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The study concerns the design of experiments whose purpose is to compare the
joint effects of two drugs A and B, at n and m levels respectively, with the effect
of each individual drug. The treatment containing both drugs at the zero level is
excluded from the experiment on ethical grounds. The aim of this investigation
is to identify efficient row-column and cross-over designs for estimating the dual
versus single treatment contrasts, in the sense of having small total variance for
the contrast estimators.

Initially, attention is restricted to row-column designs, that is designs for two
orthogonal blocking factors. The criterion used for design selection is the A-
criterion. Lower bounds on the total variance of the estimators of the contrasts of
interest are developed and used to assess the performance of row-column designs
obtained by amalgamating two single blocking factor designs which are part-
balanced for the dual versus single contrasts. A subclass of part-balanced row-
column designs, with the property that treatments are orthogonal to row blocks,
is identified. A method of finding efficient designs for estimating any specific
given set of treatment contrasts is also described.

In the latter part of this thesis, designs are identified for cross-over experi-
ments where each subject is given a sequence of two or more distinct treatments.
For such studies, it is necessary to consider the possibility that the effect of a
particular treatment may persist beyond the. period of application. Designs are
considered for the cases where treatment effects persist for one and for two peri-
ods and simple additive models including first- and second-order carryover effects
are assumed. Designs are obtained by rearranging an efficient row-column design
within columns and selecting the arrangement which has the smallest total vari-
ance for the estimators of the dual versus single contrasts under the carryover
model. Finally, an investigation of the robustness of designs to the assumption
of non-negligible second-order carryover effects is presented.
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Chapter 1

Introduction

1.1 Description of the Problem

The problem considered concerns the selection of efficient designs for a factorial
experiment with one treatment combination excluded. This issue is of particular
importance in clinical trials and can be illustrated by means of the following
practical example.

Suppose there are two drugs, A and B, both known from previous studies to
be individually effective in the treatment of a medical condition. Drug B is to be
investigated at m different doses, labelled 0, 1, . . . , m — 1 and drug A at n doses,
labelled 0, 1, . . . , n — 1. Thus there are n x m distinct treatment combinations
denoted by ij where i and j are the doses of A and B respectively. The aim
of the experiment is to determine whether a combination of these two drugs,
both at non-zero doses, is more effective than either of the drugs administered
individually, that is to estimate the dual versus single contrasts r,j — r,0, r,-j — TOJ
(1 < i < n — 1, 1 < j < m — I; i — j = 0 excluded), where Tij denotes the
effect of treatment combination ij. Throughout this thesis, a treatment r,j which
contains both drugs at a non-zero level is referred to as a dual treatment, and a
treatment which has either of the drugs at the zero level is referred to as a single
treatment.

A key feature of the study is that one of the treatment combinations, labelled
00, is the double placebo, that is it represents no active treatment. There are
many medical situations in which it would be highly unethical to deny a patient
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treatment and such a trial would not be authorised by the appropriate ethical
committees monitoring drug research and administration. Thus, there is a need
to find an efficient design for an n x m factorial experiment with the double
placebo treatment excluded. Efficient designs for estimating the dual versus single
treatment contrasts in the presence of a single blocking factor were constructed by
Gerami and Lewis (1992). These designs are appropriate for a situation where the
subjects are grouped on the basis of a single characteristic, such as age. An aim
of this thesis is to construct row-column designs for the same treatment structure
and contrasts. An example of their application is experiments where subjects are
grouped according to two characteristics, for example age and sex.

In order to assess the performance of row-column designs, lower bounds on
the total variance of the estimated treatment contrasts of interest are developed
and discussed in Chapter 2. The performance of these bounds is investigated by
comparison with the results obtained from an optimal design search algorithm.
The bounds are then used to assess the performance of row-column designs, con-
structed by amalgamating two suitable block designs, which are listed in Chap-
ter 3. Row and column component designs from the family of reinforced group
divisible designs are considered, in addition to the PBDS block designs identified
by Gerami, Lewis, Majumdar & Notz (1993). In Chapter 4, designs with the ad-
ditional property that row blocks are orthogonal to treatments are investigated.
The variances of the estimators of the treatment contrasts for these designs are
unaffected by adjustment for the effects of the row blocks.

A further example of the application of row-column designs is in cross-over
experiments, that is experiments in which each of a number of subjects receives
a sequence of treatments throughout the duration of the study. In some cross-
over experiments it can be assumed that the effects of a treatment do not persist
beyond the period of application. This may be due to the nature of the treatment
or the use of washout periods; the latter are relatively short intervals of time
interspersed between two consecutive treatment periods during which a subject
receives no treatment. For this type of cross-over experiment a row-column design
may be employed where row blocks correspond to periods and column blocks to
subjects.

The second part of this thesis addresses the problem of finding efficient designs
for cross-over studies when it is thought that the effects of a treatment may persist
after the period of application. Hence measurements taken in the second and
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subsequent periods are not necessarily solely affected by the current treatment
but may also include a residual or carryover effect from the treatment given in
the previous period, see Jones & Kenward (1989, p 4). In recent years, this area
has stimulated much interest and controversy. The advantages and disadvantages
of using a cross-over design in a medical study are discussed in greater depth in
Chapter 6. A review of the carryover models given in the literature is presented
and criticisms of this type of study are discussed.

In order to distinguish between the two types of treatment effects, a direct
treatment effect is defined to be the effect observed in the current period which is
attributable solely to the treatment given in that period, whereas any treatment
effects observed in the current period but attributable to the treatment given
in the immediately preceding period are called first-order carryover or residual
effects. It is usually assumed that the effects of treatments applied in earlier
periods are negligible. In Chapter 7, designs are found under a model for the
observations which assumes simple additive first-order carryover effects. The
search is extended to find designs under a model which also allows for carryover
effects which persist for two periods. The designs found under the second model
are evaluated under the model for first-order carryover effects to assess how much
precision has been sacrificed by allowing for non-negligible second-order carryover
effects.

In this thesis, the estimation of the direct treatment effects is considered
to be of primary importance and carryover effects are regarded as a nuisance
factor which may or may not be present. In this type of situation, experimenters
may prefer the protection of using designs which allow for the estimation of the
contrasts of interest in the presence of carryover effects. This implies a need
to identify designs which perform well both in the presence and in the absence
of such effects. Investigations into this area have already been conducted. Some
interest has been centred on cases with a single unstructured set of treatments and
pairwise comparison of these treatments, see Kunert (1984, 1985) and Matthews
(1987). Attention has also been given to the estimation of factorial contrasts
in cross-over designs with a factorial treatment structure, see Fletcher & John
(1985) and Lewis, Fletcher & Matthews (1988).

In addition, in Chapter 5 the general problem of designing experiments to
estimate specific treatment contrasts is considered and results on the general
form of the information matrix for theoretical A-optimal designs is given.
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In the remainder of this introductory chapter, the aims of the thesis are pre-
sented before discussing some basic concepts and definitions commonly used in
the design and analysis of experiments. In the next section, a simple additive
model is defined under which efficient row-column designs are found and an out-
line of the analysis of these designs is given. The concept of efficiency factors is
introduced to aid discussion of optimality criteria which enable the comparison
of designs with respect to a particular aspect of design performance. For exam-
ple, an A-optimal design minimises the total variance of the estimators of the
contrasts of interest. This leads to the following criterion for design choice.

Definition 1.1 Design di is a better choice than design d2t for estimating a
specific set of treatment contrasts under the A-criterion, if d\ has a smaller total
variance for the estimators of the contrasts than d-2.

The relationship between the efficiency factors of the row-column design and its
row and column component designs is presented in Section 1.3, followed by a re-
view of the design characteristics associated with the dual versus single treatment
structure.

The aims of this thesis are, for two treatment factors and one excluded treat-
ment combination,

1. to find efficient row-column designs for estimating the dual versus sin-
gle treatment contrasts under an additive model with no carryover
effects.

2. to obtain lower bounds on the total variance of the estimated dual
versus single treatment contrasts to enable the performance of row-
column designs in estimating these contrasts to be assessed.

3. to obtain efficient cross-over designs for estimating the same contrasts
when three or four periods and four or more subject groups are used
and a model is adopted in which simple additive first-order carryover
effects are included.

4. to obtain cross-over designs for estimating the same contrasts under the
assumption of a model which includes parameters for both first- and
second-order carryover effects, and hence to examine the robustness of
design choice to the assumption of negligible second-order carryover
effects.
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1.2 Model, analysis and methods of assessing

row-column designs

In this section, a model and some methods of analysis are briefly outlined for
reference in the later chapters of this thesis. Consider an experiment having
t = m7i — 1 treatments and two blocking factors denoted by rows and columns.
Each experimental unit is classified according to the two blocking factors. Let R
denote the number of rows and C denote the number of columns. Attention is
not restricted to equi-replicate designs and the treatment replications are stored
in a t x 1 vector 7-. A simple additive model is assumed, as follows

yak = fi + at + fa + n + eijk (i = 1, • • •, R] j = 1, • • •, C; k = 1 , . . . , t), (1.1)

where y,-̂ . is the response obtained when the kth treatment is applied to the unit
in row i and column j, ft is the overall mean, at- is the ith row effect, j3j is the jth
column effect, r<,. is the kth treatment effect and the Sijk are random errors which
are assumed to be independent, identically distributed N(0,cr2) random variables.

The model can be more conveniently expressed in matrix notation as:

Y = \nti + Xaa + X00 + XTT + e, (1.2)

or alternatively as:

Y = Xa + e, (1.3)

where X = ( ln Xa Xp Xr j , a' = ( fi a' 0' r ' J, a, /? and r are the
vectors of row, column and treatment effects respectively and ln is an n x 1
vector with every element unity.

The least squares estimator of the parameter vector a, obtained by minimising
the error sum of squares e'e with respect to a, is found by solving the normal
equations:

(X'X)a = X'Y.

In terms of (1.3) the normal equations are:

nft + Cl'Ra + R\'cp + r'T = G

a + JRtcP + NRT = R.TOT

rfi + NRa + Nc/3 + r&i = TTOT



Chapter 1

where NR is the t x R incidence matrix of the row component design, Nc is the

t x C incidence matrix of the column component design, rs is a diagonal matrix

with the elements of 7- on the diagonal, Ju<v is a u x v matrix with every element

unity, G = l'nY is the overall total, RTOT — X'QY is the flxl vector of row

totals, CTOT = X'pY is the C x i vector of column totals and TTOT — X'TY is the

<x 1 vector of treatment totals.

By eliminating both the row and column effects from these equations, the

reduced normal equations are obtained as

ARCT = Q (1.4)

where

ARC = rs - ±NRN'R - jNcN'c + ^

and
1 1 -C^

Q = TTOT — -^NRRTOT — ^ N Q C T O T +

ARC is known as the intra-block information matrix of the row-column design

and Q is the vector of treatment totals adjusted for the row and column effects.

A solution to (1.4) is given by

r = VRCQ, (1.5)

where QRC is a generalised inverse of ARC- It is not possible to find a unique

inverse since ARclt — 0 hence rank(ARc) < t—\. However, apart from Chapter 5,

attention is restricted to connected designs, that is designs for which rank(ARc) =

Experiments are considered whose purpose is to estimate a set of treatment

comparisons or contrasts. Let Ct denote a matrix containing contrasts in the t

treatments. It is known that the least squares estimator of CtT is given by CtT.

Suppose Ad is the information matrix for a design rf, satisfying Adit — 0, then

CtT is estimable if and only if Ct$ldAd = Ct. If d is connected then any contrast

in the treatment effects will be estimable, see John (1987, p 19). An estimable

set of contrasts Ct has the property that E(Ctf) = CtT,

) = ctndcy (i.6)

and the sum of squares due to testing Ho : CtT = a, for some given vector a, is

SS(CtT) = (CtT - a)'(CtndC'tr\CtT - a)



Chapter 1

with degrees of freedom equal to rank(Ad) — t — 1.

Many criteria for choosing efficient designs are based on CtfldC't. For example,
in Definition 1.1 it was stated that the A-criterion seeks to minimise the total
variance of the estimators of the contrasts of interest. This is equivalent to
minimising the trace of (1.6).

In the remaining part of this section, some common assessments of perfor-
mance of designs for estimating the pairwise treatment comparisons are consid-
ered, before discussing the appropriate measures of design performance for esti-
mating contrasts in three or more treatments. The relevance of these measures
for assessing the row-column designs of Chapters 3 and 4 is also addressed.

A convenient measure of the difference in the precision of the estimation of the
pairwise treatment contrasts in two designs is provided by the efficiency factors.
A pairwise efficiency factor of a design d, with equal treatment replication re, for
estimating the difference between two treatment effects, T,- and r,-, is a comparison
of the variance of the estimated contrast in d with the variance of the estimated
contrast in a randomised block design, where it is assumed that the error variance
is the same for the two designs. This can be written more concisely as

2c72/re _ 2/re

" v ( f , - - f > ' viti-Tj)'

A convenient summary of the efficiency factors is provided by the average effi-
ciency factor, E, defined by E — 2a2/rev, where v is the average variance over all
pairwise treatment comparisons. This measure is not used to assess the designs
listed in this thesis since, for the dual versus single treatments problem, interest
is not centred on the full set of pairwise treatment comparisons. Note that min-
imising E is equivalent to minimising the average variance of all the estimated
pairwise treatment comparisons, see John (1987, p 28).

So far, discussion has been limited to the pairwise contrasts of interest. How-
ever, it is often desirable to make comparisons which involve more than two
treatment effects. For example, it may be necessary to compare one treatment
effect with the average of the effects of the remaining t — 1 treatments. In gen-
eral, a linear expression L = X)*=1 aj-r,- is a contrast in the treatment effects if
the cv,'s are constant and Y?i=i ai = 0- The contrast is said to be normalised if
Y?i=i otf = \. The performance of a design for estimating a contrast L can be
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assessed through the efficiency factor for L, that is

When examining several treatment contrasts simultaneously, the analysis and

interpretation of the results are simplified if the contrasts are orthogonal, where

two contrasts L\ = Y?i=i a\r% a n d ^2 = Zw=i a'iTi a r e orthogonal if and only if

E U <*.•<*:• = 0.
In order to obtain an overall assessment of the efficiency of a block or row-

column design for estimating a set of t — 1 orthogonal contrasts, the following

contrasts are used.

Definition 1.2 A set of basic contrasts for a block or row-column design with

information matrix Ad is

where £,- is an eigenvector corresponding to A,-; a non-zero eigenvalue of Ad, and

0 if i + 3

The basic contrasts are, by definition, both normalised and orthogonal and

lead to another measure of design performance, known as the canonical efficiency

factors of a design. For a design with equal treatment replications re, a canonical

efficiency factor is the efficiency factor for a basic contrast £,r and can be shown

to be ea- = Aj/Ve, where A; is the eigenvalue of Ad corresponding to the eigenvector

£,-. Two important properties of canonical efficiency factors should be noted. The

first is that they are related to the average variance over all pairwise differences

by the following

- _ 2<j2

where E is the average efficiency factor. The second property states that the

largest and smallest canonical efficiency factors place upper and lower bounds on

the efficiency factor of any treatment contrast, see John (1987, p 27).

When designs with unequal treatment replication are employed there are two

approaches to defining efficiency factors, see John (1987, p 35). The approach
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used in this thesis is to assume that the treatment replications are fixed, the

efficiency factors can then be defined as follows

Definition 1.3 The canonical efficiency factors (for fixed treatment replications)

for a connected block or row-column design d, having replication matrix r6 and

information matrix Ad, are the eigenvalues of r~5'2AdT~s'2 except for the zero

eigenvalue which corresponds to the eigenvector rs/2lt.

There are various criteria available which allow different designs to be com-

pared, these can be expressed as functions of the canonical efficiency factors. The

A-criterion can be considered to maximise the harmonic mean of the canonical

efficiency factors. Another commonly used criterion is the E-criterion which max-

imises the minimum canonical efficiency factor of any treatment contrast. The

D-criterion seeks to minimise the determinant of the variance-covariance matrix

of the estimated contrasts of interest but can also be considered to maximise the

geometric mean of the canonical efficiency factors. The (M, S)-criterion is evalu-

ated in two stages. The first step is to locate a class of designs which maximises

the mean of the canonical efficiency factors, this class then has M-optimality. The

next task is to identify the designs within this class which minimise the variance

of the canonical efficiency factors which gives S-optimality.

In general, an optimality criterion is a function $ : @t,o ~^ ( — 00,00] where

Ptto is the collection of t x t nonnegative definite matrices with zero row and

column sums. A design d is called ^-optimal if it minimises $(Ad) over the set

of competing designs. The set of competing designs is determined by the effects

which are of interest in the comparisons to be estimated. Note that Ad £ 0t,o in

this setting.

The following definition of universal optimality is due to Kiefer (1975).

Definition 1.4 A design d* will be termed universally optimal in the class V of

competing designs if d* minimises $(Ad) for every $ satisfying:

(i) <& is convex,

(ii) $>(bAd) is non-increasing in the scalar b > 0,

(in) $ is invariant under each simultaneous permutation of rows and

columns,
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where Ad is the information matrix for the contrasts of interest corresponding to

the design d.

A design which is universally optimal is also A-, D- and E-optimal. It should
be noted that a design which is optimal under one of the latter criteria is not
necessarily optimal under any of the other criteria. However, various studies have
indicated that a design which performs well under one criterion tends to perform
well under the others.

The canonical efficiency factors can be used as a crude assessment of design
performance in estimating the dual versus single treatment contrasts, since they
enable upper and lower bounds to be specified for the variances of the estima-
tors of these contrasts. However, a more accurate assessment can be made by
considering the individual variances of the specific contrasts, or more easily, the
total variance of the contrast estimators. It has already been stated that, when
interest is focused on the pairwise treatment contrasts, assessments of a design
d are made by comparing the variance of the estimator of a particular pairwise
contrast under design d with the variance of the corresponding contrast under the
known universally optimal design for estimating the contrast. For the pairwise
treatment comparisons, the class of universally optimal designs is randomised
block designs. Since there are no results for universally optimal row-column de-
signs for estimating the dual versus single treatment contrasts, lower bounds on
the total variance of the estimators of these contrasts developed in Chapter 2 are
used as a basis for comparison.

1.3 Row-column designs as amalgamations of

two block component designs

In this thesis, row-column designs found by amalgamating two block designs are
considered. In this section, a relationship between the row-column design and
the row and column component designs is defined. The row component design
has the rows as blocks and ignores the column blocking factor. The column
component design has the columns as blocks and ignores the row blocking factor.
Example 3.1 shows how a row-column design for treatments with levels ro = 2
and n — 3 arranged in three rows and six columns can be obtained by combining
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two block designs with m = 2 and n — 3, one consisting of three blocks of size

six and the other consisting of six blocks of size three.

The information matrices for the row and column component designs respec-

tively are AR — r5 - ^NRN'R, where AR\t = 0, and Ac = rs - ^NCNC, where

Aclt — 0. From Cheng (1978), the relationship between the information matrices

of the three designs can be expressed as

rr'
EC' <1 J )

Several authors, such as Shah (1977) and Raghavarao & Shah (1980), have

considered row-column designs which have a common set of basic contrasts £,-,

(i = 1,...,£) for ARc,AR and Ac when seeking efficient designs for pairwise

treatment comparisons. Equation (1.7) can then be written

- (rs -s rr

KL

The advantage of this property is that it ensures that efficient row-column

designs are achieved when efficient row and column component designs are amal-

gamated. For Definition 1.3, the efficiency factors of the row-column design and

the row and column component designs are linked as follows.

Since, in the case of unequal treatment replications, the elements of the vector

r are regarded as fixed, the terms of (1.7) can be pre-multiplied by r~s'2 and post-

multiplied by r~5/2£i to give

r-V'Ancr-Wti = r-^Anv-^i + r~sl2Acr'5'2^ - (/, - V2J(r
fi/2)£ (1.8)

where Jt is a t x t matrix with every element equal to unity. Using the fact that

i, it follows that

where eRcn (i = l , . . . , t — 1), are the non-zero eigenvalues of r~6/2ARcr~s/2.

Substituting into (1.8)

Since JtARc = 0, by definition of ARc, it follows that

^ ' 2 ^ + r
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which can be expressed as

where e#,, tc{ and e^c, (i = l , . . . , i — 1), are the non-zero eigenvalues of

r-sl2ARr-5l2, r-8l2Acr-512 and r-sl2ARcr~sl2 respectively. The final efficiency

relationship is

= eiii + eCi-l. (1.9)

Equation (1.9) has limited application to the dual versus single treatments

problem since the row-column designs of Chapter 3 rarely have an information

matrix with a set of basic contrasts which is also common to the information

matrices of the component designs. This point is discussed further in Section 3.6.

However, the efficiency relationship (1.9) applies to the row-orthogonal designs

of Chapter 4 where it is used to show that the efficiency of the row-orthogonal

design is equal to the efficiency of the column component design.

1.4 Design characteristics and contrasts of in-

terest for the problem

In Section 1.1, it was stated that efficient designs were required which would

enable an investigator to determine whether a combination of two drugs, both

having non-zero levels, is more effective than either of the drugs administered

individually. The contrasts of interest involve comparing dual treatments with

single treatments. For the n x m experiment, these contrasts can be split into

two groups

1. the dual versus A contrasts

Tij -Ti0 (i = l , . . . , n - 1; j = l , . . . , m - 1) (1-10)

2. the dual versus B contrasts

Tij -TOj (i = 1,. ..,n - 1; j = l , . . . , m - 1). (1-H)

It is assumed that the estimation of each of these contrasts has equal importance,

that is higher precision on certain comparisons is not required. The natural choice
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of criteria for design selection in this situation is the A-criterion which seeks to

minimise the sum of the variances of the estimators of the treatment contrasts of

interest.

Throughout this thesis, the treatment effects in the vector r will be ordered as

(TOI, . . . , r0 , , r1 0 , . . . ,Tp0, r n , . . . ,r1(,, r2 1 , . . . ,r2g, . . . , r p l , . . . ,rp g), where p = n — 1

and q = m — 1, following Gerami & Lewis (1992). Then (1.10) and (1.11) can be

written as HT where

f7 '8 1 ' ° " M (1.12)
O,., - /„ 0 1, I, )

and OUit) is a « x u matrix with every element zero, @ denotes Kronecker product,

/ = pq and £ = (Eij) is an / x / matrix in which submatrix Eij has size p x q, with

entry 1 in the (j, i)th position and zero elsewhere (i = 1 , . . . , q; j' = 1 , . . . ,p).

Gerami <k Lewis (1992) found that the class of block designs having the prop-

erty of part-balance for estimating the dual versus single contrasts contained

many highly efficient designs for estimating (1.10) and (1.11).

Definition 1.5 Designs for an n x r?i experiment with part-balance for the dual

versus single treatment comparisons (PBDS) satisfy the following conditions

V(iij - TI0) = vA (i = 1 , . . . , n.- 1; j = 1,. . . , m - 1)

and

V(Tij - fOj) = vB {i = 1, • • •, n - 1; j = 1, . . . , m - 1).

Note that the part-balance property includes total balance for estimating

(1.10) and (1.11) as a special case. For a single blocking factor, designs hav-

ing total balance were found to be too large for most practical cases, see Gerami

(1991).

From Definition 1.5, a PBDS design d has variance-covariance matrix

( U 3 )

where at- ^ /?,- (i = 1,2), 6 and <f> are constants, and an information matrix, Ad,

whose form is given by the following theorem.
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Theorem 1.1 (Gerami and Lewis, 1992) A necessary and sufficient condi-

tion for a design d for an n x m experiment with b blocks of size k to have

part-balance for estimating the dual vei^sus single treatment comparisons is that

the intra-block information matrix has the form:

Ad = a2\v a4lp + a5jp a6lp + aTJp (1-14)

a&lv + a7Jp

where ci{ {i — 1 , . . . , 9) are constants.

Note that this result applies to the information matrix of any design with orthog-

onal blocks.

Theorem 1.1 enables types of designs possessing part-balance for estimating

the dual versus single treatment contrasts to be easily identified by examining the

form of the information matrix. The family of reinforced group divisible designs

discussed in Chapter 3 was found in this way.
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Lower bounds on the total

variance

2.1 Introduction

In order to assess how well a design can estimate particular treatment contrasts,
it is useful to have a lower bound on the total variance of the estimators of the
contrasts of interest for the design, since this gives an indication of the scope
for possible improvement. The purpose of this chapter is to develop bounds
for row-column designs for estimating the dual versus single treatment contrasts
defined in (1.10) and (1.11). The chapter includes a brief review of bounds in the
literature for incomplete block designs and row-column designs.

Most work in the literature concentrates on bounds for the average variance
of all pairwise treatment comparisons in designs with a single blocking factor and
equal treatment replication. These are commonly formulated as upper bounds
on the average efficiency factor E (defined in Section 1.2) and are briefly re-
viewed in Section 2.2. Lower bounds on E for row-column layouts are reviewed
in Section 2.3. A further important area where lower bounds on the average vari-
ance have been developed is the test treatment versus control treatment problem
which is outlined in Section 2.2. In Section 2.4, lower bounds available for the
dual versus single treatments problem with a single blocking factor are reviewed.

The remainder of the chapter describes new work on lower bounds for the
total variance of the dual versus single treatment comparisons when a row-column

15
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design is employed. The first bound, Bp, is already available in the literature. In
Section 2.5, two further bounds, B\{H) and B2(H), are derived. Bound B2(H)
is shown to be tighter than Bp for certain experiment sizes. The bounds are
critically compared in Section 2.6 and recommendations on their use are given.
The bounds are used in Chapter 3 to assess the efficiency of new designs.

2.2 Upper bounds for the average efficiency

factor in single blocking factor designs

One o*f the simplest upper bounds on the average efficiency factor, which is ap-
plicable only to connected binary designs with equal block sizes fc, is

This bound uses the fact that the harmonic mean of the canonical efficiency fac-
tors cannot be greater than the arithmetic mean and has been cited by many
authors including Williams Sz Patterson (1977) and Jarrett (1977). UQ was ex-
tended by Williams, Patterson k. John (1976) to the bound U\ which covers
non-binary designs and is given by

where k' = k (mod t). A tighter bound than Uo and U\ is that given by Jarrett
(1977) which depends on the sum of squares of the canonical efficiency factors
and their average and can be written

U-U {t " 2)S'2
+ (t-3)S' {2A)

where (t-l)(t-2)S2 = S2 = E!=l(ei-e)2 and e = (£•=} e,-)/(*-l). It should be
noted that, in general, ( / 0 ^e unless the canonical efficiency factors of the design
are all equal. The most useful bounds are design independent, that is they can
be expressed in terms of the design parameters, 71, t and k since they allow the
comparison of several candidate designs for one experimental situation. Jarrett
shows that bound Ui can be written in such a form by finding a lower bound for
Si, but it then only applies to equi-replicate and equal block size binary designs.
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The bound Ui improves upon UQ and U\ by including the information available
on the number of circuits of length 2 in the treatment concurrence graph of
the design. A treatment concurrence graph allows information on the design's
blocking structure to be represented in a diagrammatic form. Such a graph is
constructed by letting the vertices of the graph represent the treatments, lines are
then drawn between two vertices if the corresponding treatments occur together in
a block. The number of lines joining any two vertices is given by the appropriate
element in the treatment concurrence matrix NN'. A circuit is defined as a path
which joins a vertex to itself and a path joining two vertices i and j is a route from
i to j using a sequence of distinct lines in the treatment concurrence graph, see
Wilson (1979) for further information on graph theory. Jarrett (1983) develops an
even tighter bound, f/3, by also including information on the number of circuits
of length 3 to give

"' = "'-(t-D^u^Y <2'2)

where 53 = ̂ 'lj(e,- — e)3. f/3 can also be expressed in a design independent
form, but is then limited in application to 2-concurrence designs, that is designs
for which the off-diagonal elements of the concurrence matrix take one of two
possible values. In the literature, interest is concentrated on the special case of
regular graph designs where the off-diagonal elements of AW differ by at most
one since many designs of this type are known to be highly efficient, see John &:
Mitchell (1977). For example, Jacroux and Seely (1980) showed that sufficient
conditions for (M, S)-optimality (denned in Section 1.2) of binary designs are
that the off-diagonal elements of the concurrence matrix, NN', differ by at most
one and the off-diagonal elements of the block characteristic matrix, N'N, differ
by at most one. Williams Sz Patterson (1977) give a bound constrained by this
condition and Jarrett (1983) develops a further bound for equi-replicate designs
where r = relt, also satisfying this condition on the concurrence matrix, by
substituting lower bounds for S2 and .93 in equation (2.2) to obtain

rj = rr ta(l-a)
4 ° rek{rekU0 + z - (t + l)aY

w h e r e a equals t h e fractional p a r t of re(k — l)/(t — 1) and

t if2(t-l)a>t

(t-2)a/(\ -a) i f 2 ( i - l ) a < *

Jarrett (1983) conjectures that this bound holds for any equi-replicate binary
design.
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All the bounds mentioned so far are best used when t < b. When t > b,

tighter bounds can be obtained by considering the relationship between a design

and its dual, see John (1987, p 37).

The bounds Ui, U3 and U4 can all have a different formulation in the special

case where the design has equal e,'s (i = 1 , . . . , t — 1) giving t/0 — e. Tjur (1990)

interprets the second form of U4 as a lower bound for the harmonic mean of

the canonical efficiency factors in terms of the first three moments of a random

variable which takes the values e j , . . . , et-\ with equal probabilities. Tjur gives a

further bound based on the first and second moments of this random variable

e(l _ g) - V
Uf> l - e - V

where V — ta(l — a)/(k2i'l). U5 is not uniformly better than U4, but it is tighter

in a large number of individual cases.

A further case for which bounds on the average variance of a different set

of contrasts of interest is useful is the test treatments versus control treatment

problem, see Hedayat, Jacroux & Majumdar (1988). A review of the literature

reveals the following bounds for the average variance of the contrasts of interest

for designs with t — 1 test treatments and one control treatment, arranged in b

blocks each of size k.

Stufken (1988) gives a bound for the trace of the inverse of the information

matrix of the contrasts of interest,

Ti - To, (2.3)

where r0 denotes the effect of the control treatment and r,- denotes the effect of

the ith test treatment (i = 1 , . . . , £ — 1), for augmented balanced incomplete block

designs.

Gupta (1989) constructs a lower bound on the average variance of the con-

trasts (2.3) for non-orthogonal binary S-type designs. An S-type design is defined

as a design in which the number of concurrences of the control treatment with

each test treatment takes a common value, Ac say, and the number of concur-

rences of each pair of test treatments takes a common value, XT say, for all t — 1

test treatments. An extension of this type of design, appropriate for the dual

versus single treatments case, is discussed in Section 3.5. In Gupta's investiga-

tion of binary S-type designs, as in Stufken's work, interest is centred on Mj"1,
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the inverse of the information matrix of the contrasts (2.3). The bound, Ue, is

developed using certain combinatorial properties of binary S-type designs in con-

junction with the fact that the harmonic mean of the diagonal elements of Mjx

will not exceed the arithmetic mean of the diagonal elements of Mjl and has the

form

6

The bound, U&, is generally not an achievable bound. It can be applied to any

proper block designs but may be loose for non-binary designs since these designs

are not as efficient as binary designs for estimation of the pairwise treatment

comparisons.

2.3 Bounds on the average efficiency factor for

row-column designs

Most interest in the field of row-column designs has been focused on finding

specific groups of row-column designs which are optimal with respect to some

predefined criterion. Consequently, far fewer bounds have been published for the

average efficiency factor of an R x C row-column design for t treatments each

replicated ?-e times, compared with the single blocking factor case. Some of these

results are discussed below.

Raghavarao & Shah (1980) develop an upper bound on the average efficiency

factor for connected binary designs given by

URCI =
RC(t-l)•

This bound is derived using the fact that the harmonic mean of the canonical

efficiency factors is not greater than the arithmetic mean and is analogous to UQ

in Section 2.2. They specify a further upper bound

IT 2 ( f l - i ) 2 - i
URC2- ( R — 1)'

which has a limited application, since it is valid only for designs which satisfy the

parameter relationships t = 2R, r = R — 1 and C = 2(R — 1).

Eccleston & McGilchrist (1985) derive an upper bound, URC3,
 o n the average

efficiency factor of a row-column design in terms of the average efficiency factors
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of the row and column component designs where the component designs share a

common set of eigenvectors. This bound can be written as

where ER and Ec are the average efficiency factors of the row and column com-

ponent designs respectively. The bound URCZ has been found particularly useful

in assessing row-column designs constructed by the method of amalgamation of

component designs. This bound performs well since it uses the actual average ef-

ficiencies of the components, however, it has the disadvantage of being dependent

on the chosen components.

Eccleston & McGilchrist found a design independent bound, URCA, by substi-

tuting bounds for ER and Ec which are expressed in terms of the design param-

eters. If the bounds on ER and Ec are denoted by E\ and E<i with ER < E\ and

Ec < E-i then

The performance of bound URCA is variable since it is dependent on the perfor-

mance of bounds E\ and E2-

John Sz Eccleston (1986) give upper bounds for the harmonic mean of the

canonical efficiency factors for the restricted class of row-column a-designs. The

simplest upper bound, URCO, obtained when all the canonical efficiency factors

are equal, is
_ t(RC - R-C + re)

URC0 ~ RC(t-l)

which is an alternative formulation of URC\- However, a tighter bound is obtained

by using Jarrett's result (2.1) with UQ replaced by URCO- AS in the analogous result

for block designs, the bound can be expressed in a design independent form by

using a lower bound for S2, namely

where a is the fractional part of re(RC — R— C + re)/(t — 1). The bound URCO

is used to show that row-column a-designs can be very efficient.

John & Street (1992) develop an upper bound, URCS, by taking the approach

of John & Eccleston (1986). In this case the lower bound on .S2 is found by

minimising J2\=i el subject to constraints on the number of distinct concurrences
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in the row and column component designs. This bound is not simply expressed in

closed form and is not stated here. The performance of bound URCS was examined

for parameter values 3 < /? < 10, C < R, 2 < re < C and improved on bound

URC3 in 20% of cases. An upper bound for the restricted class of resolvable

row-column designs, derived by the same approach, is also given which, when

evaluated for parameters 3 < i ? < 1 0 , C < i ? , 2 < r e < 1 0 , improved on bound

URC3 in a large number of cases.

