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A variety of theoretical and numerical methods are used to investigate the statistical
mechanical properties of vesicles, membranes and interfaces. The study of vesicles,
membranes and interfaces is a small part of the more general study of exotic structures.
Understanding the structure and properties of these exotic phases has important
applications in many diverse fields, from food stabilization and improvement to
enhanced oil recdvery.

Several models of vesicles in two dimensions are briefly discussed. A
continuum model of vesicles due to Ostrowsky and Peyraud is investigated further.
The model is extended and a detailed scaling analysis of the effects of osmotic pressure
and curvature on the shape polydispersity is presented. These results are compared and
contrasted with results from an altenative model. The vesicle is subjected to a nematic
ordering field to simulate the effect of a shear flow field.

A model of membranes and interfaces confined between hard parallel walls is
discussed. Analytical extensions to the current state of the literature are discussed.
The models are studied numerically by Monte Carlo simulation and the results are
analysed to establish the consistency of the new analytical arguements.

Twisted and helical lipid membrane stuctures have been observed to form from
lipid membranes whose molecules are chiral. Recent attempts to explain these
structures have re'lied on mean field theory. A statistical mechanical simulation model
is devised that should be a useful tool for studying these chiral membranes. The model
is investigated for long thin membranes and diamond shaped membranes. The results

are analysed systematically and typical membrane configurations are presented.
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CHAPTER ONE

INTRODUCTION

1.1 States And Structure Of Matter

From the earliest ages men have striven to understand the structure and
constitution of matter. The ancient Greeks entertained many theories about the structure
and constitution of matter and of how it interacted to form the everyday objects and
motions we are all familiar with (Hall 1969). The idea that underlying the apparent
diversity of matter and form there was a simpler but hidden substructure permeated
throughout their work. Elemental theories, where there were a small set of pure
elements which when mixed in varying proportions gave the less fundamental
manifestations of matter, were popular. For instance a popular theory held that earth,
air, fire and water were the elements and any other matter could be reduced to them or
constructed out of them,if only one knew how. In China a similar theory of elements
is known to have been well subscribed to, as well as a simple theory of interactions
(Needham 1956). We know nowadays, thanks to the accumulated work of many
centuries of science, that although these theories give insight in certain restricted
contexts, they are seriously incomplete and inadequate when considered as models for
the properties of matter.

The atomic theory of matter, rediscovered (an atomic theory was postulated by
the Greeks - Hall 1969) and experimentally proven by Dalton (Dampier 1942), was the
first substantially successful scientific theory of the constitution of matter. In fact it is
now well known that atoms are not the most basic indivisible species as postulated in the
atomic theory. Nevertheless the atomic theory of matter is still an important theory and
explains well certain phenomena.

The search for the most basic, elemental and indivisible particles goes on and
much progress is currently being made. However, although understanding of the
constitution of matter is now well advanced and grand unified theories of everything are

claimed to be on the horizon, there remain many unanswered questions about the



structure of matter; that is how atoms and molecules interact, en-masse, to form the
everyday matter that surrounds us.

We are all aware that the same substance can occur in more than one form, or
state, with each state having very different physical properties. For instance we are
aware that water occurs as ice, liquid-water and steam depending on the physical
conditions (temperature and pressure). The physical state of a substance is called its
phase (Atkins 1982). The three most basic phases of matter are solid, liquid and gas.
We all know intuitively what solid, liquid and gaseous phases are like but specifically
defining what they are is more tricky.

One can take an empirical viewpoint and define the phases by their observed
physical properties. For instance the definition of a gas could be - that phase in which
the substance expands to fill its entire container. A liquid could be defined as - that
phase which adapts to the shape of its container but for which a meniscus is observable.
In the same fashion a solid could be defined as a rigid object resistant to shape
deformations.

On the other hand one can look at the microscopic organisation of the phases and
see on this level if there are characteristic differences between them. It turns out that
this is a more objective method of categorisation, and hence preferable for scientific
purposes.

Along these lines it is well known that on the microscopic scale solids are
characterised by rigid crystal lattices. The constituent molecules of the lattice are fixed
into an ordered matrix, free only to vibrate about their lattice sites (Ashcroft and
Mermin 1976, Kittel 1986). Liquids, however, are characterised by the ability of their
constituent molecules to flow freely around. Short range regions of crystalline order
constantly fluctuate in and out of existence (Hansen and McDonald 1986). By contrast,
gases are characterised by the almost total lack of order of their constituent molecules,
which move in a Brownian (random) motion (Golden 1964).

It is possible to make precise mathematical statements that correspond to these
observations. Hence one can set objective tests that enable one to classify the phase of
a particular piece of matter by observing it through the microscope or by using
diffraction techniques. Moreover it can be seen that the physical properties of a phase

are due to its microscopic organisation.



However there exist phases that cannot be classified as solid, liquid or gas, called
exotic phases. When one looks at the molecules on a microscopic-scale one finds that
there are subtle differences between the order of the exotic phase and each of the simpler
phases. Often the difference is a matter of scales. For instance, when one looks on a
particular length scale one may find the phase has the behaviour of one phase (e.g.
liquid), whilst if one looks on a different scale one finds that a substance has the
characteristics of a different phase (e.g. solid)! Alternatively, one may find that a
substance is solid-like when observed over a short time scale, but liquid like when
observed over longer times; and so on. |

By determining the structure of exotic phases it is possible to explain the
observed properties of the phase. It is also possible to predict, as yet, unforeseen
properties that may (or may not) be of much use. One class of exotic structures are the
structures formed ‘by amphiphilic molecules which I intend to discuss in this thesis. The
structures formed by amphiphilic molecules are intermediate in structure between solid
and liquid; which explains why collectively they are referred to as liquid crystalline (Ic)

phases.

1.2 Organisation Of This Thesis

In chapter two I explain the basic properties of amphiphilic molecules. I present
a detailed, but by no means complete, catalogue of liquid crystalline structures that
amphiphilic molecules assemble into, with schematic illustrations. Then I present some
generic phase diagrams for amphiphilic systems. Finally the liquid crystalline nature of
biological membranes is briefly discussed.

In chapter three I discuss general aspects of shape polydispersity in fluid vesicles.
A brief discussion of modelling and the classification of vesicle models is given. Then
the fundamental .geometrical ideas of curvature in two and three dimensions are
presented as a prelude to the Helfrich Free Energy. Using a simple spring model of a
membrane the Helfrich Hamiltonian for a surface in two and three dimensions is
motivated.

For an analysis of the shape polydispersity of vesicles certain concepts and

analytical tools are required. In chapter four the concepts of Scaling, Fractality and



Universality are discussed in the context of polymer chains. The similarity between the
study of polymers and vesicles, as well as the key differences, are pointed out.

In chapter five some models of 2D or quasi-2D fluid vesicles are discussed. The
models of Helfrich and Leibler, Singh and Fisher are briefly outlined. The Ostrowsky-
Peyraud method of studying the Helfrich curvature model of vesicles is treated to a
thorough investigation. I present a detailed scaling analysis and universal curves
obtained from my implementation of the Ostrowsky-Peyraud model. I define a nematic
scaling field to simulate shear flow conditions and systematically analyze the effects on
shape polydispersity.

In chapter six I discuss a rather different model of membranes and interfaces in
two and three dimensions. I study the interfaces confined between parallel walls. I
discuss well known and novel analytical arguments yielding the probability distribution
functions of the membranes and interfaces. The results of extensive Metropolis Monte-
Carlo simulations are presented and analyzed. I demonstrate that the novel analytical
arguments are in good agreement with the observed results.

Finally in chapter seven I discuss a model of membranes suitable for investigating
tilted chiral lipid membranes in three dimensions. The chemical properties of the
constituent molecules of this type of membrane turns out to be important in the
mesoscopic structures that the membrane forms. By extending and adapting a common
model of lipid membranes some of the important structural features are reproduced in
the simulations. I present and analyze the results for a number of membrane geometries.
The model represents a significant tool for investigating the statistical mechanics, albeit
numerically, of this important class of structurally exotic membranes. There is scope

for development of the model to other interesting membrane geometries.




CHAPTER TWO

CoMPLEX FLUID STRUCTURES

2.1  Amphiphiles
An amphiphile (amphiphilic molecule) as the Greek root suggests (amphi: on both

sides, philos:love), has two attractions. In practice, by this one means that part of the
molecule is hydrophillic (likes water) and the other part is oleophilic (likes oil) or
hydrophobic (dislikes water), although from the definition the solvents need not
necessarily be water and oil; more generally they will be polar and non-polar solvents
respectively. Amphiphilic molecules are generally organic polymers with attached ionic
groups. The ionic group forms a hydrophillic "head’ whilst the organic chain forms the

oleophilic, hydrophobic ’tail’.
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Figure 2.1
Space filling models of a) oleate
and b) palmitate ions.

Well known examples of amphiphiles are sodium palmitate, sodium stearate
(soap) and potassium oleate (detergent) (Cevc and Marsh 1987). In figure 2.1 space

filling models of oleate and palmitate ions are illustrated. Note that the molecules are
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rod-like (the chains are relatively stiff due to their short length - oleate C,¢ and palmitate
C,g) with a relatively large negative charge centre at one end. The paimitate molecule
has a bend 1n it due to an unsaturated bond.

These amphiphiles are also called surfacrants (surface active re-agents), because
when added to immiscible oil-water mixtures they reside at the oil-water interface. The
interface is stabilised and the interfacial tension greatly reduced by the presence of the
surfactants, thus allowing the oil and water to mix more freely, albeit separated by the
surfactant layer. It is the amphiphilic nature of the molecules which is responsible for
this surfactant property - the action from which soaps and detergents derive their
cleansing properties.

Ampbhiphiles, in the form of phospho-lipids (lipid=fat=polymer chain), are the
main building blocks, of biological cell membranes and cell organelles (intra-cellular
structures). The lipids fall into two main chemical classes; sphingosine and glycosine
based. The difference is in the chemical structure of the head group only and is not a
significant differentiating factor for the phase behaviour of lipid systems. In figure 2.2
a space filling model of a typical (sphingosine) lipid molecule is illustrated. Note that
the molecule is "double tailed", which is characteristic of lipids, but it is still rather rod-

like with a negative charge centre at one end.

Figure 2.2
Space filling model of (sphingosine) lipid molecule
sphingomyelin.

In aqueous solution pure lipids behave in the same way as other amphiphiles and

form the same types of structures and membranes. Cell membranes, on the other hand



are rather more complex than surfactant stabilised oil-water interfaces; they contain
significant percentages of proteins which complicate the structure somewhat, although
the lipid, amphiphilic, character of the membrane is still important.

In figure 2.3 a schematic representation of one and two tailed amphiphiles is
illustrated. The purpose of such a representation is to embody the main features of the
molecule without worrying about its exact geometry, so that when one uses the
schematic representation in illustrations of the conformation of the supermolecular
structures formed by the cooperative interaction of such molecules one is not distracted,

unduly, by microscopic details.

— Single tailed amphiphile

— Double tailed amphiphile

Figure 2.3
Schematic representation of one and two
tailed amphiphilic molecules.

Cell membranes, oil-water-surfactant and water surfactant systems are structurally
exotic. They cannot be classified as being solid or liquid in the conventional sense.
They lie somewhere in between and as such are termed liquid crystalline. In studying
such systems, from a theoretical point of view one hopes to extend the classification of
substances. From a practical point of view one hopes to discover new, exciting, and

potentially useful properties.

2.2  Applications
It is evident that an understanding of amphiphiles and the structures they form

will be of interest and application in a variety of fields of study. More specifically the

understanding of amphiphilic systems is, at least, of direct relevance to the detergent



industry (increased cleansing properties, new more ecologically friendly detergents)
(Langevin et al 1985), oil industry (surfactant enhanced oil recovery) (Bansal and Shah
1976, Shah 1981, Dake 1982), pollution control (dispersants for accidental oil spillage),
pharmaceutical industry (e.g. methods of drug delivery) (Poste and Papahadjopolous
1979), food industry (e.g stabilisers/emulsifiers) (Dickinson 1987, 1991), and liquid
crystal research (e.g. display device technology) (Meier er al 1975, Shanks 1982, Kahn
1982, Schadt 1989).

2.3 A Catalogue Of Amphiphilic Structures

In water and oil-water mixtures amphiphiles give rise to, or stabilise, an
abundance of exotic phases. The exact structures of some of these phases is still the
subject of intensive investigation (Seddon and Templar 1990), but many of the more
basic features are now well understood, at least from a geometrical point of view
(Israelachvilli er al 197€, 1977, Lipowsky 1991). Some of the phases form spontaneous-
ly under suitable conditions of concentration, pressure and temperature for a given
amphiphile. The associated structures are then said to be self-assembling. Other phases
and the associated amphiphilic structures may only be formed by special treatment of the
mixture - for instance the vesicle structures outlined below are often formed by
sonification, although they form spontaneously for some amphiphiles. Below, I detail

some of these peculiar phases and the associated structure of matter in them.

2.3.1 Type-I (Normal) And Type-II (Inverted) Micelles

In water-amphiphile mixtures the simplest structures formed by amphiphiles are
éalled micelles. A schematic illustration of the structure of a micelle is shown below in
figure 2.4.

Micellisation is the process of aggregation of amphiphiles into micelles.
Experimentally it is found that micellisation is spontaneous, occurs at extremely low
amphiphilic concentrations and the onset is characterised by a critical micellar
concentration (cmc) (Mittal and Mukerjee 1976). Below the cmc the amphiphiles are
to be found at the fluids interfaces.

The formation of the micelles is clearly driven by the hydrophobic character of

the tail. The early onset of micellisation is an indication of the relative cost of hydrating
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this chain as compared with the loss of entropy caused by the assembly of the

amphiphiles into more ordered systems.
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Figure 2.4
Type-I (Normal) micelle.

The micelles illustrated in figure 2.4 are called a type-1 (or normal) micelle. In
figure 2.5 type-1II (or inverted) micelles are illustrated. The phases associated with type-I
and type-II phases are designated L; and L, respectively.

Figure 2.5
Type-II (Inverted) micelles.



It is evident that a type-II micelle is an inverted type-I micelle. Clearly type-1I
micelles occur when the concentration of amphiphile is very large. The formation of
type-1I micelles is stabilised by the addition of oil to the amphiphile-water solution. The
formation of such micelles is driven by the hydrophobic amphiphile tails rather than the
hydrophillic heads. The added oil helps fill space between the inverted micelles.

Micelles take a variety of shape forms: disks, rods and spheres.

2.3.2 Microemulsions

If oil is added to the water-amphiphile mixtures above very similar structures
form. When added to type-I solution of normal micelles the oil is initially held within
the micelles. As the concentration of the oil increases the micelles expand, absorbing
and surrounding droplets of oil. The micelles are no longer micelles but rather oil
droplets suspended in water. The surfactant properties of the amphiphiles are revealed
as they now form an amphiphilic surface monolayer dividing the oil droplets from the
water. The associated phase is called the type-I microemulsion (Hoar and Schulman
1943, Prince 1977, Langevin et al 1985, Kahlweit 1988, Meunier et al 1987).

@ ‘,,,
Figure 2.6
Type-I Microemulsion.
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Apart from the presence of oil in the interior of the oil droplets the difference
between a type-I micelle and type-I microemulsion is one of scale. A typical normal

micelle is a microscopic object of molecular diameter, whereas oil droplets can range
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from mesoscopic to macroscopic sizes. Oil droplets are characterised by the formation
of an amphiphilic monolayer.

When oil is added to type-II solution of micelles it is initially held within the
interstices between the water centres. Initially the oil stabilises the microscopic micellar
structure; in fact inverted micelles sometimes only occur when stabilised by an oil
component. However, as further oil (and water) is added the micelles become water

droplets suspended in oil. This droplet phase is called the type-II microemulsion.

iy

Figure 2.7
Type-II microemulsion.
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As with the type-I microemulsion the difference between a type-II micelle and
type-II microemulsion is one of scale. Again a typical inverted micelle is a microscopic
object of molecular diameter, whereas the water droplets can range from mesoscopic to
macroscopic sizes. Again the amphiphile form monolayer structures.

If oil and water are present in roughly equal proportions, and there is an adequate
supply of amphiphile, a further pseudo-microemulsion can form. In this phase there are
neither oil droplets in water nor water droplets in oil but rather two random bicontinuous
percolation regions, one of oil, one of water; separated by an amphiphilic monolayer.

In figure 2.8 one such bicontinuous pseudo microemulsions is illustrated schematically.

11
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Figure 2.8
Pseudo-microemulsion.

2.3.3 Long Rod Micelles - Nematic Phase

The type-I and type-II micelles discussed above are microscopic objects of typical
size of the order of a few tens of angstroms at most. Under certain conditions these

microscopically sized objects are able to grow to macroscopic lengths.

Figure 2.9
Type-I Nematic "long rod" phase (long
amphiphilic rods in water).
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In particular rod shaped micelles can grow to macroscopic lengths. Such rods
exclude one another so that a nematic (thread-like, rods aligning along a common axis)
phase of macroscopic rods of microscopic cross-sections forms. Figure 2.9 is a
schematic illustration of such a structure.

The rods are arranged in a 2-dimensional (hexagonal) super-lattice; whilst the
individual amphiphiles are restricted to a large degree to remain in their respective rods,
they are free to move, in the nature of fluid molecules, within the rods. Hence the
liquid-solid ambiguity of such a phase.

As with type-I micelles a structurally inverted phase exists. The phase of
micelles illustrated in figure 2.9 is designated H;. The inverted phase illustrated in
figure 2.10 is designated Hy;.

Figure 2.10
Type-II Nematic "long rod" phase (long
rods of water encapsulated by amphiphile).

Again the inverted phase is stabilised by the addition of oil to the mixture.

