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This thesis presents some new identities between Ramanujan's arithmetical function r(n) and the
divisor functions Uf.(n) = 5Zdin ^° • K n o w n congruence properties of r(n) are used to derive an
upper bound M for which it can be shown that r(n) ^ 0 for all n < M.

Jacobi's Triple Product Identity and the Quintuple Product Identity along with the Chebyshev
Polynomials are used to derive many summation theorems in real a and (3, where a/3 = ±1 . It is
shown how these can be applied to sums of reciprocals of Fibonacci and Lucas numbers, to produce
many new and interesting identities. In fact these results are applicable to any sequence of numbers
defined by a second order linear recurrence relation of the form Un+i = XUn + Un_\. It is shown
how the well known modular transformations of the standard theta functions 6-,, 93 and 9A can be
used to produce similar results.

Many new and beautiful results of the previous character are arrived at using an elementary
idea, without the help of the more advanced theory of elliptic functions used in the derivation of
earlier results. Again, these theorems are applicable to any sequence defined by the above second
order linear recurrence relation.

Some new polynomial indentities involving Fibonacci and Lucas numbers are derived using
Chebyshev-like polynomials. These include a generalisation of the well-known identity F3n =
Fn{5Fn

2+3(-l)n}.
Finally some previous results are applied to the theory of highly restricted partitions, identities

involving sums of binomial coefficients and representations of the unrestricted partition function.
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Preface

This thesis is an investigation into some strongly interrelated areas of mathematics. Chapter 1
has been inspired by Ramanujan's remarkable paper [25] "On Certain Arithmetical Func-
tions". Chapters 2 and 3 are based on the idea of using Chebyshev and Chebyshev-like polyno-
mials to transform various identities. Since some of these identities involve modular forms, it is
not surprising that in chapter 2 we find a number of its results relating back to those of chapter 1.
Chapter 4 contains relevant material which has surfaced throughout the course of investigations
into this thesis.

The new results are fairly evenly distributed throughout this thesis, with perhaps the exception
of chapter 1. Here the nature of the subject dictates that a reasonable amount of introductory
material is necessary.



Reading Guide

An effort has been made to create an interesting and readable thesis. Therefore it is hoped
that the reader will find a reasonable balance has been achieved between too much unnecessary
clutter, which would result from unconditionally including the proofs of all the theorems, and the
unreadability which results from insufficient explanation. Therefore when several results are very
similar, such as lemmas 3.4.1-3.4.6, only the proof of one may be given, the proofs of the remainder
being clarified by the given example.

The introductory and concluding sections always refer to the next higher level section. For
example §3.1 Introduction introduces chapter 3 and §2.3.4 Closing Remarks comments on
§2.3 The Chebychev Polynomial Transformations.

In chapters 1 and 4 equation numbers, theorem numbers, etc . . . are all of the form l.ra and
A.n respectively. In chapters 2 and 3 they are of the form 2.m.n and 3.m.n, where m is the
subsection and n is the number within that subsection. For example section 2.2 contains equations
2.2.1-2.2.22.



Introduction

This thesis investigates some intimately interwoven areas of mathematics. Chapter 1 presents
some identities between Ramanujan's arithmetical function r(?i) [25] and the divisor functions
&k(n) — Yld\n dk• Some of these identities have appeared in the literature before, in various forms,
others are new. By explaining why they should exist, these identities are placed in their modern
setting. Chapter 1 also highlights the fact that these identities lead to some well known congruence
properties for r(n). These, plus other congruence properties of r(n), are important because they
can be used to derive an upper bound M for which it can be shown that r(n) ^ 0 for all n < M
[18,19]. In fact the most famous unsolved problem concerning r(n) is a suggestion of D.H. Lemher's,
who conjectured that T(II) ̂  0 for all n. Using congruence properties of r(n), readily available
in the literature, it is shown how to establish such a bound M slightly larger than any previously
published figure.

For general interest, and because of an enthusiasm for numbers, table i of [25] has been strength-
ened by the addition of the next 16 entries. It is also pointed out how Ramanujan's results, de-
veloped in [25], relate to the results of chapter 2. In fact the tables given in chapter 1 can be
used to extend some of the results in chapter 2. Chapter 2 presents a transformation of Jacobi's
triple product identity ( J T P ) and B. Gordon's quintuple product identity. This transformation
uses essentially what are Chebyshev polynomials. Some new and some well known theta function
identities are corollaries of this transformation. The transformation is also used to derive many
summation theorems in real a and /3, where a/3 = ±1 . From these theorems chapter 2 goes on
to show how they can be used to derive many identities between sums of reciprocals of Fibonacci
and Lucas numbers. Also, the well known modular transformations of the standard theta functions
#2, 03 and #4, are used to further enhance these results. Finally, in chapter 2 the transformation is
modified to produce summation theorems of a slightly different type.

Chapter 3 presents a much more elementary approach to some of the previously derived theo-
rems. It shows how this new approach enables us to derive some remarkable, given the elementary
nature of the proofs, generalisations of previous theorems between sums of reciprocals of Fibonacci
and Lucas numbers. This new approach naturally produces some new results of its own.

The transformation of the J T P leads directly to some results in the theory of highly restricted
partitions. These results are extended by the application of an idea, of L.J. Rogers [31]. Using
essentially what is the same transformation idea, it is shown how to produce some new polynomial
identities between the Fibonacci and the Lucas numbers [16]. These polynomial identities have as
corollaries some familiar properties of the Fibonacci and Lucas numbers.

The Chebyshev polynomial transformation also yields some combinatorial results involving
sums of binomial coefficients. Some more elementary combinatorial identities are derived in §3.5
using the lemmas of §3.4, plus one additional lemma.

Finally, chapter 4 presents some representations of the unrestricted partition function 73(71),
where 5Z^°=0 p(n)q" = 11^=1 (1 ~ 9")"1 f° r \(l\ < 1> which have surfaced throughout the course
of the investigations into this thesis.



Chapter 1

Modular forms and Ramanujan's tau function.

§1.1 Introduction

Ramanujan's arithmetical function r(n) is defined by the equation

OO OO

]T r(n)xn = a JJ (1 - a-")24 for |a-| < 1. (1.1)
n = l n= l

Ramanujan was the first person to investigate the divisibility properties of r(n) in his remark-
able 1916 paper "On Certain Arithmetical Functions" [25]. He also made some important
conjectures on the order of magnitude of r(n). The function

T(n)xn where x = e2*" for Im(z) > 0 (1.2)
n = l

was one of the earliest known modular forms. So before saying any more, here is the definition of
an entire modular form of weight k. where k denotes an integer (positive, negative or zero).

Definition: A function f(z) is said to be an entire modular form of weight k if it satisfies the
following conditions:

(i) f(z) is analytic in the upper half plane H — {z \ Im(z) > 0}.

(ii) f(Az) = (cz + d)k f(z) for A = ( , ) € F, the modular group (described below).

(iii) f{z) has a Fourier expansion of the form f(z) = Yl^-o c(n)e2*in'.

The inhomogeneous modular group PSL(2, Z), often denoted by F, is the set of Mobius trans-
formations

az + b
T : z Ĥ  where a, 6, c and d £ Z and ad — be = 1.

cz + d

PSL(2, Z) is a discrete subgroup of PSL(2, R). That is to say it is a Fuchsian group [17].



For our discussions we also need the definition of a cusp form.

Definition: A function f(z) is said to be a cusp form of weight k if it satisfies the conditions for
an entire modular form of weight k and c(0) = 0, where f(z) = J2^=o c(n)e2ninz.

The function A(z) is a cusp form of weight 12. To show this one only needs to prove the
following two equations.

( ) ( ) ( )
(n)A(-l/z)=z"A(z).

This is because z -» z+1 corresponds to the transformation f ) and z —> — 1/z corresponds to

the transformation ( I. Together these two transformations generate the modular group F,
\ —1 0 /

and so modularity follows. The proof of (i) is trivial, since z —• z + 1 leaves x = e2vtz fixed. For a
proof of (ii) see [2].



§1.2 Some Background

Before we proceed with the main results the following background information is certainly
worth mentioning in any discussion of Ramanujan's r(n) function. The main conjectures concerning
T(U) in Ramanujan's 1916 paper [25] were as follows:

(i) r(mn) = T(m)r(n) whenever (m,n) = 1. ie. r(n) is a multiplicative function. Here (m,n)
stands for the greatest common divisor of m and n.

(ii) The Dirichlet series

\ - ^ Tin)

" ns -1--1- 1 - r
n = l p

The product is taken over all primes. It is known as an Euler product expansion. This
conjecture is equivalent to

T(p)T(pr) =
 T(J/+1 ) + pllr(pr~1) for prime p and integer r > 1.

(iii) | r{n) \> nlll2 for an infinity of n. ie. limsupn_co | r{n)n~xxl2 |> 0.

(iv) | r(p) \< 2plll2 for all primes p.

(v) | T(TI) |< d(n)nlxl2 for all n. Here d(n) is the number of divisors of n.

The first two conjectures were proved by Louis J. Mordell in 1917 [21]. His paper marked the
beginnings of the theory of Hecke operators. Conjecture (iii) was proved by G. H. Hardy in 1917,
but was not published until 1927 [11]. The last two conjectures on the order of magnitude of r(n)
remained open until as recently as 1974, when they were finally proved by Paul Deligne [6]. In
1937 E. Hecke published the full exposition of his work on Euler products and associated modular
forms [14]. He determined all entire modular forms of weight k whose Fourier coefficients satisfy
the following multiplicative property.

c(m)C(n)= £ d^c(^) (1.3)
d|(m,n)

The sum in (1.3) is taken over all the divisors of the greatest common divisor of m and n. Ra-
manujan's r(n) function satisfies such a relation. In fact the modular discriminant A(z) is a cusp
form of weight 12, so r(n) has the following multiplicative property.

T(m)r(n)= £ d»r(^) (1.4)
d\(m,n)

Notice that when (m, n) = 1 equation (1.4) reduces to r(??7,)r(?i) = T(mri). The set of entire modular
forms of weight k forms a linear space Mk over the complex numbers. In his characterisation of
the modular forms whose Fourier coefficients satisfy equation (1.3) he denned on Mk the map Tn,
now known as the Hecke operator.



(Tnf)(z) = n^1 J2 d-k E / {^ir^) where

Hecke showed that Tn : Mk —> M*. A non-zero function / satisfying a relation of the form

Tnf = c(n)f,

for some complex scalar c(n), is called an eigenfunction of Tn. If / is an eigenfunction for every
Hecke operator Tn, n > 1, then / is called a simultaneous eigenfunction. It is said to be normalised
if c ( l ) = 1.

What Hecke showed was that if / G Af2*-,o i the linear space of cusp forms of weight 2k {M2k,o is a
subspace of M^ of dimension one less than M2k)i then / is a normalised simultaneous eigenfunction
if and only if its Fourier coefficients satisfy equation (1.3). Hecke also wanted to show that M2k,o
has a basis which consists entirely of normalised simultaneous eigenfunctions. However, it was Hans
Petersson [23] who first proved this in 1939.



§1.3 A conjecture of D. H. Lehmer's

The most outstanding unsolved problem concerning r(n) is a suggestion of D. H. Lehmer's
who conjectured that r(n) ^ 0 for all n. Using congruence properties of r(re) this conjecture was
verified by D. H. Lehmer for all n < 113 740 236 287 998 [18]. The previous number is the largest
M published in the literature for which it has been proved that r(n) ^ 0 for all n < M. However,
using some readily available results, we note that it is a trivial matter to slightly improve upon this
bound.

It can be shown fairly easily [18] that if n is the smallest integer for which r{n) = 0, then
n is a prime number. From [33] we know that r(n) satisfies the following congruences, where

r(n) = an(n) mod 211 n = 1 mod 8

r(n) = 1217an(n) mod 213 n = 3 mod 8

T(II) = 1537 an(n) mod 212 n = 5 mod 8

T(TI) = 705an(n) mod 214 n = 7 mod 8

So if p0 is the smallest integer for which r(p0) = 0 we know that p0 is prime, and from the above
congruences, since <Jn(po) = pll + 1, we have

Po11 = - 1 m o d 2 n .

But this implies p0 = 7 mod 8, and so by the last of the above congruences we know that

V 1 = - 1 mod214.

Now by using the Euclidean algorithm it is fairly easy to prove the following result.

T h e o r e m : If pm = —1 mod qn, for positive integers m and n, where q is a prime number and
(p,q) ~ 1, then we have pd = ( — l)d mod qn, where d = (m,q— 1).

Since we must have po11 = - 1 mod 214, if r(p0) = 0 and r(n) ^ 0 for all n < p0, then by the
above theorem we have

Po = —1 mod 214.

Similarly we can use the following congruences for r(n) to show that we must have

Po = — 1 mod 3'

Po = — 1 mod 53

Po = - 1 mod 691

plus some other congruence properties modulo 7 and 23.



^6lor(;^) = a1231(n) mod 36 n = 1 mod 3

7,61OT(?I) = a123i(n) mod 37 n = 2 mod 3

n30T(n) = a71(n) mod 53

T{TI) = n<79(n) mod 7 (y) = 1

r(?i) = na9(n) mod 72 (y) = - 1

where (—) is the Legendre symbol.

T(n) = 0 mod 23 (^-) = - 1

r(ra) = <7U(??,) mod 691

Using the above congruences we have

p0 = - Imod2 1 4 3 7 5 3 691.

