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ABSTRACT
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Doctor of Philosophy

YOUNG TABLEAUX AND MODULES OF GROUPS AND LIE ALGEBRAS

by Trevor Alan Welsh

In this thesis, Young tableaux are used to provide a very convenient explicit descrip-
tion of all the irreducible modules of the classical Lie groups and their Lie algebras,
and a large class of irreducible modules of the general linear Lie supergroups and
their Lie super algebras. An original account of the Specht module techniques for
the symmetric groups is also presented.

For each irreducible module, a basis is provided by a set of Young tableaux
which index the weights of the module. The action of the group or algebra in ques-
tion on these 'standard' tableaux is entirely natural. The result is, in general, a
linear combination of non-standard tableaux. For each group, a standardisation
algorithm is obtained which enables each non-standard tableaux to be expressed in
terms of the basis of standard tableaux. For the symmetric groups and the general
linear groups, this algorithm is provided by techniques developed by Garnir. This
involves the Garnir relations which are closely related to the fundamental Young
symmetrisers obtained by Young and based on the Young diagrams. Berele ex-
tended this construction by obtaining further relations between the tableaux based
on Weyl's removal of trace tensors.

These ideas are extended to the mixed tensor representations of the general
linear groups and to the orthogonal groups. In this latter case, new sets of standard
tableaux are defined. For the spinor modules, it is necessary to develop a further
class of relations. For the supergroups, a standardisation technique is obtained by
coupling Garnir's methods with a graded symmetric group action.

In each construction, the standardisation algorithm involves simple coeffi-
cients, often integral. Consequently, the resulting matrix elements are especially
simple. Each of the algorithms is exemplified, as well as the explicit construction
of matrices representing elements of the various algebras.
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At the time of submission, the work presented in this thesis has spawned the fol-

lowing papers:

R. C. King and T. A. Welsh, Construction of Orthogonal Group Modules Using

Tableaux, Linear and Multilinear Algebra, to appear (1992);

R. C. King and T. A. Welsh, Construction of GL(n)-Modules Using Composite

Tableaux, Linear and Multilinear Algebra, to appear (1992);

R. C. King and T. A. Welsh, Construction of Graded Covariant GL(m/n)-Modules

Using Tableaux, J. Algebraic Combinatorics 1 (1992), 151-170.

All the module constructions described in this thesis, apart from the spinor

modules of the orthogonal groups, have been implemented as computer programs.

These are written in the language ' C and are currently running in an MSDOS envi-

ronment. These programs provide the following suite of facilities for each irreducible

module:

(i) calculation of its dimension by means of a formula;

(ii) generation and display of the appropriate standard tableaux;

(iii) calculation of weight multiplicities;

(iv) standardisation of an arbitrary tableau — each step in the standardi-

sation procedure is displayed, if desired;

(v) calculation of the explicit matrix representation of a specified element

of the Lie algebra (or symmetric group element in the case of the

Specht modules);

(vi) checking of the appropriate commutation relations;

(vii) generation of representation matrices via those of the simple root vec-

tors (or simple transpositions in the case of the Specht modules).

In addition to the work presented in this thesis, research was undertaken

to develop algorithms to determine weight multiplicities and tensor products of

irreducible highest weight representations of affine Kac-Moody algebras. A concise

summary of this work may be found in the following paper:

R. C. King and T. A. Welsh, Tensor Products of Afrine Kac-Moody Algebras, in

Proceeding of the XVIII International Colloquium on Group Theoretical Methods in
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Physics, Eds. V. V. Dodonov and V. I. Mankov, Lecture Notes in Physics 382,
Springer-Verlag, Berlin (1991), 508-511.

A computer program has been written dealing with the constructions described in

this paper for the two affine Kac-Moody algebras of rank one.

This thesis has been typeset using 'plain' TgK.

Trevor Welsh, September 1992.
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1.1. Historical perspective

Chapter 1

Introduction

§1.1. Historical perspective

Over the past century, a great literature has amassed concerning the ubiquitous

role of Young tableaux in the theory of group representations and characters. Many

of these works occur in a purely combinatorial context, casting little light on the

significance of the Young tableaux framework. In this thesis, the reader is guided on

a journey through the classical groups and in each case, the utility of Young tableaux

is pinpointed. More specifically, very convenient bases for the irreducible modules of

the symmetric group, the classical Lie groups, their Lie algebras, the general linear

supergroup, and its Lie superalgebra are constructed in terms of Young tableaux.

The action of the group or algebra in question on these basis elements is determined

and techniques are developed for rewriting the result in terms of the basis elements.

In this way, the irreducible modules are constructed explicitly.

The origin of the usefulness of the Young diagrams may be traced to their

enumeration of the classes of the symmetric group. Through the work of Frobe-

nius at the beginning of the Twentieth Century, it was shown that partitions, and

hence their diagrammatic representation as Young diagrams, serve to enumerate

the irreducible representations of the symmetric groups. In the following two

decades, Young brought the tableau to life through a diagrammatic construction

[Yo77,Ru68] of the minimal idempotents of the symmetric group algebra. Al-

though now bearing the name 'Frobenius algebra', the group algebra was at the

time being used by Young, ignorant of Frobenius's work. The idempotents con-

structed by Young were termed 'Young symmetrisers' by Weyl. Young developed

various constructions of irreducible Spmodules based upon his tableaux. His no-

tion of a standard tableau was a major step forward. Such tableaux are defined to

have their entries ordered within their rows and columns. In this thesis they are

referred to as ^/-standard tableaux, since many extensions of the notion will arise.

Young showed that the ̂ -standard tableaux serve to enumerate the dimension of

the representation of 5/ indexed by the underlying diagram. This fact was somewhat

indirectly used in his module constructions. An altogether more direct construction

was carried out much later, in the work of Specht [Sp35] and Garnir [Ga50]. Here,

for each particular Young diagram, the ̂ /-standard tableaux are taken to form the

basis for the irreducible S rmodule associated with that diagram. The symmetric
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group acts on these tableaux in a natural way, consistent with Young's original

derivation of the symmetrisers. In general, the result of this action is a tableau

which is not S^-standard. Garnir devised an algorithm by which such non-standard

tableaux may be written in terms of S rstandard tableaux, thereby completing the

specification of the explicit module. His techniques involve the so called Garnir

relations which are intimately related to the Young symmetrisers. These relations

prove extremely useful in the developments of this thesis. The construction of the

Young symmetrisers, Specht modules and Garnir relations is detailed in Chapter 3.

Also around the turn of the century, Schur derived his double centraliser

theorem [ScOl]. Using the work of Frobenius and Young, he exploited the dual

centralising actions of Si and GL{m) on the /-fold tensor space V®' of the defin-

ing GL(m)-module V, to decompose V®' into irreducible covariant CL(m)-modules

which are indexed by partitions of not more than m parts. Weyl [We39] utilised

Schur's ideas and the Young symmetrisers to project the irreducible G.L(m)-modules

out of V®'. The appearance of a Young tableau in [We39] showed that, to some

extent, they were being used in his methods. In the case of GL(m), it was found

that tableaux based on a particular diagram which obey a simple ordering condition

(different to the Si case) enumerate the dimension of the irreducible representation

corresponding to that diagram. These tableaux are often referred to as semistan-

dard, but in this thesis, the more descriptive 'GZ-(m)-standard' is coined. Such

tableaux seem to have first been defined by Littlewood [Li50] who implied their

use as a basis for the irreducible GL(m)-modules although this was not described

explicitly. Nevertheless, under the Weyl-Schur decomposition of V®', the groups

GL(m) and SL(m), and their Lie algebras gl(m) and sl(m), act naturally on these

tableaux. However, it is doubtful as to whether Littlewood could deal with the re-

sulting non-standard terms. As described in [JK81], the explicit use of the Young

symmetrisers in the decomposition enable Garnir's techniques to be applied in order

to effect a standardisation once more. The resultant CL(m)-modules, for which the

sets of appropriate GJD(m)-standard tableaux comprise bases, are known as Weyl

modules.

A great convenience of the above constructions of irreducible modules by

means of the Young symmetrisers is that standardisation necessarily results in terms

with integral coefficients. Since the elements of 5"; and GL(m) act naturally on the

respective standard tableaux, it follows that the matrix elements of the resulting

explicit representations of elements of Si or gl(m) are all integral. A further elegant

feature of this construction from the abstract weight viewpoint is that each of the

GX(m)-standard tableaux which form the basis has a well defined weight. Thus



1.1. Historical perspective

these tableaux index the weights of each representation and thus, through their

sum, yield its character. For GL(m), these characters are the Schur functions

which are thus endowed with a combinatorial definition [Li50,Sta71]. Many of

their properties, for example the famous Littlewood-Richardson rule [Li50,Ro61],
are best expressed, and indeed proved, using Young tableaux. Sections 1 and 2 of

Chapter 4 describe the construction of the Weyl modules.

It seems somewhat surprising that work aimed at extending these simple con-

structions to other classical groups has only been undertaken recently. In fact, very

little has been published on the construction of explicit modules at all. In 1950,

Gelfand and Zeitlin published a paper [GZ50a] (see also [BBi63]) in which the

basis states of the irreducible modules of U(m) (and hence GL(m)) are indexed by

Gelfand patterns. However, in order to have orthogonal basis elements, the module

action is extremely complicated, involving irrational coefficients, in general. This

work was extended to the orthogonal groups [GZ50b]. More recently, a Verma

module approach [LM86] produced an explicit description of basis states for vari-

ous simple Lie algebras of limited rank. However, it is not clear how the result of

an algebra action on these basis states could be rewritten in terms of that basis in

a systematic way.

By considering trace tensors formed by contraction of V®' with an antisym-

metric non-degenerate bilinear form, Weyl [We39] showed that the irreducible rep-

resentations of Sp(2r) may be labelled by a subset of those Young diagrams needed

for the irreducible representations of GL(2r); specifically they are those with not

more than r rows. Some time later, King [Ki76] showed that the weights and char-

acters of the irreducible representations of Sp(2r) may be calculated by using certain

tableaux, which are here called 5p(2r)-standard tableaux, based on the Young di-

agrams which index the particular representations. Berele amalgamated these two

ideas to construct the irreducible Sp(2r)-modules [Be86]. His essential idea was to

factor out the invariant trace submodules of V"®' described by Weyl and thus pro-

duce an extra relationship between the tableaux. He showed that this relationship,

known as a Trace relation, together with the Garnir relations, enable any arbitrary

tableau to be expressed in terms of the Sp(2r)-standard tableaux. This reduction

involves only integers and thus the construction retains all the elegant features of

the Weyl module. Berele's techniques, which are fundamental to the subsequent

developments of this thesis, are elucidated in Section 4.3. This exposition differs

considerably from that of Berele's concise account. The reason for this is twofold;

firstly, it is desirable to expound on the elegance of the method; and secondly, the
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techniques provide a model upon which similar techniques for the other classical

groups are developed.

In Section 4.4, the case of the mixed tensor (rational) representations of

GL(m) is considered. Weyl showed that these representations are indexed by certain

generalised partitions which are permitted to have negative parts [We39]. Little-

wood [Li50] noticed that this description is equivalent to that of an ordered pair

of partitions satisfying a simple compatibility condition. These two partitions, in

fact, specify Young symmetrisers acting independently on a covariant and a con-

travariant tensor space. This construction is conveniently depicted using composite

Young diagrams and tableaux [Ki70,Ki76], upon both portions of which Garnir

relations may be applied. In addition, Trace relations arise through Berele's pro-

cess of factoring out the invariant subspace of, in this case, tensors resulting from

the contraction of covariant and contravariant indices. By using the fact that the

Kroneker product of a mixed tensor representation with a specific number of copies

of the determinant representation is equivalent to a covariant tensor representation,

King [Ki76] derived sets of composite tableaux which index the weights of these

representations. As shown in Section 4.4, these once more provide bases for the

irreducible mixed tensor GL(rn)-modules. Section 4.5 is devoted to describing an

association between the Garnir and Trace relations arising from the equivalence

mentioned above.

In Chapter 5, an analogous construction for the irreducible 0(m)- and SO(m)-

modules is developed. For the 0(m) case, two difficulties need to be overcome. The

first is that of the specification of an appropriate set of standard tableaux. It

transpires that ever since Weyl specified the partitions that index the irreducible

representations of 0{m) [We39], his index set has been ignored in favour of a subset

appropriate to the SO(m) case. This fact was recognised by Proctor [Pr89] who,

using the ideas of King and El-Sharkaway [KE83], derived tableaux based on these

partitions which index the weights of the representations. The second difficulty is

that the appropriate Trace relations have to be applied over a pair of columns by

virtue of the symmetry of the invariant form. This implies an interference between

the Trace relations and the Garnir relations. This difficulty, coupled with the prob-

lem of the reduction to SO(m), indicates that a different set of tableaux, which are

closely related to Proctor's, should be used. These O(m)-standard tableaux are de-

fined in Section 5.1. However, the standardisation procedure no longer involves only

integers; factors of 1/2 may appear. This construction and the reduction to SO(m)

are described in Sections 5.2 and 5.3 respectively. Section 5.4 is dedicated to the

development of a Garnir-Trace relation duality similar to that which occurred for
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mixed tensor G.L(m)-modules. An alternative construction of 0{rn)- and SO(m)-

modules is outlined in Section 5.5, based on a further set of tableaux defined in

[Pr89], which do not index weights. Although only integers occur in the standard-

isation procedures, the reduction to SO(m) involves complex numbers when m = 2

(mod 4).

Since the groups 0{m) and SO{m) are not simply but doubly connected, they

necessarily possess two-valued representations. These provide genuine representa-

tions of the Lie algebras so{rn). Sets of tableaux which provide the weights and

characters of these representations were first defined by King and El-Sharkaway

[KE83]. The definitive investigation into the two-valued 'spinor' representations

was carried by Brauer and Weyl [BW35]. In order to apply their techniques to

the construction of the irreducible spinor O(m)-modules, it is necessary to gener-

alise their use of Clifford algebras. This is carried out in Sections 6.1 and 6.2. By

factoring out the invariant subspaces, relations between the tableaux, analogous

to the Trace relations, are obtained. The standardisation procedure is developed

in Sections 6.3, 6.4 and 6.5. Once more, this procedure involves relatively simple

coefficients; they are simple rational numbers when m is even, and factors of y/2

arise when m is odd. The reduction to SO(m) is performed in Section 6.6.

Dondi and Jarvis [DJ81], and later Berele and Regev [BR83,BR87], discov-

ered that a straightforward generalisation of Schur's action of the symmetric group

on the /-fold tensor product V®1 of the defining module V of the general linear Lie

supergroup GL(m/n), enabled the double centraliser theorem to be applied in this

case. Since this generalised (graded) symmetric group is isomorphic to the ordinary

symmetric group, various properties of the irreducible representations of GL(m/n)

are similar to those of GL(m). In particular, it was discovered that irreducible

representations of GL(m/n) are also indexed by partitions — in this case, those

that lie in a 'hook' [BR87]. Correspondingly, the Young symmetrisers generalise.

Thus Garnir's techniques may also be generalised to the case of the irreducible

CL(m/n)-modules. The requisite CL(m/n)-standard tableaux were first defined

in [BR83]. The irreducible GL(?n/n)-modules are constructed in Chapter 7. The

construction is extended to the Lie superalgebras gl(m/n) and the basic classical

Lie superalgebras sl(m/n) in Section 7.4. Once more the standardisation algorithm

involves only simple rational coefficients.

Each of the constructions described above, apart from that of the spinor mod-

ules of orthogonal groups, has been computer implemented. This has enabled the

techniques of this thesis to be verified through checking that the representations
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generated satisfy the commutation relations of the appropriate Lie algebra. In ad-

dition, the programs have checked the examples presented.

The remainder of Chapter 1 is dedicated to the definition of the basic concepts

in the theory of Lie groups, Lie algebras and representations.

In Chapter 2, the classical Lie groups and their Lie algebras are detailed. The

classification of all their finite-dimensional irreducible representations is described,

and formulae to calculate their dimensions presented. In addition, partitions, Young

diagrams and Young tableaux are introduced, together with various associated no-

tations.

§1.2. Lie groups

This thesis is concerned with various Lie groups, Lie algebras and their represen-

tations. These notions are introduced in this and the following sections. Since the

general definition of a Lie group is not required in this thesis and embodies concepts

beyond its scope, the more accessible definition of a linear Lie group is presented.

The general definition may be found in [Co84], for example.

A faithful 5-dimensional representation of a group Q is an injective homo-

morphism T : Q —+ M's of Q into the set M'a of invertible s X s matrices. Thus

T(g)T(h) — T(gh) for all g, h G Q. If Q possesses a faithful representation F then a

metric dr : Q x Q —> R may be defined by:

This enables the group in question to be endowed with the topology of the m2-

dimensional complex Euclidean space C m \

Definition 1.2.1. A linear Lie group Q of dimension p is a group for which:

(i) there exists a faithful finite-dimensional representation T;

(ii) there exists 6 > 0 such that the set Qt C. Q for which G 6 Gs if and only

ifdr(G,I) < 6, where I £ Q is the identity element, is uniquely param-

eterised by p real parameters x1, x2, •. •, xp, with I G Q parameterised by

0 , 0 , . . . , 0 ;

(in) there exists e > 0 such that if Rp
( denotes the set of all (x l5 x 2 , . . •, xp) G

Rp for which
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then each point (x1, x 2 , . . . , xp) G Rp
c corresponds to some group element

G(xi,x2,... ,xp) G Qi,;

(iv) each matrix element T(G(x1, x 2 , . . . , xP))ij is an analytic function of the

parameters x l 5 x2, • •. , xp on the set Rp
c.

An immediate consequence of this definition is that if Q is a linear Lie group then

the matrices Ak, for k — 1,2,... , p, defined by:

(1.2.2)
dx* (o o)

necessarily exist.

Definition 1.2.1 is especially convenient because the classical Lie groups, which

are the main objects of study in this thesis, may be defined as matrix groups and

thus a faithful representation is always readily available.

The following definitions and theorem are quoted from [Co84] where a full

discussion is presented.

Definition 1.2.3. A connected component of a linear Lie group is a maximal set of

elements G G Q that can be obtained from each other by continuously varying the

matrix elements T(G)ij of the faithful finite-dimensional representation V of Q.

Definition 1.2.4. A connected linear Lie group is a linear Lie group which possesses

just one connected component.

Definition 1.2.5. A simply connected linear Lie group Q is a connected linear Lie

group for which every loop p : [0,1] —» M's for which p(0) = p(l), with image in the

domain Adr of the faithful s-dimensional representation T, is continuously contractible

in A4r to a point.

Theorem 1.2.6. For every connected linear Lie group Q there exists a simply con-

nected group Q for which Q — Q/K for some discrete normal subgroup K of Q.

The group Q which appears in this theorem is known as the universal covering group

of a.

Definition 1.2.7. Compact linear Lie group. A linear Lie group Q of real dimension

p having a finite number of connected components, is said to be compact if its real

parameters Xi, x 2 , . . . , xp, range over finite closed intervals.

Since all the Lie groups encountered in this thesis are linear, the word 'linear'

is omitted hereafter.
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§1.3. Lie algebras

In this section Lie algebras are first introduced as infinitesimal generators of linear

Lie groups, identified as matrix groups by means of some faithful finite-dimensional

representation. They are then defined axiomatically.

Let Q be a matrix Lie group of real dimension p. Consider a one-parameter

subgroup G(t) E Q defined for t E R in a small neighbourhood of 0 and for which

G(0) = / , the identity of Q. Then, by virtue of Definition 1.2.1, the matrix:

A = —G(t) (1.3.1)

exists. By considering all one-parameter families of Q, it is easily shown that the

resulting matrices (1.3.1) form a p-dimensional vector space with basis {Ak : k =

1,2,... ,p}. This vector space is known as the real Lie algebra Cg of Q.

Let A E Cg be arbitrary. The matrix differential equation (1.3.1) may be

solved with the constraints G(0) = I and

to yield G(t) = exp(At). Thus any element of Cg may be exponentiated to obtain

a one-parameter subgroup of Q.

It follows directly from the Campbell-Baker-Hausdorff formula (see [Co84])

that if A,B E Cg then the commutator [-4,5] E Cg, where:

[A, B] = AB - BA. (1.3.3)

Abstractly, a Lie algebra is defined as follows.

Definition 1.3.4. C is a Lie algebra over the field F if and only if C is a vector space

over F, for which a product [a, b] is defined such that:

(i)[a,b]eC;

(Hi) [a,6] = -[6 ,a] ;

(iv) [a, [6, c]] + [6, [c, a]] + [c, [a, b]) = 0,

for all a,b,c E C and all (3,-y E F. The first three of these requirements are known as

the closure, linear, and anticommutation properties respectively; the fourth is known

as the Jacobi identity. If F = C then C is known as a complex Lie algebra and if

F = R then C is known as a real Lie algebra.
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It is to be noted that any real Lie algebra becomes a complex Lie algebra

on extending R to C. In general, each complex Lie algebra arises in this way from

a number of distinct real Lie algebras. These real Lie algebras are known as real

forms of the complex Lie algebra so obtained.

It is easily verified that any associative algebra which is closed under the

product (1.3.3) satisfies the requirements of Definition 1.3.4. Thus, in particular,

Definition 1.3.4 encompasses each Lie algebra CQ resulting from a matrix Lie group

Q.

The classification scheme for Lie algebras involves the following definitions.

Definition 1.3.5. A Lie algebra C is said to be abelian if [a, b] = 0 for all a, b 6 C.

Definition 1.3.6. A Lie algebra C is said to be simple if it is not abelian and possesses

no proper ideals.

Definition 1.3.7. A Lie algebra C is said to be semisimple if it possesses no proper

abelian ideals.

The classification of complex semisimple Lie algebras was completed in 1894

by Cartan [Ca94] who established the following theorem.

Theorem 1.3.8. Every semisimple Lie algebra is a direct sum of simple Lie algebras.

Cartan's classification scheme then involves four countable sequences of simple

complex Lie algebras, denoted Ar for r > 1, Br for r > 2, Cr for r > 3 and Dr

for r > 4, and five exceptional Lie algebras, denoted G2, F4, E6, E7 and E$. In

this notation the integer appearing as the subscript is known as the rank of the

algebra and gives the dimension of the maximal abelian subalgebra. The complex

Lie algebras Bu Ci, C2, Dx, D2 and D3 are defined but are either isomorphic to

those already given, or semisimple or, in the case of JDX, abelian. In fact,

C ^ B ^ A i , C2 £ B2, D3 £ A3, D2^AX®AX. (1.3.9)

In addition to the simple complex Lie algebras, Cartan determined the simple

real Lie algebras. These are denoted using a notation similar to that used for the

simple complex Lie algebras (see [Co84]).
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§1.4. Representations and modules

In this section a representation is formally defined. Throughout, attention is con-

fined to finite-dimensional representations. The equivalent notion of a module is also

introduced. In addition, Schur's lemmas are stated and the adjoint representation

defined.

Definition 1.4.1. An s-dimensional representation of a group Q is a map

T-.Q-+ M'.(F), (1.4.1a)

onto M'S(F), the set of s x s non-singular matrices over a field F, such that

T(gh) = T(g)T(h), (1.4.16)

for all g, h £ Q • If Q is a Lie group, it is also required that T is a continuous map.

For groups actually defined in terms of matrices, for example the classical groups,

there already exists a representation, called the defining representation, which maps

every group element onto itself.

It is often convenient to discuss representations in terms of modules.

Definition 1.4.2. An s-dimensional Q-module V is an s-dimensional vector space

over F on which an action Q : V —* V is defined such that:

(i) Iv = v, where I £ Q is the identity element;

(ii) g(fiv + vw) = fi(gv) + u(gw);

(Hi) (gh)v = g(h(v)),

for all g,h £ Q, all fi, v £ F ; and all v, w £ V.

Given an s-dimensional representation F of Q, a ^-module is constructed by

introducing a vector space V with basis {ul5 u2, • • •, vs} and defining:

J , (1.4.3)

for i = 1,2, . . . , 5 , and all g £ Q. By linearly extending this action to the whole

of V, a ^-module is constructed, as is easily verified. Conversely, an 5-dimensional

(/-module V leads to a representation T by the introduction of a basis {ux, u 2 , . . . , v,}

for V, and for each g £ Q defining T(g)ji for 1 < i,j < s by (1.4.3).

Definition 1.4.4. Equivalent representations. Let T,T' be two s-dimensional rep-

resentations of Q. If there exists a non-singular s x s matrix S such that T'(g) =

10



1.4- Representations and modules

S~1Y(g)S for all g £ Q then the representations Y and Y' are said to be equivalent

and the notation Y = Y' is used.

From the module viewpoint, equivalent representations correspond to nothing

more than a change of basis. In fact, under the change of basis v'k = Yl'=i S'kvi °f

V, the linear operator T(g) acting on V with respect to the basis {vi,v2,... ,vs},

gives rise to the linear operator T'(g) acting on the basis {v[,v'2,... ,v's}, where

Y'(g) = S~1Y(g)S. Therefore equivalent representations are -essentially the same

representation.

Definition 1.4.5. Reducible representations. The s-dimensional representation Y of

Q is said to be reducible if there exists a non-singular s x s matrix S and an integer

a such that 0 < a < s and, for all g £ Q, S~xY(g)S is of the block matrix form:

where the submatrices A,B,C and 0 are a x a, (s — a) X (s — a), a x (s — a) and

(s — a) x a respectively and the matrix 0 consists entirely of zero elements. If no such

S exists, then Y is termed irreducible.

If V is the (/-module corresponding to Y then this definition is equivalent to the

statement that Y is reducible if and only if V possesses a proper submodule W, in

that the dimension of W is at least 1, W C V, W ^ V, and gw £ W for all w £ W

and g £ Q. In such a case V is said to be a reducible (/-module. Conversely, if Y is

irreducible then V is also said to be irreducible.

Definition 1.4.6. Decomposable representation. The s-dimensional representation Y

of Q is said to be decomposable if there exists a non-singular s x s matrix S such that,

for all g £ Q, S~1Y(g)S is of the block matrix form:

, (1.4.6a)
o r<%)J'

where the submatrices F(1)(y) and Y^2\g) are Sx x si and s2 x s2 respectively for non-

zero Si,s2 with Si + s2 — s, and each 0 is the appropriately sized matrix consisting

entirely of zero elements. If no such S exists, then Y is termed indecomposable. If Y is

decomposable with S~lY(g)S given by (1.4.6a) then Y^ andY^ define representations

11
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of dimensions Si and s2 respectively. This decomposition is known as a direct sum

decomposition and is denoted:

S-lT(g)S = T^(g) © r^(flf). (1.4.66)

Similarly, the ^-module V is said to be decomposable if V can be written as the

direct sum V = W © W of two non-trivial ^-modules W and W. If not, then V is

indecomposable.

Definition 1.4.7. Fully reducible representation. The representation T of Q is said

to be fully reducible if T can be expressed as the direct sum of a set of irreducible

representations, in that there exist irreducible representations r ( 1 \ F ^ 2 ) , . . . ,T^ such

that:

T(g) £ T^(g) © T^(g) © • • • © I*)(j), (1.4.7)

for all g £ Q.

Once more this definition extends naturally to the module viewpoint.

Representations and modules of Lie algebras will now be introduced.

Definition 1.4.8. An s-dimensional representation of a Lie algebra C is a map

r : C -» M.(F), (1.4.8a)

into A4S(F), the set of all s x s matrices over some field F, such that:

(i) T(aa + /3b) = aT(a) + /3T(b);

for all a, 6 G C and a, fi € F.

Once more, an equivalent notion of an £-module exists which may be formally

defined as follows.

Definition 1.4.9. An s-dimensional C-module V is an s-dimensional vector space

on which an action C : V —»• V is defined such that:

(i) a(fiv + uw) = fi(av) + is(aw);

(ii) (aa + /3b)v = a(av) + (3(bv);

(Hi) [a, b]v = a(bv) — 6(au),

for all a, b G C, all v,w 6 V and all a,(3,{i,v 6 F.

12
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The two notions of a representation of £ and an £-module may be shown to be

equivalent in the same way as above for Q.

The concepts of reducibility and decomposability extend directly to the case

of representations and modules of Lie algebras. A representation of a Lie group

Q gives rise to a representation of its Lie algebra Cg and this representation is

reducible, decomposable or fully reducible if that of Q is reducible, decomposable

or fully reducible respectively.

The following two lemmas which are known as Schur's lemmas apply to any

group, or any algebra over an algebraically closed field. Proofs may be found in

[CR62,Bo63,Co84].

Lemma 1.4.10. [ScOl] Let A be either an algebra or a group, and let T,V be

irreducible representations of A of dimensions s and s' respectively. If there exists an

s x s' matrix S such that:

T(a)S = Sr'(a), (1.4.10)

for all a £ A then either 5 = 0, or s = s' and S is non-singular.

Lemma 1.4.11. [ScOl] Let A be either an algebra over an algebraically closed field

or a group, and let V be an s-dimensional irreducible representation of A. If there

exists an s X s matrix S such that:

T(a)S = ST(a), (1.4.11)

for all a £ A then S is a multiple of the unit matrix / , .

The following theorem of Weyl [We39] will be of great value.

Theorem 1.4.12. Every representation of a compact Lie group Q is fully reducible.

Every representation of the corresponding complex Lie algebra Cg is fully reducible.

In the theory of group representations, the character of a representation con-

tains much important information. It is introduced via the following definitions.

Definition 1.4.13. The trace of a matrix. If M is an s x s matrix with elements

M{j, its trace, tvM, is defined by:

trM = £M,,. (1.4.13)

13



1.4- Representations and modules

Definition 1.4.14. The character of a representation. If T is a representation of

Q, the function ch(F) : Q —* F which assigns to each element of Q the trace of its

representation matrix:

ch(T)(g) = tr T(g), (1.4.14)

is known as the character ofT.

The following two lemmas concerning the character have standard straightforward

proofs.

Lemma 1.4.15. The character of a representation of a group is a class function in

that its value is constant within a class.

Lemma 1.4.16. Equivalent representations have the same character.

The proof of the following lemma may be found in [Co84].

Lemma 1.4.17. If two representations of a finite group or a compact Lie group have

the same character, then the two representations are equivalent.

Definition 1.4.18. The adjoint representation of a Lie algebra. Let the Lie algebra

C have a basis {ai,a2.,... , a,} and let the structure constants ck
{j £ F be defined by:

s

[a,-, a.-] = Yck-ak, (1.4.18a)

for i,j,k = 1, 2 , . . . , s. For each ait define the matrix rad(a,) by

r a d (a , - ) t i =c*, (1.4.186)

and extend this definition linearly to the whole of C by:

Tad(aa + 0b)kj = aTad(a)kj + f3Tad(b)kj, (1.4.18c)

for all a, 6 £ C and a, {3 € F. By virtue of the constraints imposed on the structure

constants by conditions {Hi) and (iv) of Definition 1.3.4, the matrices Tad(a), for

a € C, form a representation of C Tad is known as the adjoint representation of C

The £-module corresponding to the adjoint representation of C may be taken

to be C itself, since if 6 G £ then, by (1.4.18a), (1.4.186) and (1.4.18c):

[b,ai) = YdTad{b)kiak. (1.4.19)
k=\

The adjoint representation of C may be exponentiated to provide a representation

of the corresponding connected Lie group. This representation is also known as the

adjoint representation.

14
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§1.5. Derived representations and modules

From a set of representations of a group or a Lie algebra, a number of other rep-

resentations may be constructed. The most important are the contragredient of a

representation, the direct sum of a pair (or more) of representations and the tensor

product of a pair (or more) of representations. The following sequence of lemmas

defines these representations and demonstrates that they are actually representa-

tions.

Lemma 1.5.1. / / T is an s-dimensional representation ofQ then the map T : Q —> M's
defined by:

t(g) = rcJ)"1, (1.5.1)
for g G Q where the tilde indicates transposition, is an s-dimensional representation

o/g.

Proof.
T(gh) ̂ TigJi)'1 = (T(g)f(h)yl

= (iWfS))"1 = rSr'rCfc)"1 = t(g)t(h),
where (1.4.16) has been used.

The representation T denned by Lemma 1.5.1 is known as the contragredient

of F. From the module viewpoint, the representation T arises from the action on

a vector space V* dual to V, this action preserving duality. Let V* have basis

{u1,*;2,... ,v*} such that v'(vk) = S'k. Let the action of G on V* be gv' = T'(g)jiV^

for some matrix r ' (^) . Then the preservation of duality requires that:

i=i 1=1

)=11=1

3=1

which implies that T'(g) = fig)^ = f (g).

The contragredient representation T of Cg is provided by differentiation of the

representation T of Q at the identity / G. Q. This yields:

f (a) = - r ^ ) , (1.5.2)
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1.5. Derived representations and modules

for all a E C. It is easily verified that F satisfies Definition 1.4.8. Thus V is an C-

module on which each a E C acts through the linear operator (1.5.2). The elements

of V are known as covariant vectors and those of V* as contravariant vectors.

The following lemma defines the direct sum of two representations. Its proof

is straightforward.

Lemma 1.5.3. IfT^ and F ^ are representations ofQ, having dimensions Si and s2

respectively, then the map F ^ © F ^ : Q —> M'Si+>3 defined by: -

(pd) e r(2)). . = J r w ^ ) , - . . ^ . . , ifSl < ij <s, + s2; (1.5.3)

otherwise,

is an (si + s2)-dimensional representation of Q.

The representation F(1) © F(2) is known as the direct sum of F(1) and F(2). If V(1) and

V<2) are ^-modules corresponding to the representations F(1) and F(2) respectively,

then it is easily verified that F̂ 1^ © F ^ corresponds to V^ © V^ where:

g(VM + yW) = gyW + gvW. (1.5.4)

The above notions of direct sum representations and direct sum ^-modules

extend in a straightforward way to direct sums of more than two representations or

(/-modules.

Direct sums of representations of Lie algebras and direct sums of £-modules

are defined in precisely the same way.

Lemma 1.5.5. IfT^ and T^ are representations of Q, having dimensions sx and s2

respectively, then the map F ^ ® F ^ : Q —> Ai's s defined by:

(1.5.5)

for g G Q, is a (siS2)-dimensional representation of Q.

Proof.

*) ) (gh)ajt =

m = l n = l

where, once more, (1.4.16) has been used.

16



1.5. Derived representations and modules

The representation ( F ^ <g> F ^ ) is known as the tensor product of the representations

I^1) and F ^ by virtue of this action arising from the tensor product of two Q-

modules. Let V^ and V^ be the (/-modules corresponding to the representations

r<*> and F<2) with bases {v^, v?\ ..., u<|>} and {v{2\ v?\ ..., v™} respectively. The

tensor product (/-module VW®VW has a basis {u;-
1)®u^) : 1 < j < Si, 1 < m < s2}

for which:

sivP ® *i2)) = E E (r<l) ® r<2>) (g)ikJm vp ® 41). (1.5.6)
.=1 it=i

The notion of tensor product representations and modules may be further

extended. If V^ for i = 1,2, . . . , / are each (/-modules, the direct product V(1) <g>

V"(2) (g) • • • ® V(') also defines a (/-module for which the action of Q on the derived

basis is:

= 541 } ® 5^2
2) ® • • • ® ? 4 ° (1.5.7)

= E r ^ k u r w f o u • • • r(')(9);. 4|t7}j) ® rg) ®... ® „};>,
i i , • • •, i i

so that

, . (1.5.8)

In the case of the Lie algebra C, the tensor product of two representations is

defined in the following lemma.

Lemma 1.5.9. IfT^ and T^ are representations of C, having dimensions s1 and s2

respectively, then the map F(1) ® F ^ : C —+ -MJli2 defined by:

(r (1 ) ® r ( 2 ^ (a)k -i = r^(aV-6 + ^--r^Ca)*; (1.5.9)

fora G £, is an (siS2)-dimensional representation of C.

Proof. It is required to show that F(1)<8)F(2) satisfies (1.4.9). The first two conditions

are seen to hold immediately, whereas for the third (using the convention of summing
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1.5. Derived representations and modules

over repeated indices):

(by (1.4.

+ iSl <g> r<2>(a)).

j , 3 + / „ ® r(2)(6))

(a), (r^) ® r^2)) (6)] .t.;.
mn,jl

It follows from (1.5.9) that the action of £ on the tensor product module

is governed by:

a(t;j1} <g> t;,(2)) = (av^) ® u,(2) + uj1} ® (au,(2)). (1.5.10)

Alternatively, this result may be derived by considering the tensor product module

(1.5.6) of the Lie group Q corresponding to C and differentiating appropriate one-

parameter subgroups. Generalisation to the tensor product £-module V(1)

••• ® V{1\ g i v e s :

where a (E £ and where {uj , Uj , • • •, v^} is a basis for the 5k-dimensional £-module

VW for each k = 1,2,.. . ,/ .

In general, representations obtained as tensor products are reducible even if

the original representations are not. When V^ = V^ = • • • V^ = V, the tensor

product representation is denoted V®' and is referred to as the /-fold tensor power

of V. As will be seen later, when V is the defining (/-module, the ^-module V®1

is of immense importance, playing a central role in the construction of the explicit

irreducible representations of the classical groups and their Lie algebras.
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§1.6. The structure of complex semisimple Lie algebras

In this section an overview is given of the structure of the complex semisimple

Lie algebras as determined by Dynkin [Dy50]. Detailed expositions are given in

[Ja62,Hu72,Co84] where, in addition, proofs omitted here may be located.

Since, by Theorem 1.3.8, each semisimple Lie algebra is a direct sum of simple

Lie algebras, it is sufficient to consider the structure of the latter.

Fix a maximal abelian subalgebra Ti of the simple Lie algebra C. Such a

subalgebra is termed a Cartan subalgebra. The dimension r of Ti, is referred to as

the rank of C Since, in any representation F, the elements of Ti commute, it follows

from a standard theorem in linear algebra that the matrices T(h) for h £ Ti, may be

simultaneously diagonalised. In particular, for the adjoint representation Yad, this

implies that C may be written:

a, (1.6.1)

where each a £ Ti*, the dual of Ti, Ca C C is defined by:

£ a = {a £ £ : [h, a] = a(h)a}, (1.6.2)

and the set A C Ti* is defined such that a £ A if and only if a ^ 0 and Ca is

non-trivial. These elements of A are known as the roots of C. The elements of Ca

are root vectors corresponding to the root a. It may be shown that if a £ A then

—a £ A, 2a (£ A and that Ca is one-dimensional. For each a £ A, fix an element

ea £ £Q. This element spans Ca.

Definition 1.6.3. The Killing form K of the Lie algebra C is defined by:

K(a,b) = tT(Tai(a)Tad{b)). (1.6.3)

The Killing form is clearly bilinear and symmetric.

Lemma 1.6.4. A Lie algebra C is semisimple if and only if its Killing form K is

non-degenerate.

Lemma 1.6.5. / / a Lie algebra C is semisimple then its Killing form K restricted to

the Cartan subalgebra Ti, is non-degenerate.

Lemma 1.6.5 implies that for every a £ Ti*, there exists a unique ha £ Ti such that:

K(ha,h) = a(h), (1.6.6)
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1.6. The structure of complex semisimple Lie algebras

for all / J G H . Thereupon, since the Killing form is bilinear,

ha+l3 = ha + h0, (1.6.7)

for all a , j3g Ti*. This enables a symmetric bilinear form on 7i* to be defined by:

hl3), (1.6.8)

for all a, {3 £ H*. From (1.6.6) it follows that {a,P) = a(hp) = (3{ha).

The following Lemma deals with products of root vectors.

Lemma 1.6.9. For each root 7 £ A, let e7 £ £ 7 . Then, for a,/3 £ A, the product

[ea,ep] is given by one of the following three cases:

{ kha (for some k ^ 0) if /3 = —a;

fcea+,3 (for some Jfc ̂  0) if a + /? £ A; (1.6.9)

0 if « + ^ A
It may be shown that the set {ha : a £ A} spans 7i. Therefore a basis for H*

may be selected from A. Let the set of roots {/?1? /?2 , . . . , f3r] be one such basis.

Definition 1.6.10. Positive and negative roots. In terms of the given basis, each root

a £ A may be expanded:

r

i = l

/ / the first non-zero coefficient of this expansion is positive, then a is said to be a

positive root. Otherwise a is a negative root. Let the sets of positive and negative

roots be denoted A+ and A_ respectively. Then A = A+ U A_.

Let B+ = 0 a € A + £ Q and tf_ = ©a€A_ Ca. The subalgebras H U B+ and H U 0 .

are known as Borel subalgebras of C. In this thesis, B+ and B_ are referred to as

nilpotent Borel subalgebras.

Definition 1.6.11. Simple roots. If the positive root a £ A+ cannot be expressed as

a sum of two positive roots, then a is termed a simple root. The set of simple roots

is denoted by II+.

Lemma 1.6.12. If the Lie algebra C has rank r then # I I + = r and II+ is a basis for

H*. Moreover, if a £ A+ then:

a= £ kiai, (1.6.12)

where each &,- is a non-negative integer.
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Lemmas 1.6.9 and 1.6.12 show that the whole Lie algebra C may be generated

by the set of 2r root vectors {ea : ea G £a,a G II+ U II_}, where II_ = {—a : a G

Definition 1.6.13. The Cartan matrix A of the semisimple Lie algebra C is the r x r

matrix with elements

A,=2J^4, (1.6.13)

for a,-, ctj G II+ and 1 < i,j < r.

It may be shown [Hu72] that the Cartan matrix determines a semisimple

complex Lie algebra C uniquely, and that C may be constructed from its Cartan

matrix. Cartan matrices for each of the simple Lie algebras Ar, Br, Cr, Dr, G2, F4,

E6, E7 and E8 are listed in [Hu72,Co84].

§1.7. Labelling the irreducible representations

In this section, a method is described for labelling the irreducible representations

of semisimple complex Lie algebras and of simply connected compact Lie groups.

Once more a detailed exposition is given in [Co84] where proofs and the original

references may be found. In this section, the theorems and lemmas are stated mainly

in terms of modules. The equivalence of the module and representation viewpoints

implies that analogous results for the representations may be obtained merely by a

substitution of words.

First consider the s-dimensional representation F of the rank r semisimple

complex Lie algebra C. As with the adjoint representation, the matrices F(/i) for

h G 'H mutually commute and can be simultaneously diagonalised. This implies

that a basis {vu v2,... ,u,} for the corresponding ^-module V may be chosen such

that Vi, v2, • • • , v, are each eigenvectors of 7i. For each fj, G "H*, define the subspace

V,CV by:

V» = {v G V : hv = n(h)v}. (1.7.1)

If Vp is non-trivial then \i is known as a weight of the representation T or the C-

module V. V^ is then known as a weight space. The dimension of V^ is denoted

rrif, and is known as the multiplicity of the weight [i in F or V. For example,

in the adjoint representation Tad, the non-zero weights may be identified with the

roots. Consequently, their multiplicities are each unity. The zero weight of Fa<j has

a multiplicity r, since this is the dimension of the Cartan subalgebra of C.
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Lemma 1.7.2. If /i is a weight of the C-module V and a is a root of C, then

i.. . \

(1.7.2)
{a,a)

is an integer.

Lemma 1.7.3. If fi is a weight of the C-module V and a is a root of C such that

eav 7̂  0, then \i + OL is also a weight ofV.

Since the simple roots c*i, a 2 , . . . , ar, form a basis of 7i*, each weight fi may

be written:

li = J2kiai. (1-7-4)

It is then possible to compare two weights, /i and [i1, by defining /i > \i' if and only

if the first non-vanishing component of (// — //') is positive.

Definition 1.7.5. Highest weight. If \ is a weight of the C-module V such that A > /i

for every other weight [i ofV, then A is termed the highest weight ofV.

Lemma 1.7.6. If C is a semisimple complex Lie algebra with simple roots H+ —

{a1,a2,... ,av} ond A is the highest weight of the irreducible C-module V then:

(i) A has a multiplicity of one;

(it) every weight fiofV may be written:

where each qj is a non-negative integer.

Theorem 1.7.7. If C is a semisimple complex Lie algebra and V is an irreducible

V-module with highest weight A then, for each i = 1,2,. . . , r,

a,- = 2- (1-7-7)

is a non-negative integer. Moreover, each sequence ( a i , a 2 , . . . ,a r) of non-negative

integers identifies an irreducible C-module which is unique, up to equivalence.

The integers defined by (1.7.7) are known as the Dynkin labels of the £-module V

or the corresponding representation F.

Theorem 1.7.8. Each representation of the real Lie algebra C, yields on exponenti-

ation, a representation of the universal covering group Qc whose Lie algebra is C.
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2.1. The classical Lie groups

Chapter 2

The Classical Lie Groups, Lie Algebras
and their Representations

§2.1. The classical Lie groups

Definition 2.1.1. The classical groups are the following groups of square matrices in

which the matrix elements are members of the field F and the group composition law

is matrix multiplication:

(i) the general linear group GL(m, F) = {G : G is in x m, det G ̂  0};

(ii) the unitary group U(m,F) = {G : G € GL(m,F), C?tG = Im},

where G* = G*, the tilde denoting matrix transposition, the asterisk

denoting complex conjugation, and Im is the m x m unit matrix.

(Hi) the special linear group SL(m, F) = {G : G G GL(m, F), det G = 1};

(iv) the special unitary group SU(m, F) = U(m, F) f] SL(m, F);

(v) the symplectic group Sp(2r,F) = {G : G € GL(2r: F),

where
I 0 - 1

1 0

o - l
1 0

\

0 - 1
1 0

(2.1.1a)

(vi) the orthogonal group O(m,F) = {G : G £ GL(m,F), GJ^G

where
( 0 1

1 0
0 1
1 0

0 1
1 0

(2.1.1b)
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2.1. The classical Lie groups

if m = 2r and

( 0 1
1 0

0 1
1 0

0 1
1 0

1 I

(2.1.1c)

ifm = 2r + 1; and

(vii) the special orthogonal group SO(m, F) = SL(m, F) Pi 0(m, F).

In addition to these define

(viii) O'(m, F) = {G:Ge GL(m, F), GG = Im}; and

(ix) SO'(m, F) = SL(m, F) n O'(m, F).

Note that U(m, R) S O(m, R) and ST7(m, R) = 5O(m, R).

In this thesis, the field F will be taken to be either the complex number field

C or the real number field R. F will be dropped from the notation only when it is

irrelevant to the topic being discussed.

Definitions 2.1.1(m) and 2.1.1(im) for O(m) and SO(m) differ from those often

used for the orthogonal groups. These more usual definitions are those given here

for the groups O'(m) and SO'(m) as in Definitions 2.1.1(um) and 2.1.1(ia;). If F is

algebraically closed (i.e. F = C), there exists an m x m matrix 5 such that J+ = SS,

whereupon, if G G 0{m, C), the transformation G' = SJGS gives G'G' = Im. This

demonstrates that G' € O'(m, C) and furthermore, since (GiG2)' — G\G'2 as is easily

shown, the groups O(m,C) and O'(m, C) are isomorphic. However, for F = R, a

genuine distinction exists between the two groups when m > 1.

The following lemma will be useful later:

L e m m a 2.1.2. Let Q{m) he any of the classical groups of Definition 2.1.1. If G G

Q{m) then G € Q(m).

Proof. Since det G = det G, this lemma follows immediately for the general and

special linear groups. If G € U(m) then GG* = Im and
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so that the lemma holds for the unitary groups U(m) and SU(m). The cases of

the symplectic and orthogonal groups follow by noting that if P — ±Jm, so that

J-1 = ± J , then

GJG = J 4=^ G-'J-'G'1 = J~'

^^ J-x = GJ-lG

J = CrjCr.

§2.2. The classical Lie algebras

Let W be a m-dimensional vector space with basis {wi, w2,..., wm} and let Ea
b be

a linear operator acting on W such that

Ea
bwc = 8b

cwa. (2.2.1)

In the given basis, Ea
b may be realised as an m X m matrix with the entry 1 at the

intersection of the ath row and 6th column and zeros everywhere else. No confusion

will arise from denoting this matrix by the same symbol so that (Ea
b)r = Sai6i,j.

For a, 6 £ Nm the matrices Ea
b span the vector space of all m x m matrices. These

matrices satisfy the commutation relations:

[Ea
b,Ec

d] =8b
cEa

d-8d
aE

b. (2.2.2)

These matrices will be used to construct each of the Lie algebras of the classi-

cal groups of Definition 2.1.1. This construction proceeds via the following three

lemmas.

Lemma 2.2.3. If G is any square matrix then:

det(exp G) = exp(tr G). (2.2.3)

Proof. This result follows immediately on considering the Jordan normal form of

G.

Lemma 2.2.4. If Q is a subgroup of GL(m,F) for which G G Q only if GJG = J,

then the Lie algebra Cg(m) consists entirely of matrices A for which:

AJ + JA = 0. (2.2.4)

Proof. Let G(t) be a one-parameter subgroup of Q and let:
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By hypothesis:

so that:

and hence:

whereupon:

2.2. The classical Lie algebras

G{t)JG{t) = J,

1 = 0

JG(O) + G(Q)J JtG(t) = 0,
<=o

AJ + JA = 0.

L e m m a 2.2.5. / / J G GL{m) is such that J — ±J and B is any mxm matrix, then

the matrix A = B — J~lBJ satisfies AJ + J A — 0. Conversely, if the mxm matrix

A satisfies AJ + J A = 0 then A = B — J~lBJ for some matrix B.

Proof. If A = B — J~lBJ then by direct substitution:

AJ + JA = BJ- JBJ~lJ + JB - JJ-'BJ

= BJ- (±J)B(±J~1)J + JB-BJ

= BJ-JB + JB-BJ

= 0.

Conversely, let A be such that AJ + J A = 0. This implies that ±A J + J A = 0 and

hence that:

JA = T(JA)- (2.2.5a)

Let JA = C_ + Co + C+ where C_ is a strictly lower triangular matrix, Co is a

diagonal matrix and C+ is a strictly upper triangular matrix. Identity (2.2.5a) then

implies that:

C_ = TC+ and Co = TC0.

Let:

whereupon:

B = J~lC_ + \

B = C_J ~

CJC+J — -Z
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so that:

B - J-'BJ =

2.2. The classical Lie algebras

J~lC+ + \

which proves the lemma.

In what follows, it is convenient to introduce various index sets ZG(-m) for each

of the classical groups Q{m). These will be based on the sets N, = {1,2, . . . , /} and

N; = {a : a 6 N (}, where a = a and 0 = 0. In addition, define:

sgn(a) = (2.2.6)
- 1 if a G N,;

[1 if a e N,,

and define sgn(afr) = sgn(a)sgn(6).

Each of the classical groups Q(m) of Section 2.1 will be considered in turn

and their Lie algebras £g(m) constructed in the defining representation. For each

£g(m), a basis for the Cartan subalgebra 7̂ Cc<m) and a set of simple root vectors

n+
c(m) will be specified. In general, many distinct choices exist for a set of simple

root vectors. However, once specified, the set of positive root vectors A+
0(m) is

uniquely determined as is the positive nilpotent Borel subalgebra B+
C(m) which they

span. The same is true of the negative root vectors A_0(m) which span the negative

nilpotent Borel subalgebra B_a{m).

(i) gl(m,F). Let IGL(m) = Nm. In view of Lemma 2.2.3, G = exp(A) € GL(m,F)

for any m x m matrix A with entries in F. Thus gl(m, F) is the vector space of all

matrices which is spanned by {Ea
b G gl(m,F) : a, b G 1GL^}. Since the Ea

b are

linearly independent, gl(m,F) is an m2-dimensional Lie algebra over F. However,

H = J2 Ea
(2.2.7)

generates a one-dimensional abelian ideal of gl(m, F) which, therefore, is not semi-

simple. The following provides a convenient biography of gl(m, F):

Basis: {Ea
h : a,b e I G L ( m ) } ;

Dimension over F : m2;

Basis of H9'(m'F) : {Ea
a : a G IGL^};

Rank: m;

Simple root vectors, nfm 'F) : {Ea
a+1 : a G IGL(m-V}-,

Positive root vectors, A f m'F) : {Ea
b : a,b G lGL^m\ a < b};
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2.2. The classical Lie algebras

Negative root vectors, A*_'(m'F) : {Ea
h : a,b 6 XGL{m\a>b};

Dimension of Bf m'F) : m(m - l ) /2 .

Here the nilpotent Borel subalgebra #+(m 'F), which is spanned by A+(m'F), consists

entirely of strictly upper triangular matrices. #_ m consists entirely of strictly

lower triangular matrices.

(ii) sl(m,F). Let 1SL^ = Nm. Since G € SX(m,F) if det G = 1, Lemma 2.2.3

implies that A € s/(m, F) if tr A = 0. For a, 6 <E JSL(m) let:

A.> = {E'h i f G ^ 6 ; (2.2.8)
\ £ f l

a - J 5 m
m if a = 6.

In terms of these matrices, s/(m, F) has the following biography:

Basis: {Aa
h : a,b e XSL{m\ (a, 6) ^ (m, m)};

Dimension over F : m2 — 1;

Basis of H!l{m'¥) : {Aa
a : a € J ^ " - 1 ) } ;

Rank: m — 1;

Simple root vectors, n;' (m 'F) : {Aa
a+1 : a G I"*™"1)};

Positive root vectors, A;'(m'F) : {Aa
b : a, b G JSL(m), a < 6};

Dimension of #;'(m 'F)
 : ?n(m - l ) /2 .

Each positive root vector Aa
b, for a < b, may be generated according to:

Aa
J = [AB-+1, [Aa+1°

+\ [Aa+2°+\ • • • [A,.,4-1, A*.!4] • • •]]]. (2.2.9)

This is a direct consequence of (2.2.2), given that A,-i+1 = J5,'+1. For m > 0, s/(m, C)

is isomorphic to Cartan's Am_u and ̂ /(m, R) is a particular (non-compact) real form.

(iii) u(m). Let G{t) be a one parameter subgroup of C/(m,C) and let:

Since G(t)G(tf = Jm,

G(0)t + G(0) ^
t=o

= 0,
( = 0

+/mAt =0,

implying that:

At = -A.
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2.2. The classical Lie algebras

Therefore u(m) consists entirely of antihermitian m X m matrices. Let Xv<^ = N

for a,be Tu{m) and let:

Ej, _ Eba (2.2.10a)

and E{
a
1)h = i(Ea" + Eb

a). (2.2.106)

Thereupon u(m) has:

Basis: {£<°>» : a,b £ Xu{m\ a < b} U {^1)6 : a, b <E J 1 7 ^ , a < 6};

Dimension over R : m2.

With this basis, it is easily verified that u(in) is a real Lie algebra. However, u(m)

is not semisimple since it possesses a one-dimensional abelian ideal spanned by

(iv) su(m). Lemma (2.2.3) implies that if A € su(m) then tr A = 0. Let Isu(m) =

Nm. Using the notation above for a, b € Js l /(m) let:

(2.2.11a)

and A^ = \E° i f Q ^ (2.2.116)

The simple real Lie algebra su(rri) then has:

Basis: {A^\ A[1)b : a,b £ lsu^m\a < b} U {A^ a : a €

Dimension over R : n^2 — 1.

5u(m) is the compact simple real Lie algebra Am_i(R).

(v) $p(2r,F). Define the index set Xs^7r) = Nr U N r. From (2.1.1a),

(J2-r),, = sgn(?H.j, (2.2.12)

with respect to the ordering l < l < 2 < 2 < - - - < f < r , of the index set XSp(-2r\

In view of Lemma 2.2.5, since J2~ = — J2~, let:

b)Ei', (2.2.13)

for a, b £ X5p(2r). These operators satisfy the commutation relations:

[C a \ Cc
dJ = 6\Ca

d - ^Ce» + sgn(cd)^C5
6 - sgn(cd)6b

2Ca\ (2.2.14)
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Note that Ca
b = — sgn(ab) Cb

a, which leads to the following biography of sp(2r, F):

Basis: {Ca
b : a, b G N r} U {Cj : a,b E Nr,a < b} U {Cs* : a, 6 € N r ,a < 6};

Dimension over F : r(2r + 1);

Basis of H!p(2r'F) : {Ca
a : a € N r};

Rank: r;

Simple root vectors, n;p(2r'F> : {Ca
a+l : a G Nr_i} U {C/}\

Positive root vectors, A7 ( 2 r 'F ) : Cx U C2 where

d = {Ca
4 : a, 6 e N r, a < b] and

Dimension of B'+
p(2r'F) : r2.

Positive root vectors from the set Ci may be generated from n+p(:2r'F) as in (2.2.9),

whereas for C2, (2.2.12) gives

C/ = ^[Ca
r,Cr

r], (2.2.15a)

and then, for a < 6,

C j = [ C b
b + \ [ C b + 1

b + 2 , [• • • [ C r _ x
r , C J ] • • •}}]. (2.2.156)

The nilpotent Borel subalgebra B'J>(2r'F> may be described and generated in a way

analogous to that given here for B'+^2r'F\ The simple complex Lie algebra sp(2r, C)

is Cartan's Cr and the simple real Lie algebra sp(2r, R) is Cr(R).

(vi) so(2r,F). Define the index set 1°^ = Nr U N r. From (2.1.16),

(J+) t f = SQ, (2.2.16)

with respect to the ordering l < l < 2 < 2 < - - - < f < r , of the index set Io(-2rK

In view of Lemma 2.2.5, since J$r = J2+, let

Da
h = Ea

b - Ej, (2.2.17)

for a, b G I°^2r\ These operators satisfy the commutation relations:

[Da\ Dc
d\ = 8b

cDa
d - Sd

aD
b + 8\D2

b - 8\Da
z. (2.2.18)

Note that Da
b = —Di", which leads to the following biography of so(2r, F):

Basis: {Da
h : a, b G N r} U {Da

l : a, 6 G NP, a < b} U {D3
6 : a, 6 G NP, a < 6};

Dimension over F : r(2r — 1);
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2.2. The classical Lie algebras

Basis of H'0{2r'F) : {Da
a : a € N r) ;

Rank: r;

Simple root vectors, ir+
o(2r'F) : {Da

a+l : a G N r _ J U {D/^1};

Positive root vectors, A+o(2r'F) : Vx U V2 where

X>! = {Da
b : a, b G N r, a < 6} and

X>2 = {£>/ : a , 6 e N r ,a < 6};

Dimension of B'+
O<'2r'f) : r(r - 1).

Positive root vectors from the set T>i may be generated from 11+ 2r as in (2.2.9),

whereas for X>2, (2.2.18) gives

DJ= [Dr
r-\Da

T-l\, (2.2.19a)

if a < r — 1, or

Da
r~l = [Da\Dr

r-\\ (2.2.196)

if r > 2; and then, for a < b,

D a
l = [ D b

b + \ [ D b + 1
b + \ [• • • [Dr_2'-

1,D,Tl] • • •}}}. (2.2.19c)

The nilpotent Borel subalgebra #^o(2r'F) may be described and generated in a way

similar to that given here for B'^ . The simple complex Lie algebra so(2r, C) is

Cartan's Dr and the simple real Lie algebra so(2r, R) is a particular (non-compact)

real form.

(vii) so(2r+l, F). Although this case is very similar to the last, the existence of a few

subtle differences justifies a reworking. Define the index set X°(2r+1) = NrUNrU{0}.

