UNIVERSITY OF SOUTHAMPTON

The Semiflow Obtained by Integrating the Projection
Onto a Submanifold with Corners of Euclidean Space

of a Smooth Vector Field

by

T. J. Payne

Thesis submitted for the degree of PhD
Faculty of Mathematical Studies

September 1992




UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF MATHEMATICAL STUDIES

Doctor of Philosophy

The Semiflow Obtained by Integrating the Projection Onto a
Submanifold with Corners of Euclidean Space of a Smooth
Vector Field

by Timothy John Payne

We study the semiflow on a submanifold with corners M of Euclidean Space R*®
obtained as follows. If a smooth vector field X is given on a neighbourhood of M in
R® we project it at each point of M onto the tangent cone to M at the point and
integrate the resulting inner vector field X(M) on M: such systems arise in
mathematical economics, mathematical biology and in the theory of electrical
networks.

We obtain an existence-uniqueness result and construct a device, the iteration, with
which to study the local behaviour of trajectories, in particular in relation to the
smooth flows obtained by projecting X onto individual strata of M. We investigate the
relation between the iteration, right hand time derivatives of the trajectories, and
generalisations of the classical tangency sets, establish a canonical form for
intersections of the last and establish their generic properties.

We investigate the local geometry of the semiflow and show that in most cases the
classical theory has no simple generalisation to these systems, but using an ad hoc
equivalence relation which respects the natural stratification of M we show that some
significant local geometric results can be established. We show that if a condition
involving the absence of infinite order tangencies is satisfied at a point then the
number of stratum jumps made by the trajectories on a neighbourhood of this point is
uniformly bounded, and we use this to show that the semiflow obtained from a
residual subset of polynomial vector fields with M an orthant (this context includes the
biological models) is in our strong stratum preserving sense locally stable near points
x where X(M)(x) is non-vanishing.

We consider briefly the global geometry of these systems, and in particular obtain a
result with significant implications for the piece-wise linear systems occurring in

mathematical biology which inspired the study.
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Notational Conventions

Whenever the symbols —, 1, are used the existence of the appropriate sequence is
implied whether explicitly stated or not. Thus "suppose there exists h;40" is short for
"suppose there exists a sequence of positives reals {h;};c,- such that h;{0 as j>o0",
and

"supppose K is such that there exists h(K)t0" is short for "suppose K is such that

there exists a sequence of negative reals {h;(K)};cz+ such that h(K)10 as j—oo".

The ith time derivatve of f evaluated at t=0 is denoted D, f(t=0).

Sets of indices are enclosed within round brakets, eg (1,2,3), instead of the usual { }.

The reader’s attention is drawn to the existence of an index to symbols and notation,

beginning on page 222.



Introduction

In this thesis we shall study the geometric properties of a set of differential equations
subject to a particular type of constraint, or equivalently a particular kind of semiflow on
a submanifold with corners of R®, which arise in mathematical economics, mathematical
biology, in the theory of electrical networks, and elsewhere.

If we are given a submanifold with corners (these terms will be defined formally in
Chapter One) M of R" and a smooth vector field X on R" (or at least on a neighbourhood
of M) we construct a new vector field X(M) on M by at each point x of M projecting
X(x) onto the tangent cone to M at x and calling the result X(M)(x). We will show we
can integrate the resulting (inner) vector field X(M) on M to form trajectories on M. The
trajectories of our system (M, X) will then be just those of X as long as the trajectory x(t)
remains in the interior of M, but on intersecting dM x(t) will crudely speaking "slide"

along the boundary of M until the vector field lifts it off again.
Example 0.1 Suppose M is the cube in R*> M={x€R% | x; | <1}, then if

X(x1,%X2) =(-X,,X;) we obtain by this construction X(M)(x)=X(x) unless x& £,,f,,£,, or
£, (see Figure 0.1a) where X(M)(x)=(-x,,0) or (0,x,):
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Figure 0.1a




If we take M as above but with X(x;,x,) = (1,1) we obtain X(M)(x)=X(x) unless
xE£,,L,,0r {,, where X(M)(x)=(1,0) or (0,1) or (0,0):

Xy
A
(‘1,1)/ y—L; (L,)=¢,
£
M
N
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Figure 0.1b

We see that by making X(M) discontinuous around part of dM we are able to confine
the trajectories starting in M to M for all t=0.
In addition to scrutinizing figure A.7 of the appendix the reader may consider the

following:

Example 0.2 Take for M {x €R*:2x,-x, 20,2x,+x, =0} where in cross-section the angle
between the two faces is greater than a right angle (this is important): then for a suitable
vector field X we may find a trajectory of X(M) beginning at y, €int(M), hitting the face
F,={xE€R%2x,x,=0,2x,+x,>0} at vy, sliding along F; until meeting
F;,={xE€R*2x,-x,=0,2x,+x,=0} at y;, crossing straight over to
F,={x ER*:2x,-x, > 0,2x,+x,=0}, returning to F), at y,, and sliding along F,, until
re-entering F, at ys (Figure 0.2).



Trajectory in int(M)

Trajectory in F, or Fy =— === —— —_
Trajectory in Fj,==--=-----—~=-

Figure 0.2

We now consider situations where such systems arise.

One class of examples occurs in economics. Suppose we have N consumers, m public
goods (this is an economics term for a commodity with the property that the total amount
produced may in its entirety be "consumed" simultaneously by every one of the
consumers, such as broadcasting), and one private good. Let us denote by x; the amount
of the ith public good produced, and by y; the amount of the private good consumed by
the jth consumer. One objective of [16,40] is to exhibit a set of differential equations
involving x,,..,X,, Yi,..,Yn Satisfying various properties, such as that the integral curve
starting from any initial condition converges to a pseudo-equilibrium ([16]). This is done
by finding suitable differentiable functions f,g:RN*™»R™ RN (these are non-trivial

functions of marginal costs, rates of substitution, etc) and setting

f.(x,y) if x,>0
max(0,f (x,y)) if x, =0 (*)
y=g(x,y)

Xy
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(for k=1,..,m, where x=(xy,..,X,) and y=(yy,..,¥n) ). The form of the right hand side

of (*) arises to avoid generating negative output levels. We see that this is of our form
with M={xER™*N:x;>0 vi=1,..,m} and X(x,y)=({(x,y),g(x,y)), f,g as given above;
in the case where M is an orthant (ie, a set of the form {xER"x;=0, i=1,..,k}, some
k<n) projection takes the form (*) (see eg Remarks 2.5).

A second example comes from a model for the levels of activity in coupled neural
populations [60]: the populations are of four types, each subject to constant excitatory
input, and each emitting a signal which inhibits activity levels in each of the other
populations (including in itself), the strength of the inhibition being different for different
receiving populations but rising with the activity level in the population emitting the

signal. A simple set of equations exhibiting such behaviour is (see [60])

£(y) if y,>0

(**) ¥z max(0,f(y)) if y,=0

where y; is the activity level of the ith population, i=1,..,4, or for more general systems
of this type i=1,..,n, f(y)=k-Ay, k,y are n-vectors with each k;>0, and A is an (nXn)
matrix with A;>0 for all 1<i,j<n. The form of (**) arises to prevent negative activity
levels. The author of [60] considers systems of this type both with n=4 and (coupling
four such systems together) n=16; in both cases we see we have a system of our form
with M=R*U {0})*, n=4 or 16, X(x) =k-Ax.

We may stratify (R*U{0})" into 2" "strata” - sets of the form o*={xER™x;=0,
i=1,..)k, x;>0, i=k+1,..,n} - and we see that a solution trajectory starting in any given
stratum will travel along it until lifting off to a higher dimensional stratum or hitting a
lower dimensional one; denoting the set of points where the flow on stratum o lifts off
to o', by L(i,j) an interesting consequence (Chapter 8) of positivity of the coefficients
A; and of the fact M=(R* U {0})" is that subject to mild extra restrictions on A each of
the iterated maps induced by the flow of the form 1(0,1)->d"!,~d*,~1,(2,3)—..L,(0,1) is
invertible.

This is an interesting result, although one would only regard it as amongst the most
important results in the thesis if one’s interest in this thesis was exclusively in its
implications for the global dynamics of Willis Models (Willis being the author of [60]).
Willis Models and other specific models bear the same relation to this thesis that any

specific set of differential equations do to the classical geometric theory of differential
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equations, as expounded in [37,42]: they inspired our interest and occasionally influence
our choice of topic, as when for example in Chapter Seven we treat polynomial systems,
a case motivated by the structure of Willis models, but the main aim of this thesis is to
develop the general theory of these systems in a way analogous to that for classical
systems found in [37,42]. Nothing like this has been attempted before: scrutiny of the
books [4] and [20], which present respectively the Western and Russian Schools of the
group of subjects to which this thesis is most closely related- differential equations with
discontinuous right hand sides, differential inclusions (which arise as the regularisation
of differential equations with discontinuous right hand sides), and viability theory
(concerning "viable" trajectories: if K is a closed subset of R* a trajectory ¢, is viable if
forall t=0 ¢,(t)EK) - will give the reader a clear picture of how this subject has been
treated hitherto: most of the work has been concerned with establishing minimum
conditions to guarantee existence, uniqueness or viability of solutions, and when
qualitative theory is discussed (in [20]) it is in the general context of differential equations
with discontinuous right hand side (and then mainly in the plane) where little of
consequence can be proved.

The context in which we shall develop our theory is as follows: we shall begin with a
submanifold with corners M of Euclidean space R* and a smooth vector field X given
on M, and at each x&M we project X(x) onto the tangent cone to M at x. The result will
be a vector field X(M) equal to X in int(M) but in general discontinuous on part of dM.
In the theory of differential equations with discontinuous right hand side an often used
definition of "solution" (see [20]) is a continuous almost everywhere differentiable curve
with derivative, where it exists, equal to the right hand side; we adopt this definition and
show that for any x €M there exists a right-hand interval [0,0) of t=0 (which may if M
is compact be taken as [0,) ) and a continuous a.e. differentiable map
&M, X)(x):[0,6)-»M such that D,¢(M, X)(x)(t) =X(M)d(M, X)(x)(t) for almost all t € [0, ),
and that ¢(M,X)(x) is unique and depends continuously on x.

A semidynamical system is a continuous map y:GXM-M, where G is the set of
non-negative integers under addition or non-negative reals under addition (in which case
Yy may be termed a semiflow) satisfying for all x€M, for all s,t=0,
Y(t+s,x)=y(t,Y(s,x)) and ¥(0,x)=x. Hence at least for compact M ¢(M,X) is a
semiflow, and this thesis is a study of a class of semiflow or semidynamical system.

The theory of trajectories is much richer than is the case for unconstrained systems and

Chapters 1-5 are mainly devoted to it. In Chapter 6 we consider a few questions
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concerning the local geometry of the semiflow. In chapter 7 we establish a local stability
theorem for polynomial systems, and in chapter 8 make a brief study of linear systems
and prove the result concerning Willis models mentioned above. In an appendix we
consider aspects of global theory.

All the material in this thesis is new, subject to two qualifications:

(1) Theorem 1.1 does not go far beyond results of Cornet [12] or Chikin [10] (roughly
speaking parts 1 and 2 of theorem 1.1 extend to submanifolds with corners of arbitrary
codimension what Chikin establishes for submanifolds with corners of codimension 0) and
part 1 of theorem 3.1 - the part which says that the right hand derivative of ¢(M)(x) at
t=0 is X(M)(x) - has been done for M an orthant by Henry [31].

(2) Versions of those preparatory results which are of a very general nature will clearly
have been obtained elewhere already. Into this category will certainly come Lemmas 1.1
and 2.1 and Remarks 2.1, and probably Lemmas 2.2, 3.1 and part (1) of the proof of
Lemma 5.9, and Remarks 2.5(1) and 4.2.

The questions we consider in this thesis are ones which we consider to be basic to this
class of system, and it will be seen that the character of the theory we develop, based
upon convexity, stratifications and ideas such as the iteration which make their
appearance here for the first time, is unlike that of the classical theory. The local stability
result in Chapter 7 mentioned above for example is established using the locally finite
stratifiability of subanalytic sets and our uniform bound theorem of Chapter 5, which is
well removed from the methods of [37,42]. In chapter 6 we consider local theory in a
classical way and find that most of the classical results have no straightforward
generalisations to these systems. Additionally because of the way our trajectories jump
about between strata the division between the theory of trajectories and local theory is not
as clear-cut as it is for unconstrained systems - it is for example no easier to show
Theorem 5.1 for points on an individual trajectory than it is for any convergent sequence

of points on M.



Chapter One
Preliminaries

In this chapter we shall formalize the concepts mentioned in the introduction and we
shall show that projecting a vector field onto a submanifold with comers in the way
described does yield a unique semiflow. We establish some results which are needed
later in this thesis, such as lemma 1.2 which is a critical result in constructing the

iteration of Chapter Two, in a stronger form than is necessary for this chapter.

Corners and Stratifications

R* denotes n-dimensional Euclidean space with, for x,y €R®, inner product
(x,y)=X%.,x;y; and norm | x | =v(x,x). A closed corner is a subset of R® of the
form {xER™(x,n)=01i=1,..,k,(x,n)=01i=k+1,.. k+m]} for independent vectors
{n;: i=1,..,k+m} and generalising the notation L(n,,..,n,) for
{xER™(x,n)=01i=1,..,k} is denoted LC(n,,..,0;Ny,1,..,0y ). Similarly a relatively
open corner is a subset of the form (again with {n};_; .., an independent set)
{xER™(x,n)=01=1,..,k,(x,n) >0 i=k+1,...,k+m} and is denoted by
LO(ny,..,M;Ne 4,04 ). If fOr the purposes of the discussion the vectors are already
prescribed these corners may be denoted respectively LC(I;J) and LO(I;J) (the C is for
closed, the O for open) where I=(1,..,k) and J=(k+1,..,k+m) are sets of indices.

For our purposes a C* stratification of a subset M of R® may be defined as follows
(see [28-30,57,59] for a fuller treatment). A C* stratum in M is a connected
boundaryless C" manifold contained in M. A partition of M into strata is locally finite
if for each x €M there exists a neighbourhood of x intersecting only finitely many
members of the partition. A locally finite partition € of M into C' strata is called a C*
stratification of M if whenever ¢,, 0, € € with o;N (closo,\into,) # & then
0, Cclosa,\inta, and dimo; <dimo,. As an example we may stratify the closed corner
LC(I;J)) into relatively open corners LO(K;J\K) for ICKCIUJ; when we refer to the
strata of LC(I;J) we always mean these relatively open corners.

A subcomner of LC(I;J) is a subset of the form

{xE€R" (x,n;)=0 vi€EK,,(x,n) =0 Vi€K,,(x,n,) >0 Vi€EK,}, for K ,K,,K; satisfying

ICK,CK,UK,CK,UK,UK;=IUJ ({n},,; as above a set of independent vectors)



_ . _ and may be denoted LCO(K;K;;K3). We see
that any stratum LO(K;J\K) of LC(I;J) is a subcorner of LC(I;J) as is its closure
LC(K;I\K). We méy decompose any closed corner LC(I;J) as U cxc1u;LOK;INK)
and any subcorner LCO(K;Ky;Ks) as Uy cx ek uk,cxuxr=x,uiux LOK;K") 5 if the
number of elements of J is denoted | J | then a closed corner LC(I;J) may be
decomposed into 2 1’1 strata and contains 3!’! subcorners.

For example, Figure 1.1 shows the closed corner LC(I;J) with I=& and J=(1,2):

L0o@:1)
LO(D:1,2)

LO:2)

LO(1,2;2)=L(1,2)

Figure 1.1

- the strata are LO(;1,2),1.0(1;2),L0O(2;1),LO(1,2; )

(respectively the interior of the closed corner, the two open half-lines, and the vertex);
the subcorners of LC(I;J) are all these strata, their closures, and LCO(J;1;2) and
LCO(J;2;1) which are respectively the unions of the first and second and of the first
and third strata in the above list (making 9 subcorners in total, since

closLO(1,2; @)=L0(1,2;2)).

Projections Onto Convex Sets and Onto Corners

A good general reference on convex sets is Bazaraa and Shetty [5]. It is shown in
[4] that for any closed convex subset C of R* and y ER™ there exists a unique X, such

that | y-x, | =min{ | y-x | :xE€ C}. We define the projection operator P(C):R™=C

by P(C)y=x, and say x, is the projection of y onto C. The following Characterisation
of Projection is also established in [4]: x,=P(C)y iff x,€ C and (x-x,,y-xo <0 for
each xeC.



/ROy +P(C)(4y)

Fig 1.2 P(C) is non-linear

The reader will of course recall (see eg [14]) that if the convex set is a linear
subspace L then P(L) is linear, is self-adjoint (ie (P(L)x,y)=(x,P(L)y) for all x,y) and
idempotent (ie P(L)>=P(L)), and the Characterisation of Projection takes the form
Xo=P(L)y iff x,€L and (x,y-x,) =0 for all x€L. We also recall the idea of the
convex hull of a set ([5 p.16]): the convex hull of S is

{xER“x=Z¥_A\X,, ,€ES,A\,=>0,i=1,.. k., EN=1,k=>1}; it is the smallest convex set
containing S. We shall denote its closure by conv(S) (which is convex by [5, p.35]).
If C is a closed convex set in R" then for y&€C we set P(C)'y={xER"P(C)x=y}.
This notion is related to that of polar cone, defined for any subset C of R" as
C'={p&€R™(x,p) <0 for all xE€ C};if for example C is a closed convex cone, ie a set
of points in R" invariant under multiplication by non-negative scalars and under

addition, then by the Characterisation of Projection it follows that C*=P(C)"(origin).

Lemma 1.1 If C,, C, are a pair of closed convex sets in Euclidean space then
(1) If C,CC, and P(Cy)x€ C,, then P(C,)x=P(C,)x
(2) If yeC,NC,, then P(C))'yNP(Cy'y = P(conv(C,UC,))'y
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Figure 1.3

Proof

(1) Setting P(C,)x=x, we know by the Characterisation of Projection above that
(x~X,,X,-y) =0 for all y& C, and so a fortiori for all y& C,, hence by the
Characterisation of Projection x,=P(C)x -

(2) Suppose P(C)x=P(C,)x=y.

Set H={z:(x-y,y-z) = 0}; as above we know for each x;€ C; that (x-y,y-x;) =0 and
hence C,CH, and hence (since conv(C,UC,) is the closure of the smallest convex set
containing C, and C,) that conv(C,UC,) CH. But P(H)x=y by definition of H and
Characterisation of Projection again, and since P(H)x=y& C,NC, and hence €
conv(C,UC,), by (1) y=PH)x=P(conv(C,UCy)x. Conversely if P(conv(C,UC,))x
=y€C;NC, we get by (1) that y=P(C,)x=P(C,)x. -

We now specialise to the case where the convex set is a closed corner. It is fairly
clear that for any given yE€R" there will exist at least one stratum of LC(I;J) such that
projecting onto LC(I;J) will give the same result as projecting onto the affine span of
this stratum (=smallest linear subspace containing this stratum). We shall need the
more subtle fact that the set of strata for which this is true together form a subcorner;
we have observed that the subcorner LCO(P;Q;IUIN(PUQ)) of LC(I;]) equals the
union of strata ULO(H;IUJ\H) with the union taken over those H satisfying
PCHCPUAQ, so this is equivalent to saying
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Lemma 1.2 For any closed corner LC(I;J) as above and x €R" there exist I',J with

I'D I and I’'UJ CIUT such that P(LCI;)))x=P(K)x if and only if ' CKCI'UJ".

Proof

We have above stratified LC(I;J) = U ;-kukoko1 LOXKKY)

and for any given x €R™ we must have P(LC(I;J))x lying in one of these strata, say
P(LCI;N)x=y€ LO(K;IUNK) some ICKCIU]J, (which equals LO(K;J\K) since
KDI). Since LO(K;I\K) is relatively open in L(K) there exists a convex
compact neighbourhood N, of y in LO(K;J\K). Then by part 1 of Lemma 1.1
P(LC(I;0)x =P(Ny)x. Since N, is a neighbourhood of y in L(K) for each z&L(K)
there exists z' €N, with y-z=A(y-z") some A=0 (See Figure 1.4).

L(K)

Figure 1.4

Hence (x-y,y-z) = N{x-y,y-z') and this last quantity is =0 for all z’ €N, since
P(Ny)x=y and using the Characterisation of Projection for P(N,). Hence by the
Characterisation of Projection for P(L(K)) (which we henceforth abbreviate to P(K)),
P(K)x= P(LC(;]))x and there exists K such that P(LC(I;J))x =P(K)x.

Suppose now K;,K, with ICK;,K,CIUJ satisfy this condition, ie P(K))x=P(K)x=y.
By Lemmall part 2 P(conv(L(K,)UL(K,)))x=y. The result will follow if we can
show that K, NK, and K, UK, satisfy the condition too, ie that P(K;NK,)x=y and
P(K,UK)x=y.

By [5, Section 3.1] conv(L(K,) UL(K,)))=(L(K)"NLEK,)) =
(span{n,,i€K,} Nspan{n,i€K,})" =(span{n,i€EK,NK,})"=L(K,NK,) (where C" is
the polar cone of C as above).

Hence y=P(L(K,NK))x=P(K,NKyx .

If y=P(K)x=P(K,)x clearly y&€ L(K,UK,), hence by part one of Lemma 1.1
P(K,UK,x=y. Hence result.

Eg. With I=0, J=(1,2) we see that for each x;, i=1,..,5 in Figure 1.5 below

there exists a unique pair I,",J;" with ICICI/UJ"CIU]J such that



{K:ICKCIUT and P(C)x;=P(K)x;} ={K:Iy CKCI/ UJ;'} (where C=LC(J;1,2))

LO(D;1,2)

Ox,=p(2)x,

xs=P(C)x;=P(J)x;

P(C)x,=P(1)xs LO(1;2)
¥

X, 7 X4

P(C)x,=P(2)x,=P(1,2)x,=P(C)x3=P(1,2)x;

Figure 1.5

Submanifolds with corners

A subset M of R® is a C’ submanifold with corners of dimension n-k if for each

x EM there exists a closed cormer LC(I;J(x)) in R®, with I=(1,..,k) and

Jx)=(k+1,..,k+m(x)),a C" map B:R*>R" mapping the origin to x which isa C"

diffeomorphism on a neighbourhood U of the origin, and such that

12

BUNLCMy,.. MM s1,. - Nermeo)) 1S @ Neighbourhood of x in M (See [41] or [15] for a
more general treatment). With r=0 we get a topological submanifold with boundary.

The interesting cases from our point of view are C® and C* and henceforth C* will

mean one of these two (ie consistently).

All submanifolds with corners appearing in this thesis are assumed connected.

We define the tangent cone to M at x as TM=(Dg(0))LC(;J) and the tangent space
to M at x by (DB(0))L(I). Of course, if M is a smooth submanifold the two coincide

at every point. Setting h;(x) =(x,n;) (so gradh,(x)=n;) we have that our neighbourhood
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of x in M is B(UNLCT;)))= BUNBLCE; )= BUN {xER"hB'(x)=0
i€I,hB(x)=01i€7J}. Writing vectors in R* as columns of reals and representing the
linear map Df(x) as a matrix in the usual way we have for f:R*»R that
gradf(x) =Df(x)" (= transpose of Df(x)), hence grad(h;8)(x)=(DB*(x))'n,, so if B is a
diffeomorphism {grad(h;8")(x):1iE1UJ} is a set of independent vectors and if y is such
that h,8'y =0 for i€IUJ’ with J' =(k+1,..,k+m’) CJ (see Figure 1.6) we get T,M
=DB(0)LC(L;I")=DR0){DB(y)zER"(DB" (y)z,n) =0iEL(DB"(y)z,n)) 20,i€]'} =
{zER™(DB(y)z,n;)=01€1,(DB (y)z,n) =0,i€ET'} =
{z€R*(z,grad(h,8)(y))=01€1,(z,grad(h8")(y)) =0i€J'} =
LC(grad(h,87)(y),..,grad(hy8)(y);grad(h+187)(y), ., grad(hy,oB8)(y)}and similarly
the tangent space to M at y is L(grad(h,87)(y),..,grad(h837)(y)).

X

Figure 1.6
If M near x is B(UNLC(;J)) and y is near x, M near y is S(UNLC(I;J')) some
Jrcl.

One pictures the tangent cone and tangent space this way-

y-+tangent space to M at
Figure 1.7

A vector field on M is a map X:M-R" such that for each x&€M X(x) is in the
tangent space to M at x. We shall say a vector field on M is C' if there exists a
neighbourhood U of the origin in R® and a C* vector field Y on UNL(I) such that
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X | B(UNLCE )= B.Y | BUNLC(;])) where 8,1, LC(I;J) are as in the definition
above and §is C". As usual X | V means X restricted to V and 8.Y means the push
forward of Y by 3 (see eg [1 section 4.2}).

From the definition of submanifold with corners we have observed above that we
can represent M near any x,&€M locally as {x ER™:h,8"'x=0 ViELh'x=0 viE]}
(where the functions h,3":R"»R, i€1U], are independent near x, ie their gradients
are independent near X,) but it is convenient to choose a slight refinement of this. For
independent functions f;,..,f, define
Z(f},..,f) ={xER™f,(x)=.. =f,(x) =0} which if the functions are prescribed in
advance is abbreviated to Z(I) where I=(1,..,k). Setting f,,..,f,=h,8",..,h 8 if for
j€T=(k+1,..,k+m) we act on the codimension 1 submanifolds (h8")"'(0)NZ(I) of
Z(I) with the vector fields {gradfi};c, to form local hypersurfaces S; (see Figure 1.8)

we may find independent C" functions f:V—>R for V a neighbourhood of x; in R"

cutting out the §;, that is , §;=f(0)NV.

The boundaryless C" submanifold
ZO={xERf(x)=hB"(x)=0 for all i&€1} of R

\\ ZM N3 10), some jET, a

codimension 1 C" submanifold of Z(I)

Figure 1.8. Acting on Z(I)N (h8)'(0) with each of the flows of gradf;,..,gradf,

in turn yields (locally) a codimension 1 C" submanifold S; of R".

These f; satisfy £'(0)NZ{)= (h8)'(0)NZ() for j=k+1,...k+m, and have the
additional property that for each x& (h8')'(0)N Z(I) and any i€1, JEJ
(gradfi(x),gradf,(x)) =0 (which would not necessarily have been the case if we had set

f,=h,8" for i€J as well as for i€1). M near x, is locally {x ER™f(x)=0 for all iE€]1,
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f(x) =0 for all iE€J}. The results concerning the tangent cone and space are as above,
replacing each gradh,8'(x) with gradfi(x), i=1,..,k+m, that is, with x, as above
Tx°M={yER“:(gradﬁ(xo),y)=O for all i€1, (gradf(x,),y) =0 for all iEJ} and the
tangent space to M at x, is {y € R":(gradfi(x,),y)=0 for all i€1}.

By analogy with the closed (linear) corner we shall use the notation
ZN(f,,..,f; 15 - T ) abbreviated to ZN(;J) (where I=(1,..,k), I=(k+1,..,k+m) )
for {x ER™f,(x)=0 Vi€Lf(x)=0 Vi€T} and ZP(f,,..,fi;fi+1,.,fk+m) abbreviated to
ZP;)) for {xER™f(x)=0 ViEL{(x) >0 Vi€ J} (where Z is for zero, P for positive,
N for non-negative and are of course the non-linear analogues of respectively L,C,O.
To stress its construction from linear functions fi(x) =(x,n;) we may refer to LC(;]) as
a linear corner). Thus near x, we are representing M locally in the form
ZN(f,,. ., ffests - feem) =ZN(I;T), which may be stratified into 21" ! strata ZP(K;J\K)
for ICKCIUIJ. Of course if x€ZAUJ) then T,ZN{;])=
LC(gradf,(x),..,gradf,(x);gradf, , ,(x),..,gradf, . ,(x)) =LC{;J),if ICKCIU]J that
T,Z(K) =L(gradf(x):i€K) etc - on this basis, an expression such as
P(T,Z(K))gradf(x) may occasionally get abbreviated to P(K)gradf(x). When we say M
is represented near x as ZN(I;J) we shall always suppose that x itself is in Z(IU]J).
Note incidentally that the vector field X we begin with is supposed defined on M and
hence that where M is represented as ZN(I;J) is equal to X(I). We shall call the
region of M which may be represented by a particular representation
ZN(f,,.. fi;fi1,- -, fi o) the domain of the representation. We shall as with the linear
case call ZNP(K;;K,;K;)={xER™ fi(x)=0 Vi€K,,f(x) =0 Vi€ K,,fi(x) >0 ViEK,},
for K,K,,K; satisfying ICK; CK, UK, CK;UK,UK;=IUJ, a subcorner of ZN(;J).
Henceforth whenever notation of this kind is used it will always be supposed that the

\

ZP(1,2;3)

functions involved are independent.

gradf,(x)

M, locally

€Z(1,2,3
represented as ZN(1;2,3) x&€7Z(1,2,3)

radf,(x)
ZP(1;2,3)

-

Figure 1.9 A local representation of a submanifold with corners

ZP(1,3;2)
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In Figure 1.9 the tangent cone to M at x is T,ZN(1;2,3)=
{yER"(y,gradf;(x))=0 and (y,gradf.(x)) =0 for i=2,3}, and the tangent space to M
at x is {y ER™(y,gradf;(x))=0}.

The Projection of a Vector Field onto a Submanifold

With Comers and the Semiflow of this Projection

Since the tangent cone to M at x is a closed corner in the tangent space any vector
X(x) in the tangent space to M at x may be uniquely projected onto it; we set
XM)x)=P(TM)X(x). If X(x) points into the tangent cone to M at x X(M)(x) =X(x);
if it doesn’t X(M)(x) is the unique vector in the tangent cone closest to X(x) ( hence
this kind of projection is called in [4] "projection of best approximation"). It is usual

(as in [41]) to call a vector field Y on M with every Y(x)&T,M an inner vector field;

thus our vector field X(M), as defined pointwise above, is inner. We gave some

examples in the Introduction (Examples 0.1 and 0.2). Another is

Example 1.1 M is the half space {(x,y)€R%y=0} and X is the vector field
X(x,y)=(1,x). Then X{(M)(x,y) is the vector field

X(x,y) if x=0 or y>0

X(M)(x,y)=
(M)(x,y) (1,0) if x<0 and y=0

and so is discontinuous on the half line (x <0,y=0).

y

-
o
A

Figure 1.10

We want next to generalize the classical notion of trajectory. A definition suited to

our needs (which is for example that used by Chikin in his paper [10] which forms the
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basis for our Theorem 1.1) is as follows.

A function x: [a,b]->R" is absolutely continuous [4] if for any €> 0 there exists 6>0

~ such that for any countable collection of disjoint subintervals [a,,b,] of [a,b] such that
L(b,a) <6 we have X | x(b)-x(a) | < e.

It is known (eg [4, section O] or [48]) that an absolutely continuous function is a.e.
differentiable and satisfies x(t)-x(s)= { %(u)du (in fact a continuous function is
absolutely continuous iff it satisfies this condition). If for x&€M there exists t,>0 and
absolutely continuous ¢(M,X)(x):[0,t)—»M satisfying (M, X)(x)(0)=x and
DM, X)(x)(t) =XM)dM,X)(x)(t) for a.a tE[0,t) (where D, denotes differentiation
with respect to t) we say ¢(M,X)(x) is a trajectory of X(M) at x. $(M,X) will usually
be abbreviated to ¢(M) and ¢(M,X)(x)(t) written as ¢(M,X)(x,t).

For our Example 1.1 the curves sketched in Figure 1.11 are certainly absolutely

continuous and satisfy the condition to be trajectories of X(M) (with t, = oo for every

point).

$(M, X)(xo)

X

Figure 1.11

Theorem 1.1 If X is a smooth vector field on a submanifold with corners M of R*
then at each point x of M

1. There exists a unique trajectory ¢(M,X)(x) of X(M)

2.If M is compact we may take for each x t,=o

3.For any x€M and t<t, ¢M,X)(x,t) is continuous in Xx.

This will be proved after Lemma 1.3. If for all x t,=o0 Parts 1 and 3 of Theorem
1.1 tell us (cf definition in the Introduction) that the map ¢(M,X):M X[0,)>M is a
semiflow. In this thesis on the only occasion M is non-compact we have M an orthant
and X linear, where it is straightforward to check that t,=o0 for all x, hence ¢$(M,X)
is a semiflow throughout. Cornet proves an existence-uniqueness theorem nearly
equivalent to Theorem 1.1 in [12] (see also Remark 3.1(4)). Parts 1 and 2 of this
result have been established by Chikin ([10]) in the case M is an admissable subset,
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which is a bounded connected subset of R® of the form {x ER™:f(x) =0 for all iE1}
where the f;;R">R are C? and satisfy the condition that if at x€EM f;(x) =0 for all i€,
~ then {gradf(x),i€L} is an independent set. Locally a codimension 0 submanifold with
corners is of this form, and we can establish parts 1 and 2 of Theorem 1.1 for an
arbitrary submanifold with corners if we can extend it locally to a codimension 0
submanifold with corners A and find a vector field Y on A such that the trajectories
produced by Chikin’s Theorem applied to A,Y are, for a starting point on M,
trajectories of X(M) - the technical aspects of this are done in Lemma 1.3.

We have shown that locally M may be represented as ZN(I;J) and we extend this
codimension | I | submanifold with comners to the codimension 0 submanifold with
corners ZN(<J;IUJ) which we denote A; it has ZN(I;J) as the closure of one of its
strata. We recall that the functions f; in the local representation of M as ZN(I;J) were
constructed in such a way that if y € ZN(I;J) with f(y)=0 for all j&€ T’ CJ, then
(gradfi(y),gradf(y)) =0 for all i€I, jEJ'. We extend the C* vector field X on M to a
Cr vector field X, on a neighbourhood of y in R® by pushing forward X by the flows
of gradfi,gradf,,..,gradf, in turn - this will leave X on M unchanged,
ieX, | M=X | M - and set Y=X_,-E,c,gradf; on this neighbourhood (Figure 1.12).

A=ZN(Z;1UJ) A
A=ZN(Z;IUY)

—_— \ Y =X.-L;c,gradf;
X., a C" extension to A of X on M ~.
— T~

ocally represented as
ZN(;)) = {x:f(x)=0 for all i€,
f,(x)=0 for all i€}

Figure 1.12

Lemma 1.3 If x,€M with M locally represented as ZN(I;J), and A,Y are as above,
there exists a neighbourhood V of x, in R® such that

(1) P(TLA)Y(x) = P(TM)X(x) for all x€EMNV (and hence (P(T,A)Y(x),gradf,(x))=0
for all x€EMNYV, i€I), and

2) (P(T,A)Y(x), L,c,gradf(x)) <0 for all xEANV\M
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Proof We are supposing that M is represented locally as ZN(I;J).

(1) At xEMNYV we have x€Z(IU]J') some J'CJ and TM=LC(;]"),
- T,A=LC(J,IUJ"). If X is a C* vector field on M we have of course
(X(x),gradf,(x))=0 for all i€, any x €M. Fixing x, set e;=gradf(x) for each
1€IVY, v=X(x), C=LC(J;IU]J") where J' CJ as above, and C'=LC(;J’).

For example with x,=x&Z(1,2,3) in Figure 1.9 where I=(1), J=J'=(2,3) we have
C, C' as illustrated in Figure 1.13 below.

e,, perpendicular to the plane of C’
A

C=LC(Y;1,2,3), contains C’ as a closed subcorner

\ C'=1C(1:2,3)
vEL()
Figure 1.13

Since (g;,e;)=0 for all iELj€EJ’ we have the orthogonal direct sum decomposition R*
=E,@E, ®N where E,=span{e;},c; ,E; = span{e;};c;, and N =orthogonal
complement to span{e;};cny in R, so E,@N=L(I), and if we decompose any zER"
as z=z;+1z;+zy we have P(L(1))z=z;,+z,. Furthermore if z&€ C then (z,ej)zo for all
j€J', and since (z,, €;)=0 for all jEJ’

(PALM)z,e;) =(z,; +2y,8) =(z,e;) =0 for all jEJ’', ie PI(I))zEC’, and since C’ is a
closed convex subset of closed convex L(I) we have by Lemma 1.1 part 1 that
PLA)z=P(C')z.

Hence if z&C we may decompose z as z=z;+z, where z,=P(L(I))z€C’ and
z,=z-z, €E;=span{e}ic,.

We now show that for v=X(x) as above we get P(C)(v-E,ce) =P(C')v.

For any z&€ C we have z; €C' and we know by the Characterisation of Projection
that (v-L,c.6,-P(C")(v-Le€),P(C)(V-Ee)-z,) = 0. Furthermore by the definition of
C' and the fact that (v,e)=0 for all i€1, we have (v-I;c€,-P(C')(v-Lic€),2,) =
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-Liedenz) =-Lieile;,z) since (e,z,)=0 for all i€, and -I;c(e;,z) is <0 because
z€ C. Hence for any z in C
(V-Eie £ P(C)(v-Zie ), P(C')(V-Tic £)-21)-(V-Lie € P(C) (v-Eie ), 22) 2 0, ie,
(v-Lie 6 P(C)(v-Zie ), P(C)(v-L;c€)-2) = 0, which means by the Characterisation of
Projection again that P(C)(v-X;ce) =P(C')(v-Zic ). If qEC’
(v-Lie €-P(C")V,P(C")v-q) =(v-P(C")V,P(C")v-q)-Zie (&, P(C')v-q) =
(v-P(C")v,P(C")v-q)-0, which is >0 by the Characterisation of Projection, and so by
the Characterisation of projection P(C')(v-Ze)=P(C’)v. This combined with
P(C)(v-Ze)=P(C")(v-Xe) (above) gives us P(C)(v-Le)=P(C')v, ie
P(T,A)(X(x)-Lgradf,(x)) =P(T,M)X(x), which completes the proof of (1), since if
xEM then X(x)=X(x) by construction of X..
(2) (a) We show that if x,€ Z(IU]J), then there exists a neighbourhood U, of x, in R*
and d >0 such that for any K’ satisfying ICK'CIUJ we have
(P(T,Z(K"))(-Z;c,gradf,(x)),L;c ,gradf,(x)) < -d/2 for all x€U,NZ(K") Figure 1.14

below will remind us of what these sets are -

\___/

\\/ xEZ(K") where IZK'CIU]J
S~ ZNJ) —
VXO
1
Ygradfy(xy), €1

Figure 1.14

Begin by partitioning K'=(K'NDHUK'N J). We have eg from the Characterisation
of Projection that if vET, R*=R" then P(T, Z(K"))v=0 (the zero vector) iff

v € span{gradf,(xo)};ex:, SO

P(K")L;e gradf(xo) =P(K')(Tie1nk gradfy(xo) + Eie ne-gradf(xg)) = P(K") (Xie n-gradfi(x,))
=0 iff \NK'=4, ie iff K DI. We have therefore for any IZK'CIUJ

(P(T, Z(K"))(-Ziergradfi(xo)), Tie gradfi(xo)) =- | P(T, Z(K"))(Zgradfi(xo)) | > = d(K"), a
real number <O by the above.

Set d= minygy.c;uy | d(K') | and the result follows by continuity.

(b) We show that if {e};cn; are independent vectors with (e,e;)=0 for all iELjEJ
then for any I’ CIUJ and any X€R" P(I")X=PA'NDHPA'NHX=PI'NIHPI' N)X
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Proof- If j €T then ¢;€ L(I' N]) since (e;,e;)=0 for all iEI'NICI, thus PA' NDeg=¢;.
We may verify directly (or use Remarks 2.1) that
" X-P(I' N))X € span{e;};c;, and hence applying P(I’ NI) to this expression (leaving the
right hand side unchanged because P(I' NT)g=e¢; for all jE€J) we see
PI'NDX-PA'NDHPA' NHX=X-P(I' N IH)X
and similarly P(I' NDX-PA'NIHPA'NDX =X-PI' NDX; hence PA'NIHPI'NDX =
PI'NI)PA’'NI)X, and hence this quantity is contained in LI’ ") N L' NI)=LI').
The Characterisation of Projection for linear subspaces (ie, that x,=P(L)x iff x,€EL
and (x-X,,y)=0 for all yEL) tells us that (X-P(I' N)X,w)=0 for all wELI' NI),
(PA’'NDX-PA'NDHPA’' NDX,w)=0for all wELI’'NJ), hence
(X-PA' NDX+PA' NDX-PA' NP’ NDX,w)=0for all wELI' N NLI' ND=L{T")
and since we now know PI'NI)PI' NI)X to be in L(I") by the Characterisation of
Projection again this tells us that P(I' NHPI' ND)X=PI")X.

(c) We show that if x,€M with M locally represented as ZN(I;J) and d >0 then there
exists a neighbourhood U of x, in R® such that for any K’ CIUJ we have
(P(T,ZK")NX.(x),E;e,gradf,(x)) < d/2 for all x€E U, NZ(K"). X, is our C* extension of
X on ZN(1;J) to a neighbourhood of ZN(I;J) in R® near x,, and this result is saying
that for any K’ CIUJ (in Figure 1.15 there are 4 such K’) the projection of X (x) onto
T,Z(K") has arbitrarily small component parallel to X gradfy(x) if x is arbitrarily

close to x4 in R®.

ZN(D:1UT) /

X. on ZN(G;1UJ)
/2

" 7 gradfy(x), i€1
— INI)) — . X
= X on ZN(:])
Figure 1.15

The map x—>{P(T,Z(K"))X.(x),L;c,gradfi(x)) is clearly continuous in x for fixed K’, so
since there are only finitely many K’ it suffices to show that for each K' CIUJ
(P(TXOZ(K’))X(xO),EiEIgradfi(xo))=O (recall X (x)=X(x) for all x€ZN(;J) ).

Set X(xg) =X, gradf(xg) =e;. By the construction of the representation of M
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(gradfi(x,),gradf(xo)) =0 for all i€1, jE]J, so we may apply (b) to conclude that for
any K’ CIUJ and any i€1 P(K")e;=P(K'NDP(K' NIJ)e;. Morover P(I' N])e,=e; since
g ELJ)CLI'NI), so P(K")e;=P(K'NI)e. Then since X(xo) €T, Z(I), ie in our
notation X=P(I)X, and P(K') is self-adjoint, we obtain for any i€1I
(P(K")X,e) =(X,P(K' NDe) =(PMX,PK’ ND)e;)
=(P(K'NDP(DX,e;) =(P(I)X,e) =0 since i€1, as required.
(d) x€ A\M implies x€ZJ'UJ") with I’ D1, hence P(T,A)Y(x)=P(T,Z(K"))Y(x)
some I'UJ'D K’'2I, and applying (a) and (c) we get for x€ U,NU, but x not in M
that (P(T,A)(X.(x)-Eie,gradf(x)),L;e gradfy(x)) =
(P(T,ZK")) (X (x)-Eieigradfi(x)), Lie,gradfi(x)) =
(P(T,Z(K")X (%), Liergradfy(x)) +(P(T,Z(K"))(-E;e gradfi(x)), I;e gradfi(x)) <0, which
gives (2) with V set to U,NU,.

Proof of Theorem 1.1

Chikin has established [10] the following: if A is an admissable subset (see above) of
R" and f:RXR">R is a continuous function satisfying for all x,yER"

| (f(t,x)-f(t,y),x-y) | <I(t) | x-y | 2, for some I(t) summable on finite intervals, then
the problem: find absolutely continuous x:[0, o )—R" satisfying Dx(t) =P(T,A)f(t,x)
for a.a. t€[0, ), x(0)=x,€ A,x(t) € A for all t&€[0, ), has a unique solution.

From [19,Section 5] we may furthermore infer that the solution is continuous in
initial conditions.

For x,€M extend M locally represented as ZN(I;J) locally to A as above, and
choose U as in Lemma 1.3, and consider the vector field Y=X_-Z,gradf; on
Aﬁ]_B,(xﬂ) (B.(xo) being the open ball with centre x, and radius r), where r is chosen
so small that ﬁ,(xo) cV, aﬁ,(xo) is transverse to all the strata of A as a submanifold
with corners (and hence Aﬂ}—3,(x0) is admissable), and so that for some ¢>0
(Y(X)-Y(y),x-y)<c | x-y | *for all x,yEl_?.,(xo) (this being possible by smoothness of
Y).

Applying Chikin’s Theorem to admissable Aﬂﬁ,(xo) we obtain absolutely continuous
x:[0, 00)-V satisfying x(0)=x,, x(t)EAﬂﬁ,(xo) for all t&[0, ), and
Dtx(t)=P(T,(,)(Aﬂl_3,(x0)))Y(x(t)) for almost all t& [0, o), and hence since for some
T >0 x(t) €EB(xy) for 0<t<T that Dx(t) =P(T,,A)Y(x(t)) all t€[0,T). We have from
Lemma 1.3 and almost everywhere differentiability of x that e (fx(t)-f;x(0))=
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Tier § § f (X()R(O)ds =Tie; § {eradfi(x(s)),P(T,A)Y(x(s))ds <O0.
If x€ A then xEM iff fi(x)=0 for all i€I. For all x€ A, f(x)=0 for all i€
Hence if x(0) EM then x(t) EM for all tE[0,T), and hence by Lemma 1.3 part 1
P(T,u,A)Y(x(1)) = P(T,(,M)X(x(1)) for all t&€[0,T), and hence Dx(t) =P(T,,M)X(x(t))
for a.a. t€[0,T), which is the trajectory we seek, is unique by [10] and continuous in
x(0) by [19, Section 5].
In the usual way if M is compact and t, is maximal such that there exists a solution
on [0,t), then if t < o limmx x(t)EM (by compactness) and repeating the
construction at the limit point we may extend x(t) past t=t, contrary to the maximality

of t,, hence we must have t, =,

Remarks

(1) Evidently the map ¢(M,X) need not be differentiable in x or t - consider Examples
0.1, 0.2 or 1.1 above - but we shall show that the points of [0,t) where ¢(M,X)(x) is
not differentiable are countable and rare (Proposition 5.2 ) and that it has one sided
derivatives at all points (Theorem 3.1 and Proposition 5.1).

(2) Smoothness of data is not essential for Theorem 1.1: the lower bound on
differentiability is determined by Chikin’s Theorem (X C!, the f;'s C?)

(3) A rather obvious generalisation of the context we have adopted, where M has been
a submanifold with corners of Euclidean Space R", is to have M a submanifold with
corners of a Riemannian manifold N. This means that there exists a C" map ¢ on N
such that for each x€EN $(x): T,NXT,N->R is bilinear, symmetric and positive
definite and so for finite dimensional N makes T,N a Hilbert Space. Thus setting for
any uET,N | u | =®(x)(u,u)* by [48,4.10] we know that for any X(x) ET,N there
exists a unique element X(M)(x) in T,M satisfying

| X(x)-X(M)(x) | =min{ || X(x)-v || :vET,M} and we may proceed as above. In fact,
since the construction of X(M)(x) is invariant under isometries we could use Nash’s
result on the isometric embedding of Riemannian manifolds in Euclidean space (See
[71) to generalise Theorem 1.1 as follows: if M is a submanifold with corners of
Riemannian N, X a smooth vector field on M (or more probably on N), then at each
point X EM there exists t,>0 and a unique trajectory ¢$(M,X)(x):[0,t )M with

oM, X)(X)(t) =X(M)d(M, X)(x)(t) for a.a. tE[0,t), and if M is compact we may take
t,=00.
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Chapter Two
The Iteration

We showed in Chapter One that if M is a submanifold with corners and X is a
smooth vector field on M then for the system (M,X) there exists at each xEM a
unique trajectory ¢(M)(x):[0,t)—=M in the sense described there. We also recall that
on some neighbourhood of any x €M we may establish a local representation of M of
the form ZN(I;J). It is fairly clear, and is shown in Lemma 2.1 below, that if M
(meaning the f;’s) 1s C" and X is C" then for each K with ICKCIU]J the projection of
X onto Z(K), or onto the stratum ZP(K;J\K) which is an open subset of Z(K), is C',
as is its integral flow. In this chapter we shall develop an algorithm to determine if
there exists a stratum ZP(K;J\K) of ZN(I;J) such that
M) (x)(0,8) ={dM)(x,1):0<t< 8} is the integral curve of the projection of X onto
Z(K) for some 0<o6<t,, and if there is to determine what it is.

We begin by making some general constructions involving sets of independent
functions and establishing a few elementary facts about them. Suppose fi,..,f,,., are
functions independent at and hence on a neighbourhood of a common zero x,, with
(1,..,k)=Iand (k+1,..,k+m)=J. Denoting (fi.,(y),..,ficu(y)) by fi(y) we may foliate
Z(1) near x, by the manifolds {y € Z(I):f,=constant} and will denote each leaf
{yeZ):fi(y)=a} by Z(IUJ,1,a) (Figure 2.1). We see

Z(IUJsLa) =Z(f1,. . :fk;fk+]'ak-le' : ’fkﬂn'akﬂn) where a:(ak+l,' "ak+m)' Pla]nly

yEZAUIL,LE(Y)).
Figure 2.1 /‘i:za)
; - l ; Z(DH)={xERf(x)=0}
: /

Z(1UJ,1,00=Z(1UJ)

)y(xE/R“:ﬂ(x)=0}

{xER™1,(x)-f;(y) =0}

ZAUJLi(y)= e—=—""""7
{xER"f(x)=0,f;,(x)=1,(y)}
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We can form vector fields X(I) and X(IUJel) on Z(I) (the e is for "extension";
X(IUJel) is a C* extension of the vector field X(TUJ) on Z(IUJ) to a neighbourhood
‘of Z(UT) in Z(I)) by projecting at each x EZ(I) the vector X(x) in T,R" onto
respectively the subspaces T,Z(I) and T,(ZAU]J,1,1;(x)), ie X()(x)=P(T,ZD))X(x),
X(AUJe)(x)=P(T,Z(AVI,J,£;(x)))X(x). We shall show in Lemma 2.1 that these vector

fields and their integral flows are C', but first some preliminary remarks.

Remarks 2.1
(1) We shall show that X(I)(x)-XIUT)(x) € span{P(I)gradf(x):i€J}. Working in T,R"
and writing X(I)(x) as X(I), T,Z()=L(), gradf,(x)=e, etc it suffices to show that if
I=(1,..,k), I=(k+1,..,k+m), then for any YER"
PAUNY-P(DY € span{P(De,.,,PAU {k+1})e..,,..,PAUN{k+m})e, ..} because then
re-applying this result with I’ =I, J'=J\{k+m}, Y'=e,,, we get
PAUIN\{k+m})e , - PDer.n € span{PI)e,y,..,PAUN{k+m k+m-1})e i}, i€
PAUIN\{k+m})e ., . EPDe,, Uspan{P(De,,,..,PAUN{k+m,k+m-1})e,, .} and
inserting this into the previous result and repeating we eventually obtain
PAUNY-POY € span{PI)e, ., P +2,..,P)e, .} as required.

Decomposing
PIUDN-PAO)Y =PIUNY-PAUN{K+m})Y+PAUN{k+m})Y-..-PQ)Y it suffices to
show that
PAU {k+1,.. . k+p+1})Y-PAU {k+1,..,k+p})Y EspanPIU {k+1,...k+p}ey 4.
We have by definitions that the vector
PAU {k+1,.. . k+p+1})Y-PAU {k+1,.. . k+p} ) YELAU {k+1,..,k+p}) and by the
Characterisation of Projection for linear subspaces that
(PAU {k+1,.. . k+p+1})Y-PAU {k+1,...k+p})Y,w)=0 for all
weELIU {k+1,..,k+p+1}), and these two conditions determine
PAU {k+1,.. . k+p+1})Y-PQU {k+1,...k+p})Y up to a non-zero scalar. Thus it
suffices to check that PQU {k+1,..,k+p})e,,,.; satisfies these two conditions.
PAU {k+1,.. . k+p}e,,,., ELAU {k+1,...k+p}), and
(PAU {k+1,.. . k+pHepsps1,W) =(&sp+1, PAU {k+1,.. k+p})w)
=(€4p+1,W) if WELAU {k+1,..,k+p})
=0 if wELIU {k+1,..,k+p+1})CL(k+p+1), and so the result follows.
(2) 1t follows that if {gradf,(x):i€1UIJ} are independent vectors in R® then
{P(Dgradf(x):i€J} are independent vectors in T,Z(I). For if {P(I)e;},c; were not
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independent then there would exist {\;};e; with A, not all zero and XZ;c ;A P(I)e;=0. By
(1) above for any vER® P(I)v-vE span{e;:j €1}, hence P(I)e;-e;=L;cu;€;, some p;,
‘hence Zie,N(Zjemi€;+€)=0. But the \; are not all zero so this implies linear

dependence of {e;i€IUIJ}, contrary to the assumption.

(3) Normal Spaces. If S, is a submanifold of S,, with S, and S, smooth boundaryless

submanifolds of R®, define at x€ S, the normal space to S, in S, (a topologist might
have preferred "perpendicular space") to be {yET,S,:(y,z)=0 V¥ zET,S,} written
N,(S, in Sy); if Sy, S, are Z(I), ZAUI), zero sets of functions independent near
xEZAUT), N(Z(IUI) in Z(I)) may be written N,(IUJ in I). Thus yEN,IUTJ in I)
iff yET,Z() and (y-0,0-z)=0 for all zET,Z(IUJ) and hence from the Charactisation
of Projection N,(IUJ in I) = {yE€T,Z():PAUJ)y=0}. From the Subspace Projection
Theorem ([5, pp 4 and 8)]) we get T, Z(D=T,ZAUI)SN,dIUJ in I), so
dimN,dUJinI) = |J| =m, and since by (2) above {P(I)gradf;(x)};c; are
independent vectors in T,Z(I) and (P(I)gradfi(x),z)=0 for all zET,Z(XUJ), any jE]J,
we must have for any x €Z(IU]J) that N,AUJ in I) = span{P(I)gradf,(x)};c;. By the
same argument for any x € Z(I), N(ZAUJ,Lf(x)) in Z(1)) =span{P(D)gradf(x)};c;.

Thus X(IUT)(x)-XX)(x) € span{P()gradf(x)}e;, ie for any xEZIUT)
XAUNH)-XM)EN,IUTin I). Furthermore since for x € Z(I) XU Jel)(x) is just
X({UI)(x) with different but still independent functions we have at x € Z(I)
XAUJeD)x)-X(D(x) EN(ZAUIT,Lf(x)) in Z(I)).

Lemma 2.1 If X is a C* vector field on R® and {f;} are C" functions with x,€ Z(IUJ)
and such that {gradfi(xo)};e;u; is an independent set of vectors , there exists a
neighbourhood U of x, in Z(I) such that X(I) and X(IUJel) are C* vector fields on U
and their integral flows, denoted ¢(I) and ¢(IUJel) respectively, are also C'.

Proof Take U, open in R® a neighbourhood of x, so small that {gradf,(x)};cp; is an
independent set for all x€U,. Then for each i€I=(1..k), xEU, and NER* define a
C" map g;:R***=R by g;(x,\) =(X(x)-L;e,\gradf(x),gradfi(x)} and g:R***=R* by
gx,N) = ((g,(x,A),..,g{x,N\)). The matrix A with coefficients A;=
(gradfi(xy),gradf/(xo)) i,j €1 is invertible since {gradfi(xo)};e; are independent, and
setting AM(Xo) =A"'b where b,;=(X(x,),gradfi(x,)) we have g(x,,A(X¢)) =0 and by the C*

or C* Implicit Function Theorem ({14, Chapter 10]) there exists an open
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neighbourhood U, of x, contained in U, and a unique C* map A\:U,~R* such that for
all xE€U, g(x,Mx))=0. Since this is saying \(x) is the unique NER" such that
X(x)-Lje\gradf; € T,Z(1,J ,f,(x)) and since by Remark 2.1(1) above we know
X(IeDd)(x)=X(x)-v with vE span{gradfi(x):i €1} it follows v=E;¢ \gradf(x) and (1)
X(IeD)(x) =X(x)-L;eN\gradfi(x) for all xE€U, and is therefore C, and since if
x€U,NZ(I) then X(IeD)(x)=X({)(x), (2) that for all xEU,NZ)

XD (x)=X(x)-E;e\gradf,(x) and is C*. Furthermore if 8, L(I) are as in the definition
of submanifold with corners 8°X(I) is C* in L(I) and hence X(I) is a C* vector field on
Z(@)N U, in the sense of Chapter One. If we apply (1) with I replaced by IUJ we get
an open neighbourhood Uj of x, in R* with X(IUJedJ) a C* vector field on U;. If we
now apply (2) with X replaced by X(IUJed) (which we may do because we now
know it to be C' ) we get a neighbourhood U, contained in Uj of x, with
X(IUJed)(I), the projection of X(IUJe) onto Z(I), a C* vector field on U,NZ(I).
We may check from definitions that for all x€Z(I) X(IUJeD)(x) =X(IUJTed)(D)(x)
and we conclude that X(IUJel) is a C* vector field on U,NZ().

We may use classical theory (eg [1, Chapter 4]) to infer that the flows ¢(I) and
¢(IUJel) are also C'.

Remark 2.2 Using that (X(I)(x),gradf(x))=0 for all j €I and writing \(x) for the
column vector with components A,(x) we find that in the equation in (2) of Lemma 2.1
that A(x) =M(x)'N(x)"X(x) where M(x) is the k Xk symmetric matrix with elements
M(x); =(gradfi(x),gradf,(x)) (which is invertible because {gradf,(x)} are independent )
and N(x) the n Xk matrix with ith column gradf,(x); hence in this notation

XM () =Xx)-NE)Mx)'NE)X(x).

We have established in Lemma 1.2 the relation between P(LC(I;J))X and P(L(K))X
for ICKC IUJ and much of Chapters 2 to 5 is concerned with the relation between
®(M) = the unique semiflow of X(M) provided by Theorem 1.1 and ¢(K) =unique
C’ integral flow of X(K) ( if M is locally LC(I;J) this K must lie in the range
ICKCIUJ) as provided above by Lemma 2.1.

We firstly show that for some systems there exist points where no 6>0 can be found
satisfying the condition that for some K there exists 6> 0 such that for all t& (0,5)
(M) (x,t) =d(K)(x,1).
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Example 2.1
Take X(x,y)=(1,{(x)) with

(1/x¥exp(-1/x)(sin(1/x)-cos(1/x)) if x>0

f(x)=
) 0 if x<0

on M={(x,y) ER%:y=0}.
If 1/x,=mx+=/4, then f(x,)=0,

, 4 -2 if m is even

f/(x_)=exp(-1/x_)/Xy
+/2 if m is odd

So if m is odd f(x,)=0, f'(x,) >0.

For F'(x)=f(x) we have the integral F(x)-F(y)=[exp(-1/t)sin(1/)T}

and since F(x,,)-F(X) =-(1A/2)(exp(27)-1)exp(-xw(m+ %)) <0

the integral curve at (x,0) with m odd has the form shown in Figure 2.2.

Figure 2.2

By Theorem 1.1 there exists an absolutely continuous trajectory ¢(M)(0) based at the
origin, which is clearly not C! on any deleted neighbourhood of 0, and in fact in any

such neighbourhood there are countably infinitely many points where ¢(M)(0) is not

differentiable.

e N LT T - S T o~ ,
0 xu % X7 Xs X X]

Figure 2.3

Let us consider now a simple situation where such a K does exist

Example 2.2
Suppose M={xE€R*x,=0,x,=0} and X(X,,Xq,X3) =(X5°-X,2,-1,1). We seek K such
that $(M)(0,(0,8)) C ZP(X;(1,2)\K) and d(M)(0,t) =¢(K)(0,t) for tE[0,8), some 6>0.
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Since X(0)=(0,-1,1), by continuity we must have that XM)(y)=X(2)(y) for all y near
the origin in ZP(2;1). Hence if a single stratum does contain $(M)(0,1) for small t>0
it must be either Z(1,2) or ZP(2;1). We decide which by considering
X(2)(x,,%5) = (x5%,1): the first nonvanishing time derivative of {¢(2)(x=0,t=0),n,) is
the third, which is >0, and hence S(M)(0,1) CZP(2;1) with $(M)(0,1) =9(2)(0,¢1) for
all small t>0 (Figure 2.4).

/}ZP(Z;I)

n—> &
O | $(M)(0) CZP(2;1)

Figure 2.4

We could not have inferred this by for example considering time derivatives of the
unconstrained equation: we see in fact the unconstrained trajectory ¢(&&)(0) heads into
{x:x,<0,x,<0}.

Our general algorithm will provide us at the ith stage with a subcorner
ZPN(K ;K TUTNK, UKyY) with the property that if there exists a K such that
d(M)(x,H) =0 XK)(x,1) for all t&€(0,9) then it is a stratum of the subcomer; then by
suitable comparison of (i+ 1)th time derivatives (in fact of ¢(K;)(x) and (K, UK)(x)
at t=0 ) it will provide us with a yet smaller subcorner with this property. The result
underlying the iterative step in this shrinking process is Lemma 1.2.