Since 113 740 236 288 000 = 0 mod 212 and is ^ 0 mod 213, we can slightly improve the previous
bound of D. H. Lehmer's. Combining the information contained in the above congruences we can
conclude that the first possible value of p0 is the first prime > 113 740236288000 of the form ny— 1,
where y = 2143753691. Hence we must have n > 37. Since

y = 3 mod 7

and

y = — 1 mod 23

the above congruences for r(n) modulo 7 and 23 show that n must be one of the forms

{72m + k | k = 0, 30 or 48 in = 0, 1, 2 . . .}

A N D one of the forms

{23m + k | k = 0, 1, 2, 3, 5, 7, 8, 11, 12, 15 or 17 m = 0, 1, 2 . . . } .

10



Thus the first possibility for n is 48. But y = 3 mod 11, so 48y — 1 = 0 mod 11. Hence this p0 is
divisible by 11. The next possibilities are n = 49, 97, 146 . . . until we encounter the first ny — 1
which is prime. This turns out to be n — 392 and hence we have

Theorem: r(n) f 0 for all n < 1 213 229 187 071 998.

D. H. Lehmer's conjecture is related to the vanishing of the Poincare series Gi2(z,m) [28],
where Gk(z, m) is defined by

where m is any positive integer, z £ II (the upper half-plane) and T(z) — ff^j- The summation is

extended over all matrices T — [ , ) with different second rows in the homogeneous modular
\c dj

group {T | a, 6, c, d 6 Z, ad — be = 1}. In fact

G12{z,m) = cv,m
nT{m)A(z)

where A(z) is the modular discriminant and c12 is a constant such that
_ 47T8

Cl2 ~ 21.6910(8)0(11)

where

0(s) = ] T - ^ for Ee(s) > 13/2.
n = l

Hence the Poincare series vanishes identically if and only if r(m) vanishes. The problem of
the non-vanishing of r(n) is a difficult one. A Russian mathematician, N. V. Kuznetsov, claimed
in the early eighties that he had proved D. H. Lehmer's conjecture. He set out to furnish a proof
in two papers, the first of which is readable, but the second of which has never been published.
Mathematicians who have seen the manuscript of the second paper have been unable to follow his
very complicated arguments. So the current status of the conjecture is that it is still open.

11



§1.4 Some new identities for Ramanujan's r(n) function

Why they exist: If M2kfi is the linear space of cusp forms of weight 2k, where 2k > 12, then the
dimension of M2k,o [2] is given by

T2A-1
dim M2kfi = — - 1 for 2k = 2 mod 12

L -1- £ J

dim M2 M = [—1 for 2k £ 2 mod 12. (1.6)

Now since the modular discriminant A(z) €. Af12,o, and by equations (1.6) dim Mi2]o = 1- We
have that every cusp form of weight 12 is a constant naultiple of A(z). In fact A(z) is a normalised
eigenfunction for each Tn (denned by equation 1.5) with corresponding eigenvalue r(n).

The Eisenstein series E2k denned by

for/m(,)>0, (1.7)

where the summation extends over all integral m and n not both equal to 0, are entire modular
forms of weight 2k (for k > 2) for the full modular group [2]. Here ((z) is the Riemann zeta
function, given by

(1-P"'r1 ioiRe(s)>l.
p

The product being taken over all primes.

Since

where J52fc are the Bernoulli numbers, defined by

% - " for |*| < 2TT,
!ez - i

and we can show by differentiation of the partial fraction decomposition formula for the cotangent

7r cot irz = - + y { \ for z ̂  0
z I z + m m)

12



that

where <Jk(n) = "%2d\n d
k. We have

E2k(z) = l _ _ 1 £ a2fc_1(n)e2"nJ for /m(z) > 0. (1.8)
B

n = l

Now every modular form for the full modular group is a polynomial in EA and E6 [27]. So if
we use the Eisenstein series to construct cusp forms of weight 12, because dim M\2$ — 1 these will
necessarily be constant multiples of A(z). Therefore we can expect identities between the divisor
functions cr2j._1(n) and r(rc) to exist. Rama.nujan [25] showed how to express the series

m=l nzz\
CO

nras_r (n)xn for integer r and s > 0, and \x\ < 1,
n = l

as a polynomial in P, Q and R, where

p = i _ 24
;
1 - a;'

n = l

n3.r"
2 4 0 ^ r - ^ (1.10)

E n x

1 - a;"

Note that P, Q and R are the familiar Eisenstein series E2, E4 and E6. P — E2 is not a modular
form, but is the logarithmic derivative of the discriminant function A(z). The normalised modular
discriminant is given by

= Q3-R2. (1.11)

13



The procedure employed is to express Q3 — R2 as a polynomial in the 0 r , ,(x), defined by equation 1.9,
using the results in Ramanujan's tables (i)-(iii) of [25], plus an additional entry which is calculated
later on. This procedure is effectively that used by D. Niebur [22] to produce the identity

n - 1

r(rc) = n4a(n) - 24V](35fc4 - 52fc3?i + I8k2n2)a(k)a(n - k), (1-12)

where a(n) stands for the sum of the divisors of n. However, after an extensive search of the
literature most of the identities appear to be new, with the exceptions of theorem 1.7, which is
D. H. Lehmer's equation (10) of [19], and theorems 1.1 and 1.2 which are equations (52) and (53)
respectively (in a slightly different form) of [34]. Of course all the formulae are essentially variants
of each other, differing only in the known expressions for a^{n). So they can be transformed into
D. Niebur's equation (1.12) above or some of the formulae in B. Van der Pol's paper [34]. However,
I do not think this detracts from their beauty. Moreover, different congruence properties satisfied
by r(n) are immediate from the different representations.

To prove theorems 1.1-1.7 we need the following tables from [25].

TABLE i

1. l - 2 4 0 o , i ( x ) = P
2. 1 + 24O0o,3 (a:) = Q
3. 1 -50400,5 (x) = R
4. 1 + 48O0O|7 (x) = Q2

5. 1 - 2640o,9(x) = QR
6. 691 + 6552O0o,n (.T) = 441Q3 + 250R2

7. l - 2 4 0 o , 1 3 ( z ) = Q2R
8. 3617+ 1632O0o,i5(x) = 1617Q4 + 2000QR2

9. 43867 - 287280o,i7(x) = 38367Q3ft + 5500J23

10. 174611 + 132OO0o,i9 (x) = 53361Q5 + 121250Q2tf2

11. 77683 - 5520o,2i (x) = 57183Q4i? + 20500Q/?3

12. 236364091 + 131O4O0o,23(.r) = 49679091Q6 + 176400000Q3i?.2 + 10285000E4

13. 657931 - 240o,25(x) = 392931Q5R + 265000Q2i?3

14. 3392780147+ 696O0Q,27(x) = 489693897Q7 + 2507636250g4i?.2 + 395450000QE4

15. 1723168255201 - 1718640o,29(.r) = 81580650020lQ6i? + 88134070500g3i?3 + 26021050000/?5

16. 7709321041217+ 3264O0o,3i (x)
= 764412173217Q8 + 5323905468000Q5ft2 + 1621003400000Q2i?4

14



TABLE ii

1. 28801|2(a:) = Q - P2

2. 72O0M (x) = PQ - R
3. l008<j>h6(x) = Q2 -
4. 72O0li8'(>) = Q(PQ - iZ)
5. 15840MO(a;) = 3Q3 + 2R2 - 5PQR
6. 6552O01,12(z) = P(441Q3 + 250i?2) - 691Q2R
7. 1440lil4(a:) = <2(3Q3 + AR2 - 7PQR)

TABLE iii

1. 172802,3(a:) = 3PQ - 2R - P3

2. 172802^(z) = P2Q - 2PR + Q2

3. 1728<t>2/(x) = 2PQ2 - P 2 # - QR
4. 8640^>2'9(a;) = 9P2Q2 - 18PQR + 5Q3 + 4R2

5. 1728^2 'n (a:) = 6PQ3 - 5P2QR + APR2 - 5Q2R
6. 6912^ 4(ar) = 6P2Q - 8PR + 3Q2 - P4

7. 3456<^6(z) = P3Q - 3P2R + 3PQ2 - QR
8. 5184(?!>3?8(a;) = 6P2Q2 - 2P 3 E - 6PQR + Q3 + R2

9. 20736^4,5(x) = 15PQ2 - 20P2i? + 10P3g - AQR - P 5

10. 4147204,700 = 7(P4Q - 4P3i2 + 6P2Q2 - APQR) + 3Q3 + 4P,2

To produce theorem 1.7 we need an additional formula for </>56(.r), which is not given in
Ramanujan's tables. So as an illustration of how we can simply derive the formulae in tables (ii)
and (iii) from those in table (i) the calculation of 05i6(x) is presented below.

From table (iii), entry 9, we have

2073604,5(a;) = 15PQ2 - 20P27?+ 10P3Q - AQR - P 5 .

Now if we differentiate the above formula with respect to x and multiply through by x. Then use
the following formulae

15



dP_ _ P2 -Q
X~dx ~ 12

dQ_ _ PQ-R
X dx 3

cLR _ PR-Q2

X dx ~ 2

we obtain

= 15Q2

3 2 12

This simplifies to

248832^5,6(a:) = 5(45P2Q2 - 24PQR - 40P3R + 15P4Q - P'3) + 9(Q3 - R2) + 25R2. (1.13)

As an example of how to derive theorems 1.1-1.7, below is presented the proof of theorem 1.7.

Proof:

35(3PQ -2R- P3)2 = - 35(45P2Q2 - 24PQR - 4QP3R + 15P4Q - P6)

+ 315(6P2g2 - 4PQR - 4P3R + P4Q) + 140R2 (1.14)

Now from table (iii), entry 1, we have

35(3PQ -2R- P3)2 = 35.17282< 2̂,3
2(a;) (1-15)

and from table (iii), entry 9, we have

315(6P2Q2 - 4PQR - 4P3R + P4Q) = 45.4147204,7(.T) - 45(3Q3 + 4R2). (1.16)
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Now if we use equations (1.13), (1.15) and (1.16) to replace -35(45P2<32 - 24PQR - 4QP3R +
15P4Q - P 6 ) , 35(3PQ -2R- P 3 ) 2 and 315(6P2Q2 - APQR - 4P3R + P4Q) in equation (1.14)
we obtain

72(<23 - R2) = 1866240<?!)4,7(x) - 1741824^5i6(a-) - lO45O944O02,3
2(a;). (1.17)

Using equation (1.11) to substitute for Q3 — R2 in equation (1.17) we obtain

22
n-l

, 2(a;). (1.18)

Equating coefficients of x in equation (1.18) gives

n - l

T(JI) = 15n4a3(n) - Un5a(n) - 8 4 0 ^ k2(n - kf a{k)a(n - k),

where <r(n) stands for the sum of the divisors of n.

* • = !
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The identities: All the following theorems were derived in a similar way to that given in the proof
of theorem 1.7. We take ak(0) = %((-k) = -\Bk+l /(k + 1).

Theorem 1.1: r(n) = 7OX2Lo(2n ~ 5k)a3(k)a5(n - k)

Theorem 1.2: r{n) = 60££= 0(n - 3fc)(2n - 3k)a3(k)a3(n - k)

Theorem 1.3: r(n) = 30£;L0(18P - 5nT)a3(k)a3(n - k)

Theorem 1.4: r(n) = n2a7(n) - 540 YXX k(n ~ k)a3(k)a3(n - k)

Theorem 1.5: r(n) = n5a(n) - 120 Y^lZl k'2(n ~ k)(4n ~ 7k)a(k)a(n - k)

Theorem 1.6: r(n) = n4a3(n) - 168 J2":Zl k2(n - k)(3n ~ 5k)<r(k)a(n - k)

Theorem 1.7: r(n) = 15n4a3(n) - 14n5a(n) - 840 YX~=\ k2(n ~ kfa{k)a(n - k)

As another example of the derivation of the above theorems, and because it is probably the most
appealing of the above formulae, below is presented the proof of theorem 1.1.

Proof: From table (ii), entry 5, we have

1584^, 1 0 ( .T) = 3(Q3 -R2)- 5R(PQ - R) (1.19)

and from table (ii), entry 2, and table (i), entry 3, we have respectively

720(PM(.x-) = PQ -R (1.20)

and

1 -5O40o,5 (x) = R- (1.21)

So by substituting for Q3 — R2, PQ — R and R in equation (1.19) from equations (1.11), (1.20) and
(1.21) we obtain

oo

3 6 ^ r{n)xn = l l ^ i o U ' ) + 25<f>1Jx) - 126004>0,5(x)(j)li4(x). (1.22)
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Equating coefficients of x in equation (1.22) gives us

n - l

36r(ra) = lln<79(ra) + 25na3(n) - 12G00 ̂  ka3(k)a5(n - k). (1.23)

Now from entries 2, 3 and 5 we can derive the following formula

£ 3 5 ( n ) = llcj9(n)/5040 (1.24)

where

E , , » = ffrfOjff.fn) + ffr(l)ff,(n - 1) + ar(2)ff,(n - 2) + • • • + ^(nJff.fO) for r and s > 1.

Alternatively equation (1.24) is entry 5 of table (iv) of [25]. We now substitute for o9(n) in equation
(1.23), using equation (1.24), and note that <r3(0) = -^ and <rs(0) = — -^ to give theorem 1.1. n

The following congruence properties of r(n) are immediate corollaries of theorems 1.4-1.7.

Corollary 1.4: r(n) = n2a7(n) mod 540

Corollary 1.5: T(II) = n5a(n) mod 120

Corollary 1.6: r(?i) = n4a3(n) mod 168

Corollary 1.7: r{n) = 15n4a3(n) - 14n5a(n) mod 840
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§1.5 Some More Entries for Ramanujan's Table i

Using the methods of Ramanujan what would be the next 16 entries of table (i) of [25] have
been calculated. They are presented below.

