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Block Designs for Comparing Dual
with Single Treatments.
by: Abbas Gerami

This investigation concerns the design of experiments whose purpose is to compare
the joint effects of two factors A and B at n and m levels respectively with the
effect of the individual factor. The experiments are subject to the constraint that
one particular treatment combination cannot be used. An example is a medical trial
to investigate the joint effects of two drugs, each of which is either absent or given
at a number of predefined dose levels, in which it is unethical to administer a double
placebo. This type of clinical trial has practical application in the quest for treatments
of acute conditions, such as severe hypertension when the improvement produced by
a single drug might be inadequate. The aim of this investigation is to find efficient
designs in the sense of having small variance for the estimators of the contrasts of
interest.

The criterion employed for design choice is the A-criterion. The methods used
include finding a lower bound on the total of the variances of the estimators of the
contrasts and identifying a class of designs containing many efficient designs.

For m=n=2, the problem is a special case of the test treatments versus a con-
trol problem, for which series of A-optimal and near A-optimal designs are already
available. These known results are used to find series of new A-optimal and near
A-optimal designs to fill the gaps in a practical range of parameter values. For any n
and m=2, the class of PBDS designs is identified and shown to contain very efficient
designs. Methods of constructing such designs are developed and overall A-optimal
and efficient designs are tabulated.

For n and m both greater than 2, a generalization of the PBDS class is developed
and shown to include highly efficient designs by comparison with the bound and, for
small experiments, computer generated designs.

Furtherissues on which results are given include the design of completely random-
ized experiments, efficient designs for estimating certain contrasts more accurately
than others and the estimation of factorial effects. Finally, a method is developed of
identifying designs efficient for estimating specific contrasts, Cz, through linking the
structure of the intra-block information matrix to the structure of C'C.



Contents

1 INTRODUCTION 1
1.1 Description of the Problem: . .. ... ... ... ... ...... 1
1.2 Block Designs: . . . . . ... . L 3

1.2.1 General Theory: . . . . . . . . . . ... .. 3

1.2.2 Contrast Matrices for the Dual-Versus-Single Problem: 5

1.3 Design Criteria: . . . . . . .. .. o o oo 6

1.3.1  Optimality Criteria: . . . ... .. ... ... ... .. .. 6

1.3.2 Definitions: . . . . . ... oo o 8

1.4 2x2 CEBD(00): . « o v oo e oo e 12

1.4.1 Historical Background: . . . . . . ... ... .. ...... 13
1.4.2  A-optimal Block Designs for Control-Test Treatment Com-

PATISOMS: . « v v v v e e v e e e e e e e e e e e e e 15

1.4.3 Efficient 2 x 2 CFIBD(00)(t > k): . . . . . ... ... ... 17

1.4.4 Catalogue of A-Optimal 2 x 2 CFBD(00)(t < k): . .. .. 18

1.4.5 Computer Algorithm: . . . . ... ... .. ... .. ..., 22
1.4.6 Near Optimal and New Optimal Balanced Treatment Block

Designs: . . . . . . . . e 23

2 Dual Versus Single Treatment Block Designs for n x 2 Experi-
ments with n > 2. 36
2.1 Introduction: . . ... ... ... o o 36
2.2 Contrasts: . . . .. .. . e 37
2.3 Information Matrix of the Contrast Estimators: . . . . .. . ... 38
24 Classof PBDS Designs: . . . .. ... ... oL, 41

2.4.1  A-matrix of the Class of PBDS Designs: . . . . .. .. .. 42
2.4.2 Information Matrix of the Class of PBDS Designs: . . . . . 44



2.5.1 Group Divisible Designs: . . . . .. .. .. .. ... .... 45
2.5.2 Reinforced Group Divisible Designs: . . . . . . ... .. .. 46
26 Classof BDSD: . . . .. ... . o 59
2.6.1 A-matrixof aBDSD: . . . .. ... .. o 0oL 59
2.6.2 Combinatorial Propertiesof a BDSD: . . . .. .. ... .. 61
2.6.3 A-optimal Designs within the BDSD Class: . . . . . .. .. 62
2.6.4 Layout of A-optimal Designs within the BDSD Class: . . . 63
2.6.5 Advantages and Disadvantages of A-optimal BDSD: . . . . 65
2.7 Other Forms of Designs: . . . .. ... ... ... ......... 66
Bounds for n x m Experiments 69
3.1 Introduction: . .. ... ... .. ... 69
32 Bound 1(b1):. . . . o 69
3.3 Bound 2(by):. . . . ... 74
3.3.1 Structure and Eigenvaluesof C'C:. . . . . ... ... ... 74
3.3.2 Propertiesof C'C: . . .. ... o oL 75
3.4 Comparison Between by and b . . . . . . ... oL 80
3.5 Assessment of RGDD Using the Bounds: . . . ... ... ... .. 80
Highly Efficient PBDS Designs 83
4.1 Introduction: . . . .. .. .. ... 83
4.2 A Bound Based on the Permutation Method: . . . . . ... .. .. 84
4.2.1 Review of the Permutation Method: . . . . .. .. .. ... 84
4.2.2  Application to Our Specific Problem: . . . .. ... .. .. 85
4.3 Finding Minimum Values for the tr(M~1): . . . ... ... .. .. 92
4.3.1 Minimizing fi(naij, "Dij):  + v« o v e 93
4.3.2 Minimizing fo(Ta;, TBj): « « o v o v v e e 101
4.3.3 Minimizing fi+ for . . .« . . .. Lo 106
44 Algorithm 1 . .. ... .. ... 109
4.5 Layoutof C-designs: . . ... .. ... .. ... . ... ...... 110
4.6 Constructing C-designs: . . . .. ... .. ... ... ...... 113
4.7 A-optimal PBDS Designs for k=2and 3: . . ... ... ... ... 114
4.7.1 A-optimal PBDS Designs for k=2:. . . . ... ... .... 115
4.7.2  A-optimal PBDS Designs for k=3:. . . .. .. ... .. .. 116
4.8 The Tabulated Designs: . . . .. ... ... ... ... ..... 119

4.9  Conclusion: . . . . . v v e e e e e e e e e e e e 120



5 Designs for Two Factors with More than Two Levels 129

5.1 Introduction: . ... ... ... ... ... ... . 129
5.2 A Design-Dependent Bound: . . . . .. ... ... ... ...... 129
5.3 A Class of Efficient Designs: . . . . . ... ... ... ... .... 132
5.3.1 Structure of the A-matrix: . . . ... ... ... ... ... 132
5.3.2 Variance-Covariance Matrix of the Class of GPBDS Designs:134
5.4 Towards A-optimal n x m Designswith & >¢:. . .. ... .. .. 137
5.5 Some Methods of Constructing GPBDS Designs: . . . . . ... .. 138
5.5.1 Constructing GPBDS designs for k=2: . . ... ... ... 138
5.5.2 Constructing GPBDS Designs with k=3: . . . . . ... .. 142
5.6 Designs for Symmetric Factorial Experiments: . . . . ... .. .. 145
5.6.1 Designs Arranged in Blocks of Size k=n: . . . ... .. .. 146
5.6.2 Designs Arranged in Two Group Divisible Designs: . . . . 148

6 Completely Randomized Designs and Weighted A-optimal De-

signs: 151
6.1 Introduction: . ... ... ... ... ... ... 151
6.2 A-optimal Completely Randomized Designs for n x m Censored
Factorial Experiments: . . . . . . .. ... ... ... ... 151
6.2.1 Contrasts and Goal of Experiments: . . . . . . . ... ... 152
6.2.2  Sum of the Variances of the Contrasts: . . . . ... . ... 152
6.2.3 Towards A-optimal Designs: . . . . ... ... ... .... 152
6.3 Weighted A-optimal Designs: . . . . . ... ... .. ... .... 155
6.3.1 WA(w4,wp)-optimal Design Arranged in a Completely Ran-
domized Design: . . . . . .. .. ... L. 157
6.3.2 WA(w4, wg)-optimal n x2 Censored Factorial Experiments
Arranged in Block Designs: . . . . ... ... .. ... 158
6.4 Conclusions: . . . . . ... . 166
7 Related Problems and Conclusions 172
7.1 Introduction: . ... ... . .. .. e 172
7.2 Estimation of Factorial Effects: . . . . .. ... ... ... .... 173
7.3 Experiments Arranged in a Completely Randomized Design and
in a Randomized Block Design: . . . . .. ... ... .. ..... 175
7.4 Loss Function in Designs with Unequal Replication: . . . . . . .. 180
7.5 Similarity of C'C and A-matrix Structure: . . .. .. ....... 181



7.5.2  All Sets of (t-1) Orthogonal Contrasts: . . . . ... .. .. 186

7.5.3 Test Treatments versus Control Treatment(s): . . . . ... 188
7.6 Conclusions and Directions for Further Research: . . . .. .. .. 191
7.6.1 Conclusions: . . . . ... ... L oo oo 191
7.6.2 Further Research: . . . . . .. ... ... ... ... ..., 193
Proofs of theorems and lemmas: 195
A.1 Proofs Related to Chapter4 . . . ... ... ... ... .. .... 195
A.1.1 Proof of Theorem 4.5: . . ... ... ... ... ...... 195
A12 Proofof Lemmad4.8: . ... ... ... ... ...... 197
A.1.3 Proof of Theorem4.9: . . . .. ... ... ... ...... 197
A2 Proof of Lemma 5.1: . . . .. .. ... Lo 199
Computer Algorithms 204
B.1 Algorithms for 2x2 Factorial Experiments: . . . . .. ... . ... 204
B.1.1 A-optimal Designs: . . . . ... ... ... ... .. 204
B.1.2 Near A-optimal Designs: . . . . ... ... .. .. ..... 208
B.2 Algorithm for Designs with Two Factors One with Two Levels;
Another with More than Two Levels: . . . . . .. ... ... ... 211
B.2.1 Conjectured Bound, C- and Near C-designs: . . . . .. .. 211
B.3 A-optimal PBDS Designs for k=2,3: . . . . .. ... ... ..... 221
B.3.1 A-optimal PBDS Designsfor k=2 . . . ... ... ... .. 221
B.3.2 A-optimal PBDS Designs for k=n=3: . . . . ... ... .. 223
B.3.3 A-optimal PBDS Designs for k=3 and n >4:. . . ... .. 226

B.4 A-optimal Completely Randomized Designs: . . . . ... ... .. 230



Chapter 1

INTRODUCTION

1.1 Description of the Problem:

In factorial experiments there are cases where we want to compare the effect of
combinations of two or more treatment factors when it is not possible to include
all treatment combinations in the experiment. An example is a medical trial to
investigate the joint effect of two drugs , each of which is either absent or given
at a number of predefined dose levels, in which it is unethical to administer a

double placebo.
Suppose A and B are two treatment factors : A with n levels labelled 0,1,2,....,

n-1, and B with m levels labelled 0,1,2,....,m-1 . Each treatment combination is
denoted by ij, where i and j are the levels of A and B respectively, and is called
a single treatment if i=0 or j=0; otherwise it is called a dual treatment. We
assume treatment 00 cannot be employed. Hence there are t=mn-1 treatments
in the experiment. The objective of the experiment is to compare the effects of
having both A and B at levels with non-zero labels with the effects of having
only one of the factors at a non-zero labelled level. More specifically we require
efficient estimation of the following contrasts, which we shall call dual versus

single contrasts:

T,'j — 710 (11)

and

T,'J' '—'T()J' (12)
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for i=1,2,...,n-1, and j=1,2,...,m-1, where 7;; denotes the effect of treatment com-
bination ij.

We can view the problem as comparing each of the (n-1)(m-1) dual treatments
with two single treatments. Contrasts (1.1) and (1.2) respectively compare the
dual treatments with treatments having A alone at a non-zero labelled level, and
with treatments having B alone at a non-zero labelled level. In the example of
the medical trial, the contrasts can be used to examine if there is greater efficacy
when two drugs are given rather than one. This type of clinical trial is important
in the quest for treatment of acute conditions, such as severe hypertension, when

the improvement produced by a single drug might be inadequate.

The problem addressed in the first six chapters of this thesis is how to arrange
the treatment combinations in block designs, so that the set of contrasts defined
in (1.1) and (1.2) can be efficiently estimated. In practice the blocks might be

groups of patients in the same age-range or having the same sex.

Bounds on the total of the variances of the contrasts of interest are established
and used to assess the performance of the designs. A particular class of designs is
investigated and the most efficient designs in the class are found. Necessary con-
ditions for a design to be A-optimal are established. In Chapter 7 two additional
problems are examined. Firstly, a general factorial experiment is considered in
which one of the treatment combinations is not observed and some higher or-
der interactions can be assumed negligible. The estimators with minimum loss
of information on a set of factorial contrasts of interest are found. Secondly, a
link is found between the structure of the intra-block information matrix of the
class of designs containing highly efficient designs and the structure of another
matrix obtained by premultiplying the matrix of the contrasts of interest with its

transpose. Finally, conclusions are given and ideas for further work are described.

In the first chapter, the general analysis of block designs is studied, and criteria
for design selection are described. For the special case when both factors have
two levels, the dual-versus-single design problem reduces to the test treatment
versus a control design problem. A brief review therefore will be given of optimal
and near optimal designs available in the literature for the test treatment versus
a control problem. New optimal and near optimal designs will then be listed for
this case, which cover parameter values of practical interest for which designs are
not currently available.
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1.2 Block Designs:

In this section the analysis for a general block design for estimating the dual

versus single treatment contrasts is summarized.

1.2.1 General Theory:

Consider an experiment involving t treatments and b blocks each of size k . The
treatment structure is assumed to be two factors , one at n and one at m levels.
The treatment effects will be held in a ¢t x 1 column vector. Let y;je, denote the
observation when the ijth treatment is applied to unit h of the £th block. The

following linear model with no treatment block interactions will be assumed:
Yijeh = b+ Tij + Be + €ijen, (1.3)

where?1=0,1,2,...,n—1,7=0,1,2,...,m-1, excluding j=00 ; { = 1,2,...,b,
and h=1,2,..., n;;,. Here e;;4’s are assumed to be uncorrelated random variables
with zero means and common variances o2. Throughout this thesis without loss
of generality we assume, for simplicity that 02 = 1. The unknown constants g,
7;; and [, represent the general mean, the effect of treatment ij, and the effect of
block £ respectively; n;;; denotes the number of times that the ijth treatment is
applied in the £th block.

In this thesis we shall concentrate on the intra-block analysis of the experi-
ment in which treatment comparisons are estimated within blocks only, i.e. the
estimates of all contrasts in the treatment effects are expressible in terms of com-
parisons between observations in the same block. If the blocks can be regarded as
a random sample from some population, then estimates of treatment comparisons
may also be available from between block differences, giving rise to an inter-block
analysis. Where information is available from both between and within blocks,
the intra- and inter-block estimates can be combined to provide overall estimates

of treatment comparisons.

Throughout this thesis the following ordering of treatments will be adopted:

To1s 702y - » .,Toq,Tlo,Tgo, [P ,Tpo,Tll,’TlQ,. . .,qu,Tgl,ng, .. .,qu,

ey s Tply Tp2y oo o s Tpgs (1.4)

where t=mn-1, p=n-1, and q=m-1.
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We put the ordering of treatments in a t x 1 column vector 7. Let N=(n,;¢)
denote the incidence matrix; where the rows of N follow the same ordering.
Then NN’ is called the concurrence matrix, where N’ denotes the transpose of
N. A block design is called binary if each treatment appears at most once in each
block. Let r;; = Y%_, nije, the number of times the ijth treatment is replicated
in the entire design, and r = (r;;), be the vector of treatment replications. Then

the reduced normal equations after eliminating the block parameters are:

Af =0, (1.5)

where I'7 is the Best Linear Unbiased Estimator (BLUE) of I'z, Q =T —
(1/k)N B, is the vector of treatment totals adjusted for blocks, B is the vector of
block totals and

A=r"—(1/k)NN' (1.6)

§ is a diagonal matrix

is called the information matrix or intra-block matrix; r
with the entry ri;, and I is the vector of treatment totals . We shall refer to
A as the A-matrix. The A-matrix is singular because Al = 0, and R(A)<t-1.
Therefore there is no unique solution to the reduced normal equations A7 = Q.

In general these equations have a solution 7 = QQ, for any generalized inverse(g-

inverse), @ of A. The value of 7 depends on the particular g-inverse used.

The general solution to AT = @ is
=00+ (QA-1)Z, (1.7)

where Z is any arbitrary vector, and  is a g-inverse of A. Any linear combinations

of the treatment parameters 7 can be expressed as C'7 and estimated by:
Ct=0C0Q+C(QA-1)Z, (1.8)

for arbitrary Z.

C1 is estimable, i.e. C7 is unique, if and only if C(QA — I)Z =0 for all Z,
ie. CQA = C, and it is a contrast if C1 = 0. A contrast is elementary if it has
only two non-zero elements, -1 and 1. If a design has all elementary contrasts
estimable, the design is connected and this is possible if and only if R(A)=t-1.

A matrix C is a contrast matrix if Cz has rows which are contrasts, i.e. C1 = 0.

For any connected design Cz = CQQ is a unique estimator of Cz with
V(C1) = o?CQC" if and only if C is a contrast matrix, where V(C?%) stands
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for the variance-covariance matrix of C7. In this case CZ = CQQ and CQC’
are invariant for any choice of 2. Throughout this thesis, unless explicity stated
to the contrary, we consider only designs which are connected. In addition all
designs considered are proper, that is all their blocks have the same size, say k

units.

The A-matrix is symmetric and hence has a complete set of orthonormal-

ized eigenvectors ¢ ,¢ ,... €, 4> say. Thus:

é:éz =1,
€t =0 £ ).

The eigenvectors are unique if and only if the eigenvalues of the A-matrix

(1.9)

are distinct. Denote the eigenvalues A\g = 0,A;,...,A;_;. Since Al = 0, one
eigenvector of A is { = t(=1/2)1 with corresponding eigenvalue 0. Since the
design is connected, all the other t-1 eigenvalues are non-zero and positive. The

matrix A can be expressed in canonical form:

t-1
A=Y NEL, (1.10)
=1
and has a g-inverse:
t—1
Q=) ML, (1.11)
i=1

which is called the Moore Penrose g-inverse. Any contrast £ 1, for i=1,2,...,t-1

is called basic contrast.

1.2.2 Contrast Matrices for the Dual-Versus-Single Prob-

lem:

In this research we are mainly concerned with two factors, namely A and B, at n
and m levels respectively. The contrasts of interest are (1.1) and (1.2) and these

can be expressed as Ci7 and C,;7 where the contrast matrices are:

Cl =( —Iq ®_1_p lep E )7
C? = ( OIXq _Ip ®lq If )7 (112)
C=(C G,

where 1, is an identity matrix of order n, O,y, is a zero matrix of u rows and

v columns, 1, is an nx1 column vector with all entries 1, ® denotes Kronecker

product, £ = pq and
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[ Eyy Eia Eis ...... Ey, ]|
Egl E22 E23 ...... Egp
E: Eg] E32 E33 ...... Egp ’ (113)
| Eqn Ep Eg ... o

where E;;’s are p X ¢ matrices with a 1 in the (j,i)th position and zero elsewhere.

Then BLUE of C;z(i=1,2) will be given by:
Cit = CiQ( =1,2). (1.14)

The standard theory for making inferences about the contrasts of interest, by

using an analysis of variance under normal assumptions, is described in John(1987

1.3 Design Criteria:

Suppose we have an experiment involving t treatments and b blocks each com-
posed of k units. The notation D(t,b,k) will stand for the set of all designs which
are allocations of t treatments to b blocks of size k. In order to determine how
the treatments should be allocated to the experimental units we require criteria

for design selection.

1.3.1 Optimality Criteria:

In traditional design theory the comparisons of all treatment pairs are often con-
sidered to be of equal importance. Let V(d) denote the variance-covariance ma-
trix of the estimators of the contrasts of interest for design d then, in the work
of Kiefer and others in the area of optimal designs (see for example Kiefer,1980),

the most common criteria for design selection are as follows:
D-Optimality : A design d* €D(t,b,k) is said to be D-optimal if
det(V(d*)) = min det(V(d)), Vd € D(t,b, k)

where det(X)' denotes the determinant of matrix X. Under the normality

assumptions for the errors in the model, a D-optimal design minimizes the

1'Whenever the determinant is defined
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volume of the confidence ellipsoid for contrasts and its application is well-

known in response surface designs.
MV-Optimality : A design d* €D(t,b,k) is said to be MV-optimal if

max(v;(d”)) < minmax(v;(d)), Vd € D,

1 1

where v;(d) is the ith element of the diagonal of the variance-covariance
matrix of the estimators of the contrasts of interest. An MV-optimal de-
sign minimizes the maximum variance of the BLUE’s of the estimators of
estimable functions. It should be noted that the E-optimality criterion
which minimizes the maximum of the eigenvalues of V(d), is equivalent
to MV-optimality if the contrasts of interest are proportional to the basic

contrasts.
A-Optimality : A design d* €D(t,b,k) is said to be A-optimal if
tr(V(d*))= min tr(V(d)) Vd € D;

where tr(X) denotes the trace of the matrix X. Assuming the usual nor-
mal theory model, A-optimality is equivalent to minimizing the sum of the
lengths of the axes of the simultaneous confidence ellipsoid for the given

contrasts of interest.

The goal for selecting a design, is to estimate the contrasts 7;; — 7o and 7i; —7o;,
for 1=1,2,...,n-1 and j=1,2,...,m-1 with as much precision as possible in the sense of
having small variances for the 7;; — 7, and 7;; — 7p;. Two of the standard criteria
used to accomplish this goal are to select designs that minimize tr(CQC")(A-
optimality) or minimize the maximum variance for the the estimators of 7;; — Tio
and 7;; — 7o;(MV-optimality). These have a meaningful interpretation, namely
minimizing the sum of the variances of the estimators of the contrasts of interest
over all designs, and minimizing the maximum of the variances of the estimators
of the contrast of interest over all designs respectively. However as pointed out
by Hedayat, Jacroux and Majumdar(1988) the D-optimality criterion does not
seem to be either an intuitively, or statistically suitable criterion, because the
designs it selects as being optimal generally do not provide any more information
about the contrasts of interest than they do about the other possible contrasts
which are not of primary interest. On the other hand, the A- and MV-optimality

criteria each have a natural and statistically meaningful interpretation.
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It should be noted here that a design which is optimal under any one of the
above criteria is not necessarily optimal under the others . However, evidence
gained from studies of different types of designs suggests that a design which
is optimal or performs well on one criterion tends to perform well on the other
criteria(ref: John, 1987,p28).

In our problem A-optimality corresponds to regarding estimation of the two
sets of contrasts (1.1) and (1.2) as of equal importance. In some practical prob-
lems this may not be appropriate. For example a comparison of the joint effect of
A and B with the effect of A alone may be of greater importance than comparing
the joint effect with the effect of B alone. In such cases we can consider the
average variance within each set of contrasts separately. Alternatively we might
minimize a weighted mean of the variances of the estimators of the contrasts of

interest(see Chapter 6).

As Hedayat, Jacroux and Majumdar(1988) point out, minimizing the average
variance of the estimators of the contrast of interest is usually not easy. As in
the other cases of exact design theory, it is highly unlikely that we can obtain

one method which is capable of producing A-optimal designs for arbitrary values

of t, b and k.

1.3.2 Definitions:

In the this section we bring together some useful definitions concerning our prob-

lem.

Definition 1.1 A block design for two factors A and B at n and m levels respec-
tively which accommodates all the combinations of levels of A and B ezcept 00 is
called an nxm Factorial Block Design with 00 Censored, and is denoted by
n x m CFBD(00).

In the following we specify some possible forms of balance in a n x m CFBD(0
0). In the past balance properties were primarily of importance for simplifying
the computation of the analysis of the data rather than as a desirable design
feature. Since the development of computer software such as GLIM, this feature
is no longer so important. The main motivation for balance properties in modern
design is to give designs with equal and high precision on the contrasts of interest.
In traditional block theory, balance of treatments and blocks has been shown

to give designs which are optimal under all the criteria in the previous section
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and under a wider class of optimality criteria called Universal Optimality(see
Kiefer,1975, and Cheng and Wu,1980).

Definition 1.2 An n x m CFBD(00) is said to be Balanced for Dual versus
A if:

V(i — Ti0) = a1{a1 # 0),
(1.15)
Cov(7i; — o , Tkl — ko) = p1,
for1=1,2,...,n—1,7=1,2,....m—1,k=1,2,...,n—-1andl = 1,2,...,m—1;
excluding 1j = kl; where ay and py are constant( oy # p1), and 7ij—7i0 and Tx—Tro
are BLUE's of 1;; — 10 and 1y — 7o, respectively and Cov(z,y) stands for the
covariance between z and y. This property will be abbreviated to BDS(A).

In other words an nxm CFBD(00) is balanced dual versus A if:

V(Cat) = (e = p1) 11 + prdi(en # p1), (1.16)

where C3 was given in(1.12) and I = (n — 1)(m — 1).

A similar property of balance can be defined as Balanced Dual versus B,
and denoted by BDS(B). Thus a nx m CFBD(00) is balanced dual versus B if:

V(C12) = (a2 = p2) i + p2Ji(e2 # p2), (1.17)
where C'; was given in(1.12), p; and ay(az # 0) are constants.

Definition 1.3 An nx2 CFBD(00) is called Partly Balanced Dual versus
Single(PBDS) if it is

1. balanced for dual versus A and balanced for dual versus B,

2. there are equal correlations between the estimators of every pair of orthog-
onal dual versus single contrasts,

and

3. there are equal correlations between the estimators of every pair of non-
orthogonal dual versus single conirasts, not necessarily equal to the correla-

tions in part 2.
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In other words an n x 2 CFBD(00) is PBDS design if:

(al _Pl)Ip+p1Jp (0"7)Ip+7JP

V(C1) = .
( ) (9—7)[p+7~7p (O‘Z "P2)IP+P2JP

(1.18)

~ This definition is extended to n x m experiment in Chapter 5.

If the estimation of the comparisons in (1.1) and (1.2) are of equal importance,
then equal variances on all the comparisons is desirable. This motivates the

following property.

Definition 1.4 An n x m PBDS design is called a Balanced Dual versus
Single Design(BDSD) if all the contrasts of interest are estimated with equal

precision and every pair of contrast estimators has equal correlation. In other

words the design is a BDSD if:
V(Cf‘_) = (0’2 — o)+ pJa, (1.19)
where C is defined in (1.12) and l = (n — 1)(m —1).
The following Examples illustrate these definitions.
Example 1.1 For n=38, m=2, k=2, and b=4 we have t=5 and ,

!
I= (7'01, T105 7205 711, 7'21) 3

-1 0010
Ci = ;
-1 0 0 0 1

6 -1 010
Cy = .
0 0 -1 01

Then the design given below is a balanced dual versus single design:

blockl 01 21
block2 01 11
block3 10 11
blockd 20 21

The balance property follows since
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1100 2 0 0 11
0 010 01 010
N=]1000T1|,NN=j0010 1],
0110 11 0 2 0
|1 0 0 1| |1 01 0 2]
and hence
i 1 0 0 —0.5 —0.5 |
0 0.5 60 -0.5 0
A= 0 0 0.5 0 —-0.5 1|,
-0.5 —0.5 0 1 0
05 0 —05 0 1
V(C]i)ZQIQ,
and
V(Cat) = 21,.

Example 1.2 For n=4, m=2, k=5 and b=3 we have t=7 and

!
= (7'01, T10, 720, T30, T11, 721, 7’31) )

o o O
O O
o = O
— o O

For the design

blockl 01 10
block2 01 20
block3 01 30

we have:

o O
O O
[ =]
— O O

11 20 21
21 30 31
31 10 11
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N NN’ =

fl

—

— o =

O e s

= = O

— O

O

= O
N NN N N W
o N = NN
N = =N =N
[ e N )
N SR - R SO I )
RN e =N N
BN = RN e e N

It follows that:

0.875 0.312 0.312
V(Ciz) = | 0.312 0.875 0.312 |,
0.312 0.312 0.875

and
V(Cy1) = .
Hence the design is PBDS but does not have full balance for dual versus single

factor comparisons.

Definition 1.5 A design will be termed efficient for the dual versus single treat-
ment problem if it has very low total variance on the contrasts Ct where C is
given in (1.12).

1.4 2x2 CFBD(00):

The remainder of this chapter concentrates on the case m=n=2, i.e. where both
factors have two levels. The problem then reduces to designing for the comparison
of each of the treatments 01 and 10 with the treatment 11. This is a particular
case of the general problem of constructing efficient designs for comparing test
treatments with a single control treatment which in recent years has received a
good deal of attention. The problem is to construct an experiment involving t
test treatments and 1 control making a total of t+1 treatments. The treatments
are to be arranged in b blocks, each of size k. Let the test treatments be labelled
1,...,t and let 0 denote the control treatment. The term control is used in the sense
of a special or standard treatment. An additive linear model without treatment-
block interactions is assumed. The objective of the experiment is to estimate the
treatment contrasts 7; — 7p for 1 < ¢ <'t. Now we give a brief summary of studies

which have been done on A- and MV-optimal designs.
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1.4.1 Historical Background:

In connection with finding good designs for test treatments versus control treat-
ment, Cox(1958, p238) suggests a design in which the control treatment appears
the same number of times(once, twice, or more), within each block and the test
treatments form a Balanced Incomplete Block Design(BIBD) over the re-
maining units. He does not give any mathematical analysis to establish the
efficiency of such designs. Pesek(cf: Hedayat, Jcroux and Majumdar,1988), com-
pares a BIBD with an augmented BIBD as suggested by Cox(1958) and concludes
that the latter is more efficient. Constantine(1983), shows that a BIBD in the
test treatments augmented by a replication of the control in each block, is A-
optimal in the class of designs with exactly one replication of the control in each
block. Jacroux(1984) shows that Constantine’s conclusion remains valid even
when BIBD’s are replaced by certain Group Divisible(GD) design. Stufken(1988)
determines the most efficient augmented block design and suggests a lower bound

for the efficiency of these designs.

Pearce(1960) proposes the class of supplemented balance designs for investi-
gating the test treatments versus control treatment problem. Gupta(1989) studies
the work of Pearce(1960) and derives a lower bound for the average variance of
test-control contrast estimators in designs which are binary in terms of all the
treatments involved in the block designs. He advocates using this bound for both
binary and non-binary designs. However this bound is not the tightest bound

available for non-binary designs.

Bechhofer and Tamhane(1981) were the first to propose a class of designs
called Balanced Test Treatment Incomplete Block(BTIB) designs in order
to characterize optimal block designs for the simultaneous test-control confidence
region, which includes Cox’s(1958) designs. This class will be discussed in Section
1.4.2.

A rigorous treatment for determining optimal designs for comparing test treat-
ments with a control is started by Majumdar and Notz(1983). They initiate the
study of A-optimality of BTIB designs and give a method for finding A- and
MV-optimal designs. In the course of their work a bound for average variance of
the contrast estimators is derived which holds for the cases in which ¢t +1 > %.
This bound is extended to the designs with t + 1 < k later by Jacroux and Ma-
jumdar(1987) and Ting and Notz(1987) separately. The bound of Gupta(1989)
equals the bound in which ¢ +1 > k in the special case when the design is binary
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in terms of the t+1 treatments involved in the design, t+1 is a perfect square
value and an overall BTIB design does exist. For all other cases Gupta’s bound

is smaller than the two other bounds.

Hedayat and Majumdar(1984, 1985) devise an algorithm for obtaining A-
optimal design based on Majumdar and Notz(1983), and provide a catalogue
of A-optimal designs and designs which are A-optimal among BTIB designs.
They also give a family of optimal designs. Tiire(1982,1985) also studies A-
optimal designs and highly efficient designs and gives a method of construction.
Jacroux(1989) generalizes Hedayat and Majumdar’s(1984) algorithm for finding
A-optimal designs. Stufken(1986,1987,1988) studies optimal designs and gives

families of optimal designs as well as approximate optimal designs.

Cheng, Majumdar, Stufken and Tire(1988) give new families of optimal de-
signs and some approximate optimal designs. Ting and Notz(1987) study optimal
block designs. Ting and Notz(1988) give a catalogue of A-optimal designs for the
cases where the number of test treatments involved in the design is less than k.
The most recent work of Hedayat, Jacroux and Majumdar(1988) outlines exist-
ing knowledge on optimal designs for comparing test treatments with a control in
incomplete block designs, completely randomized block designs and row-column

designs.

In the following we bring together those definitions and theorems underlying
the theory of efficient block designs for comparing test treatments with a control

treatment which are relevant to the dual-versus-single design problem.

Definition 1.6 (Keifer, 1975): A block design is said to be a Balanced Block
Design if:

L Yjaani=r, for i=1,2,...,1,
2. b ninmi = A for i#myi,m=1,2...,t (1.20)
3. |ny—k/jt|<1, forj=1,2,...,b and 1=1,2,...,t.

A balanced block design for t treatments in b blocks of size k is denoted by
BBD(t,b,k). If the balanced block design is binary, then it is called a Balanced
Incomplete Block Design denoted by BIBD(t,bk).
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1.4.2 A-optimal Block Designs for Control-Test Treatment

Comparisons:

In this section we summarize the definitions and results used in the literature
for finding A-optimal block designs for control-test treatment comparisons. We
use 7; — 7o to denote the BLUE of 7; — 7;(1=0,1,2...,t) and D(t+1,b,k) to denote
the set of all possible experimental designs in b blocks of size k each, based
on t+1 treatments. The problem is, for given t, b and k, to select a design
d* € D(t + 1,b,k) which minimizes 3_!_; V(#; — 7o) over all designs belonging
to D(t + 1,b,k). Thus an A-optimal design criterion is used. Some definitions

concerning this problem follow:

Definition 1.7 (Bechhofer and Tamhane,1981) A design de D(t + 1,b,k) is
called a Balanced Test Treatment Incomplete Block(BTIB) design if the

following conditions are satisfied:

1. d is an incomplete block design, that ist > k,
2. there are constants Ao and Ay such that:

E?=1 nojni; = Ag, for 1 <1<,

Yoy nignis = Ay, for 1<4,4 <t

(1.21)

Bechhofer and Tamhane(1981,Theorem 3.1) prove that necessary and suffi-
cient conditions for a design to be BTIB is that the variance-covariance matrix
for § = (f1—70, T2—7%0, ...,7t—70) is a completely symmetric matrix. In other

words a design is BTIB iff:

V(0) = (1= I+ ule. (1.22)

In the literature designs with this feature are known as totally variance bal-
anced for the test-control contrasts. It should be mentioned here that the same

properties can be sought in block designs with k£ > ¢.

Definition 1.8 (Ting and Notz, 1988, Definition 2) A design d € D(t +1,b,k) is
called a Balanced Treatment Block Design(BTBD) if condition 2 of Defi-
nitton.1.6 holds and condition 1 does not hold.

Definition 1.9 (Stufken,1987 Definition 2.2) A design d is termed BTIB( t+1,
b,k;u,s) if de D(t + 1,b,k) and has the following properties:
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1. d is a BTIB.

2. There are s blocks in d, each with u+1 replications of the control, while each

of the remaining b-s blocks contains u replications of the control.

3. d is binary in the test treatments, i.e. n;; € {0,1} for 1 <1 <t and
1<5 <.

Similarly, a design d is termed BTBD(t+1,bk;u,s) if it has the following

properties:

1. disa BTBD.

2. There are s blocks in d, each with u+1 replications of the control, while

each of the remaining b-s blocks contains u replications of the control.

Definition 1.10 (Hedayat and Majumdar,1984) A BTIB(t+1,b,k;u,s) is called
a Rectangular type(R-type) design if s=0 or b, and a Step type(S-type)

otherwise.

Figures 1.1 and 1.2 show the structure of an R-type and an S-type design
respectively, where dy denotes a BIBD with t treatments in b blocks each of size
k-u, d; and d; denote a BIBD with t treatments in s blocks each of size k-u-1,
and b-s blocks of size k-u each respectively. Note that the blocks correspond to

the columns of the array.

Blocks =
Units
1 O R b
2
CONTROLS
S
u-l
U<
. d
0
k
Figure 1.1: An R-type design(s=0).
Blocks 5
Units
+
1 2 3 s s+1 s+2 b
1 - 1
2 2
CONTROLS
u u
u+1). u+l
u+2 u+2
. d
1 4, .
k k

Figure 1.2: An S-type design(sz0).
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The following lemma specifies a necessary relationship amongst the parame-

ters of BTIB(t+1,b,k;u,s).

Lemma 1.1 (Hedayat and Majumdar,1984,Lemma 2.2): In a BTIB(t+1,b,k; u,

s), the following relations must hold:

tr = bk —u) — s,
tc=s(k—-u-1) (1.23)
At =) =clk—u—2)+(r—c)(k—u—1),
where v denotes the number of replications of each test treatments. For R-type
designs c¢=0; for S-type designs c equals the number of replications of each test

treatments in part dy.

When k=2, the necessary conditions stated in Lemma 1.1 are sufficient, be-
cause in an R-type design, dy consists of copies of t3°1 and in an S-type design
dy and d; consist of copies of ¢ 3" 1 and ¢ 3" 2, respectively, where b3 a: is the set
of all b!/{al(b— a)!} distinct blocks of size a each based on b treatments.

1.4.3 Efficient 2 x 2 CFIBD(00)(¢t > k):

Majumdar and Notz(1983) first showed that the general problem of constructing
efficient incomplete block designs, where t > k for comparing test treatments
with a control can be reduced to finding the number, rq, of replications of the
control in the entire design, and then finding the most efficient design for this
value of rg. They characterize certain A-optimal designs in the incomplete block

case, where t > k as follows :

Theorem 1.1 (Majumdar and Notz,1983): For given t, b and k, a BTIB(t+1,

b, k; u,s ) design is A-optimal when u=z and s=z minimize:

g(z,2) = (t = 1)2{btk(k — 1) — (b + z)(kt —t + k) + (bz? + 2zz + 2z)} '+
{k(bz + z) — (bz?® + 22z + z)}1
(1.24)
among the integers £=0,1,....,[k/2] and 2=0,1,....,b-1, with the restriction that z
is positive when =0 and 2=0 when z=[k/2]. Here [.] denotes “the integer part

of.”.

For the 2 x 2 dual-versus-single problem the only possible size for ¢t > k, is
k=2. Obviously for the set of parameters t=2, k=2 and b, Theorem.1.1 is not
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able to provide A-optimal design for every value of b. An A-optimal design exists
for any value of b but searching for it through a complete enumeration of all

designs is prohibitively costly, even for moderate values of b.

Hedayat and Majumdar(1984) use Theorem 1.1 in an algorithm to produce a
catalogue of A-optimal designs, which include 2 x 2 designs with parameters in
the range 2 < b < 50.

As an alternative we might use a design which is A-optimal within a class of
designs known to have some desirable statistical properties. The class of BTIB
designs is a good choice in our case because of the symmetric structure of the
variance-covariance matrix for the estimators of the contrasts of interest of such
designs. Designs that are A-optimal within the class of BTIB designs are expected

to compete well with designs that are A-optimal in the entire class, in most cases.

Hedayat and Majumdar(1984) show that for an S-type design in which u=0,
d; is w copies of 231 and d, is y copies of 23" 2, respectively. For this case the
expression:
1 1
— 1.25
w + 2y + w ( )
is proportional to the total of the variances of the control test treatments esti-

mators. They characterize designs which minimize the expression in (1.25) over

nonnegative integers w and y, satisfying:

2w+ y = b, (1.26)
for w > 0.

They used this approach to obtain A-optimal designs by finding A-optimal
designs within the BTIB class of designs with S-type structure.

Table 2 of Hedayat and Majumdar(1984) gives a catalogue of A-optimal
designs and designs which are A-optimal among BTIB designs with k=2 and
2<b<50.

1.4.4 Catalogue of A-Optimal 2 x 2 CFBD(00)(¢ < k):

In this section available A-optimal block designs for ¢t < k and both factors at
two levels are briefly reviewed and new designs are catalogued. The new designs
cover parameter values for which designs are not currently available. The designs

are all of the R- and S-type.
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Ting and Notz(1987) give the following theorem to characterize a series of
A-optimal designs within the BTBD(cf: Definition 1.7) class for the cases when
t <k

Theorem 1.2 (Ting and Notz, 1987, Theorem 3.1)For given t, b, and k suppose
de D(t+1,b,k) is a BTBD such that:

L. ry=[(kb—ro)/t] or [(kb—ro)/t]+1, for 1<i<t
2. ny =[r:i/b] or [ri/b] +1, for 1<i<t ,1<3<)
3. noj = [ro/b] or [ro/b] + 1, for 1<57<b
(1.27)
4. 7o is the non-negative integer, 1 < rg < [bk/2] which minimizes F(r), where
F(r) is given below, then d is A-optimal over D(t+1,b,k). Here [.] denotes “the

integer part of .” and

o H(t - 1) t
Iz ) R e ) R T
where
g=r+(2r—b)[r/b]—b[r/b],
c=bk—r+(t—0bk+r+tp)[p/b](2p—-b—0b[p/b])+ (1.28)
(bk —r —tp)[(p+1)/8]{2(p+ 1) = b~ b[(p+ 1)/8]},
and

p=[(bk = r)/1].

Jacroux and Majumdar(1987) obtain the same theorem by permuting the

information matrix of the test-control contrasts.

Notice that all the designs satisfying Theorem 1.2 will have the BDS property,
because they are BTBD; in particular the contrasts of interest will have equal

variances.

Note that F(rg) is an achievable bound which can be used to assess the effi-

ciency of any connected block design.

Ting and Notz(1988) use Theorem 1.2 in an algorithm to produce a catalogue
of A-optimal designs which includes 2 x 2 designs with parameters in the ranges
2 <b< 50 and 3 <k < 30. However, there are many block sizes for which
designs are not given, for example k=3,5,6,8,9,11,12. When k=3, then by Ting
and Notz(1988), the randomized block design is A-optimal for each b. It should
be noted that this is not true in general for ¢ > 2 and k=t+1. The result also
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follows from Theorem 3.1 of Hedayat and Majumdar(1985). In Table 1.1 at the
end of this chapter we give a catalogue of A-optimal designs of the R- and S-type
to fill in the gaps for 4 < b < 50, and k < 30.

The BTB designs considered by Ting and Notz(1988) and further investigated

here are of three types:

e R-type when ro = Omod(b) and (kb — ro)/(tb) is an integer. Then the
structure is Figure 1.1, where u = ro/b and do is a BBD(t,bk-u) in the
test treatments. For this structure, the number of replications of each test
treatment within each block is (kb — ro)/(1b).

e R-type when ro = Omod(b) and (kb — ro)/(tb) is not an integer. Then the

structure is Figure 1.3, with:

u = ro/b,

g =k — (ro/b) — t[(bk — o)/},
do1 and do; are BBD(t,b,k-q-u) and BBD(t,b,q) in the test treatments re-
spectively. For this structure (kb — o)/t should be an integer.

(1.29)

Blocks -
Units
. 12 3 . L. b
1
2
. CONTROLS
a
S
u+tl
u+2
. d
01
k-q
| e e
k~g+1
. d
. 02
x

Figure 1.3: An R-type design when

(bk-ro)/tb is not an integer.

e S-type when ro/b is not an integer. Then the structure is as shown in
Figure 1.2, where u = [ro/b], s = ro — bu, d; and d; are BBD(t,s,k-u-1) and
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BBD(t,b-s,k-u) in the test treatments respectively. For this structure (kb—

ro)/t should be an integer. Note that t=2 for the case we are considering.

The catalogue in Table 1.1 at the end of this chapter was obtained by using
the procedure of Ting and Notz(1988) to fill in the gaps for some practical set of
parameters which have not been given previously. The computer algorithm for

generating the catalogue in Table 1.1 is outlined in Section 1.4.5.

In the following we give two examples to show how to get designs from the
catalogue.

Example 1.3 For b=2 and k=5, it is clear from Table 1.1 that the design is
R-type with ro = 4. Now (kb—ro)/(tb) = 6/4 and hence the design has the form
shown in Figure 1.3. From (1.29) with t=2 we have ¢=1. Therefore u=2 units
of each block are allocated to the control, labelled 11; dgy consists of 2 blocks each
of size k-q-u=2, where the test treatments(01 and 10) occur once in each block;
doy consists of two blocks of size 1 with the test treatments 01 and 10 occurring

once. The design is:

Blockl 11 11 01 10 01
Block2 11 11 01 10 10

Example 1.4 For k=6 and b=6 from Table 1.1 the A-optimal design is S-type
with structure as in Figure 1.2, where dy is a BBD(2,2,3) and d, a BBD(2,4,4).
The design therefore has the control treatment 11 occurring three times in each
of blocks 1 and 2 and twice in each of the other blocks. The design is:

Blockl 11 11 11 01 10 01
Block2 11 11 11 10 10 01
Block3 11 11 01 01 10 10
Block4 11 11 01 01 10 10
Block5 11 11 01 01 10 10
Block6 11 11 01 01 10 10

In the following theorem an explicit method of constructing BBD’s for t=2 is
given. This method is useful for obtaining sections d; and d, of the above designs

and hence for constructing balanced treatment block designs.

Theorem 1.3 BTBD(3,b,k;u,s) design ezists if and only if b(k-u)-s is even.
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Proof: Two cases must be considered:

1. s = 0, i.e. the design is R-type. For this case by looking at Figure 1.1 on
page 16, we must show dy which is BBD(2,b,k-u) does exist. Since b(k-u)
is even it follows that either b or k-u must be even. If k-u is even then
each of treatments 01 and 10 occurs (k — u)/2 times in each block and the
resulting design is BBD(2,b,k-u). If k-u is not even then b must be even and
we have b/2 pairs of blocks. For each pair of blocks assign [(k — u)/2]+1
units of one block to treatment 10 and the remaining units of that block to
treatment 01. In the other block of the pair assign [(k — u)/2] + 1 units to
treatment 01 and the remaining units to treatment 10. Then each pair of
blocks consists of a BBD and the resulting design is BBD(2,b k-u).

2. If s # 0, i.e. design is S-type. For this case we must show that d; and d;
are BBD(2,s,k-u-1) and BBD(2,b-s,k-u), repectively. In this case bk —rg =

bk — bu — s is even. There are then two possibilities:

(a) Both s and b(k-u) are even, then by argument in part 1, d; and d; can

be constructed.

(b) Both s and b(k-u) are odd, then k-u-1 is even and d; can be con-
structed. Also d; can be constructed, since b and s are both odd,

which implies that b-s is even.

If b(k—u)—s is not even, the design is not equireplicate in terms of test treatments
and then a BTBD does not exist. This completes the proof.é&

As an illustration of this result, Examples 1.3 and 1.4 can be constructed as

in parts 1 and 2 of the proof of Theorem 1.3 respectively.