With M as usual locally represented as ZN(I;J) we begin by taking the differences
between the first time derivatives of ¢(I)(x) and ¢(IUT)(x) at t=0, ie
D (D) (x,t=0)-DdIUN){x,t=0), and use Lemma 1.2 to find the subcorner of
TM=T,ZN])=LCI;)) such that projecting this quantity onto T,M gives the same
result as projecting onto the affine spans of the strata in this subcorner. (We use the
notation D,f(t=0) to denote the time derivative of f evaluated at t=0). If this
subcorner is LCO(K,;Kz;IUJ\(K1UK2)) at the second stage we work with the closed

corner LC(K;;K,), seeking the subcorner of this such that the projection of
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D2o(M(x,t=0)-D2p(IUI)(x,t=0) onto LC(K;;K,) gives the same result as projecting
onto the affine spans of the strata in this subcorner. We see that in this way we obtain
a contracting sequence of strata I=5%(x) C S%(x) C... CS,(x) CS{x)=IUTJ (where in
the notation of this paragraph, S%(x)=K,,S,(x)=K,UK,) and in view of this
contracting property this sequence must converge. (Whether to a single set of indices
or not being a matter of some import). We see that the sets of indices
Se(X)=N;5,8,(x) and $°,(x)=U;,,S%(x) have the property that for all sufficiently
large i S;(x)=S.(x) and S%(x)=S°.(x). The strata ZP(K;J\K) with $°_ (x) CKCS.(x)
will be the candidates for the stratum we seek.

In Lemma 2.4 we show that X(M)(x) =X(K)(x) is equivalent to a pair of conditions,
that X(K)(x) points into T,ZN(K;J\K) and that (X(x),P(K\j)gradfi(x)) <0 for all
JEK\IL With S (x) and S°,.(x) as above we show in Lemma 2.5 that for all t in some
(0,6, ¢(SX))(x,t) € ZP(S..(x);]\S(x)), and in Lemma 2.6 that for all t in some
(0,8,) (X(S°=(x)\))#(S% (%)) (x,1), gradfi(¢(8" (x))(x,1))) <O for all j € §%, (x)\S°,(x),
which together imply after some manipulation that if S_,(x)=S°,(x) then the
conditions for Lemma 2.4 apply on t€ (0,min(é,,5,)) with K=S_(x)=S°,(x), ie that
XM)o(K)(x,t) =X(K)p(K)(x,t) on (0,min(s,,8,)). If %, (x) =S, (x) but the data (ie X
and the f;’s) are analytic it is still the case that ¢(M)(x,t) =¢(K)(x,t) any
S%,.(x) CKCS,(x) for t>0 sufficiently small.

Formally, the iteration at x& M is defined as follows: if M is locally ZN(I;J) (and

we recall that by convention we suppose x itself is in ZQUJ) ) we set S°,(x)=I,
S,(x)=IU]J, and S%(x), S;(x) are defined iteratively using Lemma 1.2: this tells us that
for given S°%(x),S,,(x), there exist unique S%(x), S;(x) with

8%, (x) C S%(x) C S(x) CS,;,(x) such that

P(T,ZN(S%1 (%), 51 CONS %1 (0N D $(S% (X)) (x,t=0)-D ¢ (S;1(0)) (,t=0))

=P(T,Z(K))(D{ ¢ (8% (0))(x,t=0)-D;" $(S;.,(x)) (x,t=0)) iff S%(x) CKC §(x). We
observe that the sets of indices S%(x), S;(x) obtained depend on M, X and on the point
XEM of evaluation, so written out in full are S"j(x,M,X) and S;(x,M,X), but these
will usually be abbreviated to S%(x),S;(x).

Working through Example 2.2 above for example we find S°(0)=(&),S%(0)=(2) for
all i=2, S;(0)=(1,2) i=1,2,3, and S;(0)=(2) for all i=4, so S, (0)=S°.(0)=(2), and
Theorem 2.1 below tells us (as we reasoned above directly) that ¢(M)(0,t)=¢(2)(0,t)
for all t€[0,t,), some t,>0, and that ¢(M)(0,t) €ZP(2;1) on (0,t). A more complete
understanding of the iteration will follow from Chapter Three (where we relate the

iterates S%(x), S,(x) to the right hand derivatives D,*'¢(M) at x) and Chapter Four
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(where we relate the iteration at each x&M to the decomposition of M into

generalisations of the classical tangency sets).

Remark 2.3 The reader will have observed that the iteration is an operator, and we
can formalize this as follows.

Define the operator ITN acting on triples of the form
(@D, {n: i €ETVUT}{YEK):ICKCIUT}) where the first argument (I,J) is a pair of sets
of indices, the second argument {n;} is an independent set of vectors in R®, and the
third argument is a collection of smooth functions Y(K):U-R" for ICKCIUJ, where
U is some interval of the real line containing the origin. By Lemma 1.2 there exists a
unique pair of sets of indices I',J" with ICI' CI' UJ' CIU]J such that
PLCIN)Dy(D)(t=0)-Dy (LU I)(t=0)) =PK)D(D)(t=0)-DyIUI)(t=0)) for all
I'CKCI'UJ’, and we then set ITN((,J),{n;:i€IUT}, {Y(K):ICKCIUT})=
(@, 30, {n: €T UT'}, {(Y(K):I' CKCI'UJ'}). We see this yields
ITN'((S°1(x), S, 00\S’ (%)), {gradfi(x):1 € $,(x)}, {6(K)(x):8°, (x) CKC S, (x)}) =
((%41),8;110NS%41 (), {gradf(x) i € 8,4 (%)}, {DISK) (%): %1 (x) CK CS;,(0)}) for
any j=0.

Theorem 2.1 (1) If X is a smooth vector field on a smooth submanifold with corners
M of R, with M near x locally represented as ZN(I;J), then if S°,(x)=S,(x) there
exists t,> 0 such that the trajectory ¢(M,X)(x,t)= ¢(S..(x))(x,t) for all tE[0,t,), with
P (S X)X, EZP(S.(x);S;(xX)\S(x)) for all t€ (0,ty)

(2) If the data (ie, X and the f;’s) are analytic there exists t,>0 such that
(M, X)(x,t) =p(K)(x,t) on tE[0,t,), any S°,(X) CKCS,.(x) , and fpr t< (0,t)

(M, X)(x,1) € ZP(So (x);S1 (NS (X)) -

In either case X(M)o(M,X)(x,t) =X(K)¢(M,X)(x,t) on tE[0,t), any

S0, (x) CKCS.(x) .

This is proved after Lemma 2.6. We recall and shall use without further mention
basic facts about P(K): that it is self-adjoint, that P(K)*=P(K), that if KEX then
P(K)n, =0, etc.

In Lemmas 2.2 and 2.3 we shall write D/¢(I) for D/¢(T)(x,t=0).

Lemma 2.2 If D(¢(1Uj)-¢(1))=01=0,..,k-1, then
D(¢(D)- $(1UJ)) =D¥(f¢M)P(Dgradfi(x)/ | P(gradfy(x) | 2
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Proof We showed in Remarks 2.1 that we have
XIAUHE)-XT)(x) € span(P(I)gradf(x)). Since
(P(Dgradf(x), X AU})(0)=(P(Dgradfi(x), PAUHX(x)) =(PAU j)gradf,(x), X (x)) =0
(because P(IUj)gradf(x) =P(IUj)P(j)gradf(x) and P(j)gradfy(x)=0) we must have
(P(Mgradfy(x), X(M(x)-X(IUj)(x)) = (P(Dgradf,(x),X(I)(x)} and therefore
XD x)-XAUj)(x) =(PD)gradfy(x), XD (x))P(Dgradfyx)/ | PI)gradfi(x) | >.
Then since (by definition of grad) D(f¢(D)= f;(¢(1))DI) = (gradf;(x),X(D)(x))=
(P(Mgradf(x),X(I)(x)) the Lemma is true for k=1. Suppose it is true for k-1, and that
D/(¢AUj)- ¢(0))=01=0,..,k-1. Since it is true for k-1 we know that D¥*(f;4(I)) =0.
Using XIUj)(x) =X (x)-(XT)(x),gradf,(x))P(Dgradf,(x)/ | PA)gradf(x) | > we have
that Df¢(IU}) =D (XD Uj)-D(fi(D))P(Dgradf(eUj))/ | PMgradf(e@UJ)) | ?).
DX(X (D¢ Uj)) involves terms in Dj¢(I1U]J) up to i=k-1, so since these all equal
D/¢(I) we must have D'X(I)¢(IUj)=DX¢(I). Furthermore since D/f;¢(I)=0 for
i<k-1 we have DFU(D(f¢(M)P(Deradfy(¢(U})/ | POgradf(sqU) |3 =
Df(fp(D))P(Dgradf/ | P(T)gradf; | 2, and so the Lemma is true for k.

Lemma 2.3 If for some i=>1 K is such that $%(x) CK C S,(x) then
P(K)D/(¢(S%(x))-$(S:(x))) =D/ (& (X)-¢(S:(x))).

Proof If i=1; PK)D(6(S°:(x))- #(5,(x))) =PEK)(X (S’ (x))-X(5,(x))) =X(K)-X(S;(x))
as required.

Suppose the result is tfue for i-1.
We have P(K)D,/(¢(S%(x))-6(S{x)) =P(K)D/(¢(S%(x))- ¢(S%(x) Uj(1))+
(SAXVj1)-..- (K)+ ¢(K)-.. ¢(S,(x)))
where K=5°(x)Uj(1)U... Uj(k) and 8,(x)=S%(x)Uj(1)U.. Uj)U.. Uj(m) for
m=>k=>0. We know S%(x) CS%(x) CK C S;(x) CS;,(x) and by the inductive hypothesis
we also have
P(S%(x))D, " (#(S%.1(x))-¢(S8:.1(x))) =D/ ($(S%(x))-6(S;.1(x))) and
P(8%(x) Uj(1)Dy ™ (¢(S%1(x))-(S:.1(x))) =Dy ($(8%(x) Uj(1))-¢(S;.1(x)).
Since S%(x) CS%(x)Uj(1) CS,(x) the left hand sides are equal; subtracting we get
therefore D" (¢(S%(x))-¢(S%(x) Uj(1)))=0 to which we may apply Lemma 2.2 to
obtain D/}(¢(S%(x))-¢(S%(x) Uj(1)))

=D(fi;,6 (S%(x)))P(S%(x))gradf,,,(x)/ | P(S%(x))gradfi,(x) | 2,
and similarly for all other terms which are of the form D/(¢(S%(x) Uj(1)U.. Uj(r))-
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(S VI(HV.. Vj+1)=
D+ y®(S%(x) Uj(DU.. Uj(n)NPE%(x) V(D U .. V(D) gradfi 1, (x)/ | PS%x)Uj(1)U.
. Uj(r))gradfj(r+l)(x) | 2, &)
Then if r+1 <k, P(K)P(S%(x)Uj(1)U.. Uj))=P(K) and P(K)gradf, ., ,(x) =
P(K)P(j(r+1))gradf;,,,,(x)=0. Hence from (*) it follows P(K)D(¢(S°(x)-¢(K)) =0,
and so P(K)D,(¢(8%(x))-0(S(x))) =P(K)D;(¢(K)-¢(S(x)))- (**)

If r+1>k, ie if r>k, PK)P(S%(x) Uj(1)U.. Uj@)=PS%x)Uj(1)U.. Uj{r))and so
using (*)
PK)D,($(S%() Uj(D V.. Uj@)-o(S%x) Uj(H V.. Ujr+1))) =
Dip(S%(x)Ui(1)U.. Uj)-¢(S%(x)Uj(1)U..Uj(r+1))), and hence
PK)D,(¢(K)-#(S,(x))) =P(K)D/(¢(K)-¢(KUj(k+ 1)) + (K Uj(k+1))-...-¢(S(x))) =
D{(¢(K)-¢(KUjk+1))+ ¢(KUjk+1))-...- $(S(x))) =D/(¢(K)-$(S;(x))).

Combining with (**) P(K)D,/(¢(S%(x))-¢(Si(x))) =D/} (¢(K)-$(S;(x))) as required. -

Corollary 2.1 If 8%, ,(x) CK,,K,C S;,,(x) then Did(K,)(x,t=0) =D (K,)(x,t=0) for
all j<i

Corollary 2.2 D{(¢(S°%(x))(x,t=0)-¢(S:(x)) (x,t=0)) E N,(S;(x) in $%(x))

Proof By Corollary 2.1 D}*'(¢(K)(x,t=0)-¢(XUj)(x,t=0)) =0 for all

S%(x) CKCKUjCS,(x); therefore by Lemma 2.2 if S;(x)=S%(x)U(1,..,k) then
D($(S%(0)) (x,t=0)-$(S,(x)) (x,1=0)) =, P(S%(x))gradf, (x) + a,P(S%00) U { 1})gradf,(x) +
... + o P(S;(x)\{k})gradf (x), some scalars o;,a,,..,3, which by the reasoning used to
prove Remark 2.1 parts 1 and 2 is contained in span{P(S%(x))gradf,(x):j=1,..,k} =
span{P(S°%(x))gradf;(x):j € S;(x)\S%(x)}, which equals N,(S;(x) in S%(x)) by Remark
2.1(3).

Remark 2.3 In the case that the submanifold with corners is (at least locally) an
intersection of linear corners (ie LC(I;J) rather than ZN(I;J)) we may dispense with
the S,(x) term in the definition and construction of the iteration and obtain an
equivalent iteration with the S%(x) term only (the Si(x) term is subtacted ultimately to
take care of the bending of the strata away from the tangent cone). Also we can use
Corollary 2.2 to show that an equivalent iteration may be obtained by replacing
T,ZN(S%(x):S,0ONS%(X)) with T,ZN(S%(x);S,0NS%(x) NN (Si(x) in $%(x)); we shall
not need either fact.
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Lemma 2.4 Suppose X is a vector in R* and K satisfies ICKCIUJ; the following are
equivalent
1. PLC; )X =P(K)X
2.(a) PLCEK\I)HX EL(K) and (b) PK)XELC(K;J\K)
3.(a) (X,P(K\j)n;) <0 for all jEK\I and (b) PK)XELC(K;I\K)
Eg if I=9, J=(1,2,3), and K=(1) :

LC(T;1,2,3)

NEN N

LC(1;2,3), a closed subcorner of 1.C(J;1,2,3),
“.with affine span L(1) \\

. \\
PLC(P;1,2,3)X =P()X iff (2) P(LC(@;l))XEL(l)\

and (b) P()XELC(1;2,3)

X4

Figure 2.5

Proof

122 We can check from definitions that if ICKCIUTJ then P(LC(I;J))X=PK)X iff
PALCEL;N)POHX=PXK)P(DX, and that P(LC(I;K\I))X €L(K), PK)X € LCXK;I\K) iff
P(LCI;K\D))P(DX ELK), PK)YP(DXELC(K;I\K), and so it suffices to prove the
result with X replaced by P(I)X €L(I), which is equivalent to proving the result with I
set to J. We first show 1-2a; we show that if for & CKCJ P(LC(I;1)X=P(K)X,
then (X-P(K)X,P(K)X-y) =0 for all yELC(Z;K), which by the Characterisation of
Projection implies P(K)X=P(LC(<;K))X. Consider (y+L(K))NLQ\K) (see Figure
2.6); L(K) and L(J\K) are transverse and hence y+L(K) and L(J\K) are transverse
for all y. Hence (on dimensional grounds) (y+L(K)) N"LI\K) # &. Furthermore if
z€ (y+L(K)) NLJI\K) then z-yEL(K) so (z-y,n;)=0 for all iEK. zE€LJ\K) means
(z,n,)=0 for all iEJ\K. Since (y,n;})>0 for all iEK we have therefore that
z€ELCJ\K;K) which is contained in LC(J;J).
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K
LCUI\K;K), codim 0 in L(J\K)

LC(K;I\K) codim 0 in L(K)

Figure 2.6

Since y-zEL(K) (X-P(K)X,P(K)X-y)= (X-P(K)X,P(K)X-(y-z+2))=
(X-P(X)X,P(K)X-2z), 1. tells us that P(K)X=P(LC(Z;]))X and since z&€ LC(J;]) by
the Charactisation of Projection again we know (X-P(LC(J;1)X,P(LC(Z;))X-z) =0
and so (X-P(K)X,P(K)X-z) =0. This gives P(LCI;K\D))X=P(K)X (ie 1-=2a). 1. also
tells us that P(K)X € LC(I;J) NL(K)=LC(K;\K) (ie 1-2b)

2—1 2a. is equivalent to P(LC(I;J))X =P(K)X hence under conditions 2a. and 2b.

P(K)X € LCL;K\) NLC(K;I\K) =LC(K;J). So PALCIL;K\D))X =
P(K)XELC(K;J)CLCI;]) (since ICKCIUJ) and hence since LC(I;K\I) DLC(I;)),
by Lemma 1.1 P(LC(I;K\I))X=P(LC(I;J))X and hence P(K)X=P(LC(I;J))X as was to
be shown.
2a=3a Fact 1 Span{P(I)e}},cxy =span{P(K\i)e};exy any ICK.

Clearly the right hand side =span{P(K\i)P(I)e;};cx\;, S0 since for i€ K\J (see
Remarks 2.1) P(K\i)P(De;-P(I)e; € span{P(I)e};c i We have
span{P(K\)P(D)e;};c iy C span{P(I)e}iexy- Suppose KNI=(1,..,m). For i,jE(1,..,m)

=0 if 1#]
P(De. , P(K\))P(De,) = <P(K\}))e,e.
Pe, PK\)P(ey = <P(K\j)e,e) 40 if i
- this is so because 1€ K\ if i#], while if i=] (P(K\j)e, &)= | P(K\j)e; | %, so equals
0 iff P(K\j)e;=0, which (by Remarks 2.1(1)) is so iff e;& span{e;:i€ K\j} which
would contradict the linear independence of {g;;j € K}. Thus the matrix A with

elements A;=(P(1)e;, P(K\j)P(I)e;) for i.,j€ (1,..,m) is invertible from which it follows
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that (P(K\1)P(De,,..,P(K\m)P(I)e,) has rank m, which proves the result.

Fact 2 For ICK any w& LC(I;K\I) may be expressed as w=PK)w+Z;cxaP(K\i)e;
for some sequence of reals {a;} with each a;>0.

Write w=P(K)w+w-P(K)w, then if wE L(I),

w-PK)w=PID)w-P(K)P(I)w € span{P(I)e;},cx (by Remark 2.1(2))

=span{P(I)e;};cxy (since P(Ne;=0 if i€E)

=span{P(K\i)e;}icxy by Fact 1. Hence w=P(K)w+E;c;naP(K\i)e; for some
sequence of reals {a;}. wELC(I;K\]) iff wEL(I) and (w,e;) =0 for all jEK\I; hence
w& LCEKNI) iff Tiep{aP(K\i)e;,e) =0 for all jEK\I iff (aP(K\i)e;,e;) =0 for all
JEXKN\I (all other terms =0) and since as in Fact 1 (P(K\i)e,e)= | PK\ie; | 2#0
w& LC(I;K\]) iff a,=>0 for all i€EK\IL.

We now establish that 2ae3a. P(LC(I;K\D))X € L(K) iff P(LC(;K\D)X =P(K)X (via
Lemma 1.1 since L(K) is a closed convex subset of LC(I;K\I) )

iff for all wELC(L;K\D) (X-P(K)X,P(K)X-w)=0, ie (X-P(K)X,w) <0, which using
Fact 2 is equivalent to saying iff for all sequences {a;} with each 3,20
(X-P(K)X,PK)W+EicnaP(K\i)e) <0, ie iff E;ca(X-P(K)X,P(K\i)e;) <0. Then
since (P(K)X,P(K\i)e;) =(X,P(K)e,) =0 for all i€EK\I this is so iff for all iEK\I
(X,P(K\i)e;) <0, as was claimed.

We have observed that because of the property S%(x) CS%(x) CS,(x)CS,(X) N;5:8(%)
exists, is contained in every S;(x) for JEZ* and equals lim;..Si(x); we call this S (x).
Similarly U;,,S%x) exists, contains every S%(x) for jEZ* and is contained in every
Si(x) and hence in S, (x), and equals lim;...S%(x). We have for all i
S%(x) CS%x) C S, (x) CS.(x) CS;(x) CS,(x). In Lemmas 2.5 and 2.6 we consider the
flows ¢(S%,(x)) and ¢(S..(x)). We shall show that on some (0,T) ¢(S.(X))(x,t) lies
in ZP(S..(x);S,(x)\S..(x)) (Figure 2.7a) and that for all j € S°,(x)\S"(x) and at every
point y of $(S°%.(X))(x,t) that (X(y),P(S°(x) \j)gradfi(y)) <0 (Figure 2.7b).

If then S°,(x)=S.(x) we may combine these results and use Lemma 2.4 to infer that
at every point y=¢(S.(x))(x,t) with t€(0,T) P(T,M)X(y)=P(K)X(y) and hence this is
the K alluded to in the overview above - ¢(M)(x,t)= ¢(K)(x,t) on (0,T). In the

analytic case we get a result even if we do not have S$°,(x) = S.(x).
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$(S(X))(X,1) CZP(S £ (%);S1(x\S (X))
for small t>0 by Lemma 2.5

X ZP (S »(x);81(x)\S(x)) open in Z(S..(x))

Figure 2.7a

gradf(y)

Je (@) 0 =X7q0_ )
XS GON) )

L.+

Figure 2.7b. (X(¢(S8%.(x))(x,1),P(S°.(x)\j)gradf(¢(S°.(x)\))(x,1))) <0
for small t>0, each j &€ S°,(x)\S%(x), by Lemma 2.6

Lemma 2.5 If jES,(x)\S,.(x) then

=0 if i<r

Dtifj¢>(soo(x))(x’t=0) >0 if i=r

Proof We have S%(x) CS.(x) CS,(x) UjCS(x) but S,(x) UjZS,,,(x). By Corollary
2.1 D}o(S.(X))(x,t=0)= D/d(S.(x) Uj)(x,t=0) for all i<r. By Lemma 2.2
D/f(S.(x))(x,t=0)=0 for all i<r. Since $%(x) CS..(x) UjCS(x) but

Sa(X) U S 41(x) we know P(S,,(x) UD(4(S°(x))(x,t=0)-¢(S,(x)) (x,t=0))
P(S..(X))D(¢(S°%(x))(x,t=0)-¢(S,(x))(x,t=0)) (by definition of the iteration). We shall
write T, ZN(S°(x);S,(x)\S%(x)) as C, and D/ ($(S%(X))(x,t=0)-¢(S,(x))(x,t=0)) as X,
so by the construction of the iteration again

P(S .. (X))D(¢(S°.(x))(x,t=0)-¢(S,(x))(x,t=0)) =P(C)X,. We have therefore
(P(S.(x))X,,gradf)(x)) =(P(C,)X,,gradf;(x)) 2 0 for all jE€S,(x) and by the beginning of
Lemma 2.2 we know that (P(S..(x))X;,gradfi(x)} =0 iff P(S..(x))X,=P(S.(x) U)X..
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Furthermore (P(S.(x) Uj)X,,gradf,(x)) =(P(S..(x) Uj)X,,P(S (X)) gradf(x)) =0 for all ]
by self-adjointness of P and since P(S,(x) Uj) =P(S.(x))P(S..(x)Uj). By Lemma 2.3
we-know that P(S,(xX) U)X,=D(¢(S.(x) Uj)(x,t=0)-¢(5,(x))(x,t=0)) and
PSx)X,=D/(¢(Se(x))(x,t=0)-¢(S,(x))(x,t=0)), hence
(gradfj(x),DJ(qS(Sm(x))(x,t=0)— &S, (x))(x,t=0))) >0 (=0 because
(gradfy(x),P(S.(x))X,) =(gradf,(x),P(T,ZN(S’(x);S,(x\S%(x))X;) = 0 as j € S,(x)\S,4(x)
and hence j € S,(x)\S"(x); #0 because we noted above that (gradfi(x),P(S..(x))X,) =0
iff P(S(x))X,=P(S.(x))X,=P(S,.(x) Uj)X,, and we also saw that the construction of
the iteration implied that this was not the case if j& S, (x)\S,.,(x)). We have also that
(gradfy(x),Dy (¢ (S o (x) Uj)(x,t=0)-6(S,(x))(x,t=0))) =0 (since
D/ (¢(S(x) U(x,t=0)-¢(S,(x))(x,t=0)) =P(S.(x) U))X,), thus
(gradfy(x),D(¢(S . (X)) (x,t=0)-3(S . (x) Uj)(x,t=0))) >0 and hence by Lemma 2.2
D/ (f;¢(S(x))(x,t=0)) > 0. -

Lemma 2.6 Suppose S (x) CS°(x)UjC 8%, (x) CKCS,,,(x). If we set
gEK) (O =(XEK\)eK)(x,1),P(K\j)gradf;¢(K)(x,1)) , then

=0 if i<r-1

D,z (K)(t=0
g(R)=0) <0 if i=r-1

Proof Since j €K, for all yE Z(K) (X(K)(y),P(K\j)gradf,(y)) =(X(K)(y),gradf(y)) =0;
thus gi(K)(1) =(X(K \})¢(XK)(x,)-X(K)(K)(x,1), P(K\j)gradf,¢(K)(x,t)). By Corollary
2.1 we know D/'¢(K\j)(x,t=0)=D/¢(K)(x,t=0) i=0,..,r-1, hence D/g;(K)(t=0)=0
i=0,..,r-2, and D" g(K)(t=0)=
(DJd)(K\j)(x,t=O)-DJq’>(K)(x,t=O),P(K\j)gradfﬁ(K)(x,t:O)). By Lemma 2.3 we know
PK)X, =D/ (¢(K)(x,t=0)-¢(5.(x))(x,t=0)) and
P(K\))X,=D/(¢(K\))(x,t=0)-¢(S,(x))(x,t=0)) (X, as defined in Lemma 2.5). By
definition of the iteration P(T ZN(S" (x),S,x\S".(x))HX, = P(K)X, iff

S (X)) CKCS,, (x) (X, as defined in Lemma 2.5) and hence by Lemma 2.4 for any
S% (X)) CKCS,, (x) (X,,P(K\j)gradf,(x)) <0 for all jEK\S’(x) . Since K\j is not
between S, ,(x) and S, (x) we must have P(K\})X,=P(K)X,. We know from
Remarks 2.1 that P(K\})X,-P(K)X,=

(P(K\J)gradf(x),X,)P(K\}gradf(x)/ | P(K\j)gradfi(x) | *
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so {(gradfi(x),P(K\j)X,) %0, so by the above <0. By the above
DI($E\)(X,t=0)-$(K)(x,t=0)) =PK\) X, PK)X.. *)
Acting on both sides of (*) with P(K\j), which leaves the right hand side unchanged,
we get (P(K\))D(¢(K\j)(x,t=0)-¢(K)(x,t=0)),gradf(x)) <0, and hence
D,"'g;(K)(t=0) <0 as required.

Proof of Theorem 2.1

(1) By Lemma 2.5 we know that on some (0,t)) f;¢(S.(x))(x,t)>0 for all
JESX)\S, (%), ie that ¢(S,(X))(x,t) EZP(S.(X),S;(X)\S. (X)) on (0,t,).

For any j€ S°, (x)\S,(x) there exists r such that j€S°,,(x)\S°(x), and Lemma 2.6
tells us that with this j then for any S%.,(x) CKCS,,,(x) there exists t(j,K) >0 such
that (Xé(X)(x,t),P(K\j)gradf;a(K)(x,t)) <0 on (0,t(j,K)). S$°(x) satisfies
SO .(x)CS%.(x)CS,,,(x) for all r and hence there exists t,> 0 such that for all
t€ (0,t,) and for all j €S, (x)\S,(x)
(X(8%(x))(x,1), P(S°. ()\j)gradf(¢(S%. (x))(x,1))) <0. If then S°,(x) =S (x) setting
S.(x)=S%.(x)=K, then for y=¢(K)(x,t) with tE (0,t)) we have yE€ ZP(K;S;(x)\K) so
T,M=T,ZN(S%(x);K\S%(x)) and Lemma 2.4 tells us that
P(T,ZN(S% (x);K\S*(x))) X (y) =P(K)X(y) iff
(@) (X(y),P(K\j)gradf(y)) <0 for all jEK\S’(x), and
(b) PK)X(y) € T,ZN(K;K\K)
so (b) is satisfied vacuously, and (a) is satisfied by the above.

We know P(T,M)X(x)=P(K)X(x) because by definition X(M)(x) =X(K)(x) any
S%(x) CKC Sy(x) and we know S%(x) CS°,(x)=K=S,,(x) CS,(x). Thus for all
t€ [0,t) P(T a0 yM)X((K)(x,1)) =PK)X(o(K)(x,t)). The left hand side is by
definition X(M)¢(K)(x,t), the right hand side is D,¢(K)(x,t) so we have
XM)(¢(K)(x,1)) =D (K)(x,t) for all t€[0,t;), and so by uniqueness (Theorem 1.1) of
the solution to the equation X(M)¢(M)(x,t) =Dgp(M)(x,t) for a.a. t€[0,t) we must
have ¢(M)(x,t) =¢(K)(x,t) on [0,ty).

(2) By Corollary 2.1 we have if $°,(x) CK},K,CS.(x)
D/¢(K,)(x,t=0)=D/¢(K,)(x,t=0) for all i and so if the data, and hence the ¢(K)’s,
are analytic we have D/¢(K,)(x,t) =D/¢(K;)(x,t) for all t.

We shall show that ¢(S°,.(x))(x,t) =¢(M)(x,t) for all sufficiently small t>0, and
hence by the above HXK)(x,t) = (8% (X))(x,t) for all Svom(x)CKCSm(x). We showed in
(1) that on some (0,t5) (i) (X (S%(x))(X,1),P(S’(x)\j)gradf,¢(S°.(x)(x,1))) <O for all
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FE S (NS (%), and (ii) ¢(S.(X))(x,t) € ZP(S(x);S;(X)\Sx(X)). Since we have
shown ¢(K,)(x,t) =¢(K,)(x,t) for all S°, (x) CK;CS.(x) we can rework this second
condition as (ii") ¢(S%.(X))(x,t) € ZP(S(x);S;(X)\S«(x)). For tE (0,t,) writing
y=¢(S°. X))(X,1) (=¢(S(X))(X,t) ) we have therefore
T,M=T,ZN(8°(x);S..(x)\S°(x)). If we show P(T,M)X(y)=X(S’.(x))(y) it will follow
by the same reasoning as in the last part of (1) that ¢(M)(x,t) =¢(S°.(x))(x,t) for all
tE[0,t).

Lemma 2.4 tells us that P(T,ZN(S%(x);S.(x)\S% (x)))X(y) =P(S’. (x))X(y) iff

(@) {X(¥),P(S°(x)\i)gradfy(y)) <0 for all j €S’ (x)\S,(x), and

() P(S°.(x))X(y) € T,ZN(S%.(x); S (X)\S°a (x)).

(a) holds by (i) above. We know y=¢(S°,.(x))(X,t) =¢(S.(X))(x,t) and that

D¢ (5% (X)) (X,t) =D (S (X)) (x,t) and so that X(S°,,(X))(¥) =X(S.(x))(y). Then since
X(S (N ET,Z(S (%)) C T, ZN(S°, (x); S (x\S°..(x)) (b) also follows, and hence the
result. -
Example 2.3 For the biological models [60] which originally inspired the thesis we
have a situation of the following form: M={xER™ (x,n;) =p; i=1,..,n}, where {n;}
are an orthonormal set, and X(x)=Ax where A€L(R"R"). Suppose x is a point such
that (x,n)=p; Vv i=1,..,k. We seek the stratum of M containing ¢(M)(x,t) for all tE
(0,8), some 6>0.

We see we have S,(x)=(1..k),S%(x) =9, and using the definition of iteration and
Remark 2.5(1) below we get

S,(x)={i€S,(x)\S%(x):(Ax,n,) <0}

8%(x)={i€S,(x)\S%(x):{Ax,n) <0},

and generally

Sua®)={ES,_ ,)ON\S%,;(X):{(P(S°, . (x)A)™x,n) <0} U S, (%)

S X)={ES, ,(CONS,,(x):{(P(S°,. . (x))A)™x,n;) <0} U S°,, ,(x), where
P(K)A=A-Z,cxnn"A.

If S, (x)=S°,(x) we know by Theorem 2.1(1) that

{xER™(x,n)=p; VIiES_ (), (x,n)>p; Vi€ (1..K\S,(x)} is the stratum we seek.
Alternatively if we arrive at a state where it is evident that S%(x)=S°,(x),
S,(x)=S_(x) V r=m, then since the system is analytic we may apply Theorem 2.1(2)

with the same result.
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Remark 2.5
A submanifold with orthogonal corners is a submanifold with corners such that for
‘some neighbourhood of each point there exists some local representation
ZN(IY)=ZN(f,, .., T festse - fesm) With (gradfi(x),gradfi(x)) =0 for all x€ ZN(I;J) and
for all i,j EIUT with i#j. This category includes orthants and sets formed out of
orthants and balls, such as {xER"x; =0 for all i€K;, a*<L;ex x’<b?} for
K,,K,C(l,..,n) and not necessarily distinct reals a,b (Figure 2.8), as well as of course
submanifolds with smooth boundary. While this notion of the corners of a
submanifold with corners being orthogonal will suffice for our purposes it is obviously
very crude: it has in particular the drawback that the defining property will not hold
for all local representations even if it holds for one - eg, M={xER"x,; >0,
1h <x.2+x%,2<1} (Figure 2.8) is a submanifold with orthogonal corners of R", and
near a point with x,=0, x,2+x,>=1 we can choose for the functions in our
representation f,(x)=x,/x,,f,(x)=1-x,>-x,> whose gradients are othogonal near this
point, but if we choose instead f£;(x)=x,;,f,(x) =1-x,>x,?, which is also a local
representation of M, the gradients are only orthogonal if x,=0.
This situation arises because the "intrinsic" property of a submanifold with orthogonal

corners is that gradfi(y),gradf(y) are perpendicular at every point y where fi(y) and
f(y) are both zero, not everywhere on M.

Figure 2.8. A submanifold with orthogonal corners

(1) We show that if M is a submanifold with orthogonal corners (with local
orthogonal representation ZN(I;J)) then for each y in the domain of this representation

XM)(Y) =X ()Y + Ties pnalgradfi(y)/ | gradf(y) | *)max((gradf(y),X(y)),0).
From Chapter One X(M)(y) is the unique vector in T,M such that
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| XM)(y)-X(y) | =min{ | X(y)-Y | :YET,M}. Near y M is locally represented as
ZN;S,(y)\D, with TM=T,ZN(;S,(y)\I). By Remark 2.1 we have
Y-P(T,Z(S,(y))Y € span{P(I)gradf(y):i € S,(y)} and by orthogonality of {gradf(y)} we
find this gives Y=P(T,Z(Sl(y)))Y+EieSx(y)(Y,gradfi(y))gradfi(y)/ | gradf(y) | 2 and
similarly X(y) =X(Sx()’))+Eies‘(y)<X()’)’gradfi()’))gradfi(yy | gradfi(y) | 2.

Thus | X(y)-Y | is minimized over YET,ZN(I;Sl(y)\I) by choosing
P(T,Z(S,(y)) Y =X(S:(y)
(Y,gradfy(y))=0if i€I
(Y, gradf(y)) =max{(X(y),gradf(y)),0} if i€ S,(y)\I
which is the required result.

(2) We show why in Example 0.2 we needed the angle between F, and F, to be
greater than a right-angle if the transition at y; was to occur. In fact we show in
general that if M is a submanifold with orthogonal corners then for any x&M and
t>0 if o(M)(x,t) €a stratum o then X(M)d(M)(x,t) =X(0)pM)(x,t) (such clearly was
not the case at y; in Figure 0.2).

If (M)(x,t)=y€E o (see Figure 2.9) then working with the usual local representation
of M near y (ie ZN(S°,(y);S;(y)\S’%(¥)) ) X(0)y=X(S,(y))(y): from (1) above therefore
if X(M)(y) # X(0)(y) then {gradf,(y),X(y)) >0 some i€ S,(y)\Il. By continuity (of
y->(gradf(y),X(y))) there exists h>0 with t-h>0 such that
(gradfip(M)(x,5),X(¢(M)(x,s))} >0 for all s€ (t-h,t), which implies by (1) again that
(X(M)p(M)(x,5),gradf,p(M)(x,s)) =(Xd(M)(x,s),gradf,p(M)(x,s)) for all s€ (t-h,t).
Hence f;p(M)(x,)-fio(M)(x,t-h) = { {,(gradfi(¢(M)(x,5)), X(M)p(M)(x,5))ds=

§ tu(gradfi(eM)(x,5)), X(¢(M)(x,5)))ds >0.
We know f,o(M)(x,t-h) =0 since ¢(M)(x,t-h)EM, hence f;p(M)(x,t) >0 which is a
contradiction to 1€ S,(y). L

Figure 2.9
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Chapter Three
The Iteration In Relation To Right-hand Derivatives

We have seen in Chapter Two that if the iteration at x converges to a single stratum
(or to be precise a single set of indices representing a single stratum) then this stratum
contains ¢(M)(x,t) for all sufficiently small positive t. This chapter and part of
Chapter 5 will be concerned with what the pair (S%(x),S;(x)) is telling us at each stage,
even if the data is only smooth and we have no a priori reason to suppose that the
iteration will ever converge to a single stratum. If Theorem 2.1 applies at x then for
some t,>0 ¢(M)(X,t) =¢(S.(X))(x,t) for all tE[0,t)), and so ¢(M)(x,t) has right-hand
time derivatives at t=0, denoted D,*'¢(M)(x,t=0), of all orders and equal to the
two-sided time derivatives of ¢(S,(x))(x,t) at t=0. Since (by Corollary 2.1)
D/¢(K)(x,t=0)=D/¢(K,)(x,t=0) for all S%,,(x) CK;,K,CS;,(x) it follows that in
these cases D, *'p(M)(x,t=0)=D/¢(K)(x,t=0) for all S%,,(x) CKCS,,,(x), and we
show in this chapter that that this remains so if the (i+1)th stage of the iteration is the
last we reach and where even had we continued ad infinitum it may still not have
provided us with a single stratum containing ¢(M)(x,(0,8)). We shall in the process
obtain an alternative definition of trajectory (=solution): ¢(M)(x) is a trajectory iff
D o(M)(x,t) =X(M)p(M)(x,t) for all tE[0,t) (this has been established by Henry in
[31] for the case M is an orthant).

Definition (One sided derivatives) If ¢ is a map ¢:[0,T)-»R" some T >0, such that
limy, (¢ (h)-¢(0))/h exists, say the limit is D*$(0) and inductively if D*'¢(h) exists for
all h€[0,T) some T>0 and lim,,(D*'¢(h)-D*¢(0))/h exists denote the limit by
D*@+D(0). Similarly for left-hand derivatives: if D¢(h) exists on (-T,0] some T>0
and lim,, ((D7$(0)-D7¢(-h))/h exists denote the limit by D¢*P¢(0). If right (left) hand
derivatives of all orders exist at 0 say ¢ is C** (C*) at 0. ¢ is C* on U open in R
iff at every point tEU ¢ is C*=,C* and D*i¢(t) =D ¢(t) for all iEZ*.

Theorem 3.1 If M, X are smooth (with M near x locally represented in the usual way
as ZN(S%(x);S;(x)\S%(x))), then for every XEM ¢(M)(x,t) is C** for all tE[0,t)
(where t, is as in Theorem 1.1) and D,*'¢(M)(x,t=0)=D,'¢(K)(x,t=0) for all

S%, ,(x) CKCS.,,(x), and D,*6M)(x,t=0)= X(M)$(M)(x,t=0).

This will be proved after Lemma 3.2. The last part (that D,*¢(M)(x,t=0)=
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X(M)p(M)(x,t=0)) has been proved in the case M is an orthant by Henry [31]). We
can see Theorem 2.1 is plausible by reconsidering Example 2.1:

Example 3.1 In Example 2.1 we had X(x,y)=(1,f(x)) where

(1/x%exp(-1/x)(sin(1/x)-cos(1/x)) if x>0

f(x)=
®) 0 if x<0

on M={(x,y) ER*y>0} and established that the trajectory based at the origin looked
like

O N N ,/}\>f/\
th b 4 ts ty t

Figure 3.1
where 1/t,=mw+x/4. We can check that $%(0)= and S;(0)=1 for all i. Evidently

the conclusion of Theorem 1.1 holds away from the origin. We can readily show by

ad hoc means that it is C** at 0: on (t,t,,) for m odd

d(M)(0,t) = (t,max(0,exp(-(t-t,) ")sin(t-t,) ), and thus on (t,,t_,) for m odd
D,"'¢M)(0,t) =(D/(t),D,*'g(t)) where D,*'g(t)=0 or D/(exp(-(t-t,)")sin(t-t,)"). For
large m t,,<2t, and hence for all t€ (t_,t,,) 1/t, <1/(t-t,) and hence

SUP.e, 1, o (1/ODIEXP(-(t-t) Dsin(t-1) ") < supee g, (1t DIHEXP(-(t-t) sin(t-)™) <
SUPie_ 5 (1/(t-t))D(exp(-(t-t,) )sin(t-t,) ). D/i(exp(-(t-t,) )sin(t-t,)™) is a sum of
terms of the form (t-t,)*exp(-(t-t,) Dsin(t-t )" or (t-t,) exp(-(t-t,))cos(t-t,)! (k=1)
and since for t& (t,,t,,) 1/(t-t,) > 1/(t,-t) =(2#/3)(m+1/4)(m-5/4) we can see by
substituting u, =1/t ty) that supieq o 2)(1/t)Dj(exp(—(t-g,,)")sin(t—tm)")—>0 as m—>oo for
all i.

We have set ¢(M)(0,t)=(t,g(t)) and the above tells us that (1/t)D,*'g(t)=0 as t -0 for
all i=0. Thus g(t)/t - 0 so D,*g(t=0)=0, (D,*g(t)-D,*g(0))/t=D,*g(t)/t = 0 as t-=0
so D,*?g(t=0)=0, and inductively D,*g(t=0)=0 for all i. Thus at the only point
which might have presented a problem (ie the origin) we are saved because there is at
this point an infinite order tangency between ¢(<J) and ¢(1) (that is to say,
D/#(2)(0,t=0)=D,i¢(1)(0,t=0) for all i).

To recap: to prove Theorem 3.1 we are necessarily interested in infinite order
tangencies, because if there aren’t any then by Corollary 2.1 §°,(x)=S,(x), so we
could apply Theorem 2.1, and the conclusion of Theorem 3.1 follows immediately.
The above example suggests that if there is an infinite order tangency at x between

$(K;) and ¢(K,) for all ICK,,K,CIUJ we could stitch together an inductive proof
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that ¢(M)(x) is right hand smooth at x. We must though consider how to deal with the
situation where S°,(x) #S..(x), and hence the flows ¢(K) with K between these
bounds are infinitely tangent at x, but $°,(x) #S%(x) or S..(x) #S,(x) and hence other
strata are present locally (Figure 3.2); we would like to show that on some (0,8)

dM)(x,t) is disjoint from these, and hence that we could apply the above idea on a
subcorner of ZN(I;J).

ZP(K,;1\Ky)
/
dM)(x)
/ ZP(K;\K))
X ZP(K;;0\K5)

Figure 3.2
For example, in the context of Figure 3.2, if $°,(x) CK;,K,CS.(x) and so ¢(K,) and
¢(K,) have an infinite order tangency at x, we wish to show that on some (0,6)
#(M)(x) does not intersect any ZP(K;;J\K;) where K; does not lie between S, (x) and
So(X).

None of the results so far will tell us this: to apply Theorem 2.1 we needed

S (x)=8°,(x). What we do is to use Lemmas 2.5 and 2.6 to show that there exists a
finely tapered set in ZNP(S%,(X);S . (x)\S%.(X);S;(x)\S (X)) which is mapped into
itself by the flow and contains x in its boundary, which is exactly the result needed.

Definition We define the canonical r-funnel F (q,r)={(t,x) ER'XR*::t>0, | x | <t}.

If X is a non-vanishing C* vector field on a C* gq-dimensional submanifold without
comners S, with corresponding flow ¢, we have by the straightening-out Theorem ([1,
Chapter 4], [37, Chapter 5] etc) that any point x in S has a neighbourhood U for
which there exists a C diffeomorphism f:U—-R* such that f.X=unit field & on R (ie
for all yER? &,(y)=¢,=(1,0) ER'XR*!, with flow yY(y,t)=y+te,;, yERY), and so that
fo(x’,t)=y(fx',t), for all x’ € U. We say f'F,(q,r) is an r-funnel about the trajectory
¢(x) in S (Figure 3.3).
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f
flow ¢ on S maps to
unit flow on R*

Re

= : A # @
Fq,n)”
flow of &, - //ﬂow ¢
/
S, a C" boundarlyless
~———ubmanifold

Figure 3.3

Lemma 3.1 If X is any smooth vector field on R% with corresponding flow ¢ agreeing
with the flow of the unit vector field &, above to infinite order at the origin (ie
D¢(0,t=0)=e,=(1,0) ERXR* D/¢(0,t=0)=(0,0) for all i>1) then for any r€Z"
there exists a neighbourhood U of the origin such that for all x€dF.(q,r)NU X(x)

points into F.(q,r) (Figure 3.4).

S

dF.(q.1)

//’é(w/
| o N E

e - - ~
flow ¢ having infinite order tangency with &, at O

o

Figure 3.4

Proof We shall denote the set of unit vectors in R¥! by S%2. Setting y,(t) = t'0+te,

where € S%? we have JF.(q,r)=U {{,(1):0€ S¥%,t=0} (see Figure 3.5).
/
Rq-l !

!

g {Yu(1):t=0}

Figure 3.5
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The tangent space to dF.(q,r)at y,(t) has inward pointing normal n(y,(t)) =t"re,-0.
Setting g,(t) =(n(¥s(t)),X(¥4(1))) we seek D,/g,(t=0). From the definition of y, we have
that Dy, (t=0)=D,$(0,t=0) if i<r-1, hence D Xy,(t=0)=D/*'¢(0,0) if i<r-1, so

e, if i=0

DXy (t=0)=
K4(t=0) 0if 1<i<r

1! {e,,e) if i=r-1

Thus D,/g,(t=0)=
& )[ 0 if 0<i<r-1

and hence g,(t) =t"1(r+ (t/r1)D/g,(ut)) some u € (0,1) by Taylor’'s Theorem, and if
M=sup{ | D/g,(t))/r!r | :tE[0,1],€ S**} (which is finite for fixed r>0 by
compactness of S¥2 and smoothness of the data) we have g,(t)>0 for all  if
0<t<min(1l,1/M), and setting U=(0,min(1,1/M)) XR?*! (that is, (0,min(1,1/M)) as an
open subset of R) we get (X(x),n(x)) >0 for all x€ dF,(q,r)NU\{0}, while at the
origin X(0)=e,. -

We will show (Lemma 3.2) that for large enough r the intersection of an r-funnel in
Z(S°,.(x)) about ¢(S%. (x))(x) with M is , if x itself is deleted, disjoint from all strata
ZP(K;J\K) such that ¢(S%.(x))(x) is not infinitely tangent to ¢(K)(x) at x, and
furthermore is mapped into itself by the flow ¢(M) near x and hence contains ¢(M)(x)
(see Figure 3.6).

N
flow of ¢(M)

o(M)(x)

A \
_— B8 ()
flow of ¢(M)

The intersection of M with an
r-funnel in Z(S°.(x)) about ¢(S%.(x))(x)

Z(S°.(x))

Figure 3.6
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These funnels depend on x,M r,X, the straightening-out map f and S°,(x,M,X), and
will usually be denoted by F(r,f), with a funnel satisfying the conclusions of Lemma
3.2 ' usually denoted by F, (this amounts to choosing r large enough and a
particular choice of f), and its intersection with ZN(S°,(x);S.(x)\S’.(x)) by F,".

The reader may like to think of funnels in the following way. Classically, if X was a
smooth vector-field on a smooth manifold the trajectory through a point x, ¢(x), was
smooth. Now if M is a smooth vector-field on a smooth submanifold with corners M
$¢(M)(x) is only guaranteed to be smooth on a right neighbourhood of t=0 if the
conditions to apply Theorem 2.1 apply (viz that the iteration converges to a single set
of indices). Otherwise we may have a situation such as illustrated in Example 2.1
where ¢(M)(0) is not smooth on a right neighbourhood of t=0. Thus in general the
best we can do (if smoothness is what we’re after) is to replace "smooth ¢(x)" with
"smooth F,'", which contains the non-smooth ¢(M)(x) and has various additional
properties mentioned above and proved in Lemma 3.2 below. These properties of the

funnels are the basis for the proof of Theorem 3.1.

Lemma 3.2 If M is a smooth submanifold with corners and X is a smooth vector
field on M, with M near x locally represented as ZN(S%(x);S,(x)\S% (x)), then there
exists ry(x) € Z* such that for each r=r, there exists a neighbourhood U of x in R
and a funnel F, =F(x,ZN(I;]),r,X,f,S% (x)) in Z(S°,(x)) of X(S°,(x)) about

(5%, (x))(x) and corresponding closed subsets F, =F,NZN(S°,(x);S o (X)\S’(x))
such that

1. F,'NUN\{x} CZNP(S",(x);S « (XON\S". (x)5S,(X)\S(x)) (= a subcorner of
ZN(S%,(x);S,()\SY,(x)), so F," CTM)

2. X(M)(y) =X(K)(y) some not necessarily constant K with S°,(x) CK CS,(x) for all
yeEF,/NU

3. X(K)(y) points into intF, for all y€dF,NU for all $°,(x) CKCS.(x)

4. §M)X)NUCF,'NU

Eg take M={x:x,=>0,i=1,2,3} CR?, X(x)=(1,f(x,),-1) with f as in Example 2.1. We
have then that S*,(0)=@ and S,(0)=(1,2,3), S%(0)=(3) and S,(0)=(1,3) for all i=2.
Then our funnels F, are of the form {x€R*x;=0, | x, | <x,",x,=0}, and F," is of

the form F,N {x:x,>0} (Figure 3.7).
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Z(3)DE,DF, Dé(M)0)

Figure 3.7
Alternatively take M as above and set X(x)=(1,x,,f(x,)); then S%(0)=4,
S:(0)=(1,2,3), S%0)=3, S,(0)=(1,3), S%0) =9, S,(0)=(3) for all i=3. The funnels
F, are of the form {x ER* | V/(x2+x5)-2x.2 | <x,7,x,=0}, and F,’ is of the form
F,N{x:x;=0}. $(M)(0) is as in Figure 3.1, with the x-axis there mapped to the curve

{x,=0,x,="x,?} and the y-axis pointing in the x,-direction (Figure 3.8).

Figure 3.8
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Proof The convention in this chapter (and in fact in Chapter Seven) will be that
dim(Z(8°»(x))) =q.

(a) We show that there exists 1,€Z* such that for some neighbourhood U of x a r,-
funnel F,(r,,f) about ¢(S°,.(x))(x) in Z(S°,(x)) (and therefore F,(r,f) for any r>r,) has
the property that F,(r,,f) N U\{x} C ZP(5°,(x);S;(X)\S(X)). We have defined
F./'=F,NZN(S’,(x);S.(x)\S%.(x)) so if we show this then

F,' NU\{x} CZNP(5°.(x);S o (x)\S°, (x);S,(X)\S.(x)) which is part (1) of Lemma 3.2.
For each j&€S,(x)\S.(x) there exists rj)EZ* such that jE€S,;(X)\S,4+1(x) and by
Lemma 2.5 we know that

D/f(S,.)(x,t=0)= [ O for %H .i<r.®
e k>0 if i=r(j)

We take 1,=1+max{r(j):;j € S;(xX)\S.(x)}. Suppose we set y,' =f'y, where f is the
straightening out map used in the definition of funnel and ¥, is a curve in dF(q,r;), as
in Lemma 3.1. Since by Corollary 2.1 D/$(S..(x))(x,t=0) =D (S8, (x))(x,t=0) for
all i and by definitions Dy, (t=0) =D/¢(S°..(x))(x,t=0) for all i <r,, it follows that

0 for all i<r(j)

D"fjtﬁo(t:O):[ k.>0 if i=1()

Hence £l (1) =tO((r(G) + Dk;+tDO* il (ut))/(x(G) +1)!) some p€ (0,1), which is
positive for t& (0,6(6)] say, and by evident continuity of i}, in 8, fif,' () >0 if
t€ (0,5(6)] and ¢’ € some neighbourhood of 8, U,. We get a covering of S%2 by such
U,’s, and by compactness of S¥2 there exists a finite subcover S%2=U {U,: §€ 6}
where © is a finite set in S¥2. So fy},'(t) >0 for all 8 if t& (0,min,c6(6)]. Repeating
for each j€ S;(X)\S.(x) we obtain a neighbourhood U of x in Z(S°,(x)) such that for
all y € 9F,(r,,f) NU\{x} and for all € S,(x)\S.(x) f(y) >0, and since by definition
F,(r,H) C Z(S%.(x)) we have F (r,,)) NU\{x} C ZP(5°.(X);S;(x)\S.(x)), and hence
F,' NU\{x} CZNP(5°,(x); S (x)\S° (X);S,(X)\S (x)) as required for (1).
(b) We show that if X is a vector in R® such that for some K with ICKCIUJ
(X,P(K\j)n;) <0 for all jEK\I then there exists ¢>0 such that if

| (PK)X,ny) | / | PCK\DX,n) | <e for all iEJ\K and for all jEK\I then
PALCI;T)X=X(H) some KCHCIUJ.
(i) For any X€L(I) we have by Remark 2.1(1) that for some {\, ¢},
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X-X(IU]) =L, c NP0+ Zie nk6P(Dn;. Then for any jEIUJ
(PK)(X-PAUNX),n) =L, nileP(K)ny,n;), and since ICKCIUJ and jETUJ the left
hand side is (P(K)X,n)-(PAUDX,n)=(P(K)X,n;)-0
Hence if we set Ny=(P(K)n;,P(K)ny, for i,j €I\K,N"=inverse of N in
span{P(K)n;;i€J\K} (this inverse exists by Remark 2.1(2)), and p;=(P(K)X,n;), then
Ne=p or e=N"p.
If §E KNI then (P(K\})X,n,) =<P(K\j)X-P(IUJ)X.n~) =(P(K\))(X-PIUT)X),n,)
=(P(K\)) Ciexahini+ Lienken; =\ | P(K\))n; | 24+ ZienuleP(K\j)n;,n J>
It is then straightforward to check that given any 6> 0 there exists 1/e so large (how
large depends on the invertible matrix N) that if (P(K\j)X,n;) <0 for all jEK\I and
(PK)X,ny)/(P(K\J)X,n) <e for all jE€ K\I and for all i€J\K, then \;<0 and

| &/ ]N| <& forall suchi,j and ¢;,\; as above.

A
(11) We know eg by Lemma 1.2 that P(LC(1;]))X=P(H)X some ICHCIUJ. We must
have P(H)X € LC(H;J\H) so (P(H)X,n) =0 for all JEJ\H, so

(PH)X,(Ziex | A | n) =0 (where K is as above). But since (P(H)PAUIDNX,n)=
(PAUNX,n)=0if i€1UJ,and each A\;<O,we have

(PH)X,Ziexu | Ai | nd=( P(H)(X-PIUNX),Zicion | N | np) =

(PH)(Zienhiny +E|€J\K6|nx Zieww | Nl n) =

| PH)(Zicinrin) | Lienk&N: PO (Bicon A ny)).
We have | P(H)(Z;eK\HN”i) | =0 iff K\H=2, ie iff KCH. If KZH then
- | P(H)(ZieinnAin) l Lierk€n, PAHD) (T I A n)) =

- | PE)Ciepanhin) | (1 H{(Cienkein), PH) Ciexen | M T )Y | PE)Cicionhind | 9.
(e ke, PH)Cic I AN ) | POED(Zcapnhiny) | 2 is small by (i), and hence

- | PE)Eicionhin) | 2+ (Eienwemn, PH)Eiexn | N | 1)) <0, contrary to
(PAE)X,(Zicxen | A ] 1)) =0. Hence we must have HDK as claimed.

(c) We showed in (a) that there exists an integer r, such that for any r=r, there exists
an r-funnel F,=F(r,1) about ¢(S",(x))(x) satisfying for some neighbourhood V of x
UNF,(r,H\{x} CZNP(S".(x);S 0 CO\S"% (x);S,(x)\S,(x)). We now show (2), ie that
for all y€F,'NU X(M)(y)=X(K)(y) some S’ (x) CKCS_(x). F,' N U\{x} intersects
strata ZP(K;S,(x)\K) for all $'_(x) CKCS,(x), and taking y&€ ZP(K;S,(x)\K) we
have T M=T,ZN(S" (x);K\S" (x)) and we must show
P(T,ZN(S’,(x);K\S" (x ) X (y) =X(K')(y) some S',(x) CK'CS.(x). By (b) above it
suffices to establish two conditions, that (P(8",.(x)\j)X(y),gradf|(y)) <0 for all
JES L (NS (x), and that (P(8',.(x))X(y).gradf(y))/(P(S..(x)\j)X(y),gradf(y)) is
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arbitrarily small for all iEK'\S°,(x) and for all j € S°,(x)\S°(x).

If yEF,(r,f)\{x} then we may write y=y,(t) where b& the closed ball B™! with
m=n-dimZ(S°,(x)), b being a parameter in the cross-section to F,(r,f) (with b—>y,(t)
continuous for each t) and DY, (t=0)=D,¢(S°.(x))(x,t=0) for all i<r (see Figure
3.9).

$(S°=(x)(x)
¥

- ~ . .
B™!, Tepresenting a cross-section of F,(r,f)

Figure 3.9
We know by Lemma 2.6 that for all K satisfying S°,(x) CKCS_.(x) and
JE S (x)\S°(x) that there exists r(j)EZ* such that jES°;,,(x)\S%;(x), and setting
g(K)(®) =(XEK\)$(K)(x,t),gradf;p(K)(x,t)} then

0 for all 0<i<r(j)-1

Dtgj(K)(FO):[ kj/ <0 if i=r(j)-1

If we now take r=max{{r, of part (a)},{r(j)-1 for jES’°, (X)\S.(X)}} (where r(j) is as
in Lemma 2.6) then setting h;(b)(t) =(X(S% (x)\))¥»(t),gradf;/,(t)) we have since
D/, (t=0)=D,(S°, (x))(x,t=0) for all i<T that

=0 for all 0<i<r1(j)-1

D,h(b)(t=0) <0 if i=r(j)-1

and hence by continuity of b, that h,(b")(t) <0 for all t&(0,T(b)] and for all b’ in
some neighbourhood U, of b in B, By the same argument as in (a), we may use
compactness of B™! to infer that there exists T>0 such that hy(b)(t) <O for all
t€ (0,T] and for all beﬁm-l, ie that there exists a neighbourhood U of x such that for
all yEF,(r,f)NU\{x} and for all jES°, (x)\S°(x) (P(S°.(x)\j)X(y),gradf(y)) <O0.
Thus we have shown the first of the two conditions. For the second, we have
("theorem of indeterminate forms") that if g,h:R—R are smooth with
D/g(t=0)=D/h(t=0)=0 for all i <r(j)-1, and D, 'g(t=0)=0, D 'h(t=0) <0, then
lim_g(t)/h(t)=0.
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Thus if we set g;(b)(t) =(P(S°. (X)X (t),gradfy(t)) for jE€S.(x)\S°,(x), and
hi(0) (1) =(P(S°. )\ X (1), gradfi (1)) for jE S (x)\S%(x) (ie, h;(b) is exactly as
above), then the second condition will follow if we can show that D/g;(b)(t=0)=0 for
all i<r(j), D/hj(b)(t=0)=0 for all i<r(j)-1, and D7¥'h;(b)(t=0) <O0. Dealing first
with the g;(b) term, we have by construction of v, that for all i<r(j)
DH(P(S° (x)) X, (t=0),gradfy(t=0)) =
D{(P(S°. () X (S’ (x)) (x,t =0),gradf;p (S’ (x))(x,t=0))
=D, f;¢(S°.(x))(x,t=0), which=0 for all i=0 and for all jE€ S,.(x)\S°.(x) by
Lemma 2.2 and Corollary 2.1. h(b)(t) we have already dealt with above; we saw that
setting hy(b)(t) =DXP(S%.(x)\)) Xy, gradfi, (1)) then

=0 for all 0<i<r(j)-1

D/hy(b)(t=0) <0 if i=r(j)-1

which is exactly the result we need.

Hence for all j€S,,(x)\S%,(x) and for all i€ S, (x)\S%(x), for all sufficiently small
>0 (P(S% (X)X (Y(1)), gradfy($(H))/(P(S%()N)X (Y5(1), gradfi(¥,)(1)) <O, and hence
as above for some neighbourhood U of x this quantity is <0 on F,(r,f) NU\{x},
which completes the proof of (2).

