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INTRODUCTION

In this thesis we exploit the knowledge of the well-known

subgroup structure of the groups PSL(2,q) and PGL(2,q) to

study some important combinatorial formulas, invariants and

structures associated with their primitive permutation

representations. Our discussion will be mainly on the disjoint

cycle structures, ranks, cycle index formulas, suborbital

graphs and intersection matrices associated with some of these

representations.

This thesis is divided into four chapters.

In chapter 1 we compute the disjoint cycle structures, ranks

and cycle index formulas for the primitive permutation

representations of PSL(2,q) and PGL(2,q).

In chapter 2 we compute the subdegrees of all primitive

permutation representations of PSL(2,q) and PGL(2,q)

(confirming and extending the results in [3] and [7]). Though

various methods are used here, the most prominent one is based

on [14] which uses the table of marks. The ranks computed in

chapter 1 are also confirmed in this chapter.

In chapter 3 we devise a method for constructing some of the

suborbital graphs of PSL(2,q) and PGL(2,q) on the cosets of

their maximal dihedral subgroups of orders q-1 and 2(q-1)
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respectively. This method gives an alternative way of

constructing the Coxeter graph given in [5] . Some graph

theoretic properties such as the girth and diameter are found

for some of the graphs discussed in this chapter.

In chapter 4 a general form of the intersection matrix of

PGL(2,q) on the cosets of its maximal dihedral subgroup of

order 2(q-l) relative to the suborbit of length 2(q-l) is

given. The number of triangles on every edge of the suborbital

graph corresponding to this intersection matrix is shown to be

q-1.
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CHAPTER 1

PRIMITIVE PERMUTATION REPRESENTATIONS OF PSL(2.q) AND PGL(2.q) AND

THEIR CORRESPONDING CYCLE INDICES

The only well-known cycle index formulas are for the

following five groups: Sn, An, Dn, Cn and In (the identity

permutation on n elements) (see Harary [9], p.184). The main

aim of this chapter is to derive the cycle index formulas for

the primitive permutation representations of PSL(2,q) and

PGL(2,q), q=pf where p is prime.

In section 1.1 we give definitions and results needed in

the rest of the chapter.

The disjoint cycle structures and ranks of all primitive

permutation representations of PSL(2,q) and PGL(2,q) are

computed in sections 1.2 and 1.3.

In section 1.4 we illustrate by giving examples how to

compute the cycle index formulas of primitive permutation

representations of PSL(2,q) and PGL(2,q) by using the results

in sections 1.2 and 1.3.

1.1 Group actions and cycle indices

Definition 1.1.1 Let (G^X^ and (G2,X2) be finite permutation
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groups (i.e G,- acts on X,). To say that (G1# Xx) «(G2, X2)

(permutation isomorphism) means that there exists a group

isomorphism <J):G1-G2 and a bijection Q:XX-*X2 so that

6(gx) =<J>gr(6x) for all geG1,x€X1 or Qg~$g& for all geGx

In other words the diagram

e

is commutative for all g e Gx .

An important special case is when G., = G2 and <|> is the

identity map. Then the condition is 65̂  = 96 for all g € G ,

and the definition determines the notion of equivalent actions

of G on the two sets X1 and X2.

An important well known example follows:

Theorem 1.1.2 Let G act transitively on the set X. Let x e X
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and let H = stabG(x) . Then the action of G on X is equivalent

to action by multiplication on the set of (right) cosets of H

in G.

(See Rose [18], p.76)

Notation

From now on, 7r(g) and C9 will denote the number of fixed

points and the conjugacy class of g e G respectively.

The following two results will be of great use later in

the chapter.

Theorem 1.1.3 Let G be a finite transitive permutation group

acting on the right cosets of its subgroup H. If g e G and

|G:H|=n,

then

D H
n \C9\

Proof An elememt of g e G fixes a coset

Us «• Hsg = Hs
** sgs~x e H

e #fl Cg.

Since H is the subgroup of G which fixes one coset, that is H

itself, then every subgroup of G fixing a coset is conjugate

to H. Hence I-HDC^I = \yHy'rV\C9\ , for every g e G. The number
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of ordered pairs (y,z) with z e yHy-1 f) Cg is n|#||#ncff| .

But if z e C9, then 7r(z)=7r(g), so that there are 7r(g) cosets

for which z e yHy"1. Therefore, the number of ordered pairs

(y,z) satisfying this condition is 71 (g) \H\ \Cg\ .

Hence

\H\\C*\ = n\H\\HC\ C*\ . 0

If a finite group G acts on a set X with n elements, each

g e G corresponds to a permutation a of X, which can be

written uniquely as a product of disjoint cycles. If a has a1

cycles of length 1, a2 cycles of length 2, , an cycles of

length n, we will say that a and hence g has cycle type (a,,,

Lemma 1.1.4 Let g be a permutation with cycle type

(a1# a2, ,an).

Then

(a) the number 7r(gl) of 1-cycles in gl is

(b) ocj = •^y^TZ {g^1) \i(i) , where p. is the Mobius function

(see Hardy and Wright [10], p.234 for the definition of
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H).

Proof (a) Suppose e,ez , is a disjoint cycle

decomposition of g, then

gL = (6,63 )* = e'ef

Let 9 be any i-cycle in g, then 0l is a product of

(i,i) —j—.—yr--cycles and it contains a 1-cycle if and only

if i|l. In this case we have i 1-cycles. The result follows

when we sum over all the cycles of various lengths i such that

(b) Let f(l) = 7r(gl).

From (a) , fit) = Y] iad = Y) h(i) , where we define h(i) = iai .

By using the Mobius Inversion Formula (see Hardy and Wright

[10], Theorem 2 66),

we get

= 9(1) =Tf(i)v(l/i) =Tf(±)\x(i) =Tn(gl/i)Vi(i) . D

Definition 1.1.5 If a finite group G acts on X, |x|=n and geG

has cycle type (a,, a2, . . . . ,an) we define the monomial of g to

be
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mon(g) = t^tp fc"n ,

where t,,, t2, ...,tn are n distinct (commuting) indeterminates.

Definition 1.1.6 The cycle index of the action of G on X is

the polynomial (say over the rational field Q) in t1# t2,

...,tn given by

= ZGiX{tx,t2l...,tn) = -X :geG} .

Note that if G has conjugacy classes K,,

Ki for all i, then

..,!^, with g- e

Definition 1.1.7 If G is a finite group acting on a finite

set X, we define the orbit of x e X to be

OrbG(x) = {gx|g e G}.

The number of G-orbits is normally found using the

following well-known formula.

Theorem 1.1.8 (Cauchy - Frobenius Formula) Let G be a group

acting on a finite set X. The number of G-orbits in X is
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(see Krishnamurthy [15], Theorem 1.4.)

If Gx is the stabilizer of x e X, the number of Gx-orbits on

X is called the rank r of G. Later in the chapter we shall use

the Cauchy - Frobenius Formula to calculate the ranks of

PSL(2,q) and PGL(2,q) on the cosets of their maximal

subgroups.

Let (G,X) be a finite permutation group and we denote by

X(2> the set of 2-element subsets of X. If g is a permutation

in (G,X), we may want to know the disjoint cycle structure of

the permutation g1 induced by g on X(2).

We shall briefly sketch the technique (we call it the

pair group action) for obtaining the disjoint cycle structure

of g" ;

for a detailed treatment and examples one can refer to Harary

[8], chap. 5.

Let monig) = t"1t2"
2 fc"n > o u r a i m i-s t o find mon(g')

from which the disjoint cycle structure of g1 can

straightforwardly be obtained. To do this, there are two

separate contributions from g to the corresponding term of

mon(g') which we need to consider:

(i) From pairs of points, both lying in a common cycle of g.

(ii) From pairs of points, one in each of two different cycles

of g.

It is convenient to divide the first contributions into:
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(a) those pairs from the odd cycles and (b) those pairs from

even cycles.

(i) (a) Let 6 = (1 2 3 2m+l) be an odd cycle in g, then

the permutation e' in (G,X(2)) induced by 9 is as follows:

, 2}-{2, 3}-{3 , - { 2 / n + l ,

2}-*{2im+1

Hence
• ! •

So if we have a2m+1 cycles of length 2m+l in g, the pairs of

points lying in the common cycles contribute:

(1.1.1)

for odd cycles.

(i) (b) If 9 = (1 2 3 .... 2m), then we get 01 as follows:
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^ 1 2 3 • • • .Tilth, -

2}-{2, 3}-{3 , , 1},

, 2}-,

, 1 } -

-{/n, 2m]y

m-lHence t2JB - sms2m

So if a2m i s the number of cycles of length 2m in g, the pairs

of points lying in common cycles contribute:

f- 2m - (• mS2m (1.1.2)

for even cycles.

(ii) Consider two distinct cycles of length a and b in (G,X).

If x belongs to an a-cycle 9g of g and y belongs to a b-cycle

9b of g, then the least positive integer 6, for which g
Bx=x and

also gBy=y, is [a,b], the lcm of a and b. So the element {x,y}

belongs to an [a,b]-cycle of g1. The number of such [a,b]-

cycles contributed by g on 6ax0b to g
1 is the total number of

pairs in 6 x6. divided by [a,b] , the length of each cycle. This
a D
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number is therefore

ah
[a,b]

= (a.b) ,

the gcd of a and b.

In particular when a = b = I, the contribution by g on 6aX9b

to g' isi, cycles of length I . Thus when a*b , we have

(1.1.3)

and when a = b = t,

Now we simply need to multiply the right-sides of (1.1.1) -

(1.1.4) over all applicable cases. Collecting the like terms

and simplifying gives mon(g') and hence the disjoint cycle

structure of g'.

Before we start discussing the next section, we first

give some definitions and notation which we shall carry

through to the other chapters.

The PGL(2,q) group over the finite field GF(q) of prime

power order q is a group consisting of linear fractional

transformations of the form
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x _ ax+b
cx+d '

with x e PG(l,q), a, b, c, d e GF(q), where ad-bc+Q .

PGL(2,q) is 3-transitive on PG(l,q) of degree q+1 and order

q(q2-l).

The PSL(2,q) is a subgroup of PGL(2,q) with ad - be = 1.

It is simple for q > 3. It is also 2-transitive on PG(l,q) of

degree q+1 and order <?(<? -1) f where k=(q-l,2).

If q is a power of 2, then

PGL(2,q) * PSL(2,q).

As we shall see later, in both PSL(2,q) and PGL(2,q) only

the identity has more than two fixed points and both groups

are partitioned by their non-identity elements into three

parts (excluding the identity), namely;

(i) those permutations with precisely one fixed point on

PG(l,q) (the parabolic elements).

(ii) those permutations with precisely two fixed points (the

hyperbolic elements),

(iii) those permutations with no fixed points (elliptic

elements).
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Notation

We shall denote the sets of parabolic, hyperbolic and

elliptic elements by the symbols x±, x2 and x0

respectively. The symbols Cn, D2n and Pq for n e N , q a prime

power, will mean respectively the cyclic group of order n, the

dihedral group of order 2n and the elementary abelian group of

order q.

The symbol q will always represent the prime p to the power f.

For an arbitrary m|f, the symbol e will represent the prime p

to the power m. Also merely for simplification, we introduce

the following functions w,z:N ->• i& which are defined by:

win - —(pf-l),
n

z\n - — (p
n

With the help of the above simplifications, we now give some

more notation that will describe some subgroups of PSL(2,q)

and PGL(2,q) . From now onwards we shall take k to be (2,w(l)) .

The z(l) Frobenius groups in PSL(2,q) that are each the

stabilizer of a point are semi-direct products of a Pq by a

CH(k) (see Dickson [6], / 250) . Any subgroup of these which is

a *proper1 semi-direct product will be denoted by Sen,

(i.e Se n = Pe x Cn, where l<n|w(k)) or by S q n if m=f.

Similarly PGL(2,q) has Frobenius stabilizers Pq a CH(1). We
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shall also denote subgroups of this by S e n (or S for m=f)

where n|w(1).

1.2 Primitive permutation representations of G = PSL(2.q)

We shall first have a brief look at the subgroup

structure of G; for more details see Dickson [6], chap. 12 or

Huppert [13], chap. 2, §8 for more modern and standard

terminology.

Theorem 1.2.1 (a) The elementary abelian subgroup P of G is

a Sylow p-subgroup isomorphic to the additive group of GF(g).

(b) The elements of P have a common fixed point, and each

non-identity element of P has only this fixed point.

(c) G has precisely z(l) Sylow p-subgroups.

(d) Each pair of distinct conjugates of Pq intersect only at

the identity.

(see Huppert [13], p.191.)

The normalizer of P is S (k).

Theorem 1.2.2 (a) The subgroup of G which fixes 0 and » is a

cyclic group CH(k).

(b) Each pair of distinct conjugates of Cw(k) intersect only at

the identity.

(c) For each u with J * u<=Cw{k), NG(<u>) is a dihedral group

of order 2w(k).

(see Huppert [13], p.192.)
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Theorem 1.2.3 (a) G has a cyclic subgroup Cz(k).

(b) If I*sECz(k), then NG(<s>) is a dihedral group of order

2z(k).

(c) Each pair of distinct conjugates of Cz(k) intersect only at

the identity.

(d) If I*seCz{k) , then s has no fixed points on PG(l,q) .

(see Huppert [13], p.192.)

By using the notation introduced earlier on, the

normalizers of Cw(k) and C2(k) become D2w(k) and D2z(k) respectively.

We now state a theorem which gives a partition of G into

sets each of which contains elements with a precise number of

fixed points. The notation used in the theorem should not be

confused with the notation C9 introduced earlier on. By Cgw(k)

for example, we mean conjugation of CH(k) by g e G.

Theorem 1.2.4 Let T be the following set of subgroups of G;

3> = { P / , Cw
g
ik), C/(k)\gEG} .

Then each non-identity element of G is contained in exactly

one group in 0\ (Thus the set T forms a partition of G).

(b) Let 7r(g) be the number of fixed points of g e G on

PG(l,q).

Now if we recall that
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then

x0 - l^iC.n-n'. t, - U

(see Huppert [13], p.193.)

Lemma 1.2.5 If g is elliptic or hyperbolic of order greater

than 2, or if g is parabolic, then its centralizer in G

consists of all elliptic (resp. hyperbolic, parabolic)

elements with the same fixed point set, together with the

identity element. On the other hand, if g is elliptic or

hyperbolic of order 2, then its centralizer is a dihedral

group of order 2z(k) or 2w(k) respectively.

(see Dickson [6], /224.)

(u> 0 \
Lemma 1 . 2 . 6 Le t dw =\ _J eCw{k); if g 1dG,g = dp f o r some

g e G a n d w*±l , t h e n p = w o r p = c o 1 a n d g e D.2w(k)'

(see Suzuki [20], Lemma 6.4.)

Lemma 1.2.7 The w(l) non-identity elements of the Sylow

p-subgroup Pq of G are all conjugate if p=2, but are separated

into two sets of w(2) conjugate elements if p > 2.

(see Dickson [6], /241.)
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Lemma 1.2.8 The p-l non-identity elements of a cyclic subgroup

Cp of G belong half to one set of conjugacy classes and half

to the other if p > 2 and f is odd but all belong to the same

set if

p > 2 and f is even or p=2.

(see Dickson [6], /241.)

A subgroup H of G is maximal if it is isomorphic to one

of the following types of groups satisfying the given

conditions:

1 ) Sq,w(k)'"

2) D2H(|C) (exceptions occur when q=3 , 5, 7 , 9 ,11) ;

3) D2z(k) (exceptions occur when q=2,7,9);

4) Alternating group A4, when q=p > 3 and q=3,13,27,37 (mod

40) ;

5) Alternating group A5, when q=5
n or 4n where n is prime, or

q=p and q=±l mod 5, or q=p2 where p > 2 and q=-l mod 5;

6) Symmetric group S4, when q=p and q=±l mod 8;

7) PSL(2,e) when f/m is an odd prime number;

8) PGL(2,e) when f/m=2.

(see Suzuki [20], p.417.)

Furthermore we have one conjugacy class of subgroups

isomorphic to H in 1 ) , 2 ) , 3 ) , 4) (if q=±3 mod 8 ) , 5) (when

q=4n or 5n where n is prime), 7) and two conjugacy classes in

4) (if q=±l mod 8 ) , 5) (when q=p and q=±l mod 5 or q=p2, p >

2 and q=l mod 5 ) , 6) and 8 ) , conjugate in PGL(2,q) (see

Dickson [6], / 260) . Hence we have (up to equivalence) one
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permutation representation on the cosets of H.

Next we compute the disjoint cycle structures of G and

its rank on the right cosets of H in the order given in the

list above. (Although our main aim is to work with maximal

subgroups H of G, where possible we shall generalize our

results to include cases where H is not maximal.)

Our computations will be carried out by each time taking

an element g of order d in from and x,

respectively.

(i.e d=p, d|w(k) and d|z(k) respectively.)

1) Representation on the cosets of H « Sq H(k)

From Theorem 1.1.2, the action of G on the cosets of H is

equivalent to its natural action on PG(l,q) of degree z(l).

From Theorems 1.2.1 - 1.2.4, we have the following

results:

Table 1.2.1

Cycle lengths of g1

No. of cycles

(I)

T1

1 P

1 Pf"1

(ID

T2

1 d

2 w(d)

(III)

T0

d

z(d)

Where for example in the second column we mean g e T1 induces

a permutation g1 with one 1-cycle and pf"1 p-cycles.

Since G is 2-transitive on PG(l,q) , its rank in this case

is 2.
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2) Representation on the cosets of H » DcU(io

Since H is the stabilizer of an unordered pair {6,A} £

PG(l,q) and G is 2-transitive on PG(l,q), by Theorem 1.1.2 we

can obtain the disjoint cycle structures of the elements of G

on the cosets of H by considering its action on unordered

pairs of PG(l,q).

The method we shall use here is based on the results on

the pair group action introduced earlier. Before we start, it

is important to specify the column (headed by T,, i=0,l,2) in

Table 1.2.1 in which permutations g1 with even cycle lengths

lie (any of the other two columns will have permutations of

odd lengths only). Hence three cases must be distinguished:

(a) p=2 (b) q^l mod 4 (c) qs-i mod 4.

If g e T2 or TQ; in cases (b) and (c) we have to differentiate

between the cases 2|d and 2/d. We will work out case (b) with

g e T2 and 2|d fully; for the other cases we only give the

results.

Now if g e T2, qsi mod 4 and 2|d; from the results in

Table 1.2.1, g contains two 1-cycles and w(d) d-cycles. By

using the results on the pair group action, we get the

contributions as follows:

By (1.1.1), the two trivial cycles contribute:

tl - si. (1.2.1)

By (1.1.2), the w(d) non-trivial cycles contribute:
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Cd
w(d) w(2d) (d-2)

i d d (1.2.2)

By (1.1.3), contributions from the non-trivial cycles

are:

(1.2.3)

By (1.1.4), the contribution from the two trivial cycles

is:

fci - Si. (1.2.4)

Again by (1.1.4), contributions fron the non-trivial

cycles are:

w(2d) (w(l)-d) (1.2.5)

Combining (1.2.1) - (1.2.5) we get

mon{g') = s,sv

(i.e g1 contains one 1-cycle, w(d) ^d-cycles and w(2d)z(l)

d-cycles). We can similarly obtain the results for the other

cases.
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Summary of the results.

(I) 9

In case (a), g1 contains 2f'1 1-cycles and 4f"1 p-cycles.

In case (b) and (c) , g1 contains z(2)pf"1 p-cycles.

