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Observational and theoretical studies have indicated that
much of the oceanographic variability along the eastern ocean
boundaries, for example that associated with El Nino, is
remotely forced. The remotely forced motion along these
boundaries originates from the reflection of low frequency
baroclinic Kelvin waves on the equatorial boundary. At the
equator, part of the incoming Kelvin wave energy is reflected
in the form of westward propagating Rossby waves and the
remainder of the energy is divided between northward and
southward propagating coastal Kelvin waves. Previous
analytical results have shown the strong dependence of both
coastline slope and incident wave frequency on the wave
reflection at the eastern boundary.

A baroclinic shallow water model is developed to explore
the behaviour of the baroclinic equatorial Kelvin waves when
they reach different eastern oceanic boundaries. The large
latitudinal extent used in the numerical domain permits
consideration of the response at both equatorial and mid-
latitudes. Previous analytical studies in this field have
always excluded some effects, such as viscosity and non
linearities, and employed approximations (equatorial /?-plane,
low frequency wave, meridional boundaries, for example) to
the governing equations in order to solve them analytically.
Numerical solutions, however, can be obtained without these
approximations and the real ocean is viscous, non linear and
has nonmeridional boundaries.

The energy flux results indicate that the nonlinear effects
can be regarded as negligible when considering reflection of
equatorial waves at an eastern boundary, whereas the viscous
effects are very important. The influence of the coastline
geometry and the incident wave period, is found to be more
important for the westward energy flux than for the poleward
flux. It is recommended that any numerical model involving
the reflection of baroclinic Rossby waves at eastern
boundaries consider the effect of the coastline geometry in
order to improve the accuracy of its results. Meridional
boundary models should give accurate results for the poleward
energy fluxes at seasonal and annual periods. For
comparatively shorter periods, the appropriate Atlantic or
Pacific coastline geometry should be included to obtain more
accurate results.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Results from observations and modelling of the upper

ocean have suggested that there is a connection of equatorial

anomalies to higher latitudes, through the ocean eastern

boundaries, over time scales of a few months to years. The

most important among these anomalies is the El Nino

phenomenon.

To date most of the El Nino research has been

concentrated in the equatorial Pacific where the main

disturbances take place and from where the energy for changes

elsewhere emanates. Oceanic models, developed to study El

Nino phenomenon, frequently exclude higher latitudes and

often have an artificial barrier just outside the tropics

(Philander, 1990).

The El Nino-Southern Oscillation (ENSO) is thought to be

the result of strong and complicated coupling between the

ocean and the atmosphere in the tropics. In order to explore

this idea several coupled models have been developed in the

past few years with different dynamical complexity. McCreary

and Anderson (1991) provide a recent overview of coupled

ocean-atmosphere models of ENSO.

The principal purpose of research in this field is to

forecast ENSO events. However, rather than attempt to

simulate the ENSO the foremost interest in this study is in

the low-frequency variations of the eastern ocean boundaries,



CHAPTER 1

during the El Nino years, induced by a single candidate

mechanism: the remotely forced equatorial Kelvin wave.

Section 1.2 of this chapter addresses very briefly the

ENSO phenomenon. No attempt is made to describe the ENSO

phenomenon in detail. In the following sections an overview

of the relevant observations are presented. This chapter

concludes with a statement on the approach and aims of this

study.
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1.2 El Nino-Southern Oscillation (ENSO)

In 1983, the Scientific Committee on Oceanic Research

(SCOR, 1983) defined El Nino as follows: El Nino is the

appearance of anomalously warm water along the coast of

Ecuador and Peru as far south as Lima (12°S), during which a

normalized sea surface temperature (SST) anomaly exceeding

one standard deviation occur for at least four consecutive

months at three or more of five coastal stations (Talara,

Puerto Chicama, Chimbote, Isla Don Martin and Callao).

The atmospheric counterpart to the El Nino is the

Southern Oscillation (SO). The SO is a coherent variation of

barometric pressure, on an interannual time scale, which is

related to weather phenomena over large areas of the globe,

particularly in the tropics and subtropics.

A helpful index of the SO is the anomalous atmospheric

pressure difference between Darwin (representative of the

Indonesia low) and Easter Island (representative of the South

Pacific high) (Philander, 1990). Time series of this

pressure difference indicate that this index, the SOI, drops

to a minimum during each El Nino event. It has been found

that the SOI is remarkable well correlated with such diverse

quantities as sea-level pressure, air temperature, sea-

surface temperature, precipitation and sea level, at a

variety of locations (Gill, 1982).

Because the causal relationship between the pressure

fluctuations of the SO and the anomalous warm water of the El

Nino remains unclear, both phenomena are now considered

together as a single phenomenon called ENSO (Cane and

Sarachick, 1983).
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Before 1972 the adverse effects of the ENSO phenomenon

were recognized only in South America, especially Peru.

Following the 1972-1973 El Nino it was further realized that

El Nino may have important impacts throughout the world

(Enfield, 1989).

ENSO is such a large scale event that it is considered

to cause decreased hurricane activity in the Atlantic,

droughts in Indonesia, India, the Philippines, Australia,

Northeast Brazil, Ethiopia and southern Africa, as well as

other regions. It has also been associated with floods in

southern Brazil, Peru and Ecuador, mild winters in eastern

Canada, cool summers in northeast China and many other

anomalous weather conditions. The large scale biological

consequences of ENSO are also many and very complex (see

Barber and Chavez, 1983).

Glantz et al.(1990), examining the environmental and

societal aspects of the El Nino phenomenon, observed that

climate-related health problems, including famine, epidemics,

death and injury from wildfire, flood or storm surge,

connected to the El Nino events, are not limited to the

tropical regions but can be linked throughout the globe.

A comprehensive compilation of ENSO events is presented

by Quinn et al.(1987). They have reviewed historical

publications to obtain information on El Nino over the past

four and a half centuries. The ENSO events were classified as

weak, moderate, strong or very strong depending on several

factors, such as intensity and economic impact. However, as

pointed out by Philander (1990), despite the amplitudes of

different ENSO events varying significantly, the phases of

different episodes may be remarkably similar. Because of

this, composite analysis is possible.

Rasmussen and Carpenter (1982), using composite

4
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analysis, gave a detailed description of the sequence of

events in the ENSO phenomenon over the Pacific. They combined

the data for the three years: before, during and following

each of six El Nino episodes that occurred between 1951 and

1973 (1951, 1953, 1957, 1963, 1965 and 1972).

The composite El Nino, however, provides only a general

model of processes that are common to most ENSO events. The

1982-1983 El Nino, for example, exhibited some discrepancies

from the composite El Nino. The 1982-1983 ENSO event and its

peculiarities have been extensively discussed by Cane (1983)

and Rasmusson and Wallace (1983), among others.

Wyrtki (1975) explained the onset of the ENSO as a

dynamic response of the equatorial Pacific ocean to

atmospheric forcing: the interannual equatorial Pacific trade

wind anomalies cause the accumulation of upper layer water

in the west (strong trades) and its subsequent tendency to

return eastward (weak trades) in the form of equatorially

trapped internal Kelvin wave packets. The sea level changes

are baroclinic; there is comparatively little change in

pressure at the bottom of the ocean associated with these

events. These ideas have been expanded by several researches

and validated in a set of numerical experiments.

Upon impingement with the eastern boundary, the incoming

baroclinic equatorial Kelvin wave excites westward-

propagating internal Rossby waves and poleward-propagating

coastal Kelvin waves (Moore, 1968; Moore and Philander, 1977;

McCreary, 1976). White and Saur (1983) have observed

interannual baroclinic long waves propagating westward

associated with coastal sea level variability south of 3 0°N.

Thus, remote forcing may play an important role in the

dynamics of the coastal regions off North and South America

through the equatorial and coastal wave guides.
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Moore et al. (1978) have also hypothesized that cold SST

in the Gulf of Guinea during the coastal upwelling season is

the result of a coastal Kelvin wave, which, through a complex

series of events involving equatorial waves, is excited by

changing winds in the western equatorial Atlantic.

The tropical Atlantic has a counterpart to El Nino

phenomenon (quasi El Nino), such an event occurred in 1984

when sea surface temperatures off southwestern Africa were

exceptionally high (Philander, 1990; Verstraete, 1992).

In addition to the theoretical model results, there is

observational evidence for the propagation of baroclinic

disturbances along the equator and the eastern boundaries.
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1.3 Observational evidence of equatorially-trapped Kelvin waves

The equatorial Kelvin waves are thought to occur over a

wide range of frequencies. Sea level records from El Nino

years reveal that sustained periods of high sea level were

composed of several wave periods, which were interannually

modulated.

Several observations show eastward phase propagation

along the equator but it is difficult to find measurements

that unambiguously show the presence of Kelvin waves.

According to Philander (1990), this is because the waves are

superimposed on other waves and on time-dependent wind-driven

currents which have no dispersion relation.

1.3.1 Pacific Ocean

On interannual time scales, the prominent disturbances

of sea level elevation in the equatorial Pacific Ocean

related to known occurrences of the El Nino phenomenon are

associated with the SO.

The shortage of available measurements suitable to

study the interannual oceanic variability impedes a reliable

quantitative description. Interannual variability has such a

large amplitude that the definitions of mean conditions and

of the climatological seasonal cycle depend heavily on the

period over which the data was collected (Philander, 1990).

Observational evidence for forcing of higher frequency modes

(intraseasonal periods, for example) is most common, but even

this data is sparse.
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Intraseasonal fluctuations of 40- to 60-day periods have

been observed in sea level records of the equatorial Pacific

and were shown to be Kelvin waves forced in the western

equatorial Pacific by the "Madden-Julian oscillation"

(hereinafter MJO). The MJO is a large-scale, eastward

propagating signal characterized by a 30 to 60 day spectral

peak in the variance and coherence of near-equatorial

tropospheric wind, pressure and convection (Madden and

Julian, 1971, 1972).

There have been many studies of the MJO, but many of

its characteristics remains unexplained. Weickman (1991) has

shown that for the developing 1982-1983 ENSO interannual

transitions in the anomalous atmospheric circulation and in

the sea surface temperatures in the western-central Pacific

coincide with the passage of strong MJOs from the Indian to

Pacific Oceans.

According to Enfield (1989), it may be that the MJO is

only effective as a trigger that trips a preconditioned

ocean-atmosphere system into an El Nino state. Or it may be

that the oscillation is decoupled from the ENSO sequence and

merely modulates the observed anomalies.

As pointed out by Glantz et al.(1990), the presence of

the MJO waves in the tropical Pacific suggests that it may be

impossible to predict the early stages of an El Nino event on

a month-to-month basis. It seems likely that these waves

could advance or retard the discernable onset of an event by

a month. If so accurate prediction of monthly SST anomalies

would require that the pattern of 30-60 day activity be

predicted as well.

Enfield (1987), using time series of sea level elevation

for the period of 1979-1985, has documented intraseasonal

fluctuations of 40- to 60-day period in sea level propagating
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eastward across the equatorial Pacific as a baroclinic Kelvin

wave forced in the western equatorial Pacific by the MJO.

Ripa and Haynes (1981) observed low-frequency

fluctuations at the Galapagos Islands of intraseasonal period

(about 100 days) with meridional structure consistent with a

first baroclinic mode Kelvin wave.

Strong observational evidence of the Kelvin wave is

provided by Knox and Halpern (1982). They filtered out some

of the variability integrating the zonal currents vertically

and a pulse propagating nondispersively from the central to

the eastern equatorial Pacific at speed of 2.9 m/s was

revealed.

McPhaden and Taft (1988), analysing time series

measurements from surface moored buoys in the eastern and

central equatorial Pacific for the period 1983-86, have found

intraseasonal eastward propagating baroclinic Kelvin-like

waves at periods of 60-90 days, which were poorly correlated

with the local winds.

Two years of GEOSAT (GEOdetic SATellite) altimetric sea-

level data were used by Miller et al.(1988) to investigate

the tropical Pacific Ocean before and during the 1986-87 El

Nino. Sea level time series along the equator showed both

positive and negative interseasonal anomalies propagating

eastward across the Pacific with phase speeds of 2.4 to 2.8

m/s, suggesting downwelling and upwelling Kelvin waves,

respectively.

Using GEOSAT sea level and surface current anomalies of

1986-1987 Delcroix et al.(1991) have shown evidence of an

equatorial Kelvin wave with the characteristics of a first

baroclinic mode propagating over most of the equatorial

Pacific basin.
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1.3.2 Atlantic Ocean

In the Atlantic Ocean, observations suggest that the

upwelling event in the Gulf of Guinea is not associated with

either the local winds or the local ocean circulation

(Houghton, 1976). A possible explanation is that a strong

upwelling signal, generated by increased westward wind stress

in the western Atlantic, can travel as an equatorially

trapped Kelvin wave (Moore et al., 1978; Adamec and O'Brien,

1978; Servain et al., 1982; Busalacchi and Picaut, 1983;

Picaut, 1983; McCreary et al., 1984). This interpretation is

analogous to theories of El Nino in the Pacific Ocean.

Long-term inverted echo sounder records along the

equator in the Atlantic were analyzed by Katz (1987) to show

the dominance of equatorially trapped and eastward

propagating disturbances with first baroclinic mode Kelvin

wave characteristics. The propagation speed was estimated to

be between 2.1 and 2.6 m/s along the equator.

Verstraete (1992), analysing both historical data and

the FOCAL hydrographic stations (1982-1984) has related the

equatorial downwelling-upwelling in 1984 in the Gulf of

Guinea to the remotely forced equatorially trapped Kelvin

wave.

10
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1.4 Observational evidence of long wave propagation along the

eastern ocean boundaries

The low frequency response of sea level on the eastern

boundaries can be subdivided for linear purposes into two

independent constituents (1) the remotely forced part, e.g.,

that which is the result of equatorial Kelvin waves incident

on the boundary, and (2) the locally forced part. The latter

is due to the longshore component of the wind (Bigg and Gill,

1986).

Observational and theoretical studies, however, have

indicated that the remotely forced part dominates the sea

level variability along the ocean eastern coasts.

1.4.1 Pacific Ocean

Reported results along the eastern coast of North and

South America suggest that much of the oceanographic

variability along these eastern ocean boundaries is of

equatorial origin. Evidence for wave propagation along the

eastern boundary of the Pacific Ocean can be seen in records

of coastal sea-level elevation.

Enfield and Allen (1980), based on a 25 year time series

of coastal sea level from Chile (33°S) to Alaska (60°N), have

found coherency in the interannual sea level fluctuations at

most of the stations, especially those at low latitude, i.e.,

from Matarani to San Francisco (see Figure 1.1). The El Nino

events (high sea level) can be readily identified: 1951,

1953, 1957-58, 1963, 1965-66, 1969 and 1972-73. Shorter

11
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period fluctuations are found to be visually coherent between

neighbouring stations or within regional groups (e.g.,

Crescent City to Yakutat, Galapagos to Matarani). The

interannual fluctuations typical of El Nino events are shown

clearly at the four stations from Galapagos to Matarani

where, in particular, a double peaked structure of the large

El Nino events is evident. The interannual anomalies,

associated with El Nino variability, exhibited a poleward

propagation from equatorial regions in both Hemispheres with

properties similar to those of internal Kelvin waves. For the

Northern Hemisphere the phase speed of 1801100 km/day (0.9 to

3.2 m/s) was established. In the Southern Hemisphere a phase

speed of -35-50 km/day (0.4 to 0.6 m/s) was estimated.

Because of the limitation of the data in the Southern

Hemisphere this result was considered by the authors as being

ambiguous.

5 9 . :

S4.3°N

1 X . « N I CRESC. CITT I , , *

SAN FRAN..

3 S . 2 ° N
I OIECO

2 3 . 2 "N I "azaI.'-fM l i U . ^ A . _ . A J i t . j i _ j

1 3 . 9 - N

3 . 9 ° N l«VLw''Vfe^Y**A*^P''U''"*'''V"W^'^ ' ' ' '
0.5«S - c «- ' t f - M ° s .. « ,̂ i ,. 4, * | i !

, CALLAO - .

"vv* VW

12.3°S ^ - ^ ^ ^ ^

FIGURE 1.1: Time series of monthly anomalies of sea level from 1950 to
1974, inclusive. Positive anomalies are shaded black, [from Enfield and
Allen, 1980].
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Chelton and Davis (1982) have examined 29 years of

nonseasonal, monthly-mean, tide-gauge sea level data along

the west coast of North America. It was verified that the

interannual aspects of the large scale sea level variability

in the eastern tropical Pacific are closely related to El

Nino occurrences, which appear to propagate poleward with

phases speed of -0.4 m/s. Higher frequency (monthly) aspects

of this large scale sea level variability were attributed to

direct effects of atmospheric forcing over the North Pacific.

Pares-Sierra and O'Brien (1989), identified a major

source of sea level variability along the coast of North

America to be poleward propagating baroclinic Kelvin waves of

interannual periods.

Johnson and O'Brien (1990) have shown that baroclinic

coastal Kelvin waves are the dominant factor for the mid-

latitude El Nino of the North American coast at interannual

and annual periods. The influence of the coastal Kelvin waves

was found to diminish poleward of 45°N. At seasonal time

scales, the acceleration of the local wind appeared as an

important mechanism in driving coastal currents.

Spillane et al.(1987), using sea level records at

coastal stations from Peru to British Columbia for the period

1971-1975, have found oscillations associated with the 1972-

1973 El Nino with intraseasonal periods of 36-73 days. These

oscillations were shown to be coherent from near the equator

north to 34°N and south to at least 12°S. The amplitude and

phase variations were consistent with propagation as free

coastally trapped waves with a poleward phase velocity of

150-200 km/day (1.7 to 2.3 m/s), in the Northern Hemisphere.

13
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1.4.2 Atlantic Ocean

Servain and et al. (1982) have presented evidence, based

on historical SST and wind data, indicating that remote

forcing in the western equatorial Atlantic Ocean is an

important factor affecting the eastern equatorial Atlantic

SST.

Picaut (1983), analysing historical monthly mean SST,

showed that the seasonal coastal upwelling in the eastern

Atlantic propagates poleward, starting from the equator, at a

mean speed of 0.7 m/s in both Hemispheres. It was suggested

that remote forcing west of the Guinea Gulf is an important

factor affecting the temperature in the Gulf.
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1.5 Approach and Aims

This study assumes the most widely accepted theory for

the oceanic response during El Nino events: namely that the

changes at the eastern Pacific coast are caused by changes in

the zonal wind stress in the central Pacific and that their

influence is transmitted across the Pacific by equatorial

baroclinic Kelvin waves.

The main aims of this study are:

(1) The development of the shallow water model to explore the

reflection of the low frequency baroclinic equatorial

Kelvin wave at eastern oceanic boundaries;

(2) An investigation of the behaviour of these equatorial

Kelvin waves when they reach the eastern oceanic

boundaries. It addresses the questions:

. How far from the equator can the baroclinic

disturbances propagate?

. How important is the coastline orientation on the

propagation of the coastally trapped Kelvin waves and

on the generation of the reflected Rossby waves?

. How important are the viscous effects on the studied

waves?

. What are the main differences between propagation in the

Northern and Southern Hemispheres of the Pacific and

Atlantic Oceans?

. What occurs when the frequency of the incident equatorial

wave changes?

Chapter 2 presents some analytical theory used in this

study. The baroclinic shallow water equations are used as the

15
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basis for investigating the reflection of the equatorial

Kelvin waves at the eastern ocean boundaries.

The shallow water model is developed in Chapter 3 and

its numerical details are presented in the Appendix.

Chapter 4 explores the problem of equatorial low

frequency wave reflection at hypothetical eastern boundaries.

Energy fluxes generated by reflection of equatorial Kelvin

waves of different periods at different eastern boundaries

are investigated.

The development and results of more realistic

experiments are described in Chapter 5. In that chapter the

numerical eastern boundaries simulate the Pacific and the

Atlantic ocean coastlines.

In Chapter 6 the main results of this study are

discussed and further factors which may influence low

frequency wave propagation are presented.

16
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THEORETICAL CONSIDERATIONS

2.1 Introduction

In this chapter some analytical theories relevant to the

phenomena studied are briefly discussed. These theories will

be frequently referred to in the subsequent chapters.

Most of the subjects discussed in this chapter can be

applied to any equatorial ocean. Special attention, however,

is devoted to the Pacific ocean because of its relationship

with the El Nino phenomenon.

