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ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS

Doctor of Philosophy

PATH ALGEBRAS : A MULTISET-THEORETIC APPROACH

by Ahncnc Wongseelashote

This thesis develops an algebraic theory for path problems such
as that of finding the shortest or more generally, the k shortest
paths in a network, enumerating elementary paths in a graph. It
differs from most earlier work in that the algebraic structure
appended to a graph or a network of a path problem is not
axiomatically given as a starting point of the theory, but is
derived from a novel concept called a 'path space'. This concept
is shown to provide a coherent framework for the analysis of path
problems, and the development of algebraic methods for solving them.
A number of solution methods are derived, which are analogous to
the classical techniques of solving linear algebraic equations, and
the applicability of these methods to different classes of path
problems is examined in detail.

The thesis also presents in particular an algebra which
is appropriate for the formulation and solution of k-shortest-paths
problems. This algebra is a generalization of Giffler's Schedule
Algebra for computing all the numerical labels of paths in a network.
It is shown formally that these labels can be calculated by using
direct methods of linear algebra and an algorithm similar to the
long-division procedure of ordinary arithmetic. Such a method is
then modified to yield an algorithm for finding k shortest

elementary paths in a network.
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PATH ALGEBRAS

A Multiset-Theoretic Approach
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INTRODUCTION

This thesis is concerned with the mathematical (abstract)
study of path problems. The term 'path problem' has, in recent
years, been widely used to describe a certain class of mathematical
problems, many of which have real world applications. These problems
had previously been studied separately by a great number of authors
in different branches of engineering, Operational Research and Computing
Science. Numerous procedures for solving them had also been proposed
separately. It was not until the use of algebraic methods for these
problems became widespread that mathematicians began their search for
a unified theory which would be useful for their solution.

Any theory which would adequately describe a path problem
must be able to incorporate the two different mathematical aspects of
the problem: one algebraic, the other structural. The algebraic aspect
of the problem is usually described by a semiring (section 0.2) which
is often called a path algebra, while the structural aspect is described
by a graph (section 0.4). The roles played by these two mathematical
constructs in the abstract study of path problems will be seen in
Chapter 1 where we present a retrospective study of the existing theory
of path problems. An important point which emerges from this study is
that the path algebra of a path problem can be naturally derived from
a more basic concept, which we describe as a 'path space'. Chapters
2 and 3 therefore develop this concept. Then, in chapter 4 we show how the
interaction between the two mathematical aspects of a path problem can
be fruitfully analysed with the help of a path space. The usefulness
of this approach is further demonstrated in Chapter 5 where we analyse

and extend various methods of solving path problems.



The final chapter treats a specific path algebra in detail. This
path algebra is shown to be especially useful for solving the k
shortest path problems, particularly in the case where only
elementary paths are required. A novel algorithm for obtaining
such paths is also given.

In order to make this thesis self-contained and to

prevent possible confusion of terminology, a preliminary chapter

on background mathematics is also included.

- iii -



CHAPTER O

BACKGROUND MATHEMATICS

0.1 Sets, Relations and Functions

As usual in mathematics, we &o not formally define
what a set is, but rather think of it intuitively as a collection
of distinct objects which can be distinguished (at least theoretically)
from those objects which do not belong to the set. Moreover,
throughout this thesis, whenever the word "set" is used, it
means a subset of a given set. We shall use the notation 2X to
denote the set of all subsets of a given set X , and Z(X) to
denote the set of all finite subsets of X, i.e. those subsets
which contain only a fipite number of objects obtained from the
given set X. We shall also write
(i) x € A for "x 1is an object or element of a set A", and
x ¢ A for its negation.
(ii) AC B for "A is a subset of a set B", and A¢ B for
its negation.
(ii1) AN B for "the set of all objects which belong to: A but

not to B",

The notation {x[P(x)} will always be used to denote the
set of all x such that the proposition P(x) 1is valid. For
example, the set {Xi | i € I} denotes the set of all elements
indexed by some set I. Now let {Ai[i e I} be a collection
(set) of sets indexed by some set I. Then the set AJ A, of

1el 1

elements which belong to at least one set Ai is called the union



of the sets Ai » and the set {2& Ai of elements which belong

to every set Ai is called the intersection of the sets Ai‘

For I = {1,2} , we also write Alkj A2 and Alf\ A2 for the

union and intersection of A1 and A2 respectively.

By a Cartesian product A x B of two given sets A,B,

we shall mean, as usual, the set made up of all ordered pairs
(x, y) with xe A and y e B ; similarly for the Cartesian
product A x Bx C .

By a relation on a set X , we mean a subset of the
Cartesian product X x X . When A is a relation on X , We
usually write

x Ay for (x, y) ¢ A.

We then say that A 1is reflexive iff+ x A x for all

x € X, ftransitive iff whenever x Ay and y Az, x Az also;

symmetric iff x Ay always implies y A x , and anti-symmetric
iff from x Ay and y A x always follows x = y. Among all
types of relations the following two classes are very useful to us.
The first is the class of equivalence relations. A relation ~ is

said to define an equivalence relation on a set X iff it is

reflexive, symmetric and transitive. The most important property
of such a relation is that it partitions the set X into disjoint
equivalence subsets of X, i.e. those subsets of which the elements
are in equivalence relation to one anothér. Also conversely, every
disjoint partition of X always defines an equivalence relation on
X. The second useful class of relations is formed by orderings. A

relation g 1is said to define an ordering on a set X iff it is

+  "iff" denotes "if and only if"



reflexive, anti-symmetric and transitive. An ordering is said
to be total on X iff for any x, y € X, we either have x < y
or ¥y £ X. A set X considered with an ordering g , usually
written as (X, g) , is called an ordered set. Several classes
of ordered sets will be considered below.

Let (X, 5) be an ordered set. A subset A of X is

said to contain a least (greatest) element x', also written as

min A (max A), iff x' e A and x' £ x (x £ x') for all x ¢ A.
If every non-empty subset of X has this property, then (X, g) 1is called

a well ordered (dually well ordered) set,

Let A be a subset of X. An element ue X is called

an upper (lower) bound of A in X iff x £u (ugx) for all

x € A. The set A 1is then said to be bounded above (below).

Moreover, u 1is called the least upper (greatest lower) bound of

A in X if u 1is also the least (greatest) element among the
upper (lower) bounds of A in X. With these definitions, we can
now define the following interesting classes of ordered sets.

An ordered set (X, g) is called a join (meet) semilattice

iff every finite subset A of X has a least upper bound sup A

(greatest lower bound inf A), a complete join (meet) semilattice

iff every non-empty subset of X has a least upper (greatest lower)

bound, and a conditionally complete join (meet) semilattice iff

every non-empty subset of X which is bounded above (below) has a
least upper (greatest lower) bound. If (X, g) is both a (complete,
conditionally complete) join and meet semilattice, then it is simply

called a (complete, conditionally complete) lattice.




Now for any two sets A,B, a function f from A to B,
written f: A > B, is defined as a subset of the Cartesian
product A x B such that (x, y) ¢ f for each x ¢ A and a
single y e B. Usually, y is denoted by f(x) and referred
to as the image of x under f. The set of all the images under
f is usually called the range of f and denoted by f(A). The
domain of f is just the set A. A function f: A + B is ‘said
to be a surjection iff f(A) = B, an'injection iff from f(x)=f(x")
always follows x=x' , and a bijection iff it is both an injection
and a surjection. When a set A is said to be in one~to-one

correspondence with another set B, we mean there is a bijection

from A to B.
Let f: A+ B and g: B> C be two functions. Then the
function gf: A + C defined by gf(x) = g(f(x)) for all x ¢ A is

called the composition of f by g (in that order). More generally,

let g : B' + C where B'C B, we can define the composition gf as
above whenever f(A) C B'. Now a function f: A - B is said to
extend or be an extension of g: A' + B' iff A'C A, B'C B and

f(x) = g(x) for all x e A'.

By a bipary operation o on a get X, we mean a function

© : X x X~ X. Each image o(x, y) is more familiarly written as
X 0y . Abinary operation o is said to be commutative iff
e B LV E

Xo0y=yox for any x, y; associative iff (x0y)oz=xo0(yoz)
for any x, y, z. An element e of a set X is said to be an
identity for a binary operation o on X iff e 0 X =X=x 0 e for
all x e X. Note that whenever such an element exists, it is unique,
N £ h . th .

ow for eac ¥ e X, we can define the k power of x with

k

respect to a binary operation o on X to be an element x of X

which is obtained recursively as follows.



X - x o x<71 for any k e{2, 3, ...} , xl = X .

. . . 0 . .
It is also convenient to define x = e, the identity for o ,
whenever e exists. Finally, a non-empty subset A of a set X
is said to be closed with respect to a binary operation o on X

iff x oy e A whenever x, y ¢ A.

0.2 Monoids and Semirings

By a monoid (X,0) we mean a non-empty set X equipped
with an associative binary operation o for which there is an
element e ¢ X acting as the identity. For any two subsets A, B

of a monoid (X, o) , we define a new set
AB={xo0oy | xeA, ye B},

called the complex product of A and B induced by o. With respect

. . X .
to this complex product operation, the set 2 can be easily seen

to form a monoid with {e} as the identity.

A monoid (X, o) 1is said to be commutative iff o is

commutative, cancellative iff x o z = yoz or zox=2zo0y for

any x, y, z € X always implies x =y, and a group 1iff each element

of X has an inverse, i.e. for every X ¢ X, there is vy ¢ X such that

X0y =e=yo x. Note that whenever an inverse element exists, it
is unique by the associativity of o . A monoid (X, o) is said

to be locally finite (Eilenberg (1974))iff each x ¢ X admits only

a finite number of factorizations X = X) 0 X, 0...0 X with
X, t e for all i e{1, 2, .+.sn}. It follows that if x oy = e,
then x = e =y , and hence a non-trivial group cannot be locally

finite.



We shall also be interested in monoids (X, o) which
are also ordered by some relation § such that the following

condition is satisfied:
For any x, y € X such that x £y , we have

X¥ousyou and uoxgsuoy for all u e X.

&

Such a monoid will be called an ordered monoid, and

denoted by (X, < s 0). Furthermore, whenever the above condition
is satisfied, we shall say that the binary operation o isg
compatible with the ordering £ on X. An ordered monoid (X, g, o)
is said to be Archimedean iff from x> e and y > e s, We can
always find a positive integer n such that x° > Y.
Here x > y denotes, as usual, x 2 y (or ¥y £ x) and x + v.

Let X, Y be two sets equipped with binary operations
o, and o, respectively. Then a function f: X+ Y is called a

X Y

homomorphism iff

f(x oy x') = £f(x) oy £f(x") for all x, x' ¢ X .

If in addition, both X and Y possess identity elements,

say ey and ey respectively and (X, oX) is a monoid, then f is

called a monoid homomorphism whenever f(ex) = ey is also satisfied.

Note that (£(X), OY) then becomes a monoid also.
A semiring (X, +, 0) 1is a set X on which two binary

operations + and o , called addition and multiplication

respectively, are defined such that

(i) (X, +) is a commutative monoid with 9 € X as identity
for +,
(ii) (X, 0) is a monoid with e ¢ X as identity for o, and
(iii) Multiplication is distributive over addition, i.e.

x o(y+z) = x 0y +x o0 z and (x+y)oz =x0 2z +y 0 z

for any x, vy, z, e X.

- -



We note here that the expressions on the right-hand
sides of the above two equalities are not ambiguous if we assume
the convention that multipiication is performed before addition.
Indeed, this convention will be implicitly assumed for all the
semirings discussed throughout this thesis.

Now the identity e for multiplication will be called
the unit and the identity € for addition will be called the zero
of the semiring. Note that the latter definition is inspired by
the fact that

X008 =06=060x for all x in any semiring.

This is because x =x0 e = x o (e+6) = x 0 e+ x0 6 = x + X0 8
for all x implies that x o 6 = 6, and similarly for 6 = 8 o x.
Note also that whenever e = @ in a semiring X, +, 0), we
necessarily have X = {8} (because X=Xo0oe=x00=0),

Let AC X. Then A 1is said to be a subsemiring of a
semiring (X, +, o) iff (4, +, 0) 1is itself a semiring.
Consequently, for a given semiring (X, +, o) s  we infer that a
non~empty subset A of X is a subsemiring iff A is closed with
respect to addition and multiplication, and that 8, e e A also.

In the present study, it is often convenient to express
certain properties of a semiring (X, +, o) in terms of the relation

< defined on X by

0.1) x <y iff x+y =1y for any x, y £ X .

It is easily seen that < is anti~symmetric because
addition is commutative, and that < 1is transitive because addition

is associative., But < is not generally reflexive. However, it



is always so whenever e + e = ¢ holds. For these reasons, we shall,

for convenience, refer to < as the pseudo~ordering of the semiring

(x, +, 0). The following properties of < will be found especially
useful for the present study. Their proofs are straightforward and

hence omitted.

0.2) 6 £ x for all x ¢ X.

(0.3) X <y implies x o u < you and uox <uovy for all u ¢ X.
Moreover, if u {w , then x o u < vyow and

uox<woy always.

(0.4) X <y and u < w imply x+udy+w for any
X, ¥, u, we X,
Moreover, if e + e = e holds, then x + u {y +u for

all u e X,

(0.5) ¥ <z and y & z imply x +y { z for any x,y,z £ X.
More generally, x, < z for all i e{1,2,...,k} implies

that
x1+x2+...+xk< z.

A semiring (X, +, o) is said to be a ring iff (x, +)
is also a group, commutative iff o is commutative, idempotent
iff e+ e=¢e , and a Q-semiring (Yoeli (1961)) iff x + e = e for

all x € X. Note that every Q-semiring is idempotent and every

idempotent ring (X, +, o) 1is trivial, i.e. X = {6} . The latter

follows because for all x ¢ X,



X=X +0=%x+x+ (~%x) =x + (~-x) =0,

A commutative ring (X, +, ¢) in which e + 6 and
x oy =6 always implies either x =08 or y = 6 is called an

integral domain. A commutative ring (X, +, o) 1in which the

set of non-zero elements forms a group with respect to multiplication
is called a field.
Now let (X, o oX) be a semiring and Y be any set

equipped with two binary operations *g and oy > and with

v v v Then a function

f: X > Y 1is called a semiring homomorphism iff £ is a monoid

identities ey for + and e for o

homomorphism with respect to (X, +X) and (X, ox). Note that
(£(X), *yo OY) then becomes a semiring. If in addition, f 1is

a bijection, then f 1is called a semiring isomorphism, and X, Y

are also said to be isomorphic as semirings.

In the present study, we shall also be interested in the
concept of a complete semiring (Eilemberg (1974) ) which can be
defined as follows.

Let (X, ¢) be a monoid with e € X as the identity
for o and consider a formal sum 'gl %. for an arbitrary indexing

i
set I to be a well defined element of X which satisfies (0.6) to

(0.8) below.

(0.6) If I ={i}, then ) x, = {x.,}
. i i
1el
(0.7) If 1 = I. is a disjoint partition of I, then
jed J
DR R DY
1el jed lte



iel iel

(0.8) z 0 [ z X, } = Z (z o Xi) , and

iel

[ ZI X, ]o z = Z (xi o z) .

The set X 1is then said to form a complete semiring.

Note that a complete semiring is also a semiring if one defines

X, + X, as ) x; with T ={1, 2} and 6 as ) x, with I = ¢.
iel iel *

As an example of a complete semiring, consider the set N = NU{=}
which is obtained from the usual semiring (N, + , *) of non-negative
integers by augmenting it with the element o and extending addition

and multiplication by the following rules
(1) For any ne N ,n+ o =o0 +n=o + 0=
(ii) For any n ¢ N such that n + O ,n®=won, and
(iii)'oooo=oo’(:)oo=0=oo0.
A formal sum X X, can then be defined in N as follows:
iel
If X, = 0 for all but a finite number of i e I , then

z X, is the addition of all the non~zero X Otherwise, z x,o= e
iel iel

Therefore, N_ is a complete semiring. Moreover, the set
N~ also forms a semiring with respect to the extended addition and

multiplication as defined above.

...10_.



0.3 Matrices

By an (m x n) matrix A over a set X, we mean a
function A : {1, 2, ..., m} x {1, 2, ..., n} > X . Each image
A(i,j) 1is usually written as Aij’ also called the (i,j)-entry

or (i, j)-element of the matrix A. An (mxn) matrix A can

also be visualized as an array of m x n elements, namely

11° 127 °°° * T1n

21’ 22°

Als A, .., A

The entries A,_, A, N Ain form the ith row of A

. .th
L4 L3 4 & 8 ° f L]
and the entries AIJ’ AZJ’ N AmJ form the j column o A
The matrix A above has m rows and n columns : it is an {(m % n)
matrix.
If (X, +, o) 1is a semiring, we can define addition A + B

for any two (m x n) matrices over X by

(0.9) A+ B)ij = Aij + Bij for all i,j;

and multiplication A o B for two conformable matrices, say A  1is

mxy and B is r xn , by

(0.10) (Ao B)ij =

Lt I

(Aik 0 Bkj) for all i, j.

k=1

Therefore, whenever (X, +, 0) 1is a semiring, we can

always make the set J%n(X) of all (nxn) matrices over X 1into a

....ll..,



semiring by defining additions and multiplication of any two
(n X n) matrices as above.
Moreover, the unit I and zero © of this semiring is
given by
e 1f 1 = j

Ii' = and @i. = 6 for all i, j.
] 8 , otherwise ]

Here e and 6 are respectively the unit and zero of
the semiring (X, +, o) .

If X 1is actually a complete semiring, then we can also
make Ain(X) into a complete sgsemiring by defining multiplication as
before but addition is now replaced by the following definition of
a formal sum z Ak .

kel

(0.11) y = ) (A).. for all i, j
[kel }ij kel A1

Now if X 1is ordered by some relation £ , we can also

define
(0.12) A< B iff A,. £ 3B,. for all i, i,
1] 1]

where A and B are any two (m x n) matrices

Therefore, whenever (X, €) 1is an ordered set, we can
also make JM,n(X) into an ordered set with respect to the ordering
defined by (0.12). Moreover, if addition and multiplication of the
semiring (X, +, 0) 1is compatible with the ordering < , then so is
addition and multiplication of the semiring (J&n(x), + , 0) with the

ordering defined by (0.12).

.,.12...



0.4 Graghs

By a graph G, we mean an ordered pair (W,V), where
W is a finite set of elements called nodes, and V 1is a set
of ordered pairs of nodes called arcs. For convenience, we shall
always assume that W has n nodes which are designated as
Xps Koy eees X oo In such a graph G, we define a path p of order

whi i t a node . d .
k which begins a n X and ends at a node X, to be a

0 k
sequence
(x, , %x. ) (% , %. ) ... (x s X. )
o 1 1 %2 k-1 'k
of k consecutive arcs. X. ; X, 5 ooe5 X, will be referred to
1 n2 -1

as intermediate nodes of p. A path q is said to be a subpath of

p iff q 1is a path which can be traversed when traversing p.

The path p 1is said to be closed iff ¥, =X, and elementary
0 k

iff x, £ X, whenever r # s (except of course, for closed paths
r s

where X, =X, must be satisfied). For convenience, we shall
0o Tk
always assume that the set P of all paths in the graph G also
contains the null path ei for each node x, which can be defined
as a closed path of order zero with X, as its beginning and end.
Now for any two given paths p and q in which the
end of p is just the begimnning of q , we may combine the two
paths into one single path pq by concatenating the sequence of

arcs of p with those of q. Such an operation will be referred

to as path concatenation and will be denoted simply by juxtaposition.

Since the concatenation of two paths is not always defined, it is
not a binary operation as defined in section 0.1. However, it is

convenient to regard path concatenation as a kind of partial binary

—13_.



operation defined on the set P of all paths in G, and to consider
some of its properties which are similar to those of binary
operations. Thus for instance, path concatenation is asgociative, and
pej =p = eip for all paths p which begin at X; and end at Xj'
The following observation will be useful in our subsequent
study. Suppose p 1is a non-elementary path, then in traversing
the path p, we must come across at least one elementary closed
path, say wy e Accordingly, we may factorize p as follows.
P =Py uw q where Py and q, are subpaths of p, one

of which may be null but not both; if 1 is not null, then Py

has the same beginning as p and the same end as w3 if 9y is
not null, then 9 has the same beginning as Wy and the same end
as p.

Now since the beginning and end of w, are the same,
Py 9 is also a path with the same beginning and end as those of
p- In other words, Py 9 is just the path obtained from p by
deleting Wy from p. 1If P19 is again non-elementary, we may
again factorize P, 4; as above and obtain Py 9y = Py Y, 9, fof
some elementary closed path Wy - We can again factorize P, 4, if
it is also non-elementary and so on until we finally obtain an
elementary path pS qs for some s 2 1. For convenience, we shall

refer to P, q, as a contraction of p and the above process for

obtaining P, 9, 28 the contraction process.

By a graph G over a set L, we mean a triple G=(W,V,v),

where (W,V) 1is a graph and v : V- L 1is a bijection. If in
addition, L 1is a subset of a monoid (X, o) or a semiring (X, +, o),

G will be respectively referred to as a graph over a monoid or a

semiring . For a graph G over a monoid (X, o), the bijection

v : V- 1L can be extended to the function v : P + X as follows.



e 1if p = Gi for all 1
(0.13) v(p) =

v(xi ) X, )ov(xi , X. )0...0 v(x, ,X, ) ,otherwise.
0 1 1 M2 k-1 ke

Note that, for economy of notation, we have here used the
same notation v for both functions and that (0.13) is well
defined because o 1is associative, and that v(pq) = v(p)ov(q)
for any two paths p and g for which their path concatenation is
defined. Thus in view of our previous remark, v can be considered
as a kind of partial homomorphism from the set P of all paths in G
to the set X. Let us note also that whenever G 1s a graph over a
semiring, v(p) will always be defined in terms of the multiplication
of the semiring.

Now let us note the one-to-one correspondence between graphs and
matrices over a set L.It is well known that for any given (n x n)
matrix A, one can always define a graph G = (W, V, v) over the

set L of all the (i, j)—-entries of A by taking

W to be the set of all the columns Al’AZ""’An of A,
V to be the Cartesian product W x W , and

v: V=+ L to be given by V(Ai, Aj) = Aij for all i,j.

However, if A 1is a matrix over a semiring (X, +, o),
it is convenient to redefine V to be the set of ordered pairs
(Ai’ Aj) such that Aij + 8 , where © is the zero of the semiring.

The resulting graph will be denoted by G(A) and will be simply

referred to as the graph of the matrix A over the semiring (X, +, o).

Conversely, it is also well known that for any graph G
over a set L , omne can always define a matrix A(G) = A over

LU{8} , where 6 ¢ L is some special symbol, by



v(xi,xj) if (xi, xj)e v

(0.14) Aij =

8 , otherwise

If G 1is a graph over a semiring, 6 is usually
chosen to be the zero of the semiring. For convenience, we shall

call A(G) the arc~value matrix of the graph G. We note that as

a consequence of choosing a fixed numbering for the nodes of G,
the arc-value matrix A(G) is unique. If we apply a permutation
to the numbering of nodes of G, then the new arc-value matrix A'
is equivalent to the existing arc-value matrix A of G in the
sense of matrix equivalence, i.e. A' = Qo A o QT , where Q is
the permutation matrix obtained by applying the same permutation
sequence to the rows of the unit matrix I, and QT is defined by
(QT)ij = jS for all i, j. Finally, we note that A(G(A)) = A and
G(A(G)) = G always hold.

From the above discussion, we see that any graph G is
completely described by its arc-value matrix A(G) = A. Moreover,
the power of this matrix describes all the paths in Q completely.

(k)

More specifically, let Pij denote the set of all paths from

%, to xj which have order exactly k, then it can be shown that

A", the kth power of the arc-value matrix A, is given by

©.15) (@Y., = L gy V@

1]
psPij

A neat way of proving (0.15) is to introduce the function

o Z(P) + X, where Z(P) denotes the set of all finite subsets of

P, as follows.



(0.16) (@ = § v(p) , o(¢) =6
peQ

This function has the following two properties which are

easily verified.
(0.17) O(Qf&)QzL)~--g)Qk) = G(Ql) + U(Q2)+ cent G(Qk) whenever
Qif\Qj =¢ for i % j.

- (0.18) o(Q . Y0...0 o(Qr j) ,

ir Qr r "'Qr j)g G(Qirl)o O(er 2 ”

17172 k

where each Qrs is a finite subset of paths from x_ to X and

Qrs Qst = {pq!pe Qrs and q € Qst} *

The proof of (0.15) now follows from these two properties.

For in view of (0.17) and (0.18), it suffices to show that

ij (1) (1) (1)
(P, P NS

W _ )
152 Tr-17

(0.19) Pij )

(k)

and that the terms in the union form a disjoint partition of Pij

This can be shown by considering the equivalence relation ~ defined

(k)

on P, as follows:
1]

pnvgq 1ff p and g have the same intermediate nodes.

The set Péﬁ) is then partitioned into its equivalence
subsets by this relation. Now a glance at the general term on the
right-hand side of (0.19) will confirm that it is in fact one such

equivalence subset., The proof of (0.15) is therefore completed.
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Finally, we note that from (0.15), it follows that

A" =0 whenever the graph G has no non-null closed paths,
because PE?) = ¢& for all i, j 1in such a graph.
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CHAPTER 1

PATH PROBLEMS IN RETROSPECT

The first abstract (mathematical) study of path problems
that appeared in print was by Moisil (1960). This work of Moisil was
inspired by an earlier work of A.G. Lunts (also known as A.G. Lunc)
on the application of Boolean algebra to the analysis of relay-
contact electrical circuits. Moisil showed that the theorem
obtained by Lunts (1950) for matrices over a Boolean algebra in

fact holds for matrices over a less restrictive algebraic structure,

namely

THEOREM 1.1 Let (X, +, 0) be a commutative semiring

(see section 0.2) which also satisfies

1.1 For any xe¢ X, x+x0vy =% for all y e X.

Then for any matrix A e.Mh(X) such that Aii = e for all i,

(1.2) T4 A<Aa24 ... <AL aa®a ...,

where 4 denotes the pseudo-ordering of the semiring ( ,Mh(x), +, o),

see section 0.2.

In fact, the assumption of commutativity in the above
theorem is superfluous. This point is evident from the following

result discovered by Yoeli (1961).



THEOREM 1.2 Let (X, +, o) be a Q-semiring (see sectionm 0.2)
Then for any matrix A ¢ J&n(X) such that Aii = e for all i,

we have

I<A<AZ< ... <AL oo )

That the above theorem is equivalent to theorem 1.1
without the assumption of commutativity can be easily seen to be
a consequence of the fact that (1.1) says no more than y < e for
all y e X.

Theorem 1.1 was used by Moisil (1960) to solve special

cases of the following problems.

PROBLEM 1.1 Shortest Path

Let G be a graph over the additive group (R+, +)
of non-negative real numbers (see section 0.4). For any two nodes

Xs 5 xj in G, determine

min {v(p)]pePij} R

where Pij is the set of all paths in G which begin at Xg and

end at Xx..
]
PROBLEM 1.2 Maximal Capacity Path

Let G be a graph over (R+k){w} s ~ ) where the binary
operation A 1is defined on R+L){w} by aAb =min {a,b}

For any two nodes X: s Xj in G, determine

ma L]
x {vip)|p ¢ Pij}
PROBLEM 1.3 Most Reliable Path
Let G be a graph over the multiplicative monoid

({x| 05 x s 1}, .) For any two nodes s, xj in G, determine

max {v(p)|p ¢ Pij} .

m20n



We note here that the relevance of theorem 1.2 (and
hence theorem 1.1) to some of the above problems was also noted
bvaoeli (1961). Now in order to solve these three problems by
means of theorem 1.2, let us first interpret theorem 1.2 in terms
of the graph G(A) of the matrix A (see section 0.4) as follows.

If G(A) is a graph over a Q-semiring such that

v(xi,xi) = ¢ for all nodes X, in G(A), then
(0) (1) (2) (n=1),_ (n), _
(1.3) G(Pij ){U(Pij ) <4 G(Pij 1< .».((I(Pij ) U(Pij ) TN

(k)

where ¢ and Pij are as defined in section 0.4 above.
In fact, the assumption that v(xi,xi) = ¢ enables us

to conclude that c(Pij[SJ) = o(Pij(s)) for all 8 ¢ N , where

8
p..ls] . J p, W
13 k&0 " i3 for all s e N .
To see this, let

A[B] = T+A+A2+,, . +A®  for all s e N.

Then from (0.15) to (0.17), it follows that the matrix A[S] is

given by

(1.4) (A[s])ij = U(Pij[él) for all s e¢ N .

But the assumption Aii = @ for all i 1is equivalent
to I<A, and hence A[é]w A® for all s e N . Consequently, the

above claim is justified and (1.3) can now be rewritten as
[0] [1] 2] [o-1],_ [=], .
(1.5) U(Pij )(cx(P:.Lj ){(J(Pij Y<...4€ O(Pij ) 0(1’ij ) .

This result essentially enabled Moisil (1960) to identify

problems 1.1 to 1.3 above in the case where the graph G 1is such
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that v(xi, xi) = ¢ for all nodes X, in 6 with the more
general problem of determining the (i; j)= entry of the matrix
Apﬂl, where A 1is the arc-value matrix of the graph G.

To see how reasonable this identification is, let us
consider problem 1.1. It is clear that in this case, the
additive group (R+, +) can be embedded in the Q-semiring
(R+LJ{m} , A s +) where A is as defined in problem 1.2 above.

Now if v(xi, xi) = 0 for all i 1is satisfied, theorem 1.2

yields

min {v(p)!p e Py [3]} = min {v(p)lp € Py [““1]} for all s 2 n-1

as interpreted from (1.5) above. Since P,. = Ci;P..(k)
ij k=0 "1ij :

min {v(p)[p € Pij} - min {v(p)]p € Pij[bﬁi]}

Therefore, problem 1.1 is equivalent to the determination
of the (i, j)~ entry of the matrix A[nui] = Anal . Similarly, one
can easily show that problems 1.2 and 1.3 are also equivalent to the
determination of the (i,j)- entry of the matrix A[h“i] = Anﬂl, where

A is the arc-value matrix of the corresponding graph.

In fact, the restriction that v(xi, xi) = ¢ for all 1

can be dropped if one identifies the above three problems with the

[p-1]

This is because theorem 1.2 can be easily seen

problem of determining the (i, j)- entry of the matrix A
rather than Am”1

to be equivalent to the following

THEOREM 1.3 Let (X, +, o) be a Q-semiring. Then for any matrix

Ae J&n(x), we have

.6y 1 <allealfle o gall o Il

L
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It is somewhat surprising to note that under the same hypothesis
as that of theorem 1.3, Pair (1967, p. 278) later obtained

a weaker conclusion than (1.6) namely

T+A+A%2 4+, +A° =T +A+A2 4+ ,..+A" for all s 3 n ,
while Peteanu (1970, p.167) erroneously concluded that

A+A2 + .., + AP = A+ A2 4 .., +a%L

To see that A + AZ + .., + A" A+ AZ + ..+ An“.1 for

some (n x n) matrix A over a Q-semiring, consider the (2 x 2)
2 §~] over the two-element (-semiring
X = {0, e} . For clearly,

matrix A = [

e e
A+ A% = [e e] £ oA

However, from theorem 1.3, we always have

1 n

A+ A2+ ., + A" o A+ A% + ., + A", a result which was also
proved by Benzaken (1968).
From the above discussion, we may now tentatively define

a path problem as follows.

DEFINITION 1.1 Let G be a graph over a Q-semiring and A be

its arc-value matrix. Then by a path problem, we mean the

determination of one or more entries of the matrix A[b.i] .

From this definition, a path problem ean therefore be
. ., [n-1]

solved by computing the matrix A . Now as a consequence
of theorem 1.3 and the fact that a Q~semiring is necessarily an
. . e . [ﬁ“l]
idempotent semiring, one can compute the matrix A by
recursively squaring the matrix I + A until one obtains the
matrix (I + A)k where k is the least positive integer not

less than n-1, As a matter of fact, this method was widely in
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use until the following algorithm was discovered.

ALGORITHM 1.1

{0}

Step 1. Set B = A

{k}

Step 2. Compute B recursively for k = 1 until n by

plk} | glk1} | pli-1} | o{k-1)

{k} {x}
1] ij ik kj &)

s where Bij = ij°
The above algorithm was first shown by Roy (1959) to

compute the matrix An~1‘ over the two-element Q-semiring

X = {6, e} whenever Aii = @ for all i is also satisfied.

But from the result of Warshall (1962), this algorithm actually

computes the matrix A + A2 + ... + A" without the assumption

that Aii = e for all 1i. That Warshall's result can be

extended to matrices over the semiring (ngg{w} s ~ 5 +) was first

realized by Floyd (1962). On the other hand, Tomescu (1968)

subsequently generalizes the result of Roy (1959) to matrices over

a commutative semiring satisfying (1.1), i.e. the algebraic

structure of Moisil (1960). However, as was noted by Benzaken (1968)

and proved by Murchland (1965) as well as Robert and Feriand (1968),

algorithm 1.1 is valid for computing the matrix A + A2 + ... + A"

over a Q-semiring. It will be seen later that this algorithm is

in fact valid for computing the matrix A + A2 + ,,.+A" over any

semiring provided that A satisfies a certain condition. Moreover,

it is somewhat interesting to note that algorithm 1.1 is in fact

a particular form of a more general result obtained by

McNaughton and Yamada (1960) in automata theory.
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If we now replace step 1 of algorithm 1.1 by

{o}

Step 1° Set B =1 + A,

then the resulting algorithm was shown by Pair (1967) to compute
the matrix A[h] over any Q-semiring. But in view of theorem
1.3, this modified algorithm must in fact yield A[ﬁ‘XJ .. This
modified algorithm is of little interest to us because to obtain
A[h*l], we can simply use algorithm 1.1 to compute A + A2 + .., + A"
and then add the unit matrix I to it which would then yield

the required result. Moreover, algorithm 1.1 is of interest in
its own right because in several practical problems, we often
require the matrix A + A2 + .,. + A" rather than the matrix
A[bwl]. As a matter of fact, we could simultaneously consider
the determination of one or more entries of the matrix

A+ A% + .., + A" and the matrix A[?*IJ in our definition of

a path problem . However, for simplicity of exposition, we shall
omit this consideration throughout this chapter.