Results for g e T2 and r0 are displayed in the table below:

Table 1.2.2

CYCLE

NO. OF
Cases

LENGTHS

CYCLES
(b) and

OF g1

: Case (a)
(c) with

d even
d odd

1

1

1
1

'Ad

0

w(d)
0

(II)

T2

d

w(2d)z(1)

w(2d)z(1)
w(2d)(q+2)

%d

0

z(d)
0

(III)

T0

d

qz(2d)

w(2d)z(1)
qz(2d)

Note that the above table has been compressed to save space.

This though does not hinder us from getting the information

the table was intended for (i.e the disjoint cycle structure

of g1 for the cases listed earlier). For example if we take

case (c) where qs-i mod 4 and g e rQ, all we have to note is

that d can either be even or odd. Now from column (III) we

get; for d even, g1 contains z(d) d/2-cycles and w(2d)z(l) d-

cycles; and for d odd, g1 contains qz(2d) d-cycles.

By using the Cauchy - Frobenius formula, we calculate the

rank r of G as follows:

Case fa)

From the results given above, elements of H have fixed

points as follows:
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The identity fixes qz(2) cosets. We also have w(l)

elements of order two each fixing 2f'1 cosets and q-2 elements

of order greater than two each fixing one coset. Hence

[qz{2)
2w(l)

Case (h)

Case (c)

•T = — T T T iqz(2) + w(2)z(2) + w(2)] =

In parts 3) -8) we compute the cycle structure of g1

using an approach different from the one used previously. Our

first objective will be to determine |cg| and | C^H | . We easily

obtain |cg| by using Theorems 1.2.1 - 1.2.3 and Lemmas 1.2.5

and 1.2.7. If no h e H with |h|=d (order of g) exists, then

Ic^H^O; if such an h exists, this intersection can be

obtained using Theorems 1.2.1 - 1.2.3, Lemmas 1.2.5 - 1.2.8

and the knowledge of conjugacy classes of H which we shall

discuss as we go along. We use Theorem 1.1.3 to calculate

?r(g). Once 7r(g) is known, the numbers a- will be determined

using Lemma 1.1.4(b) and some quite straightforward arguments.

Remark 1.2.1 We notice from Lemma 1.1.4(b) that g1 contains a
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cycle of length i if there exists h e H with d/(d,i) = |h|

(i.e if 7r(g1")=0, then ^.=0) .

The way we arrive at various cases in each of the parts

needs a mention; bearing in mind conditions given earlier for

H to be maximal, we search for the conditions on q giving all

the possible distributions of non-identity elements of H over

the three partitions (TS, i=0,l,2) of G, then eliminate those

possibilities where H does not exist or H is not maximal.

3) Representation on the cosets of HgD2z(|c)

Let Cz(k) be the maximal cyclic subgroup of H. The z (k)

involutions in H\Cz(k) are all conjugate in H if q^l mod 4 or

p=2. If q=-l mod 4 these involutions lie in two conjugacy

classes of z(4) elements.

Let <s> = Cz(k), then the conjugacy class of s
J, jeN in H

is {sj,s"j}. In particular H contains a singleton conjugacy

class containing an involution in Cz(k) if and only if q=-i mod

4.

Involutions in G form a single conjugacy class containing

( gz(2) if q = 1 mod 4
qw(2) if q = -1 mod 4
w(l) z(l) if P = 2

elements.

If d (order of g) is 2, then
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n H\ =
z(k) if p = 2 -,r g- = i mod 4
g+3
2 if g = -1 mod 4.

From Theorem 1.2.3 and the information given above, if d>2,

then

0

otherwise.

The involutions in H lie in one of the T. (i=0,l,2), giving us

3 cases to consider:

(a) when p=2 (b) when q= 1 mod 4 (c) when q= -1 mod 4.

The table below gives the values of 7r(g).

Table 1.2.5

(I) g e r.: Case (a)
Case (b) and (c)

|cgi
w(1)z(1)
w(2)z(1)

(II) g_e_l?: Case Ca9(
Case (b) with d*2 H qz(1)

Case (cM
Case (b) with d=2 qz(2)

(III) g e TQ:Case (ay
Case (c) with d*2 H
Case (b) J qw(1)
Case (c) with d=2 qw(2)

|CgnH|

z(1)
0

0

z(2)

2
(q+3)/2

*(g)

2f-1

0

0

w(2)

1
| (q+3)/2

We may now proceed to calculate in detail the cycle

lengths of the element g1 corresponding to g in this

representation.

- 25 -



(I) a e T

Case (a)

From Table 1.2.3, 7r(g)=2f-1. It is quite straightforward

that the only non-trivial cycles g1 has are the 2f'1(2f'1-l) 2-

cycles.

Case (b) and fc)

Here d=p and for 1 < I < p, |gl| = p .

From Table 1.2.3, 7r(gl)=O. Hence from Remark 1.2.1, at=0.

We also have

«p=-|*<flr*>
= qw(2p) .

(II) q e T2

Case (a)

If 1 < t < d, we deduce from Table 1.2.3 that 7r(gl)

Hence from Remark 1.2.1, al = 0.

Now

= 0,

= 2w(2d) .

Case (h)

(i) If 1 < J, < d, 2|d, from Table 1.2.3 we have
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k(2) if l = 1

lo otherwise.

Hence if I, * d/2, at=0

and

We also have

= w(2d)

(ii) If 2|d, for 1 < I < d, 5r(gl)=O and therefore at=0,

If l=d then

ad= ±
= qw(2d) .

Case (c)

As in b(ii) above, g1 contains only the qw(2d) d-cycles.
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(IIP g e TQ

Case fa)

From Table 1.2.3, 7r(gl)=i for 1 < L < d. Hence for 1 < I < d,

= 0

i)
(1.2.6)

We also have

(1.2.7)

Case (b)

Since 7r(gl)=l for 1 < I < d, then for 1 < I < d, at=0 (cf,

(1.2.6)).

Now

ad=(q-2)z(2d) (cf. (1.2.7)).

Case (c)

(i) For 1 < t < d, 2|d, we have

h J lf l'^
1 otherwise.
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So if 1 < i < d and I * d/2, then, ot=0 (cf. (1.2.6))

If l=d/2, then

= z(d) .

We also have

1_
d I\d

(ii) If 2/d, then for 1 < I < d, 7r(gl)=l. Now g1 contains one

1-cycle and (q-2)z(2d) d-cycles (cf. (1.2.6) and (1.2.7)).

Summary of the results

(I) e T,

In case (a), g1 contains 2f'1 1-cycles and 2f'1(2f"1-l) p-cycles.

In cases (b) and (c) , g1 contains pf"1w(2) p-cycles.

Results for g e T2 and T0 are displayed in the table below:
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Table 1.2.4

CYCLE LENGTHS OF g1

NO. OF CYCLES
Case (a)

Case (b) and (c) with d even
d odd

(II)

T2

M d

0 qw<2d)
w(d) w(2d)w(1)
0 qw(2d)

(III)

T0

1 VSd d

1 0 (q-2)z(2d)
1 z(d) (q-3)z(2d)
1 0 (q-2)z(2d)

Rank of G

Case (a) r-

Case = z(l)
= 3w(4) .

[gw{2) +w{2) z(2) +w(2)

Case (c) r =
= 3z(4) .

In parts 4) - 6) arguments similar to those used in part

3) continue to be used. But after having dealt with part 3) in

detail, we will only deal with some isolated cases in the

remaining parts before listing the results.
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4) Representation on the cosets of H * A,

There are subgroups H isomorphic to A4 if and only if p

> 2 or p=2 and f=0 mod 2. Together with the identity element,

H contains 3 conjugate elements of order 2 and 8 elements of

order 3 which lie in 2 mutually inverse conjugacy classes of

4 elements.

The conjugacy classes of involutions in G were discussed

in the previous part. It is easily noticed that for d=2,

If p=3, G contains w(l)z(l) elements of order 3. By Lemma

1.2.7, these elements form two conjugacy classes of w(2)z(l)

elements. These classes are self-inverse or mutually inverse

as f is even or odd.

If p*3, from Theorems 1.2.2, 1.2.3 and Lemma 1.2.5, there

is a single conjugacy class of elements of order 3 in G

containing q(q+e) elements, where

1 if q=l mod 3f 1 if q=l mod 3
e " \-i if gs-i mod 3 *

Therefore we have

{ 8 0 if p=3 f even
4 if p=3 f odd
8 ifp*3.

Now excluding the cases p=2 or 3 when H is not maximal, we

have the following four cases to consider:
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(a) q=5 mod 12

(b) q=7 mod 12

(c) q=l mod 12

(d) q= -1 mod 12.

Values for w(g) in all the four cases are given in the table

below.

Table 1.2.5

(I) ger.
Cases (a) -(d)

(ID g«T2
Cases (a) and (c) with d=2
Cases (a)-(d), d*2,3
Cases (b) and (c), d=3

(III) ger0
Cases (a) and (d) with d=3
Cases (a)-(d), d*2,3
Cases (b) and (d), d=2

|cg|

w(2)w(1)

qz(2)
qz(1)
qz(1)

qw(1)
qw(1)
qw(2)

IC^Hl

0

3
0
8

8
0
3

Kg)

0

w(4)
0

w(3)

z(3)
0

z(4)

Perhaps the best case to consider in order to illustrate

how the numbers a,, come about is case (c) with ger2.

This case splits into the following four subcases:

(i) 2|d, 3/d (ii) 3|d, 2/d (iii) 2, 3|d (iv) 2, 3/d.

We shall only work out subcase (iii).

If 1 < l< d, then from Table 1.2.5,

w(4)

it i=4, 2d

«"f!'T
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Note that there are $(3)=2 ($ the Euler *-function) distinct

I ,

1 <l < d such that |gl|=3, namely d/3 and 2d/3.

From Remark 1.2.1, et=0 for I* d/2, d/3, 2d/3.

If I =d/2, then

= w(2d) .

Ift =d/3, then

= w(d) .

If I =2d/3, then

2d

a 2d
3̂r 2 a

[nig

0.

Lastly,

A - iz(g2) - nig3)]

= (g2 + g - 14) v(24d) .
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Summary of the results.

(I) g e r,

In all the four cases g1 contains qw(24p)z(l) p-cycles.

Results for g e r2 and TQ are displayed in the table below:

Table 1.2.6

CYCLES
LENGTHS
OF g1

NO. OF
CYCLES
Cases
(a)-(d)
with
2
3
d,3/d
d,2/d
2,3|d
2,3/d

'Ad

0
w(d)
w(d)
0

%d

w(2d)
0
w(2d)
0

(II)

T2

d

<q±3)(q-2)u(24d)
<q;+q-8)w(24d)
(q':+q-14)w(24d)
qw(24d)z( 1)

'Ad

0
z(d)
z(d)
0

'/id

z(2d)
0

(III)

T0

d

(q-31(q+2)z(24d)
(g<c-q-8)z(24d)

z(2d) (q"--q-14)z(24d)
0 qw(24d)z(1)

Rank of G

Case fa)

r = 12
[qw(24)z(D + 3w(4) +8z(3)]

g3 + 81g + 46
288
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Case(b)

12
g3 + 81g - 46

288

3z(4)]

Case(c)

+ 3w(4)

+82) w(288) .

Casefd)

r = 12
8z(3) +3z(4)]

- Q + 82)z(288) .

5) Representation on the cosets of H^A5

G contains subgroups H isomorphic to the alternating

group A5 precisely when p=5 or q=±l mod 5. Together with the

identity element, H contains 24 elements of order 5 forming 2

conjugacy classes of 12 elements which are transposed by

squaring, 2 0 conjugate elements of order 3 and 15 conjugate

elements of order 2.

From the discussion we had in part 3) on the conjugacy
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classes of elements of order 2 in G, it is readily noticed

that

|H n cgi = 15.

Conjugacy classes of elements of order 3 in G were discussed

in part 4). If d=3, we can easily deduce that

\N f) ra\ - i 20 ° ir"p=3 a*d f even|iiM C I " 1 20 if p*3.

Note that the case when p=3 and f odd does not occur because

we can never have q=±l mod 5.

There exists elements of order 5 in G if and only if p=5

or qs±i mod 5. If p=5, there are w(l)z(l) elements of order 5.

By Lemma 1.2.7, these elements form two self-inverse conjugacy

classes containing w(2)z(l) elements. Squaring preserves or

transposes these classes as f is even or odd. If qs±i mod 5;

from Theorems 1.2.2 and 1.2.3 and Lemma 1.2.5, there are two

self-inverse conjugacy classes of q(q+<S) elements, where

_ (1 if g=l mod 5
~ \-l if gs-1 mod 5;

squaring transposes the two classes.

From the information given above, the two conjugacy

classes of elements of order 5 in H lie in the same conjugacy

class in G if and only if p=5 and f is even. Moreover, if d is

5, then
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= I24 °r ° if P=5> f even

\12 ifp=5, f odd &r gs±i mod 5.

We now have the following cases to consider:

(a) p=2, q=4 mod 15

(b) p=2, q^l mod 15

(c) p=3, q=9 mod 20

(In fact here H is only maximal when f=2, but in this case we

generalize to include f=2 mod 4)

(d) p=5, q=5 mod 12

(e) qs29 mod 60

(f) q=19 mod 60

(g) q^ll mod 60

(h) q=49 mod 60

(i) q=41 mod 60

(j) q=31 mod 60

(k) q=l mod 60

(i) qs-l mod 60.
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Values for ?r(g) are presented in the table below:

Table 1.2.7

(I) g€T-
Cases(a) and (b)
Case (c)
Case (d)
Cases(e)-U)

(II) g6T

Cases(a) and (b)
with d=3

Case (a); d=5
Cases(a)-(l),

d*2,3,5
Cases <c),(d).

(k); d=2
Cases (f),(h)

(j),(k);d=3
Cases (g),(i)f
(j),(k)f;d=5

(III) 9£TQ
Case (a);d=5
Cases(a)-d),

d*2,3,5
Cases (f),(g).
(j),(l);d=2
Cases (d),(e)
(g).(i),(l);d=3
Cases (c),(e),
(f).(h),(l);d=5

|cg|

W(1)Z(1)
w(2)z(1)
w(2)z(1)
w(2)z(1)

qz(1)
qz(1)

qz(1)

qz(2)

qz(1)

qz(1)

qw(1)

qw(1)

qw(2)

qw(1)

qwd)

|CgnH|

15
20 or 0

12
0

20
12

0

15

20

12

12

0

15

20

12

T(g)

3'"1 or 0
5f"1

0

w(3)
w(5)

0

w(4)

w(6)

w(10)

z(5)

0

z(4)

z(6)

z(10)

Here we give case (k) with geT2 as an example of how we

obtain the numbers a,-. We have the following subcases:

(i) 2|d, (3,5/d) (ii) 3|d, (2,5/d) (iii) 5|d, (2,3/d)

(iv) 2,3|d (5/d) (v) 2,5|d (3/d) (vi) 3,5|d (2/d) (vii)

2,3,5|d

(viii) 2,3,5/d.

We will only work out subcase (vii).

Using the arguments similar to those in part 4) , it can be

shown that a1/?d = a M = w(2d) and a M = 0.
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There are *<5) =4 distinct L , 1 < i< d such that 7r(gl)=5,

namely d/5, 2d/5, 3d/5 and 4d/5. Now by using arguments

similar to those in part 4), the following results are

immediate,

= w(2d) ,

ld
 = a-|d = a± = 0 and ad = (q2+q-62)w(120d)

For any I , 1 < L< d different from the ones above, a,=0.

Summary of the results

(D crer

In cases (a) and (b) , g1 contains 2f~1 1-cycles and

— g(g2-16) p-cycles. Incase (c) , g' contains 3f"1 1-cycles
-L dC* \J

and ——q(q2-Al) p-cycles or only qw(360p)z(l) p-cycles.
36 0

In case (d) , g1 contains 5f"1 1-cycles and —^—g(q2-25)

P-cycles. In cases (e)-(l), g1 contains qw(120p)z(l) p cycles,

Results for ger2 and TQ are displayed in the table below:

- 39 -



Table 1.2.8

(II)

i

1
CYCLE LENGTH OF gl

NO. OF CYCLES '
Case (a) and (b)

3
5
d, 5/d
d, 3/d

3,5|d
3,5/d

Case (c)
2
r
d. 5/d
d, 2/d

2,5/d
Case (d)

2
3
d, 3/d
d, 2/d

2,3/d
Cases (e)-(l)

2
3
5

d,3,5/d
d,2,5/d
d,2,3/d

2,3
2,5
3,5

d,5/d
d,3/d
d,2/d

2,3,5|d
2,3,5/d

d/5 d/3

0 w(d)
w(2d) 0
w(2d) w(d)
0 0

0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 w(2d)
w(2d) 0
0 w(2d)
w(2d) 0
w(2d) w(2d)
w(2d) w(2d)
0 0

T 2

d/2

0
0
0
0

w(2d)
0
0

w(2d)
0
0

w(2d)
0
0

w(2d)

d

(q+5)(q-4)w(60d)
(q+4)(q-3)w(60d)
<q'-q-32)w(60d)
qw(60d)z(1)

(q+6)(q-5)w(120d)
0

qw(120d)z(1)

(q+6)(q-5)w(120d)
0

qw(120d)z(1)

(q+6)(q-5)w(120d)
<q+5)(q-4)w(120d)
(q+4)(q-3)w(120d)
(q2+q-50)w(120d)

w(2d) (q+7)(q-6)w(120d)
0
w(2d)
0

(q'+q-32)w(120d)
(q'+q-62)w(120d)
qw(120d)z(1)

r

( I I I )

CYCLE LENGTH OF g1

NO. OF CYCLES
Case (a) and (b)

3|d, 5/d
5|d, 3/d
3,5|d
3,5/d

Case (c)
2|d, 5/d
5|df 2/d
2,5/d

Case (d)
2|d, 3/d
3|d, 2/d
2,3/d

Case (e)-(l)
2|d,3,5/d
3|d,2,5/d
5|d,2,3/d
2.3|d,5/d
2.5|d,3/d
3,5|d,2/d
2.3,5|d
2,3,5/d

d/5

0
0
0
0

0
z(2d)
0

0
0
0

0
0

z(2d)
0

z(2d)
z(2d)
z(2d)
0

d/3

0
0
0
0

0
0
0

0
z(2d)
0

0
z(2d)
0
z(2d)
0
z(2d)
z(2d)
0

d/2

0
0
0
0

0
0
0

0
0
0

z(2d)
0
0
z(2d)
z(2d)
0
z(2d)
0

d

0
(q-4)(q+3)z(60d)

0
qw(60d)z(1)

0
(q+3)(q-4)z(120d)
qw(120d)z(1)

0
(q-5)(q+4)z(120d)
qw(120d)z(1)

(q+5)(q-6)z(120d)
(q-5)(q+4)z<120d)
(q-4)(q+3)z(120d)
(q2-q-50)z(120d)
(q+6)(q-7)z(120d)
(qz-q-32)z(120d)
(q2-q-62)z(120d)

qw(120d)z(1)
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Rank of G 5

Case (a) •§

r = -^- lqw(60)z(l) + 15-2+20^(3) +24z(5)] ;;

60 4 Vf
g3 + 912gr - 112 c;

3600 " %

Case (b)

r = — [qw(60)z(l) + 15-2 + 20v(3) + 2Aw{5)
60 4

g3 + 912g - 688
3600

Case fc)

+ 15w(4) + 203/~1 + 24z(10)]
6 0

_ g3 + 1537g - 162
7200

Case (d)

r = 6 0
g3 + 1425g - 50

7200

20z(6)]
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Case (e)

r = - i - [gw(120)z(l) + 15w(4) + 20z(6) + 2 4 z ( 1 0 ) ]
60

g 3 + 1121 q + 238
7200 '

Case ff)

:(1) + 20w(6) + 15z(4) +24z(10)]
6 0

qr3 + 1137(7 + 338
7200

Case (q)

+ 24^(10) + 15z(4)
6 0

g 3 + 1137g + 562
7200

Case (h)

r = -i^[gw(120)z(l) + 15W4) + 20w(6) + 24z(10)]
6 0

g3 + 1137g - 562
7200
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Case (i)

r = —[qw(120) z(l) + 15w(4) + 24^(10) +20z(6)] §
& 0 ^

g3 + 1137g - 338 ^
7200 " ^

C a s e (-\)

r = -^-[qw (120) z(l) + 20w(6) + 2 4 W 1 0 ) + 1 5 z ( 4 ) ]
b U

g3 + Il37g - 238
7200

Case fk)

+ 15w(4)
6 0

g3 + 1137? - 1138
7200

Case (I)

r = — [gv(120)z(l) + 15z(4) + 20z(6) + 24z(10)]
6 0

g3 + H37g + 1138
7200
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6) Representation on the cosets of H » S4.

