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ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS

Doctor of Philosophy

PATH ALGEBRAS : A MULTISET-THEORETIC APPROACH

by Ahnont Wongseelashote

This thesis develops an algebraic theory for path problems such 

as that of finding the shortest or more generally, the k shortest 

paths in a network, enumerating elementary paths in a graph. It 

differs from most earlier work in that the algebraic structure 

appended to a graph or a network of a path problem is not 
axiomatically given as a starting point of the theory, but is 
derived from a novel concept called a 'path space'. This concept 
is shown to provide a coherent framework for the analysis of path 

problems, and the development of algebraic methods for solving them. 
A number of solution methods are derived, which are analogous to 

the classical techniques of solving linear algebraic equations, and 

the applicability of these methods to different classes of path 
problems is examined in detail.

The thesis also presents in particular an algebra which 
is appropriate for the formulation and solution of k-shortest-paths 
problems. This algebra is a generalization of Giffler's Schedule 
Algebra for computing all the numerical labels of paths in a network. 
It is shown formally that these labels can be calculated by using 

direct methods of linear algebra and an algorithm similar to the 

long-division procedure of ordinary arithmetic. Such a method is 

then modified to yield an algorithm for finding k shortest 

elementary paths in a network.
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A Multiset-Theoretic Approach
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INTRODUCTION

This thesis is concerned with the mathematical (abstract) 
study of path problems. The term 'path problem' has, in recent 

years, been widely used to describe a certain class of mathematical 

problems, many of which have real world applications. These problems 
had previously been studied separately by a great number of authors 
in different branches of engineering. Operational Research and Computing 
Science. Numerous procedures for solving them had also been proposed 

separately. It was not until the use of algebraic methods for these 
problems became widespread that mathematicians began their search for 

a unified theory which would be useful for their solution.

Any theory which would adequately describe a path problem 

must be able to incorporate the two different mathematical aspects of 

the problem: one algebraic, the other structural. The algebraic aspect 
of the problem is usually described by a semiring (section 0.2) which 
is often called a path algebra, while the structural aspect is described 
by a graph (section 0.4). The roles played by these two mathematical 
constructs in the abstract study of path problems will be seen in 

Chapter 1 where we present a retrospective study of the existing theory 

of path problems. An important point which emerges from this study is 

that the path algebra of a path problem can be naturally derived from 
a more basic concept, which we describe as a 'path space'. Chapters 
2 and 3 therefore develop this concept. Then, in chapter 4 we show how the 

interaction between the two mathematical aspects of a path problem can 
be fruitfully analysed with the help of a path space. The usefulness 
of this approach is further demonstrated in Chapter 5 where we analyse 

and extend various methods of solving path problems.



The final chapter treats a specific path algebra in detail. This 

path algebra is shown to be especially useful for solving the k 
shortest path problems, particularly in the case where only 

elementary paths are required. A novel algorithm for obtaining 

such paths is also given.

In order to make this thesis self-contained and to 

prevent possible confusion of terminology, a preliminary chapter 
on background mathematics is also included.

Ill



CHAPTER 0

BACKGROUND MATHEMATICS

0.1 Sets, Relations and Functions

As usual in mathematics, we do not formally define 
what a set is, but rather think of it intuitively as a collection 
of distinct objects which can be distinguished (at least theoretically) 

from those objects which do not belong to the set. Moreover, 

throughout this thesis, whenever the word "set" is used, it 
means a subset of a given set. We shall use the notation 2^ to 
denote the set of all subsets of a given set X , and 2^^^ to 

denote the set of all finite subsets of X, i.e. those subsets 
which contain only a finite number of objects obtained from the 
given set X. We shall also write

(i) X e A for "x is an object or element of a set A", and
X ^ A for its negation.

(ii) A(Z B for "A is a subset of a set B", and A(t B for

its negation.
(iii) A \ B for "the set of all objects which belong to A but

not to B".

The notation {x|p(x)} will always be used to denote the 

set of all X such that the proposition P(x) is valid. For 
example, the set | i c 1} denotes the set of all elements

indexed by some set I. Now let {A.|i e 1} be a collection 
(set) of sets indexed by some set I. Then the set jJ A of

lEl 1
elements which belong to at least one set A. is called the union
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of the sets , and the set of elements which belong

to every set A; is called the intersection of the sets A..1 --- --------- 1
For I - {1,2} , we also write A^IJ A^ and A^n A for the 

union and intersection of A^ and A^ respectively.

By a Cartesian product A x B of two given sets A,B, 
we shall mean, as usual, the set made up of all ordered pairs 
(x, y) with X G A and y e B ; similarly for the Cartesian 

product A X B x C .

By a relation on a set X , we mean a subset of the 

Cartesian product X x x . When A is a relation on X , we 
usually write

X A y for (x, y) e A.

We then say that A is reflexive iff^ x A x for all 

X G X, transitive iff whenever x A y and y A z , x A z also; 

symmetric iff x A y always implies y A x , and anti-symmetric 

iff from X A y and y A x always follows x - y. Among all 

types of relations the following two classes are very useful to us. 

The first is the class of equivalence relations. A relation ^ is 

said to define an equivalence relation on a set X iff it is 

reflexive, symmetric and transitive. The most important property 

of such a relation is that it partitions the set X into disjoint 
equivalence subsets of X, i.e. those subsets of which the elements 
are in equivalence relation to one another. Also conversely, every 
disjoint partition of X always defines an equivalence relation on 

X. The second useful class of relations is formed by orderings. A 
relation g is said to define an ordering on a set X iff it is

t "iff" denotes "if and only if"
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reflexive, anti-symmetric and transitive. An ordering is said 

to be total on X iff for any x, y e x, we either have x ( y 

or y $ X. A set X considered with an ordering ( , usually 
written as (X, $) , is called an ordered set. Several classes 

of ordered sets will be considered below.

Let (X, () be an ordered set. A subset A of X is 
said to contain a least (greatest) element x', also written as 
min A (max A), iff e A and x' ( x (x ^ x') for all x e A.
If every non-empty subset of X has this property, then (X, () is called 

a well ordered (dually well ordered) set.

Let A be a subset of X. An element u e X is called 
an u2Rer (lower) bound of A in X iff x ( u (u $ x) for all 

X G A. The set A is then said to be bounded above (below).
Moreover, u is called the least upper (greatest lower) bound of 
A in X if u is also the least (greatest) element among the 

upper (lower) bounds of A in X. With these definitions, we can 
now define the following interesting classes of ordered sets.

An ordered set (X, f) is called a join (meet) semilattice 
iff every finite subset A of X has a least upper bound sup A 
(greatest lower bound inf A), a complete join (meet) semilattice 

iff every non-empty subset of X has a least upper (greatest lower) 

bound, and a conditionally complete join (meet) semilattice iff

every non-empty subset of X which is bounded above (below) has a 
least upper (greatest lower) bound. If (X, ^) is both a (complete, 

conditionally complete) join and meet semilattice, then it is simply 

called a (complete, conditionally complete) lattice.
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Now for any two sets A,B, a function f from A to B, 
written f: A + B , is defined as a subset of the Cartesian 
product A X B such that (x, y) e f for each x e A and a 
single y e B. Usually, y is denoted by f(x) and referred 

to as the ^_ge of x under f. The set of all the images under 
f IS usually called the range of f and denoted by f(A). The 

domainof f is just the set A. A function f: A + B is said 
to be a surjection iff f(A) - B, an injection iff from f(x).f(x') 
always follows x-x' , and a bijection iff it is both an injection 

and a surjection. When a set A is said to be in one-to-one 

coirespondence with another set B, we mean there is a bijection 
from A to B.

Let f: A + B and g: B + C be two functions. Then the
function gf: A + C defined by gf(x) - g(f(x)) for all x c A is

called the composition of f by g (in that order). More generally, 
let g : B' + C where B'(Z B, we can define the composition gf as 

above whenever f(A)(: B'. Now a function f: A ^ B is said to 

extend or be an extension of g; A' + B' iff A'C A, B'C B and 
f(x) - g(x) for all X E A'.

By a binary operation o on a set X, we mean a function 

0 : X X X ^ X. Each image o(x, y) is more familiarly written as 

X 0 y . A binary operation o is said to be commutative iff 

X o y . y 0 X for any x, y; associative iff (x o y)o z = x o(y o z)
for any x, y, z. An element e of a set X is said to be an

—^ binary operation o on X iff e o x - x- x o e for 
all X E X. Note that whenever such an element exists, it is unique.
Now for each x E X, we can define the power of x with

respect to a binary operation o on X to be an element x^ of X 
which is obtained recursively as follows.
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X 0 x^ ^ for any k e{2, 3, ...} , - x .

It is also convenient to define x^ - e, the identity for o 

whenever e exists. Finally, a non-empty subset A of a set X 
is said to be closed with respect to a binary operation o on X 
iff X 0 y e A whenever x, y e A.

0.2 Monoids and Semirings

By a monoid (X,o) we mean a non-empty set X equipped 
with an associative binary operation o for which there is an 

element e e X acting as the identity. For any two subsets A, B 

of a monoid (X, o) , we define a new set

AB " {x 0 y I X e A, y e B} ,

called the complex product of A and B induced by o. With respect 
to this complex product operation, the set 2^ can be easily seen 

to form a monoid with {e} as the identity.

A monoid (X, o) is said to be commutative iff o is
commutative, cancellative iff x o z - y o z or z o x - z o y for

any x, y, z e X always implies x = y, and a group iff each element
of X has an inverse, i.e. for every x s X, there is y c X such that

X 0 y - e - y o x. Note that whenever an inverse element exists, it
is unique by the associativity of o . A monoid (X, o) is said

to be locally finite (Eilenberg (1974))iff each x e X admits only
a finite number of factorizations x - x, o x_ o...o x with12 n

f G for all i ell, 2, ...,n}. It follows that if x o y = e, 

then X " e - y , and hence a non-trivial group cannot be locally 
finite.
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We shall also be interested in monoids (X, o) which 
are also ordered by some relation $ such that the following 
condition is satisfied:

For any x, y e X such that x $ y , we have

X o u $ y 0 u and u o x $ u o y for all u e X.

Such a monoid will be called an ordered monoid, and 
denoted by (X, g , o). Furthermore, whenever the above condition 
is satisfied, we shall say that the binary operation o is 

^^Spatible with the ordering $ on X. An ordered monoid (X, g, o) 
is said to be.Archimedean iff from x > e and y > e , we can 

always find a positive integer n such that x" > y.

Here x > y denotes, as usual, x ) y (or y g x) and x + y.

Let X, Y be two sets equipped with binary operations 
0^ and Oy respectively. Then a function f: X Y is called a
homomorphism iff

f(x o^ X ) " f(x) Oy f(x') for all x, x' e X .

If in addition, both X and Y possess identity elements, 

say e^ and e^ respectively and (X, o^) is a monoid, then f is 
called a monoid homomorphism whenever f(e^) - e^ is also satisfied. 

Note that (f(X), o^) then becomes a monoid also.

A spiring (X, +, o) is a set X on which two binary 
operations + and o , called addition and multiplication 

respectively, are defined such that
(i) (X, +) is a commutative monoid with 6 e X as identity

for +,

(X, o) is a monoid with e e X as identity for o, and 

Multiplication is distributive over addition, i.e.

X o(y+z) . X o y + x o z and (x+y)oz - x o z + y o z 

for any x, y, z, c X.

(ii)
(iii)
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We note here that the expressions on the right-hand 

sides of the above two equalities are not ambiguous if we assume 

the convention that multiplication is performed before addition. 

Indeed, this convention will be implicitly assumed for all the 

semirings discussed throughout this thesis.

Now the identity e for multiplication will be called 
the unit and the identity 8 for addition will be called the zero

of the semiring. Note that the latter definition is inspired by 
the fact that

X o 6 - 6 - e o X for all X in any semiring.

This is because x - x o e - x o (ere) - x o e r x o e - x r x o 0 
lor all X implies that x o 6 - 6 , and similarly for 6 - e o x. 
Note also that whenever e-e in a semiring (X, +, o), „e 

necessarily have X - (e) (because x - x o e - x o 6 - 9).
let AC X. Then A is said to be a subsemiring of a 

semiring (X. r. „) iff (A. r, o) (s itself a semiring. 

Consequently, for a given semiring (X, +, o) , we infer that a 

non-empty subset A of X Is a subsemiring iff A is closed with 

respect to addition and multiplication, and that 9, e c A also.

In the present study, it is often convenient to express

certain properties of a semiring (X, +, o) in terms of the relation 

X defined on X by

(0.1) X K y iff X + y _ y (or any x, y c X .

It is easily seen that < is anti-symmetric because 
addition is commutative, and that < is transitive because addition 

IS associative. But < is not generally reflexive. However, it
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is always so whenever e + e - e holds. For these reasons, we shall, 

for convenience, refer to ^ as the pseudo-ordering of the semiring 
(x, +, o). The following properties of < will be found especially 

useful for the present study. Their proofs are straightforward and 
hence omitted.

(0.2) 6 ^ X for all x e X.

(0.3) X < y implies x o u < y o u and u o x < u o y for all u e X. 

Moreover, if u < w , then x o u < y o w and 
u 0 X w 0 y always.

(0.4) X < y and u < w imply x + u ^ y + w for any 

X, y, u, w e X.
Moreover, if e + e = e holds, then x + u < y + u for 
all u e X.

(0.5) X < z and y < z imply x + y < z for any x,y,z c X.

More generally, x. < z for all i G{l,2,...,k} implies
that

+ Xg + ... + X^ ^ z.

A semiring (X, +, o) is said to be a ring iff (x, +) 
is also a group, commutative iff o is commutative, idempotent 
iff e + e - e , and a Q-semiring (Yoeli (1961)) iff x + e = e for 

all X E X. Note that every Q-semiring is idempotent and every 
idempotent ring (X, +, o) is trivial, i.e. X = {8} . The latter 

follows because for all x e X,
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X + 8 = X + X + (-x) = X + (-x) 0.

A commutative ring (X, +, o) in which e ^ 0 and 

X 0 y = 8 always implies either x = 8 or y = 8 is called an 
integral domain. A commutative ring (X, +, o) in which the 

set of non-zero elements forms a group with respect to multiplication 
is called a field.

Now let (X, + , 0 ) be a semiring and Y be any set 

equipped with two binary operations +« and Oy , and with 
identities 8^ for +y and e^ for Oy. Then a function 
f: X ^ Y is called a semiring homomorphism iff f is a monoid 
homomorphism with respect to (X, + ) and (X, Oy)- Note that 

(f(X), +y, Oy) then becomes a semiring. If in addition, f is 

a bijection, then f is called a semiring isomorphism, and X, Y 

are also said to be isomorphic as semirings.
In the present study, we shall also be interested in the 

concept of a complete semiring (Eilenberg (1974) ) which can be 
defined as follows.

Let (X, o) be a monoid with e e X as the identity
for 0 and consider a formal sum X x- for an arbitrary indexing

iel ^
set I to be a well defined element of X which satisfies (0.6) to 

(0.8) below.

(0.6) If I = { i) , then ^ x. = {x.}
iel 1 1

(0.7) If I = I. is a disjoint partition of I, thenjeJ ^

lel jeJ
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(0.8) z 0
lEl lEl

(z 0 x^) , and

- 1 0 z - ^ (x. 0 z)
iEl ^

The set X is then said to form a complete semiring.
Note that a complete semiring is also a semiring if one defines
Xf + Xg as ^ X. with I = {1, 2} and 8 as ^ x. with I = 

iel iel ^

As an example of a complete semiring, consider the set N = NU{"}
which is obtained from the usual semiring (N, + , «) of non-negative
integers by augmenting it with the element » and extending addition

and multiplication by the following rules

(i) For any n E N , n + = = » + n = » + « = m ^

(ii) For any n E N such that n ^ 0 , n « = » n, and

(iii) 00 00 S= 00 5 0°0"0“<»0.

A formal sum ^ x. can then be defined in N as follows: 
iel ^

If X. » 0 for all but a finite number of i E I , then 
^ X. is the addition of all the non-zero x. . Otherwise. T x. = »

iEl " it^ "

Therefore, N^ is a complete semiring. Moreover, the set 
N^ also forma a semiring with respect to the extended addition and 
multiplication as defined above.
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0.3 Matrices

By an (m x n) matrix A over a set X, we mean a 
function A : {1, 2, m} x {i, 2, n} ^ X . Each image
A(i,j) is usually written as A^., also called the (i,j)-entry 

or (i, j)-element of the matrix A. An (mxn) matrix A can 

also be visualized as an array of m x n elements, namely

^il' ^12 * * ° * ' ^In

Agi, ^22 ^ * * *

\l' , A mn

The entries A. , A. , A. form the i^^ row of A
11 1/ In -------

and the entries form the column of A.
The matrix A above has m rows and n columns : it is an (m x n) 
matrix.

If (X, +, o) is a semiring, we can define addition A + B 
for any two (m x n) matrices ,yver X

(0'9) (A + B).. ^ A.. + B.. for all i,i;ij ij ij

multiplication A o B for two conformable matrices, say A is 

m X r and B is r x n , by

(0.10) (A 0 B).. = ^ (A.. 0 B .) for all i, j.

Therefore, whenever (X, +, o) is a semiring, we can 
always make the set JK,(X) of all (nxn^ matrices over X into a

- 11



semiring by defining additions and multiplication of any two 

(n X n) matrices as above.
Moreover, the unit I and zero 8 of this semiring is

given by

e if i - j
I.. = i and 8^. " 8 for all i, j.

8 , otherwise iJ

Here e and 8 are respectively the unit and zero of 

the semiring (X, +, o) .

If X is actually a complete semiring, then we can also

make (X) into a complete semiring by defining multiplication as
before but addition is now replaced by the following definition of
a formal sum T ^ .

kel

(0.11) r ^ A"
kel

I
kel

for all i, j

Now if X is ordered by soma relation ( , we can also

define

(0.12) A $ B iff A_. $ Buj for all i, j,

where A and B are any two (m x n) matrices

Therefore, whenever (X, () is an ordered set, we can 

also make v^^^X) into an ordered set with respect to the ordering 
defined by (0.12). Moreover, if addition and multiplication of the 

semiring (X, +, o) is compatible with the ordering $ , then so is 
addition and multiplication of the semiring (JK^^X), + , o) with the 

ordering defined by (0.12).
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0.4 Graphs

By a graph G, we mean an ordered pair (W,V), where 

W is a finite set of elements called nodes, and V is a set 
of ordered pairs of nodes called arcs. For convenience, we shall 
always assume that W has n nodes which are designated as

Xg, ..., X . In such a graph G, we define a path p of order 

k which begins at a node x. and ends at a node x. to be a

sequence

(x. , X. ) (x. , X. ) ... (x. , X. )^1 ^l' ^2 ^k-1

of k consecutive arcs. x. , x....... x. will be referred to^1 ^2 ^k-1
as intermediate nodes of p. A path q is said to be a subpath of
p iff q is a path which can be traversed when traversing p.

The path p is said to be closed iff x. = x. , and elementary
^0 ^k

iff X. ^ X. whenever r ^ s (except of course, for closed paths 
^r 8

where x. - x. must be satisfied). For convenience, we shall ^k
always assume that the set P of all paths in the graph G also 
contains the null path 8. for each node x. which can be defined 
as a closed path of order zero with x. as its beginning and end.

Now for any two given paths p and q in which the 

end of p is just the beginning of q , we may combine the two 
paths into one single path pq by concatenating the sequence of 

arcs of p with those of q. Such an operation will be referred 
to as path concatenation and will be denoted simply by juxtaposition. 
Since the concatenation of two paths is not always defined, it is 
not a binary operation as defined in section 0.1. However, it is 
convenient to regard path concatenation as a kind of partial binary
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operation defined on the set P of all paths in G, and to consider 

some of its properties which are similar to those of binary 
operations. Thus for instance, path concatenation is associative, and 

p6. - p - e.p for all paths p which begin at x. and end at x .
^ ^ j"

The following observation will be useful in our subsequent 
study. Suppose p is a non-elementary path, then in traversing 
the path p, we must come across at least one elementary closed 

path, say . Accordingly, we may factorize p as follows.

P " 9^ * where p^ and q. are subpaths of p, one
of which may be null but not both; if p^ is not null, then p 

has the same beginning as p and the same end as if q^ is

not null, then q^ has the same beginning as w. and the same end 
as p.

Now since the beginning and end of are the same,

P^ 9^ also a path with the same beginning and end as those of 

p. In other words, p^ q is just the path obtained from p by
deleting from p. If p q ig again non-elementary, we may

again factorize p^ q^ as above and obtain p^ q^ « p^ q_ for 

some elementary closed path . We can again factorize p^ q. if 
it is also non-elementary and so on until we finally obtain an 

elementary path p^ q for some s ^ 1. For convenience, we shall

refer to p^ q^ as a contraction of p and the above process for
obtaining p^ q^ as the contraction process.

By a graph G over a set L, we mean a triple G-(W,V,v), 
where (W,V) is a graph and v : V L is a bijection. If in

addition, L is a subset of a monoid (X, o) or a semiring (X, +, o),

G will be respectively referred to as a graph over a monoid or a 
semiring . For a graph G over a monoid (X, o), the bijection 

V : V + L can be extended to the function v : P ^ X as follows.
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(0.13) v(p)

e if p" 8. for all i 1

v(x. , X. )ov(x. , X. )o...o v(x. ,x. ) .otherwise. 
^0 ^1 ^2 ^k-1

Note that, for economy of notation, we have here used the 
same notation v for both functions and that (0.13) is well 
defined because o is associative, and that v(pq) = v(p)ov(q) 
for any two paths p and q for which their path concatenation is 

defined. Thus in view of our previous remark, v can be considered 

as a kind of partial homomorphism from the set P of all paths in G

to the set X. Let us note also that whenever G is a graph over a 
semiring. v(p) will always be defined in terms of the multiplication 

of the semiring.
Now let us note the one-to-one correspondence between graphs and 

matrices over a set L.lt is well known that for any given (n x n) 

matrix A. one can always define a graph G = (W. V. v) over the 

set L of all the (i. j)-entries of A by taking

W to be the set of all the columns ....
V to be the Cartesian product W x W . and

V: V + L to be given by v(A^. Aj) » A_j for all i.j.

However, if A is a matrix over a semiring (X, +. o), 
it is convenient to redefine V to be the set of ordered pairs 
(A^, A.) such that A^. ^ 8 , where 8 is the zero of the semiring. 

The resulting graph will be denoted by G(A) and will be simply 

referred to as the graph of the matrix A over the semiring (X, +, o) 
Conversely, it is also well known that for any graph G 

over a set L , one can always define a matrix A(G) - A over 
1AJ{8} , where 8 ^ L is some special symbol, by
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^X14) /L. " '
v(x^,Xj) if (x., x.)E V

, otherwise

If G is a graph over a semiring, 0 is usually 
chosen to be the zero of the semirin^^ For convenience, we shall 
call A(G) the arc-value matrix of the graph G. We note that as 

a consequence of choosing a fixed numbering for the nodes of G, 
the arc-value matrix A(G) is unique. If we apply a permutation 
to the numbering of nodes of G, then the new arc-value matrix A' 

is equivalent to the existing arc-value matrix A of G in the 

sense of matrix equivalence, i.e. A' - Q o A o Q , where Q is
the permutation matrix obtained by applying the same permutation

Tsequence to the rows of the unit matrix I, and Q is defined by
T(Q )^j " Qj^ for all i, j. Finally, we note that A(G(A)) " A and 

G(A(G)) " G always hold.

From the above discussion, we see that any graph G is 
completely described by its arc-value matrix A(G) = A. Moreover, 

the power of this matrix describes all the paths in Q completely. 
More specifically, let denote the set of all paths from

x^ to X. which have order exactly k, then it can be shown that
Ic fclnA , the k power of the arc-value matrix A, is given by

(0.15)

A neat way of proving (0.15) is to introduce the function 
(P) fPlo : 2 + X, where 2' denotes the set of all finite subsets of

P, as follows.
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(0.16) o(q) - ^ v(p) , o(^) = 8
peQ

This function has the following two properties which are 

easily verified.

(0.17) ^(Q2L)Q2L)»''LJQ^^ " o(Q^) + o(Qg)+ ...+ o(Q^^ whenever

QLDQ. - * for i ^ j.

(0.18) ^r r , )o...o o(Q_ .) ,1 ^1^2 ""k; ir. ^1^2

where each Q is a finite subset of paths from x to x and rs r s

Qrs Qst " and q c .

The proof of (0.15) now follows from these two properties, 
For in view of (0.17) and (0.18), it suffices to show that

(0.19)
(1) (1) (1)

"J ^1-^2....Vl ‘’’"'^1 ' '

(k)
and that the terms in the union form a disjoint partition of P^.

This can be shown by considering the equivalence relation ~ defined 
(k)on P). as follows: ij

p ~ q iff p and q have the same intermediate nodes.

(k)The set P). is then partitioned into its equivalence 

subsets by this relation. Now a glance at the general term on the 
right-hand side of (0.19) will confirm that it is in fact one such 

equivalence subset. The proof of (0.15) is therefore completed.
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Finally, we note that from (0.15), it follows that 

= 0 whenever the graph G has no non-null closed paths, 

because ^ J such a graph.
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CHAPTER 1

PATH PROBLEMS IN RETROSPECT

The first abstract (mathematical) study of path problems 
that appeared in print was by Moisil (1960). This work of Moisil was 
inspired by an earlier work of A.G. Lunts (also known as A.G. Lunc) 
on the application of Boolean algebra to the analysis of relay- 
contact electrical circuits. Moisil showed that the theorem 

obtained by Lunts (1950) for matrices over a Boolean algebra in 

fact holds for matrices over a less restrictive algebraic structure, 

namely

THEOREM 1.1 Let (X, +, o) be a commutative semiring 
(see section 0.2) which also satisfies

(1.1) For any x e X, x + x o y - x for all y E X.

Then for any matrix A ejK^^X) such that A^. = e for all 1,

n-1 .n(1.2) I < A 4 A^< ... < A" - A

where ^ denotes the pseudo-ordering of the semiring ( JW, (X), +, o), 

see section 0.2.

In fact, the assumption of commutativity in the above 

theorem is superfluous. This point is evident from the following 

result discovered by Yoeli (1961).
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THEOREM 1.2 Let (X, +, o) be a Q-semiring (see section 0.2) 

Then for any matrix A e such that A.. = e for all i,
we have

I < A < A^ < ... < A"^^ . A" . ...

That the above theorem is equivalent to theorem 1.1 
without the assumption of commutativity can be easily seen to be 

a consequence of the fact that (1.1) says no more than y ^ e for 
all y E X.

Theorem 1.1 was used by Moisil (1960) to solve special 
cases of the following problems.

PROBLEM 1.1 Shortest Path

Let G be a graph over the additive group (R^, +) 

of non-negative real numbers (see section 0.4). For any two nodes
x\, X. in G, determine

min {v(p)|pEP^.} ,

where P^^ is the set of all paths in G which begin at x^ and
end at x..J

PROBLEM 1.2 MAximal Capacity Path

Let G be a graph over (R ^ ) where the binary
operation ^ is defined on by a ^b - min {a,b}

For any two nodes x^, x. in G, determine

max {v(p)|p E P^ } .
PROBLEM 1.3 Most Reliable Path

Let G be a graph over the multiplicative monoid 
({x| Of X f 1}, .) For any two nodes x^, Xj in G, determine

max {v(p)|p E P^.} .
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We note here that the relevance of theorem 1.2 (and 

hence theorem 1.1) to some of the above problems was also noted 

by Yoeli (1961). Now in order to solve these three problems by 
means of theorem 1.2, let us first interpret theorem 1.2 in terms 
of the graph G(A) of the matrix A (see section 0.4) as follows.

If G(A) is a graph over a Q-semiring such that 
v(x.,x.) - e for all nodes x\ in G(A), then
(1.3) o(P.j°^)<n(P.j^))<o(P.j^^)< ...<o(P.j""^)).o(p.j(")) .

(k)where o and P.) are as defined in section 0.4 above.

In fact, the assumption that v(x\,x\) - e enables us

to conclude that o(P\.^^^) " o(P\:^^^) for all s c N , where

s
^ij for all s e N .'ij

1] ' ' ij

[=0 _ 4 4 6 (k)

To see this, let

A^^^ " I+A+A^+...+A^ for all s E N.

.HThen from (0.15) to (0.17), it follows that the matrix A^J is 

given by

(1.4) (aW).. . .(P,. W) for all s e N .

But the assumption A.. " e for all i is equivalent11
to I'(A, and hence A for all s e N . Consequently, the

above claim is justified and (1.3) can now be rewritten as

(1.5) o(P..[^^)<o(P..[^^)<o(P..[^^)4...<o(P..[^^^])- o(P . [°^)

This result essentially enabled Mbisil (1960) to identify 
problems 1.1 to 1.3 above in the case where the graph G is such
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that v(x., X.) - a for all nodea x. in G with the more

general problem of determining the (i. j)- entry of the matrix
jLA , where A is the arc-value matrix of the graph G,

To see how reasonable this identification is, let us 

consider problem 1,1. It is clear that in this case, the 
additive group (R*, +) can be embedded in the Q-semiring

^ » +) where is as defined in problem 1.2 above. 
Now if v(x,, x\) " 0 for all i is satisfied, theorem 1.2
yields

min jv(p)|p e - min ^v(p)|p e ^ ^

as interpreted from (1.5) above. Since P.. - JyL ,1] k"0 1]

min iv(p)|p G " min jv(p)|p e P^j[^

Therefore, problem 1.1 is equivalent to the determination 
of the (i, j)- entry of the matrix A^^ - A^ ^ . Similarly, one

can easily show that problema 1.2 and 1.3 are also equivalent to the 
determination of the (i,j)- entry of the matrix A^^ - A^ where

A is the arc-value matrix of the corresponding graph.

In fact, the restriction that v(x,, x.) " e for all i 

can be dropped if one identifies the above three problems with the 
problem of determining the (i, j)- entry of the matrix A^^ 

rather than A . This is because theorem 1.2 can be easily seen 

to be equivalent to the following

TREOREM 1.3 Let (X, +, o) be a Q-semiring. Then for any matrix 

A G (X), we have

(1.6) I < ... - A^"] . ...
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It is somewhat surprising to note that under the same hypothesis 

as that of theorem 1.3, Pair (1967, p. 278) later obtained 

a weaker conclusion than (1.6) namely

I + A + A^ + .. + A^ " I + A + A^ + ...+ A^ for all s ) n , 

while Peteanu (1970, p.l67) erroneously concluded that

A + A^ + ... + A^ " A + A^ + ... + A^ ^

To see that A + A^ + ... + A" ^ A + A^ + ... + An-1 for
some (n x n) matrix A over a Q-semiring, consider the (2 x 2) 
matrix A " ^ ^ ^^ over the two-element Q-semiring

X " {6, e} . For clearly.

A + A/ ■[ 1

However, from theorem 1.3, we always have 
A + + ... + A^ ^ " A + A^ + ... + A^\ a result which was also

proved by Benzaken (1968).

From the above discussion, we may now tentatively define 
a path problem as follows.

DEFINITION 1.1 Let G be a graph over a Q-semiring and A be
its arc-value matrix. Then by a path problem, we mean the 
determination of one or more entries of the matrix A^^

From this definition, a path problem can therefore be 
solved by computing the matrix A^^ . Now as a consequence

of theorem 1.3 and the fact that a Q-semiring is necessarily an 
idempotent semiring, one can compute the matrix A^^ by 

recursively squaring the matrix I + A until one obtains the 
matrix (I + A) where k is the least positive integer not 

less than n-1. As a matter of fact, this method was widely in
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use until the following algorithm warn discovered.