Let us now consider the following variant of problem 1.1
PROBLEM 1.4 Longest Path

s +
Let G be a graph over the additive group (R , +) of
non-negative real numbers. For any two nodes X5 xj in G,
determine

max {v(p)|p € Pij} ,» if it exists.

We note that max{v(p)|p ¢ Pij} may not exist if the
graph G over (R+, +) contains a closed path ¢ such that
v(e) > 0. So let us assume that the graph G satisfies the

following condition.
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(1.7)  wv(e) = 0 for every closed path ¢ in G,

With this assumption, it can be verified that
max{v(p)|p e Pij[é]} = max{v(p)|p ¢ Pij[balj} for all s > n-1

Now since P,, = fe) P..(k), it then follows that
ii k=0 " ij

nax(v(p) |p € 7} = max (v@@)|p e 2, ()

Therefore, we can also identify problem 1.4 in the case
where condition (1.7) is satisfied with the problem of determining
the (i,j) —-entry of the matrix A[b_i] over the semiring (R+, v, +)
where the binary operation V is defined on R’ by
a Vb =max{a, b} . However, even this modified case of problem
1.4 does not fit into our previous definition of a path problem
because (R+, V, +) 1is not a Q~semiring. Therefore, definition 1.1
has to be modified if one also wants to consider problem 1.4 as a
path problem. It is precisely for this reason that Peteanu (1970)
obtained a generalization of theorem 1.2 which can be stated as

follows.

THEOREM 1.4. Let (X, +, 0) be an idempotent semiring (see
section 0.2). Then for any matrix A e J&n(x) such that

n-1 .
Aii e (A )ii for all i, we have

I<A<AZS ... <a%1apam e |,

Let us now interpret this theorem in terms of the graph

G(A) . Theorem 1.4 effectively says that if G(A) 1is such that
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(1.8) U(Fii(k)) = ¢ for all i , and for all ke{0,1,...,n~1},

then (1.5) holds. This interpretation suggests that one may

replace condition (1.8) by the following.

(1.9) v(w) { e for every elementary closed path w in G.

To see why this is so, let us first establish the following
useful result, where for convenience, a graph G satisfying (1.9)

will be said to be absorptive.

LEMMA 1.1 For any non-elementary path p ¢ Pij of an absorptive
graph G over a semiring (X, +, o), there is always an

elementary path S € Pij such that v(p) < V(;) .

PROOF This result can be obtained by employing the
contraction process discussed in section 0.4 above. For using
this process, the non-elementary path p can be factorized as

follows

P =Py @y 9y Py 91 % Py Wy Ggseees Pgoq9gq T Pg W5 95 »
where Py 4 is a contraction of p.

Consequently, v(p)< v(p;qy) {v(p,a,) < ... < v(p q )= v(p) ,
where p = P9, is the required elementary path. Note that we
have here used property (0.3) of the pseudo—ordering < of the

semiring. v
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With the aid of lemma 1.1, we now show that (1.8) is

implied by (1.9). For let p ¢ Pii(k)

~ Bi . If p is
elementary, then v(p)<{ e by assumption., If p is non~
elementary, then by lemma 1.1, there exists an elementary path
EePii such that v(p)<v(p) . But v(p)<4e because p is

an elementary closed path and hence v(p)<4 e. Therefore, v(p)<e
for all p e Pii(k)\\ei’ and hence by property (0.5) of < , we

have G(Pii(k)\\ei)< e. But then

(k) (k)
o'(Pii } o= c(Pii \\ei) + o(ei)

) (k) . i} ;
c(Pii AN ei) + e , since G(Oi) v(ei) = @

= e as required.

On the other hand, (1.9) is implied by (1.8) because it

follows from the idempotency of addition that v(w)<v(w), and
k k
(k) ( )) = e,

hence viw) < v{w) + c(Pii where k is

chosen so that w € Pii(k) .

N ow) o= O(Pii

Therefore, the hypothesis of theorem 1.4 can be replaced
by (1.9). In fact, using (1.9), one can obtain the following
result which coincides with theorem 1.4 whenever the semiring is
also idempotent. For convenience, let us call a matrix A

absorptive iff its graph G(A) is absorptive.

THEOREM 1.5 Let (X, +, o) be any semiring. Then for any

absorptive matrix A ¢ Jkn(X), we have

N 1 I
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The validity of this theorem will be proved below. But

first, let us obtain the following,

LEMMA 1.2 Let G be an absorptive graph over any semiring

(X, +, 0). Then the following condition holds.

(1.10) For any finite subset B such that E_C B Q;Pij’
13
we have o(B) = O(Eij) ., Wwhere Eij is the set of

all elementary paths in Pij of G.

PROOF First, we show that wv(p) < G(Eij) for all p e B\Eij
By lemma 1.1, we have v(p) < v(p) for some P e Eij whenever
pe BN Eij' Therefore, it follows from properties (0.2) and (0.4)

of < that v(p) < v(s) + q(Eij‘\ 5) = a(Eij) as required.

Consequently, it follows from property (0.5) of < that

c(B\\Eij) < o(Eij) for all 1i,j, and hence

o(B) = C(B\‘Eij) + G(Eij) = U(Eij) for all i, j. v

We note here that Brucker (1974, p.34) erroneously concluded
that condition (1.10) implies A[n] = A[“"}“], where A is the
arc-value matrix of G. The error in his argument lies in the fact
that every elementary path in a graph with n nodes has at most
n arcs (and not (n~1) arcs as claimed by Brucker (1974)).
However, it is true that every elementary open path in a graph
with n nodes has at most (n~1) arcs, and hence
Eij<; PijEé"i] for i + j»  Therefore, G(Pij[ébi])zo(Eij)for’i + i

follows from lemma 1.2, That o(Pii[iwi]) = O(Eii) also holds cannot

- 20 =



be deduced from lemma 1.2 because in general Eiiqt Pii[b—il’ but

this can be deduced from the fact that since G is absorptive,
-1y .. .
G(Pii ) m e o(Eii).

Since lemma 1.2 can always be used to obtain G(Pij[hﬂ)vc(Eij) for
all i, j, the validity of theorem 1.5 is thereby established.

Moreover, we have just shown that

(1.11) A% = A[n—l:[, where (A"‘)ij = G(Eij) for all 1, j.

We note here that (1.11) and theorem 1.5 in its present
form are due to a result originally obtained by Carré (1971)
for matrices over a semiring which alsé satisfies additional
assumptions. However, his proof of this result can easily be
rewritten without the use of additional assumptions. This point
was also noted by Shier (1973) and essentially by Gondran (1975).
It is also of interest to note that Iri (1962) had earlier shown
that (1.11) is always true whenever lemma 1.1 and the idempotency
of addition are assumed valid.

Although of no interest to the study of path problems in
general, the question concerning the validity of the converse
of theorem 1.5 is a sound mathematical question. It turns out that
this question has a negative answer since we have found a counter—
example to this converse even when the idempotency of addition
iz assumed. This example will be given later in this chapter where

it is more appropriate (see pagé 46) .,
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Let us note in passing that in stating condition (1.10),Brucker

(1974) failed to stipulate the finiteness of B. Such a stipulation
is necessary because when B is an infinite set, 2 v(p) may

peB
not be a well-defined element of the semiring.

The above discussion suggests that we may now modify our

previous definition of a path problem as follows.

DEFINITION 1.2 Let G be an absorptive graph over a semiring

(X, +, 0) and A be its arc-value matrix. Then by a path problem

we mean the determination of one or more entries of the matrix
Al

Since any graph G over a Q-semiring is obviously absorptive,
it follows that this definition is more general than definition 1.1
above. Moreover, this definition allows us to include the following
as a path problem. For convenience, a graph G which has no
non-null closed paths will be said to be acyclic. Clearly, an

acyclic graph is also absorptive.

PROBLEM 1.5 Parts Requirement (Vazonyi (1954))
Let G be an acyclic graph over the multiplicative monoid
(N, *) of non-negative integers . For any two nodes X5 Xj in G,

determine

Z v(p) ,
pePij

which is just the ordinary sum of a finite number of v(p) for
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each p ¢ Pij . Note that Pij is finite because G is
assumed to be acyclic.
From definition 1.2, we see that a path problem is again
] . . [p-1] : .
solved by computing the matrix A s where A is an absorptive
matrix over any semiring. For the case where the semiring is also
idempotent, it is evident that the previous method for computing

n-1 . . . . .
A[: ] by recursively squaring the matrix I + A remains valid.
However, better methods are available in this case,

It was effectively demonstrated by Carré (1971) that in
solving a path problem as given by definition 1.2, an analogy with the
classical methods of solving ordinary linear equations can be
fruitfully exploited, since the matrix A{inij can be viewed ag a
solution of the matrix equation Y = A o Y + I . To this end, he
developed several methods which are amalogous to both the
elimination and iterative techniques of linear algebra (see e.g.

Fox (1964)), for solving the matrix equation Y = A o Y + B. Some

of these methods were also seen by him to correspond to already

well known algorithms for solving problem 1,1, Moreover, algorithm

1.1 was noted by him to correspond to his Jordan method for solving the
matrix equation Y = Ao Y + A, (This was also shown subsequently

in Backhouse and Carré (1975))., Since the idempotency of additionm
played a major role in the work of Carré (1971) as well as Backhouse
and Carré (1975), it is therefore of interest to find out the

extent to which these variants of linear algebraic methods can be
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applied without the assumption of idempotency of addition. An

attempt along this line was made by Gondran (1975) where he

claimed in particular that the Gauss and Jordan methods as developed

by Carré (1971) remain valid without the idempotency assumption.

He in fact gave a proof of the Jordan method in substantiating his

claim. Unfortunately, his proof cannot be taken as valid for a

reason to be given in section 5.2 below. Thus the task remains

for us to justify his claim. This justification would yield in

particular the validity of algorithm 1.1 for computing

A+ A2+ ,,, + An, where A is an absorptive matrix over a semiring,

a result which was obtained by Roy (1975). It is interesting to

note here that Brucker (1974) also showed that algorithm 1.1

with step 1 replaced by step 1' above is in fact valid for computing

the matrix A[?hl] whenever the graph G(A) satisfies (1.10) above.
Let us now consider the following natural generalization

of problem 1.1,
PROBLEM 1.6 k Shortest Paths

s, e +
Let G be a graph over the additive group (R , +) of
non-negative real numbers and k 'a positive integer. For any two
nodes Xes xi in G, determine

k-min{v(p)|p € B;id s

. .. i . th
which is just the set consisting of the first, the second, ..., t

smallest elements of the set {v(p)fp € Pij} , where t is the

largest positive integer such that t g k .

Note that when k = 1 , problem 1.6 coincides with
problem 1.1. The method used in solving previous problems in the

setting of a graph over a semiring were also extended to this problem
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by several authors which include Pair (1967), Giffler (1968),
Derniame and Pair (1971), Minieka and Shier (1973), Shier (1974),
Gondran (1975) and Roy (1975). However, unlike previous problems,
a relevant semiring for solving this problem, which we shall

from now on refer to as a k shortest path algebra, is not

immediately apparent. In consequence, several analogous proposals
for a k shortest path algebra were made by these authors. The

following k shortest path algebra (¥, ® , ) is inspired

k-min’
by their work.

Let ¥ denote the set of all well-ordered subsets of

4
R including ¢, and define the function k-min : ¥+ ¥ by

¢ if A= ¢
(1.12)  k-min(A) =

{al, Bys aees at} , otherwise

Here a, < 8y < wee < a_ are t successively smallest elements of

A and t 1is the largest index such that ¢t g k.

Now set = {A ¢V |k-min(A) = A} and define two

k-min

binary operations @ and @ on by

k-min

A®B=k-min (AL1B), and
A © B = k-min (AB), where AB = {a+b | aecA, beB}

It can be verified that ( 7& @, ©) forms an

-min’
idempotent semiring. Now since k-min{x} = {x} holds for all

L3 + 13 4
X € R+, one can identify R with the subset of lwinmin which

. . + .. ‘o \
consists of only singleton subsets of R . This identification then
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allows us to view problem 1.6 above in terms of a graph over

,

that

—min? ®, ©) . Also it can be verified (cf. Shier (1974))

(1.13) k*min{v(p)lp £ ?ij[g] } = kwmin{v(p)lp € Pij[hkni] } for sznk-1.

[++]
{;‘% Pi.(k) it follows that

Since Pij = K i .

k-min{v(p)|p e P;;} = k-min {v(p)!p e pij[bk”i3} )

Consequently, problem 1.6 is equivalent to the
determination of k*min{v(p)|p € Pij[ﬁkmi]} which is just the
(i, j)—entry of the matrix A[bk_iju I6A0 ...0 Ank”l,

where A 1is the arc-value matrix of the graph G over (’7; 8,0),

~min’
Similarly, we may consider the following generalization

of problem 1.4.
PROBLEM 1.7 k Longest Paths

‘s +
Let G be a graph over the additive group (R , +)} of
non-negative real numbers. For any two nodes X Xj in G,

determine

k-max{v(p) |p ¢ ?ij} , 1f it exists.

Note that k-max(A) for any subset A of the set '
of all dually well ordered subsets of R and the empty set ¢

can be defined dually from (1.12), and that kemax{v(p)|p ¢ P,.}
ij
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may not exist for the same reason as in problem 1.4, Therefore,
condition (1.7) must be assumed to guarantee its existence.

Moreover, with this assumption, one can verify gimilarly that

k~m3x{v(p)[p £ PijE#]} ] k»max{v(p)!p £ Pij[bk*i]} for all s > nk~1,
and hence
k~max{v(p)|p £ Pij} = kwmax{v(p)]p € Pij[bk‘i]} .

Therefore, one can also identify problem 1.7 with the

determination of k*max{v(y)lp £ Pij[ék—lj} or the (i, j)-entry

of the matrix A[§k~l], where A is the arc-value matrix of the

graph G over the k longest path algebra ("' ®, 8) which

k-max®

is constructed from the function k-max : ¥' + ¥' 1in a dual
mamer from the derivation of the k shortest path algebra above.
We may now rephrase our definition of a path problem
so as to include problems 1.6 and 1.7 as follows, where for convenience,

a matrix A over a semiring is said to be n0~stable iff there

exists a non-negative integer n, such that

(%]

0.+l n
A['o ] = A[.d] o Clearly, A is no~stable iff A[EJ = A for

> R
all s 3 nO

DEFINITION 1.3 Let G be a graph over a semiring (X, +, o) and

. A its arc-value matrix which is also n0~stab1e. Then by a

path problem we mean the determination of one or more entries of the

matrix A [n()] .
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By this definition, a path problem is solved by
computing the matrix A[?O . Again, for the case where the
semiring is also idempotent, this matrix can be obtained by
resursively squaring the matrix I+A until we obtain (I + A)k
where k is the least positive integer not less than ng. However,
since A is n0~stab1e, A[?d] obviously satisfies the matrix
equation Y = A o Y + I and hence, it is more fruitful to follow
Carré (1971) and also more recently Carré (1976) by considering
methods of solving the matrix equation Y = AoY + B in this case

(see section 5.3 below).

Now observe that definition 1.3 is more general than
definition 1.2 because by theorem 1.5, an absorptive matrix A is
always (n-1)-stable. At this point, it interesting to ask which
other matrices are n0~stab1e for some positive integer ;- For
matrices over commutative semirings, Gondran (1975) found an answer

in Theorem 1.6 below. For convenience, a graph G over a semiring

(X, +, o) will be said to be q-regular iff it satisfies

(1.14) There exists a positive integer ¢ such that

v(m)q-< e+ vw) + vw? + ... + v(w)qni

for every elementary closed path w in G, where v(w)q

denotes the q-th power of v(u).

Also for convenience, a matrix A ¢ J&n(x) will, be

said to be g-regular iff G(A) is g-regular.
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THEOREM 1.6. Any matrix A over a commutative semiring (X, +, o)
is nowstable if it is q-regular for some positive integer q.

Moreover, if G(A) has t elementary non-null closed paths, then

n, = nt{g-1) + (n~1) .

In fact, Gondran (1975) did not obtain an explicit value
for n, but noted that it corresponds to the maximum order of
paths in G(A) which do not traverse any elementary non-null closed
paths more than (q-1) times. We shall prove theorem 1.6 via the
following
LEMMA. 1.3 Let G be a g-regular graph over a commutative
seniring (X, +, o), Q(q) the set of all paths in G which do not
traverse any elementary non~null closed path in G more that (q~1)
times, and Q be any set of paths in G which also contains all the

subpaths of any path in Q . Then for any pe Q but p é Q(q),

there exists H §; QI"\Q(q} such that wv(p) < o(H).

PROOF Let p e Q but p ¢ 0@ . Then by assumption, p
must traverse at lease one elementary non-null closed path more than
(g~1) times. Let us suppose that p traverses exactly k
elementary non-null closed paths for more than (g~1) times each, say
8, times for Wys sz for W,y and soc on. Now by the commutativity
of o , we may use the contraction process to obtain
%1 52 "
v(p) = v@) T o vy To wee o v) Covipg) ,

where Pd, is taken without loss of gemerality to be an elementary

open path of Q. Let us write
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= 2 q-1
y, =e+ v(mi) + v(wi) HFooot v(wi)
for all ie {1, 2, ..., k} . Then we claim that

8.
i .
v(wi) <y for all i e{1, 2, ..., k} .

To justify this claim it suffices to show that

condition (1.14) above always implies
V(@) e + vw) + v)? +,..4+ v(w)q“}L

for all m 2 q . This result can be easily shown by mathematical

induction on t, the detail of which will be omitted here since

a more general result will be proved later in lemma 1.4 below.
Therefore, granting that this claim is justified, it

follows from property (0.3) of < that
vip) < Y3 0¥y 0 cec 0y 0 v(psqs) .
But by definition, v, = G(Hi) for all i e {1, 2, ..., k} , where
H, =46, , w,, 0.2, «oop 0,71} for a11 1 € {1, 2,...,k}
i jia 3 i 2 Wy [ ® ? )

and hence

vip) < G(Hl) o G(Hz) 0 ves O G(Hk) o a(psqs) = g(H) ,
where Ho=H H ... Hk'{ps qs} .

We now claim that HC Qﬂﬂ(q) .

t1 t2 t
For let xe H , then x = Wy wz oo Oy ps qS where

ti £ g-1 for all i e{1, 2, ..., k} can be considered as a path in
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Q which traverses all the elementary closed paths Wys Woa +osly
and the open path Pgd, in any manner which defines a path. Note
that there must exist at least one possibility since p itself
was assumed to traverse Wys Woy eey O and psqs in the first
place. Now =x 1is also in Q(Q) because it does not traverse any
elementary closed path w, more than ¢~1 times. Hence

X € Qﬂﬁ(q) , and therefore HC Q ﬁﬂ(q) as claimed, and the

lemma is proved. v

The proof of theorem 1.6 can be seen to follow from

lemma 1.1 by observing that

(@) [s] . - -
(1.15) Qij C Pij - Pij for all s 3 n, nt(q~1) + (o-1),
where Qi;q) = Pijfﬁﬂ Q(q) and t denotes the number of all

elementary non~null closed paths in G, This observation follows
because the maximum order of a path which does not traverse any
elementary non-null closed path more than (g~1) times corresponds
to that of the path which traverses exactly t{(q~1) elementary
non-null closed paths plus one open path which amounts to

nt{g-1) + (n~1) = e

(5]
Now let p e Pij for any s = L

(¢)
but p é Qij .

Then p ¢ Q(q) because otherwise,

ij ij ij ij ij ij ?

a contradiction.

Therefore, by lemma 3.1, we have vip) < o(H) for some

(q)

H C Qij , and hence
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v(p) < o(H) + “(Qi§q>\ H) = c(nij(q))

for all p e Pij[él\.ﬂij<q) follows from properties (0.2) and

(0.4) of < ,

Consequently, it follows from property (0.5) of < that

G(Pij[%]\ Qij(q)) < a(ﬁij(q)), and hence

c(Pij[51) = a(Pij[s]\ nij(q)) + G(Qij(Q)) = o(aij(q)) which

proves theorem 1.6 above,

In problem 1.6, the k shortest path algebra

(f?k*min’ @, ©) can be seen to be a commutative semiring and
condition (1.14) is easily seen to be satisfied by q = k. Hence
theorem 1.6 enables us to infer that the arc-value matrix A in
problem 1.6 is n0~stab1e where n, = nt(k-1) + (n-1). However,
from (1.13), we gsee that A is in fact (nk~1)~stable. It is
therefore of interest to note that theorem 1.7 below, which is due
essentially to Roy (1975), yields (1.13) directly when applied to

problem 1.6. For convenience, a graph G over a semiring

(X, +, 0) will be said to be ~absorptive iff it satisfies
g

(1.16) v(wi) 0 v(mz) 0 4200 O v(mq) < e + v(ml) + ...

+ v(wl) 0 v(wz) Osss O v(wq”

for every g-tuple (wl, Wos «oos wq) of elementary
closed paths in G.
Also for convenience, a matrix A ¢ J&n(X) will be

said to be g-absorptive iff G(A) is g~absorptive
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THEOREM 1.7 Any matrix A over a commutative semiring is
(ng-1)-stable if it is q-absorptive.

We note here that the original result obtained by
Roy (1975) was that A is ng-stable. That A is in fact

(ng-1)-stable can be proved via the following

LEMMA 1.4 Let G be a g~absorptive graph over a commutative
semiring (X, +, o), Q[é} be the set of all paths in G which

do not traverse more than (q~1) elementary non~null closed path

in G, and Q be any set of paths in G which also contains all

the subpaths of any path in Q, Then for any p € Q but p é Q[q],

there exists : x.»s* HC Qf\Q[q] such that v(p) < o(H),
FROOF First, let us show that condition (1.16) implies that

v(wl) ) v(mz) o,,.ev(ws) < e + v(wl) + e.. *

+ v(wl)o v(wz) 0 .60 V(wq~1)

for every s-tuple (wl, Wos ...,ws) and for all s 2 q.

We show this by mathematical induction on s. For s = q, the
result is obviously true. So we may assume its validity for

q £ s <t as our induction hypothesis and show that it is also
valid for s = t.

By this induction hypothesis, we have
v(mz)o v(wB)o.., ) v(mt)< e + v(w2)+...+ v(w2)0 v(wg)o...o v(wq),

and hence it follows from properties (0.2) and (0.4) of < that

VA



v(wl)o v(mz)o... o v(wt) < v(w1)+v(w1)o v(w2)+.,.+v(w1)o v(wz)o,..o v(wq)

£ e+v(w1)+..,+v(m1)o v(mz)o...o v(wq)

- e+v(w1)*...+ v(wl) TN v(wqml) .

which yields the required result.

Now let p e Q but p é ﬂ[§1. Then by definition, p
must traverse at least q elementary non-null closed paths. Thus by

the contraction process, we may write

P = Py Pydy = PypdysesP 19, = P4, where

8 2 g and Pgd, is a contraction of p. Since o is commutative,
we then have v(p) = v(wl)a v(wz)a...o v(ms)o v(psqs}. It then
follows from the above result and property (0.3) of < that

v(p) < (e+v(wl)+..o+v(w1)a v(mz)o...o v(mqml))o v(psqs)
1f P9, is not a closed path, then v(p) < U(HI) where

Hl = {ﬁi, Wys 0y Woseeesly Wyoon wq~1}O{Psqs}
= {Psqs’wlPsqs’ mlwzpsqs,...,wlwz...qulpsqs}

If otherwise, then P4, =W is an elementary non-null

closed path, and hence
vip) < vw)+viw)o v(ml)+...+ v{w)o v(wl)o,..o V(mq~l)
It then follows from properties (0.2) and (0.4) of < that

vip) < e +v(w) + v(w)o v(wl) +o.ot v(w)o v(wl)o,.. 0 v(wq»l)

]

e + v(w) + ...+ v(w)o v(wl)o...o v(wq_z)

]

U(Hz) s
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where H2 = {ai, Wy WO, oo pWy 00

Since Hl and HZ can both be shown to be a subset of

Q f\ﬂ[é] by an argument similar to that used at the end of the
proof of lemma 1.3 above, it follows that in both cases, v{p)<o(H)

for some HC QN 9&} as required. v

The proof of theorem 1.7 now follows from lemma 1.4 by

observing that

(1.17) Q..[dICZ P..[?IC:P.. for all s 2 ng-1,
1] . - 1]

where Qij[q] = PiijQ[d]. This observation follows because the
maxiuum order of a path which does not traverse more than (g-1)
elementary non-null closed paths corresponds to that of the path
which traverses exactly (q~1) elementary non-null closed paths plus
one elementary open path which amounts to n(gq-1)+(n-1) = ng-1. The
rest of the proof follows from an argument similar to that used
at the end of the proof of theorem 1.6, and hence its detail will be

omitted.

Let us now consider the following

PROBLEM 1.8 Simple Paths

Let I be a finite set of letters, also known as an
alphabet. By a word over I , we mean a finite sequence of letters
written one after another in a definite order. A word will be said
to be gimple iff all its letters are distinct. A word without any

letters will be called the empty word and is denoted by A. The operation
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which combines two words into one is known as concatenation,

and is denoted by juxtaposition. It is well known that the set
I* of all words over I (including A) forms a monoid with
respect to concatenation,also known as the free monoid generated
by Z. With these preliminaries, we can now state our present
problem as follows.

Let G be a graph over an alphabet I such that each
arc in G 1is assigned a distinct letter of I . We may then
consider G as a graph over the monoid I*. For any two nodes

s Xj in G, determine
sim {v(p)|p ¢ ?ij} .

which denotes the set of all simple words v(p) for each p ¢ Pij“

This problem can be formulated and solved as a path problem
in the sense of definition 1.3 as follows

Let V= 2* and ﬂVsimm {A ¢ 7V |sim(A) = A} , where
sim(A) denotes the set of all simple words in A. Define two binary

operations @ and @ on ¥ . by
sim

A @B =sim (AUJB), and

A © B = sim (AB), where AB = {abla ¢ A, b ¢ B}

It can then be verified that ( 1;hn’ &, ), called the

simple path algebra, forms an idempotent semiring.

Now since sim{x} = {x} for all =x ¢ & implies that one
can identify the letters of I with the singleton subsets of ‘y;im’
the graph G in problem 1.8 can be considered as a graph

over (‘V;im, ®, ©). Moreover, if m is the total number of arecs

in G, it can be verified that
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(1.18) sim {v(p)|p ¢ P [ﬁ]} = gim {v(p)|p ¢ Bis [m]} for all s 3 m.

(k)

Since Pij = U p,, , it follows that

sim{v(p) |p ¢ Pij} = sim {v(p)|p € Pij[bﬂ} .

Therefore, problem 1.8 is equivalent to the determination
of sim{v(p)|p e ?ij{@ﬂ} which is just the (i, j)~entry of the
matrix A[ig, where A is the arc-value matrix of the graph G

over (’W;ﬁn, &, &

Now we note that although the graph G in problem 1.8
_satisfies (1.14) and (1.16) when considered as a graph over the
simple path algebra, we camnot use theorems 1.6 or 1.7 to deduce the
validity of (1.18) because the simple path algebra is not necessarily
a commutative semiring. This example therefore gives us the
motivation for obtaining other results analogous to theorems 1.6 or
1.7 but without the commutativity assumption. These results will be
given later (see theorems 4.6 and 4.10 below).

Problem 1.8 also provides us with a counter example to the
validity of the converse of theorem 1.5, which we discussed earlier
(see page 30). For it suffices to take a graph G with
m = n~1 arcs which also contains an elementary closed path say w.

Then clearly,
v(w) & {1} = sim{v(w),2} = {v(w),A} $ {A} ,

which shows that (1.9) does not hold here. On the other hand,

(1.18) can be expressed as

A[S] = A[éoi] for all s 2 n~1 .

- L6 =



Let us now make an observation which will open the
way to an alternative approach to the abstract study of path
problems. This observation concerns the semirings in each of the
above problems. We have seen that while the relevant semirings for
solving problems 1.1 to 1.5 were self-evident, those for solving
problems 1.6 to 1.8 were not. Nevertheless, the methods employed
to construct these latter semirings, whether it be the k shortest
or the k longest or the simple path algebras, are all carried out
via a certain function, say r, which is defined on a certain set
¥  of subsets of the monoid (X, o) which is also closed under
union and complex product and contains {e}, ¢ . By means of r,

one can then define
(1.19) V. ={ae lr(a) = A} ,
and two binary operations @ and € on 7; by

{(1.20) A®B=1x(AlUB), and
(1.21) A @B =r(AB) , where AB = {a o bla e A, b ¢ B} .
The properties tlLat the function r must possess are

obviously those which will make ( %}, @, ©) become a semiring. For

this purpose, the following properties can be seen to suffice.

(1.22) r(¢) = ¢
(1.23) r{(A\JB) = r{x (&) U B)
(1.24) r(AB) = r(r(A)B) = r(A r(B))
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In fact, one can also apply the above method to
construct the semiring for solving problems 1.1 by taking r = min
and ¥ as the set of all well ordered subsets of R and ¢ . The

semirin a
g ( in?

®, @) so obtained can be easily seen to be
isormorphic to the semiring (R+lvl{m},lﬁ, +) which we obtained
earlier for problem 1.1. The same remark applies also to problems
1.2 and 1.4, where r can again be taken as min or max,
whichever is appropriate. The only exception is problem 1.5. We
shall return to this point later. Meanwhile, let us note that all

these problems except problem 1.5 can also be equivalently expressed

in terms of the function r as the determination of
(1.25) r{vip)ip ¢ Pij} , if it exists.

Note that in general, r{v(p)|p ¢ Pij} may not exist
because the set {v(p)fp € Pij} may not belong to ¥ , the
domain of the function ¥, Examples of this situation have already
been seen in problems 1.4 and 1.7 above., Moreover, it can be observed
that condition (1.7) which was assumed in order to guarantee the
existence of (1.25) in these two problems in fact imposes a
restriction on the graph under comsideration. Any graph which does
not satisfy condition (1.7) is therefore in some sense not compatible
with the domain of the function r and hence not compatible with
the algebraic structure ( ?}, @, 8) over which the graph is to be
considered in these two problems. It turns out that this question
of compatibility can be fruitfully analysed in its full genmerality

if 7 Thas the following two properties.
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(1.26) ¥ contains all the finite subsets of the monoid (X, o)

including the empty set ¢.

(1.27) If Ae , and BCA, then BeV also.

The detailsof this analysis will be given later but in
a slightly more general framework (see section 4.2 below). It
suffices to note here that all the appropriate “¥=-sets of the above
problems except problem 1.5 do possess properties (1.26) and (1.27)
above,

In summary, all the above problems except problem 1.5
can all be described as a path problem in accordance with the

following definition

DEFINITION 1.4 Let G be a graph over a monoid (X, o), ¥
a set of all the subsets of X which has properties (1.26), (1.27)
and is also closed with respect to union and complex product, and
T a function defined on ¥ which satisfies (1.22) to (1.24).

Then by a path problem we mean the determination of r{v(p)fp € Pij}

for one or more pairs (i, j), provided,of course,that they exist.
Let us now give another example of a path problem in

accordance with the above definition, namely
PROBLEM 1.9 Elementary Paths

Let I%* be the set of all words (inlcuding A) over an
alphabet I (see problem 1.8 above). A word x of I%* is said

to be an abbreviation of another word v of I* 1iff =x can be

obtained from y by removing at least one (and possibly all) of the
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letters of y . (Note that every word with at least one letter
has the abbreviation 1). For instance, the word "mary" is an
abbreviation of the word "elementary". Now for any set A of
words of I* , let b(A) be the set of all words which are
obtained from A by deleting all those words which also have all
their abbreviations in A. With these preliminaries, we can now
state our present problem as follows.

Let G be a graph over an alphabet £ such that each
arc in G is assigned a distinct letter of I . We may then
consider G as a graph over the monoid &%,

For any two nodes Xi’xj in G, derermine

b {vip)|p ¢ Pt

We note that the above problem can also be considered as
a path problem in accordance with definition 1.3 or, better still,
definition 1.2, because the graph G can be easily verified to be
abgorptive when considered over the elementary path algegra
(¥, &, ©) which can be defined via (1.20) and (1.21) with

%
r=band ¥= 2 . We note also that ( ¥, , &, @) coincides with

b
the free distributive pseudo-lattice of Benzaken (1968) which was
also used by him to enumerate elementary paths (see also Murchland
(1965) ) in a graph.

In fact, any problem which satisfies definition 1.4 and

has the property that

11
(1.28) r*{ v(p)|p ¢ P, [Po* J} = E{V(P)E? e P, [n‘ﬂ} for some ny € N
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can easily be shown to satisfy definition 1.3 by considering
the graph G of the corresponding problem to be over the semiring
{ 7;, @, ©). The converse is also true in the case where the
semiring (X, +, 0) is idempotent. For one can then define

V = Zx and r as follows.

