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A variety of theoretical and numerical methods are used to investigate the statistical

mechanical properties of vesicles, membranes and interfaces. The study of vesicles,

membranes and interfaces is a small part of the more general study of exotic structures.

Understanding the structure and properties of these exotic phases has important

applications in many diverse fields, from food stabilization and improvement to

enhanced oil recovery.

Several models of vesicles in two dimensions are briefly discussed. A

continuum model of vesicles due to Ostrowsky and Peyraud is investigated further.

The model is extended and a detailed scaling analysis of the effects of osmotic pressure

and curvature on the shape polydispersity is presented. These results are compared and

contrasted with results from an altenative model. The vesicle is subjected to a nematic

ordering field to simulate the effect of a shear flow field.

A model of membranes and interfaces confined between hard parallel walls is

discussed. Analytical extensions to the current state of the literature are discussed.

The models are studied numerically by Monte Carlo simulation and the results are

analysed to establish the consistency of the new analytical arguements.

Twisted and helical lipid membrane stuctures have been observed to form from

lipid membranes whose molecules are chiral. Recent attempts to explain these

structures have relied on mean field theory. A statistical mechanical simulation model

is devised that should be a useful tool for studying these chiral membranes. The model

is investigated for long thin membranes and diamond shaped membranes. The results

are analysed systematically and typical membrane configurations are presented.
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CHAPTER ONE

INTRODUCTION

1.1 States And Structure Of Matter

From the earliest ages men have striven to understand the structure and

constitution of matter. The ancient Greeks entertained many theories about the structure

and constitution of matter and of how it interacted to form the everyday objects and

motions we are all familiar with (Hall 1969). The idea that underlying the apparent

diversity of matter and form there was a simpler but hidden substructure permeated

throughout their work. Elemental theories, where there were a small set of pure

elements which when mixed in varying proportions gave the less fundamental

manifestations of matter, were popular. For instance a popular theory held that earth,

air, fire and water were the elements and any other matter could be reduced to them or

constructed out of them,if only one knew how. In China a similar theory of elements

is known to have been well subscribed to, as well as a simple theory of interactions

(Needham 1956). We know nowadays, thanks to the accumulated work of many

centuries of science, that although these theories give insight in certain restricted

contexts, they are seriously incomplete and inadequate when considered as models for

the properties of matter.

The atomic theory of matter, rediscovered (an atomic theory was postulated by

the Greeks - Hall 1969) and experimentally proven by Dalton (Dampier 1942), was the

first substantially successful scientific theory of the constitution of matter. In fact it is

now well known that atoms are not the most basic indivisible species as postulated in the

atomic theory. Nevertheless the atomic theory of matter is still an important theory and

explains well certain phenomena.

The search for the most basic, elemental and indivisible particles goes on and

much progress is currently being made. However, although understanding of the

constitution of matter is now well advanced and grand unified theories of everything are

claimed to be on the horizon, there remain many unanswered questions about the

1



structure of matter; that is how atoms and molecules interact, en-masse, to form the

everyday matter that surrounds us.

We are all aware that the same substance can occur in more than one form, or

state, with each state having very different physical properties. For instance we are

aware that water occurs as ice, liquid-water and steam depending on the physical

conditions (temperature and pressure). The physical state of a substance is called its

phase (Atkins 1982). The three most basic phases of matter are solid, liquid and gas.

We all know intuitively what solid, liquid and gaseous phases are like but specifically

defining what they are is more tricky.

One can take an empirical viewpoint and define the phases by their observed

physical properties. For instance the definition of a gas could be - that phase in which

the substance expands to fill its entire container. A liquid could be defined as - that

phase which adapts to the shape of its container but for which a meniscus is observable.

In the same fashion a solid could be defined as a rigid object resistant to shape

deformations.

On the other hand one can look at the microscopic organisation of the phases and

see on this level if there are characteristic differences between them. It turns out that

this is a more objective method of categorisation, and hence preferable for scientific

purposes.

Along these lines it is well known that on the microscopic scale solids are

characterised by rigid crystal lattices. The constituent molecules of the lattice are fixed

into an ordered matrix, free only to vibrate about their lattice sites (Ashcroft and

Mermin 1976, Kittel 1986). Liquids, however, are characterised by the ability of their

constituent molecules to flow freely around. Short range regions of crystalline order

constantly fluctuate in and out of existence (Hansen and McDonald 1986). By contrast,

gases are characterised by the almost total lack of order of their constituent molecules,

which move in a Brownian (random) motion (Golden 1964).

It is possible to make precise mathematical statements that correspond to these

observations. Hence one can set objective tests that enable one to classify the phase of

a particular piece of matter by observing it through the microscope or by using

diffraction techniques. Moreover it can be seen that the physical properties of a phase

are due to its microscopic organisation.



However there exist phases that cannot be classified as solid, liquid or gas, called

exotic phases. When one looks at the molecules on a microscopic-scale one finds that

there are subtle differences between the order of the exotic phase and each of the simpler

phases. Often the difference is a matter of scales. For instance, when one looks on a

particular length scale one may find the phase has the behaviour of one phase (e.g.

liquid), whilst if one looks on a different scale one finds that a substance has the

characteristics of a different phase (e.g. solid)! Alternatively, one may find that a

substance is solid-like when observed over a short time scale, but liquid like when

observed over longer times; and so on.

By determining the structure of exotic phases it is possible to explain the

observed properties of the phase. It is also possible to predict, as yet, unforeseen

properties that may (or may not) be of much use. One class of exotic structures are the

structures formed by amphiphilic molecules which I intend to discuss in this thesis. The

structures formed by amphiphilic molecules are intermediate in structure between solid

and liquid; which explains why collectively they are referred to as liquid crystalline (Ic)

phases.

1.2 Organisation Of This Thesis

In chapter two I explain the basic properties of amphiphilic molecules. I present

a detailed, but by no means complete, catalogue of liquid crystalline structures that

amphiphilic molecules assemble into, with schematic illustrations. Then I present some

generic phase diagrams for amphiphilic systems. Finally the liquid crystalline nature of

biological membranes is briefly discussed.

In chapter three I discuss general aspects of shape polydispersity in fluid vesicles.

A brief discussion of modelling and the classification of vesicle models is given. Then

the fundamental geometrical ideas of curvature in two and three dimensions are

presented as a prelude to the Helfrich Free Energy. Using a simple spring model of a

membrane the Helfrich Hamiltonian for a surface in two and three dimensions is

motivated.

For an analysis of the shape polydispersity of vesicles certain concepts and

analytical tools are required. In chapter four the concepts of Scaling, Fractality and



Universality are discussed in the context of polymer chains. The similarity between the

study of polymers and vesicles, as well as the key differences, are pointed out.

In chapter five some models of 2D or quasi-2D fluid vesicles are discussed. The

models of Helfrich and Leibler, Singh and Fisher are briefly outlined. The Ostrowsky-

Peyraud method of studying the Helfrich curvature model of vesicles is treated to a

thorough investigation. I present a detailed scaling analysis and universal curves

obtained from my implementation of the Ostrowsky-Peyraud model. I define a nematic

scaling field to simulate shear flow conditions and systematically analyze the effects on

shape polydispersity.

In chapter six I discuss a rather different model of membranes and interfaces in

two and three dimensions. I study the interfaces confined between parallel walls. I

discuss well known and novel analytical arguments yielding the probability distribution

functions of the membranes and interfaces. The results of extensive Metropolis Monte-

Carlo simulations are presented and analyzed. I demonstrate that the novel analytical

arguments are in good agreement with the observed results.

Finally in chapter seven I discuss a model of membranes suitable for investigating

tilted chiral lipid membranes in three dimensions. The chemical properties of the

constituent molecules of this type of membrane turns out to be important in the

mesoscopic structures that the membrane forms. By extending and adapting a common

model of lipid membranes some of the important structural features are reproduced in

the simulations. I present and analyze the results for a number of membrane geometries.

The model represents a significant tool for investigating the statistical mechanics, albeit

numerically, of this important class of structurally exotic membranes. There is scope

for development of the model to other interesting membrane geometries.



CHAPTER TWO

COMPLEX FLUID STRUCTURES

2.1 Amphiphiles

An amphiphile (amphiphilic molecule) as the Greek root suggests {amphi: on both

sides, philos'.love), has two attractions. In practice, by this one means that part of the

molecule is hydrophillic (likes water) and the other part is oleophilic (likes oil) or

hydrophobic (dislikes water), although from the definition the solvents need not

necessarily be water and oil; more generally they will be polar and non-polar solvents

respectively. Amphiphilic molecules are generally organic polymers with attached ionic

groups. The ionic group forms a hydrophillic 'head' whilst the organic chain forms the

oleophilic, hydrophobic 'tail'.

Figure 2.1
Space filling models of a) oleate

and b) palmitate ions.

Well known examples of amphiphiles are sodium palmitate, sodium stearate

(soap) and potassium oleate (detergent) (Cevc and Marsh 1987). In figure 2.1 space

filling models of oleate and palmitate ions are illustrated. Note that the molecules are



rod-like (the chains are relatively stiff due to their short length - oleate C16 and palmitate

Cjg) with a relatively large negative charge centre at one end. The palmitate molecule

has a bend in it due to an unsaturated bond.

These amphiphiles are also called surfactants (surface active re-agents), because

when added to immiscible oil-water mixtures they reside at the oil-water interface. The

interface is stabilised and the interfacial tension greatly reduced by the presence of the

surfactants, thus allowing the oil and water to mix more freely, albeit separated by the

surfactant layer. It is the amphiphilic nature of the molecules which is responsible for

this surfactant property - the action from which soaps and detergents derive their

cleansing properties.

Amphiphil'es, in the form of phospho-lipids (lipid=fat=polymer chain), are the

main building blocks, of biological cell membranes and cell organelles (intra-cellular

structures). The lipids fall into two main chemical classes; sphingosine and glycosine

based. The difference is in the chemical structure of the head group only and is not a

significant differentiating factor for the phase behaviour of lipid systems. In figure 2.2

a space filling model of a typical (sphingosine) lipid molecule is illustrated. Note that

the molecule is "double tailed", which is characteristic of lipids, but it is still rather rod-

like with a negative charge centre at one end.

Figure 2,2
Space filling model of (sphingosine) lipid molecule

sphingomyelin.

In aqueous solution pure lipids behave in the same way as other amphiphiles and

form the same types of structures and membranes. Cell membranes, on the other hand



are rather more complex than surfactant stabilised oil-water interfaces; they contain

significant percentages of proteins which complicate the structure somewhat, although

the lipid, amphiphilic, character of the membrane is still important.

In figure 2.3 a schematic representation of one and two tailed amphiphiles is

illustrated. The purpose of such a representation is to embody the main features of the

molecule without worrying about its exact geometry, so that when one uses the

schematic representation in illustrations of the conformation of the supermolecular

structures formed by the cooperative interaction of such molecules one is not distracted,

unduly, by microscopic details.

— Single tailed amphiphile

- Double tailed amphiphile

Figure 2.3
Schematic representation of one and two

tailed amphiphilic molecules.

Cell membranes, oil-water-surfactant and water surfactant systems are structurally

exotic. They cannot be classified as being solid or liquid in the conventional sense.

They lie somewhere in between and as such are termed liquid crystalline. In studying

such systems, from a theoretical point of view one hopes to extend the classification of

substances. From a practical point of view one hopes to discover new, exciting, and

potentially useful properties. , . . .-•.,-. ,•• ,

l l l L ,

2.2 Applications

It is evident that an understanding of amphiphiles and the structures they form

will be of interest and application in a variety of fields of study. More specifically the

understanding of amphiphilic systems is, at least, of direct relevance to the detergent



industry (increased cleansing properties, new more ecologically friendly detergents)

(Langevin et al 1985), oil industry (surfactant enhanced oil recovery) (Bansal and Shah

1976, Shah 1981, Dake 1982), pollution control (dispersants for accidental oil spillage),

pharmaceutical industry (e.g. methods of drug delivery) (Poste and Papahadjopolous

1979), food industry (e.g stabilisers/emulsifiers) (Dickinson 1987, 1991), and liquid

crystal research (e.g. display device technology) (Meiei et al 1975, Shanks 1982, Kahn

1982, Schadt 1989).

2.3 A Catalogue Of Amphiphilic Structures

In water and oil-water mixtures amphiphiles give rise to, or stabilise, an

abundance of exotic phases. The exact structures of some of these phases is still the

subject of intensive investigation (Seddon and Templar 1990), but many of the more

basic features are now well understood, at least from a geometrical point of view

(Israelachvilli et al 1976, 1977, Lipowsky 1991). Some of the phases form spontaneous-

ly under suitable conditions of concentration, pressure and temperature for a given

amphiphile. The associated structures are then said to be self-assembling. Other phases

and the associated amphiphilic structures may only be formed by special treatment of the

mixture - for instance the vesicle structures outlined below are often formed by

sonification, although they form spontaneously for some amphiphiles. Below, I detail

some of these peculiar phases and the associated structure of matter in them.

2.3.1 Tvpe-I (Normal) And Tvpe-II (Inverted) Micelles

In water-amphiphile mixtures the simplest structures formed by amphiphiles are

called micelles. A schematic illustration of the structure of a micelle is shown below in

figure 2.4.

Micellisation is the process of aggregation of amphiphiles into micelles.

Experimentally it is found that micellisation is spontaneous, occurs at extremely low

amphiphilic concentrations and the onset is characterised by a critical micellar

concentration (cmc) (Mittal and Mukerjee 1976). Below the cmc the amphiphiles are

to be found at the fluids interfaces.

The formation of the micelles is clearly driven by the hydrophobic character of

the tail. The early onset of micellisation is an indication of the relative cost of hydrating

8
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this chain as compared with the loss of entropy caused by the assembly of the

amphiphiles into more ordered systems. ' ' — Tt*e formation of

Figure 2.4
Type-I (Normal) micelle.

Tin:

The micelles illustrated in figure 2.4 are called a type-l (or normal) micelle. In

figure 2.5 type-ll (or inverted) micelles are illustrated. The phases associated with type-I

and type-II phases are designated L, and Ln respectively.

Figure 2.5
,i Type-II (Inverted) micelles.

!M:.^)<;. -V
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It is evident that a type-II micelle is an inverted type-I micelle. Clearly type-II

micelles occur when the concentration of amphiphile is very large. The formation of

type-II micelles is stabilised by the addition of oil to the amphiphile-water solution. The

formation of such micelles is driven by the hydrophobic amphiphile tails rather than the

hydrophillic heads. The added oil helps fill space between the inverted micelles.

••(.-'.n Micelles take a variety of shape forms: disks, rods and spheres, b ; oisx- v ,i:•--

V V«" r- ^ • 1rO"'

2.3.2 Microemulsions " '"'

If oil is added to the water-amphiphile mixtures above very similar structures

form. When added to type-I solution of normal micelles the oil is initially held within

the micelles. As the concentration of the oil increases the micelles expand, absorbing

and surrounding droplets of oil. The micelles are no longer micelles but rather oil

droplets suspended in water. The surfactant properties of the amphiphiles are revealed

as they now form an amphiphilic surface monolayer dividing the oil droplets from the

water. The associated phase is called the type-I microemulsion (Hoar and Schulman

1943, Prince 1977, Langevin et al 1985, Kahlweit 1988, Meunier et al 1987).

J f - i> > ( -i :>;T

K I <••

T - . I > ' . i :..'• .V. • „ • . • . • ! •

Figure 2.6
Type-I Microemulsion. »i - ; H ivt.;l-.*i>

Apart from the presence of oil in the interior of the oil droplets the difference

between a type-I micelle and type-I microemulsion is one of scale. A typical normal

micelle is a microscopic object of molecular diameter, whereas oil droplets can range

10



from mesoscopic to macroscopic sizes. Oil droplets are characterised by the formation

of an amphiphilic monolayer. J '

When oil is added to type-II solution of micelles it is initially held within the

interstices between the water centres. Initially the oil stabilises the microscopic micellar

structure; in fact inverted micelles sometimes only occur when stabilised by an oil

component. However, as further oil (and water) is added the micelles become water

droplets suspended in oil. This droplet phase is called the type-II microemulsion.

Figure 2.7
Type-II microemulsion.

As with the type-I microemulsion the difference between a type-II micelle and

type-II microemuision is one of scale. Again a typical inverted micelle is a microscopic

object of molecular diameter, whereas the water droplets can range from mesoscopic to

macroscopic sizes. Again the amphiphile form monolayer structures.

If oil and water are present in roughly equal proportions, and there is an adequate

supply of amphiphile, a further pseudo-microemulsion can form. In this phase there are

neither oil droplets in water nor water droplets in oil but rather two random bicontinuous

percolation regions, one of oil, one of water; separated by an amphiphilic monolayer.

In figure 2.8 one such bicontinuous pseudo microemulsions is illustrated schematically.

11
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Figure 2.8
Pseudo-microemulsion.

2.3.3 Long Rod Micelles - Nematic Phase

The type-I and type-II micelles discussed above are microscopic objects of typical

size of the order of a few tens of angstroms at most. Under certain conditions these

microscopically sized objects are able to grow to macroscopic lengths.

% • • ? ; < "

Figure 2.9
Type-I Nematic "long rod" phase (long

amphiphilic rods in water).

!L [..;M* 1iiI>.M'.'.!.'.

!iuc:p-.j.»etriic jU5

12



: In particular rod shaped micelles can grow to macroscopic lengths. Such rods

exclude one another so that a nematic (thread-like, rods aligning along a common axis)

phase of macroscopic rods of microscopic cross-sections forms. Figure 2.9 is a

schematic illustration of such a structure. ,

The rods are arranged in a 2-dimensional (hexagonal) super-lattice; whilst the

individual amphiphiles are restricted to a large degree to remain in their respective rods,

they are free to move, in the nature of fluid molecules, within the rods. Hence the

liquid-solid ambiguity of such a phase.

As with type-I micelles a structurally inverted phase exists. The phase of

micelles illustrated in figure 2.9 is designated Hr. The inverted phase illustrated in

figure 2.10 is designated Hn.

Figure 2.10
Type-II Nematic "long rod" phase (long

rods of water encapsulated by amphiphile).

Again the inverted phase is stabilised by the addition of oil to the mixture.

2.3.4 Sheet-like Micelles - Lamellar phase ,

Long rods are not the only way in which micelles may grow. Disk shaped

micelles may grow into progressively larger and larger sheets, eventually extending to

macroscopic scales throughout the mixture. Sheets like rods exclude one another (viz

two sheets cannot freely interpenetrate just as, for instance, two sheets of paper cannot).

13



Hence the mixture forms a layer structure - one sheet lying over the next. Such layered

phases are called lamellar and are designated La. In figure 2.11 there is a schematic

illustration of the lamellar a phase.

Figure 2.11
Lamellar phase.

The figure clearly illustrates the bilayer structure of the sheets; the sheets are

seemingly formed from two head-tail ordered layers stuck back to back. As with the

long rod phases there is a certain indeterminacy of the solid liquid nature of the phase,

for while the layers may be stacked in an orderly crystalline fashion the amphiphiles

themselves are free to move fluidly within the bilayers. In practice the layers are not

flat; rather they undulate. The degree of undulation is related to layer-layer separation

through the effect of the layer-layer exclusion. Once the phase has formed more water

can be added or removed increasing or reducing the layer-layer separation respectively.

The stability of the phase is thus strongly influenced by the concentration of water. Such

a phase is termed lyotropic. •--. ^ * •-.

In oil-water-amphiphile mixtures similar but not quite inverted structures can

form. The oil resides in the bilayer; if there is a surfeit of oil the bilayer splits into

separate fluctuating mono-layers. In figure 2.12 there is a schematic illustration of the

lyotropic lamellar phase. In the illustration there is a surfeit of oil which has separated

the bilayer as described. The result as the figure illustrates is a multi-layered sandwich

14



of oil and water. In practice the layers can be rather more convoluted than the

illustration shows. ' * ~ "" 'e ''"' - - • ' * : t 'u ;>

•t .-

Figure 2.12
Oil-Water lamellar phase.
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2.3.5 Vesicles

When disk shaped micelles grow into bilayer sheets, instead of growing to

macroscopic lengths as above they may turn around, curling back on themselves to form

closed surfaces like bubbles. Closed bilayer surfaces such as this are called vesicles.

< ; ' . , - • • ; • • . • , • • ' • . • • (

Figure 2.13
Vesicular phase. n j i r t ( '

Hal.

<.:I;

15



* Unlike bubbles vesicles exhibit a wide range of non-spherical shapes, which as

I shall further elucidate later, is due to the fact that vesicles are subject to only vanishing

surface tensions. Figure 2.13 illustrates schematically a vesicular amphiphilic phase.

2.3.6 Cubic Structures -. [

There is yet another class of exotic bilayer structures, formed in amphiphile-water

solutions, called cubic structures. Again the structures exhibit super-crystallinity on

macroscopic scales whilst remaining fluid on microscopic membrane scales. In these

structures the membrane divides the water into two separate, percolating, regions. The

percolation property means that each region is continuously connected and the water is

free to flow through it. In figure 2.14 a typical unit cell of the super-crystal is

illustrated.

Figure 2.14
Cubic bilayer phase(unit cell).

Other crystal structures can, and in practice do, arise. In fact the structure of

such super-crystals is still very much an area of on-going experimental investigations.

Defects of various types can be introduced into these crystals. If such defects

predominate then the phase is called a sponge phase. It can be seen therefore that the

sponge phase is somewhat intermediate in structure between the fully random

bicontinuous microemulsion phase and the rather more ordered three dimensional
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crystalline structure of the cubic phase. In figure 2.15 one such type of defect is

illustrated.

,:,; t\-LL n it*

'ihti.

' vt V

Figure 2.15
Sponge phase.

In oil-water-surfactant mixtures similar super-crystalline structures arise, but in

these structures separate oil and water percolation regions are formed. Moreover the

surfactants in these systems form monolayers rather than the bilayers illustrated above.

The bilayers illustrated are symmetrical whereas monolayers are clearly not. One might

r - tr:......

Figure 2.16
Oil-water cubic phase.
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expect, therefore, that monolayers might possess an intrinsic curvature; that is they may

prefer when in equilibrium to curve around towards one side rather than being flat.

Hence it is to be expected that the super-crystal structure of the oil-water-amphiphile and

the amphiphile-water exhibit differing structures and properties. Below is a schematic

representation of an oil-water-amphiphile cubic structure.

2.4 Phase Diagrams

When given a chemical mixture to investigate chemists use phase diagrams

(Atkins 1982) to map various phases and phase transitions that occur in the mixture.

Typically, given a liquid mixture the important quantities which determine the phases

present in the mixture are the temperature of the mixture and the mixture-wide

concentration of its components. The form of the phase diagram depends on the number

of components of the mixture. Let us first investigate two-component water-amphiphile

phase diagrams before moving on to the more complex three-component oil-water-

amphiphile phase diagrams.

2.4.1 Water-Amphiphile Phase Diagrams

In a two component phase diagram we plot component concentration along the

horizontal and mixture temperature up the vertical. We hold constant any other

parameters which may be important such as pressure and note their value for the

particular phase diagram.

In figure 2.17 there is a generic water-amphiphilic phase diagram which

illustrates the standard features of a oil-water-amphiphile phase diagram(Meunier et al

1987).

The phases actually observed for any particular amphiphile in solution will vary

depending on the amphiphile, but the broad class of properties of amphiphile-water

mixtures is represented in this diagram. The basic features of such a diagram can be

explained qualitatively by intuitive arguments (see e.g. Israelachvilli et al 1976, 1977).
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Figure 2.17
Generic water-amphiphile phase

diagram.

2.4.2 Oil-Water-Amphiphile Phase Diagrams

A three component phase diagram is plotted within a triangle. Any mixture is

unambiguously described by its component mixture-wide concentrations. From these

concentrations one can map to the relevant position within the triangle and vice versa,

as illustrated in figure 2.18.

Figure 2.18
Three component phase diagram

concentrations.

19



One should note that temperature and other relevant parameters cannot be

included (in 2-dimensions) and are held constant within the diagram. To discern the

temperature dependence of the diagrams one looks at a series of diagrams (temperature

contours) or plots the diagrams in 3-dimensions the vertical dimension representing

temperature. In figure 2.19 a generic three component oil-water-amphiphile diagram is

illustrated which exhibits some of the general features of such systems.

Water

L.. \

/ \ J \

H )

Oil Amphiphile

(Temperature = 20°C)

Figure 2.19
Generic oil-water-amphiphile

phase diagram.

2.5 Biological Membranes

So far I have discussed two and three component, that is water-amphiphile and

oil-water-amphiphile, systems only. Cellular systems have many components. In fact

it is not possible at present to specify all of the components present, in situ, in a living

cell. Nevertheless, biologists have been able, over the last fifty years or so, to identify

at least some of the essential components that make life possible.

Great strides have been made in the understanding of how cells use DNA to

synthesise the compounds they need. Also the catalysis of the metabolic process by

enzymes is now much better understood. At the forefront of these advances have been

geometrical concepts of shape and form.

The cell membrane is a fundamental unit in cellular systems. It marks the

boundary between the cell and the outside world. Cell membranes are not impermeable,
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permeable or even semi-permeable barriers between the cell and the outside world.

Rather they are selectively permeable allowing, as far as possible, desirable chemicals

to enter and nourish the cell and interdicting undesirable or poisonous chemicals. Hence

it is to be expected that cell membranes are not the simple structures dealt with so far.