2.3.4 Sheet-like Micelles - Lamellar phase

Long rods are not the only way in which micelles may grow. Disk shaped

micelles may grow into progressively larger and larger sheets, eventually extending to
macroscopic scales throughout the mixture. Sheets like rods exclude one another (viz

two sheets cannot freely interpenetrate just as, for instance, two sheets of paper cannot).
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Hence the mixture forms a layer structure - one sheet lying over the next. Such layered
phases are called lamellar and are designated L,. In figure 2.11 there is a schematic

illustration of the lamellar a phase.

\\ H,0 \\\\\\

\ & \;

\\\ \ ﬁ’

83
‘\\:\ \\o H_O
A
Figure 2.11

Lamellar phase.

The figure clearly illustrates the bilayer structure of the sheets; the sheets are
seemingly formed from two head-tail ordered layers stuck back to back. As with the
long rod phases there is a certain indeterminacy of the solid liquid nature of the phase,
for while the layers may be stacked in an orderly crystalline fashion the amphiphiles
themselves are free to move fluidly within the bilayers. In practice the layers are not
flat; rather they undulate. The degree of undulation is related to layer-layer separation
through the effect of the layer-layer exclusion. Once the phase has formed more water
can be added or removed increasing or reducing the layer-layer separation respectively.
The stability of the phase is thus strongly influenced by the concentration of water. Such
a phase is termed lyotropic.

In oil-water-amphiphile mixtures similar but not quite inverted structures can
form. The oil resides in the bilayer; if there is a surfeit of oil the bilayer splits into
separate fluctuating mono-layers. In figure 2.12 there is a schematic illustration of the
lyotropic lamellar phase. In the illustration there is a surfeit of oil which has separated

the bilayer as described. The result as the figure illustrates is a multi-layered sandwich
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In practice the layers can be rather more convoluted than the

of oil and water.
illustration shows.

olL
olL
HZO
\@\\ olL
N

olL

Figure 2.12
Oil-Water lamellar phase.

2.3.5 Vesicles
When disk shaped micelles grow into bilayer sheets, instead of growing to
macroscopic lengths as above they may turn around, curling back on themselves to form

closed surfaces like bubbles. Closed bilayer surfaces such as this are called vesicles.

Figure 2.13
Vesicular phase.
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Unlike bubbles vesicles exhibit a wide range of non-spherical shapes, which as
I shall further elucidate later, is due to the fact that vesicles are subject to only vanishing

surface tensions. Figure 2.13 illustrates schematically a vesicular amphiphilic phase.

2.3.6 Cubic Structures

There is yet another class of exotic bilayer structures, formed in amphiphile-water
solutions, called cubic structures. Again the structures exhibit super-crystallinity on
macroscopic scales whilst remaining fluid on microscopic membrane scales. In these
structures the membrane divides the water into two separate, percolating, regions. The
percolation property means that each region is continuously connected and the water is
free to flow through it. In figure 2.14 a typical unit cell of the super-crystal is

illustrated.

Figure 2.14
Cubic bilayer phase(unit cell).

Other crystal structures can, and in practice do, arise. In fact the structure of
such super-crystals is still very much an area of on-going experimental investigations.
Defects of various types can be introduced into these crystals. If such defects
predominate then the phase is called a sponge phase. It can be seen therefore that the
sponge phase is somewhat intermediate in structure between the fully random

bicontinuous microemulsion phase and the rather more ordered three dimensional
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crystalline structure of the cubic phase. In figure 2.15 one such type of defect is
illustrated.

Figure 2.15
Sponge phase.

In oil-water-surfactant mixtures similar super-crystalline structures arise, but in
these structures separate oil and water percolation regions are formed. Moreover the
surfactants in these systems form monolayers rather than the bilayers illustrated above.

The bilayers illustrated are symmetrical whereas monolayers are clearly not. One might

Figure 2.16
Oil-water cubic phase.
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expect, therefore, that monolayers might possess an intrinsic curvature; that is they may
prefer when in equilibrium to curve around towards one side rather than being flat.
Hence it is to be expected that the super-crystal structure of the oil-water-amphiphile and
the amphiphile-water exhibit differing structures and properties. Below is a schematic

representation of an oil-water-amphiphile cubic structure.

2.4 Phase Diagrams

When given a chemical mixture to investigate chemists use phase diagrams
(Atkins 1982) to map various phases and phase transitions that occur in the mixture.
Typically, given a liquid mixture the important quantities which determine the phases
present in the mixture are the temperature of the mixture and the mixture-wide
concentration of its components. The form of the phase diagram depends on the number
of components of the mixture. Let us first investigate two-component water-amphiphile
phase diagrams before moving on to the more complex three-component oil-water-

amphiphile phase diagrams.

2.4.1 Water-Amphiphile Phase Diagsrams

In a two component phase diagram we plot component concentration along the
horizontal and mixture temperature up the vertical. We hold constant any other
parameters which may be important such as pressure and note their value for the
particular phase diagram.

In figure 2.17 there is a generic water-amphiphilic phase diagram which
illustrates the standard features of a oil-water-amphiphile phase diagram(Meunier et al
1987).

The phases actually observed for any particular amphiphile in solution will vary
depending on the amphiphile, but the broad class of properties of amphiphile-water
mixtures is represented in this diagram. The basic features of such a diagram can be

explained qualitatively by intuitive arguments (see e.g. Israelachvilli ez al 1976, 1977).
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Figure 2.17
Generic water-amphiphile phase
diagram.

2.4.2 Oil-Water-Amphiphile Phase Diagrams

A three component phase diagram is plotted within a triangle. Any mixture is
unambiguously described by its component mixture-wide concentrations. From these
concentrations one can map to the relevant position within the triangle and vice versa,

as illustrated in figure 2.18.

)
//\

Figure 2.18
Three component phase diagram
concentrations.
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One should note that temperature and other relevant parameters cannot be
included (in 2-dimensions) and are held constant within the diagram. To discern the
temperature dependence of the diagrams one looks at a series of diagrams (temperature
contours) or plots the diagrams in 3-dimensions the vertical dimension representing
temperature. In figure 2.19 a generic three component oil-water-amphiphile diagram is

illustrated which exhibits some of the general features of such systems.
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Figure 2.19
Generic oil-water-amphiphile
phase diagram.

2.5 Biological Membranes

So far I have discussed two and three component, that is water-amphiphile and
oil-water-amphiphile, systems only. Cellular systems have many components. In fact
it is not possible at present to specify all of the components present, in situ, in a living
cell. Nevertheless, biologists have been able, over the last fifty years or so, to identify
at least some of the essential components that make life possible.

Great strides have been made in the understanding of how cells use DNA to
synthesise the compounds they need. Also the catalysis of the metabolic process by
enzymes is now much better understood. At the forefront of these advances have been
geometrical concepts of shape and form.

The cell membrane is a fundamental unit in cellular systems. It marks the

boundary between the cell and the outside world. Cell membranes are not impermeable,
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permeable or even semi-permeable barriers between the cell and the outside world.
Rather they are selectively permeable allowing, as far as possible, desirable chemicals
to enter and nourish the cell and interdicting undesirable or poisonous chemicals. Hence
it is to be expected that cell membranes are not the simple structures dealt with so far.

In fact biologists have been able, using a variety of techniques, to determine the
geometrical structure of cell membranes quite well. They have discovered that the
structure of a cell membrane closely resembles the structure of a vesicle membrane; cell
membranes are amphiphilic bilayers. The selective permeability of the membrane is
achieved by adding proteins to the membrane which act as molecular pumps. Thus the
sophistication of the membrane is built by adding sophisticated equipment to a basically
simple amphiphilic bilayer. This model of a biological membrane is called the fluid
mosaic model (Singer and Nicolson 1972). Below in figure 2.20 is a schematic

illustration of the .fluid mosaic model of a membrane.

Figure 2.20
Fluid mosaic model of a cell membrane.

The amphiphilic building blocks are phospho-lipids. Within a cell membrane the
lipid chains vary in length from molecule to molecule. Generally there is an asymmetry
of lipid length across the bilayer, i.e. the average chain length of lipids on one side of
the bilayer is often significantly different from the other side. Typical lipid chain

lengths are 10-100 carbon units.
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CHAPTER THREE

MICROSCOPIC MODELS OF MEMBRANES

3.1 Introduction

In the context of this work modelling is the process of describing a real physical
system in a mathematical way. It is a process of reduction in which the system is
successively reduced from its initial complexity and diversity by discarding irrelevant,
redundant and negligible terms. Relevant terms and features are reduced to their
simplest, most basic, identities. Sometimes relevant features have to be omitted for the
sake of reducing the model to a simpler form; one solves the simpler model and tries to
take account of the omission later by looking at the results.

The success of a model is measured in several ways. Clearly the fewer relevant
terms that have to be omitted the better. The degree to which the equations that the
model generates can be solved is of importance, as is the proximity of the results so
obtained to available experimental data; quantitatively or, at least, qualitatively. Some
models can be solved using analytical methods whilst others require the use of numerical
methods. Analytical methods are to be preferred over numerical methods and numerical
methods over none. However, in general if one wants to model a more faithful (to the
physical reality), and thus more complex, representation then only numerical methods

provide a reasonable means of obtaining results.

3.2 Shape Polvdispersity In Fluid Vesicles

In order to model the complex fluid structures outlined in chapter one consider-
able reduction of the problem is necessary. This thesis is concerned with the effect of
shape polydispersity in vesicle systems. So one can see that already the problem of
studying the complex fluid structures has been narrowed to studying just one aspect of
such structures.

In fact further reduction of the problem has proved necessary in many vesicle

models. A common method of reducing the complexity of a problem is to reduce the
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dimension of the space. Vesicles are closed two dimensional surfaces in three
dimensional space. The generalisation of a membrane is a closed hypersurface. A
hypersurface is an (d-1)-dimensional object embedded in a (d)-dimensional space. In
particular, a one-surface is a one dimensional object sitting in a two dimensional space.
A one-surface corresponds to a curve in 2-dimensional space. It is considerably easier,
both theoretically and numerically, to study closed curves in two dimensions than it is
to study closed surfaces in three dimensions. As a result much work in the study of
vesicle shape is on two dimensional vesicle models. Ideally one would prefer not to

have to make the simplification but in practice it is often necessary.

3.3 Classification Of Membrane Models

In the literature models of membranes fall into two main categories; microscopic
and mesoscopic. Microscopic models of membranes treat membranes on the molecular
scale of the constituent amphiphiles whereas mesoscopic models treat membranes on the
scale of the membrane persistence length. The persistence length is the length scale
below which the membrane can essentially be considered flat (or rigid). Typically the
persistence length ranges from hundreds to thousands of times the molecular length.

Within the.class of mesoscopic models there is a subdivision into continuum and
continuum limit models. In contintum mecdels the membrane is smooth and continuous
everywhere. In continuum limit models the membrane is continuous, but strictly only
smooth on scales below the persistence length. A true continuum model takes the
Helfrich Hamiltonian whereas continuum limit models only have the Helfrich

Hamiltonian approximately in the limit of a low curvature.

3.4 Mathematical Description Of Curvature

The ancient Greeks studied the relationships of lines, shapes and angles, a branch
of mathematical study now called geomerry. The study of curvature falls into the same
category. Hence, one should not be surprised to learn that there is already a wealth of
knowledge accumulated in the mathematics literature about curvature. One naturally has
Intuitive notions about the geometrical property called curvature, just as intuitively one
has notions about-length or weight. In fact curvature is a well defined, unambiguous,

mathematical entity whose properties are already well understood.
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3.4.1 Curvature Of A One-surface (Curve)

It is easier to consider first the curvature properties of a one-surface. Below one
such membrane is illustrated. In the illustration one particular point of the curve has

been chosen and the circle of curvature of that point is shown.

Figure 3.1
Circle of curvature.

The circle of curvature at any point, s, on the curve is defined to be the circle
that touches the curve at, s, and whose gradient and rate of change of gradient is same
as the curve at s. The radius of the circle, R, is the radius of curvature. The sign of
R is fixed arbitrarily by convention. For example, for a closed curve, R can be chosen
to be positive if the centre of curvature is inside the curve and negative if it is outside.
The curvature, c, of the curve is defined by ¢ = R'. Note that for a straight line R
= 4 oo so that ¢ = 0, i.e. a straight line has zero curvature, and the intuitive idea that
a straight line is not curved has not been lost in the definition.

There are several ways in which one can parameterise a curve. A common and
often useful way is as a height function, z(x), above a given axis, Xx; i.e. z=z(X). A
more general (since curves need not be single valued in general) way of parameterising

curves is in terms of the curve-length, s; i.e. x=x(s) and z=z(s).
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r=r(s)
x=x(s) y=y(s)

T

Figure 3.2.
Parameterisations of a curve.

Thus one should not be surprised to find that there are several ways of expressing
the curvature of a curve depending on the mathematical description of the curve.

Consider a small element of the curve of radius curvature R; illustrated below.

Figure 3.3
"Infinitesimal” curvature
segment.
Now Ry = 6s (3.4.1;1)
SO ¢ = R! = dy/ds. (3.4.1;2)
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Also  6s* = 6x* + 6z = 6x¥[1 + (dz/dx)?. (3.4.1;3)

If curve is nearly flat (i.e parallel to x-axis) then dz/dx < 1.

8s =~ ox (3.4.1;4)
and ROy ~ 6x. (3.4.1;5)
So ¢ = R! = dy/dx. (3.4.1;6)
But tan(y)=dz/dx 3.4.1;7)
and tan(Y)=y for ¢y < 1. (3.4.1;8)
So Y=dz/dx for dz/dx < 1 (3.4.1;9
and ¢ = R! = dy/dx = d?z/dx* for dz/dx < 1. (3.4.1;10)

Note then that for a curve parameterised in terms of its curve-length, s, we have

an exact expression for the curvature, ¢ = d{y/dx. In contrast, for a curve described
by a height function, z(x), we have an expression for the curvature, ¢ = d?z/dx?2, only

approximately correct in the nearly flat limit, dz/dx<1.

3.4.2 Curvature Of A Two-surface (Surface)

Now we are in a position to consider the curvature properties of a two-surface.
In figure 3.4 one such membrane is illustrated. The first point to note when considering
the curvature of a surface in three dimensions is that there is an extra degree of freedom
over and above that available to a curve in two dimensions; for any given point on the
surface there are an infinite number of curves lying in the surface and passing through
that point. Each curve through the point, generally, has a different circle of curvature
at the point to the others.

The problem of defining the curvature of a surface at a point is analogous to the
problem of defining the tangent of a surface at a point, since the tangent angle of the
surface at the point depends on the direction of the curve through the point too.
Therefore, not surprisingly, the solution to the problems is similar.

Before considering expressions for curvature let us consider how a surface may
be parameterised. First note that there is no unique procedure for doing this. There are

two widely used methods whose two dimensional space curve analogues were described
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earlier. On the one hand one can define a surface as a height function, Z(x,y), above
a flat surface, defined arbitrarily to be the xy-plane. On the other hand, one can
parameterise the surface in terms of curve length parameters, s and t, for a set of
orthogonal curves embedded in the surface; i.e. x=x(s,t), y=y(s,t) and z=z(s,t). The
second method is more general because surfaces, like curves, can fold back on
themselves so that Z(x,y) is not necessarily single-valued.

In order to solve the problem of defining the tangent of a surface the directional
derivative, Dy, was introduced. Partial derivatives are a special case of directional
derivatives; they are the directional derivatives in the x and y axial directions. Using
a vector of partial derivatives, of the surface function, one is able to determine the
tangent angle in any particular direction at any point on the curve. -

In fact the directional derivative of Z(x,y) in the direction 6 is given by

D,Z = cos(B)%—i— + sin(e)E

dy (3.4.2;1)

Which in vector notation can be written

oz

DZ = 0),sin(0 ox
oZ = [cos(0),sin(0)] z

Jy

So one can see that given the vector of first partial derivatives of the surface,

(3.4.2;2)

[0Z/ox , 0Z/dy], and using the direction vector, [cos(0),sin(0)], one can obtain the slope
in any given direction.

The curvature of a surface in three dimensions is also a directional quantity. In
order to specify the curvature in any particular direction at a given point on the surface
one needs a matrix of partial derivatives, called the curvature tensor (Spivac 1979). A
tensor is a multi-dimensional generalisation of a matrix; in this case however the
curvature need only be considered to be a matrix. It can be shown, in an argument
based on that in section 3.4.1, that in the nearly flat limit, (Z <1 , Zy< 1), the curvature
tensor can be written

Z, Z,

Q ~ (3.4.2;3)
Z)’X Z)’)’
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The curvature at a given point in a given direction, c,, can then be determined

from the following expression

XX

V4 ny
c, = [cos(8),sin(0
o = [cos(0) ()]Zx z,

cos(0)

The maximal and minimal circles of curvature at a point are called the principal
circles of curvature of that point. The eigenvalues, c; and c,, of the curvature tensor at
the point correspond to the principal curvatures (i.e. maximal and minimal curvature)

at the point. The corresponding eigenvectors indicate the principal directions of

curvature at the point. Since the curvature tensor is real and symmetric (ny = Zyx).
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Figure 3.4
Principal circles of curvature.

then the principal curvatures always exist and the eigenvectors are orthogonal (at right
angles). Also since the curvature matrix is 2 X2 then there are only two principal circles
of curvature. In figure 3.4 one particular point of the surface has been chosen and the

two principal circles of curvature for that point are shown.

3.5 Microscopic Membrane Models

Microscopic models are used, principally, to investigate the nature of the

membrane Hamiltonian (The Hamiltonian is the energy function of a system,; in this case
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the system being a unit area of membrane). In the Hamiltonian there is a set of
elasticity constants associated with the various possible types of deformations (stretch,
shear and bend) possible for the membrane. Using microscopic models one is able to
make some progress in the evaluation of dependencies of these constants in terms of the

geometrical quantities embodied by the membrane.

3.5.1 Microscopic Spring Model Of One-surface Bilayer

In microscopic spring models of vesicles the bilayer is imagined to be made up
of a series of connected springs. Figure 5, below, illustrates one such arrangement for

a one-surface.

