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INTRODUCTION

In this thesis we exploit the knowledge of the well-known
subgroup structure of the groups PSL(2,q) and PGL(2,q) to
study some important combinatorial formulas, invariants and
structures associated with their primitive permutation
representations. Our discussion will be mainly on the disjoint
cycle structures, ranks, cycle index formulas, suborbital
graphs and intersection matrices associated with some of these
representations.

This thesis is divided into four chapters.

In chapter 1 we compute the disjoint cycle structures, ranks
and cycle index formulas for the primitive permutation

representations of PSL(2,q) and PGL(2,q).

In chapter 2 we compute the subdegrees of all primitive
permutation representations of PSL(2,q) and PGL(2,q)
(confirming and extending the results in [3] and [7]). Though
various methods are used here, the most prominent one is based
on [14] which uses the table of marks. The ranks computed in

chapter 1 are also confirmed in this chapter.

In chapter 3 we devise a method for constructing some of the
suborbital graphs of PSL(2,q) and PGL(2,dq) on the cosets of

their maximal dihedral subgroups of orders g-1 and 2(g-1)




respectively. This method gives an alternative way of
constructing the Coxeter graph given in [5]. Some graph
theoretic properties such as the girth and diameter are found

for some of the graphs discussed in this chapter.

In chapter 4 a general form of the intersection matrix of
PGL(2,q) on the cosets of its maximal dihedral subgroup of
order 2(g-1) relative to the suborbit of length 2(g-1) is
given. The number of triangles on every edge of the suborbital
graph corresponding to this intersection matrix is shown to be

q-1.




CHAPTER 1

PRIMITIVE PERMUTATION REPRESENTATIONS OF PSL(2.q) AND PGL(2.,q) AND

THEIR CORRESPONDING CYCLE INDICES

The only well-known cycle index formulas are for the

following five groups: S A, D, C, and I  (the identity

n’ n n

permutation on n elements) (see Harary [9], p.184). The main
aim of this chapter is to derive the cycle index formulas for
the primitive permutation representations of PSL(2,q) and
PGL(2,q), g=pf where p is prime.

In section 1.1 we give definitions and results needed in
the rest of the chapter.

The disjoint cycle structures and ranks of all primitive
permutation representations of PSL(2,q) and PGL(2,q) are
computed in sections 1.2 and 1.3.

In section 1.4 we illustrate by giving examples how to
compute the cycle index formulas of primitive permutation

representations of PSL(2,q) and PGL(2,q) by using the results

in sections 1.2 and 1.3.

1.1 Group actions and cycle indices

Definition 1.1.1 Let (G,,X;) and (G,,X;) be finite permutation




groups (i.e G; acts on X,). To say that (G, X)) =(G,, X;)

(permutation isomorphism) means that there exists a group

isomorphism ¢:G,-G, and a bijection 0:X-X, so that

0(gx) =¢g(6x) for all geG,,x€X;, or B0Og=¢gd for all geG, .

In other words the diagram

Z |

W —/—— X

2 = X
g
is commutative for all g€ G, .
An important special case is when G, = G, and ¢ is the

identity map. Then the condition is 6g =90 for all ge€G ,

and the definition determines the notion of equivalent actions

of G on the two sets X, and X,.
An important well known example follows:

Theorem 1.1.2 Let G act transitively on the set X. Let x € X
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and let H = stab. (x). Then the action of G on X is equivalent
to action by multiplication on the set of (right) cosets of H
in G.
(See Rose [18], p.76)

Notation

From now on, w(g) and C? will denote the number of fixed
points and the conjugacy class of g € G respectively.

The following two results will be of great use later in

the chapter.

Theorem 1.1.3 Let G be a finite transitive permutation group
acting on the right cosets of its subgroup H. If g € G and
|G:H|=n,

then

n(g) _ |c9NH
n [eid

Proof An elememt of g € G fixes a coset

Hs = Hsg = HS
- sgsteH
- sgsteHNCT.

Since H is the subgroup of G which fixes one coset, that is H

itself, then every subgroup of G fixing a coset is conjugate

to H. Hence |HNCY| = |yHy Y19 , for every g € G. The number




of ordered pairs (y,z) with z e yHy*Nc9 is nlH||HEN CY| .

But if z € C% then w(z)=v(g), so that there are w(g) cosets

for which z € yHy'. Therefore, the number of ordered pairs

(v,z) satisfying this condition is = (g)|H||CY| .

Hence

n (g) |H||C?| = n|H||[EFN c?] . O

If a finite group G acts on a set X with n elements, each
g € G corresponds to a permutation o of X, which can be
written uniquely as a product of disjoint cycles. If o has q,

cycles of length 1, @, cycles of length 2,..... , @, cycles of

length n, we will say that o and hence g has cycle type (¢,

Qypeeee,a).

ILemma 1.1.4 Let g be a permutation with cycle type

(aq, Qppeese @)

Then

(a) the number 7(g') of 1l-cycles in g' is Z;iai
;i

(b) o = —i—%n (g¥/?yp (i) , where u is the Mobius function
;

(see Hardy and Wright [10], p.234 for the definition of




K) .

Proof (a) Suppose 6,8,...... , is a disjoint cycle

decomposition of g, then

Let 8 be any i-cycle in g, then 6' is a product of

(i, 4) —Tfiff_CyCles and it contains a 1-cycle if and only

if i|¥. In this case we have i l-cycles. The result follows
when we sum over all the cycles of various lengths i such that
ifs.

(b) Let f() = w(g!).

1

From (a), f£(1) =%iai =%h(i), where we define h(i) = ia;

By using the MSbius Inversion Formula (see Hardy and Wright
f10], Theorem 266),

we get

la, = g() =§f(i)p(l/i) =;f(7‘.)p<i) =§r2n(gl/i>p(i) . O
1 it i

1

Definition 1.1.5 If a finite group G acts on X, |X|=n and geG

has cycle type (a,, @,,....,2,) we define the monomial of g to

be




mon(g) = t; ty2....ta" ,

where t,, t,, ...,t are n distinct (commuting) indeterminates.

Definition 1.1.6

The cycle index of the action of G on X is

the polynomial (say over the rational field @) in t, t

27
-..,t, given by

j.(G) = Zg x (i by oo u ty) = -[%;—'E{mon(g) tgeEG} .

Note that if G has conjugacy classes K, K,,....,K, with g; €

K; for all i, then

m
(G) = iz |K;|mon(g;) .
G &

Definition 1.1.7

If G is a finite group acting on a finite
set X, we define the orbit of x € X to be
orb,(x) = {gxlg € G}.
The number of G-orbits is normally found using the
following well-known formula.

Theorem 1.1.8

(Cauchy - Frobenius Formula) Let G be a group

acting on a finite set X. The number of G-orbits in X is

"I%;Tz’t(g)

gec




(see Krishnamurthy [15], Theorem 1.4.)

If G, is the stabilizer of x € X, the number of G,-orbits on
X is called the rank r of G. Later in the chapter we shall use
the Cauchy - Frobenius Formula to calculate the ranks of
PSL(2,q) and PGL(2,q) on the cosets of their maximal
subgroups.

Let (G,X) be a finite permutation group and we denote by
X® the set of 2-element subsets of X. If g is a permutation
in (G,X), we may want to know the disjoint cycle structure of
the permutation g' induced by g on X,

We shall briefly sketch the technique (we call it the

pair group action) for obtaining the disjoint cycle structure

of g';
for a detailed treatment and examples one can refer to Harary

[8], chap. 5.

Let mon(g) = t;'ty..... t,” , our aim is to find mon(g')
from which the disjoint cycle structure of g can
straightforwardly be obtained. To do this, there are two
separate contributions from g to the corresponding term of
mon(g') which we need to consider:

(i) From pairs of points, both lying in a common cycle of g.
(ii) From pairs of points, one in each of two different cycles
of g.

It is convenient to divide the first contributions into:




(a) those pairs from the odd cycles and (b) those pairs from
even cycles.
(1) (a) Let 8 = (1 2 3..... 2m+1) be an odd cycle in g, then

the permutation @' in (G,X‘?) induced by © is as follows:

(1:2)-2,3)~(3,4}~..... ~(2m+1, 1},

S1.3}-{2,4}-(3,5}~..... ~(2m, 1}-{2m+1, 2}

;?t{l 4}2{2,5)~3,6}~..... ~{2m-1, 1}~{2m, 2}~{2m+1, 3},
Ql23...2m+ly ~ | B B

Al m~(2,m+l}~. ... .. -ﬂm+3,1}f.:.7.gﬁ2m+1,m—lg

i{'l,m+1}-’{2 S M2} L, S{m+2, 1} ... —'{2m+1ﬁ,{n}“7

m
Hence ¢t,,,;~Same1 -

So if we have @, Cycles of length 2m+l in g, the pairs of

points lying in the common cycles contribute:

@ ome ey
Eomar  ~ Somet (1.1.1)

for odd cycles.

(i) (b) If © = (1 2 3 .... 2m), then we get @ as follows:
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(>{1,2)~(2,3)-3,4)~. . . .. ~(2m, 1},

o1, 3)+(2, 4)+(3,5)=. . . . . ~2m-1,1)~(2m, 2)-,
23 ame e | e S

el m-1)~2,m=. . ... wme3, ... 2 mo2),

QL Mm@, mil}z. ... .. W2, 1~ .. ... 2m mol)

({1, 1+m-{2, m+2}=. . .. ... IRREEEEE g —'{m,72m}j~

m-1
Hence ¢t,, - S,S, .

So if @, is the number of cycles of length 2m in

of points lying in common cycles contribute:

Xom

-1
t2m m ) LY

(8pSam

for even cycles.

g, the pairs

(1.1.2)

(ii) Consider two distinct cycles of length a and b in (G,X).

If x belongs to an a-cycle 8, of g and y belongs

8, of g, then the least positive integer B, for wh

to a b-cycle

ich gPx=x and

also g’y=y, is [a,b], the lcm of a and b. So the element (x,y}

belongs to an [a,b]-cycle of g'. The number of

such [a,b]-

cycles contributed by g on 6,x8,  to g!' is the total number of

pairs in ©,x6, divided by [a,b], the length of each cycle. This

_11_




number is therefore

Ta, b1 - &b

the gcd of a and b.

In particular when a = b = L, the contribution by g on 8,X6,

to g' ist cycles of lengthl . Thus when a#b , we have

a0, a a.a,(a,b)

ta tb - S[a,b] ’ (1.1.3)

and when a = b = §,

oy
£gt - s:(z) , (1.1.4)

Now we simply need to multiply the right-sides of (1.1.1) -
(1.1.4) over all applicable cases. Collecting the like terms
and simplifying gives mon(g') and hence the disjoint cycle
structure of g'.

Before we start discussing the next section, we first
give some definitions and notation which we shall carry
through to the other chapters.

The PGL(2,q) group over the finite field GF(q) of prime
power order q is a group consisting of linear fractional

transformations of the form

- 12 -




ax+b
cx+d

with x € PG(1,q), a, b, c, 4 € GF(q), where ad-bc=0 .

PGL(2,q) is 3-transitive on PG(1,q) of degree g+1 and order
a(g®-1).
The PSL(2,q) is a subgroup of PGL(2,q) with ad - bc = 1.

It is simple for q > 3. It is also 2-transitive on PG(1l,q) of

2_
degree g+1 and order ilg%E#LL , where k=(g-1,2).

If g is a power of 2, then
PGL(2,q) = PSL(2,q).

As we shall see later, in both PSL(2,q) and PGL(2,q) only
the identity has more than two fixed points and both groups
are partitioned by their non-identity elements into three
parts (excluding the identity), namely;

(1) those permutations with precisely one fixed point on

PG(1,q) (the parabolic elements),

(ii) those permutations with precisely two fixed points (the

hyperbolic elements),

(iii) those permutations with no fixed points (elliptic

elements).

- 13 -




Notation

We shall denote the sets of parabolic, hyperbolic and

elliptic elements by the symbols T, T, and T,

respectively. The symbols C,, D,, and P, for n e N ,qg a prime
power, will mean respectively the cyclic group of order n, the
dihedral group of order 2n and the elementary abelian group of
order (.

The symbol q will always represent the prime p to the power f.
For an arbitrary m|f, the symbol e will represent the prime p
to the power m. Also merely for simplification, we introduce

the following functions w,z:N - @ which are defined by:

1 £
w:n - = -1),
n(p )

z:n - i(pf+1) .
n

With the help of the above simplifications, we now give some
more notation that will describe some subgroups of PSL(2,q)
and PGL(2,q). From now onwards we shall take k to be (2,w(1)).

The z (1) Frobenius groups in PSL(2,q) that are each the
stabilizer of a point are semi-direct products of a P, by a

c (see Dickson [6], f250). Any subgroup of these which is

wik)

a ‘proper' semi-direct product will be denoted by Se.nt
(i.e s, = P, % C,, where 1<n|w(k)) or by S, if m=f.

e n n

Similarly PGL(2,q) has Frobenius stabilizers P, ¥ C,q,- We

- 14 -




shall also denote subgroups of this by S, (or Sqn for m=f)

n

where n|w(1).

1.2 Primitive permutation representations of G = PSL(2.q)

We shall first have a brief 1look at the subgroup
structure of G; for more details see Dickson [6], chap. 12 or
Huppert [13], chap. 2, §8 for more modern and standard
terminology.

Theorem 1.2.1 (a) The elementary abelian subgroup P, of G is

a Sylow p-subgroup isomorphic to the additive group of GF(q).
(b) The elements of Pq have a common fixed point, and each
non-identity element of P, has only this fixed point.
(c) G has precisely z(1l) Sylow p-subgroups.
(d) Each pair of distinct conjugates of P, intersect only at
the identity.

(see Huppert [13], p.191.)
The normalizer of P, is S

q,w(k)*

Theorem 1.2.2 (a) The subgroup of G which fixes 0 and = is a

cyclic group C_,,-

(b) Each pair of distinct conjugates of C_,, intersect only at

the identity.

(c) For each u with I # ueC,,, Ng(<u>) 1is a dihedral group

of order 2w(k).

(see Huppert [13], p.192.)

- 15 -




Theorem 1.2.3 (a) G has a cyclic subgroup C

z(k) *

(b) If I#s€C,,, then Ny,(<s>) 1is a dihedral group of order

2z (K) .

(c) Each pair of distinct conjugates of C intersect only at

z(k)
the identity.

(d) If I#s€eC,,, , then s has no fixed points on PG(1l,q).

(see Huppert [13], p.1l92.)
By using the notation introduced earlier on, the

normalizers of C and C become D and D respectively.

w(k) z(k) 2u(k) 2z(k)

We now state a theorem which gives a partition of G into
sets each of which contains elements with a precise number of
fixed points. The notation used in the theorem should not be
confused with the notation CY introduced earlier on. By C9 ,,
for example, we mean conjugation of Cuy bPY 9 € G.

Theorem 1.2.4 Let P be the following set of subgroups of G;

P = {qu, Cw’c{k) ’ ng(k) IgEG} .

Then each non-identity element of G is contained in exactly
one group in P. (Thus the set P forms a partition of G).

(b) Let w(g) be the number of fixed points of g € G on
PG(1,q).

Now if we recall that

- 16 -




T; = {g|9€G, n(g) = i)

-e

then

1, = U(C, -9, t, = U(p-1)9, = U -I)9 .
s} gec z (k) 1 geG( a ) LY geG(CW(k) 1)

(see Huppert [13], p.193.)

Lemma 1.2.5 If g is elliptic or hyperbolic of order greater

than 2, or if g is parabolic, then its centralizer in G
consists of all elliptic (resp. hyperbolic, parabolic)
elements with the same fixed point set, together with the
identity element. On the other hand, if g is elliptic or
hyperbolic of order 2, then its centralizer is a dihedral
group of order 2z(k) or 2w(k) respectively.

(see Dickson [6], f224.)

0

(\)_1

®
Lemma 1.2.6 Let d, =(0 b

) €C,i 1f g7*d,g = d, for some

g €e Gand w#:tl1 , then p=w or p=w?! and g € Doycky *

(see Suzuki [20], Lemma 6.4.)
Lemma 1.2.7 The w(1l) non-identity elements of the Sylow
p-subgroup Rqof G are all conjugate if p=2, but are separated
into two sets of w(2) conjugate elements if p > 2.

(see Dickson [6], f241.)

- 17 -




Lemma 1.2.8 The p-1 non-identity elements of a cyclic subgroup

C, of G belong half to one set of conjugacy classes and half

to the other if p > 2 and f is odd but all belong to the same

set if
p > 2 and f is even or p=2.
(see Dickson [6], f 241.)
A subgroup H of G is maximal if it is isomorphic to one

of the following types of groups satisfying the given
conditions:
1) Squm’
2) Dm«n (exceptions occur when g=3,5,7,9,11):
3) Dy, (exceptions occur when g=2,7,9);
4) Alternating group A,, when g=p > 3 and g=3,13,27,37 (mod
40) ;
5) Alternating group A, when g=5" or 4" where n is prime, or
g=p and g=*1 mod 5, or q=ﬁ2where p > 2 and g=-1 mod 5;
6) Symmetric group S,, when g=p and g=tl mod 8;
7) PSL(2,e) when f/m is an odd prime number;
8) PGL(2,e) when f/m=2.
(see Suzuki [20], p.417.)

Furthermore we have one conjugacy class of subgroups
isomorphic to H in 1), 2), 3), 4) (if g=t3 mod 8), 5) (when
g=4" or 5" where n is prime), 7) and two conjugacy classes in
4) (if g=*1 mod 8), 5) (when g=p and g=t1 mod 5 or q=p2, p >
2 and g=1 mod 5), 6) and 8), conjugate in PGL(2,q) (see

Dickson [6], f260). Hence we have (up to equivalence) one
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permutation representation on the cosets of H.

Next we compute the disjoint cycle structures of G and
its rank on the right cosets of H in the order given in the
list above. (Although our main aim is to work with maximal
subgroups H of G, where possible we shall generalize our

results to include cases where H is not maximal.)

Our computations will be carried out by each time taking

an element g of order d in G from Ty, T, and t,

respectively.

(i.e d@=p, d|w(k) and d|z(k) respectively.)

1) Representation on the cosets of H « 8§

q, W(k)

From Theorem 1.1.2, the action of G on the cosets of H is

equivalent to its natural action on PG(1l,q) of degree z(1l).

From Theorems 1.2.1 - 1.2.4, we have the following
results:
Table 1.2.1
) an (111)
T T2 7o
Cycle lengths of g' 1 p 1 d d
No. of cycles 1 of V]l 2wy z

Where for example in the second column we mean g € 7, induces

a permutation g' with one l-cycle and pf’

p-cycles.
Since G is 2-transitive on PG(1,q), its rank in this case

is 2.
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2) Representation on the cosets of H = D, ,,

Since H is the stabilizer of an unordered pair {B,A} <
PG(1,q) and G is 2-transitive on PG(1,q), by Theorem 1.1.2 we
can obtain the disjoint cycle structures of the elements of G
on the cosets of H by considering its action on unordered
pairs of PG(1,q).

The method we shall use here is based on the results on

the pair group action introduced earlier. Before we start, it
is important to specify the column (headed by 7., i=0,1,2) in
Table 1.2.1 in which permutations g' with even cycle lengths
lie (any of the other two columns will have permutations of
odd lengths only). Hence three cases must be distinguished:
(a) p=2 (b) g=1 mod 4 (c) g=-1 mod 4.
If g € 7, or 7y; in cases (b) and (c) we have to differentiate
between the cases 2|d and 2/d. We will work out case (b) with
g € 7, and 2|d fully; for the other cases we only give the
results.

Now if g € 7,, g=1 mod 4 and 2|d; from the results in
Table 1.2.1, g contains two 1-cycles and w(d) d-cycles. By
using the results on the pair group action, we get the
contributions as follows:

By (1.1.1), the two trivial cycles contribute:

tZ - s (1.2.1)

By (1.1.2), the w(d) non-trivial cycles contribute:

- 20 -




-~ g¥ld guzd @) (1.2.2)
~d

By (1.1.3), contributions from the non-trivial cycles

are:

c2ed'd L g2wd (1.2.3)

By (1.1.4), the contribution from the two trivial cycles

is:

tf - st (1.2.4)

Again by (1.1.4), contributions fron the non-trivial

cycles are:

t;(d) - Sg(Zd) (w(1) -d) . (1 . 2 . 5)

Combining (1.2.1) - (1.2.5) we get

mon(g/) = Slsi(;i)sgmd)z(l) .
2

(i.e g' contains one 1l-cycle, w(d) %d-cycles and w(2d)z(1)
d-cycles). We can similarly obtain the results for the other

cases.




Summary of the results.

(I) g €1,
In case (a), g' contains 27! 1-cycles and 4f' p-cyciles.
In case (b) and (c), g' contains z(2)p'' p-cycles.

