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The study concerns the design of experiments whose purpose is to compare the
joint effects of two drugs A and B, at n and m levels respectively, with the effect
of each individual drug. The treatment containing both drugs at the zero level is
excluded from the experiment on ethical grounds. The aim of this investigation
is to identify efficient row-column and cross-over designs for estimating the dual
versus single treatment contrasts, in the sense of having small total variance for

the contrast estimators.

Initially, attention is restricted to row-column designs, that 1s designs for two
orthogonal blocking factors. The criterion used for design selection is the A-
criterion. Lower bounds on the total variance of the estimators of the contrasts of
interest are developed and used to assess the performance of row-column designs
obtained by amalgamating two single blocking factor designs which are part-
balanced for the dual versus single contrasts. A subclass of part-balanced row-
column designs, with the property that treatments are orthogonal to row blocks,
is identified. A method of finding efficient designs for estimating any specific

given set of treatment contrasts is also described.

In the latter part of this thesis, designs are identified for cross-over experi-
ments where each subject is given a sequence of two or more distinct treatments.
For such studies, it is necessary to consider the possibility that the effect of a
particular treatment may persist beyond the period of application. Designs are
considered for the cases where treatment effects persist for one and for two peri-
ods and simple additive models including first- and second-order carryover effects
are assumed. Designs are obtained by rearranging an efficient row-column design
within columns and selecting the arrangement which has the smallest total vari-
ance for the estimators of the dual versus single contrasts under the carryover
model. Finally, an investigation of the robustness of designs to the assumption

of non-negligible second-order carryover effects is presented.
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Chapter 1

Introduction

1.1 Description of the Problem

The problem considered concerns the selection of efficient designs for a factorial
experiment with one treatment combination excluded. This issue is of particular
importance in clinical trials and can be illustrated by means of the following

practical example.

Suppose there are two drugs, A and B, both known from previous studies to
be individually effective in the treatment of a medical condition. Drug B is to be
investigated at m different doses, labelled 0, 1, ..., m — 1 and drug A at n doses,
labelled 0, 1, ..., n — 1. Thus there are n x m distinct treatment combinations
denoted by ij where ¢ and j are the doses of A and B respectively. The aim
of the experiment is to determine whether a combination of these two drugs,
both at non-zero doses, is more effective than either of the drugs administered
individually, that is to estimate the dual versus single contrasts 7;; — 70, Ti; — To;
(1<i<n-1,1<j7<m-1;1t=j =0 excluded), where 7;; denotes the
effect of treatment combination 75. Throughout this thesis, a treatment 7;; which
contains both drugs at a non-zero level is referred to as a dual treatment, and a

treatment which has either of the drugs at the zero level is referred to as a single

treatment.

A key feature of the study is that one of the treatment combinations, labelled
00, is the double placebo, that 1s it represents no active treatment. There are

many medical situations in which it would be highly unethical to deny a patient
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treatment and such a trial would not be authorised by the appropriate ethical
committees monitoring drug research and administration. Thus, there is a need
to find an efficient design for an n X m factorial experiment with the double
placebo treatment excluded. Efficient designs for estimating the dual versus single
treatment contrasts in the presence of a single blocking factor were constructed by
Gerami and Lewis (1992). These designs are appropriate for a situation where the
subjects are grouped on the basis of a single characteristic, such as age. An aim
of this thesis is to construct row-column designs for the same treatment structure
and contrasts. An example of their application is experiments where subjects are

grouped according to two characteristics, for example age and sex.

In order to assess the performance of row-column designs, lower bounds on
the total variance of the estimated treatment contrasts of interest are developed
and discussed in Chapter 2. The performance of these bounds is investigated by
comparison with the results obtained from an optimal design search algorithm.
The bounds are then used to assess the performance of row-column designs, con-
structed by amalgamating two suitable block designs, which are listed in Chap-
ter 3. Row and column component designs from the family of reinforced group
divisible designs are considered, in addition to the PBDS block designs identified
by Gerami, Lewis, Majumdar & Notz (1993). In Chapter 4, designs with the ad-
ditional property that row blocks are orthogonal to treatments are investigated.
The variances of the estimators of the treatment contrasts for these designs are

unaffected by adjustment for the effects of the row blocks.

A further example of the application of row-column designs is in cross-over
experiments, that is experiments in which each of a number of subjects receives
a sequence of treatments throughout the duration of the study. In some cross-
over experiments it can be assumed that the effects of a treatment do not persist
beyond the period of application. This may be due to the nature of the treatment
or the use of washout periods; the latter are relatively short intervals of time
interspersed between two consecutive treatment periods during which a subject
receives no treatment. For this type of cross-over experiment a row-column design

may be employed where row blocks correspond to periods and column blocks to

subjects.

The second part of this thesis addresses the problem of finding efficient designs
for cross-over studies when it is thought that the effects of a treatment may persist

after the period of application. Hence measurements taken in the second and
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subsequent periods are not necessarily solely affected by the current treatment
but may also include a residual or carryover effect from the treatment given in
the previous period, see Jones & Kenward (1989, p 4). In recent years, this area
has stimulated much interest and controversy. The advantages and disadvantages
of using a cross-over design in a medical study are discussed in greater depth in
Chapter 6. A review of the carryover models given in the literature is presented

and criticisms of this type of study are discussed.

In order to distinguish between the two types of treatment effects, a direct
treatment effect is defined to be the effect observed in the current period which is
attributable solely to the treatment given in that period, whereas any treatment
effects observed in the current period but attributable to the treatment given
in the immediately preceding period are called first-order carryover or residual
effects. It is usually assumed that the effects of treatments applied in earlier
periods are negligible. In Chapter 7, designs are found under a model for the
observations which assumes simple additive first-order carryover effects. The
search is extended to find designs under a model which also allows for carryover
effects which persist for two periods. The designs found under the second model
are evaluated under the model for first-order carryover effects to assess how much

precision has been sacrificed by allowing for non-negligible second-order carryover
effects.

In this thesis, the estimation of the direct treatment effects is considered
to be of primary importance and carryover effects are regarded as a nuisance
factor which may or may not be present. In this type of situation, experimenters
may prefer the protection of using designs which allow for the estimation of the
contrasts of interest in the presence of carryover effects. This implies a need
to identify designs which perform well both in the presence and in the absence
of such effects. Investigations into this area have already been conducted. Some
interest has been centred on cases with a single unstructured set of treatments and
pairwise comparison of these treatments, see Kunert (1984, 1985) and Matthews
(1987). Attention has also been given to the estimation of factorial contrasts
in cross-over designs with a factorial treatment structure, see Fletcher & John
(1985) and Lewis, Fletcher & Matthews (1988).

In addition, in Chapter 5 the general problem of designing experiments to
estimate specific treatment contrasts is considered and results on the general

form of the information matrix for theoretical A-optimal designs is given.
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In the remainder of this introductory chapter, the aims of the thesis are pre-
sented before discussing some basic concepts and definitions commonly used in
the design and analysis of experiments. In the next section, a simple additive
model is defined under which efficient row-column designs are found and an out-
line of the analysis of these designs is given. The concept of efficiency factors is
introduced to aid discussion of optimality criteria which enable the comparison
of designs with respect to a particular aspect of design performance. For exam-
ple, an A-optimal design minimises the total variance of the estimators of the

contrasts of interest. This leads to the following criterion for design choice.

Definition 1.1 Design dy ts a better choice than design dy, for estimating a
specific set of treatment contrasts under the A-criterion, if d; has a smaller total

variance for the estimators of the contrasts than d,.

The relationship between the efficiency factors of the row-column design and its
row and column component designs is presented in Section 1.3, followed by a re-

view of the design characteristics associated with the dual versus single treatment

structure.

The aims of this thesis are, for two treatment factors and one excluded treat-

ment combination,

1. to find efficient row-column designs for estimating the dual versus sin-
gle treatment contrasts under an additive model with no carryover
effects.

2. to obtain lower bounds on the total variance of the estimated dual
versus single treatment contrasts to enable the performance of row-

column designs in estimating these contrasts to be assessed.

3. to obtain efficient cross-over designs for estimating the same contrasts
when three or four periods and four or more subject groups are used
and a model is adopted in which simple additive first-order carryover

effects are included.

4. to obtain cross-over designs for estimating the same contrasts under the
assumption of a model which includes parameters for both first- and
second-order carryover effects, and hence to examine the robustness of

design choice to the assumption of negligible second-order carryover
effects.
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1.2 Model, analysis and methods of assessing

row-column designs

In this section, a model and some methods of analysis are briefly outlined for
reference in the later chapters of this thesis. Consider an experiment having
t = mn — 1 treatments and two blocking factors denoted by rows and columns.
Each experimental unit is classified according to the two blocking factors. Let R
denote the number of rows and C denote the number of columns. Attention is
not restricted to equi-replicate designs and the treatment replications are stored

in atx1 vector r. A simple additive model is assumed, as follows
Yijk = ,lL+CY,’+,8j-|-Tk—|-€1‘]‘k (’L= I,....,.Ry7=1,...,C; k= 1,...,t), (1.1)

where y;;i is the response obtained when the kth treatment is applied to the unit
in row ¢ and column j, g is the overall mean, «; is the tth row effect, 8; 1s the jth
column effect, 73 is the kth treatment effect and the ¢;5; are random errors which

are assumed to be independent, identically distributed N(0,0?%) random variables.
The model can be more conveniently expressed in matrix notation as:
YV = lapu+ Xea+ Xgf+ Xo7 + ¢, (1.2)
or alternatively as:
Y = Xa+e, (1.3)

where X = ( I, Xa Xp X ), a = (,u o BT ), «, f and T are the
vectors of row, column and treatment effects respectively and 1, is an n x 1

vector with every element unity.

The least squares estimator of the parameter vector «, obtained by minimising

the error sum of squares €’e with respect to a, is found by solving the normal

equations:
(X'X)a = X'Y.
In terms of (1.3) the normal equations are:
nit+ Clga + Rl’CB +7'7 = G
Clrpi+ Clpa + JR,CB + N}cf' = Rror

Rlicj+ Jeré + RIcf + Noi = Cror
i+ Nré + Nef +1%% = Tror
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where Npg is the ¢ x R incidence matrix of the row component design, N¢ is the

t x C incidence matrix of the column component design, r°

is a diagonal matrix
with the elements of r on the diagonal, J,, is a © X v matrix with every element
unity, G = 1.Y is the overall total, Rror = X.Y is the R x 1 vector of row
totals, Cror = XY is the C X 1 vector of column totals and Tror = XY is the

t x 1 vector of treatment totals.

By eliminating both the row and column effects from these equations, the

reduced normal equations are obtained as

Angt = Q (1.4)
where
Appq = .6_lN N! _lN N! +ﬂ’_
Re =T T o RTRT RO T B
and 1 1 G
,
= Tror — — N sy
Q = Tror CNRRTOT 7 cCror + RO

Agc 1s known as the intra-block information matriz of the row-column design
and @ is the vector of treatment totals adjusted for the row and column effects.

A solution to (1.4) is given by

7 = Qpre, (1.5)

where Qrc is a generalised inverse of Agc. It is not possible to find a unique
inverse since Arcl; = 0 hence rank(Agrc) < t—1. However, apart from Chapter 5,
attention is restricted to connected desigus, that is designs for which rank(Agre) =
t—1.

Experiments are considered whose purpose is to estimate a set of treatment
comparisons or contrasts. Let C; denote a matrix containing contrasts in the ¢
treatments. It is known that the least squares estimator of Cy7 is given by C,7.
Suppose Ay is the information matrix for a design d, satisfying Ay1; = 0, then
Cy7 is estimable if and only if CiQ,A44 = Cy. If d is connected then any contrast
in the treatment effects will be estimable, see John (1987, p 19). An estimable

set of contrasts C; has the property that E(C:7) = C,r,
V(Ci#) = CQCia? (1.6)
and the sum of squares due to testing Ho : Cy7 = «, for some given vector «, is

SS(Ci#) = (Cif — ) (CUCHHCF — «)
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with degrees of freedom equal to rank(Ay) =1t — 1.

Many criteria for choosing efficient designs are based on C;Q24C;. For example,
in Definition 1.1 it was stated that the A-criterion seeks to minimise the total
variance of the estimators of the contrasts of interest. This is equivalent to

minimising the trace of (1.6).

In the remaining part of this section, some common assessments of perfor-
mance of designs for estimating the pairwise treatment comparisons are consid-
ered, before discussing the appropriate measures of design performance for esti-
mating contrasts in three or more treatments. The relevance of these measures

for assessing the row-column designs of Chapters 3 and 4 is also addressed.

A convenient measure of the difference in the precision of the estimation of the
pairwise treatment contrasts in two designs is provided by the efficiency factors.
A pairwise efficiency factor of a design d, with equal treatment replication r., for
estimating the difference between two treatment effects, 7; and 7;, is a comparison
of the variance of the estimated contrast in d with the variance of the estimated
contrast in a randomised block design, where it is assumed that the error variance
is the same for the two designs. This can be written more concisely as

20%fre  2[re
V(’ﬁ - 7A'j)0’2 N V(f‘z - 7A'J)

E; =

A convenient summary of the efficiency factors is provided by the average efhi-
ciency factor, E, defined by E = 20?/r.5, where  is the average variance over all
pairwise treatment comparisons. This measure is not used to assess the designs
listed in this thesis since, for the dual versus single treatments problem, interest
is not centred on the full set of pairwise treatment comparisons. Note that min-
imising F is equivalent to minimising the average variance of all the estimated

pairwise treatment comparisons, see John (1987, p 28).

So far, discussion has been limited to the pairwise contrasts of interest. How-
ever, it is often desirable to make comparisons which involve more than two
treatment effects. For example, it may be necessary to compare one treatment
effect with the average of the effects of the remaining ¢t — 1 treatments. In gen-
eral, a linear expression L = Y°!_, oy;7; is a contrast in the treatment effects if

the ;’s are constant and Y/, o; = 0. The contrast is said to be normalised if

i_,a? = 1. The performance of a design for estimating a contrast L can be
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assessed through the efficiency factor for L, that is

_ 20%r,

Ep = Vi)

When examining several treatment contrasts simultaneously, the analysis and
interpretation of the results are simplified if the contrasts are orthogonal, where
two contrasts L; = Y i, ;s and Ly = Y !_, ol7; are orthogonal if and only if
i el =0.

In order to obtain an overall assessment of the efficiency of a block or row-

column design for estimating a set of ¢ — 1 orthogonal contrasts, the following

contrasts are used.

Definition 1.2 A set of basic contrasts for a block or row-column design with

information matriz Ay is
Er(i=1,...,t=1),

where §; is an eigenvector corresponding to \;, a non-zero eigenvalue of Ay, and

.1 =g
4t {o fidt

The basic contrasts are, by definition, both normalised and orthogonal and
lead to another measure of design performance, known as the canonical efficiency
factors of a design. For a design with equal treatment replications r., a canonical
efficiency factor is the efficiency factor for a basic contrast é;7 and can be shown
to be e; = A;/r., where J; is the eigenvalue of A4 corresponding to the eigenvector
;. Two important properties of canonical efficiency factors should be noted. The
first 1s that they are related to the average variance over all pairwise differences
by the following

202
1. E’

where F is the average efficiency factor. The second property states that the

V=

largest and smallest canonical efficiency factors place upper and lower bounds on

the efficiency factor of any treatment contrast, see John (1987, p 27).

When designs with unequal treatment replication are employed there are two

approaches to defining efficiency factors, see John (1987, p 35). The approach
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used in this thesis is to assume that the treatment replications are fixed, the

efficiency factors can then be defined as follows

Definition 1.3 The canonical efficiency factors (for fized treatment replications)
for a connected block or row-column design d, having replication matriz r® and
information matriz Ay, are the eigenvalues of r=5/2Ar=%/% except for the zero

eigenvalue which corresponds to the eigenvector r®/%1,.

There are various criteria available which allow different designs to be com-
pared, these can be expressed as functions of the canonical efficiency factors. The
A-criterion can be considered to maximise the harmonic mean of the canonical
efficiency factors. Another commonly used criterion is the E-criterion which max-
tmises the minimum canonical efficiency factor of any treatment contrast. The
D-criterion seeks to minimise the determinant of the variance-covariance matrix
of the estimated contrasts of interest but can also be considered to maximise the
geometric mean of the canonical efficiency factors. The (M, S)-criterion is evalu-
ated in two stages. The first step is to locate a class of designs which maximises
the mean of the canonical efficiency factors, this class then has M-optimality. The
next task is to identify the designs within this class which minimise the variance

of the canonical efficiency factors which gives S-optimality.

In general, an optimality criterion is a function ® : 8,4 — (—00, 00] where
B0 1s the collection of ¢ x ¢ nonnegative definite matrices with zero row and
column sums. A design d is called ®-optimal if it minimises ®(A4) over the set
of competing designs. The set of competing designs is determined by the effects

which are of interest in the comparisons to be estimated. Note that Ay € B0 in

this setting.

The following definition of universal optimality is due to Kiefer (1975).

Definition 1.4 A design d* will be termed universally optimal in the class D of
competing designs if d* minimises ®(Aq4) for every ® satisfying:

(i) © is convez,
(i) ®(bA,) is non-increasing in the scalar b > 0,

(ii1) O is invariant under each simultaneous permutation of rows and

columns,
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where Aq is the information matriz for the contrasts of interest corresponding to

the design d.

A design which is universally optimal is also A-, D- and E-optimal. It should
be noted that a design which is optimal under one of the latter criteria is not
necessarily optimal under any of the other criteria. However, various studies have
indicated that a design which performs well under one criterion tends to perform
well under the others.

The canonical efficiency factors can be used as a crude assessment of design
performance in estimating the dual versus single treatment contrasts, since they
enable upper and lower bounds to be specified for the variances of the estima-
tors of these contrasts. However, a more accurate assessment can be made by
considering the individual variances of the specific contrasts, or more easily, the
total variance of the contrast estimators. It has already been stated that, when
interest is focused on the pairwise treatment contrasts, assessments of a design
d are made by comparing the variance of the estimator of a particular pairwise
contrast under design d with the variance of the corresponding contrast under the
known universally optimal design for estimating the contrast. For the pairwise
treatment comparisons, the class of universally optimal designs is randomised
block designs. Since there are no results for universally optimal row-column de-
signs for estimating the dual versus single treatment contrasts, lower bounds on
the total variance of the estimators of these contrasts developed in Chapter 2 are

used as a basis for comparison.

1.3 Row-column designs as amalgamations of

two block component designs

In this thesis, row-column designs found by amalgamating two block designs are
considered. In this section, a relationship between the row-column design and
the row and column component designs is defined. The row component design
has the rows as blocks and ignores the column blocking factor. The column
component design has the columns as blocks and ignores the row blocking factor.
Example 3.1 shows how a row-column design for treatments with levels m = 2

and n = 3 arranged in three rows and six columns can be obtained by combining
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two block designs with m = 2 and n = 3, one consisting of three blocks of size

six and the other consisting of six blocks of size three.

The information matrices for the row and column component designs respec-
tively are Ag = 1% — %NRN,’Q, where Agl; = 0, and A¢ = 1% — %NCNé, where
Acly = 0. From Cheng (1978), the relationship between the information matrices

of the three designs can be expressed as

rr’

ARczAR+AC—7-5+RC. (1.7)

Several authors, such as Shah (1977) and Raghavarao & Shah (1980), have
considered row-column designs which have a common set of basic contrasts ¢;,
(: = 1,...,t) for Arec, Ar and Ac when seeking efficient designs for pairwise
treatment comparisons. Equation (1.7) can then be written

rr’

ARrc&i = Apéi + Acki — (r° — V%ol

)i

The advantage of this property is that it ensures that efficient row-column
designs are achieved when efficient row and column component designs are amal-
gamated. For Definition 1.3, the efficiency factors of the row-column design and

the row and column component designs are linked as follows.

Since, in the case of unequal treatment replications, the elements of the vector
r are regarded as fixed, the terms of (1.7) can be pre-multiplied by r~%/2 and post-

multiplied by »~%/2¢; to give
. . ‘ . . 1 5.
2 Aper ™2 = T A 4 T R AT 2 — (1, — ;7'5/2']”'5/2)& (1.8)

where J; is a t X t matrix with every element equal to unity. Using the fact that
r=82 Aper=8/%¢; = erc, &, it follows that

A 7.——5/26
§/2 RC o1
pirg, = AR
€RC;
where erc,, (2 = 1,...,t — 1), are the non-zero eigenvalues of P82 Apor—i/2,

Substituting into (1.8)

Aprer=8/2%¢;

7‘_5/2ARC7'_5/2§1~ = 7‘_5/2/1;{7'"5/2& + 7‘_5/2/1(;7'_5/2& — L&+ ?r‘sﬂJt
4 €RCi

Since JiArc = 0, by definition of Agre, it follows that

7_—6/2ARC7,—5/261_ — 7.—6/2AR7_—6/2£i + 7,—6/2Ac'7_—6/2€i _ éi
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which can be expressed as

erc,&i = er&i +ec&i — &,

where eg,, ec, and epc, (+ = 1,...,t — 1), are the non-zero eigenvalues of
r812 Apr=8/2 p=8/2 Acr=8/2 and 1r~%/? Aggr~%/? respectively. The final efficiency

relationship is

8RC'-A= er; +ec, — 1. (1.9)

Equation (1.9) has limited application to the dual versus single treatments
problem since the row-column designs of Chapter 3 rarely have an information
matrix with a set of basic contrasts which is also common to the information
matrices of the component designs. This point is discussed further in Section 3.6.
However, the efficiency relationship (1.9) applies to the row-orthogonal designs
of Chapter 4 where it is used to show that the efficiency of the row-orthogonal

design is equal to the efficiency of the column component design.

1.4 Design characteristics and contrasts of in-

terest for the problem

In Section 1.1, it was stated that efficient designs were required which would
enable an investigator to determine whether a combination of two drugs, both
having non-zero levels, is more effective than either of the drugs administered
individually. The contrasts of interest involve comparing dual treatments with
single treatments. For the n x m experiment, these contrasts can be split into

two groups
1. the dual versus A contrasts
;—To(t=1,...,n=1;7=1,...,m—1) (1.10)
2. the dual versus B contrasts
i —To; (t=1,...,n—=1;7=1,...,m—1). (1.11)

It 1s assumed that the estimation of each of these contrasts has equal importance,

that is higher precision on certain comparisons is not required. The natural choice
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of criteria for design selection in this situation is the A-criterion which seeks to

minimise the sum of the variances of the estimators of the treatment contrasts of

interest.

Throughout this thesis, the treatment effects in the vector 7 will be ordered as
(To1s -+ 3 T0gs T10s -+ » TpOy T11y e+ Tlgs T21s w3 T2qs « - +» Tple -« 1+ Tpg), Where p =n—1
and ¢ = m — 1, following Gerami & Lewis (1992). Then (1.10) and (1.11) can be
written as HT where

He| oL O (1.12)
01,(1 ~[p®1q I

and O, , 1s a u X v matrix with every element zero, @ denotes Kronecker product,
[ =pgand £ = (E;)is an [ x { matrix in which submatrix £;; has size p x ¢, with

entry 1 in the (j,2)th position and zero elsewhere (1 =1,...,¢; 7 =1,...,p).

Gerami & Lewis (1992) found that the class of block designs having the prop-
erty of part-balance for estimating the dual versus single contrasts contained

many highly efficient designs for estimating (1.10) and (1.11).

Definition 1.5 Designs for an n X m experiment with part-balance for the dual

versus single treatment comparisons (PBDS) satisfy the following conditions
V(T —Tiw)=vali=1,...,n—=1;53=1,...,m—1)

and

V(i —7oj)=ve(i=1,...,n=1;7=1,...,m—1).

Note that the part-balance property includes total balance for estimating
(1.10) and (1.11) as a special case. For a single blocking factor, designs hav-

ing total balance were found to be too large for most practical cases, see Gerami

(1991).

From Definition 1.5, a PBDS design d has variance-covariance matrix

(1.13)

HQuH' = (cn = B, + B Jy (6 — ), + o,
(6 - d’)]p + ¢]p (CY2 — /jz)fp + 1[32']7)

where a; # 3; (1 = 1,2), 6§ and ¢ are constants, and an information matrix, Ay,

whose form is given by the following theorem.
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Theorem 1.1 (Gerami and Lewis, 1992) A necessary and sufficient condi-
tion for a design d for an n X m experiment with b blocks of size k to have
part-balance for estimating the dual versus single treatment comparisons is that

the intra-block information matriz has the form:

ay azl; asl;,
Ad = (Lzlp "(14]1, + (lst a(;]p + (17Jp (114)

azly, agl, + azd, asl, + agJd,

where a; (1 =1,...,9) are constants.

Note that this result applies to the information matrix of any design with orthog-
onal blocks.

Theorem 1.1 enables types of designs possessing part-balance for estimating
the dual versus single treatment contrasts to be easily identified by examining the
form of the information matrix. The family of reinforced group divisible designs

discussed in Chapter 3 was found in this way.
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Lower bounds on the total

variance

2.1 Introduction

In order to assess how well a design can estimate particular treatment contrasts,
it 1s useful to have a lower bound on the total variance of the estimators of the
contrasts of interest for the design, since this gives an indication of the scope
for possible improvement. The purpose of this chapter is to develop bounds
for row-column designs for estimating the dual versus single treatment contrasts
defined in (1.10) and (1.11). The chapter includes a brief review of bounds in the

literature for incomplete block designs and row-column designs.

Most work in the literature concentrates on bounds for the average variance
of all pairwise treatment comparisons in designs with a single blocking factor and
equal treatment replication. These are commonly formulated as upper bounds
on the average efficiency factor £ (defined in Section 1.2) and are briefly re-
viewed in Section 2.2. Lower bounds on F for row-column layouts are reviewed
in Section 2.3. A further important area where lower bounds on the average vari-
ance have been developed is the test treatment versus control treatment problem
which is outlined in Section 2.2. In Section 2.4, lower bounds available for the

dual versus single treatments problem with a single blocking factor are reviewed.

The remainder of the chapter describes new work on lower bounds for the

total variance of the dual versus single treatment comparisons when a row-column
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design is employed. The first bound, Bp, is already available in the literature. In
Section 2.5, two further bounds, By(H) and B(H), are derived. Bound B;(H)
is shown to be tighter than Bp for certain experiment sizes. The bounds are
critically compared in Section 2.6 and recommendations on their use are given.

The bounds are used in Chapter 3 to assess the efficiency of new designs.

2.2 Upper bounds for the average efficiency

factor in single blocking factor designs

One of the simplest upper bounds on the average efficiency factor, which is ap-

plicable only to connected binary designs with equal block sizes k, is

_tk—1)

Vo= (t— 1)k’

This bound uses the fact that the harmonic mean of the canonical efficiency fac-
tors cannot be greater than the arithmetic mean and has been cited by many
authors including Williams & Patterson (1977) and Jarrett (1977). U, was ex-
tended by Williams, Patterson & John (1976) to the bound U; which covers

non-binary designs and is given by

where k' = k (mod t). A tighter bound than Us and U; is that given by Jarrett
(1977) which depends on the sum of squares of the canonical efficiency factors

and their average and can be written

(t —2)5*

U? = UO - mv (21)

where (t—1)(t—2)S? =S5, = iZ1(e;—€)? and & = (21 e;)/(¢—1). It should be
noted that, in general, Uy # € unless the canonical efficiency factors of the design
are all equal. The most useful bounds are design independent, that is they can
be expressed in terms of the design parameters, r, ¢t and k since they allow the
comparison of several candidate designs for one experimental situation. Jarrett
shows that bound U, can be written in such a form by finding a lower bound for

S,, but 1t then only applies to equi-replicate and equal block size binary designs.



Chapter 2 17

The bound U, improves upon Uy and Uy by including the information available
on the number of circuits of length 2 in the treatment concurrence graph of
the design. A treatment concurrence graph allows information on the design’s
blocking structure to be represented in a diagrammatic form. Such a graph is
constructed by letting the vertices of the graph represent the treatments, lines are
then drawn between two vertices if the corresponding treatments occur together in
a block. The number of lines joining any two vertices is given by the appropriate
element in the treatment concurrence matrix NN'. A circuit is defined as a path
which joins a vertex to itself and a path joining two vertices 7 and j is a route from
¢ to 7 using a sequence of distinct lines in the treatment concurrence graph, see
Wilson (1979) for further information on graph theory. Jarrett (1983) develops an
even tighter bound, Us, by also including information on the number of circuits
of length 3 to give

S3
Us = Uy — 2 S 2.2
PO (= 1)(S5 + UpSy) (22)
where S3 = TiZ](e; — €)%, Us can also be expressed in a design independent

form, but is then limited in application to 2-concurrence designs, that is designs
for which the off-diagonal elements of the concurrence matrix take one of two
possible values. In the literature, interest is concentrated on the special case of
regular graph designs where the off-diagonal elements of NN’ differ by at most
one since many designs of this type are known to be highly efficient, see John &
Mitchell (1977). For example, Jacroux and Seely (1980) showed that sufficient
conditions for (M, S)-optimality (defined in Section 1.2) of binary designs are
that the off-diagonal elements of the concurrence matrix, NN, differ by at most
one and the off-diagonal elements of the block characteristic matrix, NV, differ
by at most one. Williams & Patterson (1977) give a bound constrained by this

condition and Jarrett (1983) develops a further bound for equi-replicate designs

where r = r.1;, also satisfying this condition on the concurrence matrix, by
substituting lower bounds for .S; and S3 in equation (2.2) to obtain
ta(l — o
U4 = (]0 e ( )

rek{rcklUp + 2z — (t + Do}’

where o equals the fractional part of r.(k —1)/(t — 1) and

_ t if2(t—1)a >t
T t-2)a/(1 —a) if2(t-1)a<t
Jarrett (1983) conjectures that this bound holds for any equi-replicate binary

design.
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All the bounds mentioned so far are best used when t < . When ¢t > b,

tighter bounds can be obtained by considering the relationship between a design
and its dual, see John (1987, p 37).

The bounds U,, Uz and Uy can all have a different formulation in the special
case where the design has equal e;’s (1 = 1,...,¢t — 1) giving Uy = &. Tjur (1990)
interprets the second form of Uy as a lower bound for the harmonic mean of
the canonical efficiency factors in terms of the first three moments of a random
variable which takes the values ey,...,e;_; with equal probabilities. Tjur gives a
further bound based on the first and second moments of this random variable
e(l—e)—V

l—e-V
where V = ta(l — )/ (k*r?). Us is not uniformly better than Uy, but it is tighter

in a large number of individual cases.

U5:

A further case for which bounds on the average variance of a different set
of contrasts of interest is useful is the test treatments versus control treatment
problem, see Hedayat, Jacroux & Majumdar (1988). A review of the literature
reveals the following bounds for the average variance of the contrasts of interest
for designs with ¢ — 1 test treatments and one control treatment, arranged in b

blocks each of size k.

Stufken (1988) gives a bound for the trace of the inverse of the information

matrix of the contrasts of interest,

T — To, (23)

where 79 denotes the effect of the control treatment and 7; denotes the effect of

the ¢«th test treatment (¢ = 1,...,t—1), for augmented balanced incomplete block

designs.

Gupta (1989) constructs a lower bound on the average variance of the con-
trasts (2.3) for non-orthogonal binary S-type designs. An S-type design is defined
as a design in which the number of concurrences of the control treatment with
each test treatment takes a common value, A¢ say, and the number of concur-
rences of each pair of test treatments takes a common value, Ay say, for all t — 1
test treatments. An extension of this type of design, appropriate for the dual
versus single treatments case, is discussed in Section 3.5. In Gupta’s investiga-

tion of binary S-type designs, as in Stufken’s work, interest is centred on MJ?!,
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the inverse of the information matrix of the contrasts (2.3). The bound, Us, is
developed using certain combinatorial properties of binary S-type designs in con-
junction with the fact that the harmonic mean of the diagonal elements of M
will not exceed the arithmetic mean of the diagonal elements of M;! and has the
form
_(t=1)(2413)
T bk - 1)1+ £3)2

The bound, Us, is generally not an achievable bound. It can be applied to any

proper block designs but may be loose for non-binary designs since these designs
are not as efficient as binary designs for estimation of the pairwise treatment

comparisons.

2.3 Bounds on the average efficiency factor for

row-column designs

Most interest in the field of row-column designs has been focused on finding
specific groups of row-column designs which are optimal with respect to some
predefined criterion. Consequently, far fewer bounds have been published for the
average efficiency factor of an R x C row-column design for ¢ treatments each
replicated r, times, compared with the single blocking factor case. Some of these

results are discussed below.

Raghavarao & Shah (1980) develop an upper bound on the average efficiency

factor for connected binary designs given by

t(R—1)(C—-1)+RC —1t
RC(t—1) '

This bound is derived using the fact that the harmonic mean of the canonical

Urct =

efficiency factors is not greater than the arithmetic mean and is analogous to Uy
in Section 2.2. They specify a further upper bound

2(R—1)*~1

R—-1)2R-1)’

which has a limited application, since it 1s valid only for designs which satisfy the

parameter relationships t = 2K, r = R — 1 and C = 2(R — 1).

Urce = (

Eccleston & McGilchrist (1985) derive an upper bound, Uges, on the average

efficiency factor of a row-column design in terms of the average efficiency factors
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of the row and column component designs where the component designs share a

common set of eigenvectors. This bound can be written as
-1 _ -1 -1
Upes = Er + Ec” — 1,

where Er and E¢ are the average efficiency factors of the row and column com-
ponent designs respectively. The bound Uges has been found particularly useful
in assessing row-column designs constructed by the method of amalgamation of
component designs. This bound performs well since it uses the actual average ef-
ficiencies of the components, however, it has the disadvantage of being dependent

on the chosen components.

Eéclest01l & McGilchrist found a design independent bound, Ugca, by substi-
tutiné bounds for Fg and E¢ which are expressed in terms of the design param-
eters. If the bounds on Er and E¢ are denoted by F; and F, with Er < F; and
Ec < E; then

Upta = BEr' + By — 1.