Inflexible ties

Bead Spring

Figure 3.5
Microscopic spring model of a
one-brane bilayer.

Define:
a,= equilibrium spring length
a = actual spring length
h = membrane thickness
k = spring constant
So that:
single spring energy e = k(a-a,)*/2 (3.5.1;1)
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number of particles / n=al 3.5.1:2)
per unit length

This simple model of a membrane is able to provide the basic features of the
Hamiltonian upon which more complex models are dependant. There are two types of
deformations such a membrane can experience - strefch and curvature (i.e. bend).
Associated with each of these deformations is an energy, that arises, in this model, from
the extension or compression of the springs induced by the deformation.

Let us first consider the contribution to the Hamiltonian arising from stretching
deformations of the membrane. A stretching deformation of the membrane is illustrated

in figure 3.6.

Stretch

a= 8,(1+x) l

Figure 3.6
Stretch deformation.

Suppose such a membrane, of length 1, is stretched uniformly. Then
unit length - (1+Xx) B.35. 3
length 1 - 1(1+x) jie: 6l = Ix. (3.5.1;4)
where x is the extension per unit length of the membrane due to the stretching.

Each spring is equally stretched so that a spring
length a, - a(1+x) i.e. da = ajx. (3.5.1;5)
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Hence, each spring stores elastic energy

e = ka,?x%/2. (3.3.1:6)
Number of springs in length 1 of membrane is

2(1/a). (3.5.1;7)
Therefore total elastic energy change due to stretch is

2(l/a).(kay *x%/2) =~ klagx>. £3:3.1:8)
So the stretch energy per unit length is

H,=kayx’. (3.5.1,9)

If we write this in the form Hg=0x%2 then we get an expression for the stretch
elasticity or line tension o=2ka,. This tells us that the membrane stores energy
proportional to the extension squared; which is how a spring stores energy and is, on

reflection, what we would expect from such a model.

Figure 3.7
Curvature deformation.

Let us now consider a uniform curvature deformation and the contribution it
makes to the membrane Hamiltonian. Suppose one such membrane, of length I, is bent
around so that it forms a circle, of radius r (such a deformation is illustrated in figure
3.7). Then the curvature, c=1/r, is uniform and if the membrane is not stretched (no
net extension of the membrane) there is no energy due stretching and r=1/27. However,
as the figure shows, springs on the outside of the circle are extended whilst springs on

the inside are compressed and so a bending force is required to put the membrane into
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the circular configuration. The energy associated with this force is the curvature energy
of the configuration.

Now the outer ring of springs has radius r+h/2. So the circumference of the
outer ring of springs is 2w(r+h/2). Consequently the outer ring of spring experiences
a uniform extension of wh. The extension per unit length of the outer ring is
approximately (h small) wh/27r=h/2r. The energy associated with this energy is just
half the energy required to extend a bilayer by the same amount, kash?/8¢2.

Now the inner ring of springs has radius r-h/2. So the circumference of the inner
ring of springs is 2w (r-h/2). Consequently the inner ring of spring experiences a
uniform compression of wh. The compression per unit length of the outer ring is
approximately (h small) 7h/2ar=h/2r. The energy required for this compression is the
same as the energy required to extend the outer ring (since compressing a (Hookean)
spring by a given amount takes the same energy as to extend it by that same amount).

So the total energy of curvature per unit length of the membrane curved around
a circle of radius r is

H, = kagh’/4r>. (3.5.1;10)

If we write this in the form H, = xc%2, where c=r" is the curvature of the
membrane, then we get an expression for the curvature elasticity:

x = kash?/2 = oh*/4. (3.5.1;11)

The total energy per unit length of a membrane undergoing a stretch and being
curved around a circle is

H = H, + H, = ox*/2 + xc?/2, (3.5.1;12)
with ¢ and « constants, given above.

In fact, this Hamiltonian is more generally applicable. In general membranes
experience position, s, dependent stretch and curvature deformations; x — x(s) and ¢ -
c(s). However, locally around a small element of the curve of length s the curvature
and stretch can be considered uniform. So locally the Hamiltonian can be considered
to be the Hamiltonian just derived; i.e.

H — H(s) = ox(8)*/2 + Kc(s)*/2. (3.5.1;12)
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Figure 3.8
Instantaneous stretch and
curvature.

Clearly to get the total Hamiltonian of the membrane one has to sum, viz inte-
grate, over the local elements, so that in fact:

1 1
H = { H(s)ds = { (%x(s)2 + gc(s)z)ds (3.5.1;13)

The Hamiltonian in (3.5.1;13) is the basic Hamiltonian used in mesoscopic
models of membranes in two dimensions. It is called the Helfrich model of a membrane.
Later the generalisation to three dimensions shall be motivated.

Intuitively one can see that allowing a one-surface to have position dependent
stretch and curvature deformations is the most general deformation possible. In fact

there are well known theorems of geometry which can prove this intuitive idea.

3.5.2 Microscopic Spring Model Of An Asymmetric One-surface Bilayer
The spring model can easily be adapted to model a monolayer or an asymmetric

bilayer. The key point about these membranes is that they prefer to curve towards one
side than the other, because of the internal asymmetry of the membrane. The
asymmetry of the membrane can be introduced by making the spring coupling constants

and equilibrium spring lengths for the top and bottom side of the membrane different.

33



Inflexible ties

= W
Bead Spring
(o
oo
Figure 3.9

Microscopic spring model of a
one-brane monolayer.

Define:
a,,a, = equilibrium spring lengths
a = actual spring length
h = membrane thickness
k;,k, = spring constants

So that now:
energy top springs e = ky(a-a,)*/2 (3.5.2;1)
energy bottom springs e = k,(a-a,)%/2 (3.5.2;2)
no of particles per n=al' (3.5.2;3)
unit length

The flat state of the membrane is now no longer the freely adopted position, in
general. In the flat state the energy per unit length is given by:
1 ~
—n[k,(@-a,)* + k,(@-a,)’]
2" (3.5.2;4)
where, 4, is mean length of springs.
The energy contribution of one set of springs is just e = ¢; + ¢,.

For equilibrium we should minimise e. Hence for equilibrium in flat state:
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de (3.5.2;5)

— =0 = k/(@E-a)+k(@E-a)=0.
oa @2 lo@s, So that:
5 - kja, + ka,
(k, +k,) (3.5.2:6)

This is called the zero force condition on a.

Clearly stretch deformations of the membrane are going to lead to contributions
to the Hamiltonian of the same form (kx?*) as before with the exception that the spring
constant for the bilayer will the average of the spring constants of top and bottom.

It is not so clear, however, what the effect will be on the curvature contributions
to the Hamiltonian. To calculate the bending contribution imagine taking a length 27r
of the flat state membrane and bending it round into a circle. The resulting circular
membrane in equilibrium would have a radius r+x (not r!), where x is small but not
necessarily zero as we shall see. The membrane now has uniform curvature ¢ = r.

The outer radius is now R+h/2+x and inner radius is R-h/2+x. Hence
separation of particles in outer circle is a,,,=a[1+h/(2r) +x/r] and separation of particles

in inner circle is a,,=a[1-h/(2r)+x/r]. Therefore the energy per unit length of such a

configuration is:
1, (s ih axV - ih ax\?
H, = 5’{1(1(3 aﬁ—z;*—r—) * kz(a o) 5;*‘;” (3.5.2;7)
Expanding this expression:
H _ 1 k -~ 2 i~ 2 hﬁ ~ _ -~
¢ 5 [ 1(1-—31) +k2(1'—32)] + T[kl(a_al) kz(a_az)]

1 h%3?

4
2.2 h~2
) - ;rfacl—k;l

The first term is just the flat state energy, H; say. From the definition of a the

- B Ea) igGa] + S+

5 (3.5.2;8)

+

first order term in x cancels. The expression can be minimised for x yielding:
% = E(kfkl)
2 (k,+k,) ' (3.5.2;9)

The most important point to note in this equation is its dependence on the

curvature, c. There are now linear and quadratic terms in c. The linear term was not
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present in the case of the symmetric membrane. As a consequence the energy is
minimised for c#0, in general. In fact,

c, = hk,@-a) + k,(@-a,)] (3.5.2;10)
is the minimizing value of curvature. So only if ¢, as above =0 is a flat state possibly
the preferred state.

So we can write the curvature energy per unit length:

H, = H; + %K(C—CO)2

C

(3.5.2;11)
where,

K = Ln(k,+k)a’h?

4 (3.5.2;12)

As with the symmetric membrane case this Hamiltonian is more generally valid

for position dependent stretches and bends. Then we write the Hamiltonian as

H = fﬁ(S)dS = f(%X(S)Z + l;—(C(S)—'CQ(S))2 ds (352’13)
0 0
where c(s) is the only new term over the symmetric membrane expression (3.5.1;13).

3.5.3 Microscopic Spring Model Of Two-surface Bilaver

The spring model of a two-surface bilayer is no more complicated, conceptually,
than the spring model of a one-surface. One can arrange sets of beads and springs into
a bilayer structure quite easily. One such arrangement is illustrated in figure 3.10. In
these illustrations the amphiphiles are structured hexagonally in the membrane. In fact
the beads could be joined up into any arbitrary structure, but once linked they are fixed.
Since experimental studies show that the amphiphiles are free to diffuse through the
membrane in a fluid fashion then clearly the spring two-surface does not model physical

reality accurately in this respect.
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Figure 3.10
Plan view of spring model of a bilayer
two-brane.

True to its solid like structure this spring model of a membrane supports shear

deformations as illustrated in figure 3.11; viz it has a non-zero shear elasticity constant.

Figure 3.11
Plan view of a shear deformation of
membrane bilayer.

At first appearance one might expect the membrane to be anisotropically elastic;

viz the deformations produced by applying forces to the membrane depend not only on
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the forces but also on the orientation of the membrane. In fact this can be shown not
to be the case. That is, in the Hookean elastic limit the membrane can be shown to be
isotropically elastic. In contrast, when the springs are non-Hookean (i.e have elastic
energies dependent on higher order terms of the strain) the membrane can be shown to
be anisotropically elastic.

One can rﬂake some progress towards the Hamiltonian of an isotropic membrane
considering deformations of such a model. Consider a stretch deformation along one of
the crystal axes, e.g. x axis as illustrated in figure 3.12. The opposite sides are clamped
so that there is no net shift of the beads along the y axis, and that strain field is
negligible. One can see that the contribution of the springs along the x axis is Hookean.
But the transverse springs contribute to the stretching energy too. In fact their
contribution is also Hookean. So the membrane responds to stretch deformations like
a single spring albeit with a modified spring constant. One can impose a strain field in

any direction, the response is always the same.

Stretch

Figure 3.12
Plan view of stretch deformation of
membrane bilayer.

Now consider simultaneously applying a stretch deformation in the transverse (y-
axial) direction. If the deformation is small so that the springs continue to respond in
a Hookean fashion then the energy due to each deformation will be independent.

Moreover if the membrane is isotropic then the elastic constant for each deformation will

38



be identical, o say. So the total energy due to the stretch is the sum of the two

independent stretches, i.e.

(3.5.3;1)
where x, and x are the strain components in the x and y directions respectively.

Further one can decompose any general global stretch deformation locally into
a pair of orthogonal stretches and so more generally one can write
o 2 2, A
H, = —|[(X () + X (s,t))dsdt
2”( v (3.5.3;2)

where s and t parameterise the membrane and x_ and x, are the corresponding local

strain components.

Now consider the simplest curvature deformation of the membrane; imagine it
rolled into a cylinder. As for the membrane in two dimensions considered in section
3.5.1 one should expect the membrane to resist such a deformation. As previously, the
reason being that the inner and outer membranes are compressed and stretched with
respect to each other. A short consideration will confirm that the nature of the stretch
and compression are uniaxial. As such the result for the two dimensional system follows
through, so that for this deformation the energy of the deformation is proportional to the
curvature of the cylinder squared (that is the curvature on the surface in the direction
perpendicular to the cylindrical axis).

Now if the membrane is wrapped around the cylinder in any other orientation the
same result applies, since the membrane is isotropically elastic to such deformations.
It can be shown that the only quantity to take the specific value above and which remains

invariant under these orientational transformations is

X
H, = E(Cx + cy)2

(3.5.3;3)
where ¢, and c_ are the x and y components of the curvature; which is uniform for the
cylindrical deformation (The quantity (cx+cy) is the trace of the curvature tensor which

is why it remains invariant under rotational transformations).
In fact (3.5.3;3) remains valid locally for all other curvature deformations. So

that one can write
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H, = X cs,t) + ct(s,t)‘2dsdt
2”( ) (3.5.3:4)

where s and t parameterise the membrane and c, and c, are the corresponding

curvatures. Equivalently one can write

H = Ly (s,t) + c,(s,0))2dsdt
2”( ! A0) (3.5.3;5)

where ¢, and ¢, are the principal curvatures.

Hence the final form of the Hamiltonian for a membrane (of fixed topology) in

three dimensions is

H = f j ‘(K(cl(s,t) +¢,(s,t) —¢y(s,)>+ o(xs2 +x,2))dsdt
' (3.5.3:6)

where I have included the asymmetry term, c,, from (3.5.2;13) for completeness. This

Hamiltonian represents the full Hamiltonian for membrane systems experiencing stretch
and curvature stresses. There i1s no shear term, so that the membrane it models is
supposed to be fluid. The expression in (3.5.2;3) is exact. The first term is the

Helfrich curvature term. The second is a surface tension term.

3.5.4 Molecular Models Of Membranes

The spring models discussed above do not truly model membranes on a molecular
scale, despite their success in providing the Helfrich Model for use in mesoscopic
models. There are models which attempt to model more faithfully the molecular reality
of membrane systems (Israelachvilli 1976). These models calculate the free energy
associated with any particular configuration of the membrane in order to determine
energy dependenée of stretches, and more particularly bends. There are many such
models using different numerical or analytical techniques, but the basic flavour is the
same. Figure 3.13 illustrates a possible representation of a membrane in such a model.

Here the membrane is modelled as a collection of chain molecules whose heads
are packed into a particular surface configuration. The chains of molecules are self
avoiding, i.e. no two molecular units can occupy the same place. One can introduce a
deformation to the membrane and ask what is the free energy of the deformed membrane

compared to the original. One can alter the sizes of chains and so on to investigate the
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effect on the free energy. If one imagines the chains on a lattice one can make some

headway in finding analytical expressions for the free energy of configurations.

Figure 3.13
Molecular model of an amphiphilic

bilayer.
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CHAPTER FOUR

SCALING THEORY IN POLYMER CHAINS

4.1 Introduction

When one initiates a study into some new or unexplained phenomenon one looks
to see if there are- any analogous phenomena from which one can adapt the analyses to
apply in explaining the new phenomenon. This cross-fertilisation of ideas makes
progress much easier and faster, even facilitating progress where it was not previously
possible.

The study of membranes is closely related to the study of polymers. Indeed in
the two dimensional case membranes and ring polymers are indistinguishable from a
modelling point of view. In higher dimensions, and in particular three dimensions, this
is of course not the case. Nevertheless one should not be too surprised to learn that the
analytical techniques used and developed to study polymers are directly relevant to the
study of membranes, and in particular vesicles.

Recent advances in the field of shape polydispersity in vesicles have stemmed
from the use of scaling analysis to interpret results generated by numerical models and
simulations. These scaling analyses were motivated by the successes of scaling analysis
in the theory of polymers and the direct analogy between polymers and membranes.

Hence in this chapter I shall discuss the scaling theory of polymers and related
topics such as fractality (Mandelbrot 1983), which is currently an area of intense

research and discussion, and the renormalisation group method (Ma 1985, Huang 1987).

4.2 The Free-flicht Chain

The free-flight chain is probably the simplest model of a polymer. From an
analytical point of view it is essentially identical to the random walk (also called
drunkard’s walk) model of the diffusion of gas molecules. In the free flight chain model

of a polymer the polymer is imagined to be constructed from a series of smaller, rigid,
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and essentially linear segments, called links, joined together by freely flexible joints,

sometimes called spacers.

//\\
\

Figure 4.1
Free-flight chain model.

In the free-flight model there are no restrictions on the orientation of the links
except, of course, that they must all remain joined together. It is assumed a priori that
each configuration is equally likely. In the simplest case the links are all assumed of
equal length, a say (c.f. in random walks a corresponds to the mean free path A). Any
given chain has a fixed number of links, N say. The total length of the polymer chain
is therefore Na. |

If one was studying an ensemble of free-flight chains one would be interested in
how the properties of the chain depend upon N, a and d, the dimensionality of the space.
One might expect that the end-to-end displacement R of the polymer chain would be an
interesting property to study and this is in fact the case. However the average
displacement is identically zero, i.e. <R>=0 (i.e =0 va,N,d), since for every
configuration, R=R, say, there is a "conjugate” configuration, R=-R,, that is equally

likely and which therefore cancels with the former term in the averaging.
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A more interesting quantity is the end-fo-end distance of the chain defined by,
Rp=<R?*>". In some sense the end-to-end distance tells us how large the polymer is
on average; it tells us how "strung out" the chain is. One can derive an analytical
expression for the end-to-end distance in terms of the ensemble parameters, N and a, in
the case of the free flight chain (Chandrasekhar 1943).

If the i’th link is r; then by definition a molecule in this model is the ordered set
{r;.5;,....tn}. The set is ordered since changing the order of any of the links generally
changes the configuration of the molecule.

By definition:

] =a and R =} r.

1

i : 4.2:1)
Moreover
2 - e
R Zzl.zj <R*> qu r>
i i) (4.2:2)
But
1= <cI> = <I£1[2> =a?
<t =4 (4.2;3)

because i’th and j’th steps are independent fori#j (c.f. in probabilities P(A.B) = P(A)-P(B)
for A and B independent events), and <r;> =0.