{sup A} if sup A e X and sup A + 0
r(A) =
) s otherwise

That ¥ so defined has properties (1.26) and (1.27) is obvious
and that T has properties (1.22) to (1.24) can be shown in a
manner similar to the proof of theorem 3.1 to be given later.

Now since the arc-value matrix A of ¢ is nowstable,

it follews‘from (0.16) and (1.4) that

) v(p)

(1.29) ) )
paP,.[?d]
1]

v{p
peP,.[?O*I}
1]

But condition (1.29) is equivalent to (1.28) because

sup A = X X whenever 4 % ¢ is a finite set, and therefore, the
xeh

converse is verified.

Let us now return to consider the difficulty which
prevents problem 1.5 from being a path problem in accordance with
definition 1.4. This difficulty in fact arises from the non-
idempotency of addition in N. However, this ghortcoming can be
eliminated by using a comcept of multisets,to be introduced in the
next chapter. It is precisely the aim of this thesis to show exactly
how this can be done and also to demonstrate its usefulness for solving

all the above problems and many others (see chapter 5 below).
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CHAPTER 2

MULTISETS

2.1 Complete Lattice of Multisets

A natural way of generalizing the intuitive notion of
a set is to remove the restriction that all its elements are
distinct. We then have the corresponding notion of a collection
which may contain an identical element repeated a finite number of
times. Such a collection is usually called a multiset (Knuth (1969))
whenever the number of repetitions is finite. However, here we
shall take the term "multiset" to mean a collection of elements
in which infinite repetitions of an element are alloWed+ , and
call a multiset non-singular whenever none of its elements are

repeated an infinite number of times. Thus formally,

DEFINITION 2.1 Let N_  be the complete semiring of non-negative
integers as defined in section 0.2. A multiset A with elements
from a given set X is a funetion A:X +‘Nm. Each image A(x) will

be called the multiplicity of x in A, which is just the number of

times x occurs inm A. A multiset A is said to be empty, written

A=¢ , iff A(x) = 0 for all x ¢ X; non-singular iff A(x) % @ for

all x e X.

From the above definition of a multiset, it follows that
any set can simply be regarded as a multiset in which the multiplicity
of each eleﬁent is at most unity. The connection of sets with

multisets is even more fundamental in that to each multiset A, there

This corresponds to an M -subset in Eilenberg(1974), where WV = N
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is always a unique set d(A) = {x|A(x) + 0} , called the support
of the multiset A. Note that d(A) is just the set of all

distinct elements of the multiset A. This concept of a support
enables us to distinguish the following types of multisets which

are especially useful to our present study,

DEFINITION 2.2.

(1) A multiset A is said to be quasi~finite iff its

support is a finite set, i.e. d(A) contains only a finite number of

elements. A is then said to be finite iff it is also non~singular .

(ii) A multiset A is said to be quasi-countable iff

its support is a countable set, i.e d(A) is either a finite set or
it can be put in one-to-cme correspondence with the set of positive

integers. A 1is then said to be countable iff it is also non~gingular .

(iii) Let (X, £) be an ordered set. A multiset A with

elements from X is said to be well ordered (dually well ordered)

iff its support is a well ordered (dually well ordered) set.

When there is no chance of confusion, we shall use
capital letters to denmote multisets and lower case letters to denote
elements. By virtue of the fact that multisets are mere
generalizations of sets,it is natural to make extensive use of set~
theoretic notation whenever confusion is not possible. Thus for
instance, we shall write x € A to indicate that x is an
element of A, i.e. A(x) % 0. However, the notation {x[P(x)} will

be reserved exclusively for sets. For finite multisets it is
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often convenient to exhibit their elements as a list enclosing
symbols between braces, but note that for multisets which contain
only a single element, say {x} » we find it convenient to omit
its braces whenever its meaning is clear from the context. Finally,
a quasi-finite or quasi-countable multiset may also be written in
extenso such as {1, ..., 1, 2, 3} or {i, 2, 3, ...} , provided
that the suppressed elements are obvious.

Now let Nf denote the set of all multisets with
elements taken from a set X. Then Nﬁ is easily seen to be

ordered by the following relation to be called multiset inclusion

and denoted by C 1in analogy with set inclusion.
(2.1 AC B iff A(x) g€ B(x) for all x e X .

where g denotes the extension of the ordering "less than
or equal to" to N_ by defining ® £ and n <o for all n e N,

The multiset A is then said to be a submultiset of B.
THEOREM 2.1 (Ni,ﬂ; ) is a complete lattice

PROOF From (2.1), it follows easily that the least upper

bound é?&Ai of an arbitrary collection {Aili e I} of multisets

indexed by some set I 1is given by

max{A,; (x) [ieI} , if it exists

(2.2) {LJ.Ai }(x)g sup{Ai(x)fieI} = {

1el @ , otherwise

Similarly, its greatest lower bound fz&Ai is given by
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(2.3) [ {;& Ai} (x) = inf{Ai(x)[isI} = min{Ai(x)li eI} .

Note that our use of the notations |J and (") in the
proof of the above theorem is justified by the fact that when each

Ai 18 a set, U Ai and

N A, coincide respectively with the
iel

iel

set—theoretic union and intersection as defined in sectiom O.1.

2.2 Multisums, Multiproducts and Closures

Several interesting operations can be defined on multisets.
But first let us note that since multisets are formally defined as
functions, two multisets are considered equal iff they are equal as

functions, i.e.
(2.4) A=B iff A(x) = B(x) for all x ¢ X,

DEFINITION 2.3 For any two multisets A, B of Nﬁ ,» the multiset

‘A ¥ B which is defined by
(2.5) (A W B) (x) = A(x) + B(x) for all xe X

is called the multisum of A and B. Here + denotes the extended

addition defined on N_, see section 0.2,

Various properties of the multisum operation can be
immediately derived from the corresponding properties of the extended
addition on N_. Thus for instance, the multisum operation is
computative and associative because the extended addition has these
properties; also A 3 ¢ = A for all A ¢ Nf because

A(x) + 0 = A(x) always.
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More generally, one can define a multisum + Ai
iel
for an arbitrary collection {Aili € I} of multisets indexed by
gsome set I as follows.

(2.6) ( W AY® = ] A, (x) for all x e X.
jer *t ier *

Note that the right~hand side is meaningful because
N, is a complete semiring (see section 0.2), and recall that

igIAi(x) denotes the sum of all non-zero Ai{x) if there are

only finitely many such Ai(x), otherwise iéIAi(x) = ® ,

&%
We shall also write é%&Ai as é;&Ai if I=4{1, 2, ...} .

In fact, by virtue of theorem 2.1, we could also define

A .
ieIAl as the least upperbound of all the multisums ;EGAj ’

where J ranges over all the finite subsets of I, 1i.e.

(2.7) VIR (H a)

iel Je2 (1) jeJ ]

This definition is easily seen to be equivalent to (2.6).

Another multiset operation of interest is

that induced by a binary operation on the set X. More precisely,

DEFINITION 2.4 Let o be a binary operation defined on a set X.

For any two multisets A, B of Ni , the multiset A o B which is

defined by

(2.8) (Ao B)Y(x) = ] A(y)B(2)
X=Y0Z

is called the multiproduct of A and B . Here juxtaposition of

A(y) with B(z) denotes the extended multiplication defined on
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N@ , See section 0.2.

Note that (2.8) is meaningful because Nﬁ is a
complete semiring and that the right—hand side of (2.8) denotes
the sum of all non-zero A(y)B(z) which satisfies the equality
Xx =y oz, provided that there are finitely many such A(y)B(z),
otherwise it is just « . We note also that in view of (2.6) above,
the multiproduct A o B may be better understood if onme writes
(2.9) AoB= W {xovy} ,

(x,y)cAxB
which is easily seen as a generalization of the complex product
induced by the binary operation o , see section 0.2. Furthermore,
our use of the same notation for multiproduct as for the binary
operation which induces it does not lead to confusion since multisets
are denoted by capital letters here.

Now as one might expect from the way we define the
multiproduct operation, various properties of this operation do not
depend only on the extended addition and multiplication on N_ but
also on the corresponding properties of the binary operation which
induces it. Thus for instance, it is easily seen that the
multiproduct operation is commutative and associative if the binary
operation which induces it also has these properties; also {e} is
the identity for the multiproduct operation whenever e 1is the
identity for the binary operation. But there is one property of the
multiproduct operation which is independent of the binary operation
which induces it, namely, the multiproduct operation is always
distributive over the multisum operation. Actually, a more general

distributive law holdswhich can be seen in the following theorem,
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where all the above properties of the multisum and multiproduct

operations are conveniently summarized.

THEOREM 2.2. Let (X, o) be a monoid. Then (Nf, &, 0) is

a semiring with unit {e}l and zero ¢. Moreover, Nz is a

complete semiring if tﬂ‘Ai as defined by (2.6) is taken as
iel

a formal sum in Nﬁ .

PROOF Since N is a semiring (see sectiom 0.2), it follows
from the above discussion that (Nz » & , 0) 1is a semiring
also., Now the multisum }3& Ai as defined by (2.6) can be seen
to possess properties (0.6;€to (0.8) of a formal sum in a complete
semiring because N_  is itself a complete semiring, and hence
Ni is a complete semiring as claimed. We shall not verify properties
(0.6) to (0.7) for }ij A; here since their validity is easily

iel
seen from the corresponding properties of the formal sum in N_ .
Property (0.8) can be verified as follows. TFor all x ¢ X, we have

oo, o)

X=y02Z iel

L]
~3

[Bo C Ai) (x)

iel

= 1 B ZAi(z))

X=yoz * iel

= Z Z B(Y)Ai(z) by (0.8) for N_
x=yoz iel

= 2 Z B(Y)Ai(z) by (0.7) for N_

iel =x=yoz

L (BoA)(x)

iel

( 4 (BoAi)} (%)
iel
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Therefore, by (2.4), Bo |4} A, = W (Bo Ai).

el iel
Similarly, we can show that # Al oB= (4 (A, o B) . v
ier 1 iel t

In this thesis, we shall have occasion to consider
sequences of multisets. When we do, the following result will be
useful. But first note that a sequence Al’ AZ’ see» Of multisets

will be simply written as (Ai) and is said to be pon-decreasing

iff A, - A;,,» and non-increasing iff Ai+1§; A, for all

ie{l,z,..-} @
THEOREM 2.3 (i) For any two non-decreasing sequences

‘(Ai) and (Bi) of multisets of Nﬁ , we have
i=]

Bewwe (g0 (g

(ii) For any two non-increasing sequences (Ai) and (Bi)

of multisets of Nﬁ , we have

ﬁ(Ai # Bi)“[

i=1

A Ai} V) [ A Bi}

i=1

PROOF For all x e X, we have
m N
[ é:é (4, ¥ B)) )(x) = sgp {A, (x) + B, ()}

= sgp {sup{A (0)+B ()}}, since both

(Am(x))and(Bn(x)) are non~decreasing
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= sup {Am(x) + sgp{Bn(x)}}
= sup {A ()} + sup{B (x)}

oo ]

= [ U Ai. (x) + U Bi (x)
i=] i=1

Therefore, (i) follows from (2.4), and (ii) can be proved

in a similar manner. v

THEOREM 2.4 (i) 1If (Ai) is a non-decreasing sequence of multisets

of Nz . then for all B ¢ Nf, we have

=4 o0 o0 o
Bo U A, = J(BoA) and (}J Ai] oB= y (4 0B
i=1 i=] i=1 i=1

(ii) 1If (Ai) is a non-increasing sequence of multisets
of Nf » then for all B ¢ Nf » Wwe have

Bo M A, = [ (BoA.,) and M A,jo B = M (A. o B)
. 31 . 1 N 1 » 1
i=]1 i=]1 i=1 i=1

PROOF (i) If B(y) sup{Ai(z)} $ 0 for only finitely many pairs
(v, z) such that x =y 0o z , then xZyozB(y) sup {Ai(z)} is a finite
sum, and hence by an argument similar to the proof of (i) in the
above theorem, we have

I B supla;(2)} = suwp ] B(A;(2)
X=y0z i i x=yoz

o« o
But then, [B o L}Ai](x) = [ U (Bo Ai)}(x) as required.
i=1 i=1
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So we may suppose that B(y) sup {Ai(z)} $£ 0 for infinitely
1

many pairs (y,z) such that x =y ¢ z, which means that

i=1

[Bo G Ai}(x) = ®

[«
Now suppose that [ U @®o Ai)}(x) $ » . But then
i=1

(2.2) implies that max{B o Ai(x)} + o exists, say (B o Ai Y (x) .
, 0

Since (B o A )(x) ¥« , it follows that ] B(y) A, (2) is a
0 | X=yoz 1o

finite sum, and that B(y) Ai (z) + ©  for any (v, z) such that
0

X= yoz.

Consequently, A, (z) = max{Ai(z)} also, and hence

(8] i

{B °o U Ai] (x) = ) B(y) sup{A, (2)}

i=] X=YOZ i

= J B(y) A, (z)
X=y0Z 0

= (Bo Aio)(X)

which implies that [B o U ,AJ (x) + ® , a contradiction.
i=m]
(ii1) Just as in (i) above, we may suppose that

B(y) inf{Ai(z)} + o for infinitely many pairs (y, z) such
i

[>+]
that x =y oz , i.e. [ﬁ o N AAi}(x) =« , Now since
1=}

B(y) inf{Ai(z)} £ B(y) Ai(z) for all i,
i

it follows that for all i, we have B(y) Ai(z) + 0 for infinitely

many such pairs (y, z), 1i.e. (B o Ai)(x) = o , Consequently,
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[ N ((Bo Ai) ](x) = inf{B o Ai(x)} = » ag required.
i=m] i

A useful fact which we shall need later in this section
is that both the multisum and multiproduct operations are compatible
with the multiset inclusion, as defined by (2.1). This is expressed

by the following

THEOREM 2.5 For any A, B ¢ N:E such that A C B, we always
have
AwWCCB WC, AoCc CBoC and CoACCo B

for all C e NX .
o

PROOF Trivial

DEFINITION 2.5 For any A ¢ Nf , where (X, o) 1is a monoid,

the multisets

A* = 4 A and A = | A
k=0 k=1

are respectively called the closure and weak closure of A,

From the name closure, one might expect the usual

properties of closure to hold, namely
(1) A C A*
(ii) A* C B* whenever AC B
(iii)  (A%)%*= A%,

In fact, (i) and {(ii) are valid but (iii) is not
always true. For instance, ¢* = {e} , but

(¢%)* = {e}* = {e, e, ...} , and therefore (¢*)* % ¢* ,
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Therefore, A* is not the closure of A in the conventional
sense., Nevertheless,we call A* the closure of A for want of

a more appropriate name. The same remarks also apply to the weak
closure. As an example where (A+)+ % A+, consider the multiset

A= {1} of Nﬁ where N is the additive monoid of non-negative

integers.

The following identities for closures are useful but
obvious.
(2.10) A* = Ao A% @ {e} =A% 0o A @ {e} for all Ae N> .

THEOREM 2.6 For eny two given multisets A, B ¢ Nf » A% o B and

B o A* are respectively the least solution of
Y=AoY & B and Y= YoA ¢ B

with respect to multiset inclusion.

PROOF It is easily seen from (2.10) that A* o B is a
golution of Y =A oY & B. On the other hand, Y=A o0 Y & B

always implies that for any k ¢ N,

v = A oy O] A[k]oB , where A[k] ={e} W A W ... ¥ A

Therefore, A[?J o B C;'Y for all k e N,

and hence |J (A[k] o B) C Y. But from (2.7) and (i) of
k=0

o
theorem 2.4, it follows that A* o B = U (A[E] o B), and hence
k=0

the least solution of Y =A o Y & B. Similarly, B o A* can

be seen to be the least solution of Y =Y 0o A & B. v
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The above theorem is very useful for establishing
identities involving closures. As an illustration of this
usefulness, let us show how to derive the following identities

which we shall need later.
THEOREM 2.7 For any A, B ¢ Nﬁ » We have
(A & B)* = A% 0 (B o A%)* = (A% o B)* o A%

PROOF From theorem 2.6, (A (#) B)* is the least solution
of Y=(A W B) oY \& {e} . On the other hand, we shall show
that A* o (B o A*)* is also the least solution and hence
establish (A & BY* = A% 0 (B o Ax)x, That A% o (B o A*)*

is a solution can be seen as follows.

(A @ B) o A* 0 (Bo A*)* (¢ {e}

Ao A* o (Bo AX)* & B o A* 0 (Bo A*)* & {e}

Ao Ax o (B o A*): & (B o A*)*, by (2.10)

(Ao A* @ {e}) o (B o AX)*

#

A* o (B o A%)* |, by (2.10)

To see that it is also the least solution, let us
rewrite the above equation as Y =A o0 Y (&) Bo Y ¢ {e} . It

then follows from theorem 2.6 that
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A* 0o (BoY (¢ {e}) C Y, and hence

BoA* o BoY (3 BoA* C Bo Y, by theorem 2.5

Again, using theorem 2.6, we obtain
(BoA*)* 0o BoA* C BoY.
But then
AoY ) (BoA*)* = A oY (& (Bo A¥)* B o A¥ (¢ {el
C AoY W BoY & {e}, by theorem 2.5

= ¥

and hence A* o(B o A*)* C Y as required.

Similarly, we can show that (A & B)* = (A% o B)* o A%, v

2.3 Hereditary Semirings and Their Closed Multisets.

DEFINITION 2.6 A non-empty subset ¥ of N. is said to be

hereditary iff whenever Bev and BCA, then Be V.

A typical example of a hereditary subset of Nf: is NZ

itself, but so are the following subsets of Nz: .

THEOREM 2.8 The following are hereditary subsets of Nf

(1) The set W

X of all non-singular multisets of Ng

X

-]

(ii) The set P, of all quasi-finite multisets of N~ and ¢.

X

(iii) The set & of all quasi-countable multisets of Nz and ¢.

X
(iv) The set WX ('W)'{) of all well ordered (dually well

ordered) multisets of Nﬁ and ¢, where X is an ordered set.
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PROOF (i) Let A e.Nk

that B(x) + » whenever A(x) $# » . Hence B e W

and BC A. Then B(x) s A(x) implies

X

(ii) Let A ¢ 9){ and B C A. Then B(x) £ A(x) implies
that B(x) = 0O whenever A(x) = 0. Consequently, d(B) C d(A), and

hence d(B) is a finite set, i.e. B ¢ ?X as required.

Both (iii) and (iv) can also be proved in the same

fashion as (ii) above. Y

THEOREM 2.9 The intersection of an arbitrary collection of

hereditary subsets of Ni is again a hereditary subset of Nif .

PROOF Let ¥ =(1{% | % is a hereditary subset of Ni},
Suppose that A € v and B C A. Then by definition of intersection,
A e U for every 44 . Since each U is a hereditary subset, we

have B e U for every 4L also, Hence B e ¥ as required. v

The above theorem emables us to construct more hereditary
subsets of N::‘ from those already given in theorem 2.8 above. Some
such hereditary subsets of N:: which are of special interest later

are
(i) The set Q‘X = ﬂ’x M Afx of all finite multisets of N: and ¢.
. . - v . t
(ii) The set QA«X @X M JV'X M Wy (or U x = @y memWX)

of all countable and well ordered (or dually well ordered) multisets

of Nf and ¢ , where X 1is an ordered set.
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DEFINITION 2.7 Let (X, o) be a monoid. A hereditary subset
X

o

V of N is called a hereditary semiring iff ¥ contains

all the finite multisets of Nz including ¢ .and is closed with

respect to the multisum and multiproduct operation.

Note that by the above definition, a hereditary semiring
is in fact a subsemiring of Nf with respect to the multisum and
multiproduct operations. Moreover, every hereditary semiring
is also a lattice with respect to multiset inclusion, because by
the hereditary property of ¥ , AMNB C AUB C A W B

yields AMB, AUB e ¥ whenever A & B e 7.

THEOREM 2.10 The following are hereditary semirings
(i) The set Nz of all multisets with elements in a monoid (X, o)

(ii) The set 5DX of all quasi~finite multisets of Nz and ¢,

where (X, o) 1s a monoid.

(iii) The set @}( of all quasi~countable multisets of N§ and ¢,

where (X, o) is a monoid.

(iv) The set 7VX (’h&') of all well ordered (dually well
ordered) multisets of Ni and ¢, where (X, £, o) 1is a

totally ordered monoid.

. . X
(v) The set J/X of all non-singular multisets of N_,

where (X, o) is a locally finite monoid.

(vi) The set Qﬁk of all finite multisets of Nf and ¢, where

(X, o) 1is a monoid.

- 67 -



(viii) The set th(ili) of all countable and well ordered
(dually well ordered) multisets of Ni and ¢ , where

(X, €, o) 1is a totally ordered group.

PROOF (i) 1is trivial..

(ii) Since 5%: obviously contains all the finite multisets
of Nz , it remains to show that it is closed with respect to the
multisum and multiproduct operations. To do this let us note the

following two properties of supports, namely
(2.11) d(A @& B) = d(A) Ud(B) and d(A o B) = d(A) d(B),
where juxtaposition denotes complex product.

Since (2.11) is easy to verify, we shall omit its
proof here. WNow the required result follows from (2.11) because
the union and complex product of two finite sets are themselves
finite.
(iii) follows from an argument similar to (ii) by using the
fact that the union and complex product of two countable sets are

themselves countable.

(iv) also follows from an argument similar to (ii) if we
can show that the union and complex product of two well ordered
(dually well ordered) sets are themselves well ordered (dually well
ordered). So let A, B be two well ordered sets. If Y is any
subset of A | JB, then we can write Y = YAkJ YB , where Y, and YB

A
can be chosen so that ¥, C A and YB(; B. But then

min Y = min {min ¥

5> min YB}

exists because X 1is a totally ordered set. Therefore AJB is

a well ordered set.
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Now let Y C AB . Then by the definition of complex
product Y =Y, Y, for some YA<; A, Yy C B. Since the

binary operation is also compatible with the ordering on X,

min Y = min YA o min YB

exists, and hence AR 1is also a well ordered set. The case for

dually well ordered sets can be demonstrated in a dually fashion.

(v) Since J(X obviously contains all the finite
multisets, it remains to show that it is also closed with respect
to the multisum and multiproduct operations. fo is closed with
respect to multisum because A(x) + B(x) + « whenever A(x) % ©
B(x) # » . Now recall that (X, o) is a locally finite monoid
means that for each fixed x ¢ X, there is only a finite number
of factorizations x =y o0 z with ¥ % e, =z + e. Consequently,

A(y) B(z) % O for only a finite number of pairs (y, z) such

that x =y o z , and hence Z A(y) B(z) 1is a finite sum. Since
X=Y0Z

A(y) B(z) § » because A(y) ¥+ ®» and B(z) # » , we must then have

4 o B)(x) = z A(y) B(z) % » , as required.

X=y02z
. " = m
(vi) Since 9& .ﬁ% J/x and ij and JVk

were both seen to be closed with respect to the multisum operation
in (ii) and (v), so is QEX. Now while épX was seen in (ii) to
be closed with respect to the multiproduct operation, JVX may not

be so without additional assumptions. However SDX‘h‘JVk is so
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because for any A, B ¢ ng , A(x) $# 0 and B(x) % 0 for only
finitely many x ¢ X implies that there can be only finitely many
pairs (y, z) with A(y) £ 0 and B(z) 0 such that x =y o 2.
Consequently, A(y) B(z) + 0 for only finitely many such pairs, and

hence ) A(y) B(z) is a finite sum. Since A(y) B(z) ¥ =
x=y0z

whenever A(y) % o , B(z) + w , it then follows that

(A o BXx%) = Z A(y) B(z) + ©  whenever A, B ¢ JVX also.
X=y02Z
(vii) By the above arguments, it is obvious that
Q&X = @X‘f\JVk f\ﬂWk contains all the finite multisets of Nz
and is also closed with respect to the multisum operation. It
therefore remains to show that @LX is also closed with respect to the
multiproduct operation. Again, while @Xi and 1G( were both
seen to be closed with respect to the multiproduct operation in
(iii) and (iv), M, may not be so. However, we shall show that

X
@x:f\J{k(W‘ﬁG{ is necessarily so. We shall establish this claim

by examining the following two cases, where A, B € ‘LLX = @XmNXmWX

(a) Suppose both A, B ¢ ﬁV% . Then d(A) and d(B) are
both dually well ordered sets. But d(A) and d(B) are both
countable and well ordered by assumptions. Hence d(A) and d(B)
must be finite sets, i.e. A, B ¢ JPX. But A, B e JV% also, and

therefore A, B ¢ 5WX = ﬂ%{fW JVk. Consequently, A o Be ﬂﬁx
follows from (vi) above. Since .ﬁ% C .Afx, we have A o B € ‘Afx

as required.
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(b) Suppose A # w! , i,e. d(A) is not a dually well
ordered set. Then we claim that for each fixed x ¢ X, A(y)B(z) + 0
for only finitely many pairs (y, z) such that x =y o z. For
suppose otherwise, then A, B ¢ @}( implies that A(y) B(z) % O
for only countably many such pairs (y,z), say (yk, zk) for all
ke {1,2,... } . Now since d(A) is not a dually well ordered set,
the sequence ( yk} must contain a strictly increasing subsequence,

say

Since (X, o)is a totally ordered group, it follows that

X0y, L, Xoy =2 > X0y T2 e
1 2 i

i.e. z >z > ie. > 2 > ... because x = o 2z, .
k Kk k. Y © %k

This means that d(B) can not be well ordered, i.e. B é ﬂVk, a contra-
diction. The rest follows from the end argument of (v) or (vi) above and

the case for @Lé = @% M JG{(W 7V§ can also be shown dually. v

Let us note in passing that the intersection of an
arbitrary collection of hereditary semirings is again a hereditary
semiring. This fact implies that 7 is the least

hereditary semiring with respect to set inclusion.

DEFINITION 2.8 Let ¥ be a subset of Nz , where (X, o) is a
monoid. A multiset A e ¥ 1is said to be clesed in ¥ 1iff A* ¢ ¥,

where A%* denotes the closure of A.

From this definition, we can establish the following

useful results.
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LEMMA 2.1 A multiset A of a hereditary semiring V¥ is

closed in ¥ iff A+ e YV .

PROOF If A" e 7, then A* = {e} W A" ¢ ¥V .
If A% ¢ V', then A+<; A* implies that A" e ¥, by the

hereditary property of V7 . v
LEMMA 2.2 A multiset A of a hereditary subset ¥ of Nz is
closed in ¥ iff for any BCA, B* ¢ ¥ also.

PROOF Sufficiency is obvious, while necessity follows

directly from the fact that B* (_ A* whenever B(C A, and the

hereditary property of 7 . v
THEOREM 2.11

(i) Every multiset is closed in Nz .

(ii) $ 1is the only multiset closed in gg{.

(iii) Every multiset is closed in @ix .

PROOF (1) is trivial,

(ii) Since ¢* = {e} , it follows that ¢ 1is closed
in ggx. Now suppose that A % ¢ 1is closed in QKX' Then by
agsumption, A contains at least one element, say x, and by

lemma 2.2 above, {x}*e 3@% because {x}C A.

But {x}* = {e, %, x%, ...} # wV% if {x}* ¢ ﬁk and hence
* = .
{x}*¢ 9% ﬂ% f\JfX, a contradiction.

(iii) Let us first note that

(2.12) d([ﬂ Ai} = U 4@y

iel iel
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For let x ¢ d( kﬂ Ai} s then .Z Ai(x) £0
iel iel

implies Ai(x) $ 0 for at least one i e I, i.e. x ¢ d(Ai)

¥ Ai} C U 4@y .

for at least one 1 ¢ I, and hence d
iel iel

But U d(Ai)C;«i[ ﬂ:& Ai} follows from the fact that
ie

d(Ai) - d{\i} Ai] for all ieI. Therefore (2.12) 1is
iel
verified. Thus d(a%) = (] d(a) = ¥, d)*, by (2.11) .
k=0 k=0

Now if A ¢ @X i.e. d(A) 1is countable, then so is d(A)k for
all k € N, because the complex product of a finite number of
countable sets is itself countable. Since a countable

union of countable sets is also a countable set, d(A*) 1is therefore

a countable set, and hence A% ¢ @7( as required . v

We note here that the above theorem characterizes
completely the nature of closed multisets of Ni s ﬁ% and @X.
For other hereditary subsets, the nature of their closed multisets are

much more difficult to characterize., However, for

N

\ ] X n
X’ ’Wk (“VX) and JfX M VVX (IVX M %fx), we have the following

THEOREM 2.12 A necessary condition for a multiset A to be

closed in Afx is that x $ e for every x e A. This condition

is also sufficient if (X, o) is a locally finite monoid.

PROOF Suppose that x = e for some x € A, Then clearly,

{x}* = {e, x, x¢ , ...} ={e, e, ...} M.,. But by lemma 2.2,
X

{x}* ¢ Jfk because {x}C A, a contradiction.
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Now if (X, o) 1is a locally finite monoid, then
each x ¢ X admits only a finite number of factorizations

X=X 03X, 0 400 0X with X, $ e for all i e{l, 2, ..., nl}.

2
So the largest index for such a factorization exists, say ;-
Now by definition of Ak, X € Ak iff x = X 0 Xy 0 ean 00X for
some  X;, Ky, ces X € A. Consequently, Ak (x) = 0 for all
%0
k > Dy and therefore A%(x) = (& Ak(x) + o . if A() + o
k=0
which proves the sufficiency. v

THEOREM 2.13 If a multiset A is closed in ﬂ{k ( %ﬁx), where

(X, £, o) 1is a totally ordered monoid such that %2 = x always

implies % = e, then we have x 2 e (x £ e) for every x e A. On the other
hand, for a multiset A to be closed in 1VX,(”WJXL where (X, €, o) 1is

an Archimedean totally ordered monoid, it is sufficient that x 2 e (x 5 e)

for every x € A.

PROOF Suppose that A is a closed multiset of ”Vk and

that x < e for some x € A. Then x? g x < e. But by assumption,

b o 2

x% = x implies x = e, and hence x2 < x . Similarly, x X

and so on. Therefore, {x}* = {e, x, %2, x*,...} ¢ Wy But by
lemma 2.2, {x}C A implies {x}* ¢ ﬁ{x, a contradiction.
Therefore, x > e for all x e A which proves the first part of
the theorem.

To prove the second part, let us first verify the

following two special cases.

(1) If x = e for every x € A of *(X’ then A% ¢ ﬁVk
(ii) If x > e for every x € A of 7Vk, then A% ¢ GVk .
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Since (i) is obvious, we prove only (ii). 1In
view of (2.11) and (2.12), this is equivalent to showing that

CD d(A)k is a well ordered set.

k=0

Now suppose otherwise and let B be a non—-empty
subset of éjg d(A)k . Then B must contain a sequence (bk)
of elements in B satisfying bl > b2 > L. > bk s Obsgerve

that bi > e for all i ef{l, 2, ...} . So if b1 = e, then

b1 = b2 = ,,. , a contradiction.

Therefore, we may suppose that b1 e, i.e. b1 > e
and let bo = min d(A). Since bO > e by assumption, it then
follows from the Archimedean property that bg > b1 for some

positive integer n. Consequently, bon > b1 > b2 > e > bk > .

Now suppose that bk e d(a)® for some s > n . Then

b =xo0y for some x € d(A)n , VE am®™ . Since vy 2 e,

bk =x 0y 2 x 2 min d(A)n = bg , a contradiction. So for all

ke {1, 2, ...} , b ¢ CD d(A)k. Since C} d(A)k is a well
k k=0 k=0

ordered set whenever d(A) is, it follows that the above sequence

(bk) must terminate, i.e.

bk = bk+1 = ,,., for some Kk,

which then yields a contradiction.

Now for the general case, let us write A =3B (¢ C,
where B and C are such that x = e for every x € B and x > e
for every x € C. By theorem 2.7, we know that

A% = (B &) C)* = B* o (C o B¥)* . Since B has the property of (1)
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and (C o B*) has the property of (ii), it follows from the
above argument that B* ¢ ﬂﬂk, (C o B¥)* ¢ W _, and hence
A¥ ¢ 7Vk as required.

The case for 7{% can be established in a dual

fashion. \Y

COROLLARY 2.1 ‘In the case where (X, £, o) 1is a totally
ordered cancellative monoid which is conditionally complete with
respect to £ , the condition that x > e(x £ e) for every x e A
is both necessary and sufficient for the multiset A to be closed

& ?
in ”Wk (7ﬁx).

PROOF By cancellativity, it follows that x = e whenever

2 = x , and hence the necessity of the condition follows from

X
the above theorem. Now its sufficiency also follows from the above
theorem if (¥, & ,0 ) can be shown to be Archimedean. Suppose

not, i.e. x> e, y > e, but X" £y for all n e N. Then the set

{xnln € N} must have a least upper bound, say x because (X, )

O’

is assumed to be conditionally complete. Therefore,

+
x 0 x, =% o0 sup{x"|n € N} = sup {x" 1ln e N} £ x5 .