From (2.1.1c),

Wr+i)ii = *J, (2-2.20)

with respect to the ordering l < l < 2 < 2 < - - - < f < r < 0 , of the index set

jo(2r+i)_ A s w i t h (2.2.17), since J++ 1 = J++1, let

Ba" = Ea" - Ef, (2.2.21)

for a, b £ Xso(2r+1). These operators satisfy the commutation relations (2.2.18),

rewritten in the notation of this section:

[Ba
h, Bc

d] = 8\Ba
d - 6d

aBc" + 6\B2
b - S\Ba

l. (2.2.22)
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Note that Ba
h = —B-b*, which leads to the following biography of so(2r + 1,F):

Basis: {£„* : a, b G Nr} U {BJ : a, b G Nr, a < b}

U {£3
6 : a, 6 G Nr, a < b} U {£a° : a G Nr U N r};

Dimension over F : r(2r + 1);

Basis of H"*2r+1-F) : {Ba
a : a G N r } ;

Rank: r;

Simple root vectors, n;o(2r+1'F> : {Ba
a+1 : a G N U J U {£ r

0};

Positive root vectors, A"(2r+1 'F) : BiUB2UB3 where

B1 = {£ a *:a ,&€N P , a<&}, S2 = {Sa° : a G Nr} and

Dimension of r
2 .

Positive root vectors from the set

whereas for B2, (2.2.22) gives:

whereupon, for B3,

may be generated from

= [Ba
r,Br°],

/ = [Br°,Ba
0},

as in (2.2.9),

(2.2.23a)

(2.2.236)

and

B} = [Bb
b+\ [Bb+1

b+\ [• B r _ S , B J ) • • •}}]. (2.2.23c)

The nilpotent Borel subalgebra /g^°(2r+1'F) may be described and generated in a way

similar to that given here for £?^00+1'F)- The simple complex Lie algebra so(2r + l, C)

is Cartan's BT and the simple real Lie algebra so(2r -\- 1,R) is a particular (non-

compact) real form.

(viii) so'(m, F). Due to its lack of relevance to the results that follow in later

chapters, this algebra will be given but cursory treatment here. However, by

virtue of the fact that the corresponding Lie groups are isomorphic when F = C,

so'(m, C) = so(m, C). Let Jso '(m) = Nm. The techniques used in the previ-

ous cases may be employed here to show that if B'l — Ea
h — Eb

a then the set

{B'b : a, b G Nm,a < 6} is a basis for so'(m,F). This Lie algebra is therefore

|m.(m — l)-dimensional, as expected from the results of cases (vi) and (vii). Since

no diagonal matrices are present in this defining representation, there is no obvious

choice for a basis of the Cartan subalgebra. Many are possible. It will be shown

how this lack of a diagonal Cartan subalgebra leads to a certain inconvenience in the
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2.3. Partitions and Young diagrams

construction of orthogonal group modules. Nonetheless, the Lie algebra so'(m,R)

is compact, being Cartan's Dr(R) if m = 2r is even, or Br(R) if m = 2r + 1 is odd.

It therefore merits consideration.

§2.3. Partitions and Young diagrams

Partitions play a major role as a classification tool in the theory of representations

[We39,Li50]. In this section, the notions of a partition and a Young diagram are

introduced. In addition, all the associated notational developments that will be

required when dealing with representations and modules are gathered here.

Definition 2.3.1. Partition. The partition of the positive integer I into p positive

integral parts A1; A 2 , . . . , Ap with \x + A2 + • • • + Ap = / and Ax > A2 > • • • > Ap > 0

is denoted by A = (A1? A2 , . . . , Ap). Partitions will always be denoted by lowercase

Greek letters. It is convenient to define A,- = 0 for i > p; two partitions being equal

if and only if their non-zero parts are equal. On occasion, a partition with repeated

parts will be denoted using exponents. For example, (33,2,12) denotes the partition

(3,3,3,2,1,1).

Let P(l) denote the set of all partitions of /. For example, -P(2) = {(2); (1,1)},

P(3) = {(3); (2,1); (1,1,1)} and P(4) = {(4); (3,1); (2,2); (2,1,1); (1,1,1,1)}.

Definition 2.3.2. Young diagram. Each partition A € P(l) specifies a regular Young

diagram, Fx, consisting of I boxes arranged in p left-adjusted rows. The number of

boxes in the ith row is A,- for z = 1,2,... ,p.

This definition gives, for instance,

',2,12) _ (2.3.3)

Defini t ion 2.3.4. Conjugate partition. Let X £ P(l), q = A1; and for j = l,2,...,q,

let \j be the length of the jth column of Fx. This defines A = (A l r A 2 , . . . , A,), the

partition conjugate to A.

As a consequence of this definition, the Young diagram Fx is obtained from Fx by

reflection in the main diagonal, that is interchanging rows and columns. Thus, for
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the example (2.3.3) where A = (33,2,12), A = (6,4,3) and

(2.3.5)

Definition 2.3.6. The partition sets P(i,m) and P(l;m/n). Define

m) = { A e P ( / ) : A 1 < m } ; -

and P(l;m/n) = {A € P(l) : An+1 < m}.

(2.3.6a)

(2.3.66)

Note that if A 6 P(l; m) then A has, at most, m parts and Fx fits within a

horizontal strip of depth m:

m (2.3.7a)

Additionally, note that P(/ ;m/0) = P(l;m) and if A G P( / ;m/n) , then Am+i < n

and JF"A fits within a hook with arm depth m and leg width n:

m
(2.3.76)

-n-

Let fi G P{u) and v £ P(u). If v{ < /i,- for z = 1,2,... then v is said to be

contained in fi. This is denoted v < pi and defines a partial order on the set of all

partitions.

Definition 2.3.8. Skew Young diagram. If v < fi the skew Young diagram

consisting of u — v boxes, is defined as that diagram resulting from the removal from

F^ of all the v boxes corresponding to F".

If fj. = (6,3,22,1) and v = (4,2,13) this definition gives:

(2.3.9)
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Definition 2.3.10. A generalised partition A = (Al5 A 2 , . . . , A,) consists of s parts

Ai,A 2 , . . . ,A, for which Ax > A2 > . . . > A,. The parts are neither necessarily

positive nor integral.

On considering generalised partitions with integral parts, Littlewood [Li50]

devised the useful notion of a composite partition.

Definition 2.3.11. Composite partition. Let fi € P(u;p),v € P(v;q) with p +

q < s. The composite partition (v;fi)a, denotes the s part'generalised partition

(//i,//2, ••• , ^ P , 0 , . . . ,0, —uq, —vq_i,..., —Vi) The subscript s may be dropped when

the number of zero parts is irrelevant. If either /j, or u is the zero partition, the

following notation will be adopted: (0; n) = fJ, and (y; 0) = v.

Definition 2.3.12. Canonical associate. With (z?;/x), the composite partition corre-

sponding to the s integral part generalised partition A, denote the ordinary partition

(Ai — A5, A2 — A 3 , . . . , A,_x — A,) by both (^;/i)* and A*. This partition is known as

the canonical associate of(v;fi), and A.

Each composite partition and hence each generalised partition, may be used

to specify a composite Young diagram [Ki70,Ki89].

Definition 2.3.13. Composite Young diagram. For v £ P(v) let F" be the diagram

obtained by reflecting the Young diagram F" successively in its topmost and leftmost

edges. Thus F" is a right-adjusted, bottom-adjusted array of boxes, the lengths of the

rows of which decrease on passing up the diagram. The composite Young diagram F"'^

is constructed by adjoining F" and F1* corner to corner as in the following example:

(2.3.14)

It is convenient to define special symbols for certain generalised partitions

whose parts are all half odd integers.

Definition 2.3.15. Half partitions. Let Ar = ( | , ^ , . . . , | ) = (^r) be the generalised

partition consisting ofr parts each equal to | . More generally, for A G P(l;r), define:

(Ar; A) = (Ai + i , A2 + I , . . . , Ar + I) . (2.3.15)

Note that A r = (A r;0).
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Definition 2.3.16. Young half diagram. The Young diagram FAr is defined to be a

column ofr diagonal half boxes. The Young diagram FAr:X is constructed by adjoining

FAr to the left edge of Fx with the topmost point of each at the same level.

This definition implies that, for example:

A
(2.3.17a)

and

riAs;421 (2.3.176)

It will also be convenient to be able to refer to generalised partitions which

are ordinary or half partitions with the last part having changed sign.

Definition 2.3.18. / /A G P(l) and A = (A1? A2 , . . . , Ap_i, Ap), define the p part

generalised partition A_ by:

A _ = ( A 1 , A 2 , . . . , A p _ 1 , - A p ) (2.3.18a)

and if A £ P(l; r), define the r part generalised partition (A r; A)_ by:

(Ar; A)_ = (At + i , A2 + I , . . . , Ar_x + ±, -A r - f); (2.3.186)

and denote (A r,0)_ = ( i , | , . . . , | , —|) by A r_. In addition, let A+ = A, (Ar; A)+ =

(Ar;A) and Ar+ = A r .

§2.4. Partitions as representation labels

Through the work of Weyl [We39], Murnaghan [Mu38] and Littlewood [Li50],

a means alternative to the Dynkin labelling of the irreducible finite dimensional

representations of the classical groups arose. This scheme involves partitions which,

together with the corresponding Young diagrams, have since proved very useful,

particularly in the determination of characters, branching rules [Ki75] and tensor

products [BK83] of these representations. In the notation of [Li50], the complete

list of equivalence classes of finite dimensional irreducible representations of the
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classical Lie groups is given in Table 2.4.1.

Group

GL(m)
SL(m)
0{m)
SO(2r 4
SO(2r)

Sp(2r)

Representation

{A}
[A]

• 1) [A]
[A]

[A]±

(A)

Restricitions

Ai + *i < rn
\i < m

\l + \2<m
Ai < r
Xi <r
X1=r

Ai < r

Table 2.4.1

In Table 2.4.1, the field F has been dropped from the notation since this list applies

in each of the cases, F = C or F = R. Similarly, the irreducible representations

of U{m) and SU(m) are closely related to, and have the same set of labels as, the

irreducible representations of GL{m) and SL(m) respectively.

As will be demonstrated, each of the irreducible representations listed in Table

2.4.1, apart from {u; /i} of GL(m) for u ̂  (0), occurs as an irreducible component

in the tensor product of / copies of the defining representation for some /. In

view of this, each of these is termed a covariant tensor representation. With the

same exception, each element of the representation matrix is a polynomial function

of the elements of the corresponding matrix of the defining representation. Thus

the covariant representations may also be called polynomial. In contrast, each

irreducible representation {i>; n} of GL(m) for v ^ (0) is referred to as a mixed

tensor representation or as a rational representation. The representation {p,; u} of

GL(m) is contragredient to {v\n}.

For the groups GL(m) and O(m), there exist irreducible covariant tensor rep-

resentations labelled by the n part partition e = ( 1 , 1 , . . . , 1). These representations,

{e} and [e], are each one dimensional, mapping each group element to its determi-

nant: {e}(A) = det A, for A E GL(m) and similarly [e](JB) = det B for B 6 O(m).

Denote the a-fold tensor product, {e} ® {e} ® • • • <g> {e}, by {e}a, and define [e]6 simi-

larly. The representation contragredient to {e} is denoted {e} and maps each group

element to the inverse of its determinant: {e}(A) = (det A)"1, for A € GL(m) and

similarly [e](B) = (detB)"1 for B G O(m). Since {e} <g> {e} = {0} it is natural to

denote {e} by {e}"1 and to denote the a-fold tensor product {e} ® {e} <g) • • • ® {e}, by
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{e}~a. [e]~b is defined similarly. As noted by Weyl [We39], the tensor product rep-

resentations {e}a®{\}(A) = (det A)a({\}(A)) and [e]6<g> [\}(B) = (det B)h ([A](J3))

are each irreducible and of the same dimension as {A} and [A] respectively. The

representations {e}" <g> {A} and [e]b <g> [A] are termed associates of {A} and [A] respec-

tively. In the case of 0(m), since det B = ± 1 , only the cases 6 = 0 and 6 = 1 need

be considered and each irreducible representation of O(m) has a unique associate.

In this case, it is conventional to write [A]* = [e] <8> [A]. In fact, [//]* and [v\ are

equivalent if and only if vY = m — jli and i>i — jli for i > 1 [Pr89]. If, for example

/x = (5,3,13), then for 0(8), v = (5,3,1). The respective Young diagrams clarify

the relationship:

and ^5,3,1 _ (2.4.2)

Note that if in = 2At, then the representation [A] is self-associate.

For GLirn) the situation is more complicated since the associated represen-

tations {e}a ® \y\ pi] are distinct for each a £ Z. Weyl [We39] showed how these

representations are related by employing generalised partitions (see Section 2.3). Let

A be the generalised partition corresponding to (p; fi)m and T that corresponding to

(<T; p)m- {v; fJ.} and {a; p] are associated irreducible representations of GL{rn) if and

only if for some a G Z, A,- = F.+afor i = 1 , . . . ,m. In this case {i>; /J.} = {e}"®{a; p}.

Note that {i>; fi} — {e}~"1 ®{p\ fi}m. It is instructive to see how the composite Young

diagrams of associate representations are related. Consider the composite Young

diagram of (2.3.14) where fi = (4,1) and v = (3,2). For GL(5), the correspond-

ing generalised partition is ( 4 , 1 , 0 , - 2 , - 3 ) and that labelling the representation

{e}° ® {P; fi} is (a + 4, a + 1, a, a — 2, a — 3). For a = 1 and a = 2 the correspond-

ing composite partitions are (2,1; 5,2,1) and (1; 6,3,2) respectively with composite

Young diagrams:

and (2.4.3a)
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respectively. Setting a — 3 gives (P; fi)* = (7,4,3,1) with composite Young diagram:

(2.4.36)

Notice that, for each unit increase in a, the rightmost 'inverted' column is removed

and replaced by an 'upright' column whose length is m minus the length of the

former.

Under the restriction of the groups GL(m) and O(m) to their subgroups

of unit determinant, namely SL(m) and SO(m) respectively, all representations

that are associated to one another become equivalent. This is because, under such

restrictions, the representations {e}, {e} and [e] are each equivalent to the identity

representation. These simple branchings are denoted {e} J. {0}, {e} J. {0} and

[e] i {0}. All irreducible representations of GL(m) and 0{m), apart from those of

O(m) that are self-associate, remain irreducible on restriction to the unimodular

subgroups. The full list of such branchings is given in Table 2.4.4.

Group

GL(m)
O(2r +

O(2r) j

restriction

1 SL(m)
l)|SO(2r + l)

L SO(2r)

Rule

[A] 1 [A]
[A] I [A]*
[A] 1 [A]
[A] 1 [A]*
[A] 1 [A]+ i

Range of validity

}•
Ai < r
Xi > r
Aj < r
Ai > r

© [A]_ Ai = r

Table 2.4.4

In addition to the true representations listed in Table 2.4.1, there exist irre-

ducible two-valued 'spin' representations of the orthogonal groups which owe their

existence to the double connectedness of 0{m) and SO(rn) for m > 2 (see The-

orem 1.7.8). These two valued representations are genuine representations of the

groups Pin{m) and Spin(m), as the simply connected universal covering groups of

O(m) and S0(m) are respectively called. For the groups O(2r) and O(2r +1) these

'spin' representations may be denoted [Mu38] by [Ar;A] where the partition A is

such that Aj < r. A r is the basic spin representation first examined by Brauer and

Weyl [BW35]. On restricting O(2r + 1) to the unimodular subgroup SO(2r + 1),
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2.4- Partitions as representation labels

all the representations [Ar; A] remain irreducible and are labelled in the same way.

However, for 0(2r) [ S"O(2r), the representation [Ar; A] branches into a sum of two

inequivalent irreducible representations of equal dimension. These representations

are denoted [Ar; A]+ and [Ar; A]_.

Table 2.4.4 [KA81] gives the relationship between the Dynkin labels of the

irreducible representations of the classical groups described in Section 2.1 and the

partition labels described above.

Relationship between Dynkin label (a) and generalised
Group Algebra partition label A

SL(r + 1) Ar ai — Ai — A2 Ax=
a2 = A2 — A3 A2= a2

ar_! = Ar_! - Ar Ar_j =
a r = Ar A r = ar

SO(2r + 1) BT ai = Ai — A2 Aj= a\-\-a2 4- • •
a2 = A2 — A3 A2= a2 + • •

ar_i = Ar_! — Ar Ar_x= ar_i + \a,
ar = 2Ar Ar= \a

Sp(2r) Cr ax = Ai — A2 Aj= ax+a2 + • • • +a r - i+«r
a2 = A2 — A3 A2= a2 + t-a r_!+a r

ar_i = Ar_j — Ar A r _ i = ar.

ar = Ar A r = ar

SO(2r) Dr a 1 = A 1 - A 2 A1 =

a2 = A2 — A3 A2= a2 + Var_2+\ar-i + \ar

Or-2 — Ar_2 — A r_i Ar_2— a r_24"2Gr- l

ar_! = Ar_! + Ar Ar_!= |a r_!
ar — Ar_! — Ar A r= \ar-x

Table 2.4.5

Since, by virtue of Theorem 1.7.7, the Dynkin labels a.i,a2,... ,a r , are non-

negative integers, Table 2.4.5 shows that the irreducible representations of SL(r-\-l)

and Sp{2r) are labelled by those A which are ordinary partitions with at most r

parts. For S0(2r + 1), A is either an ordinary partitions with at most r parts
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or a r part half partition (Ar;A). The case of S0(2r) admits the same set of

representation labels, as well as, in addition, r integral part generalised partitions

A_ and r half odd integral part partitions (Ar; A)_, in which, in both cases, the

first r — 1 parts are non-negative and the last is negative. These last two cases

correspond to the representations of S0(2r) labelled by [A]_ in Table 2.4.1 and the

spin representations of S0(2r) labelled by [Ar; A]_ respectively.

§2.5. Dimension formulae

One great benefit of the use of partitions for the labelling of irreducible repre-

sentations of the classical groups is that they provide a very convenient means of

obtaining the dimensions of these representations. For each partition A, there exists

an m-dependent formula based on the Young diagram Fx, which yields the dimen-

sions of the irreducible representations for each sequence of classical groups Q(m).

In each case, this formula is a polynomial in m divided by the product of hook

lengths.

Definition 2.5.1. Hook lengths. For the partition X, define the hook length htj by

h{j = X{ + \ . - i - j + l. (2.5.1a)

For each (i,j) such that there exists a box at the intersection of the ith row and the

jth column of the Young diagram Fx, hij is given by the number of boxes in the hook

consisting of that box together with all the boxes directly below it and all the boxes

directly to its right. The product of hook lengths, H(X), is given by

H(X)= n ha, (2.5.16)

the product being over all the boxes of Fx.

As an example consider the partition A = (4, 3,1). Writing in each box of Fx the

hook length associated with that box gives:

(2.5.2)

Thereupon, if (4,3,1) = 576.

The following definition provides the numerators in the dimension formulae

for irreducible representations of the classical Lie groups.

6
4
1

4
2

3
1

1
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Definition 2.5.3. Let

Nm{x) — YL ( m - ? + i);

Nm{v;n} = n (rn-i/i-

Nm[X] =

and

2.5. Dimension formulae

(2.5.3a)

(m + uk + fj,, - k - I + 1); (2.5.36)

Xi-Xj+i+j-2); (2.5.3c)

- A,-- A,-+ z + j ) .

In each of these cases, the polynomial is conveniently obtained by drawing

the appropriate Young diagram and entering into each box the appropriate linear

term in m. These terms are then multiplied together. As an example iVm[4, 3,1] is

obtained via:
m + 6 m — 4 m — 3 m — 1
m + 4 m + 2 m - 1 . (2.5.4a)
m + 1

This gives:

iVm[4,3,1] = (m + 6)(m + 4)(m + 2)(m + l)(m - l)2(m - 3)(m - 4). (2.5.46)

Further examples may be found in [EK79].

Theorem 2.5.5. The dimensions Dm{\}, Dm{i>;/j,}, Dm[X] and D2r(X) of the irre-

ducible representations {A}, {V;JJ,}, [A], and (A) of the groups SL(m), GL{m), 0(m)

and Sp(2r) respectively, are given by:

and

Dm{X}=Nm{X}/H(X);

Dm{u;ri=Nm{u;ii}

Dm[\]=Nm[\]/H(\);

D2r(X} = N2r(X)/H(X).

(2.5.5a)

(2.5.56)

(2.5.5c)

(2.5.5a7)

The first of these formulae is the celebrated dimension formula of Robinson [Ro58],

first suggested to him by Hall. It gives the dimensions of irreducible representations

of SU(m) as well as SL(m). The other formulae were first obtained in this form

by El-Samra and King [EK79]. It should be pointed out that since all but the

self-associate irreducible representations of O(m) are irreducible on restriction to
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2.6. Young tableaux

SO(m), the dimension of the irreducible representation [A] of SO(m) is also given

by (2.5.5c) if Ax ^ m/2. Since, with Ai = r, the representations [A]+ and [A]_ of

SO(2r) are of the same dimension, it follows from (2.5.5c) that, in this case:

D2r[X}+ = D2r[X)_ = Nm[X]/2H(X). (2.5.6)

With A = (4,3,1), examples (2.5.2) and (2.5.4) give the dimensions of the

representations [4,3,1] of 0(m) to be:

Dm[4,3,1] = (m + 6)(m + 4)(m + 2)(m + l)(m - l)2(m - 3)(m - 4)/576. (2.5.7)

This implies that for m — 5, 6, 7, 8, the dimensions of the representations [4, 3,1] of

O(m) are 231, 1750, 7722 and 25725 respectively. From Table 2.4.4, the second of

these representations is reducible on restriction to the unimodular subgroup. Thus,

from (2.5.6), the dimensions of the irreducible representations [4,3,1]+ and [4,3,1]_

of SO(6) are each 875.

For the irreducible 'spin' representations of the orthogonal groups, the dimen-

sions are once again provided by [EK79].

Theorem 2.5.8. For m — 2r or m — 2r + 1, the dimension of the representation

[Ar; A] of O(m) or S0(m) is given by:

Dm[Ar;X] = 2rDm_l(\). (2.5.8a)

Similarly, the dimensions of the irreducible representations [Ar; X]± of SO(2r) are

given by:

Dm[Ar;X]± = 2r-1Dm_1(X). (2.5.86)

§2.6. Young tableaux

Definition 2.6.1. A Young tableau, tx or Tx, is a Young diagram Fx in which the

boxes each contain a single element from a specified set T. Fx will be referred to as

the shape oftx or Tx.

In this thesis, a number of sets will be used to fill the role of the set T in this

definition. Most often, these will be the sets Tc(m) defined in Section 2.2 for the

various classical groups Q{m).

Definition 2.6.2. The Young tableau tx is that tableau arising from the filling of the

Young diagram Fx with the integers 1,2,..., passing first down the leftmost column

and then the remaining columns taken consecutively, left to right.
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2.6. Young tableaux

This definition gives, for example,

1
2

3
4

5
6
7

8 9

(2.6.3)

It is often convenient to be able to refer to the entries of a particular tableau.

There are two immediate ways of doing this and both have their uses.

Definition 2.6.4. IfTx is a Young tableau of shape Fx, let T ^ be the entry in the

box at the intersection of the ith row and the jth column. For there to be such an

entry, it is necessary that j < A,-.

Definition 2.6.5. IfTx is a Young tableau for which A £ P(l), let Tx
a^ be the entry

at the position in which the integer a is located in tx. In order that T ( \ be defined it

is necessary that a < I.

Definition 2.6.4 provides the means to define, for each A, a tableau which will

play an important role in later chapters.

Definition 2.6.6. Let Tx be such that Tx
(ij) — i for each i = 1,2,. . . , A x and

j = 1,2, ...,A,-.

This definition gives, for example:

T4,3,l =

1
2
3

1
2

1
2

1
(2.6.7)

A number of the proofs in later chapters will require an order to be defined

on the set of all tableaux of one particular shape. The following will prove to be

sufficient in most cases.

Definition 2.6.8. Let tb
x be the sum of the entries in the bth column of Tx for

b = 1,2, . . . , 5 where q = Ax. Define \TX to be the equivalence class of all tableaux

which have their sequences of column sums identical to that ofTx; that is Tx £ Tx

if th — tx for b = 1,2, . . . ,q. A total order on the set of equivalence classes of

tableaux is defined by Tx if for some k < q, tx > t* with tb
x = tb

y for each

b = k + 1, k + 2 , . . . , q. It is convenient to write Tx > Tx when this strict inequality is

true of the equivalence classes to which Tx and Tx belong and to say, in such a case,

that Tx is higher than Tx.
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2.6. Young tableaux

It will emerge that for each group a particular set of tableaux have a favoured

status. These are the standard tableaux. Historically, the term 'standard' tableau

has usually been reserved for those favoured tableaux associated with the symmetric

group [Yo77], with various words such as 'semistandard' being used for other groups

when necessary. This has led to inconsistencies. Here however, the word 'standard'

will always be used and will be prefixed by the group under consideration.

Definition 2.6.9. If X £ P(l), the tableau Tx is Si-standard if and only if:

(i) the entries are distinct and taken from the set N(;

(ii) the entries increase from top to bottom down each column;

(in) the entries increase from left to right across each row.

For example, if / = 5 and A = (3,2) there are just five SVstandard tableaux:

(2.6.10)

Let fx be the total number of Srstandard tableaux. The following formula

for fx was first proved by Young [Yo77] and first cast in this 'hook length' form by

Frame, Robinson and Thrall [FR54J.

1
4

2

5
3 1

3
2
5

4 1
2

3
5

4 1

3
2
4

5 1
2

3
4

5

Theorem 2.6.11. If X G P(l), then

For the example above, this gives

H(X)

5!
4.3.2

(2.6.11)

(2.6.12)

verifying that there are just five 55-standard tableaux of shape F^3t2\ The following

formula was also proved by Young [Yo77].

Theorem 2.6.13. If X € P(l), then

£ (/A)2 = n (2.6.13)

This theorem and the S^-standard tableaux will be utilised in the next chapter.

The notation relevant to composite tableaux based on the composite Young

diagrams of Definition (2.3.13) will now be defined.

Definition 2.6.14. A composite Young tableau, tv'^ or T"'^, is a composite Young

diagram Fv'11, in which the boxes of the F11 portion each contain an entry from a set
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2.6. Young tableaux

X and the boxes of the F" portion each contain an entry from a, possibly different,

set J.

In this thesis, the set X of Definition 2.6.14 will always be a set of positive

integers and the set J will always be a set of barred positive integers.

Definition 2.6.15. The composite Young tableau <F;/<. With the notation of Definition

2.6.2, f is that diagram created by reflecting t" in its topmost and leftmost edges and

barring its entries. tp>li is formed by bringing t" and f together to create a diagram

of the same shape as FUili.

This definition gives, for example:

J32;431

5
4
3

2
1

1
2
3

4
5

6
7

8 (2.6.16)

Definition 2.6.17. Let T"'^ be a composite tableau. Define T ^ to be the entry in

the box at the intersection of the ith row and the jth column of the F1* portion if

1 < i < p.x and 1 < j < //,-. Define TZ'^ to be the entry in the box at the intersection

of the ith row and the jth column of the F" portion if 1 < i < vx and 1 < j < vi}

these rows and columns being counted from the bottommost row and the rightmost

column respectively of F".

Definition 2.6.18. IfTV]lt is a composite tableau for which \i 6 P(u) and v £ P(v),

let Tfc\ be the entry at the position in which a £ Nu U Nv is located in <"•'*.

An appropriate order on the set of composite tableaux is given by the following

definition.

Definition 2.6.19. Let /J, and v be partitions for which fit = s and v-^ = t. Label

the columns of F"'*1 left to right by the integers —t, — t + 1 , . . . , —1,1,2, . . . , s. Under

the identification i = —i, let tb
x be the sum of the entries in the bth column of T^

for 6 / 0 . Let t°x = 0. Define to be the equivalence class of all composite

is

tableaux which have their sequences of column sums identical to that of T"'11; that

if tb
y = th

x for b = — t, —1 + 1 , . . . , 5 . A total order on the set of

equivalence classes of composite tableaux is defined by Tx'
:fi > T"^ if there exists

k £ {-t,-t + l,...,s} such thattk
x > tk

y withtb
x = th

y for each b = fc + 1, k + 2,... ,s. It

is convenient to write Tx'^ > T ^ when this strict inequality is true of the equivalence
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that r*1".

2.6. Young tableaux

and T"1'1 belong and to say, in such a case, that T/;M is higher

When displaying tableaux and composite tableaux, it will often be convenient

to omit the diagram Fx or FP;/J and display only the entries of Tx or T"'^ in their

correct positions.

Tableaux based on the Young half diagrams FAr]X of Definition 2.3.16 will

now be introduced.

Definition 2.6.20. Young half tableaux. A Young tableau TAr is a Young diagram

FAr in which each half box contains entries from a set. A Young tableau TAr>x may

be constructed by adjoining a TAr to a Tx by analogy with Definition 2.3.16.

It will be convenient, when displaying a half tableau, to just write the entries in their

correct positions and to distinguish the entries from the jFAr portion by following

them with full stops. Examples are provided by:

1 •

TAi — _ '
3 •
4 •

and

1 - 1 2 3
2 - 2 3 4
3 • 4
4 •

(2.6.21)

Definition 2.6.22. Let TA-;A be formed by adjoining TA- to Tx. Define TAyx = T(
A

y)

fori,j > 1, and define TAr
0'

x to be the single entry in the ith row ofTAr for 1 < i < r.

In addition, define T(
Afx = T(

x
a) for 1 < a < I when X <E P(l).

Definition 2.6.23. For each u, let TU
A-A be formed by adjoining TA- to Tx. Using

the notation of Definition 2.6.8, define the equivalence class
->Ar;A if and only ifTx

of tableaux is defined by

Tx

to be such that

. A total order on the set of equivalence classes

if and only if Tx

V
Then, as before,

it will be convenient to write TAT'X > TAr]X when this strict inequality is true of the

equivalence classes to which TArtX and TAr]X belong and to say, in such a case, that

TA-;A is higher than TA-A.

Standard composite and half tableaux will be defined when the need arises.
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3.1. The symmetric group

Chapter 3

The Symmetric Group and
the Specht Module

§3.1. The symmetric group

Denote by N, the set of integers {1 ,2 , . . . , / } . Define Si to be the group of permu-

tations of N(. Thus, if 7T G 5;, 7T : N, —> Nj is a bijective map. Si is called the

symmetric group on / symbols. Its order is /!. Each specific element TT G SI may be

denoted by the symbol

TT=( 1 2 3 ••• / - I / \ n ,

V TT(I) *(2) *r(3) T T C J I M O )* l }

in which each member of N; is explicitly displayed above its image under TT. The

actual order of the columns in this symbol is, of course, irrelevant. Using this

notation, the product of the elements TT, a G Si is

ira=f I 2 ••• I \f 1 2 ••• I \

/ 1 2 . - I - ( 3 ' 1 ' 2 )

,( f f(2)) . . . *(

For I > 2, Si is non-abelian.

Another useful way to denote a permutation of Si is through cycles. A cycle

consists of a subset of N; written so that each member of the cycle is mapped to

that member to its right. The final member of the cycle is mapped to the first.

Each element TT G 5"; may be written as a product of disjoint cycles of elements of

Nj. For example, the permutation denoted by

7 r = f 1 2 3 4 5 6 7 8 ) , (3.1.3)

may be written, TX — (183)(4625)(7) in cycle notation. Notice that the individual

cycles, three in this case, may be permuted among themselves and that the ele-

ments of each cycle may be permuted cyclically without affecting the permutation

so represented. In view of this, it is conventional to write a cycle such that the

sequence of cycle lengths is non-increasing left to right and the first element of each

cycle is the smallest in that cycle. In addition, cycles of unit length are omitted.

Using this convention for the permutation of (3.1.3) gives TT — (2546)(183). The
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3.1. The symmetric group

cycle structure of an element n £ Si denotes its set of cycle lengths and is thus

unambiguously specified by a partition of /.

The note following (3.1.1) implies that the permutation given there may equiv-

alently be written

_ ( . - . ( ! ) , - . ( 2 ) . - . ( 3 ) ;;. , - • ( , - ! ) , - • ( ( ) y (314)

so that
(

7T<7 = I i 2 ^ I ) C

- ( a ~ ^ a~l{?> ••• a~W ) (3 156)
-{ *(1) *(2) ..- *(/) ) • ( 3 -L 5 6 )

The conjugate of the permutation TT G SI by the permutation a € S; is then given

by:

- 1 = ( 1 2 " • • / ^

° ™ ~ \a-^a(l) a~^a{2) ••• o-^cr(l))

= ( a-^(l) a - ( 2 ) ••• a-i(J) \
V (7-^(1) (7-^(2) ••• (T-1^/) /

Thus, if the class structure of the permutation TT £ 51; is given by the partition

A G -P(0> t n e class structure of cr̂ Trcr is also given by A since if

{aYlal2 • • • aiA,)(a2ia22 • • • <32A2) • • • (aPi • • • aP\p) (3.1.7a)

is 7T in cycle notation, then

(3.1.76)

is the cycle notation for O~~1TT<J. Conversely, if 7r,7r' G Si have the same cycle

structure, then there exists a G 51; (not necessarily unique) such that TT' = o~~1na.

Define the conjugacy class of ?r G -Sj to be the set {a~1no~ : a G S\\. The above

argument establishes the following lemma.

Lemma 3.1.8. There is a bijective map between P(l) and the conjugacy classes of

S,.

Definition 3.1.9. Permutation length. For TT £ S, let L(ir) = {(a, 6) : 1 < a < 6 <

/, TT"1^) > 7r~1(6)}. /(TT) = ^L(TT) is known as the length ofn.

Lemma 3.1.10. If TV £ 5"; and s = /(TT) then ~K may be written as a product

of s simple transpositions of the form (c,c + 1) for 1 < c < I. Furthermore, if
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3.1. The symmetric group

L(TT, 6) = {a : 1 < a < 6, n'^a) > fl-1^)} for b = 2 , . . . , / , then:

TT = n ( 6 - 1, b)(b - 2, b - 1) • • • (6 - #L(TT, 6), 6 + 1 - #L(TT, 6)), (3.1.10a)
6=2

where the factors are combined left to right on increasing b. Alternatively, if L(a, TT) =

{b : a < b < /, T T ' ^ O ) > Tr" 1 ^)} / o r a = 1 , . . . , / - 1, i/ien:

7T = f j ( a ' a + !)(a + 1, a + 2) • • • (a - 1 + #L(a, TT), a + #£(a, TT)), (3.1.106)

where, this time, the factors are combined right to left on increasing a.

Proof. Consider the permutation:

= ( 1 2 3 4 ••• \
a ~ \ <r(l) CT(2) <T(3) er(4) ••• ) '

By (3.1.5) postmultiplication of a by the simple transposition (c,c + 1) serves to

exchange the elements of the bottom row that lie beneath c and c + 1 of the top

row. For instance:

' V c r ( 1 ) a ( 2 ) c r ( 3 ) a ( 4 ) • • • /

= ( 1 2 3 4 • •• \
\ o-(l) cr(3) <r(2) CT(4) ••• / '

By using this result, starting with the identity permutation, the permutation n

may be constructed as a product of s simple transpositions as follows. Consider

each of the integers 6 = 2, 3 , . . . , / , in turn. In the bottom row of the permutation

constructed so far (the identity for 6 = 2), #L(iv, 6) is the number of integers to the

left of 6 that occur to the right in the final permutation TT. The sequence of simple

transpositions (6, 6-1); (6 -1 ,6 -2) ; (6 -2 ,6 -3) ; ••• ; ( 6 + 1 - # £ ( T T , 6), 6-#L(7r, 6))

serves to move the integer 6 in the bottom row leftwards, so that there are now

^L(?r,6) integers less than 6 to the right of 6. That these are the required set of

integers L(TT, 6) is ensured by dealing with 6 = 2 , 3 , . . . , / in ascending order.

The final part of the lemma is dealt with in a similar way but by considering

instead, a — I — 1,7 — 2 , . . . , 1 in this decreasing order.

To illustrate Lemma 3.1.10, consider the permutation n given by (3.1.3). This

yields the following set of values for #L(TT, i) and #L(i, 7r):

(3.1.11)

i

#L{i
r , t )

1

—
2

2

0
4

3

0
5

4

2
3

5

4
1

6

3
1

7

1
1

8

7
—
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3.1. The symmetric group

Thus /(TT) = 17 and (3.1.10a) implies that:

TT = ( 3 4 ) ( 2 3 ) ( 4 5 ) ( 3 4 ) ( 2 3 ) ( 1 2 ) ( 5 6 ) ( 4 5 ) ( 3 4 ) ( 6 7 ) ( 7 8 ) ( 6 7 ) ( 5 6 ) ( 4 5 ) ( 3 4 ) ( 2 3 ) ( 1 2 ) ,

(3.1.12a)

and (3.1.106) implies that:

7r = (78)(67)(56)(45)(56)(67)(34)(45)(56)(67)(78)(23)(34)(45)(56)(12)(23).

(3.1.126)

Lemma 3.1.10 demonstrates that the symmetric group Si is generated by the

/ — 1 simple transpositions (1,2); (2,3); • • • ; (1 — 1,1). However, by (3.1.7):

( l , 2 , 3 , . . . , 0 ( c , c + l ) ( l , 2 , 3 , . . . , / ) - 1 = ( c + l , c + 2), (3.1.13)

for c = 1 ,2 , . . . , / — 1, and therefore the two permutations (1,2) and ( 1 , 2 , 3 , . . . , / )

also serve as generators for Si.

Def in i t ion 3.1.14. The permutation TT is said to have even or odd parity depending

on whether /(TT) is even or odd. The signature of ir, denoted ( — 1)*, is given by:

{-I)* = (-l)'H (3.1.14)

Lemma 3.1.15. If7?^ £ Si then:

(-1)*" = (-l) ' (- l) ' ; (3.1.15a)

(-1)--1 = ( - 1 ) ' ; (3.1.15b)

(-1)*-1™ = (-1)' . (3.1.15c)

Proof. Form the three disjoint sets:

C = {(a, 6) : 1 < a < b < l,ir-\a) > 7r-1(6),a-1
7r-

1(a) > ff-V"1

V = {(a, 6) : 1 < a < b < /^- ' (a) > 7r-1(6),a-17r-1(a) < a"1*

and S = {(a,b) : 1 < a < b < /.Tf-^a) < ir-^b),*-1*-1^) > cr-1*

Let the cardinalities of these sets be c, d and e respectively. It can immediately

be seen that /(TT) = c + d and /(TTCT) = c + e. Furthermore, L(o~) = {(7r(a),7r(6)) :

(a, b) e S} U {(7r(fe),7r(a)) : (a, b) G X>}. Thus /(<r) = a7 + e and (3.1.15a) fol-

lows. Since TT̂ TT = I, the identity of the group, and [(/) = 0, (3.1.15a) implies

that 1 = (_l)*- l(_l)» from which (3.1.156) follows. From (3.1.15a), (-1)'"'™ =

(-iy~\-l)'(-iy, which equals (-1)1 through (3.1.156).
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3.2. The Frobenius algebra and the regular representation

§3.2. The Frobenius algebra and the regular representation

The Frobenius algebra, or group ring, FQ of the group Q is the formal vector space

over F which has a basis comprising the elements of Q. Thus for x G FQ,

z = £>(7r)7r, (3.2.1)

where x(ir) G F for each ?r G Q. The product of any two elements is governed

by the product in Q, this being extended linearly to the whole of FQ. Thus if

z = Erec X(TT)TT and y = YIOZG y{v)<? then:

*y = £ £ x{n)y{<r)na = £ (]T x(pa-l)y(<r)) p. (3.2.2)

Definition 3.2.3. The regular representation. The Frobenius algebra may be regarded

as an FQ-module through its own natural left action. This defines a representation of

FQ known as the regular representation.

Since the elements of Q serve as a basis for the F^-module corresponding to the

regular representation, the dimension of each is equal to the order of the group.

Through this natural F^-module, matrices forming the regular representation are

readily obtained. The left action of x — J2*€G X(TT)K on each of the elements of

Q shows that x is represented by the matrix T(x) whose elements are given by

T(x)ap — x(ap~1) where cr, p G Q are used to index the rows and columns of F. It

may be confirmed that this provides a representation of FQ by computing:

(3.2.4)
(r(z)r(y)),r =

In general, the regular representation is reducible since the Frobenius algebra

possesses proper left ideals. Those left ideals which do not themselves possess proper

left subideals are termed minimal. Clearly minimal ideals give rise to irreducible

F(/-modules and hence irreducible representations. The importance of the Frobenius

algebra and its minimal ideals in the generation of irreducible representations is a

consequence of the following theorem.

T h e o r e m 3.2.5. (see [Bo63]) Every irreducible representation of the finite group Q

occurs as a direct summand in the regular representation.

For each x G FQ, the set U = {yx : y G FQ} clearly constitutes a left ideal.

U is referred to as the left ideal generated by x. Similarly, W = {yxz : y,z G FQ}
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3.2. The Frobenius algebra and the regular representation

constitutes a two-sided ideal which is referred to as the two-sided ideal generated

by x. As will transpire, the ideals generated by idempotents are of particular

importance.

Definition 3.2.6. An idempotent is an element e € FQ such that e2 = e. Idempotents

which cannot be written as the sum e = ei -f e2 of two non-zero idempotents ex and

e2 which satisfy eye2 = e2ey = 0 are termed primitive idempotents.

The following sequence of classical theorems and lemmas relating to the struc-

ture of the Frobenius algebra FQ of the finite group Q, enable all the inequivalent

irreducible representations of Q to be obtained. These will be employed in the next

section for the particular case of the symmetric group. Proofs may be found in

[Bo63].

Theorem 3.2.7. FQ may be decomposed into a set of minimal left ideals:

Uy®U2®---®Uk, (3.2.7)

which are unique up to order and equivalence. On writing I = ex + e2 + • • • + e-k, where

each e; G £/,-, idempotents are obtained which generate each such left ideal.

L e m m a 3.2.8. The left ideal generated by a primitive idempotent is minimal. Con-

versely, every minimal left ideal possesses (at least) one primitive idempotent which

generates it.

Definition 3.2.9. Equivalent left ideals. The two left ideals Uy and U2 ofFQ are said

to be equivalent if and only if there exists a map £ : Uy —» U2 such that:

(3.2.9)

for all x £ FQ and Uy € U-y.

Lemma 3.2.10. / / the left ideals Ux and U2 are equivalent, every equivalence map

from U\ to V-i is provided by right multiplication.

Lemma 3.2.11. If the left ideals Uy and U2 are minimal with generating idempotents

e\ and e2 respectively, then right multiplication with any eixe2 ^ 0, x 6 FQ, defines an

equivalence map from Uy to U2. Such equivalence maps are only provided by elements

of this form.

Theorem 3.2.12. If e is an idempotent, then e is primitive if and only if for each

x (E FQ, exe = ae for some a £ F.
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3.2. The Frobenius algebra and the regular representation

Consideration of the two-sided ideals via Lemma 3.2.10 puts some order into

the multitude of possible left ideals.

L e m m a 3.2.13. If W is a two sided ideal and if a minimal left ideal U lies in W,

every left ideal equivalent to U lies in W.

L e m m a 3.2.14. FQ decomposes uniquely into a direct sum of minimal two-sided

ideals:

FQ = Wl®W2@---@Wr. (3.2.14)

Elements from different two-sided ideals annihilate one another in that u\u>j = WjWi =

0 for all wt £ W,, Wj £ Wj and i ^ j . Each two-sided ideal Wj possesses a generating

idempotent e; which is unique and determined by the decomposition I = ei + e2 +

• • • + e r. Each e,- commutes with all elements ofFQ.

The following theorem is known as Wedderburn's theorem.

Theorem 3.2.15. Each minimal two-sided ideal Wt is isomorphic to the complete

ring of /, X /,- matrices for some /,-.

This theorem has the direct consequence that if FQ is the direct sum of r minimal

two-sided ideals as in (3.2.14) then:

g = £,fi> (3-2-16)
<=i

where g is the order of the group Q. It also provides the following theorem.

Theorem 3.2.17. The minimal two-sided ideal W{ contains exactly /,• linearly in-

dependent minimal left ideals which are each of dimension /,- and equivalent to one

another.

Attention is now turned to the labelling of the irreducible representations.

Lemma 3.2.18. The dimension of the centre Z of FQ is equal to the number of its

minimal two sided ideals.

This Theorem shows that Z has a basis {el5 e 2 , . . . , er} where ê  £ Wt is given by

Lemma 3.2.14.

Lemma 3.2.19. The dimension of the centre, Z, of FQ is equal to the number of

conjugacy classes of Q.

Lemmas 3.2.13, 3.2.14, 3.2.18 and 3.2.19 may be combined to yield:

Theorem 3.2.20. The number of inequivalent irreducible representations ofQ is equal

to the number of its conjugacy classes.
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§3.3. Young symmetr isers

In this section, the results of the previous section are applied to the particular

case of the symmetric group 5;. Theorem 3.2.20 in conjunction with Lemma 3.1.8

shows that the inequivalent irreducible representations of 5"; are labelled by P(l),

the partitions of /. As will be seen, the representation associated with the partition

A £ P(l) may be obtained through the Young tableaux of shape Fx and their

respective Young symmetrisers. Although initially a Young symmetriser is obtained

from each tableau of shape Fx, it will emerge that just one is required for the

construction of each inequivalent irreducible representation.

In this chapter each tableau TA for A £ P(l) will be such that the entries are

from the set N, and distinct. For such tableaux a numeral permutation may be

defined.

Definition 3.3.1. Tableau numeral permutation. For A £ P(l) and Tx any tableau

with distinct entries from the set N,, define the action of Si on Tx to be given by the

action of Si on each numeral ofTx. That is:

(3.3.1a)

This action is extended linearly to both FSi and to F-linear combinations of tableaux.

Thus the action of x £ FS; on Tx — J2is(i)TiX, where each s(i) £ F, is given by:

, (3.3.16)

where x — J2T€Sl x(iv)ir and each x(n) £ F.

For A £ -P(O) let ^-T* a n d CTx be the subgroups of St which, when acting on

the numerals of TA, stabilise the rows and columns respectively. Define PTx £ ZS;

and QTx £ Z5j according to:

(3-3-2°)

and QT, = Y, (-1)'7 '7- (3.3.26)

55



3.3. Young symmetrisers

Lemma 3.3.3. If p £ Tlr* and a £ CTx then

PTx; (3.3.3a)

{-l)°QT*. (3.3.36)

Proof. As 7T runs through Hr* then pit and 7rp each run through 7^* since 7&r» is

a finite group. (3.3.3a) then follows from (3.3.2a), the definition of PTx. Similarly,

as TV runs through CT\, so do TTCT and CTTT. However, by (3.1.15a), the coefficient of

each term in (3.3.26) will have been multiplied by a factor of (—1)". This proves

(3.3.36).

Definition 3.3.4. The Young symmetriser YTx associated with the tableau Tx is

defined by
IT* = (^TX PTX

= E E (-1)'^. (3-3-4)

In this Chapter it is possible to proceed equally well with the order of the row and

column permutations opposite to that defined here. This is done, for example, in

[Bo63]. However YTx defined by (3.3.4) has definite advantages, as will become

apparent in later chapters.

The action on Tx of the corresponding Young symmetriser YTx produces a

signed sum of tableaux known as a symmetrised (Young) tableau and denoted {Tx}:

{Tx} = YTxTx. (3.3.5)

As an example, consider A = (2,2) and

TX=ll- (3-3-6)
From (3.3.2a), PT> = (I + (12))( J + (34)) = (I + (12) + (34) + (12)(34)) and Qr> =

(J - (13))(Z - (24)) = (Z - (13) - (24) + (13)(24)). Thereupon, with FT> = QTxPT>,

{Tx} is given as the following linear combination of tableaux through (3.3.5) and

Definition 3.3.1:

1 2 2 1 1 2 2 1
3 4 3 4 4 3 4 3

_ 3 2 _ 2 3 _ 3 2 _ 2 3

1 4 l 4 4 1 4 1 (3.3.7)

~ 3 2 ~ 3 2 ~ 2 3 ~ 2 3

3 4 4 3 3 4 4 3_
1 2 1 2 2 1 2 1
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3.3. Young symmetrisers

This array has been obtained by first applying the four elements of 1Zr>. to the

numerals of TA, yielding the first four tableaux. Then, the tableaux in each column

of this array is obtained through permuting the numerals of these tableaux according

to the elements of CTJ .

As may be seen from (3.3.7), the action on Tx of a single summand up of YTx

is not to be thought of as a row permutation followed by a column permutation

since the action of p disrupts the column structure. However, the action of ap

may be regarded as a column permutation followed by a row permutation since, by

(3.1.4), the integer m moves, under the action of ap, to where the integer p~lo~l(m)

originally resided. Thus the entry m is first moved within its column, to the original

position of a~l(m), and then within the row it then occupies under the action of

p~l. Note that as p and a run through the groups TZTx and Cy* respectively then so

do p~l and a~l. This provides an alternative means of obtaining the symmetrised

tableaux. Consider (3.3.7). Each of the tableaux in the first column of this array

has been obtained by applying the four elements of CT\ to permute the elements

within the columns of Tx. Each of these tableaux then yields those to its right by

permuting the elements among their rows. These notions of a place permutation

will be developed below.

Let the permutation of Si which maps the Young tableau Tx into the Young

tableau Tx be denoted r^:

Tx = TjiT
x. (3.3.8)

If p G T&r*, (3.1.6) shows that a corresponding row permutation of Tx is given by
TjiPTij € 7̂ -T* • Similarly, to each a G CT* corresponds TjiOTij G CT\. Furthermore as

p and a run through the groups 7lTi and CT\ respectively, then TjipTij and T^OT^

run through the groups KT>~ and CT* respectively. This implies that PT>. = TjiPT\Tij

and also, since (—1)T<7T~' = ( — I)", that QT\ = TjiQT\Tij. Thereupon:

YTf =TjiYT,Tij. (3.3.9)

As already indicated, a single summand ?r of YTx acts on Tx to move the entry

a to the position originally occupied by iz~la. If Tx = rtx then the entry a = Tx
T_la^

is moved to the position labelled by the entry T~1ir~1a of tx. Thus if T*x = TTTX

then T(;*_1)r_la) = Tx.la) and

T*x = T(*_lTTl), (3.3.10)

for b = 1,2,...,/, as can be seen by putting b = T~1K~1a. Note that T~1ITT is the

summand of Ytx, P«» or Qt\ corresponding to the summand TT of YT\, PT\ or QT*

respectively. This motivates:
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Definition 3.3.11. Tableau place permutation. If X £ P(l) and n £ Si then the place

permutation action ir, on Tx results in T*x = 7r»TA where:

- *?._,?._,<.„, (3.3.11)

for a = 1,2,...,I

This definition has been made using n~x instead of TT to ensure that (per)* = p*at.

Let Cx — Ct\ and 1lx = 7£<x. For 7r a summand of YTx, z = a'p' for some

a' G Cr* and some p' G 7^x. Corresponding to these are the elements r ^ ' u ' r £ Cx

and r~1p'r £ 7?.A respectively. Let cr = r~1cr'~'1r and p = r ^ p ' - V so that if

T*A = 7rTA then:

TW = 2(r-»»Tj) = ^>-iP->») = (o-.TA)(p-.6) = (p t<7,TA)(t), (3.3.12)

which explains why the summands of YTx acting on Tx may each be considered as

a column permutation followed by a row permutation. As a' runs through all the

permutations of CTx, so does a1'1 whereupon a runs through all the permutations of

Cx. Similarly, as p' runs through all the permutations of IZT* , so does p'~x and p runs

through all the permutations of TZX. Lemma 3.1.13c implies that (—1)" = (—I)17'.

This leads to the following alternative definition of a symmetrised tableau.

Definition 3.3.13. Place symmetrisation. For X £ P(l), let:

P.A = £ p., (3.3.13a)
pen*

QX.= £ ( - 1 ) ' * . , (3.3.136)

and define the Young symmetriser Yx by:

Yx = PXQX. (3.3.13c)

The symmetrised tableau {Tx} is then defined by:

{TX} = YXTX= J2 J2(-lYP>a*TX- (3.3.13d)

This definition is more useful than (3.3.5) since it is directly applicable to situations

in which Tx has repeated entries. Such situations do not arise until later chapters

but nevertheless, many results in this are more clearly elucidated using this place

permutation definition of a symmetrised tableau.

The remainder of this section is devoted to the exploitation of the Lemmas

and Theorems of Section 3.2, in order to show how the Young symmetrisers may be
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used to obtain the irreducible representations of the symmetric groups. The proofs

are modifications of those found in [Bo63].

L e m m a 3.3.14. If o~ € Cy\ and p £ 7Zr* then two entries which occur in the same

column ofTx do not occur in the same row ofapTx. Conversely, if every two entries

which occur in the same column ofTx do not occur in the same row of T'x = TTTA

then •K — pa for some a G CTx and p € 7&rx.

Proof. In the first part apTx occurs as a summand in {Tx} and consequently arises

from Tx through first a column, then a row permutation. The column permutation

leaves the two entries in the same column and hence in different rows. The first part

is proved since the row permutation does not then alter these rows. For the second

part, the entries which occupy the first row of T*x all lie in different columns of Tx.

Thus a column permutation exists which acts on Tx to take each to the top of its

column. Similarly a column permutation exists which acts on Tx to take each of

those entries from the second row of T*x to the second row. In this way a column

permutation can be found to put each entry in the correct row. A row permutation

can then be found to produce T*A. This shows that T*x is a summand of {Tx} and

thus proves the lemma.

Lemma 3.3.15. If fi,v £ -P(0 and there exists s such that /i; = i/,- for i =

1,2, . . . , s — 1, and //, > vs then there are two entries which occur in the same row of

Ti and the same column ofT%.

Proof. Assume that every two entries which occur in the same row of T/1 occur in

different columns of T2". Consider first the entries in the first row of T? which thus

all occur in different columns of T2". Therefore /ii < U\. But by hypothesis fit ~>.V\.

Therefore fit = vx and each of the (first U\) columns of T2" contains an entry from the

first row of Tj". The entries in the second row of T£ all occur in different columns

of T2". Thus, since i/2 < fi, each of these columns has at least two entries — the

other from the first row of T*. Therefore fi2 < v2 and hence /x2 = u2. Proceeding in

this way leads to the conclusion that \i = v contradicting the premise of the lemma.

The initial assumption is therefore incorrect and the lemma is proved.

Lemma 3.3.16. Let fi,u € P(l) (not necessarily distinct). Ifa,b € N, occur in the

same row ofTf and the same column ofT£ then:

PT*QTS=0, (3.3.16a)

and consequently:

YT,YTS = 0. (3.3.166)
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Proof. The transposition TX = (a, b) is a member of both IZT* and CT». By Lemma

3.3.3, PTl" = PT»TX and QT* = —TXQTU since (—1)T = —1. Combining these gives

PT*QTZ = -PT^TVQTS = -PT^QT- and thus (3.3.16a). (3.3.166) then follows from

(3.3.4).

Lemma 3.3.17. If TV ^ a'p' for all a' £ CT\ and p' £ 7&r», then there exist transposi-

tions a £ CT\ and p £ 'KT\ such that OTxp = TV.

Proof. From Lemma 3.3.14 there exist a, 6 £ Nj such that a and b occur in the

same column of TA and in the same row of T*A = ?rTA. Let r = (a, 6) whereupon

r £ CT*, T £ 7£T.* and TT'VTT £ TZ^\. The selection of a = r and p = 7r~1r7r proves

the lemma since cnvp = TTTTV~1TTV = TTTV = TX.

Lemma 3.3.18. If x £ F5|, A £ P(l) and

axp = {-l)'x (3.3.18)

for all a £ CT> and p £ T r̂*, then x = aYT\ where a = x(I).

Proof. With x = £T6s, x(7r)7r, (3.3.18) gives:

53 x(ir)<nvp = (-iy Yl X(K)K- (3.3.18a)

Since as TX runs through 5;, so do air and cr7r/9, then each permutation occurs only

once on each side. Consider first the coefficients of each a p. On the left side the

coefficient is a = x(I) whereas on the right it is (—l)'7x(a/9), so that x(ap) = (—I)"7a

for each a £ CT* and p £ 7?.TJ . Now consider the permutation r for which T ^ ap

for all o- £ CT\ and /? £ 7?.Tx. By Lemma 3.3.17 there exist transpositions a £ CT*

and p £ 7̂ x1 such that orp = r. On using these values in (3.3.18a), the coefficients

of r imply that x(r) = — x(r) and thence that x(r) = 0. Thus

Theorem 3.3.19. There exists a non-zero a £ Z swc/i £/m£ i/ie normalised Young

symmetriser -YTx is a primitive idempotent. Yp* generates a minimal left ideal and

thence an irreducible FSi-module.

Proof, (see [Yo77,Bo63]) Since Y^x satisfies the premise of Lemma 3.3.18, it

follows that:
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Since Y^x 6 ZS; and the coefficient of I in YT\ is 1, then a 6 Z. It is required to show

that a is non-zero. If x = ]C*es X(7V)1T a n d y = J2r€G y(T)T then the coefficients of

/ in xy and yx are equal since, by (3.2.2), they are each equal to X^ee ;r(7r)y(7r~1)-

Thus the coefficients of I in PT
XQTXPTX and PTxPTxQTx are equal. By (3.3.2),

PTxPTx — p#Prx where p # € N is the order of T^r*. The coefficient of I in PTxQTx

is 1, therefore the coefficient of / in PTxQTxPTx is p # . If pio~p2 is a summand of

PT\QTxPTx then its inverse p^cr"1/?]"1 also occurs with the same sign. Thus the

coefficient of I occurs as a sum of squares in PTxQTxPTxPTxQTxPTx and so is at

least p2u by virtue of p # being the coefficient of / in PTX QTX PTX . Since

it follows that the coefficient of / is positive in PTXQTXPTXQTXPTX, showing that

this term is not zero. Thus QTxPTxQTxPTx is non-zero implying that a ^ 0.

It remains to be shown that YTx is primitive and therefore generates a minimal

left ideal by virtue of Lemma 3.2.8. For arbitrary x' G FG, YTxx'YTx satisfies the

premise of Lemma 3.3.18 and is therefore a multiple of YTx. That YTx is primitive

now follows from Theorem 3.2.12.

Theorem 3.3.20. Young symmetrisers which arise from the Young tableaux T? and

T2" generate equivalent irreducible FSi-modules if and only if fi = v.

Proof. If fi = v then there exists r such that T$ = rT" whereupon, from (3.3.9),

YTu = TYTVT'1. Theorem 3.3.19 shows that the left ideals generated by YT* and YT*

are minimal, whereupon their equivalence follows from Lemma 3.2.11 since

YT.T-'YT* = YT.T-'TYT.T-1 = YT»YT*T-1 = aYT,T~l ^ 0.

It follows that the corresponding irreducible FS rmodules are equivalent.

If [i ^ v then without loss of generality assume that fi{ = v{ for i = 1,2,.. . , s —

1 and fi, > v, for some s. Lemmas 3.3.15 and 3.3.16 then show that YT»YT™ = 0

for each T2*" = TT%. Thus Y^TYT^T-1 = 0 and hence YT»TYT» = 0. For arbitrary

x G F5/, x = J2T€S,
 x(r)Ti this implies that:

YT!xYTS = Y, X(T)YT!TYTS = 0.

res,

So for \x 7̂  i/, the FS;-modules generated by YT» and YT* are inequivalent by virtue

of Lemma 3.2.11

T h e o r e m 3.3.21. Let T* and T2
A be distinct Si-standard tableaux such that for some

s, T*(,) > T2\s) with T,A(O) = T2\a) for each a = 1 ,2 , . . . ,s - 1. Then YT
xYT

x = 0.
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Proof. By Lemma 3.3.16, it is sufficient to show that there exists two entries which

occur in the same row of TA and the same column of T2
A. Let b = TA

(j) and c = T^,

and let i and j specify the row and column of these entries so that b = T^js and

c — T^jy Note that i — 1 may be excluded since, for S/-standard tableaux, the

entry at the top of a column is uniquely determined as the least of those that are

not in the columns to the left. Thus i > 1. Now c = Thk,% for some k and I. The

possibility that / < j may be excluded since TA and T2
A coincide at all such positions.

