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YOUNG TABLEAUX AND MODULES OF GROUPS AND LIE ALGEBRAS

by Trevor Alan Welsh

In this thesis, Young tableaux are used to provide a very convenient explicit descrip-
tion of all the irreducible modules of the classical Lie groups and their Lie algebras,
and a large class of irreducible modules of the general linear Lie supergroups and
their Lie superalgebras. An original account of the Specht module techniques for

the symmetric groups is also presented.

For each irreducible module, a basis is provided by a set of Young tableaux
which index the weights of the module. The action of the group or algebra in ques-
tion on these ‘standard’ tableaux is entirely natural. The result is, in general, a
linear combination of non-standard tableaux. For each group, a standardisation
algorithm is obtained which enables each non-standard tableaux to be expressed in
terms of the basis of standard tableaux. For the symmetric groups and the general
linear groups, this algorithm is provided by techniques developed by Garnir. This
involves the Garnir relations which are closely related to the fundamental Young
symmetrisers obtained by Young and based on the Young diagrams. Berele ex-
tended this construction by obtaining further relations between the tableaux based

on Wey!l’s removal of trace tensors.

These ideas are extended to the mixed tensor representations of the general
linear groups and to the orthogonal groups. In this latter case, new sets of standard
tableaux are defined. For the spinor modules, it is necessary to develop a further
class of relations. For the supergroups, a standardisation technique is obtained by

coupling Garnir’s methods with a graded symmetric group action.

In each construction, the standardisation algorithm involves simple coeffi-
cients, often integral. Consequently, the resulting matrix elements are especially
simple. Each of the algorithms is exemplified, as well as the explicit construction

of matrices representing elements of the various algebras.



Preface

At the time of submission, the work presented in this thesis has spawned the fol-

lowing papers:

R. C. King and T. A. Welsh, Construction of Orthogonal Group Modules Using
Tableaux, Linear and Multilinear Algebra, to appear (1992);

R. C. King and T. A. Welsh, Construction of GL(n)-Modules Using Composite
Tableaux, Linear and Multilinear Algebra, to appear (1992);

R. C. King and T. A. Welsh, Construction of Graded Covariant GL(m/n)-Modules
Using Tableaux, J. Algebraic Combinatorics 1 (1992), 151-170.

All the module constructions described in this thesis, apart from the spinor
modules of the orthogonal groups, have been implemented as computer programs.
These are written in the language ‘C’ and are currently running in an MSDOS envi-
ronment. These programs provide the following suite of facilities for each irreducible

module:
(i) calculation of its dimension by means of a formula;
(ii) generation and display of the appropriate standard tableaux;
(ii1) calculation of weight multiplicities;

(iv) standardisation of an arbitrary tableau — each step in the standardi-

sation procedure is displayed, if desired;

(v) calculation of the explicit matrix representation of a specified element
of the Lie algebra (or symmetric group element in the case of the

Specht modules);
(vi) checking of the appropriate commutation relations;
(vil) generation of representation matrices via those of the simple root vec-

tors (or simple transpositions in the case of the Specht modules).

In addition to the work presented in this thesis, research was undertaken
to develop algorithms to determine weight multiplicities and tensor products of
irreducible highest weight representations of affine Kac-Moody algebras. A concise

summary of this work may be found in the following paper:

R. C. King and T. A. Welsh, Tensor Products of Affine Kac-Moody Algebras, in
Proceeding of the XVIII International Colloquium on Group Theoretical Methods in

vi



Physics, Eds. V. V. Dodonov and V. I. Mankov, Lecture Notes in Physics 382,
Springer-Verlag, Berlin (1991), 508-511.

A computer program has been written dealing with the constructions described in

this paper for the two affine Kac-Moody algebras of rank one.
This thesis has been typeset using ‘plain’ TEX.

Trevor Welsh, September 1992.
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1.1. Historical perspective

Chapter 1

Introduction

§1.1. Historical perspective

Over the past century, a great literature has amassed concerning the ubiquitous
role of Young tableaux in the theory of group representations and characters. Many
of these works occur in a purely combinatorial context, casting little light on the
significance of the Young tableaux framework. In this thesis, the reader is guided on
a journey through the classical groups and in each case, the utility of Young tableaux
is pinpointed. More specifically, very convenient bases for the irreducible modules of
the symmetric group, the classical Lie groups, their Lie algebras, the general linear
supergroup, and its Lie superalgebra are constructed in terms of Young tableaux.
The action of the group or algebra in question on these basis elements is determined
and techniques are developed for rewriting the result in terms of the basis elements.

In this way, the irreducible modules are constructed explicitly.

The origin of the usefulness of the Young diagrams may be traced to their
enumeration of the classes of the symmetric group. Through the work of Frobe-
nius at the beginning of the Twentieth Century, it was shown that partitions, and
hence their diagrammatic representation as Young diagrams, serve to enumerate
the irreducible representations of the symmetric groups. In the following two
decades, Young brought the tableau to life through a diagrammatic construction
[Yo77,Ru68] of the minimal idempotents of the symmetric group algebra. Al-
though now bearing the name ‘Frobenius algebra’, the group algebra was at the
time being used by Young, ignorant of Frobenius’s work. The idempotents con-
structed by Young were termed ‘Young symmetrisers’ by Weyl. Young developed
various constructions of irreducible S;-modules based upon his tableaux. His no-
tion of a standard tableau was a major step forward. Such tableaux are defined to
have their entries ordered within their rows and columns. In this thesis they are
referred to as S;-standard tableaux, since many extensions of the notion will arise.
Young showed that the S;-standard tableaux serve to enumerate the dimension of
the representation of S; indexed by the underlying diagram. This fact was somewhat
indirectly used in his module constructions. An altogether more direct construction
was carried out much later, in the work of Specht [Sp35] and Garnir [Ga50]. Here,
for each particular Young diagram, the S;-standard tableaux are taken to form the

basis for the irreducible S;-module associated with that diagram. The symmetric

1




1.1. Historical perspective

group acts on these tableaux in a natural way, consistent with Young’s original
derivation of the symmetrisers. In general, the result of this action is a tableau
which is not Si-standard. Garnir devised an algorithm by which such non-standard
tableaux may be written in terms of S;-standard tableaux, thereby completing the
specification of the explicit module. His techniques involve the so called Garnir
relations which are intimately related to the Young symmetrisers. These relations
prove extremely useful in the developments of this thesis. The construction of the

Young symmetrisers, Specht modules and Garnir relations is detailed in Chapter 3.

Also around the turn of the century, Schur derived his double centraliser
theorem [Sc01]. Using the work of Frobenius and Young, he exploited the dual
centralising actions of S; and GL(m) on the I-fold tensor space V& of the defin-
ing GL(m)-module V, to decompose V' into irreducible covariant G L(m)-modules
which are indexed by partitions of not more than m parts. Weyl [We39] utilised
Schur’s ideas and the Young symmetrisers to project the irreducible GL(m)-modules
out of V®. The appearance of a Young tableau in [We39] showed that, to some
extent, they were being used in his methods. In the case of GL(m), it was found
that tableaux based on a particular diagram which obey a simple ordering condition
(different to the S; case) enumerate the dimension of the irreducible representation
corresponding to that diagram. These tableaux are often referred to as semistan-
dard, but in this thesis, the more descriptive ‘GL(m)-standard’ is coined. Such
tableaux seem to have first been defined by Littlewood [Li50] who implied their
use as a basis for the irreducible GL(m)-modules although this was not described
explicitly. Nevertheless, under the Weyl-Schur decomposition of V®' the groups
GL(m) and SL(m), and their Lie algebras gl(m) and sl(m), act naturally on these
tableaux. However, it is doubtful as to whether Littlewood could deal with the re-
sulting non-standard terms. As described in [JK81], the explicit use of the Young
symmetrisers in the decomposition enable Garnir’s techniques to be applied in order
to effect a standardisation once more. The resultant GL(m)-modules, for which the
sets of appropriate GL(m)-standard tableaux comprise bases, are known as Weyl

modules.

A great convenience of the above constructions of irreducible modules by
means of the Young symmetrisers is that standardisation necessarily results in terms
with integral coefficients. Since the elements of S; and GL(m) act naturally on the
respective standard tableaux, it follows that the matrix elements of the resulting
explicit representations of elements of S; or gl(m) are all integral. A further elegant
feature of this construction from the abstract weight viewpoint is that each of the
GL(m)-standard tableaux which form the basis has a well defined weight. Thus

2




1.1. Historical perspective

these tableaux index the weights of each representation and thus, through their
sum, yield its character. For GL(m), these characters are the Schur functions
which are thus endowed with a combinatorial definition [Li50,Sta71]. Many of
their properties, for example the famous Littlewood-Richardson rule [Li50,Ro061],
are best expressed, and indeed proved, using Young tableaux. Sections 1 and 2 of

Chapter 4 describe the construction of the Weyl modules.

It seems somewhat surprising that work aimed at extending these simple con-
structions to other classical groups has only been undertaken recently. In fact, very
little has been published on the construction of explicit modules at all. In 1950,
Gelfand and Zeitlin published a paper [GZ50a] (see also [BBi63)) in which the
basis states of the irreducible modules of U(m) (and hence GL(m)) are indexed by
Gelfand patterns. However, in order to have orthogonal basis elements, the module
action is extremely complicated, involving irrational coefficients, in general. This
work was extended to the orthogonal groups [GZ50b]. More recently, a Verma
module approach [LM86] produced an explicit description of basis states for vari-
ous simple Lie algebras of limited rank. However, it is not clear how the result of
an algebra action on these basis states could be rewritten in terms of that basis in

a systematic way.

By considering trace tensors formed by contraction of V® with an antisym-
metric non-degenerate bilinear form, Weyl [We39] showed that the irreducible rep-
resentations of Sp(2r) may be labelled by a subset of those Young diagrams needed
for the irreducible representations of GL(2r); specifically they are those with not
more than r rows. Some time later, King [Ki76] showed that the weights and char-
acters of the irreducible representations of Sp(2r) may be calculated by using certain
tableaux, which are here called Sp(2r)-standard tableaux, based on the Young di-
agrams which index the particular representations. Berele amalgamated these two
ideas to construct the irreducible Sp(2r)-modules [Be86]. His essential idea was to
factor out the invariant trace submodules of V®' described by Weyl and thus pro-
duce an extra relationship between the tableaux. He showed that this relationship,
known as a Trace relation, together with the Garnir relations, enable any arbitrary
tableau to be expressed in terms of the Sp(2r)-standard tableaux. This reduction
involves only integers and thus the construction retains all the elegant features of
the Weyl module. Berele’s techniques, which are fundamental to the subsequent
developments of this thesis, are elucidated in Section 4.3. This exposition differs
considerably from that of Berele’s concise account. The reason for this is twofold;

firstly, it is desirable to expound on the elegance of the method; and secondly, the
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techniques provide a model upon which similar techniques for the other classical

groups are developed.

In Section 4.4, the case of the mixed tensor (rational) representations of
GL(m) is considered. Weyl showed that these representations are indexed by certain
generalised partitions which are permitted to have negative parts [We39]. Little-
wood [Li50] noticed that this description is equivalent to that of an ordered pair
of partitions satisfying a simple compatibility condition. These two partitions, in
fact, specify Young symmetrisers acting independently on a covariant and a con-
travariant tensor space. This construction is conveniently depicted using composite
Young diagrams and tableaux [Ki70,Ki76], upon both portions of which Garnir
relations may be applied. In addition, Trace relations arise through Berele’s pro-
cess of factoring out the invariant subspace of, in this case, tensors resulting from
the contraction of covariant and contravariant indices. By using the fact that the
Kroneker product of a mixed tensor representation with a specific number of copies
of the determinant representation is equivalent to a covariant tensor representation,
King [Ki76] derived sets of composite tableaux which index the weights of these
representations. As shown in Section 4.4, these once more provide bases for the
irreducible mixed tensor GL(m)-modules. Section 4.5 is devoted to describing an
association between the Garnir and Trace relations arising from the equivalence

mentioned above.

In Chapter 5, an analogous construction for the irreducible O(m)- and SO(m)-
modules is developed. For the O(m) case, two difficulties need to be overcome. The
first is that of the specification of an appropriate set of standard tableaux. It
transpires that ever since Weyl specified the partitions that index the irreducible
representations of O(m) [We39], his index set has been ignored in favour of a subset
appropriate to the SO(m) case. This fact was recognised by Proctor [Pr89] who,
using the ideas of King and El-Sharkaway [KE83], derived tableaux based on these
partitions which index the weights of the representations. The second difficulty is
that the appropriate Trace relations have to be applied over a pair of columns by
virtue of the symmetry of the invariant form. This implies an interference between
the Trace relations and the Garnir relations. This difficulty, coupled with the prob-
lem of the reduction to SO(m), indicates that a different set of tableaux, which are
closely related to Proctor’s, should be used. These O(m)-standard tableaux are de-
fined in Section 5.1. However, the standardisation procedure no longer involves only
integers; factors of 1/2 may appear. This construction and the reduction to SO(m)
are described in Sections 5.2 and 5.3 respectively. Section 5.4 is dedicated to the

development of a Garnir-Trace relation duality similar to that which occurred for
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mixed tensor GL(m)-modules. An alternative construction of O(m)- and SO(m)-
modules is outlined in Section 5.5, based on a further set of tableaux defined in
[Pr89], which do not index weights. Although only integers occur in the standard-

isation procedures, the reduction to SO(m) involves complex numbers when m = 2

(mod 4).
Since the groups O(m) and SO(m) are not simply but doubly connected, they

necessarily possess two-valued representations. These provide genuine representa-
tions of the Lie algebras so(m). Sets of tableaux which provide the weights and
characters of these representations were first defined by King and El-Sharkaway
[KE83]. The definitive investigation into the two-valued ‘spinor’ representations
was carried by Brauer and Weyl [BW35]. In order to apply their techniques to
the construction of the irreducible spinor O(m)-modules, it is necessary to gener-
alise their use of Clifford algebras. This is carried out in Sections 6.1 and 6.2. By
factoring out the invariant subspaces, relations between the tableaux, analogous
to the Trace relations, are obtained. The standardisation procedure is developed
in Sections 6.3, 6.4 and 6.5. Once more, this procedure involves relatively simple
coefficients; they are simple rational numbers when m is even, and factors of /2

arise when m is odd. The reduction to SO(m) is performed in Section 6.6.

Dondi and Jarvis [DJ81], and later Berele and Regev [BR83,BR87}, discov-
ered that a straightforward generalisation of Schur’s action of the symmetric group
on the I-fold tensor product V® of the defining module V' of the general linear Lie
supergroup GL(m/n), enabled the double centraliser theorem to be applied in this
case. Since this generalised (graded) symmetric group is isomorphic to the ordinary
symmetric group, various properties of the irreducible representations of GL(m/n)
are similar to those of GL(m). In particular, it was discovered that irreducible
representations of GL(m/n) are also indexed by partitions — in this case, those
that lie in a ‘hook’ [BR87]. Correspondingly, the Young symmetrisers generalise.
Thus Garnir’s techniques may also be generalised to the case of the irreducible
GL(m/n)-modules. The requisite GL(m/n)-standard tableaux were first defined
in [BR83]. The irreducible GL(m/n)-modules are constructed in Chapter 7. The
construction is extended to the Lie superalgebras gl(m/n) and the basic classical
Lie superalgebras sl(m/n) in Section 7.4. Once more the standardisation algorithm

involves only simple rational coefficients.

Each of the constructions described above, apart from that of the spinor mod-
ules of orthogonal groups, has been computer implemented. This has enabled the

techniques of this thesis to be verified through checking that the representations
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generated satisfy the commutation relations of the appropriate Lie algebra. In ad-

dition, the programs have checked the examples presented.

The remainder of Chapter 1 is dedicated to the definition of the basic concepts

in the theory of Lie groups, Lie algebras and representations.

In Chapter 2, the classical Lie groups and their Lie algebras are detailed. The
classification of all their finite-dimensional irreducible representations is described,
and formulae to calculate their dimensions presented. In addition, partitions, Young
diagrams and Young tableaux are introduced, together with various associated no-

tations.

§1.2. Lie groups

This thesis is concerned with various Lie groups, Lie algebras and their represen-
tations. These notions are introduced in this and the following sections. Since the
general definition of a Lie group is not required in this thesis and embodies concepts
beyond its scope, the more accessible definition of a linear Lie group is presented.

The general definition may be found in [Co84], for example.

A faithful s-dimensional representation of a group G is an injective homo-
morphism I' : § — M’ of G into the set M’ of invertible s x s matrices. Thus
I'(g)I'(h) =T (gh) for all g,h € G. If G possesses a faithful representation I" then a
metric dr : G X G — R may be defined by:

1

dr(g,h) = {ZZ T(g); — r(h)uﬁ} .

i=1 j=1

This enables the group in question to be endowed with the topology of the m?-

. . . 2
dimensional complex Euclidean space C™".

Definition 1.2.1. A linear Lie group G of dimension p is a group for which:

(i) there exists a faithful finite-dimensional representation T';

(ii) there exists & > 0 such that the set Gs C G for which G € Gs if and only
if dr(G,I) < 6, where I € G is the identity element, is uniquely param-
eterised by p real parameters x,,x2,...,x,, with I € G parameterised by
0,0,...,0;

(1) there exists € > 0 such that if R? denotes the set of all (zy,z,,...,x,) €
R? for which

P

2
doal<e,
i=1
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then each point (z1,22,...,2,) € R? corresponds to some group element
G(.’El,xg, e ,.'Ep) & g(s,'
(iv) each matriz element T(G(z1, s, ...,Z,))i; is an analytic function of the

parameters ¢,,Ts,...,%, on the set RE.

An immediate consequence of this definition is that if G is a linear Lie group then
the matrices Ay, for k = 1,2,...,p, defined by:
_ 3F(G(:L‘1, PN ,CL'p)),'j

(Ai)i; = 92 (1.2.2)

necessarily exist.

Definition 1.2.1 is especially convenient because the classical Lie groups, which
are the main objects of study in this thesis, may be defined as matrix groups and

thus a faithful representation is always readily available.

The following definitions and theorem are quoted from [Co84] where a full

discussion is presented.

Definition 1.2.3. A connected component of a linear Lie group is a mazimal set of
elements G € G that can be obtained from each other by continuously varying the

matriz elements I'(G); of the faithful finite-dimensional representation I' of G.

Definition 1.2.4. A connected linear Lie group is a linear Lie group which possesses

just one connected component.

Definition 1.2.5. A simply connected linear Lie group G is a connected linear Lie
group for which every loop p : [0,1] — M’ for which p(0) = p(1), with image in the
domain My of the faithful s-dimensional representation I, is continuously contractible

in Mr to a point.

Theorem 1.2.6. For every connected linear Lie group G there exists a simply con-

nected group G for which G = G/K for some discrete normal subgroup K of G.

The group G which appears in this theorem is known as the universal covering group

of G.

Definition 1.2.7. Compact linear Lie group. A linear Lie group G of real dimension
p having a finite number of connected components, is said to be compact if its real

parameters T,,T,,...,T,, range over finite closed intervals.

Since all the Lie groups encountered in this thesis are linear, the word ‘linear’

i1s omitted hereafter.



1.3. Lie algebras
§1.3. Lie algebras

In this section Lie algebras are first introduced as infinitesimal generators of linear
Lie groups, identified as matrix groups by means of some faithful finite-dimensional

representation. They are then defined axiomatically.

Let G be a matrix Lie group of real dimension p. Consider a one-parameter
subgroup G(t) € G defined for ¢ € R in a small neighbourhood of 0 and for which
G(0) = I, the identity of G. Then, by virtue of Definition 1.2.1, the matrix:

d
A=—G(t) (1.3.1)

t=0
exists. By considering all one-parameter families of G, it is easily shown that the
resulting matrices (1.3.1) form a p-dimensional vector space with basis {4, : k =

1,2,...,p}. This vector space is known as the real Lie algebra Lg of G.

Let A € L; be arbitrary. The matrix differential equation (1.3.1) may be
solved with the constraints G(0) = I and

to yield G(t) = exp(At). Thus any element of £; may be exponentiated to obtain

a one-parameter subgroup of G.

It follows directly from the Campbell-Baker-Hausdorff formula (see [Co84])
that if A, B € £ then the commutator [A, B] € Lg, where:

[A,B] = AB — BA. (1.3.3)

Abstractly, a Lie algebra is defined as follows.

Definition 1.3.4. £ is a Lie algebra over the field F if and only if L is a vector space
over F, for which a product [a,b] is defined such that:
(i) la,b] € £;

(ii) la, Bb + yc] = Bla, b] + v[a, c];

(iit) [a,b] = —[b, d];

(iv) [a, [b,c]] + [b, [c, a]] + [c, [a, 8] = O,
forall a,b,c € L and all B,y € F. The first three of these requirements are known as
the closure, linear, and anticommutation properties respectively; the fourth is known

as the Jacobi identity. If F = C then £ is known as a complex Lie algebra and if

F =R then L is known as a real Lie algebra.
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It is to be noted that any real Lie algebra becomes a complex Lie algebra
on extending R to C. In general, each complex Lie algebra arises in this way from
a number of distinct real Lie algebras. These real Lie algebras are known as real

forms of the complex Lie algebra so obtained.

It is easily verified that any associative algebra which is closed under the
product (1.3.3) satisfies the requirements of Definition 1.3.4. Thus, in particular,
Definition 1.3.4 encompasses each Lie algebra £ resulting from a matrix Lie group

g.

The classification scheme for Lie algebras involves the following definitions.
Definition 1.3.5. A Lie algebra L is said to be abelian if [a,b] = 0 for all a,b € L.

Definition 1.3.6. A Lie algebra L is said to be simple if it is not abelian and possesses

no proper ideals.

Definition 1.3.7. A Lie algebra L is said to be semisimple if it possesses no proper

abelian ideals.

The classification of complex semisimple Lie algebras was completed in 1894
by Cartan [Ca94] who established the following theorem.

Theorem 1.3.8. Every semisimple Lie algebra is a direct sum of simple Lie algebras.

Cartan’s classification scheme then involves four countable sequences of simple
complex Lie algebras, denoted A, for r > 1, B, for r > 2, C, for r > 3 and D,
for r > 4, and five exceptional Lie algebras, denoted G,, F,, Es, E; and Es. In
this notation the integer appearing as the subscript is known as the rank of the
algebra and gives the dimension of the maximal abelian subalgebra. The complex
Lie algebras B,, C,, C;, D;, D, and Dj; are defined but are either isomorphic to

those already given, or semisimple or, in the case of D;, abelian. In fact,
C, = B, = A, C, & B,, D, = A,, D,= A, @ A,. (1.3.9)

In addition to the simple complex Lie algebras, Cartan determined the simple
real Lie algebras. These are denoted using a notation similar to that used for the

simple complex Lie algebras (see [Co84)).
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§1.4. Representations and modules

In this section a representation is formally defined. Throughout, attention is con-
fined to finite-dimensional representations. The equivalent notion of a module is also

introduced. In addition, Schur’s lemmas are stated and the adjoint representation

defined.
Definition 1.4.1. An s-dimensional representation of a groupig is @ map
I':g— Mi(F), _ (1.4.1a)
onto M!(F), the set of 3 X s non-singular matrices over a field F, such that
I'(gh) =T(g)T'(h), (1.4.1b)
forall g,h € G. If G is a Lie group, it is also required that T' ts a continuous map.

For groups actually defined in terms of matrices, for example the classical groups,
there already exists a representation, called the defining representation, which maps

every group element onto itself.

It is often convenient to discuss representations in terms of modules.

Definition 1.4.2. An s-dimensional G-module V' is an s-dimensional vector space
over F on which an action G : V — V is defined such that:

(i) Iv = v, where I € G is the identity element;
(iz) g(pv + vw) = p(gv) + v(gw);
(1i) (gh)v = g(h(v)),
forallg,h € G, all u,v € F, and all v,w € V.

Given an s-dimensional representation I' of G, a G-module is constructed by

introducing a vector space V with basis {v;,vs,...,v,} and defining:
gu; = Zr(g)jivj, (1.4.3)
i=1

for : = 1,2,...,s, and all ¢ € G. By linearly extending this action to the whole
of V, a G-module is constructed, as is easily verified. Conversely, an s-dimensional
G-module V leads to a representation I" by the introduction of a basis {v;,vs,...,v,}
for V', and for each ¢ € G defining I'(g);; for 1 <i,j < s by (1.4.3).

Definition 1.4.4. Equivalent representations. Let I',T" be two s-dimensional rep-

resentations of G. If there exists a non-singular s x s matriz S such that I'(g) =

10



1.4. Representations and modules

S-'T'(g)S for all g € G then the representations T' and I are said to be equivalent
and the notation I’ X I is used.

From the module viewpoint, equivalent representations correspond to nothing
more than a change of basis. In fact, under the change of basis v, = Y;_, Suv; of
V, the linear operator I'(g) acting on V with respect to the basis {v,vs,...,v,},
gives rise to the linear operator I(g) acting on the basis {v{,v},...,v!}, where

I"(g) = S'T'(g)S. Therefore equivalent representations are essentially the same

representation.

Definition 1.4.5. Reducible representations. The s-dimensional representation T’ of
G 1is said to be reducible if there erists a non-singular s X s matriz S and an integer
a such that 0 < a < s and, for all g € G, S7'I'(¢)S is of the block matriz form:

A C

- (1.4.5)

where the submatrices A,B,C and 0 are a X a, (s —a) X (s — a), a X (s — a) and

(s — a) x a respectively and the matriz 0 consists entirely of zero elements. If no such

S ezists, then T' is termed irreducible.

If V is the G-module corresponding to I' then this definition is equivalent to the
statement that I" is reducible if and only if V possesses a proper submodule W, in
that the dimension of W isat least 1, W CV, W #V, andgw € W forallwe W
and g € G. In such a case V is said to be a reducible G-module. Conversely, if T is

irreducible then V is also said to be irreducible.

Definition 1.4.6. Decomposable representation. The s-dimensional representation T’
of G is said to be decomposable if there exists a non-singular s X s matriz S such that,

forall g € G, S~'I'(g)S is of the block matriz form:

I'(g) 0

0 Tg) , (1.4.6a)

where the submatrices T™M(g) and T'®(g) are s, x 8, and s, X s, respectively for non-
zero S;,8, with s; + s, = s, and each 0 is the appropriately sized matriz consisting
entirely of zero elements. If no such S exists, then I' is termed indecomposable. If T is
decomposable with S—'T'(g)S given by (1.4.6a) then TV and T'® define representations

11



1.4. Representations and modules

of dimensions s, and s, respectively. This decomposition is known as a direct sum

decomposition and is denoted:

S7'T(g)S = TW(g) @ TP@(g). (1.4.6b)

Similarly, the G-module V is said to be decomposable if V' can be written as the
direct sum V = W @ W’ of two non-trivial G-modules W and W’. If not, then V is

indecomposable.

Definition 1.4.7. Fully reducible representation. The representation I’ of G ts said

to be fully reducible if T' can be expressed as the direct sum of a set of irreducible

representations, in that there ezxist irreducible representations T, T'® . T®) such
that:

L(g) 2TW(g) @ TP (g)®--- @ T"(g), (1.4.7)
forallgeg.

Once more this definition extends naturally to the module viewpoint.

Representations and modules of Lie algebras will now be introduced.

Definition 1.4.8. An s-dimensional representation of a Lie algebra L is a map
I': Lo M,F), (1.4.8q)

into M,(F), the set of all s X s matrices over some field F, such that:
(i) T(aa + Bb) = aT'(a) + AT(b);
(1) T([a, 8]) = [['(a), T(D)],

forall a,be L and o, € F.

Once more, an equivalent notion of an £-module exists which may be formally

defined as follows.

Definition 1.4.9. An s-dimensional L-module V is an s-dimensional vector space
on which an action £L:V — V is defined such that:

(1) a(pv + vw) = p(av) + v(aw);

(71) (aa + Bb)v = a(av) + B(bv);
(i11) [a, b]v = a(bv) — b(av),

foralla,be L, allv,w € V and all a, B, p,v € F.

12



1.4. Representations and modules

The two notions of a representation of £ and an £-module may be shown to be
equivalent in the same way as above for G.

The concepts of reducibility and decomposability extend directly to the case
of representations and modules of Lie algebras. A representation of a Lie group
G gives rise to a representation of its Lie algebra L£; and this representation is

reducible, decomposable or fully reducible if that of G is reducible, decomposable
or fully reducible respectively.

The following two lemmas which are known as Schur’s lemmas apply to any
group, or any algebra over an algebraically closed field. Proofs may be found in
[CR62,B063,Co84].

Lemma 1.4.10. [ScO1l] Let A be either an algebra or a group, and let T',I" be

irreducible representations of A of dimensions s and s’ respectively. If there exists an

8 X & matriz S such that:

['(a)S = ST'(a), (1.4.10)
for all a € A then either S =0, or s = s’ and S is non-singular.

Lemma 1.4.11. [ScO1] Let A be either an algebra over an algebraically closed field
or a group, and let T' be an s-dimensional irreducible representation of A. If there

exists an s X s matriz S such that:
['(a)S = ST(a), (1.4.11)
for all a € A then S is a multiple of the unit matriz I,.
The following theorem of Weyl [We39] will be of great value.

Theorem 1.4.12. FEvery representation of a compact Lie group G is fully reductble.

Every representation of the corresponding complex Lie algebra Lg is fully reducible.

In the theory of group representations, the character of a representation con-

tains much important information. It is introduced via the following definitions.

Definition 1.4.13. The trace of a matriz. If M is an s X s matriz with elements
M;;, its trace, tr M, is defined by:

tr M =3 M, (1.4.13)
i=1

13



1.4. Representations and modules

Definition 1.4.14. The character of a representation. If ' is a representation of
G, the function ch(T') : G — F which assigns to each element of G the trace of its

representation matriz:

ch(T')(g) = trT'(g), (1.4.14)

s known as the character of T.

The following two lemmas concerning the character have standard straightforward

proofs. }

Lemma 1.4.15. The character of a representation of a group is a class function in

that its value is constant within a class.
Lemma 1.4.16. Fquivalent representations have the same character.
The proof of the following lemma may be found in [Co84].

Lemma 1.4.17. If two representations of a finite group or a compact Lie group have

the same character, then the two representations are equivalent.

Definition 1.4.18. The adjoint representation of a Lie algebra. Let the Lie algebra

L have a basis {ay,a,...,a,} and let the structure constants cf; € F be defined by:
lai, a;] = Y cfax, (1.4.18q)
k=1

fori,3,k =1,2,...,s. For each a;, define the matriz T'y4(a;) by
Laa(ai sy = cfj, (1.4.18b)
and extend this definition linearly to the whole of L by:
Coi(aa + Bb); = alsa(a); + BLaa(b)x;, (1.4.18¢)

for all a,b € £ and o, B € F. By virtue of the constraints imposed on the structure
constants by conditions (ii1) and (iv) of Definition 1.3.4, the matrices y4(a), for

a € L, form a representation of L. T',4 ts known as the adjoint representation of L.
The £-module corresponding to the adjoint representation of £ may be taken
to be L itself, since if b € £ then, by (1.4.18a), (1.4.18b) and (1.4.18c¢):
[b, (l,'] = E Fad(b)k,-ak. (1.419)
k=1

The adjoint representation of £ may be exponentiated to provide a representation
of the corresponding connected Lie group. This representation is also known as the

adjoint representation.

14
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§1.5. Derived representations and modules

From a set of representations of a group or a Lie algebra, a number of other rep-
resentations may be constructed. The most important are the contragredient of a
representation, the direct sum of a pair (or more) of representations and the tensor
product of a pair (or more) of representations. The following sequence of lemmas
defines these representations and demonstrates that they are actually representa-

tions.

Lemma1.5.1. If T is an s-dimensional representation of G then the map T : G — M/,
defined by:

(g) = T(g) (1.5.1)
for g € G where the tilde indicates transposition, is an s-dimensional representation
of G.

Proof.
P(gh) =T(gh) " = (T(@)T(R) "
= (W)~ =T T =T()E),
where (1.4.1b) has been used.

The representation I* defined by Lemma 1.5.1 is known as the contragredient
of T'. From the module viewpoint, the representation I' arises from the action on
a vector space V* dual to V, this action preserving duality. Let V* have basis
{v',v?,...,v*} such that v'(v;) = &i. Let the action of G on V* be gv' = I'"(g);:v’

for some matrix I''(¢). Then the preservation of duality requires that:
8, = (gv')(gve)
= Z Z Fl(g)jivj(r(g)lk )

j=11=1

= Z Z I'(9);T(g)u b}

j=11=1

= grl(g)ﬁr(g)jk-

which implies that I'(g) = I:(gd)‘1 = I'(g).

The contragredient representation I' of £ is provided by differentiation of the
representation [’ of G at the identity I € G. This yields:

f'(a) = —T'(a), (1.5.2)

15



1.5. Derived representations and modules

for all a € £. Tt is easily verified that I' satisfies Definition 1.4.8. Thus V* is an £L-
module on which each a € £ acts through the linear operator (1.5.2). The elements
of V' are known as covariant vectors and those of V* as contravariant vectors.

The following lemma defines the direct sum of two representations. Its proof

is straightforward.

Lemma 1.5.3. If T) and I'® are representations of G, having dimensions s, and s,
respectively, then the map TV oT® : G - M/ defined by: -

s1432
I'™M(g); ; if1<14,5 <85
(IO STD), 5 =S TO(g)iy, jmsr i 61 < 5,5 < 81+ 825 (1.5.3)
0 otherwise,

is an (s, + $;)-dimensional representation of G.

The representation 'V @ T'® is known as the direct sum of I'") and I'®. If V(1) and
V® are G-modules corresponding to the representations ' and I'® respectively,
then it is easily verified that ') @ I'® corresponds to V() @ V® where:

g(v® + v®) = gv® + gv®, (1.5.4)

The above notions of direct sum representations and direct sum G-modules
extend in a straightforward way to direct sums of more than two representations or

G-modules.

Direct sums of representations of Lie algebras and direct sums of £-modules

are defined in precisely the same way.

Lemma 1.5.5. If T® and I'® are representations of G, having dimensions s; and s,
respectively, then the map T QT® : G — M’ defined by:

(T @ ) (g)ixj1 = TV()5 T ()i, (1.5.5)

for g € G, is a (s,8,)-dimensional representation of G.

Proof.

(P(l) ® F(z)) (gh)ik,jl = P(l)(gh)ijr(z)(gh)kl

=3 S TO(@)in DD (R )i TD(9)en DD ()

m=ln=l
$1 32

= Z Z (I‘(l) ® F(z)) (9)ik.mn (F(l) ® F(z)) (" )smn 15

m=1ln=1

where, once more, (1.4.15) has been used.
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1.5. Derived representations and modules

The representation (I'D) ® I'®) is known as the tensor product of the representations
I'D and T'® by virtue of this action arising from the tensor product of two G-
modules. Let V) and V(® be the G-modules corresponding to the representations
I'® and I'® with bases {v{",v§",..., v} and {v{¥,v{?, ..., v} respectively. The
tensor product G-module V(1)®V(2) has a basis {v§1)®v,(,f) :1<j<5,1<m<s,}
for which:

g(v) @ v?) = Z Z (I‘(l) ® p(z)) (9)ik jm OV ® oM. (1.5.6)

i=1 k=1

The notion of tensor product representations and modules may be further
extended. If V® for ¢ = 1,2,...,1 are each G-modules, the direct product V¥ ®

VO Q... VO also defines a g-module for which the action of G on the derived
basis is:

g(v(l) ® v,(f) R & U(’))
=gv) © g ® - ® gvfy (1.5.7)
Z F(l)(g)Jlur(Z)(g)Jz i2 F(I)(g)“” (1) (2) ® ® vJ(zI),

-----

so that
(F(l) ®rYe .- ® F(I)) (9)iriadviriain = F(l)(g)jmr(?)(g)jm . 'F(I)(g)jm- (1.5.8)

In the case of the Lie algebra £, the tensor product of two representations is

defined in the following lemma.

Lemma 1.5.9. If T'™ and I'® are representations of L, having dimensions s, and s,
respectively, then the map TV Q@ I'® : L — M, ,. defined by:

(P(l) ® F(z)) (a)ir i = TV (a)y; 60 + 65T @), (1.5.9)

fora € L, is an (s,5,)-dimensional representation of L.

Proof. 1t is required to show that TV @I satisfies (1.4.9). The first two conditions

are seen to hold immediately, whereas for the third (using the convention of summing

17



1.5. Derived representations and modules

over repeated indices):

(r @ r®) (la, b
=TO([a, b])i; 61 + 65T ([a, b))
= TD(@);;n TV () s 611 — TO(0);n TM(@) oy 611
+ 6, T(@)en TO(B)ns — 8, TO(0)en T (@) (by (1.4.9)(32))
= TO(@)i PO (D) Sen bt — TO(B) 1 DO(@) 5 s
+ TD(Q)im b 6k TP (D)t — Eimm DD(@) s TO(B)1 61
4+ 6im TP () s T®(@)in 6t — TD(B)im 61 6xn TP (@) i
+ 6im6m TOH(@)ea T (Bt = Eim B T (B)in TP (@)
= (M) @ L, +1,8T%a),  (TO®) L, +1,® I'4(b))
- (M) ® L, + L, eTOW),
— [(p(l) @ p<2)) (a), (p(l) ® 1“(2)) (b)]

mn, jl

(r(a) ® I, + L, ® I®(a))

mn,jl

ikl

It follows from (1.5.9) that the action of £ on the tensor product module V(O @ V()
1s governed by:

a(v” @) = (avf?) @ v + v @ (avf?). (1.5.10)

Alternatively, this result may be derived by considering the tensor product module
(1.5.6) of the Lie group G corresponding to £ and differentiating appropriate one-
parameter subgroups. Generalisation to the tensor product £-module V) @ VI @
@ VU gives:

!
a(viP @vP @ @) = > v V@ @u!" Y ® (avi?) @ v,(f:ll) ®---@0, (1.5.11)

t=1

where a € £ and where {v{*), v{") ... v(")} is a basis for the s,-dimensional £-module
V&) for each k =1,2,...,1.

In general, representations obtained as tensor products are reducible even if
the original representations are not. When V() = V@ = ...V =V the tensor
product representation is denoted V®' and is referred to as the [-fold tensor power
of V. As will be seen later, when V is the defining G-module, the G-module V&
is of immense importance, playing a central role in the construction of the explicit

irreducible representations of the classical groups and their Lie algebras.
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§1.6. The structure of complex semisimple Lie algebras

In this section an overview is given of the structure of the complex semisimple
Lie algebras as determined by Dynkin [Dy50]. Detailed expositions are given in
[Ja62,Hu72,C084] where, in addition, proofs omitted here may be located.

Since, by Theorem 1.3.8, each semisimple Lie algebra is a direct sum of simple
Lie algebras, it is sufficient to consider the structure of the latter.

Fix a maximal abelian subalgebra H of the simple Lie algebra £. Such a
subalgebra is termed a Cartan subalgebra. The dimension r of H, is referred to as
the rank of £. Since, in any representation I', the elements of H commute, it follows
from a standard theorem in linear algebra that the matrices I'(R) for h € H, may be

simultaneously diagonalised. In particular, for the adjoint representation I',4, this

implies that £ may be written:

L=H&D L., (1.6.1)

a€lA

where each a € ‘H*, the dual of H, L, C L is defined by:
Lo={a€L:[had =a(h)a}, (1.6.2)

and the set A C H* is defined such that @ € A if and only if & # 0 and £, is
non-trivial. These elements of A are known as the roots of £. The elements of £,
are root vectors corresponding to the root «. It may be shown that if « € A then
—a € A, 2a € A and that £, is one-dimensional. For each a € A, fix an element

eq € L. This element spans L,.

Definition 1.6.3. The Killing form K of the Lie algebra L is defined by:

K(a,b) = tr(Tas(a)laa(b)). (1.6.3)

The Killing form is clearly bilinear and symmetric.

Lemma 1.6.4. A Lie algebra L is semisimple if and only if its Killing form K is

non-degenerate.

Lemma 1.6.5. If a Lie algebra L is semisimple then its Killing form K restricted to

the Cartan subalgebra H, is non-degenerate.
Lemma 1.6.5 implies that for every a € H*, there exists a unique h, € H such that:

K(ha, h) = a(h), (1.6.6)
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1.6. The structure of complez semisimple Lie algebras

for all h € H. Thereupon, since the Killing form is bilinear,
hays = ho + hg, (1.6.7)

for all a, 8 € H*. This enables a symmetric bilinear form on H* to be defined by:

(aaﬂ> = K(hmhﬂ)’ (1'6'8)

for all @, # € H*. From (1.6.6) it follows that (a, 8) = a(hs) = B(ha).

The following Lemma deals with products of root vectors.

Lemma 1.6.9. For each root vy € A, let e, € L,. Then, for a, € A, the product

€a,€p) 15 given by one of the following three cases:
8
kh, (for somek #0) if f=—q;
[ear€s] = § kears (for some k # 0) if o+ 3 € A; (1.6.9)
0 ifa+ B¢ AU{0}.

It may be shown that the set {h, : « € A} spans H. Therefore a basis for H*
may be selected from A. Let the set of roots {5, B, ..., 3.} be one such basis.

Definition 1.6.10. Positive and negative roots. In terms of the given basts, each root

a € A may be expanded:
a = Z ki B3;.
i=1

If the first non-zero coefficient of this expansion is positive, then « is said to be a
positive root. Otherwise a is a negative root. Let the sets of positive and negative
roots be denoted A, and A_ respectively. Then A = AL UA_.

Let By = @uea, Lo and B = @,ca_ Lo The subalgebras HU B, and HUB_
are known as Borel subalgebras of £. In this thesis, B, and B_ are referred to as

nilpotent Borel subalgebras.

Definition 1.6.11. Simple roots. If the positive root a € A, cannot be expressed as

a sum of two positive roots, then a is termed a simple root. The set of simple roots
is denoted by I1, .

Lemma 1.6.12. If the Lie algebra £ has rank r then #I1, = r and I1; is a basis for
H*. Moreover, if « € A, then:

a= Y ko, (1.6.12)

a; €114

where each k; is a non-negative integer.
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Lemmas 1.6.9 and 1.6.12 show that the whole Lie algebra £ may be generated
by the set of 2r root vectors {e, : €, € Lo, € I, UII_}, where II_ = {—a:a €
I, }.

Definition 1.6.13. The Cartan matriz A of the semisimple Lie algebra L is the r X r

matriz with elements

Ay = 2_____<a"o‘f>, (1.6.13)

<O‘j’a.1'>

for a;,o5 €11, and 1 < 1,5 <7

It may be shown [Hu72] that the Cartan matrix determines a semisimple
complex Lie algebra £ uniquely, and that £ may be constructed from its Cartan
matrix. Cartan matrices for each of the simple Lie algebras A,, B,, C,, D,, G, Fj,

Es, E; and E; are listed in [Hu72,Co84].

§1.7. Labelling the irreducible representations

In this section, a method is described for labelling the irreducible representations
of semisimple complex Lie algebras and of simply connected compact Lie groups.
Once more a detailed exposition is given in [Co84] where proofs and the original
references may be found. In this section, the theorems and lemmas are stated mainly
in terms of modules. The equivalence of the module and representation viewpoints
implies that analogous results for the representations may be obtained merely by a

substitution of words.

First consider the s-dimensional representation I' of the rank r semisimple
complex Lie algebra £. As with the adjoint representation, the matrices I'(h) for

h € 'H mutually commute and can be simultaneously diagonalised. This implies

that a basis {v;,vs,...,v,} for the corresponding £-module V' may be chosen such
that vy, vs,...,v, are each eigenvectors of H. For each pu € H*, define the subspace
V., CV by:

Vi={veV:hv=pu(h)} (1.7.1)

If V, is non-trivial then u is known as a weight of the representation I' or the £-
module V. V, is then known as a weight space. The dimension of V, is denoted
m, and is known as the multiplicity of the weight ¢ in I" or V. For example,
in the adjoint representation I',4, the non-zero weights may be identified with the
roots. Consequently, their multiplicities are each unity. The zero weight of I',; has

a multiplicity r, since this is the dimension of the Cartan subalgebra of L.
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Lemma 1.7.2. If p is a weight of the L-module V and « is a root of L, then

o) (1.7.2)

(@, @)

s an integer.

Lemma 1.7.3. If p is a weight of the L-module V and a is a root of L such that
eqv # 0, then p + a is also a weight of V.

Since the simple roots a;, as,...,a,, form a basis of H*, each weight p may

be written: .
po= E k.. (1.7.4)
$=1

It is then possible to compare two weights, ¢ and ', by defining ¢ > p' if and only

if the first non-vanishing component of (¢ — p') is positive.

Definition 1.7.5. Highest weight. If \ is a weight of the L-module V such that A > u
for every other weight p of V, then X is termed the highest weight of V.

Lemma 1.7.6. If £ is a semisimple complex Lie algebra with simple roots I, =
{ay,as,...,a.} and X is the highest weight of the irreducible L-module V then:

(i) A has a multiplicity of one;
(11) every weight p of V. may be written:

p=X=Y gaj
i=t
where each g; is a non-negative integer.

Theorem 1.7.7. If L is a semisimple complex Lie algebra and V is an irreducible
V -module with highest weight X\ then, for eacht =1,2,...,r,

A, q;
g = 2209 (1.7.7)
(a,-,a,-)
is a non-negative integer. Moreover, each sequence (a,,as,...,a,) of non-negative

integers identifies an irreducible L-module which is unique, up to equivalence.

The integers defined by (1.7.7) are known as the Dynkin labels of the £-module V

or the corresponding representation I'.

Theorem 1.7.8. Fach representation of the real Lie algebra L, yields on exponenti-

ation, a representation of the universal covering group G, whose Lie algebra is L.
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Chapter 2

The Classical Lie Groups, Lie Algebras
and their Representations

§2.1. The classical Lie groups

Definition 2.1.1. The classical groups are the following groups of square matrices in

which the mairiz elements are members of the field F and the group composition law
is matriz multiplication:

(i) the general linear group GL(m,F) = {G : G is m x m, det G # 0};

(ii) the unitary group U(m,F) = {G : G € GL(m,F), GiG = I.},

where Gt = G*, the tilde denoting matriz transposition, the asterisk

denoting complex conjugation, and I, is the m x m unit matriz.
(111) the special linear group SL(m,F) = {G : G € GL(m,F), det G = 1};
(iv) the special unitary group SU(m,F) = U(m,F)N SL(m,F);
(v) the symplectic group Sp(2r,F) = {G : G € GL(2r,F), GJ;G = J;.},

where
0 -1
1 0
0 -1
1 0
J,. = . ; (2.1.1a)
0 -1
10
(vi) the orthogonal group O(m,F) = {G : G € GL(m,F), GJG = J}},
where
0 1 \
1 0
0 1
1 0
Ji = . , (2.1.1b)
0 1
1 0
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2.1. The classical Lie groups
if m = 2r and

S -
- O
S =

T = , (2.1.1¢c)

= O
(e

ifm=2r+1; and
(vii) the special orthogonal group SO(m,F) = SL(m,F) N O(m,F).
In addition to these define
(viii) O'(m,F) = {G : G € GL(m,F), GG = I.}; and
(iz) SO'(m,F) = SL(m,F) N O'(m,F).

Note that U(m,R) = O(m,R) and SU(m,R) & SO(m,R).

In this thesis, the field F will be taken to be either the complex number field
C or the real number field R. F will be dropped from the notation only when it is
irrelevant to the topic being discussed.

Definitions 2.1.1(v¢) and 2.1.1(viz) for O(m) and SO(m) differ from those often
used for the orthogonal groups. These more usual definitions are those given here
for the groups O'(m) and SO’(m) as in Definitions 2.1.1(vi#:) and 2.1.1(iz). If F is
algebraically closed (i.e. F = C), there exists an m x m matrix S such that J} = Ss,
whereupon, if G € O(m, C), the transformation G’ = SJGS gives G'G' = I,,,. This
demonstrates that G’ € O'(m, C) and furthermore, since (G1G,) = G| G as is easily
shown, the groups O(m,C) and O’(m,C) are isomorphic. However, for F = R, a

genuine distinction exists between the two groups when m > 1.

The following lemma will be useful later:

Lemma 2.1.2. Let G(m) be any of the classical groups of Definition 2.1.1. If G €
G(m) then G € G(m).

Proof. Since det G = det G, this lemma follows immediately for the general and
special linear groups. If G € U(m) then GGt =1, and

cté=(eahy=1i,=1,,
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2.2. The classical Lie algebras

so that the lemma holds for the unitary groups U(m) and SU(m). The cases of
the symplectic and orthogonal groups follow by noting that if J? = £1I,,,, so that
J! = +J, then ) )

GIG=J < G'YUIG'=J"

— J'=GJ G
— J=GJG.

§2.2. The classical Lie algebras

Let W be a m-dimensional vector space with basis {w;,w,,...,ws,} and let E,* be

a linear operator acting on W such that
Elw, = §w,. (2.2.1)

In the given basis, E,* may be realised as an m x m matrix with the entry 1 at the
intersection of the ath row and bth column and zeros everywhere else. No confusion
will arise from denoting this matrix by the same symbol so that (Eab)ij = b4ibs;-
For a,b € N,, the matrices E,’ span the vector space of all m x m matrices. These

matrices satisfy the commutation relations:
B Ef] = 8B, - §E.. (2.2.2)

These matrices will be used to construct each of the Lie algebras of the classi-
cal groups of Definition 2.1.1. This construction proceeds via the following three

lemmas.
Lemma 2.2.3. If G is any square matriz then:
det(exp G) = exp(tr G). (2.2.3)

Proof. This result follows immediately on considering the Jordan normal form of

G.

Lemma 2.2.4. If G is a subgroup of GL(m,F) for which G € G only if GJG = J,
then the Lie algebra Lg(my consists entirely of matrices A for which:

AJ+JA=0. (2.2.4)

Proof. Let G(t) be a one-parameter subgroup of G and let:

d
= =G(!)

t=0
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2.2. The classical Lie algebras
By hypothesis:

G()IG() = J,

so that:
deml 760)+G0)T Law| =o
dt t=0 ( ) dt t=0 -
and hence:
AJI, +I.JA=0,
whereupon:

AJ+JA=0.

Lemma 2.2.5. If J € GL(m) is such that J = +J and B is any m x m matriz, then
the matriz A = B — J-'BJ satisfies AJ + JA = 0. Conversely, if the m x m matriz
A satisfies AJ + JA =0 then A= B — J-'BJ for some matriz B.

Proof. If A= B — J-'BJ then by direct substitution:
AI+JA=BJ-JBJ*J+JB-JJ'BJ
=BJ—(£J)B(£J )J+JB - BJ
=BJ—-JB+JB-BJ

Il
e

Conversely, let A be such that AJ + JA = 0. This implies that +AJ + JA = 0 and

hence that:

JA = F(JA). (2.2.50)

Let JA = C_ + Cy + C, where C_ is a strictly lower triangular matrix, C; is a
diagonal matrix and C, is a strictly upper triangular matrix. Identity (2.2.5a) then

implies that:

C.=7FC, and (= FC,.

Let: .
B=J'C_+ EJ_ICO,

whereupon:

B=C jiy %éoj-l
1
= (FCEI) " + 5 (FCo) ()

—_C,J - %COJ“,
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2.2. The classical Lie algebras

so that:
-1 -1 1 -1 -1 1 -1
B—-J'BJ=J C_+§J Co+J C++§J Co
= J.‘I(C_ + C() + C+)
:A,

which proves the lemma.

In what follows, it is convenient to introduce various index sets Z79(™) for each
of the classical groups G(m). These will be based on the sets N; = {1,2,...,1} and
N; = {@:a €N}, where @ = @ and 0 = 0. In addition, define:

-1 ifaeN;

(2.2.6)
1 ifa € N[,

sgn(a) = {

and define sgn(ab) = sgn(a)sgn(b).

Each of the classical groups G(m) of Section 2.1 will be considered in turn
and their Lie algebras L4, constructed in the defining representation. For each
Lg(my, a basis for the Cartan subalgebra H*%¢t» and a set of simple root vectors
Hi"‘"‘) will be specified. In general, many distinct choices exist for a set of simple
root vectors. However, once specified, the set of positive root vectors Af*™ is
uniquely determined as is the positive nilpotent Borel subalgebra Bia‘"" which they
span. The same is true of the negative root vectors A which span the negative

C(m)

nilpotent Borel subalgebra B~

(i) gl(m,F). Let Z¢L(™ = N,,. In view of Lemma 2.2.3, G = exp(A) € GL(m,F)
for any m x m matrix A with entries in F. Thus ¢gl(m,F) is the vector space of all
matrices which is spanned by {E,* € gl(m,F) : a,b € T¢£(™}. Since the E,* are

linearly independent, gi(m,F) is an m?-dimensional Lie algebra over F. However,

H:i&“ (2.2.7)

a=1

generates a one-dimensional abelian ideal of gl{(m,F) which, therefore, is not semi-

simple. The following provides a convenient biography of gl(m,F):

Basis: {E,':a,b¢c I¢L™1;

Dimension over F :  m?

Basis of H#™F) . {E,*:a € I°t™]},

Rank: m;

Simple root vectors, II{™F) . {E,**!: q € T6(m-D},

Positive root vectors, AJ(™F) . {E}?:q,b€ I6H™ a < b};
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2.2. The classical Lie algebras
Negative root vectors, A¥™F) . {F.?:a,be IM™ ¢ > b};
Dimension of BY™F) : m(m —~1)/2.
Here the nilpotent Borel subalgebra B$™F)| which is spanned by AY™F) consists

entirely of strictly upper triangular matrices. BY™F) consists entirely of strictly

lower triangular matrices.

(i1) sl(m,F). Let I5:™ = N,,. Since G € SL(m,F) if detG = 1, Lemma 2.2.3
implies that A € sl(m,F) if tr A = 0. For a,b € Z5L(™ let:

b M .
Al = {E ifasb (2.2.8)
E»—E,™ ifa=b.

In terms of these matrices, sl(m,F) has the following biography:

Basis: {A.’:a,b€ I (a,b) # (m,m)};

Dimension over F:  m? —1;
Basis of H'(™F) . {A,%:a € I5m-D};
Rank: m —1;

Simple root vectors, IIY™F) :  {4,+' : q € TV}
Positive root vectors, Ai’(""F) : {AL 1 a,b € I95 a < b

Dimension of B{(™F):  m(m — 1)/2.
Each positive root vector A,°, for a < b, may be generated according to:
Aab = [‘4a0+1’ [Aa+la+23 [Aa+2a+3, M [Ab-.zb_l, Ab_lb] .. ]]] (229)

This is a direct consequence of (2.2.2), given that A4;**! = E;*!. Form > 0, sl(m,C)

is isomorphic to Cartan’s A,,_,, and sl(m, R) is a particular (non-compact) real form.

(iii) u(m). Let G(¢) be a one parameter subgroup of U(m,C) and let:

d
A= =G()

t=0

Since G(¢)G(#) = I,

d
—G(®) =0,

i=0

¢ + G() %G(t)f

t=

AL, + 1.4t =0,

implying that:
Al =4
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2.2. The classical Lie algebras

Therefore u(m) consists entirely of antihermitian m x m matrices. Let ZV(™ = N,,
for a,b € ZV(™ and let:

E®* = E? _ E° (2.2.10a)

and  EM =i(E, + E,°). (2.2.100)

Thereupon u(m) has:

Basis: {E{:a,b €I a < b} U{EM :a,bc I a < b};

Dimension over R: m?2.

With this basis, it is easily verified that u(m) is a real Lie algebra. However, u(m)

is not semisimple since it possesses a one-dimensional abelian ideal spanned by
HO = 2aeTu(m) ES,‘)"-

(iv) su(m). Lemma (2.2.3) implies that if A € su(m) then tr 4 = 0. Let Z5V(™) =
N,.. Using the notation above for a,b € Z5V(™ let:

AO® — g (2.2.11qa)
E if b:
and AW = { ; fazb (2.2.11b)
¢ E®Me — EOm if g = b.
The simple real Lie algebra su(m) then has:
Basis: {A®" AMY . q b€ 75V a < b} U {4 : a € T7V(m-DY;
Dimension over R:  m? — 1.
su(m) is the compact simple real Lie algebra A4,,_;(R).
(v) sp(2r,F). Define the index set Z5°*") = N, UN,. From (2.1.1a),

(Ja:)i; = sgn(z) &3, (2.2.12)
with respect to the ordering 1 <1 <2< 2 < ... <7 < r, of the index set Z57"),
In view of Lemma 2.2.5, since J;. = —J;, let:

C,b=E,"— sgn(ab) E;°, (2.2.13)

for a,b € 57", These operators satisfy the commutation relations:

[Ct,C.%) = 8C.% — 62C.° + sgn(cd)C7* — sgn(cd)84CL°. (2.2.14)
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2.2. The classical Lie algebras
Note that C,* = —sgn(ab) C3?, which leads to the following biography of sp(2r,F):

Basis: {C,’:a,beN,}U {Cag ta,b €N, a <b}U{C; 1 a,bEN,,a <b};

Dimension over F:  r(2r + 1);
Basis of H**F) . {C,*:a €N, };
Rank: r;

Simple root vectors, II’?C"F) ;. {C,**':a € N,_;} U {C,"};
Positive root vectors, Af(zr’F) : CLUC, where
C={C.:a,b€N,,a <b} and
C, = {Caz ta,b € N, a < b};

Dimension of Bi"(”f) :orl

Positive root vectors from the set C; may be generated from I¥®") as in (2.2.9),

whereas for C,, (2.2.12) gives
¢ =510s,G), (2.2.15a)
and then, for a < b,
Gl = (G, [Cops™, [ [Coer’, €1 (2.2.150)

The nilpotent Borel subalgebra B**®"F) may be described and generated in a way
analogous to that given here for B{¥*). The simple complex Lie algebra sp(2r, C)
is Cartan’s C, and the simple real Lie algebra sp(2r,R) is C.(R).

(vi) so(2r,F). Define the index set Z°?") = N, UN,. From (2.1.13),
(J5)i = &3, (2.2.16)

with respect to the ordering 1 <1 <2 <2 < .- <7 < r, of the index set 790",

In view of Lemma 2.2.5, since J} = J3, let
D, =E," - E;®, (2.2.17)
for a,b € Z9(", These operators satisfy the commutation relations:
[D.%, D.%| = 6:D.¢ — §D.* + 62D3* — 84D.°. (2.2.18)
Note that D,* = —D;®, which leads to the following biography of so(2r,F):

Basis: {D,’:a,beN,}U {Da'-’ :a,b €N;,a < blU{D;:a,b€N,,a < b};

Dimension over F :  r(2r — 1);
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2.2. The classical Lie algebras

Basis of H*°®"F) . {D,*:a e N,};
Rank: r;
Simple root vectors, I3 . {D,**':a e N,_,} U {D,~"};
Positive root vectors, A;"(Z”F) . D,UD, where

D, ={D,’:a,b€N,,a<b} and

D, = {DaB 1a,b € N,,a < b};
Dimension of B"CF) . r(r —1).