(d) For all $°, (x) CKCS,.(x), f.X(KeS°,(x)) is a smooth vector field on R* (where f
is our straightening-out map and X(KeS°,,(x)) is as defined at the beginning of
Chapter Two) with integral flow f.¢(KedJ) (the integral flow of the push forward is
the push forward of the integral flow - eg [1, Section 4.2]) and furtheremore by
Corollary 2.1 D/f.¢(K,e ) (x,t=0)=D/f.¢(k,ed)(x,t=0) for all iEZ* and for any
S%,.(x) CK,,K,CS.(x), so by Lemma 3.1 there exists some neighbourhood U of the
origin on which £.X(KeS°, (x))(x) points into F.(q,r) for all x&€ dF.(q,r), and hence
there exists a neighbourhood V of x in Z(S%.(x)) such that X(K)(y) points into F,(r,f)
for all y&€ dF,(r,f) NV, which is (3).

(e) (2) and (3) imply F,’ U is mapped into itself and we can then use continuous
dependence on initial conditions (Theorem 1.1 part 3) to obtain (4).

Proof of Theorem 3.1

(1) By absolute continuity of ¢(M)(x) we have
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dM)(x,h)-¢M)(x,0)= | XM)$(M)(x,s)ds and hence
| #M)(x,h)-6M)(x,0)-hX(M)d(M)(x,0) | <
§ 5 1 X(MM)dM)(x,5)-X(M)(M)(x,0) | ds (by [48, Chapter 1])
< | h | sup,ep | XAMDSM)(x,5)-XM)$M)(x,0) | (also by [48, Chapter 1J).
By Lemma 3.2 part 4 ¢(M)(x,s) €F,’ for all sufficiently small s=0, and by Lemma
3.2 part 2 for all such s X(M)p(M)(x,s) =X(K)p(M)(x,s) some S°,(x) CKC S (x).
Hence since X(M)(x) =X (K)(x) for all §°,(x) CKCS,(x) we must have
sup{ | X(M)pM)(x,8)-XM)dp(M)(x,0) | :s€[0,h]}>0as h{0 hence
limyso | M, h)-QD(x,0)-hXAHSM)(x,0) | / | h | =0.
Hence D,*¢M)(x,t=0) =XM)pM)(x,t=0) =X(K)$(M)(x,0) for any
S%,.(x) CKCS..(x), so by Corollary 2.1 D,"¢(M)(x,t=0)=X(K)$(M)(x,0) any
S%(x) CK CS,(x).
(2) Since for small t>0 ¢(M)(x,t) €E F,NUN\{x} CZP(S°..(x),S;(X)\S. (X)) (see part (a)
of the proof of Lemma 3.2) we have S,(¢(M)(x,t)) CS..(x) for small t>0. Returning
to part (c) of the proof of Lemma 3.2 we see that at each point y of F,’NU, and
hence of ¢(M)(x,t) for t small and >0, (X(K\j)(y),gradfi(y)) <0 for all
FE S, (X)\S%(x) any S°,(x) CKCS,(x). Thus by part (c) of the proof of Lemma 3.2
this means (since M near y is represented as ZN(S%(x);S.(x)\S%(x)) ) that we cannot
have X(M)(y) =X(H)(y) any HC S°..(x), hence S%(¢(M)(x,1)) D S°, (x) for t small and
positive. Thus for such t we have S°, (x) C S%(¢(M)(x,1)) C S,(¢(M)(x,t)) C S(x) so by
the construction of the iteration S°(x) C 8%, (x) C S%(¢M)(x,t)) CS°. (¢(M)(x,t)) C
C S, (eM)(x,1)) CS;(d(M)(x,1)) C S, (x) CS,(x), for all sufficiently small t>0 and for
all xEM.
(3) We take as inductive hypothesis that for all i<k and for all x&M
D,*'¢(M)(x,t=0) exists, and that D,*'¢(M)(x,t=0)=D,¢(I)(x,t=0) any
$%,.(x) CICS,.(x) (and hence by Corollary 2.1 for any I such that
8%, () CICS;1(x) ).
The inductive hypothesis is true if k=2 by (1). We have by definition
D, *¢(M)(x,t=0)=limy, o(D, " *P$(M)(x,h)-D,* “Pp(M)(x,0))/h (**)
if the right hand side exists, and by the inductive hypothesis
D, ®“Po(M)(x,h) =D o (M)($(M)(x,h),t=0) any S°. (M) (x,h)) CIC S (¢(M)(x,h)),
and so by (2) D,*®PoM)(x,h) =D ') (¢(M)(x,h),t=0) some S°,(x) CIC S (x).
Thus for each small h>0 we may select a set of indices I(h) where

S%.(x) CI(h) CS..(x) such that D,**P¢(M)(x,h) =D '¢I(h))(¢(M)(x,h),t=0).



55

1 if I(h)=I,
Setting 6,(h)= .

0 otherwise
where each I, is one of the 2!8-0\’-® | set of indices lying in the range
S%.(x) CL,CS..(x), then since D,**DpM)(x,t=0)=DX'¢(I)(x,t=0) for all
S0 (x) CICS,.(x) the right hand side of (**) is
limy, oZ;(8;(h) (D, o Le D) (¢ M) (x,h),t=0)-D'¢(I)(x,t=0))/h . *)
(In this formula we need ¢(Ie<J) rather than ¢(Iy) because ¢(I)(¢(M)(x,h)) is only
defined if ¢(M)(x,h) € Z(1). Of course, if ¢(M)(x,h)& Z(L) then §,(h) =0, so the need
for ¢(IeJ) is purely formal).
(4) If Y is any smooth vector field, ¢ any smooth flow, set Yi(x)=DY(x,t=0). We
show limy, (Yi(6(x,h))-Yi($(x,00))/h = Yi*!(x). Yi(o(x,h))=
DY d(d(x,h),t=0), but $(é(x,h),H)=d(x,t+h) s0 Yi(d(x,h)) =D/ Y (x,t+h) | g
Hence lim,, o(Yi(é(x,h))-Y(¢(x,0)))/h =
limy ;oD Y (¢(X,t+h)) | (=D Y(@(X,1) | 1=0)/h = DD Yd(x,t+h) | (oo =
D/Yo(x,t=0)=Y*!(x).
(5) We show that if Y is any C! vector field, ¢ a C° right differentiable function
¢:[0,T)»R" with | D,*¢ | bounded on compact intervals, then limy,(Y¢(h)-Y¢(0))/h
= Y'(¢(0))D," ¢(0).
Proof- by Cl-ness of Y | Y(¢(h))-Y($(0))-Y' ()(¢()-¢(0) | =k | $(h)-6(0) | where
k=0 as | ¢(h)-¢(0) | =0. Taking sup,eop | Di¥¢(t) | =M we have by the right sided
Mean Value Theorem ([14, Chapter 8.5, problem 2]) that | ¢(h)-¢(0) | <Mh and
hence by continuity of ¢ that | Y¢(h)-Y(¢(0))-Y'(¢(0))(¢(h)-$(0)) | <khM where
k-0 as h—{0, hence result.
(6) Set D/¢(IeD)(y,t=0)=X/(y) =D X(1eD)p(e)(y,t=0) giving us fields X; on a
neighbourhood of x in R*. Consider
limy, o(D/*' ¢ (Le D) (6 (M) (x,h),t=0)-D ' $(I)(x,t=0))/h
=1im, , (X (SM)(x,0)-X - ())/h = X, (x)D,* M) (x,t=0) by (5). But since by
(1) D ¢M)(x,t=0)=D$(L)(x,t=0) the above = X;*!"($(L)(x,0)D$()(x,t=0) =
Timy, o(X, (61 @)(x,1))-X, - ($@)(x,00)/h (by (5) backwards) =X(x) by (4).
(7) If 8,(h) is as defined in (3) and fi(h)—f(h) independent of i as h{ 0, then
(Z5,(h)f,(h))-f(h) =Z8,(h) (f,(h)-f(h))~O as h 0. Using this with
f(h) =(D X' ¢(Le D) (S(M)(x,h),0)-DE b Te @) (S (M)(x,1),00)/h (where I, is as defined in
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(3) ) which by (6) tends to DF¢(I)(x,t=0) as h¥0, and using that by definition of
and Corollary 2.1 Df¢(1)(x,t=0)=D}K)(x,t=0) for all $°,(x) CKCS_(x), we see
that (*) = D¥¢(K)(x,t=0) any S°,(x) CKCS,(x), and so by induction Theorem 3.1 is
true for all k. -
Remarks 3.1
(1) Theorem 3.1 part 1 is true so long as X is C'. Since an absolutely continuous
function is a.e. differentiable ([48, Chapter 7] or [4, Section 0]) the following are
equivalent definitions (this remark gives (b)—(2), (a)—~>(b) by Theorem 3.1) of ¢(M)(x)
if X is Ch:
@) dM)(x):[0,t)—M is an absolutely continuous function such that
Do(M)(x,t) =X(M)d(M)(x,t) a.e. on [0,t)
() ¢M)(x):[0,t)=M is an absolutely continuous function such that
D, *¢M)(x,t) =X(M)p(M)(x,t) everywhere on [0,t,).
This second definition defines a trajectory by a property holding at every point of
[0,t,) and given the one-sided "semi" nature of everything in the subject has much to
commend it.
) If oM)(x,H) € ZP(K;I\K) for t€ (0,h) we have D, " f,¢M)(x,t=0)=0 for all kEK
for all t&€ (0,h), ie (gradf,o(M)(x,t),X(M)p(M)(x,t)) =0 for all XEXK and for all
t&€ (0,h), and since ¢(M)(x,t) € ZP(K;J\K), so X(M)pM)(x,t)=X(K")p(M)(x,t) some
K'CK, we have X(M)¢M)(x,t) =X(K)p(M)(x,t) for all t& (0,h). Furthermore by
Theorem 3.1 X(M)(x) =lim,, X(M)$(M)(x,t) so we have
XM)o(M)(x,1) =X (K)p(M)(x,t) for all t& [0,h). Thus by uniqueness of integral
curves (Theorem 1.1(1)) ¢M)(x,t)=¢(K)(x,t) for all tE[0,h).
(3) If we set F;(x)={K:S%x) CKCSi(x)} we have from the construction of the
iteration that $(x) D §;(x) for all j=i. At present S%(x) is merely the set of indices
defining the manifold on which X is defined (see the preamble on the iteration in
Chapter 2) and might as well be written S% since it is independent of x. As far as the
local trajectory ¢(M)(x,t) is concerned the vector field might though as well have been
defined only on limy, S%(¢(M)(x,1)) since it is (by Lemma 3.2) contained entirely
within this stratum; if we replace the old S° by S°(x)= lim,,S%(¢(M)(x,t)) (which
certainly does depend on x) we get from part 2 of the proof of Theorem 3.1
F1(e(M)(x,1)) C .. (x) if t>0 is sufficiently small, which combined with the iteration
property ( ie that S%(x) C 8%, ,(x) C S;4;(x) CS;(x) for all j=1) gives for all x€M
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() 2 $5(x) ) Sule(M)(x,1)
forall j=zi€Z” for all k€Z* and for all sufficiently small t>0.

Unless otherwise stated it is though convenient to remain with the original definition
of S%(x), S,(x) - ie, if M near x is locally ZN(I;J), S°(x)=1, S;(x)=1UJ - in which
case the first of the two relations (§(x) D $(x) for all j=1) is unaffected, the second
is S%(x) C S%(e(M)(x,1)) C Si(e(M)(x,1)) CSy(x) for all xEM, for all 1,j)&€Z", for all
sufficiently small t> 0.
(4) We might at this point mention two publications which we have been unable to
obtain:
(i) A paper by M.G. Chikin subsequent to [10]: On The Existence of a Right
Derivative in the Solutions of a class of Discontinuous Systems, 1988 (in Russian), (ii)
The thesis of B. Cornet: Conrriburions a la theorie des mécanisms dynamiques
d’allocation des resources, Université Paris IX Dauphine, 1981.
It seems likely that in (1) Chikin has proved a version of the part of Theorem 3.1
which says that DT¢(M)(x,t=0)=X(M)d(M)(x,t=0), and (ii) may contain variants on

the existence-uniqueness result in [12].

Remark 3.2 This chapter provides us with a perspective on the iteration as a
"selecting" process. At the outset we have x&M, M locally represented as
ZN(S%,(x);S,()O\S"(x)), so we know that for small t>0
(M) (x,1) € ZN(SY,(x);S,00N\S",(x)). Lemma 3.2(4) tells us that for small t>0
dM)(X,1) € ZNP(S°,.(X);S o (XNSY.. (x); S, (X)\S .. (x)). We recall that
ZNP(SOi(x);S-,(x)\S“i(x);S](x)\Si(x))=Uso‘mcKCS‘(,\)ZP(K;S,(X)\K) and so
ZNP(8%(x);S; ()ONS®% (x);S1 ()NS5 (x)) C ZNP(S%(x); S;()\S%(x); S, (x)\S(x)) for all
i’ =1i. We know therefore that ¢(M)(x,t) C ZNP(S%(x);S;()\S%(x):S,(x)\S,(x)) for all i.
at the (i+1)th stage of the iteration we have therefore a better knowledge of where
¢(M)(x) lies than at the ith.

The ordering we obtained in Remark 3.1(3) tells us that for any j =0 that for all
sufficiently small t>0 D, "¢(M)(x,t) =D (K)(¢(M)(x,t),s=0) some
SO (X)) CKC S, (x) (so since SY(x) C SV, (x) CS,(x) CS,(x) we know at the ith stage
that the K in this expression lies in the range S°(x) CKCS,(x) ), so the "selecting" is
for all the right hand derivatives of ¢(M) on a right neighbourhood of t=0.

If S, (x)=S.(x) Lemma 3.2(4) tells us ¢(M)(x,1) CZNP(S’,.(x); T ;S,(x)\Sw(x))

from which (eg using Remark 3.1(2) ) we could recover Theorem 2.1(1).
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Chapter Four

Tangencies, The Iteration, and a Refined Iteration

In this chapter we conclude (excepting Corollary 5.2) our study of the iteration.
We shall establish the relationship between the iteration and suitably generalised
versions of the classical tangency sets, establish the essential properties of the latter,
and consider also a generalisation (in fact a refinement) of the iteration which is better

suited to local questions.

Tangency Sets

If V, is a C* submanifold of V, which is a C* submanifold of R*, and if X is a C*
vector field on R* we know by Lemma 2.1 that we can project X onto V; to form C*
vector fields X(V)) and so integrate these vector fields to obtain C* flows ¢(V). We
shall set T\ X(V, relative to V,)={x € V;:Djo(V,)(x,t=0)=D,¢(V,)(x,t=0) for all
i<k}. We have seen how to represent any submanifold with comers M near any
xEM locally as ZN(I;]); there are 3!?! pairs of sets of indices K;,K, with
ICK,CK,CIUTJ and for each we set I' (K, r K,) =T (Z(K,) relative to Z(K,))=
{(xEZ(K,):D,/o(K,)(x,t=0)=D/d(K,)(x,t=0) for all i <k}. For example, if
xEZ(K,) CZ(K) then x ET,(K, r K,) iff X(K,)(x)=X(K))(x) iff X(K)(x)ET,Z(K)).
We observe that while classically tangency sets were defined with generic restrictions
on X our definitions are for any smooth vector field.

It will be evident that these sets are intimately bound up with the detailed behaviour
of the semiflow ¢(M) in relation to the strata ZP(K;J\K). In the first place it will
seem likely, in view of the construction of the iteration, that they relate to the
iteration in a significant way; we obtain in Proposition 4.4 a formula which expresses
the subsets ("iteration sets") of M where the iteration achieves a particular value (ie, a
particular contracting sequence of sets of indices) in terms of intersections of these
tangency sets. Because of this formula and for other reasons we are interested in the
intersection of these sets. It is straightforward to check that, for example, if Z(1),
Z(2) are hypersurfaces in R® then I'y((1,2) r D) =T,((1) r D)NT»(1,2) r (1)) and that
also I',((1,2) r @)=T%((1,2) r (1)) NT,((1,2) r (2)). In general expressions involving

I'-sets cannot be simplified to a single term but can be simplified to some extent: we
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seek a canonical "simplification" which will also tell us when they are equal. This is
achieved in Proposition 4.1. Proposition 4.2 is concerned with the intersection
properties of these tangency sets when X satisfies certain generic conditions.

The iteration at a point does not in itself determine the local behaviour of the
semiflow (eg Figure 4.5) and we consider a refinement of the iteration which comes
closer to doing so. We show in Proposition 4.3 that this refinement of the iteration
(and hence a fortiori the iteration itself, and hence the iteration sets) is, unlike the
tangency sets (Example 4.2) preserved by a semiflow preserving diffeomorphism.

The reason for the following discussion will become evident when we state
Proposition 4.1 below. We recall from Chapter One that for ICKCKULCIUJ we
have defined a subcorner of ZN(I;J) to be a set of the form ZNP(K;L;JUNKUL))=
{xER™(x,n)=0 Vi€EK (x,n) =0 Vi€ L,(x,n) >0 Vi€ ITUI\(KUL)} which is
evidently contained in ZN(I;J) and decomposes as
U gemc{XER™(x,n) =0 ViEKUM,(x,n) >0 ViETUJU (LA\MN\(KUL)} =

Uxkcuekur ZPH;TUNH). It follows from this decomposition that if the subcorner
ZNP(K;L;TUIN\(KUL)) is denoted s.c.(K;KUL) the intersection of two subcorners
s.c.(K;K;ULY, i=1,2, is the subcorner s.c.(K; UK,;(K;UL)NK,UL,).

If {ZP(I;IUI\I)} is a set of strata of ZN(I;J) the convex hull of the set is defined as
the intersection of all subcorners each containing all the strata. Since for any such
subcorner ZNP(K;L;IUNKUL))=U, chcror . ZP(H;J\H) we must have
KCIL,KULDI\] for all i, it equals ZNP(NI; UINNIZ;IUINUIL). If {¢;} is a set of
non-intersecting subcorners of ZN(I;J) and {¢/}-; 15=1.x iS a collection of such sets
of non-intersecting subcorners we may define the interior intersection of the collection
by {ciy) N.. Ncigy:1(s) E(1..1(s)) each s=1,..,k}. If

(Ciy' N .. NCigF Neigy! NN ey ) % D then 1(G) =i(G)’ V) € (1..k) because ¢/ Nyl =D

if 1(j) #1()’; since (as noted above) the intersection of finitely many subcorners is a

subcorner we therefore have that the interior intersection of the collection is itself a
set of non-intersecting subcorners of ZN(I;J). If {¢/} is a collection of sets of strata of
ZN(;J) there exists at least one set of non-intersecting subcorners of ZN(I;J) with the
property that each set of strata in the collection is contained in a single subcorner,

namely the set with one element, ZN(I;J). We define the subcorner decomposition of

a collection of sets of strata to be the interior intersection of the collection of sets of
non-intersecting subcorners such that each set of non-intersecting subcorners in the

collection has this property.



Schematic representation of the interior intersection of a collection of sets of
non-intersecting subcorners. We have here k=2; the set j=1 consists of 3 subcorners
(regions bounded by dotted curves), the set j=2 of 5 subcorners (regions bounded by
full curves). The interior intersection of the collection is shaded.
Diagramatically we may represent a closed corner ZN(I;J) where J=(j,..,ji) by the

following table
row 0 I

1Vj, . . . .. TUj

IUjUj, 1Uj,Ujs. . IUjUj

row |7 | IUJ
where the mth row consists of (! 21) sets of indices, the set of indices K for any

ICKCIUJ representing the stratum ZP(K;IUJ\K) (Figure 4.1).

the subcorner ZNP(<J;2,3;1) which is the
complement in ZN(J;1,2,3) of ZN(1;2,3)

closure(ZP(1;2,3)) =ZN(1;2,3)

7(2,3)

Z(1,3)

Figure 4.1. Representing a corner ZN(I;J) by a diagram (here I=,J=(1,2,3)).
ZN(1;2,3) corresponds to the 4 sets of indices indicated because ZN(1;2,3)=
ZP(1,2,3; @)U ZP(1,2;3)UZP(1,3;2) UZP(1;2,3) and each ZP(K;(1,2,3)\K) is
represented by K; similarly ZNP(J;2,3;1) is represented by the 4 sets of indices
indicated because ZNP(J;2,3;1)=2ZP(J;1,2,3) UZP(2;1,3) UZP(1;2,3) UZP(3;1,2).
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The stratum closure ZN(K;ITUIN\K) = Uy cyuc1u,ZP(H;IUINH) is represented by the set
of sets of indices in the diagram containing K; a subcorner ZNP(K;L;IUI\(KUL)) by
those sets of indices which contain K and are contained in KUL - see Figure 4.1
above for ZN(J;1,2,3).
Intuitively the convex hull of a set of strata is the smallest subcorner containing all of
them and the subcorner decomposition of a collection of sets of strata is the smallest

non-intersecting set of smallest subcorners satisfying the property that each set of

strata is contained in a single subcorner.

Examples 4.1 Consider the corner ZN(JJ;1,2,3). The convex hull of
{ZP(;1,2,3),ZP(1,2;3)} is the subcorner s.c.(J;1,2) and of {ZP(1;2,3),ZP(2,3;1)}
is the whole corner corresponding to the set of all eight sets of indices;

(a) The subcorner decomposition of
{{zP(;1,2,3),ZP(1;2,3)},{ZP(3;1,2),ZP(1,2,3; )} } is the non-intersecting pair of
subcomers s.c.(J;1),s.c.(3;1,2,3) -

Correponding to s.c.(;1)

Correponding to ZP(3;1,2)

Correponding to s.c.(3;1,2,3)

The strata of one set are triangled and those of the other are squared; the subcorners

of the subcorner decomposition for these sets are the two sets of strata within smooth
curves.

(b) The subcorner decomposition of

{{zP(1;2,3),2P(1,2,3;2)},{ZP(1,3;2),ZP(3;1,2)}} is the whole corner of 8 sets of

indices.

We remind ourselves of our definition ot tangency set, which extends the classical
notion of tangency set (see eg [44,45,51,58]) which dealt with a single vector field

and was always accompanied by generic restrictions:
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Definition If functions (f},..,fi;f 4 1,.., ki) are independent and X is a smooth vector
field on R®, then setting I=(1,..,k) and J=(k+1,..,k+m) we define
TXAUT r D={xEZAUI):D/o(D)(x,t=0)=Do(IUT)(x,t=0) Vi<k} where ¢(I) is the
integral flow of X(I) etc; we may abbreviate I,X(IUJT r J) to T,AUT r J).
The reason for making the above constructions (the subcorner decompositions etc) is
the following result, which is the canonical "simplification" of multiple intersections

of (generalised) tangency sets alluded to above:

Proposition 4.1 If ICL,CLULCIVT, i=1,..,m, and I'(L;UJ; r 1) is as defined above,
then if {s.c.(K%;K):i=1,..,r} = the subcorner decomposition of
{s.c.(zLUT):i=1,..,m} we have N, TGV r D= N, (K rK%.

We observe that by definition of subcorner decomposition the subcorners
{s.c.(K%K):i=1,..,r} are disjoint.

Proof after lemma 4.3

Examples
Since the subcorner decomposition of {s.c.(1;1,2,3),s.c.(3;1,3)} is {s.c.(&;1,2,3)}

%)
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we have for all k that I',((1,2,3) r ())N((1,3) r 3))=I((1,2,3) r D).

Since the subcorner decomposition of {s.c.(&;1),s.c.(3;1,2,3)} is itself-

1,2

a1 r K)YNT((1,2,3) r 3) does not simplify.

Corollary 4.1 As special cases of Proposition 4.1 we have
1) N, N AVj r =T, AVIr D)

) N;e,TAVUT T TUIN\j)=T,(AUT r I)

B I cC..cr,, then N[Ny, r D=I{J.,, 1)



63
Remarks 4.1 (1) We could extend the definition of I''([;UJ; r J) to I'\(G; r H) where
each G, and H; are any pair of sets of indices with IC G,,H;CIU]J, and in this case
Proposition 4.1 still holds (with exactly the same proof) replacing each s.c(I;LUT)
with the pair {ZP(G;;J\G)),ZP(H;;]\H))}.
(ii) By Lemma 2.2 and Corollary 4.1 Parts (i) and (ii) I'AUJ r J)=
{xEZJ):D/f; $(J)(x,t=0)=0 for all jEI and for all 0<i<k} =
{xEZIUI):D/fp(IUT\j)(x,t=0)=0 for all j€I and for all 0<i<k}.

If {0}i=1, 1 is (for fixed j) a set of strata, denoted by ¢ say, and {¢'} is a collection
of such sets, say ¢®, o9 are linked in (d',..,0%) if there exists a sequence of integers
p=s(1), s(2),..,s(m)=q with each si)€(1,..,k) and such that ¢*®,0*¢*? have a stratum
in common,each i=1,..,m-1. If we say p,q are equivalent in (1,..,k) if ¢®,¢% are
linked in (d%,..,0%) this yields an equivalence relation on (1..k) and we shall denote the
equivalence classes J,,..,J,, so (1,..,k)=J,U..UJ. is a disjoint union. If {¢’} is a
collection of sets of strata we now define a map F mapping one collection of sets of
strata to a new collection of sets of strata by F(d',..,0%)
=(conv(UiE,lo"),..,conv(Uie,ro")) where conv(U;¢,;0') denotes the convex hull of all
the strata in U,¢,d'. If for example we had ¢! ={ZP(1;2,3),ZP(1,2,3; )} and
0*={ZP(3;1,2),ZP(1,3;2)} (which is in fact exactly the data of Example 4.1(b)) then
F(d',0%)={s.c.(1;1,2,3),s.c.(3;1,3)} and F{s.c.(1;1,2,3),s.c.(3;1,3)} =ZN(;1,2,3)

Jc/orrespondmg to o & Corr. to s.c.(3;1,3) '

Corresponding to ¢' Corresponding to s.c.(1;1,2,3) Corresponding to ZN(<J;1,2,3)

Thus denoting the s.c.d. of {¢',..,d*} by s.c.d.{d',..,0*} we therefore have in this
example F*(¢',0%) =s.c.d.{0",¢’}, and in general -

Lemma 4.1 Fi(d',..,6¥) j=1,2,.. converges in a finite number of steps to

s.c.d.(d',..,d).

Proof What the process F involves at the jth stage is taking the collection of sets of
strata provided by the (j-1)th stage, F'(d',..,d*)=(6",..,0™) say, subdividing 4',..,6™ into
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linked subsets and then taking the convex hull of each of these subsets. We claim that
the sets of strata we obtain at each stage are entirely contained within a subcorner of
the subcorner decomposition; this is by definition true initially, and if true up to the
jth stage where we have sets of strata §',..,6™, if 6* and 6* have a stratum in common
they cannot be in different subcorners of the subcorner decomposition because these
are disjoint; hence the sets of strata in any linked subset of (6',..,6™), {6'},¢; say,
must be in the same subcorner; we have defined the convex hull of {6'},¢; as the
intersection of all the subcorners containing all strata in {6'},¢; and hence the
subcorner of the subcorner decomposition containing {6°},¢, contains the convex hull

{6°},cy. Hence it is true at the (j+ 1)th stage that the sets of strata &' in
Fi(d',..,0%)=(d",..,6°) are each contained entirely within a single subcorner of the
subcorner decomposition and our claim is true by induction.

It follows straight from the definition of F that the number of sets of strata in
Fi(d,..,0%) is no more than that in F(¢',..,¢*) - with the above notation, p<m<k-
and that each set in F!(¢!,..,d) is contained in a set of F(d',..,d") - ie for any i
¢'C 6" CG", some i’, i”, - so since there are only finitely many strata involved we
must reach in finitely many steps a stage where F(d',..,09=F"*'(d',..,0%). If any two
sets in F*(¢',..,d) intersected or any single set was not equal to its convex hull we
would have F'(d',..,0¥) #F**1(d,..,0), hence at the sth stage we have a disjoint set of
subcorners which by the above satisfies the property that each of the sets of strata we
began with is contained in a single subcorner; hence since each of these subcorners is
contained in a subcorner of the subcorner decomposition, we must by the definition of
the subcorner decomposition have s.c.d.(d',..,6*)=F(d',..,0%). -
(NB. We have of course that F'(d',..,d*)=F(d',..,d" for all t=s, unlike the case with

iteration where we may have S;,;=S,, $%,,=S" before convergence.)

Lemma 4.2 Suppose a set (0y,..,0,) of strata of ZN(I;J) is represented by a set
S=(,,..,I) of sets of indices (ie o;=ZP(I;J\I), ICL,CIUJ ) satisfying

@M IfL,eSand ,CLES, then KES VI, CKCI,

dn 1f 1,1Vi,JVUj €8 then IVIUJES

I If I,I\j,I\j €8, then I\i\JES

then if S has the property that for each pair ,LI' €S 3 {Ii,}j=1..k with IiMDIij or IiMCIij
for each i=1,..,k’-1, where Iil=I, Iiv=I', and for all j I,-JES, (&)
then conv(g,U..Ug)=qU..Ug,.
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Proof If (*) is satified and (I) is satisfied, then for any I,,LES 3 I,=1',1%,..,I=I,
with Il,..,I¥ €S and each I' containing one index more or one index less than I*! -
call such a sequence a path from I, to I, (so (*) and (I) say S is path connected). A
path may contain type (a) sets of indices K satisfying I''=K\j;,['=K,I*'=K\;,,

KN\iy /K\iz
\K

type (b) sets of indices K such that I'=KUj,,I'=K,I'*!=KUj,

/K
KUj, \Ksz

as well as other types.

1%}

™S
AN
\1,2,3

A path from (1,2,3) to &

(A) If there exists a path I;-I, without any type (a) sets of indices it must be of the
form
I=IN\if. I \I->I\JUj~..~I\(JUK) =], (possibly with [;\J=1,),
/II\J ~
- ’ G\HVj,
Il\il/—’ o -
11/ e I, \)UK=],

so we have I, NL=I\))UJ;NK)DI\J, so we have [, DI;NL,DI,\J with I, and
INJES,
and hence by (I) that I NLES
(B) If there exists a path I,—I, without any type (b) sets of indices it must be of the
form I,-I,Vi—=..—»L,UJ=L UT\j,~..—~],UI\K=I, (possibly with [, UT=I,) so we
have I, CI,UL,CI,UJ with I; and I, UJ €S and hence by (I) that LULES.

If we begin with an initial path p, between I, and I,, and p, has a type (a) set of
indices, then by repeated application of (III) we may obtain a path P, with each set of
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indices in p, in S and such that p, contains no type (a) sets of indices; by (A) above
NI, €8.

=], Ui, Ui,=1,Ui; Ui,

(1), (i), (iii),(iv) are sets of indices (in fact (i)=(I,Ui,) NI,V i;) etc)
Eg for a path p; from I, to I, as shown above K is a type (a) set of indices. Since
K,K\,=I,Ui;, and K\I,=L,Ui;E€S we may use III to infer (i)ES, and similarly
infer (ii),(iii), and finally (iv) €S: then I,—=(ii)—>(iv)—(iii)-I, is without type (a) sets of
indices and as shown in (A) N, (=iv)ES.
If an initial path has a type (b) set of indices we may by repeated application of (II)
obtain a path p, with each set of indices in S and such that p, contains no type (b)
sets of indices: by (B) above [; UL, ES.

K =1, \is\is=1,\i7 \ig

I,\is L\i;
//\Pz//\ 1
. \\12

1, @

4

V) Vi)
Ps 4

(vii)/

Eg for a path p, I,—], as shown above K is a type (b) set of indices and using II and a

similar argument to the above we may infer that (i),(v),(vi),(vii) €S.

Hence if I,,,€S, ;NI and ;UL ES; hence if I;,..,, €S N, \Jyand U, LES,
and so by (I) and definition of convex hull, 6,U..Ug,=conv(s,U..Ug)). -
In Lemma 4.3 below expressions of the form D/¢(K)(x,t=0) are abbreviated to
D/¢(K) (and, to be consistent, gradfi(x) is abbreviated to gradf).
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Lemma 4.3
(1) If x€ ZAUT) and Di¢(IUT)=Di¢(I) Vi<k then Di¢p(K)=Di(l) VICKCIU]J
vi<k.
(@) If x€EZ@U (m’,m)) and D/¢(IUm")=D/s(IUm)=D,o() Vi<k then
D/(IU (m’,m)) =D/i¢(l) Vi<k
3) If m',m€E€I, xEZ(I), and D/p(I\m')=D/¢(1\m)=D/(I)vi <k then
Di¢(I\(m’,m))=D/¢(I) Vi<k

Proof

(@) Suppose IUT=IU(1,..,j). We claim span{P(I)gradf;,.., PAUT\j)gradf} =
span{P(I)gradf;,.. ,P(I)gradf;} (and hence by Remark 2.1(2) vectors
P(I)gradf;,..,P(IUJ\j)gradf; are independent). Inductively suppose that for some j’
with 1<j’ <j span(P(I)gradf,,..,PAU(1,..,j'-1))gradf ) =span(P(I)gradf,,..,P(I)gradf;).
By Remarks 2.1 PAU(1,..,j")gradf, ,,-P(D)gradf; ., € span{P(D)gradf};c, ;, say =
TiZ,\P()gradf,. By Remark 2.1(2) P(I)gradf; ,,+Zi_,\P(I)gradf, %0, so
0<P(IU(1,..,j"))gradf; ,, € span{P(I)gradf};_, ;,, but

(P(Mgradf, PAU(1,..,j"))gradf; ,,)=0for all i=1,..,j’, hence since
PAV(1,..,j")gradf; ,, # 0 we must have

span{P(Dgradf;:i=1..j’+1} =span{P(Igradf;:i=1..j’} ®PAU (1,..,j"))gradf; ,, and
using the inductive assumption the result follows for j'+1.

(b) Proofs of (1)-(3)

(1) True from definitions if k=0. Suppose true for k-1.

For any K such that ICK CIUJ there exists a sequence I,LIU(1),IU(1,2),..,X,..,IUJ
so consider 0=D}¢(1)-DtoAUT)=Dks(I)-D¥d(IU (1)) +DFo(IU (1))-. ~DEeAUT)
which by the inductive assumption and Lemma 2.2 is

0=D)(f,¢(1))P(D)gradf,/ | P(I)gradf, | >+

DX(f,o(IU 1)PAU (1))gradf,/ | P(IU 1gradf, | >+.. . By (a) the vectors P(I)gradf;,
P(IU (1))gradf,,.. are independent and hence for each i the premultiplier
DX(f¢(IU(1,..,i-1))=0, and hence Df¢(I) =D ¢(K).

(2) We have D,i¢(I)=D/¢(IU (m))=Di¢(IUm’) for all i <k and claim
D/¢(D)=D/¢(IU (m,m")) for all i<k.

This is true from definitions if k=0, suppose true for k-1.

Writing DX¢(IU (m,m"))-D¥o(I)=D oI U (m,m"))-D¥s(IUm") +DE AU m")-Dro(I)
we know DX¢(IUm’')-DXo(I) =0 by supposition. By the inductive assumption and
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Lemma 2.2 Df¢(IU (m,m"))-D¥¢(IUm’)=
DX(f ¢AUmM")PAUmM’)gradf,/ | PIUm")gradf, | 2, however D/¢(IUm’)=D/¢() for
all i<k and since DX(f,¢(1))=0 (because using the supposition and Lemma 2.2 again
0=Dk¢(IU m)-D ¢(@) =D¥(f, ¢ (D)P(Dgradf,/ | P()gradf, | ) the result follows.
(3) By relabelling the sets of indices the assertion is equivalent to saying that if we
have Dji¢(IU (m’,m))=D/¢(IUm')=D//IUm) for all i<k then
Dj¢(AU (m’,m))=D,¢(I) for all i<k. This is true from definitions if k=0, suppose it
is true for k-1, and suppose
D¢V (m’,m))=D/¢(AUm')=D/¢(IUm) for all i <k. Then
DU (m’,m))-DD) =D $(IU (m',m))-DF¢(IU (m))+ D ¢(IU (m))-D/ ¢(T)
=0+Dkp(IUm)-Dfé(I)
=Dy¢(1U (m',m))-D¢(IU (m")) + D “p(IU (m'))-Dp(I)
=0+DroAUm")-Dé(I)
=DXf,¢@)P[)gradf,/ | P(Dgradf, | 2=DX(f.¢{))PDgradf,./ | PI)gradf,. | 2and
since (eg by Remark 2.1(2)) these vectors are independent the premultipliers must

both be zero.

Proof of Proposition 4.1

We recall that we abbreviate the subcorner ZNP(J;J;;IUIN\(UT)) of ZN(;]) to
s.c.(I;,UJ). We have to show that if s.c.d.{s.c.(;;LUT)}io; m={s.c.(K%K)}i-, ,
then N?_NLLUT, r D=nNI1_ (X, r K%. We shall denote s.c.(I;;LUJ) (we recall this
is a union of strata) by o'. If {¢;};c, are strata of ZN(I;J) with ¢;=ZP(K;;J\K,) some
ICK;CIUJ, where x € Z(IU]J), then we shall say the flows on {o;} are (k-1)th order
tangent at x if D3¢(K1-l)(x,t=0)=D3'¢(Ki2)(x,t=0) for all i,,i,€ A and for all j<k.

(a) Lemmas 4.2 and 4.3 together tell us that if the flows on strata {o;};,c, are (k-1)th
order tangent at x and {K;},c, is path connected (in the sense of page 65) then
conv{o,},c, consists of strata the flows on which are (k-1)th order tangent at x.

(b) By Lemma 4.3(i) if x€T'([;UJ; r L)) the flows on all strata in ¢' are (k-1)th order
tangent at x and it follows from (a) that if {¢'},cy is linked the flows on the strata in
conv(U,cu0') are (k-1)th order tangent at x.

(¢) Since F(d',..,0™) =(conv U;e 40", .-,c0nv U0, where the decomposition of
(1,..,m) into H(1)U..H(r) is as given on p.63 with each (U;ey,0°) is linked,
F(d',..,0™) is a collection of sets (in fact subcorners) of strata with the property that

their flows at x are (k-1)th order tangent, inductively we see the subcorner of strata in



69
Fi(q'..0™) have this property for all =0 and hence by Lemma 4.1 s.c.d.(¢'..0™) has
this property.
" This tells us that if for each i=1,..,m the flows ¢(,),¢(I;UJ) are (k-1)th order
tangent at x then for each i=1,..,r each pair of flows ¢(K%),#(K9 are (k-1)th order
tangent at x, ie N7, NUT r 1) D N MK r K9).

The opposite set inclusion follows from definitions - if x€ N[, I' (X, r K%) then for
each i=1,..,r the flows ¢(K,), #(K°) are (k-1)th order tangent at x, so by Lemma
4.3(1) for each i=1,..,r K% CK!,K*CK,; the flows ¢(K"),¢(K?) are (k-1)th order
tangent at x, which is equivalent to saying that the flows on any two strata in the same
subcorner of {s.c.(K%;K):i=1,..,r} =the subcorner decomposition of
{s.c.(q;LUI):i=1,..,m} are (k-1)th order tangent at x, and by definition of subcorner
decomposition this implies that for each i=1,..,m the flows ¢(I;),¢(L;UJ) are (k-1)th
order tangent at x.

Tangency Sets in the Generic Case

Before proceeding to establish the relation between the iteration and tangency sets we

establish generic properties of the latter.

Definition

(1) For our purposes a polyhedron is a connected (not necessarily compact) subset of
R® of the form H={xER™(x,n)=p; Vi€ I,(x,n;) =p, ViEJ} for a finite set of vectors
{n,,i€EIU]T} satisfying the property that if at a point x€EH (x,n,)=p, Vi€EIUJ’ the set
{n;:i€IUJ'} is linearly independent (a special kind of submanifold with corners of
course). Thus we regard closed corners LC(I;J), n-dimensional cubes, simplices etc as
polyhedra.

(2) A r-polynomial vector field on R" is a vector field X:R">R" such that in the usual
co-ordinates on R* X(x)=a%+Z.; .a'X+..+5 1. .a% ;X -X;. An r-polynomial
vector field on a polyhedron H (as above) is an r-polynomial vector field on
{xER™(x,n)=p, for all iET} =R,

(3) If M,N are respectively smooth, analytic submanifolds with corners and H is a
polyhedron, Z.,(M),=Z (N),Z, (H) are the spaces of smooth, analytic, r-polynomial
vector fields on respectively M,N,H.

If M is a compact submanifold with corners or a polyhedron , M has a globally finite

stratifications into C' submanifolds. By definition of submanifold with corners there
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exists a neighbourhood of each x €M of the form B(UNLC(I;J)) where 3,U are as
defined in Chapter One: a stratum ¢=ZP(K;J\K) is locally S(UNLO(K;J\K)) and we
may extend ¢ locally in a C* way to 3=B(UNL(K)) (=Z(K) in our local
representation) which contains o; (corresponding to ZN(K;J\K)) in its (relative)
interior. Thus if ¢; is a stratum of M then at each x € o; X(5)(x)= the projection of X
onto the tangent space (rather than the tangent cone) to o; at x. In the above we have
defined I'(ZAUI) r Z(2)) and ¢(I), but we can avoid the need to work via local
representations; if o;, o, are strata of M with ¢, C do, the objects of interest will be
I' (3, t &,) and ¢(G,) (=the integral flow of X(G,) on &,).

We now generalise a classical theorem ([45,44,58] - see Remark 4.2 below) to show
that for generic X both the tangency sets themselves and certain intersections of them
are submanifolds of readily calculable dimension. This result is crucial for part of

Proposition 4.4 below and for Chapter Seven. The two cases - smooth and polynomial

- are treated in completely different ways.

Proposition 4.2 If M is respectively a smooth submanifold with corners, a polyhedron,
a compact polyhedron, then there exist subsets E.'(M),E,,'(M) and if r=n &, '(M),
open dense in E,(M),E, ,(M),E, (M) such that if {o;} are the strata of M as a
submanifold with corners, then

(@)If ¢,Cdo, then T (5, r &,) is a C*, linear,C* submanifold of &, of codimension
(k-1)(dimo,-dima,)

(b) For any sequence of strata ay,..,0, With 06,C 30,4, , Ny T8 T Gi4y) is @

submanifold of ¢, of codimension X,_; ,;(K(i)-1)(dimo;,,-dimo)

Remark 4.2 (The relation between our tangency sets and classical ones ([45]) for
generic X). In [45] Pugh shows that for any smooth compact manifold M and smooth
submanifold V there exists an open dense subset Z(V,M) of the space of smooth
vector fields E(M) on M such that for any X in this subset the sets defined inductively
by IV, X)=V,I'(V,X)={xEV:X(X) ET,V},

TV, X)={x €M (V,X): X(x) €ET,I"'(V,X)} are all submanifolds of M of codimension
in M of i times that of V in M. For M=Z(I) we have setting V=2(IUJ) (and
working locally, so compactness is not an issue) that I'°(V,X)= our I';({UJ r I), and
in fact we now show that for X in Pugh’s open-dense set we have

(v, X)=T,,,dUJ r ) vi=0,1,.. (*)
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We have I'(IUJ r )= N, (IV]j r I) (by Proposition 4.1) and using Ly to denote
Lie derivatives (see [1, Chapter 4]) we have by Lemma 2.2 and using (from [1,
Section 4.2]) that if f is a differentiable function on Z(I) Lyq,f=Dfé)( ,t=0) and that
if ¢ is the flow of X and ¢' the time t map of ¢ (ie, ¢'(x) =¢(x,t) ) then
¥y *Lif | oioo=D,D@*"™*f | ,o=o Where ¢'*f=f¢', we obtain
Ly f=D*é)( ,t=0), and since by part (ii) of Remark 4.1 we know
N;eTdUj 1 =0, {xEZ1):Dif;p(I)(x,t=0) for all i<k} it follows
N;e, AV rh=nN j,E,{)(EZ(I):an)ifj(x)=0 vi<k}. We have shown above that (*) is
true for k=0. Suppose now (*) is true up to k-1. We have then (with V=ZIU]J),
M=Z())

TX(V,X) = {x ET*!(V,X): X(D)(x) € T,[*'(V,X)} (1)
={xET(IUT r ):XOX)ET,I,AUT 1 I)} Q)
={XET,AUT 1 I):XA)(X) E T {XE Z():Ley () =0 Vi<k, Vi ET}} 3)
={XET,AVT 1 I):d(Ly, XD (X) =0 vi<k, VjEJ} @)
={XET, (VT 1 D:Ly,(x)=0 vi<k, VjEI} ®)
=T QUI ) (6)

where (1) holds by definition, (2) is true by the inductive hypothesis, (3) is true by the
above, (4) follows from [1,Section 3.5], (5) from [1,Section 4.2], and (6) by the
above again, and so the result is true for k.

Suppose now for U a neighbourhood of a relatively compact boundaryless
submanifold S in R* we define (where = refers to any of the spaces of smooth,
analytic or polynomial vector fields) Pg:Z(U)~>Z(S) by, for X€ E(U) and xES
PsX)(x)=P(T,S)X(x). We topologize E(U),=(S) in the usual way, ie two vector fields

are close if their derivatives of all orders are close at every point.

Lemma 4.4 Py is linear, onto and open

Proof Linearity is immediate from the way Py is defined. For ontoness, we recall from
Chapter One the idea of X_: if X is a C* vector field on S and V is a neighbourhood in
R*® of a point in S, with VNS the zero set of C" independent functions fi,...,f,, then eg
by [35, Section 4.5] each yEV is uniquely y=y,'®..y,“Px some unique x €S where
iO(x) =y(t(1),x) and each y;:(-e,€) X V-R" is the solution to Dy;(t,x) =gradfy;(t,x).
As in Chapter One we set X (y) =¢'®...¢,"™.X(x) which has the property that
Py(X,)=X. Hence P; is onto; openness follows by the Banach-Schauder Open
Mapping Theorem [1] (it is to apply this that we need S relatively compact). -
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Lemma 4.5 Suppose X is the vector field x;=x,,X,=1 on R" and that
L(1)={xE€R"(x,n,;)=0}. Then T,(L(1) r R®)={xEL(1):x,=0}. We choose
coordinates (x,,X) ERXT,*(L(1) r R®) on L(1), and we suppose Y is a smooth vector
field on R® transverse to L(1). Then there exists ¢,>0, a neighbourhood U of 0 in
I',(L(1) r R®) and a unique C* map X,:(-€q,€) X U-R such that for y near 0 in L(1)
(X(y)+€Y(y),n;) =0 iff y=(x,(¢,x),x), and the map (e,X)—->(X,(€,X),X) is a
diffeomorphism on (-ey,e0) XU. In fact {(X,(¢,x),x):x €U} =T**¥Y(L(1) r R®) near 0,
and {TX*Y(L(1) r R%):-¢,<e<e¢,} foliates a neighbourhood of 0 in L(1) (see Figure

YN

S(0) S(e;) S(ey) S(es) where S(e) = {(x,(¢,x),x):xE U}
=T 1 RY
and ¢, >€;>¢,>6>0

u-=

|
\ L(1)={x&€R"(x,n,)=0}
L

T,X(L(1) r R)DUDO

Figure 4.2
The way Lemma 4.5 is used is as follows. (i) By Remark 4.2 and Lemma 4.4 there
exists an open-dense subset of % ,(ZN(I;J)) such that if X is in this subset then for
each j’€Z*, ICKCKUjCIUJ I*GUK 1 K) is a codimension 1 submanifold of
[, (UK r K), and we can check furthermore that I'*(KUj r K)=
[XC ®Viro( XK Uj 1 K) relative to Ty ,X(KUj r X)) where X(T'..X(KUj r K)) is
the smooth vector field obtained by projecting X onto I', ,*(KUj r K). (ii) It is
straightforward to check (and this is used by Pugh in [45]) that if Y is a vector field
tangent to a submanifold S of R® then I';**Y(S r R®)=T"%(S r R") and in general that if
Y is tangent to I',,*(S r R®) then I'**Y(S r R®)=T%(S r R®).
Suppose now M=ZN(;J), J=(1,..,m) and we wish to perturb X so that
{T\e*AVir D}, is in general position. We begin by perturbing X into the
open-dense subset of Z,(M) so that (i) holds. Inductively suppose that
{T,*AVir D}ioy,. . are in general position for all j;’ <j; where each j; <k(i),
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i=1,..,m. If j;=k() for all i then result is shown; otherwise we may assume j, <k(1),
and we show how to perturb X so that {I‘ji.X(IUi r I)};-,. . are in general position for
all j,' <j,+1, j <j; i=2,..,m.

Because {I*(IVir I)};-; . are in general position for all j;’ <j; we can find a
vector field Y on R® tangent to each one of them near their common intersection, and
furthermore we may chose it so that Y,=Y | I “@U1rI) is transverse to
I‘le(IUI r I). We then apply Lemma 4.5 with R, L, X, Y of Lemma 4.5 mapped by
a diffeomorphism to T; (*IU1 1 I), I} *qU 1 1), X(T; ;*AV 1 r 1), Y, (as is possible
by classical canonical form theorems, eg [44,58]). By (i)

I‘ji,x*“?(IUi rh= I‘j;X(IUi r I) for all j; <j; and all i=1,..,m. By Lemma 4.5 and the
basic transversality theorem (eg [22,Lemma 4.6]) we know that for almost all and
hence arbitrarily small e T,*G"0Vir D+ ¥TU1 1) relative to I3 ¥AU1 1 ) is
transverse (in I‘jl_lx(IUI r I)) to every intersection ﬂi=,,__Yijl.x(IUi r 1), j; <j;, (each
such intersection is a submanifold by the inductive assumption that they are in general
position). By (i) and (ii) we know
¥ G Dy XqULr]) relative to T3 ¥AU L1 D) =T, ***AU1 ) and so
the result follows.

This method was used in a draft version of this thesis to prove a primitive version of

Corollary 4.1 and we use it below to prove Proposition 4.2(b) in the smooth case.

Proof of Lemma 4.5 For points (X,,x) €L(1) X | L(1):L(1)-=R" has the form
X(X1=0,X2,X)=(X2,1,O) and hence (X(O,xz,x)+eY(0,x2,x),n,)=x2+(eY(O,x2,x),n1)=
F(x,x,,€) say, where x=(xs,..,X,). dF/dx,=1 at ¢=0 hence #0 for all sufficiently

small e, and by the Implicit Function Theorem there exists a unique smooth

X,:(-€9,€0) X U—> a neighbourhood of 0 in L(1) such that F(x,X,(¢,x),e) =0 with
X,(x,0)=0.

It remains to show that (e,x)—>(x,(e,X),x) is a diffeomorphism on (-¢;,¢,) XU. By
[14,Chapter 10] we have for (e,x) € (-¢;,¢0) XU

9x,(,X) _

d(e,x)

aF/ae]

3F/dx,)"
(GF/ox,) [8F/3x

(where x=(xs,..,X,), and both sides of this equation are column vectors of (n-2)

elements) so dx,/de=(3F/dx,)'dF/de, and since dF/de=(Y(0,x,,x),n,) #0 (since Y is
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transverse to L(1)) the derivative of the map (e,x)=>(x,(€,x),X)

is invertible.

9x,/8¢ 3x/de
3x,/8x 3x/8x

Proof of Proposition 4.2 (smooth case)

By Remark 4.2 and Lemma 4.4 we can find an open-dense subset of = ,(M) such
that (a) is satisfied, so we must prove part (b). If (a) is satisfied we know that since
there are only finitely many strata in M as a submanifold with corners and for any
distinct strata 0,0’ T,(¢ r §') is empty if j>n, there can exist only finitely many
"chains" of strata o,..,0, with ¢;,; C o, and only finitely many non-empty tangency
sets I'y(G;4; T ;). The strategy for proving Proposition 4.2(b) is to select a chain
dy,..,0, as above and a sequence of integers k;,..,k, (to guarantee stability of the
intersections the order in which the perturbations are made, ie the order in which the
chains and sequences are chosen, is critical, see pages 75-6 ) and use Lemma 4.5 to
find X' arbitrarily close to X such that {inxl(‘}m I 5)N3, }i=1,. .1 are in general
position; the conclusion of Proposition 4.2(b) then holds for this chain and sequence,
and since being in general position involves their satisfying a finite set of
transversality conditions the conclusion will still hold for any X" sufficiently near X'.
Thus if we select any other chain and sequence, since we may make the perturbations
(to force the tangency sets for this second chain into general position) as small as we
wish we can make them small enough to leave the result for the first chain and
sequence unaffected, and by making perturbations of diminishing size treat all of the
finitely many chains and sequences in this way.

Thus the result follows if we can show that applying Lemma 4.5 to any particular
chain and sequence we can perturb I‘kt,,(ér ra.)N.. ﬁI‘kl(cir2 r §,) into general position
in &, with an arbitrarily small perturbation.

If 0,0, is any pair of strata of M with o, Cdo; then there exist &;!, 2,..,5™ such
that &,,,=5;'C5?C..C5™=5, and dim ¢j*!-dimgj=1 for all j=1,..,m-1, and by
Proposition 4.1 we may express each I',;(G;,, T 5) as
N {07 1 5}*1):j=1,..,dimg-dima;,,}. Thus without loss of generality we may
assume that we begin with tangency sets of the form I ;,(5, r 7,),

)05 1 5y),.., 1 (0, T 6,,), where dimg;-dimo;,,=1. So we wish to show that there
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exists X' arbitrarily close to any smooth vector field X such that I', ;¥ (5, r ;)N .. N
Tyen” (3, r &.,) is a submanifold of o, of codimension EfZ{(k@)-1).
As in our discussion during Lemma 4.5 of how to apply it, we construct the
perturbation X’ from X by perturbing X in stages, so that if we begin a stage with
Ni<icl;(Tiy; T G) in general position in §, we end it having "pushed" I‘jkﬂ(c“rk+l r )
gy in I‘}-k(c“;k+1 1 6 (some 1<k=r-1, j<k() ) so that I'; ,,(Fus1 T 5 N i1cicrrimdjGiss

r ¢, are in general position in §,.

Example We can see how the idea works with a simple example.

7(1,4)

7(1,3)

|
|
I

20 Z(1,2,3)

Z(1,5) 243

V Figure 4.3

Consider MCR" as illustrated in Figure 4.3. As we have observed above, by [44],
Lemma 4.4 and Remark 4.2 there exists an open-dense subset of =, (M) such that for
X in this subset part (a) of Proposition 4.2 is satisfied. We begin by perturbing X into
this subset, so I' (1 r &) is codimension k-1 in Z(1), T',((1,j) r 1) is codimension k-1
in Z(1,j) etc.

Consider a particular chain and a particular sequence, such as
rdr)nT,(1,2r 1)NT5(1,2,3 r 1,2). We would "push” these tangency sets into
general position in Z(1,2,3) as follows (the j,i at the beginning of each line are
explained below):
j=1,i=2 (1) With Y on R*® transverse to Z(1) push I',(1 r &) transverse to Z(1,2) and

to Z(1,2,3)
j=1,i=3 (2) With Y tangent to Z(1) and transverse to I';,(1 r &) push I';(1 r &)
transverse to Z(1,2) and to Z(1,2,3)
j=1,i=4 (3) With Y tangent to I';,(1 r &) and transverse to I';(1 r &) push I',(1 r &)
transverse to Z(1,2) and Z(1,2,3)
j=2,i=2 (4) With Y tangent to I';(1 r &) and transverse to Z(1,2) push TI',(1,2 r 1)
transverse to I',(1 r S)NZ(1,2) and to T',(1 r DYNZ(1,2,3)
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j=3,i=2 (5) With Y tangent to I';(1 r &)NZ(1,2) and transverse to Z(1,2,3) push
I',(1,2,3 r 1,2) transverse to I'y(1 r G)NT,(1,2 r 1)NZ(1,2,3)
j=3,i=3 (6) With Y tangent to I';(1 r &)NZ(1,2,3) and transverse to I',(1,2,3r 1,2)
push I';(1,2,3 r 1,2) transverse to I',(1 r D)NTy(1,2 r 1)NZ(1,2,3)
(End of Example).
Continuing with our discussion before the example we see that in general if we are to
perturb IT'yy(G, £ §)N..N Ty (5, r &,,) into general position in &, there are ZjZ{(k()-1)
pushing stages and these are ordered
j=1,i=2,.. k(1)
j=2,i=2,..,k(2)
etc down to
j=r-1i=2,.. k({-1).
At the (j,i)th stage the inductive assumption is that we have pushed T'y;,)(7; 1 7;,)
transverse to Iy (G, T 6,) N .. NTy45 (G5 T 5;5)Noy Vj<j' <1, where each
Tyqy(, T 6)N .. NTy5(6;4 T 0;,) Moy is a submanifold, and also T (G4, 1 7))
transverse to Iyy(6, T 5;) N .. NIy (G T 6.) NoyVj+1<j' <r (these 0;,j +2<j'<r
are the lower dimensional strata), where the first part of the inductive assumption
implies that T', (0, r 6;)N..NTyy(G; T G;,) N oy are all submanifolds.
Then at the (3,i)th stage
(a) If 2<i proceed as follows: we know Iy )(d, r 6)N .. NTy(G; T G)N oy isa
submanifold for each j+1<j’ <r; these and I',(5;, T 5;) for m<i-1 are left fixed by
Y tangent to I'y;y4(6; T 6;)N .. NTy;00.4(G T 6,4) NI ,5(6;41 T ) and we can also choose
this Y transverse to I';,(G;,; 1 5;), and hence by Lemma 4.5 we may with an
arbitrarily small Y push I'(;,, r &) transverse to I'y;,(5; T 6,) N .. NTy.,4(G; T 5;.) Nooye
vVi+l<j'<r.
(b) If i=2 proceed as follows; we know that T'y (3, r &) N .. NTy;,)(Gj4; T G)Noy
each j+1<j’'<r is a submanifold and is left fixed by Y tangent to
Tiay1(8, T 6N .. NTy0y4(854y T 5;). We choose Y transverse to G;,, and by Lemma
4.5 push T'y(G;,, 1 6;) transverse to I'yy(5, T ;)N .. NTy(G 1 6;,)Noy Vj+1<j' <1,

Proof of Proposition 4.2, Polynomial case

The methods used to prove Proposition 4.2 in the smooth case cannot readily be

applied in the polynomial case. Pugh’s paper [45] and Remarks 4.2 were for the
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smooth case and, more seriously, to use Lemma 4.5 we needed to be able to select Y
at each stage tangent to certain tangency sets, which if Y is only allowed to be
polynomial will not generally be possible. Rather that refine the methods above to
circumvent this we adopt a quite different strategy. Our submanifold with corners M
is (by assumption) a polyhedron, which without loss of generality we can take to be of
codimension 0 in R? and by definition possesses a finite stratification into
submanifolds each of which is an open subset of some L(K)={x ER™(x,n;}=p; for all
i€K]}.

For M codimension 0 in R* £, (M)=E, (R"), which is for the rest of this proof
denoted .. We observe that part (a) of Proposition 4.2 is a special case of part (b)
(with s=1); we shall therefore prove part (b).

Corresponding to each element of &, is a sequence
(@%,a%,..,a%,a" 3l .20, 427 5 -,@%, ) Which are the coefficients of XEE, ., ie
Xix)=a"+Iioy aalXt. F L or a8 XX
Suppose now we have a chain of tangency sets T, (L(I,) r L(1,)),

Tyo(L@) r L)), .-, Tyw(L,41) T LA,)) where L(L;,,) CL(I) for all 1 <i<sand {k(i)}
are positive integers. After a translation we may suppose 0€L(I,,,). Then the
condition that 0E T, ,,)*(L(,) r L)) N .. N Ty, * (L, r II)) or that X(I,,,)(0)=0
may be viewed as conditions on X. We shall show in (1) below that if r=n then
defining T*®--*O(, 1., )=

{XEE, 0ET,, L) r LA))N..NT o *LJ,,) r L)) and X(,,,)(0) =0} is an
analytic submanifold of &, of codimension k(1) | L\I, | +..+k(s) | L, \I | . For
given X we can map each point in L(I,,,) to &, , by x>Gx(x) €EE,, where Gx(x) is the
vector field given by Gx(x)(y)=X(x+Yy). We see that

X € Ly ¥ (L) T LA) N .. N X L) T LADNX ELA,41):X(L41)(x) =0} iff

Gx(x) €T*®-*O(1, .. 1,,,). We shall show in (2) that we can find X' arbitrarily close to
X such that Gy, h T®O-¥6(1,, . 1, ,,) and so that {xEL(,,,):X'{,,,)(x)=0} is disjoint
from all the tangency sets I',,* (L(I;4 ) r L(D)).

This has two consequences: firstly that Gy ' T*O-*&(1, .. 1,, )=
CeyX LIy r LAD)N .. AT X' (LA,,,) r L)) is a submanifold of L(,,,) of the
required codimension, and secondly that so is
ToyX @) r LAY N .. NI (LA, 1 L)) for all X” sufficiently near X',

We can then conclude the proof of Proposition 4.2 by a similar argument to that

used in the smooth case: since there are only finitely many chains
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Ld)DL{,)D..DL(d,,,) and finitely many sequences {k(i)} with each k(i)<n+1 by
making perturbations to the vector field of diminishing size we may adjust X for each
chain and sequence in turn, preserving at each stage the result obtained at all previous
stages. The codimension result implies in particular that I', ,;(L(I) r L{")) is empty for

all I=1I', so since by definition I',(L(I) r LI"))CL,,, (L@ r LJ")) for all k=n+1
Proposition 4.2 holds for all sequences {k(i)}.