Hence R = <R*> = Na?. (4.2:4)

So R; = aN“. (4.2;5)

This argument is valid independently of the number of dimensions, d, in which
the polymer is embedded. So the end-to-end distance is independent of the
dimensionality of the space - something we may not have expected a priori. One can
show that this is a result of the idealised nature of free flight chains, and is not true for
real polymers. Most important is the N dependence of the relation, since experimentally
it is easy to vary N but difficult or impossible to vary a without changing the polymer
chemically. We shall see that in general the end to end distance varies according to

Rg~N’, where » is known as the chain exponent and v="2 is the ideal chain exponent.
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A related quantity of interest is the radius of gyration, R, defined by the relation

R, = {(r?) - (©)».. Ananalogous argument shows that Rg=aN’, with »=1/2 once

again. The end-to-end distance turns out to be useful in studying rubber elasticity
whereas the radius of gyration is well suited to explanations and descriptions of the
rheological properties of polymer fluids and solutions (de Gennes 1979).

One can go further and ask more searching questions about the end to end
displacement, R, of a free flight chain than simply its mean and mean-square values.
In particular one can ask if there is an analytical expression for the probability density
Junction py(R) (Chandrasekhar 1943). Note that this is a natural progression of the
investigation since the mean and mean-square end to end displacements are expectation
values of R and R? for the distribution and as such are clearly subordinate to it.

When one says py(R) is the probability density function of R what one means is
that the probability of a polymer chain having an end to end displacement in the
("infinitesimal") region [R,R+dR] is py(R)d‘R (in this notation d‘R=dR,dR,...dR,,
where dR,; is the 1’th component of R).

From this definition and basic probability theory it should be clear that:

f pyR)R =1
Rd

(4.2;6)
since displacement must be somewhere in R and
<R> = [Rpy®R).d“R = 0
'S 4.2,7)
<R = [R%,R)d‘R = Ry = Na’.
R 4.2;8)

by definition of the expectation operator < >.

Now in this notation a chain of only one link has a probability density function
p; for its displacement. But each link can itself be considered as a chain of just one
link. So the displacement r; of the i’th link also has a probability density p,(r;); that is
to say there is a probability p,(r)d’r of the link displacement, r,, being in the region
[r,r+dr].

It is possible to relate py(R) to {p,(r)}. Given that a molecular configuration has

been reduced to an ordered set of links {r;} it is possible to find R through the relation:
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R=)r.

' (4.2;9)

On the other hand given R there is no single (ordered) set {r;} which uniquely
yields R as its total displacement. Rather there are many sets of {r,} which yield R as
their total displacement (N.B. it is easy to see for instance that R does not depend on the
ordering of the links because of the transitivity of vector addition). The probability of
any particular set in the interval [{r;},{r;+dr;}] arising is:

p({r) = py@)d rp,@)d r,..p @ )d 1y

(4.2;10)
where we use the fact that each link is independent of all the others (so that
P(A.B)=P(A).P(B)).

Consequently it is clear that:

PR®) = [ [Py Ipy(x)- (1), +1,+. v, ~R)A L d . d

(4.2;11)

It is clear from the rotational symmetry of the distribution function, which was
responsible for <R> =0, that the distribution function must be a function of the
rotational invariants of R. A vector R has only one rotational invariant, its magnitude,
R. So py(R) can be written as a function of R, i.e. py(R)—=py(R). For such a symmetry

one can also transform the volume element so that:

d’R=C,R*!dR (4.2;12)
where Cg is a constant depending on d. In particular, for three dimensions:
d®’R=47R*dR (4.2;13)

Now the Central Limit Theorem of Statistics (see Kreyszig 1983) tells us that the

probability distribution of a sum of, N, independent variables with the same probability
distribution is the Gaussian distribution, in the limit N~«~. Applying the Central limit
theorem to (4.2;11), tells us that py(R) is the normal distribution in the limit of large N,

i.e. N>1. So, in three dimensions:

2 ) exp(— 3(x2+y2+zz)

(3R
Py(R) = eXP[--—;

2R} >

2R (4.2;14)
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The constant of proportionality is determined through the normalisation
requirement. After normalising we get:

2 2

pa®) = — R oxp [3R2

2nyPR} | 2Rz (2nN)¥%a’ 2Na? (4.2;15)

These are Gaussian statistics and so the free flight chain is sometimes called a
Gaussian chain. The free-flight chain is also known as the ideal chain. The chain is
only truly Gaussian in the large N limit. Some headway can be made towards the lower

N regions but the analysis becomes extremely involved (Flory 1969).

4.3  The Biased-flight Chain
In the free flight chain the displacement probability distribution of each link is

uncorrelated, i.e. independent of, the displacements of all of the other links. This
property stemmed from the fact that all orientations of the links were allowed and were
equally likely as the links were assumed to be joined by freely flexible spacers. Of
course, in practice this assumption is not usually true, usually the orientation of a link
will be influenced by, and hence correlated to, the orientations of its neighbouring links.
In biased-flight chain models one tries to take account of these correlations.

There is more than one way of introducing correlations into the free-flight chain
model. The effect of biasing on the chain’s scaling relations is to change the prefactor
only. The characteristic scaling exponent, », is unchanged, =1/2. Thus we see why
the scaling exponent is considered a more fundamental property of ideal polymers than
the prefactor. Underlying this result is a re-scaling argument that is more fundamental
than the result itself (de Gennes 1979, Flory 1969, Mandelbrot 1983). The ideas of
rescaling are embodied in the so called Renormalisation Group Theory (Ma 1985, Huang
1987). The name of this theory is rather misleading in the context in which we use it
since there is no "group theory" involved. Renormalisation is the keyword. It points
to the concept of having an invariant scaling law, but with a prefactor determined by
normalisation; that is re-normalisation on the appropriate length scale.

The impoftant idea in the renormalisation of the biased chain is that there is a
correlation length, £, along the chain beyond which memory, i.e. correlations to, the

original link displacement is forgotten. For chain lengths L < ¢ correlations cannot be
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neglected. But for L> ¢ the chain can be thought of as an unbiased free-flight chain
with a~§, and with N~ (L/£) links. So it is not surprising that R;~L” with v="%

unchanged. A biassed chain with its correlation length is illustrated in figure 4.2.

Figure 4.2
Biassed chain model.

4.4 Self-avoiding Chain

The biased-flight chain discussed in the previous section introduced the concept

of local correlations between chain links. In fact significant global correlations between
the links do exist in real polymers. The principal source of correlations is from
exclusion. In real molecules no two atoms or molecules can occupy the same point in
space. As a consequence in our model of a polymer the links should not be permitted
to intersect. A random walk in which the path never intersects with itself is called a
self-avoiding walk (Chandrasekar 1943). A self-avoiding random walk on the lattice is
illustrated in figure 4.3.

Other sources of global correlations exist to a lesser extent; examples are van der
Waals bonding, hydrogen bonding and in the extreme case zwitter-ionic attractions.

The effect of including the global self-exclusion correlation into the free-flight
chain model turns out to be more profound than including the local correlations. It is
clear that the re-scaling argument used there cannot be applied analogously for this self-
exclusion property. To make any progress analytically we have to approach the problem
from an entirely new direction. We shall find that the self-exclusion effect causes the

value of the scaling exponent, », to change. In fact the value of » is characteristic of the
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type of model we look at; we can determine whether an ensemble of chains is ideal or

self-excluding by looking at the chain exponent.
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Figure 4.3
Self-avoiding chain model.

First let us re-derive the scaling relation for an ideal chain using Flory’s
argument. From the definition of py(R) it is clear that py(R) o« number of ways of
arranging a random walk starting at O and finishing near R. The entropy S associated

with such a walk ~ kgln(py). So that:

2 2
S®) _ _3R + ln[—R3 ) + const

k, 2Na? N32
where (4.2;10) has been substituted.

4.4;1)

In equilibfium the Helmholtz free energy, A, is minimised. Now

A=U;-TS. (4.4;2)
But for an ideal chain U;=0. So that, in this case, minimising A is equivalent to
maximising S. Maximising S will give us the most favourable value of R, R.. For the

ideal chain

iﬁ = — 3R + _2_
kgoR  Na®> R 4.43)
so that
1 oS 2aN
—_— = 0 = R = . .
kB R Rk, F 3 “4.4;4)
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Examining (4.2;14) we see that R. ~ N2 as before (c.f. (4.2;5)), but now the
prefactor has changed. So Flory’s argument appears to get the form of the equation
correctly, with the correct value for the scaling exponent, 1/2, but fails to compute the
prefactor correctly. In any case we have already said that the prefactor is of less
significance than the exponent.

Now let us use the Flory argument to investigate the self-avoiding chain. Now

some of the walks between O and R that were previously allowed are forbidden in this

case, so that py(R)~p(R). Consequently the entropy S is changed. The change in

entropy is called the correlation entropy.

We make a guess of the approximate correlation entropy by introducing an
effective exclusion energy. Suppose that each link has a volume v, and that there are ¢
links per unit volume. Then the associated effective exclusion energy per unit volume
Uis

U = lkBTvc2

2 (4.4;5)
if we think of the links as "freely-floating" throughout the volume in which the chain is
effectively confined. We arrive at this form using the same approximations as for virial
expansion (Golden 1964).

The chain has N links which are effectively confined to a volume o R? so that

¢ =NR™ U, = -1-kBTvN2R 4 =RYU

2 (4.4;6)

Hence

A _ wWN? 3R? R¢
== —— 4 - Inf—|
T RY 2Na? N2
Note that the dimensionality of the space d is a key parameter in this expression.

(4.4;7)

For d <4 the logarithmic term is unimportant for the limit N> 1.
Again minimising the free energy, A, gives the most probable value of R, Rg.
For the excluded chain

(d<4). .
R4 Na? 4.4;8)

9 (A) __dwN? 3R

R\ T
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So that

d+2 a3
_SE =0 - R = dva’N ) 4.4:9)
RR=RP 3 ;

Most importantly

R, ~ N ~ NI@2 - v, - 3
d+2 (4.4;10)
and more specifically
3 _ 3 _ 1
Vl = 1, V2 = Z, V3 = 'g and V4 = ;

(4.4;11)
where the index denotes the dimensionality of the space. These exponents are the so
called Flory exponents. The argument was initially presented by Flory for 3-dimensions
only; the d-dimensional generalisation being attributable to Fisher.

So for self-avoiding chains the exponent depends on d for d<4. Note that the
value of the scaling exponent for d=4 is the same as for the ideal chain. Below d=4
the scaling exponent of the self avoiding chain is larger than the scaling exponent of the
corresponding ideal chain. Note that intuitively we expect self avoiding chains to be
expanded compared with their ideal counterparts; the self avoidance acting effectively
as a repelling force. The chains are sometimes said to be swollen (with respect to their
ideal analogues).

Careful examination would show that the logarithmic term in (4.4;7) becomes
important at d=4.

This method can be thought of as a Mean-field theory, because when we derived
the effective energy due to self-avoidance we imagined that the action of the self
avoidance of the whole set of links on each individual link could be thought of as an
average and uniform field. This is a standard approximation often made which often
turns out not to matter in the final result, for the appropriate limit.

Despite the fact that this is a mean field theory one gets "non-mean field"
exponents. In statistical mechanics many situations arise where mean field theories get
correct results except in the low dimensional limit d <4 (Ma 1985, Huang 1987).

The Flory theory is a self-consistent theory. In the Flory theory the entropy of

the chain is drastically over estimated. The self-avoidance pseudo-potential is also over
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estimated. The over estimations appear to cancel against one another in a consistent
fashion, since the results of the Flory theory are remarkably consistent with experimental

observations and results obtained from simulations.

4.5 Fractality And Self Similarity

Recall the ‘scaling law for a self avoiding chain in three dimensions:

33
R, - N =(£)5
G

a (4.5;1)

This scaling law tells us how the radius of gyration scales as compared to the
ratio of the total chain length, L, to stiffness length a.

Imagine taking a particular polymer then a is fixed, but L can be varied. Then
the scaling law tells us that R;=L*°. How does this compare with the scaling of
ordinary objects? Scaling a circle, triangle, square or any fixed polygon or curve causes
the radius of gyration to scale according to R;=L. So clearly scaling the polymer is
subtly different.

The reason that the polymer does not scale like an ordinary object is that as its
perimeter length L is increased then the degrees of freedom of the chain to twist and
turn are increased; this corresponds to introducing new vertices into the polygons. In
fact if one could examine a given polymer as one drew away from the initially rigid
length scale, a, one would observe that the polymer twisted and turned on all subsequent
length scales. In fact at large length scales on could not determine the stiffness length
of a polymer by observing the character of its twists and turns. The polymer is said to
be self-similar.
| Objects which scale with a fractional scaling exponent such as the self avoiding
chains / polymers are said to be fractal. Fractals are characteristically self-similar. For
instance it is the twists and turns on all length scales that cause the length of the polymer
to be soaked up causing the fractality of the radius of gyration and it is the same twists

and turns on all length scales which make the polymer self-similar.
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4.6  Universality
Often when carrying out physical observations the observed quantity at first

instance appears to depend on a large set of independent variables. However it is
usually possible to identify that the quantity actually depends upon a reduced set of
independent variables. One transforms to the reduced variables from the originals by
a specified transformation. A classic example where this occurs is in Wiens law in the
Rayleigh-Jeans theory of blackbody radiation (Gasiorowicz 1966). It turns out that this
universality behaviour is important in the interpretation of observations on vesicle

systems. Here I discuss the analogous case for two-dimensional polymers.

4.6.1 Universality Of Polymers With Finite Rigidity

Consider the two dimensional case, for simplicity, of a chain with rigidity «.

Such a chain has the Helfrich Hamiltonian:

H =

O\r“

g (c(s))*ds + Self-avoidance. (4.6.1:1)
where s is the length moved along the chain and c(s) is the curvature of the chain at s.

Now clearly k ~ ¢ and R;=Ry(L,§).

There are also two scaling forms valid in asymptotia:

Ro - (%) b e 4.6.132)

R, ~ L L-0, k- (4.6.1;3)

The former is valid as the rigidity is just an example of a local correlation force
and the latter is valid since a rigid polymer is just a rod.

One can postulate a universal scaling form for Rg:

)y

K (4.6.1;4)

Here f is a universal function. That is it is the same function for all polymers
and chains. The scaling form should hold for all L,x. One can see that if the universal
scaling form holds then there is, in a sense, one less variable - the ratio L/x is the

independent variable.
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One can illustrate a particular case where this holds, the case of the two

dimensional free-flight polymer with rigidity.

4.6.2 Universality Of 2D Free-flisht Polymer With Rigidity

A polymer of length L can be modelled as a smooth curve of length .. Then the
ensemble of all polymer configurations becomes the ensemble of all curve functions of
length L. I have already discussed the parameterisation of a curve in terms of its own
curve-length, s. The curve itself is synonymous with the normal angle function, ¥(s),
since from that function all properties of the curve can be derived. For instance the
trajectory (x(s),y(s)) can be evaluated from y(s) using:

s

x,(s) = [cosy(dt (4.6.2;1)
0

s

y,() = [sinw(t)dt (4.6.2:2)
0
Thus the curve function is the normal angle function y(s). The curve function
parameterises the ensemble space ¥ =C=. Hence the partition function (Huang 1987),
Z, of the ensemble of free flight curve configurations will be a functional integral. In
fact using statistical mechanics it can be shown that:

Z = f exp[—n}(%—sqirds

0

Dy (4.6.2:3)

where I have nominally set k;T=1 so that x/(kgT)-x. In effect the temperature

dependence is to absorbed into the rigidity constant, k. D4y is the volume element in

the function space of the ensemble and can be written in the form

L -

Dy = gd‘“@ 4.6.2;4)
whereupon it becomes clear that a functional integral is equivalent to an infinite
dimensional parametric (standard) integral since we are performing the product over a
continuous parameter, s. Finally dy/ds is the curvature of the polymer as derived in

(3.4.1;2).
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Now one can make the scaling transformation s — §/L so that s = L§ and

ds = L.d§. This transforms a polymer of length L to a polymer of unit length. Under

this transformation the partition function, Z, becomes:
1 dw 5
_ = _k fayy .-
Z = CfHdlIJ(s)exp( ZL{( d§) ds] (4.6.2:5)

So one can see that for a system of unit length Z=7(x/L) and consequently

RF=RF(K/L) (the tildes indicate the quantity is for the unit length polymer). Now the

effect on the average end-to-end length of translating from the unit length polymer to the

polymer of length L is just to scale it by a factor L so that

= K

R, = LR, |—
F F‘(L) (4.6.2;6)
This confirms the result (4.6.1;4) motivated in section 4.6.1 for the two

dimensional free flight polymer with rigidity; where the association f ~ RF is made.
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CHAPTER FIVE

MESOSCOPIC MODELS OF VESICLES IN TWO DIMENSIONS

5.1. Introduction

The principal use of mesoscopic models is the determination of the natures of
membrane shape and size behaviour. For instance, one can determine how the radius
of gyration of a vesicle varies with the various elastic constants. The membrane
Hamiltonian is treated phenomenologically (physically determined) in such models;
although hypothetical Hamiltonian forms can be tested and the results compared with
the real world membranes for rejection or confirmation of the form. Thus microscopic

models provide the input data, the Hamiltonian, for mesoscopic models.

5.2. The Helfrich (Mean Field) Model

Helfrich introduced a continuum model of vesicles, the Helfrich model (Helfrich
1973, 1974, 1976, 1990). In this section I intend to briefly outline the method used by
Helfrich and to discuss the successes of the model in predicting observed membrane
shapes (Berndl ef al/ 1990). The method uses a quasi-three dimensional model of a
vesicle; that is it models vesicles as volumes of revolution so that although the vesicles
are three dimensional one of the dimensions is proscribed and so does no represent a
true degree of freedom of the system. The parameterisation is illustrated in figure 5.1.

The method of Lagrangian multipliers (Arfken 1985) is used to minimise the
free energy. For this minimisation the vesicle can be parameterised in terms of the
tangent function, Y (s), or the trajectory, r(s). In practise one chooses the parameterisa-
tion according to the type of minimisation analysis that one wishes to perform. The
tangent function parameterisation is useful for shape analysis of the minimisation,

whilst the trajectory parameterisation is more useful for stability analyses.
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Figure 5.1
Helfrich model of a vesicle.

