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Asthma is a serious health problem. Its prevalence varies markedly between

different countries, with figures of 0.09% for all ages in the highlands of

Papua New Guinea and 75% for children in the Western Carolines in the pacific

ocean. In the United kingdom, about 10% of children suffer from the disease.

Adults also suffer from asthma.

There is no curative treatment for asthma. A good management of asthma would

mean the prevention or the control of the degree of severity of an attack.

There are two approaches for the management of asthma, acute care and

preventive care. With preventive care, usually by inhaled steroids, a General

Practitioner may have higher prescribing costs, but this can be justified if

it leads to reduced mortality, fewer admissions to hospital and fewer days off

work or school. The problem is determining what the optimum balance between

the two should be. In this thesis, we attempt to reslove this problem among

others by describing deterministic and stochastic models for the management of

the disease.
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CHAPTER 1

INTRODUCTION

In this chapter we discuss the effects of diseases on the populations of both

developed and developing countries by giving a historical survey of some

selected diseases. The problem of asthma is introduced in section 1.2 and a

brief outline of the modelling work reported in this thesis is given in

section 1.3.

1.1. The Effects of Diseases

The lives of many millions of people all over the world have been changed by

diseases. In some of the more severe epidemics, families and villages have

been destroyed and many of those who have survived have had their health and

lifestyles changed as a result.

The first example of the impact of such widespread epidemics is that of

smallpox in the Aztec Empire. The smallpox virus was entirely unknown to the

Aztec Empire before the sixteenth century, even though it was relatively

common in Europe at that time, with a 0.25 death to case ratio. After the

Spanish invasion in 1519, the disease wiped-out about half of the Aztec

Empire. The Black death of fourteenth century Europe, estimated to have killed

25 million out of 100 million people, is another example. Other examples are:

typhus epidemic of Russia from 1918 to 1921, in which there were 25 million

cases of typhus with a death rate of about 10%; and the widespread influenza

epidemic of 1920, during which 20 million people were estimated to have died



world wide (Bailey, 1975).

These infectious diseases need a critical population size to survive. They

survive in a community that contains sufficient numbers of susceptible and

infective people at all times, otherwise new people will not become infected

and the disease will "die out". In Britain and North America, the critical

community size is from 200,000 to 300,000 people (Anderson and May, 1982).

Some of these diseases are still a major problem in both developed and

developing countries. The following is a historical survey of some selected

diseases.

Measles occurs throughout the world, with community outbreaks taking place

about two to four years. For example, in 1983, the United States experienced

its lowest level of reported numbers of cases of the disease following the

inception of an aggressive national measles elimination strategy. This

accomplishment was the result of an effective vaccination strategy coupled

with surveillance and control efforts by local, state, and national public

health agencies. Since then, however the reported numbers of measles cases

fluctuated between 2,500 and 6,300 until 1989 when over 16,000 cases were

reported (Thacker and Miller, 1991). Although a safe and effective measles

vaccine has been available for several decades, measles is still a major

cause of death.

Malaria is a world wide disease, but it is most common in the tropics, where

climatic conditions are favourable for the mosquito and for transmission of

the disease throughout the year. Administrative, economic and political

problems have frustrated the eradication of this disease in some countries,

as has problems of insecticide resistance in the vector and drug resistance

in the malaria parasite. In Pakistan, malaria is endemic with up to 30 to 40

percent of the population infected, with 0.4 to 0.5 percent of the patients

expected to die as a result (Strickland et al., 1987). The position in most

countries in Africa is almost similar if not worse.

Cholera is a disease of poverty and insanitation and is rare in people of

upper socio-economic groups even in endemic countries. The true endemic



cholera centres are found in lower Bengal. A similar place is found in Oju

Local Government Area of Benue State, Nigeria. Cholera is also endemic in

rural Bangladesh and is primarily a disease of children two to nine years of

age. Between 1966 and 1980, children in this age group had age-specific

hospitalization rates of 4.5 and 6.5 hospitalized cases/1000 children/year,

and adults were hospitalized for cholera less frequently than two to nine year

olds, and the rates among women in their childbearing years (15-35) were

approximately twice those of men of the same age (Glass et al., 1982).

Typhoid fever is another world wide disease and is particularly prevalent

throughout the tropics where it is one of the commonest causes of "fever". It

is a disease of major importance in areas of the world that have not attained

high standards of sanitation and public health. It is particularly predominant

in Africa.

Rubella, considered a childhood disease is only moderately contagious, and

young children often escape the illness. In the USA, the attack rate is

highest in the 5 to 9 year age group, but is also high in older children and

adolescents. In addition, local outbreaks are relatively common in colleges

and military installations, because of the significant number of young adults

(10 to 20 percent) who have no serologic evidence of immunity. In USA, there

was an epidemic of Rubella in 1964, when approximately 12,500,000 people were

affected.

Trachoma represents a serious public health problem in parts of Africa, Asia,

and Latin America. About 500 million people suffer from the disease worldwide

with some 7 million blind as a direct result. It is a major problem in the

village of Jali, in the Gambia (Ward et al., 1990).

Cancer is one of the unsolved medical problems. The scale of the cancer

problem is huge and it is a major cause of death in many countries. In the

United Kingdom, about 15,000 women die from breast cancer annually. The

indication that early detection reduces breast cancer mortality has created

interest in breast cancer screening in many countries including the United

Kingdom (Ouinten and Shahani, 1987).



Acute respiratory diseases are extremely common in the younger age groups of

the third world countries and cause a large number of deaths. In Medan,

Indonesia, a diphtheria case fatality rate of 36.5% was found in patients

admitted in the hospital, with 75% of the patients aged less than 5, (Lubis

et al., 1987). The incidence of whooping cough in rural areas of India was

shown to be strongly related to overcrowding and the number of children in

family groups (Singh et al., 1987). Cvjetanovic et al., (1978) in their

simulation modelling of whooping cough; stated that fatality rates are

dependent on socioeconomic states and age. In addition, they assumed that in

general, for developing countries, the fatality rate was approximately 13.5%

for people of age less than 1; 3.5% for ages 1 to 4; and 1.0% for ages 5 to

19.

AIDS is not entirely a sexually transmitted disease. In fact it is not just

one disease but a collection of different diseases (a syndrome). AIDS is now

a major health problem in many areas of the world. In Africa, the AIDS virus

is chiefly transmitted via heterosexual intercourse, and in some central

African countries AIDS is equally prevalent amongst men and women (Piot et

al., 1988). In the West the main routes of transmission are homosexual

intercourse and intravenous injection (mainly by drug users but also by unsafe

medical practice, as in Rumania), although prevalence is increasing fastest

amongst the heterosexual population. The virus can also be passed from mother

to child during pregnancy. AIDS is now a major cause of death in people under

40 in many cities in the USA.

1.2. The Asthma Problem

Asthma is a disease of the lungs. The problem of asthma can be likened to that

of other chronic diseases, but there is however one way in which it is notably

diferrent. Despite the increase in knowledge about the underlying mechanisms

of asthma (Holgate and Finnerty, 1988), the development of new drugs and

their delivery systems for its management (Jones, 1990), the mortality,

prevalence and morbidity of asthma have increased over the past two decades

in contrast to other chronic conditions.



It is a serious health problem. Asthma prevalence varies markedly between

different countries, with figures of 0.09% for all ages in the highlands of

Papua New Guinea and 75% for children in the Western Carolines in the Pacific

Ocean. In the United Kingdom, about 10% of children suffer from the disease.

Adults also suffer from asthma.

There are two approaches for the management of asthma, acute care and

preventive care. With preventive care, usually by inhaled steroids, a General

Practitioner may have higher prescribing costs, but this can be justified if

it leads to reduced mortality, fewer admissions to hospital and fewer days

off work or school. The problem is determining what the optimum balance

between the two should be. In this thesis, we attempt to resolve this problem

among others by describing deterministic and stochastic models for the

management of the disease.

Markov chain models have been developed by Jain (1986) and Jain (1988) to aid

policy makers to plan their resources for the management of asthma. These

models do not consider how much time an asthmatic may spend in a state before

making a transition to another state. The model developed by Jain (1986) has

constant transition probabilities and for a given season the one developed by

Jain (1988) also involves constant probabilities of moving from a given state

to another. In the two models the transition probabilities do not depend on

how long the asthmatic has been in a state. In reality these probabilities may

depend on the durations in states. This led us to the use of semi-Markov

processes (section 5.2) to analyse the problem.

One of the aims of building a model for this disease is to help medical people

plan for resources, so that there is the need for the incorporation of these

resources and treatments used for the disease. With that kind of model, given

a set of treatment strategies, one can decide on the ones that are worthwhile,

in terms of costs, days off work or school and the number of admissions to

hospital. An investigation of the effect of these treatment strategies on

durations of stay in each state can also be made. The Markov chain models

developed by Jain (1986) and Jain (1988) do not incorporate these factors and

the semi-Markov model considered in section 5.2 can not also capture these



additional features of the disease. A simulation approach will therefore be

preferable in these circumstances involving complexities.

Data is also a major setback in constructing mathematical models for disease

processes. If there is no data and we want to produce models that can be used,

especially by people who are not themselves numerate, then simulation on the

microcomputer is a very attractive approach because one can put in a variety

of distributions for durations in states. In addition, a simulation model

would help the medical people to study the situation closely and thus gather

the necessary data. With simulation one could also have quite complicated

disease state structure. Treatment options and resources used and the costs

incurred can be very easily handled. Markov chain models cannot handle these

complexities.

A survey of analytical models is carried out in chapters 4, 5 and 6 and the

general conclusion is that a practically fruitful work will be simulation.

Simulation models are therfore developed in chapter 8.

1.3 An Outline of the Modelling Work

Mathematical and simulation models are needed for the natural history of

asthma. Lack of adequate data is a major challenge in the modelling work

reported in this thesis. Though the models represent an approximation to

reality they could give medical planners some insight into the management of

the disease.

In the modelling work attempted in this research only asthmatics who are at

least three years old are considered. The models attempt to determine a

management strategy that is beneficial, under scarce resources. They could

also be used to predict the number of asthmatics in each disease state in

order to plan for the efficient use of these resources.

The results obtained from these models are essentially the expected number of

people in each disease state and the expected cost of management strategies

adopted. The linear programming model discussed in chapter 4 gives information



about the number of asthma clinics that could be established under limited

resources.

Chapter 2 examines the issue of modelling for the control of disease. In this

chapter deterministic and stochastic models are discussed in detail. The

need for stochastic models is explained and some of the models developed for

specific diseases are mentioned.

The disease asthma is discussed in some detail in chapter 3. Here it becomes

evident that asthma is a complex disease and hence the modelling approach of

Operational Research is well suited for the disease. Chapter 4 considers the

asthma process as a deterministic process in discrete time. Difference

equations are used in a novel approach to understand, in quantitative terms,

the asthma problem. The chapter ends with the problem of how many asthma

clinics should be established given limited available resources.

Asthma involves a lot of uncertainty and variability. Deterministic models may

therefore be inappropriate to describe this process. Stochastic models are

thus developed in chapter 5. These are basically Markov chain models. The

extension of these models is given in chapter 6 by considering the process in

continuous time. A non-Markovian approach is also investigated in this

chapter. Thus chapters 4, 5, and 6 explore the possibility of constructing

mathematical models for asthma and reveal that these models need highly

simplifying assumptions. There will also be the problem of communication

between the model builder and the model user. Therefore simulation is more

appropriate for asthma.

The techniques of simulation are discussed in chapter 7 where, among other

things, the three-phase approach used for the simulation model is briefly

discussed and the techniques of random number generation and distribution

sampling is also mentioned.

Chapter 8 discusses the development of the simulation models. Models I and II

concentrate on asthma in children while models III and IV consider children

and adults separately and in combination. Model V considers asthmatics in a



community and also allows the incidence of new cases. The model is used in

determining management strategies that are beneficial, in terms of cost, for

the management of asthma.

Chapter 9 gives a description of one of the simulation shells, TOCHSIM used

in the development of the simulation models.

Chapter 10 gives a summary, conclusion and suggests further work needed to

make the models more realistic.

The simulation programs for model V are described in the appendix. A

decsription of how models III and V can be run is also given in the appendix.



CHAPTER 2

MODELLING FOR DEALING WITH DISEASE

This chapter gives a short historical account of modelling for dealing with

disease. The development of mathematical theories of the spread of diseases

is reviewed in section 2.1 and some deterministic and stochastic analytic

models are reported in section 2.2. The advancement in computer technology

has eased the construction of simulation models for the control of disease.

These models are reviewed in section 2.3.

2.1. The Beginnings

According to Bailey (1975), disease modelling started as far back as the

ancient Greeks, with the epidemics of Hippocrates [459-377 B.C.]. The work of

John Graunt [1620-74] and William Petty [1623-87] could be considered the

beginning of medical statistics and the understanding of large-scale phenomena

connected with disease and mortality, but the time was not yet ripe for

anything approaching a connected theory of epidemics. Firstly, the requisite

mathematical techniques were themselves only then in process of development,

and secondly there was insufficient knowledge about the spread of disease.

Although a good start was made in the field of physics, particularly

mechanics and astronomy, nearly 200 years passed before any real progress was

achieved in the biological sciences (Bailey, 1975). It is true however that in

1760 Daniel Bernoulli used a mathematical method to evaluate the effectiveness

of inoculation against smallpox, with a view to influencing public health

policy.



The outstanding feature of the beginning of modem scientific achievement in

this field was the rise of the science of bacteriology in the 19 century.

Researches of Pasteur [1822-95] and Koch [1843-1910] involved mainly the

statistical appraisal of records showing the incidence and locality of known

cases of disease.

Apart from the highly specific studies made by men like Snow [1855] and Budd

[1873], we have the more careful investigation by Farr [1840] whose work was

mathematically more sophisticated. He fitted a normal curve to quarterly data

on deaths from smallpox. Later Brownlee [1866] used a similar method to

predict the course of an outbreak of rinderpest amongst cattle. The curve was

fitted to four rising successive monthly totals and extrapolated values used

for prediction. Although observed and predicted curves were both bell-shaped,

agreement in detail was not very good.

Similar curve-fitting methods used by Evans [1875] on the smallpox of

1871-1872 also met with little success. More intensive studies of the same

type were later undertaken by Brownlee [1906], who fitted various Pearson

curves to epidemic data on many diseases occuring at different times and

places.

The work of Farr, Brownlee and Evans involved more of curve fitting and

prediction. Deterministic and stochastic models were studied in the early part

of the 20 century. This is reviewed extensively in the next section.

It is worth mentioning that there are in general three modelling

approaches for disease control :

Deterministic

Analytical Stochastic

Simulation, usually Stochastic

10



2.2. Mathematical Modelling

The first models presented by Hammer [1906] and later elaborated by Soper

[1929] were deterministic. Ross (1911) developed a mathematical model of

malaria, which attempted to take into account a set of measures describing

various aspects of transmission. The study of respiratory disease using a

deterministic approach to the heterogeneity of spread of infection was

provided by Becker and Hopper (1983). An epidemiologic application of

sophisticated control theoretic deterministic modelling was provided by

Hethcote (1983).

This age-dependent immunization model was designed to predict appropriate

strategies for disease control. Hethcote utilized data on measles and rubella

to determine vaccination strategies appropriate for their control at various

levels of immunization coverage.

Deterministic models fell into disfavor because of their inability to

accurately describe recurrent cycles of disease (Bailey, 1982). When data

became more extensive and much smaller groups were considered, elements of

"chance and variation" became more prominent. Mckendrick (1926) was the first

to construct stochastic models of epidemic processes. Greenwood (1931) gave an

alternative probability treatment five years later, (Bailey, 1975).

"Continuous infection" and "chain binomial" stochastic models were introduced

next. These probability models were more appropriate for dealing with smaller

groups in which random variation would play a larger role. Although these

models achieved popularity, they are usually mathematically and

computationally more complex than are simple deterministic models.

Stochastic models now appear more frequently in the study of diseases,

(Bailey, 1975). Greenwoods chain-binomial model was used to model group A beta

hemolytic streptococcal infections (Poku, 1979). Kimber and Crowder (1984)

proposes a model to analyse resistance times to infection under treatment. A

general stochastic model was proposed by Hillis (1979, and models specific for

toxoplasmosis (Papoz et al., 1986) and a measles outbreak (Riley, 1978) were

11



also published.

Several stochastic models have been presented to describe distributions of

infectious disease over time and space. Catalytic models were used to assess

the force of infection (age-specific infection rates) for measles in Tanzania

(Remme et al., 1984) and hepatitis A in Europe (Shenzle et al., 1979) using

cross-sectional data. Goldacre (1977) attempted an analysis of meningitis

using space-time clustering techniques introduced by Knox (1964) to detect the

existence of factors associated with infection.

Trend surface analysis, a polynomial regression technique developed for use in

geology, was applied to smallpox data from Brazil (Angulo et al, 1977) to

determine if general trends in what appeared to be random spatial patterns

could be detected. A centrifugal pattern, emerging from the center of a city

and spreading outward, was detected. Box-Jenkins models, variants of the ARIMA

(autoregressive integrated moving average) models utilized in economics, were

applied in a novel fashion to describe patterns of infection in chickenpox and

mumps (Helfenstein, 1986) and to forecast mortality due to influenza (Choi et

al., 1981). Time-series data also provided the data base for models of

epidemic velocity proposed by Cliff and Haggett (1982).

The etiology of disease is of primary concern to many epidemiologists and can

be viewed either in a deterministic or stochastic framework. A deterministic

perspective is one in which factor x causes y if (all other factors being held

constant) a change in the value of x results in a change in the values of y,

in a completely prescribed way tracing out a mathematical function of some

form. In practice, probability theory and statistical techniques are used to

assess evidence regarding causality. In any causal analysis of data, the goal

is to account for variation in the dependent variable.

Several models of this sort have been utilized to analyse data in studies of

infectious disease, including most commonly linear regression, log-linear

analysis and logistic regression, discriminant analysis, and proportional

hazards modelling. Few examples include the work of Stevens and Lee (1978) who

used a generation effect model to assess the impact of antitubercular
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chemotherapy on mortality. The generation effect model assumes that the

mortality pattern for each cohort is set early in life; rates vary only

according to birth cohort. This model was used to project current mortality

experience using past cohort data. The large differences noted by Stevens and

Lee between the expected and the observed rates were ascribed to the effect

of intervention with chemotherapy.

Discriminant analysis was used in studies of herpes simplex types 1 and 2

(McClung et al., 1976), chronic obstructive pulmonary disease (Lebowitz and

Burrows, 1977), and leprosy (Serjeanston and Woodfield, 1978). Linear

regression models were utilized for analyses of risk associated with

influenza mortality (Clifford et al., 1977) and childhood diarrhoea (Koopman,

1978) and to model the effect of influenza on ischemic heart disease. A model

of risk factors in a noninfectious disease, skin cancer, has been constructed

using logistic regression (Vitaliano, 1978).

The following year, log-linear models were used to analyse data from a cohort

study of acute respiratory illness (Melia et al., 1979 and Florey et

al.,1979). Other examples using logistic regression include (Stavraky et al.,

1983 and Lugosi, 1985); and those using log-linear modelling include (McGlynn

et al., 1985 and Perillo et al., 1986).

Markov chain models have also been applied to study the progression of

disease. Fix and Neyman (1951) constructed a simple stochastic model of

recovery, relapse, death and loss of patients. They were concerned with the

difference in effect either of the same treatment applied to different

categories of patients or of different treatments applied to specified

category of patients. In all cases the criterion for comparison was the

frequency of surviving specified periods of time. This model was used to study

the effects of treatment of cancer of the breast. Marshall and Goldhamer

(1955) applied Markov process to study the epidemiology of mental disease.

Other similar studies include the work of Sverdrup (1965) and Sacks and

Chiang (1977). Badger et al. (1987) proposed a time-homogeneous Markov process

for modelling the clinical course of recurrent genital herpes and is used to

obtain estimators for various characteristics of the disease. The model has a
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finite, discrete time parameter and discrete state space, with six transient

states corresponding to the six stages a herpes lesion may enter. The healed

condition was represented as an absorbing state. The number of lesions present

at the outset of the clinical episode and the number of lesions appearing

during the course of the episode are assumed to have negative binomial

distributions. Clinical trial data are used to examine the assumptions of the

model and to estimate its parameters. Estimates of clinical variables based on

the model are computed and are compared with those calculated directly to

assess how well the model represents the biological process of the disease.

Markov chain models have also been constructed to study the effect of weather

on asthma (Jain, 1986 and Jain, 1988). See chapter 3 for more details on

asthma models.

Many disease models have yielded valuable information, examples being measles

(Fine and Clarkson, 1982a, 1982b), rubella (Anderson and May, 1983), Hepatitis

(Farrington, 1989), Leukaemia (Birkhead, 1985),and Cancer (De Sena and

Shahani, 1984; Ouinten and Shahani, 1987).

However, mathematical modelling is only suitable for very simple systems or

situations that allow high simplifying assumptions and not for systems or

situations that involve uncertainty, complexity, and scarce resources. In such

cases simulation models are often appropriate.

2.3. Simulation Modelling

Simulation is a process for studying or finding a solution for a problem or

calculating the effect of a course of action, by representing it in

mathematical terms, especially using the computer, (Readers Digest Universal

Dictionary, 1989). A simulation model is an abstract model which represents

some system in the real word.

Simulation methods have developed since early 1960s and may well be the most

commonly used of all the analytical tools of Operational Research, (Pidd,

1992). The simulation technique is discussed in some detail in chapter 7.
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In sufficiently small communities complete fade-out of infection may occur if

fresh cases are not introduced, whereas in communities above a certain

critical size it will merely happen that infection reaches a low level before

building up again for a fresh outbreak, (Anderson and May, 1982). These

conclusions are in agreement with both observed data and with the results of

empirical investigations using Monte Carlo methods in conjunction with the

electronic computer. This perhaps marks the beginning of the use of computer

simulation for disease control. One of the first simulation studies was

conducted by Bartlett (1961) in the area of recurrent epidemics and endemicity

with special reference to the interpretation of real public health measles

data.

Computerized simulation studies of both simple and general epidemics over a

square lattice were carried out by Bailey (1967). The simulation work of

Williams and Bjerknes (1971, 1972) on the growth of tumour cells in two

dimensions can also be found in the literature. This has close analogy with

two dimensional epidemic spread.

Computerized simulations have been extremely valuable in elucidating the

properties of multistate models of disease and in shedding light on proposed

intervention strategies. Extensive studies of this type have been made in

tuberculosis control by Waaler, Geser and Andersen (1962); Br0gger (1967);

ReVelle, Lynn and Feldmann (1967). Similar applications have also been

utilized for a number of other bacterial diseases, such as typhoid fever,

tetanus and cholera, in the works of Cvjetanovic', Grab and Uemura (1971);

Cvjetanovic', Grab, Uemura and Bytchenko (1972); Cvjetanovic', Grab and Uemura

(1978).

Another area of some public health consequence is the interference and

interaction phenomena that may occur between different disease organisms. Lila

Elveback and her co-workers have developed a series of six fundamental models

of increasing complexity that can be used for the study by computerized

simulations of public health control of poliomyelitis by means of live polio

vaccine, including the situation where the effect of the vaccine is inhibited

by enterovirus infections. The chief references are (Elveback, Fox and Varma,
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1964; Elveback and Varma, 1965; Elveback, Ackerman, Gatewood and Fox, 1971),

just to mention a few.

Frerichs and Prawda (1975) developed a simulation model describing the

transmission of cannine rabies within and between 116 spatially distributed

neighborhoods in Cali, Colombia. Various cannine vaccination strategies were

tested in the model over a ten-year planning horizon for their

cost-effectiveness with regard to the prevention of cannine rabies. A

deterministic model in the form of a computer simulation model for predicting

the global spread of influenza was presented by Longini et al., (1985).

Today, simulation modelling is a very attractive powerful method for dealing

with the complications of a variety of diseases including asthma (Yates,

1989), and has been used for a variety of diseases such as Rubella (Flahault

et al., 1988), Cancer (Mandurah, 1988), AIDS (Brailsford and Shahani, 1990).

The simulation technique has also been used to investigate the effect of

trachoma control strategies (Hawkins, 1989),

The evolution of modern (more powerful, less expensive and easier to use)

computers and high level languages has popularized (Zeiglier, 1979) the

application of simulation for solving real-life problems in several

descriptions, and the expected advances in computer technology indicate that

this trend will continue.

A realistic model of the disease asthma would be a simulation model for the

following basic reasons :

(a) the development and possible control of asthma attacks and the concept of

growing out of asthma are complex processes. Applying mathematical

modelling approach would require many simplifying assumptions e.g.

assumptions about transition probabilities from, say mild attack to a

severe attack. Such assumptions would have adverse effects on the

validity of the mathematical model of the real problem.
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(b) the successful use of an asthma model would require joint work by medical

people and Operational Researchers. The problem of communication between

these two groups of people is greatly eased by the use of the simulation

approach.
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CHAPTER 3

THE DISEASE ASTHMA AND A REVIEW OF ITS MODELS

Asthma has been recognized since the begining of medicine. The word was first

used by "the father of medicine", the Greek physician Hippocrates, over 2000

years ago. But despite doctors' ability to identify the disease when they see

it, they have always remained unable to define it, (Sinclair, 1987).

In this section, we shall examine some of the characteristics of asthma, and

explain how it is being managed in general medical practice. Some of these

ideas are used in the asthma simulation models described in chapter 8. We

shall also give a review of the modelling work in the management of the

disease.

3.1. Definition of Asthma

Asthma is a disease characterised by wide variations over short periods of

time, in resistance to flow in intrapulmonary airways, (Weiss et al.,1985).

The disease's chief sympton is wheezing which is caused by the narrowing of

the bronchi and bronchioles in the lungs; a process known as

bronchoconstriction. In an individual with asthma, this narrowing is not

permanent but episodic, and it varies either spontaneously or as a result of

treatment.

It is a disease that may begin at any age, and different types of people can

develop wheezing. In half of the cases the onset is before age 10. In over
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one-third of patients, there is a history of asthma in members of the

immediate family.

When there is clear association with allergy, asthma is referred to as

allergic (or atopic or extrinsic) asthma. In other patients, the role of

exogeneous allergens can not be clearly shown, and the relationship of asthma

attacks to exposure to such agents is not evident. There is however frequent

association with respiratory tract infection. This type of asthma is generally

known as intrinsic (or non-atopic or non-allergic) asthma.

3.2. Stimuli Causing Attacks of Asthma

In this section we explain some of the trigger factors that cause the smooth

muscle in the walls of the airways to contract, thus bringing on an asthma

attack.

3.2.1. Allergic Factors

The word allergy was coined by Von Pirquet (Banszky, 1950), to connote the

condition in which one is abnormally sensitive to a particular substance.

Allergic factors are more effective in children with a history of eczema and

asthma, and are often prominent in individuals whose asthma starts in later

childhood, adolescence or early adult life. Many different types of allergens

have been identified in individuals with asthma. The most common being

pollens; and many asthmatics who are hypersensitive to pollens have a

history of hay fever.

In children, sensitivity to food allergens, such as eggs, wheat, cow's milk or

chocolate is relatively common. Nevertheless, food as the sole precipitating

factor in asthma is rare. In a study (Chobot et al., 1951), it was found that

food as the sole identifiable allergen occurred only in 0.25% of the series.

However, in children under the age of 3, 15% were found to be allergic to food

as well as other substances.
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House dust, fungi and their spores are other allergic factors in asthma. They

are more common in older individuals.

It is now believed that the factor responsible for the hypersensitivity of

reaction may be due to an allergen derived from mites of the

"Dermatophagoides" species which subsist on human skin peelings and are

commoner in damp houses and in damp years. The relief often obtained by

asthmatics in high altitudes may be due to the absence of mites. In Britain

the house dust mite is proving to be the most frequent allergen in asthma,

and it tends to be at its worst between July and November.

Other common allergens are animal dander, especially from cats, dogs, and

horses. About 1% of asthmatics are said to be sensitive to aspirin and also to

other analgesics. Other allergens reported within the last few years include

antibiotics and many other drugs, wood dust, and isocyanates in the chemical

industry.

In a sudy of 375 cases of allergic asthma (Crofton and Douglas, 1975), Pearson

found that sensitivity to house dust was present in 45% to 60% regardless of

age. Other allergens, in descending order of frequency, were pollens,

feathers, animal hair, food, and moulds.

In many cases, no hypersensitivity to specific allergens can be demonstrated,

either by clinical history or by skin or inhalation tests.

3.2.2. Infection

This is one of the most common stimuli causing an asthma attack. It is most

important in those in whom asthma first comes on in early childhood, and in

those, particularly women in whom it starts in middle age.

It is not always possible to demonstrate an allergic reaction to any specific

infecting agent but it may be that in these cases inflammation of the

bronchial tubes from the infection starts off a chain of reactions resulting

in asthma. It is known that sensitizing antibodies tend to accumulate in
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inflamed tissues and it may be that such antibodies are responsible for the

asthmatic reaction to an agent which in a normal person would only produce an

upper respiratory infection or at most an attack of simple bronchitis.