Positive root vectors from the set D; may be generated from IT{*"F) as in (2.2.9),
whereas for D,, (2.2.18) gives

D] = [D,7F, D/, (2.2.19a)
ifa<r—1,o0r
D, = [D,,D,7,] (2.2.19b)
if » > 2; and then, for a < b,
D, = (D, [Dyys™?, -+ (D s, Dl (2.2.19¢)

The nilpotent Borel subalgebra B:°®) may be described and generated in a way
similar to that given here for B{*®"®). The simple complex Lie algebra so(2r,C) is
Cartan’s D, and the simple real Lie algebra so(2r,R) is a particular (non-compact)

real form.

(vii) so(2r+1,F). Although this case is very similar to the last, the existence of a few
subtle differences justifies a reworking. Define the index set Z° ) = N, UN, U {0}.
From (2.1.1¢),

(Jors1)is = b33, (2.2.20)

with respect to the ordering1 <1 <2< 2 < --- <7 <r <0, of the index set
ZOGr) | As with (2.2.17), since J},, = Ji,,, let

B} = E;} — Ef, (2.2.21)

for a,b € I°°C™*1, These operators satisfy the commutation relations (2.2.18),

rewritten in the notation of this section:

|B.},B.%| = 8B, — §!B. + 6:B3" — 84B.°. (2.2.22)
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2.2. The classical Lie algebras
Note that B,® = —B;®, which leads to the following biography of so(2r + 1,F):

Basis: {B.,’:a,beN,}U {Baz ta,b €N, ,a < b}
U{B:’:a,b€N,,a <blU{B,":a e N, UN,};

Dimension over F :  r(2r + 1);
Basis of H*+1F) . (B.*:aeN,};
Rank: r;

Simple root vectors, II3**+1F) . {B s+ :a e N,_;} U {B,°};
Positive root vectors, AY+F) . B, UB,UB; where
B, ={B,":a,b € N,,a < b}, B, ={B,:a€N,} and
Bs = {B,:a,b e N, ,a< b}

Dimension of B;"(”“’F) : ol

Positive root vectors from the set B; may be generated from I3 %) as in (2.2.9),

whereas for B,, (2.2.22) gives:

B, =B, ,B,], (2.2.23a)
whereupon, for Bs,
B, =[B,° B,°], (2.2.23b)
and
Baa = [Bbb+1a [Bb+lb+2’ [ o [Br—lra aF] te ]]] (22236)

The nilpotent Borel subalgebra B2 +1:F)

may be described and generated in a way
similar to that given here for B3°®"*"®), The simple complex Lie algebra so(2r+1,C)
is Cartan’s B, and the simple real Lie algebra so(2r + 1,R) is a particular (non-

compact) real form.

(viil) so'(m,F). Due to its lack of relevance to the results that follow in later
chapters, this algebra will be given but cursory treatment here. However, by
virtue of the fact that the corresponding Lie groups are isomorphic when F = C,
s0'(m,C) = so(m,C). Let I5°™) = N,. The techniques used in the previ-
ous cases may be employed here to show that if B? = E,> — E,* then the set
{B? : a,b € N,,,a < b} is a basis for so'(m,F). This Lie algebra is therefore
sm(m — 1)-dimensional, as expected from the results of cases (vi) and (vii). Since
no diagonal matrices are present in this defining representation, there is no obvious
choice for a basis of the Cartan subalgebra. Many are possible. It will be shown

how this lack of a diagonal Cartan subalgebra leads to a certain inconvenience in the
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2.3. Partitions and Young diagrams

construction of orthogonal group modules. Nonetheless, the Lie algebra so'(m,R)
is compact, being Cartan’s D,(R) if m = 2r is even, or B,(R) if m = 2r + 1 is odd.

It therefore merits consideration.

§2.3. Partitions and Young diagrams

Partitions play a major role as a classification tool in the theory of representations
[We39,Li50]. In this section, the notions of a partition and a Young diagram are
introduced. In addition, all the associated notational developments that will be

required when dealing with representations and modules are gathered here.

Definition 2.3.1. Partition. The partition of the positive integer | into p positive
integral parts Ay, Ayy .o A, with Ay + A+ -+ A, =land Ay > X > 24, >0
is denoted by A = (A1, A,...,\,). Partitions will always be denoted by lowercase
Greek letters. It is convenient to define A\; = 0 for i > p; two partitions being equal
if and only if their non-zero parts are equal. On occasion, a partition with repeated

parts will be denoted using exponents. For example, (3%,2,1%) denotes the partition
(3,3,3,2,1,1).

Let P(l) denote the set of all partitions of [. For example, P(2) = {(2);(1,1)},
P(3) = {(3);(2,1);(1,1,1)} and P(4) = {(4);(3,1);(2,2);(2,1,1);(1, 1,1, 1)}.

Definition 2.3.2. Young diagram. Each partition A € P(l) specifies a regular Young

diagram, F*, consisting of | bozes arranged in p left-adjusted rows. The number of

bozes in the tth row is \; fori =1,2,...,p.

This definition gives, for instance,

FE20 - . (2.3.3)

L

Definition 2.3.4. Conjugate partition. Let X € P(l), ¢ = Ay, and for j =1,2,...,¢q,
let :\j be the length of the jth column of F*. This defines X\ = (A, Ay,..., ), the

partition conjugate to .

As a consequence of this definition, the Young diagram F* is obtained from F* by

reflection in the main diagonal, that is interchanging rows and columns. Thus, for
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2.8. Partitions and Young diagrams

the example (2.3.3) where A = (3%,2,12), XA = (6,4,3) and

| |

FA = : (2.3.5)

Definition 2.3.6. The partition sets P(l;m) and P(l;m/n). Define

P(lm)={XeP(): X, <m}; - (2.3.6a)
and P(lym/n) ={A € P(I): o4 < m}. (2.3.6b)

Note that if A € P(l;m) then A has, at most, m parts and F* fits within a

horizontal strip of depth m:
/ % , (2.3.74)

Additionally, note that P(l;m/0) = P(l;m) and if A € P(l;m/n), then A,y < n
and F* fits within a hook with arm depth m and leg width n:

!
v . (2.3.7b)

—n—p

Let p € P(u) and v € P(v). If y; < p; for ¢« = 1,2,... then v is said to be
contained in p. This is denoted v < p and defines a partial order on the set of all

partitions.

Definition 2.3.8. Skew Young diagram. If v < u the skew Young diagram F*/
consisting of u — v bozes, is defined as that diagram resulting from the removal from

F# of all the v bozxes corresponding to F".

If p=(6,3,22,1) and v = (4,2,13) this definition gives:

Felv =i : (2.3.9)



2.8. Partitions and Young diagrams

Definition 2.3.10. A generalised partition A = (A1, Aq,...,A,) consists of s parts
A, Aoy o A, for which Ay > Ay, > ... > A,. The parts are neither necessarily
positive nor integral.

On considering generalised partitions with integral parts, Littlewood [Li50]

devised the useful notion of a composite partition.

Definition 2.3.11. Composite partition. Let p € P(u;p),v € P(v;q) with p +
g < s. The composite partition (7;p),, denotes the s part generalised partition
(P15 B2y oy pipy 0y ooy 0, —vgy =11, ...,~1vy) The subscript s may be dropped when
the number of zero parts is irrelevant. If either p or v is the zero partition, the

following notation will be adopted: (0; u) = p and (7;0) = .

Definition 2.3.12. Canonical associate. With (i; u), the composite partition corre-
sponding to the s integral part generalised partition A, denote the ordinary partition
(A=A A=Ay AL — A,) by both (75 p): and A*. This partition is known as

the canonical associate of (U; p), and A.

Each composite partition and hence each generalised partition, may be used

to specify a composite Young diagram [Ki70,Ki89].

Definition 2.3.13. Composite Young diagram. For v € P(v) let F” be the diagram
obtained by reflecting the Young diagram F¥ successively in its topmost and leftmost
edges. Thus F” is a right-adjusted, bottom-adjusted array of boxes, the lengths of the
rows of which decrease on passing up the diagram. The composite Young diagram F7#

is constructed by adjoining F” and F* corner to corner as in the following example:

Foan _ L T (2.3.14)

It is convenient to define special symbols for certain generalised partitions

whose parts are all half odd integers.

Definition 2.3.15. Half partitions. Let A, = (1,1 ,3) = (37) be the generalised

2y 90

partition consisting of r parts each equal to 3. More generally, for A € P(l;r), define:

(AsA) =+ 50 +1 0 +1) (2.3.15)

Note that A, = (A,;0).

35



2.4. Partitions as representation labels

Definition 2.3.16. Young half diagram. The Young diagram F2- is defined to be a
column of r diagonal half bozes. The Young diagram F2-> is constructed by adjoining

FA- to the left edge of F* with the topmost point of each at the same level.

This definition implies that, for example:

F2s = (2317(1)

and

Fasial . (2.3.17b)

It will also be convenient to be able to refer to generalised partitions which

are ordinary or half partitions with the last part having changed sign.

Definition 2.3.18. If A € P(l) and A = (A, Ag,...,A_1,A,), define the p part
generalised partition A_ by:

A= (A dayee s Aty —A,) (2.3.180)
and if A\ € P(I;r), define the r part generalised partition (Ay; A) by:

(A A=+ 5 0+3, 0+, - —3); (2.3.18b)
and denote (A,,0). = (3,3,---,3,—3) by A,_. In addition, let Ay = X, (A3 )4 =

(A5 A) and A, = A,

§2.4. Partitions as representation labels

Through the work of Weyl [We39], Murnaghan [Mu38] and Littlewood [Li50],
a means alternative to the Dynkin labelling of the irreducible finite dimensional
representations of the classical groups arose. This scheme involves partitions which,
together with the corresponding Young diagrams, have since proved very useful,
particularly in the determination of characters, branching rules [Ki75] and tensor
products [BK83] of these representations. In the notation of [Li50], the complete

list of equivalence classes of finite dimensional irreducible representations of the
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classical Lie groups is given in Table 2.4.1.

Group Representation Restricitions
GL(m) {7; u} fut iy sm
O(m) [A) /~\1 +A<m
SO(2r+1) [A] A<
SO(2r) [A] E‘l <r

[As A=r
Sp(2r) (A) MST

Table 2.4.1

In Table 2.4.1, the field F has been dropped from the notation since this list applies
in each of the cases, F = C or F = R. Similarly, the irreducible representations
of U(m) and SU(m) are closely related to, and have the same set of labels as, the
irreducible representations of GL(m) and SL(m) respectively.

As will be demonstrated, each of the irreducible representations listed in Table
2.4.1, apart from {7; u} of GL(m) for v # (0), occurs as an irreducible component
in the tensor product of ! copies of the defining representation for some [. In
view of this, each of these is termed a covariant tensor representation. With the
same exception, each element of the representation matrix is a polynomial function
of the elements of the corresponding matrix of the defining representation. Thus
the covariant representations may also be called polynomial. In contrast, each
irreducible representation {i7; u} of GL(m) for v # (0) is referred to as a mixed
tensor representation or as a rational representation. The representation {fi;v} of
GL(m) is contragredient to {7; u}.

For the groups GL(m) and O(m), there exist irreducible covariant tensor rep-
resentations labelled by the n part partition e = (1,1,...,1). These representations,
{€} and [€], are each one dimensional, mapping each group element to its determi-
nant: {€}(A) = det A, for A € GL(m) and similarly [¢](B) = det B for B € O(m).
Denote the a-fold tensor product, {e} @ {e} ®---® {e}, by {€}°, and define [¢]* simi-
larly. The representation contragredient to {e} is denoted {€} and maps each group
element to the inverse of its determinant: {€}(A4) = (det A)~!, for A € GL(m) and
similarly [€](B) = (det B)~! for B € O(m). Since {¢} ® {€} = {0} it is natural to
denote {€} by {€¢}~! and to denote the a-fold tensor product {€} ® {€} ®---® {&}, by
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{e}=?. [€]~* is defined similarly. As noted by Weyl [We39], the tensor product rep-
resentations {e}* ® {A}(A) = (det A)* ({A}(A)) and [¢]* ® [A\](B) = (det B)* ([A\](B))
are each irreducible and of the same dimension as {A} and [A] respectively. The
representations {€}*® {\} and [e]’ ® [\] are termed associates of {\} and [A] respec-
tively. In the case of O(m), since det B = +1, only the cases b = 0 and b = 1 need
be considered and each irreducible representation of O(m) has a unique associate.
In this case, it is conventional to write [A]* = [¢] ® [A\]. In fact, [p]* and [v] are
equivalent if and only if &, = m — ji; and &; = fi; for : > 1 [Pr89]. If, for example
p = (5,3,1%), then for O(8), v = (5,3,1). The respective Young diagrams clarify
the relationship:

||
]

F531% and F%%! = : (2.4.2)

—

Note that if m = 2X,, then the representation [}] is self-associate.

For GL(m) the situation is more complicated since the associated represen-
tations {e}* ® {7; u} are distinct for each a € Z. Weyl [We39] showed how these
representations are related by employing generalised partitions (see Section 2.3). Let
A be the generalised partition corresponding to (7; ), and I" that corresponding to
(6; p)m- {7; 1} and {&; p} are associated irreducible representations of GL(m) if and
only if for somea € Z, A; = I';+afori = 1,...,m. In thiscase {7; u} = {e}*®{7;p}.
Note that {7; u} = {€}="*®@{7; u}*. It is instructive to see how the composite Young
diagrams of associate representations are related. Consider the composite Young
diagram of (2.3.14) where p = (4,1) and v = (3,2). For GL(5), the correspond-
ing generalised partition is (4,1,0,—2,—-3) and that labelling the representation
{e}*®{v;p}is(a+4,a+1,a,a —2,a—3). For a =1 and a = 2 the correspond-
ing composite partitions are (2,1;5,2,1) and (1;6, 3, 2) respectively with composite
Young diagrams:

ey

- O

Fsan l ] ] and F16%2 = ] ] ] (2.4.3a)

38



2.4. Partitions as representation labels

respectively. Setting a = 3 gives (7; 1)* = (7,4, 3,1) with composite Young diagram:

[ [ ]

F7,4,3,1 —

(2.4.3b)

Notice that, for each unit increase in a, the rightmost ‘inverted’ column is removed

and replaced by an ‘upright’ column whose length is m minus the length of the

former.

Under the restriction of the groups GL(m) and O(m) to their subgroups
of unit determinant, namely SL(m) and SO(m) respectively, all representations
that are associated to one another become equivalent. This is because, under such
restrictions, the representations {€}, {€} and [¢] are each equivalent to the identity
representation. These simple branchings are denoted {e} | {0}, {€} | {0} and
[e] | {0}. All irreducible representations of GL(m) and O(m), apart from those of
O(m) that are self-associate, remain irreducible on restriction to the unimodular

subgroups. The full list of such branchings is given in Table 2.4.4.

Group restriction Rule Range of validity
GL(m) | SL(m) {Zsp} L {zu} i
O(2r+1)] SO(2r+1) (Al L[] M ST

(Al L [A) /~\1 >r
o(2r) 1 SO(2r) AN h<r

AR S >

NIy - A=r

Table 2.4.4

In addition to the true representations listed in Table 2.4.1, there exist irre-
ducible two-valued ‘spin’ representations of the orthogonal groups which owe their
existence to the double connectedness of O(m) and SO(m) for m > 2 (see The-
orem 1.7.8). These two valued representations are genuine representations of the
groups Pin(m) and Spin(m), as the simply connected universal covering groups of
O(m) and SO(m) are respectively called. For the groups O(2r) and O(2r + 1) these
‘spin’ representations may be denoted [Mu38] by [A,; A\] where the partition A is
such that X, < r. A, is the basic spin representation first examined by Brauer and
Weyl [BW35]. On restricting O(2r + 1) to the unimodular subgroup SO(2r + 1),

39




2.4. Partitions as representation labels

all the representations [A,; A] remain irreducible and are labelled in the same way.
However, for O(2r) | SO(2r), the representation [A,; A] branches into a sum of two
inequivalent irreducible representations of equal dimension. These representations
are denoted [A,;\], and [A,; A]_.

Table 2.4.4 [KA81] gives the relationship between the Dynkin labels of the
irreducible representations of the classical groups described in Section 2.1 and the

partition labels described above.

Relationship between Dynkin label (a) and generalised

Group Algebra partition label A

SL(r+1) A, a; = A, — A, A= atar+---+a..1+a,
az; =Ny — Aj A= ay + - +a,_1+a,
ar_1 = Ar—l - Ar Ar—I: a,_i1+a,
a, = A, A= a,

SO(2r+1) B, a; =A, — A, A= ajta; +---+a,_1+ia
ay :AQ—A3 A2: a2+"'+ar—l+%ar
ar_1 = Ar—l - Ar Ar—1: ar-—l+%ar
a, = 24, A= 3a,

Sp(2r) C. a; =A — Ay A= adar+---4a,_i+a,
ay =Ny — A; A,= az +---+a,._i+a,
ar_1 = Ar—l - Ar Ar—l— ar_1+a,
a, = A, A= a,

50(27') D, a; =A — A, A= artay+--- +ar—-2+%ar-l + %ar
az = A2 - A3 AQ: az +--- +ar—-2+%ar—1 + %ar
Ar_2 = Ar—-'.! - Ar—l Ar—2—' ar—2+%ar—l + %ar
ar_; = Ar—l + Ar Ar—1: %ar—l + %ar
a, = Ar—-l - Ar r= %ar—l - %ar

Table 2.4.5
Since, by virtue of Theorem 1.7.7, the Dynkin labels a,,a,,...,a,, are non-

negative integers, Table 2.4.5 shows that the irreducible representations of SL(r+1)
and Sp(2r) are labelled by those A which are ordinary partitions with at most r
parts. For SO(2r + 1), A is either an ordinary partitions with at most r parts
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or a r part half partition (A,;A). The case of SO(2r) admits the same set of
representation labels, as well as, in addition, r integral part generalised partitions
A~ and r half odd integral part partitions (A,;A)_, in which, in both cases, the
first 7 — 1 parts are non-negative and the last is negative. These last two cases
correspond to the representations of SO(2r) labelled by [A]_ in Table 2.4.1 and the
spin representations of SO(2r) labelled by [A,; A]_ respectively.

§2.5. Dimension formulae

One great benefit of the use of partitions for the labelling of irreducible repre-
sentations of the classical groups is that they provide a very convenient means of
obtaining the dimensions of these representations. For each partition A, there exists
an m-dependent formula based on the Young diagram F*, which yields the dimen-
sions of the irreducible representations for each sequence of classical groups G(m).
In each case, this formula is a polynomial in m divided by the product of hook

lengths.
Definition 2.5.1. Hook lengths. For the partition A, define the hook length h;; by

For each (i,7) such that there exists a box at the intersection of the ith row and the
Jth column of the Young diagram F*, hy; is given by the number of bozes in the hook
consisting of that bozx together with all the bozes directly below it and all the bozes
directly to its right. The product of hook lengths, H()), is given by

HX = I[ Ay, (2.5.1b)
(1.)EFA
the product being over all the bozes of F*.
As an example consider the partition A = (4,3,1). Writing in each box of F* the

hook length associated with that box gives:

6la]3]1]
4l2]1] . (2.5.2)

1)

Thereupon, H(4,3,1) = 576.

The following definition provides the numerators in the dimension formulae

for irreducible representations of the classical Lie groups.
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2.5. Dimension formulae

Definition 2.5.3. Let

Na{A}= ] (m—i+j); (2.5.3a)
(i.5)er>
No{vsuy= [ m—ti—pgi+i4+5—1) J[ (m+ve+m—k—14+1); (2.5.3b)
(i.5)EFs (k,HEF>
NN = JI m+X+Xx—-i—-5) J[ (m=X=X+i+j—2) (2.5.3¢)
(i.j)eF> (i,j)eF>
i2] i<j
and
NNy = J] m+x+Xx—-i—j+2) [ (m-X-%+i+7). (2.5.3d)
(i,J:)>ejF* (x',j.)<e‘F‘
3 157

In each of these cases, the polynomial is conveniently obtained by drawing
the appropriate Young diagram and entering into each box the appropriate linear
term in m. These terms are then multiplied together. As an example N,,[4,3,1] is

obtained via:

m+6|lm—4|{m—~3 m—lJ
m+4|m+2im-—1 . (2.5.4a)
m+1

This gives:
Nn[4,3,1]=(m+6)(m+4)(m+2)(m+1)(m —1)’(m —3)(m —4). (2.5.4b)
Further examples may be found in [EK79].

Theorem 2.5.5. The dimensions D, {\}, D,.{v;u}, Dn[\] and Dy (\) of the irre-
ducible representations {\}, {v; u}, [\], and (A} of the groups SL(m), GL(m), O(m)
and Sp(2r) respectively, are given by:

D,.{A\} = N,.{A}/H(A); (2.5.5a)

D, (751} = Noul7s 1) [HO ) H ) (2.5.5)

D,.[A] = N,.[A]/H(N); (2.5.5¢)
and

Dy, (A) = Ny (A)/H(X). (2.5.5d)

The first of these formulae is the celebrated dimension formula of Robinson [Ro58],
first suggested to him by Hall. It gives the dimensions of irreducible representations
of SU(m) as well as SL(m). The other formulae were first obtained in this form
by El-Samra and King [EK79]. It should be pointed out that since all but the

self-associate irreducible representations of O(m) are irreducible on restriction to
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2.6. Young tableaur
SO(m), the dimension of the irreducible representation [A] of SO(m) is also given

by (2.5.5¢) if A; # m/2. Since, with ; = r, the representations [A]; and [A]_ of

SO(2r) are of the same dimension, it follows from (2.5.5¢) that, in this case:
D, [Aly = Dy [A]- = N, [M]/2H(N). (2.5.6)

With A = (4,3,1), examples (2.5.2) and (2.5.4) give the dimensions of the
representations [4, 3, 1] of O(m) to be:

D,.[4,3,1] = (m + 6)(m + 4)(m + 2)(m + 1)(m — 1)*(m — 3)(m — 4)/576. (2.5.7)

This implies that for m = 5,6, 7,8, the dimensions of the representations {4, 3, 1] of
O(m) are 231, 1750, 7722 and 25725 respectively. From Table 2.4.4, the second of
these representations is reducible on restriction to the unimodular subgroup. Thus,
from (2.5.6), the dimensions of the irreducible representations [4, 3, 1], and [4,3,1]_
of SO(6) are each 875.

For the irreducible ‘spin’ representations of the orthogonal groups, the dimen-

sions are once again provided by [EK79].

Theorem 2.5.8. Form = 2r or m = 2r + 1, the dimension of the representation

[A;A] of O(m) or SO(m) is given by:
D.[A;AN] =2"D, 1 (A). (2.5.84a)

Similarly, the dimensions of the irreducible representations [A.; A+ of SO(2r) are
given by:
D, [A; ] = 277D, (V). (2.5.8b)

§2.6. Young tableaux

Definition 2.6.1. A Young tableau, t* or T*, is a Young diagram F* in which the

bozes each contain a single element from a specified set . F* will be referred to as
the shape of t* or T*.

In this thesis, a number of sets will be used to fill the role of the set 7 in this
definition. Most often, these will be the sets 79(™) defined in Section 2.2 for the

various classical groups G(m).

Definition 2.6.2. The Young tableau t* is that tableau arising from the filling of the
Young diagram F* with the integers 1,2,..., passing first down the leftmost column

and then the remaining columns taken consecutively, left to right.
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2.6. Young tableaur

This definition gives, for example,

5(8[9]

(@]

t(4,2’,1) —

(2.6.3)

I»J:-com»—n
-J

It is often convenient to be able to refer to the entries of a particular tableau.

There are two immediate ways of doing this and both have their uses.

Definition 2.6.4. If T* is a Young tableau of shape F*, let T}; ;) be the entry in the
boz at the intersection of the ith row and the jth column. For there to be such an

entry, it is necessary that j < A;.

Definition 2.6.5. If T* is a Young tableau for which X\ € P(1), let Tp,) be the entry
at the position in which the integer a is located in t*. In order that T(’:) be defined it

is necessary that a < 1.

Definition 2.6.4 provides the means to define, for each A, a tableau which will

play an important role in later chapters.

Definition 2.6.6. Let T2 be such that T3
j = 1,2,...,)\,’.

y = t for each i = 1,2,...,\ and

G

This definition gives, for example:

43,1 _
o =

(2.6.7)

|oom:—a

A number of the proofs in later chapters will require an order to be defined
on the set of all tableaux of one particular shape. The following will prove to be

sufficient in most cases.

Definition 2.6.8. Let & be the sum of the entries in the bth column of T} for
b=1,2,...,q where ¢ = A\,. Define |T>

which have their sequences of column sums identical to that of T} ; that is T, €

to be the equivalence class of all tableauz
™
ifty =t for b = 1,2,...,9. A total order on the set of equivalence classes of
tableauz is defined by |T}| > \le if for some k < g, t& > t¥ with t} =t} for each
b=k+1,k+2,...,q. It is convenient to write T} > T, when this strict inequality is

true of the equivalence classes to which T} and T, belong and to say, in such a case,
that T is higher than T}
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2.6. Young tableaus

It will emerge that for each group a particular set of tableaux have a favoured
status. These are the standard tableaux. Historically, the term ‘standard’ tableau
has usually been reserved for those favoured tableaux associated with the symmetric
group [Yo77], with various words such as ‘semistandard’ being used for other groups
when necessary. This has led to inconsistencies. Here however, the word ‘standard’

will always be used and will be prefixed by the group under consideration.

Definition 2.6.9. If A € P(l), the tableau T* is S;-standard if and only if:

(1) the entries are distinct and taken from the set N;
(ii) the entries increase from top to bottom down each column;

(iii) the entries increase from left to right across each row.

For example, if I = 5 and A = (3,2) there are just five Ss-standard tableaux:

112]3] q(1l2l4] [1]s8[4] [1]2]5] [1]3]5]

, , , : (2.6.10)
4[5 3(5 2[5 3]4 2[4

Let f* be the total number of Si-standard tableaux. The following formula
for f* was first proved by Young [Yo77] and first cast in this ‘hook length’ form by
Frame, Robinson and Thrall [FR54].

Theorem 2.6.11. If A € P(l), then
!

‘f‘A pumng ‘_H(_A). (2-6-11)

For the example above, this gives
@ _ O 2.6.12
fom = 2, (2612)

verifying that there are just five Ss-standard tableaux of shape F(32). The following
formula was also proved by Young [Yo77].

Theorem 2.6.13. If A € P(l), then

S (Pr=1 (2.6.13)

A€ P(D)

This theorem and the S;-standard tableaux will be utilised in the next chapter.

The notation relevant to composite tableaux based on the composite Young

diagrams of Definition (2.3.13) will now be defined.

Definition 2.6.14. A composite Young tableau, t"* or T"*#, is a composite Young

diagram F7#, in which the bozes of the F* portion each contain an entry from a set
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2.6. Young tableauz

Z and the bozes of the F” portion each contain an entry from a, possibly different,

set J.

In this thesis, the set 7 of Definition 2.6.14 will always be a set of positive

integers and the set J will always be a set of barred positive integers.

Definition 2.6.15. The composite Young tableau t”#. With the notation of Definition
2.6.2, t is that diagram created by reflecting t* in its topmost and leftmost edges and

barring its entries. t°# is formed by bringing t° and t* together to create a diagram

of the same shape as F"#.

This definition gives, for example:

ot W1
[t ISV

432431 _

1]4]6]8} (2.6.16)
2(5(7
3|

Definition 2.6.17. Let T”# be a composite tableau. Define T}, to be the entry in
the boz at the intersection of the ith row and the jth column of the F* portion if
1<1<ji; and 1 <7 < py;. Define T(f;i) to be the eniry in the boz at the intersection
of the tth row and the jth column of the F” portion if 1 <t < 7, and 1 £ 3 <,
these rows and columns being counted from the bottommost row and the rightmost

column respectively of F”.

Definition 2.6.18. If T7# is a composite tableau for which p € P(u) and v € P(v),
let T(‘Z)“ be the entry at the position in which a € N, UN, is located in t7#.

An appropriate order on the set of composite tableaux is given by the following

definition.

Definition 2.6.19. Let u and v be partitions for which p, = s and vy = t. Label
the columns of F¥# left to right by the integers —t,—t +1,...,-1,1,2,...,s. Under
the identification 1 = —i, let t* be the sum of the entries in the bth column of T
for b # 0. Lett2 = 0. Define [T
tableauz which have their sequences of column sums identical to that of T.#; that
is T)# € |TJ#| if t) =t} for b = —t,—t +1,...,s. A total order on the set of
equivalence classes of composite tableaur is defined by |T7#| > |T)*| if there exists
ke {—t,—t+1,...,s} such that t& >t} witht} =t} for eachb=k+1,k+2,...,s. It

is convenient to write T”# > T7# when this strict inequality is true of the equivalence
; y y

to be the equivalence class of all composite

46



2.6. Young tableauz

classes to which T)* and T,* belong and to say, in such a case, that T* is higher
that T)*.

When displaying tableaux and composite tableaux, it will often be convenient
to omit the diagram F* or F”# and display only the entries of T* or T7* in their
correct positions.

Tableaux based on the Young half diagrams F2-* of Definition 2.3.16 will

now be introduced. -

Definition 2.6.20. Young half tableauz. A Young tableau T®r is a Young diagram
FA+ in which each half boz contains entries from a set. A Young tableau TA* may

be constructed by adjoining a T?r to a T* by analogy with Definition 2.3.16.

It will be convenient, when displaying a half tableau, to just write the entries in their
correct positions and to distinguish the entries from the F“r portion by following

them with full stops. Examples are provided by:

w N
> W

T4 = and TA33 =

(2.6.21)

> Il N
[V LTI N T
> N —

Definition 2.6.22. Let T2~ be formed by adjoining T*- to T*. Define T35 = T},
fort, 7 > 1, and define T(‘?,a‘)’\ to be the single entry in the ith row of T%" for1 <i < r.
In addition, define T;™ = T,y for 1 < a <1 when X € P(l).

Definition 2.6.23. For each u, let T2 > be formed by adjoining T2 to T}. Using
the notation of Definition 2.6.8, define the equivalence class {T> | to be such that
TA € ITIA';A if and only if T) € ‘T:’\l A total order on the set of equivalence classes
of tableauz is defined by {T>"*| > ‘Ty“"’\ if and only if [T} > lT;l Then, as before,

it will be convenient to write T2+ > T2 when this strict inequality is true of the

equivalence classes to which T2+ and TS belong and to say, in such a case, that
T2 is higher than T,

Standard composite and half tableaux will be defined when the need arises.
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3.1. The symmetric group

Chapter 3

The Symmetric Group and
the Specht Module

§3.1. The symmetric group

Denote by N; the set of integers {1,2,...,1}. Define S; to be the group of permu-
tations of N;. Thus, if 7 € S;, 7 : N; — N, is a bijective map. S; is called the
symmetric group on [ symbols. Its order is I!. Each specific element 7 € S; may be

denoted by the symbol

= ( (1) =w(2) =@3) - w(l-1)=() )) (3.1.1)

in which each member of N; is explicitly displayed above its image under w. The
actual order of the columns in this symbol is, of course, irrelevant. Using this

notation, the product of the elements w,0 € S, is

e AR | (S A

:< 1 2 ! )
m(a(1)) 7(o(2)) - w(o(l) )

For [ > 2, 5, is non-abelian.

(3.1.2)

Another useful way to denote a permutation of S; is through cycles. A cycle
consists of a subset of N; written so that each member of the cycle is mapped to
that member to its right. The final member of the cycle is mapped to the first.
Each element # € S; may be written as a product of disjoint cycles of elements of

N;. For example, the permutation denoted by

(123456 78
7r_(8 516 4 2 3)’ (3.1.3)

may be written, 7 = (183)(4625)(7) in cycle notation. Notice that the individual

cycles, three in this case, may be permuted among themselves and that the ele-

PSRN

ments of each cycle may be permuted cyclically without affecting the permutation
so represented. In view of this, it is conventional to write a cycle such that the
sequence of cycle lengths is non-increasing left to right and the first element of each
cycle is the smallest in that cycle. In addition, cycles of unit length are omitted.
Using this convention for the permutation of (3.1.3) gives 7 = (2546)(183). The
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3.1. The symmetric group

cycle structure of an element # € S, denotes its set of cycle lengths and is thus

unambiguously specified by a partition of l.

The note following (3.1.1) implies that the permutation given there may equiv-
alently be written

n1(1 n=1(2 13 oo (1 =-1) a(
,,=< 1() 2() 3() z(—1 ) l() ) (3.1.4)
so that

o — (a~17r1—1(1) 0‘17r2‘1(2) . 0‘171'1‘1(1) ) (3.1.50)

[ o7 1) o7(2 o~ 1(1)
(0 TS D) (3:1:5)

The conjugate of the permutation = € S; by the permutation ¢ € S; is then given
by:

0’—1’/1'0'“‘—‘< 1 2 ! I )

c~lrno(l) o lro(2 oo

- ( 0_“1(1>( )0_‘%2) o 0 ) U0 e
o~ 'n(l) o'w(2) o~ tx(l)

Thus, if the class structure of the permutation = € S; is given by the partition

A € P(l), the class structure of 6~ '7o is also given by A since if

(011(112 Tt au,)(amazz ce az,\,) e (a'pl v ap)\,,) (3-1-7(1)

is 7 in cycle notation, then

(07 (au)o ™ (aiz) - o7 @) o™ (an) - - 07 (azn,)) -+ (07 (ap) - 07 (@)
(3.1.7b)
is the cycle notation for o-'wo. Conversely, if 7,7’ € S have the same cycle
structure, then there exists ¢ € S; (not necessarily unique) such that 7’ = o~'wo.
Define the conjugacy class of 7 € S; to be the set {o-'no : ¢ € S;}. The above

argument establishes the following lemma.

Lemma 3.1.8. There is a bijective map between P(l) and the conjugacy classes of

S

Definition 3.1.9. Permutation length. For m € S; let L(n) = {(a,b) : 1 <a <b <
I, n=1(a) > 7=1(b)}. I(x) = #L(x) is known as the length of .

Lemma 3.1.10. Ifr € S, and s = I(x) then © may be written as a product
of s simple transpositions of the form (c,c + 1) for 1 < ¢ < l. Furthermore, if
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L(m,b) ={a:1<a<b, nm~(a) >x1(b)} forb=2,...,1, then:

r= f[(b ~1,b)(b—2,b—1)---(b— #L(m,b),b+1—#L(m, b)),  (3.1.10a)

b=2
where the factors are combined left to right on increasing b. Alternatively, if L(a, ) =
{bra<bdb< I, 7 a)>a"(b)} fora=1,...,1 -1, then:

-1

T = I_I(a,a +1)(a+1,a+2)---(a—1+4#L(a,n),a + #E(a,7)), (3.1.100)

where, this time, the factors are combined right to left on increasing a.

Proof. Consider the permutation:

o — 1 2 3 4 cee
o(1) o(2) o(3) o(4) -+ )
By (3.1.5) postmultiplication of o by the simple transposition (¢,c + 1) serves to
exchange the elements of the bottom row that lie beneath ¢ and ¢ + 1 of the top

row. For instance:

(1 3 2 4 ..
"(2’3)‘(a<l> o(2) o(3) ofd) --- )

_ ( 1 2 3 4 .. )
o(1) o(3) o(2) o(4) - )’

By using this result, starting with the identity permutation, the permutation =
may be constructed as a product of s simple transpositions as follows. Consider
each of the integers b = 2,3,...,[, in turn. In the bottom row of the permutation
constructed so far (the identity for b = 2), #L(,b) is the number of integers to the
left of b that occur to the right in the final permutation w. The sequence of simple
transpositions (b,6—1); (b—1,b—2); (b—2,6—3); ---; (b+1—#L(=,b),b—#L(~,b))
serves to move the integer b in the bottom row leftwards, so that there are now
#L(m,b) integers less than b to the right of b. That these are the required set of
integers L(w,b) is ensured by dealing with b = 2,3,...,[ in ascending order.

The final part of the lemma is dealt with in a similar way but by considering

instead, a =1 —1,1—-2,...,1 in this decreasing order.

To illustrate Lemma 3.1.10, consider the permutation 7 given by (3.1.3). This
yields the following set of values for #L(w,¢) and #L(z, 7):

i|1

2
#L(ﬂ'v z) -0
#L(E,7)| 2 4

8
7 (3.1.11)

NN I

4 5 6
2 4 3
3 1 1

LU o|lw

50



3.1. The symmetric group
Thus I(7) = 17 and (3.1.10a) implies that:

7 = (34)(23)(45)(34)(23)(12)(56)(45)(34)(67)(78)(67)(56)(45)(34)(23)(12),
(3.1.120)
and (3.1.10b) implies that:

= (78)(67)(56)(45)(56)(67)(34)(45)(56)(67)(78)(23)(34)(45)(56)(12)(23).

(3.1.12b)
Lemma 3.1.10 demonstrates that the symmetric group S, is generated by the

! — 1 simple transpositions (1,2); (2,3); ---; (I — 1,1). However, by (3.1.7):
(1,2,3,...,0)(c,e + 1)(1,2,3,..., )" = (¢ + 1,c+ 2), (3.1.13)

for ¢ = 1,2,...,1 — 1, and therefore the two permutations (1,2) and (1,2,3,...,])

also serve as generators for S;.

Definition 3.1.14. The permutation w is said to have even or odd parity depending

~

on whether I(n) is even or odd. The signature of w, denoted (—1)", is given by:

(—=1)" = (—=1)™, (3.1.14)

Lemma 3.1.15. Ifr,0 € S; then:

(=1)™ = (=1)"(=1)"; (3.1.15a)
(-1 = (=17 (3.1.15b)
(=1)77' " = (=1)". (3.1.15¢)

Proof. Form the three disjoint sets:

C={(a,b):1<a<b< 7 a) > 77! (b),0  'n " (a) > o7 7" 1(b)},

D={(a,b):1<a<b<m Y a)>n"'(b),c7 v (a) < o™ 'w '(b)},

and E£={(a,0):1<a<b< 7 }a) <77 }(d),07 7" (a) > o7 77 1(b)}.

Let the cardinalities of these sets be ¢, d and e respectively. It can immediately
be seen that i(7) = ¢+ d and [(r0) = ¢ + e. Furthermore, L(c) = {(n(a), (b)) :
(a,b) € £} U {(x(b),n(a)) : (a,b) € D}. Thus i(¢) = d + e and (3.1.15a) fol-
lows. Since 7~'m = I, the identity of the group, and {(I) = 0, (3.1.15a) implies
that 1 = (—1)"""(—1)* from which (3.1.15b) follows. From (3.1.15a), (=1)°"'*" =
(—1)°7(~1)"(~1)°, which equals (—1) through (3.1.15b).
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3.2. The Frobenius algebra and the regular representation

§3.2. The Frobenius algebra and the regular representation

The Frobenius algebra, or group ring, FG of the group G is the formal vector space

over F which has a basis comprising the elements of G. Thus for = € FG,

=) z(m)w, (3.2.1)

TEC

where z(n) € F for each # € G. The product of any two elements is governed
by the product in G, this being extended linearly to the whole of FG. Thus if
=3, ,c2(m)rand y =¥ ,¢; y(o)o then:

2= 3 S eru()me = 3 (5 z(pa-*)y(ff)) . (3:2.2)

x€G 0€G PEG \o€EQ

Definition 3.2.3. The regular representation. The Frobenius algebra may be regarded

as an FG-module through its own natural left action. This defines a representation of

FG known as the regular representation.

Since the elements of G serve as a basis for the FG-module corresponding to the
regular representation, the dimension of each is equal to the order of the group.
Through this natural FG-module, matrices forming the regular representation are
readily obtained. The left action of z = },¢; z(7)7 on each of the elements of
G shows that z is represented by the matrix I'(z) whose elements are given by
I'(z),, = z(op~') where o,p € G are used to index the rows and columns of T'. It
may be confirmed that this provides a representation of FG by computing:

(C(@)L(Y)),, = 2 T(@)esT(W)er = D x(op™ Jy(pr™)

PEG PEG

=Y z(or ' Vy(n) = T(zy)s-.

TEC

(3.2.4)

In general, the regular representation is reducible since the Frobenius algebra
possesses proper left ideals. Those left ideals which do not themselves possess proper
left subideals are termed minimal. Clearly minimal ideals give rise to irreducible
FG-modules and hence irreducible representations. The importance of the Frobenius
algebra and its minimal ideals in the generation of irreducible representations is a

consequence of the following theorem.

Theorem 3.2.5. (see [Bo63]) Every irreducible representation of the finite group G

occurs as a direct summand in the regular representation.

For each z € FG, the set U = {yz : y € FG} clearly constitutes a left ideal.
U is referred to as the left ideal generated by z. Similarly, W = {yzz : y,z € FG}
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3.2. The Frobenius algebra and the regular representation

constitutes a two-sided ideal which is referred to as the two-sided ideal generated

by z. As will transpire, the ideals generated by idempotents are of particular

importance.

Definition 3.2.6. An idempotent is an element e € FG such that e® = e. Idempotents
which cannot be written as the sum e = e, + €, of two non-zero idempotents e, and

e, which satisfy eje; = ese; = 0 are termed primitive idempotents.

The following sequence of classical theorems and lemmas relating to the struc-
ture of the Frobenius algebra FG of the finite group G, enable all the inequivalent
irreducible representations of G to be obtained. These will be employed in the next

section for the particular case of the symmetric group. Proofs may be found in
[Bo63].

Theorem 3.2.7. FG may be decomposed into a set of minimal left ideals:

which are unique up to order and equivalence. On writing I = e; +e,+- -+ e, where

each e; € U;, idempotents are obtained which generate each such left ideal.

Lemma 3.2.8. The left ideal generated by a primitive idempotent is minimal. Con-
versely, every minimal left ideal possesses (at least) one primitive idempotent which

generates it.

Definition 3.2.9. Fquivalent left ideals. The two left ideals U, and U, of FG are said
to be equivalent if and only if there exists a map ¢ : Uy — U, such that:

((zuy) = z((us) (3.2.9)
for all z € FG and u, € U,.

Lemma 3.2.10. If the left ideals U, and U, are equivalent, every equivalence map

from U, to U, is provided by right multiplication.

Lemma 3.2.11. If the left ideals U, and U, are minimal with generating tdempotents
e, and e, respectively, then right multiplication with any e;ze, # 0, z € FG, defines an

equivalence map from U, to U,. Such equivalence maps are only provided by elements
of this form.

Theorem 3.2.12. If e is an idempotent, then e is primitive if and only if for each

r € FG, exze = ae for some a € F.

53




3.2. The Frobenius algebra and the regular representation
Consideration of the two-sided ideals via Lemma 3.2.10 puts some order into

the multitude of possible left ideals.

Lemma 3.2.13. If W s a two sided ideal and if a minimal left ideal U lies in W,
every left ideal equivalent to U lies in W.

Lemma 3.2.14. FG decomposes uniquely into a direct sum of minimal two-sided

ideals:

FG=W,oW,®---0®W,. (3.2.14)

Flements from different two-sided tdeals annihilate one another in that w,w; = w;w; =
0 for all w; € W;, w; € W; and i # 5. Each two-sided ideal W; possesses a generating
idempotent e; which is unique and determined by the decomposition I = e; + e; +

-+« +e.. Fach e; commutes with all elements of FG.
The following theorem is known as Wedderburn’s theorem.

Theorem 3.2.15. Fach minimal two-sided ideal W; is isomorphic to the complete

ring of f; X f; matrices for some f;.

This theorem has the direct consequence that if FG is the direct sum of r minimal
two-sided ideals as in (3.2.14) then:

g= erf?, (3.2.16)

i=1
where g is the order of the group G. It also provides the following theorem.

Theorem 3.2.17. The minimal two-sided ideal W; contains ezactly f; linearly in-
dependent minimal left ideals which are each of dimension f; and equivalent to one

another.
Attention is now turned to the labelling of the irreducible representations.

Lemma 3.2.18. The dimension of the centre Z of FG is equal to the number of its

minimal two sided ideals.

This Theorem shows that Z has a basis {e;,e€,,...,¢,} where ¢; € W; is given by
Lemma 3.2.14.

Lemma 3.2.19. The dimension of the centre, Z, of FG is equal to the number of

conjugacy classes of G.
Lemmas 3.2.13, 3.2.14, 3.2.18 and 3.2.19 may be combined to yield:

Theorem 3.2.20. The number of inequivalent irreducible representations of G is equal

to the number of its conjugacy classes.
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§3.3. Young symmetrisers

In this section, the results of the previous section are applied to the particular
case of the symmetric group S;. Theorem 3.2.20 in conjunction with Lemma 3.1.8
shows that the inequivalent irreducible representations of S; are labelled by P(I),
the partitions of l. As will be seen, the representation associated with the partition
A € P(l) may be obtained through the Young tableaux of shape F* and their
respective Young symmetrisers. Although initially a Young symmetriser is obtained
from each tableau of shape F*, it will emerge that just one is required for the

construction of each inequivalent irreducible representation.

In this chapter each tableau T* for A € P(I) will be such that the entries are

from the set N; and distinct. For such tableaux a numeral permutation may be

defined.

Definition 3.3.1. Tableau numeral permutation. For A € P(l) and T* any tableau
with distinct entries from the set N, define the action of S; on T* to be given by the

action of S; on each numeral of T*. That is:

7(Tan) 7(Tan) 7(Ths)
T W(T();,l)) 7r(T();ﬂ))

W(T(};,ID (3.3.1a)

This action is extended linearly to both FS; and to F-linear combinations of tableauz.
Thus the action of ¢ € FS, on T* = ¥; s(:)T?, where each s(i) € F, is given by:
2T = 30 3 2(m)s(D)(x T}, (3.3.1b)
TES i
where £ = Y ¢, z(7)7 and each z(n) € F.
For A € P(1), let Rr» and Cr» be the subgroups of S; which, when acting on

the numerals of T*, stabilise the rows and columns respectively. Define Prx € 1.5
and Q7» € 1S, according to:

PT:\= Z P (332(1)
PER 1x

and  Qp = Y. (-1)0. (3.3.2b)
g€CLA
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3.3. Young symmetrisers

Lemma 3.3.3. If p € Ry and 0 € Cps then

pPrs = Prap = Prs; (3.3.3a)
UQTA = QTAO' = (—l)aQTA. (333b)

Proof. As m runs through Rp» then pm and mp each run through Rr» since Rrs is
a finite group. (3.3.3a) then follows from (3.3.2a), the definition of Prx. Similarly,
as « runs through Cr, so do 7o and om. However, by (3.1.15a), the coefficient of
each term in (3.3.2b) will have been multiplied by a factor of (—1)°. This proves
(3.3.3b).

Definition 3.3.4. The Young symmetriser Yr. associated with the tableau T* is
defined by
YTA - QTA PTA

= Z Z (_l)oo-p_ (334)

OECTA peRTl
In this Chapter it is possible to proceed equally well with the order of the row and
column permutations opposite to that defined here. This is done, for example, in
[Bo63]. However Yy defined by (3.3.4) has definite advantages, as will become

apparent in later chapters.

The action on T* of the corresponding Young symmetriser Yr» produces a

signed sum of tableaux known as a symmetrised (Young) tableau and denoted {T*}:
{T*} = Y T (3.3.5)
As an example, consider A = (2,2) and

12
= gy

From (3.3.2a), Pps = (I+ (12))(I + (34)) = (I +(12) + (34) + (12)(34)) and Qs =
(I—-(13))(I —(24)) =(I—(13)—(24)+(13)(24)). Thereupon, with Y7x = Qs Ppa,
{T*} is given as the following linear combination of tableaux through (3.3.5) and
Definition 3.3.1:

T (3.3.6)

12,21 ,12, 21
34 34V 43 43
32 23 32 23
14 14 41 41
(3.3.7)
14 41 14 41
32 32 23 23
34 43,34, 43
Troti12%21 201
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3.3. Young symmetrisers

This array has been obtained by first applying the four elements of Rrx to the
numerals of T*, yielding the first four tableaux. Then, the tableaux in each column
of this array is obtained through permuting the numerals of these tableaux according

to the elements of Crs.

As may be seen from (3.3.7), the action on T* of a single summand op of Yra
is not to be thought of as a row permutation followed by a column permutation
since the action of p disrupts the column structure. However, the action of op
may be regarded as a column permutation followed by a row permutation since, by
(3.1.4), the integer m moves, under the action of op, to where the integer p~to~!(m)
originally resided. Thus the entry m is first moved within its column, to the original
position of o0~!(m), and then within the row it then occupies under the action of
p~!. Note that as p and ¢ run through the groups Rrs and Cr» respectively then so
do p~! and o~!. This provides an alternative means of obtaining the symmetrised
tableaux. Consider (3.3.7). Each of the tableaux in the first column of this array
has been obtained by applying the four elements of Crx» to permute the elements
within the columns of T?. Each of these tableaux then yields those to its right by
permuting the elements among their rows. These notions of a place permutation

will be developed below.

Let the permutation of S; which maps the Young tableau T} into the Young
tableau T} be denoted ;:
T'\ = Tj,'f[?. (338)

J

If p € Ryx, (3.1.6) shows that a corresponding row permutation of T} is given by
7;ipTi; € Rry. Similarly, to each o € Cr» corresponds 7;,07;; € Cr». Furthermore as
p and o run through the groups Rr» and CT'x respectively, then 7;;p7;; and 7j,07;;
run through the groups R and CT} respectively. This implies that Pry = 7;;:Pra;
and also, since (—1)7""" = (—=1)7, that QT; = 7;:Qr>7ij. Thereupon:

Yr2 = 7:Ynm; (3.3.9)

As already indicated, a single summand 7 of ¥z, acts on T* to move the entry

a to the position originally occupied by 7='a. If T* = 7¢* then the entry a = T} _,,,

is moved to the position labelled by the entry 7-'n~'a of t*. Thus if T** = #«T?
then T¢A ., 10y = T(h-14y and

Ti = Thospray (3.3.10)

for b= 1,2,...,1, as can be seen by putting b = 7-'x~'a. Note that 7-'n7 is the

summand of Y;s, P or @, corresponding to the summand 7 of Yz», Pr» or Qr

respectively. This motivates:
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3.3. Young symmetrisers

Definition 3.3.11. Tableau place permutation. If A € P(l) and ® € S, then the place

permutation action w, on T* results in T** = n,T* where:
*« A A
T(a) = T(x—l(a)), (3.3.11)
fora=1,2,...,L

This definition has been made using 7~! instead of 7 to ensure that (po). = p.o..

Let C* = C» and R* = R;». For 7 a summand of Ypa, © = o'p’ for some
o' € Cr» and some p' € Rps. Corresponding to these are the elements 7-¢'7 € C*

and 7-!p't € R* respectively. Let ¢ = 77'¢'"'r and p = 771p'~'7 so that if
T** = #T?* then:

Ty = Tiornrsy = Ligmspmrny = (0T )(omry = (0. T o), (3.3.12)

which explains why the summands of Y7 acting on T* may each be considered as
a column permutation followed by a row permutation. As ¢’ runs through all the
permutations of Cra, so does o'~ whereupon o runs through all the permutations of
C*. Similarly, as p’ runs through all the permutations of Ry, so does p'~! and p runs
through all the permutations of R*. Lemma 3.1.13¢ implies that (—1)? = (~1)7".

This leads to the following alternative definition of a symmetrised tableau.

Definition 3.3.13. Place symmetrisation. For A € P(l), let:

P}= 3" p., (3.3.13a)
pERA

Qj = Z(—l)"a‘, (3.3.13d)
oeC>

and define the Young symmetriser Y by:
Y? = PAQP. (3.3.13¢)
The symmetrised tableau {T*} is then defined by:

(T} =YT= > Y (-1)p.0.T (3.3.13d)

PERX c€C>
This definition is more useful than (3.3.5) since it is directly applicable to situations
in which T* has repeated entries. Such situations do not arise until later chapters
but nevertheless, many results in this are more clearly elucidated using this place

permutation definition of a symmetrised tableau.

The remainder of this section is devoted to the exploitation of the Lemmas

and Theorems of Section 3.2, in order to show how the Young symmetrisers may be
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3.8. Young symmetrisers

used to obtain the irreducible representations of the symmetric groups. The proofs

are modifications of those found in [Bo63].

Lemma 3.3.14. Ifo € Cp» and p € Ryps then two entries which occur in the same
column of T* do not occur in the same row of opT>. Conversely, if every two entries
which occur in the same column of T* do not occur in the same row of T** = xT*

then m = po for some 0 € Cr» and p € Rpx.

Proof. In the first part opT? occurs as a summand in {T?} and consequently arises
from T* through first a column, then a row permutation. The column permutation
leaves the two entries in the same column and hence in different rows. The first part
is proved since the row permutation does not then alter these rows. For the second
part, the entries which occupy the first row of T** all lie in different columns of T*.
Thus a column permutation exists which acts on T* to take each to the top of its
column. Similarly a column permutation exists which acts on T? to take each of
those entries from the second row of T** to the second row. In this way a column
permutation can be found to put each entry in the correct row. A row permutation
can then be found to produce T**. This shows that T"* is a summand of {T*} and

thus proves the lemma.

Lemma 3.3.15. If p,v € P(l) and there ezists s such that p; = v; for 1 =
1,2,...,5s—1, and p, > v, then there are two entries which occur in the same row of

TY and the same column of T¥.

Proof. Assume that every two entries which occur in the same row of T} occur in
different columns of Ty. Consider first the entries in the first row of T}" which thus
all occur in different columns of T}. Therefore p; < v;. But by hypothesis u; > v;.
Therefore p; = v, and each of the (first v,) columns of T} contains an entry from the
first row of T{. The entries in the second row of T} all occur in different columns
of T}. Thus, since v, < vy, each of these columns has at least two entries — the
other from the first row of T{'. Therefore u, < v, and hence g, = v,. Proceeding in
this way leads to the conclusion that g = v contradicting the premise of the lemma.

The initial assumption is therefore incorrect and the lemma is proved.

Lemma 3.3.16. Let u,v € P(l) (not necessarily distinct). If a,b € N; occur in the

same row of T and the same column of T} then:
PT:‘ QT; = 0, (3.3.160)

and consequently:
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3.83. Young symmetrisers

Proof. The transposition # = (a,b) is a member of both R+ and Cry. By Lemma
3.3.3, Prs = Ppem and Qry = —7Qyry since (—1)" = —1. Combining these gives
PreQry = —PrpnnQry = —PryQry and thus (3.3.16a). (3.3.16b) then follows from
(3.3.4).

Lemma 3.3.17. If w # o'p’ for all 0’ € Cys and p' € Ry», then there exist transposi-
tions o € Cp» and p € Ryp» such that omwp = .

Proof. From Lemma 3.3.14 there exist a,b € N; such that @ and b occur in the
same column of T? and in the same row of T** = x#T*. Let 7 = (a,b) whereupon
T € Cra, 7 € Rrer and 7~ 'rw € Rpa. The selection of 0 = 7 and p = 7~ 77 proves

the lemma since onp = ran~'rr = 770 = 7.
Lemma 3.3.18. Ifz € FS,, A € P({) and
orp=(-1) =z (3.3.18)

for all 0 € Crx and p € Rp», then v = aYrs where a = z(I).
Proof. With ¢ = ¥, .5 z(7)7, (3.3.18) gives:

Y a(m)omp = (=1)7 Y z(x)x. (3.3.18a)

€S €S

Since as 7 runs through Sj, so do om and omp, then each permutation occurs only
once on each side. Consider first the coefficients of each op. On the left side the
coefficient is @ = z(I) whereas on the right it is (—1)°z(op), so that z(op) = (-1)°«
for each o € Cr» and p € Ryp». Now consider the permutation 7 for which 7 # op
for all o € Cr» and p € Rrs. By Lemma 3.3.17 there exist transpositions o € Cra
and p € Rpa such that o7p = 7. On using these values in (3.3.18a), the coeflicients
of 7 imply that z(7) = —z(7) and thence that z(7) = 0. Thus

z= Y. >, z(oplop=a D, Y. (~1)Yop=a¥n.

GECL A PER 12 0€CLx PER L

Theorem 3.3.19. There exists a non-zero a € 1 such that the normalised Young
symmetriser 2Yrs is a primitive idempotent. Yr» generates a minimal left ideal and

thence an irreducible FS;-module.

Proof. (see [Yo77,Bo63]) Since Y}, satisfies the premise of Lemma 3.3.18, it
follows that:

YT?; = aYTl .
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Since Y2, € 7S, and the coefficient of I in Y7 is 1, then o € Z. It is required to show
that a is non-zero. If ¢ = ¥, g z(7)7 and y = Y, 5 y(7)7 then the coefficients of
I in zy and yz are equal since, by (3.2.2), they are each equal to 3, z(m)y(x~1).
Thus the coeflicients of I in PraQ7:Prx and PpaPraQr» are equal. By (3.3.2),
Prs Prs = py Pra where py € N is the order of Rpa. The coefficient of I in PraQr»
is 1, therefore the coeflicient of I in PraQgxPra is pg. If piop, is a summand of
PraQrs Prs then its inverse p;lo~!pr! also occurs with the same sign. Thus the
coeflicient of I occurs as a sum of squares in PrQrs Pprs Prs Q7 Pra and so is at

least p} by virtue of py being the coefficient of I in Pr»Qr» Prs. Since
PTAQTxPTxPTAQTAPTx = p#PTxQTxPTxQTAPTA,

it follows that the coefficient of I is positive in PrsQgs Pr»Qrs Prs, showing that
this term is not zero. Thus Qr» Pr»Qrx Prs is non-zero implying that « # 0.

It remains to be shown that Yz is primitive and therefore generates a minimal
left ideal by virtue of Lemma 3.2.8. For arbitrary o’ € FG, Yr2'Yr satisfies the

premise of Lemma 3.3.18 and is therefore a multiple of Y;s. That Yrs is primitive

now follows from Theorem 3.2.12.

Theorem 3.3.20. Young symmetrisers which arise from the Young tableauz T{ and

T, generate equivalent irreducible FS;-modules if and only if p = v.

Proof. If p = v then there exists T such that T3 = vT¥ whereupon, from (3.3.9),
Yo = 7Yru7™!. Theorem 3.3.19 shows that the left ideals generated by Yy, and Yr»

are minimal, whereupon their equivalence follows from Lemma 3.2.11 since
Yrer Wry = Ypur WYt =YYt = oYt #0.

It follows that the corresponding irreducible F.S;-modules are equivalent.

If i # v then without loss of generality assume that p; = v; for: =1,2,...,5—
1 and y, > v, for some s. Lemmas 3.3.15 and 3.3.16 then show that Yrs YT;V =0
for each T;” = 7Ty. Thus Yr» Y7y 77! = 0 and hence Yr:7Yr, = 0. For arbitrary
z €FS), z =Y, 5 x(7)7, this implies that:

YruaYry = Z z(7)YrurYry = 0.

TES

So for u # v, the FS;-modules generated by Yr» and Y7y are inequivalent by virtue
of Lemma 3.2.11

Theorem 3.3.21. Let T} and T, be distinct S)-standard tableauz such that for some
s, T,y > T3,y with Tj,y = T3,y for eacha =1,2,...,s — 1. Then Y73 Yr; = 0.
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Proof. By Lemma 3.3.16, it is sufficient to show that there exists two entries which
occur in the same row of T} and the same column of T3). Let b = T}, and ¢ = T3,
and let ¢ and j specify the row and column of these entries so that b = Ty, ;) and
¢ = T}; ;- Note that i = 1 may be excluded since, for S;-standard tableaux, the
entry at the top of a column is uniquely determined as the least of those that are
not in the columns to the left. Thus¢ > 1. Now ¢ = T}, for some k and I. The
possibility that I < j may be excluded since T} and T3 coincide at all such positions.
For the same reason the possibility that [ = j and k¥ < 7 may be excluded. Since
b > ¢, T} being S;-standard disallows the possibility that | > j and k > ¢, since all
such positions must contain an entry greater than b. The remaining possibility is
that I > j and k < i. Then T3, ;y = T}, ;)- Thus T}, ;; and ¢ both occur in the kth

row of T} and in the jth column of T}.