Results for g € 7, and 7, are displayed in the table below:

Table 1.2.2
(In (110
72 7o
CYCLE LENGTHS OF g' 1 d d Yod d
NO. OF CYCLES: Case (a)| 1 @ w(2d)z(1) 0 gz(2d)
Cases (b) and (c) with
d even| 1 w(d) w(2d)z(1) z(d) w(2d)z(1)
dodd | 1 O w(ed)(q+2)| O qz(2d)

Note that the above table has been compressed to save space.
This though does not hinder us from getting the information
the table was intended for (i.e the disjoint cycle structure
of g' for the cases listed earlier). For example if we take
case (c) where g=-1 mod 4 and g € 7,, all we have to note is
that d can either be even or odd. Now from column (III) we
get; for d even, g' contains z(d) d/2-cycles and w(2d)z (1) d-
cycles; and for d odd, g' contains gz(2d) d-cycles.

By using the Cauchy - Frobenius formula, we calculate the
rank r of G as follows:
Case (a

From the results given above, elements of H have fixed

points as follows:
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The identity fixes gz(2) cosets. We also have w(l)
elements of order two each fixing 2f! cosets and g-2 elements

of order greater than two each fixing one coset. Hence

' '5'“,1(_15‘[‘12(2) +w(1)2f + (g-2)] =281 + 1 .
Case (b)
_ w(ll) [@z(2) + (2(2))2 + CI_;S] - %(q+3) )
Case (c)
r = 7;%fr[qz(2) + w(2)z(2) + w(2)] = 3%:7

In parts 3) -8) we compute the cycle structure of g
using an approach different from the one used previously. Our
first objective will be to determine |c?| and |cHH|. We easily
obtain |c?| by using Theorems 1.2.1 - 1.2.3 and Lemmas 1.2.5
and 1.2.7. If no h € H with |h|=d (order of g) exists, then
|cNH|=0; if such an h exists, this intersection can be
obtained using Theorems 1.2.1 - 1.2.3, Lemmas 1.2.5 - 1.2.8
and the knowledge of conjugacy classes of H which we shall
discuss as we go along. We use Theorem 1.1.3 to calculate
m(g). Once w(g) is known, the numbers a; will be determined
using Lemma 1.1.4(b) and some quite straightforward arguments.

Remark 1.2.1 We notice from Lemma 1.1.4(b) that g' contains a
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cycle of length i if there exists h ¢ H with d/(d,i) = |h]|
(i.e if 7(g')=0, then o,=0).

The way we arrive at various cases in each of the parts
needs a mention; bearing in mind conditions given earlier for
H to be maximal, we search for the conditions on q giving all
the possible distributions of non-identity elements of H over
the three partitions (r,, i=0,1,2) of G, then eliminate those

possibilities where H does not exist or H is not maximal.

3) Representation on the cosets of H=D,, .

Let C,,, be the maximal cyclic subgroup of H. The 2z (k)
involutions in H\C,,, are all conjugate in H if g=1 mod 4 or
p=2. If g=-1 mod 4 these involutions lie in two conjugacy
classes of z(4) elements.

Let <s> = C then the conjugacy class of s), jeN in H

z(k)’

is {si,sJ). In particular H contains a singleton conjugacy

class containing an involution in C,,, if and only if g=-1 mod

4,
Involutions in G form a single conjugacy class containing
gz (2) if g=1mod 4
qw(2) ifg=-1 mod 4
w(l)z(1) ifp=2
elements.
If d (order of g) is 2, then
- 24 -
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z(k) ifp
lce N H| = { g+3
2

2 5 g=1mod4
~1 mod 4.

if g

From Theorem 1.2.3 and the information given above, if d>2,

then

2 1ifgerx
CINH| = [0
| H| {O otherwise.

The involutions in H lie in one of the 7, (i=0,1,2), giving us
3 cases to consider:
(a) when p=2 (b) when gq= 1 mod 4 (c) when g= -1 mod 4.

The table below gives the values of 7 (g).

Table 1.2.3
|c9| || 7(g)
(1) g € 7,: Case (a) | w(1)2(1) z(1) 2f-1
Case (b) and ()| w(2)z(1) 0 0
(11) g € 75: Case (ai
Case (b) with d#2 qz(1) 0 0
Case (c)
Case (b) with d=2 qz(2) 2(2) w(2)
(I11) g € TO:Case (a),
Case (c) with d#2
Case (b) aw(1) 2 1
Case (c) with d=2 qw(2) (q+3)/2 (q+3)/2

We may now proceed to calculate in detail the cycle
lengths of the element g' corresponding to g 1in this

representation.




(I) g € T,

Case (a

From Table 1.2.3, w(qg)=2%". It is quite straightforward

that the only non-trivial cycles g' has are the 2f'(2f1-1) 2-

cycles.

Case (b) and (c)

Here d=p and for 1 < L < p, |g'| = p.

From Table 1.2.3, wm(g')=0. Hence from Remark 1.2.1, a=0.

We also have

=1
a, —pn(gp)
= gw(2p) .

(II) 9 € 17,

Case {(a
If 1 < ) < d, we deduce from Table 1.2.3 that w(g') = o.
Hence from Remark 1.2.1, o = O.
Now
€y = ~m(gd)

d
2w(2d) .

Case (b

(i) If 1 £ L < 4, 2|d, from Table 1.2.3 we have
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_— _{w(z) if § = sz
0 otherwise.
Hence if b # d/2, =0
and
d
-2 2
ag dn(g )
= w(d)

We also have

4
«, = Tli[n(gd) -m(g?)]
= w(2d) (w(1)) .

<

(ii) If 2/d, for 1 £ 4 < 4, 7n(g')=0 and therefore «=0.

If =4 then
1

@y = S (g9

= gw(2d) .

Case (c)
As in b(ii) above, g' contains only the gw(2d) d-cycles.
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(ITT) g € 71

0

Case (a)

From Table 1.2.3, 7m(g')=1 for 1 < L < d. Hence for 1 < L < d,

oo_1 .
X _lﬁu(l)} (1.2.6)
=0

We also have

. 1 7
x, = =[n(g9 + (1) - p(1)]
! 5 ;ju B

= %[n(gd) - p (1))
(g-2) z(2d)

(1.2.7)

Il

Case (b

Since w(g')=1 for 1 < L < d, then for 1 < bk < 4, =0 (cf.
(1.2.6)).

Now

a~(g-2)z(24) (cf. (1.2.7)).

Case (c)

(i) For 1 < § < 4, 2]|d, we have

2
1 otherwise.

g+3 -d
n(g‘)=={ it 1 2
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So if 1 <1 <d and L # d/2, then, o=0 (cf. (1.2.6)).
If L=d/2, then

d
{%[n(gz)-+§: p(i)-p(1)]
1|2
= z(d) .

- 2
1

We also have

ild

d
—}i [m(gd-n(g 2)+¥u(i) ~p (1) +1]

1 —d
—d[n(gd)—n(gz)]
(g-3) z(24d) .

(ii) If 2/d, then for 1 < L < d, 7m(g')=1. Now g' contains one

l-cycle and (g-2)z(2d) d-cycles (cf. (1.2.6) and (1.2.7)).

Summary of the results

(I) g9 € 1,

In case (a), g' contains 27! 1-cycles and 2f'(2f"'-1) p-cycles.
In cases (b) and (c), g' contains pf'w(2) p-cycles.

Results for g € 7, and 7, are displayed in the table below:
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Table 1.2.4
(1 (I11)
T2 o
CYCLE LENGTHS OF g' %d d 1 %d d
NO. OF CYCLES
Case (a) 0 qw(2d) 10 (g-2)z(2d)
Case (b) and (c) with d even|w(d) w(2d)w(1)}| 1 z(d) (g-3)z(2d)
dodd | 0 qgw(2d) 10 (g-2)z(2d)

Rank of G
—‘j;‘—*[qW(Z)+gZ(l)+q]
Case (a r= 2z(1) 2
= 2f1,
1
errae 2
case (b r="z(1) [gqw(2) +w(2) z(2) +w(2) ]
= 3w(4) .
1 g+3.,2 g-3
Case (c r = Z—(l)—[qW(Z)+( > )+___2 ]
=3z(4).
In parts 4) - 6) arguments similar to those used in part

3) continue to be used. But after having dealt with part 3) in
detail, we will only deal with some isolated cases in the

remaining parts before listing the results.
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4) Representation on the cosets of H = A

There are subgroups H isomorphic to A, if and only if p
> 2 or p=2 and f=0 mod 2. Together with the identity element,
H contains 3 conjugate elements of order 2 and 8 elements of
order 3 which lie in 2 mutually inverse conjugacy classes of
4 elements.,

The conjugacy classes of involutions in G were discussed
in the previous part. It is easily noticed that for d=2,

|cNH|=3.

If p=3, G contains w(1)z (1) elements of order 3. By Lemma
1.2.7, these elements form two conjugacy classes of w(2)z (1)
elements. These classes are self-inverse or mutually inverse
as f is even or odd.

If p#3, from Theorems 1.2.2, 1.2.3 and Lemma 1.2.5, there
is a single conjugacy class of elements of order 3 in G

containing gq(g+e¢) elements, where

_ (1 if g=1 mod 3
e'{—l if g=-1 mod 3 °

Therefore we have

if p=3 f even
lce N H| = =3 £ odd
#3.

00 > 0

Now excluding the cases p=2 or 3 when H is not maximal, we

have the following four cases to consider:
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(a) g=5 mod 12
(b) g=7 mod 12
(¢) g=1 mod 12
(d) g= -1 mod 12.

Values for w(g) in all the four cases are given in the table

below.
Table 1.2.5
|c9| |cSH| 7(9)
(1) geTy
Cases (a) -(d) w(2)w(1) 0 1]
(Il) geT
Cases (a) and (c) with d=2| qz(2) 3 w(4)
Cases (a)-(d), d#2,3 qz(1) 0 0
Cases (b) and (c), d=3 - qz() 8 w(3)
(III)'ge'r0
Cases (a) and (d) with d=3] qu(1) 8 2(3)
Cases (a)-(d), d#2,3 agw(1) 0 o
Cases (b) and (d), d=2 qw(2) 3 z(4)

Perhaps the best case to consider in order to illustrate
how the numbers a;, come about is case (c) with ger,.
This case splits into the following four subcases:
(i) 2]4, 3f4 (ii) 3|4, 2fa (iii) 2, 3|4 (iv) 2, 3/d4.
We shall only work out subcase (iii).

If 1 £ (< d, then from Table 1.2.5,

w(4) if c=ug
n(g-) ={w(3) if! =%§, 322
. d d 2d
2=, =, —
0 if t > 3 3
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Note that there are %(3)=2 (% the Euler ¢~ function) distinct
Ly

1 £l < d such that |g'|=3, namely d/3 and 2d/3.
From Remark 1.2.1, e =0 for

t#* d/2, 4/3, 24/3.
Ift =d/2, then

Ifi =d/3, then

If{ =2d/3, then

3 2d d
3 - 3
= 0.

@ 2d =
3

Lastly,

d d
%y = —é[n(gd) -m(g?) -=n(g?)]

= (g% + g - 14)w(24d) .
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summary of the results.
(I) g € 71,
In all the four cases g' contains qw(24p)z(1l) p-cycles.

Results for g € 71, and T, are displayed in the table below:

Table 1.2.6

an (1n
1'2 To
CYCLES
LENGTHS |%d *d d wd ¥d d
OF g'
NO. OF
CYCLES
Cases
(a)-(d)
with
21d,3]d|0 w(2d) (q§3)(q-2)u(24d) 0 z(2d) (q-33(q+2)2(24d)
3|d,2ld(w(d) O (95+q-8Iw(24d) jz(d) O (g°-q-8)z(24d)
2,3|d |w(d) w(2d) (q°+q-14)w(24d) |2(d) z(2d) (G -q-14)z(24d)
2,31d |0 0 agw(24ddz( 1) 0 0 qw(24d)z(1)
Rank of G
Case(a

r = 1—12[qw(24)z(1) + 3w(4) + 8z(3)]
g3 + 81g + 46

288




case(b)

1
r = Tz_[qw(.24)z(1) + 8w(3) + 3z(4))

q® + 81g - 46
288

Case(c)

r= 1—12[qw(z4)z(1) + 3w(4) + 8w(3)]
= (g? +g +82) w(288) .

Case(d)

r= Tlg[qw(24)z(1) + 82(3) +32(4)]

= (g2 - g+ 82)z(288).

5) Representation on the cosets of H=A,

G contains subgroups H isomorphic to the alternating

group A; precisely when p=5 or g=i1l mod 5. Together with the

identity element, H contains 24 elements of order 5 forming 2

conjugacy classes of 12 elements which are transposed by

squaring, 20 conjugate elements of order 3 and 15 conjugate

elements of order 2.

From the discussion we had in part 3) on the conjugacy
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classes of elements of order 2 in G, it is readily noticed
that

lHN ¢ = 15.
Conjugacy classes of elements of order 3 in G were discussed

in part 4). If d=3, we can easily deduce that

_ (20 0 if p=3 and f even
[HN ¢l ‘{20 if p3.

Note that the case when p=3 and f odd does not occur because
we can never have g=t1 mod 5.

There exists elements of order 5 in G if and only if p=5
or g=x1 mod 5. If p=5, there are w(l)z(1l) elements of order 5.
By Lemma 1.2.7, these elements form two self-inverse conjugacy
classes containing w(2)z (1) elements. Squaring preserves or
transposes these classes as f is even or odd. If g=+1 mod 5;
from Theorems 1.2.2 and 1.2.3 and Lemma 1.2.5, there are two

self-inverse conjugacy classes of q(g+é) elements, where

5 = 1 if g=1 mod 5
- {—1 if g=-1 mod 5;

squaring transposes the two classes.

From the information given above, the two conjugacy
classes of elements of order 5 in H lie in the same conjugacy
class in G if and only if p=5 and f is even. Moreover, if d is

5, then
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We now have the following cases to consider:

(a) p=2, g=4 mod 15

(b) pP=2, g=1 mod 15

(c) p=3, g=9 mod 20

(In fact here H is only maximal when f=2, but in this case we
generalize to include f=2 mod 4)

(d) p=5, g=5 mod 12

(e) g=29 mod 60
(£) g=19 mod 60
(g) g=11] mod 60
(h) g=49 mod 60
(1) g=41 mod 60
(3) g=31 mod 60
(k) g=1l mod 60

(L) g=-1 mod 60.
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Values for 7 (g) are presented in the table below:

Table 1.2.7
|c9| |cn| @
1 ET
Cases(a) and (b)| w(1)z(1) 15 2f-2
case (c) W(2)z(1) | 20 or 0 31 or 0
Case (d) w(2)z(1) 12 sf-1
Cases(e)-(L) w(2)z(1) 0 0
(I1) ger
Cases(a) and (b)
with d=3 qz(1) 20 w(3)
Case (a); d=5 qz(1) 12 wW(5)
Cases(a)-(l),
d#2,3,5 qz(1) 0 0
Cases (c),(d),
(e), (), (1),
(k); d=2 qz(2) 15 w(4)
Cases (f),(h)
(j),(k);d=3 qz(1) 20 w(6)
Cases (g),(i),
(i), k), ;d=5 qz(1) 12 w(10)
[Q889)] ge'rg
Case (a);d=5 qw(1) 12 z(5)
Cases(a)-(l),
d#2,3,5 qw(1) 1} 0
Cases (f),(g),
(), (1);d=2 qw(2) 15 z(4)
Cases (d),(e)
(9),(¢i),(1);d=3 aw(1) 20 z(6)
Cases (c),(e),
(£),(h),(1);d=5 aqw(1) 12 z(10)

Here we give case (k) with ger, as an example of how we
obtain the numbers a;. We have the following subcases:
(i) 2|a, (3,s5fd) (ii) 3la, (2,sfd) (iii) sld, (2,3/4)
(iv) 2,3|a (5fa) (v) 2,5|d (3/d) (vi) 3,5|a (2fd) (vii)
2,3,5|d
(viii) 2,3,5/4d.
We will only work out subcase (vii).
Using the arguments similar to those in part 4), it can be

shown that o, = a = w(2d) and a = 0.




There are ®(5) =4 distinctlL , 1 < .t< d such that w(g')=5,

namely d/5, 2d/5, 3d/5 and 4d/5. Now by using arguments

similar to those in part 4), the following results are

immediate,
€1, = w{2d),
az =3, =04, =0 and a4 = (qz+q-62)w(120d),
59 3 59

For anyt , 1 £ U< d different from the ones above, a,=0.

Summary of the results

(I) gerT,

In cases (a) and (b), g' contains 2f' 1-cycles and
—JL—q(q2—16) p-cycles. In case (c), g' contains 31 l-cycles

120

1
360

and q(g?-41) p-cycles or only gw(360p)z(1l) p-cycles.

. - 1
In case (d), g' contains 57! 1-cycles and ?ﬁﬁiq(qz_ZS)

p-cycles. In cases (e)-(k), g' contains gw(120p)z(1l) p cycles.

Results for ger, and 7, are displayed in the table below:
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Table 1.

2.8

(IT)

T2
CYCLE LENGTH OF g d/5 d/3 d/s2 d
NO. OF CYCLES
Case (a) and (b)
3id, 5)d 0 w(d) 0 (g+5)(q-4)Iw(60d)
5|d, 3)d w(ed) 0 4] (a+4)(q-3)w(60d)
3,5|d w(2d) w(d) O (g% -q-32)w(60d)
3,5/d 0 0 v} qw(60d)z(1)
Case (c)
2|d, 5)/d 0 0 w(2d) (g+6)(q-5)w(120d)
5]d, 2/d 0 0 0 0
2,5/d 0 0 0 qw(120d)z(1)
Case (d)
2ld, 3)d 0 0 w(2d)  (g+6)(g-5)w(120d)
3id, 2Jd 0 0 0 0
2,3/d 0 0 0 qw(120d)z(1)
Cases (e)-(l)
2|d,3,5/d 0 0 w(2d) (gq+6)(q-5)w(120d)
31d,2,5/d 0 w(2d) 0 (q*+5)(q-4)w(120d)
51d,2,3/d w(2d) O 0 (q+4)(q-3)w(120d)
2,3|d,5/d 0  w(2d) w(2d) (q?+g-50)w(120d)
2,5{d,31d w(ed) O w(2d) (q+7)(q-6)w(120d)
3,51d,2]d w(2d) w(2d) 0 (g2+g-32)w(120d)
2,3,5|d w(2d) w(2d) w(2d) (q?+q-62)w(120d)
2,3,5]d (o] o] 0 qw(120d)z(1)
(111)
70
CYCLE LENGTH OF g'! d/5 d/3 d/2 d
NO. OF CYCLES
Case (a) and (b)
3ld, 5/d 0 0 0 0
5|d, 3/d 0 0 0 (g-4)(q+3)2(60d)
3,5|d 0 0 0 0
3,5]d 0 0 0 qw(60d)z(1)
Case (c)
2|d, 5)d 0 0 0 0
5|d, 2/d z¢2d) O 0 (9+3)(q-4)2(120d)
2,5/d 0 0 qw(120d)z(1)
Case (d)
2|d, 3/d 0 0 0 0
3|d, 2/d 0 z(2d) 0 (g-5)(q+4)z(120d)
2,3]d 0 0 0 qu(120d)z(1)
Case (e)-(l)
2|d,3,5/d 0 0 z(2d) (g+5)(q-6)z(120d)
3|d,2,54d 0 z(2d) O (q-5)(q+4)2z(120d)
5|d,2,3/d z(2d) 0 0 (q-4)(q+3)z¢120d)
2,3|d,5/d 0 z(2d) z(2d) (92-q-50)2(120d)
2,5|d,3(d z(2d) 0 z(2d) (q+6)(q-7>z(120d)
3,5|d,2/d z(2d) z(2dy O (q2-q-32)2(120d)
2,3,5|d z(2d) z(2d) z(2d) (q2-q-62)z(120d)
2,3,5/d Q 0 0 qu(120d)z(1)
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Rank of G

Case (a

r = 6—10 [qw(60) z(1) + 15-4‘1 + 20w(3) + 24z(5)]
g® +912g - 112

3600
Case (b)
r = —6—16[qw(60)z(1) + 15% + 20w(3) + 24w(5)]
g3 +912qg - 688
3600
Case (c
r = E%[czw(lzo)z(l) + 15w(4) + 203f1 + 242(10)]
_g? +1537g - 162
7200 )
Case (d

r = E%;[qw(lzo)z(l) 4 24{% + 15w(4) + 20z(6)]

g3 + 1425g - 50
7200




Case (e

r = 315 [qw(120) z(1) + 15w(4) + 20z(6) + 24z(10)]

Q> + 1137g + 238
7200 )

Case (f

r = ?%S[qw(lzo)z(l) + 20w(6) + 15z(4) + 24z(10)]

g3 + 1137qg + 338
7200 )

Case (9)

r = ?%5[qw(120)z(1) + 24w(10) + 152z(4) + 202(6)]

g + 1137g + 562
7200 )

Case (h)

r =-£3[qw(120)z(1)-+15w(4)-+20w(6)-+24z(1o)]

q? + 1137g - 562
7200
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Case (i)
r = Q%S[QW(lzo)z(l) + 15w(4) + 24w(10) + 20z(6)]
g? + 1137qg - 338
7200 )
Case (i)

r =-§6[qw(120)z(1)4-20w(6)-+24w(10)4—152(4)]

Q> + 1137qg - 238
7200 )

Case (k
r =-£5[QW(120)Z(1)4»15w(4)+—20w(6)4-24w(10)]
Q3 + 1137qg - 1138
72C0 )
Case !L)
r =

7%5[qw(120)z(1)-+152(4) +202(6) + 242(10)]

g> + 1137qg + 1138
7200 )
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6) Representation on the cosets of H = 8,.