It has been found that respiratory tract infections account for about

two-thirds of asthma attacks in children, and one - third in adults, (Lambert

and Stem, 1972). In a study conducted by Gregg, it was found that less than

10% of healthy adults had a wheezy experience during virus infections of the

nose and pharynx, (Yates, 1989). In a group of asthmatics, 80% were found to

have the same experience with a similar infection.

In another study of children with asthma (Minor et al., 1974), it was found

that about 69% of episodes of asthma were caused by respiratory tract

infection. This was actually confirmed in about 57% of the cases.

In yet another study of adults who were admitted in hospital with acute

asthma, 37% had had a respiratory infection and 23% had possible respiratory

infection.

3.2.3. Psychological Factors

These are other trigger factors in asthma. In two surveys in the general

population in Britain, it was found that psychiatric disturbance was commoner

in asthmatic children than in controls, (Crofton and Douglas, 1975). Families

of asthmatics seemed to have a higher prevalence of neurosis and other

psychiatric illnesses. In (Zealley et al., 1971), it is reported that the

distribution of neurosis in asthmatics was similar to that in a control group.

Graham and others found that asthmatic children in the general population were

more intelligent than controls, but that their educational achievements were

no greater, (Crofton and Douglas, 1975). However, Rees (1967) found the

distribution of measured intelligence the same in asthmatics and controls.

These were hospital patients, so possibly a selective factor operates in

hospital cases, but the frequent clinical impression of an association with

intelligence may be exaggerated. He found evidence of major psychological

stress, of a wide variety of types, immediately preceeding the onset of asthma
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in 35% of 800 asthmatics, a significantly higher proportion than in a control

group. Under hypnosis, suggestions of fear and anger have been shown to

increase airways resistance, (Smith et al., 1970).

There is no doubt that attacks of asthma can be precipitated by psychological

upset, although it is doubtful whether psychological upset alone is ever the

only factor responsible for an asthma attack. However it is believed that

emotional episodes are liable to aggravate asthma, especially in children.

Nevertheless, it must be emphasized that multiple factors often operate in

asthma.

In a review of 487 cases, Williams and his colleages found that there was a

psychological factor in 70% of the asthmatics, (Crofton and Douglas, 1975).

3.2.4. Air Pollution

The quality of air we breath can have major effects on asthmatics. Asthmatics

tolerate atmospheric pollution or cigarette smoke badly. Cigarette smoke

induces bronchoconstriction in normal individuals (Rees et al., 1982), and

asthmatics most often show a much greater degree of bronchoconstriction than

normal people. An asthmatic attack can also occur when low concentrations of

surphur dioxide and oxidants in the air are produced by industry. Outbreaks of

asthma, as in the U.S. servicemen stationed in the Tokyo - Yokohama area and

in the inhabitants of New Orleans, seem likely to have been due to

atmostpheric pollutants (Crofton and Douglas, 1975), though the evidence is

incomplete and the disease induced may have been more of bronchitis than

asthma. Nevertheless, asthma is often worse in foggy weather.

As discussed earlier, inhaled allergens are the most common triggers of asthma

and they can be divided into seasonal allergens, e.g. from plants and pollens,

and perennial allergens, e.g. from house dust mites, animals, and foods. These

vary greatly in different parts of the world.
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3.2.5. Exercise

Exercise quite frequently induces asthma, provided that it is hard enough.

There is some variation between individuals. It requires walking slowly for

some asthmatics, to sustained hard running for others. The asthma attack

happens mostly after the exercise.

The exercise effect is greatest after running, somewhat less after cycling,

and substantially less after swimming. The exercise effect can be diminished

or prevented by preliminary inhalation of sodium cromoglycate, (Clarke, 1971).

3.2.6. Other Non-Specific Factors

There are some stimuli that cause an asthma attack which may not be

classified. In section 3.2.4., we mentioned that cigarette smoke induces

bronchoconstriction in asthmatics. Other smoke may have a similar effect, as

may such things as the smell of fresh paint, strong perfume or cold air, (Aas,

1969). In a study by Tiffenan, it was discovered that irritable cough and

decrease in FEV is much more readily induced in asthmatics than in normals,

(Crofton and Douglas, 1975). He found that cough, often with pricking and

tickling, developed in 75% of asthmatics, at least with the largest dose of

acetylcholine, where as it occurred in normals with only about 100 meg

inhalation (Asmundsson et al., 1971), the bronchial tubes of asthmatics being

more sensitive than those of normal people.

Occasionally drugs used to treat asthma can themselves cause

bronchoconstriction. Such effects have been noticed with aminophylline,

ipratropium bromide, sodium cromoglycate, and propellants in metered dose

inhalers.

Sometimes pregnancy may cause a deterioration or an improvement in asthma,

(Turner et al., 1980). In a study conducted by Gluck and his colleague, it was

found that 43% of asthmatics experienced a deterioration in their asthma

during pregnancy. The deterioration started around the fourth month of

pregnancy, (Gluck and Gluck, 1976). If asthma deteriorates during one
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pregnancy, then it is likely to deteriorate during the next and if it

improves, it is also likely to improve during further pregnancies.

Beta blocking agents may also cause bronchoconstriction when given to

asthmatics, and this happens even when they are administered as eye drops.

3.3. Effects of Asthma

Which ever factors trigger an attack, the airways of an asthmatic narrow and

breathing out becomes a problem. The bronchial smooth muscles contract, there

is an increased secretion from bronchial glands and globlet cells, and

swelling of the mucosa, all of which contribute to airway narrowing, (Farzan,

1978). This causes wheezing as the asthmatic tries to obtain more air by

using the accessory muscles of respiration.

Because of the difficulty of breathing out, the air gets trapped in the lungs

resulting in hyperinflation. Breathing becomes difficult and the asthmatic is

unable to talk. There is also a shortage of oxygen in the blood and the

asthmatic starts to go blue - a condition known as cyanosis, (Sinclair,

1987).

Bronchial asthma has not, until recently been considered as a disease that can

cause fatalities. It was thought to cause only moderate morbidity and

negligible mortality.

Sir William Oster stated in 1901 (Diggle, 1983) that "death did not occur from

Asthma". Coope in 1948 said "the prognosis of the acute attack of asthma is

usually good, it is sometimes said that no one ever dies of asthma, but this

is not entirely true" and Witts in 1963 said "when status asthmaticus persist

for two days, the risk of sudden death should be seriously considered,

(Williams, 1959). It has now been generally agreed that attack of asthma could

result in asthma death. About 2000 asthmatics die of asthma every year in the

United Kingdom alone, (Jones, 1989).
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Childhood asthma, when it becomes severe or is poorly controlled, may retard

growth. Days are lost from schooling and/or work if asthma is severe, and many

asthmatics experience night attacks which keep them awake. Inability to take

part in sports and other activities is common in many asthmatics.

Martin and others found, and as quoted in (Yates, 1989), that one-third of a

large group of asthmatics were missing substantial time from work and has a

restriction on their sports activities.

In U.S. in 1970, over 30% of the asthmatic population spent one or more

asthma-induced days in bed. 20% spent from 1 to 7 days, 5.8% spent from 8 to

14 days, 3.6% from 15 to 30 days, and 1.6% 31 or more days in bed. In the

same year the average asthmatic spent 15 days of restricted activity and 5.8

days in bed owing to asthma. This represented 90 million days of restricted

activity and about 34 million bed days due to asthma. In the same country

asthma was a major cause of school absences in 1980. In 1964, 25% was

estimated as school days lost due to asthma, (Patterson, 1980). However, if

asthmatics are given correct treatment, they can expect to lead a normal

lifestyle.

3.4. Incidence and Prevalence

There is a relative paucity of data concerning the incidence of asthma. As a

chronic disease, it is responsible for a great many days of absence from

school or work, and thus is an important socio-economic disease. Among

diseases that result from allergy, asthma is the most important source of

morbidity and mortality. The incidence of fatalities increased in the decade

of the 1960s, and it continues to increase. In England and Wales, the annual

number of death from asthma in patients between the ages of 5 and 64 increased

from 720 in 1959 to 1401 in 1966, with almost a doubling of the death rate

from 2.0 to 3.7 per 100,000 population, (Speizer et al., 1968). Now about 2000

people die from asthma each year and the disease is increasing because of

pollution and allergy to the house dust mite, (Medicom, 1990).
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In the U.S., Lawrence showed, and is quoted in (Patterson, 1980), that there

were 4441 deaths from asthma in 1964, representing a death rate of 2.3 per

100,000 population. Even more significant was the fact that an additional

13,000 death certificates listed asthma as an underlying cause, a figure which

may signify that this disease is an even greater cause of death than is

suspected.

A further breakdown of these U.S. statistics of asthma mortality in 1964,

revealed that significantly more males than females died during the period.

The rate for non-whites was from 2 to 3 times higher at every age than for

whites, with an exception of the oldest age-group where the rates for these

two groups were about the same.

If we look at the amount of morbidity caused by asthma, the disease assumes an

even greater importance. In the U.S. in 1970, there were 6 million people with

asthma, and it was estimated that 17% of these had some limitation of their

activity due to their disease.

Summarised data, quoted in (Yates, 1989), showed differences in childhood

asthma prevalence in different countries : 0.7% to 2.0% in Scandinavia, 2.0%

to 5.1% in U.K. and U.S., and 5.4% to 7.4% in Australia and New Zealand.

Some communities have much lower rates, such as rural Indians, Papua New

Guinea highlanders, Eskimos, and North American Indians.

3.5. Natural History of Asthma

Asthma is a most common disease that may begin at any age. In half of the

cases, the onset is before age 10. In over one-third of patients, there is a

history of Asthma in members of the immediate family.

Spontaneous recovery is not uncommon in childhood asthma and in approximately

one-third of cases in early childhood will recover by their adult age. Beyond

this age, tendency to spontaneous recovery is much less. Many asthmatics who

have the onset of their asthma later in life will continue to be vexed by it
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throughout their existence.

Blair (1977) followed a series of asthmatic children to the age of 20 and

found that 52% were then completely free of symptons, 21% still suffered from

asthma and in 22%, the disease had remitted in adolescence but then reappeared

after several years.

A similar study was conducted by Martin and others, (Yates, 1989). They

followed wheezy children to the age of 21. Over half of the children with

infrequent wheeze lost their symptons by early adult life. Of those with

frequent wheezing, 20% became sympton-free and a further 30% were much

improved. Of those who wheezed frequently at 14, 25% had a more severe disease

at 21. Almost all the children with persistent wheeze in childhood continued

to wheeze into adult life, but many became less persistent.

Much confusion still exists as to whether the chances of growing out of asthma

or having remissions are affected by sex, age at onset, breast feeding, family

history of atopic disease, presence of associated atopic disease or of

positive prick skin test results to external allergens.

In many studies it is not known whether the results were due to the treatment

employed or whether the improvement or lack of it represented the natural

course of the disease.

3.6. Treatment of Asthma

At present there is no actual curative treatment for the disease asthma. Thus

what we will call treatment here will be the prevention or the control of the

degree of severity of an attack.

In this section we shall outline some of the drugs used in the treatment of

asthma and their prescribing costs in general medical practice.
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3.6.1. Drugs Used in the Treatment of Asthma

The main process involved in any asthmatic attack is the narrowing of the

airways. It is likely that any drug which can prevent or even reverse this

process will be effective in the treatment of asthma. Inflammatory reaction

that sets in also causes the lungs to produce more than the usual amount of

phlegm or mucus. This lodges in the narrowed airways, blocking them still

further. Finally, most asthmatics react to external allergens. No single drug

will deal with all these reactions.

It is thus convenient to divide anti-asthma drugs into two groups :

"relievers" - which relieve constriction by relaxing the airway muscle, and

"preventers" - which prevent or reverse the inflammation. This last group also

includes anti - allergic drugs.

Classifying drugs on the basis of their types of action leads to three

categories :-

1. Bronchodilators which include adrenergic drugs (e.g. Salbutamol),

Methylxanthines (e.g. theophylline), and anticholinergic agents (e.g.

ipratropium)

2. Corticosteroids which are divided into two main subgroups :-

glucocorticoids (e.g. hydrocortisone) and mineralocorticoids. These are

the main steroids used in medicine. Glucocorticosteroids are the most

effective drugs in the treatment of asthma.

3. Mast - cell Stabilizers (e.g. Sodium cromoglycate (Intal)) which act by

preventing bronchoconstrictor responses to certain forms of provocation,

usually allergic or exercise.

3.6.1.1. Administration of Drugs

Most of the anti-asthma drugs can be administered by more than one route. At

least one of each category of the drugs can be taken by inhalation, with the
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exception of the methylxanthines.

Inhaled drugs are available in three forms :- aerosols, micronised powders,

and nebulised solutions and can be taken by means of spinhaler, rotahaler or

diskhaler. Inhalation is nearly always preferable in the treatment of asthma.

3.6.1.2. Prescibing Costs in General Medical Practice

Having an interest in asthma in general practice is associated with higher

respiratory prescribing costs when compared with the calculated national

average, (The General Practitioners in Asthma Group, 1990). Individual GPs

with an interest in asthma have on average higher respiratory and prophylactic

medicine prescribing costs than their practice averages. Having an interest in

asthma care can be associated with an increase in respiratory prescribing

costs without any increase in the overall costs. These comparisons (expressed

as percentages) are shown in table 3.1, (Source : The General Practitioners in

Asthma Group, 1990):-

Table 3.1. Percentage relationship between costs of

prescribing : GPs, Practice averages and

caculated National average

Individual Versus Practice Average

Total mean 106% 95% CI 98 - 115%

Respiratory mean 129% 95% CI 115 - 143%

Practice Average Versus National Average

Total mean 95% 95% CI 89 - 101%

Respiratory mean 118% 95% CI 106 - 130%

CI - confidence interval.
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In the United Kingdom the returns made by General Practitioners suggest that a

group practice with about 10, 000 registered patients will result in an annual

expenditure of about 20, 000 pounds on Bronchodilators and about 30, 000

pounds on steroids for treating severe attacks and for preventive treatment.

Drugs used in the modelling process are assumed to be taken by inhalation and

therefore for model I the number of units of a drug is regarded as the number

of puffs of the drug. Facilities like inhalation devices and peak flow meters

are assumed to be replaced after two years. Using published data, (BNF, 1992)

we can estimate the costs of some of these resources. Table 3.2 shows the

number of units used per day and the cost of salbutamol ( a bronchodilator),

budesonide and prednisolone (corticosteroids).

Drug Number of units

per day

Cost of

1 unit

(pounds)

Salbutamol

Budesonide

Prednisolone

8

2

0.010

0.095

0.010

Table 3.2. Drugs used for model I

For models II - V the costs of the drugs were estimated per month (for

models II-IV) and per day (for model V). The result is given in table 3.3.

Drug

Salbutamol

Budesonide

Ketotifen

Adrenaline

Cost per month
(pounds)

2.40

11.40 (22.80*)

16.80

4.20

* For severe attack

Cost per day
(pounds)

0.08

0.38 (0.76*)

0.56

0.14

Table 3.3. Drugs used for models II-V
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The costs of some facilities were also estimated and are presented in table

3.4.

Facility Cost per month Cost per day

(pounds) (pounds)

Inhalation device 0.30 0.01

Peak flow meter 0.30 0.01

Table 3.4. Facilities used for models II-V

Note that for a more severe attack some of these costs may increase.

3.7. A Review of Asthma Models

There has been widespread use of statistical techniques in clinical trials and

in attempting to determine variables which are relevant to the prognosis of

asthma, but the application of Operational Research modelling techniques to

the study of asthma has been minimal.

In (Ware, Lipsitz and Speizer, 1988), statistical methods for the analysis of

repeated observations of categorical variables (no wheeze, wheeze with colds,

and wheeze without colds) as they might arise in longitudinal studies were

discussed. Two general models were used :-

1. marginal models that give representations for the marginal distribution of

response at each occasion, and

2. transitional models that give representations for the transition

probabilities between outcome states at successive occasions were

described.

A discussion on the conceptual and technical differences was made and recent

work advancing both approaches was reviewed. The two approaches were

illustrated through analysis of repeated observations on interval history of
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the respiratory sympton "persistent wheeze" in pre - adolescent children.

Korn and Whittemore (1979) presented new methods for analysing repeated binary

health measurements of individuals exposed to varying levels of air pollution.

The methods involved a separate logistic regression of response against

environmental covariates for each individual. Estimates of parameters

reflecting individual susceptibility to pollutants and weather were made using

Cox's regression techniques. The individual parameters were combined to yield

summary estimates of environmental effects. The approach did not require

independence of successive health measurements. It was illustrated with data

on asthma and air pollution in Los Angeles area in U.S.

Stochastic models had been used for a long time for studying the progression

of disease. Fix and Neyman (1951) were the first to use a four state Markov

model to study human cancer. Marshall and Goldhamer (1955) discussed a Markov

chain model for characterizing the age distribution of mental patients.

Recently several stochastic models have been proposed for the study of the

progression of diseases (Sacks and Chiang, 1977 and Tolley et al., 1978),

just to mention a few. The rate of progression of disease for allergic

patients induced by allergenic pollen is an area which require a great deal of

attention from the medical point of view (Lebowitz, 1973). The amount of

allergenic pollen in the environment can be associated with the time of the

year. The severity of chronic bronchial asthma is related to the changing

pattern of the season (Lebowitz, 1973, 1981).

Based on the above facts, Jain (1988) proposed a time-varying Markov chain

model with periodically changing transition probability matrix

(non-homogeneous Markov chain ) to predict the behaviour of those diseases

which are periodic with respect to the year.

The model was used to characterize the behaviour of chronic bronchial asthma,

and the behaviour of the severity of asthma attack was compared with the

seasonal pattern of the weather.
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The states of his model were classified as follows :-

Sj : Leading normal life,

S~ : Mild attack (i.e. slight interference with normal

activities),

So : Severe attack (i.e. considerable interference with

normal activities).

Five Canadian seasons were considered : Winter (November 1 to April 15); Trees

(April 16 to May 31); Grass (June 1 to July 20); Ragweed (July 21 to September

7); and Fall (September 8 to October 7).

Seasons were determined on the basis of daily airbone allergenic pollen as

appropriate transition times, each with its own transition probability matrix.

Accordingly, a Markov process with periodically changing transition

probability matrices based on the five seasons was considered. Limiting state

probabilities at the end of each season were computed and the results were

analysed. The results demonstrate that the time-varying Markov chain

model reproduced the high probability for suffering severe attack of chronic

bronchial asthma during a high pollen count season.

Jain (1986) used a similar approach to develop a finite Markov model with

discrete time parameter for the study of seasonal patterns affecting the state

of health of chronic bronchial asthma patients. He considered the condition of

an asthmatic patient to be modelled by a three state Markov chain :- a patient

in state 1 : under self- care, state 2 : under intermediate care, and state 3

: under intensive care. He considered the same Canadian seasons:- winter,

trees, grass, ragweed, and fall with their duration as given above. He showed

(using the likelihood ratio test) that the transition probabilities were

stationary (homogeneous Markov chain).

He used the maximum likelihood estimates for the one - step transition

probability matrix. Thus given the patients' health states for the season T,

the model could be used to predict future states of patients' health. These
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predictions can be used by doctors, hospital administrators, and policy makers

to device a strategy for the treatment of asthmatics at a minimum cost.

Mao et al.(1990) conducted a similar study of the disease using data from the

province of Ontario, Canada. These data were collected on asthmatics aged 15

to 34 during the period 1979 to 1986. Seasonally in mortality and hospital

admission rates were evaluated using time series methods. The evaluation

involved fitting a series of Box-Jenkins regression - ARIMA (autoregressive

integrated moving average) models. Hospital admission rates were highest in

the fall (September - October). There was a smaller peak in the spring

( April-May). The rates were lowest during the summer (June - August) and

during the winter (December-March). Mortality was higher in October. The test

for seasonality for hospital admission rates was highly significant while that

for mortality was not significant.
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CHAPTER 4

DETERMINISTIC MODELS

In this chapter we develop deterministic models for asthma. In section 4.1 we

construct models in discrete time and in section 4.2 we consider asthma as a

continuous time process.

4.1. Deterministic Models in Discrete Time

In this section we consider asthma as a process in discrete time. A two state

model will be developed in section 4.1.1. The implications of preventive

treatment will be considered in section 4.1.2. The extension of this model to

a five state model will be discussed in section 4.1.3.

4.1.1. A Two State Model

Let us assume that we have N asthmatics, some of which are in state 0 (No

attack) and the others in state 1 (Attack) on day n. Thus if on day n, X1 are

in state 1, then X^ = N - X, are in state 0. We therefore have the following

flow diagram :

State 0 )
i

State 1

Figure 4.1. The flow diagram for the two state model
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We suppose that state changes occur discretely in time and that a day is the

appropriate unit of time. We therefore consider the daily rates of exit to be

the parameters controlling the movement of the asthmatics from one state to

the other. These parameters are listed and discussed below :

(1) Time between attacks.

We take the mean time between attacks to be JJ., days (say) and the

corresponding daily rate of exit to be a , = l/|i, per asthmatic in state 0.

(2) Duration of an attack.

Let the mean duration of an attack be \l~ days (say) and the corresponding

daily rate of exit to be ou = l/p^ per asthmatic in state 1.

Following Cvjetanovic et al.(1978), the mathematical expression of the

dynamics of the disease, as illustrated in figure 4.1, is given by the

following system of difference equations

AXQ = a2X1- a{ XQ

(1)
AXj = a , XQ - a 2 Xj

Here AX., i = 0, 1, represent the daily changes of patients in the two states.

4.1.2. The Implications of Preventive Treatment

Let us consider the possibility of the asthmatics being on preventive

treatment. We suppose that when an asthmatic is under this treatment, the time

between attacks is extended. The corresponding daily rate of exit oc, is

calculated as follows :

a{ = (1 + k) l/jij (2)

where k is a positive real number and is taken as the efficacy of the

preventive treatment, cu however remains the same, since attacks are always

treated.
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Example 4.1.

Suppose that the mean time between attacks, without treatment, is 30 days. If

we now give preventive treatment with k = 0.95 then the time between attacks

with this treatment is 58.5 days. Assume that the duration of an attack is 2

days. Then |J., = 30 (without treatment) and {!,= 58.5 (with treatment).

Therefore a1 = 0.0333 per asthmatic in state 0 (without treatment) and a 1 =

0.0171 per asthmatic in state 0 (under preventive treatment), cu = 0.5 per

asthmatic in state 1. If we let N = 30, XQ = 25, X, = 5 on day 0, then using

equations (1) we can compute the number of asthmatics in state 1 on each day,

both under prevention and when preventive treatment is not given. The result

of this is displayed in table 4.1 for a seven day period.

Day

0

1

2

3

4

5

6

7

No prevention

5

3

3

2

2

2

2

2

Prevention
(k = 0.95)

5

3

2

1

1

1

1

1

Table 4 . 1. A comparison of the number of asthmatics

having an at tack on day n under no prevention

and that under prevention.

The result displayed in table 4.1 is shown graphically in figure 4.2.
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Figure 4.2. Number of asthmatics
in state 1
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3 4
Days

4.1.3. An Extension of the Two State Model

Now suppose that when an asthmatic has an attack, treatment is not just given

to bring this attack under control, treatment is given according to the type

of the attack. Thus when an asthmatic is in state 1, some tests are performed

and the attack is classified as mild, moderate or severe depending on the

results of these tests. We also allow the possibility of death occurring from

a severe attack that is not well treated. We then define the following states

State 0 No attack

State 1 Mild attack

State 2 Moderate attack

State 3 Severe attack

State 4 Death

The flow of asthmatics through these states is presented in figure 4.3.
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R10

S t a t e 0

Onse t o f
A t t a c k

R01 R21

R

R02
S t a t e 2

R20

R23

12 R

State 1
32

R

S t a t e 4

31

R

R03
R30

S t a t e 3

34

Figure 4 . 3 . The flow diagram for t h e f ive s t a t e model

Let X. , i = 0, 1, ..., 4 be the number of asthmatics in state i on day n. It

is not easy to estimate the rates of transition from one state to the other.

We consider these rates as the product of the daily rate of exit from a state,

and the coefficient of transfer R... R-. is the fraction of those leaving

state i and going into state j . These transition parameters are discussed

below :

(1) Duration in state 0.

Let the mean duration in state 0 be | l , days when preventive treatment is

not given. The corresponding daily rate of exit is cc« = 1/p., per

asthmatic in this state . The daily rate of exit when preventive

treatment is given is calculated from equation (2).

(2) Duration in state 1.

Let the mean duration in this state be \l~ days. The daily rate of exit is

thus cu = l/jo^ per asthmatic in this state.

(3) Duration in state 2.

Assume that the mean duration in state 2 is \L~ days. Therefore the daily
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rate of exit is cu = 1/fl,, per asthmatic in this state.

(4) Duration in state 3.

We take the mean duration in state 3 to be \i. days. The daily rate of

exit is therefore a . = l/[i. per asthmatic in state 3.

(5) Mortality from asthma.

There are about 45 deaths from asthma per year in the 5-14 years age

group in England and Wales, Clark and Godfrey (1983). The daily rate of

exit is thus 0.123 per asthmatic in state 4. This is taken to be R04.

(6) Coefficient of transfer.

All the transfers are represented in figure 4.3 by R... Clark and Godfrey,

(1983) mentioned that about 25% of asthmatic children have moderate form

of the disease, while 2.5% fall into the most severe group. Thus R ^ is

taken to be 0.25 and RQ~ is taken to be 0.025. RQ, therefore comes to

0.725. These and other values of R.. are displayed in table 4.2.

S ta te of Coeff ic ient of transfer
o r ig in to destination state j

i

0

1

2

3

4

0

-

0.

0.

0.

-

70

66

51

1

0 .725

-

0.20

0.177

-

2

0.25

0.20

-

0.19

-

0

0

0

3

.025

.10

.14

-

-

4

-

-

-

0.123

-

To ta l

1.000

1.000

1.000

1.000

0.000

Table 4 . 2 . Matr ix of coefficients of transfer R--.

As in section 4.1.1 the disease dynamics can be expressed mathematically by

the following system of difference equations (AX. being the daily changes of

the asthmatics in the different states).

40



AXQ =

AX, = (X|XQRQ« +

(3)
AX2 = a i X 0 R 0 2 +

AX3 = OIJXQRQJ + a 2
X l R 1 3 + °"-PL^2l ' a 4 X 3

AX4 =

Example 4.2.

Assume that the mean time between attacks is 30 days without treatment. This

is increased to 58.5 days when a 95% effective preventive treatment is given

(use equation (2) with k = 0.95). We further suppose that the duration in

states 1 to 3 is 2 days each (we assume that the duration of an attack is

independent of its severity). Thus a , = 0.0333 ( without treatment) and

ocj = 0.0171 (with treatment), cx2 = cc3 = a 4 = 0.50. Let XQ = 550 , X^ = 300 ,

X- = 200 , X- = 150 , X, - 0 on day 0. Then using equations (3) we compute

the number of asthmatics in state 1, 2, and 3 both when preventive treatment

is given and when it is not. The result is displayed in table 4.3.

The result in table 4.3 is better illustrated in figures 4.4, 4.5, and 4.6.

4.2. A Two state Deterministic Model in Continuous Time

In this section we develop a deterministic model of asthma in continuous time.

This model is an extension of that given in section 4.1.1 since the condition

of the asthmatic can be determined at any time t rather than just on any given

day. The model is constructed in section 4.2.1 and the implications of

preventive treatment is considered in section 4.2.2.
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Day

0

1

2

3
4

5

6

7

No
S

1
300

197

141

109

90

79

72

66

prevent
tate

2
200

149

110

84

66

54

46

41

ion

3
150

105

77

54

39

29

23

19

Prevention
State

1 2 3
300
190

128

92

70

56
48
42

200

147

106

76

56
43

34

28

150

104

72

50

35

25

19

15

Table 4 .3 . A comparison of the number of asthmatics
in states 0 , 1, and 2 on day n under no prevention
and that under prevention.

Figure 4.4. Number of asthmatics
in state 1
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4.2.1. Construction of The Model

Suppose we have N asthmatics and out of these, M are experiencing an attack at

time t = 0. The remaining N-M are attack-free. At time t, we let XQ(0 and

X«(t) represent the number experiencing no attack and the number experiencing

an attack , respectively, so that X0(t) + Xfi) = N. Let state 0 and state 1

represent "no attack" and "attack" respectively, then at any given time t, M

asthmatics are in state 0 and N-M are in state 1. Let a be the rate at which

attacks occur and p be the rate at which attacks are treated. The flow

diagram for this process is the same as that shown in figure 4.1.

Figure 4.5. Number of asthmatics
in state 2
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We assume that the rate of occurrence of attacks is proportional to the number

experiencing no attack and the rate at which attacks are treated is

proportional to the number having an attack at time t. It follows that

AXQ= - a XQAt + p (4)
XjAt + a XQAt
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Figure 4.6. Number of asthmatics
in state 3
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So that the process is described by the following system of differential

equations

dXQ= - a XQ+

dt

dX1 = a XQ-

dt

with initial conditions XQ(0) = N-M, Xj(O) = M.