Theorem 3.3.22. If A € P(l) and T}, T3, ..., T} are Si-standard tableauz, then the
left ideals generated by Yra,Yra,. .., YT; are linearly independent.

Proof. Without loss of generality it may be assumed that the S;-standard tableaux

are ordered such that if ¢ < j then there exists some s such that Tj},) < T}},, with

i(s)
T2, =Ty fora=1,2,...,s — 1. Let:

J

$1}?? + 2. Yr +"°'+'$f)?? =0,

for elements z; € FS;. By Theorem 3.3.21 right multiplication with Y7, annihilates
all terms but the first, implying that 0 = 2,Yr2Yr» = oz, Y7 for some non-zero a €
Z. Therefore leTlx = 0. Right multiplication with YT; now shows that iCzyT; = 0.

Similarly each term is zero and the theorem is proved.

Theorem 3.3.23. The dimension of the left ideal and hence the irreducible represen-
tation generated by Yr» is equal to f*, the number of S;-standard tableauz of shape
F*,

Proof. Let the dimension of the irreducible left ideal generated by Yr» be f}. By
Theorem 3.2.17, the minimal two-sided ideal W, generated by Yz is of dimension
(f})? and contains exactly f2} independent left ideals. Theorem 3.3.22 then implies
that (f2)? > f2f* and hence f > f*. Since S, has order !, (3.2.16) gives:

= Y ()

A€P(I)

However, Theorem 2.6.13 then implies that:

> (2= 2 (/)

AEP(I) AEP(D)
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With f} > f* for each A € P(I), the only possibility is that f* = f2 for all A € P({).
This proves the theorem.

§3.4. The Garnir relations and standardisation

The symmetrised tableaux of a given shape are not linearly independent. It is the
purpose of this section to describe relations between the symmetrised tableaux and
to describe how an arbitrary symmetrised tableau may be written in terms of the

S,-standard tableaux.

Definition 3.4.1. Column strict tableauz. If the entries of the tableau T are strictly

increasing down each column then T* is termed column strict.
Lemma 3.4.2. Ifo € C* then for any tableau T*:
{T*} = (1) {0.T"}. (3.4.2)
Proof. From Definition 3.3.13:
(0.7} = PXQ}a.T* = PNQ*0).T* = (-1 P>Q)T* = (-1)°{T*},
where (3.3.30) has been used.

This Lemma provides what are known as the Column relations. It implies that
{T*} may be expressed as £{T"*} for some column strict tableau T"*. Furthermore,
when the generalisation to tableaux which may possess repeated entries 1s made, it

implies that if T* has an entry repeated in any column, then {7} vanishes.

Lemma 3.4.3. Fori < j, let X and Y be subsets of the entries in the tth and jth
columns, respectively, of t* such that #(XUY) > ;. Let S(X), S(Y) and S(XUY)
be the subgroups of S, preserving X, Y and X U Y, respectively. Then if G(X,)) is
a set of right coset representatives for S(X) ® S(Y) in S(X U Y),

> (-1)'{nT*}=0. (3.4.3)
n€G(X,Y)

Proof. If G} = ¥, e6(x.y)(—1)"7. then the expression on the left side of (3.4.3) may
be written P}*Q}G2T*. Consider the tableau T} = o.n.T* which has a coefficient
B in the expression QXG>T*. It will not be assumed that T} arises in only one
way. Since #(X UY) > ), there exists at least one pair of entries from X UY
lying in the same row of t*. Fix one such pair and let a and b be the entries
of T} lying in those positions. Let 7. be the place transposition which swaps a

and b in T* to give T} = 7, T*. If T} = 0.7.T* for some specific ¢ € C* and
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n € G(X,)) then ), = 0T} = o.n.7.T* differs from T} only in that a and
b have swapped places. Since n7 € S(X U Y) and G(X,)) is a set of right coset
representatives of S(X)® S(Y) in S(X U Y) then nr can uniquely be expressed nn’
for m € S(X)®S(Y) and 0’ € G(X,Y). Thus T}, = o.n,T* where 0’ = on € C* with
(=1)7"" = (=1)™" = (=1)""" = —(=1)"". So for each occurrence of T in Q*G>T*,
T}, occurs with an opposite sign. Thus if T} has coefficient 8 in Q}G}T? then T},
has coefficient —f. However, P)T}, = P}T} since T}, differs from T} by a simple
place transposition from R*. Thus the application of P} to Q}G}T* produces a set
of tableaux whose coefficients cancel. Therefore PXQ}*G>T* = 0 and the lemma is

proved.

Identities of the type appearing in Lemma 3.4.3 are known as Garnir relations after
[Ga50] where they were first obtained. The elements G{y yy € ZS; defined by:

Gy = 2. (1), (3.4.4)
n€G(X,Y)

are known as Garnir elements. Lemma 3.4.3 shows that they satisfy:
Y*Giyyy = 0. (3.4.5)
To illustrate a Garnir relation, let A = (4, 3,1) whereupon:

4 6 8
5 7

N

= (3.4.6)

3

Let : =1, =2, X = {1,3} and Y = {4,5}. Right coset representatives for S(X)®
S(Y) in S(X U Y) are provided by G(X,)) = {I,(14),(354),(145),(33),(14)(35)}

which yields the Garnir element:
Gy = I — (14) + (354) + (145) — (35) + (14)(35). (3.4.7)

Lemma 3.4.3 then implies, for example, the Garnir relation:

1256 2156 1356
{738 }—{738 }+{748 }
4 4 2
3156 1256 2156
+{728 }—{748 }-{—{748 }:0.
4 3 3

It will now be shown that the Column and Garnir relations can be used to

(3.4.8)

express each symmetrised tableau in terms of the standard S)-tableaux of Definition
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3.4. The Garnir relations and standardisation

2.6.9. The following algorithmic procedure for accomplishing this is described in
[Ga50] and [JK81]. It is sufficient to consider column strict tableaux since Lemma
3.4.2 enables each symmetrised tableau to be expressed as such. If the column strict
tableau T is not standard then condition (iii) of Definition 2.6.9 implies that there
exists a neighbouring pair of entries, Tp, , and T} ,,,), such that T(, ,y > T, ;...
Let & be the set of positions below and including that of T, ;) in the bth column

b41) 0 the (b+ 1)th

a

and let Y be the set of positions above and including that of T(’\

column. The relevant entries of T are then as follows:

T3 b41y
A
A
T()z‘z—l,b+1)
: A
3.4.9
Ty > Th o (3.4.9)
A
CZ-‘()<‘1+1,I7)
A
AN
T

(As.b)”

Since, with X and Y so defined, #(X UY) = \, 4+ 1, Lemma 3.4.3 may be used to
express {1} in terms of other tableaux. With n € G(X,Y) and n € S(X) ® S()),
T} = nT* has necessarily been formed from T* by swapping the columns of at least
one pair of elements from the positions X U ). Since the entries of T* at positions
X are all larger than those at positions ), it follows that T;) > T* in terms of
the tableaux ordering of Definition 2.6.8. Hence this algorithm enables {T*} to be
written in terms of higher tableaux. It may then be iterated until solely S;-tableaux
result. That this procedure terminates is guaranteed by the ordering on the set of

all tableaux of shape F* and their finite number.

To illustrate this procedure, consider the non-standard tableau:

25 6
T™=17328 . (3.4.10)

D =3 =
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3.5. The Specht module

Lemma 3.4.2 implies that:

1256 1256
738 =—{ 4 38 : (3.4.11)
4 7

The algorithm described above then dictates the use of a Garnir relation resulting
from the adoption of X = {2,3} and Y = {4,5}. An appropriate choice of coset

representatives then yields the Garnir element:
G?X,y) = I+ (254) — (2354) — (25) + (235) + (24)(35), (3.4.12)

and the Garnir identity:

125 125 1 456
-4 3 4 8 +43 78 +42 7 8 = 0.
7 4 3

The coset representatives of (3.4.12) have been selected so that each of the tableau
in (3.4.13) are column strict in the portions specified by the sets X and Y. This
minimalises further usage of Lemma 3.4.2. Combining (3.4.11) and (3.4.13) now

gives
1256 1356 1356
7 3 8 =4¢2 48 -42 78
4 7 4
1256 1256 1456
—<¢3 48 +4¢3 78 +42 78 .
7 4 3

Thus {T?} has been expressed in terms of higher tableaux. In this case each of

(3.4.13)

(3.4.14)

the tableaux on the right is Ss-standard. However, in general, the standardisation
procedure will need to be iterated a number of times before solely S;-standard

tableaux result.

§3.5. The Specht module
The following lemma provides the means of constructing the irreducible S;-modules.

Lemma 3.5.1. The actions of symmetrisation and permutation on a Young tableau

commaute. That is:

w{T*} = {zT*}. (3.5.1)
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3.5. The Specht module
Proof. Let T} = nT*. Then, by (3.3.8) and (3.3.9),

Yry = n¥p xl,
whereupon (3.3.5) gives:
{T}} = YTlel’\ =1Ypr aT? = 7Y T = o{T*},
which proves the lemma.

For A € P(l), let the f* Si-standard tableaux be denoted T}, T3,...,T}A. By
Lemma 3.5.1, the action of 7 € S; on {T?} yields {#T*} which, through the use of
the techniques of Section 3.4, may be re-expressed as a linear combination of the

symmetrised S;-standard tableaux:
fX
MT}) = (7T} = D ()T, (3.5.2)
j=1

where I'*(7);; € Z. This construction therefore defines an S;-module with a basis
consisting of the symmetrised S;-standard tableaux of shape A. It is known as the
Specht module and denoted S*. In order to show that S* is the irreducible S;-
module desired, it is necessary to make the connection with the minimal left ideals
of FG. To this end, let 7;; be defined by (3.3.8) for the S;-standard tableaux T and
T}. Then, from (3.5.1) and (3.5.2):

Iz
T} = Z;FA(W)jiTji{ﬂA}3 (3.5.3a)

Iz
FT;k{TkA} = Z;FA(F)jiTjk{T:}y (35.3b)

for any k for which 1 < k < f*. Then:

Iz
T"TikYT:T]? = EF'\(W)J‘;TJ';CYT:T;, (3536)

i=1

and therefore, since the entries of T} are distinct:

IX
WTgkYT: = ZF'\(W)J';TJ';:YT:. (353d)
j=1
This proves the following:
Theorem 3.5.4. If A € P(l) and T}, T},..., T\ are the S;-standard tableauz of

shape A, for which T} = 7;,T}}, then the minimal left ideal generated by Yry has a
basis {T Yy : 1 <1 < fA).
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Since, from (3.5.2) and (3.5.3d), the Specht module S* is equivalent to the
left ideal generated by Y7, S* is irreducible. Theorem 3.3.21 shows that the left
ideals generated by each T} are linearly independent. Despite this, the matrices
of the irreducible representations obtained via (3.5.3d) are identical and thus their

equivalence is demonstrated explicitly.

Quintessentially, the structure of the Specht module is as follows:

Definition 3.5.5. Let A € P(l). The Specht module S* is the irreducible S;-module
spanned by {T*} for all T* with distinct entries from the set N;, modulo relations
(3.4.2) and (3.4.3), and on which = € S acts according to (3.5.1).

As an illustration, let A = (3,2) and consider the Ss-module S®?. The Ss-

standard tableaux are:

)

13 4
2.4 7

'l'lz\ _ ’[’SA — 13 ,

T} =

2 4
5 0 =

1 1 2
3 4 5
Acting with the permutation (34) on each of the symmetrised Ss-standard tableaux

in turn and standardising the results, produces the following sequence of calcula-

tons:
oy ={ 87 =-{} 37 =y (3.5.70)
somy={} 22 ={1 20 -{3 o e m-my e
oy ={) 52 h={3 2 b Ll o e -y s
oy ={} 2% b=y (3570
oy ={}) 2 =@y (3.5.7¢)

where (3.4.2) has been used in (3.5.7a), and (3.4.3) has been used in (3.5.7b) and
(3.5.7¢). In accordance with (3.5.2), these calculations show that in the representa-

tion labelled by A = (3,2), the permutation (34) is represented by

1-1-1
1

DGy =| . .1 : (3.5.80)
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where each zero has been replaced by a dot. Similar calculations in S@? yield the

representation matrices:

11 . .1 1. L1
1. . 1. . .1
na2)=|. .11-1|, mE)y=|.. .1 .1,
A o1
1 1
(3.5.8b)
1.1
A
P4s)=|1. . .-
1 .
1

Since, as was shown in Section 3.1, the permutations (12), (23), (34) and (45) may
be used to generate any element of Ss, the representation matrices given in (3.5.8)
may be used to generate the matrix representing any such element. Consider the

permutation = = (1352). Its action on each of tableaux given in (3.5.6) results in:

{297} {317 m={310)

)31 4 M) 315
(3.5.9)
Upon standardisation, these give, according to (3.5.2):

10 01

-1-1 . ..
r*(1352)=1. . .1 .|. (3.5.10)

1 .1
1

Lemma 3.1.10 results in the identity (1352) = (23)(12)(34)(45)(34). Therefore,

since the matrices obtained in (3.5.8) are representation matrices:
*(1352) = I*(23)I*{12)T*(34)T(45)*(34), (3.5.11)

as may be confirmed by direct multiplication.

All the techniques involved in the generation of matrices of the irreducible
representations of S; through the Specht modules and Young tableaux have been
implemented as a computer program. In each case tested, each representation

matrix that is not that of a simple transposition has been verified as in (3.5.11).
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3.5. The Specht module
The Specht modules S* were first obtained by Specht in [Sp35]. Here, each

tableau of shape A € P(l) was associated with a certain polynomial in ! indetermi-
nates. On showing that the polynomials associated with the S;-standard tableaux
are linearly independent and knowing the dimension of the S;-module so obtained,

it was concluded that these polynomials form a basis for that S;-module.

Garnir [Ga50] adopted the same construction. Having obtained the specific
Garnir relations dealing with non-standard tableaux of the type given by (3.4.9), the
standardisation algorithm given in Section 3.4 was developed, and the irreducible

Si-module S* thus constructed explicitly.
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4.1. The double centraliser technique

Chapter 4

Linear and Symplectic
Group Modules

§4.1. The double centraliser technique

Throughout this section G will be an arbitrary finite group and M will be a left
FG-module. Let C = Homgg(M, M) be the algebra of endomorphisms of M which
centralise the action of FG. It is the purpose of this section to derive the relationship
between the irreducible FG-modules which occur as submodules of M and the struc-
ture of M as a C-module. This problem was considered by Schur [Sc01] and Weyl
[We39] in constructing the irreducible representations of GL(m). A more general
treatment of ‘symmetric algebras’ is overviewed in [CR62]. The exposition given
below follows this treatment but deals only with the special case of the Frobenius

algebra FG, this being sufficient for the purposes of this thesis.

Many of the results of this section require a knowledge of the composition of
the Frobenius algebra FG in terms of its right ideals. By using a particular map,
which is defined below, it is straightforward to show that each of the lemmas and
theorems of Section 3.2 hold when the word ‘left’ is replaced by the word ‘right’
and, for Lemmas 3.2.10 and 3.2.11, vice-versa. In the next section, this map will be
required to obtain the right ideals of the Frobenius algebra of the symmetric group

from its left ideals.

Definition 4.1.1. Let 9 : FG — FG be the involution defined by:

p (Z x(7r)7r> =S a(myrt, (@11)

T€EG T€EG

Lemma 4.1.2. 9 is such that:

(i) 9(zy) = d(y)d(z) for all z,y € FG;
(i1) e € FG is an idempotent if and only if ¥(e) is an idempotent;
(iii) e € FG is a primitive idempotent if and only if ¥(e) is a primitive idempo-
tent;
(iv) If U C FG is a left ideal, then 9(U) is a right ideal and vice-versa;
(v) If U C FG is a minimal left ideal, then 9(U) is a minimal right ideal and

vice-versa;
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4.1. The double centraliser technique

vi) If e € RG is a primitive idempotent, then e and J(e) are elements of the
p s

same minimal two-sided ideal.

Proof. (i). For z = Y, g z(m)m and y = ¥, g y(m)m,

I(zy) =9 (z 5 m(w)y(r)wr) - (z 5 x(ﬁ)y(T)T—lw—1> — 9()9().

TEG TEC TE€EG TEC

(ii). If e? = e then, by (i),
d(e)d(e) = I(ee) = I(e).

(iii). If d(e) = €| + ¢}, where e? = €}, 2 = ¢}, and €}e}, = e)e} = 0, then e = J(e}) +
9(ey) and, by (i) and (i), 9(e})? = 9(el), I(eh)? = D(cy), I(e4)0(es) = W(ehel) = O
and likewise J(e,)d(e}) = 0. Since e is primitive, either J(e;) = 0 or J(e,) = 0
whereupon either €/ = 0 or ¢, = 0 implying that J(e) is primitive. (iv). Let z € U.
It is required to prove that J(z)y € 9(U) for all y € FG. From

I(z)y = He)I(I(y)) = I(I(y)=),

this immediately follows since J(y)z € U for U a left ideal. The other case follows
in the same manner. (v). If U is a minimal left ideal, let V' = J(U) be the
corresponding right ideal. Let V' C V be a proper right ideal of V' with v € V\V’
and v # 0. By (iv), 9(V’) is a left ideal within U which is proper since J(v) # 0
and J(v) € U\J(V'). This contradiction implies that V' = V and hence that V is
a minimal right ideal. (vi). Since elements from different minimal two-sided ideals
annihilate one another, it is sufficient to show that ed(e) # 0. This is so since
if e = ¥ ,eqe(m)m, then 6(e) = 5 ,cqe(m)n! and the coefficient of I in ed(e) is

Y xeg €(7m)? which is non-zero if e € RG is non-zero.
The following lemma will be required below.

Lemma4.1.3. Letz =Y, ga(m)r. If ( € G then:

(z =) z(("'m)m; (4.1.3a)

T€EG

(=Y z(x(")m; (4.1.3b)

TEG

(o= a(¢r)rY (4.1.3¢)

x€G

and  z('= ) z(x7')n (4.1.3d)

L34
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Proof.
(z = Z z(7')n' = Zx((‘lw)w,

x'€Q TEQG

gives (4.1.3a) whereas:

(=Y a(n)n'¢ = a(n( M),

weG T€EQG

gives (4.1.3b). (4.1.3¢) and (4.1.3d) follow from (4.1.3a) and (4.1.3b) respectively

by, in each case, substituting (=! for ¢ and n-! for =.

Definition 4.1.4. Let M* = Homg(M,F) be dual to M. M* is a right FG-module
upon defining:

(va)u = v(zu), (4.1.4) '
forallz € FG, u € M and v € M*.

Definition 4.1.5. Let the map Q : M @ M* — FG be defined by:

Qu,v) =Y o(r~'u)n, (4.1.5)

n€Q

forallue M andv € M~.

Lemma 4.1.6. The map Q s bilinear over FG in that:

Qz1u; + Taus,v) = 2, Q(uy, v) + 2202(uy, v) (4.1.6a)

and

Q(u,v1y; + vay2) = Qu,v1)y + Q(u, v2)ys. (4.1.6b)

for all zy,z4,y;,y2 € FG, u,u;,us, € M and v,vy,v, € M*. In addition §2 is non-

degenerate.

Proof. Let 2, =3 g z1(7)7 and @, = ¥ ,¢g 22(7)7. Then, for the first argument:

Qzyuy + zous,v) = E v(r (zyuy + Taus))m

TEG

=Y o(rlzu)m + Y v(r T zaus)w
TE€EG TEG

= Z Z v(zy(mr ) ey w + z Z v(za(mr ) ug)
x€C TEG TEG TEQ

(on using (4.1.3¢))
= Z > v(r7 )z (rr ) + Z D o(r )z (rr )T

TEG TEC TE€EG TEC
= Z (77 )Ty T + Z (77 ug)z,T
TEG T€EG
(on using (4.1.3b))
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= 2, Q(uy,v) + 220y, v).

For the second argument,

Qu, v1y1 + v2ya) = Z(Uﬂh + vy ) (7 )T

x€G

= S (o )(n ) + S (o) )
xEG oy

= D vy )T 4 Y va(yem T u)w
TEC )

=2 Y oln(rimrtwr + 3 Y va(ya(r )T )T
*E€EG TEQ xeg rec

N Z Z vi(r )y (7 )+ Z E vt )y (T )T
Teg Ted €C T€C

= Z v (77 )Ty + Z vo (77 ) TY,
TEG TEC

= Qu,v1)y: + Qu, v2)ya.

Suppose that Q(u,v) =0 for all w € M. Then ¥ ,¢; v(7~'u)r = 0 and v(7~'u) =0
for each 7 € G since the group elements are linearly independent in FG. For 7 = I,
this gives v(u) = 0 and hence v = 0. By a similar argument, Q(u,v) = 0 for all

v € M* implies that u = 0. Therefore €2 is non-degenerate.

Definition 4.1.7. The nucleus FGy of FG is defined to be the set of all finite sums
of the form

Z Quy, vy),
where each u; € M and each v; € M*.

The bilinearity of Q with respect to FG, as determined by Lemma 4.1.6, implies
that FGy is a two-sided ideal in FG.

Lemma 4.1.8. The nucleus FGy possesses an idempotent ey which is central in FG

and generates FGy through:

FQN = CNFg = FgeN. (418)

Proof. By Lemma 3.2.14, FGy, being a two-sided ideal, may be uniquely written

as a direct sum of a subset of the minimal two-sided ideals of FG:
FGyn=W,0oW,®---0W,,.
Then ey = e;, + €;, + -+ + ¢;, where each ¢;, as given by 3.2.14, is the unique

idempotent of the minimal two-sided ideal W;. Since each e; commutes with all the
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elements of FG, ey belongs to its centre. Since e; generates W, ey generates FGy
according to (4.1.8).

Lemma 4.1.9. The idempotent ey € FGy is such that exyu = u for all u € M and
vey =v for allv € M*.

Proof. For all u € M and v € M*,
Qlenu — u,v) = exnQ(u,v) — Uu,v) =0,

where the linearity of 2 has been used. Since Q0 is non-degenerate, it follows that

et = u for all u € M. Similarly vey = v for all v € M*.

As above, let C = Homgg(M, M) be the ring of endomorphisms of M which
centralise the action of FG. In this way M is also viewed as a left C'-module. Define

the map ¥ : M ® M~ — End M by
U(u,v)u' = Qu',v)u, (4.1.10)
for all w,u’ € M and v € M*. Then, for all z € FG,
U(u,v)(zu") = Qzu',v)u = 2Q(u',v)u = 2P (u, v)u', (4.1.11)

where the linearity of Q has been used. This shows that ¥(u,v) € C for allu € M
and v € M~.

Since ey € FGy, it can be expressed as some finite sum:
ex = Quf,v)), (4.1.12)
where each u} € M and each v € M"~.

Lemma 4.1.13. Ify. € Hom¢(M, M) then there exists an element y € FGy such
that yu = y.u for alluw € M. One such y is given by:

v =3 Qyeud,of). (4113)

Proof. Since y, € Hom¢(M, M),
U (u, v)(yer') = ye(¥(u, v)u’),
which, from (4.1.10), implies that:

Qy.u',v)u = yQu',v)u,
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for all u,u’ € M and v € M*. With y as given by (4.1.13),

yu =y Qyeu], v))u = y.(3_ Quf, v))u)
= yc(eNu) =Ycu,
since eyu = u from Lemma 4.1.9. This proves Lemma 4.1.13.

In what follows R will be a C-submodule of M. Then
QR,M") = {Z(u:,v;) cul € Ryv; € M*} (4.1.14)

is aright ideal of FG contained in FG y because of (4.1.6b). In particular Q(M, M*) =
FGn.

Lemma 4.1.15. If R is a C-submodule of M then there exists an idempotent eg €
FGn such that Q(R,M*) = egFG. In addition, Q(R, M*)M = R.

Proof. Let p € Hom¢(M, R) project M onto R. By Lemma 4.1.13, there exists an
er such that pu = egu for all u € M, given by:

er = »_ Qpul,v).

Note that eg € Q(R, M*). If 2" = ¥, Q(u},v;) is an arbitrary element of Q(R, M*),
then

epx” = ZQ(eRu:,vi) = EQ(I?U:,U;) = ZQ(ULU:‘) =z

This implies that Q(R, M*) = egFG since Q(R, M") is a right ideal of FG. Putting
z" = eg shows that e% = e,.

Since Q(u",v)u’ = ¥(uw',v)u" forallu" € R,u € M and v € M*, ¥(v',v) € C,
and R is a C-submodule of M, it follows that Q(R, M*)M C R. Also u” = egu” €
Q(R, M )M, showing that Q(R, M*)M = R.

Lemma 4.1.16. IfU = eFG where e? = e € FGy, then UM = eM 1is a direct sum
C-submodule of M. In addition QUUM,M*) =U.

Proof. The first part follows directly from noting that UM = eFGM = eM and
that M = eM @ (1 — €)M where eM and (1 — €)M are C-submodules of M since,
for each A € C and u € M, Aeu = eAu € eM and similarly A(1 —e)u € (1 — e)M.

Since U is a right ideal in FG and Q(UM, M*) = UQ(M, M*), it follows that
QUM,M*)CU. Now, for z € U,

3

T =zey =) Qzul,v) € UM, M"),
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implying that Q(UM, M*) =U.
Theorem 4.1.17. There exists a bijection between the set of right ideals of FGy and
the direct sum C-submodules of M. Two right ideals U; = e,FG and U, = e,FG
generated by idempotents e, e, € FGy, are equivalent if and only if the C-modules

etM and e, M are equivalent.

Proof. From Lemma 4.1.16, the right ideal U = eFG in FGy, with e = e € FGy,
maps into the direct sum C-submodule UM = eM of M. From Lemma 4.1.15, the
C-submodule R of M maps into the right ideal Q(R, M*) = egFG, where €% = e.
Since Q(UM,M*) = U and Q(R, M*)M = R, these maps are inverse to one another
and therefore they define a bijection.

Let 8 : U, — U, be an equivalence map between the right ideals U, = ¢,FG
and U, = e,FG. Let 6(e;) = a and 6-*(e;) = b. Then, for ¢,d € FG,

f(eic) = 0(er)c = 6(ed)ec = (e )esc = aec € U, (4.1.17a)
and
6 (ead) = 0 '(e2)d = 67" (e2)d = 67" (e;)ead = beyd € U, (4.1.17b)
Therefore e,FG = ae,FG and ,FG = be,FG. In addition, for all ¢ € U; = ¢,FG,
bac = bae,c = bf(e;c) = 07 (e,)0(erc) = 07 (e18(es¢)) = 67 (0(eic)) = e1c = c,

where (4.1.17a) and (4.1.17b) have both been used, and also ¢ = e;c since ¢ € Uy,
and (e c) = e.0(e;c) since §(e;c) € U,. It is shown in a similar way that abd = d

for all d € U, = e,FG.
Define the maps § and § between e, M and e, M by:

0(eju,) = aeyu,
and
' (equs) = beyus,
for all u;,us, € M. These are clearly C-homomorphisms. Combining them gives:
§'8(eiu;) = @ (aeiuy) = §(erae u,)
= beyae;u; = baeju, = e u;,

where e;a = a (since a € U,) has been used. In a similar way, it can be shown that
99’(62112) = eyuy. It then follows that the C-modules e; M and e, M are equivalent.
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4.1. The double centraliser technique

Now suppose that there is an equivalence map ¢ between the C-modules e; M
and e, M. Define:

é: ZQ(ufl),v,) = EQ(qﬁu(l)

for all vt € ;M and v; € M*. Then é provides a map from Q(e; M, M*) = e,FG
into Q(e; M, M*) = ¢,FG. If ¢ is defined by:

Zﬂ(u“’ Zﬂ(qs-l @ v),

for all ul® € e,M and v; € M*, then ¢’ maps e,FG into e;FG such that ¢'¢ and ¢¢’
are the identity maps on €,FG and e,FG respectively. Since the right action of FG
commutes with the left action of both ¢ and ¢, then ¢ and ¢’ are equivalence maps
between the right ideals Q(e; M, M*) = e,FG and Q(e, M, M*) = e,FG. Therefore
e;FG and e,FG are equivalent right ideals.

Theorem 4.1.18. Ife € FGy is an idempotent then the C-module eM 1is irreducible
if and only if e is primitive. M is a completely reducible C-module.

Proof. Let e € FGy be a primitive idempotent and let R be a non-zero C-submodule
of eM. Lemma 4.1.16 shows that eFG = Q(eM, M*) whereupon Q(R, M*) C eFG.
Since ) is non-degenerate, Q(R, M*) # 0. Since Q(R,M"*) is a right ideal and
eFG is minimal, it follows that eFG = Q(R,M*). Then, by Lemma 4.1.15, R =
Q(R,M*)M = eM so that eM is an irreducible C-module.

Conversely, let ¢ € FGy be an idempotent and eM an irreducible C-module.
Let e = e, + e, where e; and e, are each idempotents. By Lemma 4.1.16, both
eiM and e, M are C-submodules of eM. Since eM is irreducible either ey M = 0
or e,M=0. In the first case Lemma 4.1.16 implies that e;FG = Q(e; M, M*) = 0
whereupon e, = 0. The second case is similar. Therefore either e, = 0 or e, = 0,
implying that e is primitive.

Because FGy is a completely reducible right FG-module,
FgN = @ €; Fg,

where each e; is a primitive idempotent and each e;FG is a minimal right ideal.
From Lemma 4.1.16, it follows that M = @, e; M, where each ¢; M is an irreducible
C-submodule of M. M is thus completely reducible.

It has been determined that for each primitive idempotent e; € FGn, eiM

is an irreducible C-module. However, it is often difficult to determine whether an
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4.1. The double centraliser technique

idempotent e; actually belongs to FGy. For this purpose the following lemma is

useful.

Lemma 4.1.19. If e € FG is a non-zero primitive idempotent of FG then either

e € FGy whereupon eM is an irreducible C'-submodule of M, or e € FGxn whereupon
eM = 0.

Proof. From Lemma 4.1.8, zey = ey for all z € FG. For any idempotent e € FG,
e=-cey+e(l—eyn)

for which (eeny)(e(1 —en)) = eeye —eeyeey = 0 and similarly (e(1 —en))(een) = 0.
Then, since e is primitive, either eey = e or e(1 — ey) = e. In the first case, it
follows that e € FGy and that, since eFG = Q(eM, M*) is non-zero, eM is a proper
irreducible C-module. In the second case, for allu € M, eu = eu—eeyu = eu—eu =
0 by Lemma 4.1.9, so that eM = 0.

Theorem 4.1.20. If the nucleus FGy is the direct sum of the minimal two-sided ideals
Wi, W, ..., W,, then M decomposes into s inequivalent irreducible FG ® C-modules:

AM = @6,’]\1, (4120)
i=1

where each e; is the unique central idempotent of W;. The dimension of e;M is equal
to fis; where f; is the dimension of any minimal right ideal elFG C e;FG, for el a
primitive idempotent, and s; is the dimension of the irreducible C-module e;M. The
dimension of M s Y; fis;.

Proof. By Theorem 3.2.17 and Lemma 4.1.2, each W; is the direct sum of f; linearly

independent right ideals. Thus e; may be written as the sum:

where e{’) is a primitive idempotent and V, = e$)FG is a minimal right ideal for j =
1,2,..., fi. Since the right ideals V; are mutually equivalent, so are the irreducible
C-modules e M = V; M by Theorem 4.1.17. The left action of FG on any one oM
generates all the C-modules e{’ M, and hence ¢; M, through the right ideal analogue
of Lemma 3.2.10. Therefore e; M is an irreducible FG ® C-module. It remains to
prove that the C-modules e’M are linearly independent. For j = 1,2,..., f;, let

ul € e M with u®) # 0. Then if xu® + ku® + - - + £, u0) = 0, for all v € M*,
0= Q(mu(l) + /gzu(z) 4o+ fcfiu(f‘),v)
= 1 QuM, v) + £ Q2uP,v) + - - + £, Q) v)
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4.2. The Weyl module and covariant tensor representations of GL(m)

By Lemma 4.1.16, Q(uf”, v) € e)FG. The linear independence of the right ideals
eFG implies that &y = kg = - -+ = ks, = 0. Thus the C-modules eI M are linearly
independent and, if s; is the dimension of any one of them, then the dimension of

the irreducible FG @ C-module e; M is f;s;.

§4.2. The Weyl module and covariant tensor representations of GL(m)

This section uses the results of the previous to obtain the irreducible GL(m)-
modules which arise as submodules of tensor powers of the deﬁ;ling GL(m)-module.

Let V be the m-dimensional GL(m, F)-defining module with basis {e; : 1 =
1,2,...,m}. G € GL(m) acts on V by linear extension of the action:

Ge,- = Z Gj,»ej, (421)

j=1

to the whole of V.

The [-fold tensor power GL(m)-module V® has a basis {e;,;,.q, : 1 < 1 <
m for k =1,2,...,1} where ¢;,;,.;, denotes ¢;, @ &;, @ --- Q e;,. If G € GL(m) then,
from (1.5.7), the induced action, G € End(V®'), on this basis is given by:

Geiyipiy = Z Gjlil G'i:i2 s Gj';,ejljg...j,, (4.2.2)

1<51,j2,--,51<m

which extends linearly to the whole of V® making V® a GL(m)-module.
Definition 4.2.3. The symmetric group S; is defined to act on V& by:

Teiig.qy = € (423)

w=1)fam1(@) i)

for m € S;, with linear extension to the whole of V®'. In addition, V& is made into

an FS;-module by linearly extending this S; action.

Once it has been determined that Endgs (V®') is actually the enveloping al-
gebra (linear hull) of the induced action of GL(m) on V®, the results of the last
section will enable the irreducible GL(m)-modules occurring as submodules of V&
to be obtained from the analysis of the Frobenius algebra of the symmetric group

presented in Chapter 3.
A general transformation, A € End(V®'), of V@ takes the form:

Ae€iigq, = Z Aili:......{'x €iria - (4.2.4)

i1
1<51,.. . ism
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Therefore End(V ') has dimension m?. If A € End(V®') commutes with the action
of FS,, then from (4.2.3) and (4.2.4), mAe;,i,..;, = Ame;;,..q, if and only if

Apidn = gl e (4.2.5)

[FEPRET Ty ie(t) ?

for all # € S;. This property characterises the elements of Endgs, (V') which are
known as bisymmetric. If G € End(V), the induced action, G € End(V®'), is given
by (4.2.2):

Girvirit — Gj‘ilGhiz . Gj',',- (426)

illq"-i(

It is immediately clear that G is bisymmetric and therefore that the actions of
GL(m) and FS; on V® commute. Let Endgg (V®') denote the enveloping algebra
of the induced actions of G € GL(m) on V®. This makes Endp; (V') a vector
space for which, if Gy, G2y € GL(m), then (G + G(2)) € Endgg (V®') is defined
by:

(Gay + Gy)eiigis = Gyliyiniy + G(2)€irigeis- (4.2.7)

The following lemma gives the desired result that the ring of endomorphisms of V&,
commuting with FS; is the enveloping algebra of GL(m). The proof is a reworking
of that given in [Bo63].

Lemma 4.2.8. End',,sl(V@) = Endp_g,(v@’).

Proof. It has already been determined that Endgg (V®') C Endes, (V®). If A €
Endes,(V®) is given by (4.2.4), then (4.2.5) implies that A is completely specified

by those components A2 7" for which:

182--+41

(J1,14) € (2, 02) < -+ < (G, 1h)s (4.2.8a)

where (a,b) < (¢,d) if and only if either @ < ¢, or a = ¢ and b < d; and (a,b) =
(¢,d) if and only if @ = ¢ and b = d. Furthermore, these components may be
varied independently. Therefore Endgs, (V') is a vector space of dimension ("‘”;'“1)
since (4.2.8a) implies that ! choices are to be made from m? pairs of indices with
repetitions permitted. By a similar argument, G2} = G¥, G’ ... G, has
(’"2“';"1) representative elements which satisfy (4.2.8a). Since Endgg (V®')is a vector
space, if it can be shown that these are linearly independent then the lemma is

proved. To this end, let

> Giriairizia- i G5, G2y -+ - G7, = 0, (4.2.8b)

(F1.41)L<L(n60)
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where the sum is over all indices which satisfy (4.2.8a). In this expression, each

term G7*; G’ --- G';, may be uniquely written:
(G (G- (G )m (G o (@)om o (G, (42.80)

where ko, = #{k: (a,b) = (Jx,%),1 <k <1},0 < ks <land 37, ko = 1. Since
each term satisfying these criteria corresponds to a unique term of (4.2.8b), that

expression may be written:

> Grusbir ban (G111 (G12)H7 - (G )i = 0 (4.2.8d)

0<kap<I
kntkizt - +kmm=!

Here, the left side is a homogeneous polynomial of degree ! in the m? elements of
the matrix G. If each element is permitted an arbitrary value this would imply
that each coefficient in (4.2.8d) is zero. However, if m > 2, those elements G with
non-zero determinant have a co-dimension of one in the m?-dimensional space of all
m x m matrices. Thus the conclusion remains valid for G € GL(m) and the lemma

is proved for m > 2. If m = 1 the same conclusion follows directly from (4.2.8d).

The irreducible GL(m)-submodules of V® are now obtained via the right
ideals of F.S; which, in turn, are obtained from the Young symmetrisers Yr» and the

map 9.

Theorem 4.2.9. The GL(m)-module V® is completely reducible. Let A € P(l)
and {T} : ¢ = 1,2,..., f*} be the set of Si-standard tableauzr of shape A\. Then, for
i =1,2,...,f* Yjs = PraQr» generates a set of f* linearly independent minimal

right ideals. The GL(m)-modules Y], V®" are linearly independent and equivalent.

Proof. Theorem 3.3.19 shows that, for each ¢ = 1,2,..., f*, Y7 is a primitive idem-
potent upon normalisation, and generates a minimal left ideal. By Theorem 3.3.22,
these are linearly independent. By Lemma 4.1.2, 9(Y7») is a primitive idempotent
upon normalisation, and generates a minimal right ideal for each ¢ = 1,2,..., f*.
These are linearly independent. Let Yo, = Y(Yr»), whereupon

=90, Y (=1)Yop)= 3 Y (=1)pte

0€CLa PER 0€CLx PER

= Z Z (—1)0[)0' = PTiAQT? .

0€CLa PER

The second part of the theorem now follows directly from Theorem 4.1.18.
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Theorem 4.1.17 and Lemma 4.1.19 now imply that for A € P({), those Y4 V® which

are non-zero provide a set of inequivalent irreducible GL(m)-modules present as
submodules of V®!.

The connection with Young tableaux will now be made. For each A € P({)
the tableau T* with T}, = 4, for k = 1,2,...,1, is conveniently identified with the

basis element w = ¢;,;,..;, of V®'. Therefore, among others, both

o
@2}
DN ©

and

(4.2.10)

00 = k=
© W
L 00 K ket

are identified with e;153026 € V®7. The place permutation action of 7 € S; on V&
as given by Definition 4.2.3 then corresponds to the place permutation action of =,
on T? as given by Definition 3.3.11. Then for w € V@ the tensor Yiw € YAV® is
identified with the Young symmetrised tableau {T*} = Y*T? as in (3.3.134d).

The Weyl module W* is defined to be the span of all {T*} where the entries
of T* are all from the set Z¢L(™ = N,,. However, despite there being m' such
tableaux, the {T?} are not linearly independent since the Column relations (3.4.2)
and the Garnir relations (3.4.3) apply. In particular, if 7"* has an entry repeated
in any column, then {T"*} is zero. In those cases for which \; > m this situation
must necessarily arise in the first column of every tableau T*. This implies that the
GL(m)-module Y, V® is zero. Conversely, if A, < m, there exists a T* for which

{T*} is non-zero (consider, for example, T2 of Definition 2.6.6). Lemma 4.1.19 then

yields the following theorem.
Theorem 4.2.11. [We39]|. The set
{(W*=Y,V®:Xe P(l;m)}

provides a complete list of inequivalent irreducible GL(m)-modules occurring as sub-

modules of V@',

Therefore, since every irreducible covariant G L(m)-module occurs in V® for some

[ [Li44], each irreducible covariant GL(m)-module is equivalent to W* for some
A € P(l;m) for some .

For each W* a set of favoured tableaux are provided by the following.
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Definition 4.2.12. The tableau T* is GL(m)-standard if and only if:
(i) the entries are taken from the set T6H™ = N,,;
(ii) the entries are strictly increasing from top to bottom down each column;
(1ii) the entries are non-decreasing from left to right across each row.

For example, of the tableaux:

111
2 2

ot W
SIS

, and

(4.2.13)

[T NV
B
Tt
NN

W N

the first two are GL(m)-standard for m > 5 and the last is not GL(m)-standard
for any m. In addition, neither of the tableaux of (4.2.10) are GL(m)-standard.

The techniques that were employed in Section 3.4 to write a symmetrised
tableau with distinct entries in terms of S;-standard tableaux, may also be used to
write an arbitrary symmetrised tableau with entries from the set Z¢X(™), in terms of
GL(m)-standard tableaux. Once more, the Column relations (3.4.2) enable {T"*} to
be expressed {T*} for some column strict T*. Then, if T* is not GL(m)-standard,
condition (7:t) of Definition 4.2.12 implies the existence of a neighbouring pair of
entries T(} ,, and T¢, ., for which T3, ,y > T¢, ;.4 as in (3.4.9). On selecting X' to be
the set of positions below and including that of T, ;) in the bth column, and Y to
be the set of positions above and including that of T¢, ,,,, in the (b + 1)th column,
the Garnir relations (3.4.3) enable {T} to be written in terms of higher tableaux.
This process can be iterated until just GL(m)-standard tableaux remain. Again the
termination of this iterative process is guaranteed by the finite number of tableaux

and the order on the tableaux given by Definition 2.6.8.
As an example of this standardisation procedure, consider the GL(5)-module

W* where A = (3,3,2), and the non-standard tableau:

3

2.

T = (4.2.14)

W W Ot
> = b

The Column relations enable {T*} to be written in terms of a column strict tableau:
2
3 (4.2.15a)

NN

3
Py=-{4
)
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Let X = {1,2,3} and Y = {4}. With an appropriate set of coset representatives,

the Garnir relations then give:

31 2 13 2 142 15 2
423p-34233+{323,-{323;=0. (4.2.15b)
5 4 5 4 5 4 4 4

The Column relations imply that the third term here is identically zero. In addition,
they permit the rearrangement of the entries in the second columns of the second

and fourth terms to give column strict tableaux. Thereupon, (4.2.15a) and (4.2.15b)

imply that:
1 2 2 1 2 2
{T"}:{433}—{343}. (4.2.15¢)
5 4 4 5

Consider the first term on the right side of this identity and let X = {2,3} and
Y = {4,5}. The Garnir relations then yield the identity:

122 132
4 33 p+42 4 -
5 4 S5 4
from which the Column relations give:
1 2 2 1 3 2 1 2 2
433 )p=-¢243;+{3 43 ,. (4.2.15¢)
5 4 4 5 4 5

Therefore, from (4.2.15¢):
13 2
{T’}=-4¢2 4 3 3. (4.2.15f)

4 5

o

(4.2.15d)

Note that this identity differs from (4.2.15a) only in that two columns have been
interchanged. Although this column interchange relationship between symmetrised
tableaux is easily obtained from the definition of {T?}, it is superfluous to require-
ments since the Column and Garnir relations are sufficient to obtain the required
expansion in terms of GL(m)-standard tableaux. It may, however, reduce the num-
ber of iterations required to produce that expression.

Now consider the term on the right side of (4.2.15f). Let X = {5,6} and

Y = {7,8}. The Garnir relations then give, on ignoring those terms with entries

85

B




4.2. The Weyl module and covariant tensor representations of GL(m)

repeated within a column:

13 2 1335 13
24 3)+49223,—-492 2
4 5 4 4 4 5

whereupon, from (4.2.15f):

123 123
{T"}=¢235,-223 4}, (4.2.15R)
4 4 45

the required expansion in terms of GL(5)-tableaux.

}:m (4.2.15¢)

Theorem 4.2.16. [JK81]. The set
{{T*} : T* is GL(m)-standard}
constitutes a basis for the irreducible GL(m)-module W*.

Proof. The existence of the standardisation algorithm given above implies that this
set spans W*. Thus it is sufficient to demonstrate linear independence. To do this,
the following order, which differs from that given by Definition 2.6.8, is introduced
on the set of all tableaux. Let ¢} be the sum of the entries in the bth row of T}
for b =1,2,...,q, where ¢ = ;. Let |T|' be the equivalence class of all tableaux
which have their sequences of row sums identical to that of T2; that is T> € |T|
if 2 =¢ for b=1,2,...,9. A total order on the set of these equivalence classes of
tableaux is defined by |T|" > |T}| if for some k < ¢, t¥ > t* with ¢} = ¢® for each
b=k+1,k+2,...,q.

Let p € R* and o € C*. Since the action of p, on T* leaves the elements of T*
in their original rows, p,T* € |T*|. If T* is GL(m)-standard then |0.T*| < |T*
since the action of o, only serves to move smaller entries down the columns. The
inequality here is strict if ¢ # I. Let the GL(m)-standard tableaux be labelled

T T T Tots Ty ooy T T (4.2.16a)
such that:
ﬁjzpmzrnzqnf, (4.2.16b)

for 1 < s < r, and such that:

[ ! / 7
| < || < || << T

(4.2.16¢)
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It is required to show that if:

‘:ikf,j{Tﬁ,-} =0, (4.2.16d)

i=1j=1
where each k;; € F, then each k;; = 0. If this is not the case, there exist a and b
such that k,, # 0 with k,; =0 for 1 < j < b and each k;; =0 for 2 < a. Thus:

0= Zb ko PIQIT + D )y ki, PAQMT,
J:

i=a+l j=1

=2 ks PLT0 +30 20 (1) ke PloTo+ 3 3 ki PPQUT,
j=b j=boeC\{I} i=a+1l j=1
In view of (4.2.16b) and (4.2.16¢), all the tableaux T* comprising the third term are
such that |7 > |T2, a.TN| > |12, for each o € C\{I}, all
the tableaux T* comprising the second term are such that |T*| > |T?, " Therefore,

since each tableau is uniquely identified with a basis element of V®'| it follows that:

. In addition, since

S ke PAT, = 0. (4.2.16¢)
j=b

Since the tableaux T3 ,,T},,,,..., T, are GL(m)-standard and distinct, it follows
that the sets {p.T}, : p € R*} each contain a single unique GL(m)-standard tableau

¢=1b,b+1,...,K,. It then follows from (4.2.16¢) that k., = ksp41 = -+ = ks x, = 0.
This contradicts k. ; # 0 whereupon all the k; ; of (4.2.16d) are zero and the theorem
is proved.

Let A € P(l). From (4.2.2) and Lemma 4.2.8, the element G € GL(m) acts
on {T*} € W* according to:

b TS s CTD s s GTD s DY
G{T*} = ;G Dpy GTégy - GTOgs (T}, (4.2.17)
the sum being over all tableaux 7" with entries from the set Z¢X(™), In order to
determine the action of E,* € gl(m) on {T*}, let p be the number of times that the
index b occurs in T* and form the set of p tableaux {1}',73,...,T}} by, in each

case, replacing a single index b in T* with a. Then, using (1.5.9) and Lemma 4.2.8,

p
EX{T*} =) {T}}. (4.2.18)
i=1
For example:
156 156 1 26
E?q 2 4 =<2 4 +42 4 . (4.2.19)
5 3 23 5 3
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Note that unless the index b appears in T?, then E,*{T*} = 0.

Quintessentially, the Weyl module is as follows.

Theorem 4.2.20. Let A € P(l). The Weyl module W* is the irreducible GL(m)-
module spanned by {T*} for all T* with entries from the set T™  modulo relations
(3.4.2) and (3.4.3), and on which GL(m) and gl(m) act according to (4.2.17) and
(4.2.18) respectively.

This theorem effectively provides a definition for W?*.

Since the symmetrised GL(m)-standard tableaux constitute a basis for W?,
explicit representation matrices are readily obtained from the actions of GL(m) and
gl(m) on these tableaux. Let s* be the dimension of W* and T}, T3, ..., T the
G L(m)-standard tableaux. The action of G € GL(m) on each {T}*} yields, according
to (4.2.17), a linear combination of, in general, non-standard tableaux. By using
the techniques of this section, each may be written in terms of the GL(m)-standard
tableaux so that: .

GITP} = S T(G)AT, (4.2.21)
i=1
for some set of numbers I'*}(G);; € F. These are the elements of the matrix I'*/(G)
which represents G in the representation {A}. In a similar way, the representation
matrix T (E) of E € gl(m) is given, via (4.2.18), by

A

B(T}) = YD (E)AT). (42.22)

i=1

As an example, consider the 15-dimensional representation {3,1} of GL(3).
Here, the GL(3)-standard tableaux are given by:

23 3 133 2 23 1 23 113

3 b 3 3 3 b 3 ? 3 b

2 2 2, 12 2’ 11 2’ 11 1, 1 3 3,(4_2.23)
3 3 3 3 2

1 23 113 1 22 112 111

2 ’ 2 ’ 2 ’ 2 ’ 2

From (4.2.18), the element E;® acts on the symmetrised counterpart of the first of

these according to:
3) 233 2 33 213 2 31
= . 4.2.24
ZEER o R A FR £ R B
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; 3 3 }, from (3.4.2),

3 3 }, from (3.4.3), and

2 3}~{; 3 3}, from (3.4.3).

w = N

Thereupon, (4.2.24) implies:

E13{§33}=2{;23}—3{;33}. (4.2.25)

Similar calculations, when carried out for each of the tableaux of (4.2.23), yield the

representation matrix:

N .

reYEN=] . . .1

1
where each zero has been replaced by a dot. The identity (4.2.25) is manifest as

the first column of this matrix.

By using a computer implementation of the techniques presented in this sec-
tion, representation matrices have been obtained for each of the basis elements of
gl(m) in a number of GL(m)-modules W*. It has been checked that the commu-
tation relations satisfied by the basis elements of gi(m) are also satisfied by the

matrices obtained through the methods of this section. That is, from (2.2.2), that:
[TONE,), TONE.%)] = 8 TN(E,%) + §:TPN(E.Y). (4.2.26)

This provides a verification that the matrices produced actually constitute a repre-
sentation of gl(m).
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4.2. The Weyl module and covariant tensor representations of GL(m)

Definition 4.2.27. GL(m)-weight. Let n{*™(T*) be the number of appearances of
the indez 1 in T*. The vector n®Et™(T*) = (nEE™(TY), ng ™(T*), ..., nSL™)(T*))
is known as the GL(m)-weight of T*.

Note that the tableaux present in each Column relation and each Garnir
relation have identical GL(m)-weights. This implies that a symmetrised tableaux is
a linear combination of GL(m)-standard tableaux of the same GL(m)-weight. This

observation is used below.

From (4.2.18) the action of the elements E,* on {T*} fora = 1,2,...,m, give:
E{T*} = nCE™(TH{T*}. (4.2.28)

Since the elements E,° for a = 1,2,...,m, form a basis for the Cartan subalgebra
of gl(m), the GL(m)-weight nS5(™)(T*) of T* determines the weight of the element
{T*} € W* in this basis.

With T2 as in Definition 2.6.6, n®L0™(T2) = (A1, As,..., An) = A and is the
unique GL(m)-standard tableau of shape F* for which this is so. If a < b then

EMT)} =0, (4.2.29)

since each term resulting from the right side of (4.2.18) will necessarily have an
entry repeated in some column. T2 is the only GL(m)-standard tableau with this
property. The set {E,? : a,b € I6L™) a < b} is a basis for BS*"™. Thus (4.2.29)
shows that {T2} is the unique highest weight of the GL(m)-module W*.

Theorem 4.2.30. The character of the irreducible representation {A} of GL(m)
derived from W* is:

(M (z) = > 7, (4.2.30)

TX:GL(m)-standard

for the class(es) of GL(m) with eigenvalues z,,zs,...,T,,, where (z) denotes the

GL(m) A GL(m) (P
T _ .n (T*) n (T*) GL(m) (A
vector (z1,Tq,...,2m) and 27 = zy* T5? cgnat T

Proof. This theorem is proved using the Jordan normal form G’ of the matrix
G € GL(m). Since G’ is equivalent to G, the representation matrices I'*}(G) and
T{(G") have the same trace. Let the eigenvalues of G be labelled z,,z,,...,Zm.
These appear along the diagonal of G’ and, if distinct, G’ has zeros elsewhere.
In such a case the set of eigenvalues specifies a unique class of GL(m), to which
both G and G’ belong. If G has a repeated eigenvalue, then G’ may, in addition
to the eigenvalues on the main diagonal, possess non-zero entries on the diagonal

immediately above. Therefore, in this case, the set of eigenvalues do not determine
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4.8. Symplectic group modules and trace tensors

a unique class within GL(m). Consider the action of G’ on a symmetrised GL(m)-
standard tableau {T*}. When G’ is purely diagonal, (4.2.17) implies that:

G : T} = x??L(M)(TA):c;gL(M)(Tx) g AT (4.2.30a)

In the case where G’ is not diagonal, other symmetrised tableaux will appear on the
right side of (4.2.17). These tableaux will have weights different to that of T* and
therefore, upon standardisation, will not alter the coefficient of {T?}. Thus in both
cases the GL(m)-standard tableau T* contributes xT?L(m)(TX)x;'fL(m)(TA) R S

to the trace of the representation matrix I'*}(G’). Summing over all GL(m)-
standard tableaux then yields (4.2.30).

As in the statement of Theorem 4.2.30, it is conventional to use the same
symbol, in this case {A}, to denote both the representation and its character. This
theorem implies that s*, the number of GL(m)-standard tableaux of shape F*, is
given by D,,{A} as in (2.5.5a).

The function {A}(2) defined by (4.2.30) is known as a Schur function or S-
function (see [StaT1], where various ways of defining {A} are considered). Each
S-function is a symmetric function in its arguments and the ring of symmetric func-
tions has a basis comprising all S-functions [Ma79]. The S-functions feature promi-

nently in the representation theory of the classical groups (see [Li50,R061,Ki75,
BK&83,Ki89], for example).

§4.3. Symplectic group modules and trace tensors

This section expounds the techniques used by Berele [Be86] in using Young tableaux
to construct irreducible Sp(2r)-modules. However, the presentation given here dif-
fers substantially from that given in [Be86]. This is so that when these techniques
are extended and applied to obtain the irreducible modules of other classical groups,

the parallels between them are readily apparent.

Since Sp(2r) is a subgroup of GL(2r), the GL(2r)-module W* also serves as an
Sp(2r)-module. However, W* is not, in general, an irreducible Sp(2r)-module. This
is due to the existence of trace tensors (defined below) which need to be removed

in order to obtain the irreducible Sp(2r)-modules present in V®'.

Fix r and let J = J;, as given by (2.1.1a). Let V be the defining Sp(2r)-
module with basis {e; : i € Z5737}. Then for all G € Sp(2r), GJG = J whereupon
the tensor:

Yo TkeiQea =) (6 Qe —e®e), (4.3.1)
i=1

j kEISP(aT)
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4.8. Symplectic group modules and trace tensors

is preserved.

Definition 4.3.2. A trace tensor of V® is any linear combination of terms of the

form:

dYERaRyYRaRz—2106QY® 6 ® 2), (4.3.2)

i=1
where x, y and z are elements of some (possibly zero) tensor power of V and tQyQz €
Vel-2), Define USP*) C V® to be the span of all such trace tensors.

The preservation of (4.3.1) under the action of Sp(2r) implies that U*?P(*") is invariant
under the action of Sp(2r). Since V@ is completely reducible [We39], it follows
that V® /USP() is isomorphic to a subspace of V® which is invariant under the
action of Sp(2r). Therefore B* = W*/(W?* N US(") is an Sp(2r)-submodule of
W,

Let (T*) denote the traceless symmetrised tableau resulting from the removal
of all trace terms (4.3.2) from the symmetrised tableau {I?}, by forming its quotient
with respect to the elements of USPr), B?* is therefore spanned by all (IT*) where

the entries of each T? are from the set Z57(27),

Lemma 4.3.3. Let T}, for i = 1,2,...,r, be r tableauz, identical except for the
entries in two positions in the cth column where T‘.’EG'C) =1 and T{}bvc) =t for some

fized a, b and ¢ < A\, with 1 < a,b < X,. Then:

r

> (T =0. (4.3.3)
i=1
Proof. Fori=1,2,...,r, let T} be identical to T} apart from the transposition of
the entries ¢ and 7 in the cth column. Since Y;_,(T?—T?) € US7(®") and the action by
place permutation of each summand of the Young symmetriser, Y* (3.3.13c¢), only
serves to give similar terms in US?(?") with appropriate changes of the positions (a, c)
and (b, ¢), it follows that T, ({T?} — {T*}) € U The identity {T}} = —{T?},
then implies that 3°!_, {7} € U®P(*" | whereupon (4.3.3) follows from the definition
of (T*) as a quotient.

The following lemma, despite its technical appearance, is a straightforward
consequence of Lemma 4.3.3, being obtained by the simultaneous application of
the trace condition over a number of index pairs. In the context of trace removal
techniques, it is a generalisation of a result that appears in [Be86], albeit in a vastly
different form. The proof is based on the techniques used in [Be86]. The elements
of the index set Z57(*") are ordered accordingto: 1<1<2<2<.--<F <.
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4.3. Symplectic group modules and trace tensors

Lemma 4.3.4. Let k be such that 1 < k < X,. Let N, = B*UBPUEUGUH be
a union of disjoint sets such that, with b* = #B*, V¥ = #BP, e = #&, g = #G,
h=#Hand d > g, \p = b* + b +2e + 2d. Let D,, for various w, run over all
distinct (2) subsets of H of cardinality d, and let the tableauz T2 be identical apart
from column k which contains entries from the set B*UEUD,UBPUEUD,. If the
indices from the set B> U & UBFUE are in the same positions in each T and the
indices from D, U D, are in column strict order, then:

(TS =0. (4.3.4)

Proof. For (T}) write the column k of T as a product, 6, of elements of Z57("),

For example, if k = 2 and

[ISTIE N
[+

T =

Wl NI
W N NI i

W

then (T™) gives rise to § = 1223. By virtue of (3.4.2), interchanging elements of 8
changes the sign of 6, and the presence of an identical pair of elements implies that

6 = 0. In this notation, (4.3.4) may be proved by showing that:

36, =0. (4.3.4a)

Let w; = 7z. The trace equation, (4.3.3), implies that:
> w;=0. (4.3.4b)
ieN,

With B = B> U B#, split this identity according to:

> wi=-— Zw,-. (4.3.4¢)

ieHUBUE i€G

Since d > g, on raising each side of this identity to the power of d, the right side is

annihilated by virtue of repeated terms, giving:

( > w,-)dzo. (4.3.4d)

ieHUBUE
This implies that:
> Wy, Woy ++ Wy = 0, (4.3.4¢)

v1<v2< - <vg
Y1rVZrerns vg €EHUBUE
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4.8. Symplectic group modules and trace tensors

whereupon, on setting 6% = [[ieps ¢ [Liese? and 68° = [l;ee wi, multiplication by
6%6¢ annihilates those terms featuring w; for 7 € BUE due to a repeated index.