G contains subgroups H isomorphic to S4 if and only if

q=± 1 mod 8. Let us now examine the conjugacy classes of

elements of H.

Cycle structure

(1)
(ab)

(ab)(cd)
(abc)
(abed)

Number of them

1
6
3
8
6

Order

1
2
2
3
4

It is well known that two permutations are conjugate in the

symmetric group Sn if and only if they have the same cycle

structure. Hence the table above gives the conjugacy classes

of H.

The conjugacy classes of elements of order 2 and 3 in G

were described in the previous parts. There are nine

involutions in H, so for d=2 we have

| C9nH | =9 .

If d=3 we have

e,
0:

8 if p>3.

G contains elements of order 4 if and only if q= ±1 mod

8. These elements form a single class of q(q+<5) elements where

5 = q=l mod 8
q=-\ mod 8.

So we have, for d=4,
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I C9nH | =6.

Note that when p=3, H is not maximal in PSL(2,q) . So this case

will not be considered.

We have the following cases to consider:

(a) q= 17 mod 24

(b) q= 7 mod 24

(c) qs i mod 24

(d) q= -1 mod 24.

Below is the table of values of -n (g) :

Table 1.2.9.

(I) ge^ Case (a)-<d)

(II) ger-.
Cases (a) and (c) with d=2
Cases (a) and (c) with d=4
Cases (b) and (c) with d=3
Cases (a)-(d), d*2,3,4

(III) serQ
Cases (a)"and (d) with d=3
Cases (b) and (d) with d=2
Cases (b) and (d) with d=4
Cases (a)-(d), d#2,3,4

|C9|

w(2)z(1)

qz(2)
qz(1)
qzd)
qz(1)

qw(1)
qw(2)
qw(1)
qz(1)

JCgnH|

0

9
6
8
0

8
9
6
0

*(g)

0

3w(8)
w(8)
w(6)

0

z(6)
3z(8)
z(8)

0

We shall give case (c) with ger2 and 3,4|d as an example

of how we obtain the numbers a,-. If 1 <l < d, then from Table

1.2.9,

3v(8) ifl =-|

w(s) ifi =4- 3 4
4 4

w(6) if I =-|, 2 ^

0 Otherwise.
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Now it can be shown that

^ = a d = a d = w(2d) and a, d = a, d = 0
2 3 "4 2T 3T

If L *—, —, 2 — , 3 — , tAefl a, = 0.

r
o

Finally

+ Q ~ 26) v(48d) .

Summary of the results.

(I)

In all the four cases, g1 contains qw(48p)z(l) p-cycles.

Results for ger2 and T0 are displayed in the table below:

Table 1.2.10

CYCLE OF
LENGTHS g1

No. OF CYCLES
Cases (a) - (d)

3|d, 2/d
2|d,3,4/d
4|d,3/d
2,3|d,4/d
3f4|d
3,4/d

d/4

0
0

w(2d)
0

w(2d)
0

d/3

w(2d)
0
0

w(2d)
w(2d)
0

(II)

T2

d/2

0
3w(4d)
w(2d)
3w(4d)
w(2d)
0

d

(qz+q-8)w(48d)
(qz+q-18)w(48d)
(q'+q-18)w(48d)
(q!+q-26)w(48d)
(q!+q-26)w(48d)
qw(48d)z(1)

d/4

(III)

d/3 d/2

0 z(2d) 0
0 0 3z(4d)
z(2d) 0 z(2d)
0 z(2d) 3z(4d)
z(2d) z(2d) z(2d)
0 0 0

T0

d

(q2-q-8)z(48d)
(q?-q-18)z(48d)
(qJ-q-18)z(48d)
(q!-q-26)z(48d)
(q!-q-26)z(48d)
qw(48d)z(1)

- 46 -



Rank of G.

Case (a)

r = ~-[gw(4,8) z(l) + 27w(8) + 6w(8) + 8 z ( 6 ) ] r ,

g 3 + 261g - 134 V ,
1152

Case (b)

+ 27z(8) + 6z(8)]

g 3 + 261g + 134
1152

Case fc)

X = -k- tgw(48) z(l) + 21w(8) + 6w(8) + 8 w ( 6 ) ]

g 3 + 261g - 262
1152

Case fd)

X = -i- [gw(48)z(l) + 27z(8) + 6z(8) +8z(6)]
24

g3 + 261g + 262
1152

5
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7) Representation on the cosets of H * PSL(2,e), f/m an odd

prime. Q

G contains subgroups H isomorphic to PSL(2,e) where e=pm £v

o
if and only if m divides f. So far we know quite a lot about ~

the structure of G and hence that of H to enable us to tackle 5?

the problem. Throughout this section, we take q=eh, where h is ;:

an odd prime number. •"
t'1

(I)

By Lemma 1.2.7, | C9 |=w(k)z(1).

It is readily noticed that \Cg D H\ = \{e2 - 1) .

By Theorem 1.1.3, 7r(g) = eh"1.

For 1 < h < p, |gl|=P a n d hence 7r(gl) = eh"1

Clearly at=0 for 1 < h < p.

Now

, = gw(e(e2-!)) -
P

= eM(e2ji-e2)
P(e2-1)

(II)

e-1
Let x and y be elements of order w(k) and — — in r
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respectively. Supposing both x and y have the same fixed point

set, then Cwlk) = <x> 2 <y> = <x
wl0-1}> =

Now let ger2 with |g|=d. Up to conjugation by an element

in G, we may assume that geCw(k). So g=x
n for some neN. If <xn>

= <xu>, where u is the least positive power of x in this

cyclic group, xn and xu have the same cycle structure on

PG(l,q). Hence up to disjoint cycle decomposition we may

assume g=xu.

Now let <xu> n <y> = <xJ>, where j is the least positive

power of x in this cyclic group (i.e the lcm of u and w(e-l)) .

By Lemma 1.2.5 | C *\ = {

We also have

) if u=j, d=2

if u=j, d>2
otherwise.

So by Theorem 1.1.3,

0 otherwise.

Now if j*w(k) and for 1 < l< d, <xJ>s<gl>=<xul> if and only if
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j I u l . Thus

Trial) = { We-1) if j\ul
* Kg ' \ 0 otherwise

and if i | l , then

- I " - 1 ' J
1 i . (1.2.8)

0 otherwise.

By the Remark 1.2.1, at=0 if j/ut.

Now suppose j|ul/, we have

ul

T E *(*~rV(i) ~(Jby (1.2.8),

fact tAafc j l - ^ ^ i|-?4
•i j

j - l ] ) f if ^ =

[ 0 otherwise.

If j*w(k), then
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e2-l
l)) (e2A + eh - e2 - e) . -

f'r

If j=w(k), then

d(e2-l)

fill) aerQ

Let x and y be elements of order z (k) and —-=- in T0

respectively. Suppose Cz(Jc) = <x> 2 <y> = <x
zie+1)> = Cj. .

If geT0 with |g|=d, we may assume that geCz(k). So g=x
n for some

neN. Now let u be the least positive power of x such that <xn>

= <xu>, and as we had before, take g = xu. Let <xu> n <y> =

<xJ>, where j = [u, z(e+l)].

Now arguments same as those in (II) above give us:

otherwise.
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For 1 < I < d,

fz(i(e+l)) if - ^ = 1

I 0 otherwise.

If j*z(k), then

(e
2h-eh-e2+e)

If j=z(k), then

,h-l I ~2h-l(e2^1)
d(e2-l)

Summary of the results.

(I) g e T1

In all cases g1 contains e11"1 1-cycles and
p(e2-l)

p-cycles.

Results for g e r2 and TQ are displayed in the table below:

Table 1.2.11

CYCLE LENGTHS OF g'

No. OF CYCLES
j"*w(k) or z(k), ul/j=1
j=w(k) or z(k)

(II)

T2

I d

w(Ke-D) *
0 ***

(III)

T0

I d

z(t(e+D) **

o ***
where, * represents w(de(e2-l)) (e2h+eh-e2-e) ;
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** represents z (de(e2-l) ) (e2h-eh-e2+e) ;

*** represents — — ii_ ; and 1 < 4 < d
d(e2-l)

Rank of G

(a) When e is even,

r = 1 [c"-i (e
2h-l)

e(e2-!) e2-l
+e(e-2) (e+l) w(2 (e-1)) +e2(e-l) z(2 (e+l)) ]

(e2 - l) 2 "

(b) When e i s odd,

r = [ e ( e 1 ) e

e ( e 2 - l ) e 2 - l
+e(e-3) (e+l) w(A (e-1) ) + e ( e 2 - l ) z ( 4 (e+l) ) ]

+ e A O - ehtl - 6eh - e2 + 4 e + 1
( e 2 - I ) 2

8) Representation on the cosets of H^PGL(2,e), f/m=2

An important feature of H (as compared to the PSL(2,e))

is that H contains maximal cyclic subgroups C ^ and Ce+1, the

former consisting of hyperbolic elements with the same fixed

point set while the latter consists of fixed-points-free non-
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identity elements. We refer to the latter as a Singer cycle in

H. A fixed point-free element in H belongs to a unique Singer •;;

cycle; any two Singer cycles are conjugate under an element in .;

H. The same can be said about maximal cyclic subgroups Ce_.,, ~".

that is any hyperbolic element belongs to a unique maximal '

cyclic subgroup Ce_^ in H and any two of these are conjugate. ."-.

Since 2 divides e±l when p is odd, H has two conjugacy

classes of involutions; one lying entirely in PSL(2,e), the

other in H\PSL(2,e).

We now have the following results:

Lemma 1.2.9

The number of C2 i*- PSL(2,q) is
 e ( e * li

p ( p T i ) 1 a s e =±1 mod 4 .
The number of C2 i/u tt\PSL(2,e) is v ;

We now compute the disjoint cycle structures of elements

of G on the cosets of H. Here we take q=e2.

(I)

(a) When e is even

By Lemma 1.2.7, | C9| =W(1) z (1) and |c9nH|=W(l).

By Theorem 1.1.3, 7r(g)=e.

Clearly g has to be an involution. Now g1 contains the 2-

cycles as the only non-trivial cycles.

e3

We easily obtain, oc2 = -—.
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(b) When e is odd

|cg|=w(2)z(l) and |cgnH|=w(l) or 0.

Now

7r(g)=e or 0.

Clearly

a =ew(2p) or ez(2p).

Since e+l|w(l), any elliptic element in H is hyperbolic

in G. Elliptics in distinct maximal cyclic subgroups Ce+1 in H

are in distinct maximal cyclic subgroups Cw(1) in G.

Hyperbolics in H remain Hyperbolics in G.

Now we have:

(a) When e is even

|cg|=qz(l) and | C9nH| =e(e+l) , e(e-l) or 0. So that

7r(g)=e+l, e-1 or 0.

Now let x, y, s be elements of G with the same fixed point set

such that <x>=Cw(1)f <y>=Ce.1 and <s>=Ce+1. Up to conjugation by

an element of G, we may assume that g=xn, neN. Let u be the

least positive power of x such that <xn>=<xu>. Now up to

disjoint cycle decomposition, we may assume that g=xu.

Now suppose <xu>n<y>=<xJ> and <xu>n<s>=<xv>, where

j=[u,e+l] and v=[u,e-l]. We have

(e(e+l) if u =j
e(e-l) if u =v
0 otherwise.
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Hence

f e+1 if u =j
e-1 if u =v

0 otherwise.

If v=w(l) and j*w(l), then as we had in part 7), there exists

an I, 1 < I < d such that ut/j=l and

«£ =
e+1

e3-l

If j=w(l) and v#w(l), we find in the same way as before that

there exists 1 < h < d such that uh/v=l and

e-1

e3+l

If v, j #w(l) , then there exists L and h, 1 < l,h < d such that

^ = J± = 1 and
J v

- 56 -



e+l
L I '

e-l
h h '

ad = ew(d) .

Note that the case v=j=w(l) does not occur since d|w(l)

implies d has factors in one or both e-l and e+l.

(b) When e is odd

With u as we had in (a), j and v become [u,e+l/2] and

[u,e-l/2] respectively. We now have

3M
qw(l) if d>2

and

e(e+l) if d>2,u=j
e(e-l) if d>2, u=v

2q if d=2,u=j=v=w{4)
0 otherwise.

Hence

e+l
2

e-l

if d>2, u=j

if d>2, u=v

e if d=2,u=j=v=w(4:)
0 otherwise.
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If d=2, then u=j=v=w(4),

a n d

o, = e

a2 = ew(4) .

If d>2, j*w(2), v=w(2), we have

t where ^4
J

a n d

e3-!
2d

Similarly if d>2, v^w(2), j=w(2), we have

e-1 uh

a n d

e3+l
'd ~ ~2d~

If d>2, v,j ^w(2), we have the following 3 cases:

(i) j < w(4), v = w(4) (ii) v < w(4), j = w(4),

(iii) j,v < w(4).

Now the cycle lengths of g1 are as follows:
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(i) «* = -yr1 ' where - ^ = 1; ad/2 = - ^ ; and, «d = eW2d).

v
= e p / ( 2 d ) '

_d = O;unt\ad = ew(2d) .
2

Again here the case v=j=w(2) does not arise.

fill) geT0

From the discussion we had in the opening pages of this

part, we notice that |c9nH|=O. Clearly g1 contains only the

ez(2d) d-cycles.

Summary of the results.

(1)

e3

If e is even, g1 contains e 1-cycles and 2-cycles.

If e is odd, g'contains e 1-cycles and ew(2p) p-cycles, or

ez(2p) p-cycles.
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If e is odd, d=2, u=v=j=w(4), g1 contains e 1-cycles and ew(4)

2-cycles.

Results for all the other cases are given in the table below.

fill) aer0

Always g1 contains ez(2d) d-cycles.

Table 1.2.12

CYCLE LENGTHS OF g1

No. OF CYCLES
e even

v=w<1),j*w(1),ul/j=1
j=w(1),v#w<1),ut/v=1
v,j*w(1),ul/j=uh/v=1

e odd
d>2,j*w<2),v=w(2),ul/j=1
d>2,v*w(2),j=w(2),uh/v=1
d>2,j<d/2, v=d/2 ,ul/j=1
d>2,v<d/2, j=d/2 ,uh/v=1
d>2,v,j<d/2, ut/j=uh/v=1

T2

I

(e+1)/l
0

(e+1)/l

<e+1)/2l
0

(e+1)/2l
0

(e+1)/2l

h

0
(e-1)/h
(e-1)/h

0
(e-1)/2h

0
(e-1)/2h
(e-1)/2h

d/2

0
0
0

0
0

(e-1)/d
(e+1)/d

0

d

(e^-1)/d
(e^+D/d
ew(d)

<e*-1)/2d
(e3+1)/2d
ew(2d)
ew(2d)
ew(2d)

Rank of G

e even

r = 1
ew{l)

= e+1.

e odd

r = ew(l)
e+3

lqz(2) ew(l)
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1.3 Primitive permutation representations of G=PGL(2.q)

As we noted in section 1.1; when q is even,

PGL(2,q) * psL(2,q). Since this case was dealt with in section

1.2, throughout this section q is taken to be odd.

We start by having a brief look at the

Finite subgroups of G.

The structure of G can easily be deduced from that of its

subgroup PSL(2,q) of index 2 (and from that of the group

PSL(2,q2) in which G may be imbedded). G has the following

types of finite subgroups (see [23]):

(i) cyclic groups Cn, where n|q±l;

(ii) elementary abelian p-groups, Pe;

(iii) dihedral groups D2n, where n|q±l;

(iv) semi-direct products Se n=PexCn, n|w(l);

(v) the alternating groups A4 and A5;

(vi) the symmetric groups S4;

(vii) PSL(2,e) and PGL(2,e).

The subgroups A4, A5, S4 all occur in G simply in their role of

subgroups of PSL(2,q) (see f 1.2) , except if q=±3 mod 8 when G

contains a single conjugacy class of |G|/24 subgroups of type

S4 which does not lie in PSL(2,q).

G contains subgroups Cu(1) and Cz(1) (see part 8) of i 1.2)

whose normalizers are D2w(1) and D2z(1) respectively.

The non-identity elements of a Sylow p-subgroup Pq of G

have a unique fixed point and each pair of distinct conjugates
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of Pq intersect trivially. The normalizer of Pq in G is the

stabilizer of a point Sqw(1) = Pq * Cw(1).

If we define T. = {g|geG, 7r(g)=i}, each non-identity element

of G is seen to lie in one set of the partition

T0 = U (C2 ( 1 ) - 1)9, X1 = U (PQ - 1)9, T2 = U (Cvll) ~ 1)9
ff€G g€G g€G

of G.

From the list of subgroups of G given above, a subgroup

H of G is seen to be maximal if it is isomorphic to one of the

following groups:

1) the stabilizer of a point S (1);

2) the dihedral group D2u(1);

3) the dihedral group D2z(1);

4) the symmetric group S4 when q=p*3, q=±3 mod 8 ;

5) PSL(2,q) ;

6) PGL(2,e), f/m a prime number.

G contains a single conjugacy class of each of the

maximal subgroups given above. Except for the case when

H^psL(2,q) when the length of the conjugacy class of H is

|G|/2|H|, all the other conjugacy classes are of length

We now compute the disjoint cycle structures of elements

of G and the rank of G on the right cosets of each of its

maximal subgroups H. As we did in section 1.2, we shall each

time be taking an element g of order d in G from the sets TU
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T2 and T0 respectively.

1) Representation on the cosets of H«S u(1)

By Theorem 1.1.2, the action of G on the cosets of H is

equivalent to its natural action on PG(l,q) of degree z(l).

The disjoint cycle structure of g1 is as we have below:

Table 1.3.1

CYCLE

NO. OF

LENGTHS

CYCLES

OF g1 1

1

T1

p

Pf"1

1

2

T2

d

w(d)

T0

d

z(d)

Since G is triply transitive on PG(1,q), its rank is 2.

2) Representation on the cosets of H*D2u(1)

By using the results on the pair group action in section

1.1, the disjoint cycle structure of g1 is as follows:

(I) cf£T1 In all cases g
1 contains z(2)pt"1 p-cycles.

Table 1.3.2

(III)

CYCLE

NO. OF
d
d

LENGTHS

CYCLES
even
odd

OF g1 1

1
1

T2

'/3d

w(d)
0

d

w(2d)z(1)
w(2d)z(1)

Kd

z(d)
0

T0

d

w(2d)z(1)
qz(2d)

By using the Cauchy-Frobenius Formula, we calculate the

rank(r) of G as follows:

From Table 1.3.2, elements of H have fixed points as
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follows:

The identity fixes qz(2) cosets.

