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The derivation of an effective rotational Hamiltonian is discussed. Using 

these general techniques some spin-dependent interactions in TL states of 

quartet and higher multiplicity are cast into operator equivalent form. As 

a result the two spin-rotation constants required, in principle, for Z] 

states are shown to he the same to within experimental e^or. These res-

ults are generalised to cover states of higher multiplicity. A fourth-

order spin-spin interaction arising in states is investigated. 

The rotational energy levels of a molecule in a TT electronic state are 

described, with particular reference to the OH radical, and some higher 

order A-doubling and hyperfine interactions are cast into operator equiv-

alent form, A comparison is made with effective rotational Hamiltonians 

used by other workers, A reanalysis of the zero-field A-do^tiling frequ-

encies for OH is outlined. Other higher order interactions appear to be 

needed to further improve the fit. ^ 

The measurement of the gas phase e.p.r. spectrum arising from the 

J = 9/2 rotational levels of OH is detailed and the theory of the g-factors 

in ^TT states is given. Values for molecular g^factors determined from an 

analysis of e.p.r, measurements on seven rotational levels of OH are quoted, 

anrt compared with a pure precession model. Effective g-factors are cal-

culated from these molecular g-factors and compared with published exper-

imental results, 

Some initial experiments investigating the possibility of using pyrolysis 

to generate radicals for gas phase e.p.r* studies are detailed. 



CONTENTS 

Chapter 1 

Chapter 2 

2.1 

2.2 
2.5 

2.4 

Chapter 5 

3.1 

5.2 

5.3 

5.4 

5.5 

Chapter 4 

4.1 

4.2 

Chapter 5 

5.1 

5.2 

5.5 

5.4 

5.5 

Introduction 

The Derivation of an Effective Rotational 

Hamiltonian 

Introduction 

Degenerate Perturbation Theory 

Angular Momenta and Spherical Tensors 

Second Order Effective Rotational Hamiltonian for 

a Linear Molecule in a state 

References 

Spin-Dependent Interactions in ZZ states of Quartet 

and Higher Multiplicity 

Introduction 

General Form of Third—Order Spin-Rotation Inter-

actions in ^23 states 

Simplification of the General Third-Order Spin-

Rotation Terms 

Higher Order Spin-Rotation Interactions 

Spin-Spin Interactions in E states of Qjiintet 

and Higher Multiplicity 

References 

Gas Phase Electron Paramagnetic Resonance Spectros-

copy 

Comparison with Ordinary Microwave Spectroscopy 

Cells for e.p.r. Studies 

References 

A Determination of g—PSictorB for the OH Radical 

Introduction 

Rotational Levels of a Diatomic Molecule in a 
2n '7T Electronic State 

16, Previous Studies of the OH Radical 
2 

Measurement of the Zeeman Effect in the 7T^y2 

J = 9/2 Rotational Levels of OH ^ 

The Effective Rotational Hamiltonian for TT 

Electronic States in the Absence of External 

Magnetic Fields 

4 

6 

12 

17 

28 

29 

52 

55 

59 

44 

50 

51 

55 

65 

64 

65 

74 

76 

81 



Second Order Effective Hamiltonian 82 

Centrifugal Distortion Terms 89 

Third Order Hyperfine Interactions 95 

5.6 Comparison with other Effective Hamiltonians 102 

5.7 Molecular Zeeman Effect 

5.8 Analysis of Measured Transition Frequencies 119 

5.9 Discussion 

References ^ 

Chapter 6 Radical Production by Pyrolysis 

6.1 Introduction ^57 

6.2 Some Initial Experiments 140 

References ^ 45 



CHAPTER 1 

USTRODUCTION 

Free radicals are of importance in almost every branch of chemistry, 

even thou^ most branches are not directly concerned with their study. To 

understand why these species are of such significance we must consider what 

is meant by the term 'free radical'. It seems to be a matter of personal 

preference as to whether a loose or a rigorous definition of a free radical 

is adopted. The former defines radicals on the grounds of their h i ^ react-

ivity, rijgardless of their electronic state. Thus the unstable HHO molec-

ule in its electronic state would be regarded as a radical whereas the 

stable gasses Og, NO and HOg would not. We shall use the rigorous definit-

ion instead. In this case radicals are defined as any species possessing 

an open-shell electronic state, and hence ^A HNO would not be regarded as a 

radical whereas 0^, NO and NOg would be classified as such. The majority 

of species with open-shell electronic states are nevertheless higjily un-

stable with short lifetimes, generally less than one second, and so would 

still be classified as radicals under the loose definition. 

A chemical reaction Involves the breaking and/or making of covalent 

bonds and the redistribution of electrons involved in either of these pro-

cesses can result in species with open—shell electron configurations. Bius 

the intermediates in chemical reactions are often free radicals, which is 

why radicals are of such importance in chemistry. Reactions in solution 

involving free radical intermediates are similar to those in the gas phase 

but are further influenced by the presence of the solvent. Since we are 

not concerned with these complications discussion is restricted to gas 

phase reactions. 

Radicals f-̂ n undergo various types of reaction, such as decomposition, 

abstraction and combination, and consequently a wide variety of end pro-

ducts can result. A knowledge of these reaction pathways is important for 

both kinetic and photochemical studies, although for different reasons — 

whereas a kineticist determines reaction zAtes for individual steps involved 

in the total reaction, a photoc^emist is concerned with the way in which 

those intermediates formed in excited states lose their excess energy. 

Nevertheless, the information provided by such studies is complementary in 

the sense that both indicate the reaction mechanism. An understanding of 

the processes involved in these complex gas phase reactions is also essen-

tial to those interested in the chemistry of the upper atmosphere and the 

combustion of fuels. 
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As a further example of the role played by radicals in gas phase reac-

tions, it has been suggested that many reactions occurring in interstellar 

gas clouds proceed via free radical inteimediates. The evidence for such 

reactions is supplied by the detection of absorption and emission signals 

by radioastronooers. The absorption signals arise fr<%u the stimulation of 

absorption by the background radiation. Similarly there are stimulated 

emission signals. Perhaps more interesting are the so-called maser emiss-

ion signals which are a consequence of an inverted population of energy 

levels* The mechanism by which the radicals are foimed in an inverted pop-

ulation is not yet fully understood. The interstellar radicals detected so 

far have been small, such as HCO, OH a M (3N, but from a knowledge of rad-

ical reaction mechanisms we can propose the existence of larger molecules 

such as hydrocarbons, aldehydes, amines and so on* Bie genesis and sub-

sequent development of these clouds is likely to be of gr«|at astronomical 

significance. 

A rather different aspect of the usefulness of radical studies arises 

from the possession of openp-shell electronic states. This implies the pres-

ence of electron spin and/or orbital angular momenta within the molecule, 

which give rise to interactions not present in a closed-shell molecule* 

Because the magnetic moments associated with these angular momenta are 

quite large, the spin-orbit interactions can have a dominating influence on 

the molecular energy levels. Although this means the analysis of the spec-

tra is more complicated, ultimately far more information about the elec-

tronic structure of the molecule can be obtained. 

An accurate determination of the parameters describing the intramol-

ecular interactions is invaluable in evaluating theoretical models for the 

electronic structure* the experimental parameters are compared with those 

computed using ab initio wavefunotions* Rie magnetic hyperfine parameters 

are particularly useful in this respect since they are so sensitive to 

changes in the distribution of unpaired eledtrons and hence provide a rig-

orous test for proposed wavefunctions. Ifeasurements of this order of acc-

uracy call for hig^ resolution experimental techniques such as molecular 

beam methods, or studies in the microwave and radiofrequency regions. As 

far as radioastronomers are comcemed, the data provided by these hi^ res-

olution laboratory studies are invaluable in aiding the identification of 

the sosxroe molecule of interstellar signals. 

Our particular interest lies in hlgjh resolution studies giving infor-

mation pertaining to the electronic structure of radicals. Hig^ resolution 

studies can be performed on radicals in condensed phases but in this in-
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stance there are Important, peztaaps even dominating environmental effects 

which can have a marked effect on the spectra. This merely serves to hin-

der any interpretation in terms of electronic structure and for this reason 

we are only concerned with gas phase studies. Bie theoretical work pres-

ented in this thesis is concerned with describing certain interactions of 

angular momenta that arise for molecules in particular electronic states. 

An understanding of how such interactions arise is essential if the corres-

ponding parameters are to be correlated with electronic structures* 

•ftie experiments described here employ the particular hig^ resolution 

technique of electron paramagnetic resonance (e.p.r.) spectroscopy. If 

the parameters obtained in these experiments are to be interpreted in terms 

of molecular wavefunctions it is essential to establish some link between 

theory experiment, With this end in mind, we derive an effective Ham-

iltonian that is restricted so as to operate only within the particular 

electronic state ftcm which th# apectra arise. Each of the terms in this 

Hamiltonian relates to a different effective interaction of angular momenta. 

It is of course only possible to distinguish terms with different depend-

ences on the relevant quantum numbers. The parameters in this HamiItonian 

are constructed from fundsmental molecular quantities, such as bond lengths, 

"kansition frequencies can be predicted using this Bamiltonian, and these 

can be fitted to the observed spectra by a numerical least squares fitting 

procedure. These derived parameters thus convey information on the mag-

nitudes of the more fundamental quantities. 

In chapter 2 we deal in more detail with the philosophy behind effect-

ive Hamiltonians, and with their construction. The derivation of such a 

Hamiltonian for Z states of quartet and higher multiplicities is detailed 

in chapter 3* The remainder of this thesis is concerned more directly with 

experimental aspects. Chapter 4 describes briefly the technique of e.p.r. 

spectroscopy and with some practical considerations relevant to radical 

studies. Chapter 3 is concerned with the detection and analysis of the 

spectra of the OH radical in its ground 7Telectronic state. This analysis 

requires the construction of an effective Bamiltonian too, and this der^ 

ivatlon is outlined. Finally, chapter 6 describes some initial e.p.r. 

experiments investigating the possibility of generating radicals by pyro-

lysis. 



CHAPTER 2 

TM: DERIVATION OF AN EFPEKTIVE ROTATIONAL HAMILTONIAN 

2,1 Introduction 

A fundamental prerequisite for the analysis of any spectrum is a 

model, giving the problem a mathematical framework upon which any calcul-

ations can be based and enabling an interpretation of the results to be 

given, in terms of physically significant quantities. A model in which 

spectral lines can be correlated with transitions between different quantum 

mechanical states is the most useful and the most appealing one. In most 

spectroscopic experiments these states do not evolve with time, i.e, they 

are stationary states, and so their energies can be obtained from the sol-

ution of the time-independent SchrOdinger equation 

where H is the total Hamiltonian, the ket is the i^^ eigenfunction 

and the eigenvalue E is the energy of this eigenfunction. 

Our interest lies in the spectroscopy of molecules, in which case H 

will be a molecular Hamiltonian representing the total potential and kinetic 

energies of the molecule. It is important to understand the nature of the 

molecular eigenfunction ^ » a function of both nuclear and electronic 

coordinates, which we shall represent by Q,and x respectively. Due to the 

relative orders of magnitude associated with electronic, vibrational and 

rotational motions a factorisation of a wavefunction, ̂ (XJQ), into two 

functions, one dependent on electronic coordinates only and one on nuclear 

coordinates only, would be convenient: 

^ (x;3) = f (*) % ( Q ) (2.2) 

The aim of the Bom and Oppenheimer Separation (1) is to effect such a 

separation of electronic, vibrational and rotational motions. To achieve 

this, the functions and operators involved are expanded as a power series 

in ̂  , the relative nuclear displacements from the equilibrium nuclear con-

figuration, with an order paraareter K, defined as 

where m is the mass of the electron and M the reduced mass of the nuclei, 
n 

As a result of using this expansion parameter the electronic energies are 



of order the vibrational energies are of order K and the rotational 
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energies are of order K . To order K it is indeed possible to separate 

the wavefunctions into products of electronic and nuclear functions but 

this is not possible for higher orders in the expansion, without making 

approximations, 

Consider the adiabatic approximation, which arises in fourth order of 

this expansion. In this approximation the electrons are assumed to follow 

the nuclei adiabatically, or, in other words, there is no change in elec-

tronic state as the nuclei move, and as a consequence the electronic and 

nuclear coordinates can be separated. We shall refer to such states, 

, as • Born-Otjpenheimer' states or 'adiabatic' states. Terms occur in 

higher orders of this expansion which represent mixing of different adia-

batic states; such terms are referred to as nonadiabatic terms and their 

origin is often ascribed to the breakdown of the Bom-Oppenheimer Approx-

imation, The true molecular eigenfunctions are thus linear combin-

ations of these adiabatic states 

I f (2-4) 

However each molecular eigenfunction will generally have a 

dominant contribution from a particular adiabatic state and so it is still 

permissible to refer to this state in terms of the dominant adiabatic wave-

function. 

The analysis of molecular spectra using the true molecular eigenfunc-

tions is impracticable since to include the effects of all these nonadia-

batic terms a matrix diagonalisation of an infinite matrix would have to be 

performed. Even if this matrix were to be suitably truncated the problem 

would still be very difficult to handle. Ideally a matrix representation 

is required that contains no terms off-diagonal in electronic state, in 

which case the matrix representation is still an infinite array but consists 

only of submatrices, each only containing elements pertaining to a single 

adiabatic state. Eigenvalues can be obtained from each of these diagonal 

blocks, from which it is possible to determine the transition frequencies. 

The Hamiltonian which would give such a matrix representation we refer to 

as a 'spectroscopically useful' Hamiltonian, and its derivation will in-

volve artificially reducing to a negligible level the effects of all 

elements off-diagonal in electronic state. This is illustrated in figure 

1. In practice we use an effective Hamiltonian that only operates within 

the manifold of a particular adiabatic state and there are three methods 
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commonly used for its derivation, namely the contact transformation (2), 

the Van ¥leck transformation (5) and degenerate perturbation theory (4). 

The first two of these methods involve the application of a unitary 

transformation to the wavefunctions, the latter being a slightly more spec-

ific version of the former. The contact transformation has proved partic-

ularly useful for dealing with vibration-rotation interaction. The Van 

Vleck transformation involves the use of perturbation theory type express-

ions and the form of the resulting effective Hamiltonian can be shown to be 

identical to that obtained by degenerate perturbation theory for terms up 

to third order (5). The technique of degenerate perturbation theory is the 

one used most extensively in subsequent chapters and so will be outlined in 

more detail in the following section. 

It is perhaps worthwhile noting at this stage that the consideration 

of these nonadiabatic terms is of particular importance in the discussion 

of rotational levels for two reasons. Firstly the rotational energies 

first appear in order of the expansion and so the moment higher order 

rotational interactions are considered then nonadiabatic terms, which, as 

has been mentioned, appear in orders > K^, will manifest themselves, espec-

ially as they can be of much the same magnitude as the rotational terms of 

order Secondly, precise measurements of rotational transitions can be 

made in the microwave region and so such effects can readily be detec-

ted. 

2.2 Degenerate Perturbation Theory 

In this section we shall outline the technique of degenerate perturba-

tion theory, Messiah (4) has described this, using the methods of both 

Bloch (6) and Kato (7). A rather more readable account of the derivation 

of an effective Hamiltonian has been given by Soliverez (8), using the 

formalism set up by Bloch (6), 

The eigenfunctiona 1 o f the total Hamiltonian, which operates 

over all vector space, form a complete orthonormal set. We want a Hamil-

tonian that operates only within a particular manifold of the total Hilbert 

space. In other words we wish to project the effects of the total Eamil-

tonian operator onto a chosen vector space which is of dimension less than 

that of the total vector space, and hence to construct an effective Hamil-

tonian that operates only within this chosen vector space and with the 

equivalent operator form within this manifold of the total Hamiltonian. 

The geometrical interpretation of this projection process is far more read-

ily appreciated for a total vector space of only two or three dimensions. 



The operator which brings about this projection of the total Hamiltonian is 

a projection operator, P^. 

Saliverez (8) shows that it is possible to set up an effective Hamil-

tonian which has the following properties: 

1) It operates only within a manifold of dimension less than that of the 

total vector space. 

2) Its eigenvalues are identical to those corresponding eigenvalues of 

the total Hamiltonian. 

3) Its eigenvectors are related in some simple manner to those of the 

total Hamiltonian. 

4) It can be expanded as a power series in terms of a perturbation V, and 

is Hermitian to all orders of the expansion. 

We shall indicate briefly here how such a Hamiltonian is set up. 

The total Hamiltonian is split into two parts 

H = Eg + V (2.5) 

where the eigenvalues emd eigenvectors of H^ are known: 

Bo ( y / j ) 0 = (2-^) 

where the eigenfunctions & complete orthonormal set over all 

vector space. 

V is a perturbation to this Hamiltonian and we are interested in its 

effects on the eigenvectors and eigenvalues of HQ. In particular, we want 

to concern ourselves with the eigenvectors spanning the particular manifold 

onto which the total Hamiltonian is projected; these will have a particular 

eigenvalue, The projection operator is defined as 

^0 = 5 ' ' (2-7) 

where the | k ̂  are the eigenvectors spanning the manifold under consider-

ation. PQ must commute with the Efeuniltonian.and so we have 

"o^o ' % = V o (2-S) 

# 

The eigenvalue is in general degenerate, and the effect of the pertur-

bation V is to lift this degeneracy. The eigenvalues of the perturbed 

energy levels are given by 

= (Eg 



which can be rearranged to give 

( H o - ( 2 . 3 ) 

are the shifts in the energy levels due to the perturbation V. Using 

(2,8) it can easily be shown that 

V l ' / ' i ) - (2-10) 

where j if/ are eigenfunctions of and in particular are those eigen-

functions ) spanning the vector space under consideration. 

There is a complementary projection operator Qg which follows ffcom the 

closure relationship: 

= E | i > < i l (2.11) 

where | are the eigenvectors that have been excluded from equation (2.7) 

since they do not span the manifold we are interested in. Qg also has the 

property 

<io =• (I') (Ho - Go) - ("o-V [M (2-12) 

. y I 1 ><i I (2.13) 
la"/ f ( B i - V " 

Prom equations (2.9) and (2,12) it follows that 

= ( ^ ] ( A i - V) | l p (2.14) 

We are now able to find a relationship for ^ in terms of the unper-

turbed eigenvectors | y/ gt 

I i> = (fo + So) I If l)» 

= I V i ) 0 + (|p) t&i - Y)| ̂ i > (2.15) 

The terms can be eliminated from (2.15) by repeated use of equation 

(2,10) to give an expansion of in terms of | ̂  Qt 
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(Qg/a). The eigenvectors for the perturbed and unperturbed Hamiltonians 

are thus related by an identity of general form 

l Y i ) ° ^ | f i ) o 

where U is an operator involving V, and (Og/a) and can be expanded as an 

infinite series in terms of these operators. Substitution of (2.16) into 

(2.10) leads to the following eigenvalue expression 

' ' o H ' f i > o - 1*^1)0 

If we identify (P VU) with the effective Hamiltonian we can see that it 

does indeed possess the properties listed by Soliverez (8), although its 

hermiticity has not been demonstrated. Note that denote the energy 

shifts about an origin E^. Equation (2.1?) is also particularly convenient 

in that it uses eigenfunctions of the unperturbed Hamiltonian as basis 

functions, and these are by definition known. 

We are now in a position to be moM specific in our derivation of an 

effective molecular Hamiltonian. As has been discussed in the previous 

section, it is prudent to use adiabatic electronic wavefunctions as the 

basis states since this greatly simplifies the calculation of the molecular 

energy levels. "The basis functions j ij/ ^ are thus taken to be the adia-

batic electronic states that are of interest, and so Eg will be the Hamil-

tonian of which such electronic states are eigenvalues. The effects of the 

nonadiabatlc terms, such as spin-orbit coupling and L-uncoupling terms, 

that cause mixing of the adiabatic states, can be included by treating 

these terms as a perturbation, V, In practice since the adiabatic states 

do not by definition change as the nuclei move, the perturbation V will 

also contain the terms of order and that describe the vibrational and 

rotational motions of the nuclei. We are not concerned at this stage with 

the vibrational motions of the nuclei and we can avoid dealing with them oy 

redefining our basis states so as to be vibronic states of the molecule, 

1^1' ^^0' would be adiabatic in the sense that there would be no 

change in the vibronic state as the nuclei rotate. In order to apply deg-

enerate perturbation theory, the Hamiltonian describing these states is 

assumed to have been solved: 

^01 Y i' 

We shall suppress the vibrational quantum number v, its presence being 
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taken as understood. The effects of nuclear spin will be ignored through-

out this chapter. 

Miller (9) has shown how to derive an effective rotational Hamiltoni 

for a molecule in a particular electronic state, which operates only wibhln 

the rotational subspace of that state* He partitions the total Hamiltonian 

as follows 

B = Eg + (2.19) 

where Hg and V have the significance discussed above; ̂  is a dimensionless 

parameter taking values between 0 and 1 that denotes the order of the per — 

turbation expansion. 

The projection operators and Qg are given the more explicit defin-

itions 

^0 " 2 1 ^^0 ' ' I 

% T T I 
? = 5 ; . 

where 1^ refers to the adiabatic state of interest, 

1 refers to adiabatic states other than 1^, 

k refers to the rotational quantum numbers. 

The effective rotational Hamiltonian is given by 

\ft = ^ ^0™ (2.21) 

As has already been noted, U can be expanded as an infinite series 

(2.20) 

oc 

U 2 (2.22) 
n=0 

where is given by the general formula 

n" = s 1 V s 2 V . . . 3 * V p, 
0 

n 

0 ( 2 . 2 3 ) 
except that U = Pg 

K can take the values 0, 1, 2 . . . 

such that + Kg + . . « + = n 
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FL + + , « . + K. ̂  j (j — 1,2 « . R—1) 
n J 

and where 3 = -P^ 

u = (O^/a") for n/n 

Mote that both Miller (?) and Messiah (4) leave undefined. As noted by 

Freed (10), certain terms in the expansion are in fact non-Eermitian but by 

taking the Hermltian average of such terms the effective Hamiltonian bec-

omes Eermitian to all ordere. Equation (2.21) can thus be expanded as 

follows. 

By use of equations (2.22) and (2.23): 

Keff = PoV* 

= /\PoVP° 

+ V [PqV (Qg/a) w j 

+ V ^ ( V " ) % - [ V ( V ^ ^ ) j 

+ V I PgV (Qg/a) V (Qq/.) V (9g/a) YP^ 

- V (V'") % 

- I v ^ 

+ [ V " o ™ o " o ] ^ ] 

+ . . . (2.24) 

where the square brackets marked by a dagger mean that the Hermitian. average 
% n. 

of the enclosed terms are also needed. The term in parentheses after ^ 

represents the n^^ order contribution to the effective Hamiltonian. The 

number of terms involved can be seen to increase rapidly as the perturbation 

treatment is taken to increasingly higher order. Even a fourth order treat-

ment is very tedious and complicated, and higher orders than this become 

impracticable. However the expansion of the effective Hamiltonian is expec-

ted to converge fairly rapidly, although the rate of convergence will dep-

end to some extent on the manner in which the Hamiltonian is originally 

partitioned. In practice the total Hamiltonian is partitioned in such a 

way that the dominant interactions arise in first order of perturbation 
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theory. Smaller interactions are included in the effective Hamiltonian by 

appealing to higher orders until the required precision of the eigenvalues, 

a limit usually imposed by experiment, is reached. If higher order terms 

than say fourth need to be calculated before such conditions are reached, 

or in other words, if convergence is slow, then an unsuitable partitioning 

of the Hamiltonian has probably been used. For most spectroscopic applic-

ations, calculations of higher order than fourth are thankfully unnecessary. 

Equation (2.24) is rather abstract and it is still not obvious from 

its form how the explicit operator form of Ahe effective Hamiltonian arises. 

In the next section we shall deal briefly with angular momentum operators 

and some standard spherical tensor techniques, after which we shall be in a 

position to give an illustrative calculation, showing how from equation 

(2.24) it is possible to derive an effective Hamiltonian written in terms 

of operator equivalents. 

2.3 Angular Momenta and Spherical Tenaors 

It is not intended to give a thorough account of angular momenta and 

spherical tensor theory in this section, the aim is merely to give a few of 

the basic ideas and to indicate some useful relations that will be called 

upon in subsequent calculations. There are several basic texts on these 

subjects, for instance, Edmonds (11), Brink and Ratchler (12) and Rose (1)), 

although it should be noted that the phase conventions observed by these 

authors differ. We follow the phase conventions given by Rose. 

Angular Momenta 

Angular momentum operators can be defined as those momentum operators 

that obey the commutation rules Py] ^ ip^ &nd cyclic permutations 

of X, y, z, where p^, p , p^ are components of the angular momentum oper-

ator 2" Note that since these components do not commute, then it is not 

possible to determine them all simultaneously. However since the angular 

momentum and the energy are both constants of motion then the angular mom-

entum operator does commute with the Hamiltonian and so these operators 

must possess at least one common basis function. This is a pertinent point 

as in order to calculate matrix elements of the Hamiltonian operator well-

defined basis functions are needed. Due to the ease of use of commutation 

rules and to the need to find these basis functions, it is convenient to 

write the Hamiltonian operator in terms of angular momentum operators and 

their components rather than in terms of differential operators. The basis 

functions then obtained are defined in terms of quantum numbers relevant to 

the individual angular momenta. The physical significance of angular mom-
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enta within am atomic or molecular aystem la easily appreciated in terms of 

a precession model. The Larmor precession of the nuclear spin angular mom-

entum about the direction of an applied magnetic field is well known, for 

example. In a molecular system the axes of precession might be internal 

axes, such as the intemuclear axis of a linear molecule, or an external 

axis determined by the direction of an applied electric or magnetic field. 

It can be shown that the components of angular momentum operators 

generate infinitesimal rotations about their corresponding axes and consequ-

ently the Hamiltonian has to be invariant to rotation about those axes 

(i.e. angular momentum is conserved about that axis). 

Consider the various angular momenta that can arise in a molecule. 

Firstly there is the electronic orbital angular momentum L which is the sum 

of the orbital angular momenta of each of the electrons 

(2.25) 

where r^ and ^ are respectively the position and momentum operators for the 

individual electrons. commutes with L and so these operators must have 
— z 

a common basis; these eigenf unctions can be shown to be spherical harmonics. 

G is the angular momentum due to vibration of the nuclei, but as only dia-

tomics are being dealt with here this operator will not be considered. 

and 2 are the electronic spin and nuclear spin angular momenta respectively 

while finally there is R, the angular momentum due to rotation of the nuc-

lei. It is possible to couple these angular momenta together, and hence we 

have 

J = R + L + S 

(2 .26) 
P = J + I 

J is the total angular momentum in the absence of nuclear spins, while F is 

the grand total angular momentum. Conservation of angular momentum applies 

to the total angular momentum (2 or but not necessarily to the component 

angular momenta. This is equivalent to saying that only the conserved ang-

ular momenta possess well defined eigenfunctions. In general for any con-

served angular momentum P we have the well known relations 

pfj P mp^> = P(P + 1) I P Bp )> 

2% I p *p/> = *pl f 
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P is the quantum number of the angular mcxnentum P and. can take integral or 

half-integral non-negative values. m is the quantum number relating to 

the projection of the operator P along the z axis (as yet undefined) and 

takes the (2P + l) values p, P - 1, , . - P. The eigenfunctions | P 

are completely defined in terms of the quantum numbers P and m . The poss-

ibility of different coupling schemes and the different sets of w0ll-def-

ined quantum numbers that emerge will be dealt with in the next section. 

By successive infinitesimal rotations about an axis it is possible to 

generate an operator for rotation through a finite angle aC about, say, the 

z axis. This operator is D* defined as 

3^ = 1 - + ' ' ' = 

(2.28) 

or in general, for a rotation of a physical system in which the coordinates 

of points after rotation are related to the original coordinates by the 

Euler angles 

D ((X ,P , Y) = exp (-io(Pg/h) exp (-1(3 P^A) exp (-iifPg/h) 

(2.29) 

The matrix elements of this rotation operator are defined as 

(P) 

V p 
< P mpl D (of,p,y)f P m^)» = f) (2.30) 

The properties of these rotation matrix elements are given in, for instance, 

the above-mentioned texts. It can be shown that t h e ( c * \ | 3 , y ) are 

eigenfunctions of the angular momentum operators. For instance, the 
2 

spherical harmonics, which are eigenfunctions of L and L , are in fact 

specialised rotation matrix elements with P = integer and m^ = m^ = 0. The 

angular momentum eigenfunctions | P m^^ in general can be defined in terms 

of rotation matrix elements. 

Spherical Tensors 

An irreducible spherical tensor operator is written in the form 

(£) 
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where k = 0, 1, 2, . , is the rank of the tensor, and there are (2k + l) 

components labelled q, where q = k, k - 1, . . ,, - k. 

It 18 possible to link spherical tensor theory with that of angular 

momentum commutation relations. For instance, if k = 1 then the T (P) 

are related to the components of a vector P (a vector is a first rank 

tensor) 

< 1 ( D - : ; ( f , ± 

, (2.31) 
TQ ( 0 = 

Angular momentum operators are vectors, and can therefore be written 

in spherical tensor form. Tensor operators of rank 2 or more can also arise 

in the Hamiltonian operator; for instance, the dipolar spin-spin interaction 

operator and the electric quadrupole operator are both second rank tensors. 

The trivial zeroth rank tensor is a scalar quantity, i.e. a constant term, 

in the sense of being independent of quantum numbers. In addition the 

spherical harmonics (in a modified form) are basic examples of spherical 

tensors. 

We therefore choose to write all the terms in the Hamiltonian oper-

ator in spherical tensor notation, since we are then able to use the 

extremely useful, and powerful, spherical tensor techniques in the calcul-

ation of matrix elements. Products of spherical tensor operations can be 

treated without much difficulty, which is of particular relevance when 

products of matrix elements are to be written in an equivalent operator 

form. Particular relations that will be of importance are as follows; 

these, and other standard expressions, can be found in aforementioned texts 

on angular momentum -

Tensor product of two tensor operat&ra -

T* (A, B) = (2k+l)* Z T 1 (A) T 2 (g) (_i)k+2k^-q / k, k, 

* q. q? ^2 M l -92 

(2.22) 

with |k̂  - kg I ̂  k ̂  |k̂  + kgl 

Scalar product of two tensor operators -

(i). T* (B) - (i) 1̂ (2) (2.33) 
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Wigner-Eokart theorem -

< r . p i T ; (P) I p. . ( . 1 ) " ^ < H I ^ ( a ^ ' > 

(2.34) 

Relation between tensor operators in different coordinate systems -

these systems can be transformed into each other by means of rotations 

through the Euler angles. Let p and q be the components of the tensor in 

the two different coordinate systems, 

Tp (i) - ^ (A) (2-55) 

where the asterisk indicates the complex conjugate of the rotation matrix. 

The symbol ^ P |( (p)|| in equation (2.34) is a reduced matrix 

element, and is a matrix element that contains no reference to a coordinate 

system. The Wigner-Eckart theorem enables terms dependent on the orientat-

ion of the coordinate system, mainly terms involving m , to be factored off. 

The symbol ^2 ^3) in equations (2.32) and (2.34) is a Wigner 3-j 

symbol, which is a coefficient relating the eigenvectors corresponding to 

the angular momenta and jg to those corresponding to the angular momen-

tum 2^ that results from coupling with -

j, ,2 - z z .,>1 .2) # 
m^ mg 

(2.36) 

Wigner 3-j symbols are simply related to Glebsch-Gordan coefficients - they 

have the same significance. Wigner symbols are used here because they have 

greater symmetry than the corresponding Clebsch—Gordan coefficients and they 

are easier to manipulate. 

The symmetry properties of Wigner symbols are given in the standard 

texts. Only those that will be recalled later will be given here. First 

note that the 3-j symbol ^2 ^31 is zero unless j,, j_, satisfy the 
3/ 

triangle rule 

|jl - + ^2) (2.37) 

and m^, m^, m obey the sum rule 
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+mg (2.58) 

The only other relations of particular relevance in subsequent calculations 

are those by which 5-j (and 6-j) symbols can be reexpressed in terms of 

Wigner f-j symbols; for Instance a product of two 3-j symbols can be con-

tracted in the following manner -

jl' I2 1,̂  1, 32 ^3 

^"1 "2 / 3 
(„1)i 

*1 *2 A A-A) m,/ 

Jl J2 J3 

ll Ig 

(2.59) 

where p = 1̂  + Ig + */^2 

li; I 
coupling of' 

and 1̂ 1 ^2 33 
2 t) 

is a WignGr 6—j symbol, which is a coefficient arising from 

three angular momenta. 

Similarly, by use of the BiedenhaM^Elliot relationship, a pair of 6—j 

symbols can be rewritten -

jl ^2 ^12!^ ̂ 23 ^123/ 

j) ̂ 12) ̂ 2), 
Z (-1)' 
J124 

3 

,̂ 14 j ^124 

M2, 

^4 ^124 ^14, 

ji2 

^4 j 
( 2 . 4 0 ) 

where s = + jg + + ^4 + ^12 ̂  ^2) * ^14 * ^123 * ^ * ^124 

In the next section the second order effective rotational Hamiltonian 

for a linear molecule in a 22 state of general multiplicity will be der-

ived, in order to illustrate how the above relations can be used to reduce 

the perturbation expressions to an effective operator form. 

2.4 Second Order Effective Botational Hamiltonian for a Linear Molecule in 

a 52 State 

The derivation of this Hamiltonian and its reduction to operator 

equivalents are performed along similar lines to those described by Miller 

(9). The total Hamiltonian is partitioned as in equation (2.1$) 

H = Hn + 

H^ contains terms that give the energy of the adiabatic state, and also 

terms describing the vibrational energy. V contains rotational and spin 
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dependent terms, nonadiabatic Interactions being included amongst them. V 

is taken to be 

V = + Hgo + *SR + Hgg (2.41) 

where the effects of nuclear spin have &een ignored. 

H is the nuclear rotational Ramiltonian 

represents the spin-orbit interaction 

is the spin-rotation Hamiltonian 

represents the spin-spin interaction 

Since the effects of the last two terms in (?.41) are usually very 

much smaller than those of the first two then the accuracy of the effective 

Hamiltonian is not significantly altered by including only the first order 

effects of these latter terms. This does not mean that the effective Eamil-

tonian neglects certain terms, since 2nd or higher order terms involving 

and have exactly the same operator dependence as )rd or higher order 

terms of H and Hgq and are likely to be of similar magnitude. The higher 

order effects of and are thus contained in the parameters describ-

ing higher order effects of H ^ and This does make interpretation of 

the parameters difficult however. 

The basis functions for this calculation have to be eigenfunctions of 

H p as already mentioned. No reference is made however to interactions 

involving the electron spin and so these basis functions are not uniquely 

defined. We therefore have a certain degree of choice in deciding on the 

spin basis functions. The set of quantum numbers that completely define 

the molecular wavefunctions is determined by the manner in which the various 

angular momenta are coupled, Hund (14) investigated the various coupling 

schemes that can arise and showed that there are five possibilities, now 

known as Fund's coupling oases a) to e). Diatomic molecules are described 

adequately by either case a) or case b), although case c) is of occasional 

value. 

Figure 2 illustrates coupling schemes a) and b), Case a) is of value 

when the spin-orbit interaction is quite large (relative to the rotational 

interaction). The orbital angular momentum L precesses about the intemuo— 

lear axis. L , the projection of 1 onto the internuclear axis, remains a 

constant of the motion but ^ itself is not conserved. The quantum number 

/\ = |m^| = 0, 1, 2, . . . can be used to classify the states. S is 

coupled strongly to 1 by the spin-orbit interaction. The quantum number m^ 

is then equivalent to jC , which relates to the projection of ̂  along the 



Hund's case a) 

-/I-

Hund's case b) 

Figure 2 Vector coupling diagrams for Hund's cases a) and b), 
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internuclear axis. L and S are coupled with the angular momentum R to 

produce the total angular momentum 2 " 

J = R + ^ ^ 

The quantum number relating to the projection of J along the molecular axis 

is juL, and is given by 

ri . /\ + :EL (2-42) 

If an external electric or magnetic field is applied then an additional 

quantum number relating to the projection of J onto the imposed z axis is 

needed, which is labelled m . External fields will not be considered in 

this example, but mj is included for the sake of completeness. 

The basis set in this case is completely defined in terms of the above 

mentioned quantum numbers: 

f S Z ; 

is a label distinguishing between electronic states poesessing the same 

3 and A values. 