Therefore:
6°6° D wywi,crw,, =0, (4.3.41)

Y1 <v3< - <v¢g
YL Ty YdEH

and hence:

6°6° 367 =0, (4.3.49)

where 67 = [[;cp, wi. Let 8, = 6°6°67, so that then 3, 6§, = 0. With the indices as
specified in the statement of the Lemma, the application of an identical permutation
to the factors of each 8! produces 8,. Therefore 8/, = +6, with the sign being
independent of w. Thus (4.3.4g) is equivalent to (4.3.4a) and the Lemma is proved.

As a simple example, consider the case where r = 4 and A, = 4 for some k.
Let B*=B? =€ =0,G = {1}, H = {2,3,4} and d = 2. Then b* = b = e =0,
g =1and h =3 so that d > g, and X; = b* + b® + 2¢ + 2d as required by Lemma

4.3.4. In this particular case (4.3.4c) becomes:
Wy + w3 4+ wy = —w;. (4.3.5a)

As in (4.3.4d), raising this expression to the power of d = 2 annihilates the right

side, whereupon, as in (4.3.4e):
Wows + wowy + wiw, = 0, (4.3.5b)

with all other terms zero due to repeated factors. Since B = £ = §, 686¢ is the unit

element, and this expression is, as in (4.3.4¢g):

3
6°6° S 67 =0, (4.3.5¢)

w=1

where the (Z) = 3 terms 67 = wyws, Y = wiws and 7 = wjw, respectively cor-
respond to the subsets D; = {2,3}, D, = {2,4} and D; = {3,4} of H. Set-
ting 6, = 6°%6°67 gives 5,8, = 0. In this example the terms are explicitly

6, = 0%6°67 = wyw; = 2233, 0, = 2244 and 6 = 3344 so that:

V]

233 + 2244 + 3344 = 0. (4.3.5d)

This leads to, for instance, the following tableaux identity in which each term 6}, in

the above expression is identified with 8, arising from the corresponding traceless
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symmetrised tableaux:

(4.3.5¢)

4+
W O QoI
il
o

W Wi N N
+
DN DI

For a more extensive example, consider the case where r = 9 and \; = 9 for
some k. Let B* =0, B = {4}, € = {7}, ¢ = {1,3}, H = {2,5,6,8,9} and d = 3.
Thenbd* =0, =1,e=1,g =2and h = 5so that d > ¢, and Ay = b*+b° +2e+2d

as required by Lemma 4.3.4. In this particular case (4.3.4c) becomes:
Wo +wy +ws +we+wr+wsg +wyg = — w; —ws. (43.6(1)

Raising this expression to the power of d = 3 annihilates the right side, while the
left side yields (z) = 35 non-zero terms as in (4.3.4¢e). Of these, all but (Z) = 10 are
annihilated on mutliplication by §26¢ = 477, whereupon, as in (4.3.4f):

‘177&)2(&)5&)5 + 477&12&)5(&)8 + 477&)2&)50)9 + ‘1770)2&)6&)8 + ‘177&12&)6(4)9

+ 47Twowswe + 4T Twswews + 4T Twswewy + 47 Twswswe + 4T Twewswe = 0.
(4.3.6b)
Here the ten terms correspond to the ten subsets D, of H of cardinality 3. The
first corresponds to D; = {2,5,6} while the last corresponds to Dy, = {6,8,9}.
Expanding w; = 7 for each term and rearranging gives:
224556677 + 224557788 + 224557799 + 224667788 + 224667799

+ 224778899 + 455667788 + 455667799 + 455778899 + 4667783899 = 0.

(4.3.6¢)
If A = (1°), this results in the following tableaux identity:

2 2 2 2 2 2 4 4 4 4

2 2 2 2 2 2 5 5 5 6

4 4 4 4 4 4 5 5 5 6

5 5 5 6 6 7 6 6 7 7

5 |+ 5 |+{ 5 |+{ 6 |+t 6 |+ 7T |+ 6 |+{ 6 |+ 7T |+ 7T |=0

6 7 7 7 7 8 7 7 8 8

6 7 7 7 7 8 7 7 8 8

7 8 9 8 9 9 8 9 9 9

7 8 9 8 9 9 8 9 9 9
(4.3.6d)

Standard tableaux for representations of the symplectic group were first ob-
tained by King [Ki76] to provide a convenient means of obtaining weights and

characters of these representations.
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4.3. Symplectic group modules and trace tensors
Definition 4.3.7. [Ki76] The tableau T* is Sp(2r)-standard if and only if:

(i) the entries are taken from the set T57(*);
i1) the entries are strictly increasing from top to bottom down each column;
y P

(iii) the entries are non-decreasing from left to right across each row;

(iv) T)y =7 fori=1,2,..., A

Note that each Sp(2r)-standard tableau is GL(2r)-standard if each entry a is ex-
changed for 2a — 1 and a is exchanged for 2a. Also note that since Tj}) is the first
entry in the ith row for ¢ = 1,2,..., A}, it follows from condition (ii1) that 52 7
for each j = 1,2,..., );. Finally note that if X; > r, conditions (:) and (iv) imply
that there exist no Sp(2r)-standard tableaux of shape F*.

The techniques of Section 4.2 may be applied to the case of the Sp(2r)-module
B*, once an appropriate order is provided on tableaux with entries from the set
5, This is given by, once more, mapping @ € Z5?®") to 2a — 1 and a € 57"
to 2a, and then using Definition 2.6.8. The column relations can then be used to
write any traceless symmetrised tableau in terms of a column strict tableau while,
if the column strict tableau T* violates condition (ziz) of Definition 4.3.7, then the
Garnir relations enable (T?*) to be written in terms of higher tableaux. Violations

of condition (:v) of Definition 4.3.7 are dealt with by the following lemma.

Lemma 4.3.8. Let T* be a column strict tableau which is not Sp(2r)-standard in
that Tjj,y < j* for some j*. Then (T*) may be expressed as a signed sum of traceless

symmetrised tableauz (T), where for each w, T) > T*.

Proof. Let k = 1 and Q C TI°?(*") be the set of indices in the first column of T*.
Let A={ieN,:1€Q,ieQ},B*={ieN,:i€Q,1¢ Q},B={t €N, :
1€ 9,149 C={ieN, :1¢ Q,1¢ Q} and B = B*UB?. Then A, B and
C are distinct with AUBUC = N,, and if a = #A4, b = #B and ¢ = #C, then
a+b+c=rand X, =2a+b. Let j = j* —1and J = N; so that #J = j.
The sets created above are now split with respect to J: D = AN J, &€ = A\D,
By=BNJ, B, =B\By, G =CNJ and F =C\G. In addition let H = DUF. With
the cardinalities of the sets just created d, e, b, by, g, f and h respectively, and the
cardinalities of B* and B?, b and b® respectively, then d+e+ b, +b, + g+ f =r,
h=d+ f, A = b+ +2d+2e and d + by + g = j. The condition T}, < j*
implies that 2d + b, > j since at least the first j* positions are filled with entries
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from the set 7 U J. This implies that d > g. Therefore the conditions of Lemma
4.3.4 are satisfied and the identity:

> (T2 =0, (4.3.8a)
DuCH
follows, where the sum is over all (3) distinct subsets D,, of H and T is identical
to T apart from the indices from the set DU D in the first column of each portion,
having been replaced by those from the set D, U D,,. Therefore:

(T = — S (T). (4.3.8b)

DwCH
Dw#D

Since H =DUF, D C J and FNJ = 0, each of the terms from the set F is higher
than those from the set D and it follows that for each term on the right of (4.3.8b),
T2 > T*, thereby proving Lemma 4.3.8.

To illustrate this lemma, let A = (2,12) and consider the Sp(8)-module B*.

The tableau:
2

T = (4.3.9a)

W W N NI

is not Sp(8)-standard since for j* = 4, Tj,, < j*. For this case, the proof of
Lemma 4.3.8 specifies the following sets: @ = {2,2,3,3} and hence A = {2,3},
B*=0,B°=0,B=0and C = {1,4}. Withj =j*+-1=3,J = {1,2,3}. Then
splitting the sets A and C with respect to J, produces the sets D = {2,3}, £ = 0,
G = {1} and F = {4}. Additionally H = {2,3,4}. Note that since d = 2 and
g = 1 then d > ¢ and that, since h = 3, an expression involving (2) = 3 terms is
expected. In fact, the sets B*, B?, £, G and H are precisely those in the example
immediately following Lemma 4.3.4, and thus (4.3.5¢), the result of that example
is, in this particular case, expression (4.3.8a). From this, the required expression
(4.3.8b), with each tableau on the right higher than the original tableau, follows

immediately:

o
V)

(4.3.9b)

LWl N I
B b1
> Qo QI

w
W

The second term on the right here is not Sp(8)-standard. However, it can written

in terms of such by using a single Garnir relation.
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As a further example, let A\ = (1°) and consider the Sp(18)-module B*. The
tableau:

T (4.3.10a)

H
S IEN T - NS I TN U

is not Sp(18)-standard since for j* = 7, T}y < j*. T* gives rise to the following
sets: Q = {2,2,4,5,5,6,6,7,7}, A= {2,5,6,7}, B* = 0, B = {4}, B = {4} and
C = {1,3,8,9}. With j = j*+ — 1 = 6, splitting the sets A and C with respect
to J = {1,2,3,4,5,6} produces the sets D = {2,5,6}, £ = {7}, ¢ = {1,3} and
F = {8,9}. Additionally H = {2,5,6,8,9}. Then d > ¢ since d = 3 and g = 2,
and h = 5 implies that an expression involving (2) = 10 terms is expected. In
this particular case, the sets B, B?, £, G and H are precisely those in the second
example following Lemma 4.3.4, and thus (4.3.6d), the result of that example is, in
this case, expression (4.3.8a). This yields the following expression with each tableau

on the right higher than the original tableau:

2 2 2 2 2 2 4 4 4 4
2 2 2 2 2 2 5 5 5 6
4 4 4 4 4 4 5 5 5 6
5 5 5 6 6 7 6 6 7 7
5 )=—{5)-{5]|-{6]-{6]-{7]-l6]-{6]-7]-7
6 7 7 7 7 8 7 7 8 8
6 7 7 7 7 8 7 7 8 8
7 8 9 8 9 9 8 9 9 9
7 8 9 8 9 9 8 9 9 9
(4.3.10b)

In this identity, a number of the tableaux on the right side are not Sp(2r)-standard:
the 1st, 3rd and 6th each violate condition (:v) of Definition 4.3.7 for : = 9. However,
the procedure given by Lemma 4.3.8 enables each of these terms to be written in

terms of Sp(18)-standard tableaux in one more step.

Lemma 4.3.11. The set
{(T*) : T* is Sp(2r)-standard}

spans the Sp(2r)-module B*.
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Proof. If the column strict T is not Sp(2r)-standard due to a violation of condition
(i12) of Definition 4.3.7 then the techniques of Section 3.4 enable the Garnir relations
to be used to write (T?) is terms of higher tableaux. If the column strict T* violates
condition (¢v) of Definition 4.3.7 then Lemma 4.3.8 shows that (T*) can be written
in terms of higher tableaux. Therefore, by iterating these two procedures, (T*) may
be written in terms of Sp(2r)-standard tableaux due to the ordering on the set of

all tableaux and their finite number.

This lemma has the direct implication that if \; > r, then the Sp(2r)-module
B* is zero since there exist no Sp(2r)-standard tableaux and therefore such a B* is

zero-dimensional.

Let A € P(l). Since U5 C V@ is invariant under Sp(2r), (4.2.17) implies
that the element G € Sp(2r) acts on (T?) € B* according to:

) Q) 2" @ H )

G(T*) =Y Grars Groras - Grar (T™), (4.3.12)
T

the sum being over all tableaux 7"* with entries from the set 57", In order to
determine the action of C,* € sp(2r) on (T*), let p and ¢ be the number of times

that the indices b and a respectively occur in T*. Form the set of p tableaux

{17, T}, ..., T7,} by, in each case, replacing a single index b in T* with a, and the
set of ¢ tableaux {T}',,T3,,...,T3,} by, in each case, replacing a single index @ in

T* with b. Then, it follows from (4.2.18), (2.2.13) and the definition of (T?) that:
C.HT*) = E,(T*) — sgn(ab)E;*(T*)

P ! (4.3.13)
= (TI/\,i> — sgn(ab) Z(T;:)
i=1 i=1
For example:
132 13 132 132
Ci{ 2 3 ={2 3 +{ 2 3 +{23 ) (4.3.14)
31 31 2 1 31

where, of course, the second term on the right side is identically zero.
Definition 4.3.15. Sp(2r)-weight. For:=1,2,...,r, let
nf”(zr)(T’\) = ny(T*) — n;(T),

where n;(T*) is the number of appearances of the index j € 57" in T*. The vector
nSPE(TAY = (n{PC(T), n3? (TR, ..., nSPC)(TA)) is known as the Sp(2r)-weight
of T*.
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By (4.3.13), C.* acts on (T*) to give:
C,o(T™) = nSPC(TAY(T), (4.3.16)

for a = 1,2,...,r. Since the elements C.,* for a = 1,2,...,r, form a basis for the
Cartan subalgebra of sp(2r), the Sp(2r)-weight nS?”(T?*) of T* determines the
weight of the element (T*) € B* in this basis.
With T} given by Definition 2.6.6, n57C(T2) = (A1, As,...,A) = A and T2
is the unique Sp(2r)-standard tableau of shape F* for which this is so. If a¢,b € N,
and a < b then:
C.(T2) =0, (4.3.17a)

and, if ¢ < b then:
C.HT) =0. (4.3.17b)
T2 is the only Sp(2r)-standard tableau with this property. Since {C.® : a,b €

N,,a < b} U{C.?: a,b € N,,a < b} is a basis for B{?®7, (4.3.17) shows that (T2)
is the unique highest weight of the Sp(2r)-module B*. |

Theorem 4.3.18. [Ki76] The dimension of the irreducible representation of the
compact simple group Sp(2r,R) of highest weight A is equal to the number of Sp(2r)-
standard tableauz of shape .

This leads to the following theorem.
Theorem 4.3.19. The Sp(2r)-module B* is irreducible with basis:
{(T*) : T* is Sp(2r)-standard}.

Moreover [We39], the set {B* : A € P(l;r)} provides a complete list of inequivalent
irreducible Sp(2r)-modules.

Proof. Since B* has highest weight A, and from Lemma 4.3.11, and Theorem
4.3.18, a dimension less than or equal to that of the irreducible representation (A) of
Sp(2r,R), it is the Sp(2r, R)-module corresponding to the irreducible representation
(M) of Sp(2r,R). It also holds for Sp(2r,C) since Lemma 4.3.11 is equally valid for
this case, and Sp(2r,R) is a subgroup of Sp(2r,C). The second part of the theorem
follows because firstly every Sp(2r)-module occurs in V'® for some ! [Li44]; secondly,
Sp(2r)-standard tableaux of shape A exist if and only if X, < r; and thirdly, A is
the highest weight of B*.

The quintessential structure of B> may now be stated.
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4.3. Symplectic group modules and trace tensors

Theorem 4.3.20. Let A € P(l;r). B> is the irreducible Sp(2r)-module spanned
by (T?*) for all T* with entries from the set T5°?7) modulo relations (3.4.2), (3.4.3)
and (4.3.3), and on which Sp(2r) and sp(2r) act according to (4.3.12) and (4.3.13)
respectively.

This theorem effectively provides a definition for B*.

Through the techniques of this section, explicit representation matrices for el-
ements of Sp(2r) and sp(2r) are readily obtained in the representation (A). Let
b = D,.(A) be the dimension of B* and T}, T},...,T,)), the Sp(2r)-standard
tableaux. The action of G € Sp(2r) on each (T}) yields, through (4.3.12), a linear
combination of, in general, non-standard tableaux. The techniques of this section
enable each to be written in terms of Sp(2r)-standard tableaux, so that:

bX
G(T}) = 2 TNG);:(T}), (4.3.21)
ji=1
where each I'*(G);; € F. These are the matrix elements of G in the representation
(A). In a similar way, the representation matrix I'Y(C) of C € sp(2r) is given, via
(4.3.13), by:
bA
C(T) = 3 TW(O)(T). (4.3.22)
i=1

As an example, consider the 16-dimensional Sp(4)-module B* where A =

(2,1). In this case, the Sp(4)-standard tableaux are:

2 2 1 2 12 2 2 1 2 12 11 11
k) 2 Y Y ? ? b b k)
2 2 2 2 2 2 (43.23)
11 12 1 2 12 1 2 11 11 11
2 2 2 32 2 2 7 2 7 2

With these tableaux denoted T}, T3, ..., T} respectively, then by (4.3.13), C,? acts

on (T}) according to:

(by (4.3.3))

(by (3.4.3)).

Oy
)
%)
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)7

2 > (by (3.4.2),

&
)
P
DN =
—ii
v
Il
I
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Dt = DN BN
DO

for (T})):

o

whereas for (T}}):

ool

Similar calculations, when carried out for the other Sp(4)-standard tableaux of

[N 1 ] DN
— [\
\/ \/
Il Il
| L
NN
DN

1 > —0 (by (3.4.2)).

(4.3.23), give rise to the following explicit representation of C;*:

.92

<

P(?,l)(clz) —

where each zero has been replaced by a dot. The identities obtained above result

in columns 8, 16, 12 and 15 of this matrix respectively.

A computer program has been written dealing with the construction of B* as
elucidated in this section. This program produced the above matrix, together with
those for the other basis elements of sp(4) in the same irreducible representation
(2,1). The construction algorithm has been checked by confirming that these repre-
sentation matrices satisfy the commutation relations given by (2.2.14). In addition,
representation matrices for sp(2r) in a number of other modules, in particular those

requiring the use of Lemma 4.3.8 in their construction, have been calculated and
validated.
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4.4. Mized tensor GL(m)-modules
§4.4. Mixed tensor GL(m)-modules

As in Section 4.2, let V be the defining m-dimensional GL(m)-module with basis
{ei,€2,...,em}. Let V* be the m-dimensional vector space dual to V with basis
{e!, €%,...,em}, the dual action €'(e;) = J*; being encoded in the non-degenerate

m x m matrix J. The covariant action of G € GL(m) on the basis of V,

GC,’ = ZGj;ej, (441)
i=1 -
induces the contravariant action on the basis of V* given by:
Ge' =3 (JG'J e (4.4.2)
i=1

Naturally, these actions extend linearly to the whole of V and V* respectively.
In particular V* is a GL(m)-module. Incidentally, by (4.4.2), it gives rise to a
representation which is equivalent to the contragredient of that corresponding to V.
The actions of GL{m) on V and V* imply that the mixed tensor Z$=1(J‘1)f;e‘ Re;
is invariant under the action of GL(m).

In order to avoid unnecessary complications, the specialisation J = I,,, the
identity matrix, will be made, whereupon the results of this section will pertain
solely to this choice. It will be discussed later as to how a different choice would

have affected the developments of this section.

The mixed tensor space (V*)®" ® V® has a basis:

{7t a1 €0 < mj=12...,v;1 < a < mi=12....,u}
(4.4.3)
where ¥tz =" R R - Qe Qe Ve, Q- Qea,. By (4.4.1), (4.4.2)
and (1.5.5), G € GL(m) acts upon these basis elements according to:

Bida-by ~1yb ~1yb, . didaed,
Ge 1o 41828y — (G ) ldl v (G ) d‘,GCla, v Gc a, € 192 C1ea-Cy) (444)
where repeated indices are summed over.

Definition 4.4.5. The direct product group S, ® S, is defined to act on the basis
elements of (V*)® ® V@ according to:

TRT: e""’"""'ala,.‘.a. = ebw—l(1)”r—1(2>"'bw~l(v>a

(4.4.5)

1) e=1(2) 1))

where each m € S, and 7 € S,. This action is extended linearly to make (V*)®* @ Ve
an S, ® S,-module and thence a C(S, ® S,)-module.
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4.4. Mized tensor GL(m)-modules

The following notation will be employed. For y € CS,, 7 : (V*)® @ V& denotes
y®1: (V*)®*@Ve* whilefor z € CS,, z : (V*)®*@V® denotes 1@z : (V*)®*QV e,

Since if G € GL(m) then G-! € GL(m), it follows from (4.4.3) and Lemma
4.2.8, that S,®S, and GL(m) commute in their actions on (V*)®'@Ve*. If u € P(u)
and v € P(v), it then follows that (Y. Y. )(V*)®* ® V®* is a GL(m)-submodule of
(V*)®* @ Ve where Y,, and Y;, are Young symmetrisers given by Theorem 4.2.9.
As will be seen, (Y, ® Y..)(V*)® ® V@ is not irreducible in general, and unless
iy + v < m, it 1s zero. )

Let 1o € P(u) and v € P(v). Each basis element w = e®b#%, .. of (V*)®'®
V@4 is identified with the composite tableau T obtained from t7* by replacing each
integer ¢ by @; for ¢ = 1,...,u, and each barred integer j by b; for j = 1,...,v. The
barred and unbarred entries of T7# therefore represent contravariant and covariant
indices respectively. For example, if (7;p) = (3,2;4,3,1) then w = €212%3,1,34305 is
identified with:

NI O
DN =

32;431 __
1

3 5. (4.4.6)
2

SIS
0o

Following from the action of S, ® S, on w, S, ® S, acts on T’# by place

permutation. This place permutation action is given by the following.

Definition 4.4.7. If u € P(u), v € P(v), then S, ® S, acts by place permutation on
T*# to give T'"* = (7, @7.)T"*, where Tj3" = T('%(-a—)) Jora €N, and Tpy* = T7%, 4y,
for b € N,. This action ertends linearly to CS, ® S,,.

This definition is a direct generalisation of Definition 3.3.11. Here S, ® S, acts
to permute the barred (contravariant) entries amongst themselves and to permute
the unbarred (covariant) entries amongst themselves.

Let T%* be a composite tableau with entries from the set Z6L(™ in the F”

portion and entries from the set Z6L(™) in the F* portion, and let (T%#) denote the

symmetrised composite tableau:
(T7%) = (Y? @ Y2)T". (4.4.8)

The symmetrised composite tableau (T7#) is thus identified with (Y, @ Y, )w €
(V*)® @ Ve where T7* is identified with the basis element w € (V*)®" @ V®*. Let
M?"# denote the span of all such (T7#). As indicated above, the GL(m)-module

MP# is reducible, in general.
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4.4. Mized tensor GL(m)-modules

Since the Young symmetrisers act independently on the two portions of a
composite tableau, the generalisation of Lemmas 3.4.2 and 3.4.3 to this case is

straightforward.
Lemma 4.4.9. Let T?# be a composite tableau. If 7 € C* and ¢ € C¥, then:

(T7*) = (=1)" (7 T"*) (4.4.9a)
and

(T7#) = (=1)%($T"*). (4.4.9)

As for Lemma 3.4.2, this Lemma has the consequence that if T7# has an entry
repeated in any column then (7%#) vanishes, and that any (T7*) may be expressed
as £(7""*) for some composite tableau T"7# which is column strict, where the
indices from Z¢5(™ are ordered 1 < 2 < --- < m and those from Z6Z(™) are ordered
I1>2>-.->m.

The Garnir relations take the form:

Lemma 4.4.10. Fori < j, let X and Y be subsets of the entries in the tth and jth
columns, respectively, of either a) t* such that #(X UY) > fi;, or b) t¥ such that
#FXUY) > 0. Let S(X), S(Y) and S(X UY) be the subgroups of a) Sy, or b)
S,, preserving X, Y and X U Y, respectively. Then if G(X,)) is a set of right coset
representatives for S(X) @ S(Y) in S(Y U Y), either:

S (=1)(nT"*) =0, (4.4.10a)
n€c(x,y)

or
o (=1)"(HT"™*) = 0. (4.4.100)
n€¢(X,Y)

To illustrate Lemma 4.4.10, consider the module M2'?', On using X =

{1,2,3}, ¥ = {4} and an appropriate set of coset representatives, (4.4.10a) gives
the identity:

]
[SSIVA]]
L aall
DNl

5. (44.11a)

Ot o W
RN
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4.4. Mized tensor GL(m)-modules
The use of (4.4.100) with X = {1,2}, Y = {3} and an appropriate set of coset

representatives, allows the first term on the right side of (4.4.11a) to be re-expressed:

1

2

3
2 3

3 2
1 1

3 |- 3, (4.4.115)

Sy

1 1
4 4
5 5
with similar identities arising from the application of the same set of coset represen-

tatives to the other two terms on the right side of (4.4.11a). These four expressions

may be combined to yield:

f
oI I
—0 ol
-l b

~~
—i

y]}

Ot W
U
U

Ot
S]]

"l
=1 NI

(9]

[ BV
o
> W

(4.4.11¢)
The reducibility of the GL(m)-module M”# is implied by the existence of

trace tensors. It will be shown that the removal of all trace tensors results in an

irreducible GL(m)-module.

Definition 4.4.12. A trace tensor of (V*)®* @V is any linear combination of terms
of the form:

Z WRERIQYR &; ® 2, (4.4.12)

i€IGL(m)
where w and = are elements of some (possibly zero) tensor power of V*, w @z €
(V=)8t-1_ y and z are elements of some (possibly zero) tensor power of V, and
y @z € V-1 Define U™ C (V*)® @ V8 to be the span of all such trace

tensors.

The invariance of the mixed tensor 37, ¢’ @ e; under the action of GL(m) im-
plies that UL(™ is likewise invariant. Let {T7#} denote the traceless symmetrised
composite tableau resulting from the removal of all trace terms (4.4.12) from the
symmetrised composite tableau (T7#) by forming its quotient with respect to the
elements of USL(™),
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4.4. Mized tensor GL(m)-modules

Lemma 4.4.13. Fori € I let T/* be m composite tableauz identical except for
the entries in the two positions corresponding to a of t* and b of t° where T/* has

the entries i and 1, respectively. Then

> {T/*}=0. (4.4.13)

i€ZGL(m)
Proof. Since ¥ ;eczoum I € UGL(™ | and the action by place permutation of each
summand of the Young symmetrisers Y* and Y as in (4.4.8), only serves to give
similar terms in US%(™ with appropriate changes of a and b, Yiczouem {I¥*} €

USL(™) whereupon (4.4.13) follows from the definition of {I7*} as a quotient.

The following lemma is the mixed tensor analogue of Lemma 4.3.4 in that
the trace condition is simultaneously applied over a number of index pairs, in this
case covariant-contravariant index pairs. The proof is virtually identical to that of
Lemma 4.3.4, but is reformulated here to clarify the distinct roles of the unbarred

(covariant) and barred (contravariant) indices.

Lemma 4.4.14. Let k; and ky be such that 1 < ky < vy and 1 < ky < py. Let
I6Lm) = By BP U E UG UH be a union of disjoint sets such that, with b = #B*,
b = #BP e=H#E, g=#G, h=#Handd > g, i), = P +e+d and jiy, = b*+e+d.
Let D,, for various w, run over all distinct (2) subsets of H of cardinality d, and
let the composite tableaur T7#, be identical apart from column k, of the F’ portion
which contains entries from the set BF U E U D, and column k, of the F* portion
which contains indices from the set B*UE U D,,. If the indices from the sets &, B,
& and B* are in the same positions in each T’* and the indices from D,, and D,, are

in column strict order, then:

S {1} = 0. (4.4.14)

Proof. The entries from the two relevant columns of T?# may be schematically

represented thus:

B| | S|

: (4.4.14a)
Ba

&
D,

Write these two columns as a product, 8,,, of elements of ZGL(mUZSL(™), By virtue of

(4.4.9), interchanging elements of 8, which are either both barred or both unbarred
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changes the sign of 8,,, and the presence of an identical pair of elements implies that

6, = 0. In this notation, (4.4.14) will be proved if it can be shown that:
> 6, =0. (4.4.14b)
Let w; = 7. The trace equation, (4.4.13), implies that:

> w; = 0. (4.4.14c)

i€l

With B = B> U B*, split this identity according to:

Y owi=— Zw,-. (4.4.14d)

ieHUBUE 1€Q

Since d > g, on raising each side of this identity to the power of d, the right side is

annihilated due to repeated indices, whereupon

( > w,)d:o. (4.4.14¢)

ieHUBUE
This implies that:
> Wy Way -y, =0, (4.4.14f)

Y1 <v2< - <vg
Y1oY2ren vqg EHUBUE

whereupon, on setting 6% = [;cps ¢ [Liep-? and 6° = [];cs wi, multiplication by
§%6° annihilates those terms featuring w; for ¢ € BU E due to a repeated index.

Therefore:

6°0° Y. wyw,,-w,, =0, (4.4.149)
y1<v3<-<vd
Y1120 Y4EH

and hence:

6°6°> 60 =0, (4.4.14h)

where 60 = [[;cp, w;. Let 8/ = 656767, so that then 3, 6/, = 0. With the indices as
specified in the statement of the Lemma, the application of an identical permutation
to the factors of each 6/ produces 6,,. Therefore 6/, = +6, with the sign being

independent of w. Thus (4.4.14h) is equivalent to (4.4.14b) and the Lemma is
proved.

As an example, consider the case where m = 6, u = (2,2,1) and v = (1,1),
and deal with the first column of each portion of F”# so that k; =1, k. =1, fi; =3
and &, = 2. Let B> = {1}, B =0, =0,G = {2}, H = {3,4,5,6} and d = 2.
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Then b =1, =0,e =0,g =1and h =4sothatd > ¢, =¥ + e+ d and
fi; = b + e + d, as required by Lemma 4.4.14. In this case (4.4.14d) becomes

W + Wi + wy + ws + wg = —ws,. (4.4.15q)

As in (4.4.14e) raising this expression to the power of d = 2 annihilates the right
side, whereupon, as in (4.4.14f):

W1w3 + Wiy + W1ws + wWiws + Wawy + waws + wawe + waws + waws + wsws = 0, (4.4.15b)

with all the other terms zero due to repeated factors. Since B = {1} and & = 0,
6%6¢ = 1. The multiplication of the above expression by this term annihilates those

terms featuring w,. Therefore, as in (4.4.14g):
6° 6% waw, + 6°6° waws + 6% 65 wawes + 0°6° w,ws + 0°6° wawe + 0°6° wsws = 0, (4.4.15¢)

or, as in (4.4.14h):
6
6°6° > 67 =0, (4.4.15d)

w=1

where the (;) = 6 terms 67 = wywy, 07 = waws, 7 = waws, 07 = waws, 7 = waws
and 67 = wsws respectively correspond to the subsets D, = {3,4}, D, = {3,5},
Ds = {3,6}, Dy = {4,5}, Ds = {4,6} and Dg = {5,6} of H. Setting 6/, = §°6°6%
gives 3", 6/, = 0. In this example the terms are explicitly 8, = 6°6°0° = lwsw, =
13344, 6, = 13355, ¢, = 13366, ¢, = 14455, 6, = 14466 and ¢, = 15566 so that:

13344 + 13355 + 13366 + 14455 + 14466 + 15566 = 0, (4.4.15¢)
and, by rearranging the factors:
34134 4 35135 + 36136 + 45145 + 46146 + 56156 = 0. (4.4.15f)

This leads to, for instance, the following tableaux identity in W5%221 in which each

term in the above expression is identified with the ,, arising from the corresponding
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composite tableau:

1 5 (6
3 3 3
120+ 12+ 12
3 4 3 4 3 4
* 5_ ) 6_ _ (4.4.159)
5 ) 6 6
4 4 5
+ 12+ 12 ¢+ 1 2¢=0.
4 4 4 4 5 4
5 6 6

The GL(m)-module W7# is defined to be the span of all {T7#} where each T?*
is a composite tableau whose F* portion contains entries from the set Z¢%(™) and

whose F” portion contains entries from the set Z6L(m), Then W?# = M7# [(M"# N
USHm),

Standard composite tableaux for the mixed tensor GL(m)-modules are pro-

vided by the following definition which generalises Definition 4.2.12.

Definition 4.4.16. [Ki76] Let u € P(u) and v € P(v). Let T”* be a composite
tableau for which, for 1 = 1,2,...,m, a; is the number of entries less than or equal
to ¢ in the first column of the F* portion of T"*, and B; is the number of entries

greater than or equal to ¢ in the rightmost column of the F” portion of T#. T"* is
GL(m)-standard if:
(i) each entry in the F* portion is from the set T°H™ = {1,2,...,m};
(ii) each entry in the F” portion is from the set T6L(m) = {1,2,...,m};
(iii) the entries are strictly increasing from top to bottom down each column;
(iv) the entries are non-decreasing from left to right across each row;

(v) a;+ 5; <ifori=1,2,...,m.

Lemma 4.4.17. Let T?* be a composite tableau which is not GL(m)-standard in that

a; + f; > j for some j. Then {T?*} may be expressed as a signed sum of traceless

symmetrised composite tableaur {T5*#}, where for each w, T?# > T%*,

Proof. The procedure exhibited here makes use of Lemma 4.4.14 and is similar to

that used for the proof of Lemma 4.3.8 in the construction of irreducible Sp(2r)-
modules.

Let Q C ZIGL(™ U ZGL(™) be the set of entries in the first column of each of
the two portions of T?*#. Let A = {i € I6L™ : 7 € Q,1 € @}, B> = {i € I¢L™) ;
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i€Q,id Q) B = (iU ieQ,igQ},C={iecT.i¢gQ idQ)
and B = B> U B?. Then A, B and C are distinct with AUBUC = I¢L(™) and if
a=H#A0"=H#B* V¥ = #BP b=F#B,and c = #C, thena+b+c=m, i, = a+b*
and 7, = a+b°. Let J = N; so that #J = j. The sets created above are now split
with respect to J: D=ANJ,E = A\D, B, =8BNJ, B, =B\Bo,, § =CNJ and
F = C\G. In addition let H = DUF. With the cardinalities of the sets just created
d, e, by, by, g, f and h respectively, then d+e+ by + b +g+ f =m, h =d+ f,
fr=d+e+b, 0, =d+e+b,and d+ b, + g = j. The condition a; + 3; > j
implies that 2d + b, > j, so that d > g. Therefore the conditions of Lemma 4.4.14
are satisfied and the identity:

E {T?#} =0, (4.4.17q)
DwCH
follows, where the sum is over all (2) distinct subsets D,, of H, and T7* is identical
to T7# apart from the indices from the set DUD in the first column of each portion,
having been replaced by those from the set D, U D,,. Therefore:

(T} = — Y {T0%}. (4.4.17b)

DwCH
Dy#D

Since H = DUF and each of the terms from the set F is higher than those from the
set D, it follows that for each term on the right of (4.4.17b), T2# > T"#, thereby

w

proving Lemma 4.4.17.

As an illustration of the algorithm described in the above proof, consider the

composite tableau:

[SVIRN|

>~ W =
> DN

and the GL(6)-module WT122D, Here a; = 1, f; = 0, so that a; + 1 =1 < 1;
a; =1, 3 =0,s0that ag + G, =1 < 2; a3 = 2, B3 = 1, so that az + 33 =
3<3 but ag =3, 55 = .‘2‘, so that a4 4+ B4 = 5 > 4 implying that the tableau is
not GL(6)-standard. Thus j = 4 satisfies the condition of Lemma 4.4.17, so that
J = {1,2,3,4}. Reading the entries from the first columns of the above tableau
gives Q = {1,3,4,3,4} and hence A = {3,4}, B> = {1}, B = 0, B = {1} and
C = {2,5,6}. Splitting the sets A and C with respect to J, as in the proof of
Lemma 4.4.17, produces the sets D = {3,4}, £ = 0, G = {2} and F = {5,6}.
Additionally H = {3,4,5,6}. Note that since d = 2 and g = 1 then d > g, and that
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since h = 4, an expression involving (;) = 6 terms is expected. In fact, the sets
B>, B?, £, G and H are precisely those in the example (4.4.15). The result of that
example, (4.4.15¢), is in this case, expression (4.4.17a). From this, the required
expression (4.4.17b), with each tableau on the right side higher than the original

tableau, follows immediately:

4
3

Wi O
LI Ol

1 2 -
3 4
4

(4.4.18b)

>l Ol
[S2{ @]

[>T S T
N

Note that, in this case, all but the last of these terms is GL(m)-standard. A single
application of a specific Garnir relation to this term will produce an expression

involving only GL(m)-standard tableaux.
Lemma 4.4.19. The set

{{T"*} : T"* is GL(m)-standard}
spans the GL(m)-module W%+,

Proof. As for covariant GL(m)-modules, this lemma is proved by demonstrating
that a standardisation algorithm exists by which non-standard terms may be written
in terms of higher tableaux. If the column strict T%# is not GL(m)-standard due
to a violation of condition (¢v) of Definition 4.4.16, then this violation will occur in
either the F* or the F” portion. If the former, then the Garnir relations (4.4.10a)
may be used on the F* portion precisely as in Section 3.4 to write {T”*#} in terms of
higher tableaux, as given by the order of Definition 2.6.19. An example is provided
by (4.4.11a). For the F” portion, violations are dealt with by locating the offending
neighbouring pair of entries and applying the procedure as if this portion of the
tableau were the ‘correct’ way up. Here, the barred entries, interpreted as negative
integers, ensure that non-standard tableaux are written in terms of higher tableaux.

For example, identity (4.4.11b) results from the use of this procedure.

If T"# is not GL(m)-standard through a violation of condition (v) of Definition
4.4.16, then Lemma 4.4.17 shows how to write {T7*#} in terms of higher tableaux.
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By iterating these three procedures, any {T°*#} may be written in terms of
G L(m)-standard tableaux due to the ordering on the set of all composite tableaux

and their finite number.

Note that, in general, the trace relations and the Garnir relations will have
to be applied many times in order to elicit an expression solely in terms of GL(m)-
standard tableaux. Lemma 4.4.19 has the direct implication that if g, + 7, > m,
then the GL(m)-module W?# is zero since no GL(m)-standard tableaux exist for

such modules.

Since GL(m) commutes with the action of S, ® S,, (4.4.2) implies that the
element G € GL(m) acts on {T7#} € W7"# according to:

1T

G{T"*} = T;A(G“l V& gy (G s GTE - T e (T,
(4.4.20)

the sum being over all tableaux 7"7# with entries in the F* portion from the set
Z6L(m) and in the F” portion from the set Z¢L(™), Since the GL(m)-module V* is
contragredient to V, it follows from (1.5.2) that the element F,® acts on the basis

element ¢ of V* according to:

Ele' = —§ie’. (4.4.21)

a

Consequently the action on the basis element b2t~ of (V*)8 ® VO is given
by:

Eabeblbgmbv

a a2y —

i hd 4.4.22)
Z b bibaeby bi obye-bi_1bbig1b (4.4.
50.6 Q1@ 16ai41 Gy E :6a € ‘ara-ay -
i=1

i=1

Let p and ¢ be the number of times that the indices b and a respectively occur in
T7#. Form the set of p tableaux {I7{,TY%,...,TY#} by, in each case, replacing a
single index b in 77# with a, and the set of ¢ tableaux {T5¥, Ty ¥,..., Ty} by, in
each case, replacing a single index @ in T"# with b. It then follows from (4.4.22)
and the definition of {77#} that:

P q
EM{T7} =Y {T7¢} = > {T7#}). (4.4.23)
i=1 i=1
The following generalises Definition 4.2.27.

Definition 4.4.24. GL(m)-weight. Fori=1,2,...,m, let

n?L(m)(TD;ﬂ) — n,-(TD”‘) _ n;(T"‘”),
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4.4. Mized tensor GL(m)-modules

where n;(T7*) is the number of appearances of the indezx j € T6L(m) Y ICL(™) ip TVik,
The vector nSL™(T7#) = (n{H™(T7#), ng ™ (T7#),. .., nSE™(T7#)) is known as

the GL(m)-weight of T"#.
By (4.4.23), E,® acts on {T"*} to give:
E,{T"#} = nSUm)(To#){T"»}, (4.4.25)

for a = 1,2,...,m. Since the elements E,% for a = 1,2,...,m, form a basis for the
Cartan subalgebra of gl(m), the GL(m)-weight n¢L(™)(T7#) of T”# determines the
weight of the element {T%#} € W?"# in this basis. o

Definition 4.4.26. On fizing m, define TZ# to be the composite tableau for which
Tlh;y=1tfor1 <1< iy and 1 < j <y, and for which T:‘(’;‘J) =m~—1v; +1 for
1<i:<Pandl <j <.

When m = 8, this definition implies, for example, that:

~J/ 00l
-Ji 00l

32,431 __
TS =

1. (4.4.27)

W N =
DN =
N =

As was noted earlier, only those W7”# need be considered for which fi; 4+, < m.
In such a case, the GL(m)-weight of TZ* is given by (7; it). (see Definition 2.3.11).
Then (4.4.23) implies that E,*{T7#} = 0 for all a,b € T%(™) with a < b. Moreover,
TZ# is the only GL(m)-standard tableau of shape F”# for which this is true. This
shows that {T7*#} is the highest weight vector of W7,

Theorem 4.4.28. [Ki76] The dimension of the irreducible representation of the
compact stimple group U(m) of highest weight (7; 1) is equal to the number of GL(m)-
standard tableauz of shape F"*.

This leads to the following theorem.

Theorem 4.4.29. The GL(m)-module W"# is irreducible with basis:

{{T%*} : T** is GL(m)-standard}
Moreover [We39|, the set {W?"* : u € P(u;s),v € P(v;t),s +t < m} provides a
complete list of inequivalent irreducible GL(m)-modules.

Proof. Since W7# has highest weight (#; i), it contains the U(m)-module corre-
sponding to the irreducible representation {#; 4} of U(m). Then, for U(m), the
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4.5. Duality between Garnir and Trace relations

first part of the theorem follows from Theorem 4.4.28 and Lemma 4.4.19. It also
holds for GL(m,C) since Lemma 4.4.19 is equally valid for this case and U(m) is
a subgroup of GL(m,C). The second part of the theorem follows because firstly
every GL(m)-module occurs in (V*)® ® V® for some pair v and u [We39}; sec-
ondly, GL(m)-standard tableaux of shape F”* exist if and only if , + f1; < m; and
thirdly, (7; p) is the highest weight of W7,

The quintessential structure of W¥?*# may now be stated.

Theorem 4.4.30. Let p € P(u;s) and v € P(v;t) with s +t < m. The GL(m)-
module W?# is the irreducible GL(m)-module spanned by {T"*#} for all T"* with
entries in the F* portion from the set I¢L(™) and entries from the F’ portion from
the set IGLm) modulo relations (4.4.9), (4.4.10) and (4.4.13) and on which GL(m)
and gl(m) act according to (4.4.20) and (4.4.23) respectively.

This theorem effectively provides a definition for W7#,

The techniques of this section enable explicit representation matrices for el-
ements of GL(m) and g¢l(m) to be readily obtained in the representation {7;u},
in a direct extension to the techniques presented in Section 4.2 for the covariant

GL(m)-module W*.

As indicated earlier, the techniques of this section depend, to a large extent
on the choice of J. In fact, for certain choices of J, for example J = J*,

by (2.1.15/¢), the GL(m)-standard composite tableaux of Definition 4.4.16 do not

provide a basis for the corresponding irreducible GL(m)-module. Nevertheless, in

as given

this particular case, it is possible to define an alternative set of standard tableaux
and to devise a standardisation procedure analogous to that used in this section
to write an arbitrary symmetrised traceless composite tableau in terms of these
alternative standard tableaux. However, such standard tableaux do not readily

yield the weights and characters of the representation {7; u} of GL(m).

§4.5. Duality between Garnir and Trace relations

In this section a most intriguing result is presented. It is that any Trace relation
of the type considered in Lemma 4.4.14, implies the validity of a Garnir relation in

the canonical (amongst others) associate module and vice-versa.

In order to demonstrate the duality, a bijection is required between the set
of column strict composite tableaux in an irreducible mixed tensor GL(m)-module
and the set of column strict tableaux, ordinary or composite, in one of its associate

modules.
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4.5. Duality between Garnir and Trace relations

Definition 4.5.1. Let p € P(u;s) and v € P(v;t) with s +t < m. Let the gener-
alised partition A = (A, A,, ..., A,) be that corresponding to (U; p),. For k € 7 let
(%5 uF),m correspond to the generalised partition A¥ = (A, + k, A+ k,..., A, + k).
The irreducible representations {7%; u*} for all k € I are said to be mutually asso-
ciate. The canonical associate of {U; u} is defined to be {A} where A = (9%; u?),, with
q = vy so that v? = (0) and p? = A.

Correspondingly, the associates of a column strict composite tableau are defined by

the following.

Definition 4.5.2. Fori=1,2,...,uv,..., let J; C IGL(m) be the set of indices in the
1th column (from the right) of the F” portion of the column strict composite tableau
T?# = T%# . Then #T; = ;. Let K; = IM™N\J, whereupon #K; = m — ;.

1.,,i=1

The composite tableau Tf,»i;“i s formed from Tf,-: # " by removing the first column
of the F”'" portion containing the entries from J;, and creating, immediately below
it, the first column of the F*' portion of > filled, in column strict order, with
entries from the set K;. The tableaur T,_‘ii;“i, fori =1,2,...,v,..., are said to be
mutually associate. The canonical associate of the composite column strict tableau
T7# is defined to be the ordinary column strict tableau T} = T%'** with ¢ = v, so
that v¢ = (0) and p? = A. Fori < 0, the composite tableauz T * are obtained

through the reverse of the above process.

The following illustrates these definitions when m = 6:

5 3
B 3 7 _ 3235
T3 _ 9 5 3 5 —_ T,l.’““: 4 4
: 5
6
132305
2 4 4
ﬁ T‘53221: 4 5 ,
5 6
6
5 6
S 5
o= 31 = 1= 23
Z 39 311
3 5
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6 o
513 g‘é
73221 _ 3 3 2 5 5 — T;z:z‘;:saz: 192 9
45 4 4 5
5 5 b
5
3 1112 2
1—1';4431__ 1 1 2 2 5542 _ 2 2 4 4 5
= L= o445 — LT 4555
55 5 6 6
6

As exemplified by this last example, the map from T7# to T defined by 4.5.2 does,

in fact, provide a bijection between sets of GL(m)-standard tableaux.

Lemma4.5.3. Ifthe composite tableau T** is GL(m)-standard then T s GL(m)-
standard for eachi € Z. T} is GL(m)-standard.

Proof. Define the sets J,, J» and K, as for Definition 4.5.2. In addition, let X,
be the set of the fi, indices in the first column of the F* portion of T%#. For
i=L2,....mlet Ji={i€c Th:i<jlfork=1,2,and Ki = {i € K : 1 <j}
for k£ = 0,1. Conditions (iv) and (v) of Definition 4.4.16 respectively imply that
#Ti < #TJ7 and #J7 + #Ki < j for each j = 1,2,...,m. Since #J{ + #Ki = j,
the conditions #.J5 +#K3 < j and #K3 < #KJ are satisfied for eachj = 1,2,...,m.
Since the remaining entries of 7% *' are exactly as for T7#, it follows that T% *' is
GL(m)-standard. It then follows, by induction, that T%# is G L(m)-standard for
all € N. Conversely, with the above definitions, #J§ + #KJ < j and #K} < #K]
imply that #77 < #J7 and #J7 + #K} < j for each j = 1,2,...,m. Thus, if
T5# s GL(m)-standard, then T7# is GL(m)-standard and, by induction, T%* is
GL(m)-standard for all ¢ < 0. This completes the proof.

It J =J, and K = K, are as above, then associated with each transition from

T7# to T% *' is a sign factor given by

e(K.J) — eklkT“km—ﬂljle“jﬂl (454)

where k; € K, j; € T, by < ky < --- < kp_yp, and J; < j, < --- < J5,. At this point,

it is convenient to define the map L, : W?# — W?""#' given by

L.: {T%*} = & {T5#"}, (4.5.5)
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4.5. Duality between Garnir and Trace relations

for all column strict T7#, extending this map linearly to the whole of W?#. The

following, seemingly mysterious, result is observed.

Theorem 4.5.6. Let p € P(u;s) and v € P(v;t) with s+t < m. If:
S {T?#} =0 (4.5.6a)

is a Trace relation in the GL(m)-module W"# of the type specified in Lemma 4.4.14,
with all the composite tableaus TP# differing only in entries in the lth column of the
F? portion and the jth column of the F* portion, and J, and K, are defined by
analogy with J and K in Definition 4.5.2, then for k > I:

> T T = 0 (4.5.60)
is a Garnir relation of the type (4.4.10a):

>, (=1 {an:;u"} =0, (4.5.6¢)

neG(X,Y)

involving entries in positions X of the (k — 1 + 1)th column and positions ) of the
(k + 7)th column of the F** portion. Conversely a Garnir relation of type (4.5.6¢)
gives rise to a Trace relation of type (4.5.6a).

Proof. Form 6, as for the proof of Lemma 4.4.14 from the indices of the relevant
two columns of T%#. Let A, C ZI¢L(™ be the set of all : € A, such that ¢ and
i are both present in 8,. Let B, C Z¢“™ be the set of all 7 € B,, such that one
only of 7 and ¢ is present in ,,. Let C, C ZL(™ be the set of all : € C,, such that
neither z nor ¢ are present in 8,. Then, if a, = #A,, b, = #B, and ¢, = #C,
ay + b, + ¢, = m for each w. Factorise 8, = 8562 where 6% and 64 are formed solely
of barred and unbarred indices from B and A respectively. Since a Trace relation
involves expressing a number of barred-unbarred index pairs in terms of other such
pairs, B, b, and 6® are constant and their subscripts may be dropped. In addition,
since 8, = 6%62, it follows that a = a, and ¢ = ¢, are also constant. Split B into
B>UB?, such that i € B if i is present in 6% and 7 € B? if ¢ is present. If b* = #B*
and ¥ = #B°, b= b~ + b~.

Let £ =N, A,, D, = ANE, H =U,D,, F, = H\D, and G = IL™\(H U
EUB) withe=#E,d=#D,, h=#H, f = #F., g = #G, whereupon h = d + f,
a =d+eand ¢ = f+g. Since the Trace equation is of the type specified in Lemma
4.4.14 then d > g. Note that H = D, UF, for each w. With the sets defined in this
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way, the Trace relation (4.5.6a) may be obtained exactly as in the proof of Lemma
4.4.14. In particular, from (4.4.14h):

6°6° 567 = 0, (4.5.7)
where 6% = [[iep, wi, 8 = [lice wi and w; = 7i. Then, setting 07 = 6767 gives:
6°> 64 =0

and then:

>8, =0.

w

This final equation is that giving rise to (4.5.6a).
Let 6;, be the term of (4.5.6b) corresponding to 8, of (4.5.6a). 8, is a product of

the unbarred terms of 8, together with starred terms from the complement in Z6L(m)
of the barred terms of 8,. These latter terms are starred in order to distinguish
them from the unbarred terms of §;. In fact, they are dopplegangers which when
unstarred, will form the (k — [ + 1)th column of the F** portion of T°.*". 62 may
be specified simply: ¢ € Z9L(™) is present in 6:, if and only if 7 is present in 6, that
is ¢ € D, UEUB%; and 7 € TGL(M) is present in 6% if and only if 7 is not present
in 8, that is i € D, UEUB’® and hence i € F, UGU B“. The situation in the

corresponding tableaux may be schematically represented thus:

D,
g
— B«|B=
To# — B T = . 4.5.8
v ge] v gl¢€ (4.5.8)
c Fu|Duw
D,

On varying w, the terms 67 run through all partitionings of the set H into f starred
entries and d unbarred entries. Since these are to be respectively placed in the
(k — I+ 1)th and the (k + j)th column of the F** portion of T”.;*", this is an
expression of Garnir type. It is necessary to check that sufficient indices from the
two columns are involved in this expression. Consider a Garnir relation involving
the set of indices F, U B* from the (k — ! + 1)th column and D,, from the other.
This gives the same expression as the above since each migration of an index from
B“ to the other column results in a repeated entry in that column and thus a zero

term. This expression involves f + b + d terms from the two columns which is a
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greater number than the length of the (k — [+ 1)th column, f + g + b*, since d > g.
It remains to show that the sign of each term is as required. By fixing the positions
of the elements from the sets £, €, B, and B, in T?# and B%, G and € in T::L“k, it
can be seen that e*«7w) = 4¢(F»P«) the sign being independent of w. For each w,
the factor €7=:P+) is precisely that required for the appropriate coset representative
of the Garnir element giving rise to 7°.#* . Thus the sign factor of X7+ given in
(4.5.6b) is precisely that required to make (4.5.6b) a Garnir relation.

By partitioning the two relevant columns of the F** portions of a set of
tableaux satisfying (4.5.6b) into the sets B*, G, £ and H = F, U D,, as in (4.5.8),
and setting B? to be the remaining indices, the Trace relation corresponding to any

Garnir relation may be found by reversing the above construction.

In order to illustrate Theorem 4.5.8, consider the mutually associate GL(7)-
modules 2221 and WTLELLL and consider the Garnir relation, in the former of

these modules, which takes the form:

+

(A
+

1
4
6

~3 W
Sy Ov
-3 Ut —
- O =

=0. (4.5.9a)

BN = I U
-~ Ot QW
y O WO
- W
D W
U W

This is the Garnir relation resulting from permuting the sets of indices from the
positions given by the sets X = {1,3,4} and Y = {6,7} as in Lemma 4.4.10a.
Notice that the anticipated 5!/3!2! = 10 terms is reduced to 6 in this case, since
the 4 terms in which two identical indices 1 appear in the second column have been

excluded since they are zero by Lemma 4.4.9.

The corresponding Trace relation may be constructed by noting that, in this
example, the w-independent sets encountered in the proof of Theorem 4.5.6 are, as

indicated in the final paragraph of the proof:
B ={1}, ¢={8}, £€=0, H={45,6,7}, B’={2},
and that d = f = 2. Then 6%6¢ = 12 and (4.5.7) becomes:
12(wyws + waws + wawr + wswe + wswy + wewy) = 0,

the sets D, C H being respectively D, = {4,5}, D, = {4,6}, D3 = {4,7}, Dy =
{5,6}, Ds = {5,7} and Ds = {6,7}. Hereupon, 8, = 124455, 6, = 124466, 6; =
124477, 6, = 125566, 6s = 125577, 6 = 126677 and 3. _, 6, = 0. In terms of the

120



4.5. Duality between Garnir and Trace relations

composite tableaux of WTLILLL this expression takes the form:

]

( 3 ( 3 3 3 (

5 6 7 6 7 7
4 4 4 5 5 6
2 2 2 2 2 2
< > > ; » = 0. .9
1 + 1 + 1 + 1 + 1 + 1 0 (459b)
4 4 4 5 5 6
\ 5) \ 6) L 7J \ 61 \ 7) 7)

These terms are in one-to-one correspondence with those of the Garnir relation
(4.5.9a), each one being an associate of the corresponding term in (4.5.9a). Note

that the signs in (4.5.95) map to those in (4.5.9a) on multiplication by the respective
eKwrTw),

Corresponding to Theorem 4.5.6, there is an analogous result concerning a
Garnir relation involving the first and another column of the F? portion of a com-
posite tableau 77# and a Trace relation involving the first columns of the two
portions of T% * . The proof of this result procedes along lines similar to that
of Theorem 4.5.6. Although mysterious at first, these two results enable it to be
proved that the GL(m)-modules W7# and W?'#' and hence W7*#* are isomorphic
upon restriction to SL(m). For the moment consider the GL(m)-modules W?# and
Wo'# solely as vector spaces. By Theorem 4.4.30 these are spanned by all {T7#}
and {T7"*'} respectively modulo relations 4.4.9, 4.4.10 and 4.4.13.

Lemma 4.5.10. The linear map L. : W% — W2 is a well defined isomorphism

. 1.1
between the vector spaces W7# and W7+,

Proof. Let T”# be column strict. By using the Column relations, Garnir relations
and Trace relations, {T%*#} is uniquely expressible in terms of the GL(m)-standard

tableaux:

{T°%} = Z G{T7*}, (4.5.10a)

where each T* is GL(m)-standard. Theorem 4.5.6 shows that to each Trace re-
lation involving the first columns of each portion of some {T7#}, there is a Garnir
relation resulting from the action of L., as given by (4.5.5), on each term. This
Garnir relation necessarily involves {T%*'}. Likewise, every Garnir relation in-
volving the first column of the F” portion of some T?* corresponds, through the
action of L., to a Trace relation, necessarily involving {T%*'}. Garnir relations

involving other columns remain as they are under the action of L,. Thus, since if
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ixl

T7* is GL(m)-standard then TZ M is GL(m)-standard, the standardisation of L™

mirrors, under the action of L., the standardisation producing (4.5.10). Therefore:
(T} =3 ¢{To™ ). (4.5.100)

Since this is the result of the application of L, to (4.5.10a) and the two expressions

in terms of GL(m)-standard tableaux are unique, the lemma follows.

In order to utilise these results to deal with W?# and W*"*" as GL(m)-
modules, it is necessary to define the raising and lowering operators which formally
perform the transition from {T%#} to {T% *'}. Throughout the remainder of this
section the convention of summing over all repeated indices will be used unless
otherwise indicated.

Let m = s + ¢,
1

Lal---a.blu-b, = %—,601...0'1,1...(,,, (4511(1)
Lovosbbe = t_llebb (4.5.11b)

and

Ko e = (1) Loyogupy o 06 = (1) Lo et b L e (4.5.12)

Lemma 4.5.13.
eren 1 * e c
K = I (Z (1) - 5aj")> . (4.5.13)
* x€S,
Proof. €4,.a,b.00 = (—=1)%€s,.4,a,..a, since the order of the subscripts may be
changed from one to the other by ‘passing’ each a subscript through each b subscript

and this requires st transpositions altogether. Then, from (4.5.11) and (4.5.12),

1
I{'Cl"'cn —

cy--cebyo by
aiy--ay Z’r‘g—!'eal-»»a,blu-b,e .