1.4.5 Computer Algorithm:

The computer algorithm(Appendix B) for generating the catalogue of A-optimal

designs in Table 1.1 consists of the following steps:

STEP 1 : Find rq, the value for r which minimize F(r), for all reL.

STEP 2 : Check whether bk-rg is even or odd. If it is odd, then by Theorem
1.3, an overall A-optimal BTBD does not exist.
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STEP 3 : Specify the layout of the A-optimal design based on Figures 1.1 to
1.3.

STEP 4 : Determine the detailed structure of the design specified in STEP 3.

1.4.6 Near Optimal and New Optimal Balanced Treatment
Block Designs:

It is clear that for parameters 4 < k < 30, and b < 50, there still remain gaps
where the A-optimal BTBD does not satisfy Theorem 1.2. This is because the
A-optimal designs are not balanced and this is the case whenever (bk—rg)/t is not
an integer, where r¢ is the value which minimizes F(r) in Theorem 1.2. For these
cases, as we have already pointed out, to search for A-optimal designs through a
complete enumeration of all designs is costly. Examination of the class of BTBD
is a natural choice in our context since this class guarantees equal precision for
the estimators of the contrasts of interest. Designs that are A-optimal within this
class are expected to compete with designs that are A-optimal in the entire class,

in most cases(ref: Hedayat and Majumdar,1984).

In this section we find A-optimal designs within the BTBD class. The A-
optimal BTBD could be obtained by using the Ting and Notz(1988) algorithm.
Let L={r;r=1,2,...,bk/2} and let 7, €L be the value which minimizes F(r) in
Theorem 1.2. Then if bk — g is even, the A-optimal design belongs to the BTBD
class which is given in Table 1.1. If bk —ry is not even then the design which is A-
optimal among BTBD’s could be obtained by finding r; € L which (i) minimizes
F(r) in Theorem 1.2 among all the possible values of r € L excluding r = rg and

(ii) makes bk — r; equal to an even number.

Cheng, Majumdar, Stufken and Tiire(1988), proved that if F(ro)=min F(r)
Vr € L, then F(r) is decreasing on {r; € L;r; < 7o} and increasing over
{r1 € Lyry > ro}. Based on this theorem, if bk-ro is not even, then the most
efficient BTBD will be obtained by taking either ro — 1 or r¢ + 1 as the number
of replications of the control treatment in the optimal design according to one

which gives the smaller value for F(r).

Consequently when an A-optimal BTBD does not exist, then a near optimal
BTBD is obtained by requiring that the number of replications of the control
should be exactly 1 less than or greater than the value which minimizes F(r)

in Theorem 1.2 1.e. we take rp — 1 or rp + 1 as the number of replications
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of the control treatment in the A-optimal BTBD. A design, d, is called near
optimal or efficient if the trace of the variance-covariance matrix of contrasts
of interest is very close to the minimum value of F(r) i.e. F'(ro), the lower bound
for the contrasts of interest. In other words if E; = F(ro)/tr(Vy), where V is the

variance-covariance matrix of design d, then d is efficient if E; is very close to 1.

When bk — rg is not even, a computer algorithm(Appendix B) similar to the
algorithm given earlier has been used to determine the A-optimal designs within
the class of BTBD. Table 1.2 at the end of this chapter gives a catalogue of these
designs. Note that all the designs in this table have F; greater than 0.96.

In the following examples we will show how these A-optimal designs within
the BTBD class are efficient relative to the minimum value of F(r) and relative to
the most efficient design which can be generated by using the algorithm of Jones
and Eccleston(1980). Henceforth we denote this algorithm by JE.

Example 1.5 For given parameter values b=5 and k=5, minimizing F(r) in The-
orem 1.2 by the computer algorithm gives 1o = 10. The efficient design for
ro = 10, found by JE, is shown below:

Blockl 11 11 01 01 10
Block2 11 11 01 10 10
Block3 11 11 01 01 10
Block4a 11 11 01 10 10
Block5 11 11 01 01 10

The individual variances for 7o, — #11 and 719 — 711 are 0.1145 and 0.1240
respectively with E=0.998 which shows that the design is not a BTBD. It has
tr(V) = 0.238550. To find a competing efficient BTBD for these parameters we
use the control replication ry = ro + 1 = 11, and construct the following BTBD
using the computer algorithm of Section 1.4.5:

Blockl 11 11 01 01 10
Block2 11 11 01 10 10
Block3 11 11 01 01 10
Block4 11 11 01 10 10
Block5 11 11 11 01 10

The individual variances for 7o, — 711 and 719 — 711 are both 0.1212 and the
design is a BTBD with E; = 0.982. This is not an overall A-optimal design but
is A-optimal within the BTBD class and is, therefore, included in Table 1.2.
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Example 1.6 For given parameter values b=4 and k=6, minimizing F(r) gives

ro = 9 and the efficient design for ro = 9 obtained by JE, is shown below:

Blockl 11 11 11 01 01 10
Block2 11 11 01 01 10 10
Block3 11 11 01 01 10 10
Block4 11 11 01 01 10 10

The individual variances for 791 — 711 and 710 — 711 are 0.1189 and 0.1311
respectively with tr(V') = 0.2500. The design is neither BTBD nor A-optimal with
E=0.997. To find a competing and more efficient BTBD for these parameters we
use ro = 9. Then putting ro + 1 as the number of replications, ry, of the control
treatment, we obtain from Table 1.2 the following S-type BTBD:

Blockl 11 11 11 01 01 10
Block2 11 11 11 01 10 10
Block3 11 11 01 01 10 10
Block4 11 11 01 01 10 10
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Table 1.1: Catalogue? of overall A-optimal designs of the R-
and S-type for t=2, 2 < b < 50,4 < k < 30, which were

not listed in Ting and Notz(1988).

k b rg type section of the design

2m  2b R dpy: 1 rep; dgy : m copies of 251

6 6 14 S di: BBD(2,23); dy: BBD(2, 4,4)

7 16 S dy: ” dy: BBD(2, 5,4)

8§ 18 S d: 7 d, : BBD(2, 6,4)

12 28 S di: BBD(2,43); dy: BBD(2, 84)

13 30 S dy: ” dy; : BBD(2, 9,4)

14 32 S dy: ” dy: BBD(2,10,4)

15 34 S dy: 7 d; : BBD(2,11,4)

19 44 S di: BBD(2,6,3); dy: BBD(2,13,4)

20 46 S dy: 7 d, : BBD(2,14,4)

21 48 S dy: 7 dy : BBD(2,15,4)

22 50 S dy: ” dy: BBD(2,16,4)

26 60 S dy : BBD(2, 8,3) d, : BBD(2,184)

97 62 S dy: ” dy: BBD(2,19,4)

28 64 S dp: ” dy : BBD(2,20,4)

33 76 S di: BBD(2,10,3) dp: BBD(2,23,4)

34 78 S d: 7 dy : BBD(2,24,4)

35 8 S dy: dy : BBD(2,25,4)

40 92 S  dy: BBD(2,123) dy: BBD(2,284)

41 94 S dy: dy : BBD(2,29,4)

42 96 S dy: ” d, : BBD(2,30,4)

46 106 S dy : BBD(2,14,3) dy: BBD(2,32/4)

47 108 S dy: ” dy : BBD(2,33,4)

48 110 S dp: ” dy : BBD(2,34,4)

49 112 S dy: 7 dy : BBD(2,35,4)

?Note

26

. Selections dy, dy, d2, do1 and dp2 are amalgamated as shown in Figures 1.1 to 1.3 on pages 16

and 20.

. m is any positive integer.

. z rep means z replications for each test treatment in each block.

. &y y is the set of all z!/{y!(z — y)!} blocks obtained from all the distinct selections of y

treatments from x.
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Table 1.1: continued...

27

k b rg type section of the design
2m 3b R do1 : 2 rep; dgy : m coples of 251
9 2m 4b R doi : 2rep; dop : m copies of 251
m< 6
2m+1 4b-1 S dy: BBD(2,2m,5); dz: BBD{(2, 1,6)
4<m<1d
2m 4b-2 S dy : BBD(2,b-2,5); dy: BBD(2,2,6)
15 <m < 26
11 b 5b R dog: 3rep
b< 7
b 5b-2 S dy : BBD(2,b-2,6); dy: BBD(2,2,7)
200<b< 34
b 5b-4 S dy: BBD(2,b-4,6); do: BBD(2,4,7)
46 < b < 51
12 2m 5b R doy 3 rep; dop : m copies of 251
15 2m 6b R doy 4 rep; dgs m copies of 231
16 3 20 S di : BBD(2, 2,9); dy : BBD(2,1,10)
5 34 S di: BBD(2, 4,9); dy: 7
6 40 S dy: ” d» : BBD(2,2,10)
8 54 S dy : BBD(2, 6,9); do: 7
9 60 S dy: ” d, : BBD(2,3,10)
11 74 S dy: BBD(2, 8,9); dy: ”
14 94 S dy: BBD(2,10,9); dy: BBD(2,4,10)
17 114 S  di: BBD(2,12,9); dy: BBD(2,5,10)
19 128 S dy : BBD(2,14,9); do: 7
20 134 S dp: ” dy : BBD(2,6,10)
22 148 S dy: BBD(2,16,9); dp: 7
23 154 S dy: d, : BBD(2,7,10)
25 168 S  dy: BBD(2,18,9); dp: ”
26 174 S dy: 7 dy : BBD(2,8,10)
28 188 S d; : BBD(2,20,9); dy: 7
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Table 1.1: continued...

k b ro type section of the design

16 31 208 S di: BBD(2229); dp: BBD(2,9,10)
34 228 S dy: BBD(2,24,9); dp: BBD(2,10,10)
36 242 S dy: BBD(2,26,9); do: 7
37 248 S d: 7 d; : BBD(2,11,10)
39 262 S dy: BBD(2,28,9); dp: ”
40 268 S di: BBD(2,28,9); d;: BBD(2,12,10)
42 282 S dy: BBD(2,30,9); dp: 7
45 302 S d;: BBD(2,32,9); do: BBD(2,13,10)
48 322 S dy: BBD(2,34,9); d,: BBD(2,14,10)
50 336 S dy: BBD(2,36,9); dp: 7

18 4 30 S dy: BBD(22,10); dy: BBD(2,2,11)

38 S dy: BBD(2,3,10); dy: 7

9 68 S dy: BBD(25,10); dy: BBD(24,11)
10 76 S di : BBD(2,6,10); dp: 7
13 98 S dy: BBD(2,7,10); do: BBD(2,6,11)
14 106 S di: BBD(2,8,10); dp: ”
15 114 S dy: BBD(2,9,10); dp: 7
18 136 S dy: BBD(2,10,10); d: BBD(2,8,11)
19 144 S dy: BBD(2,11,10); do: 7
22 166 S dy: BBD(2,12,10); dy: BBD(2,10,11)
23 174 S dy: BBD(2,13,10); dp: 7
24 182 S dy: BBD(2,14,10); dp: ”
27 204 S dy: BBD(2,15,10); dy: BBD(2,12,11)
28 212 S dy: BBD(2,16,10); dp: 7
32 242 S d;: BBD(2,18,10); do: BBD(2,14,11)
33 250 S d;: BBD(2,19,10); dy: 7
36 272 S d;: BBD(2,20,10); dy: BBD(2,16,11)
37 280 S dy: BBD(2,21,10); dp: ”
38 288 S dy: BBD(2,22,10); dp: ”
41 310 S di: BBD(2,23,10); dp: BBD(2,18,11)
42 318 S dy: BBD(2,24,10); dp: 7
46 348 S dy: BBD(2,26,10); dp: BBD(2,20,11)
47 356 S dy: BBD(2,27,10); dy: 7
50 378 S d;: BBD(2,28,10); dy: BBD(2,22,11)

28
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Table 1.1: continued...

k b ro type section of the design

19 2m 8b R do1 : 5 rep; doa : m copies of 231

23 4 38 S  dy: BBD(2,2,13); dy: BBD(2,2,14)
5 47 S dy: ” dy: BBD(2,3,14)
6 5 S dy: ” dy: BBD(2,4,14)
9 8 S dy: BBD(2,4,13); dy: BBD(2,5,14)
10 94 S dy: 7 d,: BBD(2,6,14)
11 103 S dy: ” d, : BBD(2,7,14)
14 132 S  dy: BBD(26,13); dp: BBD(28,14)
15 141 S dy: 7 dy: BBD(2,9,14)
16 150 S  dy: ” dy : BBD(2,10,14)
19 179 S d;: BBD(2,8,13); dp: BBD(2,11,14)
20 188 S dy: 7 dy : BBD(2,12,14)
21 197 S dy: 7 dy: BBD(2,13,14)
25 235 S dy: BBD(2,10,13); dy: BBD(2,15,14)
26 244 S dy: ? dy: BBD(2,16,14)
30 282 S dy: BBD(2,12,13); d;: BBD(2,18,14)
31 291 S dy: dy: BBD(2,19,14)
35 329 S dy: BBD(2,14,13); dy: BBD(2,21,14)
36 338 S dy: ” dy : BBD(2,22,14)
40 376 S dy : BBD(2,16,13); d,: BBD(2,24,14)
41 385 S dy: ” dy: BBD(2,25,14)
45 423 S d; : BBD(2,18,13); dy: BBD(2,27,14)
46 432 S dy: 7 dy 1 BBD(2,28,14)
50 470 S dy: BBD(2,20,13); dp: BBD(2,30,14)

25 2 20 R dy 7 rep; doa 1 copy of 2571
3 31 S dy: BBD(2,1,14); dy: BBD(2,2,15)
5 51 S dy: 7 dy: BBD(2,4,15)
7 71 S dy: ? dy : BBD(2,6,15)
8 82 S dy : BBD(2,2,14); dy: ”
10 102 S  dy: dy: BBD(2,8,15)
12 122 S dy: dy : BBD(2,10,15)
13 133 S dy: BBD(2,3,14); dp: ”
15 153 S dy: ” d;: BBD(2,12,15)
17 173 S dy: ”? dy: BBD(2,14,15)

29
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k b ro type section of the design

25 18 184 S di: BBD(24,14); dp: BBD(2,14,15)
20 204 S dy: ” d; © BBD(2,16,15)
22 224 S dy: ” dy : BBD(2,18,15)
25 255 S dy: BBD(2,5,14); dy: BBD(2,20,15)
27 275 S dy: 7 dy : BBD(2,22,15)
30 306 S dy: BBD(26,14); dy: BBD(2,24,15)
32 326 S dy: ” d, : BBD(2,26,15)
35 357 S dy: BBD(2,7,14); dy: BBD(2,28,15)
37 377 S dy: dy : BBD(2,30,15)
40 408 S dy: BBD(2,8,14); dp: BBD(2,32,15)
42 428 S dy: ? dy : BBD(2,34,15)
45 459 S dy: BBD(2,9,14); dp: BBD(2,36,15)
47 479 S dy: 7 dy: BBD(2,38,15)
50 510 S dy: BBD(2,10,14); dy: BBD(2,40,15)

30 b 12b R dy: 9 rep

b< 11

b 12b+2 S dy : BBD(2,2,17); d;: BBD(2,b-2,18)

30 < b < 50

30



Chapter 1

31

Table 1.2: Catalogue® of R- and S-type A-optimal designs within the BTBD

class for t=2, 2 < b < 50,4 < k < 30.

k b r1  type section of the design
5 2m+1 2b+1 S di : BBD(2,1,2); dy : BBD(2,b-1,3)
6 b(=2,3) 2b R dyg: 2rep
4 10 S dy: BBD(22,3); dy : BBD(2,2,4)
5 12 S dy : BBD({2,2,3); d; : BBD(2,3,4)
9 20 S dy : BBD(2,2,3); d, ; BBD(2,7,4)
10 22 S d;: BBD(2,2,3); dy : BBD(2,8,4)
11 26 S dy: BBD(2,4,3): dy : BBD(2,7,4)
16 3 S dy: BBD(24,3); dy : BBD(2,12,4)
17 3 S dy: BBD(24,3); dy : BBD(2,13,4)
18 42 S d;: BBD(2,6,3); dy : BBD(2,12,4)
23 52 S dy: BBD(2,6,3); dy : BBD(2,17,4)
24 56 S dy : BBD(2,8,3); dy : BBD(2,16,4)
25 58 S dy : BBD(2,8,3); dy : BBD(2,174)
29 66 S  d;: BBD(2,8,3); dy : BBD(2,21,4)
30 68 S  d;: BBD(28,3); dy : BBD(2,22,4)
31 72 S dy: BBD(2,10,3); d;: BBD(2,214)
32 74 S dy: BBD(2,10,3); dy: BBD(2,22,4)
36 82 S d;: BBD(2,10,3); dy: BBD(2,26,4)
37 8 S  dy: BBD(2,10,3); dy: BBD(2,27,4)
38 8 S  d;: BBD(2,12,3); dy: BBD(2,26,4)
39 9 S dy: BBD(2,12,3); d;: BBD(2,27,4)
43 98 S dy: BBD(2,12,3); dy: BBD(2,314)
45 104 S  dy: BBD(2,14,3); dy: BBD(2,31,4)
50 114 S  dy: BBD(2,143); dy: BBD(2,364)
8 2m+1 3b+1 S dy : BBD(2,1,4); d, : BBD(2,b-1,5)
9 2m+1 4b-1 S dy: BBD(2,b-1,5); do: BBD(2,1,6)
1<m<4
2m 4b R dgp 2 rep dgy : m copies of 251
6 <m<10
2m 4b-2 S dy : BBD(2,b-2,5); dy: BBD(2,2,6)
11<m<15

3

r1 1s the replication of the control treatment.
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Table 1.2: continued...

32

k b r1  type section of the design
9 2m+1 4b-1 S dy : BBD(2,b-1,5); dy: BBD(2,1,6)
16 <m < 19
2m+1 4b-3 S dy : BBD(2,b-3,5); dp: BBD(2,3,6)
20 < m < 24
11 b 5b R dy: 3 rep
7<m <13
b 5-2 S dy: BBD(2,b-2,6); do: BBD(2,2,7)
14 < b < 40
b 5b-4 S dy: BBD(2b-4,6); dy: BBD(2,4,7)
41 < b < 46
12 2m+1 5-1 S dy: BBD(2,b-1,7); dy: BBD(2,1,8)
15 2m+1 6b+1 S d;: BBD(2,1,8); dy : BBD(2,b-1,9)
16 14 R dg;: 4 rep; do2 1copyof2) 1
4 26 S  di: BBD(2,2,9); dy : BBD(2,2,10)
46 S dy: BBD(2,4,9); d, : BBD(2,3,10)
10 68 S dy : BBD(2,8,9); d, : BBD(2,2,10)
12 80 S dy : BBD(2,8,9); d, : BBD(2,4,10)
13 8 S  d;: BBD(2,10,9); dy: BBD(2,3,10)
15 100 S  d;: BBD(2,10,9); do: BBD(2,5,10)
16 108 S d; : BBD(2,12,9); dy: BBD(2,4,10)
18 120 S d;: BBD(2,12,9); dy: BBD(2,6,10)
21 140 S dy : BBD(2,14,9); dy: BBD(2,7,10)
24 162 S  d;: BBD(2,18,9); dy: BBD(2,6,10)
27 180 S  d;: BBD(2,20,9); do: BBD(2,7,10)
29 194 S dy : BBD(2,20,9); dy : BBD(2,9,10)
30 202 S dy: BBD(2,2209); d;: BBD(28,10)
32 214 S di: BBD(2,2209); dp: BBD(2,10,10)
33 222 S dy: BBD(2,24,9); dp: BBD(2,9,10)
35 234 S d; : BBD(2,24,9); d,: BBD(2,11,10)
38 256 S d;: BBD(2,28,9); d;: BBD(2,10,10)
41 276 S dy: BBD(2,30,9); dp: BBD(2,11,10)
43 288 S dy: BBD(2,3009); dp: BBD(2,13,10)
44 296 S dy: BBD(2,32,9); d;: BBD(2,12,10)
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k b ry  type section of the design

16 46 308 S d;: BBD(2,32,9); dy: BBD(2,14,10)
47 316 S dy: BBD(2,34,9); dy: BBD(2,13,10)
49 328 S dy: BBD(2,34,9); dy: BBD(2,15,10)

18 2 16 R dg: 5rep
3 22 S dy : BBD(2,1,10); dy : BBD(2,2,11)
6 46 S d;: BBD(2,4,10); dp: BBD(2,2,11)
7 52 S dy : BBD(2,3,10); dy : BBD(2,4,11)
8 60 S dy: BBD(2,4,10); dy: BBD(24,11)
11 84 S dy: BBD(2,7,10); dp: BBD(2,4,11)
12 90 S dy: BBD(2,6,10); dy: BBD(26,11)
16 122 S d;: BBD(2,10,10); d;: BBD(2,6,11)
17 1288 S d;: BBD(2,9,10); d;: BBD(2,8,11)
18 152 S d;: BBD(2,12,10); d;: BBD(2,8,11)
21 158 S dy: BBD(2,11,10); dy: BBD(2,10,11)
25 190 S dy: BBD(2,15,10); dp: BBD(2,10,11)
26 196 S dy: BBD(2,14,10); d,: BBD(2,12,11)
29 220 S dy: BBD(2,17,10); dp: BBD(2,12,11)
30 228 S dy: BBD(2,18,10); dy: BBD(2,12,11)
31 234 S dy: BBD(2,17,10); dy: BBD(2,14,11)
34 258 S dy: BBD(2,20,10); dy: BBD(2,14,11)
35 264 S dy: BBD(2,19,10); dy: BBD(2,16,11)
39 296 S dy: BBD(2,23,10); dy: BBD(2,16,11)
40 302 S dy: BBD(2,22,10); dy: BBD(2,18,11)
43 326 S dy: BBD(2,2510); dy: BBD(2,18,11)
44 332 S dy: BBD(2,24,10); dp: BBD(2,20,11)
45 340 S dy: BBD(2,25,10); d;: BBD(2,20,11)
48 364 S di: BBD(2,28,10); dy: BBD(2,20,11)
49 370 S dy: BBD(2,27,10); dp: BBD(2,22,11)

19 2m+1 8b-1 S dy: BBD(2,b-1,11); dy: BBD(2,1,12)

22 2m+1 9b+1 S dy : BBD(2,1,12); dy: BBD(2,b-1,13)

33
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Table 1.2: continued...

k b ry type section of the design

23 2 18 R dg: 7rep
3 29 S d; : BBD(2,2,13); dy : BBD(2,1,14)
7 65 S dy: BBD(2,2,13); dy: BBD(2,5,14)
8 76 S dy: BBD(24,13); dy: BBD(2,4,14)
12 112 S  dy: BBD(2,4,13); dy: BBD(2,8,14)
13 123 S dy: BBD(2,6,13); dp: BBD(2,7,14)
17 159 S dy: BBD(2,6,13); d;: BBD(2,11,14)
18 170 S dy: BBD(28,13); dy: BBD(2,10,14)
22 206 S dy: BBD(28,13); dp: BBD(2,14,14)
23 217 S dy: BBD(2,10,13); dy: BBD(2,13,14)
24 226 S dy: BBD(2,10,13); dp: BBD(2,14,14)
27 253 S dy: BBD(2,10,13); dy: BBD(2,17,14)
28 264 S dy: BBD(2,12,13); dp: BBD(2,16,14)
29 273 S dy: BBD(2,12,13); dp: BBD(2,17,14)
32 300 S  dy: BBD(2,12,13); dy: BBD(2,20,14)
33 311 S dy : BBD(2,14,13); dy: BBD(2,19,14)
34 320 S dy : BBD(2,14,13); dy: BBD(2,20,14)
37 347 S dy: BBD(2,14,13); dp: BBD(2,23,14)
38 358 S  dy: BBD(2,16,13); do: BBD(2,22,14)
39 367 S dy: BBD(2,16,13); dy: BBD(2,23,14)
42 394 S dy: BBD(2,16,13); d,: BBD(2,26,14)
43 405 S dy : BBD(2,18,13); d;: BBD(2,25,14)
44 414 S dy: BBD(2,18,13); dy: BBD(2,26,14)
47 441 S dy: BBD(2,18,13); dy: BBD(2,29,14)
48 450 S d;y : BBD(2,18,13); dy: BBD(2,30,14)
49 461 S dy: BBD(2,20,13); d;: BBD(2,29,14)

25 4 40 R dy 7 rep; dgo 2 copies of 231

62 S dy: BBD(2,2,14); dy: BBD(2,4,15)
91 S d; : BBD(2,1,14); d,: BBD(2,8,15)

11 113 S  dy: BBD(23,14); dp: BBD(2,8,15)
14 142 S  dy: BBD(2,2,14); dp: BBD(2,12,15)

34
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Table 1.2: continued...

k b r1  type section of the design

25 16 164 S dy: BBD(24,14); dy: BBD(2,12,15)
19 193 S di: BBD(2,3,14); dp: BBD(2,16,15)
21 215 S dy : BBD(2,5,14); d, : BBD(2,16,15)
23 235 S dy: BBD(2,5,14); dy: BBD(2,18,15)
24 244 S dy: BBD(24,14); dy: BBD(2,20,15)
26 266 S d;: BBD(2,6,14); dy: BBD(2,20,15)
28 286 S dy: BBD(2,6,14); do: BBD(2,22,15)
29 295 S dy: BBD(25,14); dy: BBD(2,24,15)
31 317 S dy: BBD(2,7,14); dp: BBD(2,24,15)
33 337 S dy: BBD(2,7,14); dp: BBD(2,26,15)
34 346 S d;: BBD(2,6,14); dy: BBD(2,28,15)
36 368 S dy: BBD(2,8,14); dy: BBD(2,28,15)
38 388 S d;: BBD(2,8,14); dy: BBD(2,30,15)
39 397 S d;: BBD(2,7,14); dy: BBD(2,32,15)
41 417 S d;: BBD(2,7,14); dy: BBD(2,34,15)
43 439 S dy: BBD(2,9,14); dy: BBD(2,34,15)
44 448 S dy: BBD(28,14); dp: BBD(2,36,15)
46 468 S di: BBD(2,8,14); dy: BBD(2,38,15)
48 490 S dy: BBD(2,10,14); dp: BBD(2,38,15)
49 499 S d;: BBD(2,9,14); dy: BBD(2,40,15)

26 2m+1 11b-1 S dy: BBD(2,b-1,15); dp: BBD(2,1,16)

29 2m+1 12b-1 S dy : BBD(2,1,16); dy : BBD(2,b-1,17)

30 b 12b R do: 9rep

11 < b < 20

b 12b+2 S dy: BBD(2,2,17); dp: BBD(2,b-2,18)




Chapter 2

Dual Versus Single Treatment
Block Designs for n x 2

Experiments with »n > 2.

2.1 Introduction:

In Chapter 1 we found that the class of Balanced Dual versus Single De-
signs(BDSD) is a rich source of optimal and near optimal designs for the dual
versus single treatment design problem when both factors have two levels. When
one or both factors have more than 2 levels it is therefore natural to ask if the
subclass of designs having the property of balance again includes A-optimal de-
signs. In this chapter we extend our consideration of designs to those which are
partly balanced as in Definition 1.3. These include totally balanced designs as a
special case. We establish the necessary and sufficient condition on the A-matrix
of a design to be PBDS. A method of constructing a series of PBDS designs based
on reinforcing group divisible designs is suggested and some of the properties of
this series of designs are investigated. The class of BDSD’s which is a special case
of the class of PBDS designs is considered in detail. It is shown that restricting
to designs with the balance property incurs unnecessarily large treatment repli-
cations and other disadvantages. It is proved that BDSD’s exist only for m=2
or n=2. Further, the feasibility of certain desirable structures of the variance-
covariance matrix of the contrast estimators is considered. Also combinatorial

problems of the designs are investigated.

36
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2.2 Contrasts:

For the n x 2 case the ordering of the treatments shown in (1.4) is used in the

treatment vector:

Ir= (7'01,T1o,7‘20, c e o3 Tpoy T115 7215+ -« anl),’ (2~1)

where p=n-1, 7 is a t X 1 column vector and t=2n-1. The contrasts of interest

are the dual versus single treatment comparisons:

(2) Ti1 — 701, (2'2)

and

(22) Ti1 — Tios | (2-3)
for i=1,2,...,p; where (2.2) and (2.3) consist of the contrasts for dual versus B and

dual versus A respectively. In matrix form, the contrasts of interest are given as

Cr, where

C:[_l” % I”}. (2.4)

Qp _Ip IP

We can view the problem as comparing each dual treatment i1 with the two
single treatments 10 and 01 (i=1,2,...,p). Majumdar(1986) found A-optimal de-
signs for comparing a set of test treatments with a set of control treatments. In his
context all the elementary treatment contrasts for comparing any test treatment
with any control treatment are of equal interest. The dual versus single design
problem can be viewed as comparing a set of test treatments(the dual treatments
11,21,...,p1) with a set of control treatments(the single treatments 01,10,20,...,p0).
However, the problem differs from that considered by Majumdar(1986) in that
any particular test treatment is to be compared with only two specific control
treatments. We have found nothing in the literature relevant to this problem for
n > 2.
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2.3 Information Matrix of the Contrast Estima-

tors:

Before going further we give a definition which will be used to specify the structure

of the A-matrix of designs belonging to a specific class.

Definition 2.1 Let C7 be a set of independent contrast estimators of Cr in a

connected design with Q as a g-inverse of the A-matriz of the design, then

M = (CQC), (2.5)

will be called the Information matrix of the contrast estimators. The in-
formation matriz M depends on the design as well as the contrasts of interest,
but throughout this thesis we use M rather than M(C,d).

We now specify the information matrix for the estimators of the contrast of
interest. From Definition 2.1 it is clear that the variance-covariance matrix of the
contrast estimators is V = M~!. The determination of M is an important, but
not always an easy, job. Fortunately for n x 2 experiments it is not difficult to
specify it. The following lemmas and theorem leads us to give M in terms of the

elements of the A-matrix of the design.

Lemma 2.1 The A-matriz of any connected(block or row-column) design can

always be partitioned as follows :

!
ayr Qjyo

aj2 U

A= , (2.6)

where ayy is a scalar, a;, s a column vector, U is a (t — 1) x (t — 1) nonsingular

symmetric matriz and t is the number of treatments.

Proof: We know Al, = 0,, where 1, is a vector with every entry unity. Hence

in order for a partition (2.6) to hold we must have:
iy |
L3}

R(A):R(

!
ayq

x 1, ;. 2.7
il RO (27)

This gives us:
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Also we know that 1;_,U +d}, = 0, since (AL;) = 1;A = 0. This implies that
R(A) = R(U). U must be nonsingular, since connectivity implies R(A)=t-1.d

The following lemma gives a specific g-inverse for the A-matrix of any con-

nected(block or row-column) design.

Lemma 2.2 Let the A-matriz of a connected design be partitioned as in Lemma

2.1, then it has the following matriz as a g-inverse:

0 o
Q= {g U_l]. (2.9)

Proof: It is sufficient to show that AQA = A. From Lemma 2.1. we have:

A = ayy aj,
a, U ’
therefore:
AQA — ay @y, % 0o 0o % a1 Qi
a, U 0 Ut a, U
_ a1.U lay, dy (2.10)
&2 U
But from Lemma 2.1 we have a}, = —~1'U and this implies that a{,U~! = -1".
Hence a},U"tayy = —1'a;,. Also from Lemma 2.1 we have 1’a,, = a;;. Therefore

AQ2A = A and Q) is a g-inverse of the A-matrix of the design.d

Note: Lemmas 2.1 and 2.2 apply to both block and row-column designs under
the model in which there are no interactions involving blocking or row and column
factors.

Two things should be noted here. Firstly for the estimable parametric func-
tions such as contrasts, both the estimators and variance-covariance matrix of
the estimators are invariant under any choice of g-inverse of the A-matrix(Ref:
John,1987;p11). Secondly the Lemmas 2.1 and 2.2 are valid for any ordering of

treatments in 1.

In the following theorem we will determine the information matrix, M, for the

dual versus single treatment contrast estimators.



Chapter 2 40

Theorem 2.1 For any connected n x2 CFBD(00), let the A-matriz of the design
be represented by:
ain &y @3
A= a3 An Ax |, (2.11)

!
a3 A23 Ass

where a1y is a scalar, a5 and a5 are column vectors both of order (n—1) x 1,
Azz , Az and Ass are matrices of order (n — 1) x (n — 1). Then the information
matriz of the contrast estimators for the dual versus single treatment problem has
the form:

Agg+ Ass + Ags + Ay — A — Al
—Ayy — Ay Agz

M = (2.12)

Proof: The variance-covariance matrix for the dual versus single estimators is
CQC'. By Definition 2.1 we have M = (CQC’)~1. From Lemma 2.2 the following

matrix can be used as :

0 0
Q= - 2.13
L 213)
where,
g | An A (2.14)
Ay Ass
From (2.4) we can partition C as follows:
C=[v , %], (2.15)
where
Vi=| ¥ | and v=| % L (2.16)
-Qp —]P IP

Then after some manipulation we get: CQC’' = V,U~1V]. But V; is a nonsingular

matrix, therefore we have:

M = (CQC)™ = (WU = VUV, (2.17)
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where,

V=W1l= [ o =1 jl . (2.18)

Substituting from (2.14) and (2.18) into (2.17) we will get (2.12). Hence the

theorem is proved.d

2.4 Class of PBDS Designs:

One major problem in establishing A-optimal designs is to specify a class of
designs which includes highly efficient or A-optimal designs. The class of PBDS
designs not only gives equal precision for estimated contrasts within the dual
versus A set and equal precision within the dual versus B set, but also satisfies
this requirement. In fact the A-optimal design in this class is a highly efficient
design in most cases and is sometimes A-optimal in the entire class of designs(see

Chapter 4).

Based on Definition 1.3, a design is PBDS if the variance-covariance matrix
of the contrast estimators corresponding to dual versus A and dual versus B is of

the form:

(a1 —=p)lp +prdy (6= )]+ ¢J,
(6= )+ )y  (a2—p2)lp+p2J; ,

for a; # pi(i = 1,2), where C is given in (2.4).

e’ = (2.19)

This structure for the variance-covariance matrix allows equal precision and
correlation for the contrast estimators corresponding to dual versus A, as well
as for those corresponding to dual versus B. It has two values(not necessarily
equal) for the correlations among the contrast estimators; one value for orthogonal

contrasts and another value for non-orthogonal contrasts.

Example 2.1 For n=/4, b=3 and k=5, the following design is PBDS design:

Blockl 01 10 11 20 21
Block2 01 10 11 30 31
Block3 01 20 21 30 31

with the variance-covariance matriz for the dual versus single contrast esti-

mators:
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0.5613 + 0.31J; 0.5013

CcQc’ =
0.5013 I3

In Chapter 4 it will be shown that this is a very highly efficient design in the
entire class of designs(see Table 4.2).

2.4.1 A-matrix of the Class of PBDS Designs:

So far we have specified the class of PBDS designs in terms of its variance-
covariance matrix structure. Now in what follows in this section we characterize
this class of designs in terms of the structure of their A-matrices. This simplifies
the characterization of this class of designs. But first, we need the following

definition.
Definition 2.2 A matriz has structure W if it has the form:

a bL, cl,
W=1\bl, di,+fJ, gl,+hJ, |. (2.20)
cl, gl +hJy qlp+sJy

The following theorem specifies the A-matrix of the PBDS designs.

Theorem 2.2 A necessary and sufficient condition for a connected design d to
be a PBDS design is that its A-matriz has structure W.

Proof: (i)- If the A-matrix of d has structure W then, applying Theorem 2.1,
we will show that the variance-covariance matrix of the estimators of the contrast
of interest of d has the same structure as a PBDS.

By Lemma 2.2 a g-inverse of the A-matrix is:

0 0,

Q=
Q.?p U—l

k]

where

U— dl, + fJ, gl, + hJ, .
gl, + hdy, ql, + sJ,

By matrix algebra theory we have(see Graybill,1983,p195)
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oI, + ¢Jp I +1nJp
v +ndp 01, +0J,

where 0, o, v, 6, n and ¢ are functions in terms of d, f, g, h, q and s.
Substituting from (2.22) into (2.21), using the definition of C from (2.4) and
applying (2.17) we obtain CQC’ = V-1U~1(V')~1. Then after some algebra we

have:

U™l = , (2.22)

01, + o J, (0 —=p+ (o —n)dp
(0 - 7)117 + (‘7 - U)Jp (0 +6— 2’7)117 + (U +é - 277)Jp

This gives 01, + oJ, and (8 + 6 — 29)I, + (¢ + ¢ — 21)J, as the variance-

covariance matrix for the dual versus B and dual versus A contrasts estimators

cQc’ = { } . (2.23)

respectively. Therefore, by definition, d is a PBDS design.

(ii)- If we have a design d; with A; and Q as its A-matrix and a g-inverse

respectively, with:

ca, ¢ = | M tode Aty (2.24)

v +ndp 61, + ¢Jp ’

then by Definition 2.1 we have:
-1

My = (o0t = | Mt o ATty (2.25)

v +ndp 6L, + ¢Jp

But by Theorem 2.1 we have:
M. — A+ Asz+ Agz + Ajyy —Agn — Al (2.26)
' —Ayy — Az Az

Equating (2.25) and (2.26) we get: Az = z11, + y1Jp, A2z = 221, + y2J, and
Ass = z31,+y3J,, where z; and y;(1=1,2,3) are functions of § , o, v, 7,6 and ¢ .
By a property of the A-matrix of any design(namely, that the sum of the rows and
the sum of the columns equal zero) we can easily show that a; = ¥;1(z = 1,2)
where 1;’s are functions in terms of z; and y;(i=1,2,3). Substituting these into

the A-matrix given in (2.11) we have:

a 1 ol
A= | vl ol +nd, z20, +y2Jdp
11)2_1. x2]p + yZJp $3]p + y3Jp
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Hence the theorem is proved.d

2.4.2 Information Matrix of the Class of PBDS Designs:

The following Corollary gives the information matrix, M, for the estimators of

the contrasts of interest:

Corollary 2.1 The information matriz for the estimators of the dual versus sin-

gle treatment contrasts in the class of PBDS designs has the following structure:

| @rat29) L+ (f+s+2h)], —(d+g)—(f+h)) | (2.27)
~(d+9), — (f + ), I, + 1,
Proof: Using structure W, for the A-matrix of the design and applying The-
orem 2.2 gives M.&

Example 2.2 For n=3, b=38 and k=6, the design:

Blockl 01 01 11 21 10 20
Block2 01 11 11 21 10 20,
Block3 01 11 21 21 10 20

has the A-matriz:

3.00 —0.671, —0.831,
A= | —0671, 3I,—0.50J; —0.67J;
~0.831, —067J, 3.83I; —0.83J,

The A-matriz of this design has structure W. The information matriz for the

dual versus single treatment contrast estimators for this is:

6.831, — 2.67J, —31,+1.17J;
=30, +1.17J, 31, — 0.5/,

2.4.3 Combinatorial Properties of PBDS Designs:

We consider the number of occurrences of each treatment in each block and group
the treatments according to whether they are B alone, A alone or a dual treat-
ment. In an n x 2 CFBD(00) let n4;;, np; and np;; denote the replications within
the jth block(j=1,2,...,b) of the treatment combinations i0, 01 and i1 belonging to
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sets A = {i0;7 = 1,2,...,p}, B = {01} and D = {¢1;¢ = 1,2,...,p} respectively.
Let ry; = Z?:l NAij, TB = Z§=1 ng; and rp; = Zg’-ﬂ np:; denote the respective
replications of 10, 01 and il in the entire design for i=1,2,...,p. Then from Theo-
rem 2.2, it can be shown that for any PBDS design the following conditions must
be satisfied:

1. Es‘=1 nxijnxiy = Ax, for ¢t £ 7', 1,i'=1,2,....,n-1, X=A and D.
2. 0 naijnpi; = A1, for i=1,2,...,n-1.

3. Z?‘:l nNai;Npy; = )\2, for 2 # i', i,ilzl,Q,... n-1.

4. E?’=1 nxijNB; = ABx, for t=1,2,....n-1, X=A and D.
5. 2’:1 n2Bj +(n—1)(Apa + Agp) = krp.
6. I;=] n,24ij +(n=2)(Aa+ X))+ Apa + M = kry;.

7. Z?:l nhi; + (n—2)(Ap + A2) + Agp + M = krpi.

2.5 Series of RGDD:

In this section firstly we will introduce a series of block designs for k < t =2n—1,
which is useful in our context, and then we will consider its properties. This series
of designs is constructed by using a group divisible design for all the treatment
combinations involved in the design except the treatment combination 01, and
then reinforcing each of the blocks once by 01. Before introducing the class of
RGDD we give the definition and a brief summary of some properties of group

divisible designs. Further details are given in Clatworthy(1973).

2.5.1 Group Divisible Designs:

A Group Divisible(GD) design is a block design with t > k for t = my; x m,
treatments each with replication r. The treatments are divided into m; groups of
m, treatments each. The designs are such that all pairs of treatments belonging
to the same group occur together in say, A; blocks, while pairs of treatments
from different groups occur together in A, blocks. Two treatments in the same
group are said to be first associates and those from different groups are said
to be second associates. Hereafter we will denote a group divisible design by
GD(t,b,k,my,ma,r, A1, A2) or simply by GD design.
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1.5.1.1 Combinatorial Properties of GD Designs:

The parameters of a GD design must satisfy the following conditions:

(l) t= mima

) (2.28)
(17) r(k—1) = (m2 — 1)A + ma(my — 1)As.
GD designs have been classified into three subtypes:
(1) Singular(S), with Ay =r
(i71) Semi— Regular(SR), with M\ <r and th; =kr (2.29)
(122) Regular(R), with A <r and th; < kr.

2.5.1.2 Variances and Efficiencies in GD Designs:

The variances of the elementary contrasts can be expressed as functions of the

parameters of the GD design as follows:

Let u; and u; denote the variances of the estimated comparisons of the effects

of two treatments which are first and second associates respectively, then

2k
. 2.30
N —D T N (2:30)
and
doa— A
upy = up {1 — 2” 1}.
2

Comparing these with a randomized block design having the same r and the
same o2(that is having common variances for the error terms in model 1.3 on
page 3), gives the following efficiency factors for comparing two first associates

and two second associates respectively:

k
Eft= —
! r

P (2.31)

and

A2_"/\1 -1
tA; o

E2 s El{l -

2.5.2 Reinforced Group Divisible Designs:

Before introducing this class of designs, we give brief definitions and discuss sup-
plementation balance and reinforcement balance from the literature. These

concepts have been introduced when the contrasts among the treatments involved
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in the design are of unequal importance, such as in the test treatments versus the
control treatment problem. To cope with this, traditionally two suggestions have
been made. One is supplementation balance(Hoblyn,Pearce and Freeman,1954,
Pearce 1960), the other is reinforcement(Das, 1958). The definitions given are: a
design is said to have supplemented balance if all the test treatments are replicated
r times except for the control(supplementing) treatment which has rq replicates. In
addition all pairs of test treatments concur X times in blocks, unless one of the pair
is the control treatment, in which case there are )y concurrences. According to
Das(1958), if we have a proper block design d, and if a further treatment is added
equally often to each block, the resulting design, d*, is said to be a reinforced design.
If design d is a BIBD or a Partially Balanced Incomplete Block Design(PBIBD),
then design d* is called a reinforced balanced or a partially balanced block design
respectively(For definitions of these classes of designs refer to Raghavarao,1971,
Chapter 8 and Giri,1958). The important feature of supplemented balance is
that the non-supplemented treatment is in total balance; in reinforced designs

the special treatment is orthogonal to blocks.

For the test treatments versus control treatment problem which is the spe-
cial case of our problem with n=2, the balance defined in Definitions 1.6 and
1.7 in Chapter 1, is exactly the same as supplemented or reinforcement balance.
However for n > 2, the partly balanced dual versus single contrasts do not meet
the definitions, because this case is concerned with comparisons involving three
groups of treatments. Pearce(1983,p 135) extends supplemented balance to m
groups of treatments and defines multipartite designs, which are mainly used
when the treatments fall into groups such that the main comparisons are within
groups and only subsidiarily between them. This appears similar to our require-
ment on designs. However it differs in that it is looking at all contrasts(first group
against second group and first group against third group and so on) whereas we

are concerned with estimating only proper subsets of these contrasts.

Definition 2.3 If we reinforce each block of the GD(t-1, b, k-1, my, ma,1,A1, A2)
design once by a new treatment then such a design will be called a Reinforced
Group Divisible Design and will be denoted by RGDD(t-1, b, k, my,m,, r,
A1, A2).

2.5.2.1 Combinatorial Properties of RGDD

The parameters of a RGDD design must satisfy the following conditions:
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N 1—
(1) b= mama (2.32)
(ZZ) T‘(k - 2) = (m2 —_ 1)/\1 + m2(m1 — 1))\2

Later in Chapter 3, we assess the efficiency and usefulness of these designs un-
der the A-optimality criterion by comparing the total variances of the estimators

of the contrasts with lower bounds derived in Chapter 3.

We further consider the appropriateness of the designs for experiments in
which we require equal variances for dual versus A and dual versus B contrast es-
timators, but one of the sets of contrasts is to be estimated with greater precision
than the other. An A-optimal design is then not necessarily appropriate to the
experimenter. We would seek a design which gives us variance balance for the
contrasts corresponding to the dual versus A comparisons provided low variance
can be achieved. We will show in Chapter 4 that the best design having this
balance feature is a highly efficient or is sometimes A-optimal in the entire class
of designs. This leads us to consider a group divisible design for the 2(n-1) treat-
ments i0, i1(i=1,2,...,n-1) in which the dual treatments il and single treatments
i0 are first associates(for i=1,2,...,n-1) whilst the other treatments, excluding 01,
are second associates of each other. Also we want all the dual versus B contrasts
to have the same variance. This suggests a design in which each of the dual treat-
ments i1(i=1,2,...,n-1) and single treatment 01 occur the same number of times
in each block. Therefore this leads us to a RGDD(2n — 2,b,k,n — 1,2,r, A1, A2),
which was defined in Section 2.5.2.

In the next section we consider some further properties of this new class of
designs.
2.5.2.2 A-matrix of RGDD:
The A-matrix of RGDD(2p,b.k,p,2,A1, A;) is as follows:
b(k—1) —rl, —rlL,
—7rl

1, Fii Fy 5 (2.33)

!
-rl, 12 Fn

1
A==
2

where p:n—l, F11 = {T‘(k — 1) -+ /\2}Ip — /\2Jp and F12 = F1,2 = (AQ — A])Ip - /\QJp.
Also RGDD’s are binary designs with tr(A)=b(k-1).
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2.5.2.3 Variance-Covariance Matrix:

We now consider the structure of the variance-covariance matrix of an RGDD
and establish the relationship between the variance of the dual versus A and the

dual versus B contrast estimators. We need the following lemma.

