























CHAPTER 2
PHK DERIVATION OF AN EFPECTIVE ROTATIONAL HAMILTONIAN

2.1 Introduction
A fundamental prerequisite for the analysis of any spectrum is a

model, giving the problem a mathematical framework upon which any calcul-
ations can be based and enabling an interpretation of the results to be
given, in terms of physically significant quantities. A model in which
spectral lines can be correlated with transitions between different quantum
mechanical states is the most useful and the most appealing one. In most
spectroscopic experiments these states do not evolve with time, i.e. they
are stationary states, and so their energies can be obtained from the sol-

ution of the time-independent Schr&dinger equation

AY,> = EY;) (2.1)

where H is the total Familtonian, the ket |(/ > is the i*" eigenfunction
and the eigenvalue E is the energy of this eigenfunction.

Our interest lies in the spectroscopy of molecules, in which case H
will be a molecular Hamiltonian representing the total potential and kinetic
energies of the molecule. It is important to understand the nature of the
molecular eigenfunction 'd}i> , 2 function of both nuclear and electronic
coordinates, which we shall represent by Q and x respectively. Due to the
relative orders of magnitude associated with electronic, vibrational and
rotational motions a factorisation of a wavefunction, ¢(X;Q), into two
functions, one dependent on electronic coordinates only and one on nuclear

coordinates only, would be convenient:

@ (x:2) = 0 (x) X (a) (2.2)

The aim of the Born and Oppenheimer Separation (1) is to effect such a
separation of electronic, vibrational and rotational motions. To achieve
this, the functions and operators involved are expanded as a power series
jzxgh, the relative nuclear displacements from the equilibrium nuclear con-

figuration, with an order parameter K, defined as
- (B\1%
K = (M) | (2.3)

where m is the mass of the electron and Mn the reduced mass of the nuclei.

As a result of using this expansion parameter the electronic energies are
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of order KO, the vibrational energies are of order K2 and the rotational
energies are of order K4. To order K2 it is indeed possible Lo separate
the wavefunctions into products of electronic and nuclear functions bul
this is not possible for higher orders in the expansion, without making
approximations;

Consider the adiabatic approximation, which arises in fourth order of
this expansion. In this approximation the electrons are assumed to follow
the nuclei adiabatically, or, in other words, there is no change in elec-
tronic state as the nuclei move, and as a consequence the electronic and
nuclear coordinates can be separated, We shall refer to such states,
’¢> , as 'Born-Ovpenheimer' states or 'adiabatic' states. Terms occur in
higher orders of this expansion which represent mixing of different adia-
batic states; such terms are referred to as nonadiabatic terms and their
origin is often ascribed to the breakdown of the Born-Oppenheimer Approx-
imation. The true molecular eigenfunctions I k[/ i> are thus linear combin-

ations of these adiabatic states

> - Zcijl¢j> (2.4)

However each molecular eigenfunction “// > will generally have a
domlnant contribution from a particular adiabatic state and so it is still
permissible to refer to this state in terms of the dominant adiabatic wave-
function.

The analysis of molecular spectra using the true molecular eigenfunc-
tions is impracticable since to include the effects of all these nonadia-
batic terms a matrix diagonalisation of an infinite matrix would have to be
performed., Even if this matrix were to be suitably truncated the problem
would still be very difficult to handle. Ideally a matrix representation
is required that contains no terms off-diagonal in electronic state, in
which case the matrix representation is still an infinite array but consists
only of submatrices, each only containing elements pertaining to a single
adiabatic state. Figenvalues can be obtained from each of these diagonal
blocks, from which it is possible to determine the transition frequencies.
The Hamiltonian which would give such a matrix representation we refer to
as a 'spectroscopically useful' Hamiltonian, and its derivation will in-
volve artificially reducing to a negligible level the effects of all
elements off-diagonal in electronic state., This is illustrated in figure
1. In practice we use an effective Hamiltonian that only operates within
the manifold of a particular adiabatic state and there are three methods
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commonly used for its derivation, namely the contact transformation (2),
the Van Vleck transformation (3) and degenerate perturbation theory (4).

The first two of these methods involve the application of a unitary
transformation to the wavefunctions, the latter being a slightly more spec-
ifie version of the former. The contact transformation has proved partic-
ularly useful for dealing with vibration-rotation interaction. The Van
Vleck transformation involves the use of perturbation theory type express—
ions'and the form of the resulting effective Hamiltonian can be shown to be
identical to that obtained by degenerate perturbation theory for terms up
to third order (5). The technique of degenerate perturbation theory is the
one used most extensively in subsequent chapters and so will be outlined in
more detail in the following section. S

It is perhaps worthwhile noting at this stage that the consideration
of these nonadiabatic terms is of particular importance in the discussion
of rotational levels for two reasons. Firstly the rotational energies
first appear in order K4 of the expansion and so the moment higher order
rotational interactions are considered then nonadiabatic terms, which, as
has been mentioned, appear in orders > KA, will manifest themselves, espec-
ially as they can be of much the same magnitude as the rotational terms of
order K4. Secondly, precise measurements of rotational transitions can be
made in the microwave region and so such effects can readily be detec~

ted,

2.2 Degenerate Perturbation Theory

In this section we shall outline the technique of degenerate perturba-
tion theory. Messiah (4) has described this, using the methods of both
Bloch (€) and Kato (7). A rather more readable account of the derivation
of an effective Hamiltonian has been given by Soliverez (8), using the
formalism set up by Bloch (€).

The eigenfunctions | \lll> of the total Hamiltonian, which operates
over all vector space, form a complete orthonormal set. We want a Hamil-
tonian that operates only within a particular manifold of the total Hilbert

space, In other words we wish to project the effects of :the total Hamil-

tonian operator onto a chosen vector space which is of dimension less than
that of the total vector space, and hence to construct an effective Hamil-
tonian that operates only within this chosen vector space and with the
equivalent operator form within this manifold of the total Hamiltonian.
The geometrical interpretation of this projection process is far more read-

ily appreciated for a total vector space of only two or three dimensions,
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The operator which brings about this projection of the total Hamiltonian is
a projection operator, PO.

Soliverez (8) shows that it is possible to set up an effective Hamil-
tonian which has the following properties:

1) It operates only within a manifold of dimension less than that of the
total vector space.

2) Its eigenvalues are identical to those corresponding eigenvalues of
the total Hamiltonian,

3) Its eigenvectors are related in some simple manner to those of the

total Hamiltonian,
4) It can be expanded as a power series in terms of a perturbation V, and
is‘Hermitian to all orders of the expansion.
We shall indicate briefly here how such a Hamiltonian is set up.

The total Hamiltonian is split into two parts
H= HO +V (2.5)

where the eigenvalues and eigenvectors of Hb are known:

B (PUsdo = B 1Y) (2.€)

where the eigenfunctions '(,[} j> 0 form a complete orthonormal set over all
vector space.

V is a perturbation to this Hamiltonian and we are interested in its
effects on the eigenvectors and eigenvalues of Ho. In particular, we want
to concern ourselves with the eigenvectors spanning the particular manifold
onto which the total Hamiltonian is projected; these will have a particular

eigenvalue, EO. The projection operator is defined as
P, = }l_;[ <k | (2.7)

where the]]&) are the eigenvectors spanning the manifold under consider-
ation. PO must commute with the Hamiltonian.and so we have

HoPy = PoHy = Egf, (2.8

%

The eigenvalue E. is in general degenerate, and the effect of the pertur-

0
bation V is to 1lift this degeneracy. The eigenvalues of the perturbed

energy levels are given by

(Ho+V)liPi> = (B, +Ai”wi>



which can be rearranged to give
(H, - EO)W/ i> = (4, - V)]LVO (2.9)

Ai are the shifts in the energy levels due to the perturbation V. Using
(2.8) it can easily be shown that

VIV = ARV = AW, (2.10)

where [ [[J i> o are eigenfunctions of HO, and in particular are those eigen-
functions |k) spanning the vector space under consideration.

There is a complementary projection operator Q‘O which follows from the

closure relationship:

H

1-P

Z} 1><1 (2.11)

where | 1) are the eigenvectors that have been excluded from equation (2.7)

since they do not span the manifold we are interested in. QO also has the

%

property

a

o = (30) (Hy = B) = (Hy = B) (f‘;o) (2.12)

s ld”

where ( ) Z 1< | (2.13)

T (5, - B
From equations (2.9) and (2.12) it follows that

%Wy = ( ) A, -9 YD (2.14)

We are now able to find a relationship -for IL//J) in terms of the unper-

turbed eigenvectors l L}/ i> o}

L2 (Py + QYD
V:do+ (.Z?) @A, -0,y (2.5

The A terms can be eliminated from (2.15) by repeated use of equation
(2.10) “to give an expansion of ll,l/ ) in terms of l Y. >O’ vV, P, and
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(Qo/a). The eigenvectors for the perturbed and unperturbed Hamiltonians

are thus related by an identity of general form

Wi> = UWDO (2.16)

where U is an operator involving V, PO and (Qo/a) and can be expanded as an
infinite series in terms of these operators. Substitution of (2.16) into

(2.10) leads to the following eigenvalue expression

POVUN/:L>0 = Ailwi>o (2.17)

If we identify (POVU) with the effective Hamiltonian we can see that it
does indeed possess the properties listed by Soliverez (8), although its
hermiticity has not been demongtrated. Note that ‘31 denote the energy
shifts about an origin EO‘ Fquation (2.17) is also particularly convenient
in that it uses eigenfunctions of the unperturbed Hamiltonian as basis
functions, and these are by definition known.

We are now in a position to be more specific in our derivation of an
effective molecular Hamiltonian. As has been discussed in the previous
section, it is prudent to use adiabatic electronic wavefunctions as the
basis states since this greatly simplifies the calculation of the molecular
energy levels. The basis functions,q/ i>0 are thus taken to be the adia—
batic electronic states that are of interest, and so HO will be the Hamil~-
tonian of which such electronic states are eigenvalues. The effects of the
nonadiabatic terms, such as spin-orbit coupling and L-uncoupling terms,
that cause mixing of the adiabatic states, can be included by treating
these terms as a vperturbation, V. In practice since the adiabatic states
do not by definition change as the nuclei move, the perturbation V will
also contain the terms of order K2 and K4 that describe the vibrational and
rotational motions of the nuclei. We are not concerned at this stage with
the vibrational motions of the nuclei and we can avoid dealing with them by
redefining our basis states so as to be vibronic states of the molecule,
lg}i;'v>(ﬁ these would be adjabatic in the sense that there would be no
change in the vibronic state as the nuclei rotate, In order to apply deg-
enerate perturbation theory, the Hamiltonian describing these states is

agsgumed to have been solved:

HOW):’-; V>O = Eivlwi; V>O (2.18)

We shall suppress the vibrational quantum number v, its presence being
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taken as understood. The effects of nuclear spin will be ignored through-
out this chapter,

Miller (9) has shown how to derive an effective rotational Hamiltonian
for a molecule in a particular electronic state, which operates only within
the rotational subspace of that state, He partitions the total Hamiltonian

as follows

H = H, + AV (2.19)

where HO and V have the significance discussed aboves )\is a dimensionless
parameter taking values between O and 1 that denctes the order of the per -
turbation expansion.

The projection operators PO and QO are given the more explicit defin-

itions

s
1

o = z};]lok><lok’
% Z Z k >k | (2.20)
1

n
- E )
a 1;419 K o 1

j1
(

B

where 1O refers to the adiabatic state of interest,
1 refers to adiabatic states other than lo,
k refers to the rotational gquantum numbers.

The effective rotational Hamiltonian is given by

Hype = A BVU (2.21)

As has already been noted, U can be expanded as an infinite series

U = Z N P (2.22)
n=0

where Un is given by the general formula

K K K
7 = ZTSTVSZV.,.. s v p
n
except that ° = P, (2.23)
Kh can take the values O, 1, 2 « . &
such that K, +XK, +. .+ ¢ +K = n
1 2 n
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K, + Ky + o o & +Kj}j (3 =1,2 4 o oy n=1)

and where 5 o= "PO
(QO/&H) for ng0

;
Note that both Miller (9) and Messiah (4) leave U undefined. As noted by

#

Freed (10), certain terms in the expansion are in fact non-Iermitian but by
taking the Hermitian average of such terms the effective Hamiltonian bec-
omes Hermitian to all orders, Equation (2.21) can thus be expanded as
follows,

By use of equations (2.22) and (2,23):

H

i

ef f PoVU

i

N ve”
« {2V (9 /a) VPO}
N gPoV (a/2) ¥ (afa) T2, - [PV (Qo/a2> VPDVPO]T}
+ )\4{90‘1’ (9p/2) V (qy/a) V (9y/a) VE,
- BV (8/a%) VB,V (8y/a) VB,
- [p,v (9y/a") V (ay/2) VPOVPO]T
+ gV (8y/2") VPOVPOVPolT}

~+'h5 . e e (2.24)

where the square brackets marked by a dagger mean that the Hermitian average
of the enclosed terms are algo needed. The term in parentheses after p,
represents the nth order contribution to the effective Hamiltonian. The
number of terms involved can be seen to increase rapidly as the perturbation
treatment is taken to increasingly higher order., Tven a fourth order treat-
ment is very tedious and complicated, and higher orders than this become
impracticable, However the expansion of the effective Hamiltonian is expec-
ted to converge fairly rapidly, although the rate of convergence will dep-
end to some extent on the mamner in which the Hamiltonian is originally
partitioned. 1In practice the total Hamiltonian is partitioned in such 2

way that the dominant interactions arise in first order of perturbation
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theory. Smaller interactions are included in the effective Hamiltonian by
appealing to higher orders until the required precision of the eigenvalues,
a limit usually imposed by experiment, is veached, If higher order terms
than say fourth need to be calculated before such conditions are reached,
or in other words, if convergence is slow, then an unsuitable partitioning
of the Hamiltonian has probably been used, For most spectroscopic applic-
ations, calculations of higher order than fourth are thankfully unnecessary.
Equation (2.,24) is rather abstract and it is still not obvious from
its form how the explicit operator form of ihe effective Hamiltonian arises.
Tn the next section we shall deal briefly with angular momentum operators
and some standard spherical tensor techniques, after which we shall be in a
position to give an illustrative calculation, showing how from equation
(2.24) it is possible to derive an effective Hamiltonian written in terms

of operator equivalents.

2,3 Angular Momenta and Spherical Tensors

Tt ig not intended to give a thorough account of angular momenta and

spherical tensor theory in this section, the aim is merely to give a few of
the basic ideas and to indicate some useful relations that will be called
upon in subsequent chlculations. There are several basic texts on these
subjects, for instance, Fimonds (11), Brink and Satchler (12) and Rose (13),
although it should be noted that the phase conventions observed by these

authors differ. We follow the phase conventions given by Rose.

Angular Momenta
Angular momentum operators can be defined as those momentum operators
that obey the commutation rules prﬁ py} = ipz and cyclic permutations

of %, y, 2z, where P, pr p, are components of the angular momentum oper-

ator p. MNote that since these components do not commute, then it is not
possible to determine them all simultaneously. However since the angular
momentum and the energy are both constants of motion then the angular mom-—
entum operator does commute with the Hamiltonian and so these operators
must possess at least one common bhasis functidn. This is a pertinent point
as in order to calculate matrix elements of the Hamiltonian operator well-
defined basis functions are needed. Due to the ease of use of commutation
rules and to the need to find these basis functions, it is convenient to
write the Hamiltonian operator in terms of angular momentum operators and
their components rather than in terms of differential operators. The basis
functions then obtained are defined in terms of quantum numbers relevant to

the individual angular momenta. The physical significance of angular mom-
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enta within an atomic or molecular system is easily appreciated in terms of
a precession model, The Larmor preceassion of the muclear spin angular mom-
entum about the direction of an applied magnetic field is well known, for
example, In a molecular aystem the axes of precession might be internal
axes, such as the internuclear axis of a linear molecule, or an exterrial
axis determined by the direction of an applied electric or magnetic field.

v It can be shown that the components of angular momentum operators
generate infinitesimal rotations about their corresponding axes and consequ~-
ently the Hamiltonian has to be invariant to rotation about those axes
(i.e. angular momentum is conserved about that axis).

Consider the various angular momenta that can arise in a molecule.
Pirstly there is the electronic orbital angular momentum L which is the sum

of the orbital angular momenta of each of the electrons

(2,25)

where r, and D, are respgctively the position and momentum operators for the
individual electrons. L commutes with Lz and so these operators must have
a common basis; these eigenfunctions can be shown to be spherical harmonics.
G is the angular momentum due to vibration of the nuclei, but as only dia-
tomics are being dealt with here this operator will not be considered. S
and I are the electronic spin and nuclear spin angular momenta respectively
while finally there is R, the angular momentum due to rotation of the nuc-

lei, It is possible to couple these angular momenta together, and hence we

have

J = R+L+8
(2.2€)
F = J+1

J is the total angular momentum in the absence of nuclear spins, while F is
the grand total éngular momentum. Conservation of angular momentum applies
to the total angular momentum (F or ﬁ) but not necessarily to the component
angular momenta. This is equivalent to saying that only the conserved ang-
ular momenta possess well defined eigenfunctions. In general for any con-

served angular momentum P we have the well known relations

g?} P ooy, > P(P + 1) j P«mf,:>

P EP mP:> m?i P mP:>

#

(2.27)

i
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P is the quantum number of the angular momentum P and can take integral or
half-integral non-negative values. mP is the quantum number relating to
the projection of the operator P along the z axis (as yet undefined) and
takes the (2P + 1) values P, P~ 1, 4 « o4 ~ P. The eigenfunctions I P mP>
are completely defined in terms of the quantum numbers P and mP. The pogs«
ibility of different coupling schemes and the different sets of wéll-def-
ined quantum numbers that emerge will be dealt with in the next section,

By successive infinitesimal rotations about an axis it is possible to
generate an operator for rotation through a finite angle ©¢ about, say, the

z axis, This operator is D, defined asg

\ & 2
Dpe = R . S ww§vpz T oo e e = exp ( - 16K PZ/h)
A 4

(2.28)

or in general, for a rotation of a physical system in which the coordinates

of points after rotation are related to the original coordinates by the

Fuler angles 0(,@ o
D (X,P,¥) = exp (-iXP,/b) exp (-i@P/R) exp (-1¥P,/H)
(2.29)

The matrix elements of this rotation operator are defined as

o (P)
{Puoy[D(x,B,¥) P> = gJ 2 (e,B, %) (2.20)

m

The properties of these rotation matrix elements are given in, for instance,
the above-mentioned texts. It can be shown that “ﬁ:heﬁ gp)e (X8, ¥ are
eigenfunctions of the angular mcomentum operators. For instghce, the
spherical harmonies, which are eigenfunctions of g? and Lz, are in fact
specialised rotation matrix elements with P = integer and mP = mé = 0, The
angular momentunm eigenfunctions EP mp} in general can be defined in terms

of rotation matrix elements.

Spherical Tensors

An irreducible spherical tensor operator is written in the form

T, (B)



where k = 0, 1, 2, « , ., is the rank of the tensor, and there are (2k + 1)
components labelled g, where ¢ =k, k - 15, « « «5 — Ko

Tt is possible to link spherical tensor theory with that of angular
momentum commutation relations. For instance, if k = 1 then the T; ()

are related to the components of a vector E,(a vector is a first rank

tensor)
7 (p) = T (p. +iP)
’i? == 5 X - "y
: (2.31)
% ® = %,

Angular momentum operators are vectors, and can therefore be written
in spherical tensor form. Tensor operators of rank 2 or more can also arise
in the Hamiltonian operator; for instance, the dipolar spin-spin interaction
operator and the electric quadrupcle operator are both second rank tensors.
The trivial zeroth rank tensor is a scalar quantity, i.e. a constant term,
in the sense of being independent of quantum numbers. In addition the
spherical harmonics (in a modified form) are basic examples of spherical
tengors.

We therefore choose to write all the terms in the Hamiltonian oper-
ator in spherical tensor notation, since we are then able to use the
extremely useful, and powerful, spherical tensor techniques in the calcul-
ation of matrix elements. Products of spherical tensor operations can be
treated without much difficulty, which is of particular relevance when
products of matrix elements are to be written in an equivalent operator
form, Particular relations that will be of importance are as follows;
these, and other standard expressions, can be found in aforementioned texts
on angular momentum ~

Tensor product of two tensor operatars -

k

™ (1, B) = () 2] 2,

(B) (~1)<¥2q0 (k1 K, k)

2
2 ~qy =9, q

(2.52)

with Ek,l - k| € kg ke, + k&

o
Scalar product of two tensor operators -

. S U )
(). T (B) = 2,17 I @ (B (2.33)




Wigner-kickart theorem -

<oml @ lred 0™ (210 <l ol
(2.34)

Relation between tensor operators in different coordinate systems -

these systems can be transformed into each other by means of rotations
through the Fuler angles. Let p and q be the components of the tensor in
the two different coordinate systems .

N ()%
Jpy @B E) Ty (4) (2.35)

oW =

where the asterisk indicates the complex conjugate of the rotation matrix.
The symbol (:Pﬁng (P)J| P> in equation (2.34) is a reduced matrix
element, and is a matrix element that contains no reference to a coordinate
system, The Wigner-Eckart theorem enables terms dependent on the orientat-
ion of the coordinate system, mainly terms involving moe to be factored off.
The symbol (;1 gQ %5} in equations (2.32) and (2.%4) is a Wigner 3-]
symbol, which is 2 coéfficienﬁ relating the eigenvectors corresponding to
the angular momenta Qq ané(ge to those corresponding to the angular momen-

tum Q? that results from coupling Q@ with QQ -

3 m1> %ég mé} (~1) " 2 "5 (235+1)% m m ~m€)

| 31 3, 35 m50

(2.36)

Wigner 3-j symbols are simply related to Clebsch-Gordan coefficients -~ they
have the same significance. Wigner symbols are used here because they have
greater symmetry than the corresponding Clebsch-Gordan coefficients ané they
are easier to manipulate.

The symmetry properties of Wigner symbols are given in the standard
texts. Only those that will be recalled later will be given here. First
note that the 3=3j symbol ( 1 32 35} ig zero unless 31, 32, 35 satisfy the

triangle rule 1 T2 5

and Myy Wyy M obey the sum rule

3



m

tmy +mg = 0 (2.28)

1 2

The only other relations of particular relevance in subsequent calculations
are those by which 3~j (and é-3) symbols can be reexpressed in terms of
Wigner €-j symbolss for instance a product of two %=j symbols can be con-

tracted in the following manner -

(m1 2w 3)(“ ? m2 5} = (“i>p ) ";<235+7) ém? mz ma)( 1~ ’ m5){11 1 13}
1 fo i\ Ty pi3 R Y Sl R LU By B

(2.39)
where p = 1o+ 1, + 13 +}%? @f&z +}A§
and{i1 iZ %5} is a Wigner 6-j symbol, which is a coefficient arising from
3

coupling of “three angular momenta.
Similarly, by use of the Biedenham-Elliot relationship, a pair of &=]

symbols can be rewritien -

P J Joz 34 3 Jz 353
531 j? j??}{,j25 j? j?2§§ = D {w?)s <23124+1) 535 32325 }
3 Y123 Y23 4 14 §19d 14 124
Js J 3 3z Jus Janz
S SR S B fz 125 (2.40)
Ig drea s g
where s = J, + J, + j5 + 34 + 3y, * 325 gt 3125 + 3+ dypy

Tn the next section the second order effective rotational Hamiltonian
for a linear molecule in a EZ state of general multiplicity will be der-
ived, in order to illustrate how the above relations can be used to reduce

the perturbation expressions to an effective operator form.

2.4 Second Order Effective Hotational Hamiltonian for a Linear Molecule in
a §: State

The derivation of this Hamiltonian apd its reduction to operator

equivalents are performed along similar lines to those described by Miller
(9). The total Hamiltonian is partitioned as in equation (2.19)

H = HQ+?%V

HO contains terms that give the energy of the adiabatic state, and also

terms describing the vibrational energy. V contains rotational and spin
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dependent terms, nonadiabatic interactions being included amongst them. V

is taken to be

1 o * T
V = H + Hyy + Hopp + B (2.41)

ROT 30 55
where the effects of rmuclear spin have been ignored.
H is the nuclear rotational Hamiltonian

ROT

HSO represents the spin-orbit interaction

HSR is the spin-rotation Hamiltonian
HSS represents the spin-spin interaction
Since the effects of the last two terms in (2.41) are usvally very

much smaller than those of the first two then the accuracy of the effective
Yamiltonian is not significantly altered by including only the first order
effects of these latter terms. This does not mean that the effective Hamil~
tonian neglects certain terms, since 2nd or higher order terms involving
HSR and HSS have exactly the same operator dependence as 3rd or higher order
terms of HROT and HSO and are likely to be of similar magnitude. The higher
order effects of HSS andg, QSR are thus contained in the parameters describ-
ing higher order effects of HS@ and HROT“ This does make interpretation of
the parameters difficult however,

The basis functions for this caleculation have to be eigenfunctions of
HO' as already mentioned. MNo reference is made however to interactions
involving the electron spin and so these basis functions are not uniquely
defined. We therefore have a certain degree of choice in deciding on the
spin basis functions. The set of quantum numbers that completely define
the moleecular wavefunctions is determined by the manner in which the various
angular momenta are coupled, Hund {?4) investigated the various coupling
schemes that can arise and showed that there are five possibilities, now
known as Tund's coupling cases a) to e). Diatomic molecules are described
adequately by either case a) or case b), although case ¢) is of occasional
value.,

Pigure 2 illustrates coupling schemes a) and b). Case a) is of value
when the spin~orbit interaction is quite large (relative to the rotational
interaction). The orbital angular momentum L precesses about the internuc-
lear axis, ng the projection of L onto the internuclear axis, remains a
constant of the motion but L itself is not conserved. The quantum number
A = !ng = 0, 1, 2, » . » can be used to classify the states. S is
coupled strongly to L by the spin-orbit interaction. The gquantum number mg

is then equivalent to zz , which relates to the projection of S along the
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internuclear axis. L and 3 are coupled with the angular momentum R to

produce the total angular momentum J -

5 . ; ¥ S
5 = R T Li &
s Pt o e

The quantum number relating to the projection of J along the molecular axis

is K}.$ and is given by

Q = N+ I (2.42)

1f an external electric or magnetic field is applied then an additional
quantum number relating to the projection of J onto the imposed =z axis 1is
needed, which is labelled e Byternal fields will not be considered in
this exanmple, but my ig ineluded for the sake of completeness.

case iz completely defined in terms of the above

-

0

The basis set in this

mentioned quantum numbers:
I Asszs Jnm >

TZ is a label distinguishing between electronic states possesaing the same
S and /\ values,
The case b) scheme is important when spin~orbit coupling is small, so

that § iz not coupled to the internucl axis., L has the same significances

as for case a), In case b it is

with R to form N, the total ang-

St

ular momentum apart from spin

This ig then coupled with & & ter momentum J

The quantum numbers ) and 2. & wed in this scheme, although a
q ’ 9
quantum number XK, which relates to the projection of N onto the internuclear

axis, is needed. The basis set for case b) takes the form
?? AsSNKJIm >

Case c) describes the situation that arises when the spin-orbit coupl-

ing is stronger than the coupling to the intermmclear axis, L and 5 in

thig case form a resulitant g& 1ich precesses about the molecular axis., o
is then the resultant of coupling g with H. In this case the quantum num-

&
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vers A and & lose all significance, although L remains a good quantum
number.
Tn this calculation a basis set conforming to Hund's case a) is chosen.

In one sense, a molecule in a b, state camnot conform to & casge a) coupling

A
¥l
.

scheme as there is no first order spin-orbit coupling. However, a second

<

order spin-orbit coupling can arise from the admixture of other electronic
states, hence leading to a coupling of § to the molecular axis. The quantum
numbers 2. and £} remain well-defined, This situation has been recognised
by Kopp and Hougen (15) who termed this a case a)' coupling scheme, Tatum
and Watson (16€) however prefer to modify the definition of a case a) scheme
to one which covers both of the above possibilities. The required alterat-
ion is merely to define the case a) scheme as one in which g2 and Z are
good quantum numbers.

The first order effective Hamiltonian is readily derived from equations

(2,24) and (2.41) by setting L = 0

(1)

!

P
o
=
-

eff
= B (=), 1T (J-8) + ¥ T’ (J-8). 1’ (s) + %Jg'}'rzmo (8,8)

(2.4%)

with the usuval linear molecule restriction {given specifically for 2 states)
(2.44)

B in equation (2.43) is the spin-rotation

constant and ?% the dinolar spin-apin interaction constant. The component

the projection of angular momentz onto

q in the spherical tensors ref

the internuclear frame, i.e. in a molescule~fixed coordinate system. The

label p will be used for compons g space~fixed axis system,. The %JZ

hant > deserves some comment. The

factor modifying the spin-gpin
paramet@r(% was first introduced by Hebb 5??} in a consideration of spin=-

K

second order contributions to )% arising

apin interactions in states,
5 2
from the admixture of “TT states., The factor = was included rather arbit-
: 2
rarily so as to simplify the arithmetical relaticn between >§ and these

second order terms, and as such is of no significance. It has now become

- ‘) ; ; e . 2

traditicnal to write the magn: " the spin-spin interaction as 3’} .
, , 5 - " . \

umnecessary though this may be. The ~& factor is by contrast a rigorous

e,

factor arising from the transformation from Cartesian to spherical tensor
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notation.

The linear molecule restriciion (2.44) is readily appreciated by an
examination of the vector coupling diagrams, as in diagram 1, but its math-
ematical justification is far from trivial (18). Because the third Euler
angle is not present in linear molecules, the molecule~fixed components of
the total angular momentum, Jx? Jy@ J% do not obey the usual commutation

rules. Instead they commute with the anomalous sign of 1 3

EJX§ JyE = -iJ,  ebe. (2.45)

Hougen (18) shows that a Hamiltonian including all three variables is
igomorphic with the true rotational Hamiltonian provided a restriction on
the additional variable is observed, this being the linear molecule res-
triction,

Second order contributions to the effective Hamiltonian arise from
terms in V that mix different electronic states, namely the spin orbit

coupling and L-uncoupling terms

. o 1
' (g8). 1)+ 2L 1 (ay ). T (g)
i
= v, + v, (2.4€)

e . .th
ii and s, are the orbital and @pin angular momenta of the 1 electron, the
summation running over all the electrons of the molecule. The form of the
spin—orbit term Vé is simplified but is adequate for the present purposes.

The true microscopic Hamiltonian (19, 20) describes the inter-

action of electron spins with the field due to electrons and muclei, and so
contains spin-orbit, spin-other-orbit and eleetronic screening effects.

The selection ruleg arisi

‘k.-.é
&
by
b
3
g
o+
oy
D

gimplified Hamiltonian are

idf}'i 4;(;\:”2 i Q

i

A . £y
/%;‘;ﬂ o ZR “i*‘E

AS = -AN = #

e

but these in faet alsc apply to the true microscopic Hamiltonian., Using
either form the correct parametric dependence of interactions is obtained
but the interpretations of the constants differ.

Whereas in the spin-orbit interaction, all electrons have 1o be in-



cluded in the summation, only unpaired electrons have to be considered in
the spin-spin interaction, This is not an obvious point, and so will be
considered in more detail.