Earlier studies have alluded to the importance of

equatorial phenomena on the ENSO events. The general

characteristics of the equatorial dynamics on large time

scales may be explored considering a simple reduced-gravity

shallow water model (Section 2.2). The one-layer model

represents an attempt to produce the simplest possible model

that can be used to study baroclinic motion. Simple models

can be of considerable value because the results obtained

using them can provide insight into situations where more

complex physical processes are at work.

The phenomenon of the equatorially trapped wave, one

relevant feature of equatorial dynamics, is described in

Section 2.3. The equatorial waves in the presence of a zonal

boundary near the equator is addressed in Section 2.4.

Theoretical and observational studies have shown that

equatorially trapped internal Kelvin waves may generate, upon

17
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reflection on the eastern coast, a poleward propagating

disturbance along this boundary. Thus, poleward propagating

waves generated in the tropics during a ENSO episode, for

example, should carry information to the extratropical

regions. The question of reflection at eastern coasts is

addressed in Section 2.5. Section 2.6 discusses the criteria

for validity of the equatorial j8-plane approximation.
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2.2 The reduced-gravity shallow water model

Shallow water models have proved extraordinarily useful

for explaining equatorial phenomena on long time scales (Cane

and Patton, 1984) .

The reduced-gravity approach has often been used in

models of tropical oceans (McCreary, 1977; Adamec and

O'Brien, 1978; Cane, 1979; among others). Such a model is

capable of reproducing observed sea level variability in

equatorial regions and also along the eastern oceanic

boundaries (Johnson and O'Brien, 1990; Bigg and Inoue, 1992) .

Meyers (1979) has shown, using sea level and interfacial

depth profiles, that during most of the year the eastern

tropical Pacific acts in a manner compatible with the

dynamics implicit in the reduced-gravity approach. The

profiles show that variations in the sea level and 14°C

isothermal depth are 180° out of phase. This phase relation

allows a zero pressure gradient to exist below the upper

layer. The general assumption is that a warm sea surface

temperature anomaly is associated with a depressed

thermocline and, conversely, that an upwelling thermocline

occurs with a cool SST anomaly.

In the model, the interface between two immiscible

layers of fluid, each of constant density, simulates the

thermocline that separates the warm surface water from the

cold waters of the deep ocean. The upper layer has density

pu a mean depth H, and is bounded above by a rigid lid. The

lower layer has density p2 and is infinitely deep. Linear

hydrostatic motion in the upper layer is associated with a

displacement h of the interface and is described by the
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linear shallow water equations (McCreary, 1976):

*3* = 0 (2.2.la)
OX

-1^ + fu + g*S^ =0 (2.2.lb)
at ay

.dh +c2 (8u + | r ) = Q (2.2.1c)
dt dx dy

The velocity components in the eastward (x) and

northward (y) directions are u and v, respectively. The

Coriolis parameter is f=j8y, where /3=2fl/r. Here n denotes the

rate of rotation of the earth and r its mean radius. The

gravitational acceleration g, because of stratification, is

effectively reduced to

9* = Pz p"
 Pl 9 (2.2.2)

and the gravity wave speed is c=(g*H)I/2.

The free wave solutions to Equations (2.2.1) are of four

types: Kelvin waves, Rossby waves, inertia-gravity waves and

mixed Rossby-gravity waves (Cane and Sarachik, 1976). "Free-

waves solutions" are understood to be solutions to Equations

(2.2.1) without forcing and that have u, v and h proportional

to:

exp(iJbc - iot) (2.2.3)

where the zonal wavelength is 2n/k and the frequency is a.
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Equations (2.2.1) may be combined to form a simple

equation for the northward velocity component. The resultant

expression together with Equation (2.2.3) reduces it to the

ordinary differential equation:

(2.2.4)
dy2

A significant property of the solutions of Equation

(2.2.4) is the equatorial trapping; i.e., waves are guided

along an equatorial waveguide. The waveguide effect is due

entirely to the variation of the Coriolis parameter with

latitude (Gill, 1982).

Note that for a wave of fixed frequency a and fixed

east-west wavenumber k, the coefficient of v in Equation

(2.2.4) may be positive at the equator, giving wavelike

behaviour, but as |y| increases, f=(3y increases, and the

coefficient of v decreases until it becomes zero at the

critical latitude (see Section 2.5.1). At latitudes higher

than the critical one, the coefficient of v becomes negative

and solutions of Equation (2.2.4) become exponential in

character, thus giving wave trapping.
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2.3 Equatorially trapped waves

An important geographical area as far as the oceans are

concerned is the equatorial region, where at the equator

itself, the Coriolis parameter vanishes. One relevant feature

of equatorial dynamics is the phenomenon of the equatorially

trapped wave - a narrow band of latitudes centred on the

equator which acts as a waveguide for westward propagating

planetary waves and zonally propagating long gravity waves

(LeBlond and Mysak, 1978).

Equations (2.2.1) describe linear waves on an equatorial

/3-plane. For given values of a and k, Equations (2.2.1)

constitute an eigenvalue problem. If the solutions are

required to be bounded at large distances from the equator,

then modes are possible only for a certain discrete values of

the meridional wave number n that are eigenvalues of

Equation(2.2.4). These eigenvalues are given by the

expression (Philander, 1979):

p c
2

= 2n+l n=0,l,2... (2.3.1)

The full dispersion relation for equatorially trapped

modes is shown in Figure 2.1, with frequency, a, in units of

(/5c)1/2, and the zonal wave number, k, in units of (c//3)1/2. The

Kelvin wave is represented by the straight line labelled

n=-l. Trapped equatorial Rossby waves appear as low-

frequency, negative-*: curves having modal numbers n =

-L f £ j -3 f • * •
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Inertia-Gravity

FIGURE 2.1 - Dispersion diagram for equatorially trapped modes. The unit
of frequency is (fic)m and the unit of zonal wave number k is the inverse
of the radius of deformation (c/P)m. [From Cane and Sarachik, 1976].

The group velocity cg = da/dk may be calculated from

the dispersion relation (2.3.1). Equation(2.3.1) gives two

curves for each value of n: one for inertia-gravity waves and

the other for Rossby waves. Those with n even have u and h

components which are antisymmetric and v components which are

symmetric about the equator; those indexed by odd n have

opposite symmetries. Also, the smaller n i s , the more

equatorially confined is the mode.

2.3.1 "Mixed" Rossby-gravity waves

According to Equation (2.3.1) there are two apparent

roots for n=o. The f i r s t root (k=-a/c) must be discarded

because the corresponding u and h functions become unbounded
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when y -+ oo. The other root (labelled n=o) is known as the

Rossby-gravity mode because it is similar to inertia-gravity

waves at high frequencies and similar to Rossby waves at low

frequencies. In the literature this mixed wave is often

referred to as a Yanai wave. It has the dispersion relation:

« - " - 1
c a

The phase velocity may be eastward (k>0) or westward

(k<0) but the group velocity is always eastward.

The case k=0 corresponds to a standing wave for which

the surface moves sinusoidally up and down on opposite sides

of the equator. Particles move anticyclonically with eastward

phase when the free surface is elevated and westward phase

when it is depressed. The frequency of the standing wave is:

(pc)1/2

For n > 1, both roots of Equation (2.3.1) lead to

acceptable wave fields (see Figure 2.1).

2.3.2 Inertia-gravity waves

For the upper branches, the term (ik/o in Equation

(2.3.1) is small, so the dispersion curves are given

approximately by:

a2 -(2ia+l) Pc + k2c2 n=l,2,3,...
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These waves are called equatorially trapped inertia-

gravity waves and the lower the frequency of these waves, the

more equatorially trapped they are. The group velocity can be

to the east or west.

For long waves (k-'-O) the frequency is given by:

o2 = (2n+l) Pc 11=1,2,3, ...

Hence the minimum frequency of the inertia-gravity waves

is a = (3fic)1/2, which for a phase speed of 2.5 m/s is a ~ 1.3

10"5 s1, equivalent to a 5 % day period.

2.3.3 Rossby waves

On the lower branches of the curves, the term a2/c2 in

Equation (2.3.1) is small, and consequently the dispersion

curves are given approximately by:

n = 1,2,3,. . .

The corresponding waves are called equatorially trapped

Rossby waves. These waves all have a westward phase speed.

The slow, short, dispersive waves have eastward group

velocities and the fast, long, nondispersive waves have

westward group velocities cg = c/(2n+l) . For c = 2.5 m/s, cg s

0.83, 0.50, 0.36 ms'1, .. .The higher the meridional wave

number, the further poleward the Rossby waves extend.
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The long Rossby waves are very important in the oceanic

adjustment to the ENSO phenomenon, whilst the inertia-

gravity, Rossby-gravity and short Rossby waves are relatively

unimportant.

2.3.4 Kelvin waves

Another interesting free response to Equations (2.2.1)

is the flow when values of the meridional velocity are made

equal to zero. With values of v=0, the equations of motion

(2.2.1) simplify to:

^ ^ = 0 (2.3.2a)
at2

f J?H - c2 d2" = 0 (2.3.2b)
dt dxy

The first equation implies that:

U = E(y) F(x ±ct) (2.3.3)

where E and F are arbitrary functions.

Disturbances propagate nondispersively either eastward

or westward with speed c. Equation (2.3.2-b) determines the

function E. It is unbounded at large values of y in the case

of westward-propagating disturbances, which must therefore be

ruled out. However, eastward equatorially trapped Kelvin

waves are possible:

-y2

F(x- Ct) , V=0 (2.3.4)

showing decay in a distance of order R,..
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For the case of wave disturbances F=exp(ikx-iat),

Equation (2.3.2-a) gives the dispersion relation:

a = ck (2.3.5)

Note that Equation (2.3.5) is also root of Equation

(2.3.1) when n=-l, even through the latter equation is

derived on the a-priori implicit assumption that v^O. Because

of this the equatorial Kelvin wave is sometimes called the

n=-l wave.
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2.4 Effects of zonal coasts

In the presence of a zonal boundary near the equator,

the Equation (2.2.4), which describes equatorial waves must

be solved subject to the condition that the meridional

velocity is zero at the latitude of the zonal boundary

(Philander, 1990). Since the boundary conditions are no

longer symmetric in this case the solutions lose their

symmetry about the equator. Furthermore, two additional

meridional wave modes are possible due to the overlapping

radii of deformation for the equatorial and coastal regions:

(1) a mixed Rossby-Kelvin wave and (2) a mixed Kelvin-gravity

wave (Weisberg et al., 1979).

EQUATORIAL

1 ^-KELVIN

FIGURE 2.2: The dispersion diagram when a wall is present along a circle
of latitude 1.7 radii of deformation north of the equator. The unit of
frequency is (Pc)"2 and the unit of wave number k is (P/c)"2. [from Cane
and Sarachik (1979)].

Figure 2.2, from Cane and Sarachik (1979), shows the

dispersion diagram when a wall is present along a circle of

latitude 1.7 radii of deformation north of the equator
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(~5°N). This is the approximate location of the northern

coast of the Gulf of Guinea. The n=0 Rossby-gravity curve of

Figure 2.1, which would have intersected the line for coastal

Kelvin waves, now becomes two curves, for Kelvin-gravity and

Rossby-Kelvin modes. Therefore, the tropical Atlantic may

respond differently to forcing than the tropical Pacific

Ocean.
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2.5 Low frequency reflections at eastern coasts

Reported results along the coasts of North and South

America suggest that much of the oceanographic variability

along these eastern oceanic boundaries is of equatorial

origin. According to the theory (Anderson and Rowlands, 1976;

McCreary, 1976; Clarke 1983), the eastern boundary is an

extension of the equatorial waveguide, and the reflection of

low frequency waves incident on the boundary at the equator

should be detectable at latitudes along the coast.

Evidence for wave propagation along the eastern

boundaries is discussed in Section 1.4.

The unforced motion along the eastern boundary

originates from incoming wave energy. For the large east-west

scales anticipated at low frequencies in the ocean interior,

the incoming energy must be in the form of equatorial Kelvin

waves, because these are the only large east-west scale waves

with eastward group velocity (see Figure 2.1). Therefore,

energy accumulates at the eastern sides of equatorial ocean

basins. The wave numbers k of the waves that should be

available for reflection can be calculated from the

dispersion relation (2.3.1):

2o 2
if - 4 fp 2n+1 - -2f)l"* (2.5.1)

At low frequencies, a Kelvin wave incident on an eastern

boundary excites a finite number of long Rossby waves. In

Equation (2.5.1) these waves are associated with the low

values of n for which k is real.
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Far from the equator, for y large and positive, the

reflection of an equatorial Kelvin wave on an eastern

boundary, at x = L, resembles coastally trapped waves (see

Moore (1968) for details). The sum of the coastally trapped

disturbances asymptotes, with increasing y, to the expression

(Philander, 1990):

v = A yi'2 exp [i ( a t - °Z + i * \ - 0 y ILSLJ£\ ( 2 . 5 . 2 )
L \ c 2aj c J

where A is a constant.

The response thus has some of the characteristics of a

coastal Kelvin wave though no true Kelvin wave is present. It

propagates poleward at speed c and is confined to a coastal

zone with a width equal to that of the local radius of

deformation c/j8y. The wave differs from the classic coastal

Kelvin wave because the velocity component normal to the

coast is not zero and because the lines of constant phase are

not normal to the coast. Although, in general, the energy of

the coastal wave is not rigorously conserved (nor even

rigorously defined) for short time scales, the loss to

planetary waves and inertia-gravity waves beyond the radius

of deformation of the coast may be neglected (Anderson and

Rowlands, 1976). Conservation of energy then suggests that

this initial disturbance must amplify as ym as it propagates

away from the equator.

In short, when an equatorially trapped Kelvin wave from

the western boundary impinges on a meridional boundary, part

of the incident energy is reflected in the form of westward

propagating Rossby waves. The remainder of the energy is

divided equally (by symmetry) between northward and

southward-propagating coastal Kelvin waves (Clarke, 1992) .
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These coastal waves provide a mechanism for energy to be lost

from the equatorial region. But realistic ocean boundaries

are not meridional ones and previous studies have shown that

the inclination of the coast to the meridian can determine

whether an incident Kelvin wave causes either coastally

trapped waves or Rossby waves with group velocity away from

the coast.

This question of low frequency reflection at a

nonmeridional boundary has been studied previously by Schopf

et al.(1981) and Grimshaw and Allen (1988) using ray theory

analysis. They have shown, among other results, the strong

dependence of the coastline inclination and the frequency of

the incident wave on the behaviour of the wave reflection at

the boundaries. A geometrical explanation of the phenomenon

was also provided in those studies (see Section 2.5.1).

Clarke (1983, 1992) considered this same problem of

reflection but using a low-frequency boundary-layer theory.

The theory consists mainly of two parts. One discusses a

near-boundary low frequency solution determined up to an

arbitrary multiplicative constant, and the other shows how

the arbitrary constant can be related to the incoming

equatorial Kelvin wave. In this way the boundary and

equatorial wave guide are linked and a complete near-boundary

solution is available. It was also shown, using mathematical

and physical arguments, that nonmeridional boundaries can

play an important role in the low frequency reflection

problem.
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2.5.1 Critical latitude

The nature of the response at an eastern boundary to an

incident baroclinic Kelvin wave at a single frequency a

depends on the magnitude of a and on the latitude. For the

low frequencies a critical latitude 0C exists such that for

|0|<0C the response consists of offshore-propagating Rossby

waves, whereas for |0|>0C the waves are coastally trapped. The

magnitude of 0C depends on a and on the angle of the

coastline, decreasing as a increases and as the orientation

departs from the meridian (Grimshaw and Allen, 1988).

For a boundary making a constant angle y with due north,

a critical latitude 6C can be defined as (Clarke and Shi,

1988) :

|6C| - tan-* [-£|S£1] (2.5.3)

where r is the Earth's radius and c is the phase velocity.

Thus, as 7 is increased, |0J decreases and the latitude

band over which Rossby waves radiate from the coast also

decreases.

The strong dependence of the critical latitude on the

coastline angle, is explained by Clarke (1992) in terms of

potential vorticity. Particles near the boundary must move

parallel to the boundary; so for a given frequency and

velocity amplitude, the more the boundary inclines from the

meridian the less planetary vorticity change an oscillating

particle will experience. When the change in planetary

vorticity is sufficiently large energy leaves the boundary as

Rossby waves. Therefore, inclination of the boundary favours

trapped motion.
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Geometrically, the reflection of equatorial waves from a

coast inclined to the meridian can be explained by Figure

2.3, where the circle is the dispersion diagram for the

Rossby waves (see Longuet-Higgins, 1964). A wave incident on

a north-south coast will reflect as a Rossby wave if its

meridional wave number falls between points A and B in Figure

2.3. To reflect as a Rossby wave from a coast inclined at an

angle 7 to the meridian, the meridional wave number must fall

between points C and D. Hence if the forced wave has a

meridional wave number corresponding to point E, it will give

rise to coastally trapped waves along the inclined coast but

to Rossby waves in the case of a north-south coast

(Philander, 1978).

j y(.

s
y

y

z
D

B

C

E

A

s

FIGURE 2.3: Dispersion diagram for the Rossby waves (from Philander,
1978).

In summary, mathematical, physical and geometrical

arguments indicate that nonmeridional boundaries should be

less reflective than meridional ones, and that the poleward

coastal Kelvin wave energy flux should be greater the more

the boundary inclines from the meridian. The eastern Pacific
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Ocean boundary, for example, is less meridional in the

Northern Hemisphere and, as consequence, the poleward

coastally trapped energy flux should be greater in the

Northern Hemisphere than in the Southern Hemisphere.

2.5.2 Energy flux

Energy flux is of primary importance in understanding

reflection dynamics. In the context of equatorial waves, the

eastward and westward energy fluxes, are due to,

respectively, the equatorial Kelvin and the Rossby waves. The

poleward energy flux along the boundary is due to coastal

Kelvin waves.

The subsequent discussion follows Clarke (1992).

According to Clarke, the nondimensional ratio rN(y,o), in %,

of the northward coastal Kelvin wave energy flux to the

incoming equatorial Kelvin wave energy flux for a boundary

making a constant angle y with due north is:

rN(y,a) = 100.
 e a (%) (2.5.4)
(Pc) 1 / 2 JC1/2 cosy

where e=2.71828...

For constant y, rs(y,a), the ratio of the southward

coastal Kelvin wave energy flux to incoming energy flux is

also given as in Equation (2.5.4).

By conservation of energy, the flux rw(y,a), the ratio

of reflected Rossby wave energy flux to incoming equatorial
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Kelvin wave energy flux is:

rw(y,o) = 1 0 0 . - / f t *£• Z" (%) (2 .5 .5 )
(Pc ) 1 / 2 7t1/2 cosy

Equation (2.5.5) indicates that Rossby wave reflection

is decreased with increased slant of the boundary from

meridional. This might be expected because, as 7 increases,

the critical latitude decreases (see Section 2.5.1).

When only one Hemisphere is considered, the ratio of

reflected Rossby wave energy flux to incoming equatorial

Kelvin wave energy flux is given by:

rw(y,o) = 5 0 . - *°° ; q (%) (2 .5 .6)
(Pc ) 1 / 2 it1'2 cosy
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2.6 Equatorial /3-plane approximation

The preceding Sections of this Chapter have used the

governing equations on the equatorial /?-plane. In this metric

the effects of sphericity of the Earth are retained by

approximating f, the local vertical (or radial) component of

2il, with a linear function of y, a latitudinal coordinate

which is measured positive northward from the reference

latitude. Therefore, the /3-plane approximation consists

solely of a set of geometric approximations.

As discussed by LeBlond and Mysak (1978) , the j8-plane

approximation is valid if:

— << 1 (2.6.1)

l-\2 << 1 (2.6.2)

tandAL/r)2 << 1 (2.6.3)

where L and H are, respectively, the characteristic

horizontal and vertical length scale of the motion, r is the

Earth's radius and 60 is the reference latitude.

The expression (2.6.1) considers that the motion occurs

within a thin layer of fluid where the radial distortion in

moving from one depth to another is negligible. Since r = 6.4

106 m and H = 0(5 103 m) for the deepest ocean basins, H/r =

O(10~3), which conforms with (2.6.1).
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Approximation (2.6.2) declares that the horizontal scale

of the motion must be appreciably less than the Earth's

radius. If L O(106 m) then (L/r)2 = O(l(r2), which agrees with

(2.6.2). If L is comparable with (or bigger than) the Earth's

radius r, any solution for such large scale derived from /?-

plane equations is of questionable validity.

For scales L < 0(106 m) , L/r = O(10'1) and hence the

approximation (2.6.3) is valid provides that 80 corresponds to

mid or low latitudes, so that tan0o < 1. For the study of high

latitudes a different approach involving spherical

coordinates must be used.