The solution of equations (5), subject to the initial conditions is

(5)

XQ(t) =

Xj(t) =

pN

aN

" ~o+p) exp[-(a+P)t]

) exp[-(a+P)t]

(6)
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4.2.2. The Implications of Preventive Treatment

In section 4.2.1 the idea of giving preventive treatment to the asthmatics was

not considered. Treatment of the attacks was however looked at. In this

section, we consider the implications of treatment given to the asthmatics in

order to prevent attacks.

We suppose that when preventive treatment is given, the rate a at which

attacks occur is now reduced to y (say). This reduction depends to a greater

extent, on the effectiveness of this treatment. An appropriate measure of this

effectiveness is obtained from the following expression

1/Y = (1 + k) I/a (7)

Here k is a positive real number. The rate p, at which attacks are treated

remains the same, since medication is always given for an attack.

The equations for this new process are similar to those developed in section

4.2.1 with a replaced by y.

Thus

(8)

X (t) = yT]5 • (M * H M V exp[-(Y+P)t]

x ( t ) = - * ? p + (M - - f p ) exP[-(Y+P)t]

Example 4.3.

Suppose a = 1/30 , P = 1/2, N = 30 , M = 5. Equations (6) become

Y f t w X • X exp(-8/15t)
0 — o o

1 « O<C

exp(-8/15t)
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When we give preventive treatment that is 95% effective (k = 0.95), the
rate a is reduced to Y- Using equation (7), we get

y= 2/117

Equations (8) therefore become

3510
XQ(t) = -131

121
X,(t) = T2T

T2T exp(-121/234t)

-TZ1 exp(-121/234t)

The number of people having an attack at time t under no prevention is
compared to that under prevention, for seven days in table 4.4.

Time
(in d ays)

0

1

2

3

4

5

6

7

No prevention

5

4

3

3

2

2

2

2

Prevention
(k = 0.95)

5

3

2

2

2

1

1

1

Table 4 .4 . A comparison of the number of asthmatics
havin an at tack at time t under no prevent i on and
that under prevention.

The result in table 4.4 is shown in figure 4.7.
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4.2.3. Comments

Since one of the solutions of | A.I - A | = 0

where

is zero and the other negative and real (no pure imaginary roots), all

solutions of equation (5) are bounded and asymptotically stable.

Figure 4.7. Number of asthmatics
in state 1
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4.3. A Mathematical Programming Model

Mathematical programming and particularly linear programming is a widely known

and used Operational Research technique. This technique has proved itself to

be a valuable aid to decision making in the industrial sector. Its application

is not uncommon to health services, (Boldy, 1976). It has however generally

not lived up to the expectations of health planners. In section 4.3.1 the

background leading to the application of this technique is discussed and the

model is developed in section 4.3.2. An application of the model is given in

section 4.3.3 and a sensitivity analysis is carried out in section 4.3.4.
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4.3.1. Background to the Problem

Asthmatics often experience attacks at night or at weekends and so are exposed

to a variety of doctors. Sometimes they even require referral or admission to

the hospital. These may make asthmatics become more confused as to how to

manage their condition.

There is therefore a need to develop systems of asthma care in general

practice in order that GPs, nursing staff and patients become acquainted with

the management of the condition.

The establishment of asthma clinics has been suggested as one approach to this

organised system of asthma care, (Charlton, 1989). Here patients are called to

an organised consultation with doctors and nurses who have special interest in

asthma care. One clinic set up in 1987 in Aylsham in Norfolk has been shown to

be performing well, (Charlton, 1991).

Assuming that this approach is accepted, the problem now remains as to the

number of asthma clinics to be established in a given area (say). The number

of clinics that can be established is however limited given scarce resources.

This problem is formulated as a linear programming problem in the next

section.

4.3.2. Mathematical Programming Formulation

As discussed in section 4.3.1, suppose a Regional Health Authority has seen

the need to establish asthma clinics in the United Kingdom. However the number

of clinics that can be established is restricted by the limited availability

of three resources : doctors, nurses, and money. The question is, how many

clinics should be established in the region in order to make the best possible

use of these resources.

Let Rp R~ ,..., R, represent districts in the region. The number of doctors

and nurses required to run a clinic varies from clinic to clinic, and the

amount of money needed to run a clinic per unit time is known. Let D, , D~,
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...,D, be the number of doctors and N>, N~, ...,N, be the number of nurses

required to run a clinic in the respective districts. Let M,, M~, ..., M, be

the amount of money needed to run a clinic per unit time in the districts

respectively. Suppose that d, n, and m is the number of doctors, the number of

nurses and the amount of money (per unit time) the region can provide. Let b«,

b0 , ..., b, be the number of patients who would benefit from the establishment

of one clinic in the respective districts. This may be regarded as the number

of patients a single clinic can accommodate. The objective is therefore to

establish a number of clinics in order to maximize the number of patients who

would benefit from this system of care. These data are summarized in table

4.5.

Re sources

Do c tors

Nu r ses

Money ( in
( Pounds)

Number of
b enef ici a -
r i e s

Amount used
p e r cl inic

C l C 2 • • C k

D l D 2 . . . D k

N l N 2 ••• N k

Mj M2 . . . Mk

b l b 2 ••• b k

Region a 1
r esour ces
ava i l ab le

d

n

m

Let -r\,

Table 4 . 5 . D a t a for asthma clinic problem

x, be the number of clinics to be established in the

districts, respectively. Suppose that a policy decision is that there must be

at least one clinic and not more than 5 clinics in each district. The

objective is therefore to maximize the total number of beneficiaries in the

region. The objective function is thus

Z = b,,x, bkxk

and from table 4.5, we construct the constraints as follows
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and

D l x l + D2X2 + - + Dk xk < d

+ ... + N, x, < n

,x, + M~Xj + ... + M, x, < m

1 < x. < 5, i = 1, 2, ..., k are integers.

It can be readily seen that each resource contributes one constraint to the

problem.

The above problem can be formulated as a linear integer programming problem

as follows :

Maximize Z = b«x, + b^x^ + ... + b, x.

Subject to

and

+ D£X2 + ... + D, x, < d

+ N2X2 + ... + N, x, < n

,x, + M^x^ + ... + M,x, < m

1 < x. < 5, i = 1, 2, ..., k are integers.

This formulation is in terms of these resources and no constraints on b., i =

1, 2, ..., k. Additional resources and constraints can be taken into account

in an obvious manner and so discussion is restricted to this simple model.

4.3.3 An Application of the Model

Suppose we would like to apply this technique to determine the number of

asthma clinics to be established in a region. As an illustration consider a

region with 10 districts, say S-, i = 1, 2, ..., 10. Suppose data has been

collected on the availability of resources in each district and the amount of
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resources the region is able to provide. The money needed to run one clinic in

each district is obtained as follows :

Suppose a doctor earns about 30 thousand pounds in a year. Assume

that the doctor works for 2 hours on asthma in a clinic in a week

comprising of 5 x 8 = 40 working hours. Then the doctor spends

2/4 = 5 % of his time on asthma. 5 % of 30 thousand pounds is 1.5

thousand pounds (1,500 pounds). This is the cost of running one

clinic with one doctor per year. We suppose that the nurse earns

10 thousand pounds per year. With a similar analysis it costs the

district 0.5 thousand pounds (500 pounds) to run one clinic with

one nurse. We let the general cost per clinic be 2 thousand pounds.

This may be the cost of housing, equipment and other costs that may

be incurred. Thus the cost of D doctors/clinic is 1500 x D and the

cost of N nurses/clinic is 500 x N, the total cost/clinic being

1500 x D + 500 x N + 2000 pounds. Let us assume that the number of

patients a clinic can accomodate depends on the number of doctors

and the number of nurses. We further assume that a doctor and nurse

team is required for the care of patients. Suppose, for the sake of

argument, the capacity of a clinic is 140 x D + 70 x N. This gives

the number of patients who would benefit from the establishment of

one clinic. The data is presented in table 4.6.
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Re sources Amount used

per c l i n i c

S3 S4 S5 S6 S7 S8 S9 S10

Regional
resources
available

Doc tors

Nur ses

Money (in
t housand
pounds)

2 1 2 1 2 2 2 2 2 3

2 3 2 2 2 3 2 1 3 2

6 5 6 4 . 5 6 6.5 6 5 .5 6 . 5 7 . 5

30

70

120

Number of
benef ic-
i a r ies

420 350 420 280 420 490 420 350 490 560

T a b l e 4 .6 . Data for the region

Using the data in table 4.6, the linear programming problem becomes

Maximize Z =

Subject to

+ 350x2 + 420x3 + 280x4 + 420x5

490x6 + 420x? + 350xg + 490x9 + 560x1Q

x . + 2x<- 2x

30

6x
3

5.5xg

5x. +

6.5x

70

120

and 1 < x. < 5, i = 1, 2, ..., k are integers.

The solution of the above problem is found, by the Branch and Bound method,

using UNDO, (Schrage, 1989), to be Xj = 1, x2 = 5, x3 = 1, x4 = 4, x5 = 1,

xfi = 1, x_ = 1, Xg = 1, Xg = 3, X,Q = 1. Consequently a total of 7,420
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asthmatics would benefit from the 10 districts with all the doctors and only

46 nurses used. The total cost being 106 thousand pounds.

4.3.4. Sensitivity Analysis of the Problem

We now perform a sensitivity analysis to investigate the effect on the number

of beneficiaries if the regional resources available take on other possible

values. We first of all consider increasing the number of doctors that can be

made available. This may mean training additional doctors to understand the

disease asthma, with the hope that more clinics would be established, taking

into account the cost of training and running a clinic per unit time with

these additional doctors. We consider increasing the number of doctors

without altering other available regional resources (nurses, money). The

result of this exercise is given in table 4.7. Some of the values in this

table are plotted in figure 4.8.

Percen t age

increase in

the number
o f doc t o r s

0

10

20

30
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Number
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7,420
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8,750

8,750
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1
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1
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3 x

1

1
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1

1

1
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5

1

1

1

1
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1

1

1

1

1
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1
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1
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1

1

1

1
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1

1

1

1

1

1

X9

3

1

5

5

5

5

x10

1

1

1

3

3

3

Table 4 . 7 . The effect of increasing the number of
doctors on the number of beneficiaries.
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Figure 4.8. The effects of the number of
doctors on the number of beneficiaries
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We can see from the graph that the number of beneficiaries increase with the

number of available doctors. The number of clinics also increase. Thus the

total cost of running the clinics will also increase.

Sensitivity analysis was also performed on the number of nurses, and the

amount of money that could be made available. It was however discovered that

if we fix the other regional resources available, an increase in the number of

nurses has no effect on the number of beneficiaries. Similarly, if we fix the

other resources available and increase the amount of money provided by the

region, we see that there is also no change in the number of beneficiaries.

This is obvious since the solution of the problem with 30 doctors ( the number

available) make the number of availabe doctors a binding constraint. That is,

the number of available doctors is exhausted. Since a clinic cannot operate

without a doctor in our model, the optimal number of patients cannot increase,

because more clinics cannot be established. Even if we make more money

available, there would be no effect on the number of clinics established and

hence no effect on the number of beneficiaries. If we however use this money

to train more doctors and nurses, then the optimal number of patients
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benefiting would be increased since we can now establish more clinics. The
effect of increasing all the available resources on the number of
beneficiaries is shown in table 4.8.

Percentage increase
in the number of
doctors and nurses

( 0 , 0 )

(10,10)

(20,20)

(30,30)

(40,40)

(50,50)

Percentage increase in

0

7,420

8,190

8,680

8,750

+

+

10

*

*

8,890

9,520

9,590

+

2C

*

*

*

9

10

10

)

660
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360

t h e

30

*

*

*

*

10,

1 1 ,

amount of

40

*

*

*

*

360 *

060 *

money

50

*

*

*

*

*

*

Table 4.8. The effect of increasing a l l the available
resources on the number of beneficiaries.

* Indicate no changes in the row
+ Indicate no changes in the column
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CHAPTER 5

STOCHASTIC MODELS IN DISCRETE TIME

In chapter 4 we developed deterministic models for the asthma process. These

models do not take into account the considerable degree of uncertainty and

variability arising in the disease process. They are therefore bound to give

inaccurate results. In this chapter we construct stochastic models in discrete

time for the disease. Markov chain models are developed in section 5.1 and a

semi-Markov model is constructed in section 5.2.

5.1. Markov Chain Models for the Asthma Process

Markov chain models have been applied to many areas of health-related

problems. Some of the early applications are discussed by Fix and Neyman

(1951), Marshall and Goldhamer (1955), and Sacks and Chiang (1977).

A finite Markov chain is a discrete time parameter stochastic process in which

the future state of the system is dependent only on the present state and is

independent of the past history, where the number of states are finite or

countably infinite, (Cox and Miller, 1987).

In this section we construct two models for the asthma process. The first,

treated in section 5.1.1 will be a model for the prevention and treatment of

asthma attacks and the second, given in section 5.1.2 will be a model to study

the effect of weather on the disease.
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5.1.1. A Four State Model

Let us suppose that at any time t an asthmatic is having an attack or is not.

If the asthmatic has an attack, the severity of the attack is assessed in

order to give appropriate treatment. Some tests are performed and the attack

is classified as being mild, moderate, or severe depending on the results of

these tests. To make matters simple, we assume that the possibility of death

from an attack is small and could be neglected. We therefore have a four state

process :-

State 0 No attack

State 1 Mild attack

State 2 Moderate attack

State 3 Severe attack

The transition diagram for this process is shown in figure 5.1.

Sta te 1

State 0 State 3

Sta te 2

Figure 5.1 The state transition diagram for the process.

We use the Markov chain technique to analyse the process with the above

mutually exclusive set of states. The transitions can be readily identified

from the transition diagram.

To study this process, we must specify the probabilistic nature of the state
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transition. Since the Markov chain analysis requires that the process be

considered at discrete uniformly spaced intervals of time, we assume that the

time between transitions is one day. The underlying assumption of Markov chain

is that the probability of making a transition from state i to state j in the

next time interval is a function only of i and j and not of any history of the

process before its arrival in state i. Thus we may define a Markov chain as a

sequence X~ X., ... of discrete random variables with the property that the

conditional distribution of X . given XQ, X,, .... X depend only on the

value of X but not further on XQ, Xp..,X , . That is, for any set of values

h,i,...,j in the discrete state space,

Prob(Xn+1 = j | X Q = h,...,Xn = i) = prob(Xn+1 = j |X f i = i)

= P.. i,j = 0,1,2,3.

Let P be the transition matrix, then for the four state process, P takes the

form :

P =

P00 P01 P02 P03

10

20

30 "31

P12 P13

P P
*21 *22 23

P P
*32 *33

Here we assume that the P-.'s do not depent on time, which is the case of a

homogeneous Markov chain.

Let p ' n ' = [pin\ . . . ,Pin^l denote the probabilities of finding the asthmatic

in any of the states 0,...,3 on day n. Then

p(n) _ p(n- (1)

On iteration therefore, we have
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P(n) = p(0) p n n = QIX (2)

where P^ ' is any starting vector of probabilities.

For the derivation of these equations see Cox and Miller (1987). Thus when the

initial probabilities P^ ' and the matrix of transition probabilities P are

given, we can find the state occupation probabilities on any day n using

equation (2).

Example 5.1.

Suppose the following data were collected on a single asthmatic over 1460

days.

Actual day

state 0 state 1 state 2 state 3

state 0 1210 75 40 10 1335

Preceding state 1 48

day

state 2 25

15 75

40

state 3 10

Table 5.1. Transition count for asthma attacks

Transition probabilities are then estimated from this data using relative

frequencies. Thus

P =

0.906 0.056 0.030 0.008

0.640 0.200 0.120 0.040

0.625 0.125 0.200 0.050

0.200 0.300 0.400 0.100
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Calculating P n we find that

0.877 0.068 0.043 0.012

0.791 0.103 0.083 0.023

0.781 0.100 0.094 0.025

0.643 0.151 0.162 0.044

0.864 0.073 0.049 0.014

0.855 0.076 0.054 0.015

0.854 0.076 0.055 0.015

0.838 0.082 0.063 0.017

P8 =

0.863 0.073 0.049 0.015

0.862 0.074 0.049 0.015

0.862 0.074 0.049 0.015

0.862 0.074 0.049 0.015

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

to 2dp.

and for n > 8 we find that P gets closer and closer to exactly
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0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

to 2dp.

as n increases.

This means that for n > 8

= p(0)pn=[-p(0)p(0)5p(0)p(0)j

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

0.86 0.07 0.05 0.02

= I" 0.86, 0.07, 0.05, 0.02 1

Again as n increases this approximation becomes more and more accurate. That

is

T 0.86, 0.07, 0.05, 0.02 1 as n

5.1.1.1. Limiting State Probabilities

As illustrated in example 5.1 the state-occupation probabilities appear to be

independent of the starting state of the process if the number of state

transitions is large. Thus the process reaches a steady state after a

sufficiently large period of time (n = 8 in the above example). If this is so

then there is an equilibrium probability distribution FI = (ITQ,...,!!-) and
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letting n —> °° in equation (1), we have

n = n p

and the sum of the components of IT must be 1, that is

i=0

We therefore use (3) and (4) to find the limiting state probabilities for this

process.

5.1.1.2. Modelling the Effect of Preventive Treatment

Suppose preventive treatment is given to prevent an attack, and the effect of

this preventive treatment is that the probabilities of making transitions from

state 0 to state 1, 2, or 3 are reduced. This reduction depends on the

effectiveness of this preventive treatment. A good measure of this

effectiveness is obtained by defining

EQj = (1-k) POj , j = 1, 2, 3. (5)

where k is a positive real number in the interval [0,1).

Then

E00 = 1 ' 1 E0j

and the transition matrix is P with the first row replaced by EQ. , j = 0, 1,

2, 3.
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5.1.1.3. Extension of the Four State Model

To make the four state model more realistic, we may allow the possibility of

death occurring from an attack, if it is not well treated. We also allow an

asthmatic to "grow out" of his disease at some point in time. Here we consider

N > 1 asthmatics, N large enough. Thus instead of recording the number of

times an asthmatic moves from one state to another, we record the number of

asthmatics that move from one state to another. We would therefore have a four

state process with the additional states :

State 4 Grow out

State 5 Death

These two additional states are absorbing states. This process has the

following transition probability matrix

P =

poo
P10

P20

P30

0

0

P01

Pll

P21

P31

0

0

P02

P12

P22

P32

0

0

P03

P13

P23

P33

0

0

P04

0

0

0

1

0

0

0

0

P35

0

1

In constructing this matrix we assumed that before an asthmatic grows out of

his disease he must pass through state 0. In other words an asthmatic can only

go to state 4 from state 0 and once he is in this state he remains there

forever ( reappearance of the disease is not considered). We also assumed that

the asthmatic can only die from a severe attack (natural death is also not

considered).

This is an absorbing Markov chain with a non-regular matrix P. State 4 and

state 5 are absorbing states. State 0, state 1, state 2, and state 3 are

transient states. Thus no matter where the process starts, the probability
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that it is absorbed tends to 1 as n tends to infinity. Since P is not regular

it means that 1 is an eigenvalue of multiplicity k > 1. P will be ergodic if

it possesses k linearly independent (left) eigenvectors associated with this

eigenvalue. This depends on the entries of P. If P is ergodic then the

limiting state probabilities can be obtained as in (Bronson, 1982). If P is

not ergodic then the limiting state probabilities do not exist. We may however

like to determine the number of days an asthmatic will be in each

transient state before being absorbed. This can easily be obtained by writing

P in canonical form

P =
R

O

1

0

P04

0

0
0

0

1

0

0

0
0

0

0

poo
P10

P20
P30

0

0

P01

Pll

P21
P31

0

0

P02

P12

P22
P32

0

0

P03

P13

P23
P33

For this chain the fundamental matrix is given by

N = (I - Q)"1

Matrices Q, R, and N can be used to provide a variety of results, for example

the mean number of days an asthmatic is in a given transient state before

being absorbed. For more details see (Kemeny and Snell, 1976).

5.1.2. A Model of Seasonal Effect

The rate of progression of disease for allergic patients induced by allergenic

pollen is an area which requires a great deal of attention from the medical

point of view, (Lebowitz, 1973). The relationship between air pollution and

weather with respect to mortality has been discussed by Lebowitz (1973).
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It is well known that the amount of allergenic pollen in the environment is

associated with the time of the year, and the condition of asthmatic patients

is dependent on the changing patterns of the seasons.

Based on the above, Jain (1986) proposed a homogeneous Markov chain model

using the five Canadian seasons as transition times, and Jain (1988) used the

five Canadian seasons to develop a non-homogeneous Markov model.

The model we shall construct here will be a more general model. Thus it could

be used in any country and in any situation. It will be used to study the

effect of seasonal patterns on the severity of chronic bronchial asthma. The

formulation of this model will be given in section 5.1.2.1. In section

5.1.2.2, we consider the model when the transition probabilities are constant

with respect to the seasons - homogeneous Markov chain model, and in section

5.1.2.3, we consider the model when the transition probabilities vary with the

seasons - non-homogeneous Markov chain model. In section 5.1.2.4, we show how

to find the limiting probabilities in either of the above cases. We shall end

by giving two illustrative examples on how the model can be applied.

5.1.2.1. Formulation of the Model

Asthma is a disease which occurs intermittently. It is therefore not present

all the times even in severe cases. The course and outcome of the

disease changes periodically and could be measured by periodic assessment

according to the complication of the disease based on respiratory indicators,

(Lebowitz 1973, 1981) which can be classified into the following states:

State 1 Leading Normal Life - no interference with

normal activities;

State 2 Mild Asthma - slight interference with normal

activities;

State 3 Severe Asthma - considerable interference with

normal activities.

The transition between states is described below.
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State 2

State 1

State 3

Figure 5.2. Possible transitions between states

Let these transitions be described by the following transition probability

matrix :

P =

P P P
M l M2 13

22

Pr 3 P
*3

(1)

As earlier on mentioned, the probable course and outcome of the disease

asthma change with the seasons. Seasons are accordingly classified on the

basis of daily pollen counts. In this study, we simply consider two seasons as

the appropriate transition times :-

1. Low pollen count season,

2. High pollen count season.

Each of the seasons therefore has its own transition count matrix and

transition probability matrix. We denote these matrices as follows :
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M<: transition count matrix for the low pollen count season,

M~: transition count matrix for the high pollen count season,

P«: probability transition matrix corresponding to the low

pollen count season, and

Vy. probability transition matrix corresponding to the high

pollen count season.

Let
M k = [ f i j ( k ) ] ' iJ=1'2'3' k=1'2'

and

~~ i i-1 2 3 k=l 2

Thus f--(k) denotes the transition count from state i to state j for the

season k and p--(k) the transition probability from state i to state j for the

season k.

The transition probabilities are estimated as follows

p\.(k) = f.-Ckyfj (k) , k = 1, 2. i,j = 1,2,3. (4)

Where f = V f (k)
i- :_i ij , i = 1, 2, 3.

J - 1

We assume here that the severity of asthma does not depend on the previous

state. For intance if an asthmatic patient has mild asthma during season k,

then an improvement (going to state 1) or the worsening (going to state 3)

does not depend on his previous state. It is only dependent on his present

state (state 2).

Thus the model assumes that the movement of the patients from one state to

another is dependent only on the present state and is independent of the past

history. This gives us the Markov chain model.
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We now test for the stationarity of the transition probability matrices P, .

That is, we test for the independence of P* on k. To do this we formulate the

following null hypothesis :

H O : Pi j ( k ) = Pij, for all k;

H«:depend on k.
(5)

We use the likelihood ratio test for the above hypothesis. For this

let

2 r -,
= Z M k = f..

k=l K Lyj
(6)

where

Maximum Likelihood estimate of the stationary transition probability matrix

is

(7)

where

3

Therefore X, the likelihood ratio criterion is given by

3 2

i,j k=l

A

P
(8)
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and we have that, (Bhat, 1972)

where m is the number of states and T is the time parameter. Here m = 3, T = k

= 2. Therefore

-21nX. «

Thus we evaluate X in (8) and calculate -21nX,. We then get the critical value
2

of %.r at a significance level and compare it with -21nX. We then decide

whether to accept or reject the null hypothesis FL.. With the acceptance of H^,

we have a homogeneous Markov chain model. In this case we can represent the

model by a single transition count matrix given in (6) and the p..'s are

estimated from equation (7).

5.1.2.2. Non-Homogeneous Markov Chain Model

We may wish to develop a non-homogeneous Markov chain model because of the

understanding of the disease asthma. Or we may reject the null hypothesis of

constant transition probability matrix, then we have a time - varying Markov

model or non - homogeneous Markov model. For these cases we cannot represent

the model by a single transition count matrix given in (6). We then seek for

alternative means of obtaining the p--'s in (1).

Following Howard (1971a), the stochastic matrix P in (1) can be written as

P ~ P l P 2 (10)

and the p..'s are estimated from (4).

We can now carry out further helpful calculations.
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Case 1. The homogeneous case.

In this case the transition probabilities do not depend on the season. The

limiting state probability vector, II can be found from the following

n = n p
and

3

in. = 1.
l

Case 2. The non-homogeneous case.

Here we consider the process to be governed in succession by transition

probability matrices P, and P~ and then the cycle is repeated in that order.

To obtain the limiting state probabilities for this process, we consider the

stochastic matrix given in (10). Then we obtain the state probability vector

FLj that holds at the end of each cycle of two seasons from

n0 = nop

3 •
and I n* = 1. (12)

i = l U

see Chorafas (1965).

The limiting state probability vectors II, and FL for the low pollen count

season and the high pollen count season respectively, are then obtained from

the following

n r no pi

n2 = nl P
(13)
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Because of the nature of the process, we have

n o •

5.1.2.3. Illustrative Examples

Suppose at the begining of the low pollen count season, we record the number

of asthmatic patients in each of the states. Then at the end of the season we

register the possible transitions from one state to another. We take note of

the number in each state for the high pollen count season, and at the end of

the high pollen count season we record the possible transitions.

Example 5.2.

Suppose the results are displayed in the following tables:

Table 5.2 Distribution of Patients' States of Health

According to Seasonal Variations.

Season (k)

Low

High

Table

Pollen Count

Pollen Count

5.3 Transition

(1)

(2)

Count

State

20

18

Matrices

1

for

State of

State

18

18

the Two

Health

2 State 3

9

11

Seasons.

M l =

' 17
3

1

1
10

1

2 "
5

7

M2 =
13
3

1

2
12

1

3
3

9
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Therefore M =

" 30 3 5

6 22 8

2 2 16

From (9) we have that

-21n

Thus using (8), we get

-link = 2.257 .

The critical value of yt at a = 0.05(say) is 12.59. Therefore the null

hypothesis of constant transition probability matrix can not be rejected. The

model can then be represented by a single transition count matrix given in

(6). Thus, the maximum likelihood estimate of the transition matrix P is the

following:

P =

0.789 0.079 0.132

0.167 0.611 0.222

0.100 0.100 0.800

Then the limiting state probability vector, II is obtained from (11) as

n = To.3619 0.1890 0.449ll

This shows that in the long run 36.19% of the asthmatics will have mild

asthma, 18.90% will have moderate asthma, while 44.91% of asthmatics will have

severe asthma.
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Example 5.3.

Suppose the probability transition count matrix for the low pollen count

season (M<) and the probability transition count matrix for the high pollen

count season (M~) are given as follows:-

86
18

15

6
55

9

8 "
27

76

" 72
16

0

11
67

6

17
17

94

Then we proceed as in example 5.1.

M =

" 158 17 25 '

34 122 44

15 15 170

Using (8) we get

-21nX = 32.9414.

The number of states m = 3 and the seasons (time) k = 2. Thus

2 r-A
The critical value of %6 at a = 0.05 (say) is 12.59. Therefore, the null

hypothesis of constant transition probability cannot be accepted. Thus the

model is a time varying model and can be represented by a single transition

probability matrix given in (10).

The maximum likelihood estimates of the transition probability matrices P, and

P^ are as follows :
,
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p l =

Hence from (10)

P =

0

0

0

P l

.86

.18

.15

P 2

0.06

0.55

0.09

=

0.

0.

0.

0.08

0.27

0.76

6288

2176

1224

' P 2

0.1396

0.4045

0.1224

=

0.72

0.16

0.00

0.2316

0.3779

0.7552

0.11

0.67

0.06

0

0

0

.17

.17

.94

Thus from (12) and (13) we get

Ul = Fo.3556 0.1631 0.4813J

n 2 = fo.2821 0.1773 0.5406J

Here we see that the severity of the disease increases with the amount of

airborne allergens. For instance, the probability of severe asthma during high

pollen count season is 54.06%, while the corresponding probability is 48.13%

during the low pollen count season. The probability of leading normal life

during low pollen count season is 35.57%. This probability is reduced to

28.22% during the high pollen count season.