In fact biologists have been able, using a variety of techniques, to determine the

geometrical structure of cell membranes quite well. They have discovered that the

structure of a cell membrane closely resembles the structure of a vesicle membrane; cell

membranes are amphiphilic bilayers. The selective permeability of the membrane is

achieved by adding proteins to the membrane which act as molecular pumps. Thus the

sophistication of the membrane is built by adding sophisticated equipment to a basically

simple amphiphilic bilayer. This model of a biological membrane is called the fluid

mosaic model (Singer and Nicolson 1972). Below in figure 2.20 is a schematic

illustration of the .fluid mosaic model of a membrane.

Figure 2.20
Fluid mosaic model of a cell membrane.

The amphiphilic building blocks are phospho-lipids. Within a cell membrane the

lip id chains vary in length from molecule to molecule. Generally there is an asymmetry

of lipid length across the bilayer, i.e. the average chain length of lipids on one side of

the bilayer is often significantly different from the other side. Typical lipid chain

lengths are 10-100 carbon units.
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CHAPTER THREE

MICROSCOPIC MODELS OF MEMBRANES

3.1 Introduction

In the context of this work modelling is the process of describing a real physical

system in a mathematical way. It is a process of reduction in which the system is

successively reduced from its initial complexity and diversity by discarding irrelevant,

redundant and negligible terms. Relevant terms and features are reduced to their

simplest, most basic, identities. Sometimes relevant features have to be omitted for the

sake of reducing the model to a simpler form; one solves the simpler model and tries to

take account of the omission later by looking at the results.

The success of a model is measured in several ways. Clearly the fewer relevant

terms that have to be omitted the better. The degree to which the equations that the

model generates can be solved is of importance, as is the proximity of the results so

obtained to available experimental data; quantitatively or, at least, qualitatively. Some

models can be solved using analytical methods whilst others require the use of numerical

methods. Analytical methods are to be preferred over numerical methods and numerical

methods over none. However, in general if one wants to model a more faithful (to the

physical reality), and thus more complex, representation then only numerical methods

provide a reasonable means of obtaining results.

3.2 Shape Polvdispersity In Fluid Vesicles

In order to model the complex fluid structures outlined in chapter one consider-

able reduction of the problem is necessary. This thesis is concerned with the effect of

shape polydispersity in vesicle systems. So one can see that already the problem of

studying the complex fluid structures has been narrowed to studying just one aspect of

such structures.

In fact further reduction of the problem has proved necessary in many vesicle

models. A common method of reducing the complexity of a problem is to reduce the
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dimension of the space. Vesicles are closed two dimensional surfaces in three

dimensional space. The generalisation of a membrane is a closed hypersurface. A

hypersurface is an (d-l)-dimensional object embedded in a (d)-dimensional space. In

particular, a one-surface is a one dimensional object sitting in a two dimensional space.

A one-surface corresponds to a curve in 2-dimensional space. It is considerably easier,

both theoretically and numerically, to study closed curves in two dimensions than it is

to study closed surfaces in three dimensions. As a result much work in the study of

vesicle shape is on two dimensional vesicle models. Ideally one would prefer not to

have to make the simplification but in practice it is often necessary.

3.3 Classification Of Membrane Models

In the literature models of membranes fall into two main categories; microscopic

and mesoscopic. Microscopic models of membranes treat membranes on the molecular

scale of the constituent amphiphiles whereas mesoscopic models treat membranes on the

scale of the membrane persistence length. The persistence length is the length scale

below which the membrane can essentially be considered flat (or rigid). Typically the

persistence length ranges from hundreds to thousands of times the molecular length.

Within the. class of mesoscopic models there is a subdivision into continuum and

continuum limit models. In continuum models the membrane is smooth and continuous

everywhere. In continuum limit models the membrane is continuous, but strictly only

smooth on scales below the persistence length. A true continuum model takes the

Helfrich Hamiltonian whereas continuum limit models only have the Helfrich

Hamiltonian approximately in the limit of a low curvature.

3.4 Mathematical Description Of Curvature

The ancient Greeks studied the relationships of lines, shapes and angles, a branch

of mathematical study now called geometry. The study of curvature falls into the same

category. Hence, one should not be surprised to learn that there is already a wealth of

knowledge accumulated in the mathematics literature about curvature. One naturally has

intuitive notions about the geometrical property called curvature, just as intuitively one

has notions about-length or weight. In fact curvature is a well defined, unambiguous,

mathematical entity whose properties are already well understood.

23



3.4.1 Curvature Of A One-surface (Curve)

It is easier to consider first the curvature properties of a one-surface. Below one

such membrane is illustrated. In the illustration one particular point of the curve has

been chosen and the circle of curvature of that point is shown.

Figure 3.1
Circle of curvature.

The circle of curvature at any point, s, on the curve is defined to be the circle

that touches the curve at, s, and whose gradient and rate of change of gradient is same

as the curve at s. The radius of the circle, R, is the radius of curvature. The sign of

R is fixed arbitrarily by convention. For example, for a closed curve, R can be chosen

to be positive if the centre of curvature is inside the curve and negative if it is outside.

The curvature, c, of the curve is defined by c = R1. Note that for a straight line R

= +oo so that c = 0, i.e. a straight line has zero curvature, and the intuitive idea that

a straight line is not curved has not been lost in the definition.

There are several ways in which one can parameterise a curve. A common and

often useful way is as a height function, z(x), above a given axis, x; i.e. z=z(x). A

more general (since curves need not be single valued in general) way of parameterising

curves is in terms of the curve-length, s; i.e. x=x(s) and z=z(s).
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Figure 3.2.
Parameterisations of a curve.

Thus one should not be surprised to find that there are several ways of expressing

the curvature of a curve depending on the mathematical description of the curve.

Consider a small element of the curve of radius curvature R; illustrated below.

Figure 3.3
"Infinitesimal" curvature

segment.

Now R8^ = 6s

so c = R1 = d^/ds. (3.4.1;2)
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Also 5s2 = <5x2 + <5z2 = 5x2[l + (dz/dx)2]. (3.4.1;3)

If curve is nearly flat (i.e parallel to x-axis) then dz/dx <̂  1.

5s « 8x (3.4.1;4)

and R5^ « <5x. (3.4.1;5)

So c = R1 ~ d^/dx. (3.4.1;6)

But tan(i/O=dz/dx (3.4.1;7)

and tan(\J/)~\{/ for ^ < 1. (3.4.1;8)

So iA = dz/dx for dz/dx «§ 1 (3.4.1;9)

and c = R1 « d^/dx « d2z/dx2 for dz/dx <§ 1. (3.4.1; 10)

Note then that for a curve parameterised in terms of its curve-length, s, we have

an exact expression for the curvature, c = dty/dx. In contrast, for a curve described

by a height function, z(x), we have an expression for the curvature, c = d2z/dx2, only

approximately correct in the nearly flat limit, dz/dx<l.

3.4.2 Curvature Of A Two-surface (Surface)

Now we are in a position to consider the curvature properties of a two-surface.

In figure 3.4 one such membrane is illustrated. The first point to note when considering

the curvature of a surface in three dimensions is that there is an extra degree of freedom

over and above that available to a curve in two dimensions; for any given point on the

surface there are an infinite number of curves lying in the surface and passing through

that point. Each curve through the point, generally, has a different circle of curvature

at the point to the others.

The problem of defining the curvature of a surface at a point is analogous to the

problem of defining the tangent of a surface at a point, since the tangent angle of the

surface at the point depends on the direction of the curve through the point too.

Therefore, not surprisingly, the solution to the problems is similar.

Before considering expressions for curvature let us consider how a surface may

be parameterised. First note that there is no unique procedure for doing this. There are

two widely used methods whose two dimensional space curve analogues were described
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earlier. On the one hand one can define a surface as a height function, Z(x,y), above

a flat surface, defined arbitrarily to be the xy-plane. On the other hand, one can

parameterise the surface in terms of curve length parameters, s and t, for a set of

orthogonal curves embedded in the surface; i.e. x=x(s,t), y=y(s,t) and z=z(s,t). The

second method is more general because surfaces, like curves, can fold back on

themselves so that Z(x,y) is not necessarily single-valued.

In order to solve the problem of defining the tangent of a surface the directional

derivative, De, was introduced. Partial derivatives are a special case of directional

derivatives; they are the directional derivatives in the x and y axial directions. Using

a vector of partial derivatives, of the surface function, one is able to determine the

tangent angle in any particular direction at any point on the curve.

In fact the directional derivative of Z(x,y) in the direction 0 is given by

DflZ = cos(8)—
dx

sin(6)—
dy

Which in vector notation can be written

DflZ = [cos(0),sin(9)]

8Z

ax

az
3yJ

(3.4.2;2)

So one can see that given the vector of first partial derivatives of the surface,

[3Z/dx, 3Z/5y], and using the direction vector, [cos(6),sin(6)], one can obtain the slope

in any given direction.

The curvature of a surface in three dimensions is also a directional quantity. In

order to specify the curvature in any particular direction at a given point on the surface

one needs a matrix of partial derivatives, called the curvature tensor (Spivac 1979). A

tensor is a multi-dimensional generalisation of a matrix; in this case however the

curvature need only be considered to be a matrix. It can be shown, in an argument

based on that in section 3.4.1, that in the nearly flat limit, (Z <1 , Z <1), the curvature

tensor can be written

Q
Z Z

yx yy

(3.4.2;3)
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The curvature at a given point in a given direction, ce , can then be determined

from the following expression

ce = [cos(6),sin(6)]
Zxx Z x

z z
yx yy

cos(0)

sin(8) (3.4.2;4)

The maximal and minimal circles of curvature at a point are called the principal

circles of curvature of that point. The eigenvalues, cx and c2, of the curvature tensor at

the point correspond to the principal curvatures (i.e. maximal and minimal curvature)

at the point. The corresponding eigenvectors indicate the principal directions of

curvature at the point. Since the curvature tensor is real and symmetric (Z = Z ).
xy yx

y

\

Y\\ ~"'\"

\ "y

y \ \ v̂^A \ \ \ \

*• \! y \ \
J^\ \ \
\ \ \ \ \\ \ \x~
\ \\ y\\y

\ Circles of
this point

\̂ Ai \

A \

curvatui

\

\

\

e for

* X

Figure 3.4
Principal circles of curvature.

then the principal curvatures always exist and the eigenvectors are orthogonal (at right

angles). Also since the curvature matrix is 2 x2 then there are only two principal circles

of curvature. In figure 3.4 one particular point of the surface has been chosen and the

two principal circles of curvature for that point are shown.

3.5 Microscopic Membrane Models

Microscopic models are used, principally, to investigate the nature of the

membrane Hamiltonian (The Hamiltonian is the energy function of a system; in this case
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the system being a unit area of membrane). In the Hamiltonian there is a set of

elasticity constants associated with the various possible types of deformations (stretch,

shear and bend) possible for the membrane. Using microscopic models one is able to

make some progress in the evaluation of dependencies of these constants in terms of the

geometrical quantities embodied by the membrane. r ' >}••..;•• - ' •••'- IK:> ••!

3.5.1 Microscopic Spring Model Of One-surface Bilaver k

In microscopic spring models of vesicles the bilayer is imagined to be made up

of a series of connected springs. Figure 5, below, illustrates one such arrangement for

a one-surface.

Define:

•". V U : . :

So that:

InfI ex i bIe ties

Bead Spr i ng

Figure 3.5
Microscopic spring model of a

one-brane bilayer.

ao= equilibrium spring length

a = actual spring length

h = membrane thickness

k = spring constant .... ;) .,tv:;,;

- ' it.f\

single spring energy e = k(a-ao)2/2
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t.. number of particles /

t = ! per unit length

This simple model of a membrane is able to provide the basic features of the

Hamiltonian upon which more complex models are dependant. There are two types of

deformations such a membrane can experience - stretch and curvature (i.e. bend).

Associated with each of these deformations is an energy, that arises, in this model, from

the extension or compression of the springs induced by the deformation.

Let us first consider the contribution to the Hamiltonian arising from stretching

deformations of the membrane. A stretching deformation of the membrane is illustrated

in figure 3.6. .

I
Stretch

a= ao(l+x)

Figure 3.6
Stretch deformation.

Suppose such a membrane, of length 1, is stretched uniformly. Then ; i

. • unitlength ^ ( 1 + x ) ' • v •• . . -> .• . (3.5.1;3)

lt;I ' length 1 -^l( l+x) i.e. 61 = lx. ; (3.5.1;4)

where x is the extension per unit length of the membrane due to the stretching.

Each spring is equally stretched so that a spring

'••'••'•'•'• length ao - ^ a ^ l + x ) i .e. 5a = a o x . v ' ' (3 .5 .1 ;5)
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r< l l < : CUl

ot- (3.5.1;6;

(3.5.1;7;

(3.5.1;8;

Hence, each spring stores elastic energy

e = kao2x2/2.

Number of springs in length 1 of membrane is --

iHcr un^ i.y, 2(l/a). . ^ ,

1 | ; Therefore total elastic energy change due to stretch is

r , . . ^ ; , , ; , ; , ; 2(l/a).(kao2x2/2)« klaox2 .^^. . . . , • . . . .

,-.,;•; So the stretch energy per unit length is ; , t k'

Hs=kaox2. (3.5.1;9)

If we write this in the form H s=ox2 /2 then we get an expression for the stretch

elasticity or line tension a=2ka0 . This tells us that the membrane stores energy

proportional to the extension squared; which is how a spring stores energy and is, on

reflection, what we would expect from such a model.

Figure 3.7
Curvature deformation.

Let us now consider a uniform curvature deformation and the contribution it

makes to the membrane Hamiltonian. Suppose one such membrane, of length 1, is bent

around so that it forms a circle, of radius r (such a deformation is illustrated in figure

3.7). Then the curvature, c = l/r, is uniform and if the membrane is not stretched (no

net extension of the membrane) there is no energy due stretching and r=l/27r. However,

as the figure shows, springs on the outside of the circle are extended whilst springs on

the inside are compressed and so a bending force is required to put the membrane into
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the circular configuration. The energy associated with this force is the curvature energy

of the configuration.

Now the outer ring of springs has radius r+h/2. So the circumference of the

outer ring of springs is 27r(r+h/2). Consequently the outer ring of spring experiences

a uniform extension of 7rh. The extension per unit length of the outer ring is

approximately (h small) 7rh/27rr=h/2r. The energy associated with this energy is just

half the energy required to extend a bilayer by the same amount, ka0h
2/8r2.

Now the inner ring of springs has radius r-h/2. So the circumference of the inner

ring of springs is 27r(r-h/2). Consequently the inner ring of spring experiences a

uniform compression of xh. The compression per unit length of the outer ring is

approximately (h small) 7rh/27rr=h/2r. The energy required for this compression is the

same as the energy required to extend the outer ring (since compressing a (Hookean)

spring by a given amount takes the same energy as to extend it by that same amount).

So the total energy of curvature per unit length of the membrane curved around

a circle of radius r is

Hc = kaohW. (3.5.1; 10)

If we write this in the form Hc = /cc2/2, where c=r"1 is the curvature of the

membrane, then we get an expression for the curvature elasticity:

K = kaoh2/2 = ah2/4. (3.5.1; 11)

The total energy per unit length of a membrane undergoing a stretch and being

curved around a circle is

H = Hs + Hc - ax2/2 + /cc2/2, (3.5.1; 12)

with a and K constants, given above.

In fact, this Hamiltonian is more generally applicable. In general membranes

experience position, s, dependent stretch and curvature deformations; x -» x(s) and c -»

c(s). However, locally around a small element of the curve of length 6s the curvature

and stretch can be considered uniform. So locally the Hamiltonian can be considered

to be the Hamiltonian just derived; i.e.

H -* H(s) = ax(s)2/2 + KC(S)2/2. (3.5.1; 12)
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Figure 3.8
Instantaneous stretch and

curvature.

Clearly to get the total Hamiltonian of the membrane one has to sum, viz inte-

grate, over the local elements, so that in fact:

H = /H(s)ds = / ( | x ( s ) 2
 + | c ( s

The Hamiltonian in (3.5.1; 13) is the basic Hamiltonian used in mesoscopic

models of membranes in two dimensions. It is called the Helfrich model of a membrane.

Later the generalisation to three dimensions shall be motivated.

Intuitively one can see that allowing a one-surface to have position dependent

stretch and curvature deformations is the most general deformation possible. In fact

there are well known theorems of geometry which can prove this intuitive idea. i

3.5.2 Microscopic Spring Model Of An Asymmetric One-surface Bilaver

The spring model can easily be adapted to model a monolayer or an asymmetric

bilayer. The key point about these membranes is that they prefer to curve towards one

side than the other, because of the internal asymmetry of the membrane. The

asymmetry of the membrane can be introduced by making the spring coupling constants

and equilibrium spring lengths for the top and bottom side of the membrane different.
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Figure 3.9
Microscopic spring model of a

one-brane monolayer.
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Define:

ax,a2 = equilibrium spring lengths

a = actual spring length

h = membrane thickness

k1;k2 = spring constants

So that now:

energy top springs

energy bottom springs

no of particles per

unit length

The flat state of the membrane is now no longer the freely adopted position, in

general. In the flat state the energy per unit length is given by:

1 _ 2 _ 2

2 n j a ax + a a2 (3.5.2;4)

where, a, is mean length of springs.

The energy contribution of one set of springs is just e = ex + e2.

For equilibrium we should minimise e. Hence for equilibrium in flat state:

= k,

= k2

= a"1

.(a-ai)

•(a-a2)

2/2
2/2

(3

(3

(3

.5

.5

.5

•2;1)

•2;2)

•2;3)
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de

da

a =

= 0

k ia i

= 0.
(3.5.2;5)

So that:

(Vkj) (3.5.2;6)

This is called the zero force condition on a.

Clearly stretch deformations of the membrane are going to lead to contributions

to the Hamiltonian of the same form (kjX2) as before with the exception that the spring

constant for the bilayer will the average of the spring constants of top and bottom.

It is not so clear, however, what the effect will be on the curvature contributions

to the Hamiltonian. To calculate the bending contribution imagine taking a length 2TTT

of the flat state membrane and bending it round into a circle. The resulting circular

membrane in equilibrium would have a radius r+x (not r!), where x is small but not

necessarily zero as we shall see. The membrane now has uniform curvature c « r1.

The outer radius is now R+h/2+x and inner radius is R-h/2+x. Hence

separation of particles in outer circle is aout=a[l+h/(2r)+x/r] and separation of particles

in inner circle is airl=a[l-h/(2r)+x/r]. Therefore the energy per unit length of such a

configuration is:

1 ah axH X 1 I ~ tUX (XA. I i I ~

= — nk. a-a,+-—+— + k, a-a,-\ 2r

ah ax
+—

2r r (3.5.2;7)

Expanding this expression:

H =!„!
c 2

ha.

2 a 2

+ i-

(3.5.2;8)

The first term is just the flat state energy, Hf say. From the definition of a the

first order term in x cancels. The expression can be minimised for x yielding:

. _ h_
0^k j ) (3.5.2;9)

The most important point to note in this equation is its dependence on the

curvature, c. There are now linear and quadratic terms in c. The linear term was not
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present in the case of the symmetric membrane. As a consequence the energy is

minimised for c^O, in general. In fact,

c0 « h p ^ a - a ^ + k^a-a^] (3.5.2;10)

is the minimizing value of curvature. So only if c0 as above =0 is a flat state possibly

the preferred state.

So we can write the curvature energy per unit length:

Hc = Hf + ^K(C-C 0 ) 2

2 (3.5.2;11)

where,

K - -n(k.+k2)a2h2

4 (3.5.2;12)

As with the symmetric membrane case this Hamiltonian is more generally valid

for position dependent stretches and bends. Then we write the Hamiltonian as

H = jH(s)ds = / | x ( s ) 2 + |(c(s)-co(s))2 ds (3.5.2;13)

where co(s) is the only new term over the symmetric membrane expression (3.5.1; 13).

3.5.3 Microscopic Spring Model Of Two-surface Bilayer

The spring model of a two-surface bilayer is no more complicated, conceptually,

than the spring model of a one-surface. One can arrange sets of beads and springs into

a bilayer structure quite easily. One such arrangement is illustrated in figure 3.10. In

these illustrations the amphiphiles are structured hexagonally in the membrane. In fact

the beads could be joined up into any arbitrary structure, but once linked they are fixed.

Since experimental studies show that the amphiphiles are free to diffuse through the

membrane in a fluid fashion then clearly the spring two-surface does not model physical

reality accurately in this respect.
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Figure 3.10
Plan view of spring model of a bilayer

two-brane.

True to its solid like structure this spring model of a membrane supports shear

deformations as illustrated in figure 3.11; viz it has a non-zero shear elasticity constant.

Figure 3.11
Plan view of a shear deformation of

membrane bilayer.

. H i U*;\ If ill- O W i l - j :-.,,;< , V,r - - J - i f i .

i l At first appearance one might expect the membrane to be anisotropically elastic;

viz the deformations produced by applying forces to the membrane depend not only on
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the forces but also on the orientation of the membrane. In fact this can be shown not

to be the case. That is, in the Hookean elastic limit the membrane can be shown to be

isotropically elastic. In contrast, when the springs are non-Hookean (i.e have elastic

energies dependent on higher order terms of the strain) the membrane can be shown to

be anisotropically elastic.

One can make some progress towards the Hamiltonian of an isotropic membrane

considering deformations of such a model. Consider a stretch deformation along one of

the crystal axes, e.g. x axis as illustrated in figure 3.12. The opposite sides are clamped

so that there is no net shift of the beads along the y axis, and that strain field is

negligible. One can see that the contribution of the springs along the x axis is Hookean.

But the transverse springs contribute to the stretching energy too. In fact their

contribution is also Hookean. So the membrane responds to stretch deformations like

a single spring albeit with a modified spring constant. One can impose a strain field in

any direction, the response is always the same.

Figure 3.12
Plan view of stretch deformation of

membrane bilayer.

Now consider simultaneously applying a stretch deformation in the transverse (y-

axial) direction. If the deformation is small so that the springs continue to respond in

a Hookean fashion then the energy due to each deformation will be independent.

Moreover if the membrane is isotropic then the elastic constant for each deformation will
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be identical, a say. So the total energy due to the stretch is the sum of the two

independent stretches, i.e.

l 2
+ x

TJ Oi
H s = -T * y2 (3.5.3;1)

where xx and xy are the strain components in the x and y directions respectively.

Further one can decompose any general global stretch deformation locally into

a pair of orthogonal stretches and so more generally one can write

Hs = ^-ff(xs
2(s,t) + xt

2(s,t))dsdt
2 J j V ; (3.5.3;2)

where s and t parameterise the membrane and xs and xt are the corresponding local

strain components.

Now consider the simplest curvature deformation of the membrane; imagine it

rolled into a cylinder. As for the membrane in two dimensions considered in section

3.5.1 one should expect the membrane to resist such a deformation. As previously, the

reason being that the inner and outer membranes are compressed and stretched with

respect to each other. A short consideration will confirm that the nature of the stretch

and compression are uniaxial. As such the result for the two dimensional system follows

through, so that for this deformation the energy of the deformation is proportional to the

curvature of the cylinder squared (that is the curvature on the surface in the direction

perpendicular to the cylindrical axis).

Now if the membrane is wrapped around the cylinder in any other orientation the

same result applies, since the membrane is isotropically elastic to such deformations.

It can be shown that the only quantity to take the specific value above and which remains

invariant under these orientational transformations is

H< = ^ + C ' )2 (3.5.3;3)

where cx and cy are the x and y components of the curvature; which is uniform for the

cylindrical deformation (The quantity (c +c ) is the trace of the curvature tensor which
x y

is why it remains invariant under rotational transformations).

In fact (3.5.3;3) remains valid locally for all other curvature deformations. So

that one can write
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H c = ^[f(Cs(Sti + Ct(s,t))2dsdt
2JJ (3.5.3;4)

where s and t parameterise the membrane and cs and ct are the corresponding

curvatures. Equivalently one can write

Hc = iffci&V + c2(s,t)fdsdt
2 J J V ; (3.5.3;5)

where ct and c2 are the principal curvatures.

Hence the final form of the Hamiltonian for a membrane (of fixed topology) in

three dimensions is

H = f r(K(c1(s,t)+c2(s,t)-co(s,t))2 + a(xs
2+xt

2))dsdt
(3.5.3;6)

where I have included the asymmetry term, c0, from (3.5.2;13) for completeness. This

Hamiltonian represents the full Hamiltonian for membrane systems experiencing stretch

and curvature stresses. There is no shear term, so that the membrane it models is

supposed to be fluid. The expression in (3.5.2;3) is exact. The first term is the

Helfrich curvature term. The second is a surface tension term.

3.5.4 Molecular Models Of Membranes

The spring models discussed above do not truly model membranes on a molecular

scale, despite their success in providing the Helfrich Model for use in mesoscopic

models. There are models which attempt to model more faithfully the molecular reality

of membrane systems (Israelachvilli 1976). These models calculate the free energy

associated with any particular configuration of the membrane in order to determine

energy dependence of stretches, and more particularly bends. There are many such

models using different numerical or analytical techniques, but the basic flavour is the

same. Figure 3.13 illustrates a possible representation of a membrane in such a model.

Here the membrane is modelled as a collection of chain molecules whose heads

are packed into a particular surface configuration. The chains of molecules are self

avoiding, i.e. no two molecular units can occupy the same place. One can introduce a

deformation to the membrane and ask what is the free energy of the deformed membrane

compared to the original. One can alter the sizes of chains and so on to investigate the
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effect on the free energy. If one imagines the chains on a lattice one can make some

headway in finding analytical expressions for the free energy of configurations.