G contains subgroups H isomorphic to S, if and only if

IS EEA

g=* 1 mod 8. Let us now examine the conjugacy classes of

A
1

elements of H.

srrres g

Cycle structure Number of them Order S
M 1 1 &
(ab) 6 2 s
(ab)(cd) 3 2 -
(abc) -8 3 L
(abcd) [ 4 '

It is well known that two permutations are conjugate in the
symmetric group S, if and only if they have the same cycle
structure. Hence the table above gives the conjugacy classes
of H.

The conjugacy classes of elements of order 2 and 3 in G
were described in the previous parts. There are nine
involutions in H, so for d=2 we have

| c9nH|=9.

If d=3 we have

8 07 0 if p=3
|anH|={8 if 3.

G contains elements of order 4 if and only if g= #1 mod

8. These elements form a single class of gq(g+é) elements where

5 = 1 g=1l mod 8
-1 g=-1 mod 8.

So we have, for d=4,
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Note that when p=3, H is not maximal in PSL(2,q). So this case

will not be

We have the

considered.

(a) g= 17 mod 24

(b) g= 7 mod 24

(c) g= 1 mod 24

(d) g= -1 mod 24.

|c9nH|=6.

following cases to consider:

Below is the table of values of w(g):
Table 1.2.9.
e8| |90k | 7(g)
1 €74 Case (a)-(d) w(2)z(1) 0 0
(I1) ger
Cases (ag and (c) with d=2| qz(2) 9 3w(8)
Cases (a) and (c) with d=4| qz(1) 6 w(8)
Cases (b) and (c) with d=3| qz(1) 8 W(6)
Cases (a)-(d), d=2,3,4 qz(1) 0 0
111 €T
Cases (a) and (d) with d=3| qw(1) 8 2(6)
Cases (b) and (d) wWith d=2| qw(2) 9 32(8)
Cases (b) and (d) with d=4| qgw(1) 6 z(8)
Cases (a)-(d), d#2,3,4 qz(1) 0 1}

of how we obtain the numbers «;. If 1 <i

We shall give case (c) with ger, and 3,4|d as an example

l1.2.9,

n(g’) = 3

3w(8)  ift =§

d

, d
ft ==,
w(6) 1 3

0 Otherwise,

[ fL ==, 3
w(8) if 2

< d, then from Table




Now it can be shown that

®d =ad =0d =w(2d) and & ,d =&, 4 =0.
2 3 1 3 3

Finally

1 4
@, = gm(@) -m(g?) -mn(g?)]

= (g% + g - 26)w(48d) .

vla,

Summary of the results.
(I) ger,
In all the four cases, g' contains qw(48p)z(1l) p-cycles.

Results for ger, and 7, are displayed in the table below:

Table 1.2.10
(1 (11D
T5 Ta
CYCLE OF
LENGTHS g' d/4 d/3 d/2 d d/4 d/3 ds2 d
No. OF CYCLES
Cases (a) - (d)
3|d, 2/d 0 w(2d) 0 (g?+q-8)w(48d) (0O z(2d) 0 (g?-g-8)z(48d)
2|d,3,4/d 0 0 3w(4d) (q2+q-18)w(48d) |0 0 3z(4d) (gq?-g-18)z(48d)
4|d,3]d w(2dy O w(2d) (q2+g-18)w(48d)jz(2d) 0  z(2d) (gq?-g-18)z(48d)
2,3|d,4)d 0  w(2d) 3w(4d) (g?+q-26)w(48d) |0  z(2d) 3z(4d) (q?-q-26)2(48d)
3,4|d w(2d) w(2d) w(2d) (q2+q-26)w(48d)|z(2d) z(2d) z(2d) (q?-q-26)z(48d)
3,4]d 0 0 0 qw(48d)z(1) 0 0 0 qw(48d)z(1)
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Rank of G.

Case (a

r =-§z[qw(48)z(1)4-27w(8)4—6W(8)-+82(6)]

q? + 261g - 134
1152 )

Case (b)

r = E%I[qw(48)z(1) + 8w(6) + 27z(8) + 6z(8)]

g® + 261g + 134
1152

Case (c)

r =-§E[qw(48)z(1)4~27W(8)+—6W(8)4—8w(6)]

g3 + 261g - 262
1152

Case (d)

r = -éi‘Z[qw<48)z(1) +272(8) +62z(8) + 82(6)]

g3 +261qg + 262
1152 )




7) Representation on the cosets of H = PSL(2,e), f/m an odd

prime.

G contains subgroups H isomorphic to PSL(2,e) where e=p"

A7

e
1)
o
-

if and only if m divides f. So far we know quite a lot about

o

the structure of G and hence that of H to enable us to tackle
the problem. Throughout this section, we take g=e", where h is
an odd prime number. b
{I) gerT,

By Lemma 1.2.7, |C9|=w(k)z(1).

It is readily noticed that |CINH| = =(e? - 1) .

1
k

By Theorem 1.1.3, w(g) = e’

For 1 < L < p, |g'|=p and hence 7 (g') = e"'.

Clearly =0 for 1 < L < p.

Now
gw(e(e?-1)) - eh?
ap
eh-l (ezh_eZ)
- ple?-1)
II) ger,
Let x and y be elements of order w(k) and e;l in 71,



respectively. Supposing both x and y have the same fixed point

set, then C( 4 = <x> 2<y> = xiethy = CT];(e—l) :

Now let ger, with |g|=d. Up to conjugation by an element
in G, we may assume that geC, ., So g=x" for some neN. If <x">
= <xY>, where u is the least positive power of x in this
cyclic group, x" and xY have the same cycle structure on
PG(1,q). Hence up to disjoint cycle decomposition we may
assume g=x".

Now let <xY> n <y> = <xJ)>, where j is the least positive

power of x in this cyclic group (i.e the lcm of u and w(e-1)).

L f d=2

We also have

ike(e+1) if u=j, d=2

g =4{ 2
lco N & e(e+1l) if u=j, d>2
0 otherwise.

So by Theorem 1.1.3,

_[w(e-1) 1if u=j
n(g) _{O otherwise.

Now if j#w(k) and for 1 < (< d, <xi>o<gl>=<x¥'> if and only if
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j|ul. Thus

—— ={Wo(e—l) if jlul

otherwise

and if i|l, then

1 _ . g ul
n(gi) = wie-1) lfﬂff (1.2.8)
0 otherwise.
By the Remark 1.2.1, ;=0 if jfuk.
Now suppose j|ul, we have
aL=-5§;n(g“Up(i)
&
1 U—.I')
=1 E n({x * p(i) --(by (1.2.8),
il_”jl'

the fact that ]I%I— = il%‘!’-)

Lwie-1) ¥ p(d)

2 “h
.1|T
_ fwizte-11y, if-%%=1
0 otherwise.

If j#w(k), then
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1

ag= SIn(g9 + wle-1) .,Eud B (1) - w(e-1)p(1)]
3
= i[eh'lﬂ - w(e-1)]

e?-1
= w(de(e?-1)) (e?h + eh - g2 _ g),

If j=w(k), then

o eh—l(eZh_l)
d d(e2-1)

il

ITTY €T

Let x and y be elements of order z(k) and e;l in 71,

respectively. Suppose C = <x> 2 Ky> = <x?le)y = ¢
z(k) y 2 (e+1)

If ger, with |g|=d, we may assume that geC,,,. So g=x" for some
neN. Now let u be the least positive power of x such that <x">
= <xY>, and as we had before, take g = x". Let <x> n <y> =
<x’>, where j=[u, z(e+l)].

Now arguments same as those in (II) above give us:

_[z(e+l) if u=j
n(g) ‘{0 otherwise.



For 1 < L < 4,

eL={Z

If j#z(k), then

If j=z(k), then

ul

(L(e+1)) if =< =1
J

0 otherwise.

o, = z(de(e?-1)) (e?h-eh-g2+e) .

Summary of the results.

(I) g € T,

In all cases g' contains e

p-cycles.

h-1

eh—l ( ezh—l)
d(e?-1)

l-cycles and

eh—l (ezh_eZ)

Tl L W R AL

p(e?-1)

Results for g € 7, and 7, are displayed in the table below:

Table 1.2.11
(1n (n
T2 7o
CYCLE LENGTHS OF g L d L d
No. OF CYCLES
j#wCk) or z(k), ul/j=1| w(l(e-1)) * z(1(e+1)) falad
j=w(k) or z(k) 0 xw 0 o
where, * represents w(de(e?-1)) (e®+eM-e?-e);

AT



** represents z(de(e?-1)) (e?'-eh-e?+e);

h-1( a2h_
**%* represents = (e*'-1) ; and 1 < & < d.
d(e?-1)

Rank of G

(a) When e is even,

2h
r = 1 [eh-1 (e??-1) +(e2-1) el 1
e?-1

e(e?-1)
+e(e-2) (e+l)w(2(e-1)) +e?(e-1)z(2(e+1))]
ehtl _ 3eh _ g2 y 20 +1

e3h2 | ght3 _
(e? - 1)%
(b) When e is odd,
2h_
= -—2—— e)rl__(e—l_)-{-(ez._l)eh‘l
e(e?-1) e?-1

+e(e-3) (e+l)w(4(e-1)) +e(e?-1)z(4(e+1))]
2382 4 o83 _ Bl _geh - 92 + 4e + 1

) (e? - 1)%

8) Representation on the cosets of H=PGL(2,e), f/m=2

An important feature of H (as compared to the PSL(2,e))
the

e+1/

is that H contains maximal cyclic subgroups C_,, and C
former consisting of hyperbolic elements with the same fixed

point set while the latter consists of fixed-points-free non-
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identity elements. We refer to the latter as a Singer cycle in

H. A fixed point-free element in H belongs to a unique Singer
cycle; any two Singer cycles are conjugate under an element in
H. The same can be said about maximal cyclic subgroups C_,,
that is any hyperbolic element belongs to a unique maximal
cyclic subgroup C., in H and any two of these are conjugate.
Since 2 divides etl when p is odd, H has two conjugacy
classes of involutions; one lying entirely in PSL(2,e), the
other in H\PSL(2,e).
We now have the following results:

Lemma 1.2.9

ele + 1)
2

e(e ¥1)
2

The number of C, i~ PSL(2,q) is
as e =x1 mod 4 .
The number of C, in H\PSL(2,e) is

We now compute the disjoint cycle structures of elements
of G on the cosets of H. Here we take q=e2.
(I) gert,.

(a) When e is even

By Lemma 1.2.7, |C?|=W(1)z(1) and |C%nH|=W(1).
By Theorem 1.1.3, 7w (g)=e.
Clearly g has to be an involution. Now g' contains the 2-

cycles as the only non-trivial cycles.

3
We easily obtain, «, = f%u
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(b) When e is odd

|c9|=w(2)z(1) and |c%nH|=w(1l) or oO.

Now
m(g)=e or O.
Clearly
a5=ew(2p) or ez (2p).
IT €T

2

Since e+1|w(1l), any elliptic element in H is hyperbolic
in G. Elliptics in distinct maximal cyclic subgroups C_, in H

are in distinct maximal cyclic subgroups C in G.

w(1)
Hyperbolics in H remain Hyperbolics in G.
Now we have:

(a) When e is even

|c9l=qz(1) and |C°nH|=e(e+1l), e(e-1) or 0. So that
m(g)=e+l, e-1 or 0.
Now let x, y, s be elements of G with the same fixed point set
such that <x>=C_,,, <y>=C_,; and <s>=C_,. Up to conjugation by
an element of G, we may assume that g=x", neN. Let u be the
least positive power of x such that <x"™>=<x">. Now up to
disjoint cycle decomposition, we may assume that g=x".

Now suppose <xY>n<y>=<x/> and <xY>n<s>=<x">, where

j={u,e+1] and v=[u,e-1]. We have

e(e+l) if u =3
|coNH| ={ele-1) ifu-=v
0 otherwise.
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Hence

e+l 1if u =3
n(g) = e-1 if u =v
0 otherwise.

If v=w(1l) and j#*w(1l), then as we had in part 7), there exists
an L, 1 < L < d such that ul/j=1 and

_ e+l
0y = 1
e3-1

«y = 3

If j=w(l) and v#w(l), we find in the same way as before that

there exists 1 < h < d such that uh/v=1 and

e-1
o, = ’
h h
e+l
o =
d d

If v,j #w(1), then there exists L and h, 1 £ k,h < d such that

=1 and

o
|
<o
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e+l
aL= 1 7
e-1
ah= h 1
ay = ew(d)

Note that the case v=j=w(1l) does not occur since d|w(1)
implies d has factors in one or both e-1 and e+l.

(b) When e is odd

With u as we had in (a), j and v become [u,e+1/2] and

[u,e-1/2] respectively. We now have

_{ gw(2) 1if d=2
T ‘{ qw(l) if d>2

and
ele+l) if d>2,u=j
_ e(e-1) if d2,u=v
|c o] = 2g 1if d=2,u=j=v=w(4)
0 otherwise.
Hence

e+l

if d>2,u=j

n(g) = e-1 if d2,u=v

2
e 1if d=2,u=j=v=w(4)
0 otherwise.
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R T —

If d=2, then u=j=v=w(4),

a, = e
and

a, = ew(4). o

4 .
If d>2, j*w(2), v=w(2), we have a

e+l ul
o; = , where —2 =1

and

and

If d>2, v,j #w(2), we have the following 3 cases:

(1) J < w(4), v = w(4) (ii) v < w(4), J = w(4),
(iii) j,v < w(4).

Now the cycle lengths of g' are as follows:



ul e-1

_ e+l oA _ . _
(1) @, = A where =5 - 1; @y, = g and @y = ew(2d).
(ii) e, =-%i%, where-%? =1; @y, = e;l; an) a4 = ew(2d).
i e+l ul
. o, = , Where —& = 1;
Gic) Lt 21 7
e-1 u
«, = ——, where — = 1;
h 2h v

¢d = 0;unday = ew(2d) .
2

Again here the case v=j=w(2) does not arise.

III) ger,

From the discussion we had in the opening pages of this
part, we notice that |cC®nhH|=0. Clearly g' contains only the
ez (2d) d-cycles.

Summary of the results.

(I) gerT,

3
If e is even, g' contains e l-cycles and l%— 2-cycles.

If e is odd, g'contains e 1l-cycles and ew(2p) p-cycles, or

ez (2p) p-cycles.

- 59 -~



IT €T,

If e is odd, d=2, u=v=j=w(4), g' contains e l-cycles and ew(4)

2-cycles.

Results for all the other cases are given in the table below.

IIT €T

Always g' contains ez (2d) d-cycles.

Table 1.2.12
(1)
72
CYCLE LENGTHS OF g' L h d/2 d
No. OF CYCLES
e _even 3
v=w(1), j#w(1),ul/j=1 (e+1)/1 0 0 (e5-1)/d
J=W(1), van( 1), ul /v=1 0 (e-1)/h 0 (e”+1)/d
v, j=u(1),ul/j=uh/v=1 (e+1)/L |Ce-1)/h 0 ew(d)
e odd 3
d>2, j#w(2),v=w(2),ul/j=1 |{e+1)/2L 0 0 (e,-1)/2d
d>2,v#w(2), j=w(2),uh/v=1 0 (e-1)/2h 0 (e"+1)/2d
d>2,j<d/2, v=d/2 ,ul/j=1 [(e+1)/21 0 (e-1)/d | ew(2d)
d>2,v<d/2, j=d/2 ,uh/v=1 0 (e-1)/2hi(e+1)/d | ew(2d)
d>2,v, j<d/2, ul/j=uh/v=1 |(e+1)/20 |(e-1)/2h 0 ew(2d)
Rank of G
e _even
r = ———1——-[ew(1) + Ce+1)2(e-2) + L(e-1)2 + ez(1)]
ew(1l) 2 2
= e+l,
e _odd
r = ——JL_-[qz(z) + e3 + ew(l) + e(liil)
ew(l) 2
_ e+3
2
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1.3 Primitive permutation representations of G=PGL(2.q)

As we noted in section 1.1; when gq is even,
PGL(2,q) = PSL(2,q). Since this case was dealt with in section
1.2, throughout this section g is taken to be odd.

We start by having a brief look at the

Finite subgroups of G.

The structure of G can easily be deduced from that of its
subgroup PSL(2,q) of index 2 (and from that of the group
PSL(2,q%) in which G may be imbedded). G has the following
types of finite subgroups (see [23]):

(i) cyclic groups C_, where n|ql;
(ii) elementary abelian p-groups, P.;
(iii) dihedral groups D, , where n|qgfl;

(iv) semi-direct products S, =PxC,, n|w(l);

(v) the alternating groups A, and Ag;

(vi) the symmetric groups S,;

(vii) PSL(2,e) and PGL(2,e).

The subgroups A,, A;, S, all occur in G simply in their role of
subgroups of PSL(2,q) (see f1.2), except if g=+3 mod 8 when G
contains a single conjugacy class of |G|/24 subgroups of type
S, which does not lie in PSL(2,q).

G contains subgroups C_,, and C,,, (see part 8) of f1.2)
whose normalizers are D, ,, and D, ., respectively.

The non-identity elements of a Sylow p-subgroup Pq of G

have a unique fixed point and each pair of distinct conjugates
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of FE intersect trivially. The normalizer of Pq in G is the

stabilizer of a point Sqmﬂ) = Pq X Clye

If we define 7. = {(g|geG, 7(g)=i}, each non-identity element

of G is seen to lie in one set of the partition

1,=U(Cu -D9 1, =U(p, -D9 1,=VU(cqy -D*
geG gec geG

of G.

From the list of subgroups of G given above, a subgroup
H of G is seen to be maximal if it is isomorphic to one of the
following groups:
1) the stabilizer of a point Squ(ty?

2) the dihedral group D, .,;

3) the dihedral group D,,,i

4) the symmetric group S, when g=p#3, g=i3 mod 8;
5) PSL(2,q9):

6) PGL(2,e), f/m a prime number.

G contains a single conjugacy class of each of the
maximal subgroups given above. Except for the case when
H=PSL(2,q) when the length of the conjugacy class of H is
|c|l/2|H], all the other conjugacy classes are of length
lel/IH].

We now compute the disjoint cycle structures of elements
of ¢ and the rank of G on the right cosets of each of its

maximal subgroups H. As we did in section 1.2, we shall each

time be taking an element g of order d in G from the sets 7.,
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7, and 7, respectively.

1) Representation on the cosets of HsS

q,%(1)

By Theorem 1.1.2, the action of G on the cosets of H is
equivalent to its natural action on PG(1l,q) of degree z(1).

The disjoint cycle structure of g' is as we have below:

Table 1.3.1

T T2 To

CYCLE LENGTHS OF g'| 1 p 1 d d
NO. OF CYCLES 1 ettt 2w 2(d)

Since G is triply transitive on PG(1,q), its rank is 2.

2) Representation on the cosets of H=D,. 1y
By using the results on the pair group action in section

1.1, the disjoint cycle structure of g' is as follows:

(I) ger, In all cases g' contains z(2)p'' p-cycles.

Table 1.3.2
(11 (Irn
T |
5 9
CYCLE LENGTHS OF g! 1 Yd d Yd d
NO. OF CYCLES
d even 1 w(d) w(2d)z(1) z(d) w(2d)z(1)
d odd 1 0 w(2d)z(1) 0 qz(2d)

By using the Cauchy-Frobenius Formula, we calculate the
rank(r) of G as follows:

From Table 1.3.2, elements of H have fixed points as
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follows:

The identity fixes gz (2) cosets.
There are g involutions each fixing 2z(2) cosets and gq-3
elements of order greater than two each fixing a single coset.