Since s+t = m, all indices from Z9X(™) must appear as both a subscript and a super-
script on the right side for non-zero contributions, and thus only if {a,, as,...,a,} =
{e1,¢3,...,¢,}. Then, for fixed distinct b, b,, ... b,

C|~-'C,b1~~~b|

€aya,by b€ = Z (—1)765rm .. 6oxtm,

*€ES,

The lemma then follows from summing the bs over all ¢! permutations of the set
T¢I\ {q,,a,,...,a,}.
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This lemma shows that I{ is an antisymmetriser, prompting the definitions:

€lay--a,] = Kj;jjg"ebl...b, (451461)
and

e[al---u,] — I(:ll-.-tba,. ebl"'bl. (4.514b)

However, the tensor eV:7:] antisymmetric in the indices J = {ji,...,J,} is equal

to the tensor:

1
—'C(KZ’J) Z le...ktbl...b,eblmb' = C(K:’J) Z Lkl...k‘bl.“b‘eb‘mb', (4515)

S 1<by,...by<m 1<by,.. be<m

antisymmetric in the set of ¢ contravariant indices X = {ki,...,k} = Z¢*™N\ 7.
Here, for clarity, the summations are shown explicitly. Thus the operator L,,.. 4,5,...5,
may be used to lower an antisymmetric set of contravariant indices. Similarly, the
operator Lo 2% may be used to raise an antisymmetric set of covariant indices.
In each case the tensor is antisymmetric in the new indices. Note that GL(m) does
not act on these new lowered or raised indices directly since, in general, GL(m)

does not commute with the raising and lowering operators:

l’JGx“‘ﬂ-bl“-beGclb1 - Gcrb(
= (det G)LYder e (G, oo (G712, (G, - - (G710, G, -+ G,
= (det G)(G 1)y, - - (G1)ory, L deeree, (4.5.16a)

and similarly,
Loy oyt (G - (G712, = (det G)'GHy, - - G Lay oty ey (4.5.160)

The upshot of this analysis is that an antisymmetrised column of a composite
tableau T7”* containing the barred indices from the set J may be replaced by a
column of unbarred indices formed from the complement of 7 in Z¢£(™), provided
that the appropriate factors of (det G) are included for each module action of G €
GL(m). If 7, = s and e/rdsbenrte s the tensor corresponding to T%#, then the
action of Ly,. x,j,.j, is to produce the tensor e Pebr+rby, ;1. . antisymmetric
in the indices from the set K = Z¢L(™)\ 7. This may naturally be replaced by a sum
over t! composite tableaux of shape F?'#'. A column strict representative of these
tableaux may be selected. This tableau is T% * . By the foregoing argument it may
be assumed to be antisymmetric in the indices of that first column. Similarly, the
image of {T7”*} under lowering the indices of the first column of the F” portion

may be denoted ) {T?%#'}* the extra asterisk indicating that it is yet to be
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shown that these objects have all the properties implied by the Young operators
Y* and Y*'. That they are antisymmetric in each column follows immediately
from the foregoing argument. Since the lowering operator acts linearly, the space
which they occupy is isomorphic to W?# and hence, by Lemma 4.5.10, isomorphic
to W?'#'. Therefore ¢©){T%*'}* may be identified with e&){T%*'} and the
lowering operator given by (4.5.11a) may be identified with L. from (4.5.5). The
main point here is that the Garnir relations, newly discovered by virtue of Theorem
4.5.6, enable the ‘new’ column of the composite tableau T%#' to participate in the

symmetry implied by the composite Young operator Y @ Y#'. From (4.5.16b):

G (T ™)) = G (L. : {T"*})
= (det G)L, (G {T"*}), (4.5.17)

for all G € GL(m). Therefore, the following theorem has been proved.

Theorem 4.5.18. Let p € P(u;s) and v € P(v;t) with s+t < m. Under restriction
of GL(m) to SL(m), the GL(m)-module W?* is isomorphic to W*'#'. FEach of
these modules is isomorphic to W* where A = (9% u?) is the partition canonically
associate to (7; u) where ¢ = v,. The representation {\} of SL(m) is equivalent to
each representation {'; '} of SL(m). The representation {\} = {#%;u?} of GL(m)
is equivalent to each representation (det G)~{v*; u'} of GL(m).

Conversely, the following theorem holds.

Theorem 4.5.19. Let yu € P(u;s) and v € P(v;t) with s+t < m. The isomorphism
of the GL(m)-modules W?# and W"'*' under restriction to SL(m) implies that the

Trace relations and the Garnir relations are equivalent statements; that is, one implies
the other.

Proof. This follows since the operators given by (4.5.16a) and (4.5.16b), which define
the isomorphism, may be used to convert between the Trace relations (4.5.6a) and
the Garnir relations (4.5.60).
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5.1. Orthogonal standard tableauz

Chapter 5
Orthogonal Group Modules

§5.1. Orthogonal standard tableaux

This chapter introduces the Young tableaux techniques used to construct irreducible
modules of the orthogonal groups O(m) and SO(m), defined in Definition 2.1.1.
As for the classical groups considered in the previous chapter, these modules are
constructed as submodules of V& where V is the defining O(m)- or SO(m)-module.
Since O(m) and SO(m) are subgroups of GL(m), the GL(m)-module W* also
serves as a module for these orthogonal groups. As in the symplectic case, W* is, in
general, reducible due to the existence of trace tensors. The primary objective of this
chapter is to extract these trace tensors in a systematic way and thence to project
the irreducible O(m)- or SO(m)-modules out of W*. However, as a consequence
of the invariant form being symmetric, the situation is more complicated for the
orthogonal groups than for Sp(2r), and trace terms will need to be simultaneously

extracted from two columns of the symmetrised tableaux.

One major difficulty in the orthogonal case is the specification of a set of
suitable standard tableaux. In recent years, a number of authors have derived
various such sets to facilitate the calculation of dimensions, weights and characters
of the irreducible representations. The first such set [KE83] employed indices from
the set Z9™), However, it was necessary to count tableaux having certain entry
configurations more than once. This is clearly inconvenient in specifying basis
elements for the irreducible O(m)-modules. Furthermore, those O(m)-modules that
are mutually associate use the same set of tableaux. The first of these problems was
dealt with in [KT90] by introducing extra indices, each of which could only appear
in a particular position in a tableau. Here the extra indices and the rules associated
with them obviate the need to count any tableau more than once. For O(2r) it is
easy to see how these tableaux are equivalent to those of [KE83]. However, with
a view to the present problem, it is not clear how these extra indices could arise
from the GL(m)-standard tableaux of W*, and in particular, how O(m) would act

on these indices.

A further set of tableaux for the O(2r + 1) case was proposed in [Su90].
These employ the index oo with the seemingly extraordinary properties that it may

occur in certain columns more than once, and may not occur more than once in
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5.1. Orthogonal stmdard tableaux

any one row. Thus, once more, these tableaux seem to offer no hope if effecting the
reduction of W* as an O(m)-module.

One feature of the sets of tableaux just mentioned is that if ;; > m/2 then
each is empty for the case of O(m). This appears to be at odds with Vieyl’s reasoning
[We39] that inequivalent irreducible representations of O(m) are lalelled by those
partitions A for which X, + X\, < m. In answer to this objection, Iroctor [Pr89]
derived two important sets of tableaux. In the definitions that follow 22" = N,UN.,
and Z°+) = N, UN, U {0}, these indices being ordered such tha 1 < 1 < 2 <
2<---<7<r <0. Then in the tableau T?, a; is the number of irdices less than
or equal to ¢ in the first column of T*, and likewise §; for the secondcolumn of T?,
for each ¢ € Z9(m),

Definition 5.1.1. [Pr89] With A € P(l) and m = 2r orm = 2r + ], let P2, be the
set of tableauz such that T* € P if and only if:
(i) the entries are taken from the set T9(™);
(71) the entries are strictly increasing from top to bottom down eachcolumn;
(iii) the entries are non-decreasing from left to right across each rov;
(iv) a; + B; < 2i for each t € N,, and ap + Sy < m;
(v) if, for some 1 € N,, a; + i = 2i with o; > B; and T(A

1) = 7 and
T(’}i.-,b) =1t for some b then T&i_l’b) =73;
(vi) if, for some i € N,, a; + B; = 21 with a; = fi (= i) and T},,=1 and

T4y =1 for some b then Tjy_, ;) = 1.

Conditions (v) and (vz) of this definition may be combined, but disinguishing the
two will prove convenient later. These two conditions are know: as protection
conditions since in each case, certain combinations of 7 and : reqire the i to be
protected by an 7 immediately above it. Protection conditions similir to these were
first encountered in the tableaux introduced in [KE83] for O(m).

Definition 5.1.2. [Pr89] With A € P(l) let Q) be the set of taleaur such that
T* € Q) if and only if:

(i) the entries are taken from the set T9(™);

(i1) the entries are strictly increasing from top to bottom down eacl column;

(iii) the entries are non-decreasing from left to right across each ra;

(iv) a; + B; < 2i for each i € N, a; + f; < 2t — 1 for each i ¢ N, and
oo+ fo < m.
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5.1. Orthogonal standard tableauz

The sets of tableaux P;, and Q} were referred to as fine and coarse tableaux re-
spectively in [Pr90] where each was used to develop a Robinson-Schensted corre-
spondence (see [Kn70]) for O(m). In order to illustrate these definitions, consider

the tableaux:

113 12233 122 112
! 1333 133 2 2
33’ 2 4 4 ’ 2 4 7 3 ’
3 3 4 3
_ _ 1 5.1.3
I 113 123 122 (5.1.3)
1113 : 2 130
L 533 130
223 , ;°°% 020 20,
333 = 3
3 3 :

3,2,2 5,4,3 2,2 3,2,1,1 3,3,2,1,1 :
labelled T9*?, Tp4>!, T2 bt h33 pa3bl mi32l gnd T2 respectively.
3,3,2 3 2 :
Then only T3>%?, T3*°, T&*P! and T3>%' are respectively members of some P},

3.2 . .
and only 73" and T¢*"! are respectively members of some Q). In particular

>®? violates the ¢ = 1 case of condition (iv) in each case, and Tp"**' violates the
i = 2 case of protection condition (v) of Definition 5.1.1 and the i = 3 case of

condition (¢v) of Definition 5.1.2.

Note that in order for P} and Q} to be non-empty, conditions (i7) and (iv)
of Definitions 5.1.1 and 5.1.2 require that A\, + X, < m in each case. In fact, there
is a straightforward bijection between P2 and Q}, given in [Pr90], demonstrating
that these two sets are of the same cardinality. Their derivation [Pr89], shows that
this number is the dimension of the irreducible representation [A] of O(m). This is
also given by (2.5.5¢). The set P2 also yields the weights and the character of this

representation.

Definition 5.1.4. O(m)-weight. Let m = 2r orm =2r + 1 and for: =1,2,...,r,
let

n?(m)(T’\) = n(T*) — ny(T*),

where n;(T*) is the number of appearances of the index j € Z°™ in T*. The vector
nOm(T*) = (n{™(T*), ng™(T*),...,n2)(T*)) is known as the O(m)-weight of
T,

Theorem 5.1.5. [Pr89] Let m = 2r or m = 2r + 1. The multiplicity of the weight

(ni,na,...,n,) in the irreducible representation [A] of O(m) is given by the number
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5.1. Orthogonal standard tableaur

of tableauz T* € P} such that n°™(T*) = (ny,nq,...,n.). The character of this

representation is given by:

Nw) = > v, (5.1.5)

TrePA

n20m Ay pO0m) (T2 Oo(m)pa
where (y) denotes the vector (y1,ya, - -, yr) and yT" = y;* @ )yz’ T .. yr? I

for those elements of O(m) with positive determinant and if m = 2r 4 1, eigenvalues

yl_lvyly y:z_lay%"',y:lvyr’l; and me = 27‘, eigenvalues y1_17y1) y;I,y?.a"' 7%_1,%-

Although P2} goes a long way towards fulfilling all the desired properties of
a definitive set of O(m)-standard tableaux, the construction of a standardisation
procedure proves tricky. In view of this, a different set of tableaux, closely related

to P2, are used. These new tableaux are especially convenient when the reduction

to SO(m) is made.

Definition 5.1.6. With A € P(l) and m = 2r or m = 2r + 1, the tableau T* is
O(m)-standard if and only if:
(i) the entries are taken from the set TOU™);
(ii) the entries are strictly increasing from top to bottom down each column;
(iii) the entries are non-decreasing from left to right across each row;
(1v) a; + B: < 2t for each i € N,, and ag + Sy < m;
(v) if, for some t € N,, a; + B = 2¢ with a; > [ and T(Aa‘_yl) = 1 and
Ty = 1 then Ty = 15
(vi) if, for some i € N,, a; + 8; = 2t with a; = B (= 1) and T(’}'l) =1 and
Ty =1 for some b then T3, ) = @

The set of all O(m)-standard tableauz T* of shape X is denoted by O,),.

This definition implies that of those tableaux given in (5.1.3), only T3**!, T3

3,3,1,1 3
o 7bh and T3 are O(m)-standard for some m.

Note that Definition 5.1.6 differs from Definition 5.1.1 only through their con-
ditions (v). In order to show that Q2 has the desired properties of P}, in particular
that O} satisfies the analogue to Theorem 5.1.5, it is necessary to construct an

O(m)-weight preserving bijection between P} and O).

Let m = 2r or m = 2r + 1. Fori¢ =1,2,...,r, let P}, C P), be such that
T S Pr)r‘n,i if o; + ﬂ,’ = 21, a; > ,B,', ’.T(’:,‘_'l) = 'l., 11(':!',_1'1) ?é ; and 71(?5‘,,2) = ;,:. For
example, from (5.1.3), T3**? € P%*? for each m > 8. Then, if T € P);, T* ¢ O

since it violates condition (v) of Definition 5.1.6. Let P), ; = Ui, P, ;. In general
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5.1. Orthogonal standard tableauz

this union is not disjoint. Each element of P)\P,, , satisfies all the conditions of
Definition 5.1.6 so that P)\P). , C O}. Since P, ,NO), =0, P, NO), = PX\P},,-

Let ¢; be an operator such that if T* € PA\P,,; then ¢,T* = T?, and if
T* € P),; then ¢;T* is obtained from T by interchanging the entry 7 in the first

column and the rightmost entry 7 in the f;th row:

Bi AR T S SR S B; A A A R )

o 1 O
with 7,k < 1.

It follows that ¢, T satisfies a; + f; = 21, a; > fi, Th,yy = 1, Tip, sy = @ for
some b such that Ty _, ) # ¢, thereby violating condition (v) of Definition 5.1.1.
Hence ¢;T* ¢ P2. However, ¢;T* does not violate, for the given 7, condition {v) of

m’

Definition 5.1.6.

Let ¢ = [Ii., ¢:. U T* € P)\P), = P, NO, then ¢T* = T* € O,. On

the other hand if T* € P),, so that T* ¢ O), then ¢T* ¢ P),, but ¢T* € O),.

Hence ¢P), C O),, and more precisely ¢P), = O}, since O)\(P) N O,) = ¢P,.,,
as can be seen by comparing conditions (v) of Definitions 5.1.1 and 5.1.6. Finally,
the nature of ¢; illustrated above implies that ¢ is one-to-one and thus a bijection.
In addition ¢ preserves weights since under each map ¢;, the list of entries in any

tableau remains fixed. As an example, let A = (5,4, 1*) and consider:

2

2 2

DN

2 2 2
4 4 4

V]
= N

2
4

NI V]
I V]

(5.1.7)

O Ol DN
[ e B S I N T
WO QI DI =

Here ¢, and ¢35 have no effect. Thus the tableau on the left, which is a member of
P2 and not of O}, is mapped, under ¢, to that O(8)-standard tableau on the right.

This tableau is not a member of P2.

Theorem 5.1.5 can now be stated in terms of the O(m)-standard tableaux.

Theorem 5.1.8. Let m = 2r or m = 2r + 1. The multiplicity of the weight

(n1,n2,...,n.) in the irreducible representation [A] of O(m) is given by the number
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5.2. Irreducible O(m)-modules

of O(m)-standard tableauz T* for which n°™(T*) = (n1,na,...,n,). The character

of this representation is given by:

() = > y", (5.1.8)

TX:T*O(m)—~standard

RO (TA) nO(m) -
where (y) denotes the vector (Y1, ya, - .., y,) and yT> =yt ypz T .. gne™@),

for those elements of O(m) with positive determinant and if m = 2r + 1, eigenvalues

y;13y1) yz—layZa ce syr_layra 1; and if’l?l = 2’[‘, eigenvalues y1_17y1; y2_13y2, te 7y:1’yr-
§5.2. Irreducible O(m)-modules

Let V be the defining GL(m)-module with basis {e; : ¢ € Z°™}. Then, since
O(m) is a subgroup of GL(m), V and the GL(m)-module W* C V® also serve as
O(m)-modules. As for the symplectic groups, the O(m)-module W* is, in general,
reducible due to the presence of trace tensors. As will transpire, the irreducible
O(m)-modules are also obtained on extracting all appropriate trace tensors from
|4 %8

With m fixed and J = J7 as given by (2.1.10) or (2.1.1¢), GJG = J for all

G € O(m), whereupon O(m) preserves the tensor

Y. JueiQea= Y eQe, (5.2.1)
jkezolm) i€ZO(m)
Definition 5.2.2. With respect to O(m), a trace tensor of V®' is any linear combi-

nation of terms of the form:

Z TReQYRe® z, (5.2.2)

1€ZO(m)

where x, y and z are elements of some (possibly zero) tensor power of V and tQy®z €
Veu-2), Define U™ C V& to be the span of all such trace tensors.

The preservation of (5.2.1) under the action of O(m) implies that U°(™ is invariant
under the action of O(m). Since V®' is completely reducible [We39}, it follows that
Ve /U2 is isomorphic to a subspace of V®, which is invariant under the action

of O(m). Therefore O* = W*/(W* N U°™) is an O(m)-submodule of W*.

Let [T?] denote the traceless symmetrised tableau resulting from the removal
of all trace terms (5.2.2) from the symmetrised tableau {T*}, by forming its quotient
with respect to the elements of U™, (O* is therefore spanned by all [T?] where

the entries of each T* are from the set Z9(™),
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5.2. Irreducible O(m)-modules

Lemma 5.2.3. Let T}, fori € 9™ be m tableauz, identical except for the entries
in two positions where Ty, s = i and Ty, , = ¢ for some fized a, b, ¢ and d with
a,c < A, b< A, and d < Ay. Then:

> ([T =0 (5.2.3)

ieZO(m)
Proof. Since Yiezom I € U%™ and the place permutation action of each sum-
mand of the Young symmetriser Y, defined by (3.3.13c¢), only serves to give similar
terms in U™ with appropriate changes of the positions (a,b) and (¢, d), it follows

that 3 iczom {T}} € U™ whereupon (5.2.3) follows from the definition of [T*] as
a quotient.

The identity (5.2.3) is known as the orthogonal Trace relation.

Once more, it is appropriate to proceed via a rather technical result which
facilitates the simultaneous application of the orthogonal Trace condition over a

number of index pairs.

Lemmab5.2.4. Let ki, k, be such that1 < k, < ky < A;. Let I°™) = B2UBPUEUGUH
be a union of disjoint sets such that, with b® = #B*, b® = #B?, e = #E&, g = #G,
h=#Handd > g, A\, =b*+e+dand X\, =V +e+d. Let D, for various
w, run over all distinct (Z) subsets of H of cardinality d and let the tableauz T2,
be identical apart from column k, which contains entries from the set B*UEUD,
and column k, which contains entries from the set BF UE UD,. If the indices from
the set B* U E UBPUE are in the same positions in each T and if, with D, =
{Vors Vw25« s Ywa), for fized 1 with 1 < 1 < d, the indices v, ; occur in the same
position of the k;th column of each T and the indices ¥, ; occur in the same position

in the kyth column of each T2, then:

ST =o0. (5.2.4)

w

Proof. For [T2] write the columns k, and k; of T as a product, 6,,, of elements of
Z°(m) with each element superscripted either o or 8 to indicate that it arose from

column k, or k,, respectively. For example, if k;, =1 and %k, = 2 then:

3

[JSIRNTR VIS
W DN i
Al DA
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gives rise to § = 1%2°3%3*1#2837, By virtue of the Column relations (3.4.2), inter-
changing elements of § with the same superscript changes the sign of 8, and the
presence of an identical pair of elements with the same superscripts implies that

6 = 0. In this notation, (5.2.4) may be proved by showing that:
> 6, =0. (5.2.4a)
Let w; = 1°7? and thence w; = 1*7#. The trace condition, (5.2.3), implies that:

S wi=0. (5.2.4b)

ieTo(m)
With B = B> U B?, split this identity according to:

Yo wi=—) wi (5.2.4¢)

iEHUBUE i€g
Since d > ¢, on raising each side of this identity to the power of d, the right side is
annihilated, giving:
d
( Z w,~> =0. (5.2.4d)
ieHUBUE

This implies that:
> Way Wy ++ Wy = 0, (5.2.4¢)

v1<v2< - <vg
Y1 Y2seoes vg EHUBUE

whereupon, on setting 6% = [[;cpa i [Licss ¢° and 6° = []ice wi, multiplication by
6%6¢ annihilates those terms featuring w; for ¢ € BUE due to a repeated index.
Therefore:

6°6° > wywy,w,, =0, (5.2.4f)

Y1<v2<- - <vyg
Y120 Y4EH

and hence,

6°6° 567 =0, (5.2.49)

where 82 = [[;cp, wi. Let 8, = 0%6°67, so that, then ", 8, = 0. With the indices as
specified in the statement of the lemma, the application of an identical permutation
to the factors of each ¢/ produces 6,. Therefore ¢/, = +6, with the sign being
independent of w. Thus (5.2.4g) is equivalent to (5.2.4a) and the lemma is proved.

To illustrate the algorithm described in the above proof, let m = 6, :\kx = 3,
M, =2,B"={1},BF=€=0,G6={1}, H={2,2,3,3} and d = 2. Thend > g,
A, = b*+e+dand X, = b + e + d as required by the premise of Lemma 5.2.4.
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5.2. Irreducible O(m)-modules
For this example, the trace condition, as in (5.2.4¢), is written:
wr + ws + wy + w3 + wy = —wy, (5.2.5a)

where the term from G has been placed on the right side of this equation. Raising

the two sides of this equation to the power of d = 2 yields, corresponding to (5.2.4¢):
Wiws + Wiw;y + Wiws + Wiws + wsws + wiws + wiws + waws + waws + wiws = 0, (5.2.5b)

with all other terms zero due to repeated factors. Multiplying this identity by

6%6° = 1° annihilates those terms featuring w; whereupon:
1%Wwsw, + 1%wsws + 1%wsws + 1%waws + 1%waws + 1%w3w3 = 0, (5.2.5¢)

and

19222P2%5P 4 19222P3238 4 12322 3°3F 1 12229P323F 4 122%283°3F 4 1°323°3°3° = 0.
(5.2.5d)
If A =(2,2,1) and k; = 1 and k, = 2, then this identity transfers back into the
language of tableaux to give:
!
3|+

o

‘)

&

3

2
3

Wl DI

3
4 + 3

+ =0, (5.2.5¢)

N DN
[\

(VT ST

W Il =

|

corresponding to (5.2.4). The column relations can now be applied to the first and

LI DN
W N
W Wi

last of these terms to give an expression solely in terms of column strict tableaux.

Lemma 5.2.4 is now used in each of a sequence of three lemmas dealing with
violations of conditions (iv), (v) and (vt) of Definition 5.1.6. In each case, the non-
standard tableau is written in terms of higher tableaux. Once more, the order on
the set of tableaux is provided by Definition 2.6.6, after the entries from Z°(™) have

been mapped into Z¢L(™ through a — 2a, @ — 2a — 1, 0 — m.

Lemma 5.2.6. Let T* be a column strict tableau which is not O(m)-standard in that
a; + B; > 25 for some j. Then [T*] may be expressed as a signed sum of traceless,

symmetrised tableauz [T2), where for each w, T} > T*.

Proof. Let k; =1, ky = 2, Q> C I°™ be the set of indices in the first column of
T*, and Qf C Z°9™) the set of indices in the second column of T, Let 4 = {¢ €
I0m € Qi€ O}, B ={1 €M :{€ Q1€ Q}, B = {1 €T : i ¢
Q1€ QP C={i eI .:i¢g Q% 1 ¢ Q°} and B = B*U B?. Then A, B and
C are distinct with AUBUC = Z°™), and if a = #A, b = #B and ¢ = #C, then
a+b+c=m. Let J = {i € IT°™ : ¢ < j} so that #J = 2j. The sets created above
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5.2. Irreducible O(m)-modules

are now split with respect to J: D= AN J, € = A\D, By = BN J, B, = B\B,,
G =CNJ and F = C\@G. In addition let H = DU F. With the cardinalities of
the sets just created d, e, by, by, g, f and h respectively, and the cardinalities of
B* and B?, b* and b” respectively, then d+e+ by +b, +g+ f =m, h =d+ f,
M=b"4+d+e N, =V +d+eand d+by+ g = 2j. The condition a; + f; > 2j
implies that 2d + b, > 27, and therefore d > ¢g. Thus the conditions of Lemma 5.2.4
are satisfied and the identity:

ST =0, (5.2.6a)

DuCH
follows, where the sum is over all (2) distinct subsets D, of H, and T} is identical
to T* apart from, if D = {é;,...,64} and D, = {~Vu.1y---Yw,a}, the pair é; and §; in
the first and second columns respectively of T, having been replaced by the pair
Yw,i and ¥, ; respectively, for each 1 = 1,2,...,d. Thereupon:

1) =~ 3 [T, (5.2.6b)

Dy CH
Dw#D

Since DCc J, FNJ =0 and H = DU F, each D, # D must include at least
one element from the set F. Thus, if §; < §, < --- < §; and for each D, # D,
Vw1 < Ywa < o < V.4, then v, 4 > 8; with 6; € J and Ywa € J. Consequently, as
these appear as entries in the second columns of T* and T} respectively, it follows

from Definition 2.6.6 that T} > T*, thereby proving Lemma 5.2.6.

As an illustration of the algorithm described in the above proof, let A =
(2,2,1) and consider the O(6)-module O* and the tableau:

[SV ARV

T = (5.2.7a)

DN DN

Here oy, = 1, #, = 0, so that a; + 3; = 1 < 2; but a; = 3, 3, = 2, so that
ay + B, = 5 > 4 and the tableau is not O(6)-standard. Thus j = 2. The first two
columns of T? yield the sets Q% = {1,2,2} and Q° = {2,2}, whereupon A = {2,2},
B> = {1}, B = 0, C = {1,3,3} and B = {1}. Splitting A and C with respect to
J = {1,1,2,2}, yields D = {2,2}, £ = 0, G = {1} and F = {3,3} and thence
H ={2,2,3,3}. Sinced =2 and g =1, d > g as required by Lemma 5.2.4. Note
that since h = 4 and d = 2 then an expression involving (;) = 6 terms is expected.
In fact, the sets B>, B?, £, G and H are precisely those in the example following
Lemma 5.2.4. Identity (5.2.5¢) is, for this particular case, expression (5.2.6a). From
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this, the required expression (5.2.6b), with each tableau on the right higher than
the original tableau, follows immediately:

-

This yields:

2
3

[VEERNI Y

13
3 3|. (5.2.70)
3

12 12 12 12 12 13
22|=123{+23|+|23|+{23|-{33{, (5.2.7¢)
2 3 3 3 3 3

where, incidentally each term on the right is O(6)-standard. This will not be the

case, in general.

Violations of the protection condition (v) of Definition 5.1.6 are dealt with by

using the following lemma.

Lemma 5.2.8. Let T* be a column strict tableau which is not O(m)-standard in that
a;+ f; = 2j for some j with a; > f; and an unprotected j occurs in the first column,
in that T2, | = j, T3, , = j and T}, , # 7. Then [T*] may be ezpressed as a signed

sum of traceless, symmetrised tableauz [T?], where for each w, T} > T*.

Proof. Define Q=, Q8 A, B~, B?, B, C, a, b*, b?, b and c as for the proof of Lemma
5.2.6. Note that here j € A (since j is in the first column of 7% and j is in the
second) and j € C. Let J = {i € T9™ : ¢ < j,i # j} so that #7 = 2j — 1. The
sets A, B and C are now split with respect to J: D= ANJ, £ = A\D, B, = BNJ,
B, = B\B,, G =CNJ and F = C\@G. In addition let H = DU F. Note now that
7 € Hand j ¢ D. With the cardinalities of the sets just created d, e, b, by, g, f and
h respectively, then d4+e+by+b +g+ f =a+b+ec=m,h=d+f, \, = b>+d+e,
Xo=0 +d+eand d+by+ g = 25 — 1. The condition a; + fB; = 2 implies that
2d + by = 27, and therefore d > ¢g. Thus the conditions of Lemma 5.2.4 are satisfied
and the identity:

3 (1] =0, (5.2.8a)

DuCH

follows, where the sum is over all (2) distinct subsets D,, of H, and T is identical
to T* apart from, if D = {6;,...,6,} and Dy, = {Vu,1,---,Vw.d}, the pair § and §; in
the first and second columns respectively of T, having been replaced by the pair
~Ywi and 7, ; respectively, for each ¢ = 1,2,...,d. Thereupon:

™ =- Y [T (5.2.8b)

DwCH
Dw#D

135

Lk*___—




5.2. Irreducible O(m)-modules

Since D C J, FNJ =0 and H = DU F, each D, # D must include at least

one element from the set F. Apart from the one case T} arising from the set

D, = {b1,...,64-1,7}, the argument given in the proof of Lemma 5.2.6 shows that

T} > T*. However, even in the exceptional case, T > T since the entry j in the

second column of T* has been replaced by the greater entry j. Thus expression

(5.2.8b) is that required and the lemma is proved.

As an illustration of the algorithm in the above proof, let A = (2,2,1,1) and

consider the tableau:
2
™= 13

b

DO =

o

(5.2.9qa)

and the O(6)-module O®21Y. Here a; + B; = 2¢ for each of ¢ = 1,2,3. However,
the entry 3 in the first column is not protected. This implies that T* is not O(6)-
standard. The above proof specifies that j = 3 and J = {1,1,2,2,3}. T* gives rise
to the sets A = {2,3}, B = B« = {1,1}, B = 0, C = {2,3} and thence the sets
D={2,3},£=0,G = {2}, F = {3} and H = {2,3,3}. Then Lemma 5.2.4 yields

the following expression involving (Z) = (2) = 3 terms:

12 12 13
13 13 13
5 +§ —{-3 =0.
3 3 3

entries of (5.2.9b) gives:

LI DI =
Il 1N

Ol DI =
Qo Il =
(%]

where, in this case, the two terms on the right side are O(6)-standard.

with by the following lemma.
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(5.2.9b)

This corresponds to (5.2.8a). The second term here is the exceptional term [T7}]

arising from the set D, = {2,3} C H. Rearranging and reordering the column

(5.2.9¢)

Violations of the second protection condition (vt) of Definition 5.1.6 are dealt

Lemma 5.2.10. Let T* be a column strict tableau which is not O(m)-standard in
that, for some 3, a; = B; = j and an unprotected j occurs in the bth column for some
b>2,inthat T), =3, T}, = j and T}, , # j. Then [T?] may be expressed as a

signed sum of traceless, symmetrised tableauz [T2], where for each w, T} > T*.
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Proof. Proceed as for the proof of Lemma 5.2.8 but instead of working with the
second column, set k; = b and work with the bth column, and instead of using the
J defined there, substitute it for J = {z € Z°™ : ¢ < j}. Consequently, ;7 € D,
j € Fand {j,j} CH. With D = {6,...,64-1,6a = 7} let D, = {b:,...,84-1,7}
Then expression (5.2.8a) has the analogue

[T+ [T+ Y. nT]=0, (5.2.10a)

DwCH
Dw#D
Pw#DPx

where each tableau is column strict, each n, = +1, and for each of the terms under
the summation, 7} > T?, In this case, for the exceptional term, T} may be obtained
from T* by transposing the j in the first column with the j in the bth column of
the same row. Incidentally, T} < T*. Consider a Garnir element involving those
positions below and including j in the first column and those above and including
7 in the bth column of T which yields a Garnir relation (3.4.3), solely in terms of

column strict tableaux. Such a Garnir relation involves [T2], [T*] and various [T}}]

for which T} # T and T} # T* for all v:
[T = [T+ > _n[T}] =0. (5.2.100)
v#zT

Note that T arises from T2, through the transposition of j and j and consequently
[T*] has a coefficient of —1 in this expression. Just as T} > T for each u, it can
be seen that T} > T for each v via an argument similar to that following (3.4.9).
Combining (5.2.10a) and (5.2.100) gives:

vET u#x

™) =5 (Z Ny nu[m) , (5.2.10¢)

an expression in terms of tableaux all greater than T*.

In order to illustrate the above proof, consider the O(7)-module O®3" and
the tableau:

N NI

1
T = 2. (5.2.11a)

W N =

Here a protection violation occurs in the second row since ay; = 3, = 2, the first
column contains a 2 but no 2, and the third column contains a 2 but no 2. Thus
J = 2 and the above proof requires that J = {1,1,2}. T gives rise to the sets
A = {2}, B = B> = {1,3}, B = {1}, B = {1,1,3}, C = {2,3,0} and thence the
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5.2. Irreducible O(m)-modules

sets D= {2}, £ =0,G =0, F={2,3,0} and H = {2,2,3,0}. Lemma 5.2.4 then
yields the following expression:

1 1 1 21 121 121
2 2 222|+1323|—-1320
3 3 3 0

The second term is the exceptional term [T*] on which the action of the specific

[N V|

+ = 0. (5.2.11b)

Garnir element is required. For this case X = {2,3} and Y = {6,7}, whereupon

(3.4.3) yields:
1 121
[2 ]_ [Q :
3 3

where a number of terms with a pair of identical entries in a column have been

[V ]
[l

l =0, (5.2.11c)

omitted since they are zero. Expressions (5.2.116) and (5.2.11¢) imply that:

121 1321 121
[2 2 2} ([ ]—[3 2 3]+{3 2 OD. (5.2.11d)
3 3 0

This expression, with each tableau on the right higher than T*, corresponds to
(5.2.10¢). However, each tableaux here is not O(7)-standard. The techniques of
at least one of the Lemmas 3.4.3, 5.2.6, 5.2.8 and 5.2.10 will need to be reapplied

to each of these terms in order to elicit an expression for [T?] solely in terms of

O(7)-standard tableaux.

Il
NN
Lo =

[
[T o

With the above standardisation lemmas established, the argument now closely

follows that of Section 4.3 where the symplectic group modules were obtained.

Lemma 5.2.12. The set
{[T*] : T* is O(m)-standard}
spans the O(m)-module O*.

Proof. If the column strict T* is not O(m)-standard due to a violation of condition
(7¢2) of Definition 5.1.6 then the techniques of Section 3.4 enable the Garnir relations
to be used to write [T?] is terms of higher column strict tableaux. If the column strict
T* violates conditions (iv), (v) or (v¢) of Definition 5.1.6 then Lemma 5.2.6, Lemma.
5.2.8 or Lemma 5.2.10 shows that [T*] can be written in terms of higher column
strict tableaux. Therefore, by iterating these procedures, {T*] may be written in
terms of O(m)-standard tableaux by virtue of the ordering on the set of all tableaux

and their finite number.
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5.2. Irreducible O(m)-modules

This lemma has the direct implication that if X; + X, > m, then the O(m)-module

O* is zero since in such a case there exist no O(m)-standard tableaux.
Let A € P(l). Since U™, specified by Definition 5.2.2, and hence U°™ N
W?* C V@ are invariant under O(m), (4.2.17) implies that the element G € O(m)
acts on [T?*] € O* according to:
TA] = ZGT()) (1) TIAT GT' ATA [T”\], (5.2.13)

(3) (7) [OMRO]

the sum being over all tableaux T"* with entries from the set Z°™. In order to
determine the action of B,? € so(2r + 1) or D, € so(2r) on [T?], let p and ¢ be the
number of times that the indices b and a respectively occur in T*. Form the set of
p tableaux {1}, T}, ..., T} } by, in each case, replacing a single index b in T* with
a, and the set of ¢ tableaux {73, T3},,..., T3 } by, in each case, replacing a single
index @ in T* with b. It then follows from (4.2.18), (2.2.21) and the definition of
[T*] that, for o(2r + 1):

BT = EX[TY] - Ef*[T"]

SR - YIT, (5.2.14a)

i=1

Il

and similarly, for O(2r):
q
DT = Z = > (T (5.2.14b)
i=1 i=1

These imply that:

B,*[T*] = n2Cr+)(TH)[T] (5.2.15a)
and DT = noC(TH[T. (5.2.15b)

Since bases for the Cartan subalgebras of so(2r + 1) and so(2r) are provided by the
elements B,* and D,® respectively for a = 1,2,...,r, the O(m)-weight n°™)(T*) of
T* determines the weight of the element [T*] € O* in this basis.

Ifm = 2r+1and X, <r,let T be given by Definition 2.6.6. Then n®™)(T2) =
(A1, Az,...5,A) = A and T2 is the unique O(m)-standard tableau of shape F* for
which this is so. If a,b € N, and a < b then:

BT =0, (5.2.16a)
BT =0, (5.2.16b)

and  B,°[T] = 0. (5.2.16¢)
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5.2. Irreducible O(m)-modules

It is readily apparent that T is the only O(2r + 1)-standard tableau with this
property. Since {B,*:a,b € N,,a < b}U{B.b:a,b €N,,a <b}U{B.,°:a €N,}is
a basis for BY®*Y (5.2.16) shows that [T?] is the unique highest weight vector of
the O(2r + 1)-module O*.

If X\, >r,let T;“(,.,j) =1 as before, but only for 1 <i<m—X,and1<j < X\
(this deals with all but part of the first column). In addition, for m — X, <i < r
let T35 1aimo1,1) = ¢ and T;‘(X1+2i—m,l) = ¢. Finally, let T;\(S‘,,l)_z 0. For instance, if
m=9and A =(3,2,1,1,1,1) then:

DN =

(5.2.17)

B ol QO DN

0

Once more each case of (5.2.16) holds. However n®™(T2) = (A}, A;,...,Ar) = A*
where A = m — \, and §; = )\, for i > 1. Thus n®™)(T2) = n°™(T2") and O* and
O*" are not distinguished as so(m)-modules. As will be seen later, they are distinct

as O(m)-modules. For now this will be assumed.

If m =2r and X, <r, then T} is again provided by Definition 2.6.6. If m = 2r
and \; > r then T} is given by the same prescription as for the m = 2r 4+ 1 case
described above except that the index 0 is not entered. Thereupon, the so(2r)-
analogues of (5.2.16a) and (5.2.16b), with ‘B’ replaced by ‘D’, result in the same
conclusions for O(2r) as for O(2r + 1). This leads to the following theorem.

Theorem 5.2.18. The O(m)-module O* is irreducible with basis:
{[T?] : T* is O(m)-standard}.

Moreover [We39), the set {O* : X\, + X, < m} provides a complete list of inequivalent

irreducible O(m)-modules.

Proof. Since O* has highest weight A, it contains the O(m)-module corresponding
to the irreducible representation [A] of O(m, C). That first part of the theorem then
follows from Theorem 5.1.8 and Lemma 5.2.12. The second part of the theorem
follows because firstly every O(m)-module occurs in V& for some [ [Li44]; secondly,
O(m)-standard tableaux of shape F* exist if and only if X, + ), < m; and thirdly, if
X1 £ m/2 then ) is the highest weight of O* and if X, > m/2 then A* is the highest
weight of O*, but O* and O*" are inequivalent O(m)-modules.
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5.2. Irreducible O(m)-modules

The quintessential structure of O* may now be stated.

Theorem 5.2.19. Let A € P(l) with M+ X, <m. O is the irreducible O(m)-module
spanned by [T} for all T* with entries from the set 9™, modulo relations (3.4.2),
(3.4.3) and (5.2.3), and on which O(m) and so(m) act according to (5.2.13) and
(5.2.14) respectively.

This theorem effectively provides a definition for O*.

The techniques of this section enable explicit representation matrices for ele-
ments of O(m) and so(m) to be obtained in the representation [A]. Let o* = D,,[A]
be the dimension of O* and let T}, T}, ..., T} be the O(m)-standard tableaux. The
action of G € O(m) on each [T}] yields, through (5.2.13), a linear combination of,
in general, non-standard tableaux. The techniques of this section enable each to be

written in terms of O(m)-standard tableaux, so that:

OA

G [Tf\] = Z F[A](G)ji[frj)\]’ (5.2.20)
j=1
where the I'™(G);; € F are the matrix elements of G in the representation [A]. In a
similar way, the representation matrix '(B) of B € so(m) is given, via (5.2.14),
by:
BT} = Y. TY(B);[T)). (5.2.21)
j=1
Note that in the reduction of an arbitrary traceless symmetrised tableau to a linear
combination over the O(m)-standard tableaux, the coefficients are integral apart
from those arising from using the algorithm of Lemma 5.2.10. In this case, factors
of 1/2 may occur. Consequently, for the basis elements, B,* or D,* of so(2r + 1)
or so(2r) respectively, the matrix elements, T'™(B,*);; or T®(D,?);;, are rational
numbers whose denominators are integral powers of 2. This situation contrasts
with that of the GL(m)-modules and Sp(2r)-modules considered in Chapter 4,
where the coeflicients of the standard terms and the representation matrix elements

are all guaranteed to be integral.

As an example, let A = (2,1) and consider the element B,! € so(5) in the
35-dimensional O(5)-module O*. Then if:

T =

[N
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5.2. Irreducible O(m)-modules
the action of B,' on [T?] is given, via (5.2.14), by:

le[% 2]=EZI[% 2]—E12[% 2}
[ 2
2

-+ 3 _-%2 _.%1
(2 2] [T 2] 1] T 2] (from (3.4.2) and (3.4.3).
| 2 B! | 2 |1 ]

However:

[; 1]=—_% I___g 2-—-2 2| _ g 0 (from (5.2.3) or (5.2.10a))
=_T%i + gé ﬂg 0! (from (3.4.2)),

and:

[% i]=+ L; 1- - ; ?_ (from (3.4.3) or (5.2.100)),

so that:

[; 1]:é<+[§ §]+[g §]+[g OD (as in (5.2.10c)).

pil12]_3[12]_3[22]_1[20
12 | 2|1 | 2|2 210 |

The calculation need not be so complex, as the following example makes clear:

) (5 9] s[2 2 12
S R P RS H R P

0
Similar calculations, when carried out for each of the thirty-five O(5)-standard

O N

tableaux in O*, yield the following explicit representation matrix I'>!(B,') for B,!:
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.................... B
.............................. S
................................ ) U
0 1
...... Lo o e e
......... 2. e e e e
........... 2 . e e
...... L. o e
........ S
.......... e
......... - Z S
........... S
.............. 1 O
....... oo s e e e
......... S
....................... e
......................... 1. . .
................... 1. . . . s

3
.............................. -3 .
...................... 2. ... 2
........................ D
............................... 3 ..
...................... S |
...................... 1 T
............................... -1

3
.............................. E

where each zero has been replaced by a dot. The two calculations carried out above

give the entries in the 31st and the 6th columns of this matrix, respectively.

The algorithmic nature of the process lends itself to computer implementation.
The above matrix has been produced in this way, together with similar matrices for
the remaining generators of so(5) in the same irreducible representation [2,1]. As a
check on the calculations it has been confirmed that the resulting matrices satisfy
the commutation relations (2.2.22). A large number of O(m)-modules have been
constructed and verified in a similar way. As an additional check, representation
matrices for arbitrary elements of the Lie algebras so(m) have been generated from
the representation matrices of the simple root vectors via (2.2.19) and (2.2.23), these
simple root vector representations having been obtained through the techniques of

this section. These agree with the matrices obtained directly from (5.2.21).

The techniques of this chapter now enable the O(m)-modules O* to be used
to yield the characters of the elements with determinant —1 directly.

Theorem 5.2.22. If m = 2r + 1 is odd, then the character of the representation [A]
s given by:
A(y) = > (=1)re@y T (5.2.22a)

Tr:TXO(m)—standard
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"?('"’(T‘)y;?(""(T‘) e re )

where (y) denotes the vector (yy,Ya, - - -, ¥r) and y7 =y ph ,
for those elements of O(2r + 1) with eigenvalues y7',y1, Y74, Y2, -+ Y7 Yy —1, and

thus determinant —1. If m = 2r is even and:

yT*  if neither 1 nor 1 is present in T?;
P —yT" if both 1 and 1 are present in T*; (5.2.22b)
0 otherwise,

then the character of the representation [M] is: -

() = > 2, = (5.2.22¢)

TX:T>O(m)~—standard

for those elements of O(2r) with eigenvalues —1,1, y5;1,ya, ...,y y., and thus de-

terminant —1, where y; = 1.

Proof. If m = 2r + 1, consider the following generic element of O(2r + 1):

vt 0) (yz‘l 0) (y;l 0>
® @@ @ —1. 5.2.22d
(0 (2 0 vy 0 y ( )

By (5.2.13), its action on [T*] yields (—1)*(T)yT*[T*]. Summing the coefficients
over the set of O(m)-standard tableaux which provide a basis for O*, then yields
(5.2.22a) as the trace of the matrix representing (5.2.22d).

For m = 2r, consider the following generic element of O(2r):

IRCHENN
G = H( 72 D---pl I ) 5.2.22¢
(yf‘ 0 ) ( 0 v, 0 v ( )

Let T* be O(m)-standard. By (5.2.13), the action of G on [T*] yields y7 [T"],
where T* is identical to T* except that each 1 has been changed to a 1 and vice-
versa. If T* contains neither, then 7"* = T* and y”" appears on the diagonal of the
matrix representing G. If T* contains Is or 1s, but not both, then T"* is also O(m)-
standard. Therefore, since T'* # T*, this case contributes nothing to the trace. If
T* contains both 1s and 1s, then Definition 5.1.6 implies that both occur in the
first column and neither occur elsewhere. T"* thus has the two entries reversed
and therefore, by the Column relations, [T"*] = —[T*]. This case thus contributes
—yT* to the trace of the matrix representing G. Summing over the O(m)-standard

tableaux, as above, proves (5.2.22¢).

Theorem 5.2.22 has the straightforward corollary that if \; = r then [A](y) =0
for elements of O(2r) of determinant —1. In [Pr89] a result similar to Theorem
5.2.22 is obtained. Although the contribution from each standard tableau differs

from that given here, the overall characters are in agreement.
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§5.3. Irreducible SO(m)-modules

Let S* be the SO(m)-module arising from the restriction of the O(m)-module O*
to the subgroup SO(m) of O(m). As was stated in Section 2.5, the representations
[A] of O(m) remain irreducible on restriction to SO(m) if and only if \; # m/2.
Thus, if X, # m/2, then S* is an irreducible SO(m)-module and the construction
procedures of the previous section can be used to obtain these irreducible SO(m)-
modules. In particular, if X; # m/2 then the O(m)-standard tableaux will also
be referred to as SO(m)-standard tableaux. It is the purpose of this section to
elucidate the decomposition of the SO(2r)-module S* when X, = r and to use this
analysis to derive a set of SO(2r)-standard tableaux and devise a standardisation
algorithm. It will be also be shown that certain pairs of the SO(m)-modules S* are

equivalent.

The analysis of this section borrows a number of the notions employed in
Section 4.5. Although the two are related, the notions of this section are distinct

and should not be confused with the corresponding notions of Section 4.5.

Definition 5.3.1. Associate partition. Fiz m and let A € P(l) be such that X\, + X, <

m. Define \*, the partition associate to A, to be such that \* = m — X, and X; = X;
fort > 1.

Since \; + A, < m, it follows from X} = m — }; and A; = X, that Ay > X;. This
verifies that \* is indeed a partition. Furthermore, from \; > X,, it follows that
X4 X; < m. Thus O* is also an irreducible O(m)-module. The two O(m)-modules
O* and O are intimately related and are said to be associate. If \; = m/2 then
A* = X and both A and O* are said to be self-associate.

Definition 5.3.2. Associate tableau. Fiz m, let A € P(l) be such that \;+\, < m and
let s = X,. Let T* be a column strict tableau with entries in the first column from the
set J = {j1,J2,---,Js}- The associate of T* is defined to be that column strict tableau
T> which differs from T* only in its first column which has length t = m — s, and the
entries in that column constitute the set K = {ky, ky,..., k;} = {t € I°™ 11 & J}.

To illustrate the above two definitions let m = 6. Then:
1

3 — T2

*

1

T(2,2,1) — 3 .

DN NI
LW Il i
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IEm="T:

o
\V]

T(22.1.1) — T(22.1) —

b=
Wl
W I NA
(%]

e

In these two examples the associate of each O(m)-standard tableau is itself O(m)-
standard. In addition, as may be easily verified, T2, = T2 . This illustrates the

following lemma.

Lemma 5.3.3. If T* is an O(m)-standard tableau then the tableau T} is also O(m)-
standard.

Proof. For all i € Z°™) let «; and B; be the number of entries less than or equal
to 7 in the first and second columns of T?, respectively. Let a} and f; be defined
likewise for T»". Then 8; = 3; for each i € Z. For the purposes of this proof let
oy =f =a; =5 =0.

Let even m = 2r and odd m = 2r + 1. If T* is O(m)-standard then Definition
5.1.6 implies that for each 1 =1,2,...,r:

(i) a; = B,

(i) a7 > By,

(iii) a; + B; < %,

(iv)ifay;+ 8 =2iand ey, > fiand a; 1 +1=a;+1 =a; and gy = f;;1 + 1

then 8; = f; + 1,

(v)ifoy = ffi =7iand o;_1+1 = a7 = ; and T}, = i for some b then T | , = 1.

1

It is required to demonstrate that each of these five conditions hold when a} and

Br are exchanged for «; and f3; respectively.

Let J = {j1,72,---,Js} C Z°™) be the set of indices in the first column of T*
with j; < jy < -+ < J,. Further,fori =1,2,...,r,let J; = {j € J : 7 <}, so that
#J: = a;. Then the set of indices in the first column of T? is K = {k;, ky,..., k; :
kg J} C I°0™. Let ky < ky < --- < k,and let K; = {k € K : k < i} so that
af =#K,. Then K;={k<i: k¢ T} ={k<i:k¢gJJ]} sothat #K; = 2i — #J,
and hence a] = 2t — «;. Consequently (i) af = 2i — a; > 2i — (2t — Bi) = B = B},
] as required since o; < 20 — f; and (iii) af + f; = a] + i =2t —o; + f; < 2¢, as
required since a; > f3;.

Since af —1 < af <af, ff —1 < By < Br and a} > 7, the condition of > §;
may only be violated if a} = 87 = f; = a} + 1 whereupon «o; + f; = 2¢ and z € K.
Similarly o}, < of <af_,+1, B, < B <P, +1,af 2 B; and af < ff imply
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5.8. Irreducible SO(m)-modules
that 87, = a;_, =a} = 7 —1 and thus7 € K. Thus: € J and ¢ ¢ J whereupon

a; = a;+1 = a;_;+1. Two cases now need to be considered. In the first a; = §; =1
whereupon o] =2t —a; =a; =a;+ 1lsothat oy =0af =1 =8 —1 = F;—1 and
a; < ff; contradicting the assumption that T* is standard. In the other case where
a; > f3;, since 8 = B = f;_, + 1, ¢ would occur in the second column of T* but no
i. This, with ¢ € 7, ¢ € J implies that T* would suffer a protection violation, again
contradicting the assumption that T is standard. Thus af < ff cannot occur,
giving the conclusion (ii) af > f7.

Now assume that a protection violation occurs in T?". This requires o + 3; =
2t and hence a; = f;. Two cases need to be considered. If af = B; = ¢ then the
protection violation insists that z € K, ¢ ¢ K whereupon i ¢ J, ¢ € J. Thus, if an
unprotected ¢ occurs somewhere to the right of the z in 72", it would also do so in
T so that a violation of (v) can be excluded. In the other case, af > f;, and a
protection violation of (iv) requires that i € K, 7 ¢ K whereupon z ¢ J, 1 € J and
a; = a; + 1. Also required is an ;7 in the second column but no 7. This would imply
that 8; = ;= Fi_1+1,and since a; = B;, a; = a; — 1 = 3; — 1 = ff; — 1, once more

contradicting the assumption that T* is standard. This completes the proof.
Associated with each transition from [T?] to [T}'] is a sign factor given by
€T = €,k R (5.3.4)

where J = {j,,...,J,} are the entries in the first column of T* with each j; = T(f)
and K = {ki,...,k,} are the entries in the first column of T)" with each k; = TJ;,.
Throughout this section, the convention of summing over all repeated indices which

are displayed explicitly will be used. Let m = s 4+ t and define:
1

La‘---a.bl»-»bg = Z_'eax“-ancchn']nbx tee Jc,b,
3 (5.3.5)
= ?,'ea,ma,slml_na
so that: .
le...j,kl...k, = EG(J’K). (536)
Define:
I{ax~~-a.n~~-C. = (_1)r+“Lax-~a.bx---b:be~-~bccl---6. (5'3'7)
Lemma 5.3.8.

. 1 .
O (Z (=1) barergy - 5(,,6*(,,) . (5.3.8)

x€S,
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5.8. Irreducible SO(m)-modules
Proof. Substituting (5.3.5) into (5.3.7) gives:

1
I{Gl"'G.CI“-C. = (‘“1)r+at'_€al...a'51...$‘ebl...b'cl...g.-
slt!
It may be seen that €,. 5., = (—1)"€5,..5,c,..c, by transposing ¢ and : for each
i=1,2,...,r, and 0 = 0 where m = 2r 4+ 1. Thus:

1
e st
I\alwa.cl---c. = (—1) mfal-'-a.br"b:eby"btcl"-C.’

whereupon the lemma is proved by precisely the same reasoning as for the proof of
Lemma 4.5.13.

This lemma shows that I is an antisymmetriser so that:

€layar] = L ay anbyb, €by b, - (5.3.9)
In addition, it shows that:
Loy aysy s, Kb bieree = Kayaypy b, Lbyobyeree = Layoayeroces (5.3.10)
and hence:
Loy avbrv€py80 = Layoarsy5,€byet,- (5.3.11)

The developments of this section and the next depend on how L commutes with

elements of O(m). If G € GL(m) then:
(det G)eal---a.c1»~~c, = Eey»-e,jlmf,Galel T Ga,e.Gc,fl s Gc(f,. (5312)

If G € GL(m) preserves the form given by the matrix J, then G.;J.Gss = J;4 and
det G = (det G)~! = %1, whereupon:

L, ay,Goia, -+ Gupa,
= €ayarermci Ty T, Goyay -+ G,
= (det Q)eereroiGarer Gare.Gersr o+ Gorgidewss ++* Join Goray -+ Goea,
= (det G)eeroeroiGares - Gaverdpiay -+ Iy,
= (det G)Glaye,+ Gare.Ley evdy - (5.3.13)

Thus if G € SO(m), the operator L commutes with G. This implies that if T2 has
the indices from the set J,, comprising its first column and T}, has indices from the
set K, = {k € Z°™ : k € J,} comprising its first column, then the transformations
of the [T}] under SO(m) are identical to those of ¢(7X)[T27].
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5.3. Irreducible SO(m)-modules

Now restrict attention to those SO(2r)-modules S* for which X, = r, and
therefore A* = A. Let s =t = r and define:

L* 1 (Kayrappron, £ (=172 L0 n,)- (5.3.14)

ay--acbyb, )

The sign factor (—1)""+1/2 is simply a matter of convention in determining which of
these operators is to be known as Lt and which L~. What is important is that they
are both idempotent and commute with the action of all G € SO(2r). That they
commute with G follows from (5.3.7) and (5.3.13) with s =¢ = r and detG = 1.
That they are idempotent follows from the identities LL = K, LK = KL = L and
KK = LLK = LL = K, where all indices have been suppressed for typographical

convenience, and use has been made of (5.3.7) and (5.3.10) with s =¢ =r. In

particular:
1
LE i Cinis = 5 (€ 2 (1) 02T Dey ) (5.3.15)

where J = {j1,...,5.} and K = {ky,...,k,} = {k € I°™ : k ¢ J}. It fol-
lows from the above that the subspace of V®" spanned by all tensors of the form
L;:-uj,i,~-i,.ei1“'ir is invariant under SO(2r). This is likewise true for all tensors of the

form L;---j,il-«-irei:-‘-ir' Similarly the subspaces U* € V¢ spanned by all tensors of

the form:

Z (_1)0(‘1‘.1'0 @ Wi, 0y @x;, @ Wi, () @z, @+ Q Wi @ T,

oES,
:t (-l)r(r+l)/2e(j’t)$ig ® wka(l) ® Ty, ® wk,m ® T, ® .. ® U’k,(,) ® ‘7""1-)7
(5.3.16)
where z;,,2;,,...,z; are each an element of some, possibly zero, tensor power of

V, are each invariant under SO(m). Now let S** = S$*/(S*NU-) and §* =
S*/(S*NU*T). Weyl proved the following theorem.

Theorem 5.3.17. [We39] If A € P(l) is such that X\, = r, then the O(2r)-module
O* is decomposable on restriction to SO(2r) into the direct sum of two inequivalent

irreducible SO(2r)-modules, S** and S*-, the dimension of each being half that of
0*.

To exploit Theorem 5.3.17 in a constructive manner, define:
(T = [T (—1yHrer O[T, (5.3.18)

where J = {ji,...,J.} are the entries in the first column of T* with each j; = Tj

and K = {ki,..., k. } are the entries in the first column of T} with each k; = TJ;,.
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5.8. Irreducible SO(m)-modules
This implies, since

K7 _ —
€l )= €y krfrje = (_1)r651”-’5ri1"'ir

(5.3.19)
= €k ke = 6(.7.}5),
that:
[TA* = +(=1)y 2T RT (5.3.20a)
and
[T%)7 = —(=1) 02T T)-. (5.3.200)

This leads to the following lemma.

Lemma 5.3.21. Let m = 2r and A € P(l) be such that \, = r, whereupon \* = X.
Then [T*|* € U* and [T*)* € S**. Moreover, in S*%, [T?]* = 0.

Proof. Since {T*} is antisymmetric in the r indices of its first column, it follows
from (5.3.16) that {T*} £ (=1)" /27 KT2} € U*. On removing the trace terms
this gives [T?] & (=1) /2D [TA] ¢ U%. Therefore, from (5.3.18), [T*]* € U*.

The remainder of the lemma then follows directly from the definitions of S**.

As an illustration of (5.3.18), let r = 3 and A = (2,2,1). Then:

1
3 - T =

*

QO

T =

(AR
L ot =

where €7 X) = 11, so that:

i) = 5

It may occur that one of the resulting terms is zero, for example:

N NI
(S I
[NCI SV

L

W Il
(e
SV |

|

1
3 = T =

1
TAZ * 3)

W W2
L B

where €7 X) = —1, so that:

1] 11 111"
23 =223 but 23| =0
3 3 3
The subsequent definition acts as a preliminary to obtaining a set of standard

tableaux for each of the modules $** with \, = r.
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5.3. Irreducible SO(m)-modules
Definition 5.3.22. Let A € P(l) be such that \, = r. For each O(2r)-standard

tableau T* € O}, let a; be the number of entries in the first column less than or equal
toz, fort =1,2,...r. Then define:
St ={T"e€0) :a;,=ifori=12,...,r; [T*|* # 0};
So-={Te€0) :a;=ifori=1,2,...,r; [T*]” #0};
= {1 € 0} 1 #0) e
SHt={T"€0) :a;=ifori=1,2,...,7 —1; a; < j for some j < r};
S ={T"e€0) :as=ifori=1,2,...,5—1; o; > j for some j < r}.