5.1.2.4. Comments

We can readily see that in theory it is easy to formulate the above models. In

practice we may however run into many difficulties in trying to estimate the

parameters of the models. The first problem will be the determination of the

seasons. For instance, it may not be possible to know when the low pollen

count season starts and when it ends. The transition probabilities can be

estimated by observing a number of asthmatics for a year and counting the

number that move from one state to another at the end of each season as done
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by Jain (1986). In practice this exercise is not easy.

The results obtained from the non-homogeneous model confirms an establish fact

that the probability of suffering from severe asthma during high pollen count

season is higher than that obtained during the low pollen count season. The

model can therefore be used as a predictive device for studying the health

status of asthmatics. The predictions can then be used by policy makers in the

health service to plan for resources used in the management of the disease.

From the management point of view, a realistic time unit is a day rather than

a season. We therefore need transition probabilities that govern day to day

transitions. Given the set of states defined by Jain (1986) and Jain (1988),

which are also used in this section, we cannot observe the process day by day.

These models are therefore interesting from a theoretical rather than a

practical point of view.

5.2. A Semi-Markov Process Model for the Disease Asthma

The models developed in section 5.1 have the property that state changes can

only occur at the appropriate discrete time instant. In section 5.1.1 the time

instant was taken to be one day, while in section 5.1.2 the time instant was

the season. However, given the nature of the disease asthma, transitions may

not necessarily occur at these time instants. We therefore consider a

situation where the time between transitions may be several of the unit time

intervals, and where this transition time can depend on the transition that

is being made. This lead us to a generalization of a Markov process called a

semi-Markov process, (Howard, 1971b).

5.2.1. The Formulation of the Model

To formulate this model, we retain the assumptions made for the Markov chain

model developed in section 5.1.1. We therefore have the same states and hence

the same transition diagram. We shall however think of this process as a

process whose successive state occupancies are governed by the transition

probabilities of a Markov chain, but whose stay in any state is described by a
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discrete random variable that depends on the state to which the next

transition will be made.

To make this notion precise, let P.- be the probability that the asthmatic,

who entered state i on his last transition, will enter state j on his next

transition, i,j = 0, 1, 2, 3. The transition probabilities must satisfy the

same equations of the transition probabilities for a Markov chain,

P:: > 0 i, j = 0, 1, 2, 3; (14)

and V P.. = 1, i = 0, 1, 2, 3. (15)
u y

j=o

Whenever the asthmatic enters a state i, he remains for a time T.. in state i

before making a transition to state j . The holding times are positive,

integer-valued random variables each governed by a probability mass function

f..(.) called the holding time mass function for a transition from state i to

state j . Thus

jj = m) = fj.(m), m = 0,1,2,... (16)

i j = 0, 1, 2, 3.

The k moment, about the origin, ji . . of the holding time T-. is defined by

oo

k
jj..- = ) m

m=0

Variance

ij IJ IJ

We assume that the means (!•• of all holding time distributions are finite and

that all holding times are at least one day in length, that is

fr(0) = 0 (18)
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We therefore must specify 4 holding time mass functions (since for a fixed

value of i, T.. is the same for each value of j , i,j = 0,1,2,3.) in addition

to the transition probabilities, to describe this process completely.

The figure 5.3 shows a portion of a possible trajectory for the semi-Markov

process.

State

Time in days

Figure 5.3. A possible trajectory for the process.

Let F.-(.) be the cumulative probability distribution of T-.,

n
F..(n) = P(T.. < n) = V f..(m)

m=0

and

F.(.) be the complementary probability distribution of T..

(19)

~FT.(n) = 1 - F..(n) = j . > n) = [ f..(m)

m=n+l

(20)

Suppose now that the asthmatic enters state i. Let Y. be the time spent in

state i before moving out of state i. We let w.(.) be the probability mass

function of Y-, then

= P(Yi = m) (21)

j=0
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We call Y-, the waiting time in state i. The mean waiting time \). and the mean

holding time jo... are related as follows

3

j=o

(22)

and the variance of the waiting time is given as

VarCYj) = M\ - (23)

where V- is the second moment of the waiting time and is computed using the

second moments of the holding time as follows

3

j=o

(24)

The cumulative probability distribution W(. ) and the complementary

cumulative probability distribution W ; (.) for the waiting times are

n
W i (n)= [ w i (m)=

m = 0 m=0 j=0 j=0

= P(Y. < (25)

3
Y P..f.-(m) = Y P-~F7.(n)L IJ IJ

 v ' L \) \y '
m=n+l m=n+l j=0 j=0

~W.(n) = Y w.(m) =

(26)
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5.2.2. The Interval Transition Probabilities

We define <|>-(n) as the probability that the asthmatic will be in state j on

day n given that he entered state i on day zero. We call this probability the

interval transition probability from state i to state j in the interval (0,n).

Then

3 n

Pik V
k=0 m=0

ij=0,l,2,3;
n=0,l,2,...

o M

We write equation (27) in matrix form as

n

<D(n) =~W(n) + [ | P D H(m)l O(n-m), n = 0,1,2,... (28)

m=0

where • denotes congruent matrix multiplication, that is, multiplication of

corresponding components. W(n) is the matrix comprising of elements W • (n)

obtained from equation (26).

5.2.3. Counting the Number of Attacks

Since the semi-Markov model allows us to distinguish between the number of

time units that have passed and the number of transitions that have occurred,

we have the opportunity of asking not only the probability of being in each

state on day n but also the probability distribution of the number of

transitions made by that day. For this we let N(n) be the number of

transitions that the asthmatic has made between day 0 and day n. Let S(n) be

the index of the state that the asthmatic occupies on day n, and let t(k) be

79



the time at which the k transition occurs. Then define <|>.-(k/n) by

4>. • (k/n) = pJN(n)=k,S(n)=j | S(O)=i,t(O)= o | (29)

i = 0,1,2,3.; k,n = 0,1,2,...

j = 1,2,3.

<[)--(k/n) is the joint probability that the asthmatic is in state j and that he

has made k transitions given that the day is n and that on day zero the

asthmatic entered state i on his zeroth transition. This probability satisfies

the following recursive equation,

n
y m ) <f>rj(k-l/n-m)

r=0 m=0 (30)
i = 0, 1, 2, 3; j = 1,2,3.; n,k = 0, 1, 2, ...

8(k) = ( 1 ' k ~° and
0 ,

^(O/n) = SjjT^TCn) i = 0,1,2,3.; n = 0,1,2,... (31)

j = 1,2,3.

Showing that the only way to have made no transitions within (0,n) is to have

i = j and a holding time in state i that is greater than n.

Equation (30) can be written in matrix form by defining a matrix <I>(k/n) with

elements <{>-(k/n) :

n

O(k/n) = S(k)^V^n) + V [P • H(m)l 3>(k-l/n-m), (32)
u L J

m=0 n,k = 0,1,2,...

Where H(m) is a matrix of holding times with elements f..(m).



The calculation of O(n) and O(k/n) is very tedious but appropriate computer

packages could be used to evaluate them. See Howard (1971b) for some

illustrative examples.

5.2.4. The Effect of Preventive Treatment

If preventive treatment is given in order to prevent asthma attacks, then the

transition probability matrix P is recalculated using equation (5) of section

5.1.1. An alternative could be to extend the holding time in state 0 using the

following :

Dp. = (1+k) HQj

Where k is as defined in equation (5) of section 5.1. Then replacing ^u. by

\),y. This involves specifying new holding time mass functions fry(-) with mean
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CHAPTER 6

STOCHASTIC MODELS IN CONTINUOUS TIME

The models developed in chapter 5 were in discrete time. The transition time

was in days. Therefore one could know the condition of the asthmatic only on a

given day. However we might be interested in the condition of the asthmatic at

any time t. In this chapter we construct models of the asthma process in

continuous time. A two state model is considered in section 6.1. This model is

extended in section 6.2 to a three state model. A non-Markovian approach is

considered in section 6.3.

6.1. A Two State Model for the Asthma Process

In this section we look at asthma as a two state process. The model is

developed in section 6.1.1 and we introduce the concept of prevention and

treatment of the disease in section 6.1.2. Cost is incorporated into the

model in section 6.1.3. In each section a hypothetical example is given.

6.1.1. The Development of the Model

Consider a single asthmatic. We assume that at any time t the asthmatic is

either experiencing an attack or is attack-free. If he is experiencing an

attack, he then stays with this attack for a certain period of time called the

duration of the attack. Treatment is given during this attack and the

asthmatic gets cured. If he was attack-free at time t = 0, he stays in this

state for a certain period of time, then develops an attack. He gets treated
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and becomes attack-free again. For the sake of simplicity, we assume that the

probability of death from attack is negligible. We thus have a two state

process

State 0 No attack

State 1 Attack - the asthmatic is currently experiencing

an attack

The transitions between these states are represented in the following diagram.

4-

State 0 State 1

Figure 6.1. The transition diagram for the process.

The asthmatic may spend some time in each state, and as time progresses states

0 and 1 alternate.

Suppose that if the asthmatic is in state 0 at time t then the probability

that he may switch to state 1 in time interval (t,t+At) is, to the first

order, a^At independent of all occurrencies before time t. Similarly, the

probability that he may switch from state 1 to state 0 in time interval

(t, t+At) is a,QAt. Let us call a,., the transition rate of the asthmatic

from state 0 to state 1 and a«Q the transition rate of the asthmatic from

state 1 to state 0. Note that the probability of two or more transitions in
2

the time interval (t,t+At) is of the order of (At) or higher. This is

assumed to be zero when At is small. Let A be the transition rate matrix for

the process with components a... Following Howard (1960), the diagonal

elements a-, of A are given as

a o o = - a o i md a n = - a i o - (1)

Let PQ(0 be the probability that at time t the asthmatic is in state 0 and

P,(t) be the probability that at time t the asthmatic is in state 1. The
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probability that state 0 is occupied at time t+At is the sum of the

probabilities that

(i) state 0 is occupied at time t and no transition occurs in the time

interval (t,t+At). See figure 6.2 below.

State '
1

0
t

Time in

t+At

days

Figure 6.2. A possible trajectory for P~(t+At)

(ii) state 1 is occupied at time t and a transition from state 1 to state 0

occurs in the time interval (t, t+At). See figure 6.3 below.

State '
1

0
t t+At

Time in days

Figure 6.3. Another possible trajectory for P<-)(t+At)

A similar argument is applied to P,(t+At) and elementary probability

considerations lead us to the following equations

PQ(t+At) = (l-aQ1At) PQ(t) + a1QAt Pj(t)

= aQ1At P0(t) + (l-a1QAt) Pj(t)
(2)

Dividing by At and taking limits as At -> 0 in equations (2), we have that

P^(t) and Pi(t) satisfy the following differential equations
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dt
(3)

d ? l ( t ) = aoipo( t ) - a iop i ( t )

dt

In matrix form we may write equations (3) as

dP(t) = P(t) A

dt

Where P(t) is the vector of state probabilities at time t. i.e. P(t) = [PQ(0

Pi(t)]. Since states 0 and 1 are mutually exclusive, we have that Pr>(t) +

Pj(t) = 1, for all t, (Syski, 1989). With this condition, the differential

equations (3) have the following solution

P0(t) = - ^ + {P (0) - - ^ } expf- (a + a )t]
aoi+ a ioL a o i + a i o J L J

(4)

P (t) = —21 + ( P ^ O ) - —— } exp[- (aol+a lo)tl
aoi+aioL aoi+aioJ L J

Note that PQ(t) + P^t) = 1 as it should be. PQ(0), P^Q) are the

probabilities of being in states 0 and 1 at time t = 0, respectively; and

P0(0) + P^O) = 1.

We can see clearly that as t -> » the probabilities in (4) approach the

limiting values

PQ = lim PQ(t) = —
t->°° arc+ain

a ( 5 )

5J= lim PQ(t) =
t->oo
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These limiting values provide the equilibrium probability distribution for the

process.

An alternative formulation of the process is in terms of two sequencies of

mutually independent random variables -I X,, 3C, ••• r an (i \ Y«, Y«, ... I

exponentially distributed with parameters equal to a^« and a,^ respectively.

This means that the time between attacks is exponentially distributed with

^,, while the duration of an attack is exponentially distributed withmean
mean IMIQ. If, for example, the asthmatic starts in state 0, there is a

transition to state 1 at time X,, a transition back to state 0 after a

further time Y,, and so on.

Figure 6.4 shows a realization of this process.

State

0
Y l X 2 Y 2 X 3

Time in days

Figure 6.4 A possible trajectory for the asthma process.

Example 6.1.

Suppose that if the asthmatic is in state 0, there is a probability l/30At

that he will be in state 1 in a short interval At; and if he is in state 1,

there is a probability l/2At that he will be free of attack in At. Thus SQ* =

1/30 , a,Q = 1/2 and we obtain the following transition rate matrix

A = -1/30 1/30

1/2 -1/2
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This is equivalent to saying that the time between attacks is exponentially

distributed with mean 30 days, while the duration of an attack is

exponentially distributed with mean 2 days. For this problem we would like to

find, for example, the probability that the asthmatic will be in state 0 at

time t > 0 if he is in state 0 when t = 0. If the asthmatic is in state 0 at

time t = 0, so that P(0) = [PQ(0) PjCO)] = [1 0], then from equations (4),

we see that

P0(t) = -41 + To" exp

p l ( t ) = T 5 - T o - e x p ( "

Both Pn(t) and P,(t) have a constant term plus an exponentially decaying term.

The constant term represent the limiting state probability as t becomes very

large. Thus the probability that the asthmatic is in state 0, Pri(t), falls

exponentially from 1 to 15/16 as t increases.

Similarly, if the asthmatic is in state 1 at time t = 0, P(0) = [0 1], and

from equations (4)

p 0 « = ~re-To-exp

+ To" e x p (-

Note that the probability that the asthmatic is in state 0 rises exponentially

from 0 to its steady-state value of 15/16 as t becomes large. The limiting

state probabilities of the process are 15/16 and 1/16 for states 0 and 1,

respectively. They are independent of the state of the asthmatic at t = 0.

Suppose that the asthmatic is initially in state 0. As shown in figure 6.4,

each period spent in a state is a random variable. The random variable has

mean 1/aQ, for state 0 and 1/aiQ for state 1. In a very long time , say after

2N transitions, the total time spent in state 0 will be the sum of a large

number N of quantities, each with expectation l/a^i. and hence will be

asymptotically N/a->,; similarly the time spent in state 1 will be
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asymptotically N/a,^. Thus the proportion of a very long time spent in state 1

is asymptotically

N / a 1 Q aQ1

N/aQ 1+ N/a1Q aQ1+ a1Q

Therefore, if we observe the process for a long period of time, the proportion

of time which the asthmatic spends in state 1 is approximately the stationary

probability P, of finding the asthmatic in state 1. Similarly for a long

period of time, the proportion of time spent in state 0 is approximately P~.

6.1.2. A Two State Model with Preventive Treatment

In section 6.1.1 we assumed that treatment was given during an attack but

there was no treatment to prevent this attack. In this section we allow a

situation where the asthmatic could be under preventive treatment.

Suppose as in section 6.1.1 that if the asthmatic is in state 0 at time t

then the probability he may switch to state 1 in time interval (t,t+At) is

a^.At. This is equivalent to saying that the duration in state 0 is

exponentially distributed with mean 1/a,-̂ . Now suppose that preventive

treatment is given to the asthmatic. This treatment reduces this probability

of switching from state 0 to state 1 in (t,t+At) to bQ.At. How much this

probability is reduced depends on the effectiveness of this treatment. A

convenient measure of the effectiveness of the treatment is obtained by the

definition

l/bQ1 = (1 + k) l/a01 (7)

where k is a positive real number. With k = 0 the treatment has no effect at

all, and with k > 0 the treatment is beneficial. The probability a~,At is

reduced to b^At accordingly. The probability of switching from state 1 to

state 0 in time interval (t,t+At), namely a,QAt remains the same since an

attack is assumed to be always treated. To be consistent with notations,



however, we use b^At instead of a^At. Thus

b 1 Q = a1Q. (8)

Let PQ(0 and P,(t) be as defined in section 6.1. Following equations (4), we

have for this process

d Juoru io uoi"

(9)

P,(t) = — + |Pi(O) - - ^ } expf- (bol+b lo)tl
01+b10 b01+ b10

Where b^, and b-.^ are found from (7) and (8) respectively. The transition rate

matrix is B with components b... The diagonal elements of B are b ^ = - b^,

and b , , = - b .^ , analogous to equation (1).

Example 6.2.

Suppose that an asthmatic has a probability l/30At of moving from state 0 to

state 1 in a short interval (t,t+At) under no preventive treatment. Suppose a

preventive treatment for which k = 0.95 is given to this asthmatic. With this

preventive treatment the probability of switching from state 0 to state 1 is

reduced to bp>,At, where b^, = 2/117 with a^, = 1/30 and k =0.95 subtituted in

equation (7). Suppose the probability of moving from state 1 to state 0 in a

short interval (t,t+At) is l/2At. Then b ^ = a,^ = 1/2 and we obtain the

following transition rate matrix

B = -2/117 2/117

1/2 -1/2

This is equivalent to saying that the time between attacks has an exponential

distribution with mean 58.5 days, while the duration of an attack is
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exponentially distributed with mean 2 days (as in example 1). Note that the

mean duration in state 0 is increased from 30 days to 58.5 days (a 95 %

increase) as a result of this preventive treatment.

Suppose the asthmatic is in state 0 at time t = 0, so that

[PQ(0) Pj(O)] = [1 0], then from equations (9), we have

P0(t) = T2T + TIT

and

p l ( t ) = T2T - T2T e x p

Similarly, if the asthmatic is in state 1 at time t = 0,

[PQ(0) P^O)] = [0 1], and from equations (9)

P0(t) = T2T * -121 e x p ("121/234t)

and p l ( t ) = T2T + T2T e x p ("121 /234 t)

The probability of being in state 1 having started in state 0, under no

prevention is compared to that under prevention, for a week in the following

table.

Time
(in days)

0
1

2

3

4

5

6

7

No prevention

0.00000

0.02580

0.04099

0.04988

0.05510

0.05815

0.05950

0.06101

Prevention
(k = 0.95)

0.00000

0.01335

0.02131

0.02605

0.02888

0.03057

0.03157

0.03217

Table 6.1. A comparison of the probability of being in state 1

having started in state 0, under no preventive treatment and

that under preventive treatment.
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Values shown in table 6.1 are displayed graphically in figure 6.5 for

clarity.

6.1.3. A Two State Model with Cost Implications.

Let us suppose that the asthmatic incurs a cost of c- pounds per unit time

during all the time he is in state i, i = 0, 1. We are interested in the

expected cost the asthmatic incurs for a time t. For this, let KQ(0 be the

expected total cost that the asthamtic incurs in a time t if he starts in

state 0, and KM) be the expected total cost that the asthmatic incurs in a

time t if he starts in state 1. Then following Howard (1960), the total

expected cost in a time t+At for states 0 and 1, denoted by K^t+At) and

K<(t+At) respectively, are given as

Figure 6.5. Probability of being in state 1
having started in state 0

and

0.07

0.06

p
r
0
b
a
b
i
1
i
4
I
y

0

0

0

0

.05

.04

.03

.02

0.01

*

Prevention

8

KQ(t+At) = (1 - a01At)[C()()At + KQ(t)]

KjCt+At) = (1 - a1 0At)[cnAt + K^t)] + a1QAt KQ(t)
(10)
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The above equations can be interpreted as follows : consider first of all

KQ(t+At). During the time interval (t, t+At) the asthmatic may remain in state

0 or make a transition to state 1. If the asthmatic remains in state 0 for a

time At, a cost of c^At will be incurred plus the expected cost incurred in

the remaining t units of time, KQ(0 . The probability that the asthmatic

remains in state 0 for a time At is 1 minus the probability he makes a

transition in At, i.e. 1 - a^iAt. On the other hand, the asthmatic may make a

transition to state 1 during the time interval (t,t+At) with probability

a^At. In this case he incurs a cost K,(t) for t units of time remaining. A

similar argument holds for Kj(t+At). The product of probability and cost must

then be added in order to obtain the total contribution to the expected

values.

Using equation (1) we write equations (10) as

KQ(t+At) = (1 + a ^ A t ^ c ^ A l + KQ(t)] + a^At Kj(t)

and

= (1 + a i lAt)[cuAt + KjCt)] + a1QAt KQ(t)

or

KQ(t+At) = cooAt+Ko(t)+a(X)K()(t)At+ a^At Kj(t)

and
(11)

KjCt+At) = c11At+K1(t)+anK1(t)At+ a1QAt KQ(t)

where terms of higher order than At have been ignored.

Dividing equations (11) by At and taking limits as At -> 0 with appropriate

rearrangement gives

•j- Ko® = coo + aoo KoW + aoi K i «
d t (12)
d Kj(t) = c n + a n Kj(t) + a1Q KQ(t)
dt
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We thus have a set of constant-coefficient differential equations that define

KQ(t) and K^t) completely when KQ(0) and K^O) are specified. Obviously KQ(0)

= 0 and Kj(0) = 0 since the cost incurred at time t = 0 is zero.

Let K(t) represent the column vector with elements K.(t), the total expected

cost, then equations (12) can be written in matrix form as

d K(t) = C + A K(t) (13)
dt

where C = is a column vector of transition costs.

To obtain a solution to (13), we use the Laplace transform method. For this we

let K(s) be the Laplace transform of K(t), then if we take the Laplace

transform of equation (13), we have

sK(s) - K(0) = 1/s C + A K(s)

or

(si - A)K(s) = 1/s C + K(0)

or

K(s) = 1/s (si - A)"1 C since K(0) = 0. (14)

The cost vector K(t) is found by inverse transformation of equation (14).

Example 6.3.

Suppose as in example 6.2 that a preventive treatment for which k = 0.95 is

given to the asthmatic. Thus the probability of switching from state 0 to

state 1 in a short time interval (t,t+At) is reduced to 2/117At. The

probability of moving from state 1 to state 0 in a short interval (t,t+At) is

l/2At, see example 6.2. Then the transition rate matrix is given by

A = r-2/117 2/1171

L 1/2 -1/2 -I
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Suppose further that the asthmatic incurs a cost of 5 pounds per unit time

during his stay in state 0 and 8 pounds per unit time during his stay in

state 1. Then = 5, C«J = 8 and

• [ i ] .
Thus we have

( s i - A ) ' 1 =
' s+1/2 2/117
s( s+121/234) s(s+12l/234)

1/2 s+2/117
L s(s+12l/234) s(s +121/234)-!

l/s(sl - A)-1

s+1/2 2/117

s2(s +121/234) s2( s+121/234)

1/2 s+2/117
s2(s +121/234) sZ(s+121/234y

Using partial fraction expansion, we get

l/s(sl - A)'1 =

936/14641 117/121 -936/14641
s ~1~ s+121/234

117/121 -27378/14641 27378/14641
* s s+121/2342

s

4/121

s

-936/14641, 936/14641
s s+121/234

4/121 ^ 27378/14641
7* +

-27378/14641
s+121/234
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1
—2

117/121 4/121

117/121 4/121

936/14641 -936/14641

-27378/14641 27378/14641

+ s+121/234

-936/14641 936/14641

27378/14641 -27378/14641

,-1
Since K(s) = l/s(sl - A)" C, we have by inverse transformation that

K(t) = t
5.
5.

10"
10 +

0.

-5

-0.19 '
5.61

19 "

.61 expexp(-121/234t)

The total expected cost in time t if the asthmatic started in state 0 is thus

KQ(t) = 5.10t - 0.19 + 0.19 exp(-121/234t)

and the total expected cost in time t if he started in state 1 is given by

Kj(t) = 5.10t + 5.61 - 5.61 exp(-121/234t)

We can see that irrespective of the starting state the asthmatic will incur an

average cost of 5.10 pounds per unit time when t is large.

6.1.4. Possible Extension of the Two State Model.

In reality, when the asthmatic is in state 1, the severity of the attack is

assesed in order to give appropriate treatment. Some tests such as the lung

function tests are performed and the attack is classified as mild, moderate,

or severe depending on the results of these tests, see chapter 8 for detailed

analysis. In addition the asthmatic might die if the attack is not well

treated. There is also a possibility that an asthmatic might "grow out" of
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asthma by adult age. When all these possibilities are allowed, the two state

model developed in section 6.1.1 becomes inadequate for the problem and hence

a model for more than two states is needed. This model is therefore developed

in section 6.2.

6.2. A Three State Model for the Asthma Process

In this section we give an extension of the two state model taking into

account some of the possibilities mentioned in section 6.1.4. The model is

developed in section 6.2.1 and the concept of prevention and treatment of

asthma attacks with the resulting costs is highlighted in section 6.2.2. In

each case an example is given for the sake of clarity.

6.2.1. The Development of the Model

Consider as in section 6.1.1 that we have a single asthmatic. At time t the

asthmatic is either experiencing an attack or is attack-free. When the

asthmatic develops an attack, some lung function tests and other measurements

are performed, and depending on the results of these measurements the attack

is classified as mild, or severe (we do not distinguish between mild and

moderate attacks). The asthmatic then stays with this attack for a period of

time called the duration of the attack. Treatment is given during this attack

and the asthmatic gets cured. If the asthmatic was attack-free at time t = 0,

he stays in this state for a certain period of time, then develops an attack.

The asthmatic gets treated and becomes normal again. As in section 6.1.1 we

assume that the probability of death from an attack is negligible. Therefore

we have a three state process :-

State 0 No attack

State 1 Mild attack

State 2 Severe attack

The likely transitions between these states are shown in figure 6.6
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State 0

State 1

•<

State 2

Figure 6.6. The transition diagram for the three state process.

This is a three state process whose time between transitions is random. Figure

6.7 shows a portion of a possible trajectory for this process.

State

Time in days

Figure 6.7. A possible trajectory for the three state process

Following Howard (1960), let a., be the transition rate of the asthmatic from

state i to state j , i^j. By this we mean that in a short time interval

(t,t+At), the asthmatic, now in state i will make a transition to state j with

probability a--At (i^j). Symbolically, if X represent the state of the

process at time t, then we have

P(X,t+At = j X t = i) = i..At (15)

The probability of two or more state transitions is of the order of (At) or

higher and could be neglected if At is sufficiently small. We assume that the

a..'s are constants, that is, the transition rates do not change with time. We

define

Ji
i,j = 0,1,2. (16)
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We thus describe this process by a transition-rate matrix A with components

a... Those who are familiar with Markov chains, as discussed in chapter 5,

will see that this matrix is analogous to the transition probability matrix

in Markov chain analysis. The assumption that the transition rates are

constant is also equivalent in the discrete-time case to the assumption that

the transition probabilities do not change with time.

Let P.(t) be the probability that the asthmatic is in state i at time t after

the start of the process. Let P.(t+At) be the probability that the asthmatic

is in state i a short time At later.

Then P.(t+At) = Pj(t)[l-[ a..At] + [ P.(t) a. .At ( n )

{*> ^ j = 0,1,2.

Equation (17) can be explained as follows : there are basically two mutually

exclusive ways in which the asthmatic can be in state j at time t+At. First,

he could have been in state j at time t and made no transition during the

interval (t,t+At). These events have respective probabilities P-(t) and

1- V a-.At since the probability of multiple transitions is of the orderu J1

higher than At and is negligible. Note also that the probability of making no

transition in (t,t+At) is 1 minus the probability of making a transition in

(t,t+At) to some state i^j. Another way the asthmatic could be in state j at

time t+At is to have been in state i*j at time t and then made a transition

from i to j during the time At. Equation (17) is obtained by multiplying the

probabilities and adding over all i that are not equal to j because the

asthmatic could have entered j from any other state i.

Substituting equations (16) in (17), we have

Pjd+At) = Pj(t)[l+ ajjAt] + [ Pj(t) ajjAt

ij

or
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Pj(t+At) - Pj(t) = I PjCt) a.jAt

i=O

Dividing by At and taking limit as At —> 0, we obtain

d Pj(t) = [ Pj(t) ajj j = 0,1,2. (18)

This is a set of three linear constant-coefficient differential equations that

relate the state probabilities to the transition rate matrix A. In matrix

form therefore we may write equation (18) as

d P(t) = P(t) A (19)
dt

P(t) is a row vector of state probabilities at time t. Note that the matrix A

is also called a differential matrix. This is bacause its rows sum to zero.

The initial distribution conditions P-(0), i = 0,1,2. must be specified in

order to obtain the solution for equation (19). The Laplace transform

technique is usually employed to obtain this solution.

Example 6.4.

We suppose that if the asthmatic is in state 0, he has a probability of

l/30At of being in state 1, and a probability of l/50At of being in state 2 in

a short time interval (t,t+At). If the asthmatic is in state 1, he has a

probability of l/2At of making a transition to state 0 and a probability of

l/5At of making a transition to 2 in a short interval of time (t,t+At). When

the asthmatic is in state 2, the probabilities are 1/15At and l/10At of making

transitions to states 0 and 1 respectively in a short time interval of length

At. Therefore aQ1 = 1/30, aQ2 = 1/50; a1Q = 1/2, a^ = 1/5; and a2Q = 1/15,

a~i = 1/10. The transition matrix is given as
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A =
-0.05 0.03 0.02

0.50 -0.70 0.20

k).O7 0.10 -0.17

This is equivalent to saying that the time between state 0 and state 1 is

exponentially distributed with mean 30 days, the time between states 2 and 3

is exponentially distributed with mean 5 days etc. The problem is therefore to

find the probability that the asthmatic will be in state i at time t given

that he was in state j at time t = 0. For this, we solve equation (19) by the

Laplace transform method.