Hence

- 1 _ _ qg+3
r ETe0) [gz(2) + gz(2) + (g-3)] >

3) Representation on the cosets of H=D,, 4,

Let C be the maximal cyclic subgroup of H. The z(1)

z(1)

involutions in H\C lie in two conjugacy classes of z(2)

z(1)

elements in H; one lying entirely in PSL(2,q), the other

entirely in G\PSL(2,q). If <s>=C then the conjugacy class

(1)’
containing si, jeN in H is {s),s’}. In particular H contains
a singleton conjugacy class containing an involution in C,,.
The conjugacy classes of involutions in G were discussed
in part 8) of section 1.2. If d > 2, then |C?% in G is
gz (1) if g € t,

gw(l) ifgen,
w(l)z(1) if g€,

and |cnc,,,| is

0 ifge€ert, ov 1,
2 1if g€ t,.



Now from the information given above, we have:

If d=2, then

z(2) ifger,
lcoNH| = q;'3 if g € T,
0 if g € t,.

If d > 2, then

0 ifgeTt, grt
g = - 2 1
e A % if g € t,.

The table giving the values of 7(g) is as follows:

Table 1.3.3
8] | c%nH| 7(g)
(1) ger, w(1)z(1) 0 0
(I1) gery,d=2 | qz(2) 2(2) W(2)
d#2 qz(1) 0 0
qg+3 qg+3
(I11) gerpn,d=2 wW(2) = - =
g€eT q > >
d#2 qu(1) 2 1
By using arguments similar to those in parts 3) - 8) of

section 1.2, the disjoint cycle structure of g' is as follows:

(I) g € 7, In all cases g' contains w(2)p'' p-cycles.
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Table 1.3.4
(1N (11 D)
72 70
CYCLE LENGTHS
of g' d/2 d 1 ds2 d
NO. OF CYCLES
d even w(d) w(2dIw(1) 1 z(d) (q-3)z(2d)
d odd 0 qw(2d) 1 0 (g-2)z(2d)
Rank of G
_ 1 g+3 2
r=———I[gw(2) + w(2)z(2) + (Z=)% + w(1)]
2z(1) 2
= z(2) .

4) Representation on the cosets of H = §,

G contains subgroups H isomorphic to S, if and only if
g=t1 mod 8 or gq=%3 mod 8, in which case there is a single
conjugacy class of length [G|/24. If g=+1 mod 8, this
conjugacy class splits into two classes of equal lengths in
PSL(2,q) (see {1.2). If g=13 mod 8, PSL(2,q) does not contain
a subgroup isomorphic S,.

Since H is not maximal when g=t1 mod 8, our discussion
will be on the case when p#3, g=13 mod 8.

Conjugacy classes of elements of H were discussed in part
6) of section 1l.2.

Conjugacy classes of involutions of G were discussed in
part 8) of section 1.2.

If p=3 there is a single conjugacy class of elements of
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order 3 in G containing G/q elements. If p#3, there 1is a

single conjugacy class containing g(g+$§) elements of order 3,

where

G contains elements of order 4 if and only if g=*1 mod 4,
in which case they form a single conjugacy class of q(g+e€)

elements, where

e = 1 ifg=1mod 4
“1-1 ifg=-1mod 4.

From the information given above, we have:

If d=2 and g=1 mod 4, then

3 ifger,
|anH|={e if g€ T,

If d=2 and g=-1 mod 4, then

6 1fgeEr,
‘anH|={3 if g € 1,.

If d=3, then

| c9NH| =8.

If d=4, then



| ceNH| =6.

Now the following are the cases to consider:

(a) g=7 mod 12 and q =t 3 mod 8
(b) g =5 mod 12 and q =t 3 mod 8
(c) =1 mod 12 and g =t 3 mod 8
(d) = -1 mod 12 and g = 3 mod 8 .

Values for m(g) are presented in the table below:

Table 1.3.5

|9y jc9nH| 7(9)
(1) gery w(1)z(1) | 0 0
(I1) ger
Cases (aj) and (d), d=2 qz(2) 6 w(2)
Cases (a) and (c), d=3 qz(1) 8 w(3)
Cases (b) and (c), d=2 qz(2) 3 w(4)
Cases (b) and (c), d=4 qz(1) [ w(4)
Cases (a)-(d), d#2,3,4 qz(1 0 0
[§589] geTy
Cases (a) and (d), d=2 qw(2) 3 z2(4)
Cases (b) and (c), d=2 qw(2) [ z(2)
Cases (b) and (d), d=3 qw(1) 8 z(3)
Cases (a) and (d), d=4 qu(1) 6 2(4)
Cases (a)-(d), d#2,3,4 qw(1) 1] 0

By using arguments similar to those in parts 3) - 8) of

section 1.2, the disjoint cycle structure of g' is as follows:



(I) g € 7, In all cases g' contains qw(24p)z(1l) p-cycles.

Table 1.3.6
(1D) (I11)
T, o
CYCLE LENGTHS OF g'|d/4 d/3 d/2 d d/4 d/3  d/2 d
NO. OF CYCLES
Cases (a) and (d)
2|d, 3, 4)d |O 0 w(d) (q53)(q+4)w(24d) |0 0 z(2d) (q53)(q+2)z(24d)
3id, 2Jd [0 w(d) O (q°+q-8)w(24d) (0  z(d) O (q°-q-8)2(24d)
4id, 3)/d |0 o] 0 4] 2(d) 0 g (q53)(q+2)z(24d)
2, 3,|d,4ld [0 wid) w(d) (q¥5)(q-&Hw(24d)0  z(d) z(2d) (g5-g-14)2(24d)
3, 4|d 0 0 0 0 z(d) z(d) 0 (q°-q-14)2(24d)
2, 3/d |0 0 0 qw(24d)z(1) 0 [ 0 qw(24d)z(1)
Cases (b) and (c)
Zld, 3, 4/d |0 0 w(2d) (Q§3)(q-2)u(24d) 0 0 z(d) (q+§)(q-4)z(24d)
3|d, 2]d |0 wd) 0 (q°+q-8)W(24d) 0 z(d) 0 (q"-q-8)z2(24d)
4id, 3/d w(d) O 0 (qi3)(q-2)u(24d) 0 0 0 o]
2, 3,|d,41d 0 w(d) w(2d) (q5+q-14)w(24d) |0 z(d) z(d) (q+4)(g-5)z(24d)
3, 4|d |w(d) wdy 0 (g°+q-16)w(24d) {0 O O 0
2,3d |0 o0 0 qu(24d)z(1) 6 0 © qu(24d)z(1) |
Rank of G

Case (a

r=-§%[qw&4)z“) + 6w(2) + 8w(3) + 3z(4) + 6z(4)]

g? + 189g - 82
576 )

Case (b)

r = Elz[qw(zll)z(l) + 3w(4) + 6w(4) +62(2) + 82(3)]

g’ + 189g + 82
576 )




Case (c

r = —élz[QW(ch)z(l) +3w(d) + 6w(d) + 8w(3) + 62(2)]

g’ + 189qg - 46
576

Case (d

r =.§i[qw(24)z(1)4-6w(2)4—3z(4)-+6z(4)-+8z(3)]

Q3 + 189qg + 46
576

5) Representation on the cosets of H=PSL(2,q)

Since |G:H|=2, then (i) g' is the identity if g € H (ii)

g' is a cycle of length 2 if g € G\H. The rank of G is 2.

6) Reprgsentation on the cosets of H=PGL(2,e), f/m an odd
prime

G contains subgroups H isomorphic to PGL(2,e) if and only
if m|f. We shall take q = e", where h is a prime.
{I) g e 7,

We have |c?| = w(1)z(1) and |C® n H| = e® - 1.
Hence

m(g) = e,

- 70 -



Clearly a non-trivial cycle in g' is of length p.

Hence

eh—l (eZh_GZ)
p(e?-1)

apz

(I1) 9 € 1,

Let x and y be elements of 7, with the same fixed point

set and orders w(l) and e-1 respectively.

Let g = xY and <xY> n <y> = <x/>, where u and j are taken as in

the corresponding stage of part 7) of section 1.2.

We have
_ fgz(2) if d=2
| c9 | = {qz(l) if d>2
and
Lez-*-—]i if u:j, d=2
g =
| CONH | =Y g(e31) if u=f, d>2
0 otherwise.
Hence
_[w(e-1) IiIf u=j
n{g) ‘{O otherwise.

Arguments similar to the ones in part 7) of section 1.2 give

us:
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For 1 < § <d and j* w(l), g' contains cycles of lengths & and

d with,

Q
I

. = w(l(e-1)), where ul/j=1

and

l

a w(de(e’-1)) (e®+eh-e?-e).

d

If j=w(l), then g' contains only the d-cycles with,

eh—l (eZh_l)

a =
d d(e?-1)

(III) g € 71,

Let x and y be elements of order z(l) and e+l in 7,

respectively. Suppose C = <X> 2 <y> = C

z(1) e+t *®

Let g = xY and <xY> n <y> = <x/>, where u and j are taken
as 1in the corresponding stage of part 7) of section 1.2.

Now arguments similar to the ones in part 7) of section
1.2 give us:

For 1 £ ¥ < d and j#z(1), g' contains cycles of lengths

Y and 4 with,

o z(b(e+l)), where ul/j=1

and

ay = z(de(e®-1)) (e-e"-e’+e).

If j=z(1), then g' contains only the d-cycles with,
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Summary of the results.

I € T,
Always g'
cycles.

contains e

h-1

l1-cycles and

R

eh1(g2h_g2)
p(e?-1)

p—

Results for g € 7, and g € 7, are displayed in the table

below:

Table 1.3.7
(11) (11D
T2 7o
CYCLE OF LENGTHS OF g* 3 d § d
NO. OF CYCLES
j#w(1) or z(1), ul/j=1 Wwil(e-1)) * z(L(e+1)) **
j=w(1) or z(1) 0 *kk 0 *kk

where, * represents

** represents

*%* represents

and 1 < | < 4.

eh—l (eZh__l)

d(e?-1)

w(de (e?-1)) (e®+e-e?-e),

z (de(e?-1)) (e?-eh-e?+e),



Rank of G

_ 1 eh—l(ezh_l) he1 - _ )
T = ooy ey F (et ) 4 elen2) (e wi2(e-1)

. Ezi(e—l)z(e+1)]

e3h-2 + eh+3 - eh+1 - 3eh _ ez + 2€+1
(e - 1)°2

1.4 The explicit cycle index formulas for primitive permutation representations of G = PSL

(2.q) or PGL(2.q).

After having computed the disjoint cycle structures for
elements of PSL(2,q) and PGL(2,q) for any primitive
permutation representation of these two groups (see sections
1.2 and 1.3), the problem of finding the cycle index formulas
for these representations becomes quite straightforward.

In this section we shall sketch some general formulas for
the cycle indices of these representations and then give the
cycle indices of

1) representation of PSL(2,q) on the cosets of S%wk)in

part 1) of section 1.2,
2) representation of PSL(2,q) on the cosets of A, in
part 4) of section 1.2,

3) representation of PGL(2,q) on the cosets of
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PGL(2,e) in part 6) of section 1.3
as examples. Computation of cycle index formulas for the other
representations is very similar.
We start by giving a simple result by Redfield [17].

Theorem 1.4.1 The cycle index of the regular representation of

the cylic group C, is given by

346 = —}3 ; o(d) £,

where { is the Euler {-function.
In what follows, t,, t,,.... are distinct (commuting)
indeterminates and as we had before, for any g € G, g' will
represent the permutation induced by g in a given permutation

representation of G.

Theorem 1.4.2 The cycle index of G = PGL(2,q) on the cosets of

its maximal subgroup H is

j(G) =ﬁ [V 4 (g2-1) mon(x') + gz(2) Y lmon(g") |ge C,,)\ I

+ qw(2)y, [mon(g”)| g € o\ I,

where x € Tqe

Proof

The identity contributes tﬂq”m to the sum of the
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monomials.

All the g°-1 parabolics lie in the same conjugacy class.
Hence they all have the same monomial. Thus the parabolics
contribute (q&-l)mon(x'), x € 17, to the sum of the monomials.

Each g € 7, is contained in a unique cyclic group C and

w(1)

there are in total gz (2) conjugates of C Hence the

w(1)*

contribution by elements of 7, to the total sum of monomials

is gz(2) Y Imon(g”)|g € C,)\II .

Each g € 71, is contained in a unique cyclic group C and

z(h)

there are in total qgw(2) conjugates of C Hence the

z(1)*

contribution by elements of 7, to sum of monomials is

qw(2) Y [mon(g’) |g € C,\) I1

Now adding all the contributions and dividing by the
order of G we get the result. [

Theorem 1.4.3 The cycle index of G = PSL(2,q), g odd, on the

cosets of its maximal subgroup H is one of the following:

(a) :Z(G) = _I%v‘—l [eJSVIH 4 (g2-1) mon(x)

+ qz(2)) [mon(g”) |g € Cy o\ 11
+ qw(2) Y [mon(g’) |g € C ;)\ I,

if H has two conjugacy classes of elements of order p in G, or
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if H contains no elements of order p:; where x € Ty

(b) éi(G) = Téq [e/CVIH é%(qz—l)mon(zﬁ) + é%(qz—l)mon(zé) +

+ gw(2) Y [mon(g’) |g € C,,\I] + gz(2)Y [mon(g’) |geC,,) E?]

if H has a single conjugacy class of elements of order p in G;
where x, and x, are parabolics each from one of the two
conjugacy classes containing the parabolics in G.
Proof

In principle the proof is similar to that of Theorem
1.4.2 except that unlike in Theorem 1.4.2, the g°-1 parabolics
lie in two conjugacy classes of the same length in G.
(a) If H has two conjugacy classes of elements of order p in
G, these conjugacy classes are of equal lengths as is evident
from section 1.2. Hence the g?-1 parabolics have the same
number of fixed points in this representation. It can also be
clearly noticed that the g°-1 parabolics have the same
monomial. If H has no element of order p, then the q2—1
parabolics in G have no fixed pointsin this representation. It
can also be shown that the parabolics have the same monomial.
Hence in both cases we get formula (a).
(b) If H has a single conjugacy class of elements of order p
in G, then all the elements of order p in H lie in one of the
two conjugacy classes of parabolics in G. Hence 1in this

representation half of the parabolic elements have fixed
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points (same number), while the other half have none.
Evidently we have two different types of monomials with half
of the parabolics sharing each, hence formula (b). O
Examples

1) Cycle index of G = PSL(2,q) on the cosets of S

q,w(k)
From Theorems 1.4.1, 1.4.2, 1.4.3(a) and the results in

Table 1.2.1 we have:

Contribution to the sum of monomials by the identity element

is &2

Contribution by elements of 7, is (g2-1)¢t, t2

Contribution by elements of 7, is g z(2) ?: d(ad tf £ .
12diw(k)

Contribution by elements of 7, is gw(2) d(d) 3D .,
1#d|z (k)

Now adding all the above contributions and dividing by |G| we

have,

5(6‘) = "Ig;_l[tf“’ + (g2-1) 6,27 +qz(2) o(d) tf tq'@

1 #djw(k)

+ qw(2) d(d) 5.
1#djz (k)
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2) Cycle index of G = PSL(2,q) on the cosets of A, with g=1

mod 12.

From Theorems 1.4.1, 1.4.3(a) and the results in part 4)

of section 1.2, we have:

Contribution to the sum of monomials by the identity element

Contribution by elements of 7, is (g2-1) £ (24P =)

We have four different types of monomials for elements of 7,,

(1) ty2 gledtenv@d e 3y, 2|d|w(2)

(ii) t¥@ gl@redv@d e ord, 3|d|w(2)

240- .
(iii) X2 e¥d ffererwad e 2, 3|d|w(2)

(iv) tgw(24d)z(1) if 2} 2 Id|w(2) , J.ﬂ,,

Hence elements of 7, contribute



gz (2) [ & (d) £X2D ¢lard) (a-2) wizd)

d/2
2|d[w(2)
(3]d)
v q-

i + ¢ (d) t,;'/(f) gl wiaad

/ 3|djw(2)

l (2fd)
2 —

+ G (d) tY2D D ¢ latrarwzad E d(d) ez
2,3[d[w(2)

2,3]d

dsl

We also have four different types of monomials for elements of

To
(i) t,f/(ZZd) thCI-3)(q+2)z(24d) if  3/d, 2|d|Z(2)

(ii) &2 gl -ae z(24d) if  2/d, 3|d|z(2)

‘ s s { 2_ _ .
\ (iii) z{2d) tz(2d) td(q q-14) z(24d) if

| tass ™ tasz 2,3|d|z(2)

| (iv) g3¥@d= i 3,3)d|z(2),d*1 .

* Hence elements of 7, contribute
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qw(2) [ O (d) £229 glad @) 2(2d

2Jd z(2)
3[2(2))

2—- —
+ é (d) tj/(f) td(q g-8) z(24d)
3|d[z(2)
(2]
2— —
+ ¢ (d) £ 2D pz(2d) td(q g-14) z(24d) tgw(24d)z(1)] .

d/3 td/2
2,3|d|z(2) g

Adding all the above contributions and dividing by |G| we get,

i(G) = ﬁ[w(zﬂz(l) + (q2_1)tgw(24p)z(1)

+ gz (2) ¢ (d) t;'/‘fd’ £ (a3 (a-2) wizad)
2|d[w(2)
Gl

2 o
+ gz (2) d(d) £ glairanwaed
3|djw(2)
(2]d)

¢ (d) gwizad) Lwid) (g?+g-14) w(24d)

+ qZ(Z) a/s td/3 td

2,3|d|w(2)
+ qz(2) ¢ (d) eFvadz)
2.3/d|w(2)
iasl

+ qw(2) b (d) £5/2D g3 (@) z(2ed
2|d[z(2)
{3147 ]
+ qw(2) b (d) L2 £ 4ota-9 z (2
3jd[z(2)
2ld

z(d) . z(2d) , (g*>-g-14) z(244d)
+ () tgs tapm ta®
2,3(d|z(2)

+ tgw(24d)Z(l)] .

2,3]d
{d»l)
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3) Cycle index of G = PGL(2,q) on the cosets of PGL(2,e)

From Theorems 1.4.1, 1.4.2 and the results in part 6) of

section 1.3, we have:

Contribution to the sum of monomials by the identity element

E
is &M,

2h_,2
gh-1_(e¥7-€e%)

. . . 2 e ple?-1)
Contribution by the elements of 7, is (g?-1)¢t; ¢, .

With ¥, u, j and d as in part 6) (II) of section 1.3, we have

two different types monomials for elements of 7,,

ud

. _ 2_ 2h, o h_n2_
(l) tz(L(e 1)) tg(dE(e 1)) (e*+e e?-¢e) , Where j_ :1,'

ha_(e2P-1)

(ii) &4 Y, G=w(1).

The hyperbolics with the first type of monomial have
their orders divisible by a factor (#1) of e-1.

The contribution by elements of 7, is



i - 2_ 2h h_.2_
qz(2) I ® (d) tzz(t(e 1)) t:{/(de(e 1)) (e2B+e h-g2-g)
jld;w(l)
(ul=jew(1)
eh1(e2h-1)

+ ®(d) £, 9V 7.

dw(1)
(F=w(1))

With 1}, u, j and d as in part 6) (III) of section 1.3, we have

two different types of monomials for elements of Tor

. 2_ 2h_gh_g2
(i) tiz(L(eﬂ))tg(de(e 1)) (e**-e e+e)' where L.ljl_:]_;

eh1 (e32-1)

(ii) g d(e?-1) , F=z(1).

The elliptics with the first type of monomial have their
orders divisible by a factor (#1) of e+l.

The contribution by elements of 7, is

gw(2) [ @ (d) £7(blerD) pzldetel-1) (e h-elre)
) d%:(l)

(uf=jew(1)
eb-l(ezh_l)
2_
+ ®(d)tg Y 7.

diz(1)
(7=2(1))



Now adding all the above contributions and dividing by |G|, we

have
G eh-1_(e?-e?)
h- -
QG) = Té_|[t1H + (q2_1) tle ltp p(e?-1)
+ gz (2) @ (g) tyE(et)) pytaetet-) (ePhel-etoo)
ild
LJU Jr:v((?l.))J
eh-1 (e2k-1)
2_
dlw(1)
(F=w(1)
+ qw(2) @ (d) £flen) pgldetei ) (efhetetia)
(.?1 ‘-i]tzz((}.)))

el 1(e?h1)

raw(2) ¥ @(d) gy Y],

d[z(l)
(7=2(1)
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CHAPTER 2

THE SUBDEGREES OF THE PRIMITIVE PERMUTATION REPRESENTATIONS OF

PSL(2.9) AND PGL(2.q)

In this chapter we compute the subdegrees of the
primitive permutation representations PSL (2,q) and PGL (2,q)
and confirm the results on the ranks computed in chapter 1.
The subdegrees of the primitive permutation representations of
PSL (2,q) have previously been computed by Tchuda [21] in his
Ph.D thesis (in Russian) as we learnt recently from Faradzev
and Ivanov [7]. In [7], FaradZev and Ivanov have given the
subdegrees of the representations of PSL(2,q) on the cosets of
PSL(2,e), £f/m an odd prime; PGL(2,e), f/m =2 and (see also Bon
and Cohen [3]) PGL(2,q) on the cosets of its maximal dihedral
subgroups.