17. 151628697551 - 24^,33(x) = 5588449505lQ7#

+ 88296652500Q4#3

+ 7447550000QE5

18. 26315271553053477373+ 138181680<£0,35O) = 1792339973230660623Q
9

+ 16289678778066366750<26ft2

+ 8095347742018950000Q3JR
4

+ 137905059737500000#6

19. 154210205991661 - 244>0i3T(x) = 43635626965161<5
8
JR

+ 94782461476500Q5i?3

+ 15792117550000Q2i25

20. 261082718496449122051 + 1082400̂ 0,39(.x') = 1221524232081296705ig
10

+ 140355664856398530000<37#2

+ 103276212013487625000(54JR
4

+ 5235599305750000000Q.R6

21. 1520097643918070802691 - 151704̂ 0,4i O ) = 32656798186687166669lQ
9i2

+933063597397822086000Q6i?3

+ 257701549269802050000Q3#5

+ 2764515383575000000E7

22. 2530297234481911294093+ 5520 0̂:43(a;) = 81321304905651230343Q
11

+ 1152360895010751483750Qs7Z2

+ 1176474112693246080000(55JR
4

+ 120140921872262500000g2E6
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23. 25932657025822267968607- 1128^0,45 (a:) = 4191478936397766158607<510i2

+ 15236011715664295710000<37£3

+ 6297623266945481lOOOOOQ4^5

+ 207543106814725000000Q.R7

24.5609403368997817686249127547 + 445536O^o,47(.r) = 123839432601967361511317547Q12

+ 2121255754302470474560410000<29JR
2

+ 2868714979982321801927400000Q6JR
4

+ 492052907714983461000000000Q3JR
6

+ 35402943960745872500000007?8

25. 99011441048215929642495505 - 132O0o,49(.r) = 11948877704441488092133005QuJR

+ 53837124192236422014862500Q8i23

+ 31124299240028012035500000<55i?5

+ 2101139911510007500000000Q2i?7

26. 61628132164268458257532691681+ 1272O0o,51(a-)

= 934610402421629413310453931Q13

+ 19034378296094994962024337750Q10E2

+ 32932283386726300270572900000Q7^4

+ 8533368977942791429125000000Q4JR
6

+ 193491101082742182500000000QE8

27. 29149963634884862421418123812691 - 86184^ 0 5 3(.T)

= 2609833964798041575622r2267019lQ12E

+ 14273298131058407719702582042500Q9E3

+ 10998977382693741531360419100000Q6iZ5

+ 1261469523817891331905500000000Q3i?7

+ 6384632516780262827500000000E9
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28. 354198989901889536240773677094747 + 1392000,55 (x)

= 3689846390899369128325431357747Q14

+ 88119194137305668214628686012000Q11#2

+ 189834021746742124485322159725000Q8i24

+ 69290689995996427700424900000000Q5i?6

+ 3265237630945946712072500000000Q2JR
8

29. 2913228046513104891794716413587449- 1416<£0>57(:E)

= 192438927869881996649588522806449Q13i2

+ 1255715586766721522493597349S81000Q10#3

+ 1244173044364725746319365790900000<27#5

+ 217360055127602837049542250000000Q47?7

+ 3540432384172789282622500000000gi?9

30. 1215233140483755572040304994079820246041491 + 6814407600<£0,59(a:)

= 8696208144718332968981459654488308S15241Q15

+ 240670695620287199262610693772009157476250Q12i?.2

+ 631710687486164739278543559275531154750000Q9E4

+ 309070928549883274260778980816904125000000<56JR
6

+ 24992250314619190198350853245262500000000Q3Es

+ 92370368082836071039447315625000000000E10

31. 396793078518930920708162576045270521 - 24^0,61(x)

= 1924666938733891020339S030014909521<214i2

+ 1477045500232994952086566022470 HOOOQ11 B3

+ 182972719041223793685248595133350000Q8E5

+ 45315765821900030629933596150000000Q5i?7

+ 1553374245168690980925752500000000Q2JR
9

32. 106783830147866529886385444979142647942017 + 65280</>0,63(.i")

= 524910392452989599674733535167186302017Q16

+ 16664638025948181215489478371418194520000Q13JR
2

+ 52354834551197383503043759922609667120000Q11E4

+ 33084390716884475493385194882777600000000QSJR
6

+ 4105361257321586439281874247170000000000Q5i28

+ 49695204061913635510404020000000000000Q2#10
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§1.6 Closing Remarks

As has been shown, congruence properties of r{n), such as those given in corollaries 1.4-1.7,
are important because they can be used to give a bound M for which we can prove r(ra) 7̂  0 for
all n < M.

None of the congruences given by corollaries 1.4-1.7 are new. In fact 1.4-1.6 all appear in
Ramanujan's lost notebook [26], along with many similar congruences. It is interesting to note
that congruences similar to those given in section 1.4, for example

r(n) = (73(11) mod 32 for odd n

r(n) = na9(n) mod 25 for all n

of paper [4], appeared in the literature in 1946, but Ramanujan had discovered the stronger con-
gruences

T(n) = <J3(n) mod 256 for odd n

r(n) = na9(n) mod 1050 for all n

some years previously [26]. It can also be shown [33] that there are no congruences modulo primes
other than 2, 3, 5, 7, 23 and 691.

Unfortunately the formulae in theorems 1.1-1.7, nice as they are, cannot be used to shed
any more light on the problem of the vanishing of r(n). For example, because there is so much
cancellation taking place between the terms of the series, they give only trivial upper bounds on
the order of magnitude of r(ra).
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Chapter 2

A T r a n s f o r m a t i o n u s i n g C h e b y s h e v P o l y n o m i a l s .

§2.1 Introduction

The general theme of this chapter is a transformation using essentially what are Chebyshev
polynomials. After some explanatory background information, it is shown how this transformation
is applied to Jacobi's triple product identity (equation 2.2.5) and B.Gordon's analogous quintuple
product identity (equation 2.2.1) [8] to produce some familiar, and other, theta function identities.
We are also lead to some interesting summation identities involving real a and (3, where af3 = ±1
and \(3\ < 1. These have as corollaries some identities involving sums of reciprocals of Fibonacci
and Lucas numbers. It is also shown how these identities can be enhanced using results from the
theory of elliptic functions, and the results of Ramanujan's paper [25] of chapter 1.

Finally, it is shown how to modify the transformation to produce some results of a slightly
different nature.
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§2.2 Some Background

§2.2.1 The Chebyshev Polynomials

These polynomials were discovered more than a century ago by the Russian mathematician
Chebyshev (the spelling has many variations). They are more at home in the field of numerical
analysis, which with the advent of the computer has come to prominence over the last few decades.
The Chebyshev polynomials are defined on the closed interval [—1, l] by

T n ( x ) = cosnO w h e r e c o s # = x , — l < x < 1 .

From the trigonometric identity cos(n + 1)9 -f cos(n — 1)9 = 2cos9cosn9, it follows that the
Chebyshev polynomials satisfy the recurrence relation

Tn+1 (x) = 2xTn(x) - Tn_1(x) with T0(x) = 1 and T^x) = x.

Solving this recurrence relation we obtain

2T2n (x) = 2 ^ (-1) J — - 7 ( o.. j 2-J a-J for n >
j = o

and

2T2n+1(a,-) = f : ( - 1 ) " + J 2 " + , \ ( " ^ - ^ 1N)22J + 1 ^ ' + 1 for " > ° (2-2-2)

Now we replace x with cos 0 in equations (2.2.1) and (2.2.2). Then let z = e*e, so that z + \jz =
2 cos 0. So we have

(2-2.3)
j = 0

and

(2.2.4)
Z2n+1 ^

It is equations (2.2.3) and (2.2.4) that are applied extensively in this chapter.
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§2.2.2 Jacobi's Triple Product Identity

Jacobi's triple product identity (JTP) states that for complex q and z with \q\ < 1 and
we have

n = l

For fixed z ^ O the series and products represent analytic functions of q in the disk \q\ < 1. Although
Gauss was first to discover equation (2.2.5) this identity is named after Jacobi who discovered it
in the course of his work on theta functions, where it arises naturally. Hereafter equation (2.2.5)
shall be referred to as Jacobi's triple product identity, or for short JTP.

The JTP has numerous consequences of interest in number theory and combinatorial analysis.
Among these are

11(1-9")= E (-l)V f 3 n + 1 ) / 2 (2-2.6)

and

_ (2.2.7)
n=l n=0

Equation (2.2.6) is due to Euler and is known as Euler's pentagonal number theorem. Equation
(2.2.7) is a famous result of Jacobi's. which can be easily derived from the JTP.

There are many proofs of the JTP in the literature, including some combinatorial proofs. For
completeness an analytic proof is included below. The quintuple product identity can be proved
along similar lines.

Proof: For \q\ < 1 and z ^ 0 let

- q2n )d
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Then

n = l

^"V1^). (2-2.8)

Now <£(z) can be expanded as a Laurent series in the deleted neighbourhood of 2 = 0. Hence
't'i2) = 52^L_oo ^4n(<7)2". So using the functional equation (2.2.8) for (f>(z), we have

~q2

Hence by equating coefficients of zn we have

So by the appropriate iteration we have

AJq) = q"* A0(q) for all n.

Hence

Therefore to complete the proof we need only show that A0(q) = 1. Letting z = e"l2 = i in
equation (2.2.9) and writing <j>q{z) for <^(;), to show the dependence on </, we have
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since in = — i~n for odd n.

But from equation (2.2.9) we have

Therefore

4€ = ̂ - (2-2.10)

From the definition of 4>(z) we have

n=l

So from equation (2.2.10) we have A0(q) = A0(q
4). Replacing q by q4, q^, . . . we obtain

A0(q) = A0(q
4k) fork = 1,2, ...

But qA —> 0 as k —>• oo and A0(f/) —> 1 as </ —> 0. So we must have A0(q) = 1 for all q. n
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§2.2.3 The Quintuple Product Identity

The quintuple product identity is an elegant fivefold analogue of Jacobi's triple product identity.
It was first presented by B. Gordon [8]. However, M. V. Subbarao and M. Vidyasagar [32] have
observed that Gordon was anticipated some 32 years earlier by G. N. Watson [35], who stated and
proved a fivefold product identity easily seen to be equivalent to equation (2.2.11). The quintuple
product identity states that for complex q and z, with |r/| < 1 and z ^ 0, we have

Y[(l-qn)(l-zqn)(l-z-1qn-1)(l-z2q*n-1)(l-z-2q2n-1)= J2 {z3n - z-3n-l)qn<
n = \ n = — oo

(2.2.11)

Like the JTP the quintuple product identity also has numerous consequences of interest in number
theory and combinatorial analysis. Among these are

I I ( l - ? 2 " ) ( l - < / 2 n - 1 ) 2 ( l - < / 4 n ) 2 = L (3n+l)ry3"2+2" (2.2.12)
n—\ 71— — OO

and

TJ ( i _ f y " f ( i _ f / " - i ) 2 = J2 (67i + l)ryn(3"+1)/2 (2.2.13)
n = l

The quintuple product identity can be proved in a similar way to the proof given previously for the
JTP. Having established the JTP we can evaluate the constant term in the proof of the quintuple
product identity by setting z = — 1.
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§2.2.4 The Theta Functions

For our discussions it is also necessary to introduce the theta functions. The basic theta
functions are defined for complex z and r, with Im(r) > 0 and q = eIjrT, by

6l(z,r)=-i
71=: — o o

92{Z,T)=

i(z,r)=

11= — CO

The theta functions are of great importance in number theory, particularly in the theory of parti-
tions and in the theory of the representation of a number as a sum of squares [24]. Only 62, 03 and
64, with z set equal to zero, will be used in our discussions. So that with Im(r) > 0 and q = e"T

we have

6 2 { q ) = Y, q l n + 1/2)3 (2.2.14)

93(q)= Y q»* (2.2.15)

(2-2.16)

where #2(0) = 0, #3(0) = 1 and #4(0) = 1. The functions #2, 83 and 8A are all entire modular forms
of weight 1/2. In fact they are modular forms for the groups Tv{2), IV (2) and I\y(2) [27], where
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: • " =

and IV(2) - {S £ T \ S = I or U mod 2}. IV (2) and IV (2) being similarly defined. Here

I - (l °

and

= { ( , j | ad — be = 1 and a, b, c, d £ Z}

is the homogeneous modular group. It is easy to show using the J T P that the theta functions have
the following product expansions.

0,(q) = 2ql'A fl (1 " Q2" Kl + ?2" )2 (2-2-17)

(2.2.18)

(2-2.19)

Also, as a consequence of their modularity, the theta functions satisfy the following transformation
formulae [5, 24, 27]. For Re(s) > 0 we have

e-") = e3(e-'f') (2.2.20)

e-1" ) = 94(e-'ft) (2.2.21)

e-") = e-Ae-*1*). (2.2.22)

Here equation (2.2.21) is just (2.2.22) with s := s-1 .
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§2.3 The Chebyshev Polynomial Transformations

§2.3.1 Introduction

In this section the Chebyshev polynomial transformation is applied to Jacobi's triple product
identity and the quintuple product identity to derive theorems 2.3.1 and 2.3.2. From these theorems
are deduced some theta function identities.