McWeeny (21) has shown how the various parameters in the spin Hamil-
tonian can be written in terms of density functions (22) which describe the
Aigtribution of the electrons and the configuration of the spins. The op-
erators in this spin Hamiltonian are written in terms of sums of 1- and 2-
electron functions, since these are easier to visualise than the many-elece
tron counterparts. The operators in the spin-spin dipolar interaction will
thus be 2-electron operators, whereas the nuclear spin-electron spin inter-
action will only involve t—electron operators. The spin-orbit interaction
is rather more complicated since it involves the interaction of the electron
spin with the magnetic field presented by all the electrons and nuclei, and
as such involves hoth 1- and 2=-electron operators. By use of Slater det-
erminants it is possible to calculate matrix elements between individual
spin-orbitals.

consider first of all the matrix elements of a 1-electron operator,
such as the nuclear spin-electron spin interaction, In its most general

form this can be written

e(1i)n(k)

i, k

where e(i) is the spin density function for the 1™ electron and n(k) a
spin function for the kﬁh nucleus. If it is assumed that the 1-electron
density functions for electrons of ol and §3 spin represent similar dis-
tributions but are of opposite sign then it is easily seen that paired
electrong give no net contribution to this interaction, so only the unpaired
electrons need be considered. '

The 2-electron interactions are more difficult to treat. Slater (23)
has shown by expansion of Slater determinants how the matrix elements of a
?-electron oﬁeratar reduce to a simple form. A Slater determinant takes the

determinant form

Uﬁ(ﬁ) UZ(”E) . e e e UN(1)

%(2} 512(2) o o o o UN(Z)

1 .. o
NET : :

v, vy UQ(N) . o e:e UN(N) (2.47)

z[U1U2..,..UN§
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where Ui(N) represents the Nth electron occupying the ith spin-orbital., As
is well known, a determinant can be expanded in terms of the components of
any row or column, the coefficient modifying each of these components being
their corresponding cofactor, or signed minor, The minor Mij of the element
in the ith row and jth columm is just the determinant remsining when the
ith row and jth column are deleted from the full determinant,

The matrix elements of a 2-electron operator, gij’ are then given by
! 0l . U . 4T, 2,48
j]'“132~* Q,Y%EgtngiUZ.. . UN‘JTldTb (2.48)
which Slater has shown to reduce to the form

IS L NOLRO EWLALAOY -~<Ui<1)Uj(2)lg1zlug(1)vg(2)>}

i< 3
(2.49)

The two matrix elements in (2.49) involve direct and exchange integrals
respectively, M(ii*)(jjs) is the minor formed by deleting the i and 1i'
rows and the j and j' columns. If we assume all the spin-orbitals are
orthegonal to each other then all the minors in (2.49) are zero except for
those corresponding to i = i' and j = J'.

Tn order to determine matrix elements of the spin-spin interaction an
explicit form has to be substituted for 81o° We shall assume that this

operator is of the general form

(s;- M 38, sjz) ¥ orbital factor (2.50)

and that matrix elements of thie operator are in the same ratios as these
of the spin only operator. This latter assumption is equivalent to the
assumption that the matrix elements of (2.50) can be factored into a spin-
dependent part and an orbital dependent part.
The spin-orbitals i, j correspond to either closed shell or open shell
electrons and so there are four types of matrix element to be considered:
a) Both electrons in same closed shellj
b) Flectrons in different closed shells;
c) One in a closed shell, one in an open shells;
d) Both electrons unpaired. _
Tn case a) the direct and exchange integrals in (2.49) are equal in
magnitude and opposite in sign so there is no contribution. Similarly in

b), if i is a closed shell electron with a particular spin, say o, then
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the summation over j for the other causes this term to vanish. The term
with i havimg(3 spin similarly vanishes. The contribution from ¢) also
disappears, since if i is the open shell electron then the sum over j for
the two allowed spin configurations of the other electron must be zero.

The only remaining term, d), does not disappear gince in general the direct
and exchange terms are not of equal magnitude., Hence only unpaired elec-
trons contribute to the spin-spin interaction. _

The form of the spin-orbit interaction is much more complicated but
from a general consideration of its physical significance it can be apprec—
iated that 211 the electrons contribute. Only unpaired electrons contribute
to the spin-spin interaction but in this case a specific form for the 2-
electron operator has been used; the 2.electron operators present in the
spin-orbit interaction do not necessarily reduce to this simple form and
hence even the core electrons have to be included in the summations.

The second order Hamiltonian obtained from (2.46) is of the general
form

Hg; = PV, (QO/a) VB, + 2PV, (Qﬂ/a) VP, + POVZ (Q,O/a,) VP,

(2.51)

By substituting the spherical temsor forms of (2,46) into (2.51) and fac-
toring the resultant éxpression in terms of operator equivalents one can

obtain the result

9 1 1
2~ opr (g0 @ ey @91 @+ 56N @D

(2.52)

This expression has the same operator Aependence as the first order Hamil-~
tonian (2.43), the parameters B', ¥ ' and A' hence forming second order
contributions to the rotational constant, spin-rotation constant and spin-
spin constant.respectively. The total effective Hamiltonian to second order

(1) (2). . .
of F and Heff’ the resultant being written in terms of the

effective parameters:

is the sum of H

B + Bt

e}
i

Yerr = ¥ *Y° (2.53)
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This is a familiar result (9, 24). Since each of the effective parmmelers
is compounded from contributions from various orders of perturbation theory,
care has to be taken in the interpretation of these constants, however,

Tn order to demonstrate some of the techniques discussed in the prev-
ious section, consider the calculation of the second order contribution to
the spin~spin interaction in more detail, This term involves two matrix

elements of the spin-orbit operator. From (2.46) and (2.51) we have:

g;) = TV, (ap/a) VP
0 0 -1
= P B - B N
0{%. g%, (”M ")_'A')
S+f S 15! 1 TATCE
[Zn® 0 (115 Zaunsle @) oy eapllvas:)]
] S”-Z' St can "
[%{-4)‘1 SIS z..)Z(q T EXEWES <a3;.3)|11/\>}]
(2.54)
This can be simplified for a 2, state by putting A" = A (= 0) and
" = J . The latter simplification follows from the AL = 0 select=

ion rule governing the spin-orbit interaction. Since the effective Mamil-
tonian operates only within a particular vector space then this operator
should make no reference to other electronic states. The excited staté
quantum numbers S' and J ' that appear in equation (2.54) have therefore
to be suppressed, and so with this end in mind, the pair of 3-J gymbols in
(2,54) are reexpressed by making use of equation (2.%9)., The following

relation is obtained:

($13)(302) - e e (328) (40 0)(7 55
(2.55)

The relation q' ‘= =q arises from the sum rules of the 3-3j symbols,

Tanation (2.54) thus becomes

R - (2 T - a0 e R e (3281

41 At gty
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1 1 "
2. /;(f, S st (gl (a Lplgars > Crarstie (gj)Tq(aj];ﬁ)l'?A;)>}Po

i, J
(2056)

From the triangle rules on the 3-j and 6-j symbols it is now possible to

make some useful restrictions. The rank k can take only the valves
k = 0, 1 o0or?2

Substituting k = O into (2.56) shows that this term has no 2 depend-
ence and so does not affect the relative energies of the rotational levels,
mhig term is of the form of the spin-spin interaction, which is generally
absorbed into the electronic energy.

If q is replaced by -q in the 3-j symbol (1 _; g)'ﬂnasymmetry PLOP=-
erties of 3-j symbols show that its value is multiplied by (~1) Since for
a 2: state the pair of reduced matrix elements do not change sign on rep-
lacing q by =g then the effect on the total expression is to multiply it by
(*1)k. The summation over q values thus causes the k = 1 term to vanish.

The only remaining term is that with k = 2, which can be written

1D ™R30, 2, e o 1S

2 2 o IGUE EEOREIRTR W IV EDY
<~,,2.A,s.;m1 (gj‘)'i‘;(aj}_j)”’l/\ s»] »

(2.57)

mhis term is of the form of the dipolar spin-spin interaction, which as has
already been noted, is a second rank temsor interaction. Matrix elements

of this interaction are of the form
<SZIZE TS, 9)IsE> - (0552 3) 2k M<s (s, 9 s
(2058)

comparison of (2.57) and (2.58) shows that these expressions both involve a
similar dependence on quantum numbers, and so the term in square braces in
(2.57) can be equated with %—Jg) v{sf T2(§_, §_)MYS) , where A' is the second

order contribution to the spin-spin interactioﬁ constant.
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Purther information can yet be pleaned from the 5-3 and f=3 symhnls,
The triangle rules on (__; ;%) regtriet the values of S to S»1, vhich is
well known, since spin-spin interactions can arise only when there are twn
or more unpaired electrons. Similarly from the 6=3 symbol in (2.57), the
allowed values of S' are obtained, namely S* =S + 1, S, § = 1 only, &
result which follows also from the selection rules on the spin-orbit coup-
ling interaction.

This completes the derivation of the second order spin-spin Hamiltonizn,
the calculation of the other terms in the second order Hamiltonian foliowing
along similar lines.

Tt must be emphasised that no part of this chapter is new; its cont~

ents serve merely as useful groundwork for later chapters.
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CHAPTER 3
SPIN-DEPENDENT INTERACTIONS IN 2 STATES OF QUARTET AND
HIGHER MULTIPLICITY

3,1 Introduction
As has been discussed in chapter 2, in the analysis of molecular spec-

tra we wish to calculate the energy levels as accurately as necessary ut

at the same time it is necessary to restrict the problem to one of manage-
able size. TIn the case of transitions occuring within a single electronic
state, such as in microwave or e.p.r. spectroscopy, this requirement can be
met by constructing an effective Hamiltonian that operates only within that
particular state. Transitions occurring between electronic states, such as
in optical spectroscopy, can be dealt with in a gimilar manner by construct-
ing two effective Hamiltonians, one for each of the states involved. The
difficulty lies in deriving a suitable effective Hamiltonian, that is to
say, one that leads to an adequate description of the energy levels.

The technique of constructing effective Hamiltonians used here is, as
already described, to use degenerate perturbation theory to incorporate
terms off-diagonal in electronic state into the diagonal blocks and sub-
sequently to rewrite the perturbation expressions in terms of operator
equivalents. This has been demonstrated in the previous chapter, the cal-
culation of the second order contribution to the spin-spin interaction
being given as an example.

In this chapter the form and number of effective parameters needed to
describe 2. electronic states of various multiplicities for linear molec—
ules is investigated, in particular for those 2 states of quartet and
nigher multivlicity (1). The possible nresence of nuclear spins will be
ignored throughout this treatment, as will the effects of centrifugal dis-
tortion.

The rotational levels of a linear molecule in a 1iilstate are given by

the familiaf term value expression
F = BJ(J+1) (3.1)

where B is the rotational constant and J is the total angular monentum
auantum number. The term value expressioné become more complicated for
molecules in states of higher multiplicity than singlet since further para-
meters are requirel to describe the adéitional interactions arising from

the unpaired electron spins.
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n a 923 state the effects of the spin-rotation interaction have to he
included, the parameter needed to describe this internction being ¥, where=
as in a 32::state the effects of a spin-spin interaction, Aescribed by the
parameter 7\, have also to be considered.

The varameters B, ¥ and ) describe interations that occur only with-
in the particular electronic state under consideration, and consequently
will be compounded of both direct and indirect contributions, the latter
arising from the perturbation treatment of nonadiabatic terms in the total
Hamiltonian, such as Coriolis and spin-orbit interactions, (2).

The demnendence of the rotational energy levels on these parameters ig
in aceordance with that observed in molecular spectra, which justifies the
form of the effective Hamiltonian that has been used in the analyses of
these states. TIn addition, the interpretation of these constants in terms
of electronic structure is fairly well understood, although it should be
noted that the higher order perturbation contributions complicates the
interpretation considerably.

In the case of EZStates, the understanding of the effective vara-—
meters is less certain, The firgt investigation of }E:stateq was performed
by Pudd (3), who was able to arrive at term value expressions for the rot-
ational energy levels, Similar results were subsequently obtained by Budd
and Kovécs (4) usging a different approach, Budd's expressions have been
quite widely used, giving aderuate analyses of data in some cases, However,
Verma (5), in an analysis of the SiF radical found that these expressions
were not satisfactory. This prompted Hougen (6) to reinvestigate the
energy level expressions. He used an approach similar to that of Budd and
Kovacs (4), involving an examination of the effects of spin~orbit coupling,
and was able to obtain more general expressions fof the rotational energy
levels, He reached the general conclusion that in 2 states of even mul-
tiolicity, (28 + 1), (S + %) spin-rotation parameters and (S - %) spin~
spin parameters are required, while for a gtate of odd multiplicity S spin-
rotation and s spin-spin parameters have to be included, To describe the
energy levels of a 422:state one svin-spin parameter (A) and tﬁo spin~
rotation varameters would thus be needed Since the molecules of interest
contain heavy atoms then spin-orbit coupllng will be large and 80 a conven-
jent choice of basis functions would be one conforming to Hund's case a)

coupling. "The basis kets are thus of the form

I’Yl/\;s):;J.n.M>
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Consider the effects of the perturbation Hamiltonian on the molecular
energy levels: in the absence of rotation, the spin-spin and spin-orbit
interactions cause a splitting of the 42:'level into two double degenerate
comronents, labelled 42:3/2 and 42:1/2, where the subscript represents the
value of |2l , the spin splitting for ‘E:sﬁmtes being 4. If rotation is
jnclrded then the effects of the spin-rotation interaction 1ift the degen-
eracy of these components leading to four fine-structure states, 42:5/2,
4}:;/2, 42:”1/2 and 42:_3/2 the subscript in this case being L. Fach of
these four states possesses an infinite set of rotational levels, labelled
J, subject to the restriction J}I.ﬂ.]. The energy levels are illustrated
in figure 1 for the case of a regular 42: state, i.ee (A - 2B)» 0, sc for
a given J 42:1/2 levels lie below 42:3/2 levels. For inverted states the
reverse applies.

Hougen (€) defines the two spin-rotation constants as }f1 and 2{2

where ){1 appears in the matrix element

i
i

{uf=hpln|na=x/2> (3.2)

and ?f? appears in the element

Y

il

X3/2 IHSRI 3342 =21/2) (3.3)

vhere H,, is the snin-rotation Hamiltonian.

Vefg few detailed analyses of molecules in 4}::states have been pub-
lished; all the data obtained so far come from optical spectra of diatomic
molecules, the molecules being O (7), SiF (5, &), GeF (9), snff (10),
GeH (11) and VO (12). In those cases that have been treated using Hougen's
expressions, the values obtained for'}f1 ar@.}(z are the same to within exp~-
erimental error, even for SiF. The discrepancies in this spectrum that
prompted Hougen to reinvestigate the 42:.rotational jevels have been shown
by Martin and Merer (8) to arise from misassignments of the original data.
Hougen's 8’ parameters are introduced by general consideration of the
various types of matrix elements that contain contributions from the spin-
rotation interaction and in this respect are purely intuitive. It is expec~
ted that the difference between 3’1 and 3'2 ig related to higher order
terms in the perturbation expansion, thus reflecting different mixings with
other electronic states. In the following sections the form of these para-
meters is investigated by a consideration of such higher order terms, SO
that the difference bhetween them can be related to more fundamental molec~

vlar parameters.
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Tn the final section of this chapter the treatment of effective para-
meters is extended to ?Z: states, paying particular attention to an add-
itional spin-spin interaction that arises in fourth order of perturbation

theory.

4
3,2 General Form of Third-Order Spin-Rotation Interactions in E: gtates

The spin~rotation interaction to gecond order is of the form

1

1
Hep = Eopp T (-8 1 (s) (3.4)

where ¥ .. = ¥ (1, }f(2>, the sum of first and second order contrib-
utions. The two types of matrix element of this Hamiltonian, equations
(3.2) and (3.,3), involve only this single ¥ parameter, so to determine the
difference between X'1 and sz higher order terms must be investigated. In
this section the third order contributions will be calculated.

The general form of the third order Hamiltonian can be found from
equation (2.24) of chapter 2 and in its Hermitian averaged form is as

fellows:

Hgg% POVU(3)

]

h

PyY (Qo/a) v (Qo/a) VP,

% frbV'(QO/az) VBGVP, + By VPoV (Qo/az) VPO} (3.5)

Only those terms in the perturbation Hamiltonian that ultimately give
rise to an effective spin-rotation interaction are of interest, By inspect-

ion of the terms in this Hamiltonian

V. = Hpgp + Hgg + Hegp + Hgg

it can be seen that third-order spin-rotation terms arise in three diff-
erent ways, as illustrated in figure 2 by means of some typical 'railrnad’
diagrams. They are comprised of three matrix elements of V in the follow-
ing manner:

a) (spin-orbit interaction)24(spin—uncoupling)

b) {spin-orbit interaction) (L-uncoupling) (rotational interacti on)

c) (L—uncoupling)2 (spin-uncoupling)

The L-uncoupling terms come from HROT and are of the form'
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+

1 1
~2B =, T DT, (s) (3.7)

while "rotational interaction" refers to the q = 0 terms from BRUI‘

B[J(3 +1) +8(5 +1) -0? »Zz] (3.8)

Note that although all three of the terms above are spin-rotation inter-
actions, they each have a different J dependence, their respective operator
forms being Jy Sg R Ji Sg and JZJ'Sﬁ . If A is teken to be the spin-orbit
coupling constant and A E is some meagure of the difference in energy
origins of the ground and admixed states, then the approximate magnitudes
of the three contributions above are

2) A’B/(AB)’

b) ABZ/(A E)2

o) B/(AE)

Since the spin-orbit coupling constant for these 42 molecules is much
larger than the rotational constant then the dominant contribution will be
from a.)', that involving two matrix elements of Hg, between electronic
states and one matrix element of the spin uncoupling interaction. The mat-
rix elements of the epin-uncoupling operator are of exactly the same form
as those of the spin-rotatiom Hamiltonian and so there will be third order
contributions to a) and ¢) of magnitudes AZX /(A E)2 and 32X /(AB)2 res-
pectively. These however will be inseparable from the corresponding con-
tributions involving the spin-uncoupling operator. In principle, since the
three types of contribution in thizd order have differemt J and S depend—
encies, then these different third order terms are separable. However, only
the dominant contribution a) will be considered as it is likely that any
difference in & , and ¥ , Will arise predominantly from this term.

Application of the selection rules for spin-orbit coupling, given in
chapter 2, reveals that the only states that comld be mixed into a 42
gtate in third order by mechanism a) are the followings 22, ZTT_. 4“, 62,
7T or another 43" gtate. Some examples of the contamimation of 42 states
in third order by states mixed in this manner are shown in figure 3.

Substitution of the matrix elements of the relevant perturbatien fem
into equation (3.5) leads to the following expressions
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where q(= O, 21) is the component of the spin-orbit coupling operator,
q'(= 31 only) is the component of the spin-amcoupling operator,
B and B are the rotational constants in the %D and aimixed elec-
tronic states respectively.
The various primed and unprimed quantum pumbers in (a) apply to differemt
electronic states and have the significance shown in figure 4. Equation
(3.8) can be rewritten by invoking equation (2.39) of chapter 2 twice, so
as to contract the 3-j symbols and to remove the dependence on intermediate
spin quantum numbers, leading to the following expressions

(A ST inn| Hé”lq/\st".m_"n)
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The tengor ranks k and K result from the first and second contractions of
3-j symbole respectively. The values k and K are permitted to take are
governed by the triangle rules on the 3-j (or 6=j) symbols and are given in
table 1,

3.3 Simplification of the Genmeral Third Order Spin-Rotation Terms

In this section we consider the various terms that arise from (3.10)
on substitution of the allowed values of the temsor ranks k and K.

Since we are considering q' = * only then the 3=-j symbol (; »qfq’ qK')
is zero for K = 0, Hence K = O terms will not be considered further.

In order to cast equation (3.10) into operator equivalent form, values
of k and K have to be substituted explicitly and individual terms emamined.
Consider, first of all, those terms with K even. The factor 1 + (-1)¥*'
modifying the second term within the braces in (3.10) is seen to be zero
for K even and so only the first term within braces remains., By relating
the texrm with +q to that with -q it is possible to show that this term also
disappears. With this end in mind, consider the k- and q~ dependent fac-

tors in (3.10)

SHCRRNCOLICIT PR ANON JNCERIEDEDIR

L{11 x 1kK}11 X 1 k K (3.11)
$8'5') 1585y \q' q-9-q"/ \ ~a a+a' =’ ‘
which we wish to show to vanish when summed over k and q. The reduced mat-

rix elements in (3.11) are the same for both +q and -q, but only for Z

states, since then we have

KT la=s ], A =1>]2=[<T]q==1TT, A ==1>|?

The two 6-) symbols can be reexpressed by using the Biedenham-Elliot rel-
ationship, a general relation given in equation (2.40) of chapter 2, to
give the following:



Table 1 Allowed values for the tensor ranks k and K in the calculation of

third-order contributions to the spin-rotation interaction.
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’;} = 2. (<) (24 1)
3

18 sfsts1){11k
* {3 HE S {x15} (5.12)
j is defined by the triangle rules on the 6-j symbols and is easily seen
from the final symbol to take the same set of values as k, namely

j =0, 1 or 2 only.

Whereas K represents the temsor rank of the final coupling of electron
spins, both k and j represent some intermediate coupling of spinsg k and J
might differ in the order in which the spins are coupled.

All that remains is to relate the 3=j symbols with +q to those with
~q. These can be contracted using equation (2.39) of chapter 2 and re-

arranged to give

(1 1 k')(‘l k x)_ 5" (23 + 1) {;(:i} (=1)k*

q' q =a-¢'/ | =q o+’ =q' 3

1 13)1 3 x)
x (q' -q q-q° (q -q+q' =q' (3.13)

vhere again j is defined by the triangle rules, The pair of 3-] symbols on
the right-hand side differs from those on the left-hand side in that they
contain the rank j instead of k, and q is replaced by —q throughout. By
spbstituting (3.13) into (3.11) and using the Biedenham-Elliot relationship
(3.12) in reverse, an expression relating the term with 4q and intermed-
iate rank k to that with =g and intermediate rank j is obtained. Since k
and j take the same values (0, 1 and 2 only) and since each side of the
aforementioned expression contains a summation over either k or j, them it
is justifiable to set j = k throughout. An expression is therefore obtained
which relates the matrix element with +q to that with -q3

2k s T USIZ 1 @) 7 (2plarsd | ? fa e |
1kK 1 1 k 1 k K
* {S S S'} (q' q -q-q') (~q q+q’ -q')
O 2 (e DEDUAS] E T (g) T (el ars |

19 x)ftxkEY(1 1 k \[/1 k K
x {s S S'}{SS S'} (q' -q q_—q')(q q'.q -qn) (3'14)
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Substitution of q = O into (3.14) reveals that contributions with K even
vanish, Similarly, the terms with K even disappear on substituting q = Ay
and summing over q. We thus have the general rdsult that all even K con-
tributions to the spin-rotation interaction vanish in third order.

Consider now the contributions from (3.9) with K odd. It can easily
be shown that

[s'(s* + 1)(2s* + 1)];"{3 g0 s'} = [s(s +1)(2s + 1)];" {;. ; ;}
(3.15)

for k = 0 and 2 (but not for k = 1): expansion of the 6-j symbols shows
that for k = 0 and 2, interchange of the symbols S and S' does not affect
the value of the expression, whereas for k = 1 this interchange alters the
arithmetical value,

The term within braces in equation (3.10) thus becomes, for k even and
K odd,

{(-—1)““”‘ B - %[1+ (-] B}[S(S +1)(28 + 1)]5 {; ;, ;}

-AB s+1)2s+1) {s S,’;} (3.16)
vhere AB = B' - B,
In principle B' and B are not exactly equal although in practice they do
have a very similar value (13). Hence contributions from (3.10) with K
odd and k even are expected to be very small indeed. Since OB is very
small compared to B then these contributions will be of similar magnitude
to the fourth order contributions, These even k, odd K terms will be re-
turned to later,

The only significant terms remaining from (3.10) are hence those with
both K and k odd., PFrom table 1 it can be seen that only the terms with
K=k = 1 come into this category. Substitution of these ramk values into
(3.10) leads to the followings

{MAszIau] né” (K =k = 1)[MASZ IQ™M)> =

o Tp e (313 a6 e e+ ]E 0FE (£1,5)

g tm=t
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3 s OV T L (0 2

(a)

STCTE PYEACREN (ailﬁllﬂ'ms')|2{.n'[s-(s- st s ]

x {; ;, ;,} —B[S(S +1)(28 + 1)]5 {; ; ;,” (3.17)

Now from the orthogonality relatiomns for the 3-J symbola it follows that

Z(1 1 1 2 - 1
q -q-q' q' 3

q

and so by substitution of this result and expansion of the 6-3 symbols,
(3.17) becomes equal to
i . s
DI EN N J,) [3(3 + )23 + ]2 (5T

q'==1 - g’

A eI b I e e
(a)

e (5T ST s S e ed i W |

x(s“(?§++11))'('2§'£s;)+é) +2)a(5 + B) + (B - BY(S(S + 1) +5'(" + 1))]}

(3.18)

As hag been noted, B and B' are very similar, so the term in square brackets
is approximately equal to 2B. The term outside the braces in (3.18) is the

matrix element of

;z;t (-1)q' T;! () qul (s)

q'a—-‘i
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and 80 (3.18) mimics the form of the spin-rotation interaction, the term
within braces being the third-order contribution to the spin-rotation para-
meter § . The operator equivalent form of this third-order term is iden-
tical to that in lower order and so to this order only a single ¥ parameter
is required., Indeed, it has already been noted in the introduction to this
chapter that 31 and )’2 are found in practice to be the same, to within
experimental error. There is thus both theoretical and practical justifi-
cation for the use of a single spin-rotation parameter.

This is not to say, however, that Hougen's treatment is incorrect since
in order to make any valid comparison the present treatment should be ex-
tended to all orders. In the next section the higher order forms of the
spin-rotation interaction will be considered., The third order terms with
k even and X odd have been estimated to be of the same magnitude as the
fourth order contributions and for this reason will be considered in the

next section.

3,4 Higher Order Spin-Rotation Interactions
From a general consideration of the form of equation (3.9) it can be
gseen that only terms with K odd contribute to the effective Hamiltonian,

These terms can all be written in the operator equivalent form

i.e, the scalar product of a first rank J operator with a K™ rank S oper-
ator, Indeed, the usual method of writing the spin-rotation interaction

(2. 1 (9

could just as easily be writien as Tg (gy §), the two forms differing only
in a numerical factor. These results could also be obtained in an ad hoc
manner by a consideration of time reversal. Under this operation, all the
angular momenta reverse sign and hence if the Hamiltonian is to be invar-
jant wnder time reversal then each interaction must contain an even number
of angular momenta, Hence if K is even, the total number of angular mom—
enta involved would be odd and so this type of'term is expected to vanish.
We can see therefore that for & 42: state there will be contributions to
the effective Hamiltonian from terms with K = 1 and with K = 3 and we would
expect a determinable parameter from each of these. Hence Hougen's general
conclusions about the number of spin-rotation parameters is in principle
correct. The parameter associated with K = 1 is ¥ , the usual spin-rotation
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constant while that associated with K = 3 we have called XS for reasons
mentioned later. This latter term has a contribution from the third order
term with X = 3 and k = 2, which, as has already been mentioned, is approx-
imately the same magnitude as a fourth order term, and for this reason was
neglected in the previous section. The matrix elements of this operator

are of the form

{NA3 SZ; IOM|Hg (K= 3)|nAs ST it >

= A Y s(s + 1) -5E(Z 2 -2] [3F+ 1) -2 0

x [s(s +1) -3 (X % 1))? (3.19)

Now the two square root expressions in (3,19) are the matrix elements of
the usual spin-rotation interaction and so equation (3.19) mimics the form
of the spin-rotation Hamiltonian, but with an effective parameter that is
S and J. dependent. It is thus apparent that the effective spin-rotation
parameter will differ with 2., and this is the origin of the difference
between X1 and b’z. By substitution of explicit S and 2= values for 42
states the parameters X,’ and Xz can be related to the more bhasic para-
meters X and XS:

¥, =¥ +2%

1

¥, =% - 3XS (3.20)
or alternatively 51 - XZ = BXS

By substitution of k = 2, K = 3 into (3.9) and expanding the 3-j sym-

b°1(.§ z. ;S;.) it can be seen by comparison with (3.19) that the third order

contribution to ¥ ise

s
10k |
B = [(23--2)(23--1')n():zs»fs)(:esm)]’lt 4;2'/'_\;91 <A §;T1(gi)1’;(ai}_»i)lm'/\'s >
(a)
2 (=1)2 ()T #'-Z 45 (E%AS - E:'A'S.)-.z (& -_;?) (.; . q%)

"{;53} {; ég} | (3.21)
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Table 2 presents the complete Hamiltonian matrix for levels in a 4:{:
state with a given J value. The 4 x 4 matrix is reduced to two 2 x 2 mat-
rices, corresponding to e and f rotational levels (14, 15), by taking Wang

gsum and difference functions
|5, Q,Z3 2D al—;:_{lun +2> flien -Z)} (3.22)

Now for states of half-integral spin the ¢ and f levels are defined

(14, 15) as followss

Levels with parity +(-1) 4 are e levels

Levels with parity -(~1) I are f levels
To make the correspondence between the e and f levels and the 2 signs of
(3.22) the parity of the wavefunctions in (3.22) has to be determined. By
a consideration of how the Euler angles transform under the space fixed
inversion (parity) operator E* it is found that these wavefunctions trans-

form as followss

B%| A=0s JQSED> = H-1)7S|A=0; 7 -0 5 - > (5.23)

+
where the : refers to Z- states respectively.

Combining (3.22) and (3.23) the transformation of the Wang functions
is obtained:

e | ISz £) = H-1)P (1) jaasz; 1D (3.24)

where p is even for Z+ gstates and odd for Z- states. Hence for 4Z:+
states, the * signe in the Wang functions refer to states of parity
(-1 )J'%, the upper case referring therefore to f levels and the lower to
e levels. For 42:* states .this identity is reversed.

It is also possible to tie in the e and f labels with the F levels.
For a 4}: rotational level there are four levels with a given J value, and
these are labelled F 2, 3 and F with increasing energy. By going over

to a case b) limit theae P levels correspond to the N levels as follows

F, has N=J+ 3/2
L N=J+ 1/2
F, N=J~1/2
2 N=J =~ 3/2

1
Now the case b) levels of a 42* state have parity

¥
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80 we can see that F2 and F4 levels have the same parity, which is the
opposite parity to P, and FB levels, An F, level of a Z+ state therefore
has parity (- 1) I-% and so corresponds to an e level. Therefore for byt
states

F, and F, levels are @ levels

1 3
F, and F, levels are f levels

while for 43" stites th: e and f labels are reversed.