As the work by Tchuda [21] is not readily available, we
shall work out the subdegrees of the primitive permutation
representations of PSL(2,q) in details except for the
representations on the cosets of PSL(2,e), f/m an odd prime
and PGL(2,e), f/m=2 for which we shall only quote the results
given by FaradZev and Ivanov [7]. We also extend these
calculations to the primitive representations of PGL(2,q).

The subdegrees of PSL(2,q) and PGL(2,q) on the cosets of
their maximal dihedral subgroups will be computed using the
results in chapter 1. A full description of the suborbits of
PSL(2,q) and PGL(2,q) on the cosets of their maximal subgroups

Doy @and Dy gy respectively will be given. In all the other
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primitive representations of PSL(2,q) and PGL(2,q) (except
PSL(2,q) on the cosets of.An we shall use the method proposed
in [14].

In section 2.1 we give some definitions and notation
(which we shall carry through to other chapters), and review
the results in [14] on the computation of the subdegrees of
transitive permutation groups using the table of marks.

In sections 2.2 and 2.3 we compute the subdegrees of
primitive permutation representations of PSL(2,q) and
PGL(2,q). (However where possible we generalize our results

to include some imprimitive permutation representations).

2.1 Computing the subdegrees of transitive permutation groups using the table of marks

Let G be transitive on X and let G, be the stabilizer in
G of a point x € X. The orbits a, = {x}, 4y, 4,,...,4,, of G
on X are known as the suborbits of G. The rank of G in this
case is r. The sizes n, = |a,| (i=0,1,...,r-1), often called

the 'lengths' of the suborbits, are known as the subdegrees of

G. It is worthwhile noting that both r and the cardinalities

of the suborbits a; (i=0,1,...,r-1) are independent of the
choice of x € X. We can choose the numbering so that n, = 1
£n < ..... < n.y.

Definition 2.1.1 Let Ao be an orbit of G, on X.

Define a* = {gx |g € G, x € ga}, then A" is also an orbit of
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G, and is called the G,-orbit (or the G-suborbit) paired with

A

Clearly |al=|a"|. If a"=a, then a is called a self-paired orbit

of G, .

We now introduce the concept of the marks of a group;

give some general properties of the table of marks and review
the results in [14] on the computation of the subdegrees of
transitive permutation groups using the table of marks.

Two definitions of the mark of a group appear in

literature.

Burnside's definition of the mark (see Burnside [4],

f180) translated into more familiar language states:

Definition 2.1.2 For any two subgroups A and B of a group

G, the mark of A in the representation of G on the cosets of
B is the number m(A, B, G) of the cosets of B that are fixed
by every permutation in A.

Whites's definition of the mark (see White [24]) 1is as

follows:

Definition 2.1.3 For any two subgroups A and B of a group
G, the mark of A in the representation of G on the cosets of

B is defined as the number

m(a,B,6) = Wé’—l Y x(gtage< B,
geG
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Where ¥ (statement) ={% égﬁigigiﬂfnt 1s true

Before we prove the equivalence of the two definitions,

we need the following:

Lemma 2.1.4 Let H, and H, be conjugate subgroups of G. The

number of g € G such that g''H,g = H, is |N.(H,)|.
Proof This is a trivial consequence of the fact that

{g|g’%ﬁg=H2} is a coset of Ny (H;). [

Theorem 2.1.5 Let A and B be subgroups of G. If vy (A) 1is the

number of conjugates of A (by elements of G) contained in B,

then in the permutation representation of G on G/; ,

n(A4) = 16:Bly(a)

|c 2|

I

where 7 (A) = the number of cosets of B fixed by A and

c* = {gag”'|geG).

Proof See the proof of Theorem 1.1.3.

Ol
Lemma 2.1.6 Definitions 2.1.2 and 2.1.3 are equivalent.
Proof If we start with White's definition of the mark,



m(A, B, G)

'l%fz x(g7'Ag < B)

geG

I

T%T |N,(A) |y (A) (by Lemma 2.1.4 Theorem 2.1.5)

_ Jg| Me(a

— —— vy (A4)
B el "

= nt(4) (by Theorem2.1.5), OJ

One immediate fact we establish about marks is:

Lemma 2.1.7 If B <G and A;, A, are conjugate subgroups of
G, then m(A,,B,G) = m(A,,B,G).

By Theorem 1.1.2, the action of G on X is equivalent to
its action on the cosets of H = G,, while that of H on a;
(i=0,1,..,r-1) 1is equivalent to its action on the set of
cosets of some subgroup F £ H.

Let {H,, Hy, ..... /H,} be a complete set of representatives
of all distinct conjugacy classes of subgroups of H in G,

ordered such that |[H,| < |H,| <.....< |H| = |H

¢l :
Form a matrix M = (m;;), where m;; = m(H;,H;,G).

We call matrix M the table of marks of H. A useful fact

about matrix M is the following:
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Lemma 2.1.8 The matrix M is lower triangular with diagonal

entries at least 1.

Proof Trivially m; = 0 if i < j and 2 1 if i = j.

O

If we denote by Q, the number of suborbits Ajon.which the
action of H is equivalent to its action on the cosets of
H; (i=1,2,...t), by computing all the Q, we get the subdegrees

of (G,X). Hence we have

Theorem 2.1.9 The numbers Q; satisfy the system of linear

equations

Y. 0;m(H; Hy, H) =m(H; H G for each j=1,....,¢t.

(See [14].)

Lemma 2.1.10 If m(Hj,H,G) = 1 for some j, 1<j <t,

then Qj = 0.
(See [14].)

Lemma 2.1.11 Let F < H <G and {(F,, F,,....F,} be a complete

set of conjugacy class representatives of subgroups of H that

are conjugate to F in G, then

m(F,H,G = Y [N(F;): Ng(F,;)]|.
i1
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In particular when n = 1, then F is conjugate in H to all
subgroups F' that are contained in H and conjugate to F in G,

and

m(F,H,G) = |[Ng(F) :N,(F)|.

(See [14].)

2.2 The subdegrees of the primitive permutation representations of G = PSL(2.q)

We shall work with maximal subgroups of G in the order

given in cChap. 1, fl.z. But before we begin, we first

discuss the normalizers of some subgroups of G. For more
details see Dickson [6], chap. 12.
The normalizers of some subgroups of G were given in

Theorems 1.2.1, 1.2.2 and 1.2.3. From Lemma 1.2.5, the

normalizer of an involution in G is D

» (@1yr When p is odd and

p, when p is even.

The subgroup PSL (2,e) of G is its own normalizer except

when f/m is even, in which case N (PSL(2,e) = PGL(2,e).
Lemma 2.2.1 Let C, be a cyclic subgroup of order p in G.
Then



%%q(p—l) p odd, £ odd

|A%(C;)|= g{p-1) p odd, f even

g p=2.

(See.Dickson[G],f249.)

Lemma 2.2.2 Let C,;, (d coprime to p) be a cyclic subgroup

of order d in G. Then
D b odd
N (Cy)) =1{ &t
G( d {DZ(qtl) p=2,
+ sign as d|q+1.

(See‘Dickson[G],f246,)

Lemma 2.2.3 Let d > 2 be a divisor of i%(q&l) and & be

the quotient. Then

D,;, 1f d is odd
Ng (D) ={

D,;, 1f d is even.
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(See.Dickson[6],f246.)

Lemma 2.2.4 N¢ (Sq,w(k)) = Sq'“k) .
Proof This is obvious since Squ)is maximal in G (See p.18).
0

We now proceed to compute the subdegrees of G.

1) The subdegrees of G on the cosets of H = Sq)w(k)

since the rank of G is 2, its subdegrees are:

One suborbit of length 1 and one suborbit of length qg.

2) The subdegrees of G on the cosets of H = D,y

Here we take H to be the normalizer of the cyclic maximal
subgroup <u> fixing 0 and ». As in part 2) of section 1.2, we
may view this representation as the action of G on unordered
pairs of points of PG(1,q).

Before we start computing the subdegrees of G, we give

some simple results which we shall use later.

lemma 2.2.5 If -1 is a square mod p (p#2) , then

P=1 mod 4.

Proof Let x € GF(p). -1 = x? = x has order

4 - | xilIGF(p)*| = p-1 @ p=1 mod 4. O

Lemma 2.2.6 1 and -1 lie in the same cycle in u if and only

if if g=1 mod 4.
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Proof Let B be a primitive root of GF(qg) and take u to be

p
(0 1)’ The cycle containing 1 in u consists of all even

powers of B that is all non-zero squares in GF(q). Hence from

Lemma 2.2.5, the lemma follows. U

Corollary 2.2.7 Let x € GF(q) then x and -x belong to the
same cycle in u if and only if g=1 mod 4. O

To get the <u> orbits in this representation we shall use
the results on the pair group action (see p.9). The subdegrees
of G are the lengths of the H~Orbits in this representation.
Each of these H-orbits is a union of <u>-orbits under some
involution in H\<u>.

The following three cases must be distinguished:
(I) g=1 mod 4 (II) g=-1 mod 4 (III) p=2

(I) g=1 mod 4

In the natural action, u contains two 1l-cycles (one
containing 0 and the other ) and two non-trivial cycles (one
consisting of residues and the other consisting of non-
residues). Any g € H\<u> fixes two points both from a non-
trivial common cycle in u. Evidently , non-trivial cycles in
g are 2-cycles containing (0w) and pairs of points from a
common cycle in u.

Now we classify H-orbits in this representation.

(a) Orbits of H formed by pairs of points lying in a common
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cycle in u.
(1) No pairs can be formed from a trivial cycle in u.
(ii) The pairs from non-trivial cycles give two <u> -
orbits each of length w(4) consisting of points {x,-x} in

either of the two non - trivial cycles of u (x residue or non-

residue), and -géé <u> - orbits each of length w(2) and

consisting of pairs
{x,y} (y#*x, =-x; X,y both residues or both non-residues).

Now to classify the above <u>-orbits into H-orbits, we

simply have to note that for any <u>-orbit A with a

representative {x,y)}, there exists a reflection g with (xy) as
one of its cycles and for 1 < i < w(2), u'g({x,y}) € a. So
any reflection g € H\<u> preserves the <u>-orbits. Hence the
<u>-orbits and the H-orbits are the same.
(b) Orbits of H formed by pairs of points lying in different
cycles of u of equal lengths.
(1) The two trivial cycles of u contribute a pair {0,©)} and
this forms a <u>-orbit by itself. Since {0,w} is fixed by H,
{0,0} forms an H-orbit by itself.
(ii) The <u>-orbits formed from pairs of points from different
non-trivial cycles of u are w(2), each of length w(2).
We have (w(2))? pairs in this category each with the

identity as the stabilizer. Hence H permutes these pairs
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semiregularly, so all H-orbits have length |H] = w(1), and the

2
nunmber of them is iﬂ%%%L.: w(4). Hence there are w(4)

H-orbits each of length w(l).
(c) Orbits of H formed by pairs of points lying in different
cycles of u of unequal lengths.

In this case we have four <u>-orbits each of length w(2).
Pairs of points in these <u>-orbits intersect with {0,»} in a
singleton. If x#0 is a residue and y a non-residue in GF(q),
the pairs {(0,x}, {%,x}, {0,y}, {o,y} lie in different <u>-
orbits.

The pairs {0,x} and {«,x} respectively {0,y} and {(«,y}
lie in the same H-orbit. Hence in this case we have two H-
orbits each of length w(1).

Now gathering all the above contributions together we

find the rank of G to be ii&%iil. The subdegrees are:

Table 2.2.1

Suborbit length |1 w(4) w(2) w(l)
f
No. of suborbit |1 2 l%;i QZ7
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(IT) g=-1 mod 4

In this case also, in the natural action, u
contains two l-cycles (one containing 0 and the other «) and
two non-trivial cycles (one consisting of residues and the
other consisting of non-residues).

Any g € H\<u> has no fixed point in PG(1l,q). Cycles in g are
involutions (0®x) and pairs of points from different non-
trivial cycles of u.

Now we classify H-orbits in this representation.
(a) Orbits of H formed by pairs of points lying in a common
cycle in u.

(i) No pairs can be formed from a trivial cycle in u.

(ii) From the two non-trivial cycles of u we get 1%32

<u>-orbits, each of length w(2).

w2
We have 2( ;)) = w(4) (g-3) pairs in this category each

with the identity as the stabilizer. Hence there are
w(4) (g-3) _ g-3
] 4
H-orbits, each of length |H| = w(1l).

(b) Orbits of H formed by pairs of points in different cycles
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of u of equal lengths.

(i) The two trivial u - cycles contribute a pair {0,®}
which is both a <u> and an H-orbit.

(ii) From two non-trivial cycles of u we get w(2) <u>-
orbits, each of length w(2).

An argument similar to that in case (I) (a) (ii) shows
<u>-orbits and H- orbits to be the same.
(c) Orbits of H formed by pairs of points lying in different
cycles of u of unequal lengths.
For x#0 a residue and y a non-residue in GF(q), the four pairs
{0,x}, {o,x}, {0,Y}, {°,y} lie in different <u>-orbits.

It is easily noticed that {0,x} and {»,y}, respectively
{o,x} and {0,y} lie in the same H-orbit.

Hence we have two H-orbits, each of length w(1l). Now

gathering all the above contributions together we find the

rank of g to be ié%ﬁl. The subdegrees are:

Table 2.2.2
Suborbit length 1 w(2) w(l)
No. of suborbits 1 w(2) _QEE
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(III) p = 2

Here u contains two l-cycles and one w(l)-cycle. We now
classify H-orbits in this representation.
(a) Orbits of H formed by pairs of points lying in a common
cycle in u.

(1) No pairs can be formed from a trivial cycle.

(ii) From the single non-trivial cycle of u we get f%;%

<u>-orbits, each of length w(l).

An argument similar to that in case (I) (a) (ii) shows
<u>-orbits and H-orbits to be the same.

(b) Orbits of H formed by pairs of points lying in different
cycles of u of equal lengths.

The two trivial cycles of u contribute a pair {0,®} which is
an H-orbit by itself.

(c) Orbits of H formed by pairs of points in different cycles
of u of unequal lengths.

Here we have two <u>-orbits, each of length w(l). The
pairs {0,1) and {»,1} are in different <u>-orbits but in the
same H-orbit. Hence the contribution to the total number of
H-orbits in this case is 1 <u>-orbit of length 2(g-1).

Now gathering all the above contributions together we

find that G has rank qu. The subdegrees are:
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Table 2.2.3

suborbit length ‘ 1 w(l) 2(g-1)

No. of suborbits 1 g-2 1

The results in (III) can also be got either by the method
used by Faradzev and Ivanov [7] or by one used by Bon and

Cohen [3].

3) The Subdegrees of G on the cosets of H = DZz(k)

In this part <s> is the maximal cyclic subgroup of H with
|<s>| = z(k).

We shall compute the subdegrees of G in this
representation under the following three cases:
(I) g

(I) g

1 mod 4 (II) g= -1 mod 4 (III) p = 2

1 mod 4

From Table 1.2.4, <s> decomposes the cosets of H into one
<s>=-orbit of length 1 and g-2 <s>-orbits, each of length z(2).
So the total number of the <s>-orbits are 1 + (g-2) = w(l) >
3w(4) (the rank of G on P.30).

Hence some H-orbits are a union of more than one <s>-
orbit. By the Orbit-Stabilizer Theorem, the maximum length an
H-orbit can have is z(1). So the maximum number of <s>-orbits

an H-orbit can have is 2.
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<

Now let x be the number of H-orbits of length z(1).

Then

3w(4)
3w(4)

1+(g-2) —2x+x

= g-l-x

o x = w(4) .

Hence we have

Table 2.2.4

Suborbit length l 1 z(2) z(1)

No. of suborbits 1 g3 w(4)

(IT) g = -1 mod 4

From Table 1.2.4, <s> decomposes the cosets of H into one
<s>-orbit of length 1, two <s>-orbits each of length z(4), and
g-3 <s>-orbits each of length z(2). So the total number of
<s>-orbits are 1+2+g-3 2> 3z(4) (the rank of G on p.30).

The above inequality is strict if g > 3. Therefore some g €
Hi<s> will transpose certain pairs of <s>-orbits of length
z(2) when g > 3. Now let x be the number of H-orbits of

length z(1). Then
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1 +2 + (g-3)-2x +x =3z(4)
1
- X = — -3)

4(q)

Hence we have
Table 2.2.5
Suborbit length ’ 1 z(4) z(2) z(1)
|

No. of suborbits \ 1 2 2 (g - 3) {E(q-B)

(IIT) p =2

From Table 1.2.4, <s> decomposes the cosets of H into one
<s>-orbit of length 1 and %(g-2) <s>-orbits of length z(1)
each. On p.30 we found the rank of G to be q/2, which is
equal to the sum of the <s>-orbits in this representation.
Hence the <s>-orbits and the H~orbits are the same.

Hence we have

Table 2.2.6

Suborbit length .l 1 z (1)
|

No. of suborbits l 1 —% (g-2)

We can also obtain the results in this part either by the

method used by FaradZev and Ivanov [7) or by the one used by
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Bon and Cohen [3].

4) The subdegrees of G on the cosets of H = A,

our computations will be carried under four cases as
given in part 4) of section 1.2. Note that N (V,) is A, if

d = 3 mod 8 and S5, if g = *1 mod 8. Since A, < S, < G in the

latter case, it will not be considered in our calculations.
Throughout this part, we denote g 'Hg (g €G) by HS.

a) g =5 mod 12

When G acts on G/H, the stabilizer of a coset Hg (geG) is
HY. If we restrict to the action of H on G/H, the stabilizer
of a coset becomes H n HS.

Let F = H n HY then F could be: H, V,, C3(4 subgroups),
C,(3 subgroups), 1.
i) F=HeHnH =H g e N, (Hl = H, therefore there exist
12 such elements g forming the coset Hg = H. Thus 1 suborbit

(trivial) has F = H.

ii) F2V,«HNHY>V, =« Vy' <He g™ €N (V,) =H.

Thus there exist 12 elements g with F 2 V,; these are the 12
elements g with F = H. Therefore no suborbit has F = V,.

(iii) There exist 4 subgroups C; in H, all conjugate in G.

For any C < H isomorphic to (;, F2 C e« c9 < H. For a

particular C = C;, N.(C) = ]D¢4| = g+1. So for any C=C;, there
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are 4(g+l) elements g such that C9 < H , therefore there are

4 (g+l) elements g with F 2 C. Of these 12 have F = H.
Therefore for any C=C;, there exist 4(g-2) elements g with
F=C. Hence for each C=C; the 4(g-2) elements g form %(g-2)

cosets of H. Therefore for the 4 subgroups C; there are

—i—(q—z) cosets with F=(C,, forming —é—(q—z) suborbits,

each of length |H:C;| = 4.

(iv) There exist 3 subgroups C, in H, all conjugate in G. For

any C < H isomorphic to C,, F2 C+ C9' < H . For a particular

subgroup C = C,, the number of elements g normalizing C is

there exist 3(g-1)

IN(C) | = |Dq_1| = g-1. So for any C = C,,

elements g with H> C9 , therefore there exist 3(g-1)

elements g with F > C. Of these, 12 have F H or V,.

R

Therefore for any C C, there exist 3(g-5) elements g with

F=C. Hence for each C = C, the 3(g-5) elements g form %(g-5)

cosets of H. Hence for the 3 subgroups C,, there are

%(q—S) cosets with F=C, forming %(g-5) suborbits, each of

length |H:C,| = 6.
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All the other elements g must have F = 1, giving rise to

regular suborbits of length |H| = 12. cases (i), (ii), (iii)

and (iv) account for 1, O, %%(q>2) and é;(q;S) cosets

respectively.

So the remaining

g{g?-1) 4 3 _ g3-51g+130
d\d —2) _[1+2 (g-2) += (g-5) ) =
L (+3<q )+ (g-5) -2

q3-51g+130
288

Cosets form

suborbits of length 12.