(1)(@) By Proposition 4.1 I', ;*(L(L,,) r LT)) =

Njay, o Tee@LE*Y 1 LAY)) where L, =[P*'DIPD.. DI}'=]

and | L™\ | =1, so without loss of generality we may assume we begin with
| L \E | =1.

(ii) We may choose orthogonal unit vectors {n;} such that R

L{,)={x€L{):{x,n,)=0}

L(L,,)={xELJ):(x,n)=0}. n, e
(iii) With the conventions of (i) and (ii) /
0E€T, )" (L) r LAD)N.. NI * LA,y 1 L))

iff D{¢(1,)(0,t=0),n,)=0 for all i <k(1),....,DX¢)(0,t=0),n,) =0 for all i <k(s)
(iv) If we express our vector field relative to co-ordinates x;=(x,n;), supplemented if

necessary so that i runs from 1 to n, then since

KE)); if i€(L,..,H\K

(X(K)(X))f[ 0if iEK

we get

a% if iE€(1,..,n)\K

D#(X)(0,t=0));= [ o
0ifiekK

ala® if ie(l,..,n)\K
(D¢ (XK)(0,t=0)),= jE(g.:,n)\x v ( )

0ifiekK
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alal +2a2.a%a% if i€(l,..,nN)\K
(D26(K)(0,t=0)),= j,kE(lz,:‘.,n)\K ik ad A IS N

0 if i€K
and in general if g<r+1 then if i€ (1,..,n)\K then
DSE)(O0,t=0)=X;,; ;eq,.onx(-... + a multiple of a*",

0 0
iy g2 ).

1" Jg1

(v) To show that T*®-*&([, ' T .,)is a submanifold we shall show that the set of
vectors {gradygy(X), j=1,..,s, i=1,..,k(j)} is independent at every point XE &, such
that X(1,,,)(0) %0, where gy(X)=DX{¢@)(x=0,t=0),n).

This last condition means that if L,=I,U(1),..,I,,;=LU(s)=I,U(l,..,s) C(1,..,n) then
there exists some jE€ (1,..,n)\([; U(1,..,s)) such that aoj;éO. Each X€ £, , corresponds
to a sequence a=(a’,a%,..) and translating X’s into a’s so
grad,=(3/82°%,3/8a%,..,8/0a%,d/0a',,..,8/3a", ,) we show that {grad,g;(a):j=1,..,s,
i=1,..,k()} is an independent set for all a such that a%#0 some j.

We have grad, (g1, g,--,81) =grad,@",..,a°) =

1 0 0

/62010 1 0

0 0001

(o 0000
3/da;'|"
etc

- . -

‘ i

1
and so grad,g,,,..,grad,g,, are independent.

We have grad,(g,,,..,2,)= grada(Eje,lalljaoj,Ejelza‘zjaoj,..,EJEI‘a‘ %) and we know that

§ )

there exists j &1, such that 2% 0, so we obtain grad,(g,,..,g,,) =
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(o~~~ i=1
—_— — o~ ~ /3%
~ -~~~ 1=n
10000 k=
0 1000 3/ j such that j&1,,
Ay and hence a0
0 0001 k=n
- LT - Tk=1
o ~? ; other j’s
_ o~ o~ o~ k=n
_ o~~~ k=1
-~ ~ ~| k=n
0 0000 | ’
0 O 0 O O a/aa?.ijk etc
0 0000

each k(i) <n+1 T®-*(1, .. 1,.,) is a submanifold of the required codimension.
@
(i) For any particular chain L(I;) DL(L,) D.. DL(,,,) and sequence {k(i)} consider for
fixed X the map MNL(I,,,) XE, —~Z,  defined by (x,Y)>Gx,y(x), which is
differentiable (we recall that by definition Gx,v(X)(y)=X+Y)(x+y) ). Fixing x,X the
map Y->Gy,y(x) is the composition Y—Y +X->Gy,(x) which has inverse
Z-7'€E, ,where Z' is the vector field Z'(y) =Z(y-x), followed by Z'->Z'-X. Hence
Y—->Gy,y(x) is a diffeomorphism for fixed x,X and so our original map (x,Y)—>Gx,y(X)
is a submersion for fixed X.

Thus ([35]) for a.a. and hence arbitrarily small fixed Y and for fixed X the map
x—>Gy,y(X) is transverse to our submanifold T*®-*&, . 1 ,,) as well as to
{X€E&, X({,,)0=0} which we denote {(I,,,). We see {(I,,,)= those polynomial
vector fields with a%=0 for all i€ (1,..,n)\],,, so is certainly a submanifold of O
Thus we have found X'=X+7Y arbitrarily close to X with Gy 'T¥-¥9(1, .. 1,.) and
Gy '¢(,,,) submanifolds of L(I,,,) "M, of respectively codimension >0 and
dimension equal to 0; we can check from definitions that these submanifolds are
respectively I', ,* (L r )N .. N XL T L)NAM and
{xEMNL(,,):X'(d,,)(x)=0}.
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(ii) If we now add to X’ an arbitrarily small constant vector field Y’ (ie, Y'€E, ()
which is tangent to L(L) for all 1 <i<s+1, then as in the discussion of Lemma 4.5,
XYY I, r L) = T,X{,, 1 I), and we can therefore perturb any zeros of X'(l,,,) off
X @4y r I): in fact we replace X’ by X'+Y’ such that the zeros of (X' +Y")(,,,) are
disjoint from I',X'*Y'(I;,, r I,) for all i, and since T (;,, r [) CT,(I;,, r I) for all k>2
these zeros are disjoint from all tangency sets. X" =X'+Y' may be such that Gy. is
no longer transverse to T*®-*&(1, ... 1,.,) (because this submanifold is not closed), but
applying (i) again we obtain by an arbitrarily small perturbation Gy~ which is
transverse to T*®-*&(1,,.. 1, .,) and with the zeros of X" (I,,,) now disjoint from
TX"(L,, r 1) for all i. This means Gy~-MNL(,, )N {{,,,) is disjoint from
clos(Gg-(MNL(,, ) NTD-*6(1, .. 1,,,)) so we may remove a small open
neighbourhood U of {(,,) from X, which is disjoint from

Gyx-MNL{,, ))NTO-X6q 1, ). TO-¥O1, .. 1, )\U is then a closed

submanifold of &, , and hence by [35] Gz remains transverse to T-¥&(T, . 1., )\U

for all X sufficiently near X",

The linear case of Proposition 4.2 follows by straightforward linear algebra.

The Iteration Sets

Definition Suppose submanifolds with corners M,M’ of R* carry semiflows

respectively ¢y, and ¢, : we shall say these semiflows are differentiably equivalent if

there exists a diffeomorphism f:M—M' such that f,(x,t) =¢\.(fx,t) for all xEM and
for all tE€[0,t).

Example 4.2 In this example we show that there exists a submanifold with corners
M of R? and vector fields X,X' on R?, and a diffeomorphism f:M-M such that
fo(M, X)(x,t) = (M, X")(fx,t) for all xEM, and for all t=0, but I'*(1,2 r 2) # < any
k=0 while I'*(1,2 r 2)= for all k - ie a differentiable equivalence need not

preserve tangency sets.

>+x2=0 \

Figure 4.4



82

Take for our vector field the constant vector field X=(0,1,0) on
M=M'={x&ER*x,=0,x,+x,>0} and consider the invertible linear map f:M->M with

matrix

[\e
-_— O O

1
01
00
which clearly maps M to M and sends X to X'=(1,1,0) (see Figure 4.4): then
evidently the origin €T\%(1,2 r 2) for all k but €I,*(1,2 r 2) any k> 1.

In this example the tangency sets are not generic (and do not satisfy Proposition 4.2)
but by making the perturbation sufficiently large we can in a similar way construct an

example of a generic tangency set not preserved by differentiable equivalence.

We have in Remarks 3.1(3) defined $,(x)={K:S"(x) CKCS;(x)} where M locally is
ZN(S°,(x);S,(x)\S",(x)), and we now set §(x) =(5,(x),F,(x),..). We may regard F(x)
as a "contracting sequence" and for any given contracting sequence ¢= ($,,$,,..)

define the iteration set §'(¢)={x € ZNI;J):F(x)=c}.

Proposition 4.3 Differentiable equivalence preserves the iteration and hence the

iteration sets.

This will be proved after Lemma 4.8. It is completely straightforward to prove that
the {S;(x)} terms are preserved, and all the interest is in the {S%(x)} half of the
iteration (the reason for this asymmetry is discussed below). This is in fact an
opportune moment to introduce a refinement of the {S"(x)} half of the iteration which
will be called the algorithm sequence A’“,A',,..,A‘kl=A2(,,A21,..,A2KZ=A3U,.. , where
each A7 is a set of strata of T,ZN(S"(x);S,(x)\S",(x)) and is determined ultimately by
x,M,X. Each subsequence A'y,.., A’ is an algorithm for determining SY.,1(x) given
S%(x),S,(x), and hence this subsequence AQ,,A’I,..,A’k’ may be viewed as a refinement
of the consecutive pair of iterates S'(x),S"., ,(x) of the iteration.

The reason we introduce the algorithm sequence at this point is that we shall in fact
prove a strong form of Proposition 4.3, that the sequence {S(x)} and the whole

algorithm sequence (and hence a fortiori the sequence {S"(x)} ) are preserved by
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differentiable equivalence. We have good reason to wish to refine the iteration in this
way. We saw in Theorem 2.1 covering most cases (and in Remark 3.2 for all cases)
that, crudely speaking, the iteration determines into which stratum or strata a
trajectory is heading. Thus in a situation such as in Figure 4.5 below on ZN(J;1,2)
where X(M)(x) =0, whether X(x) points in the direction (i),(ii), or (iii) makes no
difference to the iteration which is the same in all three cases (with $%,(x)=O,
S,(x)=S,(x) =S%(x)=(1,2) ) despite the fact that the local flows in the three cases are
distinguished by differentiable equivalence (as well in fact by the so-called spfp
equivalence defined in Chapter Six).

M
ZP(2;1) \
_— \ v
ZP(1;2)
— (i)
Figure 4.5

Thus the iteration at a point tells us about the trajectory through that point and not
much about the local geometry of the semiflow. Our algorithm sequence however will

distinguish between such cases as illustrated in Figure 4.5 (see below).

Definition (1) A constant vector field X on LC(I;J) is one where X€E, (LC(;J))

(2) A stratum LO(K;J\K) in LC(I;J) is strictly active for a constant vector field X if
on LO(K;I\K) X(M)=X(K) (of course for a constant vector field if a property such as
XLCEN)(y)=X(K)(y) holds for some yELO(K;J\K) then it holds for all of
yELOK;I\K) ) and X(M) | LOK;I\K) #X(K') | LO(K;J\K) any ICK'strictly
contained in K (see Figure 4.6); by Lemma 2.4 this pair of conditions is equivalent to
(X(0),P(K\j)n,) <0 for all jEK\I.

The term "strictly active" is used because in other contexts (eg Chapter 6) one may

think of LO(1;2) in Figure 4.6 as active but not strictly active.

We shall show that the following algorithm provides us with the strictly active strata,



/ 84

and has certain other properties. /

M=LC(J;1,2) K/
strictly active strata LO2;1)

/
x5 X(M)(x)=X(2)(x,)
X(M)(x5) =X(D)(x3) X,

> » A constant vector field X

—1.0(1;2)

XM&)
roox N\
not strictly active;

XM)(x;) =X(1)(x,) but
also =X(J)(x;)

not strictly active because
X(M)(0) # X(1,2)(0)

Figure 4.6

Algorithm Set M=1.C(I;J) and A,=LO(;J), X is a constant vector field. If
X(0)ELC(I;J) stop; otherwise set A;= those codimension 1 strata ¢ of LC(I;J) (which
can individually be denoted A, ;, A, ,, etc) such that X(M) | o= X. If 6=LO(K;J\K)
this means X(I;K\I) #X. Setting Al,i= affine span of A, :\l,i=closure of A;; (ieif
A, =LOK;I\K) A, ;=L(K),A, ;=LC(K;]\K)) then if for some i X(A, )EA,; stop,
otherwise set A,= those codimension 2 strata ¢ of LC(I;J) such that X(M) | ¢
#X(Aj,i), j=0or 1, any i. Inductively if for some i X(AJ-J)EAJ',i stop, otherwise set
A, to be those codimension (j+1) strata of LC(I;J) such that X(M) | o#X(Aj,,i), any

j'<j, any i.
. a codimension 1
X@O€eLCcd] / stratum ¢ of M=
LC(I;J) such that
XM) | o#X
. X(0)ELCI;))

Figure 4.7

Examples 4.3 (Examples of the algorithm).

1) A comer LC(J;1,2) in R%: Ay=10(J;1,2)
LO(2;1) A, =LO(1;2),A, ,=LO(2;1), where we stop,
since X(A, )=X(1)EA,;=LC(1;2)

LO(1;2)

Constant vector field X
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(2) Suppose the comer is LC(J;1,2,3) (Figure 4.8(a)) and in cross-section the
constant vector field X impinges on the strata as shown in Figure 4.8(b), and suppose
(X(0),P(1,2)n3)>0.

LO@3;1,2

LO(1;2,3)
LO@3;1,2) X

0O(1,2;3) LO(1;2,3)

\ 0(1,2;3)

(a) (b)
Figure 4.8
Then the algorithm gives A,=L0(J;1,2,3),A,={L0(3;1,2),
L0O(1;2,3)},A,={L0O(1,2;3)} and then we stop since X(1,2)€1.C(1,2;3).
To prove Lemma 4.6 we shall need the following remark (which follows from

definitions)

Remark 4.3 If o=LO(H;J\H) is a stratum of M=LC(;J), so

XM) | o=X(LCE;H))X, then if X(M) | ¢=X(K) where necessarily ICK CH then
XM) | LOH';)\H')=X(K) for all KCH'CH, ie if X(M) on LO(H;J\H)=X(K)
some K satisfying ICKCH then X(M) on LO(H';J\H")=X(K) for all H' satisfying
KCH' CH (see Figure 4.9).

YLO(1,3;2)
< €-1.0(1,2;3)

If X(M) | L(1,2,3)=X(1) then X(M) | LO(1,2;3)=X(1)
X(M) | LO(1,3;2)=X(1)
X X(M) | LO(1;2,3)=X(1)

Figure 4.9. The corner is M=LC(J;1,2,3) CR"
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As a prelude to Lemma 4.6 below we may verify that in Example 4.3(2) above
(i) The strictly active strata are 1.0O(<J;1,2,3),L.0(3;1,2),L0(1,2;3) and LO(1;2,3)
(ii) That the iteration (which will always have ;(x)=S,(x) for all j =2 if the vector
field is constant) at 0 is S°,(0)=9,5,(0)=(1,2,3),5%(0)=(1,2) and S,(0)=(1,2)
(iif) That if A, is known A,,, is determined by {sign(X(0),P(K; ;)n):j’ <j, A; i is
strictly active, kEJ\K; ;} where L(K;)=A,;.
Eg having established that A;={L0(3;1,2),1.0(1;2,3)} it follows
LO(3,2;1) is not in A, because (X(0),P(3)n,) >0
LO(3,1;2) is not in A, despite (X(0),P(3)n,) <0 because (X(0),P(1)n;) >0
but LO(1,2;3) is in A, because (X(0),P(1)n,) <O0.

Lemma 4.6 If X is a constant vector field on LC(I;J) with the algorithm as defined
above then

(1) If the algorithm stops at the jyth stage then for all j<j, A; =set of codimension j
(in L(I)) strictly active strata

(2) The algorithm stops no later than the | J | th stage, if this is the jth stage there
exists a unique A, ; such that X(Ajo,i) € ‘X‘ioyi and this A; ;=
LO(S8%(origin,LC(1;]),X),\S%(origin, LC{;J),X))

(3) If A; is known A, is determined by {sign(X(0),P(K; ;)n):j’ <j, A, ; is strictly
active, KEI\K; ;} where L(K;)=A4,,.

Proof

(1) Since by definition the vector field X we begin with is on LC(I;J) this is true for
j=0. Suppose (1) is true up to j-1. We must show that if LO(K;J\K) is a codimension
j stratum of LC(I;J) then LO(K;J\K) is strictly active iff it is in A, ie iff
XM) | LOK;IN\K) = X(M)LO(K';7\K") any strictly active LO(K';J\K') with

| K'\I'| <j. Since we must have X(M) | LO(X;J\K)=X(H) some ICHCK and
since by Remark 4.3 we then have LO(H;J\H) strictly active, either H=K in which
case LO(K;J\K) is strictly active and
X(K)=XM) | LOK;\K) #X(M) | LOK';]\K') any K’ such that | K'\I | <j, or
H is strictly smaller than K in which case the stratum LO(H;J\H) is strictly active and
XM) | LOK;I\K) =X (H)=X(M) | LO(H;]\H).
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(2) By (1) above we know that each A;; is strictly active, and by the way the
algorithm is constructed any A,; where the algorithm stops satisfies X(Aj,i)eK,.,i. By
definition of the iteration P(LC([;1))X=P(K)X iff
S%(origin,LC(1;J),X) CK C S,(origin,LC(L;J),X). By Lemma 2.4 we know
PLCEL;INHX=PXK)X iff
(@) (X,P(K\j)n) <0 for all jEK\I, and
(b) PK)XELCK;IN\K) ie (PK)X,n;) =0 for all jEI\K.
If (X,P(K\j)n;)=0 then eg by Lemma 2.2 X(K) =X(K\j), hence S%(origin,LC(I;]),X)
is characterised by
(@) (X,P(S%\i)ny) <0 for all jES,\I
(b) P(S°)XELC(S%INS%) ie (P(S°)X,n;) =0 for all jEINSY,.
(a) is just the condition that LO(S%;J\S%) is strictly active, so comparing this
characterisation of S% with that above for the A;; where the algorithm stops we see
that we must have any such A;;=LO(S%;I\S%) (and so is unique), where
S% =8%(origin,LC(I;]),X).
(3) This follows from the construction of the algorithm and (1). -

The algorithm we have constructed, A,, A;, A,,.. is determined by a constant vector
field X and corner LC(ny,..,n; 4 1,..,M 4, SO Written out in full A; is an abbreviated
form of A(X,LC(ny,..,n;N 41,0, 010)) =A(X,LC(L;])), where X is a constant vector
field and I=(1,..,k), J=(k+1,..,k+m).

From definitions we know that S° . ,(x,M,X)=S8%(0,T,ZN(S°(x);S,(x)\S%(x)),X)),
where in this expression X, is interpreted as the constant vector field on the linear
comner T,ZN(S%(x);S,(x)\S’(x)) which takes the value
Do(S%(x))(x,t=0)-D$(S,(x))(x,t=0) at every point. If we then set
A5(x,M,X)=A;X,, T,ZN(S%(x); S, x)\S’%(x))), j=0,1,.., r=1,2,.., (Where we see that
each A%(x,M,X) will be a set of strata of the linear comner T,ZN(S°(x);S,(x)\S%(x)),
which is a subcorner of T,ZN(S%(x);S;(x)\S°(x)) ) and
A'x,M,X)={A"(x,M,X),A"(x,M,X),...} it follows from this fact and Lemma 4.6
that
A'(x,M,X)={A%=T,ZN(S°(x);S,(x)\S%(x)) =LC(gradf,(x),i € §° (x); gradf(x),i € S,(x)\
§%(x)) =LC(8°%(x); S, (NS (%)), ATy, A% =LO(S,1(x);S,(x)\S’+,(x))} and so can be
viewed as an algorithm for (in effect) determining S° . ,(x) given S°(x),S,(x). We shall

call A(x,M,X)=A'(x,M,X),A%(x,M,X),.. the algorithm sequence and from the
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foregoing see that (at least if the {S;(x)} are known A(x,M,X) constites a refinement
of the sequence S°(x),S%(x),... Important for us is that the individual stages of each
A’'(x,M,X) may be used to distinguish between local flows not distinguished by the
iteration. We saw in Figure 4.5 three fields for which the iteration at a given point
was the same, but our algorithm sequence (in this case we need go no further than A')
distinguishes between them -

(i) Al,=L0(J;1,2),A!,=L0(2;1),A,=L0(1,2;F) v
(i) Al,=L0(J;1,2),Al,={L0(1;2),LO2;1},AL=L0(1,2;2) |

(iii) A',=LO(;1,2),AY, =L0O(1;2),A,=L0(1,2; D) ”

(by construction of the algorithm and Lemma 4.6 the initial and final sets of strata in

each A" are functions of the iteration, and since we specifically chose (i)-(iii) to have

the same iteration A';=LO(S%(x);S,(x)\S%(x)), Al,=LO(S%(x);S;(x)\S%(x)) are the |

same in every case).

We proceed to show that the iteration and the algorithm sequence are preserved by

differentiable equivalence, ie if f is a differentiable equivalence between ¢(M,X) near
x and ¢(M’,X’) near x’, then up to suitable identification (see below) the iteration and
algorithm sequence for (x,M,X) are the same as those for (x’',M’,X’). In doing so we
shall be reversing the emphasis of Theorem 2.1, Remark 3.2 and Corollary 5.2 where
we are interested in establishing as much as possible about ¢(M)(x) given the iteration
{S%(x),S;(x)};cz+; now we shall be determining the iteration from the semiflow.

We can readily show that the upper bound of the iteration, the S;, are preserved by a
differentiable equivalence, and all the work goes into treating the S% case. The reason
for this asymmetry arises from the fact that differentiable equivalence is a condition
on ¢(M), not immediately (if M is locally represented as ZN(;J) ) on the ¢(K)’s for
ICKCIUJ, and the link between the Si(x)’s and ¢(M) is much simpler than that
between the S%(x)’s and ¢(M). It is straightforward to show that
{D,Ffp(M)(x,t=0)},e 2+ determines {S,(x)};cz+, and since a differentiable equivalence
preserves {Dt“qu‘)(M)(x,t:O)}iev (part(a) of the proof of Proposition 4.3) it preserves
{Si(x)}icz+- We see in fact that the only part of the semiflow which is used is the
single trajectory through ¢(M)(x). ¢(M)(x) is not though in itself enough to determine
{S%x)};ez+. Intuitively speaking Si(x) is the largest set of indices K lying between
S°.,(x) and S;,(x) for which D,*®P¢(M)(x,t=0)= DV$(K)(x,t=0) and S%(x) is the
smallest such set; if we take the three fields on R? with M={(x,,X,): X,=0} (a)

Xl=l’x2=01 (b) ).(1:135(2:-)(1, (C) )'(1‘——1,).(2:-1
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: =N

(@) (b) (©)
then to decide which is the smallest set of indices such that , for example,
D, ¢(M)(0,t=0)=D,¢(K)(0,t=0) or X(M)(0)=X(X)(0) we cannot just consider
$(M)(0) but must look locally: we see that in (a) and (b) it is &, in (c) it is (1).
To infer from the existence of a differentiable equivalence that the {S%} are preserved
we shall see that we need to find points x,—x such that
D ¢M)(%,,t=0)=D, ¢(S"(x)\j) (X,t=0) for all i’ <i, ie we must show that a
sequence of points {x,} with x,—x exist which satisfy this condition. We shall use the
algorithm sequence to do this, and will in fact in the process show the stronger result,
that the algorithm sequence is preserved.

We have seen above that A"(x,M,X)=the set of strictly active strata for the
algorithm with data (X,,T,ZN(S°(x),S,(x)\S°%(x))). We shall make the identifications
T(ZN(S°(x),S,(x)\S%(x))) with LC(S°(x),S.(x)\S°(x)) etc in the obvious way. We
recall from Chapter Three that a funnel F,(r,f) at x for a flow ¢ on a submanifold Z
is a set f'F (n,r) where n is the dimension of Z and f is a "straightening-out" map
f:Z-R" such that f.X=unit vector field &, on R*and F.(n,r)={(t,x) ER XR*>!:t=0 and

| x| <t}.

Lemma 4.7 If M near x is locally represented as ZN(I;J) and if

LO;S,.(x)\K) € A"(x,M,X) then there exists a funnel F,(r,f) for the flow ¢(S (x)eK)
in Z(K) about ¢(S,(x)) and a neighbourhood U of x in ZP(K;J\K) such that for all
YyEFE,r,H)NU XM)(y) =XK)(Y)-

(S:(x)
: P(K;I\K)

y Aty, X(M)(y) =X(K)(y)

/ Flad

Figure 4.10
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Proof The result will follow if we can show that for smooth :[0,T)=»Z(K) (T small
and positive) with Y(0)=x and Dy(t=0)=D,¢(S,(x))(x,t=0) for all i <r-1 that
(XEN\)Y(t),gradfy(t)) <O for all small t>0 and for all j EK\S°(x), because if
yE ZP(K;J\K) then T,ZN(I;J)=T,ZN(;K\I) and so by Lemma 2.4
X(M)(y) =P(T,ZNEGD)X(y) =X K)(y) iff (XK\)(Y),gradf(y)) <O for all jEK\L We
consider two cases
(@) jE€S%(x)\S%(x). Then j € S°(x)\S°.;(x) some q such that 1 <q<r and so by
Lemma 2.6
D{PX\})Xo(XK)(x,t=0),gradf;¢(K)(x,t=0))=0 for all i<q-3, <0 at i=q-2. The
supposition that LO(K;S,(x)\K) € A’(x,M,X) implies S°(x) CKCS,(x) so by Corollary
2.1 Djip(K)(x,t=0)=D/¢(S,(x))(x,t=0) for all i<r, and hence we may replace ¢(K)
by ¢(S5,(x)) in the above.
(b) jEK\S’(x). Then LO(K;S,(x)\K) strictly active for A* means (P(K\j)X,,n;) <0
for all jEK\S%(x) where X, =D/ (¢(S%(X))(x,t=0)-¢(S,(x))(x,t=0))
Consider D/{P(K\j)X¢(S,(x))(x,t=0),gradf;¢(S,(x))(x,t=0)) =
D ((PK\))X¢(S.(x)) (x,t=0)-P(K)X(S(x))(x,t=0)),gradf;d(S,(x))(x,t=0)). *)
From the definition of the iteration and the fact that S°(x) CK\jCK CS,(x) we have
as above that if i<r-2 then D/P(K\j)X¢(S,(x))(x,t=0) =D,;P(K)X¢(S,(x))(x,t=0) and
so (*)=0ifi<r-2.
By Lemma 2.3 P(K\j)X,=D(¢(K\))(x,t=0)-¢(S,(x))(x,t=0)) and
PK)X, =D/ (¢XK)(x,t=0)-6(S,(x))(x,t=0)), so if i=r-1
(*)=((P(K\)X-P(K)X,),gradf(x)) =(P(K\j)X,,gradf(x)) <O by above.
Hence in either case (a) or (b) choosing ¥:[0,T)=»Z(K) such that
D/¥(t=0)=D/¢(S,(x))(x,t=0) for all i<r-1 we have for all sufficiently small t>0 and
for all jEK\S%(x) that (X(K\j)¥(t),gradf,y(t)) <O as required. -

Lemma 4.8 If j € S,x)\S%(x) then

(1) JE€S%100N\S%(X) iff D/f;p(S%,,(x)\j)(x,t=0) <0

(2) JES NS 11(x) iff DifB(S;,,(x))(x,t=0)>0

(3) J € Si1(ON\S%,,(x) iff Difip(K)(x,t=0)=0 ¥S°%,,(x) CKCS;,,(x)

Proof (We use without further comment: if € A D/f;¢(A)=0 Vi, P is self adjoint and
idempotent, if I, DI, P(I,)=P{,)P(,), that S%(x) CS%.,(x) CS;,,(x) CS;(x) ). For this
proof quantities of the form D/¢(K)(x,t=0) will be written D/¢(K).
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(1) We show i€ S%,,(x)\S°%(x) implies D/f;¢(S°%,,(x)\j) <0: Consider $°%,,(x)\j, any
FE 8%, ONS%(x). If P(S°,, (x)\))X;=P(8%,,(x))X;, where as in the proof of Lemma
4.7 X;=D/(¢(Si(x))-#(S%(x))),then by construction of the iteration
8%, ,(x) CS%,,(x)\j CS;,(x) which is a contradiction; hence
P(8% 1 CONIX; # P(S% 41 () X:. (X, P(S%41(x)\j)gradfy(x)) <0 Vj € S%,,(x) by
Lemma 2.4, P(S%.,(x)\))X;-P(S°%, ,(x))X;=
(P(S°%1 ()N Dgradfy, X)P (8%, (x)\j)gradfy(x)/ | P(S%,1(x)\j)gradfi(x) | > by eg
Lemma 2.2; the left hand side is #0 and so (P(S%,,(x)\j)gradf((x),X;) #0, we know it
is <0, hence (P(S%,;(x)\j)gradf(x),X;) <0. (D(¢(8%1(x)\))-¢(8%+1(x))), gradf(x)) =
D/fi¢(S%+1C)ONP(S% 1 (x)\j)gradf(x),gradf,(x)}/ | P(8%,,()\j)gradfy(x) | > by
Lemma 2.2. The right hand side=D/f;¢(S%,,(x)\j),
but 0> (P(8%.,(x)\j)gradf,(x),X;) =(P (", (x)\))X;, gradfy(x)) =
(P(Soiu(x)\j)xi’P(SoH1(X))Xi,gradfj(x)) (since j€8%,,(X) CS;11(x) ).
By Lemma 2.3 P(S%,;(x)\)Xi=D/(¢(8%(x)\))-¢(Si(x)))

P(8%1())Xi=D/(¢(8%+1(X))-6(Si(x)))

hence D/f;¢(S%,,(x)\j) equals (D /¢(S;,1(x)\j)-D¢(S%.1(x)),gradf,(x))
and by the foregoing this last quantity is positive.
(2) We show that j € S;(x)\S;,(x) implies D,*fj¢>(Si+1(x)) >0: By Corollary 2.1
D/¢(I)=D/¢(J) for all S°%,,(x) CL,JCS;,,(x) ; hence D/¢(S;,,(X)) =D/¢(S..(x)) and
Lemma 2.5 gives the result.
(3) The fact that JES,,;(x)\S%,,(x) implies D/f;¢(K)=0 vS%,,(x) CKCS;,,(x) follows
from Corollary 2.1 and Lemma 2.2.

Reverse Implications:

(1) We need to show that if j € S;(x)\S%(x) and j& S%., ,(x)\S%(x) then

DiG(S% 1 (X)\])£0. If € SONS%(x) then j & 8%, (GONS%(x) iff j € SGONS,1(x). If
JES(x)\S%,:(x) then S%,,(x)\j=S",,(x), therefore we must show that if
JESi(x)\S%,,(x) then D/f$(S%,,(x))£0: in fact we have by (2) that if j &€ S;(x)\S;,,(x)
then D/f(S%,,(x))>0 and by (3) that if jES,,;(Xx)\S%, ,(x) then D/f$(S%+,(x)) =0,
so the result follows.

(2) We need to show that if j € S;(x)\S%(x) and j& S;(x)\S;,,(x) then Df$(S;,,(x))#0.
Here the condition on j is equivalent to jES;,,(x)\S%(x), and hence D/f;¢(S;;,(x))=0
by (3).

(3) Follows from the construction of the iteration.
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Proof of Proposition 4.3

In Proposition 4.3 we are claiming that if we have a pair of systems (M, X) and
(M',X") and a diffeomorphism f:M-=M' such that fo(M,X)(x,t)=¢(M',X")(fx,t) for all
tE[0,t) then the iteration is preserved. If M near x is locally represented as
ZNI;))=ZN({,,. .£;fi 41,- - fien) then since :M—=M’ is a diffeomorphism M’ locally is
ZN(f L. 056 f . f T and the sets of indices defining strata on M,M’ can be
identified - near f(x) M’ locally is ZN(f',..,f" , f+1's- ., 54m’) Where ' =ff'. By
saying that the iteration is preserved we mean that for all i the pairs of sets of indices
(8%(x,M,X),S,(x,M,X)), (S%(f(x),M',X"),S,(f(x),M’,X")) can be identified in this way;
similarly the algorithm is preserved if under the isomorphism T,M—T,,M' the strata
in A"(x,M,X) can be identified with those in A"(fx,M’,X") for each r; we shall denote
these identifications with =. We show (a) that S,(x,M,X) = S(fx,M’,X’) for all i and
(b) that A"(x,M,X) = A"(fx,M’,X’) for all r (and hence that S%(x,M,X) = S%(fx,M’,X")
for all 1).

(a) We know by Theorem 3.1 that D,*'¢(M)(x,t=0) exists for all i>0 and equals
D,/¢(K)(x,t=0) any S%,,(x) CKCS;,,(x). By lemma 4.8(2) we know that if
FJESNS%(x) then jE S (x)\S,4;(x) iff Difid(S;.1(x))(x,t=0)>0. In fact this result is
true merely requiring that j € S,(x), since if j &€ S%(x) then j€S;,,(x) and hence
D/f;¢(S;i+1(X))(x,t=0)=0. We know (since M’ is diffeomorphic to M) that
S1(x,M,X) = S,(fx,M’,X"). Suppose inductively that we know

Si(x,M,X) = 5,(fx,M’,X"). Then by the above if j € S;(x,M,X) then
FESIx,M, XS, (x, M, X) iff 0<Df¢(Si4:1(x, M, X))(x,t=0) =D, £ (M)(x,t=0)
=Dt+ifjf"¢>(M’)(fx,t=O) (by definition of f as differentiable equivalence)
=D,"f! ¢(M')(fx,t=0) =D/'f} $(S;+,(f(x),M’,X") (fx,t=0)

which if jE€ S,(f(x),M’,X") is >0 iff j&€ S(fx,M’, X')\S,,(fx,M’,X"), and hence

S (x,M,X)} =S,.,,(fx, M X").

(b) We wish to show that A'(x,M,X) = A"(f(x),M',X") for all r. The data needed for
A'(x,M,X) are X, =D (¢(S°(x))(x,t=0)-¢(5,(x))(x,t=0)) and the corner
T,ZN(S°(x);S,(x)\S%(x)). We can infer S°(x) from the algorithm A"'(x,M,X) (which
terminates in LO(S%(x),S,;(x)\S°(x)) ) so if we know that S;(x,M,X) = S;(f(x),M’,X")
for all i (which we do by (a)) and that S°%(x,M,X) = S°(f(x),M',X") (which we do
because there exists a diffeomorphism M—=M' with x—f(x)) it suffices to show that if

(for any fixed i=1) S%(x,M,X) = S%(f(x),M’,X') then Ai(x,M,X) = Al(f(x),M’,X"),
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because then the result will follow by induction. To show A’(x,M,X) = A"(f(x),M',X’)
it suffices by Lemma 4.6(3) to show that if LO(K;S,(x)\K) is a strictly active stratum
of LC(S%(x);S,(x)\S°(x)) with respect to X, ie, LO(K;S,(x)\K) € A"(x,M,X), then
sign{gradfi(x),P(K)X,) =sign(gradf;’ (f(x)),P(K)X,’) for all j € S,(x)\K.

We have if S%(x) CKCS,(x)

(gradfy(x),P(K)X,) ={gradf;(x),P(K)D(¢(S°(x)) (x,t =0)-¢(S,(x))(x,t=0))) (by definition
of X))

=(gradfi(x), D/ (¢ (K)(x,t=0)-6(S,(x))(x,t=0))) by Lemma 2.3
=(gradfi(x), D/ (¢(K)(x,t=0)-¢(K Uj)(x,t=0) + ¢(K U j)(x,t =0)-¢ (K Uj Uj;)(x,t=0)-..
=0(8,(x))(x,t=0)))

=(gradf,(x), D{(f$ (K) (x,t=0))P(K)gradf,(x)/ | P(K)gradfi(x) | >+

D{(f; ¢(KUj)(x,t=0))P(KUj)gradf; (x)/ | PKUj)gradf; (x) | >+..) by Lemma 2.2
=D; (fbx(K)(x,t=0))

and of course similarly that (gradfj'(x'),P(K)X,')=D{(fj’¢X,(K)(x’,t=0)), the suffices
X,X' on ¢ in these formulae to remind us that ¢(K) is in these cases the integral flow
of respectively X(K) and of X'(K).

We have shown in Lemma 4.7 that for any K such that S°(x) CKCS,(x) and such
that LO(K;S,(x)\K) € A'(x,M, X) there exists a funnel about ¢(S,(x))(x) in Z(K) and a
neighbourhood U of x in ZP(K;J\K) such that for all y in this funnel and in U (see
Figure 4.11) X(M)(y) =X X)(y).

ZP(K;J\K)
-y
unnelNU
X

Figure 4.11
Thus if y is such a point then for all small s>0 ¢(M)(y,s) =¢(K)(y,s) and so
D HpM)(y,t=0)=D/¢(K)(y,t=0) for all i=0. Hence for each K such that
$% (x) CK C S,(x) with LO(K;S,(x)\K) € A"(x,M,X) there exists a sequence {x,} with
x,~x such that for each x, D,*'¢(M)(x,,t=0)=D/¢(K)(x,,t=0) for all i.
We know by the fact that ¢(M) and ¢(M') are differentiably equivalent that (as in
(@) D, M)(x,,t=0)=D,*f;' 6(M')(f(x),t=0) s0 We have D/f;’x.(K)(f(x),t=0)=

lim, Dy $x (K)(E(x),t=0) =
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limxk*thiqusX(K) (Xka t= O) =
D/f;¢x(K)(x,t=0) for all K as above, and the result follows. -

The Relation Between Iteration Sets and (generalised) Tangency Sets

We recall from earlier in this chapter the definition of IL,(IUJ r J) - if functions
(f;,..,fi 1) are independent and setting I=(1..k), J=(k+1..k+m)
[LAUT t D={xEZAUI):D/s(IUT)(x,t=0)=Do(J)(x,t=0) for all i<k}. In the same
context we the following open subsets of I'(IUJ r J):
0rAUT r D={xET,JAVUT 1 I):DM¢()(x,t=0)>0 VjEI}
[y AVT 1 N)={xET,AVUJ 1 I):Dp(IUIT\j)(x,t=0) <0 VjEI}.
Using Remark 4.1 (ii) we see
[ AuI r D={&EZW):Dfo()(x,t=0)=0 vs€I,vm <k,D},6()(x,t=0)>0 VsE1},
and I QUJ r )=
{(xEZAUD:D>f o) (x,t=0)=0 VsEI,vm <k, D},o(IUI\s)(x,t=0) <0 VsEI}.
Sets of this type with | I | =1 are used by Pugh [45].

As an example if (X;,X,,X;) =(Xp,X3,1) and Z(J)=R*, ZAUJ)={xER"x,=0}=L(1),
then these sets stratify L(1) (and hence R®) - I',*(1 r @)={xEL(1):x,>0},
I r @)={xEL1):x,<0},...I*(1 r )=L(1,2,3) (=511 D)),
A r @)=T,(1r D)=..= (Figure 4.12).

X3 L(1)

A

!
1{2*(1 r )

T (1 r @)
' Iyt D) %,
1 I*(11 @)

\ ry(1r @)

Figure 4.12
We can check that Proposition 4.2 applies to these sets I', *(IUJ r J) as well as to
IL(IUJ rJ), ie that if X€ E'(M) (a) the sets I *(IUJ r J) and (b) intersections of
them of the type considered in Proposition 4.2(b), are submanifolds (of the same

codimension as if the superscripts + or - were absent).
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We arrive at the result promised linking the iteration sets to the tangency sets. At the
same time we show that for X € E'(M) the iterationn sets are C* submanifolds. We
recall that for given ZN(f,,..,f;f+1,..,fism) and vector field X on ZN(I;J), if
c=((8%,5,),(8%,S,),(8%,S5),..,5°,S,))is a contracting sequence, ie
1CS% CS%C..CS8%CS,CS,,C..CS,CIUJ, then the iteration set
¥ )={xEZNT;I):S°(x) =87, S,(x)=S,, i=1,..,1}. We see I (c)DI!(c") if ¢' Dc.
To guarantee that the iteration sets are submanifolds we shall need X € E'(ZN(1;))),

but the formula expressing an iteration set in terms of tangency sets holds for all X.

Proposition 4.4 If M locally is ZN(I;J) and ¢=((8%,5,),(5%,S,),..(8%,S,) is a
contracting sequence, then locally $7((5%,S,),(5%,S,),..,(5%,S,) |
=ZP(S;;I\S)) NT,*(S; T ;) NI (8% 1 S%)NT,*(S, 1 S))NT,(SY% 1 S%)N.. .
NS T S)NT (8% 1 S% )NT(S, r S°) for any r=>1, and if furthermore
XEE(ZN;T)) it is a C" boundaryless submanifold of ZP(S;;J\S,) of codimension
| SINS; | 4+ ] SON\S% | +2 | S;\S; | +2 | S%\S% | +..
@D | SN\S, | +(-1) | SONS%, | 1] S\SY | in ZP(S;;0\S)).
. EgfZNEGD=ZN@;1,2) & c= (%), (p1). (¢ &)

ZP(S;IN\S)) = ZP(1;2)

$1((D,1),(0,1),(8,2))=ZP(1;2)NT,* (11 D)

Figure 4.13

One implication of Proposition 4.4 is drawn in Corollary 4.2 - that if X&€ Z'(M) then
the condition to apply Theorem 2.1, ie that S°,(x)=S..(x), applies at every point of M.

Minor Remark In applications the expression for iteration sets in terms of tangency sets

would be used in the following form: if the contracting sequence
(S1,515--+51,525-+,5,83,....,8) =(5,P,5,'@, . .5 ) where 5,=(S°,S), then §'(s5,V,s,@ .5 i0) =
Tiy* (S 1 S NTiyy(S% 1 Sol)nri(l)+i(2)+(sz T S3)NT0y4i (8% 1 8%)N..

o Nleigi=1.01 G T SYN Ty J=,“,_1)“(S°, rs° )N Prepi=1.00, T S%).
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Proof of Proposition 4.4 By definition
FH(S%,S))={xEZN(1;]):S,(x) =S,} =ZP(S,;]\S;), so we suppose the result is true
up to r and show that then it is true for r+1. From Lemma 4.8 if
(8%(x),8,(x))=(8°%,S,) then (S 1(%),8:41(X)) = (8’ 41,S:+1) Iff V JE ST \S%
D/ (S%+1\)) (x,t=0) <0 etc. Hence if (S°(x),S.(x))=(S°%,S,) then using (in (i), (ii),
(iii) below respectively) the facts that S°,CS°,,\jCS,, S°,CS,,;UjCS,, and
S0 8%, ,CS,,;CS, it follows that (S°,,(X),S,+1(X))=(5%1,S+1) iff (i)
XET (8%, 1 8%, \j) Vi€ S%. \S%, (i) xET,*(GUS,41 T S;41) VJE S\S,.; and (iii)
XET,;1(5,4; 1 S%.,), and by the way I',*(IUJ r J) have been defined this is so iff
xELHS, 1S, )NT (S, r S®YNT, (S, r S°,,). This is the required inductive

step: we have verified that the formula is true from definitions if r=1, our inductive

hypothesis is that we have for r the form given in the statement of the proposition,
and we have now shown that if additionally (S°,,(x),S,+1(x))=(S%.1,S+1) then

x € $1((8%,S)),(58%,S,),..(8%,SHNT, (S, r S, )N (8%, 1 S®)NT, 4 1(Sp4r T S%,0).
Using then that T,(IUJ r ) DI 3 (AU rJ) and that T AVUT r )OI, IVI rJ) (by
definitions) we get I'.*(S, r S,, ) NI (S%,; r SOYNT,,,(S,s, 1 S,

CT(S, r S, )NT(S%,, 1 S°)NT(S,,; 1 S%, )= TS, r S°) (the last equality by
Corollary 4.1(3)) and hence in the formula we have obtained :
8-1((301,51),(502,82),-~(Sox+1:sr+1))=

ZP(S;INS)NT* (S, £ S)YNT(S% r SY)NTLHS, r S)NT, (8% r S%)N..

T St S)NT (S 1SS )NT(S, £ SHNTHES, 1SN

L (8%, 1 SNT, (S, T S%,,) the T (S, r S°) term (which was the final term in
$1((S8%,S)),.-,(8%,S,)) and now appears 4th from the end in $((5%,S1),.-,(8%+1,5,+1))
is redundant and we obtain the desired expression for r+1. The codimension result

follows if X & E'(ZN(;])) from Proposition 4.2(2).

Corollary 4.2 For X€ E'(M) we may decompose M into submanifolds each contained
in strata of M as a submanifold with comers, consisting of iteration sets $(c) for
contracting sequences ¢, with ¥'(c)=J if

| SiNSz | + | S%\S% | +2 | S;\S5 | +2 | S5\S% | +..

A @) [ SAN\S | (@) | SPANS% | +r ] S\S% | >dimension of M and hence for
all but finitely many contracting sequences. It follows that if X € E’'(M) then
S%.(x)=S..(x) for all
xE€M and we may apply theorem 2.1 part 1 at every point of M.
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Chapter Five

A Theorem about Recurring Strata and some Implications

Almost every problem in the theory of trajectories is concerned mainly with dealing
with the situation where ¢(M)(x,t) makes infinitely many stratum jumps in an
arbitrarily small time interval. If instead for 0 <t<4§ ¢(M)(x,t) lies in a single stratum
o of M as a submanifold with corners, some 6>0, then we saw in Remark 3.1(2) that
d(M)(x,t) =¢(5)(x,t) for all t&[0,9), and in particular ¢(M)(x) is C* on (0,8). Turning
from individual trajectories to the local semiflow a crucial result we shall need to
prove a local stability theorem (Chapter Seven) is that if there are no points of infinite
order tangency between flows on strata of M then the number of stratum jumps made
by trajectories in any compact set is bounded uniformly on that compact set. In this
chapter we shall establish a theorem (Theorem 5.1) covering both situations and
derive some implications.

Throughout this chapter M is a smooth submanifold with corners of R and X is a

smooth vector field on M.

Definition Suppose xEM with {o;} the strata of M as a submanifold with corners. A

recurring set of strata at x is a set of distinct strata (oy,..,0,;) such that there exists a

sequence of points {x;} CM with x>x, where xEg; for all 0<j<r-1, and for each
i€Z* there exist 0=t <t!<..<t'<h, where h;0, ¢(M)(X;,t}) € 0; noa, for all 0<j<i
and the trajectory segments ¢(M)(x;,[0,h))={dM)(x;,t):0<t<h;} Cconv(oy,..,0,,),
where we recall from Chapter Four that conv(oy,..,0,,)=(the intersection of all
subcorners of M containing UjZ¢0;) = (the smallest subcorner containing U}.{c;).
Examples 5.1 (Examples of recurring strata).

(1) In Example 2.1 the strata ZP(J;1) and ZP(1; ) are recurring at the origin (take

x;=origin vi, h; any sequence {0)
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ZP(;1 M)(x
e BT
0 x, x X4 Xs X3 X, ZP(1;Q)

Figure 5.1
(2) We can modify Example 2.1 to obtain an infinite number of hits on the left

ZP(I;1)

2b(1;2) t & [ TR 0

Figure 5.2
and again ZP(1;<) and ZP(<Z;1) are recurring at the origin - take X;=ty,,
hi= | s |
(3) We may find a field X such that X(1),X(2) have respectively the properties of
Examples (1) and (2) above (see Figure 5.3).

ZP(1,3:2)

ZP(1;2,3)

ZP(3;1,2) D)

ZP(2;1,3)

P(2,3;1)
i

/ Figure 5.3
For this system we have on ZNP(2;3;1)=ZP(2,3;1) UZP(2;1,3) X(M)=X(2) or
X(2,3), on ZNP(1;3;2)=7P(1,3;2)UZP(1;2,3) X(M)=X(1) or X(1,3) and the integral
curve through a point on ZP(2,3;1) has the form shown. Then the pair
(ZP(1;2,3),ZP(1,3;2)) is recurring at 0 and (ZP(2;1,3),ZP(2,3;1)) is recurring at 0,
but no subset of size three or more such as

(ZP(1;2,3),ZP(1,3;2),ZP(2;1,3),ZP(2,3;1))is recurring at 0.



(4) Set

(1,exp(-1/x,)sin(x,/x,),0) if x;>0

KX %p,%) = (1,0,0) if x,<0

on R3, with M={xER*x,>0}.
Looking down onto the plane x,=0 we have trajectories ¢(M)(x) parallel to the x,-axis
(Figure 5.4a).

X3

A 4

v

Figure 5.4a
Each trajectory ¢(M)(0,0,x;) with x;>0 looks like

X2 x;exp(-1/x;)
N Nl e
? 27X;  47X; X
Figure 5.4b

with x,(t) =x;exp(-1/x;)(1-cos(t/x;)) and on every compact neighbourhood of 0 any

single trajectory makes only finitely many transitions between int(M)=ZP(<J;2) and
dIM=ZP(2;J), but (ZP(2;D),ZP(J;2)) are still recurring at 0 - take x;=(0,0,1/i?),
h;=i(2#/i%) and let i~»>co,

Xy

_ SNe”
| 2w h;=iQ27/i%)

Figure 5.4c. Trajectory through (0,0,1/i%)

(End of Examples 5.1).

We can check that in each of the above examples if a set of strata (o,..,0,,) is
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recurring at x then for any j,k€(0,..,r-1) Dli¢(6j)(x,t=0)=Dt‘¢(6k)(x,t=0) for all i, g;
being (as in Chapter Four) the C* extension of ;. Intuitively we think of this as
meaning that the flows on the strata (or really the strata extensions since the strata
themselves are disjoint) are infinitely tangent at x.
Theorem 5.1 where we establish this fact in general is a key result in this thesis, the
implications of which occupy the second half of this chapter and Chapter Seven. It is
simpler to prove if M has only orthogonal corners (defined in Remark 2.5) and since

this covers the applications we shall restrict ourselves to this context.

Theorem 5.1 If M is a submanifold with orthogonal corners locally represented as |
ZN(L;]) and if strata {ZP(I;,J\I)),j=0,..,r-1} are recurring at x€ ZN(I;J) then :{
D/s(N;gl)(x,t=0)=D/¢(U;i)(x,t=0) for all i=0; equivalently if strata {o;};~o .1 {
are recurring at X€M then the flows on all the strata in conv{s;};, . are infinitely
tangent at X.
We re-iterate that the trajectory segments ¢(M)(x;,{0,h))) in the definition of recurring
strata can all be on the same trajectory or overlap (as in the case of Example 5.1(2)
where we can take x;=ty;,;, h;= | t;;; | , or Example 5.1(1), where we may take
x;=0 for all i, h; any sequence 0 ).
To prove Theorem 5.1 we shall have to deal with the fact that the trajectory
segments arising in the definition of recurring strata are by their nature highly

non-smooth. Let us consider how we would prove it in a particular case.

Example 5.2

M={yER"y,,y,=0}. We shall set o,=int(M), o;={yER"y,=0,y,>0},
0,={yER"y,=0,y,>0}, o;={yER"y,=0,y,=0}. We suppose there exist
{x};ez+CM and {h;};c,+ CR* where x;>XxE g3, h;$0 and so that for each j the
trajectory segment ¢(M)(x;,[0,h;)) hits each of 0,0, at least j times (see Figure 5.5).
We are claiming that

D/p(1)(x,t=0)=D/$(1,2)(x,t=0) =D/$(2)(x,t =0) =D/¢()(x,t=0) for all i=0.

If we were constructing an analytic (in the sense of concrete) example the following
symmetry relation would probably hold (this type of relation does in Examples 5.1(1,2
and 4)): if for points x,yEM P(1,2)x=P(1,2)y then X(x)=X(y), ie the vector field is
independent of y, and y,. This implies X¢(M)(x,t)=X¢(1,2)(P(1,2)x,t) for all t, anq
hence if ¢(M)(x) re-enters o, from o, and o, j times on [0,T], ie (X¢(M)(x,t),n,) has j
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4‘ zeros on [0,T], m=1,2, then the smooth (X¢(1,2)(P(1,2)x,t),n,) also has j zeros on
[0,T], m=1,2, and the result may be inferred directly. This special type of case

provides in fact no hint as to how one proceeds in general.

\ n? -—-0n 01 or 0_2

; Figure 5.5
I We make for fixed k the inductive hypothesis

(1) that there exists a subsequence {x} of {x;} with xx as j»>oo, for each jEZ*
| reals 0=T¥(<T¥,<..<T9;$0 with points x5 ; =¢M)(x",T;)
‘ on ¢(M)(x5,{0,T%;)) such that if j’ is odd X(M)(x5;;) =X(1)(x";) and if j’ is even
X(M)(xkj,j’) =X(2)(xkjj’)a and
(2) that (1/(TX;..1-T5;)) DX (D) (D) (X ,t=0),n,,) (*)
} is uniformly bounded for all integers j, for all 0<i<k and for all 0<j’' <j, m=1,2.
Since T¥;,,;-T%;~0 and x¥;~x as j>oo for any {(j,j’)} with j’ <j the inductive
hypothesis implies in particular that DX (X(2)¢(D)(x,t=0),n,.)=0 for m=1,2 which
using Lemma 2.2 tells us that D*¢(1,2)(x,t=0)=Dk¢(D)(x,t=0) etc, ie, if we can
show the inductive hypothesis holds for all k then the result follows.
Evidently this inductive hypothesis is satisfied for k=0, taking x%=x;, TY;
=h;, where x;, h; are given to us by supposition, and x’; are points along ¢(M)(x;)
where the curve re-enters ¢, from oy (if j’ odd) and from o, (if j' even) (see Figure

5.5) and we can fix T%; by ¢M)(x;,T%;)=x%; (if k=0 condition (2) is satisfied so
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long as the points remain in a bounded set). Thus we must show that if the hypothesis
holds for k then it holds for k+1.

Using Lemmas 5.2 and 5.3 we can, if the inductive hypothesis is satisfied for k, for
each j find smooth curves 1//kj:[O,T“,- ;)M which are tangent to ¢(M)(x5) at x5, for
each j’ <j (and hence to o, for odd j’ and to o, for even j’) and which furthermore
themselves satisfy certain uniform bound conditions of a form similar to (*) (see
Figure 5.6). For any r=0 such that j =r+2k there are therefore between the pair of
points x5j,, x5, along yX k points of tangency between ¥ and g, m=1,2, ie k
points where (X(&)y¥(t),n,) =0, and hence on [T, T%,.] there are k-i points where
DXX(D)¥~(H),n,)=0. This, (*) in the inductive hypothesis and Lemma 5.4 then tell |
us that Supiert, &, (1/(T kT8 e 2)) (DE (X (D)D) ,n,,)) remain uniformly
bounded as j»>o, m=1,2 for all 0 <i<k, which combined with Lemma 5.5 tells us
that (1/(T T, ;+20) DX (D) (D) (XY ,t=0),n,,)) is uniformly bounded as j»oo
for all 0<i<k, m=1,2.

A

),9_’-3&\ SM)(x*)

%)

k
y¥,, a smooth curve tangent to ¢(M)(x*)
at each x5

Figure 5.6
If we now set x**L=x%;, and T*';; =T 5 (50 X**';; =x¥y;2;) s0 {xX**'} isa
subsequence of {x} and {x**;.} is a subsequence of {x%,;} (see Figure 5.7), we see
that this proves the inductive hypothesis for k+1.
The only extra ingredient in the general case is that more work is involved in

selecting the points x%; (Lemma 5.1). Note incidentally that what the segments
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¢M)(x;,[0,h;)) do in addition to intersecting y,01,..0,, cyclically in turn is irrelevant,
so long as they remain in conv(ay,..,0,): for example if in Example 5.2 in addition to
entering o, from ¢y,0, at x;; these curves intersect o3 or have tangencies with o; it

makes no difference to the result or proof.

K oogk k¥l o k41
X=X 40=X 25X T30

K k+1
\\ X=X 21

X=X 22

Wtory based at (x5, =x**1)

1 X=X, —
K ok kK k+ S W : .
Xx=Xx0 —> Xxx=X 11

X =x5 Figure 5.7

(End of Example 5.2)
Lemma 5.1 generalises the fact that if a trajectory bounces several times between
strata then we can find a succession of points along the trajectory where certain vector
fields X(K) (in the case of Example 5.2, X(&) and X(1) or X(&) and X(2)) or their

smooth extensions coincide.

Lemma 5.1 If M is a submanifold with orthogonal comers with x€EM,
0=t,<t,;<..<t with ¢(M)(x,[0,t)) CZN(I;J)= a local orthogonal representation of M
(with x in ZN(I;J) but not necessarily in Z(IUJ)), and if for ICIL,,..,L ,CIUJ

M) (X,t) € ZP(I; oa 1, I \Li moa 1), fOT all 0<i<j, then for each k€ ULZI\NI L, and
for each m>0 with (m+1)r<j there exists a point t€ (t,,,tq.1,) such that
(X(NIZT)M)(x,1), gradfg(M)(x, 1)) =0.

Eg If in Figure 5.8 below ¢(M)(x,t) € ZP(1,2;3) for even t and ¢(M)(x,t) EZP(3;2,1)
forodd t, so NL=C, UL,=(1,2,3), then on each interval (t,t,,,) there exists for each
j=1,2,3 a point t where (X(¢(M)(x,1)),gradfi(¢(M)(x,t)))=0
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7P(3:2,1)

P(1,2;3) Figure 5.8 |
Proof

(1) We show that if on the domain of the local orthogonal representation ZN(I;J)

f(y) >0 some i€]J then (X(M)(y).gradf(y)) =(X(K)(y),gradf(y)) any KDI such that
1€J\K, from which it follows that t=(X(M)p(M)(x,t),gradf(¢(M)(x,t))) is continuous
for as long as f;a(M)(x,t) >0 (this is not the case if the corners are not orthogonal).
We recall that because X is defined on M locally represented as ZN(I;J) the vector
field X we begin with is identical to X(I). From Remark 2.5(1) we know that if
yEZNT;J)

X)) =X(S:(MY) + Zies pngradfi(y) max((gradf(y), X (&)(y)),0)/ | gradf(y) | *
where of course ICS,(y) CIUJ. By Remark 2.1 we know that

XS () =XD(y)-Ties s hgradfi(y) some reals {\} and

XMy)-XK)(y) =LZ;cxPI)gradf/(y) where the right hand side = ey gradf(y) if as
here {gradfi(y)};c,u, are orthogonal. Then if f(y)>0 - ie i€ S,(y) - then since for our
submanifold with orthogonal corners (gradfi(y),gradf(y))=0 for all i#j we have for
all i€J (X(M)(y), gradfi(y)) =(X(D)(y),gradfi(y)) =(X(K)(y),gradf(y)) if i€I\K.
Continuity of t=(X(M)o(M)(x,t),gradf(¢(M)(x,1))) for as long as f.(¢(M)(x,t)) >0
follows from this and continuity of t=¢(M)(x,t) and of y—=XI)(y).

) If k€ UILII\NIZL then there exists k(0),k(+) € (0,..,r-1) such that k€I, and
k&€ I\l 4, Hence for every m fLd(M)(X,t,,140) =0 and fid(M)(X, b, +x+y) >0, SO
f,d(M)(x,t) is both zero and positive on any interval [t ,t.+1,) (it can never be
negative because k€ 1UJ and ¢(M)(x,t) EZN(I;))). If k€], fio(M)(x,t,,)=0 for all m,
so since by (1) D *(f,o(M)(x,1) =(X(M)p(M)(x,1),gradf,¢(M)(x,t)) is continuous
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where fi¢(M)(x,t) >0 (see Figure 5.9) there must be some t€ (t,,,tu4 1) Where
fig(M)(x,1) >0 and (X(M)$(M)(x,1),gradf¢(M)(x,1) =D, *(fd M) (x,1)) =0. |

fqu(M) (X ’ t)

ST~

tmr t(m+ Dr

Figure 5.9

By (1) again at this t (X(K)¢M)(x,t),gradf, ¢(M)(x,t)) =0 for any K DT such that
kEI\K, and K=NI_lI; satisfies this condition since for each I, DI ‘

k€ ULIN\NLZILCINNLIL. |

Alternatively if k&I, then kEJ\], and f,¢(M)(X,t,,) >0 for all m. We know that

there exists k(0) € (1,..,r-1) (k(0) =0 because k& 1) with f(M)(X,tp 410) =0. Set

T =sup{t € (tpr, L+ o) FedM) (x,t) =0} (necessarily <t ,s,). Thus fi¢(M)(x,T)=0, or

equivalently k€ S,(¢(M)(x,T)). By Remark 2.5(2)

X(M) HM)(x,T)=X(S,($M)(x, T)))$M)(x,T) s0

(XADSM)(x,T), gradf, (M) (x, T)))=0. Since figM)(X,0>0 0on (T,tesr), bY (1)

again (X(NIZHeM)(x,b),gradfig(M)(x,1) =(XM)dM)(x,1),gradf, ¢ (M)(x,t)} on

(T,t@m+1s), hence

(X(NILHeM)(x,T),gradf,oM)(x,T))

=1im,, (X(NiT)SM)(x,1),gradf (M) (x,t)) (by continuity of X(NIHL) and ¢(M))

=lim,, (XM)dpM)(x,t),gradf o M)(x,t)) (by foregoing)

=(X(M)pM)(x,T),gradf,¢(M)(x,T)) (by Theorem 3.1))

=0 (by above),

We recall from our discussion of Example 5.2 that the kth inductive stage of the
proof of Theorem 5.1 involves finding smooth curves {y*};-,, . where J*(0)=x¥; for
all j, each passing through the points ¢(M)(x5, T;;) for all j’ <j, with 11;“,-=X(M) at
these points, and satifying certain extra conditions; in Lemma 5.2 and 5.3 below we

are concerned with constructing these curves.
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Lemma 5.2 Suppose X is a vector field on Z(I), {x;} is a sequence of points in the
submanifold with corners M =ZN(I;J) such that x;»x as j=>o0,and suppose {T}} is a
sequence of positive reals such that T;+0 as j>o, and that
(1/T)~D (X ¢)(x;,t=0),gradf,,¢(D)(x;,t=0)) is uniformly bounded for all i<k, for all
JEZ™* and for all mE7J (ie, there exists A independent of j such that

| (UTFHD(Xo@)(x;,t=0),gradf, ¢ (D (x;t=0)) | <A for all j=0, for all i<k and for
all m&J).
Then Sup{ | (I/T)*XM)$M)(x;,0-XDs@Ox;0) | :tE[0,T1}
and Sup{ | (/TY** (M) (x;,1)-6(D)(x;,1)) | :tE[0,T;]} are bounded uniformly over
JEZ*.