Figure 3.13
Molecular model of an amphiphilic

bilayer.
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CHAPTER FOUR

SCALING THEORY IN POLYMER CHAINS

4.1 Introduction

When one initiates a study into some new or unexplained phenomenon one looks

to see if there are- any analogous phenomena from which one can adapt the analyses to

apply in explaining the new phenomenon. This cross-fertilisation of ideas makes

progress much easier and faster, even facilitating progress where it was not previously

possible.

The study of membranes is closely related to the study of polymers. Indeed in

the two dimensional case membranes and ring polymers are indistinguishable from a

modelling point of view. In higher dimensions, and in particular three dimensions, this

is of course not the case. Nevertheless one should not be too surprised to learn that the

analytical techniques used and developed to study polymers are directly relevant to the

study of membranes, and in particular vesicles.

Recent advances in the field of shape polydispersity in vesicles have stemmed

from the use of scaling analysis to interpret results generated by numerical models and

simulations. These scaling analyses were motivated by the successes of scaling analysis

in the theory of polymers and the direct analogy between polymers and membranes.

Hence in this chapter I shall discuss the scaling theory of polymers and related

topics such as fractality (Mandelbrot 1983), which is currently an area of intense

research and discussion, and the renormalisation group method (Ma 1985, Huang 1987).

4.2 The Free-flight Chain

The free-flight chain is probably the simplest model of a polymer. From an

analytical point of view it is essentially identical to the random walk (also called

drunkard's walk) model of the diffusion of gas molecules. In the free flight chain model

of a polymer the polymer is imagined to be constructed from a series of smaller, rigid,
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and essentially linear segments, called links, joined together by freely flexible joints,

sometimes called spacers.

Figure 4.1
Free-flight chain model.

In the free-flight model there are no restrictions on the orientation of the links

except, of course, that they must all remain joined together. It is assumed a priori that

each configuration is equally likely. In the simplest case the links are all assumed of

equal length, a say (c.f. in random walks a corresponds to the mean free path X). Any

given chain has a fixed number of links, N say. The total length of the polymer chain

is therefore Na.

If one was studying an ensemble of free-flight chains one would be interested in

how the properties of the chain depend upon N, a and d, the dimensionality of the space.

One might expect that the end-to-end displacement R of the polymer chain would be an

interesting property to study and this is in fact the case. However the average

displacement is identically zero, i.e. < R > = 0 (i.e =0 Va,N,d), since for every

configuration, R=E! say, there is a "conjugate" configuration, R=-R!, that is equally

likely and which therefore cancels with the former term in the averaging.
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A more interesting quantity is the end-to-end distance of the chain defined by,

RF= <R 2 > 'A. In some sense the end-to-end distance tells us how large the polymer is

on average; it tells us how "strung out" the chain is. One can derive an analytical

expression for the end-to-end distance in terms of the ensemble parameters, N and a, in

the case of the free flight chain (Chandrasekhar 1943).

If the i'th link is r; then by definition a molecule in this model is the ordered set

{11,12,...,IN}. The set is ordered since changing the order of any of the links generally

changes the configuration of the molecule.

By definition:

|r = a and R = Y^ r .
1 i zw ;

Moreover

.r => <R2> = Y <r .r >.
4 ^ j 4^ j
y y (4.2;2)

But

<r..r.> = <|r . |2> = a

<r'>.'<r > - 0
1 J

because i'th and j 'th steps are independent for i ̂  j (c. f. in probabilities P(A.B) = P(A) -P(B)

for A and B independent events), and <v{>=0.

Hence RF
2 = <R 2 > = Na2. (4.2;4)

So RF = aN*. (4.2;5)

This argument is valid independently of the number of dimensions, d, in which

the polymer is embedded. So the end-to-end distance is independent of the

dimensionality of the space - something we may not have expected a priori. One can

show that this is a result of the idealised nature of free flight chains, and is not true for

real polymers. Most important is the N dependence of the relation, since experimentally

it is easy to vary N but difficult or impossible to vary a without changing the polymer

chemically. We shall see that in general the end to end distance varies according to

RF ~ N", where v is known as the chain exponent and v = Vi is the ideal chain exponent.
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A related quantity of interest is the radius of gyration, RQ, defined by the relation

^ G = v((r2) ~ (r)2) • • An analogous argument shows that R ^ a N " , with p = l/2 once

again. The end-to-end distance turns out to be useful in studying rubber elasticity

whereas the radius of gyration is well suited to explanations and descriptions of the

rheological properties of polymer fluids and solutions (de Gennes 1979).

One can go further and ask more searching questions about the end to end

displacement, R, of a free flight chain than simply its mean and mean-square values.

In particular one can ask if there is an analytical expression for the probability density

Junction pN(R) (Chandrasekhar 1943). Note that this is a natural progression of the

investigation since the mean and mean-square end to end displacements are expectation

values of R and R2 for the distribution and as such are clearly subordinate to it.

When one says pN(R) is the probability density function of R what one means is

that the probability of a polymer chain having an end to end displacement in the

("infinitesimal") region [R,R+dR] is pN(R)ddR (in this notation ddR=dR1dR2...dRd,

where dRi is the i'th component of R).

From this definition and basic probability theory it should be clear that:

fpN(R)ddR = 1
RO (4.2;6)

since displacement must be somewhere in Md and

<R> = (RpN(R).ddR = 0
RO (4.2;7)

<E2> = /R2pN(R)ddR = RF
2 = Na2.

Rd (4.2;8)

by definition of the expectation operator < > .

Now in this notation a chain of only one link has a probability density function

p! for its displacement. But each link can itself be considered as a chain of just one

link. So the displacement r{ of the i'th link also has a probability density PiOj); that is

to say there is a probability Pid^d'V of the link displacement, ri; being in the region

[r,r+drj.

It is possible to relate pN(R) to {pidi)}. Given that a molecular configuration has

been reduced to an ordered set of links {jj} it is possible to find R through the relation:
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R £ ,
1 ' (4.2;9)

On the other hand given R there is no single (ordered) set {r.;} which uniquely

yields R as its total displacement. Rather there are many sets of {r-} which yield R as

their total displacement (N.B. it is easy to see for instance that R does not depend on the

ordering of the links because of the transitivity of vector addition). The probability of

any particular set in the interval [{rj},{r;-f-dr;}] arising is:

(4.2;10)

where we use the fact that each link is independent of all the others (so that

P(A.B)=P(A).P(B)).

Consequently it is clear that:

PN(E) = /.../p1(r i)p1(r2)...Pl(rN)6(r i+r2+...+rN-R)ddr id
dr2...ddrN

(4.2;11)

It is clear from the rotational symmetry of the distribution function, which was

responsible for < R > =0, that the distribution function must be a function of the

rotational invariants of R. A vector R has only one rotational invariant, its magnitude,

R. So pN(R) can be written as a function of R, i.e. pN(R)^»pN(R). F° r s u c n a symmetry

one can also transform the volume element so that:

ddR=CdRdldR (4.2; 12)

where Cd is a constant depending on d. In particular, for three dimensions:

d3R=47rR2dR (4.2; 13)

Now the Central Limit Theorem of Statistics (see Kreyszig 1983) tells us that the

probability distribution of a sum of, N, independent variables with the same probability

distribution is the Gaussian distribution, in the limit N-°°. Applying the Central limit

theorem to (4.2; 11), tells us that pN(R) is the normal distribution in the limit of large N,

i.e. N > 1. So, in three dimensions:

„ , i 3R2) ( 3(x2+y2+z2)N

pN(R) « exp ~ exp —5= y— >-
2Rp 2RF

2 (4.2;14)
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The constant of proportionality is determined through the normalisation

requirement. After normalising we get:

R

(2TO3/2R
exp

3R2 R2 3R'
exp2R2 (2:rN)3/2a3 2Na2J (4.2;15)

These are Gaussian statistics and so the free flight chain is sometimes called a

Gaussian chain. The free-flight chain is also known as the ideal chain. The chain is

only truly Gaussian in the large N limit. Some headway can be made towards the lower

N regions but the analysis becomes extremely involved (Flory 1969).

4.3 The Biased-flight Chain

In the free flight chain the displacement probability distribution of each link is

uncorrelated, i.e. independent of, the displacements of all of the other links. This

property stemmed from the fact that all orientations of the links were allowed and were

equally likely as the links were assumed to be joined by freely flexible spacers. Of

course, in practice this assumption is not usually true, usually the orientation of a link

will be influenced'by, and hence correlated to, the orientations of its neighbouring links.

In biased-flight chain models one tries to take account of these correlations.

There is more than one way of introducing correlations into the free-flight chain

model. The effect of biasing on the chain's scaling relations is to change the prefactor

only. The characteristic scaling exponent, v, is unchanged, =1/2. Thus we see why

the scaling exponent is considered a more fundamental property of ideal polymers than

the prefactor. Underlying this result is a re-scaling argument that is more fundamental

than the result itself (de Gennes 1979, Flory 1969, Mandelbrot 1983). The ideas of

rescaling are embodied in the so called Renonnalisation Group Theory (Ma 1985, Huang

1987). The name of this theory is rather misleading in the context in which we use it

since there is no "group theory" involved. Renormalisation is the keyword. It points

to the concept of having an invariant scaling law, but with a prefactor determined by

normalisation; that is re-normalisation on the appropriate length scale.

The important idea in the renormalisation of the biased chain is that there is a

correlation length, £, along the chain beyond which memory, i.e. correlations to, the

original link displacement is forgotten. For chain lengths L < £ correlations cannot be

47



neglected. But for L>£ the chain can be thought of as an unbiased free-flight chain

with a~£ , and with N~(L/£) links. So it is not surprising that R G ~ L " with v=Vi

unchanged. A biassed chain with its correlation length is illustrated in figure 4.2.

Figure 4.2
Biassed chain model.

4.4 Self-avoiding Chain

The biased-flight chain discussed in the previous section introduced the concept

of local correlations between chain links. In fact significant global correlations between

the links do exist in real polymers. The principal source of correlations is from

exclusion. In real molecules no two atoms or molecules can occupy the same point in

space. As a consequence in our model of a polymer the links should not be permitted

to intersect. A random walk in which the path never intersects with itself is called a

self-avoiding walk (Chandrasekar 1943). A self-avoiding random walk on the lattice is

illustrated in figure 4.3.

Other sources of global correlations exist to a lesser extent; examples are van der

Waals bonding, hydrogen bonding and in the extreme case zwitter-ionic attractions.

The effect of including the global self-exclusion correlation into the free-flight

chain model turns out to be more profound than including the local correlations. It is

clear that the re-scaling argument used there cannot be applied analogously for this self-

exclusion property. To make any progress analytically we have to approach the problem

from an entirely new direction. We shall find that the self-exclusion effect causes the

value of the scaling exponent, v, to change. In fact the value of v is characteristic of the
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type of model we look at; we can determine whether an ensemble of chains is ideal or

self-excluding by looking at the chain exponent.

Figure 4.3
Self-avoiding chain model.

First let us re-derive the scaling relation for an ideal chain using Flory's

argument. From the definition of PN(R) it is clear that pN(R) <x number of ways of

arranging a random walk starting at 0 and finishing near R. The entropy S associated

with such a walk ~ kBln(pN). So that:

SCR) _ 3R2 . ( R2

+ In + const
(4.4; 1)

where (4.2; 10) has been substituted.

In equilibrium the Helmholtz free energy, A, is minimised. Now

A = UT - TS . (4.4;2)

But for an ideal chain UT=0. So that, in this case, minimising A is equivalent to

maximising S. Maximising S will give us the most favourable value of R, RF. For the

ideal chain

1 dS

^ a R

so that

J_^S_
kD5R,

3R + 2_

Na2 + R

= 0 2a 2N

\

(4.4;3)

(4.4;4)
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Examining (4.2; 14) we see that RF ~ N(1/2), as before (c.f. (4.2;5)), but now the

prefactor has changed. So Flory's argument appears to get the form of the equation

correctly, with the correct value for the scaling exponent, 1/2, but fails to compute the

prefactor correctly. In any case we have already said that the prefactor is of less

significance than the exponent.

Now let us use the Flory argument to investigate the self-avoiding chain. Now

some of the walks between 0 and R that were previously allowed are forbidden in this

case, so that pN(R)-pN(R). Consequently the entropy S is changed. The change in

entropy is called the correlation entropy.

We make a guess of the approximate correlation entropy by introducing an

effective exclusion energy. Suppose that each link has a volume v, and that there are c

links per unit volume. Then the associated effective exclusion energy per unit volume

Uis

U « -kRTvc2

2 (4.4;5)

if we think of the links as "freely-floating" throughout the volume in which the chain is

effectively confined. We arrive at this form using the same approximations as for virial

expansion (Golden 1964).

The chain has N links which are effectively confined to a volume oc Rd so that

c = NR~d UT = -kHTvN2R"d = RdU
2 (4.4;6)

Hence

A vN2 3R2 ,
+ - hi

T Rd 2Na2 {j

Note that the dimensionality of the space d is a key parameter in this expression.

For d < 4 the logarithmic term is unimportant for the limit N > 1.

Again minimising the free energy, A, gives the most probable value of R, RF.

For the excluded chain

• dvN2 3R ., „
= + (d<4).

Rd*i Na2 (4.4;8)
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So that

as
dR

= 0 =*
R=RF

Most importantly

RF

d+2

^

dva2N3

3 (4.4;9)

RF ~ NVd ~ N3«d+2>

and more specifically

v i = !> V2 = \> V3 = |

d+2

V4 = {•

(4.4;10)

where the index denotes the dimensionality of the space. These exponents are the so

called Flory exponents. The argument was initially presented by Flory for 3-dimensions

only; the d-dimensional generalisation being attributable to Fisher.

So for self-avoiding chains the exponent depends on d for d < 4 . Note that the

value of the scaling exponent for d=4 is the same as for the ideal chain. Below d=4

the scaling exponent of the self avoiding chain is larger than the scaling exponent of the

corresponding ideal chain. Note that intuitively we expect self avoiding chains to be

expanded compared with their ideal counterparts; the self avoidance acting effectively

as a repelling force. The chains are sometimes said to be swollen (with respect to their

ideal analogues).

Careful examination would show that the logarithmic term in (4.4;7) becomes

important at d=4.

This method can be thought of as a Mean-field theory, because when we derived

the effective energy due to self-avoidance we imagined that the action of the self

avoidance of the whole set of links on each individual link could be thought of as an

average and uniform field. This is a standard approximation often made which often

turns out not to matter in the final result, for the appropriate limit.

Despite the fact that this is a mean field theory one gets "non-mean field"

exponents. In statistical mechanics many situations arise where mean field theories get

correct results except in the low dimensional limit d < 4 (Ma 1985, Huang 1987).

The Flory theory is a self-consistent theory. In the Flory theory the entropy of

the chain is drastically over estimated. The self-avoidance pseudo-potential is also over
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estimated. The over estimations appear to cancel against one another in a consistent

fashion, since the results of the Flory theory are remarkably consistent with experimental

observations and results obtained from simulations.

4.5 Fractality And Self Similarity

Recall the scaling law for a self avoiding chain in three dimensions:

K ° w UJ (4-5;1)
This scaling law tells us how the radius of gyration scales as compared to the

ratio of the total chain length, L, to stiffness length a.

Imagine taking a particular polymer then a is fixed, but L can be varied. Then

the scaling law tells us that RQ=L 3 / 5 . HOW does this compare with the scaling of

ordinary objects? Scaling a circle, triangle, square or any fixed polygon or curve causes

the radius of gyration to scale according to R G = L . SO clearly scaling the polymer is

subtly different.

The reason that the polymer does not scale like an ordinary object is that as its

perimeter length L is increased then the degrees of freedom of the chain to twist and

turn are increased; this corresponds to introducing new vertices into the polygons. In

fact if one could examine a given polymer as one drew away from the initially rigid

length scale, a, one would observe that the polymer twisted and turned on all subsequent

length scales. In fact at large length scales on could not determine the stiffness length

of a polymer by observing the character of its twists and turns. The polymer is said to

be self-similar.

Objects which scale with a fractional scaling exponent such as the self avoiding

chains / polymers are said to be fractal. Fractals are characteristically self-similar. For

instance it is the twists and turns on all length scales that cause the length of the polymer

to be soaked up causing the fractality of the radius of gyration and it is the same twists

and turns on all length scales which make the polymer self-similar.
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4.6 Universality

Often when carrying out physical observations the observed quantity at first

instance appears to depend on a large set of independent variables. However it is

usually possible to identify that the quantity actually depends upon a reduced set of

independent variables. One transforms to the reduced variables from the originals by

a specified transformation. A classic example where this occurs is in Wiens law in the

Rayleigh-Jeans theory of blackbody radiation (Gasiorowicz 1966). It turns out that this

universality behaviour is important in the interpretation of observations on vesicle

systems. Here I discuss the analogous case for two-dimensional polymers.

4.6.1 Universality Of Polymers With Finite Rigidity

Consider the two dimensional case, for simplicity, of a chain with rigidity K.

Such a chain has the Helfrich Hamiltonian:

L

H = — /(c(s)) ds + Self-avoidance. ,^ ^ ^ .^
2 o

where s is the length moved along the chain and c(s) is the curvature of the chain at s.

Now clearly K ~ £ and RG=RG(L,^).

There are also two scaling forms valid in asymptotia:

Rr ~ f-V L-°°, K-0G UJ (4.6.1;2)
RG ~ L L-0, K-°O (4.6.1;3)

The former is valid as the rigidity is just an example of a local correlation force

and the latter is valid since a rigid polymer is just a rod.

One can postulate a universal scaling form for RG:

R G f] ()
° UJ UJ (4.6.1;4)

Here f is a universal Junction. That is it is the same function for all polymers

and chains. The scaling form should hold for all L,K. One can see that if the universal

scaling form holds then there is, in a sense, one less variable - the ratio L//c is the

independent variable.

53



One can illustrate a particular case where this holds, the case of the two

dimensional free-flight polymer with rigidity.

4.6.2 Universality Of 2D Free-flight Polymer With Rigidity

A polymer of length L can be modelled as a smooth curve of length L. Then the

ensemble of all polymer configurations becomes the ensemble of all curve functions of

length L. I have already discussed the parameterisation of a curve in terms of its own

curve-length, s. The curve itself is synonymous with the normal angle function, \]/(s),

since from that function all properties of the curve can be derived. For instance the

trajectory (x(s),y(s)) can be evaluated from i^s) using:

s

x^(s) = JcosiKQdt (4.6.2; 1)
o
s

y^s) = Jsrmj/(t)dt (4.6.2;2)
o

Thus the curve function is the normal angle function i/<s). The curve function

parameterises the ensemble space ^=0°° . Hence the partition Junction (Huang 1987),

Z, of the ensemble of free flight curve configurations will be a. functional integral. In

fact using statistical mechanics it can be shown that:

(4.6.2;3)

where I have nominally set kBT=l so that K/(kBT)-*K. In effect the temperature

dependence is to absorbed into the rigidity constant, K. Dip is the volume element in

the function space of the ensemble and can be written in the form

( 4 . 6 . 2 ; 4 )
S •—U

whereupon it becomes clear that a functional integral is equivalent to an infinite

dimensional parametric (standard) integral since we are performing the product over a

continuous parameter, s. Finally dty/ds is the curvature of the polymer as derived in
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Now one can make the scaling transformation s - s/L so that s = Ls and

ds = Lds. This transforms a polymer of length L to a polymer of unit length. Under

this transformation the partition function, Z, becomes:

( x I \ 2

Z = CJIIdiKs)exp " ^ " / r p ^ (4 6 2-5)

So one can see that for a system of unit length Z=Z(K/L) and consequently

R F =R F (K/L) (the tildes indicate the quantity is for the unit length polymer). Now the

effect on the average end-to-end length of translating from the unit length polymer to the

polymer of length L is just to scale it by a factor L so that

RF = LRpf-1
W (4.6.2;6)

This confirms the result (4.6.1;4) motivated in section 4.6.1 for the two

dimensional free flight polymer with rigidity; where the association f ~ RF is made.
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CHAPTER FIVE

MESOSCOPIC MODELS OF VESICLES IN TWO DIMENSIONS

5.1. Introduction

The principal use of mesoscopic models is the determination of the natures of

membrane shape and size behaviour. For instance, one can determine how the radius

of gyration of a vesicle varies with the various elastic constants. The membrane

Hamiltonian is treated phenomenologically (physically determined) in such models;

although hypothetical Hamiltonian forms can be tested and the results compared with

the real world membranes for rejection or confirmation of the form. Thus microscopic

models provide the input data, the Hamiltonian, for mesoscopic models.

5.2. The Helfrich (Mean Field) Model

Helfrich introduced a continuum model of vesicles, the Helfrich model (Helfrich

1973, 1974, 1976, 1990). In this section I intend to briefly outline the method used by

Helfrich and to discuss the successes of the model in predicting observed membrane

shapes (Berndl et al 1990). The method uses a quasi-three dimensional model of a

vesicle; that is it models vesicles as volumes of revolution so that although the vesicles

are three dimensional one of the dimensions is proscribed and so does no represent a

true degree of freedom of the system. The parameterisation is illustrated in figure 5.1.

The method of Lagrangian multipliers (Arfken 1985) is used to minimise the

free energy. For this minimisation the vesicle can be parameterised in terms of the

tangent function, i|x(s), or the trajectory, r(s). In practise one chooses the parameterisa-

tion according to the type of minimisation analysis that one wishes to perform. The

tangent function parameterisation is useful for shape analysis of the minimisation,

whilst the trajectory parameterisation is more useful for stability analyses.
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Figure 5.1
Helfrich model of a vesicle.

In the original model of Helfrich, sometimes called the spontaneous curvature

model, the vesicle shape was minimised for the free energy

L

F = f/(c(s) - cj'ds + PA (5.2;1)

where the first term is clearly the curvature energy and the second couples the area of

the vesicle, A, to an osmotic pressure differential, P, between the inside and outside of

the vesicle.

The osmotic pressure term in the free energy is important because without it the

minimisation leads only to the trivial circular geometry. The effect of the pressure is

to cause the vesicle to deflate. Observed shapes include elliptical and bilobular

geometries (Figure 5.2). In fact a catalog of the deflated vesicle shapes has been

produced by Helfrich (Helfrich 1976).

This initial model has been developed further to study the adhesion of vesicles

for a variety of potentials; including a contact potential, long and short ranged

potentials (Seifert 1991).

A second exciting and more fundamental development of the model has been

the introduction of the so called bilayer coupling model (Svetina and Zeks 1983, 1989).

This model explicitly takes into account that vesicles are made of bilayers. It considers
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the bilayer to be a pair of coupled monolayers and assumes that lipid transfer between

the monolayers does not occur. The net effect of this is that the differing thermal

expansivities of the coupled monolayers renders the monolayer asymmetric and leads

to a large number of exotic new vesicle shapes. The asymmetry of the monolayer is

reflected in the solutions of the model. Investigations of the phase space have shown

it to be particularly rich in vesicle geometries (Svetina and Zeks 1983, Seifert et al

1991). Moreover many of these geometries have been observed and identified

experimentally in optical micrograph experiments (Berndl et al 1990). In figure 5.2

some of these optical micrographs with the associated model vesicles are presented

courtesy of Berndl et al (1990).

Figure 5.2
Some observed vesicles with corresponding bilayer coupling model

shapes, courtesy of Berndl et al (1990).

There are some problems and limitations on this model of vesicles. Firstly the

Helfrich model looks at most probable vesicle shapes by minimising a free energy.

This is in the spirit of the Landau theory of phase transitions. Fluctuations around the

most probable shape are neglected. Strictly a more correct approach should take these

fluctuations into account. Such fluctuations are accounted for if a full evaluation of the

partition function is made.
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*n'J Intuitively it can be seen that the model does not easily allow convoluted shapes

of the type that is to be expected to occur in the partition function.'SK ma wiih wm^

5.3. The Leibler-Singh-Fisher (Bead Chain) Model

The Leibler-Singh-Fisher model (Leibler et al 1987, Fisher 1989) of vesicles is

the so called bead chain model. It is a two dimensional model, although it easily

extends to three dimensions. The vesicle is modelled as a series of hard (impenetrable)

beads joined together by flexible but inextensible strings. The Hamiltonian imposed

on this bead chain arrangement has been constructed so that in the limit of the number

of beads becoming infinite it is indistinguishable from the Helfrich model; that is, the

model is a continuum limit model evaluated in real space. Figure 5.3 is an illustration

of one such vesicle.

Flexible inelastic
spacers

• . ) : •

Figure 5.3
LSF model of a vesicle.

•••v .-

^ The Leibler et al model uses the method of Monte-Carlo Simulation. The beads

are made to jump randomly in a Brownian fashion subject only to the constraint that

the separation of any two neighbouring beads is not greater than a, the maximum bead-

bead separation. This constraint taken together with the hard bead property ensures

that the vesicle walls are self-excluding as illustrated in figure 5.4.

The hard bead property requires that no bead impinge upon another. This is

ensured by checking any bead move and rejecting it if the moved bead impinges on
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any other. The simplest way to check this is to check the distance between the moved

bead and all the other beads. This is a very time consuming process and with some

consideration a significantly better method can be devised. In Appendix such a method

is discussed. , ..,_-,„ . .._

/ r
id about to penetrate.

Figure 5.4
Self exclusion in LSF model.

•!.:bjt:C. i

The standard algorithm of Metropolis et al is followed (Ma 1985). The

Hamiltonian of the model is

a •-! (5.3jl_)

where 0j is the angle between the (i-l)'th, i'th and the i'th, (i+l)'th beads.