There are q involutions each fixing z(2) cosets and q-3

elements of order greater than two each fixing a single coset.

Hence

3) Representation on the cosets of H«D2z(1)

Let Cz(1) be the maximal cyclic subgroup of H. The z(l)

involutions in H\Cz(1) lie in two conjugacy classes of z(2)

elements in H; one lying entirely in PSL(2,q), the other

entirely in G\PSL(2,q). If < S > =C Z ( 1 ), then the conjugacy class

containing sJ, jeN in H is {sJ, s"J}. In particular H contains

a singleton conjugacy class containing an involution in Cz(1).

The conjugacy classes of involutions in G were discussed

in part 8) of section 1.2. If d > 2, then |C9| in G is

f gz(l) if g e x2
gw(l) if g € T0

w(l) z(l) if g e x±

and | c 9 nC z ( 1 ) | i s

IO if g € T2

2 if g E T0
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Now from the information given above, we have:

If d=2, then

\z(2)

H\ =
0

if g E x2

if g E T0

if 9 e x±.

If d > 2, then

if g

The table giving the values of 7r(g) is as follows:

Table 1.5.3

( I ) g€T.,

< I I ) geT1,d=2
6*2

( I I I ) g£T0,d=2

d*2

| C 9|

w(1)z(1)

qz(2)
qz(1)

qw(2)

qw(1)

|CgnH|

0

z(2)
0

<?+3
2

2

*<g>

0

w<2)
0

g+3
2

1

By using arguments similar to those in parts 3) - 8) of

section 1.2, the disjoint cycle structure of g1 is as follows:

(I) q e T^ In all cases g1 contains w(2)pf"1 p-cycles.
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Table 1.3.4

CYCLE
OF

NO. OF

LENGTHS
g'

CYCLES
d even
d odd

d/2

w(d)
0

(II)

T2

d

w(2d)w(1)
qw(2d)

1

1
1

d/2

z(d)
0

(III)

d

(q-3)z(2d)
(q-2)z(2d)

Rank of G

r = 2z(l)
= z{2) .

[qw{2) + w(2)z(2) g+3

4) Representation on the cosets of H * S4

G contains subgroups H isomorphic to S4 if and only if

q=±l mod 8 or qs±3 mod 8, in which case there is a single

conjugacy class of length |G|/24. If q=±l mod 8, this

conjugacy class splits into two classes of equal lengths in

PSL(2,q) (see / 1.2). If q=±3 mod 8, PSL(2,q) does not contain

a subgroup isomorphic S4.

Since H is not maximal when q=±l mod 8, our discussion

will be on the case when p#3, qs±3 mod 8.

Conjugacy classes of elements of H were discussed in part

6) of section 1.2.

Conjugacy classes of involutions of G were discussed in

part 8) of section 1.2.

If p=3 there is a single conjugacy class of elements of
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order 3 in G containing G/q elements. If p*3, there is a

single conjugacy class containing q(q+6) elements of order 3,

where

§ _ f 1 if q = 1 mod 3
if q = -1 mod 3 .

G contains elements of order 4 if and only if q=±l mod 4,

in which case they form a single conjugacy class of q(q+e)

elements, where

f 1 if q = 1 mod 4
e ~ \-l if q = -i mod 4 .

From the information given above, we have:

If d=2 and q^l mod 4, then

If d=2 and q=-l mod 4, then

6 if g e T2

i f g e x \

If d=3, then

| C9 PI H | =8

If d=4, then
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I C*f) H | = 6 .

Now the following are the cases to consider:

(a) q = 7 mod 12 and q =± 3 mod 8

(b) q = 5 mod 12 and q =± 3 mod 8

(c) q = 1 mod 12 and q =± 3 mod 8

(d) q = -1 mod 12 and q =± 3 mod 8 .

Values for w(g) are presented in the table below:

Table 1.3.5

(i) g«r1

(II) g«T2
Cases (a) and (d), d=2
Cases (a) and (c), d=3
Cases (b) and (c), d=2
Cases (b) and (c), d=4
Cases (a)-(d), d*2,3,4

(Hi) g«T0
Cases (a) and (d), d=2
Cases (b) and (c), d=2
Cases (b) and (d), d=3
Cases (a) and (d), d=4
Cases (a)-(d), d*2,3,4

|C9|

w(1)z(1)

qz(2)
qz(1)
qz(2)
qz(1)
qz(1)

qw(2)
qw(2)
qw(1)
qw(1)
qw(1)

|C9nH|

0

6
8
3
6
0

3
6
8
6
0

*(g)

0

w(2)
w(3)
w(4)
w(4)
0

z(4)
z(2)
z(3)
z(4)
0

By using arguments similar to those in parts 3) - 8) of

section 1.2, the disjoint cycle structure of g1 is as follows:
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(I) a e T^ In all cases g1 contains qw(24p)z(l) p-cycles,

Table 1.3.6

CYCLE LENGTHS OF g1

NO. OF CYCLES
Cases (a) and (d)

2|d, 3, 4/d
3
4
d, 2/d
d, 3/d

2, 3,|d,4/d
3, 4|d
2, 3/d

Cases (b) and (c)
2|d, 3, 4/d

3 d, 2/d
d, 3/d

2, 3,|df4/d
3, 4|d
2, 3/d

d/4

0
0
0
0
0
0

0
0
w(d)
0
w(d)
0

d/3

0
w(d)
0
w(d)
0
0

0
w(d)
0
w(d)
w(d)
0

d/2

w(d)
0
0
w(d)
0
0

w(2d)
0
0
w(2d)
0
0

(ID

T2

d

(qz3)(q+4)w(24d)
(qN-q-8)w(24d)
0
(q+5)(q-4)w(24d)
0
qw(24d)z(1)

(q±3)(q-2)w(24d)
(q'i+q-8)w(24d)
(q±3)(q-2)w(24d)
(q,+q-14)w(24d)
(q':+q-14)w(24d)
qw(24d)z(1)

d/4

0
0
z(d)
0
z(d)
0

0
0
0
0
0
0

d/3

0
z(d)
0
z(d)
z(d)
0

0
z(d)
0
z(d)
0
0

(III)

T0

d/2

z(2d)
0
0
z(2d)
0
0

z(d)
0
0
z(d)
0
0

d

(q;3)(q+2)z(24d)
(q^-q-8)z(24d)
(qz3)(q+2)z(24d)
(q,-q-14)z(24d)
(q^-q-14)z(24d)
qw(24d)z(1)

(q+3)(q-4)z(24d)
(q -q-8)z(24d)
0
(q+4)(q-5)z(24d)
0
qw(24d)z(1)

Rank of G

Case (a)

r =
24

6w(2) +8^(3) +3z(4) + 6z(4)]

g3 + 189g - 82
576

Case (b)

r = -JL[QW(24)Z(1)
24

g3 + 189g + 82
576

3w(A) + 6w(A) +6z(2) +8z(3)]
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Case

24

g3 + 189g - 46
576

3v(4) + 6v/(4) + 8w(3) + 6z(2)]

Case (d)

r = — [g*r(24)z(l) + 6w(2) + 3z(4) + 6z(4) +8z(3)]
24

g3 + 189g + 46
576

5) Representation on the cosets of H^PSL(2,g)

Since |G:H|=2, then (i) g1 is the identity if g e H (ii)

g1 is a cycle of length 2 if g e G\H. The rank of G is 2.

6) Representation on the cosets of H^PGL(2,e), f/m an odd

prime

G contains subgroups H isomorphic to PGL(2,e) if and only

if m|f. We shall take q = eh, where h is a prime.

(I) a e T1

We have | C91 = w(l)z(l) and | Cg n H| = e2 - 1.

Hence

jr(g) = eh'1 .
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Clearly a non-trivial cycle in g1 is of length p.

Hence

e*-i(e
2i2-e2)

P(e2-1)

(II) g e T2

Let x and y be elements of r2 with the same fixed point

set and orders w(l) and e-1 respectively.

Let g = xu and <xu> n <y> = <xJ>, where u and j are taken as in

the corresponding stage of part 7) of section 1.2.

We have

I rg | _ (qz(2) if d=2
I c I " \qz(l) if d>2

and

if u=j, d>2
otherwise.

-ln\ - f w(e-l%(£r> " \0 o

Hence

if u=j
otherwise.

Arguments similar to the ones in part 7) of section 1.2 give

us:
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For 1 < \, < d and j* w(l) , g1 contains cycles of lengths I and

d with,

at = w(l/(e-l)), where ut/j=l

and

ad = w(de(e
2-l)) (e2h+eh-e2-e) .

If j=w(l), then g1 contains only the d-cycles with,

=
d~ die2-!)

(III) q e r0

Let x and y be elements of order z(l) and e+1 in r0

respectively. Suppose Cz(1) = <x> 2 <y> = Ce+1.

Let g = xu and <xu> n <y> = <xJ>, where u and j are taken

as in the corresponding stage of part 7) of section 1.2.

Now arguments similar to the ones in part 7) of section

1.2 give us:

For 1 < V < d and j*z(l), g1 contains cycles of lengths

V and d with,

at = z(t(e+l)), where ulr/j
=1

and

ad = z(de(e
2-l)) (e2h-eh-e2+e) .

If j=z(l), then g1 contains only the d-cycles with,

_ eM(e2i-l)
d(e2-l)
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Summary of the results.

(I) q e r1

Always g1 contains e""1 1-cycles and
P(e2-1)

P-

cycles.

Results for g e T2 and g e T0 are displayed in the table

below:

Table 1.5.7

CYCLE OF LENGTHS OF g1

NO. OF CYCLES

j#w(1) or z(1), ul/j=1

j=w(1) or z(1)

(II)

T2

I d

w(l(e-1)) *

o ***

(III)

T0

I d

z(l(e+D) **

o ***

where, * represents w(de(e2-l) ) (e2h+eh-e2-e) ,

** represents z (de(e2-l) ) (e2h-eh-e2+e) ,

*** represents
d(e2-!)

and 1 < lr < d.
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Rank of G

r = ± [ - ^ ±1 + e M ( e 2 - l ) + e(e-2) (e+1) w(2 (e-1) )
e(e2- l ) e2-l

2 e +l
2 - I ) 2(e2 - I)

1.4 The explicit cycle index formulas for primitive permutation representations of G = PSL

(2.q) or PGL(2.(n.

After having computed the disjoint cycle structures for

elements of PSL(2,q) and PGL(2,q) for any primitive

permutation representation of these two groups (see sections

1.2 and 1.3), the problem of finding the cycle index formulas

for these representations becomes quite straightforward.

In this section we shall sketch some general formulas for

the cycle indices of these representations and then give the

cycle indices of

1) representation of PSL(2,q) on the cosets of Sqw(k) in

part 1) of section 1.2,

2) representation of PSL(2,q) on the cosets of A4 in

part 4) of section 1.2,

3) representation of PGL(2,q) on the cosets of
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PGL(2,e) in part 6) of section 1.3

as examples. Computation of cycle index formulas for the other

representations is very similar.

We start by giving a simple result by Redfield [17].

Theorem 1.4.1 The cycle index of the regular representation of

the cylic group Cn is given by

n
tnd

/d

d\n

where \ is the Euler •-function.

In what follows, t1# t2, . . . . are distinct (commuting)

indeterminates and as we had before, for any g e G, g1 will

represent the permutation induced by g in a given permutation

representation of G.

Theorem 1.4.2 The cycle index of G = PGL(2,q) on the cosets of

its maximal subgroup H is

•7(G)=-i- (g2-D znon(x') + qz(2) £ [mon(g') \g€ Cw(1\T]

| g 6 Cz(1\ J]],

where x e r r

Proof

The identity contributes lGl/lHl to the sum of the

- 75 -



monomials.

All the q2-l parabolics lie in the same conjugacy class.

Hence they all have the same monomial. Thus the parabolics

contribute (q2-l)mon(xl) , x e r1 to the sum of the monomials.

Each g e T2 is contained in a unique cyclic group Cw(1) and

there are in total qz(2) conjugates of CH(1). Hence the

contribution by elements of T2 to the total sum of monomials

is qz{2) Y, [mon(g') \g e Cw

Each g e T0 is contained in a unique cyclic group Cz(1) and

there are in total qw(2) conjugates of c
z(i)- Hence the

contribution by elements of T0 to sum of monomials is

gw(2) Y irnon(g') \g e Cz{^ I] .

Now adding all the contributions and dividing by the

order of G we get the result. •

Theorem 1.4.3 The cycle index of G = PSL(2,q), q odd, on the

cosets of its maximal subgroup H is one of the following:

(a) -*<G) = - i - [ t J G | / w + {q2-l)mon{x>)
c/. IGI

+ qz{2)Y, Imon(g') \g e Cw{2\I]
qw(2) Y Imon(g') \g e

if H has two conjugacy classes of elements of order p in G, or
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if H contains no elements of order p; where x e r,,.

(b) 7(G) = - i - [tJG|/|H| + ±(q2-l)inon(xl) + A (g2_1 ) m O i 3 U / ) +
0*- IGI 2 2

+ gw{2) V [monCgrO |gr 6 C z ( A r] + g.

if H has a single conjugacy class of elements of order p in G;

where x1 and x2 are parabolics each from one of the two

conjugacy classes containing the parabolics in G.

Proof

In principle the proof is similar to that of Theorem

1.4.2 except that unlike in Theorem 1.4.2, the q2-l parabolics

lie in two conjugacy classes of the same length in G.

(a) If H has two conjugacy classes of elements of order p in

G, these conjugacy classes are of equal lengths as is evident

from section 1.2. Hence the q2-l parabolics have the same

number of fixed points in this representation. It can also be

clearly noticed that the q2-l parabolics have the same

monomial. If H has no element of order p, then the q2-l

parabolics in G have no fixed pointsin this representation. It

can also be shown that the parabolics have the same monomial.

Hence in both cases we get formula (a).

(b) If H has a single conjugacy class of elements of order p

in G, then all the elements of order p in H lie in one of the

two conjugacy classes of parabolics in G. Hence in this

representation half of the parabolic elements have fixed
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points (same number), while the other half have none.

Evidently we have two different types of monomials with half

of the parabolics sharing each, hence formula (b). •

Examples

1) Cycle index of G = PSL(2,q) on the cosets of Ŝ  ,_,,,,.

From Theorems 1.4.1, 1.4.2, 1.4.3(a) and the results in

Table 1.2.1 we have:

Contribution to the sum of monomials by the identity element

is tl
z<1> .

Contribution by elements of T1 is (g2-l) tx

Con t r ibu t i on by elements of T2 i s q z (2) Y^ <|>(c?) ti

Con t r i bu t i on by elements of T0 i s gw(2) Y^ (j)(d)t| (d ) .
l*d[£{k)

Now adding all the above contributions and dividing by |G| we

have,

+qz(2) T (j)(d) tl tw
d

{d)

1 *d\w(k)

qw(2)
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L

2) Cycle index of G = PSL(2.q) on the cosets of A4 with q=l

mod 12.

From Theorems 1.4.1, 1.4.3(a) and the results in part 4)

of section 1.2, we have:

Contribution to the sum of monomials by the identity element

qw(24)z(l)
l a c*3_

Contribution by elements of r, i s (g2-l)

We have four different types of monomials for elements of r2,

(i) fcj/2
2d)

 t ^ ) ( ^ )

( i i ) tZ)f t^^-8>"("«fl if 2/d, 3\d\w(2)

( i i i ) t ^ 2 d ) td/3d> t^2+q'li)w{2id) if 2.3\d\w(2)

(iv) tlW 2 4 d ) z ( 1 ) if

Hence elements of T2 contribute
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gz(2)[ T <j)(d)td72
2d)

 t j g +

|13
w{2d)

31

2,3|djhr(2) 2,3/d

We also have four different types of monomials for elements of

(i) if 3/d, 2|d|z(2)

(ii)

>(2d)( i i i ) td>
(
3
2 2,3|d|z(2)

(iv) tf"
( 2 4 d ) z ( 1 >

2,3/d|z(2),d*l

Hence elements of TQ contribute
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+ E
3|d|T(

2ld|
(3|z

9 " 3 ' ( q r + 2 ) z ( 2 4 d )

2ld|7(2)

z(2)
(2/d)

t d / 3 Cd
(QT2-<7-8)z(24d)

4><d)
2,3[dTz(2)

2 d 3 / d

t r ( 2 4 d ) z ( 1 )
] •

Adding all the above contributions and dividing by |G| we get,

Z

;
3|dM2)

did)

qz(2) V 4>(d)
2,3|d[w(2)

(J) (d)

(

2,3\d\z(2)

z(d) ^.2(2^ ^ (g2-<j-14)z(24d)

/ td / 2 td

2,3/d
< d l )
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3) Cycle index of G = PGL(2.q) on the cosets of PGL(2,e)

From Theorems 1.4.1, 1.4.2 and the results in part 6) of

section 1.3, we have:

Contribution to the sum of monomials by the identity element

is tx
lH] .

Contribution by the elements of r, is (g2-l) tf^tp
 p{e2 1(

With \, u, j and d as in part 6) (II) of section 1.3, we have

two different types monomials for elements of T2,

(i) t^-iDtf^ 2- 1'"^^ 2-', where -i^=l;

ch-i (e2h-l)

(ii) td
 d(e2-1>

The hyperbolics with the first type of monomial have

their orders divisible by a factor (*1) of e-1.

The contribution by elements of T2 is
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gz(2) [ V * (d)
f

+ r
dMl)
(J=v(l) )

With \, u, j and d as in part 6) (III) of section 1.3, we have

two different types of monomials for elements of r0,

(i) t»ci<~i>>t*<*<.'-i>> <••*-.*-'••>, whexe ^

(ii)

The elliptics with the first type of monomial have their

orders divisible by a factor (*1) of e+l.

The contribution by elements of r0 is

QW{2) [ V

T *(d)td
dl(l
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Now adding all the above contributions and dividing by |G| , we

have

lG\lCl

+ QZ(2)

d[w(l)

gw(2) ^2
dlz(l)
O ( )

h-i (e^-e2)
P(e2-1)

d(e2-l)
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CHAPTER 2

THE SUBDEGREES OF THE PRIMITIVE PERMUTATION REPRESENTATIONS OF

.q> AND ¥GU2.a)

In this chapter we compute the subdegrees of the

primitive permutation representations PSL (2,q) and PGL (2,q)

and confirm the results on the ranks computed in chapter 1.

The subdegrees of the primitive permutation representations of

PSL (2,q) have previously been computed by Tchuda [21] in his

Ph.D thesis (in Russian) as we learnt recently from Faradzev

and Ivanov [ 7 ] . In [ 7 ] , Faradzev and Ivanov have given the

subdegrees of the representations of PSL(2,q) on the cosets of

PSL(2,e) , f/m an odd prime; PGL(2,e) , f/m =2 and (see also Bon

and Cohen [3]) PGL(2,q) on the cosets of its maximal dihedral

subgroups.

As the work by Tchuda [21] is not readily available, we

shall work out the subdegrees of the primitive permutation

representations of PSL(2,q) in details except for the

representations on the cosets of PSL(2,e), f/m an odd prime

and PGL(2,e), f/m=2 for which we shall only quote the results

given by Faradzev and Ivanov [7]. We also extend these

calculations to the primitive representations of PGL(2,q).