Proof

(@) X(y), X(M)(y) are uniformly bounded in any compact region so

Sup{ | X(M)sM)(x;,t)- XD (x;,t) | :tE[0,T;)} is uniformly bounded for all j - say
this quantity is bounded by A - then since for 0 <t<T;

| (UTYeM)(x;,H-¢M(x;,0) | <= | (1) [ "o XMSM)(x;,8)-X(DdD(x;,9)ds | <A
the result for k=0 follows.

(b) Suppose the result holds up to k-1.

Then we have X(M)¢(M)(x;,1)-X(DeD)(x;,1) =X(M)dM)(x;,t)-X (M) s (D) (%,1) +
XM)o M (x;,0)-X(DMo(D)(x;,t). By assumption the trajectory segments ¢(M)(x;,[0,T))
are all contained in ZN(I;J) hence X(M)o(M)(x;,t) =X(K)p(M)(x;,t) some ICKCIUJ
for all j for all t€[0,T;), and since there are only finitely many such K the fact that
supte[O,Tj](1/Tj)"(X(M)¢(M)(xj,t)-X(M)d>(I)(xj,t)) is uniformly bounded over jEZ* will
follow if we show that suple[oyTj](l/Tj)“(X(K)¢(M)(xj,t)—X(K)¢(I)(xj,t)) is uniformly
bounded over jEZ* for each ICKCIUIJ.

By the Mean Value Theorem | X(K)(¥)-X(K)(z) | < | y-z | supues | X(K)' (W) |
where we take B to be a compact convex region large enough to contain all the points
¢(M)(x;,t) and H(I)(x;,t) for 0<t<T; (which can be taken to be compact since x;»x
and T;{0) and hence there exists a constant A < oo with sup,ep | X(K)'wW | =A.
Thus | (UT)XE)SM)(x;,)-XK)SMX;,0) | <A | (UTYSM)x;,0-6DMx;,0) |
for all K such that ICKCIU]J, for all j and for all t&€[0,T], and the right hand side
is uniformly bounded by assumed result for k-1.

We now show that suple[OYTJ_](I/Tj)“(X(M)¢(I)(xj,t)-X(I)¢>(I)(xj,t)) is uniformly
bounded over jEZ*. As above it suffices to show that for all ICKCIUJ
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suple[O,Tj,(l/Tj)“(X(K)¢>(I)(xj,t)-X(I)qS(I)(xj,t)) is uniformly bounded over jEZ*.

By Remark 2.2 we know that for KD I X(K)(y)-X(I)(y)=-NM'N"X()(y) where
INTX (D), =(gradf,(y),X{)(y)) and N(y)M(y)" is a matrix depending smoothly on y.
Hence (since {¢()(x;,t):;j EZ*, tE€[0,T}]} is bounded) | X(K)dD)(x;,t)-XDdD)(x,t) |
is bounded over j€EZ*, t€[0,T;], by some positive constant multiplied by
SuPyexy | (gradfd@)(x;,t), XM D (x;,1)) | . The supposition of the lemma is that
(1/T)“'D{{Xo(I)(x;,t=0),gradf, ¢ (I)(x;,t=0)) is uniformly bounded for all i<k, for all
jEZ* and for all m&J. If we expand out (gradquS(I)(xj,t),X(I)¢(I)(xj,t)) as a Taylor
series we get (gradfo(D)(x;,t), XM dD)(x;,t)) =

(gradfo (1) (x;,t=0), X WD) (x; t=0)) + D {gradf s (D) (x;,t=0), XD b(D) (x;,t=0)) +

12D (gradf(1)(x;,t=0), XM D) (x;,t=0))+... +
(1/kN)t“Dgradfid(I)(x;,0), X (D)o (D)(x;,6t)) (some § € (0,1)) where all but the last term
are of the form t'X(a quantity <AT;*’) some constant A where i=0,..,k-1; since
t€[0,T;] these terms are therefore uniformly bounded by T}*. The last term is
t“X multiplier where the multiplier is uniformly bounded by suposition at t=0 and
hence by continuity uniformly bounded on compact sets. Thus

| (VT XM)oD(x;,H)-XDMdI)(x;,t)) | is bounded uniformly over jEZ*, tE[0,T],
which combined with the first line yields that

| (/T XM)eM)(x;,H)-XMd(D(x;,1)) | is bounded uniformly over jEZ*, tE[0,T]].
This is the first half of the result; for the second half, if 0 <t<T; then

| (VT (oM (x;,0)-0(D(x;,0) | <

| (178) § iU/ THEM)SM)(x;,)-X(Dd@)(x;,t))ds | , the integrand is less than or
equal to some constant A by the above and hence
SUPiepo,T) | (UT) Y (pM)(x;,)-0(D(x;,0) | <A -

Remark With the same assumptions we can also show that

Sup{ | (I/TY**" (D, pM)(x;,1)-D, "¢ (I)(x;,1)) | :tE[0,T;]} is uniformly bounded as
j=>oo for all 0<i<k+1, but this strengthening is not needed.

Lemma 5.3 Suppose a submanifold with corners M is locally represented near x as
ZN(;J) with {x;} a sequence in M such that x,»x as j>o0, and suppose {T;;} is a
sequence of non-negative reals with T;;+0 as j>oo,

[09TjJ] =[0 =Tj,O,Tj,l) U [Tj,l ’Tj,Z) U..uU [TjJ—laTjJ]- If

sup{ | (1/(Tjj41-Tj)) ' (XM)SM)(x;,0-X MM (SM)(x;, T;;),t-T;50) | tE [Ty, T;541]} and



sup{ | (1/(Tj,j'+1’TjJ'))k(¢(M)(xj,t)‘¢(I)(¢(M)(xjaTj,j')yt‘Tj,j')) l :tE[TjJ”Tj,j'+1]} are
uniformly bounded as j—»oo for all j'=0,..,j-1 (ie, there exists a constant A>0 such

that for all jEZ* and for all j' <j both these quantities are less than A) then there
exist smooth curves y;:[0,T;]=Z(I) satisfying

(1) ¥;(0)=x; and ¥;(T;;) =¢M)(x;, T;;) for all 0<j’' <j

2) ¥i(T;) =XM)M)(x;,T;;) for all 0<j’ <]

(3) sup{ | DY;(t) | :tE[0,T;;]} <A for all j, some A independent of j

(4) sup{(1/(T;5+1-T;3))*" | D{(Y(0-¢MSM)(%;, T;),t-T;3)) | it € [Ty, Tj 441} <A for
all 0<j’' <j, for all jEZ*, for all 0<i<k, some constant A.

Proof (a) The suppositions imply that if we set

Gi(t,3,i") = oM (x;, Tj ) + (- T; XM M) (x;, T ) + Y2 (t-T; )’ DS MM (x;, T ), t=0) +

+ (/A DHET; ) DE oM (@ M) (x;, Ty 5),t=0), and

Ga(t,J,1" ) =M}, Ty ) (T 5+ - DX M) S M) (X, T jr 1)~
1/2(er'+1‘t)2D¢2¢(I)(¢(M)(Xj,Tj,j'+1),tzo)‘--

(U &+ DT -0 'DEH e (D (SM)(X;, T 54.1),0) then

(1/(Ty- Ty )Y DE(Gy (1, )- D SM)(x;, Ty ) T ;) and

(1/(T}5 41" T ) DE(Go(L,] ] )- oD (M) (x;, T; ;),t-T;;)) are uniformly bounded as j»co
for all 0<j'<j-1, JEZ* tE[T;;,Tjj 41l

(b) We set g:R—>[0,1] to be a C* function infinitely tangent at 0 and 1 to the maps
R-0, R—1 respectively :

1]
g\

and observe that sup,e o arDi'g(t/A) =(1/A)sup,e ;o ;D/g(t)

(¢) If we now for any jEZ*, 0<j' <j-1 set on tE[T};,T}; 4]

YO =1-g((t-T;5)/ (T3 41" TGt ) + 8T/ (T 47T 1)) Gat,j,) ) then this y; is
smooth and satisfies (1) and (2) (Figure 5.11).




109

SN0 T;)
SMY(x, T, ) \ ,

DT, M) (x,

¢(M)(x)

Figure 5.11. y; is a smooth curve coinciding with ¢(M)(x;,t) at t=T,; for j'=0,..,j
and at these points the time derivative V'./j(T i) =XM)oM)(x;, T; ;).

Furthermore, for t€ [T;;,T;; 1] DSW;0-0M(eM)(x;, T;;) ,t-T; ;) =

L oD A-g(E T/ (T - Ty dNDM (G (t,5,1)- oM (@M (X, T ), t-Tj ) +
Dyg((t-T;5)/ (T +1-Ti ;D™ (Golt J)- oMM (x;,T;;),t-T;;))) and hence by (a) and
(d) for t&[Ty;,Tj; 4]

sup{ | (1/(Tj,j'+1'Tj,j'))k'thm(¢j(t)‘¢(I)(¢(M)(Xj,Tj,j'),t‘TjJ')) | t€ [TjJ’aTjJ’+l]} ™
is uniformly bounded over j’ <j, jEZ*. This gives (4) of the list of conditions we

claim ; satisfies (see Figure 5.12).

(T.
ST, T, T,) Vi(T;2)

Xj:”bj(Tj’O) e T. ¢(I)(¢j(Tj,2),Tj,3‘Tj.2)

Figure 5.12
As for (3), under the assumptions of this lemma ¢(1)(¢(M)(x;,T;;),t-T;;) is contained
in a compact set for all t€[T,;,T;; .1, j'<j and JEZ™, hence by smoothness of ¢(I)
there exists a constant A’ >0 such that | D*¢(D)(¢(M)(x;,T;;),t-T;;) | <A’ for all
te [T},
| DX | - | DESMGM, T )T | < | DX O-DESM@M0K, T, Ty |

T+, ) <], JEZ™. We know that
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<A for al t€[T;;,T;;41], J' <], JEZ", some constant A, by (*) with m set to k,
and it follows that for all jEZ* and for all t€[0,T;;] | DfY;(t) | <A+A'.

Lemma 5.4 below is a quite general result saying that if {;} is a sequence of smooth
curves, ¥;:[0,T;)-»B (= a ball in R") where T;{0, and g is a smooth function g:R*>R
such that gy; has k zeros on [0,T)) for each j, then so long as the kth time derivative
of Y;(t) is uniformly bounded over t&[0,T) and jEZ*, then for all 0<i<k
(1/T)'(D'gy;(1)) is bounded uniformly in tE€[0,T)) and jEZ*.

Lemma 5.4 If {y;} is a sequence of smooth functions ;:[0,T)~B (= a ball in R")
where T;40, and f is a smoooth real valued function with non-vanishing gradient, such
that

(i) sup{ | D&yt | :tE[0,T;]} <A for all j, some A>0

(i1) (X(¥;(1)),gradf(y,(t))) has k zeros on [0,T] for all j

then sup{ | (1/T; DX y;(t),gradfy,(t)) | :tE[0,T]} <A’ for all j, 0<i<k, some
constant A’ >0,

Proof Between any pair of zeros of (Xy;(t),gradfy;(t)) there exists a zero of
D{(Xy;(t),gradfy;(t)), between any pair of which there exists a zero of
DX(Xy;(t),gradfy;(t)) etc. Hence there exist t,,..,t,; €[0,T;] with
D(Xy;(t),gradfy;(t)) =0 at t=t, Writing Xfy(t) for (Xy;(t),gradfy;(t)} then if tE[0,T]]
(UT)DEXEY0) =/ TYDE XY, DEXEY(t) = UT; § i, DEXFY(s)ds, where
the integrand is bounded uniformly over jEZ* since X,f are smooth and by
supposition the quantities sup{ | D*y;(t) | :t€[0,T;]}, and hence by the Mean Value
Theorem sup{ | D/¥;(t) | :tE€[0,T;]} for all i<k, are bounded uniformly over jEZ*.
Hence sup{ | (1/T)D'Xfy;(t) | :t€[0,T]]} is bounded uniformly over jEZ*.
Similarly by induction, if sup{ | (1/T)'DXfy,(t) | :tE€[0,T}}} is bounded uniformly
over JEZ* sois sup{ | (1/T)*'DF'Xfy,(t) | :tE€[0,T;]} (using that for tE[0,T]],
(UT)*'DEXE0) =(UT) (DS XY (1)-DEH X (4i.))

=UT; § Ly (UT)DEXEY(s)ds ).

Lemma 5.5 is another quite general result we shall need to prove Theorem 5.1.
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Lemma 5.5 If f:R"»R" is smooth, x EBCR® where B is a closed n-ball,
sup,esisk | DY) | =A <oo, {g}, {h} are sequences of smooth functions
g;,h;:R>R* with g,(0)=h;(0)=x;, x;>x as j>oo, {T;} a sequence with T;}0 and
gj(O,Tj),hj(O,Tj)Cl—B, then if (1/T,'D/~(g;(t=0)-h;(t=0)) is bounded uniformly over
jEZ*, for all i<k, then (1/T)'(D(fg,(t=0)-fly(t=0)) is bounded uniformly over
jJEZ*, for all i<k.

Proof If h:R—>R" is a smooth function with h(0)=x, and writing D/h(t=0) as h® and
D jf(x) as f2(x), the chain rule for differentiating compositions of functions gives
D,/fh(t=0)=a finite sum of terms each of the form fO(x)(h®®, , h®®) where
Ti_,k(s)=i. Thus with x;,g;,h;,f as above (1/T;) D (fg;(t=0)-fh(t=0)) is a sum of
terms (L/T)™(x)(g*-h*D,.. g*-q&@) where £2_ k(s)=k-i, which since the |
{x;} are in a compact set and all functions involved are smooth this typical term has
magnitude <(1/T)'A | g*®-h*D | | g*@-h*® |  We know by supposition that

| D¥(g;(t=0)-h(t=0)) | <CTj for all 0<i<k some C independent of j, hence each
typical term has magnitude < (1/TA(C(T)<*®)(C(T)**®)..(C(T)**™) and so

| (1/T)DFi(fg;(t=0)-th(t=0)) | <(1/T)'A’(T)***@==L-=C™ some A’ independent of
i. We know I™_k(s)=k-i thus mk-E_ k(s) =(m-1)k-+i. Hence

\ 81 (k-k(s)) =(m-1)k+i which is =i if m>1, and hence
| (1/T)D}F(fg;(t=0)-fh(t=0)) | is uniformly bounded over jEZ* for each 0<i<k.

Proof of Theorem 5.1

We are claiming that if M is a submanifold with orthogonal corners with local
orthogonal representation ZN(I;J), then if there exists {x;};-; o CZN(I;J) with
x>Xx EZ(IUJ), reals h;40 and a subset {ZP(I;I\L):i=0,..,r-1} of strata in ZN(T;J)
such that for each j there exist 0=T,,<T;,<..<T;;<h; with
dM)(x;,[0,h;)) Cconv{ZP(;I\I), i=0,..,r-1} for each jEZ* and
SM)(X;,T,.) € ZP(L; a3 \Li moa ») fOT €ach i<j, then D¥o(N Iz (x,t=0)=
D*$(UIZ)(x,t=0) for all k=0.

For example in the case of Example 5.2 ZN(I;J)={yER"y, =0,y,>0}=ZN(J;1,2),
r=2, ZP(I; ]\l =ZP(D;1,2), ZP(;J\I,)=ZP(1;2), ZP(1;;J\I,) =ZP(2;1), and there
existed {x;} CZN(LJ;1,2) such that x,>xE€Z(1,2) as j>oo and for each x; we could
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find 0<T,,<..<T,; where Tj; 0 as j>o0 such that ¢(M)(x;,T; ;) € ZP(1;2),
M) (x;,T; ) EZP(2,1), ¢M)(x;,T;5) EZP(J;1,2), d(M)(x;,T; ) EZP(1;2),..,up to
dM)(x;,T;;); Theorem 5.1 tells us Dfo(D)(x,t=0)=DF¢(1,2)(x,t=0) for all k>0.
We can suppose throughout that N{Z)=I and Ui L=IUTJ (I,],]; as in the beginning
of this proof). This is because we are assuming that
S(ZNI;1))(x;,[0,T)) CZNP(NZgh; UTZgl\N LI\ U TLeL) and we can check in
general that at every point y € ZNP(K;;Ky;J\(K; UK;)) (a submanifold with corners
and a subcorner of ZN(I;J)), that
T,ZNP(K; K, I\(K, UK,)) =T,ZN(K,;K;) CT,ZN(I;J) and hence by Theorem 1.1 that
XEN(IN)(Y) =X(ZNP(K 3 Ky, INK UK )))(y) for all y € ZNP(K ;K5 \(K UKS)).
Hence if ¢(ZN(;1))(x,[0,T)) CZNP(XK;;K,;J\(K; UK,)) then
D@ (ZNTI) (%, =X(ZNI;1))S(ZNEL D) (x,1) = X(ZN(K;K)) (#(ZN(T; 1)) (%, t) for all
t€[0,T), so by uniqueness of trajectories (Theorem 1.1) we have
S(ZNEN)(x, ) =6 (ZN(K; K))(x,t) for all tE[0,T).
Additionally X(ZN(K,;K,))(y) =P(T,(ZN(K;;K;)))X(K,)(y), and setting
K,=NI{LL,K,UK,= U, we see that our trajectory segments are those of the vector

field X(NIZi) projected onto ZN(N Iz UIZA\NIZ).

(1) The inductive hypothesis (at the kth stage, so k is considered fixed in the
following) is that

(i) There exists a subsequence {x*} of {x;} (so x5-»x as j>o0), and for each j reals
{T%;}ogj <jj=12,. such that 0=T%,<TY,;<..<T¥;$0 with points x¥; on
d(M)(x5,[0,T5)) given by x5, = ¢(M)(x5,T;) satisfying

M) (x*,[0,T;;1) CZNP(Nizgh, UIZgh\N L, IUI\USLL) and
(XN (XY 5),8radf 0 o(x";)) =0 for all j'=0,..,j where we have set
UIZIMN\NIZL=(0,..,m-1), and furthermore

(if) that (1/(T5 1 - T5 )Y DE(X(NZE)S(N ) (xY ,t=0), gradf, s (M) ,t=0))
is uniformly bounded over j =0 for all 0<i<k, for all 0<j’ <j, for all s€(0,..,m-1).
(2) We show that the inductive hypothesis is true if k=0.

Lemma 5.1 tells us that under the suppositions (restated above) of Theorem 5.1 that if
s€ UIZg\N il then for any interval (T;,,T; q+1) With (q+1)r<j, there exists a
point T; ,, such that
(X(NIZ)eM)(x;,T; o), gradf e (M)(x;,T; 1)) =0, so taking x%=¢M)(Xg 13 T41yr,0,0)

s 0 _ -
forj=1,2,..and T j,o"‘T(j+1)r,o,o“T(j+1):,0,0"0’
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Toj,l =T(j+1)r,1,1‘T(i+1)r,o,o,

Toj,m = T(j + 1)r,m,o‘T(j +1)r,0,05

Toj,m+1 =T(j+1)r,m+1,1‘T(j+1)r,o,0a

T3 =T 41055 mod m T g+1r,00
where T 1yr,ii mod m S (T4 1yrins Tg+1yra+1) and hence all the right hand sides exist. This
gives (i). (ii) follows by the boundedness of X(NI=}I) on compact subsets.

(3) We show that if the inductive result holds for k then it holds for k+1.

(a). Using Lemma 5.2 with k,j,T,,x; in Lemma 5.2 set to respectively
k+1,G,j' ),T S5+ TN ,X5; (by setting j in Lemma 5.2 to (j,j’) here we have in mind
something like setting 1,2,3,4,5,.. to (1,0),(1,1),(2,0),(2,1),(2,2),..) we see that the
inductive hypothesis for k implies that there exists some constant A such that for all
0<j'<j,j€EZ*, t€[0,T%;.,-T5;]

| (VTS 4 T ) XD MR 1, - XDSMEE5,1) | <A, and

| (LTS 50 TS )-8 | <A,
If we then apply Lemma 5.3 with k,;,x;,T;; in Lemma 5.3 set to k+1,y%,x5,T%;
follows there exist smooth curves y* for each jEZ* such that
(i) ¥(0)=x5p and y*(T% ;)=
(i) Y5(T5,) =X MG, T )
(iii) sup{ | D IYA(1) | tE€[0,T%,]} <A for all j, some A >0 independent of j
V) (/T340 T )5 | DIWAO-$DEE,ETS)) | <A’ for all
i'+1<j,j€Z*,0<i<k+1,tE[T4;,T5;+,] some A’ >0.
(b) By the inductive hypothesis for each s€(0,..,m-1) there are in every m(k+1)
points X% 415+ +,X5 j+ma+n) K+ 1 points x¥;- where (X(I)x";;-, gradf,(x5;;-))=0 - in fact
those j” such that }” mod m =s. Insertmg this and (3)(a)(iv) into Lemma 5.4, with
X, (1), T;,gradf in Lemma 5.4 set to X(I),¥*(T5; +1),T5 ;T ,gradf,, where
q=m(k+1), we infer (1/(T%; . T5;))' | DEHX DY), gradf,yk(1) | <A for all
0<i<k+I1,t€[0,T;,,T5;1, s€(O,..,m-1), jEZ*, some A>0.
(c) We obtain subsequences {x**';} C {x},{x**1;;} C {x¥;}, {T**%;} C{T5;}, as
follows.

By part (i) of the inductive hypothesis at k we know
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(X(NIZIDXY;,8radfy, poq m(XS;)) =0 for all j'=0,..,j where UiZL\NiZL=(0,..,m-1),
xY o=x%, and if we now take x“*\,=x 4414},

X =X XY =X gt ptim e+ 155X =X g 4 @41+ - UP 10 XF 5 and
similarly T 5 =T 04 1) j ma+ 1+ 1y, WE see these are all defined for j’ <j.

Thus as j'(m(k+1)+1),mod m =j’, mod m, it follows that part (i) of the inductive
hypothesis holds for k+1 with this renumbering. We observe that (3)(a)(iv) will
continue to hold replacing j'+1 by j'+q, any q which is both =1 and such that
i1+ <], ie (U554 TS0 | DiO-ME5,ETS;) | <A for all ' +q<j,
JEZ*, 0<i<k+]1, tE[TY,,T
(d) If we take q=m(k+1)+1 then (¢) implies that

(TS rmgerny 417 D)< | DIWAO-oMES,t-TS;)) | <A for all 0<si<k+],
j'+m&+D)+1<j,j€Z*, s€(0,..,m-1),t E[TY;, T +ma+n+1], some A>0, and if we
apply Lemma 5.5 with k,f,g,(t),h(t),T; in Lemma 5.5 set to k+1, X(D)f, (=the Lie
derivative of f, with respect to X(I) ), ¢5(t+T* ), dM&* Y500, T 5 - T,
respectively, where the quantities superfixed by k+1 are as given in (c), it follows
that (1/(T*Y 5, - T ) | DEPHX DL O-XD@(XSt-T5;)) | is bounded
uniformly over 0<i<k+1, j'<j, JEZ", s€(0,..,m-1). If we then combine this

i +ql, some A>0.

expression with (b), we see that
(/T - T L) | DEYHX Do MY ;,t=0), gradf (D (x**;,t=0)) | <Afor all
0<i<k+l,j'<j, jEZ*,s€(0,..,m-1), some constant A >0, which establishes part

‘ (i) of the inductive hypothesis for k+1.

| (4) The inductive hypothesis which we now know holds for all k tells us that

DXX (NN Iz (XK, t=0),gradf p( N 1= (x5,t=0)) -0 as j>oo for all

s€(0..m-1) and hence since {x“} is a subsequence of {x;} where x;>x that

\ DXX(NIZI)o (NI (x,t=0),gradf,p(NIZ)(x,t=0)) =0 for all k and for all

| s& (0..m-1). It then follows from Lemma 2.2 that
Dfo(NIZ)(x,t=0)=DF¢(NI_ILUj(x,t=0) for all jE€ (0,..,m-1) for all k, and hence
by Proposition 4.1 (in fact Corollary 4.1(1)) and the fact that we have set
©,..,m-1)=UILZIL\NIZI that DX(NIZI)(x,t=0)=D (U ) (x,t=0) for all k.
Theorem 5.1 is the basis for Chapter 7 in the form of Corollary 5.1 below, which
says that in the absence of infinite order tangencies the number of stratum jumps made
by the trajectories on any compact set is bounded by a constant for that compact set

(cf example 5.1(4) where no such constant exists).



y—

115

Let us formalize "number of stratum jumps". We recall from the definitions of
Chapter 2 that if M locally is represented as ZN(I;J) then S,(x)={i€IUT:f(x)=0}, ie
x € ZP(5,(x);1\S,(x)).

Definition | ¢M)(x,[0,h)) | =sup{k=1: there exists 0<t, <t,<..<t <h with
S; oM (x,t) #= S;6(M)(x,t;,,) each i=1..k-1} if the quantity between the braces is
finite, and infinity otherwise.

There is evidently a link between this definition and that of recurrence:

Lemma 5.6 If M is a submanifold with corners, if there exists a sequence of points

{x;} CM with x~x, reals h;40 with | ¢(M)(x,,[0,h)) | ==, then for some r>1 there

exists a subset (oy,..,0,,) of strata which recur at x.

Proof We must remember that merely showing that there exist {X;,t;;}; <j;ez*

with ¢(M)(X;,t ;) € 0j s (Where m is as in the proof of Theorem 5.1) is not
sufficient: we must also show ¢(M)(x;,[0,t;,)) Cconv(ay,..,0,,).

Suppose (oy,..,0,,) is the set of all strata o, with xE g,. We are given that there exists
for each j 0<t, <t#,<..<#,<h; with S;eM)(x;,t;) # S, dM)(x;,t;;+) for all

1 <i<k(j), with k(j)»>oe as j>co.

For each j set t;, =0 and inductively define for j’=1,2,.. t;,=inf{t>t;; ;:t<h; and
S(M)(X,t) € 0} noge} if the right hand side exists, so we have

Go=t1=.. =t <G; 1= =t 1 <G ii+=.. some ig,iy,15,.. =0. Set
N()=max{k:t;;exists for all 0<j’ <k} if finite, and o otherwise (it exists because
t; =0 by definition).

(1) We show that if N(j)-=»oe as j>o then (ay,..,0,,) recur.

(i) We first show that if t;; =t;..,,=...=t;,, some j' <j'+k<N() (eg, if
SdM)(X;, b+ 1/1) € 0y 4y moas fOr all i1, then t;,, =t ), then there exist
b=ty <t <eeo<tja’ (<Gyerex if NG)=j'+1+k) such that

SM)(X;, ;) € 037 moa s fOr all j" <j” <j" +k. By definition of t;; above we have for each
i"=j',..,j' +k a sequence 7. ¢ t;; (with possibly 7, =t for all i) such that for all i
¢(M)(xj,r‘j.)€ Oj mods- We can therefore find ;" <t ;. and t; " <t efc
with each t;;. for j' <j” <j'+k satisfying t;;=t,' <t;;»' <t;;»,," and

SM)(X;t5+") € 0 moa -
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(ii) If N(j)—=>oo as j>o we can take a subsequence of {x;} and renumber the j’s so that
N(j) =j for each j. By definition t;; <t;,<..<t;; and so by using (i) we can find
i, <t, <..<t; with each ;' satisfying ¢(M)(X;,t;;") € 0j moss and hence (because
(00,--,0,,) =all the strata, so ¢(M)(x;,[0,t;)) is guaranteed to be in conv(oy,..,0,,) )
| (0y,.,0,,) TECUL.
l\ (2) If N(j) remains bounded as j->o we show there exists x;'>x, h;’ {0 and a subset
(00 5..,04.4") of (0g,..,0,;) such that ¢(M)(x;,[0,h;")) C(0y' U..Ug, ), some s’ <s, and
such that | ¢(M)(x;',[0,h;")) | o= as j>oo (ie, we show that in this case the
suppositions of Lemma 5.6 hold with M=(o,U .. Ug,,) replaced by oy’ U..Uug,. )/, ie
? reducing the number of strata by at least one). Setting t; ., =h; and decomposing
| [0,h)=[0,t; DU .. U[t; g ting+1) W have
| | M) (x;,[0,hy)) | =1 dM)(x;,[0,t1)) | +..+ | dM)(X;, [t xg» tingy+1)) | and since

| #M)(x;,[0,h;)) | oo while N(j) remains bounded there exists some bounded

sequence {i(j),j=1,2,...0} with | 6(M)(X;,[tip-1,t;.i5)) | —>o0. Since there are only
finitely many strata in (oy,..,0,,) there exists some stratum o, € (gy,..,0,;) and a
subsequence of this sequence, which we shall also denote {i(j), j=1,2,..,}, such
that s’ =i(j) mod s for all j. By definition of t,, t;; we must have ¢(M)(x;,t)& o,’ for
all t&€[t;;5.4,t,:5) and hence the sequence X;' =¢(M)(X;,t; i5.1),0 =t -t ;91 satisfies the
required properties.
(3) If N(j) as defined above - then (o,..,0,,) recur: if N(j) remains bounded as
l j=>oo we infer from (2) that there exists some strict subset (ay’,..,0,,") of (ay,..,0,;)
such that the suppositions of Lemma 5.6 are satisfied with additionally
d(M)(x;,[0,h)) C (0’ U ..Uog, ") for all i. Hence replacing s by s’ in the definition of
the sequence {t;;} (and hence indirectly in the definition of N(j)) we can repeat the
process; either our new N(j)—» and, arguing as in (1) above, (g;’,..,0,") recur, or
we can find a strict subset of (gy',..,0,.;") such that the suppositions of Lemma 5.6 are
satisfied and additionally ¢(M)(x;,[0,h;)) Cthe union of these strata. Continuing in this
way we at each stage either obtain a recurring set of strata or a strictly smaller subset
with the suppositions of Lemma 5.6 holding for this subset; if no subset of size >2
recurs we get eventually some pair ¢,”, ¢," with | ¢(M)(x%",[0,h;")) | =00 as j>o0

and ¢(M)(x;",[0,h;")) Co," U a,", and hence ¢,", ¢;" must recur.

Theorem 5.1 and Lemma 5.6 provide us in the first place with Corollary 5.1 below,
which is the result upon which Chapter Seven hinges. We remark that since Theorem

5.1 was only proved for a submanifold with orthogonal corners (mainly because
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Lemma 5.1 was only proved for a submanifold with orthogonal corners - Lemmas 5.2
and 5.3 are true for any submanifold with corners) for all results which use Theorem
5.1 the comers must be orthogonal too.
¥y o£&g¢t
Definition If Vis a neighbourho% of y in M set T(V ,y)=sup{t20:¢>(M)(y,T)€V4\ , if
finite, and infinity otherwise

(ie T(V,y)=time it takes a trajectory starting at yEV to reach dV).

We recall that there is an infinite order tangency between flows on ¢,,0, at x if
xE€0,N0, and D¢ (5,)(x,t=0)=D/j¢(5,)(x,t=0) for all i.

Corollary 5.1 If M is a submanifold with orthogonal corners, X is a smooth vector
field on M and x&M is such that X(M)(x) #0 and if there are no infinite order

tangencies between flows on strata at x, there exists a neighbourhood V of x in M and

N> 0 such that for all yEV | ¢(M)(y,[0,T(V,y))) | <N.

Proof
(1) We show that if X(M)(x) # 0 then if V;=B_;(x) "M, where B,(x)=the open ball in
R® of radius r and centre x, then sup{T(V,,y):y€V,;}-0 as r(i){ 0.
If not there exists y,»x and r(i) 0 and constant §>0 such that | ¢(M)(y;,t)-x | <r@i)
for all i and for all t&€[0,6]. By continuous dependence on initial conditions (Theorem
1.1(3)) for fixed >0 | ¢M)(x,€)-d(M)(y;,€) | =0 as y»x. For all i

| $ODX,O-6M(Y;6) | = | s, 0% | - | dOD(y;,6)x | and if 0<e< it
follows (since we know that if e < that | ¢(M)(y;,€)-x | <r(i)¥0) by taking the limit
i=oo that | ¢(M)(x,e)-x | =0 . By Theorem 3.1 ¢(M)(x,t) #0 for all sufficiently
small t>0 (because if it was zero for t;4 0 then we would have
limg (/) (M) (x,t)-x)=0, contrary to X(M)(x) #0), hence result.
(2) If there was no V, N as claimed in Corollary 5.1 we could find V;=B,;(x)NM
with r(i) § 0 and y; €V, such that | ¢M)(y;,[0,T(V,,y))) | =0, by (1) T(V,,y)—0 and
hence by Lemma 5.6 there exists a subset of strata which recur at x, and hence by

Theorem 5.1 the flows on these strata are infinitely tangent at x. -

We shall now derive some other implications of Theorem 5.1. As part of Theorem
3.1 we showed the trajectories $(M)(x) to be C** and we now show them to be ¢*.

The idea is to show that if $(M)(x,t) makes infinitely many stratum jumps in any left
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neighbourhood of some t,&€ (0,t) (and so we could not infer the result by a simple
argument) then the strata intersected infinitely often are recurring and so by Theorem
5.1 all the flows projected onto them are infinitely tangent at ¢(M)(x,%). We can then |
put together an inductive argument somewhat similar to Theorem 3.1 to show that left
hand time derivatives of all orders exist, and in fact equal the two-sided time

derivatives at ¢(M)(x,t;) of the flows on any of the recurring strata.

Definition If x&M, M locally represented near ¢(M)(x,ty) as ZN(I;J), t,€(0,t), set

I'(t) = U {K:3 {hj(K)}j;, . With hy(K) + 0 as j>o0 with K=S,(6M)(x,t-h(K))) Vj}

L(ty) =N {K:3 {h(K)};=;, . with hy(K) + 0 as j»>o0 with K=S,(6(M)(x,ty-;(K))) Vi} |
I*(t)=U{K: 3 {h(K)};-;, - With h(K)$0 as j>o0 with K=S,(¢(M)(x,t,+h,(K))) vj} |
L(t)=N{K: 3 {h(K)};=; . with ij(K) 40 as j>oo with K=S,(6M)(x,t+h(K))) Vj} !

Eg. If M=ZN(J;1,3) is as illustrated in Figure 5.13 with vector field y,=f¢y;+y,),

-y, =Yy,=1, where

(1/yHexp(-1/|y|)(sin(1/y)-cos(1ly)) if y=0

f(y)=
) 0 if y=0

then if x=( 1,4,0) and t,=1, so x0=¢>(M)(x,'9=0, then ¢(M)(x) intersects ZP(3;1)
and ZP(J;1,3) infinitely often in any left neighbourhood of t,, ZP(1,3;J) and
ZP(1;3) infinitely often in any right neighbourhood of t;, and

Lty =9, I'(t) =), Li () =(1), and I*(tx)=(1,3).

Y3
Y2
— €Y
M=ZN(J;1,3)
0=eM)(x,t,)
Figure 5.13
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We shall show in part (c) of the proof of Corollary 5.2 that S°,,(x) C1,(0) CI*(0)C Su(x).
The quantities 1*(ty),I,(t) satisfy the following lemma (it is straightforward to check that
its conclusions are satisfied with the data of the example above). For the same reason as i

Corollary 5.1 Theorem 5.1 restricts us to submanifolds with orthogonal corners:

Lemma 5.7 Setting ¢(M)(x,t)) =X, with M a submanifold with orthogonal corners locally
represented near x, as ZN(I;J) =ZN(S°(x0);S; (xo)\S% (Xo)) as usual, we have
(1) ICI(t) CI(ty)CIUT and
ICI, () CI*(ty) CIVT
(2) D,jd(K)(X0,t=0) =D/ (K")(x,t=0) for all I(ty) CK,K' CI(ty), I, (t;) CK,K' CI*(t,) and |
for all i '
(3) For given x€M, t,€(0,t) there exists h>0 such that
(@) T(t)=U {S,(eM)(x,1):tg-h <t <to}
(i) Lt = N {S,(eM)(x,1)):tc-h <t <tg}
(iii) I*(t) = U {SeM)(x,1)):te <t <to+h}
(iv) Li(t) =N {Si(dM)(x,1)):, <t <tp+h}
and such that
(v) for all t€ (ty-h,tp) I, () =I(t;),I*(t) CI'(ty) and
(vi) for all t&€ (t,t,+h) I () =L (t),I5() CI*(ty.

Proof

(1) Follows from definitions (use that for any y&EZN(I;J), ICS,(y) CIUIJ)

(2) Since {ZP(K;J\K):there exist {h;(K)};ez+ with hy(K) 0 as j>c0 and
K=S,(6M)(x,ty-h;(K))) for all j} and {ZP(K;J\K):there exist {h;(K)};e,+ with h(K)4¥0 as
j=o and K=S,(¢(M)(x,t,+h;(K))) for all j} are plainly each recurring at x,, (2) follows
by Theorem 5.1.

(3) We do the first two as specimens:

(i) By definition I'(t)) C U {S;(¢ M)(x,t)):t;-h <t<ty} any h>0. If there does not exist
{h;(K)};ez+ with hy(K) +0 such that K=S§,(¢(M)(x,t,-h;(K))) Vj then there exists h(K)>0
such that K#S,(¢(M)(x,t)) for all t,-h(K) <t<t,. Taking h=minge, o,h(K) we see that
k' € {S;(eM)(x,1)):te-h <t <t} iff

k' € {K:there exist hy(K) 0 with K=S§,(¢(M)(x,t-h,(K)))}, hence

U {S;oM)(x,t):tr-h <t <tg} = U {K:there exist {h;(K)};ez+ with hy(K) {40 and
K=S8,6(M)(x,t,-h;(K)) Vj} as required.

(i) We have defined 1(t) = N {K:there exist {h;(K)};ez+ with h(K) {0 and
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K=S8,(¢6(M)(x,t-h;(K))) Vj} and we now show that I(t)={iETUT:fi¢(M)(x,t:-h)=0 for
all arbitrarily small h>0}. If i& i€ IUJT:fo(M)(x,t;-h) =0 for all arbitrarily small h> 0}
then there exists a sequence {h(i)};ez. such that (i) 4 0 as j>o0 with i
fid(M)(x,t-hy(i)) # 0, and since there are only finitely many values which
Si1(é(M)(x,ty-h;(i))) may take on there exists a subsequence with S,(¢(M)(X,t:-h(i))) equal
to some constant set of indices not including i, and hence i€ 1(t;). Conversely, if
1€ {JUT:fo(M)(x,t-h) =0 for all arbitrarily small h>0} then i€any K for which there
exists {h;(K)};ez+ with hy(K) 0 and K=S,6(M)(x,t-h(i))) vj, so i€L(t,). Hence
L(t;) = {i:there exists h>0 such that f,¢(M)(x,t)=0 for all t,-h <t<t,}. Then since
S oM)(x,t) ={i:fip(M)(x,t) =0}, it follows N{S;eM)(x,t):trh<t<t}=
{i: fo(M)(x,t)=0 for all t-h <t <ty }=I(t;) which gives the required result. -

The following result may superficially appear to be a left hand version of Theorem 3.1:
an important difference is that while in Theorem 3.1 the right hand derivatives were
expresed in terms of the iterates S%(x), Si(x), which were calculated by a simple algorithm
determined by X and the f;’s defining M near x, the quantities I(t), I'(t) are functions of

the trajectories (see definition above) and are not directly calculable

Proposition 5.1 If M is a submanifold with orthogonal corners and X is a smooth vector
field on M, then for each x€M at each t&(0,t) ¢(M)(x) is C*, and if M is represented
near ¢(M)(x,t) as ZN(I;J) ther for all j >0 Dip(M)(x,t) =Djd(K)(¢(M)(x,t),s=0), any
L) CKCI().

Proof We shall prove the result at t,&(0,t,).

(a) We show there exists h>0 such that if t& (ty-h,ty) then I(t;) CS;oM)(x,t) CTI(ty) for
all j=1.

From Lemma 5.7 we know there exists h>0 such that f,¢(M)(x,t)=0 for all i€1(t,) for
all t€ (tg-h,ty) and hence D,*f,p(M)(x,t)=0 for all i€L(t), j =0, tE (ty-h,t;). By Theorem
3.1 DJ¢(S.(Y)(y,t=0)=D,"p(M)(y,t=0) for all i and for all j; hence

D¢ (S o (¢M)(x,)))((M)(X,t),s=0) =0 for all i€ 1 (). However by Lemma 5.7(3,ii)
we have I(t)) CS,(¢(M)(x,t)) any t& (t-h,ty), so if 1(t;) was not contained in
So(@M)(x,t)) then for each 1€ L(t)\S.(¢(M)(x,t)) there exists jEZ* such that

1€ §;(6M)(x,)N\S;, 1 (¢(M)(x,1)) and by Lemma 2.5 we would have

D, f¢(S . (M) (x,1))(¢(M)(x,t),s=0) >0, a contadiction. By Lemma 5.7 again we know
SieM)(x,t) CT'(t,) for all t€ (t-h,ty so by the iteration property (specifically, S,(y) D S(y)
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for all j=1)we have 1 (t;) C S;(6(M)(x,t)) TS, (¢(M)(x,t)) CT(ty) for all j=1,t& (ty-h,ty, as
required.

(b) We show D, ¢(M)(x,t) exists =D,¢(K)(xo) any L(t;) CKCI(t;) where again we are
setting (M) (x,t) =x,.
We have for any h>0

| HA(X,t) - M)(X,t,-h) ~hD $(K)(x,,t=0)| =

[ CxaDeaD069-XR)(x)ds

< | h | Sup{ | XM)SM)(x,8)-X(K)(Xo) | :SE (tp,te-h)}. By (a) for h>0 sufficiently
small X(M)o(M)(x,s) =X(K")pM)(x,s) some I (t;) CK' CI(t,) and in fact if we set

1 if K=S,(¢(M)(x,5))

o(K,s)=
&) 0 otherwise

we have for all s€ (t5-h,t;) that X(M)dM)(x,8) =X HCKCT( 0)(S(K,s)X(K)da(M)(x,s) (we are
using that X(M)(y) =X(S,(y))(y) ). Thus with X(K'edJ) the C’ extension of X(K') to R® of
Chapter Two (we use X(K'ed) rather than X(K’) because X(K')¢p(M)(x,s) is only defined
if p(M)(x,8)E Z(K'). Of course if ¢(M)(x,s) & Z(K') then §(K',s)=0, so this change
makes no essential difference. A similar situation occurred in the proof of Theorem 3.1)
we have
| XAMD)SM)(%,8)-X(K)(X0) | = | ZpgycrereydK',s)XK'eD)pM)(x,5)-X(K)(xo) |
| <Iygcxere | X(K'eD)pM)(x,5)-X(K)(xo) | »0as stt, by Lemma 5.7(2), and the
result follows.
(c) Suppose the proposition is true up to j=k-1. Then by the (k-1)th result we know that
for 0<tyrh<ty<t, D/ GM)(X,te-h) =DE'K)(SM)(x,th),t=0) any
I(t,-h) CK CTI(tyh). By Lemma 5.7(3) we know that for sufficiently small h=0
L(t-h) =1(ty), and that T'(t,-h) CI'(t)). Thus for each sufficiently small h=0 we can choose
a single K with I(t;) CK CI(t) such that D, *P¢(M)(x,t;h) =D '¢K)(¢(M)(x,t,-h),t=0):
we set for each I(t) CK CI(ty) 8(K,h)=1 if K has been chosen at h, and §(K,h)=0
otherwise. Thus for each fixed h Ly ckero &S(K’h)=1' Setting as usual x,=¢(M)(x,t)) we
therefore have for any I(t)) CKCI'(t)
D Do M)(x,t0)-D “ P (M) (%, t-h)-hD{ S (K) (Xo,t =0) =
I} gy ek cragd (K, D) DEPSK ) (X0, t=0)-DE V¢ (K'e @) (S M) (X, trh), t=0) +
D% V¢ (K")(Xg,-h)-D¥ P (K')(Xo,-h)-hD o (K)(Xo,t =0)] (in the second term ¢(K'e D) is
used rather than ¢(K') for the same reason as in (b), to guarantee that the term is defined)

. and the result (ie, that D, *¢(M)(x,t) =Df¢(K)(x,,t=0) any L(t;) CK CI(ty))
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will follow if we can show that for every K,K' such that I (t)) CK,K' CT(ty) that
(1/8) | DEVSK)(xo,t=0)-DEP(K e @) (GM)(x, to-h),t=0) +
D DG (K')(Xo,-1)-Dy& P o (K" ) (Xo,-h)-hD{ ¢ (K) (X0, =0) | *

- as h{0.
By Lemma 5.7(2) we know D¥¢(K')(Xe,t=0) =D} ¢(K)(Xo,t=0) any L(t)) CK,K' CI(ty)
$0,
(1/h)(DFPH(K')(Xg,t=0)-DEPS(K") (Xo,-h)-hD; ¢ (K) (X0, t =0)) =
(/h)(D&P$(K")(xo,t=0)-D, ¥ P$(K')(xq,-h)-hDG(K') (x,,t=0)) which 0 as h {0 by
smoothness of ¢(K'). This takes care of the first, fourth and fifth terms of (*). We
know D, ¢(M)(x,,t=0)-Di¢(K')(xo,t=0) any I(t;) CK' CT(ty)

=limy, o(1/h) (M) (X, to)-d (M) (X, t-h)-S(K")(%,,0) + $(K') (x0,-h))

=limy,, o(1/h) (@ (K")(Xg,-h)-d(M)(X,ty-h)), hence setting Y(x) =D '¢(K'e D)(x,t=0),
which is smooth, and supposing B is a convex compact set containing ¢(M)(x,t;-h")
and ¢(K')(xg,-h") v 0<h’ <t,, by the Mean Value Theorem

| D,“'¢(K'e D) (¢M)(x,t-h),s=0)-D, $(K'e D) ($(K')(%,-h),5=0) | <

| 6O, teh)-$(K)(Xo,h) | sup,es | D,Y(x) | , hence using that
D,“'¢(K'e ) ($(K')(Xo,-h),s =0) =D, '¢(K") (¢ (K")(Xo,-h),s =0) =D $(K")(xo,-h) we
have (1/h)(DX1¢(K'e D) (dM)(X,ty-h),s =0)-DFd(K')(X,,-h))=0as h+ 0, which deals
with the second and third terms of (*), and it follows that D *¢(M)(x,t,) exists and
equals D ¢(K)(xo,t=0) any I (t;) CKCI(ty). -

We can now establish the following "approximation" result which has several

implications (see Corollaries 5.2 and 5.3 and Proposition 5.2 below):

Lemma 5.8 If M is a submanifold with orthogonal corners, x€EM, x,=¢M)(x,t)), M
locally represented as ZN(I;J) near x,, then for any real ¢>0 and integer i >0 there
exists h;(¢) >0 such that for any 0 <h<h(¢) (the condition h>0 is essential) and for
all 0<j<i

(1) | DESM(X,t-h)-Did(K)(x,-h) | <eh any I(t) CK CI(t)

2) | DHSM)(x,to+h)-Did(K)(xo,h) | <eh any I, (t) CKCI*(tg)

Proof

We observe we are making here four assertions. We shall do (1), (2) being similar.
Consider the following assertion, which will be called assertion (*):

For any given ¢>0 and non-negative integers i,j, there exists h(i,j,e) >0 such that for

all 0<h<h(,j,e) | DESM)(x,t-h)-DidK)(Xo,-h) | <ehi¥ for all I(t) CK CI(t,).
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Then Lemma 5.8 will follow if we show that for any given ¢>0

(@) (*) holds with (i=1,j=0)

(b) That if (*) holds for (i-1,j=0) with i-1>1 then it holds for (i,j) for all 1<j<i

(c) That if (*) holds for (i,j=1) some i=0 then it holds for (i,0)

since we can then take hy(e)=h,(e) =h,(e) =min{h(2,0,¢),h(2,1,¢),h(2,2,¢)}, and for all
i>2 h(e)=min{h(,j,e):0<j<i}. The figure below shows which part of the proof
verifies (*) for each (i,j). After showing (*) to hold (for any given ¢>0) for
(i=1,j=0) the first inductive step is to infer that it holds for (1=1,j=1,2) (by (b)
below) and for (i=1,j=0) (by (c) below), the second inductive step is to infer that
therefore it holds for (i=2,1<j<3) (by (b)) and for (i=2,j=0) (by (c)) etc. The

remark is: that if (*) holds for given e for (i,j) then (by inspection) it holds a fortiori
for all (i’,j) with i’ <i.

) ®
2 o|| ®
1 ot [© | |0

{
Ist inductive step 2nd inductive step

(a) We saw in part (c) of the proof of Proposition 5.1 that

limy, o(1/h) (¢ (M) (x,te-h)-d(K)(Xo,-h)) =0 for all

I(t)) CKCTI(ty) (where as usual x,=¢M)(x,ty) ), and hence for any €>0 there exists
h(1,0)>0 with | ¢M)(X,t-h)-d(K)(Xe,-h) | <eh for all 0<h<h(1,0)

(®)

(1) We know that for each sufficiently small h>0 and any j=>0 there exists K with

I (t)) CK CI(t,) such that D, H¢p(M)(x,te-h) =DjdXK)(¢(M)(X,th),t=0). This is so in
the -j case because by Proposition 5.1 D¢(M)(x,ty-h) =D/d(K) (M) (x,t,-h),t=0)
some I (t;-h) CKCTI'(trh) and by Lemma 5.7 for h >0 sufficiently small

L(te-h) =1(ty),I'(t,-h) CI'(ty) , and in the +j case by part (a) of the proof of Proposition
5.1, where we showed 1(t) CS;(¢(M)(x,1)) CI(ty) for all t& (ty-h,t)) some h>0; then
by definition D,*i¢(M)(x,t) =Dj¢ (S, (¢M)(x, 1)) (¢(M)(x,1),5=0).

(if) We can therefore find hy>0 and choose for each t& (t-hy,t) and I(t;) CK CTI(t,)
3*(K,1), 6(K,t)=0 or 1 such that
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D HoM)(x,1) =EI,(to)cxcx.(,o,éi(K,t)D,jcf)(Ke@)(d)(M)(x,t),s=0) each tE (tyhy,ty) (again
we have replaced ¢(K) by ¢(KeJ) to guarantee this term is defined even when
SM)(x,) EZ(K) ) where for each fixed t Tj(ycxereyd (K,0= E,_(to)cxcr(zo)a'(K,t)= 1.
Hence for 0<h<h, | DH$M)(x,t-h)-Di¢L(t) (K, h) | =

| Z1 ) cxereyd* (Ko trh) (D, (Ke &) (¢ (M) (X, t-h),s=0)-D,/¢ (K) (¢ (K) (xo,-h), 5 =0) +
D,/ $(K)(6(K)(xg,~h),s=0)-D$(L.(te))(Xo,-0)) | <
Zigyckerey | DidKeD)@M)(x,th),s=0)-Djd(K)($(K)(%o,-h),s=0) | +
Ly ckergy | Do K)(d(K)(Xp,-h),s=0)-Did(L(to))(Xo,-h) | , and the result will follow
if we can show that for any given ¢>0, for each 1<j<i and for all I.(t;)) CKCI(t)
each of the two quantities between | | signsis <eh' for all 0 <h<some h(i,j)>0.
(iii) We first deal with the

| DJjo(KeD)(dM)(X,t-h),s=0)-DJd(K)($(K)(Xo,-h),s=0) | term. Setting
Y(x)=Dj¢(KeD)(x,t=0) and Ba compact convex set containing for all 0<h<t,
d(M)(x,t-h), ¢(K)(x,,-h) we have by the Mean Value Theorem

| DJ¢(KeD)(@M)(x,t-h,5=0)-D/¢(Ke D) (¢(L(t)(Xo,-h),s=0) | <

| &) (X, to-h)-d(K)(Xo,-h) | Supyes | Dy Y(x) | . However by the fact that (*) is true
for (i-1,j=0) we know there exists h(i-1,0) > 0 such that for all 0 <h<h(i-1,0)

| dM)(X,te-h)-d(K)(Xo,-h) | <ehi!any I(t)) CKCI(ty) which gives

| Didp(KeD)(p(M)(x,t,-h),s=0)-Djd(Ke D) ($(K)(Xo,-h),s=0) | <ehany 1<j<i for
all sufficiently small h>0.
(iv) We deal with the second term in the formula of (ii)

| D,jb(K)($(K)(Xo,-h),5=0)-Djd(IL(te)) (Xo, 1) | - We set
f(h) =DJ¢(K)(Xo,-h)-Di (I (t;))(X,-h) and we want to show that for any ¢>0 and
L(t)) CKCI(t) that | f(h) | <eh' for all 0<h<some h(i,j)>0. We know by Lemma
5.7(2) that D,}f(h=0)=0 for all i, hence
f(h) =£(0)+hD,f(h=0)+.. + (h'¥/(i-))1)D,-f(6h) = (h*¥/(i-j)!)D,Hf(fh) some 6 € (0,1),
where since D,#f(0) =0 sup,e oD f(6h)—>0 as h—0. Since there are only finitely
many possible K the result follows.
(c) We show that if (*) holds for j=1, some fixed i=>], then it holds for j=0, same i

(ie that then | ¢(M)(X,t-h)-p(K)(Xo,-h) | <eh' for all I (t;) CK CI(ty) and for all
sufficiently small h >0):this follows because we have

| SN, ty=h) -$K)(xo,~h)| =

[ - XD ,H-XE)SK) SO, 1), t-t)dt

and if I(t)) CK CI(ty) the integrand is <eh™ by the result with j=1.
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We showed in Remark 3.2 that the iteration can be viewed as a selecting process,
and now we show that it is also providing us with an increasingly accurate
approximation to the location and (one-sided) derivatives of ¢(M)(x,t) for t small and
positive (Corollary 5.2 below). If given some data we do the calculation to find
S%1(%), S, 41 (x) for some m=0 at a point xE€M with M locally repesented as ZN(I;])
we know from Remark 3.2 that for t sufficiently small and positive
dM)(X,HDEUg  ekes, . wZPENK); Corollary 5.2 is now telling us that in
addition for any e€>0 there exists h>0 such that for all 0<t<h

| oM)(x,1)-p(K)(x,t) | <et™, and generally that

| DFHAM)(x,1)-Did(K)(x,t) | <et™, any 0<i<m, any S°,,,(x) CKCS,,,(x). In the
case of Example 5.1 (=Example 2.1) for instance where S%(0)= for all i,
Si(0®)=(1) for all i, Corollary 5.2 below tells us (as we could in this case verify
directly) that for any ¢ >0 and any m&Z* there exists h>0 such that on 0<t<h

| #M)(x,1)-(t,0) | <et™ From the point of view of applications the usefulness of this
result (and Remark 3.2) rests on only having to calculate finitely many iterates

(8%(x),S(x)); we do not need to know the whole series.

Corollary 5.2 For each x€M, M locally represented as ZN(I;J), i>0, >0 there
exists h;>0 such that for all 0<j<i and for all S%,,(x) CICS;,,(x)

| DESM(X,H-DESW(x,) | <et any 0<t<h,

| Proof
(a) We show that for all K such that I, (0)CKCI*(0)
D,ip(S . (X)) (x,t=0)=D/¢(K)(x,t=0) for all i. By Theorem 3.1
lim, , D, HéM)(x,t=h ) =D,*'¢(M)(x,t=0) hence D i¢(M)(x,t=0)-D/p(K)(x,t=0)
=limy, (D, ip(M)(x,t=h)-D/¢(K)(x,t=h)) which by Lemma 5.8(2) =0 if
I,(0) CKCI*(0). Since also by Theorem 3.1 D, *ip(M)(x,t=0)=D¢(S..(x))(x,t=0)
for all i we have Dtifjda(Sm(x))(x,t:O)=D,‘fjd>(K)(x,t=O)=O for all j€K and
D‘ifj¢>(K)(x,t=0)=Dl‘fj¢(Sm(x))(x,t=0)=O for all j&€ S, (x), which by Lemma 2.2
imply respectively Did(S o (X)) (x,t=0)=D/¢(S . (x) UK)(x,t=0) and
D¢ (K)(x,t=0)=D/p(KU S (x))(x,t=0), for any set of indices K with
I, (ty) CKCI*(ty), for all i, which gives the result.

(b) We show that for any e >0 there exists h;>0 such that

| Dio(K,)(x,h)-Dig(K)(x,h) | <eh any 0<h<h; any $%,,(x) CK;,K,C Spuy(¥)-
DJp(K,)(x,h)-D$(K,)(x,h) =Dj¢(K,)(x,0)-Di¢(K,)(x,0) +
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h(D;*'$(K1)(x,0)-Di* o (K,)(x,00) +.. +h*19/(1+ 1)1 (D' ¢ (K,)(6h)-D, ' ¢ (K,) (6h)
some §€ (0,1) with all terms but the last =0 by Corollary 2.1, while clearly
h/ i+ 1)1 (D 1o (K,)(6h)-D/* 1o (K2)(6h))->0 as h—0.

(c) From Lemma 2.3 and the construction of the iteration (or by other methods, eg, if
K does not lie between S°, (x) and S, (x) there exists j EK\S,.(x)US°,(x)\K and the
result follows from Lemma 2.5 and 2.6) it follows that if
D,i¢pK)(x,t=0)=D,$(S (X)) (x,t=0) for all i then §°,,(x) CKCS..(x). Hence (a) tells
us that S°,(x) CI,(0) CI*(0) C S, (x) (these inequalities may be strict - see Remark 5.1
below). Then using the triangle inequality to combine Lemma 5.8(2) with part (®)

above the result follows.

Remark 5.1 We showed in the above proof that

SO, (x) C1,(0)CI(0)CS..(x). We note that the inclusions may be strict: in Figure
5.14() S"..(0) is strictly contained in I,(0), in Figure 5.14(i) 17(0) is strictly

contained in S_(0) -

X3

X7
As00)(0)
SO j
0= I‘ <> 3 ( —"/ X1>-
(@) %, =1,%,=0, M={x:x,=0} (i) $(M)(0,1) = (t,exp(-1/) for t>0,
S0 (0)=2.5..(0)=(2),L,©)=(). M={xix, 20}, $.(0)=(2),I*(0)=2

Figure 5.14
We may also use Lemma 5.8 to show that the number of points t in (0,t) where
D, He(M)(x,t) # Do (M)(x,t), some i, is countable (Proposition 5.2). An example will

put this result in perspective.

