

unmeasured interactions. The new plan is shown at Table 8.

™ Factor A B C D
Experiment
1 1 1 1 1
2 2 1 1 2
3 1 2 1 2
4 2 2 1 1
5 1 1 2 2
6 2 1 2 1
7 1 2 2 1
8 2 2 2 2

Table 8 Fractional Experiment

Using the formula already established for identifying the magnitude of interactions it
can be seen that, for experiment 1, the interaction of C x D (both the same and,
therefore, level 1) and B with C x D (both level 1) results in a net interaction B x C x
D at level 1. This happens to equate to the level in the column for factor A. This
observation is true for every row of the factor A column and indicates that column 1}
not only measures the main effect of factor A, but also the B x C x D interaction.
Applying this process to the remainder of the array results in the so called

confounding pattern shown in Table 9 (Davis and Grove, 1992).

Factor A "B AxB c AXC BxC D
Experiment]| +BxCxD | +AxCxD +CxD +AxBxC +BxD +AxD +AxBxD
1 1 1 1 1 1 1 1
2 2 1 2 1 2 1 2
3 1 2 2 1 1 2 2
4 2 2 1 1 2 2 1
5 1 1 1 2 2 2 2
6 2 1 2 2 1 2 1
7 1 2 2 2 2 1 1
8 2 2 3 2 1 1 2

Table 9 Confounding pattern

C Fallows Page 13 ‘ 20/01/2005



This, of course, does not matter if the effects of the confounding interactions are

small.

8 Higher level experiments

The argument to this point has been limited to experiments where each of the factors
varies between only 2 levels. Clearly this can only give an accurate indication of the
relationship between factors when that relationship is linear. If the relationship is
expected to be quadratic, then 2 minimum of three leveis is required. Where greater
confidence in the nature of the curve is required, or where higher order relationships
are suspected, then still more levels are required. Using similar arguments to those
outlined above, orthogonal arrays can be constructed to produce balanced experiments
at higher levels, as demonstrated in the example of a 4 factor, 3-level array in Table
10.

Factor A B C D
Experiment
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 10 Ly3* orthogonal array

9 Mixed level Experiments

For many experiments it is necessary to explore some factors at higher ievels, but not
all. In this case an orthogonal array needs to be selected such that it is designed for the
appropnate number of factors and the predominant number of levels to be used. Thus,
for a 4 factor experiment where only one factor, A, is to be set at 2 levels and 3
factors, B ,C and D, at 3 levels, then the Lo3* orthogonal array shown in Table 10
may be chosen. Factor A would then be allocated to column 1 with levels 1 and 2
corresponding to that in the array, but where level 3 occurs in the armray, either level 1

or level 2 should be allocated. In effect we are treating factor A as if it was a 3 level
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factor with the levels being either 1,1,2 or 1,2,2. This mixed level experiment would

then appear as in Table 11.

Factor A B C D
Experiment
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 1 1 3 2
8 1 2 1 3
9 1 3 2 1

" Table 11 The Ls2".3’ mixed level experiment

Faclor A B C [»] £ F G
Experiment
1 1 1 1 1 1 1 1
2 2 1 2 1 2 1 2
3 1 2 2 1 1 2 2
4 2 2 1 1 2 2 1
5 1 1 1 2 2 2 2
6 2 1 2 2 1 2 1
7 1 2 2 2 2 1 1
8 2 2 1 2 1 1 2
A B 4 level 3 level
factor factor

1 1 1 1

2 1 2 2

1 2 = 3 = 3

2 2 4 3

1 1 1 1

2 1 2 2

1 2 3 3

2 2 4 3
[ Factor A C D E F G

Experiment |
1 1 1 1 1 1 1
2 2 2 1 2 1 2
3 3 2 1 1 2 2
4 3 1 1 2 2 1
5 1 1 2 2 2 2
6 2 2 2 1 2 1
7 3 2 2 2 1 1
8 3 1 2 1 1 2
Table 12 Mixed level experiment
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If, on the other hand, the predominant number of factors is to be set at the level 2,
then the 3 level factor can be allocated to a 2 level array by combining 2 columns to
produce a 4 level factor and then reducing this to a 3 level column as described above.
This is illustrated in Table 12 (Davis and Grove, 1992).

