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Block Designs for Comparing Dual

with Single Treatments.
by: Abbas Gerami

This investigation concerns the design of experiments whose purpose is to compare

the joint effects of two factors A and B at n and m levels respectively with the

effect of the individual factor. The experiments are subject to the constraint that

one particular treatment combination cannot be used. An example is a medical trial

to investigate the joint effects of two drugs, each of which is either absent or given

at a number of predefined dose levels, in which it is unethical to administer a double

placebo. This type of clinical trial has practical application in the quest for treatments

of acute conditions, such as severe hypertension when the improvement produced by

a single drug might be inadequate. The aim of this investigation is to find efficient

designs in the sense of having small variance for the estimators of the contrasts of

interest.

The criterion employed for design choice is the A-criterion. The methods used

include finding a lower bound on the total of the variances of the estimators of the

contrasts and identifying a class of designs containing many efficient designs.

For m=n=2, the problem is a special case of the test treatments versus a con-

trol problem, for which series of A-optimal and near A-optimal designs are already

available. These known results are used to find series of new A-optimal and near

A-optimal designs to fill the gaps in a practical range of parameter values. For any n

and m=2, the class of PBDS designs is identified and shown to contain very efficient

designs. Methods of constructing such designs are developed and overall A-optimal

and efficient designs are tabulated.

For n and m both greater than 2, a generalization of the PBDS class is developed

and shown to include highly efficient designs by comparison with the bound and, for

small experiments, computer generated designs.

Further issues on which results are given include the design of completely random-

ized experiments, efficient designs for estimating certain contrasts more accurately

than others and the estimation of factorial effects. Finally, a method is developed of

identifying designs efficient for estimating specific contrasts, CV, through linking the

structure of the intra-block information matrix to the structure of C'C.
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C h a p t e r 1

I N T R O D U C T I O N

1.1 Description of the Problem:

In factorial experiments there are cases where we want to compare the effect of

combinations of two or more treatment factors when it is not possible to include

all treatment combinations in the experiment. An example is a medical trial to

investigate the joint effect of two drugs , each of which is either absent or given

at a number of predefined dose levels, in which it is unethical to administer a

double placebo.

Suppose A and B are two treatment factors : A with n levels labelled 0,1,2,....,

n-1, and B with m levels labelled 0,l,2,....,m-l . Each treatment combination is

denoted by ij, where i and j are the levels of A and B respectively, and is called

a single treatment if i=0 or j=0; otherwise it is called a dual treatment. We

assume treatment 00 cannot be employed. Hence there are t=mn-l treatments

in the experiment. The objective of the experiment is to compare the effects of

having both A and B at levels with non-zero labels with the effects of having

only one of the factors at a non-zero labelled level. More specifically we require

efficient estimation of the following contrasts, which we shall call dual versus
single contrasts:

Tij - r,o (1.1)

and

(1.2)
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for i=l,2,...,n-l, and j=l,2,...,m-l, where T,-J denotes the effect of treatment com-

bination ij.

We can view the problem as comparing each of the (n-l)(m-l) dual treatments

with two single treatments. Contrasts (1.1) and (1.2) respectively compare the

dual treatments with treatments having A alone at a non-zero labelled level, and

with treatments having B alone at a non-zero labelled level. In the example of

the medical trial, the contrasts can be used to examine if there is greater efficacy

when two drugs are given rather than one. This type of clinical trial is important

in the quest for treatment of acute conditions, such as severe hypertension, when

the improvement produced by a single drug might be inadequate.

The problem addressed in the first six chapters of this thesis is how to arrange

the treatment combinations in block designs, so that the set of contrasts denned

in (1.1) and (1.2) can be efficiently estimated. In practice the blocks might be

groups of patients in the same age-range or having the same sex.

Bounds on the total of the variances of the contrasts of interest are established

and used to assess the performance of the designs. A particular class of designs is

investigated and the most efficient designs in the class are found. Necessary con-

ditions for a design to be A-optimal are established. In Chapter 7 two additional

problems are examined. Firstly, a general factorial experiment is considered in

which one of the treatment combinations is not observed and some higher or-

der interactions can be assumed negligible. The estimators with minimum loss

of information on a set of factorial contrasts of interest are found. Secondly, a

link is found between the structure of the intra-block information matrix of the

class of designs containing highly efficient designs and the structure of another

matrix obtained by premultiplying the matrix of the contrasts of interest with its

transpose. Finally, conclusions are given and ideas for further work are described.

In the first chapter, the general analysis of block designs is studied, and criteria

for design selection are described. For the special case when both factors have

two levels, the dual-versus-single design problem reduces to the test treatment

versus a control design problem. A brief review therefore will be given of optimal

and near optimal designs available in the literature for the test treatment versus

a control problem. New optimal and near optimal designs will then be listed for

this case, which cover parameter values of practical interest for which designs are

not currently available.
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1.2 Block Designs:

In this section the analysis for a general block design for estimating the dual

versus single treatment contrasts is summarized.

1.2.1 General Theory:

Consider an experiment involving t treatments and b blocks each of size k . The

treatment structure is assumed to be two factors , one at n and one at m levels.

The treatment effects will be held in a t x 1 column vector. Let yij(h, denote the

observation when the \]th treatment is applied to unit h of the £th block. The

following linear model with no treatment block interactions will be assumed:

Vijth = (1.3)

where i = 0,1, 2 , . . . , n- 1, j = 0,1, 2 , . . . , m- 1, excluding ij=00 ; £ = 1,2,..., 6,

and h=l,2,..., n,-^. Here e ^ ' s are assumed to be uncorrelated random variables

with zero means and common variances a2. Throughout this thesis without loss

of generality we assume, for simplicity that a2 = 1. The unknown constants //,

T{j and (it represent the general mean, the effect of treatment ij, and the effect of

block £ respectively; n,-^ denotes the number of times that the \')th treatment is

applied in the £th block.

In this thesis we shall concentrate on the intra-block analysis of the experi-

ment in which treatment comparisons are estimated within blocks only, i.e. the

estimates of all contrasts in the treatment effects are expressible in terms of com-

parisons between observations in the same block. If the blocks can be regarded as

a random sample from some population, then estimates of treatment comparisons

may also be available from between block differences, giving rise to an inter-block

analysis. Where information is available from both between and within blocks,

the intra- and inter-block estimates can be combined to provide overall estimates

of treatment comparisons.

Throughout this thesis the following ordering of treatments will be adopted:

T01, r02, TOqi 0, r 2 0 , • • T 12 , q, T 2 l , T 22, T2q,

(1.4)

where t=mn-l, p=n-l, and q=m-l.



Chapter 1

We put the ordering of treatments in a t x 1 column vector T_. Let N=(n,-^)

denote the incidence matrix; where the rows of N follow the same ordering.

Then NN' is called the concurrence matrix, where N' denotes the transpose of

N. A block design is called binary if each treatment appears at most once in each

block. Let r,j = 5Z*=i nijti the number of times the i]th treatment is replicated

in the entire design, and r_ — (rij), be the vector of treatment replications. Then

the reduced normal equations after eliminating the block parameters are:

Ar = Q, (1.5)

where Z'r is the Best Linear Unbiased Estimator (BLUE) of /'r, Q=T-

(l/k)NB_, is the vector of treatment totals adjusted for blocks, B_ is the vector of

block totals and

A = rs - (ifk)NN' (1.6)

is called the information matrix or intra-block matrix; r6 is a diagonal matrix

with the entry r,j, and T_ is the vector of treatment totals . We shall refer to

A as the A-matrix. The A-matrix is singular because A! = 0, and R(A)<t-l.

Therefore there is no unique solution to the reduced normal equations AT_ = Q.

In general these equations have a solution f = flQ, for any generalized inverses-

inverse), ft of A. The value off. depends on the particular g-inverse used.

The general solution to AT_ = Q is

i = nQ + (SlA-I)Z., (1.7)

where Z_1S anY arbitrary vector, and D. is a g-inverse of A. Any linear combinations

of the treatment parameters r. can be expressed as CT_ and estimated by:

Cr = cng_ + c{nA- i)z_, (1.8)

for arbitrary Z.

CT_ is estimable, i.e. CT_ is unique, if and only if C{VlA — I)Z_ = 0 for all Z_,

i.e. CQ.A = C, and it is a contrast if Cl_ — (3. A contrast is elementary if it has

only two non-zero elements, -1 and 1. If a design has all elementary contrasts

estimable, the design is connected and this is possible if and only if R(A)=t-l.

A matrix C is a contrast matrix if Cj_ has rows which are contrasts, i.e. C\_ = 0_.

For any connected design CT_ = CQQ is a unique estimator of Cr_ with

V(CT) = a2CnC if and only if C is a contrast matrix, where V(Cf) stands
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for the variance-covariance matrix of Cr_. In this case Cf_ — CQ.Q and CClC

are invariant for any choice of fl. Throughout this thesis, unless explicity stated

to the contrary, we consider only designs which are connected. In addition all

designs considered are proper, that is all their blocks have the same size, say k

units.

The A-matrix is symmetric and hence has a complete set of orthonormal-

ized eigenvectors ^ £ , . . . , £ t _ , , say. Thus:

££ = * (1.9)

The eigenvectors are unique if and only if the eigenvalues of the A-matrix

are distinct. Denote the eigenvalues Ao = 0, Ai , . . . , Xt-i- Since A\_ — 0_, one

eigenvector of A is f = £(~1/2)]^ with corresponding eigenvalue 0. Since the

design is connected, all the other t-1 eigenvalues are non-zero and positive. The

matrix A can be expressed in canonical form:

^ = £M& (i-io)

and has a g-inverse:

which is called the Moore Penrose g-inverse. Any contrast £/r> f° r i=l,2,...,t-l
is called basic contrast.

1.2.2 Contrast Matrices for the Dual-Versus-Single Prob-
lem:

In this research we are mainly concerned with two factors, namely A and B, at n

and m levels respectively. The contrasts of interest are (1.1) and (1.2) and these

can be expressed as C\T_ and C2Z. where the contrast matrices are:

Ci = ( - I , ® ! * 0,xp E ),

C2 = ( 0lXq - I P ® 1 ^ h ), (1.12)

C = (C[ d, ) ' ,

where In is an identity matrix of order n, OuXv is a zero matrix of u rows and

v columns, l n is an n x l column vector with all entries 1, ® denotes Kronecker

product, £ = pq and
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E =

En E12 Ei3

E21 E22 E23

-E-31 -£'32 -£"33

E2p

E3p (1.13)

rp Tp rp c1

-C/gl I-Jq2 *-sq3 IV

where E^s are p x q matrices with a 1 in the (],i)th position and zero elsewhere.

Then BLUE of C tr(i=l,2) will be given by:

>- = l,2). (1.14)

The standard theory for making inferences about the contrasts of interest, by

using an analysis of variance under normal assumptions, is described in John(1987

1.3 Design Criteria:

Suppose we have an experiment involving t treatments and b blocks each com-

posed of k units. The notation D(t,b,k) will stand for the set of all designs which

are allocations of t treatments to b blocks of size k. In order to determine how

the treatments should be allocated to the experimental units we require criteria

for design selection.

1.3.1 Optimality Criteria:

In traditional design theory the comparisons of all treatment pairs are often con-

sidered to be of equal importance. Let V(d) denote the variance-covariance ma-

trix of the estimators of the contrasts of interest for design d then, in the work

of Kiefer and others in the area of optimal designs (see for example Kiefer,1980),

the most common criteria for design selection are as follows:

D-Optimality : A design d* £D(t,b,k) is said to be D-optimal if

det(V(d*)) = min det(V(d)), W e D(t, b, k)

where det(X)1 denotes the determinant of matrix X. Under the normality

assumptions for the errors in the model, a D-optimal design minimizes the

1 Whenever the determinant is defined
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volume of the confidence ellipsoid for contrasts and its application is well-

known in response surface designs.

MV-Optimality : A design d* ED(t,b,k) is said to be MV-optimal if

max(u,-(<f)) < minmax(u,(c?)), VVf G D,
i i

where V{(d) is the \th element of the diagonal of the variance-covariance

matrix of the estimators of the contrasts of interest. An MV-optimal de-

sign minimizes the maximum variance of the BLUE's of the estimators of

estimable functions. It should be noted that the E-optimality criterion

which minimizes the maximum of the eigenvalues of V(d), is equivalent

to MV-optimality if the contrasts of interest are proportional to the basic

contrasts.

A-Optimality : A design d" GD(t,b,k) is said to be A-optimal if

tr{V(d'))= min tr(V(d)) \/d € D;

where tr(X) denotes the trace of the matrix X. Assuming the usual nor-

mal theory model, A-optimality is equivalent to minimizing the sum of the

lengths of the axes of the simultaneous confidence ellipsoid for the given

contrasts of interest.

The goal for selecting a design, is to estimate the contrasts Tij — Tj0 and T,-J— TOJ,

for i=l,2,...,n-l and j=l,2,...,m-l with as much precision as possible in the sense of

having small variances for the f,j — f,0 and f,j — TOJ. TWO of the standard criteria

used to accomplish this goal are to select designs that minimize tr(CClC')(A-

optimality) or minimize the maximum variance for the the estimators of r,j — T,0

and T{j — TOJ(MV-optimality). These have a meaningful interpretation, namely

minimizing the sum of the variances of the estimators of the contrasts of interest

over all designs, and minimizing the maximum of the variances of the estimators

of the contrast of interest over all designs respectively. However as pointed out

by Hedayat, Jacroux and Majumdar(1988) the D-optimality criterion does not

seem to be either an intuitively, or statistically suitable criterion, because the

designs it selects as being optimal generally do not provide any more information

about the contrasts of interest than they do about the other possible contrasts

which are not of primary interest. On the other hand, the A- and MV-optimality

criteria each have a natural and statistically meaningful interpretation.



Chapter 1

It should be noted here that a design which is optimal under any one of the

above criteria is not necessarily optimal under the others . However, evidence

gained from studies of different types of designs suggests that a design which

is optimal or performs well on one criterion tends to perform well on the other

criteria(ref: John, 1987,p28).

In our problem A-optimality corresponds to regarding estimation of the two

sets of contrasts (1.1) and (1.2) as of equal importance. In some practical prob-

lems this may not be appropriate. For example a comparison of the joint effect of

A and B with the effect of A alone may be of greater importance than comparing

the joint effect with the effect of B alone. In such cases we can consider the

average variance within each set of contrasts separately. Alternatively we might

minimize a weighted mean of the variances of the estimators of the contrasts of

interest(see Chapter 6).

As Hedayat, Jacroux and Majumdar(1988) point out, minimizing the average

variance of the estimators of the contrast of interest is usually not easy. As in

the other cases of exact design theory, it is highly unlikely that we can obtain

one method which is capable of producing A-optimal designs for arbitrary values

of t, b and k.

1.3.2 Definitions:

In the this section we bring together some useful definitions concerning our prob-

lem.

Definition 1.1 A block design for two factors A and B at n and m levels respec-

tively which accommodates all the combinations of levels of A and B except 00 is

called an n x m Factorial Block Design with 00 Censored, and is denoted by

n xm CFBD(OO).

In the following we specify some possible forms of balance in a n x m CFBD(0

0). In the past balance properties were primarily of importance for simplifying

the computation of the analysis of the data rather than as a desirable design

feature. Since the development of computer software such as GLIM, this feature

is no longer so important. The main motivation for balance properties in modern

design is to give designs with equal and high precision on the contrasts of interest.

In traditional block theory, balance of treatments and blocks has been shown

to give designs which are optimal under all the criteria in the previous section
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and under a wider class of optimality criteria called Universal Optimality(see

Kiefer,1975, and Cheng and Wu,1980).

Definition 1.2 An n x m CFBD(OO) is said to be Balanced for Dual versus

A if:

V(tij - f,o) = a i ( Q l ^ 0),
(1.15)

Cov(Tij - f,o, hi -ho) = pi,

f o r i = 1 , 2 , . . . , n — l , j = 1 , 2 , . . . , m — 1 , fc = 1 , 2 , . . . , n — 1 a n < f / = 1 , 2 , . . . , m — 1 ;

excluding ij — kl; where ct\ and pi are constant( ai ^ /5i), andrij—f,o and hl—Tko

are BLUE''s of r,j — r,o and r^ — T^O, respectively and Cov(x,y) stands for the

covariance between x and y. This property will be abbreviated to BDS(A).

In other words an nxm CFBD(OO) is balanced dual versus A if:

V(C2f) = (a, - Pl)h + /,! J,( t t l + Pl), (1.16)

where C? was given in(1.12) and I = (n — l)(m — 1).

A similar property of balance can be defined as Balanced Dual versus B,
and denoted by BDS(B). Thus a nx m CFBD(OO) is balanced dual versus B if:

r) = (a2 - P2)Ii + P2Ji(a2 + p2), (1-17)

where C\ was given in(1.12), p2 and 02(0:2 7̂  0) are constants.

Definition 1.3 An nx2 CFBD(OO) is called Partly Balanced Dual versus

Single(PBDS) if it is

1. balanced for dual versus A and balanced for dual versus B,

2. there are equal correlations between the estimators of every -pair of orthog-

onal dual versus single contrasts,

and

3. there are equal correlations between the estimators of every pair of non-

orthogonal dual versus single contrasts, not necessarily equal to the correla-

tions in part 2.
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In other words an n x 2 CFBD(OO) is PBDS design if:

V(CT) =
(a2 -

(1.18)

This definition is extended to n x m experiment in Chapter 5.

If the estimation of the comparisons in (1.1) and (1.2) are of equal importance,

then equal variances on all the comparisons is desirable. This motivates the

following property.

Definition 1.4 An n x m PBDS design is called a Balanced Dual versus
Single Design(BDSD) if all the contrasts of interest are estimated with equal

precision and every pair of contrast estimators has equal correlation. In other

words the design is a BDSD if:

V(Cf) = (a2 - p)I2l + PJ
2l,

where C is defined in (1.12) and I = (n — \){m — 1) .

The following Examples illustrate these definitions.

Example 1.1 For n=3, m=2, k=2, and b=4 we have t=5 and ,

(1.19)

L=

1 0 0 1 0
1 0 0 0 1

0 - 1 0 1 0
0 0 - 1 0 1

Then the design given below is a balanced dual versus single design:

blockl 01 21

block2 01 11

blocks 10 11

blocH 20 21

The balance property follows since
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1

0

0

1

0

-

- 0

- 0

0
1

0

1

0

1

0

0

.5

.5

0

0

1

0

1

(

,NN'

0

).5

0 0

-0.5

0 - 0

=

0

0

.5

0

.5

2

0

0

1

1

- 0

- 0

0

1

0

1

0

.5

.5

0

1

0

0

0

1

0

1

- 0

- 0

1

1

0

2

0

.5 '

0

.5

0

1

1

0

1

0

2

and

1) = 2/2,

V(C2f) = 2/2.

Example 1.2 For n=4, m=2, k=5 and b=3 we have t=7 and

L — ( r Ol, 7"lO, T2O, 730, TUiT21, T"31) ,

1 0 0 0 1 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1

For the design

Co =

0 - 1 0 0 1 0 0

0 0 - 1 0 0 1 0

0 0 0 - 1 0 0 1

blockl 01 10 11 20 21

block2 01 20 21 30 31

blocks 01 30 31 10 11

we have:
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N' =
1 1 1 0 1 1

1 0 1 1 0 1

1 1 0 1 1 0

It follows that:

and

f (Cii) =

o
l

l

, NN' =

3 2 2 2 2 2 2

2 2 1 1 2 1 1

2 1 2 1 1 2 1

2 1 1 2 1 1 2

2 2 1 1 2 1 1

2 1 2 1 1 2 1

2 1 1 2 1 1 2

0.875 0.312 0.312

0.312 0.875 0.312

0.312 0.312 0.875

V(C2f) = I3.

Hence the design is PBDS but does not have full balance for dual versus single

factor comparisons.

Definition 1.5 A design will be termed efficient for the dual versus single treat-

ment problem if it has very low total variance on the contrasts CT where C is

given in (1.12).

1.4 2x2 CFBD(OO):

The remainder of this chapter concentrates on the case m=n=2, i.e. where both

factors have two levels. The problem then reduces to designing for the comparison

of each of the treatments 01 and 10 with the treatment 11. This is a particular

case of the general problem of constructing efficient designs for comparing test

treatments with a single control treatment which in recent years has received a

good deal of attention. The problem is to construct an experiment involving t

test treatments and 1 control making a total of t+1 treatments. The treatments

are to be arranged in b blocks, each of size k. Let the test treatments be labelled

l,...,t and let 0 denote the control treatment. The term control is used in the sense

of a special or standard treatment. An additive linear model without treatment-

block interactions is assumed. The objective of the experiment is to estimate the

treatment contrasts r,- — r0 for 1 < i' < t. Now we give a brief summary of studies

which have been done on A- and MV-optimal designs.
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1.4.1 Historical Background:

In connection with finding good designs for test treatments versus control treat-

ment, Cox(1958, p238) suggests a design in which the control treatment appears

the same number of times(once, twice, or more), within each block and the test

treatments form a Balanced Incomplete Block Design(BIBD) over the re-

maining units. He does not give any mathematical analysis to establish the

efficiency of such designs. Pesek(cf: Hedayat, Jcroux and Majumdar,1988), com-

pares a BIBD with an augmented BIBD as suggested by Cox(l958) and concludes

that the latter is more efficient. Constantine(1983), shows that a BIBD in the

test treatments augmented by a replication of the control in each block, is A-

optimal in the class of designs with exactly one replication of the control in each

block. Jacroux(1984) shows that Constantine's conclusion remains valid even

when BIBD's are replaced by certain Group Divisible(GD) design. Stufken(1988)

determines the most efficient augmented block design and suggests a lower bound

for the efficiency of these designs.

Pearce(1960) proposes the class of supplemented balance designs for investi-

gating the test treatments versus control treatment problem. Gupta(l989) studies

the work of Pearce(1960) and derives a lower bound for the average variance of

test-control contrast estimators in designs which are binary in terms of all the

treatments involved in the block designs. He advocates using this bound for both

binary and non-binary designs. However this bound is not the tightest bound

available for non-binary designs.

Bechhofer and Tamhane(1981) were the first to propose a class of designs

called Balanced Test Treatment Incomplete Block(BTIB) designs in order

to characterize optimal block designs for the simultaneous test-control confidence

region, which includes Cox's(l958) designs. This class will be discussed in Section

1.4.2.

A rigorous treatment for determining optimal designs for comparing test treat-

ments with a control is started by Majumdar and Notz(l983). They initiate the

study of A-optimality of BTIB designs and give a method for finding A- and

MV-optimal designs. In the course of their work a bound for average variance of

the contrast estimators is derived which holds for the cases in which t + 1 > k.

This bound is extended to the designs with t + 1 < k later by Jacroux and Ma-

jumdar(1987) and Ting and Notz(1987) separately. The bound of Gupta(1989)

equals the bound in which t + 1 > k in the special case when the design is binary
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in terms of the t+1 treatments involved in the design, t+1 is a perfect square

value and an overall BTIB design does exist. For all other cases Gupta's bound

is smaller than the two other bounds.

Hedayat and Majumdar(1984, 1985) devise an algorithm for obtaining A-

optimal design based on Majumdar and Notz(l983), and provide a catalogue

of A-optimal designs and designs which are A-optimal among BTIB designs.

They also give a family of optimal designs. Tiire(1982,1985) also studies A-

optimal designs and highly efficient designs and gives a method of construction.

Jacroux(1989) generalizes Hedayat and Majumdar's(1984) algorithm for finding

A-optimal designs. Stufken(1986,1987,1988) studies optimal designs and gives

families of optimal designs as well as approximate optimal designs.

Cheng, Majumdar, Stufken and Tiire(1988) give new families of optimal de-

signs and some approximate optimal designs. Ting and Notz(l987) study optimal

block designs. Ting and Notz(1988) give a catalogue of A-optimal designs for the

cases where the number of test treatments involved in the design is less than k.

The most recent work of Hedayat, Jacroux and Majumdar(1988) outlines exist-

ing knowledge on optimal designs for comparing test treatments with a control in

incomplete block designs, completely randomized block designs and row-column

designs.

In the following we bring together those definitions and theorems underlying

the theory of efficient block designs for comparing test treatments with a control

treatment which are relevant to the dual-versus-single design problem.

Definition 1.6 (Keifer, 1975): A block design is said to be a Balanced Block

Design if:

1- Ej=in«j = r , for t = 1,2, ...,t,

2- T!j=inijnmj = X for i + m , t , m = 1, 2 , . . . ,*, (1.20)

3. | n,j - k/t |< 1, for j = 1 ,2 , . . . , b and i = 1,2, . . . , * .

A balanced block design for t treatments in b blocks of size k is denoted by

B B D ( t , b , k ) . If the balanced block design is binary, then it is called a Balanced

Incomplete Block Design denoted by BIBD(t,b,k).
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1.4.2 A-optimal Block Designs for Control-Test Treatment

Comparisons:

In this section we summarize the definitions and results used in the literature

for finding A-optimal block designs for control-test treatment comparisons. We

use ii — f0 to denote the BLUE of T,- — r,-(i=0,l,2...,t) and D(t+l,b,k) to denote

the set of all possible experimental designs in b blocks of size k each, based

on t+1 treatments. The problem is, for given t, b and k, to select a design

d* € D(t + l,b,k) which minimizes JZ!=i V(Ti — To) o ver all designs belonging

to D(t + 1,6, k). Thus an A-optimal design criterion is used. Some definitions

concerning this problem follow:

Definition 1.7 (Bechhofer and Tamhane,1981) A design d£ D(t + 1,6, k) is

called a Balanced Test Treatment Incomplete Block(BTIB) design if the
following conditions are satisfied:

1. d is an incomplete block design, that is t > k,

2. there are constants Ao and Aj such that:

i,-j- = Ao, for 1 < i < t,
(1.21)

E;=i nijnvj = Ai, for 1 < z, i' < t.

Bechhofer and Tamhane(1981,Theorem 3.1) prove that necessary and suffi-

cient conditions for a design to be BTIB is that the variance-covariance matrix

for 6_ = (fi — fo , T2 — fo , . . . , ft — f0)' is a completely symmetric matrix. In other

words a design is BTIB iff:

(1-22)

In the literature designs with this feature are known as totally variance bal-

anced for the test-control contrasts. It should be mentioned here that the same

properties can be sought in block designs with k > t.

Definition 1.8 (Ting and Notz, 1988,Definition 2) A design d e D(t + l,6,fc) is

called a Balanced Treatment Block Design(BTBD) if condition 2 of Defi-

nition. 1.6 holds and condition 1 does not hold.

Definition 1.9 (Stufken, 1987,Definition 2.2) A design d is termedBTIB( t + 1 ,
b,k;u,s) if d£ D(t + 1,6, k) and has the following properties:
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1. d is a BTIB.

2. There are s blocks in d, each with u+1 replications of the control, while each

of the remaining b-s blocks contains u replications of the control.

3. d is binary in the test treatments, i.e. n,j <E {0,1} for 1 < i < t and

l<j<b.

Similarly, a design d is termed BTBD(t+l,b,k;u,s) if it has the following
properties:

1. disaBTBD.

2. There are s blocks in d, each with u+1 replications of the control, while
each of the remaining b-s blocks contains u replications of the control.

Definition 1.10 (Hedayat and Majumdar,1984) A BTIB(t+l,b,k;u,s) is called
a Rectangular type(R-type) design if s=0 or b , and a Step type(S-type)
otherwise.

