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ON MIMD PROCESSOR ARRAYS 

by Nicholas Richard Clarke 

The discrete vortex method is a Lagrangian technique for solving the two-dimensional Navier-

Stokes equations for an incompressible homogeneous Newtonian fluid. The construction of 

a robust numerical solver, based on the discrete vortex method, is discussed in detail. The 

viscous effects are modelled using both the random walk and diffusion velocity techniques. 

The computational cost is reduced by using a zonal decomposition algorithm for the velocity 

summation and by formulating an implementation suitable for execution on MIMD' parallel 

architecture computers. 

The code is validated using the problem of impulsively started flow past a circular cylinder 

at Reynolds numbers ranging from 300 to 31,700. Short/medium time solutions for both the 

rotating and non-rotating cases are used to confirm the accuracy of the method by comparison 

with experimental and numerical results from the literature. Long time solutions for the non-

rotating case reveal non-determinism at high Reynolds numbers: the flows can exhibit a 

multiplicity of vortex shedding patterns. 

The low-speed stall process on NACA four-digit wing sections is visualised. A detailed 

comparison of the flow past a symmetric aerofoil with the flow past a cambered aerofoil 

shows that the camber delays the onset of the stall. 
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1. Introduction 

The concept of the vorticity of a fluid has been important to the development of 

theoretical and computational fluid dynamics. In principle, an incompressible flow can be 

specified entirely by the combination of a potential flow and the kinetics generated by the 

local rotation of the fluid. This principle is applied directly when the fundamental equations 

of fluid motion, the Navier-Stokes equations, are written as vorticity transport equations. 

Many theoreticians have found vorticity useful as a mathematical tool. In certain 

conditions, such as those used throughout this work of a two-dimensional incompressible 

Newtonian fluid of constant density, the rules for vorticity transport can be significantly 

simplified. Thus many researchers have favoured analysis using vorticity as a base quantity, 

rather than using the primitive variables of velocity and pressure. In addition, powerful 

generalisations such as Kelvin's circulation theorem can be applied to make deductions about 

the behaviour of the vorticity of a fluid. In numerical studies using vorticity, there are two 

categories of research which completely dominate the field — the Eulerian and Lagrangian 

approaches to solving the vorticity transport equations. 

The Eulerian approach treats the physical space occupied by the fluid as fundamental and 

considers the fluid flowing through the space. This typically involves the introduction of a 

computational grid superimposed on the region containing the fluid. The objective is then to 

calculate the values of vorticity (and usually another variable, such as the streamfunction) 

within each cell of the grid. Thus a discrete approximation to the vorticity, at particular points 

in time and space, is established. 

The Lagrangian approach treats the substance of the fluid as fundamental and uses a 

frame of reference which moves with the fluid. This involves tracking the position and value 

of quantities embedded in fluid particles. For a vorticity model, these elements are typically 

locahsed areas of rotating fluid. Thus the vorticity field is specified by the creation, 

subsequent positions and possible destruction of a set of fundamental vortex elements. 

The discrete vortex method is of the Lagrangian type. The elements are called either 

discrete vortices (which may include point vortices) or vortex blobs. The simplest discrete 

vortex method models an infinite inviscid fluid (ie. no boundaries are present). Starting with 

an initial configuration of discrete vortices to represent a vorticity distribution, the 

mathematics dictates that the vortices obey a gravity-like body-body interaction law. Thus an 



assembly of vortex blobs has a self-convective effect upon itself which models the motion of 

the fluid. 

Solid boundaries can be introduced into the inviscid model by using the standard potential 

theory methods. Two of the most commonly used alternatives are a panel method or a 

conformal transformation, both of which have relative advantages and disadvantages. Either 

can be applied to create a boundary which obeys the inviscid no-penetration condition. W e 

opted to use a panel method, principally because it could be made to model a general body-

shape, and developed a new panel element with mathematical properties tailored to give more 

accurate results in the discrete vortex method. 

The effects of viscosity may be added to the model by making two modifications to the 

inviscid model. Firstly, a mechanism must be added to satisfy the viscous no-slip boundary 

condition, the physical effect of which is known to be that vorticity is created at the 

boundaries. Thus, in the discrete vortex model, the no-slip condition is satisfied at the 

boundaries by introducing new vortices of the correct strength. Secondly, a diffusive 

component is included in the motion of the vortices in order to model the additional Laplacian 

term in the Navier-Stokes equations. 

The complete Navier-Stokes discrete vortex model has several free parameters, mainly 

concerning the details of the vortex creation mechanism at the boundaries. These parameters 

must be adjusted carefully and verified with extensive testing of results, in order to construct 

a robust numerical solver. 

A significant disadvantage of the basic discrete vortex method is its high computational 

cost. Since each vortex is influenced by all the others, the operation count for updating the 

flow field rises as the square of the number of vonices. We have tackled this problem in two 

ways. Firstly, a zonal decomposition/summation algorithm has been developed which 

significantly reduces the operation count for each time step. Secondly, the software has been 

designed to run on parallel processing hardware in order to gain the performance beneGts 

these systems offer. 

The zonal decomposition/summation algorithm was formulated specifically with the 

parallel implementation in mind. The basis of the algorithm is to artificially divide the 

vortices into a hierarchical structure of 'zones'. For each zone, the vortices contained are 

'accumulated' using a far field mathematical approximation. Then, when computing the 

contribution of the entire vortex assembly to the motion of the fluid at a point, much of the 

sum may be derived from zonal contributions. Since the zonal structure is hierarchical, some 

of the zones may contain a large number of vortices and hence the operation count is 



significantly reduced. The resulting operation count using this technique has a close to linear 

relationship with the number of vortices used to model the fluid. 

Parallel processing, although in its infancy when this work was started in 1987, is now 

accepted by the computing community as the most cost effective route to building high 

performance supercomputers. Current tools for developing parallel software are still relatively 

crude, making the task more time-consuming than software development for sequential 

architectures. However, the potential performance benefits can quickly recover the added 

development cost in a suitable computationally intensive project. The aim is to write software 

which has a performance that scales linearly with the number of processors used. The discrete 

vortex algorithm was reformulated with this goal and results confirm that a near linear 

performance relationship has been achieved. The hardware we have used to generate results 

is relatively inexpensive, which has allowed us to conduct very long runs on both 

Southampton University Computing Services' and Departmental equipment. Thus the 

maximum problem size the code has computed is as large as any we have found in the 

literature. This, combined with a careful mathematical formulation, including some of our own 

improvements to the model, has produced a solver with predictive power at least as good as 

those we have found in the literature, for a suitable set of problems. 

The initial motivation for using the discrete vortex method was to conduct a several-

threaded attempt to evaluate modern computadonal fluid dynamics techniques using parallel 

hardware. This work is one thread, others have produced a parallel spectral-element Navier-

Stokes code and a parallel finite-volume Euler solver. At the start of the project, the discrete 

vortex method had produced promising results for basic problems, but seemed to be limited 

by computational cost. We decided to evaluate the method using large computations and then 

apply it to generate novel fluid dynamics results. 

The Navier-Stokes solver has been applied to the impulsively started flow past an 

arbitrary shaped bluff body. This problem has many applications in hydrodynamics, such as 

evaluation of the stress on marine load-bearing structures or examination of laminar mixing 

behaviour in a fluid. In addition, some low-speed aerodynamics problems, including the low-

speed stall process, fall into the flow regime that can be accurately solved. 

Following this introductory chapter, a literary survey is presented which gives a brief 

chronological history of the method and reviews the main papers from which this work has 

drawn. Some pointers are also given to closely related topics which are outside the scope of 

this text. 

The third chapter details the mathematics of the method. Working from the Navier-Stokes 

equations, the method is constructed in an intuitive manner. Included are details of the new 
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panel method, which has been used to satisfy the boundary conditions at the body surface. 

Explanations are given of the many possible modelling techniques which are used in discrete 

vortex methods. Some advantages and disadvantages of each of these are revealed and, for 

those which are used here, implementation details are presented. Finally, several methods for 

evaluation of force coefficients are detailed. 

A description of the computational aspects of the method follows in chapter four. Where 

possible, the algorithms are presented in a computer-language independent manner. The theory 

and implementation of the zonal decomposition/summation algorithm are detailed; its accuracy 

is confirmed numerically. An evaluation of the expected operation count is accompanied by 

an experimental verification of the algorithmic performance using timings of a long run. The 

parallel algorithm is explained in a step-by-step manner, including a discussion of 

performance-related issues and timings. The chapter concludes with a discussion of the flow 

visualisation aspects and run-time considerations of the code. 

The fifth chapter is the most extensive and contains the fluid dynamical results of this 

work. It opens with an extensive test of the new panel method, giving flow visualisations and 

demonstrating rapid convergence towards the correct boundary conditions. This is followed 

by an experimental examination of the convergence of the discrete vortex method, showing 

how solutions vary with changes in input parameters. The model is then tested using an 

extensive range of impulsively started flows past circular cylinders. The non-rotating case is 

considered first. Discrete vortex results are compared to experimental and numerical 

visualisations for a range of Reynolds numbers at short times and then long term solutions 

are presented, highlighting non-deterministic phenomena occurring at high Reynolds numbers. 

The second test case is the rotating and translating circular cylinder, for which the discrete 

vortex method produces especially close agreement with experimental and finite difference 

results. Finally, results for flow past various NACA four-digit wing sections are presented in 

order to visualise the low-speed stall process. 

The final chapter is the conclusion; a summary and discussion of the body of the thesis 

is presented and some ideas for further research are given. 
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2. Existing Research 

2.1 Overview 

This chapter provides a concise background to the existing research into discrete vortex 

methods, and gives an outline of the chronological history of the subject. Related topics not 

followed in detail in this work are also discussed briefly. 

The methods are controversial; discrepancies can be found between different research 

papers. This is due largely to the ad-hoc nature of some of the assumptions which must be 

made in the formulation of the methods. Supporters of discrete vortex methods praise their 

intuitive nature and their flexibility; in these papers, adequate solutions are found to all the 

problems which arise and the conclusions are positive. Critics, often making comparisons with 

some other favoured method, suggest that the problems encountered in the construction of a 

discrete vortex method are insurmountable and render the results inaccurate. A newcomer to 

the subject might presume that the truth lies somewhere between these two extremes. We 

have found that discrete vortex methods are not a universal replacement for other numerical 

techniques, but can provide good results for a worthwhile set of problems if constructed 

carefully. 

A completely comprehensive study of the literature available in this subject area would 

be a sizeable task. Fortunately, as with most well-researched topics, there are several good 

review papers which make the job more manageable for an individual. To illustrate the scale 

of material available, one of the most thorough of the reviews, Sarpkaya (1989), cites over 

500 references. 

Section 2.2 is intended to provide an introduction to the literature available on the subject 

of discrete vortex methods. Brief summaries are given of the most useful review papers and 

a few other important papers. Section 2.3 gives references to papers concerning the 

application of vorticity dynamics to the construction and convergence of discrete vortex 

methods. A historical overview of early discrete vortex models is included, following the 

subject from the days of hand calculation of the motion of a few vortices through to the study 

of the evolution of a vortex sheet using a collection of vortices. Discrete vortex methods have 

almost exclusively been applied to solving incompressible flows, with the majority solving 

only the two-dimensional case; the basic model solves the inviscid Euler equations. Section 

2.4 gives references for the various models for viscosity which have been devised, allowing 

extension of the method to give solutions of the unsteady Navier-Stokes equations. The 

experimental and numerical fluid flow research papers which we have used are reviewed in 
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section 2.5. These papers provided reliable flow visualisations which allowed the method to 

be validated and its accuracy to be assessed. 

The final three sections of this chapter review research which is not strictly necessary to 

this work. However, the papers referenced contain discussions and results which provided 

useful insights during the construction of the method used here. These references are also 

provided to give an idea of the wider subject area beyond the scope of this thesis. Section 2.6 

reviews papers which help provide a comprehensive background to the subject. The topics are 

closely related to this work, but were not used to develop the techniques presented here. 

Much of the existing research concerns numerical/computational algorithms to reduce the cost 

of the calculations involved. In this work, we use a zonal decomposition/summation algorithm 

(see section 4.5), although a summary of research using the more common technique, vortex-

in-cell, is given in section 2.7. Research into three-dimensional discrete vortex methods, 

which are suitable for solution of relatively simple problems, is discussed in section 2.8. 

2.2 First Readings 

The original papers on discrete vortex methods were by Chorin (1973, 1978); the review 

papers we have made most use of are by Sarpkaya (1989), Leonard (1980) and Spalart (1988). 

The latter provide a comprehensive guide to the subject and all of the commonly used 

techniques are at least mentioned. 

Chorin (1973, 1978) was the first to use the random walk and claim solution of the 

Navier-Stokes equations. The description of the basic method is clear, with the test case of 

flow past a circular cylinder. We found that insufficient detail was included to reconstruct his 

results. 

Sarpkaya (1989) is a comprehensive review paper, covering most aspects of discrete 

vortex methods in great detail. The theory is developed from the relevant mathematical 

equations, with pragmatic descriptions of pitfalls for the modeller to avoid. Comparisons are 

made between techniques used by various researchers and the quality of results achieved. 

Emphasis is placed on engineering applications, as opposed to mathematical tests of the 

model. Although the author has been involved in a great deal of work using discrete vortex 

methods, he is critical of much of the research reviewed. 

Leonard (1980) is essentially a review paper, but also presents some new theory 

concentrating on the fundamental mathematics of the model, such as vortex distributions and 

the accuracy of convection schemes. A particularly clear explanation of other papers dealing 

with convergence of the method is presented. 
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Spalart (1988) is a very positive paper including some impressive results of flow over 

complicated body shapes (see Figure 1). Details of the main techniques are explained in terms 

of the physics of the flow. The paper is a 'recipe book' for discrete vortex methods, providing 

instructions on how to quickly prepare good models for a variety of aerodynamics problems. 

figure 1 Flow past a multi-element aerofoil, from Spalart (1988). - vortex; T force; 
streamline. 

Smith and Stansby (1988), using the vortex-in-cell method, present some of the best 

results for impulsively started flow past a circular cylinder, the test case used in our research. 

The results for early times match both experiments and other numerical solutions well, 

although the apparent imposition of transverse symmetry in their model precludes its use 

beyond the time of symmetry breaking, which occurs in experiments and numerics. 

2.3 Vortex Dynamics 

Helmholtz (1867) was the first to show that, in an inviscid fluid, vortex lines move with 

the fluid particles and that some rotational flows can be usefully modelled using vortex lines 

of appropriate circulation. Following the important work of von Karman, Rosenhead (1931) 

attempted to model the roll-up of a vortex sheet by treating it as a system of point vortices. 

The evolution of a vortex sheet has been the subject of great interest in the literature. 

This subject is relevant to our work as the trailing vortices behind a bluff body can be 

modelled with a spiral of rolled-up vortex sheet. The stability of such a spiral has been 

studied theoretically by Saffman (1974), Moore (1976, 1981, 1984) and experimentally by 

Pierce (1961), whose conclusion is that Helmholtz waves are formed on the sheet, which can 

degenerate into turbulence. This turbulence then mixes the nearby parts of the sheet and thus 
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smooths the core of rolled up regions. This constitutes the justification for the circulation 

reduction technique used in discrete vortex models (see section 3.10.1). Sheets have also been 

modelled using discrete vortices by Fink and Soh (1978) and Krasny (1986). 

These works led eventually to the idea that continuous regions of vorticity could be 

modelled by a number of discrete vortices embedded in a potential flow. The objective of 

such a model is to evolve the Lagrangian (or Lagrangian-Eulerian) description of the 

discretised vorticity field. Convergence proofs are given by Hald (1979) and Beale and Majda 

(1982), showing that smooth distributions of vorticity represented by discrete vortices and 

modelled consistently (see chapter 3) solve the Euler equations. 

The application of boundary conditions to a vortex method requires the assignment of 

values to a number of mathematically arbitrary numerical parameters (eg. Starting positions 

of vortices, size of vortex cores). These parameters should be adjusted to give good results 

for a wide range of problems. However, an extensive search for optimum values becomes 

difficult even with relatively few parameters; in practice sensible values may be assumed for 

certain physical quantities. A good understanding of the underlying vorticity dynamics is 

needed to ensure that the reasoning used in these assignments is justified. Introductions to 

basic vorticity dynamics may be found in Lighthill (1963), Batchelor (1967) and 

Morton (1984). The most explicit is Morton whose aim is to explain, in terms of the physics, 

the areas of vorticity dynamics which have traditionally remained mathematical. The previous 

treatments by Lighthill and Batchelor are discussed and areas for further investigation are 

highlighted. In particular, Morton feels that the boundary conditions of vorticity dynamics 

have not been fully explained. Using simple exact solutions, some deductions are made about 

the nature of the creation and subsequent motion of vorticity. 

2.4 Viscosity Models 

The random walk viscous diffusion model for discrete vortex methods was proposed by 

Chorin (1973) and used to simulate slightly viscous flow past a circular cylinder. The basis 

of the model is to add a 'Brownian motion' component to the motion of the vortices; this has 

been proven, by Einstein (1956) and Wax (1954), to be statistically equivalent to a diffusion. 

Chorin states that large numbers of vortices must be used to smooth the noise created by the 

random walk and that results will become invalid at low Reynolds numbers where the 

magnitude of the random component of the motion becomes large. The random walk is also 

used by Sarpkaya and Ihrig (1986), Smith and Stansby (1988), Spalart (1988) and 

Cheer (1989). 
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The viscosity model using growing cores is discussed in Leonard (1980). In this model, 

the viscous diffusion is simulated by allowing the discrete vortices' core sizes to increase with 

time. Intuitively, this is in an appealing technique as a single spreading Gaussian vortex is an 

exact solution of the Navier-Stokes equations. However, not many authors have used the 

technique, possibly because there is some doubt that it converges to solve the correct equation 

(see section 3.5). 

The diffusion velocity method introduced by Ogami and Akamatsu (1991) uses the 

fundamental principle of diffusion: a diffusive quantity has a positive flux from a region of 

higher concentration to a region of lower concentration. Mathematical analysis is presented 

which gives each vortex a 'diffusion velocity' in addition to the convection velocity. An 

argument is given that the technique solves the correct equation and it does not introduce 

excess noise into the solutions. Superior convergence is demonstrated in the paper (as 

compared to the random walk method) for a simple one-dimensional problem. No mention 

is made of the problem whereby the diffusion modelled by this technique is limited to regions 

where the vortices are overlapped (see section 3.5.2). 

The grid-based diffusion method introduced by Graham (1988) is suitable for use with 

the vortex-in-cell method (see section 2.7). The diffusion term of the Navier-Stokes equation 

is taken into account using a conventional finite-difference solution on the vortex-in-cell grid. 

The vorticity is then reinterpolated onto the discrete vortex field. 

2.5 Experimental/Numerical Comparison 

In order to compare our results with experiments and numerical simulations, it was 

necessary to widen our literary search to include some mainstream fluid dynamics papers. 

Perhaps surprisingly, there are few good visualisations of high Reynolds number flows and 

there is a similar dearth of numerical work. In particular, visualisations at long times for 

Reynolds numbers greater than 1,000 are scarce — possibly due to the eventual onset of 

turbulence in experiments and non-deterministic behaviour in numerical work. 

The experimental works of Bouard and Coutanceau, in conjunction with the finite-

difference numerical work of Ta Phouc Loc, Dennis and Badr give an extremely clear and 

comprehensive set of visualisations for the early stages of flow past a circular cylinder at 

moderate Reynolds numbers. The three key papers used in this work are Bouard and 

Coutanceau (1980), Ta Phouc Loc and Bouard (1985) and Badr, Coutanceau, Dennis and 

Menard (1990). In each paper, a discussion is given of the observed fluid structures. Some 

classification is made of the complex behaviour of the flows into categories for differing 

Reynolds numbers. 
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Van der Vegt and Huijsmans (1984) and van der Vegt and de Boom (1985) present an 

interesting and highly complex numerical scheme. A variational technique is used to solve 

the Euler equadon which claims to smooth the solution and reduce the computation involved 

by use of cubic spline fitting and fast Fourier transforms. Force results are in qualitadve 

agreement with their own experiments at Reynolds number 31,700 — both papers show an 

interesdng multi-phase/chaotic behaviour in the experiments which we have found also in our 

calculations, see section 5.4.11. 

Ishii, Kuwahara, Ogawa and Chyu (1985), Tamura, Ohta and Kuwahara (1990) and Rao 

and Kuwahara (1991) present various Hnite difference results (including some visualisations) 

for flow past square and circular cylinders up to very high Reynolds numbers. Some results 

are included for times beyond the symmetry breaking point. 

Franke, Rodi and Schonung (1990) use a finite volume technique to solve for flow past 

square and circular cylinders at Reynolds numbers up to 5,000. Visualisations are given only 

for the lower Reynolds numbers used, but other results are given for the whole range. 

2.6 Related Topics 

The references that follow have not provided much direct input to the work undertaken 

here. However, they are useful as background reading and may be of more relevance to future 

research. 

Sethian and Ghoniem (1987) uses a discrete vortex method to solve flow over a 

backwards-facing step. Results are presented for several Reynolds numbers in the range 50 

to 5,0(X). Accuracy and convergence are discussed. 

Tiemroth (1986), a Ph.D. thesis, describes in great depth the history of vorticity-based 

fluid models. The primary motivation of this work is to derive the force on cylindrical 

members (such as the upright supports of an oil platform) in the ocean. After a long and 

positive introduction, which explains the underlying physics very clearly, the vortex-in-cell 

method is used, claiming an operation count in number of vortices. Analysis is used 

to derive a formula for force although, unfortunately, it is specific to a circular cylinder. 

Results are presented for short times only and the flow visualisation presentation is somewhat 

disappointing. 
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2.7 Vortex-in-Cell IVIethod 

The high computational cost of direct discrete vortex calculations has always been a 

problem. Reducing the cost allows more computational elements to be used, giving better 

resolution of the flow characteristics. The cloud-in-cell method was originally developed at 

Los Alamos (USA) in 1955 (see Harlow (1964)) to help reduce the cost of a Lagrangian 

problem. The basis of the method is to introduce an Eulerian mesh through which the 

Lagrangian particles move (see section 4.5.1 for further details). 

Christiansen (1973) was the first to apply the method to the interaction of vortices, 

coining the more common name when applied to discrete vortex methods, ie. the vortex-in-

cell method. The vorticity is transferred from the particles to the mesh in order to solve the 

Poisson equation for the streamfunction, and hence calculate the fluid velocity. 

Following Christiansen, the vortex-in-cell method is discussed by Baker (1979), Leonard 

(1980), Smith and Stansby (1988) and Graham (1988). This numerical scheme has the 

advantage that the smoothing of the vorticity over a grid at each time step tends to stabilise 

the problem. Sarpkaya (1989) explains this effect as 'a singular problem is desingularised by 

an artificial viscosity'. Unfortunately this smoothing is also a major disadvantage — the grid-

based artificial viscosity is completely removed only by dispensing with the grid. 

2.8 Three-Dimensional Models 

Leonard (1980, 1985) describes several three-dimensional flow models and applications. 

The fluid problems considered are far more fundamental (from an engineering point of view) 

than those possible in two dimensions. Typical examples are instability of vortex rings 

(Ashurst (1981)), the evolution of a turbulent vortex (Chorin (1981, 1982)), the evolution of 

a time-developing round jet (Ashurst (1983)) and interactions of solitons on a rectilinear 

vortex (Aref and Flinchem (1984)). Practical aerodynamic problems cannot yet be attempted 

partly because of the large computational cost involved and partly because the mathematical 

techniques have not reached sufficient maturity. 

The methods are broadly grouped into two categories. The most common category use 

a vortex Olament model, in which each vortex is represented by a chain of vortex elements 

joined to approximate a curve. Unfortunately, these curves have a natural tendency to wrap-up 

into progressively tighter loops and consequently, methods must employ some form of 

rediscretisation to accurately represent the increasingly complicated filaments (see Chorin 

(1982)). The alternative category employs 'vortons', which are three-dimensional discrete 

vortices that are isolated in space and can stretch independently. The vortons have a 
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convective influence upon each other in much the same way as do the vortices in the two-

dimensional model. 

The vorton approach appears to hold more promise of eventually leading to a general 

purpose three-dimensional Navier-Stokes solver, but is still far from this at present. 

2.9 Summary 

We have presented a brief introduction to discrete vortex methods and given references 

to the key papers in the subject. A flavour has been given of some related research which has 

followed a slightly different course to this thesis. Pointers into the main body of the text have 

been given in an effort to improve its functionality as a reference material. 
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3. IVIathematics and Modelling 

3.1 The Equations 

The Navier-Stokes equations, in a streamfunction-vorticity form, for a two-dimensional 

homogeneous incompressible Newtonian fluid are, 

— + ( ( f . V ) ( j = — V^w (1) 
% /(g 

= -0) 

M = -Vx(ijrfe) (3) 

where M(r,f) is the velocity of the fluid at position r and time f, is the streamfunction, 

is the vorticity (defined by 0)^=Vxw, where t is the unit vector in the direction 

perpendicular to the plane of the velocity) and is the Reynolds number a[//v (a is a 

characteristic length, (/ is a characteristic velocity and v is the kinematic viscosity of the 

fluid). These equations form a closed system and hence, with suitable boundary conditions, 

may in principle be solved to give the motion of the fluid. This implies that the motion of the 

fluid may be represented solely by the creation/destruction and the motion of the vorticity 

field. 

In the following sub-sections the method of discrete vortex dynamics will be developed 

as a tool to solve equations (1), (2) and (3). Initially the simpler case of infinite fluids with 

no fixed boundaries will be dealt with, then the method will be extended to solve flows past 

bluff bodies placed in an infinite fluid. 

3.2 Discrete Vortices 

We construct the discrete vortex method starting from the premise that the vorticity field 

may be partitioned into an assembly of Ny discrete vortices. This assumption is made with 

little discussion in much of the literature (possibly because the resulting error is difficult to 

assess) but is thought to be the major source of inaccuracy of the method. Mathematically the 

vorticity is now 

(4) 



where is the vorticity distribution of the discrete vortex located at and F} is its strength. 

It is usual to use distributions where the vorticity depends only upon distance from the centre 

of a vortex and where all vortices have the same shape (to reduce the cost of computing the 

velocity field) and core size (to improve convergence, see section 3.4), so we can write 

Y/d = / ( | c | , G ) (5) 

where o is a measure of the core size of a vortex. Normalising the distribution using 

271J rf{r,o)dr = 1 
r=0 

we make F) the total circulation of the j ' vortex, the most meaningful measure of strength. 

The problem of following the motion of a continuous vorticity field has now been 

reduced to that of following the motion of /Vy discrete vortices. In other words the aim of the 

vortex method is to calculate the quantities 

3.3 Inviscid Fluids 

The relationship (ot=VxH may be inverted using the Biot-Savart law, giving the velocity 

in terms of the vorticity 

(7) 

^ k - z r 

where | ^ | is the area element at position % and the integration is performed over the entire 

plane. Substituting (4) and (5) gives the velocity induced by the discrete vortex as 

= 

where 

0 ; r = r 

F(r,(7) = ^^/(g .o)^^ (9) 

s=0 
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The total velocity is 

Ny 

^ M (C.f) 
y=i 

For an inviscid fluid, equation (1) becomes the Euler equation, 

— = — + ( % . V ) w = 0 (11) 
Dt dt 

which is pure convection of vorticity. This is solved exactly for a system of point vortices in 

an infinite fluid by letting each vortex move at the local fluid velocity (see Batchelor 

1967), ie. 

= M(z:.(0,0 . 

Using equation (10), equation (12) and a suitable time stepping scheme, it is possible to 

follow the vortex positions which, as explained in section 3.2, solves the motion of the fluid. 

Standard time stepping schemes from the literature can be used, for a full discussion of those 

used here see section 4.6, p. 61. 

3.4 Vortex Distributions and Instabilities 

Using point vortices gives an exact solution of (11), but numerically they tend to cause 

instabilities. A point vortex has distribution 

Y/C) = 6(C) (13) 

where 6 is the two-dimensional Dirac distribution (in effect 8 is infinite at the origin, zero 

elsewhere and its integral over an open domain containing the origin is 1). Calculating the 

velocity distribution for this vorticity (and implicitly assuming no self-induction as in 

equation (8)) yields the following 

The vorticity distributions are singular, as are the velocity fields they induce. 

Consequently, it is no surprise that a numerical time-stepping scheme based on a point vortex 

system will be become unstable after a finite time (see Krasny (1986)). 
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Using less singular vorticity distributions stabilises the method numerically (Hald (1979), 

Beale and Majda (1982) give convergence proofs for smooth distributions in an unbounded 

fluid). The use of vortex blobs, as they are commonly termed, has one disadvantage: strictly 

speaking the nonlinearity of the Euler/Navier-Stokes equations forbids superposition of 

velocity fields induced by non-point vortices. Physically, this error manifests itself as the 

inability of the blobs to distort with local variations in velocity. They retain their original 

shape and just convect through the fluid. However, the error has been taken into account in 

the convergence proofs and, in time, does not become the main source of inaccuracy. 

Leonard (1980) shows that the velocity summation converges with a greater degree of 

accuracy if all vortices have the same core size. Leonard also presents a scheme (which he 

calls 'scheme B') for calculating the vorticity-weighted average of velocity over a vortex blob. 

He claims that this scheme gives better convergence and removes the restriction of having a 

uniform core size. However, the integral to be evaluated is much more complicated than 

simply taking the velocity at the centre of the vortex, and we were unable to Ond analytic 

soludons for any vortex blob distributions. Numerical computation of the integral would be 

as expensive as using the simpler scheme with many times more blobs. We chose to use as 

many blobs as possible, in order to be able to resolve the fine flow details necessary to 

correctly model high Reynolds number or inviscid fluid problems, hence we have not pursued 

Leonard's scheme B. 

Some typical blob distributions are given by the following. The graphs are for 

distributions with G=l. 
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figure 2 Vorticity of a Rankine Vortex 
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Figure 3 Velocity of a Rankine Vortex 

(15) 

The vorticity distribution has a constant 

value inside the core and is zero outside. 

Physically, the core is rotating as a solid 

body. 

(16) 

The velocity distribudon increases linearly 

within the core to a maximum value of 

J/27tG, then has the same behaviour as a 

point vortex outside the core. 

Rankine vortices are intuitively attractive because they correspond to solidly rotating 

regions of fluid. However, for discrete vortex methods they have few advantages, being 

discontinuous in both vorticity and velocity fields. Few papers refer to Rankine vortices other 

than historically. 
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The vorticity distribution is smooth 

everywhere and decays rapidly outside the 

core, moving away from the centre. 

Figure 4 Vorticity of a Gaussian Vortex 
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(18) 

The velocity distribution is smooth 

everywhere and has a maximum magnitude 

near r=7.72(j of approximately 0.6-^/(271:0). 

Figure 5 Velocity of a Gaussian Vortex 

Gaussian vortices are extremely useful for constructing discrete vortex methods. Many 

authors use them as the basic computational element; we have found that they lead to good, 

results at reasonable cost. The fact that the vorticity distribution is not 'contained' (in the 

sense that at an arbitrary distance from the vortex, it is non-zero) is a slight disadvantage as 

explained in section 3.10. 
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3.43 Chorin Vortex : 
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The vorticity distribution has a singularity 

at the centre and is zero beyond the core 

radius. 

Figure 6 Vorticity of a Chorin Vortex 
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The velocity distribution has a constant 

radial velocity, of magnitude 

inside the core and has the same behaviour 

as a point vortex elsewhere. 