The matrix elements given in table 2 are consistent with those of
Martin and Merer (9) except that their definitions of 5’1 and b’z do not
agree with the present ones. This is because they have not renommalised
the second order wavefunction. Hougen (6) has also not included this in his
treatment. If this renormelisation is performed then the S 1 and ¥ 2 para~
meters defined in these papers become the same, to third order, Martin and
Merer's ?f and b’ differ only in the admixture of Z states, so we shall

assume for the present that the 75 state is contaminated by a single 25

state only. Hougen gives the normalised wavefunctions for 42 gstates as
2541

'f’Z/\oZ >
|4Z_3/2 D = a, ]42; 0, =3/2> + b2| 47T: -1, <1/2 >

follows, in terms of kets |

142_1/2 ) a, I4Z,; 0, =1/2) + b, | M -1, 1/2 >

veltm 1, =3/2)> + a2 0, ~1/2)
a, [*0s 0, 12) +v, | w1, <1/2)

s elfm -1, 32) + a0, 12D
a, [*5 0, =32) + v, | 1, 172D

™M
>
i

S50 7

|

(3.25)

Bence if only a single 2}: state perturbs the 42, wavefunctions we have

527 a, |%2s 0, 352>
["Sarp? = oy D0, 12> v alPi0, 12)  (5.26)

L]

i
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whick ori renormaligation gives

(3.27)

a\»1 = 1 =4

By substitution of (3.26) and (3.27) into Hougen's definitions for the Y1
and XZ matrix elements, (3.2) and (3.3), we obtain:

<IO=3/2|Bg la0=1/2 ) = 1-a® <4x5 g 3/211133142; J1/2 >

(3.28)
and < I0=1/2|Bg 30 =1/2)= ai (s 317208 *Ts 5 -1/2)

+a%(%% 3 1/2|HSR|,ZZ$ J=1/2 )

(3.29)
= (1-3) (A T 2Eg s 5 -2y

since (22; 1/2] 122; ~1/2> = 1/2 (42; 1/2] [42; ~1/2) and using
equation (3.25), By expanding the square root in (3.28) and neglecting
terms of order d4 or higher, the ratio of (3,28) and (3.29) gives

<3 3/2lHgpl0 1/2 > AT g 3/2[HSR|4Z; J1/2>

= (3.30)
<a/2lagla =1/2>  <AEy 128G 1*T 5 /2

and hence to this order 3’1 = Xzo
Note alsoc that the spin-splitting of the fine structure states given

in table 2 is 4 ), as suggested by Martin and Merer (9), rather than 6) as
used by Hougen (6). The use of 4) is consistent with the form of the
spin-spin interaction given in equation (2.56) of chapter 2, Centrifugal
distortion corrections to B, A and ¥ are also included, the parameters
describing these being P, A J and b"J respectively. The K = 3 spinerot-
ation parameter is labelled ¥ s by analogy with these centrifugal distor-
tion paxameters. ;

o Since XS is very small, the approximate order of magnitude being
J—A(ZAE?-Q s then to a fairly high degree of approximation ¥, = Xz =¥,
Two or more spin-rotation parameters therefore will only be required if the
experimental precision permits the detection of terms of the order of XS'
In the case of optical work, which has a resolution of~ 0.05cn-1, the det-

ection of such terms might be possible for 4 heavy element hydride, partic-
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ularly in very high rotational levels, since for such radicals both B and A
are large. In addition we note that the triangle rules on {; g g;} mean
that such terms will only arise in states with spin 5 3/2, i.e. only for
states of quartet or higher multiplicity. By appealing to higher ordera of
perturbution theory it can be seen that, in principle, further spin-rotation
parameters arise. For instance in fifth order an interaction of form
Tg(g,.§5) is expected to arise but since this will be very much smaller
than even the ¥ 3 term then it will be essentially undetectable. This term
would apply only to states of sextet or higher multiplicity and is in prin-
ciple responsible for the third spin rotation parameter needed for such

atates,

3.5 Spin-Spin Interactions in 2. States of Quintet and Higher Multiplicity
In the previous sections we have shown how Hougen's general conclusions
about the number of parameters needed to describe spin-interactions in mol-
ecules in 2, states are in principle correct, though in practice the number
of determinable parameters, which is governed by the experimental precision,
may be less than predicted. In addition we have shown how the higher-order
spin-dependent terms in the effective Hamiltonian can be cast into operator
equivalent form, and how by use of the triangle rules on the Wigner n-j
symbols we can determine what ranks of tensor interactions arise for a state
of given multiplicity. 1In general, a contracted temsor spin operator of
rank K will only arise in states of multiplicity greater than or equal to
K+ 1, Por example Tg(_q, §5) interactions, with K = 3, do not occur in
states of less than quartet multiplicity. Similarly the fourth rank spip-
spin interaction is not expected to arise in states of less than quintet
miltiplicity. There has been & growing interest in high multiplicity states
of transition metal and rare-earth diatomic oxides (16, 17) and it is in
heavy diatomics that such higher order spin-spin interactions would be ex-
pected Lo be detectable, For this reason, the form of this fourth rank
term has been investigated further, In addition, since Hougen predicts
that for quintet states two spin-spin parameters would be required, this
fourth rank term is expected to be responsible for the additional parameter.
The second rank spin-spin interaction operator'1€(§, S) was discussed
in chapter 2, where it was shown that the second order perturbation terms
arising from states mixed in solely by spin-orbit coupling, mimic the form
of the first order spin-spin interaction. Similarly in third-order of per-
turbation theory, contributions to this second rank term are expected but
by a brief consideration of whether the total number of angular momenta
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involved ig odd or even it can be seen that no new terms arise, In fourth
order, however, a similar consideration reveals that a fourth rank tensor
contraction of four spin angular momenta can be obtained, in addition to
the usual second rank term. The general fourth-order effective Hamiltonian
is given in equation (2.24) of chapter 2. If the perturbation V is taken
to be the spin-orbit coupling operator then the only terms that give rise
to an effective spin-spin interaction in a 2, state are

(PgV0), = PV (Qy/a) V (Qy/a) V (y/2) VR,

- BV (QO/az) VEV (Q,O/a) VE, (3.31)

since all the other terms involve matrix elements of the spin-orbit oper~
ator within a 2 state and hence are zero, Examples of such non-zero con-
tributions are illustrated in figure 5 in the form of ‘'railroad' diagrams.
Four matrix elements of the spin~orbit interaction are involved in

each of these fourth order termas, and hence there are four 3-j symbols in
each, As described in section 3.2 of this chapter, these >~j symbols can
be contracted to give 6-3j symbols by use of equation (2.39) of chapter 2,
In this case however there will be three contractions and hence three ten-
sor ranks k1, k2 and K resulting from these successive contractions. The
details of this calculation need not be repeated, so just the final result
is quoted. The following diagonal matrix element is obtaineds

{MA; sZ3 JaM ]Hég.mh ST JOAMD>

O 0 =1
= Z Z Z (EAS'“E 31) (E':Y())AS-

!
A
T4 M2he M3l 1 K

O
E’Ma“j‘s

o

Asl 3 T1(9~1)T;, (232 ) 0144451 3< 1545551 2 d (%)T;4(aili)ll1)/\ S7

M

X S-2 ( SKS
RCHICENCH (”Zox)k%:kz (2, + 1)(2k, + 1)

H‘i 1k1}{k11k2}{k211{§(1 1 k1)(1 k, kz)
S, 58} S5 58,)(5 585)\=ay —a, q4+a,/\ a5 94*a, 9y

T k, K S,+5,+q
. ( 2 o) (EOAS e ) =y 12
9y "9y i Neh2®2

]
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x {1y M54l %T1(ﬂi)’1‘;zfﬁi&i)ﬂ 245522 <1455, “%}T (9-1)'”;5("‘13&)“4}5"5:’3>
51 1k, {k1 1k, {kz 1K ( 11 k1)
- s 311 5555 ) (S 885)l-a q 0
1 k1k2>(k2 1 K) S48 0 0 -1
X (”‘14 0 agllay g 0/ T # Cps = By

x <I’)1A1S1 u .S_EaT1 (-sLi)qu,'(ai}ﬁi)gﬁ,qﬁS><T)Asﬁ §T1 (gi)T1Q4(ai}i)u n3A5S5 >]

(3.32)

where Qs Ao q}’ q4 are the components of each of the individual spin-

orbit terms. These can take the values O, +1, subject to the restriction

24 + ‘12 + QB + Q4 = 0 (5035)

The labels used for the quantum numbers in (3.32) have the significance
ghown in figure 6, The values that k1, k2 and K are allowed to take are
governed by the triangle rules on the Wigner symbols and are shown in table
3.

Expression (3.32) is even more unwieldy than the third order terms but
fortunately the general results can be obtained without performing any fur-
ther simplifications., From the properties of 3-j symbols, it is easily
seen that (3.32) vanishes for K odd if all the q values are zero, Similarly,
as was done with the lower order terms, an examination of the effect of
replacing +q components by their negatives reveals that, for E: states
only, the above expression is multiplied by a phase factor of (»1) on mak-
ing this substitution. Thus for odd K values the expression for 49 is
equal in magnitude but opposite in sign to that for -g, and so the summat-
ion over q = 34 gives no net contribution to (5,32). Hence the only non-
zero contributions to (3.32) are those with K even.

Equation (3.32) can be reexpressed in operator equivalent form as

(MmA; s | i?‘%’ Iqas sz ) =

()52 ; (352) <sutons> )

(3.34)
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which are just the matrix elements of the Kth rank spin-spin interaction,
where K can take the values O, 2 and 4. The reduced matrix element

< SIITK(g)IlS > does not appear explicitly in equation (3.32) but this can
be extracted quite easily, either by expanding the 6~3 symbols or by simul-
taneously multiplying and dividing by this factor, in which case the recip-
roeal has to be incorporated in the parameter Té(?ﬁ). Note that the rot-
ational gquantum numbers J, {1 and M have been suppressed from the molecular
wavefunction in (3.34) since this particular fourth order Hamiltonian does
not operate on the rotatiomal coordinates,

As discuseed in chapter 2, the term with K = 0 is a scalar quantity
which can be absorbed into the electronic origin, while the K = 2 term is
just a further contribution to the usual spin-spin parameter » (or Té(;})).
The term with K = 4 however has not been needed for the multiplicities we
have discussed so far., From the triangle rules on ( __%_é’ g) the restriction
2524 is obtained, and so the parameter Té()) will only be needed for
states of quintet and higher multipliecity, as was predicted from more gen~-
eral arguments. The contribution due to this term is therefore obtained
by substitution of K = 4 into (3.34) but as the reduced matrix element and
3.5 symbol thus obtained are not quoted in any of the standard texts on
angular momentum, we give some indication of their derivation. The 3~}
symbol can be calculated by a standard recursive procedure from 3-3 symbols
of lower tensor rank and as such fourth rank 3-j symbols have already been
tabulated (18) we merely quote the result:

(s 4 S) - M)smz; 2{55:2‘1 - ms(sw)zz + 25;;:2 - 65(S+1) + 332(3+1)21
-L0Z [(28-3)(25-2)(28~1)25(25+1 J(2842)(25+3)(25+4)(2845)]

(3.35)

The reduced matrix element is rather more difficult to evaluate. The
fourth rank tensor operator can be reexpressed in terms of second rank ten-
gsor operators by using standard relations, to obtain the followings

4 ._
(s) = %Té(ﬁ) P (s) 5(3,;;’;) (5.36)

where g can take the values q = O, 3?@ 22, By expansion of the 3=j symbol
in (%.36) for each of these q values we obtain

T4(s) = }75 [ 12(3) 12,(8) + 47°(8) T2,(5) + 6T5(8) TH(S)

+ wi(@ Tf(ﬁ) + Tf_z(g) Tg(g)] (3.37)
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The matrix elements <E§Z%T§(§)E S5 5 are sought after, but as (3.34) must
hold for any value of 7 then the problem can be simplified by setting

I = 8., Hence

< sslﬁ(ﬁ)iss} - @3%?‘%@935 -27¢8 - 25@5 (s)lss >
0 ,f{% [ 2 2

+ <ssg?f(§;}§ss - 1)< 58 - HTET(g)ass)
+  CsslTd(9)lss) (sslTa(s)lss d
+ {ssgwi?(;%}ma + 1) {85 + H'i‘%(fé)ﬁss >

v (sSITS,(9)]8S + 2) (sS + 21Ty(8)lssy ] (3.38)

The final two terms in (3.38) are zero since the components (X =35 + 1 or
S + 2) are greater than the rank S. By expansion of the matrix elements in
(3.38) the following expression is obtaineds

<ssmg(§)gss> = | (s T‘?@)aﬁwiz
J70
2 2 2
s s2 s §2 s s2

"{(smzmsz) ‘“’Mam‘iwgJ "*6(mso>}

25(28 - 1)(28 = 2)(25 - 3} ‘ (3.39)

4470
But the relation

¢ssirds)ssy =( 5 43) <surhnsy (5.40)

also holds, which by comparison with (3.39) and evaluation of the 3=j
symbol by use of (3.35) leads to the required reduced matrix element

<sil T4(§)H S = S {(2&%?;){2%2)(23@1)as(zs+1)(2s+2)(2s+3)(23+4)(23+5)1%
4f70
(3.41)



- 49 -

The fourth order contribution to Tg(?ﬁ) gan now be obtained from equation
(5.32) by substitution of Iy = 2, kz = % and K = 4. There is, as far as we
know, no experimental evidence for this fourth rank term for a linear mol-
ecule, TIts effects are &ppr@ﬁifft@iy proportional to {zfgjg which is likely
to be extremely small (v0,00%cm ) unless a heavy atom is present in the
molecule, so that the spin-orbit coupling constant is large. Fourth rank
spin-spin terms have been detected in the ESR spectra of transition metal
ions that are trapped in cylindrically symmetric environments (19) and the
constants that are obtained are of similar magnitude to those estimated in
this chapter.

Finally we note that this fourth rank term could be written as a second
rank interaction, but with 2. dependent parameters., Thus the total inter-
action could be described only im terms of a second rank spin-spin inter-
action, using several A values to allow for the & dependence of the para-
meters. This is consistent with Hougen's general conclusions about the
number of spin-spin parameters that are required. A simple parametric dep-
endence between the %ﬁfﬁ and Ti{?@} is thus anticipated, but since the
Tg()\) with K >4 are likely to be extremely small then the ')i‘s are expec-—

ted to be the same to within experimental error, using present techniques.



(1)
(2)
(%)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(1)
(12)
(13)
(14)
(15)

(16)
(17)

(18)

(19)

feferences to Chapter 3

Brown, J.M,, and Milton, D.J., Mol. Phys. 31 (1976) 409

Tinkham, M., and Strandberg, M.W,P., Pnys. Rev. 97 (1955) 937

Budd, A., Z Phys. 105 (1937) 73

Budd, A., and Kovdcs, I., Hung. Acta Phys. 1 (1948) 7

Verma, R.D., Can. J. Phys. 40 (1962) 586

Hougen, J.T., Can. J. Phys. 40 (1962) 598

Wevin, T.E., Phil., Trans. Roy. Soc. 4237 (19%8) 471

Martin, R.W., and Merer, A.J., Can., J. Phys. 51 (1973) €34

Martin, R.W., and Merer, A,J., Can. J. Phys. 2i_(7973) 125
Klynning, L., Lindgren, B., and Aslund, N., Ark. Fys. 30 (1965) 141
Kleman, B., and Werhagen, E., Ark. Fys. 6 (1953) 399

Barrow, R.F., and Richards, D., Nature, Lond. 219 (1968) 1244
Herzberg, G., "Spectra of Diatomic Molecules® (D, van Nostrand, 1950)
Kopp, I., and Hougen, J.T., Can. J. Phys. 45 (1967) 2581

Brown, J.M., Hougen, J.T., Huber, K.-P., Johns, J.W.C., Kopp, I.,
Lefebvre~Brion, H,, Merer, A.J., Ramsay, D.A., Rostas, J., and
Zare, R.N., J. Mol. Spec. 55 (1975) 500

Barrow, R.F., and Senior, M., Nature, Lond. 273 (1969) 1359

Barrow, R.F., "Essays in Structural Chemistry" (Macmillan, 1971)

Chapter 15

Yutsis, A.P., Levinson, J.B., and Vanagas, V.V., "Mathematical
Apparatus of the Theory of Angular Momentunm" (Israel Program for

Scientific Translation, Jerusalem, 1962)

Bleaney, B., and Trenam, R.S., Proc. Roy. Soc. A223 (1954 1



CHAPTER 4
GAS PHASE ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

In this chapter we shall consider some of the general principles of

gas phase e.p.r. spectroscopy., Some of the detalls presented here will be

of relevance in the two following chapters.

4.1 Comparison with Ordinary Microwave Spectroscopy
In order to describe this technique it would perhaps be of benefit to

degcribe the simpler, closely related method of pure microwave absorption

gpectroscopy. The separations between successive rotational energy levels
correspond, with a few exceptions, to energies in the microwave region, the
exceptions being for extremely light molecules such as OH and OD where the
spacing between levels is much greater and falls in the far infrared. We
shall ignore such exceptions in what follows, If a gaseous sample is irr-
adiated with microwave radiation over a range of frequencies, absorption of
radiation at certain specific frequencies will occur, these absorptions
resulting when the energy of the incident radiation exactly matches the
energy separation of a pair of rotational levels so that a transition is
induced from the lower level to the upper with accompanying absorption of
radiation. The principle of a pure microwave absorption experiment is to
sweep the incident microwave frequency and to detect the absorption of rad-
iation as a function of this frequency, By identifying the levels between
which the transition occurs, imformation on the disposition of the energy
levels can be obtained.

In contrast to the above technique, an e.p.r. spectrometer operates at
a single, fixed microwave frequency and the separation between energy levels
is tuned to this frequency by application of an external magnetic field.
The reason the energy levels are tunable in this manner requires some fur-
ther explanation. In the absence of muclear spins within the molecule, the
energy levels can be labelled by two quantum numbers J and Wy where my
takes the (2J + 1) walues

mgmxjg‘a}mim@ag“nj

Other quantum numbers are required to define the energy levels completely,
as discussed in chapter 2, but these need not be considered here., In the
absence of external magnetic or electric fields, levels with the same value

of J are (2J + 1)-fold degenerate, that is to say the (2J + 1) states
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{J mJ> have the game energy. On application of an external magnetic field
this degeneracy is 1lifted, each rotational level being split into (27 + 1)
levels corresponding to the different mJ values., This is the well-known
7eeman effect., The splittings between the states |J mJD» depend on the
magnitude of the magnetic flux density, and on the effective magnetic mom~-
ents for such states, Each of the mJ levels therefore tunes with magnetic
field at a different rate.

I1f we consider a pair of mJ levels correlating with different J values,
their energy separation can be seen to be a function of the applied mag-
netic field. Thus if the magnetic field is swept it is possible that at a
certain value of the magnetic flux density, the energy separation of these
levels coincides with the (fixed) energy of the incident microwave radia=-
tion, so that absorption of radiation takes place, Thig is the basis of
e.p.r. spectroscopys the absorption 1s measured as a function of magnetic
flux density, the lines observed in this manner corresponding to different
pairs of energy levele being brought into resonance with the fixed frequency
at which the spectrometer operates.

This type of experiment gives similar information to the pure micro-
wave absorption experiments but gives additional information on the mag-
netic moments within the molecule, There are further differnces %oo.

Since it is necessary to have a substantial magnetic moment before the
energy levels can be tuned with any rapidity it is apparent that only spec-
ies endowed with a sizeable paramagnetism (such as most free radicals) can
be successfully observed by this technique. In principle the pure micro-
wave absorption technigue is applicable to both free radicals and stable
closed-shell molecules although in practice the former are quite difficult
to observe, The reason for this lies partly in the nature of the exper-
imental arrangement and pertly in the instability of the free radicals.
The absorpiion cell used in ordinary microwave spectroscopy is either a
length of waveguide or az length of glass tube along which the sample is
passed, This cell has to be capable of transmitting microwave radiation
over a range of frequencies. The sensitivity of such a system is propor=
tional to the length of the absorption cell, amongst other factors, but if
a cell is made longer, 50 as to improve sensitivity, the problem arises of
how to £ill the cell with radicals, since they are so short-lived.

Suech problems do not arise in the case of e.p.r. spectroscopy. Since
a single fixed frejuency is used it is possible to use a resonant cavity as

the absorption cell, These cavities resonate at certain frequencies dete

ermined by its geometry. It is therefore possible to build such a cavity
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that resonates at the operating frequency of the spectrometer. These res-
onant cavities have several advantages over the absorption cells used in
ordinary microwave experiments. PFirst, their internal volume tends to be
very small, typically‘ﬂwﬁﬁcm§ for one operating at X-band frequencies, and
so there is not such a great problem in filling them with radicals. DSec-
ondly, because these cavities store energy at thelir resonant frequencies,
radicals passing through the cavity are subjected to more intense radliation
fields and consequently the sensitivity of the system is much greater.
Maximum sensitivity ocecurs when power saturation of the sample is just
reached and it is much easier to achieve this condition using a resonant
cavity system. Typical linewidths for both types of microwave experiment
are in the range 10kHE - 1MHZ, the dominant contribution to these linewidths
being pressure broadening. However, since frequencies can be measured more
acourately than magnetic fields, the conventional microwave methods lead to
more acourate parameters. With regard to searching for spectra from new
radicals, the e.p.r., method is of more value, because magnetic moments can
be estimated more readily than can rotational constants, and so the search
problem is not so great.

High resolution studies can be performed using other techniques, such
as molecular beam methods, but we shall not deal with these., It is suff-
icient to point out that the linewidths obtainable in a molecular beam
study are very much narrower than in the above microwave techniques, being
typically in the range 100Hz to 10kH%Z.

In the next section some typical types of resonant cavity, such as

used in e.p.r. experiments, are discussed.

4,2 Cells for e.,p.r. Studies

There are two baaic types of cell that can be used in e.p.r. exper-

iments, microwave cavities and Fabry-Perot resonant cells. We shall discuss
each of these in turn, paying particular attention to the latter since this
is the type used in the detection of OH, described in the following chapter,
and because it has only recently come into use it has not to our knowledge

been described in the literature of e.p.r. studies.

Microwave Cavities
These can be further classified into transmission or reflection types,

depending respectively on whether the radiation passes straight through the
cavity, being coupled out at the opposite end to which it is coupled in, or
or whether a single iris doubles as both input and output coupling iris.
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The latter is the type used most frequently for e.p.r. studies. Both types
are described quite thoroughly by Poole (1). They consist of a cylindrical
or parallelepipedal shaped space enclosed within walls of high conductivity
metal, such as brass, copper, silver or gold. These are commonly known as
eylindrical and rectangular cavities respectively.

The walls of the cavity reflect the radiation entering through the
coupling iris and at certain frequencies a standing wave can result from
congtructive interference of the reflections. The metal walls transmit a
small amount of radiation, a measure of this being the skin depth ) s which
is defined as the depth at which the current density is %-times that on the
surface, The skin depth is of the order of 0.01mm for microwave radiation
of about 10GHZ and hence it is not necessary to construct the entire cavity
from expensive metals such as gold or silver - a thin coating on the sur-
face of a much cheaper material will suffice. Several different standing
waves, or modes, can be supported by a given cavity and these are class-
ified as TEmnp or Tanp modes, The subscripts m, n and p refer to the num-
bers of half-wavelength wvariations along the three axes of the cavity. For
a rectangular cavity these refer respectively to the x, y and z axes where-
ag for a cylindrical cavity they refer to Qs, r and 2z axes respectively.
These two axis systems are defined in figure 1, TE and TM stand for "trans-
verse electric” and "transverse magnetic"™ respectively, which means that
the component of either the electric or the magnetic vectors of the radiaw
tion supported in the cavity along the 2z axis is zero respectively. The
frequency of the radiation supported in these modes is a function of the
dimensions of the cavity and of the mode numbers m, n and p. In general,
as the dimensions of the cavity are decreased so the frequency of the res-
opant modes 18 increased, »

Por use in gas phase e.p,r. spectroscopy these cavities form an integ~
ral part of the gas flow system and so it is necessary to drill inlet and
outlet ports through the metal walls, This results in some loss of micro-
wave ports tut by judicious positioning of the holes, and provided they are
not too large, these losses can be kept to a minimm.

A measure of losses in resonant cavities is the so-called Q-factor, or
quality factor, which is inversely proportional to the total energy loss,
contributions to the total loss arising from, for instance, losses through
the cavity walls, through gas ports, coupling irises, and from dielectric
losses through the medium. It is important that the Q-factor is as high as
possible. Since the @g-factor has the altermative definition
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Q = YV/AV

where )V is the resonant frequency

AY is the bandwidth of the cavity,
then a large Q means a narrow bandwidth. The detection system requires the
operating frequency of the spectrometer to be very close to the resonant
frequency of the cavity for optimum sensitivity and in practice this is
achieved by locking the source frequency to that of the cavity. A narrow
bandwidth means that, once locked, the two frequencies remain extremely
close together, which improves the sensitivity of the system. The square
root of the Q-factor is a measure of the signal-to-noise ratio obtainable.
Typical Q-factors for microwave resonant cavities are 5000 to 10000,

The rectangular cavities have been used most often in the study of con~
densed phases by electron spin resonance, a very gimilar experimental tech-~
nique to e.p.r., whereas for gas phage studies the cylindrical cavities are
generally used, Two types of cylindrical cavity have been developed spec—
ifically for the study of gas phase species, one with its cylinder axis
parallel to the direction of applied magnetic field and the other with its
axis perpendicular. The former, such as developed by Carrington and Hyde
and described by Carrington, Levy and Miller (2), operates in a TE01P mode
and can be used for experiments using either Zeeman or Stark modulation.
Because the component of the eleciric vector lies perpendicular to the mag-
netic field this system can be used to study & my = %1 electric dipole
transitions. The magnetic vector is orientated parallel to the external
magnetic field and so 4&125 = 0 magnetic dipole transitions can also be
studied.

The second type similarly operates in a TEO1p mode but it is not poss-
ible to use Stark modulation with it. In this case the ports are drilled
through the flat ends of the cylinder and it is possible to make them much
larger than for the previous type, without decreasing the Q-factor signif-
icantly. Consequently this type will be referred to as a 'wide access’
cavity. This was the type used by Radford (3) in the first ever gas phase
€.p.T. experiments on unstable molecular radicals. The magnetic vector in
the modes supported by this cavity lies perpendicular to the magnetic field
go O my = 21 magnetic dipole transitions can be observed, whereas the elec-
tric vector lies in both perpendicular and parallel orientations in differ-
ent parts of the cavity, so both AlmJ = 0 and élmJ = £1 electric dipole
transitions can be studied.
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Fabry-Perot Resonators
As has been mentioned already, as the dimensions of a reflection cav—~

ity are decreased so the frequencies of its resonant modes increase. For
example, at frequencies around 9GHZ the internmal volume of a reflection
cavity operating in a TEb11 mode is about 3Ocm3. For a similar cavity with
a resonant frequency of about B0GHZ, the internal volume is about 0.1cm3
which is certainly far too small to be of any practical use for free radical
gtudies., One solution is to use higher order modes, in this case modes
such asg TE012 or TE015, but this can lead to difficulties in coupling rad-
iation into the cavity and in drilling ports so as to not destroy the Q.

A far better solution is to use a Fabry~Perot resonator, the partic-
ular type we use being either a gemi-confocal or a confocal resonator.
Strictly, the eonfocal resonator consists of two equivalent concave mirrors
arranged coaxially such that the separation between them (d) is equal to
their radius of curvature (R). In practice the system will still resonate
if the separation is altered or if the mirrors have different radii of cur-
vature and we shall still refer to this as a confocal system. The semi-~
confocal resopator consists of a plane and a concave mirror arranged such
that the principal axis of the concave mirror is perpendicular to the plane
mirror surface. If the separation of these mirrors is d then this system
can be regarded as equivalent to placing a plane mirror at the midpoint of
two identical concave mirrors of separation 2d. The gsemi-confocal asystem
therefore differs from the ‘confocal' system only in that every other res-
onant mode is missing. This is a point more readily appreciated once the
nature of the cavity modes has been discussed.

The general theory of Fabry-Perot resopators and their modes has been
reviewed by Kogelnik and Li (4) and by Yariv (5). Only information relevant
to confocal (and semi-confocal) resonators will be presented here.

First, it will be necessary to discuss the propogation of electromag-
netic beams. Starting from Maxwell's equations an electromagnetic wave
equation can be derived, from which the electric and magnetic field vectors,
E and H respectively, in a homogeneous charge-free medium can be shown to

take the general form

E = B, exp (wt ~ ik.z + iP)
(4.1)
E = Hy exp (iwt - ik.r + i)

where EO and EO are the amplitudes of the wave vectors, k is the propoga-—
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tion vector along the direction vector r,  is the frequency of the rad-
iation and @ is a phase factor. E, H and k can be shown to be mutually
orthogonal. We shall assume the wave is propogated in the z direction
only, and so k.r is replaced by kz. The wavefunctions (4.1) lead to planar
wavefronts and uniform intensity distributions perpendicular to 2z whereas
curved wavefronts and non-uniform transverse intensity distributions are
more realistic., These requirements can be taken into account by replacing
the amplitude constant §0 by a new function U! containing exponentials with

complex arguments:

E = Y exp (~ikz + iwt) (4.2)

i

and similarly for H.
One solution for QJ is of the form

2 2
= e _ip(z) - e ( +¥) ) (4.3)
v xp [ ’ 2q(2)

where P(z) and q(z) are complex parameters describing the propogation of
the beam, P(z) is a complex phase shift and q(z) a complex radius of cur-
vature giving the required curved wavefronts and the non-uniform intensity
distribution.

It is far more convenient to introduce two real beam parameters R(z)

and W (2z), which are defined as followss

(I NN (4.4)

oz) | Rz Twi(2)

with the complex beam parameter at the origin of the z axis being given by

2
a(z=0) = q = i.'fxﬁ"o (4.5)

The physical interpretation of these two parameters is as follows:
W(z) is a measure of the non-uniform intensity distribution and is known
as the spot size. (J is defined as the distance measured normal to the axis
of propogation at which the intensity is %-of that on axis, bJO is the min-
imum spot size, or beam waist, and since from (4.5) W =(J,at z = 0 we
see that the choice of origin for the z axis is at the beam waist. R(z) is
the real radius of curvature of the wavefronts at a distance z from the
origin. Using the above definition of the origin, R(z) and W (z) can be
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obtained:
2\ 2
R(z) = = 1+(TT(,UO) (4.6)
Az
W(z) = W 1+( Az )2 (4.7)
O] \mw?

Tt follows from substitution of z = O into (4.6) that the wavefronts at the

beam waist are planar.
The solution (4.2) of the electromagnetic wave equation can be rewritten

2 2
E = Wo exp( -r ) exp("ir k exp (-ikz + i;é) exp (iwt)
w(z) w(z) 2R(z)

(4.8)

Az
where = arctan| ——
P (TT(;J%)

and r2 = x2 + y2

The first exponential in (4.8) represents the non-uniform intensity dis-
tribution, the second and third describe the beam divergence. Pigure 2
jllustrates the profile of this beam. As can be seen, the intensity profile
is Gaussian in shape and hence these beams are commonly referred to as
Gaussian beams. This particular beam shape is the fundamental mode.

Higher order modes also exist and these have the form

e
H]

2 2
Wo exp[ X, | exp “Ar k1 exp (-ikz + iP) exp (iwt)
2

N W 2r(z)

(2 () »

where ¢ =(2p+14+1) &rctan( 2 22)

TTw

L is a Laguerre polynomlal with radial and angular mode numbers p and 1
respectively. Since L = 1 it follows that (4.8) is a special case of
(4.9), with p=1 = O. Slnce the electric and magnetic field vectors are
both orientated perpendicular to the 2z axis these modes can be described as
TEM . modes.

Pl
We are now in a position to describe confoecal resonator systems. The elec~-
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tromagnetic radiation within the cavity is adequately described by a func-
tion of the form of (4.9), i.e. by a Gaussian beam. Under certain condit-
ions a standing wave can result from the reflections from the two mirrors.
It is apparent that, in order to get reflections, the radii of curvature of
the mirrors must be equal to those of the wavefronts at that point along
the principal (z) axis. Figure 3 illustrates a typical two-concave-mirror
system, The coupling iris through which radiation enters the cavity is not
indicated. It could be in the centre of either mirror.

The condition for resonance is that the phase shift between the mirrors
is TT, or a multiple thereof, Consider the simpler case where R1 = R2 = R,
The phase shift from A to B must take the general form

(kz - ) = qTT (4.10)

where q is an integer.
It is now possible to derive the beam waist and resonant frequencies

for this system. Since R(z) = R at z = d/2 then from (4.6) and (4.7) we
obtain

wg = -2%: J(2r - a) a (4.11)

which on substitution into (4.10) leads to
Y = 2-[ q + l-(2p + 1 + 1) arccos (1 _}Q_)] (4.12)
24 i R *

q is known as the longitudinal mode number, and the cavity modes can be
designated TEMplq' For given values of p and 1, and for fixed d and R,
there is a succession of resonances the separation between consecutive res-
onances being-%a, known as the free spectral range, 4V .

Te strong dependence of V on d can be used to our advantage. It is
possible to show by differentiation of (4.12) with respect to d that a
change of AV in the resonant frequency V can be brought about by altering
the length d by approximately half a wavelength. This leads to the poss~
ibility of constructing a tunable cavity, since quite modest changes in d
(say i%cm) can produce large changes in the resonant frequencies (say fZGHz).
A change of AV in all of the resonant modes is all that is required for
the cavity to be continuously tunable over a very wide frequency range, a
possibility which does not exist for the reflection cavities discussed

previocusly.
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Expressions corresponding to (4.11) and (4,12) for the case where
R1 # R2 are more complicated and so will not be quoted here. They have
been given by Kogelnik and Li (4).

A8 has been mentioned already, the wavefronts at the beam waist are
planar. Hence a plane mirror could be placed at the beam waist to form a
new resonant system, but with essentially the same characteristics as the
two-concave-mirror one, This is the semi-confocal resonator. The only
difference is that, since the phase shift between mirrors has to be a mul-
tiple of IT, only those frequencies obtained from use of the confocal form-
ulae (with d as twice the semi-confocal separation) with even g values will
be supported, i.e. every other mode will be absent. The apparent free
spectral range for a semi-confocal system is twice that of the correspond-
ing confocal system.