The case b) scheme is important when spin-orbit coupling is small, so 

that S is not coupled to the internuclear axis. Lhas the same significance^ 

as for case a). In case b) it is coupled with R to form N, the total ang-

ular momentum apart from spin 

N = R + 1 

This is then coupled with S to form the total angular momentum J 

J = E + s 

The quantum numbers and are undefined in this scheme, although a 

quantum number K, which relates to the projection of N onto the internuclear 

axis, is needed. The basis set for case b) takes the form 

f f g A l S N K J m j ^ 

Case c) describes the situation that arises when the spin—orbit couyl* 

ing is stronger than the coupling to the internmcle&r axis, ^and ^in 

this case form a resultant J which precesses about the molecular axis. 2 

is then the resultant of coupling with In this case the quantum num-
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bers and 22 lose all significance, although.fl remains a good quantum 

number. 

In this calculation a basis set conforming to Hund'a case a) is chosen. 

In one senae, a molecule in a 22 state cannot conform to a case a) coupling 

scheme as there is no first order spin-orbit coupling. However, a second 

order spin-orbit coupling can arise from the admixture of other electronic 

states, hence leading to a coupling of S to the molecular axis. The quantum 

numbers ^ and.fl remain well—defined. This situation has been recognised 

by Kopp and Hbugen (1$) who termed this a case a)* coupling scheme. Tatum 

and Watson (16) however prefer to modify the definition of a case a) scheme 

to one which covers both of the above possibilities. The required alterat-

ion is merely to define the case a) scheme as one in w h i c h a n d are 

good quantum numbers. 

The first order effective Hamiltonian is readily derived from equations 

(2.24) and (2.41) by setting L = 0 

ri(;) . (PoTo)(i) 

= BT^ (J;G). T^ (J-S) + % T^ (J-S). T^ (s) + §J6")T2^ (S,S) 

(2.43) 

with the usual linear molecule restriction (given specifically for Z] states) 

(^^2) * Jz-S, = 0 (2.44) 

B in equation (2.4$) is the rotational constant, # is the spin-rotation 

constant and ^ the dipolar spin-spin interaction constant. The component 

q in the spherical tensors refers to the projection of angular momenta onto 

the internuclear frame, i.e. in a molecule—fixed coordinate system. The 

label p will be used for components in a space-fixed axis system. The 

factor modifying the spin-spin constant ^ deserves some comment. The 

parameter /\ was first introduced by Hebb (1?) in a consideration of spin-

spin interactions in ^2] states, second order contributicms to ^ arising 

from the admixture of states. The factor ̂ was included rather arbit-

rarily so as to simplify the arithmetical relation between and these 

second order terms, erid as such is of no significance. It has now become 
2 "x 

traditional to write the magnitude of the spin-spin interaction as ^ , 

unnecessary though this may be. The factor is by contrast a rigorous 

factor arising from the transformation from Cartesian to spherical tensor 
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notation. 

The linear molecule restriction (2.44) is readily appreciated by an 

examination of the vector coupling diagrams, as in diagram 1, but its math-

ematical justification is far from trivial (18). Because the third Euler 

angle is not present in linear molecules, the molecule-fixed components of 

the total angular momentum, Jy, Ao not obey the usual commutation 

rules* Instead they commute with the anomalous sign of i . 

[j;. Jy] = - U , (2.45) 

Hougen (18) shows that a Bamiltonian including all three variables is 

isomorphic with the true rotational Eamiltonian provided a restriction on 

the additional variable is observed, this being the linear molecule res-

triction. 

Second order contributions to the effective Hamiltonian arise from 

terms in V that mix different electronic states, namely the spin orbit 

coupling and L-uncoupling terms 

-29?^ (J-G). (&! ii)' 

V, + Vg 

1. and are the orbital and spin angular momenta of the i*^ electron, the 

summation running over all the electrons of the molecule. The form of the 

spin-orbit term is simplified but is adequate for the present purposes. 

The true microscopic spin-orbit Ramiltonian (19, 20) describes the inter-

action of electron spins with the field due to electrons and nuclei, and so 

contains spin-orbit, spin-other-orbit and electronic screening effects. 

The selection rules arising from the simplified Hamiltonian'are 

A H = 0 

S = 0, 

z: = -vSiA = ±1 

but these in fact also apply to the true microscopic Hamiltonian. Using 

either form the correct parametric dependence of interactions is obtained 

but the interpretations of the constants differ. 

Whereas in the spin-orbit interaction, all electrons have to be in-
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eluded in the summation, only unpaired electrona have to be considered in 

the spin-spin Interaction. This is not an obvious point, and so will be 

considered dn more detail. 

McWeeny (21) has shown how the various parameters in the spin Hamil-

tonian can be written in terms of density functions (22) which describe the 

distribution of the electrons and the configuration of the spins. The op-

erators in this spin Hamiltonian are written in terms of sums of 1- and 2-

electron functions, since these are easier to visualise than the many-eleo» 

tron counterparts. The operators in the spin-spin dipolar interaction will 

thus be 2-electron operators, whereas the nuclear spin-electron spin inter-

action will only involve 1-eleotron operators. The spin-orbit interaction 

is rather more complicated since it involves the interaction of the electron 

spin with the magnetic field presented by all the electrons and nuclei, and 

as such involves both 1- and 2-electron operators. By use of Slater det-

erminants it is possible to calculate matrix elements between individual 

spin-orbitals. 

Consider first of all the matrix elements of a 1-electron operator, 

such as the nuclear spin-electron spin interaction. In its most general 

form this can be written 

e(i)n(k) 
i, k 

where e(i) is the spin density function for the i^ electron and n(k) a 

spin function for the k^^ nucleus. If it is assumed that the 1-electron 

density functions for electrons of OC and p spin represent similar dis-

tributions but are of opposite sign then it is easily seen that paired 

electrons give no net contribution to this interaction, so only the unpaired 

electrons need be considered. 

^he 2-electron interactions are more difficult to treat. Slater (2$) 

has shown by expansion of Slater determinants how the matrix elements of a 

2-electron operator reduce to a simple form. A Slater determinant takes the 

determinant form 

Ul(l) 

0,(2) 

Ul(N) 

Ugfl) ' ' ' 

UgfZ) . . . 

U,(N) . 

• V ' ) 

• % * ( * ) 

= I - - - - v., 

(2.47) 
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where % (N) represents the electron occupying the 1^^ spin-orbital. As 

la well known, a determinant can be expanded in terms of the components of 

any row or column, the coefficient modifying each of these components being 

their corresponding cofactor, or signed minor. The minor of the element 

in the i^h row and column is just the determinant remaining when the 

i^h row and column are deleted from the full determinant. 

The matrix elements of a 2—electron operator, g^j, are then given by 

I 
which Slater has shown to reduce to the form 

(2.49) 

The two matrix elements in (2.49) involve direct and exchange integrals 

respectively, %/!!,)(jj,) is the minor formed by deleting the i and. i' 

rows and the j and j' columns. If we assume all the spin-orbitals are 

orthogonal to each other then all the minors in (2.49) zero except for 

those corresponding to i e i' and j = j', 

Tn order to determine matrix elements of the spin—spin interaction an 

explicit form has to be substituted for g^g* We shall assume that this 

operator is of the general form 

fs.. 3. - )8. s. ) X orbital factor (2.50) 
1 —j iz jz' 

and that matrix elements of this operator are in the same ratios as those 

of the spin only operator. This latter assumption is equivalent to the 

assumption that the matrix elements of (2.50) can be factored into a spin-

dependent part and an orbital dependent part. 

The spin-orbitals i, j correspond to either closed shell or open shell 

electrons and so there are four types of matrix element to be considered: 

a) Both electrons in same closed shell; 

b) Electrons in different closed shells; 

c) One in a closed shell, one in an open shell; 

d) Both electrons unpaired. 

In case a) the direct and exchange integrals in (2.49) are equal in 

magnitude and opposite in sign so there is no contribution. Similarly in 

b), if i is a closed shell electron with a particular spin, say cC , then 
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the summation over j for the other causes this term to vanish. The term 

with i having p spin similarly vanishes. The contribution from o) also 

disappears, since if i is the open shell electron then the sum over j for 

the two allowed spin configurations of the other electron must be zero. 

The only remaining term, d), does not disappear since in general the direct 

and exchange terms are not of equal magnitude. Hence only unpaired elec-

trons contribute to the spin—spin interaction* 

The form of the spin-orbit interaction is much more complicated but 

from a general consideration of its physical significance it can be apprec-

iated that all the electrons contribute. Only unpaired electrons contribute 

to the spin-spin interaction but in this case a specific form for the 2-

electron operator has been used; the 2-eleotron operators present in the 

spin-orbit interaction do not necessarily reduce to this simple form and 

hence even the core electrons have to be included in the summations. 

The second order Samiltonian obtained from (2.46) is of the general 

form 

^iff = ^0^1 ^1^0 + V o + % % 

(2.51) 

By substituting the spherical tensor forms of (2.46) into (2.51) and fac-

toring the resultant expression in terms of operator equivalents one can 

obtain the result 

= B'T^ (J-S). T̂  (J-S) + y 'T- (^S). (S) + (S, S) 

(2.52) 

^eff 

This expression has the same operator dependence as the first order Hamil-

tonian (2.4^), the parameters y ' and ' hence forming second order 

contributions to the rotational constant, spin-rotation constant and spin-

spin constant respectively. The total effective Hamiltonian to second order 

is the sum of and the resultant beibg written in terms of the 

effective parameters: 

^eff = 

= y + y (^-53) 

^eff = ^ 
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This 19 a familiar result ( 9 , 2 4 ) . Since each of the effective par,me,,err, 

18 comnnunded from contributions from various orders of perturbation theory, 

care has to be taken in the interpretation of these constants, however. 

In order to demonstrate some of the techniques discussed in the prev-

ious section, consider the calculation of the second order contribution to 

the spin-spin interaction in more detail. This term involves two matrix 

elements of the spin-orbit operator. From (2.46) (2*51) have; 

= ^0 i g . 5 , ( • ; - • « • ) -

X [S(-1)' I I') ^ s|| T' CSJ)T1^ Kli)|ln'A'S'>] 

(2.54) 

This can be simplified for a Z state by putting A " = A (= O) 

= jT . The latter simplification follows from the = 0 select-

ion rule coverninc the spin-orbit interaction. Since the effective namil-

tonian operates only within a particular vector space then this operator 

should make no reference to other electronic states. The excited state 

quantum numbers S* and ][' that appear in equation (2.54) have therefore 

to be suppressed, and so with this end in mind, the pair of $—j symbols in 

(2.54) are reexpressed by making use of equation (2.39). The following 

relation is obtained: 

(2.55) 

The relation q''= -q arises from the sum rules of the 3-j symbols. 

Equation (?.54) thus becomes 

p(2) _ p 
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f-o E z n .1 g)(ysl|'p''(sjT2 
i, j 1 

(2.56) 

Prom the trianfcls rules on the )—j and 6-j symbols it is now possible to 

make some useful restrictions. The rank k can take only the values 

k = 0, 1 or 2 

Substituting k = 0 into (2.56) shows that this term has no Z depend-

ence and so does not affect the relative energies of the rotational levels. 

This teim is of the form of the spin-spin interaction, which is generally 

absorbed into the electronic energy. . 

If q is replaced by -q in the $-j symbol (^ g)the symmetry prop-

erties of 3-j symbols show that its value is multiplied by (-1) . Since for 

a 2J state the pair of reduced matrix elements do not change sign on rep— 

lacing q by -q then the effect on the total expression is to multiply it by 

(-1)^. The summation over q values thus causes the k = 1 term to vanish. 

The only remaining term is that with k = 2, which can be written 

4^2 = (-1 0 I) 2 , ^ H i 1 S'] 

J g. 

<TA'S')|t''(s .)Tj(â .)|(.;A S>] Pg 

(2.57) 

This term is of the form of the dipolar spin-spin interaction, which as kas 

already been noted, is a second rank tensor interaction. Matrix elements 

of this interaction are of the form 

<3rl|j6)iT^(3, ̂ I 3 r > . (-1)®-^(_|o|)fJ6><3llT^(3, 3)/|S> 

(2.58) 

Comparison of (2.57) and (2.58) shows that these expressions both involve a 

similar dependence on quantum numbers, and so the term in square braces in 

(2.57) can be equated with T^(S, ̂ g S > , where ' is the second 

order contribution to the spin—spin interaction constant. 
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Further Information can yet be gleaned from the 3-j and C-j symhnln. 

The triangle rules on ^ ̂  restrict the values of S to Sj^l, which is 

well known, since spin-spin interactions can arise only when there are two 

or more unpaired electrons. Similarly from the 6-j symbol in (2,57), the 

allowed values of S' are obtained, namely S* = S + 1, S, S - 1 only, a 

result which follows also from the selection rules on the spin-orbit coup-

ling interaction. 

This completes the derivation of the second order spin-spin Hamiltonian, 

the calculation of the other terms in the second ord.er Hamiltonian following 

along similar lines. 

It must be emphasised that no part of this chapter is new; its cont-

ents serve merely as useful groundwork for later chapters. 



Referenoen to Oh&pt«(r 2 

(1) Bom, M., and Oppenhelmer, J.R., der Miy#. 8^ (192?) 457 

(2) NielBW, E.g., Rev. Mod. Phya. 2^ (1951) 90 

()) Van Vleok, J.E., B#v. Mod. Ihy#, 2ĵ  (1951) 21) 
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GRAPTER ) 

SPIN-DEPENDENT INTERACTIONS IN 22 STATES OP qpARTET AND 

HIGRER NUITITLICITY 

5.1 Introduction 

As has been discussed in chapter 2, in the analysis of molecular spec-

tra we wish to calculate the energy levels as accurately as necessary but 

at the same time it is necessary to restrict the problem to one of manage-

able size. In the case of transitions occuring within a single electronic 

state, such as in microwave or e.p.r. spectroscopy, this requirement can be 

met by constructing an effective Ramiltonian that operates only within that 

particular state. Transitions occurring between electronic states, such as 

in optical spectroscopy, can be dealt with in a similar manner by construct-

ing two effective Eamiltonians, one for each of the states involved. The 

difficulty lies in deriving a suitable effective Ramiltonian, that is to 

say, one that leads to an adequate description of the energy levels. 

The technique of constructing effective Eamiltonians used here is, as 

already described, to use degenerate perturbation theory to incorporate 

terras off-diagonal in electronic state into the diagonal blocks and sub™ 

sequently to rewrite the perturbation expressions in terms of operator 

equivalents. This has been demonstrated in the previous chapter, the cal-

culation of the second order contribution to the spin-spin interaction 

being given as an example. 

In this chapter the form and number of effective parameters needed to 

describe S electronic states of various multiplicities for linear nolec— 

ules is investigated, in particular for those 22 states of quartet and 

higher multiplicity (l). The possible presence of nuclear spins will be 

ignored throughout this treatment, as will the effects of centrifugal dis-

tortion. ^ 

The rotational levels of a linear molecule in a S state are given oy 

the familiar term value expression 

F = B J (J + 1) (3.1) 

where B is the rotational constant and J is the total angular momentum 

quantum number. The term value expressions become more complicated for 

molecules in states of higher multiplicity than singlet since further para-

meters arp renuirei to describe the additional interactions arising from 

the unpaired electron spins. 
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Tn a state the effects of the spin-rotation interaction have to be 

includeit, the parameter needed to describe this inter^-ction being , wher*.-

as in a 3%];state the effects of a spin-spin interaction, described by the 

parameter "X , have also to be considered« 

The parameters B, * and > describe interations that occur only with-

in the particular electronic state under consideration, and consequently 

will be compounded of both direct and indirect contributions, the latter 

arising from the perturbation treatment of nonadiabatic terms in the total 

Hamiltonian, such as Coriolis and spin-orbit interactions, (2). 

The dependence of the rotational energy levels on these parameters lo 

in accordance with that observed in molecular spectra, which justifies the 

form of the effective Hamiltonian that has been used in the analyses of 

these states. In addition, the interpretation of these constants in terms 

of electronic structure is fairly well understood, although it should be 

noted that the higher order perturbation contributions complicates the 

interpretation considerably. 

In the case of ̂ ^Tlstates, the understanding of the effective para-

meters is less certain. The first investigation of ZZ states was performed 

by Budo (5), who was able to arrive at term value expressions for the rot-

ational energy levels. Similar results were subsequently obtained by Budo 

and Kovacs (4) using a different approach. Budo's expressions have been 

quite widely used, giving adequate analyses of data in some cases. However, 

Verma (5), in an analysis of the Si? radical found that these expressions 

were not satisfactory. This prompted Hougen (6) to reinvestigate the^ 

energy level expressions. He used an approach similar to that of Budo and 

Kovacs (4), involving an examination of the effects of sptn-orbit coupling, 

and was able to obtain more general expressions for the rotational energy 

levels. He reached the general conclusion that in 2C states of even mul-

tinlicity, (2S + l), (S + &) spin-rotation parameters and (S - &) spin-

spin parameters are required, while for a state of odd multiplicity S spin-

rotation and S spin-spin parameters have to be included. To describe the 

energy levels of a state one snin-spin parameter ( % ) and two spin-

rotation parameters would thus be needed. Since the molecules of interest 

contain heavy atoms then spin-orbit coupling will be large and so a conven-

ient choice of basis functions would be one conforming to Eund's case a) 

coupling. The basis kets are thus of the form 

f 1] /\ ; S]r ; JJl M > 
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Consider the effects of the perturbation TInmiltonian on the molecular 

energy levels: in the absence of rotation, the spin-spin and spin-orbit 

interactions cause a splitting of the level into two double degenerate 

components, labelled ^ and where the subscript represents the 

value of Ifll , the spin splitting for ^22 states being 4>. If rotation is 

inclrded then the effects of the spin-rotation interaction l^ft the degen-

eracy of these components leading to four fine-structure states, 

^ and ^ subscript in this case being i l , Bach of 

these^four states possesses an infinite set of rotational levels, labelled 

J, subject to the restriction The energy levels are illustrated 

in figure 1 for the case of a regular state, I.e. (Ih - 2B))0, so for 

a given J levels lie below levels. For Inverted states the 

reverse applies. 

Eougen (6) defines the two spin-rotation constants as and ^ g 

where ̂  ^ appears in the matrix element 

( J; Jl = ±1/2 |Rg%| J; n = ;i/2 > (5.2) 

and appears in the element 

<j;-n =i3/2 [HskI (5-5) 

where is the snln-rotatlon Hamiltonlan. 

Very few detailed analyses of molecules in ̂ 52 states have been pub-

lished; all the data obtained so far come from optical spectra of diatomic 

molecules, the molecules being 0^ (7), SIP (5* 8), GeP (9); SnF (10), 

GeR (11) and VO (12), In those oases that have been treated using Eougen's 

expressions, the values obtained for Y ^ and Y g the same to within exp-

erimental error, even for SIP. The discrepancies In this spectrum that, 

prompted Hougen to reinvestigate the rotational levels have been shown 

by Martin and Merer (A) to arise from misassignments of the original data. 

Hougen's parameters are introduced by general consideration of the 

various types of matrix elements that contain contributions from the spin-

rntation interaction and in this respect are purely intuitive. It is expec-

ted that the difference between X ^ and X g related to higher order 

terms in the perturbation expansion, thus reflecting different mixings witn 

other electronic states. In the following sections the form of these para-

meters is investigated by a consideration of such higher order terms, so 

that the difference between them can be related to more fundamental molec-

rlar parameters. 



Figure 1 Sohenatlo ttepresentation of energy levels in a zZ state. 
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In the final section of this chapter the treatment of effective para-

meters is extended to ^ states, paying particular attention to an add-

itional spin-epin interaction that arises in fourth order of perturbation 

theory. 

3.2 General Form of Third-Order Spin-Rotation Interactions in states 

The spin-rotation interaction to second order is of the form 

R . y .rf (J - S). (S) (3.4) 
SR " 9 eff 

where % the sum of first and second order contrib-

utions. The two types of matrix element of this Hpmiltonian, equations 

(3.2) and (5.3), involve only this single ^ parameter, so to determine the 

difference between X and X ^ higher order terms must be investigated. In 

this section the third order contributions will be calculated. 

The general form of the third order H&mlltonian can be found from 

equation (2.24) of chapter 2 and in its Hermltian averaged form is as 

follows: 

hO) . 

= V ( % / = ) ^ ( V " ' ^ 0 

- i |Po? W g W Q + PqV?gT (Qg/a^) v p j (5.5) 

Only those terms in the perturbation Hamiltonian that ultimately give 

rise to an effective spin-rotation interaction are of interest. By inspect-

ion of the terms in this Hamiltonian 

V = GROT + ̂ SS * ̂ SR + %S0 

it can be seen that third-order spin-rotation terms arise in three diff-

erent ways, as illustrated in figure 2 by means of some typical 'railroad' 

diagrams. They are comprised of three matrix elements of V in the follow-

ing manner: 

a) (spin-orbit interaction)^ (spin-uncoupling) 

b) (spin-orbit interaction) (L—uncoupling) (rotational interaction) 

c) (L-uncoupling)^ (spin-uncoupling) 

The L-uncoupling terms come from and are of the form 



a) 

H 
a =3 /2 , 

m L 

b) 

Hrot 
a =3/2 , a =3/2 

Hrot 

n =1/2 or 5 /2 

c) HJL" 

n =-1/2 or 3 /2 

Plgare 2 Some third order oontrlbutione to the spin-rotation interaction 

in a ^53state. 
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- Z B 2 ^ ( J ) 9 ( ^ ( 9 ) (3^7) 

While "rotational Interaotion" refer* to the q * 0 term* from Hggp 

B[ J(J + 1) + S(S + 1) - 21^] ()'G) 

Note that although all three of the terms above are .pia-rotatioa ioter-

aotions, they each have a different J dependenoe, their reapeotive operator 

form, being J* sZ , J* sg and S, . If A i« *«&** ** »« .pin-orbit 

ooupling oonetant and A B i. some meaaure of the differenoe in energy 

origin, of the ground and admized .tate., then the approximate magnitudes 

of the three ooatribution. above are 

a) A*B/(4kB)2 

b) 

0) lf/(ZlE)2 . ̂  

Sinoe the .pin-orbit ooupling oonetant for the.e 2L, moleoule. i. m*o 

larger than the rotational oonatant then the dominant oontribution will be 

from a), that involving two matrix element, of Egg between eleotronio 

atate. and one matrix elemmnt of the .pin uaooupling interaotion. The mat-

rix element. Of the .pin-*nooupling operator are of exaotly the .ame form 

a. thoae of the spin-rotation Bkmiltonian and .0 there will be third order 

oontribntion. to a ) and o) of magnitude. /(A B) and B y/(ZiB) re. 

peotively. The.e however will be ineeparable from the oorreaponding con-

tribution. involving the .pinrwnooupling operator. In principle, .inoe the 

three type, of oontribution in thi*d order have different J and S depend-

enoie., then the.e different third order term, are .eparable. However, only 

the dominant oontribntion a) will be oommidered a. it i. likely that 

differenoe in and % % " H I "*!** predominantly from thi. term. 

ipplioation of the .eleotion rule, for .pin-orbit ooupling, given in 

chapter 2, reveal, that the only .tate. that oogld be mixed into a^ ZZ 

.tate in third order by meohanism a) are the following* ZZ, 

or another ^Cetate. SOm. example, of the contamination of iC.tate. 

in third order by .tate. mixed in thi. manner are .hown in figure ). 

Subetitution of the matrix element, of the relevant perturbatimn term, 

into equation ().5) lead, to the following expre.sion, 



^^5/2 ^OT ^1/2 

-3/2 

1 

2 

Zl/2 % / 2 

^ O T 

Zl/2 % / 2 "Z,/2 " E 1/2 

i) 

Cl/2 

12-1/2 

®ROT 

+ 

i:i/2 n 

^ O T 

t l / 2 'EI/2 B / 2 '1.1/2 'EI/2 '1^1/2 '1^1/2 

ii) 

Figure 3 Some third order interactions giving rise to effective spin-

rotation interactions. 

i) Admixture of states. 

ii) and iii) Admixture of states. 
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(i; A ; sr ; J A M I i]A; SE"; J J T M ) -

Z : , X . ) [•'(•' + 1)(2J + 1 ) ] i - S y / c s . ) " " 

< 1 | A s | | E ( - i ) ( « i i i ) | l l M ' ® ' > l ' [ - ^ ' " ' ) ] 

S' 1 S' 
t' q' Z " 

^ ^ - 2 B [8(8 + 1)(2S + 1)]* 

K " q I ' 

s#-l' / 8' 1 8 
Z' q Z 

( - i ) ' ^ ^ ^ . ! , ] ] . [ ( - 1 ) ^ [ - I M - ) ( 4 * - q r ) 

<••'"" ( 4 ; u ) l j ) 0 . 9 ) 

where q("' 0, -1) is the ocmqwiwat of the epl%&-orbit ooapllng operator, 

q»(« li only) is the oonponent of the spin-nmooupling operator, 

B AnA B' are the rotational coastaats in tti® admixed elec-

tronic states respectively. 

The various primed and unprimed quamtia nombers in (a) apply to different 

electronic states and have the significance shown in figure 4« Equation 

().8) oan be rewritten by invoking equation (2.)9) of chapter 2 twice, so 

as to contraot the !>-j symbols and to remove the dependence on intermediate 

spin quantum numbers, leading to the following expression* 

srJJIMI -

(q) 



s T ' j n ®ROT s'r'^ja** 

s r j n s r"jii" 

s' z'jn 

2 
H. 
ROT 

S' r'wjn" 

+ 

ROT 

s rjjv srjii sz"Jxi" s u n . sz"jii" sr"JA" 

Figure 4 Notation used for calculation of third order terms. 
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4 : i ) (4 4 . ^ ^ 

4 i r r j - » [ ^ f i f s ] »[s(s^i)(2s.i)]ij (3.10) 

Th# tenmor rank* k mod K remalt from th# flrmt and aecond qontraotiooa of 

)-j aymbolm respectively. The value* k mad K are permitted to take are 

governed by the triangle rules on the )-j (or 6-j) symbols and are given in 

table 1 , 

).) Simplifioation of the General Third Order SsAa-Eotatioa Terms 

In this section we consider the vmrioos terms that arise from ().10) 

on substitution of the allowed values of the tensor rank* k and K. 

Since we are oonsidertog q* * only then the )-j symbol -q^q' q^/ 

is zero for K * 0. Hence K « 0 terms will not b# oonsidered farther. 

In order to cast equation (),10) into operator equivalent form, values 

of k and K have to be substituted ezplicitly and individual term* examined. 
K+1 

Consider, first of all, those terms with K even. The factor 1 + (-1) 

modifying the second term within the braces in (5»10) is seen to be zero 

for K even and so only the first term within braces remaina. By relating 

the term with +q to that with -q it is possible to show that this term also 

disappears. With this end in mind, consider the k- and q- dependent fac-

tors in (3.10) 

2 ] (2k + I X - D ' K ^ A S U Z (SJ) (»iii)|n'A'S'>| ̂  

which we wish to show to vanish When summed over k and q. The reduced mat-

rix elements in (5*11) are the same for both +q and -q, but only for 

states, since then we have 

I q * +1 I TT, *|<C]L |q " -l|TT, /\ " 

The two 6-j symbols can be reexpressed by using the IledenhmnpElliot rel-

ationship, a general relation given in equation (2.40) of chapter 2, to 

give the following: 



k K 

0 1 

1 0,1,2 

2 1,2,3 

Table 1 Allowed values for the tensor ranks k and K in the calculation of 

third-order oontributioo* to th# a;in-rot*tioa intaraotion. 
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M s r r r u H i i ^ } 

j:WderkMd tyldw trUmgle%ml##(mth#6Hj eydwlmiud Istaaltyiwen 

ftom Id* fiwAaydxa to ibA* MwaameiMt of T*l**;a* k, 

j « 0 , 1 or 2 only. 

Whereas K represents the tensor r#hk of the final coupling of electron 

spina, both k mad j repressnt some int#rm#di*ts coupling of spins; k and j 

might differ in the order in which the spins are coupled. 

All that remains is to relate the )—j symbols with 4q to those with 

-q. These can b# contracted issing equation (2.39) of chapter 2 and re-

arranged to give 

i : x i 

• 4 A . ) 

idhsre again j i* defined by the triaogls rules. The pair of )-j symbols on 

the right-hand side differs fro* thoss on the Isft-hand side in that thsy 

contain ths rank j instaad of k, and q is replaced by -q throughout. ly 

substituting (3.15) into (3.11) and using the Biedenhsa&ailiot relationship 

(3.12) in reverse, an expression relating the term with +q and intermed-

iate rank k to that with -q and intsrmsdlate rank j is obtaiosd. Siocs k 

and j take the same values (0, 1 and 2 only) and since each side of the 

aforementioned expression contains a summation over either k or J, then it 

is justifiable to set j - k throughout. An ezpcessiom is therefore obtained 

which relates the matrix element with +q to that with -q* 

Z(2k • 1)(-1)̂ |<1,AS||E («i) I ̂  fs s. s.j 

r i k l C ] / 1 1 k \ / 1 k I \ 

I S S S'j \ q* q -qrq*/ 1-4 / 

- E (2k 4. 1)(-1)^|<'^/»S|| Z (&) t;" (» 1̂ )11 •>|M'S'>P 
k i ^ 

fl 1 k k K j /1 1 k \ /I k K \ 
( s 8* s ' j f S s s") \ q ' - q q-q / l * * - * / 
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SuWtitutlon of q m 0 into ().14) revmala that oontrlbutionm with K even 

vanish. Similarly, the term* with K even dimappear on suhatituting q * -1 

and over q. We thua have the general result that all even K con— 

tributiooa to the apin^rotation tnteraotion vaniah in thiri order. 

Consider now the oontributiona from (3*9) with K odd. It can easilj 

be shown that 

[S'(S' + 1)(28' + 1)]* [g g, - [8(S + 1)(28 + 1)]* 1̂ ,, 1 

( ) . 1 5 ) 

for k » 0 and 2 (but not for k » 1)* expansion of the 6-j aymbola ahowa 

that for k * 0 and 2, interohange of the aymbole 8 and S' does not affeot 

the valne of the ezpreseion, whereas for k * 1 this interohang* altera the 

arithmetical value. 

The term within brace* in equation ().10) thus become*, for k even and 

K Odd, 

j(-1) **** *' - & [ 1 + (-1)**^] ^ [8(8 + 1)(28 + 1)]^ g, gj 

- B 8(8 + 1)(2S + 1) * g, gj (3.16) 

where A B w B' - B. 

In principle B' and B are not exactly equal although in practice they do 

have a very similar value (1)). Bbnce contribution* from ().10) with K 

odd and k even are expected to be very amall indeed. Since ̂ IB i* very 

small compared to B then theme oomtributiona will be of similar magnitude 

to the fourth order contributioma, These even k, odd K term* will be re^ 

tamed to later. 

The only significant term* remeining from ()*10) are hence thoae with 

both K an* k odd. from table 1 it can be aeen tbat only the term* with 

K m k - 1 come into thi* category. Subatituticn of theee rank values into 

(5.10) leads to the following: 

(l]A 8Z J A M I (K - k * 1))i)A 

-18 ^ (.1)'-^ ;,x.) (-11.1 - ) 
a 'SB—1 ^ 
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I C y s - ^ {s S S'l (q -q-q' q') 

xl<1)/\s| Z (s^) tJ (ajl^)||<|'A'S'>|^[-I>'[s'(S' + 1)(2S' * 1)]* 

== fs s. 3.} [s s:.)} 

Now from the orthogonality relations for the )-j symbols it follows that 

Z (q -q!q. I') ' 5 

S ' f ; - . ; . ; ) ' • ! - ( : - : • ; • ) " 

1 1 1 _ /i 1 1 y 
" ) - ? - ? " (o-q' q'j 

ani «o by submtitutlw of thia result and expanmiw of the 6-j mymbole, 

(5,17) becomeg equal to 

\ U U X " ) 

' ( 4 q ' I " ) ^ H ) " 
M 

X ( .1 )S^J- ^ ' - 2 : 1 <1)A s|| M ' S ' > I ^ 

(3.18) 

Ae ha# been noted, B and B' are very mlmilar, ao the term la aquare braoketa 

is approximately equal to ZB. The term outside the braces in ().18) is the 

matrix element of 

it 
Z (-1)"' TJ, (J) T̂ ,̂ , (S) 
q«.:i 
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and so ().18) mimloe the foim of the spin-rotation interact ion, the term 

within braoea being the third-order oontribution to the BpinfTotation para-

imeter % , The operator equivalent form of thia third-order term ia iden-

tioai to that in lower order and ao to thla order only a aingla # parameter 

la requlrad. Indeed, it has already b##n notad in the introduotion to this 

ohapter that and Tfg *** fo^ad in praotioe to be the same, to within 

experimental error. There is thus both theoretical and practical justIf1-

oation for the nae of a aingia apin-rotation parameter. 

This la not to aay, however, that Boogen'a treatment la inoorreot since 

in order to make any valid comparison the present treatment should be ex-

tended to all ordera. In the next section the higher order forma of the 

spin-rotation interaction will be considered® "Bia third order terms with 

k even and K odd have been eatimated to be of the aam* magnitude as the 

fourth order oontributiona and for thia reason will be considered in the 

next section. 

).4 Higher Order Spin-Rotation Interactions 

Prom a general consideration of the form of equation (5*9) it can be 

seen that only terma with K odd contribute to the effective Hamiltcnian. 

These terms can all be written in the operator equivalent form 

To Ci. i) 
_th 

i.e. the scalar product of a first rank J operator with a K rank S oper-

ator. Indeed, the usual method of writing the apin^rotation interaction 

(J). (S) 

could just a* easily be written aa fP (j, 8), the two forms differing only 

in a numerical factor. These results could also be obtained in an ad hoc 

man-netT by & consideration of time reversal. Under this operation, all the 

angular momenta reverse sign and hence if the Hamiltonian is to be Invar— 

iant under time reversal then eaoh interaction must contain an even iiumber 

of angular momenta. Hence if K is even, the total number of angular mom-

enta involved would be odd and so this type of term is expected to vanish. 

Ve can see therefore that for * tSZ state there will be contributions to 

the effective Hamiltonian from terms with K * 1 and with K * ) and we would 

expect a determinable parameter from eaoh of these. Hence Eougen's (general 

conclusions about the number of spin-rotation parameters is in principle 

correct. The parameter assooiated with K * 1 la % , the usual spin-rotation 
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oomstant while that aasoclated with K = ) we have called Tfg for reasons 

mentioned later. This latter term has a oontribution from the thiad order 

term with K - ) and k * 2, whioh, as has already been mentioned, is approz-

imately the same magnitude as a fourth order term, and for this reason was 

neglected in the previous section* The matrix elements of this operator 

are of the for® 

; SjT; JAM I Hgg (K . Sl±1; jn±1 M > 

. -i yg[s(s 4.1) - 5 £ ( r i 1) - 2] [j(j 4.1) - J i ( n ± i)]^ 

X [s(s 4-1) - r c z i 1)]̂  (5-19) 

Mow the two square root expressions in (3*19) the matrix elements of 

the usual spin^rotation interaotion and so equation ().19) mimics the form 

of the spin-rotation Bamiltonian, but with an effective parameter that is 

8 and Z dependent. It is thus apparent that the effective spin^rotation 

parameter will differ with Zl, and this is the origin of the difference 

between and substitution of explicit S and 22 values for 

states the parameters and 3̂ 2 ̂ an be related to the more basic para-

meters ^ and Xg? 

• y 

- (3.20) 

or alternatively - ^ 2 

substitution of k * 2, K * ) into (3.9) and expanding the j sym-

bol[_^ ** G** **"* comparison with ().19) that the third order 
- q - Y 

contribution to 5 ̂  is 

[(2^2)(2s4(4)(as.4)]^ E l<')As||2T\.)T;(a,l,)|H).A.S.>| 

' (q) 

= (-1)^ (.1)-^ ii 4 , -i) ̂ J , ) 

. f1 2 3} (1 1 2j (3.21) 
)s S S'J Is" s sj 
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Table 2 preaenta the complete Bamiltonlam matrix for levelm in a 

state with a given J value. The 4 % 4 matrix is reduced to two 2 x 2 mat-

rioee, oorreeponding to ê  and ^ rotational levela (14, 15)# by taking Wang 

aim ani difference functiona 

I J ,n ,Z l i > . j;||j +il + Z > - I J -jl - z > j (5-22) 

Now for atatea of half-integral apin the e ani f levels are defined 

(14, 15) as followa* 

LevWji with parity +(-1 ar* e levels 

Levela with parity -(-1)"^"^ are f levela 

To make the correspondence between the ê  and f levela and the — aigns of 

()#22) the parity of the wavefnnctions in ().22) has to be determined. 

a consideration of how the Euler anglea transform under the apace fixed 

inversion (parity) operator B* it is found that these wavefunctions trans-

form as followa* 

E*| J A S Z > - -("i/'^lA-O; J ^ S - z > ().2)) 

where the - refers to 22" atatea reapectively. 