Example 5.3

Construct a middle 1/q Cantor set for =3 in the usual way, ie remove from [0,1]
A, =centrally placed open interval of length 1/q, from the two closed intervals
[0,11\A, remove centrally placed open intervals A,', A;? of length 1/q* etc. We see
measure(U; JAi5)=1/(q—2). We now set g(x)=6(3x-1)-9(3x-1)?, and A\:R—[0,1] a

smooth bump function with graph
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AX)

and set h(x)=A(x)g(x). g(x) has zeros at x=1/3, 5/9 so if (x,¥)=(1,h(x)) and
M={(x,y) ER%y=>0} we obtain the integral curve shown in Figure 5.15.

y

o(M)(0)

> X

T/375/9 I
Figure 5.15

If the left edge point of Al is x{ define f, on [0,1] by f;=0 on [0,1]\U;A}, and on
each A{ set fi(x)=h(q'(x-x})) ie, fit h into each segment A/ . Each f; is smooth on
[0,1], and setting M;=sup;; e | Difi(x) | it follows by the usual uniform
convergence argument used in such situations (eg as in Proposition 4.8 of [22]) that
f:[0,1]-R defined by f(x)=L7_, f(x)/(2'M)) is smooth. We set Y(x,y)=(1,f(x)): if
M={(x,y) ER:y=0} we see ¢(M)(0) has the form shown in Figure 5.16 below .

y
! | e y Oy I /)-’-\ l' O .\ — A'f“‘X
0 A A A2 A, A5 A A

Figure 5.16

(1) There are uncountably many points t&[0,1] such that for any h>0

| oM)(x,[t-h,1)) | =0 and | d(M)(x,[t,t+h)) | =00, (ii) setting
D={t€[0,11:D¢(M)(0,1) D, *¢(M)(0,t) some i} D contains every point in (U;Af)°
(since every point in [0,1]\U;;A} is a limit of points x, in U;;A} with

D ¢(M)(X0,0) # D" (M)(x,,0) ), so is uncountably infinite, (iii) if g=3
measure(15)=0, if q>3 measure(IS) >0.
However by the way Y was constructed we see D is countable and this is always the

case.
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Proposition 5.2 If M is a submanifold with orthogonal comers and X is a smooth

vector field on M then for each x&M ¢(M)(x) is smooth on an open-dense subset of

(0,t) and the set {t€ (0,t):D,p(M)(x,t) =D, '"¢(M)(x,t)} is countable (including finite
Or Zero).

Proof The fact that ¢(M)(x) is smooth on an open-dense subset of (0,t) is immediate -
for each t& (0,t) and i€ S,;(¢(M)(x,t)) either fp(M)(x,t)=0 on (t-¢,t+¢€) or arbitrarily
close to t there exists t' with f;¢(M)(x,t") #0: then by continuity of ¢(M)(x) in t and
of f; we have fp(M)(x,t) #0 on (t'-¢',t' +€'), some ¢’ > 0. Repeating for all
i€ S,(¢(M)(x,t)) we obtain t, arbitrarily close to t such that for some 6>0 and for
each 1€ S, (¢(M)(x,1)) either fp(M)(x,t") is zero on (t;-6,t,+06) or non-zero on
(t-0,t,+9), ie p(M)(x,t") € single stratum in this t-range, and hence by remark
3.1(2) is C* there. Hence ¢(M)(x) is smooth on an open-dense subset of (0,t).
As regards the countability assertion, by Lemma 5.8 we obtain for each t,€ (0,t),
positive integer i=j and >0 a §>0 such that on (t-8,t)) U (tg,t,+9)

| DHoM)(x,1)-DIdM)(x,t) | <e | t-t, | ¥, and hence by

[14, Section 3.9] the set {t€(0,t): | D, "¢pM)(x,t)-D;'p(M)(x,t) | > 1/n} is countable
for fixed i,n, and hence {t€(0,t): | D,*'p(M)(x,t)-D'¢(M)(x,t) | >0 some i>0} is
countable.

A second application of the ideas of this chapter is given in Corollary 5.3 below, for
which we shall need the following lemma, which is true for any submanifold with

corners (not necessarily with orthogonal corners), and is used again in Chapter Six:

Lemma 5.9 If M is a submanifold with corners then for each x€M and any ¢>0
there exists a neighbourhood U of x in M such that for all yEU

| XV | 2e< | (X(M)y,XAMx) | < | XMy | 2+e.

M

The projection of X onto the
tangent cones to M at x and y:

Gw{(M)(X)
XM)(y)

\ X a smooth vector field on M
v

Figure 5.17
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Proof
(1) We show that if C,,C, are closed linear corners of R® with C;DC, and X a
vector in R® then setting P(C,)X=v, and P(C))X=vV, | v, | 2=(v;,v;)= | v, | 2. For a
closed linear corner C P(C)X=P(L)X some linear subspace L (eg Lemma 1.2), so
since P(L) is self-adjoint and idempotent (X,P(C)X)= | P(C)X | %. By the
Characterisation of Projection we have (X-v,,v,-z) =0 for all z&€ C,, hence since
C,C C,,{X-v,,v;-v,) =0, hence {v;,v,)-(X,v,) =0 (use (X,v,)=(v,,v,)). Since
(X,v,)=(v,,v,) this gives {v,,v,)- | v, | 2=0, and since we also have (v,-v,,v,-v,) =0,
adding this to {v;,v;)-(v,,v,) =0 we obtain | v, | 2-(v,,vy) =0, which are the two

inequalities required.

Figure 5.18

(2) Suppose near x M is represented as ZN(I;J). If y is a point in M near x then for
some K yEZP(K;\K) (where ICK CIUJ) and X(M)(y) =P(T,ZN(I;K\I))X(y). By
[13] the map y—T,ZN(I;K\]) is continuous in y for as long as y € ZP(K;J\K), hence
for each ICK CIUJ and for any ¢’ >0 there exists a neighbourhood of x in R* whose
intersection U(K) with ZP(K;J\K) is such that if yEU(K) then

| PT,ZNEK\DX(x)-PT,ZNELK\DX(y) | <€'. T,ZN(I;K\]) is a closed linear corner
containing T,ZN(I;J)=T,M and hence setting PT,ZN([;K\D)X(x) =v(K), so
vAUY)=XM)(x), we have by (1) | v(K) | 2=(v(K),vAUD))= | vAUI) | 2for all
ICKCIUIJ. We have from the above that for any ¢’ >0 there exists
UK) CZP(K;I\K) such that | v(K)-XM)(y) | <€’ if yEU(K), so using

| V) | - | XQM)(y) | < | v(K)-XM)(y) | we have

| X)) | 2<(XM)(y) +VEK)-XM), XM < | XM)(y) | 2+€+
2¢' | X(M)(y) | ; but
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(XM)(y) +V(EK)-XM)(¥), X M) (x)} =(XM)(y), XM) (X)) +{vV(K)-XM) (y), X (M)(x))
and (v(K)-X(M)(y),X(M)(x)) <€’ | XM)(x) | , so for any (K) >0 we may find U(K)
such that for all ye U(K)
| X)) | 2e(K) < | (XADH),XAD®) | < | XM() | 2+e(K), and if we now
apply this result with e(K)=e for all of the finitely many K with ICKCIUJ and take
U=Ncxciu;UK) the result follows. -
We showed (in Theorem 3.1) that ¢(M)(x) is C** for all t&€[0,t,) and (in Proposition
5.1) that p(M)(x) is C> for all t€(0,t), so lim{D,*pM)(x,t),t ¥t} = D, HoM)(x,t)
\ and lim{D;"p(M)(x,t),t 1 t,;} = D, d(M)(X,to): we can now deal with the two remaining
cases, im{D, " '¢(M)(x,t):t *t;} and lim{D,'¢(M)(x,t):t+ t,}. We shall also use Lemmas
; 5.8 and 5.9 to derive inequalites relating the magnitudes and scalar products of the
right and left first order time derivatives of ¢(M)(x).

Corollary 5.3 If M is a submanifold with orthogonal corners then at any t,&(0,t,)

(D@E) im{D,*p(M)(x,t),t 1 t,} exists and = D p(M)(X,to)

(i) im{D,¢M)(x,t),t ¥ t;} exists and = D, 'dp(M)(x,t,)

@ | DisMIx,t) | 2= (DidM)(X,t), D 6M)(x, 1)) = | DF6MI(x,) | * with
| DydM(X,t) | = | DFoM)(X,t) | iff X(M)o(M)(x) is continuous at t,.

Proof
l (1)@ By Lemma 5.8(1) limmth“zb(M)(x,t)=D§¢w(K)(xo,t) any I(ty)) CKCI(ty), which
| by Proposition 5.1 =D ¢(M)(x,t)
| (ii) By Lemma 5.8(2) lim, HOD{%(M)(x,t)=D§¢(K)(xo,t=0) any I (t) CKCI*(ty)
which by part (a) of the proof of Corollary 5.2 =D,*'¢(M)(x,ty).
(2) By Lemma 5.9 we may find €40, t,*t;, such that for all i
| XAMDSM)(X,t) | >6< | (XODSM)XE), XMSMIX,t) | <
| X(M)dM)(x,1) | 2+¢, by Theorem 3.1 X(M)pM)(x,t) =D,*¢(M)(x,t) while by
(1)) limgy X(M)SM)(x,t) =D, d(M)(X,t,), and taking limits the inequality part of the
result follows.
Finally, X(M)¢(M)(x) is continuous at t, iff
lim‘,“’X(M)d)(M)(x,t)=liml %X(M)d)(M)(x,t), which by (1) means iff
D, ¢(M)(x,t;) =D, ¢(M)(x,t,). It only remains to show that
| DieM)(x,t) | = | D*¢(M)(x,to) | implies Dip(M)(x,t)) =D,* $(M)(x,t): by the



131

inequality we have just proved if they were equal we would have
(D, dM)(X,t)-D,* S(M)(X,t0), D d (M) (%, t5)) =
(D, o(M)(X,to), Dy o (M) (X,t)-D,* 6(M)(X,t,)) =0 and subtracting these gives the required

result.

Chapters Two to Five represent the major part of the contribution made by this
thesis to understanding the class of system under investigation. It was however an
initial aim to study the local and global geometry of these semidynamical systems in
the spirit of the way that this was done for smooth unconstrained systems in [37,42],
and it is to these matters (including in Chapter Eight specific consideration of the

systems of this type occurring in [60]) that we turn in the remainder of this thesis.
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Chapter Six

Local Geometric Theory

In this chapter we shall investigate how far the local geometric results of

classical dynamical systems (see eg [42, Chapter 2] or {37, Chapters 4-6]) have
analogues for these systems. For classical systems we know that there exists a dense
subset of systems (i) which are differentiably stable at all points, (ii) where the flow
near each zero is homeomorphic to that of the linearization, and (iii) where the zeros
have Cr stable manifolds; furthermore we could always "straighten-out" away from
zeros. We shall show that naive generalisations of these all fail. In place of (i) we
shall consider stability with respect to a form of equivalence between semiflows
(stratum preserving flow preserving, or spfp, equivalence) which is weaker than the
existence of a diffeomorphism f:M->M’ conjugating the semiflows, but which is still a
homeomorphism of M—-M' which preserves strata (as a diffeomorphism would) and
semiflows, and we establish a necessary condition for two semiflows to be equivalent
in this sense. We find that even with this weaker equivalence straightening out (which
in the context of these systems we interpret as meaning that the semiflows ¢(ZN(T;J))
on ZN(I;J) near x and ¢(LC(L;J)) on LC(;J) =T,ZN(;J) near the origin are spfp
equivalent) is not usually possible but that there is still a useful relation between the
two. We shall generalise the definition of hyperbolic zero to regular zero and show
that regular zeros have most of the properties which hyperbolic zeros have on
boundaryless manifolds, and furthermore that in the case of submanifolds with
orthogonal corners (which are the only submanifolds with corners occurring in

applications ) have C! but not generally C? stable manifolds.

Stratum Preserving Flow Preserving Homeomorphisms and Stability

To simplify matters we suppose M is a compact submanifold with corners. Thus M
has a globally finite stratification into C* submanifolds which we denote (gy,05,..). If
M and M’ are diffeomorphic the diffeomorphism f relating them preserves strata, ie
fo,=0;" where (0,',0,,..) is the corresponding stratification of M'. In Chapter Four we
defined semiflows ¢(M,X) and ¢(M’,X’) on M,M’ obtained by integrating
X(M),X'(M') to be differentiably
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equivalent if there existed a diffeomorphism f:M—>M' satisfying

foM,X)(x,t) =pM',X")(fx,t) for all t=0. We may say that the semiflows $(M,X)
and ¢(M',X") are differentiably equivalent at x.x’ if there exists a neighbourhood U
of x in M and a diffeomorphism f:U-U'=a neighbourhood of f(x)=x'in M’ such
that for each y&U foM)(y,t)=¢M")(fy,t) for all t=0 with ¢M)(y,t) EU.

Definition A semiflow ¢(X,M) is differentiably stable at x €M if for any X’
sufficiently near X there exists x’ near x such that ¢(M,X) and ¢(M,X’) are

differentiably equivalent at x,x’. ¢(X,M) is locally differentiably stable if it is
differentiably stable at every x&M.

Examples 6.1 We show that by contrast with the classical unconstrained case locally
differentiably stable systems are not dense in %, (M) or E, (M), any r=0. Take for
M the closed comer {xER?* x,>0,x,>0,x;-x,-x,=>0} and suppose X(0) is chosen so
that O has a preimage by ¢(M) in int(M) and in each 2-dimensional stratum of M,
with furthermore X,(0)#0, i=1,2,3 (Figure 6.1).

‘N a pre-image by the flow ¢(M) of the origin
T

’
.

X1:\X2:.O,
X;>0 .

pre-image (ie by the flow) of the origin in the
2-stratum X;-X,-X,=0,x,>0,x,>0

X(0)

Figure 6.1
Suppose X is perturbed to X, such that X,(0)=X(0)+(¢,0,0). Any differentiable
equivalence f between ¢(M,X) and ¢(M,X)) is a diffeomorphism f:M~-M which must
preserve the strata ({x € R*:x,=x,=0,x;>0} etc) of M, and in particular map the
origin to the origin and hence (since it is flow preserving) preserve the preimages by
#(M) of the origin in each stratum; furthermore as a diffeomorphism its derivative

map will be an invertible linear map at each point.
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Setting Df(0) =A, the fact that the 1-dimensional strata of M as a submanifold with

corners are preserved implies

100 AOO AN 0 0
AlI0O1 0] =10 O some A,u,»#0, hence A= 0 pu O
111 Apw A-v pu-v v

The tangent spaces to the pre-images by the flow of the origin in int(M),
{x:x,=0,x,>0,X;3-x;-X, >0} and {x:x,=0,x;>0,x;-x,-X, >0} are respectively
X(0),P(1)X(0) and P(2)X(0) which must be mapped by A to
X.(0),P(1)X.(0),P(2)X,(0)), ie if X(0)=(a,b,c)

0 aa 0 a+e a+e
AlbOb|] =al}lb 0 b
ccec c ¢ cC

and these are incompatible unless e=0: hence for ¢ #0 there is no differentiable
equivalence between ¢(M,X) and ¢(M,X,) at the origin.

In this example the origin is a sink but we could re-work the example with the
non-right angle, which was acute in the above (we need a non right angle because if
the corner is orthogonal we can get a C! differentiable equivalence at 0) replaced by
one which is obtuse, eg M={xER®: x,=0, x,>0, x;+x,+x,>0}, and X chosen so
that the origin has pre-images in two of the 2-dimensional strata but is mapped by the
flow into the third (Figure 6.2). Then exactly as above we can show that for no X'

near X is there a differentiable equivalence at the origin between ¢(X) and ¢(X').

Looking down into M

Figure 6.2
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Differentiable equivalence is therefore too strong for most purposes, but it seems
reasonable to ask that any equivalence between two systems should at least preserve
strata and if in the notion of equivalence we replace "diffeomorphism" with
"homeomorphism" with no further conditions all points in dM look the same.
Denoting for the moment the stratum occupied by x as o(x) we therefore make the

following definitions:

Definitions If M and M’ are diffeomorphic submanifolds with corners of R (so with

the above convention, for each xEM f(g(x)) =(fo)(f(x)) or the diagram

Xe— 3 d(X) «M
f f
f(x) —> (fo)(f(x)) <« M'=fM
T g
point stratum occupying point commutes)
we shall say

(1) A homeomorphism h:M-M’ is stratum preserving if for all x€EM
(fo)(h(x)) =f(a(x)), ie for each k dimensional stratum m of M (as a submanifold with

corners) h(m) is a k-dimensional stratum of M’, and vice versa.

(2) A homeomorphism h:M—->M’' is flow-preserving if it preserves trajectories, ie
heM)(x)=¢M')(hx) for all x&M, ie for each xEM there exists a continuous
strictly increasing 7:[0, 00)-[0, o) such that h¢(M,X)(x,t) =¢M',X")(hx,7(t)) for all
xEM, forall t=0

3) 6(M,X),4(M’,X") are stratum preserving flow preserving (spfp) equivalent at x,x’

if there exists a neighbourhood U of x€M and a stratum preserving homeomorphism
h:U-U’ = neighbourhood of h(x)=x' in M’, and for each yE U there exists a
continuous strictly increasing 7:[0,T(U,y))—~[0,T(U’,h(y))) (= will of course depend on
y) such that h¢M,X)(y,t) =¢M’,X")(h(y),7(t)) for all t=0 such that ¢(M)(y,t) EU.

@) oM, X),6(M',X") are stratum preserving flow preserving (spfp) equivalent_if

there exists a stratum preserving flow preserving homeomorphism h:M-M’.
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Definition A semiflow ¢(X,M) is (spfp) stable at x& M if for any X’ sufficiently near
X there exists x’ near x such that ¢(M,X) and ¢(M,X") are spfp equivalent at x,x’. It
is locally spfp stable if it is spfp stable at every x&M. It is (spfp) stable if for any X'
sufficiently near X ¢(M,X) and ¢(M,X") are spfp equivalent.

We show in Chapter Seven that for X linear and M an orthant or for r-polynomial X
with r=n and M a cube there exist open-dense subsets of £, ,(M) and =, (M)

respectively consisting of fields which are locally (spfp) stable.

Remarks (1) In the definition of stability what is being tweaked is X, not (directly)
X(M): in the unconstrained case we tweak X and must preserve ¢(X); here we tweak
X giving rise to a tweak of X(M) and we must preserve ¢(M,X).

(2) We could strengthen the definition of stability by tweaking the manifold at the
same time, but in applications the manifold is fixed (in fact it seems in the cases
considered in this thesis that we would get the same result with this strengthened
definition).

We obtain a necessary condition for two semiflows to be spfp equivalent which
incorporates the intuitive requirement that intersections with the strata of M made by

backward as well as forward trajectories must be preserved.

¢0) d
\\C(l)
\ /complement of M

c(3)

‘\

X

>~ | 7
o(6) 1 /
~

Figure 6.3
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An invariant curve for (M,X) is (for our purposes) an absolutely continuous map

c:[0,0)=A,"UA UA,*U..-»M where each A;* is an interval [§;*,8), each A; is an

interval [8,,5,) and setting UA;=A", UA*=A* satisfies D,c(t)=XM)c(t) for almost all |
tEAY, De(t) =-X(M)c(t) for almost all t€ A™ (Eg Figure 6.3).

If M,M’' are diffeomorphic submanifolds with corners then invariant curves c:[0,8)~M,
¢’:[0,6")=M' for (M, X),(M’,X’) are equivalent if there exists a continuous strictly

increasing 7:[0,8)-[0,6') such that 7(A*)=A"'", r(A)=A"" and such that for all tE [0,d)

f(a(c(t))) =(fo)(c'(7(t))), where f is the diffeomorphism f:M—-M'. Then a necessary

condition for a homeomorphism h:M—-M' to be spfp is:

Lemma 6.1 If h is a spfp homeomorphism between ¢(M,X) and ¢(M',X") then for each

invariant curve ¢ of (M,X) there exists an equivalent invariant curve ¢’ of (M’,X").

Proof (1) We know the result is true if the invariant curve is a trajectory segment
d(M)(x,[0,6)) mapped by h to $(M")(hx,[0,7(5))), since if h is a spfp homeomorphism
we have by definition that for each x €M there exists a continuous strictly increasing
7:[0,6)—[0,06") such that

he(M)(x,t) =¢(M")(hx,7(t)) for 0<t<$, and (fo)(h(y)) =f(o(y)) for all yEM,

which together give f(a(¢(M)(x,1))) = (fo)(¢(M')(hx,7(t))) for each x EM, for all
0<t<$, which means ¢(M")(hx,7[0,0)) is equivalent to $(M)(x,[0,8)) (with
[0,6)=A",[0,6")=A"*, A =A"=O).

(2) We have for each i De(t)=XM)c(t) a.a. tE AT,

D(t)=-X(M)c(t) a.a. tEA;. On each A;* c(t) satisfies the condition to be a trajectory
of X(M), hence we have for t€ A c(t)=¢M)(c(5,*),t-6;*). Similarly we have on tEA;,
setting s=4;-t, D.c(6;-s) =-(-X(M)c(6;-s)), hence c(6;-s) satisfies the condition to be a
tradectory of X(M) and for t€ A; c(t)=¢M)(c(5,),0;-t).

(3) By (1) each trajectory segment {¢(M)(c(5;),6;-1):6;<t<6;} and
{dM)(c(6;%),t-8,7):8;,* <t< 4} of c is mapped by a spfp homeomorphism to respectively
{#M")(he(5)),7(5-1)), 8, <t =<8}, {#(M)(he(§,7),7(t-6,7)), 8, <t =<5}

C(6i+)\
c(d)=c(8;41") v
\c(é-)

their ends meet at c(4;), and so we may construct piecewise an invariant curve ¢’ and a

continuous function 7 which (inductively in i) has the required properties.
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For example in the case of Figure 6.3 above we would set
A,7=[0,2),A,=[2,3),4,"=[3,5).4,=[5,6), 6,7 =0, §,=3,5,"=3, 6, =6, so
c(t)y=(M)(c(0),1) on [0,2), =&(M)(c(3),3-t) on [2,3) etc, and
¢’ ()=hc(t)y=he(M)(c(0),t) on [0.2), ¢'(t)y=ha(M)(c(3),3-t) on [2,3) etc.

If we say two points x,y €M are equivalent if for any invariant curve based at x
there exists an invariant curve equivalent to it based at y, we may partition M into
equivalence classes all of which must (by Lemma 6.1) be preserved by a spfp
homeomorphism. A tame example is illustrated in Figure 6.4, where there are 17

equivalence classes ( 6 points, 8 I-manifolds, 3 2-manifolds).

Ay

Figure 6.4
In fact we show in Example 6.6(1) below that in some circumstances at least a spfp
homeomorphism will preserve the tangency sets I'IUJ r I) too. These sets may then
be added to the strata of M in the foregoing to provide a stronger necessary condition
for a homeomorphism to be spfp.
We can see that the existence, even locally of a spfp homeomorphism between two
semiflows places exacting requirements upon them (and hence the requirements upon a
semiflow to be spfp stable are highly exacting too). We shall though show in Chapter
Seven that for M a polyhedron there exists an open-dense subset of polynomial vector
fields X with ¢(M,X) locally spfp stable.

Constant Systems and Straightening-Qut

A system (M,,X) is termed constant if M, is a (linear) corner LC(I;J) and the vector
field X€E, (M) (so for all x,yEM, X(x)=X(y) ). We shall investigate the relation

between the semiflow of a system (M,X) near x€EM and that of its straightening-out

at x, the constant system (T M, X,), where X, is the constant vector field on T .M
given by X (y)=X(x) for all y€ T,M (Figure 6.5).
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A vector field on M near x Figure 6.5 The straightening-out at x

For (M,,X) a constant system we are interested in the different values which X(M,)
may take on - eg, in Figure 6.6 below X(My) =X () on LO(J;1,2)ULO(1;2) and
XMy =X(2) on LOZ;1)ULO(1,2;J). We see that this set of possible values of
X(M,) may be strictly smaller than {K:X(My)(x)=X(K)(x) some x & M,} because , as
on LO(1;2) in Figure 6.6, more than one K might satisfy the condition

X(Mo)(x) =X(K)(x).

LO(2;1) LO(T;1,2)
«

——

LO(1;2)

Figure 6.6. If X is as shown on M;=LC(J;1,2), then S°%(LC(J;1,2),X)={T,(1)}
and the regions on which S%(x) is constant are:
LCO(J;1;2)=L0(Z;1,2) ULO(1;2) (corresponding to K=&J) and
LC(2;1)=L0(1,2; D)YULO(2;1) (corresponding to K=(2))

To overcome this we recall that from the construction of the iteration we know that
S%(x)=N{K:S%(x) CKCS,(x) and X(M)(x) =X(K)(x)} and

S,(x)=U {K:S$%(x) CK CS,(x) and X(M)(x)=X(K)(x)}. Thus

{K:K=S8%(x) some x € M,} provides us with a set of sets of indices such that at each
point x € My X(M)(x)=X(K)(x) for one and only one K in this set, and in fact it
follows from Lemma 6.2 below that the set of distinct values of {S%(x):x € My}
corresponds exactly to the set of distinct values of X(M,).

If (LC(I;J),X) is a constant system we call the set of distinct values of

{S%(x):x ELC(I;])} (these are necessarily in the range ICK CIUJ) S%(LC(I;)),X). So
in Figure 6.6 S°%(LC(2;1,2),X)={J,(2)}. We see that for K=& or (2) in Figure
6.6 {xELC(J;1,2):S%(x)=K} is a subcorner satisfying

LO(K;I\K) C {x € LC(I;J):S%(x) =K} CLC(K;J\K), and this is always the case:
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Lemma 6.2 If (LC(I;J),X) is a constant system then for each K& S%(LC(1;J),X)
{xELC(I;J):8%(x) =K} is a subcorner of LC(I;J) satisfying
LOK;I\K) C {x ELC{;)):S8%x) =K} CLC(K;J\K).

Proof (1) We show that if x,x, are points in LC(I;J) then x € LO(S%(xX),J\S%(xy))
implies S%(x)=S%(x,). By Lemma 2.4 we know S%(x) is characterised as the unique
set of indices S%(x) C S%(x) C S;(x) such that -

@) (X(S%)\j),n;) <O for all j € S,E)\S% (%)

(if) (X(S°%(x)),n,) =0 for all jE S;(x)\S°%(x).

If then x € LO(S%(X0);T\S%(x,)) we have S;(x)=S%(x,), so S%(x,) is a candidate for
S%(x) and since it satisfies (ii) vacuously (since S;(x)=S%(x)) and (i) (because

8% (x0) =8%(x)=I for all x,x,€LC(L;J), and (i) is satisfied by x,) we must therefore
have that S%(x) =S%(x,).

(2). We show S%(x)=S%(x,) implies x € LC(S%(X);7\S%(X)). Since S%(x) C S,(x) we
must have LO(S,(x);1\S;(x))C U Soz(,()CKC,U,LO(K;J\K) and so

X ELO(S1(x);I\81(X)) C U g0 g9 e 10 LOGGINK) =LC(S%(x);1\S%(x)), 50 if then
S%(x)=8%(x,) the claim follows.

(1) and (2) together prove the inclusions

LOK;J\K) C {x ELC(L;J):S%x) =K} C LC(K;I\K) if K=5%(x,) some Xo.

(3) We show {x ELC;1):8%(x)=8%(xc)} any fixed x,€ LC(I;J) is a subcorner. First
we show that S%(x) is a constant on strata. It follows from definitions (as we observed
above) that if x € LO(K;J\K) then S%x)=N{K":ICK’'CK and
XLCEN)X)=X(XK")(x)}. If xELOXK;I\K) then

X(LCE;D)(x) =P(T,LC;T)X(x) (by definition)

=P(LCL;K\D)X(x) (since T,LCE;T)=T,LCIL;K\D)

=P(LC(I;K\I))X(0) (the vector field is constant, so X(x)=X(0))

so is independent of x ELO(K;J\K). Returning to our characterisation above of S%(x),
since X(K')(x)=P(T,L(K"))X(x)=P(K')X(x)=P(K')X(0) independent of x the
constancy of S%(x) on strata follows. Returning to the claim that
{xELCU;)):S%(x)=8%(x,)} is a subcorner, suppose we show that if

P(LC(I;K,\I))X =P(LCT;K,\I))X =P(S%(x))X then

(@) P(LC(L;K, UK,\I))X =P(S%(xo))X and

() P(LCI;K, NK,\))X=P(5°%(x0))X. Then since we have observed that if
x€LOK;I\K) then $%(x)=N{K": ICK'CK:P(LC(I;K\I))X=P(K')X} it follows that
if there exists x,€ LO(K;;J\K)), i=1,2, with $%(x) =K, some K,, then for any
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xELOK, UK,;N\(K; UK))) or xELOK, NK,;I\K,;NK,)) $%(x)=K,. We saw in
Chapter One that any subcorner of LC(I;J) is a union of strata UxiEELO(Ki;J\Ki)
characterised by the fact that K,,K,€E implies K; NK, and K, UK,EE, and so the
claim that {x € LC(I;J):8%(x) =S%(xo)} is a subcorner follows.

Setting C;=LCI;K\]) for i=1,2, if P(C,)X=P(C,)X then by Lemma 1.1(1)
P(C)X=P(C,NC,)X which gives (a). By Lemma 1.1(2) P(C)X=P(conv(C,U C))X,
and since by a similar argument to that in Lemma 1.2 we obtain

P(conv(LC(L;K\D) ULCT;K\D)X=PALC;K, NK,\I))X, (b) follows. -

For a constant system (LC(I;J),X) we saw in part (3) of the proof of Lemma 6.2
that S%(x) depends only on which stratum x occupies; thus for any stratum
LO(K;I\K) we may define S°%(LO(K;J\K)) by S%(LO(K;I\K))=S%(x), for any
xE€LO(K;I\K) and K& S°%(LC(1;]),X). Then for each K€ S%(@ILC(;J1),X) set
EK)={K":S%@LOK";\K")) =S%LO(K;I\K))}. We know then by Lemma 6.2 that
U{LOXK";J\K"):K' €EE(K)} ={x€LC({;J):8%(x)=K} is a subcorner, and that
KCEK)CU{K":KCK'}.

Example 6.2
L0O(351,2)
X@A3 /
( X) =
/
\ L0O(1,;2,3)
‘\ LO(\2;1,3) 4
\ =
| XQ) \ X(1y=X(1,2)
Y l
N
1.0(1,2;3)

Looking down into LC(<;1,2.3)
Figure 6.7
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On LC(Y;1,2,3), with suitable vector field X (see Figure 6.7),
S%(LC(D;1,2,3),X)={J,(3),(2),(1)}, ie S%(x) may take on one of 4 possible values,
K,=d, K,=(3), K;=(2), or K,=(1), ie there are 4 distinct values which
X(LC(Z;1,2,3))(x) may take on. Then by Lemma 6.2 {xELC(J;1,2,3):8°%(x)=K}
is a subcorner containing LO(K;;(1,2,3)\K) and contained in LC(K;;(1,2,3)\K,). We
have in fact E(K,)={@}, E(K,)={(3)}, EK;)={(2),(2,3)},
EK9={(1),(1,3),(1,2),(1,2,3)}. -

If M is a submanifold with corners and Xx€ M the straightening-out at x is the

constant system (T,M,X,) where X, is the constant vector field on T,M given by
X, (y)=X(x) for all yET,M. If M is locally represented as ZN(I;J) (with x€EZIUJ))
then T,M=LC(;J). By the above we may partition the strata of T,M into subsets
{LOKK;I\K):KEE(K)} for i=1,..,r, where {K};-, ,=S%(TM=LC(;J),X,) (this
will in fact be a notational convention throughout the remainder of this section). Then
for each K|, i=1,..,r, we define M(x,K) = U{ZP(K;J\K):KEE(K)}. By Lemma 6.2
each M(x,K)) is a subcorner of ZN(I;J), and we see {M(x,K,):i=1..r} is a partition of

M near x.

For instance, if a submanifold with corners M locally represented as ZN(<J;1,2) and

vector field X straighten out at x€M to form a constant system as in Figure 6.6
above, then r=2 with M(x,K,)=ZP(J;1,2) UZP(1;2) and M(x,K,)=ZN(2;1). Thus
{M(x,K)} is a partition of M near x into unions of strata, where which strata go into
which union is determined by the straightening out at x.

The idea now (Lemma 6.3 and Proposition 6.1) is to infer as much as possible about
the original non-constant system near x from the straightening out a¢ x (very much of
course in the spirit of classical geometric theory). As a constant system the
straightening out is very easy to analyse, and for example determining the subdivision
of the sets of indices K in ICKCIU]J into the {E(K;)} consists of finitely many

operations involving only a finite set of vectors.

Lemma 6.3 With K,,..,K.=S%T M=LC(;J),X)) and M(x,K) as defined above there
exists a neighbourhood U of x in M such that the relation = defined on

{M(x,K), i=1..r} by M(x,K) =M(x,K)) if there exists a trajectory from UNM(x,K))
to UNM(x,K)) is a partial order (ie, for as long as a trajectory remains in some
neighbourhood of x once it has vacated M(x,K)) it cannot return to it).

We observe this means that no trajectory can make more than r-1 transitions between
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the sets M(x,K)) for as long as it remains in U.

Proof (1) We show if as x»x | X(M)(x) | - | X(M)(x) | =0 then

| XM)(x)-X(M)(x) | 0. From Lemma 5.9 we know given ¢ >0 there exists a
neighbourhood U of x such that for all yEU

| XQM)(x) | 2-€ <(XM)(y), XM)() < | XM)(y) | 2+e. Thus if

| XD | - | XM)(x) | =0 we must have | XOD() | 2(XM)(x),XM)(x))->0
and | X(M)(x) | A(XM)(x),X(M)(x))->0 and hence

| XIM))-XM)(x) | >= | XM)X) | >+ | XM)(x) | 2-2{XM)(x), XM)(x))-0.

(2) We show that given any ¢ >0 there exists a neighbourhood U of x in M so small
that Sup{ | XM)(y)-XK)(x) | :yYEMEX,K)NU, i=1..r} <e.

Beginning with the straightening out of (M,X) at x, since if KEE(K)

S%(y', TM=LC((;]),X,) =K, for all y'ELO(K;I\K), and if y’' € LO(K;J\K)

P(T, LCI;1)X,=P(LCI;K\D)X,, and by definition

P(T, LCT;N)X,=P(S%(y' LCIL)), X)X, =P(K)X,, we have for all KEE(K)
PLCILKN\)X,=PEK)X,.

We have defined M(x,K)=U {ZP(K;J\K):K € E(K,)} where we recall

E(K) = {K:S%LOX;I\K)) =S%LOXK,;I\K))}. If yEM(x,K)) yE ZP(K;J\K) some
KEE(K), so X(M)(y)=P(T,M)X(y) =P(T,ZNGK\D)X(y). By [13] y>P(T,M)X(y) is
continuous as long as y€E€a single stratum, hence as y—»x
XM)(y)~P(T,ZN(I;K\I))X(x). Then since the constant vector field X, takes the value
X(x) at all points, the result follows.

(3) Since by definition all the values P(K)X, are distinct §,=inf,,; | P(K)X,-P(K)X, |
is positive. The quantity

s,=min{ | | PK)X, |- | PK)X,| |: | PEK)X, | # | PK)X, | }is indisputably
positive, and we shall set 6=min{é,,8,} (the need for the §, term will arise in (5)
below). By (2) we may choose our neighbourhood U of x in M so small that
sup{ | XM)(Y)-XXK)(x) | :yEMEX,K)NU,i=1,..,r}<8/3.
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//\ \ Possible values of X(M)(y)

m | [ XE)®) .
QKQ ) ) u\\ J if yeEMx,K)NU
J’—’/ T

Values of X(M)(y) if
YEM(X,K;)NU

R R

Values of X(M)(y)
if yeMx,K)NU

etc..
Suppose yEM(x,K,)NU. Set t,=inf{t>0:6M)(y,t) EM(X,K)}. ¢M)(y,t) is in
M(x,K,) for small t>0 because ¢(M)(y,t) € some M(x,K)), and by the foregoing if
SM)(y,)) EM(x,K) then | XADSM)(Y,)-X(K)(X) | <8/3, while | XK)(x)-
X(X)(x) | >8if i=j. Since (by Theorem 3.1) lim,, (X(M)¢M)(y,t) =XM)(y) (and so
XM)eM)(y,t) is close to X(M)(y) for t small and positive) we must by the above
have that ¢(M)(y,t) € M(x,K,) for small t>0, and hence t, > 0.

(4) We claim there exists a neighbourhood U of x such that for any yE U and
0<t<T(U,y), if on any left neighbourhood of t there exist points s such that
d(M)(x,s) €EM(x,K)), and on any right neighbourhood of t there exist points s such
that ¢(M)(x,s) EM(x,K)) (by (3) this means ¢(M)(x,t) € M(x,K))) then

| PERYX, | < | PIX, | -

Suppose there exist sequences {x,},{t},{s,} with x,—»x, 4,40, 0<s,”<t, and s *t,
for each k as m—»o0, such that ¢(M)(X,s,"yE€EM(x,K), ¢(M)(x,,t) EM(x,K)) (see
Figure 6.8), and | P(K)X, | = | P(K)X, | . Since x,~x and t, $ 0 we have by (2)
X(M)$(M)(x,,t)~X(Kj)(x) (as k=) and X(M)$d(M)(x,,5")>X(K)(x) (as k->x).

By Lemma 5.9 lim,.,, | X(M)6M)(x,,5™) | = | X(M)¢M)(X,t,) | for all k, hence
we have | X(K)(x) | = | X(K)(x) | . If we had equality then

| X(M)o(M)(%,,t) | - | X(M)S(M)(%,,8,™) | =0 (as k—>o0) and so by (1)

| X(M)$(M)(%,,,t)-X(M)d(M)(x,,5™) | =0 (as k-»o0) and hence

| X(K)(x)-X(K)(x) | =0, which is only possible if i=j.
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M(x,K) M(x,K))

dM)(xy,t)

&3 M Ges™m=1,2,..}

Figure 6.8

(5) Since by (2) there exists a neighbourhood U of x such that if yE UNM(x,K)) then
| XAM)(y)-X(K;)(x) | <8/3 and by (3) each maximally connected interval of
[0,T(U,y)) on which ¢(M)(y,t) is contained in a single M(x,K)) is of the form [T,T’)
with T’ > T, if we choose a pair of adjacent such intervals [T;,,T,) and [T;,T,,,) and
relabel the K;’s so that ¢(M)(y,tH) €EUNM(x,K)) on [T;,T;,,) j=i-1,i, then for all
tE[T,Tisy) | XEKYX) | - | XM)SM)(y,t) | <5/3 while

| XEK:)®) | - | XAM)SM)(y,1) | >6/3 (by definition of [T;,T;,;) and (4)

| XK. DX | - | XEK)(x) | >0, therefore by definition of § in (3)

| XK &) | - | X(K)(x) | =8, and add this to

| XK)x) | - | X(M)eM)(y,t) | >-6/3). Hence inductively once a trajectory has
vacated a region M(x,K)) it cannot return to it. -

ar the orrgin

Remark If (M,X) is a constant system (so equals its own straightening-out’f then we
may take U=M in Lemma 6.3, ie if we partition LC(L;J) into the subcorners
{ULOX;I\K):KEE(K)};-,, . then for any yELC(;J) once ¢(LC(;J))(y) has left
any such region it can never return to it (re-work the proof above or use that for a

constant system (Mg, X), ¢(My)(x,t) =(1/e)¢p(My)(ex,et), so the global result follows
from the local one near 0).

Examples 6.3

(1) If M, X) straightens out at x to yield a constant system with the data as in
Example 6.2 above we have (denoting our partial order by =)

M(x,K,) = M(x,K,) = M(x,K;) = M(x,K,) where
M(x,K,)=ZP(J;1,2,3),M(x,K,)=ZP(3;1,2),
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M(x,K;)=ZNP(2;3;1)=72P(2;1,3)UZP(2,3;1),M(x,K,) =ZN(1;2,3)

= (2) The partial order need not be a total order. If (M,X) straightens out at x (see

‘ Figure 6.9) to yield a slightly different constant system to that in Example 6.2 (but on
| the same corner LC(231,2,3) ), with S"Z(LC(Q;l,2,3),Xs)={Q5,(3),(2)(,‘(‘1),2)}, ie
S%(y) now takes on 5 values as y varies over LC(<;1,2,3): K;=J,K,=(3), K;=(2),
K,=(1), ks=(1,2), and we have E(K)), E(K,), E(K;) as in Example 6.2,
E(K)={(1),(1,3)} and E(K5)={(1,2),(1,2,3)}. M(x,K,),M(x,K,),M(x,K3), are as in
(1) above, with M(x,K,)=2ZP(1;2,3)UZP(1,3;2)=ZNP(1;3;2) and
M(x,K)=ZP(1,2;3)UZP(1,2,3;Z)=72N(1,2;3), and

M(x,K,)

M(x,K,)=M(x,K,) =
x.K)) x,K,) M(x.K,)

=M(x,K;)

LO3:1.2)

LO@2:1.3) o Lot2.9)

| LO(1.,2:3)

Figure 6.9. The straightening out. Looking down into LC(&;1,2,3)

Remark Given this partial order and the fact that {M(x,K):i=1,..,r} is a finite

partition of M near x it follows that there must exist one or more M(x,K,) such that
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there is no M(x,K;) with M(x,K) =M(x,K;) and j i (geometrically a union of strata
acting as a "sink" for the local flow - for example in Example 6.3(1) this is M(x,K,)
and in Example 6.3(2) it is M(x,Kj)). Using Lemmas 2.4, 4.6 and 6.2 we can show

that there is in fact exactly one such set: it is

ZN(S8%(0,LC(;1),X,),INS%(0,LC({;1),X,), but we shall not use this fact.
We next show (Example 6.4) that even away from tangencies we cannot in general
establish a spfp homeomorphism between ¢(M,X) near x&M and ¢(T,M, X)) near the

origin , or for that matter necessarily be able to find any constant system for which

we can establish a spfp homeomorphism between ¢(M,X) near x&M and ¢(T,M,X,)

near the origin. Clearly no constant system can be locally (spfp) equivalent to a
neighbourhood of a point x where &, (x) # $,(x) (crudely speaking a point where there
is a tangency between the semiflow and a lower dimensional stratum) (Figure 6.10),
but it may not be possible to establish an equivalence even when there are no

tangencies between flows and substrata (Example 6.4).

~_

(0 =(1) % $,00=(1) U (D), where M={x ER%:x, >0}
Figure 6.10

Example 6.4 Consider the orthogonal 3-dimensional corner {x €R?: x;>0, i=1,2,3}
and non-constant vector field X with constant part X, close to (-1,1,1). Consider the
subsets of LO(1;2,3) V,={x&€L0(1;2,3):x=¢(M)(y,t) some t>0, some
yELO(2,3;1)} and V,={xE€L0(1;2,3):x=¢(1)(0,t) some t>0} (see figure below).
V, then is the intersection of LO(1;2,3) with the surface obtained by acting on
LO(2,3;1) (= span{n,}) with the unconstrained flow, and V, is the image by the flow

of the origin in L.O(1;2,3). In the straightening out at 0 (which in this case is obtained
‘ by replacing X by X, everywhere equal to Xo, since we already have
TLC(F;1,2,3)=LC(;1,2,3) ) we see that the subsets in the straightening out
corresponding to V,,V,, which we shall denote V,,V,, are
V,=L0(1;2,3)Nspan{n,,X(0)} which we see will coincide exactly with
V,={AX(0)-(X(0),n,)n,):A\>0}: in the original V, and V, will
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be tangent at O but not in general coincident (Figure 6.11).

/
\ )’1=intersection of LO(1;2,3) with the surface swept out by

the action of ¢(M) on LO(2,3;1)

. / " \
\V,=track of th?' origin in LO(1;2,3)

LO@2,3;1)

Figure 6.11
By Lemma 6.1 there therefore cannot be a spfp homeomorphism between (M,X) and
(T,M=M,X,) near the origin. We note also that this phenomenon cannot be perturbed
away. Within the class of constant systems the semiflow is spfp stable, and by suitable
choice of X we can make it spfp stable within for example the class of linear vector
fields, but the two classes are distinguished by spfp homeomorphism.

We have partitioned M near x €M locally represented as ZN(I;J) into regions
{M(x,K),i=1,..,r} with each M(x,K)) a subcorner of ZN(I;J) such that at every point
of the corresponding subcorner in the straightening-out (TM,X,), X,(T,M) is a
constant, and saw in Lemma 6.3 that once a trajectory has left M(x,K)) it cannot
return to it. In Proposition 6.1 we improve upon this. Suppose we denote the
subcorner in the straightening-out corresponding to M(x,K;) by My(K)) (ie it equals
U {LOK;I\K):KEE(XK))}, cf M(x,K)=U {ZP(K;J\K):KE E(K))} ), we shall say
M,(x,K)—=M,(x,K)) if there exists a trajectory ¢(M,,X,) of X, on My=LC(I;J) passing
from My(K;) to My(K)). Since there are only finitely many K; we can partition M, into
My(K)), and form a finite diagram (hereafter called the diagram of the straightening

out) of the form

Mo(Kl)\—"’ My(K;) —2My(K,)
MK

We remarked after Lemma 6.3 that if the system is constant Lemma 6.3 applies
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globally, that is, having left a set My(K)) a trajectory cannot return to it, which means

that there are no loops in the diagram obtainable by following arrows. Some examples

of diagrams are given in Examples 6.5 below.
In Proposition 6.1 we establish the relation between the sequence of sets M(x,K)) a

trajectory ¢(M,X)(y) may occupy near x, and the diagram of the straightening out at
X:

Proposition 6.1 If S%(T M=LC(;)),X)=K,,.,K, and M(x,K,), My(K)) are as defined
above, then there exists a neighbourhood U of x&€M such that for any yeMNU we
can partition [0,T(U,y)) into [0,T})V..U[T,,,T) some s<r, such that for each
i=1,..,s ¢(M)(y,[T;,,T)) is contained in a single set M(x,K,;) and for each i=1..s-1
Mo(K;i.1))>Mo(K|p), ie the sequence of sets ¢(M)(y) occupies is drawn from the

diagram of the straightening-out.

By the no-loops remark above Proposition 6.1 implies Lemma 6.3.

Examples 6.5
(1) Suppose the straightening-out at x is as illustrated in Figure 6.12a below, with
! X, (LC(9;1,2,3)) taking on 3 distinct values, X () =X,(3),X,(2)=X,(3,2),
X, (1)=X,(3,1) with E(&)={(2),(3)},E((2))={(2),(2,3)} and
| E((1))={(1),(1,2),(1,3),(1,2,3)} and the diagram of the corresponding regions as

1 follows:
My(D)=LCO(Z;3; 1,2);M0(2) =LCO(2;3;1)
»,/
‘ \V —

My(1)=LC(1;2,3)

Proposition 6.1 (and in fact in this case also Lemma 6.3) tells us that the only
transitions between subcorners M(x,K)) a trajectory of the original can make near x
are ZNP(J;3;1,2)»ZNP(2;3;1) (ie, ZP(;1,2,3) UZP(3;1,2)=»ZP(2;3,1)UZP(2,3;1))
or ZNP(Z;3;1,2)»ZN(1;2,3), or ZNP(2;3;1)»ZN(1;2,3), for example this permits a
situation such as that in Example 5.1(3) (Figure 6.12b)



LOW32) 1.9 3

Xs(l)/=Xs(1,3)
LO(3;1,2)

XD =XB) 6.2 X2)=X.2.3)

LO(2;1,3)

Figure 6.12a. The straightening out at x

ZP(l

32)7p(1:2.3)

ZP(3:1,2)

Figure 6.12b
(2) If the straightening-out at x is as illustrated in Figure 6.13
with diagram LO2,3;1) < LCO(3;1,2) <«  LCO(Y;2:1,3)
LC(1,2;3) <~ LO(1;2,3) o
then for some neighbourhood U of x in M the transitions made by ¢(M)(y)"dn U are

drawn from this diagram (replacing L,C,0 by respectively Z,N,P).

150



LO@3;1,2)

/
LO(1:2,3)

LO2:1,3) ;

K
/

Figure 6.13. Looking down into LC(J;1,2,3)

Proof of Proposition 6.1

In Lemma 6.3 we saw there exists a neighbourhood U of x in M such that for any
yE€U we can partition [0,T(U,y)) into [0,T})U..U[T,,,T) (s bounded by some
constant r on U) and reorder the K,,..,K, such that for each i=1,..,s-1
d(M)(y,[T;.1,TD) CM(x,K)). To prove Proposition 6.1 we must show that in addition
that if arbitrarily close to x there exists y making the transition from M(x,K)) to
M(x,K;) then M(K)->My(K)).

(1) We show that if there exists a sequence {x;} CZP(K;J\K) with x,»x and sequences
{t:},{t'} with t;,t/ ¥ 0 such that x;=¢M)(y;,t), z;=dM)(x;,t;") with

dM)(y;,[0,t)) CM(x,K,) and ¢(M)(x;(0,t;")) CM(x,K,) (see Figure 6.14), then
-X(K(x) points into T,ZN(K;;K\K,) and X(K,)(x) points into T,ZN(K,;K\K,).
-X(K,)(x) points into T, (ZN(K,;K\K))) iff (X(K,)x,gradf,(x)) <0 for all iEK\K, .
Suppose in fact (X(K,)(x),gradf(x)) >0 some i€EK\K,. We have

fi(x)-fi(g) = | w{gradfidM)(y;,t), X(M)S(M)(y;,t))dt. We also have by Lemma 6.2
SUPeray | XAM)(y;,)-X(K;)(y;,0) | =0 as j>o0. Because (X(K,)(x),gradf(x))>0 we
must have lim}minf,e[0,5]<X(K1)¢(M)(yj,t),gradf@(M)(yj,t)) >0, and hence
lim,»minf,e[O_E,(X(M)¢(M)(yj,t), gradf,p(M)(y;,t)) >0, and hence there exists ¢ >0 and
Jo€Z"* such that for all j=j, limjﬂ,infte[0,5]ﬂ¢(M)(xj,t)—fiqb(M)(yj,t) >0 £,(x))-fi(x;) > et;
which is a contradiction because f,(x)=0 for all i€K by construction, while fi(y;)=0
for all y,€ ZN(1;J) for all i€1UJ.
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Similarly we get a contadiction if we suppose (X(K,)x,gradf;(x)) <0 some i€ K\K,, ie
if X(K,)(x) does not point into T,ZN(K,;K\K,) .

M(x,Ky) / |

ZP(K;J\K)

i=o(M)(y;,t) -
z,=d(M)(X;,t)

Yi

M(x,K,)

Figure 6.14 |
(2) We show that if the conclusion of (1) holds then there exists a trajectory
S(LCI;)),X,) of the straightening-out at x passing from LC(K,;J\K,) through
LO(K;J\K) to LC(K,;J\K,). By (1) we know that if there are points on ZP(K;J\K)
arbitrarily close to x through which a trajectory makes the transition from M(x,K)) to
M(x,K,) then -X (K,) points into LC(K,;K\K;) and X,(K,) points into LC(K,;K\K,).
Near any point yELO(K;J\K) LC(L;J) is locally LC(I;K\I), so (1) tells us we have
-X,(K)(y) pointing into T,(LC(;J)) and X,(K,)(y) pointing into T,(LC(1;J)). By
Lemma 6.2, for all yELO(K;;J\K)) S%(y)=K,, so for all yELO(K;;J\K))
X(LCE;N)(y) =X,(K)(y), and hence we see {y-tX,(K,),y+tX,(K,):0<t< 8} some
620 is a trajectory of the straightening-out passing through y. -

Linearization

A system (M},X) is linear if M, is a (linear) cormer LC(I;J) and X€ &, ,(M,), ie for
each x€ L) X(x)=a+Ax some a€ L(I) and linear map A:L(I)-=L() (in fact it is the
vector field which is constant or linear if the system is described as such. In both
cases the f;’s forming M are linear, so our terminology is not ideal). The biological
model which inspired the thesis is of this form and we consider these further in
Chapter Eight. For the moment we merely show that linear systems have no
advantage over constant systems as far as representativeness of systems in general is

concerned.

We shall say that (M,X) can be linearized on a neighbourhood of x €M if there
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exists a neighbourhood U of x and a spfp homeomorphism h between the semiflows of
¢(M,X) on U and ¢(T,M,X;) on a neighbourhood of the origin in T,M, where
X,(y) =X (x)+ DX (x)y.

Example 6.6 We show that there is no dense subset of &, (M) withr>1and M a
half-space of R"® consisting of fields each of which can be linearized on a neighbourhood

of each point in M. -

(1) We show that if X,X’ are vector fields on M=ZN(;i), M’=ZN(’;i’) (where

[T = |[I']) with XEE'M),X' € E'(M’) then any spfp homeomorphism h:M->M’
preserves I'\*(1V1i r 1), any k, ie h[LXQUi r D=TX ' Vi’ r I') any k.
Working with (M,X), set Z, ={xE€Z(IU1):there exists 6>0 such that f;p(M)(x,t) >0 for
all t€(0,8)} and Z. ={xE€Z(IU1):there exists §>0 such that f,¢p(M)(x,t)=0 for all
t€[0,8)}. Plainly Z, and Z, and hence ZH 2_, are preserved by any spfp
homeomorphism. But for X€ Z_'(M) we have from definitions that Z,=U I\ *(IUir
I) and

Z.=T,*(IUir HUT,(IVir I), and that Z. = U,.,T,(IVi r I) and

Z =T, (IUir )UT,(IUi r I) (see Figure 6.15), so

rhavir I)=2+ ﬂi_, and so must be preserved by h. Similarly since for X€ =, ' (M)
and any integer k I',(IUir I) = closure(Z, NI, ,AVir ) Nclosure(Z.NT, ,AVir I))

(see Figure 6.15) it follows by induction that each I',(IU1i r I) is preserved by a spfp
homeomorphism h.

I,yIVirl) T,*dUVirI)

L(Uir])

AN
I *(IUirl)_ //

I,(IVirI)
Figure 6.15

(2) If M is locally represented as ZN(I;J) with x€Z(IUJ) then TM=LC(I;J); we
show by example that in general, taking M=ZN(I;i), if X€ Z'(M) and
xETXZAU1) r Z(D) then 0& T X(L(I1U1) r L(I)) where (T M=LC(I;]),X,) is the

linearization of X,M at x, and
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hence by (1) above linearization is not generally possible.

Consider M={xER": (x,n,) =0}, n=3, and suppose near 0 XE £ '(M) has the
form (%,,X,,%3) = (X, +£,(x),x;+£,(x),1 +£5(x)) each f;:R*-»R is such that f,(0)=0,
Df,(0)=0, i=1,2,3. For x=0 we have then TM=M,

X (X1,X2,X3) = (X1, X0, %3) =(X2,X3, 1), 50 X; EE, ;' (T,M). Then 0ET*(1 r &) but for
M, X) we have x;(0)=x,+1,(X) | x=0=0,%;(0) =X3+£,(X) +Lxf,(X) | 1=0=0 (written out
in co-ordinates we have L,f;(0)=2XX;(0)of,(x)/dx;and hence =0) but in general
x;¥(0) #0 and hence 0ET,X(1 r &) but 0&T*(1 r &). This phenomenon is stable
under perturbations in X. If we perturb X we will perturb the location of points x in
oM such that in the linearization at x 0E€ (1 r &) but such a point x will still not
generally be in I';*(1 r &). Thus for a non-empty open subset of vector fields with M
a half space in R®, n=>3, there exists points where (M,X) cannot be linearized.

Example 6.6 leaves open the possibilities (1) that by perturbing M as well as X we
could everywhere linearize, and (2) that even if linearization in the given sense is not
always possible, we could find (for generic X,M) for each x&€M some linear system

locally spfp equivalent to (M,X) near x. In fact neither of these two possibilities
holds:

Example 6.7 We show there exist M and X € Z_(M) such that for any Y sufficiently
near X and N near M there exists X&€ N such that no linear system (M,,X;) exists for
which we can find a spfp homeomorphism h:N->M, between the semiflows ¢(N,Y) on

a neighbourhood of x in N and the semiflow ¢(M;,X,) near any point x, EM,.

(1) Plainly in a linear system the set I', (K| r K,) (where K,CK),)) is affine, ie a
translate of a linear subspace. If T',(K, r K))={x€L{1):(x,i;)=p,,i=1,..,r} where

K; DK, DI, some independent set {fi;} CL(I), then the normal space to I' (K, r K;) in
L), denoted N(T'\ (K, r K,;) in L(I)), equals span{P(I)ii;:i=1,..,r}. We show (still in
the context of linear systems) that if N(I'.(K; r K,) in L(K,)) CL(K) some KDK, then
Tysi(K UK 1 K)=T, 1 (K, 1 K)) NL(K)

(1) First we show that if L,,L, are linear subspaces of L with X€L then

N(L, in L)CL, implies P(L,)XE€L,NL, iff XEL,. Since if L,,L, are subspaces of L
then L,CL, iff N(L, in LYCN(L, in L), and since N(N(L, in L) in L) = L,, we see
that the supposition N(L, in L) CL, is equivalent to N(L, in L)CL,.

By Remark 2.1 P(L,)X-X&€N(L, in L) so P(L,)X-X€L,, therefore
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P(L)PL,)X-X)=P(L,)X-X, and since if X€L,; PL)PILYX-X)=PL,)PLHYX-X if
X€E€L, P(L)PIL,)X=P(L,)X and hence P(L,))XEL,NL,. Conversely, if
P(LH)XEL,NL, since P(L)X-XEN(, in L)CL, we must have XEL,.
(i1) The result is true by definitions if k=0. Suppose it is true for k-1.
I (K T K)DOTL(K, 1 Ky, if NI (K, r Ky in L(K;)) CL(K) then N(T},(K; r K,) in
L(K;)) CL(K) and so by the (k-1)th result I' (K, UK r K)=TI' (K, r K)NL(K) and
! hence T,I (K, UK r K)=T,I' (K, r K;)NL(K). Then using (i) with L set to L(K,), L,
set to L(K) and L, set to T,I',(K, r K;) and using that KD K, we obtain X(K)(x)=
PLE))X(K)(x)ET, I (X, r K,) NL(K) iff X(K)(x) ET, [ (K, r K,). Since
I (KUK K)={x€T (K, UK r K): X(K,UK)(x) ET,I'(K,UK r K)} by the above
I UK r K)={xET,(K; r K)NLEK):X(K)X)ET,I(X, r K,)}, and we obtain
N KUK K)=T,,K, r K,)NL(K) as required.

(2) We exhibit a vector field X and a submanifold with comers M of R® (n=4) such

that for any X’ near X and any M’ near M there is a point x of M’ for which there is
no linear system (M,,X;) such that the semiflow ¢(M',X’) near x is equivalent to
¢(M,,X,) near some point x; of M,.

If M = ZN(Z;1,2) and x€Z(1,2) then we see that x&T',(1 r F)NT,(1,2 r 2) iff
(X(x),gradf,(x))=0 and (X(x),gradf,(x))-(X(x),gradf,(x)){gradf{x),gradf,(x)) =0

iff xET,(1 r @) (ie (X(x),gradf,(x))=0 and either (i) xET,2 r &) (ie
(X(x),gradf,(x))=0) (so by Proposition 4.1 xE€T,(1,2 r &) ) or (ii)
(gradf,(x),gradf,(x)) =0 (Figure 6.16).

- : . e 7(1,2)

————

- I

{x EE(I,2):(gradf1(x’),gradfz(x'))=O}
|

7

P

re

~_ |
x—  T,(1,2r2) - |
ST 2 AN —

. N |

S

T,(1 r @)NZ(1,2) ! |

! \\\\ I!

A , L2: ) |
Figure 6.16

L We now show that there is no linear system with a semiflow anywhere spfp
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equivalent to that near x in the Figure 6.16 above. By an argument similar to Example
6.6(1) we can show that I',(1,2 r &) and one or more branches ending in x of each
of the curves T',(1 r F)NZ(1,2) and T',(1,2 r 2) must be preserved by a spfp !
homeomorphism.

If we now try to construct a linear system (M;,X,) with semiflow spfp equivalent
near some x; €M, to (M, X) near x we must have M, =LC(J;1,2) with x; €L(1,2).
If L(i) has normal n; then either (n;,n,)#0 or (n,,n,)=0. If
x ETX(1,2 r 2)NT5(1 r @) and (n;,n,)#0 then by the above we must have case
@), ie x, ET5(1,2 r 2): *

r50212) Ld,2)

L

51 T @)NL(L,2)

Figure 6.17a. x, €ET,%(1,2 r 2)NT,5(1 r &) and (n,,n,) #0 implies x, ETy(1,2 r D)

] Alternatively, if (n;,n,)=0 then by (1) we have I,%:(1,2 r 2)=T,%(1 r @)NL()=
| (1 r @)N(1,2):

rX(1,2r2)=%1r D)NL(,2)
Xy,

j
Fig. 6.17b. x, €T,5(1,2 r 2)NT%(1 r &) and (n,,n,)=0 implies
51,2 1 2)=T%(1 r @)NL(,2)

The two possible candidates for a linear system locally spfp equivalent to (M,X) near
x in Figure 6.16 are as in Figures 6.17a and 6.17b near x;. But in a.x, ET,5(1 r &)
and in b.I,%(1,2 r 2)=T,%(1 r @)NL(1,2), neither relation holding at x in Figure
6.16. This argument does not rest upon any special choice of X or M (special in the



157

sense that any perturbation would destroy it) and the assertion follows.

Remark In view of the limitations of differentiable equivalence (Examples 6.1) it
would be worthwhile combining the idea of Example 6.6 part 1 (that if
XEE'"(ZN(1;i)), X' € Z'(ZN(I';i")) then an spfp homeomorphism h:ZN(I;i)—=ZN(1';i’)
preserves I, (IVi r I) ) with that of Proposition 4.3 (that differentiable equivalence
preserves the algorithm etc) to show that, under generic restrictions on X, spfp

homeomorphisms preserve the algorithm sequence and the iteration.