The performance of bound Ugcy 1s variable since 1t is dependent on the perfor-

mance of bounds F; and F,.

John & Eccleston (1986) give upper bounds for the harmonic mean of the
canonical efficiency factors for the restricted class of row-column «a-designs. The
simplest upper bound, Uggg, obtained when all the canonical efficiency factors
are equal, 1s
t(RC — R—C+r.)

RC(t —1)

which is an alternative formulation of Urcy. However, a tighter bound is obtained

Urco =

by using Jarrett’s result (2.1) with Up replaced by Ugrco. Asin the analogous result
for block designs, the bound can be expressed in a design independent form by

using a lower bound for 52, namely

gy tolloe)
~ (t—2)r2R2C*?
where « is the fractional part of r.(RC — R— C +r.)/(t — 1). The bound Ugrgo

is used to show that row-column «-designs can be very efficient.

John & Street (1992) develop an upper bound, Ugrcs, by taking the approach
of John & Eccleston (1986). In this case the lower bound on S* is found by

minimising 3_¢_, €? subject to constraints on the number of distinct concurrences
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in the row and column component designs. This bound is not simply expressed in
closed form and is not stated here. The performance of bound Ugcs was examined
for parameter values 3 < R <10, C < R, 2 < r, < C and improved on bound
Urcs in 20% of cases. An upper bound for the restricted class of resolvable
row-column designs, derived by the same approach, is also given which, when
evaluated for parameters 3 < R <10, C < R, 2 < r, < 10, improved on bound

Ugrcs in a large number of cases.

2.4 Lower bounds on the total variance of the
dual versus single contrasts for designs with

a single blocking factor

In this section, two bounds found to be appropriate for the total variance of
the dual versus single contrasts in the single blocking factor case are considered.
The first bound Bp, is the minimum value of a function of the allocation of
experimental units to the sets of particular types of treatment combinations,

defined as follows:

Definition 2.1 The sets of A-alone, B-alone and dual treatment combinations

are {10;:=1,...,p}, {0j;5=1,...,q} and {ij;e=1,...,p;7 = 1,..., ¢} respec-
tively, where p=n—1 and ¢ =m — 1.

Definition 2.2 Let D*(n,m,b,k) be the class of all connected designs for an nxm

experiment with 00 excluded, arranged in b blocks with equal block size k.

For d € D*, the total number of units which are allocated to the sets of

A-alone, B-alone and dual treatments are denoted by T4, T and Tp.

Theorem 2.1 (Gerami & Lewis, 1992, Theorem 2) For a design d € D,
let Ta and Tg be fized and such that Ta > p, Tg > q and Tao+Tp < bk —pq. Also
let 74 = [Ta/p), 78 = [Ts/q) and ¥p = [Tp/pq]. Then tr(Hr=°H') > F(T4,Ts),

where v is the diagonal matriz of treatment replications and

2;)7“‘A+1)—TA} {QqFB+q—TB} {qufp+pq—TD
F(Ty,Tg) = —— + —— +2 ——— .
( A B) (1{ 7'A(7'A+1) p 7'B(7'B+1) 7'D(7'D+1)




Chapter 2 22

Corollary 2.1 (Gerami & Lewis, 1992, Corollary 3) Let the bound Bp =
min{F(ta,tg); (ta,tg) € T}, where T = {(ta,tB); ta > p, tg > ¢; ta+tp <
bk — pq, ta,tg € N*t}, for NT the set of positive integers. Then Bp is a lower
bound on tr(HQ4H') for all d € D*.

The second bound, for the single blocking factor case, is based on a function
of the eigenvalues of both the information and C|C; matrices, where C; is any

contrast matrix for ¢ treatments.

Theorem 2.2 (Gerami & Lewis, 1992, Theorem 1) Let D be a class of de-
signs having one or more blocking factors and t treatments. For any d € D
let Ctj’r contain L > t — 1 contrasts of interest, where rank(Cy) = t — 1. If
0, 2922...29t_1 >0, =0and \{ > Ay > ... > X1 > Ay = 0 are the
respective etgenvalues of C|Cy and Ay, the intra-block information matriz, then
t-1
t’l‘(CthCtl) Z 20,//\1
i=1
Remark: Let B(C:) denote the lower bound on tr(C,;Q4C}), then B(H) is
the lower bound on tr(HQ H'). Gerami & Lewis (1992) perform a numerical
assessment of the bounds Bp and B(H) for the parameter values 2 < n,m < 10,
b <30 and 2 < k <15 and conclude that Bp > B(H) for t < k. Outside these

ranges, neither of the two bounds is uniformly greater. Hence the lower bound is

taken to be maz{Bp, B(H)}.

2.5 Lower bounds on the total variance of the

dual versus single contrasts for row-column

designs

The aim of this section is to develop lower bounds on the total variance of the

dual versus single contrasts in row-column designs.

2.5.1 Bound Bp

Bound Bp of Corollary 2.1 can be applied directly to the row-column case without

any adaptation since the development of this bound is not dependent on the
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assumption of a particular blocking structure.

It has been found that this bound can be loose, particularly when both R
and C are less than t. In order to gain a more accurate assessment of designs, a

secand bound is derived in the following subsection.

2.5.2 Bound B(H)

The approach taken to obtain bound B;(H) is to develop, from the design-
dependent bound in Theorem 2.2, a bound which has only one value for a given
experj1nellt size. This involves an examination of the information matrix, Agrc,
of the row-column design and its eigenvalues. The strategy adopted is to find an

upper bound on tr(Agc) and then to apply the following result.

Corollary 2.2 (Gerami & Lewis, 1992, Corollary 2 to Theorem 1) Let
B(Cy) = (342) 9}/2)2/c,,m, where Car = maz{tr(Aq); d € D}, then B(Cy) is a
lower bound on tr(CQ4C)), for all d € D.

The following lemma is given by Kiefer (1958, p 689). The lemma is restated
and a proof given.

Lemma 2.1 The minimum value of S = ;?:1 mf, subject to the constraints

Yiimj=qandm; (j=1,...,k) is integer, is
g+ (2g — k)lg/k] — klg/k]",

where [z] denotes the largest integer < z.

Proof: Let A be a Lagrange multiplier and T = Zle m? + /\(Zf=1 m; — q).

Regarding T as a continuous function of real numbers m;, (7 =1,...,k),

oT
= 2m; + A
amj g +
which has zero value when A = —2mj; or m; = —A/2, (j = 1,...,k). Since
9*’T/0m? =2 > 0forj=1,...,k,it follows that S is minimised when m; = —X/2
(j = 1,...,k). Now le m; = ¢ which implies that A = —2¢/k. Hence for

minimum S :

m; =q/k(j=1,...,k).
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Therefore
miny S = ¢*/k, (2.4)

where M = {(mq,...,my);m; € R*,j = 1,...,k,zf=1 m; = q}. It is also
necessary to consider the further constraint that m; (7 =1,...,k) must be inte-
ger. Since S is a continuous function, its minimum value occurs when each m;
(7 = 1,...,k) takes the nearest integer value [¢/k] or [¢/k] + 1. Suppose a of the

m;’s are each [¢/k] and the remaining k — « values are each [¢/k] + 1. Then

k
2 m; = alg/k + (k= a)([g/k] +1) = ¢.
i=1
Hencé a=k([g/k]+ 1) — q and (k — «) = q¢ — k[q/k]. Then the minimum value
of S is a[q/k]* + (k — «)([q/k] + 1)? which, after manipulation, can be written as
S = q+ (2q — k)[q/k] - klq/k]*.

The following theorem establishes a bound on tr(Agc).

Theorem 2.3 Any connected row-column design d, having t treatments arranged

in an R x C array and information matriz Agc has
tr(Arc) < RC — R — (R/C)(2C — t)[C/t] + (Rt/C)[C /).

Proof: From (1.7)

1 t
t?'(ARC) = t'l‘(AR) + t?'(Ac) — RC + — Z 7?
RC =1

Since tr(Ax) = RC — (1/k) i, Y5, ni; for k' # k= R,C, where ny;; denotes

the replication of treatment ¢ in block j for design component & for : = 1,...,¢;

J=1,...,kand k= R,C, tr(Agrc) can be expressed as

t

1 R 1
tr(Arc) = RC — C Z Z”%zij TR

t
=1 j5=1 i=

n&; + RO >orl. (2.5)
j= i=1

13=1
Putting k = C, m; = ngij and ¢ = r; in (2.4),

.2
1

DL AT R’
nCi-___ 1 = [ .
jzl 7 C b b
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It follows that

1 (&, r?
— = —=1>0 2.6
R i=1 \y=1 nCU C - ( )
and from (2.5),
' 1 t R
i=1j5=1

The RHS of (2.7) has its maximum value when 3"¢_, ?:1 nk,; is minimised sub-
ject to the constraints that !, Zle nri; = RC and ng;; (1 = 1,...,t;j =

1,..., R) are integer. The result follows from applying Lemma 2.1.

A lower bound, B;(H), can now be established on the total variance of the
contrasts of interest, using Corollary 2.2 with ¢,,,, taking the value of the upper
bound on tr(Agc) of Theorem 2.3. It should be noted that the upper bound
on tr(Apgc) is not symmetrical in R and C and this generates two values for
the bound on the total variance of the contrast estimators for each array size.
This difficulty is resolved by taking the bound Bj(H) to be the larger of the two

possible values.

Definition 2.3 By(H) is a lower bound on the total variance of the dual versus

single treatment contrasts, given by
(T2 072 (S 0y
f(t,R,C) " f(t,C,R)
where f(t,b,k) = bk—b— (b/k)(2k—t)[k/t]+ (bt/k)[k/t]? and 6;) i =1,... t—1,

are the non-zero eigenvalues of the H'H matriz for H given in (1.12).

Bi(H) = maz (

The following two examples show the advantage of having a choice of bounds
instead of restricting attention to one bound which may perform poorly for certain

parameter values.

Example 2.1 Form =n = C =3 and R = 8, the bound B;(H) = 6.3185 and
the bound Br = 5.3333. By(H) is the tighter bound in this case and improves
upon the value of Br by 18.5%.

Example 2.2 Form =2, n=4, R=C =4, B;(H) has the value 5.1122 and

Br = 5.1667. In this case Bp is the tighter bound since it improves on the value
of By(H) by 1.1%.

The performance of the bound B;(H) is discussed in Section 2.6.
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2.5.3 Bound B,(H)

Although one bound has been developed for use in conjunction with the bound
Br, an inspection of (2.6) indicates that it may be possible to tighten the bound
by leaving 3°¢_, 2?:1 ng;; and i, r? as separate terms and then minimising
tr(Apc) directly with respect to ng; (1 = 1,...,¢7 = 1,...,k;k = R,C). In
the remaining part of this chapter it is shown how to achieve this. The key step
is maximising $°¢_; r? for which it is necessary to consider the different ways of
choosing t integers, not necessarily distinct, from the set {a,a + 1,...,a + m}
so that the sum of the selected integers has a fixed value, ¢, say. The ultimate
objective is to identify the choice of integers which has the maximum (uncor-
rected) sum of squares and to use that choice in calculating ¢, 7% in (2.5) to
find a bound. This is done in Theorem 2.5 for which the following definitions and

results are needed.

Notation: Let n; (1 < n; < ¢) denote the number of integers allocated the
value ¢ (a <1 < a4+ m).

The first step is to devise a method of generating all permissible choices of ¢

integers via the following definitions and lemma.

Definition 2.4 For any allocation of integers ng, nay1, ... Napm such that ny, #
0 (i=1,2) where a < by < by —2 < a-+m—2, the operation which forms a new
allocation by subtracting 1 from ny, (1 = 1,2) and adding 1 to each of ny 4 and
N, _h, for 1 < h < [(by — b1)/2], is called an internal reallocation from b, and b,
via h and is denoted by I(by,by; h).

Remark: The term internalis used since by < by +h < by — h < bsy.

Definition 2.5 For any allocation of integers ng,nay1, -, Narm Such that ny, #
0 (i =1,2) wherea < by < by < a+m, the operation which forms a new allocation
by subtracting 1 from ny, (2 = 1,2) and adding 1 to each of ny,_; and np,4p, for
1 < h <min(by —a,a+m—0y), is called an external reallocation from b; and b,
via h and is denoted by E(by, by h).

Remark: The term ezternal is used since by — h < b < by < by + h.

- . . . ‘0 . . O 0 0
Definition 2.6 The maximising allocation Ao(t,a,m,q) has ng,ng,,,...,ng, .,

where nd, = (¢ — at)/m] and
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(i) if ¢ —at = 0 (mod m), then n® =t — [(¢ — at)/m], n = 0 for
a<it<a+m,

(i1) if g—at = k (mod m) where k # 0, then n® =t —1—[(q—at)/m],
nd=1,n=0fora<i<a+m(i#a+k).

Lemma 2.2 Any allocation ng,nayq, ..., Neym, which satisfies f:;n n; =1t and
™ in; = q, for integers a, m and n; (i = a,a+1,...,a+ m), can be reached

from Ao(t,a,m,q) by a sequence of I-step internal reallocations.

Proof: Let A, denote the set of allocations formed by applying all possible
internal reallocations I(by, by; h), for all 1 < h < [(by — b1)/2], to the members of
A,q (g =1,2,...) where Ao = {Ap}. Assume the elements of A, are (partially)
ordered by the value of hA.

The sequence of enumerations is finite since at some stage, G — 1 say, Ag_1
will consist solely of allocations with the property that n, =t — 3, nyy1 =
and n; =0for0 < B <t,a <t <a+mand e <u < a+m-—1 such that
uny + (v + 1)nyger = q (¢ # v,u + 1). From Definition 2.4, there are no possible
internal reallocations I(u,u + 1; &), and Ag = ¢. Hence, by starting at Ao and

progressively reallocating internally, all possible allocations must be considered.

Remark: This result is reinforced by showing that external reallocations will
not yield any new allocations. There are no feasible external reallocations from
Ag € Ap since E(a,a + m;h) does not exist. Now consider 4;. From Defini-
tions 2.4 and 2.5, it is clear that any E(by, bs; k) will yield an allocation which is
already a member of A; or A;. Now assume Ag, A4y, ..., A;_1 have already been
enumerated, then by definition A, is generated from A,_, by internal realloca-
tions. Any external reallocation operating on A,_; gives a member of | J{Z] A;.
Hence, if all possible internal reallocations of Ay, A;,... are enumerated until

Ac = ¢, all possible allocations satisfying the required conditions must have

been considered.

The following theorem establishes that the mazimising allocation Ay max-

imises {r(Agrc); the subsequent corollary gives an explicit closed form for the

maximum value of y¢_; rZ.

Theorem 2.4 For integers a, m (a,m > 0) and n; (: = a,...,a + m) such that

o, =t and U™ in; = q, the function S = Y™ i%n; is mazimised by the

i=a

allocation Ao(t,a,m,q).
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Proof: The approach taken is to show that any changes to the allocation Ay
result in a reduction in S. From Lemma 2.2, all permissible allocations can be
generated by starting at allocation Ay and performing all possible (b1, be; k) on
each set of allocations. A general set of allocations A, will be examined. The set
Ag41 is generated by applying each I(by,bz; k), for h = 1,...,[(by — b1)/2], to the
members of A,.

Consider a particular member of A4,, having n; = nf for ¢ = @,...,a + m,
and apply a particular [(by, by; ho), where 1 < ho < [(by — b1)/2]. Then, by
Definition 2.4, the members of 4,41 are obtained which have nﬁjl =nj — 1,
ng:ﬂho =nf g + 1L, =0 41, nf = nj, — 1 and nitt
t = ay...,a+ m such that ¢ # by, by + ho, b — hg, bo. Hence, the contributions to

S from the particular allocation in A, and the new allocation in A,y differ by

= nf for

Sg— Sgr1 = U — (by+ ho)? — (b — ho)® + b3
= 2]10(1)2 - bl - ho)

Since 1 € ho < [(b2—101)/2], it follows that b, — by — hg > 0. Hence S; — Sy41 > 0.

This shows that any allocation in Ay, will always make a smaller contribution
to S than its parent allocation in set 4, which must, in turn, make a smaller
contribution to S than its parent allocation in set A,_,. Hence, by iteration, the

theorem is proved.

The following corollary establishes the maximum value of S.

Corollary 2.3 For integers a, m (a,m > 0) and n; (1 = a,...,a+ m) such that

et =t and 4™ in; = ¢, the mazimum value of S = 32 i%n; is

(m + 2a)(q — at) + a*t ifqg—at=0 (mod m)

(a +m)? [9_—‘”] + (a+ k) + ? (t -1 [-q—;it]) otherwise.

m

Proof:
Case I: When g — at = 0 (mod m) then, from Theorem 2.4, ngy,, = (¢ — at)/m,
ng=t—(¢q—at)/mandn; =0,1 =a+1,...,a+m—1, will give the maximum

value of S, namely

maz S = (a+m)*(q~ at)/m+d*(t — (¢ — at)/m)
= (2a+ m)(q — at) + a*t.
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Case 1I: When ¢ ~ at = k (mod m), k # 0, then again using Theorem 2.4,
Natm = [(q — at)/m], nagx = 1, ny, = t =1 — [(¢ — at)/m] and n; = 0 for
t=a+1,...;,a+m—1,1#a+k,

maz § = (e m 1] 4 @ p7 4t (-1 - [129])

m m

The following theorem establishes a second upper bound on tr(Agc).

Theorem 2.5 Any connected row-column design d, having t treatments arranged

in R rows and C columns and information matriz Agc has
) 1 .
tr(Arc) < RC — E{RC + R(2C — t)[C/t] — Rt[C/t])*}

— %{RC + C(2R — t)[R/t] — Ct[R/t)*} + maa {i 112} /(RC),

=1

where maz{Y‘_, r?} is as in Corollary 2.3 with « = r; = max(C[R/t], R[C/t],1),
a+m =r, = mn(C[R/t]+ C,R[C/t]+ R), ¢ = RC and RC — rit = k (mod

L — 7'[).

Proof: By (2.5), maximising tr(Agc) is equivalent to minimising

t 1 t
Z lnRzJ + 5 ZZ”’CU - —R_CZT?’

‘Ll] ‘zl]l i=1

1 R

subject to the constraints

t

> Z ni; = RC (k= R, C). (2.8)

1=1 j=1
Expressing L as a function symmetrical in the ng;;’s and ngi;’s,

R C

, ] 1t [ R 2
lnRz]+R§J ”cm*mZ(chquj;nmj) .

1 =1

t
zl]

To apply the method of Lagrange multipliers let

1 1

t R : 2
Z ZnRU + 5 Z Z lCiJ - 4RC Z <Z ncij + Z an])
=1 =

1:—_1 1=1 ' =1 j=1

t R t C
ZZ”RU - RC)+ /\ ZZNCU‘ — RC

1=1 j=1 =1 j3=1
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where A; and A, are Lagrange multipliers. Then

oL~ 2
LRi ne; T R: A
Onpg  C 19T ch 2; (JZ1 v +; RJ) M
Setting this expression equal to 0 and using (2.8), Ay can be evaluated in terms

of t, R and C and gives ng;; = C/t. This is a minimum point of the function L
since

oL 21
onk; C  2RC

Since L is symmetrical, n¢i; = R/t also gives a minimum point.

> 0.

However, the np;;’s and ngi;’s are required to be integers, and since L is
a continuous function the solution is taken which has the ng;’s (z = 1,...,¢;
J=1,...,k; k = R,C) as equal as possible subject to this constraint. This
occurs when the ng;;’s are equal to [C/t] or [C/t] + 1 and the n¢y;’s are equal to
[R/t] or [R/t] + 1. It is easily verified that C(¢[R/t]+t — R) of the n¢i;’s should
be set equal to [R/t] and the remaining C(R — t[R/t]) set equal to [R/t]+ 1, and
R(t[C/t] +t — C) of the ng;;’s should be set equal to [C/t] and the remaining
R(C — t[C/t]) set equal to ([C/t]4+1). Then

min [ = —é—{RC + R(2C = 0)[C/1] - RC/1) (2.9)

+i{RC + C(2R — t)[R/t] — Ct[R/t)*} (2.10)

4RC Z (Z ngij + Z”Cu) . (2.11)

Note that the terms (2.9) and (2.10) are the same as those obtained by applying
Lemma 2.1 separately to $3%_, Z;‘le nti; k= R,C. Since ZJC 1 nCij =7 =
Z?:l nri; (1 = 1,...,t), the term (2.11) can be shown to equal (3!, r2)/RC
and bounds r; and 7, on the range of possible values for r; (: = 1,...,t) can be

developed. These are
maz(C[R/t], R[C/t],1) < r; < min(C[R/t] + C, R[C/t]+ R).

Using Corollary 2.3, with a = r, a + m =1, ¢ = RC and RC — rt = k (mod
Tr — 71), the maximum value of 3°!_; r? can be calculated directly. It then follows

that the maximum value of {r(Agrc) is RC — min L, as in the statement of the

theorem.
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Remark: Several different formulations of L were minimised which, when
tested, all gave the same numerical values of the bound. The above formulation
was chosen because it produced a symmetrical bound and the restricted range
for the feasible replications enabled the maximum value of S = i, r? to be

expressed in closed form.

A further bound on the total variance is now obtained by using Corollary 2.2

with ¢pnes equal to the upper bound on tr(Agrc) of Theorem 2.5.

Definition 2.7 Let the lower bound B,(H) on the total variance of the dual

versus single treatments contrasts be

t—1
By(H)= (D] 03/2)2/771(1:5{&'(/4130)}
=1
where 0;, 1 =1,...,t — 1, are the non-zero eigenvalues of the H'H matricz for H
given in (1.12) and maz{tr(Agrc)} is the upper bound of Theorem 2.5.

Examples 2.1 and 2.2 are now reconsidered to see whether By(H) improves upon

Bi(H) in these two cases.

Example 2.3 Forn = m = C =3 and R = 8, By(H) = Bi(H) = B(H) =
6.3185 and since Br = 5.3333, B(H) remains the tighter of the two bounds.

Example 2.4 Form = 2, n =4, R = C = 4, By(H) takes the value 5.4530
which improves upon Bi(H) = 5.1122 by 6.6% and since B = 5.1667, By(H) is
the tighter bound and has an improvement of 5.5% on the value of Bp.

2.6  Assessing the accuracy of the bounds

In order to test the accuracy of the bounds of the previous section, a program
written by Jones & Eccleston (1980) was used. This program will be referred
to as JFE in this thesis. The algorithm allows two user-given components or
computer-generated components to be almagamated in order to obtain a row-
column design. In both cases, the algorithm then uses exchange and interchange
procedures on the initial row-column design in an attempt to find the A-optimal

row-column design for the specified experiment size. The program has parameter
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limits of fifteen on each of the number of treatments, rows and columns and tends
to become slow when processing large designs. However, it has been very useful
in assessing both design and bound performance and a comparison with JE has

been included in all the design assessments given in Chapter 3.

Definition 2.8 The discrepancy of a design d compared with a value Q) for the
estimation of Ht s
tr(HQuH') — Q

x 100.
Q

For the purposes of this thesis the value ) will either represent a lower bound on

the tetal variance of our contrasts of interest or min{tr(HQuH")} found by JE.

A numerical assessment of the bounds B;(H), By(H) and Bp was performed
for the parameter values 2 < m < 5,3 <n <5, 2 < R,C <15. This revealed
that B;(H) only improved upon Bp when R was small in comparison with the
number of treatments. This is illustrated in Example 2.1 where B, (H) is greater
than Bp and has a discrepancy of 6.9% with tr(HQgrcH') of the design found
by JE with the smallest total variance of the estimators of the dual versus single
contrasts. Hence By(H) is an acceptable bound in this case. In Example 2.2, Bp
is the tighter of the two bounds, yet it has a discrepancy of 34.1% with the total
variance of the contrasts of interest of the most A-efficient design found by JE,
so neither bound performs well in this particular case. The proportion of cases
in the numerical study for which B,(H) > Bp for each value of t depends on ¢;
an exact relationship has not been formulated. For the experiment sizes used in
the assessment, the proportion of cases for which By(H) > By ranges from 25%
to 50% for 5 <t < 24.

The performance of the bound B,(H) is now considered. The same numeri-
cal study showed that B,(H) > B,(H) for the entire range of parameter values.
Hence the bound B;(H) is not used in any further work. The largest improve-
ments occur when R is small compared with the size of ¢t and C'. These conclusions
are reinforced by considering Examples 2.3 and 2.4. In the latter, B,(H) is the
tighter bound and has a discrepancy of 27.1% with tr(HQgrcH') of the most A-
efficient design found by JE. Although this is a poor performance it is better than
the 34.1% discrepancy between Br and the results of JE. In the first example

which has t —1 = R > C, it is seen that B,(H) does not improve upon By (H).
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It is also interesting to consider for which parameter values the bound By(H)
improves upon Bp. The numerical comparison revealed that By(H) is greater
than Bp when R is small in comparison with ¢ which is also when By(H) tends
to improve upon Bp. It was noted that although B,(H) is always greater than
or equal to B;(H), the improvement gained through using B2(H) is often to no
avail because B remains the tighter bound. There were some cases where B;(H)
improved on both Bj(H) and Bf to overtake Br as the tighter bound but these
were relatively few. The proportion of cases in the numerical study for which
By(H) > Bp ranges from 0% to 15% for 5 <t < 24.

The following two examples serve to further emphasize the points made above.
In Example 2.5, ¢ is less than both R and C and Bp is seen to be the tighter
bound whereas Example 2.6 shows that B,(H) is tighter for small R and C.

Example 2.5 Form = 2, n = 3 and R = C = 14, B,(H) = 0.1810, Br =
0.1989 and for these parameter values the most efficient row-column design, under
the A-criterion, found by JE has tr(HQprcH') = 0.2008. The discrepancies of
bounds By(H) and Br with the result of JE are 10.9% and 0.9% respectively,
indicating that, although By(H) is acceptable for this experiment size, Br is much
tighter.

Example 2.6 Form =2, n =3, R =5 and C = 2, By(H) = 5.6472, Br =
4.0 and the best row-column design, under the A-criterion, generated by JE has
tr(HQgrcH'Y = 6.4. The discrepancies of By(H) and Br with the result of JE
are 13.3% and 60% respectively, indicating that By(H) is an acceptable bound for

these parameter values while Bp has a very poor performance.

2.6.1 Recommended bound

Since it has not been possible to determine conditions under which one bound is

uniformly tighter than the other, the recommended overall bound B is
B = maz{Br, B,(H)}. (2.12)

A further assessment of bound performance will be made in Chapter 3 by com-
paring the shortfall between the bound of (2.12) and the total variance of the

best design, under the A-criterion, found by JF.
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Row-column Designs with
part-balance for the dual versus

single treatment comparisons

3.1 Introduction

The purpose of this chapter is to investigate row-column designs which have
both component designs part-balanced with respect to the dual versus single

treatments contrasts.

Balanced row-column designs with t treatments, each replicated r. times and
arranged in R blocks of size C, have the property that all pairwise treatment
comparisons are estimated with the same accuracy under model (1.1). However,
these designs only exist for limited combinations of ¢, R and C, and generally
require an infeasibly large value of r.. Part-balanced row-column designs are a
compromise between total balance and the absence of balance. The advantage
of using part-balanced designs for estimating the dual versus single treatments
comparisons is that all the dual versus A comparisons are estimated with a com-
mon variance, vy say, and all the dual versus B comparisons are estimated with

a common variance VB.

In this chapter, several types of row-column designs are examined. The family
of reinforced group divisible row-column designs is defined in Section 3.3 and

necessary conditions for the existence of the designs are established. Properties

34
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of the designs are investigated in Section 3.4. In Section 3.5, efficient row and
column component designs selected from the classes of R-type and S-type part-
balanced designs are identified. The construction of row-column designs using
these components is discussed in Section 3.6. For both these families of designs,
tables are given listing the most A-efficient PBDS row-column designs found
which also include a critical assessment of design performance against the bounds

of Chapter 2 and against the most A-efficient design found by JE.

3.2 PBDS Row-Column Designs

From Theorem 1.1, a row-column design has part-balance with respect to the
dual versus single treatment contrasts if and only if its information matrix, Agrc,
has structure (1.14).

Definition 3.1 Let Dj(n,m, R,C) be the class of all connected row-column
designs for an n X m experiment with 00 excluded, arranged in R rows and C

columns.

Designs in Dy can be obtained by amalgamating row and column PBDS designs,

as in the following example.

Example 3.1 For m=2, n=3% R=3% and C=6 and using designs tabulated by
Gerami (1991) let the row component be

Block 1 01 10 20 11 11 21
Block 2 01 10 20 11 21 21
Block 3 01 01 10 20 11 21

and the column component be

Block 1 01 10 11
Block 2 01 20 21
Block 3 01 10 11
Block 4 01 20 21
Block 5 10 11 21
Block 6 20 11 21.
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On amalgamation, the following row-column design is obtained

01 20 10 21 11 11
10 01 11 20 21 21
11 21 01 01 10 20

The following theorem shows that any row-column design constructed in this

way has part-balance.

Theorem 3.1 Let d € Dye(n,2,R,C) have PBDS row and column component

designs, then d has part-balance for the dual versus single treatment comparisons.

Proof: From (1.7), the structure of Agrc depends on the structure of Ag, A¢ and
r and from (1.14), Ar and A¢ have the form
ai aja1;, a3l
A]‘ = (ljglp aj4]p+aj5JP ajglp—{—aﬂJp y (3-1)
(lj31p (lj(;[p+aj7.]p (ljg]p+ (ljg.]p
where 7 = R or C respectively. Then, putting b; = ar; + aci (z =1,...,9),
by b1, bs1;,

AR + AC == l)-z].p b4.[p + l)5.]p bglp + b7.]p
bsl, bel, + brJ, bsl, + boJ,

Let r have ¢th entry r; (: = 1,...,2n — 1). Then

7'1(7'1 — RC) 172 e "1T2n—1
rp! 5 1 179 7’2(7‘2 — RC) v T2Ton—1
—_ 7 = ——
RC RC
T1T2n-1 T2Ton—1 cer Topa (7‘2n—1 - RC)

Since PBDS designs have a treatment replication vector of the form

!
('I‘B 7"41;1_1 TDl;z.—l ) y (3.2)

it follows that Apc has structure (1.14).
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Corollary 3.1 The information matriz for a row-column design d € Dys(n,2, R, C)

with part-balanced row and column component designs has structure (8.1) with

Jj=RC, and

arc1 = am +aci —rp+r5/RC
arc2 = Gr2+acz+rera/RC
arcs = aps+acs+rprp/RC
GRc4 = AR4e+QAcq—TA

arcs = ags+acs+r4i/RC

Gpce = GQRe+ Qce

arct = apr+acr+rarp/RC
Grcs = 4ps+ acs —TD

arco = are+ ace+1h/RC.

In this thesis, attention is restricted to connected row-column designs, that
is designs for which Agrc has only one zero eigenvalue. The following lemma

characterises connected designs in the PBDS class.

Lemma 3.1 Let d be a PBDS block or row-column design with information ma-
triz (1.14), then d is disconnected if and only if ai = asag or (ag + pas)? =
(as + pas)(as + pag), where a; (i = 4,...,9) denote agci, ap:i or aci, the pa-
rameters of the information matrices of the row-column design, row and column

component designs respectively.

Proof: If design d is disconnected then at least one of the eigenvalues, denoted by
Ai (1 =1,...,t=1), of the information matrix A4 must be zero. From Table 3.1,
A1 = 0 implies v < 0 and (ag + par)? = (as + pas)(as + pag) and Ay = 0 implies
v > 0 and (ag + paz)? = (a4 + pas)(as + pag). Hence, if Ay or )\, is equal to zero
then (ag+ paz)? = (a4 + pas)(as + pag). Similarly, A3 = 0 implies a4 + as < 0 and
ak = aqag and Ay = 0 implies a4 + ag > 0 and a = ayas. Hence, if A3 or A4 equal

to zero then a2 = a4as.

Conversely if (as + par)® = (a4 + pas)(as + pag) then

] <
/\1:{0 ifv<0

~ otherwise
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Table 3.1: Eigenvalues of the intra-block information matrix of a PBDS design; v
denotes (p+1)(as + pas + as+pag) +2p(as+paz), p=n—1 and ay, ..., as denote

the parameters of the information matrix of the design, see equation (1.14).

Eigenvalues Multiplicity

Ay = vY+1/72+4(2p+1)[(ae+pa7)? = (as+pas)(as+pas)] 1
1= 2

Ay = 1—\/'72+4(‘2p+1)[(a6+p;17)2—(a4 +pas)(ag+pas)) 1

As = a4+as+\/(a4+a23)2+4(a§—a4a8) p—1

Ay = a4+as—\/(aq+t;3)2+4(a§—a4aa) p—1

/\5:0 1

and

. )
0 otherwise

—v ify <0

where v 1s given in Table 3.1. Hence either A; or A; must be zero for all a;

(t=4,...,9). If a2 = ayaz then

{ 0 ifas+as<0
/\3:

a4 + ag otherwise

and

0 otherwise

{ —(as+as) ifas+azs<0
/\4:

Hence either A3 or Ay must be zero for all ¢; (¢ =4,...,9).

3.3 Reinforced Group Divisible Designs

The purpose of this section is to examine necessary conditions for a row-column

PBDS design to be constructed from row and column components which are
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both reinforced group divisible designs. Firstly, consider the definition and some
properties of group divisible (GD) designs.

Let t; = mym, treatments be arranged in m; groups each of m, treat-
ments, where treatments in the same group are called first associates and those
in different groups are called second associates. A GD design with parameters
(b, k,re, A1, A2) has b blocks of size k, equal treatment replication r, and each
treatment appearing A; times with each of its first associates and A, times with

each of its second associates.

All GD designs have parameter values which satisfy certain conditions, see
John (1980, Chapter 5). In particular,

N

rety = bk (3.3)
re(k—1) = Ai(ma—1)+ Aama(my — 1) (3.4)
rek > 0 (3.5)
Ay < rek/ty (3.6)
AN < e (3.7)

The following definition of a reinforced group divisible design (RGDD) for an
n x 2 experiment with b blocks of size k, where 2 < k <t = 2n — 1, 1s due to
Gerami & Lewis (1992).