Lemma 2.3 Let I be an identity matriz and J be a matriz in which all entries
are 1, where both matrices have order p X p. Let X and Y be two square matrices
of size ¢ X q, then if X1 and (X + pY)™! exist we have:

(XQ@I+YRJ) =X - (X +pY) 'YX ' ® J; (2.34)
where ® s Kronecker product.

Proof: Let the inverseof X @ I +Y ® J be of the form Z® I + 5 ® J, then,
on equating the product of the two matrices to an identity matrix, the result is

obtained.&

Theorem 2.3 Let d be an RGDD(2p,b,k,p,2,A1,)\2), then the variance-covaria-

nce matriz of the BLUE’s of the dual versus single treatment contrasts is:

271[;, + pr (1(11 — .’L‘Q)Ip

CQC’ =
(.‘L‘l — $2)]p 2(.’[1 — .'IIQ)IP

; (2.35)

where

C(r+2p) {r(k— 1)+ N )Y

. k()\l — )\2)
S (r+2p) k-1 + N}

kA,

V= r(r + 2pA;)’

Proof: Deletion of the first row and first column from the A-matrix of any
RGDD(2p,b,k,p,2,r, A1, A2), in which the rows and columns correspond to the

treatments as ordered in (2.1), gives:

Fll F12
Fi, Fn

where Fy; and Fy; are given in (2.33). From (2.33) we have:

U=

- , (2.36)
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A
@I, — 20, ® J, (2.37)

ok Aa—X k=14 k

Applying Lemma 2.3 gives:

U__l_{r(k—l)—k)\z A2 — M

y-t = | et el tudy ) (2.38)
ol +ydy, il +ydy |
where z1,z, and y are given in (2.35). It follows from Lemma 2.2 that:
CQC, — mle + pr (‘Tl - ‘1:2)]17 ) (239)
(1131 — $2)Ip 2(.’131 — wg)Ip

Hence the theorem is proved.de
Corollary 2.2 All RGDD(2p,b,k,p,2,M, X2)’s are PBDS design.

Proof: The proof simply follows from (2.35) and (1.18) in Chapter 1.d

From the variance-covariance matrix of a RGDD(2p,b,k,p,2,A1, A2), it follows
that:

1. V(f‘,’l — 7A'01) =z + y = v, say, and

2. V(T — Ti0) = 2(z1 — z2) = vy, say, for i=1,2,...,n-1.

It is easy to show that v, and v, can be written in terms of the parameters of

an RGDD(2p,b.k,p,2,A1, A2):
vy = k {r(k—1)+)\2+£},

- T‘+2p/\2 'I’(k—].)-*—)\l r
%

Example 2.3 For n=4, b=3, k=5, r = \;=2 and Ay = 1, the following design
is RGDD(6,3,5,3,2,2,2,1):

Uy (2.40)

Blockl 01 10 11 20 21
Block2 01 20 21 30 31
Block3 01 30 31 10 11

with variance-covariance matriz for the dual versus single contrast estimators.

0.562513 4+ 0.3125J3 0.513
0.515 I3

cQl’ =
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For this example the average variances of the estimators of the contrast of
interest given from C'QC’ in above is 0.9375. JE gives the same efficient design
as the above design. Also we will show in later chapters, this design is A-optimal
within the class of PBDS designs.

We now prove a further property of RGDD’s, namely that they are more
efficient for estimating the dual versus B contrasts than for estimating the dual

versus A contrasts.

Theorem 2.4 For any RGDD(2p,b,k,p,2,A1,\2), let v1 and vy be the common
variances for the dual versus B and dual versus A contrasts estimators respectively
as given in (2.40), then vy < v,.

Proof: It is sufficient to show that v; — vy < 0. We know that for any
RGDD(2p,b.,k,p,2,A1, A2), d = vy — vy, where vy and v, were given in (2.40).

Substituting into d, we obtain:

k 3(A1 — A7) Az
d= — —1>. 2.41
r+2p)\2{r(k—1)+/\1+r } ( )

Since k and r + 2p), are positive, we consider the sign of

3(A1 — A2) A2

= ——— L ] 2.42
Q r(k~1)+/\1+r (2.42)
If Q=0 then vy = vy, and if Q > 0 then v; > vy; otherwise v; < v,.

On rearranging (2.42) we obtain:

(Ao —r){r(k—1)+ A} +3r(A\ — )\2).

r{r(k = 1)+ A1} (2.43)

Q:

Since r{r(k — 1)+ A, } is positive, the problem reduces to considering the sign

of the numerator:
Az =r){r(k = 1) + A} 4 3r(A = Ag). (2.44)

But the RGDD parameters, A\; and ),, are related through the equation (2.32),
Le. r(k —2) = A1 + 2(n — 2)A;. On substituting for A; from this expression into
(2.44) and multiplying throughout by 2(n-2) we obtain:

P =)\ +22n—3)rA +r*{(k~1)* = 2n(k — 1) + 3}. (2.45)

Since n > 2 so that 2(n — 2) > 0, the sign of P is the same as that of Q.
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We now find the sign of P across the range of )A; values, by solving the
quadratic equation P = 0 and hence locating the values of A; at which the
sign of P changes. Solving P = 0 gives two roots: r(2n —3 —s) and r(2n -3+ s),

where

?=02n—-1-k)?+2(k-3)(n-2). (2.46)

We denote the smaller root by c=r(2n-3-s). Since in a GD design we have A\; <,
it will be sufficient to prove that ¢ > r for ¥ > 3, n > 2 and any b. However for a
GD design the values of \; are restricted to A; < r. Hence we can establish that
P is always negative for a GD design by proving that A; < c. We achieve this by
proving that ¢ > r.

We consider two cases: k=3 and k£ > 3. We do not consider & < 3 because

there is no GD design with block size less than 2.

For k=3, we have s=2n-4 and hence c=r> );. For k > 3, we can assume
k=3+{ for £ > 0. Substituting for k into s?> we obtain s? = (2n—4)?4+£({—2n+4).
In a RGDD(2p,b,k,p,2,A1, A2) we have k — 1 < 2p which implies that £ < 2n —4
and thus s? < (2n —4)? for n > 2. This implies that s < 2n —4 and consequently
¢ > r(2n — 3 — 2n + 4) = r. Therefore c is always not smaller than r. Hence the

theorem is proved.éd

We now prove a theorem to determine which subtype of GD designs gives a

more A-efficient RGDD.

Theorem 2.5 For any RGDD(2p,b,k,p,2,A1,A2), if k > 4, then the average vari-
ance of the dual versus single contrast estimators is an increasing function of

Az (or a decreasing function of A\;).

Proof: In an RGDD(2p,b.k,p,2,A1, A2), since there are n-1 dual versus A con-
trasts and n-1 dual versus B contrasts the average variances of these contrasts is

v = %(vl + v2), where v; and v, are given in (2.40). Hence:

Tk r(k=1D+X  r42 r(k-1)+ N r
We know that r(k — 2) = A; + 2(n — 2)),, by property (2.32) of a RGDD.
Therefore for fixed values of n, b, k, and r, Q can be regarded as a function of

Az(or of A;) only. Let Q@ = Q()2). Suppose A; is a continuous variable, then the

1. (2.47)

derivative of Q();) with respect to A, is after some calculus:
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4(n —2) 2pz Yy

aQ(’\2)/a’\2 = {T‘(k _ 1) + /\1}2 - (r -+ 2p/\2)2 t r 4 2p)\2’

(2.48)

where

T(k — 1) + )\2 )\2

SE-D+n T
and
{rk=1D)+M}+2(n=2){r(k-1)+ X2} 1
V= =) T )2 i
Then we need to find the sign of this derivative. After some algebra we can
show that:

r(k —1)(r 4+ X2) + Aa(r + Aq)
r{r(k — 1) + A1} ’

and
{r(k = 1)+ A }(kr + A1) + 2(n = 2)r{r(k = 1) + A2}
- r{r(k — 1) + A1 }? .
Then
9002, = TE2EE,
where
a={r(k—1)+ A }{kr+ X —2p(k - 1)r},
b=2(n—2){r(k—1)+ A} (r + 2pAs),
c = 4(n = 2)(r + 2pA2)?,
and

d={r(k —1)+ A\ }*(r +2p)2)*.

Since d is always positive, the sign of this derivative is the same as the sign of

Z=a+b+c. Since
we have

c=4(n —=2)(r + 2pA){r(k - 1) + A\ + 2(A2 = M)}
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After further algebra we get:

c=4(n —2){r(k — 1) + M }(r + 2pX2) + 8(n — 2)(A2 — A1)(r + 2pA2).  (2.50)
Substituting from (2.49) into b, after some algebra we get

b+c=4(n—2)(r +2pA){r(k — 1) + A1} +8(n — 2)(A2 — A1) (r + 2pAs)+

2(n = 2)(r + 2pA){r(k — 1) + A2} (2.51)
=6(n —2)(r + 2pX2){r(k — 1) + A1} +10(n — 2)(A2 — A){(r + 2pAy)
=20(n —2)(Aa — A2+ {r(k - 1) + \ }H{r(=6n +6kn — k —10) — (16n — 21)A, }.

Also

Z =20(n—=2)(Aa = A2+ {r(k = 1)+ X\ }{r(4kn 4 2k —4n —12) — (161 — 22) ), }.

(2.52)

But in a GD we have r > (i = 1,2), so that —r < —X;(i = 1,2). Therefore
—A1(16n — 22) > —r(16n — 22), which implies that:

Z > 20(n — 2)(Ay — A1) + r(4kn — 20n + 2k + 10){r(k — 1) + A}, (2.53)

The first term in the RHS of the above inequality is always positive. Also r
and r(k — 1) 4+ A, are both positive, therefore if 4kn-20n+2k-+10 is positive then
0Q(X2)/0A; will be positive. For k > 4, this last expression is always positive,
i.e. the average variance of the contrast estimators is an increasing function
in terms of A;. This establishes the proof for £ > 4. If k=4, then we have
2(n —2)A; = 2r — A; and

Z =20(n —2)(A2 — M)? + (3r + M) {r(12n — 4) — (16n — 22)\, }.
Multiplying Z by n-2 and substituting for A,, from here we will get
z=5{2r —(2n = 3)\}* + (n - 2)(3r + M) {r(12n —4) — (16n — 22)\; }, (2.54)
where z=(n-2)Z. After some manipolation we get
z=ul? —or), +wr?, (2.55)

where
u=4n? —6n + 1,
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v = 36n? — 94n + 64,

and
w = 36n? — 84n + 44.

But we know that A\; < r, and also for n > 2, v is nonnegative, this implies that
vrA; < vr?. Therefore —vr), > —vr? ie. z > ul? —vrl4wr? = udi4(w—v)r?
For n > 2, u and w — v = 10(n — 2) are both nonnegative. Hence z > 0 and
consequently Q(A2)/A2 > 0. This establishes the proof of the theorem.d

Consequnces of Theorem 2.5 are Corollaries 2.3 and 2.4. It should be noted

here that for k=3 the problem remains unsolved. Obviously k can never be less

than 3 in the RGDD.

Corollary 2.3 Singular Group Divisible designs, when they exist, are the most
efficient RGDD under the A-criterion for the dual versus single treatment prob-
lem.

Proof: For singular group divisible designs A; = r, whereas A; < r for other

two types. The result follows from Theorem 2.5.&

Note : Singular GD designs have full efficiency for comparing dual versus A, as
is clear from (2.40) since for these type of designs vy = 2/r which is the same as the

variance obtained from a randomized block design(c? = 1).

Corollary 2.4 Regular GD designs are more A-efficient than semi-reqular GD
designs.

Proof: For fixed values of n, b and k if there exists a semi-regular and a regular
GD, then by (2.29), A; for a regular GD is less than A, for a semi-regular GD. In
other words A; for a regular GD is greater than \; for a semi-regular GD. Then

by Theorem 2.5 the corollary is proved.d

Discussion 2.1 For particular values of n, b and k we sometimes have a choice
of GD designs with different parameter values Ay, Ay to use in the RGDD con-
struction. For such cases we recommend that the experimenter selects the GD
design with the biggest Ay value. For example, for n=>5, k=5 and b=12 the exper-
imenter has two choices for selecting a GD for 8 treatments in 12 blocks each of
size 4. The first choice is a singular GD (Clatworthy,1973,57,p 103) which leads

to a RGDD with average variance for the contrast estimators of 0.60. As a second
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choice consider a semi-regular GD (Clatworthy, 1973, SR387, p 138) which gives
the average variance for the same set of the contrast estimators as 0.66. However,
there are sizes of experiment for which there is only one sensible choice of GD
design to use in the construction. An example is parameter values n=5, b=8 and

k=35 for which only one design, SR36 is listed in the Clatworthy’s catalogue.

2.5.2.4 Relationship Between GD Designs and RGDD:

We now show how the variances for the RGDD can be obtained simply from the
variances of the GD designs. This enables the variances to be derived directly
from the tabulated information in Clatworthy(1973).

Theorem 2.6 Let u; and E; be the variance and efficiency of the first associate
of a GD(2n — 2,b,k — 1,n — 1,2,7, )\, \1) respectively. Let vy and vy be the
variances of the dual versus B and dual versus A contrasts estimators respectively,
then

k T(k—l)El—/\1+/\2+T
= YR 2.56
v 7‘(7"+2p/\2) { 1+(k—1)E1 + 2} ( )
and
B 2%k
T Tk DE,

Proof: For a GD(2n —2,b,k —1,n —1,2,7, A1, A2), from (2.30) and (2.31):

2k — 1)

A S A 2.57
ul T(k _ 2) + Al, ( )
and
-1 __ r(k—1)
El —T(k—2)+/\1

We can show, by algebraic manipulation, that the expressions in (2.40) can

be written in terms of E; as

k T(k—l)El—)\1+/\2+T
= A 2.58
v r(r+2p)\2){ 1+ (k—1)E, + 2}’ (2:58)
and
2k
Vg =

r+rk—-1)E;
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Hence the theorem is proved.d

Note: Since dual treatments il and single treatments i0 for i=1,2,...,n-1, are
replicated the same number of times, we can define E5 = 2/(rv;), as the efficiency
factor of the RGDD for estimating the dual versus A contrasts. In terms of Fj,
14+ (k=-1)E
proend _--—-k—-——-_',

For Ay = r, we can easily show that £ = F; = 1.

B

Example 2.4 From Ezample 2.3 on page 50, on substiluting the parameter val-
ues into (2.56) we obtain v, = 0.875, v, = 1.0, and hence E; = 1. Thus the
design has full efficiency for dual versus A comparisons and lower precision on

the dual versus B contrasts.

Discussion 2.2 As we will show in Chapter 3, all the reinforced singular group
divistble designs are highly efficient relative to derived bounds. But for reinforced
reqular and semi-regular group divisible designs this may not be true. But one
benefit of considering optimal designs within the RGDD class is that their con-
struction is very simple since one may appeal to the vast literature on GD designs.
This its an appreciable advantage over other PBDS designs, which have a less
straightforward construction but, in some case, are more efficient than RGDD
designs. These will be studied in Chapter 4.

2.5.2.5 Availability of Designs in the RGDD Class:

GD designs are widely available in the literature. The largest source of designs is
the catalogue of Clatworthy(1973). Further designs have been given, for example
in Freeman(1976a) and John and Turner(1977). One advantage of RGDD’s is

that they are easily constructed from available GD designs.

1. For £ > 3 the best design available is chosen from Clatworthy by taking
a singular GD design if available and otherwise taking the best of the re-
maining categories of GD designs(guided by Theorem 2.5).

2. For k=3 many of the designs listed in Clatworthy give RGDD designs
which will have high variances for comparing 10 with i1(by the construc-
tion method given in Section 2.5.2). However, for the parameter ranges
in Clatworthy it was found that we can obtain a more suitable GD de-

sign by forcing A\; = 0 and obtaining the value of A; from the expression
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r(k —2) = A + 2(n — 2)X;. It was straightforward to write down the de-
signs in these cases by taking treatment combinations 10 and il in the same
block and accommodating treatment combination 01 in each block of the
design. The resulting RGDD designs had much smaller average variances

than those derived directly from the catalogue.

Example 2.5 For n=3, b=4 and k=3, the only available design which can be
constructed from the catalogue of Clatworthy(1978,p141) is reinforced SR1 with
A1 = 0, which is the RGDD(5,4,2,2,0,1) given below:

Blockl 01 10 21
Block2 01 10 20
Block3 01 11 21
Block4 01 11 20

with the discrepancy 34.58% (see Definition 3.2 on page 73). However the design

Blockl 01 10 11
Block2 01 10 11
Block3 01 20 21
Block4 01 20 21

gives discrepancy 13.331%. Note that although the GD design employed here,

namely

Blockl 10 11
Block2 10 11
Block3 20 21
Block4 20 21

with Ay = 2 and A\, = 0 is a disconnected design, the RGDD obtained is
connected. This is a substantial improvement on the best RGDD based on the

appropriate GD design from Clatworthy’s catalogue.

An assessment of the performance of the RGDD’s obtained as in 1 and 2,
is made in Chapter 3 by comparing their average variance for the contrast of

interest with a lower bound.
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2.6 Class of BDSD:

In the remainder of this chapter we look at tighter requirements on the variance-
covariance matrix in an attempt to eliminate correlations between some or all of
the contrast estimators. We investigate if it is possible to find efficient designs

satisfying these requirements.

From Definition 1.4 in Chapter 1, a design is said to be a Balanced Dual
versus Single treatment Design(BDSD), if V(C%) = (a — p)lae + pJac(a # p),
where £ = (m —1)(n —1). This design gives equal precision for all the estimators
of the dual versus single treatment contrasts. Also it gives equal correlations
between any two individual contrast estimators. Now we prove that for a general

n x m factorial experiment, a connected BDSD exists if and only if n=2 or m=2.

Theorem 2.7 Ann x m BDSD connected(block or row-column) design erists if
and only if m=2 or n=2.

Proof: TLet C% denote the BLUE of Cr, where 7 is given in (1.4). Then
we have V(C1) = CQC'; where C was defined in (1.12) and § is a g-inverse of
the A-matrix defined in Chapter 1. We know from matrix algebra theory that
R(XY) < min{R(X), R(Y)}, where R(X) stands for the rank of matrix X, and
min(a,b) stands for the minimum of a and b. Since AQA = A and the design is
connected, R(Q) > mn — 2(ref Rao,1973;p 25). Also

R(C) = R(C'C) = min{2¢,mn — 2}, (2.59)
where {=(m-1)(n-1), and R(CQC") < min{R(Q), R(C)}. Therefore

R(CQC"Y < min{2¢,mn — 2}. (2.60)
If the design is a BDSD then from Definition 1.4, V(CZ%) = (a—p)Lze+pJa(p #

0), and this variance-covariance matrix is of rank 2¢ if p # a. Hence we must
have 2¢ = min{2¢,mn — 2}, i.e. 2¢{ < mn — 2. It follows that (m —2)(n —2) <0.
But neither n nor m can be less than 2. Therefore (n — 2)(m — 2) = 0, which is

valid if and only if m=2 or n=2. Hence the theorem is proved.&

2.6.1 A-matrix of a BDSD:

The following theorem specifies the A-matrix of a BDSD:
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Theorem 2.8 Anyn x 2 CFBD(00) is a BDSD if and only if its A-matriz has

the following structure:

R 0, -1,
A=—| 0, I, -I |, (2.61)
-1, —I, 2I,

where p=n-1 and a is a design dependent constant.

Proof:

(i) To prove necessity of the A-matrix structure: Assume the design is a

BDSD, then CQC" = (a — p)ly, + pJap. From Theorem 2.1 we have U =
(VH=H(CQC) V-1 = (VCQC'V')1, where U and V are defined in (2.14) and
(2.18) respectively. Substituting for U in terms of the elements of the A-matrix
from (2.14) and for CQC’ from above, we obtain:

1
a-—p

U= (2.62)

I —(p/d)J, —I,+ 2(p/d)J,
~I, +2(p/d)J, 2L, —4(p/d)T, |

where d = a + (2n — 3)p.

Since none of the off-diagonal elements of the A-matrix or of matrix U can be

positive, the only valid form for U is when p = 0. In this case:

U=21 [ L =15, } : (2.63)
o | I, 2I,
By Lemma.2.1, a;, = —Ul,_4, @}, is the transpose of g;, and ay; = —aj,1.
Therefore we have:
% L
A=—1 10, I, -I,|. (2.64)
—lp _Ip 2Ip

(ii) To prove sufficiency of the structure:

If the A-matrix of a design is of the form (2.61), then by Lemma 2.2 a g-inverse
of the A-matrix is:

0 0 g
Q=a|0, 2I, I, |. (2.65)
9 L, I
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Hence

CQC':Q[IP OP], (2.66)
0, I,

and the design is BDSD.&

In the following section we specify some conditions for a block design to be a

BDSD.

2.6.2 Combinatorial Properties of a BDSD:

By using the notation on page 44, the following theorem gives combinatorial

restrictions on a design which is a BDSD.

Theorem 2.9 For a block design to be a BDSD, the following conditions must
be satisfied:

1.
b 1.0 b b
> naij(k — naij) = 5 > npij(k —npi;) =Y nainpi = Y npnpi; =
J=1 J=1 i=1 i=1
1< k
= npj(k —np;) = =, (2.67)
2.

b b b
ZnBjnAij = ZnAijnAlj = Z NAi;NDI; = ZnDijnDlj =0,
i=1 7=1 j=1

=1
fori=1,2,...p and 1 # [.

Proof: By Theorem 2.8 the structure of the A-matrix necessary for a block
design to be a BDSD is as shown in (2.61). Therefore:

b
Z At] = rDi ZnDz]

?"l

b
l(rB_lz B Zn4ijnD:] = ZnB]nDtj
P kig ™ k
Also from the A-matrix of the de31gn given in (2.61) we have:
b b b k
PZI naij(k — naij) = §~Z npij(k —np;) = 3 npj(k —np;) = %-,
J= =1 =1

which establishes the necessity of the first condition. Establishing the second

condition as necessary is straightforward from the structure of the A-matrix of

the BDSD.&
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Corollary 2.5 Suppose design d is a BDSD, then in each block of d we have
present either the pair of treatment combinations (01,11) or (i0,i1); for some

i:],?,...,p.

Proof: The proof follows from condition 2 of Theorem 2.9.&

Now we are in a position to characterize A-optimal designs within the BDSD

class in the following section.

2.6.3 A-optimal Designs within the BDSD Class:

Before giving the theorem which specifies the A-optimal designs within the BDSD

class for parameter values n, b and k, a lemma is needed.

Lemma 2.4 Let z and y be positive real numbers, such that z <y, then for fired
values for y, f(z)=z(y-z) has a unique mazimum value at the point z=y/2. If z

and y are assumed to be integers

1. ify =2y’ is even, then z = y' mazimizes f(z);

2. ifyis odd, then z =y’ and y'+1 will mazimize f(z) with the same mazimum
value y'(y' + 1).

Proof: If z is assumed to be a real number, then df(z)/dz = y — 2z, and
y — 2z = 0 gives o = y/2 as the only critical point of f(x) which maximizes it.
Assume y is an even number, i.e. y=2y’, then zo = 3’ is an integer value. f(x)
is an increasing function on the interval z € [0,7/2] and a decreasing function
over £ € [y/2,y]. In other words f(x) is a concave function(see Roberts and
Varberg,1973,page2). Therefore if y is not even, i.e. y = 2y’ 4+ 1, where y’ is an
integer, then it can be shown that f(y’'+1) = f(y’). Hence the lemma is proved.&

Now we are in a position to establish conditions under which a BDSD is

A-optimal within the class of BDSD for the parameters n, b and k.

Theorem 2.10 A BDSD is A-optimal among all the BDSD’s if the following
conditions are satisfied:

1. for each block j which contains 10, | nai; — k/2 |< 1,

2. for each block j which contains il, | np;; — k/2|< 1,

3. for each block j which contains 01, | ng; — k/2 |< 1,
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4. for each block j which contains i0 and i1, | na;; — npi; |< 1,

5. for each block j which contains il and 01, | np;; —ng; |< 1.

Proof: If the design is a BDSD, then we have tr(CQC’) = 2pa, and the design
is A-optimal if it minimizes o, since p(=n-1) is fixed. Minimizing « subject to the
conditions in (2.67) and applying Lemma 2.4 and Corollary 2.5, gives conditions
1to5.&

The following example illustrates the structure established as sufficient for a
design to be a BDSD. It also shows that a BDSD is not necessarily efficient.

Example 2.6 For n=3, b=/ and k=38 we have:

Blockl 01 11 11
Block2 01 21 21
Block3 10 11 11
Block4 20 21 21

which gives:
1.33 05 —0.671,
A= 0, 0.67, ~—0.67I,
—-0.671, —0.671; 1.331,

Hence by Theorem 2.8 the design is a BDSD. Also V(C1) = CQC' = 1.514,
a = 1.5, and tr(CQC’) = 6. However the design is not highly efficient since the
following design which is not a BDSD has tr(CQC') = 3.84.

Blockl 01 20 21
Block2 01 10 11
Block3 01 11 21
Blockd 10 20 11

Now we can specify the layout of a BDSD to be A-optimal among all possible
designs within the class of BDSD.

2.6.4 Layout of A-optimal Designs within the BDSD Class:

The general layout of an A-optimal BDSD depends on the block size k and can
be deduced from Corollary 2.5 and Theorem 2.10. The layout of designs with
odd block size differs from those with even block size as follows:
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1. When k is even, Figure 2.1 shows the layout of a BDSD which is A-optimal.

Units —
E Ok k
1 2 3 5 s+1 5+2 k
1 10 10 10 .. 10 11 11 .o 11
20 20 20 ... 20 21 21 21
30 30 30 ... 30 31 31 ... 31
Blocks | B
p pO p0 pO ... p0O pl pl .. pl
p+1 {01 01 01 .. 01 11 11 .11
p+2 {01 01 01 .. 01 21 21 Lo 21
2p 01 01 01 .. 01 pl pl ... pl

Figure 2.1: Layout of A-optimal BDSD when k is even.

Example 2.7 When n=38, k=2 and b=4:

Blockl 10 11
Block2 20 21
Block3 01 11
Block4 01 21

For this case:

1 0,  —0.51,

—0.51, —05I, I,

and V(C1) = (CQC") = 214, which gives o = 2 and design is BDSD.
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2. When k is odd, then the layout of the A-optimal design is given in Figure
2.2, where f = [k/2] and [.] denotes the “integer part of.”.

Units —
1 2 3 ... f f+1 f+2 ... k
10 10 10 .. 10 11 1t .. 11
20 20 20 ... 20 21 21 .. 21
30 30 30 .. 30 31 31 .. 31
Blocks |
P p0 p0 p0 ... p0O pl pt ... pl
p+1{01 01 01 .. 01 1t 11 .. 11
p+2|01 01 oO1 .. 01 21 21 .. 21
2p 01 01 01 ... 01 pl pl .. pl

Figure 2.2: Layout of A-optimal BDSD when k is odd.

2.6.5 Advantages and Disadvantages of A-optimal BDSD:

In this section we note some advantages and disadvantages of an A-optimal
BDSD.
The main advantages of the designs are that they are:

1. Easy to construct.
2. Optimal in the class of BDSD.

3. Useful when k=2, since then the number of replications of the treatments

in each block is not impractically large.
However, there are disadvantages of these designs:
1. They exist only for b = O0mod(2n — 2).

2. For k > 3, the number of replications of each of the treatments 01, 11, 21,

..., pl is large, being more than one in every block.

3. An A-optimal BDSD is not A-optimal in the entire class of designs except

for a few parameter values, mainly when k=2.
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2.7 Other Forms of Designs:

As we have shown in the previous section, that although BDSD’s have the feature
of giving equal precision for both dual versus A and dual versus B contrast esti-
mators, their efficiencies are not necessarily high. We now consider two further
types of designs with variance-covariance matrix having particular features which

are desirable, provided efficient designs can be found with the features.

1. CQC'=F, where F is a diagonal matix so that the estimators of the contrasts
of interest are uncorrelated. For this type of designs, based on Definition

2.1, we have:

E, 0
0 FE;

where the E;’s(i=1,2) are p x p diagonal matrices with positive diagonal

M = (CQC')~! = , (2.68)

elements and M is the information matrix of the estimators of the contrasts
of interest. Let the A-matrix of the design be partitioned as in (2.11), on
page 40, then by applying Theorem 2.1, we obtain

Agg + Ags + Az + Aszz — Az — Al
—Agy — Ao Az

E, 0O
0 £

} : (2.69)

From this we obtain A, = E,, A3 = AYy = —F, and Ass = Ey+ E,. Other
parts of the A-matrix can be obtained by applying the facts that the A-
matrix is symmetrical and has the sum of its rows equal to zero. Therefore

for a design with property 1, we have:

an 0’ —-1'Fy
-kl —-E, E\+ E,

By using the notation on page 44, the following combinatorial restrictions
apply to this type of design:
(a)
b

b b b
Z nB;NAi; = E NAi;NALG = ZnAijnDlj = Z npijnpi; =0
j=1 j=1 j=1 J=1

for 7 #£ 1=1,2,...,n-1.
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(b)
b b
> naij(k —nai) =D nainpi;- (2.71)
j=1 7j=1

From these properties we deduce that in each block we have present either
the pair of treatment combinations (01,i1) or (i0,i1); for some i=1,2,...n-1.

Major disadvantages of this type of designs are:

(a) Number of blocks increases as n is increased, since the minimum num-
ber of required blocks is b=2(n-1) in order to accommodate all the

treatment combinations involved in the design.

(b) For k > 2, some of the treatment combinations occur more than once
in a block whilst other treatment combinations in the same group do
not occur at all in the block. In other words the design is non-binary

even for k=3.

(¢) The efficiencies of designs in this class as, follows from the work of

Chapter 4, are low.

Example 2.8 For n=3, b=4 and k=/, the most efficient design of this type
generated by applying JE is:

Blockl 01 01 01 11
Block2 10 10 11 11
Block3 01 01 21 21
Block4 20 21 21 21

This design s not binary, for ezample in block 1 treatment combination 11
occurs twice but combinatorial restrictions dictate that treatment combina-

tion 21 cannot be present in this block.

For this design we have:

1.33 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.33

CaC' =

in which tr(CQC') = 4.67. For this ezample the most efficient design which
could be generated by the algorithm without restricting to the designs with
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property 1 has tr(CQC’) = 2.639 and the deficiency of the first design is

clear from here.

2. In view of the poor performance of the designs with property 1, we consider
relaxing the requirement to allow correlations between any two contrast
estimators for comparing 01 with any treatment combination belonging to
group D and between any two contrast estimators corresponding to dual

versus A comparisons. In other words we consider designs with the property:

al, + bJ, 0

CQCI = ’
0 cl, +dJ,

(2.72)
where p=n-1.

This type of design is a special case of the wider class of PBDS designs.
However we will show in Chapter 4 that the designs which have such a restricted
structure for the variance-covariance matrix again are not the most efficient in
the sense of not having the smallest average variance of the estimators of the

contrast of interest.

Conclusions: Various types of designs based on features of the variance-
covariance matrix for the estimators of the contrast of interest have been consid-
ered in this chapter. We conclude that restricting to each type of design reduces
efficiency except for the general class of PBDS designs. Therefore for n x 2 ex-
periments we confine ourselves within the PBDS class of designs. As was pointed
out 1n Chapter 1, we have no guarantee that all the A-optimal designs belong to
this class for all parameter values. However, as we shall establish in Chapter 4,
it contains a wide range of highly efficient designs and some overall A-optimal

designs.

In the next chapter we give bounds to assess the performance of the designs.
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Bounds for » x m Experiments

3.1 Introduction:

In Chapter 2 we introduced the class of RGDD, which is a subclass of PBDS
designs, and considered properties of this subclass including the characterization
of efficient designs. The question now considered is how the performance of the
best designs within this class compares with the best in the entire class of designs
for particular parameter values, n, b and k. In the present chapter, we give two
different lower bounds on the total of the variances of the contrast estimators
for the dual treatments versus single treatment comparisons in a general n X
m censored factorial experiments. We establish which bound is the tighter for

different parameter ranges, and use the bounds to assess the performance of
designs such as RGDD designs.

3.2 Bound 1(3,):

In the following we give theorems and lemmas which lead us to the first bound.
The main idea is developed from the result of Wu(1980). Majumdar(1986) has
used a similar approach to establish A-optimal designs for comparing a set of test
treatments with a set of control treatments. Following these ideas we were able
to establish only a few A-optimal designs for our problem, due to the nature of
the contrasts of interest. Nevertheless it leads us to find a tight bound b; for a

specific range of parameter values.

Lemma 3.1 For any connected(block or row-column) design with replication ma-

triz r° and any contrast matriz C,

69
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tr(CQC") > tr(Cr=8C"), (3.1)

where Q) is a g-inverse of the A-matriz of the design and
r’ = diag(ri,re,... 1),

where r; gives the replication of the ith treatment in the entire design and r=% is

the inverse of ré.

Proof: Applying Wu(1980,Theorem 3), there exists a g-inverse €2, such that

Q0 — r—¢ is non-negative definite(n.n.d.). Hence

0 <tr {C(Q—r)C'} = tr(CAC") — tr(Cr=°CY), (3.2)
and the lemma follows.d

The following notation is needed to establish corollaries which lead to bound

by.

Notation: In an n x m CFBD(00), let A = {i0; i = 1,2,...,n — 1}, B =
{0j; 7=1,2,...,.m—=1}and D={ij; i =1,2,...,n—1, 7 =1,2,...,m—1}.
Let n4:1, npji and np;j denote the respective number of times that the treatment
combinations 10, 0j and ij(belonging to sets A, B and D respectively) occur in
block [, for I =1,2,...,b,:=1,2,...,n—~1and 7 =1,2,...,m — 1. Then ry; =
Zf’zl NAil, TBj = Ef’zl npgj and rp;; = Z?zl npij denote the respective replications
of treatment combinations 10, 0j and ij belonging to sets A, B and D in the entire
design. Also let 74 = diag(ra:), r® = diag(rp;) and r? = diag(rpi;) denote the
diagonal matrix of the replications for treatment combinations belonging to sets
A, B and D respectively. Then

B 0 0
=10 r4 0 |, (3.3)
0o 0 P

denotes the replication matrix of an n x m CFBD(00).

Immediate consequences of using Lemma 3.1 in an n x m CFBD(00) experi-

ment are the following corollaries.

Corollary 3.1 For anyn x m CFBD(00) design d

tr(CQC’) > tr(Cr8C") PZ—+QZ"‘"+ZZZ— (3.4)

JIBJ i=1 T Ai i=1 j= =1 " Dij
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where C is given in (1.12) on page 5.

Proof: By applying Lemma 3.1 we have: tr(CQC") > tr(Cr=%C"). But
tr(Cr=8C") = tr(C'Cr~*). It can be shown that:

pl, Ogxp _-1-;®]q
C'C =1 0pxq g, ~L,®l |, (3.5)

L8l -Lel 2
where p=n-1, q=m-1 and I=pq.
Therefore

tr(Cr=°C") = ptr(r~F) + gtr(r~*) 4 2tr(r~P).

The proof follows from here.é&

The following corollary characterizes the designs which achieve the bound in
Corollary 3.1(cf Majumdar,1986).

Corollary 3.2 If d is an n x m CFBD(00) design, such that N'r=5C" =0, then

tr(COC") = tr(Cr=5C") p2—+q2—+222—— (3.6)

i=1j5= ITDU

where C is the dual versus single contrast matriz given in (1.12) on page 5 and

N is the incidence matriz of the design.

Proof: Since N'r=5C’ = 0, it follows that

Ar=C' = (r® —1/kNN")r*C' = C' = 1/ENN'r~%C’ = C". (3.7)

On premultiplying by C and using the estimability condition CQA = C, we
obtain:

CQC' = CQAr=°C' = Cr=°C". (3.8)

Thus tr(CQC’) = tr(Cr~8C"), and the result follows from Corollary 3.1.d
Note: Corollary 3.2 gives a sufficient condition for an A-optimal design. It is
straightforward to apply the same argument to the convex function ¥ of Kiefer(1975)

to establish that the condition in Corollary 3.2 is sufficient for a design to be universally
optimal(see Majumdar,1986,Theorem 3.1). However, it is an unfruitful means of
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obtaining designs for our problem, because the condition is only satisfied for sparse
and large values of k(for m=n=3, k=8,16,24,... and for n=3 and m=9, k=28,56,...).
This point will be considered further in Chapter 5. However Corollary 3.2 is useful for

establishing a bound in conjunction with the following lemma.

Lemma 3.2 Let r;(i=1,2,...,L) be L integer values and SE 7 =1 be regarded
as fized and such that r > L. Also let ¥ = [r/L], where [.] means “integer part of

7, then

2LF+ L —r

F(F+1) (3:9)

L1
iz

=1 T
Proof: Since f(z) = 1/z is a convex functicn, then by Marshall and Olkin(1979
,p3), the values of r; which minimize 3~ 1/r; subject to the condition }°r; = fized,
are the values which minimize 3" r? subject to the same constraint. By Cheng
and Wu(1980, Lemma 2.3) the minimum is obtained when r;’s are as close as

possible, i.e. if:

r;:{r+1 ife=1,2,...,7r— LT (3.10)

7 fi=r—LF+1,...,L

Substituting these values for 7;(i = 1,2,...,L) into ¥%, r;! the required

i

expression is obtained.é

Theorem 3.1 In an n x m CFBD(00) design, let Tg = 3% _1rpi, Ta = Y0 rai
and Tp = Y0, 21 rpij be regarded as fired, such that Tg > q, T4 > p, Tp > pq
and Ta +Tp < bk —q. Also let 7a = [T4/p], 78 = {T8/q) and 7p = [Tp/pq], then

P 2qFrg+q—1g 2074 +p—Ta 2pqTp +pq-—TD}
tr(Cr=Ch > 2 )
r(er )*p{ 750 + 1) }”{ D )T D)

(3.11

Proof: Follows from the fact that if T4 and Tp are regarded as fixed, then
Tg = bk — T4 — Tp is fixed, and the minimization of tr(Cr=5C’) follows from
Lemma 3.2.&

The minimum value for tr(Cr=%C’) in Theorem 3.1 is a function in terms of
T4 and Tp only since p and q are fixed and 74, 7 and 7p are functions in terms
of T4, Ts and Tp respectively. Therefore let
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2gF — r -T 2pqT - T
F(TA,TD)zp{ qFB +q TB} {2pu+p A} 2{ PgTD + Pq D}.

Fp(Fp + 1) Fa(Fa+1) p(Fp + 1)
12)

Let Tg = ¢Fg + ap, where 0 < ag < q, Tp = pgFp + ap; 0 < ap < pg and
Ty =prga+as; 0<ay<p. Then if we substitute T4, Ts and Tp from here into

F(T4,Tp), we will obtain the function in terms of a4, 74, ap, 7 and ap, 7p, viz

F(T4, Tp) = (3.13)

1 1 2 pap qa4 2ap }
= —t+ —+ —) — + + = .
pq(FB T4 7—'D) {7“‘3('7‘3 + 1) FA(FA + 1) fD(T‘D + 1)

Definition 3.1 Let
by = min{F(t4,tp); (ta,tp) € =}, (3.14)
where
= ={(ta,tp); t4 > p, tp > pg;ta+tp < bk—gq; ta,tp € N¥},

and N* denotes the set of integers, positive numbers, then by is called the

first bound on the sum of the variances for the dual versus single estimators.
Now we are in a position to establish the following corollary.

Corollary 3.3 For any n x m CFBD(00) design, d, with a g-inverse Q, then

tr(CQC") > F(Ta, Tp) > by. (3.15)

Proof: It follows from Theorem 3.1 and the fact that 4; is the overall minimum

value for tr(Cr=C").&

Definition 3.2 Let b; denote a lower bound for the total of the variances of the

estimators of the contrasts of interest. Then

tr(CQC’) - b
b
is called the discrepancy of design d for the contrast estimators C% relative to

the bound b;.

D(d,C) = x 100 (3.16)
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The following three examples show the capability of 4, in assessing design

performance.

Example 3.1 For m=n=3, b=3 and k=8, the following design has tr(CQC") =
5.333, which is equal to by, is overall A-optimal.

Blockl 01 01 10 20 11 12 21 22
Block2 01 01 10 20 11 12 21 22
Block3 01 01 10 20 11 12 21 22

Example 3.2 For m=n=3, b=3 and k=9, by = 4.833 and for these parameter
values the most efficient design which is generated by JE, tr(CQC") = 4.862. The
discrepancy for this design is 0.6% which is very small, indicating that bound is

a good bound for these parameter values.

Example 3.3 For m=n=3, b=18 and k=2, we have b;=3.6, and the most effi-
cient design generated by JE gives tr(CQC')= 5.996, with 66% discrepancy with

by. For these parameter values by is a poor bound.

Discussion 3.1 Ezamples 3.1 and 3.2 indicate that by is a tight lower bound for
tr(CQC"), for big values of k relative to t=mn-1. However, Ezample 3.3 suggests
that for small values of k relative to t=mn-1, by cannot be used to judge the

performance of the design.

3.3 Bound 2(3,):

We need to establish a bound which is tighter than b; for small values of k. The
new bound, b;, which will be given in this section is based on the eigenvalues
of the A-matrix of the design and C’C, where C is the contrast matrix for the
dual treatments versus single treatment problem. Before going further we need

to investigate the C'C matrix.

3.3.1 Structure and Eigenvalues of C'C:

For a general n x m CFBD(00), from the coefficient matrix C, given in (1.12),

from (3.5) we have:

28 Ogxp “'l; ® I
C,C = Opxgq q]p “Ip ®l; ’ (317)

—.];p®]q —Ip ®_];q 21’
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Table 3.1: Eigenvalues of C'C matrix(p=n-1, g=m-1).

Eigenvalues(d;) multiplicities
p+a+2+4/ (p+9+2)2—4(pg+p+q) 1
2
p+9+2~+/(p+9+2)2—4(pg+p+q) 1

2

p+2++/(p+2)2-4p

Z q-1
p+2-1/(p+2)2—4p g-1

2
q+2++/(94+2)%2—4q

2 p-1
g+2-+/(g+2)°—4¢ p-1

P

2 (p—1)x(g-1)

0 1

where p=n-1, q=m-1 and [=pq.

The eigenvalues of C’C are given in Table 3.1.

3.3.2 Properties of C'C:

1. C'C is a symmetric and non-negative definite(n.n.d.) matrix with eigenval-
ues fy > 0> ... 2> 0,1 >0, =0 given in Table 3.1. Let the corresponding
eigenvectors be denoted by By By b,y and g = t=1/21, respectively.

2. C'CL = 0. Therefore p, = t=1/21, is an eigenvector of C'C corresponding

to the eigenvalue 6, = 0, where t=mn-1.

3. R(C'C)=t-1=mn-2, since C'C1, = 0, which simply means that one of the
rows or columns of C’C is a linear functions of the other rows or columns

respectively.
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In the following we give a theorem and some corollaries which lead us to the

new bound, b,.

Theorem 3.2 Let C1 be a set of L contrasts of interest in a design(block or
row-column), involving t treatments such that L >t -1 and R(C) =t—1. Then
if0,>260,>...>0,_1 >0, =0 are the eigenvalues of C'C and Ay > Ay > ... >
At_1 > Ay = 0, are the eigenvalues of the A-matriz of the design, Then:

t

|
bt

tr{V(CH)} = tr(CQC) > (3.18)

>|l=

1=1

I

Proof: We prove the theorem by considering two cases:
(i)- L > t. Let Q be the Moore-Penrose g-inverse of the A-matrix of the
design, then we have: V(C7) = CQC’. Therefore

tr(CQC") = tr {C(ti A;lég)(l'} , (3.19)

where the {;’s are normalized eigenvectors of the A-matrix of the design corre-
sponding to the eigenvalues A;’s with the property (1.9) as given in Chapter 1.
This implies that

t—1

t—1
tr(CQC") = tr (Z AflCé_f_:C') = E)\fl_{_’_; 'C¢,. (3.20)
=1

=1
Let v, = )\,-_l/zé., fort=1,2,...,t — 1, then we have:
t-1

tr(CQC") =Y 4/C'Cy,. (3.21)

=1
Alsolet T' = (7,,7,,- - ,l_l,d“lt‘llt), where d is a positive real, such that
td? < A\;_1. Since 1'C'C1 = 0, we have:

tr(CQC") = tr(I'C'CT). (3.22)
By applying Theorem A.4 of Marshall and Olkin(1979,p513), we obtain:

Jq-s

tr(I'C'CT) > 3 O iami, (3.23)

=1

where 7),;’s are eigenvalues of ['I". To obtain n;’s notice that

I'T = diag(A\[h A7, .. A, 171 d ),

t-1»
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then if welet g > ny > ... >, we have n; = d~%¢t~! and
m= A, fori=2,3,...,t

It follows that

0;_;
tr(CQC") > Zot i = O + 2 At *: (3.24)
=1 t—1

But the first term in the RHS of the above inequality is zero since §; = 0, and

it is easy to show that the second term is Y¢Z1 6;/);. This completes the proof
of the first case.

(ii)- L=t-1, let (C*) = (dl, , C"), where C* is an t x t full rank matrix and
C*(C*) has eigenvalues x; > x2 > ... > x; > 0, where d is an arbitrary positive
constant, such that y; = d*¢, and y; = 0;_1, for 7 = 2,3,...,¢. Since

R
C"(C):{O CC!}’

it follows that: |C*(C*) — xiI| = (td® — x:)|CC' — ;1| = 0, for i=1,2,....t. It is
clear from this that t-1 eigenvalues of C*(C*)" are those of CC'. If we let 1 be
the Moore-Penrose g-inverse of the A-matrix of the design with 9, > 7, > ... >
Mi—1 > m: = 0, as its eigenvalues then we have n; = A}, for 7 = 1,2,...,t — 1.
It can be easily shown that tr(CQC') = tr(C*Q(C*)'), since tr(C*Q(C*)) =
tr(CQC") + d?1'Q1, but 1’1 = 0. By applying Marshall and Olkin(1979, p513)

we have:

i t 4
tT‘{C*Q(C*),} > ZXim—iH = X1t + ZXint—i-H = Z XiTt—i+1
=1 i=2 i=2
since n; = 0. But x; = 6;_; for ¢ > 2 and n;_;4; = A7},. This implies that
tr(CQC") > Th, 0, 1 A7 = Y121 8:071. Hence the theorem is proved.&

Corollary 3.4 If the C mairiz in the statement of Theorem 3.2 is the contrast

matriz for the dual treatments versus single treatment comparisons in an n X m

CFBD(00), then

t—1

ir(CQC’) > Z

(3.25)

>|Q>

where 0;’s are given in Table 3.1.
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Proof: The result follows immediately from Theorem 3.2 and values for 6;’s
given in Table 3.1.&

Corollary 3.5 If we have a class of designs with fizxed trace for the A-matriz,
i.e. tr(A) = ¢, where ¢ is a constant, then for any design belonging to this class

we have

1(COCT) > £2_=1c__)_ (3.26)

where C is the contrast matriz of interest and the 8;’s are the eigenvalues of C'C

given in Table 3.1.