For the same reason the possibility that / = j and k < i may be excluded. Since

b > c, TA being 5,-standard disallows the possibility that I > j and k > i, since all

such positions must contain an entry greater than b. The remaining possibility is

that I > j and k < i. Then T^k ̂  = T2
A

(i jy Thus T^k ̂  and c both occur in the kth

row of TA and in the jth column of T2
A.

Theorem 3.3.22. If X e P(l) and T A , r A , . . . ,TA are S,-standard tableaux, then the

left ideals generated by YT\,YT\,... ,YT\ are linearly independent.

Proof. Without loss of generality it may be assumed that the 5 rstandard tableaux

are ordered such that if i < j then there exists some s such that T^ < T^ with

^•(a) = ^ ( a ) f o r a = l , 2 , . . . , - s - l . Let:

x,YT, + x2Yn + • • • + XfYT} = 0,

for elements xt G F5;. By Theorem 3.3.21 right multiplication with Y'T* annihilates

all terms but the first, implying that 0 = XIYT*YT* — axiYT* for some non-zero a £

Z. Therefore X\YT\ = 0. Right multiplication with YT\ now shows that x2YT>. — 0.

Similarly each term is zero and the theorem is proved.

Theorem 3.3.23. The dimension of the left ideal and hence the irreducible represen-

tation generated by YT\ is equal to fx, the number of Si-standard tableaux of shape

F\

Proof. Let the dimension of the irreducible left ideal generated by YTx be /A . By

Theorem 3.2.17, the minimal two-sided ideal W\ generated by YT\ is of dimension

(/.A)2 a n d contains exactly /A independent left ideals. Theorem 3.3.22 then implies

that (/A)2 > / A / A and hence /A > /A . Since 5, has order /!, (3.2.16) gives:

«= E aA)2-
A6P(/)

However, Theorem 2.6.13 then implies that:

E (/.A)2 = E (/A)2-
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3.4- The Garnir relations and standardisation

With /* > fx for each A e P(l), the only possibility is that fx = /* for all A G P(/).

This proves the theorem.

§3.4. The Garnir relations and standardisation

The symmetrised tableaux of a given shape are not linearly independent. It is the

purpose of this section to describe relations between the symmetrised tableaux and

to describe how an arbitrary symmetrised tableau may be written in terms of the

5rstandard tableaux.

Definition 3.4.1. Column strict tableaux. If the entries of the tableau Tx are strictly

increasing down each column then Tx is termed column strict.

Tx:Lemma 3.4.2. If a G Cx then for any tableau

{Tx} = (-iy{a.Tx}. (3.4.2)

Proof. From Definition 3.3.13:

{a,Tx} = PxQxamTx = Px(Qxa\Tx = (-iyPxQxTx = {-iy{Tx},

where (3.3.36) has been used.

This Lemma provides what are known as the Column relations. It implies that

{Tx} may be expressed as ±{T'A} for some column strict tableau T'x. Furthermore,

when the generalisation to tableaux which may possess repeated entries is made, it

implies that if Tx has an entry repeated in any column, then {Tx} vanishes.

Lemma 3.4.3, For i < j , let X and y be subsets of the entries in the ith and jth

columns, respectively, oftx such that #(X\jy) > X{. Let S(X), S(y) and S(Xuy)

be the subgroups of Si preserving X, y and X U y, respectively. Then if Q(X, y) is

a set of right coset representatives for S(X) ® S(y) in S(X U y),

£ (-l)'{^}=0. (3.4.3)

Proof. If Gx = J2n^g(x,y)(~^)r>rl* then the expression on the left side of (3.4.3) may

be written PXQXGXTX. Consider the tableau Tx = cr»77,TA which has a coefficient

ft in the expression QXGXTX. It will not be assumed that Tx arises in only one

way. Since #(X L) y) > A,-, there exists at least one pair of entries from Xuy

lying in the same row of tx. Fix one such pair and let a and b be the entries

of Tx lying in those positions. Let r, be the place transposition which swaps a

and b in Tx to give Tx = T,TX. If Tx = atrj,Tx for some specific a € Cx and
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3.4- The Garnir relations and standardisation

rj G G{X,y) then Tx
+ = a.rj,Tx = CT.?/»T,TA differs from TA only in that a and

6 have swapped places. Since rjr G S(X U 3-0 and <?(A?,3>) is a set of right coset

representatives of S(X) ® S(y) in S(X U 3̂ ) then TJT can uniquely be expressed TTT]'

for 7T G S(X)®S(y) and T?' G £ ( * , y). Thus TA
+ = ai?7irA where a' = an G CA with

(-1)' '" ' = ( -1)"" ' = (-1)""- = - ( - l ) f f " . So for each occurrence of TA in Qx
tG

x,T\

TA
+ occurs with an opposite sign. Thus if TA has coefficient /? in QXGXTX then TA

+

has coefficient — /?. However, PXTX
+ = PATA since TA

+ differs from TA by a simple

place transposition from 7£A. Thus the application of Px to QXGXTX produces a set

of tableaux whose coefficients cancel. Therefore PXQXGXTX = 0 and the lemma is

proved.

Identities of the type appearing in Lemma 3.4.3 are known as Garnir relations after

[Ga50] where they were first obtained. The elements Gx
x y^ G ZS, defined by:

are known as Garnir elements. Lemma 3.4.3 shows that they satisfy:

YxGx
xy) = 0. (3.4.5)

To illustrate a Garnir relation, let A = (4, 3,1) whereupon:

1 4 6 8
tx = 2 5 7 . (3.4.6)

3

Let i = l,j = 2, X = {1,3} and y = {4,5}. Right coset representatives for S{X)®

S{y) in S(Xvy) are provided by G(X,y) = {I, (14), (354), (145), (35), (14)(35)}

which yields the Garnir element:

Gx
xy) =1- (14) + (354) + (145) - (35) + (14)(35). (3.4.7)

Lemma 3.4.3 then implies, for example, the Garnir relation:

(3.4.8)
2 1 5 6 N

It will now be shown that the Column and Garnir relations can be used to

express each symmetrised tableau in terms of the standard 5rtableaux of Definition
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3.4- The Garnir relations and standardisation

2.6.9. The following algorithmic procedure for accomplishing this is described in
[Ga50] and [JK81]. It is sufficient to consider column strict tableaux since Lemma
3.4.2 enables each symmetrised tableau to be expressed as such. If the column strict
tableau Tx is not standard then condition (iii) of Definition 2.6.9 implies that there
exists a neighbouring pair of entries, Th h\ and Th b+l\, such that TA ̂  > TA b+1y
Let X be the set of positions below and including that of Tx

a h^ in the 6th column
and let y be the set of positions above and including that of TA i+1j in the (6+ l)th
column. The relevant entries of Tx are then as follows:

A

A

A

A

(3.4.9)

A

A

Since, with X and y so defined, #(X U y) = \h + 1, Lemma 3.4.3 may be used to
express {Tx} in terms of other tableaux. With i] 6 G(X,y) and 77 g S(X) ® S(y),
Tx = T]TX has necessarily been formed from Tx by swapping the columns of at least
one pair of elements from the positions X U 3̂ - Since the entries of Tx at positions
X are all larger than those at positions y, it follows that Tx > Tx in terms of
the tableaux ordering of Definition 2.6.8. Hence this algorithm enables {Tx} to be
written in terms of higher tableaux. It may then be iterated until solely Si-tableaux
result. That this procedure terminates is guaranteed by the ordering on the set of
all tableaux of shape Fx and their finite number.

To illustrate this procedure, consider the non-standard tableau:

1 2 5 6
7 3 8
4

(3.4.10)
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Lemma 3.4.2 implies that:

3.5. The Specht module

(3.4.11)

The algorithm described above then dictates the use of a Garnir relation resulting
from the adoption of X = {2,3} and y = {4,5}. An appropriate choice of coset
representatives then yields the Garnir element:

Gx
{xy) = 1 + (254) - (2354) - (25) + (235) + (24)(35), (3.4.12)

and the Garnir identity:

1 3 5 6 1 [ 1 3 5 6
2 4 8 > - I 2 7 8
7 J I 4

1 2 5 6 ] [ 1 2 5 6 ] ( 1 4 5 6
3 4 8 + 3 ? 8 +2 78
7 J I 4 J I 3

(3.4.13)

= 0.

The coset representatives of (3.4.12) have been selected so that each of the tableau
in (3.4.13) are column strict in the portions specified by the sets X and y. This
minimalises further usage of Lemma 3.4.2. Combining (3.4.11) and (3.4.13) now
gives

(3.4.14)

Thus {Tx} has been expressed in terms of higher tableaux. In this case each of
the tableaux on the right is Sg-standard. However, in general, the standardisation
procedure will need to be iterated a number of times before solely Si-standard
tableaux result.

§3.5. The Specht module

The following lemma provides the means of constructing the irreducible Srmodules.

Lemma 3.5.1. The actions of symmetrisation and permutation on a Young tableau
commute. That is:

TT{TA} = {TTTA}. (3.5.1)
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S.5. The Specht module

Proof. Let TA = TTTA. Then, by (3.3.8) and (3.3.9),

YTx = 7CYTXTT-\

whereupon (3.3.5) gives:

{Tx} = YT,TX = Trr^Tr-^T" = nYT,Tx = TT{TA},

which proves the lemma.

For A e P(/), let the /A 5,-standard tableaux be denoted TX,TX,.. .,Tf\. By
Lemma 3.5.1, the action of TT G 5, on {Tx} yields {TTTA} which, through the use of
the techniques of Section 3.4, may be re-expressed as a linear combination of the
symmetrised ^-standard tableaux:

«{Tt
X} = {nTf} = £:r*(7r)i<{Z?}, (3-5-2)

3 = 1

where TX(TT)_,-,- G Z. This construction therefore defines an S^-module with a basis
consisting of the symmetrised 5rstandard tableaux of shape A. It is known as the
Specht module and denoted Sx. In order to show that Sx is the irreducible Sr

module desired, it is necessary to make the connection with the minimal left ideals
of FQ. To this end, let r,-,- be defined by (3.3.8) for the 5,-standard tableaux Tx and

)x. Then, from (3.5.1) and (3.5.2):Tx

(3.5.3a)

(3.5.36)
3=1

for any k for which 1 < k < fx. Then:

(3.5.3c)
3 = 1

and therefore, since the entries of Tt
A are distinct:

(3.5.3d)
3=1

This proves the following:

T h e o r e m 3.5.4. If X € P(l) and TX,TX,...,T^ are the Si-standard tableaux of

shape X, for which Tx = TjiTx, then the minimal left ideal generated by YT\ has a

basis {TikYT\ : 1 < i < f x } .
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3.5. The Specht module

Since, from (3.5.2) and (3.5.3d), the Specht module Sx is equivalent to the

left ideal generated by YT\, Sx is irreducible. Theorem 3.3.21 shows that the left

ideals generated by each T£ are linearly independent. Despite this, the matrices

of the irreducible representations obtained via (3.5.3d) are identical and thus their

equivalence is demonstrated explicitly.

Quintessentially, the structure of the Specht module is as follows:

Definition 3.5.5. Let A € -P(0- The Specht module Sx is the irreducible Si-module

spanned by {Tx} for all Tx with distinct entries from the set N/, modulo relations

(3.4.2) and (3.4.3), and on which it 6 St acts according to (3.5.1).

As an illustration, let A = (3,2) and consider the 55-module S^3>2\ The S5-

standard tableaux are:

1 3 5
2 4

T A _ 1 2 5
2 ~ 3 4

3 5

1 3 4
2 5

1 2 3
4 5

(3.5.6)

Acting with the permutation (34) on each of the symmetrised S^-standard tableaux

in turn and standardising the results, produces the following sequence of calcula-

tions:

(34){TX) =

1 4 5
2 3

1 2 5
4 3

1 4 3
2 5

1 2 3
4 5

1 2 4
3 5

1 1 3 5
\ 2 4
1 2 5 ]
3 4 /

1 3 4 1
2 5 I

= -{!?}; (3.5.7a)

} = {2?}-{*?}; (3.5.76)

--{T3
X} - {Tx}; (3.5.7c)

(3.5.7d)

(3.5.7e)

1 3 5
2 4

1 3 5
2 4

where (3.4.2) has been used in (3.5.7a), and (3.4.3) has been used in (3.5.76) and

(3.5.7c). In accordance with (3.5.2), these calculations show that in the representa-

tion labelled by A = (3,2), the permutation (34) is represented by

TA(34) =

-1 -1
1 .
. 1

. \

. 1

1 • /

(3.5.8a)
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3.5. The Specht module

where each zero has been replaced by a dot. Similar calculations in 5^3'2^ yield the

representation matrices:

rA(i2) =

/-I -1 . . 1 \
. 1 . . .

. . . 1 .
, rA(23) =

. I . . i\
I . . . -l
. . . I .
. . I . .

\
. . I . i\
. . . I .

(3.5.86)

I
I

Since, as was shown in Section 3.1, the permutations (12), (23), (34) and (45) may

be used to generate any element of 5"5, the representation matrices given in (3.5.8)

may be used to generate the matrix representing any such element. Consider the

permutation IT = (1352). Its action on each of tableaux given in (3.5.6) results in:

3 5 2
1 4

TT{TA} = 3 1 2
5 4

3 5 4
1 2

rTM _ i 3 1 4 1 , r A , _ I 3 1 5
^ ^ - { 5 2 / ' *{ 5 ) - \ 4 2

Upon standardisation, these give, according to (3.5.2):

(3.5.9)

TA(1352)=

. 1
-1 -1

1 \

1 1
1

(3.5.10)

Lemma 3.1.10 results in the identity (1352) = (23)(12)(34)(45)(34). Therefore,

since the matrices obtained in (3.5.8) are representation matrices:

rA(i352) = rA(23)rA(i2)rA(34)rA(45)rA(34), (3.5.11)

as may be confirmed by direct multiplication.

All the techniques involved in the generation of matrices of the irreducible

representations of S( through the Specht modules and Young tableaux have been

implemented as a computer program. In each case tested, each representation

matrix that is not that of a simple transposition has been verified as in (3.5.11).
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3.5. The Specht module

The Specht modules Sx were first obtained by Specht in [Sp35]. Here, each
tableau of shape A e P(l) was associated with a certain polynomial in / indetermi-
nates. On showing that the polynomials associated with the ^-standard tableaux
are linearly independent and knowing the dimension of the j>;-module so obtained,
it was concluded that these polynomials form a basis for that ^-module.

Garnir [Ga50] adopted the same construction. Having obtained the specific
Garnir relations dealing with non-standard tableaux of the type given by (3.4.9), the
standardisation algorithm given in Section 3.4 was developed, and the irreducible
^-module Sx thus constructed explicitly.
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4-1. The double centraliser technique

Chapter 4

Linear and Symplectic
Group Modules

§4.1. The double centraliser technique

Throughout this section Q will be an arbitrary finite group and M will be a left

F£/-module. Let C = HomFe(M, M) be the algebra of endomorphisms of M which

centralise the action of FQ. It is the purpose of this section to derive the relationship

between the irreducible F^-modules which occur as submodules of M and the struc-

ture of M as a C-module. This problem was considered by Schur [ScOl] and Weyl

[We39] in constructing the irreducible representations of GL{m). A more general

treatment of 'symmetric algebras' is overviewed in [CR.62]. The exposition given

below follows this treatment but deals only with the special case of the Frobenius

algebra FQ, this being sufficient for the purposes of this thesis.

Many of the results of this section require a knowledge of the composition of

the Frobenius algebra FQ in terms of its right ideals. By using a particular map,

which is defined below, it is straightforward to show that each of the lemmas and

theorems of Section 3.2 hold when the word 'left' is replaced by the word 'right'

and, for Lemmas 3.2.10 and 3.2.11, vice-versa. In the next section, this map will be

required to obtain the right ideals of the Frobenius algebra of the symmetric group

from its left ideals.

Definition 4.1.1. Let d : FQ —> FQ be the involution defined by:

Lemma 4.1.2. d is such that:

(i) ${xy) = d(y)d(x) for all x,y € FQ;

(ii) e € FQ is an idem-potent if and only i/t9(e) is an idempotent;

(Hi) e 6 FQ is a primitive idempotent if and only «/i9(e) is a primitive idempo-

tent;

(iv) IfUd FQ is a left ideal, then $(U) is a right ideal and vice-versa;

(v) If U C FQ is a minimal left ideal, then $(U) is a minimal right ideal and

vice-versa;
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4.1. The double centraliser technique

(vi) If e G RQ is a primitive idempotent, then e and $(e) are elements of the

same minimal two-sided ideal.

Proof, (i). For x = £ x 6 0 a;(7r)7r and y = ^ , e < ; y(7r)7r,

(ii). If e2 = e then, by (i),

(iii). If #(e) = e; + e'2 where ef = e;, e'2
2 = e'2, and e;e'2 = e'2e[ = 0, then e = i?(e;) +

i?(e'2) and, by (i) and (ii), d(e\f = ^(e'J, t9(e'2)
2 = tf(e'2), ti(e\)#(e'2) = 0(e'2e[) = 0

and likewise i9(e2)t?(ei) = 0. Since e is primitive, either fl(e[) = 0 or i?(e'2) = 0

whereupon either e'x = 0 or e2 = 0 implying that #(e) is primitive, (iv). Let x G U.

It is required to prove that $(x)y G ̂ (t/) for all y G F^ . From

d(x)y = t?(x)r9(i9(y)) - T?(t?(y)x),

this immediately follows since d(y)x G ?7 for {/ a left ideal. The other case follows

in the same manner, (v). If U is a minimal left ideal, let V = ti(U) be the

corresponding right ideal. Let V C V be a proper right ideal of V with v G V \ V

and v 7̂  0. By (iv), i9(V) is a left ideal within U which is proper since t?(u) 7̂  0

and i9(u) G J7\i9(V). This contradiction implies that V — V and hence that V is

a minimal right ideal, (vi). Since elements from different minimal two-sided ideals

annihilate one another, it is sufficient to show that ei9(e) 7̂  0. This is so since

if e = YlireG e(7r)7r) then #(e) = Y1*ZQ ̂ {^)T^~X and the coefficient of I in ei?(e) is

ST€5 e(7r)2 which is non-zero if e G R£/ is non-zero.

The following lemma will be required below.

Lemma 4.1.3. Let x = J^^eg x(x)n. If ( G Q then:

( C - 1 T ) T ; (4.1.3a)

(C7r-1)7r-1; (4.1.3c)

and XC"1 = 5 Z ^ ( T " 1 C > " 1 - (4.1.3d)
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^.1. The double centraliser technique

Proof.

gives (4.1.3a) whereas:

gives (4.1.36). (4.1.3c) and (4.1.3a7) follow from (4.1.3a) and (4.1.36) respectively

by, in each case, substituting C"1 for ( and 7T"1 for TT.

Definition 4.1.4. Let M* = HomF(M, F) be dual to M. M* is a right FQ-module

upon defining:

(vx)u = v(xu), (4.1-4)

for all x G FQ, u G M and v € M*.

Definition 4.1.5. Let the rnap Q, : M ® M* —> FQ be defined by:

n(u,v) = Y,v(7r-1u)Tr, (4.1.5)

for all u G M and v G M*.

L e m m a 4.1.6. The map O is bilinear over FQ in that:

ft^XiUx + .T2U2,t>) — XiQ(ui,v) + x2fl(u2,v) (4.1.6a)

and

&(u, uij/i + v2y2) = fi(u, Ui)t/i + fi(u, v2)y2. (4.1.66)

for all Xi,X2,yi,y2 € F( / , i t , u 1 ) u 2 € M and v,Vi,v2 G M * . / n addition Q is non-

degenerate.

Proof. Let Xi — 52ree XI{T)T and x2 = 5ZTeg X2(T)T. Then, for the first argument:

fl( + X2U2, v) =

(on using (4.1.3c))

V(T~1U2)X2T

(on using (4.1.36))
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4-1- The double centraliser technique

v) + x2il(u2,v).

For the second argument,

v2y2) =

*•€£!

+ Q(u, v2)y2.

Suppose that Q,(u,v) — 0 for all u G A'/. Then X̂ ĝe K71""1")71" = ° a n d
 VCTT"1") = 0

for each TT G ̂  since the group elements are linearly independent in FQ. For 7r = J,

this gives u(u) = 0 and hence v — 0. By a similar argument, ri(u,u) = 0 for all

v G M* implies that u = 0. Therefore fi is non-degenerate.

Definition 4.1.7. The nuclexis FQN of FQ is defined to be the set of all finite sums

of the form

where each u,- G M and each vt G M*.

The bilinearity of Q, with respect to FQ, as determined by Lemma 4.1.6, implies

that FQN is a two-sided ideal in FQ.

L e m m a 4.1.8. The nucleus FQN possesses an idem-potent eN which is central in FQ

and generates FQN through:

FQN = eNFQ = FQeN. (4.1.8)

Proof. By Lemma 3.2.14, FQN, being a two-sided ideal, may be uniquely written

as a direct sum of a subset of the minimal two-sided ideals of FQ:

Then ê r = e,-, + e,-3 + • • • + e,-, where each e,-, as given by 3.2.14, is the unique

idempotent of the minimal two-sided ideal W{. Since each e,- commutes with all the
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elements of FQ, eN belongs to its centre. Since e,- generates W{, eN generates FQN

according to (4.1.8).

Lemma 4.1.9. The idempotent eN G FQN is such that eNu = u for all u G M and

vex = v for all v G M*.

Proof. For all u G M and v G M",

£l(eNu — u,v) = eN0.(u, v) — Q(u, v) = 0,

where the linearity of Q, has been used. Since Q is non-degenerate, it follows that

eNu = u for all u 6 M. Similarly veN = v for all v G M*.

As above, let C = HomFe(Af, M) be the ring of endomorphisms of M which

centralise the action of FQ. In this way M is also viewed as a left C-module. Define

the map * : M (g> M ' -»• End M by

$(u, u)u' = fi(u', u)u, (4.1.10)

for all u,tx' G M and u G M*. Then, for all x G FQ,

^(u, u)(xu') = fi(su', u)u = xQ(u', u)u = x^(u, u)u', (4.1.11)

where the linearity of Q. has been used. This shows that ty(u,v) G C for all u G M

and y G A'/*.

Since eAr G FQN, it can be expressed as some finite sum:

,°), (4-1.12)
i

where each u° G M and each u? G M*.

Lemma 4.1.13. If yc G Homc(Af, M) then there exists an element y G FQN such

that yu — ycu for all u G M. One such y is given by:

lv°). (4.1.13)
i

Proof. Since yc G Homc(M, M),

which, from (4.1.10), implies that:

Q(ycu',v)u = ycQ,(u',v)u,
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for all u,u' G M and v G M*. With y as given by (4.1.13),

- ycu,

since eNu = u from Lemma 4.1.9. This proves Lemma 4.1.13.

In what follows R will be a C-submodule of M. Then

fe>,-) :ti
r
i£R,vie M*\ (4.1.14)

is a right ideal of FQ contained in FQN because of (4.1.66). In particular £l(M,M*) =

FQN.

L e m m a 4.1.15. If R is a C-submodule of M then there exists an idempotent eR G

FQN such that Q(R,M') = eRFQ. In addition, Q(R,M*)M = R.

Proof. Let p G Homc(Af, R) project M onto R. By Lemma 4.1.13, there exists an

eR such that pu = eRu for all u G M, given by:

Note that eR G Sl(R, M"). If a;r = £,. fi(<,Ui) is an arbitrary element of ft(J2, M*),

then

eRxr = ^fi(e f iw;,u,) = J2Q(pur
i,vi) = ^fi(u^,u,) = xr.

This implies that Q,(R,M*) - eRFQ since Q(i?,M*) is a right ideal of FQ. Putting

xr = eR shows that eR = eR.

Since Q(ur,v)u' = ty(u',v)ur for all ur G R, u G M and v G M*, $(u',v) G C,

and R is a C-submodule of M, it follows that Q(i?, M*)M C -R. Also ur = eRur G

n(R,M*)M, showing that Q(R,M*)M = R.

L e m m a 4.1.16. If U = eFQ where e2 = e G FQN, then UM = eM is a direct sum

C-submodule of M. In addition Sl(UM,M*) = U.

Proof. The first part follows directly from noting that UM = eFQM = eM and

that M — eM © (1 — e)M where eM and (1 — e)M are C-submodules of M since,

for each A G C and u G M, Aeu — eAu G eM and similarly A(l — e)u G (1 — e)M.

Since U is a right ideal in FQ and Q,{UM,M') = UQ(M,M'), it follows that

Q(UM,M*) C 17. Now, for x G *7,

^ u > , ° ) G

76
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implying that Q.(UM,M') = U.

Theorem 4.1.17. There exists a bijection between the set of right ideals ofFQN and

the direct sum C-submodules of M. Two right ideals U\ = e^FQ and U2 = e2FQ

generated by idempotents el5e2 G FQN, are equivalent if and only if the C-modules

exM and e2M are equivalent.

Proof. From Lemma 4.1.16, the right ideal U = eFQ in FQN, with e2 = e G FQN,

maps into the direct sum C-submodule UM = eM of M. From Lemma 4.1.15, the

C-submodule R of M maps into the right ideal Q.(R,M*) = eRFQ, where e2
R — eR.

Since Sl(UM, M*) — U and £l(R, M*)M = i2, these maps are inverse to one another

and therefore they define a bijection.

Let 8 : U\ —> U2 be an equivalence map between the right ideals U\ = e\FQ

and U2 = e2FQ. Let 0 ( e i ) = a and 9~1(e2) = b. T h e n , for c,d e FQ,

9{elC) = e{ex)c = 6{e\)c = 0 ( e i ) e l C = aeyc G U2 (4.1.17a)

and

Q~\e2d) = 9-\c2)d = B-\e\)d = 6-\e2)e2d = be2d € ^ . (4.1.176)

Therefore e2FQ = aeyFQ and exFQ = 6e2F^. In addition, for all c G £A = etF^,

6ac = 6aelC = 65(elC) = ^ - ^ e a ^ d c ) = ^-1(e2^(e1c)) = 6-\6(elC)) = elC = c,

where (4.1.17a) and (4.1.176) have both been used, and also c = exc since c G J7i,

and 0(eic) = e2^(eic) since ^(eic) G i72. It is shown in a similar way that a6d = d

for all deU2 = e2FQ.

Define the maps d and 6' between exM and e2M by:

and

0r(e2U2) = be2u2,

for all Ui,u2 G M. These are clearly C-homomorphisms. Combining them gives:

where e2a = a (since a G ^ ) has been used. In a similar way, it can be shown that

68'(e2u2) = e2u2. It then follows that the C-modules t\M and e2M are equivalent.
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Now suppose that there is an equivalence map <f> between the C-modules exM

and e2M. Define:

i i

for all i4x) £ e.\M and v{ £ M*. Then <j£ provides a map from fi(ejM,M*) = exFQ

into Q(e2M,M*) = e2F£. If ^' is defined by:

for all u^ £ e2M and vt £ M*, then </>' maps e2F£ into exF^ such that <f>'<j> and <^'

are the identity maps on exFQ and e2FQ respectively. Since the right action of FQ

commutes with the left action of both <j> and <j6', then <f> and 4>' are equivalence maps

between the right ideals Q(exM,M*) — e^Q and Q.(e2M,M*) = e2F^. Therefore

and e2F^ are equivalent right ideals.

T h e o r e m 4.1.18. If e G FQN is an idempotent then the C-module eM is irreducible

if and only if e is primitive. M is a completely reducible C-module.

Proof. Let e £ FQN be a primitive idempotent and let R be a non-zero C-submodule

of eM. Lemma 4.1.16 shows that eFQ = Cl(eM,M*) whereupon Q(R,M*) C eFQ.

Since O is non-degenerate, Q(R,M*) ^ 0. Since Q(R,M*) is a right ideal and

eFQ is minimal, it follows that eFQ = Q(R,M*). Then, by Lemma 4.1.15, R =

O(jR,M*)M — eM so that eM is an irreducible C-module.

Conversely, let e £ FQN be an idempotent and eM an irreducible C-module.

Let e = ex + e2 where ex and e2 are each idempotents. By Lemma 4.1.16, both

exM and e2M are C-submodules of eM. Since eM is irreducible either exM = 0

or e2M=0. In the first case Lemma 4.1.16 implies that exFQ = Q,(eiM,M*) = 0

whereupon ex — 0. The second case is similar. Therefore either ex = 0 or e2 = 0,

implying that e is primitive.

Because FQN is a completely reducible right F^-module,

where each e,- is a primitive idempotent and each etFQ is a minimal right ideal.

From Lemma 4.1.16, it follows that M = 0,- e,M, where each e,M is an irreducible

C-submodule of M. M is thus completely reducible.

It has been determined that for each primitive idempotent ê  £ FQN, etM

is an irreducible C-module. However, it is often difficult to determine whether an
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idempotent e,- actually belongs to FQN. For this purpose the following lemma is

useful.

L e m m a 4.1.19. / / e £ FQ is a non-zero primitive idempotent of FQ then either

e 6 FQN whereupon eM is an irreducible C-submodule of M, or e f- FQN whereupon

eM = 0.

Proof. From Lemma 4.1.8, xeN = eNx for all x € FQ. For any idempotent e € FQ,

e = eeN + e(l - e^)

for which (eeN-)(e(l — ejy)) = eeNe — eeNeeN = 0 and similarly (e(l — eN))(eeN) = 0.

Then, since e is primitive, either eeN = e or e(l — eN) = e. In the first case, it

follows that e € F ^ and that, since eFQ = Q,(eM,M*) is non-zero, eM is a proper

irreducible C-module. In the second case, for all u 6 M, eu = eu — eeNu = eu — eu =

0 by Lemma 4.1.9, so that eAf = 0.

Theorem 4.1.20. If the nucleus FQN is the direct sum of the minimal two-sided ideals

Wi, W2 , . . . , Ws, then M decomposes into s inequivalent irreducible FQ <g) C-modules:

s

{M, (4.1.20)

where each e,- is the unique central idempotent ofW{. The dimension of eiM is equal

to f{Si where /,• is the dimension of any minimal right ideal e'{FQ C etFQ, for e\ a

primitive idempotent, and s{ is the dimension of the irreducible C-module e\M. The

dimension of M is J2ifist-

Proof. By Theorem 3.2.17 and Lemma 4.1.2, each W{ is the direct sum of /,• linearly

independent right ideals. Thus et- may be written as the sum:

where ep-1 is a primitive idempotent and Vj = e^FQ is a minimal right ideal for j =

1,2,...,/,-. Since the right ideals Vj are mutually equivalent, so are the irreducible

C-modules e^;)M = VjM by Theorem 4.1.17. The left action of FQ on any one e|fc)M

generates all the C-modules e\^M, and hence e,M, through the right ideal analogue

of Lemma 3.2.10. Therefore e,M is an irreducible FQ ® C-module. It remains to

prove that the C-modules e\^M are linearly independent. For j = 1,2,...,/,-, let

u^ E e\j)M with u«) ^ 0. Then if K ^ 1 ) + K2U^ + h KAU<'0 = 0, for all v eM',

0 = Q(KXU(1) + K2U
(2) + • • • + K;,UUi\v)

= Kln(uV\ v) + K2£l(u(2\ «) + ••• + KftQ(u^\ v)
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By Lemma 4.1.16, Q{u^,v) G e^FQ. The linear independence of the right ideals

implies that KX = K2 = • • • — K}i — 0. Thus the C-modules e\^M are linearly

independent and, if st is the dimension of any one of them, then the dimension of

the irreducible FQ ® C-module e,M is /,-5,-.

§4.2. The Weyl module and covariant tensor representations of GL(m)

This section uses the results of the previous to obtain the irreducible GL(m)-

modules which arise as submodules of tensor powers of the defining GL(m)-module.

Let V be the m-dimensional GL(m, F)-defining module with basis {e,- : i =

1,2,. . . , m}. G G GL{m) acts on V by linear extension of the action:

to the whole of V.

The /-fold tensor power G.L(m)-module V®' has a basis {e,-,,-,...,-, : 1 < ik <

m for k = 1,2,. . . , /} where e,-,̂ ...,-, denotes etl <g) e,-2 ® • • • <g> e,,. If G € GL{rn) then,

from (1.5.7), the induced action, G G End(V®'), on this basis is given by:

which extends linearly to the whole of V®1, making V®' a GL(m)-module.

Definition 4.2.3. The symmetric group Si is defined to act on V®' by:

"•e.-j.-j...,-, = ei ._1 ( 1 )«,_1 ( 2 )-»,_i ( l ) 5 (4.2.d)

for 7r G 5;, with linear extension to the whole ofV®'. In addition, V®' is made into

an FSi-module by linearly extending this Si action.

Once it has been determined that EndFSl(V®') is actually the enveloping al-

gebra (linear hull) of the induced action of GL(m) on V®', the results of the last

section will enable the irreducible G.L(m)-modules occurring as submodules of V®'

to be obtained from the analysis of the Frobenius algebra of the symmetric group

presented in Chapter 3.

A general transformation, A G End(V®'), of V®' takes the form:

M^;Vehh...jr (4.2.4)
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Therefore End(F®') has dimension m2'. If A G End(y®') commutes with the action

of F5 ( , then from (4.2.3) and (4.2.4), TrAe,-,,-,...,-, = Aneili:)...il if and only if

for all 7T G 5",. This property characterises the elements of EndFs,(V®') which are

known as bisymmetric. If G G End(V), the induced action, G G End(V®'), is given

by (4.2.2):

<%%::$ =&\Gi9i,~-Gi'it- ' (4-2-6)

It is immediately clear that G is bisymmetric and therefore that the actions of

GL{rn) and FS ; on V®' commute. Let End'FS|(V®') denote the enveloping algebra

of the induced actions of G G GL(m) on V®'. This makes End'FSi(V®') a vector

space for which, if G(1),G(2) G GL(m), then (G(1) + G(2)) G End'FS|(V®') is defined

by:

(G(i) + G(2))e,llV..i( = G(i)etl,v..,-, + Gmeilh...i,. (4.2.7)

The following lemma gives the desired result that the ring of endomorphisms of V®',

commuting with FSi is the enveloping algebra of GL(m). The proof is a reworking

of that given in [Bo63].

Lemma 4.2.8. End'FS((F®') = EndFS,(V®').

Proof. It has already been determined that End'FS((V®') C EndFS,(V®'). If A €

EndF5|(y®') is given by (4.2.4), then (4.2.5) implies that A is completely specified

by those components A{\\l'.'.'.{l for which:

(ii, »i) < (j2, «2) < • • • < Uh *»), (4.2.8a)

where (a, b) < (c, d) if and only if either a < c, or a = c and b < d; and (a, 6) =

(c, a7) if and only if a = c and b = d. Furthermore, these components may be

varied independently. Therefore EndF5|(V®') is a vector space of dimension fm '̂"M

since (4.2.8a) implies that / choices are to be made from m2 pairs of indices with

repetitions permitted. By a similar argument, G;,1 "̂.'/,1 = G .̂̂ G-7'2,-, • • • G-",,, has

An2+f-ij representative elements which satisfy (4.2.8a). Since End'FS|(V®') is a vector

space, if it can be shown that these are linearly independent then the lemma is

proved. To this end, let

£ 9s*~s,i>i,~i,GiluG*>i, • • • G\, = 0, (4.2.86)
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where the sum is over all indices which satisfy (4.2.8a). In this expression, each

term Gil
ilG

i:>
i2 • • • Gj'it may be uniquely written:

(G\)k"(G\)k» • • • (&„)*>" (G\)k» • • • (G2
m)**~ • • • (Gm

m)k-, (4.2.8c)

where kai = #{fc : (a, 6) = (jk,ik), 1 < jfc < /} , 0 < kab < I and E£»=i kab = /. Since

each term satisfying these criteria corresponds to a unique term of (4.2.86), that

expression may be written:

£ gku*a...kmm(Gli)k»(Gl
2)

k» • • • (Gm
mf- = 0 (4.2.8d)

0<kab<l ' •
\|-fcmm=I

Here, the left side is a homogeneous polynomial of degree / in the m2 elements of

the matrix G. If each element is permitted an arbitrary value this would imply

that each coefficient in (4.2.8<i) is zero. However, if m > 2, those elements G with

non-zero determinant have a co-dimension of one in the m2-dimensional space of all

m xm matrices. Thus the conclusion remains valid for G G GL{m) and the lemma

is proved for m > 2. If m = 1 the same conclusion follows directly from (4.2.8c?).

The irreducible GL(m)-submodules of V®' are now obtained via the right

ideals of F5; which, in turn, are obtained from the Young symmetrisers YT\ and the

map "d.

Theorem 4.2.9. The GL(m)-module V®' is completely reducible. Let A € P(l)

and {Tf : i = 1,2, . . . , / A } be the set of Si-standard tableaux of shape A. Then, for

i = 1,2, . . . , / A , Y^x = PT*QT* generates a set of fx linearly independent minimal

right ideals. The GL(m)-modules Y^\V®1 are linearly independent and equivalent.

Proof. Theorem 3.3.19 shows that, for each i = 1,2,..., fx, YT> is a primitive idem-

potent upon normalisation, and generates a minimal left ideal. By Theorem 3.3.22,

these are linearly independent. By Lemma 4.1.2, $(1^*) is a primitive idempotent

upon normalisation, and generates a minimal right ideal for each i = 1,2,... , / A .

These are linearly independent. Let Y^ = ti(YT*), whereupon

-i)'*p) = E E (-i)v1*-1

= T, Y, (-1)0> = PnQn •
O€CTX penTX

The second part of the theorem now follows directly from Theorem 4.1.18.
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Theorem 4.1.17 and Lemma 4.1.19 now imply that for A <E P(l), those Y^V®1 which

are non-zero provide a set of inequivalent irreducible G£(m)-modules present as

submodules of V®1.

The connection with Young tableaux will now be made. For each A 6 P(l)

the tableau Tx with Tfa = ik for k = 1,2,...,/, is conveniently identified with the

basis element w — eilia...i, of V®'. Therefore, among others, both

1 3 2 6 ; \ 9

1 9 and l I (4.2.10)

V
are identified with ei183926 € V®1. The place permutation action of TT £ SI on V®'

as given by Definition 4.2.3 then corresponds to the place permutation action of 7T,

on Tx as given by Definition 3.3.11. Then for w G V®', the tensor Yt'xw € Yt\V
91 is

identified with the Young symmetrised tableau {TA} = YXTX as in (3.3.13d).

The Weyl module Wx is defined to be the span of all {Tx} where the entries

of Tx are all from the set JG£(m) = Nm. However, despite there being m' such

tableaux, the {Tx} are not linearly independent since the Column relations (3.4.2)

and the Garnir relations (3.4.3) apply. In particular, if T'x has an entry repeated

in any column, then {T'x} is zero. In those cases for which \x > m this situation

must necessarily arise in the first column of every tableau Tx. This implies that the

CL(m)-module Yt'xV®' is zero. Conversely, if Xx < m, there exists a Tx for which

{TA} is non-zero (consider, for example, Tx of Definition 2.6.6). Lemma 4.1.19 then

yields the following theorem.

Theorem 4.2.11. [We39]. The set

{Wx = Yt'xV®':\eP(l;m)}

provides a complete list of inequivalejit irreducible GL(m)-modules occurring as sub-

modules ofV®'.

Therefore, since every irreducible covariant (?L(m)-module occurs in V®' for some

/ [Li44], each irreducible covariant GX(m)-module is equivalent to Wx for some

A £ P{1\ m) for some /.

For each Wx a set of favoured tableaux are provided by the following.
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Definition 4.2.12. The tableau Tx is GL(m)-standard if and only if:

(i) the entries are taken from the set ZGL<-m) = Nm ;

(ii) the entries are strictly increasing from top to bottom down each column;

(in) the entries are non-decreasing from left to right across each row.

For example, of the tableaux:

2 2 2 1 1 3 3 4 1 3 3 2
2 4 5 5 , and 44 ; (4.2.13)

4

the first two are CL(m)-standard for m > 5 and the last is not CL(m)-standard

for any m. In addition, neither of the tableaux of (4.2.10) are GL(m)-standard.

The techniques that were employed in Section 3.4 to write a symmetrised

tableau with distinct entries in terms of S^-standard tableaux, may also be used to

write an arbitrary symmetrised tableau with entries from the set XGL^m\ in terms of

GZ/(m)-standard tableaux. Once more, the Column relations (3.4.2) enable {T'A} to

be expressed {Tx} for some column strict Tx. Then, if Tx is not GL(m)-standard,

condition (in) of Definition 4.2.12 implies the existence of a neighbouring pair of

entries T(
A

 b) and T(
A

 6+1) for which T(
A

 b) > T(
A

 i+1) as in (3.4.9). On selecting X to be

the set of positions below and including that of Tx
a 6) in the 6th column, and y to

be the set of positions above and including that of T(
A

 t+1) in the (b + l)th column,

the Garnir relations (3.4.3) enable {Tx} to be written in terms of higher tableaux.

This process can be iterated until just (?.L(m)-standard tableaux remain. Again the

termination of this iterative process is guaranteed by the finite number of tableaux

and the order on the tableaux given by Definition 2.6.8.

As an example of this standardisation procedure, consider the GL(5)-module

Wx where A = (3,3,2), and the non-standard tableau:

5 2 3
Tx = 4 1 2 . (4.2.14)

3 4

The Column relations enable {Tx} to be written in terms of a column strict tableau:

(4.2.15a)
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Let X = {1,2,3} and y — {4}. With an appropriate set of coset representatives,
the Garnir relations then give:

= 0. (4.2.156)

The Column relations imply that the third term here is identically zero. In addition,
they permit the rearrangement of the entries in the second columns of the second
and fourth terms to give column strict tableaux. Thereupon, (4.2.15a) and (4.2.156)
imply that:

C 1 2 2 ] f 1 2 2 )
{ T A } = J 4 3 3 | - J 3 4 3 | . (4.2.15c)

1 5 4 J 1 4 5 J
Consider the first term on the right side of this identity and let X = {2,3} and
y = {4,5}. The Garnir relations then yield the identity:

(4.2.15d)

= 0,

from which the Column relations give:

1 3 2 ) f 1 2 2 )
(4.2.15c)

J I 4 5 J [ 4 5 J
Therefore, from (4.2.15c):

f 1 3 2 )
(4.2.15/)

Note that this identity differs from (4.2.15a) only in that two columns have been
interchanged. Although this column interchange relationship between symmetrised
tableaux is easily obtained from the definition of {TA}, it is superfluous to require-
ments since the Column and Garnir relations are sufficient to obtain the required
expansion in terms of GL(m)-standard tableaux. It may, however, reduce the num-
ber of iterations required to produce that expression.

Now consider the term on the right side of (4.2.15/). Let X = {5,6} and
y = {7,8}. The Garnir relations then give, on ignoring those terms with entries
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repeated within a column:

= 0, (4.2.150)

whereupon, from (4.2.15/):

(4.2.15ft)

the required expansion in terms of GL(5)-tableaux.

Theorem 4.2.16. [JK81]. The set

{{Tx} :TX is GL(m)-standard}

constitutes a basis for the irreducible GL{rn)-module Wx.

Proof. The existence of the standardisation algorithm given above implies that this

set spans Wx. Thus it is sufficient to demonstrate linear independence. To do this,

the following order, which differs from that given by Definition 2.6.8, is introduced

on the set of all tableaux. Let tb
u be the sum of the entries in the 6th row of Tx

for b = 1,2,... , g, where q = \ l . Let \TX\' be the equivalence class of all tableaux

which have their sequences of row sums identical to that of Tx; that is Tx G \TX\'

if t\ — th
u for b = 1, 2 , . . . , q. A total order on the set of these equivalence classes of

tableaux is defined by |TU
A|' > \TX\' if for some k < q, t* > t* with tb

u = tb
v for each

6 = fc + l,fc + 2 , . . . , g .

Let p 6 TZX and a G Cx. Since the action of p, on Tx leaves the elements of Tx

in their original rows, p,Tx 6 |TA|'. If Tx is GX(m)-standaxd then \a,Tx\' < \TX\'

since the action of u, only serves to move smaller entries down the columns. The

inequality here is strict if a ^ I. Let the C?L(m)-standard tableaux be labelled

rpX rp\ rp\
,2i • • • ) " ' l ^ i '

rpX rriX

such that:
Tx 1 rpX

J,2

/ rpX

for 1 < s < r, and such that:

T A
1,1

i

< Tx
2,1

/
<

Tx
3,1

1

< . . . <

(4.2.16a)

(4.2.166)

(4.2.16c)
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It is required to show that if:

where each kitj <E F, then each ktj — 0. If this is not the case, there exist a and b

such that kab ^ 0 with kaj = 0 for 1 < j < b and each fc,-j = 0 for i < a. Thus:

j=b
J 2

xrr Tx XOXTX

In view of (4.2.166) and (4.2.16c), all the tableaux Tx comprising the third term are

such that \TX\ > Tx
b . In addition, since a.T^ > Tx

} for each a G C\{I), all

the tableaux Tx comprising the second term are such that \TX\ > Tx
b . Therefore,

since each tableau is uniquely identified with a basis element of V®', it follows that:

j=b
-a,j — n (4.2.16e)

Since the tableaux Tx
b, T

x
b+1,..., T

X
K are G£(m)-standard and distinct, it follows

that the sets {p»Tx
c : p G 7^} each contain a single unique G.L(m)-standard tableau

c — 6, 6 + 1 , . . . , Ka. It then follows from (4.2.16e) that ka<b = kOib+i = • • • = ka<Ka = 0.

This contradicts kab ^ 0 whereupon all the ki:j of (4.2.16<i) are zero and the theorem

is proved.

Let A e P(l). From (4.2.2) and Lemma 4.2.8, the element G € GL(m) acts

on {Tx} E Wx according to:

T,x
(2)

(4.2.17)

the sum being over all tableaux T'x with entries from the set JGL(m). In order to

determine the action of Ea
b € gl(m) on {TA}, let p be the number of times that the

index 6 occurs in Tx and form the set of p tableaux {TjA,T2
A,... ,TA} by, in each

case, replacing a single index b in Tx with a. Then, using (1.5.9) and Lemma 4.2.8,

Ea"{Tx} = £ { ! ? } . (4.2.18)

For example:
156

5 3

156

2 3

126

5 3
(4.2.19)
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Note that unless the index b appears in T \ then Ea
b{Tx] = 0.

Quintessentially, the Weyl module is as follows.

Theorem 4.2.20. Let A e P(l). The Weyl module Wx is the irreducible GL(m)-

module spanned by {Tx} for all Tx with entries from the set XGL(-m\ modulo relations

(3.4.2) and (3.4.3), and on which GL(m) and gl(m) act according to (4.2.17) and

(4.2.18) respectively.

This theorem effectively provides a definition for Wx.

Since the symmetrised G.L(m)-standard tableaux constitute a basis for Wx,

explicit representation matrices are readily obtained from the actions of GL(m) and

gl(m) on these tableaux. Let sx be the dimension of Wx and TX,T£,.. • , TA
X the

GL(m)-standard tableaux. The action of G 6 GL(m) on each {Tx} yields, according

to (4.2.17), a linear combination of, in general, non-standard tableaux. By using

the techniques of this section, each may be written in terms of the GL(m)-standard

tableaux so that:

{T/}, (4.2.21)

for some set of numbers T^x\G)ji G F. These are the elements of the matrix

which represents G in the representation {A}. In a similar way, the representation

matrix r{ A }(£) of E G gl(m) is given, via (4.2.18), by

f { T x } . (4.2.22)

As an example, consider the 15-dimensional representation {3,1} of G£(3).

Here, the GZ(3)-standard tableaux are given by:

2
3

CM
 

C
O

1
2

3

2

2

3

2

3

1
3

1
3

1
2

3

2

1

3

2

3

2
3

1
3

1
2

2

1

2

3

2
1

2

1
3

1
3

1
2

2

1

1

3

1

2

1
3

1
2

1
2

1

3

1

3

3 , (4.2.23)

1
*

From (4.2.18), the element Ex
3 acts on the symmetrised counterpart of the first of

these according to:

£ j 2 3 3 l ( 2 3 3 1 ^ 2 X 3 1 ( 2 3 l l
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4-2. The Weyl module and covariant tensor representations ofGL(m)

Then:

2 3 3
1

2 1 3

2 3 1
3

f 1 3 3

1 2 3 1
3 J
2 1 3 1
3 I

, from (3.4.2),

I1 3 3 1 , from (3.4.3), and

f 1 2 3 1 f 1 3 3 ' , from (3.4.3).

Thereupon, (4.2.24) implies:

f 9 Q
= 2 1 , 3 _ , 1 3 3 (4.2.25)

Similar calculations, when carried out for each of the tableaux of (4.2.23), yield the

representation matrix:

\

-3

. -1

\

where each zero has been replaced by a dot. The identity (4.2.25) is manifest as

the first column of this matrix.

By using a computer implementation of the techniques presented in this sec-

tion, representation matrices have been obtained for each of the basis elements of

gl(m) in a number of GL(m)-modules Wx. It has been checked that the commu-

tation relations satisfied by the basis elements of gl{m) are also satisfied by the

matrices obtained through the methods of this section. That is, from (2.2.2), that:

[T^(Ea
b) T^(Ec

d)] = 6bT^(Ea
d) + 6dT^(Ee

i). (4.2.26)

This provides a verification that the matrices produced actually constitute a repre-

sentation of gl(m).
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Definition 4.2.27. GL{m)-weight. Let nfL(-m\Tx) be the number of appearances of

the index i inTx. The vector nGL^m\Tx) = (nGL(m)(Tx), nGL(m)(Tx),... , n^m\Tx))

is known as the GL^m)-weight ofTx.

Note that the tableaux present in each Column relation and each Garnir

relation have identical GL(m)-weights. This implies that a symmetrised tableaux is

a linear combination of CL(m)-standard tableaux of the same G£(m)-weight. This

observation is used below.

From (4.2.18) the action of the elements Ea
a on {Tx} for a — 1,2,..., m, give:

Ea
a{Tx} = nGL(m\Tx){Tx}. (4.2.28)

Since the elements Ea
a for a = 1,2,..., m, form a basis for the Cartan subalgebra

of gl(m), the GL(m)-weight 7iGL(m\Tx) of Tx determines the weight of the element

{Tx} G Wx in this basis.

With Tx as in Definition 2.6.6, nGL<m>(T*) = (Al5 A2 , . . . , Am) = A and is the

unique CL(m)-standard tableau of shape Fx for which this is so. If a < b then

Ea
h{Tx) = 0, (4.2.29)

since each term resulting from the right side of (4.2.18) will necessarily have an

entry repeated in some column. Tx is the only CL(m)-standard tableau with this

property. The set {Ea
b : a,b E XGL{m\a < b} is a basis for BGL(m). Thus (4.2.29)

shows that {Tx} is the unique highest weight of the G.L(m)-module Wx.

Theorem 4.2.30. The character of the irreducible representation {A} of GL(rri)

derived from Wx is:

{*}(*)= E * T \ (4.2.30)
Tx:G£(m)-standard

for the class(es) of GL(m) with eigenvalues Xi,x2,... ,xm) where (x) denotes the

vector (x1 ,x2 , . . . ,xm) and xT>' = a;"1 x^7 • • • a;^mL<m)(TX).

Proof. This theorem is proved using the J o r d a n no rma l form G' of the mat r ix

G € GL{rn). Since G' is equivalent to G, the representation matrices F^^(G) and

T^(G') have the same trace. Let the eigenvalues of G be labelled Xi,x2, • • • ,xm.

These appear along the diagonal of G' and, if distinct, G' has zeros elsewhere.

In such a case the set of eigenvalues specifies a unique class of GL(m), to which

both G and G' belong. If G has a repeated eigenvalue, then G' may, in addition

to the eigenvalues on the main diagonal, possess non-zero entries on the diagonal

immediately above. Therefore, in this case, the set of eigenvalues do not determine

90



4-3. Symplectic group modules and trace tensors

a unique class within GL(m). Consider the action of G' on a symmetrised GL(m)-

standard tableau {Tx}. When G' is purely diagonal, (4.2.17) implies that:

G' : {Tx} = x»?t(-)P*>a£?t<->(r»)... x»J?l-HT>){T»h (4.2.30a)

In the case where G' is not diagonal, other symmetrised tableaux will appear on the

right side of (4.2.17). These tableaux will have weights different to that of Tx and

therefore, upon standardisation, will not alter the coefficient of {Tx}. Thus in both

cases the (7.L(m)-standard tableau Tx contributes x"1 x^2 X^T *" ̂ T ̂

to the trace of the representation matrix r^ (Cr ' ) . Summing over all GL(m)-

standard tableaux then yields (4.2.30).

As in the statement of Theorem 4.2.30, it is conventional to use the same

symbol, in this case {A}, to denote both the representation and its character. This

theorem implies that sx, the number of GX(?n)-standard tableaux of shape Fx, is

given by Dm{\} as in (2.5.5a).

The function {A}(.T) defined by (4.2.30) is known as a Schur function or S-

function (see [Sta71], where various ways of defining {A} are considered). Each

•S-function is a symmetric function in its arguments and the ring of symmetric func-

tions has a basis comprising all S-functions [Ma79]. The S-functions feature promi-

nently in the representation theory of the classical groups (see [Li50,Ro61,Ki75,

BK83,Ki89], for example).

§4.3. Symplectic g roup modules and t race tensors

This section expounds the techniques used by Berele [Be86] in using Young tableaux

to construct irreducible Sp(2r)-modules. However, the presentation given here dif-

fers substantially from that given in [Be86]. This is so that when these techniques

are extended and applied to obtain the irreducible modules of other classical groups,

the parallels between them are readily apparent.

Since Sp(2r) is a subgroup of GL(2r), the GL(2r)-module Wx also serves as an

5p(2r)-module. However, Wx is not, in general, an irreducible Sp(2r)-module. This

is due to the existence of trace tensors (defined below) which need to be removed

in order to obtain the irreducible Sp(2r)-modules present in V®'.

Fix r and let J = J2~, as given by (2.1.1a). Let V be the defining Sp(2r)-

module with basis {e,- : i e JsP(2r)}. Then for all G € Sp(2r), GJG = J whereupon

the tensor:
r

Jjkej ®ek= ]T(e< ® e r - e r <g> e,), (4.3.1)
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4-3. Symplectic group modules and trace tensors

is preserved.

Definition 4.3.2. A trace tensor of V®' is any linear combination of terms of the

form:
r

Y^ ® e{ ® y ® e r <g> z - x ® e r <g> y <g) e,- ® z ) , (4.3.2)

where x, y and z are elements of some (possibly zero) tensor power ofV and x®y®z £

V®('-2>. De/me Usp(-2^ C V®' to be the span of all such trace tensors.

The preservation of (4.3.1) under the action of Sp(2r) implies that USp{-2^ is invariant

under the action of Sp(2r). Since V®1 is completely reducible [We39], it follows

that y®'/£/sp(2r) is isomorphic to a subspace of V®' which is invariant under the

action of Sp(2r). Therefore Bx = WX/(WX D USp^) is an Sp(2r)-submodule of

W\

Let (Tx) denote the traceless symmetrised tableau resulting from the removal

of all trace terms (4.3.2) from the symmetrised tableau {TA}, by forming its quotient

with respect to the elements of USp(2r\ Bx is therefore spanned by all (Tx) where

the entries of each Tx are from the set

L e m m a 4.3.3. Let Tx, for i = 1,2, . . . , r , be r tableaux, identical except for the

entries in two positions in the cth column where Tx,a c-, = i and T$b cx = i for some

fixed a, b and c < Ax with 1 < a, b < Ac. Then:

±(TX) = 0. (4.3.3)

Proof. For i = 1,2,... , r, let T;
A be identical to Tx apart from the transposition of

the entries i and i in the cth column. Since Ei=i(^A~3T) € USp(-2r^ and the action by

place permutation of each summand of the Young symmetriser, Yx (3.3.13c), only

serves to give similar terms in USp(-2r') with appropriate changes of the positions (a, c)

and (6,c), it follows that ELi({^A} - {??}) € t/5"(2r). The identity {T>} = - { 2 ? } ,

then implies that E L i i ^ } £ USp^2r\ whereupon (4.3.3) follows from the definition

of (Tx) as a quotient.

The following lemma, despite its technical appearance, is a straightforward

consequence of Lemma 4.3.3, being obtained by the simultaneous application of

the trace condition over a number of index pairs. In the context of trace removal

techniques, it is a generalisation of a result that appears in [Be86], albeit in a vastly

different form. The proof is based on the techniques used in [Be86]. The elements

of the index set XSp(2r) are ordered according to: l < l < 2 < 2 < - - - < f < r .
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4-3. Symplectic group modules and trace tensors

Lemma 4.3.4. Let k be such that 1 < k < At. Let Nr = Ba U Bp U £ U Q U H be

a union of disjoint sets such that, with ba = #Ba, ¥ — #BP, e = #£, g = #Q,

h = j^H and d > g, Xk = ba + b0 + 2e + Id. Let VW) for various w, run over all

distinct (h
dj subsets of 7i of cardinality d, and let the tableaux T* be identical apart

from column k which contains entries from the set Ba U £ U T>w UB^UfU T>w. If the

indices from the set Ba U £ U B? U £ are in the same positions in each T^ and the

indices from T>w U T>w are in column strict order, then:

E C O = 0. (4.3.4)
w

Proof. For (T^) write the column k of T^ as a product, 9W, of elements of Jsp(2r).

For example, if k = 2 and
1 1 2 3

Tx_ 2 2 3
3 2
3 3

then (Tx) gives rise to 8 = 1223. By virtue of (3.4.2), interchanging elements of 9

changes the sign of 8, and the presence of an identical pair of elements implies that

8 = 0. In this notation, (4.3.4) may be proved by showing that:

£ 0 * = O. (4.3.4a)
w

Let u>i = ii. The trace equation, (4.3.3), implies that:

u>,- = 0. (4.3.46)

With B = Ba UB0, split this identity according to:

. (4.3.4c)

Since d > g, on raising each side of this identity to the power of d, the right side is

annihilated by virtue of repeated terms, giving:

( E^.) =°- (4-3-4^)
This implies that:

w7lw7a---w7<l = 0 , (4.3.4c)*7a

71.73 yd€HUBU£
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4-3. Symplectic group modules and trace tensors

whereupon, on setting 6B — n»€B/» ̂ ITies-* an(^ @£ = ILe^^n multiplication by
8B9£ annihilates those terms featuring u>{ for i £ B U £ due to a repeated index.
Therefore:

9B8£ J2 wTlo;7a...a;7<=0, (4.3.4/)

and hence:

I = 0, (4.3.4flf)

where 6% = Uiev^ w,-. Let ^ = 0B0*0£, so that then £ „ ^ = 0. With the indices as

specified in the statement of the Lemma, the application of an identical permutation

to the factors of each 6'w produces 6W. Therefore 9'w = ±9W with the sign being

independent of w. Thus (4.3.4g) is equivalent to (4.3.4a) and the Lemma is proved.

As a simple example, consider the case where r = 4 and \k — 4 for some k.