Definition 3.2 Let d; be a group divisible design with myms treatments, where
my =n—12> 2 and my = 2, replication r., b blocks of size ky =k —12> 2 and
Jth associates occurring in A; blocks (5 = 1,2). Map the treatment labels in dy to
10,71 (: =1,...,n—1) so that 10, ¢1 (: = 1,...,n — 1) form the pairs of first
associates. A reinforced group divisible design is then formed by reinforcing each

block by the inclusion of treatment 01.

It follows from Definition 3.2 that an RGDD has part-balance for the dual
versus single contrasts and will always have a replication vector of the form
= ( b orell , rell_y )l. Hence, from Theorem 3.1, any row-column design
having RGDD components has part-balance. This suggests that RGDDs may

make suitable components for row-column designs.

Definition 3.3 A reinforced group divisible row-column (RGDRC) design is a
design having row and column components which are both reinforced group divis-
tble designs.
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The following example shows that such row-column designs exist.

Example 3.2 Suppose m = 2, n = 3 and R = C = 4 and identical row and
column RGDD components are used:

Block 1 01 10 11 21
Block 2 01 20 11 21
Block 3 01 10 11 21
Block 4 01 20 11 21,

which amalgamate to the RGDRC design

01 11 10 21
11 01 21 20
10 21 01 11
21 20 11 0l

Note that the above example has an equal number of rows and columns. The
following result shows that reinforced group divisible row-column designs exist

only when the numbers of rows and columns are equal.

Theorem 3.2 A necessary condition for the existence of a reinforced group di-

visible row-column design in an R X C array is that R = C.

Proof: The parameters of the row-column design are subject to the conditions
imposed by the group divisible construction of the component designs. Let the
row component design have R blocks of size C' and arise by reinforcing a group
divisible design with parameters (R,C — 1,7, A AF). Then from (3.3), (3.4),
(3.6) and (3.7),

2re(n—1) = R(C —1) (3.8)
re(C—2) = M 42(n—2)A\E (3.9)
A< 32—((5:—11)) (3.10)
A< (3.11)
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Similarly, the column component design is formed from a GD design with param-
eters (C, R — 1,7, A, \§) and hence

2re(n—1) = C(R-1) (3.12)

re(R—2) = MY +2(n—2)AY (3.13)
re(R—1)

A < 2D (3.14)

o< o (3.15)

Equating (3.8) and (3.12) gives 2r.(n—1) = R(C — 1) = C(R—1) and the result
follows.

A further necessary condition is identified in Theorem 3.3 for which the fol-
lowing two lemmas are needed. The first lemma investigates conditions on the

parameters A; and Az of the component designs.

Lemma 3.2 A necessary condition for a row-column design to be obtained from
two component reinforced group divisible designs with respective parameters (R, R—
Lre, \EARY and (R, R — 1,7, )9, )S), for the row and column component de-
signs, where AR #£ XS for at least one of i = R, C, is

DR X8| > 2(n — 2).

Proof: Using Theorem 3.2, equations (3.9) and (3.13) can be rewritten as
re(R—2) = A4 2(n — 2)AF

and

re(R—=2) = A 4+ 2(n — 2)A
respectively. Hence

MG = 2(n — 2)(A — M) (3.16)
Since n > 3 by Definition 3.2, from (3.16) and the fact that AR # \Y for at least
one of ¢ = R, C, it follows that both AR # AY and A} # A, Without loss of

generality let A > AC then, from (3.16), AY > M. Since X, (j = R,C) are
integers, by definition, AS — A% > 1. Hence A\F — \{ > 2(n —2).
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Lemma 3.3 For any two reinforced group divisible component designs in the
class D*(n,2, R, R), of Definition 2.2, with the property that \F # )¢ (i = 1,2),

R(R-1)(2n—-R-1)
2(n —1)2

IAF = AT < Mau(R) =

Proof: The first step is to establish a lower bound on M (5 = R, C). Using (3.9)
and Theorem 3.2, AF can be expressed in the form

\B _ re(R—2) — AR
2 2(n—-2)

and hence, by (3.10),

re(R—2) — AR < re(R — 1)
2n—2) ~ 2n-—-1)"

It follows, after some manipulation, that

re(R —n)

< AR,
n—1

Hence, using (3.11),
re(R —n)

< <p
n—1

A similar argument, using equations (3.13), (3.14) and (3.15) shows that
re(R —n)

<A <.
nn— 1

SN
Now, assuming again without loss of generality, that AF > X7,

M, (R) = maz(AF) —min()9)

_ re(R —n)

T n—1

_ r(2n—-R-1)

B n—1 )

But r. = R(R — 1)/{2(n — 1)} from (3.8) with R = C. Hence

R(R—1)(2n— R—-1)
2(n —1)2

M, (R) =
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Theorem 3.3 A necessary condition for the existence of a reinforced group di-
visible row-column design, with component parameters (R, R — 1,7, \} AR) and

(R, R —1,r,,AY,)S), is that A\ = )¢ (i =1,2).

Proof: Suppose that AR # XY for at least one of i = 1,2. Then, from (3.16),
M4 ¢ (3 = 1,2). From Lemmas 3.2 and 3.3, it follows that a necessary
condition for an RGDRC design to be obtained from two component designs

with different association parameters is
M, (R) > |A\F = X¢ > 2(n —2). (3.17)

To investigate whether this inequality can be satisfied, the maximum value of
M, (R) for fixed n is evaluated by setting the derivative of M,(R) with respect

to R equal to zero. This gives the equation
3R —4nR+ (2n—-1) =0

which has roots

R=

2n £ 4n? —6n +3
3 .
The root with the negative sign is infeasible since
4n? —6n +3 = (2n — 3/2)* + 3/4.
Hence,

V4n? —6n +3 > 2n — 3/2,

and on substituting for R,
2n —4n? — 6n+3 < 2n —(2n—-3/2) 1
3 3 S
Since R > 2, it follows that R = (2n + v4n? — 6n 4+ 3)/3 is the only feasible

solution. This value of R is easily shown to maximise M, (R) for fixed n by

evaluating its second derivative.

Evaluating M,,(R) at R = (2n 4+ v/4n? — 6n + 3)/3 gives

(8n® — 18n? + 9n + (4n? — 6n + 3)%/?)

mazgr {M.(R)} = 27(n — 1)?

Therefore

—46n° 4+ 198n? — 261n + 108 + (4n? — 6n + 3)>/?
27(n —1)?

mazg {M,(R)} —2(n—2) =
(3.18)



Chapter 3 44

which is dependent on n only. It is easily shown that —46n+198n%—261n+108 <
0 for n > 3 and that (4n? — 6n + 3)%2 > 0 for all n. From (3.18) and the fact
that v/4n? — 6n + 3 < 2n — 1 for n > 2, it follows that

—38n2 4+ 148n — 107
27(n — 1)

mazp {M,(R)} —2(n —-2) <
Therefore mazg {M,(R)} —2(n —2) < 0 for n > 3 and R > 3. Hence (3.17) can

never be satisfied and the theorem is proved by contradiction.

Corollary 3.2 A necessary condition for the existence of a reinforced group di-
vistble row-column design is that Ar = Ac.

Proof: Using Theorem 3.2, the information matrices for the RGD component

designs can be written in the form

[ RE=1 —rell —rel!
A=zl =rdy PlR=D+ML-XJ,  —( =)L - N,
—Telp _(/\{ - A%)]p - /\%JP [re(R—-1) + A%]Ip - /\;.']p

(3.19)
for 7 = R,C. Then the result follows directly from Theorem 3.3.

3.4 Properties of RGD row-column designs

A useful feature of row-column designs constructed from RGD components is that
the variances of the dual versus single treatment comparisons can be expressed
in terms of the parameters of the information matrix of the repeated component

design.

Theorem 3.4 The wvariance-covariance matriz of a reinforced group divisible

row-column design is HQrc H'o? where

HQRCH’ — ( :L‘IIP + y'JP (.'L'l - $2)Ip ) ,

(21— z2)I, 2(z1 —z2)I,

H is given in (1.12), z1 = arcs/(s182), T2 = —arce/(5152), y = —arcs/{s2(s2 +

2parcs)}, $1 = apca — Gree and S; = aRca + ARCs.
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Proof: The information matrix of an RGDD for a single blocking factor is of the
form (3.1) with

4= R—1, (3.20)

aj; = aj3 = —r./R, (3.21)

aje = ajs = [re(R—1) + A\2]/R, (3.22)
s = 57 = ajo = — Ay /R, (3.23)
aje = —(A — A2)/R. (3.24)

From Theorem 3.3, an RGDRC design has the same parameters for the row and
column components. From Corollary 3.1, it follows that the information matrix
for the row-column design will be of the same form as the information matrices
for the components but with corresponding entries agrcy = R~ 1, arce = —1./R,
apca = [re(R—2)+2X]/R, arcs = —(2RA\2 —72)/R? and arce = —2(A1 — A2)/R.
In order to find a generalised inverse of the row-column information matrix, Agrc

is expressed in the form

!
apci  @rcaly,
ARC = )
fLRczlzp F

where F' = [{(arca — arce)l2 + arceJ2} @ I, + arcsJ2 ® Jp). Then, from Searle
(1971, p2), a generalised inverse Qrc of Arc is F~! augmented by a first row and

first column with every entry zero. F~! is found by applying the following result
(XRQ@L+Y®J)'=X"10L-{(X+pY) 'YX '} ®J,

which holds for any square matrices X and Y for which all the inverses exist. In
this particular application X = (arcs— aree)l2+arce2 and Y = agesJa. Using
the result

1 b
L+0J) V=21 — et 3.25
((l t+ t) a i a(a+ tb)Jt’ ( )
the inverse of X can be written as
1
X_l = 12 — tilely .]2.
aRcs — ARCE (arcs ~ arce)(arcs + arcs)

Since (X 4 pY') = (arca — arcs)l2 + (parcs + aros)J2, a further application of
(3.25) gives

1
(X 4 py)t = I — (parcs + arcs)
ARC4 — @RC6 (arca — ance)(@rca + arcs + 2parcs)

Ja.
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Hence
- a 2a apcs + a
(X +pY) 'Y = RCs g _ ros(pares + arce) :
aGRrc4 — QRCe (aRC4 — aRCG)(aRC4 + apce + 2P0R05)
QRCs

2
aRrca + arcs + 2parcs

and

- - aRCs
X +pY)'Y X! = Ja.
( PY) (arca + arce + 2parcs)(aros + aros)

It follows that
Fl=[(z1—z) b+ 22h]Q@ L, +yJ2 @ Jp,
where 21 = arca/(s182), T2 = —arce/(s152), Y = —arcs/[s2(s2 + 2parcs)], s1 =
arcs — arce and Sy = agrca + arcs.
The generalised inverse can be written as
O O, 0,
Qre=| Op a1l +yJ, z2l,+yJ,
Op zI,+yJ, 11, +yJ,

Note that it can be verified that ArclrcArc = Agrc.

For an n X 2 experiment, the contrast matrix (1.12) is
H = -1, Opp I i
O, - I

il +yty (21— 22)];
(.’E] — .’L'Q)Ip 2(.’171 — IL‘Q)IP

Note that the variance-covariance matrices for the single blocking factor compo-

Hence

HQpeH' = ( (3.26)

nents are of the form (3.26) with the same expressions for 1, 2, ¥, s1 and s,

given in terms of the ax; for j =1,...,9and k = R, C.

The dual versus single contrast variances can now be expressed in terms of

the parameters of the component designs.

Theorem 3.5 A reinforced group divisible row-column design has

202

vRroa = var(fy — Tio) = Qf—"
17 e
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and
vrep = var(fi — To1)
_ 2a4 — T, 2as + r?/ R? N

g

(2f1 — 1) (2f2 — 1) (2f2 — re)(2f2 — Te + 2p[2as5 + r2/R?))

fort=1,...,p, where fi = ay — aq, f2 = as +ag and the a; (j = 1,...,9) are

the parameters of the row component design.

Proof: From Theorem 3.4,

2
2 2
. Vrea = 2(z1 — z2)0” = P
$1
and
AQRC4 ARCs
. 2 _ 2
vrep = (21 + y)o° = - o*.
8152 So(s2 + 2parcs)

From Corollary 3.1, the apc;’s can be written in terms of the ag;’s and ac;j’s
(7 = 1,...,9) and, from Corollary 3.2, ar; = ag; for j = 1,...,9. Let q;
(j = 1,...,9) denote the parameters of the component design then the result

follows after some algebraic manipulation.

This section concludes with a table listing the RGDRC designs. The compo-
nent designs were identified by examining the group divisible designs tabulated
by Clatworthy (1973), Freeman (1976) and John & Turner (1977) for suitable
candidates for amalgamation. In general, the tabulated row-column design is not
unique. It is the solution obtained by using the algorithm JE to amalgamate
two component designs, see Jones & Eccleston (1980). For the smaller designs,

amalgamation by hand is possible.

Some of the designs can be obtained by manipulating sets of mutually orthog-
onal Latin squares (MOLS), see the first entry of Table 3.2. This design has 3 x 2
treatments arranged in a 4 X 4 array and the group divisible part of the compo-
nent design is an unreduced balanced incomplete block design with { = 2n — 2
treatment labels in an R x (C — 1) array. This design can be transformed to a
Latin square by reinforcing each block with its previously missing A-alone or dual
treatment. The Latin square can then be rearranged to have ¢ distinct elements
on the diagonal, provided that a set of MOLS exists for that order. The RGDRC
design can be found by replacing each of the diagonal elements by the B-alone

treatment, 01. The third entry in Table 3.2 which has seven treatmentsin a 6 x 6
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array also has an unreduced balanced incomplete block design as its group divis-
ible part of the component design. Unfortunately, the row-column design cannot

be constructed using the above method since a set of MOLS does not exist for

order six.

The small number of designs in this family, due to the restrictions on com-
patible designs given in Section 3.3, has made it difficult to identify similarities

in the arrangements of the treatments in the row-column designs.

The figures in the column headed % Disc in Table 3.2 are the percentage
discrepancies for the row-column design, the row component and the column
component, each compared with an appropriate bound. The fourth figure repre-
sents the discrepancy between the listed row-column design and the most efficient

design, under the A-criterion, found by JE.

It can be seen that the designs for n = 4 in a 6 x 6 array and n = 8 in a
7 x 7 array perform well since they both have a discrepancy of less than 10%
with bound B of (2.12) and very small discrepancies with the total variance of
the contrast estimators of the most A-efficient design found by JE. The design
for n =3 in a 4 X 4 array performs well in comparison with the most A-eflicient
design found by JE but has a discrepancy of 14.7% with the bound. However,
it was remarked at the end of Chapter 2 that neither of the bounds By(H) and
Bpr perform particularly well for the case where both R and C are less than ¢. It
should be noted that this PBDS row-column design has a smaller total variance
for the estimators of the contrasts of interest than any other PBDS row-column
design found for parameters n = 3 and R = C = 4 and hence also appears in
Table 3.5 at the end of the chapter. The design for n = 4 in a 4 X 4 array
performs poorly compared with bound B of (2.12) and with the most A-efficient
result found by running JE. However, it is a considerable improvement on the

PBDS row-column design with S-type components which is listed in Table 3.10.

This section has shown that reinforced group divisible row-column designs can
be as efficient or more efficient than some other PBDS designs and are a useful,
but limited, source of designs. In the remaining sections of this chapter different

types of PBDS component designs are investigated.
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Table 3.2: Reinforced group divisible row-column designs for m =2

n | R | C| Row-column design % Disc
R-C Row Col JE
3141401201110 14.7 6.6 6.6 0.6
10 01 20 21 Most A-efficient design
11 21 01 20 found in the study
21 11 10 01 for this expt size
. 4147 41{01102030 65.0 243 24.3 31.1
10 01 31 21 More A-efficient
203101 11 than R-C design
30211101 of Table 3.10
61| 610110203021 11 7.8 5.1 5.1 3.0
1001 11 21 20 31
20 11 01 10 31 30 PBDS R-C design in
302131111001 Table 3.12 has smaller
21 31 1001 30 20 total variance
11 20 30 31 01 21
81 7141 7 1012040411021 11 7.9 2.8 2.8 0
20 21 30 50 51 01 31
40 31 41 01 60 61 30
41 51 01405070 71
10 50 61 51 11 60 01
2101 6071612070
1130317001 7110
81 8| 0110204030506070 | 26.2 12.2 12.2 17.2

10 01 41 21 51 30 71 60
20 41 01 10 61 71 31 50
40 21 10 01 70 61 51 31
3051617001 112041
50 30 71 61 11 01 40 21
60 71 31 51 20 40 01 11
70 60 50 31 41 21 11 01

49
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3.5 PBDS row-column designs using R- and S-
type block components

In this section, a special class of component designs is discussed. The class is
a subclass of PBDS designs for a single blocking factor, arranged in b blocks
each of size k. The section briefly outlines the subclass of C-designs and shows
the structure of three distinct types. In Section 3.6, a method of obtaining row-

column designs by amalgamating pairs of tabulated C-designs is described.

C-designs are defined and obtained by Gerami, Lewis, Majumdar & Notz
(1993). The approach followed is to establish a design dependent bound on the
trace of the inverse of the information matrix of the contrasts of interest, M1,
using permutation matrices in a similar way to that of Kiefer (1975). The lower

bound for any connected design d is given by
tr(M7Y) > tr(M7Y), (3.27)

where M, is the average of My over all possible permutations in Il = {x : 7 =
L, ®@p;} and p;, for i =1,...,(n—1)!, is the full set of permutation matrices each

having order n — 1.

An upper bound on tr(M; ') is developed which can be expressed in terms of

combinatorial features of the design using the following notation:

Let npj, na; and np;; denote the replications within the jth block (j =
1,...,0) of the treatment combinations 01, 70 and ¢1 belonging to treatment sets
B={01}, A={i0;i=1,...,p} and D = {¢l; ¢ = 1,...,p} where p=n — 1.

The following quantities can then be defined:
P P
Tp; = ngj, Taj =y _naij, Tpj = )_npij,
i=1 t=1

which denote the total number of units assigned to treatment combinations be-

longing to sets B, A and D respectively in block 7, and
b b b
Tg => Tpjy Ta=> Taj, Tp =>_ Tp;
1=1 1=1 1=1

denote the total number of units assigned to treatment combinations in sets B,
A and D, as stated in Section 2.4.
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The upper bound can now be expressed as

n—-1) (-1 2(n-1)
T + Ta + Tp

tr(M7) > ( (3.28)

The authors define a class of desirable designs referred to as the U-class. A
design is said to belong to the U-class if My = M, and

nyi; = [Ty;/p] or [Ty;/pl + 1, for Y = A, D

and

Ty; = [Ty /bl or [Ty /bl + 1, for Y = A, B.

An improved upper bound on tr(M]!) is obtained for designs in the U-class
which can be used to evaluate the performance of any design. It is desirable to
find designs which achieve this upper bound. An algorithm has been developed to
find the values of Ty, Ty; and ny;; (Y = A, B, D) which minimise ¢tr(M;') given
in (3.28) subject to various combinatorial constraints. Let this set of parameters
be denoted by C* = {15, T4, Tp, T5;, Th;s Th;, " his» Wais» "his }-

Definition 3.4 A C-design is a design which belongs to the U-class and has

parameters given by C*.

Once the set of parameters C* has been obtained, the next stage is to construct
the corresponding C-design. The design will have one of the following layouts,

where u; denotes the integer part of T;/b for : = B, A, D.
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R-type: If u; = T;/b for « = B, A, D are all integer then the design is said to be
R-type and the layout of the design is shown in Figure 3.1.

Blocks —

1 2 3 . . . . . . . . . v
Units ;
. .

uB ______________________________________________

1

2

: A

uA _____________________________________________

1

2

D

uD

Figure 3.1: An R-type design; where u; = T;/b is integer for i = A, B, D.

(R,S)-type: here 3 cases need to be considered.

1. R-type in terms of the B-alone treatment and S-type for the other two
treatment sets. This will occur when Tg/b is integer and T4/b and

Tp/b are not integers. See Figure 3.2 for the layout of the design.

Blocks —
1 2 3 . . . . . . s . . . . b
Units | ;
2 5
. B
L o
1 i
2 i
; A ;
u/:+l _____________________________ |— ________________ K
1
2
D
u,

Figure 3.2: An (R,S)-type design, when T'4/b is not an integer and s = Ty — buy.
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2. R-type in terms of the A-alone treatments and S-type in terms of the
other two sets. This is the case when T4/b is integer and Tg/b and

Tp/b are not integers. Figure 3.3 shows the layout of the design.

Blocks —=
1 2 3 . . . . . .S . . . . b
Units
o A
lA____.___________._____________._ __________________
2
. é B :
uB’+1 _____________________________ I— ________________ %
1
2
: D
[

Figure 3.3: An (R,S)-type design, when T5/0b is not an integer and s = T — bup.

3. R-type in terms of the dual treatments and S-type in terms of the
other two sets. This is the case when Tp/b is an integer and T4 /b and

Tg/b are not integers. The layout of the design is shown in Figure 3.4.

Blocks —=
1 2 3 . . . . . s . . . . b
Units
2
b D
uD --------------------------------------------
1
2
é B
“B‘“ _____________________________ [T Uy
1
2
: A
SUA

Figure 3.4: An (R,S)-type design, when T5/b is not an integer and s = Tp — bug.
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S-type: If none of the quantities T4/b, Tg/b and Tp/b is integer then the design
is said to be S-type and the layout of the design is given in Figure 3.5.

Blocks —
1 2 3 s, s, b
Units | I
2 M
| B
3 D : :
1 L _____________ ________________ uB+1
2 :
: A §
u;+] _____________________________ r ________________ b
1
2
: D
UD
Figure 3.5: An S-type design, when s; < s3, 1 = b — Tg + bup and s; =

Ta+b—buy — s7.

In the following section, pairs of C-designs found by the method outlined

above are amalgamated to obtain efficient PBDS row-column designs.

3.6 Construction of row-column designs

This section begins by stating a simple necessary condition for the amalgamation
of two designs for a single blocking factor. It then describes how two component

C-designs, see Section 3.5, are selected for amalgamation.

Lemma 3.4 A necessary condition for a row-column design having t treatments,
R rows and C columns to be constructed by amalgamating two block designs for
t treatments, one with R blocks of size C' and the other with C blocks of size R is

that the two block designs possess a common vector of treatment replications.

Proof: In order to construct a row-column design by the amalgamation of
two component designs, it is necessary to rearrange the treatments within blocks

for one of the designs in such a way that the remaining block design is obtained
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by taking blocks in the other direction. Since none of the treatments is removed
or replaced, it is clear that two compatible block designs must have the same

number of experimental units and equal treatment replication vectors.

The following method was used to obtain the row-column designs which are
listed in the table at the end of this chapter. The initial step was to generate
lists of efficient PBDS block designs for ¢ treatments, arranged in b blocks each
of size k, by the method of the search algorithm developed by Gerami, Lewis,
Majumdar & Notz (1993) which is described in the previous section. A Fortran
coding of the algorithm, written by Gerami (1991), which also checks for the
existence of a PBDS design with the values of T, : = A, B, D, was used. Since
it was considered desirable to look at a range of efficient PBDS designs and not
just the best that could be found for each set of parameter values, the program
was adapted to enable the generation of a maximum of twenty block designs in
ascending order of the value of tr(C;Q4C{). The list of designs for ¢ treatments
in R blocks of size C' was then compared with the list of designs for C' blocks of
size R and amalgamation was attempted for designs with the same values of T}
(: = A, B, D) using the algorithm of Jones & Eccleston (1980).

It was found, by considering examples, that component designs which satisfy
the condition of Lemma 3.4 usually could be combined. However, the follow-
ing example demonstrates that the condition of Lemma 3.4 is not sufficient for

amalgamation of components.

Example 3.3 Form =2, n =4, and R = C = 3, let both the row and column

components be the following design:

Block'1 01 10 11
Block 2 01 20 21
Block 3 01 30 31.

Then Lemma 3.4 is satisfied with replication vector ' = ( 3 15 14 ) .

The repeated component design is connected and an examination of the in-
formation matrix for the row-column design, Agc, reveals that the row-column
design would be connected if it were possible to construct it. However, it is im-
possible to rewrite the above block design in a form which has both a row block
and a column block containing the treatments 0 and 11, for 1 = 1,2,3, since

these treatments appear only once in the design.
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There are some gaps in the row-column catalogue of Section 3.7 since it is
not combinatorially possible to find compatible PBDS component designs for the
entire range of values for n, b and k. Other gaps are due to the fact that some
of the row-column designs with small numbers of experimental units are discon-
nected, although both the row and column component designs are connected. An
examination of the elements of the row-column information matrix, Agrc, showed

that these designs satisfy the conditions for disconnectedness given in Lemma 3.1.

Example 3.4 Form =2, n=3, R=2 and C = 4, let the row component be

Block 1 01 10 11 21
Block 2 01 20 11 21

and the column component be

Block 1 01 11
Block 2 01 21
Block 3 10 11
Block | 20 21.

The row-column design obtained by amalgamation of these components is

11 01 10 21
01 21 11 20.

This design has parameters apca = 0.25, apcs = 0.123, arcs = 0.5, arer =
arce = 0 and apcs = 1, which satisfy the condition for disconectedness, a%ys =

ARrc4QRres, of Lemma 8.1,

A further complication of small R and C is illustrated by the design with
n =3 m=2and R=C =3 in Table 3.4. The column component design is
fairly efficient since the total variance of the contrasts of interest has a discrepancy
of 13.3% when compared with the appropriate bound of Section 2.4. However,
Gerami & Lewis (1992) state that these bounds are loose for block sizes k = 2 and
k = 3. This conclusion is reinforced by using the Jones & Eccleston algorithm to
find the most A-efficient block design for the above parameter values, the column
component design has a discrepancy of 0.1% with the result of the algorithm.

This row-column design is unusual, it is arranged in a square array but does
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not have identical row and column component designs. It was combinatorially
impossible to combine two copies of the A-best PBDS block design for these
parameter values. However, the A-best block design was used as the column
component design. In order to leave the treatment group totals of the design, Tg,
T4 and Tp, unchanged, it was necessary to consider a design with less efficient
blocks for the row component. In this case, efficiency was sacrificed in order to
obtain component designs compatible for amalgamation, although it should be

noted that JE was unable to improve upon this row-column design.

The study revealed that amalgamating the PBDS block design, with the small-
est trace of the variance-covariance matrix, for ¢ treatments in an R x C array
with the PBDS block design with the smallest trace for ¢ treatmentsin a C x R
array does not necessarily yield the most A-efficient row-column design. This is

demonstrated in the following example.

Example 3.5 Form = 2, n = 3 and R = C = 6, the most A-effictent PBDS

design for a single blocking factor consists of two copies of the blocks:

Block 1 01 01 10 20 11 21
Block 2 01 10 20 11 11 21
Block 3 01 10 20 11 21 21.

This design has tr(HQgH') = 1.1123 and, when used for both the row and column
component designs, generates a row-column design with tr(HQpcH') = 1.1439.
As an alternative, consider the block design composed of three copies of the fol-

lowing two blocks

Block 1 01 10 20 11 11 21
Block 2 01 10 20 11 21 21

This design has tr(HQqH') = 1.1241 which is larger than the wvalue for the
previous block design. However, taking this design as both the row and col-

umn component design, a more efficient row-column design is obtained, having
tT'(HQR(;'H’) = 1.1389,

A further example is the most A-efficient PBDS row-column design for five
treatments in a 5 X 5 array. The most A-efficient PBDS design for a single
blocking factor has T4 = 8§, Tg = 5, Tp = 12 and tr(HQ H') = 1.5997. Taking
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this design as both the row and column component design yields a row-column
design with tr(HQpcH') = 1.6370. However, the Latin square of order five has
tr(HQRrcH') = 1.6 so, by using the less efficient randomised block design for the

row and column component designs, a more efficient row-column design has been
found.

The row-column designs found by amalgamating the two most A-efficient
component designs, which have a slightly larger total variance for the estimators
of the contrasts of interest than the alternative designs given in Tables 3.3-3.15,

are presented in Table 3.16.

In order to discover how to select the component designs to reduce the vari-
ance %)f the estimators of the contrasts of interest in the row-column design, an
investigation into the relationship between the row-column design and the row
and column component designs was conducted. Such relationships are straightfor-
ward to establish if the contrasts of interest correspond to a set of basic contrasts
for the design, see Section 1.3 for a discussion and equation (1.9) for the rela-
tionship. Unfortunately, this is not true for the dual versus single treatments
problem. An outline of the approach followed is given below. Full details of the
algebra are not presented, since it was not possible to see how the parameters
of the information matrices for the component designs should be manipulated in

order to reduce the variances.

Firstly, a general set of orthonormalised eigenvectors, ¢ (¢ = 1,...,1), of the
replications-adjusted information matrix, A5 = #7%/24,;r7%/2 was found using
the symbolic algebra package MAPLE (1991). This set of eigenvectors was ex-
pressed in terms of the parameters a; (: = 1,...,9) of A} but existence of the set
was subject to the validity of various parameter constraints. Using an approach
given by Shah & Sinha (1989, p 78), the variances of the contrasts of interest
were expressed in terms of the elements of ¢ by writing the basic contrasts and
the contrasts of interest in terms of linear combinations of ¢ for 7 = 1,...,1.
Corresponding expressions for the variances, in terms of the parameters a;, were
obtained by substitution. However, the formulae consisted of very complicated
expressions for the variances of the estimators of the contrasts of interest which
did not indicate how the values of r; ( = B, A, D) and a; should be altered to

achieve smaller variances.

Since the above approach was unsuccessful, a different method of linking the

parameters of the component designs to the variances of the row-column design
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was adopted. Using an analogous approach to that employed in Section 3.4 to
find the variances of the contrasts of interest for an RGDRC design, the vari-
ances of the contrasts for any connected PBDS block or row-column design were
expressed in terms of the parameters of the information matrix of that design.
This approach improved upon the previous method since the expressions for the
variances were valid for all PBDS designs and involved no parameter restric-
tions. The variances of the row-column design were then expressed in terms of
the parameters of the information matrices of the row and column component
designs using Corollary 3.1. Since the expressions for the contrast variances of
the row-column design in terms of agre; (1 = 4,...,9) were very complicated, the

substitution of ag; and a¢; from Corollary 3.1 only served to confuse the issue
further.

The above discussion indicates that it is very difficult to establish a relation-
ship between the variances of the row-column design and the variances of the
two component designs for the dual versus single treatments problem. It has not
been possible to formulate an explicit relationship by the methods described in

this chapter. This is an area for future research.

3.7 Catalogue of PBDS row-column designs

This chapter concludes with a catalogue of designs obtained by amalgamating
PBDS block designs. The design found is a solution given by JE and 1s not
necessarily unique. Each entry in the catalogue is the most A-efficient PBDS
row-column design that could be found for the particular values of n, R and C,

unless otherwise indicated in the table.

An examination of the figures in the four columns headed % Disc confirms the
conclusions of Section 2.6: when R or C' is less than the number of treatments ¢,
discrepancies are observed between the variance of the contrast estimators for the
row-column design and the bound which are in excess of 10%. However, it can be
seen from the column subheaded JE that, for n = 3, the design search algorithm
rarely improves upon the listed design. This reinforces the opinion that bound
B of (2.12) must be loose under these conditions. The bound is much tighter for

large R and C.

The results for n = 4 and n = 5 are not quite so impressive. Again, large
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row-column discrepancies can be seen for small R and C but JE'is able to improve
upon the listed design in twenty-one out of a total of twenty-eight cases, although
the improvement is less than 5% in twelve of these cases. The designs for n =4
and R = 4 perform poorly when compared to both the bound and the results of
JE,‘but it can be seen that the column component performs substantially worse
than the row component in all these cases. A similar, but less severe, situation is
observed for the row-column designs with n = 3, R = 3. A possible explanation is

that C-designs for ¢ = 2n—1 treatments in b blocks of size n tend to be inefficient.

The designs for n = 5 also perform quite poorly when R or C' <t —1. This is
not due to the poor performance of the bounds but to poor performance of the
component designs. In order to find PBDS block designs which are compatible
for amalgamation, it is necessary to sacrifice some efficiency. The performance of

designs for this value of n is better for larger values of R and C.

Note that designs in the catalogue marked with § have the property that
each treatment combination occurs once within every row block. Designs having

this property are investigated further in Chapter 4 and are called row-orthogonal

designs.

The catalogue establishes that PBDS row-column designs generated by amal-

gamating a pair of compatible component C-designs can be highly efficient.
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Catalogue of PBDS row-column designs

For 2 < R,C £9,3 <n <5 and m = 2, the following tables list the
connected row-column designs obtained by amalgamating two compatible PBDS
block designs. The figures in the column headed % Disc are the percentage
discrepancies for estimating the dual versus single contrasts in the row-column
design, the row component and the column component, each compared with an
appropriate bound (see Chapter 2). The fourth figure represents the percentage
discrepancy between the row-column design and the best design found by JE.

Throughout these tables, { denotes a row-orthogonal design.