Figures 1.1 and 1.2 show the structure of an R-type and an S-type design
respectively, where d0 denotes a BIBD with t treatments in b blocks each of size
k-u, di and d2 denote a BIBD with t treatments in s blocks each of size k-u-1,
and b-s blocks of size k-u each respectively. Note that the blocks correspond to
the columns of the array.

Blocks
Units

Figure 1.1: An R-type design(a=0).

Units

1

2

u + 1

u + 2

k

1 2 3

d
1

. s a*1 s + 2 . , b

CONTROLS

Figure 1.2: An S-type design(3*0).
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The following lemma specifies a necessary relationship amongst the parame-

ters of BTIB(t+l,b,k;u,s).

Lemma 1.1 (Hedayat and Majumdar, 1984,Lemma 2.2): In a BTIB(t+l,b,k; u,

s), the following relations must hold:

tr = b(k — u) — s,

tc = s(k-u-l) (1.23)

\(t - 1) = c(k - u - 2) + (r - c)(k - u - 1),

where r denotes the number of replications of each test treatments. For R-type

designs c=0; for S-type designs c equals the number of replications of each test

treatments in part d\.

When k=2, the necessary conditions stated in Lemma 1.1 are sufficient, be-

cause in an R-type design, d0 consists of copies of f^2 1 and in an S-type design

di and d2 consist of copies of t ]T 1 and t J2 2, respectively, where &]Ca: is the set

of all b\/{a\{b — a)!} distinct blocks of size a each based on b treatments.

1.4.3 E f f i c i e n t 2 x 2 C F I B D ( 0 0 ) ( * > k):

Majumdar and Notz(1983) first showed that the general problem of constructing

efficient incomplete block designs, where t > k for comparing test treatments

with a control can be reduced to finding the number, ro, of replications of the

control in the entire design, and then finding the most efficient design for this

value of ro. They characterize certain A-optimal designs in the incomplete block

case, where t > k as follows :

Theorem 1.1 (Majumdar and Notz,1983): For given t, b and k, a BTIB(t+l,

b, k; u,s ) design is A-optimal when u=x and s=z minimize:

g(x, z) = (t- l)2{btk(k - 1) - (bx + z)(kt - t + k) + (bx2 + 2xz + z)}~1 +

{k(bx + z) - (bx2 + 2xz + z)}'1

(1.24)

among the integers x=0,l,....,[k/2} and z=0,l,....,b-l, with the restriction that z

is positive when x=0 and z=0 when x=[k/2]. Here [.] denotes "the integer part

of.".

For the 2 x 2 dual-versus-single problem the only possible size for t > k, is

k=2. Obviously for the set of parameters t=2, k=2 and b, Theorem. 1.1 is not
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able to provide A-optimal design for every value of b. An A-optimal design exists

for any value of b but searching for it through a complete enumeration of all

designs is prohibitively costly, even for moderate values of b.

Hedayat and Majumdar(1984) use Theorem 1.1 in an algorithm to produce a

catalogue of A-optimal designs, which include 2 x 2 designs with parameters in

the range 2 < b < 50.

As an alternative we might use a design which is A-optimal within a class of

designs known to have some desirable statistical properties. The class of BTIB

designs is a good choice in our case because of the symmetric structure of the

variance-covariance matrix for the estimators of the contrasts of interest of such

designs. Designs that are A-optimal within the class of BTIB designs are expected

to compete well with designs that are A-optimal in the entire class, in most cases.

Hedayat and Majumdar(1984) show that for an S-type design in which u=0,

d\ is w copies of 2 J2 1 a nd d2 is y copies of 2 £2 2, respectively. For this case the

expression:

+ - (1-25)
w + 2y w

is proportional to the total of the variances of the control test treatments esti-

mators. They characterize designs which minimize the expression in (1.25) over

nonnegative integers w and y, satisfying:

2w + y = b, (1.26)

for w > 0.

They used this approach to obtain A-optimal designs by finding A-optimal

designs within the BTIB class of designs with S-type structure.

Table 2 of Hedayat and Majumdar(l984) gives a catalogue of A-optimal

designs and designs which are A-optimal among BTIB designs with k=2 and

2 < b < 50.

1.4 .4 C a t a l o g u e of A - O p t i m a l 2 x 2 C F B D ( 0 0 ) ( t < k):

In this section available A-optimal block designs for t < k and both factors at

two levels are briefly reviewed and new designs are catalogued. The new designs

cover parameter values for which designs are not currently available. The designs

are all of the R- and S-type.
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Ting and Notz(1987) give the following theorem to characterize a series of

A-optimal designs within the BTBD(cf: Definition 1.7) class for the cases when

t < k.

Theorem 1.2 (Ting and Notz, 1987, Theorem S.I)For given t, b, and k suppose

deD(t + l,b,k) is a BTBD such that:

1. r,- = [(kb - ro)/t] or [(kb - ro)/t] + 1, for 1 < i < t

2. mj = [n/b] or [nib] + 1, for \<i<t , 1 < j < b

3. noj = [ro/6] or [ro/6] + 1, for 1 < j < b .
(1.27)

^. r0 is the non-negative integer, 1 < r0 < [6A:/2] which minimizes F(r), where

F(r) is given below, then d is A-optimal over D(t+l,b,k). Here [.] denotes "the

integer part of ." and

F{r) = ^ l ) 2 *
t{bk - r - (c/k)} - {r - (g/k)} + r - (g/k)'

where

g = r + (2r-b)[rlb)-b[r/b}2,

c = bk-r + (t-bk + r + tp) [p/6] (2p-b-b [p/6])+ (1-28)

- r - <p) [(p + l)/6] {2(p + 1) - b - b [(p + l)/6]},

p = [(bk - r)lt].

Jacroux and Majumdar(1987) obtain the same theorem by permuting the

information matrix of the test-control contrasts.

Notice that all the designs satisfying Theorem 1.2 will have the BDS property,

because they are BTBD; in particular the contrasts of interest will have equal

variances.

Note that F(r0) is an achievable bound which can be used to assess the effi-

ciency of any connected block design.

Ting and Notz(1988) use Theorem 1.2 in an algorithm to produce a catalogue

of A-optimal designs which includes 2 x 2 designs with parameters in the ranges

2 < b < 50 and 3 < k < 30. However, there are many block sizes for which

designs are not given, for example k=3,5,6,8,9,ll,12. When k=3, then by Ting

and Notz(1988), the randomized block design is A-optimal for each b. It should

be noted that this is not true in general for t > 2 and k=t-f 1. The result also
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follows from Theorem 3.1 of Hedayat and Majumdar(1985). In Table 1.1 at the

end of this chapter we give a catalogue of A-optimal designs of the R- and S-type

to fill in the gaps for 4 < b < 50, and k < 30.

The BTB designs considered by Ting and Notz(1988) and further investigated

here are of three types:

• R-type when r0 = 0mod(b) and (kb - rQ)/(tb) is an integer. Then the

structure is Figure 1.1, where u - ro/b and d0 is a BBD(t,b,k-u) in the

test treatments. For this structure, the number of replications of each test

treatment within each block is (kb — ro)/(tb).

• R-type when r0 = 0mod(b) and (kb - ro)/(tb) is not an integer. Then the

structure is Figure 1.3, with:

(1.29)u — rQ/b,

q=k- (ro/b) - t [(bk - ro)/tb],

d01 and d02 are BBD(t,b,k-q-u) and BBD(t,b,q) in the test treatments re-

spectively. For this structure (kb - ro)/t should be an integer.

Units
4-

Figure 1.3: An R-type design when

(bk-r )/tb is not an integer.

• S-type when ro/b is not an integer. Then the structure is as shown in

Figure 1.2, where u = [ro/6], s = r0 - bu, dx and d2 are BBD(t,s,k-u-l) and
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BBD(t,b-s,k-u) in the test treatments respectively. For this structure (kb —

ro)/t should be an integer. Note that t=2 for the case we are considering.

The catalogue in Table 1.1 at the end of this chapter was obtained by using

the procedure of Ting and Notz(1988) to fill in the gaps for some practical set of

parameters which have not been given previously. The computer algorithm for

generating the catalogue in Table 1.1 is outlined in Section 1.4.5.

In the following we give two examples to show how to get designs from the

catalogue.

Example 1.3 For b=2 and k=5, it is clear from Table 1.1 that the design is

R-type with r0 = 4. Now (kb — ro)/(tb) = 6/4 and hence the design has the form

shown in Figure 1.3. From (1.29) with t=2 we have q=l. Therefore u=2 units

of each block are allocated to the control, labelled 11; c?oi consists of 2 blocks each

of size k-q-u=2, where the test treatments(01 and 10) occur once in each block;

do2 consists of two blocks of size 1 with the test treatments 01 and 10 occurring

once. The design is:

Blockl 11 11 01 10 01

B!ock2 11 11 01 10 10

Example 1.4 For k=6 and b=6 from Table 1.1 the A-optimal design is S-type

with structure as in Figure 1.2, where d\ is a BBD(2,2,3) and c?2 a BBD(2,4,4)-

The design therefore has the control treatment 11 occurring three times in each

of blocks 1 and 2 and twice in each of the other blocks. The design is:

Blockl 11 11 11 01 10 01

Blockl 11 11 11 10 10 01

BlockZ 11 11 01 01 10 10

BlocH 11 11 01 01 10 10

Blocks 11 11 01 01 10 10

Blocks 11 11 01 01 10 10

In the following theorem an explicit method of constructing BBD's for t=2 is

given. This method is useful for obtaining sections d\ and d2 of the above designs

and hence for constructing balanced treatment block designs.

Theorem 1.3 BTBD(3,b,k;u,s) design exists if and only if b(k-u)-s is even.
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Proof: Two cases must be considered:

1. 5 = 0, i.e. the design is R-type. For this case by looking at Figure 1.1 on

page 16, we must show d0 which is BBD(2,b,k-u) does exist. Since b(k-u)

is even it follows that either b or k-u must be even. If k-u is even then

each of treatments 01 and 10 occurs (k — u)/2 times in each block and the

resulting design is BBD(2,b,k-u). If k-u is not even then b must be even and

we have b/2 pairs of blocks. For each pair of blocks assign [(k — u)/2]+l

units of one block to treatment 10 and the remaining units of that block to

treatment 01. In the other block of the pair assign [(k — u)/2) + 1 units to

treatment 01 and the remaining units to treatment 10. Then each pair of

blocks consists of a BBD and the resulting design is BBD(2,b,k-u).

2. If s ^ 0, i.e. design is S-type. For this case we must show that d\ and di

are BBD(2,s,k-u-l) and BBD(2,b-s,k-u), repectively. In this case bk — r0 =

bk — bu — s is even. There are then two possibilities:

(a) Both s and b(k-u) are even, then by argument in part 1, d\ and d2 can

be constructed.

(b) Both s and b(k-u) are odd, then k-u-1 is even and d\ can be con-

structed. Also d<i can be constructed, since b and s are both odd,

which implies that b-s is even.

If b(k — u) — s is not even, the design is not equireplicate in terms of test treatments

and then a BTBD does not exist. This completes the proof.Jfr

As an illustration of this result, Examples 1.3 and 1.4 can be constructed as

in parts 1 and 2 of the proof of Theorem 1.3 respectively.

1.4.5 Computer Algorithm:

The computer algorithm(Appendix B) for generating the catalogue of A-optimal

designs in Table 1.1 consists of the following steps:

STEP 1 : Find r0, the value for r which minimize F(r), for all r£L.

STEP 2 : Check whether bk-r0 is even or odd. If it is odd, then by Theorem

1.3, an overall A-optimal BTBD does not exist.
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STEP 3 : Specify the layout of the A-optimal design based on Figures 1.1 to

1.3.

STEP 4 : Determine the detailed structure of the design specified in STEP 3.

1.4.6 Near Optimal and New Optimal Balanced Treatment

Block Designs:

It is clear that for parameters 4 < k < 30, and b < 50, there still remain gaps

where the A-optimal BTBD does not satisfy Theorem 1.2. This is because the

A-optimal designs are not balanced and this is the case whenever (bk — ro)/t is not

an integer, where r0 is the value which minimizes F(r) in Theorem 1.2. For these

cases, as we have already pointed out, to search for A-optimal designs through a

complete enumeration of all designs is costly. Examination of the class of BTBD

is a natural choice in our context since this class guarantees equal precision for

the estimators of the contrasts of interest. Designs that are A-optimal within this

class are expected to compete with designs that are A-optimal in the entire class,

in most cases(ref: Hedayat and Majumdar,1984).

In this section we find A-optimal designs within the BTBD class. The A-

optimal BTBD could be obtained by using the Ting and Notz(l988) algorithm.

Let L={r;r=l,2,...,bk/2} and let r0 6L be the value which minimizes F(r) in

Theorem 1.2. Then if bk — r0 is even, the A-optimal design belongs to the BTBD

class which is given in Table 1.1. If bk — r0 is not even then the design which is A-

optimal among BTBD's could be obtained by finding n € L which (i) minimizes

F(r) in Theorem 1.2 among all the possible values of r G L excluding r = r0 and

(ii) makes bk — ra equal to an even number.

Cheng, Majumdar, Stufken and Tiire(1988), proved that if F(ro)=min F(r)

Vr 6 L, then F(r) is decreasing on {rj £ L; rj < ro} and increasing over

{ri 6 L; r-i > r 0 } . Based on this theorem, if bk-r0 is not even, then the most

efficient BTBD will be obtained by taking either r0 — 1 or r0 + 1 as the number

of replications of the control treatment in the optimal design according to one

which gives the smaller value for F(r).

Consequently when an A-optimal BTBD does not exist, then a near optimal

BTBD is obtained by requiring that the number of replications of the control

should be exactly 1 less than or greater than the value which minimizes F(r)

in Theorem 1.2 i.e. we take r0 — 1 or r0 + 1 as the number of replications
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of the control treatment in the A-optimal BTBD. A design, d, is called near

opt imal or efficient if the trace of the variance-covariance matrix of contrasts

of interest is very close to the minimum value of F(r) i.e. F(ro), the lower bound

for the contrasts of interest. In other words if Ed = F(ro)/tr(Vd), where V is the

variance-covariance matrix of design d, then d is efficient if Ed is very close to 1.

When bk — r0 is not even, a computer algorithm(Appendix B) similar to the

algorithm given earlier has been used to determine the A-optimal designs within

the class of BTBD. Table 1.2 at the end of this chapter gives a catalogue of these

designs. Note that all the designs in this table have Ed greater than 0.96.

In the following examples we will show how these A-optimal designs within

the BTBD class are efficient relative to the minimum value of F(r) and relative to

the most efficient design which can be generated by using the algorithm of Jones

and Eccleston(1980). Henceforth we denote this algorithm by JE.

Example 1.5 For given parameter values b=5 and k=5, minimizing F(r) in The-

orem 1.2 by the computer algorithm gives r0 — 10. The efficient design for

r0 = 10, found by JE, is shown below:

Blockl
Block!

Block?,

Blocki

Blockh

11
11

11

11

11

11
11

11

11

11

01

01

01

01

01

01
10

01

10

01

10
10

10

10

10

The individual variances for fOi — fn and f10 — fn are 0.1145 and 0.1240

respectively with E=0.998 which shows that the design is not a BTBD. It has

tr(V) = 0.238550. To find a competing efficient BTBD for these parameters we

use the control replication r1 = 7*0 -f 1 = 11, and construct the following BTBD

using the computer algorithm of Section 1.4-5:

Blockl

Blockl

Blocks
Blocki

Blockh

11

11

11

11

11

11

11

11

11

11

01

01

01

01

11

01

10

01

10

01

10

10

10

10

10

The individual variances for fOi — fn and fio — fn are both 0.1212 and the

design is a BTBD with Ed — 0.982. This is not an overall A-optimal design but

is A-optimal within the BTBD class and is, therefore, included in Table 1.2.
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Example 1.6 For given parameter values b=4 and k=6, minimizing F(r) gives

r0 = 9 and the efficient design for ro = 9 obtained by JE, is shown below:

Blockl 11 11 11 01 01 10

Block! 11 11 01 01 10 10

BlockZ 11 11 01 01 10 10

BlocH 11 11 01 01 10 10

The individual variances for foi — fu and fio — T\\ are 0.1189 and 0.1311

respectively with tr{V) = 0.2500. The design is neither BTBD nor A-optimal with

E=0.997. To find a competing and more efficient BTBD for these parameters we

use r0 — 9. Then putting r0 + 1 as the number of replications, rx, of the control

treatment, we obtain from Table 1.2 the following S-type BTBD:

Blockl 11 11 11 01 01 10

Blockl 11 11 11 01 10 10

Blocks 11 11 01 01 10 10

BlocH 11 11 01 01 10 10

with tr(V) = 0.249641 V(fOi - f n ) = V(f10 - f n ) = 0.1248 and Ed = 0.998.
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Table 1.1: Catalogue2 of overall A-optimal designs of the R-

and S-type for t=2, 2 < b < 50, 4 < k < 30, which were

not listed in Ting and Notz(1988).
k b

5 2m

6 6

7

8

12

13

14

15

19

20

21

22

26

27

28

33

34

35

40

41

42

46

47

48

49

ro

2b

14

16

18

28

30

32

34

44

46

48

50

60

62

64

76

78

80

92

94

96

106

108

110

112

type

R

S

S

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

doi

dx

di

dx

dx

d1

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

section

1 rep;

BBD(2
n

BBD(2

BBD(2

»

BBD(2

BBD(2

BBD(2

BBD(2

»

, 2,3);

, 4,3);

, 6,3);

, 8,3)

,10,3)

,12,3)

,14,3)

of the

do2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

design

m copies of 2 £2 1

BBD(2, 4,4)

BBD(2, 5,4)

BBD(2, 6,4)

BBD(2, 8,4)

BBD(2, 9,4)

BBD(2,10,4)

BBD(2,11,4)

BBD(2,13,4)

BBD(2,14,4)

BBD(2,15,4)

BBD(2,16,4)

BBD(2,18,4)

BBD(2,19,4)

BBD(2,20,4)

BBD(2,23,4)

BBD(2,24,4)

BBD(2,25,4)

BBD(2,28,4)

BBD(2,29,4)

BBD(2,30,4)

BBD(2,32,4)

BBD(2,33,4)

BBD(2,34,4)

BBD(2,35,4)

2Note

1. Selections do, di, ^2, doi and rfo2 are amalgamated as shown in Figures 1.1 to 1.3 on pages 16
and 20.

2. m is any positive integer.

3. z rep means z replications for each test treatment in each block.

4. xY2v ls the set of all x\/{y\(x — y)\) blocks obtained from all the distinct selections of y
treatments from x.
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Table 1.1: continued...
r0 type section of the design

2m 3b R dOi : 2 rep;

2m 4b

m < 6

2m+l 4b-1

4 < m < 15

2m 4b-2

15 < m < 26

R 2rep;

: rn copies of

: m copies of 2

BBD(2,2m,5); d2 : BBD(2, 1,6)

BBD(2,b-2,5); d2 : BBD(2,2,6)

11 b 5b R

b < 7

b 5b-2 S

20 < b < 34

b 5b-4 S

46 < 6 < 51

do : 3 rep

BBD(2,b-2,6); t/2 : BBD(2,2,7)

BBD(2,b-4,6); d2 : BBD(2,4,7)

12

15

16

2m

2m

3

5

6

8

9

11

14

17

19

20

22

23

25

26

28

5b

6b

20

34

40

54

60

74

94

114

128

134

148

154

168

174

188

R

R

S

S

S

S

S

S

s
s
s
s
s
s
s
s
s

dOi

d0i

di

di

di

di

di

di

di

di

di

di

di

di

di

di

di

3 rep;

4 rep;

BBD(2, 2,9);

BBD(2, 4,9);
"

BBD(2, 6,9);

"

BBD(2, 8,9);

BBD(2,10,9);

BBD(2,12,9);

BBD(2,14,9);

BBD(2,16,9);

"

BBD(2,18,9);
"

BBD(2,20,9);

d02

d02

d2
d2
d2

d2

d2

d2

d2

d2

d2

d2
d2

d2

d2

d2

d2

m copies of 2

m copies of 2

BBD(2,l,10)

"

BBD(2,2,10)

BBD(2,3,10)

"

BBD(2,4,10)

BBD(2,5,10)

"

BBD(2,6,10)

"

BBD(2,7,10)

"

BBD(2,8,10)
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Table 1.1: continued...

k b

16 31

34

36

37

39

40

42

45

48

50

18 4

5

9

10

13

14

15

18

19

22

23

24

27

28

32

33

36

37

38

41

42

46

47

50

ro

208

228

242

248

262

268

282

302

322

336

30

38

68

76

98

106

114

136

144

166

174

182

204

212

242

250

272

280

288

310

318

348

356

378

type

S

S

S

S

S

S

S

S

S

s

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

dx

di

dx

dx

dx

di

di

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

section of

BBD(2,22,9);

BBD(2,24,9);

BBD(2,26,9);
JJ

BBD(2,28,9);

BBD(2,28,9);

BBD(2,30,9);

BBD(2,32,9);

BBD(2,34,9);

BBD(2,36,9);

BBD(2,2,10);

BBD(2,3,10);

BBD(2,5,10);

BBD(2,6,10);

BBD(2,7,10);

BBD(2,8,10);

BBD(2,9,10);

BBD(2,10,10);

BBD(2,H,10);

BBD(2,12,10);

BBD(2,13,10);

BBD(2,14,10);

BBD(2,15,10);

BBD(2,16,10);

BBD(2,18,10);

BBD(2,19,10);

BBD(2,20,10);

BBD(2,21,10);

BBD(2,22,10);

BBD(2,23,10);

BBD(2,24,10);

BBD(2,26,10);

BBD(2,27,10);

BBD(2,28,10);

the c

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

lesign

BBD(2,9,10)

BBD(2,10,10)
JJ

BBD(2,ll,10)
JJ

BBD(2,12,10)
JJ

BBD(2,13,10)

BBD(2,14,10)
JJ

BBD(2,2,11)

BBD(2,4,11)

BBD(2,6,11)

))

JJ

BBD(2,8,11)
JJ

BBD(2,10,ll)
JJ

BBD(2,12,11)
)J

BBD(2,14,11)

BBD(2,16,11)
JJ

JJ

BBD(2,18,11)

BBD(2,20,ll)
JJ

BBD(2,22,11)
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Table 1.1: continued...

k

19

23

25

b

2m

4

5

6

9

10

11

14

15

16

19

20

21

25

26

30

31

35

36

40

41

45

46

50

2

3

5

7

8

10

12

13

15

17

ro

8b

38

47

56

85

94

103

132

141

150

179

188

197

235

244

282

291

329

338

376

385

423

432

470

20

31

51

71

82

102

122

133

153

173

type

R

S

S

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

R

s
s
s
s
s
s
s
s
s

doi

dl

di

di

di

di

di

di

di

di

di

dl

di

di

di

di

di

di

di

di

di

di

di

di

d01

di

di

di

dl

dl

di

di

di

di

section of

5 rep;

BBD(2,2,13);

"

"

BBD(2,4,13);

"

"

BBD(2,6,13);

BBD(2,8,13);

BBD(2,10,13);

BBD(2,12,13);

BBD(2,14,13);

BBD(2,16,13);

BBD(2,18,13);

BBD(2,20,13);

7 rep;

BBD(2,1,14);
35

M

BBD(2,2,14);

"

BBD(2,3,14);

"

the

^02

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

dQ2

d2

d2

di

d2

d2

d2

d2

d2

d2

design

m copies of 2 ̂  1

BBD(2,2,14)

BBD(2,3,14)

BBD(2,4,14)

BBD(2,5,14)

BBD(2,6,14)

BBD(2,7,14)

BBD(2,8,14)

BBD(2,9,14)

BBD(2,10,14)

BBD(2,11,14)

BBD(2,12,14)

BBD(2,13,14)

BBD(2,15,14)

BBD(2,16,14)

BBD(2,18,14)

BBD(2,19,14)

BBD(2,21,14)

BBD(2,22,14)

BBD(2,24,14)

BBD(2,25,14)

BBD(2,27,14)

BBD(2,28,14)

BBD(2,30,14)

1 copy of 2]Tl

BBD(2,2,15)

BBD(2,4,15)

• BBD(2,6,15)

: "

: BBD(2,8,15)

: BBD(2,10,15)

"

• BBD(2,12,15)

. BBD(2,14,15)
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Table 1.1: continued...
type section of the design

25 18

20

22

25

27

30

32

35

37

40

42

45

47

50

184
204

224

255

275

306

326

357

377

408

428

459

479

510

S
S

s
s
s
s
s
s
s
s
s
s
s
s

BBD(2,4,14);

BBD(2,5,14);

BBD(2,6,14);

BBD(2,7,14);

BBD(2,8,14);

d2
d2
d2
d2
d2
d2
d2
d2
d2
d2

BBD(2,9,14); d2

BBD(2,10,14); d2

BBD(2,14,15)

BBD(2,16,15)

BBD(2,18,15)

BBD(2,20,15)

BBD(2,22,15)

BBD(2,24,15)

BBD(2,26,15)

BBD(2,28,15)

BBD(2,30,15)

BBD(2,32,15)

BBD(2,34,15)

BBD(2,36,15)

BBD(2,38,15)

BBD(2,40,15)

12b R d0 : 9 rep30 b

6 < 11

b 12b+2 S rfj : BBD(2,2,17); d2 : BBD(2,b-2,18)

30 < 6 < 50
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Table 1.2: Catalogue3 of R- and S-type A-optimal designs within the BTBD

class for t=2, 2 < b < 50, 4 < k < 30.
k b

5 2m+l

6 b( = 2,3)

4

5

9

10

11

16

17

18

23

24

25

29

30

31

32

36

37

38

39

43

45

50

ri

2b+l

2b

10

12

20

22

26

36

38

42

52

56

58

66

68

72

74

82

84

88

90

98

104

114

type

S

R

S

S

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

di

d0

di

di

di

di

di

di

di

di

di

di

di

di

di

dl

di

di

di

di

di

di

di

di

section

BBD(2,1,2);

2 rep

BBD(2,2,3);

BBD(2,2,3);

BBD(2,2,3);

BBD(2,2,3);

BBD(2,4,3):

BBD(2,4,3);

BBD(2,4,3);

BBD(2,6,3);

BBD(2,6,3);

BBD(2,8,3);

BBD(2,8,3);

BBD(2,8,3);

BBD(2,8,3);

BBD(2,10,3);

BBD(2,10,3);

BBD(2,10,3);

BBD(2,10,3);

BBD(2,12,3);

BBD(2,12,3);

BBD(2,12,3);

860(2,14,3);

BBD(2,14,3);

of the

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

da

d2

design

BBD(2,b-l,3)

BBD(2,2,4)

BBD(2,3,4)

BBD(2,7,4)

BBD(2,8,4)

BBD(2,7,4)

BBD(2,12,4)

BBD(2,13,4)

BBD(2,12,4)

BBD(2,17,4)

BBD(2,16,4)

BBD(2,17,4)

BBD(2,21,4)

BBD(2,22,4)

BBD(2,21,4)

BBD(2,22,4)

BBD(2,26,4)

BBD(2,27,4)

BBD(2,26,4)

BBD(2,27,4)

BBD(2,31,4)

BBD(2,31,4)

BBD(2,36,4)

2m+l 3b+l S : BBD(2,1,4); d2 : BBD(2,b-l,5)

9

1

6

11

2m+l
< m <

2m

< m <

2m

< m <

4

10

15

4b-1

4b

4b-2

S c

R d(

S c

?! : BBD(2

)l : 2 rep

*! : BBD(2

,b-l

,b-2

,5);