Let Ba = B? = £ = 0, Q = {1}, H = {2,3,4} and d = 2. Then ba = ¥ = e = 0,

g = 1 and h = 3 so that d > g, and AA = 6a + &" + 2e + Id as required by Lemma

4.3.4. In this particular case (4.3.4c) becomes:

0J2 + <̂ 3 + ^4 = —Wi. (4.3.5a)

As in (4.3.4a1), raising this expression to the power of d = 2 annihilates the right

side, whereupon, as in (4.3.4e):

to>2k->3 + o;2w4 + LO3LO4 = 0 , ( 4 . 3 . 5 6 )

with all other terms zero due to repeated factors. Since B = £ = 0, 9B9£ is the unit

element, and this expression is, as in (4.3.4g)\

e*e£ J2 el = o, (4.3.5c)

where the (hj = 3 terms 8f = u2u3, 9f = u;2^4 and ^ = u3u4 respectively cor-

respond to the subsets Vl = {2,3}, X>2 = {2,4} and T>3 = {3,4} of H. Set-

ting 9'w — 8t39£9'% gives Ylw @'w = 0. In this example the terms are explicitly

9\ = 9s9£8f = UJ2LO3 = 2233, ^2 = 2244 and 8'3 = 3344 so that:

2233 + 2244 + 3344 = 0. (4.3.5d)

This leads to, for instance, the following tableaux identity in which each term 9'w in

the above expression is identified with 9W arising from the corresponding traceless
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4-3. Symplectic group modules and trace tensors

symmetrised tableaux:

= 0. (4.3.5e)

For a more extensive example, consider the case where r = 9 and A* = 9 for

some k. Let Ba = 0, Bp = {4}, S = {7}, Q = {1,3}, H = {2,5,6,8,9} and d = 3.

Then 6° = 0, IP = 1, e = 1, g = 2 and h = 5 so that d > g, and A t = &° + &"+2e + 2d

as required by Lemma 4.3.4. In this particular case (4.3.4c) becomes:

U>6 + U!7 = — U?! — O>3. (4.3.6a)

Raising this expression to the power of d = 3 annihilates the right side, while the

left side yields u) = 35 non-zero terms as in (4.3.4e). Of these, all but [Vj = 10 are

annihilated on mutliplication by QaQ£ = 477, whereupon, as in (4.3.4/):

= 0.
(4.3.66)

Here the ten terms correspond to the ten subsets T>w of Ti of cardinality 3. The

first corresponds to Vx — {2,5,6} while the last corresponds to X>10 = {6,8,9}.

Expanding w{ = ii for each term and rearranging gives:

224556677 + 224557788 + 224557799 + 224667788 + 224667799

+ 224778S99 + 455667788 + 455667799 + 455778899 + 466778899 = 0.
(4.3.6c)

If A = (I9), this results in the following tableaux identity:

to
i
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+
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it-
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100
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I
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= 0.

(4.3.6d)

Standard tableaux for representations of the symplectic group were first ob-

tained by King [Ki76] to provide a convenient means of obtaining weights and

characters of these representations.
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Definition 4.3.7. [Ki76] The tableau Tx is Sp(2r)-standard if and only if:

(i) the entries are taken from the set ZSp(2r\-

(ii) the entries are strictly increasing from top to bottom down each column;

(in) the entries are non-decreasing from left to right across each row;

(iv)T$)>tfori = l,2,...,\1.

Note that each Sp(2?')-standard tableau is GX(2r)-standard if each entry a is ex-

changed for 2a — 1 and a is exchanged for 2a. Also note that since TA is the first

entry in the ith. row for i = 1,2,... , Al5 it follows from condition (Hi) that T£ .̂  > i

for each j = 1,2,. . . , A,-. Finally note that if Ax > r, conditions (i) and (iv) imply

that there exist no Sp(2r)-standard tableaux of shape Fx.

The techniques of Section 4.2 may be applied to the case of the Sp(2r)-module
Bx, once an appropriate order is provided on tableaux with entries from the set
jsP(2r)_ T h i s i s g i v e n b y ? o n c e m o r 6 ) m a p p i n g a e j5P(2r) to 2a - 1 and a G l^2^

to 2a, and then using Definition 2.6.8. The column relations can then be used to

write any traceless symmetrised tableau in terms of a column strict tableau while,

if the column strict tableau Tx violates condition (Hi) of Definition 4.3.7, then the

Garnir relations enable (Tx) to be written in terms of higher tableaux. Violations

of condition (iv) of Definition 4.3.7 are dealt with by the following lemma.

L e m m a 4.3.8. Let Tx be a column strict tableau which is not Sp(2r)-standard in

that T/j+-. < j + for some j + . Then (Tx) may be expressed as a signed sum of traceless

symmetrised tableaux (Tx), where for each w, Tx > Tx.

Proof. Let k = 1 and Q C J5p(2r) be the set of indices in the first column of Tx.

Let A = {i G Nr : i e Q, i 6 Q}, Ba = {i e Nr : i G Q, i$ Q}, B? = {i G Nr :

i G Q, i £ Q}, C = {i G Nr : i <£ Q, i £ Q} and B = Ba U Bfi. Then A, B and

C are distinct with AuBUC = N r, and if a = #A, b = #B and c = #C, then

a + b + c = r and \x = 2a + b. Let j = j + — 1 and J = N;- so that #J7" = j .

The sets created above are now split with respect t o j " : T> = A(~) J, S = A\V,

B0 = Bnj,Bl = B\B0, Q = Cnj and f = C\Q. In addition let H = VUJ7. With

the cardinalities of the sets just created d, e, b0, bi, g, f and h respectively, and the

cardinalities of Ba and B13, ba and b0 respectively, then d+e + bo + bi-\-g + f = r,

h = d + / , Ax = ba + ¥ + 2d + 2e and d + b0 + g = j . The condition T(
x
j+) < f+

implies that 2d + b0 > j since at least the first j + positions are filled with entries
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from the set J U J. This implies that d > g. Therefore the conditions of Lemma

4.3.4 are satisfied and the identity:

£ CO = 0, (4.3.8a)

follows, where the sum is over all f M distinct subsets T>w of 7i and Tx is identical

to Tx apart from the indices from the set T>\JT> in the first column of each portion,

having been replaced by those from the set Vw U Vw. Therefore:

(Tx) = - ^ (Tx). (4.3.86)

Since 'H = T>\JJ7,'D(ZJ and T V\J = 0, each of the terms from the set T is higher

than those from the set T> and it follows that for each term on the right of (4.3.86),

Tx > Tx, thereby proving Lemma 4.3.8.

To illustrate this lemma, let A = (2,13) and consider the 5p(8)-module Bx.

The tableau:
2 2

Tx= 2- , (4.3.9a)

3

is not Sp(8)-standard since for j + = 4, Tfi+s < /+. For this case, the proof of

Lemma 4.3.8 specifies the following sets: Q = {2,2,3,3} and hence A = {2,3},

Ba = 0, Bp = 0, B = 0 and C = {1,4}. With j = j+ - 1 = 3, J = {1,2,3}. Then

splitting the sets A and C with respect to J7", produces the sets T> = {2,3}, £ = 0,

Q = {1} and JF = {4}. Additionally H = {2,3,4}. Note that since d = 2 and

g = 1 then d > g and that, since /i = 3, an expression involving LJ = 3 terms is

expected. In fact, the sets Ba, B13, £, Q and 7i are precisely those in the example

immediately following Lemma 4.3.4, and thus (4.3.5e), the result of that example

is, in this particular case, expression (4.3.8a). From this, the required expression

(4.3.86), with each tableau on the right higher than the original tableau, follows

immediately:
/ 2 2 \ / 2 2 \ / 3 2 \

(4.3.96)

The second term on the right here is not Sp(8)-standard. However, it can written

in terms of such by using a single Garnir relation.
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As a further example, let A = (I9) and consider the Sp(18)-module Bx. The

tableau:
2
2
4
5

Tx = 5 , (4.3.10a)
6
6
7
7

is not 5p(18)-standard since for j + — 7, T,A+N < j + . Tx gives rise to the following

sets: Q = {2,2,4,5,5,6,6,7,7}, A = {2,5,6,7}, B" = 0, B ' = {4}, B = {4} and

C = {1,3,8,9}. With j = j+ - 1 = 6, splitting the sets A and C with respect

to J = {1,2,3,4,5,6} produces the sets V = {2,5,6}, £ = {7}, Q = {1,3} and

T - {8,9}. Additionally H = {2,5,6,8,9}. Then d > g since d = 3 and g- = 2,

and h = 5 implies that an expression involving (I) = 10 terms is expected. In

this particular case, the sets Ba, B13, £, Q and 7i are precisely those in the second

example following Lemma 4.3.4, and thus (4.3.6c?), the result of that example is, in

this case, expression (4.3.8a). This yields the following expression with each tableau

on the right higher than the original tableau:
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In this identity, a number of the tableaux on the right side are not Sp(2r)

the 1st, 3rd and 6th each violate condition (iv) of Definition 4.3.7 for i = 9.

the procedure given by Lemma 4.3.8 enables each of these terms to be

terms of Sp(18)-standard tableaux in one more step.

(4.3.106)

-standard:

However,

written in

Lemma 4.3.11. The set

(TA) : TA is Sp(2r)-standard}

spans the Sp(2r)-module Bx.
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Proof. If the column strict Tx is not Sp(2r)-standard due to a violation of condition

(in) of Definition 4.3.7 then the techniques of Section 3.4 enable the Garnir relations

to be used to write (TA) is terms of higher tableaux. If the column strict Tx violates

condition (iv) of Definition 4.3.7 then Lemma 4.3.8 shows that (Tx) can be written

in terms of higher tableaux. Therefore, by iterating these two procedures, (Tx) may

be written in terms of Sp(2r)-standard tableaux due to the ordering on the set of

all tableaux and their finite number.

This lemma has the direct implication that if A\ > r, then the Sp(2r)-module

Bx is zero since there exist no S'p(2r)-standard tableaux and therefore such a Bx is

zero-dimensional.

Let A <E P(l). Since USp^ C V®' is invariant under Sp(2r), (4.2.17) implies

that the element G G Sp(2r) acts on (Tx) £ Bx according to:

G (T ) = y GTI»T» GTIXTX • • • G-T'*T* (T ), (4.3.12)
\ / Z.^, i ( i ) J ( i ) J ( 2 ) J < 3 ) J ( 0 ( 0 X " V '

the sum being over all tableaux T'x with entries from the set J 5 P O ) . In order to

determine the action of Ca
b G sp(2r) on (Tx), let p and q be the number of times

that the indices b and a respectively occur in Tx. Form the set of p tableaux

{T*!, T^ 2 , . . . , Tx
p) by, in each case, replacing a single index b in Tx with a, and the

set of q tableaux {T2
Aj, Tx

0,..., Tx } by, in each case, replacing a single index a in

Tx with 6. Then, it follows from (4.2.18), (2.2.13) and the definition of (Tx) that:

Ca
b(Tx) = Ea

b(Tx) - sgn(ab)Eia(Tx)

1 = 1 t = l

For example:

/ 1 3 3 \ / 1 3 2 \ / 1 3 2
= ( 2 3 ) + ( 2 3 ) + ( 2 2 ), (4.3.14)

\3 1 / \2 1 / \3 1

where, of course, the second term on the right side is identically zero.

Definition 4.3.15. Sp(2r)-weight. For i = 1,2,. . . , r, let

where n,j(Tx) is the number of appearances of the index j £ XSp(-2r^ in Tx. The vector

nsP(2r)(rA) = (nf»V'\Tx),nipi2r)(Tx),... ,ns/^(Tx)) is known as the Sp(2r)-weight

ofTx.
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By (4.3.13), Ca
a acts on (Tx) to give:

Ca
a(TA) = nfp(2r)(TA)(TA), (4.3.16)

for a = 1, 2, . . . , r. Since the elements Ca
a for a = 1, 2 , . . . , r, form a basis for the

Cartan subalgebra of sp(2r), the Sp(2r)-weight nSp(2r\Tx) of Tx determines the

weight of the element (Tx) £ Bx in this basis.

With Tx given by Definition 2.6.6, ns"(2r\Tx) = (Al5 A2 , . . . , Ar) = A and Tx

is the unique Sp(2r)-standard tableau of shape Fx for which this is so. If a, b £ Nr

and a < b then:

C/( r A ) = 0, (4.3.17a)

and, if a < b then:

Cj(Tx) = 0. (4.3.176)

Tx is the only 5p(2r)-standard tableau with this property. Since {Ca
h : a, b £

N r ,a < 6} U {C? : a, 6 € N r,a < 6} is a basis for Bs
+

p(2r\ (4.3.17) shows that (Tx)

is the unique highest weight of the 5"p(2r)-module Bx.

Theorem 4.3.18. [Ki76] The dimension of the irreducible representation of the

compact simple group Sp(2r,R) of highest weight A is equal to the number of Sp(2r)-

standard tableaux of shape A.

This leads to the following theorem.

Theorem 4.3.19. The Sp(2r)-module Bx is irreducible with basis:

{ {Tx) : Tx is Sp(2r)-standard}.

Moreover [We39], the set {Bx : A £ P(l;r)} provides a complete list of inequivalent

irreducible Sp(2r)-rnodules.

Proof. Since Bx has highest weight A, and from Lemma 4.3.11, and Theorem

4.3.18, a dimension less than or equal to that of the irreducible representation (A) of

Sp(2r, R), it is the Sp(2r, R)-module corresponding to the irreducible representation

(A) of Sp(2r, R). It also holds for 5p(2r, C) since Lemma 4.3.11 is equally valid for

this case, and Sp(2r, R) is a subgroup of Sp{2r, C). The second part of the theorem

follows because firstly every 5'p(2r)-module occurs in V®' for some / [Li44]; secondly,

5"p(2r)-standard tableaux of shape A exist if and only if A\ < r; and thirdly, A is

the highest weight of Bx.

The quintessential structure of Bx may now be stated.
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4-3. Symplectic group modules and trace tensors

Theorem 4.3.20. Let A £ P(l;r). Bx is the irreducible Sp(2r)-module spanned

by (Tx) for all Tx with entries from the set Xs^2r), modulo relations (3.4.2), (3.4.3)

and (4.3.3), and on which Sp(2r) and sp(2r) act according to (4.3.12) and (4.3.13)

respectively.

This theorem effectively provides a definition for Bx.

Through the techniques of this section, explicit representation matrices for el-

ements of Sp(2r) and sp(2r) are readily obtained in the representation (A). Let

bx = A>r(A) be the dimension of Bx and TX,TX,... ,Tb\, the Sp(2r)-standard

tableaux. The action of G G Sp(2r) on each (Tx) yields, through (4.3.12), a linear

combination of, in general, non-standard tableaux. The techniques of this section

enable each to be written in terms of 5p(2r)-standard tableaux, so that:

G(T?) = J2Tw(G)ii(T*), (4.3.21)
i=i

where each ]?(A) ((?)_,•; G F. These are the matrix elements of G in the representation

(A). In a similar way, the representation matrix r ^ ( C ) of C € sp(2r) is given, via

(4.3.13), by:

^ T X ) . (4.3.22)

As an example, consider the 16-dimensional 5p(4)-module Bx where A =

(2,1). In this case, the 5p(4)-standard tableaux are:

(4.3.23)

With these tableaux denoted TA, T2
A,..., Tx

6 respectively, then by (4.3.13), Ci2 acts

on (Tg) according to:

2
2

1
2

2

1

1
2

1
ICM

2

2

1
2

1
2

2

2

2
2

1

to
i

2

to
i

1
2

1

to
i

2

ICM

1
2

1

ICM

2

1

1
2

1
2

1

1

1
2

1

ICM

1

1

= 2( \ 2 ) " 2( 2

For (Tx
6):
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1 1
2

(by (3.4.2)),

for

whereas for

= 0,

2 1 = 0 (by (3.4.2)).

Similar calculations, when carried out for the other Sp(4)-standard tableaux of

(4.3.23), give rise to the following explicit representation of Ci2:

-9 \

-2
-2

-3

-1
-1

1
1

v /
where each zero has been replaced by a dot. The identities obtained above result

in columns 8, 16, 12 and 15 of this matrix respectively.

A computer program has been written dealing with the construction of Bx as

elucidated in this section. This program produced the above matrix, together with

those for the other basis elements of sp(4) in the same irreducible representation

(2,1). The construction algorithm has been checked by confirming that these repre-

sentation matrices satisfy the commutation relations given by (2.2.14). In addition,

representation matrices for sp(2r) in a number of other modules, in particular those

requiring the use of Lemma 4.3.8 in their construction, have been calculated and

validated.
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§4.4. Mixed tensor G£(m)-modules

As in Section 4.2, let V be the defining m-dimensional GL(m)-module with basis

{e1? e 2 , . . . , em}. Let V* be the m-dimensional vector space dual to V with basis

{e^e 2 , . . . , e m } , the dual action e'(ej) = J';- being encoded in the non-degenerate

m x m matrix J. The covariant action of G € GL(rri) on the basis of V,

^ej, (4.4.1)

induces the contravariant action on the basis of V* given by:

Ge' = JTiJG-1 J-1)1^. (4.4.2)

Naturally, these actions extend linearly to the whole of V and V* respectively.

In particular V* is a GL(m)-module. Incidentally, by (4.4.2), it gives rise to a

representation which is equivalent to the contragredient of that corresponding to V.

The actions of GL(m) on V and V* imply that the mixed tensor Y^j=i(J~iy>el ®ei

is invariant under the action of GL(m).

In order to avoid unnecessary complications, the specialisation J = 7m, the

identity matrix, will be made, whereupon the results of this section will pertain

solely to this choice. It will be discussed later as to how a different choice would

have affected the developments of this section.

The mixed tensor space (V*)®v ® V®u has a basis:

{e"lb'~\ia2...a. : 1 < bj < m , i = l ,2 , . . . , t ; ; 1 < a,- < m, i = 1,2,... ,«}

(4.4.3)
nftiprp f,hib3"-bv — pbi /o, _i>3 IQ\ . . . (9\ pbv /c* p (O\ p A , . , A p TKv (A A ~\\ (A A 9^

and (1.5.5), G 6 GL(m) acts upon these basis elements according to:

where repeated indices are summed over.

Definition 4.4.5. The direct product group Sv ® Su is defined to act on the basis

elements of(V*)®v (g> V®u according to:

-K 6i) T • ehlii'"}l' — p'*-1(i)6*-1(2)-*»->(») T4 4 5")
TVWT.C aia3-O. — e a r - l ( . ) a r - l ( 2 ) - a r - l ( . ) ' ^ - t - O ;

where each TT £ Sv and r G Su. This action is extended linearly to make (V')®v ®V®U

an Sv ® Su-module and thence a C(SV ® Su)-module.
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The following notation will be employed. For y G CSV, y : (V)®" ® V®" denotes

y®\ : {V*)®V®V®U, while for x G CSU, x : (V)®"®V®» denotes l ® s : (V*)®"®V®U.

Since if G G GL(rn) then G"1 G GL(m), it follows from (4.4.3) and Lemma

4.2.8, tha t SV®SU and GL(m) commute in their actions on ( V * ) ® " ® ^ " . If ̂  G P (u )

and v G P(u) , it then follows that (Yt'u®Yt',)(V*)®v ® F®" is a GL(m)-submodule of

(V*)®" ® y®u , where F/^ and Yt'v are Young symmetrisers given by Theorem 4.2.9.

As will be seen, (Yt'v ® Yt',,)(V*)®v ® V®u is not irreducible in general, and unless

fii + #i < " i , it is zero.

Let ^ G P ( u ) and i/ G P(v). Each basis element u> = e M a •i><'aia:!...<1. of (y*)®« ®

y®u is identified with the composite tableau T^ obtained from t"'^ by replacing each

integer i by a,- for i — 1 , . . . , u, and each barred integer j by 6̂- for j = 1 , . . . , v. The

barred and unbarred entries of T"'*1 therefore represent contravariant and covariant

indices respectively. For example, if (v; p) = (3 ,2 ;4 ,3 ,1) then w = e21263
41234325 is

identified with:

6 1
3 2 2

T32;431 = 4 3 3 5 . (4.4.6)
1 4 2
2

Following from the action of Sv ® Sy on iy, 5"̂  ® Su acts on T^ by place

permutation. This place permutation action is given by the following.

Definit ion 4.4.7. / / fi G P(u), v G P(v), then Sv ® 5"u acis 6y place permutation on

T°<» to give T">'» = (7r t®r.)Tp^, whereT^ = T ( ^ } fora G Nu a n r f r ^ " = T (^1 ( 6 ) )

/or 6 G N u . T/i25 action extends linearly to CSV ® -Su.

This definition is a direct generalisation of Definition 3.3.11. Here SV®SU acts

to permute the barred (contravariant) entries amongst themselves and to permute

the unbarred (covariant) entries amongst themselves.

Let Tp>li be a composite tableau with entries from the set TGL(m"> in the F"

portion and entries from the set JGL(m) in the F* portion, and let (TP;/i) denote the

symmetrised composite tableau:

(rp;/i) = (Y; ® Y^T"'". (4.4.8)

The symmetrised composite tableau (T^;/i) is thus identified with (Yt'v ® Yt'^)w G

(V)®" ® y®u where T^ is identified with the basis element w G (V*)®" ® V®u. Let

M"'^ denote the span of all such (TP;''). As indicated above, the G.L(m)-module

MP;/J is reducible, in general.
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Since the Young symmetrisers act independently on the two portions of a

composite tableau, the generalisation of Lemmas 3.4.2 and 3.4.3 to this case is

straightforward.

Lemma 4.4.9. Let Tp* be a composite tableau. If r G C and <j> G C, then:

and

(4.4.9a)

(4.4.96)

As for Lemma 3.4.2, this Lemma has the consequence that if TP;'i has an entry

repeated in any column then (T17^) vanishes, and that any (T"1'') may be expressed

as ±(T/£7;/J) for some composite tableau T'p'fi which is column strict, where the

indices from JGL(m) are ordered 1 < 2 < • • • < m and those from JGL(m) are ordered

1 > 2 > • • • > m.

The Garnir relations take the form:

Lemma 4.4.10. For i < j , let X and y be subsets of the entries in the ith and jth

columns, respectively, of either a) f such that #(X U y) > fit, or b) t" such that

#{X U}^ )> u{. Let S(X), S(y) and S(X U y) be the subgroups of a) Su, or b)

Sv, preserving X, y and X U y, respectively. Then if Q(X,y) is a set of right coset

representatives for S(X) ® S(y) in S(X U y), either:

or

= 0,

= o.

(4.4.10a)

(4.4.106)

To illustrate Lemma 4.4.10, consider the module M21;211. On using X =

{1,2,3}, y = {4} and an appropriate set of coset representatives, (4.4.10a) gives

the identity:

' 3
1 2

\

3 1
4

/ 3
1 2

1 3
4

1 2
\

1 4
3
5 /

1
3
2

\

1 5
3

(4.4.11a)
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The use of (4.4.106) with X = {1,2}, y = {3} and an appropriate set of coset

representatives, allows the first term on the right side of (4.4.11a) to be re-expressed:

\ / 3 \ / 2 \
3 1

/ 3
1 2

1 3
4

' 3
2 1

1 3
4

1 3
4

(4.4.116)

with similar identities arising from the application of the same set of coset represen-

tatives to the other two terms on the right side of (4.4.11a). These four expressions

may be combined to yield:

/ 3
1 2

\

3 1
4
5

3
2 I

1 3
4
5

2
3 T

/ 2
3 1

\

1 3
4

1 4
3
5 /

/ 3
2 1

1 5
3

3
2 1

1 4
3
5

/ 2
3 1

1 5
3

(4.4.11c)

The reducibility of the GL(?72)-module Afp;A1 is implied by the existence of

trace tensors. It will be shown that the removal of all trace tensors results in an

irreducible G.L(m)-module.

Definition 4.4.12. A trace tensor of(V*)®v(&V®u is any linear combination of terms

of the form:

J2 w ® e* ® x ® V ® e,- ® 0, (4.4.12)

where w and x are elements of some (possibly zero) tensor power of V*, w (g) x G

(V*)®^"1), y anrf z are elements of some (possibly zero) tensor power of V, and

y ® z e V®^"1). Define UGL^ C (V)®0 ® F®u to be the span of all such trace

tensors.

The invariance of the mixed tensor YlT=i e" ® et under the action of GL(m) im-

plies that f7G£'(m) is likewise invariant. Let {TP;'i} denote the traceless symmetrised

composite tableau resulting from the removal of all trace terms (4.4.12) from the

symmetrised composite tableau (TP;/i) by forming its quotient with respect to the

elements of
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Lemma 4.4.13. For i € xGL(-m\ let T"'11 be m composite tableaux identical except for

the entries in the two positions corresponding to a of f and b of f where T?'11 has

the entries i and i, respectively. Then

E (4.4.13)

Proof. Since ]Ciex°M™> T?'11 G UGL<-m\ and the action by place permutation of each

summand of the Young symmetrisers Yj1 and Y" as in (4.4.8), only serves to give

similar terms in £7G£(m) with appropriate changes of a and b, ^texGL(m> {IT'1'} £

XJGL(m)^ whereupon (4.4.13) follows from the definition of {TP;"} as a quotient.

The following lemma is the mixed tensor analogue of Lemma 4.3.4 in that

the trace condition is simultaneously applied over a number of index pairs, in this

case covariant-contravariant index pairs. The proof is virtually identical to that of

Lemma 4.3.4, but is reformulated here to clarify the distinct roles of the unbarred

(covariant) and barred (contravariant) indices.

Lemma 4.4.14. Let k1 and k2 be such that 1 < kx < vx and 1 < k2 < //i. Let

jGL(m) = BalSB0\JSugi)Hbea union of disjoint sets such that, with ba = #Ba,

b3 = # £ " , e = #£,g = #Q, h = #H and d>g, ukl = W + e + d and jik3 = b" + e + d.

Let T>w, for various w, run over all distinct (h) subsets of Ti of cardinality d, and

let the composite tableaux T ^ , be identical apart from column kx of the F" portion

which contains entries from the set B& U £ U T>w and column k2 of the F^ portion

which contains indices from the set Ba U £ U T>w. If the indices from the sets £, B13,

£ and Ba are in the same positions in each T^ and the indices from T>w and T>w are

in column strict order, then:

EW> = °- (4-4-14)
w

Proof. The entries from the two relevant columns of T^;/J may be schematically

represented thus:
vw

£

W
Ba

£

(4.4.14a)

Write these two columns as a product, 6W, of elements of TGL(m)[JTGL(m\ By virtue of

(4.4.9), interchanging elements of 9W which are either both barred or both unbarred
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changes the sign of 6W, and the presence of an identical pair of elements implies that

0w = 0. In this notation, (4.4.14) will be proved if it can be shown that:

= 0 . (4.4.146)

Let u>i — ii. The trace equation, (4.4.13), implies that:

]Tu>,=0. (4.4.14c)

With B = Ba U B0, split this identity according to:

£ W, = - 5 > , . (4.4.14d)

Since d > g, on raising each side of this identity to the power of d, the right side is

annihilated due to repeated indices, whereupon

( u) = 0. (4.4.14e)
\i£7<UBu£ I

This implies that:

Loy^...uyi=0, (4.4.14/)

whereupon, on setting $B = Iliee^ lTI>eB° * a n d @£ — Yliee^i, multiplication by

6B9£ annihilates those terms featuring u\ for i £ B U £ due to a repeated index.

Therefore:

9s0e Y w-^.-.^^O, (4.4.14*7)

and hence:

where 6»J = n,-6p,. Ui- Let ^ = e B 0 e ^ , so that then ^w 6'w = 0. With the indices as

specified in the statement of the Lemma, the application of an identical permutation

to the factors of each 6'w produces 6W. Therefore 8'w = ±6W with the sign being

independent of w. Thus (4.4.14h) is equivalent to (4.4.146) and the Lemma is

proved.

As an example, consider the case where m = 6, /z = (2,2,1) and v = (1,1),

and deal with the first column of each portion of F"'^ so that ki = 1, k2 = 1, [i.\ = 3

and vx = 2. Let Ba = {1}, B" = 0, £ = 0, Q = {2}, H = {3,4,5,6} and d = 2.
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Then ba = 1, b3 = 0, e = 0, g = 1 and /i = 4 so that d > #, v^ = b3 + e + d and

/2i = 6" + e + rf, as required by Lemma 4.4.14. In this case (4.4.14<i) becomes

U! + u3 + u>4 + u5 + uj6 =—u>2. (4.4.15a)

As in (4.4.14e) raising this expression to the power of d = 2 annihilates the right

side, whereupon, as in (4.4.14/):

UIU3 + UXU>4+U>IUJ5+UJILO6+UJ3UJ4 + LO3U5+OJ3U6+U4U5+U4(JJ6+W5UG = 0 , (4.4.156)

with all the other terms zero due to repeated factors. Since B — {1} and £ = 0,

8B6£ = 1. The multiplication of the above expression by this term annihilates those

terms featuring u>x. Therefore, as in (4.4.

= 0, (4.4.15c)

or, as in (A A.I Ah):

8B8£ J2 € = °> (4.4.15d)

where t h e (h
dj = 6 t e r m s 6f = u^a^, 8f = LJ3U>5, 8f = u;3u;6, 8% = u>4u>5, 8f = u>Au6

and 0f = u)5u!6 respectively correspond to the subsets T>i = {3,4}, T>2 = {3,5},

D3 = {3,6}, D4 = {4,5}, D5 = {4,6} and D6 = {5,6} of H. Setting 8'w = 8B8£8°

gives 5Zu, Q'w = 0. In this example the terms are explicitly 8[ = 8B8£8f — IW3W4 =

13344, 8'2 = 13355, 6>3 = 13366, 8\ = 14455, 8'5 = 14466 and ^ = 15566 so that:

13344 + 13355 + 13366 + 14455 + 14466 + 15566 = 0, (4.4.15e)

and, by rearranging the factors:

34134 + 35135 + 36136 + 45145 + 46146 + 56156 = 0. (4.4.15/)

This leads to, for instance, the following tableaux identity in W'1'1'2'2'1, in which each

term in the above expression is identified with the 8W arising from the corresponding
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composite tableau:

4
3

1 2
3 4
4

• + <

5IC
O

1
3
5

2
4

• + <

6

C
O

I

1
3
6

2
4

5
4

< 1
4
5

2
4

• + <

6
4

1
4
6

2
4

• + <

6
5

1 2
5 4
6

(4.4.15flf)

0.

The GL(m)-module W"^ is defined to be the span of all { T ^ } where each TP;"

is a composite tableau whose F" portion contains entries from the set JGL(m) and

whose F" portion contains entries from the set JGi(m). Then W-" = M"-"/(M"'^ D
TjGL{m)\

Standard composite tableaux for the mixed tensor CL(m)-modules are pro-

vided by the following definition which generalises Definition 4.2.12.

Definition 4.4.16. [Ki76] Let y. g P(u) and v g P(v). Let TP;" be a composite

tableau for which, for i = 1,2,... ,m, a; is the number of entries less than or equal

to i in the first column of the F11 portion of T"'11, and /?,• is the number of entries

greater than or equal to i in the rightmost column of the Fp portion ofT"'1*. T"'^ is

GL(m)-standard if:

(i) each entry in the F^ portion is from the set XG£(m) = {1 ,2 , . . . , m};

(ii) each entry in the F" portion is from the set ZGL(m) = {1,2, . . . ,m};

(in) the entries are strictly increasing from top to bottom down each column;

(iv) the entries are non-decreasing from left to right across each row;

(v) oti + /?,• < i for i = 1,2,.. . , m.

Lemma 4.4.17. Let T"'^ be a composite tableau which is not GL{rn)-standard in that

atj + 0j > j for some j . Then {TP;'1} may be expressed as a signed sum of traceless

symmetrised composite tableaux {T^}, where for each w, T^ > TP;tl.

Proof. The procedure exhibited here makes use of Lemma 4.4.14 and is similar to

that used for the proof of Lemma 4.3.8 in the construction of irreducible 5p(2r)-

modules.

Let Q C XG£("0 U IGL(m) be the set of entries in the first column of each of

the two portions of TP;". Let A = {i g IGL(m) : » g Q, { g Q}, Ba = {i g
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and B = Ba U Bp. Then A, B and C are distinct with A U B U C = JG£(m), and if
a = #.4, 6a = #-Ba, 6̂  = #5" , 6 = # £ , and c = #C, then a + 6 + c =z m, fa = a + 6a

and 2>! = a + 6". Let ,7 = N,- so that # J = j . The sets created above are now split
with respect to J: V = A n J , £ = .4\2>, B0 = Br\J,Bi = B\B0, Q = C D J and
^" = C\^. In addition let 7̂  = D U J . With the cardinalities of the sets just created
a7, e, 60, bi, g, f and /i respectively, then ^ + 6 + 60 + 61+5 + / = m, h = d + f,
fa = a1 + e + 6a, £>! = d + e + 6", and a1 + 60 + g = j . The condition a_,- + ft > j
implies that 2d + 60 > j , so that d > g. Therefore the conditions of Lemma 4.4.14
are satisfied and the identity:

£) {T^"} = 0, (4.4.17a)

follows, where the sum is over all n j distinct subsets Vw of 7{, and T^ is identical
to T"1'' apart from the indices from the set DUD in the first column of each portion,
having been replaced by those from the set T>w U T>w. Therefore:

{T"-"} = - J2 TO"}. (4.4.176)

Since H = DUJ" and each of the terms from the set T is higher than those from the
set D, it follows that for each term on the right of (4.4.176), T^ > TP;", thereby
proving Lemma 4.4.17.

As an illustration of the algorithm described in the above proof, consider the
composite tableau:

4
3

1 2 , (4.4.18a)
3 4
4

and the GX(6)-module W^0--^. Here ax = 1, ft = 0, so that ax + ft = 1 < 1;
a2 = 1, ft = 0, so that a2 + ft = 1 < 2; a3 = 2, ft = 1, so that a3 + ft =
3 < 3; but aA = 3, ft = 2, so that a4 + ft = 5 > 4 implying that the tableau is
not CL(6)-standard. Thus j = 4 satisfies the condition of Lemma 4.4.17, so that
J = {1,2,3,4}. Reading the entries from the first columns of the above tableau
gives Q = {1,3,4,3,4} and hence A = {3,4}, Ba = {1}, B? = 0, B = {1} and
C = {2,5,6}. Splitting the sets A and C with respect to J, as in the proof of
Lemma 4.4.17, produces the sets V = {3,4}, S = 0, Q = {2} and ^ = {5,6}.
Additionally H = {3,4,5,6}. Note that since d = 2 and # = 1 then d> g, and that
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since h — 4, an expression involving \t) = 6 terms is expected. In fact, the sets

Ba, B?, £, Q and 7i are precisely those in the example (4.4.15). The result of that

example, (4.4.15#), is in this case, expression (4.4.17a). From this, the required

expression (4.4.176), with each tableau on the right side higher than the original

tableau, follows immediately:

4

C
O

I

1
3
4

2
4

• = — <

5

C
O

I

1
3
5

2
4

, _ <

6

C
O
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1
3
6

2
4

5
4

1
4
5

2

4

. _ <

6
4

1
4
6

2

4

. <

6
5

1
5
6

2
4

(4.4.186)

Note that, in this case, all but the last of these terms is GL(m)-standard. A single

application of a specific Gamir relation to this term will produce an expression

involving only CL(m)-standard tableaux.

L e m m a 4.4.19. The set

is GL(m)-standard}

spans the GL(m)-module Wp'ift.

Proof. As for covariant GrL(??i)-modules, this lemma is proved by demonstrating

that a standardisation algorithm exists by which non-standard terms may be written

in terms of higher tableaux. If the column strict TP;/1 is not GX(m)-standard due

to a violation of condition (iv) of Definition 4.4.16, then this violation will occur in

either the F^ or the F" portion. If the former, then the Garnir relations (4.4.10a)

may be used on the F11 portion precisely as in Section 3.4 to write {TP;/J} in terms of

higher tableaux, as given by the order of Definition 2.6.19. An example is provided

by (4.4.11a). For the F" portion, violations are dealt with by locating the offending

neighbouring pair of entries and applying the procedure as if this portion of the

tableau were the 'correct' way up. Here, the barred entries, interpreted as negative

integers, ensure that non-standard tableaux are written in terms of higher tableaux.

For example, identity (4.4.116) results from the use of this procedure.

If TP;/i is not GX(m)-standard through a violation of condition (t>) of Definition

4.4.16, then Lemma 4.4.17 shows how to write {TP;/J} in terms of higher tableaux.
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4-4- Mixed tensor GL(m)-modules

By iterating these three procedures, any {TP;P} may be written in terms of

GL(m)-standard tableaux due to the ordering on the set of all composite tableaux

and their finite number.

Note that, in general, the trace relations and the Garnir relations will have

to be applied many times in order to elicit an expression solely in terms of GL(rri)-

standard tableaux. Lemma 4.4.19 has the direct implication that if fli + V\ > m,

then the CL(m)-module W'^ is zero since no GL(m)-standard tableaux exist for

such modules.

Since GL(m) commutes with the action of Sv ® Su, (4.4.2) implies that the

element G € GL(m) acts on {Tp*} <E WP;" according to:

E C f V * { y T T T { } ,
(4.4.20)

the sum being over all tableaux T"7^ with entries in the F^ portion from the set

IGL(m) a n ( i i n t n e pp portion from the set ZGL(™). Since the GL(m)-module V* is

contragredient to V, it follows from (1.5.2) that the element Ea
b acts on the basis

element e' of V* according to:

Ea
be{ = -6ieh. (4.4.21)

Consequently the action on the basis element eMs'"6v
aia2...aii of (V*)®" ®V®U is given

by:
T^i b bib-2- b v

E f.b .iibt-b, _ V^ Cii.ii-ii-iiii+ii. (4.4.22)

v a . H i • a , _ i a a , + i - a 1 , / , u
a
 c Oioj-o. •

i=l i=l

Let p and q be the number of times that the indices b and a respectively occur in

T"'^. Form the set of p tableaux {T^f, Tf^,..., T ĵf } by, in each case, replacing a

single index b in TP;" with a, and the set of q tableaux {TZ?,T£f,... ,Tj£} by, in

each case, replacing a single index a in TP;/i with b. It then follows from (4.4.22)

and the definition of {TP;"} that:

}. (4.4.23)

The following generalises Definition 4.2.27.

Definition 4.4.24. GL(m)-weight. For i = 1,2,... , m, let

nfL(m)(Tp") = nt-(T
P:/I) - nj(TP;"),
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4-4- Mixed tensor GL(m)-modules

where nJ(TP;'') is the number of appearances of the index j G IG i(m) U 2GL^m^ in TP;/I.

The vector nGL(m\T°--») = {nGL(m\T^),nGLim\T"^),... ,nG
i^

m\T"'")) is known as

the GL{m)-weight ofT"'-".

By (4.4.23), Ea
a acts on {Tgi"} to give:

Ea
a{Tv'"} = n? i (m)(TP:"){T l ' : '1}, (4.4.25)

for a — 1,2,. . . , m. Since the elements Ea
a for a = 1,2,. . . , my form a basis for the

Cartan subalgebra of gl(m), the GL(m)-weight nGL(m\T"-ft) of TP;" determines the

weight of the element {TP;"} G W 1" in this basis.

Definition 4.4.26. On fixing m, define TP;/J to be the composite tableau for which

T'/jn = i for 1 < i < /ii anrf 1 < j < ^ o anrf for which T^'X-r.. = m — i/j + z /or

1 < i < #i anrf 1 < j < v{.

When m = 8, this definition implies, for example, that:

8 8
8 7 7

;431 = 1 1 1 1 . (4.4.27)
2 2 2
3

As was noted earlier, only those W'^ need be considered for which fii+Ui < m.

In such a case, the GL(m)-weight of TP;/i is given by (i>; /j,)m (see Definition 2.3.11).

Then (4.4.23) implies that Ea
b{T^} = 0 for all a, b <= JGi(m) with a < b. Moreover,

TP;/i is the only GL(m)-standard tableau of shape F"^ for which this is true. This

shows that {TP;"} is the highest weight vector of W^.

Theorem 4.4.28. [Ki76] The dimension of the irreducible representation of the

compact simple group U(m) of highest weight (u; fi) is equal to the number ofGL(m)-

standard tableaux of shape FV]>i.

This leads to the following theorem.

Theorem 4.4.29. The GL{m)-module W^ is irreducible with basis:

{ {TP;"} : TBi" is GL(m)-standard}

Moreover [We39], the set {WP]" : \i € P(u;s),v G P(v;t),s + t < m] provides a

complete list of inequivalent irreducible GL(m)-modules.

Proof. Since W^ has highest weight (£/; fi), it contains the {/(m)-module corre-

sponding to the irreducible representation {v; //} of U(m). Then, for U(m), the
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4-5. Duality between Garnir and Trace relations

first part of the theorem follows from Theorem 4.4.28 and Lemma 4.4.19. It also

holds for GL(m, C) since Lemma 4.4.19 is equally valid for this case and U(m) is

a subgroup of GL(m,C). The second part of the theorem follows because firstly

every G.L(m)-module occurs in (V*)®" <g) V®u for some pair v and u [We39]; sec-

ondly, GL(m)-standard tableaux of shape FP]I' exist if and only if vx + p.x < m; and

thirdly, (u; fi) is the highest weight of W'li.

The quintessential structure of Wp'^ may now be stated.

Theorem 4.4.30. Let \x <E P(u;s) and v 6 P(v;t) with s + t < m. The GL(m)-

module W'^ is the irreducible GL(m)-module spanned by {Tp^} for all TP;/J with

entries in the F11 portion from the set 2GL(m) and entries from the F" portion from

the set JGL("'), modulo relations (4.4.9), (4.4.10) and (4.4.13) and on which GL(m)

and gl(m) act according to (4.4.20) and (4.4.23) respectively.

This theorem effectively provides a definition for W'^.

The techniques of this section enable explicit representation matrices for el-

ements of GL{m) and gl{m) to be readily obtained in the representation {^;/i},

in a direct extension to the techniques presented in Section 4.2 for the covariant

GL(m)-module Wx.

As indicated earlier, the techniques of this section depend, to a large extent

on the choice of J . In fact, for certain choices of J, for example J = J+, as given

by (2.1.16/c), the GrX(?72)-standard composite tableaux of Definition 4.4.16 do not

provide a basis for the corresponding irreducible GL(m)-module. Nevertheless, in

this particular case, it is possible to define an alternative set of standard tableaux

and to devise a standardisation procedure analogous to that used in this section

to write an arbitrary symmetrised traceless composite tableau in terms of these

alternative standard tableaux. However, such standard tableaux do not readily

yield the weights and characters of the representation {u; /J,} of GL{m).

§4.5. Duality between Garnir and Trace relations

In this section a most intriguing result is presented. It is that any Trace relation

of the type considered in Lemma 4.4.14, implies the validity of a Garnir relation in

the canonical (amongst others) associate module and vice-versa.

In order to demonstrate the duality, a bijection is required between the set

of column strict composite tableaux in an irreducible mixed tensor GL{m)-xn.o6.vle

and the set of column strict tableaux, ordinary or composite, in one of its associate

modules.
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4-5. Duality between Garnir and Trace relations

Definition 4.5.1. Let fi £ P(u;$) and v £ P(v,t) with s + t < m. Let the gener-

alised partition A = (Al5 A2 , . . . , Am) be that corresponding to (u; /i)m . For k £ Z let

(uk; fik)m correspond to the generalised partition A* = (Aj + k, A2 + k,..., Am + k).

The irreducible representations {i>k;fik} for all k £ Z are said to be mutually asso-

ciate. The canonical associate of {u\ fi} is defined to be {A} where A = (vq;fj,q)m with

q = vx so that uq — (0) and fiq — A.

Correspondingly, the associates of a column strict composite tableau are defined by

the following.

Definition 4.5.2. For i = 1, 2 , . . . , V\,..., let J{ C 2GL(m) be the set of indices in the

ith column (from the right) of the F" portion of the column strict composite tableau

Tp;" = T;0°;/J0. Then #J< - v{. Let Kt = lGL^\Ji whereupon #tC{ = m - v{.

The composite tableau T,P, ;/1 is formed from T°,_i ;/1 by removing the first column

of the F"' portion containing the entries from J>, and creating, immediately below

it, the first column of the F^ portion of T*,;/i filled, in column strict order, with

entries from the set /C,-. The tableaux T,P, l/J , for i = 1, 2 , . . . , i/i,..., are said to be

mutually associate. The canonical associate of the composite column strict tableau

Tff;ii is defined to be the ordinary column strict tableau T* — T^'^" with q = vx so

that uq = (0) and f.iq = A. For i < 0, the composite tableaux T^,'^ are obtained

through the reverse of the above process.

The following illustrates these definitions when m = 6:

_ - 3 2 3 5

H O C ^ • ' ~ 4 4

! !

1 3 2 3 5
2 4 4

= » T 53221 = 4 5

5 6
6

I
rp21;3l 3 1 m3211;2 o O

4 3 5

116



4-5. Duality between Garnir and Trace relations

s ^ II
O O O _ 6 6

n331;221 _ O O A ™22;332 1 O O

2 2 " ~
A & A A f

A K 4 4 5
4 5 5 5
5 5 5

5
3 1 1 1 2 2

^ T T ; 4 4 3 i _ 1 1 2 2 __^ ™ 5 5 4 2 _ 2 2 4 4 52 4 4 5 ' 4 5 5 5 '
5 5 5 6 6
6

As exemplified by this last example, the map from TP;/J to T,A defined by 4.5.2 does,

in fact, provide a bijection between sets of GL(m)-standard tableaux.

Lemma 4.5.3. If the composite tableau T"'^ is GL(m)-standard then T,p. '̂  is GL(m)-

standard for each i 6 Z. TA is GL(m)-standard.

Proof. Define the sets Ji, Jo and K^ as for Definition 4.5.2. In addition, let )C0

be the set of the fix indices in the first column of the FM portion of T"'*1. For

j = 1 ,2 , . . . , m, let Jl — {i G Jk • i < j} for k — 1,2, and fC{ = {i G fCk : i < j}

for k = 0,1. Conditions (iv) and (v) of Definition 4.4.16 respectively imply that

# Ji < #J{ and #J> + #)Cj
0 < j for each j = 1,2,. . . , m. Since # J> + #/C| = j ,

the conditions #^2 +$^-1 ̂  i and #/C^ < #/C{ are satisfied for eachj = 1,2,... , m.

Since the remaining entries of T,p, lf> are exactly as for TP;/J, it follows that T^ '^ is

GL(m)-standard. It then follows, by induction, that T,p, '̂  is CL(m)-standard for

all i G N. Conversely, with the above definitions, ^Ji + j^K,\ < j and #X ô < T^^i

imply that #J2
y < #j( and # j / + #/C;

0 < j for each j = 1,2, . . . , m . Thus, if

T^ ;M is GL(?rz)-standard, then TP;M is CL(m)-standard and, by induction, T*t
 ;/J is

GL(m)-standard for all i < 0. This completes the proof.

If J = Ji and K, — ACi are as above, then associated with each transition from

T"'^ to T,p, '̂  is a sign factor given by

w h e r e kt G AT, j i G J, kx < k2 < • • • < km_Pl a n d j i < J2 < ••• < j * , - A t t h i s p o i n t ,

it is convenient to define the map L, : W'^ —> W7 '^1 given by
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4-5. Duality between Garnir and Trace relations

for all column strict TP;/i, extending this map linearly to the whole of W'^. The

following, seemingly mysterious, result is observed.

Theorem 4.5.6. Let fi e P{u; s) and v 6 P(v; t) with s + t <m. If:

is a Trace relation in the GL(m)-module W^ of the type specified in Lemma 4.4.14,

with all the composite tableaux T^ differing only in entries in the Ith column of the

F" portion and the jth column of the F^ portion, and Jw and fCw are defined by

analogy with J and fC in Definition 4.5.2, then for k > /:

^ &-.*-) fay} = 0 (4.5.66)
w

is a Garnir relation of the type (4.4.10a);

; k } o, (4.5.6c)

involving entries in positions X of the (fc — / + l)th column and positions y of the

(fc + j)th column of the F^ portion. Conversely a Garnir relation of type (4.5.6c)

gives rise to a Trace relation of type (4.5.6a).

Proof. Form 8W as for the proof of Lemma 4.4.14 from the indices of the relevant

two columns of T^. Let Aw C JGi(m) be the set of all i € Aw such that i and

i are both present in 0W. Let Bw C JGL(m) be the set of all i G Bw such that one

only of i and i is present in 6W. Let Cw C XGL(m) be the set of all i G Cw such that

neither i nor i are present in 8W. Then, if aw = J£AW, bw = #BW and cw = #C,

aw + bw + cw = m for each w. Factorise 9W = 6^6* where 8^ and 8* are formed solely

of barred and unbarred indices from B and A respectively. Since a Trace relation

involves expressing a number of barred-unbarred index pairs in terms of other such

pairs, Bw, bw and 8^ are constant and their subscripts may be dropped. In addition,

since 8W = 8B8*, it follows that a = aw and c = cw are also constant. Split B into

Ba U Bp, such that i G Ba if i is present in 8B and i <G Bp if 1 is present. If ba = #Ba

and b9 = # ^ , b = ba + V3.

Let S = nwAw, Vw = Aw\£, H = UWVW, Tw = H\VW and g = 1GL^\(H U

SDB) with e = # 5 , d = #©„, /i = #W, / = # ^ , fir = #C?, whereupon h = d + f,

a = d-\- e and c = / + g. Since the Trace equation is of the type specified in Lemma

4.4.14 then d > g. Note that H = VWUJ:
W for each w. With the sets defined in this
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4-5. Duality between Garnir and Trace relations

way, the Trace relation (4.5.6a) may be obtained exactly as in the proof of Lemma

4.4.14. In particular, from (4.4.14/z):

XX (4-5.7)
w

<*>«•> ̂  = Uie£ui a n d w» = «• Then, setting ^ = 8£8" gives:where 6%

and then:

This final equation is that giving rise to (4.5.6a).

Let 8*w be the term of (4.5.66) corresponding to 8W of (4.5.6a). 8*w is a product of

the unbarred terms of 8W together with starred terms from the complement in TGL(m)

of the barred terms of 8W. These latter terms are starred in order to distinguish

them from the unbarred terms of 6*w. In fact, they are dopplegangers which when

unstarred, will form the (k — I + l)th column of the F* portion of T^f . 8*w may

be specified simply: i 6 JGi(">) is present in 8*w if and only if i is present in 8W, that

is i € T>w U £ U Ba; and i G ZGL(m) is present in 9*w if and only if i is not present

in 8W, that is i <£ Vw U £ U B0 and hence i e Tw U Q U Ba. The situation in the

corresponding tableaux may be schematically represented thus:

vw

£

w
Ba

£

vw

Ba

Q

Ba

£ (4.5.8)

On varying w, the terms 8*w run through all partitionings of the set Ti into / starred

entries and d unbarred entries. Since these are to be respectively placed in the

(k — I + l)th and the (k + j ) th column of the F^ portion of T*,f , this is an

expression of Garnir type. It is necessary to check that sufficient indices from the

two columns are involved in this expression. Consider a Garnir relation involving

the set of indices Tw U Ba from the (k — I + l)th column and T>w from the other.

This gives the same expression as the above since each migration of an index from

Ba to the other column results in a repeated entry in that column and thus a zero

term. This expression involves / + ba + d terms from the two columns which is a
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4-5. Duality between Garnir and Trace relations

greater number than the length of the (k — I -\- l)th column, / + g + ba, since d > g.

It remains to show that the sign of each term is as required. By fixing the positions

of the elements from the sets £, £, Ba and #J in T^" and Ba, Q and S in T^tf\ it

can be seen that eC^-7"-) — j-e(^
r».^>»)) the sign being independent of w. For each w,

the factor g(:F™'r>«') is precisely that required for the appropriate coset representative

of the Garnir element giving rise to T^'f . Thus the sign factor of e^-"-7") given in

(4.5.66) is precisely that required to make (4.5.66) a Garnir relation.

By partitioning the two relevant columns of the F^ portions of a set of

tableaux satisfying (4.5.66) into the sets Ba, Q, £ and H = Tw U Vw as in (4.5.8),

and setting B13 to be the remaining indices, the Trace relation corresponding to any

Garnir relation may be found by reversing the above construction.

In order to illustrate Theorem 4.5.8, consider the mutually associate GL(7)-

modules W2'7'2]1 and TV1'1'1'1'1'1, and consider the Garnir relation, in the former of

these modules, which takes the form:

= 0. (4.5.9a)

This is the Garnir relation resulting from permuting the sets of indices from the

positions given by the sets X = {1,3,4} and y = {6,7} as in Lemma 4.4.10a.

Notice that the anticipated 5!/3!2! = 10 terms is reduced to 6 in this case, since

the 4 terms in which two identical indices 1 appear in the second column have been

excluded since they are zero by Lemma 4.4.9.

The corresponding Trace relation may be constructed by noting that, in this

example, the tu-independent sets encountered in the proof of Theorem 4.5.6 are, as

indicated in the final paragraph of the proof:

1
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7

£ = 0, ft ={4 ,5 ,6 ,7} ,

and that d = f = 2. Then QBQ£ = 12 and (4.5.7) becomes:

) — 0,

the sets Vw C H being respectively Vx = {4,5}, T>2 = {4,6}, V3 = {4,7}, VA =

{5,6}, 2?5 = {5,7} and P 6 = {6,7}. Hereupon, 6X = 124455, 62 = 124466, 63 =

124477, 04 = 125566, 05 = 125577, 06 = 126677 and £ L i 6W = 0. In terms of the

120



5
4
2

< 1
4
5

+ -

6
4
2

1
4
6

+ <

7
4
2

1
4
7

O
il

5
2

1
5
6

7
5
2

1
5
7

7

O
il

2
1
6
7

^.5. Duality between Garnir and Trace relations

composite tableaux of W1'1'1'1'1'1, this expression takes the form:

= 0. (4.5.96)

These terms are in one-to-one correspondence with those of the Garnir relation

(4.5.9a), each one being an associate of the corresponding term in (4.5.9a). Note

that the signs in (4.5.96) map to those in (4.5.9a) on multiplication by the respective

Corresponding to Theorem 4.5.6, there is an analogous result concerning a

Garnir relation involving the first and another column of the Fv portion of a com-

posite tableau TP;/1 and a Trace relation involving the first columns of the two

portions of T.", '̂  . The proof of this result precedes along lines similar to that

of Theorem 4.5.6. Although mysterious at first, these two results enable it to be

proved that the GZ(m)-modules W'^ and W"1'^, and hence Wk'li , are isomorphic

upon restriction to SL(m). For the moment consider the GL(m)-modules W'^ and

W ;M solely as vector spaces. By Theorem 4.4.30 these are spanned by all {TP;;i}

and {Tpl;'<1} respectively modulo relations 4.4.9, 4.4.10 and 4.4.13.

L e m m a 4.5.10. The linear map L. : W*

between the vector spaces W'^ and Wp ;;i .

7 ;Ai z's a well defined isomorphism

Proof. Let T"'^ be column strict. By using the Column relations, Garnir relations

and Trace relations, {TP]fi} is uniquely expressible in terms of the GL(m)-standard

tableaux:

.-{27;"}, (4.5.10a)

where each T"'11 is CL(m)-standard. Theorem 4.5.6 shows that to each Trace re-

lation involving the first columns of each portion of some {TP;/'}, there is a Garnir

relation resulting from the action of L,, as given by (4.5.5), on each term. This

Garnir relation necessarily involves {T.p,;/i }. Likewise, every Garnir relation in-

volving the first column of the F" portion of some T"'1' corresponds, through the

action of L», to a Trace relation, necessarily involving {T/,;/1 }• Garnir relations

involving other columns remain as they are under the action of L*. Thus, since if
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4-5. Duality between Garnir and Trace relations

IT" is G£(m)-standard then T ^ is GL(m)-standard, the standardisation of T^'1"'

mirrors, under the action of L,, the standardisation producing (4.5.10). Therefore:

Ctf^EGW.1/1}. (4.5.106)
i

Since this is the result of the application of Lt to (4.5.10a) and the two expressions

in terms of GL(m)-standai~d tableaux are unique, the lemma follows.

In order to utilise these results to deal with W'" and PFpk;'J* as GL{m)-

modules, it is necessary to define the raising and lowering operators which formally

perform the transition from {TP;/'} to {T.p,;/J }. Throughout the remainder of this

section the convention of summing over all repeated indices will be used unless

otherwise indicated.

Let m = s + t,

La^.-a^-b, = J^^ai-a.bi-b,, (4.5.11a)

£«i-«.»»-»« = l e » i - « . » i •••». (4.5.116)
t\

and

jsci-'-c, . / i \J( r jbi---b,ci---c, / -I \st T ci-c,bi- -b, j (A

L e m m a 4.5.13.
K t x = -y {E (-i)'«::(° • • • K-A • (4-5-13)

S- \T€S, /

Proof. €ai~-a.bl-bt = (—1 )**etl...6fOl...a, since the order of the subscripts may be

changed from one to the other by 'passing' each a subscript through each b subscript

and this requires st transpositions altogether. Then, from (4.5.11) and (4.5.12),

TSCi-c. _ , c1-e.b1--b,
J l o i . - o r ~~ . i i c o i - - - a , 4 i - - - 4 ( c

Z .«b.

Since s+t — m, all indices from XGL(-m^ must appear as both a subscript and a super-

script on the right side for non-zero contributions, and thus only if {ax,a2,..., a,} =

{c1? c 2 , . . . , c,}. Then, for fixed distinct 6l5 62) • • • 6(,

The lemma then follows from summing the 6s over all t\ permutations of the set
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4-5. Duality between Garnir and Trace relations

This lemma shows that K is an antisymmetriser, prompting the definitions:

e[ai...a.] = #«;:::£: etl...». (4.5.14a)

and

e [ " l - a . ] _ ftai•••a.ebl-b,^ (4.5.146)

However, the tensor e^1 "'•'•', antisymmetric in the indices J = {ji, •..,i»} is equal

to the tensor:

I

antisymmetric in the set of t contravariant indices K, = {&!,...,&<} = TGL<-m^\J'.

Here, for clarity, the summations are shown explicitly. Thus the operator Lai...atbl...it
may be used to lower an antisymmetric set of contravariant indices. Similarly, the

operator L"1" a'bl"'b' may be used to raise an antisymmetric set of covariant indices.

In each case the tensor is antisymmetric in the new indices. Note that GL(m) does

not act on these new lowered or raised indices directly since, in general, GL(m)

does not commute with the raising and lowering operators:

Lai"'a3hl"'ltGc\l •••Gc'bl

— ^Clet (J-J.L [Lr ) dl • • • {& ) <J,((-r ) ei • • • {Lr ; e ,(jr j , • • • Lr j ,

= (det G)(G~1)a i
d l • • • {G'l)a-d$L

dl"d-Cl"Ci, (4.5.16a)

and similarly,

Lai...a.bl...ti(G-1)\ • • • ( G - T c = (det G)-lG\ • • • G\,Ldl...d.Cl...cr (4.5.166)

The upshot of this analysis is that an antisymmetrised column of a composite

tableau TP]li containing the barred indices from the set J may be replaced by a

column of unbarred indices formed from the complement of J in XGL^m\ provided

that the appropriate factors of (det G) are included for each module action of G €

GL(m). If ux = s and ejl'"j'b'+1"bv
ai...a<t is the tensor corresponding to T"^, then the

ac t ion of Lkl...kljl...jt is to p r o d u c e t h e tensor e(-K'J^eb'+i'"h''[ki...k,]a1--a., a n t i s y m m e t r i c

in the indices from the set fC — XGL(-m^\J. This may naturally be replaced by a sum

over t\ composite tableaux of shape F"1'^1. A column strict representative of these

tableaux may be selected. This tableau is T,",;/J . By the foregoing argument it may

be assumed to be antisymmetric in the indices of that first column. Similarly, the

image of {T"^} under lowering the indices of the first column of the F" portion

may be denoted e^'^^T,",<fi }*, the extra asterisk indicating that it is yet to be
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4-5. Duality between Garnir and Trace relations

shown that these objects have all the properties implied by the Young operators

FM ' and Yv\ That they are antisymmetric in each column follows immediately

from the foregoing argument. Since the lowering operator acts linearly, the space

which they occupy is isomorphic to W]li and hence, by Lemma 4.5.10, isomorphic

to W1'"1. Therefore &J){T°yy may be identified with e ^ ^ T ^ " 1 } and the

lowering operator given by (4.5.11a) may be identified with L, from (4.5.5). The

main point here is that the Garnir relations, newly discovered by virtue of Theorem

4.5.6, enable the 'new' column of the composite tableau T^ '̂  to participate in the

symmetry implied by the composite Young operator Y" ® Yj* . From (4.5.166):

= (detG)L»(G{Tp;"}), (4.5.17)

for all G G GL(m). Therefore, the following theorem has been proved.