S

Table 3.3: PBDS row-column designs forn =3, R=2and 5<C <9

n | R{ C | Row-column design % Disc
R-C Row Col JE

31215 |0121112010 13.3 0 133 0
11 01 10 21 20 T
216 010111211020 13.3 5.0 13.3 0

i1 2110 2001 01

21 7101011121102011 10.2 1.2 8.6 0
112110200101 21

218 (10101112110201121 13.3 0 133 2.7
11210101 11211020

2191010110112121 102011 6.0 0.6 4.3 0
112111 1020 20 01 01 21
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Table 3.4: PBDS row-column designs forn =3, R=3and3<C <9

n | R | C | Row-column design % Disc
R-C Row Col JE

31313 |011121 51.1 41.7 133 0
21 10 01
11 01 20
R 314101211011 154 57 11.2 0.1
11 01 21 20
1020 11 21
3150120111021 8.2 0 8.2 0
1001 21 11 20
11 21 01 20 10 i
316{01201021 1111 8.1 2.7 4.7 0

1001 11 20 21 21
112101 01 1020

3| 7(01011020111121 7.1 1.7 5.1 0
10 20 01 01 21 21 11
1121 1121011020

3810101102021 211111 6.0 1.0 4.0 0.1
10 11 11 01 01 20 10 21
11 10 01 21 20 01 21 20

319|010110202021 111121 5.3 1.0 4.1 0
10 10 11 01 01 20 21 21 11
11 11 01 21 21 01 10 20 01
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Table 3.5: PBDS row-column designs forn =3, R=4and 4 < (C <9

n | R | C | Row-column design % Disc
R-C Row Col IJE

341401111021 147 6.6 6.6 0.6
112101 20
10 20 11 01 This is an
21 01 20 10 RGDRC design
: 41501201011 21 81 24 54 0

10 01 1121 20
1111210110
21 21 01 20 11

416 |012011111021 8.9 26 6.1 0.5
10 01 21 21 11 20
11210101 2010
21 11 10 20 01 01

4710101102011 2121 7.9 2.1 59 0
1011 01 01 21 20 11
111021 21011120
2121 1111200110

41801011020 11211121 7.2 1.0 59 0.1
10 11 01 21 21 11 01 20
11 1021 11 01 01 20 10
21211101 20201001

4190101102011 11102121 6.5 0.6
10 1001 01 21 21 11 20 11
11 112121010120 1020
212111 11202001 01 10

[
]
o
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Table 3.6:

PBDS row-column designs forn =3, R=5and 5<C <9

n

R

C

Row-column design

R-C

% Disc
Row Col

JE

01 1020 11 21
10 01 11 21 20
20 11 01 10 21
11211001 11
21 20 21 11 ol

4.5

2.1 21

2.3

An improved design

is the Latin square,

see Table 4.2

01102011 1121
10 01 11 20 21 21
20 11 01 21 10 11
11 21 21 10 01 20
21201001 1101

4.3

24 1.9

[

01011020111121
10 20 01 01 21 11 21
2010111001 2111
11 2120 21 10 01 20
21 112111 20 1001

3.9

22 1.9

0.1

010110102011 11 21
10100101 11 20 21 11
202011 21 01 21 1001
11 21 2020 21 1001 01
21 112111100101 20

3.3

1.9 24

010110102011112121
10 20 01 01 10 21 21 11 11
11 112021 21 01011020
11212120 11 10 20 01 01
2121 11110120102010

2.7

1.3 1.9

64
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Table 3.7: PBDS row-column designs forn =3, R=6and 6 <C <9

n

R

C

Row-column design

R-C

% Disc
Row Col JE

1101102011 21
011020112111
1020 11 21 21 01
112101211020
211121012010
2011211001 11

5.1

3.8

3.8

0101102011 1121
102001 11 21 21 01
201011210101 11
1121 20 21 01 01 10
11112101 10 10 20
2121 111020 2001

4.4

1.6

2.7

0101102011 112121
0101111110202121
1020 01 01 21 21 11 11
20 10 21 21 11 11 01 01
111101210110 1020
21211101 20 01 20 10

3.8

1.2

2.9

0101101020 11112121
10200101 1121212011
20 10 11 21 01 21 01 11 10
11 11 20 21 21 01 01 10 20
1121 21201110100101
2121 111110 20 20 01 01

3.3

0.6

2.7

65
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Table 3.8: PBDS row-column designs forn =3, R=Tand 7<(C <9

n

R

C

Row-column design

% Disc

R-C Row

Col

JE

0101 1020111121
01 01 2010 11 21 21
10 20 01 O 21 11 11
20 10 11 21 21 01 01
1111 21 21 01 10 20
112101 11 10 10 20
2121 1101 20 20 10

3.9 1.9

1.9

0101102011 1121
010120101121 11
10 20 01 11 21 21 01
20 10 11 21 01 01 11

21
21
11
10

1111 012101101020
1121 2101 10 01 20 20
2121 1101 20 20 10 01

2.9

1.2

1.8

010110102011112121
010120 111010211121
10100101 1121211120
20 20 01 01 21 21 11 10 11
111121210101 102020
11 21 11 21 01 20 20 01 10
21 211120110101 1001

2.6

0.8

1.8

66
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Table 3.9: PBDS row-column designs forn =3 and 8 < R,C <9

n

R

C

Row-column design

% Disc

R-C Row Col IJE

010110102011 1121
01 012020 1011 21 21
10200101 11 21 21 11
10200101 21211111
20 11 112121010110
11102121 11010120
1121 211101102001
21 21 1111 01 20 10 01

2.1

14 1.4 0

0101 1010 20 11 11 21 21
010110201011112121
10 10 01 01 11 21 21 20 11
10200101 1121211011
20201121 2101011110
11112021 2101011020
112121200110201101
2121111101 201001 20

2.0

06 1.3 0

010110102011 112121
0101101020 11211121
10 10 01 01 11 20 21 21 11
10100101 21 21 20 11 11
20201111 2121011001
111121210101 102020
11 1121210101 202010
212120201110110101
21211111102001010!1

0.7 07 02

67
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Table 3.10: PBDS row-column designsforn =4, R=2,C =9, R=3,5<C<9
and R=C =14

n

R

Row-column design

% Disc
R-C Row Col JE

010101 112131102030
1121 31 1020 30 01 01 01

17.4 11.1 173 1.3

10 21 01 11 20
110130 3110
0120 31 21 30

18.5 2.3 182 0

012031101121
10 01 30 21 31 11
112101 31 20 30

15.2 2.0 13.2 6.4

012001 1021 31 11
1001 31 1101 30 21
1121 30 01 20 01 31

01 01 30 10 21 31 11 20
1020 31 11 01 01 21 30
11 21 01 01 20 30 31 10

11.3 2.4 11.3 2.5

01 0130112031101t 21
102001 01 2130 21 31 11
11 21 31 10 01 01 31 20 30

8.4 1.0 71 3.0

01 11 31 21
11 21 10 20
311011 30
21 20 30 31

84.7 43.6 436 454

RGDRC design is better,
see Table 3.2
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Table 3.11: PBDS row-column designs forn =4, R =4, C =6,8,9 and K =5,

5<C<6

Row-column design

R-C

% Disc
Row Col

JE

011111103121
210131211120
31210111 30 31
11 312120 10 30

33.0

127 233

20.2

010111112121 3131
11 11 01 21 31 20 10 21
21313101 11101130
3121213101113020

44.3

204 353

31.8

0111 111020 30 31 21 21
11 01 21 20 10 11 30 31 31
21 31 01 11 21 31 10 20 30
312131211110113020

32.3

16.8 29.6

22.0

n

01102011 21
10 01 30 31 11
20 30 01 21 31
11 312101 01
21 11 31 01 01

23.6

127 12.7

13.1

01 1020 11 21 31
10 01 30 21 31 11
20 30 01 31 1121
11 31 21 10 30 20
21 11 31 20 10 30

21.8

129 17.2

12.8
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Table 3.12: PBDS row-column designs for n = 4, R =5, C = 7 and R = 6,

6<C<9

R

C

Row-column design

% Disc
Row Col

JE

01

10 20 11 31 30 21

10 01 30 20 11 21 31

20
11
21

1121 10 01 31 01
303121100101
310101 3020 11

5.2

1.9 4.1

0.6

01
10
20
11
21
31

10 20 11 21 31
013021 3111
3001311121
21 3101 10 20
3111100130
11 21 20 30 01

4.7

2.2 2.2

01
10
20
11
21
31

10 20 30 11 31 21
013020211131
11 21 31 01 10 30
30 31 21 10 01 20
310111 203010
21 11 10 30 20 01

6.7

3.8 6.7

2.7

01

11

1020 30 11 11 21 31
10 01 30 20 21 21 31 11
20 30 01 10 31 31 11 21
1121 3101 10 20 30
21 2131111001 30 20
31 311121203001 10

7.5

4.9

@2}
[op}

3.1

(=]

01 012010301111 2131
10 30 01 01 11 20 21 31 21
1030 11 21 31 31 0101
11 11 21 20 31 21 01 10 30
21 311131013010 1120
312131211001203011

20

4.0

19 24
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Table 3.13: PBDS row-column designs for n

R=C=38

=4, R=7,7T<C <9 and

Row-column design

% Disc

R-C Row

Col JE

01 10 20 30
10 01 30 11
20 30 01 21
30 20 10 31
11 21 3101
21 311110
31 112120

112131
20 31 21
311011
211101
10 01 20
01 01 30
013001

2.7 1.5

1.5 0

010110 20
10 20 01 01
20 10 30 11
30 1120 21
11 30 11 31
21 213110
31312130

30 11 21 31
11213130
01310121
31011001
211001 20
2001 30 11
102011 01

3.3 2.3

1.8 0

010101 10302011 2131
0101 201! 103021 3111
10 30 01 01 11 21 31 20 21
20 10 30 21 31 3101 1101
11 1121 310101103020
21213101011120 1030
3131 11202101300110

3.9 2.5

27 0.8

01011020 30 11 21 31
01 012010113021 31
10 20 01 01 21 11 31 30
20 1001 01 31 21 30 11
30 11 21 31 0101 10 20
1130112101312010
21 2131301020 11 01
31313011 201001 21

3.8 2.4

24 03

71
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Table 3.14: PBDS row-column designs forn =4,8 < R<9,C =9 and n = 5,
R=C=6,R=7,C=8

n

R

C

Row-column design

R-C

% Disc

Row

Col

JE

01 01 01 10 20 30
01 0101201011
10 203001 01 21
20 10 11 01 21 31
30 11 21 31 31 01
11 30 31 21 01 01
21 311030 11 20
312120113010

11 21 31
30 31 21
311111
21 01 30
01 10 20
10 20 10
20 01 01
01 3001

o
[+

5.5

4.2

1.9

01 01 10 20 30 11
010120101130
10 20 01 01 21 31
20 10 01 01 21 31
30 11 21 21 0101
11 30 31 31 01 0!
112130 11 31 10
21 2131111020
31 3111 30 20 21

11 21 31
21 21 31
30 31 11
11 11 30
3110 20
10 20 21
20 01 01
01 30 01
010110

1.5

01 10 11 20 21 01
10 11 01 31 01 30
11 01 10 01 41 40
20 30 01 21 01 31
21 01 40 01 20 41
01 3141304001

24.6

17.8

17.8

15.8

01 10 30 20 11 21

31 41

10 01 40 21 20 11 41 31

30 40 01 31 10 41
20 11 31 01 41 30
i1 20 10 41 21 31
2141 11 30 31 40
31214140 30 10

1121
21 40
40 30
10 20
20 11

23.8

18.2

20.5

19.2
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Table 3.15: PBDS row-column designs forn =5,8 < R, C <9

n

R

C

Row-column design

R-C

% Disc
Row Col

JE

01 10 30 20 11 21 31 41
10 01 40 11 20 31 41 21
3040 01 21 1041 11 31
20 11 21 31 41 01 30 40
1120 3141 011021 30
21411001 31204011
312141403011 1001
41 31 11 30 21 40 01 20

3.8

2.7 2.7

o

01 10 30 20 40 11 21 31 41
10 01 40 30 20 21 11 41 31
20 4001 11 10 31 41 30 21
30 20 21 31 4101 10 11 40
11211041 312001 40 30
21 314101 11 3040 10 20
3141114021 10 30 20 01
41 11 31 21 30 40 20 01 10

59 T.

o

4.1

01 01 10 20 30 11 21 31 41
010140 11 10 20 31 41 21
10 40 01 0! 11 30 41 21 31
20 11 01 21 31 41 01 30 40
30 10 11 31 41 21 20 40 01
11 20 30 41 21 31 40 01 10
21 31 41 01 2040 10 11 30
314121304001 111020
41 21 314001 10 30 20 11

1.8 1.8

0.1

7'3
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Table 3.16: Table of alternative PBDS row-column designs obtained by amal-
gamating the two most A-efficient component designs, the most A-efficient row-

column designs are given in the tables indicated below

n | R | C | Row-column design % Disc
R-C Row Col JE

316160101 10201121
011020111121
102001212111
201121010110 See Table 3.7
111121011020
2121 11102001

2l
(o}

27 27 04

8§ 8|010611010620111121 2.2 1.2 1.2 0.1
0101102011 2021 21
10100101 11112120
1020 01 01 21 21 20 11
2011 112101 2101 10 See Table 3.9
1120 11 212101 1001
1121212001 1001 11
2121 201110011101

%21
o
o

0101 1020 30 11 21 31 4.0 22 22 02
01014021 102011 41
10 40 01 01 11 31 41 30
20 21 01 01 31 41 30 40
30 10 11 31 41 21 01 20 See Table 3.15
1120 31 41 01 1040 21
311141 30 21 40 10 01
21 41 30 40 20 01 31 11
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Row-orthogonal PBDS designs

4.1 Introduction

The purpose of this chapter is to consider the class of row-column designs which
are obtained by amalgamating a randomised block design with an appropriate
PBDS design. This class of designs is useful because, since treatments are or-
thogonal to blocks in one direction with respect to the model (1.1), the estimates
of the treatment parameters are the same as those yielded by the model from
which the particular block effects have been deleted. An example of this is the
clinical trial where it is often useful to have treatments orthogonal to periods
so that treatments appear exactly once in each period, giving estimates of the

treatment parameters which do not involve adjustment for period effects.

In this chapter, an investigation is made of the groups of candidate PBDS
component designs discussed in Chapter 3 and those designs which are compat-
ible with a randomised block design are identified. A necessary and sufficient
condition is given for a PBDS design to amalgamate with a randomised block
design. Tables are presented of PBDS row-column designs formed in this way
which have total variance for the dual versus single contrasts within 17% of the
lower bound of (2.12).

4.2 Existence of row-orthogonal PBDS designs

Definition 4.1 A row-orthogonal design under model (1.1) has a randomised
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block design as the row component and any block design as the column component.

Definition 4.2 A row-orthogonal PBDS design under model (1.1) has a ran-
domised block design for the row component and a PBDS block design as the
column component.

To find component PBDS designs which amalgamate with randomised block
designs, only equi-replicate designs need to be considered, since the treatment
replications must be identical in the two components from Lemma 3.4. Therefore,
throughout this chapter, equi-replicate designs will be considered in which each
treatment is replicated 7. times, that is r = 7.1,. In order to establish conditions
on the parameters for which a row-orthogonal PBDS design exists the following

lemma is applied.

Lemma 4.1 (Smith & Hartley, 1948) Given any set of bk elements made up
of b varieties of objects each repeated k times, suppose that the set is arbitrarily
arranged in a two-way classification of k rows and b columns. Then, it is always
possible to rearrange the elements in each column so that each row will contain

one and only one element of each variety.

Theorem 4.1 Necessary and sufficient conditions for the existence of a row-
orthogonal PBDS design for t treatments, each replicated r. times, and arranged

in an R x C array are

(i) the PBDS design has C =t blocks of size R =r.

(it) the randomised block design has t treatments and R blocks of size C.

Proof: From the properties of a randomised block design, each treatment
must occur exactly once in each block, hence C =t and r. = R. It follows from
Lemma 4.1 with b = C and k£ = R that it will always be possible to construct a
row-orthogonal design by rearranging the elements within column blocks so that

each treatment appears exactly once in each row.

Remark: This argument is valid for all possible block sizes in the column

component; the blocks in the row component are all of size ¢ by definition.

The following example illustrates how these designs compare with row-column

designs which have two PBDS component designs.
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Example 4.1 Form =2, n =3, R =6 and C = 5, the row-orthogonal design
listed in Table 4.2 is obtained with tr(HQpc H') = 1.3714. The PBDS row-column
design for five treatments in a 5 X 6 array, given in Table 3.6, which does not
possess row-orthogonality has tr(HQgrcH') = 1.3610. The discrepancy between
the ‘total variances of these two designs is 0.8% and they have discrepancies of
5.1% and 4.3% respectively with the bound of (2.12) which has the value B =
1.3047 in this case. The additional constraint of row-orthogonality has resulted in
a very small loss of precision, demonstrating that it is possible to have efficient
row-orthogonal PBDS designs.

In order to simplify the search for row-orthogonal PBDS designs, the impli-
cations of Theorem 4.1 for each of the designs defined in Chapter 3, Sections 3.3
and 3.5 are now investigated to establish if they are suitable for amalgamating

with randomised block designs.

Case I : RGDD component

The following result states the condition for the existence of a row-orthogonal

PBDS design with an RGDD column component.

Theorem 4.2 Any row-orthogonal reinforced group divisible design is a Latin

square.

Proof: From the properties of a randomised block design it is known that
re = R and C =1t = 2n — 1. On substituting for r. and 2(n — 1) in (3.12), the
relationship R(C — 1) = C(R — 1) is obtained and this is satisfied when R = C.
It follows that the conditions for the existence of group divisible designs (3.13),
(3.14) and (3.15) can be rewritten as

R(R—-2) = XN +(R-3)7 (4.1)
AN < R (4.2)
X\ < R (4.3)

The next step is to find lower limits on the X; (z = 1,2). Since (4.1) can be
expressed as A{ = R(R — 2) — (R — 3)AY, it follows from (4.3) that A must
satisfy the constraint

R(R—2)—(R—-3)\Y <R
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If R # 3, this expression can be rearranged to give AS > R which, when combined
with (4.2), requires AS to be equal to R. Similarly, (4.1) can be expressed as
A = [R(R —2) — X{]/(R — 3) and, using (4.2), A{ is required to satisfy

R(R—2) = )X¢
< R.
R-3 S R

It follows, using (4.3), that AY = R. Hence the design parameters R, C, t, ,
A1 and A; are required to be equal for R > 3. To satisfy this condition, each
treatment must occur with each of the other t — 1 treatments equally frequently

in every block, that is the component design must be a randomised block design.

If R = 3, a degenerate reinforced group divisible design is obtained, having
the treatments 01, 10 and 11 occurring in each block, which is a randomised
block'design. The second associates are no longer defined in this case. Hence,
the value of A§ cannot be determined. It follows that a reinforced group divisible

row-orthogonal design must be a Latin Square.

The following example shows that row-orthogonal PBDS designs with an

RGDD column component can be efficient.

Example 4.2 Form = 2, n = 4 and R = C = 7, the row-orthogonal PBDS
design with an RGDD column component given in Table 4.3 has tr(HQgrcH') =

1.7143. The discrepancy between the total variance of the design and the bound
B of (2.12) is 3.9%.

Corollary 4.1 A row-orthogonal reinforced group divisible design has vpea =

vRreB, where vroa = var(Ti — 7o) and vrep = var(fin — Tm) fori=1,...,p.
Proof: This result follows directly from Theorem 4.2 since all pairwise compar-

isons have equal variances for a Latin square design.

Note that the corollary can also be derived by expressing the component
design parameters, given by (3.20) to (3.24), in terms of R and substituting the
new a; (j =1,...,9) in vgea and vgpep of Theorem 3.5.

Case II : R-type component

The following result shows that R-type designs can be used only for certain

values of R and C.
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Theorem 4.3 A nccessary condition for the existence of an n X 2 row-orthogonal

PBDS design with R rows and C columns and having an R-type column compo-
nent is that C = 2n — 1 is a divisor of R.

Proof: The randomised block row component design forces r. = R and t = C.
Hence the total allocation to the B-alone treatments must be 75 = R, and the
total allocations to the A-alone and dual treatment groups must be Ty = Tp =
(n — 1)R. A necessary condition for the existence of an R-type design is that T;
(: = B, A, D) is divisible by C. Hence both R and (n — 1)R are required to be
divisible by C.

It follows from the above result that, if an R-type design is used for the col-
umn component, then larger row-orthogonal designs can be constructed by join-
ing together copies of a randomised block design, as illustrated by the following

example.

Example 4.3 A row-orthogonal PBDS design form = 2, n = 3, R = 5 and
C =10 has a row component which consists of two copies of the randomised block
design for five blocks each of size five arranged in a 5 x 10 array and the column
component again has two copies of this randomised block design arranged in a
10 x 5 array. The components amalgamate to yield a 5 X 10 array containing two
copies of the 5 x 5 Latin square which has tr(HQprcH') = 0.8 and a discrepancy
of 2.5% with the bound B of (2.12).

Case IIT : (R,S)-type component

It is shown below that (R,S)-type designs are not suitable for amalgamation

with a randomised block design.

Theorem 4.4 Row-orthogonal PBDS designs with an (R,S)-type column compo-

nent do not exist.

Proof: Since the design must have r. = R and ¢t = C the total allocations to the
groups of B-alone, A-alone and dual treatments are T = R, T4 = (n — 1)R and
Tp = (n — 1) R respectively. Without loss of generality, the (R,S)-type design is

taken to be R-type in the A-alone treatments, then (n — 1)R must be divisible
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by C. Consequently, the design must also be R-type in the dual treatments.
Since it is impossible to have a design which is R-type in two sets of treatments
and S-type in the third, it is necessary to also have R divisible by C. It follows
that if the column component of a row-orthogonal design is R-type in any one
treatment then it must be R-type in all three of them due to the equal treatment

replication. Hence row-orthogonal designs with an (R,S)-type column component

do not exist.

Case IV : S-type component

The remaining type of possible column components is the class of S-type
PBDS designs which exist when C is not a divisor of R. This is the largest set of
PBDS column components compatible with a randomised block design. Eleven
of the fourteen designs listed in the table at the end of this chapter were derived

from an S-type component.

Example 4.4 The row-orthogonal design form =2, n =5, R=8 and C =9
is given in Table 4.4 and has tr(HQgrc H') = 2.0317 with a discrepancy of 7.6%
with the bound B = 1.8889.

4.3 Analysis and properties of row-orthogonal
PBDS designs

In this section, results applicable to row-orthogonal designs and row-orthogonal
PBDS designs are established. Some of the results are related and hence there
may be several different ways of deriving a particular property. The following
theorem gives a relationship between the variances of a contrast estimator in the

components and in the row-column design.

Theorem 4.5 For any row-orthogonal design, having t treatments arranged in
an RxC array, the variance of the least squares estimator for any estimable treat-
ment contrast is the same in the row-column design and the column component

design.

Proof: Using (1.7) with Ay = r®— (1/k') Ny N} for k' # k = R, C and the fact that

a randomised block design has equal replications r, = R, block size C = t and
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incidence matrix Ng = Jy g, the information matrix for the row-column design
can be written as

. 1 7.2
ARC = T'eIt b E']t,RJR,t - ENCN,C -+ REC'Jt. (44)

Now JirJr,: = RJ;, hence (4.4) can be expressed as

1
Arc =rdi — ENCNé'

which is identical to Ac.

Hence, the information matrix of the row column design is the same as that

of the. column component. Therefore Qrc = Q¢ and V(CiQrcC)) = V(CiQ2cCY),

for any contrast matrix C;.

The following results give some further useful properties of row-orthogonal
designs.

Lemma 4.2 For any row-orthogonal design, the information matrices for the

separate row and column component designs commute.

Proof: Taking the randomised block design as the row component, Agp = RI; —
(R/C)J; since 7 = R and Ng = J; g by definition. Then, since the rows and

columns of an information matrix always sum to zero, that is JJAc = 0 and
AcJ; = 0, it follows that

ArAc = RA¢c — -g—JtAc = RAc

and

AcAr = RA¢c — gAcJt = RAc.

Hence the information matrices commute.

Corollary 4.2 All row-orthogonal designs possess a common set of orthonormal

etgenvectors.

Proof: The result follows directly from Lemma 4.2 and a result due to Graybill
(1983, Theorem 12.2.12) which states that a pair of commuting matrices will al-

ways have a common set of orthonormal eigenvectors.
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Alternative Proof: From the proof of Theorem 4.5, Arc = Ac for a roww-orthogonal
design and hence the eigenvectors of Agc and Ac will be the same. Any set of
orthonormal eigenvectors will be eigenvectors of a randomised block design due
to the fact that the information matrix of the randomised block design has one

non:zero eigenvalue with multiplicity ¢t — 1. Hence Agr, Ac and Agc must have a

common set of eigenvectors.

Remark: The above corollary is particularly useful in the case where the con-
trasts of interest are orthogonal, since the canonical efficiency factors of the row-
column design can be expressed in terms of the efficiency factors of the two com-
ponent designs, see (1.9). When the contrasts of interest are the non-orthogonal
dual versus single comparisons, the corollary can be used to show that the vari-
ances-of the comparisons are the same for the row-orthogonal design and for the

\ column component design. Since it i1s known that the efficiency factors for a

randomised block design are all equal to one, (1.9) can be expressed as
i ERCi = €Ci- (4.5)

Let [;, for 2 = 1,...t — 1, denote a set of common basic contrasts for the row-

: column design and the column component. Then the variance of a contrast

estimator, u?, where u = $°!21 v;1;, can be written as
t-1 2 2
- O
Vao(u's) =5 12 (4.6)
io1 €RCi
However, substituting (4.5) into (4.6) gives Vro(u'?) = YiZ1(v#/eci)o?. This

is the expression for the variance of the contrast estimator, u7, estimated using

the column component design. This result also follows from the fact that no

adjustment is required for the row blocks.

The properties of row-orthogonal designs result in some simplifications in the
analysis of variance. The sum of squares for treatments for the model (1.1), after

adjusting for both rows and columns, is given by

N Y 1
7'Q = 7' (Tror — —RNCCTOT),

where () denotes the vector of treatment totals adjusted for the row and column
effects, Tror is the unadjusted vector of treatment totals, Ng is the incidence

] matrix of the column component design and Cror is the vector of column totals of
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the design. This sum of squares is the same as the treatment sum of squares after
adjusting for columns alone for a design with a single blocking factor, columns.

Hence the advantage of using designs with this property is that no account need

be taken of the differences between rows.

4.4 Tables of designs and conclusions

This chapter concludes with Tables 4.1-4.4 which contain fourteen efficient row-
orthogonal PBDS designs. In this section the performance of the designs is dis-
cussed. The designs were obtained by amalgamating a randomised block design
for ¢ treatments arranged in R blocks each of size C with a PBDS block design
for t treatments arranged in C blocks of size K. The listed row-column designs
are a solution provided by JE and are not necessarily unique. In most cases, the
row-orthogonal design is less efficient than the row-column design of Chapter 3
due to the constraint of equal treatment replication which forces the selection of

less efficient component designs for amalgamation.

Example 4.5 Forn =3, m =2, R =9 and C = 5, the total variance of the
estimators of the contrasts of interest for the row-orthogonal design of Table 4.3
has a discrepancy of 3.7% with the bound of (2.12) and a discrepancy of 1.0%
with the total variance of the contrast estimators for the most A-efficient design
found by JE. The row-column design for the above parameters in Table 3.6 has
corresponding discrepancies of 2.7% and 0%. An ezamination of the performance
of the component designs reveals that in the row-orthogonal case the component
designs have discrepancies of 2.5% and 3.7% for the block designs in nine blocks
of size five and five blocks of size nine respectively. The row-column design has

component designs with corresponding discrepancies of 1.9% and 1.3%.

Note that the majority of designs listed in the tables are either Latin squares,
Youden Squares or generalised Youden designs according to whether the column
component is a randomised block design, a balanced incomplete block design, or
a balanced block design. From Theorem 4.5 and using the fact that all these
row-column designs have an information matrix of the form Arc = al, + bJy,
the designs have variance balance for the dual versus single contrasts, that is the

dual versus A contrasts and the dual versus B contrasts are all estimated with a
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common variance. The remaining row-orthogonal designs, for parameters n = 3,
R =2,3,7,8 and C = 5, have PBDS column components with equal treatment

replications. These designs also have variance balance for the dual versus single
treatment contrasts.

It can be shown, using the conditions given by Ash (1981), that generalised
Youden designs for ¢ treatments, arranged in an (mt + ¢;) x t array do not exist
for t =5 with ¢, = 2,3, ¢t = 7 with ¢, = 2,4,5 and t = 9 with ¢; = 2,3,4,5,6,7.
This explains why the collection of efficient row-orthogonal designs is small. It
could be extended by considering cases with R > 9, but such designs have an

unnecessarily large treatment replication and are unlikely to be of practical use.

An examination of Tables 4.1-4.4 reveals that the row-orthogonal designs
perfoﬁn well when compared with the bound of Chapter 2. Out of a total of
fourteen designs, only two have a discrepancy between the total variance of the
estimators of the dual versus single contrasts and the bound which exceeds 10%.
These two cases both have a small value of R and the numerical assessment of
the bounds performed in Chapter 2 suggests that both bound B3(H) and bound
Bp are loose for small block sizes. The possibility of using the extra information
available on the incidence structure of a row-orthogonal design to improve upon
the upper bound on tr(Agrc) of Theorem 2.5 was investigated. However, the

resulting bound was found to be identical to the bound B,(H) of (2.12).

The row-orthogonal designs also compare well with the best design found by
JE. The case n = 3 yields the best results, since the discrepancy between the
total variance of the dual versus single contrasts and the best design found by JE
does not exceed 1%. The designs for n = 4 and 5 have discrepancies with JE of
less than 5%, with the single exception of the design for 7 treatments in a 3 x 7

array which has a discrepancy of 7.2%.

The tables serve to reinforce the fact that introducing the additional constraint
of row-orthogonality does not necessarily imply that a great deal of precision is
lost. They provide efficient designs with the row-orthogonal property which might
be preferred to those in Tables 3.3-3.15 due to the simplification in the analysis
(see Section 4.3) and in the interpretation of the results. Note that in some cases,
see Example 4.5, the larger percentage discrepancy of the row-orthogonal design
compared with the alternative in Tables 3.3-3.15, may make the row-orthogonal

design the second choice.
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Tables of row-orthogonal PBDS designs

For3<n <5 m=2,2<R<9and C =2n -1, the following tables list
the connected row-orthogonal designs obtained by amalgamating a randomised
block design with R blocks each of size C with a PBDS block design which
has C blocks of size R and the same replication vector as the randomised block
design. The figures in the column headed % Disc are the percentage discrepancies
for estimating the dual versus single contrasts in the row-orthogonal design, the
randomised block component and the PBDS component each compared with an
appropriate bound (see Chapter 2). The fourth figure represents the percentage
discrepancy between the row-column design and the best design found, under the
A-criterion, by JE.

In the following tables, & denotes the most A-efficient PBDS row-column design
found in the studies of Chapters 3 and 4.

Table 4.1: Row-orthogonal PBDS designs forn =3,2 < R <4and C=35

n { R} C | Row-orthogonal design % Disc
R-C RB PBDS JE

312 |5]0121112010 13.3 0 13.3 0
11 01 10 21 20 &

350120111021 8.2 0 8.2 0
1001 21 11 20 &

1121012010

4| 570110112021 8.
1001 21 11 20
20211001 11
112001 2110

1.7 85 03

<t
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Table 4.2: Row-orthogonal PBDS designs forn =3, 5 < R<8and C =5

n

R

C

Row-orthogonal design

% Disc

R-C RB

PBDS

JE

01 10 20 11 21
1001 11 21 20
2011 2101 10
1121 10 20 01
2120011011

2.1 21

)

2.1

vzl

011020 11 21
01201021 11
10 01 11 21 20
20 11 21 01 10
1121102001
2120011011

o
—

2.2

5.1

0.8

(%)}

011020 11 21
0120102111
1001 21 11 20
20 11 21 01 10
1121 01 10 20
2101112010
2111201001

4.5

0.7

[V

0110201121
1001 11 20 21
102001 21 11
20 10 01 21 11
20 11 21 01 10
1121 1001 20
11 21 10 20 01
2120 11 10 01

4.1 24

4.1

0.8

86
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Table 4.3: Row-orthogonal PBDS designs forn = 3, R =9, C =5 and n = 4,
R=3,6,Tand C =7

n

R

C

Row-orthogonal design

% Disc

R-C RB PBDS JE

01 10 20 11 21
0110 20 11 21
1001 11 21 20
1001 11 21 20
20 11 21 01 10
20 11 21 01 10
1121102001
2120011011
21200110 11

3.7 25

37 1.0

01 203031101121
10 01 31 20 21 30 11
11 21 01 10 30 20 31

174 2.1 1

74 7.2

01 10 20 30 11 21 31
10 01 30 20 21 31 11
20 30 01 11 31 10 21
30202131011110
21 31 11 01 10 20 30
3111 10 21 30 01 20

6.7 3.8

6.7 2.7

0110203011 21 31
10 01 30 20 21 31 11
20 30 01 10 31 11 21
3011 2131011020
11 20 31 21 10 01 30
2131101120 3001
31211101 302010

3.9 39

39 1.2
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Table 4.4: Row-orthogonal PBDS designs forn =4, R =8, C =7 and n = 5,

R=8,9and C =9

n{R]|C

Row-orthogonal design

R-C

% Disc
RB

PBDS

JE

01 10 20 30 11 21 31
01 20 10 11 30 31 21
10 01 20 21 31 30 11
20 30 01 10 31 21 11
30 11 21 31 01 10 20
11 30 31 01 21 20 10
21 31 30 10 20 11 01
312111201001 30

5.9

4.2

59 2.5

01 10 20 30 40 11 21 31 41
10 01 30 20 11 40 31 41 21
20 30 01 10 21 31 41 11 40
30 20 10 01 31 41 40 21 11
40 11 21 31 41 01 10 20 30
21 4041 11 01 10 20 30 31
31414021 20301101 10
41 31 11 40 30 21 01 10 20

[ )
Qo

4.1

01 10 20 30 40 11 21 31 41
10 01 30 20 11 40 31 41 21
20 30 01 10 21 31 41 40 11
30 20 10 01 31 41 11 21 40
40 11 21 31 41 01 10 20 30
11 40 31 41 01 21 20 30 10
21 31 41 40 1020 30 11 01
31 41 11 21 30 10 40 01 20
41 21 40 11 20 30 01 10 31

5.9

(]
e

59 3.3
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Finding efficient designs for
estimating specific treatment

contrasts

5.1 Introduction

Experience gained through investigating efficient designs for the dual versus sin-
gle treatments contrast problem has led to the consideration of finding efficient
designs for any specified contrasts of interest. The strategy employed for finding
efficient row-column designs in the dual versus single treatments case was to find
a class of designs which contains efficient and A-optimal members and then locate
the best designs in this class. The search for these designs was simplified owing
to the characteristic structure (1.14) of the information matrix of designs in this
class. This strategy has also been used by Kiefer (1958) to find single blocking
factor and row-column designs for estimating sets of orthogonal contrasts. The
same approach enabled A-optimal block designs to be found for comparing test
treatments with a control (Majumdar, 1986) and for comparing dual with single

treatments (Gerami & Lewis, 1992).