In designing a Fabry-Perot resonator for e.p.r. purposes there are
various points to bear in mind., First, in order to pass radicals through
the mirror gap it is necessary to enclose the mirrors and incorporate this
space into the vacuum line. This is easily achieved by using a glass or
perspex cylinder into the ends of which the mirrors will fit (with suitable
vacuum seals). The glass cylinder is perhaps the more convenient as then
standard glass joints can be used throughout the vacuum line. Since only
the mirrors are responsible for supporting the modes the inlet and outlet
ports built into this cylinder can be any convenient size -~ there are no
problems arising from loss of power through the ports as there are for the
reflection cavities. In addition it is not too difficult to transmit
100kHz modulation through the cylinder walls. Microwave cavities are con-
structed from highly conductive metals which have small skin depths,g .
For instance, for copper the skin depth at 100kHz is 0.2mm and so the
current density has dropped to %-of its original value at this depth of
penetration. To combat this attenuation either very large modulation power
levels must be used, or the cavity walls through which the modulation is to
pass must be a very thin layer of conducting metal (preferably deposited
onto some non-conducting material so as to retain mechanical strength).
Since glass and perspex are poor conductors their skin depths are extremely
large, of the order of 103m for 100kHz frequencies, and so the modulation
will penetrate the cell walls of a Fabry-Perot regopator easily.

Secondly, from the point of view of sensitivity, the maximum on-axis
intensity of radiation is required, which means that the TEMOOq modes should
be used. To prevent too much power being diverted into higher order modes

these other modes have to be discriminated against. Higher order modes
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have their maximum intensity on-axis, but unlike the TEMOOq modes they also
have a non-zero intensity at a certain distance off-axis., If these sat-
ellite regions can be discriminated against then the dominant modes will be
the TEMOOq' This can be arranged by using mirrors of such a width (a) that
these satellites fall outside the mirrors and hence are not reflected,
Losges from around the sides of the mirrors in this way are known as diff-
raction losses., Other losses also occur in the sustem, such as from absorp-
tion by the dielectric medium, scattering off imperfections in the mirrors,
poor coupling of radiation into or ocut from the cavity and so on.

Thirdly, a resonant system is not necessarily a stable one. If we

define

d

g = ] e -

1 R,

d

g, = 1-3

2 R2

then the system is atable only if

0< g 6,41 (4.13)

Finally, we have to determine the Fresnel pumber N, defined by

12 (4.14)

An estimate of diffraction losses for the TEMOOq modes can be obtained for
given values of 8y9 85 and N, and it turns out that for fixed 84 and &5
these losses are least when N is greatest. The Fresnel number can be rel-
ated to the phenomenon of Newton's rings and so the higher the value of N,
the more radial modes there are and the more likely higher modes are to be
supported. To discriminate against such modes a system with an N value
close to 1 must be used., Taken in conjunction with earlier statements, the
optimum N values for our purposes are between 1 and 2, preferably nearer 2,
The values of B9 By R1, R2 and 4 have therefore to be carefully chosen.
Nevertheless, it is possible to obtain high Q-factors for these cavities,
typically v6000 for ~26GHz and increasing rapidly for higher frequencies,
It should be apparent that the Fabry-Perot resconator offers several
advantages over the reflection cavities - they allow e.p.r. experiments to

be performed at higher frequencieg than for the reflection type; it is poss-



ible to observe all types of magnetic and electric dipole transitions
simply by altering the orientation of the waveguide coupling into the cav-
ity; they can be tuned easily over a large frequency range; there is no
problem in the sizes of gas ports; and finally, there is no problem in
getting a modulation signal through the cell walls,
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CHAPTER 5
1
A DETERMINATION OF g-FACTORS FOR THE 60H RADICAL

5.1 TIntroduction
The OF radical probably qualifies as being the most extensively studied
free radical. Since its detection early in this century, it has been sub-

jected to many theoretical and experimental studies. We are only interested
in the rotational energy levels of the 1608 molecule and the studies per-
taining to these,

There are several reasons for the great interest taken in the OH mol-
ecule, First, the rotational energy levels are complicated by various
uncoupling effects, which arise from the fast rotation of the molecule, since
it is so light. There are thus some rather interesting features in the rot-
ational spectrum which can give information on the electronic structure (1).
The description of these interactions poses & problem for the experiment-
alist, who needs to determine a suitable effective Hamiltonian before he can
analyse his data. As far as the theoretician is concerned, these uncoup-
1ing effects provide a severe tegt of ab initio calculations of molecular
parameters.,

Secondly, OH is a molecule of great astronomical significance., Radio-
astronomers have detected its presence (2) in numerous interstellar gas
clouds and in comet tails. Because of its great abundance in interstellar
space it is particularly useful for estimations of relative velocities of
sources, though an accurate determination in the laboratory of the molecular
constants in a necessary precursor of such worke. A further interesting
example of the way in which interstellar OH signals have been used is in
the estimation of the minute magnetic fields present in collapsing gas
clouds (3), using a comparison of left and right circularly polarised spec-
tra. Tt is likely that OH plays an important role in interstellar chem-
istry, such reactions subsequently leading to the formation of larger mol-
ecules. The OH radical is therefore a potentially useful probe molecule
for the study of the physical and chemical development of interstellar gas
clouds,

Finally, OH is very easily made in the laboratory and has a relatively
long lifetime, around % sec., so that sufficient concentrations can be gen-
erated to allow easy detection, Indeed, this molecule is often detected
during the search for new radicals, sometimes even from the most unlikely
combinations of reactants, The reason for the long lifetime of OH is that,

under favourable conditions, a particular regenerative process OCCuUrs.



- 65 -

411 this notwithstanding, there are still aspects that have not been
extensively investigated, a case in point being the molecular g-factors.
Radford (4, 5), in the first gas phase e.p.r. experiments on unstable mol-
ecular radicals, has investigated the microwave Zeeman effect and has det-
ermined the effective g-values, These effective g-values are determined
phenomenologically - each describes the overall rate of tuning with applied
magnetic field of a single rotational level. 0f far more value are the
fundamental molecular g-factors, which relate to the different interactions
of molecular angular momenta with the external magnetic field, since these
give direct information on the electronic structure of the molecule. The
effective g-factors found by Radford can be written as linear combinations
of the molecular g-factors. To our knowledge, no analysis has yet been per-
formed to determine the molecular g-factors and so to remedy this omission
we have performed an analysis of the e,p.r. spectra of seven rotational
levels of the ground vibronic state of the 160H radical, Radford‘s data
for five of these levels are used, transition frequencies for the other two
levels being measured at the University of Southampton.

These g-factor determinations are not likely to be of great value to
radioastronomers as far as estimations of magnetic fields in gas clouds are
concerned. The phenomenological g-factors are quite suitable for this pur~
pose, However, the advantage of the molecular g-factors is that since they
are related to more fundamental molecular quantities, such as electron dis-
tributions, they are capable of giving far more information on the elec~
tronic structure than are the effective g-factors.

In the following section a brief outline of the theory of the rotat-
jonal energy levels is given, while in section % the previous siudies are
degcribed. Section 4 deals with the experiments performed in this labor-
atory on the QTTB/Q J = 9/2 levels and in sections 5 to 7 we present the
form of the effective Hamiltonian used in our analysis and compare this with
previous Hamiltonians. In the final two gsactions the results of this ana-

lysis are presented and discussed.

5.2 Rotational Levels of a Diatomic Molecule in a 2TW Electronic State
In this section we describe the rotational energy levels for a mol-
ecule in a ZTT state, with particular reference to the OH molecule, Init-

ially we look at the energy levels in the absence of rotation of the nuclel

and then the effects on these fine structure states on introduction of the
rotational and associated uncoupling interactions are considered. The

effects of nuclear spins will be ignored for the time being.
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We must first decide on a suitable set of basis functions. GSince for
most molecules in QTW states the spin-orbit coupling is large, so that both
L and S are coupled strongly to the internuclear axis and the quantum num-
bers /\ and 2 are well-defined, then wavefunctions conforming to a Hund ‘s
case a) coupling scheme are most appropriate, Case a) wavefunctions are of

the form
IMAs 8Z5 JnM>

where the guantum numbers that define this function have the significance
described in chapter 2. TFor a ZTT electronic state these gquantum numbers

have certain allowed values, which are as follows:
A = %

g = 1/2

(5.1)

#

/2

2.
J = 1/2,3/2y o & o
Prom the linear molecule restriction, the values {1 is allowed to take are
O = A +X = %2, 33/2 (5.2)

subject to the restriction J2[L1].

Tn the absence of rotation, states with the same value of [£2] are
degenerate and so there are two fine structure states, labelled 27T1/2 and
27T3/2 according to the value of |{2]. The wavefunctions corresponding to

these states are of the form

2y 2 =%1/2 >

H
#

E2T§1/2> [
(543)

N =315 = 21/2 D

]
i

|*T5/2

and the separation in energies of these states is a measure of the spin-
orbit coupling constant, A, Obviously if the gpin-orbit coupling is large
then these two fine structure states will be well separated. These states
can further be classified as regular or inverted according to whether the
quantity (A - 2B) is positive or negative respectively. This quantity gov-
erns the size of the splitting of the fine structure states and hence for a

regular state the 2TT1/2 state is lower in energy than for the 2TT5/2
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state, whereas for an inverted state the reverse applies,

So far we have considered the fine structure states for a good case i)
molecule, but the OH radical ls not well demcribed by oase n) wavelunctions.
There are two reasons for thims, not entirely independent., PFirst, because
the molecule rotates rapidly, S is extensively uncoupled from the inter-
nuclear axis, and the gquantum rumber % is no longer well-defined. The
quantum number {) therefore begins to lose significance as the uncoupling
gets larger and so it is no longer valid to refer to the fine structure
states as 2TT?/2 and 2TT§f2” This is because the spin-uncoupling, as it is
known, has caused these two states to be extensively mixed and so they lose
their separate identities. The labels 27T1/2 and ZTT5/2 strietly only apply
to a pure case a) QTT'ﬁtate" Tn addition, the spin-orbit coupling constant
for OH is relatively small, since it is so light, and hence the fine struc-
ture states are quite close together (approximately 1400m.'.1 apart). The
proximity of the fine structure states in OH serves to enhance the mixing
of these states. In the extreme case of complete uncoupling of § from the
internuclear axis, in which case % and {) have no significance whatsoever,
we have a Bund's case b) coupling scheme. The labels 27T5/2 and 27T1/2 are
then no longer valid and so wavefunctions must be chosen which conform to a
case b) scheme. The coupling scheme for OH is intermediate between cases
a) and b), so the labels QTTT/Q and 2TT§/2 do not strictly apply. It is
convenient however to retain the case a) formalism to deal with the O rot-
ational levels.

Although uncoupling effects have briefly been considered above, their
origin hag not been indicated on any methematical grounds., These uncoupling
interactions arise on introduction into the Hamiltonian of terms describing
the rotational motion of the nuclei, The Hamiltonian for the spin-orbit

and rotational interactions is as followss
3 1 1 1
E=ar (L). T (8)+30 (J-L-8).T (I-L-8 (5.4)

where a greatly simplified form of the microscopic spin-orbit Hamiltonian
is used, known as the phenomenclogical spin~orbit Hamiltonian. The micro-
scopic spin-orbit Hamiltonian allows more electronic states to be mixed
into the ground state than does the phenomenclogical form., This is because
the latter is based on Van Vieck's pure precession hypothesis, in which g?
is assumed to be & constant of the motion, i.e. L is a well defined quantum
pumber,

The Hamiltonian (5.4) can be expanded in a molecule-fixed axis system

to obtain the following:
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where q = O, 4,
Since the q = 0 component is defined to be equivalent to the component

along the internmuclear () axis then we have the relations

1 = -
TO (,;I,’.) = Lz - /\

1 iy
To (s) = s

"
™M

%

n( =3, =0

which on substitution into (5.5) leads to

H = AAT

+ B[J(J +1) +35(s + 1) =207 »/\2}

+ B f (-1)4 T; (L) qu

()
g=1

all 1 1
- 2p qué (=0 () T ©

1
+ (2B + &) qé% (=1)2 T;i (L) Tiq (s)
S (o
- G I @ @ (5.6)

The first term in (5.6) is responsible for the splitting between the fine
structure states and it is readily seen by substitution of A = ¥1 and

3 = 11/2, the relevant quantum numbers for a T state, that two such
states are obtained, differing only in the value of |1l = A + ZI, and
separated by an energy equal to A, as noted previously. The second term,
arising from the diagonal part of the rotational Bamiltonian, lifts the deg-
eneracy of the fine structure states, giving rise to a sub-manifold of rot-
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ational 1eve13 for @ach of the fine structure atatea. The third term,

B ;EjT( 1)4 T (1) T (L), equivalent to B(L + L ) in the Cartesian not-
atign, adds a constant term to all of the rotatlonal levels, although higher
order perturbation terms involving this term will not necessarily impart a
constant shift to all the energy levels. To first order we are justified

in ignoring this term as we are only concerned with the relative energies

of the rotational levels,

The fourth term, - 2B ET( 1)4 '1* (1) 'Pm_q (s), is the familiar spin-
uncoupling term given in @qugtian (3. 7) of chapter 3. Its effect has
already been discussed earlier in this section, namely, this term accounts
for the uncoupling of the electron spin from the internuclear axis as the
molecule rotates, Non-zero matrix elements of this operator occur between
states of different o. value but the same /| value, i.e. between states of
different 1513, This term is hence responsible for mixing the two fine
structure states together, and so for the deviations towards case b) beh-
aviour. The smaller the separation between the fine structure states then
the more extensively they will be mixed. Similarly, the faster the molecule
rotates then the more the spin is uncoupled from the axis. 4 useful indic-
ation of the magnitude of the spin-uncoupling is given by Y = A/B, the
ratio of the spin—orbit coupling and rotational constants: the smaller the
value of Y then the larger the spin-uncoupling. Since for OB the spineorbit
coupling constant is small and the rotational constant guite large then Y
ig quite small, thus giving some gquantitative description of the marked dev-
iation towards case b) behaviour. The experimental value of Y for OH is
approximately -7.%, where Y is negative because A is negative., Simple
arithmetic shows that (A - 2B) is 2 negative quantity and so OH is an
inverted state, in which for a given J the ETT3/2 levels are lower in energy
than those of the Z?T,i /2

The final two terms in (5.6) are, respectively, the off-diagonal con-
tributions denoting the uncoupling of S from L and the I-uncoupling terms
given in equation (3. 6) of chapter 3, the latter representing the uncoup-

ling of L from the ipternuclear axis. Bach of these terms have non»zero

state,

matrix elements between states differing in the value of Al by 1 and hence
are responsible for the admixture of excited electronic states into the TT
ground state, The effect of these interactions is to give different shifts
to the states with different /\. This lifting of the /\ -degeneracy of the
rotational levels is known as /\-doubling. The states that are mixed dir-
ectly into a QTT state by these two interactions can only be 2. or I\
states, and it will subsequently be shown that to a high degree of approx-
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imation the /\-doubling arises predominantly from the admixture of 2:

states only.
Now in the absence of an electric field the total Hamiltoniam commutes

with the space-fixed inversion (parity) operator E¥, or, in other words,
they possess a common set of eigenfunctions Yo s

HIY)Y = EBIYD
B Y

(5.7)

#

Ty

where E represents the energy and + or = the relative parity of the eigen-
function. The eligenfunctions I¥Y>» in this case possess well~defined par-
ity. 1If these wavefunctioms are used as basis functions then there will be
no matrix elements of the total Hamiltonian connecting states of opposite
parity.

Consider the manner in which the case a) basis functions that we have
adopted so far transform under the parity operator. As mentioned in chapter
3, this requires a consideration of how the Buler angles transform under E¥

Be Az SE; aaM> = (=1)7° M =A3 S =X I-0 K>
(5.8)

Thie is analogous to the expression given in equation (3.23) of chapter 3,
the z in the latter expression referring to S”, states only. It follows
from (5.8) that these basis functions do not possess well-defined parity.
We therefore define a parity basis set by taking the linear combinations

Ay ST 5 JO M L > o= 1>
!

=/§:{MMSK;JQM> i(w%)‘}‘“%mm/\;smz ;J*IHD}

(5.9)

This transforms under the parity operator as follows:

B |20 m{(mﬂ}‘w’ ) =A3S=Z 5 3-0M> I lnas sz mM>}

]
2

i+

1> (5.10)

and hence these new wavefunctions have well-defined parity.
In the case of the non-parity wavefunctions the eigenvalues for a

given J are obtained by diagonalisation of a 4 x 4 secular determinant, in-
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volving the four bazis functions

e

| 2Ty, A=) | 5Ty A= 1D
(5.11)

2 2
| Hvzﬂ””>§!7nﬁﬂ“”1>
For the parity wavefunctions there are still four basis functions, labelled

g 2ﬂ5/2§ 4’> Ezﬂﬂw}/ﬁ - >
(5.12)
2 2
| Thypes | “TTyyas = >

but since there are no matrix elements between states of opposite parity
then the 4 x 4 secular determinant factorises into two 2 x 2 determinants.
The advantage in constructing a secular matrix from parity basis functions
is therefore that we gain considerably in the ease of computation of the
eigenvalues.

Matrix elements of the Hamiltonian in the parity basis are related to
those in the non-parity basis asg follows:

CPMay BRIy 2) = (o A=S11B[3 A=51D

Tl A=BE]y AT (5.13)

Tt is apparent from (5.13), or from (5.12), that, for levels of a given J,
the energies of levels of opposite parity differ by a N ~doubling interval,
Hence the two levels of a A —doublet have opposite parity, and can be lab-
elled + or - accordingly. The phase factor ('»1)J in (5.13) means that

the relative parities of upper and lower A ~doublets alternates for success—
ive J levels,

In order to describe the rotational energy levels of a 2TT state in
terms of TT basis functions only, a suitable effective Bamiltonian is re-
quired, and so, to account for the A ~doubling phenomenon, terms must be in-
cluded in the effective Hamiltonian that, in first order, mimic the higher
order effects of the final two terms in (5.6). The derivation of such a
Hamiltonian will be poatpoped for the time being.

Figure 1 shows the general disposition of the rotational energy levels
for an inverted QTT electronic state, the levels connected by braces being
the A -doublets.,
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We merely note at this stage that since the hydrogen atom hag a nuclear
spin of T = % then hyperfine effects must alaso be considered. FEach of the
rotational levels in figure 1 are thus further split into doublets, corres—
ponding to the twe allowed orientations of the nuclear spin. If the coup~
ling scheme

is used then these hyperfine levels can be labelled by the quantum number
P, given by

F = J~-% or J+%

There is a further degeneracy associated with each of the rotational
levels and this arises from the quantisation of the total angular momentum,
J (or P if nuclear spin is included), in the space-fixed axis system. Con-
sider the case where nuclear spin is not included. As described in chapter
2, the quantum number my relates to the projection of J along the space-
fixed z axis, and takes the 2J + 1 values

mJ = Jg«jw?aow”tju

Tn the absence of external magnetic or electric fields the (27 + 1) states
|J mJ) are degenerate. On application of a magnetic field, however, the
degeneracy of these levels 1s lifted, this being the well-known Zeeman
effect. The Beeman energies are given by a relation of the form

Eﬁeam&n = mszO ‘ (5.14)

where B, is the magnetic flux density and m the component of the magnetic

0
moment of the molecule along the field direction. The latter is related to

the mJ value by the expression

B, =T 81Mp Ty (5.15)

where /MB is the Bohr magneton and gJ the effective rotational g-factor.
This effective g=factor is compounded from more fundamental molecular g-
factors, the dominant contributions arising from the electron spin and
orbital motions. The values of these particular g-factors are very close
to the well known free electron values

8y = 2.00232

o (5.16)
g, = 1.000
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For a pure case a} coupling scheme the effective g-factor is propor-
tional to the quantity {gSE: + gL A) and it is irmediately apparent there-
fore that the effective g-factor for a TT%/? astate, in which the electron
orbital and spin magnetic moments effectlvely oppose one another, is approx-
imately zero. Since the magnetic moment is so small then the Zeeman split-
ting of the ZTTQ/E rotational levels is almost negligible,

Now, as mentioned in chapter 4, the principle of electron paramagnetic
resonance (e.p.r.) spectroscopy is that the sample is irradiated by electro-
magnetic radiation of a fixed frequency and the Zeeman effect is utilised
to tune the energy separations between various pairs of levels into reson-
ance with this fixed frequency. If the g-factor is very amall then either
it will not be possible to tune the relevant levels into resonance at all
or, even if the levels can be tuned, since the levels tune so slowly the

absorption line will be s¢ broad as to be undetectable., It is not likely
to be possible to observe an e.p.r. spectrum arising from a pure 7T1/2
state.

Congider, however, the situation for a pure case b) coupling scheme.
The electron spin angular momentum is completely decoupled from the inter—
nuclear axis and so the atate labels QTT@/Q and 2775/2 have no significance.,
The magnetic moments arising from the electron spin and orbital angular
momenta do not therefore lie along the same axis and so the effective g-fac~
tor is non-zeroc for all the rotational levels.

The coupling scheme for OH is intermediate between cases a) and b),
but we have retained the case a) formalism for convenience, In this case,
the effective g-factors for the 2 %fQ levels are non-zero, although quite
emall., This situation can be regarded as an acquisition of case b) behav-
jour by the case a) wavefunctions as the coupling scheme deviates towards
case b), or, in other words, as the spin uncoupling becomes larger so the
fine structure states become more extensively mixed and more ZTTB/Z charac
ter is introduced into the 2TT1X2 gtatea, The magnetic moment of the
2TT1/2 states is therefore "borrowed” from the 2?T5/228tatea and so it is
possible to observe e.p.r. apectra arising from the TT?/Z state of OH,
although the lines are much weaker and much broader than in spectra from

2 levels., The weakness of the Z?T%/g lines is a result of the smaller

Ms/2
Boltzmann population rather than being due to the smaller g-factors. We

note that since the J = % levels exist only for the 27T1/2 state then there
can be no mixing with the 27T5j2 state and so the g-factor for these levels

ghould be essentially zero, even for a light molecule such as OH.
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5.5 Previous Studiea of the @6GH Radiesl

As has already been mentioned, the OH radical has bveen the subject of

a great many studies, covering & wide range of techniques. We are only
interested in those studies giving information on the rotational energy
levels.

Dieke and Crosswhite (6) have performed an extensive analysis of the
vacuum ulitra-violet spectrum of OH, the radical being produced in an OXy-
acetylene flame. Values for the rotational constant B, centrifugal distor-
p 2nd the fine-structure parameter Y (= A/B) were obtained
from this work, which were more accurate than from previous studies, How-
ever, the linewidths inherent in this type of experiment are quite broad
(typically ~ 0.1 = 095@%?1} and so the effects of some of the smaller

tion parameter D

interactions carnmot be resolved. High resolution techniques, such as stud=-
ies in the microwave region or molecular beam methods, must therefore be
adopted if these smaller effects are to be detected,

Since the OH molecule is mo light, the spacings between guccessive
rotational levels are quite large - about 1@0@mm1 for the lower levels,

The rotational spectrum of OH, arising from transitions between these lev-
els, therefore lies in the far infra-red, where the resolution is still
quite low (typicaliyﬂﬂﬂw§cmm?)9 Fortunatély there are transitions in this
molecule that occur at microwave frequencies and so measurements of high
precision can be made, The observed microwave spectrum in fact arises from
transitions between the /A —doublets from a given rotational level. These
A -doubling transitions are therefore electric-dipole allowed since they
commed connect gtates of opposite parity.

The first zerofield wmicrowave absorption studies of A =doubling in OH
were performed by Dousmanis, Sanders and Townes (7), in this case the rad-
jical being detected in the products of a microwave discharge in water vap-
our

L OH + other products (5.17)

The observed transitions arose from the J = 3/2 amd 5/2 levels of the

QTT1/2 state, and from the J = 7/2, 9/2 and 11/2 levels of the 27T5/2 state,
the frequencies lying in the range 7700 to 37000MHAz, The accuracies of
these measurements were, at best, within 50kHz, which was sufficient to gain
information on the phenomenon of A ~doubling and to give estimates of the
magnetic hyperfine parameters., This list of zero-ield meagurements has
subsequently been extended by Poynter and Beaudet (8), Radford (9) and Ball
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and coworkers (10, 11), who were algo able to improve on the accuracy of
the lines measured by Dottsmanis et al (7).

The most accurate determinations of zero—field A -doubling frequencies
come from molacular beam studles. Messurements of the 27T§/2 J = 3/2 lines
(12) using a beam maser spectro-

were obtained by ter Meulen and Tymanus
meter, these frequencies being accurate to within 100Hz. The OF = 0
transitions from the E?Té/g J = 9/2 levels were remeasured by ter Meulen
(13) using the same technique, A molecular beam electric resonance (MBER)
experiment wag performed by %@@rﬁ@ and Dymanus (14) to remeasure the 7T1/2
J =5/2, 7/2 and 9/2 and the Tfﬁfg J = 5/2 A-doubling frequencies,
although the accuracy of these, vavging from within 1 -~ 10kHz, is not so
good as from the beam maser. Recently, ter Meulen et al (15) have reported
a preliminary investigation of an inverted population of /\ndoublets, using
both of these molecular beam methods, in an attempt to understand the masger
emission from interatellar OH. The method of preparation of OH for all the
aforementioned molecular beam studies has been the reaction of SOZ with the

products of a microwave discharges in water vapour

EQG e B 4 Other products

(5.18)

H + NO, - OH + HO

2

Double resonance techniques have also been used to obtain high resol-
ution data, Recently, Destombes and Marliere (16) have used a radio-freg=
uency mierowave double resonance method to obtain extensive measurements on

e 27T§/2 J = T7/2 and 9/2 levels, with an accuracy of between 8 and 25kHz.

The Zeeman effact on the rotational energy levels wam first invest-
igated by Radford (4, 5) again using a microwave discharge in water vapour
to generate the radicals, He was able to determine the effective rotational
g-factors for the 2T§§/2 J= 3/2, 5/2 and 7/2 levels (4) and subsequently
for the Effﬁfg J = 3/2 and 5/2 levels (5), the linewidths for these exper-
iments varying from 450 to BOOkHz., Similar experiments were performed by
Clough, Curran and Thrush (17), who detected /\ -doubling transitions arising
from within the vibrational levels v = 0 to 4, the method of preparation

being

H a4 0 JNS—— ) 02 (5.19)

3
However, we are only concerned with those transitions arising from the
= 0 level, in which case the results of Radford are to be preferred.
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5.4 Measurement of the Zeeman Effect in the a?Tﬁ/g J = 9/2 Rotational
Levels of OH

These measurements were made in conjunction with Dr. M. Kaise, The

method employed to meagure the Zeeman effect in the QTTﬁfg J = 9/2 level of
OH is basically the same as that used by Radford (4) for the lower rotat-
ional levels, namely to observe the A ~doubling transitions using an e.p.r.
spectrometer, From the work of Dousmanis, Sanders and Townes (7) and sub-
gequent workers it is known that the zero field A -doubling transitions for
the J = 9/2 level ocour at around 23.8GHz. We have therefore used an
e.p.T. Spectrometer system operating in the E-band microwave region (18 -
26.5GHz). Choosing an operating frequency reasonably cloge to that of the
zero-field transition fregquencies ensures that the magnetic flux density
required to tune the relevant energy levels into resonance is within the
capabilities of the electromagnet system. Our operating frequency was
around 26GHz,

The present experiments differ from those of Radford in only two minor
aspects - the method of preparation of OH and the type of cavity usged, A8
regards the preparation of OH, we choose to prepare it by mixing the pro-
ducts of a microwave discharge in CF@ with water vapour, rather than by the
reaction in (5@$7}9 4 mierowave discharge in CF% is known to be a good
source of fluorine atoms (18), and so the proposed reaction scheme is

CF4 e = P 4+ other discharge products

(5020)

F+ Hzﬁ R o + HF

The only alternative preparation we investigated was from a microwave
discharge in water vapour, which proved te be slightly inferior. 4 distinct
advantage of the prepavatlion via ﬁ?& ig that since F atoms themselves pogs-
ess an €,p.T. spectrum (19) readily ocbmervable at our operating frequencies,
we have a useful method for the initial estimation of optimum relative
pressures of CF@ and water vapour: the F atom signal can be optimised and
then titrated out by the addition of water vapour. In pracitice the optimum
OH signals were obtained when the P atom signals were Just titrated out.

The possibility of monitorimg relative pressures of reactants arises also
for those reaction schemes irwolving hydrogen atoms (5.18 or 5.19) but we
have found the H atom aignal much harder to deteet than that of the F atom.

The type of cavity we have used is a confocal resonator system, whereas
Radford used a microwave reflection cavity. Both of these types have been

discussed in chapter 4. The reason for our use of a confocal resonator is
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mainly because of the relative volumes of the two types of cavity at K-Dband
frequencies, The volume of a microwave cavity gperating in a TEOTT mode at
around 26GHz is approximately §@m§ wheress the internal volume of the con-
foecal resonator is about ?6@@%3@ The volume of the Tormer is not really
auitable for free radical studies. A& larger microwave cavity operating in
a higher order mode could be used but we choose to use a confoeal resconator
ginee this offers certain other advantages, as discussed in chapter 4,

This problem of internal volumes does not arise at the A-band frequencies
used by Radford.

The design of the confocal system was based on that for a gemi-confocal
resonator due to Tr. C.R. Parent, The volume of a semi-confocal cell would
be half that of an equivalent confocal cell and for this reason we have
uséd the latter. However, confocal resonators are slightly harder to con-
astruct in view of the fact that the coupling hole is drilled through a con-
cave mirror rather than in & plane one. Figure 2 shows a longitudinal sec-
tion through our confoeal cell. The mirrors both have a radius of curvat-
ure (R) of Sem and are 2 inches in dismeter. Their separation is difficult
to measure in situ but from measurementez of the free spectral range OV
(difference in resonant fregquency of successive modes ) we can estimate thiss

AV is measured as ~ 2.87GHz2 and go from

5!
Y m o owr
) 24

we obtain d ag~5.2%cm. We can now check the stability of the systenm, and
find the Presnel numbers

g
g? w2, W T ;;gj wm e (3,046

¢ i

Therefore we have g.,g, = 0,002 and so from (4,13} the system is stable,

The Presnel number calculated from (4.,14) is N = 1,04, and so the diffract-
ion losses will be large for all but the TE%@Q modes, as we required, The
dimengions of the cell are of course chosen to meet the stability condition
and to give a gsuitable Presnel mumber,

Mechanieal tuning of the cavity is possible by adjusting the separation
of the mirrors and this is achieved in this case by use of a differential
gerew system, The cavity was found to be tunable over the entire range of
the microwave sourme - from 180GHz to 26GHz. FPEdwards O-rings are used to
form a vacuum tight system. 4 sectilon of waveguide is hard-soldered into
the body of the upper mirror, and a vacuum seal between this section and the

remainder of the waveguide system is formed by use of a Mylar gasket. The
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cell itself is made of Pyrex glass and since 1t is required to fit smugly,
without leaking and without undue mechanioal streas, it follows that the
internal diameter and length of the cell are critical., The Zeeman modul-
ation coils are made from 34EN laminated scopper wire wound in series on
perspex formers fixed externally to the glass cell so as to provide a mod-
ulation field parallel to the direction of applied magnetic field. There
are four supporting rode in a square arrangement and hence it is possible
to arrange the upper body such that all types of magnetic and electric di-
pole transitions are observable, The OH measurements were made with the
upper body orientated such that @gmg = X1 electric dipole and ﬁ;mJ = 0 mag-
netiec dipole transitions could be observed. By inserting a 90° twist into
the waveguide the upper body can be fikied to the cavity such that

A‘mJ = i1 magnetic dipole and gamg = ( electric dipole transitions could be
seen, This is the orientation used for certain measuremenis on the spectra
of atomic fluorine and hydrogen.