Taking the Laplace transform of (19), we have

sP(s) - P(0) = P(s) A

or

and

P(s) (sI-A) = P(0)

P(s) = P(0) (sI-A)-1 (20)

Thus P(t) is obtained as the inverse transform of P(s). Following this method,

we first write (si-A),

(sI-A) =

s+0.05 -0.03 -0.02

-0.50 s+0.70 -0.20

-0.07 -0.10 s+0.17

and then find its determinant,

| (si-A) | = s3 + 0.92 s2 + 0.13 s = s(s+0.17)(s+0.75)

Therefore

(sI-A)'1 = l/s(s+0.17)(s+0.75)

r 2
r+0.87s+0.1 0.03s+0.01 0.02s+0.02

0.5s+0.1

0.07s+0.1

s^+0.22s+0.01 0.2s+0.02

O.ls+0.01 s^+0.75s+0.02
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and write it in partial fraction expansion form,

-1 1
(sI-A) =~"s

0.77 0.08 0.15

0.77 0.08 0.15

0.77 0.08 0.15

1

1

s+0.17

[0.20 -0.05 -0.15'

-0.14 0.00 0.14

-0.88 0.07 0.81

s+0.75

0.03 -0.03 0.00 '

-0.63 0.92 -0.29

0.11 -0.15 0.04

We therefore have, by inverse transformation

P(t) =P(0)

0.77 0.08 0.15

0.77 0.08 0.15

0.77 0.08 0.15

+exp(-0.17t)

0.20 -0.05 -0.15'

-0.14 0.00 0.14

-0.88 0.07 0.81

+exp(-0.75t)

0.03 -0.03 0.00

-0.63 0.92 -0.29

0.11 -0.15 0.04

Thus P(t) is completely specified whenever the initial probability matrix P(0)

is known. The first matrix is a stochastic matrix and the other two matrices

are differential matrices except for round off errors.

Suppose the asthmatic is in state 0 at time t = 0. Then

P(0) = [P Q (0) P^O) P2(0)] = [l 0 OJ and

P(t) = To.77 0.08 0.15J +|o.2O -0.05 -0.15Jexp(-0.17t)

+ [o.O3 -0.03 0.00Jexp(-0.75t) (21)

The constant terms in equations (21) represent the limiting state

probabilities as t becomes large.
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Similarly, if the asthmatic starts in state 1 at time t = 0. Then

P(0) = To 1 ol and

P(t) = [o.77 0.08 0.15J + [-0.14 0.00 0.14Jexp(-0.17t)

+ [-0.63 0.92 -0.29Jexp(-0.75t)

The asthmatic may also start in state 2 at time t = 0. Then

P(0) = [ 0 0 ll and

P(t) = To.77 0.08 0.15] +[-0.88 0.07 0.8llexp(-0.17t)

+ [o.ll -0.15 0.04Jexp(-0.75t)

6.2.2. Implications of Preventive Treatment

Here we introduce the concept of prevention of asthma attacks. By this we mean

treatment is given to the asthmatic in order to prevent him from asthma

attacks. To do this we suppose as in section 6.1.2 that if the asthmatic

occupies state 0 at time t then he has probabilities a^At and a^At of

switching to state 1 and state 2 in time interval (t,t+At), respectively. This

is the same as saying that the times taken for the asthmatic to make a

transition from state 0 to states 1 and 2 are exponentially distributed with

mean l/a^i and 1/a^ respectively. If preventive treatment is given to this

asthmatic, these mean times are increased to 1A>QI and l/b/y? respectively, and

the probabilities of switching from state 0 to states 1 and 2 in (t,t+At) are

therefore reduced to b^At and b^At accordingly. The reduction is however

dependent on the effectiveness of this preventive treatment. As discussed in

section 6.1.2, a measure of this effectiveness is obtained from the following

expression

l/bQj = (1+k) 1/80. , j = 1,2. (22)
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with k defined in section 6.1.2. The probabilities of switching from states 1

or 2 to state 0 in time interval (t,t+At), namely a^At and ^rvAt remains the

same. For consistency we use b«~At and t ^ A t instead of a and

Therefore and (23)

and the b..'s are obtained from equation (16).

Let P-(t), i = 0,1,2. be as defined in section 6.2.1. Then we have

dt
P(t) = P(t) B (24)

with analogy to equation (19). In this case the matrix B has components b..,

i j = 0,1,2.

Example 6.5.

Let l/30At and l/50At be the probabilities that the asthmatic will switch from

state 0 to states 1 and 2 without preventive treatment, respectively. When

preventive treatment is given these probabilities reduce to b^.At and b^At,

respectively, where b ^ and b~~ are found from (22) with a~< = 1/30 and a~~ =

1/50. Let the other probabilities be as in example 6.4. That is, b ,~ = 1/2,

b ,^ = 1/5; b^p. = 1/15, b^, = 1/10. Then with b™, b<, and b^o obtained with

the use of (16), we have that the matrix of transition rates is

B =
-0.03 0.02 0.01
0.50 -0.70 0.20

L0.07 0.10 -0.17

(sI-B) =

and

r s+0.03 -0.02 -0.01
-0.50 s+0.70 -0.20
-0.07 -0.10 s+0.17
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(sI-B)"1 = 1/s (s+0.1532)(s+0.7468)

r s2+0.87s+0.099 0.02s+0.0044 O.Ols+0.011 1

0.5s+0.099 s^+0.2s+0.0044 0.2s+0.011
0.07s+0.099 O.ls+0.0044 s^+0.73s+0.011

The partial fraction expansion is of the form,

-1 1
(sI-B) =~s

r 0.86 0.04 0.10
0.86 0.04 0.10
0.86 0.04 0.10

1

s+0.1532

0.12 -0.02 -0.10
-0.25 0.03 0.22
-0.97 0.12 0.85

1

s+0.7468

Thus we have that

P(t) =P(0>

0.02 -0.02 0.00 '
-0.62 0.93 -0.31
0.11 -0.16 0.05

0.86 0.04 0.10
0.86 0.04 0.10
0.86 0.04 0.10

+exp(-0.1532t)

0.12 -0.02 -0.10
-0.25 0.03 0.22
-0.97 0.12 0.85

+exp(-0.75t)
0.02 -0.02 0.00
-0.62 0.93 -0.31
0.11 -0.16 0.05

If the asthmatic is in state 0 at time t = 0. Then

P(0) = [l 0 ol and

P(t) = To.86 0.04 O.iol + I"o.l2 -0.02 -O.iolexp(-O.1532t)

+ fo.02 -0.02 0.00Jexp(-0.7468t)

If the asthmatic starts in state 1 at time t = 0. Then

P(0) = [o 1 ol and
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P(t) = [0.86 0.04 O.IOJ + [-0.25 0.03 0.22Jexp(-0.1532t)

+ T-0.62 0.93 -0.3llexp(-0.7468t)

The asthmatic may also start in state 2 at time t = 0. Then

P(0) = and

P(t) = To.86 0.04 O.IOJ + T-0.97 0.12 0.85Jexp(-0.16t)

+ fo.ll -0.16 0.05Jexp(-0.7468t)

The probability of being in states 1 and 2 having started in state 0, under no

prevention is compared to that under prevention, for a week in tables 6.2 and

6.3 respectively.

Time
(in days)

0

1

2

3

4

5

6

7

No prevention

0.00000

0.02365

0.03772

0.04681

0.05318

0.05792

0.06164

0.06319

Prevention
(k = 0.99)

0.00000

0.01336

0.02079

0.02524

0.02815

0.03023

0.03180

0.03305

Table 6.2. A comparison of the probability of being in state 1

having started in state 0, under no preventive treatment and

that under preventive treatment.

Values shown in tables 6.2 and 6.3 are displayed graphically in figures 6.8

and 6.9 respectively.
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Time
(in days)

0

1

2

3

4

5

6

7

No prevention

0.00000
0.02345
0.04324
0.05993
0.07401
0.08589
0.09591
0.10437

Prevention
(k = 0.99)

' 0.00000
0.01420
0.02639
0.03685
0.04582
0.05351
0.06012
0.06578

Table 6.3. A comparison of the probability of being in state 2
having started in state 0, under no preventive treatment and
that under preventive treatment.

Figure 6.8. Probability of being in
state 1 having started in state 0
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Now, cost may be incurred when this treatment is given. We let c.̂  pounds be

the cost incurred by the asthmatic per unit time during all the time he is in
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state i, i = 0,1,2. The concern here is the expected cost the asthmatic

incurs for a time t. Let K.(t) be the expected total cost that the asthmatic

incurs in a time t if he starts in state i. The total expected cost in a time

t+At for state i may be found in the following way :

(i) In the time interval (t,t+At), the asthmatic may remain in state i or

move to some state j . If the asthmatic stays in state i for a time At,

he will incur a cost c--At plus the expected cost that will be incurred

in the remaining t units of time, K.(t). The probability that the

asthmatic remains in state i for a time At is 1-Y b..At.

(ii) The asthmatic may make a transition to some state ]J\ during the time

interval (t,t+At) with probability b--At. In this case he would incur a

cost KAt, for the remaining t units of time.

The product of probability and cost must be summed up in order to obtain the

total contribution to the expected values. We then get

= (l-[ b ^ ^ A t + ^(1)]+ [ bjjAtKjCt) (25)

Using equation (16), we have

Kjd+At) = (1+ bjjAD^At + ^(1)]+ [

or

KjCt+At) = c u + ICO) + b^CDAt + [ bjjAtKjCt) (26)

ji

Where terms of higher order than At have been neglected. Dividing (26) by At

and taking limit as At—> 0, we have
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J L K J W = c..+ [ b.. Kj(t)

dt j=0

(27)

Equation (27) is a set of three constant-coefficient differential equations

that define K.(t). Since K.(0) = 0, i = 0,1,2., this set is completely

specified.

Let K(t) be a column vector with elements K-(t). Then (27) can be written in

matrix form as follows

dt
K(t) = C + B K(t) (28)

Figure 6.9. Probability of being in
state 2 having started in state 0
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Where C is a column vector of transition costs. The solution of (28) is

obtained by the use of Laplace transform method, see equation (14), for a

more detailed analysis of how the method is applied.
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Example 6.6.

Suppose all the transition probabilities are as in example 6.5. We assume that

the asthmatic incurs a cost of 5 pounds per unit time during his stay in

state 0, 8 pounds per unit time during his stay in state 1, and 12 pounds per

unit time during his stay in state 2. Then the transition rate matrix is as

given in example 6.5. That is

B =
-0.03 0.02 0.01

0.50 -0.70 0.20

L0.07 0.10 -0.17

The vector of transition costs is C =

Therefore

(sI-B)'1 = 1/s (s+0.1532)(s+0.7468)

r 5
8

12

s2+0.87s+0.099 0.02s+0.0044 O.Ols+0.011 1

s2+0.2s+0.0044 0.2s+0.011

O.ls+0.0044 s2+0.73s+0.011
0.5s+0.099

0.07 s+0.099

Thus the partial fraction expansion is of the form,

-1 1
(sI-B) = s

0.86 0.04 0.10

0.86 0.04 0.10

0.86 0.04 0.10

1

s+0.1532

0.12 -0.02 -0.10

-0.25 0.03 0.22

-0.97 0.12 0.85

1

s+0.7468

[0.02 -0.02 0.00 '

-0.62 0.93 -0.31

0.11 -0.16 0.05
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Therefore

" 0.86 0.04 0.10
0.86 0.04 0.10
0.86 0.04 0.10

"0.81 -0.16 -0.65
-2.46 1.45 1.01
-6.18 0.57 5.61

1

s+0.1532

0.78 -0.13 -0.65
-1.63 0.20 1.43
-6.33 0.78 5.55

1

s+0.7468

0.03 -0.03 0.00
-0.83 1.25 -0.42
0.15 -0.21 0.06

and

K(t) = t
" 5.82 '

5.82
5.82

+
' -5.03 "

11.42
40.98

-
" -4.94

10.61
41.19

exp(-0.1532t)

r-o.09
0.81

-0.21

exp(-0.7468t)

The asthmatic will incur an average cost of 5.82 pounds when the process is

observed for a long time. This cost is independent of the starting state.

6.2.3. Modelling Complexities

If the model was extended to cover all the possibilities discussed in section

6.1.4, we would have had a six state model as a result. There would have been

no problem with the formulation of this model. The solution would however

have been a tedious task since the use of Laplace transform requires that

matrices be inverted. The inverse of matrices of this nature with dimension

more than 3 will need appropriate computer packages. Numerical work will be

subject to round off errors.
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6.3. Non-Markovian Modelling for the Asthma Process

The discussions in sections 6.1 and 6.2 have been subject to the Markov

restriction that the future probability behaviour of the asthma process is

uniquely determined once the state of the process at the present stage is

given. This restriction makes the process mathematically tractable since with

discrete states and continuous time, the "life-times" of the process have

exponential frequency distributions. The life-times are the time between

attacks and the durations of attacks. It may, however be that a more accurate

representation of this process will make the process non-Markovian. By this we

mean that the probability of making a transition from state 0 to state 1 for

instance, may also depend on how long the asthmatic has been in state 0.

Models of such processes are usually rather difficult to handle. In section

6.3.1 we discuss methods of converting these kind of processes to Markov

processes and in section 6.3.2 we give an alternative formulation for a two

state process.

6.3.1. The Conversion to a Markov Process

There are, fortunately, a number of methods by which it may be possible to

restore the Markov property without abandoning the basic model, (Cox, 1955).

Some of these methods are as follows :

(i) Imbedded Markov process method : Here the behaviour of the process is

considered at a discrete set of time instants, chosen so that the

resulting process is Markovian.

(ii) Erlang's method : Here the "life-time" is divided into stages, and the

time spent in each stage is assumed to have an exponential distribution.

When the specification of the state of the process includes an account of

which stage of life has been reached, the process becomes Markovian.

(iii) Supplementary variable method : Here the expended "life-times" are

included in the specification of the state of the process to make the

whole process Markovian. Using this method we could specify the two
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state process discussed in section 6.1.1 as being in state 0 or in

state (l,u), where state (l,u) is occupied when the asthmatic is in

state 1 and has been there a time u. For a simple illustration of this

method see Cox and Miller (1987).

To give an illustration of the Erlang's method, consider as in section 6.1.1

that we have a two state process

State 0 No attack

State 1 Attack

The transitions between these states are given in figure 6.1. The probability

of making a transition from state 0 to state 1 in the interval of time

(t,t+At) is ^niAt (say). Thus the duration in state 0 follows an exponential

distribution with mean I/a,-,!. We suppose that the time spent in state 1 is

non-exponential. Thus the process is non-Markovian. To convert the process to

a Markov one using the Erlang's method, we would take attack to consist of k

fictitious stages, the durations of which are independently exponentially

distributed with probability density function a«^exp(-a,Qy). The probability

density function of the duration in state 1 is thus the sum of the durations

in each stage, that is

aio(aio

(k - 1)!

which is the Erlang distribution with index k. For instance, if we take an

attack (state 1) to consist of 3 stages, namely

Stage 1 Attack has just started

Stage 2 Attack is at its peak

Stage 3 Attack has died down

Then k = 3. Thus the duration in each stage has the exponential distribution

with mean l/a,Q and the total duration has the Erlang distribution with index
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k = 3, the mean being

If the state of the process includes a specification of the stage of the

attack reached, the possible states are 0; (1,1), (1,2), (1,3). We could then

redefine our states as follows :

State 0 No attack

State 1 The asthmatic is experiencing an attack

and the attack is in stage 1

State 2 The asthmatic is experiencing an attack (29)

and the attack is in stage 2

State 3 The asthmatic is experiencing an attack

and the attack is in stage 3

The methods for a discrete state Markov process already discussed in section

6.2.1 can now be applied directly. The probability of being in the original

state 1 will now be the sum of the probabilities of being in (1,1), (1,2),

and (1,3) since these states are mutually exclusive. That is, if P,(t) is

the probability of being in state 1 and P, .(t) is the probability of being

in state 1 stage j , j = 1,2,3; then

3
P l ( t ) = I P l j ( t ) (30)

The probability of being in state 0 remains the same as given in section

6.1.1.

This idea could be applied to the three state model described in section

6.2.1. Here each state except state 0, could be divided into 3 stages given

in (29). The states could then be redefined resulting in a seven state

process, and the probabilities of being in the original states calculated

with the aid of a formula analogous to equation (30). However, the

probabilities of being in each stage may be difficult to obtain.
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6.3.2. An Alternative Formulation

The two state process discussed in section 6.3.1 could be formulated in an

alternative way. The process could be looked at as an alternating renewal

process as follows : After the nth attack the asthmatic takes a period of

time, length Y , to get treated; he subsequently takes a period of length Z

before developing another attack. We assume that the Y's and Z's are

independent of each other, the Y's having a non-exponential distribution with

a common distribution function Fy and the Z's having the exponential

distribution with a common distribution function F~. This makes the process

non-Markovian. With this process we have the opportunity of asking not only

the probability of being in a state at time t, but also the number of attacks

by time t. If we let N(t) represent the number of treated attacks by time t,

then N(t) is a renewal process with times between treated attacks X,, Xy, ...,

given by

X = Z , + Yn n-1 n

This process is illustrated in figure 6.10.

Figure 6.10. Asthma as an alternating renewal process

The distribution function being

F(x) = J FY(x-y) dFz(y)

0
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Let PQ(O and P,(t) be the probabilities of being in states 0 and 1 at time t

respectively, then

t

P0(t) = 1 - Fz(t) + J P(t-x) dF(x) (31)

0

and hence

t

PQ(t) = 1 - Fz(t) + J [l-Fz(t-x)] dM(x) (32)

0

where M is the renewal function of N.

To obtain P,(t), we simply have Pi(t) = 1 - PQ(0 . Since the density function

of Y and hence that of X is non exponential, the evaluation of (31) or (32)

could be very difficult. It is however mentioned in Grimmett and Stirzaker

(1982) that, subject to certain conditions,

PQ(t) > 1/U+p) as t > oo

Where p = E(Y)/E(Z) is the ratio of the mean duration of an attack and the

mean time between attacks.
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CHAPTER 7

COMPUTER SIMULATION TECHNIQUES

Simulation modelling was briefly described in chapter 2, section 2.3. In the

same chapter it was argued that a realistic model for asthma would be a

simulation model. Mathematical models for the disease were explored in

chapters 4, 5, and 6 and we can see that many simplifying assumptions were

needed. In this chapter, different methods of discrete stochastic simulation,

the generation of random numbers and random variates, and verification and

validation of simulation models will be discussed briefly. For more details,

see (Neelamkavil, 1987; Pidd, 1992; and Davies and O'Keefe, 1989). The purpose

of this chapter is to outline some of the methods used in the asthma

simulation models.

7.1. Types of Simulation

A system is a set of elements or components interrelated to each other and to

the whole so as to achieve a common goal (Neelamkavil, 1987). Simulation

generally deals with study of systems over time. It is based on the idea of

experimentation. Instead of experimenting with the real system, the trials are

made on the dynamic model. This is similar to observing the real system but

with the advantage that the simulation of the real system over a year, say,

could be performed on a computer within minutes. The process of simulation can

be thought of as three stages (Pidd, 1992) :
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modelling

programming

experimentation

These stages are not entirely distinct and could be time consuming.

There are basically three types of model-building simulations :

(i) statistical

(ii) continuous

and (iii) discrete

A statistical simulation is used to estimate values that cannot be easily

deduced mathematically. This type of simulation is most often called a Monte

Carlo simulation. For instance, the area of an amorphous shape can be

estimated using statistical simulation by drawing a rectangle on the map so as

to enclose it. Suppose the area of the rectangle is 800 square units. The

rectangle is then mapped on to the X and Y co-ordinates. If a pair of

co-ordinates is chosen at random, it will result in a 'success' (inside the

area) or 'failure' (outside the area). Thus if S is the size of the amorphous

area and n is the number of successes in N generations of random pairs, then

n/N = S/800 as N —> oo

A continuous simulation is used for systems which vary continuously over time.

Thus the simulation model for this system can be thought of as changing values

smoothly and the values taken are accessible at any time point within the

simulation. In discrete simulation the system is simulated by observing

various characteristic changes at discrete points of time. These points

coincide with the occurrence of certain events which change the system's

performance.

The type of simulation used for the disease asthma is the discrete type and

will be described in the following section.
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7.2. Discrete Event Simulation

As the name suggests, a discrete event simulation employs a next event

technique to control the behaviour of the system. In modelling such systems,

there are certain distinct elements, each of which possesses properties of

interest. The elements of the system being simulated which can be individually

identified and processed are known as entities whilst the term attribute

denotes a property of an entity. Thus each entity may possess one or more

attributes which convey extra information about the entity. As time

progresses, the entities co-operate and thence change state. The instant of

time at which a significant state change occurs in the system is called an

event. Thus the operations and procedures which are initiated at each event

are known as activities. The state of the system refers to a description of

all the entities, attributes, and activities at any one point in time. Table

7.1 gives some examples of systems.

Table 7.1. Examples of entities, attributes, and activities

for a number of systems.

SYSTEM

b ank

h o sp i t al

m a c h i ne

r e p a i r shop

t r a f f i c

Un i ve r sity

ENTITIES

c u s tome rs

p a t i e n t s

ma chi n e s

c a r s

s t ude n t s

s t aff

ATTRIBUTES

b a l a n c e

c r e d i t s t atus

e m e r g e n cy
c a s e s

t y pe o f job
p r o c e s s e d on

t h e m a c h i n e

s p eed

d i s t a n c e

d e par t ment

ACTIVITIES

d e po s i t i n g

wi t h d r a w i n g

wa i t i ng for
admi s s i on

h o sp i t a 1 stay

wa i t i ng for

r e p a i r

d r i v i ng

r e ad i ng in
the 1 i brary

If a hospital is considered as a system, then individual patients can be
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regarded as entities, with emergency or non-emergency case as an attribute.

Typical activities would be the action of waiting for admission or in hospital

stay. Similarly, in the case of a University system, the students and staff in

the University are entities with department as an attribute. Among the

activities is the action of reading in the library.

The main interest in system simulation is to study the dynamic behaviour of

the sytem. It is therefore necessary to construct an appropriate model for the

system and the interrelationships of its distinct elements. This model could

be

(i) numerical or analytical

(ii) static or dynamic

(iii) stochastic or deterministic

A dynamic model is one in which the relationships between the attributes or

entities of the system, and the model's behaviour vary with time whereas one

that does not incorporate this variation is said to be static. A model which

does not take into account the random processes of the system is deterministic

whereas one that allows entities to have random attributes is stochastic. In a

deterministic model all relationships between attributes or entities of the

system are described by fixed mathematical functions.

In a discrete event simulation, changes in the state of an entity only occur

at specific instants of time. There are two ways of controlling the speed at

which a simulation experiment proceeds. These are as follows :

(a) The uniform time increment method, where the simulation clock is advanced

from time t to t+At, where At is a uniform fixed time increment. The

operations that occurred from time t to t+At are performed and then the

clock is incremented again. This method is referred to as time slicing.

(b) The next-event time increment method, where the simulation clock is

incremented from time t to the next event time t,, whatever may be the

value of t,. The state changes are at the next event time t,, and this

process is continuously repeated.
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The first method detects the events that occur during the interval (t,t+At)

only at time t+At, thereby introducing errors in the simulation. Another

problem of this method is that if the interval between two events is very

large compared to At, then the simulator goes through several unproductive

clock increments (during periods of inactivity) and the associated computing

effort which will not bring any change in system states. The second method

involves sorting of event activation times and maintaining the current

and future event lists. Most simulations and simulation packages are

developed with this type of clock (Bratley et al., 1987). The simulation

shell, TOCHSIM, used in the asthma modelling also incorporates this more

flexible method of time update.

7.3. Modelling Approaches

We have already mentioned in section 7.2 that the next event time

increment method is generally used in most of the discrete event simulation

and simulation packages for advancing the time. The scheduling of the next

event and updating the system state by this method can be implemented in

several ways (Fishman, 1978; Zeigler, 1979). The major approaches are :

(i) event approach;

(ii) activity approach;

(iii) process interaction approach;

and (iv) three phase approach;

The three phase approach succeeds in combining the simplicity of the activity

approach with the efficient execution of the event approach. This approach is

used for the development of TOCHSIM and is described in section 7.3.4.

7.3.1. Event Approach

In this approach the time is advanced to the time of occurrence of the next

event and the simulation is completed by the execution of ordered (by time)

event sequences. A list of events numbered 1, 2, ..., k in ordered form and

the time in which they will occur t,, t2, ..., t, is maintained and the
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appropriate list of event routine is executed at time t-= min(t,, U, ... t ,) .

This approach is embodied in the simulation languages SIMSCRIPT (Markowitz, et

al., 1963) and GASP (Pristsker, 1975). To make this concept clearer, consider

an asthma clinic with one doctor where the arrival of asthmatics to the clinic

is a Poisson process and the doctor treats the asthmatics on a first come

first served basis. Here we have two state changes :

(1) arrival of an asthmatic;

(2) departure of the asthmatic (when treatment is completed).

With the event scheduling approach, each of these events will need an event

routine in the simulation. The arrival event routine is shown in figure 7.1

and the departure (end of treatment) routine in figure 7.2. The inter-arrival

and treatment times are generated from sampling routines and the events

themselves are scheduled by interfacing with the executive.

i
g e n e r a t e ti m e
o f n e x t a r r i v a l

s c h e d u l e n e x t
a r r i v a l

Yes

enga ge

doc t or

i n c r e a s e number

wa i t i n g by one
gener a t e

trea tmen t t ime

1
schedu 1 e end

of t r e a tment

t o t h e

e x e cu t i ve

Figure 7.1. Arrival event routine for the asthma clinic.
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f r o m the

e x e c u t i v e

d i s c h a r g e t h e
a s t hma t i c

Yes

decre a se no .

wai t i n g by o n e

T
r e l e a s e
d o c t o r

gener a t e
t reatm en t t ime

T
schedu I e end
of tr e a tment

t o the
e x e cu t ive

Figure 7.2. End of treatment routine for the asthma clinic.

The event based executive performs the following tasks :

(1) time scan;

(2) event identification;

(3) event execution.

These tasks are being managed by the use of an event list, which can be

thought of as a diary into which future event notices are written. Event

notices are added to and removed from this list as the simulation progresses.

For instance, an arrival might cause an event notice for the end of treatment

to be added to the event list in our asthma clinic system. Each event notice

on the list contain two pieces of information : the time at which the event is

due to occur and something to identify the event. The executive performs a two

phase cycle as follows :
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(1) Time scan, which involves

(i) scanning the event list to determine the time of the next event;

(ii) moving the simulation clock to that time;

(iii) producing a current event list of all events identified as due

now;

(2) Event execution, which ensures that each event on the current event list

is executed.

The cycle is repeated until the simulation is over. The event based executive

is given in figure 7.3.

t i m e s c a n

T
m a k e c u r r e n t

e v e n t l i s t s

e x e c u t e

c u r r e n t e v e n t s

No

Figure 7.3. Executive for the event approach.
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7.3.2. Activity Approach

Here the simulation proceeds from event to event by scanning activities. No

event list is maintained. This approach is used in the design of the

simulation language CSL (Buxton 1966). It has however being superseded by the

three phase approach. An activity is bound by any two successive events. Each

activity is associated with a condition which may be true or false depending

on the simulation time and the system state. In our clinic system for

instance, there are two event routines, these are represented by three

activities :

(1) arrival of an asthmatic

(2) begin treatment

(3) end treatment

The beginning of treatment is a condition that occur either at (a) an arrival

event (given that the doctor is idle and no one is waiting for treatment) or

(b) a departure event (given that someone is waiting for treatment). The

status of all the activities in the model is scanned at every time step and

the activities that satisfy the necessary boolean conditions are scheduled

immediately and the appropriate action segments executed . This means that the

events are implicitly scheduled. Row diagrams of these activities are shown

in figures 7.4-7.6.
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f r o m the

e x e c u t i v e

Test head

| Y e ,
i n c r e a s e p e o p l e

w a i t i n g b y o n e

Actions g e n e r a t e t i me

o f n e x t a r r i v a l

s c h e d u l e n e x t

a r r i v a l

t o t h e

e x e c u t i ve

No

Figure 7.4. Arrival activity for the asthma clinic.
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f r o m t h e

e x e c u t i v e

Test head

| Y e

e n g a g e
t h e d o c t o r

r e m o v e a s t hma t i c

f r om qu e u e

Actions g e n e r a t e

t r e a t m e n t t i me

I
s c h e d u l e e n d

o f t r e a t m e n t

t o t h e

e x e c u t i v e

No

No

Figure 7.5. Begin treatment activity for the asthma clinic.
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Test head

f r om the

e x e c u t i v e

'end of

t r e a t m e n t " \ -

No

I
d i s c h a r g e t h e

a s t hm a t i c

Actions f r e e

t h e d o c t o r

t o t h e

e x e c u t i v e

Figure 7.6. End of treatment activity for the asthma clinic.