,5);

do2 :

d 2 :

BBD(2,1

m copies

BBD(2,2

,6)

of 2

,6)

3ri is the replication of the control treatment.
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Table 1.2: continued...
k

9

11

12

16

20

7 ;

14

41

b

2m+l

< m <

2m+l
< m <

b

< m <

b

<b<

b

< b <
2m+l

19

24

13

40

46

r i

4b-l

4b-3

5b

5b-2

5b-4

5b-l

type

S d

S d

R d

S d

S d

S d

section of

! : BBD(2,b-l,5);

! : BBD(2,b-3,5);

0 : 3 rep

! : BBD(2,b-2,6);

! : BBD(2,b-4,6);

, : BBDC2.b-1.7):

the

d2

d2

d2

d2

do

design

: BBD(2

: BBD(2

: BBD(2

: BBD(2

: BBDC2

,1

,3

,2

,4

,1

-6)

,6)

.7)

.7)

,8)

15 2m + l 6b+l : BBD(2,1,8); d2 : BBD(2,b-l,9)

16 2

4

7

10

12

13

15

16

18

21

24

27

29

30

32

33

35

38

41

43

44

14

26

46

68

80

88

100

108

120

140

162

180

194

202

214

222

234

256

276

288

296

R

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

s

doi

rfi

di

di

dl

d\

di

d\

di

di

di

di

di

di

di

di

di

di

di

4 rep;
BBD(2,2,9);

BBD(2,4,9);

BBD(2,8,9);

BBD(2,8,9);

BBD(2,10,9);

BBD(2,10,9);

BBD(2,12,9);

BBD(2,12,9);

BBD(2,14,9);

BBD(2,18,9);

BBD(2,20,9);

BBD(2,20,9);

BBD(2,22,9);

BBD(2,22,9);

BBD(2,24,9);

BBD(2,24,9);

BBD(2,28,9);

BBD(2,30,9);

BBD(2,30,9);

BBD(2,32,9);

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

1 copy of 2 )J1
BBD(2,2,10)

BBD(2,3,10)

BBD(2,2,10)

BBD(2,4,10)

BBD(2,3,10)

BBD(2,5,10)

BBD(2,4,10)

BBD(2,6,10)

BBD(2,7,10)

BBD(2,6,10)

BBD(2,7,10)

BBD(2,9,10)

BBD(2,8,10)

BBD(2,10,10)

BBD(2,9,10)

BBD(2,ll,10)

BBD(2,10,10)

BBD(2,ll,10)

BBD(2,13,10)

BBD(2,12,10)
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Table 1.2: continued...
k

16

18

19

b

46

47

49

2

3

6

7

8

11

12

16

17

18

21

25

26

29

30

31

34

35

39

40

43

44

45

48

49

2m+l

rx

308

316

328

16

22

46

52

60

84

90

122

128

152

158

190

196

220

228

234

258

264

296

302

326

332

340

364

370

8b-l

type

S

S

S

R
S

S

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

s

dx

dx

dx

do

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

d,

section of

BBD(2,32,9);

BBD(2,34,9);

BBD(2,34,9);

5 rep

BBD(2,l,10);

BBD(2,4,10);

BBD(2,3,10);

BBD(2,4,10);

BBD(2,7,10);

BBD(2,6,10);

BBD(2,10,10);

BBD(2,9,10);

BBD(2,12,10);

BBD(2,ll,10);

BBD(2,15,10);

BBD(2,14,10);

BBD(2,17,10);

BBD(2,18,10);

BBD(2,17,10);

BBD(2,20,10);

BBD(2,19,10);

BBD(2,23,10);

BBD(2,22,10);

BBD(2,25,10);

BBD(2,24,10);

BBD(2,25,10);

BBD(2,28,10);

BBD(2,27,10);

BBD(2,b-l.ll);

the c

d2

d2

d2

di

d2

di

di

d2

d2

d2

d2

d2

di

d2

d2

d2

di

di

di

d2

di

d2

d2

d2

d2

d2

di

do

iesign

BBD(2,14,10)

BBD(2,13,10)

BBD(2,15,10)

BBD(2,2,11)

BBD(2,2,11)

BBD(2,4,11)

BBD(2,4,11)

BBD(2,4,11)

BBD(2,6,11)

BBD(2,6,11)

BBD(2,8,11)

BBD(2,8,11)

BBD(2,10,ll)

BBD(2,10,11)

BBD(2,12,11)

BBD(2,12,11)

BBD(2,12,11)

BBD(2,14,11)

BBD(2,14,11)

BBD(2,16,11)

BBD(2,16,11)

BBD(2,18,11)

BBD(2,18,11)

BBD(2,20,ll)

BBD(2,20,ll)

BBD(2,20,ll)

BBD(2,22,11)

BBD(2,1,12)

22 2m+l 9b+l : BBD(2,1,12); d2 : BBD(2,b-l,13)
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Table 1.2: continued...
k b

23 2

3

7

8

12

13

17

18

22

23

24

27

28

29

32

33

34

37

38

39

42

43

44

47

48

49

25 4

6

9

11

14

n
18

29

65

76

112

123

159

170

206

217

226

253

264

273

300

311

320

347

358

367

394

405

414

441

450

461

40

62

91

113

142

type

R

S

S

S

S

S

S

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

R

s
s
s
s

do

di

di

di

di

di

di

di

di

di

di

di

di

di

dx

dl

di

di

di

di

di

di

di

di

di

di

doi

di

di

di

di

section of

7 rep

BBD(2,2,13);

BBD(2,2,13);

BBD(2,4,13);

BBD(2,4,13);

BBD(2,6,13);

BBD(2,6,13);

BBD(2,8,13);

BBD(2,8,13);

BBD(2,10,13);

BBD(2,10,13);

BBD(2,10,13);

BBD(2,12,13);

BBD(2,12,13);

BBD(2,12,13);

BBD(2,14,13);

BBD(2,14,13);

BBD(2,14,13);

BBD(2,16,13);

BBD(2,16,13);

BBD(2,16,13);

BBD(2,18,13);

BBD(2,18,13);

BBD(2,18,13);

BBD(2,18,13);

BBD(2,20,13);

7 rep;

BBD(2,2,14);

BBD(2,1,14);

BBD(2,3,14);

BBD(2,2,14);

the

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d2

d02

d2

d2

d2

d2

design

BBD(2,1,14)

BBD(2,5,14)

BBD(2,4,14)

BBD(2,8,14)

BBD(2,7,14)

BBD(2,11,14)

BBD(2,10,14)

BBD(2,14,14)

BBD(2,13,14)

BBD(2,14,14)

BBD(2,17,14)

BBD(2,16,14)

BBD(2,17,14)

BBD(2,20,14)

BBD(2,19,14)

BBD(2,20,14)

BBD(2,23,14)

BBD(2,22,14)

BBD(2,23,14)

BBD(2,26,14)

BBD(2,25,14)

BBD(2,26,14)

BBD(2,29,14)

BBD(2,30,14)

BBD(2,29,14)

2 copies of 2 j ^ 1

BBD(2,4,15)

BBD(2,8,15)

BBD(2,8,15)

BBD(2,12,15)
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Table 1.2: continued...
type section of the design

25 16

19

21

23

24

26

28

29

31

33

34

36

38

39

41

43

44

46

48

49

164

193

215

235

244

266

286

295

317

337

346

368

388

397

417

439

448

468

490

499

S

S

S

S

S

S

S

S

S

s
s
s
s
s
s
s
s
s
s
s

d\

dx

dx

di

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

BBD(2,4,14);
BBD(2,3,14);

BBD(2,5,14);

BBD(2,5,14);

BBD(2,4,14);

BBD(2,6,14);

BBD(2,6,14);

BBD(2,5,14);

BBD(2,7,14);

BBD(2,7,14);

680(2,6,14);

BBD(2,8,14);

BBD(2,8,14);

BBD(2,7,14);

BBD(2,7,14);

BBD(2,9,14);

BBD(2,8,14);

BBD(2,8,14);

BBD(2,10,14);

BBD(2,9,14);

d2

di

di

d2

d2

d2

di

d2

d2

di

d2

di

di

di

d2

di

di

di

di

di

BBD(2,12,15)
BBD(2,16,15)

BBD(2,16,15)

BBD(2,18,15)

BBD(2,20,15)

BBD(2,20,15)

BBD(2,22,15)

BBD(2,24,15)

BBD(2,24,15)

BBD(2,26,15)

BBD(2,28,15)

BBD(2,28,15)

BBD(2,30,15)

BBD(2,32,15)

BBD(2,34,15)

BBD(2,34,15)

BBD(2,36,15)

BBD(2,38,15)

BBD(2,38,15)

BBD(2,40,15)

26 2m+l BBD(2,b-l,15); d2 : BBD(2,1,16)

29 2m+l 12b-l S : BBD(2,1,16); d2 : BBD(2,b-l,17)

30 b 12b R d0 : 9 rep

11 < b < 20

b 12b + 2 S dx : BBD(2,2,17); d2 : BBD(2,b-2,18)

21 < 6 < 30



C h a p t e r 2

D u a l V e r s u s S i n g l e T r e a t m e n t

B l o c k D e s i g n s fo r n x 2

E x p e r i m e n t s w i t h n > 2.

2.1 Introduction:

In Chapter 1 we found that the class of Balanced Dual versus Single De-

signs(BDSD) is a rich source of optimal and near optimal designs for the dual

versus single treatment design problem when both factors have two levels. When

one or both factors have more than 2 levels it is therefore natural to ask if the

subclass of designs having the property of balance again includes A-optimal de-

signs. In this chapter we extend our consideration of designs to those which are

partly balanced as in Definition 1.3. These include totally balanced designs as a

special case. We establish the necessary and sufficient condition on the A-matrix

of a design to be PBDS. A method of constructing a series of PBDS designs based

on reinforcing group divisible designs is suggested and some of the properties of

this series of designs are investigated. The class of BDSD's which is a special case

of the class of PBDS designs is considered in detail. It is shown that restricting

to designs with the balance property incurs unnecessarily large treatment repli-

cations and other disadvantages. It is proved that BDSD's exist only for m=2

or n=2. Further, the feasibility of certain desirable structures of the variance-

covariance matrix of the contrast estimators is considered. Also combinatorial

problems of the designs are investigated.

36
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2.2 Contrasts:

For the n x 2 case the ordering of the treatments shown in (1.4) is used in the

treatment vector:

L= (TQI,TIQ,T20,.. . , Tpo, 7ii ,T2 l , . . . ,Tpi)', (2.1)

where p=n-l, r_ is a t x 1 column vector and t=2n-l. The contrasts of interest

are the dual versus single treatment comparisons:

(0 rn - T O I , (2.2)

and

(ii) Tn - T,O, (2.3)

for i=l,2,...,p; where (2.2) and (2.3) consist of the contrasts for dual versus B and

dual versus A respectively. In matrix form, the contrasts of interest are given as

CV, where

/-r _ I p

~*p

(2.4)

We can view the problem as comparing each dual treatment i l with the two

single treatments iO and 01 (i=l,2,...,p). Majumdar(1986) found A-optimal de-

signs for comparing a set of test treatments with a set of control treatments. In his

context all the elementary treatment contrasts for comparing any test treatment

with any control treatment are of equal interest. The dual versus single design

problem can be viewed as comparing a set of test treatments(the dual treatments

ll,21,...,pl) with a set of control treatments(the single treatments 01,10,20,...,p0).

However, the problem differs from that considered by Majumdar(1986) in that

any particular test treatment is to be compared with only two specific control

treatments. We have found nothing in the literature relevant to this problem for

n > 2.
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2.3 Information Matrix of the Contrast Estima-

tors:

Before going further we give a definition which will be used to specify the structure

of the A-matrix of designs belonging to a specific class.

Definition 2.1 Let Cf_ be a set of independent contrast estimators of CT_ in a

connected design with Q as a g-inverse of the A-matrix of the design, then

M = (cnc')-\ (2.5)

will be called the Information matrix of the contrast estimators. The in-

formation matrix M depends on the design as well as the contrasts of interest,

but throughout this thesis we use M rather than M(C,d).

We now specify the information matrix for the estimators of the contrast of

interest. From Definition 2.1 it is clear that the variance-covariance matrix of the

contrast estimators is V = A/"1. The determination of M is an important, but

not always an easy, job. Fortunately for n X 2 experiments it is not difficult to

specify it. The following lemmas and theorem leads us to give M in terms of the

elements of the A-matrix of the design.

Lemma 2.1 The A-matrix of any connected (block or row-column) design can

always be partitioned as follows :

A =
"12

«12

u
(2.6)

where an is a scalar, a,12
 zs a column vector, U is a (t — 1) X (t — 1) nonsingular

symmetric matrix and t is the number of treatments.

Proof: We know Alt = 0_t, where l_t is a vector with every entry unity. Hence

in order for a partition (2.6) to hold we must have:

G i l

U
X 1M-l-

This gives us:

R{A) = R
I

u

(2.7)

(2.8)
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Also we know that ij_1f/ + a'12 = 0, since (ALj)' = l^A = 0. This implies that

R(A) = R(U). U must be nonsingular, since connectivity implies R(A)=t-l.X

The following lemma gives a specific g-inverse for the A-matrix of any con-

nected(block or row-column) design.

Lemma 2.2 Let the A-matrix of a connected design be partitioned as in Lemma

2.1, then it has the following matrix as a g-inverse:

0 0'
(2.9)

Proof: It is sufficient to show that Aft A = A. From Lemma 2.1. we have:

A = an «i2

£12 U

therefore:

ASIA =
an

_ £12 u X
0

0

« i 2

0'

u-1

2 £ 1 2

u

X

«Ll2

(2.10)

But from Lemma 2.1 we have a'12 = —VU and this implies that g/12U
 1 = —!'.

Hence g/^U^a^ = —l!a12. Also from Lemma 2.1 wehave J/a12 = flu. Therefore

AQA = A and H is a g-inverse of the A-matrix of the design.Jft

Note: Lemmas 2.1 and 2.2 apply to both block and row-column designs under

the model in which there are no interactions involving blocking or row and column

factors.

Two things should be noted here. Firstly for the estimable parametric func-

tions such as contrasts, both the estimators and variance-covariance matrix of

the estimators are invariant under any choice of g-inverse of the A-matrix(Ref:

John,1987;pll). Secondly the Lemmas 2.1 and 2.2 are valid for any ordering of

treatments in r_.

In the following theorem we will determine the information matrix, M, for the

dual versus single treatment contrast estimators.
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Theorem 2.1 For any connected nx2 CFBD(OO), let the A-matrix of the design

be represented by:

A =
Ml 2 iil3

£l2 ^22 ^23

«13 ^23 ^33 J

(2.11)

where an is a scalar, <z12 and a13 are column vectors both of order (n — 1) x 1,

^22 1 ̂ 23 and A33 are matrices of order (n — 1) x (n — 1). Then the information

matrix of the contrast estimators for the dual versus single treatment problem has

the form:

M =
A 22 A23 + A'23

—A22 — A23
2 3

-A22 - A'23

A22
(2.12)

Proof: The variance-covariance matrix for the dual versus single estimators is

. By Definition 2.1 we have M = (CfiC)"1 . From Lemma 2.2 the following

matrix can be used as f2:

where,

U =

0 0'

0 u-1

A22 A23

(2.13)

33

(2.14)

From (2.4) we can partition C as follows:

c=[vx , v2],
where

Vi = and V2 =

(2.15)

(2.16)

Then after some manipulation we get: CQ.C = V2U~lV2'- But V2 is a nonsingular

matrix, therefore we have:

M = (2.17)
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where,

- 1 h -h (2.18)

Substituting from (2.14) and (2.18) into (2.17) we will get (2.12). Hence the

theorem is proved.£

2.4 Class of PBDS Designs:

One major problem in establishing A-optimal designs is to specify a class of

designs which includes highly efficient or A-optimal designs. The class of PBDS

designs not only gives equal precision for estimated contrasts within the dual

versus A set and equal precision within the dual versus B set, but also satisfies

this requirement. In fact the A-optimal design in this class is a highly efficient

design in most cases and is sometimes A-optimal in the entire class of designs(see

Chapter 4).

Based on Definition 1.3, a design is PBDS if the variance-covariance matrix

of the contrast estimators corresponding to dual versus A and dual versus B is of

the form:

(2.19)
(6-

(S — <f>)Ip + <j>Jp (a?2 —

for oti ̂  pi(i = 1,2), where C is given in (2.4).

This structure for the variance-covariance matrix allows equal precision and

correlation for the contrast estimators corresponding to dual versus A, as well

as for those corresponding to dual versus B. It has two values(not necessarily

equal) for the correlations among the contrast estimators; one value for orthogonal

contrasts and another value for non-orthogonal contrasts.

Example 2.1 For n=4, b—3 and k—5, the following design is PBDS design:

Blockl 01 10 11 20 21

Block! 01 10 11 30 31

Blocks 01 20 21 30 31

with the variance-covariance matrix for the dual versus single contrast esti-

mators:
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cnc =
o.56/3 + 0.31J3 0.50/3

O.5O/3 h

In Chapter 4 it will be shown that this is a very highly efficient design in the

entire class of designs(see Table 4-%)-

2.4.1 A-matrix of the Class of PBDS Designs:

So far we have specified the class of PBDS designs in terms of its variance-

covariance matrix structure. Now in what follows in this section we characterize

this class of designs in terms of the structure of their A-matrices. This simplifies

the characterization of this class of designs. But first, we need the following

definition.

Definition 2.2 A matrix has structure W if it has the form:

W = 6lp dlp + fjp glp + hJp . (2.20)

cJLp glp + hJp qlp

The following theorem specifies the A-matrix of the PBDS designs.

Theorem 2.2 A necessary and sufficient condition for a connected design d to

be a PBDS design is that its A-matrix has structure W.

Proof: (i)- If the A-matrix of d has structure W then, applying Theorem 2.1,

we will show that the variance-covariance matrix of the estimators of the contrast

of interest of d has the same structure as a PBDS.

By Lemma 2.2 a g-inverse of the A-matrix is:

0

u- 1
(2.21)

where

U =
glp + hJp qlp + sJp

By matrix algebra theory we have(see Graybill,1983,pl95)
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8Ip + (f)Jp -ylp + T]JP

~flp + T]JP 0IP + crjp
(2.22)

where 9, a, 7, 8, 77 and <j> are functions in terms of d, f, g, h, q and s.

Substituting from (2.22) into (2.21), using the definition of C from (2.4) and

applying (2.17) we obtain CClC = V~lU~l{V')~1. Then after some algebra we

have:

(2.23)
eip + aJp (9 - 7)Jp + (er - V)JP

(9 - 7 ) / p + (a - rj)Jp {9 + 8- 27)IP + {a + <f> - 2rj)Jp

This gives 9IP + aJp and (6 + 8 — 27)/p + (a + <j> — 2TJ)JP as the variance-

covariance matrix for the dual versus B and dual versus A contrasts estimators

respectively. Therefore, by definition, d is a PBDS design.

(ii)- If we have a design d\ with A\ and S7i as its A-matrix and a g-inverse

respectively, with:

dip + ajp -yip + t]Jp

7/p + rj Jp Sip + <f>Jp
(2.24)

then by Definition 2.1 we have:

9IP + aJp -ylp + t] Jp

•yip + r\Jv 8IV + (j)Jp

- 1

(2.25)

But by Theorem 2.1 we have:

Mi =
A

23
A

23
-A22 - A

23

— A22 — 22

(2.26)

Equating (2.25) and (2.26) we get: A22 = Xilp + ViJP, A23 = x2lp + y2JP and

A33 = x3lp + y3jp, where X{ and ?/,-(i=l,2,3) are functions of 9 , a , 7 , r\ , 8 and <f> .

By a property of the A-matrix of any design(namely, that the sum of the rows and

the sum of the columns equal zero) we can easily show that au = ^,l(i = 1,2)

where i/>,-'s are functions in terms of x,- and t/,-(i=l,2,3). Substituting these into

the A-matrix given in (2.11) we have:

a n 1p2±'

y3J
p j
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Hence the theorem is proved, ft

2.4.2 Information Matrix of the Class of PBDS Designs:

The following Corollary gives the information matrix, M, for the estimators of

the contrasts of interest:

Corollary 2.1 The information matrix for the estimators of the dual versus sin-

gle treatment contrasts in the class of PBDS designs has the following structure:

M
2g)Ip 2h)Jp -(d + g)Ip - ( / + h)Jp

dlp + fjp

(2.27)

Proof: Using structure W, for the A-matrix of the design and applying The-

orem 2.2 gives M.Jfr

Example 2.2 For n=3, b=3 and k=6, the design:

Blockl 01 01 11 21 10 20

Block2 01 11 11 21 10 20 ,

Blocks 01 11 21 21 10 20

has the A-matrix.

A =

3

- 0

- 0

.00

•67i2

•83J.2

- 0

3 7 2 -

- 0

•67I2

0.50J2

.67J2

- 0

- 0

3.83/2

• 83I2

•67J2

- 0.83J2 _

The A-matrix of this design has structure W. The information matrix for the

dual versus single treatment contrast estimators for this is:

M
6.8372 - 2.67J2 - 3 7 2 + 1.17J2

- 3 7 2 + 1.17J2 372 - 0.5J2

2.4.3 Combinatorial Properties of PBDS Designs:

We consider the number of occurrences of each treatment in each block and group

the treatments according to whether they are B alone, A alone or a dual treat-

ment. In an n x 2 CFBD(00) let riAij, TIBJ and nrnj denote the replications within

the jth block(j=l,2,...,b) of the treatment combinations iO, 01 and il belonging to
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sets A = {iO;i = 1,2, . . . , p } , B = {01} and D = {il;i = 1,2, . . . ,p} respectively.

Let rAi - Ylbj=i ™Aij, rB = Y,)=\ nBj and rDi = Y%=i nDij denote the respective

replications of iO, 01 and il in the entire design for i = l,2,...,p. Then from Theo-

rem 2.2, it can be shown that for any PBDS design the following conditions must

be satisfied:

E• Ej=i nxijnxi'j = \x, for i / i', i,i'=l,2,...,n-l, X=A and D.

2- Ej=i nAijnDij = Ai, for z=l,2,...,n-l.

3- Ej=i nAijnDilj = A2, for i ^ z', z,z'=l,2,...,n-l.

4- Ej=i nxijTiBj = \BX, for i=l,2,...,n-l, X=A and D.

5. £§=i n2
Bj + (n- 1)(XBA + ABD) = krB.

6- Ej=i "AH + (n~ 2 ) ( A A + A2) + ABA + \i = &rx,-.

7- Ei=i "z),j + (n ~ 2)(AD + A2) + AS D + Ax = krDi.

2.5 Series of RGDD:

In this section firstly we will introduce a series of block designs for k < t = 2n — 1,

which is useful in our context, and then we will consider its properties. This series

of designs is constructed by using a group divisible design for all the treatment

combinations involved in the design except the treatment combination 01, and

then reinforcing each of the blocks once by 01. Before introducing the class of

RGDD we give the definition and a brief summary of some properties of group

divisible designs. Further details are given in Clatworthy(l973).

2.5.1 Group Divisible Designs:

A Group Divisible(GD) design is a block design with t > k for t = mx x m2

treatments each with replication r. The treatments are divided into mi groups of

m2 treatments each. The designs are such that all pairs of treatments belonging

to the same group occur together in say, Aa blocks, while pairs of treatments

from different groups occur together in A2 blocks. Two treatments in the same

group are said to be first associates and those from different groups are said

to be second associates. Hereafter we will denote a group divisible design by

GD(t, b, k, mi , m2, r, Ai, A2) or simply by GD design.
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1.5.1.1 Combinatorial Properties of GD Designs:

The parameters of a GD design must satisfy the following conditions:

(0 * =
(ii) r(k — 1) = (m2 — l)Ai + m2(m\ — \)X2.

GD designs have been classified into three subtypes:

(i) Singular(S), with X\ = r

(ii) Semi — Regular(SR), with X\ < r and tX2 = kr (2.29)

(in) Regular(R), with Ai < r and tX2 < kr.

2.5.1.2 Variances and Efficiencies in GD Designs:

The variances of the elementary contrasts can be expressed as functions of the

parameters of the GD design as follows:

Let u-i and u2 denote the variances of the estimated comparisons of the effects

of two treatments which are first and second associates respectively, then

ui = (2.30)

and

Comparing these with a randomized block design having the same r and the

same cr2(that is having common variances for the error terms in model 1.3 on

page 3), gives the following efficiency factors for comparing two first associates

and two second associates respectively:

rk (2.31)
l ) + A K )

and

2.5.2 Reinforced Group Divisible Designs:

Before introducing this class of designs, we give brief definitions and discuss sup-

plementation balance and reinforcement balance from the literature. These

concepts have been introduced when the contrasts among the treatments involved
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in the design are of unequal importance, such as in the test treatments versus the

control treatment problem. To cope with this, traditionally two suggestions have

been made. One is supplementation balance(Hoblyn,Pearce and Freeman,1954,

Pearce 1960), the other is reinforcement(Das, 1958). The definitions given are: a

design is said to have supplemented balance if all the test treatments are replicated

r times except for the control(supplementing) treatment which has r0 replicates. In

addition all pairs of test treatments concur A times in blocks, unless one of the pair

is the control treatment, in which case there are Ao concurrences. According to

Das(1958), if we have a proper block design d, and if a further treatment is added

equally often to each block, the resulting design, d*, is said to be a reinforced design.

If design d is a BIBD or a Partially Balanced Incomplete Block Design(PBIBD),

then design d* is called a reinforced balanced or a partially balanced block design

respectively(For definitions of these classes of designs refer to Raghavarao,1971,

Chapter 8 and Giri,1958). The important feature of supplemented balance is

that the non-supplemented treatment is in total balance; in reinforced designs

the special treatment is orthogonal to blocks.

For the test treatments versus control treatment problem which is the spe-

cial case of our problem with n=2, the balance denned in Definitions 1.6 and

1.7 in Chapter 1, is exactly the same as supplemented or reinforcement balance.

However for n > 2, the partly balanced dual versus single contrasts do not meet

the definitions, because this case is concerned with comparisons involving three

groups of treatments. Pearce(1983,p 135) extends supplemented balance to m

groups of treatments and defines mult ipart i te designs, which are mainly used

when the treatments fall into groups such that the main comparisons are within

groups and only subsidiarily between them. This appears similar to our require-

ment on designs. However it differs in that it is looking at all contrasts (first group

against second group and first group against third group and so on) whereas we

are concerned with estimating only proper subsets of these contrasts.

Definition 2.3 If we reinforce each block of the GD(t-l, b, k-1, mi, m2,r,Ai, A2)

design once by a new treatment then such a design will be called a Reinforced

Group Divisible Design and will be denoted by RGDD(t-l , b, k, mi,m2, r,

Ai,A2).

2.5.2.1 Combinatorial Properties of RGDD

The parameters of a RGDD design must satisfy the following conditions:
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(t) t - 1 = ̂ 1^2

(ti) r(fc-2) = ( m 2 - l ) A i + m 2 ( m i - l ) A 2 .

Later in Chapter 3, we assess the efficiency and usefulness of these designs un-

der the A-optimality criterion by comparing the total variances of the estimators

of the contrasts with lower bounds derived in Chapter 3.