§2.3.1 The Transformat ion of Jacobi ' s Triple P r o d u c t Ident i ty

Theorem 2.3.1 For complex q and z with \q\ < 1 and j ^ O w e have

n = l

oo oo o / . - \ / 1 \ 2i

3=0n=j

°° °° 2n ' 1 x " ' -' ' 1X / 1 x 2 i + 1

3=0 n=j " ' J ' ~ ~ 2 j

where 2?i/(?i + j ) is taken to be 1 for n = j — 0.

Proof: The JTP states that for complex q and z with |f/| < 1 and : / 0 we have

E ?B^B-
n = l

Therefore

n = l
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Applying equations (2.2.3) and (2.2.4) to the above the RHS is seen to be equal to

Which upon interchanging the order of summation of n and j completes the proof of theorem 2.3.1.
•

Below are presented some corollaries of theorem 2.3.1. These are derived by equating the
coefficients of (z + l/z)k for k = 0, 1 and 2 to obtain corollaries 2.3.1, 2.3.2 and 2.3.3 respectively.
Note that although it is easy to determine the coefficient of (z + 1/z)' f° r k < 2 in the LHS of
theorem 2.3.1 by inspection, generally we can evaluate the coefficient as follows.

Let x = z + l /^, so that the LHS of theorem 2.3.1 is given by

£«„(>/>"• (2-3.1)
n = 0

Then we can determine the «„(</) by differentiating equation (2.3.1) with respect to x, and setting
x = 0. So that

where g(n^(x) is the rath derivative of g(x
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Corollary 2.3.1 For \q\ < 1 we have

n= 1

CO2)= E (-

Corollary 2.3.2 For \q\ < 1 we have

4n-2

Corollary 2.3.3 For |g| < 1 we have

4n ">

) j n=i

The last equality in corollary 2.3.1 is straight from the definition of 04(q) (equation 2.2.16).
Corollaries 2.3.1 and 2.3.3 come directly from equating coefficients in theorem 2.3.1. Corollary 2.3.2
requires a small amount of extra work. So its proof is presented below.

Proof: Equating coefficients of the term (z + 1/z) in theorem 2.3.1 we have

n = l n = l

We now use equation (2.2.7), f l ^ i (l ~ 9nf = E ~ = o ( - l ) " ( 2 n + l ) 9 n ( n + 1 ) / 2 , theorem 357 of [13],
to obtain

nu - 9 s " )
n = l n = l n=l

Hence

which from equation (2.2.17) is ^ 2
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Corollaries 2.3.1 and 2.3.2 are certainly well known. Corollary 2.3.3 is unlikely to have appeared
in the literature before because it is cumbersome. However, it is useful because we require it in the
proof of some later theorems.

One further corollary of theorem 2.3.1 is presented because it is important in the proof of
theorem 2.4.24, which itself can be used to derive a beautiful identity involving sums of reciprocals
of Fibonacci and Lucas numbers - theorem 2.4.25. Equating the coefficients of (z + l/z)3 in theorem
2.3.1 we obtain

Corollary 2.3.4 For \q\ < 1 we have

n = l

f f g*-1 V 3 f g3""1 f « 4 " ' 2 •

-l)n+1n(n + l)(2n
r s = l
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§2.3.3 The Transformat ion of the Quin tuple P r o d u c t Ident i ty

Theorem 2.3.2 For complex q and z with \q\ < 1 and z / O w e have

n=l

£ ( i r > " " ' 4 - 6n~2£ E
j = 0 n=[(j + 3)/3]

E E

j = 0 n=[(j+2)/3]

2. (

where [,T] stands for the greatest integer less than or equal to x and 6n/(3n + j) is taken to be 1
for n = j = 0.

Proof: To prove theorem 2.3.2 we use B. Gordon's [8] quintuple product identity in the following
form [5].

For complex q and z with \q\ < 1 and z ̂  0 we have

n = l

Zn2'2n {(z3n

36



The proof is essentially the same as that for theorem 2.3.1. That is to say, we use equations (2.2.3)
and (2.2.4) to substitute for (z3n + z~3n) and (z3n~2 + 2-3n + 2) j n t j i e R H g of t n e abOve, the main
difference being that we must treat separately the cases when 3n and 3ra — 2 are odd and even. For
example, after letting z := — z in the above, we need to transform

n— — oo

oo oo
_ Y ^ 1 2 n 2 - 4 n ^ 6 ! i - 2 i 2 - 6 » + 2 \ _ V ^ \2n2 +Sn +1 (26n+1 , z~6n- 1 \

The first summation on the RHS of the above is

12n2+4n f y6n + 2 , X ] , V " 12.j2+207i + 8 ( ,6n + 4 ,

We can now use equations (2.2.3) and (2.2.4) to obtain

» 2 i

'An 4- I + i \ 'li I \
j=o

and

= E ( - D " + i 6n + 4 (3n + 2 + J ) ( * + ±
/—' 3?? + 2 + 7 V 2i I v

i = o

The full details are long and laborious, so that it is hoped that the above is enough to convey
the idea to the reader. However, it is worth mentioning that when we interchange the order of
summations we use the following rules.
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Subject to conditions of convergence we have

oo 3n + 2

E E f*(n,
n = 0 j = 0

oo oo

i) = E E
i = 0 n=[j/3]

oo 3 n + l oo oo

E
oo 3n oo oo

E
= 0 n=[(j + 2)/3]

where fx(n,j) is some function of ?i and j , dependent on x, and [y] stands for the greatest integer
less than or equal to y. •

As with theorem 2.3.1, we can now equate the coefficients of (z + l/z)~ for k = 0, 1 and 2 in
theorem 2.3.2. When we do this we obtain corollaries 2.3.4, 2.3.5 and 2.3.6 respectively. As before,
we can evaluate the higher order coefficients of (z + 1/z) in the LHS of theorem 2.3.2 by letting

(i - </ 2 n)u+a? 2- 1+? 4 n- 2) { ( i+« 4 n - 4 ? - * v "

bn(q)xn.

So that

where g^(x) is the nth derivative of g(x)
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Corollary 2.3.4 For |g| < 1 we have

oo oo

iia-<n= E
n = l

Proof: From the constant term in theorem 2.3.2 we obtain

n = l n = —oo

We note that the LHS is just 4 n~= 1 (1 - q8")- We then let ^8 := q.

Of course corollary 2.3.4 is just Euler's pentagonal number theorem.

Corollary 2.3.5 For \q\ < 1 we have

CO OO

n—l n = — oo

Proof: Equating the coefficient of (z + 1/̂ ) in theorem 2.3.2 we obtain

0 0 °° n2n-l

n=l
OO

= E ( - 1 ) " { ( 6 n + I)g1 2"2 + S n + 1 + (6r* + 3)r/12"2+s" + 1 ( l + qSn + 4) + (6n
n = 0

Using corollary 2.3.2 to substitute for 5Z~=1 J2"^!, in the LHS and simplifying the RHS we have

OO OO

4 I J (1 - q8n)(l + q4nf = J2 (-1)" {(1277 + 4)9
12"a+8n + 1 + (12n

n = l n=0
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Which if we divide through by 4 and let q4 := q, completes the proof of corollary 2.3.5. •

Note that corollary 2.3.5 is equivalent to equation (2.2.12).

Corollary 2.3.6 For \q\ < 1 we have

y^ nqn
 4 y ^ nq _ y^ qn

t t t

Proof: Equating the coefficient of [z + I / 2 )" in theorem 2.3.2 we obtain

T / — «2n- l \ 1 °° r An - 2

1 2 V ^ 1 + ?4"-2 y 2 ^ ( 1 + ^ - 2 ) 2 ^ ( 1 + r/4n-4

= E (-̂ "

Now if we let g := g8 in Euler's pentagonal number theorem (corollary 2.3.4) and logarithmically
differentiate, we obtain

Therefore

2 M - l + ^ - V nf 1( l + ««-3)3 ( 2 3 2 )

To complete the proof we need to substitute for the term in braces on the LHS of the above
equation. Corollary 2.3.3 provides the clue. From equations (2.2.16) and (2.2.19) we have
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= E (-i)V2-
n = — oo

So if we logarithmically differentiate the above, then multiply through by q, we obtain

*!£L + f; «-»*»•"} = £; (_
^ l ^ ' ln = l * ' n = l

But

• ^ n</n ^ 2rcg2" ^ (2n-l)q2n~1

n — l n = 1 n == 1

so the term in braces in equation (2.3.3) is

2nq2n \—^ (An — 2)q2n~l _ J • ^ nqn ^-^ nq2

n = l J n = l J v n = l J n = l J

Therefore

— 1 — _ ^ n<? ^ ^ = ^ ( - l ) " + 1 n 2 g" ' . (2.3.4)
V n = l 71 = 1 ^ 77. = 1

Now we just let </ := q4 in equation (2.3.4) and use corollary 2.3.3 to show that the term in braces
in equation (2.3.2) is equal to

.•„ CO £„

nq4n y^ nq8n

2
^ 1 _ (An 2-^i 1 _ Sn •
n = l 1 n= l 1

Substituting the last expression into equation (2.3.2) and letting q4 := q completes the proof of
corollary 2.3.6. a

Although we were led to corollary 2.3.6 by the transformation of the quintuple product identity
it is worth mentioning that there is a much more illuminating proof of this result, which is presented
in section 2.4.
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§2.3.4 Closing Remarks

By equating coefficients of (z + l/z)k for k = 0, 1, 2 , . . . in theorems 2.3.1 and 2.3.2 we obtain
a set of identities which involve sums of the form

2jn) 2j

and > — r for j = 1, 2, 3 , . . .

As the results in the next section will demonstrate, because these identities generally contain sums
of the above form some interesting summation theorems involving real a and /?, where a/3 = ±1 ,
are derivable from them. From these results we can go on to derive some identities between sums of
reciprocals of Fibonacci and Lucas numbers. Equating the coefficients of (z + I/2)0 and (z + 1/'z)1

gives known results. Equating the coefficients of higher powers of (z + 1/z) tends to give results
which are unlikely to have appeared in the literature before because they are more cumbersome.
However, as is shown by the next section, these identities do give us something extra over what we
would obtain had we just differentiated the J T P and the quintuple product identity, without first
applying the Chebyshev polynomial transformation.
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§2.4 Some Summation Identities and Applications

§2.4.1 Introduction

In this section the results of section 2.3 are used to derive some summation identities involving
real a and /?, where a/3 = ±1. In addition, some preliminary elementary results are included which
produce identities of a similar type. From the a(3 identities some results between sums of reciprocals
of Fibonacci and Lucas numbers are deduced. Some theorems from the theory of elliptic functions
are used to obtain more results of the same type. It is also noted that Ramanujan's functions P,
Q and R (from chapter 1) can be utilised to produce similar results.

The material is ordered with the more elementary matter presented first and that which re-
quires a bit more work, later on (such as equating coefficients in theorem 2.3.1 of (z + l/z) for
k > 3).

The preliminary results are presented first as lemmas because most are required later on.
Included here as lemma 2.4.1 is corollary 2.3.6 from the previous section. A more natural proof is
presented here than that which was given in the previous section. We briefly digress to show how
we can extend the proof to produce further identities for

E C)
where \q\ < 1 and k = 3, 4, 5 , . . .
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§2.4.2 Some Preliminary Results

Lemma 2.4.1 For \q\ < 1 we have

_ OO 9

nq 22 Y" nq

Proof:

E K°0) - oei(n)}qn, (2.4.1)
n = l

where for integer fc > 0 we have

a\{n)=
d | n

Now (7j(n) - a{{n) = <Ti(n) - 22a1(n/2), where ak{n) = ^ d | n ^" and <*{x) = ° for non-integral x.
So from equation (2.4.1) we have

0 0 n

q" ^ = E
0 0 . . . In

^-^ 1 - qn ^ 1 - f/2'
n = l ' n = l J

The two summations on the RHS of lemma 2.4.1 are of a type known as a Lambert series [13].

Lemma 2.4.2 For |g| < 1 we have

2
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Proof:
oo n oo co ,

; 2
n = l m = l

oo

— — / 1 <7i ( 71) — (7i ( 111 t Q ~r — /
2 jL-d u i v . ' \ \ > > i 2 ^~*

n=l n = l

Now we note that <J\{n) - a\{n) = a1(n) - 22ax{nj2) and a\{n) - cr^(n) = a2(ra) - 23a2(n/2).
Therefore

1 °°

i OO . OO •-!_- 1 . 1 OO n _ OO o <)

v - n zq-
22 ^ 1 - f ^ 1 - g2" I 2 I ^ 1 - g» ^ ^ 1 - g2"

The equivalent results for 5Z^°=i 7—q"n\* ^o r '̂ = 4, 5, 6 , . . . proceed as in the proofs of the previous

theorems. We simply need to observe that cr°k(n) — oe
k{n) = ak{n) — 2k+1 ak(n/2) for all k > 0.

L e m m a 2.4.3 For \q\ < 1 we have

n = l VA ^ / n = l

Proof:

_ 02«-iy ^ ^ ^-*
J / n = 1 m = 1

CO OO OO CO

= E E ™r* - E E «92m"
1 1 = 1

oo

n = l

oo

Y^

= 1

nqn

— nn

*
nqn

C O

2—i
n = l

n = l m = l

nf/2r'

1 — rt2"i

I - r/2"
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With q := — q in lemma 2.4.3 we have

Lemma 2.4.4 For \q\ < 1 we have

«2n- l

1
7 2 n

See section 3.2 for a generalisation of lemmas 2.4.3 and 2.4.4.