ALGORITHM 1.1

Step 1. Set - A

fk}Step 2. Compute B recursively for k - 1 until n by

-'ir-ir»■ “If
The above algorithm was first shown by Roy (1959) to 

compute the matrix A^ ^ over the two-element Q-semiring 

X - {6, e) whenever A.. - e for all i is also satisfied.

But from the result of Warshall (1962), this algorithm actually 
computes the matrix A + A^ + ... + A° without the assumption 

that A^^ - e for all i. That Warshall's result can be 
extended to matrices over the semiring (R^LVf"} , ^ , +) was first 

realized by Floyd (1962). On the other hand, Tomescu (1968) 

subsequently generalizes the result of Roy (1959) to matrices over 
a commutative semiring satisfying (1.1), i.e. the algebraic 

structure of Moisil (1960). However, as was noted by Benzaken (1968) 

and proved by Murchland (1965) as well as Robert and Perland (1968), 
algorithm 1.1 is valid for computing the matrix A + A^ + ... + A° 

over a Q-semiring. It will be seen later that this algorithm is 
in fact valid for computing the matrix A + A^ + ...+AT over any 

semiring provided that A satisfies a certain condition. Moreover, 
it is somewhat interesting to note that algorithm 1.1 is in fact 

a particular form of a more general result obtained by 

McNaughton and Yamada (1960) in automata theory.

- 24 -



If we now replace atep 1 of algorlcbm 1.1 by 

Step 1' Set - I + A ,

then the resulting algorithm was shown by Pair (1967) to compute 
the matrix A^^^ over any Q-semiring. But in view of theorem

1.3, this modified algorithm must in fact yield A [»-l] . This
modified algorithm is of little interest to us because to obtain

we can simply use algorithm 1.1 to compute A + A^ + ... + A^ 

and then add the unit matrix I to it which would then yield 

the required result. Moreover, algorithm 1.1 is of interest in 
its own right because in several practical problems, we often 
require the matrix A + A? + ... + A^ rather than the matrix 
A^^ As a matter of fact, we could simultaneously consider

the determination of one or more entries of the matrix 
A + A^ + ... + A^ and the matrix A^^ in our definition of

a path problem . However, for simplicity of exposition, we shall 
omit this consideration throughout this chapter.

Let us now consider the following variant of problem 1.1

PROBLEM 1.4 Longest Path

Let G be a graph over the additive group (R , +) of 
non-negative real numbers. For any two nodes x\, x. in G, 
determine

max {v(p)|p e P^.} , if it exists.

We note that max{v(p)|p e may not exist if the
graph G over (R*, +) contains a closed path c such that 

v(c) > 0. So let us assume that the graph G satisfies the 

following condition.
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(1.7) v(c) - 0 for every closed path c in G,

With this assumption, it can be verified that

max{v(p)|p e " max{v(p)|p e for all s ) n-1

Now since P^j " ^3^ P^.it then follows that

max{v(p)|p e P..} " max {v(p)|p e P..^^ 
rj rj

Therefore, we can also identify problem 1.4 in the case 
where condition (1.7) is satisfied with the problem of determining 
the (i,j) -entry of the matrix over the semiring (R*, V, +)

where the binary operation V is defined on by 
a V b - max{a, b) . However, even this modified case of problem 

1.4 does not fit into our previous definition of a path problem 

because (R , V, +) is not a Q-semiring. Therefore, definition 1.1 
has to be modified if one also wants to consider problem 1.4 as a 

path problem. It is precisely for this reason that Peteanu (1970) 
obtained a generalization of theorem 1.2 which can be stated as 

follows.

THEOREM 1.4. Let (X, +, o) be an idempotent semiring (see 
section 0.2). Then for any matrix A e (X) such that
A s o11

(A^ all i, we have

I < A < A^ < A^ ^ " A^ "

Let us now interpret this theorem in terms of the graph 
G(A) . Theorem 1.4 effectively says that if G(A) is such that
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(1.8) ^ all i , and for all ke{0,l,...,n-l},

then (1.5) holda. This interpretation suggests that one may 
replace condition (1.8) by the following.

(1.9) v(m) ^ e for every elementary closed path m in G.

To see why this is so, let us first establish the following 

useful result, where for convenience, a graph G satisfying (1.9) 

will be said to be absorptive.

LEMMA 1.1 For any non-elementary path p e P^j of an absorptive 
graph G over a semiring (X, +, o), there is always an 
elementary path p e such that v(p) ^ v(p) .

PROOF This result can be obtained by employing the

contraction process discussed in section 0.4 above. For using 

this process, the non-elementary path p can be factorized as 

follows

P - Pi q^, p^ q^ - p^ q^,,..., " P, q^ ,

where p q is a contraction of p. s 8

Consequently, v(p)X v(p^q^)^v(pgqg)^...<v(pgqg)" v(p) , 

where p = Pg9g required elementary path. Note that we
have here used property (0.3) of the pseudo-ordering X oi the

semiring.
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with the aid of lemma 1.1, we now show that (1.8) is
implied by (1.9). For let p e P i*

elementary, then v(p)xe by assumption. If p is non-

elementary, then by lemma 1.1, there exists an elementary path
p G P.^ such that v(p)<v(p) . But v(p)<e because p is

an elementary closed path and hence v(p)< e. Therefore, v(p)<e 
(k)for all p G P.^ \8.y aud hence by property (0.5) of < , we

have o(P.,^^^\8.)^e. But then

(k)o(P;.' ') - o(P^i' '\6,) + 0(8.)(k)
11

- o(P^^^^^\8^) + e , since o(8.) - v(8.) « e

as required.

On the other(1.9) is implied by (1.8) because it 
follows from the idempotency of addition that v(w)^v(w), and

e, where k isit it
(klchosen so that w G P.

hence v(w) ^ v(w) + \

ii

Therefore, the hypothesis of theorem 1.4 can be replaced 

by (1.9). In fact, using (1.9), one can obtain the following 
result which coincides with theorem 1.4 whenever the semiring is 
also idempotent. For convenience, let us call a matrix A 
absorptive iff its graph G(A) is absorptive.

TBEOREM 1.5 Let (X, +, o) be any semiring. Then for any 
absorptive matrix A e (X), we have

In-l] . ,[n]
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The validity of this theorem will be proved below. But 
first, let us obtain the following,

LEMMA 1.2 Let G be an absorptive graph over any semiring 
(X, +, o). Then the following condition holds.

(1.10) For any finite subset B such that E B CIP..
1]

we have o(B) " o(E..) where E.. is the set of 1]
all elementary paths in P.. of G.

PROOF First, we show that v(p) < o(E..) for all p e B\E
By lemma 1.1, we have v(p) < v(p) for some p e E^. whenever 

p E B \ E^j. Therefore, it follows from properties (0.2) and (0.4) 
of < that v(p) ^ v(p) + \ p) " o(E..) as required.

Consequently, it follows from property (0.5) of < that 
o(B\E..) < o(t^.) for all i,j, and hence

^ J 3.J

o(B) - o(B\\E..) + o(E..) " o(E..) for all i, j. V
Ij Ij IJ

We note here that Brucker (1974, p.34) erroneously concluded
H . .[n-l]that condition (1.10) implies A/ where A is the

arc-value matrix of G. The error in his argument lies in the fact 

that every elementary path in a graph with n nodes has at most 
n arcs (and not (n-1) arcs as claimed by Brucker (1974)). 

However, it is true that every elementary open path in a graph 

with n nodes has at most (n-1) arcs, and hence
for i j. Therefore, a(P..[^ ^^)"a(E..)for i ^ j

r ^follows from lemma 1.2. That o(P J
E..([ ij - ij

11 ) " o(E..) also holds cannot
X X

29



be deduced from lemma 1.2 because in general but
this can be deduced from the fact that since G is absorptive.

" e - o(E^^).

..H).Since lemma 1.2 can always be used to obtain o(P.j^^J)"o(E^.) for 

all i, j, the validity of theorem 1.5 is thereby established. 

Moreover, we have just shown that

(1.11) A* - where j'

We note here that (1.11) and theorem 1.5 in its present 

form are due to a result originally obtained by Carrg (1971) 
for matrices over a semiring which also satisfies additional 
assumptions. However, his proof of this result can easily be 
rewritten without the use of additional assumptions. This point 

was also noted by Shier (1973) and essentially by Gondran (1975).
It is also of interest to note that Iri (1962) had earlier shown 
that (1.11) is always true whenever lemma 1.1 and the idempotency 

of addition are assumed valid.

Although of no interest to the study of path problems in 

general, the question concerning the validity of the converse 
of theorem 1.5 is a sound mathematical question. It turns out that 
this question has a negative answer since we have found a counter
example to this converse even when the idempotency of addition 
is assumed. This example will be given later in this chapter where 
it is more appropriate (see page 46).
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Let us note in passing that in stating condition (1.10),Brucker
(1974) failed to stipulate the finiteness of B. Such a stipulation

is necessary because when B is an infinite set, ^ v(p) may
peB

not be a well-defined element of the semiring.

The above discussion suggests that we may now modify our 
previous definition of a path problem as follows.

DEFINITION 1.2 Let G be an absorptive graph over a semiring 
(X, +, o) and A be its arc-value matrix. Then by a path problem 

we mean the determination of one or more entries of the matrix

Since any graph G over a Q-semiring is obviously absorptive, 
it follows that this definition is more general than definition 1.1 

above. Moreover, this definition allows us to include the following 
as a path problem. For convenience, a graph G which has no 
non-null closed paths will be said to be acyclic. Clearly, an 
acyclic graph is also absorptive.

PROBLEM 1.5 Parts Requirement (Vazonyi (1954))
Let G be an acyclic graph over the multiplicative monoid 

(N, ') of non-negative integers . For any two nodes x., x. in G, 

determine

I «(p) .
pePy

which is just the ordinary sum of a finite number of v(p) for
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each p e P^j . Note that P^. is finite because G is 

assumed to be acyclic.

From definition 1.2, we see that a path problem is again 
solved by computing the matrix where A is an absorptive

matrix over any semiring. For the case where the semiring is also 
idempotent, it is evident that the previous method for computing 

by recursively squaring the matrix I + A remains valid.*&-i]

However, better methods are available in this case.

It was effectively demonstrated by Carr6 (1971) that in 

solving a path problem as given by definition 1.2, an analogy with the 

classical methods of solving ordinary linear equations can be 

fruitfully exploited, since the matrix can be viewed as a
solution of the matrix equation Y " A o Y + I . To this end, he 

developed several methods which are analogous to both the 
elimination and iterative techniques of linear algebra (see e.g.
Fox (1964)), for solving the matrix equation Y - A o Y + B. Some 

of these methods were also seen by him to correspond to already 

well known algorithms for solving problem 1,1. Moreover, algorithm 

1.1 was noted by him to correspond to his Jordan method for solving the 
matrix equation Y " A o Y + A. (This was also shown subsequently 
in Backhouse and CarrA (1975)). Since the idempotency of addition 

played a major role in the work of Carrd (1971) as well as Backhouse 
and Carr6 (1975), it is therefore of interest to find out the 

extent to which these variants of linear algebraic methods can be
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applied without the assumption of idempotency of addition. An 

attempt along this line was made by Gondran (1975) where he 
claimed in particular that the Gauss and Jordan methods as developed 

by Carr6 (1971) remain valid without the idempotency assumption.

He in fact gave a proof of the Jordan method in substantiating his 

claim. Unfortunately, his proof cannot be taken as valid for a 

reason to be given in section 5.2 below. Thus the task remains 
for us to justify his claim. This justification would yield in 
particular the validity of algorithm 1.1 for computing 

^ + ... + where A is an absorptive matrix over a semiring,
a result which was obtained by Roy (1975). It is interesting to 

note here that Brucker (1974) also showed that algorithm 1.1 
with step 1 replaced by step 1* above is in fact valid for computing 
the matrix A^^ whenever the graph G(A) satisfies (1.10) above.

Let us now consider the following natural generalization 
of problem 1.1.

PROBLEM 1.6 k Shortest Paths

Let G be a graph over the additive group (R*, +) of 

non-negative real numbers and k a positive integer. For any two

nodes x\, Xy in G, determine
k-min(v(p)|p e ,

which is just the set consisting of the first, the second, ..., t 
smallest elements of the set {v(p)|p e P^.} , where t is the 

largest positive integer such that t $ k .

th

Note that when k « 1 , problem 1.6 coincides with 
problem 1.1. The method used in solving previous problems in the 
setting of a graph over a semiring were also extended to this problem
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by several authors which include Pair (1967), Giffler (1968), 
Derniame and Pair (1971), Minieka and Shier (1973), Shier (1974), 

Gohdran (1975) and Roy (1975). However, unlike previous problems, 

a relevant semiring for solving this problem, which we shall 
from now on refer to as a k shortest path algebra, is not 
immediately apparent. In consequence, several analogous proposals 

for a k shortest path algebra were made by these authors. The 
following k shortest path algebra , 0) is inspired
by their work.

Let TK denote the set of all well-ordered subsets of 

R including *, and define the function k-min :'y'+ IT by

(1.12) k-min(A) " '
* if A " *

a^, ..., a^} , otherwise

Here a^ < a^ < ... < a^ are t successively smallest elements of 
A and t is the largest index such that t $ k.

Now set G ^ |k-min(A) « A} and define two

binary operations 0 and @ on by

A @ B - k-min (A1^^B), and

A e B - k-min (AB), where AB " (a+b | acA, bcB}

It can be verified that ( 0) forma an
idempotent semiring. Now since k-min(x} - {x} holds for all
X e R^, one can identify R^^ with the subset of 'K . which

k-min
consists of only singleton subsets of R^. This identification then
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allows us to view problem 1.6 above in terms of a graph over

^^k-min* verified (cf. Shier (1974))
that

(1.13) k-miD^v(p)|p E ^ - k-min(v(p)|p e P^j [nk-l] for 8)nk-l,

GO
Since P.. " P^. , it follows thatij k"0 ij

k-min{v(p)|p e P..} " k-min /v(p)|p e
I 1

Consequently, problem 1.6 is equivalent to the
( I fnk—ildetermination of k-min(v(p)|p e ^

(i, j)-entry of the matrix
which is just the 
[nk-f|

where A is the arc-value matrix of the graph G over ('yr . ,@,0)
I@A# ... 0A

k-min

nk-l

Similarly, we may consider the following generalization 
of problem 1.4.

PROBLEM 1.7 k Longest Paths

Let G be a graph over the additive group (R , +) of 
non-negative real numbers. For any two nodes x., x. in G, 
determine

k-max{v(p)|p E * if it exists,

Note that k-max(A) for any subset A of the set HK'

of all dually well ordered subsets of R and the empty set ^
can be defined dually from (1.12), and that krmax{v(p)|p E P..}

^ ^ ij
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may not exist for the same reason as in problem 1.4. Therefore, 
condition (1.7) must be assumed to guarantee its existence. 

Moreover, with this assumption, one can verify similarly chat

k-max^v(p)|p E " k-mexjv(p)|p e for all s ) nk-1,

and hence

k-max(v(p)|p e P.j} - k-max^v(p)|p e .

Therefore, one can also identify problem 1.7 with the 
determination of k-max^v(p)|p e or the (i, j)-entry

of the matrix where A is the arc-value matrix of Che

graph G over the k longest path algebra ('K^^-^ax* which
is constructed from the function k-max : + TT* in a dual

manner from the derivation of the k shortest path algebra above.

We may now rephrase our definition of a path problem 
so as to include problems 1.6 and 1.7 as follows, where for convenience, 

a matrix A over a semiring is said to be n -stable iff there 
exists a non-negative integer n such that
A^ ° . Clearly, A is Og-scable iff A^^^ - A^^ for

all 8 ^ n .

DEFINITION 1.3 Let G be a graph over a semiring (X, +, o) and 
A its arc-value matrix which is also n.-stable. Then by a 

path problem we mean Che determination of one or more entries of the 
matrix A^^^ .
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By this definition, a path problem is solved by 
computing the matrix Again, for the case where the
semiring is also idempotent, this matrix can be obtained by 
resursively squaring the matrix I+A until we obtain (I + A)^ 

where k is the least positive integer not less than n^. However, 
since A is ng—stable, A^-^^ obviously satisfies the matrix 

equation Y - A o Y + I and hence, it is more fruitful to follow 

Carrg (1971) and also more recently Carrd (1976) by considering 

methods of solving the matrix equation Y - AoY + B in this case 
(see section 5.3 below).

Now observe that definition 1.3 is more general than 
definition 1.2 because by theorem 1.5, an absorptive matrix A is 

always (n-l)-stable. At this point, it interesting to ask which 
other matrices are ng-stable for some positive integer n^. For 
matrices over commutative semirings, Gondran (1975) found an answer 

in Theorem 1.6 below. For convenience, a graph G over a semiring 
(X, +, o) will be said to be q-regular iff it satisfies

(1.14) There exists a positive integer q such that

v(w)^^ e + v(w) + v(w)^ + ... + v(w)^

for every elementary closed path w in G, where v(w)^ 
denotes the q-th power of v(w).

Also for convenience, a matrix A e (X) will, be 
said to be q-regular iff G(A) is q-regular.
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THEOREM 1.6. Any matrix A over a commutative semiring (X, +, o) 
is ng-stable if it is q-regular for some positive integer q. 

Moreover, if G(A) has t elementary non—null closed paths, then

ng - nt(q-l) + (n-1) .

In fact, Gondran (1975) did not obtain an explicit value 
for Ug but noted that it corresponds to the maxiimnn order of 

paths in G(A) which do not traverse any elementary non-null closed 

paths more than (q-1) times. We shall prove theorem 1.6 via the 

following

LEMMA 1.3 Let G be a q-regular graph over a commutative 
semiring (X, +, o), the set of all paths in G which do not

traverse any elementary non-null closed path in G more that (q-1) 
times, and Q be any set of paths in G which also contains all the 

subpaths of any path in Q . Then for any p e Q but p ^

there exists H (Z such that v(p) ^ o(H).

PROOF Let p E Q but p ^ . Then by assumption, p

must traverse at lease one elementary non-null closed path more than 
(q-1) times. Let us suppose that p traverses exactly k 

elementary non-null closed paths for more than (q-1) times each, say 
s^ times for s^ for w. and so on. Now by the commutativity
of o , we may use the contraction process to obtain

8. 8) sv(p) - v(w^) 0 v^Wg) 0 .... 0 v(m^^ ^ o v(p q ) ,

where PgQ. i8 taken without loss of generality to be an elementary 

open path of Q. Let us write
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- e + v(w^) + v(w^)2 +...+ v(w.)^"^

for all i e (1, 2$ A" $ * # # g k} . Then we claim that

v(w^) ^ y^ for all 1 eil, 2, .... k}

To juatify this claim it suffices to show that 
condition (1.14) above always implies

v(w)™^ e + v(m) + v(w)^ +...+ v(w)^

for all m ) q . This result can be easily shown by mathematical 
induction on t, the detail of which will be omitted here since 

a more general result will be proved later in lemma 1.4 below.

Therefore, granting that this claim is justified, it 
follows from property (0.3) of ^ that

v(p) < y^ 0 yg 0 ... 0 y^ o v^p^q^) .

But by definition, y. - c(H.) for all i e {1, 2# # # * g fk} , where

^i* ^i^ ^ for all i E {1, 2,...,k}

and hence

v(p) ^ o(H^) o 0(5^) 0 ... 0 ^(H^) 0 o(p q^) - o(H)

where H - ... {p^ q } .

We now claim that H(Z .

t. t.
For let X E H , then x " w_ w_ ... w, p q where1 2 k 8 s

t^ ^ q-1 for all i E{1, 29 ® ® f k} can be considered as a path in
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Q which traverses all the elementary closed paths Wg, 

and the open path p^q in any manner which defines a path. Note 

that there must exist at least one possibility since p itself 

was assumed to traverse and p q in the first
place. Now x is also in because it does not traverse any

elementary closed path w. more than q-1 times. Hence
X e , and therefore as claimed, and the
lemma is proved. V

/q)

The proof of theorem 1.6 can be seen to follow from 
lemma 1.1 by observing that

(1.15) C: P.j for all s % ng - nt(q-l) + (n-1),

where ^ij^^ " ^ij^^ and t denotes the number of all

elementary non-null closed paths in G, This observation follows 

because the maximum order of a path which does not traverse any 

elementary non-null closed path more than (q-i) times corresponds 
to that of the path which traverses exactly t(q-l) elementary 

non-null closed paths plus one open path which amounts to 
nt(q-l) + (n-1) - n_.

Now let p E for any s ^ n^, but p ^ '

Then p ^ because otherwise,

[=Jr\n (q) _ (q)
rj rj IJ 1] IJ

a contradiction.

Therefore, by lemma 3.1, we have 
H (Z , and hence

v(p) X o(H) for some
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v(p) < o(H) + H) "

for all p E ij ij
(0.4) of < .

follows from properties (0.2) and

Consequently, it follows from property (0.5) of < that

^ o(0^.^^^), and hence
iJ iJ

o(Pij[^^) . o(p.j[^]\ n.j^^^) + o(n.j(9)) . o(n^j(9))
' ij IJ

proves theorem 1.6 above.
which

In problem 1.6, the k shortest path algebra 
^ ^k-min' seen to be a commutative semiring and

condition (1.14) is easily seen to be satisfied by q " k. Hence 

theorem 1.6 enables us to infer that the arc-value matrix A in 

problem 1.6 is ng-stable where n^ - nt(k-l) + (n-l). However, 

from (1.13), we see that A is in fact (nk-l)-stable. It is 

therefore of interest to note that theorem 1.7 below, which is due 
essentially to Roy (1975), yields (1.13) directly when applied to 

problem 1.6. For convenience, a graph G over a semiring 
(X, +, o) will be said to be q-absorptive iff it satisfies

(1.16) v(w^) 0 v^Wg) 0 ... o v(w ) < e + v(w^) + ... +

+ v(w^) 0 V^Wg) 0... 0 v(w ^)

for every q-tuple (w., w_, . , w ) of elementary
closed paths in G.

Also for convenience, a matrix A e (X) will be 
said to be q-absorptive iff G(A) is q-absorptive
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THEOREM 1.7 Any matrix A over a commutative semiring is 
(nq-l)-stable if it is q-absorptive.

We note here that the original result obtained by 
Ray (1975) was that A is nq-stable. That A is in fact 
(nq-l)-stable can be proved via the following

LEMMA 1.4 Let G be a q-absorptive graph over a commutative 
semiring (X, +, o), be the set of all paths in G which

do not traverse more than (q-1) elementary non-null closed path 
in G, and Q be any set of paths in G which also contains all 
the subpaths of any path in Q. Then for any p e Q but p ^ 
there exists z H(Z such that v(p) X d(H),

PROOF First, let us show that condition (1.16) implies that

v(w^) 0 vOwg) o...ov(w ) < e + v(w.) + ... +

+ v(w^)o v(Wg) 0 ...o v(w _^)

for every s-tuple (w^, ..... w ) and for all s 3 q.

We show this by mathematical induction on s. For s - q, the 

result is obviously true. So we may assume its validity for 
q < s < t as our induction hypothesis and show that it is also 
valid for s - t.

By this induction hypothesis, we have

v(Wg)o v(w^)o... 0 v(w^)< e + v(w2)+...+ v(Wg)o v(wg)o...o v(w ), 

and hence it follows from properties (0.2) and (0.4) of < that
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v(w^)o v(w2)o... 0 v(w^) < v(w^)+v(w^)o v(w.)+...+v(w.)o v(w«)o...o v(w )

< e+v(w^)+...+v(w^)o v(w2)o...o v(w )

" e+v(w^)+...+ v(w.)

which yields the required result.

Now let p e Q but p ^ 0^^^. Then by definition, p 

must traverse at least q elementary non-null closed paths. Thus by 
the contraction process, we may write

P " P^q^ - P2"2^2.... Ps-l^s-1 " Ps^^*

8 ) q and Pgqg is a contraction of p. Since o is commutative, 
we then have v(p) - v(w^)o v(w.)o...o v(w )o v(p q ). It then 
follows from the above result and property (0.3) of ^ that 
v(p) < (e+v(w^)+...+v(w^)o v(w2)o...o v(w ^))o vCp^q^)

PgQg is not a closed path, then v(p) ^ o(H^) where

^1* ^1 1 “2---

’ *'’s'’s’"l’’3‘‘s’ “l“2'’s‘'s...

If otherwise, then Pgqg " ^ is an elementary non—null
closed path, and hence

v(p) ^ v(w)+v(w)o v(w^)+...+ v(w)o v(w,)o...o v(w .)I 1 q-1

It then follows from properties (0.2) and (0.4) of < that

v(p) < e +v(w) + v(w)o v(w^) +...+ v(w)o v(w,)o... o v(w )
^ 1 q-1

- e + v(w) + ...+ v(w)o v(w.)o...o v(w _)1 q-2
" G(H_) ,
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where - {8^, w, @ ww« ^q-2^

Since and H. can both be shown to be a subset of 
r n

Q by argument similar to that used at the end of the

proof of lemma 1.3 above, it follows that in both cases, v(p)<o(H) 

for some as required. V

The proof of theorem 1.7 now follows from lemma 1.4 by 
observing that

(1.17) 0.. ^(2 P..L^fClP.. for all s ) nq-1
IJ

where " P..nnl
ij , This observation follows because the 

maximum order of a path which does not traverse more than (q-1) 

elementary non-null closed paths corresponds to that of the path 
which traverses exactly (q-1) elementary non-null closed paths plus 

one elementary open path which amounts to n(q-l)+(n-l) « nq-1. The 
rest of the proof follows from an argument similar to that used 

at the end of the proof of theorem 1.6, and hence its detail will be 
omitted.

Let us now consider the following

PROBLEM 1.8 Simple Paths

Let Z be a finite set of letters, also known as an 
alphabet. By a word over E , we mean a finite sequence of letters 
written one after another in a definite order. A word will be said 
to be simple iff all its letters are distinct. A word without any 

letters will be called the empty word and is denoted by A. The operation
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which combines two words into one is known as concatenation, 

and is denoted by juxtaposition. It is well known that the set 
E* of all words over E (including A) forms a monoid with 

respect to concatenation,also known as the free monoid generated 
by E. With these preliminaries, we can now state our present 

problem as follows.

Let G be a graph over an alphabet E such that each 
arc in G is assigned a distinct letter of E . We may then 
consider G as a graph over the monoid E*. For any two nodes 
x\, Xj in G, determine

sim {v(p)|p G P..} ,

which denotes the set of all simple words v(p) for each p e P...

This problem can be formulated and solved as a path problem 
in the sense of definition 1.3 as follows

Let TK- 2 and {A e T|sim(A) - A} , where
sim(A) denotes the set of all simple words in A. Define two binary

operations # and 0 on . bysim '
A @ B " sim (A(JB), and

A e B " sim (AB), where AB = {ab|a e A, b e B}

It can then be verified that ( 0, 0), called the
simple path algebra, forms an idempotent semiring.

Now since sim{x} - {x} for all x e E implies that one
can identify the letters of E with the singleton subsets of

sim*
the graph G in problem 1.8 can be considered as a graph 
over ( Moreover,
in G, it can be verified that
over 0)' Moreover, if m is the total number of arcs
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(1.18) aim {v(p)|p e " aim {v(p)|p e for all s ) m.

CDSince P^ ^ , it follows Chat

8im{v(p)|p e P^j} - sim (v(p)|p e -

Therefore, problem 1.8 is equivalent to the determination
of sim{v(p)|p e which is just the (i, j)-entry of the

Iml ^
matrix J, where A is the arc-value matrix of the graph G

Now we note that although the graph G in problem 1.8 
satisfies (1.14) and (1.16) when considered as a graph over the 

simple path algebra, we cannot use theorems 1.6 or 1.7 to deduce the 

validity of (1.18) because the simple path algebra is not necessarily 

a commutative semiring. This example therefore gives us the 
motivation for obtaining other results analogous to theorems 1.6 or 

1.7 but without the commutativity assumption. These results will be 
given later (see theorems 4.6 and 4.10 below).

Problem 1.8 also provides us with a counter example to the 
validity of the converse of theorem 1.5, which we discussed earlier 
(see page 30). For it suffices to take a graph G with 

m - n-1 arcs which also contains an elementary closed path say m. 
Then clearly,

v(w) » {A} - sim{v(w),A} - {v(w),A} {A} ,

which shows that (1.9) does not hold here. On the other hand,
(1.18) can be expressed as

" A^^ for all s % n-1 .

- 46



Let us now make an observation which will open the 
way to an alternative approach to the abstract study of path 
problems. This observation concerns the semirings in each of the 

above problems. We have seen that while the relevant semirings for 
solving problems 1.1 to 1.5 were self-evident, those for solving 

problems 1.6 to 1.8 were not. Nevertheless, the methods employed 

to construct these latter semirings, whether it be the k shortest 
or the k longest or the simple path algebras, are all carried out 
via a certain function, say r, which is defined on a certain set 
'K of subsets of the monoid (X, o) which is also closed under 

union and complex product and contains {e}, * . By means of r, 

one can then define

(1.19) " {A E |r(A) . A} ,

and two binary operations @ and @ on by

(1.20) A » B - r(A UB), and

(1.21) A @ B " r(AB) , where AB » (a o bla e A, b e B} .

The properties that the function r must possess are 
obviously those which will make ( T", $, @) become a semiring. For 

this purpose, the following properties can be seen to suffice.

(1.22) r(*) " *

(1.23) r(A L^B) - r(r(A)UB)

(1.24) r(AB) - r(r(A)B) - r(A r(B))
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In fact, one can also apply the above method to 
construct the semiring for solving problems 1.1 by taking r " min 
and Y" as the set of all well ordered subsets of and ^ . The 

semiring (@) so obtained can be easily seen to be 
isormorphic to the semiring (R*U{»},/S, +) which we obtained 

^^^lisr for problem 1.1. The same remark applies also to problems 
1.2 and 1.4, where r can again be taken as min or max, 
whichever is appropriate. The only exception is problem 1.5. We 

shall return to this point later. Meanwhile, let us note that all 

these problems except problem 1.5 can also be equivalently expressed 
in terms of the function r as the determination of

(1»25) r{v(p)|p E , if it exists.

Note that in general, r(v(p)|p e P^j} may not exist 
because the set {v(p)|p e P^.} may not belong to 'T' , the 

domain of the function r. Examples of this situation have already 
been seen in problems 1.4 and 1.7 above. Moreover, it can be observed 

that condition (1.7) which was assumed in order to guarantee the 

existence of (1.25) in these two problems in fact imposes a 

restriction on the graph under consideration. Any graph which does 

not satisfy condition (1.7) is therefore in some sense not compatible 
with the domain of the function r and hence not compatible with 

the algebraic structure ( T", #, 0) over which the graph is to be 
considered in these two problems. It turns out that this question 

of compatibility can be fruitfully analysed in its full generality 
if has the following two properties.
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(1.26) contains all the finite subsets of the monoid (X, o) 
including the empty set

(1.27) If A e y , and B (C A, then BelK also.

The detaikof this analysis will be given later but in 
a slightly more general framework (see section 4.2 below). It 
suffices to note here that all the appropriate ^K-sets of the above 

problems except problem 1.5 do possess properties (1.26) and (1.27) 
above.

In summary, all the above problems except problem 1.5 
can all be described as a path problem in accordance with the 

following definition

DEFINITION 1.4 Let G be a graph over a monoid (X, o), 
a set of all the subsets of X which has properties (1.26), (1.27) 
and is also closed with respect to union and complex product, and 

r a function defined on which satisfies (1.22) to (1.24). 
Then by a path problem we mean the determination of r{v(p)|p e 

for one or more pairs (i, j), provided,of course,that they exist.