Combining ().22) and ().23) the transformatim of the Vang function* 

is obtained: 

E*| J A S Z ; 1> . ±(-i)P (-1/-^ Ijnsz; ± > 0.24) 

where p is even for states and odd for ̂  states. Hence for 

states, the - signa in the Wang functions refer to states of parity 

the upper case referring therefore to f levela and the lower to 

ê  levels. Par ^3^" states this identity is reversed. 

It is also possible to tie in the 2 ^ labels with the levela. 

For a rotational level there are four levela with a given J value, and 

theae are labelled Pg, P^ and P^ with increasing energy. going over 

to a case b) limit theae P̂ ^ levela correspond to the N levela as follows 

P^ has N m J + )/2 

P^ N . J + 1/2 

Pg N » J - 1/2 

P. N » J - )/2 

Now the case b) levels of a z] state have parity 

±(.1)^ 



Table 2 Matrix representation of the effective rotational Hamiltonian of a 

state in a Wang basis. 
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80 ve oan see that P,, and P. levele hav# thq same parity, whloh is the 

oppoelte parity to and levels, An Pg level of a 2!, state therefore 

has parity (-1)*̂ "̂  and so corresponds to an ê  l#vel. Therefore for 

states 

P. and P, levels are e levels 
1 ) -

P_ and P. levels are f levels 
4v,- 2 4 

i&lle for 2j states the ̂  ^nd f labels are revewed, 

!Ihe mMitrl% elements given in table 2 are consistent with those of 

Msrtin and Merer (9) ezoept that their definitions of and 

agree with the present ones, Als is beoanse they have not renommalised 

the second order wavefunotion, Hoogen (6) has also not included this in his 

treatment. If this renormalisation is performed then the ̂  ^ and parar-

meters defined in these papers beoow the same, to third order. Martin and 

Merer's ^ . and differ only in the admixture of states, so we shall 
a 2 <r™3 

aastime for the present that the 2_, state la contaminated by a single 

state only. Hotigen gives the normalised wmvefunctions for states as 

follows, in terms of kets ^ 

^ + bgl ^ -1, -1/2^ 

^ 0, -1/2^ + b^ I -1, 1/2 ̂  

+ o|^; 1, .)/2> + 0, -1/2> 

" 0, 1/2 > + b J 1, -1/2) 

+ o|%; -1, 3/2) + d | % 0, 1/2) 

|%;/2 ^ " *2 + bg I "̂TT; 1, 1/2) 

0.25) 

Hence if only a single state perturbs the wavefunctions we have 

l"Z±V2> " ^ r Z ; o , l V 2 > 

l % / 2 > 
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whicli on renormallaatlon gives 

^2 

- ,v 1 " d 
(3.27) 

By smbstltution of ().26) and ().27) into Hougen'a definitions for the 

and Yg matrix elements, ().2) and ()*)), we obtain* 

< J 0 = ) / 2 | H G G | J N - L / 2 > . 1-D^ J 3/2|HGG|^Z; J 1/2 > 

and <Jil=l/2|Hgg|jn=-1/2)= ^ 

+ D^(^i;; J l/2|Hgg|.^Z; J -1/2 > 

0.29) 

= (1 - J i/2|Hsgl^Z; J -1/2 > 

sinoe 1/2| |^Z; -1/2^ = 1/2 l/2| -1/2^ and using 

equation ().2$). By expanding the square root in ().28) and neglecting 

terms of order d^ or higher, the ratio of (3*28) and (3.29) gives 

< J )/2|HGG|J 1/2 > < ^ Z ; J )/2|HGG|^Z!; J 1/2 > 

< J 1/2|BGG|J -1/2> <^1!; J I / 2 | H G G R Z ; J - 1 / 2 ) 

(%)0) 

and henoe to this order 

Note also that the spin-splitting of the fine structure states given 

in table 2 is 4^, as suggested by Martin and Merer (9), rather than 6)i as 

used by Eougen (6). % e use of 4^ is consistent with the form of the 

spin-spin interaction given in equation (2.56) of chapter 2. Centrifugal 

distortion corrections to B, ̂  and ^ are also included, the parameters 

describing these being D, and respectively. The K = ) spin-rot-

ation parameter is labelled by analogy with these centrifugal distor-

tion parameters. 

p Since is very small, the approximate order of magnitude being 
JA A B 
( Z \ ^ fairly hi^ degree of approximation =y. 

Two or more spin-rotation parameters therefore will only be required if the 

experimental precision permits the detection of terms of the order of X.. 
—1 

]h the case of optical wodc, which has a resolution of'^0,0)om , the det-

ection of such terms mi(^t be possible for & heavy elmnent hydride, partic-
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ularlv in very higA rotational levels, since for such radicals both B and A 
n 2 5l 

are large. In addition we note that the triangle rulea on jg g g,j mean 

that such terms will only arise in states with spin S )/2, l*e, only for 

states of quartet or higher multiplicity. Sy appealing to higher orders of 

perturbation theory it can be seen that, in principle, further spin-rotation 

parameters arise. For instance in fifth order an interaction of form 

T^tJ, Sp) is expected to arise but since this will be very much smaller 

than even the term then it will be essentially undetectable. This term 

would apply only to states of seitet or higher multiplicity and is in prla-

ciple responsible for the third spin rotation parameter needed for such 

states. 

3.5 Spin^Spin Interactions in .22 States of Quintet and Higher Multiplicity 

In the previous sections we have shown how Hougen's general conclusionB 

about the number of parameters needed to describe spin^lnteractions in mol-

ecules in ZZ states are in principle correct, though in practice the number 

of determinable parameters, which is governed by the experimental precision, 

may be less than predicted. In addition we have shown how the hig&e»-order 

spin-dependent terms in the effective Bamiltonlan can be cast into operator 

equivalent form, and how by use of the triangle rules on the Wigner n-j 

symbols we can determine what ranks of tensor interactions arise for a state 

of given multiplicity. In genaral, a contracted tensor spin operator of 

rank K will only arise in states of multiplicity greater than or equal to 

K + 1. Por example T^^J, IŜ ) interactions, with K » ), do not occur in 

states of less than quartet multiplicity. Similarly the fourth rank spin-

spin Interaction is not expected to arise in states of less than quintet 

multiplicity. There has been a growing interest In high multiplicity states 

of transition metal and rare-earth diatomic oxides (16, 17) and It Is in 

heavy diatomics that such higher order spin-spin Interactions would be ex-

pected to be detectable, Por this reason, the form of this fourth rank 

term has been Investigated further. In addition, since Hougen predicts 

that for quintet states two spin^spln parameters would be required, this 

fourth rank term is expected to be responsible for the additional parameter. 

The second rank spin-spin interaction operator was discussed 

in chapter 2, where it waa shown that the second order perturbation terms 

arising from states mixed in solely by spin-orbit coupling, mimic the form 

of the first order spin-spin Interaction, Similarly In third-order of per-

turbation theory, contributions to this second rank term are expected but 

by a brief conalderation of whether the total number of angular momenta 
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Involved la odd or even It oan be seen that no new terme arlae. In fourth 

order, however, a similar oonslderation reveals that a fourth rank tenmor 

oontraotion of four spin angular momenta oan be obtained, in addition to 

the usual seoond rank teim. The general fourth-order effective Hamiltonian 

is given in equation (2.24) of chapter 2. If the perturbation V is taken 

to be the spin-orbit coupling operator then the only terms that give rise 

to an effective spinf-spin interaotlon in a ZZ state are 

(Po™)4 V ( V " ' " ( V " ) ^ ( V " ) % 

- V " o ' (%/') " o (3.31) 

since all the other terms involve matrix elements of the spin-orbit oper-

ator within a atate and hence are zero. Examples of suoh non-zero con-

tributions are illustrated in figure 5 in the form of 'railroad' diagrams. 

Pour matrix elements of the spin-orbit interaction are involved in 

each of these fourth order terms, and hence there are four )-j symbols in 

each. As described in section ),2 of this chapter, these symbols oan 

be contracted to give 6-j symbols by use of equation (2.)9) of chapter 2. 

In this case however there will be three contractions and hence three ten-

sor ranks k^, kg and K resulting from these successive contractions. Itie 

details of this calculation need not be repeated, so just the final result 

is quoted. "Mie following diagonal matrix element is obtained: 

SZ; JHM I SZ; JjlM> 

• £ & 5 , - t v , ' " < • ; . - w -

(2X . 1) ( - , ) ^ ( . | ̂ 1 ) E (2k, . 1)(2k, . 1) 
K \ ̂  k^, kg 

1 / \ _ 1 

n 1 k̂  

Sg 8 S) S Sgj ( S S S^j (-q^ -qg I ^1+^2 "̂ 4 

y S ^2^2^2 



H s o / N^so 

Figure 3 Some fourth-order contributions to the spin-spin interaction in a 

state. 

Note that all the matrix elements are diagonal in CL . 
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I11 k,̂  
' S i 

'kg 1 K ' 

(S s 1 s s J 1 S S 8^ 

1 k, lyWkg 1 K 

' 1 1 k̂  

-^1 0 

^ t-q* 0 ^ 

(5.52) 

where q^, q^, are the oomponenta of each of the individual spiii-

orbit terms. These can take the values 0, —1, subject to the restriction 

().))) 

The labels used for the quantum numbers in ().)2) have the significance 

shown in figure 6. The values that k^, kg and K are allowed to take are 

governed by the triangle rules on the Wigner symbols and are shown in table 

Expression ().)2) is even more unwieldy than the third order terms but 

fortunately the general results can be obtained without performing any fur-

ther simplifications. Prom the properties of 3-j symbols, it is easily 

seen that ().)2) vanishes for K odd if all the q values are zero. Similarly, 

as was done with the lower order terms, an examination of the effect of 

replacing +q components by their negatives reveals that, for 2Z states 

only, the above expression is multiplied by a phase factor of (-1) on mak-

ing this substitution. Thus for odd K values the expression for +q is 

equal in magnitWe but opposite in sign to that for —q, and so the summat-

ion over q = -1 gives no net contribution to ().)2). Hence the only non-

zero contributions to (),)2) are those with K even. 

Equation ().)2) can be reexpressed in operator equivalent form as 

lijA; s r > = 

(3.M) 



12^2^2 

TllAlSi 

'TjAS -fjAS f)AS 

Figure 6 Notation used in calculation of fourth-order spin-spin inter-

actions. 



h k2 K 

0 1 0 J . 2 

1 0 1 

1 0 , 1 , 2 

2 1,2,3 

2 1 0 J . 2 

2 1,2,3 

3 2 , 3 / 

Table 3 Allowed values for the tensor ranks , kg and K in the calcul-

ation of fourth-order contributions to the spin-spin interaction. 
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which are just the matrix elementa of the rank spin-spin interaction, 

where K can take the values 0, 2 and 4* The reduced matrix element 

<S||T^(S)|| S ̂  does not appear explicitly in equation ().)2) but this can 

be extracted quite easily, either by expanding the 6-j symbols or by simul-

taneously multiplying and dividing by this factor, in which case the recip-

rocal has to be incorporated in the parameter Note that the rot-

ational quantum numbers J, ̂  and M have been suppressed from the molecular 

wavefunction in (%)4) since this particular fourth order Samiltonian does 

not operate on the rotational coordinates. 

As discussed in chapter 2, the term with K = 0 is a scalar quantity 

which can be absorbed into the electronic origin, vAiile the K » 2 term is 

just a further contribution to the usual spin^spin parameter (or TQ( )^)). 

The term with K = 4 however has not been needed for the multiplicities we 

have discussed so far. Ptom the triangle rules on ̂  y o Z ) restriction 

2S>4 is obtained, and so the parameter T^C^) will only be needed for 

states of quintet and higher multiplicity, as was predicted ffom more gen^ 

eral arguments. "Rie contribution due to this term js therefore obtained 

by substitution of K = 4 into ().)4) but as the reduced matrix element and 

)»j symbol thus obtained are not quoted in any of the standard texts on 

angular momentum, we give some indication of their derivation. Ttie )-j 

symbol can be calculated by a standard recursive procedure from )-j symbols 

of lower tensor rank and as such fourth rank )-j symbols have already been 

tabulated (18) we merely quote the result* 

/S 4 S\ 2[352:'̂  - )0S(S+1)E^ + 251^ - 6S(S+1) + )8^(S+1)^] 

(-:L 0 1/ [(2S-3)(2S-2)(2S-1 )2S(2S+1 )(2S42)(2S+3)(2S+4)(2S4.5)]^ 

(^.)5) 

The reduced matrix element Is rather more difficult to evaluate, Die 

fourth irank tensor operator can be reexpressed in terms of second rank ten-

sor operators by using standard relations, to obtain the following: 

'o(S) - X 

where q can take the values q = 0, —1, —2. !By expemsion of the j symbol 

in (3.)6) for each of these q values we obtain 

T^(s) . ^ [ T^(S) T^(S) + 41^(3) f / s ) + 

+ *rf,(3) rf(3) + fgCs) T̂ (S)] (5.37) 
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The matrix elements < S Z17^(3) | 8 Z > are sought after, but as ().)4) must 

hold for any value of Z then the problem can be simplified by setting 

ZI « S. Henoe 

< SS|T^(S)|SS> . — [ <SS|T2(S)|SS.2><SS.2|'p22(S)|SS> 
V76 

+ <SS|T^(S)|SS . 1>< SS - l|T2i(S)|SS> 

+ <'SS|TQ(SJ|SS) <SS|TQ(S)|SS> 

+ <'SS|T2i(S)|SS + 1 > < 8 S + l|?^(^|SS> 

+ (SS|T^(S)|SS+2)(SS + 2|T2(S)|SS)] (3.)8) 

"Rie final two terms in ().)8) are zero since the components (32 » S + 1 or 

3 + 2) are greater than the rank S. By expansion of the matrix elements in 

().)8) the following expression is obtained* 

<SS|T^(S)|SS) . |<S|| T^(^|| S>| ̂  

S 8 2 
S-2 -S 2 f - 4 f L j i f 

2S(28 - 1)(2S - 2)(2S - )) 

But the relation 

< SSI T^(S)|SS> =(_§ 0 s ) <S II II S > (3.40) 

also holds, which by comparison with (3.39) and evaluation of the 3-j 

symbol by use of ().35) leads to the required reduced matrix element 

<S|| T^(S)|| S> . _L_ [(2S-))(2S-2)(2S-l)2S(2S+1)(2S+2)(2S+))(2S+4)(2S+5)]^ 

4 V ^ 

(%41 
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The fourth order contribution to '^Q(^) o&H now be obtained from equation 

(3.52) by substitution of = 2, kg = ) and K = 4. There is, aa far as we 

know, no experimental evidence for this fourth rank term ̂ or a linear mol-

ecule. Its effeote are approximately proportional to which is likely 

to be extremely small ^0.001 cm"') unlesa a heavy atom is present in the 

molecule, so that the spin-orbit coupling constant is large. Fourth rank 

spin-spin terms have been detected in the ESR spectra of transition metal 

ions that are trapped in cylindrically symmetric environments (19) and the 

constants that are obtained are of similar magnitude to those estimated in 

this chapter. 

Finally we note that this fourth rank term could be written as a second 

rank interaction, but with Z dependent parameters. Thus the total inter-

action could be described only im terms of a second rank spin—spin inter-

action, using several Ih values to allow for the ZZ dependence of the para-

meters* This is consistent with Hougen's general conclusions about the 

number of spin-spin parameters that are required. A simple parametric dep-

endence between the and T^( "X ) is thus anticipated, but since the 

T^(%) with K >4 are likely to be extremely small then the %^'s are expec-

ted to be the same to within experimental error, using present techniques. 
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CHAPTER 4 

GAS PRASE ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY 

In this chapter we shall consider some of the general principles of 

gas phase e.p.r, spectroscopy. Some of the details presented here will be 

of relevance in the two following chapters. 

4.1 Comparison with Ordinary Microwave Spectroscopy 

In order to describe this technique it would perhaps be of benefit to 

describe the simpler, closely related method of pure microwave absorption 

spectroscopy. The separations between successive rotational energy levels 

correspond, with a few exceptions, to energies in the microwave region, the 

exceptions being for extremely light molecules such as OH and OD where the 

spacing between levels is much greater and falls in the far infrared. We 

shall ignore such exceptions in what follows. If a gaseous sample is irr-

adiated with microwave radiation over a range of frequencies, absorption of 

radiation at certain specific frequencies will occur, these absorptions 

resulting when the energy of the incident radiation exactly matches the 

energy separation of a pair of rotational levels so that a transition is 

induced from the lower level to the upper with accompanying absorption of 

radiation. The principle of a pure miciTOwave absorption experiment is to 

sweep the incident microwave frequency and to detect the absorption of rad-

iation as a function of this frequency. identifying the levels between 

which the transition occurs. Information on the disposition of the energy 

levels can be obtained. 

In contrast to the above technique, an e.p.r. spectrometer operates at 

a single, fixed microwave frequency and the separation between energy levels 

is tuned to this frequency by application of an external magnetic field* 

The reason the energy levels are tunable in this manner requires some fur-

ther explanation. In the absence of nuclear spins within the molecule, the 

energy levels can be labelled by two quantum numbers J and m^, where m^ 

takes the (2J + 1) values 

= J, J — 1 . . ., — J 

Other quantum numbers are required to define the energy levels completely, 

as discussed in chapter 2, but these need not be considered here. In the 

absence of external magnetic or electric fields, levels with the same value 

of J are (2J + 1)-fold degenerate, that is to say the (2J + 1) states 
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I J have the same energy. On application of an external magnetic field 

this degeneracy is lifted, each rotational level being split into (2J + 1) 

levels corresponding to the different m^ values. This is the well—known 

Zeeman effect. The splittings between the states |J mj> depend on the 

magnitude of the magnetic flux density, and on the effective magnetic mom-

ents for such states. Bach of the m^ levels therefore tunes with magnetic 

field at a different rate. 

If we consider a pair of m_ levels correlating with different J values, 

their energy separation can be seen to be a function of the applied mag-

netic field. Thus if the magnetic field is swept it is possible that at a 

certain value of the magnetic flux density, the energy separation of these 

levels coincides with the (fixed) energy of the incident microwave radia-

tion, so that absorption of radiation takes place. This is the basis of 

e.p.r. spectroscopy: the absorption is measured as a function of magnetic 

flux density, the lines observed in this manner corresponding to different 

pairs of energy levels being brought into resonance with the fixed frequency 

at which the spectrometer operates. 

This type of experiment gives similar information to the pure micro-

wave absorption experiments but gives additional information on the mag-

netic moments within the molecule. There are further diffemces too* 

Since it is necessary to have a substantial magnetic moment before the 

energy levels can be tuned with any rapidity it is apparent that only spec-

ies endowed with a sizeable paramagnetism (such as most free radicals) can 

be successfully observed by this technique. In principle the pure micro-

wave absorption technique is applicable to both free radicals and stable 

closed-shell molecules although in practice the former are quite difficult 

to observe. The reason for this lies partly in the nature of the exper-

imental arrangement and partly in the instability of the free radicals. 

The absorption cell used in ordinary microwave spectroscopy is either a 

length of waveguide or a length of glass tube along which the sample is 

passed. This cell has to be capable of transmitting microwave radiation 

over a range of frequencies. The sensitivity of such a system is propor-

tional to the length of the absorption cell, amongst other factors, but if 

a cell is made longer, so as to improve sensitivity, the problem arises of 

how to fill the cell with radicals, since they are so short-lived. 

Such problems do not arise in the case of e.p.r. spectroscopy. Since 

a single fixed frequency is used it is possible to use a resonant cavity as 

the absorption cell. These cavities resonate at certain frequencies det-

ermined by its geometry. It is therefore possible to build such a cavity 
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that resonates at the operating frequency of the spectrometer. These res-

onant cavities have several advantages over the absorption cells used in 

ordinary microwave experiments. First, their internal volume tends to be 

very small, typically ̂ /SOcm^ for one operating at X-band frequencies, and 

so there is not such a great problem in filling them with radicals, Sec-

ondly, because these cavities store energy at their resonant frequencies, 

radicals passing through the cavity are subjected to more intense radiation 

fields and consequently the sensitivity of the system is much greater. 

Maximum sensitivity occurs when power saturation of the sample is just 

reached and it is much easier to achieve this condition using a resonant 

cavity system. Typical linewidths for both types of microwave experiment 

are in the range lOkH* - 1MR%, the dominant contribution to these linewidths 

being pressure broadening. However, since frequencies can be measured more 

accurately than magnetic fields, the conventional microwave methods lead to 

more accurate parameters. With regard to searching for spectra from new 

radicals, the e.p.r. method is of more value, because magnetic moments can 

be estimated more readily than can rotational constants, and so the search 

problem is not so great. 

High resolution studies can be performed using other techniques, such 

as molecular beam methods, but we shall not deal with these. It is suff-

icient to point out that the linewidths obtainable in a molecular beam 

study are very much narrower than in the above microwave techniques, being 

typically in the range 100E* to lOkBd. 

In the next section some typical types of resonant cavity, such as 

used in e.p.r. experiments, are discussed. 

4.2 Cells for e.p.r. Studies 

There are two basic types of cell that can be used in e.p.r. exper-

iments, microwave cavities and Fabry—Perot resonant cells. We shall discuss 

each of these in turn, paying particular attention to the latter since this 

is the type used in the detection of OH, described in the following chapter, 

and because it has only recently come into use it has not to our knowledge 

been described in the literature of e.p.r. studies. 

Microwave Cavities 

These can be further classified into transmission or reflection types, 

depending respectively on whether the radiation passes straight through the 

cavity, being coupled out at the opposite end to which it is coupled in, or 

or whether a single iris doubles as both input and output coupling iris. 
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The latter is the type uaed moat frequently for e.p.r. studies. Both types 

are described quite thoroughly by Poole (l). They consist of a cylindrical 

or parallelepipedal shaped space enclosed within walls of high conductivity 

metal, such as brass, copper, silver or gold. These are commonly known as 

cylindrical and rectangular cavities respectively. 

The walls of the cavity reflect the radiation entering through the 

coupling iris and at certain frequencies a standing wave can result from 

constructive interference of the reflections. The metal walls transmit a 

small amount of radiation, a measure of this being the skin depth S , which 
1 

is defined as the depth at which the current density is — times that on the 

surface. The skin depth is of the order of 0.01mm for microwave radiation 

of about lOGHz and hence it is not necessary to construct the entire cavity 

from expensive metals such as gold or silver — a thin coating on the sur-

face of a much cheaper material will suffice. Several different standing 

waves, or modes, can be supported by a given cavity and these are class-

ified as TE or TM modes. The subscripts m, n and p refer to the num-

mnp mnp 

bers of half-wavelength variations along the three axes of the cavity. For 

a rectangular cavity these refer respectively to the x, y and z axes where-

as for a cylindrical cavity they refer to 0 , r and z axes respectively. 

These two axis systems are defined in figure 1. TE and TM stand for "trans-

verse electric" and "transverse magnetic" respectively, which means that 

the component of either the electric or the magnetic vectors of the radia* 

tion supported in the cavity along the z axis is zero respectively. The 

frequency of the radiation supported in these modes is a function of the 

dimensions of the cavity and of the mode numbers m, n and p. In general, 

as the dimensions of the cavity are decreased so the frequency of the res-

onant modes is increased. 

Por use in gas phase e.p.r. spectroscopy these cavities form an integ-

ral part of the gas flow system and so it is necessary to drill inlet and 

outlet ports through the metal walls. This results in some loss of micro-

wave ports but by judicious positioning of the holes, and provided they are 

not too large, these losses can be kept to a minimum. 

A measure of losses in resonant cavities i# the so-called ^factor, or 

quality factor, which is inversely proportional to the total energy loss, 

contributions to the total loss arising from, for instance, losses through 

the cavity walls, through gas ports, coupling irises, and from dielectric 

losses through the medium. It is important that the Q-factor is as high as 

possible. Since the ^factor has the alternative definition 



Figure 1 Coordinate systems for rectangular and cylindrical cavities, 

Rectangular coordinates 

Cylindrical coordinates 



- 55 -

q . V / A V 

where V is the resonant frequency 

is the bandwidth of the oavity, 

then a large Q means a narrow bandwidth. "The detection system reqiiizres the 

operating frequency of the spectrometer to be very close to the resonant 

frequency of the oavity for optimum sensitivity and in practice this is 

achieved by locking the source frequency to that of the cavity. A narrow 

bandwidth means that, once locked, the two frequencies remain extremely 

close together, which improves the sensitivity of the system. % e square 

root of the Q-factor is a measure of the signal-to-noise ratio obtainable. 

Typical Q-factors for microwave resonant cavities are 5000 to 10000. 

The rectangular cavities have been used most often in the study of con-

densed phases by electron spin resonance, a veiry similar experimental tech— 

nique to e.p.r., whereas for gas phase studies the cylindrical cavities are 

generally used. Two types of cylindrical cavity have been developed spec-

ifically for the study of gas phase species, one with its cylinder axis 

parallel to the direction of applied magnetic field and the other with its 

axis perpendicular. The former, such as developed by Carrington and Hyde 

and described by Carrington, Levy and Miller (2), operates in a mode 

ATvi can be used for experiments using either Zeeman or Stark modulation. 

Because the component of the electric vector lies perpendicular to the mag^ 

netic field this system can be used to study A m^ = -1 electric dipole 

transitions. The magnetic vector is orientated parallel to the external 

magnetic field and so m = 0 magnetic dipole transitions can also be 

studied. 

The second type similarly operates in a TB^^ mode but it is not poss-

ible to use Stark modulation with it. In this case the ports are drilled 

throu^ the flat ends of the cylinder and it is possible to make them much 

larger than for the previous type, without decreasing the Q-factor signif-

icantly. Consequently this type will be referred to as a 'wide access' 

cavity. This was the type used by Radford (3) in the first ever gas phase 

e.p.r. experiments on unstable molecular radicals. The magnetic vector in 

the modes supported by this cavity lies perpendicular to the magnetic field 

so A m^ » ll magnetic dipole transitions can be observed, whereas the elec-

tric vector lies in both perpendicular and parallel orientations in differ-

ent parts of the cavity, so both = 0 and Am^^ = -1 electric dipole 

transitions can be studied. 
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Aibry-Perot Resonators 

Aa has been mentioned already, as the dimenaions of a reflection cav-

ity are decreased so the frequencies of its resonant modes increase. Por 

example, at frequencies around 9GHa the internal volume of a reflection 

cavity operating in a mode is about )0om^. For a similar cavity with 

a resonant frequency of about 80GH&, the internal volume is about 0.1cm 

which is certainly far too small to be of any practical use for free radical 

studies. One solution is to use higher order modes, in this case modes 

such as or but this can lead to difficulties in coupling rad-

iation into the cavity and in drilling ports so as to not destroy the Q. 

A far better solution is to use a Pabry-Perot resonator, the partic-

ulELP type we use being either a sami-confooal or a confocal resonator. 

Strictly, the confocal resonator consists of two equivalent concave mirrors 

arranged coaxially such that the separation between them (d) is equal to 

their radius of curvature (R). In practice the system will still resonate 

if the separation is altered or if the mirrors have different radii of cur-

vature and we shall still refer to this as a confooal system. "Die semi-

confocal resonator consists of a plane and a concave mirror arranged such 

that the principal axis of the concave mirror is perpendicular to the plane 

mirror surface. If the separation of these mirrors is d then this systan 

can be regarded as equivalent to placing a plane mirror at the midpoint of 

two identical concave mirrors of separation 2d. Ike semi-confocal system 

therefore differs from the 'confocal' system only in that every other res-

onant mode is missing. This is a point more readily appreciated onoe the 

nature of the cavity modes has been discussed. 

The general theory of Fabry-Perot resonators and their modes has been 

reviewed by Kogelnik and Li (4) and by Yariv (5). Only information relevant 

to confocal (and semi-confocal) resonators will be presented here. 

First, it will be necessary to discuss the propogation of electromag-

netic beams. Starting from Maiwell's equations an electromagnetic wave 

equation can be derived, frcm which the electric and magnetic field vectors, 

E and H respectively, in a homogeneous charge-free medium can be shown to 

take the general form 

E « ^ e%P (i^ - ik.r + 1(6) 

" (4.1) 

E = ^ exp (iiat - ik.r + i ^ ) 

where E^ and are the amplitudes of the wave vectors, k is the propoga-
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tion vector along the direction vector r, CO is the frequency of the rad-

iation and (6 is a phase factor, E, H azid k can be shown to be mutually 

orthogonal. We shall assume the wave is propogated in the z direction 

only, and so k.r is replaced by kz. "Hie wavefunctions (4.1) lead to plajiar 

wavefronts ani uniform intensity distributions perpendicular to z whereas 

curved wavefronts euod non-uniform transverse intensity distributions are 

more realistic, "Phese Requirements can be taken into account by replacing 

the amplitude constant by a new flinotion containing exponentials with 

complex arguments; 

E Ip exp (—ikz + iwt) (4.2) 

and similarly for H. 

One solution for is of the form 

exp -lP(z) -
Ik (x^ + y^) 

2q(z) 
(4.)) 

where P(z) and q(z) are complex parameters describing the propogatlon of 

the beam, P(z) is a complex phase shift and q(z) a complex radius of cur-

vature giving the required curved wavefronts and the non-uniform intensity 

distribution. 

It is far more convenient to introduce two real beam parameters R(z) 

ATkl W (z), which are defined as follows * 

1 

<l(z) 

1 i> 

a(z) TTW (z) 
(4.4) 

with the complex beam parameter at the origin of the z axis being given by 

q (z = O) 90 
iT7W 

A 
0 (4.5) 

The physical interpretation of these two parameters is as follows: 

^ ( z ) is a measure of the non—uniform intensity distribution and is known 

as the spot size, W is defined as the distance measured normal to the axis 

of propogatlon at which the intensity is of that on axis. is the min-

imum spot size, or beam waist, and slnoe from (4.5) W = W g at z « 0 we 

see that the choice of origin for the z axis is at the beam waist, R(z) is 

the real radius of curvature of the wavefronts at a distance z fr(»m the 

origin. Using the above definition of the origin, R(z) andW(z) can be 
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obtainedt 

R(z) 

W(z) 

1 4 ^ 0 
2 \ 2 

w : .J 
[TTull 

(4.6) 

(4.7) 

It follows from substitution of t = 0 into (4.6) that the wavefronts at the 

beam waist are planar. 

The solution (4.2) of the electromagnetic wave equaticm can be rewritten 

W 0 exp I 
/ 2 
/ -r 

W(z) iW(z)' 
e%p f zlfjl I exp (-ikz + 1 ^ ) eip (iWt) 

i2H(z)/ 

(4.8) 

where = arctanf.^:;^^ j 

2 2 2 ^ 
a M r = X + y 

"The first exponential in (4.8) represents the non-uniform intensity dis-

tribution, the second and third describe the beam divergence. Figure 2 

illustrates the profile of this beam. As can be seen, the intensity profile 

is Gaussian in shape and hence these beams are commonly referred to as 

Gaussian beams. Ihis particular beam shape is the fundamental mode. 

Hi^er order modes also exist and these have the form 

E — exp / yrg exp liLhj exp (-ikz + i)Z)) exp (iWt) 
2R(z)/ 

^^2 
CO r L x g ) (4.9) 

where jZ) = (2p + 1 + l) arctan^^^^ j 

is a Laguerre polynomial with radial and angular mode numbers p and 1 

respectively. Since L g = 1 it follows that (4.8) is a special case of 

(4.9), with p = 1 = 0. Since the electric and magnetic field vectors are 

both orientated perpendicular to the z axis these modes can be described as 

THMp^ modes. 

Ve are now in a position to describe confocal resonator systams. The elec-
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Figure 2 Propogation lines and intensity profile of a Gaussian Beam. 
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tromagnetlo radiation within the cavity is adequately described ty a func-

tion of the form of (4.9), i.e. by a Gaussian beam. Under certain condit-

ions a standing wave can result from the reflections from the two mirrors. 

It is apparent that, in order to get reflections, the radii of curvature of 

the mirrors must be equal to those of the wavefront8 at that point along 

the principal (z) azis. Figure ) illustrates a typical two-concave-mirror 

system, Ihe coupling iris throu^ which radiation enters the cavity is not 

indicated. It could be in the centre of either mirror. 

The condition for resonance is that the phase shift between the mirrors 

is 7T , or a multiple thereof. Consider the simpler case where = R = R. 

The phase shift from A to B must take the general form 

(kz - 0 ) = qTT (4.10) 

where q is an integer. 

It is now possible to derive the beam waist and resonant frequencies 

for this system. Since R(z) = R at z = d/2 then from (4.6) and (4.7) we 

obtain 

CUo - //(ZB - A) * (4.11) 

which on substitution into (4,10) leads to 

^ q + ̂  (2p + 1 + 1) arccos ̂ 1 - ̂  (4.12) 

q is known as the longitudinal mode number, and the cavity modes can be 

designated TEMp^ . Por given values of p and 1, and for fixed d and R, 

there is a succession of resonances the separation between consecutive res-

onances being known as the free spectral range, . 

The strong dependence of V on d can be used to our advantage. It is 

possible to show by differentiation of (4.12) with respect to d that a 

change of A V in the resonant frequency V can be brought about by altering 

the length d by approximately half a wavelength. This leads to the poss-

ibility of constructing a tunable cavity, since quite modest changes in d 

(say "&cm) can produce large changes in the resonant frequencies (say -2GH*J« 

A change of A V in all of the resonant modes is all that is required for 

the cavity to be continuously tunable over a very wide frequency range, a 

possibility which does not exist for the reflection cavities discussed 

previously. 



Figure 5 A Fabry—Perot resonator constructed from two concave mirrors, 

(NJ 
- d -
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Expressions corresponding to (4.11) and (4*12) for the case where 

^ are more complicated and so will not be quoted here, "Riey have 

been given by Kogelnik and Li (4). 

As has been mentioned already, the wavefronts at the beam waist are 

planar. Hence a plane mirror could be placed at the beam waist to form a 

new resonant system, but with essentially the same characteristics as the 

two-concave-mirror one. This is the semi—confooal resonator. The only 

difference is that, since the phase shift between mirrors has to be a mul-

tiple of IT , only those frequenoies obtained from use of the oonfocal form-

ulae (with d aa twice the semi-confooal separation) with even q values will 

be supported, i.e. every other mode will be absent. The apparent free 

spectral range for a semi—confocal system is twice that of the correspond" 

lag confooal system. 

In designing a Pabry-Perot resonator for e.p.r. purposes there are 

various points to bear in mind* First, in order to pass radicals through 

the mirror gap it is necessary to enclose the mirror* and incorporate this 

space into the vacuum line. This is easily achieved by using a glass or 

perspex cylinder into the ends of which the mirrors will fit (with suitable 

vacuum seals). The glass cylinder is perhaps the more convenient as then 

standard glass joints can be used throughout the vacuum line. Since only 

the mirrors are responsible for supporting the modes the inlet and outlet 

ports built into this cylinder can be any convenient size - there are no 

problems arising from loss of power through the ports as there are for the 

reflection cavities. In addition it is not too difficult to transmit 

100kHz modulation through the cylinder walls. Microwave cavities are con-

structed from highly conductive metals which have small skin depths,§ . 

For instance, for oopper the skin depth at lOOkRz Is 0.2mm and so the 

current density has dropped to ̂  of its original value at this depth of 

penetration. To combat this attenuation either very large modulation power 

levels must be used, or the cavity walls through which the modulation is to 

pass must be a very thin layer of conducting metal (preferably deposited 

onto some non-conducting material so as to retain mechanical strength). 

Since glass and perspex are poor conductors their skin depths are extremely 

large, of the order of lO^m for 100kHz frequencies, and so the modulation 

will penetrate the cell walls of a Pabry-Perot resonator easily. 

Secondly, from the point of view of sensitivity, the maximum on-axis 

intensity of radiation is required, which means that the TEM^Q^ modes should 

be used. To prevent too much power being diverted into higher order modes 

these other modes have to be discriminated against. Higher order modes 
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have their maxlmmn intensity on-axis, but unlike the TEM^ modes they also 

have a non-zero intensity at a certain distance off-axis. If these sat-

ellite regions can be discriminated against then the dominant modes will be 

the TZMQQ . This can be arranged by using mirrors of such a width (a) that 

these satellites fall outside the mirrors and hence are not reflected. 