2.4 Lower bounds on the total variance of the

* dual versus single contrasts for designs with

a single blocking factor

In this section, two bounds found to be appropriate for the total variance of

the dual versus single contrasts in the single blocking factor case are considered.

The first bound Bp, is the minimum value of a function of the allocation of

experimental units to the sets of particular types of treatment combinations,

defined as follows:

Definition 2.1 The sets of A-alone, B-alone and dual treatment combinations

are {iO;i = l , . . . , p } , {Oj;j = l,...,q} and {ij;i = l,...,p;j = l,...,q} respec-

tively, where p = n — 1 and q = m — 1.

Defini t ion 2.2 Let D* (n,rn,b,k) be the class of all connected designs for an nxm

experiment with 00 excluded, arranged in b blocks with equal block size k.

For d £ D*, the total number of units which are allocated to the sets of

A-alone, B-alone and dual treatments are denoted by TA, Tg and Trj.

Theorem 2.1 (Gerami &: Lewis, 1992, Theorem 2) For a design d 6 D*,

let TA and TB be fixed and such that T4 > p, TB > q and T& + Tg < bk —pq. Also

let fA = [TA/p], rB = [TB/q] and fD = [TD/pq]. Then tr(Hr~sH') > F{TA,TB),

where rs is the diagonal matrix of treatment replications and

+ q-TB\ { 2pqfD + pq - Tp\
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Corollary 2.1 (Gerami &: Lewis, 1992, Corollary 3) Let the bound BF =

min{F(tA,tB); (tA,tB) 6 T}, where T = {(tA,tB); tA > p, tB > q; tA + tB <

bk — pq, tA,tB € N+}, for N+ the set of positive integers. Then Bp is a lower

bound on tr(H£ldH') for all d e D*.

The second bound, for the single blocking factor case, is based on a function

of the eigenvalues of both the information and C[Ct matrices, where Ct is any

contrast matrix for t treatments.

Theorem 2.2 (Gerami &c Lewis, 1992, Theorem 1) Let D be a class of de-

signs having one or more blocking factors and t treatments. For any d 6 D

let Ctr contain L > t — 1 contrasts of interest, ivhere rank(Ct) = t — 1. If

0i > 02 > • • • > 0t-i > 0t = 0 and Aa > A2 > . . . > At_i > Xt - 0 are the

respective eigenvalues of C[Ct and Ad, the intra-block information matrix, then

Remark: Let B(Ct) denote the lower bound on tr(CtridC't), then B(H) is

the lower bound on tr(HQ({H'). Gerami & Lewis (1992) perform a numerical

assessment of the bounds Bp and B(H) for the parameter values 2 < n ,m < 10,

b < 30 and 2 < k < 15 and conclude that Bp > B(H) for t < k. Outside these

ranges, neither of the two bounds is uniformly greater. Hence the lower bound is

taken to be max{Bp, B(H)}.

2.5 Lower bounds on the total variance of the

dual versus single contrasts for row-column

designs

The aim of this section is to develop lower bounds on the total variance of the

dual versus single contrasts in row-column designs.

2.5.1 Bound BF

Bound Bp of Corollary 2.1 can be applied directly to the row-column case without

any adaptation since the development of this bound is not dependent on the
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assumption of a particular blocking structure.

It has been found that this bound can be loose, particularly when both R
and C are less than t. In order to gain a more accurate assessment of designs, a
second bound is derived in the following subsection.

2.5.2 Bound B

The approach taken to obtain bound Bi(H) is to develop, from the design-
dependent bound in Theorem 2.2, a bound which has only one value for a given
experiment size. This involves an examination of the information matrix, ARC
of the row-column design and its eigenvalues. The strategy adopted is to find an
upper bound on tr(Afic) and then to apply the following result.

Corollary 2.2 (Gerami &: Lewis, 1992, Corollary 2 to Theorem 1) Let
B(Ct) = (£•=} 9]/2)2/cmax, where cmax = max{tr(Ad); d G D}, then B(Ct) is a
lower bound on tr(Ct^ldC't), for all d £ D.

The following lemma is given by Kiefer (1958, p 689). The lemma is restated
and a proof given.

Lemma 2.1 The minimum value of S = Ylj=\ rn'j> subject to the constraints

E,j=1 rrij = q and rrij [j = 1,. . . , k) is integer, i.is

q + (2q-k)[q/k]-k[q/k}\

where [x] denotes the largest integer < x.

Proof: Let A be a Lagrange multiplier and T — Ej=i mf + ^(Ej=i mj — <?)•
Regarding T as a continuous function of real numbers nij, (j = 1, . . . , k),

dT
- 2mj + Xdrrij

which has zero value when A = — 2mj or mj = —A/2, (j = 1,...,A;). Since

d2T/drnj = 2 > 0 for j = 1 , . . . , fc, it follows that S is minimised when mj = —A/2

(j — l , . . . , f c ) . Now Yli=i rnj — Q which implies that A = —2q/k. Hence for

minimum S :

mj = q/k (j = l , . . . , k ) .
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Therefore

minM S = q2/k, (2-4)

where M. = {(m1? . . . , m;t); nij £ R+,j = 1 , . . . , k, Ylj=i rnj = <l}- ^ is a^so

necessary to consider the further constraint that m,j (j = 1 , . . . , k) must be inte-

ger. Since S is a continuous function, its minimum value occurs when each rrij

(j = 1 , . . . , k) takes the nearest integer value [q/k] or [q/k] + 1. Suppose a of the

m/s are each [q/k] and the remaining k — a values are each [q/k] + 1. Then

A;

, = oc[q/k] + (k -

Hence a = k([q/k] + 1) — q and (k — a) = g — &[<?/&]. Then the minimum value

of S is a[^/A;]2 -j- (k — ot)([q/k] + I)2 which, after manipulation, can be written as

S = q+(2q-k)[q/k]-k[q/k]*.

The following theorem establishes a bound on tr(Ajic)-

Theorem 2.3 Any connected row-column design d, having t treatments arranged

in an R x C array and information matrix ARC has

tr(ARC) <RC-R~ (R/C)(2C - t)[C/t] + (Rt/C)[C/t]2.

Proof: From (1.7)

tr(ARC) = tr(AR) + tr(Ac) - RC ±f

Since tr(Ak) = RC - (1/k') J2l
i=i £j=i nlij f o r k' ̂  k = R, C, where nkij denotes

the replication of treatment i in block j for design component k for i = 1 , . . . ,t;

j — 1 , . . . , k and k — i?, C, tr(ARc) c a n be expressed as

tr(ARC) = RC-±±J: < 4 E 4
° ,-=1 j=l K

Putting k — C, nij = ncij and (7 = r,- in (2.4),

c r?
> ^ 1
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It follows that

and from (2.5),

tr(ARc) < RC - ^ E i - (2-7)

The RHS of (2.7) has its maximum value when YA=I H J L I
 n«ij is minimised sub-

ject to the constraints that Y?i=iT2f=inmj = ^ C a n d nfltj (z — 1,----, ;̂ J =

1 , . . . , R) are integer. The result follows from applying Lemma 2.1.

A lower bound, B\(H), can now be established on the total variance of the

contrasts of interest, using Corollary 2.2 with cmax taking the value of the upper

bound on tr(Ajic) of Theorem 2.3. It should be noted that the upper bound

on tr(Anc) is not symmetrical in R and C and this generates two values for

the bound on the total variance of the contrast estimators for each array size.

This difficulty is resolved by taking the bound B\(H) to be the larger of the two

possible values.

Definition 2.3 B\(H) is a lower bound on the total variance of the dual versus

single treatment contrasts, given by

R,C) ' f(t,C,R)

where f{t,b,k) = bk- b- (b/k)(2k-t)[k/t] + (bt/k)[k/t}2 and Oi, i = l , . . . , i - l ,

are the non-zero eigenvalues of the H'H matrix for H given in (1.12).

The following two examples show the advantage of having a choice of bounds

instead of restricting attention to one bound which may perform poorly for certain

parameter values.

Example 2.1 For m — n = C = 3 and R = 8, the bound B\(H) = 6.3185 and

the bound Bp = 5.3333. B\{H) is the tighter bound in this case and improves

upon the value of Bp by 18.5%.

Example 2.2 For m = 2, n = A, R = C = 4, B^H) has the value 5.1122 and

Bp — 5.1667. In this case Bp is the tighter bound since it improves on the value

ofB1(H) by 1.1%.

The performance of the bound Bi(H) is discussed in Section 2.6.
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2.5.3 Bound B2(H)

Although one bound has been developed for use in conjunction with the bound

Bp, an inspection of (2.6) indicates that it may be possible to tighten the bound

by leaving 5Z|=1 ]CjLi n^ij and 5Z|=1 rf as separate terms and then minimising

tr(Ap,c) directly with respect to rikij (i = l5---5^;i = l,...,k;k = R,C). In

the remaining part of this chapter it is shown how to achieve this. The key step

is maximising Yll^i rl f° r which it is necessary to consider the different ways of

choosing t integers, not necessarily distinct, from the set {a, a + 1 , . . . , a + m}

so that the sum of the selected integers has a fixed value, q, say. The ultimate

objective is to identify the choice of integers which has the maximum (uncor-

rected) sum of squares and to use that choice in calculating 5Zi=i rl m (2-5) to

find a bound. This is done in Theorem 2.5 for which the following definitions and

results are needed.

Notation: Let n,- (1 < nt- < t) denote the number of integers allocated the

value i (a < i < a + m).

The first step is to devise a method of generating all permissible choices of t

integers via the following definitions and lemma.

Definition 2.4 For any allocation of integers na,na+i,..., n a + m such that n\,t ^

0 (i = \,2) where a <b\ < b2 — 2 < a + m — 2, the operation which forms a new

allocation by subtracting 1 from n^ (i = l ,2j and adding 1 to each of nbl+h and
nb2-k> for 1 ^ h < [(b-2 — bi)/2], is called an internal reallocation from 6j and b2

via h and is denoted by I(bi,b-y, h).

Remark: The term internal is used since b\ < b\ + h < b2 — h < b2.

Definition 2.5 For any allocation of integers na,na+\,... ,na+m such that nbi ^

0 (i = 1,2) where a < b\ < b2 < a + m, the operation which forms a new allocation

by subtracting 1 from n^ (i = 1,2) and adding 1 to each of' n\>l_}l and nk2+h, for

1 < h < min(bi — a, a + m — b2), is called an external reallocation from b\ and b2

via h and is denoted by E(bi, b2; h).

Remark: The term external is used since b\ — h < b\ < b2 < b2 + h.

Definition 2.6 The maximising allocation Ao(t,a,m,q) has n ° , n ° + 1 , . . . , n° + m ,

where « ° + m = [(<7 — at)/iii] and
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(i) if q — at = 0 (7710c? m), then n°a = t — \{q — at)/m], n° = 0 for

a < i < a + m,

(ii) if q — at = k {mod m) where k / 0, then n°a = t — 1 — [{q — at)/m],

n°a+k = I, nt = 0 for a < i < a + m (i ^ a + k).

Lemma 2.2 Any allocation na, 7 i a + i , . . . , na+m, which satisfies J2i=™ n> = * and

YLIlT ini — Q> for integers a, m and ii{ (i = o, a + 1 , . . . , a + m), can be reached

from Ao(t,a,m,q) by a sequence of 1-step internal reallocations.

Proof: Let Ag denote the set of allocations formed by applying all possible

internal reallocations /(61, 62; h), for all 1 < h < [(62 — 61 )/2], to the members of

Ag-i (g — 1,2,...) where AQ = {AQ}. Assume the elements of Ag are (partially)

ordered by the value of h.

The sequence of enumerations is finite since at some stage, G — \ say, AG-I

will consist solely of allocations with the property that nu = t — (3, nu + 1 = (3

a n d rii = 0 for 0<f3<t, a<i<a-\-m a n d a < u < a -\- m — 1 s u c h t h a t

unu + (u + l)nu+i = q (i 7̂  u,u + 1)- From Definition 2.4, there are no possible

internal reallocations I(n,u + 1; /i), and ^4G = <f>- Hence, by starting at AQ and

progressively reallocating internally, all possible allocations must be considered.

Remark: This result is reinforced by showing that external reallocations will

not yield any new allocations. There are no feasible external reallocations from

AQ G AO since E(a,a-\- m;h) does not exist. Now consider A\. From Defini-

tions 2.4 and 2.5, it is clear that any E(bu b2; h) will yield an allocation which is

already a member of A\ or AQ. NOW assume AQ,A\, . . . , Ag-\ have already been

enumerated, then by definition Ag is generated from Ag-\ by internal realloca-

tions. Any external reallocation operating on Ag-\ gives a member of U?=i ̂ -i-

Hence, if all possible internal reallocations of Ao, A\,... are enumerated until

AG = <!>•, all possible allocations satisfying the required conditions must have

been considered.

The following theorem establishes that the maximising allocation Ao max-

imises tr(Anc)] the subsequent corollary gives an explicit closed form for the

maximum value of ]C;=i rl •

Theorem 2.4 For integers a, m. (a, m > 0) and nt- (i = a , . . . , a -f m) such that

£°="1 n{ = t and YTi=dl ini = a> the function S = E"=a" ̂ ni is maximised by the

allocation Ao(t,a,m,q).
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Proof: The approach taken is to show that any changes to the allocation AQ

result in a reduction in S. From Lemma 2.2, all permissible allocations can be

generated by starting at allocation Ao and performing all possible I(bi, b2; h) on

each set of allocations. A general set of allocations Ag will be examined. The set

is generated by applying each /(&i, b2; h), for h = 1 , . . . , [(b2 — 6i)/2], to the

members of Ag.

Consider a particular member of Ag, having n:- = n9 for i — a,... ,a -\- m,

and apply a particular I(bi,b2;h0), where 1 < h0 < [(b2 — &i)/2]. Then, by

Definition 2.4, the members of Ag+\ are obtained which have n£* = n9
hi — 1,

<IHQ = n9
bl+ho + 1, < \ = nl_ho + 1, < + 1 = < - 1 and n°+1 = n? for

i — a,...., a + m such that i ^ b\, bx + /io, &2 ~ ^o, b2- Hence, the contributions to

S from the particular allocation in Ag and the new allocation in Ag+\ differ by

sg-sg+l = bl-ih + hof-ibi-hoY + bl

= 2/io(>2 - 61 - h0).

Since 1 < h0 < [(b2 - 6i)/2], it follows that b2 ~W~ h0 > 0. Hence Sg - Sg+1 > 0.

This shows that any allocation in Ag+\ will always make a smaller contribution

to S than its parent allocation in set Ag which must, in turn, make a smaller

contribution to S than its parent allocation in set Ag-\. Hence, by iteration, the

theorem is proved.

The following corollary establishes the maximum value of S.

Corollary 2.3 For integers a, m (a, m > 0) and n,- (i = a,..., a + m) such that

E?=o
m n{ = t and YZ=T ini = <1> the maximum value of S = £i=a

m i2rii is

(m + 2a)(q — at) + a2t if q — at = 0 (mod m)

(a + m)2 [i=sl] + (a + kf + a2 (t - I - [*=2*]) otherwise.

Proof:

Case I: When (7 — â  = 0 (mod m) then, from Theorem 2.4, na+Tn = (q — at)/m,

na = t — (q — at)/m and n,- = 0, f = a + 1 , . . . , a + m — 1, will give the maximum

value of 5, namely

max S = (a + m)2(q ~ at)/m + a2(t — (q — at)/m)
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Case. II: When q — at = k [mod m), k / 0, then again using Theorem 2.4,

na+m = [(q ~ at)/m], na+k = 1, na = t - 1 - [(</ - at)/m] and n,- = 0 for

i = a + I,..., a + m — I, i ^ a + k,

max J =

The following theorem establishes a second upper bound on tr(Afic).

Theorem 2.5 Any connected row-column design d, having t treatments arranged

in R rows and C columns and information matrix ARC has

RC-^{RC + R(2C-t)[C/t}-Rt[C/t]2}

- j{RC + C(2R - t)[R/t) - Ct[R/t}2} + max

where max{*£)=i r]} is as in Corollary 2.3 with a = 7'/ = max(C[R/t], R[C/t], I),

a + m - rh = min{C[R/t] + C, R[C/t] + R), q = RC and RC - rtt = k {mod

rh-ri).

Proof: By (2.5), maximising tr{ARc) is equivalent to minimising

, t R , t C i t
1 x—^ x—v 2 J- ^—v V "V 2 -I ^—V 2

^ ,-=1 j=l l t i=\ i=l ^ u ,-=1

subject to the constraints

l- E> /o^ to c^

Expressing L as a function symmetrical in the n/j,j's and

c ^ t Ic R

En^u + E
t=i \i=i

To apply the method of Lagrange multipliers let
Y t R j t c \ x { c R

L* = r E E nH,i + n E E nco- - Tor E E nco- + E

i=l j=l 1=1 i=l
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where Ai and Aj are Lagrange multipliers. Then

dL* 2 1

Setting this expression equal to 0 and using (2.8), Ai can be evaluated in terms

of t, R and C and gives njnj — C/t. This is a minimum point of the function L

since
&2L* 2 1

Since L is symmetrical, ncij = R/t also gives a minimum point.

Hpwever, the n#,j's and ncij's are required to be integers, and since L is

a continuous function the solution is taken which has the ra^'s (i — \,...,t;

j = l,...,k; k = R,C) as equal as possible subject to this constraint. This

occurs when the n/j,-j's are equal to [C/t] or [C/t] + 1 and the ncij's are equal to

[R/t] or [R/t] + 1. It is easily verified that C{t[R/t] + t - R) of the nC l j ' s should

be set equal to [R/t] and the remaining C(R — t[R/t]) set equal to [R/t] + 1, and

/?(£[C/i] + t — C) of the nmj's should be set equal to [C/t] and the remaining

R{C - t[C/t]) set equal to ([C/t] + l). Then

minL = ^{i2C + /2(2C-O[C/i]-/fc[C/i]2} (2-9)

i C{2R - t)[R/t] - Ct[R/t]2} (2.10)

2

Note that the terms (2.9) and (2.10) are the same as those obtained by applying

Lemma 2.1 separately to Ylti=iJ2j=in1iji k = R,C. Since I3j=i nCij — fi =

T,f=\nRij (i = l,...,t), the term (2.11) can be shown to equal ( £ ' = 1 r?)/RC

and bounds ?•; and r^ on the range of possible values for 71,- {i = 1 , . . . ,t) can be

developed. These are

max(C[R/t],R[C/t],l) < n < min{C[R/t] + C,R[C/t] + R).

Using Corollary 2.3, with a — 77, a -\- rn = r^, <l — RC and RC — r\t = k (mod

f'h — ?";), the maximum value of 5Z|=i rl c a n ^ e calculated directly. It then follows

that the maximum value of tr(Ajic) is RC — min L, as in the statement of the

theorem.
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Remark: Several different formulations of L were minimised which, when
tested, all gave the same numerical values of the bound. The above formulation
was chosen because it produced a symmetrical bound and the restricted range
for the feasible replications enabled the maximum value of 5" = J2]-i ri to be
expressed in closed form.

A further bound on the total variance is now obtained by using Corollary 2.2
with cmax equal to the upper bound on tr(ARc) of Theorem 2.5.

Definition 2.7 Let the lower bound B2(H) on the total variance of the dual
versus single treatments contrasts be

B2(H) = (£0]/2)2/max{tr(ARC)}

where 9{, i = 1, . . . , t — \, are the non-zero eigenvalues of the H'H matrix for H

given in (1.12) and max{tr(ARC)} 25 the upper bound of Theorem 2.5.

Examples 2.1 and 2.2 are now reconsidered to see whether B2(H) improves upon
Bi(H) in these two cases.

Example 2.3 For n = m = C = 3 and R = 8, B2{H) = BX(H) - B(H) =
6.3185 and since Bp = 5.3333, B(H) remains the tighter of the two bounds.

Example 2.4 For m = 2, n = 4, R = C = 4, B2{H) takes the value 5.4530
which improves upon B\(H) = 5.1122 by 6.6% and since Bp = 5.1667, B2(H) is
the tighter bound and has an improvement of 5.5% on the value of Bp.

2.6 Assessing the accuracy of the bounds

In order to test the accuracy of the bounds of the previous section, a program
written by Jones & Eccleston (1980) was used. This program will be referred
to as JE in this thesis. The algorithm allows two user-given components or
computer-generated components to be almagamated in order to obtain a row-
column design. In both cases, the algorithm then uses exchange and interchange
procedures on the initial row-column design in an attempt to find the A-optimal
row-column design for the specified experiment size. The program has parameter
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limits of fifteen on each of the number of treatments, rows and columns and tends
to become slow when processing large designs. However, it has been very useful
in assessing both design and bound performance and a comparison with JE has
been included in all the design assessments given in Chapter 3.

Definition 2.8 The discrepancy of a design d compared with a value Q for the
estimation of HT is

tr(HndH') - Q
Q

x 100.

For the purposes of this thesis the value Q will either represent a lower bound on
the total variance of our contrasts of interest or min{tr(HridH')} found by JE.

A numerical assessment of the bounds Bi(H), B2(H) and Bp was performed
for the parameter values 2 < m < 5, 3 < n < 5, 2 < /?, C < 15. This revealed
that Bi(H) only improved upon Bp when R was small in comparison with the
number of treatments. This is illustrated in Example 2.1 where B\{H) is greater
than Bp and has a discrepancy of 6.9% with tr(HQ.ncH') of the design found
by JE with the smallest total variance of the estimators of the dual versus single
contrasts. Hence B\{H) is an acceptable bound in this case. In Example 2.2, Bp
is the tighter of the two bounds, yet it has a discrepancy of 34.1% with the total
variance of the contrasts of interest of the most A-efficient design found by JE,
so neither bound performs well in this particular case. The proportion of cases
in the numerical study for which B\(H) > Bp for each value of t depends on t;
an exact relationship has not been formulated. For the experiment sizes used in
the assessment, the proportion of cases for which B\(H) > Bp ranges from 25%
to 50% for 5 < t < 24.

The performance of the bound B2(H) is now considered. The same numeri-
cal study showed that B2{H) > B\(H) for the entire range of parameter values.
Hence the bound B\(H) is not used in any further work. The largest improve-
ments occur when R is small compared with the size of t and C. These conclusions
are reinforced by considering Examples 2.3 and 2.4. In the latter, B2(H) is the
tighter bound and has a discrepancy of 27.1% with tr(HflRcH') of the most A-
efficient design found by JE. Although this is a poor performance it is better than
the 34.1% discrepancy between Bp and the results of JE. In the first example
which has t — 1 = R > C, it is seen that B2{H) does not improve upon B\{H).



Chapter 2 33

It is also interesting to consider for which parameter values the bound

improves upon Bp. The numerical comparison revealed that B2(H) is greater

than Bp when R is small in comparison with t which is also when B\(H) tends

to improve upon Bp. It was noted that although B2(H) is always greater than

or equal to B^(H), the improvement gained through using B2(H) is often to no

avail because Bp remains the tighter bound. There were some cases where B2(H)

improved on both B\(H) and Bp to overtake Bp as the tighter bound but these

were relatively few. The proportion of cases in the numerical study for which

B2{H) > BF ranges from 0% to 15% for 5 < t < 24.

The following two examples serve, to further emphasize the points made above.

In Example 2.5, t is less than both R and C and Bp is seen to be the tighter

bound whereas Example 2.6 shows that B2(H) is tighter for small R and C.

Example 2.5 For m = 2, n = 3 and R = C = 14, B2{H) = 0.1810, BF =

0.1989 and for these parameter values the most efficient row-column design, under

the A-criterion, found by JE has tr(HQficH') = 0.2008. The discrepancies of

bounds B2(H) and Bp with the result of JE are 10.9% and 0.9% respectively,

indicating that, although B2(H) is acceptable for this experiment size, Bp is much

tighter.

Example 2.6 For m = 2, n = 3, R = 5 and C = 2, B2(H) = 5.6472, BF =

4.0 and the best row-column design, under the A-criterion, generated by JE has

tr(HQjicH') = 6.4. The discrepancies of B2(H) and Bp with the result of JE

are 13.3% and 60% respectively, indicating that B2(H) is an acceptable bound for

these parameter values while Bp has a very poor performance.

2.6.1 Recommended bound

Since it has not been possible to determine conditions under which one bound is

uniformly tighter than the other, the recommended overall bound B is

B = max{BF,B2{H)}. (2.12)

A further assessment of bound performance will be made in Chapter 3 by com-

paring the shortfall between the bound of (2.12) and the total variance of the

best design, under the A-criterion, found by JE.
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Row-column Designs with

part-balance for the dual versus

single treatment comparisons

3.1 Introduction

The purpose of this chapter is to investigate row-column designs which have

both component designs part-balanced with respect to the dual versus single

treatments contrasts.

Balanced row-column designs with t treatments, each replicated re times and

arranged in R, blocks of size C, have the property that all pairwise treatment

comparisons are estimated with the same accuracy under model (1.1). However,

these designs only exist for limited combinations of t, R and C, and generally

require an infeasibly large value of ?-
e. Part-balanced row-column designs are a

compromise between total balance and the absence of balance. The advantage

of using part-balanced designs for estimating the dual versus single treatments

comparisons is that all the dual versus A comparisons are estimated with a com-

mon variance, VA say, and all the dual versus B comparisons are estimated with

a common variance VB-

In this chapter, several types ot row-column designs are examined. The family

of reinforced group divisible row-column designs is defined in Section 3.3 and

necessary conditions for the existence of the designs are established. Properties

34
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of the designs are investigated in Section 3.4. In Section 3.5, efficient row and

column component designs selected from the classes of R-type and S-type part-

balanced designs are identified. The construction of row-column designs using

these components is discussed in Section 3.6. For both these families of designs,

tables are given listing the most A-efficient PBDS row-column designs found

which also include a critical assessment of design performance against the bounds

of Chapter 2 and against the most A-efficient design found by JE.

3.2 PBDS Row-Column Designs

From .Theorem 1.1, a row-column design has part-balance with respect to the

dual versus single treatment contrasts if and only if its information matrix, ARC-,

has structure (1.14).

Definition 3.1 Let DRC{n,m,R,C) be the. class of all connected row-column

designs for an n X ??i experiment with 00 excluded, arranged in R rows and C

columns.

Designs in DRC can be obtained by amalgamating row and column PBDS designs,

as in the following example.

Example 3.1 For m=2, n=3, R=3 and C=6 and using designs tabulated by

Gcrami (1991) let the row component be

Block 1 01 10 20 11 11 21

Block 2 01 10 20 11 21 21

Block 3 01 01 10 20 11 21

and the column component be

Block 1 01 10 11

Block 2 01 20 21

Block 3 01 10 11

Block 4 01 20 21

Block 5 10 11 21

Block 6 20 11 21.
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On amalgamation, the following row-column design is obtained

01 20 10 21 11 11

10 01 11 20 21 21

11 21 01 01 10 20.

The following theorem shows that any row-column design constructed in this

way has part-balance.

Theorem 3.1 Let d £ DRC(n,2, R,C) have PBDS row and column component

designs, then d has part-balance for the dual versus siiigle treatment comparisons.

Proof: From (1.7), the structure of ARC depends on the structure of AR, AC and

r and from (1.14), AR and Ac have the form

aj3l
f
p

\

»3lP b6lv + b7Jp b8lp + bgjp J

Let 7- have ith entry ?•,• (i = 1 , . . . , 2n — 1). Then

"•' 5 1

RC — r = RC

7"i(T-! - RC)

r2(r2-RC) ...

\ • • • » '2n-l(^2n-l ~

Since PBDS designs have a treatment replication vector of the form

rB rAl'n_i rD\'n_

(3.1)

/

where j = R ov C respectively. Then, putting 6,- = a#,- -f aci (i = 15 • • •»9),

(3.2)

it follows that ARC has structure (1.14).
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Corollary 3.1 The information matrix for a roiu-column design d 6 D*RC{n,2, R, C)

with part-balanced row and column component designs has structure (3.1) with

j = RC, and

aC\ - rB + r%/RC

+ ace

+ aCi + rArD/RC

= (IRS + acs — ro

rD/RC.

In this thesis, attention is restricted to connected row-column designs, that

is designs for which ARC has only one zero eigenvalue. The following lemma

characterises connected designs in the PBDS class.

L e m m a 3.1 Let d be a PBDS block or row-column design with information ma-

trix (1.14), then d is disconnected if and only if a\ = a4a8 or (a6 + pen)2 —

(0,4 + pa$)(a§ + pag), where a,- (i = 4 , . . . , 9) denote URd, ciRi or aa, the pa-

rameters of the information matrices of the row-column design, row and column

component designs respectively.

Proof: If design d is disconnected then at least one of the eigenvalues, denoted by

Aj- (i = 1 , . . . , t — 1), of the information matrix Ad must be zero. From Table 3.1,

Ai = 0 implies 7 < 0 and (ae + paj)2 = (a± + paz,)(as + pa$) and A2 = 0 implies

7 > 0 and (a6 -f- po.7)2 — (a4 + pa5)(a8 + pa9). Hence, if Ai or A2 is equal to zero

then (a6 + pa7)
2 — (a4 + pa5)(as + pa9). Similarly, A3 = 0 implies a4 + a8 < 0 and

a\ = a4a8 and A4 = 0 implies a4 + a8 > 0 and a\ = a4a8. Hence, if A3 or A4 equal

to zero then a\ = a4a8.

Conversely if («6 + pa7)
2 = (a4 + pa5)(a8 + pag) then

_ 1 0 if 7 < 0

7 otherwise
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Table 3.1: Eigenvalues of the intra-block information matrix of a PBDS design; 7

denotes (p+ l)(a4 + pa5 + a8 + pa9) + 2p(a6 + pa7), p = n — 1 and a 4 , . . . ,ag denote

the parameters of the information matrix of the design, see equation (1.14).

\ _ 7+vv-M

7-A/72+4

, _ ai+as + y/

\ 4 T 8 y

j A 5 = 0

Eigenvalues

(2p+l)[(a6+pa7)
2-{ai+pa5)(ai+pa9)]

1

(2p+l)[(a6+pa7)
2-(a4+pa5)(a8+pa9)]

2

(a4+ag)2+4(a2-a4a8)
2

(a4 + n8)2+4(a2-a4a8)
2

Multiplicity

1

1

p-1

p-1

1

and

A2 =
- 7 if 7 < 0

0 otherwise

where 7 is given in Table 3.1. Hence either Ax or A2 must be zero for all a,-

(i = 4, . . . , 9 ) . If a§ = a4a8 then

0 if a4 + a8 < 0

34 + a8 otherwise
A,

and
— (o4 + a8) if a4 + a8 < 0

0 otherwise

Hence either A3 or A4 must be zero for all a,- (i = 4 , . . . , 9).

3.3 Reinforced Group Divisible Designs

The purpose of this section is to examine necessary conditions for a row-column

PBDS design to be constructed from row and column components which are
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both reinforced group divisible designs. Firstly, consider the definition and some

properties of group divisible (GD) designs.

Let ^i = m\v%2 treatments be arranged in m\ groups each of m2 treat-

ments, where treatments in the same group are called first associates and those

in different groups are called second associates. A GD design with parameters

(6, fc,re, Ai, A2) has b blocks of size k, equal treatment replication re and each

treatment appearing Ai times with each of its first associates and A2 times with

each of its second associates.

All GD designs have parameter values which satisfy certain conditions, see

John (1980, Chapter 5). In particular,

reU = bk (3.3)

re(k-l) = A 1 ( m 2 - 1 ) + A27n2(m1-1) (3.4)

rek > 0 (3.5)

A2 < rek/ti (3.6)

Ai < re. (3.7)

The following definition of a reinforced group divisible design (RGDD) for an

n x 2 experiment with b blocks of size k, where 2 < k < t = 2n — 1, is due to

Gerami L Lewis (1992).

Definition 3.2 Let d\ be a group divisible design with m\m2 treatments, where

rn\ = n — 1 > 2 and m2 = 2, replication re, b blocks of size k\ = k — 1 > 2 and

jth associates occurring in \j blocks (j = 1,2). Map the treatment labels in d\ to

iO, i\ (i = 1 , . . . ,n — 1) so that iO, i\ (i = 1 , . . . ,n — 1) form the pairs of first

associates. A reinforced group divisible design is then formed by reinforcing each

block by the inclusion of treatment 01.

It follows from Definition 3.2 that an RGDD has part-balance for the dual

versus single contrasts and will always have a replication vector of the form

r' = ( b rel'n_1 rel ' l_1 J . Hence, from Theorem 3.1, any row-column design

having RGDD components has part-balance. This suggests that RGDDs may

make suitable components for row-column designs.

Definition 3.3 A reinforced group divisible row-column (RGDRC) design is a

design having row and column components which art both reinforced group divis-

ible designs.
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The following example shows that such row-column designs exist.

Example 3.2 Suppose m = 2, n = 3 and R = C = 4 and identical row and

column RGDD components are used:

Block 1 01 10 11 21

Block 2 01 20 11 21

Block 3 01 10 11 21

Block 4 01 20 11 21,

which amalgamate to the RGDRC design

01 11 10 21

11 01 21 20

10 21 01 11

21 20 11 01.

Note that the above example has an equal number of rows and columns. The

following result shows that reinforced group divisible row-column designs exist

only when the numbers of rows and columns are equal.

Theorem 3.2 A necessary condition for the existence of a reinforced group di-

visible row-column design in an R x C array is that R = C.

Proof: The parameters of the row-column design are subject to the conditions

imposed by the group divisible construction of the component designs. Let the

row component design have R blocks of size C and arise by reinforcing a group

divisible design with parameters (i?, C — 1, re, Af, A^). Then from (3.3), (3.4),

(3.6) and (3.7),

2re(n-l) = R{C-1) (3.8)

r e(C-2) = A? + 2(n-2)A* (3.9)

x? * igfiT (3'10)

Af < re. (3.11)
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Similarly, the column component design is formed from a GD design with param-
eters (C, R — 1, re, Af, Af) and hence

2 r e ( n - l ) = C(R-l) (3.12)

re{R~2) = Af + 2(n-2)Af (3.13)

Af < re. (3.15)

Equating (3.8) and (3.12) gives 2re(n - 1) = i?(C - 1) = C(.R- 1) and the result
follows.