We further consider the appropriateness of the designs for experiments in

which we require equal variances for dual versus A and dual versus B contrast es-

timators, but one of the sets of contrasts is to be estimated with greater precision

than the other. An A-optimal design is then not necessarily appropriate to the

experimenter. We would seek a design which gives us variance balance for the

contrasts corresponding to the dual versus A comparisons provided low variance

can be achieved. We will show in Chapter 4 that the best design having this

balance feature is a highly efficient or is sometimes A-optimal in the entire class

of designs. This leads us to consider a group divisible design for the 2(n-l) treat-

ments iO, il(i=l,2,...,n-l) in which the dual treatments il and single treatments

iO are first associates(for i=l,2,...,n-l) whilst the other treatments, excluding 01,

are second associates of each other. Also we want all the dual versus B contrasts

to have the same variance. This suggests a design in which each of the dual treat-

ments il(i=l,2,...,n-l) and single treatment 01 occur the same number of times

in each block. Therefore this leads us to a RGDD(2n — 2,b,k,n — 1,2, r, Al5 A2),

which was denned in Section 2.5.2.

In the next section we consider some further properties of this new class of

designs.

2.5.2.2 A-matrix of RGDD:

The A-matrix of RGDD(2p,b,k,p,2,A1? A2) is as follows:

b(k-l) - r i ; -rVp•p

Fn F12

F{2 Fu

(2.33)

where p=n-l, Fn = {r(k - 1) + A2}/p - \2JP and F12 = F[2 = (A2 - X^I? - A2JP.

Also RGDD's are binary designs with tr(A)=b(k-l).
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2.5.2.3 Variance-Covariance Matrix:

We now consider the structure of the variance-covariance matrix of an RGDD

and establish the relationship between the variance of the dual versus A and the

dual versus B contrast estimators. We need the following lemma.

Lemma 2.3 Let I be an identity matrix and J be a matrix in which all entries

are 1, where both matrices have order p x p. Let X and Y be two square matrices

of size q x q, then if X~l and (X + pV)~1 exist we have:

(X&L + Y® J)~l = X~l ® I - (X +

where (H> is Kronecker product.

J; (2.34)

Proof: Let the inverse of X ® I + Y <g> J be of the form Z <g> / + S ® J, then,

on equating the product of the two matrices to an identity matrix, the result is

obtained.Jfr

Theorem 2.3 Let d be an RGDD(2p,b,k,pl2,\\)\2), then the variance-covaria-

nce matrix of the BLUE's of the dual versus single treatment contrasts is:

+ yJp (x1-x2)Ip

x2)Ip 2(zi - x2)Ip

(2.35)

where

x2 =

k{r(k - 1) + A2}
2PA2){r(£;-l) +

- A2)

y =

Proof: Deletion of the first row and first column from the A-matrix of any

RGDD(2p, 6, fc,p, 2, r, Al5 A2), in which the rows and columns correspond to the

treatments as ordered in (2.1), gives:

F12 (2.36)

where Fu and i<\2 are given in (2.33). From (2.33) we have:
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u =

Applying

1

I
" r(k -

A2

Lemma 2.

1

—

3

) + A2

Ai

gives:

A2

r(k-

- A

1 ) -h A2

A2

k
® Jv- (2.37)

+ yJp

x2lp + yJp x-Jp + yJp

where xi,x2 and y are given in (2.35). It follows from Lemma 2.2 that:

cnc -

(2.38)

(2.39)
yJp (xi — x2)Iv

:i — x2)Ip 2(xi — x2)Ip

Hence the theorem is proved. Jk

Corollary 2.2 All RGDD(2p,b,k,p,2,X1, A2) 's are PBDS design.

Proof: The proof simply follows from (2.35) and (1.18) in Chapter l.Jfr

From the variance-covariance matrix of a RGDD(2p,b,k,p,2,Ai, A2), it follows

that:

1- y{ji\ — ̂ oi) = X\ + y — Vi, say, and

2. V(TH - f,-o) = 2(xx - x2) = v2, say, for i=l,2,...,n-l.

It is easy to show that vi and v2 can be written in terms of the parameters of

an RGDD(2p,b,k,p,2,Ai,A2):

k (r(k-l) + \2 A2\

r + 2p\2 [r(k - ]

2k
v2 =

Example 2.3 For n=4> b=3, k=5, r = \\=2 and A2 = 1, the following design

is R GDD (6,3,5,3,2,2,2,1):

Blockl 01 10 11 20 21

Block2 01 20 21 30 31

Blocks 01 30 31 10 11

with variance-covariance matrix for the dual versus single contrast estimators.

0.5625/3 + 0.3125J3 0.5/3

cnc = 0.5/3 h
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For this example the average variances of the estimators of the contrast of

interest given from CtlC in above is 0.9375. JE gives the same efficient design

as the above design. Also we will show in later chapters, this design is A-optimal

within the class of PBDS designs.

We now prove a further property of RGDD's, namely that they are more

efficient for estimating the dual versus B contrasts than for estimating the dual

versus A contrasts.

Theorem 2.4 For any RGDD(2p,b,k,p,2,\\,\2), let v\ and v2 be the common

variances for the dual versus B and dual versus A contrasts estimators respectively

as given in (2.40), then V\ < v2.

Proof: It is sufficient to show that v1 — v2 < 0. We know that for any

RGDD(2p,b,k,p,2,Ai, A2), d = v\ — v2, where v\ and v2 were given in (2.40).

Substituting into d, we obtain:

k-l) + X1 r 7

Since k and r -f 2pA2 are positive, we consider the sign of

r(k - 1) + A! r

If Q=0 then v\ = u2, and if Q > 0 then v\ > u2; otherwise Vi < v2.

On rearranging (2.42) we obtain:

n _ {h - r){r(k - 1) + \r} + 3 ^ - \2)

(2-42)

Since r{r(k — 1) + Ai} is positive, the problem reduces to considering the sign

of the numerator:

(A2 - r){r(k - 1) + Aj} + 3r(A, - A2). (2.44)

But the RGDD parameters, Aj and A2, are related through the equation (2.32),

i.e. r(k — 2) = A! + 2(n — 2)A2. On substituting for A2 from this expression into

(2.44) and multiplying throughout by 2(n-2) we obtain:

P = -XI + 2(2u - 3)rAa + r2{(k - I)2 - 2n(k - 1) + 3}. (2.45)

Since n > 2 so that 2(n — 2) > 0, the sign of P is the same as that of Q.
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We now find the sign of P across the range of Ai values, by solving the

quadratic equation P = 0 and hence locating the values of Ai at which the

sign of P changes. Solving P = 0 gives two roots: r(2n — 3 — s) and r(2n — 3 + 5),

where

s2 = (2n - 1 - k)2 + 2(k - 3)(n - 2). (2.46)

We denote the smaller root by c=r(2n-3-s). Since in a GD design we have Ai < r,

it will be sufficient to prove that c> r for A: > 3, n > 2 and any b. However for a

GD design the values of Ai are restricted to Ai < r. Hence we can establish that

P is always negative for a GD design by proving that Ai < c. We achieve this by

proving that c > r.

We consider two cases: k=3 and k > 3. We do not consider fc < 3 because

there is no GD design with block size less than 2.

For k=3, we have s=2n-4 and hence c=r> Ai. For k > 3, we can assume

k=3+^for£ > 0. Substituting for k into s2 we obtain s2 = ( 2 n - 4 ) 2 + ^ - 2 n + 4 ) .

In a RGDD(2p,b,k,p,2,A!, A2) we have k - 1 < 2p which implies that I < In - 4

and thus s2 < (2n — 4)2 for n > 2. This implies that s < 2n — 4 and consequently

c > r(2n — 3 — 2n + 4) = r. Therefore c is always not smaller than r. Hence the

theorem is proved.Jfr

We now prove a theorem to determine which subtype of GD designs gives a

more A-efficient RGDD.

Theorem 2.5 For any RGDD(2p,b,k,p,2,\i,\2), ifk > A, then the average vari-

ance of the dual versus single contrast estimators is an increasing function of

\2(or a decreasing function of\\).

Proof: In an RGDD(2p,b,k,p,2,Ai, A2), since there are n-1 dual versus A con-

trasts and n-1 dual versus B contrasts the average variances of these contrasts is

v = |(i?i + v2), where v\ and t>2
 a r e given in (2.40). Hence:

Q_2v_ 2 | 1
 f r ( f c - l ) + Aa Aa

^ k r { k l ) + X r + 2 p \ X r { k l ) + \ r *' { ' '

We know that r{k - 2) = A! + 2(n - 2)A2, by property (2.32) of a RGDD.

Therefore for fixed values of n, b, k, and r, Q can be regarded as a function of

A2(or of Ai) only. Let Q = Q(A2). Suppose A2 is a continuous variable, then the

derivative of Q(X2) with respect to A2 is after some calculus:
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where

r(fc- l ) + A2 A2

r '

{r(fc - 1) + AJ + 2(n - 2){r(fc - 1) + A2} 1
y { r(A;-l) + A1}2 +r-

Then we need to find the sign of this derivative. After some algebra we can

show that:

X —
r{r(k - 1 ) + A1}

and

_ {r(k - 1) + Ai}(A:r + Ai) + 2(n - 2)r{r(k - 1)
V ~ r{r{k - 1 ) + Ai}2

Then

dQ(\2)/d\2 = a + ^ + c ,

where

a = {r(fc - 1) + Xi}{kr + Aj - 2p(fc - l ) r} ,

6 = 2(n - 2){r(fc - 1) + A2}(r + 2pA2),

and

Since d is always positive, the sign of this derivative is the same as the sign of

Z=a+b+c. Since

r + 2pA2 = r(k - 1) + Aj + 2(A2 - Aa), (2.49)

we have

c = 4(n - 2)(r + 2pA2){r(A: - 1) + Aj + 2(A2 - A:)}.
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After further algebra we get:

c = A(n - 2){r(k - 1) + Aa}(r + 2pA2) + 8(n - 2)(A2 - AO(r + 2pA2). (2.50)

Substituting from (2.49) into b, after some algebra we get

b + c = 4(n - 2)(r + 2pA2){r(fc - 1) + AJ + 8(n - 2)(A2 - Aj)(r + 2pA2) +

2 ( n - 2 ) ( r + 2pA2){r(fc-l) + A2} (2.51)

= 6(n - 2)(r + 2pA2){r(fc - 1) + Ax} + 10(n - 2)(A2 - Aj)(r + 2pA2)

= 20(n - 2)(A2 - \i)2 + {r(k - 1) + A!}{r(-6n + 6kn - k - 10) - (16n -

Also

Z = 20(n - 2)(A2 - Aj)2 + {r(fc - 1) + A!}{r(4^cn + 2k -An- 12) - (16n - 22)Ai}.

(2.52)

But in a GD we have r > A,-(i = 1,2), so that - r < -A,-(i = 1,2). Therefore

-Ai(16n - 22) > - r ( l 6 n - 22), which implies that:

Z > 20(n - 2)(A2 - Aj)2 + r(Akn - 20n + 2k + 10){r(k - 1) + Ax}. (2.53)

The first term in the RHS of the above inequality is always positive. Also r

and r(k — 1) + Ai are both positive, therefore if 4kn-20n+2k+10 is positive then

5Q(A2)/<9A2 will be positive. For k > 4, this last expression is always positive,

i.e. the average variance of the contrast estimators is an increasing function

in terms of A2. This establishes the proof for k > 4. If k=4, then we have

2{n - 2)A2 = 2r - Aa and

Z = 20(n - 2)(A2 - Aj)2 + (3r + Ai){r(12n - 4) - (I6n - 22)Aj}.

Multiplying Z by n-2 and substituting for A2, from here we will get

z = 5{2r - (2n - 3)Aa}
2 + (n - 2)(3r + Ai){r(12n - 4) - (16ra - 22)Aa}, (2.54)

where z=(n-2)Z. After some manipolation we get

z = u\\- vrXx + wr2, (2.55)

where

u = 4n2 - 6 n + 1,
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v = 36n2 - 94n + 64,

and

w = 36n2 - 84n -f 44.

But we know that Ai < r, and also for n > 2, v is nonnegative, this implies that

vrAi < vr2. Therefore — vrXi > —vr2, i.e. z > uA2 — vr2 + ttr2 = uA2 + {w — v)r2.

For n > 2, u and u; — u = 10(n — 2) are both nonnegative. Hence z > 0 and

consequently <9Q(A2)/A2 > 0. This establishes the proof of the theorem. Jft

Consequnces of Theorem 2.5 are Corollaries 2.3 and 2.4. It should be noted

here that for k=3 the problem remains unsolved. Obviously k can never be less

than 3 in the RGDD.

Corollary 2.3 Singular Group Divisible designs, when they exist, are the most

efficient RGDD under the A-criterion for the dual versus single treatment prob-

lem.

Proof: For singular group divisible designs Ax = r, whereas Ax < r for other

two types. The result follows from Theorem 2.5.&

Note : Singular GD designs have full efficiency for comparing dual versus A, as

is clear from (2.40) since for these type of designs v2 = 2/r which is the same as the

variance obtained from a randomized block design(<72 = 1).

Corollary 2.4 Regular GD designs are more A-efficient than semi-regular GD

designs.

Proof: For fixed values of n, b and k if there exists a semi-regular and a regular

GD, then by (2.29), A2 for a regular GD is less than A2 for a semi-regular GD. In

other words Ai for a regular GD is greater than Ai for a semi-regular GD. Then

by Theorem 2.5 the corollary is proved.£

Discussion 2.1 For particular values of n, b and k we sometimes have a choice

of GD designs with different parameter values Ai,A2 to use in the RGDD con-

struction. For such cases we recommend that the experimenter selects the GD

design with the biggest \\ value. For example, for n=5, k=5 and b—12 the exper-

imenter has two choices for selecting a GD for 8 treatments in 12 blocks each of

size 4- The first choice is a singular GD (Clatworthy,1973,S7,p 103) which leads

to a RGDD with average variance for the contrast estimators of 0.60. As a second
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choice consider a semi-regular GD (Clatworthy, 1973, SR37, p 138) which gives

the average variance for the same set of the contrast estimators as 0.66. However,

there are sizes of experiment for which there is only one sensible choice of GD

design to use in the construction. An example is parameter values n=5, b==8 and

k=5 for which only one design, SR36 is listed in the Clatworthy's catalogue.

2.5.2.4 Relationship Between GD Designs and RGDD:

We now show how the variances for the RGDD can be obtained simply from the

variances of the GD designs. This enables the variances to be derived directly

from the tabulated information in Clatworthy(l973).

Theorem 2.6 Let ui and Ei be the variance and efficiency of the first associate

of a GD(2n — 2,6, k — l ,n — 1,2, r, Ai,Ai) respectively. Let v\ and v2 be the

variances of the dual versus B and dual versus A contrasts estimators respectively,

then

V { + A| (
{ 1 + (Jfc -

and

2k

' r + r(k-

Proof: Fora GD(2n-2,b,k- l,n - 1,2, r, Xu A2), from (2.30) and (2.31):

and

r ( * - l )

We can show, by algebraic manipulation, that the expressions in (2.40) can

be written in terms of E\ as

v - k fr(k-l)E1-\1 + \3 + r \
v
Vl ~ r(r + 2PX2) { 1 + (jfc -

and

2k
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Hence the theorem is proved.•

Note : Since dual treatments i l and single treatments iO for i=l,2,...,n-l, are

replicated the same number of times, we can define E% = 2/(ru2), as the efficiency

factor of the RGDD for estimating the dual versus A contrasts. In terms of E\,

1 + (k
E*= jb •

For A i = r, we can easily show tha t E% = E\ = 1 .

Example 2.4 From Example 2.3 on page 50, on substituting the parameter val-

ues into (2.56) we obtain v\ = 0.875, u2 = 1.0, and hence E% = I. Thus the

design has full efficiency for dual versus A comparisons and lower precision on

the dual versus B contrasts.

Discussion 2.2 As we will show in Chapter 3, all the reinforced singular group

divisible designs are highly efficient relative to derived bounds. But for reinforced

regular and semi-regular group divisible designs this may not be true. But one

benefit of considering optimal designs within the RGDD class is that their con-

struction is very simple since one may appeal to the vast literature on GD designs.

This is an appreciable advantage over other PBDS designs, which have a less

straightforward construction but, in some case, are more efficient than RGDD

designs. These will be studied in Chapter 4-

2.5.2.5 Availability of Designs in the RGDD Class:

GD designs are widely available in the literature. The largest source of designs is

the catalogue of Clatworthy(1973). Further designs have been given, for example

in Freeman( 1976a) and John and Turner(1977). One advantage of RGDD's is

that they are easily constructed from available GD designs.

1. For k > 3 the best design available is chosen from Clatworthy by taking

a singular GD design if available and otherwise taking the best of the re-

maining categories of GD designs(guided by Theorem 2.5).

2. For k=3 many of the designs listed in Clatworthy give RGDD designs

which will have high variances for comparing iO with il(by the construc-

tion method given in Section 2.5.2). However, for the parameter ranges

in Clatworthy it was found that we can obtain a more suitable GD de-

sign by forcing A2 = 0 and obtaining the value of Ai from the expression
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r(k — 2) = Ai + 2(n — 2)A2. It was straightforward to write down the de-

signs in these cases by taking treatment combinations iO and il in the same

block and accommodating treatment combination 01 in each block of the

design. The resulting RGDD designs had much smaller average variances

than those derived directly from the catalogue.

Example 2.5 For n=3, b=4 and k=3, the only available design which can be

constructed from the catalogue of Clatworthy(1973 ,pl 41) is reinforced SRl with

Xi = 0, which is the RGDD(5,4,2,2,0,1) given below:

Blockl 01 10 21

Block2 01 10 20

Blocks 01 11 21

Blocks 01 11 20

with the discrepancy 34.58% (see Definition 3.2 on page 73). However the design

Blockl 01 10 11

Block2 01 10 11

Block?, 01 20 21

BlockA 01 20 21

gives discrepancy 13.331%. Note that although the GD design employed here,

namely

Blockl 10 11

Blockl 10 11

Blocks 20 21

Block* 20 21

with Ax — 2 and X2 — 0 is a disconnected design, the RGDD obtained is

connected. This is a substantial improvement on the best RGDD based on the

appropriate GD design from Clatworthy's catalogue.

An assessment of the performance of the RGDD's obtained as in 1 and 2,

is made in Chapter 3 by comparing their average variance for the contrast of

interest with a lower bound.
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2.6 Class of BDSD:

In the remainder of this chapter we look at tighter requirements on the variance-

covariance matrix in an attempt to eliminate correlations between some or all of

the contrast estimators. We investigate if it is possible to find efficient designs

satisfying these requirements.

From Definition 1.4 in Chapter 1, a design is said to be a Balanced Dual

versus Single treatment Design(BDSD), if V{Cf) — (a — p)ht + pJu(& ^ p),

where £ = (m — l)(n — 1). This design gives equal precision for all the estimators

of the dual versus single treatment contrasts. Also it gives equal correlations

between any two individual contrast estimators. Now we prove that for a general

n x m factorial experiment, a connected BDSD exists if and only if n=2 or m=2.

Theorem 2.7 An n x m BDSD connected(block or row-column) design exists if

and only if m=2 or n=2.

Proof: Let Cf_ denote the BLUE of <7r, where T_ is given in (1.4). Then

we have V(CT) = CtlC; where C was defined in (1.12) and Q is a g-inverse of

the A-matrix defined in Chapter 1. We know from matrix algebra theory that

R(XY) < min{R(X),R(Y)}, where R(X) stands for the rank of matrix X, and

min(a,b) stands for the minimum of a and b. Since AHA = A and the design is

connected, R(ft) > mn - 2(ref Rao,1973;p 25). Also

R(C) = R{C'C) = min{2^, mn - 2}, (2.59)

where £=(m-l)(n-l), and R(CSIC) < min{R(Q.), R(C)}. Therefore

R(CQC') < min{2^, mn - 2}. (2.60)

If the design is a BDSD then from Definition 1.4, V(C±) = (a-p)I2e+pJ2e(p ^

0), and this variance-covariance matrix is of rank 2l\ip^ a. Hence we must

have 2£ = min{2£, mn - 2}, i.e. 2£ < mn - 2. It follows that (m - 2)(n - 2) < 0.

But neither n nor m can be less than 2. Therefore (n — 2)(m — 2) = 0, which is

valid if and only if m=2 or n=2. Hence the theorem is proved.^

2.6.1 A-matrix of a BDSD:

The following theorem specifies the A-matrix of a BDSD:
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Theorem 2.8 Any n x 2 CFBD(OO) is a BDSD if and only if its A-matrix has

the following structure:

A = -
a

p fl'p -¥P

Op Ip -1

-IP -IP
 2Ip J

(2.61)

where p=n-l and a is a design dependent constant.

Proof:
(i) To prove necessity of the A-matrix structure: Assume the design is a

BDSD, then CflC = (a - p)I2p + pJ2p- From Theorem 2.1 we have U =
(V'y^CnC)-^-1 = (VCnC'V)-1, where U and V are denned in (2.14) and
(2.18) respectively. Substituting for U in terms of the elements of the A-matrix
from (2.14) and for CftC from above, we obtain:

U = (2.62)
Iv - (p/d)Jp -I, + 2(p/d)Jp

(*-P[-IP + 2(p/d)Jp 2/p - A{p/d)Jp

where d = a + (2n — 3)p.

Since none of the off-diagonal elements of the A-matrix or of matrix U can be

positive, the only valid form for U is when p = 0. In this case:

By Lemma.2.1, a12 =

Therefore we have:

a -IP 2 / p

(2.63)

a'12 is the transpose of a12 and

A = I
a

P

Op
(2.64)

(ii) To prove sufficiency of the structure:

If the A-matrix of a design is of the form (2.61), then by Lemma 2.2 a g-inverse

of the A-matrix is:

Op

0 D IP / P J

(2.65)
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Hence

cnc = a L Ov
(2.66)

and the design is BDSD.4k

In the following section we specify some conditions for a block design to be a

BDSD.

2.6.2 Combinatorial Properties of a BDSD:

By using the notation on page 44, the following theorem gives combinatorial

restrictions on a design which is a BDSD.

Theorem 2.9 For a block design to be a BDSD, the following conditions must

be satisfied:

1.
6 i 6 6 6

Y nAij(k - riAij) = ~Y nDij(k - nDtJ) = Y nAijnDij = Y nBjnDij =
3 = 1 Z j=\ J = l j=l

-En^-nBj) = - , (2.67)
P j=i a

2.

3 = 1 3=1 3 = 1 3 = 1

for i=l,2,...,p and i ^ I.

Proof: By Theorem 2.8 the structure of the A-matrix necessary for a block

design to be a BDSD is as shown in (2.61). Therefore:

b 1 1 b1 b 1 1 b

i - T X) nAij = o (rDi - 7 Z) nDij) =

1 1 1 1
~{rB - r E UBj) = T Yl nAi3nDij = T Yl nBjnDi3-

Also from the A-matrix of the design given in (2.61) we have:

6 b b r

P Y, nAij{k - nAij) = - Y nDij(k - nDij) = Y nBj(k - nBj) = —,
i=i L 3=1 3=1 a

which establishes the necessity of the first condition. Establishing the second

condition as necessary is straightforward from the structure of the A-matrix of

the BDSD.*
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Corollary 2.5 Suppose design d is a BDSD, then in each block of d we have

present either the pair of treatment combinations (01, il) or (iO,il); for some

Proof: The proof follows from condition 2 of Theorem 2.9.J|k

Now we are in a position to characterize A-optimal designs within the BDSD

class in the following section.

2.6.3 A-optimal Designs within the BDSD Class:

Before giving the theorem which specifies the A-optimal designs within the BDSD

class for parameter values n, b and k, a lemma is needed.

Lemma 2.4 Let x and y be positive real numbers, such that x < y, then for fixed

values for y, f(x)=x(y-x) has a unique maximum value at the point x=y/2. If x

and y are assumed to be integers

1. if y = 2y' is even, then x = y' maximizes f(x);

2. if y is odd, then x = y' andy' + l will maximize f(x) with the same maximum

value y'(y' + 1).

Proof: If x is assumed to be a real number, then df(x)/dx = y — 2x, and

y — 2x = 0 gives rr0 = y/2 as the only critical point of f(x) which maximizes it.

Assume y is an even number, i.e. y=2y', then x0 = y' is an integer value. f(x)

is an increasing function on the interval x £ [0,y/2] and a decreasing function

over x 6 [y/2,y]. In other words f(x) is a concave function(see Roberts and

Varberg,1973,page2). Therefore if y is not even, i.e. y = 2y' + 1, where y' is an

integer, then it can be shown that / ( j / ' + l) = f(y')- Hence the lemma is proved.^

Now we are in a position to establish conditions under which a BDSD is

A-optimal within the class of BDSD for the parameters n, b and k.

Theorem 2.10 A BDSD is A-optimal among all the BDSD's if the following

conditions are satisfied:

1. for each block j which contains iO, \ riAij — k/2 \< 1,

2. for each block j which contains il, \ n^.j — k/2 |< 1,

3. for each block j which contains 01, \ UBJ — k/2 |< 1,
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4- for each block j which contains iO and il, \ riAij

5. for each block j which contains il and 01, \ noij — nBj |< 1-

Proof: If the design is a BDSD, then we have tr(CttC) — 2pa, and the design

is A-optimal if it minimizes a, since p(=n-l) is fixed. Minimizing a: subject to the

conditions in (2.67) and applying Lemma 2.4 and Corollary 2.5, gives conditions

1 to 5 .*

The following example illustrates the structure established as sufficient for a

design to be a BDSD. It also shows that a BDSD is not necessarily efficient.

Example 2.6 For n=3, b=4 and k=3 we have:

Blockl 01 11 11

Block! 01 21 21

Block?, 10 11 11

BlocH 20 21 21

which gives:

A =

1.33 0'2 -0.67I2

Oj 0.67/2 - 0 . 6 7 / 2

_ -0.67I2 -0.67J2 1.33J2

Hence by Theorem 2.8 the design is a BDSD. Also V(Cf) = CflC = 1.5/4,

a = 1.5, and tr(CVlC') = 6. However the design is not highly efficient since the

following design which is not a BDSD has tr{CVlC) = 3.84.

Blockl 01 20 21

Block2 01 10 11

Blocks 01 11 21

BlocH 10 20 11

Now we can specify the layout of a BDSD to be A-optimal among all possible

designs within the class of BDSD.

2.6.4 Layout of A-optimal Designs within the BDSD Class:

The general layout of an A-optimal BDSD depends on the block size k and can

be deduced from Corollary 2.5 and Theorem 2.10. The layout of designs with

odd block size differs from those with even block size as follows:
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1. When k is even. Figure 2.1 shows the layout of a BDSD which is A-optimal.

Blocks |

Units

f f + 1 f + 2
1

2

3

P

P+l
p+2

2p

10

20

30

P 0

01

01

01

10

20

30

po
01

01

01

10

20

30

pO

01

01

01

... 10

... 20

... 30

... pO

... 01

... 01

... 01

11

21

31

Pl
11

21

Pl

11

21

31

Pl
11

21

Pl

... 11

... 21

i-H
 

.
. 

i-H

co 
• 

• 
ft

... 11

... 21

... pl

Figure 2.1: Layout of A-optimal BDSD when k is even.

Example 2.7 When n=3, k-2 and b=4:

For this case:

A =

Block!
Block!

Blocks

BlocU

r-H

o2
-0.512

10

20

01

01

0'2
0.5/2

- 0 . 5 /

11

21

11

21

2

- 0

- 0

/

51'2 "

5/2

2

and V(CT_) = (CttC) = 2I4) which gives a = 2 and design is BDSD.
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2. When k is odd, then the layout of the A-optimal design is given in Figure

2.2, where / = [k/2] and [.] denotes the "integer part of.".