Thus we have:

Table 2.2.7

Suborbit length 1 4 6 12
_ _ 3_
No of suborbits 1 g-2 g-5 g>-51g+130
3 8 288
_ _ 3
No of cosets 1 Alg-2) 3(g-5) g’-51g+130
3 4 24
i
q3+81g+46

The rank (r) of G 1is 588

Similarly for cases (b), (c) and (d) we get:
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(b) =7 mod 12

Table 2.2.8

F A, v, c, o I
Ng (F) Ay A, Dga Dguy G
No. of cosets 1 0 4(%;4) 3(3:3) *
with stab =F
: % g-4 g-3
No. of suborbits | 1 0 ~5 ~5 * %
Suborbit length | 1 - 4 6 12
3
3_ 3_
where *= Q°-51g+158 and *%= q°~-51qg+158 .
24 288

,oQ°+81g-46
288
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(c) ga=1 mod 12

Table 2.2.9

F A, V, o C, I
i
N, (F) A, A, D, D, G
No. of cosets with stab=F | 1 0 4(%;4) 3(3;5) *
No. of suborbits 1 0 q;‘l qT'S *%
;
Suborbit length 1 - 4 6 12
3_ 3_
where *= q°-51g+194 and *%= q°~-51g+194
24 288

rotg-1) (g?+g+82)
288
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(d) g= -1 mod 12

Table 2.2.10

F A, V, G G I
Ng (F) A, Ay Dy Dq+1 G
No. of cosets with stab=F| 1 0 4(%_2) 3(3—3) *
No. of suborbits 1 0 _an i%;i * %
Suborbit length 1 - 4 6 12
where #= L751g+94 .4 sa= @2-51Q+94
24 288

(g+1) (g?-g+82)
288 :

S) The subdegrees of G on the cosets of H = A,

The following are all the subgroups of H: H, 5 conjugate
subgroups isomorphic A,, 6 conjugate subgroups isomorphic D,,,
10 conjugate subgroups isomorphic Dy, 6 conjugate subgroups
isomorphic to C;, 5 conjugate subgroups isomorphic to V,, 10

conjugate subgroups isormophic C;, 15 conjugate subgroups

isomorphic to C,, 1.
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Table of marks for H

Table 2.2.11

1 c, Cs v, Cs Dg D1g A, H
1 60 0 0 0 0 0 0 0 0
c, 30 2 0 0 0 0 0 0 0
c; 20 0 2 0 0 0 0 0 0
v, 15 3 0 3 0 0 0 0 0
g 12 0 0 0 2 0 0 0 0
D, 10 2 1 0 0 1 0 0 0
Dig 6 2 0 0 1 0 1 0 0
A, 5 1 2 1 0 0 0 1 0
H 1 1 1 1 1 1 1 1 1
Oour computations will be carried under cases (a) - (&)
listed on p.37. But in cases (¢) - (L) (where p is odd), we
have to distinguish between the case (i) when g = *3 mod 8
and case (ii) when g = *1 mod 8. This is because N (V,) = A,

and N.(A,) = A, in the former case, while N (V,) = S, and N, (A,)
= S, in the latter case. Now after adding some extra
conditions to the cases we had before, removing those which
are either superflous or impossible, then simplifying we get

the following cases:

(a) p =2, g =4 mod 15

(b) p =2, g=1 mod 15

(¢) p =3, =9 mod 40

(d) p =5, £ odd

(e) (i) p = 29 mod 120, f odd
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(ii) p = 89 mod 120, f odd
(f£) (i) p = 19 mod 120, f odd
(ii) p = 79 mod 120, f odd
(g) (i) p = 11 mod 120, f odd
(1i) p = 71 mod 120, f odd
(h) (i) p = 109 med 120, f odd
(ii) p = 49 mod 120, f odd or p=23 or 47 mod 120 , f=2
mod 4
(i) (i) p = 101 mod 120, f odd
(ii) p = 41 mod 120, f odd
(3) (1) p = 91 mod 120, f odd
(ii) p = 31 mod 120, f odd
(k) (i) p = 61 mod 120, f odd
(ii) p = 1 mod 120, f odd or p=+1 mod 5, f=2 mod 4 or
Pp=2mod 5, £f = 0 mod 4
(L) (i) p = 59 mod 120, f odd
(ii) p = -1 mod 120, f odd

From now on, if F < H, we shall use the abbreviation m(F)
for m(F,H ,G). The table below gives the values of m(F) for

all the cases (a) - (1) listed above.
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Table 2.2.12

m(F)

q(qz—l)/so in cases (a) and (b).

q(qz—l)/lzo in cases (¢) - (l).

q/4 in cases (a) and (b).

q+1

incases (¢) - (1), tas @ = + 1 mod 4.

(g—])/3 in case (a) and b.

q/3 in case (c).

+ 1mod 6.

1]

in cases (d) - (1), tas Q

e

q/4 in cases (a) and (b). 2 if

g=+1mod 8 and1if g 3 mod 8 in cases (c) -(l).

L}
H

Q\q :t]J/S in cases (a) and (b), tas @ = + 1 mod 5
q/5 in case (d).

(9’ + ]:}/10 in cases (c¢) and (e)-(l), + as g = +1 mod 10.

1 in cases (a) - (f) and (i) - (]).
2 in cases (g), (h), (k) and (l).

1 in cases (a) - (e) and (9), ¢(h), (i).
2 in cases (f), (i), (k), and (l).

1 in cases (a) and (b).

2 if g=t1 mod 8 and 1 if g=+3 mod 8 in cases (c) - (l).

1 in cases (a) - (L).
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Now let

N = {m(1),m(c,) ,m(c;) ,m(V,) ,m(Cy) ,m(D,) ,m(Dyy) ,m(A,) ,m(H))

Q =(Q1, Qyrevvene QJ and M the matrix of table of marks given
~
in Table 2.2.11. We now have MT QT = NT, ie
o ~
Q m(l
60 30 20 15 12 10 6 5 1 Ql m:cz
0 2 0 3 0 2 211 2 2
o 0 2 0 0 1 021| |2 m(Cy)
0 0 0 3 0 0 011| |% m(V,)
0 0O 0O 0 2 0 101 |Q5] = |m(Cy) ~—==(2.2.13)
0 0 0 0 0 1001 |g m(D;)
0 0o 0 0 0 0101 ]|g m(Dy,)
0 0 0 O
0 0 011 0, m(a,)
0 0O 0 0O 0O 0 00021
0O, m(H)

Substituting the values of m(F) given in Table 2.2.12 on
the right hand side of (2.2.13) for each of the cases (a) -
({) and solving for the system of linear equations (2.2.13) we
obtain Q and hence the subdegrees of G in each of the cases
as folld%s:

Case (a)

3_ _ _ _
0 =((q 348g+1328 0, g-4 Qg 4, q 41010’0,1.
~

3600 ! 6 ' 12 10

Hence we have
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Table 2.2.14

Suborbit length No. of suborbits
1 1
2 qg-4
12 =
! 10
g-4
15 =
| | E;
] 20 | g-4
‘f . ‘\: 6
| |
i 5 g>-348g+1328
60 |
| ; 3600
L {
Therefore
;= Q@ +912g - 112
3600 '
Case (b
3_ _ _ _
0= g 348q+1472,l 0, Q'4' q 4, (o} 610’01011.
~ 3600 6 12 10
Hence we have
Table 2.2.15
Suborbit 1length!| 1 12 15 20 60
. | qg-6 g-6 g-4 q3-348g+1472
. 1
|[No. of suborbits To s g 3600
L
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Therefore

qg® +912g - 688

r =
3600
Case (c)

!

7200 8 6 20

~/

Hence we have

Table 2.2.16

3_ - - _
0 =((q 923g+7578 g 9’ qQ 9’0' q 9’0’0’1’1)

Suborbit length |1 5 12 20 30 60
No. of suborbits Il 1 @2 q-9 q-? q°-923g+7578
20 6 8 7200
Therefore
7= q> + 1537qg - 162
7200 )
Case (4
3_ - _ _
0 = q 795q+3850' Q'S' o} 5'0’ q 5’0’0’0'1‘
~ 7200 8 12 10
Hence we have
Table 2.2.17
Suborbit length [ 1 12 20 30 60
. q-5 g-5 g-5 g3-795g+3850
. 1 ==
No. of suborbits To T 8 =200
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Therefore

g>® + 1425g - 50
7200 )

r =

Case (e) (i)

_| g®-723g+3778 g-5 g-5 Q-9
- 1 4 10[ ,Ol0,0,].
,8 ( 7200 8 12 20

Hence we have

Table 2.2.18

Suborbit length | 1 12 20 30 60

No. of Suborbits 1 g-9 g-> g-> q’-7239+3778
20 12 8 7200
Therefore
r = Q°+1137g+238

7200

Case (e) (ii)

, , ,0, L2 0,0,1,1]
7200 8 12 20

0 z((q3—723qw7378 Q-9 g-17

~7

Hence we have

Table 2.2.19

Suborbit length 15 12 20 30 60

1 1 99 qg-17 q-9 q3-723g+7378

No. of suborbits >0 12 8 7200
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Therefore

q3+1137g+238
7200

Case (f) (i)

q3-723g+6878 qg-11

qg-7 0 g-19
12 "7 20

2|

Hence we have

7200 "8

Table 2.2.20

Suborbit length ll 6 12

10111011):

20 30 60
I
No. of Suborbite L . g-19 g-7 g-11 g*-723g+6878
56 12 g 7200

Therefore

y o @ +1137g + 338

7200 '

Case (f) (ii)

, _ 3 _
Qz(q 723g + 10478 g-15 g-19 g 19,0,1,1,1) ‘
o 7200 8 12 20

Hence we have

Table 2.2.21

Suborbit length |1 56 12 20 30 60
. g-19 g-19 g-15 g>-723g+10478
. 1
No. of Suborbits|1 1 1 =5 % S 0
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Therefore

g’ + 1137qg + 338
7200 )

r =

Case (g) (i)

~ 7200 ! 8 ' 12 20

Hence we have
Table 2.2.22

Suborbit length |1 10 12 20 30

3 _ - _
0 =((q 723g + 6622 g -11 g 11,0, q 11’1,01011).

60

No. of suborbits|l qg-11 qg-11 g -11

’ 20 12 8

@ - 723g + 6622
7200

where *=

Therefore

Q> + 1137g + 562
7200 )

r =

Case (qg) (di)

’ I

7200 8 12 20

~
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Hence we have

Table 2.2.23

Q3-723g+10222

where *=
© 7200
Therefore
7= q3+1137g+562
7200

Case (h) (1)

_ (q3—723g+7778 g-13 g-13

~ 7200 I

Hence we have

Table 2.2.24

Suborbit length ’1 10 12 20

Suborbit length [1 5 10 12 20 30 60
. g-11 q-23 g-15 *
No. of suborbits|l1 1 1 >0 15 )

0,22 1,0,0,1
12 20

30 60

No. of suborbits|1 1 L -9 g-13

g - 13

20 12

Q3 - 723g + 7778

* = .
where 7500
Therefore
= Q® + 1137g - 562
7200
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Case (h) (ii)

3 ] ] ] |
o-[g 7z3q+11378,q17,q25,o,q9,1,o,1,1) .
3 7200 8 12 20

Hence we have

Table 2.2.25

Suborbit length No. of suborbits
1 1
5 1
10 , 1
; g |
12 —=—
| | 20
| g-25 5
20 = |
| | i
q-17
30 —_
l 8
| 60 q3-723g+11378
7200
Therefore

g3+1137g-562
7200 ’

r =

Case (i) (i)

3 — — —
0 :((q 723g+7522 g-13 a-5 . @ 21,011,0'1) _

by 7200 8 12 20
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Hence we have

Table 2.2.26

Suborbit length |1 6 12 20 30
No. of suborbits ll 1 g - 21 q9-5 g-13
20 12 8
3.
where *= 4 723g+7522
7200
Therefore
r = g3+11379-338

7200

Case (1) (4i)

3. - - -
0 = qQ 723q+111221 q 17, q-l7,0, qQ 2110,1,1,1 .
~ 7200 8 12 20
Hence we have
Table 2.2.27
Suborbit length ]1 5 6 12 20 30
I
e g-21 qg-17 qg-17

No. of suborbits|1 1 1 =5 =5 S

g3-723qg+11122

w *=
here =560

Therefore
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Q>+1137g-338
7200

r =

Case (j) (4)

~ 7200 ) 12 20

Hence we have

Table 2.2.28

0 =((q3J723q+3422 q;3' -7 o Q11

0,0,0,l) .

Suborbit length |1 12 20 30 60
|
No. of suborbits |1 g-11 q-7 -3 *
20 12 8

q3-723qg+3422 .
7200

where *=

Therefore

g3+1137g-238
7200 )

r =

Case (j) (di)

0= qg3-723g+7022 qg-7 g-19
12 20

~ 7200 g

Hence we have

Table 2.2.29

,0, q—ll 101011’1) )

Suborbit length ]1 5 12 20 30 60
f
|
R qg-11 g-19 q-7 *
No. of suborblts\l 1 T T2 ~5
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qQ3-723g+7022
7200

where*=

Therefore

g3+1137g-238
7200

Ir =

Case (k) (i)

I

7200 g8 ' 12 20

-~

3 _ _ -
0 =(<1 723g+1522 qg-21 g 13,0, q 21,1,1,0,1).

Hence we have

Table 2.2.30

Suborbit length [1 6 10 12 20 30 60

1 1 1 g-21 qg-13 qg-13 *
20 12 8

No. of suborbits

g3-723g+1522 ,
7200

where *=

Therefore

g*+1137g-1138
7200 )

r =

Case (k) (ii)

0,21 11,11

12 20 )

g?-723g+15122, g-25 g-25
7200 g

Q:
~/
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Hence we have

Table 2.2.31

Suborbit length |1 5 6 10 12 20 30 60
No. of suborbits|1 1 1 1 921 @925 g-25 N
20 12 8

q3-723g+15122

where *=
7200
Therefore
r - 9°+1137g-1138
7200
Case i

. _ _ _
_ (q- 7239+10078, g-19 g-11 , g 19,1,1,0,1)

~ 7200 8 12 20

Hence we have

Table 2.2.32

Suborbit length |1 6 10 12 20 30 60
No. of suborbits |1 1 1 X2 g-11 g-19 *
20 12 8

g3-723g+10078
7200

where *=

Therefore

g3+1137g+1138
7200 )

r =

Case L (ii)
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3— -— — —
0 =(<q '723q+13678’ Q'23I Q'23,O, q 19,111,1,1
~ 7200 8 12 20
Hence we have
Table 2.2.33
Suborbit length ll 5 6 10 12 20 30 60
No. of suborbits|1 1 1 1 919 g-23 g-23 *
20 12 8
3_

7200

Therefore

g3+1137g+1138
7200

r =

6) The subdegrees of G on the cosets of H = S,

The following are all the subgroups of H:
(1) H

(ii) A,, which is a normal subgroup.

(iii) A conjugacy class of 3 subgroups of order 8, isomorphic

to Dy.
(iv) A conjugacy class of 4 subgroups of order 6, isomorphic
to Dg.
(v) A normal subgroup of order 4, isomorphic to C, x C,

which we shall denote by V% .

(vi) A conjugacy class of 3 subgroups of order 4 isomorphic

to C, x C,. We denote a subgroup of this type by v,
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(vii) A conjugacy class of 3 cyclic subgroups of order 4, C,-
(viii) A conjugacy class of 4 subgroups of order 3, Cs.
(ix) A conjugacy class of 6 subgroups of order 2 not

contained in A,. We denote a subgroup of this type by qf’

(%) A conjugacy class of 3 subgroups of order 2 contained

in A, We denote a subgroup of this type by Cé” .

(x1i) I.
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Table of marks of H
Table 2.2.34

Lo ¥ ¢, ¢ v o 0, D, A H
1 24 0 0 0 0 0 0O 0 0 0 0
? 122 o o o o 0 0 0 0 0
¢/ 12 0 4 © o o0 0 0 0 0 0
GG 8 0 0 2 0 0 0 0 0 0 0
., 6 0 2 o 2 0 0 0 0 0 0
v’ 6 0 6 o 0 6 0 0 0o 0 0
vB 6 2 2 0 0 VI 0 0 0 0
D, 4 2 0 1 0o o0 o 1 0 0 0
D, 3 1 3 o 1 3 1 0o 1 0 0
A, 20 2 2 0 2 0 0 0 2 0
Hoo1 1 1 11 1 1 1 1 1 1

By Theorem 2.2.3, the value of m(Dg)is either 1 or 2 depending

on whether & = q;l is odd or even.

Each subgroup of type Mf) is contained in a unique

(1)

subgroup of type D, in H and V, is the intersection of the

3 subgroups of type Dy in H. For g = *1 mod 8, G contains two

sets each of IGbu conjugate Klein 4-groups V,. Now from

Theorem 2.2.3, it is easy to ascertain:
Lemma 2.2.8 The Klein 4-groups V, in H are in the same

conjugacy class in G if and only if § is even.
Oour computations will be carried under the cases
(a) - (d) listed on p. 45. Let F be a representative of a
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conjugacy class in H, the table below gives the values of m(F)
for all the cases (a) - (d).

Table 2.2.35

F m(F)
| glg? - 1)

1 YT e in all the cases (a) - (4d).

Cﬁm -éi%gll in cases (a) and (c).
I ELQ%ﬂLL in cases (b) and (4).
| Cﬁ” -éi%ElL in cases (a) and (c).
I 3(g*1) iy cases (b) and (d).
: 8
I Cs qgl in cases (a) and (c).
l f%§£ in cases (b) and (d).
I C, f%§£ in cases (a) and (c).
| @*l  in cases (b) and (d).
| v 4 if 6 is even

4 3 if & is odd.
| v 4 if § is even
! 4 1 if & is odd.
‘ D, 1 in cases (a) and (b).
2 in cases (c) and (d).

| D 1 1if 6 is odd

8 2 if d is even.

1 in all the cases (a) - (d).
1 in all the cases (a) - (d).

- 127 -




Now let

N=(m(1) (%), m(c?) ,m(c,) ,m(C,) ,m(V*,

m(Ve) ,m(D,) ,m(Dy) »m(A,) ,m(H)),

Q=(0,,0,....0,,) and M the matrix of table of marks given
~

in Table 2.2.34. Solving for the values of Q, in the system
of linear equations M'Q' =N'.
~F AN

We get:

Case (a) (i) When § is even

(q3—195q+1858 3g-35 g-17 qg-5 qg-17

Q= 1152 ‘T16 ‘" 16 '"12 '~ 16

Vad

,0,1,0,1,0,1)

Hence we have

Table 2.2.36

F H Dy . G Cs A B 1
g-17 g-5 g-17 * * %

No. of 1 1 1 1e o Te

suborbits

with stab =F

Suborbit 1 3 6 6 8 12 12 24
length
where A = CZ(E) 4 5/= 02(3) ’ C= V4(1) 12 *= 3%_635 and
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sx— G ~-195g+1858
1152

s

Therefore

r =

g3+261g-134
1152 )

(ii) When 6 is odd

~ 1152 ! 16 ' 16 12 16

Hence we have

Table 2.2.37

3_ _ _ - -
o =(.g 195g+1282 3(g-9) g9 g-5 g 9,0,1,0,0,0,1).

F H . ¢ Cs B A 1
No. of suborbitsi1 1 a9 g-> g-9 * * %
16 12 16
with stab = F
Suborbit length |1 6 6 8 12 12 24

where A= ¢,° = ¥ =y x= 3(g-9)
A 2 B 2 . C 4 16

q3-195g+1282
1152

and **=

L

Therefore

qg3+261g-134
1152 )

r =

Case (b) (i) When § is even
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0 = (q3—195q+1598 3g-29 @g-15 g-7 g-15

I I I I IOIJ~IOIJ-I()I1
1152 16 16 12 16 )

~/

Hence we have

Table 2.2.38

F H D

No. of 1 1 1 a B Y o M
suborbits
with

stab.= F

Suborbit 1 3 6 6 8 12 12 24
length

where p = v 2= o, R::cé“ , o= 9> g 97

12

qg-15 o= 39-29 = g3-195g+1598
16 ' 16 ! 1152

Therefore
= qg3+261g+134
1152 '

(ii) When § is odd

14 14

_ | @-195¢g+1022 3(g-7) g-7 q-7
1152 ! 16 16

,q“7,0,1,o,o,o,1).