When the approximations (2.6.1)-(2.6.3) hold and the

motions are near the equator, it can be assumed that:

sin 8 « 8, cos 8 « 1

giving the so called equatorial j8-plane approximation. In

this case j8 is a constant given by:

0 = 2n/r = 2.3 10" nr's"1

and f is given by f = j8y where y = r0 is the northward distance

from the equator.
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THE MODEL

3.1 Introduction

The reduced-gravity shallow water model has been

frequently used in models of tropical and extratropical

oceans, on intraseasonal, seasonal and interannual time

scales.

In this chapter non linear, 1 % layer, shallow water

equations are used as the basis of a numerical model.

Approximations can be made to these equations in order to

derive a linear 1 % layer model.

Nonlinear, reduced-gravity, 1 % layer models have been

used successfully in the equatorial Pacific by Kubota and

O'Brien (1988) and Johnson and O'Brien (1990) (hereafter

referred to as the FSU model). This very well documented

model has been shown to reproduce many of the observed upper

layer features in the large-scale ocean.

The non linear numerical model, which has been developed

in the present study, is similar to the FSU model. Both the

models describe the same physical phenomena. The potential

enstrophy-conserving discretization scheme used here is,

however, different from that used in the FSU model. The

present model, because of its numerical scheme, is more

efficient in terms of computing time than the FSU model.

The time step required for linear stability for the

numerical scheme used in this model is twice that for the FSU
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model. Thus, it signifies an important time saving factor for

long-term numerical integrations.

Section 3.2 discusses the continuous form of the

equations used in this work. The discrete form of the

equations is given in the Appendix. The energetics of the

shallow water motions are considered in Section 3.3. The

boundary conditions applied to the numerical model are

examined in Section 3.4. Section 3.5 summarizes the subjects

presented in this chapter.
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3.2 Dynamic equations: continuous form

3.2.1 Non linear equations

A one-layer, reduced gravity, fully non-linear model is

used in this study. The model equations, for the upper layer,

are as follows (Gill, 1982):

rcos8 dk

(3.2.2)

(3.2.3)

Due to the large latitudinal extent of the model,

spherical coordinates with X (longitude) increasing eastward

and 6 (latitude) increasing northward are used in the model.

As a shallow layer is being considered, r can be taken to be

a constant equal to the radius of the earth.

Here h(X,0,t) is the interface displacement of the upper

layer from the mean depth Ho(X,0); H(X,0,t) is the total depth

(H=Ho+h) ; u(X,0,t) and v(X,0,t) are the horizontal components

of the depth averaged velocity vector v(X,0,t) in the X and 6

directions, respectively. f is the Coriolis parameter (f= 2ft

sin0). AH is an eddy viscosity coefficient, used to

parameterize processes not resolved in the model, for

example, turbulent transfer of energy to scales smaller than

the grid size.
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is the relative vorticity:

P is the pressure integral:

P = g* h (3.2.5)

with the reduced gravity g*:

g* =
P2

The Laplacian term is given by:

1 (cose

3 Use #\ (3.2.7)+ i—
r2cos28 aX2 r2cos6 86 \

This system may be referred to as a "1 % layer" model.

It consists of 1 dynamically active, incompressible,

hydrostatic, homogeneous layer overlying an infinitely deep

quiescent layer. The upper layer is treated as a shallow

fluid of constant density. A property of the bottom layer

thus defined is that horizontal pressure gradients and

horizontal motions are everywhere vanishingly small. This

assumption, known as the "rigid-lid approximation", results

in the elimination of the barotropic mode (Charney, 1955;

Veronis and Stommel, 1956). The effect of this approximation

is to include pressure variations at the upper surface, but

to exclude the kinematic effects of the surface variations

with which the external inertia-gravity waves are filtered
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out with no distortion of the steady-state ocean circulation

and very little distortion of low frequency motions (Bryan,

1969). Since external gravity waves move rapidly compared to

other types of disturbances in the ocean, removing these high

speed waves allows an order of magnitude increase in the time

step.

3.2.2 Linear equations

The non linear Equations (3.2.1) - (3.2.3) can be

linearized by considering motion of infinitesimal amplitude

(h«H0) and v small enough that dv/dt >v.Vv. Thus, terms of

the form vVv and hVv can be neglected. The validity of the

linearization will depend upon the characteristic length, L,

and velocity, U, scales with which the motion is associated.

Therefore, a linear version of Equations (3.2.1) -

(3.2.3) is:

I T " vf =~
dt

rcos6

ft + »f - 7 H + *-*- (3-2-9)

- 0 (3.2.10)
rcos0

Equations (3.2.1)-(3.2.3) and (3.2.8)-(3.2.10) were

translated into finite-difference form using a Richardson

Lattice grid (see Section A.I in the Appendix).
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The time discretization scheme used in this study is

described in detail in the Appendix. The scheme is a

modification of the traditional forward-backward (FB) scheme:

the gravity wave terms were discretized using a FB scheme

(see Section A.2). The advective and Coriolis terms of the

momentum equations were centred in time using the Adams-

Bashforth scheme (see Section A.3). The viscous term was

lagged in time, as usual, in order to keep the system stable.
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3.3 Energetics of shallow-water motion

3.3.1 Non linear equation

Kinetic Energy - The kinetic energy equation can be obtained

by multiplying Equation (3.2.1) by U=Hu and Equation (3.2.2)

by V=Hv and adding the results. This gives:

D-0 (3.3.1)
r 86

where, the divergent operator:

V.Z =
rcos6 I dk 36

dissipative term (£>) : D = AH H (u^Pu +

and q =(u2+v2)/2; V=uHi + vHj; and K = q H, being the

kinetic energy per unit area.

Potential Energy - The potential energy equation is obtained

by multiplying Equation (3.2.3) by g*h, which results in:

3 {VcQsQ) . 0 (3.3.2)
d

+ ^ +
dt rcos0 ok rcosQ dd

with II=g*h2/2 being the potential energy per unit area.
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Total Energy - The equation for non linear total energy (K+II)

is established adding Equations (3.3.1) and (3.3.2):

~ (K+ll) + V. [ (g*h + q) £] + D = 0 (3.3.3)
Of

3.3.2 Linear equations

Kinetic Energy - The linear kinetic energy equation can be

obtained by multiplying Equation (3.2.8) by Hou and Equation

(3.2.9) by Hov and adding the results. This provides:

dh + 9*HOV dh (3.3.4)
+ +

dt rcosd dk r 69
where,

d = AH Ho

and K = H0(u
2+v2)/2, the kinetic energy per unit of area.

Potential Energy - The linear potential energy equation is

obtained, again, by multiplying Equation (3.2.10) by g*h, to

give:

an Th??£ £*d = o 0.3.5)
dt rcos0 dX rcos8 36

Total Energy - The equation for the linear total energy is

attained by adding Equations (3.3.4) and (3.3.5):

JL(K+TL) + V. (g*hH0)Y + d = 0 (3.3.6)

with v=ui+vj
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3.4 Boundary conditions

One difficult problem when solving the hydrodynamic

equations inside a bounded region is the formulation of

correct boundary conditions. The open boundaries are

generally difficult to place and their positions are often

chosen based more upon computational cost than upon physical

considerations. It is important to remember that these open

boundary conditions will determine, together with the

differential equations themselves, the form of the interior

solutions, and if not carefully chosen they can lead to

unrealistic solutions for the interior points (Castro, 1985).

After many experiments designed to test numerically

different formulations for the open boundary conditions a

modification of Orlanski•s radiative boundary (Miller and

Thorpe, 1981) was used in all open boundaries: north, south

and west (see Sections 3.4.2 and 3.4.3), excluding corners.

It is assumed that close to the boundaries, excepting

corners, the dependent variables satisfy the equation:

M + cB = 0 (3.4.1)
dfc as

where, A is the dependent variable, c is the phase velocity

and s is the direction normal to the open boundary.

The above equation may be discretized in a form

compatible with the numerical scheme previously described:

A (B) <n+1) - A(B) {D) + A(B) <n) - A(B-l) <n) _ Q (3.4.2)
At B As

where As is equal to either AX or Ad depending upon which

direction (X or 0) is normal to the open boundary; B
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indicates a point on the boundary , B-l is the first point

inside that boundary and n, n+1, indicate consecutive time

levels.

Since A(B)n+1 is the unknown of the problem cB is

actually evaluated at the point B-l:

= __A_s \A(B-1)
B+1 - A(B-l)n

-1 At I A(B-l)a - A(B-2)n
(3.4.3)

Equation (3.4.3) is used in the model to estimate the

phase speed of the waves approaching the boundary. The phase

speed is then extrapolated to the boundary in order to find

A(B)(n+1) from equation (3.4.2). The values allowed for the

estimated phase speed are in the interval (0,As/At). If the

phase speed is negative, as in the case of a wave penetrating

the boundary from outside the domain, the value of the

dependent variable is extrapolated from the previous time

step. If the estimated phase velocity is larger than As/At,

then it is set equal to As/At, since numerically this last

value corresponds to the fastest wave that the model can

resolve.

In the model the open boundaries were located along

lines where the velocity normal to that boundary was defined

(see Figure Al). Therefore, excluding the corners, there is

always one dependent variable located on each open boundary:

the v velocity component on the northern and southern

boundaries and the u velocity component on the western

boundary. The other dependent variable (the interface

displacement) was calculated using Equations (3.2.1)-(3.2.3),

for the non linear case, or Equations (3.2.8)-(3.2.10), for

the linear case, since it is actually located inside the

mode1 doma in.
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At the corners, where there are two dependent variables

(u and v) , the phase velocity cB_l of Equation (3.4.3) was set

zero. This procedure works well in this model because the

phenomena generated inside the domain are certainly weak near

the model corners. Wave motions are confined mainly to the

equator and the coast.

With the present scheme perturbations generated inside

the domain are able to cross the boundaries and leave the

domain.

3.4.1 Solid wall boundary

On the solid boundaries the free-slip condition was

used. It assumes that the tangential velocity outside the

boundary is set equal to its adjacent counterpart inside the

boundary. Section A.6, in the Appendix, discusses the use of

the free-slip condition.

In the nonmeridional boundary experiments the four

northernmost and the four southernmost points of the solid

boundary are aligned in the meridional direction.

3.4.2 Southern and northern boundaries

The experiments testing the boundary condition (3.4.3)

are now presented. Each one of these tests was carried out

twice; first using a domain of interest (D) and second using

a larger enclosed domain (2D). The ideal solution is one in
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which the interior flow is essentially identical to the

solution within the larger domain.

All experiments reported in this section, have been

performed using the model described above, considering only

one layer of initial thickness H0=200 m.

In the linearized form of the reduced gravity equations

one can prescribe the linear phase velocity, c=(g*Ho)1/2. In the

experiments described in this chapter, the phase velocity was

taken to be 2.45 ms1. In the fully non-linear form, there is

no analogous phase speed parameter. Prescribing the initial

thickness, however, is analogous to prescribing an initial

phase speed, but this can not remain constant as the model

fields evolve, as the variations in h can be large compared

to Ho.

A regular one-sixth degree resolution is used in both

the zonal and meridional directions (AX= A0= 1/6°). This grid

spacing is less than the small baroclinic Rossby radius of

the modeled region. Assuming the basin width for the

wavelength 1 it results, for the highest latitude of the

domain (0=38°) in a«0.04 and e«0.006 (see Section A6, for the

coefficient definitions).

The experiments performed to test the northern and

southern boundaries are very similar. In both procedures, a

coastal Kelvin wave, generated on the opposite side (south or

north) of the boundary to be tested (north or south), is

allowed to pass through the latter boundary.
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The numerical domains used in these experiments are:

northern
boundary

D: 22°N to 30°N

2D: 22°N to 38°N
of latitude

southern
boundary

D: 22°S to 30°S

2D: 22°S to 38°S
of latitude

and 4° of longitude from the coast.

Figures 3.1 to 3.4 show the time-latitude plots of the

upper layer thickness (ULT) anomaly near the coast, resulting

from these investigations. Kelvin wave propagation is evident

in and all figures. The waves are propagating at a phase

speed of approximately |2.5| m/s in all domains.

The results of the northern boundary test are

illustrated in Figures 3.1 and 3.2, in the D and 2D domain,

respectively. These figures demonstrate that the Kelvin wave

is able to pass through the artificial northern boundary

without distortion and without affecting the interior

solution.

Similar results were obtained for the southern boundary.

Figures 3.3 and 3.4 display these test results performed in

the D and 2D domains, respectively. Again the agreement

between the two domains is remarkably good.
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22 23 2A 25 2« 27 28 29 3O
LATiTUOE (DEGREE)

FIGURE 3.1: Time-latitude plot of ULT anomaly near the coast (metre), for
the "D" domain. Northern boundary test.

3 T

22 23 24 25 26 27 28 29 30 31 32 33 M 35 36 37 38
LATTWOE (DECREE)

FIGURE 3.2: Time-latitude plot of ULT anomaly near the coast (metre) for
the "2D" domain. Northern boundary test.
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LAT1TU0E (DECREE)

FIGURE 3.3: Time-latitude plot of ULT anomaly near the coast (metre) for
the "D" domain. Southern boundary test.

- 3 8 - 3 7 - 3 6 - 3 5 - 3 4 - 3 3 - 3 2 - 3 1 - 3 0 - 2 9 - 2 8 - 2 7 - 2 6 - 2 5 - 2 4 - 2 3 - 2 2
LATTRIOE (DEGREE)

FIGURE 3.4s Time-latitude plot of ULT anomaly near the coast (metre) for
the "2D" domain. Southern boundary test.
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3.4.3 Western boundary

For the purpose of testing the western boundary of the

model, a north-south slope of ULT is generated in the domain.

The slope, in geostrophic equilibrium with the velocity, is

used in the experiment as an initial condition. This gradient

generates westward propagating disturbances, which are

allowed to pass through the western boundary.

The domains used in this test are:

western
boundary

D: 4°

2D: 8°
of longitude from the coast

and from 6°N to 6°S of latitude.

The results of this experiment are displayed in Figures

3.5 (D domain) and 3.6 (2D domain) as time-longitude plots

along the equator. These plots demonstrate that the wave-like

perturbations are transmitted through the western boundary

without contamination of the interior solution.

The results obtained using the linear and non linear

models were similar.
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FIGURE 3.5s Time-longitude plot of ULT anomaly along the equator, for the
"D" domain. Western boundary test.
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FIGURE 3.6: Time-longitude plot of ULT anomaly along the equator, for the
"2D" domain. Western boundary test.

55



CHAPTER 3

3.5 Summary

The numerical model presented in this chapter is a fast,

efficient numerical procedure for modelling both linear and

non linear, low frequency motions on the sphere.

The numerical model uses a numerical scheme which

permits time steps twice those used in other discretization

schemes, like the leapfrog for example. In addition, as a two

level scheme, it has no computational mode in time. In the

absence of forcing and viscosity the model conserves both

potential vorticity and potential enstrophy but not total

energy (see Appendix). Nevertheless, the numerical scheme

utilized in the model permits long term integrations with

negligible loss of energy. The model makes use of open

boundary conditions which allow phenomena generated in the

interior domain to pass through the artificial boundaries

without distortion and without affecting the interior

solution.
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CHAPTER 4 - RESULTS

LOW FREQUENCY WAVE REFLECTION

AT EASTERN BOUNDARIES

4.1 Introduction

Experiments were designed to study, numerically, the

free wave solutions generated by low frequency wave

reflection at meridional and nonmeridional eastern

boundaries.

Baroclinic equatorial Kelvin waves generated in the

western and central equatorial Pacific propagate eastward

along the equator and finally hit the coast. As discussed in

Chapter 2, at the coast the incident equatorial Kelvin waves

are partially reflected back and partially transmitted north

and south along the coast as coastally trapped internal

Kelvin waves. Consequently the coastally trapped internal

Kelvin waves "communicate", for example, the equatorial El

Nino signals to higher latitudes. Hence it is important to

know how far from the equator the baroclinic disturbances can

propagate.

Previous analytical studies (the more relevant are

mentioned in Section 2.5), have always excluded the effect of

lateral viscosity, and employed approximations (/8-plane, low-

frequency wave, for example) to the governing equations in

order to solve them analytically. Numerical solutions,

however, can be obtained without these approximations. In

practice, because of dissipative effects, there is a limit to

the distance to which information is carried poleward by

waves.
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In past works, the numerical investigation of low

frequency wave reflection at boundaries has always involved

the forced solutions of the Equations (3.2.1)-(3.2.3) or

(3.2.8)-(3.2.10).

Here, the effect of nonmeridional boundaries on

baroclinic equatorial Kelvin wave reflection is investigated

using the model outlined in Chapter 3. The mechanism of

generation of the incoming equatorial Kelvin wave is not

included in this study but the Kelvin wave could, for

example, be set up at the western boundary by planetary

waves.

All the numerical experiments reported hereafter have

been performed using the model described in Chapter 3,

considering one layer of initial thickness Ho= 200m. From the

hydrostatic balance, a 10 cm surface elevation implies a 28 m

depression of the interface (considering p2=1060 and p!=1025

Kg/m3) . The free parameters in the model, the phase velocity c

and the dissipation coefficient AH, are taken to be 2.45 m/s

and 103 m2s"1 (AH is discussed in Section 4.7), respectively.

A baroclinic equatorial Kelvin wave is used as an

initial condition for an ocean which is unbounded at western,

southern and northern boundaries. The western side of the

basin is considered as an open boundary in order to avoid

reflection of the westward propagating long Rossby waves.

Therefore, the whole solution of an experiment can be

regarded as the result of the incident Kelvin wave reaching

the eastern boundary.

To appreciate the reflection dynamics it is worth

examining energy fluxes (described in Section 4.2). The

numerical experiments, presented in Sections 4.3 to 4.5, were

created to study the energy fluxes generated by reflection of
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an equatorial Kelvin wave of different periods: intraseasonal

(60 days), seasonal (180 days) and annual (360 days) at

different eastern boundaries.

The validity of the equatorial /3-plane approximation for

the cases studied is investigated in Section 4.6. Section 4.7

examines the numerical resolution of the model used in the

above-mentioned experiments. The main results of this chapter

are summarized in Section 4.8.
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4.2 Energy flux

To estimate reflection properties, it is convenient to

consider energy fluxes.

4.2.1 Linear

The linear shallow water total energy equation is given

by Equation (3.3.6). Consider now a region bounded by an

eastern ocean boundary and A=-Xo and 6=±6Q. Integrating

Equation (3.3.6) over this region and from time 0 to time T,

the following is obtained:

coast

f g*hHQu rdQ = f g*hHQv rcosBdX
=-e0 X'-x0

«-*,) <e=+eo)
coast t>-+0o

9*hHQv rcosQdX - f f A^ {uSPu* v W ) r2cos8d6dX

<*«-*,) <e=+eo) (4.2.1)
coast coast t>-+0o

(e=-e0)

where the overbar denotes the time average.

If Xo, 60 -*• oo in Equation (4.2.1) then physically it is

implied that the net energy flux toward the coast is equal to

the flux outward along the coast less the dissipation of

energy in the domain.

For equatorial waves, the flux outward along the

boundary is due to northward (tN) and southward (ts) coastal

Kelvin waves. The net energy flux (t) toward the boundary is

given by the difference between the energy fluxes due to the

incoming equatorial Kelvin wave (tE) and that due to the
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reflected Rossby waves (tw).

Including the energy dissipation (tD) and assuming that

the energy flux is positive in the northward and the eastward

directions, it can be stated that tg-t^^tN-ts-tjj (see Figure

4.0) .

'W I

-I-

equator

FIGURE 4.0: Energy flux and energy dissipation generated from 6=0O to

e=-e0.

4.2.2 Non linear

The total energy, in the non linear case, is given by

Equation (3.3.3). Again, integrating Equation (3.3.3) over a

region bounded by an eastern ocean boundary and X=-Xo and

6=±6O and averaging in time, the following is obtained:

e=+e0 coast

f
e=-e

UrdQ = f (g*h + q)V xcosQdk

coast

x—x0
(e=+e0)

coast e=+e

- f {g*h +q) V rcosBdX - f [

x=-x0

(e=-e0)
e=-e

(4 .2 .2)

r2cos0d8dX
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4.2.3 Numerical calculation

The energy fluxes and the energy dissipation were

numerically calculated as indicated below. Equations (4.2.3),

(4.2.4), (4.2.7) and (4.2.8) consider only one Hemisphere:

the Northern Hemisphere. Changing 6=+6Q for 6=-80 in those

equations gives the Southern Hemisphere fluxes. Note that in

all the numerical experiments performed in this work, the

energy input is always considered for both Hemispheres and

the poleward, westward and energy dissipations are always

calculated for the Hemisphere under consideration.