It can be shown that in the limit of N—»oo this Hamiltonian and the Helfrich

model Hamiltonian are identical. In such a scheme it is possible, by keeping records,

to work out various average parameters such as <A>, <A2>, <Rg
2>, <E>, <E2> and so

on. In fact one can ask any question one can imagine about the statistics of the

ensemble and expect an answer. In order to analyze the results of such a procedure

one uses scaling theory arguments to postulate analytically what kind of behaviour one

expects from such an ensemble and compares these with the actual results for

confirmation. •••'- J 1 !'-•*" Llk-'- • v t J I *v * • ^••••~ — * e ~ j
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5.4. The Ostrowskv-Pevraud (Continuum) Method

The Ostrowsky-Peyraud method (Ostrowsky and Peyraud 1982) is a method of

evaluating the partition function of the Helfrich model; as opposed to the free energy

minimisation method due to Helfrich, discussed in section 5.2. This means that the

Ostrowsky-Peyraud method treats vesicles as statistical mechanical objects, subject to

the associated thermal fluctuations, whereas in the Helfrich method they are being

treated as ordinary mechanical objects.

Ostrowsky and Peyraud investigated the partition function for isolated two

dimensional vesicles, a two dimensional vesicle being defined as a differentiable self-

avoiding loop. Whereas Ostrowsky and Peyraud looked at vesicles of a fixed size

Barker and Grimson (Barker and Grimson 1987) looked at vesicles of a variety of

sizes. In contrast here I perform a complete scaling analysis, systematically looking

at vesicles of various sizes, following Leibler et al.

Ostrowsky and Peyraud introduced the method of parameterising the two

dimensional vesicles required to evaluate the partition function and other ensemble

parameters of interest. The parameterisation they introduced is a q-space method and

has the advantage that the entropy of the vesicles is correctly accounted for provided

the vesicles are chosen from the ensemble in the correct manner. So far it has not

proved possible to generalise the method to three dimensions due to the difficulty of

parameterising differentiable closed surfaces with well defined entropic character.

In the following subsections I outline the method of Ostrowsky and Peyraud

detailing some of the modifications and extensions made to it by Barker and Grimson

and myself. Then in the next section I present an analysis of the results obtained.

5.4.1 The Partition Function

Since the vesicle ensemble is an ensemble of curves then the various properties

of interest such as the Partition Function Z depend on a functional integration; that is

to say we have to integrate/sum over functions (curves) as opposed to summing over

variables. In fact it can be shown that summing over curves is equivalent to summing

over an infinite set of variables. In practice we sum only over a finite range of

variables; that is, the functional integral is reduced to a finite dimensional integral.

Nevertheless strictly one can write
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Z = /e

where *F is the ensemble of all differentiate self-avoiding vesicles, y is a function

identifying any particular curve and the D in the Dvj/ emphasises the functional nature

of the integration. E[i|/] is the energy of the vesicle and the square brackets emphasise

again that the energy is a functional, i.e. it depends on the curve function \|/.

Also ensemble average parameters such as the ensemble average area, <A>, are

given by expressions such as

EM

Further one can write down the probability distribution function of ensemble

parameters such as the loop area, A, as

-EM

P(A) = I j

5.4.2. Parameterisation Of The Vesicle Ensemble

I have already indicated, in chapter three, that a curve can be parameterised in

terms of its curve-length, s. The normal angle, \\i, of such a curve is therefore a

function of the curve-length, i.e. ^^ / ( s ) . In fact i|/(s) is all we need to know in order

to calculate any property of the curve; that is to say i|/(s) defines the curve. For

instance the trajectory (xv(s),yv(s)) of a curve \\J can be calculated using

o

and

s

y^(s) = Jsin(i|i(t))dt. (5.4.2;2)
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The subscripts denote the functional dependence of x and y on \\i. Also the

local curvature is just

• * * s (5.4.2;3)

This expression is not an approximation; it is the exact expression for the

curvature of the vesicle.

Figure 5.5
Ostrowsky-Peyraud parameterisation of a

vesicle.

We can write VJ/(S) the normal angle function in terms of a Fourier series plus

a linear term. i.e.

A,

The linear term on the right hand side is incorporated because for a vesicle

v|y(s+L)=\|/(s)+27i. So it is \|/(S)-2TIS/L which is periodic and as such can be represented

as a Fourier series.

5.4.3. Restrictions On The Parameterisation

Clearly it is impossible in any numerical scheme using this representation for

\|/(s) to perform such a sum to the limit. In practice there has to be an upper bound to

the summation. This corresponds physically to a high frequency/short wavelength
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cutoff in the representation. If the upper bound to the summation is M then the

shortest wavelength for variation of the tangent of the curve is then a = L / M and

M

* ( s ) = ~ P + Ao + }jAncos a , T |
L n=l V *- J V L /

We follow Ostrowsky and Peyraud and arbitrarily set a = 2TC / 5 so that

L = 2 T C M / 5 . In other words a vesicle of length 2 ^ has 5 associated fourier

amplitudes, a vesicle of length 4% has 10 and so on. It can be seen that this short

wavelength cutoff, a, represents a microscopic cutoff length scale. However when lk=K,

the rigidity length scale, is greater than a then it is lk and not a which is the effective

cutoff length. The quantity a has not been varied in the simulations and is only

included for completeness in the calculations.

There is a removable degeneracy in the representation as it stands. One can

restrict the parameterisation so that the tangent at the starting position is horizontal i.e.

i|/(0)=0. One can impose this restriction by choosing AQ s.t.

M

Barker and Grimson (1987) pointed out that there is a further removable

degeneracy in the representation as it stands. The origin of the degeneracy is reflective

symmetry of the ensemble; every vesicle configuration has a reflectional conjugate.

The degeneracy can be removed by fixing one of the amplitudes.

A vesicle is a closed loop. So far the parameterisation of the tangent function

is not restricted to closed loops. The required constraints are

x^(0)=xt(L) and y/0)=y f(L) (5.4.3;3)

Clearly there is no simple analytical restriction one can place upon {A^B;} to

satisfy this constraint. However having chosen a set {A;,Bj} one can perform an

iterative transformation to a new set, {ApBj} say, which do satisfy the constraint. In

fact with two constraints one only needs to constrain two of the variables, i.e

{ApBjJ-fApBj} say. Making this transformation to satisfy the closure constraint

introduces a non-trivial transformation Jacobian, J say, into the partition function from

the relation
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d A'd B' = ^ 1 3 (5.4.3;4)
A discussion of the nature of the iterative transformation and the detailed form

of the Jacobian arising is contained in section 5.4.4 following.

There is one further restriction not yet encompassed in the parameterisation as

it stands; self-avoidance. Having constructed a smooth closed loop, one has to

determine whether it crosses itself, since vesicles are self avoiding. This is accom-

plished by evaluating the approximate trajectory of the loop, by integration. The

trajectory is approximated by a series of line segments. Crossovers are detected by

intersections of the line segments. The self crossing vesicles are eliminated from the

integral by means of the crossover function 0 which is defined as

fl _ i 1 • loop does not cross itself
[ 0 : loop does cross itself (5.4.3;5)

At this stage the partition function can be written:

, k T dA.dB, IL
Z = /GGA.BJ) e B ^ - i - n d A i ^ i (5.4.3;6)

DJi=2

5.4.4. Iterative Closure Of A Configuration

It is convenient to introduce some new notation to describe the closure

condition, which will illustrate the more general nature of the problem. Let

so that in fact

and ^ = x+(L) (5.4.4;1)

i) = J c o s K7 + Ao + EAncos(j-Y--j + ^ H ^ i r j r (5.4.4;2)

(5.4.4;3)

Also let

E = (RpR,) (5-4-4;4)

A = (A^Bj) (5.4.4;5)
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Then the closure condition is just

R(A) = 0 (5.4.4;6)

From the closure condition (5.4.4;6) it is clear that closing the vesicle is

equivalent to finding the roots of a two-dimensional system of non-linear (in {ApBj})

equations. One standard method of solving this problem numerically is to use the

Newton-Raphson method (see Press et al 1986). The method is iterative. That is one

starts with an initial "guess" solution, A say, which is operated on to get an improved

solution, A say. The improved solution is in turn operated on, and so on. The

iteration is based on the formula

A = A
—n —n-1

-1(A ).R(A )
v n-l n- l

(5.4.4;7)

where J (A ) is the inverse of the Jacobian matrix defined by
n-l

J(A) = (5.4.4;8)

There are two methods of evaluating the elements of the Jacobian matrix.

Perhaps the simplest is to use the numerical approximation

6 A j A i - 6 A i
(5.4.4;9)

Alternatively one can differentiate (5.4.4;2) and (5.4.4;3) to obtain integral

expressions for the elements, which can be evaluated numerically. For instance

3Ri L
cos s + A o - A x + A1cos(s) +B1sin(s) + 2 ^ (Ancos(ns) +Bnsin(ns) -A n ) ds

I n=2 j

where I have introduced the transformation s = 2TCS/L for convenience and the

degeneracy constraint (5.4.3;2) has been included explicitly. On diffentiation this

yields

n> T 2n (5.4.4;10)

— = — I (l-cos(s))sin(iKs))ds
dA,
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In the following work I chose the latter method following the original authors;

although a brief investigation showed the methods to be consistent. The iteration is

repeated until

R(An)2 < e
n)

where in the work presented I have, arbitrarily, taken e = L/1000.

Then the curve is approximately closed for the transformed parameters

(A1,B1)=A . The Jacobian required for the calculation of the partition function in

(5.4.3;6) is the determinant of the Jacobian matrix, det(J(A )), defined in (5.4.4;8); the
n

computation of which for this 2x2 system is straightforward.

5.4.5. Energy Of A Configuration

The energy of a vesicle configuration due to the curvature elasticity of the

Helfrich Hamiltonian is just:

= J j c ^ L + y* /(mA )2 + ( m B )2,
c 2 Ma { £[[ m m I) (5.4.5;1)

this can easily be shown by integration and using the orthogonality relations of sin/cos

series.

The energy of a vesicle due to an osmotic pressure difference between the

interior and exterior of the vesicle is just:

Ep = Ap.A (5.4.5;2)

where Ap is the osmotic pressure difference and A the area of the vesicle; for which

there is no simple analytic expression, but which can be evaluated from 9 using:

2TT S

A = Jsin(iKs))Jcos(i|j(t))dtds (5.4.5;3)

5.4.6. Choosing The Amplitudes

Now to evaluate the partition function (5.4.3;6) or any many other average

parameter for the ensemble requires one to perform a multi-dimensional integral.

Since in general the dimensions of the space are likely to be too numerous for the
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complete space to be explored one has to adopt a technique that allows one to sample

the space. The scheme adopted by Ostrowsky and Peyraud revolved around sampling

the configurations in the transformed configuration space {iAj,iBj} i=2..M. It can

be shown that transforming from the original space, {A{, B{} i=2..M, to the transform-

ed space only introduces a constant Jacobian into the partition function. Consequently,

the value of ensemble average parameters is not affected since average parameters only

depend on ratios of the partition integral.

The advantage of sampling in the transformed space becomes apparent when

one considers the bending energy of a configuration (5.4.5;1). The bending energy of

a configuration is simply related to the norm of the sampling space. If one defines the

sampling vector, X, by

X =
then it is clear that the bending energy of a configuration is simply

Ec = 1+X2 (5.4.6;2)

Now it becomes clear that for ensembles with a non-zero curvature elasticity

then one can restrict oneself to sampling from a sphere of given radius, Xmax say, since

by choosing the sphere sufficiently large one can be sure that the exterior configur-

ations are unimportant on energetic grounds. Ostrowsky and Peyraud developed a

scheme for estimating how large the sphere, X ^ , needed to be to guarantee an upper

bound for errors. Then to evaluate the integral they sampled the enclosed space evenly.

They noted that many of the configurations outside (and some inside) the sphere of

integration were crossing contributions and so had no contribution to the integral

(section 5.4.3). This acted to reduce the error incurred due to the restricted sampling.

In my work I have departed from this scheme for two reasons. Firstly as the

curvature of the membrane is reduced, K - 0 , the radius of the sphere tends to infinity,

•̂ max~*°°- Consequently ensembles with vanishing surface tension cannot be adequately

sampled using the method of Ostrowsky and Peyraud. Secondly, as I suspected, the

method proved to be somewhat inefficient of computational resources.

I have systematically investigated the configuration space. An important

discovery was that the space was star shaped. By this I mean that choosing a
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direction, X, from the origin and moving outward along the direction from the origin

one encounters at a distance, Xcut, a point beyond which all the configurations are self-

crossing. Since self-crossing configurations do not contribute to the integrals then all

configurations, X, such that X2 > Xcut can be ignored. The star shaped property refers

to the fact that the non-crossing configurations do not appear to re-enter the space

beyond the cutoff value, Xcut, in any given direction.

The partition function can be manipulated into a form that can take advantage

of this star shaped property. Consider the following

dX - X2M~l dXda (5.4.6-3)

This relation is just a generalisation of the familiar two-dimensional cartesian

to polar transformation (dxdy = rdrd6). In this relation the 2(M-1) dimensional

integral is transformed into a one dimensional integral along a direction, X, and over

a 2M-1 dimensional angle. Incorporating this into the partition function one arrives at

_E(c,X)

Z = JJx2M-1e(a,X)J(a,X)-1e ^ dXda (5.4.6:4)

By using the star shaped property this transforms to

XcutW . E(q,X)

Z = / / X^KocXr 'e kBT dXda ( 5 A 6 ; 5 )
x=o

where Xcut(a) is the cutoff value function.

To evaluate this integral by a Monte Carlo Sampling technique (not to be

confused with the Monte Carlo simulation algorithm of Metropolis et al) one chooses

random directions (a = X) in the sampling space. For each direction one determines

the value of the cutoff function, Xcut(a), by means of a binary search (Press et al

1986). In practice I found that 2.4 <, X ^ a ) < 2M was a suitable interval for the

binary search. Having determined the value of the cutoff function the contribution of

each direction to the integral is evaluated by performing the radial integration on

(O,Xcut(cc)) as indicated by (5.4.6;5).
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I found that a few thousand random directions in the configuration space were

sufficient to yield parameters with sufficiently small errors. The precise number of

directions depended on the value of the physical control parameters; K, Ap, etc.

5.4.7. Vesicle Attributes Of Interest

It has already been stated that it is now possible to evaluate ensemble average

attributes for vesicles. What attributes are interesting? Some obvious examples are the

average area, <A>, and radius of gyration <RG>. In fact there are some other equally

interesting attributes which I shall be looking at.

5.5. Analysis Of Results From Ostrowsky-Peyraud Method

In this section I present results obtained using the Ostrowsky-Peyraud method,

analyzed using the scaling analysis methods of Leibler et al (1987). The presentation

is arranged so that the discussion of each different regime is separate.

5.5.1. The Floppy-Flaccid Regime

In this section we consider an isolated vesicle subject only to the entropic forces

arising from the self-avoidance, fixed contour length and fixed microscopic bending

length.

Now in chapter four I presented the well known scaling relation for a random

self-avoiding walk. Leibler et al (1987) remarked that for a floppy vesicle with one

would expect a similar relation to hold. In fact one might expect the same relation to

hold, albeit with a different prefactor. In figure 5.6 log(<RG
2>) is plotted against

log(M). The graph is clearly linear on this scale and a linear regression analysis of the

points plotted yields an estimate of the scaling exponent: v=0.7510±16 (c.f. Leibler et

al 1987 0.760). This result is consistent with the hypothesis that v=0.75.

The next question arising is whether the enclosed area of the vesicle scales in

the same way as the radius of gyration with the same exponent; i.e. does

<A> - A 0 ' M 2 V A M-»»

(5.5.1;1)

with v=vA. In figure 5.7 log(<A>) is plotted against log(M). Again the graph is

clearly linear on this scale and a linear regression analysis yields an estimate of the
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Graph of log10(<RG >) against log10(M). The straight line is obtained from

a linear regression analysis of the points.
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areal scaling exponent: vA=0.7514+20 (c.f. Leibler et al (1987) 0.755±0.018). Hence

vA/v=1.001±l (c.f. Leibler et al (1987) v/vA=1.007±0.013) confirming the hypothesis

that v=vA. In fact the result has now been proved analytically by Duplantier (1990).

Since the scaling exponents for the enclosed area and the radius of gyration are

the same one should expect, as Leibler et al (1987) and Family et al (1985) anticipated,

that the ratio of the radius of gyration to the enclosed area converges to some non-zero

universal value, as M->oo.

The function II is defined as the ratio of the ensemble average enclosed area

to the ensemble average radius of gyration; i.e.

(A)
n =

So as M—»co,

A0M
2>* Ao

The value of this ratio is characteristic of the average shape of the ensemble.

For instance if the ensemble were made of only circular vesicles of radius R ;̂ then one

would obtain

TT11 =

Similarly if the ensemble were rectangular of sides a,b; then one would obtain

n = * = ^ -
1/2ab2 + Vaba2 (a+b) (5.5.1;4)

which for the special case of a square ensemble is clearly I/a.

In figure 5.81 have plotted the function LI against M for K=0. The figure shows

a rapid convergence to a stable value, of around 2.393±2, which I take for an estimate

of the asymptotic value (indicated by the horizontal line) followed by more erratically

varying values. This value compares to the values obtained by Fisher (1989) using the

model of Leibler et al (1987) in their bead simulations and by Family et al in their

lattice animal model. The values of the function for larger vesicle ensembles (i.e.
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larger M) are subject to a greater inaccuracy. This inaccuracy proved to be irremov-

able from the data, but see appendix I for further details.

Now rather than defining the function n as in (5.5.1;2) we could have defined

it in the following manner:

which would seem to be a more natural definition of the average shape of an ensemble

(Family et al 1985).

In figure 5.9 I have plotted the value of the function ft for K=0 is plotted

against M, in the same manner as figure 5.8. Not surprisingly figure 5.8 mirrors the

behaviour of figure 5.9. However the asymptotic value for figure 5.9 is 2.384±9. This

compares to the values, 2.52±4 and 2.55+5 obtained by Camacho and Fisher (1990)

using the models of Leibler et al (1987) and Family et al (1985), respectively.
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Another, quite different, quantity that also reflects the nature of the average

shape of the ensemble is the anisotropy, E, which is defined as follows:

S =

where R^2 and RQ2
2 are the larger and smaller eigenvalues of the radius of gyration

tensor, respectively.

For an ensemble of circles of radius RQ then clearly RG1
2=RG2

2=R0
 2 and

consequently E=l. For the more interesting case of an ensemble of ellipses of major

axis a and minor axis b one finds that R^cca2 and RQ2
2ccb2, so that consequently

2 = —

b 2 (5.5.1;7)

which is consistent with the result for an ensemble of circles (a=b).

Once again one expects a universal value for S when K=0 in the limit as M—»oo.

So in figure 5.10 I have plotted the function E for K=0 against M, in the same way

that I plotted FI in figures 5.8 and 5.9. Although the numerical value of the asymptotic

value is different, of course, the qualitative behaviour of the graph is, as one would

hope, similar; the results rapidly converge to the asymptotic value, then vary somewhat

erratically. The asymptotic value, indicated in the graph by the horizontal line, is

0.378±2, which compares with the result, 0.393±15, of Camacho and Fisher (1990)

obtained using the LSF model and the result 0.405±9 obtained using the lattice animal

model (Bishop and Saltiel 1989).

Of course on could have defined £ in the following alternative way:

taking the average over the ratio rather than the ratio of the averages, just as we did

for II.

In figure 5.11 I have plotted the value of the function S for K=0 is plotted

against M, in the same manner as figure 5.10. Not surprisingly figure 5.11 closely

resembles figure 5.10. However the asymptotic value for figure 5.12 is 0.414+4.

Camacho and Fisher (1990) have by comparison obtained the value 0.425±15 using the

LSF model.
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For completeness I have studied the behaviour of one further shape sensitive

parameter, the so called asphericity, A. It, like S and S , is defined in terms of the

eigenvalues of the radius of gyration tensor:

Once again expecting a universal value of A for K=0 in the limit of M—>co, I

have plotted the function A against M in figure 5.12. The graph would seem to

indicate an asymptotic value of 0.269±6. The results for higher M seem to be

consistent but I assume this to be an anomaly, since their accuracy is of the order 10%

only, and so have ignored higher values in making this estimate. This compares with

the result, 0.215±10 obtained by Camacho and Fisher (1990) using the LSF model.
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5.5.2. The Rigid Regime and the Rigid to Floppy Transition

In the preceding section we considered floppy-flaccid vesicles not subject to any

internal or external forces, except the entropic forces due to self-avoidance, microscopic

cutoff length and fixed contour length. In this section I subject the vesicle to an

internal bending rigidity by introducing the Helfrich model Hamiltonian to the

ensemble as outlined in section 5.4.5.

Clearly in the limit of K—»0 the loop is floppy; that is the bending rigidity is

negligible and the floppy-flaccid behaviour is recovered. On the other hand for a loop

of a given length (i.e. given M) then in the limit of K-»CO then the loop is rigid and

consequently circular. However for any fixed K then as M->co we find that the loop

crosses over from its rigid circular shape back to the floppy fractal shape; indicating

that rigidity effects are finite size effects.

So there is a length, lk, associated with the bending rigidity that characterises the

nature of the vesicle, called the rigidity length. In fact lk=K.

Having defined the rigidity length one can describe the floppy and rigid regimes

more clearly. For instance if the rigidity length, lk, is less than the microscopic length,

a, then clearly the rigidity effect will be negligible and the vesicles will floppy. On the

other hand if the rigidity length, lk is larger than the contour length, L, then clearly the

rigidity effect will be dominant and vesicles will be rigid and circular, unable to

support thermal fluctuations, i.e.

lk < a : floppy regime.

lk > L : rigid regime. (5.5.2;1)

Alternatively, if one defines the dimensionless variable x by

L
•y —

k . (5.5.2;2)

then one can rewrite the inequalities as:

y > — :floppy regime
a (5.5.2;3)

y < 1 :rigid regime

Now the advantage of defining this scaling variable becomes evident if we plot

the various ensemble quantities against y. For y<l we are in the rigid regime where
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vesicles are on average circular. We know that the area and radius of gyration of an

ensemble of circles scales with scaling exponents v=vA=l; i.e.

« M 2 (5-5-2;4)

(5.5.2;5)

So we should expect that if we plot <A>/M2 and <RQ2>/M2 against y then for

y<l, at least, the plots should be universal (Fisher 1989). On the other for y>l then

the universality should disappear gradually as y increases since for y>L/a the vesicles

are floppy and one expects the scaling exponent to be near 0.75, at least for the larger

vesicles.

I have plotted <A>/M2 and <RQ2>/M2 against y in the graphs in figures 5.13 and

5.14. The predicted behaviour is followed. In the graphs I have elected to distinguish

between data points on the basis of which size vesicle they were obtained from.

Smaller vesicles transform to floppy vesicles at lower values of y since the transition

to floppiness occurs at about L/a which is, of course, lower for smaller vesicles. The

graphs clearly show this behaviour with the smaller vesicle symbols breaking away

from the main universal curve in sequence. Fisher (1989) predicted such behaviour and

Camacho et al (1991) have recently published the analogous curves for the bead model.
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One can show more explicitly the transition from floppy to rigid vesicles if one

plots what one could call the running or effective scaling exponents veff and vAeff

defined by:

1 dlog(R*
eff ~ 2 dlog(y) (5.5.2;6)

_ 1 dlog(A)
A'eff 2dlog<y) (5.5.2;7)

In the floppy regime, y>L/a (-><») then clearly these effective exponents will

take on a value around 0.75, particularly for reasonably sized vesicles, where finite size

effects are less important. On the other hand in the rigid regime, as y<l (—>0) then

these effective exponents should approach the value 1.

In figures 5.15 and 5.16 I have plotted these effective scaling exponents against

the scaling variable log(y). The graphs indicate that both scaling exponents do indeed

—>1 as y—>•(). Moreover the graph for the areal exponent seems to flatten at the high

y region at a value of around 0.75. The graph of the radius of gyration on the other

hand is less supportive in the high y region. However it would seem that the radius

of gyration exponent descends somewhat later than that of the areal exponent, and since

the enlarged y values are subject to greater error one can not properly infer anything

about this.

One should note that in figures 5.15 and 5.16 the data are anomalously

universal. That is, they are universal for anomalously large values of y. Why this is

the case I cannot say.
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One can also plot other vesicle properties to observe the transition from rigid

to floppy regimes. These properties are more closely associated to the average

geometrical shape of vesicles in the ensemble than the scaling exponents are.

In figures 5.17 and 5.18 I have plotted the shape functions n and ft. Both

curves are reasonably well behaved. Again the functions seem to be anomalously

universal, like the effective scaling exponents.

In figures 5.19 and 5.20 I have plotted the anisotropy functions 2 and 2 . Both

curves behave similarly. Unexpectedly both curves exhibit a minimum turning point.

The results of Camacho et al (1991) also seem to exhibit this turning point, although

the effect is apparently less marked in their data.

In figure 5.21 I have plotted for completeness the asphericity function A . The

curve clearly has a maximum turning point.
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5.5.3. The Deflated and Inflated Regimes

In section 5.5.1. I considered floppy-flaccid vesicles. Then in section 5.5.2, the

previous section, I considered rigidity and the transition from floppy to rigid vesicles.

One saw, as foretold by Leibler et al, that rigidity effects were finite size effects that

could always be eliminated by sufficiently increasing the contour length, L, of the

vesicles. In this section I apply an osmotic pressure difference to the vesicle by

introducing the pressure term, detailed in section 5.4.5, to the Hamiltonian. It will

become evident that the osmotic pressure effect unlike the rigidity effect is not a finite

size effect.