The subdegrees of PSL(2,q) and PGL(2,q) on the cosets of

their maximal dihedral subgroups will be computed using the

results in chapter 1. A full description of the suborbits of

PSL(2,q) and PGL(2,q) on the cosets of their maximal subgroups

D2w<k) a n d D2w(U respectively will be given. In all the other
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primitive representations of PSL(2,q) and PGL(2,q) (except

PSL(2,q) on the cosets of A4) we shall use the method proposed

in [14].

In section 2.1 we give some definitions and notation

(which we shall carry through to other chapters), and review

the results in [14] on the computation of the subdegrees of

transitive permutation groups using the table of marks.

In sections 2.2 and 2.3 we compute the subdegrees of

primitive permutation representations of PSL(2,q) and

PGL(2,q). (However where possible we generalize our results

to include some imprimitive permutation representations).

2.1 Computing the subdegrees of transitive permutation groups using the table of marks

Let G be transitive on X and let Gx be the stabilizer in

G of a point x e X. The orbits AQ = {x}, A1# A2, . . . ,AP.1 of Gx

on X are known as the suborbits of G. The rank of G in this

case is r. The sizes n. = |AJ (i=0,1,...,r-1), often called

the 'lengths' of the suborbits, are known as the subdegrees of

G. It is worthwhile noting that both r and the cardinalities

of the suborbits A- (i=0,1, . . . , r-1) are independent of the

choice of x e X. We can choose the numbering so that nQ = 1

* n r -1 '

Definition 2.1.1 Let A be an orbit of Gx on X.

Define A* = {gx |g e G, x e gA}, then A* is also an orbit of
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G and is called the G -orbit (or the G-suborbit) paired with
X

A .

Clearly |A| = |A*| . If A*=A , then A is called a self-paired orbit

of Gx.

We now introduce the concept of the marks of a group;

give some general properties of the table of marks and review

the results in [14] on the computation of the subdegrees of

transitive permutation groups using the table of marks.

Two definitions of the mark of a group appear in

literature.

Burnside's definition of the mark (see Burnside [4],

<pl80) translated into more familiar language states:

Definition 2.1.2 For any two subgroups A and B of a group

G, the mark of A in the representation of G on the cosets of

B is the number m(A, B, G) of the cosets of B that are fixed

by every permutation in A.

Whites's definition of the mark (see White [24]) is as

follows:

Definition 2.1.3 For any two subgroups A and B of a group

G, the mark of A in the representation of G on the cosets of

B is defined as the number

m{A,B,G) = -r—r >̂  %(g'xAg c s) ,
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Where x (statement) = {J l s

Before we prove the equivalence of the two definitions,

we need the following:

Lemma 2.1.4 Let H1 and H2 be conjugate subgroups of G. The

number of g e G such that g"1H.,g = H2 is |NG(H.,) | .

Proof This is a trivial consequence of the fact that

{g|g"1H1g=H2} is a coset of NG(H.,). Q

Theorem 2.1.5 Let A and B be subgroups of G. If y (A) is the

number of conjugates of A (by elements of G) contained in B,

then in the permutation representation of G on G/B ,

= \G:B\y(A)

\C

where w(A) = the number of cosets of B fixed by A and

CA = {gAg'1 |geG}.

Proof See the proof of Theorem 1.1.3.

•

Lemma 2.1.6 Definitions 2.1.2 and 2.1.3 are equivalent.

Proof If we start with White's definition of the mark,
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m(A,B,G) = 1

= -T%T | iVGU) | Y U ) ( £ y Lemma 2 . 1 . 4 Theorem 2 .1. 5)

_ \G:

= it (A) (2>y Theorem 2.1.5), D

One immediate fact we establish about marks is:

Lemma 2.1.7 If B < G and A1, A2 are conjugate subgroups of

G, then m(A1,B,G) = m(A2,B,G).

By Theorem 1.1.2, the action of G on X is equivalent to

its action on the cosets of H = Gx, while that of H on A,-

(i=0,1, . . , r-1) is equivalent to its action on the set of

cosets of some subgroup F < H.

Let {H1# H2, ,Ht} be a complete set of representatives

of all distinct conjugacy classes of subgroups of H in G,

ordered such that | H, | < | H2 | < < | Ht | = | H | .

Form a matrix M = (m̂ -) , where m̂ - = m(Hj,H.,G).

We call matrix M the table of marks of H. A useful fact

about matrix M is the following:
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Lemma 2.1.8 The matrix M is lower triangular with diagonal

entries at least 1.

Proof Trivially m.. = 0 if i < j and > 1 if i = j.

•

If we denote by Qf the number of suborbits A- on which the

action of H is equivalent to its action on the cosets of

H,- (i=l, 2, . . . t) , by computing all the Q,- we get the subdegrees

of (G,X). Hence we have

Theorem 2.1.9 The numbers Qj satisfy the system of linear

equations

Q± m (Hj.Hi.H) = m (HjtH.G) for each j = 1, . . . . , t.

(See [14].)

Lemma 2.1.10 If m(Hj,H,G) = 1 for some j, K j <t,

then Q. = 0.

(See [14].)

Lemma 2.1.11 Let F < H < G and {F,, F2, . . . .Fn} be a complete

set of conjugacy class representatives of subgroups of H that

are conjugate to F in G, then

n

m (F, H,G) =
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In particular when n = 1, then F is conjugate in H to all

subgroups F1 that are contained in H and conjugate to F in G,

and

m (F,H,G) = \NG(F) :NH(F) |.

(See [ 1 4 ] . )

2.2 The subdegrees of the primitive permutation representations of G = PSL(2.q)

We shall work with maximal subgroups of G in the order

given in Chap. 1, <p 1.2. But before we begin, we first

discuss the normalizers of some subgroups of G. For more

details see Dickson [6], chap. 12.

The normalizers of some subgroups of G were given in

Theorems 1.2.1, 1.2.2 and 1.2.3. From Lemma 1.2.5, the

normalizer of an involution in G is D2 (g±1)/ when p is odd and

p when p is even.

The subgroup PSL (2,e) of G is its own normalizer except

when f/m is even, in which case NG(PSL(2,e) = PGL(2,e).

Lemma 2.2.1 Let C be a cyclic subgroup of order p in G.

Then
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— g(p-l) p odd, f odd

g(p-l) p odd, f even

{ Q P=2 .

(See Dickson [6] , ̂ 249 .)

Lemma 2.2.2 Let Cd, (d coprime to p) be a cyclic subgroup

of order d in G. Then

odd

P=2'

± sign as d|q±l.

(See Dickson[S] ,

Lemma 2.2.3 Let d > 2 be a divisor of — (q±l) and 6 be

the quotient. Then

D2d if 8 is odd

Did if 8 i s even.
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(See Dickson[6],^246.)

Lemma 2.2.4 NG(Sq#w(k)) = SqH(k).

Proof This is obvious since Sq w(k) is maximal in G (See p. 18).

•

We now proceed to compute the subdegrees of G.

1) The subdeerees of G on the cosets of H •< Sq w^k\

since the rank of G is 2, its subdegrees are:

One suborbit of length 1 and one suborbit of length q.

2) The subdegrees of G on the cosets of H « D2w,k\

Here we take H to be the normalizer of the cyclic maximal

subgroup <u> fixing 0 and °o. As in part 2) of section 1.2, we

may view this representation as the action of G on unordered

pairs of points of PG(l,q).

Before we start computing the subdegrees of G, we give

some simple results which we shall use later.

lemma 2.2.5 If -1 is a square mod p (p*2) , then

p=l mod 4.

Proof Let x e GF(p) . -1 = x2 *» x has order

4 « I xl I I GF(p)*l = p-1 «• p=l mod 4. D

Lemma 2.2.6 1 and -1 lie in the same cycle in u if and only

if if qsi mod 4.

- 93 -



Proof Let 6 be a primitive root of GF(q) and take u to be

fP 0 \
. The cycle containing 1 in u consists of all even

powers of 6 that is all non-zero squares in GF(q) . Hence from

Lemma 2.2.5, the lemma follows. •

Corollary 2.2.7 Let x e GF(q) then x and -x belong to the

same cycle in u if and only if q=l mod 4. •

To get the <u> orbits in this representation we shall use

the results on the pair group action (see p.9). The subdegrees

of G are the lengths of the H-Orbits in this representation.

Each of these H-orbits is a union of <u>-orbits under some

involution in H\<u>.

The following three cases must be distinguished:

(I) q=l mod 4 (II) q=-l mod 4 (III) p=2

(I) gsi mod 4

In the natural action, u contains two 1-cycles (one

containing 0 and the other °o) and two non-trivial cycles (one

consisting of residues and the other consisting of non-

residues) . Any g e H\<u> fixes two points both from a non-

trivial common cycle in u. Evidently , non-trivial cycles in

g are 2-cycles containing (O°o) and pairs of points from a

common cycle in u.

Now we classify H-orbits in this representation.

(a) Orbits of H formed by pairs of points lying in a common
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cycle in u.

(i) No pairs can be formed from a trivial cycle in u.

(ii) The pairs from non-trivial cycles give two <u> -

orbits each of length w(4) consisting of points {x,-x} in

either of the two non - trivial cycles of u (x residue or non-

residue) , and -2l_ <u> - orbits each of length w(2) and

consisting of pairs

{x,y} (yx, -x; x,y both residues or both non-residues).

Now to classify the above <u>-orbits into H-orbits, we

simply have to note that for any <u>-orbit A with a

representative {x,y}, there exists a reflection g with (xy) as

one of its cycles and for 1 < i < w(2), u1g({x,y}) e A. SO

any reflection g e H\<u> preserves the <u>-orbits. Hence the

<u>-orbits and the H-orbits are the same.

(b) Orbits of H formed by pairs of points lying in different

cycles of u of equal lengths.

(i) The two trivial cycles of u contribute a pair {0,°o} and

this forms a <u>-orbit by itself. Since {0,oo} is fixed by H,

{0,00} forms an H-orbit by itself.

(ii) The <u>-orbits formed from pairs of points from different

non-trivial cycles of u are w(2), each of length w(2).

We have (w(2))2 pairs in this category each with the

identity as the stabilizer. Hence H permutes these pairs
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semiregularly, so all H-orbits have length |H| = w(l) , and the

number of them is ' , '.' = w{A) . Hence there are w(4)
\H\

H-orbits each of length w(l).

(c) Orbits of H formed by pairs of points lying in different

cycles of u of unequal lengths.

In this case we have four <u>-orbits each of length w(2) .

Pairs of points in these <u>-orbits intersect with {0,°o} in a

singleton. If x*0 is a residue and y a non-residue in GF(q),

the pairs {0,x}, {°o,x}, {0,y}, {°°,y} lie in different <u>-

orbits.

The pairs {0,x} and {°°,x} respectively {0,y} and {°°,y}

lie in the same H-orbit. Hence in this case we have two H-

orbits each of length w(l).

Now gathering all the above contributions together we

find the rank of G to be l<?+3) _ r^g subdegrees are:

Table 2.2.1

Suborbit length w(4) w(2)

No. of suborbit 1 g-5 g+7
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s-i mod 4

In this case also, in the natural action, u

contains two 1-cycles (one containing 0 and the other °o) and

two non-trivial cycles (one consisting of residues and the

other consisting of non-residues).

Any g e H\<u> has no fixed point in PG(l,q). Cycles in g are

involutions (0°o) and pairs of points from different non-

trivial cycles of u.

Now we classify H-orbits in this representation.

(a) Orbits of H formed by pairs of points lying in a common

cycle in u.

(i) No pairs can be formed from a trivial cycle in u.

(ii) From the two non-trivial cycles of u we get - 2 —

<u>-orbits, each of length w(2).

We have 2 = w(A) (g-3) pairs in this category each

with the identity as the stabilizer. Hence there are

w(&) (g-3) _ g-3
\H\ ~ 4

H-orbits, each of length |H| = w(l).

(b) Orbits of H formed by pairs of points in different cycles
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of u of equal lengths.

(i) The two trivial u - cycles contribute a pair {0,«>}

which is both a <u> and an H-orbit.

(ii) From two non-trivial cycles of u we get w(2) <u>-

orbits, each of length w(2).

An argument similar to that in case (I) (a) (ii) shows

<u>-orbits and H- orbits to be the same.

(c) Orbits of H formed by pairs of points lying in different

cycles of u of unequal lengths.

For x*0 a residue and y a non-residue in GF(q) , the four pairs

{0,x}, {oo,x}, {0,y}, {oo,y} lie in different <u>-orbits.

It is easily noticed that {0,x} and {o°,y}, respectively

{oo,x} and {0,y} lie in the same H-orbit.

Hence we have two H-orbits, each of length w(l) . Now

gathering all the above contributions together we find the

rank of g to be The subdegrees are:

Table 2.2.2

Suborbit length

No. of suborbits

1

1

w(2)

w(2)

w(l)

4
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(Ill) P = 2

Here u contains two 1-cycles and one w(l)-cycle. We now

classify H-orbits in this representation.

(a) Orbits of H formed by pairs of points lying in a common

cycle in u.

(i) No pairs can be formed from a trivial cycle.

(ii) From the single non-trivial cycle of u we get ^~

<u>-orbits, each of length w(l).

An argument similar to that in case (I) (a) (ii) shows

<u>-orbits and H-orbits to be the same.

(b) Orbits of H formed by pairs of points lying in different

cycles of u of equal lengths.

The two trivial cycles of u contribute a pair {0,°o} which is

an H-orbit by itself.

(c) Orbits of H formed by pairs of points in different cycles

of u of unequal lengths.

Here we have two <u>-orbits, each of length w(l). The

pairs {0,1} and {°°,1} are in different <u>-orbits but in the

same H-orbit. Hence the contribution to the total number of

H-orbits in this case is 1 <u>-orbit of length 2(q-l).

Now gathering all the above contributions together we

find that G has rank ^+ . The subdegrees are:
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Table 2.2.3

suborbit length

No. of suborbits g-2

The results in (III) can also be got either by the method

used by Faradzev and Ivanov [ 7 ] or by one used by Bon and

Cohen [3].

3) The Subdeerees of G on the cosets of H •

In this part <s> is the maximal cyclic subgroup of H with

|<s>| = z(k).

We shall compute the subdegrees of G in this

representation under the following three cases:

(I) q s l mod 4 (II) q = -1 mod 4 (III) p = 2

(I) q = 1 mod 4

From Table 1.2.4, <s> decomposes the cosets of H into one

<s>-orbit of length 1 and q-2 <s>-orbits, each of length z(2) .

So the total number of the <s>-orbits are 1 + (q-2) = w(l) >

3w(4) (the rank of G on P.30).

Hence some H-orbits are a union of more than one <s>-

orbit. By the Orbit-Stabilizer Theorem, the maximum length an

H-orbit can have is z(l). So the maximum number of <s>-orbits

an H-orbit can have is 2.
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Then

Now let x be the number of H-orbits of length z(l)

l+(qr-2) -2x+x = 3w(4)

«* gr-l-x = 3w(4)

** X = W(4) .

Hence we have

Table 2.2.4

Suborbit length

No. of suborbits

1

1

z(2)

g-3
2

2(1)

w(4)

q s -i mod 4

From Table 1.2.4, <s> decomposes the cosets of H into one

<s>-orbit of length 1, two <s>-orbits each of length z(4), and

q-3 <s>-orbits each of length z(2). So the total number of

<s>-orbits are l+2+q-3 > 3z(4) (the rank of G on p.30).

The above inequality is strict if q > 3. Therefore some g e

H\<s> will transpose certain pairs of <s>-orbits of length

z(2) when q > 3. Now let x be the number of H-orbits of

length z(l). Then
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1 + 2 + (g-3) - 2x + x = 3z(4)

Hence we have

~ x = -i
4

Table 2.2.5

Suborbit length z(4) z(2)

No. of suborbits (g - 3) \ (g-3)

fill) P = 2

From Table 1.2.4, <s> decomposes the cosets of H into one

<s>-orbit of length 1 and ^(q-2) <s>-orbits of length z(l)

each. On p. 30 we found the rank of G to be q/2, which is

equal to the sum of the <s>-orbits in this representation.

Hence the <s>-orbits and the H-orbits are the same.

Hence we have

Suborbit length

Table 2.2.6

No. of suborbits

We can also obtain the results in this part either by the

method used by Faradzev and Ivanov [7] or by the one used by
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Bon and Cohen [ 3 ] .

4) The subdegrees of G on the cosets of H • A4

Our computations will be carried under four cases as

given in part 4) of section 1.2. Note that NG(V4) is A4 if

q = ±3 mod 8 and S4 if q = ±1 mod 8. Since A4 < S4 < G in the

latter case, it will not be considered in our calculations.

Throughout this part, we denote g"1Hg (g eG) by H9.

a) q = 5 mod 12

When G acts on G/H, the stabilizer of a coset Hg (geG) is

H9. If we restrict to the action of H on G/H, the stabilizer

of a coset becomes H n H9.

Let F = H n H9, then F could be: H, V4, C3(4 subgroups),

C2(3 subgroups), 1.

i) F = H *» H n H9 = H *» g e NG (H) = H, therefore there exist

12 such elements g forming the coset Hg = H. Thus 1 suborbit

(trivial) has F = H.

ii) F ;> V4 ~ H (1 H
g * V4 - vf"

1 <, H «• g'x e NG( V4) = H.

Thus there exist 12 elements g with F > V4; these are the 12

elements g with F = H. Therefore no suborbit has F = V4.

(iii) There exist 4 subgroups C3 in H, all conjugate in G.

For any C < H isomorphic to C3, F 2: C **• C
9'1 z H. For a

particular C « C3, NG(C) = |D J = q+1. So for any OC 3, there

- 103 -



are 4(q+l) elements g such that C9"1^ H , therefore there are

4(q+l) elements g with F > C. Of these 12 have F = H.

Therefore for any OC 3, there exist 4(q-2) elements g with

F*C. Hence for each CaC3 the 4(q-2) elements g form
 1/3(q-2)

cosets of H. Therefore for the 4 subgroups C3 there are

— (g-2) cosets with F^C3, forming —(g-2) suborbits,

each of length |H:C3| = 4 .

(iv) There exist 3 subgroups C2 in H, all conjugate in G. For

any C < H isomorphic to C2, F z C ~ C
9'1 < H . For a particular

subgroup C * C2, the number of elements g normalizing C is

|NG(C) I = |D.J = q-1. So for any C «* c2, there exist 3 (q-1)

elements g with Hz Cffl , therefore there exist 3 (q-1)

elements g with F > C. Of these, 12 have F = H or V4.

Therefore for any C * C2 there exist 3(q-5) elements g with

F^C Hence for each C « C2 the 3(q-5) elements g form \ (q-5)

cosets of H. Hence for the 3 subgroups C2, there are

— (qr-5) cosets with F«C2 forming 1/s(q-5) suborbits, each of

l e n g t h | H : C 2 | = 6 .
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All the other elements g must have F = 1, giving rise to

regular suborbits of length |H| = 12. Cases (i), (ii), (iii)

and (iv) account for 1, 0, —(q-2) and —(g-5) cosets

respectively.

So the remaining

g3-51g+130
24

Cosets form -3.—51g+130 suborbits of length 12.
288

Thus we have:

Table 2.2.7

Suborbit length

No of suborbits

No of cosets

1

1

1

4

q-2
3

4(g-2)
3

6

g-5
8

3(g-5)
4

12

g3-51g+130
288

g3-51g+130
24

The rank (r) of G is

Similarly for cases (b), (c) and (d) we get:
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(b) q = 1 mod 12

Table 2.2.8

F

NG(F)

A V C C T

No. of cosets

with stab =F

4(g-4)

No. of suborbits | g-4

Suborbit length | 12

where *=

r_ g
3+81g-46
288

24
and **=
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(c) a = 1 mod 12

Table 2.2.9

F

NG(F)

No. of cosets with stab-F

No. of suborbits

Suborbit length

^4

^4

i 1
1

( 1

)

1

V4

^4

0

0

-

4(g-4)
3

g-4
3

4

C2

3(g-5)
4

g-5
8

6

I

G

*

**

12

where *=
24

and **=
288

r_ (<3T-D (g
2+g+82)

288
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(d) a = -l mod 12

Table 2.2.10

F

NG(F)

No. of cosets with stab-F

No. of suborbits

Suborbit length

A.