0

But by cancellativitity, x > e implies x o Xy > Xy, @

contradiction. v

THEOREM 2.14 For a multiset A to be closed in JVk N Wy (A& f\ﬂV%),
where (X, €, 0) 1is an Archimedean totally ordered cancellative
monoid, it is both necessary and sufficient that x > e (x < e)

for every x e A.
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PROOF By cancellativity, it follows that x = e whenever

2

x* = x, and hence by theorem 2.13, x 2 e for every x ¢ A is

a necessary condition for A to be closed in “Vk. But for A
to be closed in .Afx also, it follows from theorem 2.12 that
X + e for every x ¢ A is necessary. Therefore, the necessity
condition is verified. Now by theorem 2.13 above, x > e for
every x € A is a sufficient condition for A to be closed in
7Vx. We now show that it is also sufficient for A to be closed
in M, also, i.e. A*(x) $ o for all x ¢ A,

X
2 k
First, we claim that M (A" o A*) = ¢ . For
k=0
. o Kk , k
suppose otherwise, and let T = () (A~ o A*) . Since (A" o A%)
k=0

is a non-increasing sequence of multisets, it follows from (ii)

of theorem 2.4 that

® k =~ k+1
= %) = M *) =
AoT=~hAo [} (A o A¥) b A7 o A%) = T

Let t1 € T, then t1 = X 0 t2 for some x ¢ A and
t, € T . By cancellativity, x > e implies tl =xo0t,>¢t,.
Similarly, we can show that t, > tg for some ty € T and so on.

Therefore, if T + $ , we can always obtain a strictly decreasing
sequence t; > t2 > .... of elements in T which then implies that
T is not a well ordered multiset. But T C A* and A* is well
ordered by theorem 2.13 above, it must follow that T 1is also

well ordered, a contradiction. Therefore our claim is justified.

We next claim that f% (Ak 0 A%) = ¢ implies that
k=0

Ak(x) + 0 for only finitely many k. For suppose otherwise and
k.
let (ki) be a subsequence of (k) such that A “(x) £ 0 for

k. k'
all 1 e N. Since A l(; AL o A* for all ie N, it follows
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k.
that A ' o A% (x) $0 for all i e N also. But this implies

ok,
that N A'o ax $# ¢ , a contradiction. Hence for all x ¢ X,

i=0
Ak(x) # 0 for only finitely many k as claimed, and therefore,

A*(x) = ) Ak(x) + » as required.
k=0 ‘

The case for J/Xrﬂ’?f% can also be proved dually.
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CHAPTER 3

P-SPACES AND THEIR PATH ALGEBRAS

3.1 P-Spaces

DEFINITION 3.1 A quadruple (X, o, ¥, r) 1is called a path space

or p-space for short iff it has the following properties

(i) (X, o) 1is a monoid
X

(ii) ¥ is a hereditary semiring of N
o

(ii1) r is a function on ¥ which satisfies (3.1) to

(3.3) below.

(3.1) r(¢) = ¢
(3.2) r(A & B) = r(r(A) & B)
(3.3 r(A o B) = 1r(r(A) o B) = r(A o r(B))

For convenience, such a function r will always be

referred to as a reduction function+. As examples of p-spaces,

we offer the following.

T This name was inspired by the reduction function studied
in Wongseelashote (1976). However, its abstract formulation was not

conceived without the influence of the concept of an extraction

function introduced by Roy (1975).
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EXAMPLE 3.1 (X, o, Nf , d), where (X, o) is a monoid and

d(A) 1is the support of A (see section 2.1).

EXAMPLE 3.2 X, o, 7Vk, min), where (X, <, o) 1is a totally

ordered monoid and min is defined on ﬂWk as follows.

¢ if A= ¢
min(A) =
{min d(A)} , otherwise

Note that (X, o, 7V§ , Max) can be dually dgfined.

EXAMPLE 3.3 (X, o, ’W%, k-min) , where (X, &, 0) 1is a

totally ordered monoid and k-min is defined on 7Vk as follows.

6 if A =¢
k-min(A) =
{al, Bys eees at} , otherwise

Here al < a2 < L. < at are t successively smallest

elements of A, and t 1s the largest index such that t £ k.

Note that (X, o, i , k-max) can also be defined in a dual

fashion and that for k = 1, this example coincides with example

3.2 above.

EXAMPLE 3.4 (X, o , ﬂWk, ru) , where (X, &, o) 1is a totally

ordered monoid and r is define on 7KX for some given u ¢ X

by

¢ if A= $ or u < x for every x ¢ A
Ty &) = .
{al, g5 +ees aj} , otherwise.
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Here 3, < a, < s aj are j successively smallest

elements of A and j 1is the largest index such that aj < u.

o

Note that onme can also define (X, o, ﬂfé, r;) dually.

EXAMPLE 3.5 (R, +, “W., O-min), where (R, +) is the additive
group of real numbers and A-min is defined on 7VR for some

L 2 0 as follows.

6 if A= ¢
A-min(A) =
{al, gy ors ak} , otherwise

Here a; <a, <...<a are k successively smallest

elements of A and k is the largest index such that a < a, + A.

Note that (R, +, 7Y§, A-max) can also be defined in a dual fashion
and that for A = 0, this example also coincides with example 3.2
in the case where (X, o) = (R, +).

*
EXAMPLE 3.6 (Z#, . , Nﬁ , 8im) , where (I*, . )} 1is the free

*
monoid generated by an alphabet I and sim is defined on Ni as
follows.
$ if A= ¢
sim (A) =
{x ¢ Al x is a simple word} , otherwise

For the meaning of a simple word in I%* , see problem

1.8 above.
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*
EXAMPLE 3.7 (Zx, - , Ni , b), where (I*, .) 1is the free

%
monoid generated by an alphabet I and b is defined on Ni
as follows

¢ if A = ¢

b(A) =
{x ¢ Al x is not an abbreviation of any y e A} ,

otherwise .

For the meaning of abbreviation, see problem 1.9 above,

EXAMPLE 3.8 Let (N, +) be the additive monoid of non-negative
integers and N a set of arbitrary objects disjoint from N which
can also be put in one~to-one correspondence with N, i.e. for each
n € N, there is a unique n e & and vice versa. {n, n} will be
called a twin pair. Now define a binary operation o on X = Nk)ﬁ

by the following rules:

(1) mon=mon=m+n for any m, n e N
oo -~ ~ N P
(11) mon=mon=mon=m+n for anym, n e N

It can be verified that (X, o) so defined is a
commutative monoid with O as the identity for o (cf. theorem 6.1
below). Moreover, this monoid is also locally finite because
(N, +) has this property.

Let t = Aﬁx~+ JVk be defined by x(A) = ¢ 1if A =4¢ ,
else r(A) is the multiset obtained from A by deleting all its
twin pairs.

The quadruple (X, o , A/X, r)} then forms a p-space

(cf. theorem 6.3 below).
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The concept of p-spaces as defined here turns out
to be closely related to that of a semiring. In fact, given one,
the other can always be obtained. In the remainder of this section,
we shall show how to comstruct a p-space from a given semiring. The
converse construction is more important to the solution of path
problems, and will be treated in the next section where it is more

appropriate.

THEOREM 3.1 Let (X, +, o) be a semiring. Then the quadruple

(X, o, 9%, s), where s is defined by (3.4) below, forms a

p-space.

n
.,an} and !z a, £o

n
) a; ¢ if A={a),a
1=]1

N 2,0!
1=]1

(3.4) s(A) =
¢ , otherwise.

PROOF From (3.4), it follows easily that property (3.1) is

satisfied by s. 1In fact,

(3.5) s{6,9, ...,0} = s{8} = ¢ = s(¢) always.

That property (3.2) is also satisfied by s can be
seen as follows.
Let A, B ¢ 9&. If A= ¢, then s(A) = ¢ , and hence
s(A \¢ B) = s(B) = s(s(A) & B) as required. So suppose that
A+ ¢, say A= {al, By an} . If B=4¢ , then s(A & B) = s(4).

n
But s(s(A)) = s(A), because if ~.z a; = 6, then s(s(4)) = s(¢)= ¢ = s(A),

1=1 n

n n
while 1if .Z aj + 8 , then s(s(A))=s .z a; ﬂ‘Z a; = s(A).
i=] i=1 i=]1
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Consequently, s(s(A) W B) = s(s(4)) = s(A) = s(A & B) as
required. So we may now suppose that B % ¢ also, say

B = {b ’ bm} . Then there are two cases to consgider

1 b2’”"

n m
(i) Either } a, =0 or ) b, =6 .
i=1 * j=1 7

n
If Z a, = 6 , then s(A) = ¢, and hence
i=1

s(s(A) & B) = s(B).

Now we claim that s(A W B) = s(B) also.

m
For if jglbj =8 , then s(A & B) = ¢ = s(B) because

n m m
2 a, + z b, = 6 , while if ) b, £ 6 , then
i=1 v j=1 j=1 17
n m m
s(A & B) = E a, + Z b, = 2 b, = 8(B), and hence
i=1 * je1d =1 d

our claim is justified.

Therefore s(A (# B) = s(B) = s(s(A) W B) as required,

ol m
So we may now suppose X a, + & but Z b, =6 , Then
i=1 * j=17

n m
s(B) = ¢ and ) a, + ) bj + 6 . Consequently,
i=1 j=1

n n W
s(s(A) W B) =s| a; & B|= Ja, + ) b, =s(A \& B) as required.
i=1 i=1%  j=1
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n m
If Ja + Jb. =86, then
i=1 j=1 3

11
s(s(A) @ B) =s (] a; & B) =¢=s(A & B)

i=1
n m
So suppose that E a, + Z b. 6 , then
i=1 * j=1 7

n n m
s(s(A) W@ B) =s ( ] a, W B)= Ja + b = s(A W B).
i=1 4 i=1 j=1 4

Therefore, s satisfies property (3.2) above. It remains to

show that s also satisfies (3.3) above.

Let A, B ¢ eﬁk. If A=¢ , then

s(A o B= ¢ = s(s(A) o B) because s(A) = 4 also.
If B=¢, then s(A o B) = ¢ = s(s(A) o B) always.

So let us suppose that A = {al, 8ys enes an}and Bz{bi’b2’°"’bm} .

Then there are two cases to consider

) )
(1) a. 0 b. = £
{iml } {M -"}

In this case, 8(A o B) = ¢ by (3.4) because

Tevony = [Ba) o (Bn)- o

1 =1 i=1 j=1 7

e~

Now we claim that s(s(A) o B) = ¢ also, and hence the required

n :
result. If E a; = 8 , then s(A) = ¢ by (3.4) implies that
i=]
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s{(s(A) o B) = g(¢) = ¢ as claimed.

n
So suppose Z a, # 6 . But then
i=1

n
s(s(A) o B) = s [{ Z ai} 0 B) = ¢ by (3.4) because
=1

j::l i=]

m ¢ n n m ,
7 [ ) ai} o bj = (_zlai} 0 {.z b.} = 6 , and hence our
i= i

claim is justified.

{.§ ij 0 .

i=1

)
(ii) a,
b

In this case, it must be that both

m
a, +6 and ) b.f6.
1 j=1 7

# I~

i

n
But then s(s(A) o B) = s[{ Z ai} oiﬂ

|
E §

= a. ob
i=1 =1 * 1

#
rm——
el
o~
—t
o]
L
| —
o
s,
Lot
§~1g8
il
o
Lot
[—

]

s(A o B) as required

Similarly, one can show that s(A o s(B))= s(A o B).
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For convenience, the p-space (X, o, Qﬁk, 8) as

defined in the above theorem will be said to be induced by the
H
semiring (X, +, 0). We emphasize here that each semiring may
induce more than one p-space, since it may be possible to choose
a larger domain for the function s above or to invent other
reduction functions from a given semiring. For instance, if X id
also a complete semiring, we can define the p-space (X, o, Nz, s')
X

from X by defining s' : N - Ni as follows.

{iZIai} if A= {4 {ai} and Z a, + 6
(3.6) s'(a) = € iel iel
¢ , otherwise.
Note that s' so0 defined is an extension of the function

s in (3.,4) above, and the verification that s' 1is a reduction

function can also be carried out in exactly the same manner as in

theorem 3.1,

3.2 Path Algebras of P-Spaces.

Given a p-space (X, o, ¥, r), a multiset A of ¥
is said to be reduced iff A = r{(A). From (3.1), it follows that

¢ 1is reduced, and therefore the set
”Vra{Aa"VlAzr(A)}

is non-empty. Moreover, for any A e ¥ , r(4) ¢ W; because

#

r(r(a)) = r(x(A) @& ¢)

#

r(A W ¢) , by (3.2)

]

r{A)
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Now for any A, B ¢ 7;, we can define two binary

operations @ and @ on 1} as follows.

3.7) A & B = r(A \y B)

(3.8) A & B = r(A o B)

The triple ¢ W;, @, 8) will be called the path

algebra of the p~space (X, o, ¥, r)

THEOREM 3.2 The path algebra of any p-space (X, o, ¥, r)
forms a semiring with unit r(e) and zero $ . Moreover, this
semiring is idempotent whenever r(e ) e) = r(e) holds and

commutative whenever o 1is commutative.

PROOF Since for any A e 7, r(A) was seen above to belong
to 72, it follows that ?} is closed with respect to & and @
as defined by (3.7) and (3.8). Now the binary operations & and @

can be seen to possess all the properties of a semiring as follows,

(1) A®¢=r1r(A W ¢) =xr(A) = A for all A ¢ 7’r

(ii) A @B =r(A W B)

#

r(B ¥ A)=B@Af0ranyA,Bs”Vr

(iii) A @ (B@C) =1r(A W r(B W C)

W

r(A & B ¢ C), by (3.2)

#

r(r(A W B) W C),by (3.2)

i

(A@B) e&cC for any A,B, C ¢ ?}
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(iv) r(e) @ A = r(r(e) o A)

= r{e o A), by (3.3)

= r(A)
= A for all A ¢ W”r
(v) A® (B®C) =1r(hor(BocC) '
=1r(A o Bo C), by (3.3)
= r(r(A o B) o C), by (3.3)
= (A8 B) @cC for any A,B, C ¢ ?}

i

(vi) AeBeC r(h o r(B W C))

it

r(Ao (B W C)), by (3.2)

#

r(AoB W Ao C)

]

r(r(A o B) W r(A o C)), by (3.2)

i

AO@B®AGC for any A, B, C ¢ 1;

Similarly, (A® B) ©C=A©C @& BOC for any A,B, C ¢ T;
Moreover, if r{e @ e} = r(e) holds, we have
(viil) A @ A = r(A & A)
= r(Aor(e W e)) by (3.3)
= 1A o r(e))
= r(A o e) by (3.3)
= r(A)

= A for all A e 1;.

and if o 1is commutative, then

(viii) A® B =1r(Ao B) =r(BoA) =B @A for any A, B ¢ 720

An equivalent way of obtaining the path algebra from any
given p-space is by making use of the following relation ~ defined

on ¥ as follows.
(3.9) A n B iff r(A) = r(B)

- 80 -



It is easy to see that ~ is an equivalence
relation, and hence the set ¥ is partitioned into its
equivalence subsets by this relation. Let [AJ denote the
equivalence subset containing A and ¥/ denote the set of
all these equivalence subsets. Then for any [&], [Bl e Viv,

we can define two binary operations @r and @r on ¥/v as

follows.
(3.10) (2] e_[B] = [ @ B
(3.11) [A] e [8] = [A o B]

Now since it is possible that for A % C, [A} = [c] ,
one may question whether these operations are well-defined, i.e.
independent of equivalence subset representatives. Indeed, they
are because of the way we define a reduction function. For
suppose E@] = [c] and [B]= [D], i.e. T(a) = r(C) and r(B) = r (D).

Then it follows from (3.2) that

#

r(A ¢ B) = r(x(A) W B)
= r(r(d) W r(B)
= r(r(C) W (D))
=r(C W rD))

r(C & D)

i

Similarly, we can show that r(A o B) = r(C o D} by (3.3).
Therefore, [A &7 B] = [C &, D] and [A o B] = [C o D:l which

justify our claim,
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THEOREM 3.3 ( V)i~ o, Qr, @r) is a semiring with unit Bﬂ

and zero Bﬂ , and is isomorphic to the path algebra.

PROOF In view of theorem 3.2 it suffices to show that there

is a semiring isomorphism from the path algebra to (¥/~, @r, ey .
In fact, the required isomorphism is given by the function

£ %} + ¥/nv which is defined by £(A) = [ﬂ] for all A ¢ ﬂVr.

For we have

B

f(A & B)

[4 3]

[r(a w B)] , by (3.7)

[

[A ) B:l s since r(r{(A & B)) = r(A & B)

[a] o [2]

£(A) @r £(B) ,

]

]

and likewise, f(A @ B) = f(4) @r £(B) ,

Since £(¢) = [¢] and f(r(e)) = [r(e)] = le] also,
it remains to show that £ is a bijection.

Suppose f(A) = £(B). Then by definition, [A]= [B] or
r(A) = r(B). But then A = B because A, B ¢ ﬂVr. Therefore, f
is an injection.

Now let [A] € /v be given. Then
£(x ) = [xr@)] = [A], since r(r(A)) = r(a).
Therefore, f 1is also a surjection as required. v
It is interesting to note that in fact ’7} = v (7),

the range of the reduction function r. For if A ¢ ‘?}, then

A = r(A) implies that A ¢ r(¥), while on the other hand,
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A e r(Y) implies that A = r(B) for some B & ¥ . But then

A e ‘Vr because rt(B) ¢ ?; . The above claim is therefo

justified,

In view of this observation, theorem 3.3 in fact says
that " /r~ 1is isomorphic to r(¥) as semirings. This conclusion
resembles the usual homomorphism theorem in algebra except that t:hei
reduction function r may not be a homomorphism. |

We note in passing that an elegant proof of theorem
3.2 can in fact be obtained by considering the cannonical surjection
T : ¥ > V/v which is defined by w(A) = [&] for any A ¢¥. Now
from (3.10) and (3.11), we conclude that 7 1is a semiring
homomorphism from ¥ to ¥ /v , and hence (7 /v, @r, @r) is a
semiring. But (7 /v, 8, @r) was seen to be isomorphic to
(’?;, @, @) in theorem 3.3 above, and hence (ﬂV¥, ®, 8) is a
semiring as required.

Let us now consider the path algebra of the p-space
(%, o, §§Kz 8) induced by a given semiring (X, +, o) in theorem
3,1 above. The relationship between this path algebra and the

semiring (X, +, o) is expressed in the following.

THEOREM 3.4 The path algebra of the p-space (X, o, Q%} 8)
induced by a given semiring (X, +, o) is isomorphic to (X, +, o)

as semirings.

PROOF Let us define a function f£: X - %; , where

Vo= F, by

{x} if x % ©
(3.12) flx) =
¢ , otherwise,
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Then f can be seen to be a semiring homomorphism

from (i) and (ii) below.

(i) If x =6, then by (3.12), £(x) = ¢ , and hence
£(x) @ £(y) = ¢ ® £(y)
= £(y)
= f{x + v), since x =0 .
Similarly, if v = 6, then £(x) @ £(y) = £(x + y) as required.

So we may suppose that x % 6 and v % 8. But then

i

f(x) @ £(y) = s(f£(x) W f£(y))

i

s(x W y)
{ {x+y} if x +y ¥ 6

¢ , otherwise

i

[

f(x+y) as required.

(i1 If x = 6, then f(x) = ¢ by (3.12), and hence

i

£(x) & £(y) ¢ & £(y)
= ¢

£f(x)

#

L]

f(x o y), since x =0 = x 0 ¥.
Similarly, if vy = 6, then £(x) ©® £(y) = f(x 0o y) as required.
S0 we may suppose that x + 8, v + & . But then

s(£(x) o £(y))

]

£(x) ® £(y)

il

s{x o v)

i

{ {x oyl if xoy %@

¢ , otherwise

i

f(x o y) as required.
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Now we show that f is a bijection.
Suppose that £(x) =£(y), then {x} = {y} if x, y ¥ 6, and
hence x = vy,

If x =6, then f£(x) = ¢. But then £(y) = ¢ also,
which implies that vy = 6 = %,
Similarly, if y = 6, then x =6 = vy,

Therefore £ is an injection.

To see that f 1is also a surjection, let A ¢ ﬁVS,

Then
A = s(A)
n n
_E a; if A= {al, Bys s &n} and .X a; X
- i=] i=1
¢ , otherwise
n
= f [ z a,} as required. v
. i
i=1
3.3 A Variety of P-Spaces

In future study, we shall find it useful to distinguish
several types of p~spaces in accordance with their monoids,
hereditary semirings or reduction functions. Therefore, let us make

the following

DEFINITION 3.2 A p-space (X, o , % , r) is said to be commutative

iff (¥, o) 1is a commutative monoid.

DEFINITION 3.3 A p-space (¥, o,%, r) is said to be finite

- ﬂyn = .
iff QWX
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DEFINITION 3.4 A p-space (X, o, %, r) 1is said to be

(i) intensive iff r(A)C A for every A e,
g

(ii) idempotent iff r(e W e) = r(e) holds,

(iii) g-stationary 1ff whenever A* ¢ ¥ , we have

r(A%) = r(e W A W ... ¥ Aq) for some q € N, and

{(iv) complete iff whenever r(Ai i B) = r(B) for ever%
A, & @& such that # A, = A e ¥ , we have
1 X . i
iel
(A W B) = v (B).

The following theorems are consequences of the above

definitions.

THEQREM 3.5 Every finite p-space is O-stationary.

PROOF Let (X, o, ¥, v) be a finite p-space. Then it
follows from (ii) of theorem 2.11 that A% ¢ ¥ = 3”% iff A = ¢,

and hence

r{a*) = r{o*) = r{e) as required. v

THEOREM 3.6 Every finite p-space is complete.

PROOF Let (X, 0,%, r) be a finite p-space and suppose

that r(Ai & B) = r(B) for every A; e ﬂ%ﬁ such that

() Ai =Ae?¥. Nowsince 7 = -?%, it follows that

iel

r(Ai 4 B) = r(B) for only finitely many A, i.e. A, @ B = r(B)
for only finitely many Ai’ say Al’ Az, ceas Ak . But then

Al & A2
i.e. r(A & B) = r(B) as required. v

@...0 A ®B=1(B), i.e. A WA W...H A W B)=r(B),
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THEOREM 3.7 A p-space (X, o, ¥, r) is idempotent iff

r{A & A) = r(A) for all A e V.

PROOCF Sufficiency is obvious whereas necessity follows

from (vii) in the proof of theorem 3.2, v

THEOREM 3.8 A p-space (X, o, ¥, r) is idempotent iff

r(d & B) = vr(A\UB) for any A, Be V.

PROOF If r(A W B)

#

r(A{JB) for any A, Be ¥, then

]

in particular, t(A W A) r(A 1 JA) = r(A), and hence the p-space

is idempotent by theorem 3.7 above.

Now suppose that the p-space is idempotent.

For ease of exposition, let Y = AMB and Z = A\JB,

Then clearly, Yy C z.

If Y =2, then A = B, and hence

r(A W B) =r(A Wy A) =xr(A) = r(AUJA) = xr(AUB)
as required.

If Y % Z, then we can define the multiset 2 &Y Y by

w if Z(x) = @
Z 9 1 (x)-=
Z{x) -~ Y(x), otherwise

From this definition, it is easily verified that

Z =Y W (Z = Y) always, and hence
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8

r(A W B) = x(Y W 2)

=r(Y WY w 2 9 Y))

=r(r(Y W ¥) W (2 Y ¥)), by (3.2)
=r(x(¥) W 2 Y ¥))

=r(Y W 2 Y ¥)), by (3.2)

= 1(Z)

= r{A\JB) as required. v

COROLLARY 3.1 A p-space (X, o, ¥, r) is idempotent iff the

following condition holds.

(3.13) For any A, B ¢ % such that A C B, we have r(A) < r(B),

where < denotes the pseudo~ordering of the path algebra.

PROOF Suppose (3.13) holds, then in particular A C A implies
r(a) < r(4), i.e. r(A & A) = r(4), and hence the p-space is

idempotent.

Now suppose that the p-space 1s idempotent and let

AC B, i.e. AUJB = B. Then it follows from theorem 3.8 that

r(A & B) = r(AUB) = r(B) , i.e. r(A) < r(B)

as required. v

Let us now make a special note concerning the
significance of theorem 3.8 above from the view point of lattice
theory. From theorem 3.2 above, we know that the path algebra
( ”VE, @, &) of any idempotent p-space is an idempotent semiring,

and hence the pseudo-ordering < of ( 7}, @, ©) is in fact an
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ordering. Moreover, ( 7}, <) 1is also a join-semilattice

(see section 0.1 above). In fact, the least upper bound of any
finite subset {Al’ Bys ooy Ak} of ﬁVr is given by

Ay @ A2 & ... & Ak . Therefore the addition @ of the idempotent

semiring ( ﬁ;, @, ) coincides with what is usually konown in

lattice theory as the join operation, and is usually denoted by

YV {(see e.g. Birkhoff (1967))}. Therefore in future, we shall use
the notation V in place of @ to emphasize the fact that the
p-space under consideration is idempotent. Now theorem 3.8

essentially says that the reduction function r is a join~morphism

(Rirkhoff (1967))from the semi~lattice ( 7’,€; } to the semi~lattice

{ %fr? <), i.e. A\ UB) = r(A) V r(B). This follows because
r(A\UB) =r(A W B) = r(r(A) W r(B)) = 1Ay V r(B)..

In fact, for complete idempotent p-space, its reduction
function can be seen to be a complete join-morphism (Birkhoff (1967))
as follows.
THEOREM 3.9 Let (X, o, ¥, r) be an idempotent p-space. Then
the following are all equivalent
(1) r({vin) zﬁV r(Ai) whenever ‘iji g ¥V

il iel iel

(i1) r( ﬁi}Ai> =V r(A;) whenever | A eV
iel iel iel

(iii) The p-space is complete

PROOF We show that (i) implies (ii), (ii) implies (iii) and
(iii) implies (i}.

That (i) implies (ii) can be seen from (2.7) as follows.
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r( W A)) =1 (& A.)
ier *t 392(1) jed JI

= Vot i A
se2tD " 5oy

v ( Vr@))
Je2D jeg d

i

V r(A,) as claimed.
. i
1el

That (ii) implies (iii) can be seen as follows. Let

r(Ai & B) = r(B) for every A, e géx such that Uin =AcV .

iel

Then by (ii), we have

(A & B) = r( @Ai W B = V r(A.) V r(B).
iel ier

But by theorem 3.8 and our assumption, we have

r{Ai) VY r(B) = r(Ai W B) = r(B) for every i e I,

and hence r(Ai) < r(B) for every i e I,

Consequently, v r(Ai) < r(B) , 1i.e.
iel

v r(Ai} V r(B) = r(B), and hence
iel

r{A & B) = r(B), which proves (iii).
That {(iii) implies (i) can be seen as follows.

Let Z = |JA,. But then Ai(; Z for all i e I, and hence
iel
by corollary 3.1, r(Ai) 4 r{(Z) for all i e I, which says that
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r(Z) 1is an upper bound for {r(Ai)[i € I}. We now show that:
r(Z) 1is in fact the least upper bound. So let Y ¢ T} be

such that
r(Ai) <Y for all i e I.

Now for each x e Z = t}Ai’ X E Ai for some 1 ¢ I, and hen&é
iel

by corollary 3.1 above, r(x) < r(Ai)q for some 1 ¢ I.

Since < is tranmsitive, it follows that r(x) < Y. Thus we have

just shown that for every x ¢ Z,
r{x & Y) = r(¥).
Since Z = (#H{x.} , it then follows from the
2y
je
completeness assumption that r(Z @ ¥) =r(¥) =Y or equivalently,

r{zy < Y. Consequently, x(Z) = V r(Ai) as required,
iel

Let us now examine which of the properties in definition
3.4 above are possessed by the p-spaces in the above examples. A
straight-forward verification will show that the p-spaces of all the
above examples are complete and intensive. In fact, we are unable
to find an example of a p-space which is not complete. As an example
of a p-space which is not intensive, we mention the p-space
N, -, .?%, s) induced by the usual semiring N, +, <) of
non-negative integers (see theorem 3.1 above). For if we let

A= {1, 2, 3} , then s(8) = {1 + 2 + 3} = {6} Ct A. The p-spaces in

all but example 3.8 can also be easily seen to be idempotent.
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However, in examples 3.3 to 3.5, if one replaces < everywhere

by £ , then the resulting p-spaces will not be idempotent.
Similarly, in examples 3.6 and 3.7, if one replaces the requirement
for sim(A) and b(A) to be sets by multisets, then the resulting
p-spaces will not be idempotent either. The p-spaces in examples
3.6 and 3.7 are also q-stationary. In fact, it is easily seen
that in example 3.6, q = ‘Xl » Where [Z! denotes the number of
elements in £ , and in example 3.7, q = 0. If we assume that the
totally ordered monoid (X, g, o) in examples 3.2 and 3.3 also has
the property that x2 = x implies x = e for all x e X, then the
p-spaces in these example are also gq-stationary. In fact q = 0O
for example 3.2 and q = 2(k-2) for example 3.3. For by theorem

2.13, we know that A* ¢ 7fx implies that x > e for every x e A,

and hence
min( A* ) = {e} = min{e} ,
(k-2)
and k-min( A* ) = k-min{e W AW A2 w... % } .
The latter can be shown as follows. If x = e for every
x e A, then A* = {e, e, ...} and hence

k-min (A*) = {e} = k-min{e WA WA W... W Az(k“z)} )

So we may suppose that x > e for some X = a, - say. But then

L2(c2)

e<a<a?<at<,,, < are contained in e W A ¥ ... WA

and since x e A® for any s > 2(k~2)

42 &)

always implies that x 3 y
for some y ¢ » the required result follows. We note that if
we replace < by g everywhere in example 3.3 or if we assume that

S

x” implies x = e for all x e X and all j ¢ N, then it can

be similarly shown that q = k=1 in these cases.
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CHAPTER 4

COMPATIBILITY AND STABILITY

4.1 Networks and their Graphs

The formulation and solution of path problems, using the concept
of multisets of chapter 2, which we shall discuss in the next chapter,
actually permits us to describe a path problem in the setting of a more
general framework than that of a graph over a monoid, i.e. multiple

arcs can now be taken into consideration., More precisely, let us make

the following

DEFINITION 4.1 A network W over a finite set L 1is an ordered pair
(W,U) where W is a finite set, and U is a multiset with elements from
the cartesian product W x L x W. The elements of L are called labels,
elements of W are nodes, and elements of U are arcs. More precisely, each triple
(x, a, x') of the multiset U will be called an arc beginning at node x,
ending at node x' , and carrying the label a .

We note that by this definition, a graph G over a set L as
defined in section 0.4 is just a network in which no two arcs with the
same beginning and end are allowed, whatever labels they may carry. Thus
a graph over a set L is just a particular instance of a network. In view
of this connection, we can also generalize other concepts which are previously
defined for graphs in sectiom 0.4 to networks as follows, where

for convenience, the nodes of the network N are designated as X,, Xo,cs0,X .
1 2 s}

DEFINITION 4.2 Let N be a network. Then a path p of W is a finite

ordered sequence
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(x, , a;, %, )(x. , 8,, %. ) ... (x, s 8, X. )
i, 1 1,77 2 i, L1 k i

of consecutive arcs in & . The integer k > 0 is called its order,

£ its beginning, x. its end, and x. to x. its intermediate
o % Y Tk-1

nodes. The path p 1is said to be closed iff X, =%, elementarv
0 k

iff X, # Xy whenever r # s (except, of course, for closed paths,
r 8

where X, =X always) .
0 k

In the present study, we shall only be interested in networks
over a finite subset of a monoid, which we shall simply refer to as

networks over a momoid. This is to say that the labels of the network

under consideration are elements of a monoid (X, o), say. Consequently,
for each path

p = (x. , a,, %, J{(%. , @n, X ) ... (x. s 8y 5 K. )

i, 1 1,77 2 i, Lq k i

in & , the element 8708, 0 ... 02 is well defined (because o is
associative) and will be called the label of the path p in N . For
convenience, we shall also introduce the concept of a null path ei for
each node X, in & which can be defined as a closed path of order zero
which begins and ends at X: and has label e, the identity for o. For
convenience, each node X has exactly one null path by definition.

A network can generally be represented by a diagram such as figure

4.1 below, where the nodes are represented by letters Xqs XgseeosX and

> XK. .

h .y A, X. b x.
an arc such as (xl, , J) y % i

- 103 ~



a8

a
/e 8
A
b
3

Figure 4.1 A network W&

It would appear simpler to draw figure 4.1 as figure 4.2
below,which contains essentially the same informations as
figure 4.1. But figure 4.2 can be seen to be a graph over the set
L C Nz (see section 2.1). This suggests that a network A over

a finite set L C X is in fact equivalent to a graph over L C NX.

Indeed, this is so. For let N = (W, U) be a given network over a
finite set L C; X, we can define a graph G(WN) = (W, V, v) over

L C Ni by taking W to be the set of nodes in &/ , V to be a

subset of W x W such that (xi, Xj) eV iff (xi, a, xj) e U for at
least one ae L, and v : V - L tobedefined by v(xi,xj) = the
multiset of all labels of arcs in U which begins at node X, and ends
at node Xj' And conversely, we can define a network A (G) = (W,U) from
a graph G = (W, V, v) over a subset of Nz by taking W to be the set

of nodes in G, and U to be a multiset such that (xi, a, xj) e U iff

e X N
ae v( T xJ)

ava:a,x R 8 % f
xl 4 2 € 4
bl t,d
*3

Figure 4.2 The graph G(W) of the network N in figure 4.1.
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From the above discussion, we see that given a network ¥ ,

we can define the label matrix M of N to be the arc-value matrix

of the graph G(W) = (W, V, v) , 1i.e.

v(xi, xj) if (xi, xj) eV

(4.1) Mij =
¢ , otherwise

In this way, all the previous results concerning the arc-value
matrix of a graph over a semiring can be translated into results concerning
the label matrix of a network over a moncid. For instance, the matrix

Mk, the kth power of M 1is given by (0.15) as follows.