Proof: From Theorem 3.2 we have tr(CQC’) > Y!Z16;/Xi. Then if we let
{1 Ai = ¢ be regarded as fixed, by applying Lagrangian Multiplier, v, we can
minimize 3°/21 8;/); , subject to the condition °f_; A\; = ¢. This minimum value

will be

r(COC) Z_j > (25 VO)* (3.27)

C

which is only a function of the elgenvalues of C'C, given in Table 3.1, where

i\/_::\/P+<1+2+2\/Pq+;0+q+(p—1)(q—1)\/§+ (3.28)
(q—/p+2+2p+(p—1\/g+2+2/7.

Hence the corollary is proved.d
Note: We know that only for the binary block designs and balanced block designs

the value c is fixed and for the other cases it depends on the design. Therefore this
bound is only applicable to these two kinds of designs unless we restrict consideration

to all block designs with a specific value of c.

The RHS of the inequality in (3.26) is a decreasing function in terms of c, i.e.

it will be minimized if ¢ is maximized. But for any design we have

c=1tr(A)=bk— - E Z ni. (3.29)

z_.l 7=1
This is maximized if 3}_; °°_; n% is minimized. That is if the n;;’s are as equal
as possible. For t > k the minimum value is obtained when the design is binary,
that is n;; € {0,1}. In this case c=b(k-1) which is fixed.
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Definition 3.3 Let

by = (Zf’:lcl\/p:)z’ (3.30)

where 0;’s are eigenvalues of C'C given in Table 3.1 and ¢ is the mazimum value
for ¢, where c is the trace of the A-matriz of the design. Then by is a lower bound
on the total variances for the estimators of the contrasts of interest and will be

called the second bound.

Now we reconsider Examples 3.1 to 3.3 and give a new example to illustrate
the use of bound b, to assess the performance of designs and to show that it is

not always a tighter bound than b;.

Example 3.4 For m=n=38, b=18 and k=2, we have b,=5.616. For the most effi-
cient design generated by JE, tr(CQC") =5.996. For this example the discrepancy
between this figure by and this design i.e. D(by,d) is 6.7% which is a substantial

improvement on by (see Example 3.3).

Example 3.5 For m=n=3, b=3 and k=8, by=4.814. For this set of parameters
values the A-optimal design, given in Ezample 3.1, has 5.333 as the total of the
variances of the estimators of the contrasts of interest. The discrepancy between
this figure and the bound by is 10.8%. Comparing the value of by with b;=5.333
shows that by is a poor bound

Example 3.6 For m=n=3, b=8 and k=3, we obtain b,=6.319. The discrepancy
between this value and tr(CQC") for the most efficient design generated by JE
is 1.7% which is very small. The discrepancy between b, and tr(CQC’) for the
same design is 20.5%, showing that b, is a much tighter bound than b, for the

particular parameter values.

Example 3.7 For m=n=3, b=3 and k=9, b;=4.212. The discrepancy between
by and tr(CQC") for the highly efficient design cited in Ezample 3.2 is 15.4%.
Comparison with the discrepancy for b; namely 0.6%, shows that b, is a poorer

bound for the parameter values.

In the following section we will compare bounds b; and b,, in order to specify
those ranges of parameters for which b, is a tighter bound than bz, and vice versa.
On the basis of this study we shall recommend which of b; or b, should be used

to assess a particular design.
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3.4 Comparison Between b, and b,:

A numerical computation has been carried out to compare bounds b; and b,
for the parameter values 2 < n,m < 10, b < 30 and 2 < k < 15, excluding
(m,n)=(2,2). The results are given in Table 3.2 at the end of this chapter.

Analytical comparison between the bounds is very difficult, because the ratio
of the bounds is a messy function.

As we can see from the Table 3.2, for k > t = mn—1, b; is a tighter bound than
by. Therefore for such cases we recommend the use of b; to assess the performance
of the designs. In fact, for £ > ¢ there are many designs which achieve or almost
achieve bound b, as will be shown in Section 4.3(Theorem 4.8) and Table 4.2 for
n=3. For k < t one bound is not uniformly tighter than the other.

3.5 Assessment of RGDD Using the Bounds:

As we mentioned in Section 3.4, for k¥ < t one bound is not uniformly tighter
than the other. Therefore in order to assess the performance of the designs for

this case we use the bound:
b.. = max(by, b2). (3.31)

A study of all possible RGDD which can be built up from the Clatwor-
thy(1973) catalogue was made. For each design the total of the variances of
the dual versus single contrast estimators was compared with b,,. Notice that for
this class of designs the trace of the A-matrix has value c=b(k-1), which is fixed.

An extensive numerical investigation has been carried out over all the RGDD
designs described in Section 2.5.2.5. The following conclusion have been drawn

from this investigation:

1. There are in total 57 designs which are reinforced singular GD designs.
These are the best in this class, if they exist, and tr(CQC") has a discrepancy
of not more than 12.3% compared with b,. We found that 72% of the

designs in this subtype of designs have discrepancy of not more than 7%.

2. There are in total 28 designs which are reinforced semi-regular GD designs.
The maximum discrepancy is 27.2%, while 64% of the designs within the

subtype have a discrepancy of not more than 13.3%.
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3. The total number of designs which are reinforced regular GD designs is 75.
The maximum discrepancy is not more than 27.7%. We found that 49% of
these designs have a discrepancy less than 13.4%.

In conclusion, we have established that best subclass of GD designs for forming

RGDD is the class of singular GD designs.

Table 3.2: Values of n, m and k, where by > b;.

” (m,n) l k
2,3) |k<3
(2,4) | k< 3 and k=4(b# 6)
(2,5) | k<4
(2,6) | k< 4

(2,7) | k< 4 and k=5(b#86,8,9)
(2,8) | k< 4 and k=5(b#7,9,10)
(2,9) | k< 4 and k=5(b#8,11)
(2,10) | k< 4 and k=5(b#8)

(3,3) | k<4

(3,4) | k< 4 and k=5(b#6)

(3,5) | k< 5 and k=6(b#6-9, 11-14, 16)

(3,6) | k< 5 and k=6(b#7,8)

(3,7) | k< 5 and k=6(b#9)

(3,8) | k< 5, k=6(b#£10) and k=7(b#8-13, 15-17, 19,20)
(3,9) | k< 6 and k=7(b#9-11, 13-15)

(3,10) | k< 6 and k=7(b#£10-12, 15,16)

(4,4) | k< 5 and k=6(b#7)

(4,5) | k< 6 and k=7(b#10,11,13,14)
(4,6) | k< 6 and k=T7(b#£9)

(4,7) | k< 7 and k=8(b#13,14, 16-18, 21)
(4,8) | k< 7 and k=8(b#10-12, 15,16)
(4,9) | k< 7 and k=8(b#12,13)

(4,10) | k< 7 and k=8(b#13,14)
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Table 3.2: continued...

H (m,n) I k
(5,5) k< 6 and k=7(b#9,10)
(5,6) | k< 7 and k=8(b#10,11,14,15)
(5,7) | k< 7, k=8(b#12,13) and k=9(b#10-12, 14-16, 19,20,24)
(5,8) | k< 7, k=8(b#14,15) and k=9(b#10-14, 17,18)
(5,9) | k< 8, k=9(b#13-15) and k=10(b=21,26,30)
(5,10) k< 8, k=9(b#15-17) and k=10(b#13-16, 19-21, 25-27)
(6,6) | k< 7, k=8(b#12,13) and k=9(b£10-12, 15-17, 20)
6,7) | k< 8, k=9(b#12-14) and k=10(b=19,24,29)
(6,8) | k< 8, k=9(b#15,16) and k=10(b#12-15, 18-21)
(6,9) | k< 9, k=10(b#14-17, 21,22) and k=11(b=23,28,29)
(6,10) | k< 9, k=10(b#16-19) and k=11(b=13,19,20,25,26,27,30)
(71,7) | k< 8, k=9(b#15,16) and k=10(b#13-16, 19,20)
(7,8) | k< 8, k=9(b#18) and k=10(b#15-18)
(7,9) | k< 9, k=10(b#17-19) and k=11(b#15-19, 23,24)
(7,10) | k< 9, k=10(b#20,21), k=11(b#17-20)
and k=12(b#14,20,21,27,28)
(8,8) | k< 9, k=10(b#17-20), k=11(b#£15-19, 23-25)
and k=12(b=19,25)
(8,9) | k< 9, k=10(b#20-22), k=11(b#17-21)
and k=12(b=14,21,22, 27-30)
(8,10) | k< 9, k=10(b#23,24) and k=11(b#20-23),
k=12(b#17-22, 26-29) and k=13(b=22,29,30)
(9,9) | k< 10, k=11(b#20-23), k=12(b=16,17, 23-26, 30)
and k=13(b=22,29,30)
(9,10) | k< 10, k=11(b#23-25), k=12(b#£20-24),
k=13(b=16,17, 24-26) and k=14(b=23)
(10,10) | k< 10, k=11(b#26-28), k=12(b=19-22, 28-30),
k=13(b=18,19, 26-29) and k=14(b=17,25,26)
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Chapter 4

Highly Effi cient PBDS Designs

4.1 Introduction:

In Chapter 2 we derived some properties of the class of PBDS designs, such as
the form of the A-matrix and the structure of the information matrix for the
estimators of the contrasts of interest. A method of constructing such designs for
k <t =2n—1, namely RGDD’s, was introduced and some of its properties were
considered. The performance of RGDD’s was assessed against given bounds in
Chapter 3. Also the class of BDSD, viewed as a special case of PBDS designs,

was considered in detail.

The class of PBDS designs is a source of designs which have a symmetric struc-
ture for the variance-covariance matrix for the contrast estimators corresponding
to the dual versus single treatment comparisons. In the previous chapters it has
been shown by example that highly efficient and, in some cases, overall A-optimal

designs can be found in the PBDS class.

In the present chapter we will give theorems which lead us to characterize
a wide range of highly efficient PBDS designs. It will be shown that, provided
three conjectures are true, we can characterize those designs which are overall
A-optimal or A-optimal within the PBDS class.

The approach used is to reconsider the structure of the information matrix
for the contrasts of interest(given in 2.12). We shall then apply the permutation
method(see Kiefer,1975) to obtain a design-dependent lower bound on the total

variance of the estimators of the contrasts. This is described in Section 4.3.

The aim of Section 4.2 is to move towards a lower bound which is not design-
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dependent on the total variance of the estimators of the contrasts of interest and
which is achievable or nearly achievable in the sense of having small discrepancy with
the minimum value of tr(CQC’) for a wide range of design parameters. Such a
bound would be a great improvement on bound b,,(of Chapter 3, Section 3.5) as
a tool for locating optimal designs since b,, is not achievable except for large block
sizes(see Chapter 3, Section 3.4). To this end an investigation is made in Section
4.3 on the conditions under which the design-dependent bound is minimized. In
the final stages of the analytical argument it is found that the conjectures are
needed to formulate a conjectured bound. This is due to the need to minimize a

very complicated function.

This conjectured bound is the same as b, given in Chapter 3 whenever
N'r=8C" = 0, Ty = b(n — 1)r4 Tp = b(n — 1)rp satisfy condition (3.14) on
page 73. For b > 3 the conjectured bound is tighter than b,, and more widely
achievable by designs(see Table 4.2). Analytical results are presented which tell
us how the replications of the treatments should be spread across the blocks(see
Theorems 4.4 and 4.8).

The layouts of the best designs are specified and a catalogue of designs which
achieve this conjectured bound is given. The high efficiency of designs with block
size greater than the number of treatments involved in the design, i.e. k > ¢, is
demonstrated by comparison with b,,. The designs having small block size(k < t)
are shown to be highly efficient by comparison with the best obtained by JE.

4.2 A Bound Based on the Permutation Method:

In this section we briefly review the permutation method and then apply it to

our particular problem to get a bound under certain conditions.

4.2.1 Review of the Permutation Method:

In order to outline the permutation method we need to give a definition of a

convex function.

Let U be a subset of n x n real matrices and R be the set of real numbers,
then a real valued function @ : U — R, is said to be a convex function if for
X1, X3, ..., Xm € U and oy, a, ...,y € [0,1], such that 7, o; = 1, then
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@(i a,-X,-) S ia;@(X;), (4.1)

for m > 2(see Roberts and Varberg, 1973,p89).

A square matrix p is said to be a permutation matrix if each row and col-
umn has a single unit, and all other entries are zero. Let P be a set of permutation
matrices, then ® is said to be invariant under the set of permutations P applied

to rows and columns if
O(p; Xp)) = ®(X),Vp; € P.

Kiefer(1975) was the first person to employ this concept to provide a sufficient

condition for a block design or row-column design to be universally optimal.
Majumdar and Notz(1983) used a similar approach to characterize A- and

MV-optimal designs for the test treatments versus control treatment problem.
Yeh(1986), by utilizing this approach, generalized the work of Kiefer(1975)

when the required conditions for the universal optimality cannot be achieved and

found justification of universal optimality over the class of binary block designs.

Majumdar(1986) used this method to characterize A-optimal designs for com-
paring a set of test treatments with a set of control treatments, but found that
it led to the identification of only a small number of designs.

A key feature of Kiefer’s approach is that it uses a set of permutation matrices

which leave ® invariant.

4.2.2 Application to Our Specific Problem:

We now apply the permutation method to establish a design-dependent bound on
the total variance of the estimators of the dual versus single treatment contrasts.
In other words we want a design-dependent bound on tr(M 1), where M is the
information matrix for the contrasts of interest, defined in Chapter 2(2.12).

Let the information matrix, M, for the contrasts of interest given in (2.12) be

partitioned as follows

Mll -A[12
M = , (4.2)
M, My

where the M;;’s are (n — 1) X (n — 1) matrices for i,j=1,2.
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Suppose {p;;i = 1,2,...,(n—1)} is the full set of permutation matrices each
having order (n-1). The set of permutations we shall employ is [T = {m;; 7 =

L, ®p:}.

Now define M as the average of M over all permutations in [T, i.e.

(n—1)! My My,
M= n—l' Z mMrl = , (4.3)
M{'z MZ‘I
where
~ 1 (n=1)! ,
Ma/ = m E p,‘]‘/[“/pi, (44)
o=l
for 0,0 =1,2.

We now utilize the approach of permuting the rows and columns of M, to

obtain a bound.

Theorem 4.1 For any connected design dé n x 2 CFBD(00), we have:

tr(CQC") = tr(M~1) > tr(M™), (4.5)
where M is given in (4.3).

Proof: For any connected n x 2 CFBD(00) design, the information matrix, M,
is a positive definite matrix with eigenvalues A1, Ag,..., Ayp, where p=n-1. Let
[T be the set of permutation matrices defined above. Then, define X; = #; M=}
for i=1,2,...,(n-1)!. It is obvious that X,’s are all positive definite matrices and
tr(X;) = tr(m:Mx!) = tr(M).

Now if we define
2p 1

3
1=1 Ai
where A;’s are the eigenvalues of matrix M, then ® is a convex function(see

Majumdar and Notz,1983,Theorem 2.1). It follows from (4.1) with o; = [(n —
Y-1(i=1,2,...,(n-1)!) that

O(M) = tr(M1) =

(n—1)!

<Z

But ®(m;M7!) = tr{(m;Mxl)-1} = tr(]\f 1). Therefore the RHS of the inequality
in (4.6) is tr(M~1). Hence the theorem is proved.d

<I)(7r,M7r ). (4.6)
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The purpose of the following lemmas is to formulate a bound as a function
of the elements of the incidence matrix of the design, i.e. as function of the
number of occurrences of each treatment combination in each block. This will
then facilitate the calculation of a bound and, more importantly, the identification
of designs whose total variance achieves the bound. Since the bound is in terms
of elements of M we need to express the elements of M as functions of the entries
of the incidence matrix of the design. In doing this we shall use the following

notation.

Notation: In addition to the notation used on page 44, we define the following
notation. We define

n-1 n—1
Taj = D_naij, Tpj = )_npij and Tp; = np;,
i=1 =1

which denote the total number of units assigned to treatment combinations be-

longing to sets A, D and B respectively in block j and

b b b
TA = ETAJ" TD = ZTDJ’ and TB = ZTBJ'

i=1 j=1 j=1

denote the total number of units assigned to treatment combinations in sets A,

D and B respectively in the entire design.

The following lemma gives the entries of M in terms of the entries of the inci-
dence matrix of the design. In order to achieve this we note that the submatrices

in the partition of M are given from (2.12) in Chapter 2 as
My = Agp + A2z + Ay + Ass,
My = —Agy — A, (4.7)

M3z = Anp,

where Aj;, Az and Az are submatrices of the A-matrix of the design such that

7 1
ayy 4y, Qi3
A= [AD) Agr A

7
a3 Azs A33
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Lemma 4.1 For the matriz M given in (4.2), let myiry denote the (2,7')th entry
of My, then

rpi + rai — (1/k) Tiaq (naij + npij)? if1 =1,
M) = 9

—(1/k) £boi(naij + npij)(naw; + npw;) if i # 7,

—rai + (1/R) 0oy naij(naij + npi)  ifi =1,
Mig(iir) = (4.8)
[ (1/k) £y naij(naij + npirj) ifi # 4,

rai — (k)T nyy,  ifi=1,

Ma2(ii1) =

(| —(1/k) Siay nainaw; fi#7

Proof: Since Ajq, Azs and Asz are parts of the A-matrix of the design, if we
let a;e;iy denote the (z,7')th entry of Aj, for j,£=23 and ¢,¢'=1,2,...,n-1, then by
(1.6) in Chapter 1 we have

T‘A,'——(l/k) b n2Aij iz :i/,

j=1
Ag2(isry =
—(1/k) They naijnav; if £,
A23(ii') = —(1/k) Zi’-zl N Ai; D75 (4.9)
TDi — (1/k) .I;:l n%)w if?: = Z.I,
as3(iir) =

—(l/k) Zg‘:l Npi;Npit; if ¢ # v,
From these and (4.7), after some algebra, the result follows.&

Now we are in position to express the entries of M in terms of the elements

of the incidence matrix.

Lemma 4.2 Let thypiy denote the (i,1')th entry of My as defined in (4.4), then
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( Ta+Tp 1 n—-1<b . 2 oy
n—1 - k(n_l) Zt:l j:l(nAt] + nDiJ) Zfl =1 )
My =
b -
_Z,‘:l{(TAﬁ-TDj)?— o (nas+npis)?) if i 4
Fn-1)(n-2) t )
(T4 1 n—1g~b .. . . Y I
—721 T oy Leist 2= naij(nai; + npi;)  fi =7,
Na(isy = 4.10)
Mag(iif) = 3 (4.
2:‘=1{TAJ'(TAJ+TDJ')—E?=—11'”Aij("A:’j+ﬂDij)} if i @
\ Fn—1)(n-32) )
( T4 1 n—1 b 2 P .
— —————— B . .. =
n—-1 k(n—1) =1 1=1 nAlJ lf t=1,
Maa(iir) =
. 1 b 2 _ n—1 2 ep o .
k(n—1)(n-2) j=1{TAj i=1 nAij} if i # 1,

Proof: From (4.4) we obtain

T L Mg if 1 =4/,
M1y =
1 -1 op . .
| DT Lot L M) i 2 F v,
T sy M) ifi=1,
Maag) = (1.11)
(n—l)l(n—2) P i Mgy 1 # 7,
n;_l LI Mo if i =7/,
Mag(iiny =
(n—l)l(n—-_2) P T Mooy i1 £ 7,

Substituting from Lemma 4.1 gives the required expressions.d

Corollary 4.1 The matriz M defined in Lemma 4.2 has the following structure

(z1 =) +uidp (z2 —y2)lp + y2Jp
M = : (4.12)
(z2 —y2) o + y2dp (23 — y3) I, + yaJp
where 1 = M@y, Y1 = My # ), T2 = M), Y2 = Mt # V),

T3 = Maa(ii), Y3 = Mag(iir)(¢ # ') and My ’s are given in Lemma 4.2.
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Proof: Follows from Lemma 4.2.é&

The next step is to evaluate tr(M~1) in terms of the elements of the incidence

matrix of the design. To achieve this the following lemma is needed.

Lemma 4.3 For any nonsingular symmetric matriz L of the form:

(z1 —y1)Im + 1dm (22 — y2)Im + Y2 Jm
L= , (4.13)

(z2 — y2) I + yv2Jm (23— y3) I + y3Jm

we have:

(m—1)(z1 + 23— y1 — y3) ct+d
(11 - yl)(373 - ya) — (1‘2 — 3,/2)2 cd — €2’
where, c =z + (m —1y;, e =22+ (m — 1)y, and d = z3+ (m — 1)y.

tr(L™) = (4.14)

Proof: It is not difficult to show that L has the eigenvalues «;(i=1,2,...,2m),
given in Table 4.1. Substituting eigenvalues from the table into tr(L~!) =

2m

m k7!, we will get the solution and the lemma is proved.é

Table 4.1: Eigenvalues of L

Eigenvalue(k;) multiplicities

(z1=y1)+(za—v3)+1/((z1—v1)~(r3—v3))2 +4(x2—12)?

5 m-1
(z1-y1 )+ {23~z )—\/((r1—2y1 )—(z3~y3))° +4(z2~y2)? m-1
ctd++/(c—d)2+4€2 1

2

c+d—+/(c—d)2+4e? 1

2

Corollary 4.2 If L is a positive definite matriz then (z1 —y1) + (23 — y3), (21—
y1)(z3 — y3) — (z2 — ¥2)%, ¢+ d and cd — €?* are all positive.

Proof: Each of the four expressions can be obtained as either a sum of a pair
of eigenvalues of L or a product. Hence provided L is positive definite, they are

positive.&
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In order to express tr(M~!) in terms of combinatorial features of the design,

we employ the following further notation:

n—-1 b n—1 b n—-1 b
Da=33"nk;,Dp =3 nbiy, Dap = Y Y naijnpij,
=1 j=1 i=1 j=1 i=1 j=1

b b b
Sa= T3S0 = YTy Sp = Y. Thy
]:

i=1 i=1

b b
Sap =Y _Ta;Tpj , Sa =Y _ Ta;Ts;,
j=1 j=1
TA DA SA

d":n_l“k(n~2)+k(n_1)(n_2)’ (4.15)

QA:n—l_k(n—l)’qD:n-—l_k(n—l)’qB:n——l k(n —1)

= 2AD = =248
44D = kn—1) y JAB = Kn—1)

The following result expresses the design-dependent bound ¢r(M 1) as a func-

tion of the elements of the incidence matrix of the design.

Lemma 4.4 Let M be the matriz given in Lemma 4.2, then

tr(M=1) = (n — 2) fi(naij, npij) + fo(Taj, Tj),

(4.16)
where
sz + dD — ZdAD

ii,MDi;) = , 4.17
fl(nAJ TID]) dAdD'—d%D ( )

and 4
fo(T4;,Th;) = i—q—i—, (4.18)

9AdB — 44B

where d4, dp, dap, qa, g8 and gap are defined in (4.15).



Chapter 4 92

Proof: From Corollary 4.1 and Lemma 4.3 the result follows.&

Corollary 4.3 If design d in Theorem 4.1 is a PBDS design, then the inequality
in (4.5) become equality.

Proof: By Corollary 2.1(page 44), since d is a PBDS design, the structure
of its information matrix for the estimators of the contrast of interest, M, is the

same as the structure of L given in Lemma 4.3. The proof follows from here.&

We now seek the minimum value of the design-dependent bound tr(Af-1)
over all designs having particular values for b, k and t. This will give a very tight
bound for k > 4(see Table 4.2) and, more importantly, a means of identifying
efficient designs, since any design which achieves this minimum value must be
highly efficient.

4.3 Finding Minimum Values for the tr (3 -1):

In order to find the A-optimal designs in the class of n x 2 CFBD(00) designs,
we need to characterize those designs which minimize tr(M~1), given in (4.16).
In this section we try to minimize this design-dependent bound over all possible
designs in n x 2 CFBD(00). In other words our task in this section is to find
those values of nayi;’s, npij;’s, Ts;’s and T4;’s which minimize fo(T4;,Tg;) and
fi(naijynpi;), given in (4.17) and (4.18) respectively. Unfortunately tr(M ') is
a nonlinear multivariate function of discrete variables and no computer package
was found which was able to minimize it. Now we give some analytical results

which in some cases simplify our object function.

Lemma 4.5 For any block design d € nx2 CFBD(00) the following expressions,

formed from the above functions are always positive:

da, dp, 94, 9B, 949B — Cims (4.19)
dadp —d%p, da+dp —2dap, 2ds +dp — 2dap.

Proof: The diagonal elements of the A-matrix of the design for treatment i

belonging to set A satisfies:

1 b b
TAi — z anAij 2 Tai — E nai; = 0. (4‘20)
7=1 =1
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This implies that

> onk; 20 (4.21)
But after some algebra d4 can be written as follows:

1n 1 b 1 b ) n—1 5
da = p{TA_EZEnA:J} mE{TAJ'_;nAU}’ (4.22)

=1 j=1 j=1

where p=n-1 and the first term on the RHS is positive by (4.21). The second

term is also positive, since we have

n—-1 2 n-1n-1
Tﬁj = {Z nm} Z nA,] + Z Z nAisNAl 2 Z nA,J (4.23)
i=1 i=1 [#1

By the same approach we can prove that dp > 0.

It can be shown that
qa Z Taj(k — T4a;). (4.24)

Since 0 < Ty; < k, it follows that g4 > 0. To prove gg > 0 the same approach
can be utilized. To establish that the other expressions in the statement of the
lemma are positive, notice that dgadp — d4p, da + dp — 2d4p and qaqs — ¢4p are
all either products or sum of the eigenvalues of the positive definite matrix, M.

Then by Corollaries 4.1 and 4.2, the lemma is proved.

In the following two sections we first assume that the T;’s and Tp;’s are
fixed and consider the behaviour of fi(naij,np:;). Then we assume T4 and Tp

are fixed and minimize fo(T4;, TB;).

4.3.1 MlnlmIZIHg fl(nAij,nDij):

In this section we assume that the T4;’s and T;’s are fixed(and hence Tp; =
k — Ta; — Tpj is also fixed)(j=1,2,...,b), then try to obtain the minimum value of
fi(naij, npij), defined in (4.17). First, we prove that if either the T4;’s(j=1,2,...,b)
or the Tg;’s( j=1,2,...,b) are divisible by p=n-1, f; is minimized when the repli-
cations of the treatment combinations belonging to set A are as near equal as
possible in each block, i.e. |ngij — nairjl <1 for ¢ # ¢ and j=1,2,...,b and the

same is true for the treatment combinations belonging to set D. We then state the
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conjecture that if neither the T4;’s nor the Tp;’s are divisible by n-1, the same
conditions on the treatment replications ensure the minimization of f;. Therefore

to minimize f; we consider 3 separate cases:

1. Each T4;, Tp;(j=1,2,...,b) is divisible by p.

2. Exactly one of the sets {T4;;j = 1,2,...,b} and {Tp;;7 = 1,2,...,b} has

every element divisible by p.
3. Neither set in 2 has every element divisible by p.

e CASE 1

For minimizing f1(n.4;,np:;), in this case the following lemma is needed.

Lemma 4.6 Suppose we have the following function:

2d, — 2d,, + d

, (4.25)
d.d, — &,

g(rij,yij) =

in which (dyd, —dZ, # 0), where x;; and y;; are independent variables, such
that

Siazi; =0, iy =0, doy =200 Dhet Tijyis, (4.26)
dx = dl —Z Z?:l Z?:l m?_]’ dy = d2 -z Z?:l Z?:l y?]?

where dy, dy and z are positive constants, then g(zij,yij) is minimized when

zij = yi; =0, fori=1,2,...,p and j=1,2,...,b.

Proof: Note that the function g(z;;,y:;) is well-defined since d.d, —dZ, # 0.
To prove the lemma we first show that z;; = yi; = 0 is the only critical
point of g(z;;,yi;). Then we establish that the Hessian(see Lang,1983,p376)

of g(zij,yi;) for the critical point is always positive.

In order to find the critical point of g(zi;,y:;), we employ the Lagrange
Multipliers Az, A;;(j=1,2,...,b), and define:

¢ =9(zij, 4i) + ,

b P P
]:

(Nas D zis + Aui D vis)- (4.27)
1=1 1=1

1 =

Then we have
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— 222z +yij)w | 22(2de — 2y + dy)(deyys + dyTis)

6¢/a.’l¢;]’ = "' 2 -+ /\:cj,
(4.28)
and
—2z(zi; + yij)w . 22(2dy — 2dyy + dy)(deyzi; + dyyis)

6¢/ayu= 1:702 J) + v w!;) Yy yJ +/\yj7
where w = d.d, — dZ,.
By setting these two derivatives to zero and summing over i, we obtain
Azj = Ay; = 0 for j=1,2,...,b. Since d.d, — dZ, # 0, the resulting equations
are:

-2Z(25E,‘J’ + y,'j)u: + 22(2dx —_ ery + dy)(dzyy,'j + dy.’L',']') = 0,

2.

(4.29)
—22(1‘;]' + y,-j)w + 22(2dr — ery + dy)(dryx,-j + dyy,'j) = 0,
for i=1,2,...,p and j=1,2,...,b.
In matrix form these equations are:
dedy + d2, — 2d.d-y — dyyd, —d2, — 2d% + 2d.d,y i | _ g
—2d2, + 2d,yd, — &2 dedy + &2, — 2dpdey — doydy | | yi; | T
(4.30)

If the matrix of coefficients is nonsingular, then z;; = y;; = 0 is the unique
solution to (4.30). It can be shown that the determinant of this matrix is
—(dzdy —d2,)* # 0. Therefore the proof of the first part is established. Also
it can be shown that the Hessian(see Lange,1983,p376) of function g at the

critical point is

H(g)(00...0) = 221, @ W,

where

d? _drhd;!

W=
—dildyt 247!

and u=b(n-1). By assuming that z, d; and ¢; are all positive, it can be
shown that W is a positive definite matrix. This implies that H(g¢)(00...0)
is a positive definite matrix. Therefore by Corwin and Szczarba(1982,p194)
the critical point (00...0) is a global minimum. This completes the proof.d
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Theorem 4.2 For fized values of Ta; and Tp;(j=1,2, ..., b ), if Ta; =
0 mod(p) and Tp; = 0 mod(p), then the function fi(naij, npij) given in
(4.17) is minimized if

NAi; = %41- and npi; = —i—i. (431)

Proof: In the expression for fi(nij, npij), da, dp and dap can be reformu-

lated as follows:

_ T 1 b 14 T N2
dA - _;;1 - k(n-2) Z_7‘=1 i=1(—5l - nAi]) 3

T .
dp =2 — el v 30 (BB — i), (4:32)
Tx, Tp;
dip = grmgy Limr Lima (5 — naig) (52 — i),

where p=n-1.

Now let z;; = %TAJ- —n4i; and ¥ = %ij —npi;. Then by applying Lemma
4.6, the only critical point for the function f; is (0,0), i.e. n4;; = T4;/p and
npi; = Tp;/p. Hence if Ty; = 0 mod(p) and Tp; = 0 mod(p), the theorem
is proved.db

Corollary 4.4 If the conditions in the statement of Theorem 4.2 are sat-
isfied, i.e. Ta; = 0 mod(n — 1) and Tp; = 0 mod(n — 1), then

min fl(nA;j,nD,-j) = (n — 1)(1/TA + 2/TD). (4.33)
Proof: Follows from Theorem 4.2.&

o CASE II

Theorem 4.3 Ifin an n x 2 CFBD(00) design d, the Ta;/p’s(or Tp;/p’s)
are integers for j=1,2,....,b and if na; = Ta;/plor npi; = Tpj/p) for
i=1,2,...,p and j=1,2,...,b, where p=n-1. Then by assuming T4; and Tp;

are fized, f1 is minimized if

=] or [0

(4.34)
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Proof: If ny;; = Ta;/p, where T4;/p is an integer for i=1, 2, ..., p and
j=1, 2, ..., b, then d4 = Ta/p is a constant and dsap = 0. Therefore
fi = 1/da +2/dp. In order to minimize f; we must maximize dp. From
(4.15), since Tp;’s are fixed, then 3°7_; n},;; must be minimized subject to
the condition Tp; is fixed. By Cheng and Wu (1980, Lemma 2.3) the result

follows. Similarly it can be proved for n4;;’s.&

o CASE III

As we mentioned earlier, the conditions T'4; = 0 mod(p) and Tp; =0 mod(p)
given in Theorem 4.2 cannot be met for k < 2(n —1). Then the question is:
if T4; and Tp; are assumed to be fixed, which values of n4;;’s and np;;’s(
i=1, 2,... , p; j=1, 2,..., b) minimize f;? Roughly speaking, Theorems 4.2
and 4.3 suggest that the values of n4;;’s should be as equal as possible, i.e.
nai; = [Ta;/p] or [Ta;/p] + 1, where [.] denotes the integer part. The same
suggestion can be made for np;;’s. Strictly speaking, we need to show that
the function g given in Lemma 4.6 is a convex function, i.e. it must be
shown that the Hessian of g, i.e. H(g) is a nonnegative definite matrix(see
Roberts and Varberg,1973,p103). This is a difficult task, since H(g) is a
parametric matix of order 2b(n-1). However, numerical computation in-
dicates that this is the case. We give this intuitive result, backed up by

computing results as the following conjecture.

Conjecture 4.1 If in the statement of Theorem 4.2, both T4;/p and Tp;/p

(7=1,2,...,b) are not integers, then fi is minimized if

nai; = [Ta;/p] or [Ta;/p)+1,
(4.35)
and npi; = [Tp;/p] or [Tp;/p]+1,

where p=n-1 and [.] denotes the "integer part of.”.

Support for the conjecture has been found by examining the structure of A-
optimal designs and observing that they have the conjectured replications for the

treatments. This is illustrated in the following example.

Example 4.1 For n=4, b=4 and k=3, the following design is the most efficient
design generated by JE:
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Blockt 01 10 11
Block2 01 20 21
Block3 01 30 31
Blocky 11 21 31

In this highly efficient PBDS design(see Table 4.2 for an assessment of efficiency)
we can see that Tpy = Tpys = Tps = 1, Tpg = 3, Tay = Tho = Tuzs = 1 and
Tas = 0. In line with the conjecture we observe that npy;y = 1, npiy = 0 for 1=2,3

and so on.

If we assume that Conjecture 4.1 is true, then we can establish he following
theorem which shows that for small block sizes(k < n —1), the binary designs for
the treatment combinations belonging to set A U D are more efficient than the

non-binary designs.

Theorem 4.4 Ifd is an n x2 CFBD(00) design with block size k < n —1 which
s non-binary for the treatment combinations in AU D, then there exists a design,
d* which is binary in AU D with smaller total variance on the dual versus single

treatment contrasts.

Proof: Suppose that de n x 2 CFBD(00) has k < n — 1, and suppose design
d 1s not binary for treatment combinations belonging to A U D. Then if treat-
ment combination i0, belonging to set A, appears more than once in a block, we
substitute another treatment combination of set A which does not appear in the
block, and keep the treatment combination i0 only once in the block. Suppose
we repeat this substitution for each treatment combination belonging to set A
and simultaneously, we do the same substitution for each treatment combination
belonging to set D, and call the resulting design d*. Obviously design d* will be
binary in terms of the treatment combinations belonging to set A and D. Since
Ts; £k <n—1and Tp; £ k < n —1, the substitution guarantees that design
d* is binary. In making this substitution, the values of ¢4, gp and ¢ap for both
d and d* remain the same. But in design d*, the treatment combinations in each
set A and D are replicated equally often in each block. Hence by Conjecture 4.1

it is more efficient relative to design d.&

This result and hence the conjecture are supported by an example of a design
with k<n-—-1
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Example 4.2 For n=6, b=10 and k=5(k<n-1), the following design is the most
efficient design which has been generated by JE:

Blockl 01 10 20 11 21 Block6 01 10 30 11 31
Block2 01 20 30 21 31 Block?7 01 20 40 21 41
Block3 01 30 40 31 41 Block8 01 30 50 31 51
Block4d 01 40 50 41 51 Block9 01 10 40 11 41
Block5 01 10 50 11 51 Blockl0 01 20 50 21 51,

This is binary in terms of treatment combinations 10, 20, 80, 40 and 50 and
also 11, 21, 31, 41 and 51 with tr(V)=4.445.

The theorem is not true for & > n — 1, as demonstrated by the following

example:

Example 4.3 For n=3, b=3 and k=6, from JE, the A-optimal design in the
PBDS class which has total variance 2.225 for the contrasts of interest is not
binary(see Table 4.2). If we replace the treatment combination 11 in the first
block by 01 and the treatment combination 21 in the second block by 01, the

design changes to:

Blockl 01 01 11 21 10 20
Block2 01 01 11 21 10 20
Block3 01 01 11 21 10 20

which is binary for the sets A and D. However it has total variance 2.3333 for

the contrasts of interest which shows it is not as efficient as the design in Table

4.2

Now we are in position to give a theorem which gives a reformulation of d4,
dp and the domain of d4p when the treatment combinations belonging to sets
A and D are replicated equally often in each block. The proof of this theorem is
given in Appendix A at the end of the thesis.

Theorem 4.5 Let as; = [T4;/p] and ap; = [Tp;/p], denote the integer parts of
Ty4;/p and Tp;j/p respectively. Also let bs; = Ta; — pas; and bp; = Tp; — pap;,
the nai;’s be either as; or aq; + 1 and the np;;’s be either apj or ap; + 1, where

-1 -1 .
?:1 TLAi; = TAj and E?:l npi; = TDJ'. Then:
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da = 14 — sy Limr bai(n — 1= baj),
dp = ;B — gy L= bpi(n — 1 = bpj), (4.36)
dap € (u’v)v
where
! i{'(b.bq L bt} (4.37)
v~k(n—2)j=1 mini 04, 9Dj 1 Ai%D5 ) .
and
w= Xb:{ (0,b4; + bp; —n +1) L b ) (4.38)
_k(n~2)j=1 maz(V, 045 + 0p; — N —basbo;}. )

Conclusion 4.1 Provided the Conjecture 4.1 is true, we conclude that, subject
to assuming Ta; and Tp; are fized, the function fi(naij,npi;) ts minimized if
nai; = aaj+1 or ay;, and npij = ap;j+ 1 or ap;j. It is clear that ¢f Ty; and Tp;
are fized, then agaj, baj, ap; and bp; are all constants. This implies that d4 and
dp are constants while, as has been shown in Theorem 4.5, dap is varying across

a domain whose boundaries depend on Ty; and Tp;.

Now we want to consider the behaviour of the function

2dy —2d4p + dp
dadp — d%p

f(dap) =

for fixed values of T4;’s and Tp;’s under the assumptions that the conditions on
n4i;’s and np;;’s in the statement of the Theorem 4.5 are satisfied. It must be
reiterated here that, under these conditions, d4 and dp are fixed, while d4p is
not fixed. We have:

—2{(1211) - dAD(QdA + dD) + dAdD}
(dadp — d%p)?
We need to find the sign of this function in terms of d4p in the domain which

9f(dap)/0dap = (4.39)

is given in Theorem 4.5. The sign of this function is equivalent to the sign of

‘dqu+dAD(2dA +dD)—dAdD. (4.40)
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It can be shown that v in (4.37) is always positive, while v in (4.38) can
be positive or negative. Hence d4p can take both positive and negative values.
In order to determine the sign of the expression in (4.40) two cases have to be
considered. If dsp is negative, the sign is negative. If this is the case d4p must be
maximized in order to minimize f;. But if d4p is positive, we have not been able
to determine the sign of (4.40) analytically, since it is a complicated function.
This is not a major problem in establishing a bound and an A-optimal design,
since it can be solved by using a computer algorithm numerically. We will discuss
this further later in the chapter.

Our next task is to pursue analytically the minimization of fo(T4;,TB;).

4.3.2 Minimizing fo(T4;,Tsj):

In this section we will consider the behaviour of fo(T4j,Tp;). To minimize

fo(T'4;,TB;), 3 separate cases are considered:

1. Both T4 and T are divisible by b.
2. Exactly one of T4 and Tg is divisible by b.

3. Neither T4 nor T is divisible by b.

o Casel

The following lemma is needed.

Lemma 4.7 Suppose we have the following function:

d, +d,

g(.’E,y) =TT g5 (4'41)
729 d.d, — diy

in which d.dy — d2, > 0, where z; and y; are independent variables, such
that

Z?zl T; = 0’ E?zl Yi = 0’ d-’E = dl —Z 2?:1 11:3 (442)
dxy =ds+ ZZ?-:l T;Ys, dy =d; — ZZ?':l y?a

dy, ds, ds3, z are positive constants, d, and d, are positive. Then g(z;,y;)

is mintmized when z; = y; =0, for j=1,2,...,b.
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Proof: Note that the function g(z;,y;) is well-defined since d.d, — d%, # 0.
To prove the lemma we first show that z; = y; = 0 is the only critical point
of g(z;,y;). Then we show that the Hessian of g(z;,y;) for the critical point

is always positive definite.

In order to find the critical point of g(z;,y;), we employ Lagrange Multi-
pliers A; and A, and define:

b
¢ = ngvyJ +/\ ij +)‘y(ZyJ (4-43)
J=1

Then we have

040z, = 2217y + &)t vidsy(d: + dy)}

(dedy — d2,)?

+ Az

(4.44)

ZZ{yJ(d2 +d7) + z;dzy(d: + dy)}
(dedy — d2,)?

By setting these two derivatives to zero and summing over j, we obtain

Az = Ay = 0. Since by assumption z > 0 and d.d, — d%, > 0, the resulting

0¢/0y; = + Ay

equations are:
(d} + d2,)z; + dzoy(ds + dy )y; = 0,
(4.45)
dey(de + dy)z5 + (dﬁ + d?:y)yj =0.

In matrix form these equations are:

djf/ + dgy dl'y(dI + dy)
(

Ti ) = 0,. (4.46)
doy(ds +dy) &2+ 3,

If the matrix of coefficients is nonsingular, then z; = y; = 0 is the unique
solution to that equations. It can be shown that the determinant of this
matrix is —(dzdy — d2,)* # 0. Therefore the proof of the first part is
established. Also it can be shown that the Hessian of function g at the

critical point is

H(g)(00...0) = 221, @ W,

where

1 d% + d2 ds(dy + d3)

Weo——
(didy — d3)*

da(di +d2) & +d3
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Further it can be shown that W is a positive definite matrix. This implies
that H(g)(00...0) is a positive definite matrix. Therefore by Corwin and
Szczarba(1982,p194) the critical point (00...0) is a global minimum. This
completes the proof.d

Theorem 4.6 For fized values of T4 and Tp (and consequently a fized value
of Tg = bk — Ty — Tp), if Ta/b and Tg/b are integers, the function
fo(Taj,TB;) given in (4.18) is minimized if:

Ty = Il;i and Tgj = IZE (4.47)

Proof: We can show that
T2

b 2 b . TaN2
7=1 TAJ - Zj:l(TAJ - —1;1) + TbA)

S Th = (T — 2)2+ 22, (4.48)

Sty TaiTs; = Sby(Taj — 34)(Ts; — T2) + Talz,
Based on these we have

ga=Za(1 - 38) - 20, (Tw; — 302,

o5 = 21— B) - & T (T — B0 (4.49)

T
gaB = Iﬁ;’i + ;1; b_(Ta; — Z8)(TB; — Z2).

Now let z; = %TA —Ty4; and y; = %TB — T'g;. Then by applying Lemma
4.7, the only critical point for the function fy is (0,0), i.e. T4; = Ta/b
and Tg; = Tp/b. Hence if T4 = 0 mod(b) and Tg = 0 mod(b), then fo is

minimized and the theorem is proved.&

Corollary 4.5 If the conditions in the statement of Theorem 4.6 are sat-
isfied and if T4 and Tg are both divisible by b, then

min fo(T4j, Tpj) = (n ~ 1)(1/T4 +1/Tp + 2/Tp). (4.50)

Proof: The proof follows immediately from the proof of Theorem 4.6.&
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e Case IT

In this case if T4 is divisible by b, then the following theorem shows that
if the numbers of units assigned to A within each block are equal, then
in order to minimize fo(T4;,Tp;), the treatment combination 01 should be
replicated as near equally as possible between the blocks. The same result

is true when A is replaced by B.

Theorem 4.7 If, in an n x 2 CFBD(00) design, T4 and Tp are assumed
to be constants and Ta; = Ta/b (or Tg; = Tg/b) for j=1,2,...,b, where T4 /b
(or Tg/b) is integer, then fo is minimized if

=[] or (] 1
(4.51)
(or Tu;= [Il;i] or [IBA] + 1)

for j=1,2,...,b.

Proof: If T4; = Ta/b is an integer for j=1,2,...,b, then g4 = T4(bk —
T4)/(pbk) and gap = T4Tg/(pbk) are constants since T4 and T are con-

stants. Therefore fp is only a function of a single variable gg. Hence

Ofe | _—Ga=dip (4.52)

2
998 (9498 — 44p)*
This derivative is always negative, i.e. fp is minimized if gg is maximized,

and ¢g is maximized if Z';:l TZ ; is minimized. Since Tg is assumed fixed,
then by Lemma 2.3 of Cheng and Wu(1980) the result follows. The result
for Ty;(j=1,2,...,b) is proved in a similar way.d

e Case III

Now suppose the conditions of Theorems 4.6 and 4.7 cannot be satisfied.
We then ask the question: which values of the T'4;’s and the T’g;’s minimize
fo, if T4 and Tp are assumed to be fixed? The same argument which was
made for the ny;;’s and np;;’s on page 97, can be made for the T4;’s and
Tp;’s. Based on this argument we give the following conjecture which is

analogous to Conjecture 4.1.



Chapter 4 105

Conjecture 4.2 If we assume that T4 and T are fized, then fo ts mini-
mized if

TAJ‘=[TA/Z)] or [TA/b]+1,

and Tg; = [TB/b] or [TB/b] + 1.