Following the work of Leibler et al (1987) one would expect the floppy-flaccid

scaling laws to be altered according to

« M2vX(ApM*v)

« M2vY(ApM*v) (5.5.3;2)

where one expects the crossover exponent (j)=2. Writing x=ApM2v then for the scaling

functions one can write:

( G )
X ( X ) =

 M2v (5.5.3;3)

Y(x) « &-

M2v (5.5.3;4)

I have plotted the log of the scaling function X(x) against log( | x |) in figures

5.22. Comparison with the graphs presented by Leibler et al (1987) appears, at least,

qualitatively good.

For values of log(|x|) greater than about 0.5 the graphs split into two branches;

one rising, one falling. The falling branch is from vesicles being compressed under the

action of a positive osmotic pressure difference, Ap, while conversely the rising branch

is from vesicles being inflated by the action of a negative osmotic pressure difference,

Ap. Both branches appear to be asymptotically linear, albeit with different gradients.
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5.5.4. The Nematic Ordering Field Regime

So far I have considered isolated vesicles in free, rigid and pressurised regimes.

I now wish to consider the effect that a nematic ordering field induces; a nematic

ordering field is a field that tends to align objects to point in a given direction.

Although the nematic ordering potential that I introduce is itself only a hypothetical

potential, it is expected that the effect of a shear flow on an isolated vesicle could be

very similar. Since vesicular objects are often subject to shear flow regimes the interest

is clear.

The actual form of the nematic ordering potential is

EN = |cos(2i|r(s))ds (5.5.4; 1)
o

The magnitude of the field is controllable through the parameter V. The

ordering nature of the field is embodied in the cos(2\)/(s)) component.

A parameter that should vary interestingly according to the value of V is the

nematic anisotropy (this is my own naming convention), £*, defined by:

(5.5.4;2)

where R^ a n d R<jy are the x and y axial components of the radius of gyration tensor.

In figure 5.25 I have plotted the nematic anisotropy against the nematic filed

strength V for various vesicle sizes. The curves seem loosely universal, although the

accuracy of the results makes a stringent assertion of universality impossible.

In the absence of the nematic ordering field the nematic anisotropy is

approximately one. This is because in the absence of the nematic ordering field the

vesicle configuration is isotropically ordered; that is it is equally likely to be displaced

in any direction. In particular that means that the xx and yy components of the radius

of gyration tensor are equal leading to a value of one for the nematic anisotropy.

As the nematic ordering field is applied the nematic anisotropy rapidly falls;

indicating that the vesicles are ordering along the y-axis in preference to the x-axis.

As the field is increased further the anisotropy begins to flatten out. The anisotropy

does not continue to fall rapidly to zero, as one might expect a priori. The reason for
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this unexpected behaviour is not clear. However, one plausible explanation is that the

effect is due to the hard-core self-avoidance property of the vesicles. As the vesicle

ensemble nematically orders initially the vesicles walls do not interfere apart from their

intrinsic self-avoidance. Hence the initial fall in anisotropy is rapid. As the anisotropy

continues to fall and the vesicles order along the y axis the vesicle walls are effectively

drawn together. Neglecting the ends of the vesicle, it is as if one is forcing two

undulating membranes on top of one another. The independent undulations of the

membranes have to be overcome to continue to force the sides together. Thus

membrane self avoidance could be the source of the flattening anisotropy. One way of

testing this hypothesis would to be to consider ensembles where the self-avoidance

property has been switched off. Such an experiment is well within the scope of this

model, although I have not completed such an experiment at this stage.

5.6. Conclusions

I have investigated the properties of a model of two dimensional vesicles. The

vesicle consists of a closed membrane subject to a bending rigidity modulus, and extra

terms which couple to the area inside it and the orientation of the local curve perimeter.

The model is the continuum version of a bead (Leibler et al 1987) model whose

properties were investigated by other authors (Fisher 1989, Camacho et al 1990, 1991,

Maggs and Leibler 1990, Maggs et al 1990) using the Metropolis Monte Carlo method.

I have used a method essentially due to Ostrowsky and Peyraud (1985) in order to carry

out the functional integrals necessary in order to obtain average quantities for the

Helfrich model. I have found that the method is rather more versatile than the authors

had originally anticipated; in particular I have been able to verify scaling laws, first

found in the bead simulations, for the behaviour of the vesicle as a function of the

various control parameters. I have extended this scaling analysis to look at the effect

of the imposition of an external nematic orienting field. The work presented in this

chapter forms the basis of a recent publication [Norman et al 1992].

Finally, despite the encouraging results obtained in this work I am not optimistic

about using an analogue of this method to investigate vesicles embedded in three

dimensional space. In two dimensions the differential geometry is trivial; in three

dimensions, however, difficulties emerge which I am not able to overcome at this stage.
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CHAPTER SIX

MEMBRANES AND INTERFACES CONFINED BETWEEN PARALLEL

WALLS

6.1. Introduction

Up until this point in this thesis I have dealt with membrane structures. In this

chapter I use a model originally used for investigating interfaces and adapt it for

studying membranes as well. The differences between membranes and interfaces are

sufficiently few to allow this; the similarity being that both membranes and interfaces

in d dimensions are (d-1) dimensional objects.

In many physical situations it is of interest to study a membrane or interface in

the gap between two walls (Parry 1992c, Gompper and Kroll 1991) or the physically

similar problem of a membrane adsorbed onto a single wall by a binding potential

(Parry 1992a-b, Maggs et al 1989, Maggs and Leibler 1990). The presence of the

walls affects the statistical mechanics of the surface (I will use the term surface as a

generic term to describe both interface and membrane in two, three or d-dimensional

space), entropically, by eliminating many of the possible orientations through the

exclusivity of the walls.

Initially I will discuss a model of interfaces called the Solid on Solid (SOS)

model (Leamy et al 1975). We shall see that this model of interfaces restricts the

available geometry of the interface somewhat. The, probability density functions (pdfs)

for an interface or membrane confined between a wall will be defined. I will discuss

some analytical arguments which lead to a universal form for the pdf of confined two

dimensional interfaces. A discussion of a more generic argument, that allows us to

postulate a universal form for the pdf of two dimensional SOS membranes, follows.

Next I present an investigation of the two dimensional SOS interface by Monte

Carlo Simulation. I will show that the results are consistent with the analytical work

already discussed. This establishes, for us, the credentials of the Monte Carlo

simulation method for investigating the universal behaviour of pdfs. I then present the

results of a similar Monte Carlo investigation of the two dimensional SOS membrane.
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I shall show that the results of the simulations affirm, with certain reservations, the

universal form for the pdfs postulated in the earlier analytical work.

Having investigated these two dimensional interface and membrane models it

would clearly be of interest if one could make similar progress with the analogous three

dimensional models. Unfortunately, it has not proved possible to make any substantial

progress analytically on three dimensional SOS problem. To make any progress in the

literature authors have had to make very severe additional restrictions to the SOS model

(Leamy et al 1975). Conversely the generalisation of the two dimensional simulations

to three dimensions is not difficult conceptually. So following the two dimensional

work I present the results of numerical simulations of the three dimensional SOS

interface and membrane models. The absence of a clear theoretical framework for the

three dimensional problems has dictated that I use the theoretical framework of the two

dimensional problem to analyze the results. Unfortunately for three dimensions

computational problems arise (namely that the number of computations required to

obtain universality is too large) which limit the scope of this investigation. Neverthe-

less I was able to observe universal behaviour for the SOS model of a membrane in

three dimensions. The corresponding interface showed no signs of universality.

The SOS model of interfaces and membranes is intrinsically restrictive of the

membrane geometry only allowing certain types of fluctuations. It is not clear a priori

whether these fluctuations are sufficient to model real systems adequately. Recall that

a membrane in two dimensions can be considered isomorphic to a polymer in two

dimensions (as pointed out in chapter 4). So naturally it is of interest to consider

whether the results from a polymer type model for the membrane differ from the SOS

model already investigated.

In order to investigate this problem more carefully I use a bead chain model

based on the bead chain model of a polymer to investigate the membrane in two

dimensions. The analogous model for vesicles has already been discussed in section

5.3. We shall see that the extra degrees of freedom of the membrane introduce an

asymmetry to the membrane and consequently periodicity of the membrane is

irretrievably lost. Despite the extra degrees of freedom in the problem and the lack of

periodicity I have been able to observe universal behaviour in the pdf through a

detailed scaling analysis.
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Finally, I present a brief summary and comparison of the salient results obtained

from the preceding work before concluding the chapter.

6.2 Parameterisation Of The Solid On Solid Model

The Solid- On Solid (SOS) (Leamy et al 1975) model is a model of a "well

behaved" interface. The parameterisation of the model is illustrated in figure 6.1.

Figure 6.1
Parameterisation of the SOS model.

The surface is represented by a series of heights above one of the walls spaced

equidistantly along the lengths of the walls as in the illustration. The model as

presented is therefore inherently a lattice model in the plane of the walls. The heights

however can be on or off lattice; in which case I shall call the model lattice or

continuum respectively. Although, as already pointed out above, strictly speaking all

SOS models are lattice models in the plane of the walls.

It should also be observed that for this model of surfaces that the height

function is implicitly single valued; so that overhangs (dashed line), droplets (dotted

line) and self-avoidance effects are implicitly ignored. These geometrical restrictions,

which the model imposes on the surface ensemble, on the one hand permit progress on

the analytical problem and on the other hand impair its applicability to real physical

systems. Hence the model is inappropriate for vanishing surface tension and curvature

elasticity regimes where overhangs, droplets and self-avoidance effects predominate.
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It can be seen, particularly in the lattice model case, that the interface can be

viewed as a special case of an Ising Model (Huang 1987). It partitions the model,

according to the restrictions above, into two separate spin-up spin-down regions. In

fact the SOS model represents a particular limit of the more general Ising Model

problem tackled elsewhere (e.g. see Abrahams 1980, Beijeren 1977).

6.3 Classification of Interface and Membrane

In general interfaces have a Hamiltonian in which the surface tension {line

tension for an interface in two dimensions) term is dominant whilst for membranes as

we have seen it is the curvature term that dominates. Note that under this classification

a bubble of soap is classified as an interface structure whilst a liposome is a membrane

structure (Clearly under a different scheme of classification a bubble of soap might

logically be regarded as a membrane structure rather the interface structure implied by

this classification). The parameterisation of the SOS model presented in section 6.2

is the same for interface and membrane. To model the interface we use a surface

tension Hamiltonian, only changing the Hamiltonian to a Helfrich curvature

Hamiltonian to model a membrane.

The Hamiltonian of a continuous 2d interface can be written as

H -lafWdx
"int ~ 9

where h(x) is the continuous height above the lower wall function and a is the surface

tension elasticity. We have already seen that the SOS model is inherently on lattice in

the plane of the walls. In the discrete limit this reduces to

N

Hint = 2a" t ^ 1 ~ ^ (6-3;2)
where a is the lattice spacing in the x-direction.

In contrast we have seen in section 3.5.1 that the Hamiltonian for a continuous

2d membrane is the familiar Helfrich Hamiltonian. We can write this in its nearly flat

nearly parallel (to x-axis) asymptotic form as

^ (6.3;3)
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where K is the Helfrich curvature elasticity. This reduces, in the discrete limit, to

H_-^E(*.-.*V.-a,f (63;4)

In addition these potentials were applied periodically so that

V i = ho <6-3'5)
This periodicity ensures symmetry within the interface and is the standard procedure

in simulations where one wants to look at long, length independent regimes.

6.4 The Probability Density Function (pdf)

Finally one can define more precisely the probability density function, P(z), for

such systems to be the probability of finding the surface between z and z+dz. More

formally, if P(z) (the probability distribution function) is the probability of finding the

surface in the vertical interval [0,z] then the pdf P(z) is that function which satisfies

z

P(z) = /P(z)dz ( 6 4 ; 1 )

0

Clearly this definition applies to the continuum model. For the lattice model

the surface can only be found at a one of the lattice points. For this model the

probability density function becomes a probability vector (pv); i.e P(z) - F{=F(z^. The

probability vector, P;, is defined to be the probability of finding the surface at a lattice

point of height z{:

In practice when one wants to look at the pdf of the continuum model in

numerical implementations one is forced to make the discrete approximation:

^ p _ P
1

6z (6.4;2)

where i=[z/8z] (the brackets [] represent the truncation integerisation operation). Like

the probability vector for the lattice model this approximation of the pdf is a vector.

Effectively a background lattice is created to approximate the pdf.

It approximates the pdf in the sense that

P(z) = limit (P.)

(6.4;3)
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The value of 5 z is fixed by considerations of convergence and resolution of the

model. Clearly if 8z is too small in a particular simulation then the pdf approximation

will take too long to equilibrate. Conversely if 5z is chosen to be too large then the

pdf approximation will equilibriate more quickly, but will represent a rather poor

approximation to the continuous pdf. In practice for off-lattice model work that

follows I have arbitrarily chosen 6z=l, so that the off-lattice models should closely

follow the on-lattice models where the lattice spacing is similarly fixed by a=l . Later

in the chapter I shall, for convenience, use the term pdf collectively to describe both

true probability density functions, approximate probability density functions and

probability vectors.

6.5 Universality And Conformal Invariance: A Generic Argument For

The Universal Form Of The Pdf

We have already covered some examples of universal behaviour in the

discussion of polymers (section 4.6) and in the later work on vesicles (section 5.5).

We have seen that often the properties of physical systems that initially seem to depend

on a large set of control parameters can be shown to depend more simply on

combinations of those parameters. The question arising here is whether universal

regimes exist in the present context and if so what are they? I shall reproduce here an

argument due to Parry (1992d) which uses conformal invariance (CI) to show that a

universal regime does in fact exist for the two dimensional interface and membrane.

Moreover, we shall see that, it is possible to obtain the universal form for the pdf in

that regime (Parry 1992d).

The conformal invariance argument is based on intuitive ideas rooted in the

renormalisation group theory (Ma 1985, Huang 1987). In the renormalisation group

theory one makes successive global bulk transformations on the physical system -

effectively magnifying or reducing the system. Systems that exhibit "true" fractality

will seem qualitatively the same at all magnifications. Other physical systems will

change there nature at a length scale characteristic of the system. If one can relate this

characteristic length scale to the other control parameters then often the system can be
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described more concisely in terms of this characteristic length scale; that is the length

scale represents a universality of the regime.

The renormalisation group implies that if one makes small global scaling

transformations of the system below the characteristic length scale then effectively one

does not change physics of the system. One can imagine making small local scaling

transformations and would not expect it to affect the physics either. In fact the CI

argument goes one step further saying that if the physics of the system depends only

on the local angles then one should be able to make a transformation to the system that

preserves these local angles without affecting the physics. Transformations from the

plane to the plane that preserve the local angle are called conformal mappings

(Churchill and Brown 1989) and hence the term conformal invariance. The argument

is intuitive in that it seems reasonable although it has not been rigorously proven.

The usefulness of CI in the context of confined interfaces and membranes stems

from the fact that the physics of the membrane and interface is governed only by the

local angles. So the physics of the membrane and interface should not be affected by

a conformal mapping if the conformal invariance hypothesis is sound. The pdf case

for the open plane can be arrived at by the principle of scale invariance. Conveniently

there is a well known conformal mapping, the logarithmic map, that maps the open

plane into a narrow strip (Churchill and Brown 1989). The logarithmic map from the

(x,y) to the (u,v) plane is

W = - ln(Z)

* (6.5;1)

where Z=x+iy and W=u+iv. The factor 7i/d ensures the strip has width d.

The pdf P(x,y) for the open plane interface and membrane is given by

P(x,y) = P(y) = y~* (6.5 ;2)

where (f> is a constant depending on the model (interface, membrane, polymer, ... ).

This form of the pdf has the required properties of analycity and symmetry. Note

however that it cannot be properly normalised and is only a first order approximation

of the pdf.
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It can be shown using the fact that the pdf is an analytical function and the fact

that the logarithmic map is a conformal map that the pdf in the confined strip is related

to the pdf in the open plane by

PCu V> = IwVzil* P(x V) = fW;(z)W -* (6.5;3)

Expanding the mapping (6.5; 1) into components one gets

u+iv = e ^ T j + i.sm|Tj j ( 6 5 ; 4 )

From which one can, by comparing imaginary parts, extract

— / \
7 = 6 d SM"d~j (6-5^5)

Differentiating the mapping one gets

W ; =
(6.5;6)

Expanding this

7IU . 1tV

W - - e e (6.5-1)

So that

Finally substituting (6.5;5) and (6.5;8) into (6.5;3) and tidying up one can write

P(u,v) = P(v) = (-sir/—1)

U \ d J J (6.5;9)
This is a remarkable result. It tells us that the pdfs of a whole class of two dimension-

al membrane and interface type models reduce to a single universal form independent

of the physical control parameters a, K, etc. The pdf depends on the scale free relative

height of the membrane y/d and a universal exponent <j) characteristic of the particular

model under consideration. It does not depend separately on the width of the strip.

Moreover the functional form of the pdf is universal, which is a very strong form of

universality.
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6.6 Analytical Result For The 2d SOS Surface Tension Model pdf

The arguments presented in this section are due originally to Temperley (1951)

although this discussion is based in particular on the discusions contained in Burkhardt

(1981) and Chui and Weeks (1981). The arguments we shall see are based on transfer

function and transfer matrix methods not uncommon in statistical physics (e.g. for some

other examples of the application of transfer matrices see Huang 1987). Following

these arguments, it is possible to proceed analytically to find the form of the pdf of the

SOS interface in 2d. The partition function for the 2d SOS interface model is

- a n — dx Dh(x) (6 6-Y)
h(x) ( o W J

Z = fexp
h(x) I, 0 \ - V J

This functional integral becomes the following sum

W • V M . " i + 1 / J (6-6;2)
as the domain h(x) is replaced by its SOS representation {hj. It can be seen that this

can be re-written in the following way

§jH (6.6;3)
Now if we define the transfer function T(h,h') by

TOiV) = exp(-a(h - hO2) ( 6 - 6 ; 4 )

then using (6.6;3) and the periodicity constraint

ho = hN+1 (6.6;5)

it can be shown that the partition function can be written as the trace of the N'th power

of the transfer function, i.e.

Z = Tr(T N ) (6.6;6)

The eigenvalues, X, and eigenfunctions, \j/, of the transfer function T are defined

by the equation •

Let the largest eigenvalue and the associated eigenfunction be denoted A,m and

\|/m respectively. Then it can be shown that the free energy in the limit N->oo is given

by

A = -Nln(Xm) (6-6;8)
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Also it can be shown that the pdf, P(h), is related to the eigenfunction

corresponding to the largest eigenvalue by

P(h) = c|i|fm(h)|2

where c is a normalising constant fixed by the requirement on P(h) that

+00

/P(h)dh = 1

(6.6;9)

(6.6;10)

which is the mathematical statement of the physical fact that the membrane has to lie

somewhere between the walls.

So far in this section we have considered the height function, h(x), to be a

continuous variable. If we consider h(x) to be restricted to a set of, say d, lattice

positions between the walls then the discussion remains valid, albeit that the transfer

function now becomes a transfer matrix and the eigenfunction becomes an eigenvector

as a result of the discretisation. Strictly speaking the pdf now becomes a probability

vector as it is now defined on the lattice points only. I shall continue the discussion

using the lattice SOS model, as this model is conceptually easier to solve and the

results can be shown to be valid in the continuum limit anyway.

To solve for the pv of the 2d SOS surface tension model analytically it is

necessary to diagonalise the transfer matrix. From the definition of the transfer

function, (6.6;4), it is evident that the matrix is a dxd matrix where d is the separation

of the walls. In fact the transfer matrix T has the form

1

. -2a

" 2 0

-2a

e-(d-3)o e-(d-2)o e-(d-l)o

e-(d-4)o e-(d-3)o e-(d-2)o

e-(d-5)o e-(d-4)o e-(d-3)a

e-(d-3)o e-(d-4)a e-(d-5)a

e-(d-2)o e-(d-3)o e-(d-4)o

e-(d-l)o e-(d-2)o e(-d-3)o

. -2a

-2a

.-3a . -2a
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The diagonalisation of T as it stands is not a trivial matter. In order to simplify

the analysis a further restriction is often made to the model at this stage, whereby it is

considered that the difference in height between any two consecutive positions can be

no more that one unit. In the large a limit then clearly this does not affect the physics

as then larger jumps become energetically inaccessible in the ensemble anyway. The

model with this restriction is consequently called the Restricted Solid On Solid (RSOS)

model.

The effect of the restriction imposed on the RSOS model is to render the

transfer function tridiagonal. The transfer matrix for the RSOS model is

1 e"°

(6.6;12)

The eigenfunction, \\im, can be found numerically by iteration (Press et al 1986).

An initial guess eigenvector i|/m0 is normalised so that \]/2=l and then fed into the iter-

ation

T (6.6;13)

looking at | i|/mi+1 - \\imi | 2 to monitor the convergence of the result.

Once the eigenvector is found then the pv is easily obtained using (6.6;9). In

figure 6.2 I have plotted the results obtained numerically for several matrix dimensions

d. The dotted line is the graph of sin2(7iz/d). It is clear that all the results of the

iteration lie upon this line. Consequently the pdf must have the latter form.
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In fact we shall see that it is possible to calculate the eigenvectors, and hence

the pv (Ph), analytically. The analytical form of the eigenvector \|/h is

= s
d) (6.6;14)

In order to show that this is true then let a=eCT. Equation (6.6;7), the defining

equation for the eigenvector, becomes

a 1 .

1 a 1

1 a 1

1 a 1

sin(7i;/d)

sin(2Tt/d)

sin(37t/d)

sin(i7i:/d)
a

sin(it/d)

sin(2-n;/d)

sin(37i;/d)

sin(i7t/d)

sin((d-3)7i/d)

sin((d-2)Tc/d)

sin((d-l)7t/d)

(6.6;15)

1 a 1 sin((d-3)u/d)

1 a 1 sin((d-2)Tr/d)

1 a J[sin((d-l)7t/d)

Expanding for the i'th term on the LHS

K hTt\ . /(h+l)7c\
— + sm —
d) \ d ) (6.6;16)

Using trigonometric sum and difference identities to expand the sin terms

2cos — r + a \sm —
V \d) ) \ d (6.6;17)

Now one can identify Xm with

A. = a 2cos— + a

{ \ d ) j (6.6;18)

whereupon the consistency of LHS and RHS becomes self-evident proving (6.6;14) to

be the correct form for the pv.

Hence we arrive at the following expression for the probability vector for the

two dimensional interface

P. = cfsinf—Ylh { \dj) (6.6;19)

A crucial feature of this result is that the profile of the probability vector is only

dependent on the scaling combination h/d, as opposed to depending on h and d
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separately. This means that the probability of finding the membrane at a given point

depends only on the relative distance of the point from the walls. Moreover the results

is independent of the surface tension, a>0. This is what universality means in this

context. Note also that the result is consistent with the universal form (6.5;9)

motivated by the CI argument. So this well established result lends some weight to the

less formal CI argument. The associated universal scaling exponent 4>=2.

6.7 Analytical Result For The 2d SOS Helfrich Model pdf

In the preceding section I have discussed in detail an analytical argument which

yields the universal form of the pdf of the SOS interface in 2d. In this section I write

down the result of an analytical argument for the form of the SOS membrane in 2d

(Parry 1992d). The argument requires an intimate knowledge of the Theory of Wetting

which is rather tangential to the current investigation. Hence I make no attempt to

present or justify the analytical argument by which the result is obtained. At any rate

the argument (Parry 1992d) is to be published together with the results obtained later

in this chapter.

The analytical result for the universal form of the pdf of the SOS membrane in

2d is

P(Z) - S H ^ T

The argument implies that the universal exponent, (j), takes the value of 2/3 in the case

of the SOS membrane model in 2d. The argument for this exponent is not able to

support the CI argument presented in section 6.5, since the current argument relies on

the latter argument for its validity. In section 6.9 I will be looking at the SOS

membrane in 2d by Monte-Carlo simulation in an effort to determine, amongst other

things, the value .of the universal exponent, if indeed one exists.
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6.8 Results Of MC Simulation Of The 2d SOS Surface Tension Model

In section 6.6 we saw an analytical solution of the 2d SOS interface model and

obtained the pdf for the universal regime N->co, a>0. In this section I present results

from Monte Carlo Simulations of the SOS ensemble and compare them with the

analytical results to establish the veracity of the method.

Recall that the Hamiltonian for this system is

C6.8;l)

6.8.1 Approach To Universality

In order to investigate the pdf for the universal regime one must first establish

if one is in the universal regime or not. Firstly we know that we will be interested in

the large N limit, but how large does N need to be? Also we know that a>0 and for

realistic analysis of the functional form of the pdf d should be large (but not too large),

at least for the lattice model.

To answer these important questions I initially performed a number of pilot

simulations, which led to the following more systematic analysis of the approach to

universality.

In the simulations I used the mean height, <h>, of the interface above the lower

wall to gauge the approach to equilibrium since it is known that <h>=0 in equilibrium

and since this parameter appeared in practice to equilibrate more slowly than the mean

energy of the ensemble <E>.

The square width of the pdf, W2, defined by

w 2 = (h 2 ) - <h>2 C6-8-1;1)
proved to be a suitable parameter for observing the approach to universality since it

encapsulates most of the important information of the pdf rather concisely.

In figure 6.3 the square width is plotted against, L, the length parameter. The

other control parameters: the wall separation, d, and the surface tension, a, are at fixed

values for this analysis. Subsequent analysis will show the wall separation, d=20, and

the surface tension, a=0.5, as suitable for obtaining universality. The figure indicates

that the square width rapidly falls from its maximum value, at L=l, as the length of the
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membrane, L, is increased. The L=l value for the square width represents the square

width for an independent oscillator. An independent oscillator has an equal probability

of being found anywhere between the two walls and as such has a square shaped pdf.