4

1

1

l

0

0

-

3

q-2
3

4

3(g-3)
4

QT-3
8

6

I

G

*

**

12

where *=
24

and **=
288

288

5) The subdeerees of G on the cosets of H * A5

The following are all the subgroups of H: H, 5 conjugate

subgroups isomorphic A4, 6 conjugate subgroups isomorphic D10,

10 conjugate subgroups isomorphic D6, 6 conjugate subgroups

isomorphic to C5, 5 conjugate subgroups isomorphic to V4, 10

conjugate subgroups isormophic C3, 15 conjugate subgroups

isomorphic to C2, 1.
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Table of marks for H

Table 2.2.11

1

C2

C3

V4

C5

D6

D10

A4

H

1

60

30

20

15

12

10

6

5

1

C2

0

2

0

3

0

2

2

1

1

C3

0

0

2

0

0

1

0

2

1

V4

0

0

0

3

0

0

0

1

1

C5

0

0

0

0

2

0

1

0

1

D6

0

0

0

0

0

1

0

0

1

D10

0

0

0

0

0

0

1

0

1

A4

0

0

0

0

0

0

0

1

1

H

0

0

0

0

0

0

0

0

1

Our computations will be carried under cases (a) - (t)

listed on p.37. But in cases (c) - (I) (where p is odd), we

have to distinguish between the case (i) when q = ±3 mod 8

and case (ii) when q = ±1 mod 8. This is because NG(V4) = A4

and NG(A4) = A4 in the former case, while NG(V4) = S4 and NG(A4)

= S4 in the latter case. Now after adding some extra

conditions to the cases we had before, removing those which

are either superflous or impossible, then simplifying we get

the following cases:

(a) p = 2, q = 4 mod 15

(b) p = 2, q = 1 mod 15

(c) p = 3, q = 9 mod 40

(d) p = 5, f odd

(e) (i) p = 29 mod 120, f odd
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(ii) p s 89 mod 120, f odd

(f) (i) p s 19 mod 120, f odd

(ii) p s 79 mod 120, f odd

(9) (i) p = 11 mod 120, f odd

(ii) p s 71 mod 120, f odd

(h) (i) p = 109 mod 120, f odd

(ii) p = 49 mod 120, f odd or p=23 or 47 mod 120 , f=2

mod 4

(i) (i) p = 101 mod 120, f odd

(ii) p s 41 mod 120, f odd

(j) (i) P = 91 mod 120, f odd

(ii) p = 31 mod 120, f odd

(k) (i) p = 61 mod 120, f odd

(ii) p = 1 mod 120, f odd or p=±l mod 5, fs2 mod 4 or

p = ±2 mod 5, f = 0 mod 4

(h) (i) p s 59 mod 120, f odd

(ii) p = -1 mod 120, f odd

From now on, if F < H, we shall use the abbreviation m(F)

for m(F,H ,G). The table below gives the values of m(F) for

all the cases (a) - (t) listed above.
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Table 2.2.12

m(F)

q(q2-l) / 6 0 in cases (a) and (b).

q(q2-!) / 1 2 0 in cases (c) - (I).

4 in cases (a) and (b).

rr +1
— in cases (c) - (1), ± as q = ± 1 mod 4

(q-1)/3 in case (a) and b.

q/2 in case (c).

q±l
in cases (d) • (1), i as q = ± l m o d 6

\ in c a s e s <a) a n d <b>- 2 i f

s ± 1 mod 8 and 1 if g s ± 3 mod 8 in cases (c) - ( I ) .

fg ± l3 / 5 in cases (a) and (b), ± as q = ± 1 mod 5

g / g in case (d).

f g ± l ] / 1 0 in cases (c) and (e)-(l), ± as q = ±1 mod 10.

D6

D10

A4

H

1
2

1
2

1
2 if

1

in
in

in
in

cases
cases

cases
cases

in cases
qs±1 mod

in cases

(a)
(9)

(a)
(f)

(a)
8

(a)

- (f)
, (h).

- (e)
, O">,

and
(k)

and
(k)

(i)
and

(9),
anc

- (j)-
(0.

(h), (i).
(I).

and (b).
and 1 if q=±3 mod 8 in cases (c) - (I)

- (I)•
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Now l e t

N, = ,m(C2) ,m(C3) ,m(VJ ,m(C5) ,m(D6) ,m(D10) ,m(A4) ,

=\ Q1, Q2, QJ and M the matrix of table of marks given

in Table 2 . 2 . 1 1 . We now have MT QT = NT.ie

30 20 15 12 10 6 5 l\

2 1 1

0 2 1

O i l

1 0 1

0 0 1

1 0 1

O i l

0 0 1)

0

0

0

0

0

0

0

o

2

0

0

0

0

0

0

0

0

2

0

0

0

0

0

0

3

0

3

0

0

0

0

0

0

0

0

2

0

0

0

0

2

1

0

0

1

0

0

0

r)
02

O3

%

%

A

=

' m ( l ) '

m{C2)

m(C3)

m(C5)

m(D10)

(2.2.13)

Substituting the values of m(F) given in Table 2.2.12 on

the right hand side of (2.2.13) for each of the cases (a) -

(I) and solving for the system of linear equations (2.2.13) we

obtain Q and hence the subdegrees of G in each of the cases

as follows:

Case (a)

_ I g3-348g+1328
{ 3600

qr-4 qr-4 g-4
1 2 1 0

, 0 , 0 , 0 , 1

Hence we have
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Table 2.2.14

Suborbit length

1

No. of suborbits

1

12 g-4
10

15 g-4
12

20 g-4

60 g3-348g+1328
3600

Therefore

r =
912<? "
3600

Case (b)

- g3-348g+1472, g-4 g-4 g-6

" I 3600 ' U/ " ^ ' " T F ' ^ F ' 0 ' / U '

Hence we have

Table 2.2.15

Suborbit length 12 1 5 20 6 0

I No. of suborbits i 1 g-6 g-6 g-4 g3-348g+1472
10 12 6 3600
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Therefore

j r —

Case

Q 1

Q

( c )

+ 912g - 688
3600

-923g+7578
7200

g - 9
8 '

g - 9
6

Hence we have

'°' 20 '°'0'1'1

Table 2.2.16

Suborbit length

No. of suborbits

1

1

5

1

12

g-9
2 0

2 0

g - 9
6

3 0

g - 9
8

6 0

g3-923g+7578
7200

Therefore

= g
3 + 1537g - 162

7200

Case (d)

Q = ( g
3-795g+3850 g-5 g-5 Q g-5 0 0 0 l)

<A/ V / z U U o X.A _LU /
\ /

Hence we have

Table 2.2.17

Suborbit length

No. of suborbits

1

1

12

g - 5
1 0

2 0

g - 5
12

3 0

g - 5
8

6 0

g3-795g+3850
7200
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Therefore

r =
1425g - 50
7200

Case (e)(i)

Hence we have

Table 2.2.18

Suborbit length

No. of Suborbits

1

1

12

g-9
20

20

g-5
12

30

g-5
8

60

g3-723g+3778
7200

Therefore

r = g3+H37g+238
7200

Case (e) fii)

[^-723^7378^ g ^
Z \ 7200 8 12 20

Hence we have

Table 2.2.19

Suborbit length

No. of suborbits

1

1

5

1

12

g-9
20

20

g-17
12

30

g-9
8

60

g3-723g+7378
7200
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Therefore

r = g3+H37g+238
7200

Case (f) (i)

o = ( g3-723g+6878
,3 ( 72^0 '

-11 g-7 g-19
T~/"l2~'U'~20"/ ' ' '

Hence we have

Table 2.2.20

Suborbit length 1 6 12 20 30 60

Therefore

= g
3 + 1137g + 338

7200

CaseffWiil

Q = -723g +10478
7200

^5 H9
8 12 20

]
Hence we have

Table 2.2.21

Suborbit length

No. of Suborbits|

1

1

5

1

6

1

12

g-19
20

20

g-19
12

30

g-15
8

g3

60

-723g+10478
7200
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Therefore

r =
+ 1137g + 338

7200

C a s e (a) (i)

- 723g+ 6622 g - 11 g - 11 g - 11
T ' 8~"# 12 / 0 ' 20

Hence we have
T a b l e 2 . 2 . 2 2

Suborbit length

No. of suborbits

1

1

10

1

12

g - 11
20

20

g - ll
12

30

g - 11
8

60

*

where *= g3 - 723g + 6622
7200

Therefore

H37g + 562
7200

Case (cr) (ii)

7200
g^5£23 gjl ]

8 12 20 J
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Hence we have

Table 2.2.23

Suborbit length

No. of suborbits

1

1

5

1

10

1

12

g-11
20

20

g-23
12

30

g-15
8

60

*

where *= g3-723g+10222
7200

Therefore

g3+ll37g+562
7200

Case (h) fi)

O = g3-723g+7778 g-13 g-13 q-9_
U ' 7200 ' 8 ' 12 ' ' 20 ' 1 ' U ' U '

Hence we have

Table 2.2.24

Suborbit length

No. of suborbits

1

1

10

1

12

q-9
20

20

q - 13
12

30

Q -
8
13

60

*

where *= g3 - 723g + 7778
7200

Therefore

r =
1137g - 562
7200
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Case fh) (ii)

- [ g3-723g+11378 g-17 g-25 q-9 \
{ 7200 '~8~'~T2~'Q'~20~' ' ' ' j '

Hence we have

Table 2.2.25

Suborbit length

1

5

10

12

20

30

60

No. of suborbits

1

1

1

g-9
20

g-25 ;
12

g-17 j
8

g3-723g+11378
7200

Therefore

_ _ g3+1137g-562
7200

Case_Iil_Xil

XX, 7200 8 12 20
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Hence we h a v e

T a b l e 2 . 2 . 2 6

Suborbit length

No. of suborbits

1

1

6

1

12

q - 21
20

20

q - 5
12

30

q - 13
8

60

*

where *=
7200

Therefore

r = g3+H37g-338
7200

Case (i) ( i i )

_ [ g3-723g+11122 g-17 g-17 n g-21
7200 ' 8 ' 1 2 ' U ' 2 0 ' ' ' '

Hence we have

Table 2.2.27

Suborbit length 1 5 6 12 20 30 60

No. of suborbits | 1 1 1

w h e r e . .

-2l2I q^
20 12

Therefore

- 120 -



+ 1137g-338
7200

Case fi) (i\

Hence we have

Table 2.2.28

Suborbit length 12 20 30 60

No. of suborbits jl
20

g-i q-3
12

where *=
7200

Therefore

= ff3+1137g-238
7200

Case (i) (ii)

£ 7200
19 H I

12 20

Hence we have

Table 2.2.29

Suborbit length

No. of suborbits

1

1

5

1

12

or-ii
20

20

g-19
12

30

q-1
8

60

*
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where*=
7200

Therefore

r = < 3 r 3 + l 1 3 7g-238
7200

Case m (i)

_ f g 3 -723g+1522 g -21 qr-13 Q g -21
7200

Hence we have

T a b l e 2 . 2 . 3 0

where *= <?3-723g+1522
7200

Therefore

r = 7200

Case (k) fii)

_ { g3-723g+15122f g-25 g-25 g-21
{ 7200 8~'~12~#° '~20~

Suborbit length

No. of suborbits

1

1

6

1

10

1

12

g-21
20

20

g-13
12

30

g-13
8

60

*
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Hence we have

Table 2.2.31

Suborbit length

No. of suborbits

1

1

5

1

6

1

10

1

12

q-21
20

20

q-25
12

30

q-25
8

60

where *=
7200

Therefore

_ _ g3+1137g-1138
7200

C a s e (h) (i)

= ( g
3-723g+10078, qr-19 g-11 q-19 1 Q

V 7200 8 ' 12 ' ' 20 ' ' ' '

Hence we have

Table 2.2.32

Suborbit length

No. of suborbits

1

1

6

1

10

1

12

q-19
20

20

q-11
12

30

q-19
8

60

*

where *= 7200

Therefore

r = <3r3+1137qr+1138
7200

Case 1> ( i i )
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_ { g3-723g+13678 g-23 g-23 g-19
I 7200 '~8~ '~~12~ ' U '~20~ ' ' ' '

Hence we have

T a b l e 2 . 2 . 3 3

Suborbit length

No. of suborbits

1

1

5

1

6

1

10

1

12

g-19
20

20

g-23
12

30

g-23
8

60

*

where *= <?3-723g+13678 ,
7200

Therefore

g3+1137g+1138
7200

6) The subdeerees of G on the cosets of H * S
4

The following are all the subgroups of H:

(i) H

(ii) A4, which is a normal subgroup.

(iii) A conjugacy class of 3 subgroups of order 8, isomorphic

to D8.

(iv) A conjugacy class of 4 subgroups of order 6, isomorphic

to D6.

(v) A normal subgroup of order 4, isomorphic to C2 x C2

which we shall denote by V4
(1) .

(vi) A conjugacy class of 3 subgroups of order 4 isomorphic

to C2 x C2. We denote a subgroup of this type by V"4
<3 .
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(vii) A conjugacy class of 3 cyclic subgroups of order 4, C4.

(viii) A conjugacy class of 4 subgroups of order 3, C3.

(ix) A conjugacy class of 6 subgroups of order 2 not

contained in A,. We denote a subgroup of this type by ,(6)

(x) A conjugacy class of 3 subgroups of order 2 contained

in A4 We denote a subgroup of this type by C2
<3) .

(xi) I .
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Table of marks of H

Table 2.2.34

1

24

12

12

8

6

6

6

4

3

2

1

0

2

0

0

0

0

2

2

1

0

1

(V

0

0

4

0

2

6

2

0

3

2

1

0

0

0

2

0

0

0

1

0

2

1

0

0

0

0

2

0

0

0

1

0

1

0

0

0

0

0

6

0

0

3

2

1

0

0

0

0

0

0

2

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

2

1

0

0

0

0

0

0

0

0

0

0

1

By Theorem 2.2.3, the value of m(D8)is either 1 or 2 depending

on whether 8 = ±s odd or even.

r(3)Each subgroup of type V4 is contained in a unique

subgroup of type D8 in H and V4
(1) is the intersection of the

3 subgroups of type D8 in H. For q = ±1 mod 8, G contains two

sets each of \G\/ conjugate Klein 4-groups V4. Now from

Theorem 2.2.3, it is easy to ascertain:

Lemma 2.2.8 The Klein 4-groups V4 in H are in the same

conjugacy class in G if and only if 8 is even.

Our computations will be carried under the cases

(a) - (d) listed on p. 45. Let F be a representative of a
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conjugacy class in H, the table below gives the values of m(F)

for all the cases (a) - (d).

Table 2.2.35

F

1

c ( 6 )
2

q(q2 - 1)
48

3(<3f-l)
8

m(F)

in all

in cases

the

(a)

cases

and

(a)

(c).

- (d).

,(3)

3 ( g + 1 ) in cases (b) and (d).
8

— — — — in cases (a) and (c) .
8

3 (gr+1) in cases (b) and (d)

— — in cases (a) and (c).
6

— — in cases (b) and (d) .
6

^~ in cases (a) and (c).
8

DD

4
H

8
in cases (b) and (d)

J4 if 8 is even
\3 if 8 is odd.

(4 if 8 is even
\1 if 8 is odd.

1 in cases (a) and (b).
2 in cases (c) and (d)

f 1 if 8 is odd
\2 if 8 is ere-n.

1 in all the cases (a)
1 in all the cases (a)

- (d).
- (d)
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Now let

N=(m{l) ,, )) ,m(C3) , 4

,m(Ds) ,m(A.) ,m(H)

Q = {Q1,Q2- • • • '£?n) and M the matrix of table of marks given

in Table 2.2.34. Solving for the values of Q- in the system

of linear equations MTQT =NT.

We get:

Case fa) (i) When S is even

_ ( g3-195g+1858 3g-35 g-17 g-5 g-17 0 2 0 x 0 l)
"l 1152 '~T6~'~T6~' 12' 16 'O'1'0'1'0'^ •

Hence we have

Table 2.2.3 6

where = C2<
6) , <= C

(3)

2 , C=

F

No. of

suborbits
with stab =F

Suborbit
length

H

1

1

1

3

C

1

6

C4

g-17
16

6

C3

g-5
12

8

g-17 *
16

12 12

1

**

24

*=
16

and
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**= <T-195g+1858 ,
1152

Therefore

= <?3+261qr-134
1152

( i i ) When S i s odd

_ { g3-195g+1282 3 (g-9) g-9 gr-5 g-9

Hence we have

Table 2.2.37

F

No. of suborbits

with stab = F

Suborbit length

H

1

1

c

1

6

C4

g-9
16

6

C3

g-5
12

8

B

g-9
16

12

*

12

1

**

24

w h e r e fl« C2
(6) , ft- C2

(3) , C = V4
(1) , *

16

and **=
1152

Therefore

r = g3+261g-134
1152

Case (b) (i) When S is even
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[g3-195g+1598 3g-29
{ 1152 16 16 12 16

Hence we have

Table 2 . 2 . 3 8

F

No. of
suborbits
with
stab.= F

Suborbit
length

H

1

1

1

3

C

1

6

a

6

C3

6

8

6

Y

12

A
a

12

1

M

24

where £> = V4
( 3 )

= c,
( 3 )

2 f
16

= -2=1
12

Y= vzll
1 16

a=
3g-29 „_ g3-195g+1598

16 1152

Therefore

g-3+261g+134
1152

( i i ) When S i s odd

Q = ( g3-195g+1022 3 (q-1) q-1
- . I 1152 ' 16 ' 16

_g-7_

' 16
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Hence we have

H

Table 2.2.39

No. of

suborbits
with
stab.=F

g-7
16 12 16

**

Suborbit
length

8 12 12 24

where j) = b= C± 1= Co. * =
_ 3(^-7)

16
and

**=
g3-i95g+1022

1152

Therefore

= g3+261g+134
1152

Case (c) (i) When 6 is even

1152
3(g-17) g-17 g-13 g-17
16 '~16~'~^r'~TT 0 - - - Q

' ' ' ' '
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Hence we have

T a b l e 2 . 2 . 4 0

F

No. of
suborbits
with stab.

Suborbit

=F

H

1

1

D8

1

3

D6

1

4

D

l

6

c4

(T

6

C3

8

6 y
r

12 12

1

ŷ

24
length

where 0 = vf> , & = C2
(3> , = C (6)

2 f 12

P = 16 16 1152

Therefore

r = gr3+261g-262
1152

( i i ) When S i s odd

_ ( g3-195g+1922 3g-43 g-9 g-13 <gr-9
~\ 1152 '~T6~'~ir'~ir'~ir

1 0 0
' 1 ' 0 ' 0

Hence we h a v e

T a b l e 2 . 2 . 4 1

H D C4

No. of suborbits

with stab. = F

Suborbit length

1 1.