A further necessary condition is identified in Theorem 3.3 for which the fol-
lowing two lemmas are needed. The first lemma investigates conditions on the
parameters Ai and A2 of the component designs.

Lemma 3.2 A necessary condition for a row-column design to be obtained from
two component reinforced group divisible designs with respective parameters (R, R—
l,7-e,Af,Af) and (R, R — l,re, Af, Af), for the row and column component de-
signs, where Af ^ Xf for at least one of i = /?, C, is

|Af-Af| >2(n-2).

Proof: Using Theorem 3.2, equations (3.9) and (3.13) can be rewritten as

re(JR-2) = Af + 2(n-2)A«

and
re(R - 2) = Af + 2(n -

respectively. Hence
A? - Af = 2(n - 2)(A£ - A£). (3.16)

Since n > 3 by Definition 3.2, from (3.16) and the fact that A^ ^ Xf for at least
one of i = R,C, it follows that both Af / Af and Af ^ Af. Without loss of
generality let Af > Af then, from (3.16), Af > Af. Since XJ

2 (j = R,C) are
integers, by definition, Af - Af > 1. Hence Af - Af > 2(n - 2).
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Lemma 3.3 For any two reinforced group divisible component designs in the
class D*(n,2,R,R), of Definition 2.2, with the property that Xf ^ Xf (i = 1,2),

2(n - I)2

Proof: The first step is to establish a lower bound on Aj (j — R,C). Using (3.9)
and Theorem 3.2, A^ can be expressed in the form

R
re(R - 2) - Af

2 2(n - 2)

and hence, by (3.10),

<

2(n-2) ~ 2 (n - 1) '
It follows, after some manipulation, that

re(R ~ n) < R

7 1 - 1 - 1 -

Hence, using (3.11),
TejR-n) < x R <

A similar argument, using equations (3.13), (3.14) and (3.15) shows that

n — 1

Now, assuming again without loss of generality, that Af > Af,

Mn(R) = max(\*) - mm(Af)

r e ( 2 n - i ? - l )
n - 1 '

But re = i?(i? - l)/{2(ra - 1)} from (3.8) with R = C. Hence
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Theorem 3.3 A necessary condition for the existence of a reinforced group di-

visible row-column design, with component parameters (R,R — l,re,Af, A )̂ and

(/2, /2-l ,r e ,A?,Af), isthat\? = \f (i = 1,2).

Proof: Suppose that Af ^ Af for at least one of i = 1,2. Then, from (3.16),

Af ^ Af (i = 1,2). From Lemmas 3.2 and 3.3, it follows that a necessary

condition for an RGDRC design to be obtained from two component designs

with different association parameters is

Mn(R)> | A f - A f | > 2 ( n - 2 ) . (3.17)

To investigate whether this inequality can be satisfied, the maximum value of

Mn(R) for fixed n is evaluated by setting the derivative of Mn(R) with respect

to R equal to zero. This gives the equation

3R2 -4nR+ (2ri - 1) = 0

which has roots
2n ± \Mn2 - 6n + 3

R = 3 •

The root with the negative sign is infeasible since

4n2 - 6n + 3 = (2n - 3/2)2 + 3/4.

Hence, 2 - 6n + 3 > 2n - 3/2,

and on substituting for R,

_ 2n - x/4n2 - 6n + 3 2n - (2n - 3/2)
R = 3 < 3̂

Since i2 > 2, it follows that R = [2n + yj^n2 — 6n + 3)/3 is the only feasible

solution. This value of R is easily shown to maximise Mn(R) for fixed n by

evaluating its second derivative.

Evaluating Mn(R) &t R = (2n + \/4n2 - 6n + 3)/3 gives

f . . , D U (8n3 - 18n2 + 9n + (4n2 - 6n + 3)3/2)
" • « « {Mn(i?)} = * 2 7 ( n - l ) 2 •

Therefore

+ 198n2 - 261n + 108 + (4n2 - 6n + 3)3/2

maxR{Mn{R)}-2{n-2) =
27(n-l)2

(3.18)
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which is dependent on n only. It is easily shown that — 46n3 + 198n2 — 261?z + 108 <

0 for n > 3 and that (4n2 - 6n + 3)3/2 > 0 for all n. From (3.18) and the fact

that \/4n2 - 6n + 3 < 2n - 1 for n > 2, it follows that

-38n 2 + 148n - 107
maxR {Mn{R)} - 2(n - 2)

27(n - 1)

Therefore maxR {Mn(R)} - 2(n - 2) < 0 for n > 3 and R > 3. Hence (3.17) can

never be satisfied and the theorem is proved by contradiction.

Corollary 3.2 A necessary condition for the existence of a reinforced group di-

visible row-column design is that AR = Ac-

Proof: Using Theorem 3.2, the information matrices for the RGD component

designs can be written in the form

1 R(R-l) -re\'p - r e l p \
7, 1 [",, ( E> T ̂  _i_ \̂ ? I T U 7 ( \3 \J \ T \3 J
' e -*-p 1' 6 V -̂  ^ ^ ) ~i ^*2J V 2 V \ 1 2 / V 2 P

- y e l p -(Aj - AJ
2)/P - AJ

2JP [ r e ( i 2 - l ) + A ^ ] / p - A y p

(3.19)

for j = /?, C. Then the result follows directly from Theorem 3.3.

3.4 Properties of RGD row-column designs

A useful feature of row-column designs constructed from RGD components is that

the variances of the dual versus single treatment comparisons can be expressed

in terms of the parameters of the information matrix of the repeated component

design.

Theorem 3.4 The variance-covariance matrix of a reinforced group divisible

row-column design is HQRCH'O-2 where

2(zi - x2)Ip

H is given in (1.12), xA = aRC4/(siS2), x2 = -aRc&l{siS2), y = -aRC5/{s2(s2 -f

2p<iRCs)}, s-i = aRc4 - (iRC6 and s2 = aRC4 + CIRCS-
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Proof: The information matrix of an RGDD for a single blocking factor is of the

form (3.1) with

an = R-l, (3.20)

aj2 = aj3 = -re/R, (3.21)

aj4 = aj8 = [re(R - 1) + \2}/R, (3.22)

O.J5 = Oj7 = Oj9 = —A 2 / /? , (3.23)

aj6 = -(Aj - A2)/i?. (3.24)

From Theorem 3.3, an RGDRC design has the same parameters for the row and

colum.ii components. From Corollary 3.1, it follows that the information matrix

for the row-column design will be of the same form as the information matrices

for the components but with corresponding entries aRc\ — R—l, aRC2 = ~re/R,

aRC4 = [re{R-2) + 2\2)/R, aRC5 = -(2RX2-r
2
e)/R

2 and aRC& = -2(X1-X2)/R.

In order to find a generalised inverse of the row-column information matrix, ARC

is expressed in the form

C-RCl

where F = [{(aRC4 - aRc&)h + a^ce-M ® h + aRChh % Jv]- Then, from Searle

(1971, p2), a generalised inverse VtRc of ARC is F~l augmented by a first row and

first column with every entry zero. F " 1 is found by applying the following result

(X ® Ip -f Y ® Jp)
 A = X ® /P — {(X + pY) YX } ® Jp,

which holds for any square matrices X and Y for which all the inverses exist. In

this particular application X = {aRc4 — aRc&)l2 + a>Rc&J2 and Y — (iRcsh- Using

the result

(alt + h J t ) ' 1 = -It - , ,.nJt, (3.25)
a a[a + to)

the inverse of X can be written as

X~l = 12 ° ^ J2-
&FLC4 ~~ 0-RC6 \dRC4 ~ O-RC&)\aRC4 + O-RC&)

Since (X + pY) = (a^C4 — aRC6)h + (pa-RCs + aRce)J2, a further application of
(3.25) gives

(X + pY)-1 = h -



Chapter 3 46

J2 —
~ O.RCQ

0-RC5

0-RC4

Hence

(X + pY)~lY

and

{* +

It follows that

w h e r e x a = R C 4 / ( i 2 ) , 2

C.RC4 — 0-RC6 a n d S2 = 0KC4 +

The generalised inverse can be written as

+
r

+ 2pa,RC5)
Ji

J2.

- ar2)/2 + z2J2] J
p ,

y = - + 2paRC5)}, sx =

O'p
p x2Ip + yJp

0 O'p

Op X\IV +

\ Op X2IV +

Note that it can be verified that ARC^IRC ARC = ARC-

For an n x 2 experiment, the contrast matrix (1.12) is

H =

Hence

(3.26)

Note that the variance-covariance matrices for the single blocking factor compo-

nents are of the form (3.26) with the same expressions for xi, x2, y, s\ and s2,

given in terms of the a^j for j = 1 , . . . , 9 and k = R,C.

The dual versus single contrast variances can now be expressed in terms of

the parameters of the component designs.

Theorem 3.5 A reinforced group divisible row-column design has

VRCA = var{Tix - rl0) = —7
£] r
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and

VRCB = var(fn - T01)

2a4-re 2a5 + r2
e/R

2 ] 2

(2/: - re)(2/2 - re) (2/2 - re)(2/2 - re + 2p[2a5 + r2jR2})_ a

for i = 1 , . . . ,p, where f\ = a4 — <Z6, / 2 = a4 + a6 and i/ie aj (j = 1 , . . . , 9) are

parameters of the row component design.

Proof: From Theorem 3.4,

2
VRCA = 2(zi - x2)a

2 = —a2

s

and
, , x 2 (aRC4

VRCB = (an + y)o- =

From Corollary 3.1, the ORCJ:S can be written in terms of the a;?/s and

(j — 1,...,9) and, from Corollary 3.2, QRJ — acj for j = 1,. . . ,9. Let aj

(j = 1,...,9) denote the parameters of the component design then the result

follows after some algebraic manipulation.

This section concludes with a table listing the RGDRC designs. The compo-

nent designs were identified by examining the group divisible designs tabulated

by Clatworthy (1973), Freeman (1976) and John Sz Turner (1977) for suitable

candidates for amalgamation. In general, the tabulated row-column design is not

unique. It is the solution obtained by using the algorithm JE to amalgamate

two component designs, see Jones h Eccleston (1980). For the smaller designs,

amalgamation by hand is possible.

Some of the designs can be obtained by manipulating sets of mutually orthog-

onal Latin squares (MOLS), see the first entry of Table 3.2. This design has 3 x 2

treatments arranged in a 4 x 4 array and the group divisible part of the compo-

nent design is an unreduced balanced incomplete block design with t = 2n — 2

treatment labels in an R x (C — 1) array. This design can be transformed to a

Latin square by reinforcing each block with its previously missing A-alone or dual

treatment. The Latin square can then be rearranged to have t distinct elements

on the diagonal, provided that a set of MOLS exists for that order. The RGDRC

design can be found by replacing each of the diagonal elements by the B-alone

treatment, 01. The third entry in Table 3.2 which has seven treatments in a 6 x 6
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array also has an unreduced balanced incomplete block design as its group divis-

ible part of the component design. Unfortunately, the row-column design cannot

be constructed using the above method since a set of MOLS does not exist for

order six.

The small number of designs in this family, due to the restrictions on com-

patible designs given in Section 3.3, has made it difficult to identify similarities

in the arrangements of the treatments in the row-column designs.

The figures in the column headed % Disc in Table 3.2 are the percentage

discrepancies for the row-column design, the row component and the column

component, each compared with an appropriate bound. The fourth figure repre-

sents the discrepancy between the listed row-column design and the most efficient

design, under the A-criterion, found by JE.

It can be seen that the designs for n = 4 in a 6 x 6 array and n = 8 in a

7 x 7 array perform well since they both have a discrepancy of less than 10%

with bound B of (2.12) and very small discrepancies with the total variance of

the contrast estimators of the most A-efficient design found by JE. The design

for n = 3 in a 4 x 4 array performs well in comparison with the most A-efficient

design found by JE but has a discrepancy of 14.7% with the bound. However,

it was remarked at the end of Chapter 2 that neither of the bounds B2(H) and

Bp perform particularly well for the case where both R and C are less than t. It

should be noted that this PBDS row-column design has a smaller total variance

for the estimators of the contrasts of interest than any other PBDS row-column

design found for parameters n = 3 and R = C = 4 and hence also appears in

Table 3.5 at the end of the chapter. The design for n = 4 in a 4 x 4 array

performs poorly compared with bound B of (2.12) and with the most A-efficient

result found by running JE. However, it is a considerable improvement on the

PBDS row-column design with S-type components which is listed in Table 3.10.

This section has shown that reinforced group divisible row-column designs can

be as efficient or more efficient than some other PBDS designs and are a useful,

but limited, source of designs. In the remaining sections of this chapter different

types of PBDS component designs are investigated.
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Table 3.2: Reinforced group divisible row-column designs for m = 2

n

3

4

8

R

4

4

6

7

8

C

4

4

6

7

8

Row-column design

01 20 11 10

10 01 20 21

11 21 01 20

21 11 10 01

01 10 20 30

10 01 31 21

20 31 01 11

30 21 11 01

01 10 20 30 21 11

10 01 11 21 20 31

20 11 01 10 31 30

30 21 31 11 10 01

21 31 10 01 30 20

11 20 30 31 01 21

01 20 40 41 10 21 11

20 21 30 50 51 01 31

40 31 41 01 60 61 30

41 51 01 40 50 70 71

10 50 61 51 11 60 01

21 01 60 71 61 20 70

11 30 31 70 01 71 10

01 10 20 40 30 50 60 70

10 01 41 21 51 30 71 60

20 41 01 10 61 71 31 50

40 21 10 01 70 61 51 31

30 51 61 70 01 11 20 41

50 30 71 61 11 01 40 21

60 71 31 51 20 40 01 11

70 60 50 31 41 21 11 01

% Disc

R-C Row Col JE

14.7 6.6 6.6 0.6

Most A-efficient design

found in the study

for this expt size

65.0 24.3 24.3 31.1

More A-efficient

than R-C design

of Table 3.10

7.8 5.1 5.1 3.0

PBDS R-C design in

Table 3.12 has smaller

total variance

7.7 2.8 2.8 0

26.2 12.2 12.2 17.2
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3.5 PBDS row-column designs using R- and S-

type block components

In this section, a special class of component designs is discussed. The class is

a subclass of PBDS designs for a single blocking factor, arranged in b blocks

each of size k. The section briefly outlines the subclass of C-designs and shows

the structure of three distinct types. In Section 3.6, a method of obtaining row-

column designs by amalgamating pairs of tabulated C-designs is described.

C-designs are defined and obtained by Gerami, Lewis, Majumdar & Notz

(1993),. The approach followed is to establish a design dependent bound on the

trace of the inverse of the information matrix of the contrasts of interest, M"1 ,

using permutation matrices in a similar way to that of Kiefer (1975). The lower

bound for any connected design d is given by

)>tr(M^), (3.27)

where Md is the average of Md over all possible permutations in H — {ir : vr =

h ®Vi} a n d Pi, for i = 1 , . . . , (n — 1)!, is the full set of permutation matrices each

having order n — 1.

An upper bound on tr(Mjx) is developed which can be expressed in terms of

combinatorial features of the design using the following notation:

Let iiBj-, nAij a n d nDij denote the replications within the jth block (j =

1 , . . . , 6) of the treatment combinations 01, iO and i\ belonging to treatment sets

B — {01}, A — {iO; i = 1 , . . . ,p} and D = {il; i = 1 , . . . ,p} where p = n — 1.

The following quantities can then be defined:

p p

TBJ = nBj, TAj = Y^nAij, TDj =

which denote the total number of units assigned to treatment combinations be-

longing to sets B, A and D respectively in block j , and

b b

TA = Y^ TAJ, TD = ̂ 2 T
j=i j=i j=i

denote the total number of units assigned to treatment combinations in sets B,

A and D, as stated in Section 2.4.
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The upper bound can now be expressed as

) > —7F ^ m 1" ^ • \6-Zii)

The authors define a class of desirable designs referred to as the U-class. A

design is said to belong to the U-class if Mj = Md and

nYij = [TYj/p] or [TYj/p] + 1, for Y = A, D

and

TYj = [TY/b] o r [TY/b] + l,iovY = A , B .

An improved upper bound on tr(Mjl) is obtained for designs in the U-class

which can be used to evaluate the performance of any design. It is desirable to

find designs which achieve this upper bound. An algorithm has been developed to

find the values of TY, TYj and nY{j (Y = A, B, D) which minimise tr(Mjx) given

in (3.28) subject to various combinatorial constraints. Let this set of parameters

be denoted by C* = {T^T^T^T^T^T^n^^n^ni,^}.

Definition 3.4 A C-design is a design which belongs to the U-class and has

parameters given by C*.

Once the set of parameters C* has been obtained, the next stage is to construct

the corresponding C-design. The design will have one of the following layouts,

where u,- denotes the integer part of T.-/6 for i = 5 , A, D.
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R-type: If if,- = T,/6 for i = B,A, D are all integer then the design is said to be
R-type and the layout of the design is shown in Figure 3.1.

Units

\

l

2

1

2

Figure 3.1: An R-type design; where U{ = Tj/b is integer for i = A, B, D.

(R,S)-type: here 3 cases need to be considered.

1. R-type in terms of the B-alone treatment and S-type for the other two
treatment sets. This will occur when Ts/b is integer and TU/6 and
Tnjb are not integers. See Figure 3.2 for the layout of the design.

Blocks

Units
1

2

1

2

V 1

1

2

1 2 3 .

B

A

D

s . . . . b

Figure 3.2: An (R,S)-type design, when T4/6 is not an integer and s — TA —
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2. R-type in terms of the A-alone treatments and S-type in terms of the
other two sets. This is the case when TU/6 is integer and Ts/b and
Tp/b are not integers. Figure 3.3 shows the layout of the design.

Blocks -
1 2 3

Units

Figure 3.3: An (R,S)-type design, when is not an integer and s = TB — bus-

3. R-type in terms of the dual treatments and S-type in terms of the
other two sets. This is the case when Tp/b is an integer and T^/6 and
Tg/6 are not integers. The layout of the design is shown in Figure 3.4.

Blocks

Units

Figure 3.4: An (R,S)-type design, when Ts/b is not an integer and s = Tg — bug.
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S-type: If none of the quantities TA/b, Ts/b and Tp/b is integer then the design
is said to be S-type and the layout of the design is given in Figure 3.5.

Units

I

Blocks

1

2

"B

1

2

V 1

1

2

1 2 3 . s, . . . .

B

A

D

i2 . . . . b

Figure 3.5: An S-type design, when S\ < S2, Si = b — TB +
J. A ~~\~ 0 — OU A — S~\ ,

and 52 =

In the following section, pairs of C-designs found by the method outlined
above are amalgamated to obtain efficient PBDS row-column designs.

3.6 Construction of row-column designs

This section begins by stating a simple necessary condition for the amalgamation
of two designs for a single blocking factor. It then describes how two component
C-designs, see Section 3.5, are selected for amalgamation.

Lemma 3.4 A necessary condition for a row-column design having t treatments,
R rows and C columns to be constructed by amalgamating two block designs for
t treatments, one with R blocks of size C and the other with C blocks of size R is
that the two block designs possess a common vector of treatment replications.

Proof: In order to construct a row-column design by the amalgamation of
two component designs, it is necessary to rearrange the treatments within blocks
for one of the designs in such a way that the remaining block design is obtained
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by taking blocks in the other direction. Since none of the treatments is removed

or replaced, it is clear that two compatible block designs must have the same

number of experimental units and equal treatment replication vectors.

The following method was used to obtain the row-column designs which are

listed in the table at the end of this chapter. The initial step was to generate

lists of efficient PBDS block designs for t treatments, arranged in b blocks each

of size k, by the method of the search algorithm developed by Gerami, Lewis,

Majumdar & Notz (1993) which is described in the previous section. A Fortran

coding of the algorithm, written by Gerami (1991), which also checks for the

existence of a PBDS design with the values of T*, i = A,B,D, was used. Since

it was* considered desirable to look at a range of efficient PBDS designs and not

just the best that could be found for each set of parameter values, the program

was adapted to enable the generation of a maximum of twenty block designs in

ascending order of the value of tr(Ct$ldC't). The list of designs for t treatments

in R blocks of size C was then compared with the list of designs for C blocks of

size R and amalgamation was attempted for designs with the same values of T*

(i = A, B, D) using the algorithm of Jones h Eccleston (1980).

It was found, by considering examples, that component designs which satisfy

the condition of Lemma 3.4 usually could be combined. However, the follow-

ing example demonstrates that the condition of Lemma 3.4 is not sufficient for

amalgamation of components.

Example 3.3 For m — 2, n = 4, and R = C = 3, let both the row and column

components be the following design:

Block
Block

Block

1

2

3

01

01

01

10

20

30

11

21

31.

Then Lemma 3.4 is satisfied with replication vector r' = ( 3 13 I3 ) •

The repeated component design is connected and an examination of the in-

formation matrix for the row-column design, ARC-, reveals that the row-column

design would be connected if it were possible to construct it. However, it is im-

possible to rewrite the above block design in a form which has both a row block

and a column block containing the treatments iO and i l , for i = 1,2,3, since

these treatments appear only once in the design.
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There are some gaps in the row-column catalogue of Section 3.7 since it is

not combinatorially possible to find compatible PBDS component designs for the

entire range of values for n, b and k. Other gaps are due to the fact that some

of the row-column designs with small numbers of experimental units are discon-

nected, although both the row and column component designs are connected. An

examination of the elements of the row-column information matrix, ARC, showed

that these designs satisfy the conditions for disconnectedness given in Lemma 3.1.

Example 3.4 For m — 2, n = 3, R — 2 and C = A, let the row component be

Block 1 01 10 11 21

Block 2 01 20 11 21

and the column component be

Block 1 01 11

Block 2 01 21

Block 3 10 11

Block 4 20 21.

The row-column design obtained by amalgamation of these components is

11 01 10 21

01 21 11 20.

This design has parameters ana = 0.25, a^cs = 0.125, ance = 0.5, anc7
aRC9 — 0 and a^cs = 1, which satisfy the condition for disconectedness, a2

RC6

, of Lemma 3.1.

A further complication of small R and C is illustrated by the design with

n = 3, m = 2 and R = C — 3 in Table 3.4. The column component design is

fairly efficient since the total variance of the contrasts of interest has a discrepancy

of 13.3% when compared with the appropriate bound of Section 2.4. However,

Gerami & Lewis (1992) state that these bounds are loose for block sizes k = 2 and

k = 3. This conclusion is reinforced by using the Jones & Eccleston algorithm to

find the most A-efficient block design for the above parameter values, the column

component design has a discrepancy of 0.1% with the result of the algorithm.

This row-column design is unusual, it is arranged in a square array but does
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not have identical row and column component designs. It was combinatorially

impossible to combine two copies of the A-best PBDS block design for these

parameter values. However, the A-best block design was used as the column

component design. In order to leave the treatment group totals of the design, Tg,

TA and To, unchanged, it was necessary to consider a design with less efficient

blocks for the row component. In this case, efficiency was sacrificed in order to

obtain component designs compatible for amalgamation, although it should be

noted that JE was unable to improve upon this row-column design.

The study revealed that amalgamating the PBDS block design, with the small-

est trace of the variance-covariance matrix, for t treatments in an R x C array

with the PBDS block design with the smallest trace for t treatments in a C x R

array does not necessarily yield the most A-efFicient row-column design. This is

demonstrated in the following example.

Example 3.5 For m = 2, n = 3 and R = C = 6, the most A-efficient PBDS

design for a single blocking factor consists of two copies of the blocks:

Block 1 01 01 10 20 11 21

Block 2 01 10 20 11 11 21

Block 3 01 10 20 11 21 21.

This design has tr(HQdH') = 1.1123 and, when used for both the row and column

component designs, generates a row-column design with tr{HQ.ncH') — 1.1439.

As an alternative, consider the block design composed of three copies of the fol-

lowing two blocks

Block 1 01 10 20 11 11 21

Block 2 01 10 20 11 21 21

This design has tr(Hfl({H') = 1.1241 which is larger than the value for the

previous block design. However, taking this design as both the row and col-

umn component design, a more efficient row-column design is obtained, having

tr(HVLRCH') = 1.1389.

A further example is the most A-efficient PBDS row-column design for five

treatments in a 5 x 5 array. The most A-efficient PBDS design for a single

blocking factor has TA = 8, TB = 5, TD = 12 and tr{HVldH') = 1.5997. Taking
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this design as both the row and column component design yields a row-column

design with tr(HQ.RcH') = 1.6370. However, the Latin square of order five has

tr(HSlficH') = 1.6 so, by using the less efficient randomised block design for the

row and column component designs, a more efficient row-column design has been

found.

The row-column designs found by amalgamating the two most A-efficient

component designs, which have a slightly larger total variance for the estimators

of the contrasts of interest than the alternative designs given in Tables 3.3-3.15,

are presented in Table 3.16.

In order to discover how to select the component designs to reduce the vari-

ance of the estimators of the contrasts of interest in the row-column design, an

investigation into the relationship between the row-column design and the row

and column component designs was conducted. Such relationships are straightfor-

ward to establish if the contrasts of interest correspond to a set of basic contrasts

for the design, see Section 1.3 for a discussion and equation (1.9) for the rela-

tionship. Unfortunately, this is not true for the dual versus single treatments

problem. An outline of the approach followed is given below. Full details of the

algebra are not presented, since it was not possible to see how the parameters

of the information matrices for the component designs should be manipulated in

order to reduce the variances.

Firstly, a general set of orthonormalised eigenvectors, £* (i = 1 , . . . ,t), of the

replications-adjusted information matrix, A*d = r~sl2Adr~5l2, was found using

the symbolic algebra package MAPLE (1991). This set of eigenvectors was ex-

pressed in terms of the parameters a*di (i = 1 , . . . , 9) of A*d but existence of the set

was subject to the validity of various parameter constraints. Using an approach

given by Shah & Sinha (1989, p 78), the variances of the contrasts of interest

were expressed in terms of the elements of £* by writing the basic contrasts and

the contrasts of interest in terms of linear combinations of £* for i — l , . . . , i .

Corresponding expressions for the variances, in terms of the parameters a*di, were

obtained by substitution. However, the formulae consisted of very complicated

expressions for the variances of the estimators of the contrasts of interest which

did not indicate how the values of Tj (j = B, A, D) and a*di should be altered to

achieve smaller variances.

Since the above approach was unsuccessful, a different method of linking the

parameters of the component designs to the variances of the row-column design
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was adopted. Using an analogous approach to that employed in Section 3.4 to

find the variances of the contrasts of interest for an RGDRC design, the vari-

ances of the contrasts for any connected PBDS block or row-column design were

expressed in terms of the parameters of the information matrix of that design.

This approach improved upon the previous method since the expressions for the

variances were valid for all PBDS designs and involved no parameter restric-

tions. The variances of the row-column design were then expressed in terms of

the parameters of the information matrices of the row and column component

designs using Corollary 3.1. Since the expressions for the contrast variances of

the row-column design in terms of (iRCi (i = 4 , . . . , 9) were very complicated, the

substitution of am and aa from Corollary 3.1 only served to confuse the issue

further.

The above discussion indicates that it is very difficult to establish a relation-

ship between the variances of the row-column design and the variances of the

two component designs for the dual versus single treatments problem. It has not

been possible to formulate an explicit relationship by the methods described in

this chapter. This is an area for future research.

3.7 Catalogue of PBDS row-column designs

This chapter concludes with a catalogue of designs obtained by amalgamating

PBDS block designs. The design found is a solution given by JE and is not

necessarily unique. Each entry in the catalogue is the most A-efficient PBDS

row-column design that could be found for the particular values of n, R and C,

unless otherwise indicated in the table.

An examination of the figures in the four columns headed % Disc confirms the

conclusions of Section 2.6: when R or C is less than the number of treatments t,

discrepancies are observed between the variance of the contrast estimators for the

row-column design and the bound which are in excess of 10%. However, it can be

seen from the column subheaded JE that, for n = 3, the design search algorithm

rarely improves upon the listed design. This reinforces the opinion that bound

B of (2.12) must be loose under these conditions. The bound is much tighter for

large R and C.

The results for n = 4 and n = 5 are not quite so impressive. Again, large
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row-column discrepancies can be seen for small R and C but JE is able to improve

upon the listed design in twenty-one out of a total of twenty-eight cases, although

the improvement is less than 5% in twelve of these cases. The designs for n = 4

and R = 4 perform poorly when compared to both the bound and the results of

JE, but it can be seen that the column component performs substantially worse

than the row component in all these cases. A similar, but less severe, situation is

observed for the row-column designs with n = 3, R — 3. A possible explanation is

that C-designs for t — 2n — 1 treatments in b blocks of size n tend to be inefficient.

The designs for n = 5 also perform quite poorly when R or C < t — 1. This is

not due to the poor performance of the bounds but to poor performance of the

component designs. In order to find PBDS block designs which are compatible

for amalgamation, it is necessary to sacrifice some efficiency. The performance of

designs for this value of n is better for larger values of R and C.

Note that designs in the catalogue marked with f have the property that

each treatment combination occurs once within every row block. Designs having

this property are investigated further in Chapter 4 and are called row-orthogonal

designs.

The catalogue establishes that PBDS row-column designs generated by amal-

gamating a pair of compatible component C-designs can be highly efficient.
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Catalogue of PBDS row-column designs

For 2 < R, C < 9, 3 < n < 5 and m = 2, the following tables list the
connected row-column designs obtained by amalgamating two compatible PBDS
block designs. The figures in the column headed % Disc are the percentage
discrepancies for estimating the dual versus single contrasts in the row-column
design, the row component and the column component, each compared with an
appropriate bound (see Chapter 2). The fourth figure represents the percentage
discrepancy between the row-column design and the best design found by JE.
Throughout these tables, f denotes a row-orthogonal design.

fable 3.3: PBDS row-column designs for n = 3, R = 2 and 5 < C < 9

n

3

i

R

2

2

2

2

2

C

5

6

7

8

9

Row-column design

01 21 11 20 10

11 01 10 21 20

01 01 11 21 10 20

11 21 10 20 01 01

01 01 11 21 10 20 11

11 21 10 20 01 01 21

01 01 11 21 10 20 11 21

11 21 01 01 11 21 10 20

01 01 10 11 21 21 10 20 11

11 21 11 10 20 20 01 01 21

% Disc

R-C Row Col JE

13.3 0 13.3 0

t

13.3 5.0 13.3 0

10.2 1.2 8.6 0

13.3 0 13.3 2.7

6.0 0.6 4.3 0
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Table 3.4: PBDS row-column designs for n = 3, R = 3 and 3 < C < 9

n

3

R

3

3

3

3

3

3

3

C

3

4

5

6

7

8

9

Row-column

01

21

11

01

11

10

01

10

11

01

10

11

01

10

11

01

10

11

01

10

11

11

10

01

21

01

20

20

01

21

20

01

21

01

20

21

01

11

10

01

10

11

21

01

20

10

21

11

11

21

01

10

11

01

10

01

11

10

11

01

10

11

01

11

20

21

10

11

20

21

20

01

20

01

21

20

01

21

20

01

21

design

21

20

10

11

21

10

11

21

01

21

01

20

20

01

21

11

21

20

11

21

10

21

20

01

21

20

01

21

11

20

11

10

21

11

21

10

11

21

20

11 21

21 11

20 01

R-C

51.1

15.4

8.2

t

8.1

7.1

6.0

5.3

% Disc

Row

41.7

5.7

0

2.7

1.7

1.0

1.0

Col

13.3

11.2

8.2

4.7

5.1

4.0

4.1

JE

0

0.1

0

0

0

0.1

0



Chapter 3 63

Table 3.5: PBDS row-column designs for n = 3, R — 4 and 4 < C < 9

n

3

R

4

4

4

4

4

4

C

4

5

6

7

8

9

Row-column

01

11

10

21

01

10

11

21

01

10

11

21

01

10

11

21

01

10

11

21

01

10

11

21

11

21

20

01

20

01

11

21

20

01

21

11

01

11

10

21

01

11

10

21

01

10

11

21

10

01

11

20

10

11

21

01

11

21

01

10

10

01

21

11

10

01

21

11

10

01

21

11

21

20

01

10

11

21

01

20

11

21

01

20

20

01

21

11

20

21

11

01

20

01

21

11

design

21

20

10

11

10

11

20

01

11

21

01

20

11

21

01

20

11

21

01

20

21

20

10

01

21

20

11

01

21

11

01

20

11

21

01

20

21

11

20

10

11

01

20

10

10

11

20

01

21

20

10

01

21

20

10

01

21

11

20

10

R-C

14.7

% Disc
Row

6.6

Col

6.6

This is an

RGDRC

8.1

8.9

7.7

7.2

6.5

2.4

2.6

2.1

1.0

0.6

design

5.4

6.1

5.9

5.9

5.7

JE

0.6

0

0.5

0

0.1

0
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Table 3.6: PBDS row-column designs for n = 3, R = 5 and 5 < C < 9

n

3

R

5

5

5

5

5

C

5

6

7

8

9

Row-columr

01

10

20

11

21

01

10

20

11

21

01

10

20

11

21

01

10

20

11

21

01

10

11

11

21

10

01

11

21

20

10

01

11

21

20

01

20

10

21

11

01

10

20

21

11

01

20

11

21

21

20

11

01

10

21

20

11

01

21

10

10

01

11

20

21

10

01

11

20

21

10

01

20

21

11

11

21

10

01

11

11

20

21

10

01

20

01

10

21

11

10

01

21

20

11

10

01

21

20

11

design

21

20

21

11

01

11

21

10

01

11

11

21

01

10

20

20

11

01

21

10

20

10

21

11

01

21

21

11

20

01

11

11

21

01

10

11

20

21

10

01

11

21

01

10

20

21

21

11

20

01

11

21

10

01

01

11

21

01

20

10

21

11

01

01

20

21

11

10

01

20

21

11

20

01

10

R-C

4.5

An

% Disc

Row Col JE

2.1

improved

is the Latin 5

4.3

3.9

3.3

2.7

see Table

2.4

2.2

1.9

1.3

2.1 2

design

quare,

4.2

1.9

1.9 0

2.4

1.9

3

0

.1

0

0
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Table 3.7: PBDS row-column designs for n = 3, R = 6 and 6 < C < 9

n

3

R

6

6

6

6

C

6

7

8

9

Row-column

11
01
10

11

21
20

01

10
20
11
11

21

01

01

10

20
11

21

01

10
20
11
11
21

01
10
20

21
11
11

01
20
10
21

11
21

01

01
20

10
11

21

01

20
10
11
21
21

10

20
11
01

21
21

10
01

11
20
21

11

10

11
01

21
01

11

10

01
11

20
21
11

20
11
21
21

01

10

20

11
21
21

01

10

20

11

01
21
21

01

10

01
21

21
20
11

design

11
21
21
10

20

01

11

21
01
01

10
20

11

10

21
11
01

20

20
11

01

21
11

10

21
11
01

20

10
11

11

21
01
01

10

20

11

20

21
11
10

01

11

21

21
01
10

20

21

01
11

10
20

01

21

21

11
01
10

20

11

21

01
01
10

20

21
21

11

01
20
10

21

20
11
10
01
01

21

11
10
20
01
01

R-C

5.1

4.4

3.8

3.3

% Disc
Row

3.8

1.6

1.2

0.6

Col

3.8

2.7

2.9

2.7

JE

0

0

0

0
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Table 3.8: PBDS row-column designs for n = 3, R = 7 and 7 < C < 9

n

3

R

7

7

7

C

7

8

9

Row-column

01

01
10

20
11

11
21

01
01

10
20
11
11

21

01

01

10
20

11
11

21

01

01

20

10
11
21
21

01

01
20
10
11

21
21

01

01

10
20

11
21

21

10

20
01
11
21

01
11

10
20
01
11

01
21

11

10
20

01
01

21
11
11

20

10
01

21
21

11
01

20

10

11
21
21

01
01

10
11

01
01

21

21
20

design

11
11

21

21
01

10
20

11

11
21
01
01

10
20

20

10
11
21

01

01
11

11

21
11
01
10

10
20

11

21
21
01

10
01

20

11

10
21
21
01

20

01

21

21
11

01
20

20
10

21

11
01
11

10
20

10

11

21

21
11

10

20
01

21
21

11
10
20

20

01

21
11
11
10

20

01
10

21
21

20
11

20

10

01

% Disc
R-C Row Col JE

3.9 1.9 1.9 0

2.9 1.2 1.8 0

2.6 0.8 1.8 0
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Table 3.9: PBDS row-column designs for n = 3 and 8 < R, C < 9

n

3

R

8

8

9

C

8

9

9

Row-column

01

01

10

10

20

11

11

21

01

01

10

10

20

11

11

21

01

01

10

10

20

11

11

21

21

01

01

20

20

11

10

21

21

01

01

10

20

20

11

21

21

01

01

10

10

20

11

11

21

21

10

20

01

01

11

21

21

11

10

10

01

01

11

20

21

11

10

10

01

01

11

21

21

20

11

10

20

01

01

21

21

11

11

10

20

01

01

21

21

20

11

10

10

01

01

11

21

21

20

11

design

20

10

11

21

21

11

01

01

20

10

11

11

21

21

01

01

20

20

11

21

21

01

01

11

10

11

11

21

21

01

01

10

20

11

11

21

21

01

01

10

20

11

11

20

21

21

01

01

10

20

11

21

21

11

01

01

20

10

11

11

21

21

01

01

20

10

11

21

21

20

01

10

20

11

01

21

21

11

11

10

20

01

01

21

21

20

10

11

10

11

01

21

11

21

11

10

20

20

01

01

21

21

11

11

10

20

01

20

21

21

11

11

01

20

10

01

01

R-C

2.1

2.0

1.5

% Disc
Row Col

1.4 1.4

0.6 1.3

0.7 0.7

JE

0

0

0.2
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Table 3.10: PBDS row-column designs for n = 4, R = 2, C = 9, R = 3, 5 < C < 9
and R = C = 4

n

4

R

2

3

3

3

3

3

4

C

9

5

6

7

8

9

4

Row-column

01

11

10

11

01

01

10

11

01

10

11

01

10

11

01

10

11

01

11

31

21

01

21

21

01

20

20

01

21

20

01

21

01

20

21

01

20

21

11

21

10

20

01

31

01

30

31

31

30

01

01

31

30

30

31

01

30

01

31

31

10

11

30

11

10

11

31

21

10

21

31

10

11

01

10

11

01

11

01

10

21

20

30

31

design

21

20

20

10

30

11

31

20

21

01

20

21

01

20

20

21

01

31

30

21

11

30

31

30

01

31

01

30

31

30

01

10

01

11

21

31

11

21

31

10

21

31

20

01

20

30

10

11

31

20

30

01

21

11

30

R-C

17.