The linear northward energy flux, across a given

latitude +6Q can be obtained by:

coast

9*hHQv rcosO AX (4 .2 .3 )
A = — A.Q

<e-+e0)

and in the non linear case:

coast

jr = £ (g'h + g)Vrcos6LX (4.2.4)

The net linear energy flux toward the boundary, across a

given longitude -Xo, can be given by:

fc = £ 9*hHQu rA8£ (4.2.5)
e=-e0
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and in the non linear case:

e=+e
0

t = £ (ST*h + QT) u r A 0 (4.2.6)
e=-e0
U=-x0)

The linear dissipation of energy, up to a given latitude

+dQ, can be calculated as:

coast
= " 52 X) -V^o (uV2u+ v^vJ r^oseAGAX (4 .2 .7 )

and in the non linear case:

coast 8»+6
AJIiuV^+v^2) r 2 cos8 ASA A, ( 4 . 2 . 8 )

=o
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4.3 Intraseasonal yariability

To investigate the importance of the angle of

inclination of the coast to the meridian an equatorial Kelvin

wave of intraseasonal period (60 days) was used as an initial

condition for the experiments with the numerical model.

Four different eastern boundaries are considered in the

numerical domain. First, the whole eastern boundary is

conceived to be a meridional one (7=0°, hereafter Experiment

CO). Second, the coastline is considered to be inclined at

40° from the meridian (7=40°, hereafter Experiment C40),

third it is inclined at 50° (hereafter Experiment C50) and

finally, an inclination of 60° (hereafter Experiment C60) is

used. In each case it is only the eastern boundary in the

Northern Hemisphere that is inclined. In all experiments the

Southern Hemisphere eastern boundary was considered to be

meridional one. The geometry is shown in Figure 4.0.

a. c.

equator

FIGURE 4 . 1 : Model geometry. (a)Y=0°, (b)Y=4O°, ( C ) Y = 5 0 ° and (d)Y=60°.

The numerical experiment employs a model basin from 20°N

to 20°S and maximum longitudinal extent of 70°.
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Figure 4.2 displays the longitude-latitude plot of the

initial interface anomaly (Z) used as the initial condition

of the numerical model. It simulates a baroclinic equatorial

Kelvin wave of 60-day period. A 60 day wave period was chosen

because fluctuations of 40-60 day periods, related to ENSO

phenomenon, have been found in sea level records of the

eastern Pacific (see Section 1.4).

The height and velocity fields were initialised to

represent a baroclinic equatorial Kelvin wave, and the time

integration was performed to follow the evolution of that

free wave propagating through the domain. The Kelvin wave

energy is equipartitioned between potential and kinetic

energy and therefore both height and velocity information are

prescribed simultaneously for initialising the wave (see

Anderson and Moore, 1985). The wave meridional structure was

assumed to be a Gaussian function of latitude centred on the

equator. Only a half wavelength of the equatorial Kelvin wave

is used in the experiments because of limitations in computer

resources.

Z(M) INITIAL CONDITION (Tb8)

-5
-16
-15

-25

76 bl 58 48 36 28 18
DISTANCE (DE&REE)

FIGURE 4.2: Initial interface anomaly used as initial condition
(baroclinic equatorial Kelvin wave). Note that negative values of Z
represent upwelling of the interface. Half wavelength. Wave period: 60
days. The zonal current is proportional to the meridional gradient of sea-
level interface.

65



CHAPTER 4

4.3.1 Linear case

The reflection of a low frequency baroclinic equatorial

Kelvin wave at an eastern boundary of an ocean, according to

Section 2.5, involves only poleward coastal Kelvin and

westward Rossby waves. The Kelvin and Rossby wave responses,

created at a meridional eastern boundary (7=0°), are shown in

Figure 4.3, where the latitude-longitude plot of the linear

upper layer anomaly (Z) is displayed at six successive

intervals of 15 days. An upward movement of the interface

produces a negative height anomaly, indicating upwelling. The

upwelling is symmetric in relation to the equator.

When the baroclinic equatorially trapped Kelvin wave

reaches the coast, part of the incident energy continues

poleward into either Hemisphere as coastally trapped Kelvin

waves (deepened thermocline in Figure 4.3a). The remainder of

the energy is reflected in the form of westward Rossby waves.

The Rossby waves are evident in Figure 4.3 as a closed

contour, moving to the west from the coast (with one third of

the incident Kelvin wave speed, at the equator), with a

deeper thermocline at their centre. The role of the reflected

Rossby waves is to broaden the resulting disturbance in the

offshore direction. Equatorward of the critical latitude

(given by Table 4.1), Rossby waves continually emanate

westward from the coast, but the Rossby response becomes

slower and smaller in scale with increasing latitude (see

Section 2.3.3). The Rossby wave velocity, at the equator, can

be estimated using Figures 4.3-e and 4.3-f, where the Rossby

wave fronts are indicated by the dashed meridional line.

According to the Figures 4.3-e and -f, the wave front has

moved -9° (from ~47° to ~56°) in 15 days. Resulting in a

phase speed, in agreement with the theory, of ~0.8 m/s for

the fastest Rossby mode.
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FIGURE 4.3: Sequential patterns of Z (in meters), at (a)15, (b)30, (c)45,
(d)60, (e)75 and (f)9O days. Meridional boundary (Y=O°). Wave period: 60
days.
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FIGURE 4.4: As Figure 4.3 except for Y=60°. Wave period: 60 days.
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Figure 4.4 shows the latitude-longitude plot of the

height field generated at a nonmeridional boundary (7=60°) at

the same six successive intervals of 15 days. The height

field asymmetry between the Northern and Southern Hemisphere

induced by the geometry of the eastern coast can clearly be

seen in Figure 4.4.

The critical latitude values (0C) for 7=0°, 7=40°, 7=50°

and 7=60°, estimated using Equation (2.5.3), are shown in

Table 4.1.

7=0°

7=40°

7=50°

7=60°

M°)

9 . 0

7 . 0

5 . 8

4 . 5

TABLE 4.1: Critical latitude values (6C) for Y=0°, Y=40°, y=50° and Y=60 C

Wave period (T): 60 days.

Table 4.1 shows that the more the boundary inclines from

the meridian the lower is the associated 0C value.

In this section only the Northern Hemisphere is

considered for the calculation of the energy fluxes. The

southward energy fluxes generated in all experiments and the

northward energy flux generated at 7=0° are symmetric in

relation to the equator; i.e., |ts(0°,T)|= |ts(40°,T)|=

|ts(50°,T)|= |ts(60<»,T)|= |tN(0°,T)|.

The numerical model is integrated for sufficient time

69



CHAPTER 4

(90 days) to allow the coastal Kelvin wave, generated by the

equatorial wave to leave the domain.

.The linear poleward (tN) coastal Kelvin wave energy flux

and the dissipation of energy flux can be calculated, for

different latitudes, using Equations (4.2.3) and (4.2.7),

respectively.

The Equation (4.2.5) gives the linear net energy flux

(t=tE-tw) towards the boundary. The direct determination of

tE-tw, however, is computationally expensive because the

propagation speed of the westward Rossby waves is a strong

function of latitude, varying from -0.8 m/s at the equator to

zero at the poles. It could take years of the numerical

integration for all the Rossby waves, generated at the

eastern boundary, to reach the western side of the domain. To

save computer time, first tE is calculated and then tw is

inferred by energy conservation considerations.

The energy input in the experiment is solely from the

baroclinic equatorial Kelvin wave (shown in Figure 4.2).

Consequently before the reflection of this wave occurs at the

eastern boundary, the eastward energy flux through a given

longitude of the numerical domain corresponds to the value of

tE.

To avoid the equatorial Kelvin wave reaching the eastern

boundary before the calculation of tE, the longitudinal extent

of the basin was increased from 70° to 140° with the initial

field placed in the left hand side of the domain. This

ensures that only the eastward energy flux is determined and

not a combination of eastward and westward energy fluxes. In

the experiment tE was calculated 70° from the coast (position

of the eastern boundary in the other runs). Figure 4.5

displays the result.
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*10 '
EASTWARD ENERGY FLUX (Tb0)

8 . 1 2
TIME (MONTHS

FIGURE 4.5: Eastward energy flux, tE (4.6 10* m
5s'3), as a function of time

(month). Wave period: 60 days.

Given that tE/ tN and tD are known, the value of tw, can

be inferred by conservation of energy. It can be assumed that

the reflected Rossby wave energy (tw), for the Northern

Hemisphere, is given by tE/2-tN+tD.

Figure 4.6 shows the nondimensional linear energy flux

coefficients (in %) generated at 7=0°, 7=40°, 7=50° and

7=60°, respectively. The coefficients, rN(7,T), rw(7,T) and
rD(7/T) are, respectively, the ratios of the energy fluxes of

the northward coastal Kelvin wave, of the reflected Rossby

wave and of the dissipation to the total incoming equatorial

Kelvin wave energy flux (rN= tN/tE, rw= tw/tE and rD= tD/tE) .

Observe that for each Hemisphere |rN| (or |rs|) + |rw| + |rD|

= 50%. The coefficients were numerically calculated at every

2° of latitude and integrated over 90 days. Note that rN

represents the northward energy flux crossing a given

latitude and not the northward energy flux generated at that

particular latitude (see Figure 4.0). Similarly, rw and rD

represent, respectively, the reflected and the dissipated

energy fluxes up to a given latitude and not the flux

reflected or dissipated at that particular latitude.
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FIGURE 4.6: Linear energy flux coefficients (in %) at different latitudes
(°). (a)Y=O°, (b)y=40° (c)Y=50° and (d)y=60°. Solid line: rN. Dashed line:
r w. Dotted line: rD. The arrows indicate the critical latitudes for the
considered boundaries. Wave period: 60 days.
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Analytical studies have shown that nonmeridional

boundaries are less reflective than meridional ones. This

occurs because nonmeridional boundaries favour trapped motion

more than meridional ones (see discussion in Section 2.5).

According to Figure 4.6 above the critical latitude

(shown in Table 4.1 and indicated in Figure 4.6 by an arrow)

the westward energy fluxes do not change significantly with

the latitude, but the poleward fluxes show an important

latitudinal decrease. Theoretically above 0C both energy

fluxes, rw and rN, should be constant with the latitude (see

Section 2.5).

The poleward energy flux decline, observed in Figure

4.6, can be explained by dissipative processes. The

dissipation of energy increases with both the increase of

latitude and with the proximity of the coast (lateral

friction). In these experiments the 8C values are relatively

near the equator and therefore the coastal Kelvin waves are

important in a large area of the domain. Hence most of the

energy lost by dissipation in the domain is taken from the

coastal Kelvin waves which results in a reduction of the

poleward energy flux. The westward Rossby waves are less

affected by dissipation.

In order to better understand the importance of the

dissipation of energy in the domain, the former meridional

boundary experiment (7=0°) was repeated for the inviscid case

(AH=0, in the numerical model).

Figure 4.7 shows the numerical energy flux coefficients

resulting from this experiment. The energy flux coefficients

generated in the dissipative case are also plotted for

comparison. Above the critical latitude in the inviscid case,

the energy fluxes are, as expected, latitudinally constant.
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The numerical values of rN (solid line in Figure 4.7) and rw

(dashed line in Figure 4.7) are ~24% and ~26%, respectively.

I3EAR (Tb8) C8

28-1

a

a
'16-

fi-

26
! R

38
at

NO DIS-POLEWARD

NO DIS-UESTUARD

DIS-WESTWRD

56

FIGURE 4.7: Linear energy flux coefficient (in %) at different latitudes
(°). Solid and dashed lines: rN and rw, respectively, for the inviscid
case. Centre-dashed and dotted lines: rN and rw, respectively, for the
dissipative experiment. Meridional boundary. Wave period: 60 days.

The analytical values of rN and rw, in the Northern

Hemisphere, can be obtained using Equations (2.5.4) and

(2.5.6), respectively. For an equatorial Kelvin wave of 60

day period incident at a meridional boundary, the analytical

values rN and rw are, respectively, ~24% and -26%. Thus, the

coefficient values generated by the inviscid numerical model

are in excellent agreement with the analytical coefficient

values.

The inviscid experiment was only carried out for the

meridional boundary experiment because some dissipation is

required in the numerical simulation of the nonmeridional

boundaries. Spurious effects, probably due to the steplike

form used for approximating the inclined eastern boundary,

occur in the domain when the coefficient of dissipation is

considered zero.
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Table 4.2 displays the analytical values of rw (obtained

from Equation 2.5.6) for the different eastern boundary

inclinations; the numerical reflection coefficient rw is also

shown in Table 4.2.

7=0°

7=40°

7=50°

7=60°

rw (model)

24 (26)

20

15

10

1
rw (Equation 2.5.6)

26

18

11

0.5

TABLE 4.2: Linear westward energy flux coefficients (in % of the incident
energy flux). The value in brackets is the coefficient obtained by the
inviscid model. Wave period: 60 days.

As previously discussed, the difference between the

analytical and numerical values of rw for the meridional

boundary experiment can be explained by dissipative effects;

for the inviscid model these values are coincident. However,

for all the inclined boundaries investigated here the

numerical values of rw are larger than the analytical ones.

The deviation between the numerical and theoretical rw values

increases as the inclination of the coast increases (Table

4.2) .

According to Hsieh et al.(1983), the wave behaviour in

numerical models can be very different from that in the real

ocean for the following reasons:(1)the use of unrealistically

large viscosity coefficients; (2) poor spatial resolution;

and (3) boundary conditions. The boundary conditions used in

the open and closed boundaries of the numerical model have
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been shown, in Chapter 3, to be appropriate for the studied

phenomena. To clarify the influence of (1) and (2) on the

discrepancy observed between the analytical and the

theoretical rw values, a higher spatial resolution model

(AS=l/8° in both directions) with a smaller coefficient of

dissipation (AH=500 n̂ s"1) is utilized for an experiment

similar to Experiment C60. Henceforth this experiment with

the higher spatial resolution is referred to as Experiment

C60-H.

Figure 4.8 shows the westward energy flux produced by

Experiment C60-H. For comparison, the rw coefficients

previously generated by Experiment C60 are also plotted in

Figure 4.8.

28 i

WESTWARD ENERGY FLUX (Tfe8) CbB

" " C68-H

Id
O

a
' 1 8 -

18 28 38 48 58

FIGURE 4 . 8 : Linear westward energy f lux c o e f f i c i e n t (%) a t d i f f e r e n t
l a t i t u d e s ( ° ) . Sol id l i n e for C60 and dashed l i n e for C6O-H. Wave per iod :
60 days .

Figure 4.8 shows that the C60-H experiment produces rw

values even larger than those generated by the C60

experiment. I t indicates, therefore, that the large

difference between the numerical and analytical westward

energy fluxes of the nonmeridional boundary experiments

(Table 4.2) are not due to the use of an unrealistically
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large viscosity coefficient or to the poor spatial resolution

of the numerical model. Note that Experiment C60-H is in a

better "resolution regime" than Experiment C60 (see Table

4.7) implying that the wave behaviour in the numerical model

is expected to be very similar to that in the continuous

viscous model.

Visual inspection of the anomaly height fields generated

for Experiments CO (Figures 4.3, 4.13 and 4.17) and C60

(Figures 4.4, 4.14 and 4.18) suggests that the dramatic

change in coastal reflectivity induced by the inclination of

the coastline, as presupposed by the analytical values of rw

(Table 4.2), has not been verified in this work. The presence

of the westward Rossby waves generated at 7=60° can be easily

identified in Figures 4.4, 4.14 and 4.18.

7 (°)

0

4 0

5 0

6 0

P = a) | tan71 / f

0.05

0.06

0.10

0.18

TABLE 4.3: Values of P for the different y considered in the numerical
experiments. The Coriolis parameter, f, was calculated at the respective
8C (as given in Table 4.1). The intraseasonal frequency is o=1.2 10"

6 s"1.

Equation (2.5.6) was obtained by Clarke (1992) assuming

that P = co|tan7|/f « 1. Table 4.3 displays the P values for

the frequency and the inclination of the coastlines utilized

in the experiments. The Coriolis parameter (f) was calculated

at 6=6C (see Table 4.1 for the 0c values). According to Table

4.3, as 7 increases the value of P also increases and the
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validity of the analytical expression, Equation (2.5.6),

becomes dubious.

The comparatively larger values of P obtained for the

C50 and C60 experiments (Table 4.3) could invalidate the use

of the analytical Equation (2.5.6) and be partially

responsible for the large discrepancies observed between the

analytical and the theoretical values of the reflected energy

fluxes.

To compare the energy flux changes induced by the

coastline inclination the coefficients, rw, rN and rD

generated at Experiment CO, C40, C50 and C60, are presented

together in Figure 4.9.

According to Figure 4.9-a, for latitudes higher than 8C

the values of rw are approximately constant with the latitude

in all the experiments (see Table 4.2 for the rw values). In

qualitative agreement with the theory, the westward energy

flux is smaller as the boundary tilts from the north-south

direction. This result is consistent with the values of 0C

given in Table 4.1.

The poleward energy flux generated at 7=0° is slightly

smaller than that created at 7=40°, as can be seen in Figure

4.9-b, and significantly smaller than the poleward energy

flux generated at both 7=50° and 7=60°. The resemblance

between the poleward energy fluxes for Experiments CO and C40

can be understood by looking at Figure 4.9-c. This shows that

the dissipation of energy increases when the coastline

departs from the meridional direction. The increase in

dissipation, however, is not a linear function of the

coastline inclination. For example, the values of rD at C40,

C50 and C60 are comparable for the higher latitudes of the

domain.
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At 7=40°, the increase in rN induced by the coastline

inclination appears to be counterbalanced by the increase of

lateral viscosity, resulting in rN values similar for

Experiment CO and C40.

Figure 4.9 indicates that despite rD being larger at

both 7=50° and 7=60° than at 7=0°, the dissipation of energy

in the nonmeridional experiments (C50 and C60) is not large

enough to compensate for the increase of energy induced by

the coastline geometry. Therefore, the poleward energy fluxes

generated at 7=50° and at 7=60° are significantly larger than

that created at 7=0 °.

The values of rD obtained for the nonmeridional boundary

experiments are larger for two main reasons. Firstly, the

critical latitude for the slanted boundary is lower than that

for the meridional one (see Table 4.1). As a result, when the

boundary is inclined from the north-south direction

comparatively less Rbssby waves and comparatively more

coastal Kelvin waves are present in the domain. Given that

the dissipative effects are larger near the coast than in the

interior domain, these Kelvin waves, trapped at the coast,

are more affected by the dissipation than the Rossby waves.

Secondly, the steplike form used for approximating the tilted

eastern boundary generates some numerical noise.

In summary, when an equatorial Kelvin wave of

intraseasonal period reaches any eastern ocean boundary, the

amount of energy transferred to poleward coastal Kelvin waves

will be strongly dependent on the amount of dissipation

considered in the problem. The generation of reflected Rossby

waves is significantly less dependent on the dissipation

utilized.
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4.3.2 Nonlinear case

In order to understand the possible effects of the non

linearities in the low frequency wave reflection at eastern

boundaries, some of the experiments performed in the previous

section are repeated using the non linear model described in

Chapter 3.

The low frequency motions investigated here are not

expected to be profoundly altered by the inclusion of the

nonlinearities. The 60-day Rossby waves, for example, are

unlikely to form solitary waves (Rossby Solitons) because the

dispersion is too small to balance nonlinearity to make a

wave of permanent form possible (Boyd, 1980) .

Figures 4.10 and 4.11 show the latitude-longitude plot

of the non linear height field generated, respectively, at

the meridional boundary (Experiment CO) and at the

nonmeridional boundary (Experiment C60) at day 75 and 90.

The Rossby wave velocity, at the equator, can be

estimated by the Rossby wave front displacement observed in

Figures 4.10-a and -b (the wave fronts are indicated in these

Figures). The Rossby wave front migrates from -46° to ~53° in

15 days, resulting in a velocity of -0.6 m/s. In the linear

case the velocity is -0.8 m/s. This result is theoretically

expected. The non linear continuity equation gives a phase

speed for the Kelvin wave c=[g*(H0 + Z)]
m compared with [g*^]1*

for the linear case. The linear Rossby wave velocity, at the

equator, is approximately one third of the Kelvin wave

velocity. In an upwelling region, as shown in the Figures

4.10 and 4.11, the height field is negative. Therefore, in an

upwelling region the phase speed for the nonlinear case is

less than the phase speed for the linear case.
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FIGURE 4.10: Non linear height anomaly (in meters), at (a)75 and (b)90
days. Meridional boundary (Y=0°). Wave period: 60 days.
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-11 .1
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FIGURE 4.11: As Figure 4.10 but for the nonmeridional boundary (Y=60°).
Wave period: 60 days.