Let us now give another example of a path problem in 
accordance with the above definition, namely

PROBLEM 1.9 Elementary Paths

Let Z* be the set of all words (inlcuding X) over an 

alphabet Z (see problem 1.8 above). A word x of Z* is said 

to be an abbreviation of another word y of Z* iff x can be 

obtained from y by removing at least one (and possibly all) of the



letters of y . (Note that every word with at least one letter 

has the abbreviation A). For instance, the word "mary" is an 

abbreviation of the word "elementary". Now for any set A of 

words of Z* , let b(A) be the set of all words which are 
obtained from A by deleting all those words which also have all 
their abbreviations in A. With these preliminaries, we can now 

state our present problem as follows.

Let G be a graph over an alphabet Z such that each 
arc in G is assigned a distinct letter of Z . We may then 

consider G as a graph over the monoid Z*.

For any two nodes in G, determine

b {v(p)|p G P^.} .

We note that the above problem can also be considered as 
a path problem in accordance with definition 1.3 or, better still, 
definition 1.2, because the graph G can be easily verified to be 

absorptive when considered over the elementary path algegra 
( ^b' which can be defined via (1.20) and (1.21) with

r - b and 2 . We note also that ( @, e) coincides with
the free distributive pseudo-lattice of Benzaken (1968) which was 

also used by him to enumerate elementary paths (see also Murchland 
(1965) ) in a graph.

In fact, any problem which satisfies definition 1.4 and 
has the property that

(1.28) r/ v(p)|p G
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can easily be shown to satisfy definition 1.3 by considering 
the graph G of the corresponding problem to be over the semiring 
( », 0). The converse is also true in the case where the

semiring (X, +, o) is idempotent. For one can then define
T and r as follows.

r(A)
f {sup A} if sup A e X and sup A + 8

^ , otherwise

That TK so defined has properties (1.26) and (1.27) is obvious 
and that r has properties (1.22) to (1.24) can be shown in a 

manner similar to the proof of theorem 3.1 to be given later.

Now since the arc-value matrix A of G is n_-stable, 
it follows from (0.16) and (1.4) that

(1.29)

ij pep..

But condition (1.29) is equivalent to (1.28) because
sup A - ^ X whenever A + * is a finite set, and therefore, the

xeA
converse is verified.

Let us now return to consider the difficulty which 
prevents problem 1.5 from being a path problem in accordance with 
definition 1.4. This difficulty in fact arises from the non— 

idempotency of addition in N. However, this shortcoming can be 
eliminated by using a concept of multisets,to be introduced in the 

next chapter. It is precisely the aim of this thesis to show exactly 
how this can be done and also to demonstrate its usefulness for solving 

all the above problems and many others (see chapter 5 below).
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CHAPTER 2

MULTISETS

2.1 Complete Lattice of Multisets

A natural way of generalizing the intuitive notion of 
a set is to remove the restriction that all its elements are 
distinct. We then have the corresponding notion of a collection 

which may contain an identical element repeated a finite number of 
times. Such a collection is usually called a multiset (Knuth (1969)) 

whenever the number of repetitions is finite. However, here we 
shall take the term multiset to mean a collection of elements
in which infinite repetitions of an element are allowed^ , and 

call a multiset non-singular whenever none of its elements are 
repeated an infinite number of times. Thus formally,

DEFINITION 2.1 Let N^ be the complete semiring of non-negative 
integers as defined in section 0.2. A multiset A with elements 

from a given set X is a function A:X N^. Each image A(x) will 

be called the multiplicity of x in A, which is just the number of 
times X occurs in A. A multiset A is said to be empty, written 

A " ^ , iff A(x) = 0 for all x e X; non-singular iff A(x) » for 
all X G X.

From the above definition of a multiset, it follows that 
any set can simply be regarded as a multiset in which the multiplicity 
of each element is at most unity. The connection of sets with 
multisets is even more fundamental in that to each multiset A, there

This corresponds to an J/-8ubset in Eilenberg(1974), where - N"I"
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is always a unique set d(A) - {x|A(x) + 0} , called the support 

of the multiset A. Note that d(A) is just the set of all 
^i^tinct elements of the multiset A. This concept of a support 

enables us to distinguish the following types of multisets which 
are especially useful to our present study.

DEFINITION 2.2.

(i) A multiset A is said to be quasi-finite iff its 

support is a finite set, i.e. d(A) contains only a finite number of 
elements. A is then said to be finite iff it is also non—singular.

(ii) A multiset A is said to be quasi-countable iff 
its support is a countable set, i.e d(A) is either a finite set or 

It can be put in one-to-one correspondence with the set of positive 
integers. A is then said to be countable iff it is also non-singular

(iii) Let (X, () be an ordered set. A multiset A with 

elements from X is said to be well ordered (dually well ordered) 
iff its support is a well ordered (dually well ordered) set.

When there is no chance of confusion, we shall use 
capital letters to denote multisets and lower case letters to denote 

elements. By virtue of the fact that multisets are mere 

generalizations of sets,it is natural to make extensive use of set- 
theoretic notation whenever confusion is not possible. Thus for 
instance, we shall write x c A to indicate that x is an 
element of A, i.e. A(x) ^ 0. However, the notation {x|p(x)} will 

be reserved exclusively for sets. For finite multisets it is
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often convenient to exhibit their elements as a list enclosing 
symbols between braces, but note that for multisets which contain 

only a single element, say {x} , we find it convenient to omit 
its braces whenever its meaning is clear from the context. Finally, 

a quasi-finite or quasi-countable multiset may also be written in 

extenso such as {1, i, 2, 3} or (l, 2, 3, ...} , provided
that the suppressed elements are obvious.

Now let denote the set of all multisets with
elements taken from a set X. Then N^ is easily seen to be 

ordered by the following relation to be called multiset inclusion 
and denoted by in analogy with set inclusion.

(2.1) A B iff A(x) $ B(x) for all x e X ,

where f denotes the extension of the ordering "less than 
or equal to" to N^ by defining « $ « and n < * for all n e N.

The multiset A is then said to be a submultiset of B.

INEOREM 2.1 (N^;, ^ ) is a complete lattice

PROOF From (2.1), it follows easily that the least upper
bound Ag^A^ of an arbitrary collection {A^|i s 1} of multisets 

indexed by some set I is given by

(2.2) sup{A^(x)|iGl} - / max{A^(x)|iEl} , if it exists 

^ , otherwise

its greatest lower bound i%%^^ given by
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(2.3) Ql *ij (x) " inf{A.(x)|ieI} - min{A^(x)|i el}

Note that our use of the notations (J and in Che
proof of the above theorem is justified by the fact that when each

is a set, nnd coincide respectively with the
iel isl

set-theoretic union and intersection as defined in section 0.1.

2.2 Multisums, Multiproducts and Closures

Several interesting operations can be defined on multisets, 
But first let us note that since multisets are formally defined as 

functions, two multisets are considered equal iff they are equal as 

functions, i.e.

(2.4) A - B iff A(x) - B(x) for all x e X.

DEFINITION 2.3 For any two multisets A, B of N^ , the multiset 
A B which is defined by

(2.5) (A B) (x) " A(x) + B(x) for all x e X

is called the multisum of A and B. Here + denotes the extended 

addition defined on N^, see section 0.2.

Various properties of the multisum operation can be 
immediately derived from the corresponding properties of the extended 
addition on N^. Thus for instance, the multisum operation is 

commutative and associative because the extended addition has these 
properties; also A * - A for all A e N^ because

A(x) + 0 " A(x) always.



More generally, one can define a multisum (+) A.
iel ^

for an arbitrary collection {A^|i e 1} of multisets indexed by 

some set I as follows.

(2.6) ( A.)(x) " ^ A. (x) for all x e X.
iel ^ iel ^

Note that the right-hand side is meaningful because 
N^ is a complete semiring (see section 0.2), and recall that 
.I^A{(x) denotes the sum of all non-zero A.(x) if there are

1
only finitely many such A.(x), otherwise {IiA{(x)

We shall also write as A±^Ai if I - {1, 2, ...} .

In fact, by virtue of theorem 2.1, we could also define

as the least upperbound of all the multisuma (+|A. ,
jeJ ^

where J ranges over all the finite subsets of I, i.e.

(2.7) g ‘ Mm % 'j'

This definition is easily seen to be equivalent to (2.6) 

Another multiset operation of interest is 
that induced by a binary operation on the set X. More precisely,

DEFINITION 2.4 Let o be a binary operation defined on a set X. 
For any two multisets A, B of N^ , the multiset A o B which is 

defined by

(2.8) (A 0 B)(x) - ^ A(y)B(z) 
x-yoz

is called the multiproduct of A and B . Here juxtaposition of 
A(y) with B(z) denotes the extended multiplication defined on
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N see section 0.2.

Note that (2.8) is meaningful because N^ is a 

complete semiring and that the right-hand side of (2.8) denotes 

the sum of all nonrzero A(y)B(z) which satisfies the equality 

X " y 0 z , provided that there are finitely many such A(y)B(z), 
otherwise it is just » . We note also that in view of (2.6) above, 

the multiproduct A o B may be better understood if one writes

(2.9) A 0 B " (x 0 y}
(x,y)eAxB

which is easily seen as a generalization of the complex product 
induced by the binary operation o , see section 0.2. Furthermore, 

our use of the same notation for multiproduct as for the binary 
operation which induces it does not lead to confusion since multisets 

are denoted by capital letters here.
Now as one might expect from the way we define the 

multiproduct operation, various properties of this operation do not 

depend only on the extended addition and multiplication on N but 
also on the corresponding properties of the binary operation which 
induces it. Thus for instance, it is easily seen that the 

multiproduct operation is commutative and associative if the binary 

operation which induces it also has these properties; also {e} is 

the identity for the multiproduct operation whenever e is the 
Identity for the binary operation. But there is one property of the 
multiproduct operation which is independent of the binary operation 

which Induces it, namely, the multiproduct operation is always 

distributive over the multisum operation. Actually, a more general 
distributive law holds which can be seen in the following theorem.
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where all the above properties of the multisum and multiproduct 
operations are conveniently summarized.

THEOREM 2.2. Let (X, o) be a monoid. Then (N^, , o) is

a semiring with unit {e} and zero *. Moreover, is a
complete semiring if L+|A. as defined by (2.6) is taken as

iel ^
a formal sum in .

PROOF Since is a semiring (see section 0.2), it follows
from the above discussion that (N^ , , o) is a semiring

also. Now the multisum (+) A. as defined by (2.6) can be seen
iel ^

to possess properties (0.6) to (0.8) of a formal sum in a complete 

semiring because N is itself a complete semiring, and hence
N is a complete semiring as claimed. We shall not verify properties

(0.6) to (0.7) for A. here since their validity is easilyiel ^
seen from the corresponding properties of the formal sum in N^ . 

Property (0.8) can be verified as follows. For all x e X, we have

Bo (+1 A. iel ^ (%) Ix-yoz
B(y) & "iJ (z)

^ B(y) ^ A.(z) 
x?yoz^ iel

% ^ B(y)A^(z) by (0.8) for N^
x"yoz iel

^ ^ B(y)A.(z) by (0.7) for N^
iel x"yoz

^ (BoA.)(x)
iel ^

(BoA )' 
iel

(X)
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Therefore, by (2.4), B o (+) A.iel ^ (B 0 A.)
IGl ^

Similarly, we can show that l+j A iel ^ B - (A. 0 B) . 9iel ^

In this thesis, we shall have occasion to consider 
sequences of multisets. When we do, the following result will be 
useful. But first note that a sequence A^, A^, .... of multisets 
vill be simply written as (A.) and is said to be non—decreasing 
iff A^ C A^^^, and nonrincreasing iff A. for all

re{l,2,..#) .

THEOREM 2.3 (i) For any two non-decreasing sequences

(A^) and (B.) of multisets of , we have

6 (A. B^) - .0 4 .0,
[l-l j

(ii) For any two non-increasing sequences (A.) and (B.) 

of multisets of , we have

ri(A. B.) -i-1 ^ ^ A A 'y

PROOF For all x e X, we have

Lj OU B{)i^L ^ ^ (x) " sup {A.(x) + B.(x)} i ^ ^

- sup {sup(A (x)+B (x)}}, since both m of m n

(A (x))and(B (x)) are non-decreasingIB n
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auf + 8up{B^(x)}}

' 00
u \ (x) +

( 00
.U

H-l [i-l (x)

Therefore, (i) follows from (2.4), and (ii) can be proved 
in a similar manner. V

THEOREM 2.4 (i) If (A.) is a non-decreasing sequence of multisets

of , then for all B e we have

B 0 IJ A. - (J (B o A.) and ij A. o B - ij (A. o B)i-1 ^ i-1 ^ li-i ^:l ^

(ii) If (A.) is a non-increasing sequence of multisets 
of , then for all B e N* , we have

B 0 ll A. - (1 (B 0 A.) and
i-l ^ i-l ^ n A. i-l ^ 0 B " (1 (A. 0 B)i-l ^

PROOF (i) If B(y) sup{A. (z)} 0 for only finitely many pairs
(y, z) such that x - y o z , then ^2, ^B(v) sup {A.(z)} is a finite

sum, and hence by an argument similar to the proof of (i) in the 
above theorem, we have

2 B(y) sup{A^(z)} - sup ^ B(y)A.(z) 
x-yoz i i x-yoz

But then. B 0 IJ A. i-l ^ (x) IJ (B o A.) i-l ^ (x) as required.
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So we may suppose that B(y) sup (A.(z)} + 0 for infinitelyi ^many pairs (y,z) such that x - y o z, which means that
00

B 0 IJ A.i-1 (x) - " .

Now suppose that
00
U (B 0i-1 ^ i

(x) ^ - . But then

(2. 2) implies that max{B o A^(x)} + » exists, say (B o A. )(x) .
^0

Since (B o A. )(x) - , it follows that ^ B(y) A. (z) is a
____ If.x"Troz

finite sum, and that B(y) A. (z) + * for any (y, z) such that

y 0 z
Consequently, A. (z) - max{A.(z)} also, and hencei ^

B 0 (I A. i-l ^
(x) - 2 B(y) sup{A.(z)}

x-yoz i

% B(y) A. (z)
x-yoz

- (B 0 A. )(x)

which implies that B 0 (J A. i-1 ^ (x) - , a contradiction.

(ii) Just as in (i) above, we may suppose that 
B(y) inf{A.(z)} ^ o for infinitely many pairs (y, z) such

that X - y 0 z , i.e. B o (1 A. 
i-1 ^ (x) - - . Now since

B(y) inf(A.(z)} $ B(y) A.(z) for all i, i ^ ^

it follows that for all i, we have B(y) A.(z) ^ 0 for infinitely 

many such pairs (y, z), i.e. (B o A.)(x) - - . Consequently,
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f *0
n (B 0 A.) i-l ^ (x) " inf(B 0 A.(x)} - » as required. 9 

i

A useful fact which we shall need later in this section 
is that both the multisum and multiproduct operations are compatible 

with the multiset inclusion, as defined by (2.1). This is expressed 

by the following

THEOREM 2.5 For any A, B e such that A B, we always
have

At±IC^B|±|C, AoCCBoC and CoACCoB 

for all C e .

PROOF Trivial

DEFINITION 2.5 For any A e N^ , where (X, o) is a monoid, 

the multisets

A* " A^ and A^ "
k-0 k-1

are respectively called the closure and weak closure of A.

From the name closure, one might expect the usual 

properties of closure to hold, namely

(i) A (: A*

(ii) A*(Z B* whenever A(Z B

(iii) (A*)*. A*.

In fact, (i) and (ii) are valid but (iii) is not
always true. For instance, ** - {e} , but 
($*)* " {e}* " {e, e, ...} , and therefore (**)* f +* .
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Therefore, A* ie not the closure of A in the conventional 

sense. Nevertheless,we call A* the closure of A for want of 
a more appropriate name. The same remarks also apply to the weak 
closure. As an example where (A*)* } A*, consider the multiset 

A = (1} of where N is the additive monoid of non-negative

integers.

The following identities for closures are useful but
obvious.

(2.10) A* " A 0 A* {e} " A* o A {e} for all A e

THEOREM 2.6 For any two given multisets A, B e N^ , A* o B and 

B 0 A* are respectively the least solution of

Y-AoY ^B and Y - YoA(±| B

with respect to multiset inclusion.

PROOF It is easily seen from (2.10) that A* o B is a
solution of Y " A o Y B. On the other hand, Y " A o Y B

always implies that for any k e N,

Y " A^^^ o Y L+) A^Klo B , where A^^ {e} A ... A

Therefore, AW B C Y for all k G N,

Mand hence (A^ ^ o B) CZ Y. But from (2.7) and (i) of
k"0

theorem 2.4, it follows that A* o B W(J (A^^ ^ 0 B), and hence 
k-0

the least solution of Y - A o Y B. Similarly, B o A* can 
be seen to be the least solution of Y " Y o A B. 7
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The above theorem ia very useful for establishing 
identities involving closures. As an illustration of this 

usefulness, let us show how to derive the following identities 
which we shall need later.

THEOREM 2.7 For any A, B e , we have

(A B)* - A* 0 (B 0 A*)* " (A* o B)* o A*

PROOF From theorem 2.6, (A B)* is the least solution
of Y " (A B) 0 Y {e} . On the other hand, we shall show 

that A* 0 (B 0 A*)* is also the least solution and hence

establish (A B)* " A* o (B o A*)*. That A* o (B o A*)*
is a solution can be seen as follows.

(A 1^ B) 0 A* 0 (B 0 A*)* {e}

" A 0 A* 0 (B 0 A*)* B 0 A* o (B o A*)* {e}

- A 0 A* 0 (B 0 A*)* (B 0 A*)*, by (2.10)

- (A 0 A^ ij) {e}) 0 (B 0 A*)*

- A* 0 (B 0 A*)* , by (2.10)

To see that it is also the least solution, let us 
rewrite the above equation as Y - A o Y B o Y {e} . It 
then follows from theorem 2,6 that

- 64 -



A* 0 (B 0 Y {e})(Z Y, and hence

B 0 A* 0 B 0 Y B 0 A* Cl B o Y , by theorem 2.5 
Again, using theorem 2.6, we obtain

(B o A*)* 0 B 0 A* CZ B 0 Y .

But then

A 0 Y (B 0 A*)* - A 0 Y (B o A*)* B o A*l^ {e}

^ A 0 Y B 0 Y {e} , by theorem 2.5

- Y

and hence A* o(B o A*)* ^ Y as required.

Similarly, we can show that (A B)* " (A* o B)* o A*. 9

2.3 Hereditary Semirings and Their Closed Multisets.

DEFINITION 2.6 A non-empty subset 'K of N^ is said to be 

hereditary iff whenever A elK and B then B e 1^.

A typical example of a hereditary subset of N^ is N^^
Xitself, but so are the following subsets of N

THEOREM 2.8 The following are hereditary subsets of N
(i) The set of all non-singular multisets of H%

(ii) The set of all quasi-finite multisets of N^ and *.

(iii) The set of all quasi-countable multisets of N^^ and

(iv) The set well ordered (dually well
Xordered) multisets of N and where X is an ordered set.
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PROOF (i) Let A and A. Then B(x) ( A(x) implies
chat B(x) * whenever A(x) * . Hence B e V/_

(ii) Let A e and B ^[A. Then B(x) ( A(x) implies

that B(x) - 0 whenever A(x) - 0. Consequently, d(B)(^d(A), and 
hence d(B) is a finite set, i.e. B e as required.

Both (iii) and (iv) can also be proved in Che same 

fashion as (ii) above. V

THEOREM 2.9 The intersection of an arbitrary collection of 
hereditary subsets of is again a hereditary subset of .

PROOF Let | is a hereditary subset of

Suppose that A e and B(^)A. Then by definition of intersection, 

A e for every . Since each 4^ is a hereditary subset, we 

have B e for every also. Hence B e as required. 9

The above theorem enables us to construct more hereditary 
subsets of from Chose already given in theorem 2.8 above. Some

such hereditary subsets of which are of special interest later
are

(i) The set y/_ of all finite multisets of and

(ii) The set (or

of all countable and well ordered (or dually well ordered) multisets
Xof N and * , where X is an ordered set.
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DEFINITION 2.7 Let (X, o) be a monoid. A hereditary subset 
IK of N^ is called a hereditary semiring iff contains
all the finite multisets of N^ including ^ and is closed with 

respect to the multisum and multiproduct operation.

Note that by the above definition, a hereditary semiring 
is in fact a subsemiring of N^^ with respect to the multisum and 

multiproduct operations. Moreover, every hereditary semiring 

is also a lattice with respect to multiset inclusion, because by 
the hereditary property of , AlAB CZ AILJB (Z A B 

yields AfHB, AIJB e whenever A B E y.

THEOREM 2.10 The following are hereditary semirings

The set N^ of all multisets with elements in a monoid (X, o)(i)

(ii) The set of all quasi-finite multisets of N^^ and

where (X, o) is a monoid.

(iii) The set of all quasi-countable multisets of N^ and *,

where (X, o) is a monoid.

(iv) The set ordered (dually well
Xordered) multisets of N and where (X, o) is a 

totally ordered monoid.

(v) The set JKy of all non-singular multisets of N^ , 

where (X, o) is a locally finite monoid.

X(vi) "The set of all finite multisets of N^ and *, where

(X, o) is a monoid.
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(vili) The set countable and well ordered
Y(dually well ordered) multisets of and ^ , where

(X, $, o) is a totally ordered group.

PROOF (i) is trivial. ^
(ii) Since obviously contains all the finite multisets

Xof N , it remains to show that it is closed with respect to the 00
multisum and multiproduct operations. To do this let us note the 

following two properties of supports, namely

(2.11) d(A 1^ B) - d(A) Ud(B) and d(A o B) - d(A) d(B),

where juxtaposition denotes complex product.

Since (2.11) is easy to verify, we shall omit its 

proof here. Now the required result follows from (2.11) because 

the union and complex product of two finite sets are themaelves 

finite.
(ill) follows from an argument similar to (ii) by using the 

fact that the union and complex product of two countable sets are 

themaelves countable.

(iv) also follows from an argument similar to (ii) if we 

can show that the union and complex product of two well ordered 
(dually well ordered) sets are themaelves well ordered (dually well 
ordered). So let A, B be two well ordered sets. If Y is any 

subset of A ^)B, then we can write Y = ' *here Y^ and Y^
can be chosen so that Y. (Z A and Y (ZB. But then

min Y = min {min Y.^ min Y^}

exists because X is a totally ordered set. Therefore A|^)B is 

a well ordered set.
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Now let Y(2 AB . Then by the definition of complex 
product Y - Y^ Y^ for some Y Cl B. Since the

binary operation is also compatible with the ordering on X,

min Y » min Y^ o min Y

exists, and hence AB is also a well ordered set. The case for 
dually well ordered sets can be demonstrated in a dually fashion.

(v) Since JVL obviously contains all the finite

multisets, it remains to show that it is also closed with respect

to the multisum and multiproduct operations. is closed with

respect to multisum because A(x) + B(x) » whenever A(x) = ,
B(x) ^ » . Now recall that (X, o) is a locally finite monoid

means that for each fixed x e X, there is only a finite number
of factorizations x = y o z with y ^ e, z ^ e. Consequently,

A(y) B(z) ^ 0 for only a finite number of pairs (y, z) such
that X = y 0 z , and hence I A(y) B(z) is a finite sum. Since

x-yoz
A(y) B(z) ^ » because A(y) * and B(z) « , we must then have

(A 0 B)(x) m ^ A(y) B(z) » , as required, 
x-yoz

(vi) Since X -X "X '^X "'X
were both seen to be closed with respect to the multisum operation
in (ii) and (v), so is Now while was seen in (ii) to

be closed with respect to the multiproduct operation, may not
be so without additional assumptions. However

.AC
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because for any A, B e , A(x) + 0 and B(x) + 0 for only

finitely many x e X implies that there can be only finitely many
pairs (y, z) with A(y) f 0 and B(z) f 0 such that x - y o z.

Consequently, A(y) B(z) + 0 for only finitely many such pairs, and
hence % A(y) B(z) is a finite sum. Since A(y) B(z) ^ » 

x-yoz
whenever A(y) = , B(z) ^ ^ , it then follows that

0 B;Kx) - I ^(y) B(z) f = whenever A, B e also.
x"yoz

(vii) By the above arguments, it is obvious that
X. 0 contains all the finite multisets of

X X X X
and is also closed with respect to the multisum operation. It 
therefore remains to show that is also Closed with respect to the

multiproduct operation. Again, while 6^ and were both
seen to be closed with respect to the multiproduct operation in 

(iii) and (iv), may not be so. However, we shall show that
(9 is necessarily so. We shall establish this claim

by examining the following two cases, where A, B e

(a) Suppose both A, B e . Then d(A) and d(B) are 

both dually well ordered sets. But d(A) and d(B) are both 
countable and well ordered by assumptions. Hence d(A) and d(B)

must be finite sets, i.e. A, B e ^^x" ^ ^
therefore A, B e Consequently, A o B e
follows from (vi) above. Since ([ we have A o B E

as required.
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(b) Suppose A ^ , i.e. d(A) is not a dually well

ordered sec. Then we claim that for each fixed x c X, A(y)B(z) ^ 0 

for only finitely many pairs (y, z) such Chat x " y o z. For 
suppose otherwise, then A, B c 61^ implies that A(y) B(z) ^ 0 

for only countably many such pairs (y,z), say (y^, z^) for all 
k E {1,2,... } . Now since d(A) is not a dually well ordered set, 

Che sequence ( y ) must contain a strictly increasing subsequence, 

say

12 1

Since (X, o)i8 a totally ordered group, it follows that

"1 "T "1xoy^ >xoy^ >...>xoy^ >...,

i.e. z, > z, > ... > z, > ... because x = y, o z,. k. kg k^ ^k k

This means that d(B) can not be well ordered, i.e. B ^ ^ contra

diction. The rest follows from the end argument of (v) or (vi) above and 

the case for also be shown dually. V

Let us note in passing that Che intersection of an 

arbitrary collection of hereditary semirings is again a hereditary 
semiring. This fact implies that is the least
hereditary semiring with respect to set inclusion.

DEFINITION 2.8 Let be a subset of N^ , where (X, o) is a

monoid. A multiset A e TK is said to be closed in iff A* e y ,

where A* denotes the closure of A.

From this definition, we can establish the following 

useful results.
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LEMMA 2.1 A multiset A of a hereditary semiring 'K is 
closed in IT iff A* e .

PROOF If A* e IK, then A* - {e} (±1 A^ E IK .
If A* E then A^(Z A* implies that A* E T', by the

hereditary property of TK , ?

.X .LEMMA 2.2 A multiset A of a hereditary subset of is
closed in iff for any B CA, B* e IK also.

PROOF Sufficiency is obvious, while necessity follows
directly from the fact that B*(% A* whenever B(Z A, and the 

hereditary property of . V

THEOREM 2.11
X(i) Every multiset is closed in .

(ii)
(iii) Every multiset is closed in

is the only multiset closed in .

X '

PROOF (i) is trivial.
(ii) Since " {e} , it follows that ^ is closed

in Now suppose that A ^ ^ is closed in Then by

assumption, A contains at least one element, say x, and by 
lemma 2.2 above, (x}*E because {x}(Z A.
But {x}* - {e, X, x^, ...} ^ vVL if {x}* E and hence

{x}*^ a contradiction.

(iii) Let us first note that

(2.12) W A.
iEl

LJ d(A.) iel ^
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For let X e d 1+) , then ^ A.(x) ^ 0
iel j iel

implies A.(x) ^ 0 for at least one i e I, i.e. x c d(A^)

for at least one i e I, and hence d iel ^
(: IJ d(A.) 

iel ^
But IJ d(A.)(Z d (+j A. iel ^ iel ^
d(A.) C: d 1 —

follows from the fact that

for all i e I. Therefore (2.12^ is
verified. Thus d(A*) - IJ d(A^) " |J d(A)^\ by (2.11) .

k-0 k-0
IcNow if A e i.e. d(A) is countable, then so is dCA) for

all k e N , because the complex product of a finite number of 

countable sets is itself countable. Since a countable 
union of countable sets is also a countable set, d(A*) is therefore 

a countable set, and hence A* e (1 as required . 7

We note here that the above theorem characterizes
Xcompletely the nature of closed multisets of

For other hereditary subsets, the nature of their closed multisets are 

much more difficult to characterize. However, for
(1/^) and following

THEOREM 2.12 A necessary condition for a multiset A to be
closed in V/L is that x ^ e for every x e A. This condition 

is also sufficient if (X, o) is a locally finite monoid.

PROOF Suppose that x " e for some x e A. Then clearly,
{x}* = {e, X, x^ , ...} " {e, e, ...} ^ But by lemma 2.2,

{x}* E because {x}(Z A, a contradiction.
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Now if (X, o) is a locally finite monoid, then 
each X c X admits only a finite number of factorizations 
X " x^ 0 x_ 0 ... 0 x^^ with x^ ^ e for all i e{l, 2, .... n}.

So the largest index for such a factorization exists, say n^.
Now by definition of A^, x e iff x " x. o Xg o ... o x^ for

ksome XL, x_..... .. E A. Consequently, A (x) " 0 for all
ick > n_, and therefore A*(x) " 1+) A (x) = , if A(x) ^ " ,

^ k-0
which proves the sufficiency. 9

THEOREM 2.13 If a multiset A is closed in lYL ( where
(X, $, o) is a totally ordered monoid such that x^ - x always 

implies x - e, then we have x ^ e (x ( e) for every x e A. On the other 
hand, for a multiset A to be closed in where (X, $, o) is
an Archimedean totally ordered monoid, it is sufficient that x ^ e (% ^ e) 

for every x E A.

PROOF Suppose that A is a closed multiset of IV" and
that X < e for some x E A. Then x^ ( x < e. But by assumption, 
x^ " X implies x " e, and hence x^ < x . Similarly, x^ < x^ 

and so on. Therefore, {x}* - {e, x, x^, x^,...} ^ But by

lemma 2.2, {x}(Z A implies {x}* E a contradiction.
Therefore, x ) e for all x e A which proves the first part of 

the theorem.
To prove the second part, let us first verify the 

following two special cases.

(i) If X - e for every X E A of then A* E

(11) If X > e for every X E A of then A* E
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view of (2.11) and (2.12), this is equivalent to showing that
% k|i d(A) is a well ordered set. 
k"0

Since (1) is obvious, we prove only (ii)^ In

Now suppose otherwise and let B be a non-empty 
kd(A) . Then B must contain a sequence (b.)

k"0
subset of

of elements in B satisfying b^ > b_ > ... > b Observe

that b^ ) e for all i e{l, 2, ...} . So if b^ " e, then

b^ " bg - ... , a contradiction.

Therefore, we may suppose that b^ ^ e , i.e. b^ > e 

and let b^ " min d(A). Since b^ > e by assumption, it then 
follows from the Archimedean property that b" > b^ for some

positive integer n. Consequently, b_ > b^ > b^ > . > b. > ..

Now suppose that b^ e d(A) for some s > n . Then
b^ = X 0 y for some x e d(A)^ , ye d(A)^ ^ . Since y % e,

b^ - X 0 y % X ) min d(A)^ - b^ , a contradiction. So for all
k E {1, 2, ...} , b. G ij d(A)^\ Since ,j d(A)^ is a well

^ k-0 k-0
ordered set whenever d(A) is, it follows that the above sequence 

(b ) must terminate, i.e.

^ ■ \*i ..., for some k.

which then yields a contradiction.
Now for the general case, let us write A - B C,

where B and C are such that x - e for every x e B and x > e 

for every x E C. By theorem 2.7, we know that
A* - (B C)* - B* o (C 0 B*)* . Since B has the property of (i)
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and (C 0 B*) has the property of (ii), it follows from the 

above argument that B* e (C o B*)* e and hence
A* G TVL as required.

The case for 1V1 can be established in a dual

fashion.