This explains why the square width is maximum at L=l. By L=100 the figure

indicates that the square width has stopped falling. From L=200 to L=1000 (and

presumably above) the square width is essentially constant and invariant of N; a clear

sign of universality.

In figure 6.4 the square width is plotted against, a, the surface tension control

parameter. The other control parameters: the wall separation, d, and length parameter,

L, are at fixed values. I have shown that the length parameter, L=1000, should be

sufficiently large for universality and subsequent analysis will show the wall separation,

d=20, is also suitable. The figure indicates that the square width falls rapidly from its

maximum value, at o=0, as the surface tension, CT, is increased. The cr=O value for the

square width represents the square width of a set of N (N=L/a) independent oscillators.

The pdf of an interface of independent oscillators is, of course, the same a the pdf of

a single independent oscillator. So this explains why the square width is maximum at

<s=0. The figure indicates that the square width flattens out stops falling at around

o=0.5. Above a=0.5 the square width is essentially constant; once again a clear sign

of universality.

Finally, in figure 6.5 the square width is plotted against, d, the wall separation

distance parameter. The other control parameters: the surface tension, a, and the

length, L, are at fixed values for this analysis. The previous analysis indicates that the

length, L=1000, and the surface tension, o=1.0, should be suitable for obtaining

universality. The graph is flat and essentially featureless except from an initial dip at

the d=2 value, which is possibly a finite size anomaly. The figure indicates therefore

that the square width is essentially independent of the wall separation, d<20, for these

particular choices of L and a; a clear indication of universality.

From this analysis it is apparent that a universal regime exists for the pdf.

Appropriate values for the control parameters are d<20, a>0.5, L>1000. Clearly one

could fine tune these parameters further and there is a degree of interdependence, but

the work above shows that values in these regions are suitably universal.
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6.8.2 Short Distance Expansion For Universal pdf Near Wall

Having determined suitable values of the control parameters (N,a,d) for

analyzing the universal regime it is now necessary to analyze the results. Clearly one

could analyze the results in a variety of ways; some more interesting than others. One

rather simple, but interesting, method of analysis is to ask what the analytical form of

the pdf is close to the wall. The method is called a short distance expansion (SDE)

analysis because it yields an analytical form of the pdf valid at short distances from the

wall.

Consider what one knows about the pdf from the experimental results. One has

a set of data, {PJ, that gives one empirically the probability of finding the interface at

given regularly spaced heights from the wall. For a reasonable SDE analysis one must

have several results close to the wall. Since in my simulations I decided to fix the

lattice size, a=l, then this means that the wall separation, d, needs to large enough for

the SDE approximation to be valid.

Now consider how to interpolate the pdf results near the walls. Consider the

value of the pdf at the three lattice points nearest the wall. Figure 6.6 illustrates the

scenario.

Figure 6.6
Interpolation of lattice model pdf for

short distance expansion.
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Each of the probabilty values are non-zero. In fact the precise position at which

the pdf becomes zero is not known a priori. We do know however that the pdf

becomes zero beyond the last lattice point. In a sense therefore, for the lattice model,

the wall separation, d, is in fact only the "notional" separation of the walls. The "bare

width" of the strip to which the membrane is confined is the width of the pdf d+2a0;

where a$ is the distance of the extrapolated zeros of the pdf beyond the notional

position of the walls.

To determine a$ one could take the two points nearest the wall and use a linear

extrapolation. However, using three points allows one to extrapolate using the

following interpolation of the points.

P(z) = cCz+ao)* (6.8.2;1)

One can show that the exponent, <j>, corresponds to the universal exponent

covered in the preceding analytical work, albeit, in the SDE limit. The parameter c is

a constant of proportionality required for fitting the form to three data points, and is

related to the normalisation of the pdf.

Solving (6.8.2;1) so that one obtains an interpolation of the observed probability

values requires some consideration. We have three equations for the three unknowns

(ao,<j>,c)

P(0) = \ = ca*
P(a) =h2 = cCa + ao)* (6.8.2;2)

P(2a) = h3 = c(2a+a0)<t)

where (h,,h2,h3) are known from the simulation experiments. Solving these equations

for § one gets the following transcendental equation

(Mi _ 2(Mi - -r
which in general has to be solved numerically. Since we have an idea of the value of

the universal exponent, cj), then the method of bisection (see Press et al 1986) around

that value is the simplest approach to solving the equation. We make the association

- 2(v)1 ~ [if ~ * (6.8*4)
then we want the root (there should only be one) of B(<)>).
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Having determined a value for the exponent (j>, by finding the root of B((j>), it

is possible to procede analytically to evaluate the remaining unknowns. It can be shown

that

* - 1 (6.8.2;5)

which can now be evaluated directly. Moreover it is possible to show that

a* (6.8.2;6)

which, having determined <j) and a,,, can also be evaluated directly.

Now from simulation experiments I have obtained the values for h]; h2 and h3

displayed table 6.1.

z

0

a

2a

P(z)/Pmax

0.0211

0.0807

0.1726

Table 6.1

Note that the probability values in table 6.1 have been averaged so that the pdf

which they represent is correctly symmetrical. This averaging acts so as to improve

the quality of the results. Also the results above are normalised so that the pdf has unit

height rather than unit area (the usual normalisation).

Following the analysis described above and using the data in table 6.1 I obtained

(j)=1.806±l from the bisection. The error band represents the accuracy of the bisection

in determining the root rather than the accuracy of the universal exponent due to

imperfect source data. In fact the difference of the SDE result for the universal scaling

exponent, (j), from the analytical exponent consists of two components. One component

is the accuracy of the data in table 6.1 the other is the systematic error that arises from

the short distance approximation of the result.
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Further evaluating (6.8.2;5) yields the value 0.91 (approx 1) for, a,,, the root of

the pdf. So the root of the pdf lies approximately one lattice unit beyond the nominal

wall position. In retrospect, we can see that this is consistent with the result of the

transfer matrix calculations and the analytical results, presented in section 6.6. In the

transfer matrix argument the zero point of the pdf was implicitly assumed to be exactly

one unit beyond the possibly sites occupied by the interface.

The value of the normalising constant, c, could now be determined. However

I shall refrain since it is of little interest and is of no further use.

Having determined the location of the roots of the pdf, ag it is now possible to

plot out the universal pdfs with the roots included. Several pdfs in the universal

regime have been plotted in figure 6.7. The graphs have been normalised to have unit

height and are plotted against z*=(z+ao)/(2ao+d). The universality is evident from the

way in which the pdfs coincide with one another.

It should also be noted that the effective widening of the confining strip for the

lattice model affects the evaluation of the square width, W2, of the interface. Note that

this effect has been taken into consideration and close inspection of the preceding

figures of the interface square width, W2, will reveal that they have been handled

appropriately.

6.8.3 Global Form Analysis Of Universal pdf

Having established the location of the zeros of the pdf using the SDE analysis

it is now possible to perform the global form analysis of the universal regime. We

already know suitable values for the control parameters: length, L, surface tension, a

and wall separation, d, for universality.

To establish the functional form of these pdfs I have plotted in figure 6.6

log(P(z*)/Pmax) against log(sin(7tz*)). The significance of this plot is that a straight line

implies that

P(z*) - M u z * ) ) * (6.8.3;1)

and moreover the slope of the line is <)>.

Figure 6.8 is clearly linear verifying (6.8.3;1) and the slope is consistent with

(j)=2, as shown by the analytical arguments in section 6.6.
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6.9 Results Of MC Simulation Of The 2d SOS Helfrich Model

In section 6.4 we saw some tentative analytical arguments which suggested a

form for the pdf in the universal regime N-^co, K>0. I present here the results from

Monte Carlo simulations of the Helfrich ensemble and compare them with the

analytical results.

Recall that the Hamiltonian for this system is

(6.9:1)

6.9.1 Approach to Universality

As in section 6.8.1. one again has to determine suitable values of the control

parameters for investigating the universal regime. I adopt the same step by step

analysis of the parameter space to find the universal regime.

Once again, I found it was useful to use the mean height of the membrane, <h>,

to observe the equilibration of the simulations. Further I used the square width, W2,

of the pdf (6.8.1;1) in order to indicate the approach of the pdfs to universality.

In figure 6.9 the square width is plotted against, L, the length parameter (c.f.

figure 6.3). The other control parameters: the wall separation, d, and the curvature

elasticity, K, are at fixed values for this analysis. Subsequent analysis will show the

wall separation, d=20, and the curvature elasticity, K=0.5, as suitable for obtaining

universality. The figure indicates that the square width has its maximum value, at L=l.

The L=l value for the square width represents the square width for an independent

oscillator. In fact, rather surprisingly, the square width of the pdf appears to be

independent of N over the range of simulated lengths, 50<L<1000. However for

sufficiently short lengths there is, presumably, a crossover to the independent oscillator

value. Comparison with the interface (figure 6.3) indicates that the membrane

approaches universality rather faster than the interface. One should be quite safe in

expecting universality for L>1000.

In figure 6.10 the square width is plotted against, K, the curvature elasticity

control parameter (c.f. figure 6.4). The other control parameters: the wall separation,

d, and length parameter, L, are at fixed values. I have shown that the length parameter,
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L=1000, should be sufficiently large for universality and subsequent analysis will show

the wall separation, d=20, is also suitable. The figure indicates that the square width

falls rapidly from its maximum value, at K=0, as the curvature elasticity parameter, K,

is increased. The K=0 value for the square width represents the square width of a set

of N (N=L/a) independent oscillators. This explains why the square width is maximum

at K=0. The figure indicates that the square width flattens out stops falling at around

K=0.05. Above K=0.05 the square width is essentially constant; once again a clear sign

of universality. Direct comparison with the interface (figure 6.4) is not quite

meaningful in the sense that the control parameters do not represent the same quantity.

However a direct comparison indicates that membrane approaches universality at a

lower value of the elasticity constant than the interface.

Finally, in figure 6.11 the square width is plotted against, d, the wall separation

distance parameter. The other control parameters: the curvature elasticity, K, and the

length, L, are at fixed values for this analysis. The previous analysis indicates that the

length, L=1000, and the surface tension, K=0.25, should be suitable for obtaining

universality. The figure indicates that the square width drops steadily and flattens out

as the wall separation, d, is increased. For wall separations of d>15 the square width

would seem close to the asymptotic value. The figure therefore indicates that one

should expect to be able to observe universality for d>15. Comparison with the

interface (figure 6.5) indicates that the membrane is rather more strongly affected by

the separation of the walls, d, in its approach to universality.

From this analysis it is apparent that a universal regime exists for the pdf.

Appropriate values for the control parameters are d>15, K>0.05, L>1000. Clearly one

could fine tune these parameters further and there is a degree of interdependence, but

the work above shows that values in these regions are suitably universal.
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6.9.2 Short Distance Expansion For Universal pdf Near Wall

Once again having determined suitable values of the control parameters (N,K,d)

for analyzing the universal regime it is now necessary to analyze the results. The

analysis proceeds in much the same way as for the interface.

Recall that a short distance approximation of the postulated universal form of

the pdf is

P(z) = cCz+ao)* (6.9.2;1)

where z=-ao is the zero that we require for our non-local analysis and c is a constant

of proportionality corresponding to the normalisation constant of the non-local pdf.

Now from the simulation experiments I have obtained values for h,, h2 and h3

displayed in table 6.2.

z

0

a

2a

P(z)/Pmax

0.171

0.337

0.478

Table 6.2

Following the analysis described in section 6.8.2 and using the data in table 6.2

I obtained <j)=0.748±l from the bisection. Again the error band represents the accuracy

of the bisection in determining the root rather than the accuracy of the universal

exponent due to imperfect source data. As before the difference of the SDE result for

the universal scaling exponent, ((>, from the analytical exponent consists of two

components. One component is the accuracy of the data in table 6.1 the other is the

systematic error that arises from the short distance approximation of the result.

Further evaluating (6.8.2;5) yields the value 0.67 (approx Vi) for, a$, the root

of the pdf. So the root of the pdf lies approximately half a lattice unit beyond the

nominal wall position.

The value of the normalising constant, c, could now be determined. However

I shall refrain since it is of little interest and is of no further use.
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Having determined the location of the roots of the pdf, ao it is now possible to

plot out the universal pdfs with the roots included. Several pdfs in the universal

regime have been plotted in figure 6.12. The graphs have been normalised to have unit

height and are plotted against z*=(z+ao)/(2ao+d). The universality is evident from the

way in which the pdfs coincide with one another.

It should also be noted that the effective widening of the confining strip for the

lattice model affects the evaluation of the square width, W2, of the interface. Note that

this effect has been taken into consideration and close inspection of the preceding

figures of the membrane square width, W2, will reveal that they have been handled

appropriately.

6.9.3 Global Form Analysis Of Universal pdf

Having established suitable values for the control parameters: length, L,

curvature elasticity, K, and wall separation, d, for the universal regime and with the

extra information about the location of the zeros of the pdf it is now possible to present

and analyze the universal regime consistently.

As in section 6.8.3, in order to establish the functional form of these pdfs I have

plotted in figure 6.13 log(P(z*)/Pmax) against log(sin(7tz*)). The significance of this plot

is that a straight line implies that

P(z*) « (sinfaz*))*
(6.9.3;1)

and moreover the slope of the line yields the universal exponent <j>.

Figure 6.13 is clearly linear verifying the universal form (6.9.3;1). Moreover

the slope indicates that the universal index, <j)=0.72+0.05. This value is not inconsistent

with the value predicted by the analytical arguments discussed in section 6.7 although,

at 2/3, the analytical results represents the lower bound of the 'experimental' value

obtained here.
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6.10 Results Of MC Simulation Of The 3d SOS Surface Tension Model

I have not presented any analytical arguments so far that can predict the

functional form for the SOS model of an interface in three dimensions as the analysis

turns out to be far too involved to make any significant progress on the problem.

However the simulation problem in three dimensions is not significantly more difficult

conceptually than in two. Hence I am able to present results of an investigation into

the three dimensional model here.

The Hamiltonian for the two dimensional system was discussed in section 6.3;

see (6.3;2). The analogous Hamiltonian for the three dimensional system is

N

Additionally the Hamiltonian is applied periodically so that

W i , = hao) ( 6 - 1 0 ; 2 )

6.10.1 Approach to Universality

As in the previous investigations the first task is to establish where, or indeed

if a universal regime exists. The physical control parameters are basically the same as

for the 2d model; (L,a,d). However the parameter L now represents the length of a

square shaped interface region and so the number of interface points under observation

is L2 rather than L.

An important consequence of this is that doubling the length of the membrane

involves quadrupling the number of interface points. Since one wants to look for

universality as L—»oo this has a significant effect on the computational workload. In

fact the number of Monte Carlo timesteps per interface point required for equilibration

is significantly larger in three dimensions than two. This, together with the former

problem, conspires to limit the range of observable L so that effectively L<20 (with

more computational power this could be increased somewhat but the problem is still

fundamentally non-linear).

As in the two dimensional models I have used the mean height, <h>, of the

interface to observe the equilibration of the interface. Further I used the square width,

W2, of the interface to investigate the approach to universality of the interface.
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In figure 6.15 the square width is plotted against, d, the wall separation distance

parameter. The length control parameter, L, is at a fixed value; L=20. This represents

the largest system realisable, computationally. Several curves have been plotted each

corresponding to a different value of the surface tension constant, a. The curves are

therefore curves of "iso-elasticity". The figure reveals that at low surface tensions

(a<0.05) the square width slowly falls as the separation distance of the walls, d, is

increased. At sufficiently large surface tensions (a>0.025) however it is apparent that

the behaviour of the square width changes. After initially falling as the walls are

drawn apart the square width then appears to rise as the walls are separated further.

For none of the results is the square width entirely independent of the wall separation.

Thus it cannot be said that these results display any degree of universal behaviour for

the wall separation, d. The probable reason for this is that the size of the interface,

L=20, is too small; i.e. the non-universality is a finite-size (FS) effect.

Finally, in figure 6.16 the square width is plotted against, a, the surface tension

control parameter. The length control parameter, L, is at a fixed value; L=20. Again

this represents the largest system realisable, computationally. Several curves have been

plotted each corresponding to a different value of the wall separation distance, d. The

results indicate that for narrow wall separations, d<8, the square width initially falls

quite rapidly as the surface tension parameter, a, is increased. As the surface tension

is further increased the square width falls more slowly and the curves begin to flatten,

an indication perhaps of a degree of universality. However for systems whose walls

are wider, d>10, and at sufficiently large surface tensions the square width stops falling

and begins to rise. Thus the initial indications of a fragile universality prove to be

unfounded. Again, the probable reason for the non-universality of the results is that

the size of the interface, L=20, is too small; i.e. the non-universality is a finite-size (FS)

effect.

From this analysis it is evident that a universal regime, if one exists, is not

achievable for computationally realisable sizes of membrane, L<20. All the non-

universal behaviour of the results could be due to FS effects. If one could garner

enough computational power to tackle large systems it is possible that a universal

regime may be achievable.
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6.11 Results Of MC Simulation Of The 3d SOS Helfrich Model

I have not presented any analytical arguments that can predict the functional

form for the SOS model of a membrane in three dimensions. In fact the analysis is far

too involved for any significant progress on the problem. In contrast to the problems

encountered with the analytical work the simulation problem is no more difficulty

conceptually in three dimensions than in two. In this chapter I present the results of

an investigation of the three dimensional model. I shall show that there is good

evidence for a universal regime. I shall show however that the universal regime does

not appear to have the same functional form as the two dimensional systems.

The Hamiltonian for the three dimensional system is

N

^ . (fr j J) ( j ) ) (6.11;1)

Additionally the Hamiltonians are again applied periodically so that

V i j ) = Vj) a n d h(i,N+n = h(i,o) (6.H;2)

6.11.1 Approach to Universality

Once again the first problem one encounters investigating the universal form of

the pdf is to establish where and indeed whether a universal form exists. The physical

control parameters are essentially the same as for the 2d membrane model; (L,K,d).

However, as for the 3d interface, the length parameter, L, now represents the length of

a square shaped membrane region. So the number of membrane points in the

simulation is L2 as opposed to L.

Clearly this has important consequences for the computational workload

considerations as for the interface (section 6.1). The number of Monte-Carlo timesteps

per membrane point required for equilibration is also significantly larger in three

dimensions than two. This together with the former problem limits the range of

attainable lengths for the membrane so that effectively L<20.

As in the two dimensional models I have used the mean height, <h>, of the

membrane, <h>, to monitor the equilibration of the membrane. Further I have used the

square width, W2, of the membrane to investigate the approach to universality of the

membrane.
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In figure 6.17 the square width is plotted against, L, the length parameter of the

membrane. The other control parameters: the separation distance of the walls, d, and

the curvature elasticity, K, are at fixed values for this analysis. Subsequent analysis

will indicate that the wall separation distance, d=10, and the curvature elasticity, K=0.2,

are suitable for observing universality. The figure indicates that the square width falls

quite rapidly from a maximum value at L=l. At L=l the membrane is an independent

oscillator which explains the maximum. By L=10 the square width has ceased falling

and remains constant as the length is increased further; a clear sign of universality.

N.B. the universal behaviour appears to set in at a surprisingly low length of membrane

(compared to the separation of the walls).

Next in figure 6.18 the square width is plotted against, d, the separation distance

of the walls. The length control parameter, L, is at a fixed value; L=20. This

represents the largest computationally realisable system. Several curves have been

plotted each corresponding to a different value of the curvature elasticity constant, K.

The curves are therefore curves of "iso-elasticity". The figure shows that at low

curvature elasticities (K<0.025) the square width falls slowly as d is increased. At

higher curvature elasticities (K>0.05) the figure indicates that the square width is

essentially constant, independent of d, within the bounds of experimental error. Clearly

this universal behaviour is a good indication of a universal regime.

Finally in figure 6.19 the square width is plotted against, K, the curvature

elasticity control parameter. The length control parameter, L, is at a fixed value; L=20.

Again this represents the largest computationally realisable system. Several curves

have been plotted each corresponding to a different value of the wall separation

distance, d. The results indicate that the square width falls quite rapidly from its

maximum value at K=0. When K=0 the membrane is effectively a set of L2 indepen-

dent oscillators which explains why the square width is maximum at K=0. The square

width flattens as the curvature elasticity, K, is increased further. For K>0.1 the square

width is effectively constant and independent of the curvature elasticity, K; a clear sign

of universality. There is some spread of the data for the different curves indicating that

perhaps one could do better with a longer system.

The evidence for universality would seem to be strong. The figures indicate that

the square width is almost independent of the control parameters for L>10,d>6,K>0.1.
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6.11.2 Short Distance Expansion Analysis Of Universal pdf

In the preceding section I presented strong evidence pointing to existence of a

universal regime for the 3d SOS Helfrich model. In this section I present and analyze

the universal data in an attempt to classify the nature of the universal regime. The

SDE analysis used in the analysis of the 2d models is equally valid for the analysis of

the 3d model.

Recall that a short distance approximation of the postulated universal form of

the pdf is

P(z) = cCz+ao)* (6.11.2;!)

where z=-ag is the zero that we require for our non-local analysis and c is a constant

of proportionality corresponding to the normalisation constant of the non-local pdf.

Now from simulation experiments I have obtained values for h,, h2 and h3

displayed in table 6.3.

z

0

a

2a

P(z)/Pmax

0.025

0.118

0.293

Table 6.3

Following the analysis described in section 6.8.2 and using the data in table 6.3

I obtained (j>=2.208+1 from the bisection. Again the error band represents the accuracy

of the bisection in determining the root rather than the accuracy of the universal

exponent due to imperfect source data. As before the difference of the SDE result for

the universal scaling exponent, (j), from the analytical exponent consists of two

components. One component is the accuracy of the data in table 6.3 the other is the

systematic error that arises from the short distance approximation of the result.

Further evaluating (6.8.2;5) yields the value 0.97 (approx 1) for, a^, the root of

the pdf. So the root of the pdf lies approximately one lattice unit beyond the nominal

wall position.
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The value of the normalising constant, c, could now be determined. However

I shall refrain since it is of little interest and is of no further use.

Having determined the location of the roots of the pdf, a,, it is now possible to

plot out the universal pdfs with the roots included. Several pdfs in the universal

regime have been plotted in figure 6.20. The graphs have been normalised to have unit

height and are plotted against z*=(z+ao)/(2ao+d). The universality is evident from the

way in which the pdfs coincide with one another.

It should also be noted that the effective widening of the confining strip for the

lattice model affects the evaluation of the square width, W2, of the interface. Note that

this effect has been taken into consideration and close inspection of the preceding

figures of the membrane square width, W2, will reveal that they have been handled

appropriately.

6.11.3 Global Form Analysis of Universal pdf

In the preceding section I analyzed the universal pdf data using the SDE

technique. In this section I use the global analysis method which enabled us to

successfully classify the global form of the universal pdf for the two dimensional

models. Recall that the analysis is designed to test whether the universal pdf has the

following analytical form.

P(z *) - (sin(7rz *))•

(6.11.3;1)

If the pdf is of the latter form then the analysis allows one to extract the value

of the universal exponent, (j>. On the other hand, it is meaningless to ascribe the

universal form a universal exponent, <j>, if is not of the latter form.

A selection of pdfs in the universal regime are plotted for analysis in figure

6.21. The results appear linear although there may be a small deviation from linearity

at short distances from the wall. At any rate the results are as linear as any of the

preceding results. Hence (6.11.3;1) is in the very least a good parameterisation of the

results. The slope of the graph indicates that the universal exponent, <|>=2.44±0.05.
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6.12 The Bead Chain Model Of A 2d Membrane

In sections 6.9 and 6.11 somewhat restrictive models of a membranes were

analyzed by Monte Carlo simulation. It was noted that substantial progress was

possible analytically on these restrictive models (at least in the case of the 2d model).

The principal simplification of the models stemmed from disallowing overhangs (hence

SOS), and so avoiding membrane self-avoidance features which can sometimes be

crucial to the understanding of real physical systems.

In this section I introduce a less restricted model of a two dimensional

membrane based on the bead chain type models for polymers and vesicles (Remember

that a polymer and a membrane can be considered the same in two dimensions and that

a vesicle can be considered as a closed or cyclic polymer). No progress has been made

on the associated analytical problem for this model due principally to the extra

complexity involved in the inclusion of self-avoidance features.

6.12.1 Description of the Model

The model is based on the familiar bead chain models of polymers adapted by

LSF to study vesicles and discussed briefly in section 5.3. The membrane is

considered to consist of a set of n-hard beads, of diameter a, linked sequentially by

flexible tethers, of length L=9/5a.
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The simulation is initiated with the chain lying flat in the centre of the walls.

The beads are then jiggled about using the algorithm of Metropolis et ah Membrane

self-avoidance is maintained by the mechanism described in section 5.3, based on the

impenetrability of the beads and the tether length L<2a. The implementation of the

self-avoidance property is time critical to the simulation. In appendix A the details of

an efficient algorithm are presented. Use of a less efficient algorithm would have

precluded some of the work presented in this section due to computational limitations.

Figure 6.22 indicates a possible configuration of the bead chain after it has

relaxed from its initial position.

6.12.2 Hamiltonian and Aperiodicity of the Membrane

The Hamiltonian for the membrane is precisely the same as that discussed

earlier in section 5.3, i.e.

where p\ is defined as before to be the angle between the I—1,1 and i,i+l pairs. Recall

that this can be shown to be the familiar Helfrich Hamiltonian in the continuum limit.