Q
~ 12 16
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Hence we have

Table 2.2.39

F H D C, G % A 1
No. of | 1 1 a7 a-7 g-7 * %
] 16 12 16
suborbits
with
stab.=F
Suborbit 1 6 6 8 12 12 24
length
where DES V4(3) ' = C2(3) ’ A_: C'z(e) ' *= 3((11;7) and
x%= G°-195g+1022
1152
Therefore
= qQ3+261g+134
1152
Case (c) (1) When § is even
3_ — - - —
0=|4 195q+2498’ 3(Q'17)' q-17 g 13 9717 41,1.1,0,1).
A 1152 16 16 12 16
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Hence we have

Table 2.2.40

F H Dy D ) c, Cy % A 1
No. of 1 1 1 1 o X 4
suborbits M
with stab. =F
Suborbit 1 3 4 6 6 8 12 12 24
length
-1 -13
where D=v?® , g=¢" , a=c® , g= 28_ , - _qu_ ,
_ qg-17 —_ 3{g-17) _ qQ3-195@g+2498
= = nd o= .
P= "1 ' 7 16 and M 1152
Therefore
= qQ3+261Q-262
1152 '
(ii) When § is odd
3_ _ _ _ _
0 = q 195q+1922' 3Q'4BI qQ 9, Q'13’ q 9,0’1,1,0,011'
~ 1152 16 16 12 16
Hence we have
Table 2.2.41
F [H D D C Cy & A 1
Iir
. j -9 g-13
No. of suborbits |1 1 1 d
©. of suborbits | 16 1> x f T
with stab. = F {
Suborbit length il 4 6 6 8 12 12 24
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< = Q3-195g+1922
1152

Therefore

q3+261g-262
1152 )

Ir =

Case (d) (4) When 6§ is even

Qz(q3—195q+2110 3(g-15) g-15 g-11 g-15

1 I ’ 7 lOllllllloll'
1152 16 16 12 16

AL

Hence we have

Table 2.2.42

F H Dy D, D ¢ c 4 A 1
No. of i 1 1 1 x g x ' M
suborbits :
with stab.=F
Suborbit 1 3 4 6 6 8 12 12 24
length
where = y3 - A = 8 - g-15 - g-11
D 4 r B Cz I A 2 4 K '_16" ' F '_‘12— I
3(g-15) q3-195g+2110
= =2 \4d7-2/ d m= .
v 16 anc = 1152
Therefore
;= Q°+261g+262
1152 )
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(ii) When § is odd

3_ -~ - - —~
0 = q 195q+1534’ 3Q'37' Q'7' Q'll' q 7’0’1’1’0'0’1‘
1152 16 16 12 16

Ead

Hence we have

Table 2.2.43

F H D, D) c, C; B A 1
No. of suborbits}l 1 1 7 « g 4 M
with stab.=F ‘
Suborbit length |1 4 6 6 8 12 12 24
=7 -11
Where D:’ V4(3) ’ %: 02(3) p /_\: 2(6) ’ 6“: __.._q]-6 ‘ o(:: _______qlz ’
_  3qg-37 qg3-195qg+2110
= =3 d M=
v Tg ' andM 1152
Therefore
r = q3+261g+262
1152 '

7) The subdegrees of G on the cosets of H =« PSL(2.e), f/m an odd prime

Firstly let q = el. The subdegrees of the representation

of G on the coset of H are given by FaradZev and Ivanov [7] as

follows:
Table 2.2.44
2_ 2_
Suborbit Length 1 jijfmi e(e-1) e(e+l) fﬂfb_ll
No. of suborbits |1 uo B Y uo
Where
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IJ' = (21 e_l) ’
« - eh—l_l
e-1 '
B = eh-e
2(e+1) '
y = —&-—e_
2(e-1) "’
o = e 2_ph2(pdip312e2-¢) +(e3+e?+e-1)
(e2-1)2
Hence
3h-2 h+3 _ o h+1 _ h_ 2
r = P t+e e 3eb-e242e+1 if p=2

(e?-1)2

3h-2 h+3 h+1 h 2
+ - - —-e“+ + .
or 2e e e 6el-g“+4e+l ifp> 2.

(e2-1)2

8) The subdegrees of G on the cosets of H = PGL(2,e), f/ m=2

Let q = e?. The subdegrees of the representation of G on

the cosets of H are given by Faradzev and Ivanov [7] as

follows:
Table 2.2.45
When p=2.
Suborbit length |1 e’-1 e(e-1) e(e+l)
No. of suborbits ‘1 1 5 (e-2) e
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Table 2.2.46

When p > 2

Suborbit length |1 Le(e-€) e’-1 e(e-1) e(e+1)

No. of suborbits 1 1 1 % (e-4-¢€) % (e=-2+¢€)

Where e = € mod 4, € = *1
Hence
r=e+ 1 if p =2

or (e + 3) if P > 2.

2.3 The subdegrees of the primitive permutation representations of G= PGL (2.q)

We start by briefly looking at normalizers of some
subgroups of G.
By the fact that G is imbedded in PSL (2,q?) and the

review of subgroups of PSL(2,q) given by Dickson [6] f260,

we deduce:

(a) For every divisor m of £, G has subgroups PGL (2,e) and
PSL (2,e), with N, (PSL(2,e)) = PGL(2,e), N, (PGL(2,e)) =
PGL(2,e).

(b) The subgroup S is its own normalizer in G.

q,w(1)

In fact this is easily realized from the fact that Squ) is a

maximal subgroup of G (see p. 62).

(c) For the subgroups S, A, and A, (see p. 61 for the

5
conditions of their existence); S, and A, are their own

normalizers, while the normalizer of A, in G is S,.
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(d) Denote by °C, and °C, a C, in PSL (2,q) and a C,¢PSL(2,q)

respectively ( see Lemma 1.2.9). The presence of these two
conjugacy classes of involutions leads us to the conclusion
that there are two conjugacy classes of subgroups isomorphic
to V,. If V, < PSL(2,q) (we denote such by aV4), it has S, as

its normalizer. However if V,4PSL(2,q) (we denote such by

®v,), its normalizer is D,.

We now compute the subdegrees of G on the cosets of each

of its maximal subgroup H given on p.62.

| 1) The subdegrees of G on the cosets of H = S_ )

This is the natural representation of G on PG (1,q) of

degree z(1). Since the rank is two, the subdegrees are:l
| suborbit of length 1 and 1 suborbit of length q.

2) The subdegrees of G on the cosets of H = D,y

Let <u> be the cyclic maximal subgroup of order w(l) in
the dihedral subgroup H of G fixing {(0,©}. In the natural
action, u contains two 1-cycles (one containing 0 and the
other «) and one
w(l)-cycle.

In this representation, we obtain the H-orbits, hence the
subdegrees of G as follows:
(a) Orbits of H formed by pairs of points lying in a common
cycle in u:
(i) No pairs can be formed from a trivial cycle in u.
(ii) The pairs from the non-trivial cycle of u give one <u>-
orbit of length w(2) and %(g-3) <u>-orbits of length w(1l). An

argument similar to that in Case I (a) (ii) of part 2) of

fz.z shows the <u>-orbits and the H-orbits to be the same.
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(b) Orbits of H formed by pairs of points lying in different
cycles of u of equal lengths:

The two trivial cycles of u contribute a pair {0,«} which
is an H-orbit by itself.

(c) Orbits of H formed by pairs of points in different cycles
of u of unequal lengths:

We have two <u>-orbits each of 1length w(1l) with
representatives {0,1} and {«,1}. Any involution in H with a
cycle (0o) and fixing 1 and any other element in GF (g) unites
the two <u>-orbits to an H-orbit.

Gathering the above contributions together we find the
rank of G to be %(g+3).

The subdegrees are:
Table 2.3.1

Suborbit length |1 w(2) w(l) 2w (1)

No. of suborbits Il 1 % (g-3) 1

We can also obtain the results in this part either by the
method used by Faradzev and Ivanov [7] or by the one used by
Bon and Cohen [3].

3) The subdegrees of G on the cosets of H = D2Z(1)

Let <s> be the cyclic maximal subgroup of order z(1l) in
H. In this representaion <s> decomposes the cosets of H into
one
<s>-orbit of length 1, one <s>-orbit of length z(2) and % (g-3)
<s>-orbits of length z(1l) (see Table 1.3.4). On p.66 we found
the rank of G to be z(2), which is equal to the number of
<s>-orbits in this representation. Hence the <s>-orbits and
the H-orbits are the same.

The table below gives the subdegrees of G.
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Table 2.3.2

Suborbit length 1 z(2) z(1)

i

No. of suborbits |1 1 X (g~-3)

We can also obtain the results in this part either by the
~
method used by Faradzev and Ivanov [7] or by the one used by
Bon and Cohen [3].

4) The subdegrees of G on the cosets of H = S,

Table 2.2.34 on p.126 is the table of marks for H. Our
computations will be carried under the cases (a) - (d) listed
on p.68. As before let F be a representative of a conjugacy
class in H. The table below gives the values of m(F) for all
the cases (a) - (d).
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Table 2.3.3

F m (F)
1 g(g?*-1)/,, 1in all the cases (a) - (d).
Cé“ f%;k in cases (a) and (4d)
I q;l in cases (b) and (c).
oA f%%k in cases (a) and (d).
I | 5%35 in cases (b) and (c).
| C, f iggl in cases (a) and (c).
[ l q;l in cases (b) and (d4).
| C, 1%EL in cases (a) and (4d).
| | -gii in cases (c¢) and (b).
| A 1 in all the cases (a) - (d).
| A 1 in all the cases (a) - (d).
I D, 2 in all the cases (a) - (d).
| D, 1 in all the cases (a) - (d).
l A, 1 in all the cases (a) - (d).
| H 1 in all the cases (a) - (d).

Now let N and Q be the vectors given on p. 128 and M the
~ ~
matrix of table of marks for H. As before, solving for the
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values of Q; in the system of linear equations

M!’g/!’ —_ NT ,

—Av
we get

Case (a)

s _ 7 o
_ (q 1239g+662 9=7 4 a7 g3 4 4 1,0,0,1|.

38 576 4 6 8

Hence we have
Table 2.3.4

F H D, c, Cy A 1
|No. of suborbits|i 1 a-3 a7 % ,
8 6 f

with stab. = F
Suborbit length |1 4 6 8 12 24

3
where f]= ¢ = 97 Jpq p= 9°~123g+662
A= Gmx= = = 576
Therefore
r - @°+189g-82
576 )
Case (b)
3_ bt — —
0 =(‘2 123q+4901 q 5,0, q 51 q 5,0,0,1,0,0,1 .
~ 576 4 6 8
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Hence we have

Table 2.3.5

F T H D, c, o A 1
é
No. of suborbits|1l R a3 % ?
] | 8 6
|with stab. = F
Suborbit length |1 4 6 8 12 24
- 3.123g+490
where A= c® = 95 4ng = 9 -123¢9
A 2 7 0‘ 4 a P’ 576
Therefore
;- 9°+189g+82
576
Case (c)
_| g*-123g+554 g-5 ag-7 g-5
- ’ IOI ’ 101011101011-
g ( 576 4 6 8 )
Hence we have
Table 2.3.6
F H D, c, Cs A 1
No. of suborbits}t 1 L2 a7 p B
‘ 8 6
5
with stab. = F
Suborbit length |1 4 6 8 12 24
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g3-123g+554

2

where A= &% , «= i%ié and g=

576
Therefore
r = g3+189g-46
576 )

Case (d

5 5 _ -
o = | 2-1239+598 g-7 , g5 93 4 ¢,1,0,0,1|.
& 576 4 6 8

Hence we have

Table 2.3.7

F H D, ¢C Cy A 1
No. of suborbits|1l 1 g3 g X
8 3 p
with stab. = F
Suborbit length {1 4 6 8 12 24

¢

- 3.
where A= &9 , = E%Z_ and p= q°-123g+598

576
Therefore
r = q>+189g+46
576

5) The subdegrees of G on the cosets of H = PSL(2,q)

Since the degree of G is 2, its subdegrees are: two
suborbits, each of length 1.
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6) The subdegrees of G on the cosets of H = PGL(2,¢e), f/m an odd prime

Throughout this part g = e", h an odd prime. Our first
objective will be to determine those subgroups F of H which
are isomorphic to H n H? for some g € G.

(a) Suppose that H n H? is isomorphic to C with nje+1.

Then C, must be the intersection of two maximal cyclic

subgroups of H and H® of the same order etl. In G, two cyclic

subgroups of the same order are either equal or intersect

trivially. Hence n = e*l or 1.

(b) Suppose H n H® « D, (n#p). Then D, is the intersection of

maximal dihedral subgroups of H and H® containing D,..

Considering intersections of cyclic subgroups as in (a), we

conclude that n = exl,2 or 1.

(c) If H n HY = PN(I|m), then it is the intersection of

maximal elementary abelian p-subgroups of H and HY; these

intersect trivially in G, so P, = P, or 1.

(d) If H n H® = Spt.n

subgroups of type S, in H and HS.

From (a) and (c), we find that Sphn
We are now left with the following 1list of

representatives of distinct conjugacy classes of H which may

then it is the intersection of maximal

= Se’e_1 or 1.

possibly arise as intersections F = H n H%(geG):

(i) 1 (ii) °c, (iii) Pc, (iv) ?v, (v) v, (vi)
C,q (vii) cC,, (viii) A, (ix) A, (x) S, (xi) P, (xii) Daeq)
(xiii) Dy, (xiv) S, .4 (XV) PSL(2,p') (xvi) PGL(2,pY)

Before doing a further elimination, we calculate m(F) for the

subgroups in the list above.

In the remaining portion of this part, i,¥,ﬁ={g and

3 ={ g are read as e = *1 mod 4.
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Table 2.3.8

F [N (F) | |Ng (F) | m(F)
1 g(g?-1) e(e?-1) g(g®-1)
e(e?-1)
a, 2 (g¥1) 2 (es1) gzl
eF 1
be, 2 (gt1) 2 (e+1) ]
ay, 24 24 1
by, 8 8 1
| o, 2(q-1) 2 (e-1) =
| Coi1 2(g+1) 2(e+1) g:i
A, 24 24 1
A, 60 60 1
S, 24 24 1
P, q(e-1) e(e~1) ekt
| D, (o1 2(e-1) 2(e-1) 1
] D, (e+1) 2(e+1) 2 (e+1) 1
! Se. o1 e(e-1) e(e-1) 1
| PSL(2,pl2 P‘(Pfl—zll) P‘l(Pzzll—l) 1
PGL(2,p') P! (P?'-1) P! (P?'-1) 1

By Lemma 2.1.10, we can eliminate all the subgroups F
(except F = H) with n(F) = 1. The conjugacy class

representatives of the remaining subgroups are enough for the
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purpose of computing the subdegrees of G.

Table 2.3.9

Table of marks

1 A ) c n E H
1 A 0 0 0 0 0 0
A y 4 ) 0 0 0 0 0
2 P 0 A 0 0 0 0
c o e B 2 0 0 0
D T B 2] 0 2 0 0
Fd ) 0 0 0 0 Y 0
H 1 1 1 1 1 1 1

where 4 = a., , B= by , C=Coy , D= Couy , E= P, &= e(e?*-1) ,

2= e(e*-1)/, , y= e -1 , 5= e(e+l) , = e(e-1) ,
/M = (e?-1) , w= (e¥l) and, =(e*l).
Now let N = (m(l) ,m(%C,) ,m(°C,) ,m(C,.;) ,m(C,,,) ,m(P,) ,m(H))

(for the entries of‘gﬂ see Table 2.3.8),
Q= (Q Q,---.,2,) and M the matrix of table of marks given
~

in Table 2.3.9. Solving for the values of Q, in the system of

linear equations MTQT = N7,
s Va%d

We get
_ e3h—2_eh+2_eh+l_ze h+eh_1+€3+82+e-1
Q = ( 2 I Ol OI
~ (e2-1)
elh-e eh-g eh-e )

2(e-1) ' 2(e+1) " e(e-1) '
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for both e = 1 mod 4 and e = -1 mod 4.
Hence we have
Table 2.3.10
Suborbit | 1 e?-1 e(e-1) e(e+1) e(e?-1)
length
vo. of |1 eh-e eh-e el-e e3h2_ght2_ghtl_pg b poh-1,p3,02,0-7
’ e(e-1) 2(e+1) 2(e-1) (e2-1)2
Suborbits
Therefore
r = eBb—2+eh+3_eh+1_3eh_62+ze+l

(e2-1)?2

- 147



o

CHAPTER 3

SUBORBITAL GRAPHS CORRESPONDING TO_ _PRIMITIVE PERMUTATION

REPRESENTATIONS OF PSL (2.q) AND PGL (2.q)

After having calculated the subdegrees of the primitive
permutation representions of the groups PSL (2,q) and PGL
(2,d) (see chap 2), the next natural and indeed dquite an
interesting problem is that of constructing and finding the
properties of the suborbital graph corresponding to a given
suborbit. This problem is obviously quite complicated and we
cannot expect a straightforward answer which covers all the
suborbits of a given group.

For groups PSL (2,q) and PGL(2,d), FaradZev and Ivanov
[7] have classified the suborbital graphs which are distance-
transitive through the approach of determining the distance-
transitive representations of these groups.

This chapter is divided into four sections. In section
3.1 we give some notation, definitions and results which will
be used in the remainder of the chapter.

In section 3.2 we discuss the suborbits of PSL(2,q)
formed by pairs of points of PG(1l,q) intersecting (0,«} in a
singleton and give a construction of their corresponding

suborbital graphs when PSL(2,q) acts on the cosets of the
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dihedral subgroup D fixing {0,x}.

w(1)
In section 3.3 we give a construction of the suborbital graph
of PGL(2,q) corresponding to the suborbit of length 2w(1l) when
PGL(2,q) acts on the cosets of the dihedral subgroup Doty
fixing {0,®}.

In section 3.4 we discuss the suborbits of PGL(2,q) of lengths
less than 2w(1l) and give a construction of their corresponding
suborbital graphs when PGL(2,q) acts on the cosets of the
dihedral subgroup D

PIN fixing {0,»}.

3.1. Suborbital graphs

This section gives background material of the results to
be proved later in the chapter. A detailed treatment of the
results to be found in this section may be obtained from Sims
[19] or Neumann [16].

Let G be a transitive permutation group acting on a set

X. Then G acts on X x X by g(x,y) = (gx,9y), g € G, x,y € X.
If 0 c XxX is a G-orbit, then for any
x€X, a={yeX|(x,y) €0} 1is a G,-orbit on X. Conversely if

A ¢ X is a G -orbit, then O={(gx,gy)} geG,yea} is a G-orbit on

X x X. We say a corresponds to O.

Lemma 3.1.1 Let G be a transitive permutation group acting on

X.
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Then there are bijections (<) between:

(a) the set of orbits of G, on X, for fixed x € X;

(b) the set of orbits of G on X x X:

(c) the set of double cosets G gG,, g € G, for fixed x € X.
Proof Since G is transitive on X, by Theorem 1.1.2 the action
of G on X is equivalent to action by right multiplication on

the right cosets G, g, the G -orbit containing G, g has the form

G,gG,, so (a)«(o).

Given a G-orbit () ¢ X x X, let a= {y € X|(x,y) € O} for

a fixed x € X; one easily checks that a is a G, -orbit.

Conversely, given a G -orbit AcX, define
0={(gx,gy)|g € G,y € A}, a G-orbit in X x X.

Then A+~0 gives (a)<«(b).O

The G,-orbits on X are called suborbits (see fz.l ) and

G-orbits on X x X are called suborbitals.

et 0, cXxX, 1 =0,1,---, r-1, be a suborbital. Then

1

we form a graph I';, by taking X as the set of vertices of T,

and by including a directed edge from x to y (x,y € X) if and
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only if (x,y) € O;. Thus each suborbital O; determines a

suborbital graph r;.

Now OF ={(x,y) | (y,x) € 0.} is a G-orbit. Let I'! be the

suborbital graph corresponding to the suborbital 0 . Let the

suborbit 4; (i=0,1,---,r-1) correspond to the suborbital 0;.

Then I'; is undirected if 4; is self-paired (because directed

edges arise in pairs?f} which are to be amalgamated into a

single undirected edge //; and I'; is directed if 4; is not

1

self-paired.

Theorem 3.1.2 Let I be any suborbital graph for a transitive

group G on X. Then G £ Aut I', and G is transitive on the
vertices of I'. If I' is directed then G is transitive on
directed edges. If I' is undirected then G is transitive on
ordered pairs of adjacent vertices.
(See Sims [19].)
A graph is said to be connected if for any two points x
and y, there is a path from x to y.

Theorem 3.1.3 Let G be transitive on X. Then G is primitive if

and only if each suborbital graph I;, i=1,2,....,r-1 is
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connected.

(See Sims [19].)

3.2 The suborbits of G = PSL(2,q) formed by pairs of points of PG(1,q) intersecting {0,x}

in_a singleton when G acts on_the cosets of the dihedral subgroup Dw(l) and their

corresponding suborbital graphs

We recall from parts 2) of f 2.2 that these are the two

suborbits of G formed by pairs of points of u (where <u> is

the maximal cyclic subgroup of the dihedral group D,,, lying

in different cycles of unequal lengths in u.

Notation

When g = 1 mod 4 we shall denote by O, the suborbital
{ {0,a},{w,a}|a is a square in GF(q), a#O} and by O, the
suborbital {{O,b},{w,b}lb is not a square in GF(q)} and by a,_

and I', and by a, and T, their corresponding suborbits and

suborbital graphs respectively.

When g = -1 mod 4, we shall denote by Of the suborbital

{{O,a},{w,b}|a is a square in GF(qg), a#0, b not a square in

GF(q)}, by 05 the suborbital {{O,b},{w,a}la is a square in
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GF(q), a#0, b not a square in GF(q)} and by A2 anad I and

by A and TI§ their corresponding suborbits and suborbital

graphs respectively.