Figure 3 showe the general layout of the spectrometer system. Since
this is not a standard system, it will be described in more detail. The
microwave source was & Hewlett Packard HP 8690 B backward wave oscillator
(BWO). The waveguide system was comprised mainly of components mamifac—
tured by Mid-Century Microwavegear Lid. - the three-screw tuner and certain
straight sections were made in the Department of Chemistry workshops.  The
detector was an MA 49%B crystal sultable for the K-band frequency range.

The BWO frequency was locked to the resonant frequency of the cell by
an antomatic frequency control (AFC) system, using phase sensitive detection.
The filters, oscillator, phase shifter and phase sensitive detector (PSD)
were mayufactured by AIM Electronicm Ltd,, whereas the preamplifier was a
Brookdeal LNA 450. The correction voltage supplied by the AFC system had
to be made compatible with the BWO and with this end in mind a circuit,
designed by Br, T.H. Wilmshurst, was connected to the helix input of the
BWO,

Modulation was supplied to the Zeemsn coils by a Varian 100kHz modul-
ation unit, which also contains 1ts own PSD system. The required absorption
signal was recorded from the cutput of this PSD. The magnetic field was
supplied by a Varian V3800 15-inch electromagnet powered by a VePR2703
power supply, and was regulated and swept by a Fieldial Mk I1 system. Aco-
urate measurements of the magnetic field at the poleface were made with an
AEG magnetometer using a proton resonance probe., The proton resonance freg-
uencies were measured with an AMP Venner digital counter. The frequency of

the microwave source was determined using an HP B40-5245L frequency measur-
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ing system, which locks the tenth harmonic of a loceal oscillator freguency
to the frequency of the source.

Corrections have to be applied to all of the measured lines because of
the difference in m&gm@@;ﬁ Tux densities at the poleface and at the centre
of the resonant cell. ?h@@@ corrections were determined by measurement of
the spectra of atomic fluorine and hydrogem. The magnetic fields at which
the atomic absorption lines occur can be caleulated with a high degree of
accuracy and by comparison with the measured fields a magnetic field corr-
ection curve can be constructed, The field corrections to the measured OH
lines are of the order of -1 gauss. The general formula derived by Clend-
enin (19), as quoted by Radford, Hughes and Beltran-Lopez (20), was used to
caleulate the field positions of the atomic fluorine lines. This formula
gives the energies of the EF%XX and 2%5/2 levele ag a function of the app-
lied magnetic field. Since the magnetic field dependence 1is rather comp-
licated, Radford gﬁhE%‘QZG} found it convenient to expand a sguare root in
the general formmula and hence to derive formulae relevant to individual
transitions arising within the g?-;? levels (transitions from the P1/2
levels are much weaker and were not observed by Radford et al or by us)e
The expansion parameter containe guadratic and cubie functions of the mag-
netic field and hence at high fields the square root expansion is not nece
essarily valid, In our case, the general formula is to be preferred since
our atomic fluerine spectra were recorded at high magnetic fields (approx.
10 kgauss). We have writiten & computer programme that calculates the field
positions of all fluorine atom transitions for a specified operating freg-

uency. This solves the gen 1 formula by an iterative procedure, using

which works ag follows, We wish to

@

3-point equal interval interpolation

golve

Y o= f éq} <5.21)

1, at a specified frequency V

To apply the Z-point equal interval method we must have a range of fields
within which we knoow to be & solution and in addition the solution must be
at a turning point in the function. A% fairly modest fields (say ~ 3kgauss
or more) the energy levels (and hence the ftransition frequencies) tune al-
most linearly with field and so there is no turning point in the funetion
f (H). An artificial turning point can be obtained by calculating the

absolute deviations from the specifisd frequencys

Vom Vel = (£ ) =V | = & (B) (5.22)
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The function g (H) is zero for V = Xi@p and positive for all other values
of V and hence g (H) has a minimum at V = %ﬁgp@ We can therefore solve
(5.22) iteratively to find a valus for Hye

The range of search is divided into four intervals by choosing three
points, as in figure 4, and the function g (H) is evaluated for each of these
points, Let the range be a and the field at the midpoint of this range be
H . The three points will therefore be at H_ - %a, H, and H, + %a and the
lowest value of g (H) will lie within one of three intervals: between
H, - %a and H 3 between H_ - 4a and H, + }a; or between B and H_ + %a,

The interval containing the lowest wvalue of g (H) is retained and the pro-
cess 18 repeated. After n iterations the value of H at the minimum of

g (H) is known with an accuracy of ﬁ&{%}n%ig We performed twenty iterations
with an initial range a of 4000 gause, which gives a final accuracy of
20,002 gauss, Table 1 shows the observed and calculated field positions
for two of the lines of Radford et al (20} and nine observations made on our
15~inch electromagnet, For comparison the field positions were also cal-
culated using the individual formulae of Radford et al and these two are
shown in Table 1, As can be seen, at low fields the results from the form-
ulae of Radford et al are as good as those from the general expression, but
at high fields only the general syopression gives consistent magnetic field
corrections,

The hydrogen atom lines were meagured sc ag to give a correction at
lower magnetic fislde for the 15-inch magnet aystem, The field positions
were calovlated using a prograsme written by Dr, C.M,L. Kerr. This includes
the off-diagonal effects of the Fermi Contact hyperfine interaction.

The gas handling system was copgtructed entirely of glass, with stand~-
ard (miekfit Joints. Leybold-Herseus peedle valves were used. The vacuum
pump was an Edwards ISC 450B with a pumping speed of 55% litres/minute.

Gas pressures were estimated using Plranl gauges,

The mixing arrangement of the reactant gases is shown in figure 3.

The products of & 2450kHz electrodeless discharge in gaseous CF4 were pump-
ed straight through the cell. HNo d4ifficulties were epncountered with free
electrons, and discharge noise could be reduced by judicious positioning of
a damp rag arcund the discharge cavity. To reduce recombination of fluor-
ine atome on the walls of the discharge tube the section of tube between
discharge and cell was lined with Teflon tubing. Water vapour was admitted
to the stream of discharge products throuwgh a side arm, the point of mixing
being immediately prior te the entrance of the remonant cell.

The optimum signals were recorded using a pressure of 0.5 torr of 0?4






Table 1 Observed and calculated magnetic field positions of atomic fluor-
ine lines.
Magnetic field (gauss)
Operating
Prequency Observed Calculated Calculated
(MHz) oo (General formula) (Radford's formula)
Hy Hobs ~ 4 B, Hope ™
9103.854" 4339.525 4353, 462 6,063 4333,587 5,938
9103.854” 4432385 4432,738 ~0.353 4432,229 0.156
17157.540° 8539,216 8535.749 3,467 8538.171 1,045
17158.,040° 8636.189 8633, 514 2,875 8633.427 2,762
17158.540b 8699.722 8697.,052 2,670 8694.549 5.173
17160,090" 9695. 181 9691.952 3,249 9691.893 3.288
17160,220" 9749.553 9746.517 3,016 9750.419 | =0.88€
17159.980° 9655.792 9651.298 4.494 9647.394 8.398
20058.019 11216.727 11214,392 2.335 11209.188 7.539
20057534 11252,2€4 11249.989 2.275 11249.959 24505
20057720 11299,001 11296, 845 2,156 11302.048 5,047

a Lines measured by Radford et al (20)

b Lines measured by A.J. Pipe (B.Sec. Dissertation, Southampton 1972)
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and a discharge power of 140 watts., Addition of water vapour to titrate
out the atomic fluorine gave a total pressure of around 0.55 torr (in the
arm responsible for handling the CFA)’ The signal to noise ratio for the
strongest lines was then about 20 to 1. FPor the purpose of measuring line
positions lower pressures were used, with a subsequent drop in signal to
noise ratio. It was not possible to over-modulate the OH lines and so the
spectra were recorded with maximum modulation amplitude, Figure 5 shows
the complete spectrum of OH arising from the 27T5/2 J = 9/2 level. It
appears ag thirteen lines spread over a range of about 600 gauss, Five of
these lines, however, are unresolved hyperfine doublets which gives the
total number of lines as eighteen, as expected. Table 2 lists the meas-
ured field positions of these lines, the entire spectrum being measured
twice., Assignments of these lines will be given in a later section of this
chapter. Pigure 6 shows the magnetic field correction curve, and it is
seen to be almost linear with field, Our OH spectrum lies in the range
6800 to 7300 gauss, the magnetic field correction then ranging from 0.8 to
0.9 gauss respectively. A field correction of 0.85 gauss was applied to
all the measured lines - the errors due to taking an average, 10.05 gauss,
will not cause any serious discrepancies in the analysis since they are
much smaller than the linewidth of the observed lines (~20 gauss, which
corresponds to~ TMHz linewidth),

5.5 The Effective Rotational Hamiltonien for -1 Electronic States in the

Abgence of External Magnetic Plelds

Section 5.2 dealt in rather general terms with the theory of the rot-
ational levels of a molecule in a -TV electronic state. The Hamiltonian
(5.4) presented in that mection was shown to account for various uncoupling
phenomena that are particularly important for light molecules such as OH.
The problem with this Bamiltonian is that it contains terms off-diagonal in
electronic state which make eigenvalue calculations difficult, As dis-
cussed in chapter 2, the solution is to construct an effective Hamiltonian
that operates only within the QTT manifold., Since these off-diagonal terms
are responsible for the uncoupling effects it is essential that these are
incorporated into the effective Hamiltonian in the correct manner. This
section is concerned with the comstruction of a suitable effective Hamil-
tonian, using degenerate perturbation theory,that mimics correctly the
effects of the uncoupling terms, and in particular the A -doubling terms,
gince our observed spectra depend so critically on the A ~doubling inter-
vals. This section is divided into three parts. The first is devoted to







Table 2 List of Zeeman measurements for 2TT5/2 J = 9/2 A-doubling

spectrum.
Line Frequency Measured Field
(GHz) (gauss)
1st set

1 26.25750 6835.95

2 26,25803 6867 .40

3 26.,25837 6897.90

4 26,25824 £922,35

5 26.25856 6959.25

6 26.25850 6978.55

7 26.25941 7021.20

8 26,25951 7036.45

9/10 26,25972 7089,05 1

11/42 26,25878 7145.25

13/14 26,25855 7203,25 ? Unresolved doublets

15/16 26,25778 7260,95

17/18 26.25803 7321.55 J

2nd set

1 26,25%16 6822,753

2 26.25322 €853, 31
26.25345 6853.49

5 26,25335 6883.,67

4 26.25393 6909.98
26.25419 6910,22

5 26,25426 6946.63

6 26.25451 £967.14

7/8 26,25445 7015.28
26,.25832 7026.35

9/10 26.26210 T097 .37

11/12 26,26258 7156.515

13/14 26.262667 7216.24 Unresolved doublets
26,262670 7216,32

15/16 26,26279 7276.,20

17/18 26,26314 7335.93







- 82 =

a derivation of a second order effective Hamiltonian containing the dom-
inant A -doubling interactions. The hyperfine interactions are also in-
cluded here. The second part deals with centrifugal distortion corrections
énd the third with some small third-order corrections to the hyperfine
Hamiltonian. The basis states used in this section are non-paritised basis

functions.

Second Order Effective Hamiltonian
The Hamiltonian for the spin—orbit and rotational interactions has

been given in equation (5.4) as
1 1 1 1
H = AT (L).? (S) +B (J-L=-8).T (J=L=-8)

This HBamiltonian contains terms both diagonal and off-diagonal in electr-
onic state, but we require a Hamiltonian that operates only on ZTT(V = 0)
vibronic wavefunctions. As has been discussed in chapter 2, in order to
apply the methods of degenerate perturbation theory to obtain an effective
rotational Hamiltonian, the total Hamiltonian BT has to be partitioned in
the following manners:

HT = H0+7\

The eigenfunctions of HO' the vibronic Hamiltonian, are pure 27T wavefunct~
ions, i.e. adiabatic states. V describes the rotational interactions and
contains the non-adiabatic terms responsible for the admixture of other
electronic states. In this case, therefore, the perturbation V is taken to
be the Hamiltonian (5.4).

The firet order effective rotational Bamiltonian is given by those
terms in (5.4) that are diagonal in electronic state, By inspection of
equation (5.6), the expansion of (5.4), these terms are found to be:

et

H]

PP

AAT +B[3(3+1) +5(5 +1) -0 -5 2]

I

- 28 %j‘f(-n EENEEINE (5.23)

The effects of these interactions on the rotational energy levels has
been discussed in section 5.2, We merely note that there are no terms in
the first order Hamiltonian responsible for A-~doubling - for these we have
to go to higher orders of perturbation theory.
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The second order effective Hamiltonian arises from those terms in
(5.6) that have matrix elements between electronic states - these are the
terms involving T+ (L), We shall ignore the term B :th( 1)% (L) 'S (L)
since this gives a constant shift to all the rotatlona% levels and 80 to
second order can only lead to terms mimicking interactions that are already
present. The only terms that have to be considered are the L-uncoupling
terms and those uncoupling S from L. These we shall denote V, and V, res-

pectively. Hence

<3
i

, = -2 5; (-D% (D) T (1)

(5.24)

<3
H

Tro1ya ot 1
A+ 2B -1 L) T (S
RSB MACORHORINC)
The interactions arising in second order are of the form

PRI EEOVOR

Z <27T|v1 + v2|rr)"/\"s"><»q "ATSt |V, 4V, | 2T >

"A”Sn 0 0
q) (Rzn Eq') "A“Sn)

___Z (2 0

")"/\"S" 2Tr - EY]"A"S")“1 { < 27T|V1 I'{)"A"S") ( 'r} nANGH lV1 l 27T 5

+ 2 (27—“V1|'1]"/\"S"> <’T)"A"S”IV2|2TY >

+ TVl qeanse > ¢ granse (v, 1271 >} (5.25)

where the gummation is over all electronic states |7 "A"S" ) excluding the
TT state for which the effective Hamiltonian is required. Rotational
quantum numbers have been suppressed in the above, their presence being
taken as understood,
Consider the three items within the brackets in more detail., The

first of these is, explicitly,

7T ASZINAM]| - 2BZT(-1) '1‘ (__) T (_)[ 'Yl"/\"S"Z"J".Q"M" >
94
(5.26)

x <T)n/\nsn anQ_nMn! - 23%:1'(..1) T (J) T (__)! n,/\'SI'J'_Q'M'>
2 ;
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where g, can take the values :q1. Since T1(§) operates only on the rot-
ational part of the basis functions and T (Q) on the electronic part,
(5.26) can be factorised to give

Z.T{u LA 1 BT] (__)In"/\"S"><n"A"S"IBT (_1;)|2TT./\'>}

1419
x < J.QMIT; (D)1 Immuey ¢ Ingmme | 'r; () 1 Jam (5.27)
1 2
Equation (5.25) contains an implicit summation over J*, ()" and M" and so

the closure relationship

| JrgyeMe > M| = 1 (5.28)
Jry e

can be used to simplify (5.25):

1 1
ZT anmit, (3) T, (DIIam) (5.29)
a4 a2,
419
where X is the eleetronic factor contained in brackets in equation

(5.27).

If g, = =q, in (5.29) the rotational matrix element is then of the
same form as the off-diagonal matrix elements of T (J) T (J) and hence
this term can be absorbed into the first order rotational Hamiltonian. The

factor containing the electronic matrix elements

- 2 1
(B) = Bppugn)” 4¢ T, AlBr_, (D)1 gA7s" )

’)’)-"A"S" 27"‘ 1)
x <1')"A"S"'BT;1(_I;'.)' 27T’ Al >

obtained from (5.25) and (5.27) can be regarded as a constant. We note
that both Z: and Zk states are mixed into the 27T.state by the T;1(;Q operm
ator and in addition that we must have A' = A, since

/\' ='/\""Q1 z(A+Q1)“Q1 =A'

This second order term is therefore not responsible for lifting the A-deg-
eneracy.
However, if we consider 9 =94 in the same manner we obtain a second
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order interaction of the form

0 0 -1 2 1 A WG
(EQTT - E“V]"/\"S") 4( TY,A'B'I‘__q1(_I_')l'Y] A"S >

x {'q"A"S"lB‘I'l%(_I;)!zTY./\' > }

x <Jmﬂfr1 (J) % (DIgraome) (5.30)
a4 94

Examination of the electronic matrix elements reveals that this interaction

mixes states of different A since we have
CHTA = HITL(WIA = 0) (A" = 0lTL (W IPTT A = 71
= 2Ty (WIA = 0)¢ 1 A =

ie. AN= 72,

This term therefore describes a A-doubling phenomenon, which in second
order of perturbation theory arises solely from the admixture of excited
Zstates. The expression within braces is again regarded as a constant;
this can be identified with the q parameter of Mulliken and Christy (20) or
the ﬁ parameter of Dousmanis, Sanders and Townes (7), the relation between

these being
2
|<2THBLyIZ>]
q = =2 =-8 (5.31)
= Be -
% states T E27T
We shall use the q parameter,
In our spherical tensor notation we therefore have
2 1 12
. 0 KT @)
q = =
= Y states Egn - Eg:
The effective /| -doubling Hamiltonian derived from (5.30) is
1 1
B (V) = q qur(—ﬂq T,(D T (D) (5.32)

where we have arbitrarily introduced a phase factor (-1 )q so as to be con-
sistent with equation (2.33). The matrix elements of this Hamiltonian are
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2 = %y, v2 2 e A v (IM
< TVHA = 21);5 STIAMIE L (VOITT(A = +1); sTJram >

- e L 1 1 ) ,
=q ZT(..1)Q (=1)9-91+3- 0 (_jl_q;,,) (__;{.. - ;11') J(J + 1)(23 + 1)
q

1y S (5.33)

MM' "X T

x &

JJ*

The sum rules on the components of the 3-j symbols show that ' = (] 2
and hence the Hamiltonian (5.32) mixes fine structure states with L= +3/2
into those with £l = ¥1/2,

This process can be repeated for the other two terms in (5.25). From
the term involving both V1 and V2 a further A-doubling interaction arises,
which is of the form

fp (7)< (22 29) 3 ()T 1D 1@ (530

where (p + 2q) is a A-doubling parameter introduced by Mulliken and
Christy. In our notation

<2Tri(as2B) T' (L) | =)< 1B (L)1TT >
bires S (r2m) 7 (1) | EXCE 7 ()

I states ( Egﬂ - E% )
(5.35)

This is related to Dousmanis et al's oC parameter
(p +2q) = -2c

Once again we note that to second order, only excited Z states are respon-
sible for the A -doubling in T\ states. The matrix elements of (5.34) are

as follows:

< CTT(A = 31); sTiamlE (V1V2)12TY( A=7F); 82 am)
= —(p + 2q) Z"T(-A)J“‘ﬂ"s’“z (—3;}1') [3(5 +1)(23 + 1)]5
q

S (5.36)

x (_:f__“_; ZS,) [s(s + 1)(2s + 1)]? & 50 Sip
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This Hamiltonian has matrix elements between states subject to A Sl = I
and AY = +1 and hence in ZT\' states connects £l = +% with () = -% states,

An interaction diagonal in /\ also arises from the V,V, term, but this
has the same form as the spin-uncoupling (or spin-rotation) parameter and
is therefore a second order correction to B (or ¥ ).

The third term in (5.25) gives rise to matrix elements containing the
pair of 3-j symbols

( $1 S ) ( 5 1 8 )
__I q1 Zi' __zn q2 Z'

If q4 = q, = q, the sum rules show that AZ = = 22, These matrix ele-
ments therefore vanish for 7T states since the only possible values for
are +% and =4, This A -doubling term (Mulliken and Christy parameter o)
has non~-zero matrix elements only for states of multiplicity greater than
doublet. This is readily appreciated by contraction of these 3-j symbols
using equation (2.39), which leads to an expression involving the product
of three Wigner n-j symbolss

r 331(11 2)(3 S 2 )
S12) g q =2q/{X* ~L 2g

Examination of the triangle rules on, say, the final 3-j symbol reveals
that this term is non-zero only for S 1, i.e. for triplet or higher mul-
tiplicities.

The same is not true for the case where qy = =4y This term gives
rise to spin-spin interactions which are diagonal in all quantum numbers.
For doublet states only the scalar spin-spin interaction is present and this
imparts a constant shift to all the rotational levels. We are justified in
ignoring this term completely for 2TT gtates.

The derivation of a second order effective Hamiltonian has been shown
to lead to two additional terms, both of which account for the phenomenon of
A —doubling, and both of which arise from the admixture of excited 2.
states. In the case of OH, the lowest excited state is a 223+state roughly
32000cm™ " higher in energy than the X2TT state. We therefore expect the
A ~doubling in OH to arise predominantly from mixing with this state.

The complete second order effective Hamiltonian in the absence of ext-
ernal fields is taken to be

H = Hpgo + By * Bpg (5.37)

HﬁSO is the Hamiltonian for rotational motion and spin~orbit coupling, as
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given in equation (5.23). L, is the A —doubling Hamiltonian and is given

in equations (5.32) and (5.34). H . is the hyperfine Hamiltonian which is
necessary to account for interactions with the nuclear spin angular momen-

tum I of the hydrogen atom. We define this along the lines of Carrington,

Levy and Miller (22):

hee = fuh T D[ oy TW

BY gy <S(x)DT(S) + 430 g5 T (8 )]

+d %T T;(§) 'I';(_I_) (5.38)

where qu(§, ¢?

—

q 2 1 2 -3\ .
IR ON N RCACH S

949
Ci (Q,P) is a spherical harmonic;
2

r is a vector describing the separation of hydrogen nucleus and the
unpaired electron.
The first term in (5.38) describes nuclear spin/electronic orbital inter-
action, the second the Fermi contact interaction, the third the nuclear spin/
electron spin dipolar term, which could also be written in the form
Tz(;_, §), and the final term is a A -doubling hyperfine interaction. We
find it convenient to keep these four terms separated, since then the para-
meters describing them give direct information on the molecular quantities,
such as unpaired electron demnsity at the mucleus (& (r)) . The hyperfine

rarameters we therefore define as follows:

2
(3D gSf‘BgN/'N

81

= Sgpypy CS(@)) = o

5 efnfy <Co(6.#) > = @n  (5.)

and d remaing as d.

The a and 4 parameters are identical to the a and d hyperfine para-
meters defined by Frosch and Foley (23). The o¢' and (" parameters are de-
fined in accordance with Carrington, Levy and Miller (24) and can be rel-
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ated to the Prosch and Foley b and ¢ parameterss

oc! A(3b + ¢)

@"=é¢

The matrix elements of the complete second order Hamiltonian (3.57)
will not be given here. They are readily obtained using standard spherical
tensor techniques. Note that the basis functions |'f)/\; SE; JOAMD used in
section (5.2) cannot be used to calculate hyperfine matrix elements since

they contain no nuclear spin wavefunctions., There are two choices of basgis

(5.40)

set involving nuclear spin functions - a coupled set and a decoupled set.

In the former we define a grand total angular momentum F,
F=4Jd+1
as described in section (5.2) and the basis set in this case is
|MAs ST; I TFmy, >

By relates to the space~fixed component of F and is a good, i.e, well-def-
ined, quantum number. In the decoupled scheme J and ] are not coupled tog-

ether, the basis set now being
|MA3 SZ; JAmgs Imp >

my relates to the space-fixed component of I, my and m, are not good quan-

tum numbers but their sum, My remains well-defined:

mI+mJ = mp

Centrifugal Distortion Terms

The second order effective Hamiltonian that we have derived so far
operates solely within the 2TT electronic state, and contains terms des-
cribing the rotational motion and A -doubling. We can go further than this
and derive an effective Hamiltonian that operates only within a single
vibronic state, Additional terms appear in this Hamiltonian that describe
the effects of centrifugal distortion. The major contribution to the cent-
rifugal distortion arises from the admixture of other vibrational states,

although there is a minor contribution arising from mixing of electronic
states., These terms are best treated by a perturbation procedure, taking
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the above second order Hamiltonian as the perturbation V.
Suppose we take the rotational terms in this Hamiltonian to second
order. The matrix element becomes, for the vibrational contribution,

Hgf‘f)‘ = BV (qy/a) VB,

DY > (80, -2

V'*O NN () nMe v=0
x {2TT; v=0; A SEJAMIBY (J-1-5).T" (J-1-8)I2TT; v'; ASTmImqme >
x <2T‘—; V';/\SZ"J"ﬂ"M"lBT1(g_—_I:-_S_).T1(g_~_Iﬁ-§)|27T; v=0; AS Z'J' QM D

(5.41)

B is a function of the internuclear separation, R, and hence is alsoc a
function of the vibrational quantum number v, Equation (5.41) can there-
fore be factorised into a vibrational part, containing B, and a rotational
part. This leads to a term of the form

Z | <v=0|Blv"0>]| ?

v"£0 (Eo - B )

v=0 v

x Z (Asziamr (_J_-_Ir_S_;).‘IJ (J-I-S)AS ZrIn M D
Z"

x (AS ZI" QM| T (J-1-8). T (J-L-S)AS Z'I' M S (5.42)

where ¥" represents the double-primed rotational and spin quantum numbers,

This equation is identical to the usual centrifugal distortion correction
to the rotation of the nuclei:

- Dy <SXJQM!(T1(Q_-_15-§).T1 (J-1~8))
x (1! (J-1-5).T' (3-1-8))[S T'3 Qe >

and so we can identify Dy with the vibrational terms in (5.42)

2
b, = - > l<viBive>| (5.43)
P vw @ -D)
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This is well known (25). A similar treatment for the electronic contrib-
utions leads to an expression of the same form as (5.42) but with a para-

meter given by

2 1 1AL " 2
D;l - - |<O7T|BMOA'S > (5.44)
nn/\uSn (11}2" - E‘I\"A"S")

The matrix elements in (5.42) are non-zero since the electronic wavefunc-
tions are also functions of R. Dgl is a small correction to the vibrational
contribution to Dy given in (5.43). The matrix elements of Dy will not be
presented here,

We now go on to consider centrifugal distortion corrections to the
spin-orbit coupling. These have been treated by James (26) who suggested
the introduction of a parameter AJ to describe these corrections. Veseth
(27) subsequently showed by a perturbation treatment that A, could be writ-

ten in the form

A = Z <VIB|\(;"> <Ov"IAIV> (5.45)
vk E, - E.

where the matrix element involving A is non-zero because A is a function of
R. The energy corrections arising from this term are indistinguishable
from those arising from the spin-rotation interaction and so it is only
necessary to include one of these terms in the effective Hamiltonian. We
choose to include a spin-rotation term (of form‘X'E:?’P1(g) Tl (8)), but it
must be remembered that the experimentally determiged garametgf is then a
linear combination of & and A;. Tt is possible to obtain individual values
for these parameters and Brown and Watson (28) have suggested the use of
isotope dependences to determine them. These authors have pointed out that
earlier methods of separation of these parameters are based on incorrect
assumptions.

Corrections to the A -doubling due to centrifugal distortion can be
treated in a similar menner. These arise from cross-terms between the
A -doubling and rotational Hamiltonians, and once again the possibility of
both vibrational and electronic contributions arises. We shall concern
ourselves here with the vibrational corrections since these are expected to
be the larger. The electronic contributions have been treated by Meertis
and Dymanus (29) using a third order perturbation procedure, and we shall
compare our results with theirs in the next section.
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We shall treat the A -doubling Hamiltonian, HHD’ developed earlier in
this section as part of the perturbation Hamiltonian, V, since the cent-
rifugal distortion corrections then arise in second order of perturbation

theory. These have the form

ST KU ERIV YS9 Y MV 3 )
0 0

- (5.46)
vy By = B

where ¥ signifies the set of spin and rotational quantum numbers. Since
HLD and Hpyp do not commute the Hermitian average of (5.46) has to be taken,
This point will be returned to later. We note that since HLD is itself a
second order perturbation term, the centrifugal distortion corrections
arising from this calculation are really to be regarded as third order terms,
Conaider, first of all, the terms from HLD responsible for mixing the
fine structure states - these involve the parameter q. Substitution of
(5+32) into (5.46), together with the rotational part of (5.4) leads to

S -
V"#V

x <P v ¥ 1 3T ()% @ 1) T @IPTTs v ¥ )
a

x {2775 vy ¥ 7| MO mé.(m—-s) qu.(g_-,r._-g)nzm vi ¥')

. 2R

(5.47)

This can be factorised to give

, ; 3 v ;T(-ﬂ)q T, (D TIP3

x <2115 ¥ Y0 (=) T;.(g,-_xz-g) wlq.(g_-_:_._-g)l"‘m X' (5.48)
q!

where Dq is defined by analogy with DB and is given by

D I <YIgI> ¢ VLRIV ) (5.49)
a4 V"#V (EV - Evn)

If we now take a Hermitian average and case expression (5.48) into an oper-
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ator equivalent form we obtains

m - B ij’f (0 [13@ 1] ['@2re). 7' (@1s)]

1@ ][0 nw]) (5.50)

An examination of the matrix elements of this operator (which will be given
subsequently) shows that this is a new term to be included in the effective
Hamiltonian (since there are no terms already present in the Hamiltonian
with the same dependence on quantum numbers).

A similar treatment for the A -doubling term involving p + 2q reveals

that a term of the form

By = D ;T(-nq ([ 156 ][ @) 1)

p
1 1 1 1
+ [P (31). T (@] [ 1D 1@} (5.51)

has also to be included. Dp in this expression is defined as

D = - Z {vip + 2%(‘)"")5 v"|Blv > (5.52)
P vy E, - E,

The Hamiltonian (5.51) is defined with a - sign so as to be consistent with

the Hamiltonian (5.34).
The matrix elements of these two operators are rather complex but since

these centrifugal distortion corrections have not been formulated in this
form before they will, however, be quoted here,
(:) Matrix elements of Dq:

i) Contribution involving diagonal elements (q' = 0) of Ho ome

(27r/\=i'1 ST JOMIE, (q'==0)|27T/\=;1 ST TaAM D
q :

T J-04J-0" " J1J J 1J
- 2 X0t ) s e (300 ) (S i)

x %[2.7(.1 + 1) +25(8 + 1) -_Q2 - (Q')2 - 222] 82?2:'

(5.53)
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From ' = £}® -~ q = ()~ 2q we see that this term is a contribution to the

matrix elements < () = 23/2]|H|N) = F1/2)>.
i1) Contributions involving off-diagonal elements (q' = =1) of Hy .
Only those terms which do not mix in other electronic states have to be
considered, namely =2B }::T T;,(i) 'I‘lq,(§). Two different contributions
arise, one with q' = «~q g.nd the other with q' = +q.
a) Term with q' = =q

<PTT A=t sriamMiy (q' = ~)IPTT A= T sz am >
q

- Z;T(-1)J—ﬂ+s.z [35 + )2 + 1] [s(s + 1)2s + D)2

(313 (J1J (J1J)2+(J1J2 (5.54)
"Z"QZ' -Slqﬂ' “':Q.""Q,.Q." £ qﬂ* : *
This matrix element connects states with AL = 21 and A )= ¥1 and hence

is of the form < £ = ZA|Hl =3 ).
b) Term with q' = +q

A= srIaMey (q' = OIPTTA=5s=o an>
q

= 2 ZT[J(J e 123+ D)2 [s(s + 1)(2s + 1)]F (21)T5T ()
q

(J1J)J1J>J1J $S18s ( )
-0aa){-" an*)l=* 0 ' (—Zq = 2+35
This is a contribution to < 1= =3/2|H| 2= #3/2 > since AN = 3
AT =11,

@ Matrix elements of Dp:
i) Contribution involving q'

il

0 elements of HROT'

(271’ A= 11 SLJAMIE, (q' o)|27T A=F1 sz J amd
P

= zq:T (-1)2 (=1)T ST [5(s + 1)(2s + 1)]% [3(5 + 1)(23 + 1)]%

J17J S 18 > _o ’ )
x(-nq Q_') (-Z - Z') [ZJ(J +1) +25(5 + 1) =Q° -T£° - (Q)° - ') ]
(5.56)
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This comnects states with AS) = 1, AN = ¥1 and so is a contribution to
{n=4%lgl0=5".

ii) Contribution involving q' = *1 elements of Hogpe Q' = =g contrib-
utions are not present since these would have DY = 1t which is impermiss~-
ible for doublet states.