In the original model of Helfrich, sometimes called the spontaneous curvature

model, the vesicle shape was minimised for the free energy

-

F = (cs) - c,ffds + PA (5.2:1)

X
2

[=]

where the first term is clearly the curvature energy and the second couples the area of
the vesicle, A, to an osmotic pressure differential, P, between the inside and outside of
the vesicle.

The osmotic pressure term in the free energy is important because without it the
‘minimisation leads only to the trivial circular geometry. The effect of the pressure is
to cause the vesicle to deflate. Observed shapes include elliptical and bilobular
geometries (Figure 5.2). In fact a catalog of the deflated vesicle shapes has been
produced by Helfrich (Helfrich 1976).

This initial model has been developed further to study the adhesion of vesicles
for a variety of potentials; including a contact potential, long and short ranged
potentials (Seifert 1991).

A second exciting and more fundamental development of the model has been
the introduction of the so called bilayer coupling model (Svetina and Zeks 1983, 1989).

This model explicitly takes into account that vesicles are made of bilayers. It considers
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the bilayer to be a pair of coupled monolayers and assumes that lipid transfer between
the monolayers does not occur. The net effect of this is that the differing thermal
expansivities of the coupled monolayers renders the monolayer asymmetric and leads
to a large number of exotic new vesicle shapes. The asymmetry of the monolayer is
reflected in the solutions of the model. Investigations of the phase space have shown
it to be particularly rich in vesicle geometries (Svetina and Zeks 1983, Seifert et al
1991). Moreover many of these geometries have been observed and identified
experimentally in optical micrograph experiments (Berndl et a/ 1990). In figure 5.2
some of these optical micrographs with the associated model vesicles are presented

courtesy of Berndl et al (1990).

0

-—

0 079

JOOC

Figure 5.2
Some observed vesicles with corresponding bilayer coupling model
shapes, courtesy of Berndl et al (1990).

There are some problems and limitations on this model of vesicles. Firstly the
Helfrich model looks at most probable vesicle shapes by minimising a free energy.
This is in the spirit of the Landau theory of phase transitions. Fluctuations around the
most probable shape are neglected. Strictly a more correct approach should take these
fluctuations into account. Such fluctuations are accounted for if a full evaluation of the

partition function is made.
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Intuitively it can be seen that the model does not easily allow convoluted shapes

of the type that is to be expected to occur in the partition function.

5.3. The Leibler-Singh-Fisher (Bead Chain) Model

The Leibler-Singh-Fisher model (Leibler et al 1987, Fisher 1989) of vesicles is
the so called bead chain model. It is a two dimensional model, although it easily
extends to three dimensions. The vesicle is modelled as a series of hard (impenetrable)
beads joined together by flexible but inextensible strings. The Hamiltonian imposed
on this bead chain arrangement has been constructed so that in the limit of the number
of beads becoming infinite it is indistinguishable from the Helfrich model; that is, the
model is a continuum limit model evaluated in real space. Figure 5.3 is an illustration

of one such vesicle.

Hard bead

Flexible inelastic

~ spacers

Figure 5.3
LSF model of a vesicle.

The Leibler et al model uses the method of Monte-Carlo Simulation. The beads
are made to jump randomly in a Brownian fashion subject only to the constraint that
the separation of any two neighbouring beads is not greater than a, the maximum bead-
bead separation. This constraint taken together with the hard bead property ensures
that the vesicle walls are self-excluding as illustrated in figure 5.4.

The hard bead property requires that no bead impinge upon another. This is

ensured by checking any bead move and rejecting it if the moved bead impinges on
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any other. The simplest way to check this is to check the distance between the moved
bead and all the other beads. This is a very time consuming process and with some
consideration a significantly better method can be devised. In Appendix such a method

is discussed.

Bead about to penetrate. Bead penetrating. Bead at maximum
penetration.

Figure 5.4
Self exclusion in LSF model.

The standard algorithm of Metropolis et al is followed (Ma 1985). The

Hamiltonian of the model is

N
H = Z(l - cos,) (53:1)

i=1

o | A

where 6, is the angle between the (i-1)’th, i’th and the i’th, (i+1)’th beads.

It can be shown that in the limit of N—oco this Hamiltonian and the Helfrich
model Hamiltonian are identical. In such a scheme it is possible, by keeping records,
to work out various average parameters such as <A>, <A*>, <R./*>, <E>, <E>> and so
on. In fact one can ask any question one can imagine about the statistics of the
ensemble and expect an answer. In order to analyze the results of such a procedure
one uses scaling theory arguments to postulate analytically what kind of behaviour one
expects from such an ensemble and compares these with the actual results for

confirmation.
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5.4. The Ostrowsky-Pevraud (Continuum) Method

The Ostrowsky-Peyraud method (Ostrowsky and Peyraud 1982) is a method of
evaluating the partition function of the Helfrich model; as opposed to the free energy
minimisation method due to Helfrich, discussed in section 5.2. This means that the
Ostrowsky-Peyraud method treats vesicles as statistical mechanical objects, subject to
the associated thermal fluctuations, whereas in the Helfrich method they are being
treated as ordinary mechanical objects.

Ostrowsky and Peyraud investigated the partition function for isolated two
dimensional vesicles, a two dimensional vesicle being defined as a differentiable self-
avoiding loop. Whereas Ostrowsky and Peyraud looked at vesicles of a fixed size
Barker and Grimson (Barker and Grimson 1987) looked at vesicles of a variety of
sizes. In contrast here I perform a complete scaling analysis, systematically looking
at vesicles of various sizes, following Leibler et al.

Ostrowsky and Peyraud introduced the method of parameterising the two
dimensional vesicles required to evaluate the partition function and other ensemble
parameters of interest. The parameterisation they introduced is a g-space method and
has the advantage that the entropy of the vesicles is correctly accounted for provided
the vesicles are chosen from the ensemble in the correct manner. So far it has not
proved possible to generalise the method to three dimensions due to the difficulty of
parameterising differentiable closed surfaces with well defined entropic character.

In the following subsections I outline the method of Ostrowsky and Peyraud
detailing some of the modifications and extensions made to it by Barker and Grimson

and myself. Then in the next section I present an analysis of the results obtained.

5.4.1 The Partition Function

Since the vesicle ensemble is an ensemble of curves then the various properties
of interest such as the Partition Function Z depend on a functional integration; that is
to say we have to integrate/sum over functions (curves) as opposed to summing over
variables. In fact it can be shown that summing over curves is equivalent to summing
over an infinite set of variables. In practice we sum only over a finite range of
variables; that is, the functional integral is reduced to a finite dimensional integral.

Nevertheless strictly one can write
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kT
Z = e "Dy (5.4.1;1)
b4

where YV is the ensemble of all differentiable self-avoiding vesicles, y is a function
identifying any particular curve and the D in the Dy emphasises the functional nature
of the integration. E[y] is the energy of the vesicle and the square brackets emphasise
again that the energy is a functional, i.e. it depends on the curve function .

Also ensemble average parameters such as the ensemble average area, <A>, are
given by expressions such as

-Ely]
AL¥D) = - [Alvle "Dy (5.4.152)
k4

Further one can write down the probability distribution function of ensemble
parameters such as the loop area, A, as

~Efy]
kT

1
P(A) - £ S(A[¥]-Ale " Dy (5.4.1:3)

5.4.2. Parameterisation Of The Vesicle Ensemble

I have already indicated, in chapter three, that a curve can be parameterised in
terms of its curve-length, s. The normal angle, y, of such a curve is therefore a
function of the curve-length, i.e. y=y(s). In fact y(s) is all we need to know in order
to calculate any property of the curve; that is to say y(s) defines the curve. For
instance the trajectory (x,(s),y,(s)) of a curve y can be calculated using

s

XW(S) = fCOS(llI(t))dt (542,1)
0

and

s

Y8 = [sin(¥©)d. (5.4.2;2)

]
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The subscripts denote the functional dependence of x and y on y. Also the

local curvature is just
'}
os | (5.4.2;3)

This expression is not an approximation; it is the exact expression for the

9 =

curvature of the vesicle.

L _F
—
s=0
_ oy
Figure 5.5
Ostrowsky-Peyraud parameterisation of a

vesicle.

We can write y(s) the normal angle function in terms of a Fourier series plus

a linear term. i.e.

27s ~ 2712115\ . (2nns
s)= + A+ E A cos +B s
W( ) L 0 ~ n ( L ) o m( L ) (542,4)

The linear term on the right hand side is incorporated because for a vesicle

y(stL)=y(s)+2n. Soitis w(s)-2ns/L which is periodic and as such can be represented

as a Fourier series.

5.4.3. Restrictions On The Parameterisation

Clearly it is impossible in any numerical scheme using this representation for

y(s) to perform such a sum to the limit. In practice there has to be an upper bound to
the summation. This corresponds physically to a high frequency/short wavelength
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cutoff in the representation. If the upper bound to the summation is M then the

shortest wavelength for variation of the tangent of the curve is then a = L/M and

q;(s)=~2—7—t-—s- + A+ %A cOs 27ns + B si 27ns
L 0 » L " L (5.4.3;1)

n=1

We follow Ostrowsky and Peyraud and arbitrarily set a = 2n /5 so that
L =2nM/5. In other words a vesicle of length 2n has 5 associated fourier

amplitudes, a vesicle of length 4% has 10 and so on. It can be seen that this short
wavelength cutoff, a, represents a microscopic cutoff length scale. However when 1,=x,
the rigidity length scale, is greater than a then it is 1, and not a which is the effective
cutoff length. The quantity a has not been varied in the simulations and is only
included for completeness in the calculations.

There is a removable degeneracy in the representation as it stands. One can
restrict the parameterisation so that the tangent at the starting position is horizontal i.e.

y(0)=0. One can impose this restriction by choosing A, s.t.

M
AOZ‘Z«: A (5.4.3:2)
Barker and Grimson (1987) pointed out that there is a further removable
degeneracy in the representation as it stands. The origin of the degeneracy is reflective
symmetry of the ensemble; every vesicle configuration has a reflectional conjugate.
The degeneracy can be removed by fixing one of the amplitudes.
A vesicle is a closed loop. So far the parameterisation of the tangent function
is not restricted to closed loops. The required constraints are
x,0=x,@L) ad vy, (O)=y,@) (5.4.3;3)
Clearly there is no simple analytical restriction one can place upon {A,B;} to

satisfy this constraint. However having chosen a set {A,B;,} one can perform an
iterative transformation to a new set, {Ai,ﬁi'} say, which do satisfy the constraint. In
fact with two constraints one only needs to constrain two of the variables, i.e
{ApB1}"{A1,B1} say. Making this transformation to satisfy the closure constraint

introduces a non-trivial transformation Jacobian, J say, into the partition function from

the relation
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dA dB,
4By = ———— 3-
- J(A,B) (5.4.3;4)

A discussion of the nature of the iterative transformation and the detailed form
of the Jacobian arising is contained in section 5.4.4 following.

There is one further restriction not yet encompassed in the parameterisation as
it stands; self-avoidance. Having constructed a smooth closed loop, one has to
determine whether it crosses itself, since vesicles are self avoiding. This is accom-
plished by evaluating the approximate trajectory of the loop, by integration. The
trajectory is approximated by a series of line segments. Crossovers are detected by
intersections of the line segments. The self crossing vesicles are eliminated from the
integral by means of the crossover function 6 which is defined as

1 : loop does not cross itself

0 = : .

0 : loop does cross itself (5.4.3;5)

At this stage the partition function can be written:

CEQABY o
kBT dAldBl

— L _LT] dAdB, 5.4.316
s Bl (54.3:6)

Z = [0({AB)) e
k4

5.4.4. Iterative Closure Of A Configuration

It is convenient to infroduce some new notation to describe the closure
condition, which will illustrate the more general nature of the problem. Let

R, =x,) and R, =x/D) (5.4.4;1)
so that in fact

L M
2ns 27ns . {2nns
R.(A.,B,)) = [cos + A+ A _cos + B si ds .
1(ALBY) f (L 0 n§=; n ( 3 ) n'{ L )] (5.4.4;2)

0

L M
. | 2ms 2nns . {27ns
R,(A,,B). = { S| ==+ Ag EABCOS( T ) * anm{ L ))ds (5.4.4;3)

Also let
(5.4.4:4)
B) (5.4.4;5)

=
7
i

A=(A
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Then the closure condition is just

R@A) =0 (5.4.4;6)

From the closure condition (5.4.4;6) it is clear that closing the vesicle is
equivalent to finding the roots of a two-dimensional system of non-linear (in {A,B,})

equations. One standard method of solving this problem numerically is to use the

Newton-Raphson method (see Press er al 1986). The method is iterative. That is one

starts with an initial "guess" solution, A0 say, which is operated on to get an improved

solution, Ax say. The improved solution is in turn operated on, and so on. The

iteration is based on the formula

A=A -TA DRA )

(5.4.4;,7)
where J "I(An_l) is the inverse of the Jacobian matrix defined by
[0R, OR|]
JA, dB,
JA) =
(4) oR, OR, (5.4.4;8)
A, B,

There are two methods of evaluating the elements of the Jacobian matrix.

Perhaps the simplest is to use the numerical approximation

R, B8R, RyA) - R(A-8A.)

8Aj (?)Aj AJ. - 6Aj (5.4.4;,9)

Alternatively one can differentiate (5.4.4;2) and (5.4.4;3) to obtain integral

expressions for the elements, which can be evaluated numerically. For instance

R, 1L g7 M
——=—-——— [cos|§+A,-A, +A cos(5) B sin(®) + Y (A cos(nS) +B, sin(ns)-A

o) |45
O0A, 2m 0AY =

where | have introduced the transformation § = 2ms/LL for convenience and the

degeneracy constraint (5.4.3;2) has been included explicitly. On diffentiation this

yields
< 5.4.4:10)
&R, L’ /ot A (
— 1 - = a-
A 2n { (1-cos(8))sin(y(8))ds
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In the following work I chose the latter method following the original authors;
although a brief investigation showed the methods to be consistent. The iteration is

repeated until

RA Y <e
(5.4.4;11)

where in the work presented I have, arbitrarily, taken € = L/1000.

Then the curve is approximately closed for the transformed parameters

(A1=1§1) =An. The Jacobian required for the calculation of the partition function in

(5.4.3;6) is the determinant of the Jacobian matrix, det(J (An)), defined in (5.4.4;8); the

computation of which for this 2x2 system is straightforward.

5.4.5. Energy Of A Configuration

The energy of a vesicle configuration due to the curvature elasticity of the
Helfrich Hamiltonian is just:
2 M

. = %f%;:;)“ 1+ n§<(mAm)2 + (mB,,)’) (5.4.5;1)

this can easily be shown by integration and using the orthogonality relations of sin/cos
series.

The energy of a vesicle due to an osmotic pressure difference between the
~interior and exterior of the vesicle is just:

E, = ApA (5.4.5:2)
where Ap is the osmotic pressure difference and A the area of the vesicle; for which

there is no simple analytic expression, but which can be evaluated from 0 using:

2%

A = f sin(y(s)) [ cos(y (1)) dtds (5.4.5;3)
Q

0

5.4.6. Choosing The Amplitudes

Now to evaluate the partition function (5.4.3;6) or any many other average

parameter for the ensemble requires one to perform a multi-dimensional integral.

Since in general the dimensions of the space are likely to be too numerous for the
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complete space to be explored one has to adopt a technique that allows one to sample

the space. The scheme adopted by Ostrowsky and Peyraud revolved around sampling

the configurations in the transformed configuration space {iA;,iB;} i=2.M. It can

be shown that transforming from the original space, { A,,B;} 1=2.M, to the transform-

ed space only introduces a constant Jacobian into the partition function. Consequently,
the value of ensemble average parameters is not affected since average parameters only
depend on ratios of the partition integral.

The advantage of sampling in the transformed space becomes apparent when
one considers the bending energy of a configuration (5.4.5;1). The bending energy of

a configuration is simply related to the norm of the sampling space. If one defines the

sampling vector, X, by

X = (iA,,iBy | i=1.M (5.4.6;1)
then it is clear that the bending energy of a configuration is simply
E = 1+X? (5.4.6;2)

[
Now it becomes clear that for ensembles with a non-zero curvature elasticity

then one can restrict oneself to sampling from a sphere of given radius, X_,, say, since
by choosing the sphere sufficiently large one can be sure that the exterior configur-
ations are unimportant on energetic grounds. Ostrowsky and Peyraud developed a
scheme for estimating how large the sphere, X .., needed to be to guarantee an upper
bound for errors. Then to evaluate the integral they sampled the enclosed space evenly.
They noted that many of the configurations outside (and some inside) the sphere of
integration were crossing contributions and so had no contribution to the integral
‘(section 5.4.3). This acted to reduce the error incurred due to the restricted sampling.

In my work I have departed from this scheme for two reasons. Firstly as the
curvature of the membrane is reduced, k-0, the radius of the sphere tends to infinity,
X pax— - Consequently ensembles with vanishing surface tension cannot be adequately

sampled using the method of Ostrowsky and Peyraud. Secondly, as I suspected, the
method proved to be somewhat inefficient of computational resources.
I have systematically investigated the configuration space. An important

discovery was that the space was star shaped. By this I mean that choosing a
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direction, X, from the origin and moving outward along the direction from the origin

one encounters at a distance, X__, a point beyond which all the configurations are self-

cut?
crossing. Since self-crossing configurations do not contribute to the integrals then all

2
cut

configurations, X, such that X?> > X2 can be ignored. The star shaped property refers

to the fact that the non-crossing configurations do not appear to re-enter the space

beyond the cutoff value, X__, in any given direction.

cut?
The partition function can be manipulated into a form that can take advantage

of this star shaped property. Consider the following

dX - X™M14Xda (5.4.6;3)
This relation is just a generalisation of the familiar two-dimensional cartesian

to polar transformation (dxdy = rdrd®). In this relation the 2(M-1) dimensional

integral is transformed into a one dimensional integral along a direction, X, and over

a 2M-1 dimensional angle. Incorporating this into the partition function one arrives at

_E(@,X)
Z = [[X™M10@@X)I(@,X) e ' dXda (5.4.6:4)
By using the star shaped property this transforms to
Xcm(u) _E(e,X)
Z = f f XMIpa,X)le ST dXda (5.4.6;5)
X=0

where X () is the cutoff value function.