Igure 7 Velocity of a Chorin Vortex 

Chorin vortices were developed to represent a vortex sheet when placed around a 

boundary. A velocity jump is experienced in moving across the centre of the vortex — this 

is similar to the velocity jump across a vortex sheet. This advantage is small compared to the 
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disadvantage caused by the singularity in vorticity at the centre of the vortex. If the vorticity 

Held is of no interest as such, then reasonable results can be achieved using this distribution. 

There are a wide variety of other vortex distributions available in the literature. Some 

authors conclude that using more complex cores gives better convergence towards the 

equations. However, the so-called higher order vortex cores are more expensive to use in 

computations and most authors who advocate their use are only considering errors in the 

vortex propagation. It is our belief that a significant source of error is the discretisation error 

incurred by representing the vorticity field by a finite number of discrete vortices. The only 

way to reduce this error is to use as many vortices as possible. Therefore we have opted to 

use an inexpensive distribution (Gaussian) so that the limited computing resources available 

can be employed to maximise the number of blobs. 

3.5 Viscosity 

In a fluid with no solid boundaries, the introduction of viscosity into the Euler equations 

has only one effect: the right-hand side of equation (1) introduces a diffusion of vorticity. 

There are a number of methods for extending the inviscid model to account for the effect of 

the extra term. 

3.5.1 Operator Splitting : Random Walk / Growing Core 

The most commonly used technique is the random walk method, where equation (1) is 

split into two parts 

^ = - ( g . V ) w (21) 
dt 

^ (22) 

This is called fractional-step and is an example of operator splitting. Equations (21) and 

(22) are solved consecutively, rather than simultaneously as they appear in (1). Equation (21) 

is the Euler equation (cf. equation (11)), the solution of which using vortices has already been 

discussed, leading to equation (12). Equation (22) is the viscous diffusion equation, which can 

be modelled by adding a random walk of variance (where 6/ is the time step used for 

the convective motion of the vortices) to the position of each blob at every time step (see 

Wax (1954)). The viscous diffusion induced by the random walk is statistically equivalent to 

that caused by equation (22). The disadvantage is that large numbers of vortices are needed 
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to converge to the analytic diffusive solution. The result of using smaller numbers of vortices 

is to introduce excess noise into the solution. 

The splitting technique has been shown to converge for an infinite fluid, provided each 

sub-step converges, by Hald and Del Prete (1978), Hald (1979, 1985, 1986) and Beale and 

Majda (1981). Exact Navier-Stokes solutions are approached as the number of vortices, 

tends to infinity, core size, o, tends to zero and average vortex spacing tends to zero (more 

quickly than core size). These conditions can be explained by reasoning that, to approximate 

an arbitrary vorticity distribution accurately using a sum of vortex blobs, it would be 

necessary to use many small blobs and they must overlap. 

Alternatively, the viscous component in equation (22) can be simulated by allowing the 

core sizes of the blobs to grow with time. This is commonly applied using Gaussian vortices 

(equations (17) and (18)) since, with a core size growing at the rate a single one 

gives an exact solution of the Navier-Stokes equations. The problem with the growing core 

size approach is that it demands the presence of a variety of core sizes which, as discussed 

in section 3.4, adversely affects the convergence of the Biot-Savart law to a solution of the 

Euler equation. The viscous convergence conditions given above illustrate another advantage 

of the random walk model over the spreading core approach, this advantage being the ability 

to control the maxfrnw/M core size and hence ensure the solution converges. Spalart references 

Greengard (1985) who claims that, whilst the growing core approach solves the viscous 

equation correctly, the convective terms converge to solve the equation. 

A completely different approach is employed by Ogami and Akamatsu (1991), who 

construct a diffusion component for the velocity of each vortex as follows. The equation for 

a scalar function moving with velocity in the (x,y)-plane 

is easily shown to be 

(23) 
% ^ 

The Navier-Stokes equation (1) may be rewritten in this form as follows 

/ 1 
ck 

/ 1 
w 

w j 
+ A 0) = 0 (24) 

where and are the usual convective velocities. Hence the effect of the viscosity is to add 

a diffusion velocity component, l=(yj;,yy) to the motion of each vortex, with magnitude given 

by 
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V (25) 

1 3o) (26) 

So each vortex moves with total velocity M+v. In practice we have calculated the diffusion 

velocity by dividing by the strength of the vortex under consideration, rather than summing 

the vorticity at that point. This is simpler to implement and gives the correct derivative when 

multiplied by the local vortex strength in equation (23). The problem of a possible division 

by zero (where the vorticity is zero) may be conveniently circumvented by simply deleting 

vortices of zero strength. 

This has all the advantages of the random walk method, it does not involve the 

introduction of a grid and allows control over the maximum core size. In addition, it does not 

incur an error due to operator splitting and does not add excess noise to the solution as does 

the random walk. The solutions will converge as more vortices are used, but it should only 

be necessary to use enough blobs to resolve the detail of the viscous diffusion process, rather 

than enough to statistically model a particle diffusion problem. 

A significant disadvantage of this technique is that very little diffusion is induced 

between vortices which become too far separated. This is because the diffusion velocity 

formulae decay rapidly moving away from the vortex centre. Unfortunately, this means that 

large scale eddies in the wake behind a body will stop spreading once the component vortices 

have moved sufficiently far apart. The random walk will continue to spread such eddies 

indefinitely. 

Our Endings have confirmed that the vorticity diffusion method gives smoother solutions 

than the method using the random walk. However, the eddies behind the body wgrg observed 

not to spread to the same extent. This problem was eventually rectiHed by using a bilinear 

combination of the two methods. Pure diffusion velocity is used near the body surface where 

there are many overlapping vortices; this is graded to pure random walk at a distance from 

the body where the vortices have become more sparse, but where they are far enough from 

the body that the noise introduced cannot affect the boundary layer to the same extent. 
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3.6 Boundary Conditions 

In the early stages of this project it was decided to concentrate on flow past bluff bodies 

due to our aerodynamical interests and the wealth of experimental and reliable numerical data 

available for veriGcation of results (see eg. Collins and Dennis (1973), Ta Phouc Loc and 

Bouard (1985) and Bouard and Coutanceau (1980)). In such flows we consider a body in an 

unbounded region of fluid. The Navier-Stokes equations for this situation can be solved given 

the velocity at the body surface, the flow 'at infinity' and the staning flow everywhere. 

In order to study the case of an impulsively started body, the initial condition is zero flow 

everywhere then uniform flow past the body an instant later (leading to the non-lifting 

inviscid solution for the instant after motion has started). This is the most common starting 

situation in mathematical models and there are many experiments where the initial 

acceleration of the body is extremely rapid. 

One of the main advantages of vortex methods is that the boundary condition far Arom 

the body is solved exactly. The flow induced by the vortex elements decays to zero in the far 

field, so the boundary condition at infinity is automatically set to be uniform flow. Also, all 

the flow elements used are mathematically valid at any distance from the body and, because 

no grid is used, calculation of the flow far from the body is not especially expensive. 

The flow at the body surface is zero due to the inviscid no-penetration condition (zero 

normal velocity) and the viscous no-slip condition (zero tangential velocity). The 

no-penetration condition can be satisfied either approximately — using a panel method — or 

exactly — using a conformal transformation to a circle and an image system inside the circle. 

The no-slip condition is satisfied by generating new vorticity on the surface of the body at 

each time-step, in an attempt to model the physical process of vorticity creation in a boundary 

layer. The quality of the results produced by this method is highly dependent on accurate 

modelling of the boundary layer around the body. A noisy boundary model can fail to resolve 

important features, such as separation points, correctly. Hence a considerable effort has been 

devoted to improving this aspect of the model. 

Dealing with the inviscid condition first, a comparison of the two alternatives is required. 

Conformal transformations are exact (ie. no fluid leaks into the body), but require an image 

system within the body. Since the operation count for the velocity calculation is greater than 

linear in Ny (see section 4.5) this more than doubles the problem size. Also, Spalart (1988) 

maintains that an image system can introduce a large error in the flux of vorticity along the 

boundary layer, because a vortex and its image can approach closely and convect each other 

strongly. However, it is not clear whether this argument is limited to point vortices, with 
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singularities in their velocity distributions, or whether it includes smoother distributions with 

Onite velocity distributions. 

Panel methods require one linear matrix decomposition at the start of the calculation, but 

can be applied at a Axed cost per vortex thereafter. Spalart believes that the use of vortex 

panels reconstructs the physical processes of a viscous boundary layer, causing vortices to 

separate correctly from sharp comers. Our results are consistent with this, as we have 

observed boundary layer separation in regions of very high curvature (see section 5.6). If a 

panel method is used, a certain amount of leakage into/from the body will occur and should 

be assessed as a source of error (see section 5.1). 

On the grounds of computational cost and the relative simplicity of writing the code to 

deal with arbitrary body shapes, it was decided to use panel methods rather than conformal 

transformations. A new panel method has been developed which is suitable for use with 

vortex methods. We have concentrated on vortex panel methods, as these extend more 

naturally than source panel methods to the full discrete vortex model. Hence results are 

presented for vortex panels only, but the mathematics involved is easily modified to construct 

a source panel method. 

As a general description of a vortex 

panel method, suppose we have a vortex 

element (eg. blob, sheet) of unit strength 

with velocity distribution p(r ,f) ( f is a set 

of parameters defining the position and 

orientation of the element). Choose a set of 

M positions for elements, just outside the 

boundary. As a mathematical tool, the 

elements could equally well be just inside 

the boundary, but later the panels are used 

as a source of vorticity in the flow; placing 

the elements outside gives the correct sign 

for the generated vorticity. Next choose M control points ^ on the body contour, with 

corresponding unit tangents Suppose there is an external flow _^(r). Form a set of linear 

equations to determine element strengths which will exactly satisfy the boundary condition 

at the control points. For example, to satisfy the tangential condition. 

figure 8 A typical panel method 

M 

E 
/=i 

for : = (27) 

Solve these equations for and fomi a new velocity, which models flow around the body 
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M 
iifCc) = i z / r ) + E 

j=i 

Due to the nature of the Laplace equation, which is being solved here (considering the 

problem in terms of streamfunction), satisfying the tangential no-slip condition has the 

beneficial side-effect of satisfying the zero normal velocity condition, provided that the 

vorticity inside the body is zero (See Spalart (1988) pp. 29). Note that the physical 

interpretation of this method is one of modelling a thin boundary layer on the body surface 

by a vortex sheet, with the velocity jump in passing over this sheet corresponding to going 

from the stationary fluid at the surface to the moving fluid in the exterior flow. 

The most basic element used (see eg. Anderson (1984), pp. 160) is a constant vorticity 

along a line firom Tig to T]; in the complex plane, and this has velocity distribution 

«'(z) = — - l o g 
2:t(Tli-no) z - n o 

(29) 

where the notation is in the complex plane, and ' denotes the complex conjugate. This 

element has singularities at Tig and r|;. In the vortex method, a vortex can approach close to 

one of these points leading to large velocities and consequently inaccurate solutions. 

Chorin avoids this problem by using a smoothed point source (with a source panel 

method), with distribution 

2%(z no) 

where A is the diameter of the smoothed core and » is the (complex) unit normal to the 

body contour near the element. This has no singularities but has discontinuities, which are not 

desirable (functions with discontinuities have delta functions in the first derivative). 

We have developed a new element with better mathematical properties. The element is 

a linear distribution of vorticity on a quadratic curve (the element has zero vorticity off the 

curve) and has velocity distribution 
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2-kC 
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/J 
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2(T1^-po-Tlo) 

- P o - ( 

2(ni-Po-Tio) 

(31) 

Figure 9 A new element 

This element runs from T]o to T]y and has first (complex) 

derivative at Tig. An example of such a curve is shown in 

Figure 9, the equation of the curve and the vorticity 

distribution is given below in equation (32). The vorticity 

distribution is linear, from zero strength at T); to unit strength 

at Tlo. 

positioa, Ti(f) = (Tii-no-Po)f^ + Pof + T|o 
vorticity, o ( 0 = 1-f ; 0 ^ r < l 

(32) 

This distribution has a singularity at Tig, but this can be 

removed by forming a super-element from two elements 

placed 'back-to-back'. Place one at position 

and the other at to make the 

super-element run from to T|j through r|g, with 

gradient Pg there (see Figure 10). These super-elements 

have no singularities, since the limiting velocities of the 

two sub-elements, approaching T|o, are equal and 

opposite. In our model, we place each element through 

three consecutive position points around the body, so that neighbouring elements overlap. 

Thus each super-element curve matches the first derivative of the body contour at its middle 

point, where the vorticity distribution is at a maximum. This placement scheme creates a 

singularity-free vorticity distribution on the body surface, second order in space and first order 

(ie. linear) in vorticity. 

figure 10 A super-element 

In the form given above, the velocity distribution of an element has been normalised, in 

the sense that. 



as |z-Ti(,|-», M r , (33) 
2n(z-no) 

± e same functional form as for a point vortex at Tig. Thus, in the form given, the total 

circulation of an element is one (other terms in the expansion will not contribute to a 

circulation integral). This is an equivalent normalisation process to integrating for the total 

strength as in equation (6), but examining the asymptotic form is much simpler for an element 

with such a complicated velocity distribution. 

As mentioned above, new vorticity is introduced to the flow via the no-slip boundary 

condition. There are several ways of doing this. Initially we followed Chorin's method based 

on the fact that the velocity jump over a vortex sheet is given by the strength of the sheet. 

Hence, if the fluid is stationary at the body surface, the strength of the vortex sheet must be 

determined by the tangential velocity just outside. Hence the strength of the surface sheet at 

any position may be calculated, allowing the sheet to be partitioned into discrete vortices. 

This works in a sense, but takes no account of the self-interaction of the sheet as it develops, 

and so there is no point in the model at which both normal and tangential boundary 

conditions are satisfied. To clarify this, the no-slip condition is only solved in a 'local' 

fashion at each control point, and the effect of a created vortex is not taken into account other 

than at its own control point. 

Another approach is to use a vortex panel method to satisfy the boundary conditions and 

then at the next time step propagate the sheets as blobs with the same total circulation. This 

at least gives one state where, since both boundary conditions are approximately satisfied, 

forces can be measured. Certain details of the creation mechanism are ad-hoc, and are given 

in section 3.10. 

A significant problem with the discrete vortex method is that vortices with large 

circulations can be formed, which can then induce large velocities on close neighbouring 

vortices leading to large time-stepping errors. We have used dynamic vortex creation which 

helps to reduce this problem. The basic idea is simple — impose a maximum circulation and 

do not allow any vortices to be formed with strengths which exceed this upper bound. If more 

circulation than the maximum must be injected into the flow at a boundary point, do so using 

multiple vortices whose total circulation matches the required value but who, individually, do 

not exceed the maximum. This has the beneficial side-effect of injecting many more vortices 

in regions of high vorticity generation, which helps to resolve the fine details. It was found 

the results were significantly improved by the addition of this technique into the model. 
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An example of dynamic vortex creadon 

is illustrated in Figure 11. The multiple 

vortices generated from a given boundary 

point are arranged evenly along the line 

segments between the associated vortex 

creation point and its two neighbours. 

Vortices from a point are placed up to half 

way along these two line segments. This 

scheme causes the vortices to overlap, 

which is necessary for rapid convergence 

(see secdon 3.5). Also, the transition 

between panels and blobs is smoothed by using several blobs arranged in a straight line, as 

opposed to one strong blob at the creation point. For details see section 3.10. 

In a two-dimensional flow, the total circulation around a contour far from the body 

remains constant, the same condition as Kelvin's Circulation theorem. The condition leads to 

the following relationship between the panel and vortex strengths (for a non-rotating body). 

Figure 11 Dynamic vortex creation 

M 
E h - - Z r , 

(34) 

/=1 /=1 

which can be used as an extra equation in the panel method. Spalart gives a proof of this 

condition based on keeping the pressure (which can be evaluated by integration of the rate 

of creation of new vordcity around the body, see section 3.11) single-valued. Many authors 

advocate dropping one control point equation and using the circulation condition as a 

replacement. The problem here is that it can cause large leakage at the control point which 

has been dropped. We have achieved good results by using equation (34) to remove one 

unknown from equations (27), giving us M equations for M-J unknowns. We then use a least 

squares solution to minimise the errors from the remaining equations. Thus each equation is 

treated in the same manner, leading to a 'symmetrical' solution at the control points and 

satisfying (34) precisely. A general formulation of a least squares solution is as follows. 

Suppose the errors are to be minimised in the over-specified system 

z 
y=i 

for (35) 

where S>R (more equations than unknowns). Define a new matrix ^ by 

= (A ^X). = E 
ij 

(36) 
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Then the errors are minimised by solving 

! = l , . . . j ( (37) 
y-1 y-i 

which is simply R equations for R unknowns. 

In our panel method formulation it would then be necessary to use equation (34) to calculate 

the strength of the removed unknown (X,;+y in the notation used above). 

3.7 Modelling the Surface of the Body 

Since the boundary is only 'virtual', it is possible that vortices cross into the interior of 

the body. This is due to the movement across the boundary of vortices near the body surface 

(essentially caused by time stepping errors) or boundary conditions not being satisfied exactly 

(fluid 'leaking' across the boundary). There is some debate over whether these vortices should 

be reflected back into the exterior flow (there are several different ways of doing this) or 

removed from the model completely. 

In fact, while it is accepted that vorticity can only be created at solid boundaries in a 

homogeneous fluid, there is considerable debate over the fundamental mechanism of vordcity 

destruction. Batchelor (1967) pp. 266, writes "vorticity cannot be created or destroyed in the 

interior of a homogeneous fluid under normal circumstances, and is produced only at 

boundaries" implying that vorticity is lost by diffusion to the boundaries. Morton (1984) is 

felt (by Sarpkaya) to have clarified the situation, he claims "vorticity once generated cannot 

subsequently be lost by diffusion to the boundaries", "walls play no direct part in the decay 

or loss of vorticity", "vorticity decay results from cross-diffusion of two fluxes of opposite 

sense and takes place in the fluid interior", "vorticity generation results from tangendal 

acceleration of a boundary, from tangential initiation of a boundary and from tangential 

pressure gradients along a boundary" and "reversal of the sense of acceleration or of the sense 

of the pressure gradient results in reversal of the sense of vorticity generated". 

Given this confusion, a pragmatic approach was adopted; both deletion and reflection 

were tested and the results compared. Deletion is easy to implement, simply remove vortices 

from the calculation if they enter the body. Reflection is less trivial — a discussion of how 

this can be implemented is given below. An algorithm for detection of a vortex crossing the 

boundary is given in appendix B; it is suitable for implementation of either reflection or 

deledon. 

35 



figure 12 Reflection methods 

The precise details of the reflection 

mechanism are not obvious — most authors 

do not include any details and some merely 

state that they use 'elastic reflecdon'. The 

obvious reflection will here be called 

'mirror reflection' and has the same 

properties as a reflected beam of light in a 

mirror. This technique is shown at point A 

in Figure 12: the velocity component normal 

to the body surface is reversed after contact 

with the surface. In terms of the physics of the fluid, this seems a strange choice. Consider 

an example where two vortices have the same velocity, directly towards the wall. Using 

mirror reflection the vortex initially closer to the wall is further away at the end of the time-

step, implying that fluid particles can exchange positions — a rather unusual phenomenon. 

Improved results were obtained from either zeroing the normal component of velocity (as 

shown at point C in Figure 12) upon contact with the wall, or stopping the vortex completely 

(as shown at point B in Figure 12) at the wall. In terms of results, there is little difference 

between these two techniques, but the stopping technique is slightly easier to implement 

(using the zero normal method, a vortex may need multiple reflections at a concave surface, 

as shown in Figure 12). Hence, we have used the scheme illustrated at point B where 

reflection is required in our calculations. 

An important point is that for consistency reflection, and MOf deletion, should be used for 

the sub-step in a high order time stepping scheme (see p. 61 for a discussion of time 

stepping). Therefore any vortex which enters the body in a predictor step is reflected, ie. with 

deletion, only vortices located inside the body at the of a time step are deleted, not those 

taken across the boundary by a predictor step. 

After extensive testing and comparison, it became apparent that deletion of vortices 

crossing the boundary was giving better results (both in terms of flow visualisation and body 

force coefficients). After further investigation it appeared that this was mainly due to the fact 

that many of the vortices diffuse inside the body just after they have been created. This means 

that, when employing the method of deletion, much of the vorticity is lost immediately 

causing a much weaker rolling-up effect of the wake behind the body. This weaker roll-up 

seemed to be necessary: using reflection caused the initial wake eddies to be too small and 

concentrated, as compared to experimental visualisations. Also, the reflection technique caused 

excessive oscillation in the early time values of force coefficients. From observations of the 

vortices plotted on a graphics monitor at these early times, there seemed to be an alternating 

oscillatory 'overshoot' in the amount of vorticity shed from the body surface. The deletion 
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mechanism consumes a significant number of vortices, making runs that use this surface 

model less expensive. 

In conclusion, the results presented here use deletion of vortices which are inside the 

body at the end of a time step. Reflection scheme B (see Figure 12) is applied to any vortices 

entering the body in a predictor sub-step. It is worth noting that, due to the enforcement of 

equation (34), any net circulation removed by deletion of vortices will be replaced on the next 

time step. 

figure 13 Vortex Creation 

3.8 Vortex Core Size 

The radius of a vortex core (o in 

Figure 13) is set to satisfy a number of 

heuristic conditions. It is important to ensure 

that the convergence conditions (see section 

3.5) are satisfied in the limit of increasing 

numbers of vortices. In practice this means 

that as the number of vortices created per 

time step increases, the core size should 

tend to zero and some tendency should be 

given towards overlapping the cores. Within 

these constraints the choice of the actual 

size is arbitrary. We use a core radius of a quarter of the average distance between boundary 

points and rely upon the multiple vortices created using the dynamic vortex creation to satisfy 

the overlap criterion (see section 3.9). A suitable value was found through experimenting with 

different core sizes. For a given number of boundary points, solutions are reasonably 

insensitive to the choice of core size, although using much larger core sizes fails to capture 

the finer flow details and tends to make the layer of vortices near the boundary too fat; using 

much smaller core sizes leaves too many gaps in the vorticity distribution near the boundary 

and fails to overlap the cores sufficiently to converge the method. Note that as the number 

of boundary points increases, and hence as the number of vortices introduced into the flow 

increases, the condition that the core size must tend to zero is automatically satisfied. 

An error arises in the transition from boundary panel elements to vortex blobs, because 

the vorticity distributions can never be matched exactly. This error is related to the choice of 

core size and could lead to numerical instability when using a small time step (see 

section 5.3). 
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3.9 Initial Vortex Positions 

In the usual, non-dynamic, creation scheme the vortices are created slightly off the 

boundary — one at each point of normal distance from a boundary point, as shown in 

Figure 13. The distance 6N is chosen to balance the following criteria. Each vortex must be 

placed so that the effect of moving it away from the boundary along the normal is that its 

influence on the boundary For instance, a Gaussian vortex must be placed at a 

minimum distance of 1.12(7 from the boundary, as the velocity distribution decreases on either 

side of this point (see Figure 5). If this condition is not met, the method can become unstable 

using a small time step. The observed result of this instability is that the effect of the newly 

created vortices on the boundary increases immediately. At a subsequent time step the effect 

of the original vortices has increased and, by now, more vorticity has been created. Hence the 

system creates vorticity of the opposite sign to compensate and in this way oscillations can 

be established. The second factor is that the no-penetration condition is only satisfied as a 

result of solving a Laplace equation inside the body (see section 3.6). When using vortices 

with unbounded cores, such as Gaussian vortices, there is some residual vorticity inside the 

body leading to a weak Poisson equation. Spalart (1988) states that the smoothness of 

solutions to the Laplace equation ensures that this error will not cause instability and this is 

in our results confirm this. However, we have found that if vortices are created too close to 

the boundary the amount of fluid leaking across the body contour increases significantly, 

possibly due to the existence of interior vorticity. The third factor is the desire to keep the 

minimum representable boundary layer as thin as possible in order to accurately represent the 

experimentally observed physics at high Reynolds numbers. The value 6A^=1.12(y has given 

good results with Gaussian vortices, ie. with the maximum velocity on the boundary. 

The other aspect of vortex positioning which is not prescribed by the model is the 

positioning of the 'extra' vortices created by the dynamic vortex creation scheme. We have 

tried two different schemes and found results to be insensitive to the implementation details. 

With a random walk it is adequate to initially place all extra vortices at the creation point 

described above and allow the random viscous motion to take each vortex to a different 

position. Using the diffusion velocity the extra vortices must be placed at different initial 

positions or they will remain coincident for all time. We chose to use the simple scheme of 

distributing the extra vortices at equally spaced points along the straight line segments joining 

the normal creation points. Then the maximum allowable circulation of an individual vortex 

is set to be proportional to the core size. If the strength of a boundary panel exceeds this 

maximum, it is split into several vortices of equal strengths, less than the maximum. Thus 

increasing the number of boundary points has the effect of confining an increasing number 

of 'multiply created' vortices to a smaller physical space. This should help to satisfy the 

overlap condition required for convergence of the convective equation (see section 3.5). 
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3.10 'Ad-Hoc' IVIodelling 

There are a wide variety of less rigorous adjustments which can be made to the model. 

Care must be taken to implement these judiciously and to test them properly. The techniques 

are mainly intuitive and often involve retrofitted parameters. However, they are reported to 

improve results and warrant investigation. To broadly categorise these techniques, they all fall 

under the following titles 

3.10.1 Circulation Reduction 

In this addition to the model, the strength of each vortex decays with time. This improves 

drag and lift Ogures, see Sarpkaya and Shoaff (1979), and is thought to work because it is a 

crude model of the three-dimensional vortex stretching which occurs in real fluids. The rate 

of decay is purely arbitrary and is set to improve drag and lift results. See Sarpkaya and 

Shoaff (1979). The results presented in this paper do not use circulation reduction — we 

wanted to apply the model with as few arbitrary choices as possible. 

3.10.2 Vortex Amalgamation 

When using a vortex amalgamation scheme, if two vortices of opposite sign approach 

closely they are removed and replaced with one 'averaged' vortex (see Ham (1968)), 

modelling the process of opposite signs of vorticity cross-diffusing and decaying, which is 

observed in real fluids. The problem is that there are many different ways of performing the 

averaging. Sarpkaya (1989) claims that it is important to average only far from the body, to 

ensure that a previously amalgamated pair does not recirculate close to the boundary, where 

the high velocity gradients could draw a close pair of vortices apart. This technique was not 

tested as it would have been difficult to implement on top of the parallel algorithm used here 

(see section 4.6). It would be important to implement amalgamation so that vortices are 

amalgamated depending only on their physical position, not on which processor they reside. 

3.10.3 Turbulence Modelling 

Above Reynolds numbers of 0(5000) the wake behind a circular cylinder becomes 

turbulent, although the boundary layer remains laminar until O(IO^), see Schlichting (1960). 

Various attempts have been made to add vorticity diffusion via the random walk, along the 

lines of an eddy-viscosity model. Since turbulence is fundamentally three-dimensional in 

nature, this approach could only provide a very crude correction factor. We have not used 

turbulence modelling in order to minimise the number of arbitrary factors in the model. 
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3.11 Body Force Evaluation 

Body forces are extremely important results for practical use of the method. 

Unfortunately they are rather difficult to calculate as there is no explicit pressure variable. 

There are several techniques suggested in the literature. 

Chorin (1973) suggested the use of numerical integration of vorticity near the body 

contour to calculate the pressure on the boundary and the skin friction. He introduced a 

special grid just off the boundary and calculated properties on the grid to use in the 

integration. Our attempts to compute forces in this manner produced poor results. 

Sarpkaya (1963) gave the following formula for the body force on a cylinder in a uniform 

flow with discrete vortices, 

A 
D + = -ip Z ^ r ( f ) ( 3 8 ) 

where r', is the position of the 'image vortex' associated with the vortex. The formula is 

a modified form of Blasius' theorem. The drawback with this is that, although it is easy to 

apply for geometrically simple shapes, in general the position of an image vortex is not easy 

to determine. 

Quartapelle and Napolitano (1983) give a general formula for the pressure force acting 

on a rigid body in an incompressible flow. This simplifies slightly for high Reynolds numbers 

(see Smith and Stansby (1988)) to 

K (39) 
where = 0 
with n.VT|^|g = - a . ^ and 

V is the volume containing the fluid, S, is the surface of the body, 8% is an arbitrary surface 

enclosing the body and delimiting the considered flow domain (S^uSz encloses V), and y is 

the unit vector in the direction of the force component fy we are calculating. This formula is 

very useful but suffers from a lack of generality in that the function T) can only be calculated 

analytically for fairly simple geometries. For example, the case of a circular cylinder leads 

to the following fomiulae for drag and lift, 
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7=1 
(40) 

(41) 

where, as before, F), (%,,)[/) and (o .̂V/) are the vortex strengths, positions and velocities, 

and a is the cylinder radius. This formula has given better results for the circular 

cylinder than those which generalise to arbitrary shapes, as found by Smith and Stansby 

(1988). 

Smith and Stansby (1988) and Spalart (1988) give an alternative formula based on the 

rate of creation of vorticity at the body surface, which is applicable to arbitrary body shapes. 

To derive the equation, first write equation (1) in the form. 

— = -V.^ 1 _ ^ 
g u - — V w 

Re 
(42) 

which is a flux equation for the vorticity, the term in the large bracket on the right-hand side 

being the flux of vorticity at a point. At the wall M=0, so the flux of vorticity normal to the 

wall (equivalently the rate at which the wall is emitting or 'creating vorticity') is 

1 9co (43) 

Starting from the velocity Navier-Stokes equations (see Batchelor) it is simple to prove for 

a two-dimensional fluid that, on the body boundary, 

^ _ 1 

ds Re dn 
(44) 

Hence the pressure force on the body may be calculated by integration of the rate of creation 

of new vorticity at the boundary. Using the notation for panel strengths from section 3.6, the 

formula 

(45) 

gives the pressure on the body at the j"' control point. It was discovered that slightly less 

noise was produced by using this formula within the sub-step phase of the second order time 
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stepping scheme (possibly because no vortices can be deleted in this sub-step). See p. 61 for 

a discussion of time stepping schemes. 

Notice that by integration of equation (43) around the whole boundary and use of the fact 

that the pressure must be single valued, we arrive at equation (34). Strictly this should be zero 

circulation at each step, but if we allow deletion of vortices as part of the model it is 

important to ensure that the lost vorticity is regenerated in the next panel calculation. 

The skin friction force on the boundary is most easily derived from first-principles. The 

fluid speed just off the surface, w, is available as a result of the panel method. The speed at 

the surface, is usually zero, but in any case is known (for example, the case of the rotating 

cylinder, see section 5.5). The shear stress at a point on the surface is given by, 

F = [i— = — — - — - (assuming non-dimensionality of quantities) (46) 
dn Re 

where is a measure of the thickness of the panel layer. In the model used in our code, the 

actual panel layer has zero thickness, but is continually being transformed to discrete vortices 

just off the surface. Hence the thickness of the vortex layer is used for 2̂ . 

It is worth noting that the skin friction force only contributes a signiHcant proportion of 

the total force at the lower values of Reynolds number for which the method is valid. As 

Reynolds number increases beyond approximately 5000 this force becomes negligible. 

In the computations which follow, we have used equation (45) to calculate the pressure 

force, since it is the only technique we have found which is applicable to arbitrary body 

shapes and which produces meaningful results. Equations (40) and (41) are used as a trusted 

reference formula for the pressure forces in the test case of flow past a circular cylinder. The 

skin friction is calculated using equation (46). 
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4. Computing 

4.1 Introduction to Parallel Processing 

4.1.1 What is Parallel Processing ? 

The essential idea behind parallel processing is simple - many processors working 

simultaneously on a task will complete the task more quickly than one processor could. The 

job must first be broken down into pieces which may be completed semi-independently. 