Let a4 and ap denote the integer part of T,4/b and Ts/b respectively, by =
T4 — bay and bg = Ty — bag. Then in the following corollary, we prove that
when T4 and T are fixed, if T4; = a4+ 1 or ag and Tg; = ap + 1 or ap, then
ga and ¢p are fixed, while g4 is not fixed. Then we show that, provided that

Conjecture 4.2 is true, fo(T4j, Tg;) is minimized if g4p is minimized.

Corollary 4.6 Suppose T4 and Tg are fized, then provided Conjecture 4.2 is

irue,

aA(bk—*TA—bA)—*-bA(k—l) . aB(bk—TB—bB)+bB(k—l)
k(n—1) 4B = k(n —1) '
(4.54)

g4 =

and qap € (z,w), where

asTsg +agby + min(bA, bB) _ asls +agby + mam(O, by + bg ~ b)

- k(n —1) £ k(n —1) ’
(4.55)
and fy is minimized when qup = z.
Proof: Provided Conjecture 4.2 is true, then it can be shown that
Sa=3"2T3; = aa(Ta+ ba) + bp,
(4.56)

and Sg = ?:1 T}%j = aB(TB + bB) + bg.
Substituting from this into (4.15) for S4 and Sp we will obtain (4.54). By Mar-
shall and Olkin(1979) it can be shown that

asTptapbatmin(ba,bp)
k(n-1) ’

gaB <
(4.57)

aATB+aBbA+ma:c(0,bA+bB—b)
dAB Z E(n-1) .

Since under the given conditions ¢4 and ¢p are fixed, it follows that fy is mini-

mized if ¢4p is minimized. The proof follows from here.d
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Conclusion 4.2 By assuming T4 and Tg are fized, the minimum value of fo(T4;,

Tp;) is a function of Ta and Tg only, provided the Conjecture 4.2 is true.

4.3.3 Minimizing f; + fo:

In this section we assume T4 and Tp are fixed and consider the minimum of
tr(M~-'). Then give a theorem which is a result derived from Theorems 4.2 and

4.6 and does not require the above conjectures.

Theorem 4.8 For anyn x2 CFBD(00) design, d, if na;; = na, npij = np(i=I,
2, .., n-1;3=1, 2, ..., b) and

where
2 1 1
flz,y) = ;+§+k—_p(x—:y_)’
and

Z={(z,9),(z,y) € (N*,N*);p(e +y) < k},

then design d is overall A-optimal.

Proof: In Theorem 4.1 we show that for any n x 2 CFBD(00) design, we have:

tr(CQC") > (n — 2) fi(naij,npij) + fo(Tas, Tej)-

From Theorem 4.2 if all the n4;;’s and np;;’s are equal then fi(naij,npi;) is
minimized with
. 2 1 =
min fi(naij,npi) = (n = (7= + 7-)- (4.59)
Tp Ta
Also by Theorem 4.6 and Corollary 4.5, we have Ty4; = (n — 1)ng4, Tp; =
k—(n—1)(na+np) for j=1,2,....b and

. 1 2 1
min fo(TAj,TBj) = (n -~ 1)('7-,;' + E -+ T—B) (4.60)
Therefore
_ 2 1 1
tr(MYH)>2! 2 L : 4.61
T( )_b{np+nA+k-—p(nA+nD)} ( )

Hence design d which achieves f(n4,np) is overall A-optimal design.&
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Example 4.4 Forn=3, b=2 and k=5, a completely randomized block design(n 4;;

= np;; = 1) is overall A-optimal.

Example 4.5 For n=3, 3 < b < 6 and k=13, those designs with ng; = 3,

nai; = 2 and np;; = 3 are overall A-optimal.

The following lemma which does not depend on the conjecture is needed to
prove the next theorem, which gives a short cut to compute the bound whenever

it is applicable.

Lemma 4.8 Suppose in design d, q4, qB, 9D, 4B, qap are defined as in (4.15),
then

94+98 294+ 9D — 294D
9498 — ¢45 q49p — G4p

(4.62)

Proof: See Appendix A at the end of the thesis.

Discussion 4.1 Provided that Conjecture 4.1 is true, we have shown that, by
assuming Ty; and Tp; are fizred, the minimum of fi(naij, npij) is not a constant
but depends on Ta; Tp; and Y7o Y. nagjnpij. Since the latter term is lo-
cated in a set bounded by functions of Ta; and Tp;, we can denote the function
fi by Fi(T4;,Tp;), say. As discussed in Conclusion 4.1 this is a very com-
plicated function. But by using a computer algorithm we can find those val-
ues of Z}‘z‘f ?~=1 n4ijnpi; which minimize f;. Therefore we can assume that
Fi(T4j,Tp;) is fized for fired values of Ta; and Tp;. Therefore under this condi-
tion, F1(Ta;,Tp;) + fo(Ta;,Tp;) is a bound which does depend on T4; and Tp;.
By assuming T4 and T are fired we then considered the behaviour of fo(T4;,TB;)
under the assumption that Conjecture 4.2 is true. The problem which remains to
be solved is to consider the behaviour of F1(Taj,Tp;) when T4 and Tp are taken
as fired. This is a very complicated problem. It should be noted here that the
members of staff of the department who deal with the minimization of nonlinear
objective functions with integers, knew of no computer package which can be used
to minimize tr(M~') for integer values of nu;; and np;;. However numerical
computation suggests that the behaviour of F1(Ta;,Tp;) is in the same direction
as the behaviour of fo(Taj, Th;) given in Conjecture 4.2. This led to the following

conjecture.
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Conjecture 4.3 Assume that T4 and Tg are fized. Then Fy(T4;,Tg;) in Dis-

cussion 4.1 is minimized if

(Z) TAjzaA+1 or ayu,
(it) Tpj=ap+1 orag, (4.63)

(zzz) Sip =a4Tg +agbs + rnax(O, bs + bg — b),

where as, ag denote the integer part of T4 /b and Tg/b respectively, by = T4 —bay
and bB = TB - baB.

Based on all three conjectures an algorithm described below was written to
minimize tr(M~!). For at least twenty sets of different parameter values this
algorithm has been compared with the minimum value of tr(CQC’) obtained
from JE. In all cases the bound was found to be very close to the minimum trace
and did not exceed the trace. These results support all three conjectures, and are

illustrated in the following examples.

Example 4.6 For n=/4, b=8 and k=4, the conjectured bound gives value 2.7163
for the total variance of the contrasts of interest. The most efficient design gen-
erated by JE has the value 2.7687 for the trace while the bound given in Chapter
3 is 2.5560, which is poor relative to the conjectured bound.

Example 4.7 For n=4, b=3 and k=6, the conjectured bound is {.5909. The most
efficient design given by JE gives value 4.5909 for tr(CQC") while the bound given
in Chapter 8 is 4.5000.

It should be noted here that the conjectured bound is tighter than the bound
b, given in Section 3.5 in Chapter 3, except when the condition N'r=5C’ = 0 is
satisfied and both T4 and Tp which minimize (3.13) are divisible by b(n-1). In
this case the two bounds are identical. In the previous example the size of the
discrepancies between the trace and each of bound b,, and the conjectured bound

are respectively 2% and 0% of the bound.
Before giving the algorithm for finding the minimum of ¢r(M-') we give a

theorem which when applicable, gives a short cut in computation.

Theorem 4.9 Suppose we have a design d in which the treatment combinations

in sets A and D are replicated equally often in each block and nai; > npij, for
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i=1,2,...,n-1 and j=1,2,...,b. Then, provided Conjecture 4.1 is true, there ezists
a design having na;; < np;; which has higher efficiency than design d.

Proof: See Appendix A at the end of the thesis.

4.4 Algorithm 1

Finding the Bound and the Replications:

The algorithm described in this section not only finds the value of the conjec-
tured bound, for specified size of experiments but also gives the total number of
units which should be assigned to each of the treatment combinations belonging
to sets A, B and D in each block of the design. This information is needed in a

construction algorithm presented in Section 4.6.

The computer algorithm in FORTRAN was used to find the conjectured bound

for different values of n, b, k and specified total replications, (t4,tp) € =, where
== {(tAatD);tA >n-— lvtD >n-— 1atA+tD < bk — 1;tA3tD € N+}

and Nt denotes the set of integers, positive numbers.

A listing of the algorithm is given in Appendix B and has the following steps:

STEP 1 : Fix (ta,tp) € =, where = is defined above, and compute ¢4, ¢g and
Sap as given in the Conjecture 4.3, by utilizing Corollary 4.6.

STEP 2 : Assign T4;’s and T;’s in block j for j=1,2,...,b, such that S4p of the
design equals S4p found in STEP 1 by utilizing Conjecture 4.2. This step
specifies the optimal allocations of units in each block for sets A, B and

consequently D.

STEP 3 : Having specified T4;, Tg; and consequently Tp; in STEP 2, by utiliz-
ing Conjecture 4.1 and applying Theorem 4.5 and Conclusion 4.1, we obtain
the minimum value for Fy(T4;, T5;).

STEP 4 : Change T4, T and consequently Tp over all possible values in = and

utilizing Theorem 4.9, when it is appropriate, to shorten computation time.

Having specified the total number of units assigned to sets A and B, namely

T4 and Tp respectively, then based on these numbers we assign either [T4/b] or
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[T4/b] + 1 units and [Ts/b] or [Ts/b] + 1 units to the treatment combinations
belonging to sets A and B respectively in each block .

Since the bound obtained by the above algorithm is a conjectured bound, we

now give a definition of those designs which achieve this bound.

Definition 4.1 Any design which achieves the conjectured bound obtained from
Algorithm I outlined above will be called a C-design.

Those designs which do not achieve the bound but give values for tr(CQC’)

very close to the conjectured bound will be called near C-designs.

The structure of C-designs is examined in the next section. By studying the
structure, the designs in Table 4.2 at the end of chapter were derived. As Table
4.2 shows, these designs are all highly efficient compared with b,, and the best
design obtained by JE.

The advantage of this approach compared with running JE is that it takes
much less computation time and also is applicable for values of n > 10 and b or k
or both bigger than 18. For instance for parameters (n,b,k)=(3,18,4) and (4,12,4)
the cpu times used by JE are 3 and 5 respectively, while correponding cpu times
used by Algorithm I is .5 and .26 respectively. However, JE always gives a highly
efficient design for any combinations of the parameter values b < 18, ¢t < 18 and
k <18.

In order to construct designs we need to study the structure and existence
of the most efficient designs which will accommodate the replications produced
by the algorithm. These structures are established in the next section and, in
the following section, an algorithm for checking the existence of these designs is

given.

4.5 Layout of C-designs:

For a set of parameter values n, b and k, let T4, Ts and Tp be those values which
minimize tr(M~1!) as provided by the algorithm of Section 4.4. Assume a PBDS
design does exist for the specified values then, if Conjectures 4.1-4.3 are true, the

C-designs have one of the following layouts, where u; denotes the integer part of

T;/b for i=A, B and D.
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R-type :

R-type and the layout of the design is shown in Figure 4.1.

111

If T4/b, T /b and Tp/b are integer values then the design is said to be

Blocks -
Units
T T2 03 L. L. b
1
2
. B
4
B
U
1
2 A
.
A
o
1
2 D
u
b
Figure 4.1: An R-type design; where
ui=T./ b is integer for i=A, B and D.
1
(R,S)-type : three cases have to be considered here:
1. R-type in terms of treatment 01(set B) and S-type in terms of two
other sets. This is the case if Tp/b is integer and T4/b and Tp/b are
not integers. The layout of the design is shown in Figure 4.2.
Blocks -~
Units
N 1 2 3 . . . S b
1
2
: B
u
B
R [ S
1
2
: A
u'+1 _____________
S 1
1
2
: D
uD f@)
Figure 4.2: An (R,S)-type design, when LiSRARY

TA/ b is not an integer and s=T -bu .
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2. R-type in terms of set A and S-type in terms of two other sets. This is
the case if T,4/b is integer, while T5/b and Tp/b are not integers. The
layout of the design is given in Figure 4.3.

Blocks -
Units
v 1 2 3 . ; ) s b
1
2
i A
!
A
o |
1
2
) B
. UB
« -+ e e
o 1
1
2
. D
u
D

Figure 4.3: An (R,S)-type design, when
TB/ b is not an integer and s=TB—buB.
3. R-typein terms of set D and S-type in terms of two other sets. This is
the case if Tp/b is integer, while T5/b and T4 /b are not integers. The
layout of the design is given in Figure 4.4.

Blocks >
Units
1 1 2 3 . . ] s b

1

2

: D

G

D

S
1

2

. B

. UB
aw +xr e ——————
A D 1

1

2

. A

u

A

Figure 4.4: An (R,S)-type design, when
TB/ b is not an integer and s=T_-bu_.
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(S,S)-type : If none of T4/b, Tg/b and Tp/b is an integer, then the design is
said to be (85,S)-type and the layout of the design is shown in Figure 4.5.

Blocks »
Units .
2 3. . .
N sl 52 b
1
2
. B
a
B)_ ___________
o
————————————————— u +1
B
A
u
uA+1 ————————————— A
o L
1
2
. D
u
D

Figure 4.5: An (S,S)-type design, when
T ~-bu >b-T +bu , s =b-T +bu_ and s _=
A A B B 3 ) B 2

TA—buA.
4.6 Constructing C-designs:

The construction of a C-design will, in general, be a difficult task. From Figures
4.2-4.5, it is clear that the (R,S)- and (S-S)-type designs can be viewed respec-

tively as a combination of two or three R-type designs.

In the following we give an algorithmic method of constructing C-designs in

conjunction with the algorithm of Section 4.4. But first we need a lemma.

Lemma 4.9 Suppose an n x 2 CFBD(00) design consists of b blocks of size k.
Let kg, k4 and kp units in each block be assigned to the treatment combinations

in sets B, A and D respectively. Then a sufficient condition for a design to be an
R-type PBDS design is
e BBD(n-1,b,ka) and BBD(n-1,b,kp) exist,

o either kp = k4 + 0 mod(n — 1), or kg = kp + 0 mod(n — 1), or kp =
0 mod(n — 1), or kg =0 mod(n — 1).
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It should be mentioned here that there might be other sufficient conditions
under which a PBDS design exists. This is a problem for further investigation.
But in this study we construct only those designs which satisfy the conditions of

the above lemma. These conditions are built into the following algorithm.

Algorithm II:

STEP 1 : Check whether the integers T4 and Tp are divisible by n-1.

STEP 2 : For given T4, Tg and Tp, partition the layout of the design as given
in Figures 4.1 to 4.5. The design consists of one, two or three R-types sets
of blocks depending on whether the design is an R-, (R,S)- or (S,S)-type

respectively.

STEP 3 : For each R-type set of blocks check whether the appropriate BBD
does exist by checking Conditions (2.2) of Ting and Notz(1988, p32).

STEP 4 : For each R-type set of blocks check whether the conditions of Lemma
4.9 are satisfied.

Obviously, this algorithm is unable to identify a C-design for every parameter
combination of n, b and k. In an attempt to fill these gaps, we search for C-
designs within the class of PBDS designs by finding the next values of T4 and T
which minimize the conjectured bound via algorithm I and then checking whether
the PBDS design does exist by using algorithm II.

In the next section we give another approach for the special cases k=2 and 3,
which enables us to identify A-optimal designs within the PBDS class of designs.
This approach does not rest on the conjectures. The designs obtained by this
approach for 2 < b < 10 are included in Table 4.2.

4.7 A-optimal PBDS Designs for k=2 and 3:

For k=2 and 3 we specify the arrangement of treatments in blocks in such a way
that the design is a PBDS design and we formulate tr(CQC’) in the resulting
PBDS design. Then, by a simple computer algorithm, we have derived the A-
optimal designs within the class of PBDS designs. The designs are tabulated in
Table 4.2.
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4.7.1 A-optimal PBDS Designs for k=2:

For this case the following arrangement of treatment combinations in the blocks

gives a PBDS design:

Table 4.4: Arrangement of treatment combinations
in a PBDS design with k=2.

arrangement of treatments | number of blocks
01 |10 (n—1)n,

01 | il (n— 1)np

10 il (n — )n.

i0 | JO(i # 5) ottt

i1 |16 #5) (ol =tie

i0 | 1 £7) (n = 1)(n = 2)n,

Then by Corollary 4.3 the trace of the variance-covariance matrix of the dual

versus single contrast estimators is:

(2da — 2d4p + dp) L 94 +qB
dadp — d%4p q49B — ¢4p

ir(cac) = n=2) , (4.64)

where d4, dp, dap, g4, gp and gap were defined in (4.15), in which

Ty =Dy =(n—1){n, +nc+(n—2)(na+ny)},

Tp = Dp = (n — 1){ns + nc + (n — 2)(ne + ny)},
Sa=(n—1){ne +nc+ (n - 2)(2nq + ny)},
Sp = (n —1){ne + nc + (n — 2)(2n. + ny)},

Dsp = (n —1)n,,
Sap = (n = Dine + (n — 2)ny}.

After some algebra we obtain:

tr(CQC") =2 {Q”'Yﬂ + %} : (4.65)

where
X =2n,+2(n—-1)ng+ns +n.+(n—1)n.+ (3n — 4)ny,
Y = {na + (n = 1)(na + ns)][ns + (n = 1)(ne + nys)} +
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(ne — ng) {470 + (0 — D)0+ 10+ 20)}
U =2n, +ny, +n.+ (n—2)ny,

and
W =n, X ny + (g + np) {nc + (n — 2)ns}.
The A-optimal PBDS design is obtained by minimizing the above expression

subject to the following constraint:

(n — 1) {2nq + 2np + 2n. + (1 — 2)(ng + ne + 2n5)} = 2b = fized. (4.66)

Let nj, nf, n¥, n}, n} and n}, be those integers which minimize the trace,
then any design with such a number of blocks is A-optimal design within the
class of PBDS designs for k=2. This has been done by a simple computer algo-

rithm(Appendix B).

4.7.2 A-optimal PBDS Designs for k=3:

For k=3, the PBDS design has the following structure:
1. For n=3 the arrangement of treatment combinations in Table 4.5 gives
PBDS design. Then it is possible to show that the trace of the variance-covariance

matrix of the dual versus single contrasts is:

(n —2)(2d4 — 2d4p + dp) L _ats
dadp — dp 9498 — ¢4B
where, d4, dp, dap, g4, gp and gap were defined in (4.15), in which for this

tr(CQC") =

: (4.67)

case we have
Ta =2(ng + np + ne + ny + n; + 2n, + 2np, + 3ny),

D4 = 2(ns + 1y + ne + ny 4+ n; + 20y + 4ny, + 5ny),
Sa=2(2n, 4+ np 4+ ne + 1y + ni + dng + dny + 9Ing),
Tp = 2(nc + ng + ne + ny + 2n; + ng + 2n; + 3ny),
Dp = 2(nc + ng + ne + nyg + 2n; + ng + 4nj + 5ny),
Sp =2(2n. 4+ ng + ne + ny + 4n; + ny + 4n; + 9ny),
Dap = 2(n. + ng + ni),

Sap = 2(ne + ny + 2ny + 2n;).
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Table 4.5: Arrangement of treatment combinations in a

PBDS design with k=3 and n=3.

arrangement of treatments | number of blocks
01 |10 jo(z # 7) n
0101 10 2ny
011l ij(z # J) e
01 | 01 il 2nq
01 | i1 10 2n.
01 | i0 LG #4) | 2nyg
0 | j0(z#£7) | 1(I=ior]) | 2n,
01 |10 i0 2ny,
il | jl(e#£7) | (l=ior]) | 2ny
01 | il i1 M,
i0 | i0 jo(j #1) 2ny
i1 |1l j1(j #1) 2my

The A-optimal PBDS design is obtained by minimizing the above expression

subject to the following constraint:
b=n,+n.+2(ns+ng+ne+ns+ng,+np+n;+n;+n+n) = fized. (4.68)

This can be done by a simple computer algorithm(Appendix B).
2. For n> 4, then the arrangement of treatment combinations is given in
Table 4.6. Then it is possible to show that the trace of the variance-covariance

matrix of the dual versus single contrasts is:

(n —2)(2d4 — 2d4p + dp) n g4+ 9gB
dadp — dp 9498 — 945
where, d4, dp, dap, q4, gp and gap were defined in (4.15), in which for this

tr(CC") = : (4.69)

case we have
Tg=ts+ (n—1){2nm + ng + 2n, + (n - 2)(2n, + n, + 3n,)},

Dy=ts+ (n—-1){4nm +4n, + ng + (n — 2)(4n, + n, + 5n,)},

)
2)(4n, + n, + 9n,)},
)

Sp=84+(n—-1){4nm +4n, + ny, + (n —
Tp =tp+ (n ~1){2n, + 2n, + n, + (n — 2)(2n, + n, + 3n4)},
Dp =tp+(n—-1){4n, +4n, + n, + (n — 2)(4n, + n, + 5n4)},
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Table 4.6: Arrangement of treatment combinations in a

PBDS design with k=3 and n > 4.

arrangement of treatments | number of blocks
01 | i0 0( #£4) | =tle=2ne
01101 i0 (n—ny

01 | il G #4) | elo=2ne

01 |01 i1 (n—1)ng

01 | i0 i1 (n — 1)n.

0110 NMEEX) (n - 1)(n —2)n;
10 | j0(z#7) | I1({=iorj) | (n—1)(n~—2)n,
0| 106 #4) | B #£1j) | =tlin=din=sm
il 1@ #7) [ Io(I=10rj) | (n—1)(n—2)n;
1|16 #) | 100 #4,j) | Eie=Deman,
0 | 100 #1) | 100 £1,)) | =De=20=am,
116 £9) | 10 £4,5) | @De=de-om
01 {10 i0 (n—1)n,

01 il il (n—1)n,

i0 | i0 il (n—1)n,

i0 |i0 (7 #1) (n—=1)(n —2)n,
0 |il i1 (n = 1)n,

0 RS TP N A (s
i0 |10 jo(y # 1) (n—1)(n —2)n,
i1 |il X)) (n —1)(n — 2)n,

Sp = sp + (n — 1){4n. + 4ny + n, + (n — 2)(4n, + n, + 90y},

Sap = sap +2(n — 1){n, + ng + (n — 2)(n, + n,)},

Dap = d].AD + 2(71 - 1)(710 + nq)},

where

ta=(n—1{m +ne)+(n—2)(ne +ns+n; +2n,)+

1

5(n = 2)(n = 3)(n; + nk + 2n4)},

sa=(n—1){(n +ne)+(n—2)(2n, +ns +n; +4n,)+

1
2

5(n —2)(n —3)(n; + 3nx + 4n4)},

118
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tp = (n — 1){(ng + ne) + (n — 2)(ne + ns + 2n; + ny)+
%(n —2)(n — 3)(2n; + ny + np)},
sp = (n — 1){(nd + ne) + (n — 2)(2nc +ny+4n; + Tlg)+

~(n = 2)(n — 3)(4n; + 3nu + )},

dlap = (n —1){ne + (n — 2)(ny + i)},
sap = (n = 1){ne + (n — 2)(ns + 2n; + 2ny) + (n — 2)(n — 3)(n; + nx)}.
The A-optimal PBDS design is obtained by minimizing the above expression

subject to the following constraint:

6b = (n—1){6(np+ng+netnn+n,+n,+n,)+3(n—2)(ne+nc+2n5+2n,+2n;)+

(n —2)[6(n, + n, +ns +n;) + (n — 3)(3ny + 3n; + nk + )]} = fized. (4.70)

A computer algorithm for this case is given in Appendix B.

4.8 The Tabulated Designs:

The algorithms given in Sections 4.4 and 4.6 can be used to find the C-designs
or “near” C-designs which are PBDS designs. As an illustration the designs have
been tabulated in Table 4.2 for 3 <n <6,2 < b <10 and k < 9. For each design
its discrepancies with b,, and with the conjectured bound are given in Table 4.2.
For those designs having discrepancies exceeding 5% of b,,,, the discrepancies with
tr(CQC") of the best design obtained by JE is also given in the table. In 132 out
of 159 designs tabulated the discrepancy is within 10% of the smaller bound.

The following examples show how to use the table for given parameter values.

Example 4.8 For n=3, b=4 and k=5, Table 4.2 shows that an efficient C-design
is composed of four copies of the set of blocks indexed 1. From Table 4.8, index 1
consists of one block of size 5 which accommodates each of the treatment combi-
nations once. Therefore the highly efficient C-design is a randomized block design
with four blocks. The discrepancy of this design is 2% and .5% compared with b,

and the conjectured bound respectively.

Example 4.9 For n=5, b=8 and k=7, from Table 4.2, the efficient C-design
consists of 2 copies of index 2 set of blocks. From Table 4.3, the index 2 consists
of 4 blocks each of size 7, in which the arrangement of the treatment combinations

1S
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Block1 01 10 20 80 11 21 31
Block 2 01 10 20 40 11 21 41
Block 8 01 10 80 40 11 81 41
Block 4 01 20 30 40 21 81 41

Therefore the design is 2 U 2 which has discrepancies of 8.7 and 1.8% of by, and
the conjectured bound respectively.

Note that for some values of n, b and k designs are not tabulated. For some
parameter values PBDS designs do not exist because they violate combinatorial
restrictions on the designs(given in Section 2.4.3). For other parameter values
the designs were not efficient, having a discrepancy greater than 20% compared

with the conjectured bound.

4.9 Conclusion:

As we have seen in this chapter, the minimization of {r(M~1) is very compli-
cated. If we had been able analytically to give a minimum value for the trace in
terms of the parameter values and the number of replications of the treatment
combinations, then any design which hits that bound would be overall A-optimal.
Analytical tools have been used earlier in this chapter to reduce the minimiza-
tion problem to some extent, but due to the discrete nature of the problem, the
reduction becomes unappreciable. However, our attempt was partially success-
ful, since the problem in some cases, reduced to minimizing a simple function in
terms of T4, T's and Tp(Theorem 4.8). Based on numerical results we made three
conjectures. Intuitively an A-optimal design within the class of PBDS designs,
might be regarded as a highly efficient design for comparing the dual versus sin-
gle treatments, but it is not always the case. This can be seen from Table 4.2.
Roughly speaking the A-optimal design within this class has average variance not
far from that of the design which is A-optimal across all possible designs for spe-
cific values of the parameters. In addition the class of PBDS designs gives equal
precision and correlations for each set of the contrast estimators corresponding
to dual versus A and dual versus B which often corresponds to an experimenter’s

requirements.
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Tables of Efficient C-designs:
For given 2 <k <92 <b<10and 3 < n <6, Table 4.2 gives a summary of
the design as (21,22, ..y tm;} f1, f2, -+, fm), Where ¢; is a set of blocks given in Table
4.3 and f; is the number of duplicates of the set of blocks in the design. Below
this summary is entered the percentage discrepancy between the total variance
of the estimators of the dual versus single treatment contrasts and the bound
b, (see Section 3.5), and conjectured bound(see Section 4.3) respectively. Where
the discrepancy between the total variance and b,, exceeds 5% (i.e. small b and
small k), the discrepancy between the total variance for the design and the total
variance for the best design obtained from JE, is given as the third figure.
Table 4.2 Index and performance of C- and near C-designs in PBDS for n=3.
Il b\k | 2 3 4 5 6 7 8 9
2 - (1:1) (1:1) (1:2) (151) (1:1) (1:2) (1;1)
13,2,0 7,0,0 0,0 12,1 12,1 0,1.5 5,0
3 - (1,2,1,1) (1,2;1,1) (1:3) (1,2;1,1) (1,2;1,1) | (1,z1,1) | {(1,1;1,1)
13,8,.1 6,2,0 0,.5 3,0 2,4 1,3 1,1
4 Tz1,1) (1,3;1,1) (1,3:1,1) (1:4) (1,2:1,2) 3L | (LB | (152)
13,0,0 11,7,2 7,3,1 2,5 3,5 2,4 1,0 6,0
5 (1,2.:3:1,1,1) (13,451,1,1) | (L2i2,1) | (L231) | (1,2:2.0) (12;2,1) | (L2:3.1) | (L252.0)
13,8,0 8,4,1 5,0 2,5 2,.2 2,5 1,0 8,.4
6 (1,2,4;1,1,1) (1,3;2,1) (1,3;2,1) | (1,2:4,1) | (1,2:2,2) (1,3:2,1) | (L,241) | (1:3)
13,10,1 5,0 6,1,.3 2,2 3,.2 2,.01 1,2 6,0
7 1245001 | (1,2321,0) | (1,231) | (L251) | (L,2:2,3) | (L&3211) | (1,2:3,2) | (1,23,1)
9,6,0 5,.1 6,1,0 2,.05 7,.4,0 2,0 1,2 8,2
8 | (1,234511,1,,1) | (1,33,1) (133,1) | (1L,261) | (1.23.2) (133,1) | (1,242) | (1;4)
13,12,5 4,0 6,1,0 2,0 3,.2 2,1 1,1 5,0
9 (1,2,4,50,2,1,1) | (1,2,33,1,1) | (1,233,1,1) | (L&7,1) | (1,23.3) | (1,233,1,1) | (1,2:52) | (1,2;4,1)
43 4,0 6,.1,0 2,0 3,2 2,0 1,.07 8,2
10 (1,2,652,2,1) (1,4:4,1) (1,2;4,2) (1,2:;8,1) | (1,2,3:3,2,1) | (1,2,3;3,2,1) | (1,2:6,2) (1;5)
5,4 4,3 6,1,0 2,0 3,2 2,3 1,1 7,0
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For given index and k from Table 4.2, the following table gives the required
designs, in which the blocks are represented by columns.
Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=3.
[Lindex\k T 2 3 4 5 6 7 8 9 i
01 01 01
o1 o1 01 01 01 01 01
01 o1 01 10 10 01 01 10 10 10
T N - R A
1 2 11 21 1 1 11 i 1 11 11 n 11 11
21 21 11 21 11
21 ~ 21 11 21 21 11 11
21 21 2 21 21
21 21
01 01 o1
01 o 01 01 o1
10 01 o1 01 10 10 10 o1
10 20 o 20 1o 20 10 20 10 20 10
2 11 21 1 1 1 1 20 11 20 20 20
21 21 11 21 11 11 11 11 11
21 21 21 21 11 21 11
2 21 21 2
21
01 01
. TRRIEE
10 10 20 10 10 10 20 1o 20
N 20 ;i ;i 20 20 - 11 1 f;) fg - N
11 21 11 21 1 21
21 21
21 21
10 10
01 01
4 10 20 20 20 - - - - - -
11 21
5 i - - - - - -
21
6 10 20 _ _ _ _ _ _
21 1n
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Table 4.2 Index and performance of C- and near C-designs in PBDS for n=4.

el 2 [ 3 [ s [ e [ 7 [ 8 [ 9 |
2 - - - - (1:2) (1:2) (1:2)
0,2.2 1.6,2.2 | 11,101
3 - (1;1) (1:1) (1;1) (1;3) (1:3) (2:1)
17,14,0 2,1 2,0 21,23 | 24,25 1,03
4 - 1.2:1,1) | (Lz1L1) | (L51,1) ) (L,21,1) | (L31,1) | (1,251,1)
13,9,0 5,3 5,4 2513 | 2312 3,2
5 - (1,2,31,1,1) | (1,21,2) | (1,21,2) | (1,2;2,0) | (1,252,1) | (1,2;2,1)
18,15,3 13,10,9 | 13,11,00 | 2,5 2,.6 5,3
6 (1,2;1,1) 41,1 [ 23 12) | (L2Ey) | 230 ] (251)
17,13,0 13,10,2 4,13 2.2,0 1.5,.2 2,5 1.4,.2
7 - (1,2;2,1) | (1,2:2,1) | (1,22,1) | (1,2:4,1) | (1,2:4,1) | (1,2;1,2)
8,5,2 4,1.4 41.7 1.6,.01 2.3,6 | 24,11
8 - 1,2,3:2,1,1) | (1,22,2) | (1,%2,2) | (1,z5.1) | (1,2:5,1) | (1,2;2,2)
11,8,4 6,3.3,3 7,4,4 2,.08 2.4,.7 3,2
9 [ (1,231,1,1) ] (1.421) | (1L,2523) | (13) | (L,2w6,1) | (1,2:6,1) | (251)
17,14,3 7,4,0 3.3,1.3 2.4,0 2,13 2.4,.8 1.4,.2
10 - (1,2:3,1) | (1L,23,1) | (1,23,1) | (1,3:7.1) | (1,2:4,2) | (1,2:1,3)
9,54 4,1 34,1 2,17 23,7 2.2,.8

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=4.

” index\k r 2 ] 3 r 5 I 6 "
o1 o1 o1 01 o1 o1
10 10 20
01 01 o1 o1 o1 ol 101020 20 30 30
1 10 20 30 20 30 30
11 21 31 11 11 11
11 21 31 11 11 21
21 21 21
21 31 31
31 31 31
10
01
20
11 01
10 20 30 30
2 1 21 31 2 1 11
31 21
21
31
31
01 01 o1 10
3 - -
10 20 30 20
30
10 20 30
4 - 21 11 11 - -
31 31 21
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Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=4.

[[ index\k l 7 l 8 [ 9 ]]
01 o1
01 o1 01
10 01
10
20 20 10
1 30 20
30
11 30
11
21 21 11
31 21
31
31
01 01 01
01 01 01
01 01 01 10 10 10 01 01 01
01 o1 01 10 10 10
10 10 20 20 20 20 20 20 20
30 30 30
2 200 30 30 30 30 30
11 11 11
11 11 11 1 21 21 11 11 11
21 21 21 11 21 31
21 21 31
31 31 31 21 21 21
31 31 31
31 31 31
01 01 01
10 10 10
01 01 01 20 20 20
10 20 30
30 30 30
11 11 11
3 - 11 11 11
11 21 21 1 1 21
21 21 31
21 21 21
31 31 31
21 31 31
31 31 31
10 20 30
4 - 21 11 11 -
31 31 21
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Table 4.2 Index and performance of C- and

near C-designs in PBDS for n=5.

(o] 2 [ 3 [ 4 [ s [ e [ 7 [ 8 [ o |
2 - - - -~ - - - (1;2)
2.1,4.2
3 - - - -~ - - - (1;3)
3.9,4.4
4 - (151) - - - (1:1) (1:1) (2:1)
20,17,0 1.7,1.6 1.8,1 2,1
5 - - - - - -~ (1,2;1,1) | (1,2;1,1)
7,5,5 1.3,.3
6 - - - 1;1) 3:1) (1) Gi1) | (L,2:2.1)
47,17 | 18,1513 | 64,4 9,7,7 1,.01
7 - - - — _ _ - (1,2;3,1)
1.2,.1
8 | (1,21,1) | (1;2) - - 141, | (232) (1,4;1,1) | (1,2:4,1)
20,18,0 | 20,17,7 18,15,10 | 3.7,1.8 2.2,.7 1.6,.3
9 - - - - - - (1,2;2,1) | (1,2;5,1)
5,3.2 1.8,.4
10 - - (1,2;1,1) | (1,2:1,0) - (1,4;1,1) | (3,5:1,1) { (1.2;2,2)
18,12,10 | 17,12,12 2.7,.5 2.3,.6 1.6,.3

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=5.

H index\k [ 2 1 3 l 4 ”
01 01 01 01 o1 ot o1 ot
01 01 01 01 11 11 11 21
1 10 20 30 40
11 21 31 41 21 21 31 31
11 21 31 41
31 41 41 41
10 10 10 20 20 30
9 10 20 30 40 20 30 40 30 40 40
11 21 31 41 11 11 11 21 21 31
21 31 41 31 41 41
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Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=>5.
” index\kl 5 l 6 1 7 “
oI 01 o1 o1 o1 ol
01 01 01 01 01 Ot or ool o 10 10 10 20 20 30
10 10 10 20 20 30 1020 300 40 20 30 40 30 40 40
1 20 30 40 30 40 40 ot 11 11 11 11 1111
1111 11 21 21 31 22l 2l 21 21 21 21 21 2
21 31 41 31 41 41 SO 31 31 31 31 31 31
a4 4l 41 41 41 41 41 4
01 o1 o1 o1
01 01 o1 O1 o1 10 10 10 20
o1 01 01 o1 ot 20 20 30 30
2 111 o112 1 30 40 40 40
21 21 31 31 - 1m o111 21
31 41 41 41 31 21 21 31 31
“ 31 41 41 41
o1 o1 o1 o0r o1 ol
01 o1 o1 01 01 o1
5 B 10 10 10 20 20 30 B
20 30 40 30 40 40
11 11 11 21 21 31
21 31 41 31 41 4l
10 10 10 20
20 20 30 30
. B 30 40 40 40 ~
1n 11 112
21 21 31 31
31 41 41 41
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Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=5.

H index\k l 8 l 9 H
01
0 g
20 20 30 30 20
30
. 30 40 40 40 0
11011 11 11
21 21 21 21 11
21
31 31 31 31 a1
41 41 41 41
41
o1 01 01 o1
10
01 01 01 10
20 10 10 10 20
30
20 20 30 30
2 40 30 40 40 40
1 1 11 11 11
21
o 21 21 21 21
31 31 31 31
41 41 41 41 41
01 01 01 01 01 ot
61 01 01 01 01 ot
10 10 10 20 20 30
20 30 40 30 40 40
3 11 11 11 11 11 11 -
21 21 21 21 21 21
31 31 31 31 31 31
41 41 41 41 41 41
01 01 01 Ol
01 01 01 01
10 10 10 20
20 20 30 30
4 30 40 40 40 B
11 11 11 21
21 21 31 31
31 41 41 41
01 o1 01 01
10 10 10 10
20 20 20 20
s 30 30 30 30 ~
40 40 40 40
11 11 11 21
21 21 31 31
31 41 41 41
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Table 4.2 Index and performance of C- and near C-designs in PBDS for n=6.

feme ] 2 [ 3 [ s [ e | 7 | 8 | 9 |
5 - (1;1) - - - - (1;1)
23,20,0 4.3,3.1
10 | (Lz1,1) | (12) [ (L) | (152) (1;1) | (1) | (21)
23,21,0 | 23,208 | 83,3 | 22,07,17 | 4.3,1.7 } 9,76 | 2.4,1.4

Table 4.3 Constituent blocks of C-

and near C-designs in PBDS for n=6.

" index\k ] 2 ] 3 | 5
01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 10 10 10 10 20 20 20 30 30 40
1 o1 o1 a o1 o1 10 20 30 40 50 20 30 40 50 30 40 50 40 50 50
11 21 31 41 51
11 21 31 41 51 11 11 i1 11 21 21 21 31 31 41
21 31 41 51 31 41 51 41 51 51
2 10 20 30 40 50 B _
11 21 31 41 51
Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=6.
H index\k ] 6 I 7 “
[¢3 01 01 01 01 01 01 01 01 01
o1 o o1 o1 o o1 o1 o1 o 01 10 10 10 10 10 10 20 20 20 30
01 01 01 01 01 01 01 01 01 01
10 10 10 i0 20 20 20 30 30 40 20 20 20 30 30 40 30 30 40 40
N A A A A SO S OO O
11 1 11 1 2 2 2 81 3 £ 21 21 21 31 31 41 31 31 41 41
21 31 41 51 31 41 51 41 51 51
31 41 51 41 51 51 41 51 51 51
Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=6.
ﬂ index\k l 8 l 9 "
01 01 01 01 01 01 01 01 01 01 (])(1) g; (1)(1) l;(l) (2)(1)
01 01 01 01 01 01 01 01 01 01 20 20 20 20 10
10 10 10 10 10 10 20 20 20 30 a0 20 40 40 40
20 20 20 30 30 40 30 30 40 40
1 40 50 50 50 50
30 40 50 40 50 50 40 50 50 50 11 11 1 11 2
11 11 11 11 11 11 21 21 21 31
21 21 21 31 31 41 31 31 41 41 2 2 2 31 3
31 41 51 41 51 51 41 51 51 51 3 31 41 4 4
41 51 d1 51 51
01 01 01 01 01 01 01 01 01 01
10 10 10 10 i0 10 20 20 20 30
20 20 20 30 30 40 30 30 40 40
30 40 50 40 50 50 40 50 50 50
2 - 11 11 11 11 11 11 11 11 11 11
21 21 21 21 21 21 21 21 21 21
31 31 31 31 31 31 31 31 31 31
41 41 41 41 41 41 41 41 41 41
51 51 51 51 51 51 51 51 51 51
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D esigns for Two Factors with

More than Two Levels

5.1 Introduction:

In the previous chapters we considered n x m blocked experiments with 00 ex-
cluded for m=2 and n any positive integer. In this chapter we extend some of
the findings to the case of n x m experiments for any m > 2. In Section 5.2
we employ the permutation method in an attempt to obtain a design-dependent
bound(a generalization of Section 4.2) . In Section 5.3 we specify a class of designs
which achieves the design-dependent bound and consider some of its properties.
We characterize a series of overall A-optimal designs for the case k > t in Section
5.4, and give a critical assessment of these designs. In Section 5.5 we give some
methods of constructing designs which belong to the class of designs defined in

Section 5.3 and give recommendations on their use in practice.

The formulation of the bound in terms of the elements of the concurrence
matrix of the design has proved a very difficult task, and is a topic for future
work. This will enable the characterization of further efficient designs for any

number of units within each block when both factors have more than two levels.

5.2 A Design-Dependent Bound:

In this section we apply the permutation matrix technique described in Section
4.2 of Chapter 4, i.e. we use a set of permutation matrices, under which our

contrasts of interest are invariant, and apply it to the A-matrix of design to

129
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obtain a bound which is design-dependent.

Let the treatment combinations be ordered as follows
To1, 7025+ » - s Togs T10; T20y -+« » Tp0y T11, T12y+++3T1q; 72157225« - - s T2

ey ey Tply Tp2s -« s Tpg (5.1)
where t=mn-1, p=n-1, and q=m-1.

We put the ordering of treatments in a ¢t X 1 column vector . The contrasts

of interest are Cy7 and C,7 where the contrast matrices are:

Cl :( _Iq ®lp OIXp E )7
Co=(0ixy -L®L L), (5.2)
c=(C0 G,

where I, is an identity matrix of order n, O,x, is a zero matrix of u rows and
v columns, 1, is an nx1 column vector with all entries 1, ® denotes Kronecker

product, £ = pg and

E11 En E13 ...... Elp
En Eyx Ep ...... o

E— E31 E32 E33 ...... E3p ’ (53)
| Eq Eyp Eg ... Eg |

where the E;;’s are px ¢ matrices with a 1 in the (j,i)th position and zero elsewhere.

Let the A-matrix of the design be partitioned as follows:

D B F
A=|B G H (5.4)
| F' H L |

where D is an ¢ X ¢ symmetric matrix, B is a ¢ X p matrix, F = [F}, F;. .., F})
in which F; is ¢ x ¢ matrix, for i=1,2,....p, G is a p X p symmetric matrix, H =
(Hi, H, ..., H,] in which H, is a p X ¢ matrix for i=1,2,...,p, and L = (L;;), where
each L;; is a ¢ x ¢ matrix(i,j=1,2,...,p), p=n-1 and q=m-1.
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Suppose {g¢;;1 = 1,2,...,¢!} and {p;;j = 1,2,...,p!} are sets of permutation
matrices of order q and p respectively, where p=n-1 and q=m-1.

Also let
IT={(m)}, (5.5)

where

mi; =10 p; 0

L0 0 p;®q |

The set [] is a set of permutation matrices such that the function ®(A)

tr(CQC’) is invariant, where Q is a g-inverse of A. In other words ®(7; A7)

i

®(A). Define A as the average of A over all the permutations in [], i.e.

EZ?T,JAT (5.6)

gl it

Now we are in a position to give the main theorem of this chapter.

Theorem 5.1 Forany design d € nxm CFBD(00), suppose A is the A-matriz of
design d and A is the matriz defined in (5.6). Suppose Q and Q0 are the respective
g-inverses of A and A, then:

tr(CQC") > tr(COC) (5.7)

Proof: If A denotes the A-matrix of any connected design, then r(A)=t-1.
Define ®(A) = tr(CQC"), then by Majumdar(1986) @ is a convex function. This
implies that

1 pl

<ZZ gl & (mi; Ar;)- (5.8)

=1 j= l
By definition @(n; A7};) = tr(Cri;Qr;C"). Since each permutation matrix 7;; is
such that the contrasts are invariant, then tr(Cr;;Qr/,C’) = tr(CQC"). Therefore
the RHS of (5.8) is tr(CQC’). Hence the theorem is proved.&

For 2 any g-inverse of A, a design-dependent bound for the contrasts of inter-

est is given by tr(CQC”). If we minimize tr(CQC') over all possible designs for
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given parameter values n, m, b and k, this gives a bound to assess the performance

of designs.

Following the approach of Chapter 4, we should like to formulate the design-
dependent bound as a function of the elements of the incidence matrix of the
design, i.e. as a function of the number of concurrences of each treatment com-
bination in each block. This will then facilitate the calculation of the bound. In
addition it provides a means of identifying designs which are overall A-optimal.
The key to this approach is to evaluate a g-inverse of A by finding (A + zJ;)~?
for some z # 0. In order to evaluate the bound in (5.7) we need to calculate
tr{C(A+ zJ;)~1C}. This is a generalization of the approach in Sections 4.2 and
4.3 in Chapter 4. However, the approach proved mathematically intractable. Our
attempts included employing an algebraic computer algorithm, REDUCE, which
is a system for carrying out algebraic operations accurately, no matter how com-
plicated the expressions become(see user’s Manual,1985). However this gave a
two-page expression for ¢tr(CQC’) which is too difficult to handle. However, The-
orems 5.1 reveals that even for small k, the class of GPBDS designs is a source
of some efficient designs. Some methods of constructing such designs will be
described in Sections 5.5 and 5.6.

5.3 A Class of Efficient Designs:

In the following we characterize a class of designs which is a generalization of the
PBDS class of designs defined in Chapter 1. By examining the variance-covariance
matrix of this class we shall see that the designs estimate the contrasts within

the dual versus A and dual versus B sets(Cpr and C;7) with equal precision.

We begin by deriving the structure of the A-matrix via the permutation
method.

5.3.1 Structure of the A-matrix:

In this section first we give a lemma which specifies the structure of the A matrix
given in (5.6), then we formally define the class of efficient designs. Finally we

show how designs within this class achieve the design-dependent bound given in

(5.7).

Lemma 5.1 Matriz A given in (5.6) has the following structure
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allq + b1Jq Cqup l; ® (aglq + b2']q)
A = (13];, + b3Jp (G4Ip + b4Jp) ®l;

I, ® (a5]q + bSJq) +J,® (aﬁlq + beJy)
(5.9)

Also, one possible g-inverse of A, called ), has the following structure:

$11q+y1Jq Zqup _1_;®(z21q+y2Jq)
= z3l, + y3J, (zal, + 314*]73) ® l:; )
I, ® (251, + ysJy) + Jp @ (T6ly + yeJ,)

(5.10)
where L1, T35 Y15 Y3, %, T2, T4, Y2, Y4, T3, L6, Ys and Ye are functzons Of ay,

ai, as, a4, as, ag, ¢, by, by, bs, by, bs and be.