Note that if T* € O} and o; = ¢ for each 1 = 1,2,...,r, then T* = T} whereupon,
from (5.3.18) or (5.3.20), exactly one of [T*]* and [T?]~ is zero. It then follows that

O,, is the disjoint union of Sg¥, §}-, S}*, and S}-.
Lemma 5.3.23. If T* € §}F then:
[TM* =o. (5.3.23q)
If T* € 8§} then T} € S}* and:
[THE = £(=1) U tD12T R TAE, (5.3.23b)

where J = {j1,...,J-} are the entries in the first column of T* with each j; = T(’})
and K = {ky,...,k.} are the entries in the first column of T} with each k; = T}

Proof. f T* € §)% then T* = T whereupon, since exactly one of [T*]* and [T?] is
zero, (5.3.23a) follows from the definitions of §;*. With «; as in Definition 5.3.22, if
T* € 8§}~ then j < a; for some j withi = o; fori =1,2,...,7—1. Then of = 2i —q;
implies that ¢ = o for 1 = 1,2,...,j — 1 and also that j > «]. Therefore T) e S}
since T} € O3, by Lemma 5.3.3. Identity (5.3.23b) combines (5.3.20a) and (5.3.205).

Lemma 5.3.24. The cardinality of the set S}t equals the cardinality of the set S;~,
and the cardinality of the set S}t equals the cardinality of the set S}-.

Proof. For the tableaux T* and T? define J, K, J;, K;, a; and a] exactly as for
the proof of Lemma 5.3.3.

If T* € §}* then K = J,T* =T} and

(1T = (L1 O o =1

Since a; = 1, j, > 2 (if r > 1) and either j; = 1 or j; = 1. Since T* is O(2r)-

standard this entry may only occur in the first row of T* and j, may not occur at
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5.3. Irreducible SO(m)-modules

all. Form the O(2r)-standard tableau T"* from T* by replacing each j; with j,. It

is easily seen that T/* = T"*. However, from (5.3.20a):

[T'*r = H(=1) D e iigad [T'Ar
= (1Y e (T
=—[m]".
Therefore [T*]* = 0, implying that 7* € S}~. The map T* — T is clearly a
bijection between S+ and Sp~ implying that #S}* = #53~.
If T* € S}~ then Lemma 5.3.23 shows that T} € S}*. In a similar way it

is shown that 7% € S}* implies that T* € S}-. These maps are inverse to one

another, demonstrating that the map T*» — T? is a bijection between the sets S}~

and S}*. This shows that #8M = #8}-.
This lemma enables appropriate sets of SO(2r)-standard tableaux to be defined.

Definition 5.3.25. Let A € P(1) be such that \; = r, and the sets S}+, S}, S}
and 8}~ are as in Definition 5.3.22. Then:

(i) S§F U S} is the set of SO(2r)-standard tableauz in the module S**;

and

(11) S~ U S} is the set of SO(2r)-standard tableauz in the module S*~.
The significance of these standard tableaux lies in the following two theorems.

Theorem 5.3.26. If A € P(l) is such that X\, = r, then the multiplicity of the weight
(n1,n2,...,n,) in the irreducible representations [A]x of O(m) is given by the number
of appropriate SO(m)-standard tableaux T* for which n®™(T*) = (n,,na,...,n,).

The characters of these representations are given by:

D)= > 47, (5.3.26)

Tres)Fus}t

aQ(m)(PA) pO(m)(Ta) pO(m) (>
y27 “e y r ( ),

where (y) denotes the vector (Y1, v, ..., y,) and yT =y ,
for the class of SO(m) with eigenvalues yr',vi,y5' 2.,y ye, tf m = 2r; or
eigenvalues y7', y1, Y5 Y2y -+ - Yo Y, 1, if m = 2r + 1.

Proof. If T* € Sg* then [T*]* = 2[T*] # 0 and [T?] € S**, whereupon, since
n%m)(T?*) is a weight of the SO(m)-module S$?, it follows that n®(™)(T*) is a weight
of the SO(m)-module S**. If T* € S+ then [T*|* = [T?]4(=1)"+D/2eTR[TA £ 0
and [T?]* € S**. Then, since the O(m)-weights of T* and T? are equal, n®™)(T?)
is a weight of S**. By similar reasoning, if T* € &}~ or T* € §} then n°™)(T?)
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5.3. Irreducible SO(m)-modules

is a weight of S*-. Since #8} = #38}, this exhausts all the weights of $*. The
result then follows.

Theorem 5.3.27. If X € P(l) is such that \, = r, then the SO(2r)-standard tableauz
form bases for the irreducible SO(2r)-modules S*%; that is:

{[T*]+ T € S U 83+}
is a basis for the SO(2r)-module S**, and:
{[T*]_ T € 8- usl“}

is a basis for the SO(2r)-module S*~. Moreover S** is isomorphic to V® modulo the
relations (3.4.2), (3.4.3), (5.2.3) and (5.3.20a), and S*~ is isomorphic to V® modulo
the relations (3.4.2), (3.4.3), (5.2.3) and (5.3.200).

Proof. Lemma 5.3.21 shows that S** are spanned by the sets of terms of the form
[T*]*. Theorem 5.3.17 and Lemma 5.3.24 show that the sets of SO(2r)-standard
tableaux are of the correct cardinality. The theorem is thus proved if it can be
shown that for every tableau T*, [T*]* can be expressed as a linear combination of
SO(2r)-standard terms in the SO(2r)-modules S**. Theorem 5.2.19 indicates how
to express [T?] as a linear combination of O(2r)-standard terms. The analogous
result is achieved for [T*]* in the same way by the definition of S** as a quotient.
Any term [T}]* for which T is O(2r)-standard but not SO(2r)-standard is dealt
with using one or other of the identities given by Lemma 5.3.23. These immediately
produce either an SO(2r)-standard term or zero. Thus, every [T*]* can be reduced

to a linear combination of SO(2r)-standard terms in each of the SO(2r)-modules

SrE,
With the module actions of SO(2r) and so(2r) analogous to those given by (5.2.13)

and (5.2.14) respectively, this theorem effectively provides definitions for S**.

As an example of the way in which the reduction to a linear combination of

standard tableaux is achieved in the different modules, consider the tableau:

N NI

T(2,2,1)

(SR IL Tl

the irreducible O(6)-module O®?%9, and the irreducible SO(6)-modules SZ2D+
and SZ2D-. In 02D the reduction of [T*?*Y)] to terms involving O(6)-standard
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5.8. Irreducible SO(m)-modules

tableaux results from the application of a single Garnir relation (3.4.3):

i )

The corresponding identities in the SO(6)-modules S21% are
+ + - s q%
13
2 3| .
2

571" i3
3 + 2 3 —
3

However, the 2nd, 3th and 5th terms on the right side are not SO(6)-standard
in the module S22+ and the 1st, 4th and 5th terms on the right side are not
S0(6)-standard in the module $®*2D-, In S22+ the identities:

13 ]*

3 31| ,

3

[ [ |

effect the standardisation:

-

In S22~ the identities:

[SVIRAV]
Ll NI

L QI

N NI =4

1

o Lol K
(N
| S ———
fl
I
| e |
W
AN
| ————— )
+
| a—
L N

[T ST |

Lol BN =

[N VI
W Wi
| S
+

!l

|
| ————

[CV I V)i

W NI
Wil b
| S |
+

[
| e a— |
L N I
(VeI ]|

l
[ —

1 2 12 13 13
2 31 =0, 2 3] =0 and 23 =+13 34},
3 3 2 3

give rise to the standardisation:

EREREES

To illustrate the construction of explicit representation matrices, let A = (2,1)
and consider the eight dimensional SO(4)-module SD-. For this case, Definitions
5.1.6 and 5.3.25 specify the following SO(4)-standard tableaux:

W N

2

9

2

[\VIR W]
BN =i

22 12 11 12 12 1
2 2 2 2 272
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5.3. Irreducible SO(m)-modules

The eight remaining O(4)-standard tableaux from OV satisfy the relations:
12| 1 2] 1 1]

= = = 0
B P R P R
E R N P R
12" _ 32 .4 [12]7 _ _[22]
1 B 2 1 B 2 ’

each of which is obtained via Lemma 5.3.23. Calculations involving, in addition to

these identities, the use of the Column relations (3.4.2), the Garnir relations (3.4.3),
and the orthogonal Trace relations (5.2.3), give:

o
N

DO i
NI
D

-3 . -2
. -1 .
-2 S . -3
F[/\]"‘ (Blz) — . . . . '3 . . . , P[A]— (B21> — . . ’2 i ,
-2 . 3
-1 .
1
1 .
. 1
1
e (B = | ! LT B = :
. 1
. -1 .
-1
along with the diagonal generators belonging to the Cartan subalgebra:
1 .
-1 2 .
e e -1
RO (Bxl) = -t .) o ) INe (BZZ) = 1
1 .
w1 . -2
2) % 1)
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5.4. Duality between associate O(m)-modules

Notice that the highest weight vector of this so(4)-module SZ1- is { % 1 ] ,
for which

w3 3] w3

confirming that its highest weight is (2, —1). In fact the rather unexpected incorpo-
ration of the factor (—1)"("+1/2 in (5.3.14) has been adopted precisely so as to ensure
that the highest weights of the so(2r)-modules S** and S*~ are (A1, Ag, ..., Ar_1, Ar)
and (A1, Ay, ..., Ar_1, — A, ), respectively.

The techniques of this section have been implemented on a computer. In this
way they have been used to construct various explicit representation matrices for
the irreducible representations [A]x of SO(2r) with X; = r. In all cases, including
that of [2,1]. given above, the matrices obtained satisfy (2.2.18) and (2.2.22) in

place of the elements they represent, thus verifying the techniques of this section.

§5.4. Duality between associate O(m)-modules

This section demonstrates and examines a duality between associate O(m)-modules

which is analogous to that found in Section 4.5 for associate G L(m)-modules.

Define the linear map L. : O* — O*" by:
L.[T*) = 901X, (5.4.1)

where J = {j1,...,J,} are the entries in the first column of T* with each j; = T},
K = {ki1,...,k} are the entries in the first column of T}" with each k; = T};, and

€75 is given by (5.3.4). Theorem 4.5.6 has the following analogue.

Theorem 5.4.2. Let A € P(1) be such that X, + X\, < m. If

YT =0 (5.4.2a)

w

is a Trace relation in the O(m)-module O*, of the type specified in Lemma 5.2.4 with
ki =1 and ky > 1, so that all the tableauz T2 differ only in entries in the 1st and

koth columns, then:

S TR TN] = 0, (5.4.20)

w

with J, and K,, defined by analogy with J and K, is a Garnir relation of the type
(3.4.3):

>, (1)) =0, (5.4.2¢)
n€g(X,Y)
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5.4. Duality between associate O(m)-modules

involving entries in positions X of the 1st column and positions Y of the k,th column.

Conversely a Garnir relation of type (5.4.2¢) gives rise to a Trace relation of type

(5.4.2a).

Proof. Form 6,, as for the proof of Lemma 5.2.4 from the indices of the relevant
two columns of T». Let A, C Z°™ be the set of all i € A, such that :* and 7*
are both present in 6,,. Let B, C Z°™ be the set of all 7 € B,, such that one only
of i and ¢’ is present in 6,. Let C, C Z°™ be the set of all : € C, such that
neither 7* nor ¢ is present in 8,. Then, if a, = #A,, b, = #B, and ¢, = #C,
a, + b, + ¢, = m for each w. Factorise §, = 6562 where 62 and 82 are formed solely
of superscripted indices from B and A respectively. Since a Trace relation involves
expressing a number of barred-unbarred index pairs in terms of other such pairs,
B, b, and 5 are constant and their subscripts may be dropped. In addition, since
8, = 662, it follows that a = a, and ¢ = ¢, are also constant. Split B into B*UB#,
such that ¢ € B* if i* is present in 6% and ¢ € B? if ¢ is present. If b* = #B* and
b = #BP, b= b+ P,

Let £ =N, Au, Dy = ANE, H = U,D,, F, = H\D, and G = I°™\(H U
EUB) with e =#E,d=#D,, h=#H, f = #F., g = #G, whereupon h = d + f,
a=d+eand c= f+g. Since the Trace relation is of the type specified in Lemma
5.2.4 then d > g. Note that H = D,, U F,, for each w. With the sets defined in this
way, the Trace relation (5.4.2a) may be obtained exactly as in the proof of Lemma

5.2.4. In particular, from (5.2.4g):
6°6°> 67 =0, (5.4.7)

where 60 = [T;cp, wi, 8¢ = [1ice wi and w; = i°2°. Then, setting 64 = 6¢67 gives:
6°> 64 =0

and then:

This final equation is that giving rise to (5.4.2a).

Let 82 be the term of (5.4.2b) corresponding to 8, of (5.4.2a). Corresponding
to the way in which T" is formed from T?, :* is present in ?, if and only if z* is not
present in 6, that is 7 € D, U £ U B* and hence i € F,, UG U B”; and i# is present
in 6 if and only if i is present in 8,, that is 1 € D, U £ U B?. The situation in the
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5.4. Duality between associate O(m)-modules

corresponding tableaux may be schematically represented thus:

B> |B? BA | BP
= |ele| = T = (G|} (5.4.3)
D.|Du Fu|Du

On varying w, the terms 6% run through all partitionings of the set H into f entries
superscripted with o and d entries superscripted with 8. Since these are to be

respectively placed in the 1st and the k,th column of T2,

w)

this is an expression of
Garnir type. It is necessary to check that sufficient indices from the two columns
are involved in this expression. Consider a Garnir relation involving the set of
indices F,, UB? from the 1st column and D, from the other. This results in the
same expression as the above since each migration of an index from B? to the
koth column results in a repeated entry in that column and thus a zero term. This
expression involves f +b° +d terms from the two columns which is a greater number
than the length of the 1st column, f + g + ¥, since d > g. It remains to show that
the sign of each term is as required. The sign ¢7v%+) required for the transition
from [T*] to [T]] may be expressed (37 Pw5%.9.7.) By fixing the positions of the
elements from the sets £, €, B, and B in each T» and B?, G and € in T2,

wx?

it can
be seen that e7»Kw) = fe(*wPv) the sign being independent of w. For each w,
the factor =P} is precisely that required for the appropriate coset representative
of the Garnir element giving rise to T.. Thus the sign factor of e(7=X+) given in

(5.4.2b) is precisely that required to make (5.4.2b) a Garnir relation.

By partitioning the two relevant columns of the set of tableaux satisfying
(5.4.2¢) into the sets B?, G, £ and H = F, UD, as in (5.4.3), and setting B= to be
the remaining indices, the Trace relation corresponding to any Garnir relation may

be found by reversing the above construction.

As an example consider the mutually associate O(7)-modules O®*?? and
022D Let A\ = (2,2,2), so that A* = (2,2,2,1) and let B* = {1}, B? = {1},
E=0,G=1{2}, H=1{2,3,3,0} and d = 2. Then, with k, = 1 and k, = 2, Lemma
5.2.4 yields the Trace relation:

11 11 11 11 11 11
22|+ |22|+|22|-|33|+|33|+]|33]|=0(544a)
33 33 00 33 00 00

For this expression D; = {2,3}, D, = {2,3}, Ds = {2,0}, D, = {3,3}, Ds = {3,0}
and Ds = {3,0} respectively. The taking of associates of the terms in (5.4.4a)

requires the first columns to be replaced with entries from the respective sets
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BFUGUF,. Since BP = {I}, E = {é}a _f: = {370}’ _}72_ = {370}’ —}?3 = {373}’
Fi=1{2,0}, Fs = {2,3} and Fs = {2,3}, expression (5.4.2b) is, in this case,

W N
Wl N H
O N =
O ol
o W o
O I

=0, (5.4.4b)

O QI NI
S W DN
L QI NI
S NN
Il DN DN =i
W N NI

the signs having been obtained by multiplying the sign of the corresponding term in
(5.4.4a) by the respective e7«Xv), This is the Garnir relation that arises on using
the sets of positions X = {1,3,4} and Y = {6,7}.

Theorem 5.4.3 will enable it to be proved that the SO(m)-modules S* and

S*" are isomorphic. For the moment, ignore the group action and consider O* and

O™ solely as vector spaces.

Lemma 5.4.5. The linear map L. : O* — O* is a well defined isomorphism between

the vector spaces O* and O*".

Proof. Let T* be column strict. By using the Column relations, Garnir relations

and Trace relations, [T%] is uniquely expressible:
[T°] =3 _GIT, (5.4.5q)

where each T is O(m)-standard. Theorem 5.4.3 shows that to each Trace relation
involving the first column of some [T*], there is a Garnir relation resulting from the
action of L, on each term. This Garnir relation necessarily involves [T}"]. Likewise,
every Garnir relation involving the first column of some [T*] corresponds, through
the action of L., to a Trace relation, necessarily involving [T*"]. Garnir relations
involving other columns remain as they are under the action of L,. Thus, since if T}
is O(m)-standard then T} is O(m)-standard, the standardisation of [T}"] mirrors,

under the action of L., the standardisation producing (5.4.5a). Therefore,
[T =3 GITY ) (5.4.5b)

Since this is the result of the direct application of L, to (5.4.5a) and the two ex-

pressions in terms of O(m)-standard tableaux are unique, the lemma follows.

On considering O* and O*" as O(m)-modules once more, this Lemma together
with (5.3.13), shows that the traceless symmetrised tableaux [T?] of O* may be re-
placed by the signed traceless symmetrised tableaux €7-®)[T>"] of O*" provided that
factors of (det G) are included for each module action of G € O(m). In particular,
when G € SO(m), det G = 1 and the SO(m)-modules S* and S*" are isomorphic.
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5.5. The diagonal form

Using an argument similar to that given in Section 4.5, let the operator Ly, 4, ..;,
act on the indices of the first column of [T*] to give [T}']* where the extra asterisk
indicates that it is yet to be determined that [T*"]* has the properties implied by the
Young operator Y*", or the tracelessness. That this is so is due to the vector space
they inhabit being isomorphic to O* and hence, by Lemma 5.4.5, isomorphic to O*".
This implies that the Garnir relations and orthogonal Trace relations involving the
first column, obtained as a result of Lemma 5.4.2, enable the first column to par-
ticipate in the symmetry implied by the Young operator Y** and the tracelessness

resulting from the extraction of all trace terms of the form (5.2.2). From (5.3.13):

G(e®(TF)) = G(L.[T*))
= (det G)L.(G[T*]), (5.4.6)

for all G € O(m). Therefore, the following theorem has been proved.

Theorem 5.4.7. Let A\ € P(l) be such that X\, + X\, < m. Under restriction of O(m)
to SO(m), the O(m)-module O* is isomorphic to O* . The representation [A] of
SO(m) is equivalent to the representation [\*] of SO(m). The representation {A] of
O(m) is equivalent to the representation (det G)[A*] of O(m).

Conversely, the following theorem holds.

Theorem 5.4.8. Let A € P(l) be such that X, + X, < m. The isomorphism of the
SO(m)-modules S* and S* implies that the Trace relations and the Garnir relations

are equivalent statements; that is, one implies the other.

Proof. This follows since the operator L given by (5.3.5) which defines the isomor-
phism, may be used to convert between the Trace relations (5.4.2a) and the Garnir
relations (5.4.2b).

§5.5. The diagonal form

In this section, consideration is given to the orthogonal groups O'(m) and SO'(m)
which as specified by Definition 2.1.1, preserve a diagonal form. Although the
form given by the identity matrix will be considered here, the comments and results
apply equally to a diagonal form with arbitrary signature. In particular this enables
Young tableaux to be used in the explicit construction of representations of the
Lorentz O(3,1) and proper Lorentz SO(3,1) groups. However, as will transpire,
inconveniences arise in developing the techniques here as for the previous sections
of this chapter. Since the arguments proceed very much as for those previous

sections, the material of this section will only be considered in outline and proofs
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will be sketched only where there is substantial deviation from the analogous proofs
for O(m) and SO(m). For this section the index set is Z°'(™ = N,,.

The trace tensors in this ‘diagonal’ case are all linear combinations of terms

of the form

Z TReRyURe R 2. (5.5.1)

i€ZO'(m)
Their removal from {T*} defines [T?*]'. These are defined to span the O(m)-modules
O". The Trace relation takes the following form.

Lemma 5.5.2. Let T*, fori € I9U™ be m tableaus, identical except for the entries
in two positions where Ty, = ¢ and T}, , = i for some fized a, b, ¢ and d with
a,c< 5\1, b< X, andd < X,. Then

> [T =0 (5.5.2)

ieZo(m)

If the form being used is of a signature other than m, the only modifica-
tion that needs to be made to (5.5.1) and (5.5.2) is a switch of sign for particular

summands.

For O'(m), the set of standard tableaux are provided by the set Q3 of Defini-
tion 5.1.2. With the index set Z9'(™ in place of Z°™ condition (iv) of Definition
5.1.2 takes the form:

a; + f3: < ifor each 1 € IO, (5.5.3)

where «; and f§; are the number of entries less than or equal to ¢ in the first and
second columns respectively of T*. These tableaux do not, in fact, readily yield
weights and characters of the irreducible representations of O’'(m). This inconve-
nience is a direct consequence of the Cartan subalgebra of so(m)’ not comprising
diagonal elements. Nonetheless, standardisation is straightforward compared with
the O(m) case since there are no protection conditions to account for. In addition,

violations of (5.5.3) may be dealt with by using the following ‘diagonal’ analogue of
Lemma 5.2.6.

Lemma 5.5.4. Let the column strict tableau T* ¢ Q) be such that a; + f; > j
for some j € I°U™. Then [T*] may be expressed as a signed sum of traceless,

symmetrised tableauz [T)))', where for each w, T} > T*.

This result may be obtained by using means similar to those used in the proofs of

Lemmas 5.2.4 and 5.2.6. The essential difference is that, as a consequence of (5.5.2),
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the trace identity:

Y wi =0, (5.5.5)

i€Z0'(m)
where w; = t*1*, is used in place of (5.2.4d). Again, particular summands switch
their signs when the signature of the diagonal form being used differs from m. The
following expression from the O'(7)-module O"®21.1 is typical of that resulting from
Lemma 5.5.4 and its proof:

! ! 1 I / /

- W
o o
-3

g o

3 3
5 6 (5.5.6)

Qv W= W
[>T SV I
NS JUa
Ot =
-~ Ot R e
=~ O

7 6

Here, the non-standard term on the left has been expressed in terms of higher terms,
each of which is standard, in this case. Note that the use of Lemma 5.5.4 necessarily

results in an expression for [T%} with integral coefficients.

The combination of Column relations, Garnir relations and Trace relations,
via in this case Lemma 5.5.4, once more enables an arbitrary non-standard term to
be written as a linear combination of standard terms. This leads to the following

analogue of Theorem 5.2.18.
Theorem 5.5.7. The O'(m)-module O"* is irreducible with basis:
{7 eQ}

Moreover, the set {O™ : X\; + X\, < m} provides a complete list of inequivalent irre-
ducible O'(m)-modules.

Explicit representation matrices for elements of O'(m) and so'(m) may now
be generated in the representation [A] using the set of tableaux Q2 and the stan-
dardisation techniques outlined above, by precisely the same means as in Section
5.2. However, in contrast to Section 5.2, standardisation of an arbitrary trace-
less symmetrised tableau cannot introduce any non-integral factors. Therefore, the

representation matrices for the basis elements of so'(m) will necessarily be integral.

In the reduction from O’(2r) to SO’(2r), a major disadvantage arises for those
cases where r is odd. The definition of (5.3.5) has the analogue:

, 1
Lo = i€ty (5.5.8)

This leads to the following definition of a diagonal associate.
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5.5. The diagonal form

Definition 5.5.9. Let A € P(l) be such that s = A, let t = m — s and let T> be
column strict. The diagonal associate of T* is defined to be that tableau, denoted
T2, identical to T* apart from the first column which contains entries from the set
K = I\ J where the entries from the first column of T* constitute the set J.

Lemma 5.5.10. If T> € Q) then T2 € Q).

m

The proof of this result follows the same lines as that of Lemma 5.3.3, but is
more straightforward since protection conditions need not be considered.

With L' given by (5.5.8), in order that (5.3.8), (5.3.9), (5.3.10), (5.3.11) and
(5.3.13) should each hold with L replaced by L' and K replaced by K, it is necessary
to define:

K = (=1)*L’

G1--G5C)1-Cy ay---agby-by

L;y--b‘cl.--c,? (5511)

corresponding to (5.3.7). Then when r is odd and r = s = ¢, this implies that
K' = —L'L’, whereupon the direct analogues of (5.3.14) are not idempotent. The

appropriate expression is:

L'* _ 1 (K'

Gy---@rby-by 2 ay---ayby-by

+ i’(—1)’““””42,...a,bl...b,) , (5.5.12)

where i = /=1. If X, = r so that the O’(2r)-module O" is self-associate, then
through arguments similar similar to those of Section 5.3, the SO'(2r)-modules
S’*% may be defined to be the span of all [T*]'* where:

[T)‘}/i _ [TA]/ + ir(——l)r(r+l)/2€('7"c)[Tj],, (5513)

eI =€ iwin, J = {j1,...,]-} are the entries in the first column of T* with
each j, = T(’}z) and K = {ki,...,k.} are the entries in the first column of TA" with
each k, = T;\(;). This implies that:

[TA]/;t _ iif'(___ ].)T(T-H)/2 (7K [T:;]’i (5.5.14)

For example, if m = 6 and A = (2,2,2) then:

-

Definition 5.5.16. If A\ € P(l) is such that X\, = r then let S C Q). be such that
T € SR if T # 1.

} : (5.5.15)

[
[S52 G SV
S W N
T N
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5.5. The diagonal form
This definition implies that S} consists of those tableaux of Q3. which contain no
1s. The following lemma may be proved using a simple bijection argument.
Lemma 5.5.17. The cardinality of Q), is precisely twice that of S}}.

Theorem 5.3.17 now implies the following theorem (see [We39], theorem 5.9A4).

Theorem 5.5.18. If r is even, the O'(2r) module O'* decomposes on restriction to
SO'(2r) into the direct sum of two inequivalent SO'(2r)-modules S** and S'*~ having

bases:
+
{[T*} T € sgﬁ}
and
([ e sz}
respectively. Ifr is odd, the same is true over the field of complex numbers. However,

over the field of real numbers O'* remains irreducible on restriction to SO'(2r).

To show that the sets given do actually provide bases, note that the Column rela-
tions, Garnir relations and Trace relations enable an arbitrary [T*]'* to be expressed
in terms of tableaux from Q). Then identity (5.5.14), with the appropriate sign,
is used for those T* ¢ Si}. It is this final reduction that necessitates the use of
complex numbers when r is odd. In such cases, the matrix elements of the basis

elements of so(m)’ are integral complex numbers.
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6.1. Clifford algebras

Chapter 6

Spinor Modules of the
Orthogonal Groups

§6.1. Clifford algebras

In this chapter, the irreducible spinor modules of the orthogonal groups O(m) and
SO(m), and the Lie algebras so(m) are constructed using Young tableaux. Here,
the appropriate Young tableaux are the ‘half’ tableaux of Definition 2.6.20. The
construction proceeds via a generalised Clifford algebra based on that employed
in [BW35] in studying the basic spin representations of O'(m) and SO’(m); this
is itself, a generalisation of that used in Dirac’s account [Di27] of the ‘spinning’

electron.

The Clifford algebra is only usually defined for those orthogonal groups which
preserve a diagonal form. The following provides the requisite generalisation to an

arbitrary non-degenerate bilinear form J.

Definition 6.1.1. The Clifford algebra in m dimensions is generated by the m ele-

ments ay, Qa,...,Q,, subject to the constraints:
e ela g + a; 0 = 2J,’j, (611)
for1<i,7 <m.

In the usual definition J = I, and consequently the defining relation is a;a; +ajo; =
26;; [BW35]. However, here as in the previous chapter, it will be appropriate to

use the index set Z°(™ and to take J;; = é;;, whereupon:
QG + Q0 = 26,']'-, (612)

for 7,7 € I°™), This particular Clifford algebra will be denoted N,,. It is some-
times known as a Heisenberg superalgebra. When m = 2r is even, N,, has a basis
{afTapaz?ag? - a? 1 a; € {0,1},7 € T°?7}, and when m = 2r + 1 is odd, it has
a basis {afTa®aj?as?---atal : a; € {0,1},i € I°C +1}. Consequently, N, has
dimension 2™.

In what follows, a representation of N, will be constructed. It is useful to

note, at this point, that no one-dimensional representations of V,, exist, as a brief
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6.1. Clifford algebras

consideration of (6.1.2) will show. Define the four 2 x 2 matrices I,,0,,0, and o3,

12:<1 o)’ 01:(-1 0>, 02:(0 0)7 Us:(o 1)_
01 01 10 00

(6.1.3)
These play a role here analogous to that of the Pauli matrices in [Di27,BW35].
Now for a € 9™ the 2" x 2" matrices v, are constructed by taking the Kronecker

product of r of the matrices of (6.1.3). For a € N,, define:
Ye=V2.00 - ®0Q00LE QL (6.1.4a)
where o, occurs in the ath position; and define:
1 =V2.000 R0 Q00LE 0L, (6.1.4b)
where o3 occurs in the ath position. In addition, for all m, define:
Yo=0180Q - QoL@ (6.1.4c)

For later convenience, a list of all possible two fold products of these matrices
will now be compiled. Let a,b € N, and a < b. Then, since the product of two
matrices of the form (6.1.4) may be obtained by multiplying the factor matrices

componentwise:

00
-1 0

00

a :2.[') I’w
Ya7b 2 @ ®-®< 10

)®01®®01®( )@.[2@@[2, (615&)

where the first explicit matrix is the ath factor and the second is the bth factor.
The same will be implicit in each of the products that follow. Thus:

00
10

00

=2L® -1,
Yoy 28 -®< 10

>®01®"'®01®( )®12®"‘®I2»

so that 747, = —77.. Likewise

01
00

01

-':2.1' .. I
7a76 2® ®2®( 0 0

>®01®"'®0’1®( )@Ig@"’@[g. (615b)

Similarly, direct multiplication shows that 37z = —7v;7;. Continuing:

00
-1 0

01

V=209 - Q1
YaVs 2 ® ®2®( 0 0

)@0'1@"‘@0'1@( >®I2®"‘®I2, (6.1.56)
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6.1. Clifford algebras

and similarly ¥, = —v.75;

Yap =258 @ L® (g . )@m@---@o—l@ ((1’ : ) ®L® - ® I, (6.1.5d)
and similarly v,v; = —v;%- Since o7 = 02 =0, it follows that:
Ya =71 =0. (6.1.5¢)
Also: )
707E=2-I2®“'®I2®(g 2)®Iz®"'®fz, (6.1.5f)
and similarly:
10
7&'7a=2I2®®I2®(0 0)®I2®®I2, (615g)

so that v,v; + ¥a¥a = 2.15-, because I, = I, ® --- ® I, (r factors). For products
involving 7,:

7470=\/§.12®~--®Iz®<_(1) 8>®al®~--®al, (6.1.5h)
and Yo% = ~YaY0;
7570:\/5.12@--@12@(8 (1))®01®---®01, (6.1.50)
and voY; = —7z70; and finally:
v = I,.. (6.1.55)

Comparing these products with (6.1.2) proves the following lemma.

Lemma 6.1.6. Through the map a, — 7., the matrices v,, for a € I°™ provide
a representation of N,,. In addition, the map o, — —~, for a € I°™), provides a

further representation of N,,.

It should be noted that the two representations indicated here are not necessarily
inequivalent. This question, together with that of the reducibility of these repre-

sentations, 1s addressed below. As a preliminary, define the 2 x 2 matrices:

04:((1)8), a5=(8(1)), (6.1.7a)

and for a € N, and b = 1,2,...,5, the 2" x 2" matrices:

AW=L8 - 0LO®KOLE: - ® L, (6.1.7b)
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where the exceptional factor o, occurs in the ath position. Then, from (6.1.5f) and

(6.1.59):

1 1
7 =31 and A0 =577, (6.1.7¢)
whereupon:
A = —(%va ~ YaYa). (6.1.7d)
Note that:
. 1
H = A 50, (6.1.7¢)
1
and 4% = f%"vé” “F2 Y- (6.1.7f)

Therefore, under either of the maps given in Lemma 6.1.6, the matrices 4 each

represent some element of A,.
Let 1, € N>, be defined by:
1

Mor = ;(O'IGT — agay)(aag — 05012) o (apar — aFar)

(6.1.8a)

(=1)
=% Yo (1amanu) Qo @),
PES2®--BS2

where the sum is over all 27 elements of the group S, ®---® S, (r factors), for which
p(a) = a or p(a) = a for each a € Z°®7). In a similar way, let 73,41 € Ny be

defined by:

1
Mars1 = o —(a a1 — ara; )(ayas — azas) - - (a-aF — aza, )ag
( (6.1.8b)

194
S 2 (Fanmann) oo
“~ PES2Q--® 52

If «,.. denotes the image of n,, in the representation a, — v, then, from (6.1.7d),

(1)

Traw = AAED D = 70, (6.1.9a)

for even m = 2r, and

(1) (1.

77]2r+1 - 71 751) I2f (6.19b)

for odd m = 2r 4 1. It then follows from (6.1.8b) that in the representation of Ny,
generated by the map a, — —1,, the image of 7,,,, is —I,,. This shows that for

m = 2r + 1, the two representations of Lemma 6.1.6 are inequivalent.

Lemma 6.1.10. For even m = 2r, N,, is isomorphic to M., the full ring of 2" x 27
matrices. For odd m = 2r + 1, Ny, is isomorphic to the direct sum My, @ Ma..
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Proof. In the notation of this section, the usual basis elements of M,. may be

expressed thus:

Oay @0, @+ ®0,,, (6.1.10a)

where ¢; € {2,3,4,5} for ¢ = 1,2,...,r. The representation a, — 7, of N, then
yields the basis elements (6.1.10a) through:

,%ax) ® »’?g‘u) QR R ;yrﬂr). (6.1.10b)

Thus the representation in terms of the v matrices, is realised on the complete space
of 2" x 2" matrices. In the case of even m = 2r, since N, is of the same dimension as
M., it follows that this representation is faithful and thus that A, is isomorphic to
the complete ring of 27 x 2" matrices. For later convenience, let f3,,,,..., denote the

element of M., having the image (6.1.10b) where q; € {2,3,4,5} for ¢ = 1,2,...,r.

Now consider the case of odd m = 2r + 1. As above M,. provides a repre-
sentation of M, ;. However, since v,,,,, = Iz.41, it is not a faithful representation.
Now map each element a, € Ny 41 to a 27+ x 27+! matrix in which v, appears as
the top left 27 x 2" submatrix, —v, appears as the bottom right 2" x 27 submatrix

and zeros are elsewhere. This map may be denoted:

Qg — Ya @ (_74)' (6110C)

Such matrices comprise a reducible representation of M,.4;. It is required to show
that each of the 2*! usual basis elements of M,. @ M. can be expressed in terms

of the images under (6.1.10¢). The image of 8,,4,..4,, now considered as an element

of Mopyq, is:
F@HD @ @ N B (-4 @A @ - @A), (6.1.10d)
However, from (6.1.90), the image of 8,,4, 0. 7241 18:
G R4 @ @4 (3 WD Q- ®F)). (6.1.10¢)

Thus (Ba,as-.a, + Barag-aN2r41)/2 € Noryr maps to the basis elements of M, 0 and
(Baraz-arM2r41 — Baras-a,)/2 maps to the basis elements of 0 @ M,.. Comparison of
dimensions then shows that A4, is isomorphic to M,, @ M,..

Proofs of the following lemma may be found in [Bo63,CR62].

Lemma 6.1.11. If an algebra A is a direct sum of full matriz rings, then every

representation of A is completely reducible and every irreducible representation is
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equivalent to one of the summands. A representation is faithful if and only if it

contains each summand at least once.
The following lemma is a corollary of the previous two.

Lemma 6.1.12. FEvery representation of N,, is completely reducible. For even m =
2r, there exists just one irreducible representation of Ny, up to equivalence. Its di-
mension is 2" and it is faithful. For odd m = 2r + 1, there exists just two inequivalent
irreducible representations of Nyyi. Each has dimension 27 and neither is faithful.
Their direct sum is faithful.

By virtue of the above construction, the maps o, — 7, and a, — —, for a € Z9™)
provide two irreducible representations of N,, which are equivalent if and only if
m is even. As indicated above, the image of 7,,,; which, being a multiple of the
identity is invariant under similarity transformations, serves to distinguish between

the two representations of A4, for odd m = 2r + 1.

The following lemma will be required below.

Lemma 6.1.13. Ifn,, € NV, is as defined by (6.1.8), then:

(-1
Mor = (7)) 2 DT Y () ey @ar () @pny,  (6.1.130)

* TES2, PES;B---®S2

2r, and:

[\7

Il

for even m

(=1
MNor41 = 5 1 Z ( 1) Z (—1)pap7r(f)ap7r(1) ce apw(?)apr(r)apw(o))
~ (“r + ) €S2 41 PESIB--0S52
(6.1.13b)
for odd m = 2r + 1.
Proof. In this proof, the case of odd m = 2r 4+ 1 only will be considered. The proof
for m = 2r is obtained simply by excluding the 0 index at each stage.

For p, 7 € S,, define:

1Py ™) = Cpr(T)Xpr(1) ** * Xor(7) Xpr(r) Xpr(0)5 (6.1.13¢)
so that, by (6.1.8),
—1)
m=SE S (D), (6:1.134)
PES2Q--®S2

fpesS,® --®S85,, then:

—1) (=1 ,
G 2,) Y. (=1)n(pp) = ( 2,) Yo (=1yn(pe, 1)
PES2® @S2 PESI®--®Sa
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Cy 5 (o)

PP ES2I® @52

= (=1)" 11m. (6.1.13¢)

Now fix # € S,, and let 7 € S,,, be such that r77r € $, ® --- ® S; and if n(a) < w(a)
then 7m(a@) < 7n(a) and vice-versa, for a = 1,2,...,r. That is, 7 returns @ and a
to their original two positions but maintains their order as that given by #. This

determines 7 uniquely. For instance, if m = 7 and
3
L

W: ( ) e ( ? (6.1.13f)

Consider the single term n(p~!,7~!). By (3.1.4), the factor a, occurs in position
np(a) of n(p=t,m~!) for each a € I°™. Now consider the term n(p~',7-1r71).
By (3.1.4), each factor «, occurs in position 7mp(a) of n(p~t,#='r~1). Therefore,
n(p~t,m
none of which is the transposition of «; and «, for all a = 1,2,...,r, by virtue of

[SSIN N
[NV L]
=1
W o
[T
DN
N O

1 2
1 0

STl
[SER NV
(IS

~!7-1') may be obtained from n(p~!,77!) by a sequence of transpositions,

the above construction of 7. Therefore, by (6.1.2):

n(p~tw e ) = (=1)n(p~, 7). (6.1.13¢)
Then since 771771 € 5, ® -+ @ Ss, it follows from (6.1.13¢) that:

(—;—)r(—l)’ > (=07 w ) = (1) 0, (6.1.13h)

PES2Q---@ 852

whereupon:
(=1

1
o

(=17 > (=1yn(p,n). (6.1.137)

pES20---@S2

The lemma then follows by summing over all 7 € §,, and dividing by m!.

§6.2. The basic spin representations

In this section, the basic spin representations of O(m), SO(m) and so(m) are ob-
tained by means of the irreducible representations of the generalised Clifford alge-

bras N, determined in Section 6.1.

Lemma 6.1.6 states that the matrices v, form a representation of A,,. There-

fore:
Ya¥s + VoYs = 2843 12r. (6.2.1)

Consider an element G € O(m) and let:
7o =2 GeaYer (6.2.2)
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Then:
Vavs +1ve = O Y GeaGas(Yeva + Yave)
[ d
=2 Z Z GeaGayJeals-
c d
= 2J15-, (6.2.3)

so that the matrices 4/ also constitute a representation of NV, of the same dimension.
It is now necessary to treat separately the cases of m even and odd. First consider
even m = 2r, where the existence of only one representation of AV, up to equivalence
implies that there exists a 27 x 2" matrix A(G) such that:

Yo = AG)I1LA(G) 7, (6.2.4)

for all @ € 79, The matrix A(G) is not defined uniquely by (6.2.4) for any
non-zero multiple also suffices. Conversely, if there exists a second matrix A/(G)
satisfying (6.2.4) in place of A(G), then:

Yo = A(G)TA(G)1.A(G)TA(G),
so that the matrix A'(G)~'A(G) commutes with every element of the irreducible
representation of A, Then by Schur’s lemma (1.4.11), A(G)"*A(G) = g.I,. for
some g € C, implying that A’(G) is a multiple of A(G).
If G',G" € O(2r), then the above analysis yields:
Y AGGCNere = 3D GLGL .

=2 GLA(G A

= A(GYA(G" . A(G")TA(G) . (6.2.5a)
for some matrices A(G’) and A(G") and all a € 7°™). However, in addition,

S (GGt = A(C'C )1 A(G'G) ™, (6.2.50)

for some matrix A(G'G") and all a € T°™), Comparison of (6.2.5a) and (6.2.5b)
implies that:

A(G'G") = kA(G)A(G"), (6.2.6)

for some « € C. It will now be shown that it is possible to choose the matrices

A(G"), A(G") and A(G'G") such that & = %1 in all instances.
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6.2. The basic spin representations

The transpose of (6.2.1):
;5/0’75 + 5/17;;/0 = 26(15[2") (627)

shows that the matrices 4, also generate an irreducible representation of AV,,. There-

fore there exists a 2" x 2" matrix C such that:
Fa = C1.C™, (6.2.8)
for all a € Z9(™). The transposes of (6.2.2) and (6.2.4) give:
3 Gufe = A(G) %.8(G)

whereupon, using (6.2.8):

S Gye = CTIA(G) CrC A(G)C
= A(G).A(G) ™, (6.2.9)

for all a € 7™ where A(G) = C“IAF(\E}')_IC. Comparing (6.2.9) and (6.2.4) then
implies that:

A(G) = ¢A(G), (6.2.10)
for some non-zero ¢ € C. Let A(G) = V/PA(G). Then, using A(G) in place of
A(G) in (6.2.9), results in:

AN(G) = A(G). (6.2.11)

Now assume that the arbitrary factors in the original matrices A(G'), A(G"”) and
A(G'G") have been chosen so that each of these matrices satisfy (the unprimed
version of ) expression (6.2.11). From (6.2.6):

—~— -1 —— -1

A(G'G) :;A(G')‘IA(“@/) : (6.2.12)

whereupon:

CA(G'G")C-' = =CA(G)C-'CA(G")C

A

: (6.2.13)
= —CA(G'G")C.
K

Therefore k = +1. These two values are essential and reflect the fact that the
representation G — £ A(G) is necessarily two-valued. This representation is known

as the basic spin representation of O(2r) and, as will be seen later, is irreducible.

Lemma 6.2.14. Let G € O(m). In the representation of N,, generated by a, — 7,
through (6.2.2), the image 7y, of nm is such that:

v, = det G.y,,,. (6.2.14)
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6.2. The basic spin representations

Proof. From Lemma 6.1.13,

Tim = (27—1):6;,.-,.% o 1Y Yatims (6.2.14a)

m! €518 52
where there is an implied summation over all ¢, € Z°™ for k£ = 1,2,...,m. In
addition, in the representation generated by the map o, — 7, the image v, of 9,
1s: .
N, = (_1)! €irigin 2o (=LY Yooy (6.2.14b)

-
2rm PES2Q---@S2

where v/, is given by (6.2.2), so that:

(=1)
7ﬁ,m=mémz---em > (F1GoG0un  Gatmdelim)Yolin) = * Yolim)

PES2@- OS2

(=1y
=mfnmimel'“Gimim D (Y00 Yot

PES2@---®S2
Y det Ge,,. P G ) o ATREERE Wy
= ol j1j2im Vo) 7 Volim)
: PES29---Q 52
= det G.v,,. (6.2.14¢)

In the case of even m = 2r, the matrices v’ satisfy (6.2.4) for some A(G).
Therefore, from (6.2.14b):

1] -1) - -
= Y (CIPAG AG) - A AG)
2r(2r)! PES2@ @S2

= A(G)7, AMG) T,

whereupon, from (6.2.14):
A(G)75.. A(G) ™ = det Gy, (6.2.15)

From (6.1.9a) and (6.1.4¢), 7,,. is a 2" x 27 diagonal matrix with 1 and —1 each
occurring on the diagonal with a multiplicity of 2'-!. Thus the basis elements may

be arranged so that +,, is expressed in the block diagonal form:

L., 0
7 2r = . 6-2.16)
! 0 -L (
In the same basis, let:
P Q
A(G) = , 6.2.17)
(G) R s (
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6.2. The basic spin representations

where P, @, R and S are each 27~ x 2"~! submatrices. If G € SO(2r) then det G =
1, and (6.2.15) implies that A(G)7v,,, = V4., A(G). Then direct multiplication of
(6.2.16) and (6.2.17) shows that the submatrices R and @ are both identically zero.
Therefore A(G) takes the form:

A(G) = AMG) 0 (6.2.18)

0 A (G)

This demonstrates that on restriction from O(2r) to SO(2r), the basic spin repre-
sentation A of O(2r) decomposes into the direct sum of two representations. These
are denoted A* and A~. As will be seen later, each is irreducible. Incidentally, if
G € O(2r) and det G = —1, then (6.2.15) implies that A(G) takes the form:

acy=| ° AG)| (6.2.19)

R(G) ©

In the case of odd m = 2r + 1, the matrices v/ given by (6.2.2) still generate
a 2"-dimensional representation of N,.,,. However, since there are two such repre-
sentations, expression (6.2.4) does not follow. However, if det G = 1, then Lemma
6.2.14 shows that v, , the image of 75,41 is ¥,,,,, = 2. This shows that the
representation of Vs, generated by the matrices 7/ is equivalent to that generated
by the matrices v, and therefore that there exists a A(G) such that (6.2.4) does
hold for the case of G € SO(2r + 1). Asin (6.2.7), the matrices 3, also generate a
representation of NVa,,,. Here, from (6.1.13b), the image of 7., is given by:

(-1 . . ..
2 (2r + 1) Yo DT 3 (1) A @Ten) Fonm) Tont) T (o)

* T€Sgr41 PES2®--®S2
G O
— ( 1 (_1)p,)/ (0 Ypr(r) * * * Yor(B)Yor (1) Y px(1)
2r(‘)7~ + 1 WE%;H p652§~®52 ! oo e ’
:(—1) 777:'r+1
—(“1) L. (6.2.20)

Therefore, the map «, — 7, generates a representation of N,,,,; equivalent to that
generated by a, — 7, if r is even, and equivalent to that generated by a, — —7, if

r is odd. Consequently, there exists a 2" x 2" matrix C such that:

Ho = (=1) Cr.C-2. (6.2.21)
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6.2. The bastc spin representations

This matrix C enables the matrices A(G) to be normalised in precisely the same

way as previously. Then, as before,
A(G'G") = £A(G)A(G"), (6.2.22)

for all G/, G” € SO(2r + 1).
In the case where det G = —1, Lemma 6.2.14 shows that v, = = —v,,.,, =

—I,.. This shows that the representation of A5.;; generated by the matrices v/ is
equivalent to that generated through the map a, — —7,. Therefore there exists a

A(G) such that:
Ve = —AG)LA(G) ™, (6.2.23)

for all a € Z°(™. With the matrix C as given by (6.2.21), A(G) may be selected
as before, so that if A(G) = C‘lAﬂ(vG)_lC then A(G) = A(G). Then for G',G" €
O(2r +1) (det G’ = £1,det G” = %1), identities (6.2.13) follow as before as hence
also (6.2.22).

Thus the two-valued, 2"-dimensional basic ‘spin’ representations of O(2r + 1)
have also been constructed. As will be shown later, they are irreducible and remain
irreducible on restriction to the subgroup SO(2r + 1).

For the Lie algebra so(m), it is possible to give an explicit description of the

representation A. Let m = 2r or m = 2r + 1, and define the 2" x 2" matrices A,’
for a,b € 700+ by:

1 1
As’ = Zlve ) = 7(767 — 77e) (6.2.24a)
1
= 5% = ba-Lr), (6.2.24b)
where (6.2.24b) has been obtained from (6.2.24a) by using (6.2.1).

Lemma 6.2.25. Let m = 2r or m = 2r + 1. In the basic spin representation A of
the Lie algebra so(m), the matrices A,* represent the elements D,* € so(2r) or the
elements B,* € so(2r + 1) for all a,b € T°™,

Proof. Consider first the case m = 2r. Let G(t) be a one parameter subgroup of
SO(m) for which:

Db = —d—G(t) . (6.2.25a)

dt t=0
Let A(t) = A(G(t)) be one of the pair of 2" x 2" matrices representing G(t) in the
representation A, satisfying (6.2.4) and the unprimed version of (6.2.11). Expression

(6.2.11) implies that det A(¢) = +1. For ¢t in a sufficiently small neighbourhood of

176



6.2. The basic spin representations

0, A(t) may be selected to be close to I,., ensuring that det A(t) = 1. Combining
(6.2.2) and (6.2.4), and differentiating with respect to ¢, yields:

> (D = AD)y, — %A(DS), (6.2.25b)

q

where A(D,%) = d/dt(A(t))|i=0 represents D,b in the representation A. From
(2.2.17), (Ds")yp = bagbsp — 83,635, whereupon (6.2.25b) gives:

SipYa — ba5¥s = A(D )Y, — 1, A(DS). (6.2.25¢)

It will now be confirmed that for all a € Z°™), this expression is satisfied by
A(D,*) = A,’. Substituting (6.2.24b) into the right side of (6.2.25¢) yields:

1
AGb’YP - 7PAab = 5(7(1757}? - 6ab’Yp - ’)/p’Ya’)/E + 6ab7p)
1
= 5(7a757p - 7p7a75)

1
= 5(=7%75 + 265 7a — 7a78)
1
= 3(7})7075 - 26«1;’)71-7 + 26bp7a - 7p7a75)
= 6bp7a - 6(1;‘)75, (6225d)

where (6.2.1) has been used twice. Since the right side of (6.2.25d) is the left side
of (6.2.25¢), the required confirmation is achieved. However, A(D,?) = A,® is not

the unique solution of (6.2.25¢). Let A’(D,*) be another solution so that:
A,(Dab)7p - 7pA’(Dab) = Aab7p - 7pAab’

implying that:
(As" =AD" ) = 7, (As" = A(Da")), (6.2.25¢)

for all p € 7°(™. Thus A,* — A'(D,®) commutes with every element of an irreducible
representation of M,,. Thus by Schur’s lemma, A’'(D,%) = A,*+ g1, for some g € C.
It is easily seen that all such A’(D,?) are solutions of (6.2.25¢). However, since for
small ¢, det A(t) = 1, it follows from Lemma 2.2.3 that tr A(D,*) = 0. Then, since
tr A,* = 0, this matrix is the unique representative of D, in the representation A

of so(2r). The argument is precisely the same for B,* € so(2r + 1).

This lemma implies that the matrices A,® satisfy the commutation relations (2.2.18)

and (2.2.22), as may be confirmed directly by repeated use of (6.2.1).
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6.3. The Spinor relations

§6.3. The Spinor relations

In this section, the appropriate Young tableaux are defined for the O(m)-modules
associated with the representations [A; A] of O(m). Identities linking these tableaux

are then derived for the irreducible O(m)-modules.
For the moment, consider the basic spin representation A of O(m). Let ¥

denote the 2"-dimensional module on which the elements a, of the Clifford algebras

N, for m = 2r and m = 2r + 1, act through their irreducible matrix representatives
~Ya- Thus, if ¢ € ¥, then

aad) = 7a1/)7 (631)

for a € Z°(™), A convenient basis for ¥ is provided by the set:

{ts,5. 185 € {5,717 =1,2,...,7}. (6.3.2)

Any 27 x 27 matrix v which can be expressed as the Kroneker product of r 2 x 2

matrices,

v=0DRsP®. ..Qc", (6.3.3)

is defined to act upon the basis elements of ¥ according to:

Foapw = 3 0D0, o0 (6.3.4)

thts
By defining this action to be linear, it provides a module action for the ring M.
since (Y'v")yY = v'(v"¢) for all v/, " of the form (6.3.3), and, as shown in the proof
of Lemma 6.1.10, any element of M,. may be expressed in terms of elements of the
form (6.3.3).

The basis elements 1,, .,. may be identified with the half tableaux of Definition
2.6.20. The tableau T®- corresponding to i,,.,, is obtained simply by setting

T(;‘.’{,) =s; for y = 1,2,...,r. Thus for example, 1ys335 corresponds to the tableau:

T4 = (6.3.5)

CU x> W N =

Note that here, the element in the jth row is either j or j for each j = 1,2,...,r.
This will be true for the half boxes (to the left of the dots) in all the tableaux T4
that arise in this chapter. Note also that the index 0 does not appear in the half
boxes at all. However, it will sometimes be convenient to create an extra half box

below the rth, with only 0 permitted as an entry.
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It will also prove convenient to introduce notation concerning sign factors

related to the indices in the half boxes. Define:

0 ifseN,;
_ ™ 6.3.6
(s) {1 if s €N, (6:3.9)
and
S1
S2 = (= 1)+, (6.3.7)
Sk

As above, let T3y = s; € {7,7} for j =1,2,...,r and let a € N,. Through
(6.3.4), it follows from (6.1.4a) that v, acts on T+ according to:

Sy - I
Sa_t S1 | Sar
ar ; _ a .
7 To =, : s, =V28 | a- (6.3.8a)
Sagr Sa—i | Sadr
Sy Sy -

where s,_; means s;_, if a is barred and similarly for s,y;. From (6.1.4b), v; acts

on T according to:

S, $1
Sa-1 S1 Sa-1
YT =7 sq-=V26 | | @ . (6.3.8b)
Sa+1' Sa-1 Sa+1'
Sy Sy
Similarly, from (6.1.4c¢):
S
YT = |+ | T4, (6.3.8¢)
Sp

In order to avoid a proliferation of cases later, these three expressions will be
combined into one single expression. In order to achieve this, let s; = s; for
7=12,...,r, let: _
1 if a € N, UN;;

VB a0, (6.3.9)

o = {
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6.3. The Spinor relations

and append the extra (redundant) index so = 0 to the bottom of the column of half

boxes of T?, so that:

Sy
51
TAr = : = Sp_t . (6.3.10)
Sp_t
Sr
Sr
So
Expressions (6.3.8) then combine to yield
Sy - 8y -
Sa_r S Sa-1
YT =y, P =V2(a)67 | o | P, (6.3.11)
a+? ¢ s Sa+1'
. a—-1 .
s, 5,
So Sp

for all a € T°™) where if a = 0, it is implied that a — 1 = r.

By means of the construction of the basic spin representations presented in
Section 6.2, the tableaux T®- constitute a basis for an O(m)-module. This O(m)-
module will be denoted O*r. The action of G € O(m) on O*- is provided by
the matrix A(G). This action therefore has an ambiguity in sign. Through Lemma
6.2.25, O4r also serves as a module for the Lie algebra so(m). An explicit description
of the action of so(m) on the tableaux 7% will now be given.

Let a,b € I°™ be such that a < b,b. Then A;’ = iv,y; from (6.2.24b),

whereupon:

Sy ¢ 8y - Sy -
Sa * Sq* Sa
S1
: 1 : 1
Al ==y 0 = —=¢(b) & N
Sy - 2 Sp - \/§ ' ’ §b
Sp-1 .
CI Sp Sy
Sg* Sp - So *
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6.3. The Spinor relations

S - S8 ¢
Sa - Se
51 S1 ] Sa .
=¢(@e®) 86 | i || 1 | =dae®mss | i | (63120
Sp-1 Sa—1 %b. Sp-1 S
Sy Sy +
So - Sg *
Similarly, if a > b, b then: )
81 81
Sp 3 Sy -
Ad: D = —ga)em)Ee | | (6.3.125)
Sq* Sut Sq°
Sy * S+
So Sg -

where the minus sign appears because s, is used to calculate the sign and not §,. If
a € I90™)  then A,* = 0 from (6.2.24), (6.1.5¢) and (6.1.57), whereupon:

AST =0. (6.3.12c)

If a € I°U™ and a # 0, then A,* = (y,7; — L-), whereupon:

Sy St Sy 81 - 81+
: : : $1
. 1 S, - 1ls, . 1 S, - ls,.
At s % = ey S o 2% = Zgayge | p [ T2
DERrea T =5 ﬂcﬁ(a) A
) . Sa~1
Sy - Sy S, - Sy - Sp -
Sg - Sg * So * So * 8o
Sy Sy ¢ S -
— 2 ¢ca ¢a Sa° lsa'_ a l Sg °
= ¢(a)? 6° 87 - = {6 — . (6.3.12d)
R 2 * 2/
Sy ¢ Sp * Sy -
Sp - Sp - So -

As in Chapter 5, let V be the defining O(m)-module with basis {e. : a €
Z°(m}. If m = 2r or m = 2r + 1, then the vector space ¥ ® V® has dimension 2"m/
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6.3. The Spinor relations

and a basis:

{000, ® €araga 255 € {7,717 =1,2,...,m 0, € I°M™ 0 =1,2 ... 1}. (6.3.13)

The action of G € O(m) on ¥ @V® is defined by the linear extension of the following

action on the basis elements:
G:ysys, ® €ayaz--a1
==+ Z Z A(G)tytstr010505.Go10,Grzaz " GriaPrrtet, & b10yety (6.3.14)

Note that the arbitrary sign of A(G) is only arbitrary overall. Therefore the ‘+’
is written here before the summations and the action is two-valued. Moreover, the
arbitrary sign is an overall sign for the linear extension of (6.3.14). Fix m, let

J = J} and consider the tensor:

Yoo =2 2 (M) tsrs,Ytrt, ® €an (6.3.15)

a,b t1,..., te

The action of G € O(m) results in:

G,....., —iZ D030 > Jaatrnrs AGuycurtyot, Geatuy o, ® e
(6.3.16a)
Then (6.2.2) and (6.2.4) imply that A(G)y, = ¥4 Gay7aA(G), whereupon:
Giheyos, = £ Z ) Z TG G ea(Ya)ur v os A Goyray o, By, ® €
T T 6516
From Lemma 2.1.2, GJG = J for all G € O(m). Therefore:

G'@bsx Sy —iz Z Z ']cd('Yd)ul UpUy U, (G)Ul"‘vr-’l"'Sr¢u1"‘ur®6C7 (6316C)

which is a linear combination of terms ,,..,.. The space of all such tensors is thus

invariant. For this to occur it is necessary that the sign is fixed to be an overall
sign as in (6.3.16a).

Definition 6.3.17. For O(m), a trace tensor of ¥ @ V® is any linear combination

of terms of the form:
Yo S Tttty ®T @ €a @y, (6.3.17)

where © and y are elements of some (possibly zero) tensor power of V and z ®@ y €
VeU-1_ The vector space U C ¥ @ V@ is defined to be the span of all such trace

tensors.
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It follows from (6.3.15) and (6.3.16), that U is invariant under the action of
O(m). The complete reducibility of ¥ @ V® implies that (¥ ® V®)/U is isomorphic
to a subspace of ¥ ® V@ which is invariant under the action of O(m). Thereupon
04> = (T ®@ W) /(¥ @ W»NT) is an O(m)-submodule of ¥ @ W>.