1

1

4

1

6

qr-9
16

6

g-13
12

8 12 12 24
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where £)= , g,-'2 / 16 '

• = <3r3-195g+1922
f 1152

Therefore

r = g3+261g-262
1152

Case (d) (i) When <5 is even

1151
3(g-15) g-15 g-11 g-15 0 1 1 1 0 l

' 16 '~16~'~T2~'~T6~' ' ' ' ' '

Hence we have

Table 2.2.42

F

No. of
suborbits
with stab.=F

Suborbit
length

H

1

1

1

3

D6

1

4

D
I

6 6 8 12

F

12

1

24

where - v(3) -,(3)
'2 /

-,(6)
-2 / f>=

16
and,*

1152

Therefore

r = 1152
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(ii) When S i s odd

( g3- 1 9 5g+1534 3g-37 ^ 7 ^ 1 1 ^ 7
1, 1152 16 16 12 16

1

Hence we have

T a b l e 2 . 2 . 4 3

F

No. of suborbits
with stab.=F

Suborbit length

H

1

1

D6

1

4

0
1

6

C4

<r

6

C3

«

8

h

<r

12

A

1

12

1

./*

24

w h e r e £> = V4
(3) , £ = C2

(3) , n - r (6)

/-I " C2 / 16 ' 12

r=
T h e r e f o r e

= g3+261g+262
1152

7) The subdeerees of G on the cosets of H * PSL(2,e). f/m an odd prime

Firstly let q = eh. The subdegrees of the representation

of G on the coset of H are given by Faradzev and Ivanov [7] as

follows:

Table 2.2.44

Suborbit Length

No. of suborbits

1

1

e2 - 1 e(e-l)

B

e<e+1,

Y

e(e2 -1)

Where
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a =

P =

Y =

a =

e-1

eh-e

eh-e

Hence

(e2-!)2

r = e3h-2+eh+3-eh+1-3eh-e2+2e+l ±f

(e2-!)2

o r
, -At3_piitl_(- „ ii_

( e 2 - ! ) 2 if

8) The subdegrees of G on the cosets of H * PGL(2,e), f/m=2

Let q = e2. The subdegrees of the representation of G on

the cosets of H are given by FaradzW and Ivanov [7] as

follows:

Table 2.2.45

When p=2.

Suborbit length 1 e-1 e(e-l)

No. of suborbits he
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When p > 2

Table 2.2.46

Suborbit length 1 ^e(e-e) e2-l e(e-l)

No. of suborbits ^(e-4-e) ^(e-2+e)

Where e = e mod 4, e = ±1

Hence

r = e + 1 if p = 2

or h(e + 3) if P > 2.

2.3 The subdegrees of the primitive permutation representations of G= PGL (2.q)

We start by briefly looking at normalizers of some

subgroups of G.

By the fact that G is imbedded in PSL (2,q2) and the

review of subgroups of PSL(2,q) given by Dickson [6] <p26 0,

we deduce:

(a) For every divisor m of f, G has subgroups PGL (2,e) and

PSL (2,e), with NG(PSL(2,e)) * PGL(2,e), NQ(PGL(2,e)) «

PGL(2,e).

(b) The subgroup S w(1) is its own normalizer in G.

In fact this is easily realized from the fact that S w(1) is a

maximal subgroup of G (see p. 62).

(c) For the subgroups S4, A5 and A4 (see p. 61 for the

conditions of their existence) ; S4 and A5 are their own

normalizers, while the normalizer of A4 in G is S4.
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(d) Denote by aC2 and
 bC2 a C2 in PSL (2,q) and a C2iPSL(2,q)

respectively ( see Lemma 1.2.9). The presence of these two

conjugacy classes of involutions leads us to the conclusion

that there are two conjugacy classes of subgroups isomorphic

to V4. If V4 < PSL(2,q) (we denote such by
 aV4) , it has S4 as

its normalizer. However if V4£PSL[2,q) (we denote such by

kv4) , its normalizer is D8.

We now compute the subdegrees of G on the cosets of each

of its maximal subgroup H given on p.62.

1) The subdegrees of G on the cosets of H « Sq w/1\

This is the natural representation of G on PG (l,q) of

degree z(l). Since the rank is two, the subdegrees are:l

suborbit of length 1 and 1 suborbit of length q.

2) The subdegrees of G on the cosets of H « D2w^xj

Let <u> be the cyclic maximal subgroup of order w(l) in

the dihedral subgroup H of G fixing {0,°o}. In the natural

action, u contains two 1-cycles (one containing 0 and the

other oo) and one

w(l)-cycle.

In this representation, we obtain the H-orbits, hence the

subdegrees of G as follows:

(a) Orbits of H formed by pairs of points lying in a common

cycle in u:

(i) No pairs can be formed from a trivial cycle in u.

(ii) The pairs from the non-trivial cycle of u give one <u>-

orbit of length w(2) and ^(q-3) <u>-orbits of length w(l). An

argument similar to that in Case I (a) (ii) of part 2) of

f2.2 shows the <u>-orbits and the H-orbits to be the same.
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(b) Orbits of H formed by pairs of points lying in different

cycles of u of equal lengths:

The two trivial cycles of u contribute a pair {0,°o} which

is an H-orbit by itself.

(c) Orbits of H formed by pairs of points in different cycles

of u of unequal lengths:

We have two <u>-orbits each of length w(l) with

representatives {0,1} and {°o,l}. Any involution in H with a

cycle (Ooo) and fixing 1 and any other element in GF (q) unites

the two <u>-orbits to an H-orbit.

Gathering the above contributions together we find the

rank of G to be ^(q+3).

The subdegrees are:

Table 2.3.1

Suborbit length w(2) w(l) 2w(l)

No. of suborbits

We can also obtain the results in this part either by the

method used by Faradzev and Ivanov [7] or by the one used by

Bon and Cohen [3].

3) The subdeerees of G on the cosets of H « D2ẑ 1%

Let <s> be the cyclic maximal subgroup of order z(l) in

H. In this representaion <s> decomposes the cosets of H into

one

<s>-orbit of length 1, one <s>-orbit of length z(2) and ^(q-3)

<s>-orbits of length z(l) (see Table 1.3.4). On p.66 we found

the rank of G to be z(2), which is equal to the number of

<s>-orbits in this representation. Hence the <s>-orbits and

the H-orbits are the same.

The table below gives the subdegrees of G.
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Table 2.3.2

Suborbit length

No. of suborbits

1 z(2) z(l)

1 1 %(q-3)

We can also obtain the results in this part either by the
rJ

method used by Faradzev and Ivanov [7] or by the one used by

Bon and Cohen [3].

4) The subdegrees of G on the cosets of H * S4

Table 2.2.34 on p.126 is the table of marks for H. Our

computations will be carried under the cases (a) - (d) listed

on p.68. As before let F be a representative of a conjugacy

class in H. The table below gives the values of m(F) for all

the cases (a) - (d).
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Table 2.3.3

m (F)

,(6)

,(3)

c,

gig2-!) /24 in all the cases (a) - (d)

in cases (a) and (d)

g + in cases (b) and (c) .

in cases (a) and (d) .

— — in cases (b) and (c) .

o— 1— — in cases (a) and (c) .

in cases (b) and (d).

in cases (a) and (d).

r(D

r(3)

H

— — in cases (c) and (b) .

1 in all the cases (a) - (d)

1 in all the cases (a) - (d)

2 in all the cases (a) - (d).

1 in all the cases (a) - (d).

1 in all the cases (a) - (d).

1 in all the cases (a) - (d).

Now let N and Q be the vectors given on p. 128 and M the

matrix of table of marks for H. As before, solving for the
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values of Q. in the system of linear equations

we get

Case (a)

MTQT = NT ,

576 4 6 8

Hence we have
Table 2.3.4

F

No. of suborbits

with stab. = F

Suborbit length

H

1

1

D6

1

4

c4

q-3
8

6

C3

q-1
6

8

A

(A

12

1

f

24

where f\= C<6)C2 , and
576

Therefore

gr3+189g-82
576

Case fb)

0 = g-5 Q g-5 g-5
U — — — Q Q ^ Q Q .
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Hence we have

Table 2.3.5

No.

F

of suborbits

H
i

1

D6

1

C4

q-5
8

C3

q-5
6

A l

P
with stab. = F

Suborbit length 12 24

where A= C<6> , « = and /*=
576

Therefore

g3+189g+82
576

Case

Hence we have

Table 2.3.6

NO.

F

of suborbits

H

1

D6

1

C4

q-5
8

c3

q-1
6

A i

with stab. = F

Suborbit length 8 12 24
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where A- d« , «- ̂  and p. £ ^ ^ ± ,

Therefore

r = g3+189g-46
576

Case fd)

= g 3 -123g+598 g-7 _gz5 ^ 3 ^
_y I 5 7 6 ' 4 / U ' 6 ' 8 ' u ' u ' 1 ' u ' u ' 1

Hence we h a v e

T a b l e 2 . 3 . 7

F

No. of suborbits

with stab. = F

Suborbit length

H

1

1

D6

1

4

C4

g-3
8

6

C3

g-5
6

8

A

12

1

24

where fi= C2
(6) , oC* ^ = 1 and fr= g 3 -123g + 598 #

4 ' 576

Therefore

r = 576

5) The subdegrees of G on the cosets of H - PSL(2,q)

Since the degree of G is 2, its subdegrees are: two

suborbits, each of length 1.
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6") The subdegrees of G on the cosets of H » PGL(2,e), f/m an odd prime

Throughout this part q = eh, h an odd prime. Our first

objective will be to determine those subgroups F of H which

are isomorphic to H n H9 for some g e G.

(a) Suppose that H n H9 is isomorphic to Cn with n|e±l.

Then Cn must be the intersection of two maximal cyclic

subgroups of H and H9 of the same order e±l. In G, two cyclic

subgroups of the same order are either equal or intersect

trivially. Hence n = e±l or 1.

(b) Suppose H n H9 a D2n(n*p) . Then D2n is the intersection of

maximal dihedral subgroups of H and H9 containing D2n.

Considering intersections of cyclic subgroups as in (a), we

conclude that n = e±l,2 or 1.

(c) If H n H9 * P.(l|m), then it is the intersection of

maximal elementary abelian p-subgroups of H and H9; these

intersect trivially in G, so P . = Pe or 1.

(d) If H n H9 = S t then it is the intersection of maximal

subgroups of type S . in H and H9.
e, e- i

From (a) and (c) , we find that S . n = Se e_., or 1.

We are now left with the following list of

representatives of distinct conjugacy classes of H which may

possibly arise as intersections F = H n H9(geG):

(i) 1 (ii) aC2 (iii) bC2 (iv) aV4 (v) \ (vi)

Ce_., (vii) ce+1 (viii) A4 (ix) A5 (x) S4 (xi) Pe (xii) D2(e.(-,

(xiii) D2(e+1) (xiv) S^., (xv) PSL(2,pl) (xvi) PGL(2,pl)

Before doing a further elimination, we calculate m(F) for the

subgroups in the list above.

In the remaining portion of this part, ±,T,P =<2

( 2
Q are read as e = ±1 mod 4.
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Table 2.3.8

F

1

\NG(F) K^) 1

q(q2-!) e(e2-l)

m(F)

g(<?2-D
e(e2-l)

e + 1

2(g±l) 2(e±l) q ± \
e ± 1

24 24 1

8 8 1

e-1

2(e+1)
e+1

A4 24 24 1

A5 60 60 1

S4 24 24 1

Pe q(e-l) e(e-l) e^ 1

D2[e+u 2 (e+1) 2 (e+1) 1

S'e.e-i e(e-l) e(e-l) 1

PSL(2,ph Pl(P2l-l) Pl(P2l-l) 1
PGL(2,pl) Pl(P2l-l) Pl(P2l-l) 1

By Lemma 2.1.10, we can eliininate all the subgroups F

(except F = H) with m(F) = 1. The conjugacy class

representatives of the remaining subgroups are enough for the
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purpose of computing the subdegrees of G.

Table 2.3.9

Table of marks

1
A
&
c
D
£
H

1

/

<r

1

0
0)
0

e
R
0
l

ft

0
0

B
e
0
l

c

0
0
0
2
0
0
1

0

0
0
0
0
2
0
1

£.

0
0
0
0
0
K
l

H

0
0
0
0
0
0
1

where 4 =

.= e(e
2-l)/2 ,

, C= Ce_x , 5 = Ce+1 , £ =

e - {T=

=(e±l) t

*= e(e2-l) ,

Ti= e(e-l) ,

Now let ̂  = ( m(l) ,m(aC2) ,m(
bC2) ̂ (C^,) ,m(Ce+1) ,m(Pe) ,m(H)

(for the entries of L see Table 2.3.8),

Q. = (Q.j/ Q2> • • • • rQ7) and M the matrix of table of marks given

in Table 2.3.9. Solving for the values of Qi in the system of

linear equations MTQT = NT,

We get

Q = (

eh-e eh-e

0, 0,

eh-e
2(e-l) ' 2(e+l) ' e(e-l) ,1) •
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for both e s i mod 4 and e = -1 mod 4.

Hence we have

Table 2.3.10

Suborbit

length

e2-l e(e-l) e(e2-l)

No. of

Suborbi ts

eh-e eh-e
e(e-l) 2{e+l) 2(e-l)

e3h-2_eh+2_eh+l_2eh + eh-l + e2+e2 + e _ 1

I ^.2_-i \ 2

Therefore

r =
(e2-!)2
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CHAPTER 3

SUBORBITAL GRAPHS CORRESPONDING TO PRIMITIVE PERMUTATION

REPRESENTATIONS OF PSL (2.a) AND PGL (2.q)

After having calculated the subdegrees of the primitive

permutation representions of the groups PSL (2,q) and PGL

(2,q) (see chap 2), the next natural and indeed quite an

interesting problem is that of constructing and finding the

properties of the suborbital graph corresponding to a given

suborbit. This problem is obviously quite complicated and we

cannot expect a straightforward answer which covers all the

suborbits of a given group.

For groups PSL (2,q) and PGL(2,q), Faradzev and Ivanov

[7] have classified the suborbital graphs which are distance-

transitive through the approach of determining the distance-

transitive representations of these groups.

This chapter is divided into four sections. In section

3.1 we give some notation, definitions and results which will

be used in the remainder of the chapter.

In section 3.2 we discuss the suborbits of PSL(2,q)

formed by pairs of points of PG(l,q) intersecting {0,<»} in a

singleton and give a construction of their corresponding

suborbital graphs when PSL(2,q) acts on the cosets of the
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dihedral subgroup Dw(1) fixing {O,°o}.

In section 3.3 we give a construction of the suborbital graph

of PGL(2,q) corresponding to the suborbit of length 2w(l) when

PGL(2,q) acts on the cosets of the dihedral subgroup D2w(1)

fixing {0,°o}.

In section 3.4 we discuss the suborbits of PGL(2,q) of lengths

less than 2w(l) and give a construction of their corresponding

suborbital graphs when PGL(2,q) acts on the cosets of the

dihedral subgroup D2w(1) fixing {0,°o}.

3.1. Suborbital graphs

This section gives background material of the results to

be proved later in the chapter. A detailed treatment of the

results to be found in this section may be obtained from Sims

[19] or Neumann [16].

Let G be a transitive permutation group acting on a set

X. Then G acts on X x X by g(x,y) = (gx,gy), g e G, x,y e X.

If 0 c x x X is a G-orbit, then for any

x £ X, A = { y € X\ (x,y) £0 ) is a Gx-orbit on X. Conversely if

A £ X is a Gx-orbit, then 0={(gx,gy) ] geG,yeA} is a G-orbit on

X x X. We say A corresponds to 0-

Lemma 3.1.1 Let G be a transitive permutation group acting on

X.
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Then there are bijections («) between:

(a) the set of orbits of Gx on X, for fixed x e X;

(b) the set of orbits of G on X x X;

(c) the set of double cosets GxgGx, g e G, for fixed x e X.

Proof Since G is transitive on X, by Theorem 1.1.2 the action

of G on X is equivalent to action by right multiplication on

the right cosets G g, the G-orbit containing G g has the form

GxgGx, so (a) «(c) .

Given a G-orbit 0 ^ X x X, let A= {y e x|(x,y) e 0} for

a fixed x e X; one easily checks that A is a Gx~orbit.

Conversely, given a Gx-orbit Acz, define

0={(gx,gy) \g € G,y E A), a G-orbit in X x X.

Then A«0 gives (a) «(£).•

r
The Gv-orbits on X are called suborbits (see <p2 .1 ) andx J

G-orbits on X x X are called suborbitals.

Let Oj c x x X, i = 0,1, , r-1, be a suborbital. Then

we form a graph I\, by taking X as the set of vertices of I\

and by including a directed edge from x to y (x,y e X) if and
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only if (x,y) e Oj. Thus each suborbital Oj determines a

suborbital graph I\.

Now Ol ={(x,y) | (y,x) e 0,} is a G-orbit. Let Y\ be the

suborbital graph corresponding to the suborbital 0\ . Let the

suborbit Ai (i=0,l, , r-1) correspond to the suborbital Oj.

Then T- is undirected if Ai is self-paired (because directed

A
edges arise in pairs'* T which are to be amalgamated into a

single undirected edge / \, and r,- is directed if A_̂  is not

self-paired.

Theorem 3.1.2 Let r be any suborbital graph for a transitive

group G on X. Then G < Aut r, and G is transitive on the

vertices of r. If r is directed then G is transitive on

directed edges. If r is undirected then G is transitive on

ordered pairs of adjacent vertices.

(See Sims [19].)

A graph is said to be connected if for any two points x

and y, there is a path from x to y.

Theorem 3.1.3 Let G be transitive on X. Then G is primitive if

and only if each suborbital graph r̂-, i=l, 2,...., r-1 is
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connected.

(See Sims [ 1 9 ] . )

3.2 The suborbits of G = PSL(2,q) formed by pairs of points of PG(l,q) intersecting {0,°°}

in a singleton when G acts on the cosets of the dihedral subgroup Dwm and their

corresponding suborbital graphs

We recall from parts 2) of <p 2.2 that these are the two

suborbits of G formed by pairs of points of u (where <u> is

the maximal cyclic subgroup of the dihedral group DH(1) lying

in different cycles of unequal lengths in u.

Notation

When q = 1 mod 4 we shall denote by Oa the suborbital

1 {O,a}, {oo,a} | a is a square in GF(q), a*0l and by 0b the

suborbital 1 {0,b}, {°°,b} | b is not a square in GF(q)I and by Aa

and Tg and by Ab and rb their corresponding suborbits and

suborbital graphs respectively.

When q = -1 mod 4, we shall denote by o/ the suborbital

1 {0, a}, {°°,b} | a is a square in GF(q), a*0, b not a square in

GF(q)l , by Ojjf the suborbital I {O,b},{°o,a}|a is a square in
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GF(q), a#0, b not a square in GF(q)I and by A* and and

by and T% their corresponding suborbits and suborbital

graphs respectively.

Theorem 3.2.1 When q = 1 mod 4, Ta and rb are self-paired.

Proof Ta: By Lemma 2.2.6, {0,1} and {0,-1} e Ag.

maps {O,oo} t o {0,1} and {0,-1} t o {0,«>}. Hence r a i s

self-paired.

Tb: By corollary 2.2.7 {0,b}, {0,-b"
1} e Ab.

"1maps {0,oo} to {0,-b"1} and {0,b} to {0,oo}

Hence rb is self-paired. •

Theorem 3.2.2 When q = -1 mod 4, Pf and F^ are paired.

Proof Take {«>, 1} e t.% and g= (^ M . Then g({«>, ll) ={o, <»} and

gr({0,oo})={0,l} € A* .
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Hence 1^ and Y% are paired. •

Given a pair {v,h}, v,h e GF(q) (v*h); since PSL(2,q) is

doubly transitive, there exists a g e PSL(2,q) such that

g(oo) = v and g(0)= h. Our aim here is to express g in terms of

v and h and later give a construction for the graphs Ta,Tb,T%

and H

We represent v as — and h as — , where

x = h(v-h)-1

and

y = (v-h)"1.