The executive then has only one major task to perform, the time scan. This

involves the identification of when the next event is due. In the event

approach this was achieved by a dynamic event list, time cells are used in the

activity approach. Time cells indicate when each entity is due to change

state and is set to the time at which the entity is due to make this state

change. For example, DOCTOR(TIME) = 55 indicates that a state change is due at

time 55. If the current simulation time is greater than the value of the time

cell, then it means that the entity is in an idle state waiting for something

to happen e.g. the doctor is waiting because there are no asthmatics for

treatment. After the time scan the clock is moved to the next event time and

the executive makes repeated activity scans.

Thus the activity based executive has two phase structure as follows :

(1) time scan;

(2) repeat activity scan.
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When phase (2) is accomplished, the executive returns to phase (1), etc.,

until the simulation is over ( see figure 7.7).

Y e s

s t a r , J -

t i m e s c a n

i
a c t I v I t y

s c a n

No

Figure 7.7. Executive for the activity approach.

7.3.3. Process Interaction Approach

This approach attempts to combine the features of both event and activity

based approaches. A process is a sequence of actions experienced by an entity

during its life in the model. Each separate entity (e.g. each asthmatic) has

its own process which stops and starts as the simulation progresses. This

approach is embodied in the two well known simulation languages, GPSS

(Greenberg, 1972) and SIMULA (Hills, 1973). In the asthma clinic example, the

asthmatic's process is as follows :
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arrive;

wait until head of the queue;

move into the treatment room;

remain in the treatment room until treatment is complete and finally leave

the clinic.

A flow diagram for this process is shown in figure 7.8.

i
f I o m t he

e x e c u t i v e

g e n e r a t e t i m e
o f n e x t a r r i v a l

c h e d u l e n e x t

a r r i v a l

Ye s

e n g a g e t h e
d o c t o r

r e m o v e a s t h m a t ic

f r o m q u e u e

g e n e r a t e
t r e a t m e n t ti m e

s c h e d u l e e n d
o f t r e a t m e n t

t o t h e

e x e c u t i v e

add asthmatic

to queue

wait unti l head
o f queue &

doctor free

Figure 7.8. Asthmatic's process for the process approach.
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The simplest way to implement a process interaction executive is to create two

lists of records each identifying the entity concerned and its next

re-activation point. In GPSS these two lists are called future events list

and current events list. The Future Events list contains the records for those

entities whose movement is delayed and those re-activation time is known. In

the asthma clinic, for example, an arrival due sometime in the future or a

scheduled end of treatment would be entered on this list. The Current Events

list includes the records of two types of entity

(1) Those whose movement is delayed and whose re-activation is scheduled

for the current clock time in the simulation;

(2) Those whose movement is delayed by conditions within the simulation.

The executive repeats the following cycle as the simulation progresses :

(a) Future Events scan. From the records on this list, pick out those entities

with the earliest re-activation time and the simulation clock moved

forward to that time;

(b) Move records of current entities from the Future Events list to the

Current Events list;

(c) Current Events scan. Attempt to move each entity on the Current Events

list through its process from its re-activation point.

This is shown in figure 7.9.
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s t a r t

Yes

f u t u r e e v e n t s

s c a n

T
mo v e

r e c o r d s

c u r r e n t ev e n t s
s c a n

No

Figure 7.9. Executive for the process interaction approach.

7.3.4. The Three Phase Approach

This approach originally devised by Tocher (1963) succeeds in combining the

simplicity of the activity approach with the efficient execution of the event

approach. It achieves this by recognizing that there are two quite different

kinds of activity in most systems, activities which can be directly scheduled,

and others which cannot. The two different activity types are defined as

follows, (Pidd 1992) :
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"B" ACTIVITIES: (Bound or Book-keeping activities) which are executed

whenever their scheduled time is reached.

"C" ACTIVITIES: (Conditional or Co-operative activities) whose execution

depends on either the co-operation of different classes of

entity or the satisfaction of specific conditions within the

simulation.

The executive directly controls the execution of the Bs but the conditions

within the simulation determine whether any Cs will follow. For example, a

person who has asthma but has no attack at a given time, a state called "No

attack" in the simulation models described in chapter 8, would be moved to

the state called "Mild attack" by a B activity. If it was decided that an

asthmatic who is upset enough would have an attack, then this test would be

processed by a C activity. This activity then cause the relevant B activity to

occur. The C activity makes structural changes and does not have any physical

effect on the model.

The Three-phase approach takes its name from the three phases A, B, C (Tocher,

1963; Crookes et al., 1986; Pidd, 1992) which are processed as follows :-

A Phase (Time scan): Determines when the next event is due, moves the

simulation clock to the time of this event, and decides which of the

B activities are then due to occur.

B Phase (B calls): Executes only those B activities identified in the A phase

as being due now.

C Phase (C scan): Attempts each of the C activities in turn and process

those whose conditions are satisfied. Repeats the C scan until no

more activity is possible.
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The above process is repeated until :

1. there are no more activities to perform;

2. the time of the next activity to be performed exceeds the maximum time set

for the duration of the simulation;

3. some terminating event is encountered.

Bound activities and conditional activities are thus written as separate

independent modules. See figure 7.10 for the executive of the three phase

approach.

Yes

s t a r t J :
t i m e s c a n

B c a l l s

4
C s c a n

No

A Phase

B Phase

C Phase

Figure 7.10. Executive for the three phase approach.
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7.3.5. Comparison of the Modelling Approaches

The activity approach treats each activity independently, this obviously can

lead to run-time inefficiency. This is because, at each event, the activity

scan attempts each activity in turn, even if one activity is possible. The

event based approach involves the execution of only those events known to be

possible. An event based simulation thus runs faster than one which is

activity based . It is however easier to write activity based programs. The

process interaction approach requires a complex executive and more importantly

the processes are more complex to program than are the comparable activities.

The approach, however, has the advantage that its building block, the process,

is similar to the intuitive notions of the naive analyst trying to map out the

life history of each class of entity. The three phase approach uses some

features of the event and activity approaches. Since the event based

simulation runs faster and it is easier to write activity based programs, the

three phase approach is preferable to the other approaches. This approach is

embodied in the simulation shell, TOCHSIM, used in the asthma simulation

discussed in chapter 8.

7.4 Sampling Methods.

In the study of systems, the underlying processes will usually be stochastic

in nature. For example, in the asthma clinic system, the average arrival and

treatment times can be measured but it is impossible to predict when people

will arrive and how long it will take for them to be treated. Thus for a

simulation to demonstrate the stochastic nature of the system, it must sample

different interarrival and treatment times and the frequency distribution of

the samples should look like those measured in the real system. Distribution

sampling is therefore needed. These are sequences of random numbers. The

generation of random numbers and random variates for use in simulations is

discussed in the following sections.
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7.4.1. Random Number Generation

The generation of Uniform [0,1] form the basis for the generation of random

variates, as it will be shown in section 7.4.2.

Tocher (1963), discussed various methods of generating random digits. A common

method of generating random numbers is by the use of the mixed congruential

generator, developed by Lehmer (1951). It is of the form

X = (a X < + c) mod m for n = 1, 2,..., m.

where a, c, and m are integer constants. The desired sequence is { X }, X^

being the starting value called the seed. The above expression generates m

distinct numbers. These generators repeat indefinitely, the length of the

cycle being m. To obtain U , a Uniform [0,1], we have

U = X / m.n n

Thus certain criteria must be met in designing a congruential random number

generator :-

(1) The cycle length should be very long, m is chosen to be the maximum

interger available for the computer at use.

(2) The sequence of values ( X ) should appear random (pseudo-randomness) and

independent.

(3) the sequence should be generated with efficiency and speed.

Neelamkavil (1987) discusses in detail, the methods of testing random number

generators.

The random number generator used in the asthma simulation has the following

form :
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Xn = (31421 Xn j + 27181) mod 100000 , XQ = 57722.

For more details on this subject, see the work by Knuth (1969) or Fishman

(1978) or Law and Kelton (1982) or Bratley et al.(1987) or Ripley (1987) or

Morgan (1984).

Once the pseudo-random numbers are generated, they are used in taking samples

from distributions. This is discussed in the following.

7.4.2. Generation of Random Variates

The inverse transformation method is most commonly used in generating

random variates. It is easy to use this method to generate variates from the

exponential, geometric, Poisson and Bernoulli distributions. It is however not

always possible to compute the inverse of a given distribution function. Other

methods have been developed for use in these cases and can be classified as

follows :

(i) rejection - acceptance methods

(ii) composition methods

(iii) comparison methods

(iv) special methods

(v) decomposition methods

The book by Knuth, (1973) is a comprehensive work available on the methods of

generating random variates. Others include that by Brately et al., (1987), and

Fishman (1978). Since the inverse tranformation method is the most popular

method, it is discussed in more detail in the next section.

7.4.2.1. The Inverse Transformation Method

Let f(x) be any density function defined on the interval [a,b] and let F(x)

be its distribution function. The inverse transformation method exploits the

fact that F(x) ranges between 0 and 1 as x goes from a to b. Consider figure

7.11.
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u = F(X]L)

0 = F

Figure 7.11. Distribution function showing the use of

inverse transformation method

In the above figure we see that if we sample a random number, u, between 0 and

1, for any value of u, there is a corresponding value of F(x). Therefore if

u = F(x), and the inverse exists, then

x =

In the following sections we shall only describe the generation of random

variates from distributions used in the asthma simulation.

7.4.2.2. Generating Uniform Variate

The Uniform distribution is given by the formula :

f(x) =
b - a

, a < x < = b, a, b real.

Since each u is generated from Uniform [0,1] (a = 0, b = 1), a sample from a

general Uniform distribution can be derived from the linear transformation :

x = a + (b - a) u.

137



Algorithm

(1) Generate u from Uniform [0,1],

(2) Set x = a + (b - a) * u

Then x is a Uniform [a,b] variate.

7.4.2.3. Generating Negative Exponential Variate

The probability density function of the negative exponential distribution is

of the form

' X exp(-Xt), t > 0, X > 0
f(t) = \

0 otherwise

Then F(x) = J X exp(-Xt) dt = 1 - exp(-foc)

0

2
mean = E(X) = 1A; variance = 1/ X .

Since F(x) is continuous and strictly increasing, we have that for each value

of x there is a unique value of F(x) between 0 and 1. Thus if F(x) = u, u is

Uniform [0,1], then x = F '^u) .

Therefore

u = 1 - exp(-A.x)

or

x = -1A ln(l-u).

Now put r = 1-u, then r is also Uniform [0,1] and

x = -1A In r.

Algorithm

(1) Generate r from Uniform [0,1],

(2) Set x = -In r * m, where m = E(X) = 1A

Then x is a negative exponential variate.
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7.4.2.4. Generating Normal Variate

The polar method is a fast and simple method of generating Normal variates.

Developed by Box and Muller (1958), it generates two independent Normal

variates x and y from Normal distribution with mean 0.0 and variance 1.0.

Algorithm

(1) Generate u,, u~ independent Uniform [0,1],

(2) Set Vj = 2 * Uj - 1 and v2 = 2 * u2 - 1,

(3) Set w = v2 + v2,

If w >= 1, reject u,, u~ and go to step 1, otherwise

return

z, = v * { - 2 ln(w)/w } 1 / 2

z2 = v2 * { - 2 ln(w)/w } 1 / z

(4) Set x = [i + o z, and y = |i + a z2

2
Then x and y are N(|a.,a ) variates and one of these values may be selected for

use in simulation.

7.4.2.5. Generating LogNormal Variate

If X has a Normal distribution with mean fi and variance a , then Y = exp(X)

has a LogNormal distribution with probability density function

(2n) 1 / z a y

Algorithm
(1) Generate z, a N[0,l] using the previous method,

(2) Set x = |i + a z,

(3) Set y = exp(x),

Then y is a LogNormal variate.
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7.4.2.6. Generating Weibull Variate

The probability density function of the two parameter Weibull distribution is

of the form

f(t) = J P / a Wa) exP {-(t/a) } ' l > 0

t< 0

where a, p > 0 are referred to as the scale and shape parameters

respectively.

Here F(x) = 1 - exp j -

mean = cc T(l + 1/p)

and variance = a 2/p) -

where F represents the gamma function.

Therefore

u = 1 - exp -I - (t/ar I

or t = a * exp 1 In (- ln(r)) I , where r = 1 - u.

P

Algorithm

(1) Generate u from Uniform [0,1],

(2) Set x = = a * exp | In (- ln(u)) j

P
Then x is a Weibull variate.
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In asthma simulation model V we ask the user to give the mean, |i and one

percentile value, p for transition durations. These values are then used to

calculate the parameters a and p using the following :

H = a T(l + 1/p) (1)

and

p = FCtj) = 1 - exp { - ( (2)

where t, is the p percentile value.

Making a the subject in (1) and substituting this value in (2) yields

and thus

+ log (1-p) = 0 (3)

A numerical algorithm is applied to expression (3) to estimate the value of P

which is then substituted in (1) to yield the estimate of a. The Weibull

algorithm is then used for sampling with these values of a and p.

7.5. Simulation Verification and Validation

With the advent of visual interactive simulation, the problem of constructing

simulation models has become relatively easy and common place in the

management setting. Checking that these models have been correctly coded

(verification) and that they model reality (validation) is not

straightforward (Tobias, 1991). In constructing simulation models, the

modeller may make errors in syntax or consistency in the coding or even if the

model is syntactically correct and consistent, it may bear little relation to

the system being modelled simply because of, say, an unintended minus sign.

Thus further checks are needed at this stage to establish that the model

performs as would be expected theoretically.
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One way of doing this is to ignore temporarily the stochastic elements

altogether from the model to yield its deterministic version. No repetitions

are then necessary, and the results from the computer run should not just be

close but identical. Several key outputs or parameters can be checked in this

fashion. Verification in this way does not prove the correctness of the model

but at least demonstrates that the model is probably not wrong and the

modeller builds up enough confidence in his model.

Validation is where the model builder is concerned with whether the model

mirrors reality or not. This is one of the most difficult tasks of simulation.

Since one of the problems of simulation is that it does not give optimal

solutions, validation is very difficult in the absence of sufficient and

reliable data. The philosophy of the process is discussed by, amongst others,

Pidd (1992). In practice, it involves returning to the full version of the

model including its stochastic features. Checking the validity of any

distribution chosen to represent the stochastic input variables, usually using
2

a goodness of fit (% ) test is very important at this stage. The main aim is

however to compare the performance of the model against observations of the

actual system.

7.6. Conclusion

The simulation shell, TOCHSIM, employed in this work uses the three phase

approach. The random number generator given in section 7.4.1 and the

generation of all the variates discussed are incorporated in the shell and

are used in the asthma simulation. The simulation programs have been verified

using the approach discussed in section 7.5 and validation of the simulation

models is discussed in chapter 10.
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CHAPTER 8

ASTHMA SIMULATION

The advantages of the simulation approach over mathematical modelling were

discussed in chapter 2. In this chapter we construct simulation models of

increasing complexity and realism for the disease asthma. The models employ

the three phase approach described in chapter 7 and were greatly eased, in

terms of development, by the use of the simulation shell, TOCHSIM, described

in chapter 9.

8.1. Development of the Models

In the simulation models described in this chapter, we consider people who are

at least 3 years old. This is because below this age the diagnosis of asthma

is not very easy since wheezing may not imply asthma. Even when a diagnosis is

made the response to treatment is often not satisfactory (Warner et al.,1989).

The simulation models use a day as the basic time period. A short time

interval has the disadvantage that the computation time for the simulation

would be very large. A long time interval will not capture the necessary

disease dynamics sufficiently well. Thus, what is needed is a suitable short

time period that can allow the flexibility of changing state as and when the

simulated population require but to also maintain a reasonable time interval

so that the computation time does not become excessive. Medical advice and

the literature on asthma resulted in the choice of a day as the appropriate

time unit.

8.1.1. Elements of the Models

Asthma is regarded as a process in time. A natural history model, which is a

description of this process, needs a suitable set of states of the disease and
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descriptions of the manner in which people move from one state to another.

Treatments or some course of action are used at various states of the disease.

These actions require resources, and costs are involved.

In the development of these models, the following four linked elements are

considered.

Natural history of disease

Possible, or selected treatments

Resources

Costs

It will be readily appreciated that there is no unique set of states and that

the progress of people through the states can be described in a variety of

ways. The choice of a set of states should be governed mainly by the intended

use of the model; another important consideration is the availability of data

and expert opinion.

8.1.2. The Power of the Microcomputer

The development of the asthma simulation models has been on a PS/2 model 70

386, using Dos 4.0 and Turbo Pascal 5.5, which has a significant speed and

storage capacity, together with a high resolution graphics screen (VGA).

A microcomputer was preferable to the mainframe for the development of the

simulation model for the following reasons: firstly, microcomputer software is

more user friendly than the mainframe software, because it produces more

descriptive error messages and provides facilities other than just the

standard ones. Turbo Pascal has powerful screen editors which are superior to

the editors on the mainframes, including the IBM 3090 editor XEDIT.

Furthermore, when a Turbo Pascal program breaks down, the editor is

automatically loaded and the cursor is set to the location of the error in the

programming code along with a meaningful error message. Secondly, a

microcomputer works at the same constant speed and will perform the same

operation at exactly the same rate, unlike the mainframes which can almost

stop during periods of very high computer demand from other users on the
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system. Thirdly, microcomputers offer colour graphics which are useful for

visual output. The PS/2 is equiped with VGA high resolution colour graphics.

Finally, a model on a microcomputer has a greater appeal to medical people.

8.1.3. The Choice of the Simulation Language

Writing simulations in a general purpose language could be a time consuming

task because of the large amounts of code for each new application, (Shearn,

1990). The usual way of overcoming this is to use a program generator. A

number of these have been reported, covering not only Pascal (Paul and Chew,

1987), but simulation languages and systems involving ECSL (Clementson, 1987),

Fortran (Mathewson, 1983), GASP (Mathewson and Allen, 1977), SIMULA

(Mathewson, 1976), SIMSCRIPT (Subrahmaniam and Cannon, 1981), and GPSS

(Gordon, 1981). These generators all work from a model description, i.e. a

specification of the model in some formal description language, invariably

based on the activity cycle diagram. The model is entered into the program

generator either interactively or through an editor, and a program is

produced that can then be compiled and run.

The design of GPSS was influenced by block diagram and flowchart concepts

which is less flexible and therefore unsuitable for certain types of

applications, (Neelamkavil, 1987). The process concept plays the central role

in defining a model in the SIMSCRIPT language. Compared to GPSS it is more

difficult to learn, and programs tend to be larger in size.

The language choice depends on the type of application and the intended use of

the simulation. The cost of acquiring the software or writing it must also be

considered. If the software is acquired from elsewhere, the training costs are

also important and cannot be ignored.

With the above factors in mind, we decided to write the asthma simulation

programs in Pascal embodied in the simulation shell, TOCHSIM. See chapter 9

for the description of this shell.
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8.2. Asthma Model I

This section reports on the first asthma model developed. The model is

concerned with asthma in childhood.

8.2.1. Objectives of the Model

Good management of asthma would mean the prevention or the control of the

degree of severity of the attack. When preventive treatment is given, it is

expected that the time between asthma attacks would be extended by some

positive factor.

The care options available in this model are:-

1. Bronchodilators and Mast-cell stabilizers for prevention of an attack

2. Corticosteroids for treatment of an attack

3. (1) and (2) combined

Each of these care options has its own effectiveness. The aim of this

simulation study is to investigate the effect of these care options (taking

into account their effectiveness) on the number of asthma attacks generated

per person, for a given number of asthmatics. These predictions can be used to

select the best possible combination of these care options.

8.2.2 Assumptions and Simplifications of the Model

The cost of an asthma attack can be defined as a combination of the cost of

drugs and drug administration apparatus prescribed, the cost to individuals of

any side effects suffered, the cost of hospital admissions etc. The list of

costs associated with an asthma attack is endless. However, a boundary has to

be drawn somewhere and so in this model, the cost of an attack has been

restricted to the costs of drugs administered either as preventive treatment

and/or the control of an attack. It is assumed that the cost of a unit of a

particular drug includes the cost of the drug itself and the cost of the drug

inhalation device.
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The model assumes that there are only three prescription policies: Ventolin

for the prevention of an attack; Inhaled and Oral steroids for use during an

attack; and Ventolin for prevention of an attack with both Inhaled and Oral

steroids for use during an attack.

In this preliminary model , death from asthma could occur only when the attack

is severe. The possibility of death from other causes is not considered.

8.2.3. The Model

The model, shown in Figure 8.1 consists of 6 different states and 14 different

inter-state transition routes. A computer simulation program has been

constructed for this model.

The natural history of asthma can be summarised as

follows :-

(i) An individual develops asthma which can be categorized as

extrinsic, intrinsic, secondary or occupational. In this model

these distinctions are not made.

(ii) The asthmatic stays without an attack for a period of time.

(iii) After the attack-free period, an attack is experienced for a

period of time.

(iv) The attack could be classified as mild, moderate or severe

depending on (among other things) the peak flow reading.

(v) Death could occur when the attack becomes very severe - the

state called "status asthmaticus". The occurrence of death

only when the attack is very severe is a subject of debate.

(vi) The asthmatic could grow out of asthma. About one-third of

cases in early childhood grow out by adult age.
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The set of states that we use are

State I No Attack

State II Mild Attack

State III Moderate Attack

State IV Severe Attack

State V Grow out

State VI Death

State II

s

s

t

t

ate

i
ate

I

V

I

Onset of
Attack

S t

1
ate I I I

S ta te VI

State IV

Figure 8.1. The state t ransi t ion diagram for model I
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8.2.4. The Disease States and State Transition Factors

The states in the model must reflect every state a real person in the real

world could be found in whenever the person has an asthma attack. The six

disease states (see Figure 8.1) were evolved after reading about asthma and

discussion with medical people. Some of these states are as follows:-

Mild Attack - Forced Expiratory Volume for one second (FEV,)

exceeds 2 litres,

- Does not interfere with normal activities

- Controlled by bronchodilators and avoidance of

known stimuli.

Moderate Attack - Forced Expiratory Volume for one second

(FEV,) is between 1 litre and 2 litres,

- Occasionally interferes with normal activities

- Requires Corticosteroids in treatment

Severe Attack - Forced Expiratory Volume for one second (FEV,)

falls below 1 litre,

- Seriously interferes with normal activities

- May lead to death

The state transition variables, which determine the way in which people move

from one state to another are very important. These variables determine when

someone has an asthma attack, whether the attack is mild, moderate or severe,

and every other state transition. These transition variables are discussed

briefly as follows:-

Average time between attacks - This causes a person to have an

attack at the person's average time between attacks,

specified by the user during the run. The times are

then sampled from the exponential distribution using

this average value.
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Duration of attacks - The duration of an attack is estimated

using the negative exponential distribution. The

duration is dependent on the type of treatment given

and the type of the attack (mild, moderate or severe).

FEV\ - This decides the type of attack someone has. It is

estimated using the log normal distribution with mean

1.47 and variance 0.54. At the moment the mean and

variance are fixed, but the program could be altered to

allow the user to input them at run time

Death - This decides when a person is going to die. Death could

occur only from a severe attack. It is guided by the

asthma mortality in the United Kingdom.

Treatment Effectiveness - This is used to decide which state a

person ends up in, from a given attack. When the

treatment is effective enough, the attack is then

controlled and the person moves to the state "Asthma No

Attack". Otherwise the person develops another attack.

Asthma Prognosis - This (dependent on age) decides whether a

person would grow out of asthma or not.

A given individual who has no attack at a given point, develops an attack and

the FEV, is used to determine the type of the attack (whether mild, moderate

or severe depending on the FE"V\ reading). The individual then stays with this

attack for a certain time (duration of the attack). Then, depending on the

effectiveness of the treatment given, may make a transition to the state

"Asthma No attack" or may develop some other attack or if the initial attack

was a severe attack, may make a transition to the state "Death" depending on

the asthma mortality rate.

We note here that one person may generate many attacks depending on his time

between attacks.
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8.2.5. The Asthma Program and the Program Input Requirements

The asthma simulation program consists of a suite of four programs running on

a PS/2 and consisting of some 1,703 lines of code. A package called

TECHNOJOCK (1989) was used to enhance the input screens. The first program,

DECS, consists of variable declarations used in the simulation. The second

program, SCREENS, is the data input program. It request, among other things,

the age, the care option with its treatment effectiveness, the average time

between attacks, and the average duration of an attack. The third program,

ASTHRUN, uses programmed parameters on the duration of each state determined

from the input screen to compute how long each individual is to remain in the

present state before moving to the next destined state defined by the state

transition diagram (Figure 8.1). This program moves each individual at the

designated time (T Phase) to the destined state (B phase), taking account of

the treatment effectiveness, FEV, reading and the mortality rate. The fourth

program, ASTHMA1, is the main simulation program. It consists of the static

display and initialises the variables. It also sets the histograms for data

collection. It calls the procedure Run to perform the simulation.

8.2.6. Some Results from the Model

Some results obtained from the model by giving preventive treatment

(Bronchodilators) to 20 asthmatics are displayed in figures 8.2, 8.3, and

8.4.
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Nunber of People With Mild Attacks

nt T ine is 367

r '

Nunber of Attacks Par- Parson

Figure 8.2. Number of people with mild attacks

r- of7 People With Moderate Attack:

Present T ine is 367

4.5O

JL.5O

Nunb«r of Attacks Par Parson

Figure 8.3. Number of people with moderate attacks
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Nunber of People 14 it hi Severe Attacks

Present T ii is 367

Nunber of Attacks Pmr Parion

Figure 8.4. Number of people with severe attacks

The simulation was run with option 2 (treatment of attacks only) and option 3

(preventive treatment) and the results are presented in figures 8.5, 8.6, and

8.7.
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Figure 8.5. Number of people with
mild attacks

N 6

u
m -
b 5

e

o
f

P
e
O

11119 Option 2 Option 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17+
Number of attacks per person

Figure 8.6. Number of people with
moderate attacks
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8 eve re attacks
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8.2.7. Comments

Doubts about the practical value of computer models are sometimes expressed;

these doubts usually arise when the models are not rigorously based on

relevant epidemiological and an understanding of the disease. However, a model

cannot, nor does it need, to capture the full complexity of real life in order

to be useful. Asthma model I was a good starting point and it helped in the

discussion about the necessary improvements with medical people.

8.3. Asthma Model II

This model is also concerned with childhood asthma. The set of states and

state transitions are the same as described in model I. Care options are made

more flexible in this model. This is because we feel that one person may be

on different preventive measures and when he has an attack may be given
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different combinations of treatment as time progresses. Some of the preventive

measures can not even be quantified, such as avoidance of precipitating

factors like cats and dogs or the house dust mite. Model II therefore allows

the user to enter treatments for each of the states such that the asthmatic

will now use these treatments whenever he finds himself in any of these

states.

Transitions between the various states are controlled by the following :-

Duration in states - This includes the time between attacks and

the duration of an attack, all taken to be negative exponential

variates.

FEV,, death, treatment effectiveness, and prognosis are taken to be the same

as in model I

At this stage of development, most of the transition times were fixed since

there were no data available. They could however be changed by the user during

the run time.

8.3.1. Data Input

The model gets its data from four files classified under three headings

1. Natural history file,

2. Resources file, which also contains information about costs,

3. Simulation run file.

New files can be created during the simulation run. All these files can be

selected for data input. Alternatively, the user can run the simulation

without even seeing these files ( this is not good practice). The natural

history data file (known as the MAIN data file) holds information about

durations in states and also the age distribution of the asthmatics. The

resources option contains the available resources which can be allocated to

states. Thus it is divided into two files - the available resources data file
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and the allocation data file. These resources include personnel, drugs and

facilities used in managing the disease. Figures 8.8, 8.9, and 8.10 show

examples of the input screens. Figure 8.8 requests for the number of

asthmatics by age. Figure 8.9 requests for the average time in each state of

the disease and figure 8.10 are the treatments needed for a mild attack.

*** AGE (IN YEARS) OF ASTHMATICS ***
*** ENTER THE NUMBER OF ASTHMATICS AS APPROPRIATE ***

*** AGE *** ***NUMBER*** *** AGE *** ***NUMBER***

10

=> 10

=>B 10

WOULD YOU LIKE TO MAKE CHANGES ? (Y/N)Y

Figure 8.8 Age distribution of asthmatics

*** DURATION WITHOUT TREATMENT ***

1. ENTER THE MEAN TIME (IN DAYS)
BETWEEN ATTACKS

2. ENTER THE AVERAGE DURATION (IN DAYS)
OF A MILD ATTACK WITHOUT TREATMENT

3. ENTER THE AVERAGE DURATION (IN DAYS)
OF A MODERATE ATTACK WITHOUT TREATMENT

4. ENTER THE AVERAGE DURATION (IN DAYS)
OF A SEVERE ATTACK WITHOUT TREATMENT

=> 2.3

=>|3.0

=>| 2.9

WOULD YOU LIKE TO MAKE CHANGES ? (Y/N)Y

Figure 8.9 Duration in states
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Name

1 .
2.
3.
4.
5.
6.
7.
8.
9.
10.