Let T2 be formed by adjoining T and T?, and let {T*} denote the
symmetrised element T4 @ {T*} € ¥ ® W*. Now let [T»-*] denote the traceless
symmetrised tableau resulting from the removal of all trace terms (6.3.17) from the
symmetrised tableau {72}, by forming its quotient with respect to the elements
of U. 02 is therefore spanned by all [T-*] where the entries of each T*"* are
from the set 9™ and T35 € {7, j} for j = 1,2,...,r

Lemma 6.3.18. Let T be a tableau for which TOA(;YO) =s; forj=1,2,...,r,0, and
let T2+ ber tableauz, each identical to T2+ apart from one position where T(, 0 = 3
Now fori=1,2,...,7,0, let T}* be r + 1 tableauz identical apart for the entry in one
fized position for which Ti’(‘a,b) = s;, for which a < X\; and b < X\,. Let T*"* be formed
by adjoining TP+ and T}, If m = 2r is even then:

S1
>0 | 1T =0, (6.3.18a)
iEN,
Si—1
and if m =2r + 1 is odd then:
S1
Y. ()| 1| =0. (6.3.18b)
ieN,u{0} s
i-1

Proof. From (6.1.4), v, may be expressed:

S1

(V)tstvsrse = V2H(D) | 1 | 61 816088 St gt (6.3.18¢)

Sb—1 S Sb41

Sp1

for each b € 9™, Then since J,, = §,;, it follows that:

Z Z J“b(’yb)tx“‘trh”*srd}h"-fr RVrR €a b2y Y

ab t1,..,ts
S1
=3 3 V24(b) | i |68t gl gt 6, BT @ e By
ab ti,.tr Shy
S1
=3 Z V2¢(a) | 1 |8 igl6n S S, BT @ e, ®Y
a t,..,
Sa-1
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S1
- Z Z \/§¢(a) E 6:: ¢31"‘3a—1ﬁ3¢+x---s, ® T ® esa ® y- (6.3.18d)
a€IO(m) ty,... ty
Sa-1
This shows that:
S
S| | TP e,

i Si—1

where the sum is over N, or N, U {0} as appropriate. Then, in each case, the place
permutation action on the T} portion by each summand of the Young symmetriser
Y, produces a similar term in U with appropriate changes of the position (a, b).
In both cases it thus follows that:

Se()| ¢ | {T el

Si—1
Thereupon (6.3.18a) and (6.3.18b) follow from the definition of [T#-*] as a quotient.

In this chapter, each identity of the type (6.3.18a) or (6.3.18b) will be known
as a Spinor relation. To demonstrate such a relation, let m = 11, A = (1%) and
(815...,8.) =(1,2,3,4,5) Lemma (6.3.18) then implies that:

1

V2

o OU NI

= O Ot
WL O
> Ot N
[S1{IN S H \V]]
[ev i) G \V]]

= 0. (6.3.19)

[ [N JC RN VI
+

Ul W=l W N =
[N}
[

U Rl QNI =
|

U > O DI ==
+

[ ST NI JO I (T

U il QO NI =

Note that the second term here is identically zero by virtue of the Column relations
(3.4.2). In addition, note that the removal of the sixth term results in a valid Spinor

relation for the case m = 10.

It will prove useful at this stage to generalise Definition 5.1.4 to the half

tableaux appearing in this chapter.

Definition 6.3.20. O(m)-weight. Let m = 2r orm = 2r +1 and let T** be formed
by adjoining T and T*. Fori=1,2,...,r, define

nP (T2 = ny(T) — ny(T) + -;:(n,-(TA') — ny(T*)),

where n;(T*) is the number of appearances of the index j € I°™ in T* and n;(T4")
(€ {0,1}) is the number of appearances of the index j € I°™ in T4r. The vector

184



6.4. Standardisation in the irreducible spinor modules

nO(m)(TAr;A) —_ (nlo(m)(TA,;/\)’nzo(m)(TA,;A)’ o ’nrO(m)(TA,;/\)) is known as the O(m)-
weight of T4,

Notice that each of the tableaux appearing in (6.3.18a) and (6.3.18b) have the same
O(m)-weight. This fact will be useful in developing the analogy of Lemma 5.2.4.

§6.4. Standardisation in the irreducible spinor modules

In this section, the Spinor relation is applied simultaneously over a number of po-
sitions in a column of a tableau to provide an analogue of Lemma 5.2.4. Having

defined suitable sets of standard tableaux, a standardisation algorithm is developed.

Let Q7 denote the algebra generated by ¢ elements 51,52,...,&, for which
G+ CG+--+( =0and ¢f =0for 1 <17 < q. As demonstrated in Section
4.3 and first noted by Berele [Be86], there is an intimate association between the
construction of Q? and the construction of the irreducible Sp(2r)-modules B*. The
lemma that follows shows that there exists a similar association between the algebras

(23 and the irreducible spinor O(m)-modules O*-*. Here, the expressions of greatest

interest are those of the form:
° o o ° 2t+1
g (Cl + o4+ gq_t> =0, (6.4.1)

where § is a homogeneous polynomial in Q? of a specific form.

In this section, it will be convenient to define even m = 2r, odd m = 2r + 1,
and 1 =m —r. I/ is defined by 7/, = N, if m is even and Z', = N, U {0} if m is
odd. Thus #7/, = r' and 7°™ = I" UN,.

Lemma6.4.2. Letk be such that1 <k < A,. Let T/, = BEUBPUEUGUH be a union
of disjoint sets such that 0 € Bf UH if 0 € I! , and if b = #B¢, bP = #BP, e = #E,
g =#G and h = #H then \, = b +b° 4+ 2e + u + v where u > 2g. Fiz the indices
81,825+ -5, 80 where s, € {p,p} for each p € I,,. Let Bf UH = {p1,p2y- . Pogn},
let § be a homogeneous polynomial of degree v in the elements of {p: p € B* U H},

and consider the following homogeneous polynomial:
z=9 Z pl . (6.4.2a)
pEBSUH
Let # =¥, ., the sum being over various w with &, = n,pF*FVps=r?) .. .1‘5:;:’;:?*")
where 0, € L is non-zero, k,(p) € {0,1,2} if p € H, k.(p) € {0,1} if p € B2 U {0},
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and ¥ ,epoun Ku(p) = w+v. Let the tableauz T, be identical except for u+v positions

in the kth column for which T) contains the indices
Qu=1{p,p:p€EBIUH, ku(p) =2} U{s, :p€ Bf UH,ku(p) =1},  (6.4.2b)

in column strict order. In the other b¢ + b° + 2e positions reside the indices {p,p :
p€e&lU{5, :pe BrlU {s,:p € BP}. For each w, form the tableau T2+ by setting
TwA(;,,O) =&, if p € Bf UH and k,(p) = 1, and setting TwA(;,’O) = s, otherwise. If each
TA2* is obtained by adjoining T2+ and T, then:

S1
S| IT Isi) II ¢ ]| : ||[T2* =0 (6.4.2¢)
w pEBTUN PEBSUH
Kw(p)=2 Ku(p)=1 Sp-1

Proof. The following proof deals with the case of odd m = 2r + 1. The proof for

even m = 2r may be obtained by ignoring all reference to the index ‘0’.

The proof follows the strategy of applying the Spinor relation repeatedly over
the u 4 v positions in the kth column. Although the order in which these are applied

is irrelevant, it is useful to consider them from the bottom up.

For the moment ignore signs. The Spinor relation may then be represented
by:
I+243+ +74+0=0, (6.4.2d)

where each of the distinguished integers denotes an index which appears in some
fixed position in the kth column of the F* portions of the respective half tableaux,
as in (6.3.19) for example. Each p appearing in this position is to be replaced by
either the index p or the index p depending on whether the index s, is unbarred
or barred. However, repeated application of (6.4.2d) over different positions within
the same kth column, results in the indices in the half box positions being altered.
Then a subsequent appearance of p will correspond to the opposite (barred or
unbarred) index to that which first appeared. A further subsequent appearance
of p will result in the reappearance of the first index. Since these occur in the
same column of a symmetrised tableau, the term vanishes. Thus the rule, in taking
powers of (6.4.2d), is that terms containing cubed factors are annihilated, those
containing squared factors correspond to barred /unbarred pairs, whereas the single
power factors correspond to the indices sy, s,,...,s,, 8. In addition, note that 02 is

annihilated.
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Let H' = HUBTUBP U E and k' = #H'. Then splitting (6.4.2d) with respect
to Z! = H' UG yields:

dYop=->p (6.4.2¢)

peEM! PEG
Raising each side to the power of u annihilates the right side because G has ¢

elements and, since u > 2g, one of these must be cubed in every term. Therefore:

(Z 15) =0, (6.4.2f)

peEH!

and thus

pEH!

g (Z ﬁ) =0. (6.4.2¢)

If it is assumed that the indices p commute with one another, then each term arising
from (6.4.2¢) is of the form:

Nw ﬁfw(m)zg;w(m) .. 'Ing"(p"'), (6.4.2h)

where 0, € Z, r,(p) € {0,1,2} for each p € H', k,(0) € {0,1} and ¥, £u(p) =
u 4+ v. In order to show that the terms p do commute, it will be shown that the 7,
symmetrised tableaux corresponding to the term (6.4.2R) in (6.4.2¢) are equal. In
addition, the sign associated with this term will be calculated.

On defining D, = {p € H' : ku(p) = 2} and B, = {p € H : k,(p) = 1},
it may be seen from (6.3.18d) that the tableau corresponding to the term (6.4.2h)

possesses the indices

Qu={pp:peD,}U{s,:pe€B,} (6.4.27)

in the kth column of the F* portion. Then those in the F4- portion are given by
{3, :p€ B,}U{s, : p & B,}, as may be inferred through the constant O(m)-weight.
Assume that the indices from @, have been generated by applying the Spinor
relation, in the guise of (6.4.2¢), over u + v boxes, one box at a time, beginning
with the lowest relevant box. Consider the one tableau T2+i* arising from (6.4.2h)
with the indices from Q, in column strict order. This tableau may be generated
by first choosing the largest factor from those of (6.4.2h) remaining at each Spinor

relation. From (6.3.18a/b), each index p has a sign factor

81

(6.4.27)
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associated with it. Dealing with the largest indices first, ensures that these sign
factors are not interfered with by earlier indices. If x,(p) = 2 then the same sign
factor occurs twice and thus a cancellation occurs in this case. The sign factors
for the x,(p) = 1 cases remain. By virtue of the order in which the indices were
selected, the resultant tableau is column strict on @,,, apart from those indices s,, 3,
for which k,(p) = 2 and s, = p. Then p will be below p. Accounting for this in

each case, through the Column relations, generates the sign factor:

IT lse)- (6.4.2k)

PEDy

By Lemma 6.3.18, a factor of 1/ V2 is also associated with the index ‘0’. Provided
that it can be shown that if the tableau arising from selecting the indices of (6.4.2h)
in an order different to that above, gives rise to a column strict tableau of the same

sign, then the coefficients appearing in (6.4.2¢) have been explained.

Now consider the indices of (6.4.2h) taken in an arbitrary order. However,
when v(p) = 2 and p? is substituted by s, and 3, (not necessarily consecutively),
the former will once more precede the latter and require the factor (6.4.22k). With

this in mind, let the order be:
]Br(l)aﬁ?r(Z)v v vﬁr(q)aﬁW(er)’ v 7]31(1)3 (6421)
where p.(q) # Pr(g+1)- The sign associated with this term is:

g+1) ®

Sy 3(1

s XS (9 o
: : e : : e : ) (6.4.2m)
(1) «(?) (¢) (¢+1) ®)
Pr(1)—1 be(z)—l Sp’r(q)—'l Spar(q+l)—l st(:)—l
where s{" = s, for b = 1,2,...,r, and each vector (s{"*V,..., s(*1) differs from

(s17,...,5) only in the one component for which sl = 509 . Now consider the

order:
ﬁw(l)>ﬁ7r(2)a v ’ﬁ"(q+1)’ﬁr(q)’ v ’ﬁr(t)a (642n)

where, with respect to (6.4.20), Px) and px+41) have swapped places. The sign
associated with this term is:

X s S S KC
: : : : : ) (6.4.20)
(1) (2) (a) (g+1) O]
Spey—1 Spr(z)-1 Squ(q+1>-1 SPi(q)-l Spey-1
where (s9*"' ... s(+1)') differs from (s{?,...,s() only in the one component for

which sg‘{:g:) =5 and (87, ...,s9") differs from (s{**V, ..., s+D) only in the
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one component for which si,i)('q) = 5},‘1‘(‘:)). Since either px(g) > Pr(g41) OF Pr(g) < Pr(e+1)
only one of these differences manifests itself as a difference between (6.4.2m) and
(6.4.20). Consequently, these two sign factors differ by a factor of —1. Therefore,
since the tableaux resulting from (6.4.2!) and (6.4.2n) differ by a simple transpo-
sition, the two resultant symmetrised tableaux are equal. Since the transpositions
of adjacent unequal elements generate the whole set of terms from (6.4.2h), it fol-
lows that the factors of (6.4.2h) commute with one another and that the resulting

symmetrised column strict tableau has a multiplicity n,,.

The lemma is now proved by noting that, apart from those from the set Q,,, the
indices that reside in the kth column are given by 657 §5”°¢¢ where 6% = ess 345
%" = [l,en0 Sg and 6° = [,cc §g. Therefore, if k,(p) > 1 for any p € BFU € or
ku(p) = 2 for any p € B, then T2+* is zero by virtue of a repeated index in the
kth column. Then, since H' = H U B] U B? U £, the remaining terms are those in

the statement of the lemma.

The tableaux identity resulting from this lemma may be conveniently ex-

pressed thus:

5t 95" 6% ( > ]3) =0, (6.4.3)
pEBIUN

each non-zero term of which yields the appropriate term of (6.4.2¢). The tableaux

identities are readily obtained from the algebras Q2 with various sign factors in-

troduced. In addition, for those tableaux in which the index ‘0’ appears, an extra

factor of 1/4/2 is necessary. The identity 02 = 0 is also used. The following example

exhibits this construction.

Let m = 12sothat r =+ =6,letu =5, v =0,y =1, A = (1,1,1,1,1),
(s1582,...,86) = (1,2,3,4,5,6), B = B = € =0,G = {1,2} and H = H =
{3,4,5,6}. In accordance with (6.4.2¢), the Spinor relation is split:

—1-3=3+4+5+6. (6.4.4a)

Raising this to the power of u = 5 annihilates the left side by virtue of cubed terms.

Thereupon:

(6.4.4b)
Now consider the term 32562, Applying the Spinor relation once to the lowest box
of T* deposits the index 6 there together with the sign factor —1. The indices in the
half boxes are now (1,2, 3,4, 5,6). Repeating this process using the next box up and
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then subsequent boxes, generates the following sequence of traceless symmetrised

tableaux:

[ 1] [1-x] [1-x]  [1.x] [ 1. x]
2.x 2% 2% 2 - x 2-3
3. x 3. x 3. x 3.5 3-5

— — — _ | — B I

4 . X 4. x 4-6 4-6 4.6

5.x%x 5.6 5.6 5-6 5-6

L6 N L A R S L6 (6.4.4c)
1.3 1.3
2.3 2.3
3-5|_ |38-5
4.6 4.6
5.6 5-6
_6. - _6 .

The sign resulting here corresponds to that given by (6.4.2¢). It may be confirmed

that the same term results on taking any of the other 29 permutations of the indices

ooooo

1-31 1-3] 1-31 [1-37 [1-317 [1-3]
2.3 2.3 3.3 5.3 5.3 2.3
3.4 3.4 3.4 3.5 3.4 3.5
g4 la.al {25 a5 T3 6 t14.5
5.5 5.6 5.5 5.6 5.6 5.6
6. | |6- | [6- | |86 ] |6- ] |6- |
1.3 [1-317 [1-31 [1-4] [1-4] [1-4]
2.4 2.4 2.5 2.4 2.4 2.5
NEREE N E RN N E R 3-5| |35 N 3.5
4.5 4.6 4.6 4.5 4.6 4.6
5.5 5.6 5.6 5.6 5.6 5.6
6. | |6- ] |6- ] |6- ] |6- | |6
[1.3] (1-3] [1.3] [1.3]
2.3 2.4 2.4 2.4
3.4 3.4 3.5 3.5
—2 2 %29 : 219 2122 =o. 6.4.4d
i.5 s.5 | %2572 2.6 ( )
5.6 5.6 5.6 5.6
- | |&- ] |s- | |6 |

As a further example, let m = 13 so that r = 6 and ' = 7, let A =
(1,1,1,1,1,1),u=3,v=1,5=25-640, (s1,50,...,%) = (1,2,3,4,5,6), By =
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{5}, B = {4}, £ =0, G = {2} and H = {1,3,6,0} so that H' = {1,3,4,5,6,0}.

Then raising the Spinor relation,
3 =1+3+4+5+6+0, (6.4.5a)

to the power of u = 3 annihilates the left side. Since 02 = 0 and each p® = 0, the
resulting right side consists of 25 distinct terms of the form 3p?p, with p, # p,, and
20 distinct terms of the form 6p,p,ps with p; < p, < ps. However, in addition to
the indices arising from these terms, each tableau is to contain the index 4 in the
first column. Since s, = 4, those terms arising from (6.4.5a) which contain 4 may
be ignored. Furthermore, each tableau is to contain the index 5 in the first column.
Since ss = 5, those terms containing 52 may be ignored. This leaves 12 distinct
terms of the form 3pIp, with p; # p,, and 10 distinct terms of the form 6p,p,ps with
P1 < p2 < ps:

Multiplying this by § = 2.5 — 6 + 0, and discarding terms containing 02, 5? or 6° as
above, results in:
3.(1286 + 5756 + 560 — 1236 — 1267 — 156 — 36 — 16%%
—386%0 + 1230 + 13°0) + 6.(1°35 + 1325 + 1356 — 136?) (6.4.5¢)
+9.(1250 + 3250) + 12.(1560 + 3560) + 18.1350 = 0.
From this identity, a tableau results from each term by replacing each p by s,, each

p? by 3,3,, and appending 6% 65°§¢ = 45 to form the first column. The indices in
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the half boxes and the coefficients are calculated as before. The result is:

J
1

J
1

9 [~ 9

1-1 1-1 1.3 1.5 1-1 1-1
2.1 2.1 2.3 2.6 2.1 2.3
3.6 3.5 3.5 3 /3.6 3.3 3.3
3|7 N I (3 . I 3| 22132 °?
1.6 3 i.6 1.6 V2140 1.6 3 1.8
5.4 5.4 5.4 5-4 5.4 5.4
65 | 6.5 [ 6 -5 | 65 | 6-5 | 65
[1.3] (1.1 [1.3] (1. 1] [ 1.1]
2.3 2.6 2.6 2.1 2.3
L3|8-8|_ 8 |3.6| 3|8.6/ 3/3.3) 3 3.3
4.6 V21| 4-0 V2 14-0 V2 |4-0 V2 1[4-0
5.4 5.4 5.4 5.4 5.4
6.5 ] | 6 -5 | | 6 -5 | 65 | | 65 |
(1.1] [1-1] [1-1] Ji-1] (1-1]
2.1 2.3 2.3 2.3 2.1
3.3 3.3 3.5 3.6 9 13.5
—6|2 2 (6|2 2 -6|2""° 6| 2 R
i.5 i.5 i.6!7°% 1.6 +\/§ 1.0
5.4 5.4 5.4 5.4 5.4
65 | 65 | 6.5 [ 6-5 | 165 |
(1.3 ] (1.1 (1.3 (1.1
2.3 2.5 2.5 2.3
9 |3.8 12 | 3.6 1213.6 1813.5
—_— - — 1t _ — | Z = 0.
VAR IR A B T A VAR
5.4 5.4 5.4 5.4
65 | | 6 -5 | 165 | 1 6-5 |
(6.4.5d)

Of course, the Column relations may now be used to make each term column strict.

Lemma (6.4.2) now enables a standardisation algorithm to be developed. This
is based on the following favoured sets of tableaux first obtained by King and El-

Sharkaway. Here the elements of 79(™ are ordered as in Chapter 5.

Definition 6.4.6. [KE83] Let m be such that even m = 2r and odd m = 2r + 1,
and let T»+* be obtained by adjoining T®  to T>. For j € I°™ let «a; be the
number of entries in the first column of T* less than or equal to j. Let s; = T34y for
1 =1,2,...,r, and let s,4, = 0. The tableau T*-* is O(m)-standard if:

(i) the entries are taken from the set I°™;

(ii) the entries are strictly increasing from top to bottom down each column

of T*;
(iii) the entries are non-decreasing from left to right across each row of T*;

(iv) s; € {j,j} forj =1,2,...,7;
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(v)a; <j forj=1,2...,r;

(vi) if T¢; y = §; for j and k satisfying 1 <k < Ajand1 <5 < X1, then
J>1and TG ) =s;.

Note that condition (vi) implies that if T4-* is O(m)-standard then T} ,, ,, # 0.
This, together with conditions (i7), (¢i7) and (v), implies that there exist no O(m)-
standard tableaux T2-* when X, > r. Also note that if j > 1, Thoy =3, T =17
and T{;_,,, = Jj then condition (vi) is satisfied for that particular j and k, but
however, condition (i2) is violated. It is also interesting to note that the first three
conditions together with the 5th imply that if T4-* is O(2r)-standard then T* is
Sp(2r)-standard. Definition 6.4.6 implies that of the tableaux:

{

1-11 2 1-133 1-12 3 1-100
2.3 , 2.2 2.2 , and 2.3 , (6.4.7)
33 3-2 3-3 3-3

only the last is O(7)-standard.

Theorem 6.4.8. [KE83| Let m be such that even m = 2r and odd m = 2r +
1. The multiplicity of the weight (ny,na,...,n,) in the irreductble representation
[Ar; A] of O(m) is given by the number of O(m)-standard tableauz T** such that
nOm)(TA52) = (ny,ng,...,n,). The character of this representation is given by:

[A A(y) = > y7o, (6.4.8)

Tarix:TAriA0O(m)~standard

n?("‘)(TAr;l) n?(m)(TAr;A) L

where (y) = (yhy'h' . 7yr) and yTAr;A =W

those elements of O(m) with positive determinant and, if m = 2r, eigenvalues y7*, v,

"5_?('")TAr;A
yrr I for

Ys Yoy U Ye, and if m = 2r 4+ 1, eigenvalues y7t, y1,y5 Y, Yoy - YT Yy L.

It is important to realise that here, each y7*"” is a function of yf, yzé, ...,y3. Hence
it is two valued and so is [A,; A]. This reflects the fact that [A,; A] is a two-valued

representation of O(m).

As in previous chapters, a standardisation procedure will enable each non-
standard tableau in to be written terms of tableaux which are higher; in the sense of
Definition 2.6.23 in this instance. Once more, the Garnir relations and the Column
relations may be applied to the F* portion to yield a linear combination of higher
tableaux T4-* which satisfy conditions (¢), (i7) and (7i7) of Definition 6.4.6. It is
thus only necessary to concentrate on violations of the remaining conditions. In

order to use the techniques described below, it is necessary to determine certain

polynomials.
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Definition 6.4.9. For positive odd u and non-negative integer v, define &,y to be a

homogeneous polynomial of degree v in the v + 1 variables zo,z,,z,,...,x, such that
ifzd =23 = ... =22 = 0 then the coefficients of each term in

(:EO + T, + xo + -4 ,’Eu)u{(u’u)(.’fo; T1yLoy... ,.TU) (649a)
having an exponent of any of ¢y, x,,...,z, equal to 2 is zero, and in which the coef-

ficient of atz 2, - - 2, is positive.

Note that if f,, exists then any positive multiple also satisfies this definition. It

is not yet known whether tﬂ(w) exists for all u and v. However, Table 6.4.10 shows

that f,, certainly exists for all u + v < 8.

tA(U»v)

U

u

u

1
220 — (v —1)O
4z} — 2(u — 2)2o0— 2um+ (u? —u +2)f

8z —4(u — 3)22o— Suzom+ 2(u? — 3u+ 6)zoH
+2u(u — )P — (v — 1)(uw? + u + S)B

1625 — 8(u — 4)a3o — 24usim + 4(u? — 5u + 12)z3{
+8u(u — 2)zo - 2(u — 2)(u? —u + 12)1(,@ + 8u(u + 1)H
~2u(u? =+ 4P+ (u 4+ 20 + 1102 — 4u + 24)E

23— <2 + 3a3f + QmOEB—:coﬁj+3xOE

xéﬁ— x3ﬁ3+2x§@— 33:(2,Ej—~ Qxfja
_6.1;0%—}—21:0?— 3xoaj+ .’L‘OE

Table 6.4.10
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In this table, each Young diagram F* represents the corresponding monomial
symmetric function m, [Ma79] in the appropriate v variables z,,z,,...,z,. m, is
defined to be the sum of all distinct terms z} 2?2 - -- w;\:, where p is the number of
parts of A. For example, if v = 3 then [ = mp1) = ziz, + vlz; + z122 + 225 +
z122 + z,x2. The notation is especially convenient here since {#(; 7y comprises 763

terms!

If the tableau T2 violates condition (v) of Definition 6.4.6 then, in order to
invoke the following standardisation procedure, it is necessary to identify a specific
J which violates condition (v) and for which both j and j (j # 0) are present in
the offending column. A straightforward induction argument shows that if a; > j’

then there necessarily exists j < j/ for which both j and j are present and «a; > j.

Lemma 6.4.11. Let T?* be column strict but non-standard in that there ezists j and
k such that a; > j, where «; is the number of entries less than j in the kth column
of T2, and such that both j and j are present in the kth column of TA-*. If .
exists for all u 4+ v < X, then [T2-*] may be expressed as a linear combination of

traceless symmetrised tableaur [T2+*], where for each w, TA* > T4,

Proof. Let s; = T35 for i = 1,2,...,r, and let @ C T° be the set of indices
in the kth column of T%*. Let A= {peN, :p,p€ Q},B*={peN,:5 ¢
Q,s, € QU{0}NQ), B ={peN,:5 ¢Q,s, € Q} andC = {p € N, U {0} :
p¢d Q,p ¢ Q}. Then A, B* B? and C are distinct with AUB*UB UC = T},
and, if a = #A, b* = #B*, b = #B° and ¢ = #C, then a +b* + ¥ +c =7
and Ay = 2a + b + V. Let J = {1,2,...,7} so that #J = j. Now create the sets
D =(ANIN}, € = A(DU{j}), B = BN J, By = (B*\B§)U{j}, Bs = B’nJ,
B =B°\Bj,G=CNJ and F = C\G. In addition, let H = DU B; U F so that
I, = EUB;UB UGUH. Define (s1,...,8,) by s; = 5/ if i € Bg U {j}, and
s; = s if « & By U {j}. Note that j € A and j € Bf but j ¢ H, 7 € D and
j & Bg. Let the cardinalities of the sets just created be d, e, b2, b2, b5, b], g, f,
and h respectively. Then j = d 4+ b3+ +g+1,a=d+e+1, b* = b + b — 1,
¥ =0+, c=g+fih=d+f+bgand \y =2d4+2e+b2+b 4+ +1. In
addition, a; = 2(d+ 1)+ b¢ + b5 = 2d + b3 + bg +2. From «; > j then follows d > g.
Thereupon, if u = 2d + 1 and v = b7, the conditions of Lemma 6.4.2 are satisfied
and if B = {p’l,pf_,,...,pgg} and

:‘j = {(u,v) ( Z 13; 13/1“5/2, s ,ﬁ;g) ’ (6411&)
peEDUBJUF
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the expression:

95?95ﬂ95( T 15) t‘(u,u)( 3 13?13'1’13'2"-"533) =0 (6.4.11b)
pEBYUH peDUBSUF

results, where 6°7 = Teens 3o 65" = [yens 5S¢, and 6% = [, 7g. Of the tableaux

resulting from this expression, the construction ensures that:

657 95° 6¢ Ior II s (6.4.11¢)

peD  peBgu{j}
is the lowest in that in all other terms, the corresponding factor is greater or equal.
Note that the indices s} and 3} both appear in this term. The indices in this term are
those in the kth column of T2-* and therefore, under the appropriate substitutions
and coefficient impositions as in (6.4.2¢), (6.4.11b) yields an expression for [T4-*]

in terms of higher tableaux.

To illustrate the algorithm used in this proof, let m = 10, A = (1°) and consider the

tableau:

N

72" = (6.4.12a)

ENIVSTIR S
> Lo oI

ot
.

which is non-standard since oy = 5 > 4. With k = 1 and j = 4, the proof of Lemma
6.4.11 involves the sets A = {3,4}, B* = {2}, B# = 0 and C = {1,5}. In addition
(sh,...,85) = (1,2,3,4,5). With J = {1,2,3,4}, it follows that D = {3}, £ = 0,
Be = {2}, B = {4}, B§ = B =0, F = {56}, G = {1} and H = {2,3,5}. Also

(s15--.,5) =(1,2,3,4,5). The Spinor relation is now written:
~1=3+3+4+5, (6.4.12b)
which, on being raised to the power of u = 2d + 1 = 3, yields:
G+3+4+572=0. (6.4.12¢)

Since v = b = 1, according to (6.4.110), this should be multiplied by f(s,l)(f’) +4+
5, =34+4+5-2 (a factor of 2 having been removed, for convenience, from the

polynomial given by Table 6.4.10). The result is:

0=(3+34+4+5P38+4+5-9)
=(3+3+4+5)(B+4+5-%)
=@ +4+5) +238+4+5P 2333 +4+5) -2



6.4. Standardisation in the irreducible spinor modules
=B+4+5)"+233+4+5)7, (6.4.12d)

because 23 = 9% = 0. Notice that no terms containing 2? appear and that the
coefficient of (3 +4 + 5)*3 is positive. Expanding (6.4.12d) and dividing by 6 results

m:

53%4 4 3825 4 3347 + 2475 + 3357 + 2457 4 2.3345

ooy 809 g8 cooe  gene (6.4.12¢)
13747 4+ 3287 4+ 4282 + 2.(3245 + 3425 + 345%) = 0.

In this expression, the first term is the lowest — it is that giving rise to 745",
Substituting pp for p?, and s, for p, calculating the coefficients as in (6.4.2¢) and
multiplying the resultant expression by 657 %" §¢ = 4, yields:

23344 + 23354 + 23444 — 24454 + 23554 — 24554 — 33444 0
—33554 + 44554 + 2.(23454 — 33453 — 34454 — 34554) = 0. (6.4.12)
The tableau corresponding to each term is obtained by forming a column from the
indices indicated and selecting indices for the half boxes so that a constant O(m)-
weight is obtained. Rearrangement and use of the Column relations then yields the

following expression for T2*1* in terms of higher tableaux:

1.2 1.2 1.2 1.2 1.3
2.3 2.3 2.3 2.4 2.3
3-3|=—-13-3|4+|3-4|+|3-4|~-13-4
4.4 4.4 4.5 4.5 4.5
5.4 5.5 5.5 5.5 5-5
_ B (6.4.12g)

1-2 1.3 1-3

2.3 2.3 2.4

+2(3-4|1-2|13-4|+2|3-4

4.4 4.4 4.5

5.5 5.5 5.5

Note that of the tableaux on the right side, the 1st, 5th and 6th are non-standard
in that they each violate condition (vi) of Definition 6.4.6 for 7 = 5. The procedure
required to standardise either of these is presented in the following lemma where

techniques very similar to those of the previous lemma are applied.

Lemma 6.4.13. Let T?"* be column strict but non-standard in that there exists j
and k such that either a; > 7, where «; is the number of entries less than j in the kth
column of T2, and such that 5} is present and s} is not present in the kth column
of T2 where s} = Tj;o}, or ag > v+ 1 and 0 is present in the kth column of T*.
If fuv) exists for all u+v < Ay, then [T2-*] may be expressed as a linear combination

of traceless symmetrised tableauz [T2*], where for each w, TAr* > T4,
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6.4. Standardisation in the irreducible spinor modules

Proof. Let s} = T(‘?’{)‘)*, for i = 1,2,...,r, and define Q, A, B*, B, C, a, b*, V¥
and c precisely as for the proof of Lemma 6.4.11. Now let J = {1,2,...,7 — 1} if
Jj<rand J ={1,2,...,r}if j=0. Let D= ANJ, € = A\D, B = B*NJ,
By = B\(Bgu {j}),BS =B'nJ, B =B\B], 6 =CNnJ and F =C\G. In
addition, let H = DU B; UF U {j}. Note that of the sets just created, j € H but
j € Bg and j & B®. Let the cardinalities of the sets just created be d, e, b, b2, b5,
¥, g, f, and h respectively. Then j = d+b+b+g+1,a=d+e b* =bF+b+1,
V¥ =0+, c=g+f,h=d+f+b+1and \; =2d+2e + b3 + b + b + 1.
In addition, a; = 2d + b5 + b5 + 1. From a; > j then follows d > g. (s1,...,s,) is
defined by s; = & if i € BeU{j} and s; = s/ if i ¢ BSU{j}. fu=2d+1 and
v = b3, then as in Lemma 6.4.11, the conditions of Lemma 6.4.2 are satisfied and

the expression:

o 8 o T o o o o

°7 6" 6° ( > p) Euw) ( > p;p’l,p’z,---,ng) =0 (6.4.13a)
pEBFUH pEDUBSUF

results, where By = {p},py,... Pz}, 0°7 = [lens 5o 6%" = [l,eps Sq» and 6 =

[T,ee @g- Of the tableaux resulting from this expression, the construction ensures

that:

6576%"¢* [Iop I s» (6.4.13b)

peD peBgU{j}
is the lowest. Note that the index §; appears in this term but not s. The term
(6.4.13b) corresponds to the kth column of T2-* and therefore, under the appro-
priate substitutions and coefficient impositions as in (6.4.2¢), (6.4.13a) yields an

expression for [T#-*] in terms of higher tableaux.

To illustrate this lemma, consider the 6th term on the right side of (6.4.12¢g).
However, instead of m = 10, let m = 11. The tableau in question is non-standard
by virtue of a j = 5 violation of condition (v¢) of Definition 6.4.6 since T(‘;‘fl;))‘ = &
and TS5, # si where (s},...,s}) = (1,2,3,4,5). Here A = {3,4}, B* = {5},
B =0 and C = {1,2,0}. With J = {1,2,3,4}, it follows that D = {3,4}, £ = 0,
B = B =B =8B =0, F=1{0}, G = {1,2}) and H = {3,4,5,0}. Also
($15.++,85) = (1,2,3,4,5). Withu=2d+1=5and v = b2 =0, #,,) = 1 from
Table 6.4.10, whereupon (6.4.13a) yields:
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6.4. Standardisation in the irreducible spinor modules

Using (6.4.2¢), this expression directly yields the following tableaux identity:

1.3 1.3 1.3 1.3 1.3

9.3 9.3 2.1 EE RER

3.4|/+13-4|-{3-4|+—=13.4|1-—[3-5

i.4 4.5 1.5 Y213.4] Y2|i.s

5.5 5.5 5.5 5.0 5.0

: i _ _ (6.4.14b)

1.1 1.3 1-3 1.3

1 2.4 2.3 2.4 2.4
-5 3.51+v2|3-4|-V2|3.4|-vV2|3.5]|=0

i.5 4.5 i.5 4.5

5.0 5.0 5.0 5.0

This is easily rearranged to enable the first term to be written in terms of higher
tableaux, each of which, in this case, are O(11)-standard. If the last six terms
are omitted then the resulting identity is that obtained for O(10). Incidentally,
standardisation of the 5th term on the right side of (6.4.12¢) using this technique,

requires 5(3,2).

Lemma 6.4.15. If {(,,) exists for all u+v < A1 then the set
{[T**] : T** is O(m)-standard}

spans the O(m)-module Q4.

Proof. If the column strict T2 is not O(m)-standard due to a violation of condi-
tion (¢12) of Definition 6.4.6, then the techniques of Section 3.4 enable the Garnir
relations, acting on the F* portion, to be used to write [T2-*] in terms of higher
column strict tableaux. If the column strict 72-* violates conditions (v) or (vt) of
Definition 6.4.6 then either Lemma 6.4.11 or Lemma 6.4.13 can be used to express
[T2-*] in terms of higher column strict tableaux. Therefore, by iterating these pro-
cedures, [T%-*] may be written in terms of O(m)-standard tableaux by virtue of

the ordering on the set of all tableaux and their finite number.

In addition to the techniques of standardisation employed in this section,
those of the orthogonal Trace relation may also be used on any two columns of
the F* portion. However, as indicated by Lemma 6.4.15, this Trace relation is not
necessary to effect a standardisation. Nonetheless, it may enable standardisation to

be achieved more efficiently.

Lemma 6.4.16. Iftﬂ(uv,,) exists for all u +v < ' and \; > r then the O(m)-module

04+ s zero.
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6.5. The irreducible spinor modules of O(m)

Proof. Consider the case of even m = 2r = 2¢' first. If X, > r there necessarily
exists a § < r such that both j and j occur in the first column of each column
strict T4-* and for which a; > j and a5 < r. Thus Lemma 6.4.11 can be used
to write [T2-*] in terms of higher tableaux. These tableaux are also necessarily
non-standard and thus iterating this process must eventually result in [T4-*] = 0

since the total number of tableaux of shape F'4-* is finite.

For the case m = 2r + 1, r = r + 1, if the index 0 does not appear in
the first column or appears below the (r + 1)th row then the argument above is
used for § # 0. This leaves the case for which T(e:{\,o) = 0. This is a violation of
condition (vi) of 6.4.6, and thence Lemma 6.4.13 can be invoked if ) exists for
alut+v<r+4+1=r".

§6.5. The irreducible spinor modules of O(m)

Armed with the O(m)-standard tableaux for the spinor modules and the standard-
isation techniques developed in Section 6.4, the O(m)-modules O4-* are defined

explicitly in this section.

Let A\ € P(l). Since U, specified by Definition 6.3.17, is invariant under the
action of G € O(m), it follows that U N (¥ @ W?) is also invariant under the same
action, and thence from (6.3.14) that:

GIT* =% 30 AlG)sions Oryry, Oy, Crgmy [T, (65.1)
where the sum is over all T"4-* with entries from the set Z°(™), and for which
Tie € {7,5) for j = 1,2,...,r. Here T2-* is T2+ adjoined to T*, T'4* is T'4
adjoined to T"*, and s; = T(?,E);)'\ and each s} = fl’('JAo)A forj=1,2,...,r.

The action of B,* € so(2r + 1) or D,* € so(2r) on [T'*-*] derives simply from
(5.2.14) and (6.3.12). As above, let T2-* be T+ adjoined to T*, and s; = T; 5} for
Jj =1,2,...,r. In addition, let s, = 0. In order to specify the action of A,* on T4,
let T{+ be identical to T2+ if a = b, and if a # b let T2+ be identical to T®" except
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6.5. The irreducible spinor modules of O(m)

for two positions for which T35, = 5, and Tiony = 8. I

0 if a =b;
62 — 2 - ifa=>+#0;
Sa
b)6b &b : if a < b,b; d
b(a,b, Ty = AW ) ifa o (6.5.2)
:Sb—l i
Sp
—¢(a)g(b)s® 8¢ | : if a > b, b,
\ -sa“l J

then it follows from (6.3.12) that:
AL [T*] = é(a, b, T*")[ TP (6.5.3)
Now let Ty denote the tableau formed by adjoining T+ to T* and define:
AL (T2 = ¢(a, b, T*)[TEL . (6.5.4)

As in Section 5.2, let p and ¢ be the number of times that the indices b and a
respectively occur in T*. Form the set of p tableaux {T{y*, TY5%, ..., T} by, in
each case, replacing a single index b in the F* portion of T4 with a, and the set
of ¢ tableaux {T5y™, Tss™, ..., Tsy} by, in each case, replacing a single index @
in the F* portion of T4+ with b. Then, it follows from (5.2.14a), (6.5.3), and the
definition of [T4-*] that, for B, € so(2r + 1):

Bab [TA,;/\] — Aab [TA,;,\] + Eab [TA,;A] _ E_H [TA,;/\]
q

p
= ¢(a,b, T*)TL ] + > [TE Z (TE, (6.5.5a)

i=1 i=1
and similarly, for D,* € so(2r):
p
Dl [T? ) = ¢(a,b, T[T+ > [T Z [T5:]. (6.5.5b)
i=1 i=1
These imply that:
B,* [T®] = n0@r+)(TA-M) T4 (6.5.6a)
and  D,*[T*?] = noC)(TAM)[T4 ). (6.5.6b)

Since a basis for the Cartan subalgebras of so(2r+1) and so(2r) are provided by the
elements B,? and D,° respectively for a = 1,2,...,r, the O(m)-weight nOm)(T4-})

of T4-* determines the weight of the element [T4-*] € 04 in this basis.
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6.5. The irreductble spinor modules of O(m)

Let the tableau T2 be defined by Tf(}"’,\c) =jforl <j<rand0<k <M.
Then n®™(T55%) = (A + 5, +3, .. A +1) = (A,; A). T2 is the only tableau
of shape F'2-* with this property. It is easily shown that B, [T2-*] = 0 for all
B> € B{®*Y and D,? [T2-*] = 0 for all D,* € B{®). This leads to the following

theorem.

Theorem 6.5.7. Let m be such that even m = 2r and odd m = 2r + 1, and let
v =m—r. Ifi. exists for all u+v < \; then the O(m)-module O*+ is irreducible
with basts:

{[T?*] : T?* is O(m)-standard}.

Moreover, if {,.,) exists for all u+ v < r' then the set {O** : X1 < r} provides a

complete list of inequivalent irreducible spinor O(m)-modules.

Proof. By virtue of Lemma 6.4.15, the dimension of O%-* is not greater than the
number of O(m)-standard tableaux. From Theorem 6.4.8, this number is equal to
dimension of the irreducible representation [A,; A] of O(m, C). Then, since O+ has
highest weight (A,; A), O%-* is the O(m)-module corresponding to that irreducible
representation. This proves the first part of the Theorem. The second part follows
because firstly every spinor O(m)-module occurs in ¥ @ V& for some ! [Li50];
secondly, O(m)-standard tableaux of shape F4- exist if and only if X, < r; and
thirdly, (A,; A\) is the highest weight of Q4+,

The quintessential structure of O4* may now be stated.

Theorem 6.5.8. Let m be such that even m = 2r and odd m = 2r + 1 and let
X € P(l;r). If ) exists for all u+ v < r then O** is the irreducible O(m)-
module spanned by [T**] for all T®-* with entries from the set Z°™) and for which
TG € {7,5) for j = 1,2,...,r; modulo relations (3.4.2), (3.4.3), and (6.3.18a) if
m = 2r, or (6.3.18b) if m = 2r + 1; and on which O(m) and so(m) act according to
(6.5.1) and (6.5.5) respectively.

The techniques of this section enable explicit representation matrices for ele-
ments of C(m) and so(m) to be obtained in the representation [A,; A]. Let D,,,[A,; A]
be the dimension of O2-* and let TP T4, ..., Tg;‘[’lr;,\] the O(m)-standard
tableaux. The action of G € O(m) on each [T#"*] yields, via (6.5.1), a linear
combination of traceless symmetrised tableaux which are, in general, non-standard.

If f(u,u) exists for all u + v < r, then the techniques of this section enable each to be
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6.5. The irreducible spinor modules of O(m)
written in terms of O(m)-standard tableaux, so that:

Dm{Ar;A]
GILA) =Y TG, (659)
i=1
where the ['2-2(G);; € F are the matrix elements of G in the representation [A,; A].
In a similar way, the representation matrix I'*-*(B) of B € so(m) is given, via
(6.5.5), by:
Dm[Ar;)*]
BT = 3 Te(B)(Ta) (65.10)

j=1

Note that in the reduction of an arbitrary traceless symmetrised tableau to a linear
combination over the O(m)-standard tableaux, the coefficients are rational if m is
even. However, if m is odd then in general, factors of 1/+/2 arise either through the
Spinor relation or through the action of T',® if either @ = 0 or b = 0. Consequently,
if D,* € so(2r) then the matrix elements, I'4-X(D,*);; are all rational numbers,
whereas if B,' € so(2r + 1) then the matrix elements, ['4-(B,?);;, are each a

linear combination of rational numbers multiplied by an integral power of v/2.

The techniques developed above will now be applied to the particular case of
the representation [A,;1,1] of O(5). Although, for such small rank, the standardi-
sation techniques are relatively straightforward, this case exhibits all other aspects
peculiar to obtaining explicit matrix spinor representations.

The following O(5)-standard tableaux provide a basis for the 20-dimensional
O(5)-module O4=11:

1-1 1-2 1-1 1-2 1-2 1-1 1-2
2.2 2.2 2.0 2.0’ 2.0’ 2.2’ 2.2’
i-1 1.3 i.2 1.1 1.2 1.1 1.3
: , e 6.5.11
2.0 2.0 2.0 2.2 2.2 2-0 2-0 ( )
1-2 1-1 1.2 1-1 1-2 1.2
2.0° 2.2 2.2’ 2.0° 2.0 2.0
Denote these by T0*!, T L. TR*"! respectively. According to (6.5.5), B, €
so(5) acts on [T}**"'] by:
212 T2 2| 1-2 7| 1-2
PR BH R P
_ 1.2
—0+[§ 1]
1-2 1 (1.2
= — = — | - by (6.3.18
(172 orosm
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- +_¢1_§ [ ; : g ] (6.5.12a)

where the final line is obtained using the Column relations (3.4.2). For [T;**"'], the

9
action of B,? yields:

(1-3] L L[1-
SRHEN

_ 1.2
2.0

For [T¢*""], the action of B,? yields:

os2)-o

+0-0. - (6.5.12b)

—_ O BN
—

DN 4

(=28 ]

—

2 1-1)_ 42111 2| 1-1| 1| 1-1
S EH RS B RS b
1-1 1-1 1-2
=—| : 5.12
B R BB

The Spinor relations then yield:

ol-lnf-glanl-fnllan) e

and their consecutive use over both ‘whole’ boxes yields:

HHES

DN

] 1 (1.1

:“E[?-O] ) )

B IR R e
—\/5[;3}. (6.5.12¢)

r 1T 1
N N =N
N DN N DN

L Jd

Incidentally, this expression may be obtained from the Spinor relation written —1 =

340, and squared to give 12 = 324-2.50. Combining (6.5.12¢), (6.5.12d) and (6.5.12¢)

gives:
2| 1-1 1.2 3 |1-2
- _ - . 5.12
B‘[z‘z] 3[2-2} ﬁ[z-o] (6:5:120)

A simpler example is provided by:

1-1
B2l Z|=0. 6.5.12
1[2_2] 0 ( 9)

The action of B,? on each of the twenty O(5)-standard tableaux of (6.5.11) produces,
via (6.5.10), the following explicit representation matrix ['4241(B,?) for B,%:
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R
...... 7",-
e m
@
e
....... 2 ..o
.............. 1.-%.
ﬁ ....... )
.......... 2
Lo
\ -lA--‘7‘s .............

The four calculations carried out

above give rise to the entries in the 2nd, 9th, 6th and 11th columns of this matrix,

respectively.

Now consider B,? € so(5). Its action on the third element of the basis is as

follows:

1) s 1.1 5| 1-1) po|l-1
-0]‘A°_§-0]+E°[2-0} E2[§-0
111 1.1 .
_%-2.0}—[2'2] using (6.4.5a)
_Afren)_Jren) t il
/2120 2.1 220
1-1
=2 .
2150%]

As a further example:

B R PRI P R

BB

|

] from (6.3.18)

(6.5.13q)

DN DI
[

1.
9.

(6.5.13b)

These two calculations provide the 3th and 12th columns of the following explicit
representation matrix I‘[A““l](Boi) for B,
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6.5. The irreducible spinor modules of O(m)

. e
3
oo
S
....... S
1
B O
Nz)
Y

1,
s

B

V2
............. I

3
.......... 3.0 .o
........... oL
.................. 1
1
........... R
............ V2.0 .o
1

............. . R
.............. L

Similarly, the action of B,° on each of the twenty basis elements of O*#!! yields the

following explicit representation matrix I'4=11(B,°) for B,°:

L
L
S
....... 2L
V1
oo
L
v R
3
..... S0
o .
4
. R Lo .
a1
.................. 5 -
B
B
................... 1
R S S
V2 1
.......... - R
........ VI

It may be verified that these matrices satisfy the commutation relation:
[[le=13)(B,2), Tzt B )] = — Tla2)( B, 0y, (6.5.14)

Since this is the representation analogue of (2.2.22), this provides a verification of

the techniques presented in this chapter.

Using the techniques of this chapter, the characters of the elements of O(m)

with determinant —1 may be obtained directly.
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6.5. The irreducible spinor modules of O(m)

Theorem 6.5.15. If m = 2r + 1 is odd, then the character of the representation
[A,; A] ts given by:

Sy

(A A(y) = £ 3 (=)™ T (6.5.15a)

TariX:TArix0Q(m)-standard
8¢

for those elements of O(2r + 1) with eigenvalues y7', yi,¥5 Y2y -y Y, —1 and
hence determinant —1, where (y) = (Y1,Y2y--->Yr), S = T(?’{,;)’\ for each TA* and

ar O(m)(par O(m)parA o(m Apia .
YT = gy f0 T TT ) ma IR n2N TR T = 9r is even, then the character

of the representation [A,; A] is:

(A A](y) =0, (6.5.150)
for those elements of O(2r) with negative determinant.

Proof. If m = 2r + 1 consider the following generic element of O(2r + 1):

it o ;00 Lo
G=|" >@<y2 )@---@(y' )@—1. 6.5.15¢
( 0 wn 0 v 0 v ( )
It may be verified that
AT (s 0 [y 0
AG) = [ 1>®<y2 1>®---®<Jr ) 6.5.15d
() ( 0 yf 0 wi 0 yz ( )
satisfies (6.2.23) and the unprimed (6.2.11) when C satisfies (6.2.21). The action of
S
A(G) on T?r yields: i | : | y7°"T? and hence, by (6.5.1), on [T4*], to yield:
SY’
S1
GITA ) =4 | : |77 A, (6.5.15¢)
s

These coefficients thus appear on the diagonal of the matrix representing G. Sum-

ming over the basis of traceless symmetrised O(m)-standard tableaux then proves
(6.5.15a).

For m = 2r, consider the following generic element of O(2r):

0 y;1 0 y' 0
G = 2 r . 6.5.15
(yfl 0>®(0 Yo OO 0 Yr ( f

207




6.6. The irreducible spinor modules of SO(m)
It may be verified that

af 0 y*) (—yz_% 0 > lyzt 0
A(G) =1 L ® Q---@1|7" 6.5.15
(G)=1 (yl_,g 0 0 y-? 0 y} ( 9)

r

satisfies (6.2.4) and the unprimed (6.2.11) when C satisfies (6.2.8). Then, by (6.5.1),
the action of G on [T4-?] yields a multiple of [T"4-*] where T"4r* is identical to
T4-* except that each 1 is changed to a 1 and vice-versa. If T4+ is O(m)-standard
then T"4-* is also O(m)-standard. Thus, in the basis of traceless symmetrised

O(m)-standard tableaux, each diagonal entry of the representation matrix is zero.
This proves (6.5.15b).

§6.6. The irreducible spinor modules of SO(m)

In this section, the reducibility of the O(2r)-modules O*-* on restriction to SO(2r)
is demonstrated and, once more, bases for the irreducible components are derived

in terms of Young tableaux.

In this section, m = 2r will be even. The element 7,, € M., defined by
(6.1.8a) is, as shown by (6.1.9a), represented by ~,,. = 7o, itself defined by (6.1.4c).
By (6.3.4), the action of v, on each basis element ,,.. ;. € ¥ is given by:

S
7017[’51---3, = 1/).«1~-»s,- (661)
Sr
Then, by virtue of (6.2.16) and (6.2.18),
0] \
d)sl---s, : == +1 (662(1)
-ST J
is a basis for 04¥, and o
4 Sl 3\
L (6.6.2b)
\ | Sr ] J

is a basis for 027, where 027 and 027 are both SO(2r)-submodules of O?-. The

following definition reflects this observation.

Definition 6.6.3. Let m = 2r, A € P(l;r) and let O5 > denote the set of all O(m)-

standard tableaur of shape F4-*. Then define
Sart = T8 € O 4{j 11 < j < r, IG5 =7} € 21} ©65)
and S8 = T8 € 05 L 1< < T8 =7} €22 +1}.
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6.6. The irreducible spinor modules of SO(m)

Thus there are an even number of barred indices in the half boxes of each T4-* €

SA-** and an odd number of barred indices in the half boxes of each T4r* € SAr*-,
Lemma 6.6.4. #8543+ = #58-r~,

Proof. Let T4-* € §4-*+ and let T*-** be identical to T2-* except that each index
1 is changed to 1 and vice-versa. By Definition 6.4.6, T+ contains at least one 1
or 1 but it may not contain both. It is then straightforward to see that T-** is
O(m)-standard, and thus T2-** € §4-*-. This demonstrates a bijection between

S§4-2= and §2-**, thus proving the lemma.

Now let S2-** and S2-*- denote the vector subspaces of the O(m)-module
OA4-* spanned by [T4-*] for T4-* € S4-*+ and [T4-*] for T*-* € S4-*~ respec-
tively.

Theorem 6.6.5. Ifm = 2r, A € P(l;r) and {,,) exists for all u + v < X then
Sard+ qnd S4-*- are inequivalent irreducible SO(2r)-submodules of O*>* under the

induced action of (6.5.1).

Proof. To prove that they are SO(2r)-modules, it is sufficient to demonstrate
closure. If T4-* € §2-*+ then, through (6.5.1), the action of G € SO(2r) on [T4-*]
results in a linear combination of traceless symmetrised tableaux each of which,
by virtue of (6.2.18), contains an even number of barred indices in the half boxes.
Since the polynomials used in the standardisation procedures are homogeneous, the
number of indices that are raised to the power of exactly 1, is even or odd for all the
terms. Thus, within each tableaux identity, the number of barred indices in the half
boxes of each of the tableaux appearing differ from each other by an even number.
Thus, standardisation results in an expression involving tableaux from S24-*+ solely.

A similar argument holds for T4* € §4-*- and closure is proved.

On restriction to SO(2r), the irreducible representation [A,; A] of O(2r) de-
composes into the direct sum of two irreducible representations of the same di-
mension. Thus the SO(2r)-modules S#-*+ and S#-*~ are irreducible. They are
inequivalent by virtue of differing highest weights: (A,; A); for [T2-*] € §4-** and
(Ar; A)- for [T2:*]) € S22+, where T2 is obtained from T2+* by exchanging each
entry r for 7.

Although an analogue to Theorem 5.3.27 could now be stated, this is not
necessary since, on restriction to SO(2r), the O(2r)-module O4-* decomposes nat-
urally with respect to the basis of traceless symmetrised O(2r)-standard tableaux;

there being no need to quotient out the invariant subspaces.
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6.6. The irreducible spinor modules of SO(m)

To illustrate the above, consider the 10-dimensional SO(4)-module S4221-,
for which the SO(4)-standard tableaux are:

1-11 1-12 1-1 2 1-2 2 1-2 2
2.2 2.2 2.2 ' 2.2 ' 2.2
_ - - (6.6.20)
1-11 1.12 1.-12 1-232 1-22
2.2 ' 2.2 > 2.2 7 2.2 7 2.2
Then, by (6.6.14),
2 1-1 1} _ 4, .}1-11 2[1-1 1 7l 1-11
Dl{z-z }‘A‘[Q 2 }+E‘[2-2 ]_Ez{z 2 ]
111 1.11
e e lan
1-21 1-12
- - : 6.21
B Rt

I::—[§: (6.6.21b)

e S Ml
VIR I NI
[N]]

e d

(SR I SV

i
[C—
l
[
———
DN
N

NI
—

(6.6.21¢)

and, together with a Garnir relation,

12 1) _[1-12] [1-13
122 2.2 2.2
1-1 2 1-1 2 1-12
=1z = — = — . .6.21d
PR B BB I
Combining these, results in:
1-11 1-12
D12[2 5 }:—4[2 5 ] (6.6.21¢)

1.2 2] [1.21 1.9 2
Dl[i 2 ]‘[é-z ]+[§ 1 }
1-12] [1.12] [1.12
T 132.9 2.2 2.2
1.12 1-1 2 1-1 2
- ol i1 — 9|+t 6.22
B R B R R

where the standardisation has involved the Garnir relations (3.4.3), the Column

relations (3.4.2) and the Spinor relations (6.3.18). The above two calculation gives
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rise to the 1st and 10th columns of the following explicit representation matrix for
DIZ:

-3 .
. -4 .
e ti(D,?) = L
-1 .
.o -2
. -2
. -3
The highest weight vector of the irreducible so(4)-module $4%1- considered
above is [ }3 ’ } 1 }, for which:
J1o11] 5[1.11 [1-11]_ 3[1.11
By [é-é }‘5[?@ ] and B, [‘2-? }‘“5 5.3 |

confirming that its highest weight is (3, —2).

Recall that for the O(m)-modules O*-* considered in Section 6.5, the matrix
elements obtained for the representations [A,; A] of O(2r) are always rational. In
view of the natural decomposition on restriction to SO(2r), this also holds for the
representations [A,; Aly of SO(2r).
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Chapter 7

Modules of Lie supergroups and
Lie superalgebras

§7.1. Grassmann algebras and Lie supergroups

In this chapter, Young tableaux techniques, similar in flavour to those of the previous
chapters, are developed to deal with modules of Lie supergroups and Lie superal-
gebras. In particular, application of the double centraliser technique enables the
irreducible covariant tensor modules of GL(m/n) to be constructed. This involves
the generalisation of the Column and Garnir relations to take account of the Z,-
grading of the Grassmann parameters which occur here as matrix elements. These
techniques extend, in a fairly straightforward way, to the Lie superalgebras gl(m/n)
and sl(m/n). The following account of Grassmann algebras and Lie supergroups is

based on that given in [Co89].
Define B = FB; to be the exterior algebra of {(;,(s,...,(r} over the field

F, where L is arbitrary. B is known as a Grassmann algebra and its elements are
referred to as Grassmann parameters. Let the exterior product {;, A(;,A...A(;, € B

be denoted by (;,i,..;,- Then (i, = —(,i,, and more generally if o € S; then:

Cloiom iew = (=1)" Cisigoria- (7.1.1)

The product of the elements (;,;,..i,,j .5, € B is given by:

GivigisCiriaie = Girigeduiujamsior (7.1.2)

which extends linearly over F in both factors. In general this product does not
commute. If s +¢ > L then (7.1.1) necessarily implies that (;,s,...i,j,55..7. = 0.

Let p = {i1,75,...,4} where 1 <7, <1, <--- <1 < L and define {, = (,4;...,-
Denote by B, the subspace of B whose basis is the set of all [-fold exterior products
of the generators {(;,(s,...,{r}. Thus B, has a basis {(ii;..; : 1 <8 < i3 <+-- <
4 <L} = {Cu: it C N, #u =1} and B, has basis {¢(; =1 € F}. Then b € B may
be written 3°, b,(, where each b, € F and the sum is over all subsets u of N;. Let

5=By®B,®B;®---and B = Bi®B3® Bs®---. Then B = B; ® B; with both
B; and By having dimension 2£-!, whereupon B has dimension 2E. It then follows
immediately from (7.1.1) and (7.1.2) that:

PAL =N, A =g'Af and fiAg'=—g'Af,  (713)
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7.1. Grassmann algebras and Lie supergroups
for all f° ¢° € B and f!,g¢' € Bj.