The q' = +q contribution is

(T A=t szaamey (o0 = IR A= R sz am )
P

= np Z;Ts(s +1)(25 +1) J(J + 1)(27 + 1) <_jl;§,.)(__&. ;_g_.)

J(38) ¢ (548 Sax 5.5

This gives a contribution to ({1 = 13/2|H|_ﬂ. = +% > since it connects states
with AZ=0, AN =22, All of the matrix elements (5.53) to (5.57) are
diagonal in both J and M.

Third Order Hyperfine Interactions

These interactions arise from the admixture of vibrational or elec-
tronic states into the vibronic state XZTT(V = 0) as a result of off-diag-
onal elements in the hyperfine Hamiltonian. The operator form of these
terms can be derived by a perturbation treatment, as was used for the cent-
rifugal distortion terms already discussed. The usual hyperfine Hamiltonian
(5.38) is of similar magnitude to terms arising from a second order treat-
ment of the rotational Hamiltonian, and so we shall refer to it as a '%
Hamiltonian. A second order perturbation treatment of :A s leads to
third order rotational terms - these are the third order ( A”?) hyperfine
terms referred to in the heading above.

Both electronic and vibrational contributions to ~)§ths arige just as
for the centrifugal distortion terms. Consider first of all the electronic

contributions ~ these arise from the second order perturbation terms con-
taining matrix elements of the rotational and hyperfine Hamiltonians between

electronic states:

) Z s mﬂhfam"/\"s"x"><”1"/\"S"X"lﬁnor| T
0

( .58)
’q"/\"S" " (327" - E‘r’l"/\"S")
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where ¥ refers to rotational, electron spin and nuclear spin wavefunctions.
As before, the electronic wavefunotions can be factored off to give effec—

tive hyperfine constants of the form

Z C2TTI( 0?2 hyperfine constant)|qnAnS® ><'q"A"S"|BI2TY > (5.59)

(4] O
") "ANS" (EZTT - E,an ngn )

B and the 7\2 hyperfine constants are functions of internuclear separation
and so these 7\3 constants are in general non-zero. Only terms in the 7\2
hyperfine and rotational Hamiltonians that have matrix elements off-diagon-
al in electronic state need be considered. From (5.38), the only terms in
)Zﬂhfs that can mix electronic states are the orbital hyperfine and nuclear
spinfelectron spin dipolar interactionss

T q 1 1
s 2o 0P T@ TW
(5.60)

T
@' q§1 (—1 )q Ti(l’ §)

Note that (3 ' is not the same as the (:’ * defined in (5.39) since the latter
refers to the q = O component of C (9 @ ) whereas @' involves a 0*1 (e, ¢ )
factor. The only terms from the rotational Hamiltonian that have to be cone-
sidered are the L-uncoupling and spin uncoupling terms

-2B ZT T;(_._I_ - S) 'riq(_r_._) (5.61)
q

A second order perturbation treatment leads to four possible combin-
ations of (5.60) and (5.61), as followss

Z Z (Egn = Ef)nl\nsn)-ﬂ

n A ngn n

x < 27-‘-; Z ’ };:T(—'l )q aT;(l) qu(ylg)n/\nsnxn >

= sl - 28 9T (2 - 9 B @IPT Y (5.62)
) q

and
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). ra—

rqn,\nsu b 27‘\'

< 2”3 ¥ i Zq‘T(S' "[‘i(_]_j_, §)|"]"/\"S"K">

x  (AMSTER | - 2B }:TT;q(g -9 TIP3 (5.63)
q

Consider first of all the matrix elements from (5.62) and (5.63) involving

the upper set of q components. The electronic wavefunctions can be factor-

ed off to give, respectively:

ZT(-HQ{Z <PTT1a ml (LInarsey <rAvst | - m;(g)lzﬂ > }
q

nANGH o) 0
1] (E27T - E,,‘cmngn)

x CHIT(DI¥"> BTl (L-9)1¥") (5.64)

ZT . )qi' Z < 27T| (3"4'")‘"3" > <1’)n/\nsn | - ZBT;(L.)lZTT > }
"

(
" " 0 Y
q A"S (Ez,n, - B,Y)n,‘nsu)

x CHTL 913D BT (1 -D1¥D (5.65)

Bquations (5.64) and (5.65) are just the matrix elements of the third order

effective Hamiltonians

T 1,0
¢ ; -Nfr(Dr_ (I-9 (5.66)
and g, TR 9 T (1-5)  (5.67)
B § q =’ -t = .

respectively, where

LS Crlanl @lgrasey < ranse - 2mn (D] TT

I
nA ngn O - (¢]
n (Ezn, E,qu/\nsn)

(5.68)
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Y T A s | - L AR

Dp, =
0 0
P q"A"S" (E27T - E‘I‘"I\"S")

(5.69)

The Hamiltonian (5.66) represents an effective nuclear-spin rotation inter-
action, the parameter for which is usually labelled CI‘ We use the same
symbol to conform to tradition., The symbol D B is used by analogy with
DB, Dp, Dq etc. The Hamiltonian (5.67) describes the interaction of the
rotational angular momentum with the tensor product of the electron and

nuclear spins,

Both the T}h (L) and the c;(e, @ ) operators shift the value of A by
¥1 and so, as for the /\ ~doubling terms derived earlier, the excited states
responsible for these third order terms are 3 or A\ states only. As before,
matrix elements of (5.66) and (5.67) are diagonal in A,

If we treat the matrix elements of (5.62) and (5.63) involving the
lower set of q components in a similar manner, two further hyperfine terms

can be derived:

4 quT (-D? 1, (D 7,2 - 8) (5.70)
and

a5, qu"(n TR, 9 T, - D) 5-11)
where

2 1 nMAENGH e A reCee 1 2
. Z { TTlaT_q(_I;)mAs > < ASI-2BT,_q(L)I7T>

(5.72)
a "AIRCO o oy O
T} A S (EZ‘"' Ef]”A”S”)
and
d < 2Tl"lp'(-q)l'r]"l\"s"> {nrhnse | - 2Bqu(_Ii)|2TF >
Pro= e - (5:73)
’Y] Ars (E27T - E‘r’"A"S")

The subscripts of these effective parameters indicate the 7\2 hyperfine
term responsible. Small *d's are used partly to dlstmgnlsh them from Dp
etc. and partly so as to be a similar notation to the )\ hyperfine A-
doubling parameter, d, since examination of the electronic matrix elements
reveals that these third order terms are also /\-doubling hyperfine inter-
actions. As for the ordinary A ~doubling terms, the only excited states
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that contribute are Z states,

The complete third order hyperfine Hamiltonian arising from mixing of
electronic states is the sum of equations (5.66), (5.67), (5.70) and (5.71).
We note at this stage that since TZ(_Z_[_, S) and '1‘1 (J = 8) do not commute it
is necessary to take a Hermitian average of the terms involving Dp, and
dP" It was also necessary to take a Hermitian average of the term in da,
since in the form given in (5.70) its matrix elements are non-Bermitian.
The matrix elements of the four third order operators can be obtained using
standard spherical tensor techniques and are as follows., In each case the
T1(J) and -T1(S) terms from T1(J - 8) are considered separately. We use a
decoupled basis set II\SIJ.n.m >1 Tm, > for these calculations.

@ Matrlx elements of C

a) o’ (J) part

IS

(ImI KA SIJnmJIHCIMS T .ﬂ'm"]) | Im:'[ >

-my P My

= ¢ ) (1P (=) ( I I,) [1(1 + 1)(2T + Nk
P

x ( - iJ) [3(3 + 1)(20 + 1)) 2 (5.74)

0y

These matrix elements are diagonal in J, £l and I .
b) T'(S) part
Since '1‘1(_1'_).'1‘1 (8) is the form of the Fermi Contact interaction, this third
order term is a contribution toeoCf.
@ Matrix elements of DP"

a) 7 (J) rart

< In I<A srmmeI();?ms 'y > 1 1] >

ZT Z _1)p+qu-(-m e q) (- 1)J--.Q-hl--m +I-m +5-1

qQ p, W

( I I,)[I(I + 1)(21 + 1)]1lr ( S 18 ) [s(s + 1)(2s + 1)]5

-, p Wy -L q-m Z'

x (,,;,I,J 1 J’) [(Z‘J + 1)(2J + 1)]% x % {(*1)J'-ﬁ[J'(J' + 1)(23" + 1)13

- ]
P my

x (__g_;“{,',)(__g, ;:Jv') o (=)o s )20+ 1) E
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* (-—fl -; fx) (-4{ n ) } (5.75)

m is a molecule fixed component of a first rank tensor, and can thus take

; +
the values m = 0, ¥1. m = 0 gives a contribution to (t5/2| |Z1/2)elements.
m = ¥ gives elements diagonal in ().

b) T'(S) part

(S) T T fm? []
<ImIl</\SIJ.QmJIHDP'II\S £t A'ml > g >

= D, ZT Z (..1)P+ql\/§( 11 2) (=13 I-my
q

e -m m-q q
x (5 m) 1+ DET F (R mn) (o pm)
x [(23 + 1)(23 + 1)]5 (s + 1)(28 + 1) (j: q:_m ;,)(_g,, _; ;,)

(5.76)

0 gives contributions diagonal in Q)

¥1 gives contributions to {230 [£1/2) elements.
@ Matrix elements of da:

a) T'(3) part

i

<Im1l</\SZJﬂmJ|Hdi/\+2 §Z'J'am!>|In >

- a Zq:’rzp: (=1)PHL (o1)J-fiHI-mp+T-my ( I 1 1')

~by POy

x [1(1 + 1)(21 + 1)]JJ ( Jo1 i:) [(23 + 1)(23" + 1)]%
J

-mJ -D

x %{(—1)J'"Q[J'(J' + 1)(230 + 1)]% (_fl_; i,:)(_j‘;_,: __; }]).:)

o (=PRI s (25 4 1) 2 (-.?1-;1{") (_‘Jl,, - g)}

(5.77)

These give contributions to { ¥3/2] 131/2 elements.
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) T1(S) part
T (I) 7 (S) is the same form as the 'second order' A -doubling hyperfine

i%teraction and hence this gives a contribution to d.
Matrix elements of d(g 3
a) T (J) part

(J) e [ ]
<Im KA ST Iamg|H 'l/\+2 S T'3 Amy> | Imd >

dp- ZT Z (1)P+q[ ( 2) (~1)J—.Q+J-mJ+S-Z+I—mI

q p, I mm—qq

) [3(x+ )21 + 12 ( D B (CE R DIC A E

Ay <P B}
x< S lm S) [s(s + 1)(2s + 1)]%;: 4;{(--1)‘1"'Q [0(ar + 1)(23" + 1)]%

(222 (& a2) e e pe s e+ 0)?

- -mq"/\-2" - Q'

)
x (__}77__;;) (_g.. _.,1, fl:)} (5.78)

= 0 elements give contributions to < I1/21 131/2)
m = <1 elements contribute to <Z3/21 1F1/2)

b) r1‘1("3_) part

< ImIl</\ sanmJ]ngzv\Iz SZ'Jami>]Int >

dp' Z Z (-1)P* 5 (_m e q) (- 1)J—!z+J-mJ+:t--mI

q D, m

) [1(1 + 1)(21 + 1)];‘t < I J:) [(27 + 1)(23" + 1)]%

—-mJ -p mJ

(fam) SE+0E+0 (F 5050 (S qm) 61

m = 1 matrix elements are of the same form as those of d, therefore this is
a further contribution to d. m = O matrix elements are zero for doublet

states since the sum rules on the 3-3j symbols require AT = 12.

Note that the matrix elements < -3/2|H | ¥1/2) and <-3/2lH |+1/2 >
differ only by a factor of 2_ and certain nuﬁ'erical factors, and so these
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two terms are highly correlated. Only one of da and dp, is determinable
and so we shall suppress the da terms (since the remaining da terms can be
included in d).

The vibrational contributions to the third order hyperfine Hamiltonian
could be treated in a similar manner. In this case only terms in the N
hyperfine Hamiltonian that are diagonal in electronic state have to be con-
sidered. The perturbation terms can be factorised to give effective para-—

meters of the form

Z <vl(7\2 hyperfine congtant)lv" >{v"IBlv) (5.80)

vy (E, = Egu)

v"

However, since the magnitude of the hyperfine constants does not change
drastically between vibrational levels (as is indicated by Clough et al
(16), where for J = 3/2 levels of OH the combined effects of a,oC' and B"
change between vibrational states by about 3MHz and d changes by 0.1MHz -~
for higher rotational levels the changes are even more slight), the matrix
elements (v|(7\2 hfs constant)|v" > are expected to be very small, The
vibrational contributions are likely to be far outweighed by the electronic
contributions, and se we shall neglect them.

The complete hyperfine Hamiltonian to third order therefore consists
of seven terms, only two of which cause A —doubling. Four of the hyperfine
parameters can be related to the Frosch and Foley parameters and these are
a, &'y p"and d, whereas the remaining three, CI’ Dp, and dp, arise in
third order of perturbation theory, and are therefore expected to be several

orders of magnitude smaller.

5.6 Comparison with other Effective Hamiltonians

In this section we compare the form of the Hamiltonian derived in the

preceding section with alternative formulations used by previous workers.
A1l are similar in that a perturbation approach is adopted.

Consider first of all the rotational and fine-structure effective Ham-
iltonians, and in particular the A -doubling terms in this Hamiltonian.
The earliest treatment of A -doubling in 2TT electronic states was by Van
Vleck (30) and these results were subsequently rederived in a form more
useful for spectral analysis by Mulliken and Christy (21). We use the q
and 2.:.33 A =doubling parameters introduced by the latter. Dousmanis,
Sanders and Townes (7), henceforth referred to as DST, were the first to
put an effective A ~doubling Hamiltonian to any practical use, and we shall
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direct our interest to their Hamiltonian for the time being.
The DST Hamiltonian is of the form

H‘botal = Hrfs + ths + Hz (5.81)

where Hrfs represents the rotational and spin-orbit Hamiltonians while

ths and Hz refer to hyperfine and Zeeman interactions. We shall ignore
these latter two terms. Their Hamiltonian Hrfs is identical to our Hamil-
tonian (5.4). From H_sqs DST derive an effective Hamiltonian operating
only on 27T wavefunctions, by a perturbation treatment. The first order
Hamiltonian is therefore just Hrfs' the matrix elements of which were given
by Van Vleck (30). Apart from a difference in sign for the elements off-
diagonal in (), these elements are identical to those obtained from our
first order rotational/fine structure Hamiltonian Hoooe Eiven in (5.23).
This sign difference arises simply because we have chosen a different phase
convention to Van Vleck. Our phase convention is that of Condon and

Shortley (31), under which the matrix elements

< ﬂlHROTlﬂh >

are negative.

A second order ecalculation of the energy levels was performed by IGT,
leading to expressions for the energies of levels with a given J of the

form

E = E, + B (5.82)

where E, is the magnitude of the A -doubling splitting and E, gives the
energies of the rotational levels in the absence of /\-doubling. E1 and E2
are given by rather complex expressions involving both first and second
order contributions and these are presented explicitly by DST. These exp-
ressions apply to a coupling scheme intermediate between Hund's cases a)

and b). We are only interested in the A-doubling intervals, E2. These are

given by
E, = V(1) + V(Z) (5.83)
where V) o (o) (:2‘._}2-:-!):%(-@ (38)(348)(3+3/2)
x
(5.84)

2) .
)/ ( ) is given by a rather lengthy relationship, again involving OC and F,
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and will not be gquoted here. \)(2) refers to higher order perturbation
terms and is very much smaller than \)(1). DST give \9(2)553%6-\)(1) for
OH. The upper signs in (5.84) refer to | £l = 3/2 fine structure levels of
regular states and |{ll= 1/2 levels of inverted states, The reverse

applies for the lower signs, The symbols in (5.84) are defined as followa:

X = [4(J+§)2 + Y(YA4)]% (5.85)
Y = A/B, as defined in section (5.2)
{TTIAL_+2BL 13 Y {3 |BL |7T‘)
o 7 4Zs;tes S * %t" En * (5.86)
KT, 1 )|
- - 8 — y—- °
(3 47:9;9 (=1) ey (5.87)

where s is even for Z+ states and odd for Z" states., OC and (s’ are A-doub-
ling parameters, and, as mentioned in the previous gection, can be related

to the q and _13_:_33 parameterss
p+2q = =2 0C
2P
Subsequent workers have generally used the A\ =doubling Hamiltonian of DST,

or at least a modification of it. We are thus able to obtain numeriecal

values for q and p + 2q for OH from the various studies that have been pub-

(5.88)

H

1

lished. This comparison is not of the greatest value since we are not able
to obtain any estimates for our DP and Dq parameters, However, expression
(5.84) is a potentially useful relationship in that we can use it to check
the eigenvalues of our A-doubling Hamiltonians (5.32) and (5.34).

The most accurate determinations of N —doubling transition frequencies
in OH come from the work of Dymanus and his group (12, 13, 14). The prec-
jsion of their measurements necessitates the use of a more accurate A ~doub-
ling Hamiltonian than that of DST. We therefore turn to examine their ’
effective Hamiltonian. In their analysis of the OH hyperfine /\-doubling
data (14) Meerts and Dymanus have used a Hamiltonian which they developed
earlier to account for the /\-—doubling in NO (29). This was derived using
the degenerate perturbation theory of Freed (32), and includes fine struc-
ture and hyperfine terms up to third order, their perturbation terms arising
solely from the admixture of electronic states, not vibrational states,
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Their work is therefore the most suitable for comparison with our effective
Hamiltonian, and should thus provide estimates for all our zero-field para-
meters, bearing in mind that our Dp and Dq parameters involve vibrational
mixing whereas Meerts and Dymanus third order terms involve electronic mix-
ing.

Their perturbation method is very similar to our own in principle and
so need not be detailed here, However, Meerts and Dymanus (henceforth re-
ferred to as MD) do not cast their perturbation expressions into an oper-
ator equivalent form, they merely extract electronic matrix elements and
calculate the remaining matrix elements explicitly. Terxms with the same J
dependence are then collected together., The effective parameters therefore
consist of sums of electronic matrix elements, each parameter modifying a
rotational factor with a different J dependence., Indeed, this description
is perhaps the simplest definition of an effective molecular parameter, and
so could equally well be applied to our own parameters. The difference bet-~
ween these two formulations is that their parameters refer to different
algebraic dependences of J whereas ours refer to different interactions of
angular momenta., Our parameters are thus linear combinations of the MD
parameters, or vice versa., The derivation of an effective Hamiltonian in
the manner proposed by MD is somewhat lengthy and several algebraic man~
ipulations are required in order to reach the desired form., A further diff-
iculty with their Hamiltonian arises from their choice of symbols for the
effective parameters. In an attempt to standardise notation they have in-
troduced a set of fine-structure parameters OC, (i = 1 to 11), which are

comprised of first, second and third order contributions. For instance

oC ;= & + 2 ang 3rd order terms

0<-2 = B+ 2™ ang 3rd order terms

K 5 = (p + 2q), or <, + 3™ order terms
o 6 = B+ 2nd and Brd order terms

oC 7 = D or‘3, + 5rd order terms

This departure from traditional symbolism serves only to confuse the issue.
Their expressions for the OCi's are further complicated in that another not-
ation has to be introduced to deseribe the various electronic matrix ele~

ments involved.
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All this notwithstanding, we are still able to make a comparison with

our effective Hamiltonian.
The Hamiltonian matrix of MD is set up using Wang combinations as

basis functions

| £ “,j;: {Lm*m}i (-1)® |5 - =% -/\)} (5.89)

where s is even for all electronic states except Z- states, in which case
it is odd. To make a valid comparison we therefore have to set up our
Hamiltonian matrix using similar basis functions. The relevant mateix
elements are calculated initially in a non-paritised basis set (i.e. for
states of a given J»3/2 the matrix is 4 x 4)., Prom (5.23), (5.32), (5.34),

and equations (5.53) to (5.57) we obtain

(3, Q=21/21H013, =21/25 = Ba+ B(J+1/2)°

(I, N300 13, A =23/2) = 34+ B[(3+1/2)° - 2]

(I, =3/2104 13, N =1/2) = »B[(J-1/2)(J+3/2)]5

(J, N J;/zlnm(g_)w, n =+1/2) | = —gg(J+1/2)[(J~1/2)(J+3/2)] 2
(5,0 =»-‘-‘-1/2‘|Hw(g:_2_g)ls.ﬂ =+1/2) = #(p+r2q)(3+1/2)

(I, 0 ai1f2|nnp| J, L =41/2) = sitn})(.r-n/z)3

3,0 =23/2 m},le,n. =+1/2) = -tnp(a+1/2)[(J—1/2)(J+3/2)]3"
<30 Js/zla,,qu, 0 =13/2> = 9 (3-1/2)(341/2)(3+3/2)
<3, 0 =1’1/2mnqw,n =1/2) = %Dq(J~1/2)(J+1/2)(J+3/2)

{1723/} [(3-1/2)e3/2)]

L]

< 3,0 =*3/2|8, 13,0 =F1/2)
q

(5.90)
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From these we construct a matrix in the Wang basis set, and this is
given in Table 3, The corresponding matrix of MD is given in Table 4.
Note that the matrix elements < B/QIHRSOH/Q) differ in sign - thise is
because we have used the opposite phase convention to MD, and this differ-
ence has to be allowed for when the other { 3/2] |1/2 ) elements are com-
pared. A direct comparison of Tables 3 and 4, with allowances for differ-

ences in phase conventions, leads to the following set of relationships:

(200, - «;) = % (p+2) - D,
(O(4 + OCS) = 3% (Dp + Dq)
(5.91)
o, = B (g +3 - D)
g = %Dq

Note that there are no terms unique to either Hamiltonian, from which we
can conclude that the third order effects of vibrational mixing are of the
same form, and therefore inseparable, from those of electronic mixing.
Using these relations we are able to obtain values for s gmiugg, Dp and Dq
from Meerts and Dymanus's analysis of OH (14). Note that whereas MD have
five A -doubling constants, we only have four., However, their term in OC5
can be rewritten as 1‘3‘5(.]4»1/2)5 $(15(J+1/2), thege two terms being of the
same J dependence as 0C4 and OC5 elements, respectively, and thus MD only
have four independent parameters. Indeed, in their analyses of NO (29) and
OH (14) MD were only able to determine four /\-doubling constants. From an

examination of the electronic matrix elements that constitute the third

order parameters, the relationship

Byt o

can be obtained. Thus either OC5 or OC8 could be suppressed. MD chose to
suppress the OC8 parameter in their NO and OH studies. Since we require an
OCB value as a starting point in the estimation of our own parameters from
(5.91) we therefore have to calculate it fronnOCB using (5.92). &\M%

The existence of direct relationships between our effective Hamiltonian
and that of MD gives some vindication of our approach, It is worth pointing
out that the derivation of our Hamiltonian is straightforward and leads dir-

ectly to an operator equivalent form whereas, by contrast, the MD derive
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ation is both long and messy. In addition we do not need to introduce any
unnecessary nomenclature and are able to retain traditional symbols for
effective parameters,

We now turn to the hyperfine Hamiltonian. Most workers have used the
Frosch and Foley Hamiltonian (with minor corrections by Dousmanis (55)) and
the relationship between this and our 'second-order' hyperfine Hamiltonian
has already been given in the previous section. As regards the third order
terms we again have to turn to the work of Meerts and Dymanus. Their paper
on NO (29) contains a derivation of third order hyperfine terms, and some
sort of correlation between this and our Hamiltonian is sought, However it
is difficult to make a direct numerical comparison on two counts. First,
they have calculated their matrix elements in a coupled basis whereas ours
have been calculated in a decoupled basis., There is of course no reason
why we should not calculate our elements in a coupled basis, for the pur-
poses of comparison only. However, in view of the length of the calcul-
ations involved, the small size of third order parameters and the fact that
we are (in principle) able to determine them ourselves from a least-squares
analysis of available zero-field data, this would seem to be an example of
the law of diminishing returns.

Secondly, MD have assumed that hyperfine matrix elements off-diagonal
in J are negligibly small. These elements are likely to be very small in
OH since the spacings between consecutive levels is so large, but they will
be more important in NO. Since MD have data of very high precision from
their molecular beam studies this assumption is not really justified in
their case. In a recent paper, Meerts (34) has reanalysed the NO data with
a Hamiltonian that does include these off~diagonal states and this greatly
improved the quality of the fit., No reanalysis of the OH data has yet been
published,

MD's hyperfine Hamiltonian is derived in a similar manner to their
fine structure Hamiltonian, and suffers from the same drawbacks. Again, a
new and confusing symbolism has been introduced - nine hyperfine comstants,
labelled Xi (i =1 %o 9), which are linear combinations of twelve different

{3constants and a C_. constant, the ﬁ terms representing various electronic

matrix elements. I?Sthird—order effects are neglected, their parameters
Xy X2, 7(3 and X4 can be related to the Frosch and Foley a, b, ¢ and 4
constants and hence to our own a, o<?', p" and d. The remaining X para-
meters are comprised of third order terms only. One might inquire as to
why MD have nine constants whereas we only have seven determinable para-

meters. The reason for this is that there ig an error in their derivation =
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the L~uncoupling operator has no matrix elements between T\ states and yet
MD have included them. If we set to zero all the terms involving such ele-
ments we find that their P7, P10 and pn’ and consequently their X(, and
'XER;mrameters, vanish, Thus to third order MD have only seven determinible
parameters, and only two of these, Xz and X9, are /\-doubling terms., This
is consistent with our Hamiltonian, in which we found that only two A-
doubling constants, d and either da or dp' , are determinable. We expect

the d and dp' constants to be linear combinations of Xz and ")(9. Contrib-
utions to elements <3/2thfsl‘l/2 > arise only from ")(9 so we can infer
that X9 is related in some simple manner to dP' only (since d has no such

matrix elements).

A nuclear spin-rotation interaction has been included in the MD Hamil-
tonian operator, their parameter being labelled CRS' after Freed (32).
This is identical to our CI. The value of CHS is not determined directly
in their analysis as it is absorbed into their X parameters, but it is
possible to get an estimate for it. After crossing out the I~uncoupling

matrix elements mentioned above we find that

Ps = P (5.93)

and Be = p9 >~ 0 (5.94)

Pe and P9 are approximately zero since they involve matrix elements bet-
ween X27T and excited /\ states. If there are any /\ states for OH the
energy difference (Egﬂ - Eg ) is likely to be very large and so the per-
turbation corrections Bg and p9 will be very small. Substitution of the
relations (5.93) and (5.94) into the expressions for the XS and X7 para-

meters leads to

Xs o B+ Cpg (5.95)
X ; o "P‘j + Cpg (5.96)
Thus | C; & Cpg = 5(7(5+X7) (5.97)

MD were not able to determine all nine of their hyperfine constants for OH
- 'XB was not found and only the combination (X 5 * X7) was determined,
not X5 and X'Z individually. This is ideal for a determination of C_ . but
unfortunately renders impossible an evaluation of DP' from their results.
Terms in Dg, appear in the elements < 3/2|H|3/2)>, {1/21811/2) and
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{3/2l811/2 ). Assuming only ) states contribute, examination of the
corresponding MD elements and the P contributions to their parameters rev-
eals that 7(1, X4, XS and X7 are likely to be correlated in some way
with the Dp, parameter. It is likely therefore that DP' corresponds to the
@5 (and B ) contributions to 7(5 and X7. Since neither 7(5, X7 nor

(X_5 - ]f7) have been determined, Da, cannot be determined from these para-
meters, It is not possible to construct a suitable set of simultaneous
equations in B, by including X, and X4 either, MD (14) state that the
reason XLB and )C7 cannot be found separately is because they are strongly
correlated with the 7(4 constant and only two constants can be determined
independently. They therefore chose to determine the two parameters )<4
and <X5 + X 7), although in principle all three could be found, This un~
fortunately does not augur well for our proposed determination of DP' by

least-squares fitting.

5.7 Molecular Zeeman Effect
We have dealt briefly with the Zeeman effect in section (562), and

have explained its significance in e.p.r. studies. In this section we pres-
ent the form of the Zeeman Hamiltonian used to describe the energies of

the Zeeman levels, and we discuss in more detail the relationship between
our g-factors and the phenomenological g-factors of Radford (4, 5).

The general Zeeman Hamiltonian is defined as

B, = 8y T'(B). T'(S) + & e r'(®). (L)

" efy o'(p). T(I-L-3) - By P '(®). (1) (5.98)

where these terms describe the interaction of the magnetic field B with,
respectively, the electron spin, electron orbital, nuclear rotation and
nuclear spin angular momenta, This Hamiltonian is used as a starting point
by Radford (4) also. In contrast to Radford, we define the interaction
between B and I with a negative sign, since the magnetic moment of a part-
icle is proportional to its charge and hence the magnetic moment of a nuc-
leus will be of opposite sign to that of the electron., The term in g, ve
also define to be negative -~ this term contains contributions from the rot-
ation of the nuclei and from the electrons that rotate with the nuclei, and
the former and expected to outweigh the latter.

The dominant contributions in (5.98) will be from the terms in g, and
8y, and the values of these g-factors are expected to be close to their

free electron values, given in (5.16) as 8g = 2.00232 and gy, = 1.00C. The
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term in gN is expected to be very small since the magnetic moment is prop-
ortional to - rather than /AB. 8y for a proton is gy = 50585486 but
since }JN/)JB 21“2/1850 then the contribution from this term ( gN’AN//AB)
will be about 10 “ of that from the electronic g-factors. 8 will be
smaller than gN)AN/}AB since it will involve a nuclear contribution:4with
some cancellation by electronic contributions. A value of about 10 is to
be expected,

The Hamiltonian (5.98) contains terms that mix electronic states, nam-
ely the g = 1 components of the terms in gL and gr, although the latter we
can safely ignore because of their small size. An effective Hamiltonian is
therefore derived that operates only on ZTT wavefunctions and to first
order this Hamiltonian is comprised of those terms in Hz that do not mix
electronic states., The magnetic field ¥wector is quantised in a space-fixed
frame, and the space-fixed z axis is defined as the direction of the applied
magnetic field, Thus from equation (2.31) we have

1
By = T_oB® (5.99)

where BO is the applied magnetic flux density. The first-order effective

Zeeman Hamiltonian can now be rewritten in terms of p = O components only:

(1)
B,/ = P P

& Mg oMo + &y Ya PoTo®)

g figBTo(d = L= ) = gy hyoTo(D) (5.100)

The matrix elements of this operator can be easily calculated using standard
spherical tensor techniques.

The effects of mixing in other electronic states can be included by
going to higher orders in perturbation theory. The dominant second order
contributions arise from cross terms of the q = ¥1 terms in 81, with the L-
uncoupling terms and terms uncoupling S from L. These latter operators we
have previously called V, and V, respectively (see equation (5.24)). We
shall regroup these to give V{ and Vé as follows:

vy o= QBZfbﬂq§@>ﬂgg~@ (5.101)
q
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V; = A& ?T(“’")q T;(,E) qu(,s;) (5.102)

The relevant terms in gy, ve ghall call V§x

= ELpg’ £ STON i mw (5.103)

The second order effective Zeeman Hamiltonian is therefore of the form

ng) = )2va (ag/a) VP,

Z < 2TT; X‘VBITIMAWS"X") <'q"[\"S"X" lv{ + Vélzrr; \& v >
0 0

i

’f}"A"S"K" EZT‘- - E/[’"A"S"
(5.104)
Consider the cross terms between Vé and V5:
2 g 0 0 -
H( ) (VéVB) = (Eg_ﬁ - E"\"A"S")

fy‘"AHSNx"

x <TTiA Simml%/‘}s 0 Z@m) (w)* T (LW}"/\"""r;"J"n"M" >

e <’7’"A"S"Z“J",Q”M“§A Z:T(MT)qu;v(k)quv(,S,)lzn: /\'S bAoA >
q!