18

15

11

11

8

84

4

5

2

8

.3

.4

.7

% Disc

Row

11.1

2.3

2.0

4.1

2.4

1.0

43.6

Col

17

18

13

8

11

7

43

RGDRC design

see Table

3

2

2

.4

.3

.1

.6

JE

1.

6

2

2

3

45

3

0

4

1

.5

.0

.4

is better,

3.2
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Table 3.11: PBDS row-column designs for n = 4, R = 4, C = 6,8, 9 and R = 5,

5 < C < 6

n

4

R

4

4

4

5

5

C

6

8

9

5

6

Row-column

01

21

31

11

01

11

21

31

01

11

21

31

01

10

20

11

21

01

10

20

11

21

11

01

21

31

01

11

31

21

11

01

31

21

10

01

30

31

11

10

01

30

31

11

11

31

01

21

11

01

31

21

11

21

01

31

20

30

01

21

31

20

30

01

21

31

10

21

11

20

11

21

01

31

10

20

11

21

11

31

21

01

01

11

21

31

10

20

design

31

11

30

10

21

31

11

01

20

10

21

11

21

11

31

01

01

21

31

11

30

10

21

20

31

30

21

20

10

11

30

11

31

10

31

11

21

20

30

31

10

11

30

31

30

10

11

31

21

30

20

21

31

20

30

21

31

30

20

R-C

33.0

44.3

32.3

23.6

21.8

% Disc

Row

12.7

20.4

16.8

12.7

12.9

Col

23.

35

29

12

17

3

3

6

7

.2

JE

20.2

31.8

22.0

13.1

12.8
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Table 3.12: PBDS row-column designs for n = 4, R = 5, C = 7 and R
6 < C < 9

= 6,

n

4

R

5

6

6

6

6

C

7

6

7

8

9

Row-column

01

10

20

11

21

01

10

20

11

21

31

01

10

20

11

21

31

01

10

20

11

21

31

01

10

20

11

21

31

10

01

11

30

31

10

01

30

21

31

11

10

01

11

30

31

21

10

01

30

11

21

31

01

30

10

11

31

21

20

30

21

31

01

20

30

01

31

11

21

20

30

21

31

01

11

20

30

01

21

31

11

20

01

30

21

11

31

11

20

10

21

01

11

21

31

01

10

20

30

20

31

21

11

10

30

20

10

31

11

21

10

01

11

20

31

21

design

31

11

01

10

30

21

31

11

10

01

30

11

21

01

10

20

30

11

21

31

01

10

20

30

11

21

31

01

10

30

21

31

01

20

31

11

21

20

30

01

31

11

10

01

30

20

11

21

31

10

01

30

11

20

31

21

30

01

21

31

01

01

11

21

31

30

20

10

01

21

31

11

20

30

01

11

21

31

01

10

20

31

11

21

30

20

10

21

31

01

10

11

30

31

21

01

30

20

11

R-C

5.

4

6

7

4

2

7

7

t

.5

.0

% Disc

Row

1.9

2.2

3.8

4.9

1.9

Col

4.1

2.2

6.7

6.6

2.4

JE

0.6

0

2.7

3.1

0
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Table 3.13: PBDS row-column designs for n = 4, R = 7, 7 < C < 9 and
R = C = 8

n

4

R

7

7

7

8

C

7

8

9

8

Row-column

01

10

20

30

11

21

31

01

10

20

30

11

21

31

01

01

10

20

11

21

31

01

01

10

20

30

11

21

31

10

01

30

20

21

31

11

01

20

10

11

30

21

31

01

01

30

10

11

21

31

01

01

20

10

11

30

21

31

20

30

01

10

31

11

21

10

01

30

20

11

31

21

01

20

01

30

21

31

11

10

20

01

01

21

11

31

30

30

11

21

31

01

10

20

20

01

11

21

31

10

30

10

11

01

21

31

01

20

20

10

01

01

31

21

30

11

design

11

20

31

21

10

01

01

30

11

01

31

21

20

10

30

10

11

31

01

01

21

30

11

21

31

01

01

10

20

21

31

10

11

01

01

30

11

21

31

01

10

01

20

20

30

21

31

01

11

01

11
30

11

21

01

31

20

10

31

21

11

01

20

30

01

21

31

01

10

01

30

11

11

21

31

01

10

20

30

21

21

31

30

10

20

11

01

31

30

21

01

20

11

01

21

31

20

11

30

10

01

31

31

30

11

20

10

01

21

31

11

21

01

20

30

10

% Disc

R-C Row

2.7 1.5

3.3 2.3

3.9 2.5

3.8 2.4

Col

1.

1

2

2

5

8

.7

.4

JE

0

0

0.8

i

1

0.3
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Table 3.14: PBDS row-column designs for n = 4, 8 < R < 9, C = 9 and n

R = C = 6, R = 7, C = 8

= 5,

n

4

5

R

8

9

6

7

C

9

9

6

8

Row-column design

01 01 01 10 20 30 11 21 31

01 01 01 20 10 11 30 31 21

10 20 30 01 01 21 31 11 11

20 10 11 01 21 31 21 01 30

30 11 21 31 31 01 01 10 20

11 30 31 21 01 01 10 20 10

21 31 10 30 11 20 20 01 01

31 21 20 11 30 10 01 30 01

01 01 10 20 30 11 11 21 31

01 01 20 10 11 30 21 21 31

10 20 01 01 21 31 30 31 11

20 10 01 01 21 31 11 11 30

30 11 21 21 01 01 31 10 20

11 30 31 31 01 01 10 20 21

11 21 30 11 31 10 20 01 01

21 21 31 11 10 20 01 30 01

31 31 11 30 20 21 01 01 10

01 10 11 20 21 01

10 11 01 31 01 30

11 01 10 01 41 40

20 30 01 21 01 31

21 01 40 01 20 41

01 31 41 30 40 01

01 10 30 20 11 21 31 41

10 01 40 21 20 11 41 31

30 40 01 31 10 41 11 21

20 11 31 01 41 30 21 40

11 20 10 41 21 31 40 30

21 41 11 30 31 40 10 20

31 21 41 40 30 10 20 11

% Disc

R-C Row Col JE

5.5 5.5 4.2 1.9

2.5 1.5 1.5 0

24.6 17.8 17.8 15.8

23.8 18.2 20.5 19.2
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Table 3.15: PBDS row-column designs for n = 5, 8 < R, C < 9

n

5

R

8

8

9

C

8

9

9

Row- col u mi

01

10

30

20

11

21

31

41

01

10

20

30

11

21

31

41

01

01

10

20

30

11

21

31

41

10

01

40

11

20

41

21

31

10

01

40

20

21

31

41

11

01

01

40

11

10

20

31

41

21

30

40

01

21

31

10

41

11

30

40

01

21

10

41

11

31

10

40

01

01

11

30

41

21

31

20

11

21

31

41

01

40

30

20

30

11

31

41

01

40

21

20

11

01

21

31

41

01

30

40

design

11

20

10

41

01

31

30

21

40

20

10

41

31

11

21

30

30

10

11

31

41

21

20

40

01

21

31

41

01

10

20

11

40

11

21

31

01

20

30

10

40

11

20

30

41

21

31

40

01

10

31

41

11

30

21

40

10

01

21

11

41

10

01

40

30

20

21

31

41

01

20

40

10

11

30

41
21

31

40

30

11

01

20

31

41

30

11

40

10

20

01

31

41

21

30

40

01

11

10

20

41

31

21

40

30

20

01

10

41

21

31

40

01

10

30

20

11

R-C

3.8

7.6

t

2.5

% Disc

Row Col JE

2.7 2.7 0

5.9 7.6 4.1

1.8 1.8 0.1
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Table 3.16: Table of alternative PBDS row-column designs obtained by amal-

gamating the two most A-efficient component designs, the most A-efficient row-

column designs are given in the tables indicated below

n

3

i

5

R

6

8

8

C

6

8

8

Row-column design

01 01 10 20 11 21

01 10 20 11 11 21

10 20 01 21 21 11

20 11 21 01 01 10

11 11 21 01 10 20

21 21 11 10 20 01

01 01 10 10 20 11 11 21

01 01 10 20 11 20 21 21

10 10 01 01 11 11 21 20

10 20 01 01 21 21 20 11

20 11 11 21 01 21 01 10

11 20 11 21 21 01 10 01

11 21 21 20 01 10 01 11

21 21 20 11 10 01 11 01

01 01 10 20 30 11 21 31

01 01 40 21 10 20 11 41

10 40 01 01 11 31 41 30

20 21 01 01 31 41 30 40

30 10 11 31 41 21 01 20

11 20 31 41 01 10 40 21

31 11 41 30 21 40 10 01

21 41 30 40 20 01 31 11

% Disc

R-C Row Col JE

5.6 2.7 2.7 0.4

See Table 3.7

2.2 1.2 1.2 0.1

See Table 3.9

4.0 2.2 2.2 0.2

See Table 3.15
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Row-orthogonal PBDS designs

4.1 Introduction

The purpose of this chapter is to consider the class of row-column designs which
are obtained by anialgamating a randomised block design with an appropriate
PBDS design. This class of designs is useful because, since treatments are or-
thogonal to blocks in one direction with respect to the model (1.1), the estimates
of the treatment parameters are the same as those yielded by the model from
which the particular block effects have been deleted. An example of this is the
clinical trial where it is often useful to have treatments orthogonal to periods
so that treatments appear exactly once in each period, giving estimates of the
treatment parameters which do not involve adjustment for period effects.

In this chapter, an investigation is made of the groups of candidate PBDS
component designs discussed in Chapter 3 and those designs which are compat-
ible with a randomised block design are identified. A necessary and sufficient
condition is given for a PBDS design to amalgamate with a randomised block
design. Tables are presented of PBDS row-column designs formed in this way
which have total variance for the dual versus single contrasts within 17% of the
lower bound of (2.12).

4.2 Existence of row-orthogonal PBDS designs

Definition 4.1 A row-orthogonal design under model (1.1) has a randomised

75



Chapter 4 76

block design as the row component and any block design as the column component.

Definition 4.2 A row-orthogonal PBDS design under model (1.1) has a ran-

domised block design for the row component and a PBDS block design as the

column component.

To find component PBDS designs which amalgamate with randomised block

designs, only equi-replicate designs need to be considered, since the treatment

replications must be identical in the two components from Lemma 3.4. Therefore,

throughout this chapter, equi-replicate designs will be considered in which each

treatment is replicated re times, that is r = re\t. In order to establish conditions

on the parameters for which a row-orthogonal PBDS design exists the following

lemma is applied.

L e m m a 4.1 (Smith &: Hartley, 1948) Given any set ofbk elements made up

of b varieties of objects each repeated k times, suppose that the set is arbitrarily

arranged in a two-way classification of k rows and b columns. Then, it is always

possible to rearrange the elements in each column so that each row will contain

one and only one element of each variety.

Theorem 4.1 Necessary and sufficient conditions for the existence of a row-

orthogonal PBDS design for t treatments, each replicated re times, and arranged

in an R X C array are

(i) the PBDS design has C = t blocks of size R = re

(ii) the randomised block design has t treatments and R blocks of size C.

Proof: From the properties of a randomised block design, each treatment

must occur exactly once in each block, hence C — t and re = R. It follows from

Lemma 4.1 with b = C and k — R that it will always be possible to construct a

row-orthogonal design by rearranging the elements within column blocks so that

each treatment appears exactly once in each row.

Remark: This argument is valid for all possible block sizes in the column

component; the blocks in the row component are all of size t by definition.

The following example illustrates how these designs compare with row-column

designs which have two PBDS component designs.
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Example 4.1 For m = 2, n = 3, R = 6 anrf C = 5, the row-orthogonal design
listed in Table 4.2 is obtained with tr{HQ.RCH') = 1.3714. The PBDS row-column
design for five treatments in a 5 x 6 array, given in Table 3.6, which does not
possess row-orthogonality has tr(HQ,RcH') = 1.3610. The discrepancy between
the 'total variances of these two designs is 0.8% and they have discrepancies of
5.1% and 4.3% respectively with the bound of (2.12) which has the value B =
1.3047 in this case. The additional constraint of row-orthogonality has resulted in
a very small loss of precision, demonstrating that it is possible to have efficient
row-orthogonal PBDS designs.

In order to simplify the search for row-orthogonal PBDS designs, the impli-
cations of Theorem 4.1 for each of the designs defined in Chapter 3, Sections 3.3
and 3.5 are now investigated to establish if they are suitable for amalgamating
with randomised block designs.

Case I : RGDD component

The following result states the condition for the existence of a row-orthogonal

PBDS design with an RGDD column component.

Theorem 4.2 Any rout-orthogonal reinforced group divisible design is a Latin

square.

Proof: From the properties of a randomised block design it is known that

re = R and C = t = 2n — 1. On substituting for re and 2(n — 1) in (3.12), the

relationship R(C — 1) = C(R — 1) is obtained and this is satisfied when R — C'.

It follows that the conditions for the existence of group divisible designs (3.13),

(3.14) and (3.15) can be rewritten as

R(R-2) = \C + (R-3)\° (4.1)

A^ < R (4.2)

A? < R. (4.3)

The next step is to find lower limits on the At- (i — 1,2). Since (4.1) can be

expressed as Af = R(R - 2) - (R - 3)A£, it follows from (4.3) that A^ must

satisfy the constraint

R(R-2)-(R-3)\% < R.
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If R ^ 3, this expression can be rearranged to give Â  > R which, when combined

with (4.2), requires \% to be equal to R. Similarly, (4.1) can be expressed as

A£ = [R(R - 2) - Af]/(/2 - 3) and, using (4.2), Af is required to satisfy

R(R-2)-\°

ITS -K

It follows, using (4.3), that Af = R. Hence the design parameters R, C, t, r,

X\ and A2 are required to be equal for R > 3. To satisfy this condition, each

treatment must occur with each of the other 2 — 1 treatments equally frequently

in every block, that is the component design must be a randomised block design.

If R = 3, a degenerate reinforced group divisible design is obtained, having

the treatments 01, 10 and 11 occurring in each block, which is a randomised

block design. The second associates are no longer defined in this case. Hence,

the value of Â 7 cannot be determined. It follows that a reinforced group divisible

row-orthogonal design must be a Latin Square.

The following example shows that row-orthogonal PBDS designs with an

RGDD column component can be efficient.

Example 4.2 For m = 2, n = 4 and R = C = 7, the row-orthogonal PBDS

design with an RGDD column component given in Table 4-3 has tr(HD,RcH') =

1.7143. The discrepancy between the total variance of the design and the bound

B of (2.12) is 3.9%.

Corollary 4.1 A row-orthogonal reinforced group divisible design has

VRCB, where VRCA = var(Tn - f,-0) and VRCB = war(f,-i - fOi) for i = 1 , . . . ,p.

Proof: This result follows directly from Theorem 4.2 since all pairwise compar-

isons have equal variances for a Latin square design.

Note that the corollary can also be derived by expressing the component

design parameters, given by (3.20) to (3.24), in terms of R and substituting the

new aj (j = 1, . . . , 9) in VRCA
 a nd VRCB of Theorem 3.5.

Case II : R-type component

The following result shows that R-type designs can be used only for certain

values of R and C.
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Theorem 4.3 A necessary condition for the existence ofamix2 row-orthogonal

PBDS design with R rows and C columns and having an R-type column compo-

nent is that C = 2n — 1 is a divisor of R.

Proof: The randomised block row component design forces re = R and t = C.

Hence the total allocation to the B-alone treatments must be Tg = R, and the

total allocations to the A-alone and dual treatment groups must be TA = To =

(n — \)R. A necessary condition for the existence of an R-type design is that T;

(i = B,A,D) is divisible by C. Hence both R and (n — 1)R are required to be

divisible by C.

Itiollows from the above result that, if an R-type design is used for the col-

umn component, then larger row-orthogonal designs can be constructed by join-

ing together copies of a randomised block design, as illustrated by the following

example.

Example 4.3 A row-orthogonal PBDS design for m = 2, n = 3, R = 5 and

C — 10 has a row component which consists of two copies of the randomised block

design for five blocks each of size five arranged in a 5 x 10 array and the column

component again has two copies of this randomised block design arranged in a

1 0 x 5 array. The components amalgamate to yield a 5 x 10 array containing two

copies of the 5 x 5 Latin square which has tr(HflRcH') = 0.8 and a discrepancy

of 2.5% with the bound B of (2.12).

Case III : (R,S)-type component

It is shown below that (R,S)-type designs are not suitable for amalgamation

with a randomised block design.

Theorem 4.4 Row-orthogonal PBDS designs with an (R,S)-type column compo-

nent do not exist.

Proof: Since the design must have re = R and t = C the total allocations to the

groups of B-alone, A-alone and dual treatments are TB = R, TA = (n — l)R and

Trj — (n — l)R respectively. Without loss of generality, the (R,S)-type design is

taken to be R-type in the A-alone treatments, then (n — l)R must be divisible
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by C. Consequently, the design must also be R-type in the dual treatments.

Since it is impossible to have a design which is R-type in two sets of treatments

and S-type in the third, it is necessary to also have R divisible by C. It follows

that if the column component of a row-orthogonal design is R-type in any one

treatment then it must be R-type in all three of them due to the equal treatment

replication. Hence row-orthogonal designs with an (R,S)-type column component

do not exist.

Case IV : S-type component

The remaining type of possible column components is the class of S-type

PBDS designs which exist when C is not a divisor of R. This is the largest set of

PBDS column components compatible with a randomised block design. Eleven

of the fourteen designs listed in the table at the end of this chapter were derived

from an S-type component.

Example 4.4 The row-orthogonal design for m = 2, n = 5, R — 8 and C = 9

is given in Table 4-4 a-nd has tr(HCljicH') = 2.0317 with a discrepancy of 7.6%

with the bound B = 1.8889.

4.3 Analysis and properties of row-orthogonal

PBDS designs

In this section, results applicable to row-orthogonal designs and row-orthogonal

PBDS designs are established. Some of the results are related and hence there

may be several different ways of deriving a particular property. The following

theorem gives a relationship between the variances of a contrast estimator in the

components and in the row-column design.

Theorem 4.5 For any rotu-orthogonal design, having t treatments arranged in

an RxC array, the variance of the least squares estimator for any estimable treat-

ment contrast is the sa?ne in the row-column design and the column component

design.

Proof: Using (1.7) with Ak = r6 -(l/k')NkN'k for k' ̂ k = R,C and the fact that

a randomised block design has equal replications re = R, block size C — t and



Chapter 4 81

incidence matrix NR = Jt<R, the information matrix for the row-column design

can be written as

ARC = rjt- ^Jt,RJR,t - ^NcN'c + ^ J t . (4.4)

Now Jt,RjR,t = RJt, hence (4.4) can be expressed as

ARC = rjt - ^NCN'C

which is identical to Ac-

Hence, the information matrix of the row column design is the same as that

of the column component. Therefore Q.RC — Qc a n d V{Ct£lRcC't) = V(CtftcC't),

for any contrast matrix Ct.

The following results give some further useful properties of row-orthogonal

designs.

Lemma 4.2 For any row-orthogonal design, the information matrices for the

separate roiv and columri component designs commute.

Proof: Taking the randomised block design as the row component, AR = RIt —

(R/C)Jt since re = R and NR = Jt,R by definition. Then, since the rows and

columns of an information matrix always sum to zero, that is JtAc = 0 and

AcJt = 0, it follows that

ARAC = RAC - -pqJtAc = RACu

and

ACAR = RAC - -pz

Hence the information matrices commute.

Corollary 4.2 All row-orthogonal designs possess a common set of orthonormal

eigenvectors.

Proof: The result follows directly from Lemma 4.2 and a result due to Graybill

(1983, Theorem 12.2.12) which states that a pair of commuting matrices will al-

ways have a common set of orthonormal eigenvectors.
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Alternative Proof: From the proof of Theorem 4.5, ARC — Ac for a roww-orthogonal

design and hence the eigenvectors of ARC a n d Ac will be the same. Any set of

orthonormal eigenvectors will be eigenvectors of a randomised block design due

to the fact that the information matrix of the randomised block design has one

non-^zero eigenvalue with multiplicity t — 1. Hence AR, AC and ARC must have a

common set of eigenvectors.

Remark: The above corollary is particularly useful in the case where the con-

trasts of interest are orthogonal, since the canonical efficiency factors of the row-

column design can be expressed in terms of the efficiency factors of the two com-

ponent designs, see (1.9). When the contrasts of interest are the non-orthogonal

dual versus single comparisons, the corollary can be used to show that the vari-

ances of the comparisons are the same for the row-orthogonal design and for the

column component design. Since it is known that the efficiency factors for a

randomised block design are all equal to one, (1.9) can be expressed as

tRCi = eCi- (4.5)

Let /,-, for i = 1,. . .t — 1, denote a set of common basic contrasts for the row-

column design and the column component. Then the variance of a contrast

estimator, UT, where u = YllZi liU, can be written as

^ ^ (4.6)

However, substituting (4.5) into (4.6) gives VRC(U'T) = YXZidf / eci)*?2 • This

is the expression for the variance of the contrast estimator, UT, estimated using

the column component design. This result also follows from the fact that no

adjustment is required for the row blocks.

The properties of row-orthogonal designs result in some simplifications in the

analysis of variance. The sum of squares for treatments for the model (1.1), after

adjusting for both rows and columns, is given by

T'Q = T'(TJOT — ^ N C C T O T ) ,
K

where Q denotes the vector of treatment totals adjusted for the row and column

effects, TTOT is the unadjusted vector of treatment totals, Nc is the incidence

matrix of the column component design and CTOT is the vector of column totals of
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the design. This sum of squares is the same as the treatment sum of squares after

adjusting for columns alone for a design with a single blocking factor, columns.

Hence the advantage of using designs with this property is that no account need

be taken of the differences between rows.

4.4 Tables of designs and conclusions

This chapter concludes with Tables 4.1-4.4 which contain fourteen efficient row-

orthogonal PBDS designs. In this section the performance of the designs is dis-

cussed. The designs were obtained by amalgamating a randomised block design

for t treatments arranged in R blocks each of size C with a PBDS block design

for t treatments arranged in C blocks of size R. The listed row-column designs

are a solution provided by JE and are not necessarily unique. In most cases, the

row-orthogonal design is less efficient than the row-column design of Chapter 3

due to the constraint of equal treatment replication which forces the selection of

less efficient component designs for amalgamation.

Example 4.5 For n — 3 ; m = 2, R = 9 and C = 5, the total variance of the

estimator's of the contrasts of interest for the row-orthogonal design of Table 4-3

has a discrepancy of 3.7% with the bound of (2.12) and a discrepancy of 1.0%

with the total variance of the contrast estimators for the most A-efficient design

found by JE. The row-column design for the above parameters in Table 3.6 has

corresponding discrepancies of 2.7% and 0%. An examination of the performance

of the component designs reveals that in the row-orthogonal case the component

designs have discrepancies of 2.5% and 3.7% for the block designs in nine blocks

of size five and five blocks of size nine respectively. The row-column design has

component designs with corresponding discrepancies of 1.9% and 1.3%.

Note that the majority of designs listed in the tables are either Latin squares,

Youden Squares or generalised Youden designs according to whether the column

component is a randomised block design, a balanced incomplete block design, or

a balanced block design. From Theorem 4.5 and using the fact that all these

row-column designs have an information matrix of the form ARC = alt + bJt,

the designs have variance balance for the dual versus single contrasts, that is the

dual versus A contrasts and the dual versus B contrasts are all estimated with a
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common variance. The remaining row-orthogonal designs, for parameters n = 3,

R — 2,3,7,8 and C = 5, have PBDS column components with equal treatment

replications. These designs also have variance balance for the dual versus single

treatment contrasts.

It can be shown, using the conditions given by Ash (1981), that generalised

Youden designs for t treatments, arranged in an {mt + ct) x t array do not exist

for t = 5 with ct = 2,3, t = 7 with ct = 2,4,5 and t = 9 with ct = 2,3,4,5,6,7.

This explains why the collection of efficient row-orthogonal designs is small. It

could be extended by considering cases with R > 9, but such designs have an

unnecessarily large treatment replication and are unlikely to be of practical use.

An examination of Tables 4.1-4.4 reveals that the row-orthogonal designs

perform well when compared with the bound of Chapter 2. Out of a total of

fourteen designs, only two have a discrepancy between the total variance of the

estimators of the dual versus single contrasts and the bound which exceeds 10%.

These two cases both have a small value of R and the numerical assessment of

the bounds performed in Chapter 2 suggests that both bound B-2(H) and bound

Bp are loose for small block sizes. The possibility of using the extra information

available on the incidence structure of a row-orthogonal design to improve upon

the upper bound on tr(ARc) of Theorem 2.5 was investigated. However, the

resulting bound was found to be identical to the bound B2(H) of (2.12).

The row-orthogonal designs also compare well with the best design found by

JE. The case n — 3 yields the best results, since the discrepancy between the

total variance of the dual versus single contrasts and the best design found by JE

does not exceed 1%. The designs for n — 4 and 5 have discrepancies with JE of

less than 5%, with the single exception of the design for 7 treatments in a 3 x 7

array which has a discrepancy of 7.2%.

The tables serve to reinforce the fact that introducing the additional constraint

of row-orthogonality does not necessarily imply that a great deal of precision is

lost. They provide efficient designs with the row-orthogonal property which might

be preferred to those in Tables 3.3-3.15 due to the simplification in the analysis

(see Section 4.3) and in the interpretation of the results. Note that in some cases,

see Example 4.5, the larger percentage discrepancy of the row-orthogonal design

compared with the alternative in Tables 3.3-3.15, may make the row-orthogonal

design the second choice.



Chapter 4 85

Tables of row-orthogonal PBDS designs

For 3 < n < 5, m = 2, 2 < R < 9 and C = 2n — 1, the following tables list
the connected row-orthogonal designs obtained by amalgamating a randomised
block design with R blocks each of size C with a PBDS block design which
has C blocks of size R and the same replication vector as the randomised block
design. The figures in the column headed % Disc are the percentage discrepancies
for estimating the dual versus single contrasts in the row-orthogonal design, the
randomised block component and the PBDS component each compared with an
appropriate bound (see Chapter 2). The fourth figure represents the percentage
discrepancy between the row-column design and the best design found, under the
A-criterion, by JE.
In the following tables, <& denotes the most A-efficient PBDS row-column design
found in the studies of Chapters 3 and 4.

Table 4.1: Row-orthogonal PBDS designs for n = 3, 2 < R < 4 and C = 5

n

3

R

2

3

4

C

5

5

5

Row-orthogonal design

01

11

01

10

11

01

10

20

11

21

01

20

01

21

10

01

21

20

11

10

11

21

01

11

21

10

01

20

21

10

11

20

20

11

01

21

10

20

21

20

10

21

20

11

10

R-C

13.3

8.2

*

8.5

%

RB

0

0

1.7

Disc

PBDS

13.3

8.2

8.5

JE

0

0

0.3
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Table 4.2: Row-orthogonal PBDS designs for n = 3, 5 < R < 8 and C = 5

n

3

R

5

6

7

8

C

5

5

5

5

Row-orthogonal design

01

10

20

11

21

01

01

10

20

11

21

01

01

10

20

11

21

21

01

10

10

20

20

11

11

21

10

01

11

21

20

10

20

01

11

21

20

10

20

01

11

21

01

11

10

01

20

10

11

21

21

20

20

11

21

10

01

20

10

11

21

10

01

20

10

21

21

01

11

20

20

11

01

01

21

10

10

11

11

21

01

20

10

11

21

21

01

20

10

11

21

11

01

10

20

10

11

20

21

21

01

01

20

10

21

20

10

01

11

21

11

20

10

01

11

21

11

20

10

20

10

01

21

21

11

11

10

20

01

01

R-C

2.1

*

5.1

4.5

4.1

%

RB

2.1

2.2

2.3

2.4

Disc

PBDS

2.

5

4

4

1

1

5

.1

JE

0

0.8

0.7

0.8

^
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Table 4.3: Row-orthogonal PBDS designs for n = 3, R = 9, C — 5 and n

# = 3,6,7 and C = 7

= 4,

n

3

4

R

9

3

6

7

C

5

7

7

7

Row-orthogonal design

01 10 20 11 21
01 10 20 11 21
10 01 11 21 20
10 01 11 21 20
20 11 21 01 10
20 11 21 01 10
11 21 10 20 01
21 20 01 10 11
21 20 01 10 11

01 20 30 31 10 11 21

10 01 31 20 21 30 11

11 21 01 10 30 20 31

01 10 20 30 11 21 31
10 01 30 20 21 31 11
20 30 01 11 31 10 21
30 20 21 31 01 11 10
21 31 11 01 10 20 30
31 11 10 21 30 01 20

01 10 20 30 11 21 31
10 01 30 20 21 31 11
20 30 01 10 31 11 21
30 11 21 31 01 10 20
11 20 31 21 10 01 30
21 31 10 11 20 30 01
31 21 11 01 30 20 10

% Disc
R-C RB PBDS JE

3.7 2.5 3.7 1.0

17.4 2.1 17.4 7.2

6.7 3.8 6.7 2.7

*

3.9 3.9 3.9 1.2
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Table 4.4: Row-orthogonal PBDS designs for n = 4, R = 8, C — 7 and n

R - 8, 9 and C = 9

= 5,

n

4

5

R

8

8

9

C

7

9

9

Row-orthogonal design

01 10 20 30 11 21 31
01 20 10 11 30 31 21
10 01 20 21 31 30 11
20 30 01 10 31 21 11
30 11 21 31 01 10 20
11 30 31 01 21 20 10
21 31 30 10 20 11 01
31 21 11 20 10 01 30

01 10 20 30 40 11 21 31 41
10 01 30 20 11 40 31 41 21
20 30 01 10 21 31 41 11 40
30 20 10 01 31 41 40 21 11
40 11 21 31 41 01 10 20 30
21 40 41 11 01 10 20 30 31
31 41 40 21 20 30 11 01 10
41 31 11 40 30 21 01 10 20

01 10 20 30 40 11 21 31 41
10 01 30 20 11 40 31 41 21
20 30 01 10 21 31 41 40 11
30 20 10 01 31 41 11 21 40
40 11 21 31 41 01 10 20 30
11 40 31 41 01 21 20 30 10
21 31 41 40 10 20 30 11 01
31 41 11 21 30 10 40 01 20
41 21 40 11 20 30 01 10 31

% Disc
R-C RB PBDS JE

5.9 4.2 5.9 2.5

7.6 5.9 7.6 4.1

*

5.9 5.9 5.9 3.3



Chapter 5

Finding efficient designs for

estimating specific treatment

contrasts

5.1 Introduction

Experience gained through investigating efficient designs for the dual versus sin-

gle treatments contrast problem has led to the consideration of finding efficient

designs for any specified contrasts of interest. The strategy employed for finding

efficient row-column designs in the dual versus single treatments case was to find

a class of designs which contains efficient and A-optimal members and then locate

the best designs in this class. The search for these designs was simplified owing

to the characteristic structure (1.14) of the information matrix of designs in this

class. This strategy has also been used by Kiefer (1958) to find single blocking

factor and row-column designs for estimating sets of orthogonal contrasts. The

same approach enabled A-optimal block designs to be found for comparing test

treatments with a control (Majumdar, 1986) and for comparing dual with single

treatments (Gerami & Lewis, 1992).