Theorem 4.5.18. Let n £ P{u\s) and v 6 P(v;t) with s + t < m. Under restriction

of GL(m) to SL(m), the GL(m)-module W" is isomorphic to W"1'"1. Each of

these modules is isomorphic to Wx where A = (i>q;/j,q) is the partition canonically

associate to (i>; n) where q = vx. The representation {A} of SL(m) is equivalent to

each representation {u';fi'} ofSL(m). The representation {A} = {z??;/i9} of GL(m)

is equivalent to each representation (det G)9"'-^'; fi'} ofGL(m).

Conversely, the following theorem holds.

Theorem 4.5.19. Let /j, £ P(u; s) and v £ P(v; t) with s -f t < m. The isomorphism

of the GL(m)-modules W"'^ and W"1'11 under restriction to SL(m) implies that the

Trace relations and the Garnir illations are equivalent statements; that is, one implies

the other.

Proof. This follows since the operators given by (4.5.16a) and (4.5.166), which define

the isomorphism, may be used to convert between the Trace relations (4.5.6a) and

the Garnir relations (4.5.66).
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5.1. Orthogonal standard tableaux

Chapter 5

Orthogonal Group Modules

§5.1. Orthogonal standard tableaux

This chapter introduces the Young tableaux techniques used to construct irreducible

modules of the orthogonal groups O(m) and SO(m), defined in Definition 2.1.1.

As for the classical groups considered in the previous chapter, these modules are

constructed as submodules of V®' where V is the defining O(m)- or 50(m)-module.

Since 0{m) and SO(m) are subgroups of GL(m), the (jL(m)-module Wx also

serves as a module for these orthogonal groups. As in the symplectic case, Wx is, in

general, reducible due to the existence of trace tensors. The primary objective of this

chapter is to extract these trace tensors in a systematic way and thence to project

the irreducible 0(m)- or 5O(m)-modules out of Wx. However, as a consequence

of the invariant form being symmetric, the situation is more complicated for the

orthogonal groups than for Sp(2r), and trace terms will need to be simultaneously

extracted from two columns of the symmetrised tableaux.

One major difficulty in the orthogonal case is the specification of a set of

suitable standard tableaux. In recent years, a number of authors have derived

various such sets to facilitate the calculation of dimensions, weights and characters

of the irreducible representations. The first such set [KE83] employed indices from

the set Io(-m\ However, it was necessary to count tableaux having certain entry

configurations more than once. This is clearly inconvenient in specifying basis

elements for the irreducible 0(??})-modules. Furthermore, those O(m)-modules that

are mutually associate use the same set of tableaux. The first of these problems was

dealt with in [KT90] by introducing extra indices, each of which could only appear

in a particular position in a tableau. Here the extra indices and the rules associated

with them obviate the need to count any tableau more than once. For O(2r) it is

easy to see how these tableaux are equivalent to those of [KE83]. However, with

a view to the present problem, it is not clear how these extra indices could arise

from the CL(m)-standard tableaux of Wx, and in particular, how O(m) would act

on these indices.

A further set of tableaux for the 0(2r + 1) case was proposed in [Su90].
These employ the index oo with the seemingly extraordinary properties that it may

occur in certain columns more than once, and may not occur more than once in
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5.1. Orthogonal standard tableaux

any one row. Thus, once more, these tableaux seem to offer no hope »f effecting the

reduction of Wx as an O(m)-module.

One feature of the sets of tableaux just mentioned is that if n > m/2 then

each is empty for the case of 0(m). This appears to be at odds with Weyl's reasoning

[We39] that inequivalent irreducible representations of O(rn) are lalelled by those

partitions A for which A\ + A2 < m. In answer to this objection, Iroctor [Pr89]

derived two important sets of tableaux. In the definitions that follow r°(2r) = NrUNr

and J°(2«-+i) = Nr U Nr U {0}, these indices being ordered such tha 1 < 1 < 2 <

2 < - - - < F < r < 0 . Then in the tableau Tx, a,- is the number of indices less than

or equal to i in the first column of TA, and likewise /?,• for the second column of TA,

for each i G Jo(m>.

Definition 5.1.1. [Pr89] With A 6 P(l) and m = 1r or m = 2r + \ let V^ be the

set of tableaux such that Tx £ V^ if and only if:

(i) the entries are taken from the set J o ( m ) ;

(ii) the entries are strictly increasing from top to bottom down eachcolumn;

(in) the entries are non-decreasing from left to right across each rov;

(iv) a, + /?,• < 2i for each i € N r, and a0 + f30 < m;

(v) if, for some i € N r, cxi + /3,- = 2i with â  > /?< and TA. ^ - i and
T{J3.,b) = ?' f°r SOme h then T(pi-l,b) = V

(vi) if for some i <E N r, a{ + fa = 2i with at = /?,• (= i) and Tt l>,= i and

(̂i,») = z for some b then T^_lit) = i.

Conditions (v) and (vi) of this definition may be combined, but disinguishing the

two will prove convenient later. These two conditions are knowi as protection

conditions since in each case, certain combinations of i and i reqtire the i to be

protected by an i immediately above it. Protection conditions simihr to these were

first encountered in the tableaux introduced in [KE83] for O(m).

Definition 5.1.2. [Pr89] With A e P(l) let Qx
m be the set of taieaux such that

Tx € Qt if and only if:

(i) the entries are taken from the set J°(m);

(ii) the entries are strictly increasing from top to bottom down ead column;

(Hi) the entries are non-decreasing from left to right across each rtw;

(iv) a,- + /?,• < 2i for each i £ N r, a; + (3; < 2i — 1 for each i I Nr and
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5.1. Orthogonal standard tableaux

The sets of tableaux Vx
n and <2A, were referred to as fine and coarse tableaux re-

spectively in [Pr90] where each was used to develop a Robinson-Schensted corre-

spondence (see [Kn70]) for 0(m). In order to illustrate these definitions, consider

the tableaux:

- T 1 2 2 3 3 1 2 2 1 1 2
] I 1 3 3 3 1 3 3 2 2
, , ' 2 44 ' 2 4 ' 3
66 3 3 4 3

1 1 3 1 2 3 ! 2 2 (5'L3)1113 III ill l 3 °
2 2 3 , 2 3 3, I 3 ° , 2 0 ,
3 3 3 ; 2 ° 3

3 3 0

labelled T?'2'2, T2
5'4'3'\ T3

3'3'2'2, T3'2'1'1, T4'3'3, T3'3'1'1, T3'3'2'1 and T,3'3'2'1'1 respectively.

Then only T3
3'3'2'2, T5

4'3'3, T6
3|3'M and T3'3'2'1 are respectively members of some V^,

and only Tf'2'1'1 and T,3'3'1'1 are respectively members of some Q^. In particular

Tf'2'2 violates the i = 1 case of condition (iv) in each case, and J^5'4'3'1 violates the

i — 2 case of protection condition (v) of Definition 5.1.1 and the i = 3 case of

condition (iv) of Definition 5.1.2.

Note that in order for V^ and Q^ to be non-empty, conditions (n) and (iv)

of Definitions 5.1.1 and 5.1.2 require that Xl + A2 < m in each case. In fact, there

is a straightforward bijection between V^ and Q^, given in [Pr90], demonstrating

that these two sets are of the same cardinality. Their derivation [Pr89], shows that

this number is the dimension of the irreducible representation [A] of O(m). This is

also given by (2.5.5c). The set V^ also yields the weights and the character of this

representation.

Definition 5.1.4. O(m)-weight. Let m = 2r or m — 1r + 1 and for i = 1,2,.. . , r,

let

where rij{Tx) is the number of appearances of the index j G J o ( m ) in Tx. The vector

n°W(Tx) = (n? (m)(TA),n? (m)(TA),...,n?(m>(TA)) is known as the 0{m)-weight of

T\

Theorem 5.1.5. [Pr89] Let m = 2r or m = 2r + 1. The multiplicity of the weight

(n i ,n 2 , . . . ,ror) in the irreducible representation [A] of O(m) is given by the number
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5.1. Orthogonal standard tableaux

of tableaux TA G V^ such that no(m)(TA) = (n i ,n 2 , . . . ,n r ) . The character of this

representation is given by:

= £ yT*> (5-1.5)

where(y) denotes the vector (yi, y2, ••• ,yr) ana y1 = yx y2 '' • Vr >

for those elements of 0(m) with positive determinant and if m = 2r + 1, eigenvalues

Vi\yi, y^\y2,---,y r~\2/r,l , <"*<* i /m = 2r, eigenvalues y^\yi, y;\y2,...,y;\yr-

Although "P^ goes a long way towards fulfilling all the desired properties of

a definitive set of <9(m)-standard tableaux, the construction of a standardisation

procedure proves tricky. In view of this, a different set of tableaux, closely related

to V^i are used. These new tableaux are especially convenient when the reduction

to SO(m) is made.

Definition 5.1.6. With A G P(l) and m = 2r or m = 2r + 1, the tableau Tx is

O(m)-standard if and only if:

(i) the entries are taken from the set

(ii) the entries are strictly increasing from top to bottom down each column;

(in) the entries are non-decreasing from left to right across each row;

(iv) a,- + /?,- < 1i for each i £ N r ) and a0 + flo 5; rn>

(v) if, for some i G N r, a,- + /?; = 2z with a,- > /?,• and Tfa.^ = i and
T(P,,2) = * then T ( « , - i , i ) = ~i>~

(vi) if, for some i 6 N r, a-j + /?,- = 2i with «,• = /9; (= i) and T^^ = i and

Tfi t) — z for some b then T^_11) = i.

The set of all O(rn)-standard tableaux Tx of shape A is denoted by O^.

This definition implies that of those tableaux given in (5.1.3), only T^'4'3'1, T5
4'3'3,

Te3'3'1'1 and T3'3'2'1 are O(m)-standard for some m.

Note that Definition 5.1.6 differs from Definition 5.1.1 only through their con-

ditions (t>). In order to show that O^ has the desired properties of V^, in particular

that O^ satisfies the analogue to Theorem 5.1.5, it is necessary to construct an

O(m)-weight preserving bijection between V^ and O^.

Let m - 2r or m = 2r + 1. For i = 1,2,... ,r , let V^ C V^ be such that

Tx e V^ if «,- + fr = 2i, o,- > A, T(
A

Oi|1) = t, T(
A , . , „ ^ 7 and T(* j>2) = i. For

example, from (5.1.3), T3
3'3'2'2 € V^f'2 for each m > 8. Then, if TA G P*,,-, Tx 0 O^

since it violates condition (v) of Definition 5.1.6. Let V^o = U [ = 1 ^ . . In general
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5.1. Orthogonal standard tableaux

this union is not disjoint. Each element of V^\Pmi0 satisfies all the conditions of

Definition 5.1.6 so that V^\V^0 C Ox
m. Since P A

0 n 0 ^ « , Vx
n DOx

m = V^\V^Q.

Let fr be an operator such that if TA G V^\V^ti then </>,TA = T \ and if

TA G V^i then </>,TA is obtained from TA by interchanging the entry i in the first

column and the rightmost entry i in the /?;th row:

• k • • i i • k • • i i

j3i • i i i i i i i /?< • i i i i i i i

a.i i a; i

with j , k < i.

It follows that (f>iTx satisfies ô  + /?; = 2z, a ; > /?,-, T(
x
a. ̂  — i, T^_ bs = i for

some b such that TA._j h-> ^ i, thereby violating condition (v) of Definition 5.1.1.

Hence </>,TA ^ "P,*. However, 4>iTx does not violate, for the given i, condition (v) of

Definition 5.1.6.

Let cf> = n?=1 ̂ .-. If TA € Vx\Vx
mfi = Vx

mC\Ox
m then ^TA = Tx G OA . On

the other hand if TA G P,A
0 so that TA $ Ox

m then <̂ TA ^ VA _0 but <̂ .TA G O* .

Hence <^PA C Ox
n, and more precisely </»̂ A - Ox

m since O^\(PA n OXJ = <^PA
0,

as can be seen by comparing conditions (u) of Definitions 5.1.1 and 5.1.6. Finally,

the nature of <̂,- illustrated above implies that <j> is one-to-one and thus a bijection.

In addition cj> preserves weights since under each map <£,-, the list of entries in any

tableau remains fixed. As an example, let A = (5,4,14) and consider:

(5.1.7)

Here <j>i and (f>3 have no effect. Thus the tableau on the left, which is a member of

"Pg and not of Ox, is mapped, under <j>, to that O(8)-standard tableau on the right.

This tableau is not a member of "Pg.

Theorem 5.1.5 can now be stated in terms of the O(m)-standard tableaux.

Theorem 5.1.8. Let in = 2r or m — 2r + 1. The multiplicity of the weight

(rii, n2, • • •, nr) in the irreducible representation [A] of O(m) is given by the number
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5.2. Irreducible O(m)-modules

of O(m)-standard tableaux Tx for which no(m)(TA) = (n l5 n 2 , . . . , n r ) . The character

of this representation is given by:

[A](y)= £ yTi< (5.1.8)
T*.T*O(m)- standard

where (y) denotes the vector (yuy2,... , y r ) and y1 = yl 'y2
3 • • • y" r ^ ' ,

for those elements of O(m) with positive determinant and if m = 1r + 1, eigenvalues

VTl,yi, y ^ 1 , y 2 , - - - , y r " 1 , y r , l , andifm = 2r, eigenvalues y-l,yl,y~1,y2,...,y;l,yr-

§5.2. Irreducible O(?n)-modules

Let V be the defining GL(?7i)-module with basis {e{ : i E T°(m)}. Then, since

O(m) is a subgroup of GL(m), V and the GL(m)-module Wx C V®' also serve as

0(m)-modules. As for the symplectic groups, the 0(m)-module WX is, in general,

reducible due to the presence of trace tensors. As will transpire, the irreducible

O(?n)-modules are also obtained on extracting all appropriate trace tensors from

W\

With m fixed and J = J+ as given by (2.1.16) or (2.1.1c), GJG = J for all

G G O(m), whereupon 0{m) preserves the tensor

E JJkeJ ®ek= E e>- ® e ' ' (5.2.1)

Definition 5.2.2. With respect to 0{m), a trace tensor ofV®1 is any linear combi-

nation of terms of the form:

E x ® e{ ® y <g> er ® z, (5.2.2)
,'€IO(m)

where x, y and z are elements of some (possibly zero) tensor power of V and x®y®z £
) ) c y®i io be the span oj fl// s u c ^ i r a c e tensors.

The preservation of (5.2.1) under the action of O(m) implies that Uo(-m^ is invariant

under the action of O(m). Since V®' is completely reducible [We39], it follows that

y®yj/o(m) j s i s o m o r phic to a subspace of V®', which is invariant under the action

of O(m). Therefore 0x = WX/(WX n t/o(m)) is an O(m)-submodule of Wx.

Let [Tx] denote the traceless symmetrised tableau resulting from the removal

of all trace terms (5.2.2) from the symmetrised tableau {Tx}, by forming its quotient

with respect to the elements of Uo(-m\ Ox is therefore spanned by all [Tx] where

the entries of each Tx are from the set 2o(-m\
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5.2. Irreducible O(m)-modules

Lemma 5.2.3. Let Tf, for i £ Zo{m), be m tableaux, identical except for the entries

in two positions where Tha b~. = i and T$e d\ = i for some fixed a, b, c and d with

a,c < Ai, b < Xa and d < Xh. Then:

£ [T?]=0. (5-2.3)
,-6JO(m)

Proof. Since 5Ziei°<™) T* € (7°(m) and the place permutation action of each sum-

mand of the Young symmetriser Yt
x, defined by (3.3.13c), only serves to give similar

terms in £/°(m) with appropriate changes of the positions (a, b) and (c, d), it follows

that Eiezc^-ot2**} € Uo{m\ whereupon (5.2.3) follows from the definition of [TA] as

a quotient.

The identity (5.2.3) is known as the orthogonal Trace relation.

Once more, it is appropriate to proceed via a rather technical result which

facilitates the simultaneous application of the orthogonal Trace condition over a

number of index pairs.

Lemma 5.2.4. Letkuk2 be such that! < kx < k2 < Xx. Letl°™ = BaUBpU£UGliH

be a union of disjoint sets such that, with ba = ^Ba, b8 = JfcB13, e = $£, g = #Q,

h = #7 i and d > g, Xkl = ba + e + d and Xk2 = bP + e + d. Let Vw, for various

w, run over all distinct (h) subsets of Ti of cardinality d and let the tableaux T£,

be identical apart from column kx which contains entries from the set Ba U £ U T>w

and column k2 which contains entries from the set B13 U £ U T>w. If the indices from

the set Ba U £ U B? U £ are in the same positions in each T* and if, with T>w =

{lw,\,'Ywt2-l • • •,7«,,d}, for fixed i with 1 < i; < d, the indices •yw>i occur in the same

position of the kxth column of each T* and the indices yw>i occur in the same position

in the k2th column of each T*, then:

= °- (5-2-4)
Proof. For [T£] write the columns kx and k2 of T* as a product, 6W, of elements of

I°(m) with each element superscripted either a or (3 to indicate that it arose from

column &! or k2, respectively. For example, if kx = 1 and k2 — 2 then:

1 1 2 3
2 2 3
3 3
3
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gives rise to 9 = la2a3a3aP2 /33 /3. By virtue of the Column relations (3.4.2), inter-

changing elements of 9 with the same superscript changes the sign of 9, and the

presence of an identical pair of elements with the same superscripts implies that

9 = 0. In this notation, (5.2.4) may be proved by showing that:

= 0. (5.2.4a)
w

Let LJi = iaiP and thence wj = iai^. The trace condition, (5.2.3), implies that:

w,- = 0. (5.2.46)
,€IO(m)

With B = Ba U £", split this identity according to:

,. (5.2.4c)

Since d > g, on raising each side of this identity to the power of d, the right side is

annihilated, giving:

( u) = 0. (5.2.4d)

This implies that:

u;Tla;72--.u;7d=0, (5.2.4e)
Tl < >2 < • • • < Td

1 1 . T 2 Ti««U8

whereupon, on setting 8s = ILeiS" ̂  FLes* ̂  an<i ®£ — Tiiee^ii multiplication by

9B9£ annihilates those terms featuring u}{ for i £ B U £ due to a repeated index.

Therefore:

9B8£ Y uyuy •••uyj = 0 , (5.2.4/)

and hence,

where ^ = n,-g©. ̂ - Let ^ = 58fl£^, so that, then J2w &w = 0. With the indices as

specified in the statement of the lemma, the application of an identical permutation

to the factors of each 9'w produces 9W. Therefore 9'w — ±9W with the sign being

independent of w. Thus (5.2.4<z) is equivalent to (5.2.4a) and the lemma is proved.

To illustrate the algorithm described in the above proof, let m = 6, Afcl = 3,

\k2 = 2,Ba = {!}, B" = £ = 0, Q = {1}, H = {2,2,3,3} and d = 2. Then d > g,

A*! = ba + e + d and Xk2 = b0 + e + d as required by the premise of Lemma 5.2.4.
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5.2. Irreducible O(m)-modules

For this example, the trace condition, as in (5.2.4c), is written:

cjf + ̂ 2 + W2 + ^3 + k->3 = —^i5 (5.2.5a)

where the term from Q has been placed on the right side of this equation. Raising

the two sides of this equation to the power of d = 2 yields, corresponding to (5.2.4e):

^1^2 + ^1^2 + ^1^3 + ^1^3 + W5CJ2 + <^>2U3 + ^2^3 + W2W3 + UI<JJ3 + W3W3 = 0, (5.2.56)

with all other terms zero due to repeated factors. Multiplying this identity by

0B8£ = l a annihilates those terms featuring UJJ whereupon:

= 0, (5.2.5c)

and

i -^ac)ac)P na^P , ^oQOr , larfja I

If A = (2,2,1) and kx = 1 and

language of tableaux to give:

1

to
i
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(5.2.5d)

2, then this identity transfers back into the

= 0, (5.2.5e)

corresponding to (5.2.4). The column relations can now be applied to the first and

last of these terms to give an expression solely in terms of column strict tableaux.

Lemma 5.2.4 is now used in each of a sequence of three lemmas dealing with

violations of conditions (iu), (u) and (m) of Definition 5.1.6. In each case, the non-

standard tableau is written in terms of higher tableaux. Once more, the order on

the set of tableaux is provided by Definition 2.6.6, after the entries from X°^m^ have

been mapped into IGL(m) through a —» 2a, a —> 2a — 1, 0 —> m.

L e m m a 5.2.6. Let TA be a column strict tableau which is not O(m)-standard in that

ctj + /3j > 2j for some j . Then [Tx] may be expressed as a signed sum of traceless,

symmetrised tableaux [T*], where for each w, T* > Tx.

Proof. Let kx = 1, k2 = 2, Qa C J o ( m ) be the set of indices in the first column of

T \ and Qp C J o ( m ) the set of indices in the second column of T \ Let A = {i e

jo ( m) : i G Q«, i G Q/J}; B" = {i G Jo(m> : i £ Q « , ^ Q"}, B13 = {i G Xo(m) : i <?

Qa, i e Qp), C = {i G 1°^ :i<?Qa,ig Q0} and B = Ba U BK Then A, B and

C are distinct with A U B U C = l°^m\ and if a = #A, b = # 5 and c = #C, then

a + b + c - m. Let J = {i G J o ( m ) : i < j} so that #J = 2j. The sets created above
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5.2. Irreducible O(m)-modules

are now split with respect to J: T> = Anj,€ — A\T>, Bo — B C\ J, Bx = B\B0,

Q = CDJ and T = C\Q. In addition let H = V U T. With the cardinalities of

the sets just created d, e, 60, 61? o, / and /i respectively, and the cardinalities of

Ba and I?'3, 6a and b0 respectively, then d + e + bo + bi+g + f = m, h — d + / ,

A! = ba + d + e, A2 = &" + d + e and d + b0 + g = 2j. The condition a;- + fa > 2;

implies that 2d + b0 > 2j, and therefore d > g. Thus the conditions of Lemma 5.2.4

are satisfied and the identity:

£ [Tt\ = 0, (5.2.6a)

follows, where the sum is over all (h
d) distinct subsets T>w of 7i, and Tx is identical

to Tx apart from, if T> = {61,..., 6d} and T>w = {7^,1, • • • ,/yw,d}i the pair St and S{ in

the first and second columns respectively of Tx, having been replaced by the pair

~fWii and jWti respectively, for each i = 1,2,... , d. Thereupon:

[Tx] = - £ [Tx). (5.2.66)

Since V C J, T V\ J = § and H = V U J7, each Vw ^ V must include at least

one element from the set J-. Thus, if 61 < S2 < • • • < 8d and for each T>w ̂  D,

7«;,i < 7u,,2 < • • • < 7«,,d, then jW}d > 8d with 6d e J and 7 , ^ ^ J7. Consequently, as

these appear as entries in the second columns of Tx and Tx respectively, it follows

from Definition 2.6.6 that Tx > Tx, thereby proving Lemma 5.2.6.

As an illustration of the algorithm described in the above proof, let A =

(2,2,1) and consider the 0(6)-module Ox and the tableau:

1 2
Tx = 2 2 . (5.2.7a)

2

Here ax = 1, fa = 0, so that on + fa — 1 < 2; but a2 = 3, fa = 2, so that

<̂2 + ^2 = 5 > 4 and the tableau is not O(6)-standard. Thus j = 2. The first two

columns of Tx yield the sets Qa = {1,2,2} and Q0 - {2,2}, whereupon A = {2,2},

Ba = {1}, B0 = 0, C = {1,3,3} and B = {1}. Splitting A and C with respect to

J = {1,1,2,2}, yields V = {2,2}, £ = 0, ^ = {1} and .F = {3,3} and thence

7^ = {2,2,3,3}. Since d = 2 and g — 1, d > g as required by Lemma 5.2.4. Note

that since /i = 4 and d = 2 then an expression involving (^j = 6 terms is expected.

In fact, the sets Ba, B0, £, Q and 7i are precisely those in the example following

Lemma 5.2.4. Identity (5.2.5e) is, for this particular case, expression (5.2.6a). From
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5.2. Irreducible O{m)-modules

this, the required expression (5.2.66), with each tableau on the right higher than

the original tableau, follows immediately:

(5.2.76)
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3 (5.2.7c)

where, incidentally each term on the right is O(6)-standard. This will not be the

case, in general.

Violations of the protection condition (v) of Definition 5.1.6 are dealt with by

using the following lemma.

L e m m a 5.2.8. Let Tx be a column strict tableau which is not O(m)-standard in that

ctj + (3j = 2j for some j with «_,- > /?,- and an unprotected j occurs in the first column,

in that Tx. x = j , T~. n = j and Tx_x 1 ^ j . Then [Tx] may be expressed as a signed

sum of traceless, symmetrised tableaux [Tx], where for each w, Tx > Tx.

Proof. Define Qa, Q0, A, Ba, B?, B, C, a, ba, W, b and c as for the proof of Lemma

5.2.6. Note that here j £ A (since j is in the first column of Tx and j is in the

second) and ] <E C. Let J = {i e To{m) : i < j,i + J} so that # J = 2j - 1. The

sets A, B and C are now split with respect to J: V = APtJ, £ = A\V, Bo =BC\J,

Bi = B\B0, g = C n J and T = C\Q. In addition let H = V U T. Note now that

j' € 7i and j £ T>. With the cardinalities of the sets just created d, e, 60, 6X, g, f and

h respectively, then c? + e + 60 + 6j +</ + / = a + 6 + c — m, h = c/ + / , Aj = ba + d-\-e,

\2 = b3 + d + e and d + b0 + g = 2j — 1. The condition ctj + (3j — 2j implies that

2d-\- b0 = 2j , and therefore d > g. Thus the conditions of Lemma 5.2.4 are satisfied

and the identity:

E [Tw] = °> (5.2.8a)

follows, where the sum is over all Qj distinct subsets T>w of H, and T^ is identical

to Tx apart from, if V = {^,..., 6d} and P^ = {7^,1, . . . , 7«,,d}, the pair (5,- and I,- in

the first and second columns respectively of Tx, having been replaced by the pair

7a,i$- and %_,- respectively, for each i — l,2,...,d. Thereupon:

[Tx] = - E Kl- (5.2.86)
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5.2. Irreducible O{m)-modules

Since D C J , f n j = 8 and H = V U T, each Vw / V must include at least

one element from the set J-'. Apart from the one case Tx arising from the set

T>x — {<5i,..., Sa-i, j}, the argument given in the proof of Lemma 5.2.6 shows that

Tx > Tx. However, even in the exceptional case, Tx > Tx since the entry j in the

second column of Tx has been replaced by the greater entry j . Thus expression

(5.2.86) is that required and the lemma is proved.

As an illustration of the algorithm in the above proof, let A = (2,2,1,1) and

consider the tableau:
1 2

2
3

1 3 (5.2.9a)

and the O(6)-module O<<2-2<1>1\ Here a,- + /?,- = 2t for each of i = 1,2,3. However,

the entry 3 in the first column is not protected. This implies that Tx is not 0(6)-

standard. The above proof specifies that j = 3 and J = {!, 1,2, 2,3}. Tx gives rise

to the sets A = {2,3}, B = B° = {1,1}, B13 = 0, C = {2,3} and thence the sets

V = {2,3}, S = 0, Q = {2}, ^ = {3} and H = {2,3,3}. Then Lemma 5.2.4 yields

the following expression involving f M = Pj = 3 terms:
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This corresponds to (5.2.8a). The second term here is the exceptional term [Tx]

arising from the set T>x — {2,3} C 7~t. Rearranging and reordering the column

entries of (5.2.96) gives:

(5.2.9c)

where, in this case, the two terms on the right side are O(6)-standard.

Violations of the second protection condition (vi) of Definition 5.1.6 are dealt

with by the following lemma.

Lemma 5.2.10. Let Tx be a column strict tableau which is not O(m)-standard in

that, for some j , ctj = flj = j and an unprotected j occurs in the bth column for some

b > 2, in that TfA = ], T£h = j and Tjl1<t ^ ]. Then [Tx] may be expressed as a

signed sum of traceless, symmetrised tableaux [Tx], where for each w, Tx > Tx.
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5.2. Irreducible O(m)-modules

Proof. Proceed as for the proof of Lemma 5.2.8 but instead of working with the
second column, set k2 = b and work with the 6th column, and instead of using the
J defined there, substitute it for J = {i G Jo(m) : i < ]}• Consequently, ] G X>,
j e T and {],j} C H. With V = {Su ... ,6d_u6d = ]} let Vx = {6U ... ,6d_uj}.
Then expression (5.2.8a) has the analogue

[Tx] + [Tx] + J2 Vu[Tx] = 0, (5.2.10a)

where each tableau is column strict, each r]u — ±1, and for each of the terms under
the summation, Tx > TA, In this case, for the exceptional term, Tx may be obtained
from Tx by transposing the j in the first column with the j in the 6th column of
the same row. Incidentally, Tx < Tx. Consider a Garnir element involving those
positions below and including j in the first column and those above and including
j in the 6th column of Tx which yields a Garnir relation (3.4.3), solely in terms of
column strict tableaux. Such a Garnir relation involves [Tx], [Tx] and various [Tx]
for which Tx ^ Tx and Tx ^ Tx for all v:

[Tx] - [Tx] + Y^Vv[Tv\ = °- (5.2.106)

Note that Tx arises from Tx, through the transposition of j and j and consequently
[Tx] has a coefficient of —1 in this expression. Just as Tx > Tx for each u, it can
be seen that Tx > Tx for each v via an argument similar to that following (3.4.9).
Combining (5.2.10a) and (5.2.106) gives:

an expression in terms of tableaux all greater than Tx.

In order to illustrate the above proof, consider the 0(7)-module O^3'3'1^ and
the tableau:

1 2 1
Tx = 2 2 2 . (5.2.11a)

3
Here a protection violation occurs in the second row since a2 = #2 = 2, the first
column contains a 2 but no 2, and the third column contains a 2 but no 2. Thus
j = 2 and the above proof requires that J = {1,1,2}. Tx gives rise to the sets
A = {2}, B = Ba = {1,3}, B" = {!}, B = {1,1,3}, C = {2,3,0} and thence the
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5.2. Irreducible O(m)-modules

sets V = {2}, € = 0, Q = 0, F = {2,3,0} and H = {2,2,3,0}. Lemma 5.2.4 then

yields the following expression:
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The second term is the exceptional term [Tx] on which the action of the specific
Garnir element is required. For this case X — {2,3} and y = {6,7}, whereupon
(3.4.3) yields:

" 1 2 1 ] f 1 2 1 1 f 1 2 1 "
0, (5.2.11c)

where a number of terms with a pair of identical entries in a column have been
omitted since they are zero. Expressions (5.2.116) and (5.2.11c) imply that:
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This expression, with each tableau on the right higher than Tx, corresponds to
(5.2.10c). However, each tableaux here is not O(7)-standard. The techniques of
at least one of the Lemmas 3.4.3, 5.2.6, 5.2.8 and 5.2.10 will need to be reapplied
to each of these terms in order to elicit an expression for [Tx] solely in terms of
O(7)-standard tableaux.

With the above standardisation lemmas established, the argument now closely
follows that of Section 4.3 where the symplectic group modules were obtained.

Lemma 5.2.12. The set

[Tx] : Tx is 0{m)-standard}

spans the O(m)-module Ox.

Proof. If the column strict Tx is not O(?n)-standard due to a violation of condition
(Hi) of Definition 5.1.6 then the techniques of Section 3.4 enable the Garnir relations
to be used to write [Tx] is terms of higher column strict tableaux. If the column strict
TA violates conditions (iv), (v) or (vi) of Definition 5.1.6 then Lemma 5.2.6, Lemma
5.2.8 or Lemma 5.2.10 shows that [Tx] can be written in terms of higher column
strict tableaux. Therefore, by iterating these procedures, [Tx] may be written in
terms of O(m)-standard tableaux by virtue of the ordering on the set of all tableaux
and their finite number.
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5.2. Irreducible O(rn)-modules

This lemma has the direct implication that if \x + A2 > TTI, then the O(m)-module

Ox is zero since in such a case there exist no 0(m)-standard tableaux.

Let A G P(l). Since Uo{m\ specified by Definition 5.2.2, and hence £/o(m) n

Wx C V®1 are invariant under O(m), (4.2.17) implies that the element G G O(m)

acts on [TA] G Ox according to:

GIT I = / GTIXTX GT1*TX • • • GTIXTX \T \I (5.2.13)

the sum being over all tableaux T'x with entries from the set J°(m ) . In order to

determine the action of Ba
b 6 so(2r + 1) or Da

b 6 so(2r) on [TA], let p and 5 be the

number of times that the indices b and a respectively occur in Tx. Form the set of

p tableaux {TX
A,TX

2,..., Tx
p} by, in each case, replacing a single index b in Tx with

a, and the set of q tableaux { T ^ , ^ , , . . . ,Tx
q} by, in each case, replacing a single

index a in Tx with b. It then follows from (4.2.18), (2.2.21) and the definition of

[Tx] that, for o(2r + 1):

1 = 1 1 = 1

and similarly, for 0(2r):

£ ± ] . (5.2.146)
:=1 i= l

These imply that:

Ba
a[Tx) = n^2r+1\Tx)[Tx] (5.2.15a)

and Da
a[Tx] = n°(2r)(TA)[TA]. (5.2.156)

Since bases for the Cartan subalgebras of so(2r + 1) and so(2r) are provided by the

elements Ba
a and Da

a respectively for a = 1,2,.. . , r, the O(m)-weight no(m)(TA) of

TA determines the weight of the element [Tx] G Ox in this basis.

If m = 2 r+ l and \x < r, let Tx be given by Definition 2.6.6. Then n°^m\Tx) =

(A1? A 2 , . . . , Ar) = A and Tx is the unique O(m)-standard tableau of shape Fx for

which this is so. If a, b G Nr and a < b then:

Ba
b[Tx] = 0, (5.2.16a)

Ba
l[Tx] = 0, (5.2.166)

and Ba°[Tx] = 0. (5.2.16c)
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5.2. Irreducible O{rn)-modules

It is readily apparent that Tx is the only O(2r + l)-standard tableau with this

property. Since {Ba
b : a, b <E NP, a < 6} U {Bj : a, 6 G N r , a < 6} U {5a° : a G N r} is

a basis for B^2r+l\ (5.2.16) shows that [Tx] is the unique highest weight vector of

the O(2r + l)-module 0\

If Ax > r, let T>(,-;) = i as before, but only for 1 < i < m — Aj and 1 < j < A,-

(this deals with all but part of the first column). In addition, for m — A\ < ii < r

let T ^ , . , ^ x) = 7 and 2* Xx+W_mil) = i. Finally, let T*(Xi|1)_= 0. For instance, if

m = 9 and A = (3,2,1,1,1,1) then:

1 1 1
2 2

Tx = ? . (5.2.17)

4
0

Once more each case of (5.2.16) holds. However n°^m\T^) = (A*, A; , . . . , A;) = A*

where A* = m - A\ and \* = A,- for i > 1. Thus n°(m)(T^) = n°(m)(T^*) and Ox and

OA* are not distinguished as 5o(m)-modules. As will be seen later, they are distinct

as 0(m)-modules. For now this will be assumed.

If m = 2r and Aj < r, then T^ is again provided by Definition 2.6.6. If m = 2r

and Ax > r then TA is given by the same prescription as for the m — 1r + 1 case

described above except that the index 0 is not entered. Thereupon, the so(2r)-

analogues of (5.2.16a) and (5.2.166), with '.£?' replaced by '£)', result in the same

conclusions for O(2r) as for O(2r + 1). This leads to the following theorem.

Theorem 5.2.18. The O(m)-module Ox is irreducible with basis:

{ [Tx] : Tx is O(m)-standard}.

Moreover [We39], the set {Ox : A\ + A2 < m} provides a complete list of inequivalent

irreducible O(m)-modules.

Proof. Since Ox has highest weight A, it contains the O(m)-module corresponding

to the irreducible representation [A] of O(m, C). That first part of the theorem then

follows from Theorem 5.1.8 and Lemma 5.2.12. The second part of the theorem

follows because firstly every 0(m)-module occurs in V®' for some / [Li44]; secondly,

O(m)-standard tableaux of shape Fx exist if and only if \x + A2 < rn; and thirdly, if

Ai < m/2 then A is the highest weight of Ox and if Ax > m/2 then A* is the highest

weight of Ox, but Ox and Ox' are inequivalent 0(m)-modules.
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5.2. Irreducible O(m)-modules

The quintessential structure of 0x may now be stated.

T h e o r e m 5.2.19. Let A £ P(l) with Ax + A2 < " i . Ox is the irreducible O(m)-module

spanned by [Tx] for all Tx with entries from the set Jo ( m ) , modulo relations (3.4.2),

(3.4.3) and (5.2.3), and on which 0{m) and so(m) act according to (5.2.13) and

(5.2.14) respectively.

This theorem effectively provides a definition for Ox.

The techniques of this section enable explicit representation matrices for ele-

ments of O(m) and so(m) to be obtained in the representation [A]. Let ox = .Dm[A]

be the dimension of Ox and let Tx, T2\ . . . , Tx
x be the O(m)-standard tableaux. The

action of G £ O(ni) on each [Tx] yields, through (5.2.13), a linear combination of,

in general, non-standard tableaux. The techniques of this section enable each to be

written in terms of O(m)-standard tableaux, so that:

G[Tx]=J2T^(GUTxi (5.2.20)

where the F^(G)j,- £ F are the matrix elements of G in the representation [A]. In a

similar way, the representation matrix T^X\B) of B £ so(m) is given, via (5.2.14),

by:

t w [ r / ] . (5.2.21)

Note that in the reduction of an arbitrary traceless symmetrised tableau to a linear

combination over the O(??i)-standard tableaux, the coefficients are integral apart

from those arising from using the algorithm of Lemma 5.2.10. In this case, factors

of 1/2 may occur. Consequently, for the basis elements, Ba
b or Da

h of so(2r + 1)

or 5o(2r) respectively, the matrix elements, T^x\Ba
b)ji or T^(Da

b)ji, are rational

numbers whose denominators are integral powers of 2. This situation contrasts

with that of the GL(m)-modules and 5p(2r)-modules considered in Chapter 4,

where the coefficients of the standard terms and the representation matrix elements

are all guaranteed to be integral.

As an example, let A = (2,1) and consider the element B2
l € so(5) in the

35-dimensional 0(5)-module Ox. Then if:

A 1 2rpX J-

~ 2
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the action of JEV on [Tx] is given, via (5.2.14), by:
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(from (3.4.2) and (3.4.3)).

(from (5.2.3) or (5.2.10a))

1 1
2

1 2
1

(from (3.4.2)),

(from (3.4.3) or (5.2.106)),

1

2

B,'

1 2
1

i 1 2

2 2
2

1 2
1

2 °D
3 [ 2 2
2 2

(as in (5.2.10c)).

[
2 0

The calculation need not be so complex, as the following example makes clear:

2 2
0

= S, 2 2
0

- S r
si 2 2

0
1 2
0

Similar calculations, when carried out for each of the thirty-five O(5)-standard

tableaux in Ox, yield the following explicit representation matrix r '2 '1^^1) for B21:

142



5.2. Irreducible O(m)-modules

/ . . 1 . . . .

. -i

. . .-i .

I

2 . .
. . 2

- i

- i

. . . -1

3 . .

. . 1

\ . . . . . . I

where each zero has been replaced by a dot. The two calculations carried out above

give the entries in the 31st and the 6th columns of this matrix, respectively.

The algorithmic nature of the process lends itself to computer implementation.

The above matrix has been produced in this way, together with similar matrices for

the remaining generators of so(5) in the same irreducible representation [2,1]. As a

check on the calculations it has been confirmed that the resulting matrices satisfy

the commutation relations (2.2.22). A large number of O(m)-modules have been

constructed and verified in a similar way. As an additional check, representation

matrices for arbitrary elements of the Lie algebras so(rn) have been generated from

the representation matrices of the simple root vectors via (2.2.19) and (2.2.23), these

simple root vector representations having been obtained through the techniques of

this section. These agree with the matrices obtained directly from (5.2.21).

The techniques of this chapter now enable the O(m)-modules 0x to be used

to yield the characters of the elements with determinant —1 directly.

Theorem 5.2.22. If m = 2r + 1 is odd, then the character of the representation [A]

is given by:

W(y)= £ (-1)""<TV\ (5.2.22a)
Tx:TxO(m)- standard

143



5.2. Irreducible O{rn)-modules

where (y) denotes the vector (yuy2,. • • ,yr) andyT* = y"' (T 'y^3 (T • • • y?°(m)(TX),

for those elements of 0(2r + 1) with eigenvalues yfSyi, y^1 ,y2,. . . jy"1^,-, —1, and

thus determinant — 1. If m = 2r is even and:

{ yT* if neither 1 nor 1 is present in Tx;

-yT" if both 1 and 1 are present in Tx; (5.2.226)

0 otherwise,
then the character of the representation [A] is:

£ *TA> ' (5-2-22c)
T*.T>'O(m)-atandard

for those elements of 0(2r) with eigenvalues —1,1, y^1,J/2) • • • ̂ yrSj/rj a ^ thus de-

terminant —1, where yx = 1.

Proof. If m = 2r + 1, consider the following generic element of O(2r + 1):

(V ° W2^1 ° )©-e(V ° )©-i. (5.2.22d)
\ o yi / \ o 1/2/ V 0 ^ /

By (5.2.13), its action on [TA] yields (-l)n°(Tl)yT>[TA]. Summing the coefficients
over the set of O(m)-standard tableaux which provide a basis for Ox, then yields
(5.2.22a) as the trace of the matrix representing (5.2.22c?).

For m = 2r, consider the following generic element of O(2r):

G ( ° y ) ® ( y l ! ° ) ® ® ( y " 1 ° V (5

Let Tx be O(m)-standard. By (5.2.13), the action of G on [Tx] yields yTX[T'A],
where T'A is identical to TA except that each 1 has been changed to a 1 and vice-
versa. If TA contains neither, then T"A = Tx and yT appears on the diagonal of the
matrix representing G. If TA contains Is or Is, but not both, then T'A is also O(m)-
standard. Therefore, since T'x =fi Tx, this case contributes nothing to the trace. If
Tx contains both Is and Is, then Definition 5.1.6 implies that both occur in the
first column and neither occur elsewhere. T'A thus has the two entries reversed
and therefore, by the Column relations, [T'x] = — [TA]. This case thus contributes
—yT to the trace of the matrix representing G. Summing over the O(m)-standard
tableaux, as above, proves (5.2.22c).

Theorem 5.2.22 has the straightforward corollary that if Ai = r then [A](y) = 0
for elements of O(2r) of determinant — 1. In [Pr89] a result similar to Theorem
5.2.22 is obtained. Although the contribution from each standard tableau differs
from that given here, the overall characters are in agreement.
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§5.3. Irreducible SO(m)-modules

Let Sx be the 5'O(m)-module arising from the restriction of the 0(m)-module Ox

to the subgroup SO(m) of O(m). As was stated in Section 2.5, the representations

[A] of O(m) remain irreducible on restriction to SO(m) if and only if Aj ^ m/2.

Thus, if \i ^ m/2, then Sx is an irreducible ,f>0(m)-module and the construction

procedures of the previous section can be used to obtain these irreducible SO(m)-

modules. In particular, if Ax 7̂  m/2 then the O(m)-standard tableaux will also

be referred to as 50(m)-standard tableaux. It is the purpose of this section to

elucidate the decomposition of the 5'O(2r)-module Sx when A\ = r and to use this

analysis to derive a set of 5O(2r)-standard tableaux and devise a standardisation

algorithm. It will be also be shown that certain pairs of the S'O(m)-modules Sx are

equivalent.

The analysis of this section borrows a number of the notions employed in

Section 4.5. Although the two are related, the notions of this section are distinct

and should not be confused with the corresponding notions of Section 4.5.

Definition 5.3.1. Associate partition. Fix m and let A 6 P(l) be such that Ai + A2 <

m. Define A*, the partition associate to X, to be such that A* = m — Ai and At* = A,-

for i > 1.

Since Ax + A2 < m, it follows from Aj = m — \i and A2 = A2 that \\ > A2. This

verifies that A* is indeed a partition. Furthermore, from Xx > A2, it follows that

Aj + A2 < m. Thus Ox' is also an irreducible O(m)-module. The two O(m)-modules

Ox and Ox' are intimately related and are said to be associate. If Aj = m/2 then

A* = A and both A and Ox are said to be self-associate.

Definition 5.3.2. Associate tableau. Fix m, let A £ P(l) be such that A\+A2 < m and

let s = Aj. Let Tx be a column strict tableau with entries in the first column from the

set J •= { i i , i 2 , . . . , i 3 }- The associate ofTx is defined to be that column strict tableau

Tx' which differs from Tx only in its first column which has length t = m — s, and the

entries in that column constitute the set K, = {&i, k2,... , kt} = {i 6 Io(-m) : i $ J}.

To illustrate the above two definitions let m = 6. Then:

1 1 1 1
T ( 2 , 2 , i ) = 2 3 = * r f 2 ' 2 ' 1 ) = 3 3 .

2 3
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5.3. Irreducible SO(m)-modules

If m = 7:
1 2 2 2
1 ^

o 3

In these two examples the associate of each O(m)-standard tableau is itself O(m)-

standard. In addition, as may be easily verified, TA, = TA*. This illustrates the

following lemma.

L e m m a 5.3.3. IfTx is an O(m)-standard tableau then the tableau T,x* is also O(m)-

standard.

Proof. For all i £ T°(m) let at and ft be the number of entries less than or equal

to i in the first and second columns of TA, respectively. Let a* and ft* be defined

likewise for T,A*. Then ft* — ft for each i € J . For the purposes of this proof let

a0 = ft, = a*0 = ft* = 0.
Let even m = 1r and odd m = 2r + 1. If TA is O(m)-standard then Definition

5.1.6 implies that for each i = 1, 2 , . . . , r:

(i) «* > ft,

(ii) «r > ft,

(iii) a,- + ft < 2z,

(iv) if a,- + ft = 2i and (v; > ft and »;_! + 1 = a; + 1 = a ; and ft = ft_x + 1

then ft = ft+l,

(v) if a,- = ft = i and ai_1 + 1 = or = &i and T̂ A
6 = J for some b then TV^ b — i.

It is required to demonstrate that each of these five conditions hold when a* and

ft* are exchanged for a,- and ft respectively.

Let J - { j i , j 2 , •••Js} C Xo ( m ) be the set of indices in the first column of Tx

with ji < J2 < • • • < j>- Further, for i = 1 ,2 , . . . , r , let J7,- = {j 6 J7 : j < i), so that

^J7i = a,-. Then the set of indices in the first column of Tx is K, = {ki,k2, •. • ,kt :

jfc,- £ J} C J°^m). Let fcx < fc2 < • • • < Jfc, and let £,- = {fc € £ : fc < i} so that

a* = #/C,-. Then £,• = {Jfc < i : k # J} = {k < i : k £ Ji} so that #£,• = 2i - #Jj-

and hence a* = 2z — a,-. Consequently (i) a* = 2i — a ; > 2i — (2i — ft) = ft = ft*,

as required since a,- < 2i — ft and (iii) a* + ft* = a* + ft = 2i — a,- + ft < 2i, as

required since a,- > ft.

Since a* - 1 < a* < a', ft* - 1 < ft* < ft* and a* > ft*, the condition a* > ft*

may only be violated if a* = ft* = /?* = a* + 1 whereupon a,- + ft = 2i and i € K.

Similarly a\_, < at < a,T_1 + 1, ^ j < ft* </?*_! + 1, a* > ft* and a* < ft* imply
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5.3. Irreducible SO(m)-modules

that /?,*_! = a^_1 = aj = fi*x — 1 and thus i $ K,. Thus i € J and i £ J whereupon

cv,- = c*r-f 1 = «i-i + 1 . Two cases now need to be considered. In the first a,- = $ — i

whereupon a,* = 2i — a, = a,- = a; + 1 so that aj = a,* — 1 = fl? — 1 = /3j — 1 and

07 < /%- contradicting the assumption that TA is standard. In the other case where

a{ > fli, since fi\ = /?t* = /3t*_ x + 1, i would occur in the second column of Tx but no

i. This, with i £ J, i $• J implies that Tx would suffer a protection violation, again

contradicting the assumption that TA is standard. Thus al < /?? cannot occur,

giving the conclusion (ii) a\ > /?(*.

Now assume that a protection violation occurs in Tx'. This requires a* +/?,* =

2i and hence a,- = $ . Two cases need to be considered. If a*{ = /3* = i then the

protection violation insists that i £ K., i (jL K, whereupon i (£ J', i € 3'• Thus, if an

unprotected i occurs somewhere to the right of the i in T*', it would also do so in

TA so that a violation of (v) can be excluded. In the other case, a* > /?,*, and a

protection violation of (iv) requires that i; (E /C, i'. (£ K, whereupon i $ J^ { £ J and

G-,- = 0;̂  + 1. Also required is an i in the second column but no i. This would imply

that /3{ = f3; = f3{_i + 1, and since a,- = /?,-, a; = a,- — 1 = /?,• — 1 = fa — 1, once more

contradicting the assumption that Tx is standard. This completes the proof.

Associated with each transition from [TA] to [Tx'\ is a sign factor given by

e('lJC) = <*...,.*,..*,, (5-3-4)

where J = {jx,..., js} are the entries in the first column of TA with each j t = TA

and K, = {&!,...,&,} are the entries in the first column of Tx' with each k{ — T*A.

Throughout this section, the convention of summing over all repeated indices which

are displayed explicitly will be used. Let m = s + t and define:

T -If 7 ..-T

*± (5.3.5)

so that:

Lh..,.ki...kl = y™\ (5.3.6)
Define:

Kai a.d-c, — ( — l ) r * Lai...atbl...btLbl...b,Cl...c, (5.3.7)

Lemma 5.3.8.

^ ( E \ (5.3.8)
Ws,
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5.3. Irreducible SO(m)-modules

Proof. Substituting (5.3.5) into (5.3.7) gives:

IV- ( -i \r+st •*•
" a , - - a . c i - - c , ^ •••,/ . , | * : a , . . . a , 4 1 - . . S ( t 4 1 " - 6 i S i . - - e , •

It may be seen that e41...4(C,...s. = (—l)re51...j,Cl...c, by transposing i and i for each

i = 1, 2 , . . . , r, and 0 = 0 where m = 2r + 1. Thus:

K — f 1 V r e

whereupon the lemma is proved by precisely the same reasoning as for the proof of

Lemma 4.5.13.

This lemma shows that K is an antisymmetriser so that:

e[ai-a.] = •K'a1-a.41...4.e41...4,- (5.3.9)

In addition, it shows that:

• " a i - - - a , 4 i - - - 4 ( - " - 4 i - - - 4 ( C i - - - e (
 = " o , • a , i 1 • b . ^ b i - - b . c x - c , = = ^ a , . . - a . C ] • • • C i j ( 5 . O . 1 U J

and hence:

Lai...a,bl.-b,t[bl...b,'\ = - t - a , - a . 4 , - - - 4 , e 4 , . . . 4 , - (5.3.11)

The developments of this section and the next depend on how L commutes with

elements of O(m). If G G GL(m) then:

(det G)eai...OiCl...c, = eei-e.j1-j,Gaiei • • • Ga,e,GCl/l • • • GCt]l. (5.3.12)

If G G GL(m) preserves the form given by the matrix J, then GcfJcbGbd = Jld and

det G = (det G)"1 = ± 1 , whereupon:

= (det G)eei...e,/,. ./,Gaie, • • • Ga.e.G^j^ • • • Gc,j,JClbx • • • ̂ , J , G I , J , • • • Gj,d,

= (det G)ee i...e, / l... / lGa ie i • • • Ga>e, J / l d l • • • Jftdt

= ( d e t G)Gaiei • • • Ga.e.Lei...t.dl...dl. (5.3.13)

Thus if G 6 5O(m), the operator L commutes with G. This implies that if T* has

the indices from the set Jw comprising its first column and T̂ » has indices from the

set Kw = {k G Jo(m) : fc G Jw} comprising its first column, then the transformations

of the [T*] under S0(m) are identical to those of e<J
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5.3. Irreducible SO(m)-modules

Now restrict attention to those S0(2r)-modules Sx for which A\ = r, and

therefore A* = A. Let s = t — r and define:

\ (*..-.,»,...», ± (-l)p(r+1)/ai.,....ri,...»r) • (5-3.14)

The sign factor ( —l)r(r+1)/2 is simply a matter of convention in determining which of

these operators is to be known as L+ and which L~. What is important is that they

are both idempotent and commute with the action of all G £ S0(2r). That they

commute with G follows from (5.3.7) and (5.3.13) with s = t = r and det G = 1.

That they are idempotent follows from the identities LL = K, LK = KL = L and

KK — LLK = LL = K, where all indices have been suppressed for typographical

convenience, and use has been made of (5.3.7) and (5.3.10) with s = t = r. In

particular:

\ (eUx...iA ± (-1)'<'+1>'V*-*V..M) , (5.3.15)

where J = {ju...,jr} and K. = {fc,,..., kr} = {k G J o ( m ) : k £ J}. It fol-

lows from the above that the subspace of V®r spanned by all tensors of the form

Lfl...jt.ii...ir
eii---ir 1S invariant under SO(2r). This is likewise true for all tensors of the

form LT .^ . e,-,.. ,-r. Similarly the subspaces U± € V®' spanned by all tensors of

the form:

Yl (-1)<7(x-o ® u>j.(1) ®
 xh ® wi.m ® xi, ® • • • ® Wjrir) ® xir

cesr

± (-lyt'+WeWx^ ® wkrll) ® xu ® wKm ®xi2®---® wK(r) ® x,-r),
(5.3.16)

where xio, xtl,..., xir are each an element of some, possibly zero, tensor power of

V, are each invariant under S0(m). Now let Sx+ = Sx/(SX D U~) and Sx~ =

Sx/(Sx Pi U+). Weyl proved the following theorem.

T h e o r e m 5.3.17. [We39] If X e P(l) is such that A\ = r, then the O(2r)-module

Ox is decomposable on restriction to SO(2r) into the direct sum of two inequivalent

irreducible SO(2r)-modules, Sx+ and Sx~, the dimension of each being half that of

Ox.

To exploit Theorem 5.3.17 in a constructive manner, define:

[TA]± = [Tx] ± (_iy-('+i>/'e<'.*)[:z;A], (5.3.18)

where J = { j l 5 . . . ,jr} are the entries in the first column of Tx with each jt — Tx^

and K, = {ki,...,kr} are the entries in the first column of Tx' with each kt — Tx^.
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This implies, since

= etl...trJl...Jr = ( -

that:

and

This leads to the following lemma.

5.3. Irreducible SO{m)-modules

J l - J ' i l - i r (5.3.19)

+ (5.3.20a)

(5.3.206)

L e m m a 5.3.21. Let m = 2r and A € P(l) be such that At = r, whereupon A* = A.

Then [rA]± € tf* and [TA]± € 5 A ± . Moreo«er, in Sx±, [Tx]* = 0.

Proof. Since {TA} is antisymmetric in the r indices of its first column, it follows

from (5.3.16) that {TA} ± (_l)'(--+i)/Je(J.«){T*} e £7±. On removing the trace terms

this gives [TA] ± (-l)^+D/2e(^,«)[TA] G ^±. Therefore, from (5.3.18), [TA]± € ?/*.

The remainder of the lemma then follows directly from the definitions of Sx±.

As an illustration of (5.3.18), let r = 3 and A = (2,2,1). Then:

Tx = 2 3
1 1
2
9

1 1
Tx = 3 3 ,

where +1 , so that:

' 1

to
i

. 2

1 '
3

+

=

' 1
9

2

1 "
3 +

' 1

C
O

I

. 3

1 "
3 and

' 1

to
i

. 2

IT—
1

3 =

' 1

to
i

2

1 "
3 —

' 1
3

. 3

1 "
3

It may occur that one of the resulting terms is zero, for example:

Tx = 2 3
1 1
2
3

1 1
Tx = 2 3 ,

where e^J<tc> = — 1, so that:

1
2

3

1
3 = 2

1
2
3

1
3 but

1
2
3

t—
i

3 = 0.

The subsequent definition acts as a preliminary to obtaining a set of standard

tableaux for each of the modules Sx± with A\ = r.
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Definition 5.3.22. Let A e P(l) be such that A\ = r. For each O(2r)-standard

tableau Tx € Ox
r let a,- be the number of entries in the first column less than or equal

to i, for i — 1, 2 , . . . r. Then define:

sx+ = {Tx e Qxr : a . = i for i = 1 ,2 , . . . , r ; [T
A]+ ^ 0};

St = {TxeOx
2r:ai=i{ori = l,2,...,r; [Tx}~ £ 0};

(5.3.22)
sx+ _ | T A e Ox^ .a. = i f o r i = 1 , 2 , . . . , ; - 1; a} < j for some j < r};

sx- _ ^TA e ^ . a . = • for i = i s 2 , . . . , j — 1; a,- > j for some j < r} .

Note that if Tx G O^r and a,- = i for each i = 1,2,. . . , r, then TA = T,A whereupon,

from (5.3.18) or (5.3.20), exactly one of [TA]+ and [Tx]~ is zero. It then follows that

Ox
r is the disjoint union of <SQ + , S$~, <SA+, and SA~".

Lemma 5.3.23. IfTx e Sx* then:

[T^ = 0. (5.3.23a)

IfTx E Sx~ then Tx e Sx+ and:

[TA]± = ±(-l)r^+1^2^J^[Tx}±. (5.3.236)

where J = {ji, • • • -,jr} are the entities in the first column of Tx with each jt = Tx^

and K, = {kx,... , kr] are the entries in the first column of Tx' with each k{ = Tx^y

Proof. If Tx e Sx* then Tx = Tx whereupon, since exactly one of [Tx}+ and [Tx}~ is

zero, (5.3.23a) follows from the definitions of S^. With a,- as in Definition 5.3.22, if

Tx 6 Sx~ then j < a,- for some j with i = a,- for i = 1,2,... ,j — 1. Then a*( = 2i —a,-

implies that i = a* for i — 1,2,.. . , j — 1 and also that j > a*. Therefore Tx G <SA+

since r,A € OA
r by Lemma 5.3.3. Identity (5.3.236) combines (5.3.20a) and (5.3.206).

Lemma 5.3.24. The cardinality of the set SQ+ equals the cardinality of the set S$~,

and the cardinality of the set Sx+ equals the cardinality of the set Sx~.

Proof. For the tableaux TA and Tx define J, fC, J{, fCt, at and a\ exactly as for

the proof of Lemma 5.3.3.

If TA e Sx+ then 1C = J,TX=TX and

Since «! = 1, j2 > 2 (if r > 1) and either jx = 1 or j i = 1. Since TA is O(2r)-

standard this entry may only occur in the first row of TA and jx may not occur at
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5.3. Irreducible SO{rn)-modules

all. Form the 0(2r)-standard tableau T"A from TA by replacing each j l with j x . It

is easily seen that T't
x = T"A. However, from (5.3.20a):

= -[r

i/A

+

Therefore [T'x]+ = 0, implying that T'x G Sx~. The map Tx -> T/A is clearly a

bijection between S£+ and <Ŝ ~ implying that #SQ + = #<5^~.