COROLLARY 2.1 In the case where (R, o) is a totally 

ordered cancellative monoid which is conditionally complete with 

respect to ( , the condition that x ^ e(x $ e) for every x e A 

is both necessary and sufficient for the multiset A to be closed 

in ("W^).

PROOF By cancellativity, it follows that x - e whenever
x^ " X , and hence the necessity of the condition follows from 

the above theorem. Now its sufficiency also follows from the above 
theorem if (X, $ ,o ) can be shown to be Archimedean. Suppose
not, i.e. X > e, y > e, but x^ ( y for all n e N. Then the set 

{x^|n e N} must have a least upper bound, say x^, because (X, $) 

is assumed to be conditionally complete. Therefore,

X 0 Xg - X o sup{x^|n e N} - sup {x^^^jn e N} $ x^ .

But by cancellativitity, x > e implies x o x_ > x^, a 

contradiction. V

THEOREM 2.14 For a multiset A to be closed in 
where (X, (, o) is an Archimedean totally ordered cancellative 
monoid, it is both necessary and sufficient that x > e (x < e) 

for every x e A.
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PROOF By cancellativity, it follows that x " e whenever
x^ " X, and hence by theorem 2.13, x ) e for every x e A is 

a necessary condition for A to be closed in ^
to be closed in also, it follows from theorem 2.12 that
X ^ e for every x e A is necessary. Therefore, the necessity 

condition is verified. Now by theorem 2.13 above, x > e for 

every x e A is a sufficient condition for A to be closed in 
1YL. We now show that it is also sufficient for A to be closed 
in also, i.e. A*(x) } « for all x e A.

First, we claim that (A o A*) - * . For
k-0

suppose otherwise, and let T (A^ o A*) . Since (A^ o A*)
k-0

is a non-increasing sequence of multisets, it follows from (ii) 

of theorem 2.4 that

2 k 2 k+1A 0 T - A o ^2^ (A^ 0 A*) - ^2^ (A o A*) - T

Let t. e T, then t^ " x o tg for some x e A and
tg e T . By cancellativity, x > e implies t^ - x o t^ > t^ .
Similarly, we can show that t^ > t_ for some t^ e T and so on.
Therefore, if T ^ * , we can always obtain a strictly decreasing

sequence t^ > t > .... of elements in T which then implies that

T is not a well ordered multiset. But T CZ A* and A* is well

ordered by theorem 2.13 above, it must follow that T is also
well ordered, a contradiction. Therefore our claim is justified.

We next claim that (A^ o A*) - * implies that
k-0

A^\x) ^ 0 for only finitely many k. For suppose otherwise and
k.let (k.) be a subsequence of (k) such that A ^(x) ^ 0 for 

^ k. k.
all i e N. Since A A ^ o A* for all i e N , it follows
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that A ^ o A* (x) ^ 0 for all i e N also. But this implies

c k.that ril A ^ 0 A* ^ ^ , a contradiction. Hence for all x E X,
i-0

k IA (x) Y 0 for only finitely many k as claimed, and therefore,
OO

A*(x) " ^ A (x) 4 » as required.
k-0

The case for can also be proved dually. V
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CHAPTER 3

P-SPACES AND THEIR PATH ALGEBRAS

3.1 P-Spaces

DEFINITION 3.1 A quadruple (X, o, T", r) is called a path space 

or p-space for short iff it has the following properties

(i) (X, o) is a monoid
(ii) is a hereditary semiring of N

0̂0

(iii) r is a function on which satisfies (3.1) to 

(3.3) below.

(3.1) r(*) = *

(3.2) r(A B) - r(r(A) B)

(3.3) r(A 0 B) " r(r(A) o B) " r(A o r(B))

For convenience, such a function r will always be 
referred to as a reduction function^. As examples of p-spaces, 

we offer the following.

This name was inspired by the reduction function studied 

in Wongseelashote (1976). However, its abstract formulation was not 
conceived without the influence of the concept of an extraction 

function introduced by Roy (1975).
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EXAMPLE 3.1 (X, 0, , d), where (X, o) is a monoid and
d(A) is the support of A (see section 2.1).

EXAMPLE 3.2 (X, o , min), where (X, o) is a totally
ordered monoid and min is defined on as follows.

min(A)
* if A " *

{min d(A)} , otherwise

Note that (X, o, , max) can be dually defined.

EXAMPLE 3.3 (X, o, k-min) , where (X, o) is a

totally ordered monoid and k-min is defined on as follows,

k-min(A)
^ if A « ^

{a^, Sg..... a } , otherwise

Here a^ < a^ < ... < a are t successively smallest 

elements of A, and t is the largest index such that t ( k.
Note that (X, o, 1^' , k-max) can also be defined in a dual 

fashion and that for k " 1, this example coincides with example 
3.2 above.

EXAMPLE 3.4 (X, o , r^) , where (X, o) is a totally

ordered monoid and r^ is define on for some given u e X

by

(A) -
^ if A " ^ or u < X for every x e A

■j'{a^, a^, ..., a.) , otherwise.
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Here < ...< a. are j successively smallest
elements of A and j is the largest index such that a. $ u. 

Note that one can also define (X, o, ^^4/ dually.

EXAMPLE 3.5 (R, +, TVL, A-min), where (R, +) is the additive

group of real numbers and A-min is defined on IVL for some 
A ) 0 as follows.

A-min(A) " <
* if A " *
{a^, a^, ...» a^} , otherwise

Here a^ < a_ < ... < a^ are k successively smallest 
elements of A and k is the largest index such that a^ $ a + A.

Note that (R, +, A-max) can also be defined in a dual fashion 

and that for A " 0, this example also coincides with example 3.2 
in the case where (X, o) - (R, +).

EXAMPLE 3.6 (Z*, ' , N^* , sim) , where (E*, » ) is the free
T*

monoid generated by an alphabet E and sim is defined on N as 

follows.

sim (A)
^ if A - ^
{x G A| X is a simple word} , otherwise

For the meaning of a simple word in E* , see problem

1.8 above.
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EXAMPLE 3.7 (E*. ' , , b), where (E*, .) is the free
monoid generated by an alphabet E and b is defined on N 

as follows

E*
a>

b(A) -
* if A " *
{x e A| X is not an abbreviation of any y E A} ,

otherwise .

For the meaning of abbreviation, see problem 1.9 above.

EXAMPLE 3.8 Let (N, +) be the additive monoid of non-negative 

integers and N a set of arbitrary objects disjoint from N which 

can also be put in one-to-one correspondence with N, i.e. for each 
n E N, there is a unique n E N and vice versa, {n, n} will be 

called a twin pair. Now define a binary operation o on X " NkJN 

by the following rules:

(i) m 0 n " m o n " m + n for any m, n E N

(ii) m 0 n » m o n " m^^n - mT+ n for any m, n E N

It can be verified that (X, o) so defined is a 
commutative monoid with 0 as the identity for o (cf. theorem 6.1 

below). Moreover, this monoid is also locally finite because 

(N, +) has this property.
Let r " V/L + //L be defined by t(A) « * if A = * , 

else r(A) is the multiset obtained from A by deleting all its 

twin pairs.
The quadruple (X, o , J/ , r) then forms a p-space 

(cf. theorem 6.3 below).
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The concept of p-spaces as defined here turns out 
to be closely related to that of a semiring. In fact, given one, 
the other can always be obtained. In the remainder of this section, 

we shall show how to construct a p-space from a given semiring. The 
converse construction is more important to the solution of path 
problems, and will be treated in the next section where it is more 
appropriate.

THEOREM 3.1 Let (X, +, o) be a semiring. Then the quadruple 
(X, 0, s), where s is defined by (3.4) below, forms a

p-space.

(3.4) s(A) " '

n
' if A - {a ,a.,...,a } and ^ a. ^ 6 i z n 1

otherwise.

PROOF From (3.4), it follows easily that property (3.1) is

satisfied by s. In fact,

(3.5) s{8,8, ...,8} - s{8} " ^ " 8(^) always.

That property (3.2) is also satisfied by s can be 

seen as follows.

Let A, B G if A " then 8(A) - ^ , and hence
s(A B) = s(B) " 8(s(A) B) as required. So suppose that
A ^ * , say A = {a , a ,..., a } . If B = * , then s(A B) = s(A).

i ^ n
But 8(s(A)) = s(A), because if T ai = 8, then s(sCA)) " s(*)= $ = s(A),

while if liai f 8 , then 8(s(A))-s a^ - % ai = s(A).
i=l i=i
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Consequently, s(s(A) B) - 8(s(A)) - 8(A) " s(A B) as 
required. So we may now suppose that B ^ * also, say 

B " bg,..., b^} . Then there are two cases to consider

(i) Either ^ a. " 8 or ^ b. - 8 . 
i"l ^ j"l ^

n
If ^ a. - 8 , then s(A) - *, and hence 

i-1 ^

8(8(A) B) " s(B).

Now we claim that s(A B) " s(B) also.
m

For if " 8 , then s(A B) - * " s(B) because

n m m^ a. + ^ b. - 8 , while if ^ b. f 8 , then
i=l ^ j-l ^ jml ]

n m m
8(A B) = 2 * I b. - ^ b. " s(B), and hence

i"l ^ j"l ^ j"l ^
our claim is justified.

Therefore s(A B) - s(B) " s(s(A) B) as required, 
n m

So we may now suppose I a. ^ 8 but X b. " 8 . Then
i"l ^ j-l

n mi(B) - ^ and ^ a. + ^ b. ^ 8 . Consequently,
i-1 ^ j"l ^

s(s(A) B) = 8
n
I au Id B
i"l

n m
s(A B) as required.

n m
[ii) Both ^ a. ^ 8 and ^ b. ^ 8 . 

i"l ^ j"l ^
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I ^ I b. = 6 , then 
i"l ^

n
8(8(A) B) " 8 ( ^ a. B) - * = s(A B) .

i-1 ^
n m

So suppose that ^ a. + ^ b. ^ 6 , then
i-1 ^ j-1 ^

s(s(A)
n n m

B) - 8 ( 2 a B) - ^ a. + ^ b. - s(A B)
i—1 i—1 j"l ^

Therefore, 8 8ati8fie8 property (3.2) above. It remains to 

show that 8 also satisfies (3.3) above.

Let A, B G If A - ^ , then

s(A 0 B)- ^ - s(8(A) o B) because s(A) - ^ also. 

If B - then s(A o B) - ^ - 8(s(A) o B) always.

So let us suppose that A - {a^, a^, ..., a^}and B-{b^,b_,. 

Then there are two cases to consider

(i)
f n,1%
1-1

/ mI - 8
.j-1

In this case, 8(A o B) - * by (3.4) because

n m
,I =1 0 b.
i«l jssX J

n r mI a. 0 I b.
1-1 .j-1

Now we claim that s(s(A) o B) - ^ also, and hence the required 
n

result. If ^ a^ - 8 , then s(A) - * by (3.4) implies that
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s(s(A) 0 B) " 8(^) " ^ as claimed.

n
So suppose ^ a. ^ 9 . But then 

i-1 ^

s(s(A) 0 B) " s
n

{ ^ a.} 0 B $ by (3.4) because

f n ^ "i 0 b. " I a. 0
f m \
I b.

^^1 J i-1 jI
claim is justified.

8 , and hence our

(ii)
nI m

iJ-i J
+ 6

In this case, it must be that both

n my a. ^ 6 and T b. 4 8 .
i"l ]"1 ^

f f n
But then s(s(A) o B) - s I a.) oB 

i"l

m <" n
m y I a.

j"i

n m= I I a
i"l j"l

o b.

f aI ^4 0
f m
I b.

Li-l 'j

" s(A 0 B) as required

Similarly, one can show that s(A o 8(B))" s(A o B)
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For convenience, the p-epace (X, o, (FL, a) as

defined in the above theorem will be said to be induced by the
!

semiring (X, +, o). We emphasize here that each semiring may 

induce more than one p-space, since it may be possible to choose 

a larger domain for the function s above or to invent other
reduction functions from a given semiring. For instance, if X id

Xalso a complete semiring, we can define the p-space (X, o, N^, s') 

from X by defining s' : as follows.

(3.6) s'(A)
if A - {a.} and ^ a. + 8

^ iel ^ iel

^ , otherwise.

Note that s' so defined is an extension of the function 
s in (3,4) above, and the verification that s' is a reduction 
function can also be carried out in exactly the same manner as in 
theorem 3.1.

3.2 Path Algebras of P-Spaces.
Given a p-space (X, o,'y', r), a multiset A of TK 

is said to be reduced iff A - r(A). From (3.1), it follows that
;

^ is reduced, and therefore the set

- (A E T"! A . r(A)}

is non-empty. Moreover, for any A e , r(A) e because

r(r(A)) - r(r(A) *)
" r(A *) , by (3.2)

" r(A)
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operations @ and 0 on "y as follows.r

Now for any A, B e Y", we can define two binary

(3.7) A 0 B - r(A B)

(3.8) A 0 t(A 0 B)

The triple ( 0, 0) will be called the path
algebra of the p-space (X, o, Y", r) .

THEOREM 3.2 The path algebra of any p-space (X, o, r) 

forms a semiring with unit r(e) and zero * . Moreover, this

semiring is idempotent whenever r(e e) - r(e) holds and 

commutative whenever o is commutative.

PROOF Since for any A e Y", r(A) was seen above to belong

to it follows that 'YL is closed with respect to 0 and 0
as defined by (3.7) and (3.8). Now the binary operations 0 and 0 

can be seen to possess all the properties of a semiring as follows.

(i)

(ii)

(iii)

A

A
A

* - r(A ^) - r(A) = A for all A e TKr
B = r(A B) - r(B A) = B 0 A for any A,B c 
(B 0 C) " r(A r(B C))

" r(A B C), by (3.2)
- r(r(A B) C),by (3.2)

" (A 0 B) 0 C for any A,B, C E'f'



(iv)
- r(e o A), by (3.3) 
" r(A)

r(e) @ A " r(r(e) o A)

- A for all A e IT

(v) A @ (B @ C) " r(A 0 r(B o C))

- r(A 0 B 0 C), by (3.3)

- r(r(A 0 B) o C), by (3.3)
(A e B) e C for any A,B, C E IK

(vi) A 0(B @ C) " r(A 0 r(B ^±1 C))

- r(A 0 (B C)), by (3.2)

" r(A 0 B (+) A 0 C)
- r(r(A 0 B) r(A o C)), by (3.2)

- A 6 B @ A @ C for any A, B, C e 'K'

Similarly, (A 0 B) @ C " A 0 C 0 B 0 C for any A,B, C E T" 
Moreover, if r(e e) - r(e) holds, we have 

(vii) A 0 A - r(A A)

= r(A o r(e e)) by (3.3)

- r(A o r(e))

= r(A 0 e) by (3.3)
" r(A) I

A for all A E r
and if o is commutative, then

(viii) A 0 B - r(A o B) - r(B o A) - B 0 A for any A, B E 3K.r

An equivalent way of obtaining the path algebra from any 
given p-space is by making use of the following relation ~ defined 
on IK as follows.

(3.9) A ~ B iff r(A) - r(B)



It is easy to see that ^ is an equivalence 

relation, and hence the set IK is partitioned into its 
equivalence subsets by this relation. Let [A] denote the 

equivalence subset containing A and denote the set of
all these equivalence subsets. Then for any [A], [sj e ,

we can define two binary operations @ and @ on as
follows.

(3.10) [A] 0^ [B] . [A y B]

(3.11) [A] 0^ [B] . [A 0

Now since it is possible that for A ^ C, [X] " ,

one may question whether these operations are well-defined, i.e. 

independent of equivalence subset representatives. Indeed, they 
are because of the way we define a reduction function. For 
suppose [A] - [c] and [s]" [p], i.e. r(A) = r(C) and r(B) = r (D) 

Then it follows from (3.2) that

r(A B) - r(r(A) B)

- r(r(A) t(B))

= r(r(C) r(D))
- r(C r(D))
- r(C (+) D)

Similarly, we can show that r(A o B) = r(C o D) by (3.3).
Therefore, [A s] = [C o] and [A o B] - [C o p] which 

justify our claim.
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THEOREM 3.3 ( 0 ) ig a semiring with unit [e]
and zero [*] , and is isomorphic to the path algebra.

PROOF In view of theorem 3.2 it suffices to show that there
is ^ semiring isomorphism from the path algebra to 0 , 0)

In fact, the required isomorphism is given by the function 
f: ^ which is defined by f(A) " [A] for all A G IK.

For we have

f(A 0 B) - [A 0 B]
- [r(A B)] , by (3.7)

" [A B% , since r(r(A B)) « r(A B)

- [B]

- f(A) 0^ f(B) ,

and likewise, f(A 0 B) - f(A) 0^ f(B) ,

Since f(*) " [*] and f(r(e)) " [r^e)] - [e] also, 

it remains to show that f is a bijection.
Suppose f(A) " f(B). Then by definition, [pQ or

t(A) = r(B). But then A = B because A, B e IK". Therefore, f 

is an injection. ^
Now let [A] e 'K/v be given. Then

f(r(A)) " " [Al* since r(r(A)) - r(A).

Therefore, f is also a surjection as required. V

It is interesting to note that in fact rK" » rCT), 

the range of the reduction function r. For if A e "K", then 
A - r(A) implies that A G r(1K), while on the other hand.
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A E r(T^) implies that A - r(B) for some B E But then
A E IK because r(B) E . The above claim is therefor^^ 

justified.
In view of this observation, theorem 3.3 in fact says 

that ig isomorphic to r(lK) as semirings. This conclusion

resembles the usual homomorphism theorem in algebra except that the 

reduction function r may not be a homomorphism.
We note in passing that an elegant proof of theorem 

3.2 can in fact be obtained by considering the cannonical surjection 
^ ; IK ^ TK/^ which is defined by x(A) = [X] for any A clK. Now 

from (3.10) and (3.11), we conclude that ^ is a semiring 
homomorphism from 'K to ^ and hence (1K/^^ # , 6^) is a

semiring. But ( T"/~, 0 ) was seen to be isomorphic bo

(IK", 0, 0) in theorem 3.3 above, and hence ^

semiring as required.
Let us now consider the path algebra of the p-space 

(X, 0, , s) induced by a given semiring (X, +, o) in theorem

3.1 above. The relationship between this path algebra and the 

semiring (X, +, o) is expressed in the following.

THEOREM 3.4 The path algebra of the p-space (X, s)
induced by a given semiring (X, +, o) is isomorphic to (X, +, o) 

as semirings.

PROOF

(3.12)

Let us define a function f: X ^ , where s
IT . by

f(x)
{x} if X ^ 8 
^ , otherwise.
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Then f can be seen to be a semiring homomorphism 

from (i) and (ii) below.

(i) If X - 8, then by (3.12), f(x) - * , and hence 

f(x) $ f(y) - * A f(y)

- f(y)
" f(x + y), since x = 8

Similarly, if y - 8, then f(x) # f(y) = f(x + y) as required. 
So we may suppose that x ^ 8 and y ^ 8. But then

f(x) @ f(y) - s(f(x) f(y))
" s(x y)

{x+y} if X + y f 8 
$ , otherwise

- f(x+y) as required.

(ii) If X = 8, then f(x) " * by (3.12), and hence 
f(x) e f(y) = * 6 f(y)

" f(x)

" f(x 0 y), since x " 8 = x o y. 
Similarly, if y - 8, then f(x) 6 f(y) = f(x o y) as required. 
So we may suppose that x ^ 8, y ^ 8 . But then 

f(x) 0 f(y) = s(f(x) o f(y))

" s(x 0 y)
(x 0 y} if X 0 y ^ 8 

^ , otherwise 
f(x 0 y) as required.
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Now we show that f is a bijection.
Suppose that f(x) " f(y), then {%} - {y} if x, y } 8, and 

hence x = y.

If X - 8, then f(x) - But then f(y) " ^ also, 
which implies that y = 8 = x.

Similarly, if y " 8, then x « 8 = y.

Therefore f is an injection.

To see that f is also a surjection, let A c IK ,

Then
A - s(A)

n n
if A " {a., a...... a } and ^ a. ^ 8/ n 1

^ , otherwise

as required.

3.3 A Variety of P-Spaces

In future study, we shall find it useful to distinguish 

several types of p-spaces in accordance with their mcmnids, 

hereditary semirings or reduction functions. Therefore, let us make 
the following

DEFINITION 3.2 A p-space (X, o ,'y , r) is said to be commutative 

iff (X, o) is a commutative monoid.

DEFINITION 3.3 A p-space (X, o,^^, r) is said to be finite 
iff IT -
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PEFINITION 3.4 A p-space (X, , r) is said to be
(i) intensive iff r(A)CI A for every A e Y",

I

(ii) idempotent iff r(e e) " r(e) holds,

(iii) q-stationary iff whenever A* e IK , we have

r(A*) = r(e (+1 A for some q E N, and

(iv) complete iff whenever r(A. B) - r(B) for every

A. e such that A. = A E TK , we have
lel

r(A B) - r(B).
The following theorems are consequences of the above

definitions.

THEOREM 3.5 Every finite p-space is O-stationary.

Let (X, 0, r) be a finite p-space. Then it 
follows from (ii) of theorem 2.11 that A* e iff A = 

and hence
r(A*) " r(^*) " r(e) as required. V

THEOREM 3.6 Every finite p-space is complete,

Let (X, o,'y\ r) be a finite p-space and suppose
that r(A^ B) = r(B) for every A^ E such that

(+; A. = A E 'K". Now since it follows that
iel
r(A. B) - r(B) for only finitely many A^, i.e. A^ # B = r(B) 

for only finitely many A^, say A_, A», ...» A^ . But then 
A. # Ag @...# A^^ @ B - r(B), i.e. r(A^ A^ ... A^ B)=r(B)

i.e. r(A B) - r(B) as required. V



THEOREM 3.7 A p-space (X, o, r) is idempotent iff 
r(A L±l A) " r(A) for all A e

PROOF Sufficiency is obvious whereas necessity follows
from (vii) in the proof of theorem 3.2. V

THEOREM 3.8 A p-space (X, o, r) is idempotent iff 
r(A B) - r(AJUB) for any A, B e 1^.

PROOF If r(A B) - r(A LJB) for any A, B e IT, then
in particular, r(A 1*1 A) - r(A LJA) - r(A), and hence the p-space 

is idempotent by theorem 3.7 above.

Now suppose that the p-space is idempotent.
For ease of exposition, let Y = Af^B and Z = AJUB.

Then clearly, Y CZ Z.

If Y = Z, then A " B, and hence

r(A B) - r(A A) - r(A) - r(A UA) = r(A LJB)
as required.
If Y ^ Z, then we can define the multiset Z ly Y by

(Z Is" Y) (x) . .
" if Z(x) - «
Z(x) - Y(x), otherwise

From this definition, it is easily verified that

Z = Y I* (Z Y) always, and hence
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r(A l±; B) " r(Y Z)

- r(Y Y (Z Y))
- r(r(Y Y) (Z Id Y)) , by (3.2)
" r(r(Y) (d (Z Id Y))
. r(Y Id (Z Id Y)) , by (3.2)

" r(Z)

= r(A L)B) as required. 9

COROLLARY 3.1 A p-space (X, o, r) is idempotent iff the 
following condition holds.

(3.13) For any A, B e such that AB, we have r(A) < r(B);

where X denotes the pseudo-ordering of the path algebra.

PRDOF Suppose (3.13) holds, then in particular A C A implies

r(A) < r(A), i.e. r(A (+) ^ r(A), and hence the p-space is

idempotent.

Now suppose that the p-space is idempotent and let 
A(Z B, i.e. AtdB " B. Then it follows from theorem 3.8 that

r(A (d B) = r(AiUB) = r(B) , i.e. r(A) < r(B) 
as required. 9

Let us now make a special note concerning the 

significance of theorem 3.8 above from the view point of lattice 
theory. From theorem 3.2 above, we know thqt the path algebra 

( 6) of any idempotent p-space is an idempotent semiring,
and hence the pseudo-ordering < of ( is in fact an
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ordering. Moreover, ( T" , X ) is also a join-semilattice 

(see section 0.1 above). In fact, the least upper bound of any 
finite subset {A^, A., ..., A^} of is given by

A^ @ Ag # ... 0 A^ . Therefore the addition 0 of the idempotent 
semiring ( 0, 0) coincides with what is usually known in

lattice theory as the join operation, and is usually denoted by g 

V (see e.g. Birkhoff (1967)). Therefore in future, we shall use 

the notation V in place of 0 to emphasize the fact that the 

p-space under consideration is idempotent. Now theorem 3.8 
essentially says that the reduction function r is a join-morphism 
(Birkhoff (1967))from the semi-lattice ( ^^,(2 ) to the semi-lattice 

( ^ ), i-e. r(AkjB) " r(A) V r(B). This follows because

r(AiUB) " r(A B) - r(t(A) r(B)) = r(A) V r(B).

In fact, for complete idempotent p-space, its reduction 

function can be seen to be a complete join-morphism (Birkhoff (1967)) 

as follows.
THEOREM 3.9 Let (X, 0, 1^, r) be an idempotent p-space. Then 

the following are all equivalent
(i) r(IJA.) = V r(A.) whenever ^

iel ^ iEl iel

(ii) r( I^A.) = V r(A.) whenever (±1^^ e y iel ^ iel iel

(iii) The p-space is complete

PROOF We show that (i) implies (ii), (ii) implies (iii) and

(iii) implies (i).
That (i) implies (ii) can be seen from (2.7) as follows
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r( A.) "r iel ^

V A.)
JE2 jeJ

V _ ( V rCLJ)jeJ ^JeZ

V r(A.) as claimed, iel ^

That (ii) implies (iii) can be seen as follows. Let

r(A. B) - r(B) for every A. c such that tyA. " A e ^^ ^ iEl ^
Then by (ii), we have

r(A B) - r( (+|A. B) - V r(A.) V r(B)
iEl iEl ^

But by theorem 3.8 and our assumption, we have

r(A^) V r(B) " r(A^ B) " r(B) for every i E I, 
and hence r(A.) ^ r(B) for every i e I.

Consequently, V r(A.) < r(B) , i.e. iEl ^

V r(A.) V r(B) « r(B), and hence iel ^

r(A B) = r(B), which proves (iii).

That (iii) implies (i) can be seen as follows,

Let Z " |^)A.. But Chen A.(Z Z for all i e I, and hence
iel ^ ^

by corollary 3.1, r(A.) < r(Z) for all i e I, which says that
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r(Z) is an upper bound for {r(A.)|i G I}. We now show that 

r(Z) is in fact the least upper bound. So let Y e be

such that

r(A.) < Y for all i G I.

Now for each x G Z (I A., X G A, for some i G I, and hende
iel

by corollary 3.1 above, r(x) < r(A.). for some i e I.

Since < is transitive, it follows that r(x) < Y. Thus we have 
just shown that for every x G Z,

r(x Y) = r(Y).

Since Z = (^{x.} , it then follows from the
jeJ J

completeness assumption that r(Z Y) = r(Y) = Y or equivalently, 

r(Z) < Y. Consequently, r(Z) = V r(A.) as required.iGl ^
V

Let us now examine which of the properties in definition 
3.4 above are possessed by the p-spaces in the above examples. A 
straight-forward verification will show that the p-spaces of all the 

above examples are complete and intensive. In fact, we are unable 

to find an example of a p-space which is not complete. Aa an example 
of a p-space which is not intensive, we mention the p-space 
(N, ' , s) induced by the usual semiring CN, +, ') of

non-negative integers (see theorem 3.1 above). For if wa let 
A « {1, 2, 3} , then s(A) = {1 + 2 + 3} " {6} A. The p-spaces in 

all but example 3.8 can also be easily seen to be idempotent.
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However, in examples 3.3 to 3.5, if one replaces < everywhere 

by ( , then the resulting p-spaces will not be idempotent. 

Similarly, in examples 3.6 and 3.7, if one replaces the requirement 

for sim(A) and b(A) to be sets by multisets, then the resulting 

p-spaces will not be idempotent either. The p-spaces in examples 
3.6 and 3.7 are also q-stationary. In fact, it is easily seen 

that in example 3.6, q - |z| , where |z| denotes the number of 

elements in T , and in example 3.7, q . 0. If we assume that the 

totally ordered monoid (X, g, o) in examples 3.2 and 3.3 also has 
the property that x^ - x implies x - e for all x c X, then the 

p-spaces in these example are also q-stationary. In fact q - 0 
for example 3.2 and q - 2^^ for example 3.3. For by theorem 

2.13, we know that A* e implies that x $ e for every x e A,

and hence

min( A* ) - {e} " min{e} ,
k-min( A* ) . k-minje (+, A ij, A^ .and

The latter can be shown as follows. If x « e for every 
X G A, then A* " {e, e, ...} and hence

k-min (A*) - {e} - k-minje A A^ ... A^

So we may suppose that x > e for some x - a, say. But then

(k-2)

e < a < a^ < a^ < ... < (k-2)
are contained in e A ... i^^A^ 

and since x c A= for any s > 2^^^^) always implies that x ) y
f ,(k-2)for some y e A , the required result follows. We note that if

we replace < by ( everywhere in example 3.3 or if we assume that 
- x^ implies X - e for all x e X and all j e N, then it 

be similarly shown that q - k-1 in these cases.

(k-2)

can
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CHAPTER 4

COMPATIBILITY AND STABILITY

4.1 Networks and their Graphs
The formulation and solution of path problems, using the concept 

of multisets of chapter 2, which we shall discuss in the next chapter, 

actually permits us to describe a path problem in the setting of a more 
general framework than that of a graph over a monoid, i.e. multiple 

arcs can now be taken into consideration. More precisely, let us make 
the following

DEFINITION 4.1 A network over a finite set L is an ordered pair

(W,U) where W is a finite set, and U is a multiset with elements from 

the cartesian product W x L x W. The elements of L are called labels, 
elements of W are nodes, and elements of U are arcs. More precisely, each triple 

(x, a, x') of the multiset U will be called an arc beginning at node x, 
ending at node x' , and carrying the label a .

We note that by this definition, a graph G over a set L as 
defined in section 0.4 is just a network in which no two arcs with the 

same beginning and end are allowed, whatever labels they may carry. Thus 
a graph over a set L is just a particular instance of a network. In view 
of this connection, we can also generalize other concepts which are previously 

defined for graphs in section 0.4 to networks as follows, where 
for convenience, the nodes of the network .A'' are designated as x., X2....x .

DEFINITION 4.2 Let AT be a network. Then a path p of V/ is a finite 

ordered sequence
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(x. , ^1* )(X' * ^9* )^0 ^ ^1 ^1 ^ ^2 ^k-1 ^ ^k

of consecutive arcs in,A^. The integer k > 0 is called its order,

its intermediatex^ its beginning, x. its end, and x. to x "O ----------- 1^, ------- 1 ] k-1
nodes. The path p is said to be closed iff x. « x. , elementarv^0 ^k
iff X. ^ X. whenever r f s (except, of course, for closed paths, 

r s
where x. = x. always).^0 \

In the present study, we shall only be interested in networks 
over a finite subset of a monoid, which we shall simply refer to as 
networks over a monoid. This is to say that the labels of the network 

under consideration are elements of a monoid (X, o), say. Consequently, 
for each path

(x. , a., X. )(x. , a», X. ) ... (x. , a., x. )^ ^1 ^1 ^ ^2 ^k-1 ^ ^k

in V/ , the element a^ o ag o ... o a^ is well defined (because o is 
associative) and will be called the label of the path p in . For 
convenience, we shall also introduce the concept of a null path 8. for 

each node x. in .A^ which can be defined as a closed path of order zero 
which begins and ends at x. , and has label e, the identity for o. For 
convenience, each node x. has exactly one null path by definition.