Regular Zeros and their Stable Manifolds

We recall that a zero of a smooth vector field X (ie, a point x such that X(x)=0) is
hyperbolic if DX(x) has no pure imaginary eigenvalue. The Stable (unstable) manifold
of a zero x is the set of points y such that | ¢(y,t)-x | =0 as t>00 (t->-o0) where ¢ is
the flow of X; if X is C" they are C’ injectively immersed submanifolds tangent at x to
the stable and unstable manifolds of the linearization §=DX(x)n, and if the vector
field X is a C* function of AER? (so by [42] the map A-»zero of X(A) is C") the graph
of A—»stable manifold of zero of X(A) is C" ([42] for r= o0, [49] for r=w).

We make a straightforward generalisation of hyperbolicity as follows:

Definition If a submanifold with corners M is locally represented as ZN(I;J) a zero x,
of X(M) in Z(IUVJ) is regular if

(1) X(IUJ) has a hyperbolic zero at x,

(2) For all KCJT S%(xo,ZN(I;K\I), X) =S,(x0, ZN(I;K\I), X).

Via Lemmas 2.4 and 4.6 we see (2) is equivalent to

(2") If we straighten (M, X) out at x, to give the constant system (TM=LC(I;J),X)
then for all yETM S%(y,T.M,X,) =S,(y,T.M,X,), and to

(2") X(x0) € N{U(K):KCJ} where UK)={X:(X(K\j),n;} <0 for all jEK\I implies
(X(K\j),ny) <0 for all jEK\I and (X(K),n;)) #0 for all jEJ\K}. We can interpret (2)
geometrically as follows. For any constant system (LC(;J),X) if
X(LCE;))(y)=X(K)(y) for some y€Ea stratum LO(K’;J\K') then (eg by Part (3) of
the proof of Lemma 6.2) X(LC(1;]))(y)=X(K)(y) for all yE that stratum; we can
think of these X(K)’s as the "active" vector fields of the constant system, and
condition (2) in the definition of regularity says that if X,(K;), X,(K,) are active for
the straightening out then X,(K;) # X,(K;).
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Figure 6.18 illustrates two zeros of X(M) where condition (2) does not hold. We
observe that in the first, a trajectory could alternate infinitely often between ZP(1;2)
and ZP(JJ;1,2) on any left neighbourhood of x (as in Example 5.1(2) for example); in
the second, an arbitrarily small perturbation could destroy the zero entirely. Neither

phenomenon can occur if x is a regular zero (Remark 6.1 and Proposition 6.1(1)
respectively).
Neither -
. M=IN(@;1,2)
\ ZP(;1) TXM\
ZP(1;2) X~ — —> LO@2;1)
/ . . .
\ A with straightening out at x X(9) |
X e LO(1;2)
where X (D)=X(1)
nor
M=ZN(Z;1,2) /’ TM \
ZP(2;1
& (21 X (@)
X «
LO(2:1) L/ with straightening out at x l l | _
ZP(1; 2) , — LO(1;2) —0
/ Y
where X (1)=X(1,2)
Figure 6.18

is regular, but a system on a three dimensional corner with straightening out

/'/ 7

/’\ . :
/N 10032)

. LO@2,31)
\
. \

LO(1,2:3) \

\
\
0

. \
Figure 6.19
is regular despite eg X,(2,3)=X.(2) if neither is "active"
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Remark 6.1 We can straightaway derive one useful property about the local flow near
a regular zero from Lemma 6.3. There we saw that given any x€ M there exists a
neighbourhood U of x such that if y&EU then we could get a finite partition of
[0,T(U,y)) into [0,T)U[T,,T,)U.. and reorder the X,,.., K, € S%LCT;))=TM,X)
such that on [T,;,T) ¢M)(y,t) EM(x,K) with ¢(M)(y,t) € M(x,K) for all t>T,. Each
M(x,K;) was a certain union of strata and in general on an interval [T;,,T;) the

trajectory could move about between these strata = for example, in Example 6.5(1)
(which was derived from Example 5.1(3) ) a trajectory would make infinitely many
stratum jumps on the interval [T,,,T;). However we can now show that in the case x
is a regular zero ¢(M)(y,t) C ZP(X,,J\K)) on (T;;,T)) and so intersects at most two
strata on [T,,,T)).

By definition M(x,K) = U {ZP(K;J\K):K EE(K))} where E(K;) was defined using data '
from the straightening out at x, E(K)={K:ICKCIUJ:S%(y)=K; for all
yELOK;I\K)}. We saw in part (2) of the proof of Lemma 6.3 that as the
neighbourhood U shrinks to x so sup{ | X(M)(y)-XXK)(¥) | :yEUNM(x,K)} 0.

We saw in Lemma 6.2 that if K;€ S%(LC(I;J),X) for X a constant vector field then
for all y€ LO(K;;J\K) X(LCT;N)(y)=XXK)(y), so if K,€S%(TM,X,) X, (K) is
active, so by condition (2) of regularity (X(K;)(x),gradfj(x)) #0 for all jEI\K;. Hence
on a small enough neighbourhood U of x (X(K)(y),gradf(y)) =0 for all
yEUNM(X,K),jEINK;, hence (X(M)(y),gradf(y)) =0 for all
yEUNM(x,K),j EI\K;. Hence for as long as ¢(M)(y,t) CM(x,K)NTU fa(M)(y,t) is
strictly monotone, and since f;(y) =0 for all j€J and yEM(x,K)NU, if at t>T,
fo(M)(y,t) =0 then ¢(M)(y) leaves M(x,K)NU at t, so since
ZP(X;INK)NUCMNUCZNEK;;NK) for all tE(T;,,T) ¢M)(y,t) EZP(K;;]\K)) as
claimed.

In summary: if x is a regular zero of (M,X) there exists a neighbourhood U of x in
M such that if y €U then [0,T(U,y))=[0,T;)U..U[T,,,T,) some finite s with each
T;>T,, and such that for all t&(T,;,T) ¢(M)(y,t)€ZP(K;;J\K,). This fact is used in
proving our stable manifold theohl;f:mn(wseis eg Ii&%engg 72 a5 2n(5T)

If x is a regular zero of X(M)fwe deﬁnejlocal invariant manifolds ( for U a

neighbourhood of x in M)
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W,(x)={y€U:¢(M)(y,t)=x some t=0}
W, (x)={y EU:6(M)(y,t) € W(x) some t=0}
W, (x)={yEU:s(M)(y,t) €E W*(x) some t=0}

where W*(x) and W*(x) are the stable and unstable manifolds of X(IUJ) at x. We see
W, () = {yEU:M)(y,t)>x as t>o0}.

Proposition 6.2

(1) There exists an open-dense subset of &, (M) where M is a compact submanifold

with corners such that if X is in this subset all zeros of X(M) are regular. Regular

zeros are isolated ( and hence finite in number on a compact submanifold with

corners). Regular zeros survive as regular zeros on perturbing X ( in fact X->each

zero of X is C* for each zero).

(2) If M is a submanifold with orthogonal corners the local invariant manifolds of a

regular zero z, are C! not necessarily C? piece-wise C' submanifolds with corners, an/ ;f ™
_ . _ (s (oully nprueatek near Zo a5 Za(; T)

Codim(W,*"(zy) in M)=codim(W**(zy) in Z(U]J))

T, W, (z)=N,(IUTin )NT,M

T, Wiz =N, AUT in hXE)NT,M

TZDW,“(ZO)=(N,D(IUJ in ) XEY) NT, M where E’, E* are the stable and unstable

manifolds of the linearization 7=DX(IUJ)(z)n and we recall T, M is the tangent cone
to M at z,.

Remarks 6.2 While in Chapter Five the requirement that the submanifold had
orthogonal corners was merely to simplify the proof and exposition, here the
orthogonality condition is essential, as we now show.

We saw in Remark 2.5 that if M had only orthogonal corners the transitions possible
between strata were much restricted, and it turns out that whether the invariant
manifolds are C' or not depends on the type of transitions which occur between strata.
Evidently our invariant manifolds are the preimage by the semiflow of an invariant
manifold of ¢(IUJ) in Z(IUJ). We can see in a crude way how orthogonality affects
whether pre-images are C' or not by leaving aside for the moment both the fact that
Z(1U]J) is locally the deepest stratum, and the invariance with respect to ¢(1UJ) of
the submanifold we begin with on Z(IUJ), and considering a point x, near a
non-orthogonal intersection Z(1,2) of surfaces Z(1), Z(2) as shown in Figure 6.20. If

we consider the pre-images by the semiflow of the point x,, we get a trajectory v
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running down ZP(1;2), across Z(1,2) and into ZP(2;1) (we saw in Remark 2.5 that
this would not happen if Z(1) and Z(2) intersected at right angles) and each of the
three C' components yNZP(1;2), yNZ(1,2) and yNZP(2;1) has a C pre-image V,,
V1., V,. If then we take the sequences {x;'} CyNZP(1;2) with x;'»x and

{x2} CyNZP2;1) with x;>>x then Txi1V1=span{X(xi1), gradfi(x;")},
T,2V,=span{X(x),gradf,(x?)}. Thus in the limit as i-»oe and x,x?->x

limimeile =1imimeizV2 iff X(x) € span{gradf,(x),gradf,(x)}; in general we get a
crease along V,, where V, meets V, (Figure 6.20).

e //

ZP(I 2)
_A/ /
/ 74, 2; /

/
A

\’\/7

4]

zp(2;1) /

~

Figure 6.20
We can construct an example in four or more dimensions where this phenomenon
prevents even a local invariant manifold such as we are considering being C! on any
neighbourhood of the zero. The example will be on M=LC(J;1,2,3) in R*, n=>4.
We shall use co-ordinates x=(PL(1,2,3)x,x-PL(1,2,3)x) =(X,3,X;,3') and will consider
a vector field X on M which is independent of x,,;. Hence for all x€M XM)(x) is
independent of x,,;, so P(span{n,,n,,n;})¢M)(x,t)=
M N span{n;,n,,n;})(P(span{n,,n,,n;})(x),t) for all xXEM, and we can represent the
system by the projection of X onto a cross-section MM span{n,,n,,n;}, thus exhibiting
it in R%. This is analogous to the way that if the vector field X in R? is independent of
x;, with M=LC(J;1,2) CR? (see Figure 6.21 below),

M N span{n,,n,}
Figure 6.21
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then P(span{n;,n,})¢(M)(x,t) =
M Nspan{n;,n, }(P(span{n;,n,})(x),t) for all xEM, enabling us to represent the
system in RZ.

Suppose the projection of our system onto span{n,,n,,n,} has straightening out

—
—

Figure 6.22
With diagram

LO(Z;1,2,3)

L —

L0(1,3;2)ULO(1;2,3) ————> LO(1,2;3) ULO(2;1,3) —> LO(2,3;1)->1(1,2,3).

Suppose X(1,2,3) has a hyperbolic repelling zero at x,: if the straightening-out is as
given this zero is then regular for X(LC(J;1,2,3)). The stable manifold
W, (x0) =W,(Xo) is the pre-image by ¢(M) of x, and is three-dimensional: by
Proposition 6.1 (or specifically Remark 6.1) we know that near enough to x, the
sequence of strata the trajectories occupy on the way to x, must be those which the
trajectories in the straightening out at x, follow, ie working backwards along the
diagram of the straightening out (above) we see that W,(x,) is formed by taking

(i) The pre-image by ¢(2,3) in LC(2,3;1) of x, (ie,

{x€LC(2,3;1):4(2,3)(x)Nx# T} ={d(2,3)(X,-t):t =0}): call this V(2,3) (itis a
1-dimensional manifold with corners)

(ii) The pre-image by ¢(2) of V(2,3) in LC(2;1,3): call this V(2) (it is a 2-dimensional
manifold with corners) and the intersection of V(2) with L(1,2), call this V(1,2)
(which is a 1-dimensional manifold with corners).
(iii) The pre-image by ¢(1) of V(1,2) in LC(1;2,3): call this V(1) (itis a

2-dimensional manifold with corners)
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(iv) The pre-images by ¢(&) of V(2), V(1,2), V(1) in LC(J;1,2,3): call these
V(J;2), V(I;1,2) and V(IJ;1) (respectively 3,2 and 3 dimensional manifolds with
corners).
We recall that if V is a submanifold with corners we may denote the tangent space to
V at any xE€V by T,V. We claim that in general if x€ V(J;1,2)\{xc} then
TV (D;2) #T,V(J;1). At x, itself the tangent spaces do coincide: because x, is a
zero we must by Remark 2.1 or the Characterisation of Projection have
X(xo) € span{n,,n,,n,} so since TXOV(I,2) =P(2,3)X(xy) +AP(2)X(x,) some A we have
T, V(1,2) € span{n;,n,,n;}. Then since T, V(Z;1) =span{T, V(1,2),X(1)(x)} and
T, ,V(2;2) =span{T, V(1,2),X(2)(xo)} we have T, V(J;1)=T, V(Z;2) =
span{n,,n,,n;}. However on V(Z;1,2)\{x,}, while by continuity the tangent spaces
T .V(J;1), TXV(®;2)—>TXO\7(®;1),Tx0\7(®;2) as x-»X,, for general X (general, that
is, subject to the straightening out having the form illustrated) no relation binds them
to be equal and V(J;1,2) represents a two-dimensional "crease" between the three
dimensional V(J;1) and V(J;2).

Remark 6.2(2) Even if M has orthogonal corners the local invariant manifolds need

not be C2. This should be evident from the way they are proved to be C! (Proposition
6.1(2), see below) but for a concrete example consider x,=-1, X;=-1, X; =X;-X;-X, on
the orthogonal corner {x €R*:x,>0,x; >0} which has a regular zero at the origin (see
figure 6.23).

Figure 6.23
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Its stable manifold contains £ ={x:x, =0,x,=x;=0} which separates the stable
manifold W(0) into two parts, W*=W(0) N {x:x,>x;}, W =W _2(0) N {x:x,<x,}.
Suppose y€ £\{0} and c is the intersection of W(0) with the plane
{XERx,+x;=y,+Yy;}, s0 c=cUyUc* where c*=W*N {x,+x;=Yy,+Y;, X,> X3},
=W N {x:x,+x;=y,+Ys3, X, <X;}.

Then if A is a parameter along ¢ with A(0)=y (such as A=x,-x;) then we can check
by a straightforward computation that de(N\)/d\ | qa=dc(N)/dN | 4 (as we know from

Proposition 6.2(2)) but d’c(N\)/dN? | .o #dSN)/AN? | e » i€ W,(0) is not C2.

Proof of Proposition 6.2

(1)(@) Condition (2) in the definition of regular zero is a condition on x,M,X (without
necessarily requiring that X(M)(x)=0) and we show that for each stratum ¢ of M the
set of xE€ ¢, smooth f;’s defining M and X € & (M) such that x,M,X satisfies
condition (2), is open.

Suppose locally o=Z(1UJ) with M locally ZN(I;J), then (using (2")) (2) is not
satisfied iff for some KCJ (X(K\j)(x),gradfi(x)) <0 for all j EK\I and either
(X(KN\j)(x),gradf(x)) =0 some jEK\I or (X(K)(x),gradf;(x)) =0 some jEI\K. Hence
by continuity of x=>X(x), x»T,M for xE€ ¢ (by [13] again), the set of points in
o,X€E E,(M) and smooth real valued functions f;, i€IUJ, on R® such that (2) is not
satisfied is closed.

(ii) We can see that if x is a regular zero of (M,X) with x& ¢ then (with M,¢ as in
(1)) XAU ) (x)=0 but X(K)(x) #0 for all ICK strictly contained in IUJ. For since
XM)(x)=0 we must have X(K)(x)=0 some ICKCIUJ; by Remark 2.1 if
X(K)(x)=0 some K strictly contained in IUJ then X(K")(x)=0 for all KCK'CIUJ.
By definition of S%(0,T,M,X), S,(0,TM,X,) we would have
8%(0,TM,X,)CK'CS,(0,TM,X,) for all KCK'CIUTJ so if K#IUJ

$%(0,T,M,X,) #S,(0,T,M, X,) which is a contradiction to condition (2) of regularity.
(iii) We can now show that regular zeros are isolated, and hence finite in number on

our compact M, and that if all the zeros of X(M) are regular and if X is perturbed to
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X'’ then for each regular zero x of X(M) in ¢ there exists a regular zero x’ of X'(M)
in ¢ near Xx.

Consider the hyperbolic zeros of X(¢) for each stratum o of M. We know from [42]
that these are isolated and hence finite in number on o. The regular zeros x of X(M)
on o are the subset of these satisfying (2), hence by (ii) are disjoint from do (because
X(6)(x)=0), by [42] again remain hyperbolic and move only slightly under
perturbations in X, and so by (i) remain regular under perturbations in X.

(iv) To complete the proof of Proposition 6.2(1) it remains to show that there exists
an open-dense subset of Z,(M) with all zeros regular. By [42] we know that for each
stratum o of M there exists an open dense subset of Z(6) with all zeros of X(7)
hyperbolic, and hence by Lemma 4.4 an open dense subset of £, (M) with all zeros of
X(6) hyperbolic for every ¢ in M. For X in this subset each X(5) has only finitely
many zeros, and we can perturb the vector field such that each satisfies (2) (possibly
removing some entirely) as follows. Order the strata according to increasing
codimension in M (and strata of the same codimension arbitrarily) and taking each in
order we shall for ¢ locally represented as Z(K) add to X an arbitrarily small vector
field X;exMgradf; which by Remarks 2.1 leaves X(K) and hence the location of the
zeros of X(¢) unaffected. Using condition (2) in the form of (2") the result follows if
we show that we may perturb X in this way so that at each zero x of X(K) and for all
ICK' CK (X(K"\j)(x),gradf,(x)) =0 for all jEK'\I, and (X(K')(x),gradf,(x)) =0 for
all JEK\K', ie if for all ICK'CK and for all jEK\K' (X(K')(x),gradf(x)) =0. If
(X(K")(x),gradf(x)) =0 some jEK\K'

(PK")X(x) + Liexgi(x)gradfi(x)), gradfy(x)) =(Z;ex NP(K')gradfi(x)  gradf(x)) and
choosing A;#0 N\, =0 for all j' #j, the above=X\; | P(K')gradfi(x) | 20, and hence for
arbitrarily small A; we can perturb X to X’'=X+Agradf, so that

(X' (K")(x),gradf(x)) =0.

By (iii), a regular zero of X stays regular for all X’ near X and hence repeating the
above for all zeros of X(G) we may with perturbations of diminishing size perturb
each to be regular leaving the regularity of those already perturbed unaffected (since
here we’re primarily interested in the smooth case we could alternatively have used
bump functions). By (ii) all zeros of X(%) are then disjoint from do, and hence we

may treat lower dimensional strata in d¢ in a similar way leaving the result for o

unaffected.
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(2) The local invariant manifolds of a regular zero on a submanifold with orthogonal
corners are C! submanifold with corners.
(a) We show that if z, is a regular zero of a submanifold with orthogonal corners
locally represented as ZN(I;J) with z,€Z(IUJ) then on some neighbourhood U of z,
() (X(y),P(@)gradf(y)) <O for all €T for all y€U, and
(ii) For all yE ZP(K;I\K)NU XM)(y)=X(X)(y), for all K such that ICKCIUJ.
(i) implies (ii): At yE€EZP(K;I\K) TyM=LC(I;K\l). Then by Lemma 2.4
P(T,M)X(y) =XXK)(y) iff (X(K\i)(y),gradfi(y)) <0 for all iEK\I
but since the corner is orthogonal P(K\i)gradfy(y) =gradf,(y) and hence
PT,MX(y) =X(K)y iff (gradfi(y),X(y)) <0 for all i€K\I, which follows from (i) (we
know X(y)=X(I)(y) because X is on ZN(I;J)).
Proof of (i): By continuity it suffices to show that for all j&€J
(X(z0),P(I)gradf(zy)) <0. By Remark 2.1 we have
X (@) (zo)-XAU T)(z) € span{P(I)gradf(z,):j €J} and since X(IUJ)(zg)=0
X(@) € span{P(I)gradf(zy):j €J}. By the Characterisation of Projection we have
(X(D)(zo)-PAUNX(z0), PAUT)X(z,)-v) =0 for all vE T, M.
(X (@) (zo)-PAUNX(zo), PAUY)X(z,)) =0and since the corner is orthogonal
P(D)gradfi(zo) =gradfi(z,) €T, M for all jEJ, hence (X(I)z,P()gradfi(z;)) <0 for all
j€J and equality for any j&J contradicts (2"”) of the definition of regular zero, hence
the result.
(b) A partition (I,,..,I,) of I,IUJ is a sequence of subsets ICLCI ,C..CL,CIUJ. A

positive time sequence on a partition (I;,..,I;) is a sequence of r positive reals

td,),..,t(I,)). Call the set of all positive time sequences of all partitions of I,LIUJ T(J).
If z,€Z(1U]J) is a regular zero of X(M) and if S is any subset of ZQUJ)NU (where
U is as in (a) above) and S* ={yEZNI;J)NU:¢M)(y)NS = &} we show there
exists a bijection between T(J) XS and S*. First we show that for any y € S* there
exists a unique partition (I;,..,I;) and sequence of positive times t,,..,t. such that
y=¢)..0I)(e[T)P(Y),-t(,)),-td))..),-t(I,)) (which we shall abbreviate to
t(I)t(..,)..td;)P(y) ) for some unique P(y) ES. If x€ ZP(K;J\K) then since by (2)(ii)
XM)(x)=X(K)(x") for all x' € ZP(K;J\K) it follows that if

t, =sup{t>0:6(K)(x,t) € ZP(K;J\K)} then on [0,t;) X(K)¢(K)(x,t)=XM)d(K)(x,t) and
hence by uniqueness of solutions ¢(M)(x,t) =¢(K)(x,t) on [0,t,), and since at t, we
must have ¢(K)(x,t) € ZP(K’;J]\K’) with K' DK we may repeat the argument and
inductively it follows for any x € U there exists K” D .. K’ DK with
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S(K")(..o(K)(o(K)(x,t)),t,),..),t,")YEZ(UIT)and hence that any x € S* may be
represented as a point in T(J) XS.
Conversely, if y=t(I)tI.,))..t(;)P(y) some P(y) €S then as long as each t(I)) is small
enough - say less than e - we claim y& S*. Since (0,¢) is homeomorphic to (0, o) it
will follow that there exists a bijection between T(J)XS and S*. Suppose x,ES and
inductively that for s-1=0 x,,=t(,)..t(I,)P(y) € S*. Then x,, € ZN(;J\],) and by
a(ii) again X(I)(I)(X,.1,-t) =XM)P(I)(X,,-t) for all sufficiently small t=0, say for
all 0 <t<e. Hence setting x,=¢(I)(X,1,-t(I)) for some 0 <t(I) <e we have
o (L) (x,,t) =M (x,,1) for all 0<t=<t(I,), and our claim follows by induction
(illustrated in Figure 6.24 with s=2).

X, = (1) (X4,-t(1))

ZP(L,;]\L)

ZP(;1\],

X =o)X ,-t(Ly))

X, near z,, a regular zero of X(M)
in ZP(I; ]\g) =Z(IUJ)

Figure 6.24

With this bijection in mind we shall for any point x € S* set ®(x) = the ordered set of sets of
indices (I;,..,I,), t(x)=(t(L,),..,td,)) and P(x)=projection along flow of x onto SCZIU]J).
(c) With ;,DL,D.. DI, as above we say ®'=(1,%,..,I;,..,I.),..,1%) subdivides ®=(1,,..,L) if
IUIDL'D..DI%=DL'D..DL%=LD.. DI =I.If ®(y) subdivides ®(x) for {y;} a
sequence of points converging to x we say t(y)—t(x) if as i=co each t(I;%)-t(I)—0 and t(I/)~0
for all j<s;. We can then topologize T(J) XS by saying (t(y),P(y))=>(t(x),P(x)) (= in the
sense of converges to) if t(y)—=t(x) and P(y)=P(x). We claim that with this topology the
bijection of (b) above is a homeomorphism. We shall use the following fact: that there
exists 6>0 such that for all y in the submanifold with orthogonal corners ZN(I;J)
sufficiently near a regular zero z,€Z(IU]J)

inf{ | X(K)(y)-X(K)(y) | :ICK,;#K,CIUJ}>8é. This is so because
X(ZNTK\D)(zg) =1lim,., ;e za0X(ZNIKND)(y) (by [13])

=1imy,zwyeZP(K;NOX(ZN(I;J))(y) any ICKCIU]J, so by (a)(ii)
X(ZNI;K\D))(z) =X(K)(zo) any ICK CIUIJ. If X(K;)(zo) =X(K;)(zo) with K; %K, we
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would therefore have X(ZN(I;K,\I))(z)) =X(ZN;K,\I))(z) and both sides therefore
equal X(ZN(I;K, UK,\I))(z,) contrary to condition (2) of the definition of

regular zero. Therefore X(K;)(zo) # X(K,)(z,) for all ICK,,K,CIUTJ and by continuity
the result follows.

We have seen x,E€S (S as in (b) above) is mapped by t(I)..t(;) to

t(L). .td)x,=x,€ ZP(I;;]\L;) where each t(I)..t(I;)x, € ZP{;;J\I). Suppose we show
that for any 1<j<r and x;,," near x;,, there exists x; near x; and sequence
L[DL,,'DL,*D. DL, %=L, such that x;,," =t{T;,,%)..t(T,,)x;’ (see Figure 6.25).
Then inductively for any x,’ near x, in ZP(L;J\I,) we may find a sequence ®'
subdividing ®(x) and x,' close to x, and t(x,') close to t(x,) such that x,’ corresponds
to (t(Xo'),Xo')-

Xj1' =t(Ij+12)t(Ij+ll)xj' EZP(J, ;N\ 4y)
Xn=tG)0) /]

P

ZP(Iy', N1

X;

D0
vd

NZP(I;I\I)

[P,

Figure 6.25

By continuous dependence on initial conditions we know that as x;,,"->X;,; with

X;+1' € ZP(;, 13 1\];41) we have ¢(M)(x;.,",1)>d(M)(X;,,,t) for all 0<t=<t(l,,). The
only strata intersecting the region

{oM)(y,t):yEZP(J;, ;;1\L,,) with y near x;,,, 0<t' <t} are ZP(K;J\K) with

I, CKCJ; and since by the same argument as in (b) the only transitions ¢(M)(y,t) for
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increasing t can make are those into strata of decreasing dimension we must have
X1 =t 5. 10, )x; for some LDT,,' DL, *D.. DI, 5 =Ij,,: furthermore since
X;+1=t(I;+1)x;, if for for any k with 1<k<sg,, t(I;+,) does not tend to 0 as x;'->x; we
would have (since by the above X(I;,,“) is bounded away from X(I;..;)) that x;,," does
not tend to x;,,, and hence as x;,,’-x;,; each t(I;,;)~>0 1 <k<s;,,, and so
(G152t 40)-

(d) 1t follows from (c) that if zy', z,> are regular zeros of submanifolds with
orthogonal corners M*, M® locally represented as ZN(I,;J,), ZN(1,;J,) respectively with

L] =1L], |J.| =131, thenifS,, S, are homeomorphic submanifolds of
Za V1), Z(I, V1), then S*,, S* are homeomorphic. In particular therefore W,*(z,),
W, '(z5) and W (z,) are homeomorphic to
T, W*(zo) X span{gradfi(z,):1 €T}, T, W*(zo) X span{gradf(z,):i€J} and
span{gradfi(z,):1€J} respectively.

Finally we show these local invariant manifolds are C'.

We have for a point x,€ ZP(I;J\L) in $* a sequence xg>X,~>..~>X, with each

x;, €EZPI;N\L), [,=IUJDLD..DIL DI, with x,€SCZIU]J). We shall denote a
neighbourhood of x; in S*NZPI;J\I,) by S(I). Since SJ;) CS* each S(I) is invariant
by X(M) | ZP(I;;T\]I), and since X(M)(x) =X(I)(x) for all xE€ZP(;I\I)NU (by a(ii)
of course) this means that X(I)(x) € T,S(l)) for all x& S(I;). We show by induction on i
that each S*(I)) is a C! submanifold if SDS(I) is.

Suppose this is true up to L. Setting ¢(K)(y,-t(K))=t(K)y we have by (b,c) that
STis)=Yio1, 15,01, jo1, Y t' (L, Ot ). 10, )SA) where the inner union is taken
over t'(I;,,) near t(L,,) and t(I./), 1 <j’ <j, small and positive. We see that the outer
union consists of 215M.11-1 C* manifolds ( one for each subdivision of ,D..DI,,)
and we must show that their tangent spaces where they meet at x;,, €t(I;,,)S{) are all
contained in a single space which is | I\I;,, | dimensions larger than T,S@).

For example, if [=(1,2) and L, =< (Figure 6.26)

the outer union consists of 22-1=3 manifolds

{t"(D)H1(1)S(1,2):t' (D) is near t(F) and t(1) is small and positive}
{t'(D)t(2)S(1,2):t' (D) is near t(J) and t(2) is small and positive}

{t'(2)S(1,2):t'(D) is near (D) }
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ZP(D;1,2)
(DH(1)SE):t' (D ),
@RS @ ) (@S (@) v )
and t(2) small and positive} A //
\ [ xn=t@)w ya
N V //
{t'(2)S(1,2):t'(D) near (D)}~ ) Y
zp(2;1\)-; . |Flo ZP(1;2)
\\ |
—— {t(1)S(1,2):t(1) small and positive}
{t(2)S(1,2):t(2) small and positive}”

x,CS(1,2)CZP(1,2; )

Figure 6.26
we must show that the tangent spaces at x;,, of these manifolds are contained in a
single (dimS(1,2)+2)-dimensional space.

(End of example)

Taking a member of the outer union (ie the inner union with the variables varying in
the outer union held fixed)
Ut'(rm) pear (T, ), T, ') small and positive cach 15y it GaDtGar)- 1T )S), and letting x;'-x; (so
each t(I;,")~0 ) we obtain a tangent space at x;,,
¢+ ) (t(T;11))-span {T, SE), X(Ti11)(XD,- ., X (T )(x)}, (Where ¢(L;,,)(-t) is defined by
oI, () X) =0, ,)(x,-1)). Since S(I,) is invariant we have XI)(x) €T, S and
hence since by Remarks 2.1 X, /)x)-X{,, )(x) E
span{P(l;,,)gradf(x):j € L,/ \i;,} C span{P(L;, Dgradf(x):j EL\L,} and
X@)(x)-X (T 1)x; € span{P(I;, ) gradfi(x):j EINI;;,} we must have
XL, ) E span{T, S(I),P(I;,)gradfi(x):j EINL.,} for all j’ <j. Hence each tangent
space is contained in ¢>(Ii+,)(~t(Ii+1)).span{T,L‘S(Ii),P(Ii+1)gradfj(xi):j €L\L,,} and the
result follows.
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Chapter Seven
Polynomial Systems are Generically Locally Stable

We established in Lemma 6.1 and Example 6.6(1) necessary conditions for two
semiflows to be spfp equivalent, and used these results in Examples 6.4, 6.6(2) and
6.7 to exhibit semiflows which could not even locally be straightened out (in the sense
of establishing a spfp homeomorphism between a local flow near x and the
straightening out at x) or linearized, and these examples were not atypical and the
phenomena concerned could not be perturbed away. The impression may have begun
to form that establishing a spfp homeomorphism between two systems is rarely
possible in circumstances of interest. We show that in one important context the
opposite is true: we will show that polynomial systems on polyhedra with orthogonal
corners are generically locally spfp stable at points x where the projected vector field
X(M)(x) #0. The original inspiration for working in this context was that the
biological systems considered in [60] are of this form.

M is a polyhedron with orthogonal corners means M is a connected subset of R®
locally of the form {x €R":(x,n,)=a, for all i€I,(x,n,)=a for all i€J}, where {a;};c1u;
is a set of reals and {n;} is a set of independent vectors in R* such that (n;,n;)=0 if
i#].

Figure 7.1. A polyhedron with orthogonal corners
Without much loss of generality we may suppose M is codimension 0 in R"® (ie that
I=(J) and then since any polynomial vector field is globally determined by its value
on any open set we have Z, (M)=%, (R"). We recall from Chapter 4 that =, '(M) is
that open (by Proposition 4.2) subset of =, (M) satisfying conditions concerning the
relation between the flows of X(5) and X(5') for strata ¢,0' in M with ¢’ No# &, so

(unless M=R") X, (M) is a strict subset of £, '(R")=E, (R").

o
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We recall from Chapter 6 that the system (M,X) is spfp stable at x €M if there exists
a neighbourhood Uy of X in &, (M) and U, of x in M such that for any X' € Uy there
exists a stratum preserving homeomorphism h:U,~Uy, " = a neighbourhood of h(x) in
M such that for each yE€ U, ho(M,X)(y,t) =¢(M,X")(h(y),7(t)) some continuous
strictly increasing 7:[0,T(U,,y))—[0,T(U, ,h(y))), where (as in Chapter Five) T(U,,y)
is the time for which ¢(M,X)(y,t) remains in U,.

Proposition 7.1 If M is a polyhedron with orthogonal corners in R* then there exists
(1) a residual subset =%, ,"(M) of Z,,(M), and

(2) if r=n and M is compact a residual subset %, " (M) of £, (M),

such that the semiflow ¢(M,X) is spfp stable at each x EM\{xEM:X(M)(x)=0}, and
in either case we may take 7=identity.

The proof is after Lemma 7.2.

Throughout this chapter M is taken to be a polyhedron with orthogonal corners of
and codim 0 in R®. If then dim(Z, (M))=p (a notational convention for this chapter)
the space of r-polynomial systems on M, MXZ, (M), is a finite dimensional
polyhedron with orthogonal corners of R**?, each leaf M X {X} of which represents an
individual system. We shall make the following definitions:

XP:R*XE, (M)>R*XE, (M) is the r-polynomial vector field on R*XE, (M) (ie,

XPE R, (R*XE, (M))) defined by XP(x,X)=(X(x),0). Since MXE, (M) is a
submanifold with corners we may also define X’(M X &, (M)) =projection of X onto
MXZ, (M), defined in the same way as for X(M), ie
XM XE, M) (x,X)=PT, x,(MXE, (M))X?(x,X), which since TM X0,0 XTxE,, (M)
are orthogonal in R**? equals (P(TM)X(x),0)=(XM)(x),0). Thus if we define
correspondingly ¢P:R*XE, (M)->R"X X, (M) to be the integral flow of X, and
PPMXE, (M)) to be the integral flow of XP(M X Z (M)), then by the above we have
PPMXE, (M)(x,X),t) =(¢(M,X)(x,t),X) and furthermore setting Z°NFP*(I;J;K) =
{(x,X) €R**P:x € ZNP(L;J;K)} =ZNP(L;J;K) X E,, ,(M) we obtain
SPKY((x,X),t) =dP(ZP(K)) ((x,X),t) = (x(K)(x,t),X) (Where the suffix X in ¢y
designates the vector field being projected onto Z(K) to yield ¢(K)) etc.

If 0; are strata of M, o;X =, (M) are strata of the polyhedron MXE_ (M), and if g,
are the affine spans of G;, 6;X =, (M) are the affine spans of ¢;X =, (M). We have

I (6 X E, (M) 1 5,XE, (M) =
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{(9,Y) EMXE, (M):Dig?(# X E, (M))((y,Y),t=0) =Dje?(3, X &, (M))((y, Y),t=0) for
all i<k} which by the above equals
{(y,Y)EMXE, (M):D/dy(5,)(y,t =0) =Dy (5,)(y,t=0) for all i<k} and so
@, 1 &) = IV (6, XE, M) 1 5, XE, (M))NII, where
Iy={(x,Y)ER*XE, (M):Y=X}. In particular if X€E Z.,. (M), so by Proposition 4.2
for all X’ near X I'*'(5, r &)= for all but finitely many k,0;,0,, it follows that if
VP is a neighbourhood of (x,X) in MXZ, (M) then
IX(@, x5, M) r 5%XE, M)NVP= for all but finitely many k,0y,0,, so there are
no infinite order tangencies on V? and if X’(M X ZE, (M))(x,X) #0 we can apply
Corollary 5.1 (with M,X,x,V in Corollary 5.1 set to MXZ, (M), X?, (x,X), V?) to

infer that if V? is small enough there exists N with
| PMXE,, M)y, Y),[0,T(V?,(y,Y))) | <N for all (y,Y)E V.
We recall from Chapter Three the idea of the funnel at x about the trajectory
$(S°w (X))(x).
{0} xR¥!

flow of unit vector field &,

y

&
R \e#E"e
| 7 flow (5% ()
£1({0} xR+Y)

Figure 7.2



174

In the context of funnels f is a C* straightening-out map between the flow ¢(S°,(x)) on
Z(S°,.(x)) and the unit flow on RY, where as in Chapter Three q is the dimension of
Z(S°..(x)), ie there exists a -1 dimensional section transverse to X(S°,(x)) which f
maps C--diffeomorphically to {0} xR¥!CRY, and for each point y near x and t small
(S°.(x))(y,t) is mapped by f to f(y)+te,. The canonical (q,r) funnel was a set
F.(q,n)={(t,x) ER'XR¥:t>0, | x| <t}

A funnel for ¢(S°,.(x))(x) was a set f'F (q,r) where r was determined by $y(x). By
virtue of Lemma 3.2 and Theorem 1.1(3) (continuous dependence on initial
conditions) any y near x enters f'F, near x. In summary, for the funnels of Chapter

Three, which we denote by f'F.(q,r), the diffeomorphism f! mapped

(1) 0—x

(i) R-Z(S . (x))

(iii) The unit vector field &, on R%sthe vector field X(S°.(x))

(iv) The unit flow  where Y(y,t)=y+te;~> the flow ¢(S°,(x))

(v) {0} XR%¥'-a section in Z(S°,.(x)) through x transverse to X(S%(x))
(vi) The canonical funnel F (q,r)—f'F.(q,r)

(see Figure 7.2)

It follows from Lemma 3.2 that if we set £,={(t,x) EF.(q,r):t=a} then for any a>0
sufficiently small there exists a neighbourhood of x in M such that if

(M) (x,T) Ef'E,, where f is the funnel map, then the trajectory based at any point y
in the neighbourhood has a unique point of intersection ¢p(M)(y,t) with 'L, near

dM)(x,T) with t near T. f!Z, will be called a funnel cross-section (see Figure 7.3).

SO0 ¢/és;’m(x)>(x>
| & 1T,

Figure 7.3

The point of making these constructions is that since $P(M X E,, (M))((x,X),t)=
(¢(M,X)(x,1),X), if we set FP=F_.(q+p,r) (q+p is the dimension of Z?(S°,.(x,X))),
where r is determined by $y(x,X), Z,2={(t,x) EF:t=a} and f® the straightening-out
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map between the flow ¢?(S°,(x,X)) and the unit flow on R*?, then for any (y,Y) near

x,X) "M XE, (M))(y,Y) has a unique point of intersection with (fPY'L? (see Figure
7.4).

| ‘(ﬂ’)\"‘;f NIL,

2 (BYFPATL

MXE, (M) NIly
Figure 7.4

Before proceeding further we sketch the strategy for proving Proposition 7.1. Suppose
X is an r-polynomial vector field and x€M. We want to show that if X(M)(x )=0
then we can find a r-polynomial vector field X' arbitrarily close to X such that for all
X" near X' there exists a spfp homeomorphism from a neighbourhood of x to itself
conjugating the flows of ¢(M,X’) and ¢(M,X"). We have already established a
necessary condition for a homeomorphism to be spfp: in Chapter Six we showed how
to chop M up into subsets consisting of points which are "equivalent" insofar as the
trajectories and invariant curves through them make the same sequence of stratum
intersections, and we saw in Lemma 6.1 that any spfp homeomorphism must preserve
these subsets.

We shall construct a special stratification (a $(M,X)-compatible stratification,
defined below) of a neighbourhood of x in M with the property (this is part of the
proof of Proposition 7.1) that if a pair of systems (M,X) and (M’,X") have compatible
stratifications €,(U,X) and €,(U’,X’) of open subsets U,U’ of M,M’ and if there
exists a stratum preserving homeomorphism between €,(U,X) and §€,(U’,X’) then
there exists a spfp homeomorphism between ¢(M,X) on U and ¢(M',X’) on U’. In
order to obtain a stratum preserving homeomorphism between ¢(M,X)- and ¢(M,X’)-
compatible stratifications of a neighbourhood of x in M, X’ near X, we consider the
total space of all r-polynomial systems on M, MXZ_ (M), of which each system is a
leaf, MX{X}. In Lemma 7.1 we show that if XE€E_'(M) and X(M)(x) # 0 then there

exists a neighbourhood UP of (x,X) in MXE, (M) for which a o - compatible
HrMx S, . (M) XP)-
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stratification €,(UP,XP) exists (Corollary 5.1 and the fact that subanalytic sets admit
Whitney regular stratifications is used heavily in this) and furthermore that for all X'
near X II,. NG, (UP,XP) is a $(M,X’)-compatible stratification of U=II,.NUP. In
Lemma 7.2 we show that if II, 4 €,(UP,X?) then for all X’ near X there exists a
stratum preserving homeomorphism between €,(UP,XP) NIIy and @,(UP,XP)NII; it
only remains (the other part of the proof of Proposition 7.1) to show that there exists
a covering of MXE, (M)\{(y,Y): Y(M)(y) =0} by such open sets U? such that for any
X in a residual subset of &, (M), IIk t €,(UP,X?) for all UP. A couple of details
concerned with quantities yet to be defined have been omitted from this sketch. (The
feature of funnels that we use is that by Lemma 3.2, and continuing with the above
notation, if the quantity a is small then every point in a sufficiently small
neighbourhood of a point (x,X) €M XE, (M) has a unique point of intersection with

the funnel cross section (f/)'LP).

Suppose M is a submanifold with corners of R*, X a C* vector field on M.

Definitions
(@) If € is a stratification of a subset M of R" and Y is a vector field (not necessarily
continuous) on M we shall say a stratum s of € is
(@) Of type 1 if for all xEs Y(x)ET,s, ie Y is tangent to s
(I1) Of type II if for all xEs Y(x)& T,s ie Y nowhere tangent to s.
These of course are extreme possibilities, although it will be a feature of our
constuctions that all the strata in our flow compatible stratifications are of one or other
type.

We shall denote the strata as m;, m,,.. and if we wish to denote the dimension this
is done with a superfix ( ie m;", etc). "r-dimensional stratum" is abbreviated to

r-stratum.

(b) If UCM a ¢(M,X)- compatible stratification €,(U,X) of U is a Whitney-regular

(see [59]) stratification of U refining the stratification of M | U as a submanifold with

corners satisfying

1. On each stratum m; of €,(U,X) the map x->X(M)(x) is C*

2. Every stratum in §,(U,X) is of type I or type II

3. For each r-stratum m;" of €,(U,X) there exists a continuous map m,-:[-l,l]’=f’—» "

which is an analytic diffeomorphism on I'=(-1,1)" with m;/=m;(I") and Eli'=mi(_l-')
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(Figure 7.5 below)".

Il’
Ir
my
0 —
I\
Irl-l Ir-1+
x;=-1 X =+1

Figure 7.5

Furthermore if m;" is of type I (so ¢(M)= the C* flow ¢(m;") on ny7), if we then set
I, ={x€R"x;=%1, | x| <1 forall j=2,..,r}, then for each xEm;

(i) The quantities t (x) =inf{t ER:¢(m;)(x,s) Em/ for all t<s<0} and

t,(xX) =sup{tER:¢(m,)(x,s) E m;" for all 0 <s<t} exist, are finite, and are continuous
in xE€m,, and there exist unique (r-1)-strata, which may be taken to be m(I"',),
m,(I"!), such that for all x € m;" the projections along the flow

a(x) =lim, ,¢$(m;)(x,s) is contained in my(I"1)

w(x)=lim,., 4d(m)(x,s)=¢M)(x,t.(x))is contained in m,I",)

and these maps are continuous in x € my"). All strata in m,-(f’\f"‘i) are of type I and in
m,(I"' \I"!, ) are of type 11, the vector field X(M) is continuous on my(I'UI"') and has
a continuous extension to my".

(ii) The flow ¢(M) induces a homeomorphism (called H in part (3) of the proof of
Proposition 7.1) between the set m;(I"'UT!' UI*,) and m(I"!,) I (and hence with

It xf) by x—>(w(x),t (X)/(t,(x)-t(x))) (Figure 7.6)

Ir
a()____ e S0 =80 L00) 1 |
=$M(xL.00) I, I,
| \\‘_4
Figure 7.6

° We observe that I,],L,.. are sets of indices while I’,I"‘,f‘,l"‘,l"‘i,l"‘i,l are subsets

of Euclidean space
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4. There exists a C* submanifold with corners I and integer N such that for each point
yEU ¢(M)(y) | U has a unique point of intersection with X, and ¢(M)(y) | U
decomposes into <N C' segments
SOM)(y,[0,)) U M), [t1, 1)) U .. U SQD(, [t 1 1)) Where dM)(, [t t,) is
contained in a single stratum of €,(U,X).
If yE stratum of type II (type I) the sequence of strata ¢(M)(y) occupies is (after
renumbering the strata) of the form (m,*),m,**',mg*,m**!, .. m 5 m.q o<, mygy 5,
Mgy 435 Tse ey M) Mgy 45 My 15 My 00 My 419, my ) € Ewhere 1(j) <2N,
each m}¥ with i<r(j’) is of type I, each m*¥ with i=r(j") of type II, and where m}*
is mapped by the flow ¢(M) | m**! to m;¥, by ¢(M) | mk*! to m¢k ete, until reaching

m,,* itself part of a similar sequence of k-1 and k strata.

Eg.
k+1 k+1
m
m,* 2 m,k my 5 msk
v
mg*!
m;
!
k-1 k1 k-1
myg myy my,
> m,*?2 >m, F2 > m, &2
my,
%)
mys

Figure 7.7a. m*,m;*, m¢*!,m*2,m;;*?, are m;,*? of type II, the remaining strata are of
type I - if k=1 the flow ¢(M) relates to the strata in the first part the sequence as

shown in a schematic way in Figure 7.7b
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k [, -

m, m, my m, ms
L — t —_> NG
flow ¢(M) —® 1
mi‘z
mgk-l
Figure 7.7b

An example of a $(M,X)-compatible stratification is given in Figure 7.14a.

We shall now (ILemma 7.1) construct a PPM X E, (M),XF)-compatible stratification
§,(UP,X?) of UPC M XE, (M) with special properties (in particular that each slice
1y N €, (UP,XP) for X’ near X is a $(M,X")-compatible stratification).

Lemma 7.1 If x€EM, XEE, /(M) and X(M)(x) #0 there exists a neighbourhood Uy
of X in &, (M) and UP of (x,X) in MXZ, (M) for which there exists an analytic
M X E, (M), XP)-compatible stratification G,(UP,X®) of UP such that for any

X' € Uy, €,(UP,XP) NI is an analytic #(M,X")-compatible stratification of
U=UPNIl, and the type (ie, I or II) of each stratum m€E §,(U?,XP) is the type of
mN I € €, (U, X") N1l.

Proof

This result hinges on Corollary 5.1 and the fact that subanalytic sets admit Whitney
regular stratifications [28-30,34]. A subset of R® is semianalytic if it is locally defined
by finitely many real analytic equalities and inequalities, and subanalytic if a real
analytic image of a semianalytic set. Hardt [28-30] and Hironaka [34] have shown that
subanalytic sets admit (locally finite) stratifications into C¢ strata (see Chapter One)
and that this stratification may be refined to satisfy the Whitney regularity conditions
(see [591,[57b]), and to have certain additional features. In particular it is shown in
[29] that the stratification may be refined in such a way that for each r-stratum m
there exists a continuous map fm:f’—ﬁl whose restriction to I" is an analytic

diffeomorphism. [6] is a recent review of the theory of semianalytic and subanalytic

sets.

(1). We shall refer at intervals to the constructions and discussion in the preamble

earlier in this chapter. Beginning with x€M such that X(M)(x) #0 and Xeg, M)
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we can choose (see the preamble) a ball B,Z(X) CE, (M) of radius r, centred on X so
small and a ball B, (x) CR® so small that if X(M)(x) 0 (and so

XPMXE, (M))(x,X)=(X(M)(x),0) #0) that by Corollary 5.1 there is a uniform (over
G, Y)E (1_3,1(x) NM)XB, (X)) bound on the number of stratum intersections

P(M XB,(X))(y,Y) makes, and in fact also (see proof of Corollary 5.1) on

T((B, () NM) XB,(X),(1,Y)).

(2) We obtain a stratification {g,'} of MXB, (X) which has the property that

(¥, V)X’ (M X &, (M))(y,Y) is analytic for as long as (y,Y)Eg;'. We saw in the
preamble that there exist only finitely many non-empty sets I'\¥’(d, r &,), where here
(and henceforth) the o; are strata of M XB, (X) as a submanifold with corners, and by
Proposition 4.4 every iteration set is an intersection of some of these finitely many
sets. Rather than perturb X to ensure that all possible intersections and differences of
these sets form a stratification, since these sets are subanalytic and there are only
finitely many of them we can use [28-30] to stratify MXB, (X) in such a way that
each set formed by intersections and differences from these sets is a union of strata.
We shall call these strata {o;'}. By Proposition 4.4 this stratification refines the
decomposition of MXB,Z(X) into iterations sets for XP, and so in particular S,(y,Y) is
a constant on each ¢;' (from definitions if (B,l(x) NM) XB,Z(X) is represented near
(y,Y) as ZPNP(I;J) then S,(y,Y) has the property that

XP(Sy(y, ), Y)=X’(MXE, (M))(y,Y) ). Hence the map

(v, Y)»X?(MXE, (M))(y,Y)) is analytic on each o;'.

(3) We construct a closed subanalytic neighbourhood UP of (x,X), with

x,X)CUrC (ﬁ,l(x) NM) XB,Z(X), as follows. In the preamble we constructed a funnel
(f°)'F? and a funnel cross section (fP)'E,? with the property that given any sufficiently
small a> 0 the trajectory based at any point (y,Y) in M XX, (M) sufficiently near
(x,X) crosses (f)'L? in a unique point (see the preamble). By choosing the quantity
a> 0 sufficiently small we can arrange for (f°)'Z to be contained in
(B,l(x)ﬁM)xB,z(X). If the strata of MXE_ (M) as a submanifold with corners near
(x,X) are o03,..,0, and (y,Y) is near (x,X) the trajectory ¢*(MXE, (M))(y,Y) is a
union of components

PPMXE, (M)(Y,Y) = (G (¥, Y),[0,4)) U "G )((y, Y), [t1,1)) U .. etc where
FMXE, MY, Y),) E g on (41,8) and (¥;,Y) =6 (G6.) (%1, Vi) by tir). We have
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arranged (in (1)) that the r; and r, are so small that that we can apply Corollary 5.1 to
infer that there exists N,independent of (y,Y) such that the number of analytic
components of any trajectory segment in (ﬁ,l(x)ﬂM) XB,Z(X) is <N,. Since on each
stratum ¢;’ of our stratification {¢,'} of (1) the iteration is constant the region R; of
(}E,l(x) NM) XB,Z(X) on which X’(M X, (M))=X(5) is for each i=1,..,r a union of
strata {c,'}, and hence is subanalytic. If for (y,Y)EMXB, (X) we set
¢ (3)(Y,Y)={¢"(c)((y,Y),1):t <0} NR; we then take
Ur= (ﬁ,l(x) NM) XB,Z(X)) N (Y ¢ (01) 9 (01y)- -9 (03) (FP) 'Z,P) where the union is over
all possible sequences i(1),..,i(s), s<N,, with each i(j) such that 1 <i(j) <r. This is
evidently subanalytic (because Lf, R; are subanalytic and ¢(5;), f* are analytic) and is
closed (because ]_Brl(x) and L are closed and f? and ¢(5;) are continuous) and by the
foregoing is a neighbourhood of (x,X) in MXZ, (M). A "slice" of UP (in fact
UPNII) is illustrated in Figure 7.8 below.

2, {(M)
N
A, e
< T ®'Lr B (x)NM /
= $(S%..(x))(x)
RN *, N\
()"'F PR NI
Iy M —]
XI
. N v / X
UrNlly

Figure 7.8

We shall construct a $*(M X £, (M), XP)-compatible stratification of U? with L in part
4 of the definition of compatible stratification equal to (f)'L,, and denoting this
stratification by €,(U?,X?) will show that for any X' near X ¢,(U?,X*) NIl is a
¢(M,X")-compatible stratification of U=U?NII., with £ in the definition of

compatible stratification now equal to IL. N (fF) 'L P.
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(4) If U and 8U are subanalytic subsets of R" with X a non-vanishing analytic vector
field on U and X; analytic vector fields on subanalytic subsets of U the following will
be our standard procedure for forming an analytic stratification of U which has the
property that all the strata of U are of type I or II and the (forward) projection
("projection” in this context always means forward projection along the flow) of each
stratum onto 3U is a union of strata in au.

Since U is subanalytic we may by [28-30] obtain an analytic stratification of it into
strata each of which is by [29] C* diffeomorphic to (-1,1)", some 1, ieif ois a
r-stratumn of U then o is the set of common zeros of independent C* functions
g;R*>R. If we now form the subanalytic subsets of o by taking all equalities and
inequalities {xE ¢: {gradg;(x),X(x))=0,>0, <0} (see Figure 7.9) we may by [28-30]
again form an analytic stratification of ¢ compatible with these sets. We then take
each one of them of codimension >0 and repeat, and keep going until we run out of
dimensions. We repeat for all strata ¢ of U. We obtain a stratification of U such that
all strata are of type I or II. Finally we project forwards by the flow all these strata

onto 86, and (using [28-30] as above) form a stratification of 3u compatible with

these images.

2 gradf; X»
@ < é

/ /// //

()] A stratification of o compatible with
(gradgj()’) aXi> =O7 > O> <0

T T

(c) A stratification of the strata of codimension >0 in o
by the same method

Figure 7.9
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(5) In (3) we constructed a subanalytic set U? in M X &, (M) containing (x,X) and
subanalytic subsets R; of (B, (x) M) XB,Z(X) such that XP(M XZ, (M))=XP(G;) on R;,
where each ¢; was a stratum of MXZ, (M) as a submanifold with corners. We shall
now set U;=R,NUP, ie U;={(y,Y) EUXPM X E, (M))(¥,Y)=X(5)(y,Y)} and again
is subanalytic. Order the strata of MXE, (M) | UP as a submanifold with corners in
an arbitrary way, y,..,0,. For each i€(1,..,1) 6;NU; is subanalytic (possibly empty)
and for each i,j we stratify by the procedure of (4) the subanalyic set [—I=clos(aiﬂUj)
(throughout part (5) of this proof each ﬁ, 8I—J, U is as in part (4)) with the vector
field X in (4) set to XP(d;). We recall that in (4) we finished by stratifying dU in a
way which would be compatible with the projection onto dU of each of the strata we
have formed in U. We then take any one of these strata, say ¢', and by the procedure
of (4) stratify the subanalytic set U where U=¢" NU, with X of (4) set to X?(5,). We
carry on repeating until the process terminates (as we know by the construction of UP
it will do in a finite number of stages) with every point of UP mapped by a sequence
of projections onto (f)'L. We have then obtained a stratification of UP such that

(i) Every stratum is of type I or II

(ii) The forward projection onto aﬁi of every stratum in U, equals a union of strata in
BI—L, and hence the forward projection onto any stratum ¢ in any 6[_Ii of any ¢' in UP
either contains ¢ or is disjoint from it.

(iii) The action of the flow ¢*(M X E,, (M)) on each stratum of MXE, (M) | UP as a

submanifold with corners is a union of strata.
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type II strata (dotted lines, points)

(a) The strata of (3) with arrows indicating the direction of flow ¢"(MXZ, (M))

(b) The refined stratification at the end of (5)

Figure 7.10
(6) Taking the stratification of (5) above we perform finaily a sequence of projections in
the reverse direction to the flow, beginning with the stratification of ()L . For each
stratum m of (5) there exists a set of strata A(m) with the property that for any

m'€AM), ¢ (M XE_ (M)(m',tyNm = J for arbitrarily small t>0 (see Figure 7.11).

m,; € A(m;)

msEA(m)NA(mM, m; € A(m,) N A(m,

m, m,

Figure 7.11

We take each stratum m of (f?)"'Z.? of (5) and project backwards by the flow through

the strata A(m), and continue backwards until reaching dU? (Figure 7.12).
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Figure 7.12

By single valuedness of the flow each stratum of U? is reached by backwards
projection in exactly one way. By finiteness of the stratification (since UP is closed)
we reach dUP in finitely many steps. Since the stratification of aﬁi refines the
projection onto BI—L of the stratification of U, and each stratum of (5) is either
invariant by the flow or nowhere tangent to it, we shall by taking pre-images in this
way further refine the stratification of (5), yielding a stratification of U? which we can
check satisfies (3) and (4) of the definition of $*(M X Z, (M), XP)-compatible
stratification in addition to (1) and (2), and which is therefore the required

stratification €,(UP,XP?) (Figure 7.13).

Stratification at the beginning of (5)

flow ‘

™
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Stratification at the end of (5)

(M'Ey
Stratification at the end of (6)
(F)'E?
Figure 7.13

(7) 1t remains to show that €,(U?,X?) NIl is for any X' near X an analytic

oM, X")-compatible stratification of U=UPNII.. We saw above that for any x’€M
PPMXE, (M) ((x',X"),1)=(eM,X")(x',t),X")and hence ¢(M,X")(x',t)=
PPMXE, (M) ((x',X"),t) NIIy.. If then we follow through each stage of the
construction of the stratification €,(U,X") of M near x in the same way as that for our
PPMXE, (M), XP) compatible stratification €,(U?,X?), we will obtain the stratification
€,(U?,XP)N 1y (and for the same reason the typé of me §,(U?,XP) is that of
mNII, €€, (U XP)NII). -
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Definitions Suppose €,(U,X) is a ¢(M,X)-compatible stratification of UCM. If m,,
m, are strata of €,(U,X) we shall say

(a) m;—»m, if m, C dclos(m,) (this is more or less the notation of [57])

(b) Continuing with the notation and conventions of part 3 of the definition of
¢(M,X)-compatible stratification, we shall say m;=m, if either

(i) dim(m,)=dim(m,)+ 1=r with m, of type I and m;=m,(I"') (and hence m, of type
1)

flow S
/N

m; m,

or (ii) dim(m,;)=dim(m,)+1=r with m, of type I and m,=m,(I",)
m,

\\_
m,

Example (of a ¢(M,X)-compatible stratification, and of the above defintions)

m /
/ e

m, my my My 1My

Figure 7.14a
A (M, X)-compatible stratification
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nh

1
m7 m;
m 8 / my7 =
\ m,

4{» J\ pa

m,5

Iﬂ

Figure 7.14b

The strata of Figure 7.14a with the relations —,= between them

To remind us that = is a feature of the flow we may suffix it by X: =x.

We recall if €,(U) is a stratification of UCR"XZE, (R") that a stratum preserving
\ homeomorphism h:§,(U) NII,—»C,(U) NIy is a homeomorphism of UNIL,~»UNI.
| such that if the strata of €,(U)NII are (s,,..,S,) then the strata of €,(U) NI, are
(hsy,..,hs,) ( and consequently s,—s, iff hs;—hs,).

We constructed in Lemma 7.1 a ¢P(M X, (M), XP)-compatible stratification

€, (0P, XP) of UPCMXE, (M) such that for all X’ near X €,(UP,X?)NIIy. is a
¢(M,X")- compatible stratification.

Lemma 7.2

If €,(Ur,XP) is the ¢P(M X E,, (M), XP)-compatible stratification of U? constructed in
Lemma 7.1 and if Iy 4 €,(UP,X®) then for any X’ near X there exists a stratum
preserving homeomorphism h:§,(UP,X?) NIL,—~€,(UP,XP) NIl. and furthermore for
strata m; of €,(UP,X?) m, N IL=ym, NI iff m; NIIx=,m,NIl.

Proof
We recall we have set IIy={(y,Y)ER*XE, (R*):Y=X}=R"X{X}, with the
consequence that IIyN(M X E, (R") corresponds to the system (M,X). By Lemma 7.1
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we know that for any ¢?(M X Z,, (M), XF)-compatible stratificaton €,(U?,X?) of
UPCMXE, (M) and for any X' sufficiently near X that §,(U?,X?) NIl is a
é(M,X')-compatible stratification of UPNIIy..

/
| 0

I,yNnur
= — e NU?
e <
strata’ of II, N &, (UP,XP) lﬂow of controlled vector field /_. strata of
, ~t ] T | menswrx)
/
7 //
s
yZ conv(Ily,IIy)yNUP
M/
~
(M)

Figure 7.15
If I1, is transverse to €,(UP,X?) (ie, Il is transverse to each stratum of €,(U?,X?))
and so by [59] II. is transverse to €,(UP,XP) for all X' near X, we shall construct a
"controlled” (see [59,57b]) vector field on a surface joining UPNIIy to UPNII. in UP
which will push the strata of €,(U?,XP) NIl onto those of €,(UP,X?) NIl. (see Figure
7.15).