The properties of the Grassmann algebra are typical of a structure with a Z,-
grading. In view of (7.1.3), the Z,-graded subspaces, B; and By, of B, are known as
the even and odd subspaces respectively. Their elements are known as even or odd
Grassmann parameters respectively. Each element b € B may be written b = bz + br
where bs € Bj is even and by € By is odd. If b # 0 and either b5 = 0 or by = 0 then b

is said to be an homogeneous element of B. In such a case the degree of b, denoted

deg b, is defined to be:
0, if by = 0;

7.1.4
1, if b5 = 0. (7.1.4)

degb:{

Let B™" be the vector space B§™ @ Bf". A typical element of B™" is then
X =(X%X") = (X%, XJ,,...,X%; XL .,...,XL,,) where each X! € B; and each
X! € B;. 1t is convenient to define the index sets Ty = {1,2,...,m}, I; = {m +
1,m+2,...,m+n} and Z¢L(™/") = T5 U Z;. B™" is naturally Z,-graded, having a
Z,-graded basis {¢; : t € Z6L(m/")} | A typical element of B™" may thus be expressed
as X = (X% X)) = Yiczormsm Xi€i, where deg X; = 0if i € 75 and deg X; = 1 if
t € I3.

In view of the above, the notion of graded indices is useful and may be em-
ployed via the notation:
0, ifieTs
1, if: € I;.
Thus, if X = Yiczormm Xie; € B™" then X; € Bgy. A further useful notation

assigns to the symbol:

gradi = (¢) = { (7.1.5)

Ay Qyp - A1y,

Aoy Qg2 - - -

: (7.1.6)

a5,1
the value (—1){(s)H(aa)ttlag )@ ++(as,.)) (13 ) | that is —1 to the power of
the product of the column sums of the respective gradings (which may all be taken
mod2). With this notation (7.1.3) may be expressed f* A g* = [ab]g® A f* where
f* and g¢* are homogeneous, f* € By and ¢* € Bg;.

Definition 7.1.7. A square even (m/n)-supermatriz is a matriz of the form:

[ e
o (29).
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7.1. Grassmann algebras and Lie supergroups

where P, Q, R and S are submatrices of sizesm Xxm, m Xn, n xm and n xn
respectively, with P;; € Bg, Qi € By, Ry € By and Si € B; for1 < ¢,5 < m
and 1 < k,1 < n. This may be expressed by Gi; € By where the sum is taken
mod2. In a similar way, an odd (m/n)-supermatriz G is defined to be such that
G;; € Bm fori,j € IGLm/n),

If G, G’ are supermatrices then the product G” = GG’ is defined in the usual
way:

Gl =3 GuG,,. (7.1.8)
k

Since multiplication of Grassmann parameters is associative, this definition imme-
diately implies that supermatrix multiplication is associative, for if G,G’, G” are all
(m/n)-supermatrices then (GG')G” = G(G'G"). The identity (m/n)-supermatrix
is provided by I, for which the only non-zero entries are 1s, appearing in each
diagonal position, where 1 € By is the identity element of B. I, is clearly an even
supermatrix. An (m/n)-supermatrix G is said to be invertible if and only if there
exists a supermatrix G-! such that GG~! = G~'G = I,,;,. The following lemma

concerning invertible square even supermatrices is proved in [Co89).

Lemma 7.1.9. (i) Let G be an (m/0)-supermatriz with G = Y, (,G, where each
G, s an m X m matriz with entries from F. G is invertible if and only if G,,

corresponding to the Grassmann identity (y = 1, is invertible.

(i) Let G be an even (m/n)-supermatriz, partitioned as in (7.1.7). G is invertible if

and only if the submatrices P and S are invertible.

(iii) If G and G’ are invertible even (m/n)-supermatrices, then GG’ is also an in-

vertible even (m/n)-supermatriz.

The general definition of a Lie supergroup G, of even dimension p and odd
dimension ¢ states that the elements form an superanalytic supermanifold locally
isomorphic to the real superspace RB7?. Let (X;Y) denote an element of B¢
where (X;Y) = (X, X, ..., X;; 11, Y, ..., Y,) with each X, € B and each Y} € Bj.
Then in a neighbourhood of the identity, a matrix realisation of G,, consisting of even
(m/n)-supermatrices G(X;Y"), is parameterised by neighbourhood of (0;0) € RB?9.
However, it is not required that each matrix element G(X;Y');; is a function on the
whole of RBP4, but that the even elements, where (z) = (j), are functions on RB?
so that in this case G(X;Y);; = G(X);;; and similarly the odd elements, where
(z) # (j), are functions on RB%? so that in this case G(X;Y);; = G(Y);;. There

arise special difficulties when attempting to define the derivative of a function with
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7.2. Covariant tensor GL(m/n)-modules

respect to a Grassmann variable. These were overcome by Rogers (see [Co89]) who
was able to obtain derivatives having standard properties. In connection with Lie
supergroups, she found it especially convenient to use L > 2q. Here, it suffices to
say that the analyticity ensures that the derivatives:

6G,~,~ 8G,‘j

= (7.1.10)

(0;0)
exist for 7,7 € Z¢Lm/®) h =1,...,p and k = 1,...,q. Incidentally, each of these

derivatives is an element of Bj.

The following definition generalises that of GL(m,F).

Definition 7.1.11. The General Linear Lie supergroup GL(m/n,B) is the set of
all invertible even (m/n)-supermatrices whose entries are members of the Grassmann
algebra B = FB;.

It may be shown that GL(m/n,B) has even dimension m? 4+ n? and odd
dimension 2mn. Thus L will be taken to be such that L > 4mn.

§7.2. Covariant tensor GL(m/n)-modules

In this section, the tensor product space of the defining GL(m/n)-module is defined.
This is decomposed by means similar to those used in Section 4.2, yielding the
irreducible covariant GL(m/n)-modules, based on Young tableaux.

Let V, = B™" be the Z,-graded defining GL(m/n)-module. The I-fold tensor
product space V® has a Z,-graded basis {e;,;,..;, : tx € ZL™/™) for k =1,2,...,1}

where €;,;,.;, = €;, ®e;, ® -+ ® e; and for which:
deg Ciligy — (21) + ('Lg) +.--+ (’L;) mod 2. (721)

Define the ‘diagonal’ action of G € GL(m/n) on V& by linearly extending the

following action on its basis elements:
Ge"x":'”"t = Z H [ja ]b] [ja zb] Gjli, Ghi; T Gj',', €51zt (722a)
J1,d2,-01 1<a<b<I
Note that this may be expressed in the form:
Geiipoin = D, 6,67 ®€,G7, @ © ;G (7.2.2b)
Jnga,-ad

where rearrangement to give (7.2.2a) involves consideration of both the degree of

the Grassmann parameters G7; and the degree of the basis elements ¢; of V, [Ba85].
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7.2. Covariant tensor GL(m[n)-modules
Lemma 7.2.3. If V, = B™" then V,®! is a GL(m/n)-module.

Proof. 1t is only necessary to check that (G'G)e;,;,.., = G'(Ge;i,.q,). With the

summation convention adopted, (7.2.2a) gives:

G'(Geiiy) = G (H[ja IllFats] GGy - - Gj'ilej.ja~--j-)

a<h

= H[jﬂ jb][ja 7:b][ka kb][ka ]b]

a<b -
G.ini_lejz'_2 - Gj',-,G'k‘le'k’j, v le'jxekxk:-‘-kx
= T il ke bl 3 32
a<b alJs
Glhlejlil lethjz’_z L. G,k‘lejlileklkz"'kl
= [1[ka Bs)[ka i) (G'G)* i, (G'G)s, - - - (G'G) M sk

a<b

== (G,G)eixir--il .

This proves the lemma.

Definition 7.2.4. [DJ81,BR87] If n € Si, then its graded action 7 on V8 is defined
by:
7?6,'1;2...,', = H [ia 'Lb] (FG;I;Z.A.,',)

1<a<bgl
x(a)>x(?)

H [ta 2] Cirmigyiemt@) a1y
1<a<b<l
x(a)>x(b)
for m € Sy with linear extension to the whole of V®'. The set of all actions & for

7 € S) is denoted S; and known as the graded symmetric group.

(7.2.4)

Lemma 7.2.5. [DJ81] The actions of S, on V&' form a group isomorphic to S;.

Moreover, if p,o,7 € S; with po = 7 then p& = 7.
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Proof. Consider the action on the element e;;, ;, € V2

PO Civiyiy = P H [¢a ] Cipor)iom1(2) fom1q

ald
o(a)>a(b)
= H [Z“ Zb] H [7"’"(“) l""(b)] e",—lp-l(1)‘}—1,;—1(2)"'ia—1p—l(x)
a<lbd a<lbd
a(a)>o(b) pla)>p(¥)
= H [z“ Z"] H [lc ld] iyt o1y
a<b o (c)<o(d)
a(a)>o(b) po(c)>pa(d)
= JI et I fed) TI [Gedd T leddmenis
a<ld a<lb c<d c>d
o(a)>o(b) a(a)>a(d) a(c)<o(d) o(c)<o(d)
po(a)<po(d) oo (a)>pa(b) po(c)>pa(d) po(c)>pa(d)
= H (1474 H [ia 74 H [ 4] H [tcta) T€iiy i,
a<lb a<lb c<d c<d
o(a)>o(b) o (a)>e(d) o(e)<a(d) o (c)> ()
pa{a)<pa(d) po(a)>po(b) pa(c)>pa(d) pa(c)<pa(d)
= H [Za Zb] H [lc Zd] TE€iyiy 4y
a<lb cLd
o(a)>o(d) 7 (c)<a(d)
paf{a)>po(b) po(c)>po(d)
= H (10 to] T €iis iy = Teisizire
a<lbd
r(a)>r(d)

This extends linearly to the whole of V' and the lemma is proved.

A general transformation, 4 € End(V,®"), of the Z,-graded tensor space V®
takes the form:

.46,'11-2“,,-1 = Z A‘ilj?"‘jlejlj,.A.j,, (726)

[FEPEERT
1<, idm4n

where if g = (j,) + (o) + -+ + (j)) + (4;) + - - - + (i) mod 2, then Al* '} € B;. If
A € End(V®") commutes with the action of FS,, so that TAe; i,.., = ATe;,.q for
all # € S, then (7.2.4) and (7.2.6) imply that:
Apfzd = AT 11 ladsllia i), (7.2.7)
()5 %(®)

for all 7 € S;. Thus the elements of Endg; (V,®') are characterised by (7.2.7). Such
elements are known as bisymmetric. It is important to note that if 1 <c < d <,
Je = Ja, tc = ig and (¢.) # (j.) then A!'{27 7" = 0 since with 7 = (¢, d), the sign factor
on the right side of (7.2.7) consists of the one term [i.74][j. ja] which is —1 since
(2) = () # (o) = (Ja)-
If G € End(V,), the induced action, G € End(V#'), is given by (7.2.2a):
Gl = Gy Gy, - G T e el 6s)- (7.2.8)

a<b
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Thereupon:
{::::::f:_—::"; = Gj""l(l)i,-xmGj'—l(z)i,_l(a) o Gj*_l(l)"'—l(l) I;[b[j"l(“) j"’“(b)][j’f"‘(a) z"f“(b)]
=G, Gy, G, H [z'a z_b] H [ad0)[Fa ts)- (7.2.9)
(Gt Lo ] v
Since
[[Uaslbadel IT Ueddlliais) = I Usdollais]l I [iads]liade]
a<b a<d a<d a<b
= ®(a)> x(b) x(a)Zm(b) w(a)>n(b)
= I Usslazel I Uadellats] T [fatelliate]
()<= () (3 2x(®) ANAS
= I Uadlatd TI Uaslliads] TI [Gatslldads]
m(a)<x(b) (S (b) (@)S x()
= H []a]b][]azb] H [z'a Z~b]’
r(a)$7 () Ja Jo

a<b
x(a)>=(b)

it follows from (7.2.7), (7.2.8) and (7.2.9) that G is bisymmetric and that the actions
of GL(m/n) and FS; on V& commute. Let Endgs (V,®') denote the enveloping
algebra of the induced actions of G € GL(m/n) on V. This makes Endgg (V) a

vector space as in (4.2.7). The following is the super-analogue of Lemma 4.2.8, the

proof being of a similar form.

Lemma 7.2.10. Endg; (V,®') = Endgg (V).

Proof. It has already been determined that Endg; (V®') C Endgg (VE). If A €
Endgg (V') is given by (7.2.6), then (7.2.7) implies that A is completely specified
by those components A2 7 for which:

11807y

(Jr11) € (Jart2) < -+ < (G, 0), (7.2.10a)

where (a,b) < (¢,d) if and only either a < c or @ = ¢ and b < d, and (a,b) =
(c,d) if and only if @ = ¢ and b = d. Apart from those components A}}{? 7' for
which any pair (j.,2.) with 1 < ¢ <1 and (j.) # (i.) occurs twice, thus implying,
as in the note following (7.2.7), that A#}/>77' is identically zero, the components
Az 7 satisfying (7.2.10a) may be varied independently. Therefore Endgs (V,®') is
a vector space of dimension equal to the number of ways of choosing ! from m? + n?

items with replacement and 2mn without replacement. Let this number be denoted

D(mn24n3y/2mn{l}. The reason for this notation will become clear later. By a similar
argument, GI'#27}' = G, G¥»;, - .- G#,,, has D(n24n3)2mn {1} representative elements

which satisfy (7.2.10e) and are not identically zero. Since Endg; (V') is a vector
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space, if it can be shown that these are linearly independent then the lemma is

proved.

Each term G7; G’2;, - -- G’*;,, which is not identically zero and for which the
indices satisfy (7.2.10a), may be uniquely written:

(Gll)k“(Glz)k“ Tt (Glm)km(Gf'zl)k’l e (sz)km T (Gmm)kmma (7.2.100)

where ko, = #{k : (a,b) = (Ji, 1), 1 <k <1}, "l koo = 1,0 < ko < Lif (@) = (b),
and 0 <k, < 11if (a) # (b). Thus it is required to show that if:

Yo Grukkan (GG )P (G ) = 0 (7.2.10¢)
0<kas < if (a)=(b)
0Zkes 1 if (a)(b)
kunitkizttkmm=l

where ¢, .1, k... € F, then it is necessary that each gi, ¢, .., = 0. To do this,
restrict attention to the case where each even element, G’; for (7) = (¢), is an F-
multiple of {4 = 1 and each odd element G7; for (j) # (¢) is an F-multiple of a
unique (, € B,. This requires L > 2mn which, since L > 4mn, is always true.
Thereupon the left side of (7.2.10¢) is a homogeneous polynomial of degree [ in
(m + n)? variables in F, each term multiplied by a non-zero element of B. If each
element is permitted an arbitrary value this would imply that each coeflicient in
(7.2.10c) is zero. However, by Lemma 7.1.9, those elements G that are not invertible
form the union of two subspaces of the (m 4 n)’-dimensional space of all (m/n)
supermatrices; one of dimension m? +2mn+1ifn > 1, m*+2mifn=1and 0
if n = 0, and the other of dimension n? +2mn+1ifm > 1, n? 4+ 2nif m =1 and
0 if m = 0. Thus the elements that are not invertible form a proper subspace of
dimension less than (m + n)?, and the conclusion that each coefficient in (7.2.10c¢)

is zero remains valid for G € GL(m/n). Thus the lemma is proved.

Lemma 7.2.10 implies, via Theorem 4.1.18 and Lemma 4.1.19 that V®# is a
completely reducible GL(m/n)-module, the constituent irreducible modules being
obtained from the minimal right ideals of FS,. If z € FS, and z = 5, z(7)7
where each z(7) € F, define:

=) z(m)E. (7.2.11)
TES
By virtue of Lemma 7.2.5, the map ¢ — & defines an isomorphism between FS; and
FS',. Thus with YT’.-‘ as defined in Theorem 4.2.9, a set of minimal right ideals of
F S, are provided by:

Vi = 22 > (-1)°pa. (7.2.12)

g€CTx PER
. .
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The following two theorems now follow directly from Theorem 4.1.18 and Lemma
4.1.19.

Theorem 7.2.13. The GL(m/n)-module V&' is completely reducible. Let A € P(l)
and {T} : 1 = 1,2,..., f*} be the set of Si-standard tableauz of shape A. Then, for
i =1,2,...,f, Yi. generates a set of f* linearly independent minimal right ideals.

The GL(m/n)-modules Y, V@ are linearly independent and isomorphic.

Theorem 7.2.14. Those non-zero Y V.8, for A € P(l), provide a complete list of

inequivalent irreductble GL(m/n)-modules occurring as submodules of V®'.

As in Section 4.2, for each A € P(!) identify the tableau T* for which T}}, =
for k =1,2,...,1, with the basis element e;,;,..;, of V.. The graded (signed) place
permutation action of & on e;;, i, as given by Definition 7.2.4, then corresponds

to the action of 7, on T* given by:

#T = [ [lats) 7T, (7.2.15)
1<a<b<l
x(a)>n(b)

where 7.T* is given by Definition 3.3.10. Then for w € V&, the element Yiw €
Y, VE is identified with the grade-symmetrised tableau {T*}~ = Y2T* where Y}
is provided by (3.3.12d).

The graded GL(m/n)-module W* is defined to be the span of all {T*}~ where
the entries of T* are all from the set Z¢E(/») = N, ... These objects are not linearly

independent since there exist graded versions of the Column and Garnir relations.
Lemma 7.2.16. For any tableau T* and 7 € C?,
(T} = (=1 {=T*}". (7.2.16)

Proof. From (3.3.12¢) and (7.2.11),

2D DD NENI XS

PERA 0€CA
Then .
5= ¥ Y () pah = ¥ Y (<17 5.(57).
PERX g€CA PERX o€C>
=(-1) ¥ Y (-1yha.,
PERA gECA

where the isomorphism between F S, and FS, (Lemma, 7.2.5) has been used. There-

fore Y7, = (=1)"¥, which proves the Lemma.
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Lemma 7.2.16 implies that if T* has an entry from the set Z5 repeated in any column
then {T?}~ vanishes. However, due to the grading property, this is not the case
for a repeated entry from the set ZI;. Nevertheless, (7.2.16) enables {T*}~ to be
expressed as £{T"*} for some tableau T"* in which the entries are non-decreasing,
and strictly increasing on the set 75, down each column. Such a tableau is termed
column superstrict. To illustrate the use of Lemma 7.2.16, consider the GL(2/2)-

module W21 where:

1 1) 4 1" 3 1) 1 4)° 12
2 3 4 3 4
(7.2.17)

The Garnir relations have the following graded analogue:

Lemma 7.2.18. Fori < j, let X and Y be subsets of the entries in the ith and jth
columns, respectively, of t* such that #(XUY) > X;. Let S(X), S(Y) and S(X UY)
be the subgroups of Sy preserving X, Y and X U Y, respectively. Then if G(X,Y) is
a set of right coset representatives for S(X) ® S(Y) in S(X U Y),
> (-n)"{#.1T} =0. (7.2.18)
| n€G(X,Y)
‘ Proof. With G%, given by (3.4.4), the ungraded Garnir relation implies that

Y*G%, =0, as in (3.4.5). Therefore f”\é}y = 0, on using, once more, the isomor-

phism between FS, and FS,. This proves the lemma.

To illustrate the graded Garnir relations, consider the GL(2/3)-module W* with
A=(4,3,1). Then:=1,j =2, X = {2,3}, YV = {4,5} and an appropriate set of

coset representatives produces, for example, the identity:

4335 4335 4135)
+44 12 +{1 22 +{3 2 92 =0.
2 4 4

It should not be assumed that the occurrence of identical entries in the same column

(7.2.19)

implies that the term vanishes. For example, the fourth term in (7.2.19) is not

identically zero.

For each irreducible covariant representation of GL(m/n), Berele and Regev

introduced the following favoured set of tableaux.
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Definition 7.2.20. [BR83,BR87] GL(m/n)-standard tableauz. Define the indez
sets Iy = {1,...,m}, It = {m +1,...,m + n} and I¢:0"/") = T3 U T;. The tableau
T* is GL(m/n)-standard if and only if:
(i) the entries are taken from the set T6L(m/m);
(ii) the entries from the set Iy form a tableau T*, for some p < A, within
T>;
(iii) the entries from the set Ty are strictly increasing from top to bottom

down each column of T#;

(iv) the entries from the set Iy are non-decreasing from top to bottom down
each column of T**;

v) the entries from the set I are non-decreasing from left to right across
th tri tl t Is d ng left to right

each row of T#;

(vi) the entries from the set I are strictly increasing from left to right across

each row of TH*#,

This Definition implies that the tableaux:

1126 45 6 112 4
24 5 456 33 4

7.2.91
345 45 6 and 45 ( )
6 4 6

are each GL(3/3)-standard. Note that if A,;; > n then Definition 7.2.20 implies
that no GL(m/n)-standard tableaux exist, since below the mth row only entries
from the set Z; may be present, and these must strictly increase from left to right.
Thus GL(m/n)-standard tableaux exist if and only if A € P(l;m/n).

The GL(m/n)-standard tableaux were employed in [Ki83] to produce a su-

persymmetric generalisation of the symmetric Schur functions.

A generalisation of the standardisation techniques of Section 3.4 now enable
an arbitrary grade-symmetrised tableau {T*}~ to be reduced to a linear combi-
nation of grade-symmetrised GL(m/n)-standard tableaux through the systematic
application of the graded Column relations (7.2.16), and the graded Garnir rela-
tions (7.2.18). Firstly the graded Column relations enable the entries of a grade-
symmetrised tableau to be reordered in their columns to form {T*}~, where T* is
column superstrict. If T* is not GL(m/n)-standard, then either condition (v) or
condition (vi) of Definition 7.2.20 is violated and, in particular, is violated by a
neighbouring pair of entries. Let a and b be such that this neighbouring pair is T}

(a,b)
and T, .,y Then Tp, ;) > T}, ,,,) with equality implying that T} ;) € Z7. Let X be

a
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the set of positions below and including T}, ,) in the bth column and let Y be the

a

set of positions above and including T, ,,,, in the (b + 1)th column. The relevant

a

entries of T* are then as follows:

T
Al
Al
T«;\—l,b+1
: Al
7.2.22
T, > T, (7.2.22)
Al
).,
N
Al
be,b.

This differs from (3.4.9) only in that identical entries are permitted in the same
column. With & and Y as defined above, #(X U )Y) = Xy + 1, whereupon Lemma

7.2.18 may be used to express {T*}~ in terms of other tableaux.

Consider first the case where Tp,,) > T ,,;. This case is similar to the
situations considered in previous chapters. To recapitulate, with n € G(X,Y) and
n € S(X)®S(Y), T;) = n.T* has necessarily been formed from T* by swapping the
columns of at least one pair of elements from X U V. Since the entries at positions
Y are all smaller than those at positions &', T} > T*. Hence, in this case, the
algorithm enables {T?}~ to be written in terms of higher tableaux (as specified by

Definition 2.6.8), the coefficients being all integral. To illustrate this case, let:

1
T2 = 5 (7.2.23q)
5

> N

Then, in the GL(3/2)-module W22, the following identity arises on using the
above procedure with X = {2,3} and Y = {4, 5}:

1 2)° 1 5) 1 5) 1 2)° 12" 15)
53F 4423 —¢{(53} +{35%) —<¢55% +{25;3 =0.
5 4 5 4 2 4 5 4 3 4 3 4

(7.2.23b)
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On rearrangement, using (7.2.16), and collection of terms, this yields:

12 1 31" 12" 1 4
53 =2¢{ 243 —2{ 343 —{25% (7.2.23¢)
5 4 55 55 35

where each of the tableaux on the right side is higher than that on the left.

For the case where T¢, ;) = T¢, ;) € Iy, the same technique produces a similar
sum of terms. However, as may be seen by considering the coset containing the
permutation which swaps the two neighbouring identical entries, the original grade-
symmetrised tableau is repeated in this identity. Since both of these entries are of
odd grade, the two terms have the same sign and thus do not cancel. The possibility
of the entries immediately below T, ,) or immediately above T, ; ,,, being identical to
these two is not excluded. If this entry occurs ¢ times in the bth column and d times
in the (b + 1)th column then, by considering coset representatives which permute

these entries amongst themselves, it can be seen that the original grade-symmetrised
c+d

c

tableau occurs with a multiplicity of ( ) in the Garnir identity resulting from the
selection of X' and )Y given above. Again all of these terms have the same sign. The
previous argument shows, once more, that the remaining terms in the expression are
higher than the original. Therefore, in this case, {T*}~ may be expressed in terms
of higher tableaux, the coefficient of each being rational. This case is exemplified
by the following example in the GL(2/2)-module W @21:

~ ~

1 2 13 12 13 1 2) 13
337 44233 4433 +8 24 +$3 4 +42 4} =0,
4 4 4 3 3 3
(7.2.24a)
whereupon:

12 13 L[12 ~ (13 ~

33) =-9243 -5{343 —5{23 (7.2.24b)

4 3 “ 13 4

As a further example, consider the GL(2/2)-module W®*!) where the above process
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results in:

, ~ , ~ ~ ~

v
~
J
n Y
o

w
> W W
W W W
B> W W

84 + 36 =0, implying

H W W W W WWIo -

W W WL WwwWwwiokr

I R R I R
il
l
-

T T R N N N N N

7
(7.2.25)
expressing the non-standard term on the left in terms of a single higher term which,
incidentally, is GL(2/2)-standard.

As with (7.2.23¢), a single application of the above procedure may result in
further non-standard terms. However, the process may be iterated until solely
GL(m/n)-standard tableaux result. That this procedure terminates is guaranteed

by the ordering on the set of all tableaux of shape F?*, given by Definition 2.6.8,
and their finite number.

Theorem 7.2.26. (see [BR87].) The set
{{T*}~ : T* is GL(m//n)-standard}
constitutes a basis for the irreducible GL(m/n)-module W*.

Proof. The following is a direct generalisation of that used for Theorem 4.2.16
and differs from that of [BR87]. The existence of the standardisation algorithm
given above implies that this set spans W*. Thus it is sufficient to demonstrate
linear independence. As for Theorem 4.2.16, introduce the following order on the
set of all tableaux. Let ¢! be the sum of the entries in the bth row of T} for
b =1,2,...,q where ¢ = X,. Let |T}| be the equivalence class of all tableaux
which have their sequences of row sums identical to that of T2; that is T> € |T2|
if t2 =1t for b=1,2,...,q9. A total order on the set of these equivalence classes of
tableaux is defined by |T}|' > |T?|' if for some k < g, t* > t* with ¢! = t? for each
b=k+1,k+2,...,9. Let p € R* and o € C*. Since the action of p, on T* leaves
the elements of T* in their original rows, p,T* € |T*|'. If T* is GL(m/n)-standard
then |0.T*|' < |T*| since the action of o, only serves to move smaller entries down

the columns. The inequality here is strict if ¢,7* # T*. Since T* may possess
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identical entries in a column ¢,7* = T? may occur for various 0 € C*. Let the

GL(m/n)-standard tableaux be labelled:

Tf\,an\,z’ e ,T{\M,TZ'\,‘,T;\,Z,, ... ,Tz’fh, . ,T:nr, (7.2.26a)
such that:
T;\,l = T;‘,z == J’tx' , (7.2.26b)
for 1 < s < r, and such that:
[z <[zl <[z < <l (7.2.260)

It is required to show that if:

> Z ki {T05)™ =0, (7.2.26d)

i=1 j=1

where each k;; € F, then each k;; = 0. If this is not the case, there exist a and b

such that k,, # 0 with k,; =0 for 1 <j < b and each k;; =0 for ¢ < a. Thus:

o=z’;ka,jﬁb PTA+ SS kPO,
=

i=a+l j=1
Ka Ka r Ki
— . DA ol DA A . DAAATA
- Z nﬂ,jkayjpt Ta,j + Z Z (_1) ]"a,jP,.. U*Ta,j + E Z k"JP* "‘1}'1"
j=b i=b  gech i=atlj=1
0 T2 ;#T2 ;

where n,; = #{oc € C* : 0.1}, =T;} > 0. In view of (7.2.26b) anc% (7.2.26¢), all
T},|. In addition,
whenever ¢,T; # T3, all the tableaux T* comprising the

T}, g Therefore, since each tableau is uniquely
identified with a basis element of V', it follows that:

!
the tableaux T comprising the third term are such that ‘T"‘ >
! 7
I A
0. T3 T.;

1
second term are such that IT"‘ >

since

>

3 askos BXT2, = 0. (7.2.26¢)
=b

Since the tableaux T},,T},,,,..., ;.. are GL(m/n)-standard and distinct, it fol-
lows that the sets {p.T},, : p € R*} each contain a single unique GL(m/n)-standard
tableau for ¢ = b,b 4+ 1,...,&,. Since each n,; > 0, it then follows from (7.2.26¢)
that k,p = kgp41 = -+ = ko, = 0. This contradicts k,; # 0 whereupon all the k;;

of (7.2.26d) are zero and the theorem is proved.
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Theorem 7.2.27. [BR87]. The set

{W* =Y.iV® : X e P(l;m/n)}

provides a complete list of inequivalent irreducible GL(m/n)-modules occurring as
submodules of V®'.

Proof. Since GL(m/n)-standard tableaux provide a basis for W* and GL(m/n)-
standard tableaux exist if and only if A € P(l;m/n), the theorem follows directly
from Theorem 7.2.14.

This theorem is known in [BR87] as the ‘Hook Theorem’ since if A € P(l;m/n),
the Young diagram F* lies in a hook with leg width n and arm width m.

Let A € P(l;m/n). It follows from (7.2.2a) and Lemma 7.2.10, that the
element G € GL(m/n) acts on {T*}~ € W* according to:

Gy =% ( [ [7o73) (7 m]) Gy Gy, - Gl (1)
T \1<a<b<!

(7.2.28)
the sum being over all tableaux T"* with entries from the set Z¢X(™/™) Since the
grade-symmetrised GL(m/n)-standard tableaux constitute a basis for W*, explicit
representation matrices are readily obtained from the action of GL(m/n) on these
tableaux. Let 3 be the dimension of W* and T?,T2,...,TA the GL(m/n)-standard
tableaux. The action of G € GL(m/n) on each {T} yields, according to (7.2.28), a
linear combination of, in general, non-standard tableaux with coefficients in B. By
using the techniques of this section, each may be written in terms of the GL(m/n)-

standard tableaux, so that:
G{T}}~ = TG {T}}~, (7.2.29)
j=1

for some set of Grassmann parameters I''*}(G);; € B. These are the elements of the

matrix [} (G) which represents G in the representation labelled by .

The results of this section show that the quintessential structure of W* is as

follows.

Theorem 7.2.30. Let A € P(l;m/n). The module W* is the irreducible GL(m/n)-
module spanned by {T*}~ for all T* with entries from the set T¢L™/™) modulo rela-
tions (7.2.16) and (7.2.18), and on which GL(m/n) acts according to (7.2.28).

This theorem effectively provides a definition for W>.
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§7.3. Lie superalgebras, gl(m/n) and sl(m/n)

The relationship between a Lie supergroup and a Lie superalgebra is more subtle
than that of the ordinary case. Indeed, some Lie supergroups do not possess Lie
superalgebras. In addition, the usual definition of a Lie superalgebra makes no
reference to Grassmann parameters but nevertheless, the aspect of a graded vector
space is retained. It is the purpose of this section to describe the Lie superalgebras
gl(m/n) and sl(m/n) and to indicate their position in the general classification of
Lie superalgebras. Most of the original results on Lie superalgebras were obtained by

Kac (see, for example, [Ka78]) and convenient accounts are given in [Sc79,Co89].

Definition 7.3.1. A Lie superalgebra L, is a Z,-graded vector space over F having
even subspace L3 and odd subspace L1 and a generalised product [a,b] € L, for all
a,b € L,, satisfying:
(i) [a,b] € Ligemaraasys
(i1) {aa + Bb, c] = ala,c] + Blb, c|;
(711) [a,b] = —(—1)de2deb[p qa]; and
(iv) (=1)*e=ds[a, [b, c]] 4+ (—1)*e29e?[b, [c, a]] + (—1)*&*“¥°[c, [a, ] = O;

for all homogeneous a,b,c € L, and all a,3 € F.

Theorem 7.3.2. (i) If the even subspace L5 of L, is non-trivial, then it is an ordinary

Lie algebra.

(ii) If both L5 and L7 are non-trivial subspaces of L,, then L1 is a carrier space of a

representation of Li; that is L1 ts an Lz-module.

Proof. (i) On restricting a, b, ¢ of Definition 7.3.1 to be elements of L, it is seen
that Lj satisfies all the requirements of a Lie algebra as in Definition 1.3.4. (ii) It is
sufficient to show that [[a, ], ¢] = [a, [b, ¢]] — [b, [a, ¢]] for all a,b € L5 and all ¢ € L3.
This follows directly from conditions (iii) and (iv) of Definition 7.3.1 since in each

case the exponent of (-1) is 0.

The following definition concerns, for fixed m and n, (m+n)x(m+n) matrices

M=(P Q), (7.3.3)
R S

where P, (), R and S are submatrices of sizes m x m, m xn,n xmand n X n
respectively and M;; € F for 1 €7, < m+n. M is said to be an even (m/n)-

matrix if the submatrices Q and R are zero, whereupon deg M = 0, and an odd

M partitioned:
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(m/n)-matrix if the submatrices P and S are zero, whereupon deg M = 1. Every
matrix M can be uniquely written as the sum M = M, + M, of an even and an odd

matrix. If either M, or M, is zero then M is said to be homogeneous.

Definition 7.3.4. The Lie superalgebra gl(m/n,F) is the Z,-graded vector space of
all (m/n)-matrices of the form (7.3.3) with generalised Lie product:

[M,N] = MN — (—1)desM) s M N A1 (7.3.4)

for all homogeneous M, N € gl(m/n,F). This is linearly extended to the whole of
gl(m/n,F). N

Note that unless both M and N are odd, (7.3.4) is the ordinary Lie product. It is
easily verified that gl(m/n) is a Lie superalgebra.

If the matrix E,’* is defined as in Section 2.2, then a basis for gl(m/n) is
provided by {E,? : a,b € I¢L(™/™} for which deg E,* = (a)+(b) mod 2. Thereupon

gl(m/n) has even dimension m? + n? and odd dimension 2mn. (7.3.4) implies that:

[EL,E.% = 8E,* — [Z fi] §¢E.2. (7.3.5)

Definition 7.3.6. A simple Lie superalgebra is a Lie superalgebra that is not abelian

and does not possess a proper graded ideal.

Consider the even element H € gl(m/n) given by:

H= Y E/ (7.3.6)

i€ZGL(m/n)

It is easily verified that multiples of H constitute a one-dimensional ideal of gl(m/n).
Furthermore, this ideal is trivially graded; all elements are even. Therefore gl(m/n)

is not a simple Lie superalgebra.

Definition 7.3.7. If a matriz M € gl(m/n) is partitioned as in (7.3.3), then its
supertrace, denoted str(A), is defined by:

str(A) = tr(P) — tz(S). (7.3.7)

If M,N € gl(m/n) are such that str(M) = str(N) = 0 then it is easily verified that
str([M, N]) = 0.

Definition 7.3.8. Let si(m/n) = {M € gl(m/n) : str(M) = 0}.
In view of the above sl(m/n) is a Lie superalgebra.
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For a,b € Z¢L(™/™), define:
E} if a #b;
E,*~E, . ,°* fa=b<m;
E,"+E 1" ifa=b=m;

E,* — E,;,°**! fa=bandm<a<m+n.

Al = (7.3.9)

Then a basis for sl(m/n) is provided by {A,* : a,b € 6™/ (a,b) # (m +n,m +
n)}, whereupon sl(m/n) has even dimension a? + b — 1 and odd dimension 2ab. If
m # n and m,n > 1, it may be shown that sl(m/n) is a simple Lie superalgebra.
This simple Lie superalgebra is often denoted A(m — 1/n —1). If m = n then
since H € sl(m/m), where H is given by (7.3.6), sl(m/m) is not simple. However,
sl(m/m)/(FH) is simple and is often denoted A(m — 1/m — 1). Where m # n,
define C € sl(m/n) by

m m4n

m
¢ 4 —_— E,°. 7.3.10
RN (310

a=m+1

n

C =

n—m.

The even part sl(m/n); of sl(m/n) consists of matrices of the form (7.3.3) with @
and R both zero and tr(P) — tr(S) = 0. Thus si(m/n); is isomorphic to the direct
sum of the set of matrices P for which tr(P) = 0, the set of matrices S for which
tr(S) = 0, and scalar multiples of C. Therefore:

sl{m/n,F); = sl(m,F) @ F & sl(n,F). (7.3.11)

The element C, which is central in sl(m/n)z, has a very special property. Let
sl{m/n); = sl(m/n);, @ sl(m/n)_,, where in the form of (7.3.3), the elements of
sl(m/n)4, have R equal to zero, and the elements of sl(m/n)_; have @ equal to

zero. Then, writing sl(m/n), = sl(m/n);, it is easily shown that:
[C,M] = kM, (7.3.12)
for all M € sl(m/n); and k = -1,0,+1.

Definition 7.3.13. A reductive Lie algebra L is a Lie algebra which is either Abelian,

semistmple or a direct sum of an Abelian Lie algebra and a semisimple Lie algebra.

Definition 7.3.14. A Lie superalgebra L, is said to be classical if L5 is a reductive
Lie algebra.

These definitions indicate that sl(m/n) is a classical Lie superalgebra. Furthermore,

if m # n then sl(m/n) is a classical simple Lie superalgebra. The complex classical
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simple Lie superalgebras play a role in the theory of superalgebras similar to that

of the complex simple Lie algebras in the ordinary theory.

Lemma 7.3.15. (see [Co89].) If L, is a complex classical simple Lie superalgebra

then the centre (mazimal Abelian ideal) of L5 is at most one-dimensional.

This lemma indicates that £5 may be written:
Ls=L*"D Lo, X (7.3.16)
where £4 is Abelian and at most one-dimensional and £° is semisimple.

Definition 7.3.17. The Cartan subalgebra H, of the complez classical Lie superalge-
bra L, is defined by:

H, = L* & H?, (7.3.17)

where HS is the Cartan subalgebra of L5. The rank of L, is defined to be the dimension
of H,.

If m # n, this definition implies that {A4,* : 1 < a < m+n} is a basis for the Cartan
subalgebra of sl(m/n) = A(m —1/n — 1) and that consequently A(m —1/n —1)is
ofrankm+n—1. fm=n>1,{4,°:1 <a<m+n}is a basis for the Cartan
subalgebra of A(m — 1/m — 1) subject to the constraint:

m+n m 2m-1
Y Ef=Y a4, — 5 (2m—a)4,* =0. (7.3.18)
a=1 a=1 a=m+1

Consequently A(m — 1/m — 1) has rank 2m — 2.

Since £° is semisimple it may be written as the direct sum of root subspaces
as in (1.6.1). The zero root space L,, is equal to H,. The set of roots a of L5 is
then denoted AY, these being known as the even roots of £,. If £4 is trivial then
since L3 is an Lg-module, it may be written as the direct sum of weight subspaces
as in (1.7.1). The corresponding set of weights is denoted AT, these being known as
the odd roots of £,. Then A = A?U AT comprises the complete set of roots for L,.
L, may then be written:

L, =H° & (DseaCes), (7.3.19)

where each root vector e, of L, is either a root vector or weight vector of L£5. These

definitions imply that:
[h, ea) = a(h)eq, (7.3.20)

for all « € A and all h € H5. If £# is not trivial then [c,e,] = 0 for all ¢ € L4
and @ € A In addition, as may be shown [Co89)], there exists ¢ € £L* with the
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property that [c,e,] = e, for all & € AL This is the situation in (7.3.12). Thus,

in those cases for which £# is non-trivial, each a € A with a € H5*, the dual of
‘H?®, may be extended so that a € H:, the dual of H,.

Not all classical simple Lie superalgebras £, possess a non-degenerate invariant
bilinear form. Those that do are called basic classical simple Lie superalgebras.
The Lie superalgebras A(r/s) belong to this class. In addition, there exist basic
classical simple Lie superalgebras denoted B(r/s), C(s), D(r/s), F(4) and G(3),
because of the relationships between their even parts with the ordinary Lie algebras
denoted using the same letter under the Cartan classification. It may be shown
that for the basic classical simple Lie superalgebras, the non-degenerate form is
also non-degenerate when restricted to the Cartan subalgebra H, of £,. This leads
to a theory of positive roots and simple roots analogous to that of the ordinary
case. However, in contrast to the ordinary case, all choices of simple roots are not
equivalent, in that they are not related by the Weyl group of inner automorphisms
of £,. However, for each of the basic classical simple Lie superalgebras, the set of
simple roots may be selected so as to contain only one odd root. Such a selection
is known as the distinguished choice. For such a distinguished choice the (positive)

simple root vectors of sl(m/n) are given by:
/™ = {E,** ta=1,2,...,m +n—1}. (7.3.21)

Note that of these only E,,”*' is an odd element of si{(m/n). These simple root

vectors generate the nilpotent Borel subalgebra B{™™ spanned by the set:
A = (B} a,b € I g < b}. (7.3.22)

The generalisation of the theory of representations to the superalgebra case

arises through the following definition.
Definition 7.3.23. A Z,-graded representation T’ of L, maps each element a € L, to
I'(a), an element of the Z,-graded vector space of square (p/q)-matrices, such that:
(1) degT'(a) = dega;
(it) T(aa + Bb) = al(a) + BT(d); and
(i) T([a, 8]) = T(a)I'(b) — (=1)*e*s*T(5)I(a);
for all homogeneous a,b € L, and all o, € F. The representation I' is said to have

even dimension p and odd dimension q.

In the usual way, each Z,-graded representation defines a Z,-graded module.

Let V be a Z,-graded vector space with even subspace V5 having basis {¢; : 1 <1 <
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p} and odd subspace V; having basis {e; : p < ¢ < p + q}. Then linearly extending

the action:
p+q

ae; = ZF(G),‘;C,‘, (73.24)
i=1

for each e; € V and all a € L,, defines V as a Z,-graded £,-module.

The theory of finite-dimensional graded representations of basic classical Lie
superalgebras bears a number of similarities to that of the ordinary Lie algebras,
but differs significantly in a number of ways [Ka78,5¢79,C089]. In particular,
the highest weight of each finite-dimensional irreducible representation of a rank r
basic classical simple Lie superalgebra may be specified by a set of ‘Kac-Dynkin’
labels (n,,n,,...,n,) associated with the simple roots, with labels associated with
odd root(s) non-integral or even complex, in general. Furthermore, certain finite-

dimensional representations may be reducible but indecomposable.

In the remainder of this chapter, only covariant representations of sl(m/n)
and gl(m/n) will be considered. As will be seen, these representations are fully
reducible. As elsewhere in this thesis, partitions will be used to label the corre-
sponding irreducible representations, instead of the ‘Kac-Dynkin’ labels mentioned
above. The relationship between these two sets of labels is a little more involved
than in the ordinary case. It is discussed in [BM&3].

§7.4. The irreducible covariant tensor modules of gl(m/n) and si(m/n)

This section elucidates the connection between Lie supergroups and Lie superal-
gebras. This connection is then exploited in the case of GL(m/n) and gl(m/n)
in order to use the techniques of Section 7.2 to obtain the irreducible covariant

gl(m/n)- and sl(m/n)-modules based on Young tableaux.

Let G, be a Lie supergroup of even (m/n)-supermatrices having even dimen-
sion p and odd dimension q. Then for G € G, in a small neighbourhood of the
identity, G = G(X1, Xa, ..., X;; Y1, Y5, ..., Y,) with each X, € B; and each Y} € Bj.
Since G is an superanalytic function on RBP4, it follows from (7.1.10) that the

supermatrices:

oG
0X,

oG

M, = —_—
h Y.

and N, (7.4.1)

(0;0) (0;0)
exist and are non-zero. Each M, is an even (m/n)-supermatrix and each N; is
an odd (m/n)-supermatrix. If X, = ¥, X}(,, where the sum is over all even sets

1 C N and each X} € R, then the supermatrix derivatives:

oG
MP = (7.4.2a)
' aX"“ (0;0)
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exist and satisfy M} = (,M;. Similarly, if Y; = ¥, Y¥(,, where the sum is over all

odd sets v C Ny and each Y € R, then the supermatrix derivatives:

oG

Nk:-aTk"

(7.4.2b)

(0;0)
exist and satisfy N = (,N,. Each M} and each N} is an even (m/n)-supermatrix.
The elements M}’ and N} provide a basis for the real Lie algebra of G,, for

which a general element is an even (m/n)-supermatrix of the form:

)4 q
M=) > XiME+Y, > YPNy (7.4.3a)
h=1even u k=1o0dd v
P q
XMy + KN, (7.4.35)
h=1 k=1

where each X, € B and each Y, € Bj. In the usual way, this real Lie algebra is
closed under the commutator [M, M’] and exponentiation of its elements recovers

elements in a small neighbourhood of the identity of G,.

Now, in order to make the connection with Lie superalgebras, let P be any
one of the M,’s or Ni’s defined by (7.4.1). Then if deg P = 0, P is one of the M,’s
and if deg P = 1, it is one of the N,’s. Let (, be a Grassmann parameter of the
same degree. Define P’ and (. in an analogous way. Then (,P and (,, P’ are of the
form (7.4.3b), being elements of the real Lie algebra of G,. Then by straightforward
matrix multiplication (7.1.8):

[CpP’ Cp’P/] = CpCp’PP’ — Cp:CpP'P
= ((p(PP' — (=1)*8P e p'p)
= ([P, P']_(_1yaespacerrs (7.4.4)

where [A, B]_ denotes the usual commutator: [A,B]. = AB — BA; and [A, B],
denotes the anti-commutator ([DJ81]), defined by:

[A,B], = AB + BA. (7.4.5)

The closure of the real Lie algebra of G,, described above, implies that if
the entries of each P and P’ are solely C-multiples of the Grassmann parameter
(s = 1 € B, then these matrices form an algebra closed under the super Lie product:
[P, Pl]_(_l)degPdeSP'- This is the Lie superalgebra £, of G,. If the aforementioned
condition is not satisfied then G, has no corresponding Lie superalgebra. An example

of such a case was first given by Rogers and is reproduced in [Co89).
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Turning attention to GL(m/n), let X, ;, for ¢,5 € I¢L™/™ with (i) = (j),
be a set of m? + n? even Grassmann variables; and Y;;, for 7,5 € Z¢L(m/") with
(2) # (7), be a set of 2mn odd Grassmann variables. A convenient parameterisation
for GL(m/n), close to the identity is then provided by:

& + Xiy  if (1) = (4);
Y if (2) # ()
It then follows from (7.4.1) and (7.4.4) that the m?*+n? (m/n)-matrices E,* for a,b €
IGL(m/n) comprise the Lie superalgebra of GL(m/n). This is the Lie superalgebra
gl(m/n) introduced in Section 7.3. To determine its action onthe Z,-graded vector
space V.® introduced in Section 7.2, consider the element ( E,® of the real Lie algebra
of GL(m/n), where ¢ € By so that deg( = (a) + (b) (mod2). From (7.2.2a), it

acts on the element (’e;;,.;, € V.8, where deg(’ = (1) + (22) + - - + (21) (mod2),
according to:

G(X;Y); = { (7.4.6)

l . .
CELCeiiyn =C Y. 11 [Wc} 61t SN (CE Y i Ikt - 8ley,5,.5,(T.4.70)

k=11<c<d<i LJd

i . .
= C,C Z H [z~d ]C:| 6311 e 62::11 6}711‘6::6{::: e 6?: €j1ja-d1o (747b)

k=1c<d [Jd

where there is an implicit summation over all js. Commuting the ¢ and the ¢’ and

noting that for fixed k, 14 = j; unless d = k, yields:

a
b1 ! ; ; . . . . .
CEMCenin=| . [CCY [‘; “] I1 [‘; J°] 8 ST ELET - Bl
k=1 c<k
U
(7.4.7¢)
Therefore, on removing the common factor of ("
PR
b b 1, aal< b a i,
Ea €irigeis — . Zéik H €iyin_r@iggr i) (747d)
. b J k=1 c<k b
L 4
[ a ik
[ a a 1< b b 2‘lc-l-l
= b Zéik . €iyipr8ipgy-ir (7476)
L J k=1 :
L

This defines an action of gl(m/n) on V.

Since GL(m/n) commutes with the action of S, it follows that gl(m/n) also
does so. It then follows from Theorem 4.2.26 that each W> for A € P(l;m/n) is an
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irreducible gi(m/n)-module. The action of E,* on the grade-symmetrised tableau
{T*}~ now follows directly from (7.4.7¢). Let s be the number of times that the
index b occurs in T?, and form s distinct tableaux T}; by replacing a single index b

in position k of T* with a, for all appropriate positions k of T*. Then:

a Tg,
bfAy~ a a b T(Ak+l) Al”
ENTY = ¥ | R (7.4.8)
{k:T(*k):b} L . )
T

)

Any non-standard tableau appearing on the right side may then be expressed as

a linear combination of GL(m/n)-standard tableaux of the same grade, using the

techniques described in Section 7.2. In precisely this way the action of E,* €

gl{(m/n) on each grade-symmetrised GL(m/n)-standard tableau {7}~ results in:
EMNT}} = > T { T}, (7.4.9)

{T2:T} GL{m/[n)-standard}

for some rational numbers (I',*),,. The matrices I';* thus yield a representation of
gl(m/n).

In order to make contact with [DJ81], it is necessary to transform these
representation matrices in a certain way. To do this, it is convenient to grade the
indices which refer to the matrix elements of I',%, so that if {A} is a representation

of even dimension r and odd dimension s, then:

0, f1<u<r;
=1

. (7.4.10)
1, fr<u<r+s,

in analogy with (7.1.5). Only the indices u,v,w will respect this grading, with all
others being determined by (7.1.5). The grading of the representation determines
that (I',*),, is non-zero only if (a) + (b) = (u) + (v) (mod2). Let T';* be an (r/s)-
matrix, partitioned as in (7.3.3), and form I';® from I',’ by changing the sign of the
submatrix R if and only if E,® is a positive odd root vector (and thus (a) # (b) and
a < b) and changing the sign of the submatrix @ if and only if E,® is a negative odd
root vector (and thus (a) # (b) and a > b). This prescription may be expressed:
o1
(7.4.11)
aa
[2 o]
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where (a)+ (b) = (u)+ (v) (mod 2) has been used. Since the matrices I';* represent
the elements E,’, it follows from (7.3.4) and (7.3.5) that:

b a d By g 4y _ ap b
(Fa”)uw(Te o {b d} (CeDuw(Ta")wv = 8:(Ta)uv [b d] 65(Te" Juv-
Thereupon, recalling that for all non-zero (I'.4)y,, (¢) + (w) = (d) + (v) (mod2):

HtﬂF?Lv=(P?Lwﬂtﬂwu—[Z ;]a:ﬁmxr?nv

=15 . LZ; (I‘a")uw(rc‘*)wu—[z fl][22”%&}(1‘3)”(1““»)“,0
A | e e M M LS Lo
=15 o) [0 0] @l
3]l Il s e
bd||ldb|{dov||bul[bd] el
[ 1
- ZZW Lfl(j ((Fab)uw(FCd)wv_{b d](r d)"w( ab)wu)
ST
=% L;i (&’(F;‘)w—[b }5d(r b)w>
aall[b al s c
:_bu__du_é(r [ d

d
a a a a a d b
D b ] bu][c v]éa(rc)w
_-a al oo a _ b c| capms
- bd u_ 6(:(1-‘0 )UU [b d] [C u]aa(rc )UU

=wmmf{bA$mmw

where use has been made of the fact that for non-zero (I'.?)yy, (T'a?)ws, (a)+(0)+(c)+
(d)+(u)+(v) = 0 (mod 2). Therefore the matrices I';* also provide a representation
of the elements E,* € gl(m/n). As will be shown later, the representation I'* is

equivalent to the representation I'.

In terms of tableaux, if the tableau T* having entries T3, T3}y, - - -, I} is in-
dexed by u, then from (7.2.1), (u) = (T}},) + (T(3)) + - -- + (T3) and consequently:

a T,

a a a a bTA?
[bu]:[b ] f) . (7.4.12)

A
To
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Therefore, if the action of (7.4.8) is modified to:

a T a T4
[ b T b T}
e P ol | e Ko
{k1), =0} L 2/\ A
i To T") (7.4.13)
a T(})
b T, ~
2 A
= E . T|/k b
(kT =0} : { }
| T

the matrices I'M*}(E,%) which result from standardising all the grade-symmetrised
tableaux on the right side:

EMT ) = ) TY(E, ), (T}, (7.4.14)
{T).T} GL(m/n)-standard}

provide a representation of the basis elements E,* € gl(m/n) in the representation

labelled by A.

As an example consider the ¢/(2/2) odd generator E3* in the 32-dimensional
gl(2/2)-module W* with A = (23,1), and the ¢l(2/2)-standard tableau:

T = (7.4.15a)

B> W N =
> L N

By virtue of (7.2.1), T* and {T*}~ are of even grade. Using (7.4.13), E5? acts on
the basis element {T*}~ of M?*, according to:

1 2] (1 2 [(21](13)
g2l 230 _[21])33 32()23
3 4 3 3 4 3[]3 4
4 | 4 | 4]l 4
(12)" (13)
33| 23
= b 7.4.15b
134 T)34 ( )
\4 7/ 4 7

The graded Garnir relations (7.2.18), with X = {2,3,4} and Y = {5,6}, give the
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identity:
12) (13) (13} (14) (12)
33 2 3 3 3 33 3 3
34 "y34af TY24f V34 T34
4 4 4 2 4
12 (12) (13) (18] (13)
3 3 3 4 2 3 2 4 3 4
T3 af T34 Y34 )34 + 24 =0
4 3 4 3 3
(7.4.15¢)
which, on using the Column relations (7.2.16), and collecting terms, gives:
12) 13)° 13 (12)
3 3 2 3 2 4 3 4
— — = 4.15d
3 3 4 3 3 4 3 3 4 + 3 4 0, (7-4.15d)
4 4 3 3
so that:
121" 13) (13) 12
3 3 2 3 2 4 1)3 4
= - = 7.4.15
3 4 34 T34 313 4 (74.15¢)
4 4 3 3
Hence, from (7.4.15b):
1 2] 13) (13) 1 2)°
2 3 2 3 2 4 134
EZ — —_ - . 1
*13 4 Y34 T)34 3)3 4 (7.4.159)
4 4 3 3
The following two examples exhibit shorter calculations:
(1 2)Y [21](13) 1 3)
3 4 33 3 4 3 4
Ej? = =~ 4.15h
13 4 3|13 4 54  (T4I5H)
L 4 4 4 4
(1 1)
2) 3 4 _ .
1258 b = 0. (7.4.151)
\ 3 7

Similar calculations, when carried out for each of the thirty-two GL(2/2)-standard
tableaux in W?*, yield, via (7.4.14), the following explicit representation I'?*1}( E5?)
of Ej3%:
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......................... T
........................ 1.1 -3 .

............................. 1

............................. 3

............................... 4
e
1 .- - o
...... Lo e
...... Lo e e
....... Lo e
.......... S
.......... 1%1
........... L
............ 2 .
.............. S
.............. T

where each zero has been replaced by a dot. The three calculations carried out
above give rise the entries in the 13th, 23rd and 28th columns of this matrix respec-
tively. Notice that this matrix has the block diagonal nature associated with an
odd grading. This structure is ensured by the odd grading of the element F;? and
the adoption of an ordering of the GL(2/2)-standard tableaux such that all those
of even grade occur first. The above construction process has been implemented
on a computer, the above matrix having been produced by this means. In addition
similar matrices for the remaining generators of ¢gl(2/2), in the same irreducible
representation {231}, have also been produced. As a check on the calculations it

has been confirmed that the resulting matrices satisfy the commutation relations
given by (7.3.5).

As a second example consider the eight dimensional GL(2/1)-module WD
for which the GL(2/1)-standard tableaux are:

2 3 13 2

1 1 13 2 2 12 11
3 ' 3 1 2 7

4.1
y 2 b 3 b 3 b 3 ? (7 6)

N

where they have been ordered in such a way that the four even tableaux occur first.
Calculations involving the use of the Column relations (7.2.16) and the Garnir rela-

tions (7.2.18) give, via (7.4.14), the following set of explicit representation matrices
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for the basis elements of ¢I(2/1):

2 .. e . -1
1 . . -1

(.1 . . . . .. L. 1 L2 R

o
)

— .
—

1
are MU E,Y), T2 (E,') and T2 ( E4?) respectively; and for the diagonal elements

of the Cartan subalgebra:

N
et

are T2I(EY), T2 E,?) and T{*(E5®) respectively. Once more, these matrices

possess the block diagonal structure associated with the gradings of the elements of
gl(2/1) that they represent.

The gl(m/n)-module W?* also serves as a module for the (m 4 n)? — 1 di-
mensional basic classical Lie superalgebra si(m/n). Consider ¢gl(2/1) once more.
In accordance with (7.3.9), let 4, = E,! — E,? and A,%> = E,? + E;%. Then A;!
and A,? form a basis for the Cartan subalgebra of the oft studied eight dimensional
simple basic classical Lie superalgebra sl(2/1) = A(1/0); the other basis elements

may be taken to be E\2, E,', E,3, E;!, E,? and E;2, as above. W21 then serves as a
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sl(2/1)-module and the corresponding representation matrices are obtained directly
from those given above for gi(2/1).

The highest weight vector of the sl(2/1)-module W1 is { ; 1 } , for which

All{;l}Nz{él}N and A22{é1}~={;1}~. (7.4.17)

This yields the ‘Kac-Dynkin’ label (1,1) for the representation {2,1}.

In general, the highest weight vector of the sl(m/n)-module W* is provided
by {T) } where: o

J f1<j<m,\ and1<k<)\;
T.;\>(j,k) = { . . x ' 7 (7-4'18)
Ek+m ifm<j<dandl <k <A
For example, if m = 2 and n = 3 then:
1111
2 2 2
Ts(§y3.3,2y2) = 3 4 5 (7.4.19)
3 4
3 4

It is easily verified that E,*{T} } = 0 for all a,b € T6X(™/") with a < b, confirming
that {T}} is indeed the highest weight vector. This argument holds for either of
the actions given by (7.4.8) or (7.4.13). Since a = b in either of these cases implies
that the coefficient is +1, it follows that the highest weights of the representations
I'* and I' are equal. Therefore, by the supersymmetric analogue of the part of
Theorem 1.7.7 which states that representations having the same highest weight

are equivalent [Ka78,Co89], I'* and I" are equivalent representations.

In this chapter, techniques to construct all the irreducible finite-dimensional
covariant representations of gl(m/n) and sl(m/n) were demonstrated. In [DJ81}, it
was suggested as to how the generators act on a contravariant basis for V*. In a way
similar to that described in this chapter, this action may be generalised to an action
on (V*)® and thence the irreducible contravariant modules are obtained. The use of
computer calculations has once again verified this construction. Significantly, these
classes of covariant and contravariant irreducible gl(m/n)-modules encompass both

typical and atypical [Co89] cases.

It is expected that a combination of the techniques of this section with those of
Section 4.4 will be applicable to the mixed tensor space (V,*)®* ® V.®*. However, it is

known that this gl(m/n)-module is not completely reducible [BM83]. Thus, it will
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be of great interest to investigate the extent to which Young tableaux techniques

interact with this fact.
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