To evaluate this integral by a Monte Carlo Sampling technique (not to be

confused with the Monte Carlo simulation algorithm of Metropolis et a/) one chooses
random directions (a = X) in the sampling space. For each direction one determines

the value of the cutoff function, X_ (&), by means of a binary search (Press et al

cut
1986). In practice I found that 2.4 < X_ («) < 2M was a suitable interval for the
binary search. Having determined the value of the cutoff function the contribution of
each direction to the integral is evaluated by performing the radial integration on

(0,X_.(a)) as indicated by (5.4.6;5).

cut
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I found that a few thousand random directions in the configuration space were

sufficient to yield parameters with sufficiently small errors. The precise number of

directions depended on the value of the physical control parameters; x, Ap, etc.

5.4.7. Vesicle Attributes Of Interest

It has already been stated that it is now possible to evaluate ensemble average
attributes for vesicles. What attributes are interesting? Some obvious examples are the
average area, <A>, and radius of gyration <R;>. In fact there are some other equally

interesting attributes which I shall be looking at.

5.5. Analysis Of Results From Ostrowsky-Peyraud Method

In this section I present results obtained using the Ostrowsky-Peyraud method,
analyzed using the scaling analysis methods of Leibler et al (1987). The presentation

is arranged so that the discussion of each different regime is separate.

5.5.1. The Floppy-Flaccid Regime

In this section we consider an isolated vesicle subject only to the entropic forces
arising from the self-avoidance, fixed contour length and fixed microscopic bending
length.

Now in chapter four I presented the well known scaling relation for a random
self-avoiding walk. Leibler et al (1987) remarked that for a floppy vesicle with one
would expect a similar relation to hold. In fact one might expect the same relation to
hold, albeit with a different prefactor. In figure 5.6 log(<Rg>) is plotted against
log(M). The graph is clearly linear on this scale and a linear regression analysis of the
points plotted yields an estimate of the scaling exponent: v=0.7510%16 (c.f. Leibler et
al 1987 0.760). This result is consistent with the hypothesis that v=0.75.

The next question arising is whether the enclosed area of the vesicle scales in
the same way as the radius of gyration with the same exponent; i.e. does

(A) = A, M Moo

(5.5.1;1)
with v=v,. In figure 5.7 log(<A>) is plotted against log(M). Again the graph is

clearly linear on this scale and a linear regression analysis yields an estimate of the
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Figure 5.6
2
Graph of logo(<Rg >) against log,,(M). The straight line is obtained from

a linear regression analysis of the points.
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Graph of log;o(<A>) against log;o(M). The straight line is obtained from

a linear regression analysis of the points.
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areal scaling exponent: v,=0.7514+20 (c.f. Leibler ef al (1987) 0.755+0.018). Hence
v,/v=1.001%1 (c.f. Leibler er al (1987) v/v,=1.007£0.013) confirming the hypothesis
that v=v,. In fact the result has now been proved analytically by Duplantier (1990).

Since the scaling exponents for the enclosed area and the radius of gyration are
the same one should expect, as Leibler et al (1987) and Family er al (1985) anticipated,
that the ratio of the radius of gyration to the enclosed area converges to some non-zero
universal value, as M-—»c0.

The function IT is defined as the ratio of the ensemble average enclosed area
to the ensemble average radius of gyration; i.e.

1o A

<Rg> : (5.5.1;2)

So as M~»co,

AMTA A
H — =

Rﬂzsz R02 (5.5.1;2)
The value of this ratio is characteristic of the average shape of the ensemble.

For instance if the ensemble were made of only circular vesicles of radius R,; then one

would obtain

2
TR,
I=——=mn 2
2 (5.5.1;3)
Rq
Similarly if the ensemble were rectangular of sides a,b; then one would obtain
o= ab _ 2
Yoab? + Ysba?  (a+b) (5.5.1;4)

which for the special case of a square ensemble is clearly 1/a.

In figure 5.8 I have plotted the function IT against M for k=0. The figure shows
a rapid convergence to a stable value, of around 2.393%2, which I take for an estimate
of the asymptotic value (indicated by the horizontal line) followed by more erratically
varying values. This value compares to the values obtained by Fisher (1989) using the
model of Leibler et al (1987) in their bead simulations and by Family ef a/ in their

lattice animal model. The values of the function for larger vesicle ensembles (i.e.
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larger M) are subject to a greater inaccuracy. This inaccuracy proved to be irremov-
able from the data, but see appendix I for further details.
Now rather than defining the function IT as in (5.5.1;2) we could have defined

it in the following manner:

"l
RS (5.5.1;5)

which would seem to be a more natural definition of the average shape of an ensemble
(Family et al 1985).
In figure 5.9 I have plotted the value of the function II for k=0 is plotted

against M, in the same manner as figure 5.8. Not surprisingly figure 5.8 mirrors the
behaviour of figure 5.9. However the asymptotic value for figure 5.9 is 2.384+9. This
compares to the values, 2.52+4 and 2.55+5 obtained by Camacho and Fisher (1990)
using the models of Leibler et a/ (1987) and Family et al (1985), respectively.

74



<A>/<Rg >

II=

3.0

2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.0

1.9

H‘IIHlIII][T:HiiH[iHHIHH{IIH:HH,IHL
- | | ]
L + _
T e
: + :
N + _
o + ]
s e bbb
Sl e b b o
1 2 3 4 5 6 7 8 9 10 11
M
Figure 5.8

2
Graph of the shape parameter I'T = <A>/<R; > against M. The

horizontal line represents the assymptotic value.
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Another, quite different, quantity that also reflects the nature of the average
shape of the ensemble is the anisotropy, X, which is defined as follows:

L = <R612>/ <RG22>

(5.5.1:6)

where R;,? and Rg,? are the larger and smaller eigenvalues of the radius of gyration
tensor, respectively.

For an ensemble of circles of radius R, then clearly Rj;*=Rg,’=R,* and
consequently ¥=1. For the more interesting case of an ensemble of ellipses of major
axis a and minor axis b one finds that R, 2ca’ and Rg,’«ch?, so that consequently

a2

» = 4
b2 v (5.5.1;7)

which is consistent with the result for an ensemble of circles (a=b).

Once again one expects a universal value for ¥ when x=0 in the limit as M—co.
So in figure 5.10 I have plotted the function X for k=0 against M, in the same way
that I plotted IT in figures 5.8 and 5.9. Although the numerical value of the asymptotic
value is different, of course, the qualitative behaviour of the graph is, as one would
hope, similar; the results rapidly converge to the asymptotic value, then vary somewhat
erratically. The asymptotic value, indicated in the graph by the horizontal line, is
0.378+2, which compares with the result, 0.393+15, of Camacho and Fisher (1990)
obtained using the LSF model and the result 0.405+9 obtained using the lattice animal
model (Bishop and Saltiel 1989).

Oof course.on could have defined X in the following alternative way:

z = <R612/R022>

(5.5.1;8)

taking the average over the ratio rather than the ratio of the averages, just as we did

for I1.

In figure 5.11 I have plotted the value of the function % for x=0 is plotted

against M, in the same manner as figure 5.10. Not surprisingly figure 5.11 closely
resembles figure 5.10. However the asymptotic value for figure 5.12 is 0.41414.
Camacho and Fisher (1990) have by comparison obtained the value 0.425+15 using the
LSF model.
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For completeness I have studied the behaviour of one further shape sensitive

parameter, the so called asphericity, A. It, like T and Z, is defined in terms of the

eigenvalues of the radius of gyration tensor:

2 2\2

A = (RGl _RGZ)

2 2\2 (5.5.1;9)
(RGI +Rc;2)

Once again expecting a universal value of A for x=0 in the limit of M—c0, I
have plotted the function A against M in figure 5.12. The graph would seem to
indicate an asymptotic value of 0.269+6. The results for higher M seem to be
consistent but I assume this to be an anomaly, since their accuracy is of the order 10%

only, and so have ignored higher values in making this estimate. This compares with

the result, 0.215£10 obtained by Camacho and Fisher (1990) using the LSF model.
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5.5.2. The Rigid Regime and the Rigid to Floppy Transition

In the preceding section we considered floppy-flaccid vesicles not subject to any
internal or external forces, except the entropic forces due to self-avoidance, microscopic
cutoff length and fixed contour length. In this section I subject the vesicle to an
internal bending rigidity by introducing the Helfrich model Hamiltonian to the
ensemble as outlined in section 5.4.5.

Clearly in the limit of k—0 the loop is floppy; that is the bending rigidity is
negligible and the floppy-flaccid behaviour is recovered. On the other hand for a loop
of a given length (i.e. given M) then in the limit of k—>co then the loop is rigid and
consequently circular. However for any fixed k then as M—o we find that the loop
crosses over from its rigid circular shape back to the floppy fractal shape; indicating
that rigidity effects are finite size effects.

So there ié a length, 1,, associated with the bending rigidity that characterises the
nature of the vesicle, called the rigidity length. In fact | =x.

Having defined the rigidity length one can describe the floppy and rigid regimes
more clearly. For instance if the rigidity length, 1, is less than the microscopic length,
a, then clearly the rigidity effect will be negligible and the vesicles will floppy. On the
other hand if the rigidity length, 1, is larger than the contour length, L, then clearly the
rigidity effect will be dominant and vesicles will be rigid and circular, unable to

support thermal fluctuations. i.e.

I, <a : floppy regime.
L >L : rigid regime. (5.5.2;1)
Alternatively, if one defines the dimensionless variable x by
L
y = —
Lo (5.5.2;2)

then one can rewrite the inequalities as:

L .
y > — :floppy regime

a (5.5.2;3)
y<1 :rigid regime

Now the advantage of defining this scaling variable becomes evident if we plot

the various ensemble quantities against y. For y<l we are in the rigid regime where
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vesicles are on average circular. We know that the area and radius of gyration of an
ensemble of circles scales with scaling exponents v=v,=1; i.e.

(A) = M2 (5.5.2:4)

(R3) =

(5.5.2;5)

So we should expect that if we plot <A>/M? and <R,*>/M? against y then for
y<l, at least, the plots should be universal (Fisher 1989). On the other for y>1 then
the universality should disappear gradually as y increases since for y>L/a the vesicles
are floppy and one expects the scaling exponent to be near 0.75, at least for the larger
vesicles.

I have plotted <A>/M? and <R,*>/M? against y in the graphs in figures 5.13 and
5.14. The predicted behaviour is followed. In the graphs I have elected to distinguish
between data points on the basis of which size vesicle they were obtained from.
Smaller vesicles transform to floppy vesicles at Jower values of y since the transition
to floppiness occurs at about L/a which is, of course, lower for smaller vesicles. The
graphs clearly show this behaviour with the smaller vesicle symbols breaking away
from the main universal curve in sequence. Fisher (1989) predicted such behaviour and

Camacho et al (1991) have recently published the analogous curves for the bead model.
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One can show more explicitly the transition from floppy to rigid vesicles if one
plots what one could call the running or effective scaling exponents v.; and v, 4

defined by:

, . 1diog{Rs)
5 dlogl) (5.5.2:6)
v - LdlogA)
A2 dlog(y) » (5.5.2,7)

In the floppy regime, y>L/a (—>) then clearly these effective exponents will
take on a value around 0.75, particularly for reasonably sized vesicles, where finite size
effects are less important. On the other hand in the rigid regime, as y<l (—0) then
these effective exponents should approach the value 1.

In figures 5.15 and 5.16 I have plotted these effective scaling exponents against
the scaling variable log(y). The graphs indicate that both scaling exponents do indeed
—1 as y—>0. Moreover the graph for the areal exponent seems to flatten at the high
y region at a value of around 0.75. The graph of the radius of gyration on the other
hand is less supportive in the high y region. However it would seem that the radius
of gyration exponent descends somewhat later than that of the areal exponent, and since
the enlarged y values are subject to greater error one can not properly infer anything
about this. |

One should note that in figures 5.15 and 5.16 the data are anomalously
universal. That is, they are universal for anomalously large values of y. Why this is

the case I cannot say.
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One can also plot other vesicle properties to observe the transition from rigid
to floppy regimes. These properties are more closely associated to the average

geometrical shape of vesicles in the ensemble than the scaling exponents are.

In figures 5.17 and 5.18 I have plotted the shape functions IT and II. Both

curves are reasonably well behaved. Again the functions seem to be anomalously

universal, like the effective scaling exponents.

In figures 5.19 and 5.20 I have plotted the anisotropy functions T and %. Both

curves behave similarly. Unexpectedly both curves exhibit a minimum turning point.
The results of Camacho et al (1991) also seem to exhibit this turning point, although

the effect is apparently less marked in their data.

In figure 5.21 I have plotted for completeness the asphericity function A. The

curve clearly has a maximum turning point.
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5.5.3. The Deflated and Inflated Regimes

In section 5.5.1. I considered floppy-flaccid vesicles. Then in section 5.5.2, the
previous section, I considered rigidity and the transition from floppy to rigid vesicles.
One saw, as foretold by Leibler et al, that rigidity effects were finite size effects that
could always be eliminated by sufficiently increasing the contour length, L, of the
vesicles. In this section I apply an osmotic pressure difference to the vesicle by
introducing the pressure term, detailed in section 5.4.5, to the Hamiltonian. It will
become evident that the osmotic pressure effect unlike the rigidity effect is not a finite
size effect.

Following the work of Leibler et al (1987) one would expect the floppy-flaccid
scaling laws to be altered according to

(R5) = MPX(APM®)

(5.5.3;1)

(A) = MPY(ApM®) (5.5.3;2)
where one expects the crossover exponent $=2. Writing x=ApM?' then for the scaling

functions one can write:

R2
X(x) = Mf> (5.5.33)
Y(x) = @

M2 (5.5.3;4)

I have plotted the log of the scaling function X(x) against log(|x|) in figures
5.22. Comparison with the graphs presented by Leibler et al (1987) appears, at least,
qualitatively good.

For values of log(|x|) greater than about 0.5 the graphs split into two branches;
one rising, one falling. The falling branch is from vesicles being compressed under the
action of a positive osmotic pressure difference, Ap, while conversely the rising branch
is from vesicles being inflated by the action of a negative osmotic pressure difference,

Ap. Both branches appear to be asymptotically linear, albeit with different gradients.
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5.5.4. The Nematic Ordering Field Regime

So far I have considered isolated vesicles in free, rigid and pressurised regimes.
I now wish to consider the effect that a nematic ordering field induces; a nematic
ordering field is a field that tends to align objects to point in a given direction.
Although the nematic ordering potential that I introduce is itself only a hypothetical
potential, it is expected that the effect of a shear flow on an isolated vesicle could be
very similar. Since vesicular objects are often subject to shear flow regimes the interest
is clear.

The actual form of the nematic ordering potential is

2n
EN = fCOS(zll](S))dS ) . (554’1)
0
The magnitude of the field is controllable through the parameter V. The
ordering nature of the field is embodied in the cos(2y(s)) component.
A parameter that should vary interestingly according to the value of V is the

nematic anisotropy (this is my own naming convention), £°, defined by:

(Row)

it o= <Réyy>

(5.5.4;2)

where R;,” and RGy2 are the x and y axial components of the radius of gyration tensor.

In figure 5.25 I have plotted the nematic anisotropy against the nematic filed
strength V for various vesicle sizes. The curves seem loosely universal, although the
accuracy of the results makes a stringent assertion of universality impossible.

In the absence of the nematic ordering field the nematic anisotropy is
approximately one. This is because in the absence of the nematic ordering field the
vesicle configuration is isotropically ordered; that is it is equally likely to be displaced
in any direction. In particular that means that the xx and yy components of the radius
of gyration tensor are equal leading to a value of one for the nematic anisotropy.

As the nematic ordering field is applied the nematic anisotropy rapidly falls;
indicating that the vesicles are ordering along the y-axis in preference to the x-axis.
As the field is increased further the anisotropy begins to flatten out. The anisotropy

does not continue to fall rapidly to zero, as one might expect a priori. The reason for
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this unexpected behaviour is not clear. However, one plausible explanation is that the
effect is due to the hard-core self-avoidance property of the vesicles. As the vesicle
ensemble nematically orders initially the vesicles walls do not interfere apart from their
intrinsic self-avoidance. Hence the initial fall in anisotropy is rapid. As the anisotropy
continues to fall and the vesicles order along the y axis the vesicle walls are effectively
drawn together. Neglecting the ends of the vesicle, it is as if one is forcing two
undulating membranes on top of one another. The independent undulations of the
membranes have to be overcome to continue to force the sides together. Thus
membrane self avoidance could be the source of the flattening anisotropy. One way of
testing this hypothesis would to be to consider ensembles where the self-avoidance
property has been switched off. Such an experiment is well within the scope of this

model, although I have not completed such an experiment at this stage.

5.6. Conclusions

I have investigated the properties of a model of two dimensional vesicles. The
vesicle consists of a closed membrane subject to a bending rigidity modulus, and extra
terms which couple to the area inside it and the orientation of the local curve perimeter.
The model is the continuum version of a bead (Leibler et al 1987) model whose
properties were investigated by other authors (Fisher 1989, Camacho er al 1990, 1991,
Maggs and Leibler 1990, Maggs et al 1990) using the Metropolis Monte Carlo method.
I have used a method essentially due to Ostrowsky and Peyraud (1985) in order to carry
out the functional integrals necessary in order to obtain average quantities for the
Helfrich model. I have found that the method is rather more versatile than the authors
had originally anticipated; in particular I have been able to verify scaling laws, first
found in the bead simulations, for the behaviour of the vesicle as a function of the
various control parameters. I have extended this scaling analysis to look at the effect
of the imposition of an external nematic orienting field. The work presented in this
chapter forms the basis of a recent publication [Norman er al 1992].