The more general problem of finding efficient block designs for any set of spe-

cific treatment contrasts has already been addressed by Lewis &: Gerami (1993).

The authors identify a class of aligned designs which can contain highly efficient

block designs; this class is discussed in Section 5.2. In this chapter, an A-optimal

89
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information matrix is identified for estimating a particular set of treatment con-

trasts from an experiment, assuming an additive model for either one or two

blocking factors. It is shown in Subsection 5.2.1 that, if a design having this in-

formation matrix exists, then the design is A-optimal over the class of incomplete

block designs (or row-column designs) for the experiment size. Subsection 5.2.2

shows that, for example, the A-optimality of balanced incomplete block designs

and balanced block designs can be established by checking that their information

matrices have this A-optimal form. However, designs with information matrices

corresponding to this particular information matrix do not necessarily exist. For

this reason, the term approximate information matrix is used in this chapter to

refer to any t x t, symmetric, non-negative definite matrix, A, having rank > 1

and zero row and column sums, regardless of whether a design actually exists

having information matrix A. In Section 5.3, some methods of finding designs

which have information matrices close to the approximate information matrix are

discussed. Finally, Section 5.4 describes applications of the results of this chapter

to two sets of contrasts of interest in certain pharmaceutical experiments.

5.2 Aligned designs

5.2.1 General results

Connected designs with t treatments, arranged under blocking structure B, are

considered for estimating a pre-specified set of L treatment contrasts, denoted

by CLT, where r is the vector of treatment effects and Ci is an L x t matrix of

contrasts with rank{Ci) — n, for 1 < n < t — 1. The class of such designs is

denoted by D{t, CL, B). The following definition identifies the subclass of aligned

designs Da{t,Ch, B).

Definition 5.1 (Lewis &z Gerami, 1993) A connected design, d, involving one

or more blocking factors is aligned with contrast matrix CL if A^ and C'^CL have

a complete set of orthogonal eigenvectors in common.

In this chapter, a set of orthonormalised eigenvectors common to both Ad and

C'LCL, where d G Da{t,CL,B), is denoted by & (i = 1,...,*) with & = *~1/21<-

Using the spectral decomposition of a matrix, the intra-block information matrix
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can be written as A(t = X^=i î£«£j'- Similarly, the Moore-Penrose generalised

inverse can be expressed as fi</ = £j~j \ r l&£,'-

An aligned design has the property that the total variance of the least squares

estimators of the contrasts of interest achieves the design dependent lower bound

of Gerami h Lewis (1992), see Theorem 2.2. This result is stated in the following

lemma.

Lemma 5.1 (Lewis & Gerami, 1993, Theorem 1) For CL a contrast ma-

trix of rank t — 1 and d 6 Da(t, CL, B)

where 6^ > ... > Ot-\ > Ot = 0 and Xf > ... > Â —1 > A'/ = 0 are the eigenvalues

of C'JCL mid Ad respectively and fid is a generalised inverse of Ad-

Note that Lemma 5.1 holds when CL is a matrix of rank n where 1 < n < t — 1.

In this case, the eigenvalues of C'LCL are O-i > . . . > 9n > #n+i = . . . = 9t — 0.

Lewis h Gerami show that if a design d* € Da(t, CL, B) is such that J2lZ] @i/^f

attains a minimum value over all designs in D(t,CL, B) then d* is A-optimal in

D.

A subclass of the aligned designs is considered in order to further reduce the

search for efficient designs.

Definition 5.2 (Lewis & Gerami, 1993) A design d € Da(t,CL,B) is strongly

aligned with a set of contrasts CLT provided Xf = Â  if and only if 9{ = 9j, where

Xf and 9{ are the non-zero eigenvalues of Ad and C'LCL respectively corresponding

to the common eigenvector £,- {i = 1, . . . ,t — 1).

Provided d is a strongly aligned design, knowledge of a set of eigenvectors and

the multiplicities of the corresponding eigenvalues defines the structure of Ad via

the spectral decomposition.

The authors show that, when CLT holds any set of orthogonal contrasts,

the class of strongly aligned designs Ds(t,CL,B) is the class of balanced block

designs, that is designs in which each pair of treatments occur together equally

frequently in a block. They also show that, when CLT holds the test treatments
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versus one control treatment contrasts, Ds{t,Ci^B) consists of the classes of

balanced treatment incomplete block designs, see Bechhofer h Tamhane (1981),

and balanced treatment block designs of Ting & Notz (1988).

As an extension of the above work, the following result examines designs in

Da and shows that if the design with a variance-covariance matrix having trace

which achieves the design independent bound B(CL) of Corollary 2.2 is in this

class, then it must be in Ds. The practical use of the result is that, rather than

searching Da for a design achieving B{Ci), attention can be restricted to Ds.

Theorem 5.1 A design d £ Da(t,,Ci,B) achieves bound B(CL) of Corollary 2.2

for estimating a specific set of treatment contrasts CLT if d = d*, where d* £

Ds(t,CL, B) with Xf = cmaxy/9i/(J2tjZ\ y/Qj), CL is an L x t contrast matrix

with rank n (1 < n < t — 1), r is a vector of treatment parameters, Xf and 9{

(i; = 1,. . ., t — 1) «7-e the non-zero eigenvalues of Ad- and C'LCL respectively, and

cmax - maxdeDtr(Ad).

Proof: From Lemma 5.1, a design d £ Da has the property that tr(CL^dC'L) =

YllZl @i/^i- Hence it is necessary to establish the conditions under which 5" =

YllZ] @i/^f IS minimised. This is carried out in two stages.

Firstly, attention is restricted to the class of designs Dc = {d £ Da; tr(Ad) =

]z[ Xf = c] and S is minimised within this class. LetE
t-i

then
dS"

for i = l , . . . , i — 1. Setting the derivative equal to zero, gives Xf = y/(9i/a),

for i — l , . . . , i — 1. Using the constraint ]C|=i tf = c, it can be shown that

A? = <V0,y(Ej=\ y/ej)- N o w s i n c e d'2S*/d{Xf)2 > 0, it follows that mindeDc S is

obtained when Xf is proportional to -y/0,-, for z = 1, . . . ,£ — 1. Since cl £ Da, it

follows from Definition 5.2 that d must be a strongly aligned design.

Let Mc = muid£DcS = (E;=i \/®iYIc then, in order to find mind^oS, Mc must

be minimised by allowing c to take all possible values. Since #,• (i = 1 , . . . ,t — 1)

is fixed, this problem is equivalent to maximising c = tr(Ad).
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Let cm tr(A,i) then it can be shown, using Lemma 2.1, that

bk — f{t, b, k), for block designs,

RC-f(t,R,C)-f(t,C,R)
+-j^max(Y?i-i i'f), for row-column designs,

where f{p,q,s) = {q/s){s + {2s - p)[s/p] - p[s/p]2}

and rnax(Ylti=i rf) ls a s stated in Corollary 2.3,

with a = ri = max(C[R/t], R[C/t], 1),

a + 7n = rh = min(C[R/t] + C, R[C/t] + R), q = RC

and RC — rrf = fc rnod(rk — T[).

Note Chat, on substituting for /(£, b, k), the block design formula for cmax reduces

to b(k- 1) - (b/k)[k/t](2k - t - t[k/t]).

It follows that Mc is minimised when c = cmax and Af = cmaxy/9i

The theorem suggests a form for an approximate information matrix Ad*, de-

rived by substituting Xf — c,,iax-\/^/(IZj=i V@j) m ^° ̂ n e spectral decomposition

of the information matrix.

Corollary 5.1 The approximate information matrix for estimating a set of treat-

ment contrasts, CLT, given by

Aa- = JT/() E V ^ ; , (5.1)

where ^ (i = I,... ,t — I) are the eigenvectors corresponding to the non-zero

eigenvalues of C'LCL, has trace achieving bound B(Cj_) of Corollary 2.2.

Proof: This result follows directly from Theorem 5.1.

Note: For any design d G D(t,CL,B), tr(Ad) < cmax = tr{Ad.), from (5.1).

Hence A&> will be called the A-optimal approximate information matrix through-

out this chapter.

Corollary 5.1 shows that if a design d* exists, with an information matrix equal

to Ad*, then d* is A-optimal over the class D(t, CL, B). In practice, a design with

information matrix Ad* rarely exists for specified contrasts CLT. However, for

the following class of problems, A-optimal designs are established directly from

Corollary 5.1.
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5.2.2 Estimating a full set of orthogonal contrasts

When the specified contrasts are a set of t — 1 orthogonal contrasts in the treat-

ment effects, Theorem 5.1 can be used to derive the well known results for A-

optimality of balanced incomplete block designs and Youden squares, discussed

in this subsection. In order to do this, the following lemma is required.

Lemma 5.2 Suppose x-j , . . . ,xt-\ is a set oft x 1 orthonormalised vectors such

that x\\t = 0, i = 1 , . . . , t — 1, where lt is a t x 1 vector of ones, then YllZi xix\ —

It — (l/t)Jt where Jt = \tl't and It is the t x t identity matrix.

The optimality result can be shown in the following way. From Lemma 5.2,

any set of orthogonal contrasts GOT in t treatments has C'oCo = h ~ (l/t)Jt-

It is easily verified that the eigenvalues of C'oCo are 0{ = 1 for i = 1 , . . . , t — 1.

From Theorem 5.1, the eigenvalues of the information matrix Ad* are

Xf = A r f ' = ^ , i = l > . . . , * - l , (5.2)

where cmax is the maximum trace of Ad* which equals b{k— 1) for binary designs.

The A-optimal approximate information matrix is calculated using the spec-

tral decomposition Ad* = YllZ] ^f d^'i which, after substituting for Y?iZ\ dd from

Lemma 5.2 and for Xf from equation (5.2), simplifies to

A balanced incomplete block design is known to have Ad = rE(It — (l/t)Jt),

with E = Xt,t/(rk), where A& denotes the number of blocks in which each pair of

treatments occurs. Using the necessary conditions for the existence of a balanced

incomplete block design, that bk = tr and r(k — 1) = Xb(t — 1), it follows that

rE = Xi,t/k can be expressed as b(k — l)/(t — 1). Hence

A similar argument can be used to show that Youden squares are A-optimal

row-column designs. Since a Youden square has row and column component

designs consisting of a randomised block design and a balanced incomplete block

design respectively, ARC = ^ c , see the proof of Theorem 4.5. Hence ARC* — Ad*
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and the above argument for the A-optimality of balanced incomplete block designs

also establishes the A-optimality of Youden squares.

Theorem 5.1 provides a sufficient condition for the A-optimality of a strongly

aligned design. It is extremely difficult to establish necessary conditions for a

design to be A-optimal over D, owing to the problem of design existence. In

the discussion of the methods of finding designs, given in Section 5.3, it is noted

that designs with information matrices corresponding to the approximate infor-

mation matrix rarely exist. However, designs with an information matrix close,

in some sense, to the approximate information matrix are highly efficient. This

is illustrated in Section 5.4, in which some examples for several different sets of

practical treatment contrasts are discussed.

5.3 Applications to finding efficient designs

In this section, possible methods of finding designs with information matrices cor-

responding to the A-optimal approximate information matrices of Corollary 5.1

are discussed. The search for efficient designs must be undertaken by separate

consideration of the specific contrasts of interest, CLT, since the eigenvalues of

C'LCh are used to determine the design independent bound of Corollary 2.2.

There are several possible approaches to finding block designs using Corol-

lary 5.1. The first approach is to try to construct a design from the information

matrix produced by the corollary. The second approach is to search, within the

class of aligned designs, for designs with information matrices close to Ad*. A

further approach is appropriate when the nature of the treatment contrasts makes

the class of efficient aligned designs very small. This approach involves searching

for efficient designs with the same information matrix structure as Ad*.

The first approach is composed of two stages. First, it is necessary to consider

the possible treatment replication structure of the design, for which the following

lemma is needed.

Lemma 5.3 A design d, fort treatments arranged in b blocks each of size k, with

an information matrix A,i which achieves maxc{eD ti'(Ad) must have treatment

replications ?•; (i = 1,...,/.) in the range

max{lj>[k/t}) < n < b[k/t] + b.
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Proof: The value of rnaxd^D tr(Ad) is calculated assuming that the elements

of the incidence matrix Nd are as equal as possible subject to the constraints that

Xw=i nij = k (j = 1,... ,b) and J2bj=i nij = r«' (* = 1, • • •, t)- Hence, the elements

of Nd take one of two integer values, either n,-j = [k/t] or [k/t] + 1. The result is

obtained by considering the maximum and minimum values of 5Zj=i n«ji s e e the

proof of Theorem 2.5 for use of a similar argument.

The above lemma generates many possible treatment replications, each of

which requires investigation to see whether a corresponding design exists as de-

scribed below. Alternatively, a single allocation of replications to treatments can

be obtained using the formula of Jones (1976), that is 7',- = (J2f=\ wjc]j)1^2 where

C{j is the element of the jth contrast vector corresponding to the ith treatment, all

contrasts having been scaled so that H|= 1 ch = 1, and Wj is the weight assigned

to that contrast (i — 1 , . . . , t; j' = 1,.. ., L).

The next step is to calculate, for each treatment replication possibility, a con-

currence matrix using Nd*N'd* — krs — kAd*- The existence of a design with

concurrence matrix Nd*N'd, can be investigated using an algorithm similar to

the one developed by Taylor Sz John (1983) to construct a binary design from

a given concurrence matrix. Examination of a range of examples for different

sets of treatment contrasts has revealed that designs corresponding to the in-

formation matrix Ad* rarely exist since Nd*N'd* rarely has integer elements. A

possible way forward is to round the entries of the concurrence matrix but this

rounding is somewhat artificial since it has to be performed subject to satisfying

the existing constraints on NdN'd. For non-binary designs, h\ = J2\=i 5Ij=i nijnij

(i = 1,...,2) must be satisfied. Binary designs have the additional constraint

that J2bj=i n]j = V{ < b for i = 1,... ,t. Hence, it may be necessary to consider all

concurrence matrices which have some integer elements similar in magnitude to

the corresponding elements of Nd*N'd. and also satisfy the design constraints.

There are a number of disadvantages to this approach. Firstly, there is no

guarantee that any of the resulting concurrence matrices will correspond to an

existing design. In addition, the approach will not easily extend to designs for

two orthogonal blocking factors, since it is extremely difficult to determine the

incidence matrices for the row and column component designs for a given ARC*

and replication vector ?\ Since the effort required to find efficient designs via this

approach is considerable, it seems more appropriate to use JE.
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The second approach to finding designs is to restrict attention to the class of
aligned designs and locate highly efficient and A-optimal designs within this class.
This approach is demonstrated in Subsection 5.4.1, where examples are given
of efficient block and row-column designs which are aligned with the particular
contrasts of interest and have information matrices with entries close to Ad*.

The third approach focuses attention on finding designs which have the same
pattern to the entries of their information matrix as the A-optimal approxi-
mate information matrix. This method is illustrated by the examples of Sub-
section 5.4.2.

5.4 Application to further contrasts from the

pharmaceutical industry

Within the pharmaceutical industry, interest is often focused on non-orthogonal
treatment comparisons in two or more treatments. The previous chapters of this
thesis are concerned with finding efficient designs which are part-balanced with
respect to one such set of contrasts, namely, the dual versus single treatment
contrasts. This case is discussed further in Subsection 5.4.2. Another set of
non-orthogonal pairwise contrasts is considered in the following subsection.

5.4.1 A reduced set of contrasts for a large number of

pairwise treatment comparisons

Consider an experiment for t treatments, labelled 1, . . . , t and arranged in b blocks
each of size k, for which the set of all pairwise treatment comparisons is of interest.
If t is very large, an infeasibly large number of comparisons may need to be
estimated and interpreted. In this type of situation, it may be possible to use
prior knowledge of the treatments to provide an initial ranking of the treatment
effects. For the case considered in this subsection, the following contrasts are of
primary interest:

Ti - ri+j for i = 1, . . . , t; j = 1, . . . , p, (5.3)

where p < 1; — 1 and i + j is evaluated as i + j — t when i + j > t.
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Let Cc denote the contrast matrix for (5.3) then the matrix C'cCc is circulant

with initial row j 2p —\'p 0 —l'p j . Hence, from Definition 5.1 and the fact

that all circulant matrices of the same size have a common set of eigenvectors

(Davis, 1979, p 73), the class of aligned designs contains all designs with circulant

information matrices and in particular the A-optimal approximate information

matrix Ad* (see Corollary 5.1) is circulant.

For this specific set of contrasts, attention is restricted to equi-replicate designs

where r = relt. This is a reasonable assumption since the diagonal elements of

A^ are all equal and the design is constrained to have equal block sizes. A further

justification is that, in this particular set of contrasts, each treatment effect occurs

the same number of times with the same coefficients, and such balance is likely

to require an equi-replicate design. The following example demonstrates how

efficient equi-replicate designs may be found.

Example 5.1 Suppose an investigator is interested in comparing six treatments,

arranged in twelve blocks each of size three. Prior knowledge of the treatments

suggests that p = 2 and the resulting C'cCc matrix is circulant with intial row

I 4 —1 —1 0 —1 - 1 . From Corollary 5.1, with cmax = 24, the A-optimal

approximate information matrix is given by the initial row

{4.0000 -0.8990 -0.8990 -0.4041 -0.8990 -0.8990 } .

For cyclic designs, the diagonal elements of the information matrices are easily

shown to be k~lre{k — 1). Since k = 3 and Ada = 4 (i — 1 , . . . ,t), re is taken as

six hi this case. A design with this information matrix does not exist, however,

since the concurrence matrix is given by the initial row

{ 6.0000 2.6969 2.6969 1.2122 2.6969 2.6969 } ,

which does not have integer elements.

The next stage is to consider various roundings of the elements of Nd*Nd,

which satisfy the design restrictions concerning treatment replications and block

sizes. The circxdant matrices generated by the following initial rows are consid-

ered:

(i) (633033),

(ii) (632223),

(Hi) (6 23 23 2).
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A cyclic design exists with concurrence matrix given by (ii). This design is

generated by cycling on the initial blocks (12 3) and ( 1 2 4 ) • It should be noted

that this design is not unique. The following block design also has its concurrence

matrix given by (ii)

Block 1
Block 2

Block 3

Block 4

Block 5

1

1

1

I

I

2

2
o

3

4

3

6

6

4
5

Block
Block

Block
Block

Block

7

8

9

10

11

2
2

2

3

3

3

3

4
4
5

4
5

5

6

6

Block 6 1 5 6 Block 12 4 5 6.

Note that the designs are not isomorphic since the second design has a repeated

block, whereas the first design does not. Both these designs have tr(Cc^ldC'c) =

4.9962 and an efficiency of 99.1% when compared with the design independent

bound of Corollary 2.2.

Group divisible designs with concurrence matrices given by (i) and (Hi) also

exist. The design with N,tN'd corresponding to (i) has association scheme (14),

(25), (36) and \^ = 0, A-2 = 3. The design with NdN'd given by (Hi) has

association scheme (13 5), (246) and Ai = 3, A2 = 2. Both these designs

have tr(Cc^dCc) = 5.0 and a corresponding efficiency of 99% when compared

with the design independent bound of Corollary 2.2. Hence, by confining attention

to the class of aligned designs, highly efficient designs have been identified.

Note that, for these examples, row-column designs for estimating CCT can be

obtained by amalgamating the incomplete block design with a complete block

design. From Lemma 4.1, row-column designs can always be constructed in this

way when the component designs have equal treatment replications and compati-

ble dimensions. The resulting designs will be row-orthogonal with the same total

variances and efficiencies as their respective incomplete block component designs.

5.4.2 The dual versus single treatments problem

When the approach of the previous section is applied to the dual versus single

treatments case, it is found that the class of aligned designs contains highly

efficient designs for only a small number of parameter values. Therefore, in this
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section, the third approach to seeking efficient designs with the same information

matrix structure as the A-optimal approximate information matrix is adopted.

The contrasts for this particular problem are given by HT, where the contrast

matrix H is defined in equation (1.12). An examination of a selection of examples

has indicated that the bound of Corollary 2.2 may be loose for this particular set

of contrasts under certain parameter values. The following examples illustrate

this point, in addition to showing that efficient PBDS block and row-column

designs are not necessarily aligned with H although their information matrices

have structure (1.14).

Example 5.2 Suppose an experiment has parameters rn = 2, n = 3 ; 6 = 4

and k- = 9; the corresponding value of cmax = max^D tr(A(i) is 28.4444- The

A-optimal approximate block information matrix given by Corollary 5.1 is

I 6.5899 -0.77781'2 -2.5171 12 \

Ad.= \ -0.7778 12 4.7878/2 - O.3575J2 -2.3939/2 - 0.4505J2

V -2.5171 12 -2.3939/2 - 0.4505J2 7.1818/2 - 0.6849J2

with tr(HQ,d.H') = 0.9927. The most A-efficient PBDS block design, with in-

formation matrix structure (1.14), found by Gercnni, Lewis, Majumdar & Notz

(1993) has

Ad =

with tr(HQ,dH') = 1.0898. The efficiency of the PBDS design d found by com-

paring tr(HQ,(i*H') with tr(Hft(iH') is 91.1%. However, bound Bp of Chapter 2

has a value of 1.0833 and hence is tighter than the bound of Corollary 2.2 in this

case. Design d has an efficiency of 99.4% when compared with bound Bp.

Note that design d is not aligned with the contrast matrix H which may

explain its low efficiency when compared with the bound B(H) of Corollary 2.2.

Example 5.3 Consider an experiment with m = 2, n = 3, R — Q and C = 7.

From Theorem 5.1, cmax takes the value 32.0952 and the A-optimal approximate

row-column information matrix is

1

\
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- 1

.2222

.3333

.7778

1

1
2

2

- 1 .

5.777812
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3333 1'2
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3333./2

—

—

8/2

1.777812

1.3333J2

- 1.7778J2
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7.4357 -0.87771'2 -2.8402 12

= | -0.8777 12 5.4024/2 - 0.4034./2 -2.7012/2 - 0.5083J2

-2.8402 12 -2.7012/2 - 0.5083J2 8.1035/2 - 0.7727J2

which has tr{HQ,RC*H') = 0.8798. The most A-efficient PBDS row-column de-

sign for these parameter values, given in Table S.I, has

ARC =

7.1429 —1.57141'2 - 2 1 2 \

•1.57141-2 6.8572/2 - 1.1429J2 -0.1428/2 - 1.4286J2

- 2 1 2 -0.1428/2 - 1.4286J2 8.2380/2 - 1.6190J2

with tr(HQ.RcH1) = 0.9713. The PBDS row-column design has an efficiency

of 90.6% when compared with the design independent hound of Corollary 2.2.

However, this bound is not recommended for use in this case since bound Bp has

a value of 0.9302. The PBDS row-column design has an efficiency of 95.8% when

compared with bound Bp. It should be noted that the row-column design and the

row and column component designs are not aligned with H.

5.5 Conclusions

In this chapter, a method of identifying classes of designs which can contain highly

efficient designs for estimating a specific set of treatment contrasts is described.

A specification for the information matrix of a design, sufficient for its trace

to achieve the design independent bound B(CL) of Corollary 2.2, is given and

applications to methods of finding efficient designs are described. Illustrations

for two different sets of contrasts from the pharmaceutical industry are discussed.

Further recent work undertaken jointly with S.M. Lewis, L.-J. Kao & A.M. Dean

(Ohio State University) has established the necessity of the form of the A-optimal

approximate information matrix, Aci*, given in Corollary 5.1 for achieving bound

B(CL). The work in this chapter, together with the additional recent result, has

been written up and submitted for publication.
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Models for cross-over studies

6.1 Introduction

In the remaining chapters of this thesis, efficient designs for cross-over trials

constructed from the efficient PBDS row-column designs of Chapters 3 and 4

are considered. The first issue to address is what constitutes a suitable model

for a cross-over trial. Several different model formulations have been used in

the past, some of which have received criticism in the more recent literature, see

Fleiss (1989) and Senn (1992). In this chapter, models used in the literature for

planning trials are reviewed and some controversial issues are discussed.

A popular study design for a medical experiment is the parallel group study

in which patients are randomly assigned to treatment groups and receive doses of

one treatment throughout the duration of the experiment. A cross-over study is

more complicated in design, but has the advantage that resources are conserved

by repeatedly treating each experimental unit. In such a study, each subject is

given a series of treatments over a sequence of time periods and the response

of each subject is measured at the end of every period. This enables treatment

comparisons to be made xvithin-subject and, since in medical trials it is usually true

that within-subject variability is much smaller than between-subject variability,

important contrasts can be estimated much more efficiently. Trials are considered

for t treatments allocated to .s subjects over ;; periods, with periods and subjects

represented by the rows and columns respectively of the design. The treatment

sequence for a given subject may consist entirely of distinct treatments or may

involve repetitions.

102
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Designs which have been developed for use in this type of study are known

as cross-over or change-over designs. They may also be referred to as repeated

measurements designs, although this term includes situations where each patient

is repeatedly observed while receiving only one treatment throughout the duration

of the experiment, as well as those where the patient receives a sequence of

different treatments.

A disadvantage of using a cross-over study is the need to allow for the possibil-

ity of a carryover effect of the treatment administered in period i into subsequent

periods, since it is often unrealistic to assume that a treatment effect disappears

as soon as the treatment is stopped. This problem is often reduced by employing

a washout period. This is a time interval inserted between each pair of treatment

periods, during which the patient receives no treatment. Hence any residual treat-

ment effects will have lessened or may have disappeared completely before the

next course of treatment commences. This approach serves to reduce pharmaco-

logical carryover effects but may be of little help in reducing carryover effects of

a psychological nature.

The study of psychological effects in medical experiments has been aided by

the development of the placebo. This is an inactive substance which is usually

matched to the shape, taste and colour oi the treatment under investigation so

that the patient is unaware that a dummy treatment is being administered, thus

enabling the true effect of the active treatment to be observed. This is known

as a blind trial. A double blind trial is one in which neither the patient nor

the clinicicin observing patient response knows which treatment is being admin-

istered in each period. Studies which reveal a placebo effect are recorded in the

literature, not only for psychological experiments involving illnesses which may

have a psychosomatic cause such as anxiety and stress, but also for conditions

such as vomiting and post-operative pain. Beecher (1955) reviews fifteen studies

from the medical literature, involving more than 1,000 patients, for a range of

conditions including severe post-operative pain, cough, pain from angina, anxiety

and tension and headache. The results indicate that approximately 35% of the

patients received relief from a placebo.

Since it is widely accepted that the power of suggestion may have a signifi-

cant effect on a patient's condition, there is no reason to assume that this type

of effect does not carryover into the next treatment period. Although the use of

a washout period may ensure that all pharmacological traces of the drug have
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been eliminated from the patient before the next treatment period begins, it is

not necessarily true that the patient is no longer affected by the treatment of the

previous period. Willan Sz Pater (1986) discuss psychological carryover, some-

times referred to as negative carryover, in their paper which defends the use of

cross-over trials in the presence of carryover effects. They describe psychological

carryover as the patients' change in attitude as they enter the second period as

a result of their experiences in the first period. For example, a patient receiving

little relief from a placebo in the first period may not be happy about continuing

the trial. Such reservations may alter the patient's evaluation of the performance

of the active treatment administered in the second period. Jones Sz Kenward

(1989,, p 42) also mention this issue. Willan & Pater discuss a specific example

to illustrate this point. They cite a double blind 2 x 2 cross-over trial designed

to compare the efficacy of two drugs in controlling nausea and vomiting caused

by cancer chemotherapy. Patients were randomised to receive either drug A or B

for their first course of chemotherapy and then crossed over to receive the other

drug for their second course. The response measured was the degree of nausea,

rated on a linear analog scale, experienced in four six-hour intervals following

chemotherapy. Estimates of direct treatment and carryover effects, assuming a

model for additive first-order carryover effects and random subject effects (see

Section 6.5), are presented separately for each interval and reveal significant car-

ryover effects in the second and third intervals. These effects are thought to

have a psychological cause since a patient who experiences nausea in the first

interval after chemotherapy may expect to experience it in the second period and

consequently is more likely to experience it.

A further example of a possible psychological carryover effect is a recent study

by Dunn (1993) concerning the effectiveness of quinine in relieving night cramps.

Twenty-eight patients were allocated quinine or placebo for thirty clays and then

crossed over to receive the alternative treatment for thirty days after a washout

period of three days. The proportion of nights in which a patient experienced

night cramps was the observed response. A carryover effect was found to be

significant at the 5% level using a Mann-Whitney test. This is surprising because

there is usually low power to test for this type of effect, an issue discussed by

Hills & Armitage (1979). The latter authors also stress the fact that the estimates

of direct treatment effects for a 2 x 2 cross-over trial, such as the Dunn (1993)

study, will be biased if the assumption ol negligible carryover effects is not valid.

In this case, the use of estimates of treatment effects based solely on the data
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from the first period is advocated. The authors outline a test for the assumption

of negligible carryover effects but point out that it has low statistical power and

hence will only detect very large effects. In order to achieve sufficient power to test

for carryover, it would be necessary to employ as many subjects as for a parallel

group study thus removing one of the advantages of a cross-over study. Grizzle

(1965) and Brown (1980) also address this issue, see Section 6.5. Willan & Pater

(1986) disagree with the view that a parallel group study should be used whenever

carryover efFects are suspected of being present. The authors demonstrate, by

means of an example, that even in the presence of significant carryover effects

the cross-over analysis, which estimates the direct treatment effects using data

from both periods, can provide a more powerful test of treatment effect than the

estimates based on first period data only. Jones fe Kenward (1989, p 85) agree

that the power of the preliminary test for the presence of carryover effects in the

2 x 2 trial is inadequate, but show how the power of the test may be increased

by including baseline measurements or covariates in the. analysis.

A review of the literature reveals some controversy, outlined in this section,

over the use of cross-over trials. However, there is sufficient evidence from past

studies to indicate that the assumption of negligible carryover effects may not

always be appropriate.

The designs described in Chapter 7 are obtained mainly under the assumption

of first-order carryover effects, where the effect of a treatment may be present in

the period immediately following the period in which that treatment was admin-

istered, but will be assumed negligible in any of the subsequent periods. The aim

is to find designs which perform well both in the presence and absence of first-

order carryover effects, since designs are sought for trials involving treatments

with short term effects which make it very difficult to predict, at the planning

stage, if carryover effects will be present. The approach followed takes an ef-

ficient row-column design under model (1.1) and rearranges it to find a layout

which achieves minimum variance for the contrasts of interest under a model

including additive first-order carryover effects. The same approach is used to

find designs for situations when carryover effects are thought to persist for two

periods. An investigation of the robustness of the designs to the presence and

persistence of carryover effects is presented in Subsection 7.6.2.

The estimation of direct treatment effects is considered of primary importance

since this is most commonly the case in practice. The carryover effects, if found to



Chapter 6 106

be present, are regarded as a nuisance factor. In order to decide whether carryover
effects are present, a significance test applied at some specified significance level
is used. It is common practice to remove carryover effects from the model unless
they are found to be significantly different from zero. A problem associated
with'this technique occurs if the carryover effects actually exist but are found
to be non-significant. If the carryover effects are then dropped from the model,
the resulting estimates of the treatment effects, f, are biased. Conversely, if the
carryover effects are very small but accounted for in the model, then the estimated
treatment effects adjusted for carryover effects, denoted by f, are unbiased but
will usually have larger variance due to the inclusion of extra parameters in the
model%and the fact that a substantial decrease in the mean square error is not
achieved by including the carryover terms.

Abeyasekera & Curnow (1984) consider this issue and suggest that when the
estimation of direct treatment effects is of primary interest, it may be more ap-
propriate to base the decision of whether or not to adjust for carryover effects
on procedures which lead to estimators with smallest mean square errors (MSEs)
rather than on significance tests. The authors choose to estimate treatment dif-
ferences by:

[ r if |6| < T,

where b is an unbiased estimator of the bias b in the estimator f which is un-
adjusted for carryover effects. Three examples are considered for a range of
parameter values and the maximum percentage increase in root mean square er-
ror (RMSE) when r* results in the wrong decision is computed. The findings
suggest that the decision not to adjust when the adjusted estimator would have
been preferable does not lead to substantially less accurate estimators. However,
if the adjusted estimator is used when the unadjusted estimator would have been
preferable, increases in RMSE are as high as 10% in some cases. The increase in
RMSE is also considered for the situation when the adjusted estimator is always
used, and the resulting figures are of similar magnitude to those obtained by using
the adjusted estimator when the unadjusted estimator would have been a better
choice. It is noted that these errors, resulting from always using the adjusted
estimator, will only occur if the true difference between carryover effects is quite
small. Hence, the authors conclude that the best approach is to always use the
adjusted estimators. However, in the dual versus single treatments case, designs
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are considered for situations in which carryover effects are expected to be small

if not entirely negligible. Therefore, it may not be advisable to always adopt the

estimators adjusted for carryover effects.