State MILD ATTACK

of drug

Salbutamol
Budesonide
Ketotifen
Adrenaline
*****
*****
*****
*****
*****
*****

Please type '1' if the

Enter the effectiveness

1 Press <ret> or arrow keys

drug is given,

(in %) of this

(t,i) to move

Drug given?

1
1
1
1
0
0
0
0
0
0

'0' if not |

treatment 65-•••

between fields I

Figure 8.10 Treatments for mild attacks

The run data file contains information about the simulation run time and the

reporting interval. See section 8.4 for a detailed description of this

concept.

8.3.2. Results from the Model

Illustrative results from a simulation of 100 children with asthma for 180

days and a reporting interval of 10 days are displayed in figures 8.11- 8.16.

Examples of the personnel we use are : senior medical officers, and nurses.

Drugs such as salbutamol, budesonide, ketotifen, and adrenaline are also used.

Facilities like inhalation devices, peak flow meters, and chest x-rays are

also used.
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Nutiber of7 People With Mild Attacks
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Figure 8.11. Number of people with mild attacks

Nunber of People Mith Moderate Attacks

Present Tim 181

4
i
1

.1 1 JH
1. o

Nunbar of Attacks Par Parson

Figure 8.12. Number of people with moderate attacks
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Nunber of People Mithk Severe Attacks

Present T ii*ie is 181
4D

0

2O

in vo p- i.
•H H -H 01

Nunb«r of Attacks P«r Parson

Figure 8.13. Number of people with severe attacks

Total Cost of all Resources for- Asthnatics in
State MILDATTACK (averaged ouer lO-day oeriorfs>

JLO—clay t ine intervals

Figure 8.14. Total cost of resources for mild attacks
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Totai 1 Cost of all Resources for- Asthmat ics in

State HODfiTTACK (averaged over- 1O— day periods)

SO

45

4O

35

3O

25

ao

15

1O

5

Figure 8.15. Total cost of resources for moderate attacks

Total Cost of all Resources for flsthnatics in

State SEUATTACK (averaged over lO-day periods)

SO

45

4O

25

2O

15

1O

5

XO—day t ine interval*

Figure 8.16. Total cost of resources for severe attacks

161



8.3.3. Comments

This model is still a very basic model. Its enhancement is presented as models

III and IV in sections 8.4 and 8.5 respectively. The model also produces

output in standard ASCII text files, which can be viewed and/or printed.

8.4. Asthma Model III

This model is an extended version of model II. It studies children and adults

separately and in combination. The set of states and state transitions are as

in model I.

Descriptions for transitions between the various states are also the same as

those described in model I.

Note that the choice of negative exponential and lognormal distributions is

somewhat arbitrary and not based on detailed data analysis. One advantage of a

simulation model is that changes in the form of distributions are easy. Indeed

sensitivity analysis involving different forms of distributions is a

worthwhile activity.

8.4.1. Inputs for the Model

As mentioned earlier, the model has four linked structures. The natural

history of asthma, a set of available resources, a set of treatment options,

and a set of costs. This is reflected in the way that input data is organized

into files. Thus in order to run the simulation, data is read from four

distinct files :-

1. Natural history data file,

2. Treatment options file, which is for allocation of treatments,

3. Available resources file, which also contains cost information,

4. Run data file, which contains information for a particular run

of the simulation model.
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Within the program, the user can create new files or view and possibly edit

existing ones. At the beginning of the simulation, the user selects the

category of people to be simulated (children, adults or all ages). The user

then selects the natural history data file which contains information about

the time between attacks and the durations of attacks. It also contains

information about the distribution of ages of the asthmatics to be simulated,

and the proportion of asthmatics with each type of asthma. Figures 8.17, 8.18

and 8.19 show examples of the input screens.

Figure 8.17 shows the age distribution of asthmatics. It also requests for the

probability of growing out of asthma. Figure 8.18 is the distribution

of the asthmatics by asthma type and figure 8.19 requests for the average

time in states.

To allocate treatments to the disease states, the user must first select the

available resources. In the program, the available resources file is

"Available" file, listing all the resources and their cost. The treatment

options file is an "allocation" file which associates some of these resources

with each state of the disease. See Figure 8.20 for the input screen for

treatment allocation for the state "Mild Attack".

The run data file contains information about the simulation run time and the

reporting interval - the time period over which the output data is averaged.

The resolution of the computer screen imposes some restriction on displaying

histograms. Thus the program only allows a maximum of 100 reporting intervals.

However, the user could decide to run for a short period with a short

reporting interval( e.g. 100 days with 1-day reporting interval) or a longer

period with a longer reporting interval. Clearly more details will be lost in

the averaging process if a longer reporting interval is used. Thus it is up to

the user to choose appropriately, both the run time and the reporting interval

to suit the situation.

The data output from the program can be saved to file in text and in graphics

form and viewed and/or printed.
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vvtfKKtt

Age

3 -

6 -

9 -

12 -

15 -

AGE ( I N VEARS) AND PROBABILITY

ENTER THE NUHBER OF ASTHMATICS
PROBABILITY OF GROHING OUT AS

5

8

11

14

17

TOTAL

Himber1 of
astlmatics

11

IB

17

7

5

NUHBER OF ASTHMATICS

OF GROHING OUI ***

AND
APPROPRIATE ***

Prob , of
growing o u t

0.661

0,802

6,003

0,664

0,668

50

WOULD VOU LIKE 1 0 HAKE CHANGES ? <Y/N)tf

Figure 8.17. Input screen for age distribution for children.

*** IVPES OF ASTHKA ***

*** ENTER IHE PERCENTAGE OF CHILDREN HITH
THE FOLLOHING TYPES OF ASIHHA ***

EXTRINSIC ASTHKA >| |4g

INTRINSIC ASTHKA

SECONDARY ASTHKA

OCCUPATIONAL ASIHKA ) IB

HOULD YOU LIKE TO HAKE CHANGES ? (Y/N)f l

Figure 8.18. Input screen for type of asthma.
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*** DURATION WITHOUT TREATMENT ***
*** FOR EXTRINSIC ASIHKA ***

1. ENTER THE KEAN TIME (IN DAVS)
BETWEEN ATTACKS

2. ENTER THE AVERAGE DURATION (IN DAYS)
OF A MILD ATTACK WITHOUT TREATMENT

3. ENTER THE AVERAGE DURATION (IN DAYS)
OF A MODERATE ATTACK WITHOUT TREATMENT

4. ENIER IHE AVERAGE DURATION (IN DAYS)
OF A SEVERE ATTACK WITHOUT TREATMENT

15.G

=> 1 . 8

= > 2 .8

= > 1 . 8

HOULD YOU LIKE TO HAKE CHANGES ?

Figure 8.19. Input screen for durations for extrinsic asthma.

Name

1 .
2.
3.
4.
5.
6.
7.
8.
9.

10.

I

State MILD ATTACK

of drug

Salbutamol
Budesonide
Ketotifen
Adrenaline
*****
*****
*****
*****
*****
*****

Please type '1' if the

Enter the effectiveness

| Press <ret> or arrow keys

drug is given,

(in %) of this

(t,*) to move

Drug given?

1
1
1
1
0
0
0
0
0
0

'0' if not I

treatment 95-•• •

between fields I

Figure 8.20. Input screen for treatments for mild attacks.
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8.4.2. Some Illustrative Results from the Model

This section presents some selected results from a simulation of 50 children

with asthma for 360 days and a reporting interval of 20 days.The transition

probabilities and the dwelling time parameters are based on discussions with

medical people and expert opinion. Some of the resources and costs given here

are imaginary. These are just to illustrate the type of output produced from

the model. Examples of the personnel we use are : senior medical officers,

and nurses. Drugs such as salbutamol, budesonide, ketotifen, and adrenaline

are also used. Facilities like inhalation devices, peak flow meters, and

chest x-rays are also included. Figures 8.21, 8.22, and 8.23 give information

about the number of asthma attacks, figures 8.24 and 8.25 show the total

costs of resources used for a given state, and figure 8.26 shows the cost of

a particular drug.

Nunber of People With Mild Attack:

Nunbsr of Attacks Par P«rion

Figure 8.21. Number of people with mild attacks
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Nunber of7 People Uith Moderate Attacks

During 36O days

' . ! . ! •

f f

I 1

Nunber of Attacks fmr Pat-son

Figure 8.22. Number of people with moderate attacks

Nunber of7 People With Severe Attack:

During 36O day;
xo

V.5O

2 . SO

Nunber of Attacks Pai- Person

Figure 8.23. Number of people with severe attacks
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Total Cost of all Resources for fisthnatics in

State NOATTflCK Caveraged over 2O-daa periods)

1OO -

9O -

3D -

7O -
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Figure 8.24. Total cost of resources for the state "No Attack"
Total Cost of all Resources for fisthnatics in

State MILDftTTfiCK (aueraged over 2O-day periods)
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2O-day t ine intf

Figure 8.25. Total cost of resources for the state "Mild Attack"
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Total Cos t of Salbutanol for all Asthhatics

< averaged ouer 2O— day per- iocis>

2O—day t ine intervals

Figure 8.26. Total cost of salbutamol

8.4.3. Comments

This is still a basic model and it can be run on any IBM-compatible machine.

The program produces output in standard ASCII text files, which can be viewed

and/or printed on any printer, and in graphical form which can be viewed on

the screen but needs a graphics printing package to be printed. This model

however, illustrates the potential of the modelling approach.

8.5. Asthma Model IV

A number of further refinements were made, which would contribute further to

the reality of the models. It is basically these final improvements that

distinguish model IV from model III.

One of the significant refinement in model IV is the modification in the time

between attacks and the durations of attacks. In model III these were taken to
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be exponential variates. In model IV the Weibull distribution is also

incorporated. Thus the user has the option of selecting either the exponential

or the Weibull distribution for sampling the durations in states.

If the exponential distribution is selected, the user then has to enter one

percentile value for this distribution, for the time between attacks, the

durations of mild, moderate, and severe attacks.

After these data has been entered, graphs of the density funtion for this

distribution can be seen, if desired, for all the durations in states. Figure

8.27 is the screen for the density function of the duration of mild attacks

for this distribution. The 95% percentile value is 5 days.

Lanbda =

Figure 8.27. The exponential density function for

duration of mild attacks

The density function for durations in other states are also shown.

When the Weibull distribution is selected, the user enters two percentile

values, the 5% and the 95% percentile for the durations in states. Any two

percentile values can be chosen.

Graphs of the Weibull density funtion for these data are then shown on screen
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for the time between attacks, the durations of mild, moderate, and severe

attacks. Figure 8.28 is the Weibull density function for the time between

attacks with the 5% and 99% percentile values of 6 days and 31 days

respectively.

= 17.73

Figure 8.28. The Weibull density function for

time between attacks

The density functions for other durations in states are also displayed.

There is also another major modification made in model IV. This is the idea of

using the peak expiratory flow volume for one second as a measure of

determining the type of attack. This change was necessary since the choice of

the LogNormal distribution for determining these values in models I, II and

III was arbitrary and not based on detailed analysis of data. Thus if the peak

flow data does not follow the LogNormal distribution, then the results

obtained from these models may not mimic reality. Another reason for this

change is that it may be difficult to know the distribution of peak flow

readings for asthmatics during attacks. It is therefore decided that

transition probabilities be used instead of the peak flow readings. Thus in

model IV the user enters the probability of moving from one state to another.

The probability of a transition to the state "No attack" is however still

governed by the effectiveness of the treatment given when an asthmatic is in
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any one of these states. Figure 8.29 shows the state probability transition

matrix for this model.

Please enter

No Attack

Mild

Moderate

Severe

TRANSITION PROBABILITIES :

the probability of transition

Mild Moderate

WOULD

0

0

0

0

600

500

550

250

0

0

0

0

350

420

350

500

YOU LIKE TO MAKE CHANGES

between states :

Severe

0.050

0.080

0.100

0.250

? (Y/N)Y

Figure 8.29. Transition probability matrix

for the states

The idea of growing out of the disease was also considered in this model.

Since 1/3 of childhood asthmatics grow out by adult age, we simply let 1/3

grow out in this model. The age at which they grow out is then entered by the

user during the simulation run. Figure 8.30 shows the age distribution and

age of grow out for the asthmatics.

In model III, probabilities of growing out of asthma were taken to be

dependent on the age of the asthmatics. These changes in model III make model

IV more realistic.

The results obtained from this model are displayed in a similar form as those

obtained from model III.

172



*** AGE (IN YEARS) AND TIME OF GROWING OUT ***

*** ENTER THE NUMBER OF ASTHMATICS AND
AVERAGE TIME OF GROWING OUT AS APPROPRIATE

Age

3 -

6 -

9 -

12 -

15 -

5

8

11

14

17

Number of
Asthmatics

11

10

17

7

5

Average
Time

11

14

17

20

23

TOTAL NUMBER OF ASTHMATICS 50

WOULD YOU LIKE TO MAKE CHANGES ? (Y/N)Y

Figure 8.30. Age distribution and time

of grow out

8.6. Asthma Model V

This model is rather different in some ways from all the models discussed so

far. It considers people who are currently asthmatics in a community and

people who have no previous history of asthma but may become asthmatics at

some point in their lives. The model is discussed in the following sections.

The prevalence of asthma is taken to be 10 percent in this model.

8.6.1. An Outline of the Model

We consider a group of asthmatics in a community. We also consider a group of

people who do not have a history of asthma attacks but may become asthmatics

at some time in their lives. We consider two types of management. We simply

refer to them as management type I and management type II. For example

management type I could be a situation where the asthmatics are under

preventive treatment and management type II could be when they are not under

any form of preventive treatment. Whichever type of management is employed,

the asthmatics experience attacks of asthma as time progresses and they go to

their GP for treatment. Since the treatment of an attack is dependent on the
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type of the attack, the GP then assesses the attack and classifies it as mild,

moderate, or severe as defined in section 8.2.4. The asthmatic then remains

with the GP for a certain period of time, called the duration of the attack,

during which his attack may improve or become worse. If his attack was

classified as mild, it may then become moderate or severe, if it becomes

worse, or he may then be in a state of "no attack" if it improves. A mild or

moderate attack may become severe, but we do not allow a transition from

severe attack to mild attack or moderate attack, since in this situation we

can consider the severe attack as finishing.

When the attack becomes severe, the asthmatic has some likelihood of being

referred to the consultant for further treatment. Thus the GP may

appropriately or inappropriately refer an asthmatic to the consultant. The

referral will be inappropriate when it is discovered by the consultant that

the asthmatic did not, in the first place, have a severe attack of the

disease. The asthmatic stays with the consultant for another period of time,

called the consultation time, irrespective of whether or not he is referred

appropriately. It may however be that the consultation time for inappropriate

referrals is shorter. After the consultation time, we assume that the attack

is controlled and the asthmatic goes back to the community to continue with

normal activities.

We have also considered the possibility of an asthmatic "outgrowing" his

asthma by adolescence. The probability of death from asthma is very small, we

therefore consider any death to be from natural causes. This probability was

fixed in the previous models making them unrealistic.

8.6.2. The Objective of the Model

The model examines several strategies of type I management to see which ones

are worthwhile. Strategies for this type of management are such that

(a) the time between attacks is extended by a factor k,;

(b) the probability of a moderate attack is reduced by a factor p , ;

(c) the duration of a moderate attack is reduced by a factor
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(d) the probability of a severe attack is reduced by a factor p~;

(e) the duration of a severe attack is reduced by a factor k~ .

To determine which strategy is worthwhile, the cost of type II management is

calculated and compared with the cost of each type I management strategy. A

type I management strategy that costs less than type II management is

therefore good. For example, if we know that the cost of managing asthma when

preventive treatment is not employed is , say 200 thousand pounds per year

for all the asthmatics and we select a type I management strategy such that

with this strategy

(1) the time between attacks is extended by 90 percent;

(2) the probability of a moderate attack is reduced by 50 percent;

(3) the duration of a moderate attack is reduced by 10 percent;

(4) the probability of a severe attack is reduced by 30 percent ; and

(5) the duration of a severe attack is reduced by 10 percent ;

then if the cost of this strategy is say, 150 thousand pounds per year then

type I management strategy is better.

8.6.3. States and State Transitions

Following the discussions at the beginning of this section, we have the

following set of states :-

State 1 Susceptible

State 2 New case

State 3 Asthma, no attack

State 4 Mild attack

State 5 Moderate attack

State 6 Severe attack

State 7 Severe attack, appropriately

referred to the consultant

State 8 Severe attack, inappropriately

referred to the consultant
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State 9 Grow out

State 10 Death

The possible transitions between these states are shown in figure 8.31.

COMMUNITY

S t a t e 3

S t a t e 9

GP CONSULTANT

Onset of
a ttack

State 2

State 1

S t a te 4

T
'h

S t a t e 5

S t a te 6

r--H S t a t e 7

S t a t e 8

State 10

Figure 8.31. The transition diagram for model V

The transition mechanism is described as follows :

1. Duration of attacks

This determines how long an asthmatic stays under the care of a GP. The times

are sampled from two well known distributions, the exponential and the

Weibull, depending upon choice. When the exponential is chosen the user

supplies the average occupation time in these states, while for the Weibull

the user must give the average occupation time together with one percentile

value. Note that the average time is used instead of another percentile value.
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2. Consultation times

This factor determines how long a person is going to remain with the

consultant. The times are also sampled from either the exponential or the

Weibull distribution.

3. Time between attacks

This determines the attack-free periods. It is also taken from the exponential

or the Weibull distribution.

4. Transition probabilities

These are used in determining the likelihood of making a transition from one

state to the other. Since about 25% of the asthmatics have moderate form of

asthma, while 2.5% have the severe form (Clark and Godfrey, 1983), we take the

probability of having a moderate attack to be 0.25 and that of severe attack

to be 0.025 and hence the probability of a mild attack is 0.725. The

probabilities of appropriate and inappropriate referrals and other

probabilities are arbitrary chosen. The user, however has the option of

changing these values to suit his own available data or expert opinion.

5. Mortality

Anderson and Strachan (1991) concluded that there was no evidence for an

increase in asthma mortality over 1979-1989. The mortality rate was obtained

per million per year and the maximum value was about 17.5 which occurred in

the 35-44 year age group. We emphasize that this value is small enough to be

neglected when conducting short term studies.

The simulation therefore uses the general mortality in England and Wales for

the year 1991, OPCS (1992), to determine whether an individual will die at the

end of an event. If the individual is about to have an attack in the next, say

30 days, then the program checks to see if the individual will die before this

time and, if so, when. The probability of dying is based on age, sex, and the
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time interval, see table 8.1. From the table if an individual is female, 10

years old, then she has a probability 0.00016 of dying within one year. The

figures in table 8.1 are used to calculate the probability of dying in one day

intervals. Therefore, if an individual dies in any interval, the model

determines this time of death.

In the simulation program, these values are stored in array form and the one

day values are calculated before the simulation run. When the simulation is

running the "Function Alive", using age, sex, and the time intervals,

determines who dies during these time intervals.

6. Incidence

The asthma incidence data (Fleming et al., 1991), published by the Royal

College of general Practitioners were used in the simulation. The incidence

rate is given per thousand population according to age. For example the

incidence per thousand population in the 5-14 year age group is 32. These

figures are used in the simulation to cause this number of people in this age

group to have asthma in a year. For convenience, the values are divided by

365 to obtain the daily incidence rate, the basic time interval used in the

simulation. The program checks at daily intervals to see if there are any

incidences of asthma in the next day. An individual is allowed to become an

asthmatic only when the program checks to see that he is not going to die in

the next interval. If he is going to die, then another person is selected and

examined accordingly. The sex of the person is determined from the fact that

before puberty, the ratio of male to female asthmatics is 2:1. After this age

there is an equal sex distribution (Clark and Godfrey, 1991). We have taken

the age of puberty to be 13 years.

7. Growing out of asthma

It is mentioned in chapter 3 that about one-third of asthmatics whose asthma

starts in childhood grow out of their disease during adolescence. The

simulation uses this figure to determine the number of asthmatics who would

grow out of their disease. The age at which they grow out is however not
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known. We nevertheless know that a certain proportion p grow out by a certain

age t. We assume that the age of growing out has a Weibull distribution, and

we therefore allow the user to supply two ages with their corresponding

Age group

0 - 4

5 - 9

10 - 14

15 - 19

20 - 24

25 - 29

30 - 34

35 - 39

40 - 44

45 - 49

50 - 54

55 - 59

60 - 64

65 - 69

70 - 74

75 - 79

80 - 84

85 - 89

90 +

probab i l i ty of dying w i thin one year

Male Fema le

0.00220

0.00020

0.00022

0.00074

0.00093

0.00091

0.00099

0.00138

0.00204

0.00344

0.00592

0.01049

0.01848

0.03 148

0.04 8 86

0.07 8 35

0.11935

0.17 170

0.22 8 07

0 .00169

0 .00014

0 .00016

0 .00028

0 .00031

0 .00037

0 .00052

0 .00086

0 .00133

0 .00224

0 .00362

0 .00626

0 .01082

0 .01747

0 .02737

0 .04514

0 .07602

0 .12557

0 .22022

Table 8.1. The probability of dying in a year obtained

from the annual mortality in England and Wales.

percentages : pi grow out by age tl, and p2 grow out by age t2. The minimum

age of growing out is taken to be the minimum age c of the population, which

is 3 years. For instance, Douglas (1968) prospectively studied a group of

children with asthma with a view to determining the frequency of remission of

asthma, he found that 22% lost their disease by the age of 16. Blair (1977)
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conducted a follow-up study of children affected with asthma and he found

that 52% who reached the age of 20 no longer had asthma. We could therefore

take tl to be 16 and pi to be 22%; t2 to be 20 and p2 to be 52%. These values

are used to obtain a, the scale parameter, and P, the shape parameter for the

Weibull distribution. In this case a = 18.35 and p = 4.04. With a and P we

then determine the age L by which an asthmatic who is going to grow out must

do so. That is, L for which

G(L) = 0.999

where G(t), obtained below, is the conditional distribution function for the

age of growing out. For these values of a, P, and c we have that L = 33. The

age of growing out for each asthmatic whose initial age is less than or equal

to L is then sampled using the following :

Let T be the age of growing out of asthma. This is assumed to have a Weibull

distribution. Let f(t) be the density function of T.

Then f(t) =f p/cc ((t-c)/a}'3" 1exp[-{(t-c)/a}'3] , t > c

0 otherwise

Let F(t) be the distribution function of T and let g(t) be the density

function of age of growing out given the initial age, h of the asthmatic, i.e.

g(t) = f(t)_= p/aKt-cVaJ^exptKh-cycc)13 - {(t-c)/a}P]

l-F(h)

and G(t), its distribution function is thus

G(t) = 1 - exp[{(h-c)/ccr - l ( t -c) /ar]

The inverse transformation method is then used in sampling from this

distribution. The "Function Growout", using age, determines who grows out, in

a given interval of time, at the end of an event.
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8.6.4. Data Input for the Model

Data entry into the model is quite similar to that described in section 8.4.1.

It is read from four files :- the natural history file, the available

resources file, the allocation file which is used for the allocation of these

rsources to the states and also holds information about the cost of these

resources; and the run file which contains information about the duration of

the simulation run. The user has the option of editing the existing data files

or creating new ones.

Menus are designed to ease the entry of data for this model. We have the main

menu which allows the user to decide whether to create new data files, view or

edit existing ones or run the simulation with the data files already created

by the modeller or previous user. On this same menu the user can choose to

just view the results from previous runs.

When the user decides to create new data files or edit existing ones, then he

is confronted with a submenu with three options :- the natural history option,

associated with the main data file, contains all information concerning the

model except the resources; the resources option which holds information about

the resources available for allocation including their costs; and the third

option allows the user to quit and go back to the main menu.

The natural history option allows the user to input data concerning the total

number of people in the community, the percentage of asthmatics on type I

management, the percentage on type II management, and of course the percentage

of people in the community who have not experienced asthma attacks before.

With this same option the user has the opportunity to select a strategy for

type I management, input the transition probabilities from one state to

another, occupation time in states, the age distribution of current

asthmatics, the growing out statistics, the incidence data, and the simulation

run time. This is also organized in form of a submenu with the appropriate

options.

The transition probabilities from the "no attack" state is shown in figure
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8.32 as an illustration.

TRANSITION PROBABILITIES :

Please enter the probability of transition between states :

Mild Moderate Severe
Attack Attack Attack

No
Attack 0.73

Approp.
Referral

Severe
Attack 0.20

0.25

Inapprop.
Referral

0.10

0.02

No
Attack

0.70

WOULD YOU LIKE TO MAKE CHANGES ? (Y/N)Y

Figure 8.32. Transition probabilities

The "occupation times" option on the submenu allows the user to select one of

two distrbutions, the exponential or the Weibull, from which samples are taken

for use in the simulation. With the exponential distribution option the user

inputs the average time in each of the states. With the Weibull distrbution

option the user inputs the average occupation time and one percentile value.

The screen for the Weibull distributions is shown in figure 8.33.

TIME DURATIONS : ASTHMA STATES + CONSULTATION

Please enter the average consultation time (in days)
and percentile values for the following :

Data is in the
following form

State
Mean

Percentile

No
Attack

30

10 25%

Mild
Attack

3

1 25%

Moderate
Attack

4

2 25%

Severe
Attack

5

3 25%

Asthmatics under
Consultant's care

Appro-
priate
Referral

Inappro-
priate
Referral

4

2 25%

3

1 25%

WOULD YOU LIKE TO MAKE CHANGES ? (Y/N)Y

Figure 8.33. The Weibull data entry screen
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After these times are entered the user then has the option of viewing all,

some or none of the density functions associated with the occupation times in

these states. This is also organized in form of a submenu.

The resources option produces another submenu when selected. This is to aid

data entry for the available resources which will be used to allocate to the

states. Thus the submenu has three options :-

Available

Allocation

Quit to submenu

The "Available" option allows the user to give the possible available

resources for the management of asthma. These resources include personnel,

drugs, and facilities.

The available resources are then selected for use in the appropriate states.

Hence the allocation option allows the user to allocate these resources with

their costs appropriately. If a resource is not used, the cost is simply given

a zero value. A possible allocation of the available drugs to state 4 is shown

in figure 8.34.

Name

1 .
2.
3.
4.
5.

I

of drug

Salbutamol
Budesonide
Ketotifen
Adrenaline
*****

Please

I Press <ret>

Mild attack

enter the cost of each

or arrow keys (*,*) to

Cost/day/asthmatic

0.08-
0.56-
0
0
0

resource in £s J

y
move between fields 1

Figure 8.34. Drugs and costs for mild attack
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After all these data have been entered, the user then finally decides on how

long he is going to run the simulation.

We emphasize here that some of the data shown in the figures are from

literature, others are based on discussions with medical people and expert

opinion and some are rather arbitrary.

8.6.5. Some Results Generated from the Model

The model was run for 365 days with different strategy sets. The results are

shown in the following tables. In table 8.2 the population of the community

was taken to be 1,500 people with a resulting number of asthmatics of 247 at

the end of the run. In table 8.3 the population considered was 2,500

with 407 asthmatics, while in tables 8.4 and 8.5, the population of the

community was taken to be 2,500 people with 326 number of asthmatics at the

end of the run.
Percentage reduction in

1. p r o b a b i l i t y of ( a ) m o d e r a t e a t t a c k = 90

(b ) s e v e r e a t t a c k = 90

2 . d u r a t i o n of (a) m o d e r a t e a t t a c k = 0

(b) s e v e r e a t t a c k = 0

P e r c e n t a g e e x t e n s i o n

i n t i m e between a t t a c k s

0

10

20

30

40

50

60

70

80

90

100

Cos t o f t y p e II

manage ment

Cost ( i n 1000 p o u n d s p e r

yea r ) of type I managemen t

135 .45

1 2 4 . 9 2

1 2 1 . 9 7

1 1 9 . 8 7

1 1 3 . 0 5

1 0 8 . 7 5

1 1 0 . 3 6

1 0 7 . 4 3

1 0 2 . 9 7

1 0 0 . 5 9

1 0 1 . 8 7

1 15 .53

Table 8.2. Strategy set 1
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We can see from table 8.2 that the type I management strategy should be such

that the time between attacks is extended by at least 40%, in order for it to

be beneficial.