Losses from around the sides of the mirrors in this way are known as diff-

raction losses. Other losses also occur in the system, such as from absorp-

tion by the dielectric medium, scattering off imperfections in the mirrors, 

poor coupling of radiation into or out from the cavity and so on. 

Thirdly, a resonant system is not necessarily a stable one. If we 

define 

1 d 
^ - E, 

g 2 1 - # 
«2 

then the system is stable only if 

0 < g^ gg < 1 (4.13) 

Finally, we have to determine the Presnel number N, defined by 

a. a 
N = — — - (4.14) 

^ d 

An estimate of diffraction losses for the modes can be obtained for 
OOq 

given values of g^, gg and N, and it turns out that for fixed g^ and g^ 

these losses are least when N is greatest. The Presnel number can be rel-

ated to the phenomenon of Newton's rings and so the higher the value of N, 

the more radial modes there are and the more likely hi^er modes are to be 

supported. To discriminate against such modes a system with an N value 

close to 1 must be used. Taken in conjunction with earlier statements, the 

optimum N values for our purposes are between 1 and 2, preferably nearer 2. 

The values of a^, a^, Rg and d have therefore to be carefully chosen. 

Nevertheless, it is possible to obtain h i ^ Q-factors for these cavities, 

typically ̂ 6000 for '^26GBz and increasing rapidly for higher frequencies. 

It should be apparent that the Pabry-Perot resonator offers several 

advantages over the reflection cavities - they allow e.p.r. experiments to 

be performed at higher frequencies than for the reflection typey it is ppss-
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Ible to observe all types of magnetic and eleotrio dipole transitions 

simply by altering the orientation of the waveguide *n#li*giato cav-

ity; they can be tuned easily over a large frequency range; there is no 

probbm in the sUw* of g*s pmts; ewd fbwlly, there is noprobkmin 

getting a modulation signal throu#i the cell vails. 
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CHAPTER 5 

A DETERMINATION OP g-PACTORS FOR THE ^OH RADICAL 

[). 1 Introduction 

The OR radical probably qualifies aa being the most extmnaively studied 

free radical. Since its detection early in this century, it has been sub-

jected to many theoretical and experimental studies. We are only interested 

in the rotational energy levels of the molecule and the studies per-
taining to these. 

There are several reasons for the great interest taken in the OH mol-

ecule. First, the rotational energy levels are complicated by various 

uncoupling effects, which arise from the fast rotation of the molecule, since 

it is so light. There are thus some rather interesting features in the rot-

ational spectrum which can give information on the electronic structure (1). 

The description of these interactions poses a problem for the experiment-

alist, who needs to determine a suitable effective Bamiltonian before he can 

analyse his data. As far as the theoretician is concerned, these uncoup-

ling effects provide a severe test of ab initio calculations of molecular 
parameters. 

Secondly, OH is a molecule of great astronomical significance. Radio-

astronomers have detected its presence (2) in numerous interstellar gas 

clouds and in comet tails. Because of its great abundance in interstellar 

space it is particularly useful for estimations of relative velocities of 

sources, though an accurate determination in the laboratory of the molecular 

constants in a necessary precursor of such work. A further interesting 

example of the way in which interstellar OH signals have been used is in 

the estimation of the minute magnetic fields present in collapsing gas 

clouds (3), using a comparison of left and right circularly polarised spec-

tra. It is likely that OH plays an important role in interstellar chem-

istry, such reactions subsequently leading to the formation of larger mol-

ecules. The OH radical is therefore a potentially useful probe molecule 

for the study of the physical and chemical development of interstellar gaa 

clouda. 
Finally, OH is very easily made in the laboratory and has a relatively 

long lifetime, around & sec., so that sufficient concentrations can be gen-

erated to allow easy detection. Indeed, this molecule is often detected 

during the search for new radicals, sometimes even from the most unlikely 

combinations of reactants. The reason for the long lifetime of OH is that, 

under favourable conditions, a particular regenerative process occurs. 
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All this notwithstanding, there are still aspects that have not been 

extensively investigated, a case in point being the molecular g-factors. 

Radford (4, 5), in the first gas phase e.p.r. experiments on unstable mol-

ecular radicals, has investigated the microwave Zeeman effect and has det-

ermined the effective g-values. These effective g-values are determined 

phenomenologically - each describes the overall rate of tuning with applied 

magnetic field of a single rotational level. Of far more value are the 

funiamental molecular g-factors, which relate to the different interactions 

of molecular angular momenta with the exteî nal magnetic field, since these 

give direct information on the electronic structure of the molecule. The 

effective g-factors found by Radford can be written as linear combinations 

of the molecular g-factors. To our knowledge, no analysis has yet been per-

formed to determine the molecular g-factors and so to remedy this omission 

we have perfonned an analysis of the e.p.r. spectra of seven rotational 

levels of the ground vibronic state of the ^OH radical. Radford's data 

for five of these levels are used, transition frequencies for the other two 

levels being measured at the University of Southampton. 

These g-factor determinations are not likely to be of great value to 

radioGistronomers as far as estimations of magnetic fields in gas clouds are 

concerned. The lAienomenological g-faotors are quite suitable for this pur-

pose. However, the advantage of the molecular g—factors is that since they 

are related to more fundamental molecular quantities, such as electron dis-

tributions, they are capable of giving far more information on the elec-

tronic structure than are the effective g—factors. 

In the following section a brief outline of the theory of the rotat-

ional energy levels is given, while in section ) the previous studies are 

described. Section 4 deals with the experiments performed in this labor-

atory on the J = 9/2 levels and in sections 5 to 7 we present the 

form of the effective Hamiltonian used in our analysis and compare this with 

previous Hamiltonians. In the final two sections the results of this ana-

lysis are presented and discussed. 

$.2 Rotational Levels of a Diatomic Molecule in a /\ Electronic State 

In this section we describe the rotational energy levels for a mol-

ecule in a state, with particular reference to the OH molecule. Init-

ially we look at the energy level* in the absence of rotation of the nuclei 

and then the effects on these fine structure states on introduction of the 

rotational and associated uncoupling interactions are considered. The 

effects of nuclear spins will be ignored for the time being. 
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We must first decide on a suitable set of basis fimotiona. Since for 

most molecules In ̂ A states the spin-orbit coupling is large, so that both 

L and S are coupled strongly to the internuclear axis and the quantum num-

bers A and Z are well-defined, then wavefunctions conforming to a Hund's 

case a) coupling scheme are most appropriate. Case a) wavefunction* are of 

the form 

SZ; JJIM > 

where the quantum numbers that define this function have the significance 

described in chapter 2. For a ̂ 71 electronic state these quantum numbers 

have certain allowed values, which are as follows* 

' ' (5.1) 

r = -1/2 

J = 1/2, 3/2, . . . 

Prom the linear molecule restriction, the values jTL is allowed to take are 

n . A + Z . ll/2, l)/2 (5.2) 

subject to the restriction J . 

In the absence of rotation, states with the same value of 1^1 are 

degenerate and so there are two fine structure states, labelled ^^1/2 

according to the value of |f%|. The wavefunctions corresponding to 

these states are of the form 

12^^ = |/̂  = li; i: = ;i/2 > 

(5.5) 

1^7^2/2^ = M EI = ±1/2 > 

and the separation in energies of these states is a measure of the spin-

orbit coupling constant, A. Obviously if the spin-orbit coupling is large 

then these two fine structure states will be well separated. These states 

can further be classified as regular or inverted according to whether the 

quantity (A - 23) is positive or negative respectively. This quantity gov-

erns the size of the splitting of the fine structure states and hence for a 
P 2T-r 

regular state the state is lower in energy than for the 
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state, whereas for an inverted state the reverse applies* 

So far w* have oonaidered the fine structure states for a good caum a) 

molecule, but the OH radical Is not well described by oam# a) wav.lunollun*. 

There are two reasons for this, not entirely independent. First, because 

the molecule rotates rapidly, S is extensively uncoupled from the inter-

nuclear axis, and the quantum number Z2 is no longer well-defined. The 

quantum number therefore begins to lose significance as the uncoupling 

gets larger and ao it is no longer valid to refer to the fine structure 

states as and This is because the spin-uncoupling, as it is 

known, has caused these two states to be extensively mixed and so they lose 

their separate identities. The labels 7T)/2 strictly only apply 

to a pure case a) state. In addition, the spin-orbit coupling constant 

for OH is relatively small, since it is so light, and hence the fine struc-

ture states are quite close together (approximately 140cm apart). The 

proximity of the fine structure states in OH serves to enhance the mixing 

of these states. In the extreme case of complete uncoupling of S from the 

internuclear axis, in which case ZZ and fl have no signifioaaoe whatsoever, 

we have a Bund's case b) coupling scheme. The labels TT^yg ^l/2 

then no longer valid and so wavefunctions must be chosen which conform to a 

case b) scheme. The coupling scheme for OH is intermediate between cases 

a) and b), so the labels ̂ fT^yg &nd ̂ TT^yg do not strictly apply. It is 

convenient however to retain the case a) formalism to deal with the OE rot-

ational levels. 

Although uncoupling effects have briefly been considered above, their 

origin has not been indicated on any mathematical grounds. These uncoupling 

interactions arise on introduction into the Hamiltonian of terms describing 

the rotational motion of the nuclei. The Bamlltonian for the spin-orbit 

and rotational interactions is as follows* 

H = AT̂  (ij. T̂  (3) + BT̂  (J - L - S). (J- L - (5.4) 

where a greatly simplified form of the microscopic spin-orbit Hamiltonian 

is used, known as the phenomenological spin-orbit Hamiltonian. The micro— 

soopic spin-orbit Hamiltonian allows more electronic states to be mixed 

into the ground state than does the phenomenological form. This is because 

the latter is based on Van Vleck's pure precession hypothesis, in which L 

is assumed to be a constant of the motion, i.e. L is a well defined quantum 

number. 

The Hamiltonian (5.4) can be expanded in a molecule-fixed axis system 

to obtain the following* 
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H . A S (-1)1 T^(L) (a) - B ̂  (?], (i) < (i) 

+ (i) (i) + (S) + 2T^ (k) •'1, (&) 

- 2T' (J) T' (S) - :T' (J) T' (L)] (5.5) 

where q = 0, 

Since the q = 0 component is defined to be equivalent to the component 

along the Intemuolear (z) axle then we have the relations 

(&) z A 

4 (2) = 5% = I 

= Jz = n 

which on substitution into (5*5) leads to 

H = A A Y 

+ B [J(J + 1) + S(S + 1) - 2 ^ 2 - A ^ ] 

+ B Z (-1)4 Tq (L) (1) 
t 

21' (-1)1 rl (J) f\ (s) 
''J 

+ (2B + A) Z (-1)4 Tq (L) (s) 

- 2B (-1)4 (J) (&) (5.6) 
q—1 ^ ^ 

The first term in (5.6) is reeponsible for the splitting between the fine 

structure states and it is readily seen by substitution of A = -1 and 
2TT 

21 = -1/2, the relevant quantum numbers for a fl state, that two such 

states are obtained, differing only in the value of 1^%) = IA + Z, I, and 

separated by an energy equal to A, as noted previously. The second term, 

arising from the diagonal part of the rotational Hamiltonian, lifts the deg-

eneracy of the fine structure states, giving rise to a sub-manifold of rot-
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ational levels for each of the fine struoture states. The third term, 

3 (L) (1), equivalent to B(L^ + %^) in the Cartesian not-

ation, adds a constant term to all of the rotational levels, althoug$i higher 

order perturbation terms involving this term will not necessarily impart a 

constant shift to all the energy levels. To first order we are justified 

in ignoring this term as we are only concerned with the relative energies 

of the rotational levels. 

The fourth term, - 2B IJ (-1)"̂  T^ (j) T^^ (S), is the familiar spin-

uncoupling term given in equation (5.7) of chapter ). Its effect has 

already laeen discussed earlier in this section, namely, this term accounts 

for the uncoupling of the electron spin from the intemuclear axis as the 

molecule rotates. Non-zero matrix elements of this operator occur between 

states of different Z value but the same A value, i.e. between states of 

different |il|. This term is hence responsible for mixing the two fine 

structure states together, and so for the deviations towards case b) beh-

aviour. The smaller the separation between the fine structure states then 

the more extensively they will be mixed. Similarly, the faster the molecule 

rotates then the more the spin is uncoupled from the axis. A useful indic-

ation of the magnitude of the spin-wncoupling is given by Y = A/B, the 

ratio of the spin—orbit coupling and irotational constants* the smaller the 

value of Y then the larger the spin-uncoupling. Since for OB the spin-orbit 

coupling constant is small and the rotational constant quite large then Y 

is quite small, thus giving some quantitative description of the marked dev-

iation towards case b) behaviour. The experimental value of Y for OH is 

approximately -7.5, where Y is negative because A is negative. Simple 

arithmetic shows that (A - 23) is a negative quantity and so CB is an 

4nyerted state, in which for a given J the levels are lower in energy 

than those of the / s t a t e . 

The final two terms in (5.6) are, respectively, the off-diagonal con? 

tributions denoting the uncoupling of S from L and the L-uncoupling terms 

given in equation ().6) of chapter ), the latter representing the imcoup-

ling of L from the intemuclear axis. Each of these terms have non-zero 

matrix elements between states differing in the value of A by 1 and hence 

are responsible for the admixture of excited e1ectronic states into the 7^ 

ground state. The effect of these interactions is to give different shifts 

to the states with different A . This lifting of the A-degeneracy of the 

rotational levels is known as /\-doubling. The states that are mixed dir-

ectly into a ̂ 71 state by these two interactions can only be Z or 

states, and it will subsequently be shown that to a high degree of approx-
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imation the /\-doubling arises predominantly from the admixture of 

states only. 

Now in the absence of an eleotrlc field the total Hamlltonlan commutes 

with the space-fixed inversion (parity) operator BP, or. In other words, 

they possess a common set of elgenfunctlons 1*4^* 

Hiyv> = E l y / ) _ 
(5.7) 

B* lyk) = + I %/> 

where E represents the energy and + or - the relative parity of the elgen-

fumctlon. The elgenfunotloms In this case possess well-defined par-

ity, If these wavefunotione are used as basis functions then there will be 

no matrti elements of the total Hamiltonian connecting states of opposite 

parity. 

Consider the manner in which the case a) basis functions that we have 

adopted so far transform under the parity operator. As mentioned in chapter 

this requires a consideration of how the Euler angles transform under E* 

Ef |T|A; SIC; jnM> = (-1)^"^ ri ' s ; J M > 

(5.8) 

This Is analogous to the expression given in equation (5,2)) of chapter 

the 1 in the latter expression referring to 52 states only. It follows 

from (5.8) that these basis functions do not possess well-defined parity. 

W6 therefore define a parity basis set by taking the linear combinations 

|T)d; SZ ; JflM; - ) = I- ) 

1 
: — I 7^; SZ; J#M> - (-1)^"^ I ^ ; S -Z ; J M > j 

(5.9) 

This transforms under the parity operator as follows: 

E* I + > = 1 f(_1)J'& |f) ./i ; S -Z ; J M> - I^A; SZ; J JIM > | 

= + |±> (5.10) 

and hence these new wavefunctions have well-defined parity. 

In the case of the non-parity wavefunctions the eigenvalues for a 

given J are obtained by diagonalisation of a 4 x 4 secular determinant, in-
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volving the four basis functions 

=7T)/2 A = .1 > ! I '7T,/2 A . - 1 > 

(5.11) 

1/2 + ' / » I " 1 / 2 

For the parity waveftmctions there are still four basis functions, labelled 

% / 2 A - . 1 > A..1 > 

^3/2' ̂  ̂  1 ^5/2^ " ^ 

(5.12) 

I '7Tl/2' + > I X / 2 ' - > 

but since there are no matrix elements between states of opposite parity 

then the 4 x 4 secular determinant factorises into two 2 x 2 determinants. 

%e advantage in constructing a secular matrix from parity basis functions 

is therefore that we gain oonsiderably in the ease of computation of the 

eigenvalues. 

Matrix elements of the Hamiltonian in the parity basis are related to 

those in the non-parity basis as follows: 

< ±1 H I ±> = (j; A = -1| H I J'; A = -1 > 

± (-1)"̂ '"̂  ('j; /\ = ±1 I H I J'; /I = +1 > (5.1)) 

It is apparent from (5.1))* or from (5.12), that, for levels of a given J, 

the energies of levels of opposite parity differ by a A -doubling interval, 

Rence the two levels of a A-doublet have opposite parity, and can be lab-

elled + or - accordingly. The phase factor (-1)^"^ in (5.1)) means that 

the relative parities of upper and lower A —doublets alternates for success-

ive J levels. 

In order to describe the rotational energy levels of a 71 state in 

terms of basis functions only, a suitable effective Bamiltonian is re-

quired, and so, to account for the A -doubling phenomenon, terms must be in-

cluded in the effective Hamiltonian that, in first order, mimic the higher 

order effects of the final two terms in (5.6). The derivation of such a 

Hamiltonian will be postponed for the time being. 

Figure 1 shows the general disposition of the rotational energy levels 

for an inverted ̂ 7T electronic state, the levels connected by braces being 

the A -doublets, 
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Figure 1 Schematic representation of rotational energy levels for an 

2 _ 
inverted 71 electronic state. 
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We merely note at this stage that since the hydrogen atom has a nuclear 

spin of I = ̂  then hyperfine effects must also be considered. Each of the 

rotational levels in figure 1 are thus further split into doublets, corres-

ponding to the two allowed orientations of the nuclear spin. If the coup-

ling scheme 

? = J + I 

is used then these hyperfine levels can be labelled by the quantum number 

P, given by 

P = or J + i 

There is a further degeneracy associated with each of the rotational 

levels and this arises from the quantisation of the total angular momentum, 

J (or P if nuclear spin is included), in the space-fixed axis system. Con-

sider the case where nuclear spin is not included. As described in chapter 

2, the quantum number relates to the projection of J along the space-

fixed z axis, and takes the 2J + 1 values 

m^ a J, J— 

In the absence of external magnetic or electric fields the (2J + 1) states 

IJ Bj) are degenerate. On application of a magnetic field, however, the 

degeneracy of these levels is lifted, this being the well-known Zeeman 

effect. The Zeeman energies are given by a relation of the form 

where is the magnetic flux density and m^ the component of the magnetic 

moment of the molecule along the field direction. The latter is related to 

(5.15) 

the m value by the expression 

where ^ is the Bohr magneton and gj the effective rotational g-factor. 

This effective g-factor is compounded from more fundamental molecular g-

factors, the dominant contributions arising from the electron spin and 

orbital motions. The values of these particular g-factors are very close 

to the well known free electron values 

gg = 2.002)2 

g, = 1.000 
(5.16) 
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Por a pure cage a) coupling aoheme the effective g—factor is propor-

tional to the quantity (g TC + g^y\) and it ia immediately apparent there-

fore that the effective g-faotor for a state. In which the elootron 

orbital and spin magnetic moments effectively oppose one another, la approx-

imately zero. Since the magnetic moment is so small then the Zeeman split-

ting of the rotational levels is almost negligible, 

Now, as mentioned in chapter 4, the principle of electron paramagnetic 

resonance (e.p.r,) spectroscopy is that the sample is Irradiated by electro-

magnetic radiation of a fixed frequency and the Zeeman effect is utilised 

to tune the energy separations between various pairs of levels Into reson-

ance with this fixed frequency. If the g-factor is very small then either 

it will not be possible to tune the relevant levels into resonance at all 

or, even if the levels cam be tuned, since the levels tune so slowly the 

absorption line will be so broad as to be undetectable, It is not likely 

to be possible to observe an e,p,r. spectrum arising from a pure 

state. 

Consider, however, the situation for a pure case b) coupling scheme. 

The electron spin angular momentum is completely decoupled from the inter-
2 2 

nuclear axis and so the state labels 7 T ^ a n d TT^yg have no significance. 

The magnetic moments arising from the electron spin and orbital angular 

momenta do not therefore lie along the same axis and so the effective g-fac-

tor is non-zero for all the rotational levels. 

The coupling scheme for OE is Intermediate between cases a) and b), 

but we have retained the case a) formalism for convenience. In this case, 

the effective g-factors for the "TT̂ yg levels are non-zero, although quite 

small. This situation can be regarded as an acquisition of case b) behav-

iour by the case a) wavefunct1ons as the coupling scheme deviates towards 

case b), or, In other words, as the spin uncoupling becomes larger so the 

fine structure states become more extensively mixed and more 77^/2 charac-

ter is introduced into the states. The magnetic moment of the 
9 / 2 
TT, * states is therefore "borrowed" from the states and so it is 
1/̂  

possible to observe e.p.r. spectra arising from the ^tate of OH, 

although the lines are much weaker and much broader than in spectra from 

^rr^yg iGvels. The weakness of the ̂ TT̂ yg lines is a result of the smaller 

Boltzmann population rather than being due to the smaller g-factors. We 

note that since the J = i levels exist only for the TT̂ yg state then there 

can be no mixing with the ̂ TT^yg state and so the g-factor for these levels 

should be essentially zero, even for a light molecule such as OS. 
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16 
5.) Previous Studiea of the OH Radloal 

As has already been mentioned, the OH radloal has been the subject of 

a great many studies, covering a wide range of techniques. We are only 

interested in those studies giving information on the rotational energy 

levels. 

Dieke and Crosswhite (6) have performed an extensive analysis of the 

vacuum ultra-violet spectrum of OH, the radical being produced in an o%y^ 

acetylene flame. Values for the rotational constant B, centrifugal distor-

tion parameter Dg and the fine-stiruoture parameter Y (« A/B) were obtained 

from this work, which were more accurate than from previous studies. How-

ever, the linewidths inherent in this type of experiment are quite broad 

(typically0.1 - O.^cm"^) and so the effects of some of the smaller 

interactions cannot be resolved. Hig^ resolution techniques, such as stud-

ies in the microwave region or molecular beam methods, must theirefore be 

adopted if these smaller effects are to be detected. 

Since the OH molecule is so light, the spacings between successive 

rotational levels are quite large — about 100cm for the lower levels. 

The rotational spectrum of CB, arising from transitions between these lev-

els, therefore lies in the far infra—red, where the resolution is still 

quite low (typically"̂ lÔ ĉm"̂ ), PortunatAly there are transitions in this 

molecule that occur at microwave frequencies and so measurements of hig^ 

precision can be made. The observed microwave spectrum in fact arises from 

transitions between the ̂  —doublets from a given rotational level. These 

/I—doubling transitions are therefore electric-dipole allowed since they 

mmmm* connect states of opposite parity. 

"Rie first zerofield microwave absorption studies of A -doubling in OH 

were performed by Dousmanis, Sanders and Townes (7)# this case the rad-

ical being detected in the products of a microwave discharge in water vap-

our 

HgO — — ^ OH + other products (5*17) 

The observed transitions arose from the J = 3/2 and 5/2 levels of the 

state, and from the J = 7/2, 9/2 and 11/2 levels of the state, 

the frequencies lying in the range 7700 to )7000MHz. The accuracies of 

these measurements were, at best, within 50kBz, which was sufficient to gain 

information on the phenomenon of A —doubling and to give estimates of the 

magnetic hyperfine parameters. This list of zero—field measurements has 

subsequently been extended by Poynter and Beaudet (8), Radford (9) and Ball 
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and coworkers (10, 11), who were also able to improve on the accuracy of 

the lines measured by Do&tam&nis e^ al (7). 

The most accurate determlnatlonB of zero—field A —doubling frequencies 

come from molecular beam studies. Measurements of the lines 

were obtained by ter Meulen and T̂ ymaims (12) using a beam maser spectro-

meter, these frequencies being accurate to within 100Hz. Ihe A P = 0 
2 

transitions from the 71 J » 9/2 level* were remeasured by ter Meulen 

(1)) using the same technique. A molecular beam electric resonance (MBER) 

experiment was performed by Meerts and Dymanus (14) to remeasure the 7T̂  

J » 5/2, 7/2 and 9/2 and the J = 5/2 A-doubling freq:uencie», 

althoug)! the accuracy of these, ranging from within 1 - 10kHz, is not so 

good as from the beam maser. Recently, ter Meulen ̂  ^ (15) have reported 

a preliminary investigation of an inverted population of A -doublets, using 

both of these molecular beam methods, in an attempt to understand the maser 

emission from inteirstellar OH. Ihe method of preparation of OR for all the 

aforementioned molecular beam studies has been the reaction of ROg with the 

products of a microwave discharge in water vapour 

HgO H + other products 

H + NOg ^ OH + NO 
(5.18) 

Double resonance techniques have also been used to obtain high resol-

ution data. Recently, Destombes and Marliere (16) have used a radio-freq-

uency microwave double resonance method to obtain extensive measurements on 

the ^ levels, with an accuracy of between 8 and 25kEz. 

The 2>»eman effect on the rotational energy levels warn first invest-

igated by Radford (4, 5) again using a microwave discharge in water vapour 

to generate the radicals. He was able to determine the effective zrotational 

g-factoirs for the TT^yp J = )/2, 5/2 and 7/2 levels (4) and subsequently 

for the ̂ TT̂ yg J = ^/2 and 5/2 levels (5)* the linewldths for these exper-

iments varying from 450 to 800kHz. Similar experiments weM performed by 

Clough, Curran and %rush (17), who detected /\-doubling transitions arising 

from within the vibrational levels v «= 0 to 4, the method of preparation 

being 

H 4" 0^ ' ' ^ OH + Og (5 * 19) 

However, we are only concerned with those transitions arising from the 

V = 0 level, in which case the results of Radford are to be preferred. 
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5«4 Measurement of the Zeeman Effect in the J " 9/2 Rotational 

levels of OH 

These measurements were made in conjunction with Dr. M. Kalse. The 

method employed to measure the Zeeman effect in the TT^yg J — 9/2 level of 

CH Is basically the same as that used by Radford (4) for the lower rotat-

ional levels, namely to observe the A -doubling transitions using an e.p.r. 

spectrometer. Prom the work of Dousmanis, Sanders and Tcwnes (7) and sub-

sequent workers it is known that the zero field A—doubling transitions for 

the J = 9/2 level occur at around 2).8GHz. We have therefore used an 

e.p.r. spectrometer system operating in the K-band microwave region (18 -

26.5GEz). Choosing an operating frequency reasonably close to that of the 

zero-field transition frequencies ensures that the magnetic fluz density 

required to tun* the relevant energy levels into resonance is within the 

capabilities of the electromagnet system. Our operating frequency was 

around 26GEz, 

The present experiments differ from those of Radford in only two minor 

aspects - the method of preparation of OH and the type of cavity used* As 

regards the preparation of OH, we choose to prepare it by mixing the pro-

ducts of a microwave discharge in with water vapour, rather than by the 

reaction In (5.17). A microwave discharge in CP^ is known to be a good 

source of fluorine atoms (18), and so the proposed reaction scheme is 

GP^ » F + other discharge products 

(5.20) 
P + HgO OR + HP 

The only alternative preparation we investigated was from a microwave 

discharge in water vapour, which proved to be slightly inferior. A distinct 

advantage of the preparation via CP^ is that since P atoms themselves poss-

ess an e.p.r. spectrum (1?) readily observable at our operating frequencies, 

we have a useful method for the initial estimation of optimum relative 

pressures of and water vapour* the P atom signal can be optimised and 

then titrated out by the addition of water vapour. In practice the optimum 

OH signals were obtained when the P atom signals were just titrated out. 

The possibility of monitoring relative pressures of reactants arises also 

for those reaction schemes involving hydrogen atoms (5.18 or 5*19) hut we 

have found the H atom signal much harder to detect than that of the P atom. 

The type of cavity we have used is a ponfocal resonator system, whereas 

Radford used a microwave reflection cavity. Both of these types have been 

discussed in chapter 4. The reason for our use of a confocal resonator is 
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oell itmelf is made of Pyrex glass and sinoe it la required to fit snugly, 

without leaking and without undue meohanloal etreas, It follow* that the 

internal diameter and length of the oell are oritioal. The Zeeman modul-

ation ooilB are made from )4EN laminated copper wire wound in series on 

perspex formers fixed externally to the glass cell so as to provide a mod-

ulation field parallel to the direction of applied magnetic field. There 

are four supporting rods in a square arrangement and hence it ie possible 

to arrange the upper body such that all types of magnetic and electric di-

pole transitions are observable. The OH measurements were made with the 

upper body orientated such that a m^ = -1 electric dipole and ̂  m^ = 0 mag-

netic dipole transitions could be observed. By inserting a 90 twist into 

the waveguide the upper body can be fitted to the cavity such that 

a m_ * tl magnetic dipole and Am? =» 0 electric dipole transitions could be 
V J 

seen. This is the orientation used for certain measurements on the spectra 

of atomic fluorine and hydrogen. 

Figure ) shows the general layout of the spectrometer system. Since 

this is not a standard system, it will be described in more detail. The 

microwave source was a Hewlett Packard HP 8690 B backward wave oscillator 

(wo). The waveguide system was comprised mainly of components manufac-

tured by Mid-Oentury Microwavegear Ltd, - the three-screw tuner and certain 

straight sections were made in the Department of Chemistry workshops. The 

detector was an MA 493B crystal suitable for the K-hand frequency range* 

The BWO frequency was looked to the resonant frequency of the cell by 

an automatic frequency control (APC) system, using phase sensitive detection. 

The filters, oscillator, phase shifter and phase sensitive detector (PSD) 

were manufactured by AIM Electronics Ltd., whereas the preamplifier was a 

Brookdeal LNA 450. The correction voltage supplied by the APC system had 

to be made compatible with the BWO and with this end in mind a circuit, 

designed by Dr. T.H. Wilmshurst, was connected to the helix input of the 

WO. 

Modulation was supplied to the Zeeman colls by a Varian lOOkEz modul-

ation unit, which also contains Its own PSD system. The required absorption 

signal was recorded from the output of this PSD. The magnetic field was 

supplied by a Varian 7)800 15-inch electromagnet powered by a 74PR270) 

power supply, and was regulated and swept by a Pleldial Mk II system. Acc-

urate measurements of the magnetic field at the poleface were made with an 

AEG magnetometer using a proton resonance probe. The proton resonance freq-

uencies were measured with an AMP Venner digital counter. The frequency of 

the microwave source was determined using an HP B40-5245L frequency meamur-
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Ing system, whloh looks the tenth harmonio of a looal oeolllator frequency 

to the frequency of the Bource, 

Oorrectlons have to be applied to all of the measured lines because of 

the difference in magnetic flux densitits at the poleface and at the centre 

of the resonant cell. Theae corrections were determined by meaaurement of 

the spectra of atomic fluorine and hydrogen. The magnetic fields at which 

the atomic absorption lines occur can be calculated with a high degree of 

accuracy and by comparison with the mAaaured fields a magnetic field corr-

ection curve can be constructed. The field corrections to the measured OH 

lines are of the order of —1 gauss. The general formula derived by Clend— 

enin (19), as quoted by Radford, Hughes and Beltran-Lopez (20), was used to 

calculate the field positions of the atomic fluorine lines. This formula 
2 2 

gives the energies of the &&& ^3/2 a function of the app-

lied magnetic field. Since the magnetic field dependence is rather comp-

licated, Radford et al (20) found it convenient to expand a square root in 

the general formula and hence to derive formulae relevant to individual 

transitions arising within the levels (transitions from the 

levels are much weaker and were not observed by Radford et al or by us). 

The expansion parameter contains quadratic and cubic functions of the mag-

netic field and hence at high fields the square root expansion is not nec-

essarily valid. In our case, the general formula is to be preferred since 

our atomic fluorine spectra were recorded at high magnetic fields (approx. 

10 kgauss). We have written a computer programme that calculates the field 

positions of all fluorine atom transitions for a specified operating freq-

uency. This solves the general formula by an iterative procedure, using 

)-point equal Interval interpolation, which works as follows. We wish to 

solve 

V = f (H) (5.21) 

to find the value of the magnetic field at a specified frequency . 

To apply the )-po&nt equal interval method we must have a range of fields 

within which we know to be a solution and in addition the solution must be 

at a turning point in the function. At fairly modest fields (say /^^kgauss 

or more) the energy levels (and hence the transition frequencies) tune al-

most linearly with field and so there is no turning point in the function 

f (H). An artificial turning point can be obtained by calculating the 

absolute deviations from the specified frequency: 

I V - I - I f (E) - V a, I - g (E) (5.22) 
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The function g (R) is zero for ^ ^ positive for all other valuea 

of V and hence g (H) has a minimum at V = . We can therefore aolve 

(5.22) Iteratlvely to find a value for Hg. 

The range of search is divided Into four intervals by choosing three 

points, as in figure 4, and the function g (H) is evaluated for each of these 

points, Let the range be a and the field at the midpoint of this range be 

H . The three points will therefore be at - ̂ a, and + %a and the 

lowest value of g (E) will lie within one of three intervals* between 

- ia and between - ̂ a and + $a; or between and + &a. 

The Interval containing the lowest value of g (n) is retained and the pro-

cess is repeated. After n iterations the value of H at the minimum of 

g (H) is known with an accuracy of . We performed twenty iterations 

with an initial range a of 4OOO gauss, which gives a final accuracy of 

^6,002 gauss. Table 1 shows the observed and calculated field positions 

for two of the lines of Radford et al (20) and nine observations made on our 

15-inch electromagnet. For comparison the field positions were also cal-

culated using the individual formulae of Radford et al and these two are 

shown in Table 1. As can be seen, at low fields the results from the form-

ulae of Radford et^a^ are as good as those from the general expression, but 

at high fields only the general expression gives consistent magnetic field 

corrections. 

The hydrogen atom lines were measured so as to give a correction at 

lower magnetic fields for the 15-inoh magnet system. The field positions 

were calculated using a programme written by Dr. G.M.L. Kerr. This includes 

the off-diagonal effects of the Permi Contact hyperfine interaction. 

The gas handling system was constructed entirely of glass, with stand-

ard Qpiokfit joints. Leybold-Heraeus needle valves were used. The vacuum 

pump was an Edwards ISC 4508 with a pumping speed of 555 litres/minute. 

Gas pressures were estimated using Plrani gauges. 

The mixing arrangement of the reactant gases is shown in figure 

The products of a 2450kH% electrodeless discharge in gaseous were pump-

ed straight through the cell. No difficulties were encountered with free 

electrons, and discharge noise could be reduced by judicious positioning of 

a damp rag around the discharge cavity. To reduce recombination of fluor-

ine atoms on the walls of the discharge tube the section of tube between 

discharge and cell was lined with Teflon tubing. Water vapour was admitted 

to the stream of discharge products through a side arm, the point of mixing 

being immediately prior to the entrance of the resonant cell. 

The optimum signals were recorded using a pressure of 0,5 torr of CP. 
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Figure 4 Choice of interpolation points for 5-point equal interval method. 



Table 1 Observed and calculated magnetic field positions of atomic fluor-

ine lines. 

Operating 

Frequency 

(MHz) 

Magnetic field (gauss) 
Operating 

Frequency 

(MHz) 

Observed 

Hobs 

Calculated 

(General formula) 

Calculated 

(Radford's formula) 

Operating 

Frequency 

(MHz) 

Observed 

Hobs 

Bl Bobs - *1 H2 %obs - K2 

9105.854* 4339.525 4555.462 6.065 4555.587 5.958 

9105.854* 44)2.585 4452.758 -0.555 4452.229 0.156 

17157.540* 8559.216 8555.749 5.467 8558.171 1.045 

17158.040* 8656.189 8655.514 2.875 8655.427 2.762 

17158.540* 8699.722 8697.052 2.670 8694.549 5.175 

17I6O.090* 9695.181 9691.952 5.249 9691.895 5.288 

17160.220* 9749.555 9746.517 5.016 9750.419 -0 .886 

17159.980* 9655.792 9651.298 4.494 9647.594 8.598 

20058.019 11216.727 11214.592 2.555 11209.188 7.559 

20057.5)4 11252.264 11249.989 2.275 11249.959 2.505 

20057.720 11299.001 11296.845 2.156 11502.048 5.047 

a Lines measured by Radford et lal (20) 

b Lines measured by A.J. Pipe (B.Sc. Dissertation, Southampton 1972) 
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and a discharge power of 140 watts. Addition of water vapour to titrate 

out the atomic fluorine gave a total pressure of around 0,55 torr (in the 

aim responsible for handling the signal to noise ratio for the 

strongest lines was then about 20 to 1. Por the purpose of measuring line 

positions lower pressures were used, with a subsequent drop in signal to 

noise ratio. It was not possible to over—modulate the OH lines and so the 

spectra were ireoorded with maTimum modulation amplitude. Figure 5 shows 

the complete spectrum of arising from the ^ ̂  level. It 

appeairs as thirteen lines spread over a range of about 600 gauss. Five of 

these lines, however, are unresolved hyperfine doublets which gives the 

total number of lines as eighteen, as expected. Table 2 lists the meas-

ured field positions of these lines, the entire spectirum being measured 

twice. Assignments of these lines will be given in a later section of this 

chapter. Figure 6 shows the magnetic field correction curve, and it is 

seen to be almost linear with field. Our OH spectrum lies in the range 

6800 to 7)00 gauss, the magnetic field correction then ranging from 0.8 to 

0.9 gauss respectively. A field correction of 0.8$ gauss was applied to 

all the measured lines - the eirrors due to taking an average, -0.05 gauss, 

will not cause any serious disorepanoies in the analysis since they are 

nmoh smaller than the linewidth of the observed lines (^20 gauss, which 

corresponds to7MHz linewidth), 

2 — 

5.5 'Mie Effective Rotational WAmiitonian for iT Electronic States in the 

Absence of External Magnetic Melds 
Section 5.2 dealt in rather general teims with the theory of the rot-

2T-r 

ational levels of a molecule in a /I electronic state. The Hamiltonian 

(5.4) presented in that section was shown to account for various uncoupling 

phenomena that are particularly important for light molecules such as OH. 