Lemma 2.4.5 For |g| < 1 we have

y ^ nqn _ y% (2re- ljg-""1

^ 1 + „" ~ ^ 1 - o2n-l
n = l

Proof: Logarithmically differentiate the following identity of Euler's.

oo

n ( l + ? " ) ( l - 9 2 n " 1 ) = l for | g | < l .
n = l

The above lemma appears on page 70 of [5]. The identity of Euler's used in its proof is trivial,
but has an interesting combinatorial interpretation i.e. for any natural number n, the number of
partitions of n into distinct parts equals the number of partitions of n into odd parts.
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§2.4.3 Some Summation Identities in Real a and (3, where a(3 — ±1

Theorem 2.4.1 For 0 < (3 < a and a(3 = 1 we have

oo

n

Proof: From equation (2.3.4) with </ := q4 we have

n = l

We now use corollary 2.3.3 to substitute for the RHS in the above equation, to obtain

2 n - l

71 = 1

Now let a and /? satisfy the conditions of theorem 2.4.1. Then set q = (3 to complete the proof. •

Theorem 2.4.2 For - 1 < ft < 0 and a(i = - 1 we have

£ ]
CO

71

i = i

Proof: Let a and [3 satisfy the conditions of the theorem. Then set q — (3 in equation (2.4.2) to
complete the proof. •
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Next we use a theorem originally due to Gauss (also discovered by Legendre, Jacobi and
Genocchi [7]) to derive two more results which we can use to modify theorems 2.4.1 and 2.4.2. For
\q\ < 1 we have

(2-4.3)

From the definition of 02(q), equation (2.2.14), the LHS of the above is easily seen to be equal to
{02(<74)/2} . So using corollary 2.3.2 in the LHS of equation (2.4.3) and letting q2 := q we have

( 2 .4 .4 )

We now use equation (2.4.4) to derive the following theorems.

Theorem 2.4.3 For 0 < f3 < a and afi = 1 we have

2, 1 V ^ (2»
- ' a2n+l i /J2n+1 I £—* Q,4n + 2 _ f)4n+2

u—0 ' n=0

Theorem 2.4.4 For - 1 < f3 < 0 and afi = - 1 we have

/ oo \ 2 oof ) _f
*-^ Q.2n+1 _ Q2n+\ I 2-^

=0 H ' n=0

To prove the above theorems we just let a and (3 satisfy the conditions of the theorems and use
equation (2.4.4) with q — p. However, since we started with equation (2.4.3) a short proof of this
equation is presented below.

Proof: From the expansions of 83(q) and 94(q) (equations 2.2.18 and 2.2.19) we have

'In - 1

7 2n, - l

Logarithmically differentiating the above with respect to q, and multiplying through by q, we obtain
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qd64 qd03_ ^ ( 2 n + l ) g 2 " + 1 .

64 dq e3 dq ^ 1 - q*» + *

Now from equations (2.2.20) to (2.2.22) we can show

4 2 '

where g = e~1". But ^ = — wq, so from the above equation we obtain

We now use the above equation to substitute for the LHS of equation (2.4.5) to obtain

4 n + 2

Finally letting q := qA we obtain equation (2.4.3). •

Using theorems 2.4.3 and 2.4.4 to substitute for the RHS of theorems 2.4.1 and 2.4.2 respectively,
we have

Theorem 2.4.5 For 0 < (3 < a and al3 = 1 we have

(271-1)
V i + 2 V

_ i (a2»-1 + pn-1)2 + ^ a4" - /3"«

Theorem 2.4.6 For - 1 < /3 < 0 and a/3 = - 1 we have

?i ^ (2n - 1)
OO

*-< (Q ,2n-1 _ /32n-l)2 + 2 ^ Q l 4 n _
Q fi

If we now add 5Z~=1 g 4 n
2" 4n to both sides of theorems 2.4.5 and 2.4.6, we can restate these more

neatly as
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Theorem 2.4.7 For 0 < (3 < a and a/3 = 1 we have

. oo

(a + / 3 ) a4n - /34" ~ ^ a2" - /32"
n=l V * r } n = l n = l

Theorem 2.4.8 For - 1 < /3 < 0 and a/3 = - 1 we have

oo . oo

a4n _ QAn ~ 2-j
^ n = i

We need a few more results before we are in a position to present some applications. Using the
substitution q = /? in lemmas 2.4.3 and 2.4.4 we obtain

Theorem 2.4.9 For 0 < /? < a and a/3 = 1 we have

oo
n

^ ( a2n-l _ /32n-l)2 ^ a,2n _^

Theorem 2.4.10 For 0 < (3 < a and a/3 = 1 we have

Similarly we also have

Theorem 2.4.11 For - 1 < (3 < 0 and a/3 = - 1 we have

1

Theorem 2.4.12 For - 1 < f3 < 0 and a/3 = - 1 we have
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Notice that we could use theorem 2.4.9 and the equivalent result for Z^~=i a ^ ! ^ . (obtained by
letting q :- q4 in equation 2.4.3) to substitute for ]£T=i a 2 n " . 2 n and L^=i ^ . ^ t . i n theorem
2.4.7, to obtain

(A) For 0 < (3 < a and a/3 — 1 we have

oo . oo oo ..

+ 4 ^ ^~ ( Q " - l +/32n-l)2 + ^ (Q4n-2 _ ^ u - 2 )* ^ (a2n_l ^ n - l

Similarly we could use theorem 2.4.11 to modify theorem 2.4.8 to obtain

(B) For - 1 < j3 < 0 and a/3 = - 1 we have

OO CO OO ..

I + 4 v y
Q,2«-l _/J2n-iy ^ (a4n-2 _04n-2^ ^ (a2»-l + /?2n-l)*

However, results (A) and (B) are quite trivial, since if a and (3 satisfy the conditions of (A) and (B)
we can drop the summation signs to obtain some trivially true identities, from which these follow.

Finally, differentiating lemma 2.4.5 and letting q := q4, then q — (3 we obtain

Theorem 2.4.13 For \(3\ < 1 and a/3 = ±1 we have

co i oo . -.2
•s—^ ri" ^ (27i — 1)

_ ! (a2" + /32» f ^ (a-'"-2 - /?""-2 )2

An obvious alternative proof of theorem 2.4.13 is to notice that if a and (3 satisfy the conditions of
the theorem then we have

4 1 1

( a 4 - - (34n f ( Q 2 " - lT-n f (a-2» + /32" )"

Multiply through by ??2 and sum from one to infinity to obtain

^ (Q4n-2 _04n-2f

51



§2.4.4 Some Appl ica t ions

The Fibonacci numbers are defined by the recurrence relation Fn + i = Fn + Fn_i for n > 1,
where Fo = 0 and Fi = 1. The Lucas numbers are denned by the same recurrence relation, where
Lo = 2 and L\ = 1. See section 3.4.1 for more information on the Fibonacci and Lucas numbers.
We have

Fn = a" -P" a n d Ln=an+/3n,
a — (3

where a + (3 = 1, and a/3 = - 1 . So a = (1 + v/5)/2 and /3 = (1 - \/5)/2.
Several identities between sums of reciprocals of Fibonacci and Lucas numbers are immediate

from the preceeding results. For example, if we let (3 = (1 — y/5)/2 in theorem 2.4.2 we obtain

Theorem 2.4.14
CO TO / OO \ 2

n / v-^ 1 \

„=!

With g := q4 in lemma 2.4.3, then q = (1 — y/E)/2, we obtain

Theorem 2.4.15

^ r'i

Theorems 2.4.14 and 2.4.15 combine to give the more pleasant

Theorem 2.4.16

E I

n=l ^ 2 " - l n=l ^4»-2 \ n = 1

Similarly setting (3 = (1 — \/5)/2 in theorems 2.4.4 and 2.4.8 we obtain respectively

Theorem 2.4.17

Theorem 2.4.18
_, CO CO CO

1 Y ^ 1 v^ ^n v^ n

Notice that theorem 2.4.18 is equivalent to the following theorem 2.4.19, which is easily obtained by
letting (3 = (1 — y/E)/2 in theorem 2.4.12. Also theorem 2.4.18 is a simple combination of theorems
2.4.14 and 2.4.17.
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Theorem 2.4.19
OO _, OO

NU+1 n

„=! ^2n- l n = 1

The above result is certainly not new, since it appears on page 98 of [5]. From theorem 2.4.11 we
have

Theorem 2.4.20
OO ., OO

1 v-^ n

2 n - l

With q := q4, then </ = (1 - \/5)/2, in lemma 2.4.4 we have

Theorem 2.4.21

n=l ™--* n = l

Finally, we have from theorem 2.4.13

Theorem 2.4.22

n = l - " n=l

Some of the above results are the first cases of more general theorems presented in chapter 3.
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§2.4.5 Further theorems in real a and /3, where a/3 = ±1, plus applications

Theorem 2.4.23 For 0 < /3 < a and aj3 = 1 we have

Theorem 2.4.24 For - 1 < j3 < 0 and a/3 = - 1 we have

0 0

As with the previous theorems, these are a pair. We present their proof below.

Proof: Both are derived from the following identity, with q = j3.

E g 6 T n
3

2 3 = £ i + " 4 ^ { ^ ^ , . - 1 : 94"4n2|
 fOT

Equating the coefficients of (z + 1/z)3 in theorem 2.3.1 (corollary 2.3.4) we obtain

11(1-9

CX)

T q4n~2

We now logarithmically differentiate equation (2.2.7) with q := r/8, ie.

71 = 1 77. = 0
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to obtain

oo oo co § n

£ (-1)B+1 n(n + l)(2n + l)q^+^ = 6q J[ (1 - ^ )3 £ I ^ L _ . (2.4.7)
n = l n = l n = l

Using equation (2.3.2) to substitute for J2™-\ "J In m the RHS of equation (2.4.7) we obtain

oo

n = l

_ l ) n + 1
 n(n + l)(2n

f / oo ,, _ , \ 2 oo 4n - •> °° An !
i / ^-v q-n i \ Y ^ q " \~^ q [

ISi^J £o£=^£(i£=7

We now equate equations (2.4.6) and (2.4.8). Then multiply through by X^=i i+ <»-a»

equation (2.3.5) we can cancel out the term <Z 11^=1 (^ "" 9s") • ̂ he term in

v n = 1

also conveniently cancels out. This completes the proof of the theorem.

As before with /? = (1 — y/E)/2 in theorem 2.4.24 we obtain an interesting identity for the Fibonacci
and Lucas numbers, namely [16b]

Theorem 2.4.25

n = l ^ 2 n - l n = 1

r oo oo
1 \ V <•,; V

2n-i l n = 1 i-3n_i n = 1
L 2 n

The above result is quite pleasing. However, the identities obtained by equating coefficients of
higher powers of (z + 1/z) in theorem 2.3.1 are less so. For example, the coefficient of (z + 1/z)
in the R H S of theorem 2.3.1 is

oo o / i

^ y ??, + 2 V 4
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which is just

with q := q4. The equivalent identity for the Fibonacci numbers is

Theorem 2.4.26

- •

n = 1 ^ 2 n - 1 \ n = 1

o o \ 2 °° 1 o o o o

n = 1 ^ 2 n - l n = 1
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§2.5 A modification of the transformation

Thus far we have applied the Chebyshev polynomials to transform the JTP and quintuple
product identity in the form given in equations (2.2.3) and (2.2.4). However, we can obtain some
new results by slightly modifying equation (2.2.3). If we let n := 2n in equation (2.2.3) we have for

(2.5.1)

Now if we let z := z4 in the JTP, equation (2.2.5), and use equation (2.5.1) we have for |g| < 1
and z 4- 0

(2.5.2)

Letting x — (z + 1/z)2, we have z4 + \jz4 = x2 — Ax + 2. So upon interchanging the order of
summation and substituting for z4 + 1/z4 in equation (2.5.2) we obtain

Theorem 2.5.1 For complex q and z with |g| < 1 and z ^ 0 we have

OO CO OO . i

where x = (z + 1/z)* and [y] stands for the greatest integer less than or equal to y.

Equating coefficients of (z+l/z) in theorem 2.3.1 produced identities involving sums where the sum-
mand contained (1 + qAn~2) , for k — 1, 2, 3 , . . . , in the denominator. Equating coefficients of xk

in theorem 2.5.1 will produce identities involving sums where the summand contains (1 ± q2n~l) ,
for k — 1, 2, 3 , . . . , in the denominator. For example, if we equate coefficients in x we can deduce
the following corollary (which is just lemma 2.4.3).

Corollary 2.5.1
0 0 , , 2 n - l °° nnn
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Proof: Equating coefficients of x in theorem 2.5.1 we obtain

n = l V-1 ' (i / n = l

To complete the proof we now let q := — </ and use equation (2.3.4).