Applied to a computer program, this procedure is known as parallelisation. 

This is a similar approach to that used in a working environment to divide a single job 

amongst several employees. Take, for example, the task of several people writing a newspaper 

article. The article would be divided up into sections which could be written simultaneously. 

The writers must communicate with each other as they write to avoid duplication and to give 

the article overall continuity. The flow of 

work and communication involved is 

illustrated in Figure 14. Notice that the 

whole article cannot be printed until the 

writer who takes longest has finished. This 

illustrates the very important concept of 

'load balancing' a parallel program, to 

ensure that each worker has similar amounts 

of work to do. It is also of interest to 

consider the extreme case where the article 

is to be two thousand words long and an 

attempt is made to divide the job between 

two thousand people. Each of the writers would need to speak to so many others, to ensure 

that their particular word made sense in the article, that (fairly obviously) the job could be 

done more quickly using less workers. In parallel processing parlance, this process of 

breaking the problem into useful sized chunks is called achieving the correct 'granularity' for 

the problem. 

Flow of Work 

— ^ Communication 

Igu re 14 Writing a newspaper article 

4.1.2 Parallel Computer Architectures 

A traditional computer executes a single sequence of instructions which operate on data 

stored in its memory. This is known as a Single Instruction Single Data (SISD) machine. 
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The first generation of parallel computers were nearly all based on Single Instruction 

Multiple Data (SIMD) architectures. In these machines several processing units execute the 

same sequence of instructions on different pieces of data. This can be applied extremely 

efficiently to very repetitive algorithms, such as matrix calculations, but there remains a large 

set of problems which are not suited to SIMD parallelism. Examples of SIMD machines are 

the Distributed Array Processor (DAP) and the vector processors within some supercomputers. 

Although progress continues with SIMD technology, recent developments in parallel 

computing have followed a trend towards Multiple Instruction Multiple Data (MIMD) 

architectures. The current machines have multiple independent processors which have some 

means of communicating with each other. The communication is performed either by a shared 

global memory or by special communications hardware which is used to send messages from 

one processor to another. Most algorithms can be reformulated to execute as several 

sequential threads which communicate as necessary to complete a problem. Several 

commercial MIMD machines are based on the Transputer, which was designed specifically 

as a building block for such architectures and has special in-built communication links as 

standard. Other machines are available based around off-the-shelf microprocessors (eg. 80386, 

i860) with additional haidware for communications. 

The principle reason for using parallel computers is economy. Doubling the performance 

of a SISD machine means moving to a faster technology. This invariably requires an increase 

of the clock speed, leading to expensive cooling systems and critical timing designs. These 

are very expensive additions to make, so twice the perfomiance tends to cost more than twice 

the price, at any particular time. For a MIMD machine, all that is necessary to achieve a 

twofold increase in potential perfomiance is to use twice as many processors. The individual 

processors which have the best price/peifomiance ratio can be used to build the machine, 

giving a computer which is cheap, powerful and easy to expand. 

This argument may seem to contradict the current trend of high performance 

workstations, which are doubling in performance over an ever decreasing time period. 

However, the same argument applies — perfomiance and price may in theory still be 

increased linearly by a linear increase in the number of processors. Workstations are starting 

to become available containing more than one processor and clusters can be used as a single 

parallel computer. 
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4.2 Introduction to Transputers 

The range of Transputers form a family of microprocessors designed and manufactured 

by Inmos as building blocks for MIMD parallel processing systems. The first floating-point 

transputer (the T800) has four serial communications links which allow a number of 

processors to be connected together to form one parallel machine. The T800 also has 4K of 

fast internal memory, and has performance of 10 MIPS^ / 1.5 MFLOPS^. For technical 

details of the transputer family see 'The Transputer Reference Manual' (Prentice Hall). 

The latest transputer (the T9000) promises a tenfold increase in performance and 

communication bandwidth. Inmos claim a peak performance of 200 MIPS / 25 MFLOPS. In 

addition a separate routing processor (the CI04) will automatically route messages across a 

network of T9000s, whereas routing on TSOOs must be done in software. This simplifies 

parallel codes and allows more flexible mapping of software processes onto hardware 

processors. The T9000 is currently under development and is due for release some time in 

1992. It is instruction set compatible with the T800 so all the software developed under this 

project should easily port to architectures based on the T9000. 

4.3 The Occam Programming Language 

Occam was developed by Inmos and the Programming Research Group at Oxford 

University. It implements a subset of the Communicating Sequential Processes (CSP) 

language defined by Hoare (1978) and provides a simple language for parallel processing 

solutions. For more information on Occam see 'Occam2 Reference Manual' (Prentice Hall) 

and Fountain and May. The main features unique to Occam are 

Indentation. The block structure of Occam is defined by the indentation of the source text. 

A number of lines of code are signified as relating to a previous construct by indenting the 

lines two spaces relative to that construct, eg. 

I F 
a=l 

a :=0 
a=0 

a; =1 

^ Millions of Instructions Per Second 

^ Millions of FLoating point Operations Per Second 
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TRUE 
SKIP 

has the effect of exchanging the values o and i in a. 

Note that most languages require explicit block delimiters (eg. {} in C) with indentation 

used as an aid to readability. Occam enforces indentation in a consistent manner, removing 

the need for any other form of block delimiter. 

PAR. This construct states that the sub-processes it relates to are to 

be run concurrently. A PAR completes when each of its sub-

processes has terminated. Unlike most languages, sequential 

execution must be explicitly stated using the SEQ construct eg. 

SEQ 
PAR 

AO 
B() 

C O 

runs the procedures AO and s o in parallel then, when both have terminated, runs CO, 

Channels. Channels are a new data type which can be thought of as 

a wire between two concurrent processes. Each channel has an input 

end and an output end. Data may be sent from one process to 

another via the channel, eg. 

CHAN OF INI wire: 
PAR 

wire ! 1 
INT x; 
wire ? X 

— declare wire 

— sending process 
— variable used by receiving process 
— receiving process 

wire is defined as a channel which may transmit integers. One parallel process sends the 

value 1 down the channel wire. The other process receives the value and stores it in the 

variable %. 

A communication involves two processes - one at either end of a channel. The first 

participant to reach an input or output construct will wait there until the second participant 

reaches the corresponding construct at the other end of the channel. At this point the 

communication takes place then both processes are free to continue executing code. Code 

must be designed so that all communications have a matching opposite end which will 

execute, otherwise 'deadlock' occurs. In parallel processing parlance, communication in 
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Occam is termed 'blocking' and 'synchronous'. Blocking means that the program flow stops 

at a communication construct until the communication has finished. Synchronous means that 

a communication finishes when the entire message has been transferred firom its source to its 

destination. 

ALT. This construct allows a process to wait upon a number of channels, responding to the 

one on which data is first received, eg. 

INT %: 
ALT 

a ? X 
c ! X 

b ? % 
c ! X 

If data is sent on channel a first, it is stored in % then sent down channel c. However if data 

is sent on channel b first, it is stored in x then sent down channel c. This is a simple example 

of a 'multiplexer' process, where the data from several input channels is interleaved onto one 

output channel. 

The Transputer hardware was designed to implement Occam efficiently and, at the time 

of writing, the Occam compiler still creates the fastest code. At the start of this work Occam 

was the only high level language compiler available; only recently have Fortran and C 

compilers become equipped with adequate debugging tools. If the project were to be extended 

significantly, translating the code to C would increase portability to parallel machines other 

than those based on the Transputer and would also make certain parts neater (where the 

natural implementation is to use data structures - OccamZ does not have these). 

The speciOcation of Occam is such that the compiler can perform extensive checking on 

the user's code. This greatly reduces the chance of programming errors slipping through the 

compilation/debugging phase of development. Logical errors are, of course, still a major 

problem. 

One of the main drawbacks with using Occam for this type of project is the lack of 

existing code. Initial progress was slowed considerably by having to implement and validate 

'standard' numerical routines. In addition, all the visualisation and hard output routines have 

been developed from scratch. 
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4.4 Programming Methodology 

Initially, a test version of the code was written to evaluate the vortex method and to learn 

the Occam language. This version became somewhat unmanageable due to its 'organic' 

growth into large and complicated routines containing multiple copies of some sections of 

code. 

The experience gained in the development of the test code guided the programming 

methodology used for the second version. The second version is functionally more 

complicated and the source code is over Hve times greater in size (the current version has 

over 10,0(X) lines of source in total) and yet is more manageable and proved easier to debug. 

This was achieved quite simply, by not allowing any piece of source code to grow to a size 

that made it difficult to comprehend as a whole. In addidon any code which had to be used 

in more than one place was made into a procedure and called from the various places, rather 

than copying the section with an editor. This achieved a 'single path' for as much of the 

functionality as possible, making modifications to the code simpler as only one place needed 

to be altered. 

4.5 Zonal Decomposition/Summation Algorithm 

4.5.1 Cheaper Algorithms 

A naive calculation of the velocity of the vortices in order to time step their positions has 

an operation count of O(A ŷ̂ ) (because for each vortex a sum must be performed over all the 

others, see equation (14)). Since new vortices are generated on the boundary at each time 

step, even small runs become expensive quickly. One possibility for reducing the cost is to 

use the vortex-in-cell method, which introduces a grid. The velocity is calculated by 

interpolating the vorticity onto the grid, solving equation (2) for the streamfunction, 

differentiating to give the velocity on the grid and then interpolating it at the vortex positions. 

The operation count for this method is 0(A^v) in vortices, and 0(fZog^P) where f is the 

number of grid points on the mesh. Good results have been obtained using this method by 

Smith and Stansby (1988), Graham (1988) and others. Two major disadvantages of the vortex-

in-cell method are that grid generation is necessary and that computational effort must be 

expended in dealing with areas that contain no vorticity. 

Another method is the zonal decomposition/summation method, described in detail below. 

The method has also been described as a 'fast multipole' technique and a 'vortex lumping' 

scheme. This scheme maintains the essence of the original Lagrangian scheme as no grid is 

required. The implementation of the method is significantly more complicated than the basic 
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scheme, but significantly reduces the operation count and yields results which are the same 

to within a specified numerical accuracy. 

4.5.2 The Theory 

The zonal decomposition/summation 

method follows work by Van Dommelen and 

Rundensteiner (1989) but has been 

significantly restructured to make it more 

suitable for parallelisation. The method relies 

on the following theorem. Suppose there are 

vortex blobs contained within a domain 

D (as illustrated in Figure 17), then 

sufficiently far from D the velocity induced 

by all vortices may be calculated using a 

Laurent series in M, terms (where depends 

only on the accuracy required). 'Sufficiently 

far' in this case turns out to be relative to 

the maximum distance from any vortex in D to some arbitrary point in D (this maximum 

distance is temied the 'radius' of a zone). The coefficients of the Laurent series can be 

calculated in advance of the summation relative to this arbitrary 'centre' point, A.. Hence, 

beyond a certain distance from the centre, we can use the series and, if is large, save 

work compared to a direct summation over each vortex. The formulae for the coefficients, 

velocity and convergence condition are 

© ® z, 

z , 0 ZE® ) 

+ 
z 

Figure 17 

let = 
7=1 

k-\ 

1 
then w(z)-fv(z) = — ^ y ^ a / z - A ) ^ + 0 ( E ) 

provided |z-A | >A(M ,e). |z,-A | 

(47) 

where are the coefficients for the zone, F} and are respectively the strengths and positions 

of the vortices in the zone, is the (complex) centre point of the zone and is a function 

depending on the number of terms used in the series and e, the accuracy required. The 

derivation of these formulae are given in appendix A. 

Equation (47) is, strictly speaking, valid only for point vortices. It has been observed, 

however, that no significant extra error is incurred by using the blob distributions given in 

49 



section 3.4. This is because these distributions decay rapidly and so are numerically 

indistinguishable from point vortices at only a few core radii f rom the vortex centre. 

4.5.3 Algorithmic Details 

Vortex 

Figure 18 Decomposition of a biased vortex distribution into a hierarchy of zones 

To use the theorem effectively, it is necessary to construct an algorithm to decompose 

the entire vortex field into a set of zones. The algorithm is made even more efficient by using 

a hierarchical zonal structure, so that the zone containing the largest number of vortices can 

always be used. For the parallel implementation it is also desirable to have zones at the same 

level in the hierarchy containing equal numbers of vortex blobs (for load balancing, see 

section 4.6). 

Figure 18 shows the action of the algorithm developed for the parallel vortex code. The 

algorithm is of the 'divide and conquer' type. Initially the whole domain is split into two 

zones, each containing half of the blobs, the split being on the larger of its dimensions (See 

appendix B for pseudo code for the splitting process). Thus the resulting smaller zones are 
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as square as possible. Splitting is recursed until further division would leave the smallest 

zones containing too few vortices to save work in the forthcoming velocity summation. 

In Figure 18, the dividing process is shown for a random distribution of vortices biased 

towards the bottom left comer of the region. The division is repeated in the example until 

each zone contains less than 20 vortices. Notice that, even on this relatively uneven 

distribution, most of the zones are nearly square. This minimises the distance of the furthest 

vortex from the centre (so the convergence condition is satisfied as close to the zone as 

possible). 

The centre, X, of gvgry zone (ie. all the boxes in stages 1-5 in Figure 18) is then 

calculated and stored. The position of this point is arbitrary; we have found that the algebraic 

mean of the vortex positions is adequate. The distance of the vortex furthest from the centre 

(the radius) within each zone is also stored for checking the convergence condition of the 

Laurent series during the forthcoming velocity summation. The coefficients, for the zones 

are then calculated directly from the vortex blobs. All this involves an operation count, for 

each vortex, proportional to the 'depth' of the zonal structure, which can be seen'̂  to be 

0(10^2^^). Therefore the total operation count for forming the zonal structure is 0(A ŷZog22Vy) 

and thus will not dominate the calculation. In practice this process constitutes an almost 

insignificant amount of work compared to the velocity summation. 

It has been discovered empirically that a minimum zone size of around 30 vortices 

(for 7z,=25) is near optimal. The minimum zone size must be adjusted so that using the 

smallest level of zones is slightly cheaper than evaluating the velocity from the blobs 

themselves. Run times have proved remarkably insensitive to the minimum zone size used. 

In one extreme example the minimum zone size was reduced to 8, so that evaluating the 

velocity using the 25 term series would be more expensive than using the 8 blob sum. Since 

the zones are summed hierarchically, enough larger zones were used that the total run time 

was still far less than by direct summation. 

The vortices must be sorted and indexed in a manner that allows the code to reference 

those within a particular zone. A velocity summation at a particular point is carried out in a 

piece-by-piece fashion from the zones. The zones are considered in the same order as for the 

splitting algorithm (largest first, then working towards smallest). A check is made, using the 

convergence condition from equation (47), on whether the Laurent series will converge for 

the zone under consideration and if so, the series is evaluated and the contribution from that 

zone is complete. If not, the smaller constituent zones are used. In effect this introduces 

another Laurent series. This process continues until either the convergence condition succeeds 

Doubling would cause one extra zone splitting, the zone depth increasing by one. 
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or the smallest zones cannot be used, in which case summation is performed directly from 

the blobs. It can be seen that this summation process will take into account the effect of every 

vortex in the region. 

The creation of the zonal structure and the velocity summation from the structure are 

most naturally implemented using abstract data types. Each zone requires a mixture of 

integers or pointers: to reference the correct vortices, and floating point types: to store the 

centre, zone size and coefficients. This can be achieved in Occam2 using the RETYPES 

construct which allows the code to access existing objects as a different type. However, the 

Occam2 implementation is clumsy and was difficult to debug. This part of the code would 

be much neater and more natural in C. It is interesting to note that the proposals for Occam3 

include a record type which would be ideal for storage of the zonal structure. 

4.5.4 Accuracy 

The accuracy of the zonal 

summation method has been tested by 

comparison with the velocity values as 

evaluated directly from the blobs, for 

a random vortex distribution. The 

results of a typical run of this test code 

are presented in the graph on the left. 

Figure 19 shows the number of errors 

falling in each error band [2',%'^'] (i=-

67,...-1) for evaluating the velocity at 

10,000 random locations (both inside 

and outside the region containing the 

blobs). In this case 200 Gaussian blobs were used, the number of terms in the Laurent series, 

was taken as 25 and the convergence function A was taken as 3. The error incurred for 

these parameter values is always smaller than 10 '^, and is most likely to be around 10 '^. The 

large peak in the graph at 10'̂ ^ corresponds to the round-off error in the machine 

representation of a 64-bit floating point number; this level of discrepancy would be expected 

from a simple reordering of the original computation. The actual error in the zonal algorithm 

is shown as a small plateau in the graph extending from 10 '̂  to 10 '^. The errors are much 

smaller than other numerical errors in the method, so the zonal summation gives effectively 

the same result as direct summation. 

Error in Zonal Summation 

Igure 19 
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4.5.5 Computational Cost — Theoretical 

The following argument indicates that 

the zonal velocity summation has operation 

count 0(/VyZogA^y). This is reinforced by 

experiments where graphs of computation 

time versus number of vortices are nearly 

linear (see section 4.5.6). We start by 

considering the zones used in a typical 

velocity summation (this is illustrated in 

Figure 20). In the picture, the velocity is 

being calculated for the point z. A typical 

breakdown of sums from zones and from 

blobs in different regions is illustrated. Near 

the point z the direct sums must be used, 

then, moving further away, progiessively larger zones can be used. The principle argument 

for evaluating the operation count is that (ignoring effects from the edges) a constant number 

of each zone size contributes to the sum at any given point. This statement is justified below 

for a uniform distribution of vortices. The amount of work in summing from a zone of any 

size, is fixed (it is 0(M,)) and the amount of work in summing from the blobs in a small 

zone, A, is fixed (it is 0(A^y,)). So the operation count for each velocity sum (not including 

the evaluation of the coefficients, which was shown to have cost 0(/Vy/og'A^y.) in section 4.5.2) 

is 

Summed 
from 
Zone 

Summed 
from 
Blobs 

Figure 20 A typical summation 

depth 

OpCount = + (48) 

where is the number of zones for which a direct sum must be used and is the number 

of zones at the i''' 'level' which contribute to the sum. Let the level be such that the zone at 

level 1 is the whole region, a zone at level 2 is half the region, etc. is the number of 

times the whole region is recursively split in the decomposition (see section 4.5.3). 

The total number of level 1 zones is 1, level 2 zones is 2, ... level zones is 2'^''^. 

Suppose (without loss of generality) the area of the whole region is 1. So the average area 

of a level 1 zone is 1, area of a level 2 zone is 1/2, ... area of a level zone is 1/2'^'^''. 

This uses the assumption that the vortices are uniformly distributed and so the zones at a 

given level are of similar physical dimensions. The average 'radius' of each level of zones 

is the half the square root of the area. 
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The proof continues by estimating the regions where each level of zone contributes to the 

velocity summation. These regions are derived from the convergence condition of equation 

(47) and are circular annuli. Thus the area of the regions where each zone size contributes 

may be calculated and, since the average area of the zones is known, used to estimate how 

many zones of each size contribute to the sum. The argument uses the worst case assumption 

that the whole of the annulus where the condition holds is Oiled with contributory zones of 

a certain size. In reality, edge effects will cause parts of the annular regions to be completely 

empty of vortices, incurring less cost than that estimated. Throughout the following working, 

we have assumed a constant value for the quantity A, from equation (47). 

For example, to estimate the region required is where no series can be used — the 

summation is from the blobs themselves. For such a condition to be satisfied, the point under 

consideration must be close enough to z that the convergence condition of equation (47) is 

not satisfied for the smallest (level zones. So the equation for possible values of X for 

zones which would contribute to this part of the sum, is 

|z_X| < (49) 

which defines a circular region centred on z with an area So, dividing this area 

by the area of a level zone gives an estimate of the number of zones which must be 

summed using blobs, 

A:,-— (50) 
b 4 

To estimate ^he condition that a level (fgp/A zone can be used, but that a level 

(fep/A-1 cannot, is required. As above, the convergence conditions for these two criteria give 

< |z-A,| < — — (51) 

which defines an annulus centred on z with area So, dividing by the area of a 

single level zone. 

The estimation of the constants follows the same reasoning, they form 

concentric annuli. At some point edge effects will start to reduce the constants (the annulus 

cannot be filled with usable zones because tlie edge of the region has been reached), but we 

can still use the theory to put an upper bound on the number used. The upper bounds are 

for (53) 
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Putting the upper bounds for the A:, into equation (48) gives 

OpCount-—(4 +depth.B) (54) 
4 

In other words the operation count for each vortex is proportional to the zone depth, 

which is 0(/og^2A^y). So the total operation count for calculating the velocity for all the 

vortices is This whole argument can be explained by the simple idea that by 

increasing the total number of vortices in a sum, the effect is to create a few extra sums from 

large zones, with the number of direct sums and sums from smaller zones staying relatively 

constant. 

Finally it is worth noting that, as explained above, this method gives effectively the same 

results as a direct 0(A^y^) summation, whereas the vortex-in-cell method must introduce a 

grid-related numerical viscosity. 

4.5.6 Computational Cost — Experimental 

Possibly the most important performance measure of a discrete vortex method code is the 

algorithmic performance. To put this statement into explicit terms, the dependency of the 

execution time on the number of vortices used will ultimately govern the size of the problem 

that may be solved. It is therefore very important to verify experimentally that the application 

of the algorithmic theory given above has given the expected results. 

The code outputs a file specifically for the purpose of analyzing performance. The Ale 

contains timings taken for the various phases of the overall algorithm, and for each complete 

time step. These timings are measured internally for each processor for each phase, then an 

average is taken to give a single result for the time taken by the code as a whole. The results 

of a typical large run are shown in Figure 21, which was executed on 17 T800 processors 

with a clock speed of 25MHz. 
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figure 21 Time taken (in seconds) for each code phase (for one time step) vs. 

number of vortices, for a typical large run 

The results show the total time taken for each time step, as well as the time taken for the 

four major sub-steps — the linear panel sum (see section 3.6), the zonal velocity summation, 

the global sorting of vortices (see section 4.7) and the spreading of vortices amongst 

processors (see section 4.8). 

The two most time consuming stages are the panel summation and the velocity 

summation. The sorting proves to be an almost negligible amount of work and the spreading, 

although noticeable, is insignificant in comparison with the two work-intensive phases. The 

panel summation is trivially shown to be theoretically linear in the number of vortices, and 

the results verify this. The velocity summation is more complex, the graph appears to be 

divided into approximately linear segments, with discontinuities at their bordering points. The 

run time seems to grow linearly with number of vortices until a certain point, then drop 

slightly, then resume the linear behaviour at a slightly increased gradient. This behaviour is 

explained by revisiting the algorithmic construction and noticing that a change in behaviour 

would be expected with increasing numbers of vortices — at the point where there are a 

sufficient number for an extra zonal division to occur. At such a point, the summation would 

change in composition by adding a new set of 'smallest' zones, each containing just more 

than half the number of vortices of the previous smallest zones. Evidently this change initially 

causes the operation count to drop slightly, a somewhat unexpected result. The behaviour is 
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near-linear and, with slightly increased gradient between discontinuities, seems to Ot the 

prediction given in section 4.5.5. 

The total time taken for a time step is near linear in number of vortices, as was expected. 

This is still expensive for an algorithm and means that following a run for a long time period 

is dramatically more expensive than seeking an accurate short time solution. In fact, a 

reasonable estimate of the cost of calculating a flow to time f is given by using the 

simple assumption that an equal number of vortices enter the flow on each time step. 

However, this should be contrasted with the basic algorithm, which was in number 

of vortices leading, in a similar manner, to a total operation count to calculate a flow 

to time f. 

4.6 Parallel Implementation Details 

The parallel implementation is a natural extension of the zonal decomposition. One 

processor deals with the boundary calculations; the vortex blobs are divided amongst the 

others in such a way that those close in physical space reside on the same processor. 

Boundary Work* Worker Worker 

S#rv#r 0 1 2 

For the set of problems we are 

considering, the vortices form an 

elongated wake in the streamwise 

direction. Therefore, in order to 

simplify the algorithm, we decided to 

distribute the vortices in spatially 

disjoint regions on the streamwise 

coordinate only (as shown in 

Figure 22). The vortices are sorted 

globally at every time step, and 

partitioned so that equal numbers are 

held on each worker (for load 

balancing purposes). The boundary server holds the panel matrix and handles all the boundary 

condition calculations, including the introduction of new blobs into the flow. Each worker 

calculates the velocity of the vortices held locally and time steps their positions. New vortices 

are distributed from the boundary server to the workers and then the whole domain is re-

sorted and the numbers of blobs are equalised (termed 'spreading'). In this way the task of 

updating the flow is shared equally amongst the available number of processors. 

More Workers 

Igure 22 Distribution of vortex data 
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The hardware configuration is 

illustrated in Figure 23. The workers and 

boundary server are as explained above. The 

graphics server is optional and, if present, 

contains a graphics board and is used to 

display flow visualisations on a monitor as 

a run progresses (see section 4.10). The host 

server reads all the initialisation data for a 

run from files on the host CPU, then either 

disconnects completely from the host CPU or periodically saves the state of the flow to files 

(see section 4.11). The boundary server and host server need proportionately more memory 

than the workers (typically 4Mbytes each). The workers can have relatively small local 

memories, some of the results presented here were carried out using 256Kbyte workers. 

Obviously, more available memory allows more vortices to be used and hence flows can be 

followed further in time or resolved in finer detail. 

I gu re 23 Processor network used 

The overall process structure of the Occam code for any 

of the processors in the ring is illustrated in Figure 24. The 

Occam pseudo code for this arrangement is simply, 

PAR 
L e f t O 
Right {) 
Worker () 

Worker 

Figure 24 

The interconnecting channels, omitted from the pseudo code for simplicity, are passed as 

parameters to the procedures. The left and right processes allow data to be received and sent 

concurrently with the worker process performing calculations on the current data. They also 

serve the purpose of a simple routing harness, ensuring that messages sent by the worker 

arrive at the correct destination process without causing deadlock. 

The parallel algorithm for first order time stepping of the vortices is slightly simpler than 

the higher order version, so this will be explained first. The graphics server merely passes all 

data straight through in both directions, making a copy of any information needed for plotting 

(see section 4.10). The main part of the algorithm concerns the function of the ring of 

workers and of the boundary server over a fluid time step. The code is designed so that 

vortices can be deleted from the flow. 
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Worker processors: 

1 Spread the vortices evenly amongst all the worker processors, blend the new vortices 

(from the end of the previous time step) into the main vortex data set and clear any 

deleted vortices. 

2 Globally sort the vortices on the streamwise coordinate. Locally sort the vortices on the 

transverse coordinate. 

3 Perform a zonal decomposition on the local vortices on each processor, form a data 

structure containing indexing information, zone sizes, zone centres and Laurent series 

coeHlcients. 

4 On each processor, calculate the velocity induced by the local vortices at the panel 

control points. 

5 On each processor, send the zonal data, the vortices, the partial boundary velocity from 

step 4, any visualisation information calculated on the previous time step and any run 

information for the host (eg. timings, forces) to the right process. This information is all 

to be circulated clockwise around the ring, with the left process delivering to each worker 

as it passes. 

6 Calculate the velocity induced by the local vortices on each other, for each processor. 

Calculate the effect of the local vortices on any visualisation data. 

7 Receive a remote worker's zonal structure and vortices from the left process. Calculate 

the velocity induced by the remote vortices on the local ones. Calculate the effect of the 

remote vortices on any visualisation data. After delivering the remote data to the worker, 

the left process sends another copy to the right process. The right process then sends the 

data to the next processor in the ring while with the left process receives the next set of 

remote data and the worker adds the effect of the current remote data. This step is 

repeated until all the remote data has visited this processor. 

8 Send approximate spatial bounds of the local disjoint streamwise segment from each 

worker process to its local left process to help it acquire new vortices in the correct 

region. These values are merely guidelines to reduce the amount of spreading and sorting 

needed. The processors at either end of the chain adopt f rom regions extending well 

beyond the area of interest to ensure all new vortices are claimed. 
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9 Receive the panel strengths from the boundary server. The left and right processes pass 

them along the chain to each worker process. Add the velocity induced by the panels and 

the uniform flow to the velocity of the local vortices. Add the effects of the panels and 

the uniform flow to any visualisation data. 

10 Time step the positions of the local vortices using the summed velocities and die random 

walk (if being used). At this stage some vortices may be deleted or reflected due to 

crossing a boundary. 

11 For each processor, the left process passes (to the worker process) any new vortices 

(from the boundary server) falling in the region set up previously. The new vortices 

falling outside this region are passed along the chain. 

Boundary Server: 

1 (Corresponding to worker processor step 7) The left and right processes circulate data 

from the worker processors around the ring. The partial velocity at the panel control 

points from each worker processor is passed to the worker process on the boundary 

server. The total velocity at each control point is summed by the worker process. 

2 The uniform flow is added to the velocity at the control points. The matrix calculation 

for the panel strengths is perfomied (an LU decomposition has been performed on the 

matrix in an initialisation phase). 

3 The panel strengths are sent to the chain of worker processors. 

4 New vortices are created around the boundary and their positions are time stepped 

appropriately (including deletion or reflection of any crossing the boundary, if required). 

Surviving new vortices are sorted on the streamwise coordinate. 

5 The new vortices are sent to the workers in packets whose maximum size is the 

maximum number of vortices a worker processor can store (it is possible to generate 

more vortices in one time step than any individual worker could store). 

The second order Runge-Kutta time stepping scheme requires a slightly different 

algorithm. The scheme is applied as follows, 
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let A, = , g g ) 

then ^ ( t+d t ) = ^ ( t ) + u(^(t)+}^)bt + 0(6t^) 

gives the convective motion of a vortex at This can be achieved with no extra storage 

as follows. Suppose and are the array elements used to store the position and velocity 

of the vortex, then 

1 Calculate ^ as the velocity of the j'"' vortex based on the current vortex positions. 

2 Let ^ ^+V2Uj[t)ht be the intermediate position of the vortex. If the vortex enters 

the body at this stage, reflect it^. 

3 Let 

4 Add to the velocity of the j"" vortex based on the vortex positions. 

5 Then ^ ^ ^ + ^ ( 0 6 / is the final position of the vortex as specified by equation (55). 

If the vortex enters the body, reflect or delete it. 

To use this method the parallel algorithm must be adapted to perform the velocity 

summation twice successively. This entails repeating stages 3 to 7 for the worker processor, 

with some extra code to effect the second order calculadon as described above. Stages 1 to 

3 must be repeated for the boundary server. The vortices are not resorted between the 

substeps since reordering of the position airays would occur, adding the complication of 

matching a particular velocity to a vortex after the reorder. W e have found that this omission 

makes very little difference to the run times. This is because vortices which are initially 

sorted into zones will remain grouped together after a small time step. The zones may overlap 

slightly, but this appears not to affect the performance of the method significantly. 

^ Deletion within a partial step is considered inconsistent 
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4.7 Sorting 

The global sorting of vortices across processors is by no means trivial. Naive sorting 

algorithms (eg. bubble sort) are typically (Â  being the number of elements in the data 

set to be sorted), so care must be taken to not allow this to become the time consuming step. 