The non linear poleward coastal Kelvin wave energy flux

(tN), eastward energy flux (tE) and the dissipation of energy

(tD) were estimated, respectively, from Equations (4.2.4),

(4.2.6) and (4.2.8) for Experiments CO and the C60.

The same equatorial Kelvin wave shown in Figure 4.2 was

used as the initial condition for the non linear experiment.

The eastward energy fluxes for the linear and non linear

experiments were found to be similar (tE= 4.6 10
9 m5s'3) .

In the non linear case, the value of t w is again assumed

to be given by tE/2-tN+tD, in the Northern Hemisphere.
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Figure 4.12 shows both coefficients, linear and non

linear, plotted together at different latitudes. In

accordance with the linear experiment, the non linear

northward and westward energy fluxes generated at 7=60° are,

respectively, larger and smaller than those generated at 7=0°

and the energy dissipated in Experiment C60 is larger than in

Experiment CO.

The main differences between the non linear and linear

experiments can also be seen in Figure 4.12. For the

meridional boundary experiment the non linear and the linear

energy flux coefficients can be roughly considered similar.

For Experiment C60, the non linear westward energy flux

presents a larger latitudinal variation when compared with

the linear case (see Figure 4.12-a).

The principal contrast between the linear and non linear

experiments (for 7=60°) occurs in the rD coefficient (Figure

4.12-c). Above 10° of latitude, the dissipation of energy is

considerably larger in the non linear case. Consequently, the

non linear poleward energy flux is smaller when compared to

the linear one (Figure 4.12-b). In contrast to the linear

case, the non linear dissipation of energy affects not only

the coastal waves but also the reflected westward Rossby

waves, as can be seen in Figure 4.12-a.

The differences between the linear and the non linear

results, however, are not very significant for the studied

problem.
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4.4 Seasonal variability

In this section some experiments similar to those of

Section 4.3.1 are described here using as an initial

condition for the numerical model an equatorial Kelvin wave

of seasonal period: 180 days. Again a half equatorial Kelvin

wavelength was used. Only the 7=0° and 7=60° cases are now

considered (see Figure 4.1 for the geometry). The modelled

region has latitudinal extent of 90° (from 45°S to 45°N) and

maximum longitudinal extent of 175°.

The differences obtained between the linear and non

linear experiments, shown in the previous section, do not

justify the large amount of computing time necessary to run

the non linear model. Therefore, hereafter only the linear

model is utilized.

a. Z(M) LINEAR (T188) C8 1 MONTH
ZCM) LINEAR (T188) C8 4 MONTHS

35-
38-
25-

I 15"
"̂" 8-

it
tl
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— — -if.
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8 b8 58 48 38 28 18 8
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78 bi 51 48 38 26 18
DISTANCE (IE6REE)

FIGURE 4.13: Z (m) at (a)l and (b)4 months. Meridional boundary. Wave
period: 180 days.
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Figures 4.13 and 4.14 show the latitude-longitude plot

of the height field anomaly generated, respectively, at

meridional and nonmeridional boundaries, after 1 and 4 months

of numerical integration. The eastern (70°) of the domain is

shown in Figures 4.13 and 4.14.

Z(M) LINEAR (T18«) Ch8 1 MONTH t}.

78 be 58 48 38 21 it g
DISTANCE (BE6RED

LINEAR (T188) C6B 4 MONTHS

68 58 48 38 26 18
DISTANCE (BE6REE)

FIGURE 4.14: As Figure 4.13, but for y=60e

In order to calculate the energy fluxes, the numerical

model was integrated for 6 months. That is the necessary time

for the coastal Kelvin waves to leave the domain.

The critical latitude values (0C) for 7=0° and 7=60°, are

given in Table 4.4.

The linear northward (tN) coastal Kelvin wave energy

flux and the dissipation of energy flux can again be

calculated using Equations (4.2.3) and (4.2.7), respectively.
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7=0°

7=60°

0 C ( ° )

25.5

13.4

TABLE 4.4: Critical latitude values (Gc) for the meridional (Y=0°) and
nonmeridional (Y=60°) boundaries. Wave period (T): 180 days.

In a similar manner to the intraseasonal period

experiment, the seasonal eastward energy flux, tE, is

estimated using a longitudinal extended basin (from 175° to

350°). The tE value (= 1.4 10
10 m V ) was calculated 175° from

the eastern boundary.

Again, the value of t w is obtained by conservation of

energy considerations (tw = tE/2-tN+tD in the Northern

Hemisphere) . The energy flux coefficients, rw, rN and rD,

generated at Experiments CO and C60 are displayed in Figure

4.15.

For 7=0°, with the increase of latitude the poleward

energy flux decreases and the dissipation of energy, increases

(see Figure 4.15-a). The westward energy flux increases with

latitude until near the critical latitude (0C is indicated in

Figure 4.15 by an arrow). As expected by the inviscid theory,

rw remains approximately constant with latitude (rw~2 0%)

above 0C.

Figure 4.15-b shows that, analogous to Experiment CO,

the poleward energy flux decreases and the dissipation of

energy increases as the latitude increases. The values of rN

and rD are coincident near 33° of latitude. Above the

critical latitude the westward reflected Rossby wave energy

is roughly constant with latitude (rw~4%).
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FIGURE 4.15: Linear energy flux coefficients (%) at different latitudes
(°). (a)Y=O°and (b)Y=60°. Solid line: rN. Dashed line: rw. Dotted line:
rD. Wave period: 180 days.

In order to more easily compare the energy flux changes

induced by the coastline geometry, the same coefficients

presented separately for each coastline geometry (Figure

4.15) are displayed together in Figure 4.16.

The inclined boundary is less reflective than the

meridional boundary (see Figure 4.16-a) and as a result the

poleward energy flux generated at 7=60° is bigger than that

generated at 7=0° (Figure 4.16-b). Figure 4.16-c shows that

more energy is dissipated in the nonmeridional boundary than

in the meridional one. These results are qualitatively

similar to those generated by the intraseasonal period

experiment.
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The analytical value of rw can be obtained using again

Equation (2.5.6). Table 4.5 displays the analytical

(inviscid) and numerical (viscous) coefficients generated by

an equatorial Kelvin wave, of 180 day period, incident at a

meridional and a nonmeridional boundary.

7=0°

7=60°

r w (model)

20

4

r w (Equation 2 .5 .6 )

42

33

TABLE 4.5: Linear westward energy flux coefficients (in % of the incident
energy flux) above the critical latitude. Wave period: 180 days.

Comparing the numerical and analytical solutions of rw,

shown in Table 4.5, it can be seen that there is a large

discrepancy between the two values. The numerical results of

rw are now much smaller than the analytical ones. Two main

factors contribute to the observed difference. The first and

the most important is the inclusion of the viscosity in the

numerical model. The energy dissipation increases

considerably as the latitude increases (see Figure 4.16-c).

Thus, for the long period studied here, the energy lost in

the domain certainly restrains the propagation of Rossby

waves, decreasing the values of rw.

The second factor is that the analytical coefficient rw

was obtained by Clarke (1992) using the equatorial /3-plane

approximation whereas in the present study the numerical

coefficient was obtained using spherical coordinates. The

validity of the equatorial /3-plane approximation to motions

of a large latitudinal scale is questionable. Section 4.6
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addresses this subject and suggests that at higher latitudes

the equatorial /3-plane dynamics permit an "anomalous"

generation of Rossby waves.

For the inclined boundary experiment, a further point

can contribute to the discrepancy that exists between the

analytical and numerical solutions: that being the

uncertainty of the validity of the analytical Equation

(2.5.6) for the larger values of the coastline inclination

(see Table 4.3).
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4.5 Annual variability

Seeking the free wave solutions generated by the

reflection of an equatorial Kelvin wave of annual period the

experiments previously described were again performed. A half

wavelength of an equatorial Kelvin wave of annual period (3 60

days) was used as an initial condition for the linear

numerical model. The numerical domain utilized in the

experiment has 350° of longitudinal extent and 90° .(from 45°S

to 45°N) of latitudinal extent.

Figures 4.17 and 4.18 show, respectively, the upper

layer anomaly after 1 and 6 months of integration, for the

meridional and nonmeridional coastlines. Again, only the

eastern 70° of the domain is displayed.

Z(M> LINEAR (T368) C8 1 MONTH Z(M) UNEf* (T368) C8 fc MONTHS

76 b6 56 46 36 26 16
DISTANCE (DE6REE)

56 48 36 28 16
DISTANCE (DE6REE)

FIGURE 4.17: Z (m) at (a)l and (b)6 months. Meridional boundary. Wave
period: 360 days.
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2 CM) LINEAR (T3fa«) Cfa8 1 MONTH 1M) Llt&R (T368) CbB b MONTHS

fe8 51 48 38 28 18
DISTANCE (IE6REE)

78 t>8 58 48 38 28 18
DISTANCE (IE6REE)

FIGURE 4.18: As Figure 4.17 but for the nonmeridional boundary.

Table 4.6 shows the critical latitude values for the

meridional and sloping coastlines. Note that when 7=0° the

critical latitude is very close to the northern latitude of

the numerical model (45°). Consequently, for the domain

considered, most of the energy of the incoming equatorial

wave of annual period is expected to be reflected as westward

Rossby waves.

Following the previous experiments the poleward energy

flux and the dissipation of energy flux were calculated using

Equations (4.2.3) and (4.2.7), respectively. The model was

integrated for 8 months.

The eastward energy flux, tE, was estimated using a

longitudinally doubled domain (700°). Repeatedly, tE is

calculated at the middle of this larger domain, at 350° from

the eastern boundary (tE =2.8 10
10 m5s~3) and the westward

energy flux is obtained using energy conservation

considerations.
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7=0°

7=60°

0 e ( ° )

43.6

25.5

TABLE 4.6: Critical latitude values (8C) for the meridional (Y=0°) and
nonmeridional (Y=60°) boundaries. Wave period (T): 360 days.

The energy flux coefficients, for Experiments CO and

C60, are shown in Figure 4.19. For the two boundaries

considered, as the latitude increases the rD values increase

and the rN values decrease. This result is in qualitative

concordance with the inviscid theory (Clarke, 1992).

Compared with the previous experiments, the westward

energy fluxes, however, present an anomalous behaviour in

both meridional and nonmeridional cases.

For the meridional boundary experiment the rw

coefficient increases latitudinally up to 30° of latitude

(see Figure 4.19-a). Above 30° of latitude rw becomes nearly

constant with latitude. However, according to the theory the

rw coefficient is expected to be latitudinally constant only

above the critical latitude (0C=43.6°). The analytical value,

given by the Equation (4.2.6) is 46%.

Further, in the inclined boundary experiment, the rw

coefficient is not constant with latitude above 0C. It

increases up to 20° of latitude and decreases for latitudes

higher than 20°. Note the rw is expected to increase up to

the critical latitude (0C=25.5°) and to be constant above that

latitude (rw~42% from the Equation 2.5.6) .
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rD. Wave period: 360 days.

In soommary, the numerical values of rw for the annual

period case, are smaller than the theoretical coefficients.

In the meridional boundary experiment, below the critical

latitude, the r w values are constant with the latitude,

whereas theoretically they should increase as the latitude

increases. For the inclined boundary, above the critical

latitude r w decreases with the latitude and from the theory

it is expected to be constant as the latitude increases.

Similarly to the seasonal period experiment, the energy

flux lost by dissipation and the use of the equatorial j8-

plane approximation in the analytical Equation (2.5.6) could

be responsible for the smaller values of rw obtained

numerically (Figure 4.19).

Note that the values of rD obtained for Experiment C60

are much larger than the rD coefficients generated at CO. For
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the annual experiment most of the energy of the incoming

equatorial wave is expected to be reflected at the meridional

boundary as westward Rossby waves and, as already discussed,

these waves are less affected by dissipation than the coastal

Kelvin waves. For Experiment C60, above 25.5° of latitude the

incoming energy is trapped as coastal Kelvin waves. This

could explain the large discrepancy between the rD values

created in the meridional and nonmeridional boundaries.

The similarity of rN values obtained in both the

experiments can be justified by the larger dissipative effect

in the C60 experiment. The increase in rN induced by the

coastline inclination is compensated by the increase of

viscosity, resulting in similar values for rN in the two

experiments.
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4.6 Validity of the equatorial /5-plane approximation

It is convenient to consider the potential vorticity

equation in order to examine the validity of the equatorial

jS-plane approximation for the phenomenon studied.

4.6.1 Linear equatorial /5-plane potential vorticity (/?PV)

The equatorial j8-plane potential vorticity (/3PV)

equation can be readily obtained from Equations (2.2.1).

Assuming that the motion is geostrophic in the alongshore

direction (y) , the |8PV can be written as:

3(|T - ±h\ + P v = O (4.6.1)
dt\dx H J

Furthermore, it is supposed that the alongshore particle

velocity, v, at a meridional wall can be given by dy/dt.

Thus:

h $LyQ (4.6.2)

As discussed by Clarke (1992), coastal Kelvin wave

dynamics apply when /3=0 and the relative vorticity (dv/dx)

balances the vortex stretching (- fh/H). As the latitude

decreases, f decreases and vortex stretching (and relative

vorticity) terms become comparable to the induced planetary

vorticity change. When the induced planetary vorticity change

(|8 Ay) is more than twice the relative vorticity, energy

leaves the boundary as a Rossby wave (Clarke (1992)).
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4.6.2 Linear spherical coordinate potential vorticity (PV)

The PV Equation can be obtained from Equations (3.2.8)-

(3.2.10). Assuming, again, that the motion is geostrophic in

the alongshore direction (0) and that the alongshore particle

velocity, v, at a meridional wall is given by rd6/dt, the PV

equation can be written as:

1 dv fh + Af = 0 ( 4 . 6 . 3 )
rcos8 dk H

For the physical mechanism of main interest here, the

generation of Rossby waves, the most important term in

Equations (4.6.2) and (4.6.3) is the induced planetary

vorticity change, given by (/SAy) and by (Af) . The remainder

of this section considers the distinction between these two

terms.

Figure 4.20 shows the difference between the planetary

vorticity changes as given by (|8Ay) and (Af) , as a function

of latitude. The curve was plotted considering a constant

latitudinal interval of 1°. As can be seen in Figure 4.20,

near 45° of latitude the planetary vorticity change generated

using the equatorial /3-plane approximation is about 30%

larger than that generated using spherical coordinates.

w 35 4

8-25 4

§ 1 M
— < 1 1 1 1 r

8 16 26 38

FIGURE 4.20: Difference between the planetary vorticity change in the
equatorial p-plane and in the spherical coordinates (in %) as a function
of the latitude.
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The above discussion suggests that at higher latitudes

the equatorial j8-plane dynamics allow a spurious generation

of Rossby waves.

The use of the equatorial j8-plane approximation by

Clarke (1992) in the resolution of the analytical problem

could help to explain the discrepancy between the numerical

and analytical results obtained in the experiments presented

here. Actually the spherical coordinate system must be used,

rather than the equatorial j8-plane approximation, because the

north-south scale of motion studied is large enough for

variations in the value of /S to be important.
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4.7 Numerical considerations

4.7.1 Spatial resolution

In all the experiments described in Chapters 4 and 5,

except Experiment C60-H, a regular 1/4 degree resolution is

used in both zonal and meridional directions (AX=A0=l/4°).

The C60-H experiment utilized a regular 1/8 degree of

resolution.

This grid spacing is less than the smallest baroclinic

Rossby radius (R) of the modeled region. For the highest

latitude of the numerical domain (45°), R~24 km and AX-17

km.

4.7.2 Temporal resolution

The time steps (At) used in all the experiments satisfy

the CFL stability criterium given by (A.5.1). For the linear

experiments a At of 4 hours was utilized. However, for the

non linear model, the condition (A.5.1) was used only as a

guide for choosing the time interval. The At actually

employed in the non linear model, (At= 2 hours), was arrived

at by a trial-and-error process.

4.7.3 Viscous effects

A Laplacian coefficient of 103 m2s"x is employed in most

of the numerical experiments described in this study. Only

the C60-H experiment uses a coefficient of 500 m2s1.
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The coefficient value, 103 m2s~l, has been commonly used

in baroclinic shallow water numerical models. Numerically,

the coefficient helps to smooth the numerical noise

associated with very high wave numbers. Physically, AH helps

to form the viscous boundary layer required to fit the theory

with the observations.

The effects of viscosity on linear free baroclinic

Kelvin waves in numerical shallow-water models are discussed

in the Appendix (Section A.6). Table 4.7 shows the parameter

regime values (as defined by Davey et al.,1983 and Hsieh et

al., 1983), calculated for the highest latitude of the

numerical domain used in the experiments described in

Chapters 4 and 5. For the intraseasonal experiment 0max=2O°

and for the seasonal and annual experiments 0max=45°.

T60; AS=l/8°;

AH=500 mV1

T60; AS=l/4°;

T180; AS=l/4°;

AH=10 3 mV1

T3 60; AS=l/4°;

AH=103 mV1

a (given

by A.6.2)

1 . 0

2 . 0

7 . 0

3 . 0

1 0 *

1 0 -

io-5

io-5

e (given

by A.6.1)

0.17

0.34

4 . 5

9 . 0

A

by

(given

A.6.3)

0.27

0.53

0 . 8

0 . 8

e

2 .

1 .

6

/A2

3 3

2 1

. 6

13.2

TABLE 4.7: Non dimensional parameters associated with the viscosity and
the finite-differencing scheme.
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Table 4.7 shows that the Rossby radius is reasonably

well resolved by the model grid (see A) and that the

numerical model is in a "good resolution" regime (see e/A2) .

Therefore, the wave behaviour is expected to be similar to

that in the continuous case.

Note that the offshore viscous effect (e) increases

considerably as both the wavelength and the latitude

increase. The increase in e causes a large increase in decay

rate and a decrease in velocity as a wave travels poleward.

The use of a free-slip boundary, however, prevents the

reduction in velocity from being very severe (Davey et al.,

1983). The alongshore coefficient (a) is very small in all

the experiments.
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4.8 Summary

The free waves solutions generated by low frequency wave

reflection at meridional and nonmeridional eastern

boundaries, are shown not to be significantly affected by

nonlinearities. The viscous effects, however, are of major

importance for the problem. If no viscosity is incorporated

in the model (AH=O) the agreement between the numerical

simulations and the analytical results is very good..

The real ocean, however, is viscous. In this study, a

viscosity coefficient of 103 m^"1 is utilized in the numerical

model. This is a standard value, widely used in models

similar to this one. Some authors have indicated that 103 m2s4

is a reasonable value to be used for this coefficient. Davey

et al.(1983), for example, suggested a value of the order of

103-104 n̂ s"1. They have used the fact that the onshore velocity

is nonzero when AH > 0 to estimate the amount of viscosity

required in their continuous wave model to achieve a

realistic onshore flow; i.e, a flow comparable to the onshore

flow observed in the free baroclinic coastally-trapped waves

off Peru.

The difference between the analytical (inviscid) and the

numerical energy fluxes, for y smaller than 40°, are

primarily due to the inclusion of dissipative effects in the

numerical model and, to a lesser extent the utilization of

the equatorial 0-plane approximation in the previous

analytical expressions. For coastline inclinations greater

than 40°, the analytical energy flux expression, as given by

Clarke (1992) may be doubtful.
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Analytical works which exclude dissipative effects and

make use of the equatorial /9-plane approximation (Schopf and

al.,198l; Grimshaw and Allen, 1988; Clarke and Shi, 1991 and

Clarke ,1983,1992; among others) have shown that:

(1) nonmeridional boundaries are less reflective than

meridional ones;

(2) the poleward coastal Kelvin wave energy flux is greater

the more the boundary inclines from the meridian; and

(3) the westward energy flux increases and the poleward

energy flux decreases as the incident Kelvin wave period

is increased.

Analysing the Figures 4.13-a, 4.16-a and 4.19, it can be

seen that for any period, T, studied, statement (1) is always

true: the nonmeridional boundary is less reflective than the

meridional one [rw(O°,T) > rw(60°,T)].

Statement (2) is true for all the experiments except for

the intraseasonal period with 7=40°. The increase in poleward

flux, for 7=40° and intraseasonal period wave, is

counterbalanced by the large increase of lateral viscosity

(see Figure 4.9).