A network can generally be represented by a diagram such as figure 

4.1 below, where the nodes are represented by letters x^, x_,...,x^ and 
an arc such as (x^, a, x.) by x^ —^—> xj.
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Figure 4.1 A network .V

It would appear simpler to draw figure 4.1 as figure 4.2 
below,which contains essentially the same informations as 
figure 4.1. But figure 4.2 can be seen to be a graph over the set 
L (Z (see section 2.1). This suggests that a network over
a finite set L C) X is in fact equivalent to a graph over L (Z 

Indeed, this is so. For let " (W, U) be a given network over a 
finite set L CZ X, we can define a graph G(A^) " (W, V, v) over 

L by taking W to be the set of nodes in , V to be a
subset of W X w such that (x\, Xj) e V iff (x^, a, Xj) e U for at 
least one a e L, and v : V ^ L to 1% defined by v(x^,x.) " the 

multiset of all labels of arcs in U which begins at node x. and ends 
at node x.. And conversely, we can define a network -4^(6) = (W,U) from 

a graph G = (W, V, v) over a subset of by taking W to be the set

of nodes in G, and U to be a multiset such that (x., a, x.) e U iff1 J
a G v(x^, X.)

Figure 4.2 The graph G(J/) of the network .AT in figure 4.1
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From the above discussion, we see that given a network 
we can define the label matrix M of to be the arc-value matrix
of the graph G(^^) - (W, V, v) , i.e.

(4.1) “ii
v(x\, Xj) if (x^, X.) e V

* , otherwise

In this way, all the previous results concerning the arc-value 
matrix of a graph over a semiring can be translated into results concerning 
the label matrix of a network over a monoid. For instance, the matrix 
M^, the kth power of M is given by (0.15) aa follows.

(4.2) W v(p)
p. pfy

(k)where v(p) and P). are defined with respect to the graph G(J/) over
Xthe complete semiring N^.

Note that in this instance, v(p) as given by (0.13) is the 
multiset consisting of all the labels of all the paths in which

traverse the same nodes as the path p in G(A^).
P XHere it is convenient to introduce the function v : 2 where

P denotes the set of all paths in G^A). This function is defined by

(4.3) v(Q) " (^v(p)
peQ

for all Q G 2

We note here that strictly speaking, a different notation should 

be employed in place of v on the left-hand side of (4.3) above. However,
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our use of the same v does not cause any confusion because the
P Xargument of the function v : 2 + are sets which are denoted

by capital letters, whereas paths will always be denoted
by lower case letters. We note also that the function v ; 2^
is in fact an extension of the function o : 2^^^ + as defined

00

eby (0.16) for the graph G(/r) over the complete semiring 

Accordingly, properties (0.17) and (0.18) of o can also be obtained 

for V , namely

(4.4) v(Q^(j Q2IL/.... " v(Q^)(^v(Q2)(^ ''«(^v(Q^) whenever

Qf Qj = * for i ^ j

(4.5) v(q. Q ... Q .) - v(Q. ) 0 v(Q )o ... ov(q .)iri r^r2 r^j ir^ r^r^ r^j

where each is a subset of paths from x to x and

Qrs Qst ' I P ^ Qrs ' ^ ^ ^st

In fact, a stronger property than (4.4) is possessed by 
p XV : 2 + as stated in theorem 4.1 below. But first, let us

establish the following:

LEMMA 4.1 Let Q^, Q2 e 2^ be such that iC Q2 

Then v(Q^) C v(Q2) .

PROOF Since CZ Q2' follows that Q2 = (J (Q2 Q.)
Therefore, it follows from theorem 2.5 and (4.4) above that

v(Q^) CZ v(Q^) v(Q2 \ Q^) " v(Q2)
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THEOREM 4.1 If (Q.) is a sequence of subsets of P such that
qu Q. = * whenever i ^ j. then

v(julQ.) - l^v(Q.)1-1 ^ i-1 ^

PROOF Let Q - jjQi ^ « Then in view

of (2.7) and (4.4) above, it suffices to show that v(Q) - (Jv(S.).k-1 ^
By lemma 4.1 above, Q implies that v(S^^ C v(Q) for

all k , i.e. v(Q) is an upper bound for {v(S.)|k e {1,2,...}}.

We claim that v(Q) is in fact the least upper bound. In order to justify 
this claim , let us define a function v : ^ 2^ by v(A) -{peP|v(p)CA},

This function has the following three properties.

(i) A (Z B implies v(A) ^ v(B).

This follows because any p e v^A) implies v(p)(2 A(C B, and 

hence p e v(B) also.

(ii) Q C vXv(Q)) for any Q e 2

For let p E Q, then v(p) (^v(p)
peQ

v(Q) implies

p e v(v(Q)) as required.

(iii) v(v(A)) C A for any A e .

This follows because

v(v(A)) - v(p) - (+jv(p)(]A .
pEv(A) v(p)(ZA

Now let Y be any other upper bound for {v(S.)|k e {1,2,...}}, 

Then v(S^) (C Y for all k, and hence from (i) above, it follows that 

v(v(S^^) (Z v(Y) for all k. But then it follows from (ii) that
Cl vXv(S^)) (Z v^Y), and hence Q (Z v^Y). Therefore, by lemma 4.1
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and (iii) above, we have v(Q) ([ v(v^Y)) C Y as claimed. V

Theorem 4.1 is useful in establishing the following theorem, where 

all the essential properties concerning the label matrix M that we shall 

require later are conveniently summarized.

THEOREM 4.2 Let M be the label matrix of a network over a

monoid (X,o). Then we have the following
(i) M^ is given by = v(P^^^) for all i,j, where

is defined with respect to the graph G(^^)
(ii) mH

k-0 is given by (M^^

where pW
IJ

sx for all s E N.

(iii) M* -
03 M^^ and M^ - (+)M^ are
k"0 k-1

(k)where P.. " ij Pk:o

PROOF (i) is just (4.2) above, (ii) follows directly from (i) and

(4.4), and (iii) follows directly from (i) and Theorem 4.1 above.

THEOREM 4.3 Let be a network over a monoid (X,o) with n nodes.
fk)For any k e {O, 1, 2,...,n} , let Q^. be the set of all paths of

P^j \ graph G(y/) that do not use any node x^ such that

r > k as an intermediate node. Then for all i,j, we have
(i) ^^^ij^) " ^^Qij^)

(ii) v(P\j \ P^j^) " v(Qfj^), and

(iii) v(Qfj^) " v(Q|^^^^) v(Q!^^^^) 0 v(Q^^^^^)* 0 v(Q^^^^^)

for all k E (1, 2,...,n} 
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PROOF (i) Observe Chat each path in oot allowed to have
intermediate nodes, and hence its order is at most unity; in fact, it
is exactly unity because does not contain null paths. On the

other hand, each path of order unity can never have intermediate nodes.
Therefore, and hence v(P^^^) - v(Q^9^).

ij ^ij ij
(ii) Since the network has only n nodes, each path in P.. \ p9?^

1] ij
cannot use more than n nodes as intermediate nodes, and hence 
P.

But (= \ ^ij^ Therefore,

'ij \ 'iĵ9^ - ^ij^ hence v(P^j \ pjj^)= vCoj?^).

{k}(iii) Let p e Q^. . Then by definition, p has no intermediate

nodes x such that r > k. But then either p e which means

asthat p does not also have x^ as intermediate node, or p has x. 
intermediate node, in which case, p may use x^ as an intermediate node 

mere than once, i.e. the path p can be factorized into paths in

-

p " ab or p - a c^ c. ... c b ,

where a e (k-l) {k-1}b e Q^j and c^, c^,...,c^ e . Conversely,
such a path p is always a path in Q{k}ij Therefore

and hence the required result follows from (4.5) and theorem 4.1 above. V 
We note here Che above theorem is a generalization of a result 

obtained by McNaughton and Yamada (1960) in automata theory.
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4,2 Compatibility of Networks with P-Spaces

In the definition of a path problem to be given in the next 

chapter, we shall find it necessary to impose the condition that 
rv(P^j) - r(v(E\j)) is a well-defined multiset for a given network V/ 

over a monoid (X,o) and a given p-space (X, o.TT.r). That rv(P^.) 

may not be well defined can best be seen from the following example.

Let // be a network over the additive group (R,+) of real 
numbers and suppose that there exists at least one closed path in

whose label a is negative. Then we claim that min(v(P^j)) is 
not defined, i.e. v(P..) ^ IVL, where denotes the set of all

i J K K
Rwell ordered multisets of and *. For we know from corollary 2.1 that

v(P..) e TVL iff X ) 0 for every x e v(P..). But this is not possibleij ij
since a E v(P^.) and a < 0 was assumed. Therefore, the claim is 

justified.

From the above example, we see that the question concerning the 
definability of rv(P^j) for a given network and a given p-space 

(X, o,TK,r) is closely related to the nature of the labels of closed paths 
in the network. Thus any network in which the labels of closed paths

are of the wrong nature is in some sense not compatible with the given 

p-space (X, 0,1^r). It turns out that this troublesome nature of the labels 

of closed paths in a network can be formally described in terms of closed 
multisets of the hereditary semiring T" of the p-space and the question 
of compatibility can be translated into the question of whether or not 
the multiset v(P^^ \ 6^) is closed in . To prove this result, 
let us first define formally what we mean by compatibility.

DEFINITION 4.3 Let be a given network over a monoid (X,o) and

(X, o,lK,r) be a given p-space. Then the network J/ is said to be 

compatible with the p-space iff v(P) e where P is the set of all paths
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in G(J/).

Since our previous understanding of compatibility from the
above example is that v(P^j) e so that rv(P^j) is defined for all 
i,j, definition 4.3 might seem somewhat surprising. However, this 

definition is in fact in agreement with our previous understanding as 

the following lemma shows.

LEMMA 4.2 Let .V be a given network over a monoid (X,o) and
(X, o,ir,r) be a given p-space. Then is compatible with the p-space

iff v(P^j) e IK for all i,j, where P^. is the set of all paths in 
G(V/) which begin at x\ and end at Xj.

PROOF Suppose first that is compatible with (X, o,lK,r)

i.e. v(P) e IK , where P is the set of all paths in G(V/). But by 

lemma 4.1, ^ implies that v(P^j) CZ v(P) for all
i,j,. Therefore, it follows from the hereditary property of IK that 
v(P^j) G IK for all i,j .

Now suppose that v(P\j) G for all i,j,. But then by
(4.4), we have

v(P) = v(|iP..) - v(P..) G TK as required.

THEOREM 4.4 Let be a given network over a monoid (X,o) and
(X,o,TK,r) be a given p-space. Then VK is compatible with the p-space
iff v(P.^ \ 8.) is a closed multiset of TK for all i where P..11
denotes Che set of all closed paths in G(V/) which begin and end at 
X. and 8. is the null path for x. in G(J/).

PROOF Suppose first that is compatible with the p-space.
i.e. v(P) G 1^. Since v(P.. \ 8^) ([ v(P) for all i, we have
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v(P^^ \ 8^) e y for all i. Now let B ^ \ 8^). Then
B " v(C) for some C Cl P^^ \ 8^. Since P.^ \ 8. containa all the

non-null closed paths which begin and end at node x., it follows that
00 ! kIJ C (2 P.. \ 8. , and hence by theorem 4.1 and lemma 4.1 above.k-1 " ^

1+; V(C)^ - v(,J C^) C: V(P.. \ 8.)k-l k-l - ^

Therefore, it follows from the hereditary property of T' that B^ e 1^. 

Consequently, it follows from lemma 2.1 and lemma 2.2 above that 
v(P^^ \ 8^) is closed in T" .

Now suppose that ^^^^i ^ ^i^ ^ closed multiset of y
for all i . Then in view of lemma 4.2 above, it suffices to show that 

v(Pij) e 'y for all i,j. We first show that e 'K for all

k e {0, 1, 2....n} , where as defined in theorem 4.3 above.
Since (Z by the definition of a hereditary semiring

it follows that v(Qf9^) e IT for all i,j,. In particular, e y
Xo}But C v(P^^ \ 8^), and hence by lemma 2.2 above, v(Qj^^)* e T'

also. It then follows from (iii) of theorem 4.3 that v(Qfj^) e for 

all i,j. The same argument can then be repeated to show that v(Qf4^) e 
for all i,j, and so on for v(Qij^),...,v(Qf^^).

Therefore, from (ii) of theorem 4.3, we conclude that 
v(Pij \ pjj^) e But then by (4.4),

v(P.j) - v(P.j \ ^ v(P^9)) G IK also.

COROLLARY 4.1 (i) Every acyclic network over a monoid is compatible with 

any p-space. Here a network over a monoid is said to be acyclic iff it has 

no non-null closed paths.
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(ii) Any network over a monoid (X,o) is compatible with the p-spaces 
(X,o, N^^r) and (X,o,(@g^ r).

(iii) A network over a monoid (X,o) is compatible with the p-space
(X,o,iP^^r) iff J/ is acyclic.

PROOF (i) follows from the above theorem because for all i, v(P.. \ 8.) 

is always a closed multiset of the hereditary semiring IK of any p-space 

(X,o,T\r).
(ii) follows from the above theorem because by (i) and (iii) of theorem
2.11 , v(P^^ \ 8^) is always closed in and (&_ for all i.

(iii) follows from the above theorem because by (ii) of theorem 2.11,

v(Pii \ 8^) is closed in iff \ i-

m ,()

COROLLARY 4.2 A network V/ over a locally finite monoid (X,o) is 
compatible with a given p-space (X,o,.AK^r) iff the label a of any 

elementary closed path in vV' is such that a f e.

PROOF Suppose first that J/ is compatible with (X,o,.AL^r). ThenA
it follows from the above theorem that v(P^^ \ 8^) is closed in V/ for 

all i. But then by theorem 2.12, we know that x ^ e for every 

X e v(P^^ Y 8^) for all i, and hence the label a of any elementary closed 

path in satisfies a ^ e.

Now assume that the label a of any elementary closed path in a 
network v/ over a locally finite monoid (X,o) is such that a ^ e.
Then we claim that x ^ e for every x E v(P^^\ 8^) for all i.

For let X E v(P^^ \ 8^), then x e v(p) for some p E 8^' If P

is an elementary closed path in G(V/) , then x is the label of an elementary 

closed path in , and hence x ^ e by assumption. So we may suppose 
that p is non-elementary. But then we may write p - for some

elementary closed pathe w. in G^//) as in the contraction process
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explained in section 0.4 above. Consequently, v(p) " v(p^) o v(q^).

Hence x " o a^ o for some y^ e v(p^), a^ e v(w^), z^ e v(q^).
But then x ^ e because a^ ^ e by assumption. For suppose otherwise, 

then o a^ o z^ " e would imply that y^ - a^ - z^ " e because (X,o) 

is a locally finite monoid (see section 0.2), a contradiction. Therefore,

X / e for every x e v(P^^ \ 8^) as claimed. But from theorem 2.12, 

this means that v(P.^\ 8^) is closed in , and hence is
compatible with the p-space (X,o,jV^^r) as required. V

COROLLARY 4.3 Let be a network over a totally ordered monoid (X,g,o)
2which also satisfies the condition that x - x always implies x " e, 

then for to be compatible with the p-space (X,o,1VL^r) (or(X,o,lV^yr)),

it is necessary that the label a of any elementary closed path in 

satisfies a ^ e (or a $ e). On the other hand, this condition is sufficient 
for to be compatible with (X,o, Ih^^r) (or (X,o,1V^^r)) in the case

where (X,o) is an Archimedean totally ordered monoid.

PROOF Suppose first that y/ is compatible with (X,o,'A^^r). Then
it follows from the above theorem that v(P.. \ 8.) is closed in T/L

XI X A

for all i. But then by theorem 2.13 above, we have x % e for every 

X e v(P.. \ 8.) for all i, and hence the label a of any elementary 

closed path in yy must satisfy a ) e as required.

Now suppose that the label a of any elementary closed path 
in a network .A^ over an Archimedean totally ordered monoid (X,o) 

satisfies a ) e . Then we claim that x ^ e for every x e v(P.^\ 8^) 

for all i. For let x e v(P^{ \ 8^) » then x e v(p) for some
p E P.^ \ 8^. If p is an elementary closed path in G(y/) , then x is

the label of an elementary closed path in yy, and hence x ) e by

assumption. So we may assume that p is non-elementary. But then by the
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contraction process explained in section 0.2, we may factorize p as 
follows

p - P^w^q^ , p^q^ - p^Wgqg ..... Pg-iQB-i " where p^q^
is a contraction of p .

Consequently, v(p) » v(p^) o v(w^) o v(q^) implies that 

X " yj 0 0 for some y^ e v(p^), a^ e v(w^) and z^ e v(q^).
Since a^ ) e by assumption, it follows that x 3 y^ o z.. But 

^1 ° ^1 ^ ° v(q^) - v(p^q^) - vCpg) 0 vCwg) o vCq^) implies that

^1 ° 'l " ^2 ° ^2 ° ^2

for some 72 G vCpg), a^ e vCw^) and z^ e vCq^)

Again, since Sg ) e by assumption, it follows that y^ o z^ ) y2 o z. 

and hence x ) y_ o z^.

By repeating the above argument for y^ o z. and so on, we 
obtain X ) yg o z^ % y^ o z^,...,yg_^ o Zg_^ » y^ o z^.

But y^ 0 Zg e v(Pg) o vCq^) " v(p^q ), and p^q^ is necessarilys s s s
an elementary closed path in G(^^) , it follows that y^ o z 3 e, and 
hence x ) e as required. Consequently, v(P.^^ \ 6.) is closed in 

by theorem 2.13, and therefore V/ is compatible with (X,o,1VL^r).
The case for the p-space (X,o,TVl^r) can be proved in a dually

fashion.

COROLLARY 4.4 Let be a network over a totally ordered cancellative
monoid (X,g,o) which is also conditionally complete. Then is compatible
with (X,o, ^g^r) (or (X,o,1V^,r)) iff the label a of any elementary 

closed path in satisfies a ^ e (or a $ e).

PROOF This is a special case of corollary 4.3 above because any
2cancellative monoid has the property that x - x implies x " e, and 

any totally ordered cancellative monoid which is also conditionally complete
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was seen in the proof of corollary 2.1 above to be Archimedean. V

COROLLARY 4.5 Any network over an Archimedean totally ordered group 
(X, $ ,o) is compatible with the p-space (X.o.'k^.r) (or (X,o,t4^,r)) 

where (or - 6^ ri .VL iff the label a

of any elementary closed path in .A< satisfies a > e (or a < e).

PROOF Suppose first that is compatible with the p-space

(X,o,1kg^r). Then it follows from the above theorem

that v(P.. \ 8.) is closed in for all i. Now by (ii) of
corollary 4.1, v(P.. \ 6^) is always closed in and by theorem
2.14 , v(P.. \ 8.) is closed in 1VL implies x > e for every

X E v(P.. \ 8.). Therefore, in particular, a > e for every label a 

of any elementary closed path in .

Now suppose that the label a of any elementary closed path 
in satisfies a > e. Then by an argument similar to corollary 4.3 
above, we can show by using, in addition, the cancellativity assumption 
that X > e for every x e v(P.^\ 8^). But by theorem 2.14, this means 

that v(P.. \ 8.) is closed in and hence in
also (see (ii) of corollary 4.1 above). Therefore J/ is compatible with

the p-space (X,o,<ky,r) as required.

The case for can be shown dually.

4.3 Stability of P-Spaces with respect to Networks
In many concrete instances of path problems to be defined in 

the next chapter, the problem of determining rv(P^j) for a given network 
over a monoid (X,o) which is also compatible with a given p-space

Cq]
(X,o,'K\r) is actually equivalent to the computation of rv(P^j ) for 

some positive integer n^^ For instance, consider again the p-space 

(R, +,min), where (R, +) is the additive group of real numbers.
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As seen in the beginning of the previous section (also corollary 4.4), any 
network V/ which is compatible with this p-space must satisfy the 

condition that the label a of any elementary closed path in is such

that a > 0. Therefore, the label b e v(p) for any p e must
satisfy b 3 a for some

a e v(p) where p is a contraction of p in G(J/). Consequently, for 

any b e v(P^.), b ) a for some a e v(E^.) where E^. is the set of 
all elementary closed paths in G(y/). Therefore, b ) a^ - min v(E^.)

for all b G v(P^j).
Now since a^ G v(P^j) also, it follows that 

a^ - min v(P^.) ,

i.e. min v(P^.) " min v(E^j)

Now an elementary open path in a network with n nodes cannot 
have more than (n-i) arcs, and henpe v(E^j) ^ ^ ^

By an argument similar to that used above, we then have

min V (p&'fl) - min v(E^j) for i f j

Now for i " j , P^? ^

v(6.) " {0} , we have
contains the null path 8. , and since

min V (p[? ^^) " {0} " min v(E..)

Therefore, min v(P^j)" min v(PL% - min v(E^j) for all i,j as, -,, . fe-a> -

required.
Thus in this section, we shall concern ourselves with the 

problem of finding sufficient conditions for the above situation in general.

- 117 -



Its relevance to the solution of path problems will be shown in the 

next chapter. Now for convenience, let us introduce the following.

DEFINITION 4.4 Let // be a network over a monoid (X,o). Then a 

p-space (X,o,ir,r) is said to be n_-stable with respect to 

iff for some positive integer ng,

[vQ, , ["ol(4.6) ) for all i,j

Moreover, the p-space is said to be completely ng-stable with 

respect to iff is compatible with the p-space and also

W(4.7) rv(P^j) - ) for all i,j.

Now from a given matrix A e let us define a matrix

A^ E T^.) by

(4.8) (^r^ij " for all i,j.

Using this definition, we can now obtain

LEMMA 4.3 Let be a network over a monoid (X,o) and M its
label matrix (as defined by (4.1) above). Then a p-space (X,o,"K\r) is 

Ug-stable with respect to iff M^ " M^ , where

= I @ M # M ^ e ... » M and completely n_-stable with respect 
r r r r r u * *

to its compatible network iff M^ " M^ ^ , where M^ " (M )^.

PROOF In view of definition 4.4 , it suffices to show that
(pJ^^).. - rv(p[^^) for all i,j, and all k e N , and that
r ij ij
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" rv(P^j) for all i,j. The latter follows easily from (4.8) 

and (ill) of theorem 4.2, One way of proving the former is to consider 

the matrix M as the arc-value matrix of the graph G(M^) over the 

path algebra ( 0 , 6) and note that all the paths in G(M^) are

exactly those in G(V/). Hence the result follows if we can show that 
(M^^^).j " rv(p[j^) , where defined with respect to G(M^).

But the right-hand side is just another way of writing r^iv(p) ,
pePij

and hence the required result follows from (1.4) above. Alternatively, 
one can use (ii) of theorem 4.3 and the following consequence of (4.8):

LEMMA 4.4

(A » B) - A^ e B^ and (A 0 B)^ - A^ 6 B^ .

Let be a network over a monoid (X,o). A p-space

(X,o,1K,r) is n.-stable with respect to ^4^ iff

(4.9)
Tsl W

rv(pLjJ) . rv(P.j^) for all 8 ^ n.

Hence, if the p-space is complete and is compatible with 

the p-space, then this p-space is also completely Ug-stable with respect 

to .

PROOF From lemma 4.3 above, we see that (4.9) is equivalent to
M^X] m ^ for all s ) n^. This we can prove by mathematical induction

as follows . For s - n^ , the result is trivially so. So let us suppose 
that the result is true for all s such that n^ $ s < t and show that it 

is also true for s = t as follows.
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r r r
mH . I g M 0 Mp'd

.w
I # @ ^ , by induction hypothesis

" M
&o*3

M

mW . „W
Hence ML"J » M ^ for all s ) n. as required, r r 0 ^

For the second part of the lemma, let us first use mathematical 

induction to show that

fki [Po]
(4.10) r(v(P^.^) ^ ^ ^ ^0 ^ ^

For k " n^ + 1 , this is just (4.6) above. So let us assume 

the result to hold for all k such that n^ + 1 $ k < t and show that 
it also holds for k " t as follows.

From the first part of the lemma, we know that

rv^fi [po]
rv(pjj ^) " rv(P^j ) for all t > n^ + 1,

and hence by (3.2), we have

,(t),r(v(P)j^)\^v(Pij )) ,(t). Mr(v(P^j )(^rv(P^. ))

r(v(P^j))l±|rv(p[f"^])) 

r(v(p(j)) ^v(p[^"^]))
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- rv(Pyy)

M" rv(P^j )

Therefore, (4,10) is valid for all k ) + 1.

Now by theorem 4.1, we have

v(P.. \ P.. ) v( (J P^^^)
k-ng+l

(k) 
v(P.. )

kmiQ+l 1]

and hence it follows from the completeness assumption that

W Wrv(P^j) - r(v(P^j \ P^j ) + v(P^j )) - rv(P^j )
W,

as required. ^
THEOREM 4.5 Every finite p-space is completely (n-l)-stable with 

respect to any network compatible with the p-space.

PROOF First, let us note from (iii) of corollary 4.1 above that 
a network V/ is compatible with a finite p-space iff is acyclic. 
Now a network is acyclic iff its graph G(jy) is acyclic. Since

the order of each path in an acyclic graph is at most n-1, it follows 
that pfj^ - * for all k > n. Consequently, P^j 

s ) n-1 and hence the required result follows.

-pH
IJ for all

THEOREM 4.6 Every q-stationary, idempotent and intensive p-space is 

completely n.-stable with respect to any network compatible with the p-space.

PROOF Let (X,o,'y,r) be a q-stationary, idempotent and intensive
p-space. Then we claim that rv(P..) c for all i,j. In order toij A
justify this claim, let us first note the following consequence of the 

assumption that the p-space is intensive
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(4.11) For any A,B e "Y" auch that r(A) , r(B) e then

both r(A) 0 r(B) and r(A) 8 r(B) belong to also

Thia follows because

(i) r(A) 8 r(B) - r(r(A) r(B)) (] r(A) r(B) e and

(ii) r(A) 8 r(B) - r(r(A) o r(B)) r(A) o r(B) e .

Now rv(P^j) - rv(P^j \ * rv(p^^^), and since rv(P^j^)(Zv(pjj^) e

implies that rv(P^j^) e our claim can be justified by using (4.11)

above if we can show that rv(P.. \ pf9^) e also.
3-3 IJ A

This we now do by showing that rv(Qf?^) e , since 

rv(Q^j ) - \ theorem 4.3.

Now from (i) of theorem 4.3 and the assumption of intensitivity, 

rv(Qjj^) - rv(pjj^) v(P^j^) e implies that
1]

rv(Qjj^) G for all i,j, and from (iii) of theorem 4.3, we have

rv(Q!j^) . rv(Q!9^) 8 rv(Q!°^) 8 r(v(Q|°^)*) 8 rv(Q|9^)

for all i,j.

Consequently, it follows from (4.11) that rv(Q(^^) e if we can show
IJ A

that r(v(Q^^ ) ) e But the p-space is assumed to be q-stationary,
and hence

r(v(Q^^^)*) " r(e) 8 rv(Qj^^) 8 ... 8 tv(Q^^^)^ e as required.
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Similarly, one can then show that rv(Q: e for all i,j.{2 }
ijand so on for rv(Qfj^),..., rvCQ^j^).

Therefore rv(P..) G (FL as claimed. Now sinceIj A
rv(P..) (Z v(P..), it follows that there exists a finite subset H ^ P.. 
such that for any a e rv(P^j), a e v(H) also. But then a e vCP^. ) 
if n^ is chosen to be the maximum order of paths in H. Therefore,k]r(a) ^ rv(P.. ) by corollary 3.1. Since this holds for all a G rv(P .), 
it follows from property (0.5) of ^ that rv(P^j) ^ ) '

But v(P^j^ ) (Z implies that rv(P^j^^) < rv(P^j)

by corollary 3.1 also, and hence

wrv(P^j) " required. V

For the next four theorems, it is convenient to introduce the 

following concept analogous to that given by Roy (1975).

DEFINITION 4.5 A multiset A e 'Y" of a p-space (X,o,lK,r) is sail 
to be g-absorptive with respect to r iff for each q-tuple (a^,a2,...a ) 
of elements in A, we have

r{e,a^,a^ o a2,...,a^ o 82 o ... 0 a^} = r{e,a^,a^ 0 a2,...,a^ 0 82 0 .

Note that by this definition, the set of all q-absorptive 

multisets of "K(with respect to r) is hereditary, i.e. every 

submultiset of a q-absorptive multiset is also q-absorptive.

"q-1^

LEMMA 4.5 A multiset A e of a p-space (X,o,1K,r) is q-absorptive

with respect to r iff for each s-tuple (3^,8^,...,ag) of elements in 
A , we have

r(a^ 0 82 0 .... 0 a^) < r{e,a^,a^ 0 a^,..., a^ 0 0 ... 0 &q_2}

for all s ) q ,
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where < denotes the psuedo-ordering of the path algebra ( 0, 0)

PROOF Its validity follows from an argument similar to that used
in the beginning of the proof of lemma 1.4 above.

DEFINITION 4.6 Let be a network over a monoid (X,o) and
(X,o,1K,r) be a p-space. Then is said to be q-absorptive with 

respect to the p-space iff the multiset v(0) is q-absorptive with 

respect to r , where 0 denotes the set of all elementary closed 
paths in G(y/).

DEFINITION 4.7 Let be a network over a monoid (X,o) and
(X,o,'K,r) be a p-space. Then is said to be q-regular with respect 

to the p-space iff for every elementary closed path w in GC//), v(w) 

is q-absorptive with respect to r.
We note here that since v(w) ^ v(0), it follows that v(w) 

is q-absorptive whenever v(0) has this property, i.e. definition 4.7 
is more general than definition 4.6 above.

LEMMA 4.6 Let be a network over a monoid (X,o) which is 
q-absorptive with respect to a given p-space (X,o,1K,r) and M its

label matrix. Then the graph G(M^) over the path algebra ( 0, 0)
is a q-absorptive graph (i.e. (1.16) is satisfied). Here M. is defined

from M by (4.8) above.

PROOF We have to show that condition (1.16) is satisfied, i.e.

v(w^) 0 vXwg) 0 ... 0 v(Wq) < r(e) 0 v(w^) 0 ... + v(w^) 0 v(m2)0.«'0v(w _^)

for every q-tuple (w^.Wg,...,^ ) of elementary closed paths in G(M^)

Let v(w^) - ^ ^ ^ (1*2,...,q}
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Then each X e v(w^) # vCw^) 0 ... 8 v(w ) is of Che form

X - ° ^ ° ^^k ) * where k. e (1,2.... nu^ for

all i e {1,2,...,q}

But clearly, (a.. ,a.. ... a. ) ia a q-tuple of elementsqkq
in v(0) where 0 is the set of elementary closed paths in G(M). 
Since v(n) is q-absorptive, it follows that

X r{e,a,, le.. o , «.«,a., o a«, o «««'Ik^'-lk^ " =2k2 Ikj -2kj

It then follows from properties (0.2) and (0.4) of < that

X < r(e) 8 v(w^) 0 ... 0 v(m^) 0 v^Wg) 0 ... 8 v(w ^).

Since this holds for all x e v(w^) 0 v^Wg) 0...8 v(w ) , and there are 
only finitely many such x , it follows from property (0.5) of X that

v(w^) 0 v(m2) 8 ... 0 v(Wq) < r(e) 0 v(w^) 0 ... 0 v(w^) 0 ®''®v(w ^)

as required. 9

LEMMA 4.7 Let .A^ be a network over a monoid (X,o) which is q-regular 
with respect to a given p-space (X,o,'K,r) and M be its label matrix.
Then the graph G(M^) over the path algebra ( V",0,0) is a q-regular 
graph ,i.e. it satisfies condition (1.14) above.