The vortex code uses an algorithm based on 'Pigeon sort', see Birch (1988). The algorithm 

sorts random data with uniform distribution (equal probability of each point lying anywhere 

in a given region) in an operation count of It is similar to the commonly used quicksort 

algorithm, which recursively divides the data set to be sorted into two subsets : those lying 

below and above the point halfway between the minimum and maximum elements. In pigeon 

sort the same approach is adopted, except that the data set is recursively divided into TV 

subsets, where is the number of elements in the set being divided. The sets used are those 

elements lying in the 'pigeon holes' created by dividing the region between the minimum and 

maximum elements into TV equal segments. 

Since the data set to be sorted (ie. the vortices) must be ordered on two-dimensions 

(locally), the acfwa/ data cannot be sorted because sorting on transverse coordinate would 

spoil the streamwise order. Instead, indexing arrays must be used which, in Occam, are best 

implemented as arrays of integers. Using a double subscript gives the data in order. So, given 

the floating point data x/f/ and the index array a/f/, the object of the sort is to achieve 

V (56) 

The sequential pigeon sort algorithm consists of the following stages (for pseudo code 

for the algorithm, see appendix B), 

1 Scan through the data set once to find the maximum and minimum elements, and 

In the trivial cases where /V<2, the sort is already completed. 

2 Store in an array the pigeon hole which each element lies in. The boundary between the 

(i-1)^ and the pigeon hole is the point The correct pigeon hole 

is conveniently and quickly calculated by a scaling and rounding to an integer value. 

3 Scan through the array created in step 2 to count the number of elements in each pigeon 

hole, store the results in another array. 

4 Reorder the index array so that all the elements in the first pigeon hole appear first, then 

those in the second pigeon hole etc. This is carried out by summing the values in the 

array created in step 3 to work out the starting positions for each pigeon hole, then using 

the array created in step 2 to transfer the correct index values for each pigeon hole into 

the appropriate segments of a working index array. 
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5 Copy the working index array back to the main index array. Repeat step 1 using the 

segment of the index array containing only those elements from the first pigeon hole in 

place of the whole set. 

It can be seen that this process will eventually achieve the condition (56). For uniformly 

distributed data, the expected proportion of pigeon holes containing m elements on the initial 

subdivision is given by the binomial distribution. 

/ w 
AH / 2 \fn/ 1 \N-m 

so as fim) 

1 - 1 

(57) 

1 
e.m\ 

So the percentage of pigeon holes containing m elements is asymptotically independent of A .̂ 

Hence, for large Â , each element must on average be examined and pigeon-holed a fixed 

number of times. Using equation (57) the fraction of pigeon holes containing one element is 

expected to be 37%. Since a pigeon hole containing one element needs no further sorting, on 

each pass 37% of the elements are completely dealt with, so if the operation count for sordng 

W elements is WCA'') and the operation count per element for a pass is A, then 

=.4;V+W:(0.637V) 0.63^7/+ M/((0.63)^AO (58) 
= A/V(l +0.63 +0.63^ +0.63^+...) « . 

In other words, each element is on average examined approximately 2.7 times. 

The code has been further optimised by explicit use of optimal sorts for pigeon holes 

containing two, three or four elements (eg. two elements can be sorted by one test then a 

swap if needed). 

The parallel version of this algorithm is based on the observation that the sequendal 

algorithm is symmetrical. The pigeon holes created by the first subdivision can be dealt with 

in any order. In particular, it is simple to work from the minimum upwards or the maximum 

downwards. Taking a pigeon hole alternately from the bottom then top we can sort the data 

set from the edges to the middle. The elements which have already been already sorted at the 

edges are sent to the left (minimum elements) and right (maximum elements) processes. The 

left and right processes exchange elements with the connected processes on neighbouring 

processors, comparing the values to check if the element should be swapped between 

processors. As soon as two elements do not need swapping, the sort can proceed purely 

locally. 
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As presented here, the parallel sorting algorithm does not correctly handle an element 

which ought to move by more than one processor to arrive at the correct destination in the 

sort. Such an element will remain at the correct end of the sort, on the processor neighbouring 

its original one. In an extreme case, it would migrate by one processor in the correct direction 

at each time step. The algorithm could be modified to deal with this situation correctly but, 

since the vortices always remain partially ordered by the time stepping, the added 

complication to the code was judged as unnecessary. 

4.8 Spreading 

It is extremely important to load balance any parallel code. This code contains a few 

synchronisation points throughout the time step. If one processor takes longer to execute the 

code between two synchronisation points, the others must all wait before starting the next 

phase of the calculation. This causes usable CPU cycles to be wasted and so makes the code 

inefficient. 

The most obvious way to balance this application is to spread the number of vortices 

uniformly over the worker processors. This should give each worker an equal share of the 

calculation and reduce the idle processor time. The following algorithm is used to achieve the 

correct number on each worker, 

1 Just after the acceptance of new the vortices from the boundary server, the local number 

of vortices currently on each worker is circulated around the ring (see section 4.6). 

2 Calculate the total number of vortices, Ny, by summing the circulated local totals. 

3 Calculate the desired number of vortices on the i"" worker (for f worker processors), 

which is where the / and \ are the integer division and remainder 

operators respectively, which obey the rule and a>6 takes the Boolean 

value of 1 if true or 0 if false. 

4 Calculate the desired total on either side of the i^ worker. Use these to calculate the 

deficit between the desired totals and the existing totals. 

5 Send to or receive from each neighbouring processor exactly the number of vortices 

required to achieve the desired totals to either side. The overall effect of this is to achieve 

the correct number on every worker. 
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This keeps the number of vortices as near to equal as possible between workers (they can 

differ by at most 1). 

The resulting code is reasonably well balanced, apart from a general tendency for the end 

processors to have slightly less work to do. This is believed to be due to the end processors 

being further from a larger proportion of the vortices; the zonal summation is more efGcient 

at a greater distance from the zones being used. 

Another improvement in efficiency would be gained by removing some existing 

synchronisation points. Overall, the code must run in lock-step so that the workers are all 

dealing with the same time step. However, given a global communications network (such as 

that provided by T90(X)s and CI04s (see section 4.2)) some synchronisations which cuirently 

exist to keep the communications simple could be removed. This would involve restructuring 

the code for a fully connected network, where each processor is connected to all the others, 

as opposed to the current ring network. Perfomiance would be improved, as there may be 

cases where a slight imbalance in workload exists which would average out over a longer 

time period. 

4.9 Parallel Code Performance 

The object of this section is to evaluate the performance of the discrete vortex code when 

executed on various numbers of processors. To compensate for the added effort of developing 

a parallel program, it is important to ensure that the performance benefits are being realised. 

A measure must be introduced which gives an idea of the increase in code performance with 

increasing numbers of processors, a property known as the 'scalability' of the code. An ideal 

parallel program will scale linearly with increasing numbers of processors. In practice, there 

is a limit to the scalability of any given problem (see the example in section 4.1.1), so the 

best that can be hoped for is near-linear scalability for a reasonably large number of 

processors. 

The usual quantity introduced to measure scalability is called 'efficiency'. Various 

measures of parallel efficiency exist, all are designed to give the percentage of optimal 

performance attained by a code. The most rigorous and most commonly accepted definition 

of efficiency is. 

% Efficiency = R m time on 1 processor (59) 
(Run time on N processors).// 
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where the single processor version should be a fully sequential version, which does not have 

the parallel overheads. Unfortunately, due the lack of any code maintenance provisions in 

Occam (such as the conditional compilation directives in C), the sequential version was not 

kept up to date. Thus it was necessary to use only the parallel code on varying numbers of 

processors to evaluate performance. Given this constraint, the whole idea of efficiency 

becomes fairly arbitrary as there is no absolute quantity to normalise against (this is usually 

provided by the sequential version). However, it is still worth considering the total CPU time 

elapsed for a given problem, defined by conducting a fixed amount of computation on 

processors, then calculating 

Total CPU elapsed = (Run time using N processors)x AT. (60) 

This is a useful quantity as it gives the maximum available processor time, in other words the 

sum of the used and wasted CPU time. As the number of processors is varied for a particular 

calculation it is found that this figure becomes larger when more CPU time is wasted. The 

effect of not comparing to a sequential version is to ignore any extra calculation which must 

be performed in the parallel algorithm. It is typical to find that the fundamental inefficiency 

in a parallel algorithm can cause an extra 'factor of 2' to be introduced, so that the parallel 

code runs at approximately the same performance on two processors as the sequential code 

on a single processor. It is generally accepted that, provided a reasonably linear scalability 

is achieved for further increase in the number of processors, this parallelisation penalty is 

worth paying. In terms of the newly introduced quantity of total CPU time elapsed, linear 

scalability corresponds to a constant value with increasing numbers of processors. 

Figure 25 shows a graph of run times 

for a fixed calculation which was performed 

using varying numbers of processors. The 

run in question was computing the flow past 

a circular cylinder at Reynolds number 500. 

100 panel elements were used to represent 

the body and the time step was set to be 

0.05. The code was set to generate 

streamline plots at every interval of 0.5 non-

dimensional time units, so that four such 

plots were made. A fairly course plotting 

grid with a fixed number of points was 

used. The start time of each run was 

recorded, then the operating system time-stamp on the file containing the fourth streamline 

plot was used to work out the elapsed run time. By the end of the run approximately 1600 

20 25 30 35 

Number of Worker Processors 

Figure 25 Run times vs. 

processors 

number of 
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vortices were present in the flow. The processors used for these experiments were all 20MHz 

T800 transputers, with 4-cycle external memory. The results are difGcult to analyze in this 

form, but do have the advantage of being in terms of a primitive quantity. The graph shows 

decreasing run time with an increasing number of processors. A closer examination reveals 

that the run times are approximately halved by doubling the number of processors — an 

encouraging sign. Another pertinent topic to raise at this point is: how far from real time 

simulation are these figures ? Taking a non-dimensional time unit from the model to be one 

second and using 32 processors, the run time is ten minutes. This is a factor of 300 slower 

than real time which means that, for this calculation, real time would be achieved using 

0(70^) processors faster than a T800 Transputer. Realistically, this will still not be 

possible with the next generation of microprocessors, but is almost certain to have been 

surpassed by the turn of the century. Note that the term 'real time' is used here to indicate 

a frame rate suitable for animation purposes, rather than to refer to dimensional fluid time. 

Figure 26 is a graph of the same data as 

that shown in Figure 25, this time it is 

represented in terms of the total CPU time 

elapsed as defined in equation (60). The 

total CPU time elapsed decreases up to a 

certain number of processors and then 

begins to gradually increase again. The 

expected behaviour for increases in numbers 

of processors beyond the values shown here 

would be to continue the gradual increase 

for a certain number, then for the gradient 

of the graph to start to increase. Eventually 

a point will be reached where there is no 

decrease in run time by adding an extra processor. The shallow gradient on the increase in 

total CPU between 17 and 32 processors is a good result — this shows that very little 

computing resource is wasted by increasing the number of processors used for the simulation. 

It should be realised that the system being studied here is extremely complicated, 

involving several algorithms whose workload is based on run-time calculated quantities. 

Therefore a full analysis of why the CPU time varies like this is not possible, but some likely 

contributory factors can be mentioned. One significant factor is that the CPU time is being 

measured for all the processors, but the host server and boundary server have a role in the 

calculation which is independent of the number of processors used. This means that, in a 

typical calculation, the host server and boundary server will spend a significant amount of 

time idle. This has a larger effect when less processors are used as firstly, the two constitute 

a larger fraction of the total processing power and secondly, each worker processor has more 

20 26 30 35 

Number of Worker Processors 

Figure 26 Total CPU time used 

number of processors 

vs. 
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work to do, so the idle periods of the other two processors will be longer. The other major 

source of inefficiency worth noting is that slight inequalities will exist between workers in 

the amount of work to be done in the zonal summation stage. Due to the dynamic nature of 

the composite summadon in equation (47), an accurate prediction of the amount of work 

involved cannot be made in advance. Assuming that this is essendally a random effect, more 

total CPU cycles would be wasted using a larger number of processors. However, one 

compensating effect is that using a larger number of vortices should help to average these 

random inequalities. 

The code has been shown to give reasonable performance characteristics when the size 

of the processor network is increased. Most of the results presented here were derived from 

runs using either 14 or 17 processors, the region for which the total CPU time used is near 

minimum. 

The example run was selected as an example of a small run to illustrate the performance 

of the code on a relatively fine-grain parallel problem. The code will have a better parallel 

performance on a larger problem. One of the hardware platforms we regularly use has 

processor performance lights, and we have noticed that these are illuminated for a high 

propordon of the time when conducting runs with many vortices. In some of the very long 

runs, which generated flows containing nearly 100,000 vortices, each time step was taking 

nearly one hour. During such a large run, the inequalities in work caused some processors to 

be inactive for typical periods of a minute. Thus we believe that the idle time drops 

significantly on larger runs. 

Perhaps a more important issue than that of absolute performances, is the fact that the 

computing power for this project was completely provided by facilities available on the 

University of Southampton campus. If the same work were to have been constrained to the 

use of SISD or SIMD architecture machines, time on external resources would have had to 

be acquired, because no local machines of sufficient power have been available during the 

duration of the research. We estimate that in excess of 1000 hours of CRAY time would be 

needed to reproduce all the runs which have contributed to this work. Thus, we would 

probably not have been able to use such large runs if we had been constrained to SISD/SIMD 

machines. 
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4.10 Visualisation 

The production of useful flow visualisations was one of the main aims of this projecL An 

unexpected outcome is that visualisations have proved extremely useful in debugging code 

and finding suitable values for numerical parameters. All the visualisation modes can be 

displayed in colour on a high resolution graphics monitor or output to files in HPGL (Hewlett 

Packard Graphics Language) format for hardcopy devices. 

Apart from simple vortex plotting (see section 4.10.1), the visualisation computations are 

extremely expensive compared with those for updating the flow. Although the operation 

counts for these procedures are all the multiplicative constants can be large 

(eg. proportional to the number of grid points used). Consequently complex visualisadons tend 

not to be calculated on every time step and vortices plotted on the intervening steps (this is 

specifiable by the user, see section 4.11). 

In each of the display modes described below, a visualisation rectangle is specified by 

giving a minimum and maximum streamwise and transverse coordinate. The relevant modes 

are then displayed in this region, and clipped outside. Any part of the bluff body lying in the 

visualisation region is also plotted. The streamwise coordinate maps to the horizontal and the 

transverse to the vertical for plotting purposes. 

4.10.1 Discrete Vortex Display Mode 

This is the simplest mode and the most useful for debugging the code. On the graphics 

screen the vortices themselves are plotted as small blocks of coloured pixels. The vortices are 

coloured red for positive circulation and blue for negative circulation, the stronger vortices 

being coloured more intensely. In the hardcopy files, vortices are drawn as small triangles 

with the orientation depending on the sign, with no indication of strength. An example of the 

hardcopy produced by this display is shown in Figure 27, the roll-up of sheets of vortices can 

be clearly seen. Refer to section 5.2 for a full explanation of the terms oc, and T. 
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Figure 27 Discrete vortex plot for flow at Re=1000, a=0.5, 1=19.0 

This mode is of limited usefulness for serious flow visualisation. The important flow 

regions tend to become crowded with vortices and, since the vortices are merely plotted on 

top of each other, the actual vorticity is difficult to deduce from the pictures. However, it does 

give the underlying information on which the method depends (ie. the positions and strengths 

of the blobs) and so can be useful. 

In this mode a grid is introduced for display purposes. The grid is distributed by dividing 

the visualisation region into a number of vertical strips and mapping each strip onto a worker 

processor. The grid is stored in single precision to save on memory and increase the speed 

of calculations; since the grid is only for visualisation, the accuracy does not need to be high. 

The use of vertical strips is an attempt to load balance the grid calculations. The wake spreads 

horizontally so will tend to spread across every processor's grid rather than being 

predominantly located on one processor's grid (as would often be the case using horizontal 

strips). 

The Occam language presents a problem with the implementation of the visualisation 

grid. Occam is a static language, so array sizes must be determined at compile time. In all 

the implementations we have used during this project (product numbers IMS D700C, D700D, 

D705B and D7205A) the RETYPES command will not allow reshaping of a two-dimensional 

array. In other words, the code fragment 
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[10] [10]REAI.32 A: 
INT x,y: 
SEQ 

X; =2 0 

y :=5 
[y][x]REAL32 B RETYPES A: 
B[4] [15] :=3.1415(REAI,32) 

would produce a compiler error at the line containing the RETYPES. This would be the obvious 

mechanism to use for different shaped grids. In earlier versions of the code, the maximum 

grid dimensions in each direction were fixed and a recompilation was necessary to change 

these. The code now uses one-dimensional arrays to store the grid and subscripting functions 

to access the correct element, allowing complete grid reshaping without the need to recompile. 

The fragment above would be implemented as 

[100]REAL32 A: 
INT x,y: 
SEQ 
x:=20 
y :=5 
INT FUNCTION subscr(VAL INT sy,sx) IS (sy*x)+sx: 
A[subscr (4,14) ] :=3 .1415 (REAI.32) 

which is nearly as concise, but is not as well checked by the compiler as the RETYPES would 

be. 

'igure 28 Velocity vector plot for flow at Re=1000, a=0.5,1=19.0 

71 



The velocity is calculated at each grid point and then displayed as a scaled green line on 

the graphics screen. The vector is displayed in the hardcopy as a scaled arrow, as shown in 

Figure 28. This visualisation mode was relatively simple to implement and gives a good idea 

of the physics of a flow. The main drawback is that detailed resolution of the important flow 

regions is difficult — increasing the density of grid points tends to crowd the picture. 

Streamlines are generally better suited to judging the direction of the flow, but vectors have 

the advantage of giving a direct indication of the fluid speed. 

4.10.3 Streamline Display Mode 

In this mode a grid is created in a similar manner as in section 4.10.2. Neighbouring 

grids share a column of cells so that contours drawn on neighbouring grids join together. The 

streamfunction is calculated at the grid points (see appendix C for streamfunction formulae). 

Analytic integrals for the various vorticity elements are used to give values for the 

streamfunction. Initially, we tried to numerically integrate the velocity to produce 

streamfunction values. The number of points needed to sufficiently reduce the errors made 

this an extremely expensive process, because the velocity is relatively expensive to evaluate. 

The streamfunction formulae tend to be rather complicated and hence also expensive to 

calculate. However, as the results contain no grid-related integration error at the grid points, 

the grid can remain relatively coarse and induce no overall errors. 

When the streamfunction has been evaluated, the streamlines are the contours of the 

values on the grid. A contour plotting routine was written to calculate the contours of a 

numerical quantity given on a uniform rectangular grid. The process is conducted in two 

stages. Firstly, a temporary array is used to store all gridcell sides crossed by the relevant 

contour value. Secondly, the temporary grid is 'walked' until a contour is found then this 

contour is followed and plotted until it completes a circuit or leaves the grid at the edge. An 

example of the output generated by the streamline visualisation mode is shown in Figure 29. 

The flow is the same as that used to illustrate the other two hardcopy display modes in order 

to provide a direct comparison. 
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Figure 29 Streamline plot for flow at Re=1000, a=0.5, T=19.0 

This is the most useful of the visualisation modes as it provides a means for comparison 

with other research. The experimental flow visualisations we are using consist of long-

exposure photographs of dust particles placed in the fluid and illuminated. These particles are 

travelling tangentially to the streamlines, so our visualisations should bear a close resemblance 

to these photographs. In addition, most authors who present results from numerical flow 

simulations give streamline plots as their visualisations. 

Streamlines also enable detailed resolution of the flow in the important regions near the 

body. The distribution of contour values is clustered around zero and the streamfiinction set 

to be zero slightly upstream of the body; the streamfunction is only defined to within an 

arbitrary additive constant. 

4.10.4 Vorticity Plotting Display Mode 

This is only available on the graphics screen. The grid is set up as explained in section 

4.10.2. The vorticity within each grid cell is calculated using analytic integrals of the vorticity 

formulae. The vorticity is then displayed as intensities of red colour (positive) or blue colour 

(negative). This mode can be used simultaneously with the streamline plotting mode to give 

good visualisations of the velocity and vorticity fields. Vorticity contours were found to be 

less useful than colours due to the local noisiness of this field. 
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4.11 Host Services 

This section briefly explains the function of the host server processor, then speciRes how 

to actually run the code and the file formats used for specifying flow parameters and body 

shapes. 

The host server processor has two main functions. It begins by reading, from the host 

disk, all the initialisation data, consisting of run parameters, a body shape and possibly a 

starting flow saved by a previous run. After sending all this information to the network, its 

function changes to that of becoming a run time file server. Information is sent to the host 

server at each time step and, depending on the options selected, some of this information is 

saved in an appropriate form at each step. 

Possible hosts are those supported by the Inmos toolsets. Currently these include a range 

of Unix workstations, IBM-compatible PC's and IBM mainframes. 

4.11.1 How to Run the Code 

The code uses command line parameters to specify the input files and the display mode. 

The syntax for running the code is as follows (given in the Unix style of parameter passing), 

vortex -p parameter-file -c curve-file -v flow—file 
-d display-mode -f 

The file options specify filenames, the function and format of all files used by the code 

is specified in sections 4.11.2 and 4.11.3. 

There are four possible display modes, specified by giving ciispiay-mode the following 

values, 

n No visualisation, the vortices are plotted to the graphics screen for debugging 

purposes, see section 4.10.1. 

V Velocity vector mode, see section 4.10.2. 

3 Streamline mode (also displays vorticity on graphics screen), see section 4.10.3. 

c Contour mode, same as s, but no HPGL files are output (flow files arg output). 

The f option specifies that the current run is to file results. If this option is not specified, 

the host server terminates the host Hie server ('iserver') after the inidalisation phase and 

continues to run 'disconnected'. Output is then purely via the graphics screen, leaving the host 

session free to edit files, for instance. 
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Each parameter may be specified or omitted. For any omitted parameters the code will 

assume sensible defaults. The default parameters are stored internally, the default curve file 

is called 'circle.crv', the default flow index file is 'default.idx', the default display mode is 

n and the default file mode is to run disconnected. 

4.11.2 Parameter files 

These files are a convenient way of passing the various run parameters to the code. It was 

found convenient to use files for this purpose as it allows the user to set up several different 

'experiments' and then test them on different curves and using varying numbers of vortices. 

The generic format is given below 

minimum, streamwise .plot .coord maximum, streamwise .plot. coord 
minimum, transverse .plot. coord maximum, transverse .plot. coord 
streamwise.gridpoints transverse.gridpoints 
number.of.streamlines 
Reynolds.number time.step save.interval 
uniform.flow angular.velocity 
random.number.seed 
minimum.zone.size 

The parameters must appear in the lines as shown, but space between them is ignored as is 

anything on the line after the parameters values (to allow comments). The first four 

parameters specify the size and position of the visualisation rectangle. The next two 

parameters specify the number of gridcells in each dimension, if they are not readable (eg. put 

some text on the line) then the maximum number of gridcells possible will be scaled into the 

visualisation rectangle. The next parameter is the number of streamlines to plot. The line 

below this contains first the Reynolds number, then the time step and then the interval (in 

non-dimensional dme units) between saves to disk. The next line contains the value of the 

incident uniform flow, then the angular velocity of the body (which must be zero except for 

a circle). The following line contains the random number seed and the final line contains the 

minimum number of vortices for a zone in the decomposition (see section 4.5). 

4.77.3 Curve 

These hold the coordinates of the curve defining the body boundary. The program reads 

this file at the start of the run and uses it to set up the panel method and vortex creation 

points. The curve is defined in the complex plane with 7 being the unit vector in the 

streamwise direction and f being the unit vector in the transverse direction. Then the curve 

positions and tangents are defined as follows, 
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let the function C{t) trace a closed curve in C, for ? e [ 0 , l ) 
then z^ - C{t) 

and s. — (61) 

are the discrete (complex) curve positions and tangents, assuming 

In practice, it has been found that the points should be reasonably uniformly spaced around 

the curve, possibly slightly closer together in regions of higher curvature. When specifying 

a new curve, the user should ensure that the maximum chord has unit magnitude. If this rule 

is not adhered to, the Reynolds number must be scaled f rom the value specified in the 

parameter file. The curve file has the format of one line for each point, in the form, 

streamwlse.position transverse.position streamwise.tangent transverse.tangent 

The number of lines of this form in the file is automatically used as the number of boundary 

points. 
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5. Results 

5.1 Panel Methods 

As mentioned in section 3.6, panel methods can only approximate the boundary 

conditions. As with any approximate method, it is important to assess the accuracy attained. 

Here we evaluate the panel method used in the discrete vortex code. Various inviscid 

visualisations will be used to demonstrate that the solutions are the expected inviscid ones. 

Graphs are given showing absolute errors and relative convergence using both the new 

singularity-free element and a traditional panel element. The new element is shown to give 

solutions which converge more rapidly to the correct solution as the number of elements is 

increased. The solutions are also shown to be smoother near the boundary. 

Throughout the section, the panel methods are constructed as described in section 3.6. 

The new elements used are those whose velocity distribution is given by equation (31). As 

a reference, a second panel method is investigated using a vortex sheet of constant strength 

as an element, with velocity distribution given by equation (29). The constant vortex sheet 

element will in future be referred to as a 'textbook' element. The solutions produced using 

the two panel elements are compared, concentrating in particular on the boundaiy error. 

Initially, velocity vectors were plotted for this purpose but were found to convey limited 

amounts of information. Streamline plots were found to be much more useful as it can easily 

be seen if more than one streamline crosses the body surface, in which case fluid is entering 

or leaving the body. 

5.7.7 F/ow 

Figure 30 shows the solution using only ten new panels for uniform flow past a circle — 

the familiar inviscid solution is obtained. Figure 31 shows the equivalent solution using ten 

textbook panels. On a large scale, the two solutions look broadly similar, although a close 

examination reveals the new method to give a substantially smoother solution near the 

boundary. In all these diagrams the sides of the polygon shown follow the exact position of 

the textbook elements, but only indicate the position of the new curved elements by joining 

their end points. The curved elements used for the calculation shown in Figure 30 closely 

follow the surface of the actual circle. The introduction of curvature into the elements can be 

seen to help smooth the streamlines around the surface of the desired body shape, diminishing 

the errors due to the discrete nature of the method. 
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igure 30 Flow past a circle using 10 

new 

Igure 31 Flow past a circle using 10 

textbook panels 

Figure 32 and Figure 33 show the same solutions in more detail near a section of the 

circle boundary. The effect of the singularities in the textbook panels is clearly seen — many 

streamlines cross the boundary between the control points. The new panels maintain a smooth 

solution around the boundary, reducing the amount of fluid leakage. A quantitative analysis 

of boundary leakage is given in section 5.1.2. 

Figure 32 Flow past a circle using 10 

new panels — boundary 

details 

Igure 33 Flow past a circle using 10 

textbook panels — boundary 

details 

To help illustrate the ability of the method to cope with smooth, non-symmetrical bodies, 

Figure 34 shows flow past an ellipse with aspect ratio 2:1, placed at 45° to the incident flow. 

In this example fifty new panels were used to generate the solution. Again, the expected non-

lifting inviscid solution is clearly obtained. Figure 35 is a solution using one hundred new 

panels to solve for flow past a 20:1 ellipse, placed at 90° to the incident flow. This is a 

difficult problem due to the high curvature of the body at the two ends — some leakage can 

be observed in these regions, indicated by streamlines entering the body. Such an ellipse 

could be used to smoothly approximate a thin plate. The leakage in regions of high curvature 
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is always a problem with panel methods; it can be reduced by placing a larger proportion of 

the panel elements in the highly curved regions. 

f igure 34 Flow past a 2:1 ellipse, at 

45°, using 50 new panels 

Flow past a 20:1 ellipse, at 

90°, using 

f igure 35 ^ ^ 

100 new panels 

Finally, Figure 36 shows flow past a modified Joukowski aerofoil. The aerofoil family 

used are transformed from a circle as prescribed in equation (62) (taken from 

Paterson (1983)), 

Figure 36 Flow past a modified 

Joukowski aerofoil using 150 

new panels 

Figure 37 Boundary Details near the 

aerofoil tip 

271 ir ; 0 ^ f < l 

where a = Yl-25cos({) + 6^ (62) 

2 - e (z+1)^ ^+(z-l) 
n 

\2-E 

2 (z+1)^ ^-(z-1) 2 - E 
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This gives a whole family of aerofoils, where the thickness is proportional to 8, the angle at 

the rear tip is near ETC and the shape/symmetry is affected by adjusting (|). The panel testing 

code can also calculate these aerofoils at any angle of attack to the incident flow. The aerofoil 

in Figure 36 uses an angle of attack of 10°, 6=0.08, (|)=0.7 and e=0.087 (giving a tip angle of 

about 5°). The solution looks accurate at a distance, although closer examination of the region 

around the tip, as shown in Figure 37, reveals an increased amount of boundaiy leakage. This 

problem was significantly more pronounced in earlier versions, but was improved to the 

current state by slightly rounding off the trailing point. This is achieved by transforming a 

slightly larger circle (equation (63)), 

where = (1 + ( ) \/l -IGcoscI) + 8^ 
(63) 

for small S-

For the aerofoil shown here, the value ^ was set to 0.02. A similar rounding of the tip (using 

a different technique) will be used for NACA aerofoils in the vortex code (see section 5.6.1). 

The rounding of sharp comers is also necessary to desingularize the problem — with a 

genuine point, the problem tends to become numerically unstable as the number of panels is 

increased: the matrix becomes ill-conditioned. This is thought to be due to the two equations 

related to the panels either side of the comer tending towards the same panel position, but 

attempting to impose zero velocity in a different direction. The region of increased leakage 

can also be physically reduced in size by increasing the number of panels used. 

The new panel method has been demonstrated to give the expected inviscid non-lifting 

solutions for the various types of bodies we wish to experiment upon. It is hoped that the 

improved boundary representation will yield more stable and accurate solutions, when carried 

through into the full discrete vortex calculations. 

5.1.2 Examination of Boundary Leakage 

In this sub-section, the details of the fluid velocity at the body surface will be quantified. 

The graphs given all show the magnitude of the velocity component normal to the surface 

contour, at a set of points on the surface obtained by traversing the body in an anti-clockwise 

direction. It is of key importance to include several samples between the control points, as 

the solution is specifically calculated to have minimum error at the control points themselves. 

The behaviour between the control points matters for discrete vortex methods, as vortices can 

travel to any position outside the body and thus their motion is affected by these errors. 
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figure 38 Boundary leakage for a circle, 

10 new panels 

figure 39 Boundary leakage for a circle, 

10 textbook panels 

Figure 38 and Figure 39 show boundary leakage for a circle using 10 new and textbook 

panels respectively. The horizontal axis shows boundary position in terms of a curve 

parameter in the interval [0,1); the vertical axis shows the normal component of velocity at 

the boundary, normalised with (/„ the incident uniform flow speed. 

The new panels show a smooth solution which is minimised near control points, this is 

the best we can hope for from the limited information available; to further improve the 

solution between control points it would be necessary to make assumptions about the nature 

of ± e solution being sought. The equivalent scenario using textbook panels shows the effect 

of the singularities — large peaks in the normal velocity between the control points. In a 

discrete vortex method these would cause vortices to either be forced into the body or pushed 

violently away from it, both are non-physical and would undoubtedly have an adverse effect 

upon solutions. 
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Figure 40 Boundary leakage for a circle, 

20 new panels 

Figure 41 Boundary leakage for a circle, 

20 textbook panels 
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Figure 40 and Figure 41 show the boundary leakage for a circle using twenty new and 

textbook panels respectively. Convergence of the boundary condition is illustrated in both 

cases. The new panels maintain a smooth solution, with the small errors between the control 

points reduced in magnitude and physical size. The textbook panels also show less error 

between control points, but the peaks of the errors remain undesirably large. 