If Tx G <SA- then Lemma 5.3.23 shows that T,A G <SA+. In a similar way it

is shown that Tx G »S^+ implies that r,A G <5A~. These maps are inverse to one

another, demonstrating that the map TA —• Tx is a bijection between the sets Sx~

and Sx+. This shows that #<SA+ = #SX~.

This lemma enables appropriate sets of 5'0(2r)-standard tableaux to be defined.

Definition 5.3.25. Let X € P(l) be such that Ai = r, and the sets Sx+, Sx~, Sx+

and Sx~ are as in Definition 5.3.22. Then:

(i) S$+ U SX+ is the set of SO(2r)-standard tableaux in the module Sx+;

and

(ii) S£~ U SX+ is the set of SO(2r)-standard tableaux in the module Sx~.

The significance of these standard tableaux lies in the following two theorems.

Theorem 5.3.26. If X E P(l) is such that A\ = r, then the multiplicity of the weight

("15^2,... ,nr) in the irreducible representations [A]-t of 0{m) is given by the number

of appropriate SO(m)-standard tableaux Tx for lohich no(-m\Tx) = (nx, n 2 , . . . , n r) .

The characters of these representations are given by:

[A]±(y)= £ y T \ (5-3.26)

where (y) denotes the vector (yuy2,... ,yr) and yT* = y"1 (T V22 (T ) • • • y^?'"'^*),

for the class of S0(m) with eigenvalues y^ 1,yi,yJ1,2/2) • • • iV^^iVr, if m = 2r; or

eigenvalues y1~1,yi,yj1,y2, • • • ,y7l,Vr, 1, if m = 2r + l.

Proof. If TA G <SA+ then [TA]+ = 2[TA] ^ 0 and [TA] G 5A + , whereupon, since

n°(m>(TA) is a weight of the 50(?n)-module Sx, it follows that n°^(Tx) is a weight

of the S0(m)-module SA+. If TA G SX+ then [TA]+ = [TA] + (-l) r( r + 1)/2e^>[TA] ^ 0

and [TA]+ G 5A + . Then, since the O(m)-weights of TA and TA are equal, n°(m)(TA)

is a weight of Sx+. By similar reasoning, if TA G Sx~ or TA G <SA+ then n°
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5.3. Irreducible SO{rn)-modules

is a weight of Sx~. Since #<SA+ = #Si~, this exhausts all the weights of Sx. The

result then follows.

T h e o r e m 5.3.27. If X e P(l) is such that At = r, then the SO(2r)-standard tableaux

form bases for the irreducible SO(2r)-modules Sx±; that is:

is a basis for the SO(2r)-module Sx+, and:

< y. J . 1 fc O0 UO1 >

is a basis for the SO(2r)-module Sx~. Moreover Sx+ is isomorphic to V®' modulo the

relations (3.4.2), (3.4.3), (5.2.3) and (5.3.20a), and Sx~ is isomorphic to V®' modulo

the relations (3.4.2), (3.4.3), (5.2.3) and (5.3.206).

Proof. Lemma 5.3.21 shows that Sx± are spanned by the sets of terms of the form

[Tx]±. Theorem 5.3.17 and Lemma 5.3.24 show that the sets of S<9(2r)-standard

tableaux are of the correct cardinality. The theorem is thus proved if it can be

shown that for every tableau Tx, [Tx] can be expressed as a linear combination of

5"O(2r)-standard terms in the S'0(27-)-modules SA±. Theorem 5.2.19 indicates how

to express [Tx] as a linear combination of O(2r)-standard terms. The analogous

result is achieved for [T^1]* in the same way by the definition of Sx± as a quotient.

Any term [T*]* for which Tx is O(2r)-standard but not 5O(2r)-standard is dealt

with using one or other of the identities given by Lemma 5.3.23. These immediately

produce either an SO(2r)-standard term or zero. Thus, every [T*]* can be reduced

to a linear combination of S'O(2?-)-standard terms in each of the 50(2r)-modules

5A ± .

With the module actions of SO{2r) and so(2r) analogous to those given by (5.2.13)

and (5.2.14) respectively, this theorem effectively provides definitions for Sx±.

As an example of the way in which the reduction to a linear combination of

standard tableaux is achieved in the different modules, consider the tableau:

1 2
T ( 2 , 2 , i ) = 3 2 )

3

the irreducible 0(6)-module O^2-2^, and the irreducible 50(6)-modules S^2^+

and S^-2'1)-. In O^2<^ the reduction of [T^2-2^] to terms involving O(6)-standaxd
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tableaux results from the application of a single Garnir relation (3.4.3):

' 1

IC
O

. 3

2 "
2 = —

' 1
2
3

2
3 +

1
2

. 3

to
i

3 +
1

2
. 3

2
3 —

1
2

IC
O

2
3 —

1
2

. 2

IC
O

3

The corresponding identities in the S0(6)-modules are

r - - -• ±
• 1

IC
O

. 3

IC
O

2

±

= —

" 1

IC
O

. 3

2 "

C
O

I

±

+
• 1

2
. 3

IC
O

IC
O

±

+
• 1

IC
O

. 3

2 '
3

±

—
' 1

2

IC
O

IC
O

3

±

—

IT
—

1
IC

O

. 2

C
O

I

3

However, the 2nd, 3th and 5th terms on the right side are not 5O(6)-standard

in the module 5(2 '2 '1)+ and the 1st, 4th and 5th terms on the right side are not

SO(6)-standard in the module S*2-2-1)-. In S<2-2il>+ the identities:

1 2
2 3
3

= 0,
1 2
2 3
3

= 0 and
1 3
2 3
9

1 3
3 3
3

effect the standardisation:

1 2
3 2
3

1 2
2 3
3

1 2
2 3
3

1 3
3 3
3

In ) the identities:

1 2
2 3
3

= 0,
1 2
2 3
3

= 0 and
" 1

2
2

C
O

I

3 = +
1

C
O

I

. 3

3
3

give rise to the standardisation:

• 1

ICO

. 3

2 '
2 = +

IrH

2
3

ICO

3 +
" 1

2
3

2 "
3 —

' 1

C
O

I

3

C
O

I

3

To illustrate the construction of explicit representation matrices, let A = (2,1)

and consider the eight dimensional 50(4)-module S^7>1^~. For this case, Definitions

5.1.6 and 5.3.25 specify the following SO(4)-standard tableaux:

2 2
2 '

1 2
2 '

2 2
2 '

1 2
2 '

1 1
2

1 2
2 '

1 2
2

1 1
2
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5.3. Irreducible SO(m)-modules

The eight remaining 0(4)-standard tableaux from O^'1^ satisfy the relations:

1 2
2

1 2
2

1 2
2

1 2
2

1 2
1

2 2
2

and

1 1
2

1 2
1

- 0,

- 0,

2 2
2

each of which is obtained via Lemma 5.3.23. Calculations involving, in addition to

these identities, the use of the Column relations (3.4.2), the Garnir relations (3.4.3),

and the orthogonal Trace relations (5.2.3), give:

. -3

. -2 .
. . . . -3 . . .

. . -1

1 . .

-2 . .
-1

-3 .
. . -2
. . . -1 . . . .

3

1 . .
1
. 1

-1

\

. . . . 1 . . .

. . 1

\ -1 .

along with the diagonal generators belonging to the Cartan subalgebra:

. -1

. . . -1 . . . .
-2

1 . .
1 .

2

. 2

. . -1

. . . . 1 . . .

-2 .
. -1
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5.4- Duality between associate O(rn)-modules

Notice that the highest weight vector of this so(4)-module

for which

is
1 1

1 1
9

= 2 1 1 and B2
2 1 1 1 1

2

confirming that its highest weight is (2, —1). In fact the rather unexpected incorpo-

ration of the factor ( — l)r(r+1)/2 in (5.3.14) has been adopted precisely so as to ensure

that the highest weights of the 5o(2r)-modules Sx+ and Sx~ are (A1? A2 , . . . , Ar_l5 Ar)

and (Ai, A2 , . . . , Ar_l5 — Ar), respectively.

The techniques of this section have been implemented on a computer. In this

way they have been used to construct various explicit representation matrices for

the irreducible representations [A]± of S0(2r) with Aj = r. In all cases, including

that of [2,1]_ given above, the matrices obtained satisfy (2.2.18) and (2.2.22) in

place of the elements they represent, thus verifying the techniques of this section.

§5.4. Duality between associate 0(??2)-modules

This section demonstrates and examines a duality between associate O(m)-modules

which is analogous to that found in Section 4.5 for associate GZ(7n)-modules.

Define the linear map L, : 0x —> 0x' by:

L.[TX] = (5.4.1)

where J = {jx,. . ., js} are the entries in the first column of Tx with each jt = TA,

fC = {ki,..., kt} are the entries in the first column of Tx' with each kt = Tx^ and

e(JX) j s given by (5.3.4). Theorem 4.5.6 has the following analogue.

Theorem 5.4.2. Let A G P(l) be such that ~\1 + \2<m. If

= 0 (5.4.2a)

is a Trace relation in the O(m)-module Ox, of the type specified in Lemma 5.2.4 with

ki = 1 and k2 > 1, so that all the tableaux Tx differ only in entries in the 1st and

k2th columns, then:

Xv-^'K; ] = o, (5A26)

with Jw and tCw defined by analogy with J and tC, is a Garnir relation of the type

(3.4.3):

] = 0, (5.4.2c)

156



5.4- Duality between associate O{m)-modules

involving entries in positions X of the 1st column and positions y of the k2th column.

Conversely a Garnir relation of type (5.4.2c) gives rise to a Trace relation of type

(5.4.2a).

Proof. Form 9W as for the proof of Lemma 5.2.4 from the indices of the relevant

two columns of T*. Let Aw C J o ( m ) be the set of all i G Aw such that ia and I"

are both present in 9W. Let Bw C Z°(m) be the set of all i G Bw such that one only

of ia and V is present in 0w. Let Cw C Xo(m^ be the set of all i G Cw such that

neither ia nor i13 is present in 6W. Then, if aw = #AW, bw = ^Bw and cw = #C,

a^ + 6̂  + cw = m for each u;. Factorise #„, = #f 6* where 6% and 0^ are formed solely

of superscripted indices from B and A respectively. Since a Trace relation involves

expressing a number of barred-unbarred index pairs in terms of other such pairs,

Bw, bw and 9® are constant and their subscripts may be dropped. In addition, since

9W = 9B9*, it follows that a = aw and c — cw are also constant. Split B into BaUB^,

such that i G Ba if ia is present in 9B and i G B13 if P is present. If 6a = # 5 a and

Let £ = n ^ X , ^ = X \ f , W = U ^ , , Tw = ^ ^ and 0 = I°W\(H U

£ U 5) with e = #£,d = #VW, h = #7i, f = #FW, g = # ^ , whereupon h = d + f,

a = d + e and c = f + g. Since the Trace relation is of the type specified in Lemma

5.2.4 then d > g. Note that 7i = VwUJ7
w for each w. With the sets denned in this

way, the Trace relation (5.4.2a) may be obtained exactly as in the proof of Lemma

5.2.4. In particular, from (5.2.4g):

W£C=0, (5.4.7)
w

where 9V
W = H ^ a;,-, 9£ = Uiee^i and w< = iaP. Then, setting 9* = 9£9" gives:

and then:

IX = o.
This final equation is that giving rise to (5.4.2a).

Let 9*w be the term of (5.4.26) corresponding to 9W of (5.4.2a). Corresponding

to the way in which T,A* is formed from Tx, ia is present in 9*w if and only if ia is not

present in 9W, that is i £ Vw U S U Ba and hence i G Tw U Q U 0^; and i" is present

in 9*w if and only if i13 is present in f̂fi, that is i G ©u, U ^ U B ^ . The situation in the
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5-4- Duality between associate O(m)-modules

corresponding tableaux may be schematically represented thus:

(5.4.3)

On varying w, the terms 6*w run through all partitionings of the set 7i into / entries

superscripted with a and d entries superscripted with j3. Since these are to be

respectively placed in the 1st and the k2th column of T^*, this is an expression of

Garnir type. It is necessary to check that sufficient indices from the two columns

are involved in this expression. Consider a Garnir relation involving the set of

Ba

£

B?

£ Q

** If

indices Tw U B13 from the 1st column and T>w from the other. This results in the

same expression as the above since each migration of an index from B& to the

A:2th column results in a repeated entry in that column and thus a zero term. This

expression involves f + M3 + d terms from the two columns which is a greater number

than the length of the 1st column, / + <7 + 6", since d > g. It remains to show that

the sign of each term is as required. The sign e^">lc<"^ required for the transition

from [Tx] to [T^*] may be expressed S-B°'t£'v'""8<''6'<*""-'. By fixing the positions of the

elements from the sets £, £, Ba and Bp in each Tx and #", Q and £ in T^*, it can

be seen that ^Jwi>c^ = ^e^^.v^)^ ^e s[gn being independent of w. For each w,

the factor e(-r"'iV^ is precisely that required for the appropriate coset representative

of the Garnir element giving rise to T^*. Thus the sign factor of e^JwXw^ given in

(5.4.26) is precisely that required to make (5.4.26) a Garnir relation.

By partitioning the two relevant columns of the set of tableaux satisfying

(5.4.2c) into the sets W, ~G, ~£ and H = Fw UVW as in (5.4.3), and setting ~B° to be

the remaining indices, the Trace relation corresponding to any Garnir relation may

be found by reversing the above construction.

As an example consider the mutually associate 0(7)-modules O(2>2'2) and

CX2'2'2'1). Let A = (2,2,2), so that A* = (2,2,2,1) and let Ba = {I}, B" = {1},

£ = 0, Q = {2}, H = {2,3,3,0} and d = 2. Then, with Jfcx = 1 and k2 = 2, Lemma

5.2.4 yields the Trace relation:

= 0. (5.4.4a)

For this expression Vl = {2,3}, V2 = {2,3}, V3 = {2,0}, V4 = {3,3}, V5 = {3,0}

and X>6 = {3,0} respectively. The taking of associates of the terms in (5.4.4a)

requires the first columns to be replaced with entries from the respective sets

' 1
2

IC
O

1"
2

3 .
+

' 1
2

. 3

1 "
2

IC
O

+
• 1

2
. 0

IT—
1

2

0 .

—

IT-H

3
. 3

!i—
1

3
3 .

+
' 1

C
O

I

0

IT
—

1

3
0

+
' 1

3
. 0

1 "
3
0 .

158



U a U

5.4- Duality between associate O(rn)-modules

Since W = {!}, Q = {2}, 7[ = {3,0}, 71 = {3,0}, 7~3 = {3,3},
TA = {2,0}, Fh = {2,3} and J"6 = {2,3}, expression (5.4.26) is, in this case,

' 1
2

ICO

0

1 "
2
3

+

" 1

ICM

3
0

1 "
2

3
+

" 1
2
3
3

1 "
2
0

+

' 1

to
i

2
0

1 "

C
O

I

3
+

" 1

ICM

2

C
O

I

1"
3
0

' 1

ICM

2
3

1 "

C
O

I

0
= 0, (5.4.46)

the signs having been obtained by multiplying the sign of the corresponding term in

(5.4.4a) by the respective e^J""KwK This is the Garnir relation that arises on using

the sets of positions X = {1,3,4} and y = {6,7}.

Theorem 5.4.3 will enable it to be proved that the SO(m)-modules Sx and

Sx' are isomorphic. For the moment, ignore the group action and consider Ox and

Ox' solely as vector spaces.

L e m m a 5.4.5. The linear map Lm : Ox

the vector spaces Ox and Ox'.

Ox' is a well defined isomorphism between

Proof. Let Tx be column strict. By using the Column relations, Garnir relations

and Trace relations, [Tx] is uniquely expressible:

(5.4.5a)

where each Tx is O(77?)-standard. Theorem 5.4.3 shows that to each Trace relation

involving the first column of some [Tx], there is a Garnir relation resulting from the

action of L, on each term. This Garnir relation necessarily involves [T,A*]. Likewise,

every Garnir relation involving the first column of some [Tx] corresponds, through

the action of L», to a Trace relation, necessarily involving [T»A*]. Garnir relations

involving other columns remain as they are under the action of L». Thus, since if Tx

is O(m)-standard then Tx
t' is O(m)-standard, the standardisation of [Tx'] mirrors,

under the action of L,, the standardisation producing (5.4.5a). Therefore,

]. (5.4.56)

Since this is the result of the direct application of Lt to (5.4.5a) and the two ex-

pressions in terms of O(m)-standard tableaux are unique, the lemma follows.

On considering Ox and Ox' as O(m)-modules once more, this Lemma together

with (5.3.13), shows that the traceless symmetrised tableaux [TA] of Ox may be re-

placed by the signed traceless symmetrised tableaux e^'^T**] of Ox' provided that

factors of (det G) are included for each module action of G £ O(m). In particular,

when G (E S0(m), det G = 1 and the SO(m)-modules Sx and SX' are isomorphic.
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5.5. The diagonal form

Using an argument similar to that given in Section 4.5, let the operator Lkl...ktjl...jt

act on the indices of the first column of [Tx] to give [TA*]* where the extra asterisk

indicates that it is yet to be determined that [Tx'\* has the properties implied by the

Young operator Yx', or the tracelessness. That this is so is due to the vector space

they inhabit being isomorphic to Ox and hence, by Lemma 5.4.5, isomorphic to 0x'.

This implies that the Garnir relations and orthogonal Trace relations involving the

first column, obtained as a result of Lemma 5.4.2, enable the first column to par-

ticipate in the symmetry implied by the Young operator Yx' and the tracelessness

resulting from the extraction of all trace terms of the form (5.2.2). From (5.3.13):

= (det G)L.(G[TX}), (5.4.6)

for all G G 0(m). Therefore, the following theorem has been proved.

Theorem 5.4.7. Let A G P(l) be such that Ai + A2 < m. Under restriction of O(m)

to SO(m), the O(m)-module Ox is isomorphic to Ox'. The representation [A] of

SO(m) is equivalent to the representation [A*] of SO{m). The representation [A] of

O(m) is equivalent to the representation (det(r)[A*] ofO(m).

Conversely, the following theorem holds.

Theorem 5.4.8. Let A G P{1) be such that At + A2 < m. The isomorphism of the

SO(m)-modules Sx and Sx' implies that the Trace relations and the Garnir relations

are equivalent statements; that is, one implies the other.

Proof. This follows since the operator L given by (5.3.5) which defines the isomor-

phism, may be used to convert between the Trace relations (5.4.2a) and the Garnir

relations (5.4.26).

§5.5. The diagonal form

In this section, consideration is given to the orthogonal groups O'{rri) and SO'{m)

which as specified by Definition 2.1.1, preserve a diagonal form. Although the

form given by the identity matrix will be considered here, the comments and results

apply equally to a diagonal form with arbitrary signature. In particular this enables

Young tableaux to be used in the explicit construction of representations of the

Lorentz 0(3,1) and proper Lorentz S0(3,1) groups. However, as will transpire,

inconveniences arise in developing the techniques here as for the previous sections

of this chapter. Since the arguments proceed very much as for those previous

sections, the material of this section will only be considered in outline and proofs
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5.5. The diagonal form

will be sketched only where there is substantial deviation from the analogous proofs

for O(m) and SO(m). For this section the index set is I°'(m) == Nm.

The trace tensors in this 'diagonal' case are all linear combinations of terms

of the form

^2 x ®et®y ® e{® z. (5.5.1)
,-elO'(m)

Their removal from {Tx} defines [Tx]'. These are defined to span the O(m)-modules

O'x. The Trace relation takes the following form.

Lemma 5.5.2. Let Tx, for i £ X°'^m\ be m tableaux, identical except for the entries

in two positions where Tbahs = i and T$e d-, = i for some fixed a, b, c and d with
a-,c < Ai, b < Xa and d < A6. Then

£ Wl = 0. (5-5.2)

If the form being used is of a signature other than m, the only modifica-

tion that needs to be made to (5.5.1) and (5.5.2) is a switch of sign for particular

summands.

For O'(m), the set of standard tableaux are provided by the set Qx
x of Defini-

tion 5.1.2. With the index set 1°'^ in place of l°^m\ condition (iv) of Definition

5.1.2 takes the form:

a, + Pi < i for each i e X°'{m\ (5.5.3)

where cv,- and f3{ are the number of entries less than or equal to i in the first and

second columns respectively of TA. These tableaux do not, in fact, readily yield

weights and characters of the irreducible representations of O'(m). This inconve-

nience is a direct consequence of the Cartan subalgebra of so(m)' not comprising

diagonal elements. Nonetheless, standardisation is straightforward compared with

the 0(m) case since there are no protection conditions to account for. In addition,

violations of (5.5.3) may be dealt with by using the following 'diagonal' analogue of

Lemma 5.2.6.

Lemma 5.5.4. Let the column strict tableau Tx £ Q^ be such that <x,- + fa > j

for some j € T°l(-m\ Then [Tx]' may be expressed as a signed sum of traceless,

symmetrised tableaux [Tx]', where for each w, Tx > Tx.

This result may be obtained by using means similar to those used in the proofs of

Lemmas 5.2.4 and 5.2.6. The essential difference is that, as a consequence of (5.5.2),
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the trace identity:

5.5. The diagonal form

(5.5.5)

where a;,- = z"^, is used in place of (5.2.46). Again, particular summands switch

their signs when the signature of the diagonal form being used differs from m. The

following expression from the O'(7)-module

Lemma 5.5.4 and its proof:

is typical of that resulting from

• 1

3
4
5

3 "
5

' 1
3
4
6

3 "
6

" 1
3
4
7

3 "
7

' 1
4
5
6

5 "
6

/ " 1
4
5
7

5
7

1
4
6
7

6"
7 (5.5.6)

Here, the non-standard term on the left has been expressed in terms of higher terms,

each of which is standard, in this case. Note that the use of Lemma 5.5.4 necessarily

results in an expression for [Tx]' with integral coefficients.

The combination of Column relations, Garnir relations and Trace relations,

via in this case Lemma 5.5.4, once more enables an arbitrary non-standard term to

be written as a linear combination of standard terms. This leads to the following

analogue of Theorem 5.2.18.

T h e o r e m 5.5.7. The O'(m)-module O'x is irreducible with basis:

Moreover, the set {O'x : Ax + A2 < m} provides a complete list of inequivalent irre-

ducible O'(m) -modules.

Explicit representation matrices for elements of 0'{m) and so'(m) may now

be generated in the representation [A] using the set of tableaux Q^ and the stan-

dardisation techniques outlined above, by precisely the same means as in Section

5.2. However, in contrast to Section 5.2, standardisation of an arbitrary trace-

less symmetrised tableau cannot introduce any non-integral factors. Therefore, the

representation matrices for the basis elements of so'(m) will necessarily be integral.

In the reduction from O'(2r) to S0'(2r), a major disadvantage arises for those

cases where r is odd. The definition of (5.3.5) has the analogue:

• • • * ! '

(5.5.8)

This leads to the following definition of a diagonal associate.
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5.5. The diagonal form

Definition 5.5.9. Let A <E P{1) be such that s = Xlt let t = m - s and let Tx be

column strict. The diagonal associate of Tx is defined to be that tableau, denoted

Tx,, identical to Tx apart from the first column which contains entries from the set

K, — X°l(-m\J where the entries from the first column ofTx constitute the set J.

L e m m a 5.5.10. IfTx G Qx
n then Tx' € Qx

m.

The proof of this result follows the same lines as that of Lemma 5.3.3, but is

more straightforward since protection conditions need not be considered.

With L' given by (5.5.8), in order that (5.3.8), (5.3.9), (5.3.10), (5.3.11) and

(5.3.13) should each hold with L replaced by L' and K replaced by K', it is necessary

to define:

•^o1...a.c1...c. = (-iytL'ai-a.bs-blL'bl-blc1-c.i (5.5.11)

corresponding to (5.3.7). Then when r is odd and r = s = t, this implies that

K' — —L'L', whereupon the direct analogues of (5.3.14) are not idempotent. The

appropriate expression is:

al-arbl-brj 5 (5.5.12)

where i = \J— 1. If Ax = r so that the O'(2r)-module O'x is self-associate, then

through arguments similar similar to those of Section 5.3, the 5O'(2r)-modules

S'x± may be defined to be the span of all [Tx]l:t where:

A]'± = [Tx]' (5.5.13)

e{JX) _ eJ1...Jrj,1...i.r, J = { j i , . . . , jr) are the entries in the first column of Tx with

each ja = T ( \ and K, = {fc1?.. . , kr} are the entries in the first column of Tx' with

each ka = Tx^'ay This implies that:

[TA]/:fc = ± i r ( - l ) r

For example, if m = 6 and A = (2,2,2) then:

(5.5.14)

1 2
4 4
5 5

= — t

2 2
3 4
6 5

(5.5.15)

Definition 5.5.16. If X e P(l) is such that A\ = r then let S£ C Qx
r be such that
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5.5. The diagonal form

This definition implies that S'£ consists of those tableaux of Qx
r which contain no

Is. The following lemma may be proved using a simple bijection argument.

Lemma 5.5.17. The cardinality of Qx
r is precisely twice that of S'£.

Theorem 5.3.17 now implies the following theorem (see [We39], theorem 5.9A).

Theorem 5.5.18. If r is even, the O'(2r) module O'x decomposes on restriction to

SO'(2r) into the direct sum of two inequivalent SO'(2r)-modules S'x+ and S'x~ having

bases:

TA ] '+ : Tx

and

TxeS'2
x

respectively. If r is odd, the same is true over the field of complex numbers. However,

over the field of real numbers O'x remains irreducible on restriction to SO'(2r).

To show that the sets given do actually provide bases, note that the Column rela-

tions, Garnir relations and Trace relations enable an arbitrary [TA]/:t to be expressed

in terms of tableaux from Qx
r. Then identity (5.5.14), with the appropriate sign,

is used for those Tx (£ S'2
X. It is this final reduction that necessitates the use of

complex numbers when r is odd. In such cases, the matrix elements of the basis

elements of so(m)' are integral complex numbers.

164



r 6.1. Clifford algebras

Chapter 6

Spinor Modules of the
Orthogonal Groups

§6.1. Clifford algebras

In this chapter, the irreducible spinor modules of the orthogonal groups O(m) and

SO(m), and the Lie algebras so(m) are constructed using Young tableaux. Here,

the appropriate Young tableaux are the 'half tableaux of Definition 2.6.20. The

construction proceeds via a generalised Clifford algebra based on that employed

in [BW35] in studying the basic spin representations of O'(m) and S0'(m); this

is itself, a generalisation of that used in Dirac's account [Di27] of the 'spinning'

electron.

The Clifford algebra is only usually denned for those orthogonal groups which

preserve a diagonal form. The following provides the requisite generalisation to an

arbitrary non-degenerate bilinear form J.

Definition 6.1.1. The Clifford algebra in m dimensions is generated by the m ele-

ments «!, Q'2,..., am, subject to the constraints:

a{o!j + ajQi = 2Jtj, (6.1.1)

for 1 < i, j < m.

In the usual definition J = Im and consequently the defining relation is a.-otj

26ij [BW35]. However, here as in the previous chapter, it will be appropriate to

use the index set J°(m) and to take Jtj = 8{j, whereupon:

aiaj + ajOi = 2<%, (6.1.2)

for i,j G T°(m\ This particular Clifford algebra will be denoted Afm. It is some-

times known as a Heisenberg superalgebra. When m = 2r is even, Afm has a basis

{apa?1 a^a? • • • aa/ : at e {0,1}, i € J o ( 2 r ) } , and when m = 2r + 1 is odd, it has

a basis {a?a?a?a%> • • • c » X : a,- G {0,1}, i G I°(2r+1)}. Consequently, jVm has

dimension 2m.

In what follows, a representation of Afm will be constructed. It is useful to

note, at this point, that no one-dimensional representations of Afm exist, as a brief
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6.1. Clifford algebras

c o n s i d e r a t i o n o f ( 6 . 1 . 2 ) w i l l s h o w . D e f i n e t h e f o u r 2 x 2 m a t r i c e s I2,(Jx,a2 a n d a3,

b y :

1 M = f-1 M = f ° M = f 0 1
o i j ' i Vo i y ' a2 v i o y ' 3 [o o

(6.1.3)

These play a role here analogous to that of the Pauli matrices in [Di27,BW35].

Now for a 6 X°^m\ the 2r X 2r matrices 7<, are constructed by taking the Kronecker

product of r of the matrices of (6.1.3). For a G Nr, define:

"! ® • • • ® o-! ® <T2 ® I2 ® • • • ® I2, (6.1.4a)

where cr2 occurs in the ath position; and define:

x ® • • • ® ĉ  ® <r3 ® I2 ® • • • ® I2, (6.1.46)

where a3 occurs in the ath position. In addition, for all m, define:

7o = O\ ® o\ ® • • • ® O\ ® Ci- (6.1.4c)

For later convenience, a list of all possible two fold products of these matrices

will now be compiled. Let a,b E Nr and a < b. Then, since the product of two

matrices of the form (6.1.4) may be obtained by multiplying the factor matrices

componentwise:

7 a 7 6 = 2 . J 2 ® - - . ® / 2 ® ( ° ° j ® a l ® - - - ® a 1 ® ( ° M ® I2 ® ••• ® J 2 , ( 6 . 1 . 5 a )

where the first explicit matrix is the ath factor and the second is the 6th factor.

The same will be implicit in each of the products that follow. Thus:

7 t 7 a = 2 . / 2 ® • • • ® L ® I J jj j ® ax ® • • • ® ax ® I J M ® J2 ® • • • ® J2,

so that 7J7<, = — 7i7a- Likewise

7s7i = 2. / 2 ® • • • ® I2 ® I ° M ® <n ® • • • ® ay ® I °Q M ® I2 ® • • • ® J2. (6.1.56)

Similarly, direct multiplication shows that 7573 = —7s76- Continuing:

7 a 7 i = 2.12 ® • • • ® I2 ® f J jj J ® (Tj ® • • • ® ax ® f ° M ® I2 ® • • • ® J2, (6.1.5c)
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6.1. Clifford algebras

and similarly 757,, = — 7,,7s;

y • • • 0 <7j 0 I I 0 I2 0 • • • 0 -12, (o.l.oaj

and similarly 7^3 = — 757&. Since a\ = o\ = 0, it follows that:

7a
2 = 7s2 = 0. (6.1.5c)

Also:

and similarly:

= 2.12® • • • ® i 2 ® ( n ) 0 7 2 0 • • • ® / 2 , (6.1.5/)

= 2 . / 2 0 - - - 0 7 2 0 ( ] 0 / 2 0 - - - 0 7 2 , (6.1.5$)

so that 7a73 + 7a7a ='2./2'-5 because J2r = J2 0 • * • 0 I2 ( r factors). For products

involving 70:

7a7o = V2.7 2 0--- 0 / 2 0 I ° ° J 0(7i ®...®<r1 , (6.1.5ft)

and 7o7a == —7a7o!

/ - /n i \

T 3 7 o = V2.J2 0 • • • 0 I2 0 I I 0 O"! 0 • • • 0 CTi, (6.1.5i)

and 7073 = — 7a7o; and finally:

7o = I2- (6-1.5J)

Comparing these products with (6.1.2) proves the following lemma.

Lemma 6.1.6. Through the map aa —* j a , the matrices j a , for a G Xo(-m\ provide

a representation of J\fm. In addition, the map aa —> —7fl for a (E Xo(-m\ provides a

further representation of J\fm.

It should be noted that the two representations indicated here are not necessarily

inequivalent. This question, together with that of the reducibility of these repre-

sentations, is addressed below. As a preliminary, define the 2 x 2 matrices:

CT4\Ooj' *" = V 0 1 J ' (6.1.7a)

and for a G Nr and b = 1,2,. . . , 5, the 2r x 2r matrices:

7W = J2 ® . . . ® J2 ® ab 0 J2 0 • • • 0 I2, (6.1.76)
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6.1. Clifford algebras

where the exceptional factor ab occurs in the ath position. Then, from (6.1.5/) and

(6.1.5(7):

7i4) = 2 7 3 7 a a n d ^ 5 ) = 2 7 " 7 3 ' (6.1.7c)

whereupon:

fa
1] = \(lal-a ~ 1-ala). (6.1.7d)

Note that:

T^^W-T^iT. (6.1.7c)

and 7i3) = - U W • • • 7^i7.. (6.1.7/)

Therefore, under either of the maps given in Lemma 6.1.6, the matrices 7 ^ each

represent some element of J\fm.

Let ?/2r € A^r be defined by:

(llV (6.1.8a)

where the sum is over all 2r elements of the group 52 ® • • • ® 52 (r factors), for which

p(a) = a or p(a) = a for each a 6 X°^2r^. In a similar way, let r]2r+i € A^r+i be

defined by:

7?2r+i = —(fticvi - aTa1)(a2Q;2 - aja^) • • • (ara7 - a7ar)a0

l-iy (6-1.86)

If 7^m denotes the image of 77,,, in the representation aa —>• 7a then, from (6.1.7d),

T ^ ^ T I 1 ^ " - 7 ^ = 7o, (6.1.9a)

for even m — 2r, and

7,3r+ l=7i1)7^---7i1)7o = i'2', (6-1.96)

for odd m = 2r + 1. It then follows from (6.1.86) that in the representation of Af2r+\

generated by the map aa —» — j a , the image of ?72r+i is — It*. This shows that for

m = 2r + 1, the two representations of Lemma 6.1.6 are inequivalent.

Lemma 6.1.10. For even m — 2r, Af2r is isomorphic to M^, the full ring of2r x 2r

matrices. For odd m = 2r + 1, A/*2r+i is isomorphic to the direct sum A42r © -A^-
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6.1. Clifford algebras

Proof. In the notation of this section, the usual basis elements of M.2* may be

expressed thus:

<xai ® cra2 <£)••• ®aar, (6.1.10a)

where a< G {2,3,4,5} for i = 1,2, . . . , r . The representation aa —• j a of Afm then

yields the basis elements (6.1.10a) through:

7^a>) ® 7^a2) ® •••®7<ar). (6.1.106)

Thus the representation in terms of the 7 matrices, is realised on the complete space

of 2r x 2r matrices. In the case of even m = 2r, since Af2r is of the same dimension as

A42r, it follows that this representation is faithful and thus that J\f2r is isomorphic to

the complete ring of 2r x 2r matrices. For later convenience, let /3aiaa-ar denote the

element of M2r having the image (6.1.106) where a,- € {2,3,4,5} for i = 1,2,..., r.

Now consider the case of odd m = 2r + 1. As above ./V^ provides a repre-

sentation of Af2r+i- However, since 7,2r+1 = I2r+i, it is not a faithful representation.

Now map each element aa G j\T2r+i to a 2 r+1 x 2 r+1 matrix in which j a appears as

the top left 2r x 2r submatrix, —7a appears as the bottom right 2r X 2r submatrix

and zeros are elsewhere. This map may be denoted:

aa->Ja®(-7a). (6.1.10c)

Such matrices comprise a reducible representation of j\f2r+1. It is required to show

that each of the 22r+1 usual basis elements of M2<- © M2* can be expressed in terms

of the images under (6.1.10c). The image of f}aia?...aT, now considered as an element

of jV2r+1, is:

( 7 ^ ) ® Y2"
3) ® • • • ® 7{

r
ar)) 0 ( - 7 i a i ) ® 7{

2
a2) ® • • • ® 7^ar))- (6.

However, from (6.1.96), the image of /3aia3...arr]2r+i is:

(7i a i ) ® 7^a2) ® • • • ® 7^ r ) ) © (7[a i ) ® 7^a2) ® • • • ® 7^ar)). (6.1.lOe)

Thus (^aia2...ap + ^aia2...arJ72r+i)/2 G A^r+i maps to the basis elements of M.2r ©0 and

(^a1<,3...arr72r+i — /3aia2---ar)/2 maps to the basis elements of 0 © A^2--- Comparison of

dimensions then shows that A/"2r+i is isomorphic to M2r © jM2r.

Proofs of the following lemma may be found in [Bo63 ,CR62] .

L e m m a 6.1.11. / / an algebra A is a direct sum of full matrix rings, then every

representation of A is completely reducible and every irreducible representation is
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6.1. Clifford algebras

equivalent to one of the summands. A re-presentation is faithful if and only if it

contains each summand at least once.

The following lemma is a corollary of the previous two.

L e m m a 6.1.12. Every representation of Mm is completely reducible. For even m =

2r, there exists just one irreducible representation of M2r up to equivalence. Its di-

mension is 2r and it is faithful. For odd m = 2r + l, there exists just two inequivalent

irreducible representations of J\f2r+X. Each has dimension 2r and neither is faithful.

Their direct sum is faithful.

By virtue of the above construction, the maps aa —»• j a and aa —• — j a for a € Jo ( m )

provide two irreducible representations of Mm which are equivalent if and only if

m is even. As indicated above, the image of rj2r+i which, being a multiple of the

identity is invariant under similarity transformations, serves to distinguish between

the two representations of N2r+i for odd m = 2r + I.

The following lemma will be required below.

L e m m a 6.1.13. If r)m G Nm is as defined by (6.1.8), then:

( —l)r

^ = 9 r / 9 , v E (~lY E (-l)V(l)V(i)"-V(f)«FW. (6.1.13a)
" V-' /• *es2r pes

for even m = 2r, and:

( — l ) r

V2r+1 = 2r(2r + 1)! ^-^

(6.1.136)

for odd m = 2r + 1.

Proof. In this proof, the case of odd m = 2r + 1 only will be considered. The proof

for ?7i = 2r is obtained simply by excluding the 0 index at each stage.

For p, 7T G 5m define:

r/(p, IT) = aPT(T)Q;pT(i) • • • aPT(r)a
P7r(r)Q;pT(o), (6.1.13c)

so that, by (6.1.8),

Q. (6.1.13d)
2r

If p' G 5 2 ® • • • ® 5*2, t hen :

(~1)r v r 1
Or 2s I"1
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6.2. The basic spin representations

= ^ ( - i ) ' ' E (-i)"V*v\J)

= (-l)"'r?m. (6.1.13e)

Now fix 7r G 5m and let r 6 5 m be such that m £ S2 ® • • • ® S2 and if ?r(a) < 7r(a)

then T7r(a) < r?r(a) and vice-versa, for a = 1,2,... , r. That is, r returns a and a

to their original two positions but maintains their order as that given by ix. This

determines r uniquely. For instance, if m = 7 and

/ l l 2 2 3 3 0 > ., / 2 1 3 0 2 1 3 \
I = ( 2 1 3 0 2 n J ' then T = U 1 2 2 3 3 o j -

(6.1.13/)

Consider the single term rj(p~1,ir~1). By (3.1.4), the factor aa occurs in position

itp(a) of ?7(p~1,7r~1) for each a € I o ( m ) . Now consider the term rj(p~l, TT~1T~1).

By (3.1.4), each factor aa occurs in position TTTp(a) of 7y(/9~1,7r~1r~1). Therefore,

^(p"1,7T~1r~1) may be obtained from rj(p~1,ir'1) by a sequence of transpositions,

none of which is the transposition of an and aa for all a = 1,2,... , r, by virtue of

the above construction of r. Therefore, by (6.1.2):

, * - 1 ) . (6.1.130)

Then since Tr"1!—1 € S"2 ® • • • ® 52, it follows from (6.1.13e) that:

whereupon:

^ = ^ ( - 1 ) ' E (-I

The lemma then follows by summing over all -K € Sm and dividing by ml.

§6.2. The basic spin representations

In this section, the basic spin representations of O(m), S0(m) and so(m) are ob-

tained by means of the irreducible representations of the generalised Clifford alge-

bras Mm determined in Section 6.1.

Lemma 6.1.6 states that the matrices j a form a representation of Afm. There-

fore:

7-7*+ 7»7-= 26ai J2,. (6.2.1)

Consider an element G G O(m) and let:

V. = X;G«.7.. (6.2.2)
c
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6.2. The basic spin representations

Then:

iWb + I'bl'a = £ £ GcaGdb(-fcJd + 7d7c)
c d

- 2 W G G 1 A
c d

= 2JabI2r, (6.2.3)

so that the matrices 7' also constitute a representation oiMm of the same dimension.

It is now necessary to treat separately the cases of m even and odd. First consider

even m = 2r, where the existence of only one representation of Af2r up to equivalence

implies that there exists a T x 2r matrix A(G) such that:

ia = A(G)7aA(G)-\ (6.2.4)

for all a e Xo(m>. The matrix A(G) is not defined uniquely by (6.2.4) for any

non-zero multiple also suffices. Conversely, if there exists a second matrix A'(G)

satisfying (6.2.4) in place of A(G), then:

7 a = A'(G)-1A(G)7oA(G)-1A'(G),

so that the matrix A'(G)-1A(G) commutes with every element of the irreducible

representation of j\f2r Then by Schur's lemma (1.4.11), A'(G)-JA(G) = g.I2r for

some g € C, implying that A'(G) is a multiple of A(G).

If G',G" e O(2r), then the above analysis yields:

= £G'c'aA(G')7cA(G')-1

c

= A(G')A(G")7aA(G")-1A(G')-1. (6.2.5a)

for some matrices A(G') and A(G") and all a G Jo(m). However, in addition,

'G")ea7e = A(G'G")7a A(G'G")~' , (6.2.56)

for some matrix A(G'G") and all a G I o ( m ) . Comparison of (6.2.5a) and (6.2.56)

implies that:

A(G'G") = K A ( G ' ) A ( G " ) , (6.2.6)

for some K G C. It will now be shown that it is possible to choose the matrices

A(G'), A(G") and A(G'G") such that K = ±1 in all instances.
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The transpose of (6.2.1):

= 26alI2r, (6.2.7)

shows that the matrices 7a also generate an irreducible representation of N2r. There-

fore there exists a 2r x 2r matrix C such that:

la = ClaC~\ (6.2.8)

for all a 6 X°(m). The transposes of (6.2.2) and (6.2.4) give:

whereupon, using (6.2.8):

= A(G)7aA(G)-\ (6.2.9)

) *for all a e Io ( m ) , where A(G) = G-JA(G) *G. Comparing (6.2.9) and (6.2.4) then

implies that:

A(G) = ^A(G), (6.2.10)

for some non-zero ^ G C, Let A'(G) = y/<J)A(G). Then, using A'(G) in place of

A(G) in (6.2.9), results in:

A^G) = A'(G). (6.2.11)

Now assume that the arbitrary factors in the original matrices A(G'), A(G") and

A(G'G") have been chosen so that each of these matrices satisfy (the unprimed

version of) expression (6.2.11). From (6.2.6):

1, (6.2.12)

whereupon:

CA(G'G")C-1 = -CA(G')C-1CA(G")C"1

K (6.2.13)
= —CA(G'G")C-1.

Therefore K = ±1. These two values are essential and reflect the fact that the

representation G —> ±A(G) is necessarily two-valued. This representation is known

as the basic spin representation of 0(2?-) and, as will be seen later, is irreducible.

Lemma 6.2.14. Let G G O(m). In the representation of Ad generated by aa —* j'a
through (6.2.2), the image 7' ofrjm is such that:

7 ; m =de tG. 7 , m . (6.2.14)
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Proof. From Lemma 6.1.13,

7,m = ^ 6 M , . . . « . £ (-1)'7,<M • •" 7* . ) , (6-2.Ua)
z m - pes3®-®s3

where there is an implied summation over all ik € J o ( m ) for fc = 1,2,... ,m. In

addition, in the representation generated by the map aa —• 7^, the image 7^m of ??„,

is:

where 7^ is given by (6.2.2), so that:

_(-i)r
 r r v r ivw

- ( ~ 1 ) r detG6 i u , . . ,m X3 (-l)p7pa,)"-7pcy-)
2rm\

= detG.7r)m. (6.2.14c)

In the case of even m = 2r, the matrices -y'a satisfy (6.2.4) for some A(G).

Therefore, from (6.2.146):

whereupon, from (6.2.14):

A(G)7,2r A(G)-1 = det G.7,ar. (6-2.15)

From (6.1.9a) and (6.1.4c), 7^2r is a 2r x 2r diagonal matrix with 1 and —1 each

occurring on the diagonal with a multiplicity of 2r~1. Thus the basis elements may

be arranged so that 7^2r is expressed in the block diagonal form:

T ^ K 1 ' V (6-2.16)
^ 0 -J2r_, J

In the same basis, let:
( P n \

(6.2.17)
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where P , Q, R and S are each 2r~l x 2r~l submatrices. If G G S0(2r) then det G =

1, and (6.2.15) implies that A(G)7,,2r = 7(,2rA(G). Then direct multiplication of

(6.2.16) and (6.2.17) shows that the submatrices R and Q are both identically zero.

Therefore A(G) takes the form:

A(G) = h )
V o A~(e)J

(6.2.18)

This demonstrates that on restriction from O(2r) to 50(2?'), the basic spin repre-

sentation A of 0(27-) decomposes into the direct sum of two representations. These

are denoted A+ and A~. As will be seen later, each is irreducible. Incidentally, if

G € 0(2r) and det G = - 1 , then (6.2.15) implies that A(G) takes the form:

A(G) =
R(G) 0

(8.2.19)

In the case of odd m = 2r + 1, the matrices 7^ given by (6.2.2) still generate

a 2r-dimensional representation of A^r+i- However, since there are two such repre-

sentations, expression (6.2.4) does not follow. However, if det G = 1, then Lemma

6.2.14 shows that 7 ^ j5 the image of 7/2r+i is 7^2r+1 = h*- This shows that the

representation of A^r+i generated by the matrices j'a is equivalent to that generated

by the matrices j a and therefore that there exists a A(G) such that (6.2.4) does

hold for the case of G £ 50(2?" + 1). As in (6.2.7), the matrices 7a also generate a

representation of W2r+i- Here, from (6.1.136), the image of 772r+i is given by:

"1)r I] (-1)* Y,

r 4-

=(-l)rJ2r. (6.2.20)

Therefore, the map aa —* j a generates a representation of vV2r+i equivalent to that

generated by aa —> j a if r is even, and equivalent to that generated by aa —> —7a if

r is odd. Consequently, there exists a 2r X 2r matrix C such that:

-1. (6.2.21)
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This matrix C enables the matrices A(G) to be normalised in precisely the same

way as previously. Then, as before,

A(G'G") = ±A(G')A(G"), (6.2.22)

for all G',G" € S0(2r + l).

In the case where detG = —1, Lemma 6.2.14 shows that 7^2r+1 = —7ijar+, =

—1IT. This shows that the representation of NiT+\ generated by the matrices Ya is

equivalent to that generated through the map aa —> — j a . Therefore there exists a

A(G) such that:

ia = -A(G)7aA(G)-1, (6.2.23)

for all a <E l°(m\ With the matrix C as given by (6.2.21), A(G) may be selected

as before, so that if A(G) = G"1A'(G)~1C then A(G) = A(G). Then for G\G" E

0(2r + 1) (detG' = ±l ,detG" = ±1), identities (6.2.13) follow as before as hence

also (6.2.22).

Thus the two-valued, 2r-dimensional basic 'spin' representations of 0(2r + 1)

have also been constructed. As will be shown later, they are irreducible and remain

irreducible on restriction to the subgroup SO(2r + 1).

For the Lie algebra so(m), it is possible to give an explicit description of the

representation A. Let m = 2r or m = 2r + 1, and define the 2r x 2r matrices Aa
h

for a, 6 E I°(2r+1'> by:

A.' = \hani} = \(l«7l - 717.) (6.2.24a)

= \(iali - Sab.I2r), (6.2.246)

where (6.2.246) has been obtained from (6.2.24a) by using (6.2.1).

Lemma 6.2.25. Let m = 2r or m = 2r + 1. In the basic spin representation A of

the Lie algebra so(m), the matrices Aa
h represent the elements Da

b G so(2r) or the

elements Ba
b G so(2r + 1) for all a,b G Io(m>.

Proof. Consider first the case m = 2?\ Let G(t) be a one parameter subgroup of

SO(m) for which:
d

: = - G « ) (6.2.25a)
( = 0

Let A(t) — A(G(/)) be one of the pair of 2r x 2r matrices representing G(t) in the

representation A, satisfying (6.2.4) and the unprimed version of (6.2.11). Expression

(6.2.11) implies that det A(i) = ±1. For t in a sufficiently small neighbourhood of
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0, A(t) may be selected to be close to J2r, ensuring that det A(i) = 1. Combining

(6.2.2) and (6.2.4), and differentiating with respect to t, yields:

= A(£><,% - % A( A,6), (6.2.256)

where A(Da
b) — d/dt(A(t))\t=0 represents Da

b in the representation A. From

(2.2.17), {Da
h)qp = 6aq8bp - 8-hq8-ap, whereupon (6.2.256) gives:

Stp7a - <5ap-75 = A(D/ ) 7 p - 7PA(Da
h). (6.2.25c)

It will now be confirmed that for all a G T°(m\ this expression is satisfied by

A(Da
b) = Aa

b. Substituting (6.2.246) into the right side of (6.2.25c) yields:

Aa
67P - 7PAa

6 = -(7a7i7p -

= -jilaTblp - iplaTb)

(

~ 7p7a7j)

- 8a-pTb, (6.2.25d)

where (6.2.1) has been used twice. Since the right side of (6.2.25d) is the left side

of (6.2.25c), the required confirmation is achieved. However, A(Da
h) = Aa

6 is not

the unique solution of (6.2.25c). Let A'(Da
b) be another solution so that:

pAa \A'{Da
h)lp - 7pA'(ZV) = Aa

6
7p - 7pA

implying that:

(Aa
4 - A\Da

b))lp = 7p(Aa
6 - A'(Da*)), (6.2.25c)

for all p G J° ( m \ Thus Aa
6 — A'(Da

b) commutes with every element of an irreducible

representation of Afm. Thus by Schur's lemma, A'(Da
b) = Aa

b -{-gl^r for some j ^ C .

It is easily seen that all such A'(Da
b) are solutions of (6.2.25c). However, since for

small t, det A(i) = 1, it follows from Lemma 2.2.3 that tr A(Da
b) = 0. Then, since

tr Aa
b = 0, this matrix is the unique representative of Da

b in the representation A

of 5o(2r). The argument is precisely the same for Ba
b £ so(2r + 1).

This lemma implies that the matrices Ao* satisfy the commutation relations (2.2.18)

and (2.2.22), as may be confirmed directly by repeated use of (6.2.1).
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§6.3. The Spinor relations

In this section, the appropriate Young tableaux are defined for the O(m)-modules

associated with the representations [A; A] of 0(m). Identities linking these tableaux

are then derived for the irreducible O(m)-modules.

For the moment, consider the basic spin representation A of O(m). Let ^

denote the 2r-dimensional module on which the elements aa of the Clifford algebras

j\fm for m — 2r and in = 2r + 1, act through their irreducible matrix representatives

7a. Thus, if V> G * , then

aaip — 7aV>, (6.3.1)

for a € J°(m ) . A convenient basis for \I> is provided by the set:

{*l>.,~.r--sje{jj},j = l , 2 , . . . , r } . (6.3.2)

Any 2r x 2r matrix 7 which can be expressed as the Kroneker product of r 2 x 2

matrices,

7 = (7(1)®(7(2)<g>---®<7(r), (6.3.3)

is defined to act upon the basis elements of $ according to:

7 ^ , , , = £ <>£,•••<>>,..«,• (6-3.4)
< l , . . . , « r

By defining this action to be linear, it provides a module action for the ring M2r

since (j'Y')ip = Yil"^) for all 7', 7" of the form (6.3.3), and, as shown in the proof

of Lemma 6.1.10, any element of ]\Air may be expressed in terms of elements of the

form (6.3.3).

The basis elements i}>Sl...,r maybe identified with the half tableaux of Definition

2.6.20. The tableau TAr corresponding to ipSl...,r is obtained simply by setting

•̂ (t.o) = si f° r J ~ 1) 2 , . . . , r. Thus for example, 1̂2345 corresponds to the tableau:

1 •
2 •

TA r = 3 • (6.3.5)
4 •
5 •

Note that here, the element in the jth. row is either j or j for each j = 1,2,... ,r.

This will be true for the half boxes (to the left of the dots) in all the tableaux TAr;A

that arise in this chapter. Note also that the index 0 does not appear in the half

boxes at all. However, it will sometimes be convenient to create an extra half box

below the rth, with only 0 permitted as an entry.
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6.3. The Spinor relations

It will also prove convenient to introduce notation concerning sign factors

related to the indices in the half boxes. Define:

( 5 ) ~ \ l if.s<ENr,

and

(6.3.6)

Si

(6.3.7)

As above, let Tfifo = Sj € {j,j} for j = 1,2,..., r and let a E Nr. Through
(6.3.4), it follows from (6.1.4a) that 7a acts on TAr according to:

•si •

iJ- ' = la •

•So-1

•Si •

a (6.3.8a)

sr •

where sa_i means sn_: if a is barred and similarly for sa+i. From (6.1.46), 7S acts

on TAr according to:

Si

•Si

•Si •

•sa_r

a • (6.3.86)

Similarly, from (6.1.4c):

To-* = (6.3.8c)

In order to avoid a proliferation of cases later, these three expressions will be
combined into one single expression. In order to achieve this, let sj = Sj for
j = 1,2, . . . , r , let: _

,, , f 1 i f a € N r U N r ;
II if a = 0,

(6.3.9)
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6.3. The Spinor relations

and append the extra (redundant) index s0 = 0 to the bottom of the column of half

boxes of TA r , so that:
•si •

•Si

s

Expressions (6.3.8) then combine to yield:

(6.3.10)

•si •

rnl\r _ .
la-L — la •

sr •

sa+r

•So

(6.3.11)

for all a £ T°^m\ where if a = 0, it is implied that a — 1 = r.

By means of the construction of the basic spin representations presented in

Section 6.2, the tableaux TAr constitute a basis for an 0(?n)-module. This 0{m)-

module will be denoted OAr . The action of G G O(m) on OAr is provided by

the matrix A(G). This action therefore has an ambiguity in sign. Through Lemma

6.2.25, OAr also serves as a module for the Lie algebra so(m). An explicit description

of the action of so(m) on the tableaux TAr will now be given.

Let a,b E I o ( m ) be such that a < b, b. Then Aa
b = \jarb from (6.2.246),

whereupon:

•Sl •Sl • •Sl

Sb

Sr

•So

•So

Sb

•Sr

•So

•Sl

Sb-1

l a •• J

So
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6.3. The Spinor relations

Si •

•Si Si

j (6.3.12a)

s r

So

•Sr

Similarly, if a > b, b then:

•Sl

sb

•sa_i

(6.3.126)

S r

So

Sr

So

where the minus sign appears because S(, is used to calculate the sign and not sb. If

a g T°(™), then Aa
3 = 0 from (6.2.24), (6.1.5c) and (6.1.5J), whereupon:

(6.3.12c)

If a G J o ( m ) and a ^ 0, then Aa
a = \(iala ~ h*), whereupon:

Sa-1

la • 2 :

Sr •

So-

= 4>(af 6'tm

Sr •

So •

So.

Sl •

Sa-

Sr •

So •

Sr •

So-

1
~2

Si •

Sa- _ (

Sr •

So •

Sl •

Sa-

Sr-

So •

S r •

So •

•

S r

So

1(6.3.12d)

As in Chapter 5, let V be the defining 0(m)-module with basis {ea : a G

jo(m) j If m = 2r or m = 2r + 1, then the vector space * ® V®' has dimension 2rm'
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6.3. The Spinor relations

a n d a b a s i s :

{ t f W . . . r ® e a i < I a . . . a i :sj G {jj},j = 1 , 2 , . . . , r ; a , e X o ( m ) , i = 1, 2 , . . . , / } . ( 6 . 3 . 1 3 )

The action of G 6 0(m) on 'tgiF®' is defined by the linear extension of the following

action on the basis elements:

G : r p , l S a - , r <8> eaiO2...OI

= ± 2 ^ 2 ^ A(G), 1( 2 . . . ( r , l 3 2 . . . , rGj i a iGt 2 a 3 • • • Giiat^tlt3...tr <S> e6l62...6(. ^ '
3 1 , . . . , 5 r 6 i , . . . , 6 |

Note that the arbitrary sign of A(G) is only arbitrary overall. Therefore the ' ± '

is written here before the summations and the action is two-valued. Moreover, the

arbitrary sign is an overall sign for the linear extension of (6.3.14). Fix m, let

J = J+ and consider the tensor:

^ M - . , = E E Jai(-r>)n...tT.l....rtl>u...tr®ea. (6.3.15)
a,b ti,...,tr

The action of G € O(m) results in:

GiJ>Sl...Sr = ±J2 E E E Jat(7b)tl...tr.l....A(G)Ul...Uril...trGeaxl>Ul...Ur®ee.
a,b t i , . . . , t r c u i , . . . , t i ,

(6.3.16a)

Then (6.2.2) and (6.2.4) imply that A(G)jb = Ed Gdb-ydA(G), whereupon:

GipSl...,r — ± Yl E E JabGdbGca(jd)Ul...UrVl...VrA(G)Vl...VrSl...SripUl...Ur ® ec.
a,b,c,dvi,--,vr » i i i ,

(6.3.166)

From Lemma 2.1.2, GJG = J for all G G 0{m). Therefore:

...t,rJl...5r^Ul...Ur®ee, (6.3.16c)

which is a linear combination of terms «/>„,...„,.. The space of all such tensors is thus

invariant. For this to occur it is necessary that the sign is fixed to be an overall

sign as in (6.3.16a).

Definition 6.3.17. For 0(m), a trace tensor of ^ ® V®1 is any linear combination

of terms of the form:

E E Jab(lb)tl-tT,i--sr4>tl--tr ® x ®ea <g)y, (6.3.17)
a,b ti,...,tr

where x and y are elements of some (possibly zero) tensor power of V and x <g> y €

y®('-i) jy ie vector space U C \& ® V®1 is defined to be the span of all such trace

tensors.
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6.3. The Spinor relations

It follows from (6.3.15) and (6.3.16), that U is invariant under the action of

0{m). The complete reducibility of <£ <g> V®' implies that (\I> ® V®')/U is isomorphic

to a subspace of \& ® V®', which is invariant under the action of 0(m). Thereupon

0A"x = (* ® WA)/(<£ <g> Wx fl U) is an O(m)-submodule of * ® Wx.

Let TA-A be formed by adjoining TAr and T \ and let {TA-A} denote the

symmetrised element TAr <g> {TA} G \J> <g> VF*. Now let [TAr;A] denote the traceless

symmetrised tableau resulting from the removal of all trace terms (6.3.17) from the

symmetrised tableau {TAr;A}, by forming its quotient with respect to the elements

of U. OAr;A is therefore spanned by all [TAr;A] where the entries of each TAr>x are

from the set 1°^ and Tfof e {],j} for j = 1,2,.. . , r.

L e m m a 6.3.18. Let T0
Ar be a tableau for which T£jos = Sj for j = 1,2,..., r, 0, and

let Tt
Ar be r tableaux, each identical to T0

Ar apart from one position where Tt
AsQ) = J,-.