"Rie problem with this Hamiltoniem is that it contains terms off-diagonal in 

electronic state which make eigenvalue calculations difficult. As dis-

cussed in chapter 2, the solution is to construct an effective Hamiltonian 
2TT 

that operates only within the 71 manifold. Since these off-diagonal teims 

are responsible for the uncoupling effects it is essential that these are 

inoorpoirated into the effective Hamiltonian in the correct manner. This 

section is concerned with the construction of a suitable effective Hamil-

tonian, using degenerate perturbation theory,that mimics correctly the 

effects of the uncoupllhg terms, and in particular the A-doubling teims, 

since our observed spectra depend so critically on the A -doubling inter-

vals. This section is divided into three parts. Oie first is devoted to 
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levels of ^^CH. 



Table 2 List of Zeemem measurements for =" 9/2 A -doubling 

spectrum. 

Line 

1st set 

Frequency 

(GHz) 

Measured Field 

(gauss) 

1 26.25750 6835.95 

2 26.2580) 6867.40 

3 26.25837 6897.90 

4 26.25824 6922.35 

5 26.25856 6959.25 

6 26.25850 6978.55 

7 26.25941 7021.20 

8 26.25951 7036.45 

9/10 26.25972 7089.05 * 

11/12 26.25878 7145.25 

15/14 26.25855 7203.25 » 

15/16 26.25778 7260.95 

17/18 26.25803 7321.55 ' 

se t 

1 26.25316 6822.753 

2 26.25322 6853.31 

26.25345 6853.49 

3 26.25335 6883.67 

4 26.25393 6909.98 

26.25419 6910.22 

5 26.25426 6946.63 

6 26.25451 6967.14 

7/8 26.25445 7015.28 

26.25832 7026.35 

9/10 26.26210 7097.37 

11/12 26.26258 7156.515 1 

15/14 26.262667 7216.24 

26.262670 7216,32 

15/16 26.26279 7276.20 

17/18 26.26314 7335.93 J 

Unresolved doublets 

Unresolved doublets 
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a derivation of a second order effective Hamiltonian containing the dom-

inant A MlOTibling interactions. The hyperfine Interactions are also in-

cluded here. "Die second part deals with centrifugal distortion corrections 

and the third with some small third-order corrections to the hyperfine 

Hamiltonian. The basis states used In this section are non^parltised basis 

functiona. 

Second Order Effective Bamiltonian 

The Hamiltonian for the spin-orbit and irotational interactions has 

been given in equation (5#4) as 

H AT^ (L). (S) + gr'" (J - L - S). T̂  (2 " L - S) 

Itils Bamiltonian conteiins terms both diagonal and off-diagonal in electn-

onic state, but we retpiire a Hamiltonian that operates only on 7T(v » O) 

vibronic wave functions. As has been discussed in chapter 2, in order to 

apply the methods of degenerate perturbation theory to obtain an effective 

rotational Hamiltonian, the total Bamiltonian has to be pertltioned in 

the following manner: 

"T = % + ^ 

2— 

Ihe elgenfunctions of Hg, the vibronlc Hamiltonian, are pure /T wavefunet-

ions, i.e. adiabatlc states. V describes the rotational interactions and 

contains the non-adiabatlc terms responsible for the admiiture of other 

electronic states. In this case, therefore, the perturbation V is taken to 

be the Hamiltonian (5.4). 

The first order effective rotational Hamiltonian is given by those 

terms in (5.4) that are diagonal In electronic state. iBy inspection of 

equation the expansion of (5»4), these terms are found to be* 

" i i f - w 

= A A Z + B [ j ( J + l)+S(S + 1 ) - j l ^ - Z ^ ] 

- 25 2]^ (-1)̂ 1 Tg(j) TiL(S) (5.23) 

The effects of these interactions on the rotational energy levels has 

been discussed in section 5«2. We merely note that there are no terms in 

the first order Hamiltonian responsible for ^—doubling — for these we have 

to go to higher orders of perturbation theory. 
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The second order effective Hamiltoxiiazi arlaea from those terms in 

(5*6) that have matrix elements between electronic states - these are the 

terms involving T+^ (^, We shall ignore the term B (-1 

since this gives a constant shift to all the rotational levels and so to 

second order can only lead to terms mimicking interactions that are already 

present. The only terms that have to be considered are the L-uncoupling 

terms and those uncoupling S from L, These we shall denote and res-

pectively. Henoe 

(5.24) 

Vg = (A + 2B) Tq(L) 

The interactions arising in second order are of the form 

4ff = V % 

y-, < ̂ 7 T I + Vg I'T) I + Vg I > 

' -
YA-S" ,^0 _ 0 X 

2^ I < n'|V^|YA"S"><T)"A"S"|Vil H") 

+ <^7TIV2lyA"S"><f)''A''S''(7g|^7T)j (5.25) 

where the summation is over all electronic states|"A"S") excluding the 

^7T state for which the effective Hamiltonian is required. Rotational 

quantum numbers have been suppressed in the above, their presence being 

taken as understood. 

Consider the three items within the brackets in more detail. % e 

first of these is, explicitly, 

Sr JilM I - 23 y-t(-l)^^ (J) T^ (^1 ) 

(5.26) 

x(i^"/i"S''r"J"A'W|-zB^(-i)'^^T^(j) T^ (L)|^n';/\'sr'J'^'M') 

12 2 2 
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where can take the values . Sinoe (S) operates only on the rot-

ational part of the basis functions and T^L) on the electronic part, 

(5»26) can be faotorlsed to give 

^ |4<^7T#A j 

X < JAMIT"! < J-n-W I (J) I J'n'M' > (5.2?) 

Eqiimtion (5*2$) contains an implicit summation over J", fl" and M" and so 

the closure relationship 

I I = 1 (5.28) 

can be used to simplify ($.25); 

"i* 
Z \ , q (J) ( J ) I J ' n ' M ' ) 

1 2 
(5.29) 

where is the eleqtronic factor contained in brackets in equation 

(5.27). ^ 

If qg " "̂ 1 ^ (5.29) the rotational matrix element is then of the 

same form as the off-diagonal matrix elements of T^J), T^J) and hence 

this term can be absorbed into the first order rotational Hamiltonian. The 

factor containing the electronic matrix elements 

obtained from (5.25) and (5.2?) can be regarded as a constant* We note 

that both Z] and A states are mixed into the ̂ 7T state by the (ij oper-

ator and in addition that we must have /\« =/\, sinoe 

/\' - Si = (A + q^) - q̂  =/\. 

This second order term is therefore not responsible for lifting the A-deg-

eneracy. 

However, if we consider qg = q̂  in the same manner we obtain a second 



order interaction of the form 

% (^"A"S"|BT2q (L)|*7T,/I' > j 

% (jflMlT^ (J) (j)|J'fl'M«) (5.30) 
*1 *1 

Examination of the electronic matrix elements reveals that this interaction 

mixes states of different A since we have 

< ̂ 71A = ±i|T+i(L)LA" - 0)(/V" . olT^^C^I^TTA' " +i > 

i.e. A A = +2. 

This term therefore describes a A -doubling phenomenon, which in second 

order of perturbation theory arises solely from the admixture of excited 

][]states. The expression within braces le again regarded as a constant; 

this can be identified with the £ parameter of Mulliken and Christy (20) or 

the p parameter of Dousmainis, Sanders and Townes (7), the relation between 

these being 

y^TTIm. I E > p 
2P = -8 Z__u (5.31) 

Z states Ej- - Eg 

We shall use the q parameter. 

In our spherloal tensor notation we therefore have 

y l < ' 7 T l r o V i ) l i : > | ' 
q = -4 0 ^ 0 L_ 

Zlstates Eg -
T̂T Z 

The effective ^ -doubling Hamiltonian derived from (5.50) is 

= qX:1'(-1)''Tj(i) T^CJ) (5.32) 
q 

where we have arbitrarily introduced a phase factor (-1)^ so as to be con-

sistent with equation (2.55). The matrix elements of this Hamiltonian are 
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< ^7T( A = ±1); (V^)|^7T( A = +1); SI'J' A'M' > 

• 1 )'(-1 ( i ; ; ; „ ) ( j . , . ^ . ) )(... 1, 

* ^ MM' ̂ zz' (5*3)) 

The sum rules on the components of the 5-j symbols show that il' = 1 1 - 2 

and hence the Hamiltonian (5.52) mixes fine structure states with = ̂ 5/2 

into those with Si = +1/2. 

This process can be repeated for the other two terms in (5.25). Prom 

the term involving both and a further A-doubling interaction arises, 

which is of the form 

(ViVg) . -(p + 2q) T^{J) T^(S) (5.54) 

where (p + 2q) is a A-doubling parameter introduced by Mulliken and 

Christy. In our notation 

(p..,) = a Z 
Z stateA ( ^ ) 

(5.35) 

This is related to Dousmanis et s^'s oc parameter 

(p + 2q) = -20C 

Once again we note that to second order, only excited YZ states are respon-

sible for the A -doubling in 7T states. The matrix elements of (5.54) are 

as follows* 

< ^7T(A = ±1); sijAMlE^g (v^V2)|^7V( A = +1); s I'j'un/M') 

= -(P + 2 0 [J(J + 1)(2J + 1)]' 

* !_% f.) [S(S + 1)(2S + 1)]4 Sjj, (5.56) 
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This Hamiltonian has matrix elements between states subject to A A = -1 

and A E = +1 and hence in ̂ TT states connects 15 = +|- with £1 = ~^ states. 

An interaction diagonal in A also arises from the V^Vg term, but this 

has the same form as the spin-uncoupling (or spin-rotation) parameter and 

is therefore a second order correction to B (or X ). 

The third term in (5.25) gives rise to matrix elements containing the 

pair of symbols 

/ S I S \ / S 1 s \ 
(-r q, I*/ (-1" q, Z V 

If m qg = q, the sum rules show that ZiH = 2q = -2, These matrix ele-

ments therefore vanish for ^7T states since the only possible values for 

are and This A -doubling term (Mulliken and Christy parameter o) 

has non-zero matrix elements only for states of multiplicity greater than 

doublet. This is readily appreciated by contraction of these 3-0 symbols 

using equation (2.39), which leads to an expression involving the product 

of three Wigner n-j symbols; 

(1 S S) /I 1 2 \ /S S 2 \ 
?S 1 2j (q q .2q/ (z' -I 2q j 

Examination of the triangle rules on, say, the final 3-j symbol reveals 

that this term is non-zero only for S >1, i.e. for triplet or higher mul-

tiplicities. 

Itie same is not true for the case where = -qg. This term gives 

rise to spin-spin interactions which are diagonal in all quantum numbers. 

Por doublet states only the scalar spin-spin interaction is present and this 

imparts a constant shift to all the rotational levels. We are justified in 
2_ 

ignoring this term completely for 7T states. 

Ttie derivation of a second order effective Hamiltonian has been shown 

to lead to two additional terms, both of which account for the phenomenon of 

A -doubling, and both of which arise from the admixture of excited 22, 
2 — + 

states. In the case of OH, the lowest excited state is a ZL state roughly 
- 1 2 _ 

32000cm higher in energy than the X 7T state. We therefore expect the 

A -doubling in OH to arise predominantly from mixing with this state. 

•Hie complete second order effective Hamiltonian in the absence of ext-

ernal fields is taken to be 
H = Haso + + Bhfs (5.37) 

HggQ Is the Hamiltonian for rotational motion and spin-orbit coupling, as 
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given in equation (5.2)). is the A -doubling Hamiltonian and is given 

in equations (5.32) and (5.54). la the hyperflne Hamiltonian which is 

necessary to account for interactions with the nuclear spin angular momen-

tum I of the hydrogen atom. We define this along the lines of Carrington, 

Levy and Miller (22): 

«hfs = < - f r > 

+ ^ gg ^ S (r) y T (S, G )] 

+ •» T^Ci) (5.58) 

Where T^CS. =^) = % H ) ' < ® ^ < 0^ (S . ̂  ) r"'> ; 

(0 , (l)) is a spherical harmonic; 

^2 

r is a vector describing the separation of hydrogen nucleus and the 

unpaired electron. 

The first term in (5.38) describes nuclear spin/electronic orbital inter-

action, the second the Fermi contact interaction, the third the nuclear spin/ 

electron spin dipolar term, which could also be written in the form 

T̂ (l̂ , S), and the final term is a /\-doubling hyperfine interaction. We 

find it convenient to keep these four terms separated, since then the para-

meters describing them give direct information on the molecular quantities, 

such as unpaired electron density at the nucleus ( ^ ̂  . The hyperfine 

parameters we therefore define as follows: 

" C " (5.39) 

and d remains as d. 

The a and d parameters are identical to the a and d hyperfine para-

meters defined by Prosch and Foley (23). The oc' and p " parameters are de-

fined in accordance with Carrington, Levy and Miller (24) and can be rel-
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ated to the Prosch and Foley b and c parameters $ 

OC ' = + c) 

(5.40) 
p', = 

The matrix elements of the complete second order Hamiltonian (5.57) 

will not be given here. They are readily obtained using standard spherical 

tensor techniques. Note that the basis functions |T| A ; SE; JAM > used in 

section (5.2) cannot be used to calculate hyperfine matrix elements since 

they contain no nuclear spin wavefunctions. There are two choices of basis 

set involving nuclear spin functions - a coupled set and a decoupled set. 

In the former we define a grand total angular momentum P, 

E = J + I 

as described in section (5.2) and the basis set in this case is 

SZ; JAIAy, > 

Mp relates to the space-fixed component of P and is a good, i.e. well-def-

ined, quantum number. In the decoupled scheme J and !_are not coupled tog-

ether, the basis set now being 

I Y|/\; SZ; Jflmj; > 

m^ relates to the space-fixed component of I. m^ and m^ are not good quan-

tum numbers but their sum, m^, remains well-defined: 

*I + *J -

Centrifugal Distortion Terms 

The second order effective Hamiltonian that we have derived so far 
2 

operates solely within the TT electronic state, and contains terms des-

cribing the rotational motion and A -doubling. We can go further than this 

and derive an effective Hamiltonian that operates only within a single 

vibronic state. Additional terms appear in this Hamiltonian that describe 

the effects of centrifugal distortion. The major contribution to the cent-

rifugal distortion arises from the admixture of other vibrational states, 

although there is a minor contribution arising from mixing of electronic 

states. These terms are best treated by a perturbation procedure, taking 
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the above second order Hamiltonian as the perturbation V. 

Suppose we take the rotational terms in this Hamiltonian to second 

order. The matrix element becomes, for the vibrational contribution , 

iff = 

v'/o 

% <^7T; v=0;AsrjflM|BI^(J^L.S).Tl(^-LmS)|27T; v*; > 

X v';ASr"J"A'W|BT\^^).T\^^)l^7T; v=0;ASZ'J'a'M') 

(5.41) 

B is a function of the intemuclear separation, R, and hence is also a 

function of the vibrational quantum number v. Equation (5.41) can there-

fore be factorised into a vibrational part, containing B, and a rotational 

part. This leads to a term of the form 

y |<v=0|B|v"/0>| ̂  

y"/0 ( B % -

X CA 8 r"J"n"M"|T\^I^.T\j-Ir^AS Z'j' Jl'M* > (5.42) 

where represents the double-primed rotational and spin quantum numbers. 

This equation is identical to the usual centrifugal distortion correction 

to the rotation of the nuclei: 

- Dg < s r j n M | ( T \ j - ^ ) . T \ j . ^ ) 

X (J-L-§))|S Z'J' 

and so we can identify with the vibrational terms in (5*42) 

D, . - Z (5.43) 
® v"^ (11° - K°J 
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This 18 well known (25). A similar treatment for the electronic oontrib-

utions leads to an expression of the same form as (5.42) but with a para-

meter given by 

• - , & • ' g ' - g ' 

The matrix elements in (5,42) are non-zero since the electronic wavefunc-

tions are also functions of R, is a small correction to the vibrational 

contribution to Dg given in (5.43). The matrix elements of Dg will not be 

presented here. 

We now go on to consider centrifugal distortion corrections to the 

spin-orbit coupling. These have been treated by James (26) who suggested 

the introduction of a parameter Aj to describe these corrections. Veseth 

(27) subsequently showed by a perturbation treatment that Aj could be writ-

ten in the form 

A = E <^IB|v"><^l^lv> (5.45) 
J v"^ 

where the matrix element involving A is non-zero because A is a function of 

R. The energy corrections arising from this term are indistinguishable 

from those arising from the spin-rotation interaction and so it is only 

necessary to include one of these terms in the effective Hamiltonian. We 

choose to include a spin-rotation term (of form X ̂  T (£) T (S)), but it 
q H —q --

must be remembered that the experimentally determined parameter is then a 

linear combination of ^ and Aj. It is possible to obtain individual values 

for these parameters and Brown and Watson (28) have suggested the use of 

isotope dependences to determine them. These authors have pointed out that 

earlier methods of separation of these parameters are based on incorrect 

assumptions. 

Corrections to the A -doubling due to centrifugal distortion can be 

treated in a similar nmnner. These arise from cross-terms between the 

A -doubling and rotational Hamiltonians, and once again the possibility of 

both vibrational and electronic contributions arises. We shall concern 

ourselves here with the vibrational corrections since these are expected to 

be the larger. The electronic contributions have been treated by Meerts 

and Dymanus (29) using a third order perturbation procedure, and we shall 

compare our results with theirs in the next section. 
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We shall treat the A-doubling Hamiltonian, developed earlier in 

this section as part of the perturbation Hamiltonian, V, since the cent-

rifugal distortion corrections then arise in second order of perturbation 

theory. These have the form 

hot (5.46) 

v"^v V v" 

where ^ signifies the set of spin and rotational quantum numbers. Since 

Hjjj and do not commute the Hermitian average of (5•46) has to be taken. 

This point will be returned to later. We note that since is itself a 

second order perturbation term, the centrifugal distortion corrections 

arising from this calculation are really to be regarded as third order terms. 

Consider, first of all, the terms from responsible for mixing the 

fine structure states - these involve the parameter q. Substitution of 

(5.32) into ( 5 , 4 6 ) , together with the rotational part of (5.4) leads to 

v"^ 

v; y |]r^r(_1)4 q Tq(j) v"; % " ) 

X <*7T; V"; % "| 2] (-1)*' v; *') 

(5.47) 

This can be factorised to give 

Dq Z <*7T; y I Tq(J) T̂ (J)Î 7T; if" > 

% (*7T; y "1.2] (-1)9' TT,(J-L-8) T2_,(JrirG)l^7T; * ' > (5.48) 
q' * 

where is defined by analogy with Dg and is given by 

« = E < v i a y > y i ^ i ' ' > (5.49) 
4 (S% - 8%.) 

If we now take a Hermitian average and case expression (5.48) into an oper-
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ator equivalent form we obtain: 

••[TVi-i-s)- T^(J)]} (5.50) 

An examination of the matrix elements of this operator (which will be given 

subsequently) shows that this is a new term to be included in the effective 

Hamiltonian (since there are no terms already present in the Hamiltonian 

with the same dependence on quantum numbers). 

A similar treatment for the A-doubling term involving p + 2q reveals 

that a term of the form 

"d = f[ Tq(i) (J-L-S)• (J-t-S)] 
p q ^ 

+ [T̂  ( J-L-3) . (J-J^] [ T^(J) T^(S) ]} (5.51) 

has also to be included, in this expression is defined as 

B = - E > (5.52) 
" v»^r ^ V 

The Hamiltonian (5.51} is defined with a - sign so as to be consistent with 

the Hamiltonian (5.34). 

The matrix elements of these two operators are rather complex but since 

these centrifugal distortion corrections have not been formulated in this 

form before they will, however, be quoted here. 

Matrix elements of B s 
^ q 

i) Contribution involving diagonal elements (q' = O) of H^^. 

-ll SlTJAMlHg (q'-0)l^/\.+1 SIT'J'Jl'M') 
q 

- ( - 1 ) - — " J(J . i)(a. . 

X i [2J(J + 1) + 2S(S + 1) - _ 2]r2 ] 

(5.55) 
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Prom jl' m jl** - q = - 2q we see that this term le a contribution to the 

matrix elements <( £1 = -)/2|H|il ~ +1/2 )> . 

ii) Contributions involving off-diagonal elements (q' = -1) of 

Only those terms which do not mix in other electronic states have to be 

considered, namely - 2 1 , ( j ) T]^, (S) . TWO different contributions 

arise, one with q' = and the other with q' = +q. 

a) Term with q' = -q 

A= -1 srjnMlH_ (q' . -q)l*TT A= S 
q 

. -D [J(J + 1)(2J + 1)]^ [S(S + 1)(2S + 1)]^ 
^ q 

2 /, , ,\2 1 
/ S 1 S \ / J 1 J \ [ / J 1 J \ . / J 1 J \ 
l-z Z'/ l-dlq rr/ ItrA-qjl"/ (-0/ qjl*/ 

( 5 . 5 4 ) 

This matrix element connects states with = -1 and A - Q = +1 and hence 

is of the form JQ = ̂ IH| 

b) Term with q' = +q 

/\ = -1 Sj-jfiMlHg (q' = q)I^TT +1 SZ'J' 
q 

= ZD + 1)(2J + l)]5/2 [s(s + 1)(2S + 1)]& (_i)q 
^ q 

• « ; i ) ( i ; s ( i ; i ) ( 4 ; i . ) « • » > 

This is a contribution to <11= -)/2|H| = +3/2 > since All = -) 

Zh, Z = ±1. 

(D Matrix elements of D * 

i) Contribution involving q* = 0 elements of 

<^7T A = ±1 (q' = 0)1^71 A . +1 SIE'J'JR'M') 
P 

= iD ^ (-1)* (-1)J"&*®"Z[S(S + 1)(2S + 1)]& [J(J + 1)(2J + 1)]^ 
q 

(-Z -a I') ^ + 2S(S + - Ifl-'f - (Z-)'] 

(5.56) 
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This connects states with Xi = -1, %? = +1 and so is a contribution to 

< n = = % >. 

ii) Contribution involving q' = elements of HpQj* q' = -q. contrib-

utiona are not present since these would have whioh is impermiss-

ible for doublet states. 

TOie q' = +q contribution is 

( ^TT A = ±1 S Z J n M l H ^ (q' = ±1)1 A - ;i s z v A ' M ' ) 

^ S ( s + 1)(2S + 1) J(J + 1)(2J + 1) 

[ ( . l ; ; - ) " - { - I ^ W V r r . 

This gives a contribution to ^ £l = —3/21 HlJTl = +& ̂  since it connects states 

with 0, Ail = Ig. All of the matrix elements (5.5)) to (5.57) are 

diagonal in both J and M. 

Third Order Hyperfine Interactions 

These interactions arise from the admixture of vibrational or elec-

tronic states into the vibronic state X^TT (v = O) as a result of off-diag-

onal elements in the hyperfine Bamiltonian. The operator form of these 

terms can be derived by a perturbation treatment, as was used for the cent-

rifugal distortion terms already discussed. The usual hyperfine Bamiltonian 

(5.)8) is of similar magnitude to term* arising from a second order treat-

ment of the rotational Hamiltonian, and so we shall refer to it as a IX 

Hamiltonian. A second order perturbation treatment of ®hf8 

third order rotational terms - these are the third order ( 7r) hyperfine 

terms referred to in the heading above. 

Both electronic and vibrational contributions to arise just as 

for the centrifugal distortion terms. Consider first of all the electronic 

contributions - these arise from the second order perturbation terms con-

taining matrix elements of the rotational and hyperfine Hamiltonians between 

electronic states: 
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where ^ refers to rotational, electron spin and nuclear spin wavefvinctlona. 

As before, the electronic wavefunctions can be factored off to give effec-

tive hyperfine constants of the form 

y 7TI( hyperfine constant)!T'A"S" ><'n"A''S"iBI 7T ) (5,59) 

B and the hyperfine constants are functions of intemuclear separation 

and so these constants are in general non-zero. Only terms in the ^ 

hyperfine and rotational Hamiltonians that have matrix elements off-diagon-

al in electronic state need be considered. From (5.58), the only terms in 

^ that can mix electronic states are the orbital hyperfine and nuclear 

spin/electron spin dipolar interactions: 

y-t , , '5.60) 

(3- S) 
LI 

Note that |3 ' is not the same as the (3 " defined in (5 .59) since the latter 

refers to the q = 0 component of C^(0, 0 ) whereas • involves a (©, {6 ) 

factor. The only terms from the rotational Hamiltonian that have to be con-

sidered are the L-uncoupling and spin uncoupling terms 

_23 - S) T]^(L) (5.61) 
q ^ 

A second order perturbation treatment leads to four possible combin-

ations of ( 5 , 6 0 ) and (5.61), as follows: 

y y /go _ gO \ - i 

I < ̂ TT, ai t' (i)|i|-A-s"<- > 
q ^ ^ 

X < I ] " A - S " r I - 2» - S) t I (I.)|̂ 7T: » ' > (5.62) 

and 
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% <^7T; ̂  I 1^(1, Sj|^^A"S"%" > 

% (i)"A"S":" I - 2B - §) Ti^(L)|^7T; "X ' > (5.63) 

Consider first of all the matrix elements from (5.62) and (5.65) involving 

the upper set of q components. The electronic wavefunctions can be factor-

ed off to give, respectively: 

y^( 1)lfXZ <V*"S" I - 2BT^(i)rn > 

<% |Tq(l)|lf"><'^''|T2q(J (5.64) 

and 

q 
E < ̂ 7TI P' 1 > < 1 ) "A'̂ S" I - 2BT^ (L) I ̂ 7T > 

% ^IX"><y"|T2q(J-S)|y'> (5.65) 

Equations (5.64) ani (5.65) are juat the matrix elements of the third order 

effective Hamiltonians 

OT T1,(J - §) (5.66) 

and ^ (5-67) 

respectively, where 

y < ^7T|a T2q(L)|yA' 'S"><1)"A"S" I - 2BT^(L)|^7T > 

yA-S" 0%"^ -

(5.68) 
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I - 2BT\L)|^n > 
Da, = Z_j ! L_ j y (5.0) 

P <-4„ -
The Hamiltonian (5,66) represents an effective nuclear-spin rotation inter-

action, the parameter for which is usually labelled Cj. We use the same 

symbol to conform to tradition. The symbol D p, is used by analogy with 

Dg, Dp, etc. The Hamiltonian (5.67) describes the interaction of the 

rotational angular momentum with the tensor product of the electron and 

nuclear spins. 

Both the T±i(L) and the C^(0, ^ ) operators shift the value of A by 

+1 and so, as for the A -doubling terms derived earlier, the excited states 

responsible for these third order terms are ZD or states only. As before, 

matrix elements of (5.66) and (5.67) are diagonal in A , 

If we treat the matrix elements of (5.62) and (5.63) involving the 

lower set of q components in a similar manner, two further hyperfine terms 

can be deriveds 

a* - s) (5.70) 

and 

a B . i d ' s) ^ (5.71) 
' q 

where 

V " <• ''TTU T' ( L ) H " A - S-> - 2ot' (i)l^7T > 

-i- I — I I a (5.-

and 

a ^̂ 2 < rrip'(-q)î rA"s"><̂ "A"S" i - 2BT_g(iji rr > 

The subscripts of these effective parameters indicate the ^ hyperfine 

term responsible. Small 'd's are used partly to distinguish them from D a' 
\2 

etc. and partly so as to be a similar notation to the A hyperfine A-

doubling parameter, d, since examination of the electronic matrix elements 

reveals that these third order terms are also A-doubling hyperfine inter-

actions. As for the ordinary A-doubling terms, the only excited states 
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that contribute are YZ states. 

The complete third order hyperfine Hamiltonian arising from mixing of 

electronic states is the sum of equations ( 5 . 6 6 ) , (5•6?)• (5»70) and (5.71). 
2 1 

We note at this stage that since T S) and T (£ - Ŝ ) do not commute it 

is necessary to take a Hermitian average of the terms involving Dp, and 

dp,. It was also necessary to take a Hermitian average of the term in d^, 

since in the form given in (5.70) its matrix elements are non-Hermitian. 

The matrix elements of the four third order operators can be obtained using 

standard spherical tensor techniques and are as follows. In each case the 
1 1 1 

T (j) and -T (S) terms from T (J - S) are considered separately. We use a 

decoupled basis set I A S T Jil m^ > I Im^> for these calculations. 

^ Matrix elements of C^s 

a) T^(j) part 

(lm^|<AsrjAm^|Hg|AS Z'J' |Im^> 

= c, E H ) ' ( - 1 ; ^,) [Id ^ 1)(" + ')]* 

' ( -p ^ (5.74) 

These matrix elements are diagonal in J, A and X . 

b) T^(S) part 
1 1 

Since T (!l).T (s) is the form of the Fermi Contact interaction, this third 

order term is a contribution to OC*. 

Matrix elements of D^, t 

a) T^(jj part 

< Im^KA S r JilI > | Im̂  > 

' q p, m ^ H M, / 

« .p [(2J + 1)(2J' + 1)]* % i • 1)(2J' + 1)]^ 
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/ J 1 J \ / J 1 J'\ 
A"/ m A' / 

(5.75) 

m is a molecule fixed component of a first rank tensor, and can thus take 

the values m = 0, -1. m = 0 gives a contribution to 4 -)/21 i-1/2^elements, 

m = -1 gives elements diagonal in A» 

b) T\S) part 

q P, m \ 

X [(2J + 1)(2J* + 1)]^ S(S + 1)(2S + 1) Z"^(^~v' -1 I' 

(5.76) 

m = 0 gives contributions diagonal in £1 

m = -1 gives contributions to ^ -5/21 1-1/2^elements. 

Matrix elements of d^$ 

a) T\J) part 

A;2 S Z I ' J ' > 

= (.1)^ 

X [ I ( I 4. 1 ) ( 2 I + 1 ) ] ^ _ P i ' .^) [ (2J + - 1 ) ] ^ 

' 4 [ h J ' u - * n ( 2 j ' . 1 ) ] * U 4 A " ) ( 4 " 4 A O 

. * 1)(2J . 1)]^ ( i 4 n'.)} 

(5.77) 

These give contributions to ^ -)/2I I+1/2 ̂  elements. 
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b) T^(s) part 

TVI') T\S) is the same form as the 'second order' A-doubling hyperfine q - q -

interaction and hence this gives a contribution to d. 

Matrix elements of dp,: 

a) T^(j) part 

<Im^KA sr S Z'J' jl'm^> |Im^ > 

m 

m 

r q P, m 

X [S(S + 1)(2S + 1)f * + 1)(2J' + 1)]' 

' ' U 4 n " ) U " - n : ) l 

= 0 elements give contributions to ^ -1 /21 1+1/2/> 

: -1 elements contribute to ^ -5/21 I+1/2 ̂  

b) T^(S) part 

< |</\ S z J A I | / \ + 2 S Z'J' Im^ > 

V Z Z ( -1) 
P q P, m 

J—i2+J—m j+I—® J 

' ( i j i y [1 (1 + 1 ) (2 : + 1 ) ] * (J, -p m ] ) [ ( " + " 1 ) ] * 

: ( - 1 - 2 A.') - 1)(2S + 1) ( 4 ,2. ^ L ) (ul. l i , ) (5.79) 

m = -1 matrix elements are of the same form as those of d, therefore this is 

a further contribution to d, m = 0 matrix elements are zero for doublet 

states since the sum rules on the 3-j symbols require AZ!= -2. 

Note that the matrix elements <C -3/21H, I +1/2 ̂  and -5/2 1h, | +1/2 > 
_ a Pi 

differ only by a factor of Z_ and certain numerical factors, and so these 
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two terms are highly correlated. Only one of and dp, is determinable 

and so we shall suppress the terms (since the remaining d^ terms can be 

included in d). 

The vibrational contributions to the third order hyperflne Hamiltonian 

could be treated in a similar manner. In this case only terms in the ^ 

hyperflne Hamiltonian that are diagonal In electronic state have to be con-

sidered. The perturbation terms can be fsctorlsed to give effective para-

meters of the form 

< v|(7\^ hyperfine constant)|v" > <v"|B|v^ (5.80) 
v"A ~ \.i) 

However, since the magnitude of the hyperfine constants does not change 

drastically between vibrational levels (as is indicated by Clough _et ̂  

(16), where for J = 3/2 levels of OR the combined effects of a,OC' and p" 

change between vibrational states by about )MHz and d changes by 0.1MHz -

for higher rotational levels the changes are even more slight), the matrix 

elements < v|( hfs constant) jv" > are expected to be very small. The 

vibrational contributions are likely to be far outweighed by the electronic 

contributions, and se we shall neglect them. 

The complete hyperfine Hamiltonian to third order therefore consists 

of seven terms, only two of which cause A -doubling. Four of the hyperfine 

parameters can be related to the Prosch and Foley parameters and these are 

a, QC', p" and d, whereas the remaining three, C^, and dp, arise in 

third order of perturbation theory, and are therefore expected to be several 

orders of magnitude smaller. 

5.6 Comparison with other Effective Hamiltonians 

In this section we compare the form of the Hamiltonian derived in the 

preceding section with alternative formulations used by previous workers. 

All are similar in that a perturbation approach is adopted. 

Consider first of all the rotational and fine-structure effective Ham-

iltonians, and in particular the A -doubling terms in this Hamiltonian. 
2 

The earliest treatment of A -doubling in TT electronic states was by Van 

Vleck (50) and these results were subsequently rederived in a form more 

useful for spectral analysis by Mulliken and Christy (21). We use the q 

amd p + 2q A-doubling parameters introduced by the latter. Dousmanls, 

Sanders and Townes (7), henceforth referred to as DST, were the first to 

put an effective A-doubling Hamiltonian to any practical use, and we shall 
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direct our interest to their Hamiltonisin for the time being. 

The DST Hamiltoniaa is of the form 

"total = "rfs ^ \ <5.81) 

where represents the rotational and spin-orbit Hamiltonians while 

^fs \ refer to hyperfine and Zeeman interactions. We shall ignore 

these latter two terms. Their Hamiltonian is identical to our Hamil-

tonian (5,4). Prom R _ , DST derive an effective Hamiltonian operating 
p rxs 

only on TT wavefunctions, by a perturbation treatment. The first order 

Hamiltonian is therefore just , the matrix elements of which were given 

by Van Vleck ()0). Apart from a difference in sign for the elements off-

diagonal in H , these elements are identical to those obtained from our 

first order rotational/fine structure Hamiltonian given in (5.25). 

This sign difference arises simply because we have chosen a different phase 

convention to Van Vleck. Our phase convention is that of Condon and 

Shortley (51), under which the matrix elements 

are negative. 

A second order calculation of the energy levels was performed by E6T, 

leading to expressions for the energies of levels with a given J of the 

form 

B = - Eg (5.82) 

where Eg is the magnitude of the A-doubling splitting and gives the 

energies of the rotational levels in the absence of A-doubling. and 

are given by rather complex expressions involving both first and second 

order contributions and these are presented explicitly by DST. These exp-

ressions apply to a coupling scheme intermediate between Hund•s cases a) 

and b). We are only interested in the A-doubling intervals, Eg. These are 

given by 

E 
'2 

(5.85) 

where = -OC(J+&) ^ 

(5.84) 

V is given by a rather lengthy relationship, again involving OC and ji. 