(5.105)
where q* = iq; The electronic wavefunctions can be factored off to give
ZT{ P 1
" NSH
as Q' /gl A

x ¢TI A T @l ase (Al a0 T @IPTT A |

x HgP (Jﬂmlﬁé;) (w)*ls am ) <S§:!Tiq,(§)!s y 2N
(5.106)

where use has been made of the fact that 5 operates only on spin functions
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and.gj(1) (W)* only on rotational functions., The spin and rotational mat-
rix elements in (5.106) are just the matrix elements of an operator of the

form

zTg} () Wy ah(®) (5.107)

The terms in braces in (5.106) are effective parameters that can be iden-
tified as g-factors. We therefore define:
Por q' = =q,

<2'ﬂ', /\l I SLT;(l‘.)“]"A"S"> <'f]"/\"S" IA(_—‘)Q Tlé(.l.‘)lznv A >

P ATGH (o]
l'r(qA_)s (Egﬂ' - E,annsn)

81”

(5.108)
For q' = q,
< 27T'A I SLT;(EM"]"A"S"> ("]"A"S"IA(-‘I )Q T;(!‘.)l ZT‘-’A! )

mANGH 0o _ 0" e
Ay (Bapy = Fqranse)

g =

(5.109)

Hence equation (5.103) can be rewritten in an operator equivalent form

B (vyv,) = &1 fiaPo %Tﬂ‘(’:l) () 'r;(_g_)

* 8] % Zﬁ oo (W' © (5.110)

Similarly the cross terms between V{ and V3 can be written as

G, = el TIDE) wrn@ -9

+ s:'/)BBO ZTﬁ (1) () 'rf_q(g, -8 (5.111)
. &: _ Z < 27T’A IGLT;(},”'""A"S"> (‘Y\"A"S"I-ZB(-ﬂ )q qu(;’.)lzng A'>
7]'('3')'3" (Eg "A"S")

(5.112)
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T el lineavs > ¢l -2a(=1)T B @ITT, A

r " ey 0 - 0
"' (2. )S (Ez_" E.qn Ansu)

(56113)

The symbols for these second order g-factors have been chosen so as to be
consistent with Carrington and Iucas (35) - the second order effective Ham-
iltonian and parameter definitions given above can also be found in their
paper., The matrix elements of the second order Hamiltonian can be calcul-
ated without mruch difficulty - those of g]" have already been quoted by Carr-
ington and Lucas (35). ' '

An examination of the electronic matrix elements in (5.108), (5.109),
(5.112) and (5.113) reveals, just as for the A-doubling terms treated in
section (5.5), that the terms with q' = =q are overall diagonal in A where-
as those with q' = q have matriz elements between states differing in A by
¥2, i,e. are A -doubling terms. Hence g, and g: are non-/\ -~doubling g~fac-
tors and contain contributione from both E and A states; gi and g:' are
A =doubling g-factors containing contributions from 2. states only.

We now deal with the significance of these four second-order g-—fac-
tors. The term in 8g in the first order Hamiltonian has q = O and 31 ele-
ments and hence describes an isotropic interaction. It conveys informatiom
on a spherical distribution of electronic charge. The & term has matrix
elements similar to those of 8 except that it has only q = %1 elements.
This term therefore carries information on the deviations from spherical
symmetry, and for this reason is known as the spin-anisotropy g-factor. We
generally identify the q = O component as lying along the intermuclear (z)
axis and so & describes the electronic charge distribution perpendicular
to the internuclear axis, gi is similar to 8y except that it has matrix
elements connecting A -doublets and will give information exclusively on
the admixture of J_, states., The matrix elements of g; and g';' are similar
to those of g, except that there is no T;(_I_.) contribution, Both represent
anisotropic corrections to 8, arising from the rotation of the electrons
with the nuclei. The g: term is absorbed into 80 and hence represents
thoge electronic contributions to 8, that were mentioned previously,

It is interesting to compare ocur effective Zeeman operator with that
of Radford (4), who algo uses a perturbation approach. Radford reduces his
results to a phenomenological form rather than casé them in an operator
equivalent form, as we do, The dominant contribution to the Zeeman split-
ting arises from the linear Zeeman effect, which has the general form given
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in (5.14) and (5.15):

Eeeman = P ngfABmJBO

where BJ is an effective g-factor for a particular rotational level, J.
There are no matrix elements of the linear Zeeman operator connecting diff-
erent rotational states. BRadford (4) gives the phenomenological form of

the linear Zeeman effect arising from the Hamiltonian (5.98) as

oy T }*nﬁogg%ma*gl m ] (5.114)
where g§ are phenomenological molecular g-factors referring to rotational
levelg, J, of : parity. &y is a nuclear spin g-factor which is related to
our gy by gy = "A#g Bpe These linear Zeeman energies correspond to the
eignevalues of our Zeeman Hamilionlan with the restriction that only matrix
elements diagonal in J are used.

In the presence of an external magnetic field J is not a good quantum
number, so there are matrix elements between states of different J. A
correction for these terms has to be applied to the linear Zeeman energies
with the effect that the energy levels no longer tune linearly with field.
In our case these corrections come from the off-diagonal J terms in our
effective Hamiltonian, and are linear in magnetic field., This is known as
the second order Zeeman effect. Radford, however, obtains his energies by
an explicit perturbation caleculation rather than by our method of computer
diagonalisation of the complete Hamiltonian matrix, As a result these sec-
ond order effects will manifest themselves as a power series in BO, start-
ing with quadratic terms. Expressions for the quadratic and cubic Zeeman

energies are given by Radford as

( MgBy)?

2 BO

Ezg = (KO + szJ) “he (5.115)
= 3 <,}AB‘BO}§ 11¢

EZ§ = (ijJ + K3mJ) “zggggm - (5.11€)

The Ki's are perturbation expressions, which Radford determines phenomeno-~
logically. A word is in order regarding these iwo expressions. Radford siates
that the Ki's are dimensionless constants, but if they are then the dim~
ensions on each side of the equality signs do not balance. These equations

require (hec) to be an energy, which is not correct. Consider the express~
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ion for Ez ~ the perturbation expreseion for this will be of the form
2

+2 [<Jl l >I 2 2
Ez2 = (&3)" BT + 1) @ 33 + 1] (/‘n’o my  (5.117)
where B is the rotational constant, in H , and J' = J+ 1, If instead B

is chosen to be in cm~| this expression becomes

27 , (MgBy)°
s, - [ gLt A 5-119)

which is then equivalent to Radford's expression, The temm in braces can
be identified with K, and can be seen to have dimensions of cm, contrary to
Radford's statements.

The expressions of interest to use are the g% terms. Radford defines
these to be

+
&5 = &)+ (8g;)g+ (Sap)y + (Ssy); (5.119)

gg contains contributions from g, and g . (8 85)g corrects for the anom-
olous part of the electron spin g-factor, i.e. the deviation in g¢ from 2,
(S gJ) corrects for the rotazion of the nuclei and hence can be correlated
with our g . Finally, (6 g;)}, refers to corrections arising from the rot-—
a.tion of the electrons with the muclei and so should correspond to our gr
and gr . There seem to be no terme corresponding to our & and gl The
fundamental molecular g-factors proposed by us a.re of far more use than the
effective g-factors of Radford, His measured g: values comntain information
on the contributions from the rotation of the nuclei and so on but, written
in this form, this information is irretrievable., All that this approach
allows is an ab initio calculation of these corrections to gJ so that
theoretical values of 33 can be compared with the measured ones. Although
Radford has been able to deduce much from making such comparisons it never-
theless makes more sense to determine the fundamental g-factors directly.
Information on electron distributions and so on would then be much more
readily available,

It is to be expected that Radford's 3'5 parameters will be linear com~
binations of the more fundamental g-factors. It would be of interest to
determine this relationship on more quantitative grounds., We shall there-
fore calculate the matrix elements of the linear Zeeman effect for the Fjp
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levels of OH, using both approaches, and ignoring nuclear spins. A sim-
ilar calculation for the F4 levels has already been performed (36). In the
cage b) limit F, and F, refer to states with J = N + % and J = N - 4 res—
pectively. In the case a) limit these correlate with TT§/2 and 7T1/2
levels respectively, for an inverted gtate, Hence we wish to calculate the
linear Zeeman effect for the TYT}? gtate of OH, Using Radford's approach

these energies are given immediately from (5. 114)

where §J = %{gg + g;} (5.121)
& s

Tt is more difficult to obtain similar expressions using our approach since
we have to allow for the effects of intermediate coupling. From DST (7) we

find that the wavefunctions for F1 levels are given by

| 25 Foin > = - 5,0% Jmlai=1/2) + ¢ 1% amy101=3/2 (5.123)
%
=2+ 7
where SJ 5= <“mm?§€mmmm> (5.124)
X+ 2 = *f‘% ~
Cy = (““mfﬁfmmmm) (5.125)

X and Y have been given already in equation (5.85). We therefore require

the matrix elements

+ + 2 s +
{Z 7, JmJleim? ngmj‘}m 55 = JmJ’%/Z‘EHZE =5 Jny1/2

2C,S ¢Zs Im 1/2 o 3/2)
ai(ig ngﬁ/a‘mzii; Jn3/2 ) (5.126)

These matrix elements are diagonal in all guantum numbers and hence lead
directly to the required eigenvalues., The relevant matrix elements of our

Zeeman Hamiltonian are
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{% JmJ1/2|Hzl:; Jm1/2 )

B.m '
- 45T {8;. - g + 26, [ 2 - 33 + 1)]T dley + &7 )23 + 1)}

(5.127)
(% m3/218 1% Jm3/2 )
2.:;‘8133‘“1) {551. %‘s + 28r[%- J(J + 1)]} : (5.128)

(% o 3/2|H 1% Jn 1/2)

B ¢
- s {* s+ 8y, v 8 T (7+1/2) }[(J - 1/2)(3 + 3/2)|
(5.129)

Substitution of these matrix elemente into (5.126) together with express-

ions for SJ and CJ leads to

2.1/(“]?21“'11) {81.( .xzmr) ‘e (x-4+2y-4(.;r- 1/2)(J+5/2))

" %gr( SX=8+4Y _ 45541) - 4“-1/2;):(“3/2))

- g 2(J-1/2])[(J+3/2) T (8 +g:')(3+1/2) (x—z»,y)

3 &% (3 -1/2)(3 +1/2)(J + 3/2) %} (5.130)

r

Comparison with (5.120) gives us the relationship between Radford's effect-
ive g-factors and our fundamental g-factors, for the 2TF.1 /2 statd of OH:

o= e (s (ERET) + g (BRI AnG e i)

2(J - 1/2)(J + 3/2)
X

- (e, + &)

R %gr(sx-e+4§-4xa(.r+1))} (5.131)
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Dey= J(J1+ ) {“@f(ﬁ‘ - 1/2)(3 + 1/2)(J + 3/2) %

NERT SICRRVONES S ) SR

As expected, therefore, the difference between (& gJ)z and (ESgJ); can be
¥
related to our A -~doubling g-factors g and gi .

5.8 Analysis of Meassured Transition Preguencies

Eigenvalue calculations, predictions of spectra and least-squares fit-
ting were performed on a CDC 7600 computer. Programmes written by Dr. F.D.
Wayne to perform such caleulations on Bﬁz,and 1{3 gtates were available and
so it was only necessary to modify these to obtain a programme applicable
to 27T states., The main changes involved the replacement of those subron-
tines calculating matrix elements with ones relevant to our ZTT effective
Hamiltonian. The least-squares fitting procedure is based on that of Cas-
tellano and Bothner-By (37)}.

The basis sets used in the progfamme are the paritised basis functions
defined in equation (5.9). This halves the sizes of the matrices and helps
to reduce computing time,

In order to fit the Zeeman data it is first necessary tc be able to
calculate the gzero-field transition frequencies accurately. The most ex-
tensive analysis of the zero-field data was performed by Meerts and Dymanus
(14) who were able to fit most of the lines to within 25kHz, They also
included six lines reported by Poynter and Beaudet (8) but could not fit
these so well, the discrepancies varying from 65 to 940 kHz, It was hoped
that we could take the parasmeters determined by Meerts and Dymanus, convert
these to our parameters, as described in section 5.6, and hence to calculate
the zero-field transition frequencies with an accuracy comparable to theirs,
thus leaving us to concentrate on fitting the g-factors. The success of
this comparison will be discussed in due course.

We shall first deal with the development and testing of our programme.
Our initial version did not include centrifugal distortion and third-order
hyperfine terms. Since Meerits and Dymanug included such terms in their fit
we cannot in this instance hope to fit the data as accurately as them.
However we can check that the usual A~doubling, rotational and hyverfine
terms are correct. The terms in B and A can be checked fairly easily
against standard matrix elements, e.g. Hougen (25). The hyperfine matrix

elements were checked against those given by Carrington et al (38) for NS.
The A-doubling matrix elements can be checked against those of Carrington
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and Lucas {35). A useful comparison can be made with the A -doubling ex-
pressions given by Dousmanis, sanders and Townes (7). For this we have to

set all but A, B, q and (p + 2q) to zero, and these latter parameters we

take from the Meerts and Dymanus results:

= ~139.38em™ = -4178507 .865MHz

=8
§

wagsiacm”1 = 555065,814MHz

o
it

(5.133)

20C

q 7 = ~1165.22MHz

i
i

(p + 2q) = 4@55 - 2@@5 = 4737 .628MHz
g and p + 2q are determined from equation (5.91) by setting the third order
Eérms, Dp and Dqg to zero, The B parameter was not determined by MD since
their data do not include transitions between rotational levels, so that B
cannot be constrained in a least-squares fit. Instead they adopted the
Dieke and Crosswhite value (6).

The A -doubling intervals computed with the above parameters are given
in table 5. For comparison the experimentally determined A -doubling freg-
uencies V, and those calculated from the DST expression given in (5.84)
are also given. Discrepancies between the results of the D3T calculation
and the observed data probably arise from neglect of the higher order con-
tributions, \%<2}9 to the A-doubling frequencies. In our case discrepan-
cles are probably due to neglect of centrifugal distortion corrections. The
agreement between observed and calculated transition frequencies is there-
fore as good as can be expected, and our calculation compares satigfactorily
with the N3T expressions,

If the dominant hyperfine effects are included we can compare directly
with the observed transition frequencies (those collected from various sgour-
ces and tabulated by Meerts and Dymanus (34) have proved most convenient to
use, since they span a wide range of rotational levels and on the whole are
measured to a high degree of precision). Again, we use the hyperfine para-
meters determined by MD and convert them to our parameters using esuvations

(5.39) and (5.40). We thus obtain
a = 86.01MHz

m?@» GQN}%Z

8
it

(5.134)
44, 04MHz
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i

Qo
i

56, 62MHz



J Experimental Our ST
Calculation Calculation

3/2 1666.34% 1664,02 1664347

5/2 6036.596% 6042.,218 61%5.9519
Ty {772 65.6% 13507 .01

9/2 23822,.98 24044,697

11/2 36989.41° 37507.07
, 1/2 47%7.629 4737.629
271}/2 5.3/2 7797.59° 7799.984 7810.908

5 /2 8166,08° 8153,768 8169.513

a Taken from Radford (4)
b Taken from Dousmanis, Sanders and Townes (7)

¢ Taken from Radford (5)

Table 5

/\mdoubling intervals in absence of hyperfine and centrifugal

distortion effects.
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The hyperfine A -doubling frequencies calculated using the parameters
given in (5.133) and‘(5.134) differ quite considerably from the observed
transition frequencies, For instance, for the 2TT3/2 states, those calcul-~
ated for the J = 3/2 levels have discrepancies of about 2,6MHz while those
for the J = 11/2 levels differ by 517.5MHz. These discrepancies were asc~
ribed to our neglect of centrifugal distortion effects on the A -doubling
and so further matrix elements (i.e. those in DP and Dq) were incorporated
in the programme to account for these,

At this stage the usual rotational centrifugal distortion terms in DB
were also included, although these are expected to give only very slight
contributions to the A-doubling and certainly would not account for the dis-
crepancies mentioned above. DB affects the A ~doubling intervals only in-
directly, in that it alters the extent of spin-uncoupling in the molecule,
Y= é'is a measure of the spin-uncoupling and DB can be regarded as a J-

B
dependent contribution to B:

B % B, - DBJ(J +1)
An estimate of this effect can be obtained from the DST expression (5.84).
If we assume that there is no change in 4 and that DB is 10’43 then a cal-
culation of VY using this modified value of Y reveals that for the 27T3/2
J = 3/2 levels the change in V, ought to be O0.5MHzZ. A computer calcul-
ation shows the corresponding change to be about 0.83MHz.

Values of DB’ Dp and Dq were taken from Meerts and Dymamus (14). Their

D, value is that of Dieke and Crosswhite (€) and is

B

D, = 56.06 MHz (5.135)

5 were checked against those of Zare (39), with approp-
riate changes in sign to allow for differences in phase convention. The Dp
and Dq parameters were calculated using (5.91) and this entails alterations
in the q and p + 2q parameters given in (5.133)., Meerts and Dymanus quote

Matrix elements of D

oc 3 = 1184.407 MHz
<, = ~2.937 MHz
OCS = 20813 MHzZ

OC.7 = =582,61 MHz

We need an OC8 value before we can convert to our parameters and so we cal-
1

culate this from 0C5 using equation (5.92) and setting B = 1€.961 cm
(Dieke and Crosswhite value), Hence oC, = 0.2361 MHz, which leads to
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p + 2q = A752.4742 VMHz
q o= w11(4.5877 MHz
- (l)- 1 ’)( yi
N = ~0, 1207 Miz
1Y
Dq = 04722 VHz

Gentrifugal distortion corrections to A were also included, although
their effect on the spectra is very slight. As mentioned in section 5.5, we
choose to incorporate these as a spin-rotation interaction (parameter 5 )
rather than as a term in AJ, since ¥ and AJ are highly correlated and it is
only necessary to include one. In this case the parameter ¥ that we wish to

use is a linear combination of the true ¥ and the AJ constants, the relation-

ship being

A - 2B p
L apparent § - (m,gm_.) Ay (5.157)

A corresponding expression would hold were we to use AJ rather than X . Jlei-
ther a ¥ nor an A] term was included by Meerts and Dymanus, and neither have
been determined for OH by other workers. We must thus resort to some other

means of estimating ¥ . Both.'x and AT have been determined for UL by Coxon

O«

(39) and so we can use an isotopic substitution method to obtain a vzlue for
¥ in OF. Brown and Watson (28) have pointed out that the separation of

and AJ by previous workers is based on an incorrect assumption and so a value

of ¥ determined from Coxon's results might not be reliable. However,
apparent

since the ¥ term is not very important for 27T states this is not expected

to introduce serious errors. We have the relationships

¥ (on R (ON A (OD) )
? o~ (On) o~ __J___,,( ,_.’ (512
¥ (o) B (OH) Aj (on)
and so from Joxon's values of
-3 -
¥ (o) = 1.54 x 10 cm
-1
B (0D) = 9.88%1 om
A (D) = 2 = —4.3€ x 1074 cn”

we obtain for OH :~-

Y = 2.51 x 1072 —

AJ = -4,084 x 1074 cm-"i

Substitution into (5.137) gives the required value of ¥ :
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- ~1
~1.%812 x 10 5 em

¥

#

apparent
~41.4 MHz (5.159)

i

The matrix elements of Dp and Dq are not easy to check since the A~
doubling centrifugal distortion Hamiltonian has not been given in this form
before, 4 rather useful, and rigorous, check on the /\—doubling, centrifugal
distortion and ¥ terms in the programme is possible in the case b) limit.
This involves setting A = 0. The usual case b) expressions (1) for a molec-

ule in a doublet state, in the absence of hyperfine effects, are of the form

il

B[N(N+1) ~/\2] - DB[N(N+1) -/\2]2 + BQN(N+1) + 3 YN
B[N(w+1) »/\2] - DB[N(N+1) ~/\2]2 - FaN(¥+1) = 3 Y (N41)
(5.140)

e, ()

in) !
5 (W

i

Our T_ and Dq terms arise from cross terms of the rotational and usual
A -doubling Hamiltonians, In the case b) limit therefore we expect a term in

D{J of the form

E 3 0, N(N+1) [N(N+1) -/\2] (5.14%)

where the upper and lower signs refer to F1 and F2 levels respectively.

To test our programme in the case b) limit we have to set A = 0, p + 2n =
21 and, by analogy with the p + 2q term, Dp = 2Dq. The eigenvalues calcul-
ated in this way are found to be the same as those given by (5.140) and

(5.141), except for the ¥ terms, which are in error by w%}'. This is because

the spin-rotation interaction should be of the form

Hep =338 = ¥(N-1).8 (5.142)

whereas the terms in ¥ in (5.140) are eigenvalues of the X2L§ part only. A
contribution of the form-—l(lbsz> = -2 ¥ should therefore be included in
(5.140), so it is the case b) expressions that are in error rather than our
programme. Herzberg (1) quotes the case b) expressions only for the partic-
ular case of 25: states, in which case the form of (5.140) is indeed correct.
The fit of the A-doubling frequencies using the values of the centrif-
ugal distortion parameters obtained above is still not as good as that obte
ained by Meerts and Dymanus. The ZTT3/2 J = 3/2 levels now have a discrep-
ancy of 4.€ MHz and the J = 11/2 levels have deviations of 437,2 MHz., This is
no better than the fit without centrifugal distortion terms. The only diff-

erence between this present programme and that of Feerts and Dymanus is that
we have not at this stage included the third-order hyperfine terms and they
have not included a ¥ term. These are not expected to be particularly large
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and would not account for the above discrepancies ~ the ¥ term, for instance,
gives a shift of only €€ kHz to the ZTTé/2 J = 3/2 A-doubling frequencies,
and the contribution from the hyperfine A-doubling dp' term is not expected
to be very much larger. If both Meerts and Dymanus's results and our programme
are reliable then we ought to be able to calculate the zero-field frequencies
to a reasonable degree of accuracy. With the exception of the Dp and Dq terms
all our matrix elements have been checked against ones previously published
and even the Dp, Dq terms give satisfactory results in the case b) limit, It
is possible that an error exists in the MD least-squares fitting routine,
which would explain our inability to fit the data with their parameters. In
view of this it was decided to attempt to fit the zero-field data ourselves.
The B, A and hyperfine constants were fixed at the MD values given in (5.15%)
and (5.1%4). This programme had no provision for varying the hyperfine para-
meters, The remaining parameters were allowed to vary in the least-squares
fit. We used the data set tabulated by MND, with a weighting inversely prop-
ortional to the variance of the individual lines (standard deviations on each
of the lines were also quoted by MD).

We found that ¥ was very poorly constrained, with a large standard deve
iation, which is to be expected since the transition frequencies have only a

weak devendence on ¥ . An initial fit gave a value of
¥ = 39€.14 MHz (& = 1439.1 )

and so in a second fit ¥ was fixed at this value. The values for the remain-

ing parameters thus obtained were

q = -11€8.635 MHz (6 = 0.082 )
p+2q = 4732.504 MHz (& = 0,130 )
D = -0.€592 MHz (& = 0.01%2 ) (5.145
Dq = 0.4329 MAz (& = 0,0119 )
Dy = 144,101 MHz (o = €.217 )
With the exception of the DB term, these parameters do not differ much
from their initial values. The large change in D_ is not to be viewed with al-

B
arm. Tn a similar fit on OH Destombes et al (41) obtained a value for DB of

10€,.€€ MHz, That this differs from ours as well as the Dieke and Crosswhite
value is probably not significant - they have included only one A ~doubling
parameter as opposed to our four, so their fit will converge to different va-
lues of the constants to compensate for this. All that concerns us with their
results is that their DB value is much larger than that of Dieke and Croszs=-—

white so the latter is not to be regarded as immutable,
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The transition frequencies calculated with the set of parameters given
in (5.143) fit the observed data very well, and in some instances the fit
is even better than that of Meerts and Dymanus. Column I in table 6 shows
the deviations from the observed frequencies., For the 27T3/2 J = 3/2 levels
the frequencies are calculated to within 5 to 16kHz, whereas MD fitted these
to within 28kHz, Similarly, the 27T3/2 J = 11/2 levels we fit to within
150 kHz, in contrast to 920kHz by MD.

A comparison with Meerts and Dymanus's results is rather difficult
since the assignments they present in their paper are ambiguous. They use
a Wang basis set rather than a parity basis set and so our ¥ Jabels are not
necessarily the same as theirs, Furthermore, it is not clear from their
data which of their ¥ quantum numbers labels the lower state. In order to
obtain our assignments we had to examine carefully the zero=field eigenval-
ues for each of the meblocks from m, = 0.0 to my = 6.0. This range of my~
blocks allows us to assign unambiguously all the F labels for both TTS/2
and TT'/z levels with J = 1/2 up to J = 11/2, This procedure led to the
important observations that the parity labels are inverted for TT1/2 states
with J 29/2, and the P labels are inverted for 7'\'3/2 states with J>7/2 -
for each of the other J levels the higher of the F labels refers to the
state with the higher energy,

In our case the discrepancies show a general increase with J, which
seems to indicate the need for further higher order corrections. The prog-
ramme used for the above fit does not include ')3 hyperfine terms and as
has already been mentioned has no provision for fitting any hyperfine para-
meters. A further version of the programme was developed to remedy these
omissions, and this was rather more successful.

We first fitted only the )2 hyperfine, A-doubling and centrifugal
distortion terms, using initial values taken from the data in (5.134) and
(5.143). The resulting fit is, on the whole, very much better than the pre-
vious one, and the discrepancies from the observed data are shown in col=-
um II of table 6, Only for the 27'1'3/2 J = 3/2, 7/2 and 11/2 levels do we
achieve a better fit than Meerts and Dymanus. Our best fit is for the
27T5/2 J = 3/2 levels, which we calculate to within 0.3 to 14kHz. Most of
the remaining lines can only be calculated to within 20 to 970kHz. The
deviations do not show a particularly marked dependence on J. The pPATEM

meters obtained from the above fit are as follows:

H

a = -1168.673MHz (& = 0.064)

0.102)

]
il

p+2q 4732.476MHz ( &



Table 6 Observed and calculated zero-field transition frequencies for OH

Observed Frequency differences (obs-calc)
0 J . Parity F 7 Frequency (in kHz)
(lower) upper lower (MHz) I IT 11T g;szzss&
3/2 3/ + 1 1 1665.4018(2) ~14.7 ~14.4 -61.6 26.0
2 2 16€7.3590(2) 15.7 14.3 42.7 27.4
2 1 1720.5300(2) ~4.99 0.%93 ~9.52 25.4
1 2 1612.2310(2) 6.18 ~0.329 -9,30 28.0
5/2 - 2 2 6030.747(5) ~40.4 3,74 =99.5  =20.2
3 3 6035.092(5) 22,1 €2.8 137 -18,2
3 2 6049.084(8) -53%9 ~33%4 25,3  =21,7
2 3 6016.746(5) 511 392 53.4  =25.7
7/2 4+ 3 3 13434,62(1) 13,7 1.0 =154 -65
4 13441.36(1) 56.8 51.9 181 ~100
9/2 - 4 4 23817,615(2) 32,5  =35.6  =26€ €.3
5 5 23826,621(3) 58,0 51.9 240 5.5
4 5 23838,46(1) 347 342 -400 ~480
5 4 23805.13(1) ~968 =972 ~272 ~150
e« 5 5 36983.47(3) -149 ~146 ~441 -910
6 6 36994.43(5) -39,7  -40.3 209 -940
1/2  1/2 - 1 1 4750.656(3) ~T1.2 ~59.7 26.5 27.5
0 4765.,562(3) ~511 -27.9 -122 19,3
0 1 4660,242(3) 388 -39,8 =118 24.7
3/2 o+ 1 1 7761.747(5) -3,03 48,1 -77.4 =7.5
2 2 7820.125(5) -119 -92.5 -17.4 0.3
2 1 783%1.962(5) ~16.4 32,2 «~40.5 1.1
1 2 7749.909(5) 107 -17.6 -55.3 -9.2



5/2 - 2 2 813%5.870(5) 151 165 112 0.8
3 3 8189.587(5) =112 ~-121 83%.8 4,6
3 2 8207.402(5) 228 79.3 22 5.8
2 3 8118,051(5) ~194 =39.5 2,51 =45
7/2 4+ 3 3 5473.045(5) 293 300 317 -4.%
4 4 5523.438(5) -98.7 =177 ~191 -12,6
4 3 5547 .042(5) 95.6 9%.9 69.1 ~9.1
3 4 5449.,436(5) 25.8 24,2 52,2 -12,8
9/2  + 5 5 117.1495(10) 338 336 407 -5.6
4 4 164.7960(10) =319 -341 -426 =41
5 4 192,9957(10) 305 =17.5 ~8.85 -11.3
4 5 88.9504(10) =286 13.5 ~9 .85 2.1
Weighted sum of squares of deviations
in (MHZ)2 0.0205 0,0107  0.0216
Observed frequencies quoted by Meerts and Dymanus (14) (see references cited

therein for workers responsible for individual measurements)

Numbers in brackets after observed frequencies are standard deviations, and

apply to the last significant figure of the frequency

I PFit of A-doubling and centrifugal distortion terms

I1 As for I but including?\2 hyperfine terms
III As for IT but including A’ hyperfine terms
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‘.Dp =  =0,6506MHz (& = 0.0104)
Dy T 0.4289MHz ( & = 0.0094)
D, = 146.061MHz (6 = 4.883)
a = 85,77TMHz (6 = 0.150) (5.144)
oc! = =T2,94TMHz (6 = 0,130)
@" = 43.270MHz ( & = 0.159)

d = 56.669MHz (& = 0.452)

i

None of these values are significantly different from the initial data.
The standard deviations on the first five terms are lower than those from
the previous fit given in (5.143).

We next attempted to reduce some of the discrepancies in the above fit
by including the ¥ hyperfine terms, and fitting these in conjunction with
the ')2 hyperfine parameters. The centrifugal distortion and A-doubling
constants were fixed at the values given in (5.144). The da constant was
not fitted, for reasons already mentioned, and was fixed at zero. We were
not able to obtain a value for D | since it is strongly correlated with.CI,
a and oC', Meerts and Dymanus had the same difficulty, as mentioned in
section 5.,6. This term too was fixed at zero. The values obtained for the

remaining hyperfine terms are as follows:

a = 86,078MHz (& = 0,370)

! = =73,592MHz (6 = 0,696)

B" = 43.748MHz (& = 0.546)
(5.145)

d = 56.519MHz (6 = 0.648)

¢, = ~0.089MHz (& = 0,09%)

dg, =  0.306MHz (6 = 0.,203)

The value of CI is very similar to that of 0.1MHz which we can obtain from
Meerts and Dymanus's results using (5.97). Note that the standard dev-
iations on the four ) terms are larger than those given in (5.144). In-
deed the fit using this data set is not as good as that in the absence of
'%3 hyperfine terms. The deviations from the observed transition frequen-
cies are shown in column III of table 6, There seems to be no trend in the

deviations with respect to J which might indicate that the remaining errors
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are merely experimental, but considering the precision to which the lines
are determined, and the magnitude of the discrepancies, a more likely exp-
lanation is that higher order terms other than the ‘)3 hyperfine terms need
to be included,

We now turn to a fit of the Zeeman data. E.p.r. studies have been
made on the following rotational levels: 2TT3/2 J = 3/2 through to J = 11/2;
27T1/2 J = 3/2 and 5/2. Tt is our intention to use all these measurements
in our fit, The measurements of the 2TT3/2 J = 9/2 lines were detailed in
section 5.4, The J = 11/2 lines have been measured in this laboratory by
Dr. C.L.M. Kerr while the remaining lines were measured by Radford (4, 5).
The frequencies and field positions of the latter lines are not given in
Radford's papers and so it was decided to regenerate this data by substit-
ution of the given parameters into Radford's transition frequency express-
ions. A computer programme was written by Dr. M. Kaise for this purpose,
At this stage Dr. Radford provided us with the original data for all his
measurements, and so this was used in preference to any computed data. It
is worth pointing out, however, that although the aforementioned programme
gave predictions for the 2TT3/2 data to within 0.2 to 1.6 gauss we were not
able to regenerate the 27T1/2 data satisfactorily. Although the average
field position and overall spread of the lines was correct, the relative
dispositions and assigmments of individual lines were totally different.