(4.2) oy .. = W)

H (k)
pE Pij

where v(p) and Pi?) are defined with respect to the graph G(W) over
the complete semiring Nf.

Note that in this instance, v(p) as given by (0.13) is the
multiset consisting of all the labels of all the paths in W which
traverse the same nodes as the path p in G(W).

Here it is convenient to introduce the function v : ZP'* Nf, where

P denotes the set of all paths in G(A4). This function is defined by

(4.3) v(Q) = W vip) for all Q ¢ 2P.

peQ

We note here that strictly speaking, a different notation should

be employed in place of v on the left-hand side of (4.3) above. However,
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our use of the same v does not cause any confusion because the

argument of the function v : ZP 9~N§ are sets which are denoted

by capital letters, whereas paths will always be denoted
by lower case letters. We note also that the function v : ZP * Nf
2® X

o0

as defined
X

°
oo

is in fact an extension of the function o :
by (0.16) for the graph G(W) over the complete semiring N
Accordingly, properties (0.17) and (0.18) of o can also be obtained

for v , namely

(4.4) V(QlkJ Q2 O k)Qk) = v(Ql) ty'v(Qz) Q) ...Qﬂ'v(Qk) whenever

Q M Qj =¢ for i # j.

(4.5) v(Q, Q

1 eee Q ) o= V(Qirl) o V(errz)o “oa OV(QrkJ') 5

T, Y r,J

172

where each Qrs is a subset of paths from X to e and

Qg Uy = {pq | peq, ., ae Qst}

In fact, a stronger property than (4.4) is possessed by

P X . .
v 2 + N as stated in theorem 4.1 below. But first, let us

-]

establish the following:

LEMMA 4.1 Let Q;, Q, € 2% be such that Q, C Q,

Then v(Q,) C v(Q,)

PROOF Since Q1 C QZ’ it follows that Q2 = Q1 U (Q2 N Ql)'

Therefore, it follows from theorem 2.5 and (4.4) above that

vQ) C v@Q) W v, N Q) =v(Qy) . v
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THEOREM 4.1 If (Qi) is a sequence of subsets of P such that

Qi M Qj = ¢ whenever i # j, then

V(.U Q.) = 1L:)1V(Qi) o

i=] 1

PROOF Let Q = UQi and Sk = Ql U QZU ceodJ Qk . Then in view

i=1
o

of (2.7) and (4.4) above, it suffices to show that v(Q) = {J v(§

=1

k)'

By lemma 4.1 above, SkC__ Q implies that v(Sk) C v(Q for
all k , i.e. v(Q) is an upper bound for {V(Sk)lk e {1,2,...}}.
We claim that v(Q) is in fact the least upper bound. In order to justify

this claim , let us define a function v Nx -+ ZP by v(A) -"-{pé:P[v(p)(_:w A}.

L]

This function has the following three properties.

(i) A C B implies v(a) C v(B).
This follows because any p € v(A) implies v(p) C ACB, and

hence p e v(B) also.

(i) QC ¥(v(Q) for any Qe 2f .
For let p e Q, then v(p) C Hvp) = v(Q) implies
peQ
pevv(Q) as required.
(iii) v“(A) C A for any A NS .

This follows because

vva) = W v = WveCA.
pev(A) v(p) CA

Now let Y be any other upper bound for {v(Sk)Ik e {1,2,...}}.
Then v(Sk) C Y for all k, and hence from (i) above, it follows that
v(v(s$,)) C ¥(¥) for all k. But then it follows from (ii) that

Sy C \”J(V(Sk)) C V(¥), and hence Q C ¥(Y). Therefore, by lemma 4.1
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and (iii) above, we have v(Q) C v(¥(Y)) C Y as claimed. v
Theorem 4.1 is useful in establishing the following theorem, where
all the essential properties concerning the label matrix M that we shall

require later are conveniently summarized.

THEOREM 4.2 Let M be the label matrix of a network N over a

moneid (X,0). Then we have the following

(i) Mk is given by (Mk).. = v(ng)) for all 1i,j, where ng)
1] 1] 1]
is defined with respect to the graph G(W¥) over the complete semiring Nf
(ii) M[g] = {J Mk is given by (M[s]) = v(P[%]) for all 1i,j],
k=0 1J
where PL%] = kJ P<k) for all s € N,
1]
% k + k . .
(iii) M = \:}M and M = (H#M are respectively given by
k=1
* - + B @ . .
(M )ij = v(Pij) and (M )ij = v(Pij \ Pij yfor all 1i,j,
[><]
where L, = <k)
k=0 i
PROOF (i) 1is just (4.2) above, (ii) follows directly from (i) and
(4.4), and (iii) follows directly from (i) and Theorem 4.1 above. v
THEOREM 4.3 Let W be a network over a monoid (¥X,0) with n nodes.
{k}

For any ke {0, 1, 2,...,n} , let Q be the set of all paths of

Pij \ ng) in the graph G(wW) that do not use any node X such that

r > k as an intermediate node. Then for all 1i,j, we have

(i) @) - v@ith
(ii) vy \ P(O)) - v(Q{n}) and
(iii) v@¥h = v@iEh w v@iE™) o valh o vt ™)

for all ke {1, 2,...,n} .
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PROOF (i) Observe that each path in Q is not allowed to have

{0}
ij
intermediate nodes, and hence its order is at most unity; in fact, it

is exactly unity because Qgg} does not contain null paths. On the

other hand, each path of order unity can never have intermediate nodes.

(1) _ {0} (L, _ {0}

Therefore, Pij Qij and hence v(Pij ) = V(Qij ).
(ii) Since the network has only n nodes, each path in Pij \ Pg?)
cannot use more than n nodes as intermediate nodes, and hence

(0) {n}
Pijg N Piy C Q5 -

{n} (0)
But Qij C Pij \ Pij always. Therefore,

) {n} 0), _ {n}
i \ Pij Qij and hence V(Pij \ Pij )= v(Qij ).
. {k} e . .

(iii) Let p ¢ Qij . Then by definition, p has no intermediate

nodes X, such that r > k. But then either p ¢ Q§?~1} which means
that p does not also have X, as intermediate node, or p has X, as
intermediate node, in which case, p may use X, as an intermediate node

more than once, i.e. the path p can be factorized into paths in

{k-1}
Qij as
p = ab or P=acyc, ... ctb R
where a ¢ Qiiul} s, be Qi?nl} and ci» cz,...,ct € Qit—l}. Conversely,
such a path p 1is always a path in Qg?} Therefore
{k} _ k-1} , {k-1}, 7, {k-1} &, . {k-1}
G T %5 YU (U Qg DD 9

and hence the required result follows from (4.5) and theorem 4.1 above.
We note here the above theorem is a generalization of a result

obtained by McNaughton and Yamada (1960) in automata theory.
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4,2 Compatibility of Networks with P-Spaces

In the definition of a path problem to be given in the next
chapter, we shall find it necessary to impose the condition that
rv(Pij) = r(V(Pij)) is a well-defined muitiset for a given network N
over a monoid (X,0) and a given p-space (X, o,7?,r). That rv(Pij)
may not be well defined can best be seen from the following example.

Let W be a network over the additive group (R,+) of real
numbers and suppose that there exists at least one closed path in
N whose label a is negative. Then we claim that min(v(Pij)) is
not defined, i.e. V(Pij) ¢ 7%R’ where 7YR. denotes the set of all
well ordered multisets of Ng and ¢. For we know from corollary 2.1 that
V(Pij) € 7VR iff x > 0 for every x ¢ V(Pij)' But this is not possible
since a ¢ V(Pij) and a < 0 was assumed. Therefore, the claim is
justified.

From the above example, we see that the question concerning the
definability of rv(Pij) for a given network and a given p-space
(X, o, ¥,r) 1is closely related to the nature of the labels of closed paths
in the network. Thus any network A in which the labels of closed paths
are of the wrong nature is in some sense not compatible with the given
p~space (X, 0,%7r). It turns out that this troublesome nature of the labels
of closed paths in a network can be formally described in terms of closed
multisets of the hereditary semiring ¥ of the p-space and the question
of compatibility cén be translated into the question of whether or not
the multiset v(Pii \ ei) is closed in % . To prove this result,

let us first define formally what we mean by compatibility.

DEFINITION 4.3 Let W be a given network over a monoid (X,0) and
(X, o,%,r) be a given p-space. Then the network N is said to be

compatible with the p-space iff v(P) € ¥, where P 1is the set of all paths
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in G(W).

Since our previous understanding of compatibility from the
above example is that V(Pij) € vV 8o that rV(Pij) is defined for all
i,j, definition 4.3 might seem somewhat surprising. However, this
definition is in fact in agreement with our previous understanding as

the following lemma shows.

LEMMA 4.2 Let N be a given network over a monoid (X,0) and
(X, o, ¥,r) be a given p-space. Then W 1is compatible with the p-space
iff v(Pij) e ¥ for all 1i,j, where Pij 18 the set of all paths in

G(#') which begin at X, and end at xj.

PROOF Suppose first that A is compatible with (X, o0,%,r)
i.e. v(P) ¢ ¢ , where P 1is the set of all paths in G(W). But by
lemma 4.1, Pijg P for all 1i,j, implies that v(Pij) C__ v(P) for all
i,js. Therefore, it follows from the hereditary property of ¥ that
v(P..) ¢ 7 for all i,j .
1]
Now suppose that V(Pij) eV for all i,j,. But then by

(4.4), we have

v(P) = v(UP.,.) = & v(P..) € ¥ as required. Y
;s 1] N~ ij
sJ 1,]
THEOREM 4.4 Let N be a given network over a monoid (X,0) and

(X,0,¥,r) be a given p-space. Then N 1is compatible with the p-space
iff V(Pii 5\ ei) is a closed multiset of ¥ for all i , where Pii
denotes the set of all closed paths in G(wW) which begin and end at

. and ei is the null path for X, in G(W).

PROOF Suppose first that N 1is compatible with the p-space,

i.e. v(P) ¢ ¥ . Since V(Pii \ Gi) C v(P) for all i, we have
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v(Pi; \ 6.) e ¥ for all i. Now let B C V(P \ 8;). Then
B = v(C) for some C C P, \ 8,. Since P.. \ 6, contains all the
non~null closed paths which begin and end at node X5 it follows that

[

U Ck C Pii \ Gi , and hence by theorem 4.1 and lemma 4.1 above,
k=1 -

5=y v©F - v c) C v\ 8))
k=1 k=1

Therefore, it follows from the hereditary property of ¥ that B e V.
Consequently, it follows from lemma 2.1 and lemma 2.2 above that
v(Pii \ ei) is cloged in ¥ .

Now suppose that v(Pii \ ei) is a closed multiset of ¥

for all i . Then in view of lemma 4.2 above, it suffices to show that

V(Pij) e ¥ for all i,j. We first show that v(Q£§}) € ¥ for all
{k}

ke {0, 1, 2,...,n} , where Q is as defined in theorem 4.3 above.

Since 9‘ cC v by the definition of a hereditary semiring

it follows that v(Q{O}) e ¥ for all i,j,. In particular, v(Qig}) e V.
But v(Q{O}) C v(P11 \ 61), and hence by lemma 2.2 above, v(Qig})
also. It then follows from (iii) of theorem 4.3 that v(Q{l}) eV for

all i,j. The same argument can then be repeated to show that v(Q{Z}) v

hv@h,

for all i,j, and so on for wv(Q
Therefore, from (ii) of theorem 4.3, we conclude that

(0)
V(Pij \ Pij ) € ¥. But then by (4.4),

- (0) (0) ‘
V(Pij) = v(Pij \ Pij ) W v(Pij Y eV also. v

COROLLARY 4.1 (i) Every acyclic network over a monoid is compatible with
any p-space. Here a network over a monoid is said to be acyclic iff it has

no non~null closed paths.
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(ii) Any network over a monoid (X,0) 1is compatible with the p~spaces
X
(X,0, N_,r) and (X,0, 8y, 1).
(iii) A network W/ over a monoid (X,0) 1is compatible with the p-space

(X,0, F_,r) iff NV is acyclic.

PROOF (i) follows from the above theorem because for all i, v(Pii \ Bi) = ¢
is always a closed multiset of the hereditary semiring ¥ of any p-space
(X,0, v,1x).

(ii) follows from the above theorem because by (i) and (iii) of theorem
2.11, v(P;; \6,) is alvays closed in N. and &, for all i.

(iii) follows from the above theorem because by (ii) of theorem 2.11,

v(P..

;3 \ 8;) is closed in SEX iff  v(P.. \ ei) = ¢ for all 1.

11

COROLLARY 4.2 A network W over a locally finite monoid (X,0) 1is
compatible with a given p-space (X,o,-A%,r) iff the label a of any

elementary closed path in A is such that a # e.

PROOF Suppose first that W is compatible with (X,0, M,,r). Then
it follows from the above theorem that v(Pii \ ei) is closed in fo for
all i. But then by theorem 2.12, we know that x # e for every
X € v(Pii \ Bi) for all i, and hence the label a of any elementary closed
path in W satisfies a ¥ e,
Now assume that the label a of any elementary closed path in a
network A over a locally finite monoid (X,0) 1is such that a # e.
Then we claim that x # e for every x ¢ V(Pii.\ ei) for all 1.
For let x ¢ v(Pii \ Gi), then x e v(p) for some p € Pii.\ ei. If p
is an elementary closed path in G(W#) , then x 1is the label of an elementary
closed path in A/ , and hence x # e by assumption. So we may suppose
that p 1is non—elementary. But then we may write p = P1919; for some

elementary closed pathe Wy in G(W) as in the contraction process
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explained in section 0.4 above. Consequently, v(p) = v(pl) ) v(ql).
Hence x = yp 08y 02 for some Yy € v(pl), a; € v(wl), z) € v(ql).
But then x # e because a; ¥ e by assumption. For suppose otherwise,
then yp0a 0z =e would imply that yy=a =z =e because = (X,0)
is a locally finite monoid (see section 0.2), a contradiction. Therefore,
x # e for every x ¢ V(Pii.\ ei) as claimed. But from theorem 2.12,

this means that V(Pii\ ei) is closed in W, and hence ¥ is

x H

compatible with the p~space (X,o,-N&,r) as required. v

COROLLARY 4.3 Let N be a network over a totally ordered monoid (X,5,0)
which also satisfies the condition that x2 = x always implies x = e,

then for W& to be compatible with the p-space (X,o,1{k,r) (or(X,o,ﬂV;,r)),
it is necessary that the label a of any elementary closed path in A
satisfies a 2 e (or a £ e). On the other hand, this condition is sufficient
for & to be compatible with (X,o,‘ﬂ&,r) (or (X,o,?fé,r)) in the case

where (X,0) is an Archimedean totally ordered monoid.

PROOF Suppose first that W is compatible with (X,o,‘ﬂ&,r). Then
it follows from the above theorem that v(Pii \ ei) is closed in ,VX
for all i. But then by theorem 2.13 above, we have x 2 e for every
X € V(Pii \ Gi) for all i, and hence the label a of any elementary
closed path in W must satisfy a 2 e as required.

Now suppose that the label a of any elementary closed path
in a network W over an Archimedean totally ordered monoid (X,0)
satisfies a 2> e . Then we claim that x 2 e for every x € V(Pii\ ei)
for all 1. For let x € v(Pii \ Bi) , then x £ v(p) £for some
pE€ Pii \ e,. If p 1is an elementary closed path in G(W) , then % is

the label of an elementary closed path in &/, and hence x 2 e by

assumption. So we may assume that p 1is non-elementary. But then by the
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contraction process explained in section 0.2, we may factorize p as
follows

PEP®1% > Py T P9y seees ps~1qsi1 = Pglgdy Where p.q,
is a contraction of p .

Consequently, v(p) = v(pl) ) v(wl) ) v(ql) implies that
X =y, 0a 02z for some ¥y € v(pl), a) € v(wl) and z, € v(ql).
Since a; ze by assumption, it follows that x > ¥y 0 2. But
Yy 0z € v(pl) ) v(ql) = v(plql) = v(pz) 0 v(wz)'o v(qz) implies that
Y1 ©2) =Y, 02,02,

for some y, € v(pz), a, € v(mz) and z, € v(qz)

Again, since a, 2 e by assumption, it follows that Yy 021 25,02,
and hence x 2 Yoy 0 2,e
By repeating the above argument for ¥y 0 2y and so on, we
obtain x 2 Y9 0 2) 2 Y3 0 Zgseees¥o g 02, 4 3Y, 02z
But Yg © 25 € v(ps) ) v(qs) = v(psqs), and P4, is necessgarily
an elementary closed path in G(#) , it follows that Vg © 2, 2 €, and
hence x > e as required. Consequently, v(Pii \ ei) is closed in ”WX
by theorem 2.13, and therefore W 1is compatible with (X,o,?ﬁx,r).

The case for the p—space (X,o,?{&,r) can be proved in a dually

fashion, v

COROLLARY 4.4 Let A be a network over a totally ordered cancellative
monoid (X,<,0) which is also conditionally complete. Then N is compatible
with (X,o, ﬂ%,r) (or (X,o,ﬁ{;,r)) iff the label a of any elementary

closed path in A satisfies a 2 e (or a < e).

PROOF This is a special case of corollary 4.3 above because any
cancellative monoid has the property that x2 = x implies x = e, and

any totally ordered cancellative monoid which is also conditionally complete
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was seen in the proof of corollary 2.1 above to be Archimedean. v

COROLLARY 4.5  Any network A over an Archimedean totally ordered group
(X, £ ,0) 1is compatible with the p-space (X,o,‘ux,r) (or (X,o,QL%,r))

? o
where U, =& N Ny N Wy (oxr U = & N N, N W) iff the label

of any elementary closed path in N satisfies a > e (or a < e).

PROOF Suppose first that N is compatible with the p-space

(X,o,ilx,r). Then it folloYs from the above theorem
that v(Pii \ ei) is closed in @tx for all i. Now by (ii) of
corollary 4.1, v(P..\ 6.) is always closed in @)V and by theorem
2.14 , V(Pii,\ ei) is closed in J/X M 7Vk implies x > e for every
% € v(Pii \ ei). Therefore, in particular, a > e for every label a
of any elementary closed path in W .

Now suppose that the label a of any elementary closed path
in W satisfies a > e. Then by an argument similar to corollary 4.3
above, we can show by using, in addition, the cancellativity assumption
that x > e for every x € V(Pii\ Gi). But by theorem 2.14, this means

that v(Pii \ ei) is closed in AfX N w

1 M
X and hence in @x JV'X m WX

also (see (ii) of corollary 4.1 above). Therefore W 1is compatible with
the p—space (X,o,‘ux,r) as required.

The case for W. can be shown dually. v

X

4,3 Stability of P~Spaces with respect to Networks

In many concrete instances of path problems to be defined in
the next chapter, the problem of determining rv(Pij) for a given network

over a monoid (X,0) which is also compatible with a given p-space

E”ﬂ) for

(X,0, ¥,r) 1is actually equivalent to the computation of rv(Pij

some positive integer nge For instance, consider again the p-space

(R, +, W, min), vhere (R, +) is the additive group of real numbers.
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As seen in the beginning of the previous section (also corollary 4.4), any
network A which is compatible with this p-~space must satisfy the
condition that the label a of any elementary closed path in W is such
that a > 0. Therefore, the label b € v(p) for any p e Pij must
satisfy b 2 a for some

a € v(p) where p is a contraction of p in G(wW). Consequently, for
any b e V(Pij)’ b 2 a for some a ¢ V(Eij) where Eij is the set of
all elementary closed paths in G(w). Therefore, bzay= min v(Eij)
for all b ¢ V(Pij)’

Now since a, € V(Pij) also, it follows that

)

= min V(Pij) .
i.e. min V(Pij) = min V(Eij) .

Now an elementary open path in a network with n nodes cannot
have more than (n—-1) arcs, and hence V(Eij) C ‘V(P£§~I]) for i # j.

By an argument similar to that used above, we then have
R Y | L
min v(Pij ) min V(Eij) for 1 # j
. . [h-i] ‘ .
Now for 1 =3 |, Pij contains the null path Gi , and since
v(ei) = {0} , we have

B P NSV
min v(Pij ) = {0} min V(Eij) .

Therefore, min v(Pij)= min v(ng_i]) = min V(Eij) for all i,j as
required.
Thus in this section, we shall concern ourselves with the

problem of finding sufficient conditions for the above situation in general.
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Its relevance to the solution of path problems will be shown in the

next chapter. Now for convenience, let us introduce the following.

DEFINITION 4.4 Let W be a network over a monoid (X,0). Then a
p~space (X,0,7%,r) 1is said to be nowstable with respect to W
iff for some positive integer Ny,

[n0+1:| [noj )

(4.6) rv(Pij ) = rv(Pij for all 1i,j.

Moreover, the p-space is said to be completely no-stable with

respect to N iff W 1is compatible with the p-space and also

[no]

(4.7) rv(Pij) = rv(Pij ) for all 1i,]j.

Now from a given matrix A € JMh(‘Y), let us define a matrix

Ar € .Mn( "Vr) by

(4.8) (Ar)ij = r(Aij) for all 1i,j.

Using this definition, we can now obtain

LEMMA 4.3 Let N be a network over a monoid (X,0) and M its

label matrix (as defined by (4.1) above). Then a p-space (X,0,%¥,r) is
[Pl _ M[“o”]
r

n0~stab1e with respect to N iff M , where
[x] 2 k .
Mr = Ir & Mr @ Mr e ... @ Mr , and completely no-stable with respect
n
# * %
to its compatible network N iff Mi = Mg'd] , where Mr = (M )r'
PROOF In view of definition 4.4 , it suffices to show that

(M£-k])ij = rv(P£§]) for all i,j, and all k € N, and that
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(M:) ij = rv(Pij) for all i,j. The latter follows easily from (4.8)
and (iii) of theorem 4.2. One way of proving the former is to consider
the matrix Mr as the arc-value matrix of the graph G(Mr) over the

path algebra ( 7;, ® , 8) and note that all the paths in G(Mr) are
exactly those in G(WN). Hence the result follows if we can show that

(M:{.;k])ij = rv(PP;]) , where PP;] is defined with respect to G(Mr)'

But the right—hand side is just another way of writing ® [k}v(p) .
pePi
J

and hence the required result follows from (1.4) above. Alternatively,

one can use (ii) of theorem 4.3 and the following consequence of (4.8):
(A @ B)r = Ar & Br and (A @ B)r 5= Ar e Br . v

LEMMA 4.4 Let & be a network over a monoid (X,0). A p-space
(X,0, ¥,r) |is nowstable with respect to N iff

[n
s
(4.9) rv(PJ{;j]) = rV(Pij

) for all s 2n
Hence, if the p-space is complete and AN is compatible with

the p-space, then this p-space is also completely no-stable with respect

to N .

PROOF From lemma 4.3 above, we see that (4.9) is equivalent to

n
M[s:l = M 0 for all s 2 n This we can prove by mathematical induction

T T 0’
as follows . For s = o5 the result is trivially so. So let us suppose
that the result is true for all s such that n, < s <t and show that it

is also true for s = t as follows.
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wltl = 1 ew onltl
r r r

]

Ir e Mr 1c] Mr ’ by induction hypothesis

n.+1
ol

5

[no-]

Hence Mgé] = Mr for all s 2z n as required.

For the second part of the lemma, let us first use mathematical

induction to show that

(0] n
(4.10) r(v(ngc)) V) v(Pijo )) = rv(Pil;jo‘]) for all k 2 n, + 1

For k=n. + 1 , this is just (4.6) above. So let us assume

0

the result to hold for all k such that n, + 1 £k <t and show that

it also holds for k =t as follows.

From the first part of the lemma, we know that

[o]

n
be ) for all t
ij

W

rv(Pi[g‘”ﬂ) = rv(P n. + 1,

and hence by (3.2), we have

(o]

n [20]
r(v(Pg)) W ) = r(v(Pg)) W rv e )

- (D) wrve )

. (t) [e-1]
r(v(Pij ) wv(Pij )

- 120 -



ij
[20]
= rv(Pij )
Therefore, (4.10) is valid for all k 2 n, + 1.
Now by theorem 4.1, we have
EY - ° (W
(k)
P.. \ P.. = P.. = + P..
vFii NP ) V(kgoﬂ ij) k-gouﬂ ij ) ’

and hence it follows from the completeness assumption that

VRN R
rv(Pij) = r(v(Pij \ Pij ) + v(Pij )) = rv(Pij )

as required. v
THEOREM 4.5 Every finite p-space is completely (n-1)-stable with

respect to any network compatible with the p-space.

PROOF First, let us note from (iii) of corollary 4.1 above that
a network N is compatible with a finite p-space iff W is acyclic.
Now a network W 1is acyclic iff its graph G(w) is acyclic. Since

the order of each path in an acyclic graph is at most n-1, it follows

(k)

ij = ¢ for all k 2 n. Consequently, P.. = PE?J for all

1]

s 2 n-1 and hence the required result follows. v

that P

THEOREM 4.6 Every ¢-stationary, idempotent and intensive p-space is

completely n_.~stable with respect to any network compatible with the p~space.

0

PROOF Let (X,o0,"¥,r) be a g-stationary, idempotent and intensive
p~space. Then we claim that rv(Pij) £ 9& for all 1i,j. In order to
justify this claim, let us first note the following consequence of the

assumption that the p-space is intensive
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(4.11) For any A,B € 7 such that r(A) , r(B) ¢ .ﬁx, then
both r(A) @ r(B) and r(A) 6 r(B) belong to Jﬁk also

This follows because

(1) r(A) 8 r(B) = r(x(A) W r(®) C r(A) W r(B) ¢ &K, and

(ii) r(A) @ r(B) = r(r(A) o r(B)) C r(A) or(B) ¢ JEX .

Now rv(Pij) = rv(Pij \ Pé?)) @ rv(Pi?)), and since rv(P{?))<;v(P§?)) e @%

implies that rv(ng)) e %, our claim can be justified by using (4,11)

X’
. 0)
above if we can show that rv(Pij \ Pij ) e 9% also.

{n}

This we now do by showing that rV(Q ) € ’ﬁ:’ since

n}

rv(Q ) = rv(P \ Pig)) by (ii) of theorem 4.3.

Now from (i) of theorem 4.3 and the assumption of intemsitivity,
rv(Q{ ) = rv(P(l)) - V(P§;)) € 5%% implies that

rv(Qi?}) € eﬁk for all 1i,j, and from (iii) of theorem 4.3, we have

{0} {0}

(Q{l}) =rv<Q Yo waldh o rw@l®™® e v@i%h

for all 1i,j.

Consequently, it follows from (4.11) that rv(Qgﬁ}) € ﬂﬁi if we can show
that r(v(Q{O}) ) € JE But the p-space is assumed to be q-stationary,

and hence

(v(Q{O}) ) =1(e) 8 rv(Ql ) ... 0 rv(Q{O})q € ffx as required.
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{2}

Similarly, one can then show that rv(Qij

{9}).

ij

) € 9‘:}'{ for all 1i,j,

and so on for rv(Qég}),..., rv(Q
Therefore rv(Pij) € 6‘% as claimed. Now since

rv(Pij) C V(Pij)’ it follows that there exists a finite subset H C Pij

such that for any a ¢ rv(Pij), a e v(H) also. But then a ¢ v(Pi?O])

if n, is chosen to be the maximum order of paths in H. Therefore,

r(a) < rv(Pij ) by corollary 3.1. Since this holds for alln ac rv(Pij),

it follows from progerty (0.5) of < that rv(Pij) <[:nrv(Pij ) .

0 . . 0 ‘
But v(Pij ) C V(Pij) implies that rv(Pij ) £ rv(Pij)

by corollary 3.1 also, and hence

P P [2o] ' v
rv( ij) v ( i3 ) as required.

For the next four theorems, it is convenient to introduce the

following concept analogous to that given by Roy (1975).

DEFINITION 4.5 A multiset A e ¥ of a p-space (X,0,¥,r) is said

to be g-absorptive with respect to r iff for each g~tuple (al,az,...aq)

of elements in A, we have

}

r{e,al,a1 0 8ys.0058; 08y 0 +0u O aq} = r{e,al,a1 0 2,,...58; 0 a3, 0 .. aq“1

Note that by this definition, the set of all g-absorptive
multisets of % (with respect to r) is hereditary, i.e. every

submultiset of a q-absorptive multiset is also g-absorptive.

LEMMA 4.5 A multiset A e ¢ of a p-space (X,0,%,r) is q-absorptive
with respect to r iff for each s~tuple (al,az,...,as) of elements in

A , we have
r(a1 08 0 ... 0 as) £ r{e,al,a1 O 8yy0005 8 08,0 ... 02

for all s xq ,
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where < denotes the psuedo~ordering of the path algebra (‘?}, 8, @)

PROOF Its validity follows from an argument similar to that used

in the beginning of the proof of lemma 1.4 above.

DEFINITION 4.6 Let W be a network over a monoid (X,0) and

(X,0, ¥,r) be a p-space. Then N is said to be g-absorptive with

respect to the p-space iff the multiset v() is g-absorptive with
respect to r , where Q denotes the set of all elementary closed

paths in G(W).

DEFINITION 4.7 Let A be a network over a monoid (X,0) and
(X,0, ¥,x) be a p-space. Then N is said to be g-regular with respect
to the p-space iff for every elementary closed path w in G(N), v(w)
is q-absorptive with respect to r.

We note here that since v(w) C v(Q), it follows that v(w)
is q-absorptive whenever v(Q) has this property, i.e. definition 4.7

is more general than definition 4.6 above.

LEMMA 4.6 Let N be a network over a monoid (X,0) which is
q-absorptive with respect to a given p-space (X,0,%,r) and M its
label matrix. Then the graph G(Mr) over the path algebra ( 7;, @, 0)
is a gq—absorptive graph (i.e. (1.16) is satisfied). Here Mr is defined

from M by (4.8) above.
-PROQF We have to show that condition (1.16) is satisfied, 1i.e.

v(wl) e v(wz) e ... 0 v(wq) < r(e) v(ml) @ ... + v(wl) e v(wz)@...ev(wq~1)

for every q—tuple (wl,wz,...,wq) of elementary closed paths in G(Mr)

Let v(wi) = {ail’aiZ”"’aimi} for all ie {1,2,...,9}
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Then each x ¢ v(wl) ] v(wz) 6 ... @ v(wq) is of the form

x = r(a 08y O0...0 aqk ) , where ki £ {1’2""’mi} for

1k 2 q

1

all i € {1,2,u-n,q}

But clearly, (alk »891 ”"’aqk ) is a g-tuple of elements -
1 2 q
in v(Q) where @ is the set of elementary closed paths in G(Mr)’

Since v(f) 1is g-absorptive, it follows that

}

x .< r{e’alk ,alk O azk ,...,81k o) a2k O cae a(q‘l)k(qnl)

1 1 2 1 2

It then follows from properties (0.2) and (0.4) of <  that
x < r(e) 8 v(wl) 8 ... & v(wl) [C] v(wz) e ... 0 V(wq~1)'

Since this holds for all x ¢ v(wl) e v(wz) 0...0 v(wq) , and there are

only finitely many such x , it follows from property (0.5) of < ‘that

v(wl) ) v(wz) 0 ... 0 v(wq) < r(e) @ v(wl) é ... 0 v(wl) 0 v(w,) G..Gv(wq’l)

as required. v

LEMMA 4.7 Let N be a network over a monoid (X,0) which is g-regular
with respect to a given p-space (X,0,%,r) and M be its label matrix.
Then the graph G(Mr) over the path algebra ( 1;,0,0) is a g-regular

graph ,i.e. it satisfies condition (1.14) above.

PROOF Its validity follows from a similar argument used in the proof

of lemma 4.6 above by taking

@) = vy = o= v v
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THEOREM 4.7 Every p-space (X,0, ¥,r) is (n-1)-stable with respect
to any network W which is l-absorptive with respect to the p-space.
Moreover, if the p-space is complete and A is compatible with the

p-space, then the p-space is completely (n~1)-stable with respect to N .

PROOF By lemma 4.6, we know that the graph G( Mr) over the path
algebra ( 7;, ®, © is l-absorptive, and therefore absorptive.
Consequently, it follows from theorem 1.5 that the arc-value matrix

Mr of the graph G(Mr) is (n-1)-stable, i.e.

ME"Q = MP‘]

and hence by lemma 4.3, the p-~space is (n-~1)-stable.

The rest of the proof follows from lemma 4.4 above. v

THEOREM 4.8 Every commutative p-space (X,0,*,r) is (nq-1)-stable

with respect to any network W which is q-absorptive with respect to the

p-space. Moreover, if the p-space is complete and N is compatible with
the p-space, then the p-space is completely (nq-l)-stable

with respect to W .

PROQF Its validity follows from lemma 4.6, theorem 1.7 and lemma 4.4

by an argument similar to that used in the proof of theorem 4.7 above. V

Note that theorem 4.8 only implies theorem 4.7 in the case where

the p~space is commutative.

THEOREM 4.9 Every commutative p-space (X,0,%,r) is no—stable with
respect to any network N which is g-regular with respect to the p-space.

Moreover, if G(WN) has t elementary closed paths, then

n. = nt(q-1) + (n~1) .

0
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Also, if the p-space is complete and W is compatible
with the p-space, then the p-space is completely no—stable

with respect to N .

PROOF This follows from lemma 4.7, theorem 1.6 and lemma 4.4 above
by an argument similar to that used in the proof of theorem 4.7.