5.1.3 Convergence of the Methods 

A more rigorous analysis of the convergence of the methods is now presented. There 

seems to be no single preferred measure of error which is predominant in the literature. The 

three most popular are the norms Ly, so results are presented using each of these. 

The norms are defined in terms of boundary leakage as follows : 

Z-i = ^ |M.a|Af (64) 

4 I M-a (65) 

= sup| I g.a I on C} * max^ | g.a | at sample points} (66) 

So is ± e average modulus of error, Z,; is the 'root mean square' of error and is the 

magnitude of the maximum error. 

Figure 42, Figure 43 and Figure 44 show convergence in the three norms for the problem 

of uniform flow past a circular cylinder, as shown in Figure 30. The graphs are plots of the 

values of the respective norms using various numbers of panels. The axes are labelled in real 

values, but are scaled using a /og'yg transformation. 
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Figure 42 Convergence in Ay for flow 

past a circle 
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Figure 44 Convergence in for flow 

past a circle 

Figure 43 Convergence in for flow 

past a circle 

Both methods clearly converge in all three 

norms, since all show the error decreasing 

in value with increasing numbers of panels. 

Without rigorous analysis, it would seem 

that both convergence curves are asymptotic 

to a straight line. The axes are logarithmic, 

therefore this implies a power-law decay of 

error. Since the gradient is more negative on 

the asymptotic line for new panels, it is 

reasonable to conclude that, not only is ± e 

magnitude of the error much smaller, but it 

is decaying at a faster rate. To summarise 

this conclusion, the total eiror is smaller and 

the method converges more rapidly to the correct solution using the new panel elements. 

Method Method 

Textbook Textbook 

oaxM oaxM 100 1000 

Number of Panels 
1000 

Number of Panels 

Figure 45 Convergence in L, for flow 

past a 2:1 ellipse at 45° 

Figure 46 Convergence in L; for flow 

past a 2:1 ellipse at 45° 
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Figure 47 Convergence in for flow 

past a 2:1 ellipse at 45° 

Figure 45, Figure 46 and Figure 47 show 

convergence in the three norms for the 

problem of uniform flow past a 2:1 ellipse at 

45° to the flow, as shown in Figure 34. Again, 

both methods converge in all three norms, 

because the error clearly decreases with 

increasing numbers of panels, the textbook 

elements show little improvement in moving 

from 10 to 20 panels. This is typical of the 

numerical inaccuracy problems which can 

occur using these elements. Again, the new 

panels show a smaller error and more rapid 

convergence in all three norms. 
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Figure 48 Convergence in L, for flow past Figure 49 Convergence in for Oow past 

a modified Joukowski aerofoil a modified Joukowski aerofoil 

Method 

1000 

Number of Panels 

Figure 50 Convergence in for flow past 

a modified Joukowski aerofoil 

Figure 48, Figure 49 and Figure 50 show 

convergence in the three norms for uniform 

flow past a modified Joukowski aerofoil, as 

illustrated in Figure 36. The solution using 

textbook elements became unstable for more 

than 20 panel elements and so no 

convergence results are given. We presume 

that this instability is due to our positioning 

of panels, but did not expend much effort 

investigating the problem as it was not 

central to the work. The new panels show 

convergence in all three norms with 

increasing numbers of panels. The rate of 
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convergence, although slower than for the two previous smooth problems, still appears to 

become asymptotic to a straight line. This implies a power-law decay of error in the solution 

of the boundary condition. 

Convergence to the correct boundary condition has been demonstrated to be more rapid 

for the new panels. The panels have also been shown to correctly solve the various types of 

aerodynamics problems which we are interested in. Considerable effort was invested in 

making this part of the vortex model as accurate as possible. It is hoped that these panel 

elements may find wider uses in the field of aerodynamics. Panel methods are an extremely 

useful tool and, since the matrix inversion is the most expensive part of these calculations, 

using fewer elements to achieve a certain accuracy has a large payback. 

5.2 Testing Numerical Solutions of the Discrete Vortex Code 

To test the solutions produced by the code, we chose to use the well-studied problem of 

impulsively started flow past a circular cylinder. The non-rotating and rotating cases are both 

considered, for a variety of Reynolds numbers corresponding to those for which reliable 

experimental or numerical data are available. Our primary method of evaluation is by 

qualitative and quantitative comparison of flow visualisation diagrams with comparison of 

force coefficients exerted by the fluid on the cylinder providing a check on results. 

Comparison of flow visualisations is non-trivial, since the amount of information 

contained in, for example, a streamline plot is extremely large. The usual method for 

comparison is to check that each key flow feature is present and then to compare the 

dimensions of these features. For each case here, the visualisations will be presented and then 

a discussion of the successes and failings of the numerical schemes, as compared to the 

experiments, will be given. 

Force coefficients are extremely valuable aerodynamic results, but are of limited use for 

veriHcation of results. The problem is that, although a poor result for force coefficients may 

highlight a source of error, a good result for these quantities alone is not sufficient to verify 

the method. Calculating a force coefficient in a numerical simulation always involves a 

numerical integration of the more basic variables available, hence there is scope for so called 

'fortuitous' results. A force figure that appears to be accurate can be derived from a subtle 

cancellation of errors in the integration process, a dangerous effect to endorse. Conversely, 

it is possible for an accurately calculated flow to give a poor force result, due to errors in the 

calculation of the force. Thus we use force coefficients only as a check on results. 
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The diameter of the cylinder, D, is used to non-dimensionalise distances and time, t , and 

to define the Reynolds number, 

J k = T = ^ . (67) 
V D 

This is the same non-dimensional form as is used in the majority of the experimental papers 

used here. Some papers use the cylinder radius as the characteristic length, where possible 

these results have been adjusted so that all units are given in the same form. 

For the rotating cylinder, the ratio of the rotational surface speed to the incident flow, a , 

is used as the extra non-dimensional parameter to categorise the flows. If co is the angular 

velocity of the cylinder, 

In the following discussions of visualisations, the word 'eddy' is used to describe a 

region of closed streamlines in a frame of reference fixed with respect to the body. For a 

circular cylinder, the 'main' eddies are the two largest eddies which initially form in the wake 

of the body. The 'secondary' eddies are the two counter-rotating eddies which form within 

the main eddies near their outer edges and at the body surface. The 'tertiary' eddies also 

follow this pattern, and are formed within the secondary eddies. The word vortex is used to 

describe a region of highly rotational fluid, but not necessarily with closed streamlines, such 

as occurs when an eddy is shed into the main flow. 

5.3 Convergence of the Method — an Experimental Investigation 

The formal convergence of the method to solutions of the Navier-Stokes equations has 

been proved, as discussed in section 3.5. However, the convergence proofs in the literature 

are for unbounded domains, and thus do not allow for the inclusion of boundary models. We 

must therefore perform experimental testing on solutions. We have conducted an extensive 

programme of testing using the example of impulsively started flow past a circular cylinder 

at Reynolds number 5000. Flow visualisations were compared to experimental visualisations 

using a variety of time steps and numbers of boundary points to represent the body. The code 

is set up so that increasing the number of boundary points also introduces more discrete 

vortices, reduces the core size and causes more vortex overlap — all of the convergence 

conditions needed for infinite fluids (see section 3.5.1). A summary of the results of the 
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investigation is presented here and a discussion is given on the effects of varying the time 

step and the number of boundary panels used. 

Figure 51 - Figure 55 show the computed streamline plots for i:=1.0, using a time step 

of 0.1. Figure 56 shows an experimental visualisation of the same situation, from Bouard and 

Coutanceau (1980). This sequence is presented to show the effect of increasing the number 

of boundary points used whilst keeping the time step fixed. 

The trend is generally towards the correct qualitative f low features with increasing 

number of boundary points. Figure 56 shows that the experimental flow is approximately 

symmetrical above and below the cylinder. On the upper side, a main eddy sits at the rear of 

the cylinder, with an enlarged central rotating section. Towards the top of the cylinder, two 

small counter-rotating secondary eddies can be seen. Between the core of the main eddy and 

the line of symmetry is a narrow section of wake, termed the 'forewake' by Bouard and 

Coutanceau. 

ugure 51 25 boundary points, 6%=0.1, 1=1.0 

Figure 51 uses 25 boundary points and, as would be expected, leads to a very crude result. 

However, it is pleasing that all the key flow features described above are present in this 

result, but the dimensions are incorrect. Notice that there is a fairly large amount of fluid 

leaking through the boundary in this flow, indicating that more panels are needed to satisfy 

the boundary condition. Notice also that the layer of fluid attached to the front of the cylinder, 

the 'boundary layer', is far too thick. This is a result of the vortex cores being too large to 

be capable of representing the boundary at the correct thickness. 
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Igu re 52 50 boundary points, 6T=0.1,1=1.0 

In Figure 52, which uses 50 boundary points, the scales of the flow features become close to 

those seen in the experiment, but the main eddies are too close to each other and the 

secondary eddies have not developed properly. Some boundary leakage is still visible using 

50 panels and the boundary layer is still too thick at the front of the cylinder. 

Figure 53 100 boundary points, 61=0.1, i= 

Figure 53 shows the solution obtained using 100 boundary points. The dimensions and 

positions of the key flow features are very close to those seen in the experiment. An 

interesting new phenomenon has occurred in this visualisation — the secondary eddies that 

rotate in the opposite direction to the main eddy have both joined up with the external flow. 

This phenomenon is seen in several of our numerical solutions at high Reynolds numbers and 

does occur in real flows (see Figure 93). However, the experiment shows this secondary eddy 
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as closed with the body boundary in this case, so here the phenomenon is predicted wrongly. 

However, the clear presence of the secondary eddies and the forewake is of meriL Notice that 

the leakage of fluid across the boundary has been almost entirely eliminated by using 100 

panels. The boundary layer is still just visible, sliown by the layer of streamlines close to the 

front surface of the cylinder. 

I g u r e 54 200 boundary points, 6T;=0.1, ^=1.0 

Moving to Figure 54, which uses 200 boundary panels, the numerical solution is very close 

to the experiment. The secondary eddies are clearly visible, as is the forewake. The main eddy 

looks slightly too flat towards the boundary, but almost no boundary leakage is visible and 

the boundary layer is now thin enough not to be visible on the front cylinder surface. 

Igure 55 400 boundary points, 6'[=0.1, 1=1.0 
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Figure 55 shows the results of the same simulation using 400 boundary points, the maximum 

figure possible given the current constraints on memory and CPU time. The result is similar 

to that obtained with 200 boundary points, the dimensions of the flow features are nearly the 

same. The core of the main eddy has become slightly larger, and the details of the fbrewake 

appear to be slightly better resolved. However, details of the secondary eddy system appear 

to have been lost. The overall impression is that this solution represents no improvement, or 

is possibly a worse prediction than the previous case. 

figure 56 Experimental Visualisation, 1=1.0 

Figure 56 shows the experimental visualisation of the same flow at the same non-dimensional 

time as the numerical visualisations above. The photograph is produced by taking a long 

exposure of illuminated dust particles suspended in the fluid in order to highlight the particle 

paths, which approximate the streamlines of the flow. The photograph must be studied 

carefully in regions where the paths cross in order to ascertain the behaviour of the fluid 

there. In this case, several paths cross just downstream from the forewake; this may indicate 

a rapid expansion of the main eddies into this region. 

The trend of the solutions is towards the experimental flow, except that the solution using 

400 boundary points and 6%=0.1 fails to resolve the secondary eddy system with the same 

accuracy as that using 200 boundary points. This unexpected effect led us to conduct a broad 

investigation of the results of the discrete vortex model for this flow using a range of time 

steps and numbers of boundary points. The results of this survey are summarised below. 

It is essential to use a sufficient number of boundary points that the vortex core size 

decreases sufficiently to accurately represent the boundary layer. If the vortex cores are larger 

than the desired boundary layer thickness, an accurate solution cannot be achieved for any 
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value of time step. The observed effect of large cores is that an artificially wide boundary 

layer develops, preventing important flow features near the body from being fully resolved. 

There is a startup phenomenon which is dependent on the number of boundary points and 

the time step used. This phenomenon affects the rate at which the early flow develops, 

causing the formation of major flow features to be brought forward in time or delayed. Thus 

the non-dimensional times at which the discrete vortex plots closely match experiments are 

'shifted'. This phenomenon is illustrated by Figure 57, which shows the flow generated using 

400 boundary points and 61=0.0125, but at the later time of T=1.4. Thus the comparison time 

has been shifted by 0.4 non-dimensional time units. This visualisation is in extremely close 

agreement with the experiment. The visualisations at later shifted-times are also in agreement 

with experiments^, which indicates that the times are and not scaled. Thus a shift-time 

must be added to obtain equivalent experimental times, and nof a multiplicadve constant 

introduced. 

Figure 57 400 boundary points, 61=0.0125, T=1.4 

A further example of this time-shifting is given in Figure 58, where the equivalent run 

using a time step of 0.025 is shown. The visualisation at T=1.3 is in close agreement with the 

experiment, as are the visualisations thereafter whose non-dimensional times of computation 

are 0.3 units later than the experimental photographs. 

^ apart from occurrences of the instability described below 
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"igure 58 400 boundary points, 5T=0.025, 1=1.3 

A pattern emerges which shows that using more boundary points, or a smaller time step, 

delays the initial formation of the major flow features. An analogous situation exists in the 

experiments, which are not genuinely impulsively started and thus are initiated by a (usually 

undocumented) acceleration phase. 

Allowing for these comparison shifts, results are generally closer to experiments using 

a shorter time step. However, short time steps can also cause instability after longer dmes 

(these instabilides have been seen from ^=2.0 onwards). A disturbance appears to develop in 

the shear layer, which eventually causes the solution to enter a completely different phase 

from the experiments. This process is illustrated in Figure 59 and Figure 60, which are two 

frames at later times from the same run which produced Figure 57. 

Strong secondary eddies develop from T=2.0. At 1=2.8, these eddies are in the process 

of joining ± e main wake, destabilising it and causing symmetry to break. These secondary 

eddies do not become fully entrained by the main wake as seen in most of the other 

computations at this Reynolds number. Instead, they travel around the core of the main wake, 

visible as sharply angular deviations in the streamlines (see Figure 60). The wake becomes 

destabilised and eddy shedding commences earlier than in computations using a larger time 

step. 
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figure 59 400 boundary points, 8i;=0.0125, 1=2.8 

figure 60 400 boundary points, =0.0125, t=3.1 

One possible cause of this instability is the error due to the transition of the vortex sheets 

to vortex blobs in the creation of new vortices. This error is discussed in section 3.8, and will 

become large when using a very small time step. The velocity distribution of a blob is similar 

to that of a sheet at distance, but close-up they differ significantly. Using a very small time 

step will leave the sheet and blob close together, it is then possible that the error in 

transforming sheets into blobs will have a more significant input to the panel method on the 

next time step than the actual modon of the blobs. Thus a feedback mechanism could be set 

up leading to instability. Small time steps have been used to give accurate long term soludons 

for the rotating cylinder, where the surface speeds are higher than in the non-rotadng case. 
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It may be that the high surface speeds prevent the instability developing by transporting the 

blobs sufficiently far from the sheets, even with a small time step. 

Through all this complicated behaviour, there is a significant trend towards solutions 

matching experiments more closely when more boundary panels are used. The complex 

startup phase discussed above can cause early time solutions to appear less accurate, but the 

extra spatial resolution significantly improves long time solutions. 

For the accurate short time solutions presented in section 5.4.1, we have used 400 

boundary points and a time step of 0.1. This produced little time-shift, which allows us to 

compare experiments with computations at the same non-dimensional times. We also chose 

the time steps for the rotating cylinders in section 5.5 so as to produce small time-shifts, 

however the values of time step required seemed to become smaller with an increasing 

rotation rate. 

For the long term solutions the choice of parameters was made pragmatically. Runs were 

conducted with the least number of boundary points and the largest time step which produced 

valid solutions, to allow the solutions to be taken as far in time as possible. These long runs 

were found to be qualitatively insensitive to variation of parameters. The same types of 

behaviour occur, but not always at the same non-dimensional times. In practice this meant 

using either 100 or 200 boundary points, with a time step of 0.05 or 0.1. 

The differences generated by changing the time step may be related to the boundary 

model we have used. Future studies could significantly benefit from an examination of the 

details of the boundary model. However, we have shown that excellent experimental 

comparisons can be produced with careful choice of the input parameters. There are also 

cruder parameter values which always produce results with reasonable accuracy, and we have 

tended to favour these. 

5.4 Test Case 1 — Translating Circular Cylinder 

/tccwrac)' 

Bouard and Coutanceau (1980) give experimental flow visualisations for impulsively 

started flow past a circular cylinder, for a range of Reynolds numbers and short times. In 

addition, Ta Phuoc Loc and Bouard (1985) give details of the evolution, in both experimental 

and numerical visualisations, of the flows at Reynolds number 3000 and 9500. In this section, 

the output of the discrete vortex code will be compared with data from these papers. The 

method will be shown to give solutions of comparable accuracy to other numerical methods 

94 



for the range of Reynolds numbers 300 to 9500. Tests indicate that solutions may have some 

validity for Reynolds numbers as high as 31,700 — for a discussion see section 5.4.11. As 

mentioned above, the following runs were conducted (unless otherwise stated) using 400 

boundary points and a time step of 0.1. 

UBteil 

11 

Hgure 61 Geometry used for flow comparison 

Figure 61 illustrates the geometry used for comparison of flow visualisations. The flow 

streamlines are shown as dotted lines; the positions of the points used to measure 

characteristic distances and angles are shown as small shaded circles. The three quantities 

compared are the separation distance of the centres of the two main eddies, <^2=00, 

the distance between the two stagnation points at the rear of the cylinder on the line of 

symmetry and 8=AA0B, the angle subtended by the centres of the main eddies from the 

centre of the cylinder. 

These three quantities were chosen as important physical flow measures of the solution, 

as they measure the length, width and position of the main eddies. This effectively measures 

the size of the main wake behind the cylinder. The quantities are also relatively easy to 

measure, although it can be difficult to estimate the position of the surface and the centre of 

the cylinder in some of the experimental photographs. The figures for the numerical solutions 

should be reasonably accurate as the locations of the points are usually clear. The three 

quantities have the additional advantage that they do not assume the flow to be symmetrical. 

5.4.2 Short Time Solution - Re=300 

Figure 62 shows the computed streamlines for the flow at T=2.5, Reynolds number 300. 

Figure 63 shows the experimental visualisation of exactly the same flow. In the calculated 

flow, some 'noise' can be seen in the region of the separation points. This noise is observed 

in all the solutions at the lower range of valid Reynolds numbers, indeed it is this effect 
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which prevents the method solving accurately for even lower values of Reynolds number. The 

noise is caused by the large diffusion gradients which occur in certain regions of the flow. 

The solution shown here uses the combined diffusion velocity/random walk technique 

discussed in section 3.5. Hence, a large diffusion gradient in a region near the boundary is 

modelled by assigning a large diffusion velocity to the vortices in that region. This implies 

a rapid motion of these vortices, causing large time-stepping errors and causing the vortex 

field to become relatively fragmented. These combined effects increase the magnitude of 

errors in such regions of high diffusion, visible as noise in the streamline plot and force 

coefficient figures. A similar, but larger, effect is observed in pure random walk calculations 

where the standard deviation of the random walk becomes increased to the point where the 

noise is visible in solutions. 

Figure 62 Vortex code visualisation of flow at Re=300, 1=2.5 

"igure 63 Experimental visualisation of flow at 

Re=300, T=2.5 
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Comparing overall flow characteristics, the gross features are fairly well predicted by the 

computation. The secondary eddies are not fully developed in both visualisations — showing 

only as slight deviations in the streamlines near the body. It is also worth noting that neither 

flow is perfectly symmetrical. 

The distance comparison table is given below, each of the measured quantities agrees 

with the experiment to within 10%. 

Figure 62 Figure 63 

dj 0.53 0.54 

4 1.04 0.94 

e 31.1° 33.9° 

5.4.3 Short Time Solution - Re=550 

Figure 64 shows the computed flow for Reynolds number 550, at 1=2.5, with the 

equivalent experimental visualisation shown in Figure 65. The noise discussed above can be 

seen in the region of the separation points, although at a reduced level. The major flow 

features are well predicted. The secondary eddies are fully developed into closed regions 

against the cylinder surface and are clearly not joined to the external flow. In the calculation, 

details of the upper secondary eddy system are much closer to the experimental observations. 

The shape of the main eddies is accurately predicted. 

Igure 64 Vortex code visualisation of flow at Re=550,1=2.5 
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Igu re 65 Experimental visualisation for flow at 

Re=550, T=2.5 

The geometry comparison table for the above flows is given below. Agreement is good, 

although the angle 8 is noticeably too large, indicating that the centres of the main eddies are 

too close to the cylinder surface (if 8 is too large but is near the experimental value, then 

the eddies must be too close to the cylinder). 

Figure 64 Figure 65 

d, 0.56 0.52 

4 0.74 0.80 

e 38.0° 33.7° 

5.4.4 Short Time Solution - Re=3000 

Figure 66 - Figure 77 show the evolution of the flow at Reynolds number 3000, from 

%=1.0 to 1=2.5. For each time, a comparison is made between visualisations produced by the 

vortex code, an experiment and a finite difference computation, the latter two are both taken 

from Ta Phuoc Loc and Bouard (1985). A geometry comparison table is also given for each 

time. Note that the centres of the eddies are not clearly indicated in the finite difference plots, 

so the entries in the table concerning the position of these centres must be left blank. 

Figure 66 shows a streamline plot produced by the vortex code at 1=1.0. Figure 67 and 

Figure 68 show visualisations from an experiment and a finite difference calculation 

respectively. The scale of the main eddies is predicted accurately by both numerical solutions. 
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Details of the secondary eddies are not apparent in the vortex code solution, this was also 

observed in section 5.3 using 400 boundary panels and may be due to a small time-shift. 

Figure 66 Vortex code visualisation for flow at Re=3000, i;=1.0 

figure 67 Experimental visualisation for flow at 

Re=3000, i:=1.0 

Figure 68 Finite difference visualisation for flow at Re=3000, 

T=1.0 
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The table below gives a quantitative comparison of the flow geometries. The figures show a 

close correspondence between both of the numerical solutions and the experiment, for the 

quantities considered. 

Figure 66 Figure 67 Figure 68 

4 0.64 0.65 -

4 0.15 0.15 0.17 

e 66.8° 65.4° ~ 

Figure 69 shows the vortex code visualisation for T=1.5, the equivalent experiment is 

shown in Figure 70 and the finite difference solution is shown in Figure 71. Both numerical 

results closely match the experimental visualisation. The secondaiy eddy system has now 

formed in the vortex code solution and has a size and shape close to that seen in the 

experiment. 

I g u r e 69 Vortex code visualisation for flow at Re=3000,1=1.5 
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Figure 70 Experimental visualisation for flow at 

Re=3000, %=1.5 

Igu re 71 Finite difference visualisation for flow at Re=3000, 

T=l.5 

The geometry comparison table for the above flows is given below. All measurements are 

close to the experimental results. Both numerical solutions predict the wake to be too short, 

the vortex code also predicts the centres of the main eddies to be too close to the cylinder 

surface. 

Figure 69 Figure 70 Figure 71 

4 0.62 0.61 -

4 0.33 0.38 0.34 

e 55.3° 50.5° -
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Figure 72, Figure 73 and Figure 74 show the same triplet of visualisations for 1=2.0. Both 

numerical solutions are close to the experiment. The wake has lengthened and the secondary 

eddy system remains well developed. 

Figure 72 Vortex code visualisation for flow at Re=3000, T=2.0 

I g u r e 73 Experimental visualisation for flow at 

Re=3000,1=2.0 
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figure 74 Finite difference visualisation for f low at Re=3000, 

T=10 

The geometry comparison table given below shows each of the quantities measured to 

be fairly well predicted. The vortex code still predicts the main eddies as being slightly too 

close to the cylinder surface. 

Figure 72 Figure 73 Figure 74 

4 0.60 0.55 -

4 0.55 0.56 0.54 

e 44.5° 39.9° -

Figure 75, Figure 76 and Figure 77 show the next time f rame of 1=2.5, for vortex code, 

experiment and finite difference respectively. The vortex code solution has become 

asymmetrical in the region of the secondary eddies, the asymmetry eventually leads to the 

shedding of one of the main eddies. 

''igure 75 Vortex code visualisation for flow at Re=3000, 1=2.5 
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Figure 76 Experimental visualisation for flow at 

Re=3000, T=2.5 

figure 77 Finite difference visualisation for flow at Re=3000, 

T=2.5 

The geometiy comparison table for T=2.5 is shown below. The same pattern as for 

previous time steps emerges — results are fairly good, but both numerical solutions predict 

the wake to be too short and the vortex code predicts the centres of the main eddies to be too 

close to the cylinder surface. 

Figure 75 Figure 76 Figure 77 

d, 0.56 0.58 -

4 0.72 0.79 0.71 

8 46.8" 38.6° -

In summary, results for the early flow at Reynolds number 3000 are in agreement with 

experimental data and results produced by a finite difference method. The Onite difference 
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code appears to produce slightly results better than the discrete vortex method for this set of 

parameters. The discrete vortex solution has the centres of the two main eddies too close to 

the cylinder surface, a phenomenon associated with excessive roll-up of the vortex sheet 

which makes up the main eddies. Such excessive roll-up is known (see Smith and Stansby 

(1988)) to be an effect associated with time-stepping errors from the second-order scheme 

used here, which may explain this result. Better results could be obtained by using a smaller 

time step and estimating the time-shift, but our motivation here is partly to justify results with 

a large time step in order to give credibility to our long term solutions in section 5.4.8. 

5.4.5 Short Time Solution - Re=5000 

Now looking at the flow at Reynolds number 5(KI0, Figure 78 - Figure 85 show the early 

time evolution. For each of four times, the output of the vortex code is shown alongside an 

experimental visualisation of the same flow, taken from Bouard and Coutanceau (1980). 

Figure 78 shows the flow computed by the vortex code for T=1.0, with Figure 79 

showing the equivalent experimental visualisation. The existence of an enlarged central region 

to the main eddy and an elongated 'forewake' extending W m this central region to the line 

of symmetry are correctly predicted. Details of the secondary eddy system are not correctly 

resolved, although see section 5.3, page 91. The geometry comparison table is also given 

below, showing good agreement for the quantities measured. 

Igu re 78 Vortex code visualisation for flow at Re=5(%)0, 1=1.0 
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figure 79 Experimental visualisation for flow at Re=5000, 

1=1.0 

Figure 78 Figure 79 

d, 0.63 0.62 

4 0.10 0.13 

e 67.2° 64.9° 

Figure 80 and Figure 81 show the vortex code and experimental visualisations, 

respectively, for T=1.5. The secondary eddy system has become joined with the main flow in 

the vortex code solution. It is worth noting that there is evidence of the flow becoming three-

dimensional in the region of the secondary eddies, with dust particle paths crossing there. 

which indicates that these flow regions are unstable. 
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Hgure 80 Vortex code visualisation for flow at Re=5000, 1=1.5 

i'igure 81 Experimental visualisation for flow at Re=5000, 

T=L5 
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The geometry comparison table, shown below, confirms the observation ±at the main 

wake is predicted as too short. The angle 8 is also predicted as too large, showing that the 

centres of the two main eddies are too close to the cylinder and too far apart from each other. 

Figure 80 Figure 81 

4 0.65 0.53 

0.28 0.36 

0 60.0° 47.7° 

Figure 82 shows the vortex code streamline plot for T=2.0, with Figure 83 showing the 

experimental visualisation at the same non-dimensional time. The prediction at this time is 

very close to the experiment (particularly if the vortex plot is viewed as a vertical reflection 

of the experiment — remember that the direction of initial symmetry breaking is arbitrary). 

Thus the code appears to have maintained agreement with the experiment, despite forming 

a transient solution which differs at T=1.5. It could be that the coirect amount of vorticity 

continues to separate from the boundary layer during the 1=1.5 phase, eventually becoming 

entrained into the main eddies and restoring them to their correct dimensions. The change in 

the flow is very rapid near 1=1.5 so if there is a small time-shift, it would be more noticeable. 

A more accurate solution could be obtained by using a smaller time step and taking into 

account the appropriate time-shift. The geometry comparison table below confirms the close 

agreement with the experiment in quantitative terms. 

Figure 82 Vortex code visualisation of flow at Re=5000,1=2.0 
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f i g u r e 8 3 E x p e r i m e n t a l v i s u a l i s a t i o n f o r f l o w a t R e = 5 0 0 0 , 

1=2.0 

Figure 82 Figure 83 

d, 0.61 0.59 

4 0.51 0.51 

e 46.5° 46.9° 

Figure 84 shows the vortex code output at 1=2.5, Figure 85 the experimental visualisation 

for the same time. Again, agreement is close confirming that the code and experiment have 

entered a mode of closer agreement after a transient phase. Notice, in both experimental and 

numerical visualisations, the fomiulation of a very small tertiary eddy system, visible as a 

slight deviation on the streamlines close to the cylinder in the outer secondary eddies. The 

fact that the code appears to predict the flows more accurately after longer times indicates that 

we can use the same time step, 6T=0.1, for long time runs. The geometry comparison table 

given below confirms the similarity between numerical and experimental visualisations. 
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i'igure 84 Vortex code visualisation for flow at Re=5000, T=2.5 

i 

Figure 85 E x p e r i m e n t a l v i s u a l i s a t i o n f o r f l o w a t 

Re=5000, T=2.5 

Figure 84 Figure 85 

d, 0.57 0.60 

0.71 0.74 

e 38.7° 40.7° 
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5.4.6 Short Time Solution - Re=9500 

Figure 86 - Figure 107 show the evolution of the impulsively started flow past a non-

rotating circular cylinder at Reynolds number 9500. A flow visualisation generated by the 

vortex code is shown for each time fi-ame, 400 boundary points and a time step of 0.1 were 

used. Experimental and finite difference visualisations, taken from Ta Phuoc Loc and Bouard 

(1985), are shown where available (the paper does not include visualisations at every value 

for the regular time intervals used). For each time frame a discussion is given of the successes 

and failings of both numerical methods and a quantitative geometry comparison table is 

presented. We have conducted runs at this Reynolds number using a smaller time step and 

obtain better results which are time-shifted. The results shown here are not intended to be the 

best possible using the discrete vortex code, but rather demonstrate that reasonable results can 

be achieved using a fairly large time step. 

Figure 86, Figure 87 and Figure 88 show the discrete vortex, experimental and finite 

difference streamline plots for "[=0.6. The experimental flow is very difOcult to read, but 

appears to be in closer agreement with the finite difference solution. In the discrete vortex 

solution an elongated eddy has formed on the cylinder surface away from the line of 

symmetry. 

Figure 86 Code, Re=9500, T=0.6 Figure 87 E x p e r i m e n t 

——̂  

4 ' 
Figure 88 Finite Difference Code 
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The geometry comparison table is given below. It was possible to estimate the centre of 

the eddy in the finite difference diagram, so the table is full. Agreement is good between the 

experiment and finite difference solutions, with a slightly less accurate result given by the 

vortex code. 

Figure 86 Figure 87 Figure 88 

4 0.77 0.69 0.66 

4 0.02 0.05 0.06 

e 97.2° 80.6° 75.7° 

Figure 89 shows the vortex code output for non-dimensional time T=0.8, with Figure 90 

showing the equivalent experimental visualisation and Figure 91 the Rnite difference 

equivalenL Both of the numerical solutions predict an enlarged central section to the main 

eddies, although this phenomenon is less pronounced in the experiment. 