To verify statement (3), the energy flux coefficients

have been plotted together for different wave periods. Figure

4.21 shows those coefficients generated at the meridional

boundary. To relate experiments of different periods it is

necessary to examine the coefficient values above their

particular critical latitude. The critical latitude for each

period studied are indicated in Figure 4.21 with arrows.

Figure 4.21 shows that, for the experiments investigated

here, statement (3) is not always verified. This is due to

the inclusion of the energy dissipation in the model. For the

studied problem, the dissipation of energy depends on the
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kind of waves present in the domain, being larger for the

coastal Kelvin waves than for the Rossby waves. Hence, the

higher the critical latitude, the less Kelvin waves are

present in the domain and the lower is the energy dissipated

(see Section 2.5). For the coastal Kelvin waves present in

the domain the dissipation of energy, however, increases as

the period of the wave increases (see the values of e given

in Table 4.7). Davey et al.(1983) have analytically shown

this result using a continuous viscous model. The final

amount of energy taken from the domain by dissipation,

therefore, depends not only on the presence of the coastal

Kelvin waves (for longer period wave, less coastal waves and

less dissipation) but also on the frequency of these waves

(for longer period waves, more dissipation).

In the annual experiment, for example, because of its

higher critical latitude value (Table 4.5, for 7=0°) there

are mainly Rossby waves in the studied domain. As a result,

the rD values for the annual experiment are smaller than

those for the seasonal case (Figure 4.21-c). In the

intraseasonal period, however, despite its comparatively

lower critical latitude (Table 4.1 for 7=0°) the rD values

are the smallest amongst those obtained in the experiments.

This occurs due to the comparatively smaller value of e

(Table 4.6) obtained in the intraseasonal case. The

intraseasonal westward energy flux is practically unaffected

by dissipation (see Figure 4.7), which results in

comparatively larger values of rw (Figure 4.21-a).

In summary, the veracity of statements (2) and (3)

depends strongly on the viscosity included in the problem.
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CHAPTER 5 - RESULTS

PACIFIC AND ATLANTIC EASTERN BOUNDARIES

5.1 Introduction

The experiments described in the Chapter 4 are now

applied to more realistic ocean boundaries representing the

Pacific and Atlantic eastern coastlines.

Both the Pacific and Atlantic experiments are performed

using the numerical model, described in Chapter 3, with one

layer of initial thickness 200 m. The linear phase speed is

assumed to be 2.45 m/s and the viscosity coefficient 103 m2s"1.

In the model the eastern Pacific and Atlantic coastlines

are defined by the position of the 200 m isobath instead of

the actual coastline, as it is a better approximation of the

vertical coast assumed in theory (the initial layer thickness

is considered to be 200 m).

The free waves solutions generated by the reflection of

baroclinic equatorial Kelvin waves of different periods

(intraseasonal, seasonal and annual) at the Pacific eastern

coast is examined in Section 5.2. The variability in the

eastern Atlantic is investigated in Section 5.3.
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5.2 Pacific Ocean

5.2.1 Intraseasonal variability

The linear and non linear experiments described in this

section employ a numerical model basin of latitudinal extent

of 40° (from -20° to 20°) and maximum longitudinal extent of

70°. The eastern Pacific boundary approximation used in the

intraseasonal experiments is shown in Figure 5.1. The

geometry ignores the Gulf of California. Nevertheless, Clarke

(1992) has shown that the energy flux entering the Gulf is

the same as that leaving it.

A baroclinic equatorial Kelvin wave of 60-day period,

similar to that displayed in Figure 4.2 is used as an initial

condition for the numerical model for the intraseasonal

linear and non linear cases. The numerical model was

integrated for 90 days. The eastward energy flux (input

energy) is the same as that in Figure 4.3 of Section 4.3.1

(tE= 4.6 10
9 m V ) .

5.2.1.1 Linear case

The longitude-latitude plot of the linear upper layer

anomaly at six successive intervals of 15 days is given in

Figure 5.1. The coastally trapped Kelvin waves are visible as

a deepened thermocline along the coast, and the Rossby wave

as a closed contour, moving westward from the coast. Compare
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the Pacific intraseasonal fields, with those generated in

Experiments CO (Figure 4.3) and C60 (Figure 4.4).

The linear northward energy flux (tN) and the

dissipation of energy (tD) were numerically calculated using

Equations (4.2.3) and (4.2.7) respectively; the southward

energy flux (ts) was obtained using Equation (4.2.3) with the

signal changed: 8=+60 for 6=-0o.

The energy input (tE) in the experiment, as in the

previous chapter, is only due to the baroclinic equatorial

Kelvin wave. The westward energy flux (tw), was again

inferred by conservation of energy. It is assumed that the

reflected Rossby wave energy (tw) is given by tE/2-tN+tD for

the Northern Hemisphere and by tE/2-ts+tD for the Southern

Hemisphere.

Figure 5.2 shows the nondimensional linear energy flux

coefficients, rP(7,T), rw(7,T) and rD(7,T), as defined in

Section 4.3.1, generated at the eastern Pacific coast. The

coefficients were calculated at latitudinal intervals of 2°

and integrated in time for 90 days.
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FIGURE 5.2: Linear energy flux coefficients (%) at different latitudes
(°). Solid line: rP. Dashed line: rw. Dotted line: rD. Wave period: 60
days. Pacific Ocean.
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According to Figure 5.2, the northward energy flux is

somewhat larger than the southward energy flux whereas the

westward energy flux is smaller in the Northern Hemisphere

than in the Southern Hemisphere. This is consistent with the

Northern Pacific boundary being more inclined to the

meridian. The energy dissipation is roughly similar in both

Hemispheres. The westward energy flux, in disagreement with

the results of Section 4.3, presents a considerable

latitudinal variation. It is due to the changing coastline

angle of inclination, y, which allows more than one critical

latitude for the eastern Pacific coastline (Grimshaw and

Allen, 1988; Clarke and Shi, 1991 and Clarke, 1992).

Figure 5.3, from Grimshaw and Allen (1988), shows the

critical latitude values calculated along a smoothed eastern

Pacific boundary as a function of distance from the equator,

considered positive to the north. The critical latitude was

obtained using the coastal internal Kelvin wave speed of 200

km/day (-2.3 m/s). Note that for a range of oscillation

periods the variations of y for the Northern Hemisphere

coastal geometry results in more than one critical latitude.

This also occurs, but to a lesser extent, in the Southern

Hemisphere. For periods and alongshore distances

corresponding to points on the right of the curves, the waves

propagate offshore, whereas for points to the left of the

curves, the waves are coastally-trapped. The oscillation

periods investigated in this chapter together with their

approximate value of the northernmost 6C are also indicated in

Figure 5.3.
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5.2.1.2 Non linear case

To appreciate the effects of nonlinearity on low

frequency wave reflection at the Pacific boundary, the non

linear model was run using the same parameter and the same

initial condition (equatorial Kelvin wave; Figure 4.2) as

used for the linear experiment.

The non linear poleward coastal Kelvin wave energy flux

(tP) and the dissipation of energy (tD) are estimated, for

both Hemispheres, using Equations (4.2.4) and (4.2.8). The

values of t w are again derived from energy conservation

considerations.

To compare the relative importance between the change in

energy flux caused by the nonlinearities and by the coastline

geometry, Figure 5.4-a shows the westward energy fluxes

calculated using the (1) Pacific coastline and the linear

model (solid line); (2) meridional coastline and the linear

model (dashed line); (3) Pacific coastline and the non linear

model (dotted line) and (4) meridional boundary and the non

linear model (centre-dashed line). Figures 5.4-b and 5.4-c,

show, respectively, the poleward and the energy dissipation

coefficients for the four cases.

According to Figure 5.4, the changes in energy fluxes

and in energy dissipation induced by the coastline geometry

are notably more important than those induced by the

nonlinearities.

The Pacific coastline is less reflective than the

meridional boundary (see Figure 5.4-a). This is expected

because nonmeridional boundaries favour trapped motion more

than meridional ones (see Section 2.5.1).
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For the cases presented in Figure 5.4, the poleward

energy fluxes are similar; the smallest values are given by

case (4) and the largest by case (1) (Figure 5.4-b). Because

the Pacific coastline is a nonmeridional boundary, the

Pacific rP values (particularly rN) would be expected to be

significantly larger than the rP values generated in

Experiment CO. However, as discussed in Chapter 4, the

dissipation induced by the nonmeridional boundary is larger

than that induced by the meridional one (see Figure 5.4-c).

Hence, for the Pacific coastline the increase in dissipation

prevents the rise in poleward energy flux induced by the

geometry of the coast.
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FIGURE 5.4: Energy flux coefficients (%) at different latitudes (°).
(a)rw, (b)rP and (c)rD. Solid line: linear and Pacific coastline. Dashed
line: linear and meridional coastline. Dotted line: non linear and Pacific
coastline. Centre-dashed line: non linear and meridional coastline. Wave
period: 60 days.
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5.2.2 Seasonal variability

To simulate the seasonal variability in the eastern

Pacific ocean an equatorial Kelvin wave of 180 days period

was used as an initial condition for the numerical model.

The intraseasonal energy fluxes, as shown in the

previous section, are significantly more affected by the

coastline geometry than by the nonlinearities. Thus hereafter

only the linear model is used for the investigations.

Z(M) LINEtf? (T188) PftC 1 MONTH Z<M) LINE03 (T188) PAC 4 M0NTH9

-45
t u se 4i 31 2i u

11STANCE (BE6REE)
fal 5J 48 31 2« 11 8

DISTANCE (DEGREE)

FIGURE 5.5: Z (m) at (a)l and (b)4 months. Pacific coastline. Wave period:
180 days.

The modeled region has, now, a latitudinal extent of 90'

(from 45°S to 45°N) and a maximum longitudinal extent of 175"

(see Figure 5.5 for the boundary geometry). The numerical

model was integrated for 6 months.
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Figure 5.5 shows the latitude-longitude plot of the

height anomaly (in metre), generated at the Pacific coast,

after 1 and 4 months. Only the eastern domain (70°) is shown.

The Pacific upper layer fields (Figure 5.5), near the coast,

resemble the fields generated by the C60 experiment (Figure

4.14).

The non dimensional energy flux and the energy

dissipation coefficients, for this experiment, are shown in

Figure 5.6 for different latitudes. The coefficients were

calculated at every 5° of latitude and integrated over 6

months. Figure 5.6 shows that the asymmetry between the

Northern and Southern Hemispheres is small. Poleward of -20°

of latitude, the dissipation of energy is larger than either

of the energy fluxes.

LINEAR (T18B) PACIFIC

POLEU&RD

UESTUWD

DISSIPATION

FIGURE 5.6: Linear energy flux coefficients (%•) at different latitudes
(°). Solid line: rN. Dashed line: rw. Dotted line: rD. Wave period: 180
days. Pacific coastline.
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In order to compare the energy flux change induced by

the coastline geometry, the coefficients presented in Figure

5.6 have been plotted together and are presented in Figure

5.7 with the analogous coefficients generated in Experiment

CO.

In agreement with the intraseasonal period experiment,

the Pacific boundary is less reflective than the meridional

boundary (see Figure 5.7-a). The Pacific poleward energy flux

(Figure 5.7-b) is slightly smaller than that generated at

7=0° because of the larger dissipation of energy occurring in

the Pacific (Figure 5.7-c) which prevents an increase of

poleward energy flux induced by the coastline geometry.
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5.2.3 Annual variability

Similarly to Section 4.5, a half wavelength of an

equatorial Kelvin wave of annual period (360 days) is used as

an initial condition for the linear numerical model. The

numerical domain utilized in the experiment has a maximum

longitudinal extent of 350° and a latitudinal extent of 90°

(from 45°S to 45°N). Figure 5.8 shows the upper layer anomaly

after 1 and 6 months of integration. Only the eastern 70° is

displayed in the figure. As has been shown previously, near

the coast, the Pacific height field anomalies resemble more

the fields generated in Experiment C60 (Figure 4.18) than

those generated in Experiment CO (Figure 4.17).

Following the methodology of the previous experiment the

poleward energy flux and the dissipation of energy were

numerically calculated for every 5° of latitude and

integrated over 8 months.

The eastward energy flux, tE, was estimated using a

longitudinally doubled domain (700°). Repeatedly, tE was

calculated at the middle of this larger domain, at 350° from

the coast (tE =2.8 10
10 m5s~3) . The westward energy flux was

then obtained using energy conservation considerations.

The energy flux and the energy dissipation coefficients

are shown in Figure 5.9. According to Figure 5.9, the annual

northward and southward energy fluxes are symmetric about the

equator. Poleward of 20°N the dissipation of energy is

dominant over the energy fluxes in the Northern Hemisphere;

in the Southern Hemisphere, however, the coastline geometry

facilitates the boundary reflection and the westward energy

flux is larger than the dissipation of energy.
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FIGURE 5.8: Z (m) at (a)l and (b)6 months. Pacific coastline. Wave period:
360 days.
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CHAPTER 5

The influence of the coastline on the energy fluxes and

on the energy dissipation is very clear in Figure 5.10, where

the nondimensiona1 coefficients generated using the Pacific

boundary and the meridional boundary are displayed together.

In the Southern Pacific, the energy fluxes and the

energy dissipation are not substantially different from those

generated in the meridional boundary experiment. This is

expected given that the Southern Pacific coastline does not

depart significantly from a meridional orientation.

In the Northern Pacific, the westward energy flux

differs substantially from that generated in Experiment CO

(Figure 5.10-a). The poleward energy fluxes generated in the

eastern Pacific and in Experiment CO (Figure 5.10-b) are

similar. The dissipation of energy (Figure 5.10-c), which

increases as the boundary departs from the meridional

direction, restrains the increase in the northward energy

flux induced by the coastline geometry.
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5.2.4 Summary

Figure 5.11 summarizes the energy fluxes and the energy

dissipation coefficients obtained for the Pacific Ocean at

intraseasonal, seasonal and annual periods. The intraseasonal

coefficients were calculated only up to 20° of latitude and

therefore a direct comparison between the intraseasonal

coefficients and the lower frequency coefficients should be

made with prudence.

As already stated in Chapter 4, the energy fluxes are

strongly dependent on the energy dissipated in the domain. In

the Southern Hemisphere, the dissipation of energy is smaller

in the annual experiment than in the seasonal one (Figure

5.11-c). This can be explained by the critical latitude

values being higher for the annual experiment. Therefore, in

this case the increase in dissipation due to the increase of

period is shown to be less important than the energy

dissipated by the presence of coastal Kelvin waves. In the

Northern Hemisphere, however, the energy dissipated in the

annual case is larger than that for the seasonal case. This

is, probably, due to the combination of both the presence of

the coastal Kelvin waves in the domain and the increase in

the wave period.

In agreement with the results presented in Chapter 4,

the intraseasonal values of rw (Figure 5.11-a) and rD (Figure

5.11-c) are, respectively, larger and smaller than those

obtained by the lower frequency experiments.

The westward energy flux, in the Southern Hemisphere, is

larger for the annual period experiment than for the seasonal

period case. In the Northern Hemisphere (where the boundary

is more nonmeridional) the comparatively larger presence of
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coastal Kelvin waves, in the annual period experiment,

induces stronger dissipative effects (see Figure 5.11-c)

inhibiting the reflection processes. As a result, less energy

of annual period is propagated offshore (see Figure 5.11-a).

Calculations for the intraseasonal, seasonal and annual

frequencies all indicated that the coastally trapped energy

flux, poleward of 15°, does not depend significantly on the

period of the incident wave (see Figure 5.11-b). The

northward and southward energy flux asymmetry is also

negligible for all the investigated frequencies. The symmetry

of rP is explained by the larger dissipative effects in the

Northern Hemisphere which compensate for the increase of the

northward energy flux generated by the coastline geometry.

The Hemispherical asymmetry of both, westward energy

flux and energy dissipation, are larger for the annual

experiment. This result is in agreement with Clarke (1992),

who has found that the energy flux asymmetry in the eastern

Pacific increases as the period increases.
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53 Atlantic Ocean

The experiments carried out for the Pacific Ocean

(Section 5.2), have been repeated for the Atlantic Ocean. The

methodology employed is similar to that utilized in the

previous section.

The Atlantic coastline geometry, used in the

experiments, is shown in Figures 5.12 (for the intraseasonal

period) and 5.16 (for the seasonal and annual periods).

5.3.1 Intraseasonal variability

5.3.1.1 Linear case

The Atlantic linear height field anomaly generated by an

incident equatorial Kelvin wave of 60-day period is shown in

Figure 5.12 at six successive intervals of 15 days. Except

very near the Gulf of Guinea, the Atlantic field (Figure

5.12) resembles the field generated at 7=60° (Figure 4.4).

The principal effect of the approximately east-west

coastline at 5°N is to add a narrow boundary current which

widens westward, as evident in Figure 5.13-b.
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FIGURE 5.13: Zonal velocity (m/s), at (a)5 and (b)25 days. Wave period: 60
days. Atlantic coastline.
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days. Atlantic Ocean.
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This boundary layer is too narrow to be a single

coastally trapped meridional mode (Cane and Patton, 1984);

instead, it is a sum and difference of the (anti-symmetric)

Rossby-Kelvin wave and the (symmetric) anti-Kelvin wave (see

Figure 2.2), which are taken to produce isolated coastal

Kelvin waves (Cane and Sarachik, 1979).

The flow produced by the coastal Kelvin wave along the

zonal boundary is opposite in direction to the phase

propagation. The eastward propagating wave produces a flow to

the west. The westward wave propagating along the east-west

boundary produces a flow to the east. Both these results can

be clearly seen in the zonal velocity fields at days 5 and

25, shown in Figure 5.13.

The nondimensional linear energy flux coefficients,

rP(7,T), rw(7,T) and rD(7,T) generated at the eastern Atlantic

coast are shown in Figure 5.14 at different latitudes. The

coefficients were calculated at latitudinal intervals of 2°

and integrated over 90 days.

According to Figure 5.14, near the Gulf of Guinea, both

the reflected energy flux and the dissipated energy exhibit a

rapid increase whereas the poleward energy flux presents a

rapid decrease. The increase in the rD value is due to the

energy dissipated along the zonal boundary (see Figure 5.13-

b) . The larger amount of dissipation, consequently, reduces

the northward energy flux (see Chapter 4).
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5.3.1.2 Non linear case

The intraseasonal non linear results are presented.

Following the methodology of Section 5.2.1.2, the energy

coefficients are calculated using the: (1) Atlantic coastline

and the linear model (solid line); (2) meridional coastline

and the linear model (dashed line); (3) Atlantic coastline

and the non linear model (dotted line) and (4) meridional

boundary and the non linear model (centre-dashed line). The

results are presented in Figure 5.15.

In agreement with the earlier experiments, the energy

flux changes induced by the coastline geometry are

significantly more important than those induced by the

nonlinearities (Figure 5.15).

The Atlantic coastline is shown by Figure 5.15-a to be

less reflective than the meridional one. This result is

expected theoretically given that the critical latitudes for

the nonmeridional boundaries are lower than those generated

at the meridional coastlines (see Section 2.4.1).

For the four cases presented in Figure 5.15-b, poleward

of 5°N, the northward energy fluxes present similar values.

This means that north of 5°N the Northern Atlantic coastline

acts, in terms of intraseasonal poleward energy flux, as a

meridional boundary. In the Southern Hemisphere, the poleward

energy generated in the Atlantic coastline is larger than

that generated in Experiment CO. In concordance with the

previous experiments the energy dissipation induced by the

nonmeridional boundary (Atlantic coastline) is larger than

that induced by the meridional one (Figure 5.15-c). The

increase in dissipation prevents the expected rise in the

poleward energy flux induced by the geometry of the

coastline.
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FIGURE 5.15: Energy flux coefficient (%) at different latitudes (°).
(a)r w / (b)rP and (c)rD. Solid line: linear model and Atlantic coastline.
Dashed line: linear model and meridional coastline. Dotted line: non
linear model and Atlantic coastline. Centre-dashed line: non linear model
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5.3.2 Seasonal variability

Only the Atlantic eastern domain (70°) is shown in the

Figure 5.16, where the plot of the height field anomaly is

displayed after 1 and 4 months of the integration. Note that

for the seasonal period case, the resemblance between the

Atlantic field (Figure 5.16) and Experiment C60 field (Figure

4.14) is smaller than it was for the intraseasonal period

experiment.