The more general problem of finding efficient block designs for any set of spe-
cific treatment contrasts has already heen addressed by Lewis & Gerami (1993).
The authors identify a class of aligned designs which can contain highly efficient

block designs; this class is discussed in Section 5.2. In this chapter, an A-optimal
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information matrix is identified for estimating a particular set of treatment con-
trasts from an experiment, assuming an additive model for either one or two
blocking factors. It is shown in Subsection 5.2.1 that, if a design having this in-
formation matrix exists, then the design is A-optimal over the class of incomplete
block designs (or row-column designs) for the experiment size. Subsection 5.2.2
shows that, for example, the A-optimality of balanced incomplete block designs
and balanced block designs can be established by checking that their information
matrices have this A-optimal form. However, designs with information matrices
corresponding to this particular information matrix do not necessarily exist. For
this reason, the term approximate information matriz is used in this chapter to
refer to any ¢ x ¢, symmetric, non-negative definite matrix, A, having rank > 1
and zero row and column sums, regardless of whether a design actually exists
having information matrix A. In Section 5.3, some methods of finding designs
which have information matrices close to the approximate information matrix are
discussed. Finally, Section 5.4 describes applications of the results of this chapter

to two sets of contrasts of interest in certain pharmaceutical experiments.

5.2 Aligned designs

5.2.1 General results

Connected designs with ¢ treatments, arranged under blocking structure B, are
considered for estimating a pre-specified set of L treatment contrasts, denoted
by Cp7, where 7 is the vector of treatment effects and Cp, is an L x ¢t matrix of
contrasts with rank(Cp) = n, for 1 < n < ¢ —1. The class of such designs is
denoted by D(t,Cr, B). The following definition identifies the subclass of aligned
designs D,(t,CL, B).

Definition 5.1 (Lewis & Gerami, 1993) A connected design, d, involving one
or more blocking factors is aligned with contrast matriz Cp, if Ay and C;,C have

a complete set of orthogonal eigenvectors in common.

In this chapter, a set of orthonormalised eigenvectors common to both Ay and
C;CL, where d € D,(t,CL, B), is denoted by & (: = 1,...,t) with & = t7V/?1,.

Using the spectral decomposition of a matrix, the intra-block information matrix
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can be written as Ay = !Z1 \;&:£€L. Similarly, the Moore-Penrose generalised

inverse can be expressed as Qg = Y izl A7

An aligned design has the property that the total variance of the least squares
estimators of the contrasts of interest achieves the design dependent lower bound
of Gerami & Lewis (1992), see Theorem 2.2. This result is stated in the following
lemma.

Lemma 5.1 (Lewis & Gerami, 1993, Theorem 1) For CL @ contrast ma-
triz of rankt — 1 and d € D,(t,CL, B)
t—1 0.
’ 1
t?‘(CLQdCL) = ZF
1=1 1)
where 07 > ... > 0,7 >0, =0 and A\ > ... > X, > A\ =0 are the eigenvalues
of C1.CL and Ay respectively and Qq is a generalised inverse of Aq.

Note that Lemma 5.1 holds when (', is a matrix of rank n where 1 <n <¢-1.

In this case, the eigenvalues of C;Cp are 6 > ... >0, > 60,41 =... =0, =0.

Lewis & Gerami show that if a design d* € Dq(t, Cr, B) is such that 3127 6; /A%’
attains a minimum value over all designs in D(¢,Cr, B) then d* is A-optimal in

D.

A subclass of the aligned designs is considered in order to further reduce the

search for efficient designs.

Definition 5.2 (Lewis & Gerami, 1993) A designd € D,(t,Cy, B) is strongly
aligned with a set of contrasts Cp7 provided A} = /\? if and only if 0; = 0;, where
M and 0; are the non-zero eigenvalues of Aq and C,Cy, respectively corresponding

to the common eigenvector & (1 =1,...,t —1).

Provided d is a strongly aligned design, knowledge of a set of eigenvectors and
the multiplicities of the corresponding eigenvalues defines the structure of A4 via

the spectral decomposition.

The authors show that, when Cp7 holds any set of orthogonal contrasts,
the class of strongly aligned designs D(¢,CpL, B) is the class of balanced block
designs, that is designs in which each pair of treatments occur together equally

frequently in a block. They also show that, when Cp7 holds the test treatments
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versus one control treatment contrasts, D,(¢,Cy, B) consists of the classes of
balanced treatment incomplete block designs, see Bechhofer & Tamhane (1981),

and balanced treatment block designs of Ting & Notz (1988).

As an extension of the above work, the following result examines designs in
D, and shows that if the design with a variance-covariance matrix having trace
which achieves the design independent bound B(CL) of Corollary 2.2 is in this
class, then it must be in D,. The practical use of the result is that, rather than

searching D, for a design achieving B(CL), attention can be restricted to D;.

Theorem 5.1 A design d € D,(t,Cr, B) achieves bound B(CL) of Corollary 2.2
for estimating a specific set of treatment contrasts Cp7 if d = d*, where d* €
D,(t,Cr, B) with X’ = c,,m,\/()i/(Z;;ll V0;), Cp ts an L x t contrast matriz
with rank n (1 < n <t —1), 7 is a vector of treatment parameters, A3 and 6;
(:=1,...,t —1) are the non-zero eigenvalues of A4 and C}C|, respectively, and

Crmaz = MaZqep tr(Aq).

Proof: From Lemma 5.1, a design d € D, has the property that tr(CrQ,C7) =
421 0:/0¢. Hence it is necessary to establish the conditions under which S =
221 0:/)0¢ is minimised. This is carried out in two stages.

Firstly, attention is restricted to the class of designs D, = {d € D,; tr(A4) =

T2l A = ¢} and S is minimised within this class. Let

t—1 0 t—1 .
ST = Z X + a(z AL —¢),
=1 t =1
then
05* —0;

PUPIE
for 7 = 1,...,t — 1. Setting the derivative equal to zero, gives A\{ = /(6;/a),
for ¢ = 1,...,t — 1. Using the constraint 3!Z1 A¢ = ¢, it can be shown that
M = cy/8;/ (X521 v/0;). Now since 925 /9(X{)* > 0, it follows that mingep, S is
obtained when A¢ is proportional to \/0;, for i = 1,...,¢t — 1. Since d € D,, it

follows from Definition 5.2 that d must be a strongly aligned design.

Let M, = mingep, S = ( f;} V/0:)?/c then, in order to find mingepS, M, must

be minimised by allowing ¢ to take all possible values. Since §; (: =1,...,t — 1)

is fixed, this problem is equivalent to maximising ¢ = tr(Ay).
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Let ¢paz = mazgep tr(Ay) then it can be shown, using Lemma 2.1, that

bk — f(t,0,k), for block designs,
Craz =
RC—f(t,R,C) - f(t,C,R)
+asmaz(Ti 1), for row-column designs,
where f(p,q,s) = (q/s){s + (25 — p)[s/p] — p[s/p]"}
and max(Yi_, r?) is as stated in Corollary 2.3,

with a = 7 = max(C[R/t], R[C/[1],1),

a+m=r,=min(C[R/t]+ C,R[C/t] + R), ¢ = RC

and RC — rit = k mod(r, — ry).

Note that, on substituting for f(¢,b, k), the block design formula for ¢,,,, reduces

~ to b(k — 1) — (b/k)[k/t](2k — t — t[k/1]).

It follows that M. is minimised when ¢ = ¢, and A¢ = c,,mx\/ﬁi/(z;;ll V).

The theorem suggests a form for an approximate information matrix Ay, de-

rived by substituting A" = caev/0i/(Z42) V0;) into the spectral decomposition
of the information matrix.

Corollary 5.1 The approxzimate information matriz for estimating a set of treat-

ment contrasts, Cp7, given by

t—1
Cm,a;r
Av == 70 > V&, (5.1)
i=1 \/ Ji=1
where & (1 = 1,...,t — 1) are the eigenvectors corresponding to the non-zero

eigenvalues of C;CL, has trace achieving bound B(CL) of Corollary 2.2.

Proof: This result follows directly from Theorem 5.1.

Note: For any design d € D(t,Cr, B), tr(Aq) < Cnax = tr(Aqg), from (5.1).
Hence Agy. will be called the A-optimal approzimate information matriz through-

out this chapter.

Corollary 5.1 shows that if a design d* exists, with an information matrix equal
to Ag., then d* is A-optimal over the class D(¢,Cr, B). In practice, a design with
information matrix Ay rarely exists for specified contrasts Cp7. However, for
the following class of problems, A-optimal designs are established directly from

Corollary 5.1.
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5.2.2 Estimating a full set of orthogonal contrasts

When the specified contrasts are a set of t — 1 orthogonal contrasts in the treat-
ment effects, Theorem 5.1 can be used to derive the well known results for A-
optimality of balanced incomplete block designs and Youden squares, discussed

in this subsection. In order to do this, the following lemma is required.

Lemma 5.2 Suppose x1,...,2_1 is a set of t X 1 orthonormalised vectors such
that zi1, =0,¢i=1,...,t—1, where 1, is at x 1 vector of ones, then Y 'Z) z;x} =

=1
I; — (1/t)J; where J, = 1,1, and I, is the t X t identity matriz.

The optimality result can be shown in the following way. From Lemma 5.2,
any set of orthogonal contrasts Cor in ¢ treatments has CHCo = I — (1/t)J;.
It is easily verified that the eigenvalues of C;Cg are ; =1 for: = 1,...,t — 1.
From Theorem 5.1, the eigenvalues of the information matrix Ay« are

/\i'l‘ — Ad' — Craz ’L — 1

o t—1 5.2
t—1 ot T (5.2)

where ¢4, 1s the maximum trace of Ay which equals b(k — 1) for binary designs.
The A-optimal approximate information matrix is calculated using the spec-
P —_ * . . . —_
tral decomposition Age = Si21 A £:€0 which, after substituting for Y421 &£/ from
. * . . . .
Lemma 5.2 and for AY" from equation (5.2), simplifies to

b(k — 1 1
A = U )(It — ).

——
A balanced incomplete block design is known to have Ay = rE(I, — (1/t)Jy),
with E = A\t/(rk), where XA, denotes the number of blocks in which each pair of
treatments occurs. Using the necessary conditions for the existence of a balanced
incomplete block design, that bk = tr and r(k — 1) = A\,(t — 1), it follows that

rE = M\t/k can be expressed as b{k — 1)/(t — 1). Hence

b(k—1) 1
Aj=——""(1,— -Ji) = Ay,
¢= 7 (L= 2J) = Aq

A similar argument can be used to show that Youden squares are A-optimal
row-column designs. Since a Youden square has row and column component
designs consisting of a randomised block design and a balanced incomplete block

design respectively, Arc = Ag, see the proof of Theorem 4.5. Hence Agg = Ay-
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and the above argument for the A-optimality of balanced incomplete block designs

also establishes the A-optimality of Youden squares.

Theorem 5.1 provides a sufficient condition for the A-optimality of a strongly
aligned design. It is extremely difficult to establish necessary conditions for a
design to be A-optimal over D, owing to the problem of design existence. In
the discussion of the methods of finding designs, given in Section 5.3, it is noted
that designs with information matrices corresponding to the approximate infor-
mation matrix rarely exist. However, designs with an information matrix close,
in some sense, to the approximate information matrix are highly efficient. This
is illustrated in Section 5.4, in which some examples for several different sets of

practical treatment contrasts are discussed.

5.3 Applications to finding efficient designs

In this section, possible methods of finding designs with information matrices cor-
responding to the A-optimal approximate information matrices of Corollary 5.1
are discussed. The search for efficient designs must be undertaken by separate
consideration of the specific contrasts of interest, Cp7, since the eigenvalues of

C1CL, are used to determine the design independent bound of Corollary 2.2.

There are several possible approaches to finding block designs using Corol-
lary 5.1. The first approach is to try to construct a design from the information
matrix produced by the corollary. The second approach is to search, within the
class of aligned designs, for designs with information matrices close to Ag. A
further approach is appropriate when the nature of the treatment contrasts makes
the class of efficient aligned designs very small. This approach involves searching

for efficient designs with the same information matrix structure as Ags.

The first approach is composed of two stages. First, it is necessary to consider
the possible treatment replication structure of the design, for which the following

lemma is needed.

Lemma 5.3 A design d, fort treatments arranged in b blocks each of size k, with
an information matriz Ay which achieves maxgyep tr(Aq) must have treatment

replications r; (1 = 1,...,t) in the range

max (1, 0[k/t]) < vy < b[k/t] +b.
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proof of Theorem 2.5 for use of a similar argument.

Proof: The value of maxqep tr(Aq4) is calculated assuming that the elements
of the incidence matrix Ny are as equal as possible subject to the constraints that
Sian=k(j=1,...,b) and Z?‘=1 n;; =mr; (1 =1,...,t). Hence, the elements
of Ny take one of two integer values, either n;; = [k/t] or [k/t] + 1. The result is

obtained by considering the maximum and minimum values of Z;’-:l n;j; see the

The above lemma generates many possible treatment replications, each of

which requires investigation to see whether a corresponding design exists as de-

scribed below. Alternatively, a single allocation of replications to treatments can

be obtained using the formula of Jones (1976), that is r; = ( JL=1 wjc

to that contrast (¢t =1,...,¢; j=1,...,L).

approach is considerable, it seems more appropriate to use JE.

)12 where
cij 1s the element of the jth contrast vector corresponding to the ith treatment, all

contrasts having been scaled so that i, ¢}, = 1, and w; is the weight assigned

The next step is to calculate, for each treatment replication possibility, a con-
currence matrix using Ng.Nj, = kr® — kA, The existence of a design with
concurrence matrix Ng»Nj. can be investigated using an algorithm similar to
the one developed by Taylor & John (1983) to construct a binary design from
a given concurrence matrix. Examination of a range of examples for different
sets of treatment contrasts has revealed that designs corresponding to the in-
formation matrix Ay. rarely exist since Ny N). rarely has integer elements. A
possible way forward is to round the entries of the concurrence matrix but this
rounding is somewhat artificial since it has to be performed subject to satisfying
the existing constraints on NyN). For non-binary designs, kr; = 3j_; Zl}:l NN
(z = 1,...,1) must be satisfied. Binary designs have the additional constraint
that Z?:l n?j =r; <bforz=1,...,t. Hence, it may be necessary to consider all
concurrence matrices which have some integer elements similar in magnitude to

the corresponding elements of Ny Nj. and also satisfy the design constraints.

There are a number of disadvantages to this approach. Firstly, there is no
guarantee that any of the resulting concurrence matrices will correspond to an
existing design. In addition, the approach will not easily extend to designs for
two orthogonal blocking factors, since it is extremely difficult to determine the
incidence matrices for the row and column component designs for a given Agc+

and replication vector r. Since the effort required to find efficient designs via this
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The second approach to finding designs is to restrict attention to the class of
aligned designs and locate highly efficient and A-optimal designs within this class.
This approach is demonstrated in Subsection 5.4.1, where examples are given
of efficient block and row-column designs which are aligned with the particular

contrasts of interest and have information matrices with entries close to Ays.

The third approach focuses attention on finding designs which have the same
pattern to the entries of their information matrix as the A-optimal approxi-

mate information matrix. This method is illustrated by the examples of Sub-

section 5.4.2.

5.4 Application to further contrasts from the

pharmaceutical industry

Within the pharmaceutical industry, interest is often focused on non-orthogonal
treatment comparisons in two or more treatments. The previous chapters of this
thesis are concerned with finding efficient designs which are part-balanced with
respect to one such set of contrasts, namely, the dual versus single treatment
contrasts. This case is discussed further in Subsection 5.4.2. Another set of

non-orthogonal pairwise contrasts is considered in the following subsection.

5.4.1 A reduced set of contrasts for a large number of

pairwise treatment comparisons

Consider an experiment for ¢ treatments, labelled 1,..., ¢ and arranged in b blocks
each of size k, for which the set of all pairwise treatment comparisons is of interest.
If ¢ is very large, an infeasibly large number of comparisons may need to be
estimated and interpreted. In this type of situation, it may be possible to use
prior knowledge of the treatments to provide an initial ranking of the treatment
effects. For the case considered in this subsection, the following contrasts are of

primary interest:

=Ty fore=1,...,t 9=1,...,p, (5.3)

where p <1 — 1 and i + j is evaluated as 1 4+ 7 — ¢t when 1 4+ 5 > ¢.
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Let C¢ denote the contrast matrix for (5.3) then the matrix C;Cg is circulant
with initial row { 2p —1, 0 -1 } Hence, from Definition 5.1 and the fact
that all circulant matrices of the same size have a common set of eigenvectors
(Davis, 1979, p 73), the class of aligned designs contains all designs with circulant
information matrices and in particular the A-optimal approximate information
matrix Age (see Corollary 5.1) is circulant.

For this specific set of contrasts, attention is restricted to equi-replicate designs
where r = r.1;. This is a reasonable assumption since the diagonal elements of
Ag- are all equal and the design is constrained to have equal block sizes. A further
justification is that, in this particular set of contrasts, each treatment effect occurs
the same number of times with the same coefficients, and such balance is likely
to require an equi-replicate design. The following example demonstrates how

efficient equi-replicate designs may be found.

Example 5.1 Suppose an investigator is interested in comparing siz treatments,
arranged in twelve blocks each of size three. Prior knowledge of the treatments
suggests that p = 2 and the resulting C5Cc matriz is circulant with intial row
{ 4 -1 -1 0 -1 -1 } From Corollary 5.1, with ¢ = 24, the A-optimal

approximate information matriz is given by the initial row

{4.0000 —0.8990 —-0.8990 -—0.4041 -—0.8990 —0.8990}.

For cyclic designs, the diagonal elements of the information matrices are easily
shown to be k™ 'r,(k—1). Since k =3 and Ay =4 (1 =1,...,1), r. is taken as
siz in this case. A design with this information matriz does not exist, however,

since the concurrence matriz is given by the initial row

{6.0000 2.6969 2.6969 1.2122 2.6969 2.6969 },

which does not have integer elements.

The next stage is to consider various roundings of the elements of Ny« N,
which satisfy the design restrictions concerning treatment replications and block
sizes. The circulant matrices generated by the following initial rows are consid-
ered:

(i) (6330883),
(i) (682228),
(iii) (62323¢2).
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A cyclic design exists with concurrence matriz given by (ii). This design is
generated by cycling on the initial blocks (1 28 ) and (1 24 ). It should be noted
that this design is not unique. The following block design also has its concurrence

matriz given by (ii)

Block 1 1 2 38 Block 7 2 3 4
Block 2 1 2 6 Block 8 2 3 &5
Block 3 1 2 6 Block 9 2 4 &
Blockj 1 3 /  Block10 3 4 6
Block 5 1 4 & Block 11 8 5 6
Block 6 | 5 ¢ Block 12 4 &5 6.

Note that the designs are not isomorphic since the second design has a repeated
block, whereas the first design does not. Both these designs have tr(CcQqCl) =
4.9962 and an efficiency of 99.1% when compared with the design independent
bound of Corollary 2.2.

Group divisible designs with concurrence matrices given by (i) and (iit) also
ezist. The design with NyN); corresponding to (i) has association scheme (1 4 ),
(25), (36)and \y =0, A\, = 3. The design with NyN}; given by (iii) has
| association scheme (1 35 ), (24 6 ) and Ay =3, Ay = 2. Both these designs
have tr(Ce2yCh) = 5.0 and a corresponding efficiency of 99% when compared
with the design independent bound of Corollary 2.2. Hence, by confining attention

to the class of aligned designs, highly efficient designs have been identified.

Note that, for these examples, row-column designs for estimating Cc7 can be
obtained by amalgamating the incomplete block design with a complete block
design. From Lemma 4.1, row-column designs can always be constructed in this
way when the component designs have equal treatment replications and compati-
ble dimensions. The resulting designs will be row-orthogonal with the same total

variances and efficiencies as their respective incomplete block component designs.

5.4.2 The dual versus single treatments problem

When the approach of the previous section is applied to the dual versus single
treatments case, it is found that the class of aligned designs contains highly

efficient designs for only a small number of parameter values. Therefore, in this
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section, the third approach to seeking efficient designs with the same information

matrix structure as the A-optimal approximate information matrix is adopted.

The contrasts for this particular problem are given by H7, where the contrast
matrix H is defined in equation (1.12). An examination of a selection of examples
has indicated that the bound of Corollary 2.2 may be loose for this particular set
of contrasts under certain parameter values. The following examples illustrate
this point, in addition to showing that efficient PBDS block and row-column

designs are not necessarily aligned with H although their information matrices

have structure (1.14).

Example 5.2 Suppose an experiment has parameters m = 2, n = 3, b = 4
and k- =9, the corresponding value of Cinar = mazyep tr(Aqg) ts 28.4444. The

A-optimal approximate block information matriz given by Corollary 5.1 is

6.5899 —0.7778 1) ~2.5171 1,
Ag = | —0.77781, 4.78781, — 0.3575J, —2.39391, — 0.4505.J;
—2.51711, —2.39391, — 0.4505.J, 7.18181, — 0.6849.J,

with tr(HQg H') = 0.9927. The most A-efficient PBDS block design, with in-
formation matriz structure (1.14), found by Gerami, Lewis, Majumdar & Notz
(1993) has

6.2222 —1.3333 1} —1.7778 14,
Ag=1 —1.33331, 5.77781, — 0.8889.J, —1.3333.J;
—1.7778 1, —1.3333.); 81, — 1.7778J,

with tr(HQuH') = 1.0898. The efficiency of the PBDS design d found by com-
paring tr(HQqe H') with tr(HQuH') is 91.1%. However, bound Br of Chapter 2
has a value of 1.0838 and hence is tighter than the bound of Corollary 2.2 in this
case. Design d has an efficiency of 99.4% when compared with bound Bp.

Note that design d is not aligned with the contrast matrix H which may

explain its low efficiency when compared with the bound B(H) of Corollary 2.2.

Example 5.3 Consider an experiment with m =2, n =3, R=6 and C =T.
From Theorem 5.1, ¢y, takes the value 32.0952 and the A-optimal approzimate

row-column information matriz is
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7.4357 ~0.8777 1}, —2.8402 1)
Apcs = | —0.87771, 5.40241, — 0.4034.J, —2.7012], — 0.5083.J,
—2.84021, —2.70121, — 0.5083J, 8.10351, — 0.7727.J,

which has tr(HQpre+H') = 0.8798. The most A-efficient PBDS row-column de-

sign for these parameter values, given in Table 3.7, has

7.1429 ~1.57141, —21)
Arc=| —1.57141, 6.8572], — 1.1429J, —0.14281, — 1.4286.J,
—21,  —0.1428], — 1.4286J, 8.2380[;, — 1.6190.J;

with tr(HQpe H') = 0.9713. The PBDS row-column design has an efficiency
of 90.6% when compared with the design independent bound of Corollary 2.2.
However, this bound is not recommended for use in this case since bound Bp has
a value of 0.9502. The PBDS row-column design has an efficiency of 95.8% when
compared with bound Bp. It should be noted that the row-column design and the

row and column component designs are not aligned with H.

5.5 Conclusions

In this chapter, a method of identifying classes of designs which can contain highly
efficient designs for estimating a specific set of treatment contrasts is described.
A specification for the information matrix of a design, sufficient for its trace
to achieve the design independent bound B(CL) of Corollary 2.2, is given and
applications to methods of finding eflicient designs are described. Illustrations
for two different sets of contrasts from the pharmaceutical industry are discussed.
Further recent work undertaken jointly with S.M. Lewis, L.-J. Kao & A.M. Dean
(Ohio State University) has established the necessity of the form of the A-optimal
approximate information matrix, Ag«, given in Corollary 5.1 for achieving bound
B(CL). The work in this chapter, together with the additional recent result, has

been written up and submitted for publication.
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Models for cross-over studies

6.1 Introduction

In the remaining chapters of this thesis, efficient designs for cross-over trials
constructed from the efficient PBDS row-column designs of Chapters 3 and 4
are considered. The first issue to address is what constitutes a suitable model
for a cross-over trial. Several different model formulations have been used in
the past, some of which have received criticism in the more recent literature, see
Fleiss (1989) and Senn (1992). In this chapter, models used in the literature for

planning trials are reviewed and some controversial issues are discussed.

A popular study design for a medical experiment is the parallel group study
in which patients are randomly assigned to treatment groups and receive doses of
one treatment throughout the duration of the experiment. A cross-over study is
more complicated in design, but has the advantage that resources are conserved
by repeatedly treating each experimental unit. In such a study, each subject is
given a series of treatments over a sequence of time periods and the response
of each subject is measured at the end of every period. This enables treatment
comparisons to be made within-subject and, since in medical trials it is usually true
that within-subject variability is much smaller than between-subject variability,
important contrasts can be estimated much more efficiently. Trials are considered
for ¢ treatments allocated to s subjects over p periods, with periods and subjects
represented by the rows and columns respectively of the design. The treatment
sequence for a given subject may consist entirely of distinct treatments or may

involve repetitions.
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Designs which have been developed for use in this type of study are known
as cross-over or change-over designs. They may also be referred to as repeated
measurements designs, although this term includes situations where each patient
is repeatedly observed while receiving only one treatment throughout the duration
of the experiment, as well as those where the patient receives a sequence of

different treatments.

A disadvantage of using a cross-over study is the need to allow for the possibil-
ity of a carryover effect of the treatment administered in period 7 into subsequent
periods, since it is often unrealistic to assume that a treatment effect disappears
as soon as the treatment is stopped. This problem is often reduced by employing
a washout period. This is a time interval inserted between each pair of treatment
periods, during which the patient receives no treatment. Hence any residual treat-
ment effects will have lessened or may have disappeared completely before the
next course of treatment commences. This approach serves to reduce pharmaco-
logical carryover effects but may be of little help in reducing carryover effects of

a psychological nature.

The study of psychological effects in medical experiments has been aided by
the development of the placebo. This 1s an inactive substance which is usually
matched to the shape, taste and colour of the treatment under investigation so
that the patient is unaware that a dummy treatment is being administered, thus
enabling the true effect of the active treatment to be observed. This is known
as a blind trial. A double blind trial is one in which neither the patient nor
the clinician observing patient response knows which treatment is being admin-
istered in each period. Studies which reveal a placebo effect are recorded in the
literature, not only for psychological experiments involving illnesses which may
have a psychosomatic cause such as anxiety and stress, but also for conditions
such as vomiting and post-operative pain. Beecher (1953) reviews fifteen studies
from the medical literature, involving more than 1,000 patients, for a range of
conditions including severe post-operative pain, cough, pain from angina, anxiety
and tension and headache. The results indicate that approximately 35% of the

patients received relief from a placebo.

Since it is widely accepted that the power of suggestion may have a signifi-
cant effect on a patient’s condition, there 1s no reason to assume that this type
of effect does not carryover into the next treatment period. Although the use of

a washout period may ensure that all pharmacological traces of the drug have
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been eliminated from the patient before the next treatment period begins, it is
not necessarily true that the patient is no longer affected by the treatment of the
previous period. Willan & Pater (1986) discuss psychological carryover, some-
times referred to as negative carryover, in their paper which defends the use of
cross-over trials in the presence of carryover effects. They describe psychological
carryover as the patients’ change in attitude as they enter the second period as
a result of their experiences in the first period. For example, a patient receiving
little relief from a placebo in the first period may not be happy about continuing
the trial. Such reservations may alter the patient’s evaluation of the performance
of the active treatment administered in the second period. Jones & Kenward
(1989, p 42) also mention this issue. Willan & Pater discuss a specific example
to illustrate this point. They cite a double blind 2 x 2 cross-over trial designed
to compare the efficacy of two drugs in controlling nausea and vomiting caused
by cancer chemotherapy. Patients were randomised to receive either drug A or B
for their first course of chemotherapy and then crossed over to receive the other
drug for their second course. The response measured was the degree of nausea,
rated on a linear analog scale, experienced in four six-hour intervals following
chemotherapy. Estimates of direct treatment and carryover effects, assuming a
model for additive first-order carryover effects and random subject effects (see
Section 6.5), are presented separately for each interval and reveal significant car-
ryover effects in the second and third intervals. These effects are thought to
have a psychological cause since a patient who experiences nausea in the first
interval after chemotherapy may expect to experience it in the second period and

consequently is more likely to experience it.

A further example of a possible psychological carryover effect is a recent study
by Dunn (1993) concerning the effectiveness of quinine in relieving night cramps.
Twenty-eight patients were allocated quinine or placebo for thirty days and then
crossed over to receive the alternative treatment for thirty days after a washout
period of three days. The proportion of nights in which a patient experienced
night cramps was the observed response. A carryover effect was found to be
significant at the 5% level using a Mann-Whitney test. This is surprising because
there is usually low power to test for this type of effect, an issue discussed by
Hills & Armitage (1979). The latter authors also stress the fact that the estimates
of direct treatment effects for a 2 x 2 cross-over trial, such as the Dunn (1993)
study, will be biased if the assumption of negligible carryover effects is not valid.

In this case, the use of estimates of treatment effects based solely on the data
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from the first period is advocated. The authors outline a test for the assumption
of negligible carryover effects but point out that it has low statistical power and
hence will only detect very large effects. In order to achieve sufficient power to test
for carryover, it would be necessary to employ as many subjects as for a parallel
group study thus removing one of the advantages of a cross-over study. Grizzle
(1965) and Brown (1980) also address this issue, see Section 6.5. Willan & Pater
(1986) disagree with the view that a parallel group study should be used whenever
carryover effects are suspected of being present. The authors demonstrate, by
means of an example, that even in the presence of significant carryover effects
the cross-over analysis, which estimates the direct treatment effects using data
from both periods, can provide a more powerful test of treatment effect than the
estimates based on first period data only. Jones & Kenward (1989, p 85) agree
that the power of the preliminary test for the presence of carryover effects in the
2 x 2 trial is inadequate, but show how the power of the test may be increased

by including baseline measurements or covariates in the analysis.

A review of the literature reveals some controversy, outlined in this section,
over the use of cross-over trials. However, there is sufficient evidence from past
studies to indicate that the assumption of negligible carryover effects may not

always be appropriate.

The designs described in Chapter 7 are obtained mainly under the assumption
of first-order carryover effects, where the effect of a treatment may be present in
the period immediately following the period in which that treatment was admin-
istered, but will be assumed negligible in any of the subsequent periods. The aim
is to find designs which perform well both in the presence and absence of first-
order carryover effects, since designs are sought for trials involving treatments
with short term effects which make it very difficult to predict, at the planning
stage, if carryover effects will be present. The approach followed takes an ef-
ficient row-column design under model (1.1) and rearranges it to find a layout
which achieves minimum variance for the contrasts of interest under a model
including additive first-order carryover effects. The same approach is used to
find designs for situations when carryover effects are thought to persist for two
periods. An investigation of the robustness of the designs to the presence and

persistence of carryover effects is presented in Subsection 7.6.2.

The estimation of direct treatment effects is considered of primary importance

since this is most commonly the case in practice. The carryover effects, if found to
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be present, are regarded as a nuisance factor. In order to decide whether carryover
effects are present, a significance test applied at some specified significance level
is used. It is common practice to remove carryover effects from the model unless
they are found to be significantly different from zero. A problem associated
with'this technique occurs if the carryover effects actually exist but are found
to be non-significant. If the carryover effects are then dropped from the model,
the resulting estimates of the treatment effects, 7, are biased. Conversely, if the
carryover effects are very small but accounted for in the model, then the estimated
treatment effects adjusted for carryover effects, denoted by 7, are unbiased but
will usually have larger variance due to the inclusion of extra parameters in the
model and the fact that a substantial decrease in the mean square error is not

achieved by including the carryover terms.

Abeyasekera & Curnow (1984) consider this issue and suggest that when the
estimation of direct treatment effects is of primary interest, it may be more ap-
propriate to base the decision of whether or not to adjust for carryover effects
on procedures which lead to estimators with smallest mean square errors (MSEs)
rather than on significance tests. The authors choose to estimate treatment dif-

ferences by:

-~

if b > T
TN = ] ljl (6.1)
if [0 < T,

=

where b is an unbiased estimator of the bias b in the estimator 7 which is un-
adjusted for carryover effects. Three examples are considered for a range of
parameter values and the maximum percentage increase in root mean square er-
ror (RMSE) when 7* results in the wrong decision is computed. The findings
suggest that the decision not to adjust when the adjusted estimator would have
been preferable does not lead to substantially less accurate estimators. However,
if the adjusted estimator is used when the unadjusted estimator would have been
preferable, increases in RMSE are as high as 10% in some cases. The increase in
RMSE is also considered for the situation when the adjusted estimator is always
used, and the resulting figures are of similar magnitude to those obtained by using
the adjusted estimator when the unadjusted estimator would have been a better
choice. It is noted that these errors, resulting from always using the adjusted
estimator, will only occur if the true difference between carryover effects is quite
small. Hence, the authors conclude that the best approach is to always use the

adjusted estimators. However, in the dual versus single treatments case, designs
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are considered for situations in which carryover effects are expected to be small
if not entirely negligible. Therefore, it may not be advisable to always adopt the

estimators adjusted for carryover effects.

In the following sections, a review of the carryover models which have appeared
in the literature is presented. In Section 6.3, models for additive carryover effects
are discussed. A brief description of some models with a factorial treatment
structure is given in Section 6.4, followed by a discussion of models for random
subject effects, see Section 6.5. The possibility of interactions between effects is
considered in Section 6.6 and autoregressive models are discussed in Section 6.7.
In the next section, the validity of the assumption of independent errors, when

the same individuals are measured repeatedly, is considered.