Units —>

1 2 3 ... f f+1 f+2 ... k

1

2

3

Blocks
P
P+l
P+2

10

20

30

P0

01

01

01

10

20

30

po
01

01

01

10 ...

20 ...

30 ...

P0 ...

01 ...

01 ...

01 ...

10

20

30

P0

01

01

01

11

21

31

Pi
11

21

Pi

11 .

21 .

31 .

pi .

11 .

21 .

pi .

.. 11

.. 21

.. 31

.. pi

.. 11

.. 21

.. pi2p

Figure 2.2: Layout of A-optimal BDSD when k is odd.

2.6.5 Advantages and Disadvantages of A-optimal BDSD:

In this section we note some advantages and disadvantages of an A-optimal

BDSD.

The main advantages of the designs are that they are:

1. Easy to construct.

2. Optimal in the class of BDSD.

3. Useful when k=2, since then the number of replications of the treatments

in each block is not impractically large.

However, there are disadvantages of these designs:

1. They exist only for b = 0mod(2n — 2).

2. For k > 3, the number of replications of each of the treatments 01, 11, 21,

..., pi is large, being more than one in every block.

3. An A-optimal BDSD is not A-optimal in the entire class of designs except

for a few parameter values, mainly when k=2.
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2.7 Other Forms of Designs:

As we have shown in the previous section, that although BDSD's have the feature

of giving equal precision for both dual versus A and dual versus B contrast esti-

mators, their efficiencies are not necessarily high. We now consider two further

types of designs with variance-co variance matrix having particular features which

are desirable, provided efficient designs can be found with the features.

1. COC"=F, where F is a diagonal matix so that the estimators of the contrasts

of interest are uncorrelated. For this type of designs, based on Definition

2.1, we have:

M =
0

0
(2.68)

where the 22j's(i=l,2) are p x p diagonal matrices with positive diagonal

elements and M is the information matrix of the estimators of the contrasts

of interest. Let the A-matrix of the design be partitioned as in (2.11), on

page 40, then by applying Theorem 2.1, we obtain

A22 + A22, + A'23 +

—A22 — A2Z

-A22 - A'23

A22

Ex 0

0 E2

(2.69)

From this we obtain A22 = E2, A23 = A'23 = — E2 and A33 = Ei+E2. Other

parts of the A-matrix can be obtained by applying the facts that the A-

matrix is symmetrical and has the sum of its rows equal to zero. Therefore

for a design with property 1, we have:

A = 0

0' -VEy

£2 —E2

—E\\_ —E2 E2

(2.70)

By using the notation on page 44, the following combinatorial restrictions

apply to this type of design:

(a)

b b b b

for i ^ /=l,2,...,n-l.



Chapter 2 67

(b)
b b

Y^ nAij(k - nAij) - ]T nAijnDij. (2.71)

j=i i=i

From these properties we deduce that in each block we have present either

the pair of treatment combinations (01,il) or (iO,il); for some i=l,2,...,n-l.

Major disadvantages of this type of designs are:

(a) Number of blocks increases as n is increased, since the minimum num-

ber of required blocks is b=2(n-l) in order to accommodate all the

treatment combinations involved in the design.

(b) For k > 2, some of the treatment combinations occur more than once

in a block whilst other treatment combinations in the same group do

not occur at all in the block. In other words the design is non-binary

even for k=3.

(c) The efficiencies of designs in this class as, follows from the work of

Chapter 4, are low.

Example 2.8 For n=3, b=4 and k=4, the most efficient design of this type

generated by applying JE is:

Block! 01 01 01 11

Block! 10 10 11 11

Block?, 01 01 21 21

BlocH 20 21 21 21

This design is not binary, for example in block 1 treatment combination 11

occurs twice but combinatorial restrictions dictate that treatment combina-

tion 21 cannot be present in this block.

For this design we have:

' 1.33 0.00 0.00 0.00

0.00 1.00 0.00 0.00

~ 0.00 0.00 1.00 0.00

0.00 0.00 0.00 1.33

in which tr(CflC) = 4.67. For this example the most efficient design which

could be generated by the algorithm without restricting to the designs with
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property 1 has tr(CnC') = 2.639 and the deficiency of the first design is

clear from here.

2. In view of the poor performance of the designs with property 1, we consider

relaxing the requirement to allow correlations between any two contrast

estimators for comparing 01 with any treatment combination belonging to

group D and between any two contrast estimators corresponding to dual

versus A comparisons. In other words we consider designs with the property:

where p=n-l.

alp + bJp

clp + dJp

(2.72)

This type of design is a special case of the wider class of PBDS designs.

However we will show in Chapter 4 that the designs which have such a restricted

structure for the variance-covariance matrix again are not the most efficient in

the sense of not having the smallest average variance of the estimators of the

contrast of interest.

Conclusions: Various types of designs based on features of the variance-

covariance matrix for the estimators of the contrast of interest have been consid-

ered in this chapter. We conclude that restricting to each type of design reduces

efficiency except for the general class of PBDS designs. Therefore for n x 2 ex-

periments we confine ourselves within the PBDS class of designs. As was pointed

out in Chapter 1, we have no guarantee that all the A-optimal designs belong to

this class for all parameter values. However, as we shall establish in Chapter 4,

it contains a wide range of highly efficient designs and some overall A-optimal

designs.

In the next chapter we give bounds to assess the performance of the designs.



C h a p t e r 3

B o u n d s for n x m E x p e r i m e n t s

3.1 Introduction:

In Chapter 2 we introduced the class of RGDD, which is a subclass of PBDS

designs, and considered properties of this subclass including the characterization

of efficient designs. The question now considered is how the performance of the

best designs within this class compares with the best in the entire class of designs

for particular parameter values, n, b and k. In the present chapter, we give two

different lower bounds on the total of the variances of the contrast estimators

for the dual treatments versus single treatment comparisons in a general n x

m censored factorial experiments. We establish which bound is the tighter for

different parameter ranges, and use the bounds to assess the performance of

designs such as RGDD designs.

3.2 Bound 1(61):

In the following we give theorems and lemmas which lead us to the first bound.

The main idea is developed from the result of Wu(l980). Majumdar(l986) has

used a similar approach to establish A-optimal designs for comparing a set of test

treatments with a set of control treatments. Following these ideas we were able

to establish only a few A-optimal designs for our problem, due to the nature of

the contrasts of interest. Nevertheless it leads us to find a tight bound b\ for a

specific range of parameter values.

Lemma 3.1 For any connected (block or row-column) design with replication ma-

trix rs and any contrast matrix C,

69
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tr(CnC) > tr(Cr-sC), (3.1)

where O is a g-inverse of the A-matrix of the design and

rs = diag(r1,r2,...,rt),

where r,- gives the replication of the ?th treatment in the entire design and r~s is

the inverse of rs.

Proof: Applying Wu( 1980,Theorem 3), there exists a g-inverse fi, such that

ft — r~s is non-negative definite(n.n.d.). Hence

0 < tr {C(tt - r-5)C'} = tr(CnC) - tr(Cr-6C), (3.2)

and the lemma follows.X

The following notation is needed to establish corollaries which lead to bound

Notat ion: In an n x m CFBD(OO), let A = {iO; i = 1,2,... ,n - 1}, B =

{Oj; j = l , 2 , . . . , m - l } andl> = {ij; i = 1,2,... ,n - 1, j = 1,2,... ,m - 1}.

Let riAii-, riBji and nuiji denote the respective number of times that the treatment

combinations iO, Oj and ij(belonging to sets A, B and D respectively) occur in

block /, for / = 1,2, ...,&, i = 1,2, . . . , n — 1 and j = 1,2,..., m — 1. Then r&i =

J2bi=i nAii, fBi = J2b=i nBji and roij = Z)/=i nDiji denote the respective replications

of treatment combinations iO, Oj and ij belonging to sets A, B and D in the entire

design. Also let rA = diag^r^i), rB = diag(rsj) and rD ~ diag{rr>ij) denote the

diagonal matrix of the replications for treatment combinations belonging to sets

A, B and D respectively. Then

' rB 0 0

r6 = 0 rA 0 , (3.3)

_ 0 0 rD _

denotes the replication matrix of an n x m CFBD(OO).

Immediate consequences of using Lemma 3.1 in an n x m CFBD(OO) experi-

ment are the following corollaries.

Corollary 3.1 For any n x m CFBD(OO) design d

-r\- --L- (3'4)
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where C is given in (1.12) on page 5.

Proof: By applying Lemma 3.1 we have: tr(CflC') > tr(Cr-8C). But

tr{Cr-5C) - tr(C'Cr~6). It can be shown that:

C'C= opxq qlp - / p ® i ; , (3.5)
plq Oqxp

qh
-IP®h 2/,

1̂

where p=n-l, q=m-l and /=pq.

Therefore

tr(Cr-sC) = ptr(r-B) + qtr(r-
A) + 2tr(r~D).

The proof follows from here.*

The following corollary characterizes the designs which achieve the bound in

Corollary 3.1(cf Majumdar,1986).

Corollary 3.2 If d is an n x m CFBD(OO) design, such that N'r-sC = 0, then

) = tr(Cr-sC) = ^^ j ^ ^

where C is the dual versus single contrast matrix given in (1.12) on page 5 and

N is the incidence matrix of the design.

Proof: Since N'r-sC = 0, it follows that

Ar-sC = {rs - \lkNN')r~6C' = C - l/kNN'r~sC = C. (3.7)

On premultiplying by CU and using the estimability condition CQA = C, we

obtain:

= CflAr-6C = Cr-sC. (3.8)

Thus tr(CnC) = tr(Cr-sC), and the result follows from Corollary 3.1.*

Note : Corollary 3.2 gives a sufficient condition for an A-optimal design. It is

straightforward to apply the same argument to the convex function \& of Kiefer(1975)

to establish that the condition in Corollary 3.2 is sufficient for a design to be universally

optimal(see Majumdar, 1986,Theorem 3.1). However, it is an unfruitful means of
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obtaining designs for our problem, because the condition is only satisfied for sparse

and large values of k(for m = n=3, k=8,16,24,... and for n=3 and m=9, k=28,56,...).

This point will be considered further in Chapter 5. However Corollary 3.2 is useful for

establishing a bound in conjunction with the following lemma.

L e m m a 3.2 Let ri(i=l,2,...,L) be L integer values and Ylf=iri = r be regarded

as fixed and such that r > L. Also let f = [r/L], where [.] means "integer part of

.", then

V '

Proof: Since/(x) = 1/x is a convex function, then by Marshall and Olkin(1979

,p3), the values of r,- which minimize £ 1/r,- subject to the condition Y, ri = fixed,

are the values which minimize £]r? subject to the same constraint. By Cheng

and Wu(l980, Lemma 2.3) the minimum is obtained when r,-'s are as close as

possible, i.e. if:

f f + l i f i - i , 2 , . . . , r - l r ( 3 1 0 )

\ r if i = r — Lr -\- 1 , . . . , L

Substituting these values for r,-(i = 1 ,2 , . . . , 2/) into YA=\ rT^ the required

expression is obtained.^

Theorem 3.1 In an n x m CFBD(OO) design, let TB = E?=i rBi, TA = Ef=i rAi

and TD = Y^=i I3j=i rDij be regarded as fixed, such that TB > q, TA > p, TD > pq

and TA + TD < bk — q. Also let fA = [TA/P], TB — \Ts\q\ and ?D = [TD/P0]) then

; - ^ \ fB(rB + l) j ^ q \ fA(fA + l) j \ fD(fD + l) J
(3.11)

Proof: Follows from the fact that if TA and TD are regarded as fixed, then

TB — bk — TA — To is fixed, and the minimization of tr(Cr~sC) follows from

Lemma 3.2.J|fc

The minimum value for tr{Cr~sC) in Theorem 3.1 is a function in terms of

TA and TD only since p and q are fixed and f̂ , f# and fjj are functions in terms

of TA, TB and TD respectively. Therefore let
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KVT r \ \2qfB + q-TB\ , $2prA+p-TA\ j 2pqfD + pq - TD

(3.12)

Let TB = qfs + «B, where 0 < as < q, To = pqfv + o-D\ 0 < ap < pq and

TA = pfA + a A', 0 < aA < p. Then if we substitute TA, TB and To from here into

F(TA, To), we will obtain the function in terms of aA, fA, as, T~B and ap, rp, viz

F(TA,TD)= (3.13)

1 1 2 f ]

Definition 3.1 Let

b1 = vcnn{F(tA,tD); (tA,tD)eZ}, (3.14)

where

^ >P, tD>pq;tA + tD <bk-q; tA,tD

and N+ denotes the set of integers, positive numbers, then bi is called the

first bound on the sum of the variances for the dual versus single estimators.

Now we are in a position to establish the following corollary.

Corollary 3.3 For any n x m CFBD(OO) design, d, with a g-inverse tt, then

) > F{TA, TD) > 6i. (3.15)

Proof: It follows from Theorem 3.1 and the fact that b\ is the overall minimum

value for tr(Cr-sC').*

Definition 3.2 Let 6; denote a lower bound for the total of the variances of the

estimators of the contrasts of interest. Then

- t ' x l 0 0 (3.16)
0/

is called the discrepancy of design d for the contrast estimators CT_ relative to

the bound b\.



Chapter 3 74

The following three examples show the capability of &i in assessing design

performance.

Example 3.1 For m=n=3, b=3 and k—8, the following design has tr(CttC') =

5.333, which is equal to b\, is overall A-optimal.

Blockl 01 01 10 20 11 12 21 22

Block! 01 01 10 20 11 12 21 22

Blocks 01 01 10 20 11 12 21 22

Example 3.2 For m=n=3, b=3 and k=9, bx — 4.833 and for these parameter

values the most efficient design which is generated by JE, tr(CflC') = 4.862. The

discrepancy for this design is 0.6% which is very small, indicating that bound is

a good bound for these parameter values.

Example 3.3 For m=n=3, b=18 and k=2, we have bi=3.6, and the most effi-

cient design generated by JE gives tr(CXlC')— 5.996, with 66% discrepancy with

b\. For these parameter values b\ is a poor bound.

Discussion 3.1 Examples 3.1 and 3.2 indicate that bt is a tight lower bound for

tr(CQC), for big values of k relative to t—mn-1. However, Example 3.3 suggests

that for small values of k relative to t=mn-l, b\ cannot be used to judge the

performance of the design.

3.3 Bound 2(&2):

We need to establish a bound which is tighter than bi for small values of k. The

new bound, &2, which will be given in this section is based on the eigenvalues

of the A-matrix of the design and C'C, where C is the contrast matrix for the

dual treatments versus single treatment problem. Before going further we need

to investigate the C'C matrix.

3.3.1 Structure and Eigenvalues of C'C:

For a general n x m CFBD(00), from the coefficient matrix C, given in (1.12),

from (3.5) we have:

C'C =
Pig Oqxp -V, ® Iip ŷ Jg

°px? qlp —IP ®

•lp®Iq -IP®L 21,

(3.17)
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Table 3.1: Eigenvalues of C'C matrix(p=n-l, q=m-l).

Eigenvalues(#,)

p+q+-2 + y/(p+q+2)2-4{pq+p+q)
2

P+9 + 2-v/(p+7+2)2-4(p9+p+g)
2

p+2+V(p+2)2-4p
2

p+2-%/(p+2)2-4p
2

<?+2 + v / ( g +2)2-4 ?

2

9+2-\/(<?+2)2-4?
2

2

0

multiplicities

1

1

q-1

q-1

p-1

p-1

( p - l ) x ( g - l )
1

where p=n-l, q=m-l and /=pq.

The eigenvalues of C'C are given in Table 3.1.

3.3.2 Properties of C'C:

1. C'C is a symmetric and non-negative definite(n.n.d.) matrix with eigenval-

ues 9\ > 62 > . . . > ^_i > #* = 0 given in Table 3.1. Let the corresponding

eigenvectors be denoted by ^ , £ , . . . , £^_ and £ t = i"1/2!^ respectively.

2. C 'Cl = fl. Therefore £ = i"1/2]^ is an eigenvector of C'C corresponding

to the eigenvalue 6t — 0, where t=mn-l.

3. R(C"C)=t-l=mn-2, since C'CXt — fl> which simply means that one of the

rows or columns of C'C is a linear functions of the other rows or columns

respectively.
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In the following we give a theorem and some corollaries which lead us to the

new bound, 62.

Theorem 3.2 Let CT_ be a set of L contrasts of interest in a designfblock or

row-column), involving t treatments such that L > t — 1 and R(C) = t — 1. Then

if Oi > 62 > ... > 6t_i > 6t = 0 are the eigenvalues of C'C and Ai > A2 > . . . >

At_! > At = 0, are the eigenvalues of the A-matrix of the design, Then:

(3.18)
t=i Xi

Proof: We prove the theorem by considering two cases:

(i)- L > t. Let fi be the Moore-Penrose g-inverse of the A-matrix of the

design, then we have: V(Cf) — CCtC. Therefore

tr(CQC) = tr lc(Z A-^OC'} , (3.19)

where the £,'s are normalized eigenvectors of the A-matrix of the design corre-

sponding to the eigenvalues A,'s with the property (1.9) as given in Chapter 1.

This implies that

/ j — tv \ y . Aj C/c, c, .C/ I = y ^ i > ̂  ^ s • (3.20)

1 / 0

L e t 7 . = A,~ ^., f o r i = l , 2 , . . . , f — 1 , t h e n w e h a v e :

1-1

^ 1 (3.21)
i=l

Also let F = (7., 7,, • • •,-y , d~*t*1 l.t), where d is a positive real, such that

td2 < Ai_i. Since l'C'Cl = 0, we have:

) = tr(T'C'CT). (3.22)

By applying Theorem A.4 of Marshall and Olkin(1979,p513), we obtain:

tr(T'C'CT)>J20t-i+iVu (3-23)
t=i

where 7/,'s are eigenvalues of FT. To obtain T;,'S notice that

FT = JuH7(Ar\ A2- \ . . . , Ar_\, r 1 J-2) ,
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then if we let 771 > 772 > . . . > nt, we have rji = d~2t~x and

Vi = K-i+n for z = 2, 3 , . . . , i.

It follows that

f=l «=2 A * - * + l

But the first term in the RHS of the above inequality is zero since 6t = 0, and

it is easy to show that the second term is £{=1 #t/A,-. This completes the proof

of the first case.

(ii)- L=t-1, let (C*)' = (dlt , C"), where C is an t x < full rank matrix and

£7*(C*y n a s eigenvalues Xi > X2 > • • • > X< > 0> where d is an arbitrary positive

constant, such that Xi = ^ ^ a n d Xi = ^i-i, f°r z = 2, 3 , . . . , i. Since

0 CC

it follows that: \C(C)' - xJ\ = ( ^ - Xi)\CC - 9tI\ = 0, for i=l,2,...,t. It is

clear from this that t-1 eigenvalues of C*(C*)' are those of CC. If we let fl be

the Moore-Penrose g-inverse of the A-matrix of the design with 771 > 772 > • • • >

rit-i > Tjt = 0, as its eigenvalues then we have 77,- = A^t-, for z = 1, 2 , . . . ,£ — 1.

It can be easily shown that tr(CnC) = ir(C*fi(C*)'), since tr(C*fl(C*)') =

tr(CnC') + d2l'm, but I'm = O. By applying Marshall and Olkin(1979, p513)

we have:

tr{C*n(C*)'} > tx'ilf-i+i = XiVt
t= l t=2 »=2

since 774 = 0. But Xi — #1-1 for z > 2 and rjt-i+i — \\L\- This implies that

<r(CnC") > E'=2 Oi-iK-i = E!=J 0t \ r l - H e n c e t h e theorem is proved.*

Corollary 3.4 If the C matrix in the statement of Theorem 3.2 is the contrast

matrix for the dual treatments versus single treatment comparisons in an n X m

CFBD(OO), then

Y;^ (3.25)

where 0i 's are given in Table 3.1.
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Proof: The result follows immediately from Theorem 3.2 and values for 0,-'s

given in Table 3.1.4k

Corollary 3.5 / / we have a class of designs with fixed trace for the A-matrix,

i.e. tr(A) = c, where c is a constant, then for any design belonging to this class

we have

tr(CnC) > ^ = * ^ , (3.26)
c

where C is the contrast matrix of interest and the 6{ 's are the eigenvalues ofC'C

given in Table 3.1.

Proof: From Theorem 3.2 we have tr(CnC') > £*=} 0.-/A,-. Then if we let

Y?i=i A,- = c be regarded as fixed, by applying Lagrangian Multiplier, 7, we can

minimize YAZI &i/^i , subject to the condition 5Zi=i ^t = c- This minimum value

will be

tr(cnc') >J2T^ > (3-27)
. •=1 A < c

which is only a function of the eigenvalues of C'C, given in Table 3.1, where

(3.28)

(q - l)^/p + 2 + 2 v ^ + ( p - l)y/q + 2 + 2y/q.

Hence the corollary is proved.if»

Note: We know that only for the binary block designs and balanced block designs

the value c is fixed and for the other cases it depends on the design. Therefore this

bound is only applicable to these two kinds of designs unless we restrict consideration

to all block designs with a specific value of c.

The RHS of the inequality in (3.26) is a decreasing function in terms of c, i.e.

it will be minimized if c is maximized. But for any design we have

c = *r(A) = 6*-±£2>?.. (3.29)

This is maximized if £i=i ]Cj=i nlj is minimized. That is if the n.j's are as equal

as possible. For t > k the minimum value is obtained when the design is binary,

that is riij G {0,1}. In this case c=b(k-l) which is fixed.
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Definition 3.3 Let

bo = -—— —, (3.30)
2 d y '

where #,• 's are eigenvalues ofC'C given in Table 3.1 and d is the maximum value

for c, where c is the trace of the A-matrix of the design. Then b2 is a lower bound

on the total variances for the estimators of the contrasts of interest and will be

called the second bound.

Now we reconsider Examples 3.1 to 3.3 and give a new example to illustrate

the use of bound b2 to assess the performance of designs and to show that it is

not always a tighter bound than b\.

Example 3.4 For m—n=3, b=18 and k=2, we have b2=5.616. For the most effi-

cient design generated by JE, tr(CflC') =5.996. For this example the discrepancy

between this figure b2 and this design i.e. D(b2,d) is 6.7% which is a substantial

improvement on bi(see Example 3.3).

Example 3.5 For m=n=3, b=3 and k=8, b2=4-814- For this set of parameters

values the A-optimal design, given in Example 3.1, has 5.333 as the total of the

variances of the estimators of the contrasts of interest. The discrepancy between

this figure and the bound b2 is 10.8%. Comparing the value of b2 with b\=5.333

shows that b2 is a poor bound

Example 3.6 For m=n=3, b=8 and k=3, we obtain b2=6.319. The discrepancy

between this value and tr(CrtC') for the most efficient design generated by JE

is 1.7% which is very small. The discrepancy between bi and tr(CQC') for the

same design is 20.5%, showing that b2 is a much tighter bound than bi for the

particular parameter values.

Example 3.7 For m=n=3, b=3 and k=9, b2=4-®12. The discrepancy between

b2 and tr(CClC') for the highly efficient design cited in Example 3.2 is 15.4%.

Comparison with the discrepancy for &i namely 0.6%, shows that b2 is a poorer

bound for the parameter values.

In the following section we will compare bounds b\ and 625 in order to specify

those ranges of parameters for which 61 is a tighter bound than 62,
 a n d v i c e versa.

On the basis of this study we shall recommend which of b\ or b2 should be used

to assess a particular design.
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3.4 Comparison Between b1 and b2:

A numerical computation has been carried out to compare bounds 6i and b2

for the parameter values 2 < n,m < 10, b < 30 and 2 < k < 15, excluding

(m,n)=(2,2). The results are given in Table 3.2 at the end of this chapter.

Analytical comparison between the bounds is very difficult, because the ratio

of the bounds is a messy function.

As we can see from the Table 3.2, for k > t = m n - 1 , b\ is a tighter bound than

62. Therefore for such cases we recommend the use of b\ to assess the performance

of the designs. In fact, for k > t there are many designs which achieve or almost

achieve bound b\, as will be shown in Section 4.3(Theorem 4.8) and Table 4.2 for

n=3. For k < t one bound is not uniformly tighter than the other.

3.5 Assessment of RGDD Using the Bounds:

As we mentioned in Section 3.4, for k < t one bound is not uniformly tighter

than the other. Therefore in order to assess the performance of the designs for

this case we use the bound:

bm = max(6i,62). (3.31)

A study of all possible RGDD which can be built up from the Clatwor-

thy(1973) catalogue was made. For each design the total of the variances of

the dual versus single contrast estimators was compared with bm. Notice that for

this class of designs the trace of the A-matrix has value c=b(k-l), which is fixed.

An extensive numerical investigation has been carried out over all the RGDD

designs described in Section 2.5.2.5. The following conclusion have been drawn

from this investigation:

1. There are in total 57 designs which are reinforced singular GD designs.

These are the best in this class, if they exist, and tr(CflC') has a discrepancy

of not more than 12.3% compared with bm. We found that 72% of the

designs in this subtype of designs have discrepancy of not more than 7%.

2. There are in total 28 designs which are reinforced semi-regular GD designs.

The maximum discrepancy is 27.2%, while 64% of the designs within the

subtype have a discrepancy of not more than 13.3%.
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3. The total number of designs which are reinforced regular GD designs is 75.

The maximum discrepancy is not more than 27.7%. We found that 49% of

these designs have a discrepancy less than 13.4%.

In conclusion, we have established that best subclass of GD designs for forming

RGDD is the class of singular GD designs.

Table 3.2:
(m,n)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(2,8)

(2,9)

(2,10)

(3,3)

(3,4)
(3,5)

(3,6)

(3,7)
(3,8)

(3,9)

(3,10)

(4,4)

(4,5)

(4,6)

(4,7)

(4,8)

(4,9)
(4,10)

k

k< 3

k< 3

k< 4

k< 4

k< 4

k< 4

k< 4

k< 4

k< 4

k< 4

k< 5

k< 5

k< 5

k< 5

k< 6

k< 6

k< 5

k< 6

k< 6

k< 7

k< 7

k< 7

k< 7

Values of n, m and k, where b2 > b\.

and k=4(b^ 6)

and k=5(b/6,8,9)
and k=5(b^7,9,10)
and k=5(b^8,ll) •
and k=5(b^8)

and k=5(b^6) !
and k=6(b^6-9, 11-14, 16)
and k=6(b^7,8) \
cLn d ic ̂ ^ o ( D 5— y j

k=6(b^lO) and k=7(b^8-13, 15-17, 19,20)
and k=7(b^9-ll, 13-15)
and k=7(b^lO-12, 15,16)

and k=6(b^7) j
and k=7(b^lO,ll,13,14)
^ n 0 ic ̂ ^ ( I D ^ t y i

and k=8(b^l3,14, 16-18, 21)
and k=8(b^lO-12, 15,16)
and k=8(b^l2,13)
and k=8(b^l3,14)
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Table 3.2: continued...