Finally, despite the encouraging results obtained in this work I am not optimistic
about using an analogue of this method to investigate vesicles embedded in three
dimensional space. In two dimensions the differential geometry is trivial; in three

dimensions, however, difficulties emerge which I am not able to overcome at this stage.
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CHAPTER SIX

MEMBRANES AND INTERFACES CONFINED BETWEEN PARALLEL

WALLS

6.1. Introduction

Up until this point in this thesis I have dealt with membrane structures. In this
chapter I use a model originally used for investigating interfaces and adapt it for
studying membranes as well. The differences between membranes and interfaces are
sufficiently few to allow this; the similarity being that both membranes and interfaces
in d dimensions are (d-1) dimensional objects.

In many physical situations it is of interest to study a membrane or interface in
the gap between two walls (Parry 1992¢, Gompper and Kroll 1991) or the physically
similar problem of a membrane adsorbed onto a single wall by a binding potential
(Parry 1992a-b, Maggs et al 1989, Maggs and Leibler 1990). The presence of the
walls affects the statistical mechanics of the surface (I will use the term surface as a
generic term to describe both interface and membrane in two, three or d-dimensional
space), entropically, by eliminating many of the possible orientations through the
exclusivity of the walls.

Initially I will discuss a model of interfaces called the Solid on Solid (SOS)

model (Leamy et al 1975). We shall see that this model of interfaces restricts the

available geometry of the interface somewhat. The probability density functions (pdfs)

for an interface or membrane confined between a wall will be defined. I will discuss
some analytical arguments which lead to a universal form for the pdf of confined two
dimensional interfaces. A discussion of a more generic argument, that allows us to
postulate a universal form for the pdf of two dimensional SOS membranes, follows.
Next I present an investigation of the two dimensional SOS interface by Monte
Carlo Simulation. I will show that the results are consistent with the analytical work
already discussed. This establishes, for us, the credentials of the Monte Carlo
simulation method for investigating the universal behaviour of pdfs. I then present the

results of a similar Monte Carlo investigation of the two dimensional SOS membrane.
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I shall show that the results of the simulations affirm, with certain reservations, the
universal form for the pdfs postulated in the earlier analytical work.

Having investigated these two dimensional interface and membrane models it
would clearly be of interest if one could make similar progress with the analogous three
dimensional models. Unfortunately, it has not proved possible to make any substantial
progress analytically on three dimensional SOS problem. To make any progress in the
literature authors have had to make very severe additional restrictions to the SOS model
(Leamy et a/ 1975). Conversely the generalisation of the two dimensional simulations
to three dimensions is not difficult conceptually. So following the two dimenéional
work I present the results of numerical simulations of the three dimensional SOS
interface and membrane models. The absence of a clear theoretical framework for the
three dimensional problems has dictated that I use the theoretical framework of the two
dimensional problem to analyze the results. Unfortunately for three dimensions
computational problems arise (namely that the number of computations required to
obtain universality is too large) which limit the scope of this investigation. Neverthe-
less I was able to observe universal behaviour for the SOS model of a membrane in
three dimensions. The corresponding interface showed no signs of universality.

The SOS model of interfaces and membranes is intrinsically restrictive of the
membrane geometry only allowing certain types of fluctuations. It is not clear a priori
whether these fluctuations are sufficient to model real systems adequately. Recall that
a membrane in two dimensions can be considered isomorphic to a polymer in two

dimensions (as pointed out in chapter 4). So naturally it is of interest to consider

whether the results from a polymer type model for the membrane differ from the SOS

model already investigated.

In order to investigate this problem more carefully I use a bead chain model
based on the bead chain model of a polymer to investigate the membrane in two
dimensions. The analogous model for vesicles has already been discussed in section
5.3. We shall see that the extra degrees of freedom of the membrane introduce an
asymmetry to the membrane and consequently periodicity of the membrane is
irretrievably lost. Despite the extra degrees of freedom in the problem and the lack of
periodicity I have been able to observe universal behaviour in the pdf through a

detailed scaling analysis.
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Finally, I present a brief summary and comparison of the salient results obtained

from the preceding work before concluding the chapter.

6.2 Parameterisation Of The Solid On Solid Model
The Solid- On Solid (SOS) (Leamy et al 1975) model is a model of a "well

behaved" interface. The parameterisation of the model is illustrated in figure 6.1.

Figure 6.1
Parameterisation of the SOS model.

The surface is represented by a series of heights above one of the walls spaced
equidistantly along the lengths of the walls as in the illustration. The model as
presented is therefore inherently a lattice model in the plane of the walls. The heights
however can be on or off lattice; in which case I shall call the model lattice or
continuum respectively. Although, as already pointed out above, strictly speaking all
SOS models are lattice models in the plane of the walls.

It should also be observed that for this model of surfaces that the height
function is implicitly single valued; so that overhangs (dashed line), droplets (dotted
line) and self-avoidance effects are implicitly ignored. These geometrical restrictions,
which the model imposes on the surface ensemble, on the one hand permit progress on
the analytical problem and on the other hand impair its applicability to real physical
systems. Hence the model is inappropriate for vanishing surface tension and curvature

elasticity regimes where overhangs, droplets and self-avoidance effects predominate.
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It can be seen, particularly in the lattice model case, that the interface can be
viewed as a special case of an Ising Model (Huang 1987). It partitions the model,
according to the restrictions above, into two separate spin-up spin-down regions. In
fact the SOS model represents a particular limit of the more general Ising Model

problem tackled elsewhere (e.g. see Abrahams 1980, Beijeren 1977).

6.3 Classification of Interface and Membrane

In general interfaces have a Hamiltonian in which the surface tension (/ine
tension for an interface in two dimensions) term is dominant whilst for membranes as
we have seen it is the curvature term that dominates. Note that under this classification
a bubble of soap is classified as an interface structure whilst a liposome is a membrane
structure (Clearly under a different scheme of classification a bubble of soap might
logically be regarded as a membrane structure rather the interface structure implied by
this classification). The parameterisation of the SOS model presented in section 6.2
is the same for interface and membrane. To model the interface we use a surface
tension Hamiltonian, only changing the Hamiltonian to a Helfrich curvature
Hamiltonian to model a membrane.

The Hamiltonian of a continuous 2d interface can be written as
1 % dnY?
H, = 50{(&) dx (6.3;1)

where h(x) is the continuous height above the lower wall function and o is the surface
tension elasticity. We have already seen that the SOS model is inherently on lattice in

the plane of the walls. In the discrete limit this reduces to

=9 - 2
o = 5 & (06 7 Bl (632

where a is the lattice spacing in the x-direction.
In contrast we have seen in section 3.5.1 that the Hamiltonian for a continuous
2d membrane is the familiar Helfrich Hamiltonian. We can write this in its nearly flat

nearly parallel (to x-axis) asymptotic form as

L 2
1
Hper = %/ (—) dz (6.3;3)
0
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where « is the Helfrich curvature elasticity. This reduces, in the discrete limit, to

N
- X - 2h
mem 2a E < 2hx > (63’4)
In addition these potentials were applied periodically so that
hy,, = h, (6.3;5)

This periodicity ensures symmetry within the interface and is the standard procedure

in simulations where one wants to look at long, length independent regimes.

6.4 The Probability Density Function (pdf)

Finally one can define more precisely the probability density function, P(z), for
such systems to be the probability of finding the surface between z and z+dz. More
formally, if P(z) (the probability distribution function) is the probability of finding the

surface in the vertical interval [0,z] then the pdf P(z) is that function which satisfies

P(z) = [P)dz (6.4;1)
0

Clearly this definition applies to the continuum model. For the lattice model

the surface can only be found at a one of the lattice points. For this model the
probability density function becomes a probability vector (pv);i.e P(z) ~ P,=P(z,). The
probability vector, P, is defined to be the probability of finding the surface at a lattice
point of height z;:

In practice when one wants to look at the pdf of the continuum model in

numerical implementations one is forced to make the discrete approximation:

_ P(i.32)-P((i+1).82)
dz (6.4;2)

P(z) - P

where i=[z/8z] (the brackets [] represent the truncation integerisation operation). Like
the probability vector for the lattice model this approximation of the pdf is a vector.
Effectively a background lattice is created to approximate the pdf.

It approximates the pdf in the sense that

P(z) = limit (P )

62/d-0 (6.4:3)
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The value of 8z is fixed by considerations of convergence and resolution of the
model. Clearly if 8z is too small in a particular simulation then the pdf approximation

will take too long to equilibrate. Conversely if 8z is chosen to be too large then the
pdf approximation will equilibriate more quickly, but will represent a rather poor
approximation to the continuous pdf. In practice for off-lattice model work that

follows I have arbitrarily chosen 8z=1, so that the off-lattice models should closely

follow the on-lattice models where the lattice spacing is similarly fixed by a=1. Later
in the chapter [ shall, for convenience, use the term pdf collectively to describe both
true probability density functions, approximate probability density functions and

probability vectors.

6.5 Universality And Conformal Invariance: A Generic Argument For

The Universal Form Of The Pdf

We have already covered some examples of universal behaviour in the
discussion of polymers (section 4.6) and in the later work on vesicles (section 5.5).
We have seen that often the properties of physical systems that initially seem to depend
on a large set of control parameters can be shown to depend more simply on
combinations of those parameters. The question arising here is whether universal
regimes exist in the present context and if so what are they? I shall reproduce here an
argument due to Parry (1992d) which uses conformal invariance (CI) to show that a
universal regime does in fact exist for the two dimensional interface and membrane.
Moreover, we shall see that, it is possible to obtain the universal form for the pdf in
that regime (Parry 1992d).

The conformal invariance argument is based on intuitive ideas rooted in the
renormalisation group theory (Ma 1985, Huang 1987). In the renormalisation group
theory one makes successive global bulk transformations on the physical system -
effectively magni'fying or reducing the system. Systems that exhibit "true" fractality
will seem qualitatively the same at all magnifications. Other physical systems will
change there nature at a length scale characteristic of the system. If one can relate this

characteristic length scale to the other control parameters then often the system can be
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described more concisely in terms of this characteristic length scale; that is the length
scale represents a universality of the regime.

The renormalisation group implies that if one makes small global scaling
transformations of the system below the characteristic length scale then effectively one
does not change physics of the system. One can imagine making small local scaling
transformations and would not expect it to affect the physics either. In fact the CI
argument goes one step further saying that if the physics of the system depends only
on the local angles then one should be able to make a transformation to the system that
preserves these local angles without affecting the physics. Transformations from the
plane to the plane that preserve the local angle are called conformal mappings
(Churchill and Brown 1989) and hence the term conformal invariance. The argument
is intuitive in that it seems reasonable although it has not been rigorously proven.

The usefulness of CI in the context of confined interfaces and membranes stems
from the fact that the physics of the membrane and interface is governed only by the
local angles. So the physics of the membrane and interface should not be affected by
a conformal mapping if the conformal invariance hypothesis is sound. The pdf case
for the open plane can be arrived at by the principle of scale invariance. Conveniently
there is a well known conformal mapping, the logarithmic map, that maps the open
plane into a narrow strip (Churchill and Brown 1989). The logarithmic map from the
(%,y) to the (u,v) -plane is

w = Lz

T (6.5;1)
where Z=x+iy and W=utiv. The factor ©/d ensures the strip has width d.

The pdf P(x,y) for the open plane interface and membrane is given by

P(y) = P(y) = y~* (6.5:2)
where ¢ is a constant depending on the model (interface, membrane, polymer, ... ).
This form of the pdf has the required properties of analycity and symmetry. Note
however that it cannot be properly normalised and is only a first order approximation

of the pdf.
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It can be shown using the fact that the pdf is an analytical function and the fact
that the logarithmic map is a conformal map that the pdf in the confined strip is related

to the pdf in the open plane by
Py) = W@ Py) = Wy

Expanding the mapping (6.5;1) into components one gets

u+iv = e% coS| IV + isi v
d d (6.5:4)

From which one can, by comparing imaginary parts, extract

(6.5:3)

nv

y = e ¢ sin| &Y
d (6.5;5)

Differentiating the mapping one gets

w/ - 4
7 In(Z) (6.5:6)
Expanding this
;. d _%u _i%

Wi=—e "e (6.5:7)

So that
_d g
W1 = P (6.5;8)

Finally substituting (6.5;5) and (6.5;8) into (6.5;3) and tidying up one can write

_ pey) = (el =)
Pl = PO - (nsm{ d )) (6.5:9)

This is a remarkable result. It tells us that the pdfs of a whole class of two dimension-
val membrane and interface type models reduce to a single universal form independent
of the physical control parameters o, x, etc. The pdf depends on the scale free relative
height of the membrane y/d and a universal exponent ¢ characteristic of the particular
model under consideration. It does not depend separately on the width of the strip.
Moreover the functional form of the pdf is universal, which is a very strong form of

universality.
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6.6 Analvtical Result For The 2d SOS Surface Tension Model pdf

The arguments presented in this section are due originally to Temperley (1951)
although this discussion is based in particular on the discusions contained in Burkhardt
(1981) and Chui and Weeks (1981). The arguments we shall see are based on transfer
function and transfer matrix methods not uncommon in statistical physics (e.g. for some
other examples of the application of transfer matrices see Huang 1987). Following
these arguments, it is possible to proceed analytically to find the form of the pdf of the
SOS interface in 2d. The partition function for the 2d SOS interface model is

z - fexp[-c,}(%)zdx

h(x) 0

Dh(x) (6.6;1)

This functional integral becomes the following sum

N
7 = Ze;p(—og(hi - hm)z) (6.6;2)

{h;}
as the domain h(x) is replaced by its SOS representation {h,}. It can be seen that this

can be re-written in the following way

N
Z = Y [ exp(-o(h; - b)) (6.6;3)

{h;} i=0

Now if we define the transfer function T(h,h’) by
ThhY = exp(-ofp - h/P) (6.6:4)
then using (6.6;3) and the periodicity constraint

h, = hy., (6.6;5)
it can be shown that the partition function can be written as the trace of the N’th power
of the transfer function, i.e.

The eigenvalues, A, and eigenfunctions, y, of the transfer function T are defined
by the equation -

Thh’). ¢ = Ay (6.6;7)

Let the largest eigenvalue and the associated eigenfunction be denoted A, and
W, respectively. Then it can be shown that the free energy in the limit N—co is given

by
A = -Nln(A,) (6.6;8)
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Also it can be shown that the pdf, P(h), is related to the eigenfunction
corresponding to the largest eigenvalue by

P(h) = cfir,(h)p (6.6;9)

where ¢ is a normalising constant fixed by the requirement on P(h) that
[ P®ydn = 1 (6.6:10)

which is the mathematical statement of the physical fact that the membrane has to lie
somewhere between the walls.

So far in this section we have considered the height function, h(x), to be a
continuous variable. If we consider h(x) to be restricted to a set of, say d, lattice
positions between the walls then the discussion remains valid, albeit that the transfer
function now becomes a transfer matrix and the eigenfunction becomes an eigenvector
as a result of the discretisation. Strictly speaking the pdf now becomes a probability
vector as it is now defined on the lattice points only. I shall continue the discussion
using the lattice SOS model, as this model is conceptually easier to solve and the
results can be shown to be valid in the continuum limit anyway.

To solve for the pv of the 2d SOS surface tension model analytically it is
necessary to diagonalise the transfer matrix. From the definition of the transfer
function, (6.6;4), it is evident that the matrix is a dxd matrix where d is the separation

of the walls. In fact the transfer matrix T has the form

1 e e -20 e -3¢ . . . e -(d-3)o e -({d-2)o e -(d-1)o ]
e ® 1 e ° e 20 e -(d-4)o e -(d-3)o e -(d-2)o
e -2¢ e ® 1 e ° e -(d-5)o e -(d-4)o e -(d-3)o
(6.6;11)
e -(d-3)o e -(d-4)c e -(d-5)o0 e 1 e e -20
e -(d-2)o e -(d-3)c e ~-(d-4)o e 20 e ® 1 e "
e —(d-1o e -(d-2)o e(—d—3)0 . . . e -30 e -20 e 1
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The diagonalisation of T as it stands is not a trivial matter. In order to simplify
the analysis a further restriction is often made to the model at this stage, whereby it is
considered that the difference in height between any two consecutive positions can be
no more that one unit. In the large o limit then clearly this does not affect the physics
as then larger jumps become energetically inaccessible in the ensemble anyway. The
model with this restriction is consequently called the Restricted Solid On Solid (RSOS)
model.

The effect of the restriction imposed on the RSOS model is to render the

transfer function tridiagonal. The transfer matrix for the RSOS model is

(6.6;12)

e 1
The eigenfunction, y,, can be found numerically by iteration (Press et al 1986).

An initial guess eigenvector \, , is normalised so that y?=1 and then fed into the iter-

ation
T. L

IIJm,i+1 = 5
T

(6.6;13)

looking at | W,y - Wy, | * to monitor the convergence of the result.