Proof: See Appendix A at the end of the thesis.

Now we define a general class of partly balanced dual versus single treatment

designs.

Definition 5.1 A design d € n xm CFBD(00), is a Generalized PBDS design
if its A-matriz has the structure (5.9). This class will be denoted by GPBDS

hereafter.

It will be shown in Section 5.3.2 that the designs in the GPBDS class of designs

estimate the dual versus A and dual versus B contrasts with equal precision.

In the following we give a corollary which shows that if a design is a GPBDS
design then the total variance of the contrasts in (5.2) is tr(CQC"). This indicates
that the class of GPBDS designs might prove a source of efficient designs.

Corollary 5.1 If in the statement of Theorem 5.1, d is in the class of GPBDS
designs, then inequality in (5.7) changes to equality.

Proof: If d is in the class of GPBDS designs, then A = A, which implies that
(A+zJ)' —(A+zJ)"! = 0. The result follows from here.d

The following examples illustrate that this class of designs does contain highly

efficient designs for the dual versus single treatment problem.
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Example 5.1 For m=n=8, =8 and k=3, the design

Blockl Block2 Block3 Blockd Block5 Block6 BlockT Block8

20 10 01 02 01 02 02 01
21 11 11 12 20 20 10 10
22 12 21 22 21 22 12 11

has the A-matriz

21, —0.33J; —0.671, ® I,
—0.671, @I, —067,®1, I,® (2.67],—0.33J;) —0.33J, ® I,

which has the same structure as A in (5.9). Hence it is a GPBDS design. The
design has tr(CQC")=6.429 and bound b,,=6.319. Hence the discrepancy between
tr(CQC") and by, is 1.7% of by, showing the design is highly efficient.

Example 5.2 For n=4, m=3, b=2 and k=12, the design

Blockl 01 02 02 10 20 30 11 12 21 22 31 32
Block2 01 01 02 10 20 30 11 12 21 22 31 32

is an efficient design belonging to the class of GPBDS designs with a discrepancy
0.3% of b,,.

The next step is to locate the highly efficient designs within this class, ex-
ploiting the form of the A-matrix. This has proved difficult to do in general, but
efficient designs for some special cases have been found and are given in Sections
5.5 and 5.6.

5.3.2 Variance-Covariance Matrix of the Class of GPBDS

Designs:

In this section we derive the structure of the variance-covariance matrix for the
estimators of dual treatment versus A alone contrasts and dual treatment versus

B alone contrasts in any GPBDS design.

The following lemma is required to specify the structure of the variance-

covariance matrix. Its proof follows by direct substitution of E from equation
(5.3).
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Lemma 5.2 Let E denote the matriz defined in (5.8), then we have

{l;) ® (aly + bJg)}E' = (aly +bJ;) ® l;),

(I, @ L){1, ® (al, + bJy)} = 1, ® (al, + bJ,) ® 1,
E{I,® (al, + bJ,) + J, ® (cI, + dJ,)} E' = (5.11)
L@ (al, + ¢J,) + J, ® (bI, + dJ,),
E{l, @ (aly +bJ,)} = (aly + bJ,) ® 1,
EB{(al, +bJ,) @ L} = L, & (al, + bJy).
The following theorem examines parts of the variance-covariance matrix cor-

responding to the dual treatment versus A and the dual treatment versus B

contrasts and shows that the variances are equal within the two sets of contrasts.

Theorem 5.2 Let design d € GPBDS, with Q as a g-inverse of its A-matriz as
given in (5.10), then we have:

CiQC] = (5.12)
I, ® {m5]p + (xl +z6 — 2$2)']p} +J; @ {y5IP + (yl + Y — 23/2)Jp}a

Co0C) = (5.13)
I @ {zsI, + (z3 + ys — 2¢4)J,} + Jp @ {zely + (ys + y6 — 2y4)Jy},
where Cy1 and Cy are given in (5.2).

Proof: If we premultiply and postmultiply ) respectively by C; and its trans-

pose, and apply Lemma 5.1, we obtain

C:1C; ={ A B D1 }Ci=A(-,®1,)+ D:E, (5.14)
where
A = {($2 = xl)]q + (y?. - yl)']q} ® Ly,
By =1, ® {zal, + (y4 — 2)Jp},
and

D1 = —'l;, &® (-T?Iq + szq) ®-1-P+
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E{l, ® (zsly + ysJg) + Jp ® (z61g + yeJy) }-
Substituting from these into (5.14) we obtain the required expression in (5.12).

Similarly
CzQCé = { A2 32 Dg }C; = Bz(-—Ip ®_1_;) + Dg, (515)
where
Ay =1,Q {z21y + (y2 — 2)Jq},
By = {(z4 — z3)p + (ya — yS)Jp} ®1,
and

Dy =1, @ {zs1y + (ys — z4)Jg} + Jp @ (z6ly + (y6 — y4)Jo}-
Substituting from these into (5.15) we obtain the required expression for (5.13).d

Corollary 5.2 If we have an n X m CFBD(00) design d, in which one of the

g-inverse of its A-matriz is given in (5.10), then:
tr(CQC") = (5.16)
pg{z1+ 23+ y1 +ys + 2(zs + 6 + ys + ye) — 2(z2 + T4 + Y2+ y4)} -
Proof: It is not difficult to show that:
tr(CQC") = tr(CiQC}) + tr(C20QC3) (5.17)

where C; and C; are given in (5.2). But from Theorem 5.2 we have:

tr(C1QC]) = pa{z1 + 11 + @5 + ys + T6 + Y6 — 2(z2 + ¥2)}, (5.18)

and

tr(CoQC3) = pa{zs + ya + 25 + ys + 76 + yo — 2(T4 + y4) }- (5.19)
Hence the result follows.ée

In the following we give a corollary whose proof follows directly from Theorem
5.2.

Corollary 5.3 A necessary condition for a design to have structures (5.12) and
(5.13) for the variance-covariance matrices for the estimators of the dual versus

B contrasts and the dual versus A contrasts respectively, is that the design belongs

to the GPBDS class.
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5.4 Towards A-optimal » x m Designs with k > ¢ :

In Section 3.2 of Chapter 3 we applied Wu(1980) to obtain bound & on the
total variance of estimators of the contrasts for the dual versus single factor. In
Corollary 3.2 we showed that this bound can be achieved if N'r=¢C’ = 0.

Now we are in position to characterize a series of overall A-optimal designs.

This is a generalization of Theorem 4.8 in Chapter 4.

Theorem 5.3 Letn = 2p? +1 and m = 2¢? + 1, where p; and ¢ are positive
integers. Suppose a design for block size k = 0 mod{2p;qi(p1 + @1 + 2p1q1)}
has the following respective numbers of replications of any treatment combination

belonging to sets B, A and D in each block:

k
C2q1(pr + 1 + 2pqn)’
B k
B 2P1(P1 +q+ 2P1Q1)’

(5.20)
and
k
2piqi(pr + ¢+ 2piqr)’
where sets A, B and D were defined on page 70. Then the resulting design is

np =

overall A-optimal.

Proof: For any d € n x m CFBD(00) if N'r=%C" = 0, then from Wu(1980) we
have:

tr(CQC’) = tr(Cr=2C") pE——}-qZ——-{-QZZ (5.21)
i=1 j=1 TD’J
where rg;, r4; and rp;; were defined on page 70.
But we have
q 1 P P q
tr(CAC) = tr(Cr’Cy =2(p2 Y. — + ¢ E +>° Z . (5.22)
j=1TBj i=1 TAi =1 =1 rDzJ

The problem is to minimize:

+Xq:i -, (5.23)
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subject to the condition:

q
ETBJ' +
i=1

Applying a Lagrange Multiplier, A, we obtain the required result. &

P

P 9
rai+ Y rpij = bk = fized. (5.24)
1

= i=1 j=1

Example 5.3 For m=n=38 we have py = ¢ = 1, Theorem 5.3 gives overall A-
optimal designs for k = Omod(8). If k=8, then the design with ny = ng = np =
1(i.e. a randomized block design) with any number of blocks is A-optimal. Also
if k=16, the design with ny = ng = np = 2 in each block is overall A-optimal.

Example 5.4 For m=3 and n=9 we have p; = 2 and ¢ = 1. To employ the
theorem we require k = Omod(28). If k=28, then ng = 2, ng = np = 1 and the

resulting design is A-optimal.

Comment: The series of overall A-optimal designs given by Theorem 5.3 has
limited practical application because the block sizes quickly become large, as is clear
from Examples 5.3 and 5.4. For instance, for m=3 and n=9 the theorem does not
give A-optimal designs for k < 28 or for 29 < k < 56. Even for small values of m
and n, as in Example 5.3, the designs for which A-optimality is established have block
sizes of 8, 16, 24 and so on.

5.5 Some Methods of Constructing GPBDS De-
signs:

In this section we give two construction methods which produce two series of
designs, one for block size 2 and the other for block size 3. The performance of

these designs can be assessed by the bound b,,, given in Section 3.5 of Chapter 3.

It should be noted here that, as for n x 2 experiments, we can use the same
approach as Chapter 4, Section 4.7, to construct GPBDS designs for k=2 and 3.
The difficulty with this approach is that we cannot get a simple expression for
the total variance of the contrast estimators. We therefore consider a different

approach.

5.5.1 Constructing GPBDS designs for k=2:

Since we are interested in contrasts 7;; — 7o and 7i; — 7o;, a natural way is to

accommodate in each block either 5 and :0 or ¢ and 0y, for i=1,2,...,n-1 and
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j=1,2,...,m-1. Such a design will have b=2pq blocks, and replications of 2, q and
p for treatment combinations i3, :0 and 07 respectively, where p=n-1 and q=m-1.
If we require more replication of the treatments and a greater number of blocks
we might consider using duplicates of the above set of blocks. The application of

this method is recommended for small values of b, in particular, when b=2pq.

Suppose our design consists of u replicates of the given design, then it can be

shown that:

, 1
ClQCl = m{qlq ® (plp + Jp) + Jq ® (PIp - Jp)}’ (5'25)

and

1
C200; = ;q—u{PIp@)(q]q'*'Jq)'*‘Jp@(qu —Jo)}- (5.26)
Therefore for the designs of this kind:

1. For the dual versus B, i.e. contrasts 7;; — 79;, we have:

mn — 2
V(%; — To;) =
(fi; — %o5) pqu
m— 2
Cov(Ti; — To;,T1; — To;) = 5.27
ov(7; — Toj, 715 — 7o) Pqu 3 ( )
Ep—;—'f ifi=k and 7 # [
Cov(#i; — Fo5, T — Tar) =
—p—;;; ifi £2kand j#I
for k,i(z # [)=1,2,...,p and j=1,2,....q({ # j).
2. For the dual versus A contrasts, i.e. 7;; — Tip, we have:
R R mn — 2
V(i — Tio) =
pqu
n—2
CO’U(%," — ’f'io, ‘f‘,‘[ —_ 71{0) = , 5.28
; - (5.29)

m=2 ifi=k and j # [

pqu

Cov(ij — Tioy Tri — ko) =

—L ififkandj#Il

pqu

for k,i(z #1)=1,2,...,p and j=1,2,...,q(I # j).
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3. The trace of the variance-covariance matrix which gives the sum of the

variances of the estimators of the dual versus single treatment contrasts is
2(mn-2)/u.

A critical assessment of these designs can be summarized as follows:

Advantages:

—

connectedness,
highly efficient for small b(u=1),
all the required contrasts are made within each block,

the designs estimate all the contrasts of interest with equal precision,

LTSRN N

easy to run practically, since one of the factors is kept at a constant

level throughout each block.
Disadvantages:

1. 10 and jO are replicated a large number of times, especially for u > 2,
2. the number of blocks is large,

3. the designs are less efficient for large b(u > 2).
The following two examples illustrate these advantages and disadvantages.

Example 5.5 For m=n=3 and b=8(u=1) we obtain the following design:

Blockl Block2 Block3 Block4d Block5 Block6 Block?7 Block8
11 12 21 22 11 12 21 22
01 02 01 02 10 10 20 20

For this design:

I, 0, —0.51’2 ® I,
A = 02 12 '_0.5]2 ®l’2 )
-0.51,® I, —-0.5,®1, L®IL

which illustrates the structure (5.9). Each of the treatments 01, 02, 10, 20, 11,
12, 21 and 12 is replicated twice. The variance-covariance matriz of the contrasts

of interest is given below showing the structure of the variance-covariance matriz

of a GPBDS design.
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V =
X' W

WX]

where W = .[2 ® (Ig —_ 05J2) + J2 ® (05]2 - 025']2) and

0.25 -0.25 -0.25 0.25
-0.25 025 0.25 -0.25
-0.25 025 0.25 -0.25

0.25 -0.25 -0.25 0.25

The trace of this matriz which equals the sum of the variances of the contrasts
estimators of interests is 14. The bound by, is 12.637 and the discrepancy between
b, and the trace is 11% of the bound. This is the most efficient design which can
be generated by JE.

Example 5.6 For m=n=3 and b=16(u=2), two copies of the design given in
Example 5.5 give value 7 for the total of the variance of the contrasts of inter-
est with 4 replications of each treatment combination. As an assessment of this

design, we can compare it with the the most efficient design generated by JE, viz:

Blockl 01 11 Blockd 01 10
Block2 01 21  Blockl0 01 20
Block3 02 12  Blockll 02 10
Block4 02 22 Block12 02 20
Block5 10 11 Block13 11 12
Blocké 10 12 Blockl4 11 21
BlockT 20 21 Blockls 12 22
Block8 20 22  Blockle 21 22

which also has each treatment combination replicated 4 times, but is not a GPBDS
design. The trace of the variance-covariance matriz is 6.761905 which is slightly

better than the value 7 achieved by using two copies of the design given in Ezample
5.5.

Table 5.1 demonstrates that for u=1 the designs with b < 18 obtained by this
approach are very efficient through a comparison with the bound from JE. Note
that the high discrepancy with bound b,, is due to the poor performance of b,, for
k=2(see Section 3.4). For b > 18, it is not practical to use JE for comparisons.
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For 3 x 3 designs with u=2 the discrepancy with JE indicates that the designs
constructed are less efficient for u=2 than u=1. Therefore, the application of this

method is recommended only for small values of u, in particular, when u=1.

Table 5.1: Assessment! of designs for k=22

nxXm u=1 u=2

b, JE b, JE
3x3 |11.0% | 0% | 11.0% | 4.2%
3x4 [11.7% | 0% | 11.7% | ¢
4x4 |11.5% | 0% | 11.5% | 1
3x5 |13.0% | 0% | 13.0% |
4x5 |185% | 0% | 18.5% | 1

5.5.2 Constructing GPBDS Designs with k=3:

Since we are interested in contrasts 7i; — 7ig and 7i; — 7To;, a natural construction
method is to accommodate in each block treatment combinations ¢7, :0 and 0y,
for i=1,2,...,n-1 and j=1,2,...,m-1. Such a design will have b=pq blocks, and
replications of 1, q and p for treatment combinations 77, :0 and 05 respectively,
where p=n-1 and q=m-1. If we require more replication of the treatments and a

greater number of blocks we might consider using duplicates of the above set of

blocks.

Suppose our design consists of u replicates of the given design, then it can be
shown that:

, 1
GG = e (aly © (301 + Jp) + T, © (1, = Jy)), (5.29)

and

, 1
C.QC; = %{P1p®(3qlq+‘]q)+*]p®(q1q—Jq)}- (5.30)

Therefore for the designs of this kind:

1. For the dual versus B, i.e. contrasts 7;; — 79;, we have:

3mn —2m —2n
2pqu

V(fij — Toj) =

1JE denotes the discrepancy between the total variance of the design and the minimum value
of tr(CQC’) obtained by the algorithm of Jones and Eccleston(1980).
2{denotes that the design has more than 18 blocks.
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R R R m—2
Cov(7ij — Toj, T1; — Toj) = opqu (5.31)

n-2  fi—k and j # 1

2pqu

Cov(#; — foj, Tt — To1) =
1 e :
—~%es ifit#kandyj+#1
for k,i(i # 1)=1,2,...,p and j=1,2,...,q(1 # j).

2. For the dual versus A contrasts, i.e. 7;; — Tig, we have:

3mn —2m —~2n
2pqu

V(fi; — f0) =

n—2
Cov(hi; — 0,70 — F10) = 5.32
ov(fi; — 0, Fit — 7o) T (5.32)

m=2  ifi—k and j # I

2pqu

Cov(Tij — Tio, Tt — Tho) =
1 . . A -
—5s ifis£kandj#I

for k,1(7 # 1)=1,2,...,p and j=1,2,...,q({ # j).

3. The trace of the variance-covariance matrix which gives the sum of the

variances corresponding to the dual versus single treatment contrasts is
(3mn-2m-2n)/u.

These designs have the following advantages and disadvantages:

Advantages:

1. connectedness,
highly efficient for small b(u=1),

all the required contrasts are made within each block,

Ll

the designs estimate all the contrasts of interest with the same preci-

sion,

5. easy to run practically since, within each block, one level for A and

one level for B are used alone and in combination.
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Disadvantages:
1. treatment combinations i0 and jO are replicated a large number of
times, especially for u > 2,
2. the number of blocks is large,

3. the designs are less efficient for large b(u > 2).

The following two examples show these advantages and disadvantages.

Example 5.7 For m=n=3 and u=1 the trace of the variance-covariance matriz
is 15. This design is the most efficient design which can be generated by using

JE. The variance-covariance matriz is:

W'Y
Yy w

V=2x

b

where W = I, @ (0.761, + 0.12J;) + J, ® (0.121, — 0.06J2) and

0.56 —-0.06 —-0.06 0.06
—0.06 0.06 0.56 -0.06
—0.06 0.56 0.06 —0.06

0.06 0.06 —0.06 0.56

Example 5.8 For u=2 in Ezample 5.7, the method gives the value 7.5 for tr(C
Q C' ). While the most efficient design generated by JE gives the value 6.75 for
the tr(CQC"). The discrepancy between tr(CQC’) of the constructed design and
that of JE is 11%.

Table 5.2 shows that for u=1 the designs obtained by this approach are highly
eflicient. Asit is clear from the table the designs are poorer for u=2 and it appears
that for bigger values of u the discrepancy with the bound given by JE becomes
worse. Therefore, the application of this method is recommended for small values

of u only, in particular, when u=1.
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Table 5.2: Discrepancies® of designs for k=3*.

nxmlu=l| u=2

3x3 | 0% |11.0%
3Ix4 | 0% |15.0%
4x4 | 0% |21.0%
3x5 | 0% |21.0%
4x5 | 0% |31.%t

5.6 Designs for Symmetric Factorial Experiments:

We now consider the case when m=n. We obtain a simplification of Theorem
5.1 which leads to a simpler evaluation of a bound on the trace of the variance-

covariance matrix for the contrasts of interest.

To establish this we can apply the permutation method using a larger set of
permutations on A. This is equivalent to operating on the matrix A defined in

(5.6) in the following way.

Let A be the average of the A-matrix over all permutation matrices as de-

scribed in (5.6). Then define

0 I, 0 0 I, 0
Ai=|I, 0 0|A|I, 0 0|, (5.33)
0 0 F 0 0 FE
where E is given in (5.3), and define
- 1, - -

Observe that tr(A;) = tr(A) = tr(A,).
Corollary 5.4 For any connected design, when n=m,
3(4) > B(4) > B(4;). (5.35)

Proof: If we define @ as in (5.8), then by the convexity of ®(Majumdar, 1986),

we obtain the required inequalities.d

3Compared with JE.
44This design has more than 18 blocks. The bound shown is b,,.
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This corollary gives a simplification of Theorem 5.1, when n=m. The structure
of A,, as we will show in the following lemma, is much simpler than the structure
of A and the evaluation of tr(CQ,C") is much easier than that of tr(CQC").

Lemma 5.3 Matriz A, given in (5.34) has the following structure

ail, + b1 Jp c*Jpxp -1_;; ® (‘Z;Ip + b3Jp)
Ay = ail, + b1Jp (a3 I, + b3J,) ®l; ’
I, ® (azly + b3Jp) + Jp @ (031, + b5 J,)
(5.36)
where

a} = (a1 +a3)/2 b = (b1 + b3)/2,

ay = (ay+aq)/2 b3 =(by+ b4)/2, (5.37)

a3 = as b; = (as + b5)/2,

c"=c by = b

Proof: The result follows directly from Lemma 5.1 and from evaluating A; in

(5.33).%

Example 5.9 For m=n=3, b=8 and k=38, Ezample 5.1 shows how the design

with the A-matriz similar to the structure of A, is a very efficient design.

In the following section, we give two methods of constructing GPBDS designs
for m=n. The first method is similar to the method when k=2 or k=3. The

second approach is based on group divisible designs.

5.6.1 Designs Arranged in Blocks of Size k=n:

When n=m GPBDS designs with block size n can be constructed by taking the

union of the following two sets of blocks:

SET 1 : Accommodate ij(j=0,1,.. .,p) in the ith block for i=1,2,...,p.

SET 2 : Accommodate ij(i=0,1,.. .,p) in the jth block for j=1,2,...,p.

The resulting design will be a GPBDS design.
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Example 5.10 For m=n=k=3 the design consists of:

SET 1 SET 2
10 11 12 and 01 11 21
20 21 22 02 12 22
has concurrence matrix:
I 0 eI
NN' = 0 I IQY ,

11 IQL I®J+J®I
showing that it is a GPBDS design.

This design is the most efficient design which can be generated by JE. The
total variance for this design is 15.04. The structure of the variance-covariance
matriz is very similar to the structure of the A-matriz of the design and it is

totally variance-balanced.

For n=3, the combination of the blocks in Example 5.10 with those in the
design for k=3 in Section 5.5.2 gives the following highly efficient GPBDS design

whose variance properties was discussed in Example 5.1:

Example 5.11 For m=n=k=3 and b=8, the following design which consists of
two sets each of 4 blocks; one set is constructed by the approach in Section 5.5.2
and the other set is given in Erxample 5.10, is a GPBDS design and the most
efficient design which can be obtained by JE. The design is:

SET 1 SET 2
11 10 01 10 11 12
12 10 02 20 21 22
21 20 01 * 01 11 21
22 20 02 02 12 22

The total variance for the resulting design is 6.429 which is less than half of the
total variance for each SET 1 and SET 2 which both give the value 15.04(15.04/2=
7.52). The discrepancy between b,, and this value is 1.3% of the bound which
shows that the design is very efficient.

Numerical computations shows that for m=n=k=3 and b=4u, where u is an

integer, then if u is even, the design composed of u/2 copies of each of the above
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SETS 1 and 2 is very efficient. If u is odd, then [u/2] copies of SET 1 together
with [u/2]+1 copies of SET 2 is very efficient, where [.] denotes “integer part of
7. A design of equal efficiency is obtained from [u/2]+1 copies of SET 1 together
with [u/2] copies of SET 2. The results for u=1, 2, 3 and 4 are given in Table
5.3.

Table 5.3 Designs and their discrepancies.

u design discrepancy

JE | bn

1 copy of Set 1 or 1 copy of Set 2 | 0% | 19%

1 copyof Set 1 + 1 copyof Set 2 | 0% | 1.7%

1 copy of Set 1 + 2 copies of Set 2 | 0% | 3.3%
or

2 copies of Set 1 + 1 copy of Set 2 | 0% K

4 | 2 copies of Set 1 + 2 copies of Set 2 | 0% | 1.7%

5.6.2 Designs Arranged in Two Group Divisible Designs:

Suppose there exists a Group Divisible design with the parameters t=n(n-1), b, k,
r, mi=n-1, my=n, A; and A;. Then if we construct the following two sets of blocks
and combine them together, the resulting design is totally variance-balanced and
belongs to the GPBDS class of designs:

SET 1 : Let 10,11, i2,...,ip be the first associates and the other treatment com-
binations, excluding {0j;j=1,2,...,p}, be the second associates(i=1,2,...,p).

SET 2 : Let 0j,15,2],...,p] be the first associates and the other treatment combi-

nations, excluding {i0;i=1,2,...,p}, be the second associates(j=1,2,...,p).

Example 5.12 For n=3, t=6, b=12, k=4, using the group divisible design R9/
of Clatworthy(1973,p200) we obtain a design with total variance of 3.504. The
discrepancy between this and b,, given in Section 8.5 of Chapter 3 is 25% of
the bound. The design has totally variance-balanced property. However, a better

design generated by JE is not totally variance-balanced and has total variance of
2.904 with discrepancy 4%.

The variance-covariance matriz of the design consisting of SETS 1 and 2 is:

w Z
z''w

V=2x

9
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0.047 -0.017 0.017 -0.014
—0.017 —-0.014  0.047 -—-0.017
—0.017  0.047 -0.014 -0.017
—0.140 —0.017 —0.017  0.047

We have considered Clatworthy(1973) to find how many designs can be con-
structed by this approach. There are 39 designs which can be generated from
Clatworthy. The following table gives these GD designs and their discrepancies
with the bound b,,(see Chapter 3, Section 3.5). For only four designs constructed
by this technique, JE can be applied(k < 18). The discrepancy of these designs

with the bound obtained by the algorithm is given as a second value in Table 5.4.

Table 5.4 : Assessments of designs constructed from

group divisible designs of Clatworthy?®.

n | Design reference and corresponding discrepancies
SR6(50,40) SR7(50),  SR8(50), R20(23), R25(20),
3 | R43(25), R45(23), R47(21), R49(20), R52(31),
R53(19), R94(25,21), R95(25).

S53(26,21), S54(28,21), S55(28),  S56(28),  S57(28),
SR26(46), SR27(46), SR68(39), R38(46), R72(32),

4
R76(29),  R111(39), R143(29), R146(29), R167(31),
R174(30), R193(28).

5 | S106(33), S107(34), S108(34), SR46(48), SR47(48),
R124(38), R179(41).

8 | SR83(54).

9 | SR98(100).

Comment: As is clear from Table 5.4, these designs are not very efficient com-
pared with b,, and are not recommended. However their construction is very easy
and all the contrasts of interest are estimated with the same precision.

SSR6 is the reference from Clatworthy and 50 denotes the percentage discrepancy between
b, and the design constructed from SR6 by the above method.
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Conclusions: In this chapter we have given a series of overall A-optimal
designs when each of the two factors has more than two levels and k > ¢ and
00 cannot be used. Our attempt to find general results on A-optimal designs
included the case & < t, but it was not successful due to calculation difficulties
described in Section 5.3. Pursuit of this general problem is a topic for future
work. However, for the sake of practical needs we have given some construction
methods producing designs in the GPBDS class some of which are shown to be
highly eflicient.
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Completely Randomized D esigns
and Weighted A-optim al

D esigns:

6.1 Introduction:

In previous chapters we considered block designs which are efficient for estimating
the dual versus single treatment contrasts. In the present chapter we first consider
the A-optimal completely randomized design for the contrasts of interest for a
general n X m censored factorial experiment in which treatment combination 00 is
excluded from the experiment. Then we consider completely randomized designs
and block designs which are efficient for cases in which the two sets of contrasts
dual versus A and dual versus B are not of equal interest. Finally, we establish
a design-dependent bound on the weighted sum of the total variances of each set

of these contrasts.

6.2 A-optimal Completely Randomized Designs

for n x m Censored Factorial Experiments:

In this section we consider an n X m censored factorial experiment conducted in
a completely randomized design and characterize A-optimal designs in terms of

the numbers of replications of each treatment combination involved in the design.

151
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6.2.1 Contrasts and Goal of Experiments:

Suppose an n X m censored factorial experiment is conducted in a completely
randomized design consisting of N homogeneous units with treatment combina-
tion 00 being excluded or censored. Suppose that the contrasts of interest are the
dual versus A and the dual versus B contrasts defined in Chapter 1(1.12). Then

we want to characterize those designs which minimize

uM|

Z__: {V(#i; — 7o) + V(715 — T05)} (6.1)

among all possible competmg designs.

Let D(t,N) denotes the class of all possible completely randomized designs

with t=mn-1 treatments arranged in N units. Also let:

A = {10,20, ..., p0},
B = {01,02, ...,0q}, (6.2)

D ={11,12,...,1¢,21,22,...,2q, .....,p1, P2, ..., q };
where p=n —1and ¢ =m — 1.
Also for d € D(t,N), let nai, np; and np;; denote the respective number of
replications of treatment combinations 10, 0j and ij in the design, wherei=1,2,...,p,

j=1,2,...,q, and Tg, T4 and Tp denote the total numbers of units receiving treat-
ments from sets B, A and D respectively in the design d, i.e.

Tp = Y75 npj, Ta = Y15 nai and Tp = Y1 U753 npg;j.

6.2.2 Sum of the Variances of the Contrasts:

It can be shown that for a completely randomized design:

P L L 1 P
2 2 AV (R = Tio) + V(Fis = Fos) =p 3 —+92_ — +2]

i=1j=1 j=1""Bj i=1 'tAi i

1

>,

1i=1 "'Dij

9
where p=n-1 and g=m-1. Our aim is to find those designs which minimize (6.3).

6.2.3 Towards A-optimal Designs:

In this section we characterize A-optimal completely randomized designs for the

estimators of the contrasts of interest, in terms of the replications of the treatment
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combinations involved in the design. In other words by, (6.3), a design d €
D(t, N) is A-optimal if it minimizes the function:

(6.4)

over all possible designs in D(t,N).
Assume the total number of units of the design, N, is fixed. Then the problem

is to minimize the expression in (6.4) subject to the condition:
g
Ent +Enm +3 Y npij=N. (6.5)
j=11=1

Now we can prove a theorem which enables us to find A-optimal designs.

Theorem 6.1 If for d € D(t,N), tg, t4 and tp are fized integers denoting
the total number of units receiving a B alone, a A alone and a dual treatment

respectively such that tg +t4 +tp = N, then minimizing the expressions
() ¥t 71}?, subject to the condition that tg is fized,

(i1) S n%‘ subject to the condition that t, is fized, (6.6)

(zi1) Sty ; - subject to the condition that tp is fized,
1)

1 1 n
s equivalent to minimizing:
g
P Z —+q Z 22 > —
j=1"MBj = j=1i=1 npij’

subject to condition (6.5).

(6.7)

Proof: If g, t4 and {p are fixed then (i)-(iii) can be regarded as independent.
Therefore the global minimum of (6.5) under the given condition will be obtained
by minimizing each expressions in (i)-(iii) individually. Hence minimizing (i)-(iii)
independently subject to the required condition is equivalent to minimizing:

P

pz——+qz—+z\iz

Bj JlllnDU

Hence the Theorem is proved.d

(6.9)

Now we give a theorem which characterizes A-optimal designs in terms of ¢p,

tA and tD.
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Theorem 6.2 For d € D(t,N), let Tg, T4 and Tp denote the total numbers
of units in d which are assigned to treatment combinations in sets B, A and D

respectively. Then design d is A-optimal if:

f(TBaTAvTD) = min f(tBatAstD)’ (6'9)
for all (tg,ta,tp) € E, where

p(2¢Fg +q¢—18)  q(2pFa+p—ta)

f(ts,ta,tp) = Fo(rp + 1) Fa(Fa+1)

+

2(2pgrp + pg — tp)
FD(FD -+ 1)
where 7; =[] for i=B, A and D, mp = q, ma = p, mp = pq, [.] denotes “the

, (6.10)

integer part of ” and
=={(ts,ta,tp);tB 2 ¢,ta 2 p,tp 2 pgitp +ta +ip = N}.

Proof: By assuming tg, t4, and tp fixed and by applying Theorem 6.1 and
Lemma 3.2 on page 72, we will get the required expression for f(¢g,t4,tp). Then
if we let tg, t4 and tp vary over all Z, the global minimum of f(tp,t4,tp) will be
f(Ts,Ta,Tp), which is the minimum value for the total variance of the contrasts

of interest. Since design d achieves this minimum value, d is A-optimal.&

The following theorem gives a particular series of A-optimal completely ran-
domized designs for the contrasts of interest, by establishing the number of units

to be allocated to each of the (t-1) treatment combinations.

Theorem 6.3 Consider a completely randomized design de D(t, N), where N =

0 mod{(2prq1(pr+ @1 +2pq1)} forpr = /(n —1)/2 and ¢, = \/(m —1)/2 integers.

Then if the numbers of replications in d of each treatment combination belonging

to the respective sets B, A and D are:

N

T 2qi(py 4 1 + 2p1qn)
N

2p1(p1 + 1 + 2p1qh)
N

2pqi(pr + @1 + 2p1qn)’

ng = (611)

and np =

then d is overall A-optimal.
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Proof: For any de D(¢, N) with excluded treatment combination 00, by ex-

pression (6.3) we have:

But under the given condition we have:

q LA | 7.2 1
Z{V(TU — Fi0) + V(i — 70;)} = 2(1’12 E — + Q12 Z — + E

17=1 j=1 np; i=1 TVAi =11

-

1

Then the problem is to minimize (6.13) subject to the condition:

g g r
>_np;+ an + Zznpu = N. (6.14)
j=1

g=11i=1
Employing a Lagrangian Multlpher, A, we obtain ng, ng and np as in the
theorem.d

Example 6.1 For m=n=3 we have p; = q; = 1. Hence for N = 0(mod8), i.e
N = 8u{u > 1), the design with ng = nq = np = u is A-optimal. Thus, for
example, the A-optimal design for a 3 x 3 experiment in 16 units with 00 excluded

has every treatment combination replicated twice.

A computer algorithm in Fortran has been written to find those values of
(I's,T4,Tp) € = which minimize f(tp,ta,tp) over all possible (tg,t4,tp) € =.
This algorithm is given in Appendix B at the end of the thesis.

To illustrate the use of this algorithm a selection of A-optimal designs is given
in Table 6.1 at the end of this chapter. The designs selected are all those having
parameter values in the range 3 < m,n < 10 and N < 100 and which have
equal treatment replication within sets A, B and D. It should be noted that, in
general, the A-optimal designs are not equi-replicate. The algorithm can be used
to provide designs for parameter values leading to nonequi-replicate A-optimal

designs, but these have not been tabulated here.

6.3 Weighted A-optimal Designs:

So far we have considered those designs which are efficient for the cases in

which the estimation of both sets of contrasts, dual versus A and dual versus
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B, were of equal of importance. However, experiments are often carried out in
which one set of contrasts is more important than the other. Different criteria
will, therefore, be needed for choosing designs appropriate for such experiments.
Pearce(1975) proposes maximizing the weighted mean of the efficiency factors of
interest. Freeman(1976b) suggests minimizing the weighted mean(sum) given by
St w;V(Cl1), where C!r represents a contrast of interest and w; > 0 is the
weight to be attached to this contrast. In other words if w® denotes a diagonal
matrix with weights on its diagonal and C is the contrast matrix of interest, the

criterion is one of minimizing

tr(w*2CQC"W %) = tr(QC W8 C). (6.15)

The difficulty is choosing appropriate weights, as the choice in practice is most
likely to be a highly subjective one. Jones and Eccleston(1980) have given a
computer algorithm to derive optimal block designs using criterion (6.15). We will
use the criterion suggested by Freeman(1976b), since it has statistical meaning

I our case.

Let wy and wp denote the weights (representing the degrees of importance)
for the dual versus A and dual versus B contrast estimators respectively, then the

sum of the weighted variances is:

P q

DY {waV(Hij — #io) + weV (75 — 705) }. (6.16)

=1 j=1

Definition 6.1 If a design d has minimum value for

{wAV(’f,'j — ’f‘,‘o) + wBV(ﬁ-J- — 7:0]')} (617)

p
= 1

g

1

1,
over all possible designs, where wy and wg > 0, then d is Weighted A-optimal
with respect to the weights wa and wp and will be denoted by WA (wy,wp)-
optimal.

In the next section we derive results which enable the overall WA (w4, wp)-
optimal completely randomized design to be specified for a limited selection of

weights. In the later sections we investigate the same problem for block designs.
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6.3.1 WA (wy,wp)-optimal Design Arranged in a Completely

Randomized Design:

For any completely randomized design it can be shown, by expanding (6.16),
that the sum of the weighted variances of the estimators of the dual versus single

treatment contrasts is:

g P

prZ_+quZ_+ (wgq + wB) ZZ

j=11i=1 nD‘J

(6.18)

where p=n-1, q:m-l and npj, n4; and np;; are defined in Section 6.2.1.

The following theorem specifies the treatment replications for WA-optimal

completely randomized designs.

Theorem 6.4 The design d€ D(t,N) is WA (wa,wp)-optimal if \/pwp ,\/quwa
and \/ws + wg are integer values, N = 0(modN;) and

_ N\/pwg

nBj — Nl s
N = ]_V_\]/\?“’A (6.19)
1
Ny/ws +wg
nDij =

where N1 = ¢./pwp + p\/qws + pg/ws + wg and ng;, na; and npi; give the

replications of the treatment combinations 0j, i0 and ij respectively(i=1,2,...,p;
J=1,2,...,q).

Proof: The problem is to find integer values ng;, n4; and np;; which minimize

the function:

subject to the condition that

E"BJ + Z"A: + ZZ”DU = N. (6.21)

j=1li=1
By applying a Lagrange Multiplier, (6.20) is minimized if:

N, /pwg
Ny

np; =
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and

npi; =
fort=1,2,...,pand 7 =1,2,...,q.&

The following corollary is a special case of Theorem 6.4.

Corollary 6.1 For wg = p, wa = q and p + q = z2, where £ > 0 is an integer,
the treatment replications which minimize the sum of the weighted variances(6.18)
in a completely randomized design of size N, where N = 0{modpq(2 + z)}, are
obtained by substituting wg = p, wy = q.

Example 6.2 For a 3 x 3 ezperiment, p=¢=2 giving z=2 and Ny = 16. If we
let N=16l, for | any positive integer, then the values np; = na; = npi; = 2l give
the WA (2,2)-optimal design. The same numbers of replications have been given
in Table 6.1 for the A-optimal completely randomized designs for these parameter

values, since in this ezample wy = wp.

Example 6.3 For a 6 x 5 erperiment, p=5 and g=4 giving 2 = p+ ¢ =9 and
r=3. If N=100, then ng; = 5, na; =4 and np;; = 3 give the replications for the
WA (4,5)-optimal design.

For the same parameter values ifws = wg then ng; =4, n4i = 5 andnp;; =3

give the A-optimal replications(see Table 6.1).

6.3.2 WA(w4, wp)-optimal n x 2 Censored Factorial Exper-

iments Arranged in Block Designs:

As we have seen in Chapter 5, a characterization of the unweighted A-optimal
design in a general n x m censored factorial experiment arranged in blocks with
treatment combination 00 censored is very complicated. However, for big values of
k compared with t=mn-1, there are cases in which we can characterize a family of
A-optimal designs for comparing dual treatments with single treatments. In this
section we first consider weighted A-optimal block design for the n x 2 factorial
experiment. Then a general n X m censored factorial experiment arranged in

block designs will be considered for some specific circumstances.
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6.3.2.1 Weighted A-optimal Designs for n x 2 Factorial Experiments:

Let M denote the information matrix for the estimators of the dual treatment
versus single treatment contrasts as defined in Chapter 2(2.12) and M denote the

average of M over all permutations given in (4.3) in Chapter 4. Also let

w® = ( wely 0 ) , (6.22)

0 wAIp
where p=n-1.

Now we are in a position to give a theorem which leads us to characterize

WA-optimal designs in our context. But first we need to give some lemmas.
Lemma 6.1 IfY = al,, + bJ,, is a nonsingular matriz, then

1 m—1
a+ mb a

tr(Y“l) =

(6.23)

Proof: It can be shown that Y has eigenvalues a4+ mb and a with multiplicities

1 and m-1 respectively. Also we have

tr(Y™h) =) A,

=1

where J; is the eigenvalue of Y. The proof follows immediately from here.d

Lemma 6.2 Let

X = xllm + yIJm $2Im + y2Jm
$2Im + y2Jm :L'SIm + ySJm

N

be a nonsingular matriz. Also let

X1 12
-1
X" = [ X2 x22

bl

where X% = X2,

Then we have

- 1).?73 d3
(X1 = (m
7'( ) :11111,‘3—(3% +d1d3—d§,
and
tr(X?2) = (m — Dz, d

+
1‘1.’133—$% dldgvd%,

where dy = z1 + my1, dy = x4 + my, and d3 = z3 + mys;.
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Proof: Let X1 = 21l + y1Jm, X12 = 22l + y2Jm and Xo2 = 2300 + y3Jm.
Then we have(Ref: Graybill,1983,p184)

(Xn)—l = X1 - X12(X22)"1X21-
But
- 1 Y3
X T=— I — 5=Jm ).
(X22) 273{ 5 }
On substitution after some algebra we obtain
(X! = al, + bJom,

where
T1T3 — T3

- b

x3

d2 (Y23 — T2Ys) + T2Y2ds
$3d3 -

b=y —

By applying Lemma 6.1 we get the required expression for tr(X*!). The proof of

the second part follows similarly.d

Theorem 6.5 Suppose M is the average of M over all permutations as given

in Chapter 4(4.3) and its elements are as given in Lemma 4.2. Then for the

partition
_ M2
-1 _
M™ = !:J\_I'” M22 j| ’ (6.24)
we have
tr(MW) = (n = 2)da +— 1A (6.25)

"~ dadp—d4p ' qagB — ¢iB’
(n—2)(da+dp —2dap) + gB
dadp — df;D q949B — QZ;B’

tr(A122) =
where da, dp, dap, q4, g and qap were given in Chapter 4(4.15).

‘Proof: Since M has the same structure as X in Lemma 6.2, by using Lemmas
6.2 and 4.2, we obtain
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rp = dA + dD - 2dADa
di = g4+ qp — 294D,
Tg = “dA + dAD’

(6.26)
d; = —qaB,
I3 = dAv
dz = q4.

From here by using Lemma 6.2 and some algebra we get the required expressions.d

Theorem 6.6 Let w® be as defined in (6.22), then for any design d € n x 2
CFBD(00) we have:

(n — 2){(wa + wp)ds + wadp — 2wAdAD}+

r(w*CQC"w"*) > dndp — &

WpJ4 + WaqB
9498 — G4p
where da, dp, dap, q4, g and gap were given in Chapter 4(4.15).

Proof: Let for any positive definite matrix, X, define ®(X) = tr(w¥?X 1w®/?),

then @ is a convex functin, i.e.

(n-1)!

(—11—)T > tr{w (mMal) T W) > (Wt A ),
n- * =1

where M is defined in (4.3). But we have
tr{w* (M) "W} = tr{wt 2 M1},
since if we partition M~ as follows
11 12
M~ = [ ‘];Zn ﬁzz ] ’
then from (6.22) we obtain

wpp; MM p] (wpwa)'/2p; M 2p]
w5/2(7r,-]\l7rf)‘1w5/2 =

(wpw4)/*p; MM ] wap; M*2p!

This implies that

tr{w??(m: M) " w?} = wetr(M') + watr(M*?) = tr(w®/2M~1wb/?).
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Also we have
tr{w5/2M‘1w6/2} = wptr(M™M) + watr(M??).

Applying Lemma 6.2 we will get the required expression in (6.27). Hence the

result follows.&

Corollary 6.2 Ifin the statement of the Theorem 6.6, M denotes the information
matriz of the contrasts of interest in a PBDS design, the inequality in (6.27)

changes to equality.

Proof: If the design is PBDS, then M = M, and the proof follows.&

6.3.2.2 Weighted A-optimal Designs for n x m Factorial Experiment:

In this section we try to characterize WA (w4, wg)-optimal designs for a general

n x m censored factorial block design with 00 censored.

The generalization of Theorem 6.6 to m > 2 is very complicated because, as in
Theorem 5.1, it is very difficult to calculate the bounds. However, there are cases
in which the problem can be simplified. This simplification normally happens for
those cases in which &k > ¢ = mn — 1. In this section we utilize all the notation
which has been used so far, especially the notation of Chapter 3. The matrix of

weights for this case is:

0 ’wAI(

W = ( wale 0 ) , (6.28)

where /=(n-1)(m-1), wa and wp are positive real values.

Theorem 6.7 For an n x m CFBD(00) design we have

1 P 9

q 1 p 1
tr(w’CQC’) > pwp 3. — +qua > T+ (wa+wp) > >, —, (6.29)

j=1 Bj r=1 t i=1 j=1 TDij

where w® is given in (6.28) and C is defined in Chapter 1(1.12).

Proof: If 7 denotes the diagonal replication matrix as given in (3.3) in Chapter
3, then by Lemma 3.1 there exists a g-inverse, {2, such that  — % is non-negative
definite. Then by Graybill(1983,p396) w®C(Q — r—*)C" is also a non-negative
definite matrix. This implies that
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tr(w’CAC") > tr(w’Cr=8C") = tr(C'w’Cr9). (6.30)
It can be shown that
prIq 0 —w31; ® Iq
C'wsc = 0 quIp —’LUAIP ® 1; . (631)
—w31p®1q —wAIp® 1q (wA +wB)11

Therefore we can show that

tr(C'wCr=*) = pwptr(r~8) + quatr(r~*) + (w4 + wr)tr(r—P), (6.32)

where r®  r4 and r? were defined in Chapter 3(3.3) and r~* denotes the inverse

of r*. The result follows immediately from here.d

Corollary 6.3 If d is an n x m CFBD(00) design, such that N'r=°C’ =0, then
the inequality (6.29) becomes equality.

Proof: Since N'r=¢C’ = 0, it follows that

Ar~iC = (r® — %NN’)r“sC' =C' - %NN’r“s C'=C". (6.33)

On premultiplying (6.33)by CQ and using the estimability condition CQ?A =
C, we obtain:

CQC’' = CQAr~5C' = Cr~C". (6.34)
Thus w?CQC’ = w®Cr=4C". The result follows immediately.de

Theorem 6.8 In an n x m CFBD(00) design, let Tg = 3.7 _1rBi, Ta = Y by Tai
and Tp = Y%, 2}, rpij be regarded as fired and such that Tg > q, T4 2 p,
Tp > pq and Tg + Tp < bk — q. Also let 74 = [Ta/p], T8 = [TB/q) and 7p =
[To/pq], then

- 2qFB+q—TB} 2pFa+p—Ta
tr(wCr~¢C" > pw { + qw +
( )2 pus 75(Fs +1) AN Fara+ 1)

2pgFp + pq — TD}
+ . 6.35
(wa + wp) { o5 + 1) (6.35)
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Proof: Follows from the fact that if T4 and Tp are regarded as fixed, then
Tg = bk — Ty — Tp is fixed, and the minimization of tr(w®Cr=4C’) follows from
Lemma 3.2.