(m,n)

(5,5)

(5,6)

(5J)
(5,8)

(5,9)

(5,10)

(6,6)

(6,7)
(6,8)

(6,9)

(6,10)

(7,7)

(7,8)

(7,9)
(7,10)

(8,8)

(8,9)

(8,10)

(9,9)

(9,10)

(10,10)

k

k<

k<

k<

k<

k<

k<

k<

k<

k<

k<

k<

k<

k<

k<

k<

and

k<

and

k<

and

k<

6 and k=7(b^9,10)

7 and k=8(b^lO,ll,14,15)

7, k=8(b^ 12,13) and k=9(b^lO-12, 14-16, 19,20,24)

7, k=8(b^l4,15) and k=9(b^lO-14, 17,18)

8, k=9(b^l3-15) and k=10(b=21,26,30)

8, k=9(b^l5-17) and k=10(b^l3-16, 19-21, 25-27)

7, k=8(b^l2,13) and k=9(b^lO-12, 15-17, 20)

8, k=9(b^l2-14) and k=10(b=19,24,29)

8, k=9(b^l5,16) and k= 10(b^l2-15, 18-21)

9, k=10(b^l4-17, 21,22) and k=ll(b=23,28,29)

9, k=10(b^l6-19) and k=ll(b=13,19,20,25,26,27,30)

8, k=9(b^l5,16) and k= 10(b^l3-16, 19,20)

8, k=9(b^l8) and k=10(b^l5-18)

9, k=10(b^l7-19) and k=l l (b^ l5-19 , 23,24)

9, k=10(b^20,21), k=l l (b^l7-20)

k=12(b^l4,20,21,27,28)

9, k=10(b^l7-20), k=l l (b^l5-19, 23-25)

k=12(b=19,25)

9, k=10(b^20-22), k=l l (b^l7-21)

k=12(b=14,21,22, 27-30)

9, k=10(b^23,24) and k=ll(b^20-23),

k=12(b^l7-22, 26-29) and k=13(b=22,29,30)

k<

and

k<

10, k=ll(b#20-23), k=12(b=16,17, 23-26, 30)

k=13(b=22,29,30)

10, k=ll(b^23-25), k=12(b^20-24),

k=13(b=16,17, 24-26) and k=14(b = 23)

k< 10, k=ll(b^26-28), k=12(b=19-22, 28-30),

k=13(b=18,19, 26-29) and k=14(b=17,25,26)



C h a p t e r 4

H i g h l y E f f i c i e n t P B D S D e s i g n s

4.1 In t roduc t ion :

In Chapter 2 we derived some properties of the class of PBDS designs, such as

the form of the A-matrix and the structure of the information matrix for the

estimators of the contrasts of interest. A method of constructing such designs for

k < t = In — 1, namely RGDD's, was introduced and some of its properties were

considered. The performance of RGDD's was assessed against given bounds in

Chapter 3. Also the class of BDSD, viewed as a special case of PBDS designs,

was considered in detail.

The class of PBDS designs is a source of designs which have a symmetric struc-

ture for the variance-covariance matrix for the contrast estimators corresponding

to the dual versus single treatment comparisons. In the previous chapters it has

been shown by example that highly efficient and, in some cases, overall A-optimal

designs can be found in the PBDS class.

In the present chapter we will give theorems which lead us to characterize

a wide range of highly efficient PBDS designs. It will be shown that, provided

three conjectures are true, we can characterize those designs which are overall

A-optimal or A-optimal within the PBDS class.

The approach used is to reconsider the structure of the information matrix

for the contrasts of interest(given in 2.12). We shall then apply the permutation

method(see Kiefer,1975) to obtain a design-dependent lower bound on the total

variance of the estimators of the contrasts. This is described in Section 4.3.

The aim of Section 4.2 is to move towards a lower bound which is not design-

83
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dependent on the total variance of the estimators of the contrasts of interest and

which is achievable or nearly achievable in the sense of having small discrepancy with

the minimum value of tr(CflC') for a wide range of design parameters. Such a

bound would be a great improvement on bound bm(oi Chapter 3, Section 3.5) as

a tool for locating optimal designs since bm is not achievable except for large block

sizes(see Chapter 3, Section 3.4). To this end an investigation is made in Section

4.3 on the conditions under which the design-dependent bound is minimized. In

the final stages of the analytical argument it is found that the conjectures are

needed to formulate a conjectured bound. This is due to the need to minimize a

very complicated function.

This conjectured bound is the same as bm given in Chapter 3 whenever

N'r-6C = 0, TA = b(n - l)rA TD = b(n - l)rD satisfy condition (3.14) on

page 73. For b > 3 the conjectured bound is tighter than bm and more widely

achievable by designs(see Table 4.2). Analytical results are presented which tell

us how the replications of the treatments should be spread across the blocks(see

Theorems 4.4 and 4.8).

The layouts of the best designs are specified and a catalogue of designs which

achieve this conjectured bound is given. The high efficiency of designs with block

size greater than the number of treatments involved in the design, i.e. k > t, is

demonstrated by comparison with bm. The designs having small block size(& < t)

are shown to be highly efficient by comparison with the best obtained by JE.

4.2 A Bound Based on the Permutation Method:

In this section we briefly review the permutation method and then apply it to

our particular problem to get a bound under certain conditions.

4.2.1 Review of the Permutation Method:

In order to outline the permutation method we need to give a definition of a
convex function.

Let U be a subset of n x n real matrices and R be the set of real numbers,

then a real valued function <I> : U —> i?, is said to be a convex function if for

X1,X2,...,Xm G U and ai,a2, ...,am € [0,1], such that ££Li <*i = 1, then
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] > , (4.1)
t=i i=i

for m > 2(see Roberts and Varberg, 1973,p89).

A square matrix p is said to be a permutation matrix if each row and col-

umn has a single unit, and all other entries are zero. Let P be a set of permutation

matrices, then $ is said to be invariant under the set of permutations P applied

to rows and columns if

Kiefer(1975) was the first person to employ this concept to provide a sufficient

condition for a block design or row-column design to be universally optimal.

Majumdar and Notz(1983) used a similar approach to characterize A- and

MV-optimal designs for the test treatments versus control treatment problem.

Yeh(l986), by utilizing this approach, generalized the work of Kiefer(1975)

when the required conditions for the universal optimality cannot be achieved and

found justification of universal optimality over the class of binary block designs.

Majumdar(1986) used this method to characterize A-optimal designs for com-

paring a set of test treatments with a set of control treatments, but found that

it led to the identification of only a small number of designs.

A key feature of Kiefer's approach is that it uses a set of permutation matrices

which leave $ invariant.

4.2.2 Application to Our Specific Problem:

We now apply the permutation method to establish a design-dependent bound on

the total variance of the estimators of the dual versus single treatment contrasts.

In other words we want a design-dependent bound on tr(M~l), where M is the

information matrix for the contrasts of interest, defined in Chapter 2(2.12).

Let the information matrix, M, for the contrasts of interest given in (2.12) be

partitioned as follows

M =
Mn Ml2

(4.2)

M[2 M22

where the M.j's are (n — 1) x (n — 1) matrices for i,j=l,2.
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Suppose {p,-; i = 1,2,..., (n — 1)!} is the full set of permutation matrices each

having order (n-1). The set of permutations we shall employ is Y[ = {^u^i —

Now define M as the average of M over all permutations in ]1, i.e.

(n-l)!

M =
Mn Mi 2

ML M22

(4.3)

where

(n-l)!

(4.4)

for £,£' = 1,2.

We now utilize the approach of permuting the rows and columns of M, to

obtain a bound.

Theorem 4.1 For any connected design fenx2 CFBD(OO), we have:

> (4.5)

where M is given in (4-3).

Proof: For any connected n x 2 CFBD(OO) design, the information matrix, M,

is a positive definite matrix with eigenvalues Ai, A2,.. . , A2P, where p=n-l. Let

f] be the set of permutation matrices denned above. Then, define Xi = TTJ-MTT,'

for i=l,2,...,(n-l)L It is obvious that X,-'s are all positive definite matrices and

i) = ir(7r,Af7r,') = tr(M).

Now if we define

.=1

where A,'s are the eigenvalues of matrix M, then $ is a convex function(see

Majumdar and Notz,1983,Theorem 2.1). It follows from (4.1) with a,- = [(n -

l)!]-1(i=l,2,...,(n-l)!) that

(n-l)! x

,=i (" - !) !

But $(7r,M7r,') = irKTTiMTr,')""1} = ir(M~l). Therefore the RHS of the inequality

in (4.6) is tr{M~l). Hence the theorem is proved.£
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The purpose of the following lemmas is to formulate a bound as a function

of the elements of the incidence matrix of the design, i.e. as function of the

number of occurrences of each treatment combination in each block. This will

then facilitate the calculation of a bound and, more importantly, the identification

of designs whose total variance achieves the bound. Since the bound is in terms

of elements of M we need to express the elements of M as functions of the entries

of the incidence matrix of the design. In doing this we shall use the following

notation.

Notat ion: In addition to the notation used on page 44, we define the following

notation. We define

n - l n - l

TAJ =

which denote the total number of units assigned to treatment combinations be-

longing to sets A, D and B respectively in block j and

= Y^ TAj, and TB =

denote the total number of units assigned to treatment combinations in sets A,

D and B respectively in the entire design.

The following lemma gives the entries of M in terms of the entries of the inci-

dence matrix of the design. In order to achieve this we note that the submatrices

in the partition of M are given from (2.12) in Chapter 2 as

Mn = A22 + A23 + AL + A33,

M l 2 = — A22 — An (4.7)

M22 - A22,

where A22, A23 and A33 are submatrices of the A-matrix of the design such that

a12 a1 3

A = a12 A22 A22,

\ "1
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L e m m a 4 . 1 For the matrix M given in (4-2), let m^,-,/) denote the (i,i')th entry

of Mje, then

rDi + rAi - (1/fc) £$=1 (nAij + nDij)
2 if i = i',

- ( ! A) Ej=i ( n ^i + nDij)(nAi.j + riDi'j) if« / *',

j=i nAij{nAij + nDij) if i = i',
(4.8)

Ailj + nDilj) if i ^ i';

Proof: Since A22, ^23 and A33 are parts of the A-matrix of the design, if we

let a,jUii<) denote the (i,i')th entry of Ajt for j , £=2,3 and z,i'=l,2,...,n-l, then by

(1.6) in Chapter 1 we have

Ei=i nxo-n^- if , ^ i',

(4.9)

?,0- if i = i',

033(1:') =

I -(l/fc)ES=i«c.^wi if i ^ i'-
From these and (4.7), after some algebra, the result follows.4>

Now we are in position to express the entries of M in terms of the elements

of the incidence matrix.

Lemma 4.2 Letfhui(iii) denote the (i,i')th entry of Mai as defined in (4-4)> then
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?

i E;=i ^ + nDij) if i = i',
(4.10)

V^6L___ V

Proof: From (4.4) we obtain

i=l nAy> *****

if z = z',

(n-l)(n-2)

riY Ef^i1 rn22(a) if i = i',

(4.11)

Substituting from Lemma 4.1 gives the required expressions.^

Corollary 4.1 The matrix M defined in Lemma 4-2 has the following structure

M =
- yi)Ip

(4.12)

where xi = mn ( , ,) , yx = fhn(ii')(i / i'), x2 = m12(tl), y2 = m12(li,)(i ^ f),

X3 = m22( t t), t/3 = ni22(it')(* 7̂  *') and ™U'{ii') 's are given in Lemma J^.2.
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Proof: Follows from Lemma A.2.Jf»

The next step is to evaluate tr(M~1) in terms of the elements of the incidence

matrix of the design. To achieve this the following lemma is needed.

Lemma 4.3 For any nonsingular symmetric matrix L of the form:

Li =

we have:

tr(L^) =

- 2/2Km + 2/2 Jm (x3 ~ 2/3 Km + 2/3</:

( m - l)(xi + x 3 - y i - y3)

(4.13)

c + d
- 2/3) - (^2 - 2/2)2 cd - e 2 '

where, c = Xi + (m - l)yi, e = x2 + (m — 1)2/2 anrf J = x3 + (m — l)y3.

(4.14)

Proof: It is not difficult to show that L has the eigenvalues /c,-(i=l,2,...,2m),

given in Table 4.1. Substituting eigenvalues from the table into

Y%=\ KTX •> w e wiW get the solution and the lemma is proved.£

Table 4.1: Eigenvalues of L

Eigenvalue(Kj)

2

9

c+tf+-^/(c-d)2+4e2

2

c+d-\Ac-<02+4e2

2

multiplicities

m-1

m-1

1

1

Corollary 4.2 / /L is a positive definite matrix then (xx — yi) + (x3 — 2/3), (xi —

2/i)(x3 ~ 2/3) ~" (X2 — IJ2)2, c + d and cd — e2 are a// positive.

Proof: Each of the four expressions can be obtained as either a sum of a pair

of eigenvalues of L or a product. Hence provided L is positive definite, they are

positive. A
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In order to express tr(M~l) in terms of combinatorial features of the design,

we employ the following further notation:

n —1 6 n —1 6 n—1 6

= 53 53 n2AiJ' DD = 53 53 nDij' °AD = 53 53 nAijnDij,
t=l j = l 1=1 j~\ :=1 j=l

6 6

= 53) r£>; > s ^ = 5 3
6

53

n

5A /
+ 77 TTT ^T> 4-

«;(n l)(n 2)
—1 fc(n — 2) «;(n — l)(n — 2)

d.AD =

k(n - 2) k(n -

DAD SAp
k(n-2) J t ( n - l ) ( n - 2 ) '

Tp Sp TB SB

n - 1 ~ k(n - 1) ' qD ~ n - 1 ~ k(n - 1) ' q& ~ n - 1 jfc(n - 1)'

SAB

Jfc(n-l)'

The following result expresses the design-dependent bound tr(M~1) as a func-

tion of the elements of the incidence matrix of the design.

Lemma 4.4 Let M be the matrix given in Lemma J^.2, then

') - (n - 2)f1(nAlJ,nDlj) + fo(TA],TBj),' DJJ' (4.16)

MnAij,nDij) =—— , (4.17)
aAdp — dAD

and

fo(TAi,TBj) = qA + qB , (4.18)

where dA, dp, dAp, qA, qB and qAB are defined in (4-15).
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Proof: From Corollary 4.1 and Lemma 4.3 the result follows.Jfr

Corollary 4.3 If design d in Theorem 4-1 is a PBDS design, then the inequality

in (4-5) become equality.

Proof: By Corollary 2.1(page 44), since d is a PBDS design, the structure

of its information matrix for the estimators of the contrast of interest, M, is the

same as the structure of L given in Lemma 4.3. The proof follows from here.Jjk

We now seek the minimum value of the design-dependent bound tr(M~l)

over all designs having particular values for b, k and t. This will give a very tight

bound for k > 4(see Table 4.2) and, more importantly, a means of identifying

efficient designs, since any design which achieves this minimum value must be

highly efficient.

4.3 Finding Minimum Values for the tr(M-i):

In order to find the A-optimal designs in the class of n x 2 CFBD(OO) designs,

we need to characterize those designs which minimize ir(Af -1), given in (4.16).

In this section we try to minimize this design-dependent bound over all possible

designs in n x 2 CFBD(OO). In other words our task in this section is to find

those values of n ^ ' s , n^i/s, Tgj's and TAj's which minimize fo(TAj,TBj) and

fi(nAij,n£)ij), given in (4.17) and (4.18) respectively. Unfortunately tr(M~l) is

a nonlinear multivariate function of discrete variables and no computer package

was found which was able to minimize it. Now we give some analytical results

which in some cases simplify our object function.

Lemma 4.5 For any block design d £ n x 2 CFBD(OO) the following expressions,

formed from the above functions are always positive:

dA, dD, qA, qB, qAqB - qAB, (4.19)

Proof: The diagonal elements of the A-matrix of the design for treatment i

belonging to set A satisfies:

i b b

rAi - T £ nAij > rAi - £ nAij = 0. (4.20)
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This implies that

V * - 1 E »i0-) = iu - » E E
But after some algebra J^ can be written as follows:

I}w
where p=n-l and the first term on the RHS is positive by (4.21). The second

term is also positive, since we have

{ )

E »AO- = E "in + E E «^n^ > E "AH-
JBy the same approach we can prove that d,£> > 0.

It can be shown that

(4.24)

Since 0 < TAJ < k, it follows that qA > 0. To prove qs > 0 the same approach

can be utilized. To establish that the other expressions in the statement of the

lemma are positive, notice that AA^D — ̂ AD-> ^A + do — ^AD and qAlB — QAB a r e

all either products or sum of the eigenvalues of the positive definite matrix, M.

Then by Corollaries 4.1 and 4.2, the lemma is proved.X

In the following two sections we first assume that the T^-'s and TDJ'S are

fixed and consider the behaviour of fi(nAij,riDij)- Then we assume TA and TD

are fixed and minimize

4.3.1 Minimizing fi{nAij,nDij):

In this section we assume that the T^j's and Tg/s are fixed(and hence TBJ —

k — TAJ — TDJ is also fixed)(j=l,2,...,b), then try to obtain the minimum value of

fii^Aiji^Dij), defined in (4.17). First, we prove that if either the T4j's(j=l,2,...,b)

or the TBJ'S( j=l,2,...,b) are divisible by p=n-l, f\ is minimized when the repli-

cations of the treatment combinations belonging to set A are as near equal as

possible in each block, i.e. \riAij — riAi'j\ < 1 for i ^ i' and j=l,2,...,b and the

same is true for the treatment combinations belonging to set D. We then state the
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conjecture that if neither the T^'s nor the Toy's are divisible by n-1, the same

conditions on the treatment replications ensure the minimization of f\. Therefore

to minimize f\ we consider 3 separate cases:

1. Each TAJ, T.Dj(j = l,2,...,b) is divisible by p.

2. Exactly one of the sets {TAJ)J = 1,2, ...,6} and {TDJ',3 = 1,2, ...,b} has

every element divisible by p.

3. Neither set in 2 has every element divisible by p.

• CASE I

For minimizing fi(riAij,nr)ij), in this case the following lemma is needed.

Lemma 4.6 Suppose we have the following function:

. •. Zdx — Zdxv -T dy
9{x ) V J L (4.2o)

in which (dxdy — d? ^ 0), where X{j and yij are independent variables, such

that

where d\, di and z are positive constants, then g(x{j,yij) is minimized when
xij = Vij = °> for i=l,2,...,p and j=l,2,...,b.

Proof: Note that the function g(xij,yij) is well-defined since dxdy — d2
xy ^ 0.

To prove the lemma we first show that x,j = y,j = 0 is the only critical

point of g(xij, y,j). Then we establish that the Hessian(see Lang,1983,p376)

of g(xij,yij) for the critical point is always positive.

In order to find the critical point of ^(x,j,y,j), we employ the Lagrange

Multipliers \xj, Aw-(j=l,2,...,b), and define:

4> = g{xn,yij) + 5Z(Arj Yl XU + XVJ Yl Vij)- (4-27)
j=l i = l t = l

Then we have
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22(24 - 2dxy + dy)(dxyyij + dyxi:j

and

jj + y{j)w 22(24 - 2d
xy

,2

where w =

w

— d].y.
w

(4.28)

' Ayji

By setting these two derivatives to zero and summing over i, we obtain

\xj = Ayj = 0 for j=1.2,...,b. Since dxdy — d2
xy ^ 0, the resulting equations

are:

j + yij)w + 22(24 - 24j, +

+ yij)w + 22(24 - 2dxy + dy)(dxyxij

for i=l,2,...,p and j=l,2,...,b.

In matrix form these equations are:

) = 0,

= 0,

(4.29)

dxdy y - dxydy -d2 - 2d\ + 2dxdxy

2dxydy - dxdy + d?xy — 2 4 4 y — dxydy Vij
= o2

"(4.30)

If the matrix of coefficients is nonsingular, then x,j = y,-j = 0 is the unique

solution to (4.30). It can be shown that the determinant of this matrix is

— {dxdy — dly)
2 ^ 0. Therefore the proof of the first part is established. Also

it can be shown that the Hessian(see Lange,1983,p376) of function g at the

critical point is

H(g)(00...0) =

where

W =
-d^d? \

/
and u=b(n-l). By assuming that z, 4 and qt are all positive, it can be

shown that W is a positive definite matrix. This implies that H(g)(00...0)

is a positive definite matrix. Therefore by Corwin and Szczarba(1982,pl94)

the critical point (00...0) is a global minimum. This completes the proof.J|>
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Theorem 4.2 For fixed values of TAJ and TDJ 0=1,2, •••, b ) , if TAJ =

0 mod(p) and TDJ = 0 mod(p), then the function f\{nAij, nDij) given in
?s minimized if

an d nDij = ^-.

Proof: In the expression for fi(nAij,riDij), dA, &D a n d &AD c a n be reformu-

lated as follows:

p k(n-2) l^i=\ l^i=\\ p

^ (4.32)

where p=n-l.

Now let X{j = ^TAj — riAij and ytj — ̂ TDj — nDij. Then by applying Lemma

4.6, the only critical point for the function fi is (0,0), i.e. nAij = TAJ/P and

ri£>ij — TDJ/P- Hence if TAJ = 0 mod(p) and TDJ = 0 mod(p), the theorem

is proved.J|k

Corollary 4.4 If the conditions in the statement of Theorem 4-S are sat-

isfied, i.e. TAJ = 0 mod(n — 1) and TDJ = 0 mod{n — \), then

min h{nAij,nDij) = (n - l)(l/TA + 2/TD). (4.33)

Proof: Follows from Theorem 4.2.J|k

CASE II

Theorem 4.3 If in an n x 2 CFBD(OO) design d, the TAj/p's(or TDj/p's)

are integers for j=l,2,...,b and if nAij = TAj/p(or nDij = TDj/p) for

i=l,2,...,p and j=l,2,...,b, where p=n-l. Then by assuming TAJ and TDJ

are fixed, f\ is minimized if

(4.34)

(ornAij={?f} or [If] + i)
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Proof: If riAij = TAJ/P, where TAJ/P is an integer for i= l , 2, ..., p and

j = l , 2, ..., b, then d^ = TA/P is a constant and dAV = 0. Therefore

/x = \/d,A + 2/do. In order to minimize f\ we must maximize do- From

(4.15), since Toy's are fixed, then Y%=\ nDij m u s t be minimized subject to

the condition TDJ is fixed. By Cheng and Wu(1980, Lemma 2.3) the result

follows. Similarly it can be proved for riAij's-M*

• CASE III

As we mentioned earlier, the conditions TAJ = 0 mod(p) and TDJ = 0 mod(p)

given in Theorem 4.2 cannot be met for k < 2(n — 1). Then the question is:

if TAJ and TDJ are assumed to be fixed, which values of n^.-j's and n £>,-_,•'s(

i= l , 2,... , p; j= l , 2,..., b) minimize /i? Roughly speaking, Theorems 4.2

and 4.3 suggest that the values of n^.j's should be as equal as possible, i.e.

TiAij = [TAJ/P] or [TAJ/P] + 1, where [.] denotes the integer part. The same

suggestion can be made for nc j ' s . Strictly speaking, we need to show that

the function g given in Lemma 4.6 is a convex function, i.e. it must be

shown that the Hessian of g, i.e. H(g) is a nonnegative definite matrix(see

Roberts and Varberg,1973,plO3). This is a difficult task, since H(g) is a

parametric matix of order 2b(n-l). However, numerical computation in-

dicates that this is the case. We give this intuitive result, backed up by

computing results as the following conjecture.

Conjecture 4.1 If in the statement of Theorem 1±.2, both TAJ/P and Tpj/p

(j=l,2,...,h) are not integers, then f\ is minimized if

nA,j = [TAJ/P] or [TAj/p] + 1,

(4.35)

and nDij = [TDj/p] or [TDj/p] + 1,

where p—n-1 and [.] denotes the "integer part of.".

Support for the conjecture has been found by examining the structure of A-

optimal designs and observing that they have the conjectured replications for the

treatments. This is illustrated in the following example.

Example 4.1 For n=j, b=4 and h=3, the following design is the most efficient

design generated by JE:
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Block 1 01 10 11

Block2 01 20 21

Blocks 01 SO 31

Block4 11 21 31

In this highly efficient PBDS design(see Table 4-2 for an assessment of efficiency)

we can see that TD\ = T^2 — ?r>3 = lj TQ^ = 3, TAI = TAI = TA3 = 1 and

TAA = 0. In line with the conjecture we observe that n p n = 1, nnn = 0 for i=2,3

and so on.

If we assume that Conjecture 4.1 is true, then we can establish he following

theorem which shows that for small block sizes(fc < n — 1), the binary designs for

the treatment combinations belonging to set A U D are more efficient than the

non-binary designs.

Theorem 4.4 If d is an n x 2 CFBD(OO) design with block size k < n — 1 which

is non-binary for the treatment combinations in A\JD, then there exists a design,

d* which is binary in AU D with smaller total variance on the dual versus single

treatment contrasts.

Proof: Suppose that de n x 2 CFBD(OO) has k < n — 1, and suppose design

d is not binary for treatment combinations belonging to A U D. Then if treat-

ment combination iO, belonging to set A, appears more than once in a block, we

substitute another treatment combination of set A which does not appear in the

block, and keep the treatment combination iO only once in the block. Suppose

we repeat this substitution for each treatment combination belonging to set A

and simultaneously, we do the same substitution for each treatment combination

belonging to set D, and call the resulting design d*. Obviously design d* will be

binary in terms of the treatment combinations belonging to set A and D. Since

TAJ < k < n — 1 and Tpj < k < n — 1, the substitution guarantees that design

d* is binary. In making this substitution, the values of qA, qo and qAD for both

d and d* remain the same. But in design d*, the treatment combinations in each

set A and D are replicated equally often in each block. Hence by Conjecture 4.1

it is more efficient relative to design d.Jfr

This result and hence the conjecture are supported by an example of a design

with k < n — 1
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Example 4.2 For n=6, b=10 and k=5(k<n-l), the following design is the most

efficient design which has been generated by JE:

Blockl 01 10 20 11 21 BlockQ 01 10 30 11 31

Block! 01 20 30 21 31 Blockl 01 20 40 21 41

Block?, 01 30 40 31 41 Blocks 01 30 50 31 51

Blockl 01 40 50 41 51 Blocks 01 10 40 11 41

Blocks 01 10 50 11 51 BlocklO 01 20 50 21 51,

This is binary in terms of treatment combinations 10, 20, 30, 40 and 50 and

also 11, 21, 31, 41 and 51 with tr(V)=4445.

The theorem is not true for k > n — 1, as demonstrated by the following

example:

Example 4.3 For n=3, b—3 and k=6, from JE, the A-optimal design in the

PBDS class which has total variance 2.225 for the contrasts of interest is not

binaryfsee Table 4-%)- U we replace the treatment combination 11 in the first

block by 01 and the treatment combination 21 in the second block by 01, the

design changes to:

Blockl 01 01 11 21 10 20

Blockl 01 01 11 21 10 20

Blocks 01 01 11 21 10 20

which is binary for the sets A and D. However it has total variance 2.3333 for

the contrasts of interest which shows it is not as efficient as the design in Table

4.2.

Now we are in position to give a theorem which gives a reformulation of dA,

dp and the domain of d^D when the treatment combinations belonging to sets

A and D are replicated equally often in each block. The proof of this theorem is

given in Appendix A at the end of the thesis.