Figure 89 Re=9500, T=0.8 Figure 90 E x p e r i m e n t 

Figure 91 Finite Difference Code 
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A quantitative comparison of the dimensions of the flow features is given below. Both 

numerical schemes predict the angle 8 as being too large, although the centres of the eddies 

are difGcult to estimate in the experimental photograph. 

Figure 89 Figure 90 Figure 91 

4 0.71 0.75 0.73 

^2 0.04 0.07 0.09 

e 82.6° 73.7° 82.5° 

Figure 92, Figure 93 and Figure 94 show the same three visualisations at 1=1.0. There 

is clear evidence, in all three visualisations, of the counter-rotating secondary eddies 

interacting with the external flow. In the vortex solution, only the secondary eddy on the 

lower body surface is joined to the external flow; in the experiment the opposite has occurred, 

with the lower secondary eddy just contained within the wake and the upper secondary eddy 

interacting directly with the external flow. At this time, all three visualisations agree upon the 

existence of an enlarged central section to the main eddies and a forewake extending from 

this enlarged section to the line of symmetry. 

Figure 92 Re=9500, T=1.0 Figure 93 Experiment 

Figure 94 Finite Difference Code 
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Figure 92 Figure 93 Figure 94 

d, 0.69 0.67 0.69 

4 0.09 0.09 0.11 

e 74.3° 80.6° 74.3° 

F i g u r e 9 5 s h o w s t h e s t r e a m l i n e p l o t p r o d u c e d b y t h e v o r t e x c o d e f o r 1 = 1 . 2 , w i t h 

F i g u r e 9 6 s h o w i n g t h e e q u i v a l e n t f i n i t e d i f f e r e n c e o u t p u t . T h e e x p e r i m e n t a l v i s u a l i s a t i o n f o r 

t h i s t i m e f r a m e i s o m i t t e d f r o m o u r s o u r c e , T a P h u o c L o c a n d B o u a r d ( 1 9 8 5 ) . T h e t w o 

numerical schemes show the same flow features, with the centres of the main eddies further 

apart in the discrete vortex solution, see the table below. 

F i g u r e 96 F i n i t e Difference C o d e 

F i g u r e 95 R e = 9 5 0 0 , 1 = 1 . 2 

Figure 95 Figure 96 

d, 0.71 0.57 

4 0.13 0.14 

0 73.0° 65.4° 

Figure 97 - Figure 99 show the three comparative visualisations at non-dimensional time 

1.4. At this time, the experiment shows the main eddies to have two distinct rotational 

centres. This phenomenon is correctly predicted in the finite difference calculation, but absent 

from the vortex code output. Consequently the centres of the main eddies, which appear to 

be situated at some position lying between the two centres seen in the other visualisations. 
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are too far apart. At this time the forewake can still just be seen — the streamlines start to 

turn upstream where they meet on the line of symmetry between the two main eddies. 

Figure 100 is a visualisation produced by the discrete vortex code at 1=1.6, using a time step 

of 0.0125, and illustrates that fact that it is possible to obtain a more accurate solution. As 

mentioned in section 5.3, a comparison time-shift is introduced — in this case all the vortex 

code plots for this run compare well with the experiments 0.2 non-dimensional time units 

earlier. The overall shape of the main eddies is in much closer agreement in this more 

accurate solution. 

Figure 97 Re=9500, %=1.4, 6i:=0.1 Figure 98 E x p e r i m e n t 

Figure 99 F i n i t e D i f f e r e n c e C o d e 

Figure 100 Re=9500, T=1.6, 

6%==0.0125 

At this stage, the centres of the main eddies in the finite difference plot could not be 

estimated with accuracy, so the geometry comparison table given below is incomplete. The 

figures confirm the observation that the centres of the main eddies are predicted as too far 

apart by the vortex code. 
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Figure 97 Figure 98 Figure 99 Figure 100 

dj 0.69 0.61 - 0.59 

4 0.22 0.20 0.21 0.15 

8 66.3° 60.1° - 57.3° 

F i g u r e 1 0 1 s h o w s t h e o u t p u t o f t h e v o r t e x c o d e a t 1 = 1 . 6 , F i g u r e 1 0 2 s h o w s t h e 

experimental visualisadon at the same time and Figure 103 shows the equivalent finite 

d i f f e r e n c e p l o t . A l l three p l o t s a p p e a r t o b e very s i m i l a r , w i t h t h e v o r t e x c o d e solution c l o s e l y 

matching the experiment. In the experiment and vortex code, the lower secondary eddy is just 

joined to the outer flow. The forewake region has now been completely absorbed into die 

m a i n eddies. T h e s h a p e o f t h e b o u n d i n g c o n t o u r o f t h e w a k e i s well predicted by b o t h 

numerical schemes. 

Figure 101 Re=9500, %=1.6 Figure 1 0 2 E x p e r i m e n t 

Figure 103 Finite Difference Code 

The good agreement between vortex code and experiment is quantitatively confirmed by 

the geometry comparison table shown below. 
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F i g u r e 101 Figure 102 F i g u r e 103 

4 0.69 0.66 -

4 0.30 0.27 0.28 

e 60.5° 61.0° -

Figure 104 and Figure 105 show the streamlines produced by the two numerical schemes 

at 1=1.8, the relevant experimental plot being absent from our source. The two agree on the 

scale and shape of the main eddies. The finite difference scheme shows the counter-rotating 

secondary eddy completely joined to the outer flow, it remains closed to the body in the 

discrete vortex solution. 

Figure 105 Finite Difference Code 

Figure 104 Re=9500, %=1.8 

The geometry comparison table is provided for completeness, the vortex code predicts 

the wake to be slightly longer than the finite difference code. 

Figure 104 Figure 105 

4 0.65 -

4 0.41 0.36 

e 52.8° -

Figure 106 shows the streamlines computed by the vortex code at T=2.0, Figure 107 

shows the equivalent experimental visualisation and Figure 108 shows the finite difference 
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solution at the same time. At this time, the vortex code appears to have predicted the shape 

of the wake more closely then the finite difference code, in which the main eddies are too 

'square'. The secondary eddy system is predicted correctly by both codes although the 

experiment has asymmetry in this region. There is also evidence of some three-dimensional 

behaviour in the experiment, in the region of the centres of the main eddies, where dust 

p a r t i c l e p a t h s c a n be s e e n t o c r o s s . 

Figure 106 Re=9500, T=2.0 F i g u r e 1 0 7 E x p e r i m e n t 

Figure 108 Finite Difference Code 

The geometry comparison table given below shows good agreement between experiment 

and vortex code. The centres of the main eddies are predicted as too close but, as already 

mentioned, there are three-dimensional effects in this region in the experiments so their 

precise position is unclear. 

Figure 106 Figure 107 Figure 108 

4 0.63 0.76 -

4 0.49 0.47 0.49 

e 49.8° 55.6° -
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In summary of the comparison at Reynolds number 9500, the two computational 

solutions are in overall agreement with the experimental visualisations. The vortex code 

visualisations appear to match the experiments more closely at some time frames, the finite 

difference plots at others. As would be expected, the flow is more unstable at this higher 

Reynolds number. 

5.4.7 Short Time Solutions - Discussion 

We have presented short time solutions at a range of Reynolds numbers and shown the 

results to be in reasonable agreement with experiments and finite difference calculations. In 

particular, the results for the later times seem to be in closer agreement, possibly due to 

starting effects occurring in the simulations and/or the experiments. There is some transient 

inaccuracy at earlier times. 

More accurate solutions could be obtained by using a smaller time step and taking a 

comparison time shift into account, for an example see Figure 100. However, one of our main 

intentions in this section has been to show that results using a large time step have reasonable 

validity, so that we can use such a large time step to take long runs as far as possible in time 

in the next section, in order to generate novel fluid dynamics results. 

5.4.8 Long Time Solutions - Objectives and Setup 

In the following sub-sections, long time solutions at various Reynolds numbers are 

presented. The objective of these sub-sections is to compare the solutions with the few 

available results and to show the interesting phenomena which occur in some of the solutions. 

The results are presented in terms of streamline plots and graphs of force coefRcients. The 

flow visualisation techniques have already been discussed, but some comment must be made 

to explain the force graphs. 

The mathematical techniques used to calculate the force coefficients are given in 

section 3.11. Equation (39), from Quartapelle and Napolitano (1983), has been reported to 

give good results for an impulsively started circular cylinder, see for instance Smith and 

Stansby (1988). Our results agree and hence we have used the formula as a reference in order 

to evaluate other techniques. This equation should give accurate force figures because it 

integrates over the whole flow so no 'sampling' error is introduced. For this reason we refer 

to forces calculated using this technique as 'Lagrangian' forces, to indicate that the formula 

is in keeping with the Lagrangian flow model. Unfortunately, generalisation of the method 

to non-circular body shapes is a non-trivial task. Two extra numerical solutions of the Laplace 

equation would be needed, equivalent to two extra boundary solves at each time step and thus 

significantly increasing the storage and CPU requirements of the calculation. 
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The much cheaper, although less accurate, method based on equadon (45) was evaluated 

as suitable for use with non-circular bodies. The method relies on evaluation of f low 

quantities at fixed 'grid' points placed around the body boundary. This makes the calculadon 

of force quantities highly sensitive to the placement of the vortices relative to the grid, 

resulting in a large noise component being introduced into the force results. Fortunately, this 

noise has proved simple to eliminate using a simple moving average of the data over the time 

variable. Figure 109 and Figure 110 show force results at /(e=550, before and after the 

smoothing has been applied. The integrity of the data has been largely retained, with the noise 

component effectively removed to show the underlying trend. All smoothed results presented 

here are averaged over three data points, which was found to be enough to remove the noise 

without losing essential details. We have termed results from equadon (45) 'Eulerian' forces, 

to indicate the introduction of the grid. 

Eutarlan Dt#g 

EuleMan LA 

Tlm#, T 

EuwrmnDrng (mwoUwd) 

EuWnmn LA (mmoothed) 

^ % 46 S) 
Tlm#, T 

Figure 109 Force graph before smoothing Figure 110 Force graph after smoothing 

Most of the force graphs presented in this section show the total lift or drag exerted on 

the cylinder. This is composed of the sum of a pressure force and a skin fricdon force. The 

pressure component, whose evaluation is discussed above, dominates the total force at the 

Reynolds numbers considered here. However, it is of interest to examine the frictional 

component in isolation. The magnitude of the skin friction diminishes rapidly with increase 

in Reynolds number. Thus the friction component only contributes a significant proportion 

of the total force at the lower Reynolds numbers. Figure 111 shows the skin friction force 

coefficients at Reynolds number 550. These were calculated using equation (46) and are in 

reasonable agreement with figures given in Franke et al. (1990). Our calculations give a mean 

frictional drag of 0.21, Franke et al. quote 0.21 at /?e=300 and 0.13 at 7(6=1000. The 

behaviour of the frictional lift is similar to that exhibited by the pressure lift — zero at early 

times and then oscillating after symmetry has broken showing the lifting effect of the alternate 

eddy shedding. The friction lift lags slightly behind the pressure lift. In the graph, the 

frictional drag is initially large then drops to a near constant value; the theoredcal result is 

an infinite value at the impulsive start. A separate discussion has not been included for the 
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pressure force because it dominates the higher Reynolds number calculations and so its 

behaviour can be seen clearly in the other graphs. 

! 
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Figure 111 Sample skin friction forces at Re=550 

5.4.9 Long Time Solution : Re=550 

In this sub-section, the results of the discrete vortex model are presented for a long run 

at Reynolds number 550. The flow is shown near the time of the initial symmetry breaking 

after which it becomes periodic and sheds eddies alternately from either side of the cylinder. 

These eddies travel downstream to form the well known Karman vortex street. The results 

were generated using 200 boundary points and 6^=0.1. 

Figure 112 shows the streamlines at T=5.0, where the flow is sdll near-symmetric. Slight 

oscillations at the rear of the eddy pair occur up to this point, then the pair become very 

unstable and symmetry completely breaks. The direction of this extreme symmetry breaking 

is arbitrary and depends upon essentially random effects such as noise in the model. One eddy 

becomes dominant near the cylinder and impinges on the other, which becomes elongated in 

the streamwise direction. 
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ugure 112 Re=550,1=5.0 

Figure 113 shows the flow at i:=10.0, the lower eddy is starting to shed. The secondary 

eddies near the upper separation point appear to be rectangular in this plot, but this is purely 

an effect of the visualisation grid being too coarse to fully resolve such fine features. 

Figure 113 Re=550, %=10.0 

In Figure 114, where the flow has progressed to t = l 1.0, the upper eddy increased further 

in size. The vorticity which was previously causing the lower eddy has split into two regions; 

the part further from the cylinder has shed and is travelling downstream while the other has 

formed into another eddy attached to the cylinder surface. Thus the first vortex to shed is 

smaller than subsequent ones. 

Figure 114 Re=550, T=11.0 

As the flow progresses to 1=12.0, as shown in Figure 115, the upper eddy/vortex 

continues to move downwards and starts to open out and join with the outer flow. This 
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eddy/vortex has also become detached from the cylinder. The small vortex which has 

completely shed continues to travel downstream, causing a kink in the streamlines. The lower 

eddy attached to the cylinder continues to grow larger. 

Igure 115 Re=550,1=12.0 

From T=12.0, as confirmed by the force graphs given in Figure 118 and Figure 119, there 

is an initial build-up phase where vortices shed which are smaller than those in the subsequent 

periodic phase. After the first three eddies have shed, the system settles down to regular 

periodic eddy shedding at a time interval of approximately 2.0 non-dimensional time units. 

Figure 116 shows a streamline plot for T=47.5, which is as far as we took this particular 

computation. A regular Karman vortex street has developed, demonstrating the periodic 

shedding pattern. The discrete vortex locations for the same flow are shown in Figure 117, 

a region containing a dense patch of discrete vortices corresponds to each of the shed vortices. 

The effect of the diffusion of vorticity can clearly be seen in the vortex clusters further 

downstream; the process of rolling up of 'sheets' of discrete vortices can be seen in the 

vortices nearer the cylinder. 

Igure 116 Streamlines at Re=550, T=47.5 
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f i g u r e 117 D i s c r e t e v o r t i c e s a t R e = 5 5 0 , t=47.5 

Figure 118 shows the force coefficients as calculated by the Eulerian technique; 

Figure 119 shows the results using the Lagrangian technique. The lift graphs are in close 

agreement. The early near-symmetrical flow generates almost no lift then the oscillations in 

lift grow to become periodic as eddies shed from alternate sides of the cylinder. The drag 

graphs agree in their mean value and their gross behaviour, however the variations in the 

Lagrangian graph are more exaggerated. Note that the pressure drag should be near zero at 

1=0.0 (consider the similarity with the inviscid problem). Other published results also confirm 

that the pressure drag should start at zero and gradually increase. The Lagrangian drag tends 

towards this behaviour; the Eulerian drag appears to be inaccurate for early times (i<2.0), 

which is the case in all our test problems. The severe oscillations seen in some of the force 

graphs at very early times are believed to be a direct consequence of the impulsive start. 

Eulanan Dmg (smoothed) 

Eulerian Lift (smoothed) 

figure 118 Smoothed Eulerian force at Re=550 
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i^igure 119 Lagrangian force at Re=550 

These results give an average Strouhal number (for i;>15.0) of 0.22 as compared to the 

experimental value of 0.21 in Schlichting and the finite-difference results of Franke et al. who 

quote 0.215 at 2(e=300 and 0.236 at ^g=1000. The average long time drag (taken for T>15.0) 

is 1.16 (Eulerian) and 1.27 (Lagrangian); the experimental value given in Schlichting is 1.2. 

Franke et al. give mean drag figures of 1.32 at Re=300 and 1.47 at 7(^=1000. Kuwahara 

(1990) has performed two-dimensional and three-dimensional finite difference calculations and 

reports that the two-dimensional computations of drag are consistently greater than those 

reported in experiments. 

5.4.10 Long Time Solution : Re=5000 

At Reynolds numbers of 5000 and above, the discrete vortex solution exhibits interesting 

irregular behaviour. We have not found any other flow visualisations for long times at such 

high Reynolds numbers in the literature. As regards the method, we should keep some 

reservations in mind. There is no turbulence modelling in the method; turbulence cannot be 

modelled merely by accurate solution of the avo-cf/mg/wfoMa/ Navier-Stokes equations. The 

fundamental three-dimensional fine-scale nature of turbulence demands that either a two-

dimensional turbulence model is used or an accurate three-dimensional solution is sought. 

Turbulence starts to occur in the wake at some value of increasing Reynolds number; 

Schlichting states that the wake is turbulent at 5000 but van der Vegt and de Boom claim that 

the wake is laminar at 31,700. In the discrete vortex method boundary layer details are mainly 

influenced by the flow near the boundary and we hope that, provided the gross features in the 

wake are reasonably well represented, the flow at the boundary can still be relatively 

accurately modelled. In particular, the effect on force calculations of a vortex decays rapidly 

as it moves away from the boundary, so the forces should not be directly influenced by minor 
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inaccuracy in the wake. Turbulence occurs in the boundary layer as the Reynolds number 

increases past 250,000 (from Schlichting), and we expect the model to give poor results in 

this flow regime. 

The diffusion caused by the time stepping errors in the convective motion of the vortices 

will effectively put a ceiling on the achievable Reynolds number. In practice, we have found 

that results using Reynolds numbers greater than 10,000 are all broadly similar due to the 

n o n - d e t e r m i n i s t i c nature of f l o w s a t t h e s e R e y n o l d s n u m b e r s . H o w e v e r , i n t h e n e x t s u b -

section we achieve a reasonable degree of comparison with an experiment at Reynolds 

number 31,700. 

On the positive side, we note that the short time results were in good agreement with 

experiments up to Reynolds number 9,500 and, apart from cumulative dme integration errors, 

there is no fundamental reason why the quality of the solution for a laminar flow should 

degrade with time. 

Figure 120 - Figure 127 show streamline plots for the f low at /?e=5000, up to T=75.0. 

Figure 128 and Figure 129 show the force coefficients for the same run. This run was 

conducted using 100 boundary points and 6f=0.1. 

Figure 120 shows the flow at T=7.5; symmetry has broken and the Grst eddy is stardng 

to shed. The initial shedding is different from that at /?e=550 (it has also broken in the 

opposite direction) — the lower eddy has not stretched and split into two parts, but remains 

close to the cylinder surface in its entirety. 

Figure 120 Re=5000, T=7.5 

In Figure 121, the flow has progressed to 1=10.0, where the first vortex has completely 

shed and is travelling downstream. The second vortex has nearly shed from the body surface 

and is occupying a position directly downstream of the cylinder. A complex secondary eddy 
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system is attached to the cylinder surface, consisting of a small eddy/vortex on the upper 

surface and a counter-rotating eddy pair on the lower surface. 

"igure 121 Re=5000, T=10.0 

By 1=12.5, as shown in Figure 122, the first pair of vortices have become completely 

detached from the cylinder and are travelling as a pair in a downstream and transversely 

upwards direction. A second large eddy-pair is forming at the cylinder surface. This style of 

shedding, where two vortices travel away from the cylinder as a closely-coupled pair, is seen 

in many of the high Reynolds number computations. Such a pair are often seen to travel 

slightly in the transverse direction (in addition to the normal downstream motion) due to their 

mutual dipole-like induction. In Figure 122 the pair induce a transversely upwards component 

of motion upon each other, but downwards motion has been found in other runs. 

Figure 122 Re=5000,1=12.5 

Figure 123 shows the flow at 1=15.0. The initial vortex pair continues to travel 

downstream and transversely upwards. A third vortex has shed from the cylinder and a fourth 

eddy is forming at the cylinder surface. 
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Igure 123 Re=5000, T=15.0 

The shedding continues to T=17.5, as shown in Figure 124, where the eddy forming at 

the cylinder in the previous time frame has shed as a vortex and a two-eddy system is 

attached to the cylinder surface. 

Figure 124 Re=5000, "[=17.5 

As time progresses, vortices continue to shed in pairs in a similar fashion to those which 

have shed in the flow diagrams up to 1=17.5. These early eddies travel downstream and 

transversely upwards, causing a net negative lift on the cylinder. At 1=20.0, the shedding 

mode changes — eddies continue to shed in pairs but now travel downstream and transversely 

downwards. The effect of this new shedding mode is to cause a net positive lift on the body. 

At 1=40.0, as shown in Figure 125, three shed eddy pairs can be seen travelling 

downstream and transversely downwards. At this point the shedding mode changes again, 

returning to a configuration similar to that at early times. An eddy pair grow together at the 

rear of the cylinder, which is accompanied by a drop in the drag and the corresponding 

change in the lift takes place over a longer period of time than those seen previously (see 

Figure 128). 
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Figure 125 Re=5000,1=40.0 

Figure 126 shows the flow at %=42.5, where the lower eddy/vortex at the cylinder has 

started to shed. Notice the similarity at the cylinder between this plot and Figure 120, which 

shows the flow at T=7.5. This adds weight to the statement that the flow has returned to a 

mode similar to that occurring after the impulsive start. As time progresses from this point, 

eddies continue to shed from the cylinder in pairs. 

F i g u r e 1 2 6 R e = 5 0 0 ( ) , 1 = 4 2 . 5 

Another shedding pattern starts after T=55.0, when smaller eddies shed at a slightly higher 

frequency and singly rather than in pairs. At T=75.0, as shown in Figure 127, the smaller 

eddies have formed into a configuration similar to the conventional Karman vortex street 

similar to that formed at 7?e=550. The lift graph, which may be used as a measure of the 

shedding frequency, indicates that the mode is about to change again at this point. This 

prediction is based on the observation of a wide extremum in the lift graph and a large drop 

in the drag graph leading up to 1=75.0, phenomena which have accompanied earlier changes 

in shedding mode. These changes in the force on the body seem to be caused by the 

formation of an eddy over a longer than typical time interval. 
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Figure 127 Re=5000, T=75.0 

Figure 128 shows ± e Eulerian forces as calculated by the discrete vortex code for the 

above run; Figure 129 shows the Lagrangian forces. The lift figures are in good agreement 

between the two methods; the pattern of behaviour of the drag Ggures agree, but the average 

value i s l o w e r i n t h e E u l e r i a n c a s e and t h e m a g n i t u d e o f t h e v a r i a t i o n s i s a l s o s m a l l e r . T h e 

Eulerian drag gives the same average result as the Lagrangian drag when using a smaller time 

step (see p. 134 for results using 6f=0.05). 

-1.2 

Eulerian Drag 

u- 0.8 

Eulerian Lift 
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Time, T 

Figure 128 Smoothed Eulerian forces for Re=5000 (81=0.1) 
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Lagrangian Drag 

Lagrangian Lift 

Time, T 

i'igure 129 Lagrangian forces for Re=5000 (6i;=0.1) 

As mentioned earlier, the force results (the lift in particular) can be used to classify the 

eddy shedding pattern. An eddy which sheds from the upper surface of the cylinder tends to 

accompany a negative lift, and vice versa. Also, when no shedding occurs for a period of time 

the lift tends to stay nearly constant (for example i;-40 and 1 - 5 5 above). The long term 

average Lagrangian drag is L45. 

Figure 130-Figure 132 also show results for the flow at Reynolds number 5000, this time 

using 6f=0.05. These show that a slight alteration in the model can cause large changes in the 

flow, although similar patterns of behaviour occur. The long term average Lagrangian drag 

is nearly ± e same for both runs. However, the reduction in time step brings the average value 

of Eulerian drag close to the value given by the Lagrangian method. 

Figure 130 shows a sample streamline plot at T:=37.5, from the alternative run at 

J(e=5000. The flow is not dissimilar to a vertical reflection of Figure 126. Three shed vortex-

pairs are travelling downstream and transversely upwards, producing the expected net negative 

lift. 
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igure 130 Re=5000, x-31.5 

Figure 131 shows the Eulerian force coefficients for the run; Figure 132 shows the 

Lagrangian force coefficients. The lift calculated by the two methods agrees well as we have 

seen before. The agreement between the two sets of drag figures has been much improved by 

reducing the time step from 0.1 to 0.05. The average drag values are now much closer, and 

the magnitude of the oscillations in the Eulerian graph have increased to nearly the same level 

as seen in the Lagrangian graph. 

The Lagrangian drag graph gives a long term average (from 1=10.0 onwards) of 1.36; the 

Eulerian drag (8/=0.05) gives 1.21. Franke et al. give a value of 1.68 from a finite difference 

calculation. The experimental value of average drag, given in Schlichting, is approximately 

1.1. 

Our results give a Strouhal number of 0.21, Franke et al. report a computed value of 

0.245, Schlichting gives an experimental value of 0.21. So our prediction is in better gross 

agreement then the finite difference calculation, although Reynolds number 5000 is the upper 

value Franke et al. test, so it may be on the edge of the valid range for their method. 

132 



o 

£ 

Eulerian Drag 

Eulerian Lift 

5 10 15 20 25 30 35 40 45 50 55 

Time, T 

Figure 131 Smoothed Eulerian forces for Re=5000 (6i:=0.05) 
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Figure 132 Lagrangian forces for Re=5000 (6T=0.05) 

The behaviour of the force graphs appears to be broadly similar when comparing the run 

using 6f=0.05 with the run using 6f=0.1. Indeed, examining flows at 2(e=5000 over a range 

of parameter values we have found that similar shedding modes are set up in all of these 

flows, although not necessarily at the same non-dimensional time or even in the same order. 

This leads us to conclude that there are several different shedding modes which can occur and 

are robust to numerical details, and that the mechanisms for changing from one to another 

allow transition from any particular mode to several others. 
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The existence of an eddy shedding mode for Reynolds numbers greater than 

approximately 40 is a bifurcation of the Navier-Stokes equations (see Bakker pp. 195-203). 

At Reynolds numbers less than 40 a symmetrical solution is always obtained, giving only one 

possible state for the system. As Reynolds number rises above 40 symmetry breaking is 

introduced into solutions. This can occur in either direction, leading to two possible states 

which the system can enter. The symmetric solution remains a possible, although unstable, 

solution, thus a pitchfork bifurcation occurs. We conjecture that further increases in Reynolds 

number, which we know cause stronger nonlinearity, will increase the tendency toward flow 

instability. Also, the existence of important smaller scale flow features will lead to further 

bifurcations and hence a multiplicity of possible system states. If this is true, it provides a 

consistent mathematical explanation for a wide variety of shedding modes being possible from 

the same model. Minor differences, such as the time step used, may also cause such a system 

to swap between the different states. 

In a precise mathematical solution, each possible state could only be entered from an 

'ancestor' state in the bifurcation tree. However, in numerical simulations or experiments, 

both of which contain noise, if the possible states are 'close' enough (in some parametric 

space) then the flow may be able to 'jump' between modes. This may explain why the pattern 

of transitions between eddy shedding modes is extremely complex. 

If this bifurcation mechanism is correct, a possible outcome is that chaos will ensue at 

values greater than some critical Reynolds number. In effect, the system bifurcates infinitely 

to result in a continuum of possible states. At this point, even the exact mathematical solution 

can switch repeatedly between different modes of behaviour. 

For the problem of flow past a circular cylinder, we have found little mention in the 

literature of eddies travelling in the transverse direction. Van der Vegt and de Boom (1985) 

mention that the initial eddy "undergoes large side motions of about two cylinder diameters". 

Also, we know that a simple consequence of vortex dynamics is that two concentrated regions 

of opposite-sign vorticity may convect each other, causing a flow pattern similar to a dipole. 

We note that placing side walls on an experiment will tend to suppress side motions. Finite 

difference boundary conditions will probably have a similar effect. 

5.4.11 Long Time Solution : Re=31,700 

Figure 133-Figure 137 show a sample of the flow visualisations from a run of the discrete 

vortex code at Reynolds number 31,700. The corresponding drag and lift graphs are shown 

in Figure 138 and Figure 139 respectively. A time step of 0.1 and 100 boundary points were 

used. The results are similar to those found at 7?g=5000, although the eddies in the wake are 

visibly less diffuse. This run was conducted principally for comparison with the discrete 
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vortex and experimental results of van der Vegt and de Boom (1985). The flow visualisations 

show a variety of different shedding modes occurring, as with /?e=5000. 

Figure 133 shows the flow at T=32.5, where the flow has been shedding pairs of vortices 

for some time. The shed pairs have been travelling in the transverse downwards direction. 

Also, a weak vortex has become detached from the main wake and sits slightly above the 

v o r t e x s t r e e t . 

Figure 133 Re=31,700, 1=32.5 

By 'T;=60.0 the shedding mode has completely changed (Figure 134). The vortices in the 

wake have been shed singly and have formed into a near-regular Karman vortex street. 

Figure 134 Re=31,700, T=60.0 

Figure 135-Figure 137 show the development of the flow from 1=135.0 to 1=140.0, where 

a state has developed which is similar, near the cylinder, to the initial symmetrical flow. Eddy 

shedding has been suspended for a period of time while a pair of eddies grow behind the 

cylinder. Eventually symmetry breaks, in a similar manner to that seen near the start. The 

upper eddy then breaks away from the body and vortex shedding is resumed. The effect of 
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this mode change can be seen in the force graphs (Figure 138 and Figure 139) the lift 

stays near-constant for almost 10 non-dimensional time units and the drag drops to its lowest 

value since the initial symmetry breaking. 

Figure 135 Re=31,700,1=135.0 

Figure 136 Re=31,700,1=137.5 

Figure 137 Re=31,700, 1=140.0 
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Eulerian drag and lift Rgures for the same run are shown in Figure 138 and Figure 139 

(The Lagrangian force calculation had not been added to the code at the stage when this 

computation was made — a separate run is shown below with both types of force calculadon 

given). The graphs reflect the complex, nature of the flow. Examining the lift graph, the 

shedding frequency clearly changes several times. In several places a drop in drag which is 

accompanied by a long shedding cycle (eg. T-40, T-80, T - l S j ) indicates a change in 

shedding mode. 

Van der Vegt and de Boom (1985) give force graphs for two experiments, both conducted 

under the same conditions. Our lift behaviour is in good qualitadve agreement with their 

experiments in the frequency, magnitude and variations of the oscillations. Our Eulerian drag 

Ogures are too small, with a long term average of 0.83 using a time step of 0.1 (first run). 

Van der Vegt and de Boom report an average drag ranging from 1.18 to 1.4 over four 

different experiments. However their experimental drag figures behave in the same erratic way 

as our computed values and the experimental lift graph shows times where the lift is almost 

constant for an extended period. The lift graph shown in Figure 139 gives an average Strouhal 

number of 0.18, the same value as that given in van der Vegt and de Boom. Perhaps the most 

significant result from their experiments is that widely varying eddy shedding behaviour is 

seen, over four experiments conducted in identical conditions. Thus it seems that non-

detemiinistic effects occur in the experiments. Van der Vegt and de Boom also examine the 

three-dimensional behaviour in the flow, the conclusion is that the large scale structures are 

almost perfectly two-dimensional. 
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Figure 139 Smoothed Eulerian lift for Re=31,700 

Figure 140-Figure 143 show the Eulerian and Lagrangian force coefficients for an 

alternative run, using 6f=0.1, 100 boundary points and a different random number seed. The 

Lagrangian drag is in good agreement with the drag figures of van der Vegt and de Boom. 

This conArms our finding for 2(^=5000, that a smaller time step would be needed to bring the 

Eulerian drag Ggures into close coirespondence with experiments. Storage and CPU 

limitations have prevented us from taking a run with 8f=0.05 as far in non-dimensional time. 
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figure 140 Smoothed Eulerian drag for Re=31,700 (alternative run) 
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The alternative run gives an average Strouhal number of 0.19. The average drag values 

are 0.86 (Eulerian) and 1.50 (Lagrangian). The experimental value for drag given in 

Schlichting is 1.2. 