The next theorem also requires the following

LEMMA 4.8 Let (X,0,7,r) be a complete p-space. If A 1is a finite
multiset which is closed in % and q~absorptive with respect to r ,
then r(A*) is finite and moreover, r(A*) = r(AES]) for all s 2 gq-1,

2

where al®] = (e M AW A W...y A°.

PROOF Let A = {al,az,...,ak}. Then we can consider A to be the
label matrix (of order 1x1) of the network N in figure 4.1 below.
Therefore, the required result follows from theorem 4.2 if we can show
that the p~space is completely (q~1)-stable with respect to & . We
note here that although the hypothesis of this theorem can be seen to be
equivalent to the statement that v(R) is g-stable because

v(Q) = {al,az,...,ak}, theorem 4.8 cannot be used to yield the required
result because the p-space is not assumed to be commutative. So a proof
of this result has to be obtained separately.

Let B be any finite subset such that Plﬂlrﬂ CB C Pige

B

Figure 4.3
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If peB but p¢ ng-g] , then p must traverse more
than q - 1 arcs in W and hence its label a can be written as
a=a 0a,0...0a for some 8 2 q -~ 1. Hence by lemma 4.5,

we have

r(a) < rie, 3y, 8] 0 8y, o0 5 8 03,0 .0. O aq~1} .

- [q-1]
But C = {e, 3y, 87 0 8y, o0 5 8 08y 0 10u O aq-l} - v(Pry ),
i.e. C = v(H), say, for some H C Pg%mg] .

Therefore, by property (0.2) and (0.4) of < , we have

r(a) < rv(H) & rv(P{%ui] \ H) = rv(P{%’l%

Since this holds for all a e v(B[:\ P{%ﬁi]) and there are
q-1
only finitely many such r(a) in rv(B \ Pll } because B 1is assumed
to be a finite set, it follows from property (0.5) of < that

rv(B \ P&*“ﬂ) < rv(P%’ﬂ). But then

o = 1o \ 28 0 rveld ) < velsl).

If we now choose B = P{%] , we would then have

rv(Pgi]) = rv(nguil), which proves that the p-space
is (q-1) stable with respect to & . The rest of the proof then follows

from lemma 4.4 above. v

LEMMA 4.9 Let (X,0,"¥,r) be a complete and idempotent p-space. If
A e "V is such that r(A) is finite, closed in ¥ and g-absorptive with
respect to r, then r(A*) is finite, provided that A¥ e,

Moreover, r(A%) = r(zx(a)®) = r(A[‘l"ﬂ).
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PROOF By lemma 4.8 above, we have for all s > q-1,
re@® = rew i
= r(A[s]) » by repeated use of (3.2) and (3.3)

Hence by theorem 3.9, we have

* o
r@a") = r(wab
k=0
>k
= V r(A™)
k=0
= r(A[qQI]) » Since r(A[s]) = r(A[qﬁl]) for all
s 2 q-1.
= r(r(A)*) . as required. v
THEOREM 4.10 Let (X,0,7,r) be a complete, idempotent and intensive

p-space. Then this p-space is completely n0~stab1e with respect to a
network A which is compatible with the p-space and such that V(Pii)

is q~absorptive with respect to r for all i.

PROOF In view of the argument used at the end of the proof of
theorem 4.6 above, it suffices to show that rv(Pij) is a finite multiset
or equivalently rv(P.. \ ng)) is a finite multiset. By (ii) of theorem

1]
{n })

4.3, this is equivalent to showing that rv(Q is a finite multiset.
Now from (i) of theorem 4.3 and the assumption of intensitivity,
- (1) (1) {0}, . ...
rv(Q ) rv(P ) C (P ) implies that rv(Q ) is finite for all

i,j, and from (111) of theorem 4.3,

{1} O for a11 1,;.

) = v @) e vefPhe rv@lth® e rvol

rV(Q

Since v(Q{O}) C V(Pll)’ it follows that v(Q{ }) is q—-absorptive, and
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{0}> )

hence by lemma 4.8, r(v(Q is a finite multiset. Therefore by

(4.11), rv(Q{l}) is finite for all 1i,j. 1In particular, rv(Qél})
is finite. But rv(Q{l}) Cv {1}) C v(Pzz) (since the p-space is

{1}

intensive) implies that rv(Q

{1}) )

) 1is also q-absorptive . Therefore,

by lemma 4.9, r(v(Q is a finite multiset. But then it follows

{2}

from (4.11) and (iii) of theorem 4.3 that rv(Q } is finite for all

i,3.

{2}

Therefore, in particular, rv(Q ) is finite. One can then

use (4.11) and (iii) of theorem 4.3 to show in a similar manner as above

{3}

that: rv(Q ) 1is finite for all i,j. Likewise, we can therefore

{4}), . ,rv(Q{n}

conclude that rv(Q ) are all finite multisets. v
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CHAPTER 5.

FUNDAMENTALS OF ALGEBRAIC METHODS FOR SOLVING PATH PROBLEMS

5.1 Path Problems Revisited

In chapter 1, we gave a number of problems which motivated
their abstract study and considered several definitions of a path
problem, each more general than the previous one. We also saw how
all the given problems except problem 1.5 can be formulated as a
path problem in accordance with definition 1.4 above. It was then
suggested that a similar but more general approach to all these
given problems is possible if one uses the concept of multisets.

We then went on to investigate a number of concepts which were

useful for the development of such an approach. In fact, all the
results obtained in the preceding three chapters were carried out with
this purpose in mind. Their relevance to the solution of path problems
in accordance with the following definition will here be demonstrated

in detail.

DEFINITION 5.1 Let A be a network over a monoid (X,0) which is

compatible with a given p~space (X,0, ¥,r). Then by a path problem,

we mean the determination of rv(Pij) or rv(Pij \ ng)) for one or
more pairs (i,3j), where Pij and ng) are defined with respect to
G(N).

That this definition of a path problem is an extension of

definition 1.4 can be easily seen to be a consequence of the following

THEOREM 5.1 Given a set of subsets of a monoid (X,0) which

!
has properties (1.26), (1.27) and is also closed with respect to union
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and complex product, and given a function r defined on ¥ which
satisfies (1.22) to (1.24) above, we can construct a p-space (X,o0, ¥',r'")

such that % C ¥' and r'(A) = r(A) for all Ae ¥V .

PROOF Let %' = {A ¢ Nf l d(A) ¢ '¥V'}. Then ¥V C; V' because
A=d(A) e ¥V forany Ae¥. Now “¥' can be seen to be a hereditary

semiring as follows

(i) ﬁx C ¥' because for any A € ‘¢X’ d(A) 1is a finite

multiset and hence d(A) €% by (1.26)

(ii) ‘¥' is a hereditary subset of Nf . For let Ae V'

and B C A. Then d(B) C d(A), and hence by (1.27), d(B) ¢ ¥ also.

(iii) v ' 1is closed with respect to multisum and multiproduct

because

d(A & B) =d(A) d(B) ¢ ¥ , and

d(A o B) = d(A) d(B) € ¥ whenever d(A), d(B) € ¥

¥

Now let r' = rd. Then clearly,

r'(A) = r(d(A))

= r(A) for all Ae.

That r' is a reduction function can be seen as follows.

(1) r'(¢) = r(d(¢)) = r(¢) = ¢ by (1.22)

#

(ii) r'(r'(A) W B) = rd(xd(A) ¢ B)

r(d(xd(A)) U d(B))

r(xd(A) U d(B)) since rd(A) ¢ V .
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= r(d(A) U d(B)) by (1.23)

= rd(A & B)

=r'(A & B)

(iii) r'(r'@A) o B) rdérd(A) o B)
= r(d(rd(A)) d(B))

= r{rd(A) 4d(B)) since 1rd(A) ¢ ¥

i

r(d(A) d(B)) by (1.24)

= rd(A o B)
= 1'(A 0 B)
Similarly, r'(A o r'(B)) =1r'(A o B) . . v

Therefore, definition 1.4 is just a particular instance of
definition 5.1. Moreover, definition 5.1 also includes problem 1.5

above. In fact, its corresponding p—space is (N, + , 9%, s8) (see theorem

3.1).
Now from (iii) of theorem 4.2, we see that a path problem
. . . . . * +
in a network is equivalent to the determination of (Mr )ij or (Mr)ij’

* * + . .
where Mr = (M )r and M; = (M )r , using (4.8). Now since theorem 2.6
. . . . * .
obviously holds for matrices over multisets, the matrix M 1is the least
solution (with respect to Q; as extended to matrices by (0.12) in terms

of multiset~inclusion) of the equation
Z=MoZ ¥y I or Z=ZoM (Y I.

Similarly, M' is the least solution of
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Z=MoZ 3y M or Z=72o0MI\® M
Consequently, M: is a solution of the matrix equation

Y = Mr eY® Ir or Y=Y@ Mr & Ir »
and M: is a solution of the matrix equation

Y=M 06YO@M or Y=YOM 6M_ .
T r r r

The above observation suggests that one can view the problem
. + . .
of determining M: and Mr as particular instances of a more general

problem of solving the matrix equation
(5.1) Y = Mr eYeBn . or
(5.2) Y=Y@ Mr @B . where B ¢ ,ﬁn( "Vr)

In this way, a path problem can be seen to be a particular
instance of a more general problem of determining (M: e B)ij from
{(5.1) or (B @ M:)ij from (5.2) for one or more pairs (i,j).

For convenience, we shall here consider only the problem of
determining (M: C] B)ij for one or more pairs (i,j) from (5.1), since
the other can be considered in an analogous manner. Now this problem can
be solved quite readily if the path algebra ('7}, &, 6) forms a field or
is embeddable in a field (e.g. an integral domain), since in this case most
of the available methods in linear algebra éan be employed to solve (5.1)
(see e.g. Fox(1964)). Since, there are relatively few examples of path
problems whose corresponding path algebras form a field or are embeddable
in a field, it is more significant to have available methods for solving

(5.1) in a more general situation. This will be carried out in the rest
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of this section. However, it'must be said at the outset that we
shall not concern ourselves with the computational complexity of
the methods to be discussed here since our aim is to present the
fundamentals of algebraic methods for solving path problems. Moreover,
our presentation will be limited to those methods which can be unified

from the view point of solving a system of linear equations.

5.2 Elimination Methods

Let us first restrict ourselves to the problem of determining
- L3 * * -
a particular column of the matrix Mr @ B, say Mr ©®b where b is a
columm of B . From (5.1), it follows that M: ® b is a solution of the

following system of equations
(5.3) y=M 06y@b

Note that if b is the jth columm of B, then y is the jth
colummn of Y in (5.1). Thus (5.1) can be viewed as n systems of
equations, each corresponding to a colum of B .
Perhaps the simplest and most well known method of solving (5.3)
in the case where the path algebra ( 1;, @, 0) forms a field or is
embeddable in a field is the elimination method of Gauss in linear algebra
(see e.g. TFox (1964)). It is therefore of interest to have a similar
method developed to solve (5.3) in a more general situation. The most important
example of this situation is where the path algebra is idempotent as a semiring

and hence cannot be a non-trivial ring, let alone a field (see section 0.2).

However, as will be seen below, methods analogous to those of Gauss and
Jordan can be developed to solve (5.3) in this case. That these methods
are available is a consequence of the pioneer work of Carré (1971).

For convenience of exposition, we shall first assume that the

p-space (X,0, ¥,r) 1is idempotent and complete. Let us now write A
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for Mr in (5.3), i.e. Yy=AOGy@®b which can also be written

out in full as follows

[y, =4, 0 V194,05,8 .... ea 0y eb

1
Yy = A21 ? Y1 9 A22 ? Y, ® cose 8 A2n e Y ® ?2
! | ! : |
§
(5.4) {0 ; ' ! !
! ' : . §
t ' ) i :
\ Yy = Anl (C] Yy @ AnZ e Y, @ sees @ Ann 2] Y & bn

First let us assume that the matrix A is upper-triangular

i.e. A,. =0 for all i > j. Then (5.4) can be rewritten as

1]
( yp=4,0y, 04,0 v, @ ceen 9 A, 0y 00D,
?2 = A,, © y% ® ... ea, 0y, o ?2
(5.5) {1 N ) !
' ~ | !
i ~ {
N N 1 )
] ~ ! i
' \\ ! t
| Yn © nn @ Vo @ bn
% o K %
If we now write H ' = V H s we see that (Ann) e bn

k=0

is the least solution of the last equation of (5.5) because it obviously
satisfies the last equation of (5.5) and moreover, we have

k+1 k
Y, = Ann <] Yo ® (r(e) o Ann ¢ .... @ Ann) ¢ bn for all k e N, and

hence
k
(r(e) @ Ann 8 .... ® Ann) e bn £ Y for all k e N

* *
. » . . r r .
which in turn implies that (Ann) c] bn < Yo+ Note that (Ahn) exists
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*
because by theorem 4.4, M€ ¥ and

* ® k
r(M n) =V r(Mﬁn) by theorem 3.1
n k=0

= V(A )
k=0 ™0

%
. r
= (a_)

We can now obtain the least solution of the (n-l)th equation
*
in the same way by substituting (Ann) Yob for Yy in the equation.
Similarly, we can obtain the least solution of the (n--2)th equation and
so on until the least solution of the first equation is obtained. As will
be proved below, these least sélutions constitute the required least

solution of (5.5). For convenience, we shall refer to the above method

as the generalized back-substitution method, since it obviously resembles

the well known back-substitution process in linear algebra (see e.g. Fox (1964))

THEOREM 5.2 The back-substitution method applied to (5.5) yields the

least solution of (5.5).

PROOF From the above description of the back-substitution method, it
is clear that we first obtain the least solution §n of the nfP equation,
then the least solution §n~1 of the (n-1)th equatién given §n’ then the
least solution §n—2 of the (n-2)th equation given §n , §(n~1) and
similarly, we obtain §n~3’ coe ,51 We have to show that if
(§1,§2,...,§n) is the least solution of (5.5), then §i = §i for all
ie{1,2,...,n}.

Since (§1,§2,...,§n) is obviously a solution of (5.5) we
always have (§l,§2,...,§n) < (§1,§2,...,§n), i.e. ?i < §i for all

ie {1,2,...,n}.
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Now (§1,§2,...,§n) is a solution of (5.5),

?n must also satisfy the ntP equation of (5.5). But then §n < §n’

since §n was obtained as the least solution of the nth equation of

(5.5). Therefore, §n =y

o But then §n~1 is also a solution of the

(n~1)th equation given in’ and hence §n~1 £ §n~1' Consequently,

Va1 = -1 Similarly, we can use Vo =¥, » Ypo1 = Ioog to show

and so on, which therefore completes our proof. v

{k}

that §n—2 - yn-Z

Let us define a matrix M for all ke {1,2,...,n} by

{k} o vk} _ {k} A
(5.6) (M )ij = Mij V(Qij ) for all 1i,j,
where Q{k} is as defined in theorem 4.3 above. Note that from theorem

ij
{0}_ M, M = M}

4.3, we have M , and

wlkl o ylk-1} ) fk-1) alkh* Mi?“l} for all i,j.

(5.7 ij ij ik °

Now consider the first equation of (5.4) above. This can be

~

written as y, = A . 0 y. @b » where
1 11 1 1

b, = A o A

1 =450, ey

@ ... & Ahlﬁ Yn & bl

13 3

%
Then from our previous argument, we see that (All) Te b1 is the least

solution for the first equation of (5.4). Substituting this for Y1 in

the second equation, we obtain the following "reduced" system.

( =
y)=A;; 0y, 0A,05,0...06 A 0y @b
_ {1} {1} {1}
y‘z - A22 G') yz 0 o« 28 Q Azn @ yn Q bz‘
}
(5. 8) < : : ' :
X | | I
! ! ] |
| (1)) {1 {n
\ Yy = Anz e Yy e ... & Ann 6 yn0 bn
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%

{1} _ r
where A, i Aij e Ail ¢} (All) ¢] A1j and
*
b{l} = b, & A., @ (A,.) r eb for all 1ie¢ {2,3 n}
i i il 11 1 sz e
. {1} _ {1}
Note that from (5.7), it follows that Aij = r(Mij )} for all

i# 1.

We thus see that the above step essentially eliminates the
variable vy from the last n~-1 equations of the system which is therefore
similar to the first step of the elimination process in the Gauss elimination
method of solving ordinary linear equations. One can then use the same process
to eliminate the variable Y, from the last (n-2) equations of the reduced
system (5.8) and obtain another reduced system and so on. After the (k-1) th

step, we obtain the following reduced system of equations

¢

y1 = A110y10A12 2 "‘QAl(kvl)GykwloAlk Gykﬂ...QAln @ynabl
_ {1} {1} {1} {1} {1}
¥2 = 22 Gy 20.. eAZ(k 1)Gyk -1 A2k Gyk ...QAZg Oynﬂb%
: \\\ : { {
1 \\\ : : :
i \\ i f i
{ \ i { t
(5.9) *§k - \‘Aii 1} 7,8 .8 {k~1}@y eb{k~—1}
: : o
f ! , ,
: ; | |
] ]
E {k~1} {k~-1} {k~13
Lyn Ank Gyko. .OAnn Gy Obn
where
%
{m} {m-1} {m-1} {m1}] r {m-1} {0} _ 4
(5.10) Aij Aij @ Aim @ Amm ] Amj s Aij Aij an

@4}eﬂmne(gwnrregwu S0y _ o
3 im n

{m}
(5.11) b;™=b Sl ;

for all i e {k,k+l,...,n} and all me {0,1,2,...,k-1}.
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Note again that from (5.7), we have Ai?} = r(Mi?}} for all
{m-13)" {m-1})"
ie {k, k~1,...,n} and also that (Anz J T exists because (Mu:: 1 } e

by theorem 4.4, and

r[(M{nrl}}*} . :r(M{m-'l}}q

N ";(A{nrnr
g=0' ™
3 %
- {m~1}] r
[

Therefore, after the (n-1)th step, we obtain an upper
triangular system which can then be solved by the generalized back-substitution
method as described above. This method of solving (5.4) is similar to that
of Gauss elimination in linear algebra and hence was called the generalized

Gauss elimination by Carré (1971). At this point, it is of interest to

obtain the following

THEOREM 5.3 If the matrix A of (5.4) is symmetric, 1i.e, Aij = Aji
for all i,j, and if the path algebra ( 7}, ®, ©) is a commutative
semiring, then for all k e {0,1,...,n}, we have Agﬁ} = Agf} for -all
i,j, where A£§} is given by (5.10)
PROCF We use mathematical induction on k as follows. For k = o,
{0} _ _ {0}
A, = A.. =A.. =A,.". So let us suppose that the result holds for
ij ij ji ji

k = m~1. But then

' *
almd _ g lold g (-1} (A{“"l}} r g pln-ll by  (5.10)
ij ij im mm mj

by induction hypothesis

&
- A{mfl} o A{mwl} o (A{m~1}} T A{@"l}

ji Jjm mm mi
- alm}
ji
Therefore, the result holds for all k e {0,1,2,...,n} . v

- 140 -



The above theorem means that the labour of calculating
Aig} for all k e {0,1,2,...,n} when using the generalized Gauss
elimination is almost halved in the case where A is symmetric and
® 'is commutative.

Now since the generalized Gauss elimination was obtained

by analogy with the Gauss elimination methed in linear algebra, this
suggests that it can be modified to yield a method analogous to the
Jordan elimination method which requires no back-substitution. In fact,
this can be done by eliminating the relevant variable from all the
equations in each step of the elimination process. For after the
(n~1)th step of this modified elimination process, the matrix A of
(5.4) will be transformed into a zero matrix, and hence no back-substitution

is needed. Accordingly, this modified method was appropriately called

the generalized Jordan elimination by Carré (1971).

It is now a logical question to ask whether the application
of the generalized Gauss elimination to (5.3) actually yields the solution
*
Mr @ b. That this is so can be easily seen to be the consequence of the

following

THEQREM 5.4 The reduced systems obtained in the elimination process

of the generalized Gauss elimination all have the same least solution.

PROOF From the above description of the generalized Gauss elimination,
we see that the reduced system obtained after the variable YysYgseeesViq

have been eliminated can be written as follows.
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Yy =AY P AVt e R AL Gy PARY e H ALY+ by

+b

+ e o0 + Aznyn 2

+
.
.
L

* A (k-1)Vk-1

(5‘12) { o e dm em e mm e we e me e mw e mw e em e e wm e e e e wm me e o o e o

A k-1) V-1

where,for convenience, we have used + and juxtaposition to denote
respectively the addition @ and multiplication @ of the path algebra

(v, @ 0, and 91’§2""’§k~1 are defined as follows.

(1) §1 is the least solution of the first equation of (5.4) for

all possible values of Yos Ygs sees Yoo

2 Given ?1, (§1, §2) is the least solution of the first two

equations of (5.4) for all possible values of Yas Fyr vees Voo

Wi s e sme e e mw  dw  wm o MR am  Nem e mm wm Mm  me  mm  mn M mn e b S e M om  um e e me e mm e s e

(k-1) Given ?1, §2, cees §k~2’ (?1, §2, cees §k—1) is the least

solution of the first k-1 equations of (5.4) for all possible values

of Yo res Yoo

The elimination of the next variable Vi from all the equations
below the kth equation of (5.12) then yields the reduced system (5.13)

below, where §1, §2, cees ﬁkﬂl are as before and §k is defined similarly.
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Vi =AYy P ALYt e P AT AL ) TRer T oot T An P P

Yo = Ag1¥p tA¥p e AR P Ay Yier t e T A P D)

W een e bes W e mm Kme  mm M v e e A Mk e e e e mor e e ik M e e s e e e

(5:13) ) Ve = A1) 1712 ey 2720 P e D VKA (kL) (et 1) Yk 10 A (ke )V

- wwe e e aew e aem e e e G e e e e mme see b M N e wem e e s e G e

kKt An(k+1)yk+1 oo Annyn * bn

Now our task is to show that (5.12) and (5.13) have the same
least solution, i.e. let (§1,§2,...,§n) be the least solution of (5.12)

and (§1,§2,...,§n) be the least solution of (5.13), then

§i = §i for all ie {1,2,...,n}

First, we show that 9i = §i = §i for all i e {1, 2, ..., k}.
To this end, observe that the first equation of (5.13) is identical with
that of (5.4). Consequengly, §1.( ;1 by our definition of ;1 . We then
claim that §1 = ;1. For otherwise, (§1, §2, ceey §n) would be a "smaller"
solution of (5.13) than (;1, ;2, cony §n)’ a contradiction.

Now §1 = §1 implies that (;1, ;2) is also a solution of the
first two equations of (5.4). Consequently, §2<< ;2 by our definition
of §2 . Again, we claim that §2 = ;2' For otherwise, (§1, §2, §3""’§n)
would be a "smaller" solution of (5.13) than (;1, ;2, ey §n)’ a
contradiction.

e

Similarly, we can use §1 =¥, §2 =y, to deduce that ¥4 = §3

and so on until we have shown that §k = §k .
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By a similar argument, one can easily establish that

§i - 91 for all i e{l, 2, ..., k-1}. That §k - §k also is a

consequence of the following two arguments.

i~

(i) vy < §1, §2 = §2 s sees §k~1 = §k~1 together implies
that (§1, §2, ceesy §k-1’ §k), satisfies the first %k equations of

(5.4) and hence §kf< §k by our definition of §k'

(ii) §k = §k implies that the solution (;1, ;2, cees ;n)

of (5.13) is also a solution of (5.12), and hence

(;’1’ §2’ seey §n) < (yl’ ;z' esey §ﬂ) °

Thus in particular, §kf< §k = §k .

Now §, = Vi implies that the solution (yl, Yyr eees yn)

of (5.12) is also a solution of (5.13), and hence
(;’1’ ;2! LA ] ;’n) < (yli yZ) AL ] §’n)’
Therefore, (§1, §72, LA §7n) = (;1’ st s e 8 5 Yn)

as required. v
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The validity of the generalized Jordan elimination can also
be demonstrated in the same fashion as theorem 5.4 above and hence its
detail will be omitted.

From the above proof of theorem 5.4, we see that the assumption
of idempotency plays a fundamental role in that it enables us to make
use of the fact that M: © b is the least solution of (5.3) with respect
to < of the path algebra. Without this assumption, < is not an
ordering because it is not necessarily reflexive and hence one cannot
speak of the least solution with respect to < . It thus appears that
the generalized Gauss elimination may not be obtained without this
assumption and hence is not applicable in the case where the path algebra
is not idempotent. However, this would contradict our common sense,
because after all, Gauss elimination was originally invented to solve
a system of linear equations over a field and we know that for non~trivial
fields, the idempotency of addition can never be satisfied. In fact, the
recent work of Gondran (1975) was meant to substantiate this intuitive
argument. But unfortunately, he overlooked the significance of having
to prove the equivalence of the reduced systems (i.e. they all have the
same required solution) in the above school-book approach to Gauss and
Jordan elimination methods. Nevertheless, using the present formulation
of a path problem, we are able to establish the validity of the generalized
Gauss elimination for determining the solution M: @b of (5.3) without
assuming that the p-space is idempotent or complete. The proof of this
result essentially rests upon the observation that M: © b can be
regarded as the image of ¥ o b under the function r , and since
M o b is the least solution of the system z = M o0 z W b with respect
to C , intuitively it should be possible to define the generalized Gauss
elimination for solving y = Mr Oy @b from the generalized Gauss
elimination for solving =z = Moz Wb through the application of the function

r. But can one develop the generalized Gauss elimination for solving z=Moz &/ b,
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(5.15)

since the multisum operation is not idempotent ? The answer is made
affirmative by the fact that here we can also speak of the least solution

but with respect to multiset inclusion.

THEOREM 5.5 Let W Dbe a network over a monoid (X,0) which is also
{k}

compatible with a given p-space (X,0,",r), and M be the matrix
defined by (5.6) above. Then the generalized Gauss elimination as

*
described above is valid for determing the solution Mr 8b of (5.3)

by defining

*
-1} ¢ m-1})*
(5.14) (A;E }} = r((M;m }} } for all me {0,1,...,n}
PROOF We first show that the reduced systems all have the same solution

*
Mr ® b. Now the reduced system obtained after the (k-1)th step as given
by (5.9) can also be rewritten in terms of r(zi), where y; = r(zi) for

all i e {1,2,...,n}, as follows

)
= {k}
r(zl) r(Mnozl-i-Mlzoz2 + .. Ml(k-l)ozk~1+' 1 0% toee * My, oz ¢ bl)
- {1} {1} {1} {1}
r(z,) T(My270zp * v ¥ Mylh1) 0% *H A S by )
“\ | .
i -
Loy ~ {k*l} H{k-1} | . {k~-1}
() EREC ORI g R S
i \ f
: | i
by o {k-l} t{k~1} o {k-1}
r(z )= (M oz + .. +M oz +b )
This is because by (5.14), we have Ag?} = r(Mi?}) for all i,j
and for all me {0,1,2,...,n}. .This last result can be proved by
mathematical induction as follows. For m = 0, Ai?}B r(M ) = r(M{O}) as

required. So let us suppose the result is true for m = k-1 and show that
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it is also true for m = k.

#
{k} _ , {k-1} {k=1} o [ (k=117 |, (k-1}
SRR A I R o AT

{k-1} {k~1} {k-1}|* {k-1}
o <P o ) o e{pli ] o <)
by (5.14) and by induction hypothesis

{k-1} ylk-1} {k-1} {k~1}l
r( ij w 1k (Mkk Z MkJ

{k}
= ( 1] J by (5.7) .

Hence the results follows from the principle of mathematical induction.
Therefore, the reduced system obtained after the k th step can

be writften as

( -
r(zl)—r(Mllozl-PMlzoz2 LN M1k oz, + Ml(k+1)°zk+1 + ..+ Mln ozn-fbl)

_ {1} {1} {1} {1}
o|T)= r(Myy ozy + ..+ My Tozy 4 MZ(k+1)°Zk+1 e b My, 02,4 by )
'—:\ : - =~ ~ l !

Yy } ™ - I
~ {k} 1 {k}' {k}
r(zk+1) r(M(k+l)(k+1fzk+1 + .. 4 M(k+1)n°zn*'bk+1)
I
i
Y {k} {k}' {k
Lr(zn)~ r(M (k1§ %K+ * n 0zt by 5

From (5.15) and (5.16), we see that they have the same solution

M* @ b if we can show that the system of equations (over multisets)
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obtained from (5.15) by deleting r has the same least solution as the
system of equations (over multisets) obtained from (5.16) by deleting r.
Here the least solution is taken with respect to(C . That this is so
can be proved in exactly the same way as we did in theorem 5.3 above

but in terms of the ordering C .

Since the back-substitution process can also be verified to
yield the same solution M: ® b through the application of the function
r to each step of the back-substitution process in obtaining M* o b,
the proof is completed. v

The generalized Gauss elimination given by theorem 5.5 above
can be easily seen to coincide with our previous description in the case
where the p-space is both idempotent and complete. Moreover, it can also
be seen to include the case where the path algebra ( 7},9, ®) forms a

field or is embeddable in a field. For in such a case,

fueiid fuit]

r((m{m—l}}*] i} [r(e) 6 r{M{m-l}”"l

mm

-1
(r(e) o A{mrl}}

{A{nrl}]*r

m

where © A denotes the inverse of A with respect to & , B8 A =B & (6A)
and A“l denotes the inverse of A with respect to ® of the path
algebra ( 7;, 8, 0).

*
Note that in these two cases (Aéﬁql}] ¥ is in fact expressible

in terms of path algebraic operations, namely in terms of @ and © of
' T}(or indirectly). Accordingly, the application of the generalized Gauss
elimination to solve (5.3) for these two cases can be carried out entirely

in terms of path algebraic operations. This point is significant in practice
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because otherwise, the description of the generalized Gauss elimination

in theorem 5.5 above would be merely of theoretical interest. This is
. * . . -1} %

because the computation of r((M;EMI}] ] by first computing (Miz 1}J

M{m~l}

*
o ] } may not be feasible. For instance, consider

and then r((

the p-space (R, +, %k, k-min) and let Mi:wl} = {2}. Then

*
{2} = {0,2,4,6,8,....} and hence we cannot compute all the elements of
{2}* in a finite number of steps. But from theoretical consideration, we

know that

k-min{2}" = k-min{0} @ k-min{2} @ ... & kemin{2¥"l} |

and since the right-hand side of the above equality can be computed in
a‘finite number of steps, k-min{2}* is therefore determined.

This example is in fact a special case of the more general
situation where the p-space is 9-stationary (see (iii) of definition 3.4

above). For in such a case, we always have

q
r((M{m_l}}*} = r(e) @ r(M{m"l}J 8 ... 0 r(M{m'l}} .

mm mm mm

and hence the generalized Gauss elimination of theorem 5.5 can be applied

by defining

*
(A{m-l}} T r(e) @ A{m*l} e ... 8 [A{mrl}]q
mm mm mm

Another situation where the generalized Gauss elimination of

theorem 5.5 can be applied by defining

= r(e) @ A

*
{m1}) r
alr | o

n
(m {fm-1} o o (A{m-l}} 0

mm

(5.17) (
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for some positive integer n, is when the p-space is complete and the
network A which is compatible with the p-space is l-absorptive.
In fact, it can be shown that in this case ny = 0. The necessary
argument can be carried out in the same way that we proved (1.8) from
(1.9) in chapter 1, and therefore will be omitted. Furthermore, (5.17)
also holds when the p-space is not only cémplete but also commutative and
its compatible network N is g-absorptive or q-regular with respect to the
p~space. In fact, n0=n(q~1) for the first case and no=nt(q~1) for the second,
where t 1is the number of elementary closed paths in G(W). These
results can also be established in the same way that we proved theorems
1.6 and 1.7 by using lemma 1.3 and 1.4. Now from the proof of theorem 4.10,
it is also clear that (5.17) holds whenever the p-space is complete,
idempotent, intensive and its compatible network 4 is such that v(Pii)
is q-absorptive with respect to r for all 1i.

The generalized Jordan elimination can also be similarly defined
as in theorem 5.5 by using (5.14) but its detail will be omitted here.

It is interesting to note that both the generalized Gauss and
Jordan elimination methods can also be obtained through the derivation of
product forms for M*. 1In fact, the product forms of M* can be obtained
in the same way as presented by Backhouse and Carré (1975), since all
the basic identities used by them in deriving these product forms are also
valid in the complete semiring Nz (Two such identities are given in
theorem 2.7 above). Now from these product forms of M*, one can derive
methods of determining M o b from the system z =M o z (3 b. The
corresponding methods for determining M: @ b can then be obtained through
the application of the function r to each step of the algorithms for
determing M* o b.

Thus far, we have restricted ourselves to the problem of
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determining a certain columm of the matrix M: @ B. Now if several
columms of M: © B are required, then we have to solve several systems
of equations, one for each columm of M: @ B. However, since the matrix
of those systems are the same, namely Mr » We can use the generalized
Gauss elimination to solve these systems simultaneously by applying the
elimination process as before, but all the different columms of B are
now treated together and a separate back-substitution for each different
columm of B must now be carried out. The generalized Jordan elimination
can also be applied to solve these systems simultaneously in the same
fashion except that no back~substitution is required.

More generally, if we do not require complete columms of
M: © B but instead, we require a particular submatrix of M: © B,
then an elimination method similar to that of Aitken (see e.g. Fox (1964))
can also be developed. As a matter of fact, the manner in which this can

be done was well set out in the recent work of Backhouse and Carré (1975).

Finally, it is interesting to note here that when the path
algebra ( 7;, @, ®) is a Q-semiring and its pseudo-ordering £ is also
a total ordering, the method of Dijkstra (1959) for solving the shortest
path problem (problem 1.1), which can be viewed as a form of elimination
method, can also be generalized to solve (5.3) above. This generalization

of Dijkstra's method was fully discussed by Carré (1976).