6.2 Models with correlated error structures

In this section, it is assumed that carryover effects are negligible and an additive
model for two blocking factors, given as equation {1.1) in Chapter 1, is adopted.

For a trial with p periods and s subjects the model can be written as
vij=p+ o+ 55+ Ta(i,;) + €ij i=1,...,p;7=1,...,8), (6.2)

where y;; denotes the response obtained from the jth subject in the :th period,
i is the overall mean, «; is the th period effect, 3; 1s the jth subject effect,
Ta(i,;) 15 the direct effect of the treatment given to subject j in period ¢ and ¢g;;
are correlated random variables with mean 0 and variance o?. Correlated error
structures can be thought of as an alternative way of modelling the relationship
between measurements on the same unit in a cross-over situation. However, they
should not be regarded as a replacement for carryover effects since there is no
formal link between the two; correlated errors being a function of time only and
carryover effects a function of treatment only. There are many possible forms of
error structure which might be appropriate for this type of situation but much of

the literature devotes attention to the following two cases.

Case I Errors follow a stationary first-order autoregressive process.

Under this process, the errors for subject j (j =1,...,s) take the form

Vi or i=1
e = { i] Jor @ (6.3)
€icvy +mi; Jori=2,..0p,
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where 1;; are independent identically distributed random variables with mean 0
and variance o® and X is the parameter of the autoregression. This results in a

variance-covariance matrix V = (vi;) which has elements

Ali=dl

cl(i=1,...,p;7=1,...,9),

where —1 < A < 1.

Under model (6.2), optimal designs for a particular experiment size are likely
to depend on the value of A. This is illustrated by the results of Kunert (1985)
in his search for optimal cross-over designs, in the sense of minimum variance
of the Best Linear Unbiased Estimate of treatment effects. Kunert shows that
a Williams design with balanced end pairs, that is with the same number of
units receiving treatments ¢ and j in the first and last periods (7,7 = 1,...,1),
is universally optimal (see Definition 1.4) for the estimation of treatment effects
over the class of all repeated measurements designs for ¢ treatments, s subjects

and p =t periods when A > A*(t) where

A (1) :{ —11/2“—2_(:2_8)1/2} if =3

—~ 3 ift>4
Kunert claims that an error structure with correlation decreasing over time
is a sensible approximation to reality. However, some of the model’s popularity
is probably due to its mathematical tractability. A drawback of this model is
that A is usually assumed to be known, and although it may be possible to
obtain information about A from previous similar experiments, this is unlikely to
provide more than a rough approximation to the parameter’s true value. Street
(1989) also uses this model in her discussion of possible construction methods for

the optimal designs of Kunert (1985).

Case IT Errors follow a stationary first-order moving average pro-

cess. The errors for subject 3 (7 =1,...,s) can be written as
Nij for i=1
61']' e { s (64)
Nij — A1,y for i=2,...,p,

where the n;; are as for Case I and A is the parameter of the process. This process

produces a variance-covariance matriz which has elements
Ai=dlg? af i —j| <1

vij = (6.5)

0 otherwise,
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where —1/2 < A < 1/2.

The model with additive effects for treatments and blocking factors and Case 11
type error structure has received much less attention in the literature. Matthews
(1990) considers this type of error structure in his review of the efficiency of
ordinary least squares analysis of cross-over designs. A more general mixed
autoregressive-moving average process, with parameters p and ¢, is considered
by Rochon & Helms (1989) in their work on maximum likelihood estimation for
incomplete repeated measurements designs. An advantage of this type of error
model is that it can provide for a wide variety of structures in the covariance
matrix of the observations while requiring only a small number of parameters to
be estimated, but the authors give little discussion of where this structure might

occur in practice.

It is an advantage to be able to provide optimal or at least efficient designs
under different error structures if it is known in which type of practical situations
these forms of error are likely to arise. Williams (1952) designs one-dimensional
treatment sequences under a Case | type error structure and, using some data on
wheat yields from different plots of land, shows that this type of error structure
may be appropriate for agricultural data. However, at the planning stage of an
experiment, 1t is very difficult to determine which type of error structure may be
applicable. It is therefore necessary to consider how the reliability of the study
conclusions is affected if the experiment 1s designed or analysed under a model

with an inappropriate error structure.

Ideally, a design should be employed which 1s robust over several plausible
error models, that is information on the parameters of interest can be extracted
efficiently irrespective of the assumptions about error. The question of interest
is whether such designs exist. Behrenblut & Webb (1974) consider this problem
and show that the minimum variance unbiased estimates of treatment effects for
Williams Latin Squares have optimum properties under a model with indepen-
dent, identically distributed errors and also under a model with errors following

a first-order autoregressive process for both positive and negative A.

The consequence of the assumption of an inappropriate error structure is to
incorrectly estimate the variance of the parameter of interest. Kunert (1987)
addresses this type of problem by finding an upper bound on X, the quantity

by which the estimate of the parameter variance needs to be multiplied in order
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to make it unbiased. A limitation of this work is that the calculated bound
does not relate to the true amount of underestimation but is a bound for the
worse possible scenario. The value of the bound is that it may help to determine
whether the conclusions of an experiment conducted under the assumption of
independent, identically distributed errors would be worthless under a general
covariance structure for error. In a sense, the bound gives some indication of the

robustness of conclusions to different error models.

Matthews (1990) addresses the related problem of efficiency of analysis under
| Ordinary Least Squares (OLS) if the errors are correlated. For simplicity, the
covariance matrix of the errors is assumed to be dependent on a single parameter
A. Two alternative forms of analysis are considered for the case where A # 0,
namely Generalised Least Squares (GLS), which is based on the assumed disper-
sion matrix V() but has the disadvantage that A is required to be known, and
an empirical form of generalised least squares (EGLS) which is also based on the
assumed dispersion matrix, this time evaluated at X which is estimated from the
data. However, EGLS will often be less efficient than OLS due to a poor estimate

of A resulting from sampling variation.

Matthews defines two quantities which enable the performance of OLS analysis

to be assessed. These are denoted by Ry and R, and are calculated as

root mean estimated variance using OLS

Ri=1-

actual standard error using OLS

and . e
actual standard error using GLS

R, =

actual standard errvor using OLS’
where the standard error is that of the direct treatment effect. The efficiency of

OLS analysis is measured using R,.

The efficiency of the analysis of a design using OLS, relative to that obtained
using GLS, can be calculated if a value for A is assumed, but the performance of
the OLS analysis is dependent on the particular value assumed. The approach
taken is to see whether the OLS analysis achieves some specified level of efficiency
(to be fixed by the experimenter or statistician) for all plausible values of A\. If
this level is sufficiently high then the design may be considered robust to errors
to some extent. However, since the estimate of the parameter variance using OLS
is not unbiased for the true variance under OLS, the size of the bias should also

be considered when making decisions about robustness. Summary measures of
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these two factors, R; and R; given above, are calculated under the asumption of
Case I and Case II type error structures for a range of possible values for A. The
results, which are restricted to the case where ¢ = 2, suggest that the summary
measures vary according to design, error process and the true value of A\. Hence
it is difficult to recommend designs. It should be noted that designs which are
efficient under OLS analysis are not always efficient designs under the model
of interest. Therefore design selection which is based solely on performance of
designs under OLS analysis may result in the selection of a poor design for the

particular experiment.

In practice, there are many factors which need to be taken into consideration
when selecting an experimental design, not all of which are statistical. The above
discussion indicates that there are both advantages and disadvantages of assum-
ing correlated errors. The assumption of independent errors is very common in
practice, since it is very difficult to determine at the outset of an experiment
which type of error structure may be applicable and there are technical difficul-
ties associated with estimating the parameters of the error processes as discussed
in this section. Owing to these types of problems, models with correlated error

structures are not used for the dual versus single treatment problem in this thesis.

6.3 Models with additive carryover effects

In this section several different types of model are described and their suitability
for application to the dual versus single treatment contrast problem is considered.
The discussion begins with the most popular model which has been discussed and

used by many authors.

6.3.1 Additive first-order carryover effects

The model for this case is similar to (6.2) and y;; is written as

yii = p+ai+ B+ Taig) + pdi-) + Eij (6.6)

(i=1,...,p; 7 =1,...,5),
where pq(i—1,;) is the carryover effect, observed in period 7, of the treatment ad-
ministered in the (2 —1)th period to the jth subject and py ;) = 0fory =1,...,s.

All other effects in (6.6) are as for (6.2).
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Consider equation (6.6) with the assumption of independent, normal errors.
Many authors have used this model, including Williams (1949) who found exper-
imental designs combinatorially balanced for the estimation of carryover effects
under this assumption, in the sense of having each of the ¢ treatments preceded
equally frequently by every other treatment. A consequence, under equation
(6.6), is that the estimators of all pairwise comparisons have equal variances. Pi-
geon & Raghavarao (1987) assume this model and find cross-over designs which
are balanced for the estimation of carryover effects for the test treatment versus
control treatment contrasts, in the sense of having each contrast estimated with

equal precision.

Tlre model is also adopted by Russell (1991) in his search for good cross-over
designs for situations where there are fewer subjects than treatments. This type
of design is useful in product testing experiments, for example wine tasting, where
there are more products to be tested by each judge than there are judges available.
Russell found that near A-optimal designs for an even mumber of treatments ¢
can be obtained by selecting a set of s columus, which gives a design connected in
the direct treatment effects with the smallest average variance for the elementary

treatment contrasts, from the ¢ possible columns of a Williams Square.

Equation (6.6) expresses the carryover effect in its simplest possible form and
hence it is sometimes referred to as the simple carryover model. This lack of
complexity accounts for much of its popularity in the statistical journals. How-
ever, as already discussed, the assumption of independent errors may not be valid
and models of the form of (6.6) with the correlated error structures of Cases I or
IT of Section 6.2 have also been considered. Matthews (1987) obtains cross-over
designs for two treatments which minimise the variance of the estimated direct

treatment and carryover effects under a Case I type error structure with A known.

Models based on equation (6.6) have received some criticism in recent years
since they involve some assumptions which are not satisfied in many practical ex-
periments. These criticisms, which are in the context of pharmacological measure-
ments, are briefly mentioned here for completeness but are discussed in greater
detail in Section 6.8. Fleiss (1986, 1989) discusses the assumption, implicit in
equation (6.6), that the carryover effect of a treatment A onto a second treat-
ment B, will be the same as the carryover effect of A onto itself. He argues that
such an assumption is unlikely to hold in most practical settings. The assumption

does appear unrealistic since most drugs have a mazimum effect level and once
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this level has been attained no further increase in treatment effect can be gained
by continuing the treatment for a longer period. Matthews (1993) also discusses
this problem and formulates an alternative model for two treatments, which can

be extended to apply to ¢t treatments to give:

Yij = pA i+ B+ Taas + pai-1,i1 — ¢} + e (6.7)
t=1,...,p;7=1,...,s),

where

b= 1 ifd(z—1,7) =d(z,7) (6.8)

] 0 otherwise '

Note that, if t > 2, it is possible that the design has no treatment sequences
in which the same treatment appears in two successive periods. If so, then the
problem does not arise. In particular, treatment sequences containing the same
treatment in consecutive periods will not occur in designs which are binary with
respect to the subject blocking factor, since ¢ > p and the incidence matrix for
subjects will not contain any elements with a value greater than unity. This
problem does not arise in the dual versus single treatments case since the cross-
over designs given in Chapter 7 usually have a small number of periods and
hence a non-binary design for the subjects would result in poor within-subject

estimation of the contrasts of interest.

Fleiss (1989) also questions the assumption that carryover effects persist for
only one period. Senn (1992) discusses the existence of higher order carryover
effects in multiperiod designs and concludes that there is no adequate reason to
exclude them if first-order carryover effects are included. Models for this situation
are considered in Subsection 6.3.3. In the light of these criticisms it is clear that
models based on (6.6) cannot be used indiscriminately. However, this type of
carryover structure is considered by many to serve a useful purpose in trials
with relatively short treatment periods, where prior medical knowledge suggests
that the treatments may have short term carryover effects of a psychological or
pharmacological nature, and it cannot be certain that the allowable washout is

adequate.

A variation on the model consisting of (6.6) together with the assumption of
independent, normal errors is the circular model, see Magda (1980) and Hedayat
(1981), which has the form of equation (6.6) but includes a preperiod in the

experiment, labelled ¢« = 0, where each subject receives the treatment that he or
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she will also receive in the final period. Hence pyo,;) = pap.j) for 3 = 1,...,s.
Although this model has mathematical advantages, it would be difficult to justify
to clinicians why the extra period has been used when the data is not included
in the analysis. In many medical contexts the ethics of such a trial would be in

doubt. Hence, this model is not considered in this thesis.

6.3.2 Carryover effects proportional to direct effects

Consider a special case of equation (6.6) in which the carryover effect pyi_1;
i1s now modelled as a fraction of the direct effect from the previous treatment

admimistered to subject j, resulting in the model

Yii = M+ o+ B+ T ) + ATa-1,5) + € (6.9)
(t=1,...,p; 7 =1,...,3),
where 74,y = 0 and ) is a constant of proportionality with 0 < A < 1.

The model consisting of (6.9) together with the assumption of independent,
identically distributed errors is considered by Patterson & Lucas (1962) in their
catalogue of changeover designs. Sen & Sinha (1986) use the same model in their
analysis of serially balanced sequences. Two cases of the model are considered,
namely A known and A unknown. The latter authors propose an alternative model
in which the constant of proportionality is treatment dependent, so that treatment
2 has corresponding constant A; (¢ = 1,...,t). This is merely a reparameterisation

of the model based on (6.6) with pyi_1j) = Adi=1,5)Ta(i-1.5)-

Senn (1992) adopts a form of the model based on (6.9) in his discussion
of an example of a dose finding cross-over trial. However, it should be noted
that Senn is considering the physical carryover of the treatment substance to be
modelled in this way and ignores the possibility of psychological carryover effects,
whereas equation (6.9) refers to the carryover effect of the treatment which may

be psychological or pharmacological.

A model based on (6.9) is intuitively attractive since this type of relationship
between the direct and carryover effects is quite likely to occur in biological or
clinical contexts. Yet this model has not received much attention in the literature.
Since equation (6.9) is a special case of equation (6.6), it is not used explicitly in
this thesis. However, efficient designs under (6.6) with independent, identically

distributed errors are identified in Chapter 7.
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6.3.3 Higher order carryover effects

In multiperiod studies, it is possible that carryover effects may persist for more
than one period. If each kth-order carryover effect persists up to and including
the £th time period after the application of the treatment, then Pfilzz)'—k,j) can be

incorporated into (6.6) giving

1 2 k
yij = ptai+ i+ 1t pfl(g—l,j) + pfi(g-—zj) t..ot Pft(g-k,j)

+e;(t=1,...,p7=1,...,9), (6.10)

where p((l’(?_ b

y=0fort<h where h = 1,... k.

Similarly, (6.9) could be generalised to give

Yij = pA o+ B+ Tapg + ATai-1g) + N Tago2y + oo+ /\de(i—k,j)

+E1J (izl""’]);jzl"""9)7 (6-11)
or
yi; = pt i+ G5+ Taig) + Aai-1.0)Ta(i-15) T Adi-2,5) Td(i-24) - -
+ Ai(imk ) Td(i=kg) T €5 =1, .,p 7 = 1,...,8), (6.12)

where Ayi_y ;) 1s a constant and 7yi-pj) = 0 for ¢ < b where b = 1,...,k; see
Finney (1956) for use of models consisting of (6.11), with independent, normal

errors and also with correlated errors, in bioassay.

For higher order carryover effects, most attention in the literature has been
focused on the case where both first- and second-order carryover effects need to
be considered. Williams (1949,1950) considers designs balanced for both first-
and second-order carryover effects, firstly when the interaction between first- and
second-order carryover effects is ignored and secondly when such an interaction
is accounted for in the model. In the former case, any set of (¢t — 1) mutually
orthogonal Latin Squares gives a design combinatorially balanced for the effects
of k — 1 < ¢t preceding treatments, in the sense that each treatment in the kth
period is preceded equally frequently by every treatment in the ith period (i =
1,...,k —1), provided that the initial column of each square has the treatments
arranged in the same order. Nair (1967) considers the design and analysis of one-
dimensional sequences combinatorially balanced for both first- and second-order
carryover effects. The possibility of interactions between the carryover effects

is not discussed. Patterson & Lucas (1962) consider the design and analysis
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of experiments involving multiple carryover effects in their review of changeover
designs.

However, the criticisms of the simple additive model for first-order carryover
effects are, in general, also true of a model including both first- and second-
order carryover effects. A design found under the latter model may require more
subjects than a design under the simple model due to the increased number of
parameters to be estimated. Designs for the dual versus single treatment contrast
problem under a model including first- and second-order carryover effects are
given 1n Chapter 7.

Discussion The models discussed in this section are appropriate for the dual
versus‘.single treatment contrasts problem, provided their assumptions are reason-
able in the particular practical setting. The models based on (6.10) with A = 2
and (6.6), together with the assumption of independent, normal errors, are used
to identify good cross-over designs in Chapter 7. The latter model has simple
assumptions regarding carryover structure which limit the extent of its practical
use. [t is mathematically tractable and has widespread use both in the statistical
and medical journals, although it does possess disadvantages. Models based on
(6.10) have similar advantages and disadvantages, with the additional problem
that their use is limited to larger experiments which have sufficient subjects to

allow for the increased parameter estimation.

6.4 Models with factorial treatment effects

Berenblut (1967) considers a design for testing a quantitative factor at four
equally spaced levels. The case in which both the direct treatment and first-
order carryover effects have a linear, quadratic and cubic component is examined

and the analysis is conducted under the following model:

yii; = ptoai+fiticé il +icés +rim +ren: +rons +eij (6.13)
(i=1,....,p,7=1,...,8),

where 11, to, tc, rr, g and r¢ are the linear, quadratic and cubic components
of the direct treatment and carryover effects respectively and & and n; (i =

1,2,3) are the orthogonal polynomials for four treatments. The design under

discussion is arranged in such a way that the three degrees of freedom for direct
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treatment effects are mutually orthogonal to the degrees of freedom for the linear
and cubic components of the carryover effects and has the special feature that, if
the quadratic and cubic components of the carryover effects are negligible, then
the variances of the estimates of the direct treatment parameters are minimised.
Berenblut (1968) extends his previous work to find designs for a quantitative
treatment at any number of equally spaced levels. On this occasion, a slightly
different model is adopted in which both the direct treatment and first-order
carryover effects are assumed to be predominantly linear, with carryover effects
small by comparison with divect effects and proportional to them. A term for the

linear direct treatment x linear carryover interaction is included in the model.

Patterson (1970) also considers designing for a quantitative treatment factor
at four equally spaced levels. Attention is concentrated on those designs which
are efficient for the estimation of the linear direct treatment x linear carryover

interaction. Models with interaction terms are discussed more fully in Section 6.6.

6.5 Models with random sub ject effects

It is considered by some authors that the assumption of fixed subject effects is
unrealistic since subjects are tfrequently selected from the population and assigned
to treatments at random. Hence a model for random subject effects may be
considered more appropriate for certain stages of the study. Experiments designed
under the assumption of fixed subject eflects may be analysed under a random
subjects effects model and vice versa. In this section, three types of model having
random subject effects are briefly discussed. The effect of the jth subject (j =
1,...,s) within the kth treatment sequence (k= 1,...,¢), denoted by B, is now
considered to be an independent, identically distributed normal random variable

with mean 0 and variance o?.

The first model 1s written as

Yijk = i+ B+ Tag gk T ik (6.14)
=1,...,p;3=4L...,8; k=1,...,9),

where 74 ;4 1s the treatment administered to the jth subject within the kth
sequence in the tth period and the errors g, are assumed to be identically dis-

tributed random variables, with mean 0 and variance o2,

mdependent of each
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Bjx and of each other. It can be shown that the covariance between two obser-
vations y;jx and yuj is 0. Cornell (1991) uses a similar model, with different
distributional assumptions on the random effects, to develop tests of differences
of dispersion for the comparison of two treatments. In Cornell’s model, the sub-
ject effects are no longer required to have a normal distribution and the errors
are assumed to have distributions of the same form except that they may have

different variances under the two treatments.

The next model differs from (6.14) in that it includes a term, pg(i—1,jx), for the
carryover effect from period ¢ — 1 to period ¢. This extended model has received
much attention in the literature. Grizzle (1965) uses it to develop a test for the
validity of the assumption of equal carryover effects for the 2 x 2 cross-over trial.
Brown (1980) adopts Grizzle’s extended model to investigate the advantages of
the 2 x 2 cross-over trial relative to other simple designs and concludes that such
cross-over trials are only beneficial if the carryover effects are negligible. Brown
also argues that Grizzle’s test for the assumption of equal carryover effects under
this model is not sufficiently powerful to give a reliable result and hence there is

no adequate way to test the assumption from the data.

Although most of the cccurrences in the literature of model (6.14), with the
inclusion of a first-order carryover effect, have been in the context of experiments
for two treatments and two periods, there is no reason why the model cannot
be extended for use in higher order experiments. Jones, Kunert & Wynn (1992)
briefly consider a carryover model with random subject effects and independent
errors in their investigation of the structure of information matrices for mixed

effects models.

Attention is often concentrated on the 2 x 2 case because of its practical im-
portance in medical trials. The cross-over design most widely used in drug testing
experiments is the simplest 2 x 2 design consisting of the treatment sequences
AB and BA. However, the analysis of such a design is complicated by the prob-
lem of confounding between sets of parameters. The AB/BA design does not
allow separate estimation of the difference between sequence groups, the differ-
ence between carryover effects and the treatment x period interaction. Different
approaches and forms of analysis have been developed to take account of this

problem including Bayesian analysis, see Grieve (1985).

The second variation on (6.14) retains the term for the carryover effect but

also includes a fixed sequence effect, é,. Laska, Meisner & Kushner (1983) con-
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sider this model, as well as the corresponding model with fixed subject effects,
in their search for good designs for two treatments. It is shown, under the as-
sumption of either model, that a universally optimal design with an even number
of periods greater than two yields the best obtainable efficiency per observation.
This result is independent of the use of baseline information and assumptions
about carryover. The situation is much more complicated when the experiment
is restricted to two periods. Elswick & Uthoff (1989) develop a non-parametric
analysis of the two treatment, two period, four sequence cross-over design under
the extended model which includes sequence effects, although this model could

be applied in situations where more than two treatments are to be compared.

Matthews (1993) discusses the possibility of assuming subject effects to be
independent random variables with mean # and variance o2 which are also
independent of the ¢;;. Matthews notes that although optimality of designs is
not affected by the assumptions concerning subject effects, the efficiencies of non-
optimal designs may be dependent on the value of 8. Hence, in the dual versus
single treatments problem, there is a need to be wary of searching for efficient
designs under a model with random subject effects, since the efficiencies of these
designs, where sub-optimal, may be altered by changes to the size of the subject

variances.

6.6 Models containing interaction terms

In this section, models which allow for interaction between certain parameters are
considered, starting with those which include the treatment x period interaction

since this has received much attention in the literature.

6.6.1 The direct treatment x period interaction

The presence of a treatment X period interaction indicates that the direct treat-
ment effect differs according to the period in which the treatment is administered.
This causes a problem with interpretation since it is then difficult to draw con-
clusions about the efficacy of the drug when it is not administered in a cross-over

situation and there is no longer a period effect. This model can be written as:

yi; = p+ o+ B+t e tes =100, p 0 =1,...,8) (6.15)
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where §4(; j); denotes the treatment X period interaction and g;; are assumed

to be independent, identically distributed random variables with mean 0 and

variance o2,

Most of the evidence in the literature for the presence of a direct treatment x
period interaction is found in the context of 2 x 2 cross-over trials, where this type
of interaction is confounded with carryover effects, see Jones & Kenward (1989,
p 42). Some authors use the terms carryover and treatment x period interaction
interchangeably when discussing the 2 x 2 experiment since the two terms cannot
be estimated separately. However, this is not advisable since the two terms may
have different interpretations. Hills & Armitage (1979) and Armitage & Hills
(1982 consider model (6.15) when discussing the merits of the 2 x 2 cross-over
trial. In their opinion the two terms are distinguishable since the interaction may
be completely unrelated to carryover effects and hence may exist in the absence
of any carryover effects of either a pharmacological or psychological nature. For
example, there may be a substantial period effect due to changing environmental
circumstances, or a practice effcet in the first period when patients are adjusting to
the trial. The treatment effect may vary in magnitude with the response causing
an interaction. It should be noted that it is often difficult to make a priori
assumptions about the presence of carryover. The authors conclude that in the
presence of a significant carryover effect or interaction term, the analysis should
be limited to the data from the first period. An illustration of the interpretation
of the treatment x period interaction is given by Poloniecki & Daniel (1981) who

reanalyse some data from Hills & Armitage’s study on treatments for enuresis.

Balaam (1968) uses a model including a treatment x period interaction and
excluding all carryover effects. He finds two period designs for ¢2 experimental
units for the comparison of ¢ treatments which are efficient and allow for the
presence of an interaction term. Laserre (1991) uses model (6.15), with the
additional assumption of random subject effects, to find efficient designs for cross-

over trials to compare two treatments.
6.6.2 The direct treatment x first-order carryover inter-
action

Another important term which may be included in the model is the direct treat-

ment X first-order carryover interaction. The presence of this interaction in-
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dicates differential carryover effects which occur when the carryover effect of a
particular treatment observed in period ¢ for subject j varies according to which
treatment is currently being administered to subject j in period z. A model, with
a factorial treatment structure, which included this term is given by Berenblut
(1968) and is discussed in Section 6.4. Patterson (1970) considers designs for
testing a single quantitative factor at four equally spaced levels which provide
efficient estimates of the linear direct x linear first-order carryover interaction.
It is shown that designs which are suitable for the estimation of direct treatment
and first-order carryover effects are not necessarily the best designs for estimating

the interaction term.

Kok & Patterson (1976) employ a model with a direct treatment x first-
order carryover interaction when they define the class of serial factorial designs
in which direct effects are orthogonal to first-order carryover effects. A subclass
of this family of designs, called R-orthogonal designs, is found whose members
have the additional property that the first-order carryover effects are orthogonal
to the direct treatment x first-order carryover interaction. This property enables

efficient estimation of carryover effects.

6.6.3 The direct treatment x subject interaction

Another potentially important interaction is the direct treatment x subject in-
teraction. This area has received little attention in the literature; it is briefly
mentioned by Senun (1993, p 41). A possible explanation is that this type of
interaction does not affect the validity of the analysis but adds to the general
variability of the experiment. Cox (1984) discusses this issue in his review of
some aspects of interaction. The 2 X 2 cross-over trial is considered in detail
and it is argued that, under an additive fixed effects model for direct treatments,
first-order carryover, periods and subjects, interaction terms involving subjects
may be regarded as error since it is possible to conduct two independent analyses,

one using within-subject measurements and the second using the subject totals.

Another problem associated with this type of interaction is that of interpreta-
tion. If a significant treatment x subject interaction is observed, it implies that
the benefit of the drug varies with each patient which makes it very difficult to

gauge the efficacy of the drug for a particular patient before administration.

A disadvantage common to all the models discussed in this section is that
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they all require many more parameters to be estimated, resulting in increases
in the number of subjects required for the experiment. This fact, coupled with
the problem of interpretation of the interactions, may explain why many authors

ignore the possibility of interaction effects in cross-over models.

6.7 Autoregressive models

In this section, the relationship between successive responses is modelled by an
entirely different technique. The response observed for subject j in period ¢ now
depends on the response observed for subject j in period ¢ — 1 in addition to
the fixed effects for treatments, subjects and periods. The response observed for

subject j in period 7 can be written as

Yi; = Oyu-1)j + Tai ) + ai + 55 + €55 (6.16)
(t=1,....,p; 7=1,...,8),

where 6 is the parameter of the autoregression and 74 j), o; and f; are the
effects for treatment d(z, j), period ¢ and subject j respectively. Equation (6.16)
is similar to equation (6.11) in which carryover effects of all orders are assumed
proportional to the direct treatment effect of the previous period. Equation (6.16)
differs in that carryover effects are considered proportional to the sum of all the
effects from the previous period. As the trial progresses, the response of subject

j depends on the entire previous history of that subject.

Finney (1956) considers a model based on (6.16) with independent errors in
his discussion of cross-over models for biological assay. It is noted that autore-
gressive models are often unsuitable in this context since the parameter estima-
tion generally requires long sequences of observations which are not available in
bioassay. This argument also renders such models unsuitable for cross-over tri-
als. Gill & Shukla (1987) consider a model of the form of (6.16), together with
within-subject errors following a first-order autoregressive process as in Case I of
Section 6.2. Assuming the parameters, § and A, of the two autoregressive pro-
cesses are known, results are established for universally optimal and near-optimal
designs under models for both fixed and random subject effects. Again, as dis-
cussed in Section 6.2, there are technical problems associated with estimating

these parameters i practice.
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Taka & Armitage (1983) adopt a further variation on (6.16) to illustrate a
problem already discussed in Section 6.2, namely that design choice for a par-
ticular experiment is dependent on the assumptions regarding the covariance
structure of the errors. Taka & Armitage do not provide any solid evidence for
the use of this model although the plausibility of a model with two autoregressive
components is mentioned. The authors note that further data analysis is required

to determine the importance of both autoregressive components in practice.

This type of model is not used for the dual versus single treatments problem
due to the difficulty of estimating the parameters of the autoregression within

relatively short treatment sequences.

In the following section, some of the arguments which have been used against

the simple model, based on equation (6.6), are considered in more detail.

6.8 Problems associated with using the simple

carryover model

Although several authors have drawn attention to the deficiencies of models based
on (6.6), see Fleiss (1986, 1989) and Matthews (1993), one of the most detailed
discussions of the disadvantages of adopting a model of this form has been given
by Senn (1993), in which he addresses five main points. Attention is restricted
entirely to pharmacological effects, such as the presence of a drug in the blood, and
the discussion concerns multiple dose studies. An important concept in this type
of study, and one to which Senn makes frequent reference, is that of the steady
state response, that is the maximum response obtained by consecutive doses of
a particular treatment. In this section, each of the arguments put forward by
Senn is reviewed in a separate subsection and their application to the dual versus

single treatments problem is considered.

Note that the model referred to, following Senn, as the simple model is the

model consisting of equation (6.6) together with the assumption of independent,

normal errors.
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6.8.1 If carryover applies, the investigator can design a

trial which eliminates it

The argument focuses on the design given in the following example.

Example 6.1 A design for 2 treatments, 2 treatment sequences and 4 periods is

Sequence 1 2
Period 1 A B
21 A(a) B(b)
7| Bla) AQ)
4| B(b) A(a)

where the first-order carryover effects are given in brackets.

Senn discusses how this design is equivalent to the 2-treatment, 2-period cross-
over design with sequences AB and BA and measurements taken halfway through
the treatment period as well as at the end. He argues that if the investigator is
interested in a comparison between the steady state effects of the two treatments
then he or she will need to use the responses A(a) and B(b) since these are more
likely to represent the steady state than A and B alone. The former responses are
the measurements observed in periods 2 and 4 of the design and Senn concludes
that, if the estimates of effects are restricted to measurements from these two
periods, the results are equivalent to those that would be obtained from the

2-period design.

The points made are valid although attention has been restricted to a limited
area of the subject. Situations where there are more than two treatments under
investigation are not mentioned. The argument is not extended to consider mized
treatment sequences in which a treatment never follows itself. Several authors
have considered the implausibility of the assumption that the carryover of a treat-
ment onto itself is the same as the carryover of that treatment onto any other

treatment in the experiment, see Fleiss (1989) and Matthews (1993).

In conclusion, it may not always be possible to be sure that a study has been
designed which will eliminate carryover. A washout period may help to reduce
pharmacological carryover, but its maximum length is determined by ethical con-

siderations for the patient’s safety and hence may not be sufficient to eliminate
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the carryover effects completely. The study by Dunn (1993) to investigate the ef-
fectiveness of quinine in reducing night cramps applied a washout period and yet
a significant carryover effect or treatment x period interaction was observed. In
these circumstances employing a design which is efficient under the simple model
may be of value as it enables, at least, a diagnostic check on the assumption of

no carryover effects.

6.8.2 The simple model is implausible given elementary

pharmacokinetic and pharmacodynamic theory

Senn’s argument is again presented in the context of an experiment for two treat-
111e11t§, one of which is active and the other is a placebo. Under a model for a
pharmacological response, it is shown that the carryover from active treatment
A onto the placebo P is not the same as the carryover from the active treatment
onto itself. This directly contradicts the usual assumption of the carryover model
which was discussed in the previous subsection. In defence of the simple model,
the direct use of this assumption can be avoided by ensuring that a particular
treatment does not occupy two cousecutive positions in any treatment sequence.
Hence for studies involving ¢ > 2 treatments, a slightly weaker assumption is
employed which requires the carryover effect of treatment z onto treatment j
(j #i1=1,...,t) to be same as the carryover effect of treatment 7 onto treatment
kfor k #12, k # 7,1 <k <t Itis possible that this assumption may also
be shown to be invalid under pharmacological theory, although Senn does not

address this point specifically.

Senn shows by means of an example that under the assumption of a particular
pharmacokinetic model, that is a model for the handling of a drug within the
body including its absorption, distribution and excretion, the carryover of an
active treatment A onto a placebo P is the same as the carryover of A onto itself.
However, the carryover of two consecutive applications of A onto the placebo
treatment is not the same as the carryover of one application of treatment A onto
itself. Senn concludes that carryover depends on the total previous history of

treatment administration and not just the preceding period.

The pharmacological and pharmacokinetic arguments against the simple car-
ryover model, described in this subsection, may hold for studies involving more

than two treatments. However, the simple model may still be of value when it
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is necessary to consider the possibility of psychological carryover which has been

acknowledged as an important factor in drug trials, see Willan & Pater (1986).