Once the eigenvector is found then the pv is easily obtained using (6.6;9). In
figure 6.2 I have plotted the results obtained numerically for several matrix dimensions
d. The dotted line is the graph of sin’(nz/d). It is clear that all the results of the

iteration lie upon this line. Consequently the pdf must have the latter form.
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Probability distribution plot for 2-dimensional lattice model of a membrane solved by transfer matrix; varying d with x=1.0

(Distributions normalised to have unit height)




In fact we shall see that it is possible to calculate the eigenvectors, and hence

the pv (P,), analytically. The analytical form of the eigenvector , is

_ b7
U s"'( d ) (6.6;14)

In order to show that this is true then let a=e®. Equation (6.6;7), the defining

equation for the eigenvector, becomes

(e 1 . I sin(n/d) | | sin(n/d)
1 « 1 sin(2w/d) sin(27t/d)
1 a1 sin@3m/d) sin(37/d)
.o . N :
1 ol sinfin/d) | = —| sin(in/d) (6.6;15)
o
a1 |sin@-3)n/d) sin((d-3)m/d)
o 1 ||sin(d-2)n/d) sin((d-2)m/d)
o J|sin{(d-1)n/d)] sin((d-1)w/d)]

Expanding for the i’th term on the LHS

s 808 e - s B
d d d (6.6:16)

Using trigonometric sum and difference identities to expand the sin terms

el el
d d (6.6;17)

Now one can identify Am with

Ay = a(ZCos(—E) + oc)
d (6.6;18)

whereupon the consistency of LHS and RHS becomes self-evident proving (6.6;14) to
be the correct form for the pv.
Hence we arrive at the following expression for the probability vector for the

two dimensional interface

e ()
d (6.6;19)

A crucial feature of this result is that the profile of the probability vector is only

dependent on the scaling combination h/d, as opposed to depending on h and d
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separately. This means that the probability of finding the membrane at a given point
depends only on the relative distance of the point from the walls. Moreover the results
is independent of the surface tension, c>0. This is what universality means in this
context. Note also that the result is consistent with the universal form (6.5;9)

motivated by the CI argument. So this well established result lends some weight to the

less formal CI argument. The associated universal scaling exponent ¢=2.

6.7 Analvtical Result For The 2d SOS Helfrich Model pdf

In the preceding section I have discussed in detail an analytical argument which

yields the universal form of the pdf of the SOS interface in 2d. In this section I write
down the result of an analytical argument for the form of the SOS membrane in 2d
(Parry 1992d). The argument requires an intimate knowledge of the Theory of Wetting
which is rather tangential to the current investigation. Hence I make no attempt to
present or justify the analytical argument by which the result is obtained. At any rate
the argument (Parry 1992d) is to be published together with the results obtained later
in this chapter.

The analytical result for the universal form of the pdf of the SOS membrane in

2d is

2

P(z) = snﬁ(%z) 671
The argument implies that the universal exponent, ¢, takes the value of 2/3 in the case
of the SOS membrane model in 2d. The argument for this exponent is not able to
support the CI argument presented in section 6.5, since the current argument relies on
the latter argument for its validity. In section 6.9 I will be looking at the SOS
membrane in 2d by Monte-Carlo simulation in an effort to determine, amongst other

things, the value of the universal exponent, if indeed one exists.
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6.8 Results Of MC Simulation Of The 2d SOS Surface Tension Model

In section 6.6 we saw an analytical solution of the 2d SOS interface model and
obtained the pdf for the universal regime N—, 6> 0. In this section I present results
from Monte Carlo Simulations of the SOS ensemble and compare them with the
analytical results to establish the veracity of the method.

Recall that the Hamiltonian for this system is

L
1 _fdhY
H,, - 504(&—) dx (6.8;1)

6.8.1 Approach To Universality

In order to investigate the pdf for the universal regime one must first establish
if one is in the universal regime or not. Firstly we know that we will be interested in
the large N limit, but how large does N need to be? Also we know that 6>0 and for
realistic analysis of the functional form of the pdf d should be large (but not too large),
at least for the lattice model.

To answer these important questions I initially performed a number of pilot
simulations, which led to the following more systematic analysis of the approach to
universality.

In the simulations I used the mean height, <h>, of the interface above the lower
wall to gauge the approach to equilibrium since it is known that <h>=0 in equilibrium
and since this parameter appeared in practice to equilibrate more slowly than the mean
energy of the ensemble <E>.

The square width of the pdf, W?, defined by

W2 = <h2> - (h)? (6.8.1;1)
proved to be a suitable parameter for observing the approach to universality since it
encapsulates most of the important information of the pdf rather concisely.

In figure 6.3 the square width is plotted against, L, the length parameter. The
other control parameters: the wall separation, d, and the surface tension, o, are at fixed
values for this analysis. Subsequent analysis will show the wall separation, d=20, and
the surface tension, 6=0.5, as suitable for obtaining universality. The figure indicates

that the square width rapidly falls from its maximum value, at L=1, as the length of the
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membrane, L, is increased. The L=1 value for the square width represents the square
width for an independent oscillator. An independent oscillator has an equal probability
of being found anywhere between the two walls and as such has a square shaped pdf.
This explains why the square width is maximum at L=1. By L=100 the figure
indicates that the square width has stopped falling. From L=200 to L=1000 (and
presumably above) the square width is essentially constant and invariant of N; a clear
sign of universality.

In figure 6.4 the square width is plotted against, o, the surface tension control
parameter. | The other control parameters: the wall separation, d, and length parameter,
L, are at fixed values. I have shown that the length parameter, L=1000, should be
sufficiently large for universality and subsequent analysis will show the wall separation,
d=20, is also suitéble. The figure indicates that the square width falls rapidly from its
maximumn value, at 6=0, as the surface tension, o, is increased. The o=0 value for the
square width represents the square width of a set of N (N=L/a) independent oscillators.
The pdf of an interface of independent oscillators is, of course, the same a the pdf of
a single independent oscillator. So this explains why the square width is maximum at

0=0. The figure indicates that the square width flattens out stops falling at around

0=0.5. Above 6=0.5 the square width is essentially constant; once again a clear sign
of universality.

Finally, in figure 6.5 the square width is plotted against, d, the wall separation
distance parameter. The other control parameters: the surface tension, o, and the
length, L, are at fixed values for this analysis. The previous analysis indicates that the
length, 1L=1000, and the surface tension, 0=1.0, should be suitable for obtaining
universality. The graph is flat and essentially featureless except from an initial dip at
the d=2 value, wﬁich is possibly a finite size anomaly. The figure indicates therefore
that the square width is essentially independent of the wall separation, d<20, for these
particular choices of L. and o; a clear indication of universality.

From this analysis it is apparent that a universal regime exists for the pdf.
Appropriate values for the control parameters are d<20, >0.5, L>1000. Clearly one
could fine tune these parameters further and there is a degree of interdependence, but

the work above shows that values in these regions are suitably universal.
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6.8.2 Short Distance Expansion For Universal pdf Near Wall

Having determined suitable values of the control parameters (N,o,d) for
analyzing the universal regime it is now necessary to analyze the results. Clearly one
could analyze the results in a variety of ways; some more interesting than others. One
rather simple, but interesting, method of analysis is to ask what the analytical form of
the pdf is close to the wall. The method is called a short distance expansion (SDE)
analysis because it yields an analytical form of the pdf valid at short distances from the
wall.

Consider what one knows about the pdf from the experimental results. One has
a set of data, {P,}, that gives one empirically the probability of finding the interface at
given regularly spaced heights from the wall. For a reasonable SDE analysis one must
have several results close to the wall. Since in my simulations I decided to fix the
lattice size, a=1, then this means that the wall separation, d, needs to large enough for
the SDE approximation to be valid.

Now consider how to interpolate the pdf results near the walls. Consider the
value of the pdf at the three lattice points nearest the wall. Figure 6.6 illustrates the

scenario.

P h,

Figure 6.6
Interpolation of lattice model pdf for
short distance expansion.
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Each of the probabilty values are non-zero. In fact the precise position at which
the pdf becomes zero is not known a priori. We do know however that the pdf
becomes zero beyond the last lattice point. In a sense therefore, for the lattice model,

the wall separation, d, is in fact only the "notional" separation of the walls. The "bare

width" of the strip to which the membrane is confined is the width of the pdf d+2a;

where a, is the distance of the extrapolated zeros of the pdf beyond the notional
position of the walls.

To determine a, one could take the two points nearest the wall and use a linear
extrapolation. However, using three points allows one to extrapolate using the
following interpolation of the points.

P(z) = c(z +a0)¢ (6.8.2;1)

One can show that the exponent, ¢, corresponds to the universal exponent
covered in the preceding analytical work, albeit, in the SDE limit. The parameter c is
a constant of proportionality required for fitting the form to three data points, and is
related to the normalisation of the pdf.

Solving (6.8.2;1) so that one obtains an interpolation of the observed probability

values requires some consideration. We have three equations for the three unknowns

(ag$,0)

P) =h, = cal
P@ =h, = c(a+ay)? (6.8.2;2)
P(2a) = h, = c(2a +ay)?

where (h,,h,,h;) are known from the simulation experiments. Solving these equations

for ¢ one gets the following transcendental equation

1 1
BYs _ (k) -
h, h, (6.8.2;3)
which in general has to be solved numerically. Since we have an idea of the value of

the universal exponent, ¢, then the method of bisection (see Press et al 1986} around

that value is the simplest approach to solving the equation. We make the association

h, 1 h3 1
B() = 2&)“’ - (B—)“’ -1 (6.8.2;4)

1 1
then we want the root (there should only be one) of B(¢).
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Having determined a value for the exponent ¢, by finding the root of B(¢), it

is possible to procede analytically to evaluate the remaining unknowns. It can be shown

that
a
a, = —————
(/b)) - 1 (6.8.2;5)
which can now be evaluated directly. Moreover it is possible to show that
h,
T (6.8.2:6)
2] .8.2;

which, having determined ¢ and a,, can also be evaluated directly.

Now from simulation experiments I have obtained the values for h,, h, and h;,

displayed table 6.1.

z P(2)/P a

0 0.0211

a 0.0807

2a 0.1726
Table 6.1

Note that the probability values in table 6.1 have been averaged so that the pdf
which they represent is correctly symmetrical. This averaging acts so as to improve
the quality of the results. Also the results above are normalised so that the pdf has unit

height rather than unit area (the usual normalisation).

Following the analysis described above and using the data in table 6.1 I obtained
¢=1.806x1 from the bisection. The error band represents the accuracy of the bisection
in determining the root rather than the accuracy of the universal exponent due to
imperfect source data. In fact the difference of the SDE result for the universal scaling
exponent, ¢, from the analytical exponent consists of two components. One component
is the accuracy of the data in table 6.1 the other is the systematic error that arises from

the short distance approximation of the result.
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Further evaluating (6.8.2;5) yields the value 0.91 (approx 1) for, a,, the root of
the pdf. So the root of the pdf lies approximately one lattice unit beyond the nominal
wall position. In retrospect, we can see that this is consistent with the result of the
transfer matrix calculations and the analytical results, presented in section 6.6. In the
transfer matrix argument the zero point of the pdf was implicitly assumed to be exactly
one unit beyond the possibly sites occupied by the interface.

The value of the normalising constant, c, could now be determined. However
I shall refrain since it is of little interest and is of no further use.

Having determined the location of the roots of the pdf, a, it is now possible to
plot out the universal pdfs with the roots included. Several pdfs in the universal
regime have been plotted in figure 6.7. The graphs have been normalised to have unit
height and are plotted against z =(z+a,)/(2a,+d). The universality is evident from the
way in which the pdfs coincide with one another.

It should also be noted that the effective widening of the confining strip for the
lattice model affects the evaluation of the square width, W?, of the interface. Note that
this effect has been taken into consideration and close inspection of the preceding
figures of the interface square width, W2, will reveal that they have been handled

appropriately.

6.8.3 Global Form Analysis Of Universal pdf

Having established the location of the zeros of the pdf using the SDE analysis
it is now possible to perform the global form analysis of the universal regime. We
already know suitable values for the control parameters: length, L, surface tension, o
and wall separation, d, for universality.

To establish the functional form of these pdfs I have plotted in figure 6.6
log(P(z')/P,,,) against log(sin(nz")). The significance of this plot is that a straight line
implies that

Pz") (sin(nz*))¢ (6.8.3;1)
and moreover the slope of the line is ¢.

Figure 6.8 is clearly linear verifying (6.8.3;1) and the slope is consistent with

=2, as shown by the analytical arguments in section 6.6.
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6.9 Results Of MC Simulation Of The 2d SOS Helfrich Model

In section 6.4 we saw some tentative analytical arguments which suggested a
form for the pdf in the universal regime N—co, k> 0. I present here the results from
Monte Carlo simulations of the Helfrich ensemble and compare them with the
analytical results.

Recall that the Hamiltonian for this system is

L 2
1
Hmem - EK{ (—(_1—2—2) dz (69,1)

6.9.1 Approach to Universality

As in section 6.8.1. one again has to determine suitable values of the control
parameters for investigating the universal regime. [ adopt the same step by step
analysis of the parameter space to find the universal regime.

Once again, | found it was useful to use the mean height of the membrane, <h>,
to observe the equilibration of the simulations. Further I used the square width, W7,
of the pdf (6.8.1;1) in order to indicate the approach of the pdfs to universality.

In figure 6.9 the square width is plotted against, L, the length parameter (c.f.
figure 6.3). The other control parameters: the wall separation, d, and the curvature
elasticity, k, are at fixed values for this analysis. Subsequent analysis will show the
wall separation, d=20, and the curvature elasticity, x=0.5, as suitable for obtaining
universality. The figure indicates that the square width has its maximum value, at L=1.
The L=1 value for the square width represents the square width for an independent
boscillator. In fact, rather surprisingly, the square width of the pdf appears to be
independent of N over the range of simulated lengths, 50<L<1000. However for
sufficiently short lengths there is, presumably, a crossover to the independent oscillator
value. Comparison with the interface (figure 6.3) indicates that the membrane
approaches universality rather faster than the interface. One should be quite safe in
expecting universality for L>1000.

In figure 6.10 the square width is plotted against, x, the curvature elasticity
control parameter (c.f. figure 6.4). The other control parameters: the wall separation,

d, and length parameter, L, are at fixed values. I have shown that the length parameter,
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L=1000, should be sufficiently large for universality and subsequent analysis will show
the wall separation, d=20, is also suitable. The figure indicates that the square width
falls rapidly from its maximum value, at k=0, as the curvature elasticity parameter, x,
is increased. The k=0 value for the square width represents the square width of a set
of N (N=L/a) independent oscillators. This explains why the square width is maximum
at k=0. The figure indicates that the square width flattens out stops falling at around
k=0.05. Above x=0.05 the square width is essentially constant; once again a clear sign
of universality. Direct comparison with the interface (figure 6.4) is not quite
meaningful in the sense that the control parameters do not represent the same quantity.
However a direct comparison indicates that membrane approaches universality at a
lower value of the elasticity constant than the interface.

Finally, in figure 6.11 the square width is plotted against, d, the wall separation
distance parameter. The other control parameters: the curvature elasticity, x, and the
length, L, are at fixed values for this analysis. The previous analysis indicates that the
length, L=1000, and the surface tension, x=0.25, should be suitable for obtaining
universality. The figure indicates that the square width drops steadily and flattens out
as the wall separation, d, is increased. For wall separations of d>15 the square width
would seem close to the asymptotic value. The figure therefore indicates that one
should expect to be able to observe universality for d>15. Comparison with the
interface (figure 6.5) indicates that the membrane is rather more strongly affected by
the separation of the walls, d, in its approach to universality.

From this analysis it is apparent that a universal regime exists for the pdf.
Appropriate values for the control parameters are d>15, ¥>0.05, L>1000. Clearly one
could fine tune these parameters further and there is a degree of interdependence, but

the work above shows that values in these regions are suitably universal.
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6.9.2 Short Distance Expansion For Universal pdf Near Wall

Once again having determined suitable values of the control parameters (N,k,d)
for analyzing the universal regime it is now necessary to analyze the results. The
analysis proceeds in much the same way as for the interface.

Recall that a short distance approximation of the postulated universal form of
the pdf is

P(z) = c(z + ao)d) (6.9.2;1)
where z=-a, is the zero that we require for our non-local analysis and c is a constant
of proportionality corresponding to the normalisation constant of the non-local pdf.

Now from the simulation experiments I have obtained values for h,, h, and h,

displayed in table 6.2.

z P(2)/P ‘
0 0.171
a 0.337
2a 0.478
Table 6.2

Following the analysis described in section 6.8.2 and using the data in table 6.2
I obtained ¢$=0.748+1 from the bisection. Again the error band represents the accuracy
of the bisection in determining the root rather than the accuracy of the universal
exponent due to imperfect source data. As before the difference of the SDE result for
the universal scaling exponent, ¢, from the analytical exponent consists of two
components. One component is the accuracy of the data in table 6.1 the other is the
systematic error that arises from the short distance approximation of the result.

Further evaluating (6.8.2;5) yields the value 0.67 (approx %) for, a,, the root
of the pdf. So the root of the pdf lies approximately half a lattice unit beyond the
nominal wall position.

The value of the normalising constant, ¢, could now be determined. However

I shall refrain since it is of little interest and is of no further use.
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Having determined the location of the roots of the pdf, a, it is now possible to
plot out the universal pdfs with the roots included. Several pdfs in the universal
regime have been plotted in figure 6.12. The graphs have been normalised to have unit
height and are plotted against z'=(z+a,)/(2a,+d). The universality is evident from the
way in which the pdfs coincide with one another.

It should also be noted that the effective widening of the confining strip for the
lattice model affects the evaluation of the square width, W?, of the interface. Note that
this effect has been taken into consideration and close inspection of the preceding
figures of the membrane square width, W?, will reveal that they have been handled

appropriately.

6.9.3 Global Form Analysis Of Universal pdf

Having established suitable values for the control parameters: length, L,
curvature elasticity, k, and wall separation, d, for the universal regime and with the
extra information about the location of the zeros of the pdf it is now possible to present
and analyze the universal regime consistently.

As in section 6.8.3, in order to establish the functional form of these pdfs I have
plotted in figure 6.13 log(P(z')/P,,.) against log(sin(nz")). The significance of this plot
is that a straight line implies that

P(z") « (sin(nz "))

(6.9.3;1)
and moreover the slope of the line yields the universal exponent ¢.

Figure 6.13 is clearly linear verifying the universal form (6.9.3;1). Moreover
the slope indicates that the universal index, ¢$=0.72+0.05. This value is not inconsistent
with the value predicted by the analytical arguments discussed in section 6.7 although,
at 2/3, the analytical results represents the lower bound of the ’experimental’ value

obtained here.
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