- 104 -

refers to higher order perturbation 

"V DST give ) for 
and will not be quoted here. 

terms and is very much smaller than V ' '. ust give v — 

m . The upper eigne in (5.84) refer to I ill =5/2 fine structure levels of 

regular states and I fll » 1/2 levels of inverted states. 'Fhe reverse 

applies for the lower signs. The symbols in (5.84) are defined as follows: 

X = [4(J+&)^ + Y(Y-4)]^ (5.85) 

Y a A/B, as defined in section (5.2) 

OC = 4 z 
X states 

4 Z 
rstates 

( - 1 ) ' 

(-1)= 

(niAl +2BL^lZ:><i:iBLy|TT > 

Eg -

l<mBi.yis> 

Ej -

(5.86) 

(5.87) 

where s is even for Z*states and odd for 22 states. OC and p are A-doub-

ling parameters, and, as mentioned in the previous section, can be related 

to the q and p + 2q parameters? 

p + 2q = —2 OC 

q = -2 p 
(5.88) 

Subsequent workers have generally used the A-doubling Hamiltonian of DST, 

or at least a modification of it. We are thus able to obtain numerical 

values for q and p + 2q for OH from the various studies that have been pub-

lished. Ttiis comparison is not 6f the greatest value since we are not able 

to obtain any estimates for our and D parameters. However, expression 

(5.84) is a potentially useful relationship in that we can use it to check 

the eigenvalues of our A-doubling Hamiltonians (5.52) and (5.54). 

The most accurate determinations of A —doubling transition frequencies 

in CH come from the work of Dymanus and his group (12, 13» 14). The prec-

iaion of their measurements necessitates the use of a more accurate A-doub-

ling Hamiltonian than that of DST. We therefore turn to examine their 

effective Hamiltonian. In their analysis of the OH hyperfine A-doubling 

data (14) Meerts and Dymanus have used a Hamiltonian which they developed 

earlier to account for the A-doubling in NO (29). This was derived using 

the degenerate perturbation theory of Freed (52), and includes fine struc-

ture and hyperfine terms up to third order, their perturbation terms arising 

solely from the admixture of electronic states, not vibrational states. 
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Their work la therefore the moat suitable for oomparleon with our effective 

Kamiltonian, and should thus provide estimates for all our zero-field para-

meters, hearing in mind that our and D parameters involve vibrational 

mixing whereas Meerts and Dymanus third order terms involve electronic mix-

ing. 

Their perturbation method Is very similar to our own in principle and 

BO need not be detailed here. However, Meerts and Dymanus (henceforth re-

ferred to as MD) do not cast their perturbation expressions Into an oper-

ator equivalent form, they merely extract electronic matrix elements and 

calculate the remaining matrix elements explicitly. Terms with the same J 

dependence are then collected together. The effective parameters therefore 

consist of sums of electronic matrix elements, each parameter modifying a 

rotational factor with a different J dependence. Indeed, this description 

Is perhaps the simplest definition of an effective molecular parameter, and 

so could equally well be applied to our own parameters. The difference bet-

ween these two formulations is that their parameters refer to different 

algebraic dependences of J whereas ours refer to different Interactions of 

angular momenta. Our parameters are thus linear combinations of the MD 

parameters, or vice versa. The derivation of an effective Hamiltonian in 

the manner proposed by MD Is somewhat lengthy and several algebraic man-

ipulations are required in order to reach the desired form, A further diff-

Iculty with their Hamiltonian arises from their choice of symbols for the 

effective parameters. In an attempt to standardise notation they have in-

troduced a set of fine-structure parameters OC^ (l = 1 to 11), which are 

comprised of first, second and third order contributions. For instance 

OC ̂  = A + 2^^ and order terms 

oC = B + 2 ^ and 3 ^ order terms 

CC ̂  = (P + 2q), orOC, + order terms 

OC g = B + 2 ^ and order terms 

oC = q, or p, + ) order terms 

This departure from traditional symbolism serves only to confuse the issue. 

"Rielr expressions for the OC *s are further complicated in that another not-

ation has to be introduced to describe the various electronic matrix ele-

ments involved. 
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All this notwlthstamilng, we are etill able to make a oompariaon with 

our effective Buniltonian* 

Thel&miltmdaa matdbof imDia set using VBmg omaanatimwaa 

basis fonotions 

I " " < - A > | (5.89) 

where s is even for all eleotronic states except Z states, in which case 

it is odd. To make a valid comparison we therefore have to set up our 

Bamiltonian matrix using similar basis functions. % e relevant matrix 

elements are calculated initially in a non-paritised basis set (i.e. for 

states of a givw J>)/2 the matrix is 4 % 4). from (5*2)), (5.)2), (5.)4), 

and equations (5.5)) to (5.57) we obtain 

(J, Jl"^V2|aggolJ,fl-^V2 > " iA + B[(j+l/2)^ - 2] 

- -B[(J-1/2)(J+)/2)]^ 

< J, .tV2|Hij)(i)lJ,n :;i/2> - 4q(J+V2)[(J-i/2)(j+)/2])* 

('J.n -^l/2|H^^(pf2q)| J,n^l/2> - *(p+2q)(J+l/2) 

(J,il.±1/2|M |J,fl.+1/2> - iP_(J+1/2)^ 
P 

< .i)/2|Ep jJ,n ^1/2 > . 4^p(J+l/2)[(J-l/2)(J+)/2)]^ 

< J , n . ± V 2 | H ^ | J , n - + ) / 2 > - ^^(J-1/2)(J+1/2)(J+V2) 

< | J , n -+1/2> " iD^(J-l /2)(J+1/2)(J+)/2) 

<'J,n"^3/2|H^jJ,A"?l/2> " -^^{[J+l/2))-(J+V2)}[(J-l/2)(J+V2)]i 

(5.90) 
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Prom these we construct a matrix in the Wang basis set, ajid this is 

given in Table ). "Rie corresponding matrix of MD is given in Table 4. 

Note that the matrix elements <)/?|Hpg,Q|l/2) differ in sign - this is 

because we have used the opposite phase convention to MD, and this differ-

ence has to be allowed for when the other ^3/2| |l/2 ) elements are com-

pared. A direct comparison of Tables ) and 4, with allowances for differ-

ences in phase conventions, leads to the following set of relationships: 

(20(^ - OC^) = i (p +_2q) - iDq 

(OC^ + OC^) ^ i (Dp + Dq) 

0( ̂  i (q + iDp - Dq) 

OC 8 = 

Note that there are no terms unique to either Haxoi11onian, from which we 

can conclude that the third order effects of vibrational mixing are of the 

same form, and therefore inseparable, from those of electronic mixing. 

Using these relations we are able to obtain values for q, p + 2q, and 

from Meerts and Dymanua's analysis of OH (14). Note that whereas MD have 

five A-doubling constants, we only have four. However, their term in 

can be rewritten as loc^(j+1/2)^ +(%^(j+l/2), these two terms being of the 

same J dependence as OC^ and OC^ elements, respectively, and thus MD only 

have four independent parameters. Indeed, In their analyses of NO (29) and 

OH (14) MD were only able to determine four A-doubling constants. From an 

examination of the electronic matrix elements that constitute the third 

order parameters, the relationship 

•^5 = =^6 (5.92) 

can be obtained. Thus either OC^ or OC^ could be suppressed. MD chose to 

suppress the OCg parameter in their NO and OH studies. Since we require an 

value as a starting point in the estimation of our own parameters from^ 

(5.91) we therefore have to calculate it ffom<9C using (5.92). 

The existence of direct relationships between our effective Hamiltonian 

and that of MD gives some vindication of our approach. It is worth pointing 

out that the derivation of our Hamiltonian is straightforward and leads dir-

ectly to an operator equivalent form whereas, by contrast, the MD deriv-
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Table 4 Pine stnictiire matrix elements due to Meerts and Dymanus (29), in 

a Wang basis. 
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ation is both long and messy. In addition we do not need to introduce any 

unnecessary nomenclature and are able to retain traditional symbols for 

effective parameters. 

We now turn to the hyperfine Hami1tonian. Most workers have used the 

Prosch and Foley Hamiltonian (with minor corrections by Dousmanis (jj)) and 

the relationship between this and our 'second-order' hyperfine Hamiltonian 

has already been g i v e n i n t h e p r e v i o u s s e c t i o n . As r e g a r d s t h e t h i r d o r d e r 

t e rms we a g a i n have t o t u r n t o the wo rk o f M e e r t s and Dymanus. T h e i r paper 

on NO (29) contains a derivation of third order hyperfine terms, and some 

sort of correlation between this and our Hamiltonian is sought. However it 

is difficult to make a direct numerical comparison on two counts. First, 

they have calculated their matrix elements in a coupled basis whereas ours 

have been calculated in a decoupled basis. There is of course no reason 

why we should not calculate our elements in a coupled basis, for the pur-

poses of compar i son o n l y . However, in v i e w o f t h e length o f t h e c a l c u l -

ations involved, the small size of third order parameters and the fact that 

we are (in principle) able to determine them ourselves from a least-squares 

analysis of available zero—field data, this would seem to be an example of 

the law of diminishing returns. 

Secondly, MD have assumed that hyperfine matrix elements off-diagonal 

in J are negligibly small. These elements are likely to be very small in 

OH since the spacings between consecutive levels is so large, but they will 

be more important in NO. Since MD have data of very high precision from 

their molecular beam studies this assumption is not really justified in 

their case. In a recent paper, Meerts ()4) has reanalysed the NO data with 

a Hamiltonian that does include these off-diagonal states and this greatly 

improved the quality of the fit. No reanalysis of the OH data has yet been 

published. 

MD's hyperfine Hamiltonian is derived in a similar manner to their 

fine structure Hamiltonian, and suffers from the same drawbacks. Again, a 

new and confusing symbolism has been introduced - nine hyperfine constants, 

labelled (i = 1 to 9), which are linear combinations of twelve different 

P constants and a c&nstant, the terms representing various electronic 

matrix elements. If third-order effects are neglected, their parameters 

, X 2* X ̂  and X^ can be related to the Prosch and Foley a, b, c and d 

constants and hence to our own a, <>c', p" and d. The remaining para-

meters are comprised of third order terms only. One might inquire as to 

why MD have nine constants whereas we only have seven determinable para-

meters. The reason for this is that there is an error in their derivation -
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the L-uncoupllng operator has no matrix elements between 7T states and yet 

MD have included them. If we set to zero all the terms involving such ele-

ments we find that their Py, and &nd consequently their and 

Xg parameters, vanish. Thus to third order MD have only seven detorminable 

parameters, and only two of these, Ifg &nd are A-doubling terms. This 

is consistent with our Ramiltonian, in which we found that only two /\-

doubling constants, d and either d^ or dp', are determinable. We expect 

the d and dp̂  constants to be linear combinations of TCg ̂ Bd Contrib-

utiona to elements <;)/2|Ĥ 2̂ |1/2 > arise only from Id so we can infer 

that /fg is related in some simple manner to d̂ , only (since d has no such 

matrix elements). 

A nuclear spin-rotation interaction has been included in the MD Bamil-

tonian operator, their parameter being labelled after Freed ()2). 

This is identical to our Ĉ . The value of is not determined directly 

in their analysis as it is absorbed into their X parameters, but it is 

possible to get an estimate for it. After crossing out the L—uncoupling 

matrix elements mentioned above we find that 

P5 = - f i (5-93) 

and pg Pg <2 0 (5.94) 

Pg and are approximately zero since they involve matrix elements bet-

ween X ̂7T and excited states. If there are any ̂  states for OH the 

energy difference (E^ - ) is likely to be very large and so the per-

turbation corrections pg and will be very small. Substitution of the 

relations (5*93) and (5.94) into the expressions for the %^ and para-

meters leads to 

P ^ + OGG (5.95) 

% 7 -PS + CGG (5.96) 

Thus (̂/(̂  + % Y ) (5.97) 

MD were not able to determine all nine of their hyperfine constants for OH 

- was not found and only the combination (X ̂  + % y) was determined, 

not X^ and %^ individually. This la ideal for a determination of but 

unfortunately renders Impossible an evaluation of Dp, from their result*. 

Terms in D^, appear in the elements <C)/2|H|5/2), ̂  1/2|H |1/2 ̂  and 
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< )/2|R|1/2 >. Assuming only ZZ states contribute, examination of the 

corresponding MD elements and the p contributions to their parameters rev-

eals that and Xy are likely to be correlated in some way 

with the Dp, parameter. It is likely therefore that Dp, corresponds to the 

(and contributions to X^ and X S i n c e neither X X ^ 

(X^ - X y) have been determined, D^, cannot be determined from these para-

meters. It is not possible to construct a suitable set of simultaneous 

equations in by including X^ and X^ either. MD (14) state that the 

reason Xc and %_ cannot be found separately is because they are strongly 

correlated with the constant and only two constants can be determined 

independently. They therefore chose to determine the two parameters X ̂  

and (X ^ + X y), although in principle all three could be found. This un-
fortunately does not augur well for our proposed determination of D̂ , by 

least-squares fitting. 

5.7 Molecular Zeeman Effect 

we have dealt briefly with the Zeeman effect in section (5.2), and 

have explained its significance in e.p.r. studies. In this section we pres-

ent the form of the Zeeman Hamiltonian used to describe the energies of 

the Zeeman levels, and we discuss in more detail the relationship between 

our g-factors and the phenomenological g-factors of Radford (4, 5)* 

The general Zeeman Hamiltonian is defined as 

T^B). T\s) + g^yXg T^B). 

- - L - ̂  (5.98) 

where these terms describe the interaction of the magnetic field B with, 

respectively, the electron spin, electron orbital, nuclear rotation and 

nuclear spin angular momenta. This Eamiltonian is used as a starting point 

by Radford (4) also. In contrast to Radford, we define the interaction 

between B and ̂  with a negative sign, since the magnetic moment of a part-

icle is proportional to its charge and hence the magnetic moment of a nuc-

leus will be of opposite sign to that of the electron. The term in g we 

also define to be negative - this term contains contributions from the rot-

ation of the nuclei and from the electrons that rotate with the nuclei, and 

the former and expected to outweigh the latter. 

The dominant contributions in (5.98) will be from the terms in g and 

g^, and the values of these g-factors are expected to be close to their 

free electron values, given in (5.16) as gg = 2.002)2 and g^ = 1,000. The 
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term in g is expected to be very small since the magnetic moment is prop-

ortional to ̂ 4^ rather than g^ for a proton is g^ = 5*585486 but 

since jLtg — 1/1850 then the contribution from this term ( 

will be about 10"̂  of that from the electronic ĝ factors. g will be 

smaller than since it will involve a nuclear contribution, with 

some cancellation by electronic contributions. A value of about 10 ̂  is to 

be expected. 

The Ramiltonian (5.98) contains terms that mix electronic states, nam-

ely the q = il components of the terms in g and g^, although the latter we 

can safely ignore because of their small size. An effective Eamiltonian is 
2 

therefore derived that operates only on 7T wavefunctions and to first 

order this Hamiltonian is comprised of those terms in E that do not mix 

electronic states. The magnetic field Vector is quantised in a space-fixed 

frame, and the space-fixed z axis is defined as the direction of the applied 

magnetic field. Thus from equation (2*31) we have 

B„ - (5.99) 0 p=0 

where is the applied magnetic flux density. The first-order effective 

Zeeman Hamiltonian can now be rewritten in terms of p = 0 components only: 

= W o 

- - £ - S) - (5.100) 

The matrix elements of this operator can be easily calculated using standard 

spherical tensor techniques. 

The effects of mixing in other electronic states can be included by 

going to higher orders in perturbation theory. The dominant second order 

contributions arise from cross terms of the q = -1 terms in g^ with the L-

uncoupling terma and terms uncoupling 2 from L/ These latter operators we 

have previously called and Vg respectively (see equation (5.24)). We 

shall regroup these to give and as follows: 

vy = _2B ][]f(-l)* Tl(L) T^ (J - s) (5.101) 
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V. = A T^(L) Tlq(S) (5.102) 

The relevant terma in we shall call V^: 

"3 = ®L, 

The second order effeotive Zeeman Hamiltonian is therefore of the form 

= "̂ '̂'0̂  ( V ^ ) ""o 

<; ̂ 7T: XI?;lyA"s"»"> <-I|"A"S"V"|V,' + v̂ î rTs V' > 

" 'ri"A"s»2" 

(5.104) 

Consider the cross terms between and V^: 

(V'V,) . ^ (Ej^ - ' 

X < ZfT;* SiLJAMle^^jgBo (O))* T^^lJ|^"A"S"]:"J"Jl"M" > 

X (7|"A"s"r"J"Ji"M"|A ^^(-i)^'T^,(L)T2^,(s)l^7T; A ' s z v n ' K ' > 

( 5 . 1 0 5 ) 

where q' = -q. The electronic wavefunctions can be factored off to give 

X <Y'A"S"|A(-i)^'T^,(L)|^7T,A' > j 

X yUgB^ ( W ) * | J ' A ' M ' > < S Z | T ] q , ( S ) | S Z ' ) 

(5.106) 

where use has been made of the fact that S operates only on spin functions 
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and (b))* only on rotational funotiona. Th# apin and rotational mat-

rix elements in (5.106) are juat the matrix elamenta of an operator of the 

form 

(u))« t1 (S) (5.107) (w)' 

The terms in braces in (5.106) are effective parameters that can be iden-

tified as g-factors. We therefore defines 

for q* = -q, 

<^7T,A|g,'p]|(L)lYA"S">('K|"A"S"|A(-1)'^ Til^(L)|^n,A') 

g „ ZJ ^ Z D — ^ ; 
T'A^S" ( % -

(5.108) 

For q' = q, 

Y"" ( *7T,A I g;Tl(&)ll"A"S"> <'n"A"S"|A(-i)* * (L)| 7V,A'> 

*i " ^ ^ 3 * — i ? ; — i i 

(5.109) 

Hence equation (5.105) can be rewritten in an operator equivalent form 

h'^'CV-V,) . 

(5-"0) 

Similarly the cross terms between and can be written as 

( W ^ T ^ U - S ) 

- (W)' t1,(J - S) (5.111) 

, y < ̂ 7T. A I erT̂ (L)l 'n"A"S" ><1 "̂ "S" |-2B(-1)« T^qW 1 ̂IT. A • > 

Here g_ = Z__» ^ — 3 g ; 

r^^S" (B§^ - Sq.A.s.) 

(5.112) 
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y - <^7T,A I Tq(L)l^7T, A' > 

' - «YA"SJ 

(5.115) 

The symbols for these second order g-factors have been chosen so as to be 

consistent with Carrlngton amd Lucas (35) - the second order effective Ham-

iltonian and parameter definitions given above can also be fomxd in their 

paper. The matrix elmmnts of the second order Hamiltonian can be calcul-

ated without much difficulty - those of g^ have already been quoted by Carr-

ington and Lucas (55)* 

An examination of the electronic matrix elements in (5.108), (5,109), 

(5.112) and (5.113) reveals, just as for the A-doubling terms treated in 

eeotion (5 .5) , that th* tarm* with q* * -q are overall diagonal in /I where-

as those with q* # q have matrix elements between states differing in A by 

-2, i.e. are A-doubling terms. Hence g^ and ̂  are non?-A-doubling g-fao-

tors and contain contributions from both JZ and A states; g| and g® are 

A-doubling g-factors containing contributions from states only. 

We now deal with the significance of these four second-order g-fac-

tors, "Ehe term in gg in the first order Eamiltonian has q « 0 and -1 ele-

ments and hence describes an jUmotropic interaction. It conveys Information 

on a s|dierioal distribution of electronic charge. The g^ term ham matrix 

elements similar to those of g^ except that it has only q » -1 elements. 

Biis term therefore carries information on the deviations from spherical 

symmetry, and for this reason is known as the spln-anisotroî  g-faotor. ¥e 

generally identify the q « 0 component as lying along the intenmcleax (») 

axis and so g^ describes #ie electronic charge distribution perpendicular 

to the inteznuclear axis. g£ is similar to g^, except that it has matrix 

elements connecting A -doublets and will give information exclusively cm 

the admixture of IZ states. The matrix elaaents of and g® are similar 

to those of g^, except that there is no ?Q(J0 contribution. Both represent 

anisotropic corrections to g^ arising from the rotation of the electrons 

with the nuclei. The g^ term is absorbed into g^, and hence represents 

those electronic contributions to g^ that were mentioned previously. 

It is interesting to compare our effective Zseman operator with that 

of Radford (4), who also uses a perturbation approach. Radford reduces his 

results to a phenomenologioal fozm rather than oast them in an operator 

equivalent form, as we do. The dominant contribution to the Zeeman split-

ting arises from the linear Zeeman effect, which has the general form given 
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in (5.14) and (5.15): 

®Zeeman = - " A = 

where g is an effective g-factor for a particular rotational level, J. 

There are no matrix elements of the linear Zeeman operator connecting difl-

erent rotational states. Radford (4) gives the phenomenological form of 

the linear Zeeman effect arising from the Hamiltonian (5.98) as 

\ [ 4 ° J + « I " l ] ( 5 . 1 1 4 ) 

where g^ are phenomenological molecular g-factors referring to rotational 

levels, J, of - parity, g^ is a nuclear spin g-factor which is related to 

our gg by g = g . These linear Zeeman energies correspond to the 

eignevalues of our Zeeman Eamiltonian with the restriction that only matrix 

elements diagonal in J are used. 

In the presence of an external magnetic field J is not a good quantum 

number, so there are matrix elements between states of different J. A 

correction for these terms has to be applied to the linear Zeeman energies 

with the effect that the energy levels no longer tune linearly with field. 

In our case these corrections come from the off-diagonal J terms in our 

effective Hamiltonian, and are linear in magnetic field. This is known as 

the second order Zeeman effect. Radford, however, obtains his energies by 

an explicit perturbation calculation rather than by our method of computer 

diagonalisation of the complete Hamiltonian matrix. As a result these sec-

ond order effects will manifest themselves as a power series in Bg, start-

ing with quadratic terms. Expressions for the quadratic and cubic Zeeman 

energies are given by Radford as 

"'2 

B 

2 \ 
= (Ko + K2*j) (5.115) 

; = (lLm_ + K;^^) ' ̂  - p - (5.116) 
J ^ J (he) 

The K̂ 's are perturbation expressions, which Radford determines phenomeno— 

logically. A word is in order regarding these two expressions. Radford states 

that the 's are dimensionless constants, but if they are then the dim-

ensions on each side of the equality signs do not balance. These equations 

require (he) to be an energy, which is not correct. Consider the express-

( / V O ) 
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lorn for E - th# perturbation #xpre##ion for this will be of the form 
'2 

\ + 4 (5.117) 

where B is the rotational constant, in and J' = J + 1. If instead B 

is chosen to be in this expression becomes 

B 
'2 

which is then equivalent to Hadford's expression. The term in brace® can 

be identified with Kg and can be seen to have dimensions of cm, contrary to 

Radford's statements. 
fhe expressions of interest to use are the gj terras. Sadford defines 

these to be 

4 ' + (5-119) 

gj contains contributions ftom gg and ĝ « ( 8 Sj)g corrects for the anom-

olous part of the electron spin gk-factor, i.e. the deviation in gg from 2, 

(S gj)u corrects for the rotation of the nuclei and hence can be correlated 

with our g . Finally, (Gg.)^ refers to corrections arising from the rot-
r u D @ 

ation of the eleotrona with the nuclei and ao ahould correapood to our 

and g^', "Fhere seem to be no terms corresponding to our g^ and g£. Ae 

fundamental molecular gs-factora proposed by us are of far more us® than the 

effective ĝ faotora of Radford. Hia meaaured g^ valuaa contain information 

on the contributions from the rotation of the nuclei and so on but, written 

in this form, this information la irretrievable. All that this approach 

aaiows is an ab initio calculation of these corrections to gj so that 

theoretical values of gj can be compared with the measured ones. Althou^ 

aadford haa bean able to daduea muah from making aodh oompariaona It never-

theless makes more sense to determine the fundamental g-factors directly. 

Information on electron distributions and so on would then be much more 

readily available. 

It la to be expected that Badford'a parametera will be linear oom^ 

binationa of the more fundamental g-factors. It would be of interest to 

determine this relationship on more quantitative grounds. We shall there-

fore calculate the matrix elements of the linear 3eeman effect for the Pg 
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levels of CH, using both approaches, and ignoring nuclear spine. A sim-

ilar calculation for the P-j levels has already been performeld ()6). In the 

case b) limit F. and refer to states with J = N + &andJ = N - i res-
2 2 

pectively. In the case a) limit these correlate with 7T̂ y2 /g 

levels respectively, for an inverted state, Eence we wish to calculate the 

linear Zeeman effect for the state of OH. Using Radford's approach 

these energies are given immediately from (̂ .114): 

where gj = i(gj + gj) (5.121) 

and Agj = (gj - gj) (5.122) 

It is more difficult to obtain similar expressions using our approach since 

we have to allow for the effects of intermediate coupling. From I36T (?) we 

find that the wavefunctions for P levels are given by 

I ±; FgJmj) . - Sj|l; Jm̂ (ill =1/2 > + 0̂ (1; Jm^inM/2 > (5.12)) 

where (5.124) 

X and Y have been given already in equation (5.85). We therefore require 

the matrix elements 

<±; FgJm |Ĥ |±; FgJm^^ = <1; Jm^1/2|Bj Jmjl/2 > 

- 2CjSj<l; Jmj1/2|Hj±; Jmj3/2> 

4- Cj<±;Jm^V2lHgl-;Jmj)/2) (5.126) 

These matrix elements are diagonal in all quantum numbers and hence lead 

directly to the required eigenvalues. The relevant matrix elements of our 

Zeeman Hamiltonian are 
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< Jmijl/2|Hj±; Jm^l/Z > 

2^J + f - igg + 2gp[i - J(J + 1)]+ i(g{ + )(2J + 1) 

(5.127) 

2J(J + 1) 
%!, + ^ + 1). (5.128) 

A'jV2|H,l-; JkyiA > 

" 2 J ^ +^1) j* ^ ^ ^ j[('^ " V2)(J + )/2^ ̂  

(5.129) 

Substitution of these matrix el«*#nt# into (5.126) together with express-

ions for Sj and leads to 

B m 2j(J + l) 
/2X.2 + T \ ^ ^ / X - 4 + 2T-4(J- l/2)( J + 3/2) 

X / \ 2% 

. « - 4j(j + 1 ) - 4 ' - ' A K J * ? / ^ ) ) 

+ el' (J - V2)(J + V2)(J + 5/2) I j (5.130) 

Oomparison with (5.120) gives urn the relationship between gmdford'm effect-
2 

ive gi-factors and our fundamental g-factors, for the 7T ./, stat4 of CHs 

K ( 
2% -2 +Y 

+ gq a 2J(jT T] 

. (ĝ  + g^) 2(J - 1/2)(J + V2) 

1/2 

% - 4 + 2Y - 4(J - 1/2)(J + V2) 
ZK 

4 ^ ( 
5% - 8 + 4Y - 4%J(J + 1) 

) l (5.1)1) 
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" J(J + 1) -gr'(J - 1/2)(J + 1/2)(J + )/2) § 

- (g{ + g*̂ )(J + 1/2) * +2X " )} (5.1)2) 

As expected, therefore, the differenoe between (S gj)^ and (6gj)^ can be 

related to our /I-doubling g-factore gj and . 

5.8 Analysis of Measured Tranaitlon Prequencies 

Eigenvalue calculations, predictions of spectra and least—squares fit-

ting were performed on a CDC 76OO computer. Programmes written by Dr. F.D. 

Wayne to perform such calculations on ̂ 22 and states were available and 

so it was only necessary to modify these to obtain a programme applicable 
2 

to 7T states. The main changes involved the replacement of those subron-
2.__ 

tines calculating matrix elements with ones relevant to our 7i effective 

Hamiltonian. The least-squares fitting procedure is based on that of Gas-

tellano and Bothner-By ()?). 

The basis sets used in the programme are the paritised basis functions 

defined in equation (5.9). This halves the sizes of the matrices and helps 

to reduce computing time. 

In order to fit the Zeeman data it is first necessary to be able to 

calculate the zero-field transition frequencies accurately. The most ex-

tensive analysis of the zero-field data was performed by Meerts and Dymanus 

(14) who were able to fit most of the lines to within 25kHz. They also 
included six lines reported by Poynter and Beaudet (8) but could not fit 

these so well, the discrepancies varying from 65 to 940 kHz. It was hoped 

that we could take the parameters determined by Meerts and Dymanus, convert 

these to our parameters, as described in section 5.6* &nd hence to calculate 

the zero-field transition frequencies with an accuracy comparable to theirs, 

thus leaving us to concentrate on fitting the g-factors. The success of 

this comparison will be discussed in due course. 

We shall first deal with the development and testing of our programme. 

Our initial version did not include centrifugal distortion and third-order 

hyperfine terms. Since Meerts and Dymanus included such terms in their fit 

we cannot in this instance hope to fit the data as accurately as them. 

However we can check that the usual A-doubling, rotational and hyperfine 

terms are correct. The terms in B and A can be checked fairly easily 

against standard matrix elements, e.g. Hougen (25). The hyperfine matrix 

elements were checked against those given by Carrington ̂  al ()8) for NS. 

The A-doubling matrix elements can be checked against those of Carrington 
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and Lucas ( 5 5 ) . A u s e f u l c o m p a r i s o n can be made w i t h t h e / \ - d o y b l i n g e x -

p r e s s i o n s g i v e n by Dousman is , Uanders and Townes ( 7 ) ' For t h i s we have Lo 

s e t a l l b u t A , B, q and ( p + 2 q ) t o z e r o , and t h e s e l a t t e r p a r a m e t e r s we 

t a k e f r o m t h e M e e r t s and Dymanus r e s u l t s : 

A = = -4178507.865MHz 

B = 1 8 . 5 l 5 c m " ^ = 555065.814MHz 

q = 20c = -1165 .22MHz 

(5.153) 

( p + 2q ) = 4 0 ( 2 - 20C^^ = 47)7 .628MHz 

q and p + 2q a r e d e t e r m i n e d f r o m e q u a t i o n ( 5 . 9 1 ) by s e t t i n g t h e t h i r d o r d e r 

t e r m s , and D , t o z e r o . The B p a r a m e t e r was n o t d e t e r m i n e d by MD s i n c e 

t h e i r d a t a do n o t I n c l u d e t r a n s i t i o n s b e t w e e n r o t a t i o n a l l e v e l s , so t h a t B 

c a n n o t be c o n s t r a i n e d i n a l e a s t - s q u a r e s f i t . I n s t e a d t h e y a d o p t e d t h e 

D i e k e and C r o s s w h i t e v a l u e ( 6 ) . 

The A - d o u b l i n g i n t e r v a l s computed w i t h t h e above p a r a m e t e r s a r e g i v e n 

i n t a b l e 5* F o r c o m p a r i s o n t h e e x p e r i m e n t a l l y d e t e r m i n e d A - d o u b l i n g f r e q -

u e n c i e s ^ and t h o s e c a l c u l a t e d f r o m t h e DST e x p r e s s i o n g i v e n i n ( 5 . 8 4 ) 

a r e a l s o g i v e n . D i s c r e p a n c i e s b e t w e e n t h e r e s u l t s o f t h e DST c a l c u l a t i o n 

and t h e o b s e r v e d d a t a p r o b a b l y a r i s e f r o m n e g l e c t o f t h e h i g h e r o r d e r c o n -

t r i b u t i o n s , t o t h e A - d o u b l i n g f r e q u e n c i e s . I n o u r case d i s c r e p a n -

c i e s a r e p r o b a b l y due t o n e g l e c t o f c e n t r i f u g a l d i s t o r t i o n c o r r e c t i o n s . The 

ag reemen t be tween o b s e r v e d and c a l c u l a t e d t r a n s i t i o n f r e q u e n c i e s i s t h e r e -

f o r e as good as c a n be e x p e c t e d , and o u r c a l c u l a t i o n compares s a t i s f a c t o r i l y 

w i t h t h e nST e x p r e s s i o n s . 

I f t h e d o m i n a n t h y p e r f i n e e f f e c t s a r e i n c l u d e d we c a n compare d i r e c t l y 

w i t h t h e o b s e r v e d t r a n s i t i o n f r e q u e n c i e s ( t h o s e c o l l e c t e d f r o m v a r i o u s s o u r -

ces and t a b u l a t e d b y M e e r t s and Dymanus ( 1 4 ) have p r o v e d mos t c o n v e n i e n t t o 

u s e , s i n c e t h e y span a w i d e r a n g e o f r o t a t i o n a l l e v e l s and on t h e w h o l e a r e 

measured t o a h i g h d e g r e e o f p r e c i s i o n ) . A g a i n , we use t h e h y p e r f i n e p a r a -

m e t e r s d e t e r m i n e d b y MD and c o n v e r t them t o o u r p a r a m e t e r s u s i n g e q u a t i o n s 

( 5 * 3 9 ) and (5.40). We t h u s o b t a i n 

a = 86.01MHz 

OC' = -74 .04MHz 

( 5 . 1 ) 4 ) 

p " = 44.04MEZ 

d = 56.62MHz 



J E x p e r i m e n t a l 
Our 

c a l c u l a t i o n 

DST 

C a l c u l a t i o n 

f 5/2 1 6 6 6 « ) 4 ^ 1664 .02 1664.347 

%/^ • 
5 / 2 6 0 ) 6 . 5 9 6 * 6042 .218 6135 .9519 

%/^ • 7 / 2 1 ) 4 3 7 . 8 * 13507.681 %/^ • 
9 / 2 2 ) 8 2 2 . 9 8 ^ 24044 .697 

L 1 1 / 2 36989 .41 * 37507.07 

' 1 / 2 4737 .629 4 7 3 7 . 6 2 9 

%/2 I 
3 / 2 7 7 9 7 . 5 9 ° 7 7 9 9 . 9 8 4 7 8 1 0 . 9 0 8 %/2 I 
5 / 2 8 1 6 6 . 0 8 ° 8153 .788 8 1 6 9 . 5 1 3 

a Taken f r o m R a d f o r d ( 4 ) 

b Taken f r o m Douamanie, Sanders and Townes ( 7 ) 

c Taken f r o m R a d f o r d ( 5 ) 

^ - d o u b l i n g i n t e r v a l e i n absence o f h y p e r f i n e and c e n t r i f u g a l 

d i s t o r t i o n e f f e c t s . 
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The hyperflne A -doubling frequenoiea oaloulated using the parameters 

given in (5.1)3) and (5.1)4) differ quite oonaiderably from the observed 

transition frequencies. I\>r instanoe, for the states, those oaloul-

ated for the J m )/2 levels have disorepanoies of about 2,6MB* while those 

for the J m 11/2 levels differ by 517.5MHz. These disorepanoies were asc-

ribed to our neglect of centrifugal distortion effects on the A-doubling 

and so f u r t h e r m a t r i x elements ( i . e . those i n and D ) were i n c o r p o r a t e d 

I n t h e programme t o accoun t f o r t h e s e . 

At this stage the usual rotational centrifugal distortion terms in Dg 

were also included, although these are expeoted to give only very slight 

oontributions to the A-doubling and certainly would not account for the dis-

orepancles mentioned above. Dg affects the A -doubling intervals only In-

direotly, in that it alters the extent of spin-uncoupling in the molecule. 

Y m ^ is a meaaure of the spin-unooupling and Dg can be iregarded as a J-

dependent contribution to Bx 

B * Bg - Dgj( J + 1) 

An estimate of this effect can be obtained from the DST expression (5.84). 
-4 

If we assume that there is no change in A and that is 10 B then a oal-
2. _ 

oulation of using this modified value of Y reveals that for the 

J » 3/2 levels the change in ou(^t to be 0.5MHz. A computer oaloul-

a t i o n shows t h e corresponding change t o be abou t 0 .83MHz. 