It should be noted that it is not possible to consistently apply periodic boundary

conditions to this model in the way that we did for the SOS models. This is because

of the extra freedom that the beads have to move, and hence the membrane has to

expand and contract, in the x-direction. Consequently we should expect it to be more

difficult to reach scale free regimes, since beads near the end of the membrane will

experience a different environment to beads near the middle. To try and eliminate this

effect I will be looking in the regime N>d. In this regime, we shall see that the

majority of the membrane experiences a similar environment once the membrane has

relaxed.

6.12.3 Universal Regimes for the Bead Chain Model

In the 2d SOS models of interface and membrane I was guided by strong

theoretical predictions in the search for a universal regime of the probability density.

There is in particular one specific difference between the latter models and the current

model which makes the search for universality more interesting. In the current model
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setting the curvature elasticity constant, K, to zero does not lead to an uninteresting

unphysical step function for the pdf. This is because, like a real membrane with

vanishing surface tension and curvature elasticity, the beads do not become independent

oscillators as in the SOS model. Rather they are bound together the fluctuation of one

bead implicitly affecting that of the others through this linkage and the self avoidance

property.

In the previous simulations universality was achieved by looking in the regime

N»d»K,cr>0. Clearly for a meaningful and interesting universality of the pdf it is

still going to be necessary to maintain N » d and N » K . AS I have stated it is now

possible to set the curvature elasticity, K, to zero. Therefore an interesting question is

whether the purely self-avoiding membrane (SAM) (K=0) exhibits a universal regime;

and if so what are the characteristics of that regime.

The many extra degrees of freedom of this model of a membrane as compared

to the previous SOS models leads one to expect that the equilibration of the system

should take significantly more time steps. Indeed this is what I have observed.

Whereas I used the mean height of the membrane as a guide to equilibration in the

previous SOS models, I use the mean horizontal length of the membrane in this model.

This approach has the virtue that the horizontal length relaxes significantly more slowly

than the mean height (see figure 6.23), thus helping to ensure true equilibration.

Moreover this value is useful to observe for analyzing the approach to universality,

since the number of beads per unit horizontal length should approach a characteristic

universal value.

6.12.4 Approach to Universality

As in the previous simulations it is possible to observe the approach to

universality using the membrane width. Setting the curvature elasticity, K, to zero

means that there are only two remaining control parameters the number of beads, N,

and the width of the gap between the walls d.

In figure 6.24 the membrane width of a SAM confined between walls of fixed

separation d=20 is plotted against the length of the membrane L=Na. In figure 6.25

the membrane width of a SAM of fixed length, L=400a, is plotted against the

separation of the walls, d.
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Comparison of relaxation of mean membrane height, <h>, and x-projeetion of membrane end-to-end length, X.
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The figures indicate that any universality in the results is fragile in these results.

Unfortunately it has not proved possible to extend the range of the control parameters

looked at here due to computational limitations. (Simulations for an 800 bead

membrane with d=20 takes 5 days on a SUNIPX Workstation. For an N=1000

membrane with d=20 would take about 20 days; an unacceptable time period).

6.12.5 Short Distance Expansion Analysis Of pdfs Near Wall

We have seen that the universality of the results appears to be rather fragile.

Hence it is rather difficult to select appropriate values of the control parameters (N and

d) (K has already been set to zero) for which the pdfs are universal. However for a

SDE analysis we need to know the form of the pdf near to the wall. Recall in section

6.4 I defined the width of the sampling intervals for an off-lattice pdf approximation

to be 8z=l. For a SDE analysis to be appropriate we require Sz/d = 1/d < 1. Hence

we are rather impelled to take the largest width confining strip in the search for

universality. So I have taken the largest strip width of the simulations, d=20.

Now for the simulations with K=0, d=20 and varying number of beads I have

performed a series of short distance expansions. The results of the short distance

expansions are to be plotted against the number of beads in the chain N. For

universality the results should converge to a universal value as N is increased.

The short distance expansion analysis for this inherently off-lattice model is

somewhat different from the on-lattice models already investigated. The source of this

difference is that for this off lattice models the positions of the walls is known. That

is the locations of the zeros of the pdf are known exactly. There is however some

degree of uncertainty over the position the probabilty values should take with respect

to their probability intervals. Although in principal one could determine the position

each probability value should take exactly, as a first approximation it seems reasonable

to locate them at the centre of the probability intervals.

In general, this approximation works well when considering global properties

of the pdf. When considering an SDE analysis however one should note that the

location of the probability values is critical. Fortunately we are able to circumvent any

problems we have by considering a short distance expansion of the probability
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distribution function rather than the probability density function. In figure 6.26 the

details of the probabilty distribution function are illustrated.

Figure 6.26
Interpolation of bead-chain model prob.

distribution, fn. for SDE analysis.

As with the on-lattice SDE analysis in order to obtain a SDE approximation of

the universal exponent, fy, it is neccessary to look at three points of the pdf near the

wall. In fact we can use the value of the pdf at the wall now, which means that

effectively only two values are required from the simulation. It can be shown that the

three points (including the wall point) can be interpolated by

P(z) = cz* (6.12.5;1)

Note that there are only two interpolation parameters in this interpolation

formula since the zero of the pdf at the wall is intrinsically satified. As in the on-

lattice analysis one can show that the interpolation parameter, <J), corresponds to the

universal scaling exponent for the pdf, albeit in the SDE limit. Also the interpolation

parameter, c, as before is related to the normalisation of the pdf and is of little interest.

Now as remarked above this formula for the pdf, P(z), as remarked above is not

useful directly. However on integration we get

P(z) = c ^ z ^ (6.12.5;2)
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where P(z) is the probability distribution function defined in (6.4;1). Now one can

solve (6.12.5;2) directly, without recourse to numerical techniques. We have two

equations for the two unknowns (<j>,c)

P(Sz) = hj = (Jx^Sz)^-1)

P(26z) = hj+L, = cj)c(26z)(<t)-1) (6.12.5;3)

where (h^hj) are known from the simulation experiments. Solving these equations fore})

one gets

"log(2)

and finally, knowing (j), one can now solve for c using

(6.12.5;4)

h
UJ (6.12.5;5)

Now from simulation experiments I have obtained the values for h, and h2

displayed in table 6.4.

hi

h2

N=100

0.0400

0.178

N=200

0.0339

0.157

N=400

0.0302

0.144

N=600

0.0260

0.122

N=800

0.0255

0.119

Table 6.4

Note as always the probability values in table 6.4 come from symmetrised pdfs.

The symmetrisation impoves the quality of the results. Also the results come form pdfs

normalised to have unit height rather than unit area.
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Following the analysis method described above and using the data in table 6.4

I obtained values for the effective scaling exponent, 4>eff(N), displayed in table 6.5.

The results are also plotted against number of beads in figure 6.27. The dotted line

represents the universal value of the scaling exponent, 4>.

4>eff(N)

N=100

1.45

N=200

1.49

N=400

1.53

N=600

1.51

N=800

1.50

Table 6.5
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6.13 Summary and Comparison of Results

In table 6.6 I summarise the main results obtained in the preceding sections:

Model

SOS Interface 2d

SOS Membrane 2d

SAM 2d

SOS Interface 3d

SOS Membrane 3d

Analysis

2.0

2/3

-

-

-

SDE

1.8

0.749

1.50

-

2.2

Global

2.0

0.72

-

-

2.4

W2

Expt

0.0352±3

0.0546±l

0.0395±5

-

0.0285+10

W2

Analysis

0.0327

0.0544

-

-

-

Table 6.6

Also in figure 6.28 a direct comparison of the pdfs in the observed universal

regimes have been plotted including the roots of the pdfs. The figure clearly illustrates

the differences between the universal regime pdf profiles for the different models.

Further in figure 6.29 the pdfs are plotted using the global form analysis

method. The linearity of the graphs suggest that the postulated universal form is, in

the very least, a good parameterisation of the results. Moreover the figure indicates that

the differing models clearly have differing universal exponents as indicated by the

differing slopes of the lines.

159



1.0

ON

o

0.8

0.6

0.4

0.2

-0.0

1 1

_ Symbol key:

_ +:
A-

_ X:

_ •:
*:

—

R ^P^^i.

d=6
d=8
d=10
d=12
d=20 ,

/

/

i

i i i i

)T AA $/ ///
y/ JIw ff* a

Iff

7

\
c).6 = 2.4

1 i 1 1 1 1

1 1 i i i i

—

V

>\ a).0sO.7

\

i i I rr^ja

-0.0 0.2 0.4 0.6

z =(z+ao)/(2ao+d).

0.8 1.0

Figure 6.28
Comparison of pdfs for a). SOS model of a membrane in 2d, b). SOS model of an interface in 2d and c). SOS model of a membrane in 3d.

Pdfs normalised to have unit height and domain. Varying d with a). K=0.5, b). a=1.0, c). K=0.2 and n=1000.



0.0

-0.5

-1.0

-1.5

-2.0
-1.5 -1.0 -0.5

Log(sin(:cz /d))

0.0

Figure 6.29
Log(sin(jtz/d)) plot for a). SOS model of a membrane in 2d, b). SOS model of an interface in 2d and c). SOS model of a membrane in 3d.

Varying d with a). K=0.5, b). a=1.0, c). K=0.2 and n=1000; z =(z+ao)/(2ao+d).



6.14 Conclusions and Further Work

I have demonstrated that the Monte Carlo Simulation method applied to a

variety of confined interface and membrane models is a powerful tool for investigation

of those models. I have been able to achieve universality for a number of the models.

The analysis of the results has indicated that, at the very least, the generic universal

form, motivated by a neat analytical argument based on conformal invariance, is a very

good parameterisation of the results. In the case of the confined interface in 2d the

hypothetical is form is known to be correct by an analytical argument.

The qualitative form of the pdf for the confined membrane in 2d seems to

accord with a tentative analytical argument. A universal regime for the SOS membrane

in 3d has been achieved for surprisingly, perhaps anomalously, short length scales. It

appears qualitatively similar to the confined SOS interface in 2d although with a larger

universal exponent. Further work could be done to improve the accuracy of the result.

Universality also appeared to have been be achieved for the 2d bead-chain

model of a membrane in the SDE analysis. Work in the literature (Gompper and Kroll

1991) indicates that the universal regime for the SAM in 3d is currently inaccessible

due to computational limitations. With the continual improvement of computing

performance future work could involve obtaining and characterising the universal

regimes for these models.

The work in the final sections of this chapter form the basis of a paper to be

submitted for publication (Norman et al 1993). Further work on advancing the analysis

of the models would prove useful, although the simulation work performed here is

largely due to the difficulty of furthering the analytical work.

The confined SOS membrane in 2d is currently being investigated using a

Fokker-Plank method (Parry 1992d). Preliminary results from that study indicate are

not inconsistent with the results I have presented here. Any experimental analysis

using alternative methods are useful as independent confirmation the work presented

here.
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CHAPTER SEVEN

A BEAD NET MODEL FOR TILTED CHIRAL LIPID BILAYERS

7.1. Introduction

Recent experimental observation of tilted chiral lipid bilayers (TCLBs)

(Nakashima et al 1984, Yamada et al 1984, Nakashima et al 1985, Yager and Schoen

1984, Yager et al 1985) have revealed the existence of several new exotic bilayer

structures. The experimental observations indicate that the chirality of the lipid

molecules is an important factor in the formation of these exotic structures. Some

progress has been made in understanding the structural raison d'etre of these new

structures (Helfrich 1986, de Gennes 1987, Helfrich and Prost 1988, Zhong-can and

Jixing 1991) through mean field analytical arguments. These models though successful

in explaining the" form of the observed structures are unable to answer, by their very

nature, important questions concerning statistical mechanics of these structures.

The purpose of the work in this chapter has been to develop a model of the lipid

bilayer that can answer some of these questions. The very complexity of the statistical

mechanics of self-avoiding surfaces, that has precluded analytical solutions of simpler

problems than this, forces one to proceed numerically. In the next section I shall

describe the bead net model (also called the tethered or polymerised membrane model)

of a membrane (Kantor et al 1986, 1987, Kantor and Nelson 1987). I shall go on to

explain how this model can be adapted to model the tilted chiral lipid bilayer (TCLB).

Having adapted the bead net model to TCLBs I go on to present the results of

simulations of the model. Initially I investigate "long thin" membranes for which

experimental observations and the analytical arguments have definite predictions to

make. I present a systematic analysis of the results. Actual configurations of

"observed" membrane structures are also presented.

Having investigated a particulary simple shape of membrane I proceed to look

at the less simple case of diamond shaped regions. Since the experimentally observed
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structures were thread-like comparison with experiment is difficult. Moreover the

analytical arguments of the mean field models cannot be used since membrane self

avoidance is almost certainly an important consideration for these membranes. The

results are again analyzed systematically and a selection actual "observed" membranes

a r e p r e s e n t e d . ^. s, ! j : * - p ^ : - . - w . - . > - , v • • - • • • . - . • - • ; • > < •• ••'•• • w . & • •; ':••:;*• •,-•.'. •••• : v : •;•: - ^ r ' - • • • • < :

7.2 The Bead Net model

The field of membrane simulation is currently the subject of intense investiga-

tive effort. There are several models being studied, but most models are abstracted

from the so called bead net or tethered membrane model. This model is closely related

to the bead chain model of polymers discussed in sections 5.3 and 6.12. A bead net

description of a surface is illustrated in figure 7.1.
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Figure 7.1
Schematic illustration of bead net model '

,.., -; of a lipid bilayer. e . ,rj .,

The surface consists of a set of N hard beads linked, by short flexible tethers,

to neighbouring beads, into a hexagonal net structure. Self-avoidance of the net is

achieved by restricting tether length, so beads cannot stray far from their neighbours.

The maximum tether length is sufficiently short so that taken together with the fact that

the beads are hard, and so exclude one another, the result is to render the net

164



impenetrable. This is because the net is sufficiently dense of beads that the remaining

gaps between the beads are too narrow for non-neighbouring bead to pass through.

The implementation of the hard, or self-avoiding, bead property is time critical to the

simulation and an efficient algorithm for its implementation is discussed in detail in

appendix A. This impenetrable arrangement of the beads is featured in the schematic

illustration figure 7.2. • • • • i

Figure 7.2
Schematic illustration of membrane self-

avoidance through impenetrability.

It can be seen that the bead net model of a membrane as described is a

polymerised membrane model. That is to say that the connectivity of the membrane

is fixed so that the beads are unable to wander around within the surface. Real TLCB

membranes are fluid. One should expect that the polymerised nature of this model will

affect the shape of the membrane. The degree to which the membrane is affected

remains to be seen. At any rate it is possible to fluidize the membrane (Ho and

Baumgartner 1990) if necessary; although this would represent a significant computa-

tional complication of the problem. Constructing a consistent TCLB model for a fluid

membrane also would also require some careful consideration and reappraisal of the

modelling details.

In an attempt to identify the shape characteristics dependent on the self-

avoidance property of the membrane I have briefly considered Phantom or Ghost

membranes (Kantor et al 1987). Ghost membranes do not self-avoid globally. The

membrane area is preserved by only keeping the beads hard with respect to their
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neighbouring beads. It should be possible to predict analytically the behaviour of fluid

ghost membranes under the chiral action. Comparison of the polymerised ghost

membrane with the analytical result for the fluid membrane should help one to

understand effects due to the polymerisation of the membrane. Unfortunately, the mean

field result for the diamond shaped membrane is not available to me. Nevertheless one

hopes that this comparison will become possible as the analytical result is made

available.

7.3 The TCLB in More Detail

Before one can adapt the bead net model to investigate TCLBs one needs to

consider the TCLB in more detail.

In the TCLB the chiral lipid molecules are out of alignment with the surface

normal. The arrangement is illustrated in figure 7.3. The degree of mis-alignment with

the surface normal is measured by the angle 60. Ordinarily the mis-alignment of the

lipid molecules would need to be described by a three dimensional vector field on the

membrane surface. However, it has been observed experimentally that this angle tends

to be fairly constant throughout the membrane in TCLBs. This means that the

misalignment of the lipid molecules can be described by a two dimensional vector field

in the surface, corresponding to the projection of the three dimensional field onto the

surface.

Figure 7.3
Diagrammatic representation of internal

structure of TCLB.
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It should be apparent from figure 7.3 that the theory of smectic liquid crystals

(c.f lyotropic phases in section 2.3.4) should be a useful tool in this work. Indeed the

associated Frank theory of elasticity (Oseen 1933, Zocher 1933, Frank 1958) already

contains an energy term encapsulating the chiral effect (Helfrich and Prost 1988). The

energy density due to the chiral effect can be written (Zhong-can and Jixing 1991) as

gchira. = -^ - (Vxd) (7.3;1)

where KJ is the associated Frank elastic constant and d is the tilt director illustrated in

figure 7.3.

The chiral energy density in this form is not very amenable for use in the bead

net model of TCLBs which I shall describe next. Fortunately a more useful form has

been obtained (Zhong-can and Jixing 1991).

7.4 Adaptation of Bead Net Model to Study TCLB

Having introduced the bead net model and considered the essential features of

the TCLB one is now in a position to adapt the bead net model to study TCLBs.

7.4.1 Definition Of a Surface Field for The Bead Net Model

The bead net model as originally formulated makes no provision for the

definition of a surface field, so one has to define one. Clearly the definition of a vector

field on the surface representing the internal structure of the membrane complicates the

model somewhat. The simplest vector field that one can define is a uniform one. In

an effort to keep the model as simple as possible I have elected to consider surfaces

with only a fixed and uniform surface field. Obviously in reality the interaction

between the membrane geometry and the internal lipid geometry may well be

important. Nevertheless one would hope that even with a fixed and uniform internal

geometry the model will still exhibit important new physical features.

I have defined a vector field that is uniform with respect to the bead net surface

on which is defined as follows. Imagine the bead net without the beads. The net is

a triangular mesh. Consider the mesh when it is flat and the triangles are all

equilateral. Now construct lines from the centre of each triangle to the vertices. All

of these construction lines lie in one of three possible (six if you count the sense)

directions. Choose one of the directions. Obliterate all the construction lines not
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parallel to the chosen direction. Now one is left with a set of triangles each containing

a vector. For half the triangles the vector is from the centre to the vertex, for the other

half the reverse is the case. It can be seen that the vector field in this regular geometry

of the net is uniform with respect to the membrane and real space. As the beads are

moved during a MC simulation the vector field is updated so that the new vectors run

from the centre to the selected vertex, or vice versa. Obviously as the surface develops

the vector field becomes non uniform in space. It can however be considered uniform

with respect to the surface. This arrangement is illustrated in figure 7.4

Figure 7.4
Construction of uniform TCLB surface

field.

7.4.2 Definition of a Hamiltonian For TCLB Model

The application of the bead net model to physical systems is achieved by

imposing a Hamiltonian representative of the physics. For instance a study of the

explicit curvature of the surface (the membrane has intrinsic curvature properties also

worthy of interest) involves the imposition of a Helfrich curvature Hamiltonian of the

form

,.cn
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where ca represents the unit normal formed from the plane of three neighbouring

beads, denoted a. The summation, (a,P), is over adjacent plaquettes or bead triangles.

Clearly one can write this in the form

H = - V s?
nhelf n 2L, &«p ,„ „ „ „

2 («,P) (7.4.2;2)
where one defines

as the curvature energy density for the surface.

The task of applying the bead net model to the TCLB problem is now reduced

to the task of choosing a Hamiltonian. Fortunately the task of formulating a

Hamiltonian representative of the physics of TCLBs is made easier, due to the

precursory mean field studies (Helfrich and Prost 1987, Zhong-can and Jixing).

However, since we are not dealing with a continuum model here then some manipula-

tion is required. In particular the Frank form of the chiral energy density (7.3;1) is not

particularly easy to interpret. Fortunately the Frank form can be put into the following

form (Zhong-can. and Jixing 1991)

where

KX = -Ik.sin^coseo (7.4.2;5)

is the chiral elastic constant or chirality (the author's own naming convention) andt

is the so called geodesic torsion (Spivac 1979). Alsos 90 is the lipid tilt angle, as

illustrated in figure 7.3. For the geodesic torsion one can write

t g = c.(Yxc) (7.4.2;6)

where Y and c are described in section 7.3. The derivative is with respect to the

surface field. For the full derivation see Zhong-can and Jixing 1991.

The essential nature of the chiral Hamiltonian is to drive torsion into the

surface, hence the resulting twisted and helical structures. To understand the chiral

field let us compare it with the curvature field. Imagine moving along the surface field

generated by the TCLB. In figure 7.5 a set of curve trajectories are drawn to illustrate

the concept of torsion. In figure 7.5a the trajectory curves with no torsion, whilst in
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figure 7.5c the trajectory twists with no curvature. In figure 7.5b the trajectory both

curves and twists. " ' " '" ' ' ' ' ' •

j. 1

a) . ci C2

b). c,
t

c).

• c 2

C i .

c

. A"
ft
Ci

r
°i

Figure 7.5
Torsional and curved paths along a

path on a membrane.

If one moves along the chiral field of a TCLB the effect of the chirality of the

molecules is to twist the surface with respect to the trajectory. One needs to construct

a Hamiltonian that mimics this effect.

Now consider adjacent triangles in the bead net. It is easy to see that there is

ample freedom to curve the surface represented by the triangles. It is not clear

however whether the surface can be twisted. In fact it can be seen the opportunity for

twist type deformations between adjacent triangles is severely restricted by their very

adjacency. In order to obtain a reasonable freedom to twist, and hence satisfy a torsion

driving potential, one has to look at neighbouring triangles that share at most one

corner. In figure 7.6 several orientations of such triangles are illustrated.

In figure 7.6a the triangles are untwisted, whilst in figure 7.6b the triangles have

been twisted through 90°. In figure 7.6b the triangles are twisted by 45°. The
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deformations of the triangles illustrated are a simplification of real triangle deforma-

tions since in each of the deformations the chiral field vectors, p{ and p2, are co-linear.
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Figure 7.6
Illustration of twist deformations of triangles sharing a

common vertex.

Nevertheless the figure illustrates well the degree of torsion deformation

possible between triangles sharing a common vertex. Moreover a natural measure of

the torsion becomes apparent - the degree of twist of the triangles. One needs a more

rigorous definition of this quantity.

Careful consideration of this problem has led one to consider the following

measure to be an appropriate measure for the twist between the triangles

X12 = Pi-(£ixc2)+p2-(aix£2) = (Pi + P2)-(cix£
2) (7.4.2;7)

This quantity has the correct symmetry properties and for deformations such as

those in illustrated in figure 7.6 (deformations with co-linear chiral fields) it

corresponds to the intuitively apparent value of the twist of the triangles.
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One expects that the twist between a plaquette a and its twist neighbour p, % „ ,

as defined above should become equivalent to the geodesic torsion, T , in the

continuum limit.

Now this quantity can be classed as a strain type quantity. One forms the

corresponding stress quantity in the usual way, by making the elastic approximation.

One arrives at the following Hamiltonian for the membrane

K _
chiral = ^~<£p>% a P (7.4.2;8)

where k̂  is the chirality for the model and should correspond to the chirality of the

continuum model defined in (7.4.2;5).

7.5 Results Of MC Simulation Of TCLB Model

Having constructed a model and Hamiltonian for the study of TCLBs, in this

section I present the results of Monte-Carlo (Metropolis et al) simulations of the model.

Figure 7.7 illustrates the general form of membrane geometry that I intend to

investigate. For long thin membranes one has 1X>1 whilst conversely for diamond

shaped regions one has lx<ly.

Figure 7.7
General membrane geometry to be

considered.
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Initially I investigate long-thin membrane geometries, as something of the

behaviour of these geometries is known from experimental and mean field studies.

Moreover long-thin geometries are less computationally demanding than the

alternatives. Next I consider diamond shape geometries. Diamond shaped geometries

represent a significant increase in complexity, for the analytical problem. Membrane

self avoidance and the competing stresses within the membrane are the source of this

extra complexity.

7.5.1 Results For Long-Thin Membranes

The particular long-thin membrane geometry that I have considered is illustrated

in figure 7.8.

a).

AATXAAA/VVV
/ I,

b).

1 I t t 1 i I 1 t t

Figure 7.8
Long thin membrane geometry under consideration, (a.),

with mean field result (b.).

The mean field models (Helfrich and Prost 1987, Zhong-can and Jixing 1991)

predict that this geometry should form the twisted strip configuration, also illustrated

in figure 7.8, in order to minimise the chiral energy. In figure 7.9 I have plotted the

twist, x, of the membrane in response to the chiral Hamiltonian defined by

= J_
X N
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where N is the number of triangle pairs over which the pair twist %ap is summed.

It can be seen that the twist is a measure of the torsion of the membrane as a whole.

It has a maximum value of one and as such can be regarded as an order parameter for

chirality.

Several length membranes are considered. Each membrane has the minimum

possible width of unity. The figure indicates that for these long thin membranes the

response is almost independent of the length. Initially the membrane is equally likely

to twist in one direction as the other. Hence initially the twist of the membrane is on

average zero. As the chiral elastic constant is increased the membrane energetically

prefers to twist in one direction in preference to the other. Consequently the twist

increases. The twist continues to rise with the chiral elasticity but the rate of increase

is reduced as the maximum value of one is approached. In fact the twist appears to

approach the maximum value only very slowly.

In figure 7.10 and figure 7.11 membrane configurations from the Monte Carlo

simulations are displayed. In figure 7.10 the membrane is free of the chiral effect

whilst in figure 7.11 the chiral effect is strong. One can see from the membrane

configurations the effect of the chiral Hamiltonian is indeed to twist the membrane.