The minimum value for ¢r(w*Cr=*C") in Theorem 6.8 is a function in terms
of T4 and Tp only since p and q are fixed and 74, 75 and 7p are functions in

terms of T4, Ts and Tp respectively. Therefore let

2qig+q—1Tg + {2p7‘*A+p—TA}+
FB(T—‘B + 1) fA(FA + 1)

F(T4,Tp;wa,wp) = pwg {

2pgtp + pg — Ip
. 6.36
(o4 + wp) { PLLEPL (6.30)

Let Tg = grp + ap, where 0 < ag < q, Tp = pqgfp + ap; 0 < ap < pg and
Ta=pra+as; 0 <ay <p. Then if we substitute T4, T and Tp from here into
F(T4,Tp;wa,wg), we will obtain the function in terms of a4, 74, ap, 75 and ap,
Tp, Viz

F(TAa TD7 wy, wB)

wp W4 wWa+ wp pwpag qWAaQ 4 (wa + wB)aD} .
—_—t— — . (6.37
pq(FB Fa D {FB(FB+1) Fa(fa+1) Fp(Fp + 1) ( )

For given weights wy and wg a simple computer algorithm could be used
to obtain weighted A-optimal designs with equal replication for the treatment

combinations within each set in each block, by the following steps:

STEP 1 : Finding those values of T4 and Tg which minimize (6.37).
STEP 2 : Checking that T4/p, Tp/pq and (bk — T'a — Tp)/q are integers.

STEP 3 : Checking that n4;; = Ta/bp, npi; = Tp/bpq and npej = (bk — T4 —
Tp)/bq are integers.

STEP 4 : Checking that the incidence matrix N with npge;, naij and np;; satis-
fies the condition N'r=%C = 0. Then, if this condition is satisfied the design
1s weighted A-optimal.

The following theorem characterizes a family of weighted A-optimal designs.

Theorem 6.9 Consider a design for an n x m ezperiment with block size k =

0{mod pq(2 + z)}, where p=n-1, g=m-1 and p+ q¢ = 2, for x > 0 an integer.
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If the design has the following numbers of replications within each block for any

treatment combination belonging to sets B, A and D respectively:

k
ng = ————
P72+ )
k
—_— 6.38
kz
d = —
MERD = 02 + 7)

then the design is WA (q,p)-optimal.

Proof: For any d € n x m CFBD(00) if N'r=3C = 0, then from Wu(1980) we
have: )

P q
tr(w’CQC") = tr(Cr=5C") prZ——-——%—quZ—+ w4 + wp) ZZ——
j=1TBj =1 j=1 T Dij

(6.39)

The problem is to minimize (6.39) subject to the condition:

E NS S S Z rpij = bk, (6.40)

i=1 i=1 j=1
where bk is the fixed total number of units.

Applying a Lagrange Multiplier, A, we will get the required result. For those
designs with n4, ng and np given in (6.38) as the respective number of replica-
tions for any treatment combination belonging to sets A, B and D, the condition
N'r=8C = 0 is satisfied. Hence the theorem is proved.d

Example 6.4 For a 2 x 4 ezperiment, we have p=1, ¢=8 and hence z=2. Then

for k=12, the design which accommodates the following set of treatments in each
block is WA(3,1)-optimal:

01 02 03 10 10 10 11 11 12 12 13 13

Example 6.5 For a 3 X 3 experiment we have p=q=2 and hence z=2. Then for
k=16, the design with the following set of treatments in each block is WA (2,2)-
optimal:

01 01 02 02 10 10 20 20 11 11 12 12 21 21 22 22
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6.4 Conclusions:

In this chapter sufficient conditions are established for a completely randomized
design to be A-optimal for the estimation of the dual versus single contrasts. It
is found that a completely randomized design is optimal if the treatment combi-
nations within each of the sets A and D are replicated equally often throughout
the design. A selection of A-optimal designs which have this property are sum-
marized in Table 6.1 for 3 < n,m < 10 and a total number of units at most
100.

The result is then generalized to establishing conditions for a completely ran-
domized design to be weighted A-optimal in the sense of minimizing a weighted

sum of the variances of the estimators of the dual versus single contrasts.

Finally, the problem of finding block designs which are weighted A-optimal is
considered. A design-dependent bound on the weighted sum of the variances is
derived for given weights. This could be used to find a bound, which is not design-
dependent via the approach of Chapter 4 and hence could lead to characterizing

weighted A-optimal designs.
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Table 6.1: Number of replications rg, r4 and rp
of the treatment combination belonging to the
respective sets B, A and D in an A-optimal

completely randomized design of N units.

n|lm|Nlirglral|rp nlm|{N|rglralrp
3] 8 1 1 1 314157 5 6 5
101 1 2 1 591 5 715
41 1]21] 2 65| 5 | 71 6
16 | 2 2 2 681 6 7 6
241 3 1 3 3 701 6 | 8 6
321 4 4 4 791 7 8 7
341 4 5 4 81 7 9 7
40 5 | 5 5 1871 7T 19 8
421 5 | 6 5 901 8 | 9 8
461 5 | 6 6 92 8 {10 ] 8
48 1 6 6 6 51141 1 1 1
56 7 7 7 16| 1 2 1
64| 8 | 8 8 241 1 21 2
7219 9 9 28| 2 2 2
781 9 |10 10 30 2 3 2
80 | 10 | 10 | 10 441 3 | 4] 3
88111111 46 1 3 | 5 3
9011112111 54 | 3 5 4
94 1111121} 12 58 | 4 5 4
96 [ 12 | 12 | 12 60| 4 | 6| 4
98 (12113 | 12 7215 6 5
4 11111 1 1 45 715
1311 2 1 61 51 8 5
1911 2 2 84| 5| 8 6
221 2 | 2 2 88| 6 | 8] 6
241 21 3 2 9|6 (9 6
331 3 3 3 98 ( 6 9 7
351 3 | 4 3 6 |17 1 1 1
441 4 | 4 4 19 1 2 1
461 4 | 5 4 291 1 21 2
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Table 6.1: continued...

D

TA

0

[}

rB

[}

N

73
75

98
100

26
28
30
46
54
56
58

74
82
84
86
29
31

33
51

60

62
64
91

93
95

18
21

30
33
36

m

10

n

D

TA

B

36
38
48
53

55
57
72
74

89

91

93
20
22
24
36
42

44
62
64
66
84
86

88

100
23
25
27
41

48

50

52

n{lm| N




169

Chapter 6

Table 6.1: continued...

D

T4

D

1

B

1

98
27
30
36
39

57
60
66
84
87

93
96

31

34
41

44
65

68

75

78
99

35
38
46
49

73
76
84
87

42

10 § 39

njm]| N

TD

3

TA
3

B

3

48

51

60

63
66

81

87
96

19
22
26
38
41

45

60
64
67

79

83
86
98
23
26
31

46

49
54
57

72
75

n{im| N

4 4145
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Table 6.1: continued...

D

TA

1

B

1

43

50
54
82
89

93

97

44
48
56
60
92

53
62
66

40
45

70
80
90
41

46
52
57
87

93

98
47

52

10 | 49

n|{m]| N

D

3

TA

B

45

54
81

84
93
96

28

32
48

56
76

80
84

88

29
33

38
58
62
67

71

91

96

100
34
38
44

48

72
78

82

m| N

10

n




171

Chapter 6

Table 6.1: continued...

™D

TA

1

1

1

B

1

1

1

75

84
90

70

77

91

71

78
86
93

86
95

88

96

97
99

m| N

10 | 69

10179

10 | 89

n

10

™D

TA

1

N

rB

1

64
99
53
58

66
71

64

73
78

54
60
66

55
61

68
4
62

68
76

m|{ N

10 | 39

n




Chapter 7

Related Problems and

Conclusions

7.1 Introduction:

In this chapter two problems related to those of the earlier chapters are discussed,
and issues for future work are described. In Sections 7.2 and 7.3 we consider the
estimation of factorial effects in completely randomized and randomized block
designs when a particular treatment combination is excluded from the experiment
and some of the effects are assumed to be negligible. We concentrate on the
case when the treatment combinations are equally replicated, and show that
the greater the dependence of the set of negligible contrasts on the excluded
treatment combination, the smaller the increase in variance due to excluding it.
Also it is shown that low involvement of the excluded treatment combination
in the contrasts to be estimated leads to low loss of precision in estimating the
contrasts. Further, a linear combinations of the set of negligible contrasts which
maximizes the precision of the estimators of the contrasts of interest is found.
The main practical application of this work is when it is possible only to use a

single replicate of the treatment combinations due to cost constraints.

In Section 7.4 we consider briefly how to generalize the results to choose
the possibly unequal replications in a completely randomized design so that the

factorial contrasts of interest can be estimated with high precision.

In Section 7.5 we consider for a variety of problems, the similarity between the
structure of C'C(the coeflicient matrix corresponding to the contrasts of interest),

and the structure of the A-matrix of the class of designs which is sought to be a

172
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source of efficient designs.

7.2 Estimation of Factorial Effects:

We again consider experiments with a single excluded treatment combination,
but now investigate the estimation of the factorial effects, in particular the main
effects and low order interactions. We consider n factors Fy, Fy,...,F, at my,
Mma,...,M, levels respectively giving t = []™, m; treatment combinations in all.
Suppose the particular treatment combination which is not allowed in the exper-
iment is 7175...2,, in which factor F; has level labelled ¢;(i; = 0,1,2,...,m; — 1).

For example 717,...7, could be an unsuitable treatment in a medical trial.

We restrict consideration to the following classes of designs:

1. Completely randomized designs under an additive model for treatments and

€rrors.

2. Block designs in which treatments are orthogonal to blocks and an additive

model is assumed for treatments, blocks and errors.

In general for an experiment in which 7175...7, is excluded it will not be possible to
estimate each factorial contrast separately, and a quantity calculated to estimate,
for example, a particular main effect will in general depend also on the true value
of one or more other factorial contrasts. An appropriate design is one which
estimates each main effect and, if possible, each low-order interaction, in such a
way that these effects are entangled or aliased only with high-order interactions. If
it is valid to assume these high order interactions are negligible then estimation of
the main effects and low order interactions is possible. In addition, assumptions
of negligible high order interactions are sometimes made in order to estimate
error in fractional factorials. This practice also arises in single replicate factorial

experiments but needs to be used with caution(see Cochran and Cox,1953,p189).

In a factorial experiment involving n factors let C*z denote a set of n; in-
dependent normalized contrasts within a particular factorial effect. Let C¥z be
a set of n, independent normalized contrasts which can be assumed negligible
and which belong to a different factorial effect. Further let both C*z and C¥z
involve the effect of i175...2,. It is possible to estimate C*z from the design by
using the fact that any linear combination of the contrasts in C¥r, say I'C¥z,

can be assumed zero and hence can be used to eliminate the effect of #;75...7,
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from C#r. This is analogous to the estimation of contrasts in classical fractional
factorial experiments. Thus we obtain the following set of contrasts which can

be estimated from the data on the (t-1) treatment combinations alone:

C¥z = (C" - f@UCY), (7.1)
where f is an n; x 1 vector defined in (7.2) below. By assuming the negligibility
of 'C¥r, it follows that in the design with only (t-1) treatments C*""%* can be
used as an estimator of C*z even though one of the treatment combinations has
not been observed, where C*™* is C*=" after eliminating the column involving the
excluded treatment combination, 7* is obtained from 7 by removing the effect of
the excluded treatment combination and #* is the least squares estimator of 7*.
The vector of real numbers, f, must be chosen in such a way that the coefficient
involving the excluded treatment combination in C*"1 is zero. This is achieved

by giving the ith element of f the following value:

cz. . .
- 1(i112...1n) 79
fl l/Cy b ( )

L X ii0.0n

1':?1.11'2...1.") denotes the coefficient of the effect of the

excluded treatment combination 7,75...7,, in the ith contrast belonging to set C*r,

for : = 1,2,...,n,, where

and C¥,; . isanny X1 vector whose entries are the coefficients of the excluded
treatment combination of the contrasts belonging to the set CYz. The set of
the contrasts C% 7 will be called the contrasts of interest adjusted for I'C¥r.
Without loss of generality, we restrict consideration to a normalized vector [,

that is having I'l = 1.

Example 7.1 In an 3 x 3 factorial experiment, let treatment combination 00 be
ezcluded and suppose we want to compare the first and the third levels of the first

factor, i.e. we want to estimate the single contrast:
Cr=-—%=(-1 -1 =1 000 1 1 1)z

We assume the following contrasts from the interaction are negligible:

1 -10 120 -2 -1 01

Vr = —— T.
vi2y -1 2 -1 0 0 0 1 -2 1
As an illustration we use the linear combination I'C¥r = (1/3/5)(1 — 2)C¥z to

facilitate the estimation of C*r1, giving:

) 1
P'CV=—=(1 -4 3 20 -2 -3 4 —1).

V60
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Since the values of the coefficients of the excluded treatment combination in C*1

and CY1 are given by
Cioo) = —1/V6 and C¥ = —1/V12 1,
respectively, it follows from (7.2) that f = (—=1/v/6)/(1/4/60) = —/10. Hence,

on substituting in (7.1), we obtain

. 1
C*" =—(0 -5 2 20 -2 -2 50
7 )

and C*" % estimates C°7.

7.3 Experiments Arranged in a Completely Ran-
domized Design and in a Randomized Block

Design:

In practice there is often a choice of negligible interactions, C¥z, which can be
used for estimation purposes. In addition we can also choose the particular linear
combination ['C¥ to employ in (7.1). In order to decide on the best choices for any
particular experiment in a completely randomized design or a randomized block
design we consider the loss of information due to the exclusion of the particular
treatment combination and how it depends on [ and CY. We assume that o2 is
the same in the experiment with the treatment combination excluded and the

hypothetical experiment with the treatment combination included.

Definition 7.1 In a factorial experiment, let C*r and CYr, be the set of con-
trasts. Then tr {V(CI"ff‘) - V(C"i)} will be called the total loss of informa-
tion on the contrasts C*r, due to excluding treatment combination t,t,...1, and
assuming 'CY¥r = 0. We assume that o is the same for the erperiment with
the excluded treatment combination as it is in the hypothetical experiment em-
ploying all the treatment combinations, and, for simplicity, we take 0> = 1. Thus
tr {V(Cr"f) — V(Cri)} represents the loss in precision per unit variance due to

the ezcluded treatment combination It will be denoted by Loss(C%;i11z...1n,1, CY).

Example 7.2 Suppose Fzample 7.1 is conducted in a completely randomized de-
sign, in which each allowable treatment combination is replicated r times . Then
V(C=1) = r=1C*(C*) = r~1. Also, V(C*'2) = r~1C="(C*")' = 11r~1. Therefore,
by Definition 7.1, loss = (11 — 1)r=! = 10r-1.
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In the remainder of this section we examine the conditions on C'Y and [ which
give minimum loss of information in the estimation of C*z when one treatment
combination is excluded. In order to do this we require the following definition

and lemma.

Definition 7.2 Let v be an n x 1 vector in R*. The norm of v, ||v]|, is defined
by:

o]l = (u'v)*/*. (7.3)

Lemma 7.1 For any non-negative definite matriz X of the form z z'; where
is a column vector having at least one of its elements non zero, the mazimum

eigenvalue of X is ||z]|?, with corresponding eigenvector z = az (for any a # 0).

Proof: Since z # 0, it follows that r(X) = r(z) = 1. The matrix has
only one non-zero eigenvalue which is positive. Because the matrix is non-
negative definite, the other eigenvalues are zero, and the non-zero eigenvalue
equals tr(X) = tr(z z') = ||z]|°. Let s be the eigenvector corresponding to this

eigenvalue, then we must have:

z z's = ||z|’s. (7.4)

Clearly vector s = az satisfies the above equation for any a # 0. Therefore
s = az is the eigenvector corresponding to the unique non zero eigenvalue of X.

Hence the Lemma is proved.&

Lemma 7.2 (Rao,1973,page 62) Let X be a m X m matriz, \y > Ay > ... > An

be its eigenvalues, then for any vector w # 0,

w'Xw
max = ).
w w'w

Theorem 7.1 Consider an equireplicate completely randomized design or a ran-
domized block design under an assumed additive model for the observations. If
we assume that |||} = 1 and that ? is the same for the hypothetical experiment
involving all treatment combinations and for the experiment with a single excluded

treatment combination, then

2
Loss(C%;iyigenin,1,CY) = r (ICYCH) f'f > = (lcyc'vz)”—"*z ::2 (7.5)

||—!112 ln
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where C%. . 1is an ny x 1 vector in which its ith element is the coefficient of
2112 W

the ezcluded treatment combination of the ith contrast belonging to the set C*r

and C¥; . 1is an ny, x 1 vector in which its jth element is the coefficient of the

-——1112 dn

excluded treatment combination of the jth contrast belonging to the set CVr.

Proof: In an equireplicate completely randomized design or a randomized
block design with member of the full set of t treatment combinations replicated

r times:

V(ca:i_) — T‘_ICwa. (76)

When all replications of 1y25...2, are excluded, we have:

V(C®1) =rtC*C™, (7.7)

where C*" is defined in (7.1). It can be shown that:

C.‘thlzt — Ca:cla: + f_ il ® (—l-lcyclyl) _ C:c{il ® Clyl} . (i®llcy)cll" (78)

Since C* and CV are contrast matrices for different factorial effects, we know that

C*C" = 0. Hence (7.8) becomes
CI'C/z;t — Czcl:c + (llcyclyl)i i,- (79)

Therefore by assuming o? is the same in both included and excluded cases,

we have:

Loss(C%;11i3...15, 1, C¥) = v H(U'CYC¥)tr(f [y=rteernyf,

where: o "
f'f= yigein . (7.10)
llgzll‘u 1"541;12 11;
We can find the maximum value of the denominator by taking z = C¥,, ..

and applying Lemmas 7.1 and 7.2. This maximum is tr(CY, ; C¥. .) =

1122 ‘ln—1112 ‘ln
2
||—1112 tn“ '*

Corollary 7.1 If in the statement of Theorem 7.1 the rows of C¥z are orthogo-
nal, then

2
Loss(C%;1115...15,1,CY) > "l{i—:“—"ﬁ:—:;, (7.11)
—11t2 in



Chapter 7 178

and the minimum s achieved when

l: (”——1112 I,-.H)_lgillig...fn' (7'12)

Proof: From Theorem 7.1, we have:

2
LOSS(C:C; ili?*"in,l, CU) (Ilcyclyl) ||—-—1112 dn ”

”—1112 'ln ||2 '

On substituting CYC" = I, the result follows, since I'l = 1.

Example 7.3 In Erample 7.1, ||C5|1? = ||C%l|* = 1/6. In order to obtain the
minimum loss for the particular choice of CYT we should take | = (1/\/2) 1,

giving loss = r~! which is very small compared with the loss in Ezample 7.2.

Discussion 7.1 Corollary 7.1 tells us that to obtain the minimum increase in
variance on sets of orthogonal contrasts within the factorial effects of interest,
we should choose that matriz C¥ which has mazimum value for ||C¥; . ||* and
use this, together with the consequent I, for all the factorial effects. Further
NCY .. i I? is @ mazimum when the absolute values of the elements of C¥. .
are as big as possible. This simply means that the greater the dependence on the
excluded treatment combination in the set of negligible contrasts, the smaller the

increase in variance due to excluding it.

From Corollary 7.1 we can also see which factorial effects will suffer the least

loss in precision due to ezcluding the treatment combination as follows:

The minimum value for the loss function is minimized if ||CF;, ;. || is min-

imized, that is if the absolute values of the elements of C, ; are as small as
possible(in the sense of small absolute coefficients). This simply means that low
involvement of the excluded treatment combination in the contrasts to be esti-
mated leads to low loss of precision on them. In the extreme case when a set of
contrasts does not include the effect of the excluded treatment combination the
variance of the estimator does not change, whether the treatment combination,

1122...1, 1S tnvolved in the design or not.

Corollary 7.2 Let C®z be the mazimal set of neglected factorial effects with the
properties that:

Y w Yy ;
1. for each C¥z C C®r, CY;, ;. contains nonzero elements only,
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2. rows of CY are orthogonal,

and let C¥ be a proper subset of C®, then

min Loss(C%;1115...10,1, C¥) < min Loss(C¥;i15...05,1,C¥). (7.13)
Proof: From Corollary 7.1, we have:

-1 H—G—iig...in ”2

min Loss(C%;1103...10,[,C®) =1 = 5 (7.14)
1€l
But by definition:
w 2 ) 2
1CT s ol = IC8 . I + 1G5, il

where C? is a set of contrasts which is not in C¥ and it is a non-empty subset of

CZ. Therefore
ICE, . ill? > ICE,, i 1P

—41i2...in ——tliz...ln
and the result follows.&

Corollary 7.2 shows that in order to minimize the loss on factorial contrasts
of interest, we should use a linear combination of as large a number of negligible
factorial effects as possible. The following two examples illustrate the gains to be
made.

Example 7.4 If in Example 7.1 let :

. V30 =300 0 —/3 0
C®r=—=1| —1 0 120 -2 —~1 0

12
-1 2 -1 0 0 0 1 -2
and
Grpo L [-10 12021 0]

V2| -1 2 -1 0 0 0 1 =2 1
Then

min Loss(C?;111g...10,1,C%) = 0.477 1.
and

min Loss(C%;111q...10,1,C¥) =171
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Example 7.5 An 3 X 4 ezperiment is conducted in a completely randomized de-
sign, in which each treatment combination is replicated r times except for the
treatment combination 00 which is ezxcluded from the experiment. QOur aim is
to estimate the orthogonal polynomial contrasts within the main effects and the

linearxlinear interaction, by assuming that all the other interactions are negligi-

ble. Therefore
C% = {C¥; CY1consists of all the interactions except linearx linear}.
Then (see Lindman,1974,page 825 for coefficients)
Coh=(1/V120)( —/15 -3 V3 V5 -1,

and
Cy = (1/V120)( =I5 5 —3v2 V10 —/Z 3V3 ).

For this case

|2
min loss(C%;00,C%) = r~! “_2?“2 = 2.33r7 1,

éQ

Now, let
C¥¢r = { linearx cubic, quadraticx quadratic and quadraticx cubic interactions}.
Then clearly C¥ C C®. It can be shown that

min loss(C*,00,C¥) = 8.55r~1.

which is greater than 2.33r71.

7.4 Loss Function in Designs with Unequal Repli-

cation:

So far in this chapter we have considered designs which are equreplicate. One
application of these findings is in single replicate factorial experiment in which
each treatment combination is replicated once in the entire design. Now we
consider unequal replicate designs. Suppose that, in a completely randomized
design, r; denotes the number of replication of treatment combination i in the

design for i=1,2,...,t, and

rd = drag(ri,72,. .., Tt).
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Our aim is to estimate C*1 under the condition that the treatment combination
labelled u is excluded from the experiment and C¥1 is assumed to be negligible.

If there is no exclusion we have

tr{V(C*1)} = tr(C*r%C*) ZE (7.15)

i=1j=1 'J
where n, denotes the number of rows of C*, and ij denotes the coeflicient cor-
responding to the jth treatment combination in the ith row of C*. Now if we
assume that the treatment combination labelled u is excluded from the exper:-
ment and CVr is negligible, then as in Section 7.2 we can estimate C*z by C**z

in a design with u excluded, where C*"1 is defined in (7.1). Therefore

C*J:
tr{V(C**%)} = tr(C**r=5C**") = Z Z (7.16)
= i
Hence, by definition
nr *T\2 ne o ((Cz)?
Loss(C*u,,CY) =Y > (¢57) = »» (C5) . (7.17)
i=1 j;—'l rj 1=1 j5=1 Tj

After some algebra we obtain

N T Y ) e < AR A U SR

=1 j=1 'I']'
J#u

It is obvious that (7.18) is not necessarily minimized when the r;’s are made
equal, unless the condition

Ng

;{(c:f) (Cz)? - %}: fized, (7.19)

is satisfied for j # u; j=1,2,...,t. Under this condition equireplicate designs give
small loss in precision on the contrasts of interest. More work is needed to ex-
plore which choice of linear combination of negligible factorial contrasts gives the

smallest loss in precision on the contrasts of interest.

7.5 Similarity of ¢'C and A-matrix Structure:

In this section we consider the general problem of how to locate a class of de-

signs which contains highly efficient(including A-optimal) designs for estimating
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a specified set of treatment contrasts. This is often a valuable short cut to find-
ing good designs since it is easier and quicker to search through a subclass rather
than to consider all possible designs. By a further application of Theorem 3.2
on page 76, we show how the structure of the A-matrix of a class of designs for

estimating contrasts C'r can be linked to the structure of C'C.

It should be noted here that the idea of this section comes from Section 3.3 of
Chapter 3. Therefore we shall refer to that section whenever it is needed without
mentioning the chapter.

The designs have the following property.

Definition 7.3 A design has property S with respect to a contrast matrix
C if the A-matriz of the design and C'C have the following features in common:

1. a set of orthonormal eigenvectors,

and

2. the multiplicities of the corresponding eigenvalues.

Corollary 7.3 If there exists a design with property S with respect to the matriz
C, then

t—1
rcac) =3 %, (7.20)

1=1

where C, 8; and \; are defined in the statement of Theorem 3.2.

Proof: From (3.20), tr(CQC") = T3 /\,-"IQ:.C'CQ. If {, = p,, where p_is the

ith normalized eigenvector of C'C' with corresponding eigenvalue §;, then

£CCE = pC'Cu, = Oipip. = 0. (7.21)
Therefore we have tr(CQC') = TiZ1 0071 &
This corollary simply says that property S designs with respect to C can

achieve the bound in Theorem 3.2. However this bound is design-dependent and
is not an overall bound for all possible designs. Therefore, for a specific contrast
matrix C a design known to have property S will not necessarily be efficient

because the bound achieved in (7.20) might be very poor.
However Corollary 7.3 can enable us to find an A-optimal design by the fol-

lowing procedure
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1. Calculate b; = min 3 6;/A; over all possible designs.

2. Search through the class of designs with structure S to locate a design

achieving by, if one exists.

If a design is located in this way then, by Theorem 3.2, it is A-optimal. If a
design cannot be found to achieve b;, then we can consider that design in the
class which has a value for tr(CQC") closest to b,. However, in general, we have
no guarantee that this design will be highly efficient. Nevertheless, for a range
of practical problems, that is specific contrast matrices, the best design having
property S turns out to be highly efficient. We illustrate this approach through

considering the following 3 problems.

¢ Dual versus single treatment contrasts.

o Test treatments versus

1. a set of control treatments,

2. a single control treatment,
o A full set of orthonormalized contrasts.

Clearly location of subclasses containing efficient designs must proceed by sepa-
rate consideration of the different C-matrices of interest. This is seen from (7.20)
since the eigenvalues of C’C' are involved in the bound. Hence there will not be
a single subclass of designs which hit the design-dependent bound (7.20) for all
C-matrices.

For each of the four problems we adopt the same strategy, namely identifying
a set of eigenvectors of the C'C' matrix and then specifying the structure of the
A-matrix in terms of the eigenvectors so that (7.20) is satisfied. We require the

following lemma.

Lemma 7.3 Suppose zy, x5, ..., Zs_y 15 a set of orthonormalized column vectors
of order £ x 1, such that z.1=0 for:1=1,2,...,f —~ 1, then we have:

Je. (7.22)
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Proof: Let y = £~%/21,, then the vectors y, z;, Z,, ..., Z,—; form a basis for

the ¢ x ¢ vector space. This implies that:

z.+yy =1 (7.23)

rmz

But yy' = £~'J; and the result follows &

7.5.1 Dual versus Single Treatment Comparisons:

In this section for simplicity we consider only n x 2 CFBD(00) experiments and
prove that the class of designs having structure S is a subset of the PBDS class.

From (2.4), we have:

p 0 -1
c'c=\|0 I, -I,|. (7.24)
-1, —I, 21,
The eigenvalues of this matrix which are given in Table 7.1 have been deduced
from Table 3.1 by taking q=1.

Table 7.1: Eigenvalues of C’C matrix.

Eigenvalues(9;) multiplicities
n+2+4/(n+2)2-4(2n-1) 1
2
n+2~+/(n+2)2-4(2n-1) 1
p
3+2 5 n-2
1—_2@ n-2
0 1

Lemma 7.4 The eigenvectors of the C'C matriz given in (7.24) for an n x 2
CFBD(00) experiment are:

1. _f_: = [0, v, (1 —01)3_:.] for i=1,2,...,n-2, corresponding to 0, = (3 —
V/5)/2, such that y,’s are (n — 1) x 1 contrast vectors in which gﬁg}. = 6,
where §=1ifi = j and 0 if 1 #]

2. é: = C [0 Y 2 (1-8)y ] for i=n-1,n,...,2n-4, corresponding to
= (3+v5)/2,
3. _’2"_3 = c3 [1, u—f-r“‘T)l' (n—-1-203)(n~— 1)‘1l’] corresponding to 03 =

[r+2-\/(n-22-42n-1)] /2,
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!

om_g = C4 [1, —I%ﬁf—g—ﬂy, (n—1—104)(n— 1)"11’] corresponding to 04 =

4 €
[n+2+/(n—22-402n—1)]/2, end
3

5.6, = t=1/21,, corresponding to 85 = 0, where c; ’s(j=1,2,8,4) are normal-

1zing coefficients.

Proof: The proof follows by showing that C'C¢{, = 6:{, in each case.&

As we have shown in Chapter 2, an n x 2 CFBD(00) design is PBDS design if
and only if it has the A-matrix of the structure W given in (2.20) of Chapter 2.

Now we are in a position to give a theorem which specifies the structure of
the A-matrix for a design with property S with respect to the dual versus single

treatment contrasts.

Theorem 7.2 If a design has property S for the dual versus single treatment
contrasts, then it is a PBDS design.

Proof: Let

T= (€6 £ (7.25)

where the £ ’s are given in Lemma 7.4.

Suppose design d has property S, then we have

ayln_2 0
aylh_2
AT = Qs . (7.26)
Qy
0 0

where the o;’s are the distinct eigenvalues of the A-matrix. Since the columns of

[’ form an orthonormal basis for a ¢t x t vector space, I' is a nonsingular matrix
such that I"T' = T'T’ = I,. Therefore from (7.26) we have:

-

[ alln__g 0

02] )

Q4
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By applying the spectral decomposition(see Mardia, Kent and Bibby,1979, p469)

we obtain:
n—-2 2n—4
A= a Z§i§£+a2 Z éiéﬁ'+as_€_2n—3§_l2n—3+a4§2n—2§_12n—2+a5§_2n-—1§/2n—1' (727)
=1 t=n-1

Then by substituting for {’s from Lemma 7.4 and applying Lemma 7.3 it
follows that the A-matrix has structure W. Therefore design d is a PBDS design.
This completes the proof.de

Discussion 7.2 Theorem 7.2 illustrates how identifying property S designs leads
us to a class which contains highly efficient designs. We have established in
Chapter 2 that the PBDS class contains efficient designs. It also includes some
A-optimal designs(as was shown in Chapter 4).

7.5.2 All Sets of (t-1) Orthogonal Contrasts:

In some experiments a specific set of contrasts for investigation is not known
prior to the experiment; for example if we want to identify the treatment giving
the ’best’ response in some sense we analyse the experiment by using multiple
comparison tests. In these circumstances a design is required which is efficient
for estimating any set of orthogonal contrasts. We now identify the S property

designs for this problem. First we consider the bound.

Corollary 7.4 IfCr is any set of t-1 orthonormalized contrasts, then we have

t-1
1
tr(CQC") =) — 7.28
T'( ) ; /\i, V ( )
where the \;’s were given in the statement of Theorem 3.2.

Proof: Let 2 is the Moore-Penrose g-inverse of the A-matrix of the design,
then

tr(CQC") = tr(QC'C).
By Lemma 7.3 we have C'C = I; — 1/tJ;. Therefore

tr(CQC") = tr(WI; — 1/tJ) = tr(Q) — tr(1/tQ0T,).

But the second term in the RHS of the above expression is zero and by the

property of  the first term in the RHS gives the required expression in (7.28).&%
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Theorem 7.3 A design has property S for any set of t-1 orthonormalized con-
trasts between the treatments if and only if it is a BIBD or BBD design.

Proof: In this case C is a set of t-1 orthonormal contrasts, therefore by Lemma
7.3 we have C'C = I, — (1/t)J;. It can be shown that the columns of I' =
(z1,Z9,...,2s_1,t"1/21) are eigenvectors of C'C matrix, where the z;’s are t x 1
column vectors such that, (a): ziz; = §7, where 67 = 1 if i=] and 0 otherwise,
and (b): z/1 = 0 for i=1,2,...,t-1, then

1. Suppose the design is BIBD or BBD, i.e. its A-matrix can be denoted by
A = al; + bJ;, then

I'AT = aI'T + bI"J.T. (7.29)

But by Lemma 7.3 we have I'T = I; and I"J;T" = diag(0,0,...,0,%). Substi-

tuting from here into above expression we obtain

I'AT = (7.30)

0 0

a]t_l 0 }

This means that the columns of I" are eigenvectors of the A-matrix of design
d. This gives the proof of the first part.

2. Suppose we have a design d with A-matrix satisfying the condition (7.30),
then we show that this design is either a BIBD or a BBD design. In other
words we show that the A-matrix of the design has structure cl; + dJ;. By

the spectral decomposition we have:

t-1
A:AZL¢+mrm=A@_%m. (7.31)

1=1
This completes the proof of the second part. Hence the theorem is proved.&

Discussion 7.3 From Corollary 7.4 it is clear that the bound in (7.28) is achieved
by those designs with equal eigenvalues. The class of BIBD or BBD have this
property. Therefore the corollary simply says that if the contrasts among all the
treatments involved in the design are of equal importance, then if for the given
parameter values a BIBD or BBD does ezist, it will be the most efficient de-
sign within the entire class of designs(the A-optimality criterion). This is the
well-known property which was derived by Kiefer(1958).
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Note that even if a specific set of t-1 orthogonal contrasts of interest is defined
then by applying the above arguments the S-property designs with these specified
contrasts are still BIBD or BBD. This is because C'C is invariant to the particular

C-matriz, provided its rows form a complete set of orthogonal contrasts.

7.5.3 Test Treatments versus Control Treatment(s):

In this section we first consider the general problem of comparing a set of w test
treatments with a set of u controls. Without loss of generality we assume that
u < w. We identify the structure S designs and show that these are the same as
the class of designs identified by Majumdar(1986) via the permutation method
as containing A-optimal or highly efficient designs. This class of designs has been

characterized by their A-matrix as having the following structure:

b

A= | etbh el (7.32)
eJuxuy  cly+dJy,

The contrast matrix C, is given by:

C=(-L®L, LoL). (7.33)
For this case we have:
']u TJuxw
cc=| " uxu | (7.34)
’—wau qu

The eigenvalues of C'C' are given in Table 7.2.

Table 7.2: Eigenvalues of C'C matrix.

Eigenvalues(d;) | multiplicities
u+w 1
w u-1
w-1
0 1

Lemma 7.5 The eigenvectors of the C'C matriz given in (7.34) for w test treat-

ments versus u controls are:
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1. §,1 = 1/y/uw(u + w)(-wl! , ), corresponding to 0 = u + w,

2. ¢ = (b, 0),), for i=2,3,...,u, correspondzng to 0 = w, where z;’s are ux1

vectors such that ziz; = 6" and z;1, = 0.
8. & =(0,,¥._,) for i=utl,ut?, . utw-1, corresponding to § = u, where
Y; ’s are wx 1 vectors such that 222;‘ = 6% and 21, = 0, where {=1,2,...,w

and

4. & = t=1/21,. corresponding to § = 0, where t=u+w.

Proof: The proof is straightforward by showing that C'C¢; = 6:{ .&%

We now identify the S-property designs for this problem. First we consider
the bound.

Corollary 7.5 If Ct is a set of uw contrasts which compare each of w test treat-

ments with each of u control treatments, then

t—1
H(CA0) 2wy st Y (7.35)
/\1 oA i=utl Ai

where t=u-+tw.

Proof: The result follows from Table 7.2 by applying Theorem 3.2 and assum-
ing u < w.d

Theorem 7.4 A design has property S for comparing a set of w test treatments

with a set of u controls if and only if its A-matriz has the structure given in
(7.52).

Proof: Let

[=(£,6,.E), (7.36)

where £ ’s are given in Lemma 7.5. Then

1. suppose design d has A-matrix with structure (7.32), then it can be easily
shown that:

I,
YAl = -t cr=a+c+ ub+ wd. (7.37)

CIw~-—l
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This simply says that the eigenvectors of the A-matrix of design d with
structure given in (7.32) are the same as those of C'C given in Lemma 7.5

and have same multiplicities of eigenvalues. This proves the first part.

2. From equation (7.37) by the spectral decomposition we have:

u utw-—1
A= xél éll + CLEéig tec E é.t—é-i + (0)§.u+w.§;+w' (738)

1=2 t=u+1l

Then by applying Lemma 7.3, we have:

(a)
1 1
’ uw —;Ju _—Juxw

u uw 7.39
élél U + w _ﬁ‘]‘wxu -13—2'Jw } I ( )

- '5 o :'l.—?ll (E,‘CE:- Ouxw _ I, — %Ju Ouxw
o B wau Ow B OwXu Ou/ ’

"*flg_,_:[ou Ou ]:lou Ouxe }

wa-u ;'L—_-_ll y;y; wau Iw - %Jw

This shows that the structure of the A-matrix of design d is the same as the
structure given in (7.32). This completes the proof of the second part. Hence the

theorem is proved.d

A special case of the above problem is when u=1. This problem is known as

the test treatments versus control problem in the literature.

Discussion 7.4 Theorem 7./ again illustrates how identifying property S designs
leads us to a class of designs containing highly efficient designs. The class of par-
tially balanced designs with the structure (7.32) for their A-matrices has been
identified by Majumdar(1986) as containing efficient designs for u > 2. For u=1,
the theorem leads us to the BTIB or the BTB designs. These designs were iden-
tified by Bechhofer and Tamhane(1981) and shown by Majumdar and Notz(1983)
to contain highly efficient and some A-optimal designs.
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Conclusion: From this section we concluded that for a specific sets of con-
trasts of interest, C7, the structure of the A-matrix of the observed class of
designs having efficient designs, is linked to C'C. This includes three well-known
problems. Generalization of this link to consider a general contrast matrix is a

topic for further research.

7.6 Conclusions and Directions for Further Re-

search:

In the final section, there are two questions which might be answered. Firstly,
what conclusions can be drawn from the research presented in this thesis and
secondly, how might this research be improved and extended? We shall start by

summarizing the main results of the thesis.

7.6.1 Conclusions:

The aim of conducting an experiment is to estimate or test hypotheses about
some specified unknown parameters. Different considerations leads us to different

criteria for the choice of an “efficient” design.

Our experiment involves two factors, namely A and B at n and m levels
respectively, where treatment combination 00 is excluded from the experiment.
Our aim is to consider whether the effects of using both factors together is better
than using only a single factor. In order to do this we need designs which estimate
these contrasts with the highest precision; that is we employ the A-optimality
criterion. To find such designs we have done two things: Firstly, a tight lower
bound has been derived on the total variance of the estimators of the contrasts
which enables us to assess the performance of the designs. Secondly, designs
with high performance have been characterized by determining a class of designs

which is a source of good designs, in the sense of giving small total variance on

the estimators of the contrasts of interest.

In Chapter 1 we briefly reviewed the literature related to our problem as well
as giving related concepts and definitions. Our considerations concentrated on
2 x 2 experiments for which series of A-optimal and highly efficient designs have
already been tabulated. A successful attempt was made to fill the gaps in the

practical range of parameter combinations. The results are given in Tables 1.1
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and 1.2.

Then we considered n x 2 factorial experiments and introduced a class of
designs which contain efficient designs and give equal precision within the dual
versus A contrasts and within the dual versus B contrasts. These designs are
called PBDS designs and were studied in Chapters 2-4. In Chapter 2 we in-
troduced a method of constructing PBDS designs based on the group divisible
designs, called RGDD, which can be constructed easily. Further, we investigated
some properties of these designs and characterized the most efficient. Designs
having total balance, that is giving equal variance for all the estimated contrasts
of interest were studied. It was concluded that, due to combinatorial restrictions,

the designs were not useful in practice.

Establishment of two bounds on the total variance of the estimators of the
contrasts of interest is the main topic of Chapter 3. This two different bounds were
found by applying different methods. It was shown numerically that in the designs
with k£ > ¢ one bound(b;) is uniformally tighter than the other(b;). However, for
the cases where k < t this is not true and one bound is not uniformally tighter
than the other. Therefore we take the maximum value of these bounds as a lower
bound(b,,). The performance of the RGDD’s which can be constructed via the
catalogue of Clatworthy was assessed at the end of Chapter 3.

In Chapter 4 it was shown that the most efficient designs in the PBDS class
are highly efficient in the entire class of designs by utilizing the permutation tech-
nique. The efficient designs were characterized by the number of units which is as-
signed to each set of treatment combinations A, B and D within each block. Some
methods of constructing PBDS designs(excluding RGDD’s) were introduced. Fi-
nally, efficient designs for 3 < n < 6,2 <k <9 and 2 < b < 10, which covers

most practical cases arising in clinical trials, are summarized in Table 4.2.

In Chapter 5 nxm experiments were considered by using a more general per-
mutation technique than employed in Chapter 4. A generalization of PBDS
designs was specified, called GPBDS designs. We obtained a design-dependent
bound for the total variance of the estimators of the contrasts of interest but
failed to calculate it in terms of the elements of the concurrence matrix of the
design. However, a series of overall A-optimal designs were obtained for the cases
when k£ > t. Some methods of constructing GPBDS designs were introduced with
empbhasis on the practical cases arising in clinical trials, that is 3 < n,m < 5.

The performances of these designs were assessed and recommendations made on
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their use.

In Chapter 6 we considered experiments conducted in a completely random-
ized designs and characterized those designs which are A-optimal. A series of A-
optimal designs obtained from these results was summarized in Table 6.1. Later
we allowed different sets of contrasts to have different degrees of importance and
defined a Weighted A-optimal criterion. Then, we characterized those completely
randomized designs which are weighted A-optimal designs for specific weights on
the dual versus A and the dual versus B contrasts. The idea of weighted A-
optimal design was then generalized to block designs and a design-dependent

bound on the weighted total variance of the contrasts of interest was established.

In Chapter 7, firstly we considered one way of estimating a specific set of
factorial effects when a certain treatment combination is excluded from the ex-
periment and another set of factorial effects was assumed to be negligible. This
has been done in randomized block designs and completely randomized designs
with equal treatment replications via assuming the negligibility of a linear com-
bination of the negligible factorial effects. Next we established a rule to enable
us to choose the particular linear combination of negligible factorial effects which
enables the factorial effects of interest to be estimated with maximum precision.
Consideration of completely randomized designs with unequal treatment replica-

tions proved more difficult than the equireplicate cases.

We examined, through Theorem 3.2, the similarity between the structure of
the A-matrix of the class of designs which is a source of efficient designs and the
structure of C'C, where C is the contrast matrix corresponding to the contrasts
of interest. We observed, for three types of problem that Theorem 3.2 provides
the structure of the A-matrix of a class of designs which have been shown to be

a source of efficient designs for example balanced block designs.

7.6.2 Further Research:

The following questions remain unanswered and are topics for future work.

1. Is there any means of minimizing our objective function ¢r(C2C’) given in
(4.5) in Chapter 47 '

2. Is it possible to prove that Conjectures 4.1-4.3 are true?
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3. What are other sufficient conditions for a design to be PBDS and do these

enable further efficient designs to be obtained?

4. Can we express ¢{r(CQC’) in Chapter 5 as a function of the elements of the
concurrence matrix of the design? If we can obtain such a function which

designs minimize the value of the function?

5. Suppose our experiment is conducted in a block design other than a ran-
domized block design, then how can we estimate a set of factorial effects by

neglecting another set of factorial effects(see Section 7.3)?

6. Can we extend the idea of similarity between the structure of the A-matrix
of the class containing efficient designs and C'C from specific C’s to more

general cases than those described in Chapter 77
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Proofs of theorems and lem m as:

A.1 Proofs Related to Chapter 4

A.1.1 Proof of Theorem 4.5:

From the assumptions in the statement of theorem we have:

aqg;+1 fori=1,2,..., by,
NAij =

asj fort=104;4+1,...,n~—1.

apj+1 fore=1,2,...,bp;,
npij =
ap; fori:bDj+1,...,n—1.

From these we obtain

n—1
donhi; = (n—1)a%; + 2a45b4j + baj,
=1

n—1
2

> nh; = (n —1)a}; + 2ap;bp; + bpj,
=1

for j=1,2,...,b.
From (A.1)

|
-

b n

b b 3
nhi; = —1)D_ ak;+2) aaibaj + Y baj,
=1 i=1

i=1

7j=11=1

=
Il
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b n-1 b b b
22 by =(n—1)3 ab;+23 apjbp; +3_ bpj,
j=li=1 i=1 j=1 i=1
b b b b
2o Th=(n =123 ak;+2(n—1) 3 anba; + D b%;, (A.2)

b b b d
ST = (n—1)2 Y ab;+2(n— 1) 2 apsbp; + 3 by,
j=1 =1 =1 g=1

TA]'TDJ'
n—1

ba;bp;
= (n — 1)asjap; + (aa;bpj + apjbaj) + —ni_—Df
Substituting from (A.2) into the expression of d4 and dp we obtain the re-
quired expressions in (4.36).
In order to obtain the required expressions for v and v, by applying Marshall
and Olkin(1979, proposition A.3,p 141), four cases have to be considered here:

(i) bp; < baj, then

Y i nainpi; < bpjlap; +1)(as; +1)+
ap; {(ba; — bp;)(aa; + 1)+ (n — 1 — ba;)as;} (A.3)
= (aa;bp; + apjbaj) + (n — 1)(asjap;) + bp;

(11) bAj S bDj, then

Y nainpi < bajlap; 4+ 1)(as; + 1)+
a4; {(bp;j — ba;)(ap; + 1) + (n — 1 = bp;)ap;}  (A4)
= (a4jbp; + ap;baj) + (n — 1)(as;ap;) + ba;
On substitution from (A.3) and (A.4) into the expression for dap in (4.15) we
obtain v in (4.37).
(iii) bpj + baj — (n — 1) > 0, then

P nainpi; 2 (n—1—bpjlapi(as; + 1)+
(apj +1)(baj + bpj —n + 1)(au; + 1)+
(ap; +1)(n =1 —baj)as; (A-5)
= (a4;bp; + ap;ba;) + (n — 1)(aajap;)+
(bpj + baj —n +1)
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(iv) baj + bp; — (n — 1) <0, then

" nanpi > bajapi(as; + 1)+
as; {(n —1—bpj — baj)ap; + bp;(ap; +1)} (A.6)
= (asjbp; + ap;ba;) + (n — 1)(asjap;).