5.3 Iterative Methods

In this section, we shall consider variants of iterative methods
in linear algebra (see e.g. Fox(1964)) for solving the system y = Aoy +b
over a semiring (X, [,o) in the case where the matrix A ¢ JL (X) is

n

n +£}
n.~stable, 1i.e. for some n, € N, where

0 0
A[ﬁ] =1 + A+ A2 + ...+ A", Its application to the solution of path
problems in the case where the corresponding p-space is completely n,-stable

(see definition 4.4) is a consequence of lemma 4.3 above.
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Let us begin by making the following two assumptions which

we shall relax later.
ASSUMPTION 5.1 The semiring .(X,+,0) is idempotent.

ASSUMPTION 5.2  The no-stable matrix A also has the property that

whenever B < A* ,.then B is nl-stable for some

* nd]
n; e N, where A" = A .

i

* [h
Note that our use of the notation A for A will not

be confused with the closure of a multiset A or a matrix A of
multisets as defined and used in previous sections since we shall not
make any reference to them here. Also for convenience, we shall refer
to the no~stab1e matrix A which satisfies assumption 5.2 as a

hereditary no~stab1e matrix. The class of hereditary n0~stab1e matrices

is in fact quite extensive since it includes absorptive (and hence acyclic)
matrices and matrices over commutative sem?rings which are q-regular or
q-absorptive., That these matrices are no~stable can be seen respectively
from theorems 1.5 to 1.7 above. That they satisfy assumption 5.2 can be

easily seen to be consequences of the following two facts.

.

*
(i) G(A') is q-absorptive or g-regular whenever G(A) is.

(ii) From property (0.3) of the pseudo-ordering < of a semiring
(X,+,0), we see that if A is q-absorptive or q-regular and

B < A, then so is B.

Now an immediate consequence of assumption 5.1 is that the
pseudo-ordering < is also reflexive and hence an ordering. Thus the
. * .
system y = Aoy +b can be seen to have the least solution A o b with

respect to < as defined by (0.12) in terms of the pseudo-ordering
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of the semiring.

Our consideration of iterative methods of determining
A* 0 b from the system y = Aoy +b can best be compared with a
similar treatment in linear algebra. There, it is well known
(Forsythe (1953)) that one can solve the system y =A oy +Db by

considering an iterative scheme of the form

y(k+1) (k)

= Hoy +Kob,

where H and K are chosen so that the successive estimates y(k) for
k=1,2,..... ultimately yield the solution y = (I ~ A)”1 o b. In fact,
the restriction imposed on the choice of H and K is obtained by noting

() | D)

that y =y ... must satisfy

y=Hoy+Kob , i.e. y= (I~H)"1 oKob |,
which then suggests that H and K should satisfy

(I - A)"1 (1-m)"1ox

#

so that the successive estimates would ultimately yield y = (I - A)m1 ob,
It is essentially from this consideration that Carré (1976)
considered the iterative scheme y(k+1) =H o y(k) +Kob in conjunction

with the following restriction on the choice of H and K :

* %
A = H oK

*
However, since H may not be k~stable for any ke N, H may
not be defined. One way of getting over this difficulty is to assume that
*
H < A . For by assumption 5.2, it follows that H is n1~stab1e for some

nl € N.
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*
We note here that although H < A" can be deduced from

A* = H* oK (i.e. H < H* o A* =8 0B 0K = H* 0 K = A*), it must be

*
H o K is meaningful

L]

. %
assumed separately in order to guarantee that A

in the first place. From these considerations, we obtain

THEOREM 5.6 Let (X,+,0) be an idempotent semiring and A € .Mh(X)

a hereditary no-stable matrix. Then the iterative scheme

* * *

(k+1) =H o y(k) +Kob, where H < A and A =H oK

(nl+l) ©)
yields vy =A ob for some n, € N whenever vy < A*¥ o0b

If in addition, y(k) = y(k+1) for some k < n, o, then
y(k) = A* o b also.
PROOF By assumption 5.2, H is nl-stable for some n e N,
n

i.e. H* = H L « Now from y(k+1) =H o y(k) +Kob, it follows that

(n,+1) n,+l1 n

y 1 =H 1 0 y(o) +(I+H+ .., +H 1) oKob

n,+1
*
= H 1 ) y(o) +H oKob
n,+1
*
= H 1 0 y(o) +A ob
*
But y(o)'< A ob implies that
n,+1 n,+1 * n,+1 * * *
H oy(o)< Hl oA ob=Hl oH oKob << H oKob=A ob,
(n+1)

and hence vy = A ob as required.

Now if y(k+1) = y(k) for some k < n, then

k) y(k+1)

y(k+2)= Ho y(k+1) +Kob=Ho y( +Kob=
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and so on.

(ny+1)
Therefore, y(k) = y(k+1) B L., =Y 1 =A ob . v

SO3) | (k42)

Similarly,

Let us now examine some of the iterative methods which fit into
‘the iterative scheme of theorem 5.5 above. The following possibilities

were considered by Carré (1976).

(1) The Jacobi Method (H=A, K=1I)

The system y = A oy + b immediately suggests the iterative

method

(5.17) e for all k = 0,1,2,....

* *
Note that A =H o K 1is here satisfied by H =A, K = I.
This method is credited to Jacobi because it is a counterpart

of the Jacobi iterative method in linear algebra (see e.g. Fox (1964)).

(ii)  The Gauss-Siedel Method (H=1¥ o U , K =1%)

Here let us adopt the following assumption
ASSUMPTION 5.3 The n,-stable matrix A is such that

Aii =8 for all 1ie¢ {1,2,...,n}

We shall see later that this assumption does not cause any
loss of generality whenever assumption 5.2 is satisfied.

If we now rewrite (5.17) as

n
ygk*l) = J A,. o0 ygk) + b, for all i e {1,2,...,n}
i 521 ij b i
then we see that the Jacobi method makes use of all the elements ygk)
of y<k) in calculating y(k+1). But intuitively, it would seem more

reasonable to use always the last available estimates such as the following
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i-1 n
(5.18) y§k+l) = ] A, 0 y§k+1) + ) A;. o ygk)+ bi for all
jer M jeisr M7

ie{l,2,....,n}.
Note that we have here used assumption 5.3 above.

Since (5.18) can be calculated sequentially, it does not require

, . + .
the simultaneous storage of the two estimates yik) and y§k D in the
course of computation which is therefore an advantage over the Jacobi
method. However, this advantage causes the method to be rather sensitive
to the actual numbering used for the nodes.

If we now define two matrices L and U respectively by
Ai' if 1< Ai' if 1> j
(5.19) L. = J ad U, J ,
J ] . otherwise J 8 otherwise

then we can rewrite (5.18) in matrix forms as follows

520y y O Lo D g 0y

Now since G(L) is acyclic, 1" =0 and therefore (5.20) can

be rewritten as

% *® -
(5.21) y(k+1) = L* oUo y(k) +L ob » Where L = L[n Q

* % *
Note that A =H o K is here satisfied by H=L o U,
% . % % % *

K =1L  because A =1L + U by assumption 5.3, and (L + U) = (L o " oL .
The last equality can be proved either by comparison of terms in the expansion
on both sides or by an argument similar to that used in theorem 2.7 above
but in terms of < , which is an ordering whenever assumption 5.1 is
satisfied.

This method is credited to Gauss and Siedel because it is a

counterpart of the Gauss-Siedel iterative method in linear algebra (Fox (1964)).
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% %
(1ii) The Double-Sweep Method (H =1L o U = K)

Again assumption 5.3 will be adopted here, and just as in
(ii), there is no loss of generality whenever assumption 5.2 is satisfied.
Now in view of our previous remark that the Gauss~Siedel
method is rather sensitive to the actual numbering

of the nodes, it might therefore prove useful to modify the procedure by

y§k+1) of y(k+l)

alternately calculating the elements first in a

backward manner (j = n, n-l,...,1) and then in a forward manner

(j = 1,2,...,n). More precisely, we first obtain y(k+£) by using

(kH) _ § (k+) |, (k)
¥ X Aij 0 Yj ty; o f bi

2

y D L 00,

n j=i+l

for all i =n~1, n-2,...,1

(k+1)

and then obtain ¥y by using

i-1
e

(k+1) _ _(k+d)
71 =Y i

®

ij © y§k+1) * Y§k+£)
j=1

for all i =1,2,...,01

In matrix forms, these can be written respectively as

S (eth) N R

(5.22) =0 oy

(5.23) y(k+1) =L o y(k+1) + y(k+£) , wWhere L and U are defined

by (5.19).
Now since G(L) and G(U) are both acyclic, P =0 = Un,

and hence (5.22) and (5.23) are respectively equivalent to

(5.24) y(k+£) = U* 0 y(k) + U* ob . and
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*
(5.25) y(k+1) = L o y(k+i)
Therefore, combining (5.24) and (5.25), we obtain
y(k+1) =00 o y(k) s+ 0t ob

* %* * %
Note that A =H o K 1is here satisfied by H=L o U =K
) * * *_ %
because A =L + U by assumption 5.3, and (L +U) = (L oU) |,

The last equality follows because using assumption 5.1, we always have
% * *
L+U <L oU £ (L +70) . and hence
* * % % % %k *
L+ < @ oU) < (L+1U)) =(L +10)

We note here that instead of (5.22) and (5.23), one can also

consider the iterative method given by the following pair
.26y 0D Lo gD L 0

5.27)  yO*D Lp o gD L JGrh) Ly

»

which yields

y(k+1) - L* (k) . L* o b

*
oU oy

?

* * . . . * % *
and A =H oK is now satisfied by H=L oU and K =1L .
However, as will be apparent later, this method is inferior to

* * *
the previous one, using (5.22) and (5.23), because L < L o U always.

(0)

Moreover, whenever b < ¥y is used, both methods are

equivalent to using (5.23) in conjunction with (5.26) because

e H (1) (1+}) <

£y £y Ly

esesss always .
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In fact, it was Yen(1970) who first used (5.23) in conjuction
with (5.26), and y(o) = b to solve the shortest path problem. The more

general method was called the Double-Sweep Method (cf. Shier (1974)) because

of its similarity (though not a counterpart in a strict sense) to the Double-
Sweep iterative method in linear algebra (Fox(1964), p.195)).

Let us now examine why assumption 5.3 does not cause any loss
of generality in our presentation of the last two methods whenever
assumption 5.2 is satisfied.

From the no~stab1e matrix A, let us define two matrices

D and F by

A,. if i = j A,. if i # j
= 1] and F.. = 1] .

D..
1 8 , otherwise 1] 6 , otherwise

From this definition, we see that A =D + F. Accordingly, we

can rewrite the system y =A oy + b as

vy =Doy+Foy+bh

) %
But this system has the same least soclutions A o b as the

#*
system y = D* oFoy+D ob Dbecause
* * * *
Aob=@+FM*ob=@® oF) oD ob

* *
Note that D is defined by assumption 5.2 because D < A ,

*
and similarly for (D o F)*because
* * *
D oF < A oA K< A .

Hence from the system y = A oy + b , we can first obtain
the equivalent system y = Al o v + b', where A' =D* o F and b' =D* o b.

Since A' satisfies assumption 5.3, the last
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two methods can then be employed to solve y = A' o y + b’ to obtain
%* ,
the least solution A o b. This useful observation was made by Carré (1976).
A formal comparison of the above methods will now be discussed

For this purpose, Carré (1976) obtained the following

THEOREM 5.7 Let 3¢ 2 a3 059 4R ob ana $ED cho5® Lo
be two iterative methods for solving the system vy =A oy + b and let

H <H,K<R K. Then for all ke N , S'(k) < §(k) whenever
~ (0 ~{0
y( ) _ y( )

PROOF We shall use mathematical induction om k . For k = 0, the
~ (0 ~{0
o)y _ y( )

result is true since vy by assumption. So let us suppose that

the result is true for k = m. But then

~

Sl 5@ Lk ob

i
[e]

<ho3™ +Rop

~(m+1
- (@)
Therefore, the result is true for all k & N, v
COROLLARY 5.1 The Double~Sweep method is superior to both the Jacobi and

Gauss-Siedel methods in the sense that it yields the required solution in a
number of iterations not exceeding those required by the other two, using

the same initial estimate.
PROOF This follows because
. * * * *
(1) A=L+U< L oU* |, I <L ouU* , and
% % * *
(ii) Lou < L o u* ; L < L oU*. v

We note here that theorem 5.7 cannot be used to compare the
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Gauss~Siedel method with the Jacobi method because in general A and

&
L oU are not comparable. For instance, let A = [6 e} be a matrix
e ©

over the two element Q-semiring X = {6,el}.

%
Then LOU = [6 e|] 4 A .
6 e

However, it would seem intuitively that the Gauss-Siedel method
(which uses more "current” information than the Jacobi method) should be
superior to the Jacobi method. In fact, this is so if one chooses the
initial estimate y(O) such that the Gauss-Siedel method yields a better

estimate at each iteration. This result was proved by Shier (1974) as

follows.
THEOREM 5.8  Let y§k+1) = Ao yﬁk) +b and
(kt1) _ (k+1) (k)
Ve Lo Ve +Uo yvo  * b, where
. (k) (k)
L and U are as defined by (5.19) above. Then Y3 < Ve for all
0 (0) (1)
k € N whenever y§ ) - Vo~ < Vg
. . . . (0) (1)
PROOF We first show by mathematical induction that Yo < Ve
implies yék) < yék+l) for all k e N.
For k = 0, this is true by assumption. So suppose that the
result is true for k = m, i.e. yéﬁD £ yém+l)
But then
(m+1) _ (m+1) (m)
Yo =L o Ve +Uo Ya + b

% * .
L oUo yém) +L ob , since L" =0

#
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< L oUo yém+1) + L* ob
- L yém+2) +U o yC(;m+1) + b
- yém+2)

Hemce yék) < yék+1) for all ke N.

We can now prove by mathematical induction that

yﬁk) < yék) . for all k € N.

For k = 0, the result is true because y§0) = Yéo) by

assumption. So suppose the result is true for k = m. But then

y§m+1) = Ao yém) + b
< Ao yém) +b by induction hypothesis
=L o yém) +Uo yém) +b , since A=1L+ T
< Lo yém+1) +Uo yém) + b, since yém) < yémﬁl)
- yém+1)
Hence y}k) < yék) for all ke N . v

Let us now return to theorem 5.6 above. From this theorem,
we know that the number of iterations required for obtaining the least

*
solution A ob of y=A oy +b by the above iterative methods will

Eni] [bl+l

be at most ng + 1 , where ny is such that H = H . But in

fact, the number of iteration required by these methods will be at most
. néT Eb*d] )

n, +1 , where n. 1is such that A = A , as shown in the

0 0

following
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THEOREM 5.9 Let (X,+,0) be an idempotent semiring and A ¢ uﬁh(x)

a hereditary n, stable matrix. Then the iterative scheme

y(k+1) (k)

#* % *
=H oy +Kob, where H< A and A =H oK

(n,+1) *
yields y 0 = A o b whenever y(o)

#
< A ob .
provided we also have in addition that

(5.28) KoA < (I +H) oK and I < K .

*
(k) y(k+1) for some k < n, then y(k) =A ob also.

H[ha]o

Moreover, if vy

*
PROOF Let us first show that A = K.

J * *
Since H[k] 0o K<H oK=A for all k e N,

Dkﬂ *

it follows that H o K<A

Now we claim that (5.28) implies that
A[k] < HDL(:I o K for all k € N.

This claim can be proved by mathematical induction as follows.

For k = 0, AEO:l =1 £ K = H[p] o K. So let us suppose that the result

holds for %k = m.
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But then

A[I;]+]I] = I +A[m] OA
<1 + H[hﬂ o Ko A , by induction hypothesis

< I+ H[m] o (I +H) oK by (5.28)

m+l
o

=1+ (I +H) K, since H[m]a (1 + )™

(which uses assumption 5.1)

L

I 1 I K, since I < u™ L4 1 < K.

Hence the claimed is justified, and therefore

A*nA&J< Hbd

o K .

It then follows from the anti-symmetric property of < that

* H[ﬁd]

A = o K

The rest of the proof can be argued in exactly the same way as

that of theorem 5.6 except that n, is now replaced by n %

0.

COROLLARY 5.2 The number of iterations required by the Jacobi, Gauss~—
%

Siedel and Double~Sweep methods to yield the least solution A o b where

A is a hereditary n.~stable matrix is at most n. +1 where

(4] 0
[h [ﬁ +i] *
A¥ = A 6] = A 0 , provided that y(o)<: A ob is used as the initial
estimate.
PROOF It suffices to show that in all these methods (5.28) is

satisfied as follows.

(1) If H=A and K = I, then clearly I < K and
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KoA=A < I+A=(I+H oKk as required

* *
(ii) If H=L oU and K=1L , then clearly I < K and

(L +0) s gince A =1L + U

#
-
o

*
=L oL+L oU
% % ) % % *
<L +L oUolL R since L oL < L and I < L
% %
= (I +L oU ol
= (I +H) oK as required.
* %
(i1ii) If H=L o U =K, then clearly I < K and
% * ,
KoA= (L oU)o (L+1U, since A =1L + U
% * % %
=L oU oL+L oU oU
% % * % % % . % %
{L oU oL oU +L oU , sinceL<L o0oU and
% *
U oUXK U

* * * *
= (I +L oU)l oU
= (I +H) oK as required. v

We note here that in fact the number of iterations required by
the Double—~Sweep method to yield A* o b was shown directly by Carré (1976)
to be at most i(n0 + 1).

Let us now extend the result of Theorem 5.9 to no—stable matrices

in general. The following theorem shows how this can be done.

- 165 -



THEOREM 5.10 Let (X,+,0) be an idempotent semiring and A ¢ Jgn(x)

an n0~stab1e matrix. Then the iterative scheme

y(k+1) = H o y(k) +Kob . where
* #*
HoA +K< A , KoA < (I +H) oK, I < K,
. (p+D) (0) *
yields vy = A o b whenever vy < A o b,
If in addition, y(k) = y(k+1) for some k < n, then
%

y(k) = A ob also,
PROOF Let us show by mathematical induction that H o A*¥ + K < A*

always implies HM1 o A¥ + H[k} o K< A* for all ke N. For k = 0, the
result is true by assumption. So let us suppose that the result is true for
k = m.

But then
Hm+2 o] A* + H[m+1] o K
=Ho @™ o A% 4 u ) 0K) +K

since H[ﬁ*lJ =H o H[mJ + I

<HoA¥ +x by induction hypothesis

<4 A*

and hence the result is also true for k = m+l whenever it is true for k=m.
Therefore, the result is true for all k € N.. From this result, it follows

that
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H[k’]ox<ﬁk*loA*+H[k]oK<A* for all ke N

The rest of the proof can be carried out in the same fashion
as we did in the proof of theorem 5.9 above. v
COROLLARY 5.3  Corollary 5.2 above holds for any n0~stable matrix A except
that assumption 5.3 for the Gauss-Siedel and the Double-Sweep methods must

be enforced. (because assumption 5.2 has been dropped).

. . *
PROOF It suffices to show that the inequality H o A* + K < A  is
satisfied by the H and K in these three methods, since the other two in-
equalities were already shown to be valid in the proof of corollary 5.2

above.
(1) If H=A and K =1, then

% % % % .
HoA +K=Ao0A +1I=A<A" as required.

#

%*
(ii) If H=L oU and K = L% then

% % %
Ho A* + K==L oUoA +1L
* % % % % % A* oA{A*
£ A oA +A gince L < A and L o U<

%*
= A

% *
(iii) If H=L oU =K, then

* * * % % %*
HoA +K=(L oU)oA +1L oU

* ¥ * % % % *
{(A*QA)OA*+A oA since L < A, U < A

*
= A v
It is also interesting to note that both the Jacobi and Double-
Sweep methods can also be fitted into the iterative scheme of the following

theorem while the Gauss—Siedel method cannot.
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THEOREM 5.11 Let (X,+,0) be an idempotent semiring and A € .Mh(X)

an n0~stab1e matrix. Then the iterative scheme

y(k+1) =H o y(k) +Kob , Wwhere

HoA* +K<A*, A<H , 1<K |,

(n,+1)
yields vy © = A o b whenever y(o) < A* ob .

W _ )

If in addition, ¥y for some k <n., , then

0
y(k)

*
= A ob also,

PROOF In view of the argument used in establishing theorem 5.10 above,
it suffices to show that A[}ﬂ < H[FJ 0 K for all k € N. This can be

done by mathematical induction as follows.
For k=0, A[O] =1 < K = H[OJ ¢ K. 8o let us suppose that

the result holds for k = m. But then
NS RN L
{I+Ao0 al® o g , by induction hypothesis
<1+ a0 % since a<H and Hor [®] ¢ r[m+1]

= H[m+ﬂ oK, since I < K < H[mg o K

Hence the result holds for all k e N. v

Since the Gauss—Siedel method fits into the iterative scheme of
theorem 5.10 but does not fit into that of theorem 5.11, it follows that
theorem 5.10 does not imply theorem 5.11. However, the converse is still

an open question. We only know that if K o H < (I + H) o K also holds,

then A < H implies Ko A < KoH < (I + H) oK, and hence theorem 5.11

holds.
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Let us now examine the possibility of dropping assumption 5.1,

From the proof of theorem 5.6, we see that if one chooses y(o) = 0
then
+ . .
y(k D =H o y(k) + K ob implies
(n,+1) n,+1 n
y 1 =} 1 0 y<o) + (I +H+ ... +H 1)o Kob
x s ] [py#]
=H oKob , where H =H = H
%
= A ob
Therefore, theorem 5.6 remains valid without assumption 5.1
it y© <4,

This means that the Jacobi method can be used to solve

(0) = 0 1is used but

y =Aoy+Db without assumption 5.1 whenever vy
A must still be a hereditary nowstable matrix. This result generalizes
that given by Gondran (1975). The Gauss—Seidel method was also claimed

by Gondran (1975) to be valid whenever A is absorptive. However, he

used the identity that (L + U)" = @* o W™ o L* which he did not

prove to be valid without assumption 5.1. Of course, if this result holds,
then A* = H* o K holds and hence Gauss—-Siedel method could then be used
without assumption 5.1 but with y(O) = 8 and A as a hereditary novstable
matrix. We think it is likely that the above identity holds without

assumption 5.1, since this identity has its analogue in linear algebra,

namely

1

-+ t=a-ag-vwla-n*t

However, the proof appears to be difficult.

On the other hand, we do not think that the Double~Sweep method
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can be used without assumption 5.1. This is because A* = H* o K is

unlikely to be satisfied without assumption 5.1 since the identity

(L + U)* = (L* o Uk)* does not have an analogue in linear algebra.
Finally, we note that theorems 5.9, 5.10 and 5.11 are not

valid without assumption 5.1.
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CHAPTER 6

SCHEDULE ALGEBRAS AND K-SHORTEST-PATHS PROBLEMS

6.1 Generalization of Giffler's Schedule Algebra

The p-space (X,0, M,,r) of example 3.8 was first considered
by Giffler (1963, 1968), although he did not define it formally in that
way. In fact, he was directly concerned with the path algebra of this

p-space which we shall henceforth refer to as Giffler's schedule algebra,

since he referred to the ring of matrices over this path

algebra by the name "schedule algebra". Such an algebra was noted in

Giffler (1968) to have algebraic properties equivalent to those of ordinary
integers including the fact that one can also define addition and multiplication
of "quotients'or "ratios" of two elements. However, Giffler's investigation
of these properties were rather informal and his definition of '"'quotients"

or "ratios" were erroneous in much the same way as when one attempts to define
rational numbers by a division algorithm of two integers which may or may

not terminate. This pitfall can be avoided by adopting an algebraist's

way of defining rational numbers, namely via the construction of the quotient
field of integers. This approach will therefore be adopted below where

we present a more generalized version of Giffler's schedule algebra.

Instead of the additive monoid (N,+) of non-negative integers
which we considered in example 3.8, let us consider a totally ordered
commutative group (§,%,+), see section 0.2 gbove. As in example 3.8, let
us define § to be a set of arbitrary objects which can be put in one~to—one
correspondence with S , i.e. to each a & 5, there exists ae$ and

vice versa. Also as before, the set {a,a} will be called a twin pair
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DEFINITION 6.1 Let X=8U S and || ||: X >S5  be a function
defined by ||la || = a and |la]l =a for all ae S. For convenience

!fx [| will be called the S—-counterpart of x e X.

From this definition, we can now define a binary operation

o on X as follows.

!lx [+ ly I if x,y e S, or x,v¢ S
(6.1) Xoy=

I % H + ” y ” » otherwise

This definition of o may appear somewhat different from the
rules (i) and (ii) in example 3.8, but in fact a second glance at

definition 6.1 will reveal their equivalence.

LEMMA 6.1 For any x,y ¢ X, [|xoy|] =] x] + Hyll
PROOF If both x,y € S, then from (6.1), we have
xoy=|lx|| +|lyll=x+y )

and hence

#

= oyl = [lx+vll

=x +y , 8ince x +y € S whenever x,vy € §

IESIRNIba|

i

If both x,v ¢ 5 . then from (6.1), we have
x oy = ||x|[[+ [[y]] =a+b ;

where a,b are elements of S such that a = %, b =¥,
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Consequently, lx o yll= |la + bl

= a+b , since a + b e S whenever a,b e §

=l + I3l

[

Now if either x €S, yeS§ or xe§ , yeS , it follows from

(6.1) that
P i
xoy = |l=l| + Iyl
and hence [|x o y|[= |[|x]] + ||y]| by definition 6.1.
Therefore, in all cases, |/x o y|| = [ix[f + |ly]l as required. v
THEOREM 6.1 (X,0) forms a commutative group with the same identity

element as in (8,+). Moreover, if yml denotes the inverse of y e X

with respect to o , and -a denotes the inverse of a e S with respect

r'd

to + , then

-1 U=l = Ilyll if x,yesS or x,y¢8§
(6.2) X 0y =
Iel[ = Jsll . otherwise
PROOF From (6.1), it follows that X 1is closed with respect to the binary

operation o. Thus it remains to verify that all the formal properties of
a group are also satisfied.

This can be shown as follows.
(i) X060 =x=00x , where 6 1is the identity for + in §.
From lemma 6.1, we know that for all x ¢ X,

= o0l = [I=[l + llel] = || +e = [[x]| , and
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if xo06 #x, then {x 0o 6,x} is a twin pair. Without loss of
generality, let us suppose that x € S, and hence x o0 0 ¢ § .

But since 6 € 8, it follows from (6.1) that

[1x]] + |le]l =x + 6 ¢S, a contradiction.

™

o]

@
i

Therefore, x o 6 = x for all x e X. Similarly, one can show that

8 ox=zx for all =z ¢ X.
(ii) X0y =y o0X for 2ll x,v € X%.

From lemma 6.1, we know that for all =x,y ¢ X,

= o yll= =l + [yl = lyll + l=ll = {ly o x|l ,

and if x oy #y o x, then {x o y,y o x} is a twin pair. Without loss
of generality. let us suppose that x o v € 8, and hence v 0 x € §.
But from (6.1), we see that x oy € 8 iff both x,vy € 8§ or both

%,y € S. In either case, vy ox e S, a contradiction.
(iii) (xoy)oz=x0 (y oz) for all x,v,z g X.

From lemma 6.1, we know that for all x,v,z € X,

H

| (x 0 ¥) oz lx oyl + [zl

L]

=l + Ayl + =]l

]

x|l + lly o 2]

]

lxo ol

and if (xoy) oz#xo0 (yoz), then {(xo0y) oz, xo (yoz)} forms

a twin pair. Without loss of generality. let us suppose that (x o y) o z e S,
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and hence x o (y o z) ¢ S. But from (6.1), we see that the only way

for (x o0y) oz tobelong to S is that among the three elements

X:¥»2Z, none or exactly two elements belong to §. 1f none, then

x 0 (y oz) eS8, acontradiction. If two, then there are three possibilities,

namely x,y €8, or y,ze8 or x,ze§ .

If x,y € §, then from (6.1), we have

xoGom=xolyll + ) = [xll + sl + llzlle s,

a contradiction. Similarly, one can easily check that the other two

possibilities also lead to contradictions.

(iv) For each y € X, there exists y"l € ¥ such that

-1
yoy =0=y "oy

If y e 8, then take vy L -y € § because from (6.1),

i
fes]

yoyt=y+ -y

If ve 5 , Ssay y = a for some a € S, then take yml = -a because

from (6.1),

o

yovy 1. a + (-a)

i
<

Therefore from (i) to (iv) above, we conclude that (X,0) forms
a group with 6 as identity for o , where 6 1is also the identity for

THE = - iyl always,

+ in 8. Moreover, from (iv) above, we see that I{y
and hence (6.2) follows from (6.1). g
We now want to define a reduction function r as in example 3.8
above. There, the domain of r was chosen to be JVX. The reason for this
may not be obvious. However, if one considers the multiset A = {l,i,l,i,..},

then we see that there is more than one way of deleting
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all the twin pairs from A. Consequently, r(A) = ¢ and r(A) = {1}

are both possible, and hence r is not a function in accordance with our
definition in section 0.1. It is for this reason that we have chosen
Jﬂx as the domain of r in example 3.8 above. But mow in our present

case, JCX alone won't do because (X,0) is not assumed to be locally
finite, and hence (.A,, W ,0) may not be a semiring. For instance,

let (5,+) be the additive group of real numbers and let
A= {1,2, .....} . B={-1,~2, .....}
Then A,B ¢ JVX, where X = 8§ (U §. But

AoB =1{0,0, ........} & A,

This example demonstrates that we must look for a subset of .N&,
but which ? 1In order to find an answer to this question, let us examine our
final goal a little further.

Recall that Giffler's schedule algebra was noted to posses
properties equivalent to those of integers including the fact that one can
also define addition and multiplication for "quotients" or "ratios" of two
elements. This suggests that our generalization of Giffler's schedule
algebra must also retain these properties and we must also be able to define
addition and multiplication for quotientsof two elements. But any quotient
% is usually defined for non—zero B or in this case, B # ¢ and addition

A

and multiplication of two quotients 7 g— , where B,D # ¢ are usually

defined as follows.

Ae@D & BecC
BeD

wip
®
ola

(6.3)
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A.C

But for the righthand sides of (6.3) and (6.4) to be consistent
with the usual definition of quotients,we must have B @ D # ¢ as well.
In order to guarantee that this restriction is satisfied the algebra to
be constructed must therefore have the property that B @ D = ¢ implies
either B =¢ or D = ¢. Therefore, our choice of the domain of r must
be such that the resulting path algebra has this property. Again, let us

take (S,+) to be the additive group of real numbers, and let

B=1{...,~3,-2,~1,0,1,2,3,...}, D = {0,1} .

fab

A
H

oond
D

o
L]

f-—l
o

P
L3

[T
A"

>
gt

Then , BoD={...,~3,-2,1,0,1,2,3,.0.5...~3,~

and hence B @D =1r(B oD) =¢ . But clearly, B,D # ¢.

i

The acute reader will observe that the multiset B in this
example and the one above does not have a least element and hence it might
be for this reason that the difficulty arises. This suggests that our
choice of the domain of r should be a subset of 7{& which contains only
well ordered multisets and ¢ (see (iii) of definition 2.2). But (X,0) may
not be an ordered set, so how can one speak meaningfully of well ordered
multisets ? Fortunately, the assumption that S5 is an ordered set is

sufficient for our purpose, since we can use it to define some kind of

pseudo~well~ordered muiltisets as follows.

DEFINITION 6.2 Let X =S {J § as before. For any A e N. , let us

define ||A|l] = {]||x||| A(x) # 0} which can be called the || || - support of A.

Then a multiset A € Nf is said to be | H - well ordered iff [[A]] is a
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well ordered set.

LEMMA 6.2 (i) lall € lisl| whenever A C B

(ii) la w B||=]allU]||B]] or more generally,
HL*J Ai” = U HA]_”
iel iel

(iii) [|A o B]] = ||a]| |IB|| , where juxtaposition denotes

complex product induced by + in § .

PROOF (i) Let y e ||a]|. Then by definition, y = ||x|| for some

% such that A(x) # 0. But A(x) € B(x) and therefore, B(x) # 0 also,

i.e. v e HBH

(ii) Let y e || \WA,||. Then by definition, y = [|x|| for
iel
some x such that Z Ai(x) # 0. But then Ai(x) # 0 for at least one
iel
ieI . Consequently, y ¢ ”Ai][ for at least one i e I, and hence

lwall C U il
1el 1el
But from (i)“ above, we have ”AlH c | WAi” for all i eI since
iel

A, C MA; for all iel. Therefore,

U Al C ll\ilAi]{ also, and (ii) is therefore established.
iel T iel

(iii) Let u e [A o B|. Then by definition, u = [y o z|

for some y,z such that A(y), B(z) # 0. But by lemma 6.1,

w= Iyl + llzll,  and hence we [la]l |[B]|, i.e. [|a o B|C Il [B]
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Now let we [l [B]l, then w= [|y]| + [lz||= |y o 2|

for some y,z such that A(y), B(z) # 0, But then X A(y)B(z) # 0 ,

XK=y 0z
i.e. u= |[x|| for some xe ||a oB||, i.e. [[a]l ||B]|C ||A o B]
also. i
LEMMA 6.3 Let W"X“ denote the set of all || || - well ordered

multisets of Nﬁ and ¢, where X = S \US as before. Then 7ﬁlxu is

a hereditary semiring .