Percentage reduction in

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 90

( b ) s e v e r e a t t a c k = 90

2 . durat ion o f (a) mode ra te a t t a c k = 50

(b) s e v e r e a t t a c k = 5 0

P e r c e n t a g e e x t e n s i o n

i n t i m e between a t t a c k s

0

10

20

30

40

50

60

70

80

90

100

Cost o f type II

ma nag e ment

Cost ( i n 1000 pounds p e r

year) of type I management

1 9 6 . 9 7

1 8 8 . 6 6

1 8 3 . 2 9

1 8 0 . 1 8

173 .71

1 6 9 . 5 6

1 6 4 . 5 8

161 .88

1 6 1 . 2 0

1 5 3 . 6 9

1 5 6 . 9 6

175 .81

Table 8.3. Strategy set 2

This strategy should extend the time between attacks by at least 40%, in

order for it to be cost effective.
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Percentage r e d u c t i o n i n

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 90

( b ) s evere a t tack = 90

2 . durat ion o f (a) mode rate a t t a c k = 90

(b) s e v e r e a t t a c k = 9 0

P e r c e n t a g e e x t e n s i o n

i n t i m e between a t tacks

0

10

20

30

40

50

60

70

80

90

100

Cost o f type II
manage ment

Cost ( i n 1000 pounds p e r

year) of type I management

1 5 1 . 9 9

1 4 7 . 5 5

143 .51

1 3 8 . 0 2

134 .45

1 3 1 . 3 0

130 .11

1 2 9 . 3 4

124 .23

1 2 2 . 3 3

119 .45

1 4 4 . 6 0

Table 8.4. Strategy set 3

This strategy should be such that the time between attacks is extended by at

least 20%.
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Percentage r e d u c t i o n in

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 50

( b ) s evere a t tack = 50

2 . durat ion o f (a) mode rate a t t a c k = 50

(b) s ev e re at ta ck = 5 0

P e r c e n t a g e e x t e n s i o n

i n t i m e between a t t a c k s

0

10

20

30

40

50

60

70

80

90

100

Cost o f type II

manag e men t

Cost ( i n 1000 pounds p e r

year) of type I management

1 5 5 . 9 2

1 5 3 . 1 4

1 4 7 . 3 8

1 4 3 . 9 8

1 3 8 . 0 6

1 3 2 . 1 9

1 3 3 . 4 7

132 .71

127 .91

1 2 4 . 3 3

1 2 2 . 0 8

1 4 4 . 6 0

Table 8.5. Strategy set 4

For this strategy to be cost effective, it needs to extend the time between

attacks by at least 30%.

Results on the effect of these strategies on the number of attacks and the

number of referrals were also collected. Figures 8.35 and 8.36 are recorded

for strategy set 1, while figures 8.37 and 8.38; 8.39 and 8.40; and 8.41 and

8.42 are for strategy sets 2, 3 and 4 respectively.

187



2500

N
u 2000
m
b
e
r

o
f

1500

a 1000

t
a

k 500
s

Figure 8.35. The effect of strategy
set 1 on number of attacks
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Figure 8.36. The effect of strategy
set 1 on number of referrals
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Figure 8.37. The effect of strategy
set 2 on number of attacks

Number of attacks (x1000)

— Mild -*•- Moderate

" •&-- -

•it

Severe

10 20 30 40 50 60 70 80
% extension in time between attacks

90 100

Figure 8.38. The effect of strategy
set 2 on number of referrals
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Figure 8.39. The effect of strategy
set 3 on number of attacks
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Figure 8.40. The effect of strategy
set 3 on number of referrals
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Figure 8.41. The effect of strategy
set 4 on number of attacks
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Other strategies were also considered. Tables 8.6-8.9 show the resulting costs

while figures 8.43-8.50 give the resulting number of attacks and number of

referrals.

Percentage r e d u c t i o n i n

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 50

( b ) s evere a t tack = 50

2 . durat ion o f (a) mode rate a t t a c k = 0

(b) s e v e r e a t t a c k = 0

P e r c e n t a g e e x t e n s i o n

in t i m e between a t t a c k s

0

10

20

30

40

50

60

70

80

90

100

Cost o f type II

manag ement

Cost ( i n 1000 pounds p e r

year) of type I management

2 2 3 . 8 8

2 03 .61

1 9 8 . 8 3

1 9 8 . 9 2

1 9 4 . 1 2

1 8 8 . 5 6

1 8 5 . 3 3

1 7 9 . 4 0

1 6 9 . 7 6

1 7 0 . 6 0

1 6 8 . 4 6

1 7 5 . 8 1

Table 8.6. Strategy set 5

This strategy should extend the time between attacks by at least 80%, in

order for it to be cost effective.
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Percentage r e d u c t i o n i n

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 50

( b ) s e v e r e a t tack = 50

2 . durat ion o f (a) mode ra te a t t a c k = 90

(b) s e v e r e a t t a c k = 9 0

P e r c e n t a g e e x t e n s i o n

i n t i m e between a t tacks

0

10

20

30

40

50

60

70

80

90

100

Cost o f type II

manag e men t

Cost ( i n 1000 pounds p e r

year) of type I management

1 9 0 . 3 4

185 .34

1 7 9 . 3 2

170.13

168.45

165.64

162.49

163.87

154.13

149.62

150.17

175.81

Table 8.7. Strategy set 6

For this strategy to be beneficial it needs to extend the time between

attacks by at least 30%.
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Percentage r e d u c t i o n in

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 10

( b ) s e v e r e a t tack = 10

2 . durat ion o f (a) mode rate a t t a c k = 50

(b) s e v e re at t a c k = 5 0

P e r c e n t a g e extens ion
in t i m e between at tacks

0

10

20

30

40

50

60

70

80

90

100
Cost o f type II

manage ment

Cost ( i n
year) of

1

1

1

1

1

1

1

1000 pounds p e r

type I management

19.23

12.88

08 .57

0 1 . 7 2

04 .75

99 .08

01 .31

9 6 . 9 2

95 .71

94.17

91 .36

15.53

Table 8.8. Strategy set 7

This strategy should extend the time between attacks by at least 10%.
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Percentage reduc t ion in

1. p r o b a b i l i t y of ( a ) moderate a t t a c k = 10

( b ) s evere a t tack = 10

2 . durat ion o f (a) m o d e r a t e at tack = 90

(b) s eve re at t a c k = 90

P e r c e n t a g e extens ion

in t i m e between at tacks

0

10

20

30

40

50

60

70

80

90

100

Cost o f type II

manage ment

Cost ( i n 1000 pounds p e r

year) of type I management

153.63

147.58

143.51

138.03

134 .46

132.69

130.11

129 .40

1 24.24

122.41

119.43

144 .60

Table 8.9. Strategy set 8

This strategy is worthwhile only if it extends the time between attacks by at

least 20%.
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Figure 8.43. The effect of strategy
set 5 on number of attacks
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Figure 8.44. The effect of strategy
set 5 on number of referrals
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Figure 8.45. The effect of strategy
set 6 on number of attacks
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Figure 8.46. The effect of strategy
set 6 on number of referrals
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Figure 8.47. The effect of strategy
set 7 on number of attacks
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Figure 8.48. The effect of strategy
set 7 on number of referrals
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Figure 8.49. The effect of strategy
set 8 on number of attacks
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Figure 8.50. The effect of strategy
set 8 on number of referrals
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Results are also displayed graphically after the simulation run. The results

shown in figures 8.51-8.53 are obtained from a simulation run of 2000

people with the following type I management strategy :

Percentage reduction in

1. probability of (a) moderate attack = 60
(b) severe attack = 80

2. duration of (a) moderate attack = 50
(b) s evere attack = 90

Percentage increase in
time between attacks =100

44.OO-,

Total nuMtoer- of attacks

35.20-

17.6O-

3 . 6 7 . 3 l l . O 1.4.6 1 8 . 2 21 . 9 2 5 . 6 2 9 . 2 3 2 . 8 36 . S

-> Tine (x lO 1 dans)

Figure 8.51. Total number of attacks
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Total nunber of referral
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1 . 2O-
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3 . 6 7 . 3 XX . O X4.6
1 8 . 2 2X.9 2 5 . 6 2 9 . 2 3 2 . 8 3 6 . 5

~> Tine ( K I O 1 days)

Figure 8.52. Total number of refenals

Total cost of resources

2.8O-

2.1Q-
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<"• O . 7 O -

3.6 7.3 l l .O 14.6 18.2 21.9 25.6 29.2 32.8 36.5

-> Tine ( x lO 1 davis)

Figure 8.53. Total cost of resources
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8.6.6. Comments

This model is more realistic and can be used by health policy makers to

explore management strategies, under scarce resources, for a given number of

asthmatics. The model can be run on any IBM-compatible machine with a VGA

graphics screen mode.

The model does not take into account the consequential "costs" of an attack.

These "costs" are incurred at the individual and at the community level. For

an individual, attacks mean a poorer quality of life through loss of sleep,

days off work, etc. For the community the "costs" are the contributions lost

because the attacks prevent an asthmatic from a full participation in

community life.
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CHAPTER 9

TOCHSIM : THE SIMULATION SHELL USED

This chapter describes a simulation shell which is a suite of Pascal

routines, used in the simulation models developed in chapter 8, which

originate from the Faculty of Mathematical Studies, University of

Southampton. These were written and named in honour of professor K.D. Tocher,

a pioneer of the three phase method of simulation. The simulation

shell, developed to aid the modelling of discrete-event simulations, is

called TOCHSIM. Section 9.1. gives the rationale behind the use of Pascal for

the implementation of this shell and the routines of the shell are described

in section 9.2.

9.1. Pascal

Despite the availability of simulation languages such as SIMSCRIPT, GPSS and

many others, many analysts implement models in general purpose, high-level

languages. It has been suggested that up to 70% of all simulations are

programmed in FORTRAN, see Uyeno and Vaessen (1977). A major reason is that

modellers are familliar with FORTRAN and, with simulation concepts, but are

unwilling to invest the time to learn a special-purpose simulation language.

Unfortunately, FORTRAN does not provide built-in procedures for describing

entities and events, scheduling events, and formatting and analysing results

- the basic requirements of discrete-event simulation, Uyeno and Vaessen,

(1977). Pascal however has some of these features. It has good list-processing

facilities, it is portable, encourages good programming practices, and is
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widely used. In view of these facts, a set of Pascal routines called TOCHSIM,

were developed in order to help the implementation of discrete event

simulation.

9.2. TOCHSIM

The shell TOCHSIM consists of a number of library units, consisting of

procedures and functions, written in Turbo Pascal, concerned with some aspect

of simulation programming. The units are :

1. Tochvar

2. Tochrun

3. Tochvga

and the host program TOCHSIM. We give a description of each of these in the

following :-

9.2.1. Tochvar

This unit consists of the file TOCHVAR which "includes" another file called

TOCHPROC. TOCHVAR is used for declarations of constants, variables and other

types. It also contains procedures for the B and C activities which are

called respectively by the procedures b_call and c_call.

TOCHPROC contains all procedures and functions which are used when writing

the B and C activity procedures. The user can add new routines in this file.

In the development of the asthma simulation programs, some graphical routines

used in collecting results from a simulation run were added in this file. A

description of what can be found in this file is given as follows :

An entity record in TOCHSIM has the following structure :
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TYPE

entity type = Record

available : boolean;

next_b_activity : b_activity;

time_of_b_act : real;

(other user information if needed)

end;

where b_activity is of the type byte.

The fields of the record could be explained as follows :

available : is set to TRUE if the entity is available for a B activity,

otherwise it is set to FALSE.

next_b activity : is the number of the next B activity the entity is set to

perform.

time_of_b jxct : is the starting time of the B activity attached to this

entity.

Entity is then declared to be of the above type. These fields are called the

attributes of the entity. The user may include attributes of his own to

distinguish between different entities. This is done in the asthma

simulation. For instance, age is an attribute of the asthmatics and

asthmatics are regarded as entities in the simulation. There is a global

variable called CURRENT of type entity in this unit. This is a temporary name

for an entity. When an entity is just taken off the CALENDAR in a B activity,

it takes the name CURRENT.

Entities can be created in the simulation when needed by a procedure :

Procedure make_entity(e:entity);

This procedure also initializes the values of the attributes in the entity's
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record. When the entity is no longer needed, the procedure :

Procedure dispose entity(e:entity);

disposes of it in order to recover memory space.

A queue in TOCHSIM is represented by the following :

TYPE

ptr = Aptr_type

ptrjype = Record

next.pre : ptr;

ent : entity;

end;

and the queue is of type ptr :

queue = ptr;

Consequently, all queues the user intends to use in his program must be of

type queue. Example, in asthma simulation, we have

var

no _att_q,attack_q,

mild_q,mod_q,sev_q : queue;

The procedure :

Procedure make queue(var q:queue);

creates a queue with a previously declared name 'q' when initializing the

program. Thus

Procedure make queue(mild_q);

makes a queue of asthmatics with mild attacks.
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Entities may be added to the BACK or FRONT of the queue using the procedure

Procedure add_queue(e:entity;place:q_place;q:queue);

where

q_place = (front,back); is an enumerated type.

e : the name of the entity to be added to the queue,

place : takes values BACK or FRONT,

q : the name of the queue the entity is to be added to.

The entity can be removed from queue by the function :

function remove from_queue(place:q_place;q:queue)-.entity;

The function removes an entity from the BACK or FRONT of the queue 'q'. All

entities may be removed from a queue and disposed of by using

Procedure empty queue(q:queue);

where 'q' is the name of the queue to be emptied. Alternatively, entities in a

queue may be examined, but not emptied nor removed by the following :

1. function look_queue(place:q_place;q:queue):entity;

2. function count_queue(q:queue):integer;

3. procedure list_c\ueue(q: queue);

4. procedure list_b_list(q:queue);

The first returns the pointer to the entity in the FRONT or BACK of the queue

'q'. The second gives the total number of entities in the queue ' q \ and the

third scans through a queue. The fourth prints all the occurrence times of the

entities in the calendar.

The B activities are scheduled using the procedure :
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procedure cause(b_act:byte;ent:entity;time:real);

b_act : number of B activity to be attached to the entity,

ent : the name of the entity,

time : the time from now that this B activity must happen.

The B and C activites are executed (with instructions from the executive -

the RUN procedure) respectively by the two procedures

procedure b_call;

procedure c_call;

If there is no need to test any of the C activities, we can use the procedure

procedure c_off(c:byte);

c : is the integer number representing the C activity to be switched off.

This procedure is used inside a C activity. The C activity number 'c ' will

not be performed. However, if the programmer decides that the C activity

be reinstated, he can use the procedure :

procedure c_on(c:byte);

The C activity number that has been switched off in the past will now be

switched on again.

Results can be displayed on screen with the use of the procedure interact.

This procedure is called by the RUN procedure after performing a B activity

and testing all the C activities.

There are other routines for resource use in this unit which we do not intend

to describe here since there are not used in the asthma simulation.

Random number generation is a very important aspect in computer simulations.

In TOCHSIM the procedure for setting up the random number generator is :
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procedure rndset(s:seed);

Seed : is of type longint. Here s takes values from 1 to 100 inclusive. A

default value of s = 1 is used in TOCHSIM. However a different seed

can be used in the range 1 to 100.

In TOCHSIM there are procedures and functions for sampling from a few commonly

used distributions. Below we shall only describe those used in the asthma

simulation.

1. Sampling from Uniform[0,l] distribution

The function :

function rnd:real;

returns a random number uniformly distributed in the interval (0,1).

2. Sampling from Exponential(^) distribution

The function :

function negative_exponential_deviate(MEAN:real):real;

returns a random number from the negative exponential distribution with

mean MEAN.

For the purpose of asthma simulation we included the following distribution

4. The Weibull distribution

We use the function :

function weibull_yariate(a,b:reat)seal;

which returns Weibull variate when the scale parameter a, and the shape

parameter b are specified.
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There are lots of other distributions in this unit, such as

(a) the Gamma [n,a],

(b) the poisson (fl),

(c) the Binomial (n,p).

which are not used for the asthma simulation.

9.2.2. Tochrun

This unit contains the EXECUTIVE, the procedure run. it also includes the

procedure initialize. It is not altered by the programmer.

The procedure :

procedure initialize;

(a) sets the pro gram _abort, a boolean variable, to FALSE. When it becomes true

the program is terminated.

(b) sets the simulation time (SIMTIME) to zero.

(c) sets the random stream default value (rndset(l)).

(d) sets up the temporary CALENDAR - the bjist.

There is also the procedure :

procedure list_bjist;

This prints out the event times of all entities in the CALENDAR.

TOCHSIM makes the list of active C activities with the use of the procedure :

procedure make_c_list;
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The entities are put into the CALENDAR, ordered by the time of their B

activities, with the aid of the procedure :

procedure cause_b_act(ent: entity);

ent : is the entity to be put into the CALENDAR.

Finally, there is a procedure :

procedure run(runtime:real);

which is called after the programmer has set up the start conditions of the

simulation. This procedure then carries out the simulation for runtime units

of time, in the standard three phase way described in chapter 7. It finds the

B activity that is to be executed next, calls the procedure bjoall using this

B activity number and passing across the entity CURRENT, which was used to

call this B activity (using procedure cause). After each b_call, the procedure

interact is executed and then control is passed to the procedure c_call which

checks the C activities. This continues until one of the following occurs :

1. The simulation run time (runtime) is exceeded or

2. No more B activities remain to be executed or

3. program _abort has been set to TRUE.

9.2.3. Tochvga

This unit includes all procedures used for setting up graphical display and

building histograms. Notable among them is the procedure :

procedure xgaJu'stogram{histogram:graph_out);
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where

graph_out = Packed record

title rK,y: string;

base,width: real;

dat:array[0..20] of real;

scale .real;

oldtime:real;

end;

This procedure draws the histogram on the screen. But before this is done, the

programmer has to call the procedure :

procedure set_yga;

which sets up the screen for high resolution VGA graphics.

The procedure :

procedure setjext;

resets the screen back to normal text mode, if needed.

The histograms are created using the procedure :

procedure reset_histogram(var histogram:graph_out);

This also resets the histogram for new input.

Data is logged on to the histogram by the procedure :

procedure log_histogram(hist:graph_outjc,y:real;isjgraph:boolean);

This logs the data y into cell x on the histogram. The boolean variable

is_graph enables the collection of time dependent data e.g. queue length. If

it is set to TRUE, then y takes the value of SIMTIME.
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9.2.4. Tochsim

This is the host program. The initialization process is done here with the use

of the procedure :

procedure init;

This procedure

(a) calls the procedure initialize from TOCHRUN,

(b) declares queues, resources, histograms,

(c) initializes other user defined variables,

(d) creates the first entity and puts it in the CALENDAR,

(e) decides on the run time of the simulation.

The program calls the procedure run to start the simulation.

9.3. Comments

We can see that Pascal allows the modeller to represent the various entities

clearly and concisely. The type declaration allows the modeller to define new

types that combine the structural types array and record and the simple

variable types - integer, real, boolean, and char. The fields of records do

not have to be of the same type. Furthermore, Pascal provides dynamic

variables. TOCHSIM combines dynamic record variables and pointers to develop

the data structures required for efficient manipulation and scanning of lists

and the effective utilization of memory.
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CHAPTER 10

SUMMARY, FURTHER WORK AND CONCLUSION

This chapter gives a summary of the work done together with suggestions for

further work. It is concluded that the modelling approach of Operational

Research is well suited for dealing with asthma and other diseases.

10.1. Summary

The thesis explores a variety of models which could be used for the

understanding of asthma. In chapter 4 we considered models in discrete time.

Variability and uncertainty was not considered at this stage. This kind of

approach does not really reflect the nature of the disease. For example, the

average time between attacks was assumed to be 30 days, hence in this discrete

version every asthmatic must have an attack when this time is due. In reality

this attack-free period vary from one person to another. Thus in this

situation involving variability and non-linearity, the use of averages could

be misleading (Shahani, 1981). With this kind of problem therefore, the

deterministic model is rather inadequate.

For this reason, stochastic models were considered in chapter 5. An assumption

of the Markov property was initially made and Markov chains were developed for

this disease. Notably among them was a seasonality model which could be used

to study the effect of changes in weather conditions on the asthmatics. This

approach has proved to be quite good. It however has its own short-comings in

that transitions are only considered at uniformly spaced intervals of time.

With the disease asthma a lot of things might happen between these time

instants which may then be unaccounted for, or it may be that nothing has

happened between two consecutive time instants and hence there might be no

need to stop at the next time point to see what has happened. Because of

this, a semi-Markov chain model was considered in this same chapter. We can
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see that as the model was made more realistic the more complicated it became

and hence the mathematics involved became more difficult to comprehend.

In chapter 6 the asthma process was considered as a process in continuous

time. This is because it may be necessary to have information about the

asthmatics at any given time. There are limitations in developing models of

this sort, since with a large number of states, the tedious task of using the

Laplace transform method, although appropriate computer packages may be used,

may yield round off errors.

The restriction to the Markov structure was dropped in section 6.3, but

appropriate methods were suggested on how to convert non-Markovian processes

to those with the Markov property. An alternative formulation was given in

section 6.3.2 for situations where the conversion to a Markov process is not

necessary.

Disadvantages of this kind of modelling were highlighted in chapter 2. These

disadvantages are more pronounced when the model is to be used by people who

have limited knowledge of mathemetical methods. For this reason simulation

models of increasing realism were constructed in chapter 8. These models

require a lot of data some of which are nowhere to be found at this moment.

The problem of validation of the models is discussed in section 10.2.

10.2. Further Work

Further work required for this model can be summarized as follows :

(1) The models should capture the aspect of admissions to

hospital and days off work or school. This could be used

in justifying the high cost of preventive care (type I

management).

(2) The possibility of growing out of asthma at the time of

adolescence has been thought to be affected by a previous

history of atopic diseases such as hayfever and eczema.
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These models could be modified to include these

possibilities.

(3) The time between attacks and durations of attacks which

depend on the type of asthma - extrinsic or intrinsic,

used in models III and IV could also be easily

incorporated in model V.

(4) The treatment of an asthmatic is said to depend on age.

This aspect could also be incorporated in these models in

order to make them more realistic.

(5) Data is also needed on the age distribution of asthmatics,

probabilities of making transitions from mild attack to

moderate attack or severe attack, from moderate attack to

severe attack, and from severe attack to appropriate and

inappropriate referrals. Data on the effects of treatments

is also needed. Without these data validation is not

possible.

The major work which requires further attention is the problem of validation

of the simulation models.

As suggested by Sargent, (1991) a third party has to be used as part of the

validation process. The party has to make a decision that the model is valid.

This is a subjective decision and is based on the results of the various tests

and evaluations conducted as part of the model development process.

The following techniques are suggested for a more realistic validation of

these simulation models.

(1) The result on the annual incidence of asthma obtained from

the model is 76 per thousand population. It has been

reported that this incidence is 84. This discrepancy may be

as a result of deaths, people that have grown out of the
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disease, or some other cause. It however has a close

relationship with the real system. The occurence of other

"events" obtained from the simulation models e.g. number

of grow outs, and deaths, should be compared to those of

the real system to determine if they are the same.

(2) The structure of the models and their output should be

checked for any extreme and unlikely combination of levels

of factors in the system. Part of this has been done e.g.

in model V every asthmatic was put on type I management

and the resultant cost of type II management was zero. The

asthmatics were also put on type II management and the

cost of type I management was zero, making the model

reliable for these extreme combination of levels of this

factor in the system.

(3) Specialists in the management of asthma confirmed that the

models and their behaviour are reasonable. This is just a

minute part of model validation.

(4) Data is needed on the cost of resources, the time between

attacks, the durations of attacks, and the number of

attacks experienced by the asthmatics, in order to perform

some serious validation. The data should be used to

determine if the models behave as the real system does.

This may be done by comparing, say the number of mild,

moderate, and/or severe attacks obtained from the models,

against the number obtained from the actual system.

Using data to determine the validity of a simulation model is not an easy

task. This is because it is time consuming, and costly to obtain sufficient,

accurate and appropriate data, (Sargent, 1991). This is the major reason why

the validation of the models developed here has not been possible.
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10.3. Conclusion

Models considered in this reasearch can help medical personnel to evaluate the

effect of management plans on the health outcome of the asthmatics and also

to choose a management plan that is cost effective. The mathematical models

can be used to determine the number of asthmatics in each disease state at

any time point. The simulation model V is more realistic and can be used to

help in decisions about which management strategy to adopt.

The simulation models use a reasonable set of default values for most of the

data needed. Some parameters, such as, transition probabilities, mortality,

incidence, proportion of asthmatics growing out of their disease were

estimated from various sets of data. The simulation models allow the user to

use their own estimates for these parameters, and other parameters such as

the effectiveness of treatments for which there is no published data.

Asthma is a very complex disease, even medical doctors find it difficult to

diagnose, assess the severity, and give appropriate and adequate treatment.

The development of models for asthma requires time, resources and the support

and cooperation of people in the medical profession.

The intensive study that was required for the development of these models has

not only resulted in basic models for management of the disease but has also

resulted in a better understanding of the disease dynamics. For example, there

is a general belief that the cost of preventive care is higher than that of

acute care, but if preventive care leads to reduced mortality and fewer

number of referrals then this higher cost can be justified. The problem is

determining what the optimum balance between the two should be. Simulation

model V not only confirms this but also showed that at a certain stage a very

good preventive care costs less than the cost of acute care, making it more

effective. The models do not take the important consequential costs of asthma

attacks such as days away from work, hospital costs, loss of sleep etc. into

account.
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Models developed in this research are very simple. This is because they are

developed for use by the medical planners who have no strong background in

mathematics. To make these models more realistic requires more time, resources

and support and cooperation of the national or local authority in providing

the necessary information. Operational Research has been very useful in health

care management problems and its scope in problems related to the control of

chronic and infectious diseases is very wide. This new area of developing

models for dealing with disease is very challenging for Operational Research

scientists.
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APPENDIX 1

A DESCRIPTION OF PROGRAMS FOR MODEL V

The program for model V consists of eleven units of code. TECHNOJOCK (1989)

was used extensively for the design of input screens. The following gives a

description of these units and the main program.

1. VARDECS

This unit consists of variable declarations used in the simulation.

2. SCREENS

This is the data input unit. It requests for the population of people in the

community including asthmatics. It also contains information for type I

management strategies, the age distribution of people who are currently

asthmatic, the incidence rates of the disease asthma, and the growing out

statistics.

3. FIRST

This unit is used to calculate the number of attacks and the number of

referrals resulting from the simulation. The time between attacks, the

durations and consultation times are also recorded by this unit.

4. SECOND

This unit uses the results obtained with the unit FIRST to calculate

the costs of resources.
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5. SETUP

This unit allows the reading and writing of data (excluding resources) into

files.

6. RESINP

This unit deals with the reading and writing of resources data into files. New

data files can be created using this unit.

7. DENSITY

Information about the time between attacks, the durations and consultation

times is requested by this unit. The unit also displays the density

functions of the exponential or Weibull distribution of these time

durations, if required.

8. OUTPUT

This unit takes care of output from the simulation model. It is used to

store and/or display results from the simulation. It is also used to

view results from previous runs.

9. RUNSIM

This unit initialises variables and sets the necessary parameters and

queues for the simulation. It consists of the procedure Runnit which

contains the procedure Run. The procedure Runnit is called by the main program

ASTHMA5 to start the simulation.

10. TOCHVAR

This unit uses programmed parameters on the duration in each state determined

from the input screens to compute how long each person is to remain in the

present state before making a transition to another state. The unit moves each
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person at the designated time (T phase) to the destined state (B phase), using

the transition probabilities.

11. ASTHMA5

This is the main program for model V. It initialises some of the menus and

calls the procedure Runnit to perform the simulation.

12. OVRINT

This is the overlay unit which is used for memory management.
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APPENDIX 2

HOW MODELS III AND V CAN BE RUN

The following explains how the simulation programs for models III and V can

be run.

1. HARDWARE REQUIREMENTS

The simulation programs for these models will run on any IBM - compatible

machine with a VGA graphics screen mode. The programs will not fit on a 5 1/4"

low density disk, but could however be made to fit by just deleting the files

with extensions PAS and BAK.

It is highly recommended that you run the programs from the hard disk drive if

there is any. Programs run from this drive will run faster, but the speed at

which the program runs will depend on the particular machine it is running on.

If the machine has no hard disk, then the programs can be run from a high

density floppy disk. What you just need to do is to put the disk in the disk

drive and type asthma3 for model III or asthma5 for model V.

To run from the hard disk, you first make a directory DOO then copy all the

files on the floppy disk into this directory. The programs need enough memory

space and a memory manager is required since they use overlays.

All the files created during the program run will be automatically saved in

the directory DOO. Furthermore the programs will only look for input data

files and output files in this directory.

2. INPUT DATA FILES

For both models you have the option of creating your own input files from

scratch or editing existing files. The programs however come with their sample

files. When you select a data input option, a directory will be displayed,
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showing all the files of the same type which already exist. If there is more

than one you can then select one by writing its name as will be requested. A

new file can be created by just typing its name (without an extension). This

filename should not be more than 8 characters long and must be a valid DOS

filename. All the data input screens have been designed to make the input of

data as easy as possible.

3. RUNNING THE PROGRAMS

The simulation run is initiated by selecting the RUN option from the main

menu. Files for all the data you created or have been created will now be

required for a run. You then select these files, one after the other, from

directories of all the available files (if there are many of each type) before

you run.

4. OUTPUT

After the run is completed you will have the option of viewing the output in

text form and/or in graphical form (for model III) or just in graphical form

(for model V). The results from the run can also be saved in files with their

filenames entered by the user. Output from a previous run can also be viewed

by selecting the appropriate option from the main menu.
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