1. Set Iy =affine span of (Il,IIx) in R*XE, (R"). Since by hypothesis
Iy b €,(UP,XP) it follows II. d €,(UP,XP) for all X’ sufficiently near X, and that
Iy b €,(UP,XP) on the convex hull of (Ily,IIy). It follows from [59, 57b] that if
€,(Ur,X?) is a Whitney regular stratification and L is a submanifold with boundary of
R*XE, (R" then if L,dL d €,(U?,X?) then €,(UP,XP)NL is a Whitney regular
stratification of L. Thus on conv(Il,II.) N UP C Il it follows that I, N €, (U, XP)
is a Whitney stratification. We now set Nyy.=(0,X-X") (where here we are regarding
X, X' as point vectors in X, (R") ) s0 Ny is a constant vector field on I, normal
in Iy to IIy and II,.. We shall show that if s is any stratum of the stratification
conv(Ily,II;.) N €, (UP,XP) then Nyx(s) is a smooth non-vanishing vector field on s,

where Nyy.(s) is defined in the usual way, viz Nyy.(s)(y,Y)=PTj y,sNxx:, for all (y,Y)Es.
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We are choosing X' so near X that s I, for all Y &€ conv(X,X') which means that
for each (y,Y)E s the normal space to s in Iy is independent of the normal space to
II, in My, ie their only point of intersection is 0 €T, y,(R"XZ, (R"). The normal
space to Iy in Ilyy is span{Nyy.}, so we must have Nyy. & normal space to s in Iy
However (eg by Characterisation of Projection) Nyx.(s) =0 iff Nyyx-€normal space to s

in Iy

I, Nur Iy

Figure 7.16 - Exactly as in Figure 7.15 above

2. We show we can find a non-vanishing vector field Z on conv(Ily,II,.)NUP
whose integral flow ¢, satisfies
(i) ¢," is a homeomorphism conv(lly,IIy.) N UP—conv(Tly, Il ) NUP and a
homeomorphism ITy N UP-II,. NUP, some T>0, where ¢," is the time T map of the
flow ¢,
(ii) ¢," is a diffeomorphism of each stratum of I N E,(U?,XP) to itself
(see Figure 7.16).

Consider a stratum s of €,(U?,X?) Nconv(Il,II,) such that s=s, ie s contains no
lower dimensional strata in its boundary. By 1. we can find for each such stratum a
non-vanishing vector field Nyy.(s) = projection onto s of Nyy.. Since for all (y,Y)Es
0# | Nux(s)(Y,Y) | 2=(PT(,y,SNxx:,Nxx:) We have (PT, v)SNyx:, Nyx) >0 for all
(y,Y)€Es and hence for each (y,Y)Es there exists T(s,(y,Y)) >0 such that
on_ (¥, Y),T(s,(y,Y))) €Il Since €,(UP,XP) is locally finite the strata s such that
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s=s have the property that there exists >0 such that any pair
of such strata have disjoint §-neighbourhoods. As in the proof of [57b,Lemma 2. 3] we
can by rescaling Nyx.(s) arrange that T(s,(y,Y)) is independent of (y,Y) €s. Then the
set of vector fields Ny.(s) for such strata s form a controlled vector field (see [S7b])
on the union of such strata and by [S7b, Lemma 2.4] this may be extended to a
controlled vector field Z on UPN conv(Ily,Ily.) whose integral flow is a
homeomorphism, is a diffeomorphism on each stratum, and again as in the proof of
[S7b, Lemma 2.3] may be rescaled so that there exists T>0 such that for any
¥, V) ENNT? ¢,((y,Y), T) ENl..

This shows that there exists a stratum preserving homeomorphism of
S, (UP, X)) NII,~E,(UP,XP) NIl ( and in fact that for some neighbourhood Uy of X in
Z, (M) that (U, XP)= §,(UP,XP)N Il XUy )

3. We show that under the hypotheses of the Lemma that for X' sufficiently near X
and strata m;, m, of €,;(U?,X?), m, NIIy=ym, NII iff m, NII=,.m,NII.. It suffices
to show that for any strata m; in €,(U?,XP) m;=.m, iff for any X' near X

m, NIIy=ym,NII. This follows from the definition of =, the fact that

I, th €,(UP,XP) for all X' near X, so codim(m,NIly)=codim(m,)+codimly.),
i=1,2, so dim(m,)-dim(m,) =dim(m, N Ily.)-dim(m,NIly.), and from the fact that
PPMXE, (M) ((x,X),t) =(¢(M, X)(x,t),X) (for which see the preamble). -

Proof of Proposition 7.1

(1). We show that {(y,Y)EMXE, M):YEE,,' M), Y(M)y =0} is open in
MXZ, (M).

We know that E, (M) is open in Z, (M) by Proposition 4.2. We must show that
{(y,Y) EMXE, (M):YM)(y)=0} is closed. If E, and E, are subsets of Euclidean
space a correspondence F (see [12]) is a map from E, to the set of subsets of E,. A
correspondence is closed at x €E, if for all sequences {x,} CE,, {y,} CE, with x,-»x
and each y,€F(x), lim_. .y, € F(x).

By [12] the map x—=(T,M)" is closed (where (T,M)" is the polar cone to T, M, ie
(TM) ={yER"(y,v) <0 for all vET,M}). From the Characterisation of Projection
we know X(M)(x)=0 iff X(x) € (T,M)", hence if x,»x, and X; is a sequence in (M)
with X;»X and X;,(M)(x)=0 for all i, so X;(x) € (TxiM)' for all i, by closedness of
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y—(T,M)" we have therefore X(x) € (T,M)", so X(M)(x)=0, and the result follows.

(2). By Lemma 7.1 for each point (x,X) in the set MXE, 'M)\{(y,Y): Y(M)(y) =0}
(which we know by (1) to be open) there exists a neighbourhood UP and a

P M X E, (M), XP)-compatible stratification §,(U?,XP) of UP such that for all X’ near
X I, N E, (0P, XP) is a $(M,X’)-compatible stratification of U=UPNIly.. If we take a
countable subcover of MXE, /(M)\{(y,Y): Y(M)(y) =0} by such neighbourhoods the
result is a countable collection of finite collections of analytic strata, so a countable
number of analytic submanifolds of M X%, (M) (not necessarily forming a
stratification). Therefore by [35, Theorem 2.7] we may find a residual subset of

Z.. M) (and hence of Z, (M) ) such that for all X in the subset Il is transverse to
every one of these submanifolds. If we choose X in this residual subset and if
X(M)(x) #0 then (x,X) € some UP with IIy h €,(U?,X?), and so Lemma 7.1 combined
with Lemma 7.2 tells us that for all X’ sufficiently near X there exists a
stratum-preserving type-preserving homeomorphism €,(U,X)—-€,(U’,X") (the "type"

alluded to is I or II) such that for any strata m;, m, in €,(U,X) m;=ym, iff m,"=ym,’.

(3). To complete the proof of Proposition 7.1 we shall use the following notions.
(i) An r-box of a compatible stratification is a pair of strata

m,(INUmI)=m,(I"UI), where my is a type-I stratum

S . {mi(IH+)
flow . -
my(I"'.)

] mr

m(I"'UI*') (= a "box" in our terminology)

Figure 7.17
@) If my(I"UI™l),m/*UI") are r-boxes of stratifications €,(U,X),&,(U’,X’) and h is
a homeomorphism between m,(I"',) and m;'(I"!,) (see Figure 7.17) the linear
extension of h to m(I"UI™') is defined as follows. By property 3(ii) of
¢(M, X)-compatible stratification &,(U,X) we know that the flow induces a
homeomorphism, say H:m,(I'UI"!, UT")->m,(I",) X1 by x=>(w(x),t,(X)/(t,(X)-t (X))
(notation as in the definition of ¢(M,X)-compatible stratification) and we may extend

the domain of definition of h to m(I"'UI"!, UI"') by requiring that the diagram
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mFUI!, UT ) ——sm U I, UT)
| o
m ) XT——h XId ——> my (I*!,) X1

commutes.

(a) We number the strata of €,(U,X) in a way which depends only on the types of the
strata in €,(U,X) and the relations -»,= between them, and therefore if €,(U;,X),
i=1,2, is a pair of ¢(M;,X;)-compatible stratifications where there is a
stratum-preserving, type-preserving, =-preserving homeomorphism beween them (as
is the case for €,(U,X), €,(U',X") of (2) above), then the numbering will also be
preserved by the homeomorphism. We observe that the existence of this numbering
follows directly from the "abstract” definition of ¢(M,X)-compatible stratification.

We know (by property (3) of ¢(M,X)-compatible stratification) that every stratum in
€,(U,X), other than those in ¥ (¥ as defined in the definition of compatible
stratification), is part of a box, and so if we number all the boxes we will have
numbered all the strata other than those in X.

Inductively, suppose we have numbered i boxes, 1,2,..,i. We then select a box
satisfying
(1) There does not exist an un-numbered box of lower dimension
(ii) If the box is m(I"UT™!) then m(I'!,) is a stratum of a numbered box or is a
stratum of X, (usually there will be several possibilities) and number the pair of strata
in this box (i+1). It follows from Property 4 in the definition of ¢(M,X)-compatible
stratification that every stratum not in ¥ eventually gets numbered, and from

single-valuedness of the flow that no stratum receives two numbers (see Figure 7.18

for an example).

2/ 8/ e / ? (Arrows indicate direction of flow)
7 5710
L 3 /{ 6 —_—

stratumE X

The numbers are for the pair of strata in each box -

eg, box number 1 is the pair ——

number 7 is the pair /‘
etc. ...

Figure 7.18
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(b) We are finally going to show that with the data of (2) above we can establish a
spfp homeomorhism between ¢(M,X) | U and ¢(M,X’) | U’, which proves the
proposition. We have by Lemma 7.2 a stratum preserving homeomorphism between
I, N €,(U?,X?) and IIx. N E,(UP,XP) and in particular between

I, N (G, (UP,X?) | (F)'LP) and I N (€, (UP,XP) | (L), and we extend this by
linear extension (as described above) to each stratum in IIy N € (UP,X?)=E,(U,X), ie
to UPNII,=U, in the order of the numbering of the strata given above. Thus we get a
bijection h:UPNII,~UPNIIy which maps the strata of €;(U?,X?) NIl onto those of
€,(U?,X")N1ly., and preserves the strata and relations ~»,= (it is a spfp bijection). We
must show it is continuous. Since there are only finitely many strata any sequence
{y;} CU partitions into finitely many subsequences {y;'},..,{y;} with {y/} in a single
stratum m;. Thus it suffices to show that if {y;} Cm; and y,»y then hy;~hy.

Lemma 7.2 has provided us with a homeomorphism of (/)L NIL—~>(fF) LNy,
so assume inductively that for any sequence {y;} C m; with i<k, that y,»y implies
hy~hy. We show then that if y,»y for any sequence {y;} Cm,(I'UT™") then hy~hy
(see Figure 7.19).

Because of condition (i) of the algorithm for numbering strata (that if an r-box is
numbered, so already have been all s-boxes for s<r) all boundary strata of m," except
m,(I"!)have been numbered with some i<k and so h has already been extended by

linear extension to these and by the inductive hypothesis is a homeomorphism on their

union.

m, (I")

/

] é
Q) =M, 1()

[ olfem@ ]

Yoot ﬂOWJJ =

| m()

_ w(y; ' o
=M )(y;, t.(yy)

m(l’",), with closure mk(Y”+)

Figure 7.19
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By the definition of linear extension to m,(I'UI"!) we have hy,;=H"(h,Id)Hy;

(notation as above) where H(x) = (w(x),t,(x)/(t,(X)-t.(x))). We know by the inductive
assumption that for any sequence {z;} C mk(f“‘,r) that hz—~hz as z—z. By definition
{w(y)}C mk(f"l.,,), we have w(y;)—>w(y) by continuity of w, therefore hw(y;)=hw(y).
We know by property (3) of ¢(M,X)-compatible stratification that t (y)->t.(y),
t,(y)—t.(y) and that H' is a homeomorphism, so putting this together
hy;=H (heo(y) .9/ (3t (7))~ H (heo(y), £.(¥)/(t.(1)t.(3))), and by definition of H
the right hand side equals hy, hence the result. -

Example Willis Models (see [60] or the Introduction) satisfy the conditions for
Proposition 7.1(1)

Remark Using critically that for X€ &, (M) the map X-»(classical) stable or unstable
manifold of each regular zero of X is C* in X (see [49]) we could by similar methods
treat the case X(M)(x)=0.
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Chapter Eight

Linear Systems

We recall from Chapter Six that we are calling a system (M, X) linear if X€ &, ,(M) and
M is a closed linear comer. We saw in Example 6.2 that linear systems are not even
locally representative of generic non-linear systems (unlike of course the classical
unconstrained case), but the biological models (see [60] or the Introduction) which
inspired the thesis are linear and we have therefore made special provision for this case,
or cases intermediate between it and general non-linear systems, in Example 2.3, parts
of Propositions 4.2 and 4.4, Examples 6.5 and 6.6, and proposition 7.1. All of these
results have been local, but in this chapter we establish an important global property of
a class of linear system occurring in mathematical biology (Proposition 8.1 below).
Before coming to that we make a few general observations about the special properties
(local and global) which the semiflow ¢(M,X) has when M and X are linear.

Generalities on Linear Systems

(1) Without much loss of generality we may suppose our closed linear corner is
M=LC(Z;J). Evidently each of the fields P(K)X for & CKCJ is linear, but from the
point of view of integrating these systems the situation is much better just than that; if
X(x)=Ax+Db one readily establishes that if on [S,T) X(M)(x(t)) =PI)X(x(t)) (some
I,CJ) then x(T)-x(S) =exp(-P(LA(T-S))(x(0)-A'b)+ A'b, the constant terms outside
the exponential are independent of I, and hence for 0=t, <t,<..<t,=T, with
XM)(x(1) =P@HX(x(®) for all tE[t;,t,,),

x(T) =ePErAlL) e PIAGY(x(0)-A D)+ A'b.

(2) Beginning with the linear corner LC(I;J)={x €R":(x,n,)=01i€1, (x,n)=0i€J}
and linear vector field X(x)=Ax+b we may by a linear change of variables find

{P:}ie1u; such that each L(i)={x €R":(x,n;)=p;} and X(x)=Ax, and for these these

coordinates we have
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ILAUT r D={XELAVUI(PDA)X,P(n;)=0 for all i=1,..,k-1,jEI} and in
particular is affine. Furthermore since the map x—=¢(I)(x,t) is affine in x if X is linear,
the manifold swept out by the action of X(I) on I',*(IUj r I) is locally convex in L(I),
since it is locally convex near t=0 (it has supporting hyperplane L(IU})). Hence also
the intersection of this codimension 1 submanifold of L(I) with any LQUK) is also
locally convex. All of this would be very visible if one graphically portrayed

numerically integrated systems - one plot occurs in [60].

(3) We saw in our formula at the end of (1) above how to express x(t) in terms of
products of exponentials e?®*, and of course we know how to calculate these
quantities analytically once the eigenvalues and eigenvectors of P(I)A are known.
Because of the form of this formula, because in applications symmetries are likely to
exist in A (they do in [60]) making their eigenvalues and eigenvectors readily
obtainable and for other reasons connected with the analysis of these systems we are
interested in the relation between the eigenvalues and eigenvectors of P(I)A and those
of A. Setting K=(1..k) so by Remark 2.2 P(K)X(x) =X (x)-NM'NTX(x) where
N=(ny,..,n) and M=(n;,n;), and setting P(K)Identity =Id(K), an eigenvalue N\ and
eigenvector 3 of P(K)A will satisfy (P(K)A-Ad(K))B8=0 and since

P(K)Id(K) =P(K)’Identity =P(K)Identity =Id(K) we may write this as
P(K)(A-AId(K))B=0, and hence if A-AId(K) &€ GL(n), we must have

BE (A-NId(K))'span(n,,..,n,). We know also of course that € L(K). Define f:R*sR"
by f(x)=(A-Ad(XK))'(n,..n)x and g:R*=R* by

gx) = | |x.

Since (n,,..ny) are independent g4 0, ie g is a submersion at 0, and we can use

[1, Section 3.5] ("if gh O then £ g'(0) iff gf h 0") to infer that dim(im(f) Nker(g))=0
iff det(Dgf) 0. Ker(g) is L(K) so we get a non-trivial 8 iff dim(im(f) Nker(g)) =0 iff
det(NT(A-AId(K))'N) =0, where as in Remark 2.2 N=(n,,..,n,), which provides a
(n-k)th order equation. We get A by solving these equations, and then f for each A is
given by the expression L(K) N (A-Ad(K))'(n,..n).
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For example, in the biological models described briefly in the Introduction (and in
more detail in [60]) the submanifold with corners is an orthant and the vector field is
linear where the coefficients in the matrix A in X(x)=Ax+b are A;=0+n, modns 0T
Qg,..,0,; ER. A has eigenvalues \,=ay+wra; +.. + 0P, ,, k=0,..,n-1 where

w=exp(2~i/n), and eigenvectors

w(n—])k
. S

If L={x€R™x,=0} P(1)A has eigenvalues y,,..,u,, given by L?01/(\;-p) =0 and

eigenvectors given by

Aok

'k | i=1,..,n-1 where Q=07 = Q7, Q.= o

1
A1 K

(up to uninteresting scaling factors) etc.

In summary we see that linear (some people might prefer the the terminology
"piece-wise" linear) constrained systems share with their classical counterparts the
possessing of several simplifying properties. Where the gulf becomes pronounced is
when we consider the global dynamics of the systems, since for constrained systems it
is clear that by judicious choice of linear vector field and arrangement of hyperplanes
forming the boundary the way that we are gluing together individual linear systems
means that in suficiently high dimensions we can conjure up some highly non-linear
phenomena. We can imagine a volume increment of flow perhaps beginning in int(M)
and hitting part of M, sliding along and intersecting lower dimensional strata (and
dropping in dimension when it does so) or lifting off to higher dimensional ones. We
can see (an example in three dimensions below will make this clear, see Figure 8.2)
that interest centres on the iterated maps formed when a cross-section of the flow

maps into itself.
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From Theorem 2.1 and Corollary 4.2 we know that if X€E, ,"(LC(J;))) the flow
on LO(K;J\K) enters a higher dimensional stratum LO(K';J\K"), K’ CK, at x iff
S,(x)=K and for sufficiently large m S_(x)=S%,(x)=K’. Most of the flow on
LO(K;J\K) makes this type of transition along whichever iteration set has lowest
codimension, which by Proposition 4.4 is {T',*(K r K') | LOK;I\K): | K\K’ | =1}
(where T',*(K r K') | LO(K;J\K) means I',*(K r K') restricted to LO(K;J\K) ). Such
sets are codimension 1 in LO(K;J\K) and the flow may induce an iterated map on
parts of them I,* (K, r X;") | LOK;]\K)-T, (K, r K;") | LOK;J\K,)~>
LK, r K,') | LOK;IN\Ky)-».. ..»TL,* (K, r K,") | LOK;I\K;) where each K;DK/,
K/'CK;;;, and | K| - | K’ | =1 for all i,j (see Figure 8.1).

LO(K{";INK;")

LO(KiH;]\KiH[)/
erKi rKy)
0K r Kiyy')

LOK; 4 1;1\K41)

LOK;INK)

Figure 8.1

For example we can choose a linear vector field on M=LC(;1,2,3) in R3? such that
any trajectory initially in intM)=10(J;1,2,3) eventually intersects dM and thereafter
oscillates between LO(;j,k) (i,j,k)€(1,2,3) and LO(J;1,2,3); the flow on LO(3;2,1)
leaves LO(3;1,2) along T',*(3 r &) and subsequently intersects LO(1;2,3) along Q,
(see figure 8.2 below) flows along LO(1;2,3) until leaving it along I',*(1 r &) and so
on in a circuit: we thereby obtain iterated maps on the sets I',*(i r &) (and under

some circumstances non-trivial periodic orbits).



L.C(1;2,3)

——
flow of Q’(I\/I):ﬂOV\iOf ¢(1) on I'/'(1;2,3) NLO(1;2,3)

A/\i
~ (1t ©)

Xy
Qs;=projection of I',(3 r

) onto L(1) by flow ¢(D)

Figure 8.2a. A trajectory of X(M) intersects LO(1;2,3) at
x, and leaves LO(1;2,3) at x,* €L (1 r &)

X

Figure 8.2b. A trajectory beginning at x,” makes a complete circuit

We can see that in the general way the iterated maps we have formed on
Lt r 9)NLOG;(1,2,3)\i) will not be invertible -

200
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LG r @)NLOG;(1,2,3)\i)

(i r D)NLOG;(1,2,3)\i)

but a striking feature of the linear systems which arise in mathematical biology ([60]

or the Introduction) is

Proposition 8.1 Suppose M is the orthant {x ER":x;=>0, i=1,..,n}, XEE_'(M)

(which is open-dense in ZE, (M) by Proposition 4.2), where the (nXn) matrix A in
X(x)=k-Ax is non-negative (ic A;=0 for all i,j) and satisfies the following condition:
For each subset I of (1,..,n) with | I | <n and for any pair j,k&1I there exists
m(j,k) >0 such that ([(P(I)A)™n;],n,) >0, where n; is the unit vector such that
(n;,x)=x,.

Then all iterated maps of the form I',*(K, r K;") | LOK;J\K))—=
T,y (K, r K;') | LOK;IN\K)-T,* (K, 1 Ky') | LOK,;;INKy)— ..

.~0YK r K) | LOKK;I\K)), where each K;DK;' K;’CK,,, and

| Ki| = | K| +1 for all i,j (see Figure 8.1) are invertible.

Remark The condition on the matrix A is clearly satisfied by any positive matrix (ie
one such that A;>0 for all i,j): in the Willis models certain coefficients may be zero,
but it is straightforward to check that in all cases of interest they still satisfy the

condition to apply Proposition 8.1.

Proof of Proposition 8.1

Each step in the iterated map desribed in the statement of Proposition 8.1 is of the
form I',*(K; 1 K{') | LOKINK)=T (Kivy T ') | LOK;, 3 1N\K; 1)

T* (Kot T Kint') | LO(K;,131\Ki4 ). Let us suppose x;* ETy(K; 1 K,

Q=R*".I(X; r K{)NT,(X,,, r K;'")=the projection along the flow of I',(X; r K;’) onto
I'y(Kis; T Ki') (see Figure 8.3) and the flow maps x;* €T,*(K; r K/') to

Xis1 EN Ky T Ky ) to L to 7 €T (K 1 K) to T, (K r K). It follows from
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Lemma A.1 that the induced map

YK r K) | LOKGINK)-T (Kigq 1K) | LOK 3 1\K 1)

Iy £ Ky) | LOK 3 N\K L) Th(K 1K) is locally a diffeomorphism at
xtenXK rK)iff

(1) X&) ETIHEK 1K)

(i) XK (%) E T, LKir)

(i) XKia)0) €T, Q

@iv) X(Ki+1)(xi+1+)$Txm+F2(Ki+1 r K"

We shall show that the assumptions of Proposition 8.1 guarantee that these conditions
hold, and since the step and x;* €T,(K; r K;') were chosen arbitrarily we infer that the

iterated map from I',* (K, r K;") | LO(K;1\K)) to itself is a diffeomorphism.

T (K,, r K;'), an open subset of L(K;,,)

I, (K T K)

0 (K 1 Ky

i+1

Figure 8.3 (in this illustration K}’ =K.;")
\

(i) is equivalent to x;* € I4(X; r K;'), (ii) is equivalent to x,,; €L(K,,, r K,), (iv) is

equivalent to x;,,* & T3(K;,, r K;,,’). These conditions are satisfied automatically for

the type of trajectory described in the statement of Proposition 8.1, which leaves (iii);

we must show that under the assumption of Proposition 8.1 condition (iii) holds for

every x;" €T,"(X; r K/').

R*.T(X; r K{') and I'y(K;,, r K/') are transverse at x;,,” by condition (ii): hence since

X(Kis) 060 € T, Qi iff

(XX, 1)x%,;, normal to T, RYTK r K)NT Ky T K] in Ty L(K;4y)}#0 and

we know by Remarks 2.1 that the

normal to T, [R*.Ty(K; r K{/)NT(Kiy; 1 K)] in T, LK )=

P(T,(I'H-I‘,‘(K,-+l r Ki’))N,KMV(R’L.FZ(Ki r K;') in L(K}")), if condition (ii) applies then
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condition (iii) is equivalent to (X(K{H)(XH1‘),P(TXM-L(KM))NXHl-(R*.I‘Z(K,- rK/') in
L(K;"))) #0, which is equivalent to (X(K;;)(X;+1),Ny, (R*.To(K; r K{') in L(K{"))}#0
(using self-adjointness of P). Since T,LM.R*.Fz(Ki r K" )3 X(K;")(x;41) (and so
(XK i), Ny, R T T K) in LK) =0) and
X Kert) i) =X K ()X KD i), Koy in KON, (Ko i K), where
I:I,(”l.(Ki,rl in K;) is the unit normal to L(K;,,) in L(K]"), and using

| K;| = | Kj' | +1 for all i,j (by supposition), this is true iff
0-X(K (i) N Ko 10 KONN, (Koo in K), N, (RY.To(K; 1 KY) in LK) #0
and if condition (ii) is satisfied then (X(Ki’)xH1‘,IA\I,‘M-(K,.+1 in K/')) #0, so this
condition holds iff (I:I,(M-(Ki+l in Ki’),N,LM-(R”'.I‘Z(Ki r K;) in L(K;"))) #0.

We have also T, R*.T(K; r K)= span{X(Ky)(xis1), (K )T To(K; T Ki)}
=¢(Ki’)‘.Txi+L(K-L) (where ¢(K)'= time t map of ¢(K) ) and hence condition (iii) holds
if condition (i) holds and (N, -(Ki,, in K{'),(normal to ¢(K)"T,-L(K) in
T, LK) #0. ™)

All of this has been true for any system, but if furthermore the vector field is linear,
with X(x)=k-Ax, then X(K,")(x)=P(K; )k-P(K;')Ax, say = k'-A'x, and any vector v
in T,L(K;") is mapped by the flow ¢(K;') to ¢(K;").v=D,¢(K,)'v=e""v. Hence
N, (¢(K).L(K) in L(K/)) =exp(tA N, -(K; in K/) (**)
since for any w & ¢(XK;").L(K), w=¢(K;")\.v with vET,-L(Ky, we must have
w=¢"'y, and hence (w,exp(tA'T)in+(Ki in K;"))=
(exp(—tA’)v,exp(tA’T)f\Ix;(Ki in K;)) =(v,I:I,(i+(Ki in X;"))=0 since (") =exp(-tA'")
and vETx;L(Ki).

Inserting (**) into (*) we see that if condition (ii) holds then condition (iii) holds if
(N, (K in K, exp(tAN, (K, in K,)) #0.

If the suppositions of Proposition 8.1 are satisfied we have, possibly after
renumbering the vectors ny,..,n,, that A'=P(I)A, I:I,(i+(K,-+1 in K,")=n;,,,

]T:I,(M+(I(i in K;")=n, where i,i+1 €I1C(l,..,n). The condition above becomes
(n;,1,exp(tP(I)AT)n,) 0 and expanding out the exponential

exp(tP(I)AT) =I+tP(I)AT+.. the condition on A guarantees that this above condition is
satisfied, and hence under the assumptions of Proposition 8.1 condition (iii) is
satisfied.
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Remarks One implication of Proposition 8.1 is that the type of complexity arising in
non-invertible maps (tent-type maps ({23, Chapter 5] and their higher dimensional
analogues) cannot occur in the Willis models in the iterated maps of the type
described. Non-negativity of the matrix A has other implications - for example it is
easy to see that coupled with the fact that M is an orthant it means that for sufficiently
large | x | with x€M that (X(x),x) <0 and hence that orbits are bounded - all
interesting behaviour occurs in a compact subset of M. Non-negativity also
suggests applying the Perron-Frobenius Theorem (see [21]) which implies that on each
subsystem {x ER%:x;=0i=1,..,k, x;=0 i=k+1,..,n}, k<n, we get for
x=P(K)k-P(K)Ax a dominant eigenvector with all components positive and with
corresponding eigenvalue real and negative and exceeding in magnitude all other
eigenvalues. If this implies that for any periodic orbit v the codimension of the stable
manifold of v is codimension 1 in the deepest stratum through which it passes this
would have significant implications for the 4-dimensional Willis model (for example,
in conjunction with Proposition 8.1 it would rule out the possibility of chaos in the

form of sensitive dependence on initial conditions).
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Appendix
Remarks on The Global Properties of the Semiflows

In this appendix we shall sketch some global theory for these systems. We prove
Lemma A.1 (which is needed in Chapter 8) but after *** the results are stated without
proof. In the case of Conjecture A.1 there are questions outstanding in the local
theory we would need to settle first (although there is probably enough in Chapter 5 to
establish it on submanifolds with orthogonal corners),in the case of Conjecture A.2 (a
two-dimensional result not true in greater than two dimensions) the method of proof
we would adopt would provide negligible insight into the global behaviour of these
systems in general. In fact insofar as little use is made of the material in Chapters 2-5
this appendix is the least advanced part of the thesis.

We shall suppose we are working with a C* submanifold with corners M and a C*
vector field X. We observed in Chapter Four that since by definition of submanifold
with corners M for each x&€M there exists a neighbourhood of x in M of the form
BUNLCJ;))) (Chapter One) each stratum m; of M as a submanifold with corners
admits a smooth extension i, containing m; in its (relative) interior. Thus for each
x€m;, X()(x)= the projection of X onto the tangent space (rather than tangent
cone) to m at x.

In constructing a global theory it is convenient to begin with a stratification of M
into strata {¢;} such that for each ¢; the map x-»>X(M)(x) is C* for as long as x is in g,
- for example , any stratification {g;} of M which refines the decomposition of M into
iteration sets (which itself of course refines the stratification of M as a submanifold
with comners) will do. In the case of submanifolds with orthogonal corners a simple
stratification with the above property may if X &€ Z'(M) be constructed by exploiting
the fact that in this case if the manifold is locally ZN(1;J) and
ICIUK,CIUK,UK,CIUJ with K,NK,=& then IL,AUK, UK, r IUK,)=
ILAUK, r )NZJAUK,). This is so because in part (1) of Example 6.7 we saw that if
L,L,,L, are linear subspaces of R” then if X&L and N(L, in L)CL, then
PAYXEL,NL, iff X&L,. Since ZN(I;J) is orthogonal we know that for any
XxEZAUK,UK,)) N(T,Z(IUK,) in T,Z(I))=
span{gradf(x):i € K,} C {y:(y,gradfi(x)) =0 for all iEIUK,}=T,Z(AUK,), so applying the
above with L,L,,L, set to T,Z(I), T,Z(IUK,), T,Z(IUK,) respectively it follows that
xEZ(IUK,UK,) and X(x)€ET,ZIVK)) iff x€EZ(IUK,UK,) and
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XAUK)X) ET,ZIUK,UK,), ie xEZ(IUK,UK)NT,dUK, r I) (which by definitions
= ZIUK)NTL,AVUK, 1 D)) iff x€T,AUK, UK, r IUK)), and the claim follows.

If X€E'(ZN({;))) and we take all possible intersections of sets
{x€ZUi):(gradfi(x),X(x)) =0}

{x € Z(V1i):(gradf(x),X(x)) > 0}

{x € Z(1U1):(gradf(x),X(x)) < 0}
for i,j eJ , each intersection is by virtue of the foregoing and Proposition 4.1 an open
subset of some I')(K r K') each of which is by Proposition 4.2 a submanifold of Z(I). If
the open subset had infinitely many components this would contradict classical normal
form theorems (see [44,45,58]) for classical tangency sets (since using
LAUK, VUK, r IUK))=T,JUK, r )NZIUK,) and Proposition 4.1 it follows that there
would exist some I'y(K r I) with infinitely many components, which if X€ &'(M) is
disallowed by classical normal forms), hence taking all intersections of the sets above
yields a locally finite decomposition of ZN(I;J) into submanifolds. Clearly the boundary
of the closure of any such set is a union of sets of lower dimension ot the same form, so
these sets form in fact a stratification. By its construction and Proposition 4.4 the second
iterate S,(y) is constant for as long as y is in any stratum in this stratification, and hence
(since by defintion X(M)(y) =X(S,(y))(y) ) for any submanifold with orthogonal corners
M we have constructed a stratification refining the stratification of M as a submanifold
with corners and such that the map y—=>X(M)(y) is C* on each stratum.

If we are to establish geometric results which will be closely analogous to classical ones
[1,37,42] for the behaviour of the semiflow near a trajectory it will be evident that we
must exclude from consideration trajectories such as illustrated in Figure 2.3 (Example
2.1) Figures 5.1 - 5.4 (Examples 5.1) and Figure 5.16 (Example 5.3). If € is our
stratification of M refining that of M as submanifold with corners and such that
x->X(M)(x) is C* on strata, and if a trajectory segment ¢(M)(x,[0,T)) satisfies the
regularity condition below with x€ o€ €, then if y€E ¢ is sufficiently near x there is
(Lemma A.1(1)) a T' near T and a €-preserving homeomorphism of M-M mapping
dM)(x,[0,T)) to 4(M)(y,[0,T")) (see Figures A.1-A.4). If additionally ¢(M)(x,[0,T))
satisfies condition (*) of Lemma A.1 and I is a section transverse to ¢(M)(x) in o then
the map Z-¢'Z induced by the semiflow is a diffeomorphism (Lemma A.1(2), see
Figures A.S and A.6).

We shall set §;=the set of strata of € each of which is codimension O in the stratum of

M as a submanifold with corners which contains it.
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Definition A trajectory segment ¢(M)(x,[0,T)) is regular for € if [0,T)=UT_;[t,,t),
where the partition of [0,T) is finite on any bounded subset of [0,T) (so is finite if T
is finite) with each (M)(X,(t;,,t)) contained in a single stratum g, of €, and if m, is
the stratum of M as a submanifold with comers containing o; (so o; is open in m; by
defintion of §,, and ¢(0)(X)=¢(m)(x) on (t,;,t;) ) then ¢(ih;)(x) is transverse in m; at
&M, X)(x,t) to the stratum ;' of € (which may be in 0;,,) occupied by ¢(M,X)(x,t) (see
Figures A.1 - A.3).

The stratum o, must evidently be in o and since (M) (x) has dimension 1 must

have codimension 1 in ;.

P(2;1)
P(2;1)
7(1,2) Z(1,2)
. ZP(1;2)
T ZP(1:;2)
Not regular since Z(1,2) not Regular since ZP(1;2) transverse to
transverse to ¢(M)(x) in R? S(M)(x) in R? and Z(1,2) transverse
to ¢(M)(x) in Z(1)
Figure A.1l
Z(1) /Z(,l)
T r ) M(lr Q)
Nor regular since I',(1 r &) not Regular since Z(1) transverse to
transverse to ¢(M)(x) in R? H(M)(x) in R?and T'y(1 r &)
transverse to ¢(M)(x) in Z(1)
Figure A.2
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Figure A.3 shows a regular trtajectory ¢(M)(x) on M=2ZN(J;1,2) with
dM)(x,t) € 71,05, 03,..,0, on respectively tE[0,1),[t;,5),[t,4),..,[te1,t,) where in the
figure q=6 and o,=0;=0,=2P(J;1,2), 0,=0,=ZP(1;2), 05=ZP(2;1),
'=g,"=7ZP(1;2), 0, =1*"(1 r @), o' =Z(1,2), o5'=T," 2 1 &).
4

—<7P(1;2) >
tz

ZP(J:1,2) ts

ZP(2;1)
T=t,
Figure A.3
Remark If M is a submanifold with orthogonal corners and X € £'(M) with € the
stratification constructed above then the condition that ¢(M)(x,[0,T)) has a finite
decomposition into C* segments U ¢(M)(x, [t,;,t)) with each ¢(M)(x,(t;,t)) contained
in a single o; of €, where o; is open in some stratum of M as a submanifold with

corners, holds for any x€M and 0<T< o0,

Proof By Theorem 5.1 if ¢(M)(x) makes infinitely many stratum jumps on a
neighbourhood of any point there exists an infinite order tangency between the flows
obtained by projecting onto strata at that point, which is not allowed if X€ E'(M).
Hence ¢(M)(x) decomposes into finitely many segments, each contained in a single
stratum m; of M as a submanifold with corners; by Remark 3.1(2) ¢(M)(x) is C" as
long as it is contained in a single stratum of M as a submanifold with comners.
Finally, it follows from the way we constructed € that if X€ E'(M) then no C*

segment ¢(m,)(x,(t;;,t)) can make infinitely many intersections with those strata of €
which are contained in m;, and the result follows. -

Lemma A.1 For any submanifold with corners M and stratification € of M as above

(1) If ¢(M)(x,[0,T)) is regular then if X is both near x and in the same stratum of € as

X, then ¢(M)()'(,[O,T)) is regular some T near T and there exists strictly increasing
7:[0,T)-[0,T) such that for 0<t<T the stratum of € occupied by ¢(M)(x,t) is that
occupied by ¢(M)(X,7(t)), and hence if ¢(M)(x) is single valued on [0,T] there exists

a G-preserving homeomorphism of M which maps ¢(M)(x,[0,T))->¢(M)(%,[0,T)) (Fig. A.4).



209

Figure A.4

(2) Suppose ¢(M)(x,[0,T)) is regular and suppose with 0=t,<t, <..<t, =T, with
each ¢(M)(x,t;,,t)) C 0;C G, (where as above o; is codimension 0 in m;). Set
x;=¢(M)(x,t) and denote the codimension 1 stratum in the boundary of o; which the
trajectory intersects at x; when t=t; g, (which may be ¢;,,). Suppose I is a section
transverse in o, to ¢(M)(x) at x, ie T,0,=X(0,)(x)®T,Z. Consider a sequence of
projections along the flow, of L onto the codimension 1 stratum ¢’ of o, at x,, of this
image onto the codimension 1 stratum o," of g, at x, etc (see Figure A.S5). Call these
r,,%,,.. Then if X(r;H,)(x;)QéTxlEi, ie if for each i

dimspan(X(m;.. )(x), T, L) =dimT, X+ 1 ™
then there exists a neighbourhood U of x in ¥ such that for each y&€ U the induced
map yEI-»y, €Y, Co,/»y, €L, 0.y, €X,Ca,’, where y; is the intersection of
d(M)(y) with ¢;" at time t near ¢t (this is defined and unique for ¢(M)(x,[0,T)) regular

by Part (1) of the result) is a diffeomorphism.

Remark Clearly if a regular trajectory segment ¢(M)(x,[{0,T)) satisfies (*) and
d(M)(x,[0,T)) passes through ¢;', 1=1,...q then dimX <dimo; for all i=1,..,q - for
instance, if ¥ was at x in Figure A.4 a trajectory as shown would not satisfy condition

(*) because a cross-section in X, would have dimension less than that of L.

To apply Lemma A.1 on the trajectory segment shown in Figure A.S below there are
three regularity conditions R1-R3 and three (*) conditions *1-*3 which must be
satisfied, and if they are the conclusion of Lemma A.1 is that the map induced by the

flow of £=X, is a diffeomorphism. This is close to the form in which the lemma is
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used in Chapter Eight.

e,

// If : m3=ZP(3;T)\\\\
g;=m;NI3r J)

/
m, =ZP(1;3) /

o =T,(1 r @)NZP(1:3) |

X3

X / £,Co/=I*Gr D)

Co, o/ =" (1 T D~

1,3)\,
// \\\\(;3,
Figure A5
R1 X(n)(x)ho, ie X(1)x,=Xx,)E0(1 r &)
R2 X(M)(x,)ho e XX)&ETL,Qr &)
R3 X()(x;)hoy'  ie XB)x3=X(x3) &3 1 &)
*1 X(x)&T, T,  which is equivalent to Rl
2 X(Q)(x:) €T, T,

m,=0,=7ZP(J;

*3 X(x;) €T, Xy which is equivalent to R3

Proof of Lemma A.l

(1) Inductively suppose the result holds up to x,,, i=1. Then X,, is near x,; with

X  E0p," and by smoothness of X(m;) (where we recall m; is the C* extension of the
stratum m; of M as a submanifold with corners containing o¢; as an open subset) and by
openness of transverse intersection if the trajectory ¢(M)(x;.,) intersects oy’

transversely (in ) at ¢(M)(X,1,t-t;1) =x; then so will ¢(M)(X;,) at some time close to
t-t.; (see Figure A.4).

(2) Suppose this result is true up to the ith stage, ie =X is a diffeomorphism. We
know (by the remark at the end of the definition on page 207) that o;,,’ is locally
{x&€m,,:f(x)=0} for some C’ f:;,,~R, so L;,, is locally
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{$(th;, )(X,1):XxE L, fo(ih,)(x,t)=0}. By the Implicit Function Theorem we know
that ifDfo ;) (X,0) %0, ie if {gradfe(m,, ) (x,t),X(M, )M, )(X,t)) #0, which is the
case by regularity, then there exists a unique C t:iy;, ;=R with fo(i;, ) (x,t(x))=0.
Hence £~L,,, is C". For each x&€ L, near x;;, we may map back to I, by

oy, )(X,-t(x)), possibly with more than one value of t(x) for given x if condition (*)

does not hold (see Figure A.6)’\
c
A
/ . -
~ ™
b

ON 0y OF 03 ~—— —e —

in 0'2—-—-—-)

Figure A.6. Manifold and notation exactly as in Figure A.S, but
without condition (*) holding at b’, where X(ih,)(b") €T, L,, with
the result that £,—X; is C* but not invertible.

However if condition (*) does hold then X(fy;,,)(y) is not tangent to T,Z; for all
yE€ZXL; on a neighbourhood of x;, and hence we have a C* submanifold S connecting a
neighbourhood of x; in L; with a neighbourhood of x;,, in X;,, formed by acting with
the flow ¢(h,,,) on L,, where Z; itself is codimension 1 in S (see for instance Figure
A.5). I, is locally of the form {x € S:g(x)=0} for some C g:S—R, so near x; Z;is
locally the set {$(h;,)(X,-1):g¢ (N, )(X,t)=0,xE X, }. By condition (*)

Dyg (i, )(X,-t) ={-gradgd s, 1) (X,-1), X (i )i, ) (x,-)) 0 at x; (and hence on a
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neighbourhood of x;) and so by the Implicit Function Theorem again we obtain a
unique C* map from X, to Z;. Hence the induced map L;=L;,, is a diffeomorphism,
which is the required inductive step.

—

* %k X

We end with a discussion of some other global features of these semiflows. Suppose
~ is a periodic orbit, ie y=¢M)(x,[0,T)) for some xEM where
d(M)(x,0)=x=¢M)(x,T). To obtain analogues of classical results about periodic
orbits we will want the conditions to apply Lemma A.1 to hold (so as to get a

diffeomorphism on a transverse section) and at its fixed point we will want this

diffeomorphism to be hyperbolic.

Defintion With X,x,X,; and x; as in Lemma A.1 a periodic orbit is regular if

(1) The segment ¢(M)(x,[0,T)) is regular (in the sense defined above)
(2) Condition (*) of Lemma A.l applies, ie X(mm)(xi)%Txi‘Zi at each x;
(3) The diffeomorphism induced on ¥ has a hyperbolic fixed point (see [42]) at x,

and we propose in the spirit of Proposition 6.2 part 1:

Conjecture A.1

(1) Under small pertubations in X a regular periodic orbit remains regular and
depends continuously on the vector field X

(2) There exists for any compact M a residual subset of = (M) such that for any X in
this subset all zeros and periodic orbits are regular and respectively finite and

countable in number.

The following is (in view of Chapter Six) the inevitable definition of global structural
stability:
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Definition A system (M,X) is structurally stable if for any Y sufficiently close to X

there exists a spfp homeomorphism conjugating the flows of X(M) and Y(M).

By Lemma 6.1 it follows that if a system is structurally stable the iterated maps
obtained when transverse sections are mapped into themselves are stable also, an
exacting requirement when dimZ=1 (ie dimM =3) given that this map need not be
invertible and there exists all the scope for the complexity of tent-type maps (see [23,
Chapter 6]) and their higher dimensional analogues.

These complications do not arise if either X is gradient or dimM =2. In the gradient
case we have as mentioned in Chapter One that on each stratum o
grad(f | o) =P(T,0)gradf(x) which implies f is monotone on trajectories , and so here
as much as in the unconstrained gradient case ([50]) for generic X or f the
non-wandering set is no worse than a finite set of regular zeros.

Finally let us briefly consider two-dimensional systems. To keep matters simple let
us suppose M is homeomorphic to D2. Let XE€E,(M). We may define Roman points
I-1IT as points where the flow is locally

oM \
M oM
] ———> 11 M 1881 \\

and Arabic points 1-12 as given in Figure A.7. Let us say a system satisfies condition
A if all non-Roman points are Arabic. In the terminology of Chapter Six this means

that all the zeros are regular (this includes all the obvious requirements about zeros of
X being disjoint from dM etc) and that X&€ Z_'(M). By Proposition 6.2 and Chapter 4

Arabic points are isolated and condition A holds on an open-dense subset
E (M) CE,.(M). About each saddle x of X (which will be in int(M) if X & &,(M)) we

may choose a disc 1_3-¢(x) so small as to be disjoint from other zeros and dM: call the four
points on aﬁe(x) N (W*(x), W¥(x)) circle points. Then through any circle point or Arabic
point 1-6 there is exactly one trajectory of X | int(M) intersecting it. We say a system
satisfying condition A satisfies condition B if no such trajectory intersects another or
itself. From the foregoing and classical theory we obtain an open-dense subset =,,(M)

of E.(M) of smooth vector fields such that X(M) satisfies A and B (if it does so no
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periodic orbit of X touches dM etc).

A system satisfying A and B satisfies condition C if the non-wandering set of
X | int(M) consists of a finite number of hyperbolic zeros and hyperbolic periodic
orbits (regular =hyperbolic in this case) and again by classical theory the smooth
vector fields satisfying A,B and C, =,;(M) form an open-dense subset of =, (M).

This gives Part (1) of the following; the necessity half of Part (2) is immediate.

Coniecture A.2 If M is a smooth 2-dimensional submanifold with corners of R®

(1) The subset =, (M) of vector fields in %, (M) such that X(M) satisfies A,B and C
is open-dense in (M)

(2) The system (M,X) is structurally stable iff X € £, ,(M).
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oM — — —
trajectory of X ««-ecoe >
trajectory of X(M)——>

Figure A.7
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Notes

Introduction

The type of constraint we consider arises in mechanics as Gauss’s "Principle of Least
Constraint” ([11,2]): this says that if a body at p of mass m is constrained to lie in a
region M but is otherwise freely acted upon by a force-field F then the motion of the
body is such as to minimize G=m(p-F/m)?. It follows from the Characterisation of
Projection that if M is a submanifold with corners then this implies that the body
moves under an effective force-field F_, where F (x)=P(TM)F(x). The trajectories
of Theorem 1.1 are therefore those the body would follow in the limit m—0. Modern
treatments of mechanical constraints of this type may be found in the book Rarional
Mechanics by C.W Kilmister and J.E. Reeve (London 1966) and in [39].

[60] is the only occurrence known to us of this type of system in mathematical
biology, but they occur frequently in mathematical economics - see for instance
[3,36,17], with [4, Sections 5.5 and 5.6] containing a good review.

A slightly different type of constraint has been considered by Takens [54-56]; in his
version the trajectory moves across a submanifold until encountering one of a set of
critical points, where it projects instantaneously across to another part of the

submanifold.

Chapter One

Three approaches to proving the results concerning differential equations with
discontinuous right hand side upon which Theorem 1.1 is based are due to

(1) Claude Henry, who establishes [31,32] existence of solutions (in our notation)
¢(M,X) for M an orthant. This result is based on the Lasota-Opial Existence Theorem
[38].

(i) M.G. Chikin, who builds on various results of Filippov [19] to establish the result
[10] used as the starting point for our Theorem 1.1

(iii) Benard Cornet, in Existence of Slow Solutions For a Class of Differential

Inclusion [12]. A differential inclusion [4] is of the form %(t) € F(x) where x&R" and

F is a set valued map. Their connection with differential equations with discontinuous

right hand side arises in the following way. If x(t)=f(x) with f not necessarily
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continuous the regularisation  of this equation is the differential inclusion x(t) € F(x)
defined [4] by taking F(x) =N, conv(f(x+¢eB)): F(x) then has certain desirable
properties (f(x) € F(x) for all x, if f is continuous at x then F(x)={f(x)}, the map
x—~+F(x) is upper semi-continuous with convex values, [4]). In the case

f(x) =P(T,M)X(x) with M a submanifold with corners we see that f(x) =(F(x))® = by
definition the unique element of F(x) with minimal norm, and hence the solution to
X()=P(T,M)X(x) is the "slow" solution

() =[N {P(TM)X(y):yEx+eB}]®. Cornet’s work builds on that of Haddad [24].
For further discussion of differential equations with discontinuous right hand side,
multivalued differential equations, and differential inclusions, see in addition to the

above [20,4,9,25,33,18].

Chapter Six and The Appendix

The results and discussion of these chapters are related to classical work on the
geometric theory ot unconstrained flows on manifolds with boundary. The Peixotos
characterised structurally stable flows on two-manifolds with boundary in [43].
Sotomayor generalised the Palis-Smale conditions for structural stability on
boundarlyless n-manifolds to manifolds with boundary in [51]. Percell characterised
structural stability on manifolds with boundary with empty non-wandering set (and so
was able to improve conjugating homeomorphism to conjugating diffeomorphism) in
[44]. Clark Robinson weakened the defintion of structural stability (his boundary is
not fixed) in [47].

Following the work of Newhouse, Palis, Sotomayor and Takens et al on bifurcations
of flows on boundarlyless manifolds some study has recently been made of bifurcations
~of flows on manifolds with boundary, see [52,53]. Structural stability of semiflows in

general terms has been considered by Quandt in [46] (see also the references therein).
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Symbols, Notation and Notational Conventions

A(x,M,X) The algorithm sequence 82,87

A(X,LC(I;])) abbr. to A; 87

A (X, LC(1;])) abbr. to A;; 84

A"(x,M,X) abbr. to A* 87

A%(x,M,X) abbr. to A 87

A(m) for m a stratum of a ¢(M,X)-compatible stratification 184

A, for A a stratum LO(K;\K) of the closed linear corner LC(I;J) The affine span of
A,LK 84

B,(x) abbr. to B Open ball of centre x and radius r 22

¢:[0,6)>M An invariant curve 137

clos(A) The closure of A

conv(S), for S a set of points Closure of convex hull of S 9

conv(oy,..,0,) or conv(o;U..Ug) for oy,..,0, strata of a submanifold with corners 59

Cr 12

C*=,C* smooth, analytic

C**,C* right, left derivatives of all orders exist 43

dim(M) Dimension of M

D, Differentiation with respecttot 17

Df(t=0) Derivative of f evaluated at t=0 29

D*,D;* ith one-sided derivatives 43

EXK) 141

e, unit vector (1,0) ERXR™! 45

€,  unit vector field 45

f (in the context of funnels) the straightening-out map 45

174

F.(n,r) Canonical r-funnel in R* 45

Fr 174

(FY'FrP 175
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fi(y) 24
F.(r,f), F, Funnelatx 48

F, Intersection of F, with ZN(8°,(x);S.(x)\S°.(x)) 48

Gy 77

H (in the context of ¢(M,X)-compatible stratifications) 192

LIK,,J,K; etc Sets of indices 7

int(M) interior of M

ITN  The iteration operator 31

I*(tg), T,(ty) 118

F=(-1,1yI=[-1,1F 177

I, =I'N{xER"x,=+1} 177

L(n,,..,n.) abbr. to L(I) if I=(1,..,k) Linear subspace of R* 7

LC(n,,..,n;0y,1,..,0 ) abbr. to LC(T;J) if I=(1,..,k), J=(k+1,..,k+m) Closed
(linear) corner 7

LCO(K;;K,;K;) (linear) Subcorner 7-8

LO(n,,..,n;04q,.-,0 4 ) abbr. to LO(;)) if I=(1,..,k), J=(k+1,..,k+m) Relatively
open (linear) corner 7

Ly Lie derivative

m, m;, m;" a stratum (the r denotes the dimension)

my(I"), for I'=(-1,1)" a stratum 177

h, for m a stratum of a submanifold with comers The C' * extension of m 69, 206

M(x,K) 142

M\X,) 148

MX) 1

M, A linear comer 138

N,(Z, in Z,) where Z, is a submanifold of Z, 26

N (IUJin ) (= N(ZAUD) in Z()) ) 26

N@LAUIT) in LD) (=N,A.AUT) in LJ)) any xELAU]) ) 154

Nyx- 189

n,,n,,.. Independent vectors 7

P(C), for C a closed convex set  Projection onto C 8

P(K), for K a set of indices  Projection onto L(K) 11



R,R* Reals, positive reals

R; 181

R*  n-dimensional Euclidean space 7

s.c.(I;IVU]), for I,J sets of indices 59

s.c.d. = abbrn. for subcorner decomposition 63

$%(x,M,X) abbr. to 8%(x), S;(x,M,X) abbr. to §;(x) 30
S%(x),S;(x) 30

S%.(x),S.(x) 30,36

S%LCT;I),X) 139

S%(LOK;\K)) 141

spfp equivalent 135

spfp homeomorphism 132,125

spfp stable 136

t.(x),t,x) 177

t,  Upper time limit for domain of definition of ¢(M,X)(x) 17
T,M  Tangent cone to submanifold with corners M at x€M 12,15

224

T,m tangent cone at x to the C* * extension of a submanifold with corners m (m could

be a stratum or a stratum closure of a submanifold with corners) and so equals the

tangent space to m at x€Em 69,163
T(V,y), for V a neighbourhood of a pointy 117
T(s,(y,Y)), for s a stratum 190
{T4;} 112
TO-*Oq 1L, 77
U; 183
UP A subset of MXE, (M) 180
W, (x), W (x), W2U(x) Invariant manifolds 159
{x}, {xN;} 112
XIH 25
X(AUlJel) Cr *extension of X(QIUJ) to Z(I) 25
X.  Cr*extension of vector field X 28
X(M), for M a submanifold with corners  Projection of X onto M 16
X(M), for C" boundaryless M Projection of X onto M, now a C':/ector field

58,70
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XP  Vector field on R®°XZE, (R 172
XPMXE, (M) Projection of X onto MXZ, (M) 172

X, 37,87
X, 138
X, 153

X(6), X(), for ¢g,m strata of a submanifold with corners C* * vector field defined
pointwise by X(5)(x) =P(T,5)X(x), ie C" * extension of X(o) to o, etc 70,206

X(06) for ¢ a stratum of a linear corner or of a polyhedron The projection of X onto

the affine span of o, 84

Z,7Z*  Integers, positive integers

Z(f,,..,f), for independent functins fi,.,f, abbr. to Z(I) if I=(1,..,k) Set of common
zeros of f,..,f, 14

ZAull,a) 24

ZN(f,,. . it foam) @bbr. to ZNEJ) if I=(1,..,k), T=(k+1,...k+m) 15

ZNP(K;:K,;K;)  asubcorner 15

ZP(fy,...f i1y feam) abbr. to ZP(L)) if I=(1,..,k), I=(k+1,.. ,k+m) 15

ZPNP(LT) (FZNIH X E, (RHYCR*XE, (R ) 172

Greek

A(m), for m a stratum of a ¢(M,X)-compatible stratification 184
ax) 177

B  C" map defining a submanifold with corners locally 12
I'X(V, relative to V,) for V, a submanifold of V, 58

'K, r K,) abbr. to (X, r K;) 58,62

'@, 1 6y 70

X, rK,) 94

I'(V,X) A classical tangency set 70

v A periodic orbit 204,212
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Z.M), E, (H) for M a submanifold with corners, H a polyhedron 69
Zo'M), E, . (H) for M a submanifold with corners, H a polyhedron 70
Z' M) 95

M), B M) 172

£€d,+) 80

Iy (=R*X{X}CR*XE, (RY)) 172

Ny Affine span of {II,,II;.} in R*XE, (R*) 189

X (in context of $(M,X)-compatible stratifications) 178

L 174

Lr 174

g, g, etc  Strata

g, for o a stratum of a submanifold with corners C* * extension of ¢ 69,206
g, for ¢ a stratum of a polyhedron  Affine span of ¢ 84, 172

o(x) Stratum containing x 135

¢éx, for X a vector field  integral flowof ¢ 190

éx(K), for X a vector field and K a set of indices C* * integral flow of X(K) 190
o) (= abbr. for (1))  C* * integral flow of X(q) 26

o(IUJel) C* * integral flow of X(IUJel) on Z(I) 26

¢', for ¢ a flow  Time t map of ¢ 71, 190

¢(M,X) abbr. to ¢(M) (and once or twice to ¢(X) )  Integral semiflow of X(M) 17
oM, X)(x) A trajectory of X(M) 17

oM, X)(x,t) A point on the trajectory ¢(M,X)(x) 17

d(M)(x,[0,t)) A trajectory segment 17

é(M, X)-compatible stratification of UCM 176

o 172

PM X E, (M)) Integral semiflow of XP(M X E,, (M)) 172

{y&} 113

w(x) 177
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C’, for C a set Polar cone to C 9

f', for f a function  Pull back by f

B.Y, for § a function  Push forward of Y by 8 14
X |V, forVaset X restricted toV 14

0 Zero vector 20

(v,,vo)  Euclidean inner product 7

| v Norm of a vector 7
| T} Number of elements in the set of indicesJ 8
| $(M)(x,[0,h)) | 115

€ A stratification 7

¢,(U,X) A ¢(M,X)-compatible stratification 176

§(x)  The iteration 80

&1(c), for ¢ a contacting sequence An iteration set 82

&.(x) The ith pair of iterates formed by the iteration 56

g, for ¢ a stratum of a submanifold with corners The C’ extension of o 69,206
A, for A a stratum of a linear corner see under A

m,-»m,, for m;, m, strata of a $(M,X)-compatible statification 187
m,;=ym, abbr. to m=m,, for m;, m, strata of a $(M,X)-compatible
statification 187

o Closure of ¢

dA  Boundary of A

AT, for A a matrix  The transpose of A 13

& Transverse

X time derivative

* C"if the data is C" (r=o° or w)




Index

Absolutely continuous function 17

Active vector field 157

Admissable subset 17-18

Affine span 10,84

Algorithm 84

Algorithm sequence 82,87

Box 192 '

Canonical r-funnel 45

Characterisation of Projection 8

Characterisation of Projection for a linear subspace 9

Closed (linear) corner 7

Constant system 138

Constant vector field &3

Contracting sequence of (pairs of) sets of indices 82

Convex hull of a set of points 9

Convex hull of a set of strata of a corner 59

Diagram of the straightening out 148

Differentiably equivalent semiflows 81, 132-3

Differentiably stable, etc 133

Domain of the local representation of a submanifold with corners 15
Equivalent invariant curves 137

Equivalent points 138

Flow preserving 135

Funnel 45

Generalised tangency set  abbreviated to tangency set (q.v.) 58, 62
Idempotent 9

Independent functions 14

Infinite order tangency, infinitely tangent flows 44,99-100, 117
Inner vector field 16

Interior intersection of a collection of sets of subcomers 59

Invariant curve 137

228



Invariant manifolds 159-60

Iteration 30

Iteration sets 82

Linear corner 15,7

Linear system 152

Linear extension 192

Linearization 159

Locally differentiably stable 133

Locally spfp stable 136

Local representation of a submanifold with corners
Locally finite stratification 7

Normal spaces 26

Order of tangency between flows at a point 68
Orthant 6

Partition (of a pair of sets of indices) 166
Path between sets of indices 65

Polar cone 9

Polyhedron 69

Polyhedron with orthogonal corners 171

Polynomial vector field 69
Positive time sequence (on a partition) 166
Projection operator, projection 8

Recurring set of strata 97
Regular trajectory 207
Regular zero 157
Relatively open corner 7
Self-adjoint 9
Semidynamical system 5
Semiflow 5

Straightening out 138, 142

Stratification 7
Stratum 7
Stratum preserving 135

Stratum preserving flow preserving, abbr. to spfp

15

135
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spfp equivalent 135

spfp stable 136

Stable manifold (of a zero, classical) 157

Stable manifold (of a zero)  159-60

Strictly active stratum (for a constant vector field on a linear corner)
Subcorner (linear) 7

Subcorner 15

Subcorner decomposition (of a collection of sets of strata) 59
Subdivision of partition 167

Submanifold with corners of R* 12

Submanifold with orthogonal corners of R* 41

Tangent cone (to a submanifold with corners at a point) 12, 15
Tangent space (to a submanifold with corners at a point) 12, 15
Tangency set 58, 62

Trajectory of X(M) at x 17

Trajectory segment 100

Type I and II strata 176

Unstable manifold (of a zero) 157

Vector field (on a submanifold with corners) 13

83
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