We immediately have,

(v h(v-h)-1) , ,
g = \ I e PSL(2,g) (3.2.1)

11 (v-h)'1

If one of v,h, is «>, put v = °o. Now g becomes

(l h)
(3.2.2) .

- 154 -



Asuming q = 1 mod 4, the following theorem gives a

construction for F. .

Theorem 3.2.3 ({v,h}, {c,d}) is in Ta for each of the

following cases, and only for these

(a) v,h *oo, c[or d] = v and d[or c] =(va+h(v-h) "1) (a+(v-h) " 1 ) ' 1 ,

(b) v,h *<», c[or d] = h and d[or c] =(va+h(v-h) "1) (a+ (v-h) ~1) "1,

(c) c[ord] = v = °o and d[or c] = a+h

(d) v = oo, c[or d] = h, and d[or c] = a+h.

Proof (a) Since ({°°,0}, {°°,a}) is in ra if ({v,h}, {c,d}) is

in ra, there exists g e PSL(2,q) which sends oo to v and o to

h. From (3.2.1), we can choose g to be

v h(v-h)-1]
1 (v-h)-l '

Now g{{°°,a)) = ({c, dl) => g(<=°) = c [ or d] =» v=c [ or d]

and

(v hiv-h)-1] la\ (va + h(v-h)-1
\l (v-h)-l)\l) [a + (v-h)-l

d[or c] = (va+h(v-h)"1) (a+(v-h)"1)"1, so (a) holds. Since

({°°/0}, {0,a}) is in ra, we similarly obtain (b) .
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If one of v,h is oo and taking v = °o, by (3.2.2) we take g to

/I h\
\0 l) *be

Now repeating the arguments in (a) we obtain (c) and (d). D.

Replacing the a in Theorem 3.2.3 with b we get a construction

for rb.

Theorem 3.2.4

When q=-l mod 4, ({v,h}, {c,d}) is in Tf, for each of the

following cases, and only for these

(a) v,h *<», c[or d] = v and d[or c] =(va+h(v-h) "1) (a+(v-h) "1) "1,

(b) v,h #«, C[or d] = h and d[or c] = (vb+h(v-h) "
1) (b+(v-h) "1) "1,

(c) c[ord] = v = oo and d [or c]= a+h

(d) v = oo, c[or d] = h, and d [or c]= b+h.

Proof We use arguments similar to those in Theorem 3.2.3. •

The construction for F^ follows from Theorem 3.2.4 after

interchanging a and b .
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Examples

1. G = PSL(2.3)

u = (0) (oo) (i) (2)

The following are the suborbits of G with each column

containing pair of points in the same suborbit.

(0,2) {0,1} {1,2}

We draw the graphs with unordered pairs {a,b\ abbreviated to

ab .

Suborbital graph Tt

- 0 0 1

Ooo
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Suborbital graph

01

and are octahedral graphs.
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2. G = PSL(2,5)

2 0)u = IQ 3J = (o) (14) (23)

The following are the suborbits of G:

{0,1} {0,2} {1,3}

{0,oo} {0,4} {0,3} {3,4}

{oo,i} {oo/2} {1,2}

{oo,4} {00,3} {1,3}

{1,4} {2,3}

Suborbital graph Ta

04
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Suborbital graph FV

Lemma 3.2.5 The suborbital graphs Ta,Tb,rl and T^ all have

girth 3.

Proof ra: Since {oo,i}, {0,1} e Aa in ra, {0,oo} is adjacent to

{oo,i} and {0,1}. By Lemma 2.2.6 and Theorem 3.2.3 (d) and

taking {v,h} to be {°°,1} and a to be -1, we find that ({0,1},

{oo,i}) is an edge in ra, giving a triangle.

rb: Since {oo,b}, {0,b} e Ab, in rb {0,oo} is adjacent to {°°,b}

and {0,b}. Taking {v,h} to be {°°,b} and substituting -b for a

in Theorem 3.2.3 (d) ; by Corollary 2.2.7 and Theorem 3.2.3

(d) , ({oo,b}, {0,b}) is an edge in rb, giving a triangle.

r£ : ((O, «>},{«>, l}) is an edge in Ff .
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By Theorem 3.2.4 (d) , ({°o,i}, {0,1}) is also an edge in T^ .

Since (0,1} is in Ag, ((o, °°},{o, l}) is an edge in F^ . Now we

know that T% and 1^ are paired and therefore (lo, l), (0, °°})

is an edge in F£ , giving us a triangle.

P^ : Since T^ and F̂  are paired , Tf, has girth 3

~ it has girth 3. •

Theorem 3.2.6 Ta U rb has diameter 2.

Proof ({a,b}, {c,d}) is an edge in Tg U rb if and only if

|{a,b} n {c,d}| = 1. If {x,y} and {v,h} are any two vertices

not forming an edge in ra U rb, then

d({x,y}, {v,h}) < d({x,y}, {y,v}) +d({y,v}, {v,h}) = 2

Hence d({x,y}, {v,h}) = 2. D

Let X be a finite set. The Johnson graph of the m-sets in X

has vertex set m , the collection of m-subsets of X. Two

vertices x,y are adjacent whenever x n y has cardinality m-1.
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When X is some unspecified n-set we denote the graph by

J(n,m). ra U rb is in the family of graphs J(n,2), usually

called the triangular graphs ( see Higman [12]).

Theorem 3.2.7 Ta and rb are isomorphic.

Proof Let & be a generator of GF(q)* and

( o j}"1) = (0) (oo) ((ai a2 aW2))(ii b2 bwl2)) , where ai

and bi are squares and non-squares in GF(q)* respectively.

Let Y = (jj J) =(0) (oo) (axbxa2b2 aw{2) bw{2)) .

From Theorem 3.2.6, we have immediately

y : ra- Tb is an isomorphism defined by y(a^ = bi. O

3.3 The suborbital graph T of G = PGL(2.q) corresponding to the suborbit of length 2w(l)

when G acts on the coset of the dihedral subgroup

The suborbit under consideration is the only suborbit of

length 2w(l) and therefore it must be self-paired (see part 2)

of

j 2.3).
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Since G is doubly transitive; given a pair {v,h}, v*h, v,

h e PG(l,q), there exists g e G such that g(°o) = v and

g(0) = h.

For v, h * oo, g can be chosen to be .If either v

1 h) v 1
or h is oo, then we can choose g to be or

respectively. Now let 6 be a generator of GF(q)*; using the

ideas above, we construct the suborbital graph r as follows:

Theorem 3.3.1 ({v,h}, {c,d}) is an edge in T for each of the

following cases, and only for these

(a) v,h * oo, v = c[or d] and d[or c] = (vB
1" + h) (B1" + I)'1,

(b) v,h * oo, h = c[or d] and d[or c] = (vB1" + h) (61 + I)"1,

(c) v = oo, v = c[or d] and d[or c] = B1 + h,

(d) v = oo, h = c[or d] and d[or c] = 61 + h,

(e) h = oo, v = c[or d] and d[or c] = (vB1 + 1)B'',

(f) h = oo, h = c[or d] and d[or c] = (vB1' + 1)B"\

where 1 < i < w(l).

Proof See the proof of Theorem 3.2.3. •

We note that r = Tg U rb (see Theorem 3.2.6) is the Johnson

graph J(n,2).

It was shown by Higman [12] that the full automorphism

group of the Johnson graph J(n,2) is Sn when n > 4.
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From Lemma 3.2.5, the girth of r is 3; in fact it can

straightfordwardly be seen that if {x,y},{y,v} and {x,v}, v *

x,y are vertices of r, they form a circuit of length 3.

3.4 Suborbital graphs Fof G = PGL(2.q) corresponding to the suborbits of lengths less than

2w(l*) when G acts on the cosets of the dihedral subgroup

Let A be a suborbit of length less than 2w(l). Then A has

a representative {l,x} for some x e GF(q)*.

Lemma 3.4.1 If (l,x} e A, then {l,x~1} e A.

0 1
1 0

P r o o f | ; ^\ e D2w{1) maps { l , x } t o { l , x " 1 } . •

Lemma 3 . 4 . 2 I f ( l , x ) e A , t h e n { - 1 , - x } e A .

Proof | e D2wu) m a P s {l/x> t o {~l/~x}. D

Lemma 3.4.3 A is self-paired.

-1 x
Proof The transformation | I takes {l,x} to {O,°o} and

{0,oo} to {-x,-l}. Hence by Lemma 3.4.2 A is self-paired. •

Let 6 be a generator of GF(q)* and as before let {l,x} be

a representative of the suborbit A . The elements in this
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suborbit are of the form {R\x&), where 1 < i < w(l).

By arguments similar to those in Theorem 3.2.3, we have:

Theorem 3.4.4 ({v,h},{c,d}) is an edge in r for each of the

following cases, and only for these

(a) c[or d] = (vJ51' + h) (B1 + I)"1 and d[or c^fvxB1' + h) (xJ3' +1)"\

(b) v = oo, c[or d] = 61 + h and d[or c] = xB1 + h,

(c) h = oo, C[or d] =B'
l'(vBl" + 1) and d[or c] = (xB1) "1 (vxJV + 1).

Theorem 3.4.5 If x * -1, diam r < 4 and if x = -1, diam r <

6.

(See Bon and Cohen [3].)

As an example, we use Theorem 3.4.4 to construct the

suborbital graph of PGL(2,7) with {1,-1} as a representative

of A .

3 0)
= (0) (oo) (132645) generates the maximal cyclic subgroup

Of D12.
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0 oo

oo 2 3 2

This graph was described by Tutte [22] and he ascribed it to

H.S.M. Coxeter. The graph has been studied in details by Biggs

[2], For other description of this graph, one may refer to
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Biggs and Smith [1]. This graph is among the twelve trivalent

graphs whose automorphism groups act transitively on pairs of

vertices at each particular distance apart (trivalent

distance-transitive graphs) (see Biggs and Smith [1]). This

graph is also among the list of the four trivalent distance-

transitive graphs whose automorphism groups act primitively on

their vertices (see Biggs [1]). In [1], Biggs has shown that

like the famous Petersen graph, the Coxeter graph only just

fails to be Hamiltonian.

Other suborbital graphs of projective linear groups which

have been studied extensively are the Biggs-Smith graph and

Perkel graph corresponding to a suborbit of PSL(2,17) and

PSL(2,19) with S4 and A5 as the stabilizers respectively. Bon

and Cohen [3] have shown these graphs to be distance-

transitive.
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CHAPTER 4

INTERSECTION MATRICES FOR G = PGL (2.a)

This chapter is divided into two sections. In section

4.1 we give some notation, definitions and results to be used

later in the chapter. In section 4.2 we find the general form

of the intersection matrix of G relative to the suborbit of

length 2w(l) when G acts on the cosets of its dihedral

subgroup D2w(1) fixing {0,<»}.

4.1 intersection matrices for finite permutation groups

In this section we shall briefly consider the matrix M of

intersection numbers of a suborbit A of a group G on a

finite set X . For detailed treatment we refer the reader

to Higman [11]. For the most part we adhere to the notation

of that paper. We also mention briefly the algebra spanned by

the adjacency matrices corresponding to suborbital graphs of

G on X and the connection between the intersection numbers

and the multiplication constants defined by Neumann [16] p.

106.
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Let G be a finite group acting on a finite set X and

be the 1th Ga-orbit for a £ X and for a given arrangement of

the G-orbits.
a

The Gb-orbits are also arranged such that if b £ X and g(a)

= b, then sr(At(a))) = At(g(a)) = AL(b) .

The intersection numbers relative to a suborbit A^(a)

are defined by

Vifj = \At(b) fl A±(a) | [b e A^a)] .

If the rank of G is r, then the r x r matrix ± (nlj)- •

called the intersection matrix of A|,(a) . If |A.J = ni and

as we had before A^ = Ait is the suborbit paired with Ai ;

Higman [11] showed that
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Theorem 4.1.1 (a) \i\
(I, = / n± if i = I,

I
_in± if .
\0 if i

(b) Pa -\0 if j + I*.

(c) npfl = n&P and

Theorem 4.1.2 Mt has column-sum nt, and MLL = nLL where

L is transpose of the vector (no,n1, . . . . ,nr_.,) .

Now let the orbits of a stabilizer

Ga on X be Ao, A1# . . . , Ar_x and the corresponding orbits of G on

X x X be 00, 0,, 02, /°P-i-

We define the corresponding adjacency matrices BQ, B1,....,Brl

to be n x n matrices where n = | X | with rows and columns

indexed by X, where (B+) XiY = L \f (*'^} $ oj'

If we identify G with a group of permutation matrices Pg

in the usual way:

Pg = (gx#y) where

flif g(x) = y,
^x-y 1 0 if g(x) * y,
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we have

Lemma 4.1.3 The set {Bo, B1, 'B
r-1^ ^

s a b a s i s f o r t n e

space V of all matrices over C commuting with every element of

G.

(see Neumann [16], Lemma 5.)

Corollary 4.1.4 The space V spanned by the adjacency

matrices Bo, B1, 'Br-1 ̂
s a n algebra. That is, there exist

r-1

integers a^ > 0 such that BJij = J^ aijl ^f
1 = 0

If Oj, Oj are suborbitals, with suborbital graphs r;, r} and

adjacency matrices B-, B-, the constant a-^ (see corollary

4.1.4) is the number of triangles K /* ./^> i based

on a given pair(x,y) e 0t where the edges labelled i,j,l

belong to T-, T-, T{. The non-negative integers a^^ are

called the multiplication constants. The multiplication

constant a.-t is the same as the intersection number

(see Neumann 16, p.106).
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4.2 Intersection matrices for G = PGL (2.0) on the cosets of D2w(i)

In this section we shall find the general form of the

intersection matrix of G on D2w(1) relative to the suborbit of

length 2w(l) for q both odd and even. Some multiplication

constants can easily be got from this intersection matrix

according to the discussion we had in section 4.1. In

particular the number of triangles on every edge of the

suborbital graph corresponding to this intersection matrix is

found.

The suborbits of G on D2w(1) were discussed in length in

section 2.3. In what follows we assume the knowledge of that

section. In section 3.3 and 3.4 all these suborbits were

shown to be self-paired.

We start by considering the case when q is odd.

Throughout the suborbits of G are assumed to have the

following arrangement:-

Ao = {0,~}fAlfA2# . . .,

Where

|AJ = |A2| = ....=|

= w(2) and |Az(2) | = 2w(l) .
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Let P be a generator of GF (q)*; we can then take

u = , which in disjoint cycle decomposition form is

(0) (oo) (i 6 J32. . . .£fl~2) , to be a generator of the maximal cyclic

subgroup of D2w(1).

The suborbits Ai,l <, i £ w(2) are arranged in such a way

that Ai has a representative (l, P1}, while (l,0l is a

representative of A Z(2)

We now compute the intersection matrix Mz(2). We compute

the intersection numbers in several steps:

(!(i) The intersection numbers Hi'i and Hi,(z!(2) > Where

z(2) , i

(4.2.1)
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Az(2){i,pl) = {{i,o},{i,~},{p*,o},{p*,«,},{ U {i ,p^U U {p*,p^

(4.2.2)

AZ{2){1,0) = {{\J{1,V}},{\J{O,V}},{O,°°},{1,<*>}} - ( 4 . 2 . 3 ) .
j Vj*0

(a) I f i = l , ( 4 . 2 . 1 ) and ( 4 . 2 . 2 ) i n t e r s e c t a t {B01"1"1",!} and

{B l , 6 2 1 } .

Hence n]f]2)) = 2.

(b) If i*i, (4.21) and (4.22) intersect at

-1 / , • 1 f - il I - , ,
1,&\ ,\ B0""1"1,11 ,1 &{,&+ll ,1 B*1"1*1'1,/

Hence

(c) (4.2.1) and (4.2.3) intersect at I 1,6'} and

Hence

i ( z ( 2 ) ) - 9i,z(2) ~ 2 .
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(ii) The intersection numbers |Aw(2),t' l?z(2) and VLw\l)),z(2)

(4.2.4)

(d) If V=w(2), (4.2.2) and (4.2.4) have empty intersection.

Hence

,w(2) ~ u •

(e) If l*w(2), (4.2.2) and (4.2.4) intersect at

1 1,6W(2>} and 1 R[

Hence

(f) (4.2.3) and (4.2.4) intersect atfl,Bw(2>)

Hence \ilUV,l(2) = 1 •

(iii) intersection numbers

,,fli)),(uL,flj))| (4.2.Az(2)' ° ' ° ° J = I l U l 0 , 6 ^ I ,1U1 oo,fiJj | | ( 4 . 2 . 5 )

(g) If t=z(2), then (4.2.2) and (4.2.5) intersect at

Hence H^)!L(2) = w{l) .
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(h) If |,*z(2), then (4.2.2) and (4.2.5) intersect at

1 1 1,01 ,( l,oo} ,U6l,o} ,1 6l,oo} I .

Hence Vi(zuV.i = 4. .

Combining Theorem 4.1.1 (a) and (b) with (a) - (h) above we

have

Theorem 4.2.1 The intersection matrix Mz(2) when q is odd is

of the form

1 0 0 0 0

0 2 4 4

0 4 2 4

0 0 I

4 4 2

4 4 2

0 4 4 4 24 2

0 222 20 1

4 4 4 4 4 w(l))

Examples

(1) When cr=3

M2 =

'0

0

,4

0

0

4

r
1

2,
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(2) When q=5

M, =

(0 0 0 1
0 2 4 2
0 2 0 1
8 4 4 4

(3) When g=7

MA =

0 0 0 0 1
0 2 4 4 2
0 4 2 4 2
0 2 2 0 1

V12 4 4 4 6)

Next we consider the case when q is even.

The arrangements of the suborbits of G is taken as follows:

AQ = { 0 , o o } / A l , / A g-2 , A_£ ,
2 2

where |AJ = |A2 _g-2 I = w(l) , |A_g| =
2 2

and for

a generator & of GF(q)*, AI- has a representative {1,6'} for

i <; g-2 , while {1,0} is a representative for the
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suborbit

We now compute the intersection matrix

As in the previous case, Ai(o,<»}/
2
{I,0}, and

,«>} can easily be found. Arguments similar to those used

before give us

Theorem 4.2.2 The intersecting Matrix

is of the form

' 0
0
0
0

0 0 0
2 4 4
4 2 4
4 4 2

0 0
4 4
4 4
4 4

1
2
2
2

0 4 4 4 4 2 2
[2w(l) 4 4 4 4 4

Since in general the multiplication constant a.̂  is the
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same as the intersection number jijj,*1 , from Theorems 4.1.1

and 4.2.1 we can easily get the multiplication constants

aiz(2)i' az(2)ji a n d aijz(2) f o r ° - i'3'i - z ( 2 ) - Similarly Theorems

4.1.1 and 4.2.2 give us multiplication constants ai_g./ <3_g ••

and 3.±-_Q for 0 <, i,j,t <— .

In particular if xz(2) and x _g are the suborbital

graphs corresponding to the intersection matrices Mz{2) and M^•z(2)

2

respectively, we have

Lemma 4.2.3 The number of triangles on every edge of xz(2)

and x_g is w(l) .
2

Proof

The number of triangles on each edge in the graphs xz(2) and x_g
2
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are the multiplication constants •3z(2)2(2)z{2) and <2_2_2_2 which
2 2 2

we find from Theorems 4.2.1 and 4.2.2 to be w(l). •
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