PROOF Its validity follows from a similar argument used in the proof
of lemma 4.6 above by taking

v(w^) - viWg) - ... - v(w ) . 9
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THEOREM 4.7 Every p-apace (X^o.'X.r) is (a-l)-8table with respect 

to any network which is l-absorptive with respect to the p-space.

Moreover, if the p-space is complete and is compatible with the

p-space, then the p-space is completely (n-l)-8table with respect Co V/

PROOF By lemma 4.6, we know that the graph G(M ) over the path
algebra ( l-absorptive, and therefore absorptive.

Consequently, it follows from theorem 1.5 Chat Che arc-value matrix 
of the graph G(M) is (n-l)-stable, i.e.

r r '

and hence by lemma 4.3, the p-space is (n-l)-8table.

The rest of the proof follows from lemma 4.4 above. V

THEOREM 4.8 Every commutative p-space (X,o,1K,t) is (nq-l)-stable 
with respect to any network which is q-absorptive with respect to the
p-space. Moreover, if the p-space is complete and is compatible with 

the p-space, then the p-space is completely (nq-l)-stable 
with respect to V/ .

PROOF Its validity follows from lemma 4.6, theorem 1.7 and lemma 4.4 

by an argument similar to that used in the proof of theorem 4.7 above. 9

Note that theorem 4.8 only implies theorem 4.7 in the case where 
the p-space is commutative.

THEOREM 4.9 Every commutative p-space (X,o,'K,r) is n_-stable with 
respect to any network J/ which is q-regular with respect to the p^apace. 

Moreover, if GC//) has t elementary closed paths, Chen

n_ - nt(q-l) + (n-1)
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Also, if the p-space is complete and is compatible

with

with respect to jy .
the p-space, then the p-space is completely ou-stable

PROOF This follows from lemma 4.7, theorem 1.6 and lemma 4.4 ahn^e 

by an argument similar to that used in the proof of theorem 4.7.

The next theorem also requires the following

LEMMA 4.8 Let (X,o,1K,r) be a complete p-space. If A is a finite 
multiset which is closed in V' and q-absorptive with respect to r ,

tXA^^^) for all s ) q-1.then r(A*) is finite and moreover, r(A*)

where A [s] {e} A AT ...|^ A^.

PROOF Let A " {a^,a2,...,a.}. Then we can consider A to be the

label matrix (of order 1x1) of the network V/ in figure 4.1 below. 
Therefore, the required result follows from theorem 4.2 if we can show 

that the p-space is completely (q-l)-stable with respect to V/ . We 
note here that although the hypothesis of this theorem can be seen to be 
equivalent to the statement that v(0) is q-stable because 
v(0) " {a^,a2,...,a.^, theorem 4.8 cannot be used to yield the required 

result because the p-space is not assumed to be commutative. So a proof 
of this result has to be obtained separately.

Let B be any finite subset such that pl? B

Figure 4.3
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If p e B but p ^ , then p must traverse more

than q - 1 arcs in V/ and hence its label a can be written as 

a - a^ 0 ag o ... o a for some s ) q - 1. Hence by lemma 4.5, 
we have

r(a) < r{e, a^, a^ o ag, ... , a^ o ag o ... o aq_^}

But C - {e, a^, a^ o ag, ... , a^ o a2 o ... o ^^^1^

i.e. C " v(H), say, for some H .
Therefore, by property (0.2) and (0.4) of < , we have

r(a) < rv(H) # rv(pj^ \ H) - rv(P^^

Since this holds for all a e v(B \ Pp? ^^) and there are
> 6-a

only finitely many such r(a) in rv(B \ P^^ ) because B is assumed

to be a finite set, it follows from property (0.5) of < that 
rv(B \ P^^ ^^) < rv(pj^ ^]). But then

rv(B) - rv(B \ p(^"^^) » rv(p(^"^]) - rv(p[{"^]).

If we now choose B .pH11 we would then have

rv
(pf^]) " rv(p(^ ^^), which proves that the p-space

11 ' "'''11
is (q-1) stable with respect to . The rest of the proof then follows 
from lemma 4.4 above. V

LEMMA 4.9 Let (X,o,nK,r) be a complete and idempotent p-space. If 
A e is such that r(A) is finite, closed in and q-absorptive with
respect to r, then r(A*) is finite, provided that A*

Moreover, r(A*) » r(r(A)*) - r(A^^ ^^).
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PROOF By lemma 4.8 above, we have for all a ^ q - 1,

r(r(A)*) - r(r(A)[^^)

Cal" r(Ai J) , by repeated uae of (3.2) and (3.3)

Hence by theorem 3.9, we have

r(A*) . r((j|A^;
k"0

- V r(A^: 
k"0

rCA^^ ^]) , aince r(A^^^) - r(A^^"^]) for
all

s ) q-1.
" r(r(A) ) , aa required.

THEOREM 4.10 Let (X,o,^r,r) be a complete, idempotent and intenaive 

p-apace. Then thia p-apace ia completely n^-atable with reapect to a 
network vK which is compatible with the p-apace and such that v(P.,) 

ia q-abaorptive with reapect to r for all i.
11

PROOF In view of the argument used at the end of the proof of
theorem 4.6 above, it aufficea to show that rv(P..) ia a finite multiset 
or equivalently rv(P.j \ pj^^) ig a finite multiset. By (ii) of theorem 

4.3, this is equivalent to showing that rv(Q^j^) is a finite multiset.

Now from (i) of theorem 4.3 and the assumption of intensitivity, 
rv(Qij ) = rv(P^j^) v(P^j^) implies that rv(Qjj^) is finite for all 

i,j, and from (iii) of theorem 4.3,

rv(Qfj^) . rv(Qf9^) e rv(Qf°})@ r(v(Q|°^)*) 8 rv(Q|9^) for all i,j{0},
ij

.{0},
'IJ

Since v(Q^^ ) C it follows that v(Qj9^) ig q-absorptive, and
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hence by lemma 4.8, r(v(Qj^^)*) is a finite multiset. Therefore by

(4.11), is finite for all i,j. In particular, rv(Qi«^)
ij /z

is finite. But rv^Q^^^) ^^^22^ ^he p-space is

.{1}intensive) implies that rv(Q22 ) is &iso q-absorptive . Therefore,
by lemma 4.9, r(v(Q22^) ) is » finite multiset. But then it follows

•f2lfrom (4.11) and (iii) of theorem 4.3 that rv(Q.^) is finite for all^ J

Therefore, in particular, rvCQl.^) is finite. One can then

use (4.11) and (iii) of theorem 4.3 to show in a similar manner as above
{3}that rv(Q:.^) is finite for all i,j. Likewise, we can therefore

{4}conclude that rv(Q^. ) ,rv(Qj?^) are all finite multisets,
ij
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CHAPTER 5.

FUNDAMENTALS OF ALGEBRAIC METHODS FOR SOLVING PATH PROBLEMS

5.1 Path Problems Revisited

In chapter 1, we gave a number of problems which motivated 
their abstract study and considered several definitions of a path 

problem, each more general than the previous one. We also saw how 

all the given problems except problem 1.5 can be formulated as a 

path problem in accordance with definition 1.4 above. It was then 
suggested that a similar but more general approach to all these 
given problems is possible if one uses the concept of multisets.
We then went on to investigate a number of concepts which were 
useful for the development of such an approach. In fact, all the 
results obtained in the preceding three chapters were carried out with 

this purpose in mind. Their relevance to the solution of path problems 

in accordance with the following definition will here be demonstrated 

in detail.

DEFINITION 5.1 Let be a network over a monoid (X,o) which is

compatible with a given p-space (X,o,'K,r). Then by a path problem,
we mean the determination of rv(P^j) or \
more pairs (i,j), where P^. and defined with respect to

G(Ar).
That this definition of a path problem is an extension of 

definition 1.4 can be easily seen to be a consequence of the following

THEOREM 5.1 Given a set of subsets of a monoid (X,o) which
5

has properties (1.26), (1.27) and is also closed with respect to union
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and complex product, and given a function r defined on 'Y" which 

satisfies (1.22) to (1.24) above, we can construct a p-space (X,o, l^\r') 
such that TK (C and r'(A) " r(A) for all A e .

PROOF Let TK' . {A e | d(A) e ?'}. Then IT ([ IK' because

A = d(A) G IK for any A e Y". Now IK' can be seen to be a hereditary 

semiring as follows

(i) (% IK' because for any A e d(A) is a finite

multiset and hence d(A) e K by (1.26)

(ii) is a hereditary subset of . For let A e IK'
and B C A. Then d(B) d(A), and hence by (1.27), d(B) e T' also,

(iii) IK' is closed with respect to multisum and multiproduct

because

d(A B) - d(A) d(B) G IK , and

d(A 0 B) " d(A) d(B) e IK whenever d(A), d(B) e

Now let r' - rd. Then clearly,

r'(A) " r(d(A))

" r(A) for all A elKL

That r' is a reduction function can be seen as follows.

(i) r'(*) " r(d(*)) - r(*) " * by (1.22)

(ii) r'(r'(A) (+) B) - rd(rd(A) l+f B)

- r(d(rd(A)) 1^) d(B))

r(rd(A^ LJ d(B)) since rd(A) G
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- r(d(A) LJ d(B)) by (1.23)

" rd(A li) B)

r'(A B)

(iii) r'(r'(A) o B) - rd(rd(A) o B)

- r(d(rd(A)) d(B))

- r(rd(A) d(B)) since rd(A) G T'

" r(d(A) d(B)) by (1.24)

- rd(A 0 B)

- r'(A 0 B)

Similarly, r'(A o r'(B)) - r'(A o B) . 9

Therefore, definition 1.4 is just a particular instance of 

definition 5.1. Moreover, definition 5.1 also includes problem 1.5 

above. In fact, its corresponding p-space is (N, + , s) (see theorem
3.1).

Now from (iii) of theorem 4.2, we see that a path problem
in a network is equivalent to the determination of (M *).. or (M*)..,

r ij r ij
where M^ » (M*) and M* " (M*)^ , using (4.8). Now since theorem 2.6 

obviously holds for matrices over multisets, the matrix M* is the least 

solution (with respect to as extended to matrices by (0.12) in terms
of multiset-inclusion) of the equation

Z-MoZ^I or Z-ZoM(+)I.

Similarly, M* is the least solution of
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Z-MoZ^M or Z-ZoMlj^M

Consequently, M is a solution of the matrix equation

Y - 9 Y 9 or Y " Y 9 M 9 I

and M is a solution of the matrix equation

Y - 9 Y 9 M or Y - Y 0 9 M .

The above observation suggests that one can view the problem 
of determining M* and as particular instances of a more general 

problem of solving the matrix equation

(5.1) Y - M 9 Y 9 B or

(5.2) Y 9 M 9 B where B c ^Kg('Kp)

In this way, a path problem can be seen to be a particular 
instance of a more general problem of determining (M 9 B).. from
(5.1) or (B 0 M^)^j from (5.2) for one or more pairs (i,j).

For convenience, we shall here consider only the problem of 
determining (M* 0 B).. for one or more pairs (i,j) from (5.1), since 

the other can be considered in an analogous manner. Now this problem can 

be solved quite readily if the path algebra (IK^, 9, 6) forms a field or 
is embeddable in a field (e.g. a^ integral domain), since in this case most 

of the available methods in linear algebra can be employed to solve (5.1) 
(see e.g. Fox(1964)). Since, there are relatively few examples of path 
problems whose corresponding path algebras form a field or are embeddable 
in a field, it is more significant to have available methods for solving

(5.1) in a more general situation. This will be carried out in the rest
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of this section. However, it must be said at the outset that we 

shall not concern ourselves with the computational complexity of 
the methods to be discussed here since our aim is to present the 
fundamentals of algebraic methods for solving path problems. Moreover, 
our presentation will be limited to those methods which can be unified 

from the view point of solving a system of linear equations.

5.2 Elimination Methods

Let us first restrict ourselves to the problem of determining 
a particular column of the matrix 8 B, say M 8 b where b is a 
column of B . From (5.1), it follows that M* 8 b is a solution of the 

following system of equations

(5.3) y - M^ 8 y 8 b

Note that if b is the jth column of B, then y is the jth 
column of Y in (5.1). Thus (5.1) can be viewed as n systems of 
equations, each corresponding to a colum of B .

Perhaps the simplest and most well known method of solving (5.3) 
in the case where the path algebra ( 1^, 8, 0) forms a field or is 

embeddable in a field is the elimination method of Gauss in linear algebra 
(see e.g. Fox (1964)). It is therefore of interest to have a similar 

method developed to solve (5.3) in a more general situation. The nxist important 

example of this situation is where the path algebra is idempotent as a semiring 

and hence cannot be a non-trivial ring, let alone a field (see section 0.2). 
However, as will be seen below, methods analogous to those of Gauss and 

Jordan can be developed to solve (5.3) in this case. That these methods 
are available is a consequence of the pioneer work of Carre (1971).

For convenience of exposition, we shall first assume that the 
p-space (X,o,'y,r) is idempotent and complete. Let us now write A
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for in (5.3), i.e. y - A 0 y 0 b which can alao be written
out in full as follows

(5.4)

Yl - 9 y^ 9 0 y 0

^2 " ^^1 ® ® ^2 *

^n - ^^1 9 71 * A^2 e yg

^n »

e 0 y^ 0 bg

^hn ® 7n
tf
b

First let us assume that the matrix A 

i.e. A^j - 6 for all i > j. Then (5.4) can be rewritten
18 upper-triangular 

as

(5.5)

Yl - A^^ 0 y^ 0 A^2 0 yg 0

y I n

*22 ® ^2

* *ln ® » ‘l

* *2n f y„ » >>2

\n ® J-n * ‘n

If we now write H ^ » V
k"0

we see that (A ) ^ 9 b nn n
18 the least solution of the last equation of (5.5) because it obviously 
satisfies the last equation of (5.5) and moreover, we have

.k+1" ^hn ® 7n * * ^^n *
hence

* ^hn) ® ^n k G and

* ^hn ^ » ^^n) ® < y^ for all k e N

which in turn implies that (A^^) ^ 0 b_ < y . Note that (A )*^
nn n 'n nn exists
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because by theorem 4.4, M e andnn

* k^(^nn^ " ^(^nn) theorem 3.1

■

We can now obtain the least solution of the (n-1)'^’' equation
•k

in the same way by substituting (A^^) ^ @ b for y^ in the equation. 
Similarly, we can obtain the least solution of the (n-2)^^ equation and 

so on until the least solution of the first equation is obtained. As will 

be proved below, these least solutions constitute the required least 

solution of (5.5). For convenience, we shall refer to the above method 

as the generalized back-substitution method, since it obviously resembles 
the well known back-substitution process in linear algebra (see e.g. Fox (1964))

THEOREM 5.2 The back-substitution method applied to (5.5) yields the 
least solution of (5.5).

PROOF From the above description of the back-substitution method, it 

is clear that we first obtain the least solution y^ of the n^^ equation, 

then the least solution of the (n-1)^^ equation given y' , then the
least solution 7^.2 (n-2)^^ equation given y^ , y^^ and

similarly, we obtain ...... F^ We have to show that if

^^1*^2'"'"'^n? least solution of (5.5), then » y. for all

Since (F^*F2*''';Fg^ is obviously a solution of (5.5) lye
always have .... y^) < (;^,;^.... i,e. < y. for all

i E {1,2... n}.
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Now (y^»y2.... y^) ^ solution of (5.5),
y^ satisfy the n^^ equation of (5.5). But then y^ ^ y_,

since y^^ was obtained as the least solution of the nth equation of

(5.5). Therefore, y^ - y^. But then y^_^ is also a solution of the 
(n-i)th equation given y^, and hence y^_^ < y Consequently,

^n-l " ^n-l" Similarly, we can use - y^ , y^_^ - y^ ^ to show

that y^ ^ " y^_g and so on, which therefore completes our proof. 9 

Let us define a matrix for all k e {1,2.... n} by

(5.6) (M^^^)ij . . v(Q!^^) for all i,j.

{k}where Q.. is as defined in theorem 4.3 above. Note that from theorem
4.3, we have M, M* - , and

(5.7) " *ij^ik° (^kk ° *kj^ii i'j

Now consider the first equation of (5.4) above. This can be
Awritten as y^ - @ y^ @ h. , where

h ■ *12 ® ^2 » ^3 ® ^3 * • • • » V® ® '=1

•k
Then from our previous argument, we see that (A^^) ^ 0 b^ is the least 

solution for the first equation of (5.4). Substituting this for y^ in 

the second equation, we obtain the following "reduced" system.

(5.8)

" ^11 ® ^1 ^12 ® ^2 ^

a‘“s y; »

n
4”® ^2 »

* *1. ® ®

(1}. » . .{1} 
n' ' "^n » ^n * ^2

I

I

•» ® V 4”
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where " A. . @ A.. 8 (A..) ^ 0 A^ . and1] ij il 11 Ij

f IT rb) = 0 A.^ 0 (A^^) @ for all i e {2,3,...,n}

Note that from (5.7), It follows that A^j^ - rCM^j^) for all

i ^ 1.

We thus see that the above step essentially eliminates the 
variable y^ from the last n-1 equations of the system which is therefore 
similar to the first step of the elimination process in the Gauss elimination 
method of solving ordinary linear equations. One can then use the same process 

to eliminate the variable y_ from the last (n-2) equations of the reduced 
system (5.8) and obtain another reduced system and so on. After the (k-1)^^ 

step, we obtain the following reduced system of equations

(5.9)

.{1} {1} {1} .{1}A22 ®y2^'''^^2(k-l)®^k-l^^^k ^^0*^2{1}

I

n
fk-l)^hk '9y,^0...0A

nn 'n n

where

(5.10) a'”^ - a!t1> » e lA^r"
1] ij im ^ mm

' 0 A^?^ - A., and
mj ij ij

(5.11) b!"^. 0 0
1 1 im

Im-l)
mm

^ 0 b(°^ - b.
mj ' 1 1

for all i e {k,k+l.... n} and all m e (0,1,2, ,k-l},
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Note again that from (5.7), we have

^ exists because
t mm

i e {k, k-l,...,n} and also that mm
by theorem 4.4, and

e y

r Ik - V1 mm J J q-O 1

V
q-0'' nm

r^{m-l}
mm

Therefore, after the (n-l)^h obtain an upper
triangular system which can then be solved by the generalized back-substitution 

method as described above. This method of solving (5.4) is similar to that 
of Gauss elimination in linear algebra and hence was called the generalized 

Gauss elimination by Carre (1971). At this point, it is of interest to 
obtain the following

THEOREM 5.3 If the matrix A of (5.4) is symmetric, i.e. " A.,

for all i,j, and if the path algebra ("y^, e, @) is a commutative
semiring, then for all k e {0,1.... n), we have A^j^ - A^^^ for all

i,j, where is given by (5.10)

PROOF We use mathematical induction on k as follows. For k - 0,
{0}hj ■ - Aji *

k = m-1. But then
us suppose that the result holds for

Aff - 0
ij ij im I mm

m-l) " 0 a'T^’ by (5.10)

jm ^ mm 6 by induction hypothesis

Therefore, the result holds for all k e {0,1,2,...,n}
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The above theorem means that the labour of calculating
{k}A^j for all k e {0,1,2.... n} when using the generalized Gauss

elimination is almost halved in the case where A is symmetric anfi 
8 is commutative.

Now since the generalized Gauss elimination was obtained
by analogy with the Gauss elimination metbpd in linear algebra, this

suggests that it can be modified to yield a method analogous to the
Jordan elimination method which requires no back-substitution. In fact,

this can be done by eliminating the relevant variable from all the
equations in each step of the elimination process. For after the
(n-l)^h step of this modified elimination process, the matrix A of

(5.4) will be transformed into a zero matrix, and hence no back-substitution
is needed. Accordingly, this modified method was appropriately called

the generalized Jordan elimination by Carre (1971).

It is now a logical question to ask whether the application
of the generalized Gauss elimination to (5.3) actually yields the solution 
*
0 b. That this is so can be easily seen to be the consequence of the 

following

THEOREM 5.4 The reduced systems obtained in the elimination process 

of the generalized Gauss elimination all have the same least solution.

PROOF From the above description of the generalized Gauss elimination,

we see that the reduced system obtained after the variable .... ^k-l
have been eliminated can be written as follows.
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(5.12)

^12^2 * ^ ^Ik^k * ''" ^In^n * ^1

^2 " ^22^2 * '"' ^ ^2(k-l)yk-l ^^k^k * '"' ^2

J'k ■ ^kl^l * \2y2 * ■•• * \(k-l)>'k-l * ^k^k *■■•■" V^n *

>'n ■ ^nl^l * \25'2 * * ^(k-1) Vl * ^k^k * . + A y + b nnrn n

where,for convenience, we have used + and juxtaposition to denote 

respectively the addition » and multiplication 6 of the path algebra 
( 0)* and ^1*^2'''"'^k-l defined as follows.

(1) y. is the least solution of the first equation of (5.4) for

all possible values of y^, y_, ..., y .

(2) Given (y^, y_) is the least solution of the first two

3' ^4' ' -nequations of (5.4) for all possible values of y_, y., ..., y

(k-1) Given y^, y^.....  yk-2* ^^1' ^2' ^k-1^ least

solution of the first k-1 equations of (5.4) for all possible values

of Yt n

The elimination of the next variable y. from all the equations 

below the k equation of (5.12) then yields the reduced system (5.13) 

below, where y^, y^, ..., are as before and y. is defined similarly.
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(5.13)

" ^11^1 * ^12^2 * ''' * ^Ik^k * ^l(k+i)yk+l * ^ ^In^n * ^1

^2 " * ^22^2 ^ '"' ^2kyk * ^2(k+l)yk+l ^ ''' * ^ ^2

^k+1 " ^Xk+l)iyi*^Xk+l)2^2^'''*^Xk+l)k^k^^Xk+l)(k+l)yk+l*'''*^Xk+l)nyn

+ ^k+1

- ^hl^l + ^^2^2 + + ^hk^k + ^h(k+l)yk+l + + ^hn/n +

Now our task is to show that (5,12) and (5.13) have the same 
least solution, i.e. let (y^,y2*'''*yn) ^he least solution of (5.12) 

and (y^,y2''''»yg^ the least solution of (5.13), then

yj " y^ for all i E {1,2....n}

First, we show that - y^ - for all i e (1, 2, ..., k}.
To this end, observe that the first equation of (5.13) is identical with 
that of (5.4). Consequently, y^^ y^ by our definition of y . We then 

claim that y^ « y^. For otherwise, (y^, y^, ..., y ) would be a "smaller" 

solution of (5.13) than (y^, y , ..., y^), a contradiction.

Now y^ " y^ implies that (y^, y_) is also a solution of the 
first two equations of (5.4). Consequently, y^^ y. by our definition
of y^ . Again, we claim that y^ - y^. For otherwise, (y^, y^, ...... . )
would be a "smaller" solution of (5.13) than (y^, y^, ..., y^), a 

contradiction.
Similarly, we can use y^ - y^ - y^ to deduce that y^ - y. 

and so on until we have shown that y. " y. .
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By a similar argument, one can easily establish that

y^ - y^ for all i e{l, 2..... k-1}. That y. " y also is a

consequence of the following two arguments.

(i) " y^, y2 " ^2 ' ^k-l " ^krl implies

that (y^, y^, y._^, y.J*, satisfies the first k equationa of
(5.4) and hence y^^ y^ by our definition of y..

(ii) y^ - y^ implies that the solution (y^, y_, ..., y ) 
of (5.13) is also a solution of (5.12), and hence

(y^, fg, fg) < (y^, y2..... Yg) '

Thus in particular, y^y( y^ - y .

Now y^ " y^ implies that the solution (y^, y^, ..., y^) 
of (5.12) is also a solution of (5.13), and hence

(y^, y2..... yg) < (Yi* y2...... Yg),

Therefore, (y^, y^, ..., y^^ - (y^, y^.....  y^^

as required.
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The validity of the generalized Jordan elimination can also 
be demonstrated in the same fashion as theorem 5.4 above and hence its 
detail will be omitted.

From the above proof of theorem 5.4, we see that the assumption 
of idempotency plays a fundamental role in that it enables us to make 
use of the fact that M* 8 b is the least solution of (5.3) with respect 

to < of the path algebra. Without this assumption, < is not an 
ordering because it is not necessarily reflexive and hence one cannot 

speak of the least solution with respect to < . It thus appears that 
the generalized Gauss elimination may not be obtained without this 

assumption and hence is not applicable in the case where the path algebra 
is not idempotent. However, this would contradict our common sense, 

because after all. Gauss elimination was originally invented to solve 

a system of linear equations over a field and we know that for non-trivial 
fields, the idempotency of addition can never be satisfied. In fact, the 

recent work of Gondran (1975) was meant to substantiate this intuitive 

argument. But unfortunately, he overlooked the significance of having 
to prove the equivalence of the reduced systems (i.e. they all have the 
same required solution) in the above school-book approach to Gauss and 

Jordan elimination methods. Nevertheless, using the present formulation 

of a path problem, we are able to establish the validity of the generalized 
Gauss elimination for determining the solution M* 6 b of (5.3) without 

assuming that the p-space is idempotent or complete. The proof of this 
result essentially rests upon the observation that M* 6 b can be 

regarded as the image of M o b under the function r , and since 
M 0 b is the least solution of the system z " M o z b with respect 

bo , intuitively it should be possible to define the generalized Gauss 
elimination for solving y - M 8 y # b from the generalized Gauss 

elimination for solving z = Moz ^ b through the application of the function 
r. But can one develop the generalized Gauss elimination for solving z-Mbz U^b,
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since the multisum operation is not idempotent ? The answer is made 

affirmative by the fact that here we can also speak of the least solution 

but with respect to multiset inclusion.

THEOREM 5.5 Let be a network over a monoid (X,o) which is also 
compatible with a given p-space (X,o,f,r), and be the matrix

defined by (5.6) above. Then the generalized Gauss elimination as 
described above is valid for determing the solution M* 6 b of (5.3) 

by defining

(5.14)
*r " r1 nm J ll mm J for all m e {0,1,...,n}

PROOF We first show that the reduced systema all have the same solution
M. 0 b. Now the reduced system obtained after the (k-1)^^ step as given 

by (5.9) can also be rewritten in terms of r(z.), where y. « r(z.) for 
all i e {1,2,...,n}, as follows

r(z_)-
VI ,

nni^^oz^ + .. - .{1}(M^g ozg + .. + oz^ + '?2n “V '’2“>
I '

{m}This is because by (5.14), we have A). r(Mfj^) for all i,j

and for all m e {0,1,2,...,n}. This last result can be proved by
mathematical induction as follows. For m - 0, r(M..) - r(Mi9^) as

ij ij ij
required. So let us suppose the result is true for m - k-1 and show that
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it is also true for m - k.

^ij^ " * ^ik ® Uk-l}'* 
\k r A Atk-l}

L{k-l}1
rij » r Uk-1}] *^ik 0 r 8 r M{k-1}%

by (5.14) and by induction hypothesis

ij ^ ik

- rM,{k} by (5.7)

Hence the results follows from the principle of mathematical induction.
Therefore, the reduced system obtained after the k ^b step can 

be written as

pH
rCzp.

■<W'

rCM^2^0Z2 + .
I
I

"^^^^kll)(k+iy^k+l ^
!I
(

'*”n(k+iy^k+l *

• *“2n ?‘'n*'=2”>
I

' * ^{k^l)n°^n* ^k4i)

From (5.15) and (5.16), we see that they have the same solution 
M 8 b if we can show that the system of equations (over multisets)
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obtained from (5.15) by deleting r has the same least solution as the 

system of equations (over multisets) obtained from (5.16) by deleting r. 

Here the least solution is taken with respect to(% . That this is so 

can be proved in exactly the same way as we did in theorem 5.3 above 
but in terms of the ordering .

Since the back-substitution process can also be verified to 
yield the same solution 6 b through the application of the function 
r to each step of the back-substitution process in obtaining M* o b, 

the proof is completed. V

The generalized Gauss elimination given by theorem 5.5 above 

can be easily seen to coincide with our previous description in the case 
where the p-space is both idempotent and complete. Moreover,it can also 
be seen to include the case where the path algebra (0) forms a 

field or is embeddable in a field. For in such a case,

r r(e) 6 r '^{m-l}l
ll mm J . 1 1 mm JJ

-1

r(e) 6 A{m-1}
1-1

I nmn

LCnnlH
mm

where 8 A denotes the inverse of A with respect to 0 , B 6 A » B 0 (0A)
-1and A denotes the inverse of A with respect to 0 of the path

algebra ( 0 , 0).

Note that in these two cases (m-l}1
nm is in fact expressible

in terms of path algebraic operations, namely in terms of 0 and 0 of 

/"(or indirectly). Accordingly, the application of the generalized Gauss 
elimination to solve (5.3) for these two cases can be carried out entirely 

in terms of path algebraic operations. This point is significant in practice
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because otherwise, the description of the generalized Gauss elimination 

in theorem 5.5 above would be merely of theoretical interest. This is 
because the computation of r^ by first computing

and then r j j may not be feasible. For instance, consider

the p-space (R, +, IK,, amd let - {2}. Thai^ lYflS
{2} « {0,2,4,6,8....} and hence we cannot compute all the elements of

{2} in a finite number of steps. But from theoretical consideration, we 

know that

k-min{2}* - k-min{0} » k-min{2} a ... a k-min{2^^^} .

and since the right-hand side of the above equality can be coiiq)uted in 
a finite number of steps, k-min{2}* is therefore determined.

This example is in fact a special case of the more general 
situation where the p-space is q-stationary (see (iii) of definition 3.4 

above). For in such a case, we always have

M{m-1}nrn - r(e) 0 r 0 ... 0 r1 ™ J mm

and hence the generalized Gauss elimination of theorem 5.5 can be applied 
by defining

' - r(e) . » . 0 ^{m-1}
nm

Another situation where the generalized Gauss elimination of 
theorem 5.5 can be applied by defining

(5.17) ' = r(e) . A^-U , 0 Um-1}
mm
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for some positive integer n^ is when the p-space is complete and the 

network which is compatible with the p-space is 1-absorptive.
In fact, it can be shown that in this case n_ - 0. The necessary 

argument can be carried out in the same way that we proved (1.8) from
(1.9) in chapter 1, and therefore will be omitted. Furthermore, (5.17) 

also holds when the p—space is not only complete but also commutative and 
its compatible network is q-absorptive or q-regular with respect to the 
p-space. In fact, nQ-n(q-l) for the first case and nQ"nt(q-l) for the second, 

where t is the number of elementary closed paths in G(J/). These 
results can also be established in the same way that we proved theorems 
1.6 and 1.7 by using lemma 1.3 and 1.4. Now from the proof of theorem 4.10, 
it is also clear that (5.17) holds whenever the p-space is complete,

idempotent, intensive and its compatible network is such that v(P..)
11

is q-absorptive with respect to r for all i.

The generalized Jordan elimination can also be similarly defined 
as in theorem 5.5 by using (5.14) but its detail will be omitted here.

It is interesting to note that both the generalized Gauss and 
Jordan elimination methods can also be obtained through the derivation of 
product forms for M*. In fact, the product forms of M* can be obtained 

in the same way as presented by Backhouse and Carre (1975), since all 

the basic identities used by them in deriving these product forms are also 
valid in the complete semiring N^ (Two such identities are given in 

theorem 2.7 above). Now from these product forma of M*, one can derive 

methods of determining M o b from the system z » M o z b. The 
corresponding methods for determining M* 6 b can then be obtained through 

the application of the function r to each step of the algorithms for 
determing M* o b.