As before, more interesting results are possible by equating higher powers of x. For example, on
equating the coefficients of x2 we obtain

ft —

lf>2(4rc2-l)ry"\ (2.5.3)
n = l

If we let ^ := — q in equation (2.5.3) we obtain

- ! ) " n 2 ( 4 n 2 - l ) g " a . (2.5.4)

Now we can easily show that the RHS of equation (2.5.4) is equal to

where the dot notation stands for differentiation with respect to q. Also by logarithmically differ-
entiating the product representation for 9^{q) we obtain

1 • 2
^ +

So we can set the LHS of equation (2.5.4) equal to the RHS of equation (2.5.5), cancel the 04(q),
and use corollary 2.5.1 to substitute for ST=i i"^.. t o obtain
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Corollary 2.5.2 For \q\ < 1 we have

~ q4n_2 „ q2n_, / „ q2n_x y „ n2qn

From the above corollary, with q := g4 and then q = (1 — \/E)/2, we have

n2q2n

Theorem 2.5.2

„=! 4»-2 n = 1
 rAn~1 \ n = 1 ^4n-2/ n = l ^ » n=l

Notice that the RHS of theorem 2.5.2 is just minus twice the LHS of theorem 2.4.26.
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§2.6 Closing Remarks

More results of the type in this section are possible from the theory in Ramanujan's paper
[25] "On certain Arithmetical Functions", which was discussed in chapter 1. For example
Ramanujan's function <f>itk(q) can be written

i,k (q) = for l?l < l and k =

so that we have

f o r f c = l , 2 , 3 , . . .
1n = 1

Moreover, it is fairly easy to show that for the modular form E4, denoted by Ramanujan as Q, we
have [34]

E4(T)= 0&
4(CJ)} /2

n = l

where g = e"T for /???,(r) > 0. So that using the following modular transformations

9\{q) =

we have from equation (2.6.1)

(2.6.1)

(2-6.2)

2£4(r/2) = 4 + {e\(q) - 0l

Therefore
= 0*{q) + U94

2{q)0$(q) + 68
3(q) (2.6.3)
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Also, using the modular transformations

= {el(q) - el(q)}/2

= {0l(q) + 9l(q)}/2 (2.6.4)

= 03(q)B4(q),

we have from equation (2.6.1)

2E4(T) =

Therefore

which on using 9%(q) = d'l(q) + 0\(q) is equal to

by the first of equations (2.6.2). But from equation (2.6.1) we have

61
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Therefore using equation (2.6.2) we have

E4(r) = 0$(q)64
3(q) + {9l(q) +

= 6\{q) - et{q)et(q) + 0l(q). (2.6.5)

Hence, subtracting equation (2.6.5) from equation (2.6.3) we obtain

^ ( 9 ) , (2.6.6)
16 "



E4(T/2) - E4(T) = 240

*-n=l n = l

So from equation (2.6.6) and the above, letting q :— q2 we obtain

0 0
 n3r,2n

Now from corollary 2.3.2 we have

f TO 2 n - l

= 256̂  V —
n = 1

Hence

y;-2!£l= y ^ , (2.6.7)

and using equation (2.4.4) we obtain

1 _ r/4ti-2

So from equations (2.6.7) and (2.6.8) respectively we have

Theorem 2.6.1
/- \ 4

oo o I oo 1

v ^ n6 1 v-^ 1
• zn — l

Theorem 2.6.2

62

^

V ^



As another example, from table (i) of [25] we can obtain

Theorem 2.6.3

E n* ^ (2n - 1) - ^ n4 ^

B = 1 tin n = 1 ^4n-2 n = 1 ^ 2 n n = 1

However, in general the identities for the Fibonacci and Lucas numbers produced in this way tend
to be rather messy. So just a few of the more pleasing examples have been highlighted. We could
go on to use

ES(T) - E8(2r) = ^0f(9) {2^(V/) +

where E$(T) — 1 + 480 5Z~=i ai{n)(jln•, q = e"T for Im{r) > 0, to produce yet more examples.
Fortunately we resist the temptation in favour of some much more elementary identities (though
hopefully none the less attractive for this) which are presented in the next chapter.
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Chapter 3

F u r t h e r C o n s e q u e n c e s o f t h e

C h e b y s h e v P o l y n o m i a l T r a n s f o r m a t i o n a n d R e l a t e d I d e a s .

§3.1 Introduction

In this chapter we explore some further consequences of the Chebyshev transformation and
Chebyshev-like transformations in the area covered by this thesis. Some of the results concerning
sums of reciprocals of Fibonacci and Lucas numbers from chapter 2 are approached in a more
elementary way, and extended.

The Chebyshev polynomial transformation is used to derive some results in the theory of
restricted partitions. Also, using Chebyshev-like tranformations some new polynomial identities for
the Fibonacci and Lucas numbers are derived [16a]. The Chebyshev transformation also enables
us to derive some combinatorial results involving sums of binomial coefficients and with the help
of some lemmas from chapter 2, plus one additional lemma, further combinatorial identities are
derived.
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§3.2 Elementary identities between sums of reciprocals of Fibonacci
and Lucas numbers

§3.2.1 Introduction

This section presents some elementary identities between sums of reciprocals of Fibonacci and
Lucas numbers [16c]. These results generalise lemmas 2.4.3 and 2.4.4 from chapter 2. In fact some
of the theorems from chapter 2 are merely the first cases of the following results.

It was remarked at the end of section 2.3 that identities obtained by equating coefficients of
(z + \jzf, for k — 1, 2, 3 , . . . , in theorem 2.3.1 involve sums of the form

~ 0*(2n-l) ~ Ikn

V —- and V - for k = 1, 2, 3 , . . . and \q\ < 1.

It is sums of the above type which are used to derive the theorems of section 3.2.2. These theorems
include the following results as special cases.

^ l = i ^ n(n - 1)
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§3.2.2 The main theorems

Our first two theorems are

Theorem 3.2.1

Proof: Set q = (1 - y/E)/2 in theorem 3.2.3.

Theorem 3.2.2

Proof: Let q := </2 in theorem 3.2.3. Then set q - (1 - \/5)/2.

Theorem 3.2.3 For |r/| < 1 and fc = 0, 1, 2, 3 , . . . we have

n = 0

Proof: For \q\ < 1 and k = 0, 1, 2, 3 , . . . we have by the binomial theorem

n = 0 V^ - 1 ) n = 0 m = 0

,m(-2k-l

,2m(2n + l )

( — l V " ( " '" " I N " ,,(2m + 2fc+l)(2n+l)
' in

= E (-ir
_ ? £ • _

. m ) 1 _ f,2(2m + 2fc+l)
m = 0 '
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But for the binomial coefficients we have the relation ( - l ) m C"""1) = C^2*) • Hence

n = 0 V-1 H ) m = 0

= E

on setting n = m + k to obtain the last line.

Another similar identity, proved in the same way as theorem 3.2.3 is

Theorem 3.2.4 For \q\ < 1 and k = 1, 2, 3 , . . . we have

qn

n = 0 K1 'I I n=k

Proof: For \q\ < 1 and k — 1, 2, 3 , . . . we have

00
 nk(2n+\) °° °° / ob

V ^ (i _ V ^ k(2n + l) V ^ / i \ m | ~ z h -

n = 0 V V / n = 0 7?i = 0

. m /
m = 0 n = 0

m=0

'm + 2k - 1\ qm+k

m
m=0

oo
71 + k - 1

on setting n = m. -\- k to obtain the last line.
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If we let q := -q, then q := q2, and set q = (1 - A/5) /2 in theorem 3.2.4, we obtain

Theorem 3.2.5 For k = 1, 2, 3 , . . . we have

n + k - 1
n-fc

If we let q := q2 and set q = (1 — y/5)/2 in theorem 3.2.4 we obtain

Theorem 3.2.6 For k = 1, 2, 3 , . . . we have

OO CO ,

v—̂  1 1 \-^ / n

Notice that theorem 2.4.19 of the previous chapter is just the first case of theorem 3.2.5 and that
theorem 2.4.20 is just the first case of theorem 3.2.6. The same idea can be used to produce
equivalent theorems where the summand on the LHS contains n in the numerator instead of unity,
theorems 3.2.9-3.2.11. The latter follow from theorems 3.2.7 and 3.2.8.
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T h e o r e m 3.2 .7 For \q\ < 1 and k = 0, 1, 2, 3 , . . . we have

~ n2n+l

\2 "

Proof: For \q\ < 1 and k — 0, 1, 2, 3 , . . . we have by the binomial theorem

m=0 n = l

m

which on setting n = ??2 -\- k completes the proof of the theorem.

Theorem 3.2.8 For \q\ < 1 and k = 1, 2, 3 , . . . we have

~ n + k - \

Proof : For |#| < 1 and A: = 1, 2, 3 , . . . we have by the binomial theorem

2nk

n=i vx v ; , J = i m = o

. m .
m=0 n = l

m + 2k - 1

which on setting n = m + k completes the proof of the theorem.
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If we let q :— q2 and set q = (1 — y/E)/2 in theorem 3.2.7 we obtain

Theorem 3.2.9 For k = 0, 1, 2, 3 , . . . we have

n + k - 1\ 1
2

n = i

Notice that the first case of theorem 3.2.9 is theorem 2.4.20 of the previous chapter.

If we let q := —q and set q = (1 — y/E)/2 in theorem 3.2.7 we obtain

Theorem 3.2.10 For k = 0, 1, 2, 3 , . . . we have

0 0 / 1 \n+l „ 00

The first case of theorem 3.2.10 is theorem 2.4.19 of the previous chapter.

If we let q := q2 and set q = (1 — \fb)/2 in theorem 3.2.8 we obtain

Theorem 3.2.11 For k = 1, 2, 3 , . . . we have

OO CO / , , , \ ,

V n = s*-i V (" + k - l\ J—
, F,n

2k " ^ \ n-k ) F,n
2'

n = l - " n = l - "
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§3.2.3 Closing Remarks

The identities of this section are really quite elementary. However, it is hoped that the reader
finds them none the less attractive for this. In fact it is felt that part of their appeal lies in the very
straightforward nature of their proof. We have already demonstrated how some of the theorems in
this section can arise in more complex ways.
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§3.3 Some theorems in the theory of restricted partitions

§3.3.1 Introduction

The Chebyshev polynomial transformation has some consequences in the theory of highly
restricted partitions [10]. The sets of partitions which we will consider in this section are all
subsets of the set of partitions of an integer into parts where each summand may appear at most
twice in the partition. The partition where each summand is restricted to at most two occurences
will be referred to as a 2-repetition partition (short for up to two times repetition). For example,
all the 2-repetition partitions of 7 are

7, 34, 25, 223, 16, 132, 124, 125, 1223.

The notation 223 is short for 2 + 2 + 3. The first type of highly restricted partition which we
will consider is the 2-repetition partition into odd integers. For example, from the above list of
partitions we see that all the 2-repetition partitions of 7 into odd integers are

7, 132, 125.

The first two theorems tell us the number of 2-repetition partitions of an integer into odd parts,
which contain a given number of distinct parts (i.e. parts appearing exactly once in a partition).
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§3.3.2 The main theorems

Theorem 3.3.1 The number of 2-repetition partitions of an integer m into odd parts, where each
partition contains exactly 2j distinct summands, is given by

n + 2j \ 2j

where (2n + 2j)/(n + 2j) is taken to be 1 when n = j = 0.

In theorem 3.3.1 p(n) is the usual unrestricted partition function [13] given by

oo oo

n = l n=0

We take p(0) = 1, and p(x) = 0 for x < 0 and non-integral values of .x\

Theorem 3.3.2 The number of 2-repetition partitions of an integer m into odd parts, where each
partition contains exactly 2j + 1 distinct summands, is given by

n> 0

For example, with m. = 7 and j' = 1 in theorem 3.3.1, the theorem says that there are no 2-repetition
partitions of 7 into odd integers, where the partitions contain exactly 2 distinct summands. This
is clear from section 3.3.1. With 7??, = 7 and j = 0 theorem 3.3.2 gives the number of 2-repetition
partitions of 7 into odd integers, where each partition contains exactly 1 distinct summand. From
section 3.3.1 this should be 3, corresponding to the partitions 7. 132, 125, and indeed we have

(-l)"(2n + l)p{7/2 - (2» + lf/2} = p(3) = 3.
n > 0
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P r o o f of t h e o r e m s 3.3.1 and 3 .3 .2: The coefficient of xrq" in

enumerates the number of 2-repetition partitions of s into odd parts , where each partition contains
exactly r distinct par ts . This is clear because the term q2""1 corresponds to those odd parts which
appear only once in the partition and the term qAn~2 corresponds to those odd parts appearing
twice in the parti t ion. If we write z + 1/z = x in theorem 2.3.1 we obtain

OO OO CO

nci-?2")"1^12

n = l j = 0 rc = 0 ^ ^

o o o o o o ^ ^ - - t / - , . - i \

TT (1 n2nYl V ^ r2J + 1 V ^ C 1 V1 J I J 1 n(2"-l-2j + l ) 2 f o o i \
I l l l — Q I / X / I — 1 ) I fl . o . o . l

To obtain the coefficient of #2j'</* from the R H S of equation (3.3.1) we note that the coefficient of
x2i is the product of

/ p(n)q2" and
n = 0 n = 0

So we take the coefficient of q' from the Cauchy product of the above two summations to obtain
the coefficient of x2'q' in equation (3.3.1). This completes the proof of theorem 3.3.1. Similarly,
theorem 3.3.2 follows from the last double summation in equation (3.3.1). n

The next two theorems concern 2-repetition partitions where we allow zero to be a valid part
of the parti t ion. For example, the 2-repetition partitions of 4, counting zero as a valid part , are
given by

4 04 024
22 022 0222

13 013 0213
122 0122 0 2 l 2 2 .

For a given integer the theorems give us the number of partitions of the above type which contain
exactly j distinct members.
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Theorem 3.3.3 The number of 2-repetition partitions of an integer TO, counting zero as a valid
part, where each partition contains exactly 2j distinct summands is given by

n > 0

where (2n + 2j)/(n + 2j) is taken to be 1 when n = j = 0.

Theorem 3.3.4 The number of 2-repetition partitions of an integer m, counting zero as a valid
part, where each partition contains exactly 2j + 1 distinct summands is given by

'n + 2j + T

In theorems 3.3.3 and 3.3.4 p(n) is again the unrestricted partition function. As an example we
consider the 2-repetition partitions of 10, counting zero as a valid part, which contain exactly two
distinct parts. These are

012224 0219 0324
012232 19 0237
1226 0226 37
1235 0242 0246
0128 0228 46
1225 28 0,10

Now by theorem 3.3.3 with m — 10 and j = 1 we have

)"(» + l ) 2 p { l l - 2(n + I)2} = p(9) - 4p(3) = 30 - 4.3 = 18.