Values of Dg, and were taken from Meerts and Dymanus (14). Their 

Dg value is t h a t of "Dieke and Crossvdiite (6) and is 
Dg - 56.06 MHZ ( 5 . 1 ) 5 ) 

Matrix elements of were checked against those of Zare ()9), with approp-

r i a t e changes i n s i g n to a l l o w f o r d i f f e r e n c e s i n phase c o n v e n t i o n . The D 

and T)^ parameters were calculated using ( 5 . 9 1 ) and t h i s e n t a i l s a l t e r a t i o n s 

i n the q and p + 2q parameters given in ( 5 . 1 ) ) ) . Meerts and Dymeums quote 

^ = 1184.407 MHz 

= -2.9)7 MHz 

OC ̂  - 2.81) MHz 

eCy - - 5 8 2 . 6 1 MHz 

We need an <Xg v a l u e b e f o r e we can c o n v e r t t o o u r pa ramete rs and so we c a l -

c u l a t e t h i s f r o m OC^ using equation ( 5 . 9 2 ) and setting B = 16 .961 cm ^ 

(D ieke and C r o s s w h i t e value). Hence OCq = 0.2)61 MHz, w h i c h leads t o 
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p + 2q = 4732 .4742 MHz 

q = _11f4.)B77 MHz 

n = -n.7/n̂  MHz 
p 

n = 0.4722 MHz q 

Centrifugal distortion corrections to A were also included, although 

t h e i r e f f e c t on t h e s p e c t r a i s v e r y s l i g h t . As m e n t i o n e d i n s e c t i o n 5 . 5 , we 

choose to incorporate these as a spin—rotation interaction (parameter ^ ) 

r a t h e r t h a n as a t e r m i n A j , s i n c e % and A j a r e h i g h l y c o r r e l a t e d and i t i s 

only necessary to include one. In this case the parameter X that we wish to 

use is a linear combination of the true X and the Aj constants, the relation-

ship being 

^ apparent = ^ ' ( ^ ) S 

A corresponding expression would hold were we to use Aj rather than Y . IJei-

t h e r a % n o r a n A t e r m was i n c l u d e d by M e e r t s and ^ymanus, and n e i t h e r have 

been determined for OH by other workers. We must thus resort to some other 

means o f e s t i m a t i n g B o t h Y and A^ have been d e t e r m i n e d f o r OD by Coxon 

( 5 9 ) and so we c a n use a n i s o t o p i c s u b s t i t u t i o n method t o o b t a i n a v a l u e f o r 

y i n OH. Brown and Watson ( 2 8 ) have p o i n t e d o u t t h a t t h e s e p a r a t i o n o f 

and A j by p r e v i o u s w o r k e r s i s based on a n i n c o r r e c t a s s u m p t i o n and so a v a l u e 

o f y . d e t e r m i n e d f r o m Goxon 's r e s u l t s m i g h t n o t be r e l i a b l e . However , 
a p p a r e n t p 

s i n c e t he % te rm i s n o t v e r y i m p o r t a n t f o r "7T s t a t e n t h i s i s n o t e x p e c t e d 

t o i n t r o d u c e s e r i o u s e r r o r s . We have t h e r e l a t i o n s h i p s 

%fOH) B fnn) A (OH) 

and so f r om C o x o n ' s v a l u e s o f 

% (on) = 1.34 X 10"^ cm"^ 

B (on) = 9.8831 cm" 

A (OD) = 2Aj = -4.36 X 10"̂  cm ̂  

we o b t a i n f o r OH 

- 5 - 1 
y = 2 . 5 1 X 10 ^ cm 

A j = - 4 . 0 8 4 X 10 ^ cm ^ 

S u b s t i t u t i o n i n t o ( 5 . 1 ) 7 ) g i v e s t he r e q u i r e d v a l u e o f % : 
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% f = -1.^812 X 10 
- j - 1 

cm a p p a r e n t 

= - 4 1 . 4 MHz ( 5 . 1 ; % ) 

The m a t r i x e l e m e n t s o f D and D a r e n o t easy t o check s i n c e t he A -
p n 

doubling centrifugal d i s t o r t i o n Familtonian has not been given in this form 

b e f o r e . % r a t h e r u s e f u l , and r i g o r o u s , check on t h e A - d o u b l i n g , c e n t r i f u g a l 

distortion and ^ terms i n the programme is possible in the case b) limit. 

This involves setting 4 = 0. The usual case b) expressions (1) for a molec-

u l e i n a d o u b l e t s t a t e , i n the absence o f h y p e r f i n e e f f e c t s , a r e o f t h e f o r m 

(N ) = B [N(N+1) - / \ 2 ] _ D g [ N ( N + l ) - / \ ^ ] ^ + i q N ( N + l ) + 

Fg (N) = B[N(N+1) - A ^ ] - Dg[N(N+1) _ i q N ( N + l ) - i % ( N + l ) 

( 5 . 1 4 0 ) 

Our Ti^ and T)^ t e rms a r i s e f r o m c r o s s t e rms o f t h e r o t a t i o n a l and u s u a l 

A —doubling Hamiltonians, In the case b) limit therefore we expect a term in 

D of t he f o r m 
q 

i i N(N+1) [ N ( N + 1 ) - A * ] ( 5 . 1 4 1 ) 

where the upper and lower signs refer to and levels respectively. 

To t e s t o u r programme i n t h e case b ) l i m i t we have t o s e t A = 0 , p + 2a = 

2 ^ a n d , by a n a l o g y w i t h t h e p + 2q t e r m , = 2D . The e i g e n v a l u e s c a l c u l -

a t e d i n t h i s way a r e f ound t o be t h e same as t hose g i v e n by ( 5 . 1 4 0 ) and 

( 5 . 1 4 1 ) , e x c e p t f o r t h e % t e r m s , w h i c h a r e i n e r r o r by . T h i s i s because 

t h e s p i n - r o t a t i o n i n t e r a c t i o n s h o u l d be o f the f o r m 

Hsi = % %-S = y(H - IJ.S (5.142) 

whereas t he t e r m s i n % i n ( 5 . 1 4 0 ) a r e e i g e n v a l u e s o f t h e X N . S p a r t o n l y . A 

c o n t r i b u t i o n o f t h e f o r m — s h o u l d t h e r e f o r e be i n c l u d e d i n 

( 5 . 1 4 0 ) , so i t i s t h e case b ) e x p r e s s i o n s t h a t a r e i n e r r o r r a t h e r t h a n o u r 

programme. Herzberg (1 ) quotes the case b) expressions only f o r the partic-

ular case of %% sta tes, i n which case the form of (5.140) is indeed co r rec t . 

The f i t o f t h e A - d o u b l i n g f r e q u e n c i e s u s i n g t h e v a l u e s o f t h e c e n t r i f -

u g a l d i s t o r t i o n p a r a m e t e r s o b t a i n e d above i s s t i l l n o t as good as t h a t o b t -

a i n e d by M e e r t s and Dymanus. The J " ) / 2 l e v e l s now have a d i s c r e p -

a n c y o f 4 . f MHz and t h e J = 11 /2 l e v e l s have d e v i a t i o n s o f 4 ) 7 . 2 MHz. T h i s i s 

no b e t t e r t h a n t h e f i t w i t h o u t c e n t r i f u g a l d i s t o r t i o n t e r m s . The o n l y d i f f -

e r e n c e be tween t h i s p r e s e n t programme and t h a t o f K e e r t s and Dymanus i s t h a t 

we have not at this stage included the third-order hyperfine terms and they 

have not included a y terra. These are not expected to be particularly large 
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and would not account for the above discrepancies - the IS term, for instance, 

g i v e s a s h i f t o f only 66 kHz t o t h e - i ) /2 A - d o u b l i n g f r e q u e n c i e s , 

and the contribution from the hyperfine A-doubling d p' term is not expected 

t o be v e r y much l a r g e r . I f b o t h M e e r t s and TDymanus's r e s u l t s and o u r programme 

are reliable then we ought to be able to calculate the zero-field frequencies 

t o a r e a s o n a b l e d e g r e e o f a c c u r a c y . W i t h t h e e x c e p t i o n o f t h e and D t e r m s 

all our matrix elements have been checked against ones previously published 

and even the D^, D terms g ive satisfactory results in the case b) limit. It 

is possible that an error exists in the MD least-squares fitting routine, 

which would explain our inability to fit the data with their parameters. In 

view of this it was decided to attempt to fit the zero-field data ourselves. 

The B , A and h y p e r f i n e c o n s t a n t s were f i x e d a t t h e MD v a l u e s g i v e n i n ( 5 . 1 

and ( 5 . 1 3 4 ) . T h i s programme had no p r o v i s i o n f o r v a r y i n g t h e h y p e r f i n e p a r a -

meters. The remaining parameters were allowed to vary in the least-squares 

fit, V/e used the data set tabulated by MD, with a we igh t ing i n v e r s e l y prop-

ortional to the variance of the individual lines (standard deviations on each 

o f t h e l i n e s we re a l s o q u o t e d by MD^. 

We f o u n d t h a t Y was v e r y p o o r l y c o n s t r a i n e d , w i t h a l a r g e s t a n d a r d d e v -

iation, which is to be expected since the transition frequencies have only a 

weak dependence on An i n i t i a l f i t gave a v a l u e o f 

% = 5 9 f . l 4 MHz (cr = 1 4 3 9 . 1 ) 

and so i n a second f i t f was f i x e d a t t h i s v a l u e . The v a l u e s f o r t h e r e m a i n -

i n g p a r a m e t e r s t h u s o b t a i n e d we re 

q = - 1 1 6 8 . 6 5 5 MHz ( f = 0 . 0 8 2 ) 

p+2q = 4 7 3 2 . 5 0 4 MHz ( c r = 0 . I 3 0 ) 

D = - 0 . 6 5 9 2 MHz ( c r = 0 . 0 1 ) 2 ) ( 5 . 1 4 ; ) 

D = 0 . 4 3 2 9 MHz ( f = 0 . 0 1 1 9 ) 

Dg = 1 4 4 . 1 0 1 MHz ( <r = 6 . 2 1 7 ) 

With the exception of the Dg term, these parameters do not differ much 

from their initial values. The large change in Dg i s not to be viewed with al-

arm. Tn a similar fit on OH Destombes et a l (41) obtained a value for of 

106.66 MHz. That this differs from ours as well as the Dieke and Crosswhite 

v a l u e i s p r o b a b l y n o t s i g n i f i c a n t - t h e y have i n c l u d e d o n l y one A - d o u b l i n g 

parameter as o;;posed to our four, so their fit will converge to different va— 

l u e s o f t he c o n s t a n t s t o compensate f o r t h i s . A l l t h a t c o n c e r n s us w i t h t h e i r 

r e s u l t s i s t h a t t h e i r D v a l u e i s much l a r g e r t h a n t h a t o f D i e k e and Cross-

w h i t e so t h e l a t t e r i s n o t t o be r e g a r d e d as i m m u t a b l e . 



- 125 -

The transition frequencies calculated with the set of parameters given 

in (5*143) fit the observed data very well, and in some instances the fit 

i s even b e t t e r than t h a t o f Meerts and Dymanus, Column I i n t a b l e 6 shows 

the deviations from the observed frequencies. For the TT̂ ŷ  J = 3/2 l e v e l s 

the frequencies are ca lcu la ted to within 5 t o l6kHz, whereas MD fitted these 

to within 28kHz. Similarly, the J - 11/2 levels we fit to within 

150 kHz, in contrast to 920kHz by MD. 

A compar i son w i t h Meerts and Dymanus's results i s r a t h e r d i f f i c u l t 

since the assignments they present in their paper are ambiguous. They use 

a Wang basis s e t rather t h a n a parity b a s i s s e t and so o u r - l a b e l s a r e not 

n e c e s s a r i l y t he same as t h e i r s , Furthermore, i t i s n o t c l e a r from t h e i r 

d a t a w h i c h o f t h e i r ? quantum numbers l a b e l s t h e l o w e r s t a t e . I n o r d e r t o 

o b t a i n our assignments we had t o examine c a r e f u l l y t h e z e r o - f i e l d eigenval-

ues for each of the m̂ -blocks from m^ = 0.0 to m^ = 6.0. This range of m^-

b l o c k s a l l o w s us t o a s s i g n unambiguously a l l t h e F l a b e l s f o r b o t h 7T , 
2 I v/^ 

and levels with J = 1/2 up to J = 11/2. 'This p r o c e d u r e l e d to the 

important observations that the parity labels are inverted for states 

with J >9/2, and the F labels are inverted for ̂ TT̂ yg states with J^7/2 -

f o r each o f t h e o t h e r J l e v e l s t h e h i g h e r o f t h e F l a b e l s r e f e r s t o t h e 

state with the higher energy. 

In our case the discrepancies show a general increase with J, which 

seems to i n d i c a t e t h e need for f u r t h e r h i g h e r o r d e r c o r r e c t i o n s . The prog-

ramme used for the above fit does not include hyperfine terms and as 

has a l r e a d y been mentioned has no p r o v i s i o n f o r fitting any h y p e r f i n e para-

meters. A f u r t h e r v e r s i o n o f t h e programme was developed t o remedy these 

omissions, and this was rather more successful. 

We first fitted only the ^ hyperfine, /\-doubling and centrifugal 

distortion terms, using initial values taken from the data in (5.134) and 

(5.143). The resulting fit is, on the whole, very much better than the pre-
v i o u s one, and t h e discrepancies from t h e observed d a t a are shown i n col-

umn II of table 6. Only for the ̂ Tl̂ yg J = 3/2, 7/2 and 11/2 levels do we 

achieve a better fit than Meerts and Dymanus. Our best fit is for the 

TT̂ yg J = 3/2 levels, which we calculate to within 0.3 to 14kHz. Most of 

the remaining lines can only be calculated to within 20 to 970kHz. The 

deviations do not show a particularly marked dependence on J. The para-

meters obtained from the above fit are as follows: 

q = -1168.673MHz (<r = 0.064) 

P+2q = 4732.476MHz ( 6" = 0.102) 



Table 6 Observed and calculated zero-field transition frequencies for OU 

J Parity 

(lower) 

F 

upper 

P 

lower 

Observed 

Frequency 

(MHz) 

Frequency differences (obs~calc) 

(in kHz) 
T Meerts & 

1 Dymanus 

3/2 3/2 + 1 1 1 6 6 5 . 4 0 1 8 ( 2 ) -14.7 - 1 4 . 4 —61.6 2 6 . 0 

2 2 1667.3590(2) 15.7 14.3 42.7 27.4 

2 1 1 7 2 0 . 5 3 0 0 ( 2 ) -4.99 0.393 -9.52 25.4 

1 2 1 6 1 2 . 2 3 1 0 ( 2 ) 6 . 1 8 - 0 . 3 2 9 -9.30 28.0 

5/2 2 2 6030 .747(5) "40.4 3.74 -99.5 -20.2 

5 3 6035 .092(5) 22.1 62.8 137 -18.2 

5 2 6049.084(8) -539 -334 -25.3 -21.7 

2 3 6016.746(5) 511 392 53.4 -25.7 

7/2 + 3 3 13434.62(1) 13.7 11.0 -154 —65 

4 4 1 3 4 4 1 . 3 6 ( 1 ) 5 6 . 8 51.9 181 - 1 0 0 

9/2 4 4 23817.615(2) -32.5 -55.6 -266 6.3 

5 5 23826.621(3) 58.0 51.9 240 5.5 

4 5 23838 .46(1) 347 342 - 4 0 0 - 4 8 0 

5 4 23805.13(1) -968 -972 -272 -150 

11/2 + 5 

6 

5 

6 

36983.47(3) 

36994.43(5) 

.149 

-39.7 

-146 

-40.3 

- 4 4 1 

209 

-910 

.940 

1 / 2 1 / 2 1 1 4750.656(3) -71.2 -59.7 26.5 27.5 

1 0 4 7 6 5 . 5 6 2 ( 3 ) - 5 1 1 - 2 7 . 9 - 1 2 2 1 9 . 3 

0 1 4660.242(3) 388 -39.8 -118 24.7 

3/2 + 1 1 7761.747(5) - 3 . 0 3 48.1 -77.4 -7.5 

2 2 7820.125(5) - 1 1 9 -92.5 -17.4 0.3 

2 1 7831.962(5) -16.4 3 2 . 2 - 4 0 . 5 1 . 1 

1 2 7749.909(5) 107 -77.6 -55.3 -9.2 



5/2 - 2 2 81)5.870(5) 151 165 112 0.8 

3 3 8189.587(5) -112 -121 83.8 4.6 

3 2 8207.402(5) 228 79.3 22 5.8 

2 3 8118.051(5) -194 -39.5 2.51 -4.5 

7/2 + 3 3 5473.045(5) 293 300 317 -4.3 

4 4 5523.438(5) -98.7 -177 -191 -12.6 

4 3 5547.042(5) 95.6 93.9 69.1 -9.1 

3 4 5449.436(5) 25.8 24.2 52.2 -12.8 

9/2 + 5 5 117.1495(10) 338 336 407 -5.6 

4 4 164.7960(10) -319 -341 -426 -4.1 

5 4 192.9957(10) 305 -17.5 -8.85 -li.3 

4 5 88.9504(10) -286 13.5 -9.85 2.1 

W e i g h t e d sura o f squares o f d e v i a t i o n s 

In (MHz)2 0.0203 0.0107 0.0216 

Observed f r e q u e n c i e s q u o t e d b y M e e r t s and Dymanus ( 1 4 ) ( s e e r e f e r e n c e s c i t e d 

t h e r e i n f o r w o r k e r s r e s p o n s i b l e f o r i n d i v i d u a l measurements ) 

Numbers i n b r a c k e t s a f t e r o b s e r v e d f r e q u e n c i e s a r e s t a n d a r d d e v i a t i o n s , and 

a p p l y t o t h e l a s t s i g n i f i c a n t f i g u r e o f t h e f r e q u e n c y 

I F i t o f A - d o u b l i n g and c e n t r i f u g a l d i s t o r t i o n t e r m s 

I I As f o r I b u t i n c l u d i n g h y p e r f i n e t e r m s 

I I I As f o r I I b u t i n c l u d i n g h y p e r f i n e t e rms 
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D = -0.6506MHz ( C = 0.0104) 

D = 0.4289Mnz ( 0" = 0.0094) 

Dg = 146.061MHz (cr = 4.883) 

a = 85.777MHz ( 6" = 0 . 1 5 0 ) (5.144) 

AC' = -72.947MHz ( ( T = 0 . 1 5 0 ) 

P" = 4).270MHz (<r = 0 . 1 5 9 ) 

d = 56.669MHz (<r = 0.45%) 

None o f t h e s e v a l u e s a r e s i g n i f i c a n t l y d i f f e r e n t f r o m t h e i n i t i a l d a t a . 

The s t a n d a r d d e v i a t i o n s on t h e f i r s t f i v e t e r m s a r e l o w e r t h a n t h o s e f r o m 

t he p rev i ous f i t g i v e n i n (5.143). 

We n e x t a t t e m p t e d t o r e d u c e some o f t h e d i s c r e p a n c i e s i n t h e above f i t 

by including the hyperfine terms, and fitting these in conjunction with 

t h e h y p e r f i n e p a r a m e t e r s . The c e n t r i f u g a l d i s t o r t i o n and A - d o u b l i n g 

c o n s t a n t s were f i x e d a t t h e v a l u e s g i v e n i n (5*144). The d ^ c o n s t a n t was 

n o t f i t t e d , f o r r e a s o n s a l r e a d y m e n t i o n e d , and was f i x e d a t z e r o . We were 

n o t a b l e t o o b t a i n a v a l u e f o r D , s i n c e i t i s s t r o n g l y c o r r e l a t e d w i t h C^ , 

a and oC ' . M e e r t s and Dymanus h a d t h e same d i f f i c u l t y , as m e n t i o n e d i n 

s e c t i o n 5 . 6 . T h i s t e r m t o o was f i x e d a t z e r o . The v a l u e s o b t a i n e d f o r t h e 

r e m a i n i n g h y p e r f i n e t e rms a r e as f o l l o w s ; 

a = 86.078MHz (<r = 0.370) 

cc ' = -73.592MHz (cr = 0 . 6 9 6 ) 

P" = 43.748MHz (cr = 0.546) 

d = 56.519MHz ((T = 0.648) 

= -0.089MHz (cr = 0 . 0 9 3 ) 

dp, = 0.306MRZ (cr = 0 . 2 0 3 ) 

The v a l u e o f i s v e r y s i m i l a r t o t h a t o f O.lMHz w h i c h we can o b t a i n f r o m 

M e e r t s and "Dymanus's r e s u l t s u s i n g (5.97). No te t h a t t h e s t a n d a r d d e v -

i a t i o n s on t h e f o u r IX^ t e rms a r e l a r g e r t h a n t h o s e g i v e n i n (5.144). I n -

deed t h e f i t u s i n g t h i s d a t a s e t i s n o t as g o o d as t h a t i n t h e absence o f 

^ ^ h y p e r f i n e t e r m s . The d e v i a t i o n s f r o m t h e o b s e r v e d t r a n s i t i o n f r e q u e n -

c i e s a r e shown i n c o l u m n I I I o f t a b l e 6 . T h e r e seems t o be no t r e n d i n t h e 

d e v i a t i o n s w i t h r e s p e c t t o J w h i c h m i g h t i n d i c a t e t h a t t h e r e m a i n i n g e r r o r s 

(5.145) 
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a r e m e r e l y e x p e r i m e n t a l , b u t c o n s i d e r i n g t h e p r e c i s i o n t o w h i c h t h e l i n e s 

a r e d e t e r m i n e d , and t h e m a g n i t u d e o f t h e d i s c r e p a n c i e s , a more l i k e l y e x p -

l a n a t i o n i s t h a t h i g h e r o r d e r t e r m s o t h e r t h a n t h e ^ ^ h y p e r f i n e t e r m s need 

t o be i n c l u d e d . 

We now t u r n t o a f i t o f t h e Zeeman d a t a . E . p . r . s t u d i e s have been 

made on t h e f o l l o w i n g r o t a t i o n a l l e v e l s : J = 3 / 2 t h r o u g h t o J = 1 1 / 2 ; 

^ ^ 1 / 2 ^ ~ a-nd 5 / 2 , I t i s o u r i n t e n t i o n t o use a l l t h e s e measurements 

i n o u r f i t . The measurements o f t h e J = 9 / 2 l i n e s were d e t a i l e d i n 

section 5.4. The J = 11/2 lines have been measured in this laboratory by 

D r . C.L.M. K e r r w h i l e t h e r e m a i n i n g l i n e s w e r e measured b y R a d f o r d (4, 5)» 

The f r e q u e n c i e s and f i e l d p o s i t i o n s o f t h e l a t t e r l i n e s are n o t g i v e n i n 

R a d f o r d ' s papers and so i t was d e c i d e d t o r e g e n e r a t e t h i s d a t a b y s u b s t i t -

u t i o n of t h e g i v e n p a r a m e t e r s i n t o R a d f o r d ' s t r a n s i t i o n f r e q u e n c y e x p r e s s -

i o n s . A compu te r programme was w r i t t e n b y Dr. M. Raise f o r t h i s p u r p o s e . 

A t t h i s s t a g e D r . R a d f o r d p r o v i d e d us w i t h t h e o r i g i n a l d a t a f o r a l l h i s 

measurements , and so t h i s was used i n p r e f e r e n c e t o a n y computed d a t a . I t 

is w o r t h p o i n t i n g o u t , h o w e v e r , t h a t a l t h o u g h t h e a f o r e m e n t i o n e d programme 

gave p r e d i c t i o n s f o r t h e ^^ . ta t o w i t h i n 0 , 2 t o 1 . 6 gauss we we re n o t 

a b l e t o r e g e n e r a t e t h e d a t a s a t i s f a c t o r i l y . A l t h o u g h t h e a v e r a g e 

f i e l d p o s i t i o n and o v e r a l l s p r e a d o f t h e l i n e s was c o r r e c t , t h e r e l a t i v e 

d i s p o s i t i o n s and a s s i g n m e n t s o f i n d i v i d u a l l i n e s were t o t a l l y d i f f e r e n t . 
2 

The c a l c u l a t i o n o f t h e TT^yg d a t a e n t a i l s o n l y a m i n o r c o r r e c t i o n t o t h e 

e x p r e s s i o n s f o r t h e l e v e l s w h i c h a c c o r d i n g t o R a d f o r d adds o n l y abou t 

1,5MHz t o t h e t r a n s i t i o n e n e r g i e s , F o r t h e J = 5 / 2 l e v e l s , w h i c h have an 

e f f e c t i v e g - f a c t o r o f - 0 , 1 5 4 , t h i s means a s h i f t i n f i e l d p o s i t i o n s due t o 

t h i s a d d i t i o n a l t e r m o f a b o u t 8 g a u s s . I f we o m i t t h i s c o r r e c t i o n t e r m we 

have e s s e n t i a l l y a TT^yg programme w h i c h f r o m t h e above i s known t o be 

c o r r e c t and so we s h o u l d a t l e a s t be a b l e t o p r e d i c t t h e ^TT^yg l i n e s t o 

w i t h i n 8 g a u s s . T h i s c o u r s e o f a c t i o n does n o t , h o w e v e r , l e a d t o any i m p -

rovemen t . T h i s w o u l d seem t o i n d i c a t e t h a t t h e r e a r e e r r o r s i n R a d f o r d ' s 

2 — 

TT^yg e f f e c t i v e p a r a m e t e r s . 

The w e i g h t i n g f o r t h e Zeeman l i n e s was based on t h e i n v e r s e s q u a r e s o f 

t h e l i n e w i d t h s , w h i c h i s s i m i l a r t o t h a t a d o p t e d f o r t h e z e r o - f i e l d l i n e s . 

R a d f o r d q u o t e s l i n e w i d t h s o f 450kHz f o r t h e s t r o n g e s t l i n e s ( p r e s u m a b l y t h e 

^ T T j y g J = 5 / 2 l e v e l s ) , 800kHz f o r t h e w e a k e r ^TT^yg l i n e s and 2MHz f o r t h e 

^TT^yg measuremen ts . For o u r J = 9 / 2 measurements t h e l i n e w i d t h s a r e e s t -

i m a t e d t o be a b o u t 10 gauss f o r t h e r e s o l v e d l i n e s and 20 gauss f o r t h e u n -

r e s o l v e d ones . F o r t h e J = 1 1 / 2 l i n e s t h e l i n e w i d t h s w e r e e s t i m a t e d t o be 



- 128 -

20 g a u s s . S i n c e t h e l e a s t - s q u a r e s programme fits f r e q u e n c i e s and not fields 

i t i s f i r s t n e c e s s a r y t o c o n v e r t t h e l i n e w i d t h s f o r t h e J = 9 / 2 and 11/2 

l i n e s t o f r e q u e n c i e s . T h i s e n t a i l s c a l c u l a t i n g t h e e f f e c t i v e g — f a c t o r s for 

t h e s e l e v e l s , s i n c e R a d f o r d does n o t q u o t e t hem. These a r e b e s t c a l c u l a t e d 

f r o m t h e e x p r e s s i o n s r e l a t i n g t h e e f f e c t i v e g - f a c t o r s , g j , f o r l e v e l s t o 

t h e m o l e c u l a r g - f a c t o r s g „ , g e t c . I n t h i s a p p r o x i m a t e c a l c u l a t i o n o n l y 
b L 

t h e d o m i n a n t c o n t r i b u t i o n s , t h o s e f r o m g and g ^ , need be i n c l u d e d . The 

e x p r e s s i o n f o r l e v e l s was g i v e n e a r l i e r i n s e c t i o n 5 * 4 . T h a t f o r 
l e v e l s i s s i m i l a r and f o r ou r p u r p o s e s we c a n t a k e t h i s t o be 

2X + 2 - Y j + g + 4 - Y + ^ 4 < J - 1 / 2 ) ( J + 

( 5 . 1 4 6 ) 

gy = 
2 J ( J + 1 ) [ « L ( 

We t h u s o b t a i n g v a l u e s o f 0 . 1 ) 8 and 0.197 f o r t h e J = 9/2 and 11/2 l e v e l s 

r e s p e c t i v e l y , w h i c h l e a d t o f r e q u e n c y l i n e w i d t h s o f 5»52MHz f o r t h e J = 1l/2 

l e v e l s , and 1,94 and 3.87MHz f o r r e s o l v e d and u n r e s o l v e d J = 9 / 2 l e v e l s r e s -

p e c t i v e l y . The s i m p l e case a ) e x p r e s s i o n s f o r e f f e c t i v e g - f a c t o r s 

= 

(ggZZ + g^/\) 

2 J ( J + 1 ) 

was f o u n d t o g i v e g - f a c t o r s a n o r d e r o f m a g n i t u d e s m a l l e r t h a n t h e above 

and so i t i s n e c e s s a r y t o use t h e i n t e r m e d i a t e c o u p l i n g scheme e x p r e s s i o n 

g i v e n i n ( 5 . 1 4 6 ) . 

The l i n e w i d t h s and r e s u l t i n g w e i g h t s used i n t h e i n i t i a l f i t a r e t h e r e -

f o r e as f o l l o w s : 

n. J 4 V ( M H z ) W e i g h t 

3 / 2 0 . 4 5 1 

5 / 2 0 . 8 0 0 . 3 1 6 4 

7 / 2 0 . 8 0 0 . 5 1 6 4 

9 / 2 1 . 9 4 res. 0 . 0 5 4 

5.87 u n r e s . 0 . 0 1 ) 5 

11 /2 5 . 5 2 0 . 0 0 6 6 5 

1 / 2 3 / 2 2 . 0 0.0506 

5 / 2 2 . 0 0.0506 

The z e r o - f i e l d p a r a m e t e r s u s e d were t h o s e o b t a i n e d f r o m t h e b e s t f i t o f 

t h e z e r o - f i e l d d a t a and a r e t h o s e g i v e n i n (5.144) t o g e t h e r w i t h t h e A and 
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B values given in (5.1))). ^ I'as fixed at the value of 5.585, obtained 

from Radford's g value of -).042 x 10""̂ . The remaining g-faotora were 

allowed to vary in the least squares fit. Die resulting fit is very dis-

appointing - the lines oould mily be oaloulated to witAiin 10 - 60MHz and 

the g-factors were also not very well determined. "Rie values obtained 

were* 

= 2.01)) (g- = 0.1)92) 

= 0.992) (6" = 0.0789) 

«r - 0.0022 ( f « 0.007)) 

« -0.0295 ( C = 0.2)09) 

" 0.0021 ( ̂  m 0.0008) 

«1 " 0.004) ( O" = 0.01)6) 

gg and g^ we would expect to be slightly less than their free electron val-

ues of 2.002)2 and 1.000 respectively and so is certainly too large. gj|̂  

and are of the order that we would expeot but both g az:d g, are an 

order of magnitude too large; these should be about 10 and 10 respect-

ively. Note also that these two g-factors halve very large standard dev-

iations which indicates that they are not very well constrained by the data. 

In addition the least squares programme indicates that g is highly correl-

ated with g^ and g^ with gg. In a second fit both and g^ were constrain-

ed to be zero and the data fitted to the remaining four g-factors. This 

Improved the fit slightly - the lines oould be calculated to within 0.2 to 

but this is still not satisfactory. (Die g-factors are somewhat better 

determined in this case, the values being 

m 2.0111 (<rm 0.0015) 

» 0.9981 ( (T - 0.0010) 

g^' » 0.0020 (0-= 0.0001) 

g^ - 0.004) ( - 0.0009) 

(5.148) 

The A-doubling g-factors g]̂  and gĵ  have the same VEHues as in (5#147) and 

so these were fixed at the above values in subsequent runs. In these we 

fixed g either at zero or at Radford's value for gl (whioh is equivalent to 
\ -4 

our ̂ ) of 5.7 X 10 , and allowed gg, and g^ to vary. The best fit was 

obtained from the latter, although this Is far from satisfactory. Bie 
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^ ~ 5/2 l i n e s c o u l d be f i t t e d t o w i t h i n 33 t o 700kHz b u t t h e l i n e s 

f r o m h i g h e r r o t a t i o n a l l e v e l s c o u l d n o t be f i t t e d as w e l l as t h i s . By far 

2__ 

t h e w o r s t f i t was f o r t h e TT^yg J » 11 / 2 l i n e s w h i c h had mean r e s i d u a I n o f 

a b o u t 40MHz. T a b l e 7 shows t h e r e s u l t s o f t h i s f i t . Data f r o m one n e t of" 

t h e J = 9 / 2 and one s e t o f t h e J » 1 1 / 2 measurements a r e o m i t t e d , s i n c e 

t h e s e a r e v e r y s i m i l a r t o t h e ones t a b u l a t e d . Two s e t s o f J = 3 / 2 

measurements w e r e u s e d , s i n c e t h e s e s p e c t r a a r e t h e most a c c u r a t e l y d e t -

e r m i n e d o f a l l the m e a s u r e m e n t s . The g - f a c t o r s o b t a i n e d f r o m t h i s f i t a r e 

gg = 1.9855 (cr = 0 .0018) 

= 1 . 0 0 7 9 (<r = 0 .0008) 

= 0.0372 (<r = 0.0024) 

The d i f f e r e n c e s b e t w e e n t h e s e v a l u e s and t h o s e g i v e n i n ( 5 . 1 4 7 ) and ( 5 . 1 4 8 ) 

a r e q u i t e m a r k e d - g^ i s now f a r t o o s m a l l ; g ^ we w o u l d e x p e c t t o be s l i g h t -

l y l e s s t h a n u n i t y ; g ^ , a d m i t t e d l y b e t t e r c o n s t r a i n e d , has changed s i g n and 

i s s t i l l a n o r d e r o f m a g n i t u d e t o o l a r g e . 

5 . 9 D i s c u s s i o n 

I n t h i s s e c t i o n we s h a l l t r y t o draw c o n c l u s i o n s f r o m t h e r e s u l t s p r e s -

e n t e d i n t h e p r e v i o u s s e c t i o n . We s h a l l d e a l f i r s t w i t h t h e z e r o - f i e l d 

p r o b l e m . 

I t i s u n f o r t u n a t e t h a t we h a d t o spend so much t i m e o n o b t a i n i n g a n 

a d e q u a t e d e s c r i p t i o n o f t h e z e r o - f i e l d e n e r g y l e v e l s , s i n c e i t i s t h e g -

f a c t o r s t h a t we a r e r e a l l y i n t e r e s t e d i n . I t was hoped t h a t we c o u l d have 

u s e d t h e M e e r t s and Dymanus r e s u l t s d i r e c t l y , w h i c h p r o v e d n o t t o be p o s s -

i b l e , and we c e r t a i n l y d i d n o t a n t i c i p a t e t h a t we w o u l d have t o p e r f o r m o u r 

own a n a l y s i s o f t h e z e r o — f i e l d d a t a . Even t h o u ^ we had t o r e s o r t t o t h i s 

c o u r s e o f a c t i o n we s t i l l we re n o t a b l e t o r e p r o d u c e M e e r t s a n d Dymanus 's 

r e s u l t s , and t h e r e a r e s e v e r a l p o s s i b l e e x p l a n a t i o n s f o r t h i s . F i r s t , s i n c e 

we a r e n o t c e r t a i n as t o wha t a s s i g n m e n t s MD have u s e d , we c o u l d be u s i n g a 

d i f f e r e n t s e t o f a s s i g n m e n t s t o t h e m . S e c o n d l y , t h e r e a p p e a r s t o be e r r o r s 

i n t h e i r l e a s t - s q u a r e s f i t t i n g p r o c e d u r e . As m e n t i o n e d i n s e c t i o n 5.6, 

t h e i r oC p a r a m e t e r c a n be r e w r i t t e n as a c o n t r i b u t i o n t o t h e OC, and <XI. 
J 5 4 

c o n s t a n t s and so i t i s n o t a t a l l c l e a r how t h e y managed t o d e t e r m i n e 

OC^ and OC^ s i m u l t a n e o u s l y . P i t t i n g t h e s e t h r e e t e r m s s h o u l d n o t have g i v e n 

a c o n v e r g e n t f i t . T h e i r a p p a r e n t l y good f i t i s t h e r e f o r e t o be v i e w e d w i t h 

some s u s p i c i o n and so we s h o u l d n o t be p e r t u r b e d a t t h e i n f e r i o r q u a l i t y o f 

o u r f i t . 