Figure 5.17 shows the energy flux coefficients

calculated at every 5° of latitude and integrated over 6

months. The asymmetry between the Northern and Southern

Hemispheres is found to be negligible for all the seasonal

energy fluxes investigated here. This indicates that the

geometrical effects of the Gulf of Guinea are not very

important for seasonal period motions.

In order to compare the energy flux change induced by

the coastline geometry, the coefficients presented in Figure

5.17 have been plotted together and are shown in Figure 5.18

with their analogous fluxes generated in Experiment CO. As

for the intraseasonal period experiment, the Atlantic

boundary is less reflective than the meridional boundary (see

Figure 5.18-a).

According to Figure 5.18-b, concerning the seasonal

poleward energy flux the whole eastern Atlantic boundary can

be regarded to approximate a meridional boundary. Again, the

comparatively larger energy dissipated at the eastern

Atlantic boundary (Figure 5.18-c) offsets the expected

increase of poleward energy flux induced by the coastline

geometry.
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FIGURE 5.16: Z (m) at (a)l and (b)4 months. Atlantic coastline. Wave
period: 180 days.
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FIGURE 5.17: Linear energy flux coefficients (%) at different latitudes
(°). Solid line: rN. Dashed line: rw. Dotted line: rD. Wave period: 180
days. Atlantic coastline.
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CHAPTER 5

5.3.3 Annual variability

Figure 5.19 shows the upper layer anomaly after 1 and 6

months of integration. Only the eastern 70° from the Atlantic

coast is displayed in Figure 5.19. For the annual period

motion, the Atlantic field resembles more the height field

generated in Experiment CO (Figure 4.17) than that generated

in Experiment C60 (Figure 4.18).

The annual energy flux coefficients calculated at every

5° of latitude and integrated over 8 months, are displayed in

Figure 5.20. In common with the seasonal experiment, all the

annual energy coefficients are approximately symmetric about

the equator (Figure 5.20).

To compare the coastline influences on the energy fluxes

and on the energy dissipation, the nondimensional

coefficients generated by the Atlantic coastline and by the

meridional boundary are displayed together in Figure 5.21.

Figure 5.21-b shows that the annual poleward energy

fluxes induced by both meridional and Atlantic boundaries are

similar. As expected, the energy dissipated (Figure 5.21-c)

and the reflected flux (Figure 5.20-a) are, respectively,

larger and smaller in the Atlantic than in Experiment CO.
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p e r i o d : 360 d a y s .
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FIGURE 5.20: Linear energy flux coefficients (%) at different latitudes
(°). Solid line: rP. Dashed line: rw. Dotted line: rD. Atlantic coastline.
Wave period: 360 days.

137

^



CHAPTER 5

a . LINEAR (T3fce) WESTWARD ENERGY FLUX
LB&R a3faB) POLEWARD ENERGY FLUX

48^

35 :

38 4

2 5 :

28 4

18 4

l\
-18-1

-28 - j
-25 4

- 3 8 -

- 3 5 -

j
/
(
\

\
\

j

m

m

c

a

*

•

"~ATL

" C8

a

i- i t | « i

18 28 38 48 58
iR! m

4 5 -

48-i
3 5 ^

38 -i

25 -i

28 4

Id 1M
a :

s «
I-

-18

-16

-28

-25

-38

-35

ATL

C8

8 18 28 38 48 58

C. LINEAR CT36B) DI9SIPAnON

35-:

38 \

2 5 :

28 -I

§" 5
-18

-15

-28

-25

-38

-35

ATL

C8

18 28 38
!R! it)

48 58

FIGURE 5.21: Linear energy flux coefficient (%) at different latitudes
(°). (a)rw, (b)rP and (c)rD. Solid line: Atlantic coastline. Dotted line:
meridional boundary. Wave period: 360 days.

138

^



CHAPTER 5

5.3.4 Summary

The intraseasonal, seasonal and annual energy fluxes and

energy dissipation coefficients are shown in Figure 5.22.

In agreement with both the previous section (Figure

5.11-a) and Chapter 4 (Figure 4.21), the westward energy flux

is larger for the intraseasonal period than for the longer

periods (Figure 5.22-a). This is explained by the smaller

values of energy dissipated in the domain, in the

intraseasonal experiment (Figure 5.22-c). These smaller

values are due to the shorter period wave used in this

experiment when compared to the seasonal and annual period

waves (see e in Section 4.7).

For the seasonal and the annual period experiments, as

the period increases, the reflected energy increases (Figure

5.22-a) and the dissipation of energy decreases (Figure 5.22-

c). These results can be explained by the higher values of

the critical latitude obtained for larger periods (see

Section 2.5.1). The higher the critical latitude the larger

is the latitude band over which Rossby waves radiated from

the boundary and, consequently, the smaller the amount of

energy dissipated in the domain.

It is found that the seasonal and the annual poleward

energy fluxes are very similar (see Figure 5.22-b). Both

fluxes are also comparable to the poleward energy flux

generated at the meridional boundary. Despite the reflected

energy being smaller for the seasonal case than that

generated by the annual experiment, the seasonal energy

dissipated in the domain is larger, resulting in similar

values of the poleward energy fluxes for both periods.
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The influence of the Atlantic coastline geometry,

therefore, on the seasonal and annual coastally trapped

energy flux can be considered irrelevant. This result is

striking because of the particular geometry of the eastern

Atlantic, which has an approximately zonal coast near 5°N

(Gulf of Guinea). However, Du Penhoat et al.(1983) have shown

that the effect of the coast of the Gulf of Guinea is very

small on low frequency waves (seasonal and annual periods).

The effect of the Gulf of Guinea coastline on the

comparatively higher frequency (intraseasonal period),

however, is not negligible. The largest asymmetry between the

Northern and Southern Hemisphere energy fluxes was found in

the intraseasonal experiment (Figure 5.22).
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CHAPTER 6 - DISCUSSION

6.1 Discussion of results and conclusion

The work described in this thesis has two main aspects.

The first is the development of the numerical model, and the

second is the use of the model to study the low frequency

reflection of the equatorial waves at different eastern ocean

boundaries.

The numerical model developed in this study, is a fast,

efficient, reduced gravity, 1 % layer model, able to simulate

the linear and non linear low frequency motions on the

sphere. It uses a potential vorticity and potential enstrophy

numerical conserving scheme which permits time steps twice

those used in other discretization schemes, like the leapfrog

for example. In addition, as a two level scheme, it has no

computational mode in time.

The open boundary conditions, used in the model, allow

phenomena generated in the interior domain to pass through

the model boundaries without distortion and without affecting

the interior solution. The model was extensively tested and

verified by comparing numerical results with analytical

solutions to the linearised equations of motion. It was found

that the model is able to correctly represent the Kelvin and

Rossby wave motions that dominate the dynamics of the

equatorial oceans.

A simple Laplacian representation of viscous effects

with a horizontal coefficient of 103 m2s'J, is used in the

model. The viscous model is shown to be in a "good resolution

regime", which according to Hsieh et al.(1983), indicates

that the wave behaviour, in the numerical model, can be

considered identical to that in the continuous viscous model;
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i.e, the finite-difference effects are negligible.

A standard value for the viscosity coefficient has been

utilized in this study (103 m2s"x) . Davey et al. (1983) have

shown that a coefficient of the order of 103-104 m2s"1 was

required in their continuous Kelvin wave model in order to

make the numerical onshore component of velocity comparable

with that observed in the free baroclinic coastally-trapped

waves off Peru.

Despite the limitations of this model, which are

addressed in Section 6.2, some important conclusions can be

drawn from its results.

To investigate how much of the low frequency variability

at the eastern ocean boundaries (such as, for example, the El

Nino related anomalies) is due to equatorial waves, the

poleward energy fluxes have been numerically calculated at

several latitudes. The large latitudinal extent of the

numerical domain permits consideration of both equatorial and

mid-latitude responses. The influence of the strength of

viscosity, the incident wave period and the eastern coastline

geometry, on the energy fluxes is discussed below.

According to the energy flux results nonlinear effects

can be regarded as negligible for the problem considered here

whereas the viscous effects are important.

The energy fluxes are found to be strongly dependent on

the viscosity included in the model. If no viscosity is

incorporated in the model (AH=0) , there is very good

agreement between the numerical simulations and the

analytical results, generated at meridional boundaries. The

inclusion of dissipation, however, is imperative in the model

in order to form a viscous boundary layer required to fit
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theory with observations (Davey et al., 1983).

It is concluded that the differences between the

analytical and the numerical energy fluxes are primarily due

to the inclusion of dissipative effects in the numerical

model. To a lesser degree other factors are also suggested to

contribute to the discrepancy obtained between these results.

The utilization of the equatorial /3-plane approximation in

the analytical expressions (as given by Clarke, 1992) can

allow an artificial generation of Rossby waves at higher

latitudes. The validity of the analytical expressions, for

coastline angles greater than 40°, is also questionable.

The experiments described in Chapter 4 have shown that

the poleward coastal Kelvin wave energy flux has a tendency

to increase with a decrease of the critical latitude. The

critical latitude, in its turn, decreases with the increase

of the angle of coastline inclination and with the decrease

of the incident wave period. Opposing the rise of the

poleward energy flux there are, however, the frictional

effects.

For a given eastern boundary, the amount of energy

dissipated in the domain is shown to be dependent on the wave

period in two conflicting ways:

(1) for the specific problem investigated here, longer wave

periods in the domain result in higher critical latitudes

and a reduction in the presence of coastal Kelvin waves.

Thus the dissipation of energy decreases as the wave

period increases;

(2) the amount of energy dissipated by the coastal Kelvin

waves increases as the period of the wave increases

(this result is in agreement with Davey et al., 1983).

Therefore, the final amount of energy taken from the
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domain by dissipation, therefore, depends not only on the

presence of the coastal Kelvin waves in the domain, but also

on the period of these coastal waves.

The influence of the coastline geometry and the incident

wave period, was found to be more important for the westward

energy flux than for the poleward flux. It is suggested that

to accurately simulate the reflected Rossby waves on the

Pacific and Atlantic, boundaries, the eastern ocean coastline

geometry should be included in the numerical models.

In agreement with the inviscid theory, in the viscous

case the nonmeridional boundaries were found to be less

reflective than the meridional ones. The westward energy

flux, according to the inviscid theory, should increase with

the increase of the incident equatorial wave frequency. For

the viscous case, however, this result is not always

verified. In all the experiments performed (Chapter 4 and 5)

the intraseasonal reflected energy, for example, is found to

be larger than for those of lower periods. This is explained

by the comparatively smaller values of energy dissipated, in

the domain, in the intraseasonal experiments.

The effects of the boundary inclination on the poleward

energy flux, for the Pacific and Atlantic Oceans, were found

to decrease as the period of the incident wave increased. For

motions of seasonal and annual periods, the influence of the

coastline inclination, on both oceans, can be considered

negligible.

For incident waves of intraseasonal period, however,

there is a poleward energy flux asymmetry between the

Northern and Southern Hemispheres. For the Northern Atlantic,

poleward of 5°N, the eastern boundary can be considered as a

meridional one whereas for the Southern Atlantic the eastern

coastline geometry should be incorporated to obtain accurate
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poleward propagation of intraseasonal period. In the Pacific

Ocean, the northward energy flux was found to be somewhat

larger than the northward flux generated at a meridional

boundary. In the Southern Hemisphere, however, the difference

between the poleward fluxes, of intraseasonal period,

generated at the meridional and the Pacific coastlines can be

considered negligible.

In summary, results from the eastern Atlantic and

Pacific Oceans suggest that the poleward energy fluxes from

meridional boundary models should give plausible results for

motions of seasonal and annual periods. For comparatively

shorter periods, the coastline geometry should be included to

obtain more accurate results. It is also recommended that any

numerical model involving the reflected baroclinic Rossby

waves (of intraseasonal, seasonal or annual periods) on the

eastern Pacific or Atlantic Oceans, should consider the

effect of the coastline geometry in order to improve the

accuracy of the results.
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6.2 Critique of the model and future directions

The numerical model used in this work omits some

potentially important factors which may influence wave

propagation. The more important of these are briefly

considered in this section.

6.2.1 Poleward variation of the thermocline

To investigate the importance of the poleward variation

of the thermocline depth on coastal wave propagation, some

experiments have been performed. The analytical solution of

this problem is complicated by the dependence of solutions on

latitude.

The experiments use a numerical domain of 40° (from 10°S

to 50°S) of latitudinal extent and 3° of longitudinal extent.

The results were obtained using the inviscid model; the

inclusion of the viscosity only increases the decay.of

coastal waves as they propagate poleward (not shown here).

An analytical solution to the coastally trapped Kelvin

wave, of 10 day period, was specified as an oscillatory

northern boundary condition. The numerical experiments were

performed using different slopes of the thermocline depth.

The first experiment (El) uses a flat thermocline of 200 m

depth. The second experiment (E2) considers the thermocline

depth linearly tilted in latitude, varying from 200 m at 10°S

to 100 m at 50°S. The third experiment (E3) considers a steep

thermocline front; the profile of the thermocline is chosen

so that it changes linearly from 200 m to 100 m, from 20° to
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30°S. The fourth experiment (E4) assumes a main thermocline

varying linearly in latitude from 200 m at 10°S to 300 m at

50°S (see Figure 6.1).

-380
-350

-58 -45 -46 -35 -38 -25 -26 -15 -18
LATITUDE (DEGREE)

FIGURE 6.1: Meridional cross section of the thermocline depth.

The results of those experiments are displayed in Figure

6.2 as time-latitude plots of the thermocline anomaly near

the coast.

According to Figure 6.2-a, the meridional wavelength is

conserved when the coastal Kelvin wave propagates on a flat

thermocline. The zonal wave trapping scale ( Rossby radius of

deformation), however, reduces when the wave propagates

poleward, which results in an increase of the wave amplitude

to preserve the wave total energy. The wave propagates with a

phase speed of ~2.5 m/s.

Figures 6.2-b and -c show that the meridional wavelength

becomes shortened when the Kelvin wave propagates into the

shallower thermocline. The effect of a sloping thermocline is

to reduce the poleward wave propagation. The wave velocity of

experiment E2 is -2.3 m/s and of E3 is -1.9 m/s.
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FIGURE 6.2: Time-latitude plots of the thermocline anomaly near the coast.

149



CHAPTER 6

Both, the meridional wavelength and the wave velocity

(-2.7 m/s)' increase when the Kelvin wave propagates into an

area of increased thermocline depth (see Figure 6.2-d).

In summary, according to Figure 6.2, the shallower the

thermocline the shorter the wavelength and the smaller the

increase in poleward wave amplitude. Thus, in agreement with

the linear theory, the coastal Kelvin wave passes through the

sloping region simply by adjusting its structure to suit

local conditions.

6.2.2 Continental shelf topography

This study assumes that the shelf topography has no

effect on the eastern boundary motions. The absence of bottom

topography, however, suppresses the possibility of having a

topographic Rossby wave mode complementing the internal

Kelvin waves along the eastern boundary. Suginohara (1981)

has found that the continental shelf slope has no significant

effect on the transmission of energy from an incident

equatorial Kelvin wave to coastally trapped baroclinic

disturbances. However, at higher latitudes, the baroclinic

Kelvin waves can transform to barotropic shelf waves

(Suginohara, 1981; Allen and Romea; 1980). Hence, the

importance of the shelf slope should be emphasized for

understanding the dynamics of the eastern boundary, and the

reflection problem (including the effects of continental

shelf slope) needs to be studied.
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6.2.3 Higher baroclinic modes

Observational studies from the Pacific Ocean (Lukas at

al, 1984; Harrison and Craig, 1993, Picaut, 1993) and from

the Atlantic Ocean (McCreary, 1984; McCreary et al., 1984;

Verstraete, 1992) have indicated the presence of higher modes

than the first baroclinic in these oceans. Hence, a higher

vertical resolution model would simulate more realistically

the Pacific and Atlantic oceans.

The exclusion in the present model of both continental

shelf topography (barotropic mode) and higher vertical modes

(others than the first baroclinic mode), was based more upon

computational cost than upon physical reasons.

The presence of the barotropic mode, because of its

high speed, would impose a drastic limitation on the time

step of numerical integration. The CFL condition requires

that cAt/As < 1, where c is the maximum phase speed present

in the system.

The inclusion of higher baroclinic modes in the model

has been frustrated by the lack of computer facilities. A n+%

layer model was successfully developed during the course of

this study but its use was constrained by the shortage of the

virtual memory of the IBM 3090 available for this research.

Despite the model limitations, it is considered that its

numerical results will be useful for interpreting the

response of more sophisticated models as well as an aid in

understanding observations. The behaviour of the low

frequency motion propagation from lower to higher latitudes,

along the eastern ocean boundaries, however, will only be

completely understood through an interplay between modelling
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and observation. Models must be constrained by comprehensive

data sets, making coincident equatorial and coastal data sets

imperative for the studied problem. Of the utmost importance

are measurements of: (i) the strength of the equatorial wave

emitted from the western boundary; (ii) coastal Kelvin waves

at several latitudes; and (iii) westward-propagating Rossby

waves at different longitudes.
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APPENDIX

THE NUMERICAL MODEL

A number of numerical experiments have been carried out

to test the ability of this ocean model in simulating some

important characteristics of low frequency wave dynamics.

A test simulated the spin-up in a closed ocean basin,

focusing on the internal Kelvin and Rossby waves generated by

numerical solutions. Another test involved total energy

conservation (preserved in the model, at least, within 0.02%)

and kinetic energy balance in the system (the residual error

representing less than 0.001%). An experiment investigating

the behaviour of a Kelvin wave interacting with a mean flow -

a problem essentially non linear (Anderson and Rowlands, 1976)

- was also performed. This experiment showed the competence of

the present model to reproduce a phenomenon, in a context

where the non linear terms are important. The tests, not shown

here, can be found in Soares (1992).

Section A.I presents the numerical form of the equations

described in Chapter 3. Sections A.2 and A.3 examine in

greater depth the time discretization schemes used in the

numerical model.

Section A.4 addresses the problem of the conservation of

properties of the numerical scheme used in the study. The

stability criteria applied to the model are defined in Section

A.5. The effect of inclusion of lateral viscosity in the

numerical model is discussed in Section A.6.
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A.I Dynamic equations: discrete form

In order to translate Equations (3.2.1)-(3.2.3) and

(3.2.8)-(3.2.10) into finite-difference form a Richardson

Lattice (also known as Arakawa "C" grid; Figure Al) was

chosen. The choice of the C grid is based on the fact that it

best simulates the geostrophic adjustment mechanism (Mesinger

and Arakawa, 1976). The zonal and meridional velocities (u and

v) are defined on the boundary of each grid cell whilst the

interface displacement (h) is defined at the centre of each

grid cell.

*u +h

v

*u +h

v

*u

*u +h

v

*u +h

v

*u

FIGURE Al - Location of variables h, u, and v on a Richardson Lattice.

The d i s c r e t i z a t i o n scheme used in t h i s model i s a
modification of the t r a d i t i o n a l forward-backward (FB) scheme
(Castro, 1985): the gravi ty wave terms, which are the layer
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interface displacement: gradient in the momentum equations and

divergent term in the continuity equation, of Equations

(3.2.1)-(3.2.3) and of Equations (3.2.8)-(3.2.10) were

discretized using a FB scheme (see Section A.2). The advection

and Coriolis terms of the momentum equations were centred in

time using the Adams-Bashforth scheme (see Section A.3).

The viscous term was lagged in time, as usual, in order

to keep the system stable. A constant value for the horizontal

eddy viscosity, AH=10
3 m2/s, was used in order to damp grid

scale waves. A coefficient of viscosity of O(103 m2/s) is

similar to that used in most other models of a similar type

(see Section A.6).