In the following sections, a review of the carryover models which have appeared

in the literature is presented. In Section 6.3, models for additive carryover effects

are discussed. A brief description of some models with a factorial treatment

structure is given in Section 6.4, followed by a discussion of models for random

subject effects, see Section 6.5. The possibility of interactions between effects is

considered in Section 6.6 and autoregressive models are discussed in Section 6.7.

In the next section, the validity of the assumption of independent errors, when

the same individuals are measured repeatedly, is considered.

6.2 Models with correlated error structures

In this section, it is assumed that carryover effects are negligible and an additive

model for two blocking factors, given as equation (1.1) in Chapter 1, is adopted.

For a trial with p periods and s subjects the model can be written as

yij = n + a , - + fa + Td{itj) + eij {i = 1 , . . . , ; > ; j = 1 , . . . , s ) , (6.2)

where y,j denotes the response obtained from the jth subject in the ith period,

H is the overall mean, a,- is the ith period effect, ftj is the jth subject effect,

Td(i,j) is the direct effect of the treatment given to subject j in period i and €{j

are correlated random variables with mean 0 and variance a2. Correlated error

structures can be thought of as an alternative way of modelling the relationship

between measurements on the same unit in a cross-over situation. However, they

should not be regarded as a replacement for carryover effects since there is no

formal link between the two; correlated errors being a function of time only and

carryover effects a function of treatment only. There are many possible forms of

error structure which might be appropriate for this type of situation but much of

the literature devotes attention to the following two cases.

Case I Errors follow a stationary first-order autoregressive process.

Under this process, the errors for subject j (j'• = 1,. . . , s) take, the form

tjij for i=l

A£i_ij +i]ij for i=2,.. . ,p,
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where rjij are independent identically distributed random variables with mean 0

and variance G\ and A is the parameter of the. autoregression. This results in a

variance-covariance matrix V — (v{j) which has elements

where — 1 < A < 1.

Under model (6.2), optimal designs for a particular experiment size are likely

to depend on the value of A. This is illustrated by the results of Kunert (1985)

in his search for optimal cross-over designs, in the sense of minimum variance

of the Best Linear Unbiased Estimate of treatment effects. Kunert shows that

a Williams design with balanced end pairs, that is with the same number of

units receiving treatments i and j in the first and last periods (i,j = 1,...,£),

is universally optimal (see Definition 1.4) for the estimation of treatment effects

over the class of all repeated measurements designs for t treatments, s subjects

and p = t periods when A > A*(i) where

if t = 3
X*(t) =

Kunert claims that an error structure with correlation decreasing over time

is a sensible approximation to reality. However, some of the model's popularity

is probably due to its mathematical tractability. A drawback of this model is

that A is usually assumed to be known, and although it may be possible to

obtain information about A from previous similar experiments, this is unlikely to

provide more than a rough approximation to the parameter's true value. Street

(1989) also uses this model in her discussion of possible construction methods for

the optimal designs of Kunert (1985).

Case II Errors follow a stationary first-order moving average pro-

cess. The errors for subject j (j'• = 1 , . . . ,s) can be written as

VH fori=l

Vij - Xlli-\,3 for i=2,...,p,

where the t]ij are as for Case I and A is the parameter of the process. This process

produces a variance-covariance matrix which has elements

X^a2
e if\i-j\<l

(6.5)
0 otherwise,
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where - 1 / 2 < A < 1/2.

The model with additive effects for treatments and blocking factors and Case II

type error structure has received much less attention in the literature. Matthews

(1990) considers this type of error structure in his review of the efficiency of

ordinary least squares analysis of cross-over designs. A more general mixed

autoregressive-moving average process, with parameters p and q, is considered

by Rochon Sz Helms (1989) in their work on maximum likelihood estimation for

incomplete repeated measurements designs. An advantage of this type of error

model is that it can provide for a wide variety of structures in the covariance

matrix of the observations while requiring only a small number of parameters to

be estimated, but the authors give little discussion of where this structure might

occur in practice.

It is an advantage to be able to provide optimal or at least efficient designs

under different error structures if it is known in which type of practical situations

these forms of error are likely to arise. Williams (1952) designs one-dimensional

treatment sequences under a Case I type error structure and, using some data on

wheat yields from different plots of land, shows that this type of error structure

may be appropriate for agricultural data. However, at the planning stage of an

experiment, it is very difficult to determine which type of error structure may be

applicable. It is therefore necessary to consider how the reliability of the study

conclusions is affected if the experiment is designed or analysed under a model

with an inappropriate error structure.

Ideally, a design should be employed which is robust over several plausible

error models, that is information on the parameters of interest can be extracted

efficiently irrespective of the assumptions about error. The question of interest

is whether such designs exist. Behrenblut Sz Webb (1974) consider this problem

and show that the minimum variance unbiased estimates of treatment effects for

Williams Latin Squares have optimum properties under a model with indepen-

dent, identically distributed errors and also under a model with errors following

a first-order autoregressive process for both positive and negative A.

The consequence of the assumption of an inappropriate error structure is to

incorrectly estimate the variance of the parameter of interest. Kunert (1987)

addresses this type of problem by finding an upper bound on X, the quantity

by which the estimate of the parameter variance needs to be multiplied in order
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to make it unbiased. A limitation of this work is that the calculated bound

does not relate to the true amount of underestimation but is a bound for the

worse possible scenario. The value of the bound is that it may help to determine

whether the conclusions of an experiment conducted under the assumption of

independent, identically distributed errors would be worthless under a general

covariance structure for error. In a sense, the bound gives some indication of the

robustness of conclusions to different error models.

Matthews (1990) addresses the related problem of efficiency of analysis under

Ordinary Least Squares (OLS) if the errors are correlated. For simplicity, the

covariance matrix of the errors is assumed to be dependent on a single parameter

A. Two alternative forms of analysis are considered for the case where A / 0,

namely Generalised Least Squares (GLS), which is based on the assumed disper-

sion matrix V(A) but has the disadvantage that A is required to be known, and

an empirical form of generalised least squares (EGLS) which is also based on the

assumed dispersion matrix, this time evaluated at A which is estimated from the

data. However, EGLS will often be less efficient than OLS due to a poor estimate

of A resulting from sampling variation.

Matthews defines two quantities which enable the performance of OLS analysis

to be assessed. These are denoted by R\ and R2 and are calculated as

root mean estimated variance using OLS
actual standard error using OLS

and
actual standard error using GLS

actual standard error using OLS'

where the standard error is that of the direct treatment effect. The efficiency of

OLS analysis is measured using R2.

The efficiency of the analysis of a design using OLS, relative to that obtained

using GLS, can be calculated if a value for A is assumed, but the performance of

the OLS analysis is dependent on the particular value assumed. The approach

taken is to see whether the OLS analysis achieves some specified level of efficiency

(to be fixed by the experimenter or statistician) for all plausible values of A. If

this level is sufficiently high then the design may be considered robust to errors

to some extent. However, since the estimate of the parameter variance using OLS

is not unbiased for the true variance under OLS, the size of the bias should also

be considered when making decisions about robustness. Summary measures of
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these two factors, R2 and R\ given above, are calculated under the asumption of

Case I and Case II type error structures for a range of possible values for A. The

results, which are restricted to the case where t = 2, suggest that the summary

measures vary according to design, error process and the true value of A. Hence

it is difficult to recommend designs. It should be noted that designs which are

efficient under OLS analysis are not always efficient designs under the model

of interest. Therefore design selection which is based solely on performance of

designs under OLS analysis may result in the selection of a poor design for the

particular experiment.

In practice, there are many factors which need to be taken into consideration

when Selecting an experimental design, not all of which are statistical. The above

discussion indicates that there are both advantages and disadvantages of assum-

ing correlated errors. The assumption of independent errors is very common in

practice, since it is very difficult to determine at the outset of an experiment

which type of error structure may be applicable and there are technical difficul-

ties associated with estimating the parameters of the error processes as discussed

in this section. Owing to these types of problems, models with correlated error

structures are not used for the dual versus single treatment problem in this thesis.

6.3 Models with additive carryover effects

In this section several different types of model are described and their suitability

for application to the dual versus single treatment contrast problem is considered.

The discussion begins with the most popular model which has been discussed and

used by many authors.

6.3.1 Additive first-order carryover effects

The model for this case is similar to (6.2) and jjij is written as

y{j = /* + on + pj -f Trf(,-j) + pd(i-\,j) + £ij (6.6)

(i = 1 , . . . , ; J ; j = l , . . . , s ) ,

where p,i(i-i,j) is the carryover effect, observed in period i, of the treatment ad-

ministered in the (i-l)th period to the jth subject and pd(o,j) = 0 f° r j = 1 , . . . , s .

All other effects in (6.6) are as for (6.2).

\
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Consider equation (6.6) with the assumption of independent, normal errors.

Many authors have used this model, including Williams (1949) who found exper-

imental designs combinatorially balanced for the estimation of carryover effects

under this assumption, in the sense of having each of the t treatments preceded

equally frequently by every other treatment. A consequence, under equation

(6.6), is that the estimators of all pairwise comparisons have equal variances. Pi-

geon & Raghavarao (1987) assume this model and find cross-over designs which

are balanced for the estimation of carryover effects for the test treatment versus

control treatment contrasts, in the sense of having each contrast estimated with

equal precision.

The model is also adopted by Russell (1991) in his search for good cross-over

design's for situations where there are fewer subjects than treatments. This type

of design is useful in product testing experiments, for example wine tasting, where

there are more products to be tested by each judge than there are judges available.

Russell found that near A-optimal designs for an even number of treatments t

can be obtained by selecting a set of s columns, which gives a design connected in

the direct treatment effects with the smallest average variance for the elementary

treatment contrasts, from the t possible columns of a Williams Square.

Equation (6.6) expresses the carryover effect in its simplest possible form and

hence it is sometimes referred to as the simple carryover model. This lack of

complexity accounts for much of its popularity in the statistical journals. How-

ever, as already discussed, the assumption of independent errors may not be valid

and models of the form of (6.6) with the correlated error structures of Cases I or

II of Section 6.2 have also been considered. Matthews (1987) obtains cross-over

designs for two treatments which minimise the variance of the estimated direct

treatment and carryover effects under a Case I type error structure with A known.

Models based on equation (6.6) have received some criticism in recent years

since they involve some assumptions which are not satisfied in many practical ex-

periments. These criticisms, which are in the context of pharmacological measure-

ments, are briefly mentioned here for completeness but are discussed in greater

detail in Section 6.8. Fleiss (1986, 1989) discusses the assumption, implicit in

equation (6.6), that the carryover effect of a treatment A onto a second treat-

ment B, will be the same as the carryover effect of A onto itself. He argues that

such an assumption is unlikely to hold in most practical settings. The assumption

does appear unrealistic since most drugs have a maximum effect level and once
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this level has been attained no further increase in treatment effect can be gained

by continuing the treatment for a longer period. Matthews (1993) also discusses

this problem and formulates an alternative model for two treatments, which can

be extended to apply to t treatments to give:

XJij = fl + O{ + fa + Td{iJ) + /Orf(i_i,j){l - <f>] + €ij (6.7)

where

0 otherwise

Note that, if t > 2, it is possible that the design has no treatment sequences

in which the same treatment appears in two successive periods. If so, then the

problem does not arise. In particular, treatment sequences containing the same

treatment in consecutive periods will not occur in designs which are binary with

respect to the subject blocking factor, since t > p and the incidence matrix for

subjects will not contain any elements with a value greater than unity. This

problem does not arise in the dual versus single treatments case since the cross-

over designs given in Chapter 7 usually have a small number of periods and

hence a non-binary design for the subjects would result in poor within-subject

estimation of the contrasts of interest.

Fleiss (1989) also questions the assumption that carryover effects persist for

only one period. Senn (1992) discusses the existence of higher order carryover

effects in multiperiod designs and concludes that there is no adequate reason to

exclude them if first-order carryover effects are included. Models for this situation

are considered in Subsection 6.3.3. In the light of these criticisms it is clear that

models based on (6.6) cannot be used indiscriminately. However, this type of

carryover structure is considered by many to serve a useful purpose in trials

with relatively short treatment periods, where prior medical knowledge suggests

that the treatments may have short term carryover effects of a psychological or

pharmacological nature, and it cannot be certain that the allowable washout is

adequate.

A variation on the model consisting of (6.6) together with the assumption of

independent, normal errors is the circular model, see Magda (1980) and Hedayat

(1981), which has the form of equation (6.6) but includes a preperiod in the

experiment, labelled i = 0, where each subject receives the treatment that he or
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she will also receive in the final period. Hence pu(o,j) = Pd(P,j) for j = l , . . . , s .

Although this model has mathematical advantages, it would be difficult to justify

to clinicians why the extra period has been used when the data is not included

in the analysis. In many medical contexts the ethics of such a trial would be in

doubt. Hence, this model is not considered in this thesis.

6.3.2 Carryover effects proportional to direct effects

Consider a special case of equation (6.6) in which the carryover effect pd(i-i,j)

is now modelled as a fraction of the direct effect from the previous treatment

administered to subject j , resulting in the model

y{j = ft + oti + ft + Td{iJ) + \Td{i_hj) + e^ (6.9)

(i = l , . . . , p ; j = l , . . . , . s ) ,

where rd(Oj) — 0 and A is a constant of proportionality with 0 < A < 1.

The model consisting of (6.9) together with the assumption of independent,

identically distributed errors is considered by Patterson Sz Lucas (1962) in their

catalogue of changeover designs. Sen & Sinha (1986) use the same model in their

analysis of serially balanced sequences. Two cases of the model are considered,

namely A known and A unknown. The latter authors propose an alternative model

in which the constant of proportionality is treatment dependent, so that treatment

i has corresponding constant A; (i = 1,. . . , t). This is merely a reparameterisation

of the model based on (6.6) with /)(/(!_1j) = ^d(i-i,j)Td(i-i,j)-

Senn (1992) adopts a form of the model based on (6.9) in his discussion

of an example of a dose finding cross-over trial. However, it should be noted

that Senn is considering the physical carryover of the treatment substance to be

modelled in this way and ignores the possibility of psychological carryover effects,

whereas equation (6.9) refers to the carryover effect of the treatment which may

be psychological or pharmacological.

A model based on (6.9) is intuitively attractive since this type of relationship

between the direct and carryover effects is quite likely to occur in biological or

clinical contexts. Yet this model has not received much attention in the literature.

Since equation (6.9) is a special case of equation (6.6), it is not used explicitly in

this thesis. However, efficient designs under (6.6) with independent, identically

distributed errors are identified in Chapter 7.
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6.3.3 Higher order carryover effects

In multiperiod studies, it is possible that carryover effects may persist for more

than one period. If each kth-order carryover effect persists up to and including

the kth time period after the application of the treatment, then pd/l_k^ can be

incorporated into (6.6) giving

Vij ~ / ' + &i + Rj + Td(i,j) + Pd(i-\,j) + Pd(i-2,j) " ! " • • • + Pd(i-kJ)

+ £,•• (i = 1 , . . . ,/>; j = 1 , . . . , .s), (6.10)

where pdu_h •) = 0 for z < /?. where h = I,... ,k.

Similarly, (6.9) could be general ised to give

+ €ij {i = l , . . . , p ; j = l , . . . , . s ) , (6-11)

or

Vij = fl + ai + fij + Td{i,j) + ^d(i-l,j)(,j) { , j ) { , j )

+ ^d{i-k,j)Td(i-k,j) + £ij {i - 1, • • • , p ; j = 1, • • •, - s ) , (6.12)

where \(i{i-h,j) is a constant and Td^_hj) = 0 for z < h where /* = l, . . . ,fc; see

Finney (1956) for use of models consisting of (6.11), with independent, normal

errors and also with correlated errors, in bioassay.

For higher order carryover effects, most attention in the literature has been

focused on the case where both first- and second-order carryover effects need to

be considered. Williams (1949,1950) considers designs balanced for both first-

and second-order carryover effects, firstly when the interaction between first- and

second-order carryover effects is ignored and secondly when such an interaction

is accounted for in the model. In the former case, any set of (t — 1) mutually

orthogonal Latin Squares gives a design combinatorially balanced for the effects

of k — 1 < t preceding treatments, in the sense that each treatment in the kth

period is preceded equally frequently by every treatment in the ith period (i =

1 , . . . , k — 1), provided that the initial column of each square has the treatments

arranged in the same order. Nair (1967) considers the design and analysis of one-

dimensional sequences combinatorially balanced for both first- and second-order

carryover effects. The possibility of interactions between the carryover effects

is not discussed. Patterson Sz Lucas (1962) consider the design and analysis



Chapter 6 116

of experiments involving multiple carryover effects in their review of changeover

designs.

However, the criticisms of the simple additive model for first-order carryover

effects are, in general, also true of a model including both first- and second-

order carryover effects. A design found under the latter model may require more

subjects than a design under the simple model due to the increased number of

parameters to be estimated. Designs for the dual versus single treatment contrast

problem under a model including first- and second-order carryover effects are

given in Chapter 7.

Discussion The models discussed in this section are appropriate for the dual

versus single treatment contrasts problem, provided their assumptions are reason-

able in the particular practical setting. The models based on (6.10) with h = 2

and (6.6), together with the assumption of independent, normal errors, are used

to identify good cross-over designs in Chapter 7. The latter model has simple

assumptions regarding carryover structure which limit the extent of its practical

use. It is mathematically tractable and has widespread use both in the statistical

and medical journals, although it does possess disadvantages. Models based on

(6.10) have similar advantages and disadvantages, with the additional problem

that their use is limited to larger experiments which have sufficient subjects to

allow for the increased parameter estimation.

6.4 Models with factorial treatment effects

Berenblut (1967) considers a design for testing a quantitative factor at four

equally spaced levels. The case in which both the direct treatment and first-

order carryover effects have a linear, quadratic and cubic component is examined

and the analysis is conducted under the following model:

a,- + ftj + * L 6 4- tQ& + tc& + rLj]i + ?-g?/2 + rcr]3 + £;J (6.13)

where t^, £Q, tc, ?"L, I'Q and re are the linear, quadratic and cubic components

of the direct treatment and carryover effects respectively and £,• and ?/,• (i =

1,2,3) are the orthogonal polynomials for four treatments. The design under

discussion is arranged in such a way that the three degrees of freedom for direct
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treatment effects are mutually orthogonal to the degrees of freedom for the linear

and cubic components of the carryover effects and has the special feature that, if

the quadratic and cubic components of the carryover effects are negligible, then

the variances of the estimates of the direct treatment parameters are minimised.

Berenblut (1968) extends his previous work to find designs for a quantitative

treatment at any number of equally spaced levels. On this occasion, a slightly

different model is adopted in which both the direct treatment and first-order

carryover effects are assumed to be predominantly linear, with carryover effects

small by comparison with direct effects and proportional to them. A term for the

linear direct treatment x linear carryover interaction is included in the model.

Patterson (1970) also considers designing for a quantitative treatment factor

at four equally spaced levels. Attention is concentrated on those designs which

are efficient for the estimation of the linear direct treatment x linear carryover

interaction. Models with interaction terms are discussed more fully in Section 6.6.

6.5 Models with random subject effects

It is considered by some authors that the assumption of fixed subject effects is

unrealistic since subjects are frequently selected from the population and assigned

to treatments at random. Hence a model for random subject effects may be

considered more appropriate for certain stages of the study. Experiments designed

under the assumption of fixed subject effects may be analysed under a random

subjects effects model and vice versa. In this section, three types of model having

random subject effects are briefly discussed. The effect of the jth subject (j =

1,.. ., s) within the kth treatment sequence (A; = 1,.. . ,g), denoted by f3jk, is now

considered to be an independent, identically distributed normal random variable

with mean 0 and variance a'*.

The first model is written as

where T^ij^) is the treatment administered to the jth subject within the kth

sequence in the ith period and the errors Siju a r e assumed to be identically dis-

tributed random variables, with mean 0 and variance a*, independent of each
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fijk and of each other. It can be shown that the covariance between two obser-

vations yijk and yjijf. is aj. Cornell (1991) uses a similar model, with different

distributional assumptions on the random effects, to develop tests of differences

of dispersion for the comparison of two treatments. In Cornell's model, the sub-

ject effects are no longer required to have a normal distribution and the errors

are assumed to have distributions of the same form except that they may have

different variances under the two treatments.

The next model differs from (6.14) in that it includes a term, pd(i-i,j,k), f° r the

carryover effect from period i — 1 to period i. This extended model has received

much attention in the literature. Grizzle (1965) uses it to develop a test for the

validity of the assumption of equal carryover effects for the 2 x 2 cross-over trial.

Brown (1980) adopts Grizzle's extended model to investigate the advantages of

the 2 x 2 cross-over trial relative to other simple designs and concludes that such

cross-over trials are only beneficial if the carryover effects are negligible. Brown

also argues that Grizzle's test for the assumption of equal carryover effects under

this model is not sufficiently powerful to give a reliable result and hence there is

no adequate way to test the assumption from the data.

Although most of the occurrences in the literature of model (6.14), with the

inclusion of a first-order carryover effect, have been in the context of experiments

for two treatments and two periods, there is no reason why the model cannot

be extended for use in higher order experiments. Jones, Kunert & Wynn (1992)

briefly consider a carryover model with random subject effects and independent

errors in their investigation of the structure of information matrices for mixed

effects models.

Attention is often concentrated on the 2 x 2 case because of its practical im-

portance in medical trials. The cross-over design most widely used in drug testing

experiments is the simplest 2 x 2 design consisting of the treatment sequences

AB and BA. However, the analysis of such a design is complicated by the prob-

lem of confounding between sets of parameters. The AB/BA design does not

allow separate estimation of the difference between sequence groups, the differ-

ence between carryover effects and the treatment x period interaction. Different

approaches and forms of analysis have been developed to take account of this

problem including Bayesian analysis, see Grieve (1985).

The second variation on (6.14) retains the term lor the carryover effect but

also includes a fixed sequence effect, <*>/,.. Laska, Meisner Sz Kushner (1983) con-
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sider this model, as well as the corresponding model with fixed subject effects,

in their search for good designs for two treatments. It is shown, under the as-

sumption of either model, that a universally optimal design with an even number

of periods greater than two yields the best obtainable efficiency per observation.

This result is independent of the use of baseline information and assumptions

about carryover. The situation is much more complicated when the experiment

is restricted to two periods. Elswick & Uthoff (1989) develop a non-parametric

analysis of the two treatment, two period, four sequence cross-over design under

the extended model which includes sequence effects, although this model could

be applied in situations where more than two treatments are to be compared.

Matthews (1993) discusses the possibility of assuming subject effects to be

independent random variables with mean (5 and variance 0a2
e which are also

independent of the £,-_,-. Matthews notes that although optimality of designs is

not affected by the assumptions concerning subject effects, the efficiencies of non-

optimal designs may be dependent on the value of 6. Hence, in the dual versus

single treatments problem, there is a need to be wary of searching for efficient

designs under a model with random subject effects, since the efficiencies of these

designs, where sub-optimal, may be altered by changes to the size of the subject

variances.

6.6 Models containing interaction terms

In this section, models which allow for interaction between certain parameters are

considered, starting with those which include the treatment x period interaction

since this has received much attention in the literature.

6.6.1 The direct treatment x period interaction

The presence of a treatment x period interaction indicates that the direct treat-

ment effect differs according to the period in which the treatment is administered.

This causes a problem with interpretation since it is then difficult to draw con-

clusions about the efficacy of the drug when it is not administered in a cross-over

situation and there is no longer a period effect. This model can be written as:

ijij = \i + ax + (3j + T(,(iii) + < (̂i,j),,- + Eij (i = 1 ,...,p; j = 1 , . . . . s) (6.15)
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where 6d(i,j),i denotes the treatment x period interaction and £,-_,- are assumed

to be independent, identically distributed random variables with mean 0 and

variance a2.

Most of the evidence in the literature for the presence of a direct treatment x

period interaction is found in the context of 2 x 2 cross-over trials, where this type

of interaction is confounded with carryover effects, see Jones & Kenward (1989,

p 42). Some authors use the terms carryover and treatment x period interaction

interchangeably when discussing the 2 x 2 experiment since the two terms cannot

be estimated separately. However, this is not advisable since the two terms may

have different interpretations. Hills & Armitage (1979) and Armitage &; Hills

(1982)" consider model (6.15) when discussing the merits of the 2 x 2 cross-over

trial. In their opinion the two terms are distinguishable since the interaction may

be completely unrelated to carryover effects and hence may exist in the absence

of any carryover effects of either a pharmacological or psychological nature. For

example, there may be a substantial period effect due to changing environmental

circumstances, or a practice effect in the first period when patients are adjusting to

the trial. The treatment effect may vary in magnitude with the response causing

an interaction. It should be noted that it is often difficult to make a priori

assumptions about the presence of carryover. The authors conclude that in the

presence of a significant carryover effect or interaction term, the analysis should

be limited to the data, from the first period. An illustration of the interpretation

of the treatment x period interaction is given by Poloniecki Sz Daniel (1981) who

reanalyse some data from Hills & Armitage's study on treatments for enuresis.

Balaam (1968) uses a model including a treatment x period interaction and

excluding all carryover effects. He finds two period designs for t2 experimental

units for the comparison of t treatments which are efficient and allow for the

presence of an interaction term. Laserre (1991) uses model (6.15), with the

additional assumption of random subject effects, to find efficient designs for cross-

over trials to compare two treatments.

6.6.2 The direct treatment x first-order carryover inter-

action

Another important term which may be included in the model is the direct treat-

ment X first-order carryover interaction. The presence of this interaction in-
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dicates differential carryover effects which occur when the carryover effect of a
particular treatment observed in period i for subject j varies according to which
treatment is currently being administered to subject j in period i. A model, with
a factorial treatment structure, which included this term is given by Berenblut
(1968) and is discussed in Section 6.4. Patterson (1970) considers designs for
testing a single quantitative factor at four equally spaced levels which provide
efficient estimates of the linear direct x linear first-order carryover interaction.
It is shown that designs which are suitable for the estimation of direct treatment
and first-order carryover effects are not necessarily the best designs for estimating
the interaction term.

K6k & Patterson (1976) employ a model with a direct treatment x first-
order carryover interaction when they define the class of serial factorial designs
in which direct effects are orthogonal to first-order carryover effects. A subclass
of this family of designs, called R-orthogonal designs, is found whose members
have the additional property that the first-order carryover effects are orthogonal
to the direct treatment x first-order carryover interaction. This property enables
efficient estimation of carryover effects.

6.6.3 The direct treatment x subject interaction

Another potentially important interaction is the direct treatment x subject in-
teraction. This area has received little attention in the literature; it is briefly
mentioned by Semi (1993, p 41). A possible explanation is that this type of
interaction does not affect the validity of the analysis but adds to the general
variability of the experiment. Cox (1984) discusses this issue in his review of
some aspects of interaction. The 2 x 2 cross-over trial is considered in detail
and it is argued that, under an additive fixed effects model for direct treatments,
first-order carryover, periods and subjects, interaction terms involving subjects
may be regarded as error since it is possible to conduct two independent analyses,
one using within-subject measurements and the second using the subject totals.

Another problem associated with this type of interaction is that of interpreta-
tion. If a significant treatment x subject interaction is observed, it implies that
the benefit of the drug varies with each patient which makes it very difficult to
gauge the efficacy of the drug for a particular patient before administration.

A disadvantage common to all the models discussed in this section is that
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they all require many more parameters to be estimated, resulting in increases

in the number of subjects required for the experiment. This fact, coupled with

the problem of interpretation of the interactions, may explain why many authors

ignore the possibility of interaction effects in cross-over models.

6.7 Autoregressive models

In this section, the relationship between successive responses is modelled by an

entirely different technique. The response observed for subject j in period i now

depends on the response observed for subject j in period i — 1 in addition to

the fixed effects for treatments, subjects and periods. The response observed for

subject j in period i can be written as

ijij = Oy(i--i)j+ Tlnitj) + ai +fa+ €ij (6.16)

{i = 1,. . .,/;; j = 1,.. . ,.s),

where 6 is the parameter of the autoregression and T(^ij), a,- and fij are the

effects for treatment d(i,j), period i and subject j respectively. Equation (6.16)

is similar to equation (6.11) in which carryover effects of all orders are assumed

proportional to the direct treatment effect of the previous period. Equation (6.16)

differs in that carryover effects are considered proportional to the sum of all the

effects from the previous period. As the trial progresses, the response of subject

j depends on the entire previous history of that subject.

Finney (1956) considers a model based on (6.16) with independent errors in

his discussion of cross-over models for biological assay. It is noted that autore-

gressive models are often unsuitable in this context since the parameter estima-

tion generally requires long sequences of observations which are not available in

bioassay. This argument also renders such models unsuitable for cross-over tri-

als. Gill & Shukla (1987) consider a model of the form of (6.16), together with

within-subject errors following a first-order autoregressive process as in Case I of

Section 6.2. Assuming the parameters, 6 and A, of the two autoregressive pro-

cesses are known, results are established for universally optimal and near-optimal

designs under models for both fixed and random subject effects. Again, as dis-

cussed in Section 6.2, there are technical problems associated with estimating

these parameters in practice.
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Taka & Armitage (1983) adopt a further variation on (6.16) to illustrate a

problem already discussed in Section 6.2, namely that design choice for a par-

ticular experiment is dependent on the assumptions regarding the covariance

structure of the errors. Taka & Armitage do not provide any solid evidence for

the use of this model although the plausibility of a model with two autoregressive

components is mentioned. The authors note that further data analysis is required

to determine the importance of both autoregressive components in practice.

This type of model is not used for the dual versus single treatments problem

clue to the difficulty of estimating the parameters of the autoregression within

relatively short treatment sequences.

In the following section, some of the arguments which have been used against

the simple model, based on equation (6.6), are considered in more detail.

6.8 Problems associated with using the simple

carryover model

Although several authors have drawn attention to the deficiencies of models based

on (6.6), see Fleiss (1986, 1989) and Matthews (1993), one of the most detailed

discussions of the disadvantages of adopting a model of this form has been given

by Senn (1993), in which he addresses five main points. Attention is restricted

entirely to pharmacological effects, such as the presence of a drug in the blood, and

the discussion concerns multiple dose studies. An important concept in this type

of study, and one to which Senn makes frequent reference, is that of the steady

state response, that is the maximum response obtained by consecutive closes of

a particular treatment. In this section, each of the arguments put forward by

Senn is reviewed in a separate subsection and their application to the dual versus

single treatments problem is considered.

Note that the model referred to, following Senn, as the simple model is the

model consisting of equation (6.6) together with the assumption of independent,

normal errors.
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6.8.1 If carryover applies, the investigator can design a

trial which eliminates it

The argument focuses on the design given in the following example.

Example 6.1 A design for 2 treatments, 2 treatment sequences and 4 periods is

Sequence

Period 1
0)

3

4

1

A

A (a)

B(a)

B(b)

2

B

B(b)

A(b)

A (a)

where the first-order carryover effects are given in brackets.

Senn discusses how this design is equivalent to the 2-treatment, 2-period cross-

over design with sequences AB and BA and measurements taken halfway through

the treatment period as well as at the end. He argues that if the investigator is

interested in a comparison between the steady state effects of the two treatments

then he or she will need to use the responses A(a) and B(b) since these are more

likely to represent the steady state than A and B alone. The former responses are

the measurements observed in periods 2 and 4 of the design and Senn concludes

that, if the estimates of effects are restricted to measurements from these two

periods, the results are equivalent to those that would be obtained from the

2-period design.

The points made are valid although attention has been restricted to a limited

area of the subject. Situations where there are more than two treatments under

investigation are not mentioned. The argument is not extended to consider mixed

treatment sequences in which a treatment never follows itself. Several authors

have considered the implausibility of the assumption that the carryover of a treat-

ment onto itself is the same as the carryover of that treatment onto any other

treatment in the experiment, see Fleiss (1989) and Matthews (1993).

In conclusion, it may not always be possible to be sure that a study has been

designed which will eliminate carryover. A washout period may help to reduce

pharmacological carryover, but its maximum length is determined by ethical con-

siderations for the patient's safety and hence may not be sufficient to eliminate



Chapter 6 125

the carryover effects completely. The study by Dunn (1993) to investigate the ef-

fectiveness of quinine in reducing night cramps applied a washout period and yet

a significant carryover effect or treatment x period interaction was observed. In

these circumstances employing a design which is efficient under the simple model

may be of value as it enables, at least, a diagnostic check on the assumption of

no carryover effects.

6.8.2 The simple model is implausible given elementary

pharmacokinetic and pharmacodynamic theory

Senn's argument is again presented in the context of an experiment for two treat-

ments, one of which is active and the other is a placebo. Under a model for a

pharmacological response, it is shown that the carryover from active treatment

A onto the placebo P is not the same as the carryover from the active treatment

onto itself. This directly contradicts the usual assumption of the carryover model

which was discussed in the previous subsection. In defence of the simple model,

the direct use of this assumption can be avoided by ensuring that a particular

treatment does not occupy two consecutive positions in any treatment sequence.

Hence for studies involving t > 2 treatments, a slightly weaker assumption is

employed which requires the carryover effect of treatment i onto treatment j

(j ^ i = 1, . . . ,£) to be same as the carryover effect of treatment i onto treatment

k for k j^ i, k ^ j , 1 < k < t. It is possible that this assumption may also

be shown to be invalid under pharmacological theory, although Senn does not

address this point specifically.

Senn shows by means of an example that under the assumption of a particular

pharmacokinetic model, that is a model for the handling of a drug within the

body including its absorption, distribution and excretion, the carryover of an

active treatment A onto a placebo P is the same as the carryover of A onto itself.

However, the carryover of two consecutive applications of A onto the placebo

treatment is not the same as the carryover of one application of treatment A onto

itself. Senn concludes that carryover depends on the total previous history of

treatment administration and not just the preceding period.

The pharmacological and pharmacokinetic arguments against the simple car-

ryover model, described in this subsection, may hold for studies involving more

than two treatments. However, the simple model may still be of value when it
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is necessary to consider the possibility of psychological carryover which has been
acknowledged as an important factor in drug trials, see Willan & Pater (1986).