Theorem 3.2.1 When g = 1 mod 4, I', and I’y are self-paired.

Proof I',: By Lemma 2.2.6, (0,1} and {0,-1} € a,.

(1101) maps (0,»} to (0,1} and {(0,-1} to {0,»}. Hence T, is

self-paired.

I,: By corollary 2.2.7 {0,b}, {0,-b"') € a,.

b1 o0 et

°, §) maps (0,®} to (0,-b'} and {0,b} to (0,%}.
Hence I'j is self-paired. 01

Theorem 3.2.2 When q = -1 mod 4, I? and IY¥ are paired.

Proof Take {»,1} € A} and g= (_0111) . Then g(l»,1})=lo,« and

g(fo,oh ={0,1} € a2 .
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Hence IY and I? are paired. O

Given a pair {v,h}), v,h € GF(q) (v#*h); since PSL(2,q) is

doubly transitive, there exists a g € PSL(2,q) such that

g(®) = v and g(0)= h. Our aim here is to express g in terms of

v and h and later give a construction for the graphs TI',,T,,T}

and I‘f;

We represent v as — and h as 3-; , Where
x = h(v-h)"’
and
y = (v-h)7".
We immediately have,
v h(v-h)™7?
= (v=h) € PSL(2,q) ——--- (3.2.1) .
1 (v-h)1

If one of v,h, is o, put v = ©». Now g becomes

(1h) ———————— (3.2.2)
5 1 .2.2) .
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Asuming qg = 1 mod 4, the following theorem gives a

construction for T,

Theorem 3.2.3 ({v,h}), {c,d}) 1is in T, for each of the

a

following cases, and only for these

(a) v,h #0, cl{or 4] v and dfor c] =(va+h(v—h)4)(a+(v—h)4)'ﬂ
(b) v,h #®, c[or d] = h and d[or c] =(va+h(v-h)’") (a+(v-h) "),
(c) cl[or d] = v = w and d[or c] = ath

(d) v = », c[or d] = h, and d[or ¢] = a+h.

Proof (a) Since ({»,0}, {«~,a}) is in I, if ({v,h}, (c,d}) is
in I',, there exists g € PSL(2,q) which sends » to v and o to

a

h. From (3.2.1), we can choose g to be

(v h(v-h)?
1 (v-h)"1
Now g(lw,al) = (le,d)= g(=)=c [ or d] = v=c [ or dI]

and

v h(v-h)™Y\ (a\ _ [va + h(v-h)-1
(1 (V>h)‘1)(1) - (a + (v-h)"1

dfor c] = (va+h(v—h)4)(a+(v—h)4)4, so (a) holds. Since

({»,0}), {0,a}) is in I',, we similarly obtain (b).
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If one of v,h is » and taking v = ©, by (3.2.2) we take g to

1 h
be (0 1) .
Now repeating the arguments in (a) we obtain (c) and (d). [O.

Replacing the a in Theorem 3.2.3 with b we get a construction

for ry,.

Theorem 3.2.4

When g=-1 mod 4, ({v,h}, {c,d}) is in T} for each of the

following cases, and only for these

(a) v,h #o, c[or d] = v and d[or c] =(va+h(v—h)4)(a+(v-h)4)'ﬂ
(b) v,h #o, c[or d] = h and d[or c] =(vb+h(v-h)") (b+(v-h) ") ',
(c) c[or d] = v = o and d [or c]= a+h

(d) v = o, c[or d] = h, and 4 [or c]= b+h.

Proof We use arguments similar to those in Theorem 3.2.3. 0O

The construction for Pﬁ follows from Theorem 3.2.4 after

interchanging a and b .
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Examples

l. G = PSL(2,3)

u = (0) (») (1) (2)
The following are the suborbits of G with each column

containing pair of points in the same suborbit.

%&i% ?%ZH
{0, o} {o, 2} {o, 1} {1,2}

We draw the graphs with unordered pairs {a,bl abbreviated to

ab .

Suborbital graph I'Z
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I3

and

s

Suborbital graph I¥

r/a? 1

/’/Z/ \\\

are octahedral graphs.
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2. G = PSL.(2,5)

20
u =(0 3) = (0) () (14) (23)

The following are the suborbits of G:

{0,1) (0,2} {1,3)
(0,} (0,4} (0,3} (3,4} (1,4} {2,3}

{0,1} {°,2} {1,2)

{,4} {o,3} {1,3}

Suborbital graph T,

o,
.
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Suborbital qraph T,

Lemma 3.2.5 The suborbital graphs T,,T,,T% and T2 all have

girth 3.

Proof I',: Since (»,1}, (0,1} € a, in I, {(0,»} is adjacent to
{0,1} and {0,1}. By Lemma 2.2.6 and Theorem 3.2.3 (d) and
taking {(v,h} to be {»,1} and a to be -1, we find that ({0,1},
{©,1}) is an edge in Ir,, giving a triangle.

Iy: Since {«,b}, {(0,b} € a,, in Iy {(0,»} is adjacent to {=,b}
and {0,b}. Taking {v,h} to be {®,b} and substituting -b for a
in Theorem 3.2.3 (d); by Corollary 2.2.7 and Theorem 3.2.3

(d), ({»,b}, {0,b}) is an edge in Iy, giving a triangle.

' : (o,,{»,1}) is an edge in T% .
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By Theorem 3.2.4 (d), ({»,1}, {0,1})) is also an edge in T} .

Since 1{0,1} is in a2, ({0,o},{0,1}) 1is an edge in TI% . Now we

know that TI? and I%Y are paired and therefore ({0,1},{0, o}

is an edge in T§ , giving us a triangle.

2 : since I? and I¥ are paired , T7 has girth 3

«TI? has girth 3. O

Theorem 3.2.6 T, U I, has diameter 2.

Proof ({a,b}, {c,d}) is an edge in I, U I, if and only if
|{a,b} N {c,d}l = 1. If {x,y} and {v,h} are any two vertices
not forming an edge in I, U I, then

d({x,y}, {v,h}) < d({x,y}, {y,v}) +d({y,v}, {v,h}) =2
Hence d({x,y}, {v,h}) = 2. 0

Let X be a finite set. The Johnson graph of the m-sets in X

has vertex set Ca , the collection of m-subsets of X. Two

vertices x,y are adjacent whenever X n y has cardinality m-1.
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When X is some unspecified n-set we denote the graph by

J(n,m). T, U I, is in the family of graphs J(n,2), usually

called the trianqular graphs ( see Higman [12]).

Theorem 3.2.7 I', and I'y are isomorphic.

Proof Let B be a generator of GF(q)" and

( g g—l) = (0) (@) ((ay @, = = = @yz))(by b, = = = by;z) , where a;

and b; are squares and non-squares in GF(q)* respectively.

Let vy = (g (1)) =(0) () (ayb,a,b, = = = @,y Dyzy) -

From Theorem 3.2.6, we have immediately

O

y : ', Ty, 1is an isomorphism defined by vy(a;) = b;.

3.3 The suborbital graph T of G = PGL(2.q) corresponding to the suborbit of length 2w(1)

when G acts on the coset of the dihedral subgroup D2w(1)‘

The suborbit under consideration is the only suborbit of

length 2w (1) and therefore it must be self-paired (see part 2)
of

fz.3).
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Since G is doubly transitive; given a pair {v,h}, v#h, v,
h € PG(1,q), there exists g € G such that g(») = v and

g(0) = h.

v h
For v, h # o, g can be chosen to be (1 1) . If either v

. 1 h vi
or h is o, then we can choose g to be 01 or 10

respectively. Now let B be a generator of GF(q)”"; using the
ideas above, we construct the suborbital graph T as follows:

Theorem 3.3.1 ({v,h}, {c,d}) is an edge in I' for each of the

following cases, and only for these

(a) v,h # @, v = c[or d] and d[or c] (v8' + h) (B + 1)1,

(b) v,h # o, h c{or d] and dfor c]

(vB' + h) (B' + 1)1,
(c) v =o, v = cl[or d] and d[or c] = B' + h,

(d) v = ©, h

cl[or d] and d[or c] = B' + h,

(e) h = o, v

c[or d] and d[or c] (ve' + 1)BT,
(f) h = ®, h = c[or d] and d[or c] = (vB' + 1)B7,
where 1 < i < w(1l).
Proof See the proof of Theorem 3.2.3. O
We note that TI' = T, U ', (see Theorem 3.2.6) is the Johnson
graph J(n,2).
It was shown by Higman [12] that the full automorphism

group of the Johnson graph J(n,2) is S when n > 4.
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From Lemma 3.2.5, the girth of I' is 3; in fact it can
straightfordwardly be seen that if {(x,y},{y,v} and {(x,v}, v #

X,y are vertices of I', they form a circuit of length 3.

3.4 Suborbital graphs T of G = PGL(2.q) corresponding to the suborbits of lengths less than

2w(1) when G acts on the cosets of the dihedral subgroup D, ;)

Let A be a suborbit of length less than 2w(1l). Then a has
a representative {1,x) for some x € GF(q)*.

Lemma 3.4.1 If (1,x} € a, then {1,x4} € A.

01 y
Proof 10 € D,,, maps {1,x} to (1,x'}. [

Lemma 3.4.2 If (1,x} € A, then {-1,-X} € A.

-1 0
Proof o 1 € D,,,, maps {1,x) to {-1,-x}. [

Lemma 3.4.3 A is self-paired.

X

1) takes {1,x} to {0,o} and

-1
Proof The transformation (

{0,) to {-x,-1}. Hence by Lemma 3.4.2 Ao is self-paired. 0O
Let B be a generator of GF(q)* and as before let {1,x} be

a representative of the suborbit a. The elements in this
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suborbit are of the form {B8',xB'}), where 1 < i < w(1).

By arguments similar to those in Theorem 3.2.3, we have:

Theorem 3.4.4 ({v,h},{c,d}) is an edge in I' for each of the

following cases, and only for these

(a) clor d]=(vB' + h) (B + 1) and d[or c]=(vxB' + h) (xB' +1)77,
(b) v = w, c[or d] = B' + h and d[or c] = xB' + h,

(c) h =, clor d] =B (vB' + 1) and d[or c] = (xB') "(vxB' + 1).

Theorem 3.4.5 If x # -1, diam T £ 4 and if x = -1, diam I <

6.

(See Bon and Cohen [3].)
As an example, we use Theorem 3.4.4 to construct the

suborbital graph of PGL(2,7) with {1,-1} as a representative

of a.

30
(O 1) = (0) () (132645) generates the maximal cyclic subgroup

of Du'
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(§;]
e m////
e e WNMM__W_Q___M_,/MM

This graph was described by Tutte [22] and he ascribed it to

H.S.M. Coxeter. The graph has been studied in details by Biggs

[2]. For other description of this graph, one may refer to
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Biggs and Smith [1]. This graph is among the twelve trivalent
graphs whose automorphism groups act transitively on pairs of
vertices at each particular distance apart (trivalent
distance-transitive graphs) (see Biggs and Smith [1]). This
graph is also among the list of the four trivalent distance-
transitive graphs whose automorphism groups act primitively on
their vertices (see Biggs [1]). In [1], Biggs has shown that
like the famous Petersen graph, the Coxeter graph only just
fails to be Hamiltonian.

Other suborbital graphs of projective linear groups which
have been studied extensively are the Biggs-Smith graph and
Perkel graph corresponding to a suborbit of PSL(2,17) and
PSL(2,19) with S, and A, as the stabilizers respectively. Bon
and Cohen [3] have shown these graphs to be distance-

transitive.
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CHAPTER 4

INTERSECTION MATRICES FOR G = PGL (2.q)

This chapter is divided into two sections. 1In section
4.1 we give some notation, definitions and results to be used
later in the chapter. 1In section 4.2 we find the general form
of the intersection matrix of G relative to the suborbit of
length 2w(l) when G acts on the cosets of its dihedral

subgroup D fixing {0,}.

2w(1)

4.1 intersection matrices for finite permutation groups

In this section we shall briefly consider the matrix M of

intersection numbers of a suborbit A of a group G on a

finite set X . For detailed treatment we refer the reader

to Higman [11]. For the most part we adhere to the notation
of that paper. We also mention briefly the algebra spanned by

the adjacency matrices corresponding to suborbital graphs of

G on X and the connection between the intersection numbers

and the multiplication constants defined by Neumann [16] p.

106.
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Let G be a finite group acting on a finite set X and Ay @

be the 1% G,-orbit for a € X and for a given arrangement of

the Gé—orbits.

The G -orbits are also arranged such that if b €X and g(a)

= b, then g(A (a))) = Ayu(g(a)) = A (D)

The intersection numbers relative to a suborbit Al(a)

are defined by

pf.j = |A (b)) NA(a) | b eA;(a)l.

If the rank of G is r, then the r x r matrix M = (pg))i ; is

called the intersection matrix of Ay (a). If |A,| =n; and

as we had before A} =A is the suborbit paired with A; ;

Iix

Higman [11] showed that
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Theorem 4.1.1 (a) pld ={ i,

() 1ifj =1,
e ={5iEII

o) (1% (5 5 (1)
(c) njui§ = niujf and nipig = nyp; = nlujft.

Theorem 4.1.2 M, has column-sum n, and ML = nL where
L is transpose of the vector (n,,n;, ....,n.4).

Now let the orbits of a stabilizer

G,onX be A,,A,,...,A,.; and the corresponding orbits of G on

X x X be 05, 0,, 0y, eu..,0

17 r-1°

We define the corresponding adjacency matrices By, B,,....,B_ ,

to be n x n matrices where n = |X| with rows and columns

1 le= 0 if (X,Y) ¢0;.

1

1 1if (X, €0,,
indexed by X, where (B;) { 1t (%, y) !

If we identify G with a group of permutation matrices P,

in the usual way:

Pg = (gny) where
_ {1 if g(x) =y,
Ix,y 0 if g(x) # y,
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|

we have

Lemma 4.1.3 The set (B;, B;,..... /B..q) is a basis for the

space V of all matrices over C commuting with every element of

G.

(see Neumann [16], Lemma 5.)

Corollary 4.1.4 The space V spanned by the adjacency
matrices By, B,,..... +B,.; is an algebra. That is, there exist
r-1

integers a;; 2 0 such that B;B; = Y a;; By.
1=

If 0;, O; are suborbitals, with suborbital graphs I';, T; and

1

adjacency matrices B, B;, the constant aij, (see corollary

VNG
4.1.4) is the number of triangles ‘kéii:§> 3 based
¢
on a given pair(x,y) € O where the edges labelled i,j,%

belong to TI;, I;, T. The non-negative integers a,; are

called the mnmultiplication constants. The multiplication

s *
constant a;; 1s the same as the intersection number pﬂf

(see Neumann 16, p.106).
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4.2 Intersection matrices for G = PGL (2.q) on the cosets of D2w(1)

In this section we shall find the general form of the

intersection matrix of G on D relative to the suborbit of

2u(1)
length 2w(l) for g both odd and even. Some multiplication
constants can easily be got from this intersection matrix
according to the discussion we had in section 4.1. In
particular the number of triangles on every edge of the
suborbital graph corresponding to this intersection matrix is
found.

The suborbits of G on D were discussed in length in

2u(1)
section 2.3. In what follows we assume the knowledge of that
section. In section 3.3 and 3.4 all these suborbits were
shown to be self-paired.

We start by considering the case when q is odd.

Throughout the suborbits of G are assumed to have the

following arrangement:-

AO = {O’w}’AllAZI".IA%lAW(Z)’AZ(Z)’
Where
|A, ] = [A,] = ....=|Ag3]| = w(1),
2
A,y | = w(2) and |4, | = 2w(1).
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Let P be a generator of GF (q)*; we can then take

0 . .
u =(g 1) , Which in disjoint cycle decomposition form is

(0) (©) (1 B B%....R%?%), to be a generator of the maximal cyclic

subgroup of Doty -

The suborbits A;,1 < i < w(2) are arranged in such a way

that A, has a representative {1, Bi}, while {1,0} 1is a

representative of A, ,

We now compute the intersection matrix M We compute

z(2) *

the intersection numbers in several steps:

(i) The intersection numbers p3'% an TEAL I Where

L=*2z(2), i+ w(2),z(2)
vrz2), 17 wi2),2(2)

4,{0,0} = {(1,8%y,(B,8""), (82,872, (8%,8"3),....
e (BT gA2y ggatti gy (9T, By, (BT, B2y ..

B o - L (4.2.1)

- 173 -



A, B = 1,0}, {1, (Bt o}, B, o, { U {1,pM,{ U {pt, g7}
j#0.4 j#o, 4

--------- (4.2.2)

A, {1,0} ={U{, M, {Ulo,ph, {0, {1, - (4.2.3).

F=#0 j#0

(a) If i=k, (4.2.1) and (4.2.2) intersect at {BY9'',1} and

{Bl, BZl}.

Hence p{*{¥) = 2.

(b) If i#., (4.21) and (4.22) intersect at

U1 a) a2l {at gl (gt i)
Hence

(z(2))
pisgf =4,

(c) (4.2.1) and (4.2.3) intersect at {1,Bﬂ and {B¢14,1}.

Hence

(z(2)) _
i,z(2) = 2.
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(ii) The intersection numbers pﬂ%%L, L#z(2) and i3 .o -
o Lo = 1m0l (5 ) [ g2 pemd . | panre, g |

(d) If ¥=w(2), (4.2.2) and (4.2.4) have empty intersection.

Hence

(z(2)) 0

Bwiz), w2y =

(e) If y#w(2), (4.2.2) and (4.2.4) intersect at

{ 1IBH(2)}’ and {BI’B(q-HZl)/Z} .

Hence

(z(2))
Bw(z),.3 = 2.

(f) (4.2.3) and (4.2.4) intersect at { 1,B“<2>} .

(z(2))
Hence pui2),z(2) =1 -

(iii) intersection numbers pli?'}

wfoved = 1ulo,sl] (0wl 1]~ (a.2.5)
(g) If L=z(2), then (4.2.2) and (4.2.5) intersect at
e (0 1o sll]

i»0

(z(2))
Hence p,75) 22 = w(l)
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(h) If L#z(2), then (4.2.T) and (4.2.5) intersect at

{ 1,0} ,{ 1,oo} ,UB‘,o] ,{ B‘,oo} .
Hence pli®) =4, .

Combining Theorem 4.1.1 (a) and (b) with (a) - (h) above we

have

Theorem 4.2.1 The intersection matrix M,,, when g is odd is

of the form

0 0 0 0 .. iiinnnens 00 1
0 2 4 4 . e 4 4 2
0 4 2 4 .. e e 4 4 2
0 4 4 4 ... .. e 2 4 2
0 2 2 2 i e e 20 1
2w(l) 4 4 4 .. 4 4 w(l)
Examples
(1) When g=3
0 01
M, ={0 01
4 4 2
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(2) When g=5

0001

M, - 0242

0201

8 4 4 4

(3) When g=7

0 0001
0 24 4 2
M,={0 42 4 2
0 2201
12 4 4 4 6

Next we consider the case when q is even.

The arrangements of the suborbits of G is taken as follows:-

where |a;| = ]a,| = ...... = |lag2| =w(l) , |ag| =2w(l) and for
2 2

a generator B of GF(q)*, A, has a representative {1,B8'} for

1 <1< 5%;2 , Wwhile {1,0} 1is a representative for the
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suborbit a

vl

We now compute the intersection matrix Mgq
2

As in the previous case, afo,o, agfy,pl, agql1,o0l, and
2 2

A 4{0,%} can easily be found. Arguments similar to those used
2

before give us

Theorem 4.2.2 The intersecting Matrix M,

is of the form

0 000 .y 00 1
0 2 44 e 4 4 2
0 4 24 v 4 4 2
0 4 4 2 e 4 4 2
0 44 4 i, 4 2 2
2w(l) 4 4 4 .. e 4 4 w(l)

Since in general the multiplication constant a;; is the

jl
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same as the intersection number uﬁf) , from Theorems 4.1.1

and 4.2.1 we can easily get the multiplication constants

Qi At and a5i2(2) for 0 <i,j,V £ z(2). Similarly Theorems

4.1.1 and 4.2.2 give us multiplication constants a,q, ag
2

it

and a for 0<1,7,1c¢

v lQ

i7 2

niQ

In particular if 1,, and tg are the suborbital

3%

graphs corresponding to the intersection matrices M,,, and Mgq

respectively, we have

Lemma 4.2.3 The number of triangles on every edge of T,

and tg is w(l).
2

Proof

The number of triangles on each edge in the graphs 1t,,, and tgq4
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are the multiplication constants a,(;,(3)22y @and agqggg Wwhich
2 2

g
2

we find from Theorems 4.2.1 and 4.2.2 to be w(1). O
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