5.4.12 Long Time Solutions - Conclusion 

We have presented the output of the discrete vortex code for long time flow past a 

translating circular cylinder. The results are in good agreement with the few experimental data 

available. Agreement is not so good with the finite difference calculations of Franke et al., 

although the largest discrepancy is at Reynolds number 5000 which is the largest value they 

have used and thus probably the least accurate. It is also of merit that the force graphs 

presented by Franke et al. (for Reynolds numbers less than 500) show a very similar pattern 

of behaviour as our Lagrangian forces. Their drag starts at zero then rises rapidly to a peak 

value, drops slightly to a plateau, then settles to a regular periodic behaviour. 

The irregular behaviour which occurs at the higher Reynolds numbers has been 

interpreted in terms of the strong nonlinearity in the Navier-Stokes equations. There is 

evidence, from the experiments of van der Vegt and de Boom, that similar behaviour occurs 

in the real flows. It would be of great interest to conduct flow visualisation experiments at 

high Reynolds numbers to fully document this behaviour in real flows. 

Experiments have been performed on soap films, by Couder et al. (1989) , in order to 

examine the behaviour of a genuinely two-dimensional fluid. The experimental photographs 

display a very similar erratic behaviour to our high Reynolds number computations. Vortices 

are clearly seen to be transversely displaced, typically in pairs. 

5.5 Test Case 2 — Rotating Circular Cylinder 

5.5.1 Setting up the Problems 

The second test case used for evaluation of the method is prediction of the impulsively 

started flow past a rotating circular cylinder. Results from the discrete vortex method will be 

compared to numerical and experimental results from Badr et al. (1990). 

The flows considered are all at Reynolds number 1000; Badr et al. state that results are 

similar at Reynolds numbers 200 and 500. The authors postulate that the similarity at the 

lower Reynolds numbers is on the 'macro' scale and that flows differ on a 'micro' scale, 

principally because secondary vortices form less readily at lower Reynolds numbers. We 

could find no experiments for rotating cylinders at higher Reynolds numbers. Badr et al. 
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present a veiy short time numerical calculation for Reynolds number 10,000. An 'exploded' 

view of the flow is given in order to make a comparison with an earlier boundary layer 

calculation, see Ece et al. (1984). This meant that our results for Reynolds number 10,000 

would not have been directly comparable without substantial recoding for a specific case. 

Therefore we chose not to attempt a comparison at this Reynolds number. 

We have used the same ratios of surface speeds as in Badr et al., a=0.5, 1.0, 2.0 and 3.0. 

The results at a=0.5 and 1.0 are broadly similar to those at a=0, as given in previous 

sections. A simple periodic behaviour is adopted, with large eddies shedding from alternate 

sides of the cylinder. In these flows, the major effect of the rotation is to create 

proportionately more vorticity in the opposite rotational sense to the motion of the cylinder. 

At the higher rotational speeds of a=2.0 and 3.0 a different mode of behaviour is approached. 

A closed layer of fluid is observed, which rotates with the cylinder; dynamic behaviour such 

as eddy shedding occurs outside this layer. 

The moving boundary is introduced by placing a point vortex of circulation j ta at the 

centre of the cylinder. The velocity induced by this vortex is added to all velocity calculations 

and the circulation of Tca is added to the zero circulation condition of equation (34). Thus the 

total circulation around a contour far from the body will remain zero, a condition needed to 

keep the pressure single valued (see Badr et al.). 

The additional point vortex is taken into account in the force calculations by considering 

it as a constant strength vortex sheet spread over the surface of the cylinder (these two 

vorticity distributions give the same velocity distribution outside the cylinder). Then, inserting 

the sheet into equation (39) leads to the following extra term in the drag and lift, 

Cn-fEv, 

where the number of boundary points, is the tangential surface speed at the centre 

of a panel element and (»^,»j,) is the unit normal to the cylinder. These terms are added to the 

usual force formulae, but in practice make an almost insignificant contribution. 

In Badr et al. the time is non-dimensionalised on the cylinder radius, thus their results 

at time 2% are comparable to our results at time t . Where their results are shown in this thesis, 

the times have already been modified. The scheme used by Badr et al. is a composite finite 
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difference and spectral scheme, but in the interests of brevity will be referred to as a finite 

difference scheme. 

J.J.2 a=0.5 

Figure 144 - Figure 164 show a sequence of flow visualisations at /?e=1000 and a=0.5. 

The output from the vortex code is shown alongside the output from the finite difference code 

and the experimental photographs of Badr et al. A discussion is given at each time frame of 

the differences between both of the numerical methods and the experiment. This run was 

made using 200 boundary points and a time step of 0.05, which was found to give a very 

small time-shift for this problem. 

Figure 144 shows a streamline plot generated by the discrete vortex code at 1=0.5, with 

Figure 145 giving the equivalent plot as calculated by the finite difference code. In both cases 

a thin wake has formed on the downstream side of the cylinder. The wake has been distorted, 

as compared to the solution, in the direction of the rotation of the cylinder 

(anticlockwise). 

Figure 144 Vortex Code, T=0.5 
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Figure 145 Finite DifTerence, T=0.5 

In Figure 146 and Figure 147, which show the plots from the two numerical schemes at 

T=1.0, two eddies are clearly visible in the wake. The eddies have similar shape and 

dimension in both calculations — the upper eddy is physically larger and will contain more 

total vorticity. The moving surface of the rotating cylinder generates a net clockwise 

(negative) vorticity, of which the bulk eventually accumulates in the upper wake eddy. This 

makes it physically larger than the lower eddy. 

Figure 146 Vortex Code, T=1.0 
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Figure 147 Finite Difference, t=1.0 

Figure 148 and Figure 150 show the continuation of the sequence of plots generated by 

the two numerical schemes; Figure 149 shows the experimental visualisation at the same non-

dimensional time of 1.5. Both schemes have predicted the experimental flow accurately. The 

two eddies have become enlarged since the previous time f rame and the upper eddy is still 

more rotationally intense. Secondary eddies have clearly formed in both numerical schemes. 

In the experiment, a secondary vortex similar to those predicted can be seen on the upper 

cylinder surface, the lower surface is obscured by a shadow. 

Figure 148 Vortex Code, T=1.5 
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Figure 149 Experiment, T=1.5 

Figure 150 Finite Difference, T=].5 

Figure 151, Figure 152 and Figure 153 show visualisations at 1=2.0. The vortex code is 

in close agreement with the finite difference calculation, the shape and size of the main eddies 

being very similar in both. The experiment, although less clear, appears to have been well 

predicted by both schemes. The upper secondary vortex can be seen clearly in the experiment 

and has the same form as in the computed solutions. The lower secondary vortex is partly 

obscured but there is evidence that it has become joined with the outer flow, as predicted by 

both calculations. 
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Figure 151 Vortex Code, '[=2.0 

Figure 152 Experiment, T:=2.0 

Figure 153 Finite Difference, T=2.0 

No expeiiment is given in Badr et al. for 1=3.0, but Figure 154 and Figure 155 show the 

streamlines computed by the two methods. The two calculations remain in close agreement. 
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although the upper secondaiy vortex is more tightly rolled-up in the discrete vortex solution. 

At this time, the upper main eddy has started to shed from the body and move downstream 

from the cylinder. 

Figure 154 Vortex Code, T=3.0 

Figure 155 Finite Difference, i;=3.0 

Figure 156 and Figure 157 show the progression of the two computations to 1=4.0. The 

two methods are still in close agreement, although slight differences can be seen. Details near 

the boundary appear to be slightly different, although a slight time-shift may be responsible 

for this, because the flow is changing very rapidly at this time. 
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Figure 156 Vortex Code, ^=4.0 

Figure 157 Finite Difference, 1=4.0 

At 1=5.5, an experimental visualisation is available and is shown in Figure 159. The two 

numerical visualisations at this time are shown in Figure 158 and Figure 160, and are still in 

broad agreement. In the computed flows, both initial main eddies have now fully shed and 

the original lower eddy has 'opened out' on its upper side. The experiment shows the original 

lower main eddy closer to the cylinder then predicted by the calculations. A complex 

secondary vortex system has developed in the experiment and both computations, with one 

vortex on the upper surface and two counter-rotating vortices on the lower surface. 
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Figure 158 Vortex Code, 1=5.5 

Figure 159 Experiment, i=5.5 

Figure 160 Finite Difference, 1=5.5 

Figure 161 and Figure 162 show the two computed solutions at i=6.5; no experimental 

photograph is supplied in our source paper for this time frame. The computations still agree 
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well, both show the original main eddies further downstream than at T=5.5 and a second eddy 

pair forming. The new eddy on the upper surface has become dominant. 

Figure 161 Vortex Code, T=6.5 

Figure 162 Finite Difference, 1=6.5 

In Figure 163 and Figure 164, the two calculated solutions have reached 1=8.0; agreement 

is still good. At this time, the eddy which was forming at i=6.5 has started to shed and a 

strong lower eddy is starting to form. 
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Figure 163 Vortex Code, %=8.0 

Figure 164 Finite Difference, T=8.0 

Figure 165 is a graph of the Eulerian force coefficients produced by the vortex code for 

the same run which produced the above visualisations; Figure 166 is a graph of the 

Lagrangian force coefficients for the same run. The Eulerian calculation has been smoothed, 

in order to show the underlying trends, by plotting a moving average of three consecutive data 

points. The two results are in broad agreement. After the initial peak caused by the impulsive 

start, the drag has a small magnitude in the Lagrangian calculation and gradually builds up. 

The Eulerian drag appears to be inaccurate for early times, in agreement with our previous 

findings. Both drag graphs have a dual-periodic behaviour (ie. there are two dominant 

frequencies) corresponding to the shedding of two different sizes of eddies from the upper and 

lower sides of the cylinder. The lift shows a periodic behaviour, remaining negative for 

almost the entire am, on the Lagrangian graph. 
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The force figures given by Badr et al. show the same behaviour as those given here. The 

drag has a dual periodicity, of the same characteristic shape as that produced by the discrete 

vortex method, and peak values around 1.9. The lift has a simple periodicity with the 

maximum magnitude values close to -2.0. We could not find experimental values for force 

coefficients. The inviscid value of lift for this set of problems is -2Tca, much larger in 

magnitude than even the peaks of either scheme. 

We have demonstrated close agreement, at a=0.5, between the discrete vortex calculation 

and the finite difference calculation of Badr et el. Agreement with the experiment is close for 
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early times, but the final experimental photograph available shows both computations 

exhibiting a slightly different behaviour from the experiment. It would be of interest to obtain 

experimental photographs for the later stages of the flow to determine whether the apparent 

error is transient or whether the numeiical and experimental solutions have started to diverge 

away from each other. 

5 . 5 J a=7.0 

Figure 167 - Figure 173 follow Badr et al. in demonstrating the periodicity of the flow 

at 0=1.0. A few time frames are shown which demonstrate that the flow repeatedly returns 

to a certain configuration of eddies. The drag and lift graphs, given on p. 157, also confirm 

± e periodic behaviour of the flow. The discrete vortex code was run with 200 boundary 

points to represent the cylinder and a time step of 0.033. 

The first time frame is at %=3.5, with Figure 167, Figure 168 and Figure 169 showing the 

streamlines from the discrete vortex code, experimental photograph and finite difference code 

respectively. All three visualisations are in broad agreement, the upper main eddy has shed 

in a manner similar to the flow at a=0.5 (see Figure 156 and Figure 157, p. 149). A complex 

three-eddy system is attached to the surface of the cylinder. 

Figure 167 Vortex Code, %=3.5 
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Figure 168 Experiment, 1=3.5 

Figure 169 Finite Difference, 1=3.5 

Figure 171 and Figure 172 show the state of the computed flow at 1=8.0. A similar 

configuration of eddies has developed to that shown above, with a vortex street forming 

behind the cylinder and a three-eddy system attached to the cylinder surface. Some differences 

are apparent between the vortex code solution and the finite difference solution. The flow 

generated by the discrete vortex method at 1=7.5 is shown in Figure 170. Studying the two 

adjacent time frames, it is reasonable to conclude that, at a time between i=7.5 and 8.0, the 

vortex code would be close to the finite difference solution at 1=8.0. In other words, a slight 

time-shift has caused the solutions, whicli are changing rapidly at this time, to be in 

agreement at slightly different non-dimensional times. 
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Figure 170 Vortex Code, T=7.5 

Figure 171 Vortex Code, 1=8.0 

Figure 172 Finite Difference, 1=8.0 

To further confimi the periodicity of the flow, we have continued the calculation and 

found that the same configuration of eddies occurs again at 1=12.0, see Figure 173. 
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Figure 173 Vortex Code, T=12.0 

Figure 174 and Figure 175 show the force coefficients generated by the vortex code using 

the Eulerian and Lagrangian methods respectively (see p. 120). The two techniques are in 

broad agreement, with differences similar to those seen in the results for a=0.5. Again, the 

Eulerian graph has been smoothed to highlight the underlying trend. The two calculadons 

appear to be in broad agreement, with the exception of the early time values which show a 

significant discrepancy. The drag graph has a dual periodic trend showing alternate vortex 

shedding from either side of the cylinder; the lift graph oscillates with period slightly greater 

than 4.0. 
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Figure 174 Eulenan force coefficients for Re=lOOO, 

a - 1 . 0 
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The values for force coefficients at a=1.0 given in Badr et al. show the same behaviour 

as those shown above, but with different values. The drag graph shows the same dual 

periodicity, with an almost flat plateau followed by a maximum of approximately 2.0; the lift 

graph shows a period of just over 4.0, oscillating between approximately 1.0 and 3.0. Notice 

that the lift graph as a whole is drifting towards more negative mean results, indicating that 

the state is not completely periodic. 

5.5.^ a=2.0 

Figure 176 - Figure 200 show the flow at ^e=1000 and a=2.0 . A significantly different 

behaviour is exhibited at this rotational speed — the flow has no simple periodicity within 

the observed time interval. The discrete vortex solutions use 200 boundary points and a time 

step of 0.025. Figure 176 and Figure 177 show the streamlines for T=0.5 as computed by the 

vortex code and the finite difference code respectively. Both show a thin wake developing 

behind the cylinder, predominantly attached to its upper surface. 
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Figure 176 Vortex Code, T=0.5 

Figure 177 Finite Difference, 1=0.5 

In Figure 178 and Figure 179, the two solutions have progressed to T=1.0. The two 

solutions are in good agreement showing a single thin, but rotationally intense, eddy sitting 

on the upper surface of the cylinder. The solutions appear slightly different, but this is mainly 

due to a difference in streamline clustering. If the two are compared carefully, all the key 

features can be seen to be in similar positions. 
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Figure 178 Vortex Code, T= 

Figure 179 Finite Difference, T=1.0 

Figure 181 shows the first experimental photograph for a=2.0, taken from Badr et al. 

Alongside are presented the vortex code (Figure 180) and finite difference code (Figure 182) 

visualisations at the same non-dimensional time of 2.0. All three visualisations show the same 

situation, the single eddy from the previous time frame has intensified and has developed an 

enlarged central region. The eddy remains attached to the cylinder surface. Both numerical 

calculations predict the experimental solution accurately. 
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Figure 180 Vortex Code, T=1.5 

Figure 181 Experiment, 1=1.5 

Figure 182 Finite Difference, T=1.5 

Figure 183 - Figure 185 show all three streamline diagrams at %=2.5. The experiment 

shows the single eddy to have enlarged since the last time frame, it has also opened out to 
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partially join with the main flow at the rear of the cylinder. The joining with the outer flow 

signifies the early stages of shedding from the cylinder. Both computations predict the 

experimental situation accurately. 

Figure 183 Vortex Code 

Figure 184 Experiment, i:=2.5 
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Figure 185 Finite Difference, 1=2.5 

In Figure 186, the vortex code has moved on in time considerably, to '[=4.5. Figure 187 

and Figure 188 show the equivalent experimental photograph and finite difference solution. 

At this time, the initial eddy has completely shed and is starting to travel in a downstream 

direcdon. Both calculations predict the experiment accurately. In the finite difference solution 

too few streamlines are used to show the centre of the shed eddy but the centre and stagnation 

point are marked as two dots and appear to be positioned approximately correctly. Some 

waves are apparent in the streamlines above the cylinder in the finite difference solution, these 

waves are not present in the experiment or in the discrete vortex solution. 

Figure 186 Vortex Code, T=4.5 
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Figure 187 Experiment, 1=4.5 

Figure 188 Finite Difference, 1=4.5 

Figure 189 - Figure 191 show the same triplet of visualisations at 1=5.0. The shed vortex 

from the previous time frame has moved slightly further downstream. Two smaller eddies 

have formed on the upper surface of the cylinder, one of these has joined with the outer flow. 

Both calculated flows are in good agreement with the experimental photograph. The waves 

in the streamlines above the cylinder are still present in the finite difference calculation; 

neither the experiment nor the discrete vortex calculation show any signs of these waves. 
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F i g u r e 1 8 9 V o r t e x C o d e , 1 = 5 . 0 

Figure 190 Experiment, 1=5.0 

Figure 191 Finite Difference, 1=5.0 

Figure 192 - Figure 194 show the three visualisations of the flow at 1=6.5. The shed eddy 

has travelled still further downstream. The smaller anticlockwise-rotating eddy has started to 
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shed from the cylinder. Both of the computations are in good agreement with the experiment. 

The waves in the streamlines above the cylinder are still present in the finite difference 

solution. 

Figure 192 Vortex Code, T=6.5 

F i g u r e 1 9 3 E x p e r i m e n t , 1 = 6 . 5 
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F i g u r e 1 9 4 F i n i t e D i f f e r e n c e , x = 6 . 5 

No further experimental photographs are given for a=2.0 in Badr et al., but we now 

present further comparisons between the two computations. Figure 195 and Figure 196 show 

the two computed solutions at T=7.5. The two are still in broad agreement, with a small 

anticlockwise vortex continuing downstream and a second clockwise eddy starting to form 

on the upper surface of the cylinder. 

Figure 195 Vortex Code, T=7.5 
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Figure 196 Finite Difference, 1=7.5 

At %=*.(), as shown in Figure 197 and Figure 198, the two calculated solutions start to 

exhibit different behaviour. In the finite difference solution, the eddy forming in the previous 

time frame has started to join with the outer flow, signifying the start of shedding. In the 

vortex code, the attached eddy is growing in size but remains attached to the cylinder surface. 

Figure 197 Vortex Code, 1=8.0 
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Figure 198 Finite Difference, 1=8.0 

Figure 199 and Figure 200 show the two computed flows at T=10.0, now the two are 

showing completely different situations. In the finite difference solution, the eddy which was 

partially attached in the previous time frame has almost completely shed; in the discrete 

vortex solution, the previously attached eddy remains attached and has grown to a substantial 

size. By continuing this calculation we have found that this eddy sheds over the next non-

dimensional time unit. 

Figure 199 Vortex Code, T=10.0 
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F i g u r e 2 0 0 F i n i t e D i f f e r e n c e , 1 = 1 0 . 0 

Figure 201 and Figure 202 show the force coefficients calculated by the vortex code 

using the Eulerian and Lagrangian techniques respectively. Comparing the two results, the 

familiar pattern emerges with the two calculations in broad agreement but differing in certain 

details. The initial values in the Eulerian graph are in error — in particular, we expect the lift 

to be negative. The other main difference is that the drag returns to zero near T=7 in the 

Lagrangian graph but has a non-zero minimum there in the Eulerian case. The force graphs 

confirm that the flow has become non-periodic or at least periodic on a larger time scale. No 

force values are given at a=2.0 in Badr et al. 
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Figure 203 - Figure 220 show the evolution of the flow at 7?e=1000 and a=3.0. The 

discrete vortex code was run using 200 boundai}/ points and a time step of 0.016. 

Comparisons similar to those given before are presented for each of the non-dimensional time 

frames chosen by Badr et al. The behaviour at this rotational speed continues the trend 

towards less periodic flow (or possibly towards longer periods of repetition). The rotational 

speed is now sufficient to eventually cause a layer of fluid to rotate with the cylinder and to 

cause an eddy to travel around to the front of tlie cylinder. 

The first time frame is at 1=0.5, with the disciete vortex solution shown in Figure 203 

and the finite difference solution shown in Figure 204. The flow has developed into a similar 

configuration to the lower rotational rates at this time, with a thin wake wrapped around the 

cylinder in the direction of rotation. The wake is wrapped further around the cylinder as 

would be expected with the higher rotational speed. The vortex code and finite difference 

code visualisations are in agreement, the wake appears to be slightly wider in the finite 

difference solution. 
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Figure 203 Vortex Code, 1=0.5 

Figure 204 Finite Difference, %=0.5 

In Figure 205 and Figure 206 the computed solutions have progressed to non-dimensional 

time 1.0. Both plots show a rotationally intense eddy, with an elongated central region, 

forming on the upper surface of the cylinder. A careful study shows the solutions to be in 

closer agreement then they at first appear. The illusion of discrepancy is created a different 

clustering of streamlines in the two calculations. The main difference is that, in the 

finite difference solution, the eddy is slightly further around the cylinder in the direction of 

rotation. 
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Figure 205 Vortex Code, T=1.0 

Figure 206 Finite Difference, T=1.0 

At 1=1.5, the first experimental photograph is available (Figure 208). The discrete vortex 

and finite difference predictions of the same non-dimensional time are shov/n in Figure 207 

and Figure 209 respectively. By now, the vortex at the rear of the cylinder, which was just 

starting to form in the previous time frame, has grown into a second eddy. Both numerical 

schemes are in agreement with the experiment. The vortex code has the upper eddy positioned 

slightly further in the clockwise direction around the cylinder surface. In the discrete vortex 

solution, some streamlines completely encircle the cylinder, indicating that a layer of fluid has 

started to rotate with the cylinder. 
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Figure 207 Vortex Code, T=1.5 

Figure 208 Experiment, 1=1.5 

Figure 209 Finite Difference, 1=1.5 

In Figure 210 - Figure 212, the three visualisations at 1=2.0 are shown. The eddy 

configuration is similar to the previous time frame, with two distinct eddies attached to the 
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upper cylinder surface. The eddy which is further clockwise has grown and is showing 

characteristic signs of starting to shed. The other eddy has moved further around the cylinder 

in the direction of rotation but has not changed significantly in size. At this time frame, the 

vortex code solution predicts the experiment more closely than the Onite difference solution. 

The location of the more anticlockwise of the two eddies is near the uppermost point of the 

cylinder in the vortex code; this region is difficult to read in the experiment but there is 

evidence of an eddy in a similar position. The finite difference code predicts this eddy to have 

travelled round to the front of the cylinder. 

Figure 210 Vortex Code, 1=2.0 

Figure 211 Experiment, 1=2.0 
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Figure 212 Finite Difference, T:=2.0 

In subsequent time steps, the forward eddy on the front continues to travel amund the 

cylinder. As it moves it becomes stretched flatter to the cylinder surface until it is eventually 

absorbed into the intense velocity gradient of the rotating fluid layer. One consequence of this 

behaviour is that much of the vorticity from this eddy v/ill eventually find its way into the 

more clockwise eddy. 

Figure 213 shows the discrete vortex solution at T=3.0. Figure 214 shows the 

experimental photograph and Figure 215 shows the finite difference solution at the same non-

dimensional time. All three visualisations are in broad agreement, with a large eddy starting 

to shed from the cylinder and vorticity of the same sign as this eddy entrained to the front 

of the cylinder. In the finite difference solution, the eddy appears to have moved further 

away from the cylinder than in the discrete vortex solution or the experiment. 

Figure 213 Vortex Code, T=3.0 
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Figure 214 Experiment, 1=3.0 

Figure 215 Finite Difference, T=3.0 

Figure 216 - Figure 21K show the three Hows at T=5.(). The shed eddy/vortex continues 

to move downstream from the cylinder, l l ie ilnite difference solution shows the upstream end 

of the eddy smoothly stretched around the cylinder surface. The discrete vortex solution 

shows a separate eddy forming in this region. The experiment is difficult to read in this 

region, showing evidence of three-dimensional instability, but there is some evidence of the 

presence of a separate eddy and there is generally better agreement with the discrete vortex 

solution. 
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Figure 216 Vortex Code, 1=5.0 

Figure 217 Experiment, i=5.0 

Figure 218 Finite Difference, 1=5.0 

Figure 219 and Figure 220 show the two numerical solutions at non-dimensional time 

10.0. The two are in agreement, showing a wider layer of fluid now rotating with the cylinder 
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and much of the local fluid passing around the cylinder in a similar fashion to the inviscid 

solution. Badr et al. claim that the finite difference code has reached a steady state, although 

their calculation still shows a significantly incieasing lift at this time (see below). 

Figure 219 Vortex Code, T = ] 0 . 0 

Figure 220 Finite Difference, %=10.0 

Figure 221 and Figure 222 show the Eulerian and Lagrangian calculations for the force 

coefficients. The two methods are in agreement on the value of the lift coefficient apart from 

at early times, when the Eulerian scheme shows it to be positive. The two drag graphs show 

the usual discrepancy at early times (the Eulerian graph does not start near zero and gradually 

build up) but also the Lagrangian graph shows the drag dropping towards the end of the 

calculation; the Eulerian calculation shows the drag approaching a constant value after long 

times. 
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1 EuleMan Drag (smoothed) 

Eulenan uft (smoothed) 

Time, T 

"igure 221 E u l e r i a n force c o e f f i c i e n t s f o r Re=1000, 

a=3.0 

Uagmnoian Drag 

Lagfanglan Uft 

figure 222 Lagrangian force coefficients for Re=1000, 
a=3.0 

In the calculations of Badr et al., the qualitative behaviour of the lift is in reasonable 

agreement with our calculations. They obtain larger values for lift, reaching -8.0 at T=10.0, 

but the overall behaviour is very similar to that given by the vortex code. The drag values 

presented in the paper show the early behaviour to be in agreement with our Lagrangian graph 

and the later behaviour similar to our Eulerian graph. The asymptotic value of the long time 

drag is higher than ours, approximately 5.0. 

We have performed one long run, up to 1=65, for a rotating cylinder with a=3.0 and 

j^g^lOOO. This was performed with a time step of 0.05 and 100 boundary points. We do not 
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figure 221 Eulerian force coefficients for Re=1000, 

o(=3.0 

Lagrangian Drag 

Layanglan UA 
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Figure 222 Lagrangian force coefGcients for 

Re=1000, a = 3 . 0 

In t h e c a l c u l a t i o n s o f B a d r e t a l . , t h e q u a l i t a t i v e b e h a v i o u r o f t h e l i f t i s i n r e a s o n a b l e 

agreement with our calculations. They obtain larger values for lift, reaching -8.0 at T= 10.0, 

but t h e o v e r a l l b e h a v i o u r i s v e r y s i m i l a r t o t h a t g i v e n b y t h e v o r t e x c o d e . T h e d r a g v a l u e s 

presented in the paper show the early behaviour to be in agreement with our Lagrangian 

graph and the later behaviour similar to our Eulerian graph. The asymptotic value of the long 

time drag is higher than ours, approximately 5.0. 

W e h a v e performed o n e long run, u p t o T=65, for a r o t a t i n g c y l i n d e r w i t h a = 3 . 0 a n d 

1 0 0 0 . T h i s w a s p e r f o r m e d w i t h a t i m e s t e p o f 0 . 0 5 a n d 1 0 0 b o u n d a r y points. W e d o n o t 
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expect the short time results from this run to be as accurate as the other results presented in 

this section, but the (Eulerian) forces were consistent with those shown here up to 1=10. 

However, after ^[=30, the flow moved away from the pseudo-steady state and a small 

amplitude shedding mode was initiated with a corresponding fluctuation in the forces. 

5.5.6 Summary 

The discrete vortex scheme developed here has been shown to give solutions for flow 

past a rotating circular cylinder which are comparable to, and in some cases better than, the 

Hnite difference/spectral calculations presented in Badr et al. 

The discrete vortex method gives solutions which are in better agreement with 

experiments for this set of problems than for the non-rotating cylinder. We have also found 

no evidence in these problems of the non-determinism found in the translating cylinder 

problems. 

The force coefficients have been shown to display the same qualitative trends as those 

given in Badr et al. The Lagrangian method gives smoother, more accurate figures; the 

Eulerian calculation gives noisier values which are consistent, apart from at very early times. 

The absolute values of the forces differ in some cases from the calculations of Badr et al. We 

have noticed that none of the calculations ever come close to the inviscid value for lift, which 

is -27ta. The discrete vortex long term force values are consistently of smaller magnitude than 

the finite difference calculations for these problems, this discrepancy increases for higher 

rotational rates. 

5.6 Flow Past NACA Aerofoils 

5.6.1 Setting up the Problems 

Having thoroughly tested the code against a range of standard circular cylinder problems, 

we move on to examine results for aerodynamics problems. The NACA four-digit series of 

aerofoil profiles were used, as they are the standard set of wing sections for computational 

fluid dynamics tests. 

The Reynolds number and non-dimensional time are now based on the chord length. 

T = . (70) 
V C 

1 * 0 



Taking air at one atmosphere pressure and 2()° C as the fluid medium gives 

v=1.5xlO'^ m V , from Batchelor (1967). From the cylinder problems we expect that 

meaningful solutions could be obtained up to Reynolds numbers of at least 35,000. Thus, we 

expect to be able to solve for aerofoil problems in air such that [/,C<0.5 m^s '. Unfortunately, 

this is not high enough even for the wing of a large scale model, eg. [/,=30 ms ' and 

C=0.5 m, giving (/,C=15 m^s '. However, the code will allow modelling of the low-speed stall 

process, and we will present detailed visualisations of this using NACA wing sections. 

An accompanying code was wiitten to generate curve files (see section 4.11.3) for the 

aerofoils. This code generates a set of discrete points lying on the aerofoil surface and a set 

of normalised tangents to the curve at these points. The code also allows any angle of attack 

for the aerofoil to be specified. 

As mentioned in section 5.1, the panel 

method we have used can become ill-

conditioned for non-smooth curve shapes, 

with an increasing number of panels. To 

avoid this problem, we have slightly 

rounded the trailing edge of the aerofoils. 

This was achieved by using a fitted 

hyperbola for the thickness distribution at 

the rear of the aerofoil, as shown in 

Figure 223. The hyperbola is fitted to be 

tangential to the usual thickness distribution 

at the points A and B in the figure, and is 

perpendicular to the chord line at the point 

C, the trailing edge. This creates an aerofoil with continuous first derivative around its entire 

perimeter, which is close in shape to the usual NACA four-digit section. 

The equations for the unmodified NACA sections were taken from Abbot and Von 

Doenhoff (1949), and are, 

A Modified 
Thickness 
Distribution 

1 
Usual 
Thickness 
Distribution 

Igure 223 Illustration of the rounding used 

at the tniiling edse 
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= %+y^sin(6) 
y/ = -y^cos(6) 

Where the parameters are, 

m = maximum y-coordinate of mean line expressed as a fraction of chord length 

p = fraction along chord of maximum y-coordinate 

^ = maximum thickness as fraction of chord length 

% = curve traversing parameter (con-esponds to x-coordinate of point on mean line). 

The output quantities (ar,,)»;) and j/,,) are the positions of the points on the lower and upper 

surfaces of the aerofoil, i-espectively. 

The quantities 0,-0^ are pi-edefined constants, 

Oy = 0.2969 

O; = -0.1260 

Gj = -0.3516 

= 0.2843 

= -0.1015. 