I have attempted to quantify the observed twisting by evaluating the inverse pitch /

wavelength of the twisting defined by

y- - ^EMfvft..) (7.5.,.2)

where

j>, - ih - ft*. ( X 5 - i ; 3 )

and L is defined as the end to end displacement of the membrane.

The response of the inverse pitch of the twist to the chiral elasticity is plotted

in figure 7.12. As with the twist the inverse pitch of the membrane is initially zero.

As the chiral elasticity is increased the inverse pitch rise rapidly. As the chiral

elasticity is increased still further the inverse pitch of the membrane begins to flatten

out. The results for the inverse pitch for different membrane lengths do not appear to

lie on the same curves, although the asymptotic value is arguably the same. It is also

interesting to note that the inverse pitch appears to reach asymptotia somewhat earlier

than the results for the twist.
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Figure 7.10

Membrane conformations observed during simulation for long thin geometry

(lx=10,ly=l) with a). KX = 0.0 and b). KZ = 2.0.

176



Figure 7.11

Membrane conformations observed during simulation for long thin geometry

(lx=10,ly=l) with a), K = 4.0 and b). K% = 15.0.
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Figure 7.12

Plot of inverse pitch, X, against chirality, K̂  for long thin membranes.



7.5.2 Results For Diamond Shaped Geometries With Self-Avoidance

The particular diamond shaped geometry that I shall study is illustrated in

figure 7.13.

Figure 7.13
"Diamond" shaped geometries.

One can see that the region is in fact not quite a diamond. Two points of the

diamond have been shaved. There is no particular physical significance in this, it

merely aided the implementation of the software.

Mean field models are unable to predict what the effect of the chirality will be

on such an object. This is because if one attempts to minimise the chiral energy of

such an object one is bound to arrive at a configuration that intersects itself, and, this

is of course in reality, forbidden.

I have considered several sizes of membrane. In figure 7.14 I have plotted the

twist (7.5.1;1) response of the membrane against the chirality. As before the twist of

the membranes is zero when the chirality is zero because then the membrane has no

preferred direction to twist in. Again as the chirality is increased the twist of the

membranes rapidly increase. In contrast to the long thin geometry, the different size

membranes appear to have different twist response profiles. The larger the membrane
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the lower the apparent response to the chirality is. As the chirality is increased further

the twist of the membranes begin to flatten. The apparent asymptotic values appears

to depend on the size of the membrane and is clearly no the maximum value of unity.

Hence it would appear that self-avoidance effects or some other consideration prevents

the membrane from achieving the maximum twist value required for minimisation of

the chiral energy. This in itself is interesting.

In figure 7.15 and figure 7.16 membrane configurations from the Monte Carlo

simulations are displayed. In figure 7.15 the membrane is free of the chiral effect

whilst in figure 7.16 the chirality is strong. The free membrane is rather "flat" as

expected (free polymerised membranes are widely recognised to be "flat" ). The effect

of the chirality on the other membrane is immediately apparent. The chiral membrane

is "rolled" up. The roll appears to be "sheared" somewhat along the axis of the roll.

Further, increasing the chirality appears to cause the membrane to roll up more tightly.

See the figures for a better explanation.

For completeness, I have plotted the inverse pitch parameter for the diamond

shaped membranes in figure 7.17. The parameter was strictly not designed to be

sensible for rolled up diamond shaped membranes. In particular the definition of L is

questionable value in this context.
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, . .1.

Figure 7.15

Membrane conformations observed during simulation for diamond shaped geometry

(lx=l,l=10) with self-avoidance for a), K = 0.0 and b). K = 2.0.



a)

Figure 7.16

Membrane conformations observed during simulation for diamond shaped geometry

(lx=l,ly=10) with self avoidance for a). KX = 4.0 and b). K% = 20.0.
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Figure 7.17

Plot of inverse pitch, X, against chirality, lc for diamond shaped membranes.



7.5.3 Results For Diamond Shaped Geometries Without Self-Avoidance

For completeness I present some results for simulations where the self-avoidance

property of real physical membranes is not enforced. These results can be compared

with the analogous results for the self-avoiding membrane. Ideally one would like to

compare the results with the mean field result for the fluid ghost membrane. This

would allow one to easily pinpoint the effect that the polymerisation of the membrane

has on its conformation.

In figure 7.18 I have plotted the twist (7.5.1;1) response against the chirality.

I have plotted the analogous result for the self-avoiding membrane for easy comparison.

Initially the twist of the ghost membrane rises somewhat more slowly than for the

corresponding self-avoiding surface. This can be understood by considering the fact

that the ghost membrane with zero chirality has a much larger range of accessible

conformations. This is reflected by the way that the membrane is initially in a

somewhat crumpled state. As the chirality is switched on the membranes can no longer

access all the previously accessible states on energetic grounds. The ghost membrane

has to gain significantly more entropy to satisfy the same energetic constraints.

Consequently, initially it responds more slowly to the Hamiltonian.

As the chirality is increased further the twist of the ghost membrane eventually

exceeds that of the self-avoiding membrane. This too can easily be understood. As

the chirality is increased the membrane rolls up. The self-avoiding membrane is unable

to roll up as tightly as the ghost membrane because many of the rolled up configur-

ations are disallowed due to steric hindrance. Hence the self-avoiding membrane now

has to gain more entropy to balance the same chiral driving Hamiltonian.

As a consequence the ghost membrane's response curve contains a point of

inflection whereas, interestingly, the self-avoiding membrane's does not.

The difference in the twist between the ghost and the self-avoiding membrane

is a measure of the degree to which the self-avoidance affects the conformation of the

membrane. Similarly the difference in twist between the ghost membrane and the

theoretical maximum twist, 1, is a measure of the degree to which the polymerisation

affects the conformation of the membrane. Using this criterion the non-zero shear

property of this model of membranes appears to be at least as important as the self-

avoidance property in affecting the conformation of the membrane.
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Plot of twist parameter, x, against chirality, i^ for diamond shaped ghost membrane compared with.
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In figures 7.19 and 7.20 I have plotted actual membrane conformations

typically obtained from the simulations. The effect of removing the self-avoidance of

the membrane is immediately apparent. The membranes with zero chirality are no

longer flat; rather they are somewhat collapsed. The highly chiral membranes are not

collapsed. Rather they are essentially the same "rolled up" and sheared shape as the

self-avoiding membrane. In this case however the membrane can "roll up" even more

tightly since the membrane can now pass through itself.

The delayed onset of the membrane twist as evidenced by figure 7.18 can be

seen visually in the figures. Comparison with the conformations for the self-avoiding

membrane in figures 7.15 and 7.16 confirm this. Also at high chiralities it is also clear

from comparison with the self-avoiding membranes that the ghost membrane are more

able to twist.
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Figure 7.19

Membrane conformations observed during simulation for diamond shaped geometry

(lx=l,ly=l6) without self-avoidance for a), K = 0.0 and b). K =2 .0 .



b).

Figure 7.20

Membrane conformations observed during simulation for diamond shaped geometry

(lx=l,ly=10) without self avoidance for a). KX = 4.0 and b). KZ = 10.0.
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7.6 Conclusions And Further Work

I have modified the bead net model of membranes to model TCLBs. This has

entailed implementing a chiral surface field to represent the internal degrees of freedom

of the chiral molecules. Further a chiral Hamiltonian to act upon the surface field has

been devised. I have shown that this arrangement is able to explain some of the

features exhibited by real TCLBs. In particular I have shown that long thin membranes

do indeed adopt a twisted strip geometry, as evidenced by the inverse pitch parameter.

I have also been able to examine the behaviour of self-avoiding diamond shaped

regions which mean field models are unable to solve. The conformation of these

membranes under strongly chiral conditions was pronounced and well illustrated by

actual observed configurations. I went on to look a the case of diamond shaped ghost

membranes. I showed that the effect of the chirality on the ghost regions was

essentially similar to the effect on the self-avoiding region. It is expected that the work

in this chapter will form the basis of a future publication.

Many questions remain to be answered concerning the effect that polymerisation

of the membrane has on the conformation of the membrane. Since real TCLBs are not

polymerised then these are important questions. The generalisation of this model to

case of fluid membranes would provide important answers to these questions.

Also much of the work on TCLBs is currently focused on the problem of

applying the theory to closed, vesicular membranes (MacKintosh and Lubensky 1991,

Lubensky and Prost 1992). The generalisation of this polymerised model to closed

vesicular topologies represents an interesting problem and could help answer some of

the important questions currently being asked.

Finally, questions concerning the nature and effect of the surface field have been

made (Nelson and Powers 1992). It should be possible to "unfreeze" the surface field

defined in this model in order to help answer these questions.
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CHAPTER EIGHT

FINAL REMARKS AND FURTHER WORK

8.1. Conclusions

In this final chapter I shall make some concluding remarks and re-iterate some

points concerning further work.

In this thesis I have tried to gently introduce the reader to some of the ideas,

methods and concepts currently in use in statistical physics today. In particular, these

ideas have been used to study the complex statistical mechanical properties of exotic

liquid crystalline structures.

In this light I have first familiarised the reader with many of the complex liquid

crystalline structures. Then using simple models of the bilayer I explained the origin

of many of the terms in the bilayer Hamiltonian. In particular I showed the importance

of curvature in the bilayer Hamiltonian and motivated the Helfrich curvature

Hamiltonian, which is ubiquitous in the later chapters.

Then I introduced the reader to some of the important ideas and concepts used

to model and analyze the statistical mechanics, indeed the physics, of polydisperse

systems. In particular I introduced universality, fractality and the renormalisation group

in the context of free-flight chains and self-avoiding walks.

Having introduced many of the necessary analytical tools required to investigate

and model statistical systems I proceeded to look at a particular system. I showed that

there were several ways in which one could model two dimensional vesicles. I briefly

discussed a particularly successful mean field model due to Helfrich and a statistical

mechanical model due to LSF. Then I made a detailed examination of a statistical

mechanical model proposed by Ostrowsky and Peyraud. I was able to extend the

model far beyond the initial expectations of the originators. In fact the model was able

to compete successfully with the alternative model of Leibler, Singh and Fisher.

Heartening agreement was found in comparisons of the results, even to the point of

reproducing a suspected anomaly in some of the results. This was really quite
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remarkable considering the radically different nature of the models. The methods

introduced earlier proved invaluable in the analysis of the results. In particular the

importance and power of ideas of universality were clearly demonstrated. Moreover

the renormalisation group was shown to be an invaluable tool in the explanation and

motivation for the observed universality. Generalisation of the model to three

dimensional vesicles has, so far, proved impossible. Consequently further development

of the model is only of restricted interest.

Having discussed a two dimensional model of vesicles I went on to look at a

model of interfaces that could be generalised to membranes; the so called solid on solid

model. The model of the interface consisted of an interface confined between hard

parallel walls, and subject to a surface/line tension Hamiltonian. The membrane was

modelled by subjecting the membrane to a Helfrich curvature Hamiltonian. A novel

argument motivating a generic universal form for the probability density function of

confined surface objects was discussed. I discussed the transfer matrix solution of the

interface model in two dimensions. We saw that the analytical result for the interface

in two dimensions accorded with the generic universal form. It was noted that a novel

a solution for the membrane in two dimensions indicates that it too accords with the

generic universal form, albeit with a different and characteristic universal exponent to

the interface.

In order to investigate the validity of the generic universal form for the pdf and

the novel solution of the pdf of the membrane in two dimension, I performed an

extensive set of Monte Carlo simulations on the model. I showed that the method of

simulation concurred with the well established transfer matrix result for the interface

in two dimensions, indicating the veracity of the method. The membrane in two

dimensions was indeed shown to have a universal regime. Moreover the universal

form did indeed concur with the generic universal form, indicating that at the very least

the generic form is a good parameterisation of the results. The value of the universal

exponent was not inconsistent with the value obtained from the novel analytical

argument reported to us.

I considered the analogues of the interface and membrane in three dimensions.

I was unable to obtain a universal regime for the interface in three dimensions.

However, I did achieve a universal regime for the membrane in three dimensions and
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I determined the universal exponent. Again the generic universal form represented a

good parameterisation of the result, although the argument strictly only applies to the

two dimensional models.

I investigated a polymer type model of the two dimensional membrane. A

scaling analysis of SDE results indicated that a universal regime had been achieved.

I was unable to obtain an analytical argument to supplement this experimental result.

I did not investigate the three dimensional generalisation of this model (the bead-net

membrane model) as I decided that I was unlikely to be able to obtain the universal

regime due to computational limitations.

In the next chapter I introduced a statistical mechanical model of tilted chiral

lipid membranes. I discussed the fact that to study tilted chiral lipid bilayers one has

to consider the internal structure of the membrane. I modified the bead-net membrane

(tethered surface) model to take account of the internal structure of the membrane. I

proposed a Hamiltonian to model the effect of the chirality of the constituent molecules

of the membrane, motivated by the geodesic torsion form of the chiral term obtained

from the Frank theory of elasticity. Results for long thin membranes indicated that the

effect of the chirality was indeed to cause the membrane to twist, as evidenced by a

non-zero inverse pitch. The case of parallelogram or diamond regions was investigated.

Membrane conformations observed during the simulations were presented. In this

geometry it was expected that membrane self-avoidance and the polymerised nature of

the membrane would affect its conformation. The ghost membrane was studied. The

effect of the chirality on the ghost membrane allowed one to understand the effect the

self-avoidance was having on the conformation of the self avoiding membrane. The

ghost membrane was not able to achieve the maximum order parameter, the twist, even

for large chiralities. Nevertheless at high chiralities the ghost membrane was more

twisted than the self-avoiding membrane. I concluded that this effect was due to the

polymerisation of the membrane and that one should expect the conformation of the

fluid self-avoiding membrane to be as different from the self-avoiding membrane as

was the ghost membrane.
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8.2 Further Work

Scope for further work on the two dimensional vesicle model of Ostrowsky and

Peyraud as it stands is somewhat limited. The method is rather involved and having

confirmed the equivalence of the results of this model and the LSF model then there

is no advantage to be conferred in using it. In contrast the LSF model is rather easy

to study. However, if the model could be generalised to three dimensions then the

results would surely arouse interest. Unfortunately, I am not confident that the model

can be successfully generalised to three dimensions.

In contrast there is some scope for further work on the confined interfaces and

membranes. This work could focus on achieving universality for the confined polymer

model or the interface in three dimensions. Also the universal regime for the

membrane in three dimensions could be improved. Moreover one could model the

confined tethered membrane with interesting results. However this work will have to

await significant improvements in computational power. After all, that is why I have

not accomplished the work in this thesis. One does not doubt that this improvement

in computing resources will arrive. Also other approaches to the problem are possible,

and, I am aware that, an investigation of the model using the Fokker-Planck method

has been undertaken elsewhere.

The outlook for the final topic concerning the simulation of tilted chiral bilayers

is brightest of all. There remain many unanswered questions. An important question

concerns the effect of fluidising the membrane. A mean field study of a bulk

membrane to characterise the conformation of the fluid ghost membrane should be

possible and would undoubtedly be of use in predicting the conformation of the fluid

self-avoiding membrane. The fluidisation of the current model should be possible to

answer these questions directly. The effect of chirality on vesicular membrane

structures is currently the focus of much of the mean field work. It should be

relatively easy to form such a structure. One would expect the investigation to reveal

some interesting effects. The fluidisation of the internal chiral field of the membrane

should also be possible and would undoubtedly yield interesting results too.
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APPENDIX A

BEAD SELF-AVOIDANCE ALGORITHMS

A.I. Introduction

In this appendix I briefly describe an efficient algorithm for the implementation

of bead self-avoidance. Recall bead self-avoidance is important in that bead-chain and

bead-net membrane models require bead self-avoidance in order to achieve membrane

self-avoidance. First I shall describe the simplest algorithm for implementing bead

self-avoidance, and variations. Then I shall discuss a more efficient algorithm. I shall

compare timings for the two algorithms to illustrate the importance of the bead self-

avoidance to the overall efficiency of the model.

A.2. The Simple Bead Self-Avoidance Algorithm

The problem we are faced with is, given a number of beads, say N, of equal

diameter, say a, how can we detect whether a randomly moved bead impinges upon

any other bead? The simplest answer to this question is that we check the position of

the moved bead against the position of each of the other, N-1, beads in turn. If the

distance between the bead centres is less than the bead diameters then the beads have

impinged (and consequently in the Monte Carlo simulation the bead move must be

rejected).

In this algorithm as it stands the average number of position comparisons

required to detect an impingement is (N-l)/2. To determine that a bead does not

impinge on any other bead takes (N-1) position comparisons. Therefore the number

of position comparisons required per trial bead move is less than (N-1) and on average

in excess of (N-l)/2. If on average half the trial bead moves were found to impinge

then the number of position comparisons per trial bead move would be 3(N-l)/4.

In fact the computational complexity of requiring the bead self-avoidance is said

to be of order 1 since the number of position comparisons depends linearly on the

control variable N.
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There are several ways to speed up the implementation of this algorithm. The

basis of one method is to speed up the position comparison method. To compare

whether a bead impinges a relatively quick preliminary test is carried out (the extents

of the beads are compared to see if they overlap) which can often determine if a bead

does not impinge. If the preliminary test cannot determine that the beads do not

impinge then the more time consuming test is required. On average the number of

time consuming tests, N c say, is related to the spatial density of the beads. If, as often

is the case, this is independent of the number of beads, N, then the number of

preliminary tests, NP say, will depend linearly on N through NP=N-NC. Then if on

average half the trial bead moves were found to impinge then the number of

preliminary position comparisons per trial bead move would be 3(NP-l)/4.

So performing quick preliminary tests does not improve the computational

complexity of the algorithm since the number of position comparisons, albeit relatively

fast preliminary position comparisons is still linear in N. Note that this does not mean

that implementing the preliminary test method is not worthwhile, only that it is of

limited use as N increases.

Another technique for speeding up this method requires some additional

information from the membrane models. In the membrane models each bead is

attached to, n, neighbouring beads by short tethers. Now when a bead moves it is more

likely, on average, to impinge upon its, n, neighbouring beads than the remaining

beads, since the bead can only make small moves and the neighbouring beads are

always in the vicinity. By initially checking for impingement with the neighbouring

beads one is able to reduce, on average, the average number of tests required to detect

impinging beads.

Again it can be shown that this improvement does not affect the computational

complexity of the problem. Nevertheless the improvement is still worthwhile.

A.3. The More Efficient Bead Self-Avoidance Algorithm

The improvements to the simple algorithm described above did not alter the

computational complexity of the method. That is the time taken to ensure self-

avoidance of N beads although reduced still depended linearly upon N. Here I discuss

an algorithm which ensures self-avoidance of the beads, and whose computational
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complexity is of order 0. That is the time taken to detect a whether a trial bead move

causes an impingement is independent of the number of beads, N.

The method is based on the principal that a bead is only able to impinge on

beads near to it. This truth of this statement is clear. The problem we have however

is how we determine whether a bead is near or not. In the second improvement to the

simple method I noted that the method could be improved by testing the neighbouring

beads for impingement first. That was possible because the additional information of

which of the beads was a neighbouring bead was available to us. Unfortunately having

tested the neighbouring, n, beads and found them not to have been impinged then the

remaining N-n beads had to be tested. For that reason the improvement did not alter

the computational complexity and so was of limited value. One needs a way of

determining all of the local beads.

To determine the local beads space is divided up by a "background" or

"shadow" lattice. Ideally the lattice spacing should be a single bead diameter, a, but

may be larger if necessary because of computer memory constraints. Initially each

lattice site contains a list of the beads located within it. To maintain the lattice site

bead lists they are updated every time a bead move is accepted. When a trial bead

move is made the lists are temporarily updated; they will be reset if the bead move is

rejected. In fact an update of the lists is only necessary if the bead changes its lattice

site during the move. The update consists of removing the bead from the initial lattice

site bead list and appending it to the destination lattice site bead list.

Now one can check whether the moved bead impinges with any other by

checking that it does not impinge with any bead in the destination lattice site or the

surrounding lattice sites. No other checks are necessary. Now consider the situation

for the 2d bead ensemble with a square lattice, illustrated in figure A.I.

In the ideal case where the lattice spacing is a single bead diameter it can be

seen that the maximum number of beads a single lattice site can contain is two. The

destination lattice site has eight neighbours. Therefore the maximum number of

position comparisons necessary is 17 (1+8x2). In fact the maximum number of beads

that can be packed into the destination lattice site and its neighbours is 14 (in a

hexagonal arrangement). Consequently the maximum number of position comparisons

is actually 13. In practice the beads are most unlikely to be packed so densely and the
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average number of position comparisons required is unlikely to exceed 5 or so (every

other lattice site occupied).

Figure A.I.
Shadow lattice for a 2d bead

ensemble.

So it can now be seen that the number of bead comparisons depends on the

lattice site geometry and the density of beads in the lattice but not the number of beads.

Consequently the computational complexity is now order 0 since the time taken to

determine an impingement is independent of the control parameter N. So despite the

(minimal) time overhead of building, maintaining and traversing lattice site bead lists

this method will be more efficient, at least in the limit of large N, than the simple

method.

Note that in practice for the 2d simulations of a bead-chain membrane confined

to a strip (section 6.12), of width d, I used a i d shadow lattice so that the lattice sites

were rectangular strips perpendicular to the wall. This has two advantages over the

square lattice arrangement. Firstly, each lattice site has only two neighbouring lattice

sites and consequently there are only three lattice site bead lists to be checked for each

bead move rather than the nine of a square lattice. Secondly the amount of computer

memory required for implementing the shadow lattice is significantly reduced as the

number of lattice sites is far less (~N as opposed to ~Nd). The main disadvantage of

this scheme is that the number of position checks per bead could be large if the bead-
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chain were to align itself along a particular lattice site. If the bead chain is long with

respect to the separation of the walls, as is the case in the simulations considered, then

it can be seen that this is not an important consideration.

Similarly in practice for the simulations of the bead net membrane in 3d

(chapter 7) I used a 2d square lattice extended infinitely in the out of plane direction.

The same advantages and disadvantages apply. However memory considerations are

likely to be even more important since the number of lattice sites ~L3 for a cube

lattice and ~L2 for the 2d lattice; where L is the length of the membrane.

A.4. A Comparison Of The Simple And Efficient Bead Self-Avoidance

Algorithms In Practice

Now in order to demonstrate computational the improvement of the latter

algorithm I have plotted in figure A. 1 a comparative plot of the time taken to simulate

a bead-net model of a membrane in 3d using the simple and more efficient algorithm

of self avoidance. I plot also the time taken to simulate a ghost membrane so that the

overhead for implementing self-avoidance can be seen. The simple algorithm

implemented includes the two improvements discussed in the previous section. The

more efficient algorithm timing includes the time overhead of initialising and

maintaining the shadow lattice. From the plots it is clear that the for the efficient

algorithm the time taken per bead to maintain self-avoidance is independent of the

number of beads, as claimed. It is also evident that for the simple algorithm the time

taken per bead to maintain self-avoidance depends linearly on the number of beads, as

claimed. Moreover it can be seen that a timing saving factor in excess of 20 can easily

be achieved using the efficient algorithm for moderately sized simulations.
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APPENDIX B

INCLUDED SOFTWARE

B.I. Introduction

In this appendix I detail the software on the included disk. The disk is a high

density disk and is in sun tar format. To extract the software from the disk log on to

a sun terminal or workstation. Place the disk into the workstation floppy disk drive

and type the following command:

tar -xvf /dev/rfdO

whereupon the software will promptly extracted from the disk. Details of how to use

the software are included on the disk.

B.2 Structure of the included software.

The software on the included disk is divided into three toplevel directories (ch5,

ch6 and ch7) corresponding to chapters 5, 6 and 7 of this thesis. Details of how to

compile and run each of the programs are contained in the readme files on the disk.

Following is a brief description of the disk contents:

• ch5: contains a fortran implementation of the Ostrowsky-Peyraud model of

vesicles.

• ch6: is divided into a set of sub-directories. The sub directories con tain the

following:

• 2d_lattice_sos: contains a C implementation of the 2d lattice sos model.

The program can be compiled for the interface or membrane by setting

appropriate switches.

• 2d continuum_sos: code analogous to the the continuum sos model

albeit that in this model the membrane heights hf are off-lattice.
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• bead_chain: contains a C implementaion of the bead-chain model of a

membrane confined between a wall. The program uses the efficient

algorithm for bead self-avoidance described in Appendix A.

• bead_chain_viewer, contains a program, written in C and using the

Sunview graphics library, that can be used in conjunction with the

preceding three programs to view the surface configuration. Pictures can

be viewed as the simulation progresses or they can be viewed at a later

date.

• 3d_lattice_sos: contains code analogous to the 2d lattice sos model albeit

that the model is three dimensional.

• 3d_continuum_sos: contains code analogous to the 2d continuum sos

model albeit that the model is three dimensional.

• transferjnatrix: contains a C implementation of the transfer matrix

formulation 2d SOS interface model. The program solves the model by

iteration.

• support: contains a variety of programs useful for investigating the

results from the previous programs

ch7: is divided into two sub-directories.

• beadjaet: contains a C implementation of the bead_net model of tilted

chiral lipid bilayers. The program uses the efficent algorithm for bead

self-avoidance described in Appendix A.

• bead_net_viewer: contains a viewing program, written in C using the

Sunview graphics libraries, which can be used in conjunction with the

bead_net program to view the membrane as it evolves. It also allows

one to print out pictures of the membrane on the printer. Pictures can

be viewed as the simulation progresses or they can be viewed at a later

date.
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