10 Partitioning

Even allowing for the reduction in number of runs possible by rigorously reducing the
effect of noise, reducing the number of levels to the minimum and judicious selection
of the array to mimmise the confounding effects of interactions, the size of the space
to be explored may remain unaffordable. Under these circumstances it is necessary to
break the space down into discrete blocks. This enables the factors and levels to be
tailored to a particular region of the experimental space and allows the number of

levels and factors to be kept within manageable bounds.

11 Summary of the design process

The minimum number of factors is chosen to describe the response sought. Each is
measured for the minimum number of levels consistent with describing the response
surface to the accuracy required. This is determined by the need to detect the shape of
the surface and identify the inflection points. Where interactions between factors are
suspected to be significant these are treated in the analysis as if they were separate
factors. An orthogonal array is selected for the number of contrasts required and the
number of levels chosen. Analysis of the arrays assumes orthogonality, i.e. that there
is no interaction between the factors selected and their effects may, therefore, be
added. The effect on the overall response of a change in level of any factor is then the
difference in the mean of all of the responses to that factor as it changes between
levels. The variance in response to any factor provides an indication of the error, or
noise, in the measurement. Analysis of variance {ANOVA) will then enable
quantification of the significance of the response. The underlying statistics is
explained in (Fallows, 2005).

There are two potential sources of error: that due to noise in the measurement system;
and that due to interactions between factors. The noise due to interactions can be

detected by treating each suspected interaction as an independent factor within the
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array. This is done by means of allocating an interaction to the column that comprises
the product of the factors that interact. Unanticipated interactions may not be easily
distinguished from measurement noise: hence the emphasis in these experiments on
identifying and quantifying the performance of the measurement system {Chapter
2.4).

When designing expeniments it is generally better to establish the lower order
interactions first, i.e. those that involve only 2 interactions, since higher order
interactions are likely to be less significant. It is also desirable to limit the number of
factors investigated in any one experiment since, as the number of factors grow, so do
the effects of confounding. For an exploration of a phenomenon dependent on a large
number of factors it may be necessary to partition the experiment to keep the number

of factors within bounds.

The number of levels chosen for any factor should reflect the form of the anticipated
response to it. Thus, if a linear response is expected, two levels may be sufficient.
However, if a higher order response is expected then a greater number of levels will
be needed if the inflection points are to be detected. For example, in the case of
AUTOSUB, analysis of data collected during missions provides the probability of the
vehicle adopting a particular stance. The experiment can then be designed to ensure
that the most accurate description of the response curve occurs in the region most

likely to occur in practice.

12 Summary of the model implied by the method.

The following model underlies the design and analysis:
e Measurement error, or noise, is normally distributed.
e Contrasts are additive
e Factors are orthogonal or, where not, then the interaction between
them may be treated as a separate orthogonal factor.
¢ Each measurement of the effect of a combination of factors and levels

provides an independent sample of the response surface.
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Conclusions

This Report has addressed how complexity may be handled in an affordable
programme of experiments. It concludes that, for the full complexity to be explored in
a realistic timescale, three conditions must be met. Firstly the experiments require
careful design so that the maximum amount of information may be derived from a
realisable number of runs. These are achieved by using balanced fractional designs
based on orthogonal arrays. Experiments to determine the drag effects of the hult and
appendages of the AUV, needs to be carefully designed. To enable detection of the
effects of unanticipated interactions between factors, the apparatus needs to be
carefully designed so as to minimise the signal noise. The residual noise in the
measurement system must be carefully characterised so that it can be distinguished
from any anomalies caused by unexpected interactions between apparently controlled

factors.
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