The intermediate quantities are, 

= y-coordinate of point on mean line 

= thickness distribution 

8 = angle between tangent to the mean line at (jr, and the chord line. 

[ 8 2 



We round the trailing edge by using the same formulation with modified thickness 

distribution, 

= 

1 _ 

; x<m 

(72) 

; 

We then apply the following matching conditions. 

y/1) = 0 , 

(73) 

which give the matching constants as, 

= ( / » ! - ! ) 

- / M l ) (74) 

Then we simply use in place of in equations (71), with m,=0.8. 

In practice the modified sections are indistinguishable from the usual NACA sections at 

typical visualisation scales, but successfully serve their purpose of keeping the panel matrix 

well-conditioned with increasing numbers of panels. These modified sections are used in the 

computation of all the results which follow. 

5 . 6 . 2 O r e r W e w 

The model was tested with a range of aerofoil shapes, angles of attack and Reynolds 

numbers; the most interesting results were of the low-speed stall process. Even using thin 

sections at a shallow angle of attack with a high Reynolds number, the boundary layer does 

not remain attached around the entire lifting surface. Rather, we found that the separation 

point moves from the trailing edge forward along the surface of the aerofoil and the flow 

becomes unstable. 
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This process is illustrated in Figure 224 and Figure 225. The section shown is a NACA 

4412 at 5° angle of attack at Reynolds number 10,000. The computation was performed using 

200 boundary points and a time step of 0.05. 

In Figure 224, the flow at -[=1.0 is shown. The starting vortex can be seen approximately 

one chord length downstream from the trailing edge. The boundary layer remains attached to 

the lifting surfaces of the aerofoil and the separation point is at the trailing edge. 

Figure 224 NACA 4412 at 5°, Re=10,000, 1=1.0 

As time progresses, the separation point starts to oscillate near the trailing edge of the 

wing section, mainly on the upper lifting surface. This results in eddies, whose size increases 

with time, being shed into the wake. Figure 225 shows the computed streamlines at 1=7.0, 

where the boundary layer has become detached from the lifting surface on the upper side at 

the rear. 

Figure 225 NACA 4412 at 5°, Re=10,000, 1=7.0 

This instability increases the drag and reduces the lift on the wing section. We have also 

tested the model with the Reynolds number set at extremely high values, such as 10^. It was 

found that the lift coefficient is calculated to be much smaller than that from thin aerofoil 

theory in inviscid flow and that the phenomena of detachment of the boundary layer and 

separation from lifting surfaces still occur. This happens because there is no model for the 

turbulent boundary layer and because the effective maximum Reynolds number, caused by 
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time-stepping errors, has been exceeded. Anderson (1992) presents similar results for laminar 

and turbulent finite difference calculations. In the laminar model, separation similar to that 

seen in our solutions occurs; in the turbulent case, the flow remains attached. 

0 0 7 2 o f J " , 

Two sample visualisations are now given of the computed flow past a NACA 0012 at an 

angle of attack of 5° and Reynolds number 21,000. The calculation was performed using 200 

boundary panels and a time step of 0.05. Four experimental visualisations of this flow are 

presented in McAlister and Carr (1979) (Fig. 3(a)). Some facts should be kept in mind while 

making a comparison. Firstly, the experiment uses short exposure photographs of hydrogen 

bubbles suspended in the fluid, thus the line joining chronologically consecutively generated 

bubbles is a streakline; our numerical plots show streamlines, thus in the unsteady regions a 

qualitative comparison must be used. However, large structures such as eddies can usually be 

seen in the experimental flows. Secondly, no times are given for the experimental 

photographs, again necessitating a qualitative compaiison. Thirdly, the wing section used in 

the experiments has been modified by extending the leading edge and reducing the nose 

radius, in order to promote leading edge stall. 

Despite these reservations, the experimental visualisations are in reasonable qualitative 

agreement with FiguK 226 and Figure 227, which show the computed streamlines at -[=5.0 

and i:=11.5 lespectively. In particular, the experimentalists report that the leading separation 

point moves around on the upper surface; this behaviour is clearly seen in our results. The 

discrete vortex results, after the initial stall, always show one to three eddies on the upper 

surface of the aerofoil; there is evidence of the presence of eddies on the upper surface in the 

experiments. Finally, the wake in both computed and experimental flows contains an irregular 

mixture of large and small vortices of both rotational senses. 

Figure 226 NACA 0012 at 5°, Re=21,000,1=5.0 
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Figure 227 NACA 0012 at 5°, Re=21,000, T=ll .5 

McAlister and Carr emphasize that the boundary layer is laminar in the experiments at 

Reynolds number 21,000. They also mention that results of repeated experiments under the 

same conditions can produce different results at these Reynolds numbers. This is further 

evidence of the strongly non-deterministic behaviour discussed in section 5.4.10. 

m C A 0 0 7 2 o f 7 2 " , R e = 5 0 0 0 

The flow past a NACA 0012 at an angle of attack of 12" and Reynolds number 5000 is 

now presented in detail. This run used 200 boundar)' points and a time step of 0.05. The 

aerofoil immediately stalls and the flow then develops into a near-periodic state, with vortices 

shedding into the wake. Physically, the flow will be in the laminar regime at this Reynolds 

number, so these solutions should have an accuracy similar to those for the circular cylinder. 

For force results, we are now dependent on the Eulerian technique, so we expect early-time 

force results to be inaccurate and the oscillations in drag to be larger than calculated, but the 

average value of drag should be reasonably accurate using a time step of 0.05. 

The following streamline plots show the initial evolution of the flow in time intervals of 

2.5. Then the near-periodic flow is shown in more detail, using a time interval of 0.5 between 

frames. 

Figure 228 shows the flow at %=2.5, where the wing has already stalled. At earlier times 

a single eddy fomied on the upper surface; there are now two distinct eddies. The wake is 

still reasonably straight as, at this stage, the only significant large eddy to have shed is the 

starting vortex. 
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Figure 228 NACA 0012 at 12°, Re=5000, -[=2.5 

In Figure 229-Figure 232, the flow moves towards the near-periodic shedding pattern 

which eventually develops. At early times, some very large eddies develop on the upper 

surface and then shed into the wake. During this early phase the lift, shown in Figure 240, 

drops significantly but only for a brief period near T=6.0. Subsequently, the eddies become 

smaller and cause smaller oscillations in the lift, which remains positive although it undergoes 

large oscillations as the eddies shed. 

Figure 229 NACA 0012 at 12°, Re=5000, i:=5.0 
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Figure 230 NACA 0012 at 12°, Re=5000, -[=7.5 

Figure 231 NACA 0012 at 12°, Re=5000, -[=10.0 

F i g u r e 2 3 2 N A C A 0 0 1 2 a t 12" , R e — 5 0 0 0 , t — 1 2 . 5 

Figure 233-Figure 239 show two cycles of the near-periodic flow in more detail. Notice 

that the flow is nof precisely periodic and tlie states tend to be similar, but not identical to 

those on the previous cycle. The period, as can be seen from the lift in Figure 240, is 
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approximately 1.5 non-dimensional time units. To examine the periodicity, we can compare 

visualisations separated by a time interval of 1.5 units. In this example the middle part of the 

cycle shows slightly different behaviour, with eddies which were distinct on previous cycles 

being joined, probably because the flow is changing very rapidly and the period is not 

precisely 1.5 time units. 

The flow is driven primarily by vorticity separating from the upper lifting surface near 

the leading edge, which forms into eddies attached to the upper surface. These eddies grow 

to a variety of sizes and travel the length of the aerofoil to eventually shed from the trailing 

edge, with complex interactions taking place between the attached eddies. 

f igure 233 NACA 0012 at 12°, Re=5000,1=15.0 

Figure 234 NACA 0012 at 12°, Re=5000, -[=15.5 
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Figure 235 NACA 0012 at 12% Re=5000, -[=16.0 

Figure 236 NACA (X)12 at 12°, Re=5000, -[=16.5 

Figure 237 NACA 0012 at 12°, Re=5000,1=17.0 
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Figure 238 NACA 0012 at 12°. Re=5000, T=17.5 

Figure 239 NACA 0012 at 12°, Re=5000, T=18.0 

Figure 240 shows the drag and lift coefficients for the wing section for the same run. The 

drag quickly settles quickly to a near constant value, with mean value 0.23. The lift is initially 

erratic but eventually develops a behaviour with a clear periodic component. The period is 

measured to be 1.53, leading to a Strouhal number of 0.65. The mean long term lift, measured 

from i:=8.0 onwards, is 0.63. So the lift is lower than the value predicted from lifting line 

theory, although its value does remain positive. 
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Figure 240 Force coefficients for NACA 0012 aerofoil at 12° to the incident flow 

Now we present flow past a NACA 4412 wing section in precisely the same conditions 

as used in the previous section, an angle of attack of 12° and Reynolds number 5000. The run 

was conducted using 200 boundary points and a time step of 0.05. The purpose of this run 

is to examine the stall process and to isolate the flow differences caused by using a cambered 

aerofoil. Two visualisations at early times are shown in order to illustrate the stall itself, then 

the near-periodic flow is shown in detail. 

Figure 241 shows the flow at 1=2.5, where the stall has started with the formation of a 

recirculation zone on the upper aerofoil surface. The process is not so far developed as in the 

case of the symmetric wing section (see Figure 228), as the eddy on the upper surface is still 

intact. Thus in these particular conditions, the camber has delayed the onset of the stall. 
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Hgure 241 NACA 4412 at 12", Re=5000, T=2.5 

Figure 242 shows the flow at 1=5.0 and is similar to the NACA 0012 at the same time, 

as shown in Figure 229. Thus, although the initial stall is delayed with the cambered section, 

± e eddy shedding ultimately develops to a similar state. The large drop in lift occurs slightly 

after this time, near 'i:=6.0, which is almost the same time as occurred with the symmetric 

aerofoil. 

Igure 242 NACA 4412 at 12", Re=5000, T=5.0 

Figure 243-Figure 249 show the flow at time intervals of 0.5 for the near-periodic state 

which eventually develops. The period of the cycle is approximately 2 non-dimensional time 

units in this case, longer than with the symmetric aerofoil. Visualisations one cycle later 

(eg. Figure 245 and Figure 249) are clearly very similar, but again the flow is not precisely 

periodic. 
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Figure 243 NACA 4412 at 12°, Re=5000, i:=15.0 

Figure 244 NACA 4412 at 12°, Re=5000, i:=15.5 

Figure 245 NACA 4412 at 12", Re-5000, -[=16.0 
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Figure 246 NACA 4412 at 12°, Re=5000, T=16.5 

Figure 247 NACA 4412 at 12°, Re=5000, T=17.0 

Figure 248 NACA 4412 at 12°, Re=5000, -[=17.5 
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Igure 249 NACA 4412 at 12°, Re=5000, T=18.0 

Figure 250 shows the lift and drag coefficients as calculated for this run. The graph is 

qualitatively similar to that for the NACA 0012 in the same conditions, shown in Figure 240. 

The behaviour of the lift at early times is likely to be inaccurate; an erratic phase follows 

where the lift is quite high. Next lift undergoes a sharp drop before the near-periodic cycle 

is established. The period of the cycle is measured to be 1.88, giving a Strouhal number of 

0.53. The average value of the long term lift (measured for T>8.0) is 0.71, higher than for the 

NACA 0012. The drag stays at a near constant value, with a mean of 0.23. In conclusion, this 

flow behaves in a similar manner to that using a symmetric aerofoil. The camber has the 

effect of slowing the initial development of the stall eddy and the near-periodic phase which 

develops has a lower frequency. 
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Figure 250 Force coefficients for NACA 4412 aerofoil at 12° to the incident flow 
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Unfortunately our model is not suitable for simulation of wings in flying conditions and 

so cannot be used to predict flight performances. However, the model will allow a detailed 

study of the flow features and forces during the low speed stall process. 

We have shown aerofoils stalling in a variety of conditions. At these Reynolds numbers 

the flows are driven by separation of the boundary layer from lifting surfaces and consequent 

instability. In particular, separation occurs near the leading edge causing eddies to form and 

travel down the lifting surfaces to ultimately shed from the trailing edge. Other runs have 

shown us that these eddies are larger in size when using aerofoils at higher angles of attack 

and lower Reynolds numbers, as expected. We do not know how far this trend will continue 

but it may be possible to stabilise the flow in a highly accurate two-dimensional calculation. 

This would be an interesting piece of theoretical fluid mechanics. 
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6. Conclusion 

6.1 Summary and Discussion 

The discrete vortex method has been thoroughly investigated. Working from the extensive 

existing research and injecting some original ideas, a numerical solution technique has been 

formulated. In the literature, many additions to the basic model which are claimed to improve 

results are suggested. We have tried to construct a model containing as few arbitrary 

parameters as possible, although it was not possible to eliminate them endrely. The resulting 

technique can be used to solve the two-dimensional Navier-Stokes equations for an 

incompressible homogeneous Newtonian fluid. The specific case of impulsively started flow 

past a bluff body has been considered here. 

The mathematics of the method have been investigated. The technique builds from a 

model of an unbounded in viscid fluid, introducing a viscosity model and using potential 

theory to create boundaries. We have developed a new panel method to represent the body; 

results show that the boundary condition at the body surface is satisfied more accurately than 

using a traditional method. The ad-hoc additions to the model have also been considered. 

The computational cost of the method has been reduced by the use of a zonal 

decomposition/summation algorithm and by utilisation of MIMD parallel architecture 

computers. Timings of runs confinn that the improved algorithm has near linear dependence 

on the number of vortices used to simulate the fluid motion. In addition, perfomiance scales 

well with increases in the number of processors used to run the computation. This powerful 

combination of modern computational and numerical techniques has allowed us to investigate 

the properties of the model using very large runs. A large number of vortices may be used 

to increase the spatial resolution of the model for short time, high accuracy results; fewer 

vortices may be used to take a run further in non-dimensional time. It would not have been 

practical to perfomi such a computationally intensive study as this one using ordinary 

sequential/vector computers, because of the limited computer time available. 

The first test problem for the discrete vortex code was the impulsively started flow past 

a circular cylinder. An experimental test of the convergence of the method revealed a 

systematic dependence of results upon the choice of input parameters, such as the time step. 

The main result of this sensitivity is that a 'time-shift' can occur such that the solutions 

produced by the method compare to experiments at different times. Solutions are otherwise 

qualitatively independent of the choice of the model parameters. Excellent comparisons with 

experiments can be produced using a small time step and a large number of boundary points, 

provided the time-shift is taken into account. 
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Results for the short time flow past the non-rotating cylinder at a range of Reynolds 

numbers compare well with experiments and another numerical scheme. The majority of these 

test-computations were conducted using a moderately large time step in order to test the 

validity of such solutions for extension to long runs. During these tests the lower limit of 

Reynolds number for the method was found to be approximately 300, below which the 

relatively large diffusion of discrete vortices causes an undesirably large level of noise in 

solutions. 

Long time solutions were presented for flow past a non-rotating cylinder at three 

Reynolds numbers. Global flow quantities, such as Strouhal number and mean drag, are in 

good agreement with published experimental and numerical figures. At Reynolds number 550 

the early near-symmetrical flow becomes unstable, then eddies shed to form a regular Karman 

vortex street. As Reynolds number increases, the eddy shedding pattern becomes more 

irregular. At Reynolds numbers 5000 and 31,700, eddies are seen to shed in pairs, which then 

travel slightly in the transverse direction as they are carried downstream. Regular shedding 

modes are also possible, which can fomi a near-regular vortex street in some cases. Another 

possible phase is similar to the near-symmetric flow at early times; a pair of eddies grow 

behind the cylinder accompanied by a constant lift and a large drop in drag. These findings 

are consistent with discussions given in the literature concerning the irregularity of high 

Reynolds number flows. This non-determinism might be explained in temis of the nonlinearity 

and the consequent bifurcation of the Navier-Stokes equations, possibly leading to chaos. 

An alternative test problem was also considered — flow past the rotating cylinder, at a 

variety of rotational speeds. The discrete vonex method compares well with experimental 

visualisations and another numerical method at Reynolds number 1000. The flows at low 

rotational rates are broadly similar to those using a non-rotating cylinder, with a periodic eddy 

shedding behaviour. As the rotation rate increases, a wide layer of fluid forms at the boundary 

which rotates with the cylinder; there also appears to be a trend towards long temi pseudo-

steady behaviour — at the highest rotation rate considered, a mean steady flow is established 

which is subject to small amplitude variations. Tlie qualitative behaviour of the computed 

force coefficients is in agreement with another numerical study, but our long term values are 

systematically smaller in magnitude. 

The code was developed to solve for flow past an arbitrary body shape, so that we could 

study the flow past four-digit NACA aerofoils. The lack of a turbulence model, the 

fundamental limitation of the model to incompressible fluids and an upper limit on Reynolds 

number for valid solutions, precludes the study of aerofoils at typical flying speeds. The 

model is suited to simulating the dynamics of the low-speed stall process. Results for a 

NACA 0012 at a 5° angle of attack and Reynolds number 21,000 are in good qualitative 

agreement with experimental visualisations. The stall process is clearly visualised; eddies are 
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formed on the upper lifting surface that move along the aerofoil to shed from the trailing 

edge. A comparison of two flows over aerofoils at 12° angle of attack shows that the 

cambered NACA 4412 inhibits the development of low-speed stall more than the symmetric 

NACA 0012. Using a cambered aerofoil, the initial stall takes longer to develop and the 

periodic flow which follows has a lower frequency. Detailed visualisations are presented in 

both cases. 

In conclusion, the discrete vonex method has been demonstrated to be capable of 

producing worthwhile solutions of the two-dimensional Navier-Stokes equations. The 

formulation of the method is complex, especially in the choice of the numerous ad-hoc 

modelling parameters which are necessary. Computations are not especially cheap, except at 

short times, but are highly suited to exploitation of parallel architectures. 

The method can produce results of comparable accuracy to other standard computational 

fluid dynamics techniques, such as finite-difference or finite-volume methods and, although 

it is unlikely to ever replace these mainstream methods, is a useful and complimentary 

addition to the modeller's toolkit. In particular, the discrete vortex method can provide a 

completely independent check on results because it adopts a fundamentally different approach 

to the problem. In particular, it does not suffer from the grid-related errors common to all 

grid-based methods. If the discrete vortex results are in close agreement with another method, 

the level of confidence of those results is significantly increased, which could be valuable in 

a situation where the flow is unsuitable for experiments but where the accuracy of results is 

extremely important. 

6.2 Ideas for Further Research 

This work has demonstrated the construction of a robust numerical solver using the 

discrete vortex method. However, we believe that further work could improve results for the 

same set of problems or generalise the method to solve additional flow problems. 

We believe that the main source of numerical errors in the current method is the 

boundary model. Future numerical schemes could significantly benefit from a careful study 

of the boundary representation. Using some simple boundary problems, comparisons should 

be made with either analytic solutions or trusted numerical results to ensure that the small-

scale details of the boundary model are correct. 

The vortex-in-cell scheme is favoured by many authors. It would be possible to develop 

a parallel algorithm to use this technique. The llnite-volume or spectral-element schemes both 

parallelise efficiently and could be used to solve the Poisson equation on the grid. Both the 
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grid and the vortices could be stored in a distributed manner across the network of processors 

and thus the workload balanced. The computational benefits of parallel processing would 

allow fine grids and large numbers of vortices to be used, increasing the accuracy of the 

results. Most of the techniques needed to combine the Lagrangian and Eulerian approaches 

are either known or should be relatively simple to formulate. However, a considerable amount 

of software development would be required. 

The current model will only solve for stationary boundaries, apart from the specific case 

of the rotating cylinder. If a different panel method were used, it would be possible to 

consider an arbitrarily moving boundaiy. This would allow, in particular, the problem of 

dynamic stall of a wing section to be studied in detail. The most obvious approach is to 

construct a boundary model which allows an arbitrary velocity to be assigned to each control 

point. The panel method required to construct such a model would necessarily be more 

complicated, as our method does not have a sufficient number of degrees of freedom. 

Current three-dimensional discrete vortex methods allow accurate solution of some 

fundamental fluid dynamics problems, such as propagation of a vortex ring. However, with 

advances in modelling techniques and the trend towards ever decreasing computational cost, 

the point will soon be reached where larger problems can be tackled. A similar approach to 

that used here could be adopted for the three-dimensional method, ie. develop a cheap, 

parallel algorithm. The induction law for vortex elements has a similar form to that in two 

dimensions so we expect to be able to fomiulate a zonal decomposition/summation algorithm 

for the three-dimensional problem. The zonal structure would be a hierarchy of cuboids 

containing equal numbers of elements. The influence of an element in three dimensions 

decays with the inverse square of distance from it, so the convergence condition should be 

more favourable. It should be possible to construct an efficient parallel algorithm on a similar 

basis to the one used here. The data dependency of the calculation remains the same — each 

processor needs access to the local data stored on each of the others. However, the geometric 

aspects of the algorithm, such as sorting and spreading, may become significantly more 

complicated for an arbitrary three-dimensional geometry. 
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Appendix A : Zonal Decomposition Analysis 

In this appendix, the mathematical derivation of the zonal decomposition theorem 

(equation (47)) is given. The proof is constructive and is used to derive the required 

convergence condition, which is used in the algorithm to determine when the series may be 

used. 

Start by assuming a situation similar to that shown in Figure 17. Assume that there are 

point vortices of strengths situated at the complex points DcC , for 6=1,. 

The aim is to evaluate the velocity field induced by the vortices contained within D at an 

arbitrary point 

The velocity field induced by the vortices at z is, 

w = - 1 
E 

W, 

2?: 

/ \ 

y __ \ 

t ' l | z -ZLp 

(75) 

Now let then we can rewrite equations (75) in the form. 

^ = 
2:: ZL/ i |2 

1 ^ w, 
; I I? 

t-l z - z . 271% Z-Zt 

(76) 

Take some arbitrary point, A., within D. Rewrite all the vortex positions relative to the 

centre point, so let Thus, 

1 
A'p w. 1 w, 

: E 2T[%t.iZ-A-6zj^ 2TiZt=iZ-A 

6zL 

z - A 

-1 
(77) 

So, provided |6zt |<|z-^| V k, we can expand this as a series. 
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W, 1 y " 
2.ni /t=i z - A 

1 + 
z~ X 

/ * \ 2 

+ ... + 
' Gz, 

1 

2%iiz-X) 

Wp 
1 

i:=l (Z ~ A) 
E (^^^4 

z - A 

1 

'n,,k 

Wp 

(z - t-i 

1 

^ t=l ' (z-A) ' 

(78) 

now we rewrite this series as 

S = 1 

27if(z-A) 

<3. 

Z ^ 
M a - A y - ' ' 

where gy = E = E &,. 

(79) 

which is in the standard form of a series of », terms and a truncation error. The above 

analysis shows the derivation of the series coefficients and the zonal summation formula, we 

now move on to estimate the truncation error from an assumed convergence condition. Return 

to the truncation term, 

J? 
w / 5 z t ) 

(z-A)"' 

w.CSz,)"' 

1 + • 

(z-A)" 

|8Zj^|< Iz-AI 

z - A 

1 

\ z ~ A 

1 + 
' 5 z / 

z - A / J 

(80) 

We introduce the convergence condition and then show that it bounds the error in the series 

approximation. 

if | z - A I > 5 Z j ^ I :t=l,...7Vp| ^ 6z^ , for any ^ 

then 1 + • 
6z. 

Z~ X 
1 (by the triangle rule) 

(81) 
1 1 

^ 

1 + 
z - A 

203 



Now use this result and equation (80) to bound the total error, e. 

AT. 
^ - I& I ^ 2 2 \^n ,fel (by the triangle rule) 

1 ,̂ n,,k I 
1^41 

Iz-A.!"' 

1 + -

z - X 

w, 

(82) 

Wp 

To this point ± e analysis is strict. We have shown that the error is bounded and decreases 

exponentially with the number of terms in the series. The common multiplicative terms have 

been factorised out of both the series and the error. Since we are using floating point 

arithmetic, common multiplicative terms will not cause inaccuracy because they can only 

affect the magnitude of the calculation and not the number of significant figures. The error 

can be approximated to 

ATp 

A"' 

log(A) 

//pW 

log(7VpW)-log(e) 

n. 

(83) 

where Cir is the 'mean' vorticity of a blob. 

Equation (83) can be used to calculate an upper limit on the number of terms needed to 

converge the series to a particular accuracy (an upper limit for the individual circulations of 

the vortices must also be provided). In practice, we have found that it overestimates by about 

50%. This is because the proof uses some weak theory, such as the triangle rule, which will 

always overestimate the error. See section 4.5.4 for numerical tests of the accuracy of the 

method. 
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Appendix B : Pseudo Code for Algorithms 

In this appendix, pseudo code for three of the main algorithms is presented. The pseudo 

code is C-like, but uses Pascal-like constructs where the correct C would have been non-

intuitive. It is intended that anyone familiar with a sequential programming language will be 

able to read the code. 

1. Point in Polygon 

The following code will take the vortex at (%, y), to the point (x+u, y+v) unless it would 

have entered the polygon whose corners are the first N elements of (px[ i ] f P y [ i ] ) , in which 

case it is taken in the same direction, but only to a point just off the surface. The routine 

returns 1 if the vortex would have entered the body, allowing it to be optionally deleted. 

y, u, v, eoAac real px[), MIL comat lot N) 
real mluT, hicA, modr gx, ux., uy, t, xl, yl, y3, <3%, <iy, epsikimf 

/ / bflrigs @ up cho s-jrCace cf a polygon 

iar 1:«0 ed (N )̂) t /J f ina spialies-L value of t, cho Inner sect ion point 
xl:»p-x[tl; x2 :ipx! (J+t) ; 
ylfpyTi); 
dx;»x2—xl; <3y:«y2-yl; 
If (flbs ((ux*dy)-(uy*d,X) }>1.Se-1C) | // nol t i a v a i l i n g uesx-parallel to the wall 

t :«• < ( fy-yl) "dxi-(<x-xl! •'dy! }/sotr // calcjJace ifiLersecition point at the wall 
If /abs4dx)>abs{dy) 

If *>=0 56 at'-) K* f / / iM.air$6ctlCih ia a wall colliAiom ? 
mod: "-eqrt < + (dŷ dy) } r 

sx:»ax/nOQ; sy;=ci.y/"'Od," 

if (hit) ( / / voiaciiy mp voptox d<XLB not; encef booy 
epsilan:*pod*0.[)01; // j.st: ihu siufaro 
dot:» (sjx'̂ sxJ(t:y^syj ; / / "waald br riaodad If wo ?forcing norral conpan̂ r̂L 
u:»(iiu»iT*ux)-f<Gr&i.lon*sy); / / "ova to zrrtM&cc: /ir ^lang rorpml 
v:« (m inT*ijy) ̂  (opa tjD»̂ ŝx) ; 
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2. Pigeon Sort 

The following code implements the pigeon sort algorithm, as discussed in section 4.7. 

Upon entry the array index [ ] should contain a permutation of the integers 0, . . . n - l . 

int 1, temp, starL, lengch, ncTiPigfnt, nuOfSicUni, 
noIASlot|n-+l], RpigMrZj; 

real trap, alotLengLft; 

for 1:«0 Lo n { ) 
start :«C5; 
n o I n P i g 6} : " n ; 

While; { 
leiftgth:j=ncJftPig (scart!; 
m a x i - d a c a j ; ; 
(Of to ( 

tap:' ; 
1 f (t:mp>'WX) Ma X:» %-p ; 
e l s Q [f 7 ; . r : ' L r o ; 

jf ("axOr-lry) { 
zloLl«argcr:''( rwaid&rgr)) 
fojT l:«gtarL to (szartiic^gLh-I] ( 

ltomp:firl:( (dele *»!<.'langlL ) 
noOfSlot [i] :« ftw p; 
nolnsiot!llecp]i-iarnSlot|1cnop'; 

flpJgfOJ:=stsrc; 
(Of 1:=0 CO ( 

<naln3loe[^;(>3) aoTTPiglnplgli'.iTolaaitxjii; 
noTnSlot [1] ;-̂0r 

fOf ];-ST,azl, to (starc^lc^gLM-n t 
hO <̂.l-.iGxtnp!.g rrJfS.Ci^ j; : ".oî XiLT; 
nplg [aoOfSloc t: 3 ' fnoO'Slor I i' t -1; 

*c.f kjrnoxln I , 

/ / Kcro )n «ach aioC at start 

// itiop to Subdlv-idO slots 

/ / ^oqp Lo fiRQ, nin/nax 

// riff' V̂iL.r̂O tnriw 1 i 

f j r il'J'W'i to (2Caf. ' 

oiae ( 
cfif 
n , , n 'a"rf" !: 

'' JI ) •' i"Ok_f : , _ « : jp, , I 

Tl'' ^ ; i — I *[(!? 

ataf I i-'SCaftTiO tnPlg[;tarL j; 
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3. Zone Splitting 

The following code splits an array of real data into two halfs, each containing an equal 

number of data values. The example here is one-dimensional and so appears rather trivial 

since a sorted array can be trivially partitioned. However, precisely the same algorithm is used 

in two dimensions where the recursive splitting can take place on different dimensions. Upon 

entry the array 8ortOrder[] contains the sorted index as output from the pigeon sort, 

zone0rder[] contains the vortex indeces lying in the zone to be split, divide is the number 

of vortices to be put into one of the split zones and N is the number of vortices to be split. 

coast: Ine foal daw;], int divider eoMt IncN) r 

dlvidaVal'ie tsortO!:d-r«t {aividoj t; 
post:tpczZ: 
for 1:«0 to { 

v-a 1 : = zotioOrdpr [3 ] ; 
if (cla;a[vat)<dlvld«.value) t 

2;or>e0rdor fpcslj 
pcjs s: »'poal +1; 

/ / wx 1 ' J rj n(i fj ̂  

// move CO tomp sogAoat 
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Appendix C : Streamfunction Analytic Formulae 

1. Gaussian Vortex 

The streamfunction of a gaussian vortex, at distance r f rom the vortex, is given by the 

following integral. 

= f ° ' ) (84) 

which cannot be evaluated in terms of standard functions. W e compute the value of this 

function using three matched functions, as described below. 

1. r<G. 

Use the Taylor series expansion for small r, which gives the following series. Use the 

first ten terms. 

4tc 

1 1 
+ 

o 2 2.2! 33 ! ^6 o 
(85) 

2. G<r^(y. 

Use the following fitted polynomial. 

(86) 

where 0^= 1.38716049000828812-1000 

6.6330940309551012Z-00] 

2.184 97G9095 599672E-COI 

1 . 2 2 6 1 7 4 3 5 9 1 8 0 0 5 0 8 6 - 0 0 ! 

6. 2088524 621613669E-002 

a(=-3. 5609712 6650604 2 5E-U02 
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a g = 4 . 1 5 2 3 8 0 4 8 6 6 7 5 0 2 0 4 2 - 0 0 2 . 

3. r>5G 

Use the streamfunction of a point vortex. 

/ r \ 
i|/(r) = — I n — +i|f(5o) 

2:i: (^50/ 
(87) 

2. Curved Vortex Sheet 

The streamfunction of the new panel element, whose velocity distribution is given in 

equation (31), can be calculated analytically. In the following equation, the quantities 

a, 6, c, and are the same as those described in the velocity equation. The 

streamfunction at the point z, \)/(z) is given by, 

i|f(z) = ImiW) , where 

jPF = -
2 

l o g ( C . - z ) - 3 - -
a 

1 

a(5'o-f,) 

A = Z+0-C+— 
2a 

(AgQ+g)log (Ag. +B)log 
'1 n 

a = (c-z) — + 2 
la / 

(88) 
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