Theorem 4.5 Let CLAJ = [TAJ/P] and aoj = [TDJ/P], denote the integer parts of

TAJ/P and Tpj/p respectively. Also let 6^- = TAJ — pciAj and bpj = TDJ — par>j,

the riAij 's be either aAj or OAJ + 1 and the npij 's be either apj or ar>j + 1, where

E?=i nAij = TAj and Z?=i nDij = TDj. Then:
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where

1 6 1
^AjiUDj) T^Aj"Dj f t V'*-'^U

k(n - 2) £
and

— —• 2^,vnax(0, bAj + bDj - n + 1) -bAjbDj}. (4.38)
/c(n — z) r ^ ' n — 1

Conclusion 4.1 Provided the Conjecture 4-1 is true, we conclude that, subject

to assuming TAJ and Tpj are fixed, the function fi(riAij,nDij) is minimized if

riAij = aAj + 1 or aAj, and noij = aoj + I or ajr>j. It is clear that ifTAj and TQJ

are fixed, then aAj, bAj, apj and bpj are all constants. This implies that dA and

djy are constants while, as has been shown in Theorem 4-5, dAD ?5 varying across

a domain whose boundaries depend on TAJ and TDJ-

Now we want to consider the behaviour of the function

f(dAD) = — — —
dAdD - dAD

for fixed values of TAj's and JDJ 'S under the assumptions that the conditions on

n^tj's and n^j ' s in the statement of the Theorem 4.5 are satisfied. It must be

reiterated here that, under these conditions, dA and do are fixed, while dAD is

not fixed. We have:

o , , , w o , 2 R p - dAD(2dA +dD) + dAdD)
Oj{dAD)/ddAD = 7 7 1 ^ - ^ 2 • (

{dAdD - dADy

We need to find the sign of this function in terms of dAD in the domain which

is given in Theorem 4.5. The sign of this function is equivalent to the sign of

-d2
AD + dAD{2dA+dD)-dAdD. (4.40)
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It can be shown that v in (4.37) is always positive, while u in (4.38) can

be positive or negative. Hence 6,AD can take both positive and negative values.

In order to determine the sign of the expression in (4.40) two cases have to be

considered. If (IAD is negative, the sign is negative. If this is the case d^D must be

maximized in order to minimize f\. But if 6,AD is positive, we have not been able

to determine the sign of (4.40) analytically, since it is a complicated function.

This is not a major problem in establishing a bound and an A-optimal design,

since it can be solved by using a computer algorithm numerically. We will discuss

this further later in the chapter.

Our next task is to pursue analytically the minimization of fo(TAj,Tsj)-

4.3.2 Minimizing fo{TAj, TBj):

In this section we will consider the behaviour of /O(TAJ, TDJ)- TO minimize

fo(TAj,Tgj), 3 separate cases are considered:

1. Both TA and TB are divisible by b.

2. Exactly one of TA and TB is divisible by b.

3. Neither TA nor TB is divisible by b.

• Case I

The following lemma is needed.

Lemma 4.7 Suppose we have the following function:

xy

in which dxdy — d2
xy > 0, where Xj and yj are independent variables, such

xy

that

E?=i*; = 0, £ i= iy ; = 0, dx = ^ - z T,bj=1 x] (4.42)

dxy = d3 + z £5=i x:Vj, dy = d2- z £ j = 1 y],

d\, d2, d3, z are positive constants, dx and dy are positive. Then g(xj,yj)

is minimized when Xj — yj — 0, for j=l,2,...,b.
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Proof: Note that the function g(xj,yj) is well-defined since dxdy — d\y ^ 0.

To prove the lemma we first show that Xj = yj = 0 is the only critical point

of g(xj, yj). Then we show that the Hessian of g(xj, yj) for the critical point

is always positive definite.

In order to find the critical point of g{xj,yj), we employ Lagrange Multi-

pliers Xx and \ y , and define:

b b

(4.43)

Then we have

(dxdy - d2
xy)

2

(4.44)

7T^ k li ~ + Vi n n W* I *yuxay axy)

By setting these two derivatives to zero and summing over j , we obtain

Xx = \y = 0. Since by assumption z > 0 and dxdy — d?xy > 0, the resulting

equations are:

(d?y + cPxy)xj + dxy(dx + dy)yj = 0,

(4.45)

dxy(dx + dy)x, + ( ^ + d2
xy)yj = 0.

In matrix form these equations are:

d\ + dly dxy(dx + dy) \ , x
X j = Qa. (4.46)

Uxyy^x 1 y) x ' xv I

If the matrix of coefficients is nonsingular, then Xj = yj = 0 is the unique

solution to that equations. It can be shown that the determinant of this

matrix is —(dxdy — d\y)
2 ^ 0. Therefore the proof of the first part is

established. Also it can be shown that the Hessian of function g at the

critical point is

H{g)(00...0) = 2zIb <g> W,

where
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Further it can be shown that W is a positive definite matrix. This implies

that H(g)(00...0) is a positive definite matrix. Therefore by Corwin and

Szczarba(1982,pl94) the critical point (00...0) is a global minimum. This

completes the proof.Jfc

Theorem 4.6 For fixed values OJTA and To (and consequently a fixed value

of TB = bk — TA — To), if TA/b and Ts/b are integers, the function

fo(TAj,Tsj) given in (4-18) is minimized if:

TAj = ^ and TBj = ^ . (4.47)

Proof: We can show that

E$=i Th = ZUFBJ - I?)2 + ?> (4-48)

E?=i TMTBi =

Based on these we have

(4-49)

Now let Xj = \TA — TAJ and yj = \TB — TBJ- Then by applying Lemma
4.7, the only critical point for the function /o is (0,0), i.e. TAJ = TA^

and TBJ — Ts/b. Hence if TA = 0 mod(b) and Tg = 0 mod(b), then /o is
minimized and the theorem is proved.A

Coro l l a ry 4.5 If the conditions in the statement of Theorem 4-6 are sat-

isfied and ifTA and TB are both divisible by b, then

min fo{TAj, TDj) = (n - 1)(1/TA + 1/TB + 2/TD). (4.50)

Proof: The proof follows immediately from the proof of Theorem 4.6.4k
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• Case II

In this case if TA is divisible by b, then the following theorem shows that

if the numbers of units assigned to A within each block are equal, then

in order to minimize fo(TAj,Ti)j), the treatment combination 01 should be

replicated as near equally as possible between the blocks. The same result

is true when A is replaced by B.

Theorem 4.7 //, in an n x 2 CFBD(OO) design, TA and TB are assumed

to be constants and TAJ = TU/6 (or TBJ = Ts/b) for j—l,2,...,b, where TAJb

(or Ts/b) is integer, then f0 is minimized if

or [ f j ,
(4.51)

(or T* = ft] or [^] + 1)
for 1=1,2,...,b.

Proof: If TAJ = Tj^/b is an integer for j=l,2,...,b, then qA = T

TA)lipbk) and qAB — TATs/ipbk) are constants since TA and TB are con-

stants. Therefore /o is only a function of a single variable qs- Hence

d/o = -9A- IAB U

This derivative is always negative, i.e. /o is minimized if qs is maximized,

and qs is maximized if £)$=i T^- is minimized. Since Tg is assumed fixed,

then by Lemma 2.3 of Cheng and Wu(1980) the result follows. The result

for T,4j(j=:l,2,...,b) is proved in a similar way.Jfr

• Case I I I

Now suppose the conditions of Theorems 4.6 and 4.7 cannot be satisfied.

We then ask the question: which values of the TUj's and the TBJ'S minimize

/o, if TA and TB are assumed to be fixed? The same argument which was

made for the n,4,-j's and n^ij's on page 97, can be made for the T^j's and

Trjj's. Based on this argument we give the following conjecture which is

analogous to Conjecture 4.1.
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Conjecture 4.2 If we assume that TA and TB are fixed, then f0 is mini-

mized if

TAj = [TA/b] or [TA/b] + l,

(4.53)

and TBJ = [TB/b] or [XB/&] + 1.

Let aA and ag denote the integer part of T^/6 and T B / 6 respectively, 6̂  =

TA — ba-A and bs = TB — bas- Then in the following corollary, we prove that

when TA and TB are fixed, if TAJ = a^ + 1 or a^ and TBJ = aB + 1 or aB, then

qA and qB are fixed, while qAB is not fixed. Then we show that, provided that

Conjecture 4.2 is true, fo(TAj,TBj) is minimized if qAB is minimized.

Corollary 4.6 Suppose TA and TB are fixed, then provided Conjecture J^.2 is

true,

aA(bk — TA — bA) + bA(k — 1) aB{bk — TB — bB) + bB(k — 1)

(4.54)

and qAB G (z,w), where

_ aATB + asbA + min(bA, bB) __ aATB + aBbA + max(0, bA + bB - b)
W ~ k(n - 1) 'Z ~~ F(^Y) '

(4.55)
and /o is minimized when qAs = z.

Proof: Provided Conjecture 4.2 is true, then it can be shown that

S + bA) + bD,
(4.56)

and SB = £ $=1 T
2
Bj = aB(TB + bB) + bB.

Substituting from this into (4.15) for SA and SB we will obtain (4.54). By Mar-

shall and Olkin(1979) it can be shown that

fc(n-l) '
(4.57)

, a.ATB+aBbA+max(O,bA+bB-b)
fc(n-l)

Since under the given conditions qA and qB are fixed, it follows that /0 is mini-

mized if qAB is minimized. The proof follows from here.Jfr
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Conclusion 4.2 By assuming TA andTs are fixed, the minimum value offo(TAj,

TDJ) is a function ofTA and TB only, provided the Conjecture 4-2 is true.

4.3.3 Minimizing fx + f0:

In this section we assume TA and To are fixed and consider the minimum of

tr(M~l). Then give a theorem which is a result derived from Theorems 4.2 and

4.6 and does not require the above conjectures.

Theorem 4.8 For any n x 2 CFBD(OO) design, d, ifriAij — nA, naj = n-£>(i=l,

2, ..., n-l;j=l, 2, ..., b) and

f{nA,nD) = min {f(x, y); (x, y) E E}; (4.58)

where

/(X, y) = 1 + I + 1
T II n — T)\ T I If 1

is IT \ ' O }

and

E = {(x,y),(x,y) € (N\N+);p(x + y) < * } ,

then design d is overall A-optimal.

Proof: In Theorem 4.1 we show that for any n x 2 CFBD(OO) design, we have:

) > (n - 2)f1(nAij,nDij) + fo(TAj,TBj).

From Theorem 4.2 if all the n^.j's and n.Dij's are equal then fi(nAij,nr)ij) is

minimized with

2 1
! min fi(nAij,nDij) = (n - 1)(T=- + — ) . (4.59)

Also by Theorem 4.6 and Corollary 4.5, we have TAJ = (n — l)nA, TBJ =

k — (n — l)(n>i + « D ) for j=l,2,...,b and

Therefore

min /ofTUi, Tfli) = (n - l ) ( i - + A + ^ ). (4.60)
•I A J-D J-B

"1) > \ {— + — + T / , J • (4-61)
6 [nD n,4 k-p(nA + nD))

Hence design d which achieves /(n^,n£>) is overall A-optimal design.&
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Example 4.4 For n=3, b—2 and k=5, a completely randomized block design(riAij

= l j *5 overall A-optimal.

Example 4.5 For n=3, 3 < 6 < 6 and k=13, those designs with UBJ = 3;

riAij = 2 and riDij = 3 are overall A-optimal.

The following lemma which does not depend on the conjecture is needed to

prove the next theorem, which gives a short cut to compute the bound whenever

it is applicable.

Lemma 4.8 Suppose in design d, qA, qs, aD, qAB> IAL> are defined as in (4-15),

then

qA + qs 2qA + qD ~ 2qAD

- qAB

Proof: See Appendix A at the end of the thesis.

Discussion 4.1 Provided that Conjecture 4-1 is true, we have shown that, by

assuming TAJ and TDJ are fixed, the minimum of fi(nAij,nDij) JS n°t a constant

but depends on TAJ TDJ and J2?=i Xw=i nAijnDij- Since the latter term is lo-

cated in a set bounded by functions of TAJ and TDJ, we can denote the function

f\ by F\(TAJ,TDJ), say. As discussed in Conclusion 4.1 this is a very com-

plicated function. But by using a computer algorithm we can find those val-

ues of J2?=i Y^j=\nAijnDij which minimize fx. Therefore we can assume that

FI(TAJ,TDJ) is fixed for fixed values of TAJ and TDJ. Therefore under this condi-

tion, FI(TAJ,TDJ) + fo(TAj,TDj) is a bound which does depend on TAJ and TDJ-

By assuming TA andTs are fixed we then considered the behaviour of fo(TAj,TBj)

under the assumption that Conjecture \.2 is true. The problem which remains to

be solved is to consider the behaviour of FI(TAJ,TDJ) when TA and TD are taken

as fixed. This is a very complicated problem. It should be noted here that the

members of staff of the department who deal with the minimization of nonlinear

objective functions with integers, knew of no computer package which can be used

to minimize tr{M~y) for integer values of UAIJ and riDij- However numerical

computation suggests that the behaviour of F\(TAJ,TDJ) is in the same direction

as the behaviour of JO{TAJ,TBJ) given in Conjecture 4-2. This led to the following

conjecture.
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Conjecture 4.3 Assume that TA and TB are fixed. Then FI(TAJ,TBJ) in Dis-

cussion 4-1 is minimized if

(i) TAj = aA + l or aA,

(ii) TBJ = «B + 1 or aB, (4.63)

(Hi) SAB — Q-ATB + aBbA + max(0, bA + &B — b),

where a A , &B denote the integer part ofTAJb andTs/b respectively, bA = TA —

and bs = TB —

Based on all three conjectures an algorithm described below was written to

minimize tr(M~1). For at least twenty sets of different parameter values this

algorithm has been compared with the minimum value of tr(CQC') obtained

from JE. In all cases the bound was found to be very close to the minimum trace

and did not exceed the trace. These results support all three conjectures, and are

illustrated in the following examples.

Example 4.6 For n=4> ̂ —^ and k=4, the conjectured bound gives value 2.7163

for the total variance of the contrasts of interest. The most efficient design gen-

erated by JE has the value 2.7687 for the trace while the bound given in Chapter

3 is 2.5560, which is poor relative to the conjectured bound.

Example 4.7 Forn=4, b=3 and k=6, the conjectured bound is 4-5909. The most

efficient design given by JE gives value 4-5909 for tr(CQC') while the bound given

in Chapter 3 is 4.5000.

It should be noted here that the conjectured bound is tighter than the bound

bm given in Section 3.5 in Chapter 3, except when the condition N'r~sC = 0 is

satisfied and both TA and Tp which minimize (3.13) are divisible by b(n-l). In

this case the two bounds are identical. In the previous example the size of the

discrepancies between the trace and each of bound bm and the conjectured bound

are respectively 2% and 0% of the bound.

Before giving the algorithm for finding the minimum of tr(M~l) we give a

theorem which when applicable, gives a short cut in computation.

Theorem 4.9 Suppose we have a design d in which the treatment combinations

in sets A and D are replicated equally often in each block and riAij > nr)ij, for
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i=l,2,...,n-l and j=l,2,...,b. Then, provided Conjecture 4-1 is true, there exists

a design having riAij < noij which has higher efficiency than design d.

Proof: See Appendix A at the end of the thesis.

4.4 Algorithm I

Finding the Bound and the Replications:

The algorithm described in this section not only finds the value of the conjec-

tured bound, for specified size of experiments but also gives the total number of

units which should be assigned to each of the treatment combinations belonging

to sets A, B and D in each block of the design. This information is needed in a

construction algorithm presented in Section 4.6.

The computer algorithm in FORTRAN was used to find the conjectured bound

for different values of n, b, k and specified total replications, (tA,tz>) G E, where

E = {(tA, tD)\tA>n-l,tD>n-l;tA + tD< bk - 1; tA, tD E N+}

and iV+ denotes the set of integers, positive numbers.

A listing of the algorithm is given in Appendix B and has the following steps:

STEP 1 : Fix (tA,tB) £ E, where E is defined above, and compute qA, <?s and

SAB as given in the Conjecture 4.3, by utilizing Corollary 4.6.

STEP 2 : Assign T^j's and T B / S in block j for j=l,2,...,b, such that SAB of the

design equals SAB found in STEP 1 by utilizing Conjecture 4.2. This step

specifies the optimal allocations of units in each block for sets A, B and

consequently D.

STEP 3 : Having specified TAJ, TBJ and consequently TDJ in STEP 2, by utiliz-

ing Conjecture 4.1 and applying Theorem 4.5 and Conclusion 4.1, we obtain

the minimum value for FI(TAJ,TBJ).

STEP 4 : Change TA, TB and consequently To over all possible values in E and

utilizing Theorem 4.9, when it is appropriate, to shorten computation time.

Having specified the total number of units assigned to sets A and B, namely

TA and TB respectively, then based on these numbers we assign either [TA/b] or
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[TA/b] + 1 units and [Ts/b] or [TB/6] + 1 units to the treatment combinations

belonging to sets A and B respectively in each block .

Since the bound obtained by the above algorithm is a conjectured bound, we

now give a definition of those designs which achieve this bound.

Definition 4.1 Any design which achieves the conjectured bound obtained from

Algorithm I outlined above will be called a C-design.

Those designs which do not achieve the bound but give values for tr(CQ.C)

very close to the conjectured bound will be called near C-designs.

The structure of C-designs is examined in the next section. By studying the

structure, the designs in Table 4.2 at the end of chapter were derived. As Table

4.2 shows, these designs are all highly efficient compared with bm and the best

design obtained by JE.

The advantage of this approach compared with running JE is that it takes

much less computation time and also is applicable for values of n > 10 and b or k

or both bigger than 18. For instance for parameters (n,b,k)=(3,18,4) and (4,12,4)

the cpu times used by JE are 3 and 5 respectively, while correponding cpu times

used by Algorithm I is .5 and .26 respectively. However, JE always gives a highly

efficient design for any combinations of the parameter values b < 18, t < 18 and

k < 18.

In order to construct designs we need to study the structure and existence

of the most efficient designs which will accommodate the replications produced

by the algorithm. These structures are established in the next section and, in

the following section, an algorithm for checking the existence of these designs is

given.

4.5 Layout of C-designs:

For a set of parameter values n, b and k, let TA, TB and To be those values which

minimize tr(M~l) as provided by the algorithm of Section 4.4. Assume a PBDS

design does exist for the specified values then, if Conjectures 4.1-4.3 are true, the

C-designs have one of the following layouts, where U{ denotes the integer part of

for i=A, B and D.
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R-type : If TA/b, TB/b and TD/b are integer values then the design is said to be
R-type and the layout of the design is shown in Figure 4.1.

Units
•3,

Figure 4.1: An R-type design; where
u =T / b is integer for i=A, B and D.

i i

(R,S)-type : three cases have to be considered here:

1. R-type in terms of treatment 01 (set B) and S-type in terms of two
other sets. This is the case if Ts/b is integer and 2^/6 and TD/6 are
not integers. The layout of the design is shown in Figure 4.2.

Units
4-

Figure 4.2: An (R, S)-type design, when
T / b is not an integer and s=T -bu .
A J A A
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2. R-type in terms of set A and S-type in terms of two other sets. This is
the case if TA/b is integer, while TB/b and TD/b are not integers. The
layout of the design is given in Figure 4.3.

Uni ts
Blocks ->

1 2 3 .

1

2

u
A

1

2

u +1
B

1

2

u
D

A

B

D

•

•

•

1

Figure 4.3: An (R,S)-type design, when
T / b is not an integer and s=T -bu .

3. R-type in terms of set D and S-type in terms of two other sets. This is
the case if TD/b is integer, while Ts/b and T^/6 are not integers. The
layout of the design is given in Figure 4.4.

Units

l

2

u
D

1

2

u +1
B

1

2

u
A

1 2 3 . •

D

B

A

s b

•

•

•

•

1

Figure 4.4: An (R,S)-type design, when
T / b is not an integer and s=T -bu .
B ^ B B
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(S,S)-type : If none of TA/b, TB/b and TD/b is an integer, then the design is
said to be (S,S)-type and the layout of the design is shown in Figure 4.5.

Uni ts
4-

Blocks
1 2 3 . s

1

2

u
B

i

2

u +1
A

1

2

u
D

1

•

1

B

A

D

2

•

•

. 1

u +1
B

Figure 4.5: An (S,S)-type design, when
T -bu >b-T +bu , s =b-T +bu and s =

A A B B I B B 2

T -bu .
A A

4.6 Constructing C-designs:

The construction of a C-design will, in general, be a difficult task. From Figures

4.2-4.5, it is clear that the (R,S)- and (S-S)-type designs can be viewed respec-

tively as a combination of two or three R-type designs.

In the following we give an algorithmic method of constructing C-designs in

conjunction with the algorithm of Section 4.4. But first we need a lemma.

Lemma 4.9 Suppose an n x 2 CFBD(OO) design consists of b blocks of size k.

Let kB, kA and kD units in each block be assigned to the treatment combinations

in sets B, A and D respectively. Then a sufficient condition for a design to be an

R-type PBDS design is

• BBD(n-l,b,kA) and BBD(n-l,b,kD) exist,

• either kD = kA + 0 mod(n - 1), or kA = kD + 0 mod(n - 1), or kD =

0 mod(n — 1), or kA = 0 mod(n — 1).
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It should be mentioned here that there might be other sufficient conditions

under which a PBDS design exists. This is a problem for further investigation.

But in this study we construct only those designs which satisfy the conditions of

the above lemma. These conditions are built into the following algorithm.

Algori thm II :

S T E P 1 : Check whether the integers TA and TD are divisible by n-1.

S T E P 2 : For given TA, TB and To, partition the layout of the design as given

in Figures 4.1 to 4.5. The design consists of one, two or three R-types sets

of blocks depending on whether the design is an R-, (R,S)- or (S,S)-type

respectively.

S T E P 3 : For each R-type set of blocks check whether the appropriate BBD

does exist by checking Conditions (2.2) of Ting and Notz(1988, p32).

S T E P 4 : For each R-type set of blocks check whether the conditions of Lemma

4.9 are satisfied.

Obviously, this algorithm is unable to identify a C-design for every parameter

combination of n, b and k. In an attempt to fill these gaps, we search for C-

designs within the class of PBDS designs by finding the next values of TA and TB

which minimize the conjectured bound via algorithm I and then checking whether

the PBDS design does exist by using algorithm II.

In the next section we give another approach for the special cases k=2 and 3,

which enables us to identify A-optimal designs within the PBDS class of designs.

This approach does not rest on the conjectures. The designs obtained by this

approach for 2 < b < 10 are included in Table 4.2.

4.7 A-optimal PBDS Designs for k=2 and 3:

For k=2 and 3 we specify the arrangement of treatments in blocks in such a way

that the design is a PBDS design and we formulate tr(CQ,C) in the resulting

PBDS design. Then, by a simple computer algorithm, we have derived the A-

optimal designs within the class of PBDS designs. The designs are tabulated in

Table 4.2.
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4.7.1 A-optimal PBDS Designs for k=2:

For this case the following arrangement of treatment combinations in the blocks

gives a PBDS design:

Table 4.4: Arrangement of treatment combinations

in a PBDS design with k=2.

arrangement of treatments

01

01

iO

iO

il

iO

iO

il

il

}0(i ^ J)
j l ( i ^ j )

J1(^J)

number of blocks

(n - l)na

( n - l)nb

(n — \)nc

(n-l)(n-2)nd

2
(n-l)(n-2)ne

2

(n — l ) ( n — 2)?2/

Then by Corollary 4.3 the trace of the variance-covariance matrix of the dual

versus single contrast estimators is:

tr(CQC') -
dp) qA

dAdD - d?AD qAqB - qAB

where dA, dp, dA£>, qA, qp and qAp were defined in (4.15), in which

TA = DA = (n- l){na +nc + (n- 2){nd + n , ) } ,

TD = DD = (n - l){nb + nc + (n - 2 ) (n e + n , ) } ,

SA = (n- l){na + nc + {n- 2)(2nd + nf)},

Sp = (n- l){nb + nc + (n - 2)(2ne + n / ) } ,

DAD = (n- l ) n c ,

-5.4D = (n - l){nc + (n - 2)n/}.

After some algebra we obtain:

(4.64)

(4.65)

where

AA = 2 n a + 2(n —

r = {na + (n -

c + (n — l)n e + (3n — 4)rc/,

[nb + (n - l)(ne + ny)} +
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(nc - nj) {na + nb + (n - l)(ne + nd + 2nj)} ,

U — 2na + nb + nc + (n — 2)n/,

and

W - na x nb + (na + nb) {nc + (n - 2)n/} .

The A-optimal PBDS design is obtained by minimizing the above expression

subject to the following constraint:

(n - 1) {2na + 2nb + 2nc + (n - 2)(nd + ne + 2nf)} = 26 = fixed. (4.66)

Let n*, nj, n*, n£, n* and ni , be those integers which minimize the trace,

then any design with such a number of blocks is A-optimal design within the

class of PBDS designs for k=2. This has been done by a simple computer algo-

rithm(Appendix B).

4.7.2 A-optimal PBDS Designs for k=3:

For k=3, the PBDS design has the following structure:

1. For n=3 the arrangement of treatment combinations in Table 4.5 gives

PBDS design. Then it is possible to show that the trace of the variance-covariance

matrix of the dual versus single contrasts is:

jr(Cnc<) = ("-'Wt-itt.D + .fe) + u + n t (467)
dAdD - d\D qAqB - qAB

where, dA, C?L>, dA£>, qA, qD and qAp were defined in (4.15), in which for this

case we have

TA = 2(na + nb + ne + nf + n,- + 2ng + 2nh + 3nfc),

DA = 2(na + nb + ne + nj + n,- + 2ng

SA — 2(2na + nb + ne + rif + n,- + 4ns

TD — 2{nc + nd + ne + nf + 2n,- + ng + 2tij + 3n/),

= 2(nc + rid + ne + nj + 2n,- + ng + Arij + 5n;),

= 2(2nc + rid + "e + " / + 4n,- + ns + 4rij + 9n/),

D^D = 2(ne + ng + n,-),

= 2(ne + n/ + 2n5 + 2n,).
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Table 4.5: Arrangement of treatment combinations in a

PBDS design with k=3 and n=3.

arrangement of treatments

01

01

01

01

01

01

iO

01

il

01

iO

il

iO

01

il

01

il

iO

iO

il

iO

il

iO

il

iO

ji(i ^ i)
/l(/=ior j)
iO

i/(/=iorj)

il

jo(i ± i)

number of blocks

na

2nb

nc

2nd

2ne

2nf

2ng

2nh

2n,-

2nj

2nk

2m

The A-optimal PBDS design is obtained by minimizing the above expression

subject to the following constraint:

= na + nc + + nj, + ne + nj.+ ng + rih + nt- + rij n;) = fixed. (4.68)

This can be done by a simple computer algorithm(Appendix B).