Now for i = 1, 2,. .. , r, 0, let Tx be r + 1 tableaux identical apart for the entry in one

fixed position for which T{)a b^ = S{, for which a < \1 and b < Aa. Lei Tt
 r' be formed

by adjoining TAr and Tx. If m = 2r is even then:

E
i£Nr

-Si

[T?'iX] = 0, (6.3.18a)

/̂??^ = 2r + 1 is i/ien:

i£N rU{0}
• S . - - 1

[TA-A] = 0. (6.3.186)

Proof. From (6.1.4), 74 may be expressed:

(6.3.18c)

Sb-\

for each b € Jo ( m ) . Then since Jab = Sai, it follows that

E E Jab(7b)tl-tr,1-,ript1...tr®x®ea®y
a,b ti ! r

•Si

E
a tu...,tr

•Si-1

•Si

183



Sa-1

6.3. The Spinor relations

y. (6.3.18d)

This shows that:

where the sum is over Nr or Nr U {0} as appropriate. Then, in each case, the place

permutation action on the Tx portion by each summand of the Young symmetriser

Yx, produces a similar term in U with appropriate changes of the position (a, 6).

In both cases it thus follows that:

5X0

Thereupon (6.3.18a) and (6.3.186) follow from the definition of [TAr;A] as a quotient.

In this chapter, each identity of the type (6.3.18a) or (6.3.186) will be known

as a Spinor relation. To demonstrate such a relation, let m = 11, A = (I3) and

(su...,sr) = (1,2,3,4,5) Lemma (6.3.18) then implies that:

= 0. (6.3.19)

Note that the second term here is identically zero by virtue of the Column relations

(3.4.2). In addition, note that the removal of the sixth term results in a valid Spinor

relation for the case m = 10.

It will prove useful at this stage to generalise Definition 5.1.4 to the half

tableaux appearing in this chapter.

Definition 6.3.20. O(m)-weight. Let m = 2r or m = 2r + 1 and let TArlA be formed

by adjoining TAr and Tx. For i = 1,2,.. . , r, define

n?(n)(T4'iA) = ni(T
x) - n;(Tx) + i(n,(TA') - n;(TA')),

where rij(Tx) is the number of appearances of the index j £ Zo<-m) in Tx and rij(TAr)

(G {0,1}) is the number of appearances of the index j G Io(-m) in TA r . The vector

Ir-H

to
i

3
4

. 5

. 2 "
• 5
• 1

.

+

1
2

3
4

. 5

to
i

• 5
. 2
•

—

' 1
2

IC
O

4
. 5

• 2 "
• 5
• 3

•

—

" 1 •

to
i

3 •
4 •

. 5 •

2 '
5
4 +

1

to
i

3
4

. 5

• 2 "
• 5
• 5
•

i
i

V2

1
2
3
4

. 5

• 2 "

• 5
• 0
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6-4- Standardisation in the irreducible spinor modules

n%(m\TA'-x),. ..,n?W(T*'*)) is known as the 0(m)-

Notice that each of the tableaux appearing in (6.3.18a) and (6.3.186) have the same

O(m)-weight. This fact will be useful in developing the analogy of Lemma 5.2.4.

§6.4. Standardisation in the irreducible spinor modules

In this section, the Spinor relation is applied simultaneously over a number of po-

sitions in a column of a tableau to provide an analogue of Lemma 5.2.4. Having

defined suitable sets of standard tableaux, a standardisation algorithm is developed.

Let Qp denote the algebra generated by q elements £l5 £2 , . . . ,(q, for which

Ci + C2 + " "' + C? = 0 and £f = 0 for 1 < i < q. As demonstrated in Section

4.3 and first noted by Berele [Be86], there is an intimate association between the

construction of Q2
q and the construction of the irreducible Sp(2r)-modules Bx. The

lemma that follows shows that there exists a similar association between the algebras

Q3. and the irreducible spinor 0(m )-modules 0Ar;A. Here, the expressions of greatest

interest are those of the form:

+ C2 + --- + C,-t) = 0 , (6.4.1)

where y is a homogeneous polynomial in Q3 of a specific form.

In this section, it will be convenient to define even m = 2r, odd m = 2r + 1,

and 7-' = in — r. J'm is defined by Tm = Nr if m is even and X'm — Nr U {0} if m is

odd. Thus #Tm = r' and 1°^ =Tm\JNr-

Lemma6 .4 .2 . Let k be such that 1 < k < A^ LetTm = B^UB^USVOUH be a union

of disjoint sets such that 0 € #{• WH ifO € Tm, and ifbf = #Bf, ¥ = #BP, e = # 5 ,

g = #G and h = #71 then Xk = b" + V3 + 2e + u + v where u > 2g. Fix the indices

sus2,... , 5 r , 5 0 where sp e {p,p} for each p 6 Tm. Let B° U H = { p i , p 2 , . . . ,Pb°+h},

let y be a homogeneous polynomial of degree v in the elements of {p : p G B" U H},

and consider the following homogeneous polynomial:

p) . (6.4.2a)
\peeruw

Let x = J2W xw, the sum being over various iv with xw = ^ P i " ^ 1 ^ 1 " ^ • • -PbT+h1*"

where rjw G Z is non-zero, nw(p) <= {0,1,2} if p £ H, Kw(p) <E {0,1} if p € Bf U {0},
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6.J. Standardisation in the irreducible spinor modules

and 5Zpee«u7i Kw(p) — u + v. Let the tableaux Tx be identical except for u + v positions

in the kth column for which Tx contains the indices

, Kw(p) = , Kw(p) = 1}, (6.4.26)

in column strict order. In the other b" + b3 + 2e positions reside the indices {p,p :

p G £} U {sp : p 6 B"} U {sp : p 6 5^}. For eac/i w, form the tableau T£r by setting

Tw(Pfl) = p̂ if P £ B" WH and Kw(p) — I, and setting Tfy^ = sp otherwise. If each

T£r'iX is obtained by adjoining T£r and Tx, then:

LsP-l

= 0. (6.4.2c)n *(p)
\ K U , ( P ) = I

Proof. The following proof deals with the case of odd m = 2r + 1. The proof for

even m = 2r may be obtained by ignoring all reference to the index '0'.

The proof follows the strategy of applying the Spinor relation repeatedly over

the u + v positions in the kth column. Although the order in which these are applied

is irrelevant, it is useful to consider them from the bottom up.

For the moment ignore signs. The Spinor relation may then be represented

by:
i + 2 + 3 + --- + r + 6 = 0, (6.4.2d)

where each of the distinguished integers denotes an index which appears in some

fixed position in the kth column of the Fx portions of the respective half tableaux,

as in (6.3.19) for example. Each p appearing in this position is to be replaced by

either the index p or the index p depending on whether the index sp is unbarred

or barred. However, repeated application of (6.4.2c?) over different positions within

the same kth column, results in the indices in the half box positions being altered.

Then a subsequent appearance of p will correspond to the opposite (barred or

unbarred) index to that which first appeared. A further subsequent appearance

of p will result in the reappearance of the first index. Since these occur in the

same column of a symmetrised tableau, the term vanishes. Thus the rule, in taking

powers of (6.4.2d), is that terms containing cubed factors are annihilated, those

containing squared factors correspond to barred/unbarred pairs, whereas the single

power factors correspond to the indices Si, s2, •. •, sr, s0. In addition, note that 02 is

annihilated.
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6.4- Standardisation in the irreducible spinor modules

Let W = H U B" U B" U £ and h' = #H'. Then splitting (6.4.2d) with respect

to J^ = W U Q yields:

£p=-X> (6.4.2e)
pen1 pee

Raising each side to the power of u annihilates the right side because Q has g

elements and, since u > 2g, one of these must be cubed in every term. Therefore:

_ (6.4.2/)
\p67i' /

and thus

(6.4.2,7)

If it is assumed that the indices p commute with one another, then each term arising

from (6.4.2,/) is of the form:

r/w £«»CP«)£«»O") . . . pK
hr

(Ph'\ (6.4.2/i)

where rjw G Z, nw(p) G {0,1,2} for each p G W, KW(0) G {0,1} and £ p 6 «. K»(P) -

u + u. In order to show that the terms p do commute, it will be shown that the r)w

symmetrised tableaux corresponding to the term (6.4.2/i) in (6.4.2^) are equal. In

addition, the sign associated with this term will be calculated.

On defining Vw = {p G H' : Kw(p) = 2} and Bw = {p G H' : KW(P) = 1},

it may be seen from (6.3.lSd) that the tableau corresponding to the term (6.4.2/i)

possesses the indices

Q«, = { p , p : p € ' D w } \ J { s p : p £ B w } (6.4.2i)

in the fcth column of the Fx portion. Then those in the _FAr portion are given by

{sp : p G Bw} U {sp : p (£ Bw}, as may be inferred through the constant 0(m)-weight.

Assume that the indices from Qw have been generated by applying the Spinor

relation, in the guise of (6.4.2^), over u + v boxes, one box at a time, beginning

with the lowest relevant box. Consider the one tableau T£r]X arising from (6.4.2h)

with the indices from Qw in column strict order. This tableau may be generated

by first choosing the largest factor from those of (6.4.2/i) remaining at each Spinor

relation. From (6.3.18a/6), each index p has a sign factor

(6.4.2J)

LsP-i.
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6-4- Standardisation in the irreducible spinor modules

associated with it. Dealing with the largest indices first, ensures that these sign

factors are not interfered with by earlier indices. If Kw(p) = 2 then the same sign

factor occurs twice and thus a cancellation occurs in this case. The sign factors

for the Kw(p) — 1 cases remain. By virtue of the order in which the indices were

selected, the resultant tableau is column strict on Qw, apart from those indices sp, s
p, sp

for which nw(p) = 2 and sp = p. Then p will be below p. Accounting for this in

each case, through the Column relations, generates the sign factor:

n (6.4.2*:)

By Lemma 6.3.18, a factor of l / \ /2 is also associated with the index '0'. Provided

that it can be shown that if the tableau arising from selecting the indices of (6.4.2/i)

in an order different to that above, gives rise to a column strict tableau of the same

sign, then the coefficients appearing in (6.4.2c) have been explained.

Now consider the indices of (6.4.2/z) taken in an arbitrary order. However,

when v(p) = 2 and fr is substituted by sp and sp (not necessarily consecutively),

the former will once more precede the latter and require the factor (6.4.22k). With

this in mind, let the order be:

where p, ( ? )

,Pw(q), Pn

The sign associated with this term is:

(6.4.2/)

(2 )

s ( 2 )

•Sl ,(0
•Sl

(6.4.2m)

where sb — sb for b = 1,2, . . . , r , and each vector ( s \ c + 1 \ . . . ,s£e+1)) differs from

(s{°\ . . . , s^) only in the one component for which sp
c*p — ̂ f*c • Now consider the

order:

where, with respect to (6.4.2/), />*(?) and p,(,+i) have swapped places. The sign

associated with this term is:

(6.4.2o)

where (si?+1^ , . . . , s^+1^') differs from (s[q\ . . . , s^) only in the one component for

which s(*+1
+);> = j£)h+i) and (s[iY,..., s(«>') differs from (s[q+1\ ..., s ^ ) only in the

r s(i) i
•Sl

,(1)

' s(2) 1
• S l

J2)
L^P.oo-lJ

r ^y i

• S l

Lsp,(,+D-l J

r J9+1) i
• S l

L 5 P. ( , ) - I J

•Sl

,(0
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6.J. Standardisation in the irreducible spinor modules

one component for which s^'M = s^+V. Since either px(?) > Pr{q+\) or px(q) < p^+i) ,

only one of these differences manifests itself as a difference between (6.4.2m) and

(6.4.2o). Consequently, these two sign factors differ by a factor of —1. Therefore,

since the tableaux resulting from (6.4.2/) and (6.4.2n) differ by a simple transpo-

sition, the two resultant symmetrised tableaux are equal. Since the transpositions

of adjacent unequal elements generate the whole set of terms from (6.4.2/i), it fol-

lows that the factors of (6.4.2/i) commute with one another and that the resulting

symmetrised column strict tableau has a multiplicity T]W.

The lemma is now proved by noting that, apart from those from the set Qw, the

indices that reside in the kth. column are given by 6B°6B*6£, where 6B° = Y[q€Ba sq,

8B' = n ? e ^ s, and 0* = n,6£ qq- Therefore, if nw(p) > 1 for any p G B" U S or

Kw(p) — 2 for any p £ B°, then T*r'A is zero by virtue of a repeated index in the

kth column. Then, since 7i' = 7i U B" U B13 U £, the remaining terms are those in

the statement of the lemma.

The tableaux identity resulting from this lemma may be conveniently ex-

pressed thus:

£ ) = < ) , (6.4.3)
\p6Bfun /

each non-zero term of which yields the appropriate term of (6.4.2c). The tableaux

identities are readily obtained from the algebras Q3
q with various sign factors in-

troduced. In addition, for those tableaux in which the index '0' appears, an extra

factor of 1/v2 is necessary. The identity 02 = 0 is also used. The following example

exhibits this construction.

Let m = 12 so that r = r' = 6, let u = 5, v = 0, y = 1, A = (1,1,1,1,1),

(s , ,5 2 , . . . ,3 6 ) = (1,2,3,4,5,6), Ba, = B& = £ = 0, Q = {1,2} and V! = H =

{3,4,5,6}. In accordance with (6.4.2e), the Spinor relation is split:

- 1 - 2 = 3 + 4 + 5 + 6. (6.4.4a)

Raising this to the power of u = 5 annihilates the left side by virtue of cubed terms.

Thereupon:

30.(32425 + 32426 + 32452 + 32526 + 32462 + 32562 + 34252 + 34262 + 35262

+ 42526 + 42562 + 45262) + 60.(32456 + 34256 + 34526 + 34562) = 0.
(6.4.46)

Now consider the term 32562. Applying the Spinor relation once to the lowest box

of TA deposits the index 6 there together with the sign factor — 1. The indices in the

half boxes are now (1,2,3,4,5,6). Repeating this process using the next box up and
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6.4- Standardisation in the irreducible spinor modules

then subsequent boxes, generates the following sequence of traceless symmetrised

tableaux:

' 1

2

IC
O

4
5
6

• X

• X

• X

• X

• X

•

" 1

2

C
O
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• X

• X

• X
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•
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1

2
C

O
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O
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• 5

O
il
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1 •
2 •
3 •
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5 •

6 •

ICO

3
5

O
il

6

(6.4.4c)

The sign resulting here corresponds to that given by (6.4.2c). It may be confirmed

that the same term results on taking any of the other 29 permutations of the indices

33566. Calculating the sign for each term of (6.4.46) yields:
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5 •
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6 •

+ 2

" 1 • 3 "
2 • 4
3 • 5

4 • 5
5 • 6

O
il

+ 2

" 1 • 3 "
2 • 4

3 • 5

4 • 6
5 • 6
6 •

= 0. (6.4.4c/)

As a further example, let m = 13 so that r = 6 and r' = 7, let A =

(1 ,1 ,1 ,1 ,1 ,1 ) , u = 3, v = 1, y = 2.5 - 6 + 6, ( s x , a 2 , . . . , s 6 ) = (1 ,2 ,3 ,4 ,5 ,6 ) , B° =
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6Jt. Standardisation in the irreducible spinor modules

{5}, B" = {4}, S = 0, G = {2} and H = {1,3,6,0} so that W = {1,3,4,5,6,0}.
Then raising the Spinor relation,

2 = 6, (6.4.5a)

to the power of u = 3 annihilates the left side. Since 02 = 0 and each p3 = 0, the

resulting right side consists of 25 distinct terms of the form 3p2p2 with px ^ p2, and

20 distinct terms of the form 6pip2p3 with pi < p2 < p3. However, in addition to

the indices arising from these terms, each tableau is to contain the index 4 in the

first column. Since s4 — 4, those terms arising from (6.4.5a) which contain 4 may

be ignored. Furthermore, each tableau is to contain the index 5 in the first column.

Since s5 = 5, those terms containing 52 may be ignored. This leaves 12 distinct

terms of the form 3p2p2 with px ^ p2, and 10 distinct terms of the form 6pip2p3 with

P\ < P2 < P3-

3.(123 + 125 + !26 + 126 + i32 + 325 + 326 + 326 + I62 + 362 + 562 + 626)

+ 6.(135 + 136 + 130 + 156 + IS6 + 160 + 356 + 350 + 360 + 560) = 0.
(6.4.56)

Multiplying this by y — 2.5 — 6 + 6, and discarding terms containing 62, 52 or 63 as

above, results in:

3.(!256 + 3256 + 5626 - I236 - 1262 - 1326 - 3262 - i626

- 3626 + 123O + 1326) + 6.(1235 + i325 + 1356 - 1362) (6.4.5c)

+ 9.(125O + 3250) + 12.(1560 + 3560) + 18.1350 = 0.

From this identity, a tableau results from each term by replacing each p by sp, each

p2 by spsp, and appending 6B°6®*9£ — 45 to form the first column. The indices in
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the half boxes and the coefficients are calculated as before. The result is:

-3 r t

1
2

1 •

2 •
3 •

4 •
5 •

O
il

1 "
1

O
il

6
4
5

- 3

" 1
2

3

4
5
6

• 1 "

• 1
• 5

• 6
• 4

• 5

- 3

+ 3

1 • 3

2 • 3
3 • 6
4 • 6
5 • 4
6 • 5

- 6

' 1
2

3
4
5

O
il

• 1 "
• 1
• 3
• 5
• 4
• 5

3

vf

- 6

' 1
2
3
4
5

ico

" 1
2

3

4
5

O
il

• 1

O
il

• 6

• 0
• 4

• 5 .
• 1 '
• 3
• 3

• 5
• 4

• 5

1 - 3 "
2 • 3
3 • 5
4 • 6
5 • 4
6 - 5

3

3

' 1 • 3 "
2 • 6
3 • 6
4 • 0
5 • 4
6 • 5

" 1 • 5"
2 • 6
3 • 6
4 • 0
5 • 4
6 - 5

3
i—

i

2

O
S

I

4
5
6

IT
—

1

• 1
• 3

O
il

• 4
• 5

— o

' 1
2
3
4
5
6

• 1 "

O
S

I

• 3
IC

D

• 4

• 5

- 6

1 • 1
2 • 3
3 • 5
4 • 6
5 • 4

" 1
2

3
4
5

O
il

• 3 "
• 3
• 5
• 0
• 4

• 5

12

\/2

" 1
2

3
4
5
6

• 1 "
• 5

O
il

• 0
• 4

• 5

12
7o

3 • 3
4 • 0
5 • 4
6 • 5

+6 r " + ^

3

" V2

' 1
2
3
4
5

O
il

• 1 "

C
O

I

• 3
• 0
• 4
• 5

1 • 1 "
2 • 3
3 • 6
4 • 6
5 • 4
6 • 5

9

1 • 1
2 • 1

3 • 5
4 • 0
5 • 4
6 • 5

18

\/2

" 1 •
2 •
3 •
4 •
5 •

O
il

1
3
5
0
4
5

= 0.

1 • 3
2 • 5
3 • 6
4 • 0
5 • 4
6 • 5 ,

(6.4.5d)
Of course, the Column relations may now be used to make each term column strict.

Lemma (6.4.2) now enables a standardisation algorithm to be developed. This

is based on the following favoured sets of tableaux first obtained by King and El-

Sharkaway. Here the elements of I°(m) are ordered as in Chapter 5.

Definition 6.4.6. [KE83] Let m be such that even m = 2r and odd m = 2r + 1,

and let TA-A be obtained by adjoining TAr to Tx. For j G lo(-m\ let a, be the

number of entries in the first column ofTx less than or equal to j . Let st — Tfifo for

i = 1,2,... , r, and let sr+1 = 0. The tableau TAr>x is O(m)-standard if:

(i) the entries are taken from the set J o ( m ) ;

(ii) the entries are strictly increasing from top to bottom down each column

ofTx;

(Hi) the entries are non-decreasing from left to right across each row ofTx;

(iv) Sj G {J,; } for j = 1,2,. . . , r ;
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6.4- Standardisation in the irreducible spinor modules

(v) a, <j for j = l , 2 , . . . , r ;

(vi) if T(j fcj = Sj for j and k satisfying 1 < k < Xj and 1 < j < A\, then

1 •
2 .

3 •

1
3
3

1 2 1

tO
I

3

• 1
. 2
• 2

3 3 1
2
3

• 1 2
• 2
• 3

Note that condition (vi) implies that if TAr;A is (9(m)-standard then T(
A

+1 x) ^ 0.

This, together with conditions (ii), (Hi) and (v), implies that there exist no O(m)-

standard tableaux TAr;A when A\ > r. Also note that if j > 1, T(
A. 0) = j , T(

A ̂  = j

and Ty_! ky = j then condition (vi) is satisfied for that particular j and k, but

however, condition (ii) is violated. It is also interesting to note that the first three

conditions together with the 5th imply that if TAr;A is 0(2r)-standard then TA is

Sp(2r)-standard. Definition 6.4.6 implies that of the tableaux:

1 - 1 0 0
, and 2 • 3 , (6.4.7)

3 • 3

only the last is 0(7)-standard.

T h e o r e m 6.4.8. [KE83] Let m be such that even m = 2r and odd m — 2r +

1. The multiplicity of the weight (?il5 n2, • • •, nr) in the irreducible representation

[Ar;A] of O(m) is given by the number of O(m)-standard tableaux TAr;A such that

The character of this representation is given by:

_ yT*r'\ (6.4.8)
j ' i , ,x -T'Ar;>. O(m)-standard

where (y) = (y 1 ? y 2 , . . . ,y r ) and if = yx 'y2
2 • • • y"T ( , f°r

those elements ofO(m) with positive determinant and, if m — 2r, eigenvalues y^l,y\,

Vol, y2,.. ..yr1, y r , and if m — 2r + 1, eiqenvalues y~l, yi .yr1 , y2,.. -,VZl, y r , 1.

It is important to realise that here, each yTAr* is a function of yf, y ' , . . . , y/ . Hence

it is two valued and so is [Ar; A]. This reflects the fact that [Ar; A] is a two-valued

representation of O(m).

As in previous chapters, a standardisation procedure will enable each non-

standard tableau in to be written terms of tableaux which are higher; in the sense of

Definition 2.6.23 in this instance. Once more, the Garnir relations and the Column

relations may be applied to the Fx portion to yield a linear combination of higher

tableaux TAr;A which satisfy conditions (i), (ii) and (Hi) of Definition 6.4.6. It is

thus only necessary to concentrate on violations of the remaining conditions. In

order to use the techniques described below, it is necessary to determine certain

polynomials.
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6-4- Standardisation in the irreducible spinor modules

Definition 6.4.9. For positive odd u and non-negative integer v, define £(„,„) to be a

homogeneous polynomial of degree v in the v + 1 variables x0, xt, x 2 , . . . ,xv such that

if x\ = x\ — • • • = xl = 0 then the coefficients of each term in

(,T0 \ - x v ) u i ( U i V ) ( x 0 ; x 1 , x 2 , . . . , x v ) (6.4.9a)

having an exponent of any ofxi, x2 , . • • ,£„ equal to 2 is zero, and in which the coef-

ficient of XQXIX2 • • • XV is positive.

Note that if £(„,«) exists then any positive multiple also satisfies this definition. It

is not yet known whether f(U)U) exists for all u and v. However, Table 6.4.10 shows

that £(„,„) certainly exists for all u + v < 8.

u v

u 0

u 1

u 2

XL 3

u 4

2.r0 - ( u - 1)D

4x5 - 2(u - 2 ) . r 0 D - 2 u m + (u2 - u + 2)

8arg - 4(u - 3)xg O -
+2u(u - 1)EP - (u - l)(u2 + u

- u

6)x0 g

x2 - 8(u - 4 )xga - 24u.x-5m + 4(u2 - 5u +
+8u(u - 2)xo[P - 2(u - 2)(u2 - u + 12)x o |

(u4 + 2u3 + Uti2 - 14u + 24)

1 6

-6tH+2

9x0

+x0

Table 6.4.10
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6.4. Standardisation in the irreducible spinor modules

In this table, each Young diagram Fx represents the corresponding monomial

symmetric function mA [Ma79] in the appropriate v variables xx, x 2 , . . . ,xv. mA is

defined to be the sum of all distinct terms xx 'x*3 • • • x,-', where p is the number of

parts of A. For example, if v = 3 then fP = m(2)1) = XjX2 + XjX3 + xxx\ + x\xz +

xxx\ + x2Xg. The notation is especially convenient here since £(17) comprises 763

terms!

If the tableau TAr]X violates condition (u) of Definition 6.4.6 then, in order to

invoke the following standardisation procedure, it is necessary to identify a specific

j which violates condition (u) and for which both j and j (j 7̂  0) are present in

the offending column. A straightforward induction argument shows that if aj, > j '

then there necessarily exists j < j ' for which both j and j are present and aj > j .

L e m m a 6.4.11. LetTAr'x be column strict but non-standard in that there exists j and

k such that aj > j , where Qj is the number of entries less than j in the kth column

ofTAr>x, and such that both j and j are present in the kth column ofTAr>x. //£(„,„)

exists for all u + v < A1} then [TAr]X] may be expressed as a linear combination of

traceless symmetrised tableaux [TAr]X], where for each w, TAr>x > TAr'x.

Proof. Let s[ = T£$ for i = 1,2,... ,r , and let Q C J o ( m ) be the set of indices

in the fcth column of TA-A. Let A = {p G Nr : p,p G Q}, Ba = {p G Nr : s'p G

Q, s'p$Q}U ({0} n Q) , B? = {p eNr:s>pgQ,s'pe Q} a n d C = {p G N r U {0} :

p & Q, p £ Q). Then A, Ba, B? and C are distinct with A U Ba U Bp U C = Tm

a n d , if a = # A , ba = #Ba, bB = # 5 / 3 a n d c = # C , t h e n a + ^+lZ+c^r'

and A* = 2a + ba + b8. Let J = {1, 2 , . . . J} so that # J = j . Now create the sets

V = (An J)\{j}, E = A\(VU{j}), B% = B°nj, B? = (B°\BZ)U{j), Bl = BTiJ,

B{ = Bp\Bf!, G=CnjandJr = C\g. In addition, let H = V U Ba
0 U T so that

Tm = £ U B° U B0 U Q U H. Define ( 5 l , . . .,sr) by 5,- = s'{ if i G tfo° U {i}, and

s,- = s'i if i ^ B° U {j}. Note that j £ A and j G 5^ but j £ H, j £ V and

j $ B%. Let the cardinalities of the sets just created be d, e, 6Q, 6", 60 > ̂ i> ̂ » /?

and /i respectively. Then j — d + b% + b% + g + 1, a — d + e + 1, ba = 6̂  + fe^ - 1,

6̂  = 6g + b{, c = g + / , h = d + f + b° and Xk = 2d + 2e + 6̂  + 6f + V3 + 1. In

addition, aj = 2(d+ 1) + 6? + bo = 2(l + bo + bo + 2. From a5 > j then follows d > g.

Thereupon, if u — 2d + 1 and v = b%, the conditions of Lemma 6.4.2 are satisfied

and if B% = {p\,p'2,... ,p'b?} and

y = <(«,«)( H P;p'i,P2,---,P'b? I . (6.4.11a)
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6.Jt. Standardisation in the irreducible spinor modules

the expression:

e'Wpf 52 p) iiUlV)( £ p; f t ,# , . . . ,pU=o (6.4.116)

results, where 6B" = n,es» sqi &B — Ylqeee s<n a n d @£ = FI,ef 99- Of the tableaux

resulting from this expression, the construction ensures that:

SP (6.4.11c)
}

is the lowest in that in all other terms, the corresponding factor is greater or equal.

Note that the indices s'j and s'- both appear in this term. The indices in this term are

those in the kth. column of TAr]X and therefore, under the appropriate substitutions

and coefficient impositions as in (6.4.2c), (6.4.116) yields an expression for [TAr;A]

in terms of higher tableaux.

To illustrate the algorithm used in this proof, let m = 10, A = (I5) and consider the

tableau:
1 • 2
2 • 3

TAs;lS = 3 • 3 , (6.4.12a)
4 • 4
5 • 4

which is non-standard since a4 = 5 > 4. With k = 1 and j = 4, the proof of Lemma

6.4.11 involves the sets A = {3,4}, Ba = {2}, B0 = 0 and C = {1,5}. In addition

( s ; , . . . , ^ ) = (1,2,3,4,5). With J = {1,2,3,4}, it follows that V = {3}, 8 = 0,

B$ = {2}, Bf = {4}, Bl = B{ = <b,F = {5}, Q = {1} and H = {2,3,5}. Also

(s i , . . ., 55) = (1, 2, 3, 4, 5). The Spinor relation is now written:

- 1 = 2 + 3 + 4 + 5, (6.4.126)

which, on being raised to the power of u = Id + 1 = 3, yields:

(2 + 3 + 4 + 5)3 = 0. (6.4.12c)

Since v = bg = 1, according to (6.4.116), this should be multiplied by i(3,i)(3 + 4 +

5; 2) = 3 + 4 + 5 — 2 (a factor of 2 having been removed, for convenience, from the

polynomial given by Table 6.4.10). The result is:

0 = (2 + 3 + 4 + 5)3(3 + 4 + 5 - 2 )

= (2 + 3 + 4 + 5)2((3 + 4 + 5)2 - 22)

= (3 + 4 + 5)4 + 2.2(3 + 4 + 5)3 - 2.23(3 + 4 + 5) - 24
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- (3 + 4 + 5)4 + 2.2(3 + 4 + 5)3, (6.4.12d)

because 23 = 24 = 0. Notice that no terms containing 22 appear and that the
coefficient of (3 + 4 + 5)32 is positive. Expanding (6.4.12c?) and dividing by 6 results
in:

O O — O O O — O O O O _ O O — O O O O _ O O Q _ O O O O

2324 4- 2325 4- 2342 4- 2425 4- 2352 -4- 2452 4- 2.2345
(6.4.12e)

2425 + 235" + 2452 + 2.2345

+3242 + 3252 + 4252 + 2.(3245 + 3425 + 3452) = 0.

In this expression, the first term is the lowest — it is that giving rise to TA*;15,
Substituting pp for p2, and sp for p, calculating the coefficients as in (6.4.2c) and
multiplying the resultant expression by 8B° 9B 0£ — 4, yields:

23344 + 23354 + 23444 - 24454 + 23554 - 24554 - 33444

-33554 + 44554 + 2.(23454 - 33454 - 34454 - 34554) = 0.

The tableau corresponding to each term is obtained by forming a column from the
indices indicated and selecting indices for the half boxes so that a constant 0{m)-
weight is obtained. Rearrangement and use of the Column relations then yields the
following expression for TAs;1 in terms of higher tableaux:

(6.4.12/)

1 • 2
2 • 3
3 • 3
4 • 4
5 • 4 .

= —

1 • 2
2 • 3
3 • 3
4 • 4

. 5 • 5 .

+

1 • 2
2 • 3
3 • 4
4 • 5
5 • 5 .

+ 2

+

" 1 • 2 '
2 • 3
3 • 4
4 • 4
5 • 5

1 • 2
2 • 4
3 • 4
4 • 5

. 5 - 5 .

_ 2

" 1 •
2 •

3 •
4 •
5 •

—

C
O

I

3
4
4
5

1 • 3
2 • 3

3 • 4
4 • 5
5 • 5 .

+ 2

" 1
2
3
4
5

• 3
• 4
• 4
• 5
• 5

(6.4.12fl)

Note that of the tableaux on the right side, the 1st, 5th and 6th are non-standard
in that they each violate condition (vi) of Definition 6.4.6 for j = 5. The procedure
required to standardise either of these is presented in the following lemma where
techniques very similar to those of the previous lemma are applied.

Lemma 6.4.13. Let TAr;A be column strict but non-standard in that there exists j
and k such that either a j > j , where otj is the number of entries less than j in the kth
column ofTAr'x, and such that s'j is present and s'- is not present in the kth column
ofTAr'-x where s^ = Tfi'of, or a0 > r + 1 and 0 is present in the kth column ofTAr]X.
Ift(u,v) exists for all u + v < Ai, then [TAr;X] may be expressed as a linear combination
of traceless symmetrised tableaux \TAr'x], where for each w, TAr'x > TAr;A.

197



6.4- Standardisation in the irreducible spinor modules

Proof. Let s'{ = Tfcf, for i = l , 2 , . . . , r , and define Q, A, Ba, B", C, a, ba, b°

and c precisely as for the proof of Lemma 6.4.11. Now let J = {l,2,...,j — 1} if

j < r and J = {1,2,. . . , r } if j = 0. Let V = Anj, S = A\D, Bo
a = BaDj,

Bf = Ba\(B% U {j}), Bg = B?nj, B{ = B?\Bl Q =CDJ a n d ̂  = C\Q. I n

addition, let H = £> U ££ U T U {;}. Note that of the sets just created, j €H but

j ^ JBQ and j £ B". Let the cardinalities of the sets just created be d, e, b%, 6", 6Q,

6f, 5, / , and /i respectively. Then j = <f + 6̂  + &o +fir + 1 , a = d + e, 6° = b% + b° + 1,

&* = &£ + &?, c = 0 + / , /i = d + / + 6» + l and At = 2d + 2 c + &? + &$' + &'> + 1 .

In addition, â  = Id + 6£ + bo + 1. From a;- > _;' then follows d > g. (s^,..., sr) is

defined by 5,- = 1|. if i G 60« U {j} and st = s'. if i ^ 5^ U {j}. If u = 2d + 1 and

t> = &o, then as in Lemma 6.4.11, the conditions of Lemma 6.4.2 are satisfied and

the expression:

( p) i M ( £ p;p' l5p'2 , . . . ,p;J = 0 (6.4.13a)
n ) \pevuBfuF J

results, where 5£ = {p i ,^ , . . . ,p'6»}, 6>B° = Y[tsB.sq, 8B = 11,68"-5?, and 6e =

flggf 99- Of the tableaux resulting from this expression, the construction ensures

that:
^Upp n 5 P (6.4.136)

is the lowest. Note that the index s' appears in this term but not s'.. The term

(6.4.136) corresponds to the kth. column of TAr'x and therefore, under the appro-

priate substitutions and coefficient impositions as in (6.4.2c), (6.4.13a) yields an

expression for [TAr;A] in terms of higher tableaux.

To illustrate this lemma, consider the 6th term on the right side of (6.4.

However, instead of m — 10, let m = 11. The tableau in question is non-standard

by virtue of a j — 5 violation of condition (vi) of Definition 6.4.6 since T£*§ = s'5
and Tfc$ ± 4 where (s[,...,s'5) = (1,2,3,4,5). Here A = {3,4}, Ba = {5},

B13 = 0 and C - {1,2,0}. With J = {1,2,3,4}, it follows that V = {3,4}, 8 = 0,

B% = BX = B\ = B{ = 0, T = {0}, Q = {1,2} and H = {3,4,5,0}. Also

(ax,...,s6) = (1,2,3,4,5). With u = 2d + 1 = 5 and v = &« = 0, f(lliB) = 1 from

Table 6.4.10, whereupon (6.4.13a) yields:

0 = (3 + 4 + 5 + 6)5

= 32425 + 32452 + 34252 + 32426 + 32526 + 42526

+ 2.(32450 + 34250 + 34526). (6.4.14a)

198



6.J/. Standardisation in the irreducible spinor modules

Using (6.4.2c), this expression directly yields the following tableaux identity:

1 • 3
2 • 3
3 • 4
4 • 4
5 • 5

1

71

1 • 3
2 • 3
3 • 4
4 • 5
5 • 5

1 • 4
2 • 4
3 • 5
4 • 5
5 • 0

1 • 3
2 • 4
3 • 4
4 • 5
5 • 5

1 • 3
2 • 3
3 • 4

4 • 5
5 • 0

-y/2

1 • 3
2 • 3

3 • 4
4 • 4

. 5 • 0 .

1 - 3 "
2 • 4
3 • 4
4 • 5
5 • 0

- \ / 2

1 • 3
2 • 3
3 • 5

4 • 5
. 5 - 0

" 1 - 3 "
2 • 4
3 • 5
4 • 5
5 • 0

(6.4.146)

= 0.

This is easily rearranged to enable the first term to be written in terms of higher

tableaux, each of which, in this case, are O(ll)-standard. If the last six terms

are omitted then the resulting identity is that obtained for 0(10). Incidentally,

standardisation of the 5th term on the right side of (6.4.12g) using this technique,

requires £(3,2)-

Lemma 6.4.15. Ift^^y exists for all u -\- v < \x then the set

{ [TA';A] : TAr;A is O(m)-standard}

spans the O(m)-module OArtX.

Proof. If the column strict TA;A is not O(7n)-standard due to a violation of condi-

tion (in) of Definition 6.4.6, then the techniques of Section 3.4 enable the Garnir

relations, acting on the Fx portion, to be used to write [TAr;A] in terms of higher

column strict tableaux. If the column strict TAr;A violates conditions (v) or (in) of

Definition 6.4.6 then either Lemma 6.4.11 or Lemma 6.4.13 can be used to express

[TAr;A] in terms of higher column strict tableaux. Therefore, by iterating these pro-

cedures, [TAr;A] may be written in terms of O(m)-standard tableaux by virtue of

the ordering on the set of all tableaux and their finite number.

In addition to the techniques of standardisation employed in this section,

those of the orthogonal Trace relation may also be used on any two columns of

the Fx portion. However, as indicated by Lemma 6.4.15, this Trace relation is not

necessary to effect a standardisation. Nonetheless, it may enable standardisation to

be achieved more efficiently.

Lemma 6.4.16. //f(u „) exists for all u + v < r' and Ax > r then the O(m)-module

OArX is zero.
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Proof. Consider the case of even m — 1r = 2r' first. If Ax > r there necessarily

exists a j < r such that both j and j occur in the first column of each column

strict TAriA and for which a,- > j and aj < r. Thus Lemma 6.4.11 can be used

to write [TAr;A] in terms of higher tableaux. These tableaux are also necessarily

non-standard and thus iterating this process must eventually result in [TAr;A] = 0

since the total number of tableaux of shape F^r]X is finite.

For the case m = 2r + 1, r' = r -f- 1, if the index 0 does not appear in

the first column or appears below the (r + l)th row then the argument above is

used for j ^ 0. This leaves the case for which Tfi+f^ = 0. This is a violation of

condition (vi) of 6.4.6, and thence Lemma 6.4.13 can be invoked if £(„„) exists for

all u + v < r + 1 = r'.

§6.5. The irreducible spinor modules of O(m)

Armed with the 0(m)-standard tableaux for the spinor modules and the standard-

isation techniques developed in Section 6.4, the 0(m)-modules OAr;A are defined

explicitly in this section.

Let A G -P(0- Since U, specified by Definition 6.3.17, is invariant under the

action of G € O(m), it follows that U C\ (\& ® Wx) is also invariant under the same

action, and thence from (6.3.14) that:

G[TA-'X] = ± V ; A(G)t>...,.tl...t GTnT> GT<*Tx . . . G W » [T'A;A], (6.5.1)
I J Z—/ V /'l ' r ' l *r i ( l ) J ( l ) •'(2) (2) ( 0 ( 0

X / A r i X

where the sum is over all X"Ar;A with entries from the set Xo(-m\ and for which

T£$ G {],j} for j = l , 2 , . . . , r . Here TA-A is TA^ adjoined to T \ T'A-A is T'A-

adjoined to T/A, and sj = T$$ and each s'j = T^f for j = 1,2,. . . , r.

The action of Ba
h € so(2r + 1) or Da

h 6 5o(2r) on [TA';A] derives simply from

(5.2.14) and (6.3.12). As above, let TA-A be TA- adjoined to T \ and ss = T^jf for

j ' = 1,2,. . . , r. In addition, let 50 = 0. In order to specify the action of Aa
6 on TAr ,

let TA- be identical to TA- if a = 6, and if a ± b let TA- be identical to TA- except
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= sa and T(
A;0) = sb. If:

if a — 6;

I if a = b ̂  0;

Sb-l

if a < 6, 6; and

if a > 6, 6,

(6.5.2)

then it follows from (6.3.12) that:

(6.5.3)

Now let T0
Ar' denote the tableau formed by adjoining T0

Ar to TA and define:

Aa
6 [TA-X] = cf>(a,b,TA')lT0

A-x]. (6.5.4)

As in Section 5.2, let p and q be the number of times that the indices b and a

respectively occur in T \ Form the set of p tableaux {TA{]X, TA
2

r;\ . . . , TA;;A} by, in

each case, replacing a single index b in the Fx portion of TAr'x with a, and the set

of q tableaux {T2
A

1
r;A, T2

A
2

r;A,... ,T2
A,r;A} by, in each case, replacing a single index a

in the Fx portion of TA-A with b. Then, it follows from (5.2.14a), (6.5.3), and the

definition of [TA-A] that, for Ba" € so(2r + 1):

Ba = Aa Ea

t = l

and similarly, for Da
b G so(2r):

Da" [TA-X] = 4>{a

These imply that:

1 = 1

and Da
a

(6.5.5a)

(6.5.56)

(6.5.6a)

(6.5.66)

Since a basis for the Cartan subalgebras of so(2r + l) and so(2r) are provided by the

elements Ba
a and Da

a respectively for a = 1,2,..., r, the O(m)-weight n°(m)(TA-A)

of TAr;A determines the weight of the element [TAr;A] G OArlA in this basis.
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6.5. The irreducible spinor modules of 0(m)

Let the tableau TA-;A be defined by TA(/X
k) = j for 1 < j < r and 0 < k < A,-.

Then n°(^(T^fk)) = (A, + ±, A2 + I , . . . , Ar + ±) - (AP; A). TA^A is the only tableau

of shape FAr<x with this property. It is easily shown that Ba
h [TAr;A] = 0 for all

Ba
b £ B°(2r+l) and Da

b [TA-A] = 0 for all Da
b £ B°(2r). This leads to the following

theorem.

Theorem 6.5.7. Let m be such that even m = 2r and odd m — 2r + 1, and let

r' = m — r. //£(„,„) exists for all u + v < Xx then the O(m)-module OArX is irreducible

with basis:

{ [TA';A] : TA';A is 0{m)-standard}.

Moreover, if £(„,<,) exists for all u + v < r ' f/iera i/ie sef {(9Ar;A : Ai < r} provides a

complete list of inequivalent irreducible spinor O{m)-modules.

Proof. By virtue of Lemma 6.4.15, the dimension of 0Ar;A is not greater than the

number of O(m)-standard tableaux. From Theorem 6.4.8, this number is equal to

dimension of the irreducible representation [Ar; A] of 0(m, C). Then, since OArX has

highest weight (Ar; A), OAr]X is the O(?7i)-module corresponding to that irreducible

representation. This proves the first part of the Theorem. The second part follows

because firstly every spinor O(?ri)-module occurs in \I> ® V®' for some / [Li50];

secondly, O(??z)-standard tableaux of shape FAr>x exist if and only if X1 < r; and

thirdly, (A,.; A) is the highest weight of

The quintessential structure of (9A;A may now be stated.

Theorem 6.5.8. Let m be such that even m = 2r and odd m = 2r + 1 and let

A £ P(l;r). If £(„,„) exists for all u + v < r then OAr'A is the irreducible 0(m)-

module spanned by [TAr;A] for all TAr]X with entities from the set T°(m) and for which
Tu'fi) € { j , i } for j = 1,2, . . . , r ; modulo relations (3.4.2), (3.4.3), and (6.3.18a) if

m = 1r, or (6.3.186) if m = 2r + 1; and on which O(m) and so(m) act according to

(6.5.1) and (6.5.5) respectively.

The techniques of this section enable explicit representation matrices for ele-

ments of 0{rn) and so{m) to be obtained in the representation [Ar; A]. Let Dm[Ar; A]

be the dimension of 0A ' ;A and let T A - ; \ T A r ; \ . . . ,TDTJ^T.M the O(?n)-standard

tableaux. The action of G £ O(m) on each [TiAr'A] yields, via (6.5.1), a linear

combination of traceless symmetrised tableaux which are, in general, non-standard.

If f(U|U) exists for all u + v < r, then the techniques of this section enable each to be
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6.5. The irreducible spinor modules of 0(m)

written in terms of 0(?7i)-standard tableaux, so that:

£>m[Ar;A]

Or [j(-
 ri J = y i yG)ji\Tj ri J, (6.5.9)

where the T^Ar'x\G)ji £ F are the matrix elements of G in the representation [Ar; A].

In a similar way, the representation matrix T^Ar;X\B) of B £ so(m) is given, via

(6.5.5), by:
Dm[Ar;A]

B[TAr>x]— ]P r[Ar;A](J3)_,-,-[TAr;A]. (6.5.10)

Note that in the reduction of an arbitrary traceless symmetrised tableau to a linear

combination over the O(m)-standard tableaux, the coefficients are rational if m is

even. However, if m is odd then in general, factors of l / \ /2 arise either through the

Spinor relation or through the action of Ta
b if either a = 0 or b = 0. Consequently,

if Da
b £ so(2r) then the matrix elements, T^Ar''x\Da

b)ji are all rational numbers,

whereas if Ba
b £ so(2r + 1) then the matrix elements, TlAr'x\Ba

b)ji, are each a

linear combination of rational numbers multiplied by an integral power of y/2.

The techniques developed above will now be applied to the particular case of

the representation [A2; 1,1] of 0(5). Although, for such small rank, the standardi-

sation techniques are relatively straightforward, this case exhibits all other aspects

peculiar to obtaining explicit matrix spinor representations.

The following 0(5)-standard tableaux provide a basis for the 20-dimensional

O(5)-module 0 A 2 ; M :

1 •

to
i

1 •

2 •

1

to
i

1
0

1

1 •
9 .

1 •
2 .

1 •
2 .

2

0 '

2
2

to
i

0

1 •
2 .

1
2

1 •
2 •

1 •

2 .

1
0

2

0

?

1 •
2 .

I'M

9

1 •

to
i

1 •

to
i

2
0

1
2

1 •

2 .
1
0

1 •

to
i

1 •
2 •

2
0

9

2

)

1 •
2 •

2

0

1 •
2 .

1 •

to
i

1
2

1
0

1 •
2 •

1
2

1
2

2
0 '

• 2
• 2 '

• 2
• 0 '

(6.5.11)

Denote these by TA 2 ' l r l ,2

so(5) acts on [T2
Ai'1'1] by:

2 ' M , . . . ,T2
A2'1'1 respectively. According to (6.5.5), Bx

7 £

1
2

to
i

. 2
A 2

~~ 1

= 0 +

1

to
i

IT
—

1 
1

2

• 2 "
. 2

to
i

• 1
- 0

' 1 •
2 •

2 '
2

F T

5

' 1
2

• 2"
• 2

1 • 2
2 • 2

J _ [ l - 2
\/2 [2 • 2

(by (6.3.18))
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6.5. The irreducible spinor modules of O(m)

(6.5.12a)

where the final line is obtained using the Column relations (3.4.2). For [T9
As:1>1], the

action of Bi2 yields:

1 - 2
2 • 0

_ A , 1 - 2
+

+ 0

F 2
1

- 0 .

1
2

ICM

• 0 .
F T

5

1 •

2 •
ICM

0

(6.5.126)

For [T6
Aa;M], the action of B? yields:

2 • 2 [ 2 - 2

1 • 1
2 • 2

1 • 1
2 • 2 2 2 • 2

2 - 1 r
2 - 2

The Spinor relations then yield:

1 • 1
2 • 2

1 • 2
2 • 2

1 • 0
2 • 2

1 • 2
2 • 2 2 • 0

(6.5.12c)

(6.5.12c/)

and their consecutive use over both 'whole' boxes yields:

1 • 1
2 • 1

' 1 • 1"
2 - 2

IC
M

 
C

M

It—
I 

C
M

' 1 • 2"
2 • 2

1

1

' 1 • 1 '
2 - 0

O
 

C
M

li—
I 

IC
M

tO
I 

t-M

o
 

to

1

•

CM
 

O

li—
I IC

M

1 [ 1 • 0
2 2 - 0

(6.5.12c)

Incidentally, this expression may be obtained from the Spinor relation written — 1 =

2+6, and squared to give I2 = 22+2.20. Combining (6.5.12c), (6.5.12d) and (6.5.12c)

gives:

(6.5.12/)
2 • 2

A simpler example is provided by:

1 • 1 I = _ 3 I 1 • 2
2 • 2

1 • 2

y/2 [ 2 - 0 .

(6.5.12^)

The action of Bx
2 on each of the twenty O(5)-standard tableaux of (6.5.11) produces,

via (6.5.10), the following explicit representation matrix r ^ 3 ' 1 ' 1 ^ ^ 2 ) for Bi2:
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6.5. The irreducible spinor modules of 0(m)

-2

- l

- i

where each zero has been replaced by a dot. The four calculations carried out

above give rise to the entries in the 2nd, 9th, 6th and 11th columns of this matrix,

respectively.

Now consider Bo
5 £ so(5). Its action on the third element of the basis is as

follows:

B, 2 1 • 1

' 2 - 0

V2

1 • 1
2 - 0

1 • 1
2 • 0

1 • 1
2 • 0
1 • 1 '
2 • 0

—

—

« [ * •
' 1 • 1 '

2 - 2

ii—
i 

it—
i

r-H
 

C
M

1
0

1

+

using (6.4.5a)

from (6.3.18)

(6.5.13a)

As a further example:

1 • 2
2 • 2

= Ao2 1 • 2
2 • 2

1 • 2
2 • 2

1 • 2
2 • 2

1 • 2
2 • 0

1 • 2
2 • 2

(6.5.136)

These two calculations provide the 3th and 12th columns of the following explicit

representation matrix r^1 '1^!?, ,5) for i?0
5:

205



6.5. The irreducible spinor modules of 0(m)

-i

7

. -1 . . . .
. . . . -1

1

. -1 . . . .

-1

.1
-1 . .

-L. -1 .

\

• • • • 75 j

v/5 ' /

Similarly, the action of Bi° on each of the twenty basis elements of >

following explicit representation matrix r'A2;l i l '(Bi°) for Bi°:

I \

3'1'1 yields the

-i .

• 7 f

. . . i . . . .

• • • • 7 5 '

.-x/2 . .

\ • I

It may be verified that these matrices satisfy the commutation relation:

[r[A';M](iV),rtA2;M](i?o5)3= - r ^ 1 ' 1 ^ ! 0 ) . (6.5.14)

Since this is the representation analogue of (2.2.22), this provides a verification of

the techniques presented in this chapter.

Using the techniques of this chapter, the characters of the elements of 0{m)

with determinant —1 may be obtained directly.
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6.5. The irreducible spinor modules of 0(m)

Theorem 6.5.15. If m — 2r + 1 is odd, then the character of the representation

[Ar; A] is given by:

[Ar;A](y) = ± r (_1)».<T*"*)

)-standard
•Sr

(6.5.15a)

for those elements of O(2r + 1) with eigenvalues y^1,yl,y2
1,y2,... ,yr

1,yr,—l and

hence determinant — 1, where (y) = ( y l 5 y 2 , . . . ,yr), Sj — T£$ for each T A r ; A and

y-1 z= y x ' v ' y 2
3 ' . . . y"r t.J >. lj m = 2r is even, then the character

of the representation [Ar;A] is:

[Ar;A](y) = 0,

for those elements of 0(2r) with negative determinant.

Proof. If m = 2r + 1 consider the following generic element of O(2r + 1):

(6.5.156)

V o yi

It may be verified that

A(G)

V21 0
. 0 y2 0 Mr

- l .

0 * o
0 yi

(6.5.15c)

(6.5.15<0v 0 y? n 0 yj r ^
satisfies (6.2.23) and the unprimed (6.2.11) when C satisfies (6.2.21). The action of

A(G) on TAr yields: ir

sr

rTAr a n d h e n c e 5 b y (6.5.1), on [TA-A], to yield:

= ir
r ; i J>Ar;A (6.5.15c)

These coefficients thus appear on the diagonal of the matrix representing G. Sum-

ming over the basis of traceless symmetrised O(m)-standard tableaux then proves

(6.5.15a).

For m = 2r, consider the following generic element of O(2r):

y2-x o
0 y2

yr1 o
0 yr

(6.5.15/)
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It may be verified that

A(G) = ir 0 y?
0 0 y*

(6.5.15$)

satisfies (6.2.4) and the unprimed (6.2.11) when C satisfies (6.2.8). Then, by (6.5.1),

the action of G on [TA-A] yields a multiple of [T'A";A] where T/A-A is identical to

TAr;A except that each 1 is changed to a 1 and vice-versa. If TAr;A is O(m)-standard

then T'Ar;A is also O(m)-standard. Thus, in the basis of traceless symmetrised

0(m)-standard tableaux, each diagonal entry of the representation matrix is zero.

This proves (6.5.156).

§6.6. The irreducible spinor modules of SO{rn)

In this section, the reducibility of the 0(2r)-modules 0Ar;A on restriction to S0(2r)

is demonstrated and, once more, bases for the irreducible components are derived

in terms of Young tableaux.

In this section, m = 2r will be even. The element ?72r € M2r defined by

(6.1.8a) is, as shown by (6.1.9a), represented by 7^2r = 70, itself defined by (6.1.4c).

By (6.3.4), the action of 70 on each basis element tJ>Sl...,r G ̂  is given by:

(6.6.1)

Then, by virtue of (6.2.16) and (6.2.18),

sr

(6.6.2a)

is a basis for 0Ar, and

(6.6.26)

is a basis for 0A7, where 0A* and 0A~ are both 50(2r)-submodules of 0Ar. The

following definition reflects this observation.

Definition 6.6.3. Let m = 2r, A <E P(l;r) and let OA-;A denote the set of all 0{m)-

standard tableaux of shape FAr;X. Then define

and $$ = ]} € 2Z
(6.6.3)
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6.6. The irreducible spinor modules of SO(m)

Thus there are an even number of barred indices in the half boxes of each TAr;A €

<SAr;A+ and an odd number of barred indices in the half boxes of each TAr;A G <SAr'A~.

Lemma 6.6.4. #<SA-A+ = #<SA-A~.

Proof. Let TA';A 6 <SA';A+ and let TA';A* be identical to TA-A except that each index

1 is changed to 1 and vice-versa. By Definition 6.4.6, TAr'A contains at least one 1

or 1 but it may not contain both. It is then straightforward to see that TAr;A* is

O(m)-standard, and thus TAr;A* 6 <SAr;A~. This demonstrates a bijection between

<SAr;A" and <SAr;A+, thus proving the lemma.

Now let SAriA+ and 5AriA~ denote the vector subspaces of the O(m)-module

0 A - A spanned by [TA-A] for TA-A € SA^X+ and [TA-A] for TA';A <E 5A-A~ respec-

tively.

Theorem 6.6.5. If m — 2r, A £ P(l',r) and i(u,v) exists for all u + v < Ax then

5>Ar;A+ and 5Ar'A~ are inequivalent irreducible SO(2r)-submodules ofOAr]X under the

induced action of (6.5.1).

Proof. To prove that they are S'0(2r)-modules, it is sufficient to demonstrate

closure. If TA-A € SA-A+ then, through (6.5.1), the action of G G S0(2r) on [TA-A]

results in a linear combination of traceless symmetrised tableaux each of which,

by virtue of (6.2.18), contains an even number of barred indices in the half boxes.

Since the polynomials used in the standardisation procedures are homogeneous, the

number of indices that are raised to the power of exactly 1, is even or odd for all the

terms. Thus, within each tableaux identity, the number of barred indices in the half

boxes of each of the tableaux appearing differ from each other by an even number.

Thus, standardisation results in an expression involving tableaux from <SAr;A+ solely.

A similar argument holds for TAr;A 6 <SAr;A~ and closure is proved.

On restriction to SO(2r): the irreducible representation [Ar; A] of 0(2r) de-

composes into the direct sum of two irreducible representations of the same di-

mension. Thus the 50(2r)-modules 5Ar ;A+ and 5Ar;A~ are irreducible. They are

inequivalent by virtue of differing highest weights: (A r; A)+ for [TArlA] G 5Ar;A+ and

(A r; A)_ for [TAi;A] e SA ' ;A+, where TAi;A is obtained from TA-;A by exchanging each

entry r for f.

Although an analogue to Theorem 5.3.27 could now be stated, this is not

necessary since, on restriction to 5O(2r), the 0(2r)-module 0Ar;A decomposes nat-

urally with respect to the basis of traceless symmetrised O(2r)-standard tableaux;

there being no need to quotient out the invariant subspaces.
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To illustrate the above, consider the 10-dimensional 50(4)-module 5A2;2il~,

for which the 5O(4)-standard tableaux are:

1 - 1 1
2 - 2

1 - 1 1
2 - 2

Then, by (6.6.14),

1 - 1 2
2 • 2

1 - 1 2
2 • 2

1 2
2

1
2
1-12
2 • 2

1 - 1 1
1 2 • 2

1 - 1 1
2 • 2

1-22
2 • 2

1-22
2 • 2

1 - 1 1
2 • 2

i . i i l
2 - 1

1-22
2 • 2

1-22
2 • 2

2 1
2

1 - 1 2
2 • 2

The Spinor relations yield the identities:

1 •

to
i

1 •
2 .

it—
i

2

ii—
i

1

1 "

I '

" 1
2

' 1

tO
I

it—
i

• 2
It—

1

. 2

to
i

1 " 1 - 1 2
2 • 2

and, together with a Garnir relation,

1 - 2 1
9 . 9

1
2

' 1
2

• 1

to
i

it—
1

• 1

2

to
i

it—
i

2

1
2

• 1

. 2

• 1
. 2

to
i

2 ' 1 - 1 2
2 • 2

Combining these, results in:

1 - 1 1
2 • 2

= —4 1 - 1 2
2 • 2

As a second example, consider:

1-22
9 . 9

1 • 2 1
2 • 2

' 1 • 1 2
2 • 2

i
T

' 1 • 1 2"
2 • 1

1

IO
I

' 1
2

__ 9
— ^

2 2
1

1 2 "
2

"1 • 1 2 "
2 • 2

1 - 1 2
2 • 2

(6.6.20)

1 - 1 1
2 • 2

1 - 1 2
= - 2 -

2 - 2

(6.6.21a)

(6.6.216)

(6.6.21c)

(6.6.21d)

(6.6.21e)

,(6.6.22)

where the standardisation has involved the Garnir relations (3.4.3), the Column

relations (3.4.2) and the Spinor relations (6.3.18). The above two calculation gives
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rise to the 1st and 10th columns of the following explicit representation matrix for

\

-4

-3
-4

-1
-2

\

-2 .
. -3

above is

The highest weight vector of the irreducible so(4)-module SA;2'J considered
" 1 • 1 1

9 . 9
, for which:

1 - 1 1
9 . 9

1 - 1 1
9 . 9 and B-? 1 - 1 1

2 • 2
3 L 1 1

'22-2

confirming that its highest weight is (f, —|).

Recall that for the 0(??^)-modules OAr'x considered in Section 6.5, the matrix

elements obtained for the representations [Ar;A] of 0(2?-) are always rational. In

view of the natural decomposition on restriction to 50(2?-), this also holds for the

representations [Ar; A]± of S0(2r).
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Chapter 7

Modules of Lie supergroups and
Lie superalgebras

§7.1. Grassmann algebras and Lie supergroups

In this chapter, Young tableaux techniques, similar in flavour to those of the previous

chapters, are developed to deal with modules of Lie supergroups and Lie superal-

gebras. In particular, application of the double centraliser technique enables the

irreducible covariant tensor modules of GL(m/n) to be constructed. This involves

the generalisation of the Column and Garnir relations to take account of the Z2-

grading of the Grassmann parameters which occur here as matrix elements. These

techniques extend, in a fairly straightforward way, to the Lie superalgebras gl(m/n)

and sl(m/n). The following account of Grassmann algebras and Lie supergroups is

based on that given in [Co89].