A.1.1 Non linear equations

The discretized form of Equations (3.2.1)-(3.2.3), used

in this work is:

u(t+At) = u(t) - At \[1.5Bi(t) - 0.5Bi(t-At)]
+ 6±P{t+At) - Ajfi2u(t))

(A.I.I)

v(t+At) = v(t) - At {ll.SBj(t) - 0.5BJ(t-At)]
) -AM6

2v(t)} {A.x.z)

(A.1.3)
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where B is the combination of advective and Coriolis terms,

given by:

B±(t) = -i [U2(t)x + V2U)J1 - V{t)ij Q(t)J (A. 1.4)

Bj(t) = -I [u2(t) z + v2(t) J] + U(t)ZJ QU) J (A. 1.5)

Q, the discretized potential vorticity, given by:

QU) =U±v(t) - _A_6 i[ u(t) cose^ +f\/H
ij (A.1.6)

U and V are the components of the flux vector, given by:

U(t) =

v(t) = v(t) WET

and

Ax = r cos0 AX

Ay = r A6
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The averaging, differentiating and Laplacian operators

are respectively given by (Lilly, 1965):

Averaging operators:

a1 = -|

Differentiating operators:

Laplacian operator:

S2a = / A
1

x ? [ a ( i+D + a ( i - l ) - 2
(Ax)2

The system of Equations (A.1.1)-(A.1.3) is in fact

implicit, but, if integrated in the order (A.1.3)-(A.I.1)-

(A.1.2), or (A.1.3)-(A.1.2)-(A.1.1) it is explicit. To

minimize the asymmetry of the system the equations are

integrated in the order (A.1.3)-(A.1.1)-(A.1.2) in the odd

time steps, and in the order (A.I.3)-(A.1.2)-(A.1.1) in the

even time steps.
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A.1.2 Linear equations

The discretized form of the linear Equations (3.2.8)-

(3.2.10) can also be given by Equations (A.1.1)-(A.1.3) but

with B, Q, U and V, given by:

Bi(t) = - V(t) 1J 0(t) J (A. 1.7)

Bj(t) = U(t)iJ Q(t)x (A. 1.8)

U(t) = U(t) Ho

V(t) = v(t) Ha
J
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A.2 Forward-backward (FB) scheme

The FB scheme is obtained by first integrating the

gravity terms of either the equation of motion or of the

continuity equation forward, and then those of the other

equation. Mesinger and Arakawa (1976) have studied the

stability and convergence of this scheme in the context of the

linearized shallow-water equations. They found the scheme to

be stable and neutral for time steps satisfying:

At < 2-±S (A.2.1)

where, As is the grid size.

This stability limit for the time step is twice the

Courant-Friedrichs-Lewy (CFL) condition valid for other

discretization schemes, like the leapfrog for example, which

makes this scheme very attractive in terms of computing

efficiency. In addition, as a two level scheme, it has no

computational mode in time.

Henry (1981) and Foreman (1984) showed, using linearized

shallow water equations, that the application of the FB scheme

for both the gravity wave terms and the Coriolis terms

introduces phase velocity errors for the long waves present in

the model. In order to avoid these phase velocity errors,

generated by asymmetric treatment of Coriolis terms, the

Coriolis terms were centred in time using the Adams-Bashforth

scheme. Since it is desirable to have the advective terms also

centred in time, both the advection and Coriolis terms are

collected together and the Adams-Bashforth scheme was used to

centre the combined terms in time.
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A.3 Adams-Bashforth (AB) scheme

The scheme used here is a simplified version of the

original AB scheme, which is of fourth order of accuracy.

To define the AB scheme, consider the equation :

U=U(t)

where, t is the time (t=nAt) and U® is the approximate value

of U at time nAt.

As a two level scheme, the AB scheme relates values of

the dependent variable at two time levels (n-1 and n), in

order to approximate the exact formula:

(JI+1) At

= U(n) + f f(U,t) dfc (A. 3.1)

The scheme, second order accurate, is obtained when f in

Equation (A.3.1) is approximated by a value obtained at the

centre of the interval At by a linear extrapolation using

values f(nl) and f(n) (Mesinger and Arakawa, 1976) :

+ At( — f{n) - — f(n"1>) (A.3.2)
2 2
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A.4 Energy and vorticity

When discretizing the advective terms in the non linear

momentum equations the discretization scheme best suited for

the model usage has to be carefuly chosen. Different

properties of the flow may or may not be conserved depending

on slight changes in the discrete form of the advective terms

(Castro, 1985).

In this study, due to the importance of Kelvin and Rossby

waves for the dynamics of the processes studied, a scheme able

to conserve both potential vorticity and potential enstrophy

(average of the square of the potential vorticity) was chosen.

The scheme, given by Equations (A.1.4) and (A.1.5),

conserves both potential vorticity and potential enstrophy as

shown by Sadourny (1975).

The scheme, however, only conserves energy if Q=0 (pure

rotational motion). Nevertheless, according to Sadourny

(1975), the potential enstrophy-conserving model allows very

long term integrations with negligible loss of energy in the

explicit scales. Further, enstrophy conservation prevents any

build up of energy in the smaller scales: most of the energy

remains in the larger scales, where good accuracy makes the

necessity of formal energy conservation less stringent. This,

together with the much higher degree of complexity of an

enstrophy-energy conserving scheme (Arakawa and Lamb, 1981),

justifies the adoption of Sadourny's potential enstrophy

conserving formulation.
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A. 5 Stability criteria

The time step (At) used in the study satisfies the

criteria of stability, CFL and momentum diffusion. However,

these conditions can only be used as guide in choosing the At

actually used in the study because of simplifying assumptions

made in their derivations. The most severe criterion is the

CFL condition given, in Cartesian plane, by Equation (A.2.1).

Applying it to the actual difference scheme on the spherical

Earth, the stability criterion can be formulated as follows:

At < 2 *nin(rcos8 AA) (A.5.1)
c
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A. 6 Viscous effects

The inclusion of lateral viscosity in models can

significantly affect the prediction of baroclinic waves. In

linear models, both the wave decay scale (the distance that

waves carry information) and the wave velocity can be modified

by viscous effects.

Continuous case

The subsequent discussion follows Davey et al.(1983), who

investigated the free Kelvin wave solutions of the continuous

linear .f-plane shallow water equations, with lateral viscosity

(AH) included. Two important parameters associated with the

viscosity, characterising the offshore and alongshore viscous

effects, were examined.

Offshore viscous effect:

e = — ^ - - (A.6.1)

Alongshore viscous effect:

a = £sL (A.6.2)

where R is the Rossby radius (c/f) and 1 is the alongshore

wavenumber.

It was demonstrated that long waves are slowed down by

offshore viscous effects (see A.6.1) and short waves by

longshore viscous effects (see A.6.2). Note that the offshore
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viscous effects increase as wavelength increases. This seems

surprising at first sight because one expects longer waves to

be less affected by viscosity. The shorter waves were shown to

decay faster. The longer waves decay more slowly and the

longshore decay scale is largest for long waves. The wave

properties, particularly the longshore wave velocity, were

shown to be much less dependent on AH when free-slip rather

than no-slip conditions were used.

Variations with latitude

The parameters described above depend on the Coriolis

parameter (f), which varies with latitude. From low to higher

latitudes, the parameter a changes only slightly but, e

increases considerably. The increases in e causes a large

increase in decay rate and a decrease in velocity, as a wave

travels poleward. Therefore, for a fixed frequency, a decrease

in wavelength accompanies decreased speed.

Discrete case

The effects of viscosity on linear free baroclinic Kelvin

waves in numerical shallow-water models were explored by Hsieh

et al.(1983). A model resolution parameter was defined in

their study as:

A = Af (A.6.3)

with As being the offshore grid spacing.

They also defined two distinct parameter regime. A "good-

resolution" regime, e/A2»l [with e given by (A.6.1) and A by
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(A.6.3)] and a "poor-resolution" regime, e/A2«l. Transition

from one regime to another regime occurs when

It was shown that in a "good-resolution" regime, the wave

behaviour in a numerical model is essentially identical to

that in the continuous case studied by Davey et al.(1983),

i.e., finite-difference effects are negligible. Within a

"poor-resolution" regime, A (A.6.3) becomes dominant while e

(A.6.1) becomes unimportant.

165



LIST OF REFERENCES

Adamec, D. and J.J.O'Brien, 1978: The seasonal upwelling
in the Gulf of Guinea due to remote forcing. J. Phys.
Oceanogr., 8, 1050-1060.

Anderson, D.L.T. and P.W.Rowlands, 1976: The role of
inertia-gravity and planetary waves in the response of
a tropical ocean to the incidence of an equatorial
Kelvin wave on a meridional boundary. J. Mar. Res., 34,
295-312.

Anderson, D.L.T. and A.M.Moore, 1985: Data Assimilation,
437-463. In Proceedings of the NATO Advanced Study on
Advanced Physical Oceanographic Numerical Modeling.

Arakawa, A. and V.R.Lamb, 1981: A potential enstrophy and
energy conserving scheme for the shallow water
equations, J. Phys. Oceanogr., 109, 18-36.

Barber,R.T. and F.P.Chavez, 1983: Biological consequences
of El Nino. Science, 222, 1203-1210.

Bigg, G.R. and A.E.Gill, 1986: The annual cycle of sea
level in the eastern tropical Pacific. J". Phys.
Oceanogr., 16, 1055-1061.

Bigg, G.R. and M.Inoue, 1992: Rossby waves and El Nino
during 1935-46. Q. J. R. Meteorol. Soc, 118, 125-152.

Boyd, J.P, 1980: Equatorial solitary waves. Part I: Rossby
Solitons. J. Phys. Oceanogr., 10, 1699-1717.

Bryan, K., 1969: A numerical method for the study of the
world ocean. J. Comp. Phys., 4, 347-376.

Busalacchi, A.J. and J.Picaut, 1983: Seasonal variability
from a model of the tropical Atlantic ocean. J. Phys.
Oceanogr., 13, 1564-1588.

Cane, M.A., 1979: The response of an equatorial ocean to
simple wind stress pattern: I. Model formulation and
analytic results. J. Mar. Res., 37, 233-252.

Cane, M.A., 1983: Oceanographic events during El Nino.
Science, 222, 1189-1195.

Cane, M.A. and R.J.Patton, 1984: A numerical model for
low-frequency equatorial dynamics. J. Phys. Oceanogr.,
14, 1853-1863.

166



REFERENCES

Cane, M.A. and E.S.Sarachik, 1976: Forced baroclinic ocean
motions,I, The linear equatorial unbounded case. J.
Mar. Res., 34, 629-666.

Cane, M.A. and E.S.Sarachik, 1979: Forced baroclinic ocean
motions,III, The linear equatorial basin case. J". Mar.
Res., 37, 355-398.

Cane, M.A. and E.S.Sarachik, 1983: Equatorial
Oceanography. Rev. Geophys. and Space Phys., 21, 1137-
1148.

Castro, B.M., 1985: Subtidal response to wind forcing in
the South Brazil Bight during winter. Ph.D
dissertation, Rosenstiel School of Marine and
Atmospheric Science, University of Miami, USA.

Charney, J.G., 1955: The generation of oceanic currents by
winds. J. Mar. Res., 14, 477-498.

Chelton, D.B. and R.E.Davis, 1982: Monthly mean sea level
variability along the west coast of North America. J.
Phys. Oceanogr., 12, 757-784.

Clarke, A.J., 1983: The reflection of equatorial waves
from oceanic boundaries. J. Phys. Oceanogr.,13, 1193-
1207.

Clarke, A.J., 1992: Low-frequency reflection from a
nonmeridional eastern ocean boundary and the use of
coastal sea level to monitor eastern Pacific equatorial
Kelvin waves. J". Phys. Oceanogr.,22, 163-183.

Clarke, A.J. and C.Shi, 1991: Critical frequencies at
ocean boundaries. J. Geophys. Res., 96, 10731-10738.

Davey, M.K., W.W.Hsieh and R.C.Wajsowicz, 1983: The free
Kelvin wave with lateral and vertical viscosity. J.
Phys. Oceanogr., 13, 2182-2190.

Delcroix, T., J.Picaut and G. Eldin, 1991: Equatorial
Kelvin and Rossby waves evidenced in the Pacific ocean
through Geosat sea level and surface current anomalies.
J. Geophys. Res., 96, 3249-3262.

Du Penhoat, Y., M.A..Cane and R.J.Patton, 1983: Reflections
of low frequency equatorial waves on partial
boundaries, 237-258. In Hydrodynamics of the equatorial
ocean, Elsevier Oceanography series.

Enfield, D.B., 1989: El Nino, past and present. Rev.
Geophys., 27, 159-187.

167



REFERENCES

Enfield, D.B. and J.S.Allen, 1980: On the structure and
dynamics of monthly mean sea level anomalies along the
Pacific coast of North and South America. J. Phys.
Oceanogr., 10, 557-588.

Foreman, M.G.G., 1984: A two dimensional dispersion
analysis of selected methods for solving the linearized
shallow water equations. J. Comp. Phys., 56, 287-323.

Glantz, M.H., R.W.Katz and N.Nicholls, 1990:
Teleconnections linking worldwise climate anomalies,
Cambridge University Press.

Gill, A.E., 1982: Atmosphere-Ocean Dynamics, Academic, San
Diego, Calif.

Grimshaw, R. and J.S.Allen, 1988: Low-frequency baroclinic
waves off coastal boundaries. J. Phys. Oceanogr., 18,
1124-1143.

Hsieh, W.W., M.K.Davey and R.C.Wajsowicz, 1983: The free
Kelvin wave in finite-difference numerical models, J.
Phys. Oceanogr., 13, 1383-1397.

Henry, R.F., 1981: Richardson-Sielecki schemes for
shallow-water equations, with applications to Kelvin
waves. J. Comp. Phys., 41, 389-406.

Houghton, R.W., 1976: Circulations and hydrographic
structure of the Ghana continental shelf during the
1974 upwelling. J. Phys. Oceanogr., 6, 909-924.

Hurlburt, H.J., J.Kindle and J.J.O'Brien, 1976: A
numerical simulation of the onset of El Nino. J. Phys.
Oceanogr., 6, 621-631.

Johnson, M.I. and J.J.O'Brien, 1990: The northeast Pacific
Ocean response to the 1982-1983 El Nino. J. Geophys.
Res., 95, 7155-7166.

Katz, E.J., 1987: Equatorial Kelvin waves in the Atlantic.
J. Geophys. Res., 92, 1894-1898.

Knox, R.A and Halpern, 1982: Long range Kelvin wave
propagation of transport variations in Pacific ocean
equatorial currents. J. Mar. Res., 40, Suppl, 329-339.

Kubota, M. and J.J.O'Brien, 1988: Variability of the upper
tropical Pacific Ocean model. J. Geophys. Res., 95,
13930-13940.

LeBlond, P.H. and L.A.Mysak, 1978: Waves in the ocean,
Elsevier Oceanographic Series, 20, Amsterdam, The
Netherlands.

168



REFERENCES

Lilly, D.K., 1965: On the computational stability of
numerical solutions of time-dependent non-linear
geophysical fluid dynamics problems. Mon. Wea. Rev.,
93, 11-26.

Longuet-Higgins, M., 1964: Planetary waves on a rotating
sphere. Proc. Roy. Soc., Ser. A, 279, 446-473.

Madden, R.A. and P.R. Julian, 1971: Detection of a 40-50
day oscillation in the zonal wind in the tropical
Pacific. J. Atmos. Sci., 28, 702-708.

Madden, R.A. and P.R. Julian, 1972: Description of global
scale circulation cells in the tropics with a 40-50 day
period. J. Atmos. Sci., 29, 1109-1123.

McCreary, J.P., 1976: Eastern tropical ocean response to
changing wind systems. J. Phys. Oceanogr.,6, 632-645.

McCreary, J.P., 1977: A model of tropical ocean-atmosphere
interaction. Mon. Wea. Rev., Ill, 370-389.

McCreary, J.P, 1984: Equatorial beams. J. Mar. Res., 42,
395-430.

McCreary, J.P, J.Picaut and D.W.Moore, 1984: Effects of
remote annual forcing in the eastern tropical Atlantic
ocean. J. Mar. Res., 42, 45-81.

McCreary, J.P. and Anderson, D.L.T., 1991: An overview of
coupled ocean-atmosphere models of El Nino and the
Southern Oscillation. J. Geophys. Res., 96, 3125-3150.

McPhaden, M.J. and B.Taft, 1988: Dynamics of seasonal and
intraseasonal variability in the eastern equatorial
Pacific. J. Phys. Oceanogr., 18, 1713-1732.

Mesinger, F. and A.Arakawa, 1976: Numerical methods used
in atmospheric models, volume 1. GARP Publication
Series, 17, World Meteorological Organization.

Meyers, G., 1979: Annual variation of the slope of the
14°C isotherm along the equator in the Pacific ocean.
J. Phys. Oceanogr., 9, 885-891.

Miller, M.J. and A.J.Thorpe, 1981: Radiation conditions
for the lateral boundaries of limited-area numerical
models. Quart. J. R. Met. Soc, 107, 615-628.

Miller, L., R.Cheney and B.Douglas, 1988: GEOSAT altimeter
observations of Kelvin waves and the 1986-87 El Nino.
Science, 239, 52-54.

169



REFERENCES

Moore, D., 1968: Planetary-gravity waves in an equatorial
ocean. Ph.D. Dissertation, Harvard University,
Cambridge, Massachusetts.

Moore, D. and S.G.H.Philander, 1977: Modelling of the
tropical ocean circulation. In "The Sea", vol.6, 319-
361, Wiley, New York.

Moore, D., P.Hisard, J.McCreary, J.Merle, J.O'Brien,
J.Picaut, J-M Verstraete and C.Wunsch, 1978: Equatorial
adjustment in the eastern Atlantic. Geophys. Res.
Lett., 5, 637-640.

Pares-Sierra, A. and J.J.O'Brien, 1989: The seasonal and
interannual variability of the California current
system: A numerical model. J. Geophys. Res., 94, 3159-
3180.

Philander, S.G.H., 1978: Forced oceanic waves. i?ev.
Geophys. Space Phys., 16, 15-46.

Philander, S.G.H., 1979: Equatorial waves in the presence
of the Equatorial Undercurrent. J. Phys. Oceanogr., 9,
254-262.

Philander, S.G.H., 1990: El Nino, La Nina and the southern
oscillation, Academic Press Inc.

Picaut, J., 1983: Propagation of the upwelling in the
eastern equatorial Atlantic. J. Phys. Oceanogr., 13,
18-37.

Picaut, J., 1993: Influence of density stratification and
bottom depth on vertical mode structure functions in
the tropical Pacific. J. Geophys. Res., 98, 14727-
14737.

Quinn, W.H., V.T.Neal and S.A. de Mayolo, 1987: El Nino
occurrences over the past four and a half centuries. J.
Geophys. Res., 92, 14449-14461.

Rasmusson, E.,M. and T.C.Carpenter, 1982: Variations in
tropical sea surface temperature and surface wind
fields associated with the Southern Oscillation/El
Nino. Mon. Wea. Rev., 110, 354-384.

Rasmusson, E.M. and J.M.Wallace, 1983: Meteorological
aspects of the El Nino/Southern Oscillation. Science,
222, 1195-1202.

Ripa, P. and S.Hayes, 1981: Evidence for equatorially
trapped waves at the Galapagos Islands. J. Geophys.
Res., 86, 6509-6516.

170



REFERENCES

Sadourny, R., 1975: The dynamics of finite-difference
models of the shallow-water equations. J. Atmos. Sci.,
32, 680-689.

SCOR, 1983: Scientific Committee on Oceanic Research,
Working Group 55, Prediction of "El-Nino", in SCOR
Proceedings, vol.19, pp47-51, Paris, 1983.

Schopf, P.S., D.L.T.Anderson and R.Smith, 1981: Beta-
dispersion of low frequency Rossby waves. Dyn. Atmos.
Ocean, 5, 187-214.

Servain, J., J.Picaut, and J.Merle, 1982: Evidence of
remote forcing in the equatorial Atlantic ocean. J.
Phys. Oceanogr., 12, 457-463.

Soares, J.R., 1991: Extra tropical response of the ocean
to El Nifio-Southern oscillation events. M.Phil/Ph.D.
Upgrading Report, Oceanography Department, University
of Southampton.

Spillane, M.C., D.B.Enfield and J.S. Allen, 1986:
Intraseasonal oscillations in sea level along the west
coast of the Americas. J. Phys. Oceanogr., 17, 313-325.

Veronis, G. and H.Stommel, 1956: The action of variable
wind-stresses on a stratified ocean. J. Mar. Res., 15,
43-69.

Verstraete, J.M, 1992: The seasonal upwellings in the Gulf
of Guinea. Progress in Oceanography. 29, 1-60.

Weickmann, K.M., 1991: El Nino/Southern Oscillation and
Madden-Julian (30-60 days) oscillations during 1981-
1982. J. Geophys. Res., 96, 3187-3195.

Weisberg, R.H., A.Horigan and C.Colin, 1979: Equatorially
trapped Rossby-gravity wave propagation in the Gulf of
Guinea. J. Mar. Res., 37, 67-86.

White, W.B. and J.F.T.Saur, 1983: A source of interannual
baroclinic waves in the eastern tropical Pacific. J.
Phys. Oceanogr., 13, 531-544.

Wyrtki, K., 1975: El Nino-The dynamic response of the
equatorial Pacific Ocean to atmospheric forcing. J.
Phys. Oceanogr., 5, 572-584.

171