6.8.3 The models which incorporate simple carryover

are self-contradicting

Senn puts forward this criticism of the simple model in the context of a factorial
treatment structure. His case is that in this type of situation potentially im-
portant interactions between direct treatments and carryover effects may not be
considered while less important interactions between pairs of carryover effects can
be allowed for in the model. The possibility of such interactions being important
will depend upon the nature of the treatments involved and the length of the
washout.

In defence of the model, work on designing factorial carryover trials has, to
date, focused on the simple case where direct treatment x subject and direct
treatment x carryover interactions are assumed negligible, see Fletcher & John
(1985). Designs efficient for estimating the direct main effects of each factor,
carryover main effects of each factor and interactions between direct treatment
effects have been found for the simple case, see Lewis, Fletcher & Matthews (1988)
and Fletcher, Lewis Sz Matthews (1990). However, similiar work seeking efficient
designs capable of estimating further interactions is possible. Generalised cyclic
factorial designs have the property that carryover x carryover interactions can be
estimated, if desired. If these effects are not of interest, because they are likely
to be negligible, they do not need to be included in the model or they may be
included and used as a diagnostic check for validity of model assumptions.

6.8.4 The estimators based on the simple model are in-

efficient

Senn outlines an analysis of the design of Example 6.1 which shows that the
estimates of the treatment effects, adjusted for simple additive carryover effects,
will have larger variance and larger bias than the unadjusted estimates. This is
undeniably true for the example given and, in general, adjusting the estimates of
treatment effects for carryover will increase their variance and may increase their
bias. However, Senn has made various phannacokinetic and pharmacodynamic



Chapter 6 127

assumptions in the calculations. For example, drug disposition is assumed to
be modelled by a particular pharmacokinetic model, called the one-compartment
model, and the model for pharmacological response is assumed to be given by a
specific equation, see Hill (1910). The result may also be altered by the inclusion
of psychological carryover effects.

Senn's conclusion that adjusting for carryover effects increases the variance
and bias of the estimated treatment effects is in direct opposition to the view of
Abeyasekera & Curnow (1984). The latter authors recommend that the wisest
approach is to always adjust for carryover, since ignoring small carryover effects
can cause bias in the estimation of direct treatment effects.

In experimental design, blocking factors are introduced into a model to reduce
systematic variation and subsequently the residual sum of squares. Similarly, if
carryover effects are included in the model and found to be substantial then the
corresponding reduction in residual sum of squares would compensate for the loss
of degrees of freedom through fitting the extra parameters. If carryover effects
are found to be insignificant then the reduction in degrees of freedom can be
regarded as the price of checking the negligibility of carryover effects.

6.8.5 The designs associated with the simple model are

not necessarily better than others

The key issue here appears to be that different assumptions about carryover
effects render different designs optimal. This is an important consideration when
planning a study and the investigator needs to be fully aware of any assumptions
which are implicit in the chosen model.

Senn's most general criticism of the simple model is that it encourages the
belief that the validity of the estimates obtained does not depend upon adequate
washout having taken place. Clearly, it is advantageous if washout periods are
of sufficient duration to eliminate the possibility of carryover effects. However,
it is extremely difficult to determine the required length of time which obviously
varies according to the nature of the drug. This approach may also cause an
ethical problem, since the patient's health may be endangered by relatively long
periods of time without treatment.

The conclusions from considering Senn's criticisms are that indiscriminate use



Chapter 6 128

of the simple model is unwise, since the model has disadvantages and involves

assumptions which are unrealistic in some practical settings. However, there are

experimental situations where it may not be appropriate to ignore the possible

presence of carryover effects at the planning stage and, in the absence of any

carryover model which provides a more useful approximation to reality, the simple

model seems to be an acceptable starting point. Ideally, one would hope to find no

evidence of carryover effects indicating that a successful washout has been applied

since, if significant carryover effects are shown to be present, the interpretation

of the analysis may be very difficult.

6.9 Conclusion

In this chapter, models suitable for designing and analysing cross-over trials have

been reviewed. A study of the literature has revealed that authors do not place

much emphasis on the practical applications of their results and that one of the

main criteria for model selection appears often to be mathematical tractability.

Correlated error structures are considered desirable because they dispense with

the unrealistic assumption of independence of measurements taken on a particular

individual. However, assuming the wrong type of error structure for the data may

have worse consequences than the assumption of independent errors.

It is difficult to recommend one particular model, since all the models dis-

cussed have their own advantages and disadvantages and may also have specific

areas of application. This suggests that an important area for future research is

designs which are robust to different structures of treatment carryover and within-

subject errors. There are relatively few investigations involving comparisons of

design performance under different models in the literature.

The next chapter presents designs for cross-over trials for the dual versus

single treatment problem under the model with structure (6.6) and independent,

normal errors and also under the extension of this model which allows for both

first- and second-order carryover effects. The results of an investigation of the

robustness of the designs is also given.
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Cross-over designs under

additive carryover models

7.1 Introduction

The aim of the work in this chapter is to identify efficient designs for cross-over

studies. Experimental situations involving short term effects and a correspond-

ingly low probability of the presence of carryover effects are considered. In this

type of study, it is extremely difficult to predict at the planning stage whether

carryover effects need to be accounted for in the model.

Suppose an investigator makes an assumption about the presence or absence

of carryover effects. If this assumption is later shown to be incorrect then one

possibility is that the analysis may ignore the presence of potentially important

effects so that the original model may be retained. This may result in dubious

study conclusions. Alternatively, a new model may be used at the analysis stage

which includes parameters for the carryover effects. However, the design used in

the study may perform badly under the extended model, since it was originally

selected for its performance under a row-column model. As design optimality is

model dependent, little reliability can then be attached to the conclusions of the

trial.

One solution to this problem is to select a design which performs well both in

the presence and absence of carryover effects. In other words, a design is required

which is efficient under both the row-column model of equation (1.1) and an

129
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appropriate carryover model. The additive carryover models considered in this

chapter include terms for first- and for first- and second-order carryover effects and

consist of equation (6.6) and equation (6.10) with h = 2, respectively, together

with the assumption of independent normal errors. A feasible approach to finding

designs is to consider all possible rearrangements of an efficient row-column design

and then to select the arrangement which has the minimum total variance for the

least squares estimators of the contrasts of interest, in the direct treatment effects,

under the appropriate carryover model after adjusting for carryover effects. In

the remainder of this chapter, this approach is used employing the catalogue

of efficient row-column designs for estimating the dual versus single treatment

comparisons, presented in Tables 3.3-3.15 at the end of Chapter 3. This approach

can also be adopted when the main purpose of the investigation is to estimate

the carryover effects. However, this type of study is usually of secondary interest

in the type of experiment described in this thesis.

In the following section, an outline of the ordinary least squares estimation

of direct treatment effects is presented and some measures of cross-over design

performance are introduced. In Section 7.3, a method of obtaining cross-over

designs is discussed and an algorithm for finding designs using this approach is

given. The results are presented in Section 7.4. Cross-over designs for larger

experiment sizes are considered in Section 7.5. In Section 7.6, designs under an

additive model including both first- and second-order carryover effects are con-

sidered. An outline of parameter estimation under this model is given, together

with tables of designs and their efficiencies.

7.2 Parameter estimation and assessment of

design performance under a model includ-

ing first-order carryover effects

In order to estimate the direct treatment or carryover effects, it is necessary to

express the model based on equation (6.6) in matrix form:

Rp + e (7.1)

or alternatively as

Y = Xa + e
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where X = ( l n P U D R), a' = (ft a ' /?' r ' p' ) , P , t/, £> and i?

are the design matrices for periods, subjects, direct treatments and first-order

carryover treatments respectively, a, /?, r and p are the vectors of period, subject,

direct treatment and first-order carryover effects respectively, l n is an n x 1 vector

with every element equal to one and e denotes the vector of independent, normal

errors.

The least squares estimator of the parameter vector a is found by solving the

normal equations:

(X'X)a = X'Y.

These can be written in terms of the parameters of (7.1):

nfi + slpa + pl'J + r'T + r'p = G (7.2)

1 A i 7 " A i 7 / 0 I A / " ' — i AT/ A D f7 n\

slpji + slpa + JPlsP -r iVpr + l\pp = rxor {•-<JJ

plsjl + JSyPa -\- pls(3 -\- N'ST + N'sp = STOT (7*4)

rft + Npa + Nj + r5r + Lp = TTOT (7.5)

rfi + J\p<x -f- iV5p + L T + r /) = KTOT l'-"J

where 7- and r are the replication vectors for direct and carryover treatments,

T6 and rs are the diagonal matrices having the elements of 7- and f respectively

on the diagonal, iVp and Np are the t x p period incidence matrices for direct

and carryover treatments, Ns and iVs are the t x s subject incidence matrices for

direct and carryover treatments, L is a t x t matrix with Uj denoting the number

of times treatment i is preceded by treatment j , G is the overall experiment total

and PTOT-, STOT, TTOT and RTOT are the vectors of unadjusted period totals,

subject totals, direct treatment and carryover treatment totals respectively.

The reduced normal equations can be derived by eliminating the period and

subject effects from equations (7.2) to (7.6). They can now be expressed in the

form:

= ?i (7-7)

= <72 (7.8)

where

s
 p

 P p s s p,s p p's s '
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A12 = L--NpNp--NsN's + -NpJPiSN's, (7.10)
s v p ps

A22 = r*-±NpN'p-±N.N: + ±NpJp,N: (7.11)

and'

NVPTOT NSSTOT -\ NPJPSSTOT,
s p ps
1 ~ 1 - 1 -

q2 = RTOT NPPTOT NSSTOT H NPJPSSTOT-
s p ps

From equations (7.7) and (7.8), the direct treatment effects can be estimated
using ̂

where ilcor is a generalised inverse of An — A^A^A'^ and A22 is a generalised
inverse of A22-

Similarly, the residual treatment effects can be estimated using

P = VcoP{q2 ~ A[2A^</j)

where ftcop is a generalised inverse of A22 — A\2A^A\2.

A design's performance for estimating the treatment contrasts of interest, Ct,
can be evaluated by calculating the variance-covariance matrix of the contrasts

v(ctk) = ctnCokcy (7.12)

for k = r, p. The condition for the estimability of a set of treatment contrasts is
given in Section 1.2. As before, estimability of all treatment contrasts is guaran-
teed if attention is restricted to connected designs.

In this chapter, interest is focused on finding designs which estimate the dual
versus single contrasts, H, in the direct treatment effects after elimination of the
carryover effects.

Before considering a method of obtaining cross-over designs, some measures
of the efficiency of such designs are briefly discussed. Efficiency factors of block
designs were introduced in Section 1.2. Similar quantities can be defined in the
cross-over situation. Jones & Kenward (1989, p 194) define the efficiency with
which a design estimates the pairwise contrast, r; — Tj, as

2a2/r
Et = .... ' . > x 100,
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with the subscript t denoting that the treatments have not been adjusted for
carryover effects. Efficiency in the presence of carryover effects can be defined in
the same way, with V(f,- — r,) now denoting the variance of the contrast for the
direct treatment effects, under model (7.1), after adjusting for carryover effects.
Average efficiency factors for the two cases can be obtained by replacing V(f,- —r,-)
by the average variance over all contrasts.

The above measures can be used to assess the performance of designs for
estimating the set of all standard pairwise treatment comparisons but are not
appropriate for the dual versus single treatments problem. The following quan-
tity is used to assess the performance of designs, found under model (7.1), for
estimating the dual versus single treatments contrasts. The measure of efficiency,
denoted by Eco, for a particular cross-over design d is found by taking the total
variance of the dual versus single treatment contrasts, H, of the most A-efficient
row-column design di for the specified experiment size, found by the method of
Section 3.6, as a fraction of the total variance of the same contrasts in the direct
treatment effects, estimated from design d under the carryover model (7.1), after
adjustment for first-order carryover effects. This can be expressed as

tr(HnRCH)di

tr(HilcoTn')d

where H is given in equation 1.12 and SIRC and ttcoT are the generalised inverses
of the information matrices for the direct treatment effects under models (1.1)
and (7.1) respectively.

In the following section, an approach to finding designs which perform well
both in the presence and absence of carryover effects is discussed.

7.3 A method of finding cross-over designs

As already discussed in Section 7.1, it is extremely difficult to predict at the
outset of an experiment whether carryover effects will be present. This is an
important issue since it determines the choice of model which in turn determines
the selection of a design. One way of reducing this problem is to use a design
which performs acceptably both in the presence and absence of carryover effects,
since this will give the study results some protection against the invalidity of
assumptions regarding the presence of additive carryover effects. The investigator
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is free to choose the more appropriate of the two models for use at the analysis

stage. In this section, attention is restricted to first-order carryover effects.

The following approach for finding designs is used. Firstly, an efficient row-

column design for a particular experiment size is selected from the catalogues of

designs given in Chapters 3 and 4. All possible rearrangements of this design, ob-

tained by interchanging elements within the subject blocks, which do not increase

the total variance under the row-column model (1.1) are considered. The design

which has the smallest total variance for estimating the contrasts of interest in

the direct treatment effects, under model (7.1), after adjusting for first-order

carryover effects is selected.

The following example provides an illustration of the approach to finding

designs.

Example 7.1 Consider a 3 x 2 experiment for six subjects in three periods. An

efficient part-balanced design wider the row-column model (1.1) is given in Ta-

ble 3.4 and has a total variance for the dual versus single treatment contrasts of

2.5432. The corresponding variances under the simple carryover model (7.1) have

a total of 28.4970. Hence, the total variance has been substantially increased by

including the first-order carryover effects.

By examining all the valid connected rearrangements of the original row-

column design, the arrangement under model (7.1) which achieves minimum total

variance of the contrasts in the direct treatment effects, after adjustment for first-

order carryover effects, is:

11 21 01 21 10 20

10 01 11 20 11 21

01 20 10 01 21 11.

This connected design has a reduced total variance of 5.0502 while the total vari-

ance under the row-column model has remained unchanged.

Example 7.1 indicates that if an investigator uses the second design, he or she

will be in a better position to analyse the experiment under the simple carryover

model if it should prove necessary. The efficiency, Eco, of the second design is 0.50

which is low. However, it should be noted that the use of model (7.1) requires the

estimation of more parameters due to the inclusion of first-order carryover effects.
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In the design shown in Example 7.1, there are only three periods hence only a

small number of treatment comparisons can be estimated using measurements

taken on the same subjects. This is one of the causes of the large size of the total

variance.

The effect of introducing another set of parameters into the model may be to

reduce the systematic variation in the experiment and hence reduce the residual

sum of squares. This is the principle which motivates the use of blocking factors in

experimental design. However, this is unlikely to be the case in the above example

since the carryover effects are expected to be small if not entirely negligible.

In this situation, the increase in total variance can be regarded as the price of

checkmg the assumption of the presence of first-order carryover effects.

Before discussing the search algorithm which was developed to find the best

arrangement of a row-column design, the issue of connectivity is addressed.

7.3.1 Connectivity of cross-over designs

The property of connectivity is discussed in Section 1.2. It is an essential property

since if a design is connected for a set of effects under a particular model then

all possible contrasts in those effects are estimable, see John (1987, p 19). All

the designs considered in this chapter are connected under model (1.1) since all

the row-column designs of Chapters 3 and 4 possess this property. However, it is

possible that some of the rearrangements of these designs may be disconnected

under model (7.1) as the following example demonstrates.

Example 7.2 Consider a 3 x 2 experiment for five subjects and three periods.

An efficient part-balanced design under model (1.1) is given in Table 3.4 and has

a total variance for the estimators of the dual versus single treatment contrasts

of 3.05Jt5. This particular design is disconnected under model (7.1) since the

information matrix for the direct treatment and first-order carryover effects is of

insufficient rank. The connected rearrangement of this design which achieves the

smallest total variance under model (7.1) is given in Table 7.1.

A check for the connectivity of cross-designs under model (7.1) is incorpo-

rated into the algorithm for finding designs which is discussed in the following

subsection.
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7.3.2 Algorithm for identifying efficient designs

In this subsection, an outline of the search algorithm is first given. This is followed

by further detail and justification of aspects of the algorithm.

The design search was carried out in the following steps:

1. Given an initial row-column design for t treatments in R rows and C

columns, all possible permutations of the elements of this array are found

by a recursive process which combines each of the R\ possible arrangements

of the first column with each of the Rl possible arrangements of the second

and subsequent columns in the design. In total, (R\)c permutations are

generated for each design.

2. A check is performed to ensure that only permutations which are valid

rearrangements of the original row-column design are considered for vari-

ance estimation. A valid rearrangement is defined to be a design which

has the same single blocking factor component designs as the original row-

column design. This condition ensures that, whichever arrangement is cho-

sen under model (7.1), the total variance of the contrasts of interest under

model (1.1) remains unchanged. Since the rearrangements are performed

within-subject, a check on the block design for periods is sufficient to de-

termine design validity.

3. The variances of the dual versus single treatment contrasts in the direct

treatment effects are calculated using equation (7.12) with k = r . A NAG

routine is used to find a suitable generalised inverse, 0.coT-

4. A storage list capable, of holding thirty designs and their corresponding

variance-covariance matrices is maintained. A new design is admitted to

the list if its total variance for the contrasts of interest is less than or equal

to any of the designs present in the existing store.

Medical trials commonly have four or fewer periods due to the increased chance

of subjects dropping out of studies of long duration. Hence, the algorithm allows

designs with a maximum of four treatment periods to be considered. For more

than four periods the large increase in the number of permutations of the original

design would make the search unpractically long at present. Some reduction in

search time could be achieved by identifying and removing isomorphic designs.
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The maximum number of subject groups, or distinct treatment sequences, is

currently set at nine. This figure was partly determined by the requirement of

limiting the design search to a manageable length and by the maximum dimen-

sions of the initial row-column designs. However, cross-over trials generally have

a relatively small number of subject groups since designs involving large numbers

of distinct treatment sequences are difficult to implement in practice. The size

of the experiment can be increased by allocating more than one subject to each

treatment sequence. Checks on the validity of the input data are performed to

ensure that the designs considered do not have period and subject parameters

which exceed the specified limits. A further check is conducted to ensure that

sufficient degrees of freedom are available for the estimation of all the parameters.

The algorithm also includes a check for the design property of connectivity,

see Section 1.2 and Subsection 7.3.1. Example 7.2 illustrated that the search

algorithm may yield designs which are disconnected under model (7.1). A method

of checking for this problem is to calculate the rank of the information matrix

Aco, where

(t t)
and A-ii, AV2 and A-n are given in equations (7.9) to (7.11). A design which is

connected for both direct treatment and first-order carryover effects should have

rank(Aco) = 2t — 2. Any design which is found to have insufficient rank is

discarded.

A Pascal coding of the algorithm is given in Appendix A.

7.4 Tables of results and discussion

In this section, the designs found under model (7.1) with the smallest total vari-

ance for the contrasts of interest in the direct treatment effects, after adjustment

for first-order carryover effects, are presented in Tables 7.1-7.3. A discussion of

the performance of the designs is also given.

Results are obtained for parameters 3 < p < 4, 4 < .s < 9, 3 < n < 4 and

m = 2, by rearranging the PBDS row-column and PBDS row-orthogonal designs,

listed in Tables 3.4, 3.5, 3.10, 3.11, 4.1 and 4.3. The individual variances of the

contrasts when model (7.1) is used are given in Tables 7.1-7.3, together with
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the total variances calculated under this model, denoted by (C-O), and under

model (1.1), denoted by (R-C). The efficiency factor Eco, see equation (7.13), is

also listed as a measure of the cost of including the first-order carryover effects.

It is clear that the cross-over designs perform very poorly when the experiment

involves a small number of subjects or periods. Note that the designs for p — 3

and 5 = 5,6 in Table 7.1 have values of Eco in the range 40-50% whereas the

designs for p — 4 and s = 5,6 in Table 7.2 have values of Eco oi at least 85%.

The following example of a two-period study further illustrates this point.

Example 7.3 Consider a 3 x 2 experiment, for two periods and nine subjects.

The most A-efficient PBDS design found in the study under model (1.1) is given

in Table 3.3 and has tr(HClffcH') = 3.3258. The rearrangement of this design

which achieves the minimum total variance of the contrasts in the direct treatment

effects under model (7.1), after adjustment for first-order carryover effects, is

01 21 10 11 21 20 01 20 11

11 01 11 10 20 21 10 01 21.

This rearrangement has tr(HQcoTH') = 28. Hence the total variance of the

design has been greatly increased by including first-order carryover effects in the

model.

The design in Example 7.3 has other disadvantages besides its large total vari-

ance. As a result of limiting the study to two periods, the direct treatment x

period interaction is aliased with first-order carryover effects, preventing separate

estimation of both sets of effects. A further drawback is that designs for two

periods require a large number of subjects in order to gain sufficient degrees of

freedom for the estimation of parameters. Hence, designs for two periods are not

considered further in this work.

One of the advantages of using a cross-over study is that comparisons are

made within subject. One of the causes of the inefficiency of designs with a small

number of periods is that few comparisons can be made using measurements on

the same subject, hence comparisons are made between subjects which increases

the total variance. Another cause of the inefficiency may be attributable to the

structure of the precedence matrix, L, whose elements /tJ- ( i , j = 1, . . . ,£) denote

the number of times treatment i is preceded by treatment j in the design. When
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Table 7.1: Table of cross-over designs for n = 3, p = 3 and 5 < s < 9, found
under model (7.1) which includes first-order carryover effects. Variances of the
individual contrasts are calculated using this model.

p

3

3

3

3

3

s

5

6

7

8

9

Design

11 20 01 10 21

01 21 11 20 10

10 01 21 11 20

(Row-orthogonal)

11 21 01 21 10 20

10 01 11 20 11 21

01 20 10 01 21 11

10 20 01 01 21 11 11

01 01 10 20 11 21 21

11 21 11 21 01 10 20

10 11 01 01 20 21 21 11

01 01 10 20 21 20 11 21

11 10 11 21 01 01 10 20

10 11 01 01 21 20 11 21 01

11 10 11 20 01 01 21 20 21

01 01 10 21 20 21 10 11 11

V{tn — Tbi) V(TH — fjo) tot var totvar Eco

i= 1,2 i- 1,2 C-0 R-C

1.7333 1.06(37 7.3333 3.0545 0.42

1.6000 2.9333

1.1068 1.3161 5.0502 2.5432 0.50

1.5492 1.0782

0.7135 0.8087 3.0026 2.1595 0.72

0.5739 0.9065

0.5662 0.6206 2.5288 1.8698 0.74

0.5647 0.7773

0.4400 0.6063 2.1120 1.6524 0.78

0.5099 0.5558
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Table 7.2: Table of cross-over designs for n = 3, p = 4 and 4 < 5 < 6, found
under model (7.1) which includes first-order carryover effects. Variances of the
individual contrasts are calculated under this model.

p

*

4

4

4

4

s

4

5

5

6

Design

01 20 11 21

10 11 20 01

21 01 10 20

11 21 01 10

01 10 21 20 11

10 21 11 01 20

20 01 10 11 21

11 20 01 21 10

(Row-orthogonal)

01 20 21 11 10

11 21 01 20 21

21 11 10 01 20

10 01 11 21 11

01 20 11 01 10 21

11 11 21 20 01 10

10 01 01 21 11 20

21 21 10 11 20 01

V{fn - fbi)

»= 1,2

1.1492

0.7694

0.6085

0.6085

0.5513

0.5407

0.4579

0.4287

V(fn - f!0)

i = 1,2

1.3140

0.9139

0.6085

0.6085

0.6658

0.7358

0.5424

0.5347

tot var

C-O

4.1465

2.4341

2.4936

1.9636

totvar

R-C

2.8667

2.1333

2.1259

1.7787

Eco

0.69

0.88

0.85

0.91
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Table 7.3: Table of cross-over designs for n = 4, p = 3, 7 < s < 9 and p = 4, s = 6,
found under model (7.1) which includes first-order carryover effects. Variances of
the individual contrasts are calculated using this model.

p

3

3

3

3

4

s

?

7

8

9

6

Design

11 21 01 20 10 30 31

01 20 31 10 30 11 21

10 01 30 31 21 20 11

(Row-orthogonal)

01 21 31 01 20 30 11

11 20 01 10 21 01 31

10 01 30 11 01 31 21

10 20 31 11 01 01 21 30

11 01 01 10 21 30 31 20

01 21 30 01 20 31 11 10

10 20 01 11 21 01 21 31 30

01 21 30 01 20 31 10 11 11

11 01 31 10 01 30 31 20 21

01 11 21 11 10 31

11 31 01 21 31 30

21 01 31 20 11 21

31 21 11 10 30 20

V(TH — fOi) V(f;i — ft0) tot var totvar Eco

i = 1,2,3 i = 1,2,3 C-O R-C

1.8571 2.4286 13.1429 5.1429 0.39

2.4286 1.8571

1.8571 2.7143

3.8333 4.0000 19.1667 4.8980 0.26

1.2500 1.3333

7.7500 1.0000

1.0438 1.1753 11.4525 4.2667 0.37

2.0809 2.5457

2.0611 2.5457

1.8081 0.8760 7.2236 3.6961 0.51

0.8954 1.0957

0.8956 1.6528

0.8616 2.1734 9.5118 4.5958 0.48

1.1100 2.7848

1.0339 1.5481
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all the pairwise treatment contrasts are of interest, highly efficient cross-over

designs under model (7.1) have been found which have the off-diagonal elements

of L as equal as possible, such as Williams Latin squares, see Williams (1949,

1950). In the dual versus single treatments case, it is difficult to make analogous

statements concerning a desirable structure for L since the contrasts do not form

an orthogonal set. This topic is an area for further work.

It is clear from Tables 7.1-7.3 that the efficiencies of designs for three and four

periods improve as more subjects are included. This is due to the fact that the

increased number of distinct treatment sequences allows more direct treatment,

carryover combinations to be included in the design.

An examination of Tables 7.1-7.3 reveals that the cross-over designs with

the smallest total variance are generally not part-balanced under model (7.1)

with respect to the dual versus single treatment contrasts. An exception is the

row-orthogonal design for p — 4 and .s = 5 in Table 7.2 which is also variance-

balanced, that is, the contrasts in both the dual versus A and dual versus B

groups are estimated with the same variance. However, further designs which

are part-balanced for the contrasts of interest under model (7.1) may exist for

the experiment sizes considered in this chapter. The algorithm used to find the

rearrangements of the row-column array currently stores thirty design arrays in

ascending value of total variance. Part-balanced designs may be present in this

list, although if the design has a large total variance the advantage of using a

design with part-balance is unlikely to compensate for the loss in precision. The

following example illustrates this point.

Example 7.4 A part-balanced cross-over design for a 3 x 2 experiment for three

periods and five subjects is:

01 20 21 11 10

11 21 01 10 20

10 01 11 20 21.

This design has tr(HQcoTH') = 14.4 lohich is considerably larger than the total

variance of the alternative design in Table 1.1. The non-PBDS cross-over design

would be the recommended design in this case.

Further PBDS rearrangements may exist with a total variance which is suffi-

ciently large to prevent entry to the design list. However, such designs are not of
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practical interest. Note that row-orthogonal designs are a fruitful source of PBDS
rearrangements since these designs have replication vectors for both direct and

carryover treatment effects of the PBDS form, that is the A-alone treatments are

each replicated TA times and the dual treatments are each replicated T£> times,

see equation (3.2). The replication vector of carryover effects in designs without

row-orthogonality rarely takes this form since there are no carryover effects for

the final period.

For some experiment sizes, there is a choice of cross-over designs. For example,

if an investigator wishes to conduct a study for a 3 x 2 experiment with four

periods and five subjects either of the two efficient designs in Table 7.2 may be

used. "The row-orthogonal design which has higher efficiency than the alternative

design also has the additional property of variance-balance for the dual versus

single contrasts. This may make the row-orthogonal design the preferred choice.

For a 4 x 2 experiment with three periods and seven subjects, see Table 7.3,

the row-orthogonal design with Eco = 0.39 is again preferable to the alternative

design which has Eco = 0.26. Neither of the designs has part-balance for the

dual versus single contrasts under model (7.1).

In conclusion, the designs in Tables 7.1-7.3 demonstrate that cross-over de-

signs which perform acceptably in the presence and absence of additive first-order

carryover effects can be obtained by rearranging efficient row-column designs.

The use of these designs will afford some protection against the assumption of

non-negligible first-order carryover effects.

7.5 Obtaining larger designs

In the previous section, it was noted that the smaller designs found by the method

of exhaustive search are not highly efficient. One way of improving the efficiency

of studies with a small number of subjects is to increase the number of subjects.

Since it is not practical to use the search algorithm of Subsection 7.3.2 to find

larger designs, a second approach is now developed. This involves building designs

by combining copies of the designs in Tables 7.1-7.3 and is referred to as the

building brick method, using the terminology of Pearce (1983, p 126). In this

section, the method is applied to finding designs for two specimen cases.
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Example 7.5 Consider a 3 x 2 experiment for three periods and ten subjects.

The most A-efficient PBDS row-column design, found in the study by the method

of Section 3.6 under model (1.1), is

01 01 01 20 10 21 10 21 11 11

10 20 11 01 01 01 11 20 21 21

11 21 10 21 11 20 01 01 10 20.

This design has tr(HVlRcH') — 1.4837 which has a discrepancy of 5.1% with the

bound of (2.12). The row and column component designs have discrepancies of

1.5% and 4-3% respectively with the appropriate bound of Section 2.^. An obvious

choice, for the building bricks of the cr^oss-over design in a 3 X 10 array is two

copies of the cross-over design in a 3 x 5 array, see Table 7.1. The resulting

design has a total variance of 3.6667 and Eco — 0.40.

The efficiency of the cross-over design relative to the A-best row-column design

found by the method of Section 3.6 for t = 5, ;; = 3 and s = 10, given in

Example 7.5, is much lower than the corresponding efficiency for the cross-over

design for t = 5, p = 3 and 5 = 9 listed in Table 7.1. This is not surprising since

the number of distinct treatment sequences in the larger design has not been

increased, instead two subjects have been allocated to each of the five distinct

sequences. Consequently, the structure of the precedence matrix, L, has not

changed. However, the size of the non-zero elements has been doubled, increasing

the disparity between them.

In order to reinforce this point, a second example is considered.

Example 7.6 Suppose a design is required for a 3 x 2 experiment with three pe-

riods and twelve subjects. The most A-efficient PBDS design found under model

(1.1) using the method of Section 3.6 has tr(HttRcH') — 1-2343. The discrep-

ancies of the total variances of the row-column design, compared with the bound

of (2.12), and the row and column component designs, each compared with the

appropriate bound of Section 2.Jh are Jt.9%, 0.6% and J^.2% respectively. The

following cross-over design can be obtained by using two copies of the design for

t = 5, p = 3 and 5 = 6:

11 21 01 21 10 20 11 21 01 21 10 20

10 01 11 20 11 21 10 01 11 20 11 21

01 20 10 01 21 11 01 20 10 01 21 11,



Chapter 7 145

which has tr(HflcoTH') — 2.5251 and Eco — 0.49. An alternative design is

obtained by taking one copy of each of the designs for t = 5, p = 3, s = 5 and

t — 5, p = 3, 5 = 7 as shown below,

11 20 01 10 21 10 20 01 01 21 11 11

01 21 11 20 10 01 01 10 20 11 21 21

10 01 21 11 20 11 21 11 21 01 10 20.

This design has a total variance of 1.7001 and Eco = 0.73.

The difference in the performance of the two cross-over designs of Example 7.6

is due*to the fact that the second design has twelve distinct treatment sequences,

allowing more combinations of direct treatment and carryover effects.

The exhaustive search algorithm which produced the designs of Tables 7.1-7.3

generates a list of thirty cross-over designs stored in ascending value of total vari-

ance. The list does not contain any designs with a common variance-covariance

matrix but may contain designs which have a common set of contrast variances

arranged in a different order on the leading diagonal of the variance-covariance

matrix. It was noted that, if the variances in the dual versus B and dual versus

A contrast sets are distinct, groups containing a maximum of (n — 1)! designs

each with a common total variance are obtained. An obvious area of further in-

vestigation is to see whether combining two distinct designs with the same total

variance yields an improved design.

Example 7.5 for a 3 x 2 experiment in a 3 x 10 array is now reconsidered to

see whether an improved design can be obtained using the above approach.

Example 7.7 For n = 3, pairs of designs with a common total variance are

obtained. Taking the two distinct designs for t = 5, p = 3 and s = 5, both with a

total variance of 7.3333 as the building bricks, the following design is obtained

11 20 01 10 21 10 21 01 11 20

01 21 11 20 10 11 01 21 20 10

10 01 21 11 20 01 20 11 10 21.

This design has a total variance of 2.1483 and an efficiency relative to the A-best

row-column design of 0.69. It also has the property of part-balance for the dual

versus single treatment contrasts.
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Extending this idea, further designs for a 3 x 10 array can be obtained by

considering more than one pair of designs from the list generated by the search

algorithm. For the investigation of this example, attention was restricted to the

first three pairs on the design list which have total variances of 7.3333, 9.7333

and 12.0 respectively. The best combination of designs is

11 20 01 10 21 10 01 21 11 20

01 21 11 20 10 11 21 01 20 10

10 01 21 11 20 01 20 11 10 21

with tr(HQ.coTH') = 2.0904 and Eco = 0.71. This combined design is not PBDS.

A further design for t = 5, ;; = 3 and s = 10, without the property of part-

balance, can be obtained by the exhaustive search method of Subsection 7.3.2

and has tr{HVLcoTH') = 1.9217 and Eco — 0.77. This design is not a marked

improvement on the design with the smallest total variance, obtained by the

building brick method, given in Example 7.7.

A similar procedure was followed for the second example for a 3 x 2 experiment

with t = 5, p = 3 and 5 = 12.

Example 7.8 Three pairs of designs for t = 5, p = 3 and s = 6, having total

variances of 5.0502, 5.1250 and 5.4265 respectively, are considered for construc-

tion. The A-bcst design found by the building brick approach for five treatments

in a 3 x 12 array is obtained by combining the txvo distinct designs, both with a

total variance of 5.1250, to give

10 21 01 21 11 20 11 01 11 20 01 21

11 01 11 20 10 21 10 21 01 21 11 20

01 20 10 01 21 11 01 20 10 01 21 11.