Define B = FBL to be the exterior algebra of {Ci -»C2, • • • > CL} o v e r the field

F, where L is arbitrary. B is known as a Grassmann algebra and its elements are

referred to as Grassmann parameters. Let the exterior product (>il f\Q2 A.. . A ,̂-, € B

be denoted by Qli3...,-,. Then Q3il = — £,•„-,, and more generally if a E S, then:

M ' » ( l ) « » ( 2 ) • • • • « ( l ) = V ~ / S « l « 2 " - » 1 " {'•*••*•)

T h e p r o d u c t of t he e lements (ili2...,-,, Q1J2...jt G B is given by:

s « i « 2 •• ' i S j i j 2 - i i — S > » i » 2 - - - » . i i j 2 - - - i i ) yi.L.Z)

which extends linearly over F in both factors. In general this product does not

commute. If s + t > L then (7.1.1) necessarily implies that (ili7...i.jlj2...j, = 0.

Let [i = {ix, z 2 , . . . , i;} where 1 < ix < i2 < • • • < ii < L and define (^ = C»if3-.-ti-

Denote by Bi the subspace of B whose basis is the set of all /-fold exterior products

of the generators {d, (2, • • •, CL}- Thus B, has a basis {Ci,ij-«, : 1 < ii < fy < • • • <

ii < L} = {(^ : // C NL, #/i = /} and Bo has basis {(, = 1 G F}. Then be B may

be written ^Zp 6M^ where each 6M £ F and the sum is over all subsets /J of N/,. Let

B5 = Bo © B2 © BA © • • • and B-x = B, © B3 © Bs 0 • • •. Then B = B5 © BT with both

BQ and B-[ having dimension 2 i - 1 , whereupon B has dimension 2L. It then follows

immediately from (7.1.1) and (7.1.2) that:

fo^9o = go*f, f A j ' ^ ' A f and fl Kg1 =-g1/\ f\ (7.1.3)
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7.1. Grassmann algebras and Lie supergroups

for all f°,g° e B-Q and f\gl G BT.

The properties of the Grassmann algebra are typical of a structure with a Z2-

grading. In view of (7.1.3), the Z2-graded subspaces, J3g and B\, of J5, are known as

the even and odd subspaces respectively. Their elements are known as even or odd

Grassmann parameters respectively. Each element b G B may be written b = 6g + h

where 6g G Bg is even and fej G Bi is odd. If b ̂  0 and either 6g = 0 or if = 0 then b

is said to be an homogeneous element of B. In such a case the degree of b, denoted

deg 6, is defined to be:

[ 1, if 6g = 0.

Let B m n be the vector space Bfm 0 Bf". A typical element of Bm'n is then

X = (X5 ;XT) = ( X ° , X ° , , . . . , X 3 ; X * + 1 , . . . , X I + J where each Xf G Bg and each

Xj € 5 j . It is convenient to define the index sets Xg = {1,2 , . . . ,m} , X\ = {m +

1, m + 2 , . . . , m + n} and IGL(m/") = Jg U Jf. -Bm'n is naturally Z2-graded, having a

Z2-graded basis {e,- : i G IG L(m/")}. A typical element of Bmn may thus be expressed

as X = (X5 ,XT) = ]C:6z°M">/«> -X".e,-, where degX,- = 0 if i <= Xg and degX,- = 1 if

t GXT.

In view of the above, the notion of graded indices is useful and may be em-

ployed via the notation:

ro, ineXg;
gradz = (i) = ^ . (7.1.5)

{ 1, if z G Xi-
Thus, if X = £.-ezG*-<™/"> X;e,- G -Bm'n then X,- G B^-y A further useful notation

assigns to the symbol:

(7-1-6)

the value (_l)«a")+(a31)+- "+(a,11))((aia)+-+(a,ail))...((o1x1) •) ; t ^ a t is - 1 to the power of

the product of the column sums of the respective gradings (which may all be taken

mod2). With this notation (7.1.3) may be expressed fa/\gh = [ab]gb A / " where

/ " and gh are homogeneous, / " G B-^ and gb G BJJJ.

Definition 7.1.7. A square even (m/'ri)-supermatrix is a matrix of the form:

R S
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7.1. Grassmann algebras and Lie supergroups

where P, Q, R and S are submatrices of sizes m x m, m x n, n x m and n x n

respectively, with P{j G BQ, Qik G Bi, Rij G B j and Sik G J3g for 1 < i,j < m

and 1 < k,l < n. TTu's may 6e expressed by GtJ- G B,^,,., where the sum is taken

mod2. In a similar way, an odd (m/fn)-supermatrix G is defined to be such that

If G,G' are supermatrices then the product G" = GG' is defined in the usual

way:

G^=J2GikG'kj. (7.1.8)
k

Since multiplication of Grassmann parameters is associative, this definition imme-

diately implies that supermatrix multiplication is associative, for if G, G', G" are all

(m/n)-supermatrices then (GG')G" = G(G'G"). The identity (m/n)-supermatrix

is provided by Im+n for which the only non-zero entries are Is, appearing in each

diagonal position, where 1 G Bo is the identity element of B. Im+n is clearly an even

supermatrix. An (m/n)-supermatrix G is said to be invertible if and only if there

exists a supermatrix G~x such that GG~X — G~lG — Im+n. The following lemma

concerning invertible square even supermatrices is proved in [Co89].

L e m m a 7.1.9. (i) Let G be an (m/0)-supermatrix with G = Yl^^G,, where each

Gp is an m x m matrix with entries from F. G is invertible if and only if G%,

corresponding to the Grassmann identity Q — \, is invertible.

(ii) Let G be an even (m/n)-supermatrix, partitioned as in (7.1.7). G is invertible if

and only if the submatrices P and S are invertible.

(Hi) If G and G' are invertible even (m/n)-supermatrices, then GG' is also an in-

vertible even (m/n)-supermatrix.

The general definition of a Lie supergroup Qs of even dimension p and odd

dimension q states that the elements form an superanalytic supermanifold locally

isomorphic to the real superspace RBpq. Let (X;Y) denote an element of Bp'q

where (X; Y) = {XUX2,..., Xp; Yu Y2,..., Yq) with eachXh G B5 and each Yk G B-x.

Then in a neighbourhood of the identity, a matrix realisation of Q,, consisting of even

(m/n)-supermatrices G(X; Y), is parameterised by neighbourhood of (0; 0) G RBPiq.

However, it is not required that each matrix element G(X; Y)ij is a function on the

whole of RBpq, but that the even elements, where (i) = (j>), are functions on RJBP'°

so that in this case G(X;Y)ij = G(X)ij; and similarly the odd elements, where

(0 ^ (j), are functions on RB°>? so that in this case G(X;Y)ij = G{Y)ij. There

arise special difficulties when attempting to define the derivative of a function with
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7.2. Covariant tensor GL{rn/n)-modules

respect to a Grassmann variable. These were overcome by Rogers (see [Co89]) who

was able to obtain derivatives having standard properties. In connection with Lie

supergroups, she found it especially convenient to use L > 2q. Here, it suffices to

say that the analyticity ensures that the derivatives:

dX,
and

(0;0) dYk
(7.1.10)

(0;0)

exist for i,j 6 TGL(-m/"\ h = 1 , . . . ,p and k = 1 , . . . , q. Incidentally, each of these

derivatives is an element of B$.

The following definition generalises that of GL(m, F).

Definition 7.1.11. The General Linear Lie supergroup GL(m/n,B) is the set of

all invertible even (m/n)-supermatrices whose entries are members of the Grassmann

algebra B — FBL.

It may be shown that GL(m/n, B) has even dimension m2 + n2 and odd

dimension 2mn. Thus L will be taken to be such that L > 4mn.

§7.2. Covariant tensor G L(m / n)-modu\es

In this section, the tensor product space of the defining G.L(m/n)-module is defined.

This is decomposed by means similar to those used in Section 4.2, yielding the

irreducible covariant GL(m/n)-modules, based on Young tableaux.

Let V, = Bm'n be the Z2-graded defining G£(m/n)-module. The /-fold tensor

product space V®' has a Z2-graded basis {e,-,,-,...,-, : ik 6 JGL(m/") for k = 1,2,...,/}

where eili2...,-, = e,̂  (g) e,-2 ® • • • <g) e,-, and for which:

dege,IlV..,-, = (iO + (i2) + • • • + (»,) mod 2. (7.2.1)

Define the 'diagonal' action of G € GL(m/n) on V®' by linearly extending the

following action on its basis elements:

Geixlt..4l= 52 I I \Jah][Jai>]Gi\l&\2---G\lehh..,r (7.2.2a)
:i,]3,-ji l<a<b<l

Note that this may be expressed in the form:

Ge^.,, = £ eh&u ® ehG
j\, ® • • • ® ehG

j'in (7.2.26)

where rearrangement to give (7.2.2a) involves consideration of both the degree of

the Grassmann parameters Gi't and the degree of the basis elements e; of V, [Ba85].
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7.2. Covariant tensor GL(m/n)-modules

Lemma 7.2.3. IfV, = Bmn then V®' is a GL(m/n)-module.

Proof. It is only necessary to check that (G'G)eil,•,...,-, = G'(Geilia...,,). With the

summation convention adopted, (7.2.2a) gives:

CGe,-,,-,...,-,) = G M [ja jb\[jatb\ G " , - , ^ , - , • • • (*3 i,ejlja...j,

o<6

G^,,G^,.3 • • • &'uG'\Glk'Ja • • • G'\cklt,...k

a<6

This proves the lemma.

Definition 7.2.4. [DJ81,BR87] 7/TT G SI, then its graded action TT on V®' is defined

by:

(7.2.4)
J

/or TT £ Si with linear extension to the whole of V®1. The set of all actions n for

TT £ Si is denoted Si and known as the graded symmetric group.

Lemma 7.2.5. [DJ81] The actions of Si on V®' form a group isomorphic to Si.

Moreover, if p,cr,r € St with pa — T then pa — f.
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7.2. Covariant tensor GL^m/n)-modules

Proof. Consider the action on the element e,-, ,-,...,•, 6 V®1:

*•<«)>»<(.)

= n [*a*»] n [^-'(o) **->(»)] e*,-.,-.(I,«,-i,-.(3,
«<b o<b

»(a)>o-(b) P(o)>p(l>)

= n [*«*»] n [*«*<»] e*,-i (1,.-r-.P,-<,-.(,)
a<b »(c)<<r(rf)

»(<i)>»(b) p,(c)>p,(J)

n [*«*»] n [*«*»] n [*«*<*] n
a<b a<b c<J c>J

o-(«)>^(6) »(«)>»((,) ^(C)<«(d) » ( c ) O (
, , (a)<p.(l) p<r(<,)>f,r(b) p<r (c)>p<r (J) p» (c)>,>»

= n M*] n [*«*»] n t̂ î n
«<b a<b c<<l c<d

^(«)>»(b) »(a)>»(b) »(c)<<r(d) »(<:)>»(
P»(o)<,.o-(b) ,.»(o)> /,»(b) p» (c )> , r ( J ) p<r(c)<,.<r

o<b
)(

This extends linearly to the whole of V®' and the lemma is proved.

A general transformation, A € End(Vs®'), of the Z2-graded tensor space V®'

takes the form:

Aeiii2.,,= £ A^4'e;,;,..;,, (7-2.6)

where if g = (j,) + (j2) + • • • + (j,) + (i,) + . . . + (i,) mod 2, then AtfH 1 G Br If

A G End(V®') commutes with the action of F5j, so that Tf-Ae,-,,-,...,-, = ATfe,-,,-,...,-, for

all 7T € Su then (7.2.4) and (7.2.6) imply that:

for all TT £ Si. Thus the elements of Endpj^V^®') are characterised by (7.2.7). Such

elements are known as bisymmetric. It is important to note that if 1 < c < d < I,

jc = id, ic = id and (ic) ^ (jc) then A;,';*.../,' — 0 since with TT = (c, d), the sign factor

on the right side of (7.2.7) consists of the one term [ic&d]L7eid] which is —1 since

If G £ End(V,), the induced action, G £ End(V,®'), is given by (7.2.2a):
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7.2. Covariant tensor GL(m/n)-modules

Thereupon:

a < 6

I I I I l7.J»][7.i.]- (7-2.9)
.(.•,$*.(.) 1>-7*J ,(«)<»(*)

Since

nb"«i»iL7«**] n [jajb][iaib]= n i^j^ij^t] n [^^iiia
a<b «<' a<6 «<*

*(<•)> *(6) ,r(o)§ir(b) *(« )> ir(b)

= n L7«i»][i«*»] n [jojbiijaib] n [*«

= I I [jajb][jaib\ J\ [i"i»][*«i»] I I ['« !'J
?r(a)<x(6) • < ' ^ .-(a^tfb)

it follows from (7.2.7), (7.2.8) and (7.2.9) that G is bisymmetric and that the actions

of GL(m/n) and F5; on V®' commute. Let End'Fs (V®1) denote the enveloping

algebra of the induced actions of G G GL(m/n) on V,®'. This makes End'^V,®') a

vector space as in (4.2.7). The following is the super-analogue of Lemma 4.2.8, the

proof being of a similar form.

L e m m a 7.2.10. End'^V,®') = EndF5,(K®')-

Proof. It has already been determined that End'F5i(V;®') C Endp^V;®'). If A €

Endps^V^®') is given by (7.2.6), then (7.2.7) implies that A is completely specified

by those components ^L;̂ 2.../,' for which:

(Juii) <( j S , i 2 ) < • • • < ( ; / , t / ) , (7.2.10a)

where (a, b) < (c, d) if and only either a < c or a = c and b < d, and (a, b) =

(c,d) if and only if a — c and b = d. Apart from those components A^J2
2.'./,' for

which any pair (jc,ic) with 1 < c < / and (jc) 7̂  (ic) occurs twice, thus implying,

as in the note following (7.2.7), that A{\[l'.'.'.{l is identically zero, the components

Mlil'.'i! satisfying (7.2.10a) may be varied independently. Therefore End^V;®') is

a vector space of dimension equal to the number of ways of choosing / from m2 + n2

items with replacement and 2mn without replacement. Let this number be denoted

£)(m3+nj)/2mn{0- The reason for this notation will become clear later. By a similar

argument, Gi'j/'.V."/,' = GjliiG
J3

i3 • • • Gj'in has D(mi+n3y7mn{l} representative elements

which satisfy (7.2.10a) and are not identically zero. Since End'F5|(V,®') is a vector
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space, if it can be shown that these are linearly independent then the lemma is

proved.

Each term GJ1i1G
j2i2 • • • G-",-,, which is not identically zero and for which the

indices satisfy (7.2.10a), may be uniquely written:

( G 1 , ) * ' ^ 1 , ) ' " • • • (G^V'-CG3!)*" • • • (G2
m)*- • • • (Gm

m)*-«, (7.2.106)

w h e r e kab = #{k : ( a , b) = (jk,ik), 1 < k < / } , £ " & *«» = l,0<kab<lif ( a ) = ( 6 ) ,

and 0 < kab < 1 if (a) ^ (b). Thus it is required to show that if:

£ 9*>*»...k..(Gli)t"(Gl,)k» • • • (G™m)*»- = 0 (7.2.10c)
0<kab<l if (a)=(i)
0<kab<l if (a)^(t)

ku + kl3 + - + kmm=l

where gkilk12-kmm G F, then it is necessary that each gkllkl2-kmm = 0. To do this,

restrict attention to the case where each even element, G-\ for (j) = (i), is an F-

multiple of C« = 1 and each odd element Gj
t for (j) ^ (i) is an F-multiple of a

unique £a 6 B\. This requires L > 2mn which, since L > 4mn, is always true.

Thereupon the left side of (7.2.10c) is a homogeneous polynomial of degree / in

(m + ro)2 variables in F, each term multiplied by a non-zero element of B. If each

element is permitted an arbitrary value this would imply that each coefficient in

(7.2.10c) is zero. However, by Lemma 7.1.9, those elements G that are not invertible

form the union of two subspaces of the (m + n)2-dimensional space of all (m/n)

supermatrices; one of dimension m2 + 2mn -f- 1 if n > 1, m2 + 1m if n = 1 and 0

if n = 0, and the other of dimension n2 + 2mn + 1 if m > 1, n2 + 2n if m = 1 and

0 if m — 0. Thus the elements that are not invertible form a proper subspace of

dimension less than (m + n)2, and the conclusion that each coefficient in (7.2.10c)

is zero remains valid for G G GL(m/n). Thus the lemma is proved.

Lemma 7.2.10 implies, via Theorem 4.1.18 and Lemma 4.1.19 that V®1 is a

completely reducible GL(m/n)-mo<lu\e, the constituent irreducible modules being

obtained from the minimal right ideals of F5j. If x G FS, and x = J2*es, X(TT)TT

where each x(ir) £ F, define:

x = J2 x(7r)j^- (7.2.11)

By virtue of Lemma 7.2.5, the map x —> x defines an isomorphism between F5/ and

Thus with Y^x as defined in Theorem 4.2.9, a set of minimal right ideals of

are provided by:
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The following two theorems now follow directly from Theorem 4.1.18 and Lemma

4.1.19.

Theorem 7.2.13. The GL{m/n)-module V®' is completely reducible. Let A G P(l)

and {Tx : i = 1,2, . . . , / A } be the set of St-standard tableaux of shape A. Then, for

i = 1,2,..., fx, Y^\ generates a set of fx linearly independent minimal right ideals.

The GL(mIn)-modules Y^xV®' are linearly independent and isomorphic.

Theorem 7.2.14. Those non-zero Yt'xV®', for A 6 P(l), provide a complete list of

inequivalent irreducible GL^m/n)-modules occurring as submodules ofV®'.

As in Section 4.2, for each A 6 P(l) identify the tableau Tx for which Tx
k^ = ik

for k — 1,2,. . . , /, with the basis element e,-,,-,...,-, of V®'. The graded (signed) place

permutation action of TT on e,-,,̂ ...,-,, as given by Definition 7.2.4, then corresponds

to the action of 7f, on Tx given by:

^ r A = n [iah]*.T\ (7.2.15)
l<a<b<l
Jr(o)>ir(4)

where 7r,TA is given by Definition 3.3.10. Then for w G V®', the element Yt'xw €

Yt'xV®' is identified with the grade-symmetrised tableau {TA}~ = Yr
xTx where Yx

is provided by (3.3.12d).

The graded GL(m/n)-module Wx is defined to be the span of all {TA}~ where

the entries of Tx are all from the set JGL('n/n) = Nm + n . These objects are not linearly

independent since there exist graded versions of the Column and Garnir relations.

Lemma 7.2.16. For any tableau Tx and T £CX,

{TXY = ( - l ) r {f ,T A }~. (7.2.16)

Proof. From (3.3.12c) and (7.2.11),

Then
*.= E E(-!)v.^.= E

= (-i)T E

where the isomorphism between F5; and F5; (Lemma 7.2.5) has been used. There-

fore Yxfm = ( — l)Ty,A, which proves the Lemma.
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Lemma 7.2.16 implies that if Tx has an entry from the set 2g repeated in any column

then {TA}~ vanishes. However, due to the grading property, this is not the case

for a repeated entry from the set T\. Nevertheless, (7.2.16) enables {T*}~ to be

expressed as ±{T'A} for some tableau T'x in which the entries are non-decreasing,

and strictly increasing on the set Xg, down each column. Such a tableau is termed

column superstrict. To illustrate the use of Lemma 7.2.16, consider the GL(2/2)-

module W^2'2'1^ where:

The Garnir relations have the following graded analogue:

Lemma 7.2.18. For i < j , let X and y be subsets of the entries in the ith and jth

columns, respectively, oftx such that #{X U y) > A,. Let S{X), S(y) and S(Xl)y)

be the subgroups of St preserving X, y and X U y, respectively. Then if G(X,y) is

a set of right coset representatives for S(X) ® S(y) in S(X U y),

(-iy{ij.T*}~=0. (7.2.18)

Proof. With Gx y given by (3.4.4), the ungraded Garnir relation implies that

YXGX y — 0, as in (3.4.5). Therefore YXGX y = 0, on using, once more, the isomor-

phism between FSi and FS{. This proves the lemma.

To illustrate the graded Garnir relations, consider the GL(2/3)-module Wx with

A = (4,3,1). Then i = 1, j = 2, X = {2,3}, y - {4,5} and an appropriate set of

coset representatives produces, for example, the identity:

(7.2.19)

= 0.

It should not be assumed that the occurrence of identical entries in the same column

implies that the term vanishes. For example, the fourth term in (7.2.19) is not

identically zero.

For each irreducible covariant representation of GL(m/n), Berele and Regev

introduced the following favoured set of tableaux.
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Definition 7.2.20. [BR83,BR87] GL(m/n)-standard tableaux. Define the index

sets J5 = { 1 , . . . , m}, IT = {m + 1 , . . . , m + n} and XGL{-m>n) = Jg U I r . The tableau

TA is GL{mIn)-standard if and only if:

(i) the entries are taken from the set XGL(-m^"\-

(ii) the entries from the set Ig form a tableau T1*, for some \i < A, within

TA;

(iii) the entries from the set Ig are strictly increasing from top to bottom

down each column of

(iv) the entries from the set T\ are non-decreasing from top to bottom down

each column of

(v) the entries from the set 2g are non-decreasing from left to right across

each row ofT11;

(vi) the entries from the setT\ are strictly increasing from left to right across

each row of

This Definition implies that the tableaux:

1 1 2 6 4 5 6 1 1 2 4
2 4 5 4 5 6 , 3 3 4 ,-
3 4 5 ' 4 5 6 and 45 ^
6 4 6

are each GL(3/3)-standard. Note that if Am+1 > n then Definition 7.2.20 implies

that no G.L(?n/?})-standard tableaux exist, since below the 772th row only entries

from the set X\ may be present, and these must strictly increase from left to right.

Thus G.L(m/?i)-standard tableaux exist if and only if A € P(l; m/n).

The GZ(7?}/n)-standard tableaux were employed in [Ki83] to produce a su-

persymmetric generalisation of the symmetric Schur functions.

A generalisation of the standardisation techniques of Section 3.4 now enable

an arbitrary grade-symmetrised tableau {TA}~ to be reduced to a linear combi-

nation of grade-symmetrised CL(7?7/?})-standard tableaux through the systematic

application of the graded Column relations (7.2.16), and the graded Garnir rela-

tions (7.2.18). Firstly the graded Column relations enable the entries of a grade-

symmetrised tableau to be reordered in their columns to form {TA}~, where TA is

column superstrict. If TA is not GL(m/u)-standard, then either condition (v) or

condition (vi) of Definition 7.2.20 is violated and, in particular, is violated by a

neighbouring pair of entries. Let a and b be such that this neighbouring pair is T(
A ̂

and T(
A

it+1). Then T(
A

 t) > T(
A

 t+1) with equality implying that TA
 t) e IT . Let X be
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the set of positions below and including T(
A

 t) in the 6th column and let y be the

set of positions above and including T,A 6+1) in the (6 + l)th column. The relevant

entries of TA are then as follows:

TA

-11,4+1

Al

Al

p
1a,b

Al

xo-l,4+l

Al

rpX (7.2.22)

Al

Al

T-X
bb.

This differs from (3.4.9) only in that identical entries are permitted in the same

column. With X and y as defined above, ^{X U y) = \b + 1, whereupon Lemma

7.2.18 may be used to express {TA}~ in terms of other tableaux.

Consider first the case where T,A t-. > T,A b+1y This case is similar to the

situations considered in previous chapters. To recapitulate, with 77 G Q(X,y) and

77 ̂  S(X) ® S(y), Tx — r),Tx has necessarily been formed from Tx by swapping the

columns of at least one pair of elements from X U y. Since the entries at positions

y are all smaller than those at positions X, Tx > Tx. Hence, in this case, the

algorithm enables {TA}~ to be written in terms of higher tableaux (as specified by

Definition 2.6.8), the coefficients being all integral. To illustrate this case, let:

1 2
T < 2 . 2 . 2 ) = g 3

5 4
(7.2.23a)

Then, in the GZ(3/2)-module W^>2:2\ the following identity arises on using the

above procedure with X = {2,3} and y — {4,5}:

= 0.

(7.2.236)
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On rearrangement, using (7.2.16), and collection of terms, this yields:

(7.2.23c)

where each of the tableaux on the right side is higher than that on the left.

For the case where T*a ̂  = Tfab+1y G 2j, the same technique produces a similar

sum of terms. However, as may be seen by considering the coset containing the

permutation which swaps the two neighbouring identical entries, the original grade-

symmetrised tableau is repeated in this identity. Since both of these entries are of

odd grade, the two terms have the same sign and thus do not cancel. The possibility

of the entries immediately below TA 6) or immediately above TA 6+1) being identical to

these two is not excluded. If this entry occurs c times in the 6th column and d times

in the (b + l)th column then, by considering coset representatives which permute

these entries amongst themselves, it can be seen that the original grade-symmetrised

tableau occurs with a multiplicity of {c+
cj in the Garnir identity resulting from the

selection of X and y given above. Again all of these terms have the same sign. The

previous argument shows, once more, that the remaining terms in the expression are

higher than the original. Therefore, in this case, {TA}~ may be expressed in terms

of higher tableaux, the coefficient of each being rational. This case is exemplified

by the following example in the GL(2/2)-module

= 0,

whereupon:

2 T r 1 3 r i r 1 2 i ~ 1 \ 1 s r

(7.2.246)

As a further example, consider the GL(2/2)-module W^3'1^ where the above process
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results in:

84

1
2

3
3
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3
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3
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1
2
3
3

3
3
3
3
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3
3
3
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1
2
3
3
3
3
3
3
3

3
3
4

(7.2.25)

expressing the non-standard term on the left in terms of a single higher term which,

incidentally, is GL(2/2)-standard.

As with (7.2.23c), a single application of the above procedure may result in

further non-standard terms. However, the process may be iterated until solely

G\L(m/n)-standard tableaux result. That this procedure terminates is guaranteed

by the ordering on the set of all tableaux of shape Fx, given by Definition 2.6.8,

and their finite number.

T h e o r e m 7.2.26. (see [BR87].) The set

{ {TA}~ : Tx is GL(m/n)-standard}

constitutes a basis for the irreducible GL{rn/n)-module Wx.

Proof. The following is a direct generalisation of that used for Theorem 4.2.16

and differs from that of [BR.87]. The existence of the standardisation algorithm

given above implies that this set spans Wx. Thus it is sufficient to demonstrate

linear independence. As for Theorem 4.2.16, introduce the following order on the

set of all tableaux. Let tb
u be the sum of the entries in the 6th row of Tx for

b = 1,2, • • •, <? where q = \x. Let |TU
A| be the equivalence class of all tableaux

which have their sequences of row sums identical to that of Tx; that is Tx £ |TU
A|

if t\ — tb
u for 6 = 1, 2 , . . . , q. A total order on the set of these equivalence classes of

tableaux is defined by |Tu
A|' > \TX\' if for some k < q, <* > t* with tb

u = t\ for each

b — k + 1, k + 2 , . . . , q. Let p G 7lx and a G Cx. Since the action of p» on Tx leaves

the elements of TA in their original rows, p,Tx £ \TX\'. If TA is GX(m/n)-standard

then |<T»TA|' < \TX\' since the action of <r. only serves to move smaller entries down

the columns. The inequality here is strict if a,Tx ^ TA. Since Tx may possess
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identical entries in a column crtT
x = Tx may occur for various <r 6 CA. Let the

G£(m/n)-standard tableaux be labelled:

rpX rr-iX
1 X

such that:

for 1 < s < r, and such that:

X rp\ rpX
2,li - t 2 , 2 ' " • " ' - t2,K

= • • • = TA

1,1

/
2,1 <

rpX 1

It is required to show that if:

(7.2.26a)

(7.2.266)

(7.2.26c)

(7.2.26d)
.•=1 i=i

where each fcfJ- £ F, then each ktj = 0. If this is not the case, there exist a and b

such that kab ̂  0 with kaj = 0 for 1 < j ' < b and each fc,j = 0 for i < a. Thus:

j=b i = a+lj = l

= E
j=b

j + E (-irfc.jP>.T*j + E EhjP'QWj,

where naj- = #{o- e CA : a.T^ = TV} > 0. In view of (7.2.266) and (7.2.26c), all

the tableaux TA comprising the third term are such that 1a,b . In addition,

since , T A .
' a,3

TA. whenever <T»TA. 7̂  TA-, all the tableaux TA comprising the

second term are such that TA
0,6 . Therefore, since each tableau is uniquely

identified with a basis element of V®', it follows that:

(7.2.26e)
i=b

Since the tableaux TA(,, Ta
A

6+1,... ,TA
K<i are CL(m/n)-standard and distinct, it fol-

lows that the sets {p»Tx
c : p € 7ZX} each contain a single unique GL(m/n)-standard

tableau for c = b, b + 1 , . . . , Ka. Since each naj- > 0, it then follows from (7.2.26e)

that kab = kat,+i = • • • = kaKa = 0. This contradicts fca( ̂  0 whereupon all the kitj

of (7.2.26d) are zero and the theorem is proved.
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Theorem 7.2.27. [BR87]. The set

provides a complete list of inequivalent irreducible GL(m/n)-modules occurring as
submodules ofV®1.

Proof. Since GI»(m/n)-standard tableaux provide a basis for Wx and GL(m/n)-
standard tableaux exist if and only if A G P(l; m/n), the theorem follows directly
from Theorem 7.2.14.

This theorem is known in [BR87] as the 'Hook Theorem' since if A G P(l; m/n),
the Young diagram Fx lies in a hook with leg width n and arm width m.

Let A G P(l;m/n). It follows from (7.2.2a) and Lemma 7.2.10, that the
element G G GL(m/n) acts on {TA}~ G Wx according to:

(7.2.28)
the sum being over all tableaux T'x with entries from the set JGi(m/"). Since the
grade-symmetrised GL(m/n)-standard tableaux constitute a basis for Wx, explicit
representation matrices are readily obtained from the action of GL(m/n) on these
tableaux. Let sx be the dimension of Wx and Tx, T2

A,..., T^x the Gi(m/n)-standard
tableaux. The action of G G GL(m/n) on each {Tx} yields, according to (7.2.28), a
linear combination of, in general, non-standard tableaux with coefficients in B. By
using the techniques of this section, each may be written in terms of the GL{mjn)-
standard tableaux, so that:

G{Txr = Y,T^(G)ji{Txr, (7.2.29)

for some set of Grassmann parameters r^A^(G)j,- G B. These are the elements of the
matrix F^A (̂G) which represents G in the representation labelled by A.

The results of this section show that the quintessential structure of Wx is as
follows.

Theorem 7.2.30. Let A G P(l;m/n). The module Wx is the irreducible GL(m/n)-
module spanned by {TA}~ for all Tx with entries from the set XGL(m/n)t modulo rela-
tions (7.2.16) and (7.2.18), and on which GL{m/n) acts according to (7.2.28).

This theorem effectively provides a definition for Wx.
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§7.3. Lie superalgebras, gl(m/n) and sl(m/n)

The relationship between a Lie supergroup and a Lie superalgebra is more subtle

than that of the ordinary case. Indeed, some Lie supergroups do not possess Lie

superalgebras. In addition, the usual definition of a Lie superalgebra makes no

reference to Grassmann parameters but nevertheless, the aspect of a graded vector

space is retained. It is the purpose of this section to describe the Lie superalgebras

gl(m/n) and sl{rn/n) and to indicate their position in the general classification of

Lie superalgebras. Most of the original results on Lie superalgebras were obtained by

Kac (see, for example, [Ka78]) and convenient accounts are given in [Sc79,Co89].

Definition 7.3.1. A Lie superalgebra C, is a "L^-graded vector space over F having

even subspace Co and odd subspace C\ and a generalised product [a, b] £ C, for all

a,b £ Cs, satisfying:

(i) [a, b] £ £(dega+deg4)/

(ii) [aa + /3b, c] = a[a, c] + (3[b, c);

(Hi) [a,b] = -(-l)de&adesb[b,a]; and

(iv) (_l)^-ege f a >{6 j C]] + (_1)degadeg6[6JC)a]] + (_1)deg»d«gc[cJa)6]] = Q.

for all homogeneous a,b,c £ Cs and all a,f3 £ F.

Theorem 7.3.2. (i) If the even subspace CQ of C, is non-trivial, then it is an ordinary

Lie algebra.

(ii) If both CQ and C\ are non-trivial subspaces of Cs, then C\ is a carrier space of a

representation of Cj; that is L\ is an Co-module.

Proof, (i) On restricting a,b,c of Definition 7.3.1 to be elements of £g> it is s e e n

that CQ satisfies all the requirements of a Lie algebra as in Definition 1.3.4. (ii) It is

sufficient to show that [[a, 6], c] = [a, [6, c]] — [b, [a, c]] for all a, b G £g a n d all c £ C\.

This follows directly from conditions (iii) and (iv) of Definition 7.3.1 since in each

case the exponent of (—1) is 0.

The following definition concerns, for fixed m and n, (m+n) x (m+n) matrices

M partitioned:

where P , Q, R and 5 are submatrices of sizes m x m, m x n, n x m and n x n

respectively and Mtj £ F for 1 < z, j < m + n. M is said to be an even (m/n)-

matrix if the submatrices Q and R are zero, whereupon degM = 0, and an odd
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(m/n)-matrix if the submatrices P and S are zero, whereupon degM = 1. Every

matrix M can be uniquely written as the sum M — Mo + Mi of an even and an odd

matrix. If either Mo or Mi is zero then M is said to be homogeneous.

Definition 7.3.4. The Lie superalgebra gl(m/n,F) is the 7.2-graded vector space of

all (rn/n)-matrices of the form (7.3.3) with generalised Lie product:

[M, N] = MN - ( - ly^s^^ iVM, (7.3.4)

for all homogeneous M,N G gl(m/n,F). This is linearly extended to the whole of

gl(m/n,F).

Note that unless both M and N are odd, (7.3.4) is the ordinary Lie product. It is

easily verified that gl(m/n) is a Lie superalgebra.

If the matrix Ea
h is defined as in Section 2.2, then a basis for gl(m/n) is

provided by {Ea
b : a, b G IGi(W")}, for which degEj = (a)+ (6) mod 2. Thereupon

gl(m/n) has even dimension m? + n2 and odd dimension 2mn. (7.3.4) implies that:

[Ea\Ec
d]=Sb

cEa
d- a c Sd

aEc
h. (7.3.5)

Definition 7.3.6. A simple Lie superalgebra is a Lie superalgebra that is not abelian

and does not possess a proper graded ideal.

Consider the even element H £ gKjn/n) given by:

H= £ EC. (7.3.6)

It is easily verified that multiples of H constitute a one-dimensional ideal of gl(m/n).

Furthermore, this ideal is trivially graded; all elements are even. Therefore gl(m/n)

is not a simple Lie superalgebra.

Definition 7.3.7. / / a matrix M € gl(m/n) is partitioned as in (7.3.3), then its

supertrace, denoted str(A), is defined by:

str(A) = tr(P) - tr(5). (7.3.7)

If M, N (E gl{m/n) are such that str(M) = str(iV) = 0 then it is easily verified that

str([M,iV]) = 0.

Definition 7.3.8. Let sl{m/n) = {M G gl{m/n) : str(M) = 0}.

In view of the above sl(m/n) is a Lie superalgebra.

229



7.3. Lie superalgebras, gl(m/n) and sl(m/n)

For a,be ZGL^m'n\ define:

f Ea
b if a ± b;

Em--E^-» iia = b<m; ^ g )

Em
m + Em+im+1 if a == 6 = m;

J5a
a — .Ea+1

o+1 if a = 6 and 7n < a < m + n.

Then a basis for sl(m/n) is provided by {Aa
h : a, b £ XGl<-m/n\ (a, b) ̂  (m + n, m +

n)}, whereupon sl(m/n) has even dimension a2 + 62 — 1 and odd dimension 2a6. If

m ^ n and m,n > 1, it may be shown that sl(rn/n) is a simple Lie superalgebra.

This simple Lie superalgebra is often denoted A(m — 1/n — 1). If m = n then

since H £ sl(m/m), where iJ is given by (7.3.6), sl(m/m) is not simple. However,

sl(m/m)/(FH) is simple and is often denoted A(m — \/m — 1). Where m ^ n,

define C £ sl(m/n) by

^ m »-r> m+n

C =
n-m a=

The even part 5/(m/n)g of sl(m/n) consists of matrices of the form (7.3.3) with Q

and R both zero and tr(P) — tr(5) = 0. Thus sl(m/n)o is isomorphic to the direct

sum of the set of matrices P for which tr(-P) = 0, the set of matrices 5 for which

tr(5") = 0, and scalar multiples of C. Therefore:

sl(m/n, F)g S sl(m, F) ® F © sl(n, F). (7.3.11)

The element C, which is central in 5/(m/n)g, has a very special property. Let

sl(m/n)i = sl(m/n)+1 ® sl(m/n)_1, where in the form of (7.3.3), the elements of

sl(m/n)+1 have R equal to zero, and the elements of sl(m/n)_i have Q equal to

zero. Then, writing sl(m/n)0 = s/(m/n)g, it is easily shown that:

[C,M] = kM, (7.3.12)

for all M e sl(m/n)i and k = -1 ,0 ,+1.

Definition 7.3.13. A reductive Lie algebra C is a Lie algebra which is either Abelian,

semisimple or a direct sum of an Abelian Lie algebra and a semisimple Lie algebra.

Definition 7.3.14. A Lie superalgebra C, is said to be classical if £5 l 5 a reductive

Lie algebra.

These definitions indicate that sl(m/n) is a classical Lie superalgebra. Furthermore,

if m 7̂  n then sl(m/n) is a classical simple Lie superalgebra. The complex classical

230



7.3. Lie superalgebras, gl(m/n) and sl(m/n)

simple Lie superalgebras play a role in the theory of superalgebras similar to that

of the complex simple Lie algebras in the ordinary theory.

Lemma 7.3.15. (see [Co89].) If C, is a complex classical simple Lie superalgebra

then the centre (maximal Abelian idea!) of CQ is at most one-dimensional.

This lemma indicates that £g may be written:

£-0 = CA®Cs, . (7.3.16)

where CA is Abelian and at most one-dimensional and Cs is semisimple.

Definition 7.3.17. The Cartan subalgebra H, of the complex classical Lie superalge-

bra Cs is defined by:

HS=CA®HS, (7.3.17)

where 7is is the Cartan subalgebra of Cs. The rank ofCs is defined to be the dimension

ofHs.

If m ^ n, this definition implies that {Aa
a : l < a < m + n } i s a basis for the Cartan

subalgebra of sl(m/n) — A(rn — 1/n — 1) and that consequently A(m — 1/n — 1) is

of rank m + n — 1. If m = n > 1, {Aa
a : l < a < m + n } i s a basis for the Cartan

subalgebra of A(m — 1/m — 1) subject to the constraint:

m+n m 2m —1

"$2Ea
a = Y,aA°a- E (2m - a)A°" = °- (7.3.18)

a= l a = l o=m+l

Consequently A(m — 1/m — 1) has rank 2m — 2.

Since Cs is semisimple it may be written as the direct sum of root subspaces

as in (1.6.1). The zero root space Cs0 is equal to Ti,. The set of roots a of Cs is

then denoted A5, these being known as the even roots of Cs. If CA is trivial then

since C\ is an £o-module, it may be written as the direct sum of weight subspaces

as in (1.7.1). The corresponding set of weights is denoted A1, these being known as

the odd roots of Cs. Then A = A°UA J comprises the complete set of roots for Cs.

Cs may then be written:

C. = ns ® (©Q6ACeo), (7.3.19)

where each root vector eo of C, is either a root vector or weight vector of CQ. These

definitions imply that:

, (7.3.20)

for all a € A and all h € Hs. If CA is not trivial then [c,ea] = 0 for all c <E CA

and a € A5. In addition, as may be shown [Co89], there exists c € CA with the
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property that [c, ea] = ±e a for all a G A*. This is the situation in (7.3.12). Thus,

in those cases for which CA is non-trivial, each a G A with a G 'K5*, the dual of

7is, may be extended so that a G K*, the dual of "K,.

Not all classical simple Lie superalgebras C, possess a non-degenerate invariant

bilinear form. Those that do are called basic classical simple Lie superalgebras.

The Lie superalgebras A(r/s) belong to this class. In addition, there exist basic

classical simple Lie superalgebras denoted B(r/s), C(s), D(r/s), F(4) and G(Z),

because of the relationships between their even parts with the ordinary Lie algebras

denoted using the same letter under the Cartan classification. It may be shown

that for the basic classical simple Lie superalgebras, the non-degenerate form is

also non-degenerate when restricted to the Cartan subalgebra Ji, of Cs. This leads

to a theory of positive roots and simple roots analogous to that of the ordinary

case. However, in contrast to the ordinary case, all choices of simple roots are not

equivalent, in that they are not related by the Weyl group of inner automorphisms

of C,. However, for each of the basic classical simple Lie superalgebras, the set of

simple roots may be selected so as to contain only one odd root. Such a selection

is known as the distinguished choice. For such a distinguished choice the (positive)

simple root vectors of sttjn/n) are given by:

n; ' ( m / n ) = {Ea
a+1 : a = l , 2 , . . . , m + n - l } . (7.3.21)

Note that of these only Em
m+1 is an odd element of sl(m/n). These simple root

vectors generate the nilpotent Borel subalgebra g+(m/n^ spanned by the set:

A;' (m/n) = {Ea
h :a,be XG i ( m / n ) , a < b}. (7.3.22)

The generalisation of the theory of representations to the superalgebra case

arises through the following definition.

Definition 7.3.23. A Z2-graded representation T of Cs maps each element a G Cs to

T(a), an element of the Z2-graded vector space of square (p/q)-matrices, such that:

(i) deg Y(a) = deg a;

(ii) T(aa + /3b) = aT(a) + /3T(b); and

(Hi) T([a, b}) = T(a)T(b) - ( - l )

for all homogeneous a, b G C, and all a,/3 G F. The representation V is said to have

even dimension p and odd dimension q.

In the usual way, each Z2-graded representation defines a Z2-graded module.

Let V be a Z2-graded vector space with even subspace Vg having basis {e,- : 1 < ii <
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p) and odd subspace Vj having basis {e,- : p < i < p + q}. Then linearly extending
the action:

p+1
ae,- = ]rr(a) i iei, (7.3.24)

3=1

for each e,- £ V and all a 6 Cs, defines F a s a Z2-graded £,-module.

The theory of finite-dimensional graded representations of basic classical Lie
superalgebras bears a number of similarities to that of the ordinary Lie algebras,
but differs significantly in a number of ways [Ka78,Sc79,Co89]. In particular,
the highest weight of each finite-dimensional irreducible representation of a rank r
basic classical simple Lie superalgebra may be specified by a set of 'Kac-Dynkin'
labels (n1? n2 , . . . , nr) associated with the simple roots, with labels associated with
odd root(s) non-integral or even complex, in general. Furthermore, certain finite-
dimensional representations may be reducible but indecomposable.

In the remainder of this chapter, only covariant representations of sl(m/n)
and gl(rn/n) will be considered. As will be seen, these representations are fully
reducible. As elsewhere in this thesis, partitions will be used to label the corre-
sponding irreducible representations, instead of the 'Kac-Dynkin' labels mentioned
above. The relationship between these two sets of labels is a little more involved
than in the ordinary case. It is discussed in [BM83].

§7.4. The irreducible covariant tensor modules of gl(m/n) and sl(rn/n)

This section elucidates the connection between Lie supergroups and Lie superal-
gebras. This connection is then exploited in the case of GL(m/n) and gl(m/n)
in order to use the techniques of Section 7.2 to obtain the irreducible covariant
gl(m/n)- and .s/(m/n)-modules based on Young tableaux.

Let Q, be a Lie supergroup of even (m/n)-supermatrices having even dimen-
sion p and odd dimension q. Then for G € Q, in a small neighbourhood of the
identity, G = G(XU X>,..., XP;YUY2,... ,Yg) with each Xh e £5 and each Yk € BT.
Since G is an superanalytic function on RBP'«, it follows from (7.1.10) that the
supermatrices:

Mh =
dG
dXh

and Nk
dG

(0;0) dYk

(7.4.1)
(0;0)

exist and are non-zero. Each Mh is an even (m/n)-supermatrix and each Nk is
an odd (m/n)-supermatrix. If Xh = X^-X^^o w n e r e the sum is over all even sets
H C NL and each X£ G R, then the supermatrix derivatives:

dG
(7.4.2a)

(0;0)
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exist and satisfy M/ = (,»Mj. Similarly, if Yk — £„ Y^C,V, where the sum is over all

odd sets v C Nj, and each Y£ G R, then the supermatrix derivatives:

dG
(7.4.26)

(0;0)

exist and satisfy N% = (vNk. Each M? and each N£ is an even (m/n)-supermatrix.

The elements M£ and N£ provide a basis for the real Lie algebra of Qs, for

which a general element is an even (m/n)-supermatrix of the form:

o q

£ YkN
v
k (7.4.3a)

ii = l even /i i = l odd u
P «

where each Xh G -Bg and each Yk 6 S j . In the usual way, this real Lie algebra is

closed under the commutator [M, M'] and exponentiation of its elements recovers

elements in a small neighbourhood of the identity of Qs.

Now, in order to make the connection with Lie superalgebras, let P be any

one of the Mh 's or JVt's denned by (7.4.1). Then if degP = 0, P is one of the Mh 's

and if degP = 1, it is one of the iVj.'s. Let £P be a Grassmann parameter of the

same degree. Define P' and £p< in an analogous way. Then C,PP and (,P>P' are of the

form (7.4.36), being elements of the real Lie algebra of Qs. Then by straightforward

matrix multiplication (7.1.8):

' - ( - i ) d e 8 p d e * p ' p 'p)

= CpCp'[^i"]-(-i)-..p-..p', (7-4-4)

where [A, B)_ denotes the usual commutator: [A, B}_ = AB — BA; and [^4,5]+

denotes the anti-commutator ([DJ81]), denned by:

[A, B]+ = AB + B A. (7.4.5)

The closure of the real Lie algebra of £/,, described above, implies that if

the entries of each P and P ' are solely C-multiples of the Grassmann parameter

C« = 1 G B, then these matrices form an algebra closed under the super Lie product:

[P,P']_(_i)d«iPd«iP'. This is the Lie superalgebra C, of Qs. If the aforementioned

condition is not satisfied then Q, has no corresponding Lie superalgebra. An example

of such a case was first given by Rogers and is reproduced in [Co89].
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Turning attention to GL(m/n), let Xi}j, for i,j G JGL(m/") with (t) = ( j) ,

be a set of m2 + n2 even Grassmann variables; and Ytj, for i,j G ZGL(m/n^ with

(i) 7̂  (j), be a set of 2mn odd Grassmann variables. A convenient parameterisation

for GL(m/n), close to the identity is then provided by:

= <8<+xi,j if (0 = Ci);
; ' \YtJ if (0 ̂  0")-

It then follows from (7.4.1) and (7.4.4) that the m2+n2 (m/n)-matrices Ea
b for a , i £

jGL(m/n) c o m p r i s e the Lie superalgebra of GL(m/n). This is the Lie superalgebra

gl(rn/n) introduced in Section 7.3. To determine its action on'the Z2-graded vector

space V®1 introduced in Section 7.2, consider the element C,Ea
b of the real Lie algebra

of GL(m/n), where £ G B<a)+n) s o *^a* ^eSC = (a) + (^) (mod2). From (7.2.2a), it

(7.4.6)

a c t s o n t h e e l e m e n t Ce»iia---*i £ V,®li w h e r e d e g ( ' = (ii) + ( i 2 ) + • • • + (ii) ( m o d 2 ) ,

a c c o r d i n g t o :

ldJc

k=l\<c<d<l

; i i . . . sik
k-_\8{k8b

k8{*+l • • • 8{lejlh...h, (7.4.76)

where there is an implicit summation over all js. Commuting the ( and the (' and

noting that for fixed k, id = j d unless d = k, yields:

a ix

b i2 cc'E a j k n
c<k

a 3c x i i . . . /)jk~l8jk8b 8j-k+1 • • • 8j'e- • •
Vil

 V'k-iUa Vik
V'k + i Vi, c J i J a - - - J i '

(7.4.7c)

Therefore, on removing the common factor of (£' :

a ^1

b i2 a a a ic

b
(7.4.7d)

a a E^k

a
6 (7.4.7c).

This defines an action of gl(m/n) on Vs®'.

Since GL{rn/n) commutes with the action of 5;, it follows that gl(rn/n) also

does so. It then follows from Theorem 4.2.26 that each Wx for A € P(/; m/n) is an
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irreducible g/(m/n)-module. The action of Ea
b on the grade-symmetrised tableau

{TA}~ now follows directly from (7.4.7e). Let s be the number of times that the

index b occurs in TA, and form 5 distinct tableaux T,\ by replacing a single index b

in position k of Tx with a, for all appropriate positions k of Tx. Then:

a a

a I,
b T A

(7.4.8)

Any non-standard tableau appearing on the right side may then be expressed as

a linear combination of (7L(m/n)-standard tableaux of the same grade, using the

techniques described in Section 7.2. In precisely this way the action of Ea
b 6

gl{m/n) on each grade-symmetrised 6rI-(m/n)-standard tableau {Tx}~ results in:

(IVMT*}-, (7.4.9)
{T*:T* GZ,(m/n)-standard}

for some rational numbers (IY),,U. The matrices Ta
h thus yield a representation of

gl(m/n).

In order to make contact with [DJ81], it is necessary to transform these

representation matrices in a certain way. To do this, it is convenient to grade the

indices which refer to the matrix elements of TV, so that if {A} is a representation

of even dimension r and odd dimension 3, then:

0, if 1 < u < r;

1, if r < u <r + s,
(«) = (7.4.10)

in analogy with (7.1.5). Only the indices u,v,w will respect this grading, with all

others being determined by (7.1.5). The grading of the representation determines

that (lY)ut, is non-zero only if (a) + (b) = (it) + (v) (mod2). Let IV be an (r/s)-

matrix, partitioned as in (7.3.3), and form T*a
b from IV by changing the sign of the

submatrix R if and only if Ea
b is a positive odd root vector (and thus (a) 7̂  (h) and

a < b) and changing the sign of the submatrix Q if and only if Ea
b is a negative odd

root vector (and thus (a) ^ (6) and a > b). This prescription may be expressed:

a b u \ \ a a v

b \ \ b
(V b)
y1- a )uv

(7.4.11)
a a
b u

(T
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where (a) + (b) = (u) + (v) (mod2) has been used. Since the matrices ro* represent

the elements Ea\ it follows from (7.3.4) and (7.3.5) that:

(T b) (V d) -
\ x a Juw\L c Jwv

a c

b d
(V d\ (V M — f>b(T d\ —
V « /uiuVx a Jwv — u

c ^ 1 a Juv

a c
b d

Thereupon, recalling that for all non-zero (Tc
d)wv, (c) + (w) = (d) + (v) (mod2):

^d)uw(Kb)wV
a c
b d

a
b

a
b

a
b

a
u

a
u

a
u

c
d

c
d

c
d

c
w

d
V

d
V

(V b) (T d

V-1- a Juw\x c

(v h (v d

(Y b} (T d

a
b

a
b

c
d

c
d

c
d

c
d

c
u

c
u

a

a
b

a
w

b'
V

(r *\ (r h\
\*- c Juw\*- a jwv

(T d) (T b)
\ x c Juwy2- a Jxuv

a
b

a
b

a
b

a
d

a
u

a
u

a
u

a
u

c
d

c
d

' b

d

6b
c(T

d'
V

d'
V

a
u

" )

a c
b d

(V b) (T
\*• a Juw \ x c

c a
d b

c d
d v

a a
b u

a c
b d

(T d) (T h)
V"1- c juwy1- a jwv

8b(T d) -

a c
b d

a c
b d

a c
b d

b c
c u

a c

b d

a a
b u

(T d) (T
V1- c Juwy-1- a

a a
c v

— 8b(T*d)
— <Jc\1- a )

a c
b d

8d(T*b)

where use has been made of the fact that for non-zero (Tc
d)uw(Ta

b)wl,, (a) + (b) + (c) +

(d) + (u) + (v) = 0 ( mod 2). Therefore the matrices T*a
b also provide a representation

of the elements Ea
b G gl(m/n). As will be shown later, the representation F* is

equivalent to the representation V.

In terms of tableaux, if the tableau Tx having entries T^^T^s,... ,TA is in-

dexed by tx, then from (7.2.1), (tx) = (T(
A

1}) + (T(
A

2)) H h (T(}}) and consequently:

(7.4.12)a
b

a
u

a
b I

a

b rpX
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Therefore, if the action of (7.4.8) is modified to:

Ea"{Tx}~ = a

b
a]

J
a

b 'T'A
•*(2)

T)

a

•

a TW
b T(* + 0

Tx

= £
a
b

(7.4.13)

the matrices r^A^(^a
6) which result from standardising all the grade-symmetrised

tableaux on the right side:

_ )vu{Tx}~, (7.4.14)
{T*:T* GL(m/n)-standard}

provide a representation of the basis elements Ea
h € gl{rn/n) in the representation

labelled by A.

As an example consider the gl(2/2) odd generator E3
2 in the 32-dimensional

5-/(2/2)-module Wx with A = (23,1), and the g/(2/2)-standard tableau:

1 2
2 3
3 4 '
4

Tx = (7.4.15a)

By virtue of (7.2.1), Tx and {TA}~ are of even grade. Using (7.4.13), E3
2 acts on

the basis element {TA}~ of Mx, according to:

1
2
3

, 4

2 '
3
4

. [2
"Is

= <

' 1
3
3
4

r

2 '
3
4

1
3
3
4

2
3
4

-<

' 1
2
3
4

+

3 '
3
4

"2
3

- .

1*
2

3
4

' 1
2

3
4

3 '
3
4

(7.4.156)

The graded Garnir relations (7.2.18), with X = {2,3,4} and y = {5,6}, give the
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identity:

1 2
3 3
3 4
4

1 3
2 3
3 4
4

• + <

1 3
3 3
2 4
4

• — <

1 4
3 3
3 4
2

• + <

1 2
3 3
3 4
4

1
3

i

3
4

2
3
4

1
3
3
3

2
4

4

1
2

3
4

3
3

4

1
2

3
3

3
4

4
* —1— i

1
3

2
3

3
4

4
= 0,

(7.4.15c)

which, on using the Column relations (7.2.16), and collecting terms, gives:

i—
i

3

3
4

2
3

4
- 3 <

1
2

3
4

3
3

4
- 3 <

1
2

3
3

3
4

4
+ «

1
3

3
3

2
4

4
= 0, (7.4.15d)

so that:

1
3
3
4

2
3
4 — <

1
2
3
4

3
3
4

• + <

1
2

3
3

3
4
4

1
1
3
3
3

2
4
4

(7.4.15c)

Hence, from (7.4.156):

1
2

3
4

2
3

4
• = 2 <

1
2

3
4

3
3

4

1
2

3
3

3
4

4

1

"iT

I
3

3
3

2
4

4
(7.4.15*/)

The following two examples exhibit shorter calculations:

£3
2 <

' 1
3

3
_ 4

2 '
4

4

2
3

1
3

3
4

1
3

3
. 4

3 "
4

4

1
3

3
4

3 '
4

4
(7.4.15&)

1 1

3 4
3 4
3

= 0.

Similar calculations, when carried out for each of the thirty-two GX(2/2)-standard

tableaux in Wx, yield, via (7.4.14), the following explicit representation T^23^

of ES:
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• \

1
-4 . . .

1 . -1 . .

. -5 . . .
1 .-1 .-§

1 . .

3 . .

. . 4

1
. . . 1 . 1

\ . . . .

where each zero has been replaced by a dot. The three calculations carried out

above give rise the entries in the 13th, 23rd and 28th columns of this matrix respec-

tively. Notice that this matrix has the block diagonal nature associated with an

odd grading. This structure is ensured by the odd grading of the element E3
2 and

the adoption of an ordering of the GL(2/2)-standard tableaux such that all those

of even grade occur first. The above construction process has been implemented

on a computer, the above matrix having been produced by this means. In addition

similar matrices for the remaining generators of gl(2/2), in the same irreducible

representation {23,1}, have also been produced. As a check on the calculations it

has been confirmed that the resulting matrices satisfy the commutation relations

given by (7.3.5).

As a second example consider the eight dimensional GX(2/l)-module

for which the G£(2/l)-standard tableaux are:

2 3
3

1 3
3

1 2
2

1
2

1 1 3
2

2 2
3

1 2
3

1 1
3

(7.4.16)

where they have been ordered in such a way that the four even tableaux occur first.

Calculations involving the use of the Column relations (7.2.16) and the Garnir rela-

tions (7.2.18) give, via (7.4.14), the following set of explicit representation matrices
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for the basis elements of gl(2/l):

\ I \ I \

. . 1
-1 . .

2 . .

\ •

are

/ • 1

• /

-1 . .
. . . . 1 . . .

. . . . 1 . 1 .

and r^2'1>(E2
3) respectively;

. . . 1 .

. . . . - 1 . - 2 .
-3

-3 . . \
. . . . 1 . -1 .

. . 1

. . 1

are r<2'1>(^2
1), r*2-1*^1) and TW(E3

2) respectively; and for the diagonal elements

of the Cartan subalgebra:

1

are r<2-1>(E1
1), T^2^(E2

2) and T^(E3
3) respectively. Once more, these matrices

possess the block diagonal structure associated with the gradings of the elements of

0/(2/1) that they represent.

The gl(m/n)-modu\e Wx also serves as a module for the (m + n)2 — 1 di-

mensional basic classical Lie superalgebra sl(m/n). Consider gl(2/l) once more.

In accordance with (7.3.9), let A^ = Ex
l - E2

2 and A2
2 = E2

2 + E3
3. Then Ai1

and A2
2 form a basis for the Cartan subalgebra of the oft studied eight dimensional

simple basic classical Lie superalgebra 5/(2/1) = A(l/0); the other basis elements

may be taken to be E^, E2
X, Ei3, E3

l, E2
3 and E3

2, as above. W^7^ then serves as a
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5/(2/l)-module and the corresponding representation matrices are obtained directly

from those given above for gl(2/l).

The highest weight vector of the s/(2/l)-module P̂r(2>1) is < > , for which
1 2 J

^ f n r j u r ^ v | i ir = ri ir (7417)

This yields the 'Kac-Dynkin' label (1,1) for the representation {2,1}.

In general, the highest weight vector of the s/(m/n)-module Wx is provided

by {T^} where:

T A _ f 3 if 1 < ; < m, Ax and 1 < A; < A;-; l

*>a>k) \k + m if m<j <Aj and 1 < fc < A,.

For example, if m = 2 and n = 3 then:

1 1 1 1
2 2 2

Tj(4,3,3,2,2)= 3 4 g (7.4.19)

3 4
3 4

It is easily verified that EJlT^} = 0 for all a, b G JGi(m/n) with a < b, confirming

that {T^} is indeed the highest weight vector. This argument holds for either of

the actions given by (7.4.8) or (7.4.13). Since a = b in either of these cases implies

that the coefficient is +1 , it follows that the highest weights of the representations

F* and F are equal. Therefore, by the supersymmetric analogue of the part of

Theorem 1.7.7 which states that representations having the same highest weight

are equivalent [Ka78,Co89], F* and F are equivalent representations.

In this chapter, techniques to construct all the irreducible finite-dimensional

covariant representations of gl(m/n) and sl(m/n) were demonstrated. In [DJ81], it

was suggested as to how the generators act on a contravariant basis for V*. In a way

similar to that described in this chapter, this action may be generalised to an action

on (V,*)®' and thence the irreducible contravariant modules are obtained. The use of

computer calculations has once again verified this construction. Significantly, these

classes of covariant and contravariant irreducible <7/(m/n)-modules encompass both

typical and atypical [Co89] cases.

It is expected that a combination of the techniques of this section with those of

Section 4.4 will be applicable to the mixed tensor space (V/)®" ®V®U. However, it is

known that this gr/(m/n)-module is not completely reducible [BM83]. Thus, it will
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be of great interest to investigate the extent to which Young tableaux techniques
interact with this fact.
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