Thus far, we have restricted ourselves to the problem of
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determining a certain columm of the matrix M* 6 B. Now if several
*columms of 0 B are required, then we have to solve several systems 

of equations, one for each columm of M @ B, However, since the matrix 

of those systems are the same, namely , we can use the generalized 

Gauss elimination to solve these systems simultaneously by applying the 
elimination process as before, but all the different columms of B are 

now treated together and a separate back-substitution for each different 
columm of B must now be carried out. The generalized Jordan elimination 
can also be applied to solve these systems simultaneously in the same 
fashion except that no back-substitution is required.

More generally, if we do not require complete columms of 
8 B but instead, we require a particular submatrix of M* G B, 

then an elimination method similar to that of Aitken (see e.g. Fox (1964)) 

can also be developed. As a matter of fact, the manner in which this can 
be done was well set out in the recent work of Backhouse and Carre (1975).

Finally, it is interesting to note here that when the path 

algebra ( 8, 8) is a Q-semiring and its pseudo-ordering ^ is also
a total ordering, the method of Dijkstra (1959) for solving the shortest 
path problem (problem 1.1), which can be viewed as a form of elimination 

method, can also be generalized to solve (5.3) above. This generalization 
of Dijkstra's method was fully discussed by Carrg (1976).

5.3 Iterative Methods

In this section, we shall consider variants of iterative methods 
in linear algebra (see e.g. Fox(1964)) for solving the system y " A o y + b 

over a semiring (X,+,o) in the case where the matrix A e (X) is

ng-stable, i.e. A ^ - A for some n_ e N, wherer 1
A -I+A+A + ... + A . Its application to the solution of path 

problems in the case where the corresponding p-space is completely Ug-stable 

(see definition 4.4) is a consequence of lemma 4.3 above.
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Let us begin by making the following two assumptions which 
we shall relax later.

ASSUMPTION 5.1 The semiring .(X;+,o) is idempotent.

ASSUMPTION 5.2 The n^—stable matrix A also has the property that 

whenever B ^ A , then B is n.—stable for some 
n^ E N, where A* " A^

*Note that our use of the notation A for A will not

be confused with the closure of a multiset A or a matrix A of 

multisets as defined and used in previous sections since we shall not 

make any reference to them here. Also for convenience, we shall refer 

to the ng-stable matrix A which satisfies assumption 5.2 as a 
hereditary ng-stable matrix. The class of hereditary ng-stable matrices 
is in fact quite extensive since it includes absorptive (and hence acyclic) 
matrices and matrices over commutative semirings which are q-regular or

I

q—absorptive. That these matrices are n.-stable can be seen respectively 

from theorems 1.5 to 1.7 above. That they satisfy assumption 5.2 can be 
easily seen to be consequences of the following two facts.

(i) G(A ) is q-absorptive or q-regular whenever G(A) is.

(ii) From property (0.3) of the pseudo-ordering < of a semiring 

(X,+,o), we see that if A is q-absorptive or q-regular and 
B "( A, then so is B.

Now an immediate consequence of assumption 5.1 is that the 
pseudo-ordering < is also reflexive and hence an ordering. Thus the 
system y = A o y + b can be seen to have the least solution A* o b with 

respect to < as defined by (0.12) in terme of the pseudo-ordering
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of the semiring.

Our consideration of iterative methods of determining 
A 0 b from the system y - A o y + b can best be compared with a 
similar treatment in linear algebra. There, it is well known 

(Forsythe (1953)) that one can solve the system y " A o y + b by 

considering an iterative scheme of the form

_ H 0 y(k) + g Q

where H and K are chosen so that the successive estimates y^^^ for

^ .... ultimately yield the solution y - (I - A)"^ o b. In fact,

the restriction imposed on the choice of H and K is obtained by noting 
that y = y^ ^ m ,,, must satisfy

y - H 0 y + K 0 b , i.e. y . (I-H)"^ o K o b , 

which then suggests that H and K should satisfy

(I - A)"^ - (I - H)'^ 0 K

so that the successive estimates would ultimately yield y - (I - A)^^ o b 

It is essentially from this consideration that Carre (1976) 
considered the iterative scheme . g o y^^^ + K o b in conjunction

with the following restriction on the choice of H and K :

.* *A " H 0 K

However, since H may not be k-stable for any k e N, H^ may
not be defined. One way of getting over this difficulty is to assume that

*H 4: A . For by assumption 5.2, it follows that H is n^-stable for some
n. E N.
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We note here that although H < A can be deduced from
A “H oK (i.e. H ■< H* o A = H o H* o K = H* o K = A*) , it must be

assumed separately in order to guarantee that A* - H* o K is meaningful

in the first place. From these considerations, we obtain

THEOREM 5.6 Let (X, + ,o) be an idempotent semiring and A e (X) 

a hereditary ng-stable matrix. Then the iterative scheme

. H O yW H. K 0 b , where H < A and A - H o K

yields y
(n^+l) ^

A 0 b for some n. e N whenever y (0)
If in addition, y^^^ " some k < n.

X A* 0 b
then

y^^^ = A* 0 b also.

PROOF By assumption 5.2, H is n.-stable for some n. c N ,
1 n I ^ ^i.e. H . H ^ . Now from -Ho y^^^ + K o b, it follows that

(ni+1) n^+1 n.H 0 y' ^ + (I + H + ... + H 0 K o b

o y<») . H* o K o b

h"!"' 0 y(« f a* 0 b

But y^^^< A 0 b implies that

H
^1+1 (0) ^1*^ * *

oy'^''< H oA ob-H^ oH oKob<H oKob = A ob,

(n^+1) *
and hence y » A o b as required.

Now if y^^ m y^^^ for some k < n^ , then

y(k+2)_ g ^ y(k+l) ^ ^ Q y , g g y(k) ^ ^ ^ _ y(k+l)
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Similarly,
Therefore, /W .^(kn) . .

SO on.
(n^+1) ^

y " A 0 b

Let us now examine some of Che iferaCive methods which fit into 
Che iterative scheme of theorem 5.5 above. The following possibilities 

were considered by Carre (1976).

(i)

method

The Jacobi Method (H - A , K " I)

The system y " A o y + b immediately suggests the iterative

(5.17) . A o yW . for all k " 0,1,2,...

* *Note that A " H o K is here satisfied by H » A, K " I. 

This method is credited to Jacobi because it is a counterpart 

of the Jacobi iterative method in linear algebra (see e.g. Fox (1964))

(ii) The Gauss-Siedel Method (H " L* o U , K " L*)

Here let us adopt the following assumption

ASSUMPTION 5.3 The ng-stable matrix A is such that

^ii - ^ for all i e (1,2,...,n}

We shall see later that this assumption does not cause any 
loss of generality whenever assumption 5.2 is satisfied.

If we now rewrite (5.17) as

.(k+l) (k) 4" b. for all i E {1,2,...,n}

(k)then we see Chat the Jacobi method makes use of all the elements y:
(k) . (k+l)of y^ ^ in calculating y' But intuitively, it would seem more

reasonable to use always the last available estimates such as the following
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(5.18) . Y A., 0 ♦ f A. . 0 yP"'* b. for all
" j-1 J j-i+l J

Note that we have here used asaumption 5.3 above.
Since (5.18) can be calculated sequentially, it does not require 

the simultaneous storage of the two estimates y^^^ and in the

course of computation which is therefore an advantage over the Jacobi 
method. However, this advantage causes the method to be rather sensitive 

to the actual numbering used for the nodes.

If we now define two matrices L and U respectively by

(5.19) L
|A^j if i < j

iJ
A^. if i > j and U.. ^ ^

otherwise (8 otherwise

then we can rewrite (5.18) in matrix forms as follows

(5.20) . L 0 + U o y^^^ + b .

Now since G(L) is acyclic, - 6 and therefore (5.20) can 
be rewritten as

(5.21) . L* 0 U 0 y^^^ + L* o b where L [n-l]

Note that A* - H* o K is here satisfied by H - L* o U ,

K " L because A - L + U by assumption 5.3, and (L + U)* « (L* o U)* o L*. 

The last equality can be proved either by comparison of terma in the expansion 

on both sides or by an argument similar to that used in theorem 2.7 above 
but in terms of ^ , which is an ordering whenever assumption 5.1 is

satisfied.

This method is credited to Gauss and Siedel because it is a 

counterpart of the Gauss-Siedel iterative method in linear algebra (Fox (1964))
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(lii) The Double-Sweep Method (H » L* o U* » K)

Again aaaumpcion 5.3 will be adopted here, and just as in 

(ii), there is no loss of generality whenever assumption 5.2 is satisfied.

Now in view of our previous remark that the Gauss-Siedel 

method is rather sensitive to the actual numbering
of the nodes, it might therefore prove useful to modify the procedure by

in a
backward manner (j " n, n-l,...,l) and then in a forward manner
alternately calculating the elements of first

(j " l,2,...,n). More precisely, we first obtain y (k+i) by using

? A,, 0 . b.
j"i+i ^

for all i - n-1, n-2,...,l

and then obtain by using

(k+1) _ _(k+i) . ■ T A., o yf. yf*i)
1 j-1

for all i - l,2,...,n-l

In matrix forms, these can be written respectively as

(5 .22) . u 0 + y(^^ + b , and

(5.23) m L o ^ where L and U are defined

by (5.19).
Now since G(L) and G(U) are both acyclic, «6 * U^, 

and hence (5.22) and (5.23) are respectively equivalent to

(5.24) - U* o y(^^ + U* o b and
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(5.25)

Therefore, combining (5.24) and (5.25), we obtain

,(k+l) _ ^ ^ (k) ^ y* ^ y

Note that A " H o K is here satisfied by H " L o U " K 
because A " L + U by assumption 5.3, and (L + U) " (L o U ) ,

The last equality follows because using assumption 5.1, we always have

L + U < L* 0 U* < (L + U)* and hence

(L + U)* < (L* 0 U*)* < ((L + U)*)* - (L + U)*

We note here that instead of (5.22) and (5.23), one can also 
consider the iterative method given by the following pair

(5.26) - u O + y(^) , and

(5.27) . 1 . , y(k*!) + t

which yields

. L* 0 U* 0 y») . L* o b ,

and A - H o K is now satisfied by H " L o U and K " L .

However, as will be apparent later, this method is inferior to
lf€ ^the previous one, using (5.22) and (5.23), because L < L o U always 

Moreover, whenever b ^ y^^^ is used, both methods are 

equivalent to using (5.23) in conjunction with (5.26) because 
y(°) < y(i>< y("< y»*i^ ..... always.
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In fact, it was Yen(1970) who first used (5.23) in conjuction 

with (5.26), and - b to solve the shortest path problem. The more

general method was called the Double-Sweep Method (cf. Shier (1974)) because 
of its similarity (though not a counterpart in a strict sense) to Che Double- 

Sweep iterative method in linear algebra (Fox(1964), p.l95)).

Let us now examine why assumption 5.3 does not cause any loss 
of generality in our presentation of the last two methods whenever 

assumption 5.2 is satisfied.

From the ng-stable matrix A, let us define two matrices 
D and F by

Ajj if i - j
and

otherwise
"ij

A.j if i ^ j

otherwise

From this definition, we see that A " D + F. Accordingly, we 
can rewrite the system y ^ A o y + b as

y-Doy + Foy + b

itBut this system has Che same least solutions A o b as the 

system y " D o F o y + D o b because

A* 0 b - (D + F)* 0 b - (D* o F)* o D* o b

it isNote that D is defined by assumption 5.2 because D < A ,
it ^and similarTy for (D o F) because

D* 0 F < A* o A < A*

Hence from the system y " A o y + b , we can first obtain 
the equivalent system y = A* o y + b', where A* = D* o F and b' » D* o b, 
Since A* satisfies assumptidn 5.3, the last
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two methods can then be employed to solve y " A* o y + b' to obtain 

the least solution A o b. This useful observation was made by Carre (1976), 
A formal comparison of the above methods will now be discussed 

For this purpose, Carre (1976) obtained the following

THEOREM 5.7 Let , H o y^^^ + K o b and - 6 o y^^^ + K o b

be two iterative methods for solving the system y » A o y + b and let 
H "( H , K < K . Then for all k e N , y^^^ ^ whenever

. y(°)

PROOF We shall use mathematical induction on k . For k " 0, the
result is true since y^°^ " y^^^ by assumption. So let us suppose that 

the result is true for k » m. But then

. 5 o yW . K o b

< H o y^™^ + ic 0 b

_ p(m+l)

Therefore, the result is true for all k e N. 9

COROLLARY 5.1 The Double-Sweep method is superior to both the Jacobi and 

Gauss-Siedel methods in the sense that it yields the required solution in a 

number of iterations not exceeding those required by the other two, using 
the same initial estimate.

PROOF This follows because

(i) A - L + U < L* 0 U* , I < L* 0 U* , and

(ii) L*oU < L* 0 U* , L < L 0 U* .

We note here that theorem 5.7 cannot be used to compare the
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Gauss-Siedel method with the Jacobi method because in general A and
L oU are not comparable. For instance, let A "

over the two element Q-semiring X * {8,e}.

8 e 
e 8

be a matrix

Then LoU " 8 e 
8 e

A

However, it would seem intuitively that the Gauss-Siedel method 
(which uses more "current" information than the Jacobi method) should be 
superior to the Jacobi method. In fact, this is so if one chooses the 
initial estimate y^^^ such that the Gauss-Siedel method yields a better 

estimate at each iteration. This result was proved by Shier (1974) as 

follows.

THEOREM 5.8 Let yj(k+1) A 0 y^^^ + b and

(k+1) ^ ^ + U 0 y(^) + b, where

L and U are as defined by (5.19) above, 
k G N whenever y^^^ - yi^^ yi^^

Then yj^^ < y^^^ for all

PROOF We first show by mathematical induction that ^G^^

implies y^^^ < ^ ^

For k = 0, this is true by assumption. So suppose that the 
result is true for k " m, i.e. F^^^ ^

But then

. L 0 y(=^^) + U 0 y(=^ + b

L* 0 U 0 y^^^ + L* 0 b , since " 8
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< L* o U o + L* o b

L o y<”*« * U o + b

(m+2)

Hence for all k e N .,(k+l)

We can now prove by mathematical induction that

.(k)yj ' < (k) for all k e N.

For k - 0, the result is true because y (0) _ .(0) by

assumption. So suppose the result is true for k " m. But then

. A o y(=^ + b

^ A 0 yg™^ + b by induction hypothesis

L o y^^^ + U 0 y^™^ + b , since A - L + U

< L 0 + U 0 y(™) + b, since y^,™^ <

(m+1)

Hence yj^^ < y^^^ for all k e N . V

Let us now return to theorem 5.6 above. From this theorem, 

T*e know that the number of iterations required for obtaining the least 
solution A 0 b of y " A o y + b by the above iterative methods will

["J
be at most n^ + 1 , where n^ is such that H - H . But in 

fact, the number of iteration required by these methods will be at most
[njj [5o+i]

Og + 1 , where n^ is such that A - A , as shown in the

following
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THEOREM 5.9 Let (Z,+,o) be an ideng)otent semiring and A e (X)n
a hereditary n_ stable matrix. Then the iterative scheme

y^ " H 0 y^^^ + K 0 b , where H A and A " H o K

yields y
(no+l) A 0 b whenever y^^^ < A* o b ,

provided we also have in addition that

(5.28) K 0 A < (I + H) 0 K and I < K

Moreover, if y^^^ - some k < n^ , then y^^^ - A* o b also,

PROOF
r n

Let us first show that A " H o K.

Since HW 0 K < * *H 0 K - A for all k e N,

it follows that H o K < A .

Now we claim that (5.28) implies that 

A[^]< 0 K for all k e N.

This claim can be proved by mathematical induction as follows.
For k " 0, A^^^ " I

holds for k = m.

FolK " H^^^ o K . So let us suppose that the result
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But then

. I + 0 A

^ I + 0 K 0 A , by induction hypothesis

< I + 0 (I + H) 0 K by (5.28)

- I + (I + o K , since (I + H)™

(which uses assumption 5.1)
- I + 0 K

H &+1] 0 K , since I < E and I < K

Eence the claimed is justified, and therefore

It then follows from the anti-symmetric property of < that

The rest of the proof can be argued in exactly the same way as 

that of theorem 5.6 except that n^ is now replaced by n^. V

COROLLARY 5.2 The number of iterations required by the Jacobi, Gauss- 

Siedel and Double-Sweep methods to yield the least solution A o b where 
A is ^ hereditary n^-stable matrix is at most ^Q+1 where
A* - A - A , provided that y^^^< A o b is used as the initial

estimate.

PROOF It suffices to show that in all these methods (5.28) is

satisfied as follows.

(i) If E = A and K " I, then clearly I < K and
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K 0 A " A X I + A " (I + H) 0 K as required 

(ii) If H " L 0 U and K - L , Chen clearly I < K and

K 0 A " L 0 A

L 0 (L + U) since A » L + U
* *L 0 L + L 0 U

* * * * +L oUoL , since L o L < L and I < L
. * * " (I + L o U) 0 L

(I + H) 0 K as required,

(iii) If H " L 0 U - K, Chen clearly I < K and
* *K o A - (L 0 U ) o (L + U) , since A " L + U

* * * *L oU oL+L oU oU
****** **^ L o U 0 L o U + L 0 U , since L < L o U and

* , * U o U < U
. * * * * (I + L 0 U )aL 0 U

" (I + H) 0 K as required,

We noCe here ChaC in face Che number of iCeraCions required by 
Che Double-Sweep mechod Co yield A o b was shown direcCly by Carre (1976) 
Co be aC mosC + 1).

LeC us now excend Che resulc of Theorem 5.9 Co n_-sCable maCrices 
in general. The following Cheorem shows how chis can be done.
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THEOREM 5.10 Let (X,+,o) be an idempotent semiring and A G (X) 

an ng-stable matrix. Then the iterative scheme

- H 0 + K 0 b where

* . * HoA +K-^A , KoA<(I+H)oK, I<K

^^0^^^^ e (0) *
yields y - A o b whenever y^ A o b.

If in addition, y^^^ " for some k < n^ , then
y^^^ " A o b also.

PROOF Let us show by mathematical induction that H o A* + K < A*
always implies o A* + o K < A* for all k e N. For k - 0, the

result is true by assumption. So let us suppose that the result is true for 

k " m.

But then

0 A* + o K

H 0 0 A* + 0 K) + K

since H [m+l] [m]H 0 + I

H 0 A* + K by induction hypothesis 
< A*

and hence the result is also true for k " m+l whenever it is true for k-m. 
Therefore, the result is true for all k e N. From this result, it follows 
that
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aM 0 K < 0 A* + aM
0 K -< A for all k e N

The rest of the proof can be carried out in the same fashion 
as we did in the proof of theorem 5.9 above. V

COROLLARY 5.3 Corollary 5.2 above holds for any n.-stable matrix A except 

that assumption 5.3 for the Gauss—Siedel and the Double—Sweep methods must 

be enforced, (because assumption 5.2 has been dropped).

PROOF It suffices to show that the inequality H o A* + K < A* is

satisfied by the H and K in these three methods, since the other two in

equalities were already shown to be valid in the proof of corollary 5.2 
above.

(i) If H - A and K - I , then

H 0 A + K " A o A + I - A A* as required.

(ii) If H - L* 0 U and K - L* then

HoA*+K"L*oUoA +L

X A* 0 A* + A* since L < A and L o U < A o A4(A* *

(iii) If H - L* o U* - K, then

H 0 A* + K - (L* 0 U*) 0 A* + L* o U*

^ (A 0 A ) 0 A^ + A 0 A since L ^ A , U K A*

- A V
It is also interesting to note that both the Jacobi and Double-

Sweep methods can also be fitted into the iterative scheme of the following 
theorem while the Gauss-Siedel method cannot.
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THEOREM 5.11 Let (X,+,o) be an idenyotent semiring and 

an ng-stable matrix. Then the iterative scheme
A G

y(k+l) _ g ^ y(k) ^ ^ ^

H 0 A* + K < A* A < H

where

I < K

yields y
(ng+l) A 0 b whenever A* o b

If in addition, y^^^ =
(k) *y " A 0 b also,

for some k < n^ , then

PROOF In view of the argument used in establishing theorem 5.L0 above,
it suffices to show that A^-^^ < H^^^ o K for all k e N. This can be 

done by mathematical induction as follows.
For k " 0 , A^^ " I < K " o K. So let us suppose that

the result holds for k - m. But then

i«g I + A o A m

^ I + A 0 J 0 K , by induction hypothesis 

< I + 0 K since A<H and

0 K , since I < K < H' 0 K

Hence the result holds for all k e N. 7

Since the Gauss-Siedel method fits into the iterative scheme of 
theorem 5.10 but does not fit into that of theorem 5.11, it follows that 
theorem fLlO does not imply theorem 5.11. However, the converse is still 
an open question. We only know that if K o H < (I + H) o K also holds, 

then A H implies K o A K o H < (I + H) o K, and hence theorem 5.11
holds.
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Let us now examine the possibility of dropping assumption 5.1, 
From the proof of theorem 5.6, we see that if one chooses y^^^ - 8 , 

then

y^^ " H 0 y^^^ + K 0 b implies

(n^+1) n^+1 XO)"H oy +(I+H+ ... + H )o K 0 b

* *- H 0 K 0 b , where H - H - H

*A 0 b

Therefore, theorem 5.6 remains valid without assumption 5.1
if y«» . e.

This means that the Jacobi method can be used to solve
y " A 0 y + b without assumption 5.1 whenever y^^^ - 8 is used but

A must still be a hereditary Ug-stable matrix. This result generalizes
that given by Gondran (1975). The Gauss-Seidel method was also claimed
by Gondran (1975) to be valid whenever A is absorptive. However, be
used the identity that (L + U)* " (L* o U)* o L* which he did not

prove to be valid without assumption 5.1. Of course, if this result holds,
* *then A = H o K holds and hence Gauss-Siedel method could then be used 

without assumption 5.1 but with y^^^ * 8 and A as a hereditary ng-stable 

matrix. We think it is likely that the above identity holds without 
assumption 5.1, since this identity has its analogue in linear algebra, 
namely

(I - (L + U))"^ - (I - (I - L)"^U)"^(I - L)"^

However, the proof appears to be difficult.

On the other hand, we do not think that the Double-Sweep method
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can be used without assumption 5.1. This is because A* » H* o K is 

unlikely to be satisfied without assumption 5.1 since the identity 
(L + U)* " (L* 0 U*)* does not have an analogue in linear algebra.

Finally, we note that theorems 5.9, 5.10 and 5.11 are not 
valid without assumption 5.1.
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CHAPTER 6

SCHEDULE ALGEBRAS AND K-SHORTEST-PATHS PROBLEMS

6.1 Generalization of Giffler's Schedule Algebra

The p-space (X,o,.^^^r) of example 3.8 was first considered 
by Giffler (1963, 1968), although he did not define it formally in that 

way. In fact, he was directly concerned with the path algebra of this 
p-space which we shall henceforth refer to as Giffler's schedule algebra, 
since he referred to the ring of matrices over this path 

algebra by the name "schedule algebra". Such an algebra was noted in 

Giffler (1968) to have algebraic properties equivalent to those of ordinary 

integers including the fact that one can also define addition and multiplication 
of "quotient^"or "ratios" of two elements. However, Giffler's investigation 

of these properties were rather informal and his definition of "quotients" 
or "ratios" were erroneous in much the same way as when one attempts to define 

rational numbers by a division algorithm of two integers which may or may 

not terminate. This pitfall can be avoided by adopting an algebraist's 

way of defining rational numbers, namely via the construction of the quotient 
field of integers. This approach will therefore be adopted below where 

we present a more generalized version of Giffler's schedule algebra.
Instead of the additive monoid (N,+) of non-negative integers 

which we considered in example 3.8, let us consider a totally ordered 

commutative group (S,$,+), see section 0.2 above. As in example 3.8, let 
us define S to be a set of arbitrary objects which can be put in one-to-one 

correspondence with S , i.e. to each a G S, there exists a G S and 
vice versa. Also as before, the set {a,a} will be called a twin pair
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DEFINITION 6.1 Let X - S LV S and || || : X ^ S be a function 
defined by ||a || - a and ||a ^ - a for all a e S. For convenience 

IIX ^1 will be called the S-counterpart of x e X.

From this definition, we can now define a binary operation 
0 on X aa follows.

(6.1) X 0 y
|x 11 + II y H if x,y e S, or x,y e S

lll^ M + ^ y 0 , otherwise

This definition of o may appear somewhat different from the 
rules (i) and (ii) in example 3.8, but in fact a second glance at 
definition 6.1 will reveal their equivalence.

LBMMA 6.1 For any x,y c X, ||x o y X M + I y

PROOF If both x,y G S, then from (6.1), we have 

X 0 y = ||x|| + IIy H " X + y ,

and hence

II X 0 y X + y

X + y , since x + y e S whenever x,y G S

X II + IIy

If both x,y G S , then from (6.1), we have

X o y - ||x||+ ||y|| " a + b

where a,b are elements of S such that a » x, b = y.
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consequently, ||x o y||" + b||

" a + b , since a + b e S whenever a,b c S

= ^x|l + Ny||

Now if either x e S, y e S or x E § , y E S , it follows from

(6.1) that

X 0 y - ^x|| + ^y||

and hence ^x o y||- ^x|| + ||y|| by definition 6.1.

Therefore, in all cases, ^x o y||" ^x|| + ||y^ as required. V

THEOREM 6.1 (X,o) forms a commutative group with the same identity
element as in (S,+). Moreover, if y ^ denotes the inverse of y E X 

with respect to o , and -a denotes the inverse of a e S with respect 

to + , then ^

(6.2) —1X o y - < |x|
Ixl

|y|| if x,y E S or x,y e S 
lyll , otherwise

PROOF From (6.1), it follows that X is closed with respect to the binary
operation o. Thus it remains to verify that qll the formal properties of 
a group are also satisfied.

This can be shown as follows.

(i) X 0 6 " X = 8 0 X , where 8 is the identity for + in S.

From lemma 6.1, we know that for all x E X,

|x 0 8||. Hx|| + n8| |x|l + 8 - x|l , and
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if X 0 8 X , then {x o 8,x } is a twin pair. Without loss of

generality, let us suppose that x e S, and hence x o 6 E S .
But since 8 E S, it follows from (6.1) that

X 0 8 " ||x|| + ^@11 " X + 6 G S, a contradiction.

Therefore, x o 6 " x for all x E X. Similarly, one can show that

8 0 X = X for all x E X.

(ii) X 0 y - y o x for all x,y E X.

From lemma 6.1, we know that for all x,y E X,

Hx 0 y||- Hx|l + ^y|l " Hy|| + ^x|| - Ny o x|| ,

and if x o y f y o x, then {x o y,y o x} is a twin pair. Without loss 

of generality, let us suppose that x o y E S, and hence y o x E S.
But from (6.1), we see that x o y E S iff both x,y E S or both 
x,y G S. In either case, y o x G S, a contradiction.

(iii) (x o y) o z " x o (y o z) for all x,y,z E X.

From lemma 6.1, we know that for all x,y,z e X,

^(x 0 y) 0 z|| = ||x 0 y^ + ||z||

- Nx|| + ^y|| + Nzll

- ^x|| + ||y o z^

- ^x o (y 0 z)|| ,

and if (x o y) o z ^ x o (y o z), then {(x o y) o z, x o (y o z)} forms 

a twin pair. Without loss of generality, let us suppose that (x o y) o z E S,
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and hence x o (y o z) e S. But from (6.1), we see that the only way 

for (x 0 y) 0 z to belong to S is that among the three elements 

x,y,z, none or exactly two elements belong to §. If none, then 

X o (y o z) e S, a contradiction. If two, then there are three possibilities, 
namely x,y e S , or y,z e S or x,z e § .

If x,y G S, then from (6.1), we have

X 0 (y o z) . X o ( Hyll + Hz|l) " l|x|| + ||y|| + Hz||e S,

a contradiction. Similarly, one can easily check that the other two 
possibilities also lead to contradictions.

(iv) For each y e X, there exists y"^ G X such that

-1 -1 yoy -8-y oy

— 1If y E S, then take y - -y G S because from (6.1),

y 0 y - y + (-y) - 0

If y G S , say y « a for some a e S, then take y= ^a because 
from (6.1),

— 1y 0 y - a + (-a) = 6 .

Therefore from (i) to (iv) above, we conclude that (X,o) forms 
a group with 8 as identity for o , where 8 is also the identity for 
+ in S. Moreover, from (iv) above, we see that ||y"^11 " " ^y|| always, 

and hence (6.2) follows from (6.1). Y

We now want to define a reduction function r as in example 3.8 
above. There, the domain of r was chosen to be The reason for this
may not be obvious. However, if one considers the multiset A » {1,1,1,!,..}, 

then we see that there is more than one way of deleting
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all the twin pairs from A. Consequently, r(A) - * and r(A) - {1} 

are both possible, and hence r is not a function in accordance with our 
definition in section 0.1. It is fpr this reason that we have chosen 

as the domain of r in example 3.8 above. But now in our present 

case, J/ alone won't do because (X,o) is not assumed to be locally 
finite, and hence 1^*°) may not be a semiring. For instance,

let (S,+) be the additive group of real numbers and let

{1,2..... } B " {-1,-2, ....}

Then A,B e vV" , where X - S LJ S. But

A o B - {0, 0,

This example demonstrates that we must look for a subset of 
but which ? In order to find an answer to this question, let us examine our 

final goal a little further.

Recall that Giffler's schedule algebra was noted to posses
properties equivalent to those of integers including the fact that one can
also define addition and multiplication for "quotients" or "ratios" of two

elements. This suggests that our generalization of Giffler's schedule

algebra must also retain these properties and we must also be able to define
addition and multiplication ix)r quotients of inM elements. But any quotient 
Â is usually defined for non-zero B or in this case, B f * and addition 
and multiplication of two quotients ^ , where B,D / * are usually 

defined as follows.

(6.3) AGP 0 B 0 C
B 6 D
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(6.4) § A 9 C
Ben

But for the righthand sides of (6.3) and (6.4) to be consistent 
with the usual definition of quotients,we must have B 8 D ^ * as well.

In order to guarantee that this restriction is satisfied the algebra to 
be constructed must therefore have the property that B 8 D " * implies 

either B = * or D « *. Therefore, our choice of the domain of r must 
be such that the resulting path algebra has this property. Again, let us 
take (S,+) to be the additive group of real numbers, and let

B = {...,-3,-2,-l,0,l,2,3,...}, D - {0,1} .

Then , B o D = {...,-3,-2,1,0,1,2,3,.-3,-2,-1,6,1,2,3^...}

and hence B 8 D - r(B o D) " ^ . But clearly, B,D ^

The acute reader will observe that the multiset B in this 
example and the one above does not have a least element and hence it might 
be for this reason that the difficulty arises. This suggests that our 
choice of the domain of r should be a subset of which contains only
well ordered multisets and * (see (iii) of definition 2.2). But (X,o) may 

not be an ordered set, so how can o^e speak meaningfully of well ordered 

multisets ? Fortunately, the assumption that S is an ordered set is 
sufficient for our purpose, since we can use it to define some kind of 

pseudo-well-ordered multisets as follows.

DEFINITION 6.2

define

Let X " S S as before. For any A e N^ , let us 
= {||x|| A(x) f 0} which can be called the || ||- support of A.

Then a multiset A e N is said to be - well ordered iff IS a
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well ordered set.

LEMMA 6.2 (i) |A|i C PI whenever A ^ B

(ii) IIA B||- |A||LJ||B|| or more generally,

II ^ A II - ||A.||
iel ^ iel ^

(iii) ||A 0 B|| - ^A|| ^B^ , where juxtaposition denotes

complex product induced by + in S .

PROOF (i) Let y G ||A||. Then by definition, y " ||x|| for some

X such that A(x) f 0. But A(x) $ B(x) and therefore, B(x) 0 also, 
i.e. y E ^B|| .