The calculation of the 2TT1/2 data entails only a minor correction to the
expressions for the 27T3/2 levels which according to Radford adds only about
1.5MHz to the transition energies. For the J = 3/2 levels, which have an
effective g-factor of =0.134, this means a shift in field positions due to
this additional term of about 8 gauss., If we omit this correction term we
have essentially a 27T3/2 programme which from the above is known to be
correct and so we should at least be able to predict the 27T1/2 lines t»
within 8 gauss. This course of action does not, however, lead to any imp-
rovement. This would seem to indicate that there are errors in Radford's
27T1/2 effective parameters,

The weighting for the Zeeman lines was based on the inverse squares of
the linewidths, which is similar to that adopted for the zero-field lines.
Radford quotes linewidths of 450kHz for the strongest lines (presumably the
2TT3/2 J = 3/2 levels), 800kHz for the weaker 27T3/2 lines and 2MHz for the

TT1/2 measurements, For our J = 9/2 measurements the linewidths are est-
imated to be about 10 gauss for the resolved lines and 20 gauss for the un~
resolved ones., For the J = 11/2 lines the linewidths wereé estimated to be
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20 gauss, Since the least-squares programme fits frequencies and not fields
it is first necessary to convert the linewidths for the J = 9/2 and 11/2
lines to frequencies. This entails calculating the effective g-factors for
these levels, since Radford does not quote them, These are best calculated
from the expressions relating the effective g-factors, EJ, for F, levels to
the molecular g-factors g9 gL etc. In this approximate calculation only
the dominant contributions, those from 8 and gL, need be included. The
expregsion for F2 levels was given earlier in section 5.4. That for F1

levels is similar and for our purposes we can take this to be

g 2J(J1+ 5 [ ) (2x +x? - Y) v g (x +4-Y +é§(J-1/2)(J+3/2))]

(5.146)

We thus obtain gJ values of 0,138 and 0,197 for the J = 9/2 and 11/2 levels
respectively, which lead to frequency linewidths of 5.52MHz for the J = 11/2
levels, and 1,94 and 3,87MHz for resolved and unresolved J = 9/2 levels res-
pectively., The simple case a) expressions for effective g-factors

_ (65X + g N)
€y = T23(3 + 1)

wag found to give g-factors an order of magnitude smaller than the above

and so it is necessary to use the intermediate coupling scheme expression

given in (5.14¢€).
The linewidths and resulting weights used in the initial fit are there-

fore as follows:

n J AV (MHz) Weight
3/2 3/2 0.45 1
5/2 0.80 0.3164
7/2 0.80 0.3164
9/2 1.94 res. 0.054
3.87 unres., 0001 35
11/2 5,52 0.006€5
1/2 3/2 2,0 0.0506
5/2 2,0 0.0506

The zero~field parameters used were those obtained from the best fit of

the zero-field data and are those given in (5.144) together with the A and
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B values given in (5.133). &g was fixed at the value of 5.585, obtained
from Radford’'s gi value of =3.042 x 10"3. The remaining g—-factors were
allowed to vary in the least squares fit. The resulting fit is very dis-
appointing - the lines could only be calculated to within 10 - 60MHz and
the g-factors were also not very well determined., The values obtained

weres

2.0133 (& = 0,1392)

0]
145
L

ol
et
]

0.9923 (& = 0,0789)

0.,0022 ( 6 = 0.0073)

o]
]

=0,0295 (S = 0.2309)

i

ey
"

ge' 0.0021 (& = 0.0008)

i

g = 0.0043 (& =0,0136)

8s and &y, we would expect to be slightly less than their free electron val-
ues of 2,00232 and 1.000 respectively and so 8 is certainly too large. gi
and gi' are of the order that we would expect but both g, and g, are an
order of magnitude too large; these should be about 10~ ana 10~ respect-
ively. Note also that these two g-factors have very large standard dev-
iations which indicates that they are not very well constrained by the data,
In addition the least squares programme indicates that 8., is highly correl-
ated with &y, and & withﬁgs. In a second fit both &, and g vere constrain-
ed to be zero and the data fitted to the remaining four g-factors. This
improved the fit slightly -~ the lines could be calculated to within 0.2 to
25MHz but this is still not satisfactory. The g-factors are somewhat better
determined in this case, the values being

g = 2,0111 (& = 0,0015)

g, = 0.9981 (6 = 0,0010)

(5.148)
g, = 0,0020 (© = 0,0001)

g = 0,0043 (& = 0,0009)

The A ~doubling g-factors gi' and &} have the same values as in (5.147) and
so these were fixed at the above values in subsequent runs. In these we
fixed g, either at zero or at Radford‘'s value for gﬁ (which is equivalent to
our g ) of 3.7 x 10"4, and allowed gg, & and g, to vary. The best fit vas
obtained from the latter, although this is far from satisfactory. The
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?'TY3 /2 J = 3/2 lines could be fitted to within 33 to 700kHz but the lines

from higher rotational levels could not be fitted as well as this, By far

the worst fit was for the 2TT./2 J = 11/2 1ines which had mean residuals of

about 40MHz. Table 7 shows tge results of this fit, Data from one net of
the J = 9/2 and one set of the J = 11/2 measurements are omitted, since
these aie very similar to the ones tabulated. Two sets of 2TT3/2 J = 3/2
measurements were used, since these spectra are the most accurately det-

ermined of all the measurements. The g-factors obtained from this fit are

gy = 1.9855 (& =0.,0018)
g, = 1.0079 (& = 0.0008)
g, = 0.0372 (& = 0.0024)

The differences between these values and those given in (5.147) and (5.148)
are quite marked - 8 is now far too smallj; g, we would expect to be slighte
ly less than unity; 81 admittedly better constrained, has changed sign and

is still an order of magnitude too large.

5.9 Discussion

In this section we shall try to draw conclusions from the results pres—
ented in the previous section. We shall deal first with the zero~field
problem,

It is unfortunate that we had to spend so much time on obtaining an
adequate description of the zero-field energy levels, since it is the g-
factors that we are really interested in. It was hoped that we could have
used the Meerts and Dymanus results directly, which proved not to be poss-
ible, and we certainly did not anticipate that we would have to perform our
own analysis of the zero~field data. Even though we had to resort to this :
course of action we still were not able to reproduce Meerts and Dymanus's
results, and there are several possible explanations for this. Pirst, since
we are not certain as to what assignments MD have used, we could be using a
different set of assignments to them., Secondly, there appears to be errors
in their least-squares fitting procedure. As mentioned in section 5.6,
their OCS parameter can be‘rewritten as a contribution to the OC3 and OC4
constants and so it is not at all clear how they managed to determine OCB,
0(4 and OCS simultaneously. Fitting these three terms should not have given
a convergent fit. Their apparently good fit is therefore to be viewed with
some suspicion and so we should not be perturbed at the inferior quality of

our fit,



Table 7 Observed and calculated Zeeman measurements for OH

n J m, value Observed Obs - calc Frequency
for parity Frequency Field
+ - (MHZ) (gauss) (MHz)
3/2  3/2% 1,0 2,0 9262.,93 5787 .69 0.477
0,0 1.0 " 5790. 68 0.512
-1,0 0.0 1 5793.42 0.672
0.0 1.0 9263.00 5809.63 -0.185
-1,0 0.0 " 5811.93 ~0,157
2,0 -1,0 " 5813.93 0.033
2.0 1.0 9259.92 8301.71 ~0,576
1.0 0.0 9260,12 8321.53 ~0.434
1.0 0.0 9259.92 8334.,19 ~0.255
0.0 =1,0 9260,12 8354.84 -0.143
0.0  -1,0 9259.,98 8367.15 0.043
-1.0  =2,0 9259.95 8388.65 0.119
1.0 2,0 8902.,26 5512.98 0.284
0.0 1.0 " 5515.43 04236
-1,0 0.0 " 5517.45 0,5€8
0.0 1.0 8902,21 5534415 0.524
-1.0 0.0 " 5535.93 0.428
=2,0 =10 " 5537.32 0,632
2.0 1.0 8902, 26 8030.45 -0.718
1.0 0.0 " 8050.29 -0.712
1.0 0.0 " 8061.29 ~0.564
0.0 -1.0 " 8081.29 -0.485
0,0 =1,0 " 8092,25 ~0.057
-1.0  =2,0 " 8114,09 ~0.404
3/2  5/2% 1,0  -2.0 9470.77 5022,03 0.519
=2,0  =3,0 " 5025.97 0.588
0.0 -1,0 " 5039.27 0.459
-1,0 -2.0 " 5045.42 0.422
1.0 0.0 " 5056.44 0.434
0,0 -1,0 " 5064.54 0.464
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Lines measured by Radford (4)
Present measurements
Lines measured by Dr. C.M.L. Kerr
Lines measured by Radford (5)
of doriakows
Weighkeok Sum of squares,of fit = 443.054 (MH;\I
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Our analysis has indicated that the terms in our effective Hamiltonian
are not quite sufficient to describe the rotational energy levels. Inc-
lusion of the 7N3 hyperfine terms gives no significant improvement, and it
is likely that alternative higher order terms are required., These could be
further centrifugal distortion corrections to the rotational constant, Hv
and so on, or, more likely, fourth order A ~doubling interactions. We have
not had time to investigate either of these possibilities.

The fourth order A -doubling terms would be of the form

(N2ry ) ()

As for the third order terms we would expect the vibrational contributions
to be more important than the electronic ones. A cursory glance reveals

that there are in principle six such parameterss

il

2 involving <v = OlH v £v>

il

2 involving <v OIHLDW =0

2 involving <v' # VIHLDIV' #v>

However, some of these would be either linear combinations of others, or of
equivalent form to a lower order A ~doubling term. Hence less than six
parameters would be determinable. As before, only 2. states would be expec-
ted to contribute to these parameters, to fourth order.

_ For the sake of completeness, we present in table 8 the best set of
zero~field parameters obtained from our analysis., For comparison the corr-
esponding parameters obtained from Meerts and Dymanus's work are included
also.

The analysis of the Zeeman measurements has not proceeded as well as
we would have liked, Our extremely poor fit indicates that there are still
some problems to be resolved and we certainly cannot rule out the possibil-
ity of a programming error, even though all the matrix elements have been
checked, Tt is not clear why the residuals should be so large - these could
not be accounted for by the discrepancies remaining in the zero-field prob-
lem since the latter are minute, by comparison. Nevertheless, we can take
the best set of g-factors that we have obtained so far and attempt to relate
them to Radford's resulte. In addition, the two /A -doubling g=factors, gi
and gi' are quite well determined and so we can use these to obtain est-
imates of the molecular matrix elements, < TT| Tl(g)lﬂ') and so on, for
comparison with a pure precession model. The 'best' set of g-factors is

given in table 9.



Table 8 Best set of zero-field parameters, in MHz

Our results Standard deviation g;;;;ﬁs&
B 555065 .814% —_ 555065,814%
D, 146,061 4.833 56.06>

A ~4178507.865° — ~4178507.865

q ~1168.673 0.064 ~1164.3877
p+2q 4732.476 0.102 4732.4742

D, ~0.6506 0.0104 ~0.7202
D, 0.4289 0.0094 0.4722
¥ 396.64 1439.1 —

a 85,777 0.150 86,01
oc ! ~72.947 0.130 ~74.04
g 43,270 0.159 44,04

d 56.669 0.452 56.62

subsequent run:
o ~0.089 0.09% 0.1
dg, 0.306 0,203 —
d — — i
D, — —_— .

a Dieke and Crosswhite value (6)

b Meerts and Dymanus value (14)



Table 9 Molecular g-factors obtained from best fit

Standard Deviation

&s 1,9855 0,0018
&, 1,0079 0.0008
g 0.00037 -
&y 5.585 e
g, 0.0372 0.0024
gie . 0,0020 0.0001

gi 0,0063 0,0008
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The pure precession model applies to systems of spherical symmetry. A
simple picture of OH views this molecule as a large oxygen atom with a small
hydrogen atom orbiting around it, and so this system has near spherical ‘
gsymmetry. It would thus be expected to conform closely to the pure prec-
ession model. The pure precession hypothesis assumes that g? is a constant
of motion and go 1. is well defined. For L = 1 the only excited states that
are present are those with L = 0., Therefore the only excited states that
contribute to our general perturbation expressions for 2TT effective para-
meters are zizlatates. Thie greatly simplifies those expressions, leading

tos
a = 487 |(IT,, w2
p2a = 4(AB)CTT,, 14 + 28) T(WIT Y TP, WITT,,

g = 25, (AB)(TT, 14 @I X Il W[TT,,)

o
L

o' = —ag (BT, eI ¢ DIl @ITT,4 >
& = %8

e e’
r %gi

o
]

Ae, = -8 (50150)
where AE = (Eg =~ Byr) and Agy is a correction to g due to the admix-
ture of excited electronic states, This term has been defined by Brown and
Uehara (42).

Tt is not immediately apparent how the relations given in (5.150) are
obtained from the general perturbation expressions. Certain factors of %
and (=1) appear as a result of substitution of explicit values for q. In
addition the general expressions should strictly be written in Hermitian
average form, as given by Carrington and Lucas (35), and this has been
taken into account in the derivation of (5.150).

Teking the best values of g and p+2q from table 8, the molecular mat-
rix elements involved in the ei;reasigggmfor these can be computed. This
requires a value for AE and from ultra violet work this is known to be
32682,.5 en™'. The resulting matrix elements, < TWB’I‘} (L1232 and
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< TTIAT: (LI D, are given in table 10, The value of the former is in
close agreement with that calculated by Radford, the latter was not deter—
mined in his papers. Note that to relate Radford's results to ours we have
to multiply his by /2 since he uses Ly, rather than T (ﬁ), operators., Sub-
stitution of these results into g or gl respectively yields estimates for
<'Z:|T (LITT>. 1In the caae of pure precession this element would have
the value of 1.0. Using g we obtain a value of 0,9156, while from gl we
obtain 0,9536. Our determinations of g and g1 are therefore consistent
with both Radford‘'s results and those obtainﬂd using & pure precession
model. The difference between our two estimates might be a reflection of
the importance of third order contributions to q and p+2q, which we have
ignored in this model. - T

]

~ Since gi and gi appear to be well determined it would be instructive
to determine the sizes of the remaining g-factors using the relations given
in (5.,150). Thuss

g = 0.00315

g, = -Ag = 0,001

Thus a g, value of

L3

H @
gx, = gl’mgl' = “’043000458

would be expected. HNote that thé electronic contribution apparently out-

waighs the nuclear in this case.

The & and gy, values have to be corrected f@r relativistic effects,
and these corrections are of the form mgs T /mc and »—ch‘.’T) /mc regs-
pectively, where {T) is the meam kinetic energy of a 1T electron. Assum-
ing this electron to be localised on the oxygen atom, Radford (4) obtains
T = 1.3 x 10™%002, The corrections to gq and g are therefore
={) ,0002603 and =0,00013 respectively. The &y, term has further to be corr-
ected for the effects of admixture of Z: statess

(B lops = B ¥ D8
The expected values for gs and &, are thus

gy = 2,00206

gL = 0999887

If we compare the g-factors given in table 9 with those determined above we



Our result Radford (5)

< TTBT (WIS 53,504 x 10% Mhz 55,671 x 107 Mz
CTTIATIWIT Y 325.6723 x 10% M —
<Im@I Ty f5:203 0.9482

Table 10 Molecular matrix elements in a pure precession case
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see thaﬁ there are gross differencess the experimental values of &g and gL
are particularly unsatisfactory, the former being much too small and the
latter too large., 8 is an order of magnitude greater than anticipated and
8, is of the opp081te sign (implying that the nuclear contributions are
dominant, not the electronic ones).

Since Radford‘s gJ expressions are related to these four erroneous
molecular g-factors it would be useful to calculate the gJ from our results
for comparison., For the TT 1/2 lavela we use the F2 expressions given in
(5.131) and (5,132), while for the TT3/2 levels the corresponding F, ex-
pressions (36) have to be used. The resulting effective parameters are
given in table 11, In view of the dubious values of gs, gL, 8y and & the
agreement between our calculated gJ values and those af Radford is sur-
prisingly good, The values of A&gﬁ caloulated from g and gi are seem-
ingly in poor agreement with Radford's observed values which is surprising
gince g and 31 were previougly found to be consistent with Radford‘'s res-
ults, However, it must be pointed out that these two gmfactors appear in
second order of perturbation theory and would be expected to be very sens-
jitive to the admixture of excited states. A calculation has been performed
(43) to determine relations for §J and gggh uging more exact forms for SJ
and Cy than those given in (5.124) and (5.125). These take into account
the A-doubling contributions to the zero-field energies and lead to a rev-
ised form for A&ggz

2(F = 1/2)(3 + 1/2)(J + 3/2)(Y + 1) . (Y -
BI(J + 1)%3 [(2e29) + (¥ - 2]

Agj— = @g&' +
(5.151)

for FH levels. A corresponding expression for F2 levels has not been der-
ived. The calculated values of ﬁa@& are given in table 11 and are seen to
be in very close agreement with Radford's ﬁ;gs.valuea. Tiug, our values of
Si and gi and indeed consisient with Radfordts results. By comparison the
dominant contributions to gj (from g, and gs) are not expected to be par-
ticularly sensitive to higher order contributions and so the form for EJ
given in (5.131) is sufficient.

It is not clear why the molecular g-factors in table 9 should give
such good determinations of EJa Tt is possible that there ie not a unique
set of g-factors, &g, 8rs 8.0 &, &iVing the required §J values, and our
least=squares programme has converged to a different combination than ex-
pected. Alternatively there could be an error in one or more of these Zee-

man matrix elements., In an attempt to obtain more reasonable molecular



Table 11 Effective g-factors ocaloulated from the molecular g~factors

Caleulated Radford's meagurements
3/2 0,9357 =0.0007 =0,00128 &0.93557 =0.00129
5/2 0.4856 =0,00109 =0,001855 0.48529 -0,00188
7/2 0,3%2583 =0,001363 =0,00214 0.32561 -0 ,00214
3/ «0,13394 =0,001593 =0, 13393 =3} , 00099
5/2 =0,14245 «0,001018 -0,1411% 0,00042

L3

..Q,.
LHgy = 8y~ 8y

Agj are AgJ values calculated using exact zero-field coefficients

*
2”} /2 measurements from reference (4)

2W1 /2 measurementa from reference (5)
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g-factors we have tried to fit the data using the &g value of 2,00206

obtained earlier. g, was constrained to be zero., Values of

#

g, = 1.00136 (& = 0.00033)

]

and g = 0.01231 (& 0.0013%9)

were obtained, which, although an improvement on the ones in table 9, are
still unsatisfactory. The quality of the fit was marginally worse than

that of the preceding one,
The analysis of the Zeeman data is still incomplete and there is ob-

viously considerable room for improvement.
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CHAPRIR €
RADTCAL PRODUCTION BY PYROLYSTS

€.1 Introduction

This chapter describes some preliminary work concerned with the use of
pyrolysis to generate radicals, and their subsequent detection by gas phase
€.,P.Ts SPECctroscopy.

The most commonly used methods of radical production for gas phase e.p.r.
studies rely on the use of a microwave discharge. The radicals are either
produced directly by the discharge or by subsequent mixing of the discharge
products with a second gas, as in the case of OH, described in the previous
chapter. The discharge methods have proved reasonably successful, so one might
inquire as to what advantages the pyrolysis technique offers over them. One
obvious advantage is that there is no discharge noise to contend with. Second-
ly, the concentrations of relevant radicals in the discharge products is very
low, of the order of 1-2% at best, whereas if suitably high temperatures are
reached the relative concentration of radicals emerging from a furnace can be
very high, in certain instances as much as 100%. Finally there is the POS S~
ibility of detecting radicals hitherto undetectable by other means. For inst-
ance, the radicals CH3 and CN, which have long eluded detection by gas phase
e.p.r., are quite readily generated by pyrolysis of diazomethane (1) and
cyanogen (2) respectively. However, the use of pyrolysis in e.p.r. studies
has remained largely uninvestigated, although certain molecules, with low
dissociation energies, have been studied.

A case in point is the pyrolysis of tetrafluorohydrazine, N2F4, to pro-

duce the radical species NF2

N,F, s==== NF, (€.1)

At temperatures of around 500~-€00°C the N,F, is almost 100% dissociated. The

N?2 spectrum is readily detected by e.p.r? ineotroscopy but because of the
multitude of observable lines there is a considerable problem in assignment,
Little information has been obtained so far from an €.pP.T. sStudy of NF2 as
only the surface of the problem has been scratched. However, Brown, Burden,
Godfrey and Gillard (3) have performed an extensive analysis of the NF2 rot—
ational levels by use of ordinary microwave spectroscopy.

The pyrolysis of N2F4 has been utilised in order to generate NF radicals

(4) by the admixture of the products of a microwave discharge in hydrogen.

NF, + H —— NF + HF (6.2)

NF has been detected by gas phase e,p.r. in its 1[} state by Curran, Mac-
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donald, Stone and Thrush (5).

A hot-wire technique has also been used in e.p.r. studies to produce
such radicals as halogen atoms (€, 7) and OH, 30 and SH (8). In this case,
however, the radicals are not produced solely by the action of heat as the
wire itself has an important catalytic effect.

In the field of mass spectrometry, pyrolysis has been used to generate
radicals since the early 1940's. An extensive list of these radicals det-
ected by mass spectrometry has been given by Lossing (9). Similarly, pyr-
olysis has found much use in photoelectron spectroscopy ~ radicals such as
CH5 (1, 10), NF (11), SO (12) and S, (13), for example, have been detected
in this manner,

The reason pyrolysis has not been used so extensively in e.p.r. studies
is due essentially to practical difficulties, Firstly, the e.p.r. method
involves the use of a resonant cavity and, as has been discussed in chapter
4, the resonant frequency of such a cavity depends critically on its dimens-
ions., There is bound to be a certain amount of heat transfer to the cavity
body and so the resonant frequency will tend to drift during the course of
the experiment., Since the detection system relies on the frequency of the
microwave source being more or less identical to that of the cavity, the
effect will be to cause instability in the system, This will manifest itself
as a poor signal-to-noise ratio, base-line drift, or, in an extreme case, as
an inability to keep the source frequency locked to that of the cavity. Ran-
dom cooling of the cavity by draughts also tends to cause variations in the
base~line,

Secondly, there ig the matter of furnace efficiency. Previous invest-
igations of the use of pyrolysis in this laboratory have involved heating a
fairly large area of the glass inlet tube by enclosing it within a long elec~
trically heated furnace. Because of the large areas of glass through which
heat can be conducted it is not posgible to achieve very high temperatures.
The inlet tube is of fairly large cross-section (say 2 cm diameter) and so
any gas flowing through it is not very efficiently heated. In addition, since
the glass is connected to the cavity body this provides a direct route for
heat transfer to the cavity. However, the success of the small furnaces used
by Lossing (9, 14) seems to indicate that a small region of intense heat can
result in efficient radical production. The present experiments involve the
use of such a small furnace, situated at the tip of a small quartz probe, and

will be described in more detail in the next section. It is sufficient to po=-

int out at this stage that because of the small cross-section of the probe,

and because of the small amount of glass involved, high temperatures can be
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reached and efficient transfer of heat to the gas is possible, Heat transfer
to the cavity is minimal since the probe is not directly connected to the
cavity body.

Unfortunately, this experiment did not get much further than the drawing
board, but we present here, for future reference, details of the construction
of the furnace and of some preliminary tests. The instigation to do this
work was provided by Dr H.Kroto of Sussex University, with whom this is a
joint project.

Various radicals are proposed for future study. The CH3 and CN radicals
mentioned earlier are perhaps a little ambitious. The CN radical requires
temperatures of at least 1700°¢ (2) which in our case is prohibitively high.
The transitions in CH5 are mainly magnetic dipole allowed and hence will be
very weak. The bending vibrational mode in CH3 will result in an oscillating
electric dipole but since this will be very small the electric dipole trang—
jtions are also expected to be very weak. Radicals perhaps more amenable to
study are CH3S, CH3O and C6HSS’ The former has been detected in the pyrolysis
products of dimethyldisulphide (15) at temperatures of 500-900°C. The pyro-
lysis to form CGHSS occurs at even lower temperatures (around 200°C) but this
is not really a suitable molecule to study since its rotational partition
function is so large. CHSO has recently been detected by Radford (16) using
laser magnetic resonance, the method of preparation being the abstraction of
a hydrogen atom from methanol by fluorine atoms. An alternative preparation
is via the pyrolysis of dimethyl peroxide, which occurs at temperatures of
around 100°C. CH3O and CH3S are prolate symmetric top molecules, the X doub-
lets for each rotational level being degenerate for Ikl >0. We would expect
to see Ast = 1 electric dipole transitions between these two K components,
within a rotational state. CEHSS is a near symmetric top molecule and so the
K degeneracy will be lifted, but for the lower rotational levels this splitt-
ing will be small and possibly will not be resolvable in an X-band experiment.
The g-factor in the higher rotational levels will be very small and so it
will not be possible to tune these lines into resonance in an X-band e.p.r.
study.

A point of interest concerning CH30 and CH}S is that it might be poss-
ible to determine the extent to which the electronic orbital angular momen-
tum is quenched by the internal rotation of the methyl group. This would give
information on how much of the orbital angular momentum is localised on the
oxygen (or sulphur) atom, and to what extent it is quantised along the C-0
(or C-S) bond, In addition these molecules would exhibit a Jahn-Teller phen-

omenon and information on this would be interesting.



- 140 -

6.2 Some Initial Experiments

The prototype furnace was provided by Dr H. Kroto and is of similar
design to that of lLossing and Tickner (14). The furnace itself is cut from
a piece of tantalum foil of 0.050 mm thickness and the design is shown in

figure 1, This is formed into a cylindrical shape by wrapping it around a
former of suitable circumference, the regulting shape being shown in figure
2. The tags on the end of this furnace are for the electrical contacts. Fig-
ure 2 shows that the furnace can be regarded as two coils, each of one turn
only, connected in series such that the magnetic fields induced in the coils
cancel out. This is to avoid any interaction with the Zeeman modulation field
which could lead to mechanical instability.

The tantalum furnace is sited at the tip of a quartz glass probe, which
is constructed from two concentric glass tubes, The imner tube is about 18"
long and of 0.15" outer diameter; it is through this tube that the sample gas
is to be passed. The outer tube is merely to keep the furnace in position
around the inner one, and is of the length of the furnace. These two tubes
are joined at their ends., The internal diameter of the outer tube and the
external diameter of the inner one have to be carefully chosen so that the
furnace will slide between them.

The resonant cavity is of the ‘wide access' type discussed in chapter 4,

and operates in a TE mode, Since the cavity has to be evacuated for studies

of gaseous samples, §1§ylindrica1 quartz pillbox is placed inside it, This
has gas ports at each end, which protrude through holes in the flat ends of
the cavity body, and is constructed so as to fit snugly to the internal walls
of the cavity. This does not disturb the resonant modes unduly - there is a
shift in frequency of about %5 MHz for the TE012

in the Q-factor (to about €000)., With the pillbox in place the resonant fre-

mode and a slight decrease

quency is about 8690 MHz.

The probe is situated inside the gas inlet tube, such that the tip lies
just at the edge of the cavity. There is some difficulty in incorporating the
probe into the vacuum system and in passing electric current through the fur-
nace, This problem was resolved by Dr Kroto, who provided us with a brass
cone assembly which would fit a standard glass B29 socket. With this end in
mind, the gas inlet tube of the quartz pillbox is fitted with such a socket.,
The thin probe tube passes through a hole in the centre of the cone assembly.
An O-ring provides a vacuum seal and also helps to hold the probe in posit-
ion. Adjustment of the position of the probe tip is possible using this sys-
tem, A shortblength of plastic tubing connects the probe tube to a gas hand-

ling line,






- 141 -

The metal cone assembly is provided with four electrical feed-throughs,
two for the furnace and two for a thermocouple. The tantalum furnace is conn-
ected to the feed-throughs by two lengths of thin copper rod. Stainless steel
tips are soldered to on end of these rods and the tags of the furnace are gpot-
welded to these, The other end of the copper rods are soft-soldered to the
feed-throughs. A chromel-alumel thermocouple is used and is bound to the out-
side of the probe tip with asbestos string. Figure 3 shows a cross-section
through the quartz pillbox, with the probe in place.

The spectrometer system consists of a standard X3 e.p.r. spectrometer
with a Varian 12-inch electromagnet and Pieldial regulating system. The spec~-
trometer operates at 8670 MHz, so it is necessary to shift the resonant fre-
quency of the cavity to this frequency. This can be achieved by inserting
small pieces of Teflon into the cavity, or by adjusting the position of the
pillbox slightly so as to vary the quantity of quartz that disturbs the res-
onant modes. The power supply for the furnace is a Roband Varex twin DC power
supply capable of delivering up to 30 volts and 10 amps, either voltage- or
current-regulated. We tried both but have found that only voltage-regulation
is satisfactory -~ the temperature of the furnace can increase uncontrollably
when using current-regulation.

The furnace was tested initially without any sample gas. Great care must
be taken to ensure that a short circuit in the furnace does not occur. Con-
tact of the 'coils' can occur in one of two ways, first, through movement of
the probe tube, which tends to cause torsion in the furnace, and secondly,
through expansion of the tantalum on heating. To counteract this, it was found
necessary to reduce the dimensions of the furnace slightly, and in particular
its overall width. Paradoxically, it was found better to decrease the width
of the gaps between the tantalum. If the widths of the tantalum strips are
reduced the furnace loses mechanical strength and it is extremely difficult
to insert it into the concentric probe without twisting it. The problem of
of twisting is avoided by using wider strips of tantalum with smaller gaps
between them. Purthermore, if short, fine strands of quartz are placed in the
gaps as spacers, shorting out can be avoided altogether.

A further difficulty encountered was that the furnace tended to burn out
if the temperature was increased too rapidly. This was avoided by raising or
lowering the temperature by incremental amounts.

Table 1 shows the results of a test run on the furnace. The temperatures
indicated by the thermocouple are considerably lower than expected on comp=-
arison with a colour scale of temperature, For instance, incipient red heat
corresponds to ~500°C on a colour scale whereas the thermocouple indicates

190’0. Similarly, incipient white heat should correspond to A«15OO°C while






V(volts) I(amps) T(°C) Observations
1.0 2.8 54
2.5 5.8 190 Incipient red heat
3.0 6.3 256 Red heat
3.5 6.4 290
4.0 T.6 365
5.0 9.0 420
€.0 10,0 510 Yellowish-white heat
7.0 9.4 550 {Burna out

Incipient white heat

Temperatures obtained using chromel-alumel thermocouple.

Table 1 Sample results from test run on tantalum furnace.
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the thermocouple reads only 550°C. It was noticed that the asbestos string
tended to harden and expand at high temperatures, pulling the thermocouple
away from the surface of the probe in the process, and this most likely acc-
ounts for the discrepancy in the temperatures, Further experiments are needed
to determine the furnace temperatures reliably.

Tests were also performed to cheok the spectrometer sensitivity. Spectra
of molecular oxygen and NO (produced from a microwave discharge in air) were
recorded with signal-to =-noise ratios of about 100 tc 1 and 20 to 1 respect-
ively. The S:N ratio for NO nrepared in this way is comparable to that norm=-.
ally obtained at X-band using the alternative type of microwave cavity. As a
more rigorous test we also searched for magnetic dipole trangitions in NOZ'

At pressures of about 1.7 torr a broad triplet was observed at around gs = 2,
as one would expect. On reduction of the pressure, smaller peaks were observed
but only as far as about 3800 gauss, beyond this they were too weak to be seen.
These higher field lines are predicted to be extremely weak so it does not
necessarily follow that the spectrometer lacks sensitivity. The above tests

on stable frre radicals indicate that the sensitivity is satisfactory, though
far from excellent.

Brief searches were made for the unstable radicals OH and SH, by pyr-

olysis of HéO and H,S respectively. Our failure to observe OH is not surp-

2
rising in view of the strength of the O-H bond. The SH experiments stand more
chance of success, but no spectra could be observed, even though the furnace
wag taken to almost white heat, Tests on radicals produced at lower temper-

atures are needed, but as yet none have been made.
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