6.8.3 The models which incorporate simple carryover

are self-contradicting

Senn puts forward this criticism of the simple model in the context of a factorial
treatment structure. His case is that in this type of situation potentially im-
portant interactions between direct treatments and carryover effects may not be
considered while less important interactions between pairs of carryover effects can
be allowed for in the model. The possibility of such interactions being important

will depend upon the nature of the treatments involved and the length of the

washout.

In defence of the model, work on designing factorial carryover trials has, to
date, focused on the simple case where direct treatment x subject and direct
treatment X carryover interactions are assumed negligible, see Fletcher & John
(1985). Designs efficient for estimating the direct main effects of each factor,
carryover main effects of each factor and interactions between direct treatment
effects have been found for the simple case, see Lewis, Fletcher & Matthews (1988)
and Fletcher, Lewis & Matthews (1990). However, similiar work seeking efficient
designs capable of estimating further interactions is possible. Generalised cyclic
factorial designs have the property that carryover x carryover interactions can be
estimated, if desired. If these effects are not of interest, because they are likely
to be negligible, they do not need to be included in the model or they may be

included and used as a diagnostic check for validity of model assumptions.

6.8.4 The estimators based on the simple model are in-

efficient

Senn outlines an analysis of the design of Example 6.1 which shows that the
estimates of the treatment effects, adjusted for simple additive carryover effects,
will have larger variance and larger bias than the unadjusted estimates. This is
undeniably true for the example given and, in general, adjusting the estimates of
treatment effects for carryover will increase their variance and may increase their

bias. However, Senn has made various pharmacokinetic and pharmacodynamic
N 1 y
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assumptions in the calculations. For example, drug disposition is assumed to
be modelled by a particular pharmacokinetic model, called the one-compartment
model, and the model for pharmacological response is assumed to be given by a
specific equation, see Hill (1910). The result may also be altered by the inclusion

of psychological carryover effects.

Senn’s conclusion that adjusting for carryover effects increases the variance
and bias of the estimated treatment effects is in direct opposition to the view of
Abeyasekera & Curnow (1984). The latter authors recommend that the wisest
approach is to always adjust for carryover, since ignoring small carryover effects

can cause bias in the estimation of direct treatment effects.

In experimental design, blocking factors are introduced into a model to reduce
systematic variation and subsequently the residual sum of squares. Similarly, if
carryover effects are included in the model and found to be substantial then the
corresponding reduction in residual sum of squares would compensate for the loss
of degrees of freedom through fitting the extra parameters. If carryover effects
are found to be insignificant then the reduction in degrees of freedom can be

regarded as the price of checking the negligibility of carryover effects.

6.8.5 The designs associated with the simple model are

not necessarily better than others

The key issue here appears to be that different assumptions about carryover
effects render different designs optimal. This is an important consideration when
planning a study and the investigator needs to be fully aware of any assumptions

which are implicit in the chosen model.

Senn’s most general criticism of the simple model is that it encourages the
belief that the validity of the estimates obtained does not depend upon adequate
washout having taken place. Clearly, it is advantageous if washout periods are
of sufficient duration to eliminate the possibility of carryover effects. However,
it is extremely difficult to determine the required length of time which obviously
varies according to the nature of the drug. This approach may also cause an
ethical problem, since the patient’s health may be endangered by relatively long

periods of time without treatment.

The conclusions from considering Senn’s criticisms are that indiscriminate use
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of the simple model is unwise, since the model has disadvantages and involves
assumptions which are unrealistic in some practical settings. However, there are
experimental situations where it may not be appropriate to ignore the possible
presence of carryover effects at the planning stage and, in the absence of any
carryover model which provides a more useful approximation to reality, the simple
model seems to be an acceptable starting point. Ideally, one would hope to find no
evidence of carryover effects indicating that a successtul washout has been applied
since, if significant carryover effects are shown to be present, the interpretation

of the analysis may be very difficult.

6.9 Conclusion

In this chapter, models suitable for designing and analysing cross-over trials have
been reviewed. A study of the literature has revealed that authors do not place
much emphasis on the practical applications of their results and that one of the
main criteria for model selection appears often to be mathematical tractability.
Correlated error structures are considered desirable because they dispense with
the unrealistic assumption of independence of measurements taken on a particular
mdividual. However, assuming the wrong type of error structure for the data may

have worse consequences than the assumption of independent errors.

It is difficult to recommend one particular model, since all the models dis-
cussed have their own advantages and disadvantages and may also have specific
areas of application. This suggests that an important area for future research is
designs which are robust to different structures of treatment carryover and within-
subject errors. There are relatively few investigations involving comparisons of

design performance under different models in the literature.

The next chapter presents designs for cross-over trials for the dual versus
single treatment problem under the model with structure (6.6) and independent,
normal errors and also under the extension of this model which allows for both
first- and second-order carryover effects. The results of an investigation of the

robustness of the designs is also given.
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Cross-over designs under

additive carryover models

7.1 Introduction

The aim of the work in this chapter is to identify efficient designs for cross-over
studies. Experimental situations involving short term effects and a correspond-
ingly low probability of the presence of carryover effects are considered. In this
type of study, it is extremely difficult to predict at the planning stage whether

carryover effects need to be accounted for in the model.

Suppose an investigator makes an assumption about the presence or absence
of carryover effects. If this assumption is later shown to be incorrect then one
possibility is that the analysis may ignore the presence of potentially important
effects so that the original model may be retained. This may result in dubious
study conclusions. Alternatively, a new model may be used at the analysis stage
which includes parameters for the carryover effects. However, the design used in
the study may perform badly under the extended model, since it was originally
selected for its performance under a row-column model. As design optimality is
model dependent, little reliability can then be attached to the conclusions of the
trial.

One solution to this problem is to select a design which performs well both in
the presence and absence of carryover effects. In other words, a design is required

which is efficient under both the row-column model of equation (1.1) and an

129
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appropriate carryover model. The additive carryover models considered in this
chapter include terms for first- and for first- and second-order carryover effects and
consist of equation (6.6) and equation (6.10) with kA = 2, respectively, together
with the assumption of independent normal errors. A feasible approach to finding
designs is to consider all possible rearrangements of an efficient row-column design
and then to select the arrangement which has the minimum total variance for the
least squares estimators of the contrasts of interest, in the direct treatment effects,
under the appropriate carryover model after adjusting for carryover effects. In
the remainder of this chapter, this approach is used employing the catalogue
of efficient row-column designs for estimating the dual versus single treatment
comparisons, presented in Tables 3.3-3.15 at the end of Chapter 3. This approach
can also be adopted when the main purpose of the investigation is to estimate
the carryover effects. However, this type of study is usually of secondary interest

in the type of experiment described in this thesis.

In the following section, an outline of the ordinary least squares estimation
of direct treatment effects is presented and some measures of cross-over design
performance are introduced. In Section 7.3, a method of obtaining cross-over
designs is discussed and an algorithm for finding designs using this approach is
given. The results are presented in Section 7.4. Cross-over designs for larger
experiment sizes are considered in Section 7.5. In Section 7.6, designs under an
additive model including both first- and second-order carryover effects are con-
sidered. An outline of parameter estimation under this model is given, together

with tables of designs and their efficiencies.

7.2 Parameter estimation and assessment of
design performance under a model includ-
ing first-order carryover effects

In order to estimate the direct treatment or carryover effects, it is necessary to

express the model based on equation (6.6) in matrix form:

Y=1,p+Pa+UB+Dr+Rp+e (7.1)

or alternatively as

Y =Xa+¢



e

l

| Chapter 7 131

whereX=(1n P U D R),a'z (u o BT p’),P,U,DandR
are the design matrices for periods, subjects, direct treatments and first-order
carryover treatments respectively, a, 3, 7 and p are the vectors of period, subject,
direct treatment and first-order carryover effects respectively, 1,, is an n x 1 vector

with every element equal to one and & denotes the vector of independent, normal

€erTors.

The least squares estimator of the parameter vector a is found by solving the
normal equations:

(X'X)a = X'Y.

These can be written in terms of the parameters of (7.1):

nfi+sl,é + plB+r7+7p = G (7.2)

syt + sla + J, 8+ N + N'p = Pror (7.3) :
ploji + Jopé + pI A+ N7 + Nip = Sror (7.4)
rii+ Npé + N +1°% + Lp = Tror (7.5)
i+ Nya+NB+ L3 +7p = Rror (7.6)
where r and 7 are the replication vectors for direct and carryover treatments,
7% and 7 are the diagonal matrices having the elements of  and 7 respectively
on the diagonal, N, and Np are the t X p period incidence matrices for direct
and carryover treatments, /N, and N, are the t x s subject incidence matrices for
direct and carryover treatments, L is a ¢ x ¢ matrix with /;; denoting the number
of times treatment ¢ is preceded by treatment j, G is the overall experiment total
and Pror, Stor, Tror and Rror are the vectors of unadjusted period totals,

subject totals, direct treatment and carryover treatment totals respectively.

The reduced normal equations can be derived by eliminating the period and

subject effects from equations (7.2) to (7.6). They can now be expressed in the

form:
AnT+Anp = q (7.7)
A+ Anp = @ (7.8)

where
An = 1° Ly,n 1NN’+1NJ N! 7.9
11 = 7 S rPilp P si's ps pYp,stisy ()
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Mip = L= N = NN+ Ny (7.10)
1~ - 1~ ~ 1 -~ ~,
Agyy = 75— ;—Np ’,) —_ -I—)N,N; -+ ;S'NPJP,-’NS (7.11)
and-
1 1 1
q1 = Tror — ;NpPTOT - ;NsSTOT + p—SNpJp,sSTOT,

1 - 1 - 1 -
q2 = Rror — ;‘NpPTOT - ;NSSTOT + ;);NpJp,sSTOT-

From equations (7.7) and (7.8), the direct treatment effects can be estimated

using
7 = Qco,(q1 — A1245,92)

where Q¢o, is a generalised inverse of Ay — A12A45,A], and A3, is a generalised

inverse of As,.

Similarly, the residual treatment effects can be estimated using

p=Qco,(q2 — AL AL q1)
where Q¢o, is a generalised inverse of Ay — A7, A7 Ara.

A design’s performance for estimating the treatment contrasts of interest, Cy,

can be evaluated by calculating the variance-covariance matrix of the contrasts
V(C.k) = CiQpo, Clo? (7.12)

for £ = 7,p. The condition for the estimability of a set of treatment contrasts is
given in Section 1.2. As before, estimability of all treatment contrasts is guaran-

teed if attention is restricted to connected designs.

In this chapter, interest is focused on finding designs which estimate the dual
versus single contrasts, H, in the direct treatment effects after elimination of the

carryover effects.

Before considering a method of obtaining cross-over designs, some measures
of the efficiency of such designs are briefly discussed. Efficiency factors of block
designs were introduced in Section 1.2. Similar quantities can be defined in the
cross-over situation. Jones & Kenward (1989, p 194) define the efficiency with
which a design estimates the pairwise contrast, 7, — 7;, as
202 v

By = —i——=
TVE-F)

x 100,
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with the subscript ¢ denoting that the treatments have not been adjusted for
carryover effects. Efficiency in the presence of carryover effects can be defined in
the same way, with V(#; — 7;) now denoting the variance of the contrast for the
direct treatment effects, under model (7.1), after adjusting for carryover effects.
Average efficiency factors for the two cases can be obtained by replacing V (#;—%;)

by the average variance over all contrasts.

The above measures can be used to assess the performance of designs for
estimating the set of all standard pairwise treatment comparisons but are not
appropriate for the dual versus single treatments problem. The following quan-
tity is used to assess the performance of designs, found under model (7.1), for
estimating the dual versus single treatments contrasts. The measure of efliciency,
denoted by E¢o, for a particular cross-over design d is found by taking the total
variance of the dual versus single treatment contrasts, H, of the most A-efficient
row-column design d; for the specified experiment size, found by the method of
Section 3.6, as a fraction of the total variance of the same contrasts in the direct
treatment effects, estimated from design d under the carryover model (7.1), after

adjustment for first-order carryover effects. This can be expressed as

_ t7‘(HQRcHI)dl
~ tr(HQco, H')4'

Eco (7.13)

where H is given in equation 1.12 and Qrc and Q¢o, are the generalised inverses
of the information matrices for the direct treatment effects under models (1.1)

and (7.1) respectively.

In the following section, an approach to finding designs which perform well

both in the presence and absence of carryover effects is discussed.

7.3 A method of finding cross-over designs

As already discussed in Section 7.1, it is extremely difficult to predict at the
outset of an experiment whether carryover effects will be present. This is an
important issue since it determines the choice of model which in turn determines
the selection of a design. One way of reducing this problem is to use a design
which performs acceptably both in the presence and absence of carryover effects,
since this will give the study results some protection against the invalidity of

assumptions regarding the presence of additive carryover effects. The investigator
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is free to choose the more appropriate of the two models for use at the analysis

stage. In this section, attention is restricted to first-order carryover effects.

The following approach for finding designs is used. Firstly, an efficient row-
column design for a particular experiment size is selected from the catalogues of
designs given in Chapters 3 and 4. All possible rearrangements of this design, ob-
tained by interchanging elements within the subject blocks, which do not increase
the total variance under the row-column model (1.1) are considered. The design
which has the smallest total variance for estimating the contrasts of interest in
the direct treatment effects, under model (7.1), after adjusting for first-order

carryover effects is selected.

The following example provides an illustration of the approach to finding
designs.

Example 7.1 Consider a 3 x 2 experiment for siz subjects in three periods. An
efficient part-balanced design under the row-column model (1.1) is given in Ta-
ble 8.4 and has a total variance for the dual versus single treatment contrasts of
2.5432. The corresponding variances under the simple carryover model (7.1) have
a total of 28.4970. Hence, the total variance has been substantially increased by

including the first-order carryover effects.

By ezamining all the valid connected rearrangements of the original row-
column design, the arrangement under model (7.1) which achieves minimum total
variance of the contrasts in the direct treatment effects, after adjustment for first-

order carryover effects, is:

11 21 01 21 10 20
10 01 11 20 11 21
01 20 10 01 21 11.

This connected design has a reduced total variance of 5.0502 while the total vari-

ance under the row-column model has remained unchanged.

Example 7.1 indicates that if an investigator uses the second design, he or she
will be in a better position to analyse the experiment under the simple carryover
model if it should prove necessary. The efficiency, Eco, of the second design is 0.50
which is low. However, it should be noted that the use of model (7.1) requires the

estimation of more parameters due to the inclusion of first-order carryover effects.
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In the design shown in Example 7.1, there are only three periods hence only a
small number of treatment comparisons can be estimated using measurements

taken on the same subjects. This is one of the causes of the large size of the total
variance.

The effect of introducing another set of parameters into the model may be to
reduce the systematic variation in the experiment and hence reduce the residual
sum of squares. This is the principle which motivates the use of blocking factors in
experimental design. However, this is unlikely to be the case in the above example
since the carryover effects are expected to be small if not entirely negligible.
In this situation, the increase in total variance can be regarded as the price of

checking the assumption of the presence of first-order carryover effects.

Before discussing the search algorithm which was developed to find the best

arrangement of a row-column design, the issue of connectivity is addressed.

7.3.1 Connectivity of cross-over designs

The property of connectivity is discussed in Section 1.2. It is an essential property
since if a design is connected for a set of effects under a particular model then
all possible contrasts in those effects are estimable, see John (1987, p 19). All
the designs considered in this chapter are connected under model (1.1) since all
the row-column designs of Chapters 3 and 4 possess this property. However, it is
possible that some of the rearrangements of these designs may be disconnected

under model (7.1) as the following example demonstrates.

Example 7.2 Consider a 3 X 2 experiment for five subjects and three periods.
An efficient part-balanced design under model (1.1) is given in Table 8.4 and has
a total variance for the estimators of the dual versus single treatment contrasts
of 8.0545. This particular design is disconnected under model (7.1) since the
information matriz for the direct treatment and first-order carryover effects is of
insufficient rank. The connected rearrangement of this design which achieves the

smallest total variance under model (7.1) is given in Table 7.1.

A check for the connectivity of cross-designs under model (7.1) is incorpo-
rated into the algorithm for finding designs which is discussed in the following

subsection.
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7.3.2  Algorithm for identifying efficient designs

In this subsection, an outline of the search algorithm is first given. This is followed

by further detail and justification of aspects of the algorithm.

The design search was carried out in the following steps:

Given an initial row-column design for ¢ treatments in R rows and C
columns, all possible permutations of the elements of this array are found
by a recursive process which combines each of the R! possible arrangements
of the first column with each of the R! possible arrangements of the second
and subsequent columns in the design. In total, (R!)¢ permutations are

generated for each design.

A check is performed to ensure that only permutations which are valid
rearrangements of the original row-column design are considered for vari-
ance estimation. A valid rearrangement is defined to be a design which
has the same single blocking factor component designs as the original row-
column design. This condition ensures that, whichever arrangement is cho-
sen under model (7.1), the total variance of the contrasts of interest under
model (1.1) remains unchanged. Since the rearrangements are performed
within-subject, a check on the block design for periods is sufficient to de-

termine design validity.

The variances of the dual versus single treatment contrasts in the direct
treatment effects are calculated using equation (7.12) with £ = 7. A NAG

routine is used to find a suitable generalised inverse, Q¢o, .

A storage list capable of holding thirty designs and their corresponding
variance-covariance matrices is maintained. A new design is admitted to
the list if its total variance for the contrasts of interest is less than or equal

to any of the designs present in the existing store.

Medical trials commonly have four or fewer periods due to the increased chance

of subjects dropping out of studies of long duration. Hence, the algorithm allows

designs with a maximum of four treatment periods to be considered. For more

than four periods the large increase in the number of permutations of the original

design would make the search impractically long at present. Some reduction in

search time could be achieved by identifying and removing isomorphic designs.
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The maximum number of subject groups, or distinct treatment sequences, is
currently set at nine. This figure was partly determined by the requirement of
limiting the design search to a manageable length and by the maximum dimen-
sions of the initial row-column designs. However, cross-over trials generally have
a relatively small number of subject groups since designs involving large numbers
of distinct treatment sequences are difficult to implement in practice. The size
of the experiment can be increased by allocating more than one subject to each
treatment sequence. Checks on the validity of the input data are performed to
ensure that the designs considered do not have period and subject parameters
which exceed the specified limits. A further check is conducted to ensure that

sufficient degrees of freedom are available for the estimation of all the parameters.

The algorithm also includes a check for the design property of connectivity,
see Section 1.2 and Subsection 7.3.1. Example 7.2 illustrated that the search
algorithm may yield designs which are disconnected under model (7.1). A method

of checking for this problem is to calculate the rank of the information matrix

A Ag
Aco = ( ,“ ' ) (7.14)
Ay An

and Ay, Ay and A,y are given in equations (7.9) to (7.11). A design which is

Aco, where

connected for both direct treatment and first-order carryover effects should have
rank(Aco) = 2t — 2. Any design which is found to have insufficient rank is

discarded.

A Pascal coding of the algorithm is given in Appendix A.

7.4 Tables of results and discussion

In this section, the designs found under model (7.1) with the smallest total vari-
ance for the contrasts of interest in the direct treatment effects, after adjustment
for first-order carryover effects, are presented in Tables 7.1-7.3. A discussion of

the performance of the designs is also given.

Results are obtained for parameters 3 < p < 4,4 < s <9,3 <n <4 and
m = 2, by rearranging the PBDS row-column and PBDS row-orthogonal designs,
listed in Tables 3.4, 3.5, 3.10, 3.11, 4.1 and 4.3. The individual variances of the

contrasts when model (7.1) 1s used are given in Tables 7.1-7.3, together with
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the total variances calculated under this model, denoted by (C-O), and under
model (1.1), denoted by (R-C). The efficiency factor Eco, see equation (7.13), is

also listed as a measure of the cost of including the first-order carryover effects.

It is clear that the cross-over designs perform very poorly when the experiment
involves a small number of subjects or periods. Note that the designs for p = 3
and s = 5,6 in Table 7.1 have values of E¢co in the range 40-50% whereas the
designs for p = 4 and s = 5,6 in Table 7.2 have values of E¢o of at least 85%.

The following example of a two-period study further illustrates this point.

Example 7.3 Consider a 3 x 2 experiment for two periods and nine subjects.
The most A-cfficient PBDS design found in the study under model (1.1) is given
in Table 3.3 and has tr(HQpcH') = 3.3258. The rearrangement of this design
which achieves the minimum total variance of the contrasts in the direct treatment

effects under model (7.1), after adjustment for first-order carryover effects, is

or 21 10 (1 21 20 01 20 11
11 01 11 10 20 21 10 01 21.

This rearrangement has tr(HQeco, H') = 28. Hence the total variance of the
design has been greatly increased by including first-order carryover effects in the

model.

The design in Example 7.3 has other disadvantages besides its large total vari-
ance. As a result of limiting the study to two periods, the direct treatment x
period interaction is aliased with first-order carryover effects, preventing separate
estimation of both sets of effects. A further drawback is that designs for two
periods require a large number of subjects in order to gain sufficient degrees of
freedom for the estimation of parameters. Hence, designs for two periods are not

considered further in this work.

One of the advantages of using a cross-over study is that comparisons are
made within subject. One of the causes of the inefficiency of designs with a small
number of periods is that few comparisons can be made using measurements on
the same subject, hence comparisons are made between subjects which increases
the total variance. Another cause of the inefficiency may be attributable to the
structure of the precedence matrix, L, whose elements I;; (1,7 = 1,...,t) denote

the number of times treatment ¢ is preceded by treatment j in the design. When



Chapter 7

139

Table 7.1: Table of cross-over designs for n = 3, p = 3 and 5 < s £ 9, found

under model (7.1) which includes first-order carryover effects. Variances of the

individual contrasts are calculated using this model.

p | s | Design V(fi1 — To1) V(Fi1 — Ti0) tot var  totvar Eco
i=1,2 i=1,2 C-0 R-C
3151120011021 1.7333 1.0667 7.3333 3.0545 0.42
0121112010 1.6000 2.9333
1001 21 11 20
(Row-orthogonal)
316]112101211020 1.1068 1.3161 5.0502 2.5432 0.50
1001 112011 21 1.5492 1.0782
01 20 1001 21 11
317110200101 21 1111} 0.7135 0.8087 3.0026 2.1595 0.72
0101 1020112121 0.5739 0.9065
1121 1121 01 10 20
31841 101101012021 2111 0.5662 0.6206 2.5288 1.8698 0.74
0101 102021201121 0.5647 0.7773
111011210101 10 20
319]101101012120112101 0.4400 0.6063 2.1120 1.6524 0.78
11 10 11 20 01 01 21 20 21 0.5099 0.5558
0101 102120211011 11
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Table 7.2: Table of cross-over designs for n = 3, p = 4 and 4 < s < 6, found
under model (7.1) which includes first-order carryover effects. Variances of the

individual contrasts are calculated under this model.

p i s | Design V(%1 —~ 7o) V(fi1 — 7io) tot var totvar FEco
1=1,2 i=1,2 C-0 R-C

4|1 4}101201121 1.1492 1.3140 4.1465 2.8667 0.69
10 11 20 01 0.7694 0.9139
21 01 10 20
11210110

4150110212011 0.6085 0.6085 2.4341  2.1333 0.88
1021 11 01 20 0.6085 0.6085

2001 10 11 21
1120012110
(Row-orthogonal)

4 1510120211110 0.5513 0.6658 2.4936  2.1259 0.85
1121 01 20 21 0.5407 0.7358

21 111001 20
1001 11 21 1}

4160120110110 21 0.4579 0.5424 1.9636  1.7787 0.91
1111 212001 10 0.4287 0.5347

1001 01 21 11 20
2121 10 11 20 01
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Table 7.3: Table of cross-over designsforn =4, p=3,7<s < 9andp =4,5 =6,

found under model (7.1) which includes first-order carryover effects. Variances of

the individual contrasts are calculated using this model.

p | s | Design V(71 — 7o1) V(7i1 — Tio)  tot var  totvar  Eco
1=1,2,3 1=1,2,3 C-0 R-C

31 7] 112101201030 31 1.8571 2.4286 13,1429 5.1429 0.39
01 20 31 10 30 11 21 2.4286 1.8571
10 01 30 31 21 20 11 1.8571 2.7143
(Row-orthogonal)

317]01213101203011 3.8333 4.0000 19.1667 4.8980 0.26
11 20 01 10 21 01 31 1.2500 1.3333
10 01 30 11 01 31 21 7.7500 1.0000

318 (102031110101 2130 1.0438 1.1753 11.4525 4.2667 0.37
110101 1021 30 31 20 2.0809 2.5457
012130012031 11 10 2.0611 2.5457

3191102001 112101 213130 1.8081 0.8760 7.2236  3.6961 0.51
012130012031 101111 0.8954 1.0957
1101311001 30312021 0.8956 1.6528

416011121 111031 0.8616 2.1734 9.5118 4.5958 0.48
11 3101 21 31 30 1.1100 2.7848
210131201121 1.0339 1.5481
312111103020
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all the pairwise treatment contrasts are of interest, highly efficient cross-over
designs under model (7.1) have been found which have the off-diagonal elements
of L as equal as possible, such as Williams Latin squares, see Williams (1949,
1950). In the dual versus single treatments case, it is difficult to make analogous
statements concerning a desirable structure for L since the contrasts do not form

an orthogonal set. This topic is an area for further work.

It is clear from Tables 7.1-7.3 that the efficiencies of designs for three and four
periods improve as more subjects are included. This is due to the fact that the
increased number of distinct treatment sequences allows more direct treatment,

carryover combinations to be included in the design.

Aﬁ examination of Tables 7.1-7.3 reveals that the cross-over designs with
the smallest total variance are generally not part-balanced under model (7.1)
with respect to the dual versus single treatment contrasts. An exception is the
row-orthogonal design for p = 4 and s = 5 in Table 7.2 which is also variance-
balanced, that is, the contrasts in both the dual versus A and dual versus B
groups are estimated with the same variance. However, further designs which
are part-balanced for the contrasts of interest under model (7.1) may exist for
the experiment sizes considered in this chapter. The algorithm used to find the
rearrangements of the row-column array currently stores thirty design arrays in
ascending value of total variance. Part-balanced designs may be present in this
list, although if the design has a large total variance the advantage of using a
design with part-balance is unlikely to compensate for the loss in precision. The

following example iilustrates this point.

Example 7.4 A part-balanced cross-over design for a 3 X 2 experiment for three

periods and five subjects is:

01 20 21 11 10
11 21 01 10 20
10 01 11 20 21.

This design has tr(HQco, H') = 14.4 which is considerably larger than the total
variance of the alternative design in Table 7.1. The non-PBDS cross-over design

would be the recommended design in this case.

Further PBDS rearrangements may exist with a total variance which is suffi-

ciently large to prevent entry to the design list. However, such designs are not of
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practical interest. Note that row-orthogonal designs are a fruitful source of PBDS
rearrangements since these designs have replication vectors for both direct and
carryover treatment effects of the PBDS form, that is the A-alone treatments are
each replicated r4 times and the dual treatments are each replicated rp times,
see equation (3.2). The replication vector of carryover effects in designs without
row-orthogonality rarely takes this form since there are no carryover effects for
the final period.

For some experiment sizes, there is a choice of cross-over designs. For example,
if an investigator wishes to conduct a study for a 3 x 2 experiment with four
periods and five subjects either of the two efficient designs in Table 7.2 may be
used. “The row-orthogonal design which has higher efficiency than the alternative
design also has the additional property of variance-balance for the dual versus
single contrasts. This may make the row-orthogonal design the preferred choice.
For a 4 x 2 experiment with three periods and seven subjects, see Table 7.3,
the row-orthogonal design with Eco = 0.39 is again preferable to the alternative
design which has Eco = 0.26. Neither of the designs has part-balance for the

dual versus single contrasts under model (7.1).

In conclusion, the designs in Tables 7.1-7.3 demonstrate that cross-over de-
signs which perform acceptably in the presence and absence of additive first-order
carryover effects can be obtained by rearranging efficient row-column designs.
The use of these designs will afford some protection against the assumption of

non-negligible first-order carryover effects.

7.5 Obtaining larger designs

In the previous section, it was noted that the smaller designs found by the method
of exhaustive search are not highly efficient. One way of improving the efficiency
of studies with a small number of subjects is to increase the number of subjects.
Since it is not practical to use the search algorithm of Subsection 7.3.2 to find
larger designs, a second approach is now developed. This involves building designs
by combining copies of the designs in Tables 7.1-7.3 and is referred to as the
building brick method, using the terminology of Pearce (1983, p 126). In this

section, the method is applied to finding designs for two specimen cases.
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Example 7.5 Consider a 3 x 2 experiment for three periods and ten subjects.
The most A-efficient PBDS row-column design, found in the study by the method
of Section 3.6 under model (1.1), is

01 01 01 20 10 21 10 21 11 11
10 20 11 01 01 01 11 20 21 21
11 21 10 21 11 20 0f 01 10 20.

This design has tr(HQgrcH') = 1.4837 which has a discrepancy of 5.1% with the
bound of (2.12). The row and column component designs have discrepancies of
1.5% and 4.3% respectively with the appropriate bound of Section 2.4. An obvious
choice for the building bricks of the cross-over design in a 3 x 10 array is two
copies of the cross-over design in a 3 X 5 array, see Table 7.1. The resulting
design has a total variance of 3.6667 and Eco = 0.40.

The efficiency of the cross-over design relative to the A-best row-column design
found by the method of Section 3.6 for t = 5, p = 3 and s = 10, given in
Example 7.5, is much lower than the corresponding efficiency for the cross-over
design for t = 5, p = 3 and s = 9 listed in Table 7.1. This is not surprising since
the number of distinct treatment sequences in the larger design has not been
increased, instead two subjects have been allocated to each of the five distinct
sequences. Consequently, the structure of the precedence matrix, L, has not
changed. However, the size of the non-zero elements has been doubled, increasing

the disparity between them.

In order to reinforce this point, a second example is considered.

Example 7.6 Suppose a design is required for a 3 X 2 experiment with three pe-
riods and twelve subjects. The most A-efficient PBDS design found under model
(1.1) using the method of Section 3.6 has tr{HQpcH') = 1.2343. The discrep-
ancies of the total variances of the row-column design, compared with the bound
of (2.12), and the row and column component designs, each compared with the
appropriate bound of Section 2.4, are 4.9%, 0.6% and 4.2% respectively. The
following cross-over design can be obtained by using two copies of the design for
t=5p=3and s =6:

11 21 01 21 10 20 11 21 01 21 10 20
10 01 11 20 11 21 10 01 11 20 11 21
01 20 10 01 21 11 01 20 10 01 21 11,
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which has tr(HQco, H') = 2.5251 and Eco = 0.49. An dlternative design is
obtained by taking one copy of each of the designs fort =5, p =3, s =5 and

t=25,p=3, s =T as shown below,

11 20 01 10 21 10 20 01 01 21 11 11
01 21 11 20 10 01 01 10 20 11 21 21
10 01 21 11 20 11 21 11 21 01 10 20.

This design has a total variance of 1.7001 and Eco = 0.73.

The difference in the performance of the two cross-over designs of Example 7.6
is duetto the fact that the second design has twelve distinct treatment sequences,

allowing more combinations of direct treatment and carryover effects.

The exhaustive search algorithm which produced the designs of Tables 7.1-7.3
generates a list of thirty cross-over designs stored in ascending value of total vari-
ance. The list does not contain any designs with a common variance-covariance
matrix but may contain designs which have a common set of contrast variances
arranged in a different order on the leading diagonal of the variance-covariance
matrix. It was noted that, if the variances in the dual versus B and dual versus
A contrast sets are distinct, groups containing a maximum of (n — 1)! designs
each with a common total variance are obtained. An obvious area of further in-
vestigation is to see whether combining two distinct designs with the same total

variance yields an improved design.

Example 7.5 for a 3 x 2 experiment in a 3 x 10 array is now reconsidered to

see whether an improved design can be obtained using the above approach.

Example 7.7 For n = 3, pairs of designs with a common total variance are
obtained. Taking the two distinct designs fort =5, p =3 and s = 5, both with a

total variance of 7.3333 as the building bricks, the following design is obtained

11 20 01 10 21 10 21 01 11 20
or 21 11 20 10 11 01 21 20 10
10 01 21 11 20 01 20 (1 10 21.

This design has a total variance of 2.1483 and an efficiency relative to the A-best
row-column design of 0.69. It also has the property of part-balance for the dual

versus single treatment contrasts.



Chapter 7 146

Extending this idea, further designs for a 3 x 10 array can be obtained by
considering more than one pair of designs from the list generated by the search
algorithm. For the investigation of this example, attention was restricted to the
first three pairs on the design list which have total variances of 7.3333, 9.7333
and ' 12.0 respectively. The best combination of designs is

11 20 01 10 21 10 01 21 11 20
01 21 11 20 10 11 21 01 20 10
10 01 21 11 20 01 20 11 10 21

with tr(HQco, H') = 2.0904 and Eco = 0.71. This combined design is not PBDS.

A further design for t = 5, p = 3 and s = 10, without the property of part-
balance, can be obtained by the exhaustive search method of Subsection 7.3.2
and has tr(HQco, H') = 1.9217 and Eco = 0.77. This design is not a marked
improvement on the design with the smallest total variance, obtained by the

building brick method, given in Example 7.7.

A similar procedure was followed for the second example for a 3 x 2 experiment

witht =5, p=3 and s = 12.

Example 7.8 Three pairs of designs fort = 5, p = 3 and s = 6, having total
variances of 5.0502, 5.1250 and 5.4265 respectively, are considered for construc-
tion. The A-best design found by the building brick approach for five treatments
in a3 x 12 array is obtained by combining the two distinct designs, both with a

total variance of 5.1250, to give

10 21 01 21 11 20 11 01 11 20 01 21
11 01 11 20 10 21 10 21 01 21 11 20
01 20 10 01 21 11 01 20 10 01 21 11.

This design has tr(HQco, H') = 1.5604, Eco = 0.79 and is part-balanced.

It was noted that, for the examples considered in this section, combining two
distinct designs with the same total variance produces a cross-over design which

is part-balanced for the dual versus single treatment contrasts under model (7.1).