This design has tr(HttcoTH') = 1.5604, Eco = 0.79 and is part-balanced.

It was noted that, for the examples considered in this section, combining two

distinct designs with the same total variance produces a cross-over design which

is part-balanced for the diud versus single treatment contrasts under model (7.1).

The same method can be used to find designs for a 3 x 2 experiment in a 3 x 12

array using building bricks of sizes 3 x 5 and 3 x 7. The A-best design, found
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by considering all possible combinations of the six designs having the smallest

total variance for three periods and five subjects with the six designs having the

smallest total variance for three periods and seven subjects, has a total variance

of 1.6070 and EQO = 0.77. This is not an improvement on the best design found

in Example 7.8.

In this section, a method for constructing efficient cross-over designs for large

numbers of subjects has been discussed. It has been shown, by means of examples,

that more efficient designs can be obtained by combining pairs of distinct designs

which do not necessarily have the same number of subjects rather than using two

copies of the same design. The designs found in the two specimen cases were

constructed manually and then input to a program for variance calculations. The

whole process could easily be carried out by one computer algorithm. This would

allow more building bricks to be considered and would reduce the possibility of

input errors. The development and coding of such an algorithm is an area for

further work.

7.6 Cross-over designs under a model for both

first- and second-order carryover effects

In the remaining part of this chapter, efficient cross-over designs found under the

assumption of an additive model including both first- and second-order carryover

effects are considered. An analogous approach to that outlined in Section 7.3 is

used. The search algorithm remains unchanged; the necessary alterations occur

in the modules concerned with parameter estimation. The method of estimation

is outlined below.

7.6.1 Ordinary least squares estimation of direct treat-

ment effects, after adjusting for first- and second-

order residual effects

The additive model assumed in this section has the following matrix form:

Y = ln/t + Pa + Up + DT + RP + Rlz + e (7.15)
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or
Y = Xa + e

where X = ( l n P U D R R2 ) , a' = ( /i a' p' r ' p' %' ) , l n , P ,

(7, .D, i?, a, (3, T, /) and e are as given in Section 7.2, i?2 is the design matrix

for second-order carryover effects and n is the vector of second-order carryover

effects.

The normal equations, (X'X)a = X'Y, can be expressed in terms of the

parameters of model (7.15), to obtain:

nfi + sl'pa + pl'J + r'T + rp + r2it = G (7.16)

+ slva + JPJ + N'pr + N'pp + N'P2TT = PTOT (7.17)

+ Js,pa + plJ + N'sT + N'sp + N's2ir = STOT (7.18)

rfi + Npa + Nj + V5T + Lp + L2TT = TTOT (7.19)

r-jl + Npa + Nj + L'T + fsp + Lc7r = RTOT (7.20)

iV52^ + L'2f + L'J + ?̂ TT = R2TOT (7.21)

where r, f, iVp, 7Vp, Â ,̂ 7VS, L, G, /Vox, ^TOT, TTOT and RTOT are as defined

in Section 7.2. The new notation is defined in a similar way where r<i is the

replication vector for second-order carryover effects, NP2 and Ns2 are the t x p

and t x s incidence matrices for periods and subjects, respectively, with second-

order carryover effects, Lc = (lcij) denotes the number of times treatment i is

preceded by treatment j in the first p—l periods, Li — {hif) denotes the number

of times treatment i is administered to a subject in period k when treatment j

was administered to the same subject in period k — 2 and, finally, R2TOT is the

vector of unadjusted second-order carryover treatment totals.

After eliminating period and subject effects, equations (7.16) to (7.21) can be

expressed as

= qi (7.22)

A'12T + A22p + A237c = q2 (7.23)

A'13T + A'23p + A^it = q3 (7.24)

where

An =
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A12 = L-^NpN^--NsN's + -sNpJp,sN's,

A13 = L2 + -sNpN^2 - -NsN's2 + -sNpJPtSN's2,

A22 = r5 --SNPN;--NSN'S + ^NPJP,SN'S,

A 2 3 = Lc - -NPNp2 - -NsN's2 + -NpJp,sN's2,

A 3 3 = ?{ - -Np2N'p2 - -Ns2N's2 + -Np2 JP,sN's2s p ps

and

q NPPTOT NSSTOT -\ NPJPS
s p ps
1 ~ 1 ~ 1 ~

q2 = RTOT NPPTOT NSSTOT H NPJPSSTOT,
s p ps

1 - 1 ~ 1 ~
q3 = R2TOT NP2PTOT NS2STOT H Np2Jp SSTOT-

s p ps

After further eliminating first- and second-order carryover effects from equa-

tions (7.22) to (7.24), the reduced normal equations can be written as:
Aco2T = Q

where ACO2 = Mn-Ml2M^2M[2 and Q = qi-A13A33q3-M12M22(q2-A23A33q3),

with Mij = Aij - Ai3A33A'j3, (i,j = 1,2).

The direct treatment effects can now be estimated by

where fico2r is a generalised inverse of Aco2- The total variance of a set of

contrasts, Ct, in the direct treatment effects is given by

tr(CtnCO2TC'ta
2). (7.25)

7.6.2 Tables of designs found under a model for first-

and second-order carryover effects

In this section, cross-over designs which estimate the dual versus single treatment

contrasts in the direct treatment effects, under model (7.15) after elimination of

the carryover effects, are presented.
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Table 7.4: Table of cross-over designs for n = 3, p = 3, 7 < s < 9, found under

model (7.15) which includes first- and second-order carryover effects. Variances

of the individual contrasts are also calculated under this model.

p

3

3

3

s

7

*

8

9

Design

11 20 01 21 01 10 21

01 21 10 20 11 21 11

10 01 11 01 21 11 20

10 11 01 01 20 21 21 20

01 01 10 21 21 20 11 11

11 10 11 20 01 01 10 21

10 11 01 01 01 21 21 20 11

01 01 11 20 21 20 10 11 21

11 10 10 21 20 01 11 21 01

V{fn - foi) V(fn — fio) tot var Eco2 ECco
a = 1,2 f = l , 2 C-O2

3.5556 4.0000 16.0000 0.13 0.89

2.2222 6.2222

1.5429 4.6857 13.2000 0.14 0.98

2.1714 4.8000

1.5792 2.3589 8.0149 0.21 0.86

1.7971 2.2797

For 7n = 2, n = 3, p = 3, 7 < s < 9 and p — 4, 5 < .s < 6, designs are obtained

using the algorithm described in Subsection 7.3.2 with the following modifications.

In Step 3, the variances of the dual versus single contrasts are calculated using

equation 7.25. The connectivity condition now examines each design information

matrix for direct treatment and first- and second-order carryover effects to check

that it has a rank of 'it — 3.

The total variance of the least squares estimators of the contrasts of interest

found under model (7.15), denoted by tot var C-O2, is given for each design in

Tables 7.4 and 7.5.

Note that designs for n = 3, p — 3 and s < 7 could not be obtained since there

are insufficient degrees of freedom available for the estimation of parameters in

these cases.

In order to evaluate the performance of the designs, the relative efficiency of
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Table 7.5: Table of cross-over designs for n — 3, p = 4, 5 < s < 6, found under

model (7.15) which includes first- and second-order carryover effects. Variances

of the individual contrasts are also calculated under this model.

p

4

4

4

s

5

5

6

Design

01 10 21 20 11

10 21 11 01 20

20 01 10 11 21

11 20 01 21 10

(Row-orthogonal)

10 01 21 11 20

11 21 10 01 11

21 11 01 20 21

01 20 11 21 10

01 20 10 01 11 21

11 01 11 21 20 10

10 11 21 20 01 01

21 21 01 11 10 20

V(tn - fOi) V(fn-Tio) tot var Ecoi Ecco

i = l , 2 i = 1,2 C-O2

0.9352 0.9352 3.7408 0.57 1.0

0.9352 0.9352

0.8722 1.0521 4.2822 0.50 0.92

0.92(34 1.4316

0.5899 0.7899 2.8917 0.62 0.88

0.7348 0.7770
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the cross-over design found under model (7.15) compared to the most A-efficient

PBDS row-column design found in the study is used. This is denoted by Eco2

and is calculated by taking the total variance, corresponding to the most A-

efficient PBDS row-column design listed in the catalogues of Chapters 3 and 4,

as a fraction of the total variance of the design found under model (7.15), that is

tr(tmRCH>)
(tr(HnCO2rH')'

where H is given in (1.12) and Vic02T ig a generalised inverse of Aco?, s e e Sub-

section 7.6.1.

This measure indicates that the three-period designs of this section perform

badly • whereas the values of Ecoi improve substantially when the experiment

extends over four periods. It is probable that a further similar improvement would

occur if designs for p = 5 were obtained. The explanation for this phenomenon

has already been discussed in Section 7.4. An experiment having a small number

of periods does not provide sufficient within subject measurements for the efficient

estimation of carryover effects.

The designs listed in Tables 7.4 and 7.5 are not, in general, part-balanced

with respect to the dual versus single treatment contrasts. The exception is the

row-orthogonal design for n = 3, p = 4 and s = 5, which is not only part-balanced

but is variance-balanced under model (7.15) for these contrasts. Further cross-

over designs which are part-balanced under model (7.15) may be obtained by

considering less efficient designs (see Section 7.4). However, these designs are

unlikely to be of practical use.

A further measure, Ecco, has been included in Tables 7.4 and 7.5. This

provides a measure of how much precision has been sacrificed by including a

second set of carryover effects in the model. It involves a comparison of the total

variances, under model (7.1), of the A-best designs d\ and d2 found under models

(7.1) and (7.15), respectively, by the method of Subsection 7.3.2, and is defined

tr(HnCOrH')
dl

Hence, it is possible to estimate how much efficiency has been lost in order to

gain the ability to investigate the size of second-order carryover effects.

An inspection of the values of Ecco in Tables 7.4 and 7.5 reveals that the

loss in efficiency ranges from 0%—12%. Note that the row-orthogonal design for
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n = 3, p — 4 and 5 = 5 is the best rearrangement of the A-best PBDS row-column

design under model (7.15) and model (7.1). The values of Ecco in Tables 7.4 and

7.5 are much higher than the values of Eco in Tables 7.1-7.3. This indicates that

the effect on the design efficiency of including a second set of carryover effects in

the simple carryover model (7.1) is much less marked than the effect of including

the first set of carryover effects in the row-column model (1.1). Hence, by using a

design from Tables 7.4 and 7.5, an investigator can gain some protection against

the assumption of non-negligible second-order carryover effects.

7.7. Conclusions and Further Research

In this final section, there are two issues to be addressed. Firstly, what conclusions

can be drawn from the research in this thesis and, secondly, directions for future

research.

7.7.1 Conclusions

The work presented in this thesis concerned the design of investigations of two

drugs A and B, available at n and in prespecified dose levels respectively, in

order to determine whether a combination of the drugs is more beneficial than

either of the drugs administered singly. It was not advisable to consider existing

designs for a factorial treatment structure due to the additional constraint that

the treatment consisting of both drugs at the zero level is excluded on ethical

grounds.

One main aim of the work was to find efficient designs with two orthogonal

blocking factors, for estimating the particular contrasts of interest, by amalga-

mating two designs for a single blocking factor.

A further aim was to construct designs for cross-over trials under the assump-

tion of simple additive models for carryover effects. Designs were required which

perform well both in the presence and absence of carryover effects in order to

achieve some protection against the validity of assumptions regarding the pres-

ence of carryover effects.

In Chapter 1, the problem was described and the direction of the research

was outlined. A brief review of parameter estimation under a linear additive
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model and methods of assessing the performance of designs for estimating the

pairwise treatment comparisons was given. The implications of obtaining row-

column designs by amalgamating two designs for a single blocking factor were

discussed, in addition to the properties of designs which are part-balanced for the

dual versus single treatment contrasts.

Chapter 2 was concerned with lower bounds on the total variance of the

contrasts of interest. A review of some of the bounds given in the literature

for single blocking factor and row-column designs was presented. Several design

independent bounds, appropriate for use with the dual versus single treatment

contrasts, were developed. Since it was not possible to establish conditions under

which* any one bound was uniformly better than the alternatives, the overall

bound was taken to be the bound which achieved the maximum value for a

particular set of design parameters.

In Chapter 3, some properties of connected row-column designs found by the

method of amalgamation were given. The class of reinforced group divisible de-

signs was investigated as a source of component designs and some necessary con-

ditions for the existence of row-column designs obtained from these components

were given. The class of C-designs, constructed by R- and S-type blocks, was also

considered. Tables of efficient row-column designs, under the A-criterion, found

by amalgamating components from these two classes were presented, together

with an assessment of design performance using the bounds of Chapter 2.

The class of row-orthogonal designs was the subject of Chapter 4. These

designs are characterised by having row blocks orthogonal to treatments, that is

each treatment occurs exactly once in each row block. Necessary conditions were

given for obtaining such designs by amalgamating a randomised block design with

a suitable block design from the classes discussed in Chapter 3. Tables of designs

were presented and it was noted that it is not necessary to sacrifice a great deal

of precision in order to gain the property of row-orthogonality.

In Chapter 5, the problem of finding efficient designs for estimating any set

of specific treatment contrasts was discussed. A method of identifying a class of

designs likely to contain highly efficient and A-optimal members for the particular

contrasts of interest was outlined. Several approaches to finding designs within

such a class were discussed in the context of some practical examples.

The discussion of cross-over experiments was the primary function of Chap-
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ter 6. This type of experimental situation was described and a review of the

models presented in the literature was given. This subject has caused some con-

troversy in recent years; the reasons for this were examined and the criticisms of

some of the models which have been used in the past were presented.

In the previous sections of this chapter, cross-over designs were found under

the assumption of simple additive models for first-order and first- and second-

order carryover effects. The method followed was to rearrange the row-column

designs of Chapters 3 and 4 within columns and select the arrangement with

the minimum total variance under the appropriate carryover model. A study

of design robustness to the assumption of non-negligible second-order carryover

effects was also given.

7.7.2 Topics for further research

The following areas require further investigation.

1. The extension of bound B-2{H) of Chapter 2 so that it can be used for the

assessment of multi-dimensional designs.

2. Some simple necessary conditions for the amalgamation of two block designs

were given in Chapter 3. It would be useful to establish some sufficient

conditions for amalgamation.

3. In Section 3.6, the relationship between the variances of the least squares

estimators of the dual versus single treatment contrasts for a row-column

design and the parameters of the information matrices of its component

designs was investigated. This is an area of further work.

4. The development of bounds on the total variance of the contrasts of interest

for cross-over designs is a challenging area of research.

5. The development of an algorithm for obtaining larger cross-over designs

by using the cross-over designs of Tables 7.1-7.5 as building bricks, see

Section 7.5.

6. Following the discussion of carryover models in Chapter 6, it would be useful

to perform studies of design robustness to different assumptions for error

structures, and for the persistence and structure of carryover effects.
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Computer Algorithm to find

cross-over designs under a model

for additive first-order carryover

effects

program carryover (input, output);

{ program takes an efficient row-column design and rearranges it within sub-

ject blocks in order to find the best layout under the simple additive model for

first-order carryover effects. This version includes checks on the validity of the

rearranged design to ensure that the total variance under the row-column model

has not increased and that the design is connected under the carryover model. }

label 100;

const

maxd = 9;

maxr = 4;

maxdes = 30;

maxt = 5;

mult = 1 0 ;

tol = 0.00000001;

ace = 0.000001;

type

dmatrix = array[1..maxr, L.maxd] of integer;

inmatrix = array[1..maxt, L.maxd] of integer;

156
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trinmat = array[L.maxd, L.maxt] of integer;
sqinmat = array[L.maxt, L.maxt] of integer;
invec = array[L.maxt] of integer;
rmatrix = array[L.maxt, L.maxt] of real;
rvec= array[L.maxt] of real;
svec. = array[l..maxdes] of real;
svmat = array [L.maxdes] of rmatrix;
sdmat = array[L.maxdes] of dmatrix;
var
i, j , nc, R, C, t : integer;
des : dmatrix;
Nl : inmatrix;
ct : rmatrix;
trace : svec;
svcv : svmat;
sdes : sdmat;

procedure initialise ( R, C : integer; var mat : dmatrix );
{ sets every element of design matrix equal to zero }
var
i, j : integer;
begin {initialise}
for i := 1 to R do
for j := 1 to C do
mat[i, j] := 0;
end {initialise};

procedure rinitialise ( R, C : integer; var mat : rmatrix );
{ sets every element of a square real matrix equal to zero }
var
i, j : integer;
begin {initialise}
for i := 1 to R do
for j := 1 to C do
mat[i, j] := 0;
end {initialise};
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procedure iswap ( var a, b : integer);

{ swaps 2 integer elements of a vector }

var

temp : integer;

begin {iswap}

temp := a;

a := b;

b := temp;

end {iswap};

procedure rswap ( var a, b : real );

{ swaps 2 real elements of a vector }

var

temp : real;

begin {rswap}

temp := a;

a := b;

b := temp;

end {rswap};

procedure iaswap ( var a, b : dmatrix);

{ swaps 2 design matrices in a vector }

var

temp : dmatrix;

begin {iaswap}

temp := a;

a := b;

b := temp;

end {iaswap};

procedure raswap ( var a, b : rmatrix );

{ swaps 2 real matrices in a vector }

var

temp : rmatrix;

begin {raswap}
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temp := a;

a := b;

b := temp;

end {raswap};

procedure printdm ( grid : dmatrix; R, C : integer );

{ prints out a design matrix }

var

i, j : integer;

begin {printdm}

for i :== 1 to R do

begin.

for j := 1 to C do

write( output, grid[i, j]:3 );

writeln(output);

end;

writeln(output);

end {printdm};

procedure printrm ( mat : rmatrix; R, C : integer );

{ prints out a real matrix }

var

i, j : integer;

begin {printrm}

for i := 1 to R do

begin

for j := 1 to C do

write( output, mat[i, j]:9:4 );

writeln(ontput);

end;

writeln (output);

end {printrm};

procedure incidence ( grid : dmatrix; R, C, t : integer;

var NP, NS, NPC, NSC : inmatrix );

{ calculates the period and subject (direct and residual) incidence matrices }
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var
i, j : integer;

begin {incidence}

for i := 1 to t do

begin {i}

for j := 1 to R do

begin {j}

NP[ i , j ] :=0 ;

NPC[ i , j ] :=0 ;

end {j};

for j :== 1 to C do

begin .j

NS[i , j ] :=0;

NSC[i, j] := 0;

end {j};

end {i};

for i := 1 to R do

for j := 1 to C do

begin {j}

NP[grid[i,j], i ] :=

NS[grid[i,j],j]:=NS[grid[i,j],j] + l;

end {j};

for j := 1 to C do

for i := 1 to R-l do

begin {i}

NPC[grid[i, j], i+1] := NPC[grid[i, j], i + 1] + 1;

NSC[grid[i,j],j]:=NSC[grid[i,j],j] + l;

end {i};

end {incidence};

procedure rincidence ( grid : dmatrix; var N : inmatrix;

R, C, t : integer );

{ finds the direct incidence of the row component }

var

i, j : integer;

begin {rincidence}
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for i := 1 to t do

for j := 1 to R do

N[ i , j ] :=0 ;

for i := 1 to R do

for j ' := 1 to C do

end {rincidence};

procedure calcreps ( N : inmatrix; t, b : integer; var reps : sqinmat );

{ calculates treatment reps by summing the row elements of incidence mat }

var

i, j : integer;

begin {calcreps}

for i := 1 to t do

for j := 1 to t do

reps[i, j] := 0;

for i := 1 to t do

for j := 1 to b do

reps[i, i] := reps[i, i] + N[i, j];

end {calcreps};

procedure precedence ( grid : dmatrix; R, C, t : integer; var L : sqinmat );

{ calculates the precedence relationship of a design, element (i,j) is number of

times treatment i is preceded by treatment j }

var

i, j : integer;

begin {precedence}

for i := 1 to t do

for j := 1 to t do

L[i,j] := 0;

for j := 1 to C do

for i := 1 to R-l do

L[grid[i+1, j], grid[i, j]] := L[gricl[i+1, j], grid[i, j]] + 1;

end {precedence};
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procedure itranspose ( R, C : integer; A : inmatrix; var B : trinmat );
{ transposes an integer incidence matrix }
var
i, j : integer;
begin {itranspose}
for i := 1 to R do
for j := 1 to C do

end {itranspose};

procedure rtranspose ( R, C : integer; A : rmatrix; var B : rmatrix );
{ transposes a square real matrix }
var
i, j : integer;
begin {rtranspose} for i := 1 to R do
for j := 1 to C do

B[j,i] := A[ij];
end {rtranspose};

procedure intmult ( m, n, p : integer; A : inmatrix; B : trinmat;
var C : sqinmat );

{ multiplies a t x d integer matrix with a d x t integer matrix }
var
i, j , k : integer;
begin {intmult}
for i := 1 to m do
for j := 1 to p do
C[i,j]:=0;
for i := 1 torn do
for j := 1 to p do
for k := 1 to n do
C[i,j]:=C[i,j] + A[i,k]*B[k,j];
end {intmult};

procedure intmult'2 ( m, n, p : integer; A : inmatrix; B : dmatrix;
var C : inmatrix );
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multiplies a t x d integer matrix with a d x d integer matrix

var

i, j , k : integer;

begin {intmult2}

for i := 1 to m do

for j := 1 to p do

C[ i , j ] :=0 ;

for i := 1 to m do

for j := 1 to p do

for k := 1 to n do

C[i,j].:=C[i,j] +A[i,k]*B[k,j];
end {intmult'2};

procedure rmult ( m, n, p : integer; A, B : rmatrix; var C : rmatrix );

{ multiplies 2 t x t real matrices }

var

i , j , k : integer;

begin {rmult} for i := 1 to m do

for j := 1 to p do

C[i,j] : = 0 ;
for i := 1 torn do

for j := 1 to p do

for k := 1 to n do

C[i , j ] :=C[i , j ] +A[i,k]*B[k,j];

end {rmult};

function check ( grid : dmatrix; N : inmatrix; R, C, t : integer ) : boolean;

{ checks the validity of an arrangement by checking that the new concurrence

matrix is the same as the original concurrence matrix }

var

i, j : integer;

NT : trinmat;

N2 : inmatrix;

NNT, N2N2T : sqinmat;

indie : boolean;
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begin {check}

indie := true;

itranspose( t, R, N, NT );

intmult( t, R, t, N, NT, NNT );

rincidence( grid, N2, R, C, t );

itranspose( t, R, N2, NT );

intmult( t, R, t, N2, NT, N2N2T );

for i := 1 to t do

for j := 1 to t do

if ( NNT[i, j] < > N2N2T[i, j] ) then

indie <= false;

check-:= indie;

end {check};

function samemat ( A, B : rmatrix; m, n : integer ) : boolean;

{ checks whether 2 real matrices are the same }

var

i, j : integer;

indie : boolean;

begin {samemat}

indie := true;

for i := 1 to m do

for j := 1 to n do

if ( abs( A[i, j] - B[i, j] ) > ace ) then

indie := false;

samemat := indie;

end {samemat};

function present ( store : svmat; A : rmatrix; num, n, m : integer) : boolean;

{ ckecks through the store to see if A matches any element }

var

i : integer;

begin {present}

present := false;

for i := 1 to num do

if samemat( store[i], A, n, m ) then
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present := true;

end {present};

procedure addmat ( f, g, h : integer; A, B, C, D : sqinmat;

var sum : rmatrix );

{ finds the sum of a linear combination of t x t integer matrices }

var

i, j : integer;

a, b, c, d : real;

begin {addmat} a := 1.0;

b := --1/h;

c := -1/g;

d := l/(g*h);

for i := 1 to f do

for j := 1 to f do

sum[i,j] := a*A[i, j] + b*B[i, j] + c*C[i, j] + cl*D[i, j];

end {addmat};

procedure fOlblf ( m, n : integer; tol : real; var a : rmatrix;

ia : integer; var aijmax : rvec; var irank : integer;

var inc. : invec; var d : rvec; var u : rmatrix;

iu : integer; var du : rvec; var ifail : integer );

external fortran;

{ nag routine to find the g-inverse of an information matrix }

function goodrank ( m : integer; Al l , A12, A21, A22 : rmatrix ) : boolean;

{ checks to ensure that the full information matrix for both direct and residual

effects has sufficient rank }

const

alpha = 2;

type

intvec = array[1..mult] of integer;

realvec = array[1..mult] of real;

realmat = array[1..mult, L.mult] of real;

var

i, j , newm, indie, rank : integer;



Appendix A 166

vecl, vec3, vec4 : realvec;

vec2 : intvec;

A, mtmp : realmat;

check : boolean;

procedure fOlblf ( m, n : integer; tol : real; var a : realmat;

ia : integer; var aijmax : realvec;

var irank : integer; var inc : intvec;

var d : realvec; var u : realmat; iu : integer;

var du : realvec; var ifail : integer );

external fortran;

begin "{goodrank} check := false;

newm':= alpha*m;

for i := 1 torn do

for j := 1 to m do

begin {j}

A[m+i, m+j] := A22[i, j];

end {j};

indie := 0;

f01blf(newm,newm, tol, A, newm, vecl, rank, vec.2,vec3, mtmp, newm,vec4, indie);

if ( rank = (2*m - 2) ) then check := true;

goodrank := check;

end {goodrank};

procedure infomat ( grid : dmatrix; p, s, t : integer;

var A : rmatrix; var rankOK : boolean );

{ finds the overall information matrix A by calculating the 4 sub-matrices, ac-

cording to the standard theory }

var

indie, i, j , rank : integer;

J : dmatrix;

NP, NS, NPC, NSC, prod3 : inmatrix;

NT : trinmat;

Dr, L, Cr, prodl, prod'2, prod4 : sqinmat;
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vec2 : invec;

Al l , A12, A'21, A22, mtmp, mtmp2 : rmatrix;

vecl, vec.3, vec4 : rvec;

begin {infomat} for i := 1 to p do

for j := 1 to s do

J[i, j] := 1; { initialises J to 1 }

incidence( grid, p, s, t, NP, NS, NPC, NSC );

calcreps( NP, t, p, Dr );

itranspose( t, p, NP, NT );

intmult( t, p, t, NP, NT, prodl );

itranspose( t, s, NS, NT );

intmult( t, s, t, NS, NT, prod2 );

intmult2( t, p, s, NP, .!, prod3 );

intmult( t, s, t, prod3, NT, prod4 );

addmat( t, p, s, Dr, prodl, prod'2, prod4, All );

{ calculates All }

precedence( grid, p, s, t, L );

itranspose( t, p, NPC, NT );

intmult( t, p, t, NP, NT, prodl );

itranspose( t, s, NSC, NT );

intmult( t, s, t, NS, NT, prod2 );

intmult( t, s, t, prod3, NT, prod4 );

addmat( t, p, s, L, prodl, prod2, prod4, A12 );

{ calculates A12 }

rtranspose( t, t, A12, A21 );

{ calculates A21 }

calcreps( NPC, t, p, Cr );

itranspose( t, p, NPC, NT );

intmult( t, p, t, NPC, NT, prodl );

itranspose( t, s, NSC, NT );

intmult( t, s, t, NSC, NT, prod2 );

intmult2( t, p, s, NPC, J, prod3 );

intmult( t, s, t, prod3, NT, prod4 );

addmat( t, p, s, Cr, prodl, prod2, prod4, A22);

{ calculates A22 }

rankOK := goodrank( t, Al l , A12, A21, A22 );
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if rankOK then

begin {if}

indie := 0;

f01blf(t,t,tol,A22,t,vecl,rank,vec2,vec3,mtmp,t,vec4, indie);

{ calls nag routine to find g-inverse of A22 }

rmult( t, t, t, A12, A22, mtmp );

rmult( t, t, t, mtmp, A21, mtmp2 );

for i := 1 to t do

for j := 1 to t do

A[i,j] := All[i, j] - mtmp2[i,j];

end {If}

else rinitialise( t, t, A );

end {infomat};

procedure variance ( grid : dmatrix; p, s, t, nc : integer; cont : rmatrix;

var vcv : rmatrix; var trace : real );

{ finds the varianee-covariance matrix of a design under the additive model and

the total variance }

var

indie, i, rank : integer;

vec2 : invec;

A, mtmp, contt : rmatrix;

vecl, vec3, vec.4 : rvec;

rankchk : boolean;

begin {variance}

indie :— 0;

infomat( grid, p, s, t, A, rankchk );

if rankchk then

begin {if}

fOlblf (t,t,tol, A,t,vecl ,rank,vec2,vec3,mtmp,t,vec4,indie);

rmult( nc, t, t, cont, A, mtmp );

rtranspose( nc, t, cont, contt );

rmult( nc, t, nc, mtmp, contt, vcv );

trace := 0;

for i := 1 to nc do

trace :— trace + vcv[i, i];



Appendix A 169

end {if}

else

begin {else}

trace := 9999999.0;

rinitialise( nc, nc, vcv );

end {else};

end {variance};

procedure sort ( var avec : svec; var avcv : svmat; var ades : sdmat );

{ sorts the elements of a real vector into ascending order and carries the associated

desigii and vcv matrices }

var

count, i : integer;

begin {sort}

for count := 1 to (maxdes-1) do

for i := 1 to (maxdes-1) do

if ( avec[i] > avec[i+l] ) then

begin

rswap( avec[i], avec[i+l] );

ras\vap( avcv[i], avcv[i+l] );

iaswap( ades[i], ades[i+l] );

end

end {sort};

procedure arrange ( grid : dmatrix; R, C, t, nc, PC : integer;

cont : rmatrix; N : inmatrix; var trace : svec;

var svcv : svmat; var sdes : sdmat );

{ finds all the possible permutations of a design, checks that a rearrangement is

a valid design, calculates the vcv, holds the best 30 designs i.e. the designs with

the smallest total variance }

label 10;

var

lpl, lp'2, Ip3, Ip4 : integer;

vcv : rmatrix;

tot var : real;

begin {arrange}
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PC := PC + 1;

if ( PC > C ) then goto 10;

case R of

2 :

begin {case 2}

for lpl := 1 to 2 do

begin {lpl}

iswap(grid[l,PC], gricl[lpl,PC] );

arrange( grid, R, C, t, nc, PC, cont, N, trace, svcv, sdes );

if ( PC = C ) and ( check( grid, N, R, C, t ) ) then

begin *

variance( grid, R, C, t, nc, cont, vcv, totvar );

if ( trace[maxdes] > totvar ) and

not present( svcv, vcv, maxdes, nc, nc ) then

begin {if2} trace[maxdes] := totvar;

svcv [maxdes] := vcv;

sdes[maxdes] := grid;

sort( trace, svcv, sdes );

end {if2};

end;

end {lpl};

end {case 2};

3 :

begin {case 3}

for lpl := 1 to 3 do

begin {lpl}

iswap(grid[l,PC],grid[2, PC] );

for Ip2 := 2 to 3 do

begin {Ip2} iswap( grid[2, PC], grid[lp2, PC] );

arrange( grid, R, C, t, nc, PC, cont, N, trace, svcv, sdes );

if ( PC - C ) and ( check( grid, N, R, C, t ) ) then

begin {if} variance( grid, R, C, t, nc, cont, vcv, totvar );

if ( tracefmaxdes] > totvar ) and

not present( svcv, vcv, maxdes, nc, nc ) then

begin {if2} trace[maxdes] := totvar;

svcv [maxdes] := vcv;
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sclesjmaxdes] := grid;

sort( trace, svcv, sdes );

end {if'2};

end,{if};

end {Ip2};

end {lpl};

end {case 3};

4 :

begin {case 4}

for lpl := 1 to 4 do

begin *{lpl}

iswap(grid[l,PC],grid[lpl,PC] );

for Ip2 := 2 to 4 do

begin {lp'2}

iswap( grid[2, PC], grid[3, PC] );

for Ip3 := 3 to 4 do

begin {Ip3}

iswap( grid[3, PC], grid[lp3, PC] );

arrange( grid, R, C, t, nc, PC, cont, N, trace, svcv, sdes );

if ( PC = C ) and ( check( grid, N, R, C, t ) ) then

begin

variance( grid, R, C, t, nc, cont, vcv, totvar );

if ( trace[maxdes] > totvar ) and

not present( svcv, vcv, maxdes, nc, nc ) then

begin {if2}

trace[maxdes] := totvar;

svcv[maxdes] := vcv;

sdes [maxdes] := grid;

sort( trace, svcv, sdes );

end {if2};

end {if};

end {Ip3};

end {Ip2};

end {lpl};
end {case 4};

end;
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10:end {arrange};

begin {carryover}

writeln (output);

readln( t, R, C );

write( output, ' Crossover designs for ', t : l , ' treatments, ', R:l );

writeln( output, ' periods and ', C:l, ' subjects.');

writeln( output );

{ checks for wrong parameters }

if ( R > maxr ) or ( C > maxd ) then

begin*

writeln( output, ' Design is too large.');

goto 100;

end;

if ( R*C - 2*t - R - C + 4 < 0 ) then

begin

writeln(output,' Insufficient observations to estimate all parameters.');

goto 100;

end;

{ reads in contrasts }

readln( nc );

for i := 1 to nc do

begin

for j := 1 to t do

read( ct[i, j] );

readln;

end;

writeln( output, ' Matrix of contrasts of interest is :-' );

printrm( ct, nc, t );

{ reads in starting design }

for i := 1 to R do

begin

for j := 1 to C do

read( des[i, j] );

readln;

end;
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writeln( output, ' Starting design is :- ');

printdm( des, R, C );

writeln( output, ' Possible rearrangements are :- ');

{ initialises the storage arrays for total variance, designs and vcvs }

for i := 1 to maxdes do

begin {i}

trace[i] := 9999999.0;

rinitialise( nc, nc, svcv[i] );

initialise( R, C, sdes[i] );

end {i};

rincidence( des, Nl, R, C, t );

arrange( des, R., C, t, nc, 0, ct, Nl, trace, svcv, sdes );

{ prints out the storage arrays for total variance, designs and vcvs }

for i := 1 to maxdes do

begin {i}

printdm( sdes[i], R, 0 );

printrm( svcv[i], nc, nc );

writeln( output, ' Total variance = ', trace[i]:10:6 );

writeln( output );

end {i};

100: end { carryover}.
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