PROOF First we show that VVHX’I is a hereditary subset of N§ .
Let A ¢ 7ﬁlxll , i.e. ||A]] is a well ordered set, and suppose

B C A. Then by (i) of lemma 6.2 above, we have [B||C |||, and
therefore |B|| is a well ordered set also, i.e. B ¢ TﬁIX” .

That ”V“XII is closed with respect to multisum and
multiproduct is a consequence of (ii) and (iii) of lemma 6.2 and the
fact that the union and complex product of two well ordered sets with
elements in a totally ordered monoid are themselves well ordered sets
(cf. the proof of (iv) of theorem 2.10 above).

Finally, let A e &% then ||l = {]||x|| | A(x) # 0} is a

X
finite subset because by definition of ﬂ%:, A(x) # O for only a
finite number of x € X and A(x) # ». Hence IIA” is a well ordered set,

i.e. Ace 7ﬁlX“ . Consequently, éﬁx C 7ﬁlxn . Y

Let us now resume our search for the domain of r . Thus far
we know that it cannot be larger than fo M 7q!XH . However, we do not
know whether ( Wy M 4WﬁX", W, 0 is a semiring but we do know from
(vii) that the set of all countable and well ordered multisets with elements
in a totally ordered group is. This suggests that we try the set

QL“X,‘ = @X N JV& a qﬁlxl!' The following theorems show that this is

- 179 -



exactly what we are looking for.

THEOREM 6.2 Let X =S (J § as before. Then the W}lxll , W ,0)

where Q‘NXH = @X M ‘MX m Wi'XH is a hereditary semiring.

PROOF This result follows from an argument similar to that used in

(vii) of theorem 2.10 by using lemma 6.1 and lemma 6.3 whenever necessary.

THEOREM 6.3 Let X =81 § and fu“X" be as before, and
T ru“X” - ’U«”X” be defined by r(A) = ¢ if A = ¢, otherwise
r(A) is obtained from A by deleting all its twin pairs. Then

(X,0, ‘TA“X” ,r) forms a commutative p-space.

PROOF (X,0) is a commutative monoid by theorem 6.1, (e«“x”, W ,0)

is a hereditary semiring by theorem 6.2, and hencg (X,0, ’h”xﬂ,r) is

a commutative p-space if we can sho;v that r 1is a reduction function.
Since r{(¢) = ¢ by definition, it 'remains to show that r

has properties (3.2) and (3.3) also. To do this, let us observe the

following two immediate consequences of our definitiom of r.

(1) r(AlH B) = r(B) whenever r(A) = ¢

(ii) A =r@ WA' , where r(A") =¢ .

Consequently, r(AWB) = r(r(A) W A' (& B) by (ii)
= r(r(A) WB) by (i)

and

r(A o B) = r((r(A) WA') o B) by (ii)

i

= r(r(A) o BIWA' o B)

= r(r(A) o B) by (i), since r(A' 0o B) = ¢ .

That r(A' o B) = ¢ can be seen as follows.
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Since r(A') = ¢ , it must be either that A = ¢ or A'
contains only twin pairs. If the first, then clearly, r(A' 0 B) = $
also. If the second, let x € A' o B, i.e.
x=yo0z for some ye A and z e B. Without loss of generality, let
us suppose that y € S§. But then § 0 z must be an element of A' o B
as well. Since {y o z, § o z} forms a twin pair, it follows that A' o B

consists of only twin pairs, and hence r(A' o B) = ¢ as claimed. v

THEOREM 6.4 The path algebra of the p-space (X,o0, Q%‘X”,r) in theorem

6.3 forms an integral domain (see section 0.2).

PROOF By theorem 3.2, we know that the path algebra ( %;,0,0), where
YV = Qﬂfxll , forms a commutative semiring. Now this path algebra is also

a ring because for each A ¢ W;, there exists ©A = {8} @ A such that

A 6A = A9 (8A) by definition
= A@® {6}eA
= r(AW {8} o A)

= ¢

It remains to show that for any Y,Z ¢ 7;, Y0 2Z=¢ implies
either Y =¢ or Z = ¢.

Suppose otherwise, and choose Yo € Y, zg € Z such that

Iyoll = min Y]] and [lz] = min |z

We then claim that for all xe Yo 2 , {x, Yo © zo} cannot be a twin pair
which means that Y @ Z = r(Y o Z) # ¢, a contradiction. This claim can be
justified as follows

Let x =y oz for some yeY 2z ¢ Z. Then by our choice of

Yo » %g» We have Hyolls [lyl|] and HzOIIS l|z]] .
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vow it [yl = Iyll and lzgll = llzll s chen 5, =

and z2g = 2 because Yo and 2z, cannot have their S-counterparts in

0

Y and in Z respectively (Y,Z ¢ T}), and hence y, 0 2z, =y 0 z

0

means that {y o z, Vo © 2 } is not a twin pair.

0
So we may suppose that "yOH < |lyll , say. But then by

lemma 6.1, we have

lyg o zoll = Myl + Mzl < lyll+ llzll = lly o 2]l
and hence {y oz, Yo © zo} is not a twin pair either. v
COROLLARY 6.1 The path algebra ( "1;,0,0) of the p-space in theorem 6.3

can be extended to the field (€,9,8), where @ is the set of equivalence

subsets of "Vr x "V; of the form

%={(Y,Z)|A@Z=BOY,B,Z#¢} ,

and & 1is defined by (6.3) whereas © is defined by (6.4). Moreover,

% and % , where A # ¢ , are respectively the unit and zero of @&
PROOF The construction of @& from the integral domain "V;_ is

similar to the construction of rational numbers from integers. Its proof

will therefore be omitted. Note that @ is usually called the quotient field

of the integral domain ‘Vr. v

The path algebra ( 7_,8,0), where V= ‘u”x” , can be seen as
a generalization of Giffer's schedule algebra as follows.

When X =Ny N , X is always a countable set because N is
a countable set whenever N 1is, and so is N (J N. Therefore, any
multiset A e NZf ., where X =N U N ,is always a quasi-countable multiset
since d(A) C X must be a countable set also. Consequently, @X = ¥

o

when X = Nuﬁ.
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Now since N is also a well ordered set, and hence X = NN

is a || || = well ordered set. But this means that any multiset A ¢ Nz R
where X = NUWN is always a | || - well ordered multiset. Consequently,
W = N> -
1| N* when X =NUR.
Therefore, %”XH = @X N NX M 'W’"XH
= N, Nt when X =N U R
-] X 00

Therefore, the p-space (X,o,JVk,r) where X =N U N is a
particular instance of the p-space (X,o, q¢"xtrr), and hence we can regard
the path algebra ( “;,Q,G) where V= qﬁlxl[ as a generalization of
Giffler's schedule algebra. For convenience, this path algebra will be

referred to simply as a schedule algebra over the totally ordered

commutative group (S,<,+).

6.2 Schedule Algebraic Division Algorithm

Since the quotient-field extension of a schedule algebra was
obtained by an analogy with the construction of rational numbers, it might
be fruitful to carry the same analogy a little further. Since it is well
known that any rational number or a quotient of two integers can always be
expressed as decimals (though it might be just approximately) by a division
algorithm, it might be useful to have a similar way of expressing the
element %-in the quotient field of a schedule algebra. To this end, Giffler
(1968) invents a procedure for 'dividing" A by B. Unfortunately, his
presentation of the procedure is not explicitly defined since he only gives
an example of the procedure in a tableau form, and that is all (see Giffler
(1968), p.269). Nevertheless, it is clear from his example that a strong

analogy with the ordinary long-division procedure for two integers can be

fruitfully exploited in carrying out his method. The result to
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be presented below will confirm that this is so.

We shall say that a multiset B of

A of ‘7} in the integral domain 7}, where
exists a multiset C of ﬁ} such that
A=3B6CcC,

or equivalently,

wip

m{g} or simply % = C

Let A,B ¢ 4; and mn, € {1,2, ....}

7} divides a multiset

V= ¢L”X“’ iff there

be given. Then the

following aigorithm yields a multiset C ¢ W; such that A =3B 06 C

or an approximation for

B
DIVISION ALGORITHM
Step 0. Specify n, and set k =1, A, = A
Step 1. Choose by € B such that ||b || = min |B|
Step 2. Choose a, € A, such that uakH = min ”Ak“
-1
and compute Cp = 8 © bo by (6.2)
Step 3. Set A ., = A ® {Ck} @ B Terminate when either of
the following hold
(i) Ak+1 = ¢ (In this case the division result is
exactly {cl,cz, coe ,ck}) .
(ii) k = n. (In this case, the division result
0 An +1
. A 0
{cl, Chy voe ,cno} differs from B by 5 .
Step 4. Increase the value of k by 1 and return to step 2.
In order to illustrate the steps of the above algorithm, let us

consider an example below.

Let
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A= {-1, 2, 3, 4} » B =1{3, 5}. Clearly, A, B ¢ V.. Now all the steps

involved in computing %- by the above algorithm can be conveniently

expressed in the "long~division' tableau form as used by Giffler (1968)

as follows

{Cl’ Cys c3}

”as "és -1 .
3, 50 -1, 2, 3, 4 B Ay

=t ST S {c,}o B

1, 2, 3, 4

1, 3 )

%9 4 {CZ}Q B

2, &4 A,

¢

{c3}@ B
Ay

Note that in the above example, the algorithm tegminates with
A.4 = ¢. However, in general, it is possible that Ak f ¢ for all k »
and hence the algorithm will not terminate if n, is not specified.

As an illustration, take A = {2, 2, 3, 4} and B = {1, 1}.

Then we have for k > 1 ,

{3, 4} if k 1is even

=

{3, 4} otherwise
Consequently, the algorithm cannot be used to decide whether or
not a given multiset B of W; divides a given multiset A of 1;.
All we know is that if Ak+1 = ¢ for some k £ ng then B divides A,
but we do not know otherwise, because the algorithm is made to terminate at
k = oy while it is still p0531blevthat Ak+1 = ¢ for some k > n,-
In order to prove the validity of the above algorithm, let us

first obtain the following
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LEMMA 6.4 In the above algorithm,

eyl s fleg gl whenever A ? o

-1

PROOF Since cp =& O bo , 1t follows from (6.2) that

lewll = llag o b5l = Ila ll - bl

8

Similarly,

legarll = lageqll = Abgll

Therefore, | c, || svf!ck+lll whenever ”ak“ s lay,, |l

But “ak+1” = mianAk+lH, and hence the required result follows if we

can show that

Hak” < x|l for all x ¢ Ari1

Now since Ak+1 = Ak e {Ck} @ B, we must have either x ¢ Ak or

x €6 {ck} @ B for any x € Ak+1
If the former, then ”aklls x|l because l!akﬂ = min ﬂAkH,
If the latter, then x = 8o N o'b for some b ¢ B.

“é 0 ¢ o b“

B

But then "xl

4

181 + lle,ll + llvll by lemma 6.1

#

legll + lIbll since J8ll= o s.

]

le I+ Mppll + Clivll = divgll>

W

el + Nvgll  since |Ivgll < {[o]

4

¢, ob by lemma 6.1
k 0

8

la, |l as required.
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LEMMA 6.5 In the above algorithm, if k is the first index such
that Ak+1 = ¢ , then the multiset {cl’CZ""’ck} does not contain

any twin pairs.

PROOF By lemma 6.4 above, it suffices to show that {ci . }

Ci+l
cannot be a twin pair for any i e {1,2,...,k-1}

Suppose otherwise, and let i, be the first index such that

0
{c. , c. } forms a twin pair. Without loss of generality, we may
10 1O+l
assume that ¢, = C,
10+1 10
But then
A, = A, e {c }eB
1O+2 10+l 1O+1
= Aio+1 @ {elo{cio+l} @ B
= A 8 {c } eB
10+l 10+1
= A, @ {c. ] OB
10+1 i,
= A. , since A. =A, 8 {c., } o8B
10 1O+1 10 14
Hence Hai +2{]z minl[Ai +2[[= min “Ai | = Hai || , which implies that
0 0 0 0
a, = a, , since A e ¥ _ , i.e. A does not contain any twin pair.
1O+2 i, T
-1
Therefore, Ci4p = 3 400 bO
0 (o]
~1
= aio o bo
- Cio 5
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and hence A. = A, e {c. } B
1o+3 10+2 10+2
= A, 6 {c. } 0B by the above result
i i
0 0
E Ai
o+l

This result can then be used to show in a similar manner as

above that A.0+4 = Ai0+2 and so on.

Thus in general, we have

A, if j 1is even
i
0
AiO+J =
Ai +1 1if 3 1is odd.
0
Now io e {1,2,...,k~1} implies that iO < iO + 1 <k, and
hence both Ai and Ai +] &re non—empty by our assumption that k is
0 0o

the first index such that Ak+1 = 4,

But then Aio+j # ¢ for all j , 1i.e. Ak+1 # ¢ for all k,
a condradiction. v
PROOF OF THE DIVISION ALGORITHM.

We can now demonstrate the validity of the division algorithm
as follows.

First let us use mathematical induction to show that at the

end of the kth iteration, we have

A1

B

A
(6.5) T = cCo , where C = {cl’CZ""’ck} .

Now for k =1, if A

2 = $, then A

1 = {e;} @ B because by
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definition A, = A, ® {cl} ® B , and hence

-‘-‘-=fia{cl}@B={}={}oA2 ired

3 B B ¢y ¢y F~  as required,
A2 A1 8 {cl} ® B

If A, #¢ , then {cl} 0 3= = {c;} 0 3

{cl} ©B 6 A, 8 {cl} @ B

B

A
B
_ A

B

Hence (6.5) holds for k = 1. So let us suppose it holds for all
k such that 1 s k < m

Now if {cm,c } forms a twin pair, then

m+1

{cl,cz,..., ¢ .} OB = r({cl,...,cm+1} o B)

m+]

]

r({cl,...,cm_bl} o By {Cm’cm-fl} o B)

L}

r({cl,...,cmhl} o B), since r({qn,cmﬁl}oB)=¢

= {Cl’CZ""’Cm~1} @B .

Also if {cm,c

m+1} forms a twin pair, then Asp = A follows

from an argument similar to that used in the proof of lemma 6.5 above.
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Consequently,

} o Am+2

. ) {91""’°m+1} G B6 Am+2
1’00.’m+1 B

{c

B

{cl""’cmrl} @B@ Am

B

A
= {cl""’cmnl} ] 'R

i

% by induction hypothesis.

So we may suppose that {cm’cm+l} does not form a twin pair.

But then {CI’CZ""’C +l} = {cl’CZ""’cm} @ {c_..}, and hence

m mt+ 1
A A 6 {c ..} @B
m+2 m+1 m+1
legsnise 1 @ 5 {cl,...,cm} & {c ,,}0 .
{cm+1} @B@A .6 {°m+1} @ B

= {C,,000,C } @
1 m B

A
m+]l
{cl,...,cm} 8 B

% by induction hypothesis.
Therefore, (6.5) holds for all k 2 1.

Therefore, if Ak+1 # ¢ for all k g L then the algorithm must terminate

at k = n, and hence by (6.5),

Ano+1

B L]

A
3" {c et } &

)
1 0
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1f Ak+1 = ¢ for some k £ n then k wmust be the first

o’
index such that A 41 = ¢ » and hence by lemma 6.5, {cl,...,ck} € ‘7;,

and by (6.5)

A1

B

A
3 = {CI,,..,ck} @
= {cl,...,ck}

which completes the proof.

6.3 Application of Schedule Algebra to K-Shortest~Paths Problems.

For convenience of exposition, we shall assume through out
that 4 is a network in which the labels are elements of the additive
group (R,+) of real numbers. However, the results to be given below
remain valid if the labels of & belong to any Archimedean totally
ordered commutative group.

We shall first consider the problem of determining all the
numerical labels of paths in W and then show how one can modify this
result to solve k-shortest-paths problems. Using the terminology
introduced in section 4.1, our immediate problem is just the computation
of V(Pij) or (M*)ij, where M is the label matrix of W , for all
i,j € {1,2,...,n}. Our strategy for solving this problem is to embed
(R,+) in the commutative group (X,0) of theorem 6.1, where X = R {U R,
and to consider the p-space (X,o,‘hux” ,¥) for solving this problem.
The problem now becomes a path problem in accordance with definition 5.1,

where W 1is now considered to be & network over (¥,0) which is also

compatible with the p-space (X,o,‘&”x” »¥). This is so because by the
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definition of r (see theorem 6.3), it follows that rv(Pij) = V(Pij)
for all i,j or equivalently M: = M*. Now from an argument similar

to that used in establishing corollary 4.5 (plus the use of lemma 6.1

and 6.3 where necessary), it follows that ¥ is compatible with the
p—space (X,o,‘u"X” +¥) 1iff the numerical label of any elementary closed
path in MW must be strictly positive. When this condition is satisfied
(M*)ij £ Qﬂlxll for all 1i,j. Now from our discussion in section 5.1, we
know that M* = M: always satisfies the matrix equation Y = Mr eYe Ir
over the path algebra ( ¥,»8,0) where ¥ = QL“X“ . Since Moo= M

%
and I_ =1, it follows that ¥ =M @ M @ I. But then by theorem 6.4,

we have
% -1
(606) M = (I- 8 M) 2

where © M  denotes the additive inverse of M, IT8M=16@ (8 M and
(I @ M)m1 denotes the multiplicative inverse of I 6 M.

Therefore, our immediate problem is reduced to the computation
of (I e M)'l. Now it is well known that (I @ MD"I can be obtained by
using the following formula.

s(i+j) @ det([I o iji)
for all 1,3 ,

(6.7)  ((Ie M)”l)ij -
det (I & M)

where det(A) denotes the determinant of the matrix A  (for the definition
of a determinant, see e.g. Fox (1964)), [A.]ji denotes the matrix

obtained from A by deleting its jth row and ith columm, and

s(k) = {{0} if k is even

{0}, otherwise

However, a more efficient way of computing (I © M)“1 is to solve
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the equation Y =M@ Y @ I by Gauss or Jordan elimination in linear
algebra (or as discussed in the section 4.2). We note that these methods
will yield solutions of the form (6.7) or its equivalence.

The required numerical labels of paths in N can then be obtained
from the application of the division algorithm to (6.7) or its equivalence.
Moreover, by lemmé 6.4, the labels so obtained will be non-decreasing and
are guaranteed to be elements of R by (6.6) above. Note also that any
labels of paths in W can always be obtained by continuing the division
algorithm long enough.

We turn now to consider the use of the above result for solving
the k-shortest—paths problems. But first, let us note that there are in
general two types of k-shortest-paths problems. The first is to find k
paths in A from a given node X, to a node xj such that their labels
can be ranked as 1st, 2nd,...,kth gmallest among the labels in v(Pij),
The second differs from the first in that the required k shortest paths
must also be elementary. For k = 1, both problems coincide and are better
known as the shortest paths problem, and in this case the problem can be
more efficiently solved by using the p—space (R,+, ﬂ%,min) of example 3.2
above (see also problem 1.1). For k > 1, the first type of k-shortest—
paths problem can also be solved by using the p-space (R,+,‘ﬁ%,k~min) of
example 3.3 above (see also problem 1.6). Of course, the second type of
k~shortest~paths problems can also be solved in this way except that in
tracing the actual paths corresponding to k smallest labels given by
this method, a large number of non-elementary paths may have to be traced
before the required elementary paths are found. This remark also applies
if one uses the above method for computing all the labels of paths in N
by terminating the division algorithm as soon as the required k shortest

elementary paths are obtained. Therefore, it is clearly more efficient if
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one can obtain as small a set of labels as possible which contains those
of the k shortest elementary paths. In fact, the method to be presented
below is actually based on this principle and the set obtained in fact
contains all the labels of elementary paths for any given pair of nodes

in W& . The elements of this set which are labels of the required k
shortest paths are then identified by a certain path tracing algorithm
which we modified from the method of "backward subtraction" described by

Pollack (1961, p.558).

K-SHORTEST~ELEMENTARY~PATHS ALGORITHM.

The following steps yield k shortest elementary paths from

Step O. Set M equal to the label matrix of W .

Step 1. Compute (M*)hj for all h e {1,2,...,n} by applying
Gauss or Jordan elimination to the system y =M@ y @ Ij’

where Ij denotes the jth columm of the unit matrix I.

Step 2. If (M*)ij = ¢ or (M*)ij = {0} when i = j, terminate;

*
there are no paths from X, to xj. If M )ij is free
of denominator, set Y = (M*)ij and go to step 5. Otherwise,
set A equal to the numerator of (M‘*)ij and if 1 # 3 go

to step 4, else

Step 3 Set B equal to the denominator of (M*)ij and B the
multiset obtained from B by deleting all the elements in
B which are also in A as well as those which appear
without hats ("). Choose b, = max{x|x in @ B'} and
apply the division algorithm to (M*)ij until an element

not less than bo is obtained. Set Y' equal to the
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multiset obtained from € B' by deleting all those
elements which do not also appear in the division result

and go to step 5.

Step 4. Set A' equal to the multiset obtained from A by
deleting all those elements with hats ("). Choose
ay = max{x|x € A"} and apply the division algorithm
to (M*)ij until we obtain an element not less than
age Set Y' equal to the multiset obtained from A
by deleting all the elements which do not also appear

in the division result.

Step 5. Set Y equal to the set of distinct elements of Y
and trace the paths corresponding to each of the elements
of Y in the order of increasing magnitude by using the
path-tracing algorithm given below. Terminate when either
k elementary paths have been obtained or Y has been

exhausted.

Note that the computation of (M*)hj for all h other than
i in step 1 above is a prerequisite for the use of the path~tracing algorithm
in step 5. Note also that when more than k shortest elementary paths
are subsequently required, we need only trace additional paths corresponding
to those remaining elements of Y. The justification of this algorithm

will be given at the end of this section.

PATH-TRACING ALGORITHM (cf. Pollack (1961)).

Here we still assume that the label of any elementary

closed path in N is strictly positive. Suppose we wish to
. th
trace an elementary path corresponding to the k smallest

label bk of (M*).j. Then the following algorithm which
i
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presupposes the knowledge of k~min (M*)hj for all he {1,2,..,n}
(see example 3.3 for the definition of k-min(A)) will trace an
elementary path whose label is bk if at least one such path exists,

otherwise it will terminate with a negative answer.

Step O. Set s =1, A=1{i} and Bs = ¢ ,

Step 1. Find a;y € Mih such that bk Tag T bﬁ for some
bt € (M*)hj. Put each such h in BS
Step 2. If j e BS and bk - aij =0, sget 1,71 and terminate;

an elementary path corresponding to bk is

3 4. i
1 172 8~1"8
s Xy PHY eeens X X
1 2 -1 8
Step 3. 1f BS =¢ , go to step 6, otherwise choose an is £ B8
Step 4. If by - aiis # 0 and i e A, delete i from B8
and return to step 3. Otherwise, put is in A,
Step 5, Increase the value of s by 1 and return to step 1
with 1 = o bk = bt .
Step 6. Decrease the value of s by 1 and delete iS from BS

If B1 = ¢, terminate; there are no elementary paths

corresponding to bk‘ Otherwise return to step 3.

Note that the assumption of having all the elementary paths in
the network carry strictly positive labels ensures that the above algorithm
terminates in all cases and its justification is in fact based on the
observation that each subpath from %, to xj of a kth  ghortest path

from X, to x. is always a ttD shortest path for some t £ k. We note
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also that a similar algorithm can also be devised from the knowledge
of k-min (M*)ih for all he {1,2,...,n}.
Now let us illustrate the above two algorithms by considering

the following example.

Suppose we wish to find 2 shortest elementary closed paths

from X5 to itself and 3 shortest elementary paths from x, to Xe
in the following network.
7
*1
3
o
X7 ~2 Xy 2
1 5
%5
4 8<i\w//> 6
. 4
X, > %6
Figure 6.1
The label matrix of the above network is
M= 17} % ¢ o ¢ ¢ ]
{0,2} ¢ ¢ {4} {1} ¢
{3} {-2} {2} ¢ ¢ {6}
¢ ¢ ¢ ¢ ¢ {1}
¢ ¢ {5} ¢ {8} ¢
¢ ¢ ¢ ¢ 9 ¢ |
(i) To find 2 shortest elementary paths from Xg  to itself, we

first obtain (M%) for all h e {1,2,...,6} by solving the following

h5
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system of equations

0,7} o ¢ ¢ o ¢ [y, ] [¢]
6,2}y {0} ¢ {4y {1y ¢ v, ¢
{3} {-2}o0,2} ¢ {6} o | Y3 | |9
$ $ ? {0} 3 {1} v, ¢

¢ ¢ {5} ¢  {0,8} ¢ Vs {o}

Lo ¢ ¢ ¢ ¢ {0} Y | ¢

Using Gauss elimination to solve this system, we obtain, after

the completion of the elimination phrase, the following "triangulated"

system
0,7} 6 9 o 1 [yl [
o}y ¢ (& {1} ¢ Y, ¢
{0,2} {2} {-1} {6} Yy d
{0} ¢ iy eyl =|¢
Cp 0,2,4,8,101 (8,113 ys| |0
{0,2} {0,2}
. {0} _| ve| Lo
The back substitution then yields successively
0,2 -1
Vg = ¢ » Vs {A’A}A > ¥, =4, ¥y = {A b,
{0,2,4,8,10} {0,2,4,8,10}
y, = — L3} =
{0,2,4,8,10}

The next step ig to set A = {O,ﬁ} , B = {O,ﬁ,@,é,lo} which
are respectively the numerator and denominator of s above.
Hence B' = {4,8} and bO = 8, So we apply the division

algorithm to Vs until we obtain Vg = {0,4,6,8, ...} which contains all
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the elements in 6B ., It remains to trace the actual path corresponding
to each element of Y =Y =g B'. Using the path-tracing algorithm

we obtain the required elementary closed paths, namely

xs > X > x2 > x5 and XS > xs

(ii) To find (M*)hB » we need only replace the right~hand side
of the above system, which was obtained after the completion of the
elimination phrase, by the 6%h columm of the unit matrix I. The back

®

substitution will then give successively

~ ~

om0,y By gy 0.56.800,00,00,16)
{0,2,4,8,10} {0,2,2,6,8,10,10,12}
5,7,12,13,15
yz = { 2 A)n 2 } . yl o= @
{0,2,4,8,10}

Let us now set A = {5,5,12,f3,15} which is the numerator

of Y,. Hence A'={5,12,15} and a. = 15. So yé = {5,9,11,12,13,13,14,15,...}

0
is obtained by using the division algorithm. Since all the elements of
A" are contained in Yy» we have Y' = A' and hence Y =A' also.

Finally, using the path-tracing algorithm, we find the elementary path

X, 4 > X, L. Xe corresponds to 5 in Y, the elementary path
1 5 6
X, > Xg > Xq > Xe corresponds to 12, and no elementary

paths has label 15.

As an illustration, let us show how to trace an elementary path
corresponding to 12 in Y above. First, we note that 12 is the 4th
smallest element in 4~min(M*)26 = {5,9,11,12}. Thus we need also compute

4-min (M¥) for all h # 2 by using the division algorithm where necessary.
he
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These are as follows.

.k .
4-min (M )16 = ¢ 4*m1n(M*)36 = {3,5,6,7} ,

4-min(M*)46 = {1} , 4-min (M%) . = {8,10,11,12} , 4~min(M*)66 = {0}.

Initially, A = {2} , Bl = ¢. From the 20d roy of the label matrix M,

we find that 355 = 1 1is the only element satisfying 12 - a5 = 11,

where 11 is the 3%Yd gpallest element in 4nmin(M*)56. Hence B1 = {5}

and A = {2,5}. Applying the same procedure to 11, we get a5y = 5;

11 - acq = 6, where 6 is the 3Yd smallest element in 4~min(M*)36.
Since 254 is the only such candidate, B2 = {3} and hence A = {2,5,3}.
Applying the same procedure once more, we obtain a

x6; 6 - = 0,

36 836
where O is the first smallest element in 4~min(M*)66. Again, this is
the only candidate and hence By = {6}. Therefore, the algorithm terminates

and yields the elementary path

x mm~imm~w> p3 > X > x
PROOF OF THE K-SHORTEST-ELEMENTARY-PATHS ALGORITHM

The validity of the k-shortest elementary-paths algorithm will
be verified with the help of the following well-known result relating the
elementary paths in a graph G over a field (X,+,0) and the arc-value

matrix A.

n
(6.8) det(I-A) =e + ) ( ) &) o viw ) o vl ) o...ov(y_))

h=1 m1+m2+.,+mk=h 1 ) Ty

(i+3) v k

(6.9) (-e) 1737, det([I~A}..) = Z ( Z (~e)ovip_ Yov(w Jo..ov{w )

I my+my*. . +m =h-1 %o oy e

1
if i# 3.
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Here [;"A]ji denotes the matrix obtained from I-A by

deleting its jth row and ith columm; p is an elementary open
path from X, to xj of order e z 13 wmt is the elementary closed
path of order m_ 2 1, for all te {1,2,...,k}; all the paths

pmo ’ wml, e 5 W are disjoint, i.e. they do not have any nodes

in common. For a proof of (6.8) and (6.9), we shall refer the reader

to Ponstein (1966).
Since the label matrix M of W can also be regarded as

the arc-value matrix of the graph G(M) over the quotient~field of the

schedule algebra » it follows respectively from (6.8) and (6.9) that
n
(6.10) det(IeM) = {0} 8 (B ( @ s(k) @ {c. +¢c_ +...4+c 1)
h=1 m,+m.+..+m =h b T
17Ty
o] ) = @
(6.11) s(i+j)6 det(|I8M]..) = @ ( @ s(k) @{d_ +c_ +...4c_ 1)
T p=2 my+m, +, . +m =h-1 T ™1 e

if i#3,

where d e v(p_) , ¢ ev(w ) for all te {1,2,...,k} ,
T %o B By
{0} if k is even
and s(k) =

{6} , otherwise.

Now let us recall our earlier note that the use of Gauss or
Jordan elimination in solving Y =M @ Y‘@ I will always yield (M*)ij
as a quotient of two multisets equivalent to (6.7). In fact, from (6.10)
and (6.11) above, it is easily seen that these two multisets are also

finite because the network is assumed to have only a finite number of

nodes and arcs, and hence a finite number of elementary paths in the
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network. The proof can now be conveniently divided into two cases.
(i) For i # j , we have three possibilities, namely

(a) (M*)ij = ¢. There is nothing to prove in this case

(b (M*)ij # ¢ but free of denominator.

Since (M*)ij 8o obtained is equivalent to (6.7), it follows
that in this case, the numerator must contain a factor equal to det(I 8 M).
This occurs when all the elementary closed paths are disjoint from the
elementary paths from X, to xj . Hence (M.*)ij so obtained is already
a multiset of elements which are labels of elementary paths from X, to
K.

J
*

(C) (M )ij =

multisets. Let us assume first that

» where A and B are non-empty finite

=

A=s(i+]) @ det (]I 6 M|..) and B = det(I 6 M).
3%

It suffices to show that all the labels of elementary paths
from X, to Xj are contained in A and the elements deleted from
A to yield A' in step 4 of the algorithm are not labels of elementary

paths from X, to X; Let d ~ be a label of an elementary path in A

0
which begins at x. ends at x., and has order m.. Then d ¢ vip_ ),
1 3 0 m, o,
where P, is as defined above. Since my 2 1 (because i # j), there
0
is always a positive integer h 2 2 guch that m. = h~1, and hence

0

s(0) e {dm } is a term in the sumon the righthand side of (6.11) above.
0

Since s(0) = {0} , it follows that d_ € A. It remains to show that

all the elements in A which appear with hats cannot be labels of
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elementary paths from X, to xj. Since d_ , Cm yesssC are

oo M M
elements of R , the only elements in A with hats are those corresponding
to the terms s(k) @ {dm te *..+c )} in the sum on the right~hand
0 1
side of (6.11) where k 1is odd, and hence they cannot be labels of

elementary paths in A& . Now consider the case where

A# s(i+]) @ det([IeM]ji), B # det(I6M) but

s(i+j)e dec([leg]ji)

o] 2

det(I6M)

This implies that a common factor has been cancelled out. In
view of (6.10) and (6.11) above, this can only occur when some elementary
closed paths in the network are disjoint from the elementary paths from
X to xj. In fact, the common factor which has been cancelled out
comprises precisely the labels or sum of labels (disregarding the hats)
of these closed paths. Hence it cannot contain labels of elementary
paths from X, to x.. Thus the above argument for A' remains valid

J

in this case.

(11) For i = j , we have two possibilities:
(a) (M*)ii = {0}. Again, there is nothing to prove in this case.
(b) (M*)ii = % s where A and B are finite non-empty multisets.
Let Mi be the label matrix of a network obtained from the given network
by deleting the node ¥; and all the arcs beginning and ending at X, .
It is easily seen that

M= [M];  and T M, =16 M. = [IGMJii )
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Let us assume first that A = det([IGﬁ]ii) and B = det(I8M). Again,

we have to show that B contains all the labels (disregarding the hats) of
elementary closed paths from X; to itself and the elements deleted from
B to yield B' in step 3 of the algorithm are not labels of those
elementary closed paths. The argument is similar to that used in (i)

above except that we need also show that the elements in B which also
appear in A cannot be labels (disregarding the hats) of elementary
closed paths from X, to itself. 1Indeed, by the definition of Mi and

(6.10) above, A = det([IeK]..) = det(I6M.) cannot contain such labels.
ii i
det([1eM] )

Now if A # det([16M];;) and B # det(1OM) but & =
det (16M)

then det([IGM]ii) and det(I6M) must have a common factor. But by
the definition of Mi s this common factor cannot contain labels of any
elementary closed paths from X, to itself. Hence the above argument

for B' applies.
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