The same method can be used to find designs for a 3 X2 experiment in a 3x 12

array using building bricks of sizes 3 x 5 and 3 x 7. The A-best design, found
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by considering all possible combinations of the six designs having the smallest
total variance for three periods and five subjects with the six designs having the
smallest total variance for three periods and seven subjects, has a total variance
of 1.6070 and E¢o = 0.77. This is not an improvement on the best design found
in Example 7.8.

In this section, a method for constructing efficient cross-over designs for large
numbers of subjects has been discussed. It has been shown, by means of examples,
that more efficient desigus can be obtained by combining pairs of distinct designs
which do not necessarily have the same number of subjects rather than using two
copies of the same design. The designs found in the two specimen cases were
constructed manually and then input to a program for variance calculations. The
whole process could easily be carried out by one computer algorithm. This would
allow more building bricks to be considered and would reduce the possibility of
input errors. The development and coding of such an algorithm is an area for

further work.

7.6 Cross-over designs under a model for both

first- and second-order carryover effects

In the remaining part of this chapter, efficient cross-over designs found under the
assumption of an additive model including both first- and second-order carryover
effects are considered. An analogous approach to that outlined in Section 7.3 is
used. The search algorithm remains unchanged; the necessary alterations occur
in the modules concerned with parameter estimation. The method of estimation

1s outlined below.

7.6.1 Ordinary least squares estimation of direct treat-
ment effects, after adjusting for first- and second-

order residual effects
The additive model assumed in this section has the following matrix form:

Y=1p+Pat+UB+Dr+ Rp+ R2n 4 ¢ (7.15)
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or

Y =Xa+¢

where X = (ln P U D R R2),a'= (,u o B T p ﬂ"), 1., P,
U, D, R, a, B, 7, p and € are as given in Section 7.2, R2 is the design matrix
for second-order carryover effects and 7 is the vector of second-order carryover
effects.

The normal equations, (X'X)a = X'Y, can be expressed in terms of the

parameters of model (7.15), to obtain:

nji+sU&+plif+r'i +7p+ it = G (

slyft + sl& + Jp B+ Nit + N'p+ Ny = Pror (
ploji + Jop& + pl. B+ N7+ N'p+ N7 = Sror (7.18

ri+ Nyad + N + %% + Lp+ Ly = Tror (

Fp+ Nya+ NS+ L't +75+ L& = Rror (

Fofi + Nppbr + Noff + Ly# + Lip+ 7% = R2ror (

where r, 7, N,, Np, N, Ns, L, G, Pror, Stor, TTorT and Rror are as defined
in Section 7.2. The new notation 1s defined in a similar way where 7y is the
replication vector for second-order carryover effects, NPQ and N, are the t X p
and ¢ x s incidence matrices for periods and subjects, respectively, with second-
order carryover effects, L. = (l.;) denotes the number of times treatment ¢ is
preceded by treatment j in the first p — 1 periods, Ly = (l5;;) denotes the number
of times treatment ¢ is administered to a subject in period k£ when treatment j
was administered to the same subject in period £ — 2 and, finally, R27o7 is the

vector of unadjusted second-order carryover treatment totals.

After eliminating period and subject effects, equations (7.16) to (7.21) can be

expressed as

Ant 4+ App+ At = q (7.22)
Allg'f' + A22/3 + A237AT = g2 (723)
At + App + Azt = g3 (7.24)

where

1 1 1
All = 7‘5 - —NPN; —_— —NSN; + _NpJp,sN.:,
s p ps
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- 1 ~ 1 ~
A = L— <N, — N, + ~N,J, N,
S p ps

1 ~ 1 . 1 -
A13 = L2 + ;Nlel,g - ;NsN.;z + ;;NPJP,S .;27
. 1.~ = 1~ - 1 - -
Ay = 76-—‘; P ’,’_BNS ;+;;NPJP13 o
1~ it 1 - - 1 - !
Az = Lc_;NPNIﬂ_; s 32+ENPJP3NS2’
. 1- / 1o 1 - Nd
Azz = Ty — ;NP2NP2 - ;Ns?st + ;;NP?JPrsNﬂ
and
. 1 1 1
g = Tror — ;NpPTOT — ;NSSTOT + ;;NpJp,SSTOT,

1 ~ 1 -~ 1 -~
Rror — =Ny Pror — —=N,Stor + —NpJ, sStor,
s p ps

q2

1. 1. -
g3 = R2ror — ZNp2PTOT - ;stsTOT + ;;NpZJp,sSTOT-

After further eliminating first- and second-order carryover effects from equa-

tions (7.22) to (7.24), the reduced normal equations can be written as:
AcorT = Q)

where Acoz = My1— Mo M5, M|, and Q = ¢1— A13A33q3— M2 M3y (q2— A2 AS3q3),
with M,'j = Aij — Ai3A;3A;-3, (Z,] = 1, 2)

The direct treatment effects can now be estimated by

7 = Qco2,Q,

where §lcp,, is a generalised inverse of Aco;. The total variance of a set of

contrasts, Cy, in the direct treatment effects is given by

t?’(CtQCOQTCtIO'Z). (725)

7.6.2  Tables of designs found under a model for first-

and second-order carryover effects

In this section, cross-over designs which estimate the dual versus single treatment
contrasts in the direct treatment effects, under model (7.15) after elimination of

the carryover effects, are presented.
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Table 7.4: Table of cross-over designs forn = 3, p =3, 7 < s < 9, found under
model (7.15) which includes first- and second-order carryover effects. Variances

of the individual contrasts are also calculated under this model.

p | s | Design V(71 — 701) V(fi1 —fio) totvar Ecoz Ecco
i=1,2 i=1,2  CO02
374§ 1120012101 1021 3.5556 4.0000 16.0000 0.13 0.89
0121 1020112111 2.2222 6.2222

1001 1101 21 11 20

3181011010120 212120 1.5429 4.6857 13.2000 0.14 0.98
0101 10 21 21 20 11 11 2.1714 4.8000
1110 11 20 01 01 10 21

319]1011010101 21212011 1.5792 2.3589 8.0149 0.21 0.86
0101112021 20101121 1.7971 2.2797
11 10 16 21 20 01 11 21 O}

Form=2,n=3,p=3,T<s<9andp=4,5 < s <6, designs are obtained
using the algorithm described in Subsection 7.3.2 with the following modifications.
In Step 3, the variances of the dual versus single contrasts are calculated using
equation 7.25. The connectivity condition now examines each design information
matrix for direct treatment and first- and second-order carryover effects to check

that it has a rank of 3t — 3.

The total variance of the least squares estimators of the contrasts of interest
found under model (7.15), denoted by tot var C-02, is given for each design in
Tables 7.4 and 7.5.

Note that designs for n = 3, p = 3 and s < 7 could not be obtained since there
are insufficient degrees of freedom available for the estimation of parameters in

these cases.

In order to evaluate the performance of the desigus, the relative efficiency of
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Table 7.5: Table of cross-over designs for n = 3, p = 4, 5 < s < 6, found under
model (7.15) which includes first- and second-order carryover effects. Variances

of the individual contrasts are also calculated under this model.

p | s | Design V(fi1 — To1) V(%1 — Fio) totvar Ecoz Ecco
i=1,2 i=1,2 C-02
4 1510110212011 0.9352 0.9352 3.7408 0.57 1.0
10 21 11 01 20 0.9352 0.9352

20 01 1011 21
112001 21 10
(Row-orthogonal)

4115|1001 211120 0.8722 1.0521 42822  0.50 0.92
1121 1001 11 0.9264 1.4316

2111012021
0120112110

41601201001 1121 0.5899 0.7899 2.8917  0.62 0.88
1101 11 21 20 10 0.7348 0.7770

10 11 21 20 01 O1
212101 111020
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the cross-over design found under model (7.15) compared to the most A-efficient
PBDS row-column design found in the study is used. This is denoted by Eco2
and is calculated by taking the total variance, corresponding to the most A-
efficient PBDS row-column design listed in the catalogues of Chapters 3 and 4,

as a fraction of the total variance of the design found under model (7.15), that is

t?‘(HQRcHI)
t7'(HQCOQTH/) ’

Ecos = (7.26)
where H is given in (1.12) and Qcoq, is a generalised inverse of Aco,, see Sub-

section 7.6.1.

This measure indicates that the three-period designs of this section perform
badly whereas the values of Epgy improve substantially when the experiment
extends over four periods. It is probable that a further similar improvement would
occur if designs for p = 5 were obtained. The explanation for this phenomenon
has already beeun discussed in Section 7.4. An experiment having a small number
of periods does not provide sufficient within subject measurements for the efficient

estimation of carryover effects.

The designs listed in Tables 7.4 and 7.5 are not, in general, part-balanced
with respect to the dual versus single treatment contrasts. The exception is the
row-orthogonal design for n = 3, p = 4 and s = 5, which is not only part-balanced
but is variance-balanced under model (7.15) for these contrasts. Further cross-
over designs which are part-balanced under model (7.15) may be obtained by
considering less efficient designs (see Section 7.4). However, these designs are

unlikely to be of practical use.

A further measure, Ecco, has been included in Tables 7.4 and 7.5. This
provides a measure of how much precision has been sacrificed by including a
second set of carryover effects in the model. It involves a comparison of the total
variances, under model (7.1), of the A-best designs d; and d; found under models

(7.1) and (7.15), respectively, by the method of Subsection 7.3.2, and is defined

as

tr(HQco, H')q,
tr(HQco, H)q,

Hence, it is possible to estimate how much efficiency has been lost in order to

Ecco = (7.27)

gain the ability to investigate the size of second-order carryover effects.

An inspection of the values of Ecco in Tables 7.4 and 7.5 reveals that the

loss in efficiency ranges from 0%-12%. Note that the row-orthogonal design for




Chapter 7 153

n =3, p =4 and s = 5 is the best rearrangement of the A-best PBDS row-column
design under model (7.15) and model (7.1). The values of Ecco in Tables 7.4 and
7.5 are much higher than the values of Eco in Tables 7.1-7.3. This indicates that
the effect on the design efficiency of including a second set of carryover effects in
the éimple carryover model (7.1) is much less marked than the effect of including
the first set of carryover effects in the row-column model (1.1). Hence, by using a
design from Tables 7.4 and 7.5, an investigator can gain some protection against

the assumption of non-negligible second-order carryover effects.

7.7. Conclusions and Further Research

In this final section, there are two issues to be addressed. Firstly, what conclusions
can be drawn from the research in this thesis and, secondly, directions for future

research.

7.7.1 Conclusions

The work presented in this thesis concerned the design of investigations of two
drugs A and B, available at n and m prespecified dose levels respectively, in
order to determine whether a combination of the drugs is more beneficial than
either of the drugs administered singly. It was not advisable to consider existing
designs for a factorial treatment structure due to the additional constraint that
the treatment consisting of both drugs at the zero level is excluded on ethical

grounds.

One main aim of the work was to find efficient designs with two orthogonal
blocking factors, for estimating the particular contrasts of interest, by amalga-

mating two designs for a single blocking factor.

A further aim was to construct designs for cross-over trials under the assump-
tion of simple additive models for carryover effects. Designs were required which
perform well both in the presence and absence of carryover effects in order to
achieve some protection against the validity of assumptions regarding the pres-

ence of carryover effects.

In Chapter 1, the problem was described and the direction of the research

was outlined. A brief review of parameter estimation under a linear additive
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model and methods of assessing the performance of designs for estimating the
pairwise treatment comparisons was given. The implications of obtaining row-
column designs by amalgamating two designs for a single blocking factor were
discussed, in addition to the properties of designs which are part-balanced for the

dual versus single treatment contrasts.

Chapter 2 was concerned with lower bounds on the total variance of the
contrasts of interest. A review of some of the bounds given in the literature
for single blocking factor and row-column designs was presented. Several design
independent bounds, appropriate for use with the dual versus single treatment
contrasts, were developed. Since it was not possible to establish conditions under
which* any one bound was uniformly better than the alternatives, the overall
bound was taken to be the bound which achieved the maximum value for a

particular set of design parameters.

In Chapter 3, some properties of connected row-column designs found by the
method of amalgamation were given. The class of reinforced group divisible de-
signs was investigated as a source of component designs and some necessary con-
ditions for the existence of row-column designs obtained from these components
were given. The class of C-designs, constructed by R- and S-type blocks, was also
considered. Tables of efficient row-column designs, under the A-criterion, found
by amalgamating components from these two classes were presented, together

with an assessment of design performance using the bounds of Chapter 2.

The class of row-orthogonal designs was the subject of Chapter 4. These
designs are characterised by having row blocks orthogonal to treatments, that is
each treatment occurs exactly once in each row block. Necessary conditions were
given for obtaining such designs by amalgamating a randomised block design with
a suitable block design from the classes discussed in Chapter 3. Tables of designs
were presented and it was noted that it is not necessary to sacrifice a great deal

of precision in order to gain the property of row-orthogonality.

In Chapter 5, the problem of finding efficient designs for estimating any set
of specific treatment contrasts was discussed. A method of identifying a class of
designs likely to contain highly efficient and A-optimal members for the particular
contrasts of interest was outlined. Several approaches to finding designs within

such a class were discussed in the context of some practical examples.

The discussion of cross-over experiments was the primary function of Chap-
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ter 6. This type of experimental situation was described and a review of the
models presented in the literature was given. This subject has caused some con-
troversy in recent years; the reasons for this were examined and the criticisms of

some of the models which have been used in the past were presented.

‘

In the previous sections of this chapter, cross-over designs were found under
the assumption of simple additive models for first-order and first- and second-
order carryover effects. The method followed was to rearrange the row-column
designs of Chapters 3 and 4 within columns and select the arrangement with
the minimum total variance under the appropriate carryover model. A study
of design robustness to the assumption of non-negligible second-order carryover

effects was also given.

7.7.2 Topics for further research
The following areas require further investigation.

1. The extension of bound B,(H) of Chapter 2 so that it can be used for the

assessment of multi-dimensional designs.

2. Some simple necessary conditions for the amalgamation of two block designs

were given in Chapter 3. It would be useful to establish some sufficient

conditions for amalgamation.

3. In Section 3.6, the relationship between the variances of the least squares
estimators of the dual versus single treatment contrasts for a row-column
design and the parameters of the information matrices of its component

designs was investigated. This is an area of further work.

4. The development of bounds on the total variance of the contrasts of interest

for cross-over designs is a challenging area of research.

5. The development of an algorithm for obtaining larger cross-over designs
by using the cross-over designs of Tables 7.1-7.5 as building bricks, see

Section 7.5.

6. Following the discussion of carryover models in Chapter 6, it would be useful
to perform studies of design robustness to different assumptions for error

structures, and for the persistence and structure of carryover effects.

L
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Computer Algorithm to find
cross-over designs under a model
for additive first-order carryover

effects

program carryover (input, output);

{ program takes an efficient row-column design and rearranges it within sub-
ject blocks in order to find the best layout under the simple additive model for
first-order carryover effects. This version includes checks on the validity of the
rearranged design to ensure that the total variance under the row-column model

has not increased and that the design is connected under the carryover model. }
label 100;

const
maxd = 9;
maxr = 4;

maxdes = 30;

maxt = 5;

mult = 10;

tol = 0.00000001;

acc = 0.000001;

type

dmatrix = array[l..maxr, l..maxd] of integer;

inmatrix = array[l..maxt, 1..maxd] of integer;



Appendix A

trinmat = array[l..maxd, 1..maxt] of integer;
sqinmat = array[l..maxt, 1..maxt] of integer;
invec = array[l..maxt} of integer;

rmatrix = array{l..maxt, l..maxt] of real;
rvec'= array[l..maxt] of real;

svec = array[l..maxdes] of real;

sviat = array[l..maxdes] of rmatrix;

sdmat = array[l..maxdes] of dmatrix;

var

i, ], nc, R, C, t : integer;

des : dmatrix;

N1 : inmatrix;

ct : rmatrix;

trace : svec;

svcv @ svimat;

sdes : sdmat;

procedure initialise ( R, C : integer; var mat : dmatrix );
{ sets every element of design matrix equal to zero }

var

1, ] ¢ integer;

begin {initialise}

fori:=1to R do

for j:=1to Cdo

mat[i, j] := 0;

end {initialise};

procedure rinitialise ( R, C : integer; var mat : rmatrix );
{ sets every element of a square real matrix equal to zero }
var

i, j : integer;

begin {initialise}

fori:=1to R do

for j:=1to Cdo

matli, j] 1= 0;

end {initialise};

157



Appendix A

procedure iswap ( var a, b : integer);
{ swaps 2 integer elements of a vector }
var

temp : integer;

begin {iswap}

temp := a;

a = b;

b := temp;

end {iswap};

procedure rswap ( var a, b : real );

{ swaps 2 real elements of a vector }
var

temp : real;

begin {rswap}

temp = a;

a:=b;

b := temp;

end {rswap};

procedure iaswap ( var a, b : dmatrix);
{ swaps 2 design matrices in a vector }
var

temp : dmatrix;

begin {iaswap}

temp = a;
a 1= b;
b := temp;

end {iaswap};

procedure raswap ( var a, b : rmatrix );
{ swaps 2 real matrices in a vector }
var

temp : rmatrix;

begin {raswap}
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temp = a;
a:=b;
b := temp;

end {raswap};

procedure printdm ( grid : dmatrix; R, C : integer );
{ prints out a design matrix }
var

1, ) ¢ integer;

begin {printdm}

fori:=1to R do

begin.

forj:=1to C do

write( output, grid(i, j]:3 );
writeln(output);

end;

writeln(output);

end {printdm};

procedure printrm ( mat : rmatrix; R, C : integer );
{ prints out a real matrix }
var

1, } ¢ integer;

begin {printrm}
fori:=1to R do

begin

forj:=1to Cdo

write( output, mati, j]:9:4 );
writelu(output);

end;

writeln(output);

end {printrm};

procedure incidence ( grid : dmatrix; R, C, t : integer;
var NP, NS, NPC, NSC : inmatrix );

{ calculates the period and subject (direct and residual) incidence matrices }
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var

1, ] : integer;
begin {incidence}
fori:=1tot do
begin {i}
forj:=1to R do
begin {j}
NP[i, j] := 0;
NPC[;, j] := 0;
end {j};
forj:=1to Cdo
begin j

NS{i, j] := 0;
NSC[i, j] := 0;
end {j};

end {i};

fori:=1to R do

forj:=1to Cdo

begin {j}

NP[grid[i, j], 1] := NP[grid[i, j], i] + 1;
NS[grid(i, j], j] := NS[grid[i, j], j] + 1;

end {j};

for j:=1to C do

fori1:=1to R-1do

begin {i}

NPC[grid[i, j], i+1] := NPClgrid[i, j], i+1] + 1;
NSClgrid[i, j], j] := NSClgrid[i, j], j] + 1;

end {i};

end {incidence};

procedure rincidence ( grid : dmatrix; var N : inmatrix;
R, C, t : integer );

{ finds the direct incidence of the row component }

var

i, ] : integer;

begin {rincidence}
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fori:=1tot do
forj:=1to R do

N[, j] =0

fori:=1to R do

forj:=1to Cdo

N{grid[i, j], i] := Nlgrid[i, j], i] + 1;

end {rincidence};

procedure calcreps ( N : inmatrix; t, b : integer; var reps : sqinmat );
{ calculates treatment reps by summing the row elements of incidence mat }
var

1, ] . integer;

begin {calcreps}

fori:=1tot do

forj:=1tot do

reps|i, j] := 0;

fori:=1tot do

forj:=1tob do

reps(i, 1] := reps[i, i} + N[i, j};

end {calcreps};

procedure precedence ( grid : dmatrix; R, C, t : integer; var L : sqinmat );
{ calculates the precedence relationship of a design, element (i,j) is number of

times treatment i is preceded by treatment j }

var

1, ] : integer;

begin {precedence}

fori:=1tot do

forj:=1totdo

L[i,j] := 0;

forj:=1to Cdo

fori:=1to R-1do

L{grid[i+1, j], grid[i, j]] := L{grid[i-+1, j], grid[s, j]] + 1;

end {precedence};
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procedure itranspose ( R, C : integer; A : inmatrix; var B : trinmat );
{ transposes an integer incidence matrix }

var

1, ] : integer;

begin {itranspose}

fori:=1to R do

for j:=1to C do

B, i} := Ali, i

end {itranspose};

procedure rtranspose ( R, C : integer; A : rmatrix; var B : rmatrix );
{ transposes a square real matrix }

var

1, ] : integer;

begin {rtranspose} fori:=1 to R do

for j:=1to C do

Biil == ALl

end {rtranspose};

procedure intmult ( m, n, p : integer; A : inmatrix; B : trinmat;
var C : sqinmat );

{ multiplies a t x d integer matrix with a d x t integer matrix }

var

i, j, k : integer;

begin {intmult}

fori:=1tomdo

for j:=1topdo

Cli, j] = 0;

fori:=1tomdo

forj:=1topdo

for k:=1ton do

Cli, j] :== C[i, j] + A[1, k]*B[k, j};

end {intmult};

procedure intmult2 ( m, n, p : integer; A : inmatrix; B : dmatrix;

var C : inmatrix );
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multiplies a t x d integer matrix with a d x d integer matrix
var

1, j, k : integer;

begin {intmult2}
fori:=1tom do
forj:=1topdo

Cfi, j} :== 05

fori:=1tomdo

for j:=1topdo

for k:=1ton do

Cl, jl:= C[i, j] + Al k]*B[k, j];
end {intmult2};

procedure rmult ( m, n, p : integer; A, B : rmatrix; var C : rmatrix );
{ multiplies 2 t x t real matrices }
var

i, j, k : integer;

begin {rmult} fori:=1 to m do
forj:=1topdo

Cli, j] =05

fori:=1tomdo

for j:=1topdo

for k:=1ton do

Cli, j] := C[i, j] + A[i, k]*BIk, j];
end {rmult};

function check ( grid : dmatrix; N : inmatrix; R, C, t : integer ) : boolean;

{ checks the validity of an arrangement by checking that the new concurrence
matrix is the same as the original concurrence matrix }

var

i, ] : integer;

NT : trinmat;

N2 : inmatrix;

NNT, N2N2T : sqinmat;

indic : boolean;
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begin {check}

indic := true;

itranspose( t, R, N, NT );

intmult( t, R, t, N, NT, NNT );
rincidence( grid, N2, R, C, t );
itranspose( t, R, N2, NT ),
intmult( t, R, t, N2, NT, N2N2T );
fori:=1totdo

forj:=1tot do

if ( NNT[i, j] <> N2N2T[i, j] ) then
indic = false;

check := indic;

end {check};

function samemat ( A, B : rmatrix; m, n : integer ) : boolean;
{ checks whether 2 real matrices are the same }

var

1, } : integer;

indic : boolean;

begin {samemat}

indic := true;
fori:=1tomdo
forj:=1tondo

if (‘abs( Afi, ] - B[i,j] ) > acc ) then
indic := false;
samemat := indic;

end {samemat };

function present ( store : svmat; A : rmatrix; num, n, m : integer) : boolean;
{ ckecks through the store to see if A matches any element }

var

1: integer;

begin {present}

present := false;

fori:=1 to num do

if samemat( storefi], A, n, m ) then
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present := true;

end {present};

procedure addmat ( f, g, h : integer; A, B, C, D : sqinmat;
var sum : rmatrix );
{ finds the sum of a linear combination of t x t integer matrices }
var
1, ) : integer;
a, b, ¢, d : real;

begin {addmat} a := 1.0;

b := 1/k;
c:=-1/g;

d := 1/(gxh);
fori:=1tofdo

forj:=1tofdo
sum[i,j] := a*Afi, j] + b*B[i, j] + exC[i, j] + d*D[i, j};
end {addmat};

procedure fOIbIlf ( m, n : integer; tol : real; var a : rmatrix;
la : Integer; var aijmax : rvec; var irank : integer;
var inc : invec; var d : rvec; var u : rmatrix;
iu : integer; var du : rvec; var ifail : integer );
external fortran;

{ nag routine to find the g-inverse of an information matrix }

function goodrank ( m : integer; A11, A12, A21, A22 : rmatrix ) : boolean;

{ checks to ensure that the full information matrix for both direct and residual
effects has sufficient rank }

const

alpha = 2;

type

intvec = array[l..mult] of integer;

realvec = array[l..mult] of real;

realmat = array[l..mult, 1..mult] of real;

var

1, j, newm, indic, rank : integer;
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vecl, vec3, vecd : realvec;

vec2 : intvec;

A, mtmp : realmat;

check : boolean;

procedure fO1blf ( m, n : integer; tol : real; var a : realmat;
la : integer; var aijmax : realvec;
var irank : integer; var inc : intvec;
var d : realvec; var u : realmat; iu : integer;
var du : realvec; var ifail : integer );
external fortran;

begin *{goodrank} check := false;

newm := alphas*m;

fori:=1tom do

forj:=1tom do

begin {j}

Alm+i, m+j] == A22[i, j|;

end {j};

indic := 0;

f01blf(newm,newm,tol, A, newm,vecl,rank,vec2,vec3, mtmp,newm,vecd,indic);
if ( rank = (2*m - 2) ) then check := true;

goodrank := check;

end {goodrank};

procedure infomat ( grid : dmatrix; p, s, t : integer;
var A : rmatrix; var rankOK : boolean );
{ finds the overall information matrix A by calculating the 4 sub-matrices, ac-
cording to the standard theory }
var
indic, 1, j, rank : integer;
J : dmatrix;
NP, NS, NPC, NSC, prod3 : inmatrix;
NT : trinmat;

Dr, L, Cr, prodl, prod2, prod4 : sqinmat;
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vec2 : invec;

All, A12, A21, A22, mtmp, mtmp2 : rmatrix;
vecl, vec3, vecd : rvec;

begin {infomat} fori:= 1 to p do
forj:=1tosdo

Ji, il == 1; { initialises J to 1 }
incidence( grid, p, s, t, NP, NS, NPC, NSC );
calcreps( NP, t, p, Dr );

itranspose( t, p, NP, NT );

intmult( t, p, t, NP, NT, prodl );

itranspose( t, s, NS, NT );

intmult( t, s, t, NS, NT, prod2 );

intmult2( t, p, s, NP, .J, prod3 );

intmult( t, s, t, prod3, NT, prod4 );

addmat( t, p, s, Dr, prodl, prod2, prod4, A1l );
{ calculates A1l }

precedence( grid, p, s, t, L );

itranspose( t, p, NPC, NT );

intmult( t, p, t, NP, NT, prod1 );

itranspose( t, s, NSC, NT );

imtmult( t, s, t, NS, NT, prod2 );

intmult( t, s, t, prod3, NT, prod4 );

addmat( t, p, s, L, prodl, prod2, prod4, A12 );
{ calculates A12 }

rtranspose( t, t, Al2, A2l );

{ calculates A21 }

calcreps( NPC, t, p, Cr );

itranspose( t, p, NPC, NT );

intmult( t, p, t, NPC, NT, prodl );

itranspose( t, s, NSC, NT );

intmult( t, s, t, NSC, NT, prod2 );

intmult2( t, p, s, NPC, J, prod3 );

intmult( t, s, t, prod3, NT, prod4 );

addmat( t, p, s, Cr, prodl, prod2, prod4, A22);
{ calculates A22

rankOK := goodrank( t, A11, A12, A21, A22 );
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if rankOK then

begin {if}

indic := 0;

fO1blf(t,t,t0],A22 t,vecl ,rank,vec2,vec3,mtmp,t,vecd,indic);
{ calls nag routine to find g-inverse of A22 }
rmult( t, t, t, A12, A22, mtmp );

rmult( t, t, t, mtmp, A21, mtmp?2 );
fori:=1tot do

forj:=1totdo

Ali, j} := ALL[, j] - mtmp2[i, j];

end {if}

else rinitialise( t, t, A );

end {infomat};

procedure variance ( grid : dmatrix; p, s, t, nc : integer; cont : rmatrix;
var vev @ rmatrix; var trace @ real );
{ finds the variance-covariance matrix of a design under the additive model and
the total variance }
var
indic, i, rank : integer;
vec2 : invec;
A, mtmp, contt : rmatrix;
vecl, vec3, vecd : rvec;
rankchk : boolean;
begin {variance}
indic := 0;
infomat( grid, p, s, t, A, rankchk );

if rankchk then

begin {if}

fO1blf(t,t,tol,A t,vecl ,rank,vec2,vec3, mtmp,t,vecd,indic);
rmult( ne, t, t, cont, A, mtmp );

rtranspose( nc, t, cont, contt );

l‘mult( nc¢, t, nc, mtmp, contt, vev );

trace := 0;

fori:=1 toncdo

trace := trace + vevfi, i];
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end {if}

else

begin {else}

trace := 9999999.0;
rinitialise( nc, nc, vev );
end {else};

end {variance};

procedure sort ( var avec : svec; var avev : svimat; var ades : sdmat );

{ sorts the elements of a real vector into ascending order and carries the associated
desigit and vev matrices }

var

count, 1 : integer;

begin {sort}

for count := 1 to (maxdes-1) do
for i := 1 to (maxdes-1) do

if ( avec[i] > avec[i+1] ) then
begin

rswap( avec[i], avec[i+1] );
raswap( avev[i], avev[i+1] );
iaswap( ades[i], ades[i+1}] );
end

end {sort};

procedure arrange ( grid : dmatrix; R, C, t, nc, PC : integer;
cont : rmatrix; N : inmatrix; var trace : svec;
var svev @ svinat; var sdes : sdmat );
{ finds all the possible permutations of a design, checks that a rearrangement is
a valid design, calculates the vev, holds the best 30 designs i.e. the designs with
the smallest total variance }
label 10;
var
Ipl, 1p2, 1p3, 1p4 : integer;
vev @ rmatrix;
totvar : real;

begin {arrange}
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PC := PC + 1;

if (PC > C ) then goto 10;
case R of

2:

begin {case 2}

for Ipl :=1to 2 do

begin {Ipl}

iswap( grid(1, PC], grid[lpl, PC] );

arrange( grid, R, C, t, nc, PC, cont, N, trace, svcv, sdes );
if (PC = C ) and ( check( grid, N, R, C, t ) ) then
begin*

variance( grid, R, C, t, nc, cont, vev, totvar );

if ( trace[maxdes] > totvar ) and

not present( svev, vev, maxdes, nc, nc ) then

begin {if2} trace[maxdes] := totvar;

svev[maxdes) 1= vev;

sdes[maxdes] := grid;

sort( trace, svev, sdes );

end {if2};

end;

end {lpl};

end {case 2};

3:

begin {case 3}

for Ipl := 1 to 3 do

begin {Ipl1}

iswap( grid[1, PC], grid[2, PC] );

for 1p2 :==2to 3 do

begin {Ip2} iswap( grid[2, PC], grid[lp2, PC] );
arrange( grid, R, C, t, nc, PC, cont, N, trace, svcv, sdes );
if (PC = C ) and ( check( grid, N, R, C, t ) ) then
begin {if} variance( grid, R, C, t, nc, cont, vev, totvar );
if ( trace[maxdes] > totvar ) and

not present( svev, vev, maxdes, nc, nc ) then

begin {if2} trace[maxdes] := totvar;

svev[maxdes] := vev;
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sdes[maxdes] := grid;

sort( trace, svev, sdes );

end {if2};

end {if};

end {Ip2};

end {lpl};

end {case 3};

4 :

begin {case 4}

for Ipl :=1to 4 do

begin *{Ip1}

iswap( grid[l, PC], grid[Ip1, PC] );

for Ip2 :=2to 4 do

begin {Ip2}

iswap( grid[2, PC], grid[3, PC] );

for Ip3 :=3to 4 do

begin {1p3}

iswap( grid[3, PC], grid[lp3, PC] );

arrange( grid, R, C, t, nc, PC, cont, N, trace, svev, sdes );
if (PC = C ) and ( check( grid, N, R, C, t ) ) then
begin

variance( grid, R, C, t, nc, cont, vev, totvar );
if ( trace[maxdes] > totvar ) and

not present( svev, vev, maxdes, nc, nc ) then
begin {if2}

trace[maxdes] := totvar;

svev[maxdes| 1= vev;

sdes[maxdes] := grid,;

sort( trace, svev, sdes );

end {if2};

end {if};

end {1p3};

end {Ip2};

end {Ipl};

end {case 4};

end;
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10:end {arrange};

begin {carryover}

writeln(output);

readln( t, R, C);

write( output, ’ Crossover designs for ’; t:1, ’ treatments, ’, R:1 );
writeln( output, ’ periods and 7, C:1, ’ subjects.’);
writeln( output );

{ checks for wrong parameters }

if (R > maxr ) or ( C > maxd ) then

begin®

writeln( output, ’ Design is too large.’);

goto 100;

end;

if (R¥C-2+t-R-C+4<0) then

begin

writeln(output,” Insufficient observations to estimate all parameters.’);
goto 100;

end;

{ reads in contrasts }

readin( nc );

fori:=1 to nc do

begin

forj:=1tot do

read( ctli, j] );

readln;

end;

writeln( output, > Matrix of contrasts of interest is -’ );
printrm( ct, nc, t );

{ reads in starting design }

fori:=1to R do

begin

for j :=1to C do

read( des[i, j] );

readln;

end;
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writeln( output, ’ Starting design is :- 7);

printdm( des, R, C );

writeln( output, ’ Possible rearrangements are :- ’);

{ injtialises the storage arrays for total variance, designs and vevs }
for i := 1 to maxdes do

begin {i}

trace(i] := 9999999.0;

rinitialise( nc, nc, svevi] );

initialise( R, C, sdes[i] );

end {i};

rincidence( des, N1, R, C, t );

arrange( des, R, C, t, nc, 0, ¢t, N1, trace, svev, sdes );
{ prints out the storage arrays for total variance, designs and vevs }
for 1 := 1 to maxdes do

begin {i}

printdm( sdes[i], R, C );

printrm( svev[i], nc, nc );

writeln( output, * Total variance = °, trace[i]:10:6 );
writeln( output );

end {i};

100:end{carryover}.
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