Table 7 Observed and calculated Zeeman measurements for OH 

J value Observed Obs - calc Frequency 

for parity Frequency Field 

+ •MS (MHz) (gauss) (MHz) 

V 2 3/2* 1.0 2.0 9262.9) 5787.69 0.477 

0.0 1.0 5790.68 0.512 

—1*0 0.0 5793.42 0,672 

0.0 1.0 9263.00 5809.63 -0.185 

.^uo 0.0 5811.93 -0.157 

-2.0 .^UO M 5813.93 0.033 

2.0 1.0 9259.92 8%n.71 -0.576 

1.0 0.0 9260.12 8321.53 -0.434 

1.0 0.0 9259.92 8334.19 -0.255 

0.0 —1.0 9260.12 8354.84 -0.143 

0.0 —1«0 9259.98 8367.15 0.043 

—1.0 -2.0 9259.95 8388.65 0.119 

1.0 2.0 8902,26 5512.98 0.284 

0.0 1.0 It 5515.43 0.236 

—1.0 0.0 1? 5517.45 0.568 

0.0 1.0 8902.21 5534.15 0.524 

—1.0 0.0 m 5535.93 0.428 

—2.0 —1*0 ! ! 5537.32 0.632 

2.0 1.0 8902.26 80)0.45 -O.718 

1.0 0.0 » 8O50.29 -0.712 

1.0 0.0 ft 8061.29 -0.564 

0.0 —1,0 H 8081.29 -0.485 

0.0 -1.0 It 8092.25 -0.057 

—1.0 -2.0 M 8114.09 -0.404 

3/2 5/2* —1.0 —2,0 9470.77 5022.0) 0,519 

—2,0 -3.0 M 5025.97 0,588 

0.0 —1,0 tt 5039.27 0.459 

—1.0 -2.0 M 5045.42 0.422 

1.0 0.0 l# 5056.44 0.434 

0.0 —1.0 5064.54 0.464 



5/2 7/2* 

3/2 9/2^ 

2.0 1.0 II 5073.49 0,475 

1.0 0.0 It 5083.56 0.555 

3.0 2.0 It 5090,85 0.291 

2.0 1.0 II 5102.64 0.5^3 

3.0 2.0 9277.59 8922.67 -^L05 

4.0 3.0 •I 8935.36 -^L20 

2.0 1.0 9277.67 8988.48 .^U45 

3.0 2.0 II 8998.46 .^U22 

1.0 0.0 9278.35 9055.39 -1.51 

2.0 1.0 II 9061.67 .^U33 

0.0 .^uo 9277.07 9128,57 -1.48 

1.0 0.0 H 9131.41 —1,16 

0.0 —1,0 9277.58 9199.10 -0.947 

"1 *0 —2,0 II 1* -1.72 

—1,0 —2.0 9278.31 9267.03 -^.21 

-2.0 —3.0 11 9272,47 -1.31 

-2.0 -3.0 9278.29 9339.31 —1,12 

-3.0 —4.0 II 9348.74 -1.27 

—4.0 —5.0 26253.16 6821.90 2.50 

-3.0 —4,0 26253.22 6852.46 1.97 

-3.0 -4.0 26253.35 6882.82 2.27 

-2.0 -3.0 26253.93 6909.37 1.92 

-2.0 -3.0 26254.26 6945.78 2.20 

—1,0 —2,0 26254.51 6966.29 1.89 

-1.0 -2.0 26258.32 7025.50 -3.64 

0.0 —1.0 26258.32 7025.50 4.44 
0.0 —1.0 26262.10 7096.52 0,152 
1.0 0.0 26262.10 7096.52 3.05 
1.0 0.0 26262.58 7155.67 1.32 

2.0 1.0 26262.58 7155.67 2.60 

3.0 2.0 26262.67 7215.47 1.66 

2.0 1.0 26262.67 7215.47 2.11 

4.0 3.0 26262.79 7275.35 0.842 

3.0 2.0 26262.79 7275.35 3.00 

5.0 4.0 26253.14 7335.08 -9.60 

4.0 3.0 26253.14 7335.08 -5.74 



3/2 11/2° 5.0 4.0 )5459.000 520).2 ^ 8.45 

4.0 5.0 " 5)48.7 )2.1 

6.0 5.0 " 5)67.6 4).9 

).0 2.0 " 5408.) 29.9 

5.0 4.0 " 54)6.1 46.2 

2.0 1.0 " 5469.9 27.7 

4.0 ).0 " 5506.9 48.6 

).0 2.0 " 55)6.1 )8.6 

1.0 0.0 " 5579.0 )8.) 

2.0 1.0 " 5601.0 )8.) 

0.0 -1.0 " 5652.4 )8.1 

1.0 0.0 " 5667.0 )7.8 

-1.0 -2.0 " 5728.6 )8.0 

0.0 -1.0 " 57)7.8 )8.0 

-2.0 -).0 " 5806.7 )7.7 

-1.0 -2.0 " 5810.4 )8.1 

-2.0 -).0 " 5885.) )8.1 

-).0 -4.0 " 5888.4 )7.7 

-).0 -4.0 " 5961.4 )7.8 

-4.0 -5.0 " 5974.4 )8.1 

-4.0 -5,0 " 6041.2 )7.7 

-5.0 -6.0 " 6062.) )8.2 

1/2 )/2* -1.0 -2.0 9200.055 7)16.68 1.68 

0.0 -1.0 " 7429.42 1.68 

2.0 1.0 " 7484.26 1.46 

1.0 0.0 " 75)5.2) 2.)4 

1.0 0.0 " 75)5.2) 0.704 

0.0 -1.0 " 7578.68 1.67 

5 /2* 2 . 0 ) . 0 9200.01 5129.01 -7.5) 

-).0 -2.0 " 5148.9) -7.56 

-2.0 -1.0 " 5175.14 -7.46 

-1.0 0.0 " 5198.26 -7.19 

1.0 2.0 " 5198.26 -8.16 

0.0 1.0 " 5222.92 -7.65 

1.0 2.0 " 5244.01 -7.78 

0.0 1.0 " 5265.41 -8.02 

-1.0 0.0 " 5))5.75 -8.1) 

-2.0 -1.0 " 5407.55 -8.14 



a L i n e s measured by R a d f o r d (4) 

b Present measurements 

c L i n e s measured b y D r . C . M . L , K e r r 

d L i n e s measured by R a d f o r d (5) 

Sum of squares^of fit = 443.054 
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Our a n a l y s i s has i n d i c a t e d t h a t t h e t e rms i n o u r e f f e c t i v e H a m i l t o n i a n 

a r e n o t q u i t e s u f f i c i e n t t o d e s c r i b e t h e r o t a t i o n a l e n e r g y l e v e l s . I n c -

lusion of the hyperflne terms gives no significant improvement, and it 

is likely that alternative higher order terms are required. These could be 

f u r t h e r c e n t r i f u g a l d i s t o r t i o n c o r r e c t i o n s t o t h e r o t a t i o n a l c o n s t a n t , 

and so o n , o r , more l i k e l y , f o u r t h o r d e r A - d o u b l i n g i n t e r a c t i o n s . We have 

n o t had t i m e t o i n v e s t i g a t e e i t h e r o f t h e s e p o s s i b i l i t i e s . 

The f o u r t h o r d e r A - d o u b l i n g t e r m s w o u l d be o f t h e f o r m 

As f o r t h e t h i r d o r d e r t e r m s we w o u l d e x p e c t t h e v i b r a t i o n a l c o n t r i b u t i o n s 

t o be more i m p o r t a n t t h a n t h e e l e c t r o n i c o n e s . A c u r s o r y g l a n c e r e v e a l s 

that there are in principle six such parameters* 

2 i n v o l v i n g < v = O I H ^ I v ' ^ v > 

2 i n v o l v i n g < v = 0 | H ^ l v = 0 > 

2 involving <v' vlH^lv* ^ v > 

However , some o f t h e s e w o u l d be e i t h e r l i n e a r c o m b i n a t i o n s o f o t h e r s , o r o f 

e q u i v a l e n t f o r m t o a l o w e r o r d e r / \ - d o u b l i n g t e r m . Hence l e s s t h a n s i x 

p a r a m e t e r s w o u l d be d e t e r m i n a b l e . As b e f o r e , o n l y s t a t e s w o u l d be e x p e c -

ted to contribute to these parameters, to fourth order. 

For t h e sake o f c o m p l e t e n e s s , we p r e s e n t i n t a b l e 8 t h e b e s t s e t o f 

z e r o - f i e l d p a r a m e t e r s o b t a i n e d f r o m our analysis. Fo r c o m p a r i s o n t h e c o r r -

e s p o n d i n g p a r a m e t e r s o b t a i n e d f r o m M e e r t s and Dymanus 's w o r k a r e i n c l u d e d 

a l s o . 

The a n a l y s i s o f t h e Zeeman measurements has n o t p r o c e e d e d as w e l l as 

we w o u l d have l i k e d . Our e x t r e m e l y p o o r f i t i n d i c a t e s t h a t t h e r e a r e s t i l l 

some p rob lems t o be r e s o l v e d and we c e r t a i n l y c a n n o t r u l e o u t t h e p o s s i b i l -

i t y o f a p rog ramming e r r o r , even t h o u g h a l l t h e m a t r i x e l e m e n t s have been 

c h e c k e d . I t i s n o t c l e a r why t h e r e s i d u a l s s h o u l d be so l a r g e - t h e s e c o u l d 

n o t be a c c o u n t e d f o r b y t h e d i s c r e p a n c i e s r e m a i n i n g i n t h e z e r o - f i e l d p r o b -

lem s i n c e t h e l a t t e r a r e m i n u t e , by c o m p a r i s o n . N e v e r t h e l e s s , we can t a k e 

t h e b e s t s e t o f g - f a c t o r s t h a t we have o b t a i n e d so f a r and a t t e m p t t o r e l a t e 

them t o R a d f o r d ' s r e s u l t s . I n a d d i t i o n , t h e two A - d o u b l i n g g — f a c t o r s , g£ 

and g® a r e q u i t e w e l l d e t e r m i n e d and so we can use t h e s e t o o b t a i n e s t -

^ 1 
i m a t e s o f t h e m o l e c u l a r m a t r i x e l e m e n t s , ^ TT! T ^ ( l ) 1 1 ^ ' ^ and so o n , f o r 

c o m p a r i s o n w i t h a pu re p r e c e s s i o n m o d e l . The ' b e s t ' s e t o f g — f a c t o r s i s 

g i v e n i n t a b l e 9 . 



T a b l e 8 Best s e t o f z e r o - f i e l d p a r a m e t e r s , i n MHz 

Our r e s u l t s S t a n d a r d d e v i a t i o n 
Meerts & 
Dymanus 

B 5 5 5 0 6 5 . 8 1 4 * — — 5 5 5 O 6 5 . 8 I 4 * 

®B 146 .061 4 . 8 5 5 56.06* 

A .4178507 .865^ — - 4 1 7 8 5 0 7 . 8 6 5 

q - 1 1 6 8 . 6 7 5 0 . 0 6 4 - 1 1 6 4 . 5 8 7 7 

p+2q 4752 .476 0 . 1 0 2 4752 .4742 

—0,6506 0 . 0 1 0 4 -0.7202 

0 . 4 2 8 9 0 . 0 0 9 4 0.4722 

X 596 .64 1459.1 — 

a 8 5 . 7 7 7 0 . 1 5 0 8 6 . 0 1 

o c ' - 7 2 . 9 4 7 0 . 1 5 0 - 7 4 . 0 4 

(3 " 4 5 . 2 7 0 0 . 1 5 9 44.04 

d 56.669 0 . 4 5 2 56.62 

subsequen t r u n : 

- 0 . 0 8 9 0 . 0 9 5 0 . 1 

d(g, 0.506 0 . 2 0 5 — 

^ a — — — — 

Dp, -

a D ieke and C r o s s w h i t e v a l u e ( 6 ) 

b M e e r t s and Dymanus v a l u e ( 1 4 ) 



Table 9 Molemilar g-faotors obtained from best fit 

Standard Deviation 

% 1.9855 0.0018 

1.0079 0.0008 

0.000)7 

5.585 

0.0)72 0.0024 

0.0020 0.0001 

*1 
4,006) 0.0006 
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% e pure preoeasion model applies to systems of spherioal symmetry. A 

simple picture of OE views this molecule as a large oxygen atom with a small 

hydrogen atom orbiting around it, and so this system has near spherioal 

symmetry. It would thus be expected to conform closely to the pure prec-

ession model. The pure precession hypothesis assumes that L is a constant 

of motion and so L is well defined. For L = 1 the only excited states that 

are present are those with L » 0. Therefore the only excited states that 

contribute to our general perturbation expressions for effective peaa-

meters are states. This greatly simplifies those expressions, leading 

to: 

5 - -4(Ai!r'l<Tr^,iOT;(ij|z:>i' 

= 4(4 E)-1<:7T+,I(* + 23) > ( Z:|Br2,(&)|7T+i > 

4 ' - -'tei.(AE)-V7T^ilOT](£)!lI><'Eli'Ii(i)lTT+i> 

e 1 e' 
- fer 

A « I , - - e ' ( 5 . 1 5 0 ) 

where ZiB « (Eg - and is a cozrrection to g^ due to the admix-

ture of excited electronic states. This term has been defined by Brown and 

UAara (42). 

It is not immediately apparent how the relations given in (5.150) are 

obtained from the general perturbation expressions. Ceirtain factors of ̂  

And (-1) appeeLT as a iresult of substitution of explicit values for q. In 

addition the general expressions should strictly be written in Hermitian 

average form, as given by Oarrington emd Lucas ()5), and this has been 

taken into account in the derivation of (5.150). 

Taking the best values of q and p+2q from table 8, the molecular mat-

rix elements involved in the expressions for these can be computed. (Oils 

requires a value for from ultra violet work this is known to be 

)2682.5 om"\ The resulting matrix elements, ^7TlBT!|(lJlZZ^ a d 
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^ Tl̂ lATij (iJiZZ ), are given in table 10. The value of the former is in 

close agreement with that oaloulated by Radford, the latter was not deter-

mined in his papers. Note that to relate Radford's results to ours we have 

to multiply his by V? sinoe he uses rather than operators. Sub-

stitution of these results into g\ or g' respectively yields estimates for 
1 r i 

<d'L|(L)l7T), In the case of pure precession this element would have 

the value of 1.0. Using g^' we obtain a value of 0.91 $6, Wiile from gĵ  we 

obtain 0.95)6. Our determinations of g® and g^ are therefore consistent 

with both Radford's results and those obtained using a pure precession 

model. "Rie difference between our two estimates might be a reflection of 

the importance of third order contributions to q and p+2q, which we have 

ignored in this model. 

Since g^ and g^ appear to be well determined it would be instructive 

to determine the sizes of the remaining ĝ -factors using the relations given 

in (5.150). Thus* 

g^ . 0.00)15 

" 0.001 

01US a g value of 

g^ " ^ « -0,000458 

would be expected. Rote that the electronic contribution apparently out-

weighs the nuclear in this case. 

The gL. and g_ values have to be corrected for relativistic effects, 
2 / 2 

and these correotlona are of the form -gg (T) and 

pectively, where is the mean kinetic energy of a n electron. Assum-, 

ing this electron to be localised on the oxygen at cm, Radford (4) obtains 

= 1.) X 10"^mc^. % e corrections to gg and g^ are therefore 

-0.000260) and -0.0001) Mspectively. dhe g^ term has furliier to be corr-

ected for the effects of admixture of 22 states: 

V o t e = 

!Phe expected values for gg and g^ are thus 

gg " 2 .00206 

g^ = 0.99887 

If we compare the g-factors given in table 9 with those determined above we 



Our reeult Radford (5) 

< 7T|BT](^ir> -55.504 X 10* MHz -53.671 % 10* MHz 

<^7T|ATi(L)|2] ) 323.672) % 10* MHz 

7T > 0.9482 

Table 10 Molecular matrix elements in a pure preoesslon case 
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see that there are groaa differences* the experimental values of gg and 

are particularly unsatisfactory, the former being much too small and the 

latter too large, ĝ ^ is an order of magnitude greater than anticipated and 

g is of the opposite sign (implying that the nuclear contributions are 
. 

dominant, not the electronic ones). 

Since Radford's gj expressions are related to these four erroneous 

molecular g-factors it would be useful to calculate the gj from our results 

for comparison. For the levels we use the Pg expressions given in 

(5.1)1) and (5.1)2), while for the levels the corresponding ex-

pressions ()6) have to be used. The resulting effective parameters are 

given in table 11. In view of the dubious values of gg, g^, g^ and g^ the 

agreement between our calculated g_ values and those of Radford is sur-
gi 

prisingly good. The values of ^&gj calculated from g^ and are seem-

ingly in poor agreement with Radford's observed values which is surprising 

since gf aad g^ were previously found to be consistent with Radford's res-

ults. However, it must be pointed out that these two g^factors appear in 

second order of perturbation theory and would be expected to be very sens-

itive to the admixture of excited states. A calculation has been performed 

(45) to determine relations for gj and Z&gj using more exact forms for Sj 

and c than those given in (5.124) and (5*125). These take into account 

the A—doubling contributions to the zero-field energies and lead to a rev-

ised form for Zigj* 

^g. . Z,g, + 2(J_1/2)(J + 1/2)(J + V2)(Y + 1) , (Y . 2)i] 

J J BJ(J + 1)%) 

(5.151) 

for levels. A corresponding expression for Pg levels has not been der-

ived. The calculated values of .Ag^ are given in table 11 and are seen to 

be in very close agreement with Radford's A gj values. Thus, our values of 

gf and g^ and indeed consistent with Radford's results. ly comparison the 

dominant contributions to g^ (from ĝ ^ and gg) are not expected to be par-

ticularly sensitive to higher order contributions and so the form for gj 

given in (5.1)1) is sufficient. 

It is not clear why the molecular g-factors in table 9 should give 

such good determinations of gj. It is possible that there is not a unique 

set of gk-factors, gg, g^, g^, g^, giving the required gj values, and our 

least-squares programme has converged to a different combination than ex-

pected. Alternatively there could be an error in one or more of these Zee-

man matrix elements. In an attempt to obtain more reasonable molecular 



Table 11 Effeotive g-faotora oaloulated from the moleoular p-faotors 

V 2 )/2 
5/2 

7/2 

Oaloulated 

Si 

0.9357 

0.4856 

0.52585 

a g i 

-0.0007 

-0.00109 
-0.001)6) 

a s } 

-0.00128 
-0.001855 

-0.00214 

Radford's meaaurameatB 

gi 

4*0.9)557 

0.48529 

0.)2561 

-0.00129 

-0.00188 
-0.00214 

1/2 3/2 

5/2 

-0.1))94 

-0.14245 

-0.00159) 

-0.001018 

-0.1))9) 

-0.1411) 

-0.00099 

0.00042 

^ Sj - «J - «J 

arewCkg, values oaloulated using exact zero-field coefficients 
J J 

* measurements from reference (4) 

^^1/2 from reference (5) 
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g^factors we have tried to fit the data using the gg value of 2,00206 

obtained earlier, ĝ , was constrained to be zero. Values of 

. 1 . 001 )6 (<r . 0 . 0 0 0 ) 3 ) 

and g^ = 0.012)1 (<r = 0.001)9) 

were obtained, whioh, although an improvement on the ones in table 9, are 

still unsatisfactory. The quality of the fit was marginally worse than 

that of the preceding one. 

The analysis of the Zeeman data is still incomplete and there is ob-

viously considerable room for improvement. 
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HADTCAL PHOnUCTION BY PYROLYSTU 

6,1 Introduction 

T h i s c h a p t e r d e s c r i b e s some p r e l i m i n a r y w o r k conce rned w i t h t h e use o f 

pyrolysis to generate radicals, and their subsequent detection by gas phase 

e.p.r. spectroscopy. 

The most commonly used methods o f r a d i c a l p r o d u c t i o n f o r gas phase e . p . r , 

studies rely on the use of a microwave discharge. The radicals are either 

produced d i r e c t l y by t h e d i s c h a r g e o r by s u b s e q u e n t m i x i n g o f t h e d i s c h a r g e 

products with a second gas, as in the case of OH, described in the previous 

c h a p t e r . The d i s c h a r g e methods have p roved reasonably successful, so one might 

inquire as to what advantages the pyrolysis technique offers over them. One 

o b v i o u s advantage is t h a t t h e r e i s no d i s c h a r g e n o i s e t o c o n t e n d with. Second-

ly, the concentrations of relevant radicals in the discharge products is very 

low, of the order of 1~2% at b e s t , whereas i f s u i t a b l y high t e m p e r a t u r e s are 

reached the relative concentration of radicals emerging from a furnace can be 

very high, in certain instances as much as 100%. Finally there is the poss-

i b i l i t y o f detecting r a d i c a l s h i t h e r t o u n d e t e c t a b l e by other means. For inst-

a n c e , the radicals CH^ and CN, w h i c h have l o n g e l u d e d d e t e c t i o n by gas phase 

e.p.r., are quite readily generated by pyrolysis of diazomethane (1) and 

cyanogen (2) respectively. However, the use of pyrolysis in e.p.r. studies 

has remained largely uninvestigated, although certain molecules, with low 

dissociation energies, have been studied. 

A case in point is the pyrolysis of tetrafluorohydrazine, NgP^, to pro-

duce the radical species NFg 

^2*4 ^ NF2 (f.1) 

At temperatures of around 500-600*0 the is almost 100% dissociated. The 

spectrum is r e a d i l y detected by e.p . r . s p e c t r o s c o p y b u t because o f t h e 

multitude of o b s e r v a b l e l i n e s t h e r e i s a c o n s i d e r a b l e p r o b l e m i n assignment. 

Little information has been obtained so far from an e.p.r. study of NPg as 

only the surface of the problem has been scratched. However, Brown, Burden, 

G o d f r e y and G i l l a r d ( 3 ) have p e r f o r m e d an e x t e n s i v e a n a l y s i s o f t h e NP^ r o t -

ational levels by use of ordinary microwave spectroscopy. 

The pyrolysis of has been utilised in order to generate NF radicals 

(4) by the admixture of the products of a microwave discharge in hydrogen. 

NFg + H » NF + HF (6.2) 

NF has been detected by gas phase e.p.r. in its state by Curran, Mac-
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donald, ntone and Thrush (5). 

A hot-wire technique has also been used in e.p.r. atudlea to produce 

Buch radicals as halogen atoms (6, 7) and OH, and (W). In thie case, 

however, the radicals are not produced solely by the action of heat as the 

wire itself has an important catalytic effect. 

In the field of mass spectrometry, pyrolysis has been used to generate 

radicals since the early 1940*8. An extensive list of these radicals det-

ected by mass spectrometry has been given by Lossing (9). Similarly, pyr-

o l y s i s has f o u n d much use i n p h o t o e l e c t r o n spectroscopy - r a d i c a l s such as 

(1# 10), N? (11), SO (12) and Sg (1)), for example, have been detected 

in this manner. 

The reason pyrolysis has not been used so extensively in e.p.r. studies 

is due essentially to practical difficulties. Firstly, the e.p.r. method 

involves the use of a resonant cavity and, as has been discussed in chapter 

4, the resonant frequency of such a cavity depends critically on its dimens-

i o n s , The re i s bound to be a c e r t a i n amount o f h e a t t r a n s f e r to t h e c a v i t y 

body and so the resonant frequency will tend to drift during the course of 

the experiment. Since the detection system relies on the frequency of the 

microwave source being more or less identical to that of the cavity, the 

e f f e c t w i l l be to cause i n s t a b i l i t y in the system. T h i s w i l l m a n i f e s t i t s e l f 

as a poor signal-to-noise ratio, base-line drift, or, in an extreme case, as 

an inability to keep the source frequency locked to that of the cavity. Ran-

dom cooling of the cavity by draughts also tends to cause variations in the 

base-line. 

Secondly, there is the matter of furnace efficiency. Previous invest-

igations of the use of pyrolysis in this laboratory have involved heating a 

fairly large area of the glass inlet tube by enclosing it within a long elec-

trically heated furnace. Because of the large areas of glass through which 

heat can be conducted it is not possible to achieve very high temperatures. 

The inlet tube is of fairly large cross-section (say 2 cm diameter) and so 

any gas flowing through it is not very efficiently heated. In addition, since 

the glass is connected to the cavity body this provides a direct route for 

heat transfer to the cavity. However, the success of the small furnaces used 

by Lossing (9, 14) seems to Indicate that a small region of intense heat can 

result in efficient radical production. The present experiments involve the 

use of such a small furnace, situated at the tip of a small quartz probe, and 

will be described in more detail in the next section. It is sufficient to po-

i n t out at t h i s stage t h a t because o f t h e s m a l l cross-section o f t h e p r o b e , 

and because o f t h e small amount o f glass Involved, high temperatures can be 
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reached and efficient transfer of heat to the gas Is possible. Heat transfer 

to the cavity is minimal since the probe is not directly connected to the 

cavity body. 

Unfortunately, this experiment did not get much further than the drawing 

board, but we present here, for future reference, details of the construction 

of the furnace and of some preliminary tests. The instigation to do this 

work was provided by Dr R.Kroto of Sussex University, with vAiom this is a 

joint project. 

V a r i o u s r a d i c a l s a r e p roposed for future s t u d y . The CH^ and CN r a d i c a l s 

mentioned earlier are perhaps a little ambitious. The CN radical requires 

temperatures of at least 1700*0 (2) which in our case is prohibitively high. 

The transitions in CH^ are mainly magnetic dipole allowed and hence will be 

v e r y weak . The bending v i b r a t i o n a l mode i n CHj w i l l result in a n o s c i l l a t i n g 

electric dipole but since this will be very small the electric dipole trans-

itions are also expected to be very weak. Radicals perhaps more amenable to 

study are CR^S, CH^O and C^H^S. Ihe former has been detected in the Wrolysis 

products of dimethyldisulphide (15) at temperatures of 500-900"C. Ihe pyro-

lysis to form S occurs at even lower temperatures (around 200*C) but this 

is not really a suitable molecule to study since its rotational partition 

function is so large. GH^O has recently been detected by Radford (16) using 

laser magnetic r e s o n a n c e , the method of preparation being t h e abstraction of 

a hydrogen atom from methanol by fluorine atoms. An alternative preparation 

is via the pyrolysis of dimethyl peroxide, which occurs at temperatures of 

around lOO^C. CH^O and CH^S are prolate symmetric top molecules, the K doub-

lets for each rotational level being degenerate for |K| >0. We would expect 

to see Am^ = electric dipole transitions between these two K components, 

within a rotational state. C^H^S is a near symmetric top molecule and so the 

K degeneracy will be lifted, but for the lower rotational levels this splitt-

ing will be small and possibly will not be resolvable in an X—band experiment. 

The g-factor in the higher rotational levels will be very small and so it 

will not be possible to tune these lines into resonance in an 1-band e.p.r. 

study. 

A point of interest concerning CH^O and CR^S is that it might be poss-

ible to determine the extent to which the electronic orbital angular momen-

tum is quenched by the internal rotation of the methyl group. %is would give 

information on how much of the orbital angular momentum is localised on the 

oxygen (or sulphur) atom, and to what extent it is quantised along the C-0 

(or C-S) bond. In addition these molecules would exhibit a Jahn-Teller phen-

omenon and information on this would be interesting. 
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6.2 Some Initial Experiments 

The prototype furnaoe was provided by Dr H. Kroto and is of similar 

design to that of Dossing and Tickner (14). The furnace itself is cut from 

a piece of tantalum foil of O.O5O mm thickness and the design is shown in 

figure 1. This is formed into a cylindrical shape by wrapping it around a 

former of suitable circumference, the resulting shape being shown in figure 

2. The t a g s on t h e end o f t h i s f u r n a c e a r e f o r t h e e l e c t r i c a l c o n t a c t s. Pig-

ure 2 shows that the furnace can be regarded as two coils, each of one turn 

only, connected in series such that the magnetic fields induced in the coils 

c a n c e l o u t . T h i s i s t o a v o i d any i n t e r a c t i o n w i t h t h e Zeeman m o d u l a t i o n f i e l d 

which could lead to mechanical instability. 

The tantalum furnace is sited at the tip of a quartz glass probe, which 

is constructed f r o m two c o n c e n t r i c g l a s s tubes. The i n n e r tube i s about 16" 

long and of 0.15" outer diameter; it is through this tube that the sample gas 

is to be passed. The outer tube is merely to keep the furnace in position 

around the inner one, and is of the length of the furnace. These two tubes 

are joined at their ends. The internal diameter of the outer tube and the 

external diameter of the inner one have to be carefully chosen so that the 

furnace will slide between them. 

The r e s o n a n t cavity is o f t h e ' w i d e a c c e s s ' t y p e d i s c u s s e d i n chapter 4, 

and operates in a TE^^g mode. Since the cavity has to be evacuated for studies 

of gaseous samples, a cylindrical quartz pillbox is placed inside it. This 

has gas ports at each end, which protrude through holes in the flat ends of 

the cavity body, and is constructed so as to fit snugly to the internal walls 

of the cavity. This does not disturb the resonant modes unduly - there is a 

shift in frequency of about MHz for the TE^^g niode and a slight decrease 

in the ^factor (to about 6000). With the pillbox in place the resonant fre-

quency is about 8690 MHz. 

The probe is situated inside the gas inlet tube, such that the tip lies 

just at the edge of the cavity. There is some difficulty in incorporating the 

probe into the vacuum system and in passing electric current through the fur-

nace. This problem was resolved by Dr Kroto, who provided us with a brass 

cone assembly which would fit a standard glass B29 socket. With this end in 

mind, the gas inlet tube of the quartz pillbox is fitted with such a socket. 

The thin probe tube passes through a hole in the centre of the cone assembly. 

An 0-ring provides a vacuum seal and also helps to hold the probe in posit-

ion, Adjustment of the position of the probe tip is possible using this sys-

t em. A short length of p l a s t i c tubing c o n n e c t s t h e probe tube to a gas hand-

ling line. 



. 1 4 m m 

2 3 m m 

- T a n t a l u m fo i l 

Figure 1 Pomace element as cut from metal foil. 

Figure 2 Furnace element in cylindrical foim. 
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The m e t a l cone assemb ly i s provided w i t h f o u r e l e c t r i c a l feed-throughs, 

two f o r t h e f u r n a c e and two f o r a t h e r m o c o u p l e . The t a n t a l u m f u r n a c e is c o n n -

e c t e d t o t h e f e e d - t h r o u g h s by two l e n g t h s o f t h i n c o p p e r r o d . Stainless steel 

tips are soldered to on end of these rods and the t a g s of the furnace a r e spot-

welded to these. The other end of the copper rods are soft-soldered to the 

feed-througha. A chromel-alumel thermocouple is used and is bound to the out-

s i d e o f t h e p robe t i p w i t h a s b e s t o s s t r i n g . Figure 5 shows a c r o s s - s e c t i o n 

t h r o u g h t h e q u a r t z p i l l b o x , w i t h t h e p robe i n p l a c e , 

The spectrometer s ys tem consists o f a s t a n d a r d X) e . p . r . s p e c t r o m e t e r 

w i t h a V a r i a n 1 2 - i n c h e l e c t r o m a g n e t and P i e l d i a l r e g u l a t i n g s y s t e m . The s p e c -

trometer operates at 8670 MHz, so it is necessary to shift the resonant fre-

quency o f t he c a v i t y t o t h i s f r e q u e n c y . T h i s c a n be a c h i e v e d by inserting 

s m a l l p i e c e s of T e f l o n i n t o t h e c a v i t y , o r by adjusting t h e p o s i t i o n of t h e 

p i l l b o x s l i g h t l y so as t o v a r y t h e quantity o f q u a r t z t h a t disturbs t h e r e s -

o n a n t modes. The power s u p p l y f o r t h e f u r n a c e i s a Roband V a r e x t w i n DC power 

supply capable of delivering up to )0 volts and 10 amps, either voltage- or 

current-regulated. We tried both but have found that only voltage-regulation 

i s s a t i s f a c t o r y — t h e t e m p e r a t u r e o f t h e f u r n a c e can i n c r e a s e u n c o n t r o l l a b l y 

when using current-regulation. 

The f u r n a c e was t e s t e d initially w i t h o u t any sample g a s . G r e a t c a r e must 

be taken to ensure that a short circuit in the furnace does not occur. Con-

tact of the 'coils' can occur in one of two ways, first, through movement of 

the probe tube, which tends to cause torsion in the furnace, and secondly, 

through expansion of the tantalum on heating. To counteract this, it was found 

necessary to reduce the dimensions of the furnace slightly, and in particular 

its overall width. Paradoxically, it was found better to decrease the width 

of the gape between the tantalum. If the widths of the tantalum strips are 

reduced the furnace loses mechanical strength and it is extremely difficult 

to insert it into the concentric probe without twisting it. The problem of 

o f t w i s t i n g is a v o i d e d by using w i d e r s t r i p s o f t a n t a l u m w i t h smaller gaps 

be tween them. F u r t h e r m o r e , i f short, f i n e s t r a n d s o f q u a r t z a r e p l a c e d i n t h e 

gaps as spacers, shorting out can be avoided altogether. 

A f u r t h e r d i f f i c u l t y e n c o u n t e r e d was t h a t t h e f u r n a c e t ended to b u m out 

if the temperature was increased too rapidly. %iis was avoided by raising or 

lowering the temperature by incremental amounts. 

T a b l e 1 shows t h e r e s u l t s o f a test r u n on t h e f u r n a c e . The t e m p e r a t u r e s 

indicated by the thermocouple are considerably lower than expected on comp-

a r i s o n w i t h a c o l o u r s c a l e o f t e m p e r a t u r e . For i n s t a n c e , i n c i p i e n t red h e a t 

corresponds to ̂ ^500*0 on a colour scale whereas the thermocouple indicates 

190'c. Similarly, Incipient white heat should correspond to *^1500*C while 
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V(volts) I(ampe) T(*C) Observations 

1.0 2.8 54 

2.3 5.8 190 Inoiplent red heat 

).o 6.) 256 Red heat 

3.5 6.4 290 

4.0 7.6 365 

5.0 9.0 420 

6.0 10.0 510 Yellowish-white heat 

9.4 550 
fBtims out 

7.0 9.4 550 1Incipient white heat 

Temperatures o b t a i n e d u s i n g chromel—alu iae l t h e r m o c o u p l e . 

Table 1 Sample results from test run on tantalum fUmaee. 
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t he t h e r m o c o u p l e r e a d s o n l y 5 5 0 * 0 , I t was n o t i c e d t h a t t h e a s b e s t o s s t r i n g 

t e n d e d t o h a r d e n and expand a t h i g h t e m p e r a t u r e s , p u l l i n g t h e t h e r m o c o u p l e 

away f r o m the s u r f a c e o f t h e p robe i n t h e p r o c e s s , and t h i s most l i k e l y a c c -

o u n t s f o r t h e d i s c r e p a n c y i n t h e t e m p e r a t u r e s . F u r t h e r e x p e r i m e n t s a r e needed 

t o d e t e r m i n e t h e f u r n a c e t e m p e r a t u r e s r e l i a b l y . 

Testa were aleo performed to cheok the spectrometer sensitivity. Spectra, 

o f m o l e c u l a r oxygen and NO ( p r o d u c e d f r o m a m ic rowave d i s c h a r g e i n a i r ) were 

r e c o r d e d w i t h s i g n a l - t o - n o i s e r a t i o s o f a b o u t 100 t o 1 and 20 t o 1 r e s p e c t -

i v e l y . The S:N r a t i o f o r NO p r e p a r e d i n t h i s way i s comparab le t o t h a t no rm-

a l l y o b t a i n e d a t X-band u s i n g t h e a l t e m a t i v e t y p e o f m ic rowave c a v i t y . As a 

more r i g o r o u s t e s t we a l s o s e a r c h e d f o r m a g n e t i c d i p o l e t r a n s i t i o n s i n NO^. 

At p r e s s u r e s o f a b o u t 1 , 7 t o r r a b road t r i p l e t was o b s e r v e d a t a r o u n d g = 2 , 

as one wou ld e x p e c t . On r e d u c t i o n o f t h e p r e s s u r e , s m a l l e r peaks were obse rved 

b u t o n l y as f a r as abou t 5800 g a u s s , beyond t h i s t h e y were t o o weak t o be s e e n . 

These h i g h e r f i e l d l i n e s a r e p r e d i c t e d t o be e x t r e m e l y weak so i t does n o t 

n e c e s s a r i l y f o l l o w t h a t t h e s p e c t r o m e t e r l a c k s s e n s i t i v i t y . The above t e s t s 

on s t a b l e f r r e r a d i c a l s i n d i c a t e t h a t t h e s e n s i t i v i t y i s s a t i s f a c t o r y , t h o u ^ 

f a r f r o m e x c e l l e n t . 

B r i e f s e a r c h e s were made f o r t h e u n s t a b l e r a d i c a l s OH and SH, by p y r -

o l y s i s o f HgO and H S r e s p e c t i v e l y . Our f a i l u r e t o o b s e r v e OH i s n o t s u r p -

r i s i n g i n v i e w o f t h e s t r e n g t h o f t h e 0 - H bond . The SH e x p e r i m e n t s s t a n d more 

chance o f s u c c e s s , b u t no s p e c t r a c o u l d be o b s e r v e d , even t h o u g h t h e f u r n a c e 

was t a k e n t o a l m o s t w h i t e h e a t . T e s t s on r a d i c a l s p r o d u c e d a t l o w e r t e m p e r -

atures are needed, but as yet none have been made. 
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