(ii) Let y e ^ l+)A^|| . Then by definition, y - ||x|| for 
icl

some X such that A.(x) ^ 0. But then A.(x) 0 for at least one
iGl ^

i e I . Consequently, y G ^A^j| for at least one i G I, and hence

Aill (: IJ iK.il .iGl iGl
But from (i) above, we have ^A.J| ([ ^ for all i G I since

iGl ^
C for all iel. Therefore,

U l|A.|| C II WAJiGl - iel ^ also, and (ii) is therefore established.

(iii) Let u G ^A o B|^ Then by definition, u " ^y o 

for some y,z such that A(y), B(z) f 0. But by lemma 6.1,
" - Ky|| + ^z|| , and hence u G ||A|| ^B|| , i.e. ||A o B|^[ |^^^ |^3|
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Now let u e ||A^ 0B|| , then u " ||y|| + ^z||" o z|

for some y,z such that A(y), B(z) 0, But then ^ A(y)B(z) ^ 0
x^oz

Nxll for some x e llA o Bll . i.e. IIAli.e. u 

also.
B (: A 0 B

LEMMA 6.3 Let denote the set of all well ordered
multisets of N^ and $, where X = SIJS as before. Then ^^||xM 
a hereditary semiring .

PROOF 

Let A E
First we show that is a hereditary subset of N,

^11 , i.e. ^A|| is a well ordered set, and suppose 
B C A. Then by (i) of lemma 6.2 above, we have BB||(^ ^A|| , and 

therefore ^B|| is a well ordered set also, i.e. B E
X

That is closed with respect to multisum and 
multiproduct is a consequence of (ii) and (iii) of lemma 6.2 and the 

fact that the union and complex product of two well ordered sets with 
elements in a totally ordered monoid are themselves well ordered sets 
(cf. the proof of (iv) of theorem 2.10 above).

Finally, let A E then ||A| (||x|l A(x) 0} is a
finite subset because by definition of , A(x) f 0 for only a
finite number of x E X and A(x) Hence ||A^ is a well ordered set,

i.e. A E ' Consequently, (2 ^^Hx^ ' ^

Let us now resume our search for the domain of r . Thus far 
we know that it cannot be larger than « However, we do not

know whether ^ semiring but we do know from
(vii) that the set of all countable and well ordered multisets with elements 
in a totally ordered group is. This suggests that we try the set

X «x ^ ^ "^11 xl The following theorems show that this is
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exactly what we are looking for.

THEOREM 6.2 
where

Let X - S S as before. Then the

" ^ hereditary semiring.

PROOF This result follows from an argument similar to that used in
(vii) of theorem 2.10 by using lemma 6.1 and lemma 6.3 whenever necessary. V

THEOREM 6.3 Let X " S S and before, and
X|| ^^Ixll defined by r(A) - ^ if A » otherwiser :

r(A) is obtained from A by deleting all its twin pairs. Then

(X,o, ,r) forma a commutative p-space.

PROOF (X,o) is a commutative monoid by theorem 6.1, ,o)

is a hereditary semiring by theorem 6.2, and hence (X,o, liuyX,r) is 
a commutative p-space if we can show that r is a reduction function.

Since r(*) - ^ by definition, it remains to show that r 
has properties (3.2) and (3.3) also. To do this, let us observe the 

following two immediate consequences of our definition of r.

(i) r(A(^B) - r(B) whenever r(A) - *
(ii) A " r(A)(ilA' , where r(A') - * .

Consequently, r(A ^)B) - r(r(A)l^A'(^B) by (ii)

- r(r(A)I^B) by (i) 
and

r(A 0 B) - r((r(A)(±|A') o B) by (ii)
" r(r(A) 0 BlilA* o B)
" r(r(A) 0 B) by (i), since r(A' o B) - * . 

That r(A' o B) " ^ can be seen as follows.
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since r(A') " * , it must be either that A* - * or A 
contains only twin pairs. If the first, then clearly, r(A' o B) - ^ 

also. If the second, let x G A* o B, i.e.

X - y 0 z for some y e A* and z e B. Without loss of generality, let 

us suppose that y G S. But then y o z must be an element of A* o B 

as well. Since {y o z, y o z} forms a twin pair, it follows that A* o B 
consists of only twin pairs, and hence r(A' o B) - * as claimed. ?

THEOREM 6.4 The path algebra of the p-space (X,o, in theorem
6.3 forma an integral domain (see section 0.2).

PROOF By theorem 3.2, we know that the path algebra ( where
^^|xl| ' forms a commutative semiring. Now this path algebra is also 

a ring because for each A G "TT, there exists OA - {8} 9 A such that

A 6 A " A 9 (OA) by definition 
- A 0 {8} 8 A 
" r(Al^{§} 0 A)

= $

It remains to show that for any Y,Z G Y', Y 9 Z - * implies 
either Y = ^ or Z "

Suppose otherwise, and choose y^ G Y, zg G Z such that

llygll - min ||Y^ and ^z^g - min |z|| .
We then claim that for all x G Y o Z , {x, y. o z_} cannot be a twin pair 
which means that Y 9 Z - r(Y o Z) f *, a contradiction. This claim can be 
justified as follows

Let X " y 0 z for some y G Y z G Z. Then by our choice of 
^0 ' ^0' Hy|| and ||z|| .
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Now if - |y|| and [Izgll - ^z|| , then - y

and Zg " z because y. and Zg cannot have their S-counterparts in 
Y and in Z respectively (Y,Z G y^), and hence y^ o z_ - y o z 

means that {y o z, y^ o z.} is not a twin pair.
So we may suppose that Xygll < ^y|| , say. But then by

lemma 6.1, we have

Yn 0 Zr

and hence {y o z , y^ o z^} is not a twin pair either.

The path algebra ( of the p-space in theorem 6.3COROLLARY 6.1
can be extended to the field (6,0,9), where g is the set of equivalence

subsets of X of the form

^ - {(Y,Z) I A 9 Z - B 9 Y, B,Z f $}

and 9 is defined by (6.3) whereas 6 is defined by (6.4). Moreover, 
"Y and ^ , where A ^ * , are respectively the unit and zero of 6

PROOF The construction of from the integral domain is

similar to the construction of rational numbers from integers. Its proof 
will therefore be omitted. Note that 0 is usually called the quotient field 
of the integral domain 9

The path algebra ( T^,9,@), where 

a generalization of Giffer's schedule algebra as follows.
When X " N N , X is always a countable set because N is

a countable set whenever N is, and so is N N. Therefore, any
multiset A G NT , where X - N LJ N ,is always a quasi-countable multiset

Xsince d(A) ^ X must be a countable set also. Consequently, 10- " N 

when X " N^UN.
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Now since N is also a well ordered set, and hence X " Nvj N
Xis a II ^ - well ordered set. But this means that any multiset A e , 

where X - NIJN is always a | ^ - well ordered multiset. Consequently,

'^Mxll " when X " ,

Therefore, %||^|| ’ ^|x||

N^ jv- KOD X ' when X " N LV N

^X-

Therefore, the p-space (X,o,JVl^r) where X - N LJ N is a 

particular instance of the p-space (X,o, and hence we can regard
the path algebra ( where ^^||x|| ^ generalization of

Giffler's schedule algebra. For convenience, this path algebra will be 

referred to simply as a schedule algebra over the totally ordered 

commutative group (S,g,+).

6.2 Schedule Algebraic Division Algorithm
Since the quotient-field extension of a schedule algebra was 

obtained by an analogy with the construction of rational numbers, it might 

be fruitful to carry the same analogy a little further. Since it is well 

known that any rational number or a quotient of two integers can always be 
expressed as decimals (though it might be just approximately) by a division 

algorithm, it might be useful to have a similar way of expressing the 
element % in the quotient field of a schedule algebra. To this end, Gifflet 
(1968) invents a procedure for "dividing" A by B. Unfortunately, his 

presentation of the procedure is not explicitly defined since he only gives 
an example of the procedure in a tableau form, and that is all (see Giffler 

(1968), p.269). Nevertheless, it is clear from his example that a strong 
analogy with the ordinary long-division procedure for two integers can be 

fruitfully exploited in carrying out his method. The result to

183 -



be presented below will confirm that this is so.

We shall say that a multiset B of y" divides a multiset 
A of in the integral domain where Y". there

exists a multiset C of such that

B e C,
or equivalently.

AC . , AB "{8} B - C

Let A,B e Y^ and n^ e (1,2, be given. Then the
following algorithm yields a multiset C e "Y" such that A * B 0 C 
or an approximation for ^ to be specified below.

DIVISION ALGORITHM

Step 0. Specify n^ and set k - 1, A^ - A 
Step 1. Choose b^ e B such that ^bQ||" min ^B^
Step 2. Choose a^ e A^ such that |a^j| - min

-1and compute c^ " a. o bg by (6.2)
Step 3. Set A^^^ » A^^ 6 {c^} @ B Terminate when either of

the following hold

(i) ^^+1 " * (in this case the division result is

exactly {c^.c^, ... ,c.})
(ii) k - Ug (In this case, the division result *

{c., c_, ... ,c^ } differs from ^ by

Step 4. Increase the value of k by 1 and return to step 2.

In order to illustrate the steps of the above algorithm, let us 

consider an example below.

Let (S' +) be the additive group of integers and take
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" {"1* 2, 3, 4} , B " {3, 5}. Clearly, A, B G Now all the steps

involved in computing by the above algorithm can be conveniently

expressed in the "long-division" tableau form as used by Giffler (1968) 
as follows

-4, -2, -1 
5 t -1, i, 3, 4

-1, 1
1, 2, 3, 4
1, 3

c^, c^}

2, 4 
2, 4

{c^}e B

{Cglw B

{cg}8 B

Note that in the above example, the algorithm terminates with 

- *. However, in general, it is possible that A,^f * for all k , 
and hence the algorithm will not terminate if n^ is not specified.

As an illustration, take A - {2, 2, 3, 4} and B - {1, 1}. 
Then we have for k > 1

{3, 4} if k iIS even

{3^ 4} otherwise

Consequently, the algorithm cannot be used to decide whether or 
not a given multiset B of divides a given multiset A of ^1.

All we know is that if A^^^ - ^ for some k $ n_ , then B divides A, 

but we do not know otherwise, because the algorithm is made to terminate at 

k - n^ while it is still possible that A^^^ = * for some k > n..
In order to prove the validity of the above algorithm, let us 

first obtain the following
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LEMMA 6.4 In the above algorithm,

|c^|| g whenever f *

PROOF -1Since - a^ o b_ , it follows from (6.2) that

Nc^ll - 0 bg^ll- ^a^^ - llbgll

Similarly, - Ib^ll .

Therefore, |c^j| ( ll^k+lH whenever ^a^^ ( ^^k+lH '

But hence the required result follows if we
can show that

^a^ll $ ^x|| for all x e

Now since A^^^ " A^^ 8 {c^^ 0 B, we must have either x e A^ or

X G 8 {c^i @ B for any x e A^^^ .
If the former, then ||a^H ^ because ||a^J - min (A.^.

If the latter, then x - 6 o c. o b for some b e B.
But then |x|| - ||6 o c^ o b^

" II8| ^ II+ ^b|| by lemma 6.1

c^ll + ||b|| since ^8||- 8 e S.

" Ic^ii + Mb^ii + ( ;b|| - ^b,J|) .

) + ^bgll since ^bgll ( ^b|

- ^c^ o bgll by lemma 6.1

" l^hJI required.
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LEMMA 6.5 In the above algorithm, if k is the first index such

that ^^+1 " * * then the multiset .... does not contain
any twin pairs.

PROOF By lemma 6.4 above, it suffices to show that {c^ ,
cannot be a twin pair for any i e {l,2,...,k-l}

Suppose otherwise, and let i_ be the first index such that
{c. , c. forms a twin pair. Without loss of generality, we may^O ^0 ^
assume that c. , = c.

But then

\*2 * ® ® ®

A. a {8}@{c. 0 B

A. e {c. } @ B 
0 0

A. , since A. ^ = A. 8 {c. } 0 B ^0 ^0 ^ ^0 ^0

Hence a. .«||= min ||A. _|| - min ^A. ^ " {a. || , which implies that
^O ^0 ^ ^0 ^0

a. , since A e V' , i.e. A does not contain any twin pair.
1Therefore, c. « " a. « o b.^0 0

"o °

"0
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and hence A. _ " A. _ 6 {c. 8 B

A. 6 {c. } 8 B by the above result

Ig+l

This result can then be used to show in a similar manner as 

above that A. , " A. « and so on.

Thus in general, we have

A. if j is even 
0

A. ^ if j is odd.

Now ig E {l,2,...,k-l} implies that i^ < i^ + 1 $ k, and0 "0
hence both A. and A. ^ are non-empty by our assumption that k is 0 0 ^
the first index such that - *.

But then A^ ^ * for all j , i.e. f * for all k.
0

a condradiction.

PROOF OF THE DIVISION ALGORITHM.

We can now demonstrate the validity of the division algorithm
as follows.

First let us use mathematical induction to show that at the 
end of the k^k iteration, we have

(6.5) B - C8 g
\+l

, where C - {c.,C2,...,c.^

Now for k - 1, if Ag - then A^ * {c^} 0 B because by
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definition 8 {c^} 8 B , and hence

A 8 B
B " B " B--- {c^} - {c^} 8 as required,

If A_ ^ * , then (c^} 81/ " B- " 8
8 {c,} 0 B

{c^} 8 B 8 A^ 8 {c^} 0 B 
B

A
B

Hence (6.5) holds for k - 1. So let us suppose it holds for all 
k Such that 1 ( k < m .

Now if forms a twin pair, then

0 B " r({c^.... 0 B)

■ .c J o B)

0 B), since

Also if forms a twin pair, then A^^^ . A^ follows
from an argument similar to that used in the proof of lemma 6.5 above.
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Consequently,

.... ^m+1^ ^ iB
m+2 ^^1.... ^m+1^ ® ^ ^

{Ci,...,c^^^} e B e

{cj,...,Cg^^} # ^2:

by induction hypothesis,

So we may suppose that does not form a twin pair.
But then ^ hence

A__n e {c_,} @ B

B

C^l 0

^HH-l
1...." "IT{c,,,,#,c } 0

- ^ by induction hypothesis.

Therefore, (6.5) holds for all k 3 1.

Therefore, if A^^^ ^ ^ for all k ^ n^ , then the algorithm must terminate 
at k - n. , and hence by (6.5),

A rB "
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If - * for some k $ then k must be the first
index such that , and hence by lemma 6.5, (c^.... c^j e 'y_,

and by (6.5)

- {c^,...,c^^

which completes the proof.

6.3 Application of Schedule Algebra to K-Shortest-Paths Problems.

For convenience of exposition, we shall assume through out 
that is a network in which the labels are elements of the additive
group (R,+) of real numbers. However, the results to be given below 

remain valid if the labels of belong to any Archimedean totally

ordered commutative group.

We shall first consider the problem of determining all the 
numerical labels of paths in and then show how one can modify this

result to solve k-shortest-paths problema. Using the terminology 
introduced in section 4.1, our immediate problem is just the computation 

of v(P^j) or (M )^ji where M is the label matrix of , for all
i,j e {1,2.... n}. Our strategy for solving this problem is to embed
(R,+) in the commutative group (X,o) of theorem 6.1, where X - R L) R, 

and to consider the p-space (X,o,1kj|^|| ,r) for solving this problem.
The problem now becomes a path problem in accordance with definition 5.1, 

where AT is now considered to be a network over (X,o) which is also 

compatible with the p-space (X,o,ik||g^ ,r). This is so because by the
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definition of r (see theorem 6.3), it follows that rv(P^j) - v(P^j) 
for all i,j or equivalently M* » M . Now from an argument similar 

to that used in establishing corollary 4.5 (plua the use of lemma 6.1 
and 6.3 where necessary), it follows that is compatible with the 

p-space ^he numerical label of any elementary closed
path in J/ must be strictly positive. When this condition is satisfied 
(M )^j E for all i,j. Now from our discussion in section 5.1, we

know that M " always satisfies the matrix equation Y - M @ Y & I 

over the path algebra ( T^,*,e) where . g^nce - M
and . I , it follows that M* - M @ M* 0 I. But then by theorem 6.4, 

we have

(6.6) M* . (I 6 M)'^

where 8 M denotes the additive inverse of M, I 8 M - I 8 (8 M) and 
(I 8 M) denotes the multiplicative inverse of I 8 M.

Therefore, our immediate problem is reduced to the computation 
of (I 8 M) Now it is well known that (I 8 M)"^ can be obtained by 

using the following formula.

s(i+j) 8 det([l 8 M^..)
(6.7) ((I 8 M) )^. ----- -----------------for all i,j ,

det (I 8 M)

where det(A) denotes the determinant of the matrix A (for the definition

of a determinant, see e.g. Fox (1964)), [A] . denotes the matrix
obtained from A by deleting its jth row and ith columm, and
s(k) " f{0} if k is even 

({6}, otherwise

However, a more efficient way of computing (I 8 M)"^ is to solve
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the equation Y " M 8 Y 8 I by Gauss or Jordan elimination in linear 

algebra (or as discussed in the section 4.2). We note that these methods 

will yield solutions of the form (6.7) or its equivalence.

The required numerical labels of paths in V/ can then be obtained 

from the application of the division algorithm to (6.7) or its equivalence. 

Moreover, by lemma 6.4, the labels so obtained will be non-decreasing and 
are guaranteed to be elements of R by (6.6) above. Note also that any 
labels of paths in can always be obtained by continuing the division
algorithm long enough.

We turn now to consider the use of the above result for solving 

the k-shortest-paths problems. But first, let us note that there are in 

general two types of k-shortest-paths problems. The first is to find k 

paths in from a given node to a node Xj such that their labels
can be ranked as 1st, 2nd,...,kth smallest among the labels in v(P^j).

The second differs from the first in that the required k shortest paths 

must also be elementary. For k - 1, both problems coincide and are better 
known as the shortest paths problem, and in this case the problem can be 
more efficiently solved by using the p-space (R,+, W^ymin) of example 3.2 

above (see also problem 1.1). For k > 1, the first type of k-shortest- 

paths problem can also be solved by using the p-space (R,+,'%C,k-min) of 

example 3.3 above (see also problem 1.6). Of course, the second type of 
k-shortest-paths problems can also be solved in this way except that in 
tracing the actual paths corresponding to k smallest labels given by 
this method, a large number of non-elementary paths may have to be traced 

before the required elementary paths are found. This remark also applies 
if one uses the above method for computing all the labels of paths in V/ 

by terminating the division algorithm as soon as the required k shortest 

elementary paths are obtained. Therefore, it is clearly more efficient if
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one can obtain aa small a set of label# as possible which contains those 
of the k shortest elementary paths. In fact, the method to be presented 

below is actually based on this principle and the set obtained in fact 

contains all the labels of elementary paths for any given pair of nodes 
in . The elements of this set which are labels of the required k

shortest paths are then identified by a certain path tracing algorithm 
which we modified from the method of "backward subtraction" described by 
Pollack (1961, p.558).

K-SHORTEST-ELEMENTAPY-PATHS ALGORITHM.

The following steps yield k shortest elementary paths from

X. to X.1 J

Step 0. Set M equal to the label matrix of .

Step 1. Compute (M )^. for all h e {1,2,...,n} by applying

Gauss or Jordan elimination to the system y - M @ y # I., 
where I. denotes the j^h columm of the unit matrix I.

Step 2. If ^ or " {0} when i - j, terminate;

there are no paths from x^ to Xj. If i^^e
of denominator, set Y* - 8° Otherwise,

set A equal to the numerator of nnd if i f j go
to step 4, else

Step 3 Set B equal to the denominator of and B* the

multiset obtained from B by deleting all the elements in 
B which are also in A as well as those which appear 
without hats (^). Choose b_ = max{x|x in 6 B} and 

apply the division algorithm to until an element
not less than bg is obtained. Set Y' equal to the
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multiset obtained from 6 B* by deleting all those

elements which do not also appear in the division result 

and go to step 5.

Step 4. Set A* equal to the multiset obtained from A by 

deleting all those elements with hats ("). Choose 
Sg - maz{x|x e A } and apply the division algorithm 

to (M until we obtain an element not less than

^0" ^ equal to the multiset obtained from A'
by deleting all the elements which do not also appear 

in the division result.

Step 5. Set Y equal to the set of distinct elements of Y*

and trace the paths corresponding to each of the elements 
of Y in the order of increasing magnitude by using the 
path-tracing algorithm given below. Terminate when either 
k elementary paths have been obtained or Y has been 
exhausted.

Note that the computation of for all h other than
i in step 1 above is a prerequisite for the use of the path-tracing algorithm 

in step 5. Note also that when more than k shortest elementary paths 

are subsequently required, we need only trace additional paths corresponding 

to those remaining elements of Y. The justification of this algorithm 
will be given at the end of this section.

PATH-TRACING ALGORITHM (cf. Pollack (1961)).

Here we still assume that the label of any elementary 

closed path in is strictly positive. Suppose we wish to
trace an elementary path corresponding to the k 
label b.

th smallest
of (M*)^.. Then the following algorithm which
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presupposes the knowledge of k-min for all h e {1,2,..,n}
(see example 3.3 for the definition of k-minC^)) will trace an 

elementary path whose label is if at least one such path exists

otherwise it will terminate with a negative answer.

Step 0. Set s = 1 , A = {i} and «s - * .

Step 1. Find ^ih ^ ^ih that \ - ^ih " ^t some
Put each such h in Bs

Step 2. If j e B and b, - a.. =8 k ij 0, set i = j and terminate;
an elementary path corresponding to b. is

11. 1.1,
""i ^1 '■ « « e » e » " ' ' .^2 ^s-1

Step 3. If = $ , go to step 6, otherwise choose an i c B8 8

Step 4. If - aj. 40 and i e A, delete i from B8 6 s
and return to step 3. Otherwise, put i in A.

Step 5. Increase the value of s by 1 anrl return to step 1
“ith i - \ - i>t •

Step 6. Decrease the value of s by 1 and delete i^ from B

If terminate; there are no elementary paths

corresponding to b.. Otherwise return to step 3.

Note that the assumption of having all the elementary paths in 
the network carry strictly positive labels ensures that the above algorithm 
terminates in all cases and its justification is in fact based on the 

observation that each subpath from x^ to x. of a k^h shortest path 
from X. to X. is always a t^^ shortest path for some t ^ k. We note
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also chat a similar algorithm can also be devised from the knowledge 

of k-min for all h e {1,2.... n}.

Now let us illustrate the above two algorithms by considering 
the following example.

Suppose we wish to find 2 shortest elementary closed paths 
from Xg to itself and 3 shortest elementary paths from x^ to x, 
in the following network.

Figure 6.1

The label matrix of the above network is

M {7} * * * * *
{0,2} * * {4} {1} *
{3} {-2} {2} * * {6}
* * * * * {1}
* * {5} * {8} *
* * * * * *

(i) To find 2 shortest elementary paths from Xg to itself, we

first obtain (M for all h e {1,2,...,6} by solving the following
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system of equations

l0,7} * * $ *
{6,2} {0} {4} {1} 'I' ^2 *
{3} {-2}{0,2} * * {6} 0 *
* * * {0} * {1} ^4 *
* * {5} * {0,8} * ys {0}

_ * * * * * {0}_ ^6

Using Gauss elimination to solve this system, we obtain, after 

the completion of the elimination phrase, the following "triangulated" 

system

{0,7} *
{0}

4)

* (4^ {1}
{0,2} {2} {-1}

{0} *
{0.2.^.§.10}

{0,2}

*
*
{6}
{1}

{§.!:}
{0,2}
{0}

yi
^2 *
^3 *

0 ^4 *
^5 {0}

The back substitution then yields successively

{0.2}" {0,2!4,8,10} ' ^3 {-1}
{0,2,4,8,10}

{1.3}
{0,2,4,8,10} , y. - *

The next step is to set A » {0,2} , B = {0,2,4,8,10} which 

are respectively the numerator and denominator of y^ above.
Hence B* - {4,§} and b " 8. So we apply the division 

algorithm to y^ until we obtain y^ " {0,4,6,8, ...} which contains all
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the elements in 88 . It remains to trace the actual path corresponding 

to each element of Y " Y " 8 8 . Using the path-tracing algorithm 

we obtain the required elementary closed paths, namely

X, -> X, -2 Xg and Xc -> Xr

find (M , we need only replace the right-hand side 
of Che above system, which was obtained after Che completion of Che 
elimination phrase, by the b^h column of Che unit matrix I. The back 
substitution will Chen give successively

" {0}, y^ J:8,ii}
{0,2,4,8,10} , y^ - y^ {3,5.6.8,11.13.14.16}

{0,2,2,6,8,10,10,12}

{5.7.12.13.15}
{0,2,4,8,10} , yi " * .

Let us now set A = {5,7,12,13,15} which is the numerator
of y^. Hence A'={5,12,15} and a^ = 15. So y^ = {5,9,11,12,13,13,14,15,...} 

is obtained by using the division algorithm. Since all Che elements of 
A' are contained in y^, we have Y' = A' and hence Y = A' also. 

Finally, using the path-tracing algorithm, we find Che elementary path

Xg corresponds to 5 in Y, the elementary path 
6

*2 \
1 5Xg > Xg > X2 - - - - > Xg corresponds to 12, and no elementary

paths has label 15.

As an illustration, let us show how to trace an elementary path 
corresponding to 12 in Y above. First, we note that 12 is the 4Ch 
smallest element in 4-min(M*)2g - {5,9,11,12}. Thus we need also compute 

4-mdn(M for all h ^ 2 by using the division algorithm where necessary,

- 199



These are as follows.

4-min(M*)^g . ^ , 4-min(M*)^^ - {3,5,6,7} ,

4-min(M . {1} , 4-min(M*)gg . {8,10,11,12} , 4-min(M^)g^ - {o}

Initially, A = {2} , From the 2nd row of the label matrix M,

we find that a^^ - 1 ia the only element satisfying 12 - a^^ « 11, 
where 11 is the 3rd smallest element in 4-min(M*)^^. Hence B - {5} 

and A = {2,5}. Applying the same procedure to 11, we get a^. - 5;

" ^^3 " where 6 is the 3rd smallest element in 4-min(M^) .
Since a^^ is the only such candidate, B^ - {3} and hence A - {2,5,3}. 

Applying the same procedure once mere, we obtain a^^ " 6; 6 - a.^ = 0,
where 0 is the first smallest element in 4-min(M*)g^. Again, this is

the only candidate and hence B^ - {6}. Therefore, the algorithm terminates 

and yields the elementary path

-> X. -> X,

PROOF OF THE K-SHORTEST-ELEMENTARY-PATHS ALGORITHM

The validity of the k-shortest elementary-paths algorithm will 

be verified with the help of the following well-known result relating the 

elementary paths in a graph G over a field (X,+,o) and the arc—value 
matrix A.

(6.8) ndet(I-A) . e + ^ ^ (_e)^ 0 v(w^ ) 0 v(w^ ) o...ov(w ))
h=l m^+m2+..+mL=h %

(6.9) (-e) ^ 0 det([l-A]j^) _ ^ ^ )ov(w )o..ov(w ))
h-2 m^+m^+..+m^=h-l

if i ^ j.
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Here denotes the matrix obtained from I-A by
deleting its row and i^h columm; p is an elementary open

path from to x. of order m^ % 1; is the elementary closed
path of order m^ ^ 1, for all t e {1,2,.all the paths

in common. For a proof of (6.8) and (6.9), we shall refer the reader
...... are disjoint, i.e. they do not have any nodes

to Ponstein (1966).

Since the label matrix M of can also be regarded as 

the arc-value matrix of the graph G(M) over the quotient-field of the 

schedule algebra , it follows respectively from (6.8) and (6.9) that

n
(6.10) det(leM) » {0} @ ( @(

il+m^
s(k) 0 {c + c +

h»l mi+m^+..+mL=h ^1m, m.

(6.11) s(i+j)e det([l8M^.^) @)( 0) s(k) @{d +c +...+C })
h=2 m^+m^+..+m^=h-l ^0 ™1 ™k

if i ^ j ,

where d^ c v(p^ ) , c e v(w ) for all t e {1,2,...,k} ,

and s(k)

0 "t "t
[{0} if k is even 
!{6} , otherwise.

Now let us recall our earlier note that the use of Gauss or 
Jordan elimination in solving Y = M Q Y 0 I will always yield

a quotient of multisets equivalent to (6.7). In fact, from (6.10) 
and (6.11) above, it is easily seen that these two multisets are also 
finite because the network is assumed to have only a finite number of 

nodes and arcs, and hence a finite number of elementary paths in the
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network. The proof can now be conveniently divided into two cases,

(i) For i j , we

(a) " *

(b) *

Since (M*) ij '

case

that in this case, the numerator must contain a factor equal to det(I 6 M) 

This occurs when all the elementary closed paths are disjoint from the 

elementary paths from to Xj . Hence so obtained is already
a multiset of elements which are labels of elementary paths from x. to
Xj.

(c) (M )^. " — , where A and B are non-empty finite 
multisets. Let us assume first that

A - 8(i+j) Q det ([l e and B - det(I 8 M).

It suffices to show that all the labels of elementary paths
from x^ to Xj are contained in A and the elements deleted from

A to yield A in step 4 of the algorithm are not labels of elementary

paths from x^ to x.. Let d^ be a label of an elementary path in
which begins at x. ends at x., and has order m^. Then d e v(p ).J 0
where p^ is as defined above. Since m^ $ 1 (because i ^ j), there

is always a positive integer h ) 2 much that m^ - h-1, and hence 

s(0) e {d^} is a term in thesimion the righthand side of (6.11) above.

Since s(0) = {0} , it follows that d^^ e A. It remains to show that 
all the elements in A which appear with hats cannot be labels of
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elementary paths from x. to x.. Since d , c areJ
elements of R , the only elements in A with hats are those corresponding 

to the terms s(k) 9 {d^ + c^ + .. + c } in the sum on the right-hand
0 1 K

side of (6.11) where k is odd, and hence they cannot be labels of 

elementary paths in . Now consider the case where

A f s(i+j) 0 det([ieNQ.^), B f det(ieM) but

^ s(i+j)0 det([ieM^.^)
^ det(ieM)

This implies that a common factor has been cancelled out. In 
view of (6.10) and (6.11) above, this can only occur when some elementary 

closed paths in the network are disjoint from the elementary paths from 

x^ to X.. In fact, the common factor which has been cancelled out 
comprises precisely the labels or sum of labels (disregarding the hats) 

of these closed paths. Hence it cannot contain labels of elementary 
paths from x^ to x.. Thus the above argument for A' remains valid 
in this case.

(ii) For i - j , we have two possibilities:

(a) (M )^^ " {0}. Again, there is nothing to prove in this case.
(b) ^ , where A and B are finite non-empty multisets, 

h6t NL be the label matrix of a network obtained from the given network
by deleting the node x^ and all the arcs beginning and ending at x..
It is easily seen that

- 203



Let us assume first that A - det([ieM].^) and B - det(ieM). Again, 

we have to show that B contains all the labels (disregarding the hats) of 

elementary closed paths from x. to itself and the elements deleted from 

B to yield B in step 3 of the algorithm are not labels of those 
elementary closed paths. The argument is similar to that used in (i) 
above except that we need also show that the elements in B which also 
appear in A cannot be labels (disregarding the hats) of elementary 

closed paths from x. to itself. Indeed, by the definition of M. and
(6.10) above, A = det([l6M^..) " det(I8M.) cannot contain such labels.

r n ^ A det([l8Ml..)
Now if A ^ det([ieM^..) and B ^ det(ieM) but ^ ,

^ det(ieM)

then det([ieM]^^) and det(I6M) must have a common factor. But by 

the definition of M. , this common factor cannot contain labels of any 
elementary closed paths from x. to itself. Hence the above argument 
for B* applies.
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