Which corresponds to those partitions above.

As an extension, we now count the number of 2-repetition partitions of a natural number t
which have exactly r distinct parts AND contain exactly s parts. The number of these partitions
is enumerated by the coefficient of xr z'q* in the expansion of

n > 0
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For our next theorems we need the following notation.

(q)n = (l-q)(l-q°-)...(l-q
n) for n > 1.

(q)0 = 1-

Theorem 3.3.5 The number of 2-repetition partitions of an integer m, with exactly 2j distinct
parts and exactly 2s parts is the coefficient of qm in the expansion of

to » + 2j V 2j

Clearly if we have an even number of members then we can only have an even number of distinct
members.

Theorem 3.3.6 The number of 2-repetition partitions of an integer m, with exactly 2j +1 distinct
parts and exactly 2.s + 1 parts is the coefficient of qm in the expansion of

2n + 2j + 1 (n + 2j + ^ ( K D

n t T n + 2j+l V 2j

Clearly if we have an odd number of members then we can only have an odd number of distinct
members.

Proof of theorems 3.3.5 and 3.3.6: We use an identity from a paper of L. J. Rogers [31] in
which he gives his second proof of the Rogers-Ramamijan identities. From the well known

co oo n (M

I I (i + ~qn) = E £ T \ - for k/l < i. (3-3-2)
n = 0 n = 0 ^I'n

with z := ze'e and z := ze~lB respectively, we can evaluate

CO

_Q(l + 2~f/lcos(? + ^2f/2") = Y[(l + zqneie)(l + zqne~ie). (3.3.3)
n=0 n=0
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If we write

oo
Jln1n-

n=0 n=0

we have by equations (3.3.2) and (3.3.3)

r2n (6) = —- + qn(n~ ^ ) 1 2 cos 2r6 for n > 1 (3.3.4)

(q)n 7^i (?)n_P(<7)n+r

and

" ' -2cos(2r+ 1)8 for n > 0. (3.3.5)

Theorems 3.3.5 and 3.3.6 now follow by setting x = 2cos# and using the Chebyshev polynomials,
equations (2.2.3) and (2.2.4), in equations (3.3.4) and (3.3.5) respectively. n
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§3.3.3 Closing Remarks

As has been shown, the Chebyshev transformation enables us to evaluate the size of various
subsets of the set of 2-repetition partitions. Using an idea of L. J. Rogers [31] we can get a handle
on the size of an even more highly restricted set of partitions of this type. More generally, the
coefficient of x\l x^2 .. ,xa

k
k q* in

n=l

enumerates the number of partitions of s into parts of which ar are distinct, a2 appear twice, a3

appear three times, etc . . . (so we have ax + 2a2 + 3a3 + • • • + kak parts). The problem of evaluating
the coefficient of x"1 a;"2 • • • xa

k
k q' is an obvious extension of the work in this section. However, there

is clearly no simple closed form (as we have for theorems 3.3.1-3.3.4) for this coefficient, though
it seems likely that there are some interesting results to be had here (see section 12, chapter 7 of
[10]).



§3.4 Polynomial Identities for the Fibonacci and Lucas Numbers

§3.4.1 Introduction

We have already seen in chapter 2 how we can derive identities involving Fibonacci and Lucas
numbers from the transformation of Jacobi's triple product using Chebyshev polynomials. In this
section it is shown how to apply a related idea to produce more directly some polynomial identities
for the Fibonacci and Lucas numbers [16a].

The Fibonacci numbers are named after Leonardo of Pisa (c.1180-1250), better known as
Fibonacci (son of Bonaccio), an Italian merchant. They arise in the solution of a famous problem
he posed in his Liber Abaci (book of the abacus). Namely, how many pairs of rabbits will be
produced in a year, beginning with a single pair, if in every month each pair bears a new pair which
becomes productive from the second month on?

The Lucas numbers are named after E. Lucas, who was first to develop the general theory in
a seminal paper which appeared in volume one of the American Journal of Mathematics in 1878
[20]. They are defined by

Un (P, Q) = " ~ (T and Vn(P, Q) = an + [3n for n > 0,
a — p

where P, Q are non-zero integers and a, (3 are the roots of

x2 - Px + Q = 0.

For every n > 2 we have

and

Vn(P,Q) = PVn_i(P,g) - QVn_2{P,Q).

The sequence corresponding to P = 1, Q = — 1, f/0 = 0 and Ux = 1 defines the Fibonacci numbers,
hereafter denoted by Fn. The sequence corresponding to P = 1, Q = - 1 , Vo = 2 and Fi = 1
defines the Lucas numbers, hereafter denoted by Ln. So we have

Fn = Fn-\ + Fn-2 for n > 2 and Fo = 0, Fx = 1,

Ln = Ln_x + Ln_2 for n > 2 and Lo = 2, Lx = 1. (3.4.1)
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The Fibonacci and Lucas numbers satisfy many interesting recurrence relations. Among them is
the well known identity

F3n - J F n { 5 F n
2 + 3 ( - l ) n } . (3.4.2)

Other identities of the same type as equation (3.4.2) are

F5n = Fn {25Fn
4 + 2 5 ( - l ) n F n

2 + 5} (3.4.3)

and

FTn = Fn { l25Fn
6 + 175(-l)n Fn

4 + 70F,,.2 + 7 ( - l ) n } . (3.4.4)

Some general theorems encompassing equations (3.4.2)-(3.4.4) are now presented. The theorems
show how we can express Fmn (for odd m) as a polynomial in Fn and Fmn/Fn as a polynomial in
Ln. The idea is essentially the same as that used to transform Jacobi's triple product identity in
chapter 2. That is, we express the sum of terms of the form xn ± 1 /'xn as a polynomial in x ± 1/x.
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§3.4.2 The ma in theorems

Theorem 3.4.1 For integers n and q > 0 we have

From theorem 3.4.1 we can obtain the following well known result as a corollary. If we let p = 2q + l,
where p is prime, and use Euler's criterion [3] to show

5(p-l)/2 = ( *

where f - j is the Legendre symbol, we obtain

Corollary 3.4.1 For n > 0 and p prime we have

Fpn = I - I Fn mod p.
\pj

From corollary 3.4.1, with n — 1 and n = q (a prime) respectively, we have

( 5Fp = ( - ] mod p

and

'„ - (-

\p

Therefore we obtain

Corollary 3.4.2 For primes p and q we have

Fpq = FpFq mod pq.

Before proving theorem 3.4.1, some lemmas required for its proof and the proof of two further
theorems are presented.
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Lemma 3.4.1 For \x\ 7̂  0 and integer m > 0 we have

2m+1 fm + k + 1 _ _
l 2fc + 1 ) \ x

Lemma 3.4.2 For \x\ ^ 0 and integer m > 0 we have

+ t 2m + 1 /m + fc

Lemma 3.4.3 For |.r| ^ 0 and integer m. > 0 we have

Lemma 3.4.4 For |.x-| ^ 0 and integer m > 0 we have

Lemma 3.4.5 For \x\ 7̂  0 and integer m > 1 we have

2m-l _ 1 ) _ ( j.2m-3 _ l \ , , (_J)m I ,.3 _ J_ ) , f_i)m+1
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Lemma 3.4.6 For \x\ ^ 0 and integer m > 1 we have

Proof of theorem 3.4.1 Solving the recurrence relation given by equation (3.4.1) for Fn we
obtain

an - Bn

Fn = -— where a + 0 = 1 and a0 = - 1 .
a - /?

So for integer n and p > 1, writing x = a" and y = j3" = ( — 1)" /x, we have

Ct" - / >

a;p - y"
x - y

x"-1 + x"-2y + xp~3y2 +••• + xtf~2 + y " ~ l . (3.4.5)

Now for p = 1 mod 4 the RHS of equation (3.4.5) is equal to

/ 1 \

H 1 (3.4.6)

and for p E 3 mod 4 the RHS of equation (3.4.5) is equal to

-1 + - ^ T ) + ( - 1 ) " (xp~3 + - ^ ) + • • • + ( *2 + -^ ) + ( - 1 ) " (3.4.7)

Since a; + I/a; = a" + l / a n = a" + (-1)"/?", we have
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and

x + - = (a - (3)Fn for odd n (3.4.8)
x

x - - = (a - (3)Fn for even n. (3.4.9)
3

Now a - /? = y/b. Hence from equations (3.4.8) and (3.4.9) we obtain

X

and

2

2
1 \

X + -) = 5Fn
2 for odd n (3.4.10)

x - -) = 5Fn
2 for even n. (3.4.11)

x )

Therefore if we let p = 2m + 1 and assume n is even, from equations (3.4.5) and (3.4.6) we obtain

Now we use lemma 3.4.1 in equation (3.4.12) and apply equation (3.4.11) to obtain theorem 3.4.1
for even n. Similarly, letting p = 2m + 1 and assuming n is odd we have from equations (3.4.5) and
(3.4.7)

^ ) + (-I)"* • (3-4.13)

Now we use lemma 3.4.2 in equation (3.4.13) and apply equation (3.4.10) to obtain theorem 3.4.1
for odd n. This completes the proof of theorem 3.4.1. •

Of course we now need to prove the lemmas. They can all be proved by induction. So as an
example the proof of lemma 3.4.1 is presented below.

Proof: Let P0(x) = 1 and for integer m > 1
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Now we note that

I2/ \ X2m

to obtain

•\)pm(x) = Pm+i(x) + Pm-1(x) form

Hence
2

Pm+i(x) = | ( x - ^ ) + 2 [> Pm(a0 - Pm_x(x).

By the induction hypothesis we have

m + l

k=i

y , 2m + 1 . . . , . „ , . ^ _ -_
^ m + k + 1 V 2A; + 1 / V x

" > - ! „ . , / , T \ / i \ st-

F r o m e q u a t i o n ( 3 . 4 . 1 4 ) t h e c o n s t a n t t e r m i n P m + i ( x ) i s

2(2m + 1) fm + l\ 2m - 1 fm

m+ 1 V 1 / m VI
= 2m+ 3,

and the coefficient of (x — l/x)2k for 1 < k < m — 1 is

2m + lfm + k\ 2(2m+l) (m + k+l\ 2m - I f m + k
m + k\2k-l) m + k + 1 V 2A.- + 1 / m + k \2k + 1

(2m + l)(m+/c)! (4m + 2 ) ( ra+Hl ) !

(3.4.X4)

(m + k)(2k- l)!(m -fc + 1)! (m + A; + l)(2k + l)!(m - A;)! (m + k)(2k + iy.(m - k - 1)\
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m + k + 2

x

m + k + 2\ 2k + 1

(2m + l)(2k)(2k + 1) + (4m + 2)(m + k)(m - k + 1) - (2m - l)(m - k)(m - k + 1)'

The numerator inside the braces above equals

2m3 + 5m2 + 3m + 3k2 + 3k + 2mfc2 + 8mk + 4m2 k = (2m + 3)(m + k)(m + k + 1).

Hence the coefficient of (a; — I/a;)2 for 1 < k < m — 1 equals

2m + 3 /7?z + k + 2
m + k + 2 V 2A: + 1

From equation (3.4.14) the coefficient of (,T — l/.r)"'" for 1 < k < m — 1 equals

2m +1 f 2m ,
— + 2 = 2m + 3,

2m \2m - 1 '

and the coefficient of (a; — l/a;)*'m + equals 1. Since

2m + 1 /m +
~~ ~m + k+l \ 2k + 1 / V x

equals P0(x) and Pi (a1) for m = 0 and m = 1 respectively, lemma 3.4.1 is proved by induction, Q

It should be noted that lemma 3.4.1 can be derived easily from equation (2.2.4), by letting z := iz
in equation (2.2.4) and using the fact that the LHS of the lemma is (x2m + 1 - l/.T2m + 1 )/(x - I/a;),
the sum of a geometrical progression.

It is possible to extract another couple of polynomial identities from equation (3.4.5). These are
the following theorems.

Theorem 3.4.2 For integers n and q > 0 we have

T 2k

L/r,

86



Theorem 3.4.3 For integers n > 0 and q > 1 we have

,n - ^ 2 ^ ( - fc- 1

Proof of theorem 3.4.2: The proof is very similar to that of theorem 3.4.1. We again use
equations (3.4.6) and (3.4.7) with p = 2m + 1. Then we note that

and

x - - = an + (5n = Ln for odd n (3.4.15)
x

x + - = an+ jin = Ln for even n. (3.4.16)
x

and use equations (3.4.15) and (3.4.16) along with lemmas (3.4.3) and (3.4.4) to complete the proof
of the theorem. •

Proof of theorem 3.4.3: The proof is again very similar to that of theorems (3.4.1) and (3.4.2).
We now use lemmas (3.4.5) and (3.4.6) along with equations (3.4.15) and (3.4.16) to complete the
proof of the theorem. •

It is worth noting that if we take n = 1 in theorems 3.4.2 and 3.4.3, since L\ = 1, we have two well
known results as corollaries.