On substituting from (A.5) and (A.6) into the expression for d4p given in (4.15)
we will obtain u in (4.38). Hece the theorem is proved.d

A.1.2 Proof of Lemma 4.8:

Based on the definitions of T4;, Tp; and Tg;, we have T4; + Ts; +Tp; = k. This
implies that Tp; = k — Tp; — T4;. Therefore

Tp 1 b

- . k—Ta; — Ts;)™
o n—1 k(n-1) J};l( A7 5;)

After some algebra we obtain

gp = qa + 9B — 294B. (A7)
Also
1 b
gap = E(_n—fl_)gT’“(k ~ Tuj ~ Tp;)-

After some manipulation the expression becomes

9AD = A — 4B- (A.8)

On substitution for ¢p and g4p from (A.7) and (A.8) respectively in the RHS
of (4.62) we obtain the expression in LHS. Hence the lemma is proved.&

A.1.3 Proof of Theorem 4.9:

If in each a block of design d, we change treatment combination 10 by il and vice
versa, and call the resulting design d*, then in design d* we have n4;; < np;;. In
order to show that d* i1s more efficient than design d, it is enough to show that
from Conjecture 4.1, the bound which can be obtained by design d* is tighter
than that of d. Let By and By« denote the lower bound which is provided by
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applying Conjecture 4.1 on designs d and d* respectively, then we need to show
that:

Bd - Bdo Z O.
By using Lemma 4.8, it can be shown that

(n —2)(ds — dp) 4 _da=ap
dadp — d,zw 9dAqD — Q,24D ’
where d4, dp, dap, g4, gp and gap were defined in (4.15). On substitution from

Bd— Bd- =

(A.9)

(4.15) in the above expression, after some algebra, we can show that:

Ty —Tp 1 b
— T Y (Ta; — Tp;)(Taj + Tp;). (A.10)
k(n —1) A

da —4p = P

Since TA]' + TD]' < k and T_4j > TDJ', then

Ta—Tp 12
—qgp > — . —Tp;) =0. A1l
94 =40 2 — n—1j§=1:(TA] D;) (A.11)
From (4.15)
dA~dD=TA“TD_1?A“DD+ S4a—5p (A.12)

It can be shown that

b n-—1

Dy —Dp= Z Z nA,J np;i; (TLA,']' + TLD,'J'). (A.13)

j=11=1

Since nai; + npi; < Taj + Tp; and based on the assumption, n4;; — np;; > 0,
hence

n-—-1

b
Ds—Dp SZZ TAJ+TDJ (nA,J nD;j)ZSA—SD. (A.14)
j: =

From (A.12) and (A.14) we obtain

Ta—Tp Sa—S5p Sa=Sp = T4—Tp—2ag2
n—1 k(n—2) k(n—1D(n-2) n—1

dy—dp > . (A15)

From (4.15), it can be shown that

Sa—Sp 1
_‘4—'2_ ZTAJ Tp;)(Ta; + Tp;)- (A.16)

J=1
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Since T4; > Tp; and T4; + Tp; < k, this implies that
S4—90 o1 .

(A.17)
Then from (A.17) and (A.15) we obtain

dy—dp>TazTo _Ta=Ip _, (A.18)
n—1 n~1
Hence from (A.11) and (A.18) the proof follows.d

A.2 Proof of Lemma 5.1:

From (5.6) we have

o

1 q! p! /
= p—!q—!ZZWA”ij =

=1 j=1

A

1]

B
G

My Do
I N

,8ay. (A.19)
! H/

We now determine the structure of A by substituting for A from (5.4). By

premultipying and postmultiplying A by 7;; and its transpose ; respectively, we
obtain

¢:Dq! ¢: B, a:F(p; ® ¢:)'

Fi ATy = p;B'¢! p;Gp} piH(p; ® ¢:) . (A.20)

L (i ®a)F'q (pi®q)H'P: (p; ® ¢:)L(p; ® ¢i)

Then, if we let y;; denote the ijth entry in matrix Y, we obtain
1.

_ 1 ¢ ! 1 d ! ]
D= ;@ZZQ{DQ; = angﬂqi = (dj),

i=1j=1
where by Majumdar and Notz(1983):
% I di=d ifi=7
d,'j =
1

PICESY] i liudj=dy fid#j
Therefore

D =a I+ bJ,
where a; + b; = d; and b; = d,.
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2.
_ 1 &2
O Fa kL= —Zptsz o
Similarly
I g =0 ifi=j
gij; =
Hp_l—'ﬁ Tia Z?;e.- Gij =02 i F#]
and
G = asl, + bsJy,
where a3 + b3 = g; and b3 = g».
3.
gt P
B=— 2 Z ¢ Bpj;,
plg I A
which gives
By = = 3" by = B say.
Pqi=15=1
Therefore B = bJ,x,.
4.

F:—qur p1®qz

plg! i i
which is
Z q= ® q, .
This gives
_ 1 &
F=1,8 {a ;QiSQfL

where § = 237, F;. This can be shown as

F=1,85,
where ,§ = (§1]) and
cllisi =5 ifi=j

o)l
-,
<

il

Ty D=1 Lggi Sij = 52 i i
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Therefore
F“" 1, ®(GQI +b2J)

where ag + by = 3; and by = 3,.

5. Similarly,
= 7!
q |)ZPJ Hy, Hy,... Hp)(p;‘ ® Jg)s
j=1
where after some algebra as above, we obtain

H = (G4Ip -+ b4.]p) Y 1I

—gq?

where

P
as+bs =Y Hil,/(pg)

=1

q P

by =3 Hijl/lp(p — 1)a) (i # j)

i=1j5=1

and H;; is an 1 X ¢ vector corresponding to the ith row of H;.

6.
L= ——,ZZ p; @ 4:)L(p; ® 4:)-
plg' =i
Let
_ 1 P
L - 113
=Lt
_ P P
Ly, = ZZ iy
=1
. gt
Ly = Z qun
and
- 1
Ly=— giL2g;.
q- 1=1
Then

201
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But Ly = aal, + BiJg; v + i = Ly and By = liin(i # ©). Also Ly =
arly + Bady; az + B2 = Iy and B = D) (7 # 7). From these we obtain

L=1I1&(asl, +bsJ,) + J, ® (ael, + beJy),
where as = a; — a3, bs = B — B2, ag = a3 and bg = fs.

Therefore the general structure of A is as follows:

CLqu + b1Jq Cqup l; ® ((IQIq + bQJq)
A = 03];, + b3Jp (G4Ip + b4Jp) &® _1_;
I, ® (asl, + bsJy) + J, @ (asly + beJy)

(A.21)
In order to establish the structure of {), notice that for any connected GPBDS
design, a g-inverse of its A-matrix, ) is obtained as (A+zJ)~! for any real number
r # 0. A has the same rank of A because it was obtained by permutation. Hence
it is obvious that A + zJ is a nonsingular matrix with the same structure as A.
Therefore without loss of generality let us assume that A is nonsingular. Now we
partition A as follows:
An Ap
An An

I

where

- 01]q + leq Cqup
Au = i
cJpxgq aszl, + baJ,

..1_; ® (GQIq + b2Jq)
(asdp 4+ bsJp) @ 15

12 — L)

Ag = A}, and
AZZ = Ip ® (asfq + stq) + Jp ® (aGIq + bGJq).
Let A~! denote the inverse of A, and be partitioned as:

B All 412
-1 __
AT = A2l A]zz

Then by Graybill(1983,p184);

A = (A - ApAz An)™Y,
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A = (Ayy — An A Ap) ™!
and
AP = — AV A, A7

By Graybill(1983,p195) and Lemma 2.3 in Chapter 2, A;; and Az; have same
structure. Pre and Postmultiplying A5} by A;; and its transpose respectively,
shows that A;,A5} Ay; and hence A;; — Aj3A57 Ay have the same structures as
Ajs.

Similarly, A,; A7} A1, and hence Ay, — Ay A A1z have the same structures
as Ag,.

By the same method as two above cases we can show that A'? has the same

structure as A;,. This completes the proof.d
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Computer Algorithms

B.1 Algorithms for 2x2 Factorial Experiments:

B.1.1 A-optimal Designs:

PROGRAM OPTING1
C THIS PROGRAMME GIVES THOSE VALUES OF R WHICH MINIMIZES
C THE FUNCTION F(R), THEN CHECK WHETHER FOR THIS VALUE OF
C R THE BTBD EXISTS OR NOT.
DIMENSION FU(1000)
1P=2
P=IP
DO 50 K=5,30
IF(K.EQ.5)GO TO 100
IF(K.EQ.6)GO TO 100
IF(K.EQ.8)GO TO 100
IF(K.EQ.9)GO TO 100
IF(K.EQ.11)GO TO 100
IF(K.EQ.12)GO TO 100
IF(K.EQ.15)GO TO 100
IF(K.EQ.16)GO TO 100
IF(K.EQ.18)GO TO 100
IF(K.EQ.19)GO TO 100
IF(K.EQ.23)GO TO 100
IF(K.EQ.25)GO TO 100
IF(K.NE.30)GO TO 50
IXYXY=10
100 DO 50 IB=2,50
B=IB
M=B*K/2

' e

204
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RO=0

FMIN=999999999

DO 1I1=1,M

IR=I

R=1

NU=IR/IB

U=NU

NX=(IB*K-IR)/IP

X=NX

NY=(NX+1)/IB

Y=NY

NZ=NX/IB

Z=NZ
C=K*B-R+(P-K*B+R+P*X)*Z*(2*X-B-B*Z)+(K*B-R-P*X)*Y*(2*(X+1)-B
*.B*Y)

G=R+(2*R-B)*U-B*U**2

C=C/K

G=G/K

FU(I)=P*(P-1)**2/(P*(B*K-R-C)-(R-G))+P/(R-G)
IF(FU(I).GT.FMIN)GO TO 1

FMIN=FU(I)

RO=I

1 CONTINUE

IR0O=RO

C UP TO HERE PROGRAMME FOUND R WHICH MINIMIZS F(R)
C THIS STEP IS TO DETRMINE WHETHER (BK-R)/P IS INTEGER OR NOT.
IF(IB*K-IR0-2*((IB*K-IR0)/2).NE.0)GO TO 50

C THIS STEP IS TO DETRMINE WHETHER R/B IS INTEGER OR NOT.
RRO=R0/B

NRO=IR0/IB

XRO=NRO

IF(RR0O.EQ.XR0)GO TO 40

C THIS STEP CHECKS WHTHER BTBD EXISTS WHILE R/B IS NOT INTEGER
IB1=IR0-IB*NRO

K1=K-NRO-1

IB2=1B-IB1

K2=K-NRO

XB1=IB1

XB2=IB2

R1=XB1*K1/P

NR1=(IB1*K1)/IP

XR1=NR1

IF(R1.NE.XR1)GO TO 50
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R2=XB2*K2/P
NR2=(IB2*K2)/IP
XR2=NR2
IF(R2.NE.XR2)GO TO 50

1Q1=K1-IP*((IB1*K1)/(IP*IB1))
C PRINT *IR0,IQ1
IF(IQ1.EQ.0)GO TO 105
IF(IQ1.EQ.2)GO TO 105
IF(IQ1.EQ.1)GO TO 130
PRINT * ERROR??...’

GO TO 50

130 XXX=XB1/2
NXX=IB1/2

XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50

105 1Q2=K2-IP*((IB2*K2)/(IP*IB2))
IF(1Q2.EQ.0)GO TO 110
IF(IQ2.EQ.2)GO TO 110
IF(IQ2.EQ.1)GO TO 120
PRINT * ERROR 777...

GO TO 50

120 XXX=XB2/2
NXX=IB2/2

XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
110 ICODE=2

ICODE1=1

GO TO 101

40 1Q=K-NRO-IP*((K*IB-IR0)/(IP*IB))
IF(IQ.EQ.0)GO TO 111
IF(IQ.EQ.2)GO TO 111
IF(IQ.EQ.1)GO TO 200
PRINT *’ ERROR?77...

GO TO 50

200 XXX=B/2.

NXX=IB/2

XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
111 ICODE=1
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ICODE1=0

NYY=(K*IB-IR0)/(IP*IB)

101 IF(IXYXY.EQ.ICODE1)GO TO 108
IF(ICODE1.NE.1)GO TO 300

PRINT *,’ K B R0 CODE Bl K1 B2 K2’

GO TO 301

300 PRINT *,” K B R0 CODE (BK-R0)/TB IQ’
301 PRINT *"**********************************************’
108 IF(ICODE!.EQ.1)GO TO 102
WRITE(6,7)K,IB,IR0,ICODE,NYY,IQ
IXYXY=ICODE1

GO TO 50

102 WRITE(6,8)K,IB,IR0,ICODE,IB1,K1,IB2,K2
IXYXY=ICODE1

50 CONTINUE

7 FORMAT(5X,616)

8 FORMAT(5X ,816)

2 STOP

END
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B.1.2 Near A-optimal Designs:

PROGRAM OPTING2
C
C THIS PROGRAM GENERATES A-OPTIMAL DESIGNS WITHIN BTBD
C CLASS OF DESIGNS WHEN AN OVERALL A-OPTIMAL BTBD DESIGN
C DOES NOT EXIST
DIMENSION FU(1000)
1IP=2
P=IP
DO 50 K=3,30
DO 50 IB=2,50
B=IB
M=B*K/2
RO=0
FMIN=999999999
DO 1I=1M
R=I
NU=R/B
U=NU
NX=(B*K-R)/P
X=NX
NY=(X+1)/B
Y=NY
NZ=X/B
Z=N7Z
C=K*B-R+(P-K*B+R+P*X)*Z*(2*X-B-B*Z)+(K*B-R-P*X)*Y*(2*(X-+1)-B
*B*Y)
G=R+(2*R-B)*U-B*U**2
C=C/K
G=G/K
FU(D)=P*(P-1)**2/(P*(B*K-R-C)-(R-G))+P/(R-G)
IF(FU(I).GT.FMIN)GO TO 1
FMIN=FU(I)
RO=I
1 CONTINUE
MRO=RO
IF(IB*K-MRO.EQ.2*((IB*K-MR0)/2))GO TO 50
BOU=FU(MRO0)
IR1=MRO+1
IF(FU(IR1).LE.FU(MRO0-1})GO TO 500
IR1=MRO-1
500 E=FU(MRO)/FU(IR1)
IR0=IR1
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RO=IRO

RRO=R0/B

NRO=IR0/IB

XRO=NRO
IF(RR0.EQ.XR0)GO TO 40
C

C THIS STEP CHECKS WHTHER BTBD EXISTS WHILE R/B IS NOT INTEGER
C

IB1=IR0-IB*NRO
K1=K-NRO-1

IB2=IB-IB1

K2=K-NRO

XB1=IB1

XB2=IB2

R1=XB1*K1/P
NR1=(IB1*K1)/IP
XRI=NRI
IF(R1.NE.XR1)GO TO 50

R2=XB2*K2/P
NR2=(IB2*K2)/IP
XR2=NR2
IF(R2.NE.XR2)GO TO 50

IQ1=K1-IP*((IB1*K1)/(IP*IB1))
C PRINT *IR0,IQ1
IF(IQ1.EQ.0)GO TO 105
IF(IQ1.EQ.2)GO TO 105
IF(IQ1.EQ.1)GO TO 130
PRINT *’ ERROR??...

GO TO 50

130 XXX=XB1/2

NXX=IB1/2

XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50

105 IQ2=K2-IP*((IB2*K2)/(IP*IB2))
IF(1Q2.EQ.0)GO TO 110
IF(IQ2.EQ.2)GO TO 110
IF(IQ2.EQ.1)GO TO 120

PRINT *’ ERROR 777...

GO TO 50

120 XXX=XB2/2
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NXX=IB2/2

XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
110 ICODE=2

ICODE1=1

GO TO 101

40 IQ=K-NRO-IP*((K*IB-IR0)/(IP*IB))
IF(IQ.EQ.0)GO TO 111

IF(IQ.EQ.2)GO TO 111

IF(IQ.EQ.1)GO TO 200

PRINT *’ ERROR?7?...

GO TO 50

200 XXX=B/2.

NXX=IB/2

XXXX=NXX

IF(XXX.NE.XXXX)GO TO 50

111 ICODE=1

ICODE1=0

NYY=(K*IB-IR0)/(IP*IB)

101 IF(IXYXY.EQ.ICODE1)GO TO 108
IF(ICODE1.NE.1)GO TO 300

PRINT *,; K B R0 CODE Bl K1 B2 K2’

GO TO 301

300 PRINT *’ K B R0 CODE (BK-R0)/TB IQ’
301 PRINT * "FHebsfssrtktthtkbirtktifihifolfobforlpkr
108 IF(ICODEL.EQ.1)GO TO 102
WRITE(6,7)K,IB,IR0,JCODE,NYY,IQ,E
IXYXY=ICODE1

GO TO 50

102 WRITE(6,8)K,IB,IR0,JCODE IB1,K1,IB2 K2,E
IXYXY=ICODE1

50 CONTINUE

7 FORMAT(5X,616,F12.4)

8 FORMAT(5X,816,F12.4)

2 STOP

END
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B.2 Algorithm for Designs with Two Factors One
with Two Levels; Another with More than

Two Levels:

B.2.1 Conjectured Bound, C- and Near C-designs:

PROGRAM SPBDS
C THIS GENERATES THE CONJECTURED BOUND AND C-DESIGNS OR
C NEAR C-DESIGNS
DIMENSION IEX(100,2)
COMMON IEX
M=2
DO5N=6,6
IP=N-1
P=IP
DO 5K=6,6
XK=K
WRITE(6,22)
DO 5 IB=15,15
B=IB
NM=IB*K
F=99999999
CALL TAAI(N,NM,IP,P,K XK IB,B,F,F1)
PRINT *N,K,B,F1
F2=F1
L=0
222 F=99999999
CALL TAA(N,NM,IP,P K, XK,IB,B,F IEX,L,F1,IIA IIB,IID)
L=L+1
IEX(L,1)=IIA
IEX(L,2)=1ID
IIRB=I1B/IB
IBB=IIB-IIRB*IB
CALL TESTA(IIRB,IBB,IIA,IB,K IP,NN IB1, KA1 KD1,IB2 KA2 KD2,
*IB3,KA3,KD3)
IF(NN.EQ.0)GO TO 400
CALL TESTD(IIRB,IBB,IID,IB,K IP,NN IB1,KA1,KD1,1B2,KA2 KD2,
*IB3,KA3,KD3)
IF(NN.EQ.1)GO TO 200
400 DD=(F1-F2 )*100/F2
KB1=K-KA1-KD1
KB2=K-KA2-KD2
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KB3=K-KA3-KD3

IF(IB1.EQ.0)KB1=0

IF(IB2.EQ.0)KB2=0

IF(IB3.EQ.0)KB3=0
WRITE(6,15)N,K,IB,IB1,KB1,KA1,KD1,1B2,KB2,KA2,KD2,IB3,KB3,KA3,KD3
PRINT *°

GO TO 5

200 IF(L.LT.40)GO TO 222

PRINT *’THERE IS NO SOLUTION BY THIS ALGORITHM’
PRINT *°

5 CONTINUE

6 FORMAT(315,5X,314,2X,F9.4,F9.2,F9 .4)

STOP

15 FORMAT(314,3X,3(414,2X))

22 FORMAT( N K BIB1 KB1 KA1 KD1 IB2 KB2 KA2 KD2 IB3 K
*B3 KA3 KD3’)

END

SUBROUTINE TAA1(N,NM,IP,P,K,XK,IB,B,F,F1)
DIMENSION IITA(100),IITD(100),IIBA(100),IIBD(100)
DIMENSION ITAA(100),ITAD(100),ITTB(100)

DO 1 ITB=1,NM/2

DO 1 ITD=IP,NM-ITB-IP

ITA=NM -ITB-ITD

IF(ITA.GT.ITD)GO TO 1

TAA=ITA/IB

IBA=ITA-IAA*IB

IAD=ITD/IB

IBD=ITD-IAD*IB

IAB=ITB/IB

IBB=ITB-IAB*IB

DO 110 J=1,IB-IBB

110 IITB(J)=IAB

DO 120 J=IB-IBB+1,IB

120 IITB(J)=TIAB+1

DO 101 J=1,IBA

101 IITA(J)=IAA+1

DO 102 J=IBA+1,IB

102 TITA(J)=1AA

SA=0

SB=0

SD=0

SAB=0

SAD=0
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DO 130 J=1,IB
IITD(3)=K-IITA(J)-IITB(J)
SA=SA+IITA(J)**2

SB=SB+IITB(J)**2

SD=SD+IITD(J)**2
SAB=SAB-+IITA(J)*IITB(J)

130 SAD=SAD+IITD(J)*IITA(J)

DO 105 J=1,IB

IMAA(J)=IITA(J)/IP

ITAD(J)=IITD(J)/1P
IIBA(J)=IITA(J)-IP*IIAA ()

105 1IBD(3)=IITD(J)-IP*1IAD(J)

DA=0

DD=0

IDADMI=0

IDADMA=0

DO 106 J=1,IB
DA=DA+IIBA(J)*(IIAA(J)+1)+ITAA(J)*IITA (D)
DD=DD+IIBD(J)*(ITAD(J)+1)+IIAD(J)*IITD(J)
INF=TTAA(J)*IITD(J)+IIAD(J)*IIBA(J)+
*MAX(0,1IBA(J)+IIBD(3)-IP)
IDADMI=IDADMI+INF
ISUP=ITAA(J)*IITD(J)+ITAD(IY*IIBA(J)+
*MIN(ITBA(J),IIBD(J))
IF(ITAA(J)+ITAD(J)+2.GT.K)GO TO 116
IDADMA=IDADMA+ISUP

GO TO 106

116 IDADMA=IDADMA+INF

106 CONTINUE

Y1=K*(N-1)

Y2=Y1*(N-2)

Y3=K*(N-2)

TA=ITA

TD=ITD

TB=ITB

DI=TA/P-DA/Y3+SA/Y2
D2=TD/P-DD/Y3+SD/Y2
Q1=TA/P-SA/Y1

Q2=TB/P-SB/Y1

Q3=SAB/Y1

DO 1 J=IDADMI,IDADMA

QQ=J

D3=QQ/Y3-SAD/Y2
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YY=D1*D2-D3**2
IF(YY.EQ.0)GO TO 1
TR1=(P-1.)*(2.*D1-2.*D3+D2)/YY
IF(TR1.LT.0)GO TO 1
YY=Q1*¥*Q2-Q3**2
IF(YY.EQ.0)GO TO 1

TR2= (Q14+Q2)/YY
IF(TR2.LT.0)GO TO 1
TR=TR1+TR2

IF(F.LE.TR)GO TO 1

F=TR

IIB=ITB

ITA=ITA

IID=ITD

1 CONTINUE

F1=F

RETURN

END

SUBROUTINE TAA(N,NM,IP,P,K XK,IB,B,F,IEX L F1,IIA IIB,IID)
DIMENSION HTA(100),IITD(100),IIBA(100),IIBD(100)
DIMENSION ITAA(100),IIAD(100),IITB(100),IEX(100,2)
DO 1 ITB=1,NM/2

DO 1 ITD=IP,NM-ITB-IP,IP
ITA=NM -ITB-ITD
IF(ITA.GTITD)GO TO 1
IF(ITA.NE.IP*ITA/IP))GO TO 1
IF(L.EQ.0)GO TO 200

DO 500 I=1,L
IFITA.EQ.IEX(I,1).AND.ITD.EQ.IEX([,2))GO TO 1
500 CONTINUE

200 TAA=ITA/IB
IBA=ITA-TAA*IB

IAD=ITD/IB

IBD=ITD-IAD*IB

IAB=ITB/IB

IBB=ITB-IAB*IB

DO 110 J=1,IB-IBB

110 IITB(J)=IAB

DO 120 J=IB-IBB+1,IB

120 IITB(J)=1AB+1

DO 101 J=1,IBA

101 IITA(J)=IAA+1

DO 102 J=IBA+1,IB
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102 IITA(J)=IAA

SA=0

SB=0

SD=0

SAB=0

SAD=0

DO 130 J=1,IB
IITD(J)=K-IITA(J)-IITB(J)
SA=SA+IITA(J)**2

SB=SB+IITB(J)**2

SD=SD+IITD(J)**2
SAB=SAB+IITA(J)*IITB(J)

130 SAD=SAD+IITD(J)*IITA(J)

DO 105 J=1,IB

ITAA(D)=HITA(J)/IP
ITAD(3)=IITD(J)/IP
IIBA(J)=IITA(J)-IP*IIAA(J)

105 IIBD(J)=HTD(J)-IP*IIAD(J)

DA=0

DD=0 IDADMI=0

IDADMA=0

DO 106 J=1,IB
DA=DA+IIBA(I)*(ITAA(J)+1)+ITAA(IY*IITA(J)
DD=DD+IIBD(J)*(IIAD(J)+1)+IIAD(J)*IITD(J)
INF=ITAA(3)*IITD(J)+ITAD(J)*IIBA(J)+
*MAX(0,IIBA(T)+IIBD(J)-IP)
IDADMI=IDADMI+INF
ISUP=ITAA(I)*IITD(J)+HAD(I)*IIBA(J)+
*MIN(ITBA(J),IIBD(1))
IF(ITAA(D)+HITAD(3)+2.GT.K)GO TO 116
IDADMA=IDADMA+ISUP

GO TO 1086

116 IDADMA=IDADMA+INF

106 CONTINUE

Y1=K*(N-1)

Y2=Y1*(N-2)

Y3=K*(N-2)

TA=ITA

TD=ITD

TB=ITB

D1=TA/P-DA/Y3+SA/Y2
D2=TD/P-DD/Y3+SD/Y2
Q1=TA/P-SA/Y1
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Q2=TB/P-SB/Y1
Q3=SAB/Y1

DO 1 J=IDADMIIDADMA
QQ=J
D3=QQ/Y3-SAD/Y2
YY=D1*D2-D3**2
IF(YY.EQ.0)GO TO 1
TR1=(P-1.)*(2.*D1-2.*D3+D2)/YY
IF(TR1.LT.0)GO TO 1
YY=Q1*Q2-Q3**2
IF(YY.EQ.0)GO TO 1
TR2= (Q1+Q2)/YY
IF(TR2.LT.0) GO TO 1
TR=TR1+TR2
IF(F.LE.TR)GO TO 1
F=TR

IIB=ITB

ITA=ITA

[ID=ITD

1 CONTINUE

F1=F

RETURN

END

SUBROUTINE TESTA(IIRB,IBB,IIA,IB,K,IP,NN,IB1,KA1,KD1,IB2,KA2
., KD2,IB3,KA3,KD3)
NN=0

[IRA=IIA/IB
KB1=IIRB+1

KB2=IIRB
IBA2=IIA-IIRA*IB
KA2=IIRA+1
IBA1=IB-IBA2
KA1=IIRA
IB1=MIN(IBB,IBA1)
IB2=I1B-MAX(IBB,IBA1)
1B3=MAX(IBB,IBA1)-IB1
KD1=K-KA1-KBl1
KD2=K-KA2-KB2
KB3=KB1

KA3=KA2
IF(IBB.EQ.MIN(IBB,IBA1)) THEN
KB3=KB2

KA3=KA1l



Appendix B 217

END IF

KD3=K-KB3-KA3

IF(IB1.EQ.0) GO TO 201

IIB=IB1

IRD=(IB1*KD1)/IP
IF(IB1*KD1.NE.IRD*IP)GO TO 200
IRA=(IB1*KA1)/IP
IF(IB1*KA1.NE.IRA*IP)GO TO 200
KA=KA1l

KD=KD1

CALL CHECK(IIB,IP,JRA,IRD,KA,KD,NN)
IF(NN.EQ.1)GO TO 200

GO TO 203

201 KA1=0

KD1=0

203 IF(IB2.EQ.0) GO TO 202
IIB=IB2

IRD=(IB2*KD2)/IP
IF(IB2*KD2.NE.IRD*IP)GO TO 200
IRA=(IB2*KA2)/IP
IF(IB2*KA2.NE.IRA*IP)GO TO 200
KA=KA2

KD=KD2

CALL CHECK(IIB,IP,IRA,IRD KA KD NN)
IF(NN.EQ.1)GO TO 210

GO TO 204

202 KA2=0

KD2=0

204 IF(IB3.EQ.0) GO TO 205
IIB=IB3

IRD=(IB3*KD3)/IP
IF(IB3*KD3.NE.IRD*IP)GO TO 200
IRA=(IB3*KA3)/IP
IF(IB3*KA3.NE.IRA*IP)GO TO 200
NN=0

KA=KA3

KD=KD3

CALL CHECK(IIB,IP,IRA ,IRD,KA ,KD,NN)
GO TO 210

205 KA3=0

KD3=0

GO TO 210

200 NN=1
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210 RETURN

END

SUBROUTINE TESTD(IIRB,IBB,IID,IB,K,IP,NN,IB1, KA1, KD1,IB2,KA2
., KD2,IB3,KA3,KD3)

NN=0

IIRD=IID/IB

KB2=IIRB

IBD=IID-IIRD*IB
IB1=MIN(IBB,IBD)

KB1=IIRB+1

KD1=IIRD+1

KA1=K-KB1-KD1
IB2=MAX(IBB,IBD)-IB1
KB2=KB1-1

KD2=KD1

IF(IBD.EQ.IB1) THEN

KB2=KB1

KD2=KD1-1

END IF

KA2=K-KB2-KD2

IB3=IB-1B1-1B2

KB3=KBI1-1

KD3=KD1-1

KA3=K-KB3-KD3

IF(IB1.EQ.0) GO TO 201

IIB=IB1

IRD=(IB1*KD1)/IP
IF(IB1*KD1.NE.IRD*IP)GO TO 200
IRA=(IB1*KA1)/IP
IF(IB1*KA1.NE.IRA*IP)GO TO 200
KA=KA1l

KD=KD1

CALL CHECK(IIB,IP,IRA IRD KA ,KD,NN)
IF(NN.EQ.1)GO TO 200

GO TO 203

201 KA1=0

KD1=0

203 IF(IB2.EQ.0) GO TO 202
[1B=1B2

IRD=(IB2*KD2)/IP
IF(IB2*KD2.NE.IRD*IP)GO TO 200
IRA=(IB2*KA2)/1P
IF(IB2*KA2.NE.IRA*IP)GO TO 200
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KA=KA2

KD=KD2

CALL CHECK(IIB,IP,IRA,IRD,KA,KD,NN)
IF(NN.EQ.1)GO TO 200

GO TO 204

202 KA2=0

KD2=0

204 IF(IB3.EQ.0) GO TO 205
IIB=1IB3

IRD=(IB3*KD3)/IP
IF(IB3*KD3.NE.IRD*IP)GO TO 200
TRA=(IB3*KA3)/IP
IF(IB3*KA3.NE.IRA*IP)GO TO 200
NN=0

KA=KA3

KD=KD3

CALL CHECK(IIB,IP,IRA,IRD,KA ,KD,NN)
GO TO 210

205 KA3=0

KD3=0

GO TO 210

200 NN=1

210 RETURN

END

SUBROUTINE CHECK(IIB,IP,IRA ,IRD, KA ,KD,NN)
I1=IRA/IIB

I12=IRD/IIB

K1=KA-IP*I1

K2=KD-IP*12
IF(K1.EQ.0.AND.K2.EQ.0)GO TO 2
IF(K1.EQ.0) THEN

[R2=(1IB*K2)/IP
IF(IP*IR2.NE.IIB*K2)GO TO 1
L2=(IR2*(K2-1))/(IP-1)
IF(L2*(IP-1).NE.IR2¥(K2-1))GO TO 1
ELSE IF(K2.EQ.0) THEN
IR1=(IIB*K1)/IP
IF(IP*IR1.NE.IIB*K1)GO TO 1
L1=(IR1*(K1-1))/(IP-1)
IF(L1*(IP-1).NE.IR1*(K1-1))GO TO 1
ELSE

[F(K1.NE.K2)GO TO 1
IR1=(1IB*K1)/IP
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IF(IP*IR1.NE.IIB*K1)GO TO 1
L1=(IR1*(K1-1))/(IP-1)
IF(L1*(IP-1).NE.IR1*(K1-1))GO TO 1
IR2=(1IB*K2)/IP
IF(IP*IR2.NE.IIB*K2)GO TO 1
L2=(IR2*(K2-1))/(IP-1)
IF(L2*(IP-1).NE.IR2*(K2-1))GO TO 1
END IF

GO TO 2

1 NN=1

2 RETURN

END
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B.3 A-optimal PBDS Designs for k=2,3:

B.3.1 A-optimal PBDS Designs for k=2

PROGRAM K2PB
C THIS PROGRAM GENERATES A-OPTIMAL PBDS DESIGN FOR K=2
INTEGER A,B,C,D,E|F
DO 100 N=3,10
N1=N-1
N2=N-2
M=(N1*N2)/2
X1=N1
X2=N2
Y=M
DO 100 1B=2,10
FF=9999999
DO 1 NA=0,IB/N1
ID1=IB-NA*N1
IF(ID1.LT.0)GO TO 1
DO 1 NB=0,ID1/N1
ID2=ID1-N1*NB
IF(ID2.LT.0)GO TO 1
DO 1 NC=0,ID2/N1
ID3=ID2-N1*NC
{F(ID3.LT.0)GO TO 1
DO 1 ND=0,ID3/M
ID4=ID3-M*ND
IF(ID4.LT.0)GO TO 1
DO 1 NE=0,ID4/M
ID5=ID4-M*NE
IF(ID5.LT.0)GO TO 1
NF=ID5/(N1*N2)
LL=1
IF(ID5.NE.NF*N1*N2)GO TO 1
LL=0
DA=NA+NC+N1*ND+N2*NF
DA=DA/2.0
DD=NB+NC+N1*NE4+N2*NF
DD=DD/2.0
DAD=NC-NF
DAD=DAD/2.0
XX=DA*DD-DAD**2
IF(XX.EQ.0)GO TO 1
QA=NA+NCH+N2*NF
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QA=QA/2.0
QD=NB+NC+N2*NF
QD=QD/2.0

QAD=NC+N2*NF
QAD=QAD/2.0
YY=QA*QD-QAD**2
IF(YY.EQ.0)GO TO 1
TR=X2*(2*DA+DD-2*DAD)/XX+{2*QA+QD-2*QAD)/YY
IF(FF.LT.TR)GO TO 1

FF=TR

A=NA

B=NB

C=NC

D=ND

E=NE

F=NF

1 CONTINUE

IF(LL.EQ.1)GO TO 100
WRITE(6,20)N,IB,A,B,C,D,E,F FF
100 CONTINUE

20 FORMAT(214,5X,614,6X,F11.5)
STOP

END
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B.3.2 A-optimal PBDS Designs for k=n=3:

PROGRAM K3PBN3

C THIS PROGRAM GENERATES A-OPTIMAL PBDS DESIGN FOR K=3, N=3
INTEGER A,B,C,D,E,F,G,H,[],K,L

N=3

DO 100 1B=2,10
FF=9999999

DO 1 NA=0,IB
ID1=IB-NA

DO 1 NB=0,ID1/2
ID2=ID1-2*NB
IF(ID2.LT.0)GO TO 1
DO 1 NC=0,ID2
ID3=ID2-NC
IF(ID3.LT.0)GO TO 1
DO 1 ND=0,ID3/2
ID4=ID3-2*ND
IF(ID4.LT.0)GO TO 1
DO 1 NE= 0,ID4/2
ID5=ID4-2*NE
IF(ID5.LT.0)GO TO 1
DO 1 NF=0,ID5/2
ID6=ID5-2*NF
IF(ID6.LT.0)GO TO 1
DO 1 NG=0,ID6/2
ID7=ID6-2*NG
IF(ID7.LT.0)GO TO 1
DO 1 NH=0,ID7/2
ID8=IDT7-2*NH
IF(ID8.LT.0)GO TO 1
DO 1 NI=0,ID8/2
ID9=ID8-2*NI
IF(ID9.LT.0)GO TO 1
DO 1 NJ=0,ID9/2
ID10=ID9-2*NJ
IF(ID10.LT.0)GO TO 1
DO 1 NK=0,ID10/2
ID11=ID10-2*NK
IF(ID11.LT.0)GO TO 1
NL=ID11/2

LL=1

IF(ID11.NE.2*NL)GO TO 1

LL=0

223
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TA=2*(NA+NB+NE+NF+NI+2*NG+2*NH+3*NK)
DA=2¥(NA+NB+NE+NF+NI+2*NG+4*NH+5*NK)
SA=2*(2*NA+NB+NE+NF+NI+4*NG+4*NH+9*NK)
TD=2*(NC+ND+NE+NF+2*NI+NG+2*NJ+3*NL)
DD=2*(NC+ND+NE+NF+2*NI+NG+4*NJ+5*NL)
SD=2*(2*NC+ND-+NE+NF+4*NI+NG+4*NJ+9*NL)
DAD=2*(NE4+NG+NI)
SAD=2*(NE+NF+2*NG+2*NI)
D1=TA/2.-DA/3.4+SA/6.

D3=TD/2.-DD/3.4SD/8.

D2=DAD/3.-SAD/6.

Q1=TA/2.-SA/S6.

Q3=TD/2.-SD/86.

Q2=SAD/S6.

XXX=D1*D3-D2**2

YYY=Q1*Q3-Q2**2

IF(XXX.EQ.0)GO TO 1

IF(YYY.EQ.0)GO TO 1
TR=(2*D1-2*D2+D3)/XXX+(2*Q1-2*Q2+Q3)/YYY
IF(TR.LT.0)GO TO 1

IF(FF.LT.TR)GO TO 1

FF=TR

A=NA

B=NB

C=NC

D=ND

E=NE

F=NF

G=NG

H=NH

I=NI

J=NIJ

K=NK

L=NL

ITA=TA

ITD=TD

ITB=IB*3- TA- TD

ISA=SA

ISD=SD

IDAD=DAD

ISAD=SAD

1 CONTINUE

IF(LL.EQ.1)GO TO 100
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WRITE(6,20)N,IB,A,B,C,D,E F,G,H,1,] K,L,FF
100 CONTINUE

20 FORMAT(214,3X,1214,3X,F9.3 )

STOP

END
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B.3.3 A-optimal PBDS Designs for k=3 and n > 4:

PROGRAM K3PB
C THIS PROGRAM GENERATES A-OPTIMAL PBDS DESIGN FOR K=3

C AND N>3.

INTEGER A,B,C,D,E,F,G,H,,J,K,L,M,NU,0,P,QR,ST

DO 100 N=4, 9
N1=N-1

N2=N-2

N3=N-3
M1=(N1*N2)/2
M2=(N2*N3)/2
M3=(N1*N2*N3)/2
M4=(N1*N2*N3)/6
X1=N1

X2=N2

Y1=M1

DO 100 IB=2 ,10
FF=9999999

DO 1 NE=0,IB/N1
ID1=IB-NE*N1
IF(ID1.LT.0)GO TO 1
DO 1 NA=0,ID1/M1
1ID2=ID1-M1*NA
IF(ID2.LT.0)GO TO 1
DO 1 NB=0,ID2/N1
ID3=ID2-N1*NB
IF(ID3.LT.0)GO TO 1
DO 1 NC=0,ID3/M1
ID4=ID3-M1*NC
IF(ID4.LT.0)GO TO 1
DO 1 ND=0,ID4/N1
ID5=ID4-N1*ND
IF(ID5.LT.0)GO TO 1
DO 1 NF=0,ID5/(2*M1)
ID6=ID5-2*M1*NF
IF(ID6.LT.0)GO TO 1
DO 1 NG=0,ID6/(2*M1)
ID7=1D6-2*M1*NG
IF(ID7.LT.0)GO TO 1
DO 1 NH=0,ID7/M3
ID8=ID7-M3*NH
IF(ID8.LT.0)GO TO 1
DO 1 NI=0,ID8/(2*M1)

226
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ID9=ID8-2*M1*NI

IF(ID9.LT.0)GO TO 1

DO 1 NJ=0,ID9/M3

ID10=ID9-M3*NJ

IF(ID10.LT.0)GO TO 1

DO 1 NK=0,ID10/M4

ID11=ID10-M4*NK

IF(ID11.LT.0)GO TO 1

DO 1 NL=0,ID11/M4

ID12=ID11-M4*NL

IF(ID12.LT.0)GO TO 1

DO 1 NM=0,ID12/N1

ID13=ID12-N1*NM

IF(ID13.LT.0)GO TO 1

DO 1 NN=0,ID13/N1

ID14=ID13-N1*NN

IF(ID14.LT.0)GO TO 1

DO 1 NO=0,ID14/N1

ID15=ID14-N1*NO

IF(ID15.LT.0)GO TO 1

DO 1 NP=0,ID15/(N1*N2)

ID16=ID15-N1*N2*NP

IF(ID16.1LT.0)GO TO 1

DO 1 NQ=0,ID16/N1

ID17=ID16-N1*NQ

IF(ID17.LT.0)GO TO 1

DO 1 NR=0,ID17/(N1*N2)

ID18=ID17-N1*N2*NR

IF(ID18.LT.0)GO TO 1

DO 1 NS=0,ID18/(N1*N2)

ID19=ID18-(N1*N2)*NS

IF(ID19.LT.0)GO TO 1

NT=ID19/(N1*N2)

LL=1

IF(ID19.NE.N1*N2*NT)GO TO 1

LL=0
TA=N1*(NB+NE)+2*M1*(NA+NF+4NI+2*NG)+2*M3*(NJ+NK+2*NH)/2
DA=TA+N1*(4*NM+4*NO+NQ+N2*(4*NP+NR+5*NS))
TA=TA+N1*(2*NM+2*NO+NQ+N2*(2*NP+NR+3*NS))
SA=N1*(NB+NE)+2*M1*(2*NA+NF+NI+4*NG)+M3*(NJ+3*NK+4*NH)
SA=SA+N1*(4*NM+4*NO+NQ+N2*(4*NP+NR+9*NS))
TD=N1*(ND+NE)+2*M1*¥*(NC+NF+2*NI+NG)+M3*(2*NJ+NL+NIi)
DD=TD+N1*(4*NN+NO+4*NQ+N2*(NP+4*NR+5*NT))

227
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TD=TD+N1*(2*NN+NO+2*NQ+N2*(NP+2*NR+3*NT))
SD=N1*(ND+NE)+2*M1*(2*NC+NF+4*NI+NG)+M3*(4*NJ+3*NL+NH)
SD=SD+N1*(4*NN+NO+4*NQ+N2*¥(NP+4*NR+9*NT))
DAD=N1*NE+2*M1*(NG+NI)
DAD=DAD+2*N1*(NO+NQ)
SAD=NI*NE+2*M1*(NF+2*NI+2*¥*NG)+2*M3*(NJ+NH)
SAD=SAD+2*N1*(NO+NQ+N2*(NP+NR))
D1=TA/X1-DA/(3*X2)+SA/(6*Y1)
D3=TD/X1-DD/(3*X2)+SD/(6*Y1)
D2=DAD/(3*X2)-SAD/(6*Y1)

Q1=TA/X1-SA/(3*X1)

Q3=TD/X1-SD/(3*X1)

Q2=SAD/(3*X1)

XXX=D1*D3-D2**2

YYY=Q1*Q3-Q2**2

IF(XXX.EQ.0)GO TO 1

IF(YYY.EQ.0)GO TO 1
TR=X2*(2*D1-2*D2+4D3)/XXX+(2*Q1-2¥*Q2+Q3)/YYY
IF(TR.LT.0)GO TO 1

IF(FF.LT.TR)GO TO 1

FF=TR

A=NA

B=NB

C=NC

D=ND

E=NE

F=NF

G=NG

H=NH

I=NI

J=NJ

K=NK

L=NL

M=NM

NU=NN

O=NO

P=NP

Q=NQ

R=NR

S=NS

T=NT

ITA=TA

ITD=TD
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ITB=IB*3- TA- TD

ISA=SA

ISD=SD

IDAD=DAD

ISAD=SAD

1 CONTINUE

IF(LL.EQ.1)GO TO 100
WRITE(6,20)N,IB,A,B,C,D,E,F,G,H,1,J K,L,M,NU,0,P,Q,R,S, T ,FF
100 CONTINUE

20 FORMAT(214,1X,2013,1X,F7.2 )
STOP

END
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B.4 A-optimal Completely Randomized Designs:

PROGRAM NMCR
C THIS PROGRAM GENERATES A-OPTIMAL DESIGN IN THE CLASS
C OF COMPLETELY RANDOMAIZED DESIGN FOR ANY N AND M AND
C GIVEN FIXED UNITS AVAILABLE IN THE EXPERIMENT, NN.

* ) kkkokkkkkkkkk kokokokokdk kR kk kR kR kR kkkk)
PRINT *, Hrkx

PRINT *> N M NN RB RA RD TRACFE’
PRINT *,7 ¥¥#kktkrttrstrrrsrtbbbibirititiht
DO 5 N=3,10

DO 5 M=N,10

IP=N-1

1Q=M-1

P=IP

Q=IQ

DO 5 NN=N*M-1,100
F1=9999999

DO 1 ITB=IQ,NN-IP*IQ-IP
DO 1 ITD=IP*IQ,NN-ITB-IP
ITA=NN -ITB-ITD
IF(ITA.LT.IP)GO TO 1
IRB=ITB/IQ
IRD=ITD/(IP*IQ)
IRA=ITA/IP

TB=ITB

TD=ITD

TA=ITA

DB=IRB*(IRB+1)
DD=IRD*(IRD+1)
DA=IRA*(IRA+1)
DBB=IP*(2*IQ*IRB+1Q-TB)
DBD=2*(2*IP*IQ*IRD+IP*1Q-TD)
DBA=IQ*(2*IP*IRA+IP-TA)
DDB=DBB/DB
DDD=DBD/DD
DDA=DBA/DA
TR=DDB+DDD+DDA
IF(F1.LE.TR)GO TO 1
F1=TR

IIB=ITB

IID=ITD

ITIA=ITA

BR=F1
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1 CONTINUE

IB=IIB/IQ
IF(IIB-IQ*IB.NE.0)GO TO 5
ID=IID/(IP*IQ)
IF(IID-IP*IQ*ID.NE.0)GO TO 5
IA=IIA/IP
IF(IIA-IP*IA.NE.0)GO TO 5
WRITE(6,6)N,M,NN IB,IA,ID
5 CONTINUE

6 FORMAT(10X,315,315)
STOP

END
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