Corollary 3.4.2 For integer q > 0 we have

q +
2k

Corollary 3.4.3 For integer q > 1 we have

. 2k - 1
fc=i
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§3.4.3 Closing Remarks

The formulae in theorems 3.4.1-3.4.3 are very pleasing, yet fairly simple. So it is surprising
that they have not appeared in the literature before [16a]. They are presented here not only because
they are new but also because they come out with such a straight-forward development, exploiting
an extension of the idea of the Chebyshev polynomial transformation.
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§3.5 Some Combinatorial Identities

§3.5.1 Introduction

This section presents some combinatorial identities, involving binomial coefficients, which fit
neatly into the general theme of chapter 2. This is because the main results, theorems 3.5.1 and
3.5.2, arise as a result of transforming the sum ]CT=-oo qn* zn (valid for complex q and z, such
that \q\ < 1 and z / 0 ) using the Chebyshev polynomials, equations (2.2.3) and (2.2.4). Theorems
3.5.1 and 3.5.2 do not appear to have been stated explicitly in the literature before (see §3.5.3
for further comment on the following results). The search included J. Riordan's "Combinatorial
identities" [30]. Theorems 3.5.3-3.5.6 are included here because they arise naturally as consequences
of lemmas contained in section 3.4.
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§3.5.2 The main theorems

Theorem 3.5.1 For 0 < k < n we have

Theorem 3.5.2 For 0 < k < n we have

2 r a + 1 /n + j + l W 2, + l N
^ / ; n + j + 1 V 2j + 1 J\j + k + l)

It is worth noting that since each of these combinatorial indentities is valid for 0 < k < n — 1 they
both give rise to a. set of combinatorial identities. For example, with k = 0 we have

Corollary 3.5.1

E . . .• All
( i V

Corollary 3.5.2

£ (-i><#

Proof of theorems 3.5.1 and 3.5.2: Using equations (2.2.3) and (2.2.4), for complex q and z
such that |g| < 1 and z ^ 0, we have

j = 0 n=j

j=0 n = j

We now let z :— qll2 and ^ := q1/2 in equation (3.5.1) to obtain
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<"•> = £ £ (-ir'
n = 0

j = 0 n = j

By the binomial theorem we have the following two results

and

'2j + l

in the R H S of equation (3.5.2). Hence

n=0 j=0 fc=_j

oo n j + 1

V^ Y^ Y^ ^"+i
n = 0 j = 0 k= — j

j 4 k) « f o r

— — j

We now use equations (3.5.3) and (3.5.4) to substitute for

2j+l

Now consider the first triple summation on the RHS of equation (3.5.5). By removing the k = 0
term and noting that ( i \ ) = (-J^.) for 0 < k < j , the first triple summation equals

^7(;O (%) (3.. . . .
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By interchanging the order of summation of j and k equation (3.5.6) equals

Considering the second triple summation on the RHS of equation (3.5.5). Noting that

, for 0 < k < j + 1, and after letting k := k + 1 we find that this equals

oo n j

2j
(3.5.8)

By interchanging the order of summation of j and k equation (3.5.8) equals

t £(-m<—

Therefore, from equations (3.5.5), (3.5.7) and (3.5.9) we have

v) = E
n=0 n = 0

oo

rn E
j=0

n + j + 1 1 / \j + k + 1

(3.5.10)

To complete the proof we only have to note that for the ranges of k and given values of n below,
the following are all distinct numbers (in fact they are all the non-triangular numbers).
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2n2 for n > 0.
2n2 - k, 2n2 + k for 1 < k < n and n > 1.
2n2 + 2n- k, In? + 2n + k + 1 for 0 < k < n and n > 0.

That i s t o s a y i ? n 5 = J RnT = S n T = 0 (the null set) where

R= {2n2 \ n 6 Z, n> 0} ,

S = {2n2 - k, 2n2 + k \ n € Z, 1 < k < n, n > l} ,

T = {2n2 + 2n - fc, 2n2 + 2n + /t + 1 | n G Z, 0 < k < n, n > 0} .

To obtain theorems 3.5.1 and 3.5.2 we equate the coefficients of q" in equation (3.5.10).

The next theorems are of a similar nature, that is they are all valid for a given range of values
of k. With the exception of theorem 3.5.6, they are consequences of lemmas 3.4.2, 3.4.4 and 3.4.6.
For theorem 3.5.6 we require one additional result, given as lemma 3.5.1. The proof of lemma 3.5.1
is similar to the proofs of lemmas 3.4.1-3.4.6.

Theorem 3.5.3 For 0 < k < n we have

A 2 j fj + k\ 277 + 1 fn + k+1

*-* j + k\ 2k J n + k + 1 V 2k + 1
j — k

where 2j/(j + k) is taken to be 1 for j = k = 0.

Proof: From lemma 3.4.2 we have for x ^ 0

JL / \ X / \ X~

_ V - , ^n+k 2 n + l

t^o n + k+l\ 2fc + 1

and from equation (2.2.3) we have

2fc

j + k' '
x
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Hence

Therefore on interchanging the order of summation we have

+ k{ 2k ) - 2 - ( 1 } n + k + l \ 2k

Equating the coefficients of (a; + l/x)2k now completes the proof of the theorem.

In a similar way one can prove from lemma 3.4.4 the following theorem.

Theorem 3.5.4 For 0 < k < n we have

^ v ' j + k\ 2k J v ' V 2k
j = k

where 2j/(j + k) is taken to be 1 for j = k = 0.

Another similar identity is

Theorem 3.5.5 For 0 < k < n — 1 we have

E (-I)'-ff^r2j + l fj + k + l\ .
2k + l J ~[ ' \2k

P r o o f : U s i n g e q u a t i o n ( 2 . 2 . 4 ) i n l e m m a 3 . 4 . 6 w e h a v e f o r i / O

" 2n+1 ( n + k + 1 ] ( ' ) 2 k

( ~ i y ~ — I — ( ) ( x H — ) = 2 - / ( — i ) n + + 1 ( j i 3 ' " ' — ) •
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Therefore, interchanging the order of summation we have

Jt = O j = k J

Equating coefficients of (x + I/a;)2 + 1 completes the proof of the theorem.

For the final theorem of this section we need the following lemma.

Lemma 3.5.1 For \x\ ^ 0 and n > 1 we have

{ j V 2fc

Proof: Similar to the proof given for lemma. 3.4.1.

Theorem 3.5.6 follows from lemma. 3.5.1. The proof runs along the same lines as that of theorem
3.5.5.

Theorem 3.5.6 For 0 < k < n - 1 we have

2j + 1 (j + k + l\ ^ 2n (n + k + .
n + k + 1 V 2k + 2
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§3.5.3 Closing Remarks

Theorems 3.5.3-3.5.6 are reasonably elementary identities. They are presented here because
they are discernible from the previous work contained in this thesis, from which they appear
with little effort. Theorems 3.5.1-3.5.2 are slightly more involved. Actually, all of the results in
this section are specializations of well-known hypergeometric series identities. In particular 3.5.1
and 3.5.2 are disguised forms of the Chu-Vandermonde summation. However, there are many
combinatorial identities in the literature; in fact the supply is inexhaustible. They quite often
arise in unpredictable ways, making it difficult to place them in coherent mathematical settings
and order of interest. Therefore quite often we find, that in addition to the identity itself, the
mathematical interest lies equally in the method of derivation. This is felt to be the case for the
theorems presented in this section.

For a general method of proving all identities of a similar nature to those in this section, see
the very interesting paper by Wilf and Zeilberger [36].
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Chapter 4

Some Representations of the Unrestricted

Partition Function.

§4.1 Introduction

This chapter presents some representations of the unrestricted partition function which have
arisen as a result of work on the previous chapters. A representation of the partition function is
an identity where on one side of the equation we have £)^°_0 P(n)(l"-, P(n) being the unrestricted
partition function, and on the other side we have some aesthetically pleasing expression. For
example from [9], referred to as Gordon's identity in [10], we have

an(n + \)
E , g)() =
n = Q WlnWn+l n=0

Another example, from [la] we have a generalisation of equation (4.1)

E A-m = 7 T - for a € Z. (4.2)
^ 0 (q)n(q)n+a (?)oo

The (q)n notation was defined in section 3.3. Here (q)~l = 0 for n < 0 and (q)^ = [ ] ~ = 1 (1 - Qn),
so that

wr = £"<"""•
yl>o° n = 0
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§4.2 The main theorems

Theorem 4.1
OO 2 2

Y q- = X _ for r > 0.
?)n_ r(?)n + r (?)oo

Theorem 4.2
00 «n(n+l) -r(r+l)

\^ = — for r > 0.
_ . («)„_,. (tfL + r+l (?)oo

Proof of theorems 4.1 and 4.2: From section 3.3, see also [31], if

n (1 + 2sg" cos0 + 2 V" ) = J2 rn(0)zn. (4.3)
n=0 n=0

Then we have

r2n(6)= g " " , + g " ( n ~ 1 ) ^ , , g ' , , 2cos2r0 for n > 1 (4.4)
(?); r = i y(l)n-r\(l)n + r

and

r2n+! (5) = <?"' Y. r ^ T ^ 2 cos^2r + l)° for n ^ °- (4-5)

Now if we let g := qll2 and 2 = e'e in Ja.cobi's triple product identity, equation (2.2.5), we have

OO OO

]^(1 - f/")(l + 2cos^f/n"1/2 + ff""1) = 1 + 5Z 2cosn9q"2/2.
7 1 = 1

Therefore

n = l n = l

n ( l + 2cos^ 9
n + 1 / 2 + ( ?

2 n + 1 )=—^-< l + ^2cos77^fyn ^ .
n = 0 Vi^oo V n = 1 )

Now if we let 2 :— qll2 in equation (4.3), using equation (4.6) we have
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WJ
1 + £ 2cosn0<?"

2/2 . (4.7)
)oo I n = 1

Therefore we can use equations (4.4), (4.5) and (4.7) to obtain, after interchanging the order of
summation of n and r

?'/2 2 cos »"0 = E <f 2 cos 2^ E
r=1

(q) ^
Vi/oo r = l

°° °° «(n+l/2)2

E ^ Q . (4.8)
r = 0

To complete the proof of theorem 4.1 we equate the coefficients of 2cos2r# in equation (4.8) and
to complete that of theorem 4.2 we equate the coefficients of 2 cos(2r + 1)0 in equation (4.8). o

The next set of representations of the partition function is

Theorem 4.3
c o n(n + a—l)

E / \ ~N = 7-̂ — for a € Z-
1 + qa _ \cl)n(q)n+a ('Z)oo

Proof: Jacobi's triple product identity may be written in the form

(4.9)
n = l

Using the well known

n=0 n=0

and equation (4.9) we have

> = — 00 n = 0

rlm(m - l ) / 2

Y ~ *~m \ • (4-10)
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Now if we write n = m + a, where n, m £ Z+, equating the coefficients of the term in za (by taking
the product of all the terms in zn and z~m , on the RHS of equation 4.10, such that n = TO + a)
we have

^f0 (?)n(?)n-.

Therefore

( 4 ' u )

Letting a := —a in equation (4.11) we obtain theorem 4.3.
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§4.3 Closing Remarks

Theorems 4.1 and 4.2 are presented here because they are particularly nice results which can
be deduced as a simple consequence of an idea of L. J. Rogers [31]. The title of [9] suggests that
the fact that theorems 4.1 and 4.2 are implicit in [31] has been overlooked. However, it should be
noted that theorem 4.1 is the case A — B = r in (7.13) of the more recent [lb] and theorem 4.2 is
the case A = r, B = r + 1 in (7.13) of [lb]. It should also be noted that theorem 4.3 is not new,
since it is the case A = a, B = a — 1 in (2.57) of [lb]. However, the theorem is very appealing and
the derivation given here is both quick and simple.
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Notation Guide

Symbol Description

Bn Bernoulli Numbers - ^ _ = £ ~ = Q M*.X* for |a;| < 2TT.

E2k(z) Eisenstein series E2k(z) = 1 - - | ^£T= i <r2k_x (n)e2"z for / m ( » > 0.

Fn Fibonacci Numbers Fo = 0, Fx - 1 and F n + 1 = Fn + i^- i for n > 1.

Gk(z, m) Poincare series.

# Upper half-plane {z £ C \ Im(z) > 0}

Ln Lucas Numbers Lo — 2, Lx = 1 and Xn+i = Xn + i n _ i for n > 1.

Mi Linear space of modular forms of weight k.

M& o Linear space of cusp forms of weight /c.

P, Q and R Eisenstein series E2, E4 and £ 6 .

p(n) Unrestricted partition function E ~ = o p(n)qn = U7=i i1 ~ 9" )" 1 for \i\ < L

(?)„ Product (1 - g)( l - q2).. .(1 - 9 " ) , (ry)0 = 1, (g ) ; 1 = 0 f o r n < 0. | 9 | < 1.

Tn(x)

F

A(^)

03

04

/} 1
Uj \

E
a°

ae

•A)

(n)

(n)

Hecke operator.

Chebyshev Polynomial.

The modular group.

The modular discriminant A(z) = yf^

Riemann's zeta function, ((s) = Tip (

(E$ - El).

— P~s)~ f ° r Re(s) > 1.
+ 1)i7rj for Im{z) > 0 and = e"T

92(Z,T) = ET=-oo ? ( n + 1 / 2 ) e(2"+1)i7rz for Im{z) > 0 and q = ei7rT.

03(^,r) = E,T=-oo qn7e2"nz for /m(^) > 0 and q = e"T.

64(Z,T) = E~=-cx) ( — ̂ Ti™ e2lwnz for Im(z) > 0 and q = e"T.

8i(z,T) with 2 = 0 and i = 1, 2, 3, 4 and |g| < 1.

E ^ d.

E «ln rf.

r(n) Ramanujan's tau function E,?=i r(n)xn = ar 11^=1 C1 ~ •x'")24 f o r 1*1 < L

E ~ = 1 Er=i m'-n'a:""' for |x| < 1.
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