2. For n> 4, then the arrangement of treatment combinations is given in

Table 4.6. Then it is possible to show that the trace of the variance-covariance

matrix of the dual versus single contrasts is:

tr{ =
(n-2)(2dA-2dAD

+ i (

dAdD - dAD qAqB - qAB

where, dA, dp, dA£>, qA, qp and qAo were defined in (4.15), in which for this

case we have

TA = tA + (n - l){2nm + nq + 2n0 + (n - 2)(2np + nr + 3ns)},

DA = tA + (n- l ){4nm + An0 + nq + (n - 2)(4np + nT + 5ns)},

SA = sA + (n - l){4nm + 4n0 + nq + (n - 2)(4np + nr + 9ns)},

(n- l){2nn + 2nq n0
{n - 2)(2n r + np

DD = tD + (n - Anq + n0 + (n - 2)(4nr + np + 5nt)},
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Table 4.6: Arrangement of treatment combinations in a

PBDS design with k=3 and n > 4.

arrangement of

01

01

01

01

01

01

iO

iO

il

il

iO

il

01

01

iO

iO

iO

iO

iO

il

iO

01
i i
1 _L

01

iO

iO

jO(z ^ j)

JO(i^i)
ji(^i)
jl(z jLj)

jo(i ± 0
JI(J ^ i)
iO

il

iO

iO

il

j l
iO

il

treatments

jO(i
iO

"1 ('

il

il

ji(i
n(i--
ii(i

10(1-

10(1

10(1

11(1

iO

il

il

ji(i
il

}l(j

ji(i

^ j)

3

*i)
=i or j)

^ ij)
=i or j)

^0

^0

number of blocks
(n-l)(n-2)na

2

(n — l)nb
(n-l)(n-2)nc

2

(n — ljfid

(n — l )n e

(n — l)(ra — 2)n/

(n-l)(n-2)ng
(n —l)(n—2)(n—3)n^

2

(n — l ) (n — 2)n,-
(n-l)(n-2)(n-3)n,

2
(n-l)(n-2)(n-3)n*

6
(n-l)(n-2)(n-3)n,

6

( n - l ) n m

( n - l)ran

(n — l)n0

(n — l)(n — 2)np

(n 1 n̂

\ I i J. j \ Ti ~~ £l J it y*

(n - l)(n-2)n s

(n - l)(n - 2)nt

where

(n - l){4nn + Anq + n0 + (n - 2)(4nr + np + 9

= sAD + 2(n - l){n0 + n, + (n - 2)(np + n r )} ,

2(n - l)(n0 + n,)},

= (n - ne) + (n - 2)(no nt- + 2ns)+

-(n - 2)(n - 3)(nj + nk + 2nh)},

ne) + (n - 2)(2no + nf + n,-

_(„ _ 2)(n - 3)(nj
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ne) + (n - 2)(nc + nj + 2n,- + ng) +

- (n - 2)(n - 3)(2ni + n, + nfc)},

so = (n - l){(nd + ne) + (n - 2)(2nc + n/ + 4n,- + n s )+

(„ _ 2)(n - 3)(4nJ + 3n,

= (n - l){ne + (n - 2)(na + n,)},

= (n - l){ne + (n - 2)(n/ + 2n,- + 2n5) + (n - 2)(n - 3)(n,-

The A-optimal PBDS design is obtained by minimizing the above expression

subject to the following constraint:

66 = (n —

(n - 2)[6(np + nr + ns + nt) + (n - 3)(3n^ + 3n,- + nk + n,)]} = fixed. (4.70)

A computer algorithm for this case is given in Appendix B.

4.8 The Tabulated Designs:

The algorithms given in Sections 4.4 and 4.6 can be used to find the C-designs

or "near" C-designs which are PBDS designs. As an illustration the designs have

been tabulated in Table 4.2 for 3 < n < 6, 2 < b < 10 and k < 9. For each design

its discrepancies with bm and with the conjectured bound are given in Table 4.2.

For those designs having discrepancies exceeding 5% of 6m, the discrepancies with

tr(CQ,C) of the best design obtained by JE is also given in the table. In 132 out

of 159 designs tabulated the discrepancy is within 10% of the smaller bound.

The following examples show how to use the table for given parameter values.

Example 4.8 For n=3, b=4 and k=5, Table 4-2 shows that an efficient C-design

is composed of four copies of the set of blocks indexed 1. From Table 4-3, index 1

consists of one block of size 5 which accommodates each of the treatment combi-

nations once. Therefore the highly efficient C-design is a randomized block design

with four blocks. The discrepancy of this design is 2% and .5% compared with bm

and the conjectured bound respectively.

Example 4.9 For n=5, b=8 and k=7, from Table 4-2, the efficient C-design

consists of 2 copies of index 2 set of blocks. From Table 4-3, the index 2 consists

of 4 blocks each of size 7, in which the arrangement of the treatment combinations

is
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Block 1 01 10 20 SO 11 21 31

Block 2 01 10 20 40 11 21 41

Block 3 01 10 30 40 11 31 41

Block 4 01 20 30 40 21 31 41

Therefore the design is 2 U 2 which has discrepancies of 3.7 and 1.8% of bm and

the conjectured bound respectively.

Note that for some values of n, b and k designs are not tabulated. For some

parameter values PBDS designs do not exist because they violate combinatorial

restrictions on the designs(given in Section 2.4.3). For other parameter values

the designs were not efficient, having a discrepancy greater than 20% compared

with the conjectured bound.

4.9 Conclusion:

As we have seen in this chapter, the minimization of tr(M~l) is very compli-

cated. If we had been able analytically to give a minimum value for the trace in

terms of the parameter values and the number of replications of the treatment

combinations, then any design which hits that bound would be overall A-optimal.

Analytical tools have been used earlier in this chapter to reduce the minimiza-

tion problem to some extent, but due to the discrete nature of the problem, the

reduction becomes unappreciable. However, our attempt was partially success-

ful, since the problem in some cases, reduced to minimizing a simple function in

terms of TA, TB and ^(Theorem 4.8). Based on numerical results we made three

conjectures. Intuitively an A-optimal design within the class of PBDS designs,

might be regarded as a highly efficient design for comparing the dual versus sin-

gle treatments, but it is not always the case. This can be seen from Table 4.2.

Roughly speaking the A-optimal design within this class has average variance not

far from that of the design which is A-optimal across all possible designs for spe-

cific values of the parameters. In addition the class of PBDS designs gives equal

precision and correlations for each set of the contrast estimators corresponding

to dual versus A and dual versus B which often corresponds to an experimenter's

requirements.
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Tables of Efficient C-designs:

For given 2 < & < 9 2 < 6 < 1 0 and 3 < n < 6, Table 4.2 gives a summary of

the design as (i l5 &2, ••-, im] / i 5 /2? •••) /m)) where ij is a set of blocks given in Table

4.3 and /,- is the number of duplicates of the set of blocks in the design. Below

this summary is entered the percentage discrepancy between the total variance

of the estimators of the dual versus single treatment contrasts and the bound

6m(see Section 3.5), and conjectured bound(see Section 4.3) respectively. Where

the discrepancy between the total variance and bm exceeds 5% (i.e. small b and

small k), the discrepancy between the total variance for the design and the total

variance for the best design obtained from JE, is given as the third figure.

Table 4.2 Index and performance of C- and near C-designs in PBDS for n=3.

1 b\k
2

3

4

5

6

7

8

9

10

2

—

13,0,0

13,8,0

13,10,1

9,6,0

(1,2,3,4,5;1,1,1,1,1)

13,12,5

4 ,3

5,4

3

13,2,0

13,8,.1

11,7,2

8,4,1

5,0

(1,2,3;2,1,1)

4,0

4,0

4,.3

4

7,0,0

6,2,0

7,3,1

5,0

6,1,.3

6,1,0

6,1,0

6,.1,0

6,1,0

5

0,0

0,.5

(M)
2,.5

2,.5

2,.2

2,.05

2,0

2,0

2,0

6

1.2,1

3,0

3,.5

2,.2

3,.2

7,.4,0

3,.2

3,.2

3,.2

7

1.2,1

2,.4

2,.4

2,.5

2,.01

2,0

(1*3,1)

2,0

2,.3

8

0,1.5

1,0

1,0

(i,2;4,i)

(1 ' i2;.22)

(1,2;4,2)

l,.07

(1,2;6,2)

9 II

.5,0

(1,1:1,1)

.6,0

.8,.4

.6,0

.8,.2

.5,0

.8,.2

.7,0
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For given index and k from Table 4.2, the following table gives the required

designs, in which the blocks are represented by columns.

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=3.

| index\lc

1

2

3

4

5

6

2

01 01

11 21

10 20

11 21

10

20

01 01

10 20

11

21

10 20

21 11

3

01 01

10 20

11 21

01

11

21

10 20

11 11

21 21

10 10
20 20
11 21

-

-

*

01 01
10 20
11 11
21 21

10
20

11

21

01 01

10 10

20 20

11 21

-

-

-

01

10

20

11

21

01 01

10 20

11 11

11 21

21 21

-

-

-

-

6

01 01

10 10

20 20

11 11

11 21

21 21

01

01

10

20

11

21

01 01

01 01

10 20

11 11

11 21

21 21

-

-

-

7

01 01

01 01

10 10

20 20

11 11

11 21

21 21

01

10

20

11

11

21

21

01 01

10 10

10 20

20 20

11 11

11 21

21 21

-

-

-

8

01

01

10

20

11

11

21

21

01 01

01 01

10 10

10 20

20 20

11 11

11 21

21 21

-

-

-

-

9 II
01 01

01 01

10 10

10 20

20 20

11 11

11 11

21 21

21 21

01

01

01

10

20

11

11

21

21

-

-

-

-
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Table 4.2 Index and performance of C- and near C-designs in PBDS for n=4.
lb\k

2

3

4

5

6

7

8

9

10

2

—

(1,2,1,1)

17,13,0

—

(1,2,3;1,1,1)

17,14,3

3

-

(i;i)
17,14,0

(1,2;1,1)

13,9,0

(1,2,3;1,1,1)

18,15,3

(1,4;1,1)

13,10,2

(1,2;2,1)

8,5,2

1,2,3;2,1,1)

11,8,4

(1,4;2,1)

7,4,0

(i,2;3,i)

9,5,4

5

-

(i;i)
2,1

(i,2;i,i)

5,3

(1,2:1,2)

13,10,9

(1,2:1,3)

4,1.3

(1,2:2,1)

4,1.4

(1,2;2,2)

6,3.3,3

(1,2;2,3)

3.3,1.3

(1,2;3,1)

4,1

6

-

(1.1)
2,0

(1,2:1,1)

5,4

(l.2;l,2)

13,11,10

(i;2)
2.2,0

(1,2;2,1)

4,1.7

(1,2;2,2)

7,4,4

(1.3)
2.4,0

(1,2;3,1)

3.4,1

(1:3)
0,2.2

(i;3)
2.1,2.3

(1,2;1,1)

2.5,1.3

(1,2:2,1)

2,.5

(1,2;3,1)

1.5,-2

(1,2;4,1)

1.6..01

(l,2;5,l)

2..08

(1,2;6,1)

2..13

(1.3;7,1)
2,.17

8

(i;2)
1.6,2.2

(i;3)

2.4,2.5

(i,2;i,i)

2.3,1.2

(1,2:2,1)

2,.6

(i,2;3,i)

2,.5

(1,2:4,1)

2.3,.6

(1,2;5,1)

2.4,.7

(1,2;6,1)

2.4,.8

(1,2;4,2)

2.3,.7

9 II
(i;2)

11,10,1

(2;i)
1..03

(1,2;1,1)

3,2

(1,2;2,1)

5,3

(2il)
1.4..2

(1,2;1,2)

2.4,1.1

(1,2;2,2)

3,2

(2;i)
1.4,.2

(1,2;1,3)

2.2,.8

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n—4.
| index\k

1

2

3

4

2

01 01 01

11 21 31

10 20 30

11 21 31

01 01 01

10 20 30

-

3

01 01 01

10 20 30

11 21 31

11

21

31

10

20

30

10 20 30

21 11 11

31 31 21

5

01 01 01

10 10 20

20 30 30

11 11 21

21 31 31

01

01

11

21

31

-

-

6 II
01 01 01

10 10 20

20 30 30

11 11 11

21 21 21

31 31 31

10

20

30

11

21

31

-

-
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Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=4.
| index\k

1

2

3

4

7

01

10

20

30

11

21

31

01 01 01

01 01 01
10 10 20
20 30 30
11 11 11
21 21 21
31 31 31

01 01 01
10 20 30
11 11 11
11 21 21
21 21 31
31 31 31

-

8 | 9 ||

01
01
10
20

30

11

21

31

01 01 01

10 10 10

20 20 20

30 30 30

11 11 11

11 21 21

21 21 31

31 31 31

-

10 20 30

21 11 11

31 31 21

01

01

01

10

20

30

11

21

31

01 01 01
01 01 01
10 10 10
20 20 20
30 30 30
11 11 11
11 21 31
21 21 21
31 31 31

01 01 01
10 10 10
20 20 20
30 30 30
11 11 11
11 11 21
21 21 21
21 31 31
31 31 31

-
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Table 4.2 Index and performance of C- and near C-designs in PBDS for n=5.
|| b\k | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ||

2

3

4

5

6

7

8

9

10

—

20,18,0

—

—

20,17,0

—

—

—

20,17,7

—

—

—

—

—

—

18,12,10

—

—

—

4.7,1.7

—

-

17,12,12

—

—

18,15,13

—

18,15,10

-

—

1.7,1.6

—

6,4,4

—

(2;2)

3.7,1.8

—

2.7,.5

—

1.8,1

7,5,5

9,7,7

2.2,.7

5,3.2

2.3,.6

(1-.2)
2.1,4.2

3.9,4.4

(2;1)

2,1

1.3..3

1.2..1

1.6..3

1 . 6 , . 3

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=5.
| i n d e x \ k

1

2

01

11

10

11

01

21

20

21

2

01

31

30

31

01

41

40

41

01

10

11

3

01

20

21

111

Hi)

01

40

41

10

20

11

21

01

11

21

31

10

30

11

31

4

01

11

21

41

10

40

11
41

01

11
31

41

20

30

21

31

01

21

31

41
20

40

21

41

II

30

40

31

41
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Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=5.
| index\k

1

2

3

4

5

01 01 01 01 01 01
10 10 10 20 20 30
20 30 40 30 40 40
11 11 11 21 21 31
21 31 41 31 41 41

01 01 01 01
01 01 01 01
11 11 11 21
21 21 31 31
31 41 41 41

-

-

1 7 ||

01 01 01 01
10 20 30 40
11 11 11 11
21 21 21 21
31 31 31 31
41 41 41 41

01
01
11
21
31
41

01 01 01 01 01 01
01 01 01 01 01 01
10 10 10 20 20 30
20 30 40 30 40 40
11 11 11 21 21 31
21 31 41 31 41 41

10 10 10 20
20 20 30 30
30 40 40 40
11 11 11 21
21 21 31 31
31 41 41 41

01 01 01 01 01 01
10 10 10 20 20 30
20 30 40 30 40 40
11 11 11 11 11 11
21 21 21 21 21 21
31 31 31 31 31 31
41 41 41 41 41 41

01 01 01 01
10 10 10 20
20 20 30 30
30 40 40 40
11 11 11 21
21 21 31 31
31 41 41 41

-

-
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Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=5.
| index\k

1

2

3

4

5

8

01 01 01 01

10 10 10 20

20 20 30 30

30 40 40 40

11 11 11 11

21 21 21 21

31 31 31 31

41 41 41 41

10

20

30

40

11

21

31

41

01 01 01 01 01 01

01 01 01 01 01 01

10 10 10 20 20 30

20 30 40 30 40 40

11 11 11 11 11 11

21 21 21 21 21 21

31 31 31 31 31 31

41 41 41 41 41 41

01 01 01 01

01 01 01 01

10 10 10 20

20 20 30 30

30 40 40 40

11 11 11 21

21 21 31 31

31 41 41 41

01 01 01 01

10 10 10 10

20 20 20 20

30 30 30 30

40 40 40 40

11 11 11 21

21 21 31 31

31 41 41 41

II
01

10

20

30

40

11

21

31

41

01 01 01 01

01 01 01 10

10 10 10 20

20 20 30 30

30 40 40 40

11 11 11 11

21 21 21 21

31 31 31 31

41 41 41 41

-

-

-
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Table 4.2 Index and performance of C- and near C-designs in PBDS for n=6.
lb\k

5

10

2

-

(1,2;1,1)

23,21,0

3

(i;i)

23,20,0

(i;2)

23,20,8

5 | 6

-

8,3,3

-

(i;i)

22,17,17

7 | 8

-

(i;i)
4.3,1.7

-

(i;i)

9,7,6

9 1
(i;i)

4.3,3.1

(2;i)

2.4,1.4

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=6.
1 index\k

1
11

10

11

21

20

21

2

31

30

31

41

40

41

51

50

51

01

10

11

01

20

21

3

01

30

31

01

40

41

01

50

51

01

10

20

11

21

01

10

30

11

31

01

10

40

11

41

01

10

50

11

51

5

01

20

30

21

31

01

20

40

21

41

01

20

50

21

51

01

30

40

31

41

01

30

50

31

51

01

40

50

41

51

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=6.
| index\k

1

01

01

10

20

11

21

01

01

10

30

11

31

01

01

10

40

11

41

01

01

10

50

11

51

01

01

20

30

21

31

6

01

01

20

40

21

41

01

01

20

50

21

51

01

01

30

40

31

41

01

01

30

50

31

51

01

01

40

50

41

51

01

10

20

30
11

21

31

01

10

20

40
11

21

41

01

10

20

50
11

21

51

01

10

30

40
11

31

41

01

10

30

50
11

31

51

7

01

10

40

50
11

41

51

01

20

30

40
21

31

41

01

20

30

50
21

31

51

01

20

40

50
21

41

51

|!
01

30

40

50
31

41

51

Table 4.3 Constituent blocks of C- and near C-designs in PBDS for n=6.
| index\k

1

2

01

01

10

20
30
11

21

31

01

01

10

20
40

11

21

41

01

01

10

20
50

11

21

51

01

01

10

30
40

11

31

41

01

01

10

30
50

11

31

51

8

01

01

10

40
50

11

41

51

-

01

01

20

30
40

21

31

41

01

01

20

30
50

21

31

51

01

01

20

40
50

21

41

51

01

01

30

40

50

31

41

51

01

10

20

30

11

21

31

41

51

01

10

20

40

11

21

31

41

51

01

10

20

50

11

21

31

41

51

01

10

20

30

40

11

21

31

41
01

10

30

40

11

21

31

41

51

01

10

20

30

50

11

21

31

51
01

10

30

50

11

21

31

41

51

9

01

10

20

40

50

11

21

41

dl
01

10

40

50

11

21

31

41

51

01

10

30

40

50

11

31

41

51
01

20

30

40

11
21

31

41

51

01

20

30

40

50

21

31

41

51
01

20

30

SO

11

21

31

41

51

01

20

40

50

11

21

31

41

51

||

01

30

40

50

11

21

31

41

51
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D e s i g n s f o r T w o F a c t o r s w i t h

M o r e t h a n T w o L e v e l s

5.1 Introduction:

In the previous chapters we considered n x m blocked experiments with 00 ex-

cluded for m=2 and n any positive integer. In this chapter we extend some of

the findings to the case of n x m experiments for any m > 2. In Section 5.2

we employ the permutation method in an attempt to obtain a design-dependent

bound(a generalization of Section 4.2) . In Section 5.3 we specify a class of designs

which achieves the design-dependent bound and consider some of its properties.

We characterize a series of overall A-optimal designs for the case k > t in Section

5.4, and give a critical assessment of these designs. In Section 5.5 we give some

methods of constructing designs which belong to the class of designs defined in

Section 5.3 and give recommendations on their use in practice.

The formulation of the bound in terms of the elements of the concurrence

matrix of the design has proved a very difficult task, and is a topic for future

work. This will enable the characterization of further efficient designs for any

number of units within each block when both factors have more than two levels.

5.2 A Design-Dependent Bound:

In this section we apply the permutation matrix technique described in Section

4.2 of Chapter 4, i.e. we use a set of permutation matrices, under which our

contrasts of interest are invariant, and apply it to the A-matrix of design to

129
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obtain a bound which is design-dependent.

Let the treatment combinations be ordered as follows

! T0q, • T2q,

(5.1)

where t=mn-l, p=n-l, and q=m-l.

We put the ordering of treatments in a t x 1 column vector jr. The contrasts

of interest are C\T_ and C2Z where the contrast matrices are:

E
(5.2)

C2

where In is an identity matrix of order n, OuXV is a zero matrix of u rows and

v columns, j _ n is an n x l column vector with all entries 1, ® denotes Kronecker

product, £ — pq and

E =

E21 E22 E23

E31 E32 E33

E2p

E3p

Eql En

(5.3)

where the E^s are px q matrices with a 1 in the (},\)th position and zero elsewhere.

Let the A-matrix of the design be partitioned as follows:

A =

D B F

B' G H

F' H' L

(5.4)

where D is an q x q symmetric matrix, B is a q x p matrix, F = [F\, F 2 . . . , Fp]

in which F{ is q x q matrix, for i=l,2,...,p, G is a p x p symmetric matrix, H =

[Hi, H2,..., Hp] in which Hj is a p x q matrix for i=l,2,...,p, and L = (Lij), where

each L{j is a q x q matrix(i,j=l,2,...,p), p=n-l and q=m-l.
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Suppose {qi]i = 1,2, ...,<?!} and {pj',j = 1,2,...,p!} are sets of permutation

matrices of order q and p respectively, where p=n-l and q=m-l.

Also let

where

n=

?,• o

0 Pj

0 0 pj® q,

The set Yl is a set of permutation matrices such that the function

tr(CflC) is invariant, where fi is a g-inverse of A. In other words ^{'KijA'K'^) =

). Define A as the average of A over all the permutations in YI-, i-6-

(5.6)

Now we are in a position to give the main theorem of this chapter.

Theorem 5.1 For any design d £ nxm CFBD(OO), suppose A is the A-matrix of

design d and A is the matrix defined in (5.6). Suppose €l and fi are the respective

g-inverses of A and A, then:

tr(cnc') (5.7)

Proof: If A denotes the A-matrix of any connected design, then r(A)=t-l.

Define $(A) = tr(CflC'), then by Majumdar(1986) $ is a convex function. This

implies that

P!

(5.8)

By definition ^(Tr.jylTr^) = fr(C7r,-jfl7r|-C). Since each permutation matrix TT,-J is

such that the contrasts are invariant, then tr(C7TijQ,ir'i C) = tr(CQC). Therefore

the RHS of (5.8) is tr(CQC). Hence the theorem is proved.*

For Cl any g-inverse of A, a design-dependent bound for the contrasts of inter-

est is given by tr(C(iC'). If we minimize tr(C£lC) over all possible designs for
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given parameter values n, m, b and k, this gives a bound to assess the performance

of designs.

Following the approach of Chapter 4, we should like to formulate the design-

dependent bound as a function of the elements of the incidence matrix of the

design, i.e. as a function of the number of concurrences of each treatment com-

bination in each block. This will then facilitate the calculation of the bound. In

addition it provides a means of identifying designs which are overall A-optimal.

The key to this approach is to evaluate a g-inverse of A by finding (A + xJt)'1

for some x ^ 0. In order to evaluate the bound in (5.7) we need to calculate

tr{C(A -f xJt)~
xC}. This is a generalization of the approach in Sections 4.2 and

4.3 in Chapter 4. However, the approach proved mathematically intractable. Our

attempts included employing an algebraic computer algorithm, REDUCE, which

is a system for carrying out algebraic operations accurately, no matter how com-

plicated the expressions become(see user's Manual,1985). However this gave a

two-page expression for tr(CClC') which is too difficult to handle. However, The-

orems 5.1 reveals that even for small k, the class of GPBDS designs is a source

of some efficient designs. Some methods of constructing such designs will be

described in Sections 5.5 and 5.6.

5.3 A Class of Efficient Designs:

In the following we characterize a class of designs which is a generalization of the

PBDS class of designs defined in Chapter 1. By examining the variance-covariance

matrix of this class we shall see that the designs estimate the contrasts within

the dual versus A and dual versus B sets(C2X a n d C\T) with equal precision.

We begin by deriving the structure of the A-matrix via the permutation

method.

5.3.1 Structure of the A-matrix:

In this section first we give a lemma which specifies the structure of the A matrix

given in (5.6), then we formally define the class of efficient designs. Finally we

show how designs within this class achieve the design-dependent bound given in

(5.7).

Lemma 5.1 Matrix A given in (5.6) has the following structure
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a\Iq + b\ Jq CJqxp

a-31p + b:Jp

Ip®{

1 ' <g>
—p

(aj

a5lg + 65

(a2/(

J,) +

1 1

Jv
J

- b2 Jq)

j ® (a & l q

A =

(5.9)

A/so, one possible g-inverse of A, called ft, /ias //ie following structure:

ft =
Ip

Jp

(5.10)

where xl} x3> y1} y3, z, x2, x4, y2, t/4, xs, x&, y5 and y6 are functions of alt

a\, az, a-4., 0-5, a&, c, bi, b2, b3, bi} b5 and be.

Proof: See Appendix A at the end of the thesis.

Now we define a general class of partly balanced dual versus single treatment

designs.

Definition 5.1 A design d £ nxm CFBD(OO), is a Generalized PBDS design

if its A-matrix has the structure (5.9). This class will be denoted by GPBDS
hereafter.

It will be shown in Section 5.3.2 that the designs in the GPBDS class of designs

estimate the dual versus A and dual versus B contrasts with equal precision.

In the following we give a corollary which shows that if a design is a GPBDS

design then the total variance of the contrasts in (5.2) is ir(CftC). This indicates

that the class of GPBDS designs might prove a source of efficient designs.

Corollary 5.1 If in the statement of Theorem 5.1, d is in the class of GPBDS

designs, then inequality in (5.7) changes to equality.

Proof: If d is in the class of GPBDS designs, then A = A, which implies that

(A + xJ)-1 - (A + xJ)-1 = 0. The result follows from here.*

The following examples illustrate that this class of designs does contain highly

efficient designs for the dual versus single treatment problem.
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Example 5.1 For m=n=3, b=8 and k=3, the design

Blockl Block! Blocks Blocks Blocks Blocks Blockl Blocks

20 10 01 02 01 02 02 01

21 11 11 12 20 20 10 10

22 12 21 22 21 22 12 11

has the A-matrix

A =

2/2 -0.33J2 -0.67I'2I2
-0.33J2 2/2 - 0 . 6 7 / 2 ® I 2

-0.671a ® I2 -0.67/2 ® J^ 72 ® (2.67/2 - 0.33J2) - 0.33J2 <g> 72

which has the same structure as A in (5.9). Hence it is a GPBDS design. The

design has tr(CflC) =6.429 and bound bm — 6.319. Hence the discrepancy between

tr(CQC') and bm is 1.7% ofbm} shoioing the design is highly efficient.

Example 5.2 For n=4, m=3, b=2 and k=12, the design

Blockl 01 02 02 10 20 30 11 12 21 22 31 32
Blockl 01 01 02 10 20 30 11 12 21 22 31 32

is an efficient design belonging to the class of GPBDS designs with a discrepancy

0.3% ofbm.

The next step is to locate the highly efficient designs within this class, ex-

ploiting the form of the A-matrix. This has proved difficult to do in general, but

efficient designs for some special cases have been found and are given in Sections

5.5 and 5.6.

5.3.2 Variance-Covariance Matrix of the Class of GPBDS

Designs:

In this section we derive the structure of the variance-covariance matrix for the

estimators of dual treatment versus A alone contrasts and dual treatment versus

B alone contrasts in any GPBDS design.

The following lemma is required to specify the structure of the variance-

covariance matrix. Its proof follows by direct substitution of E from equation

(5.3).
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Lemma 5.2 Let E denote the matrix defined in (5.3), then we have

{i; ® (a/, + bjq)}E' = {aiq + bjq) ® i; ,

(/, ® l ,){i ; ® (a/, + 6Jg)} = i ; ® (alq + 6J,) ® 1 ,̂

£ { / p ® (a/, + bJq) + JP® (clq + dJq)}E' = (5.11)

/, ® (a/p + cJp) + J, <g> (6/p + rfjp),

£{1^ ® (a/, + 6J?)} = (a/, + 6J,) ® Ip ,

E{(alp + bJp) ® 1,} = 1, ® (a/p + 6JP).

The following theorem examines parts of the variance-covariance matrix cor-
responding to the dual treatment versus A and the dual treatment versus B
contrasts and shows that the variances are equal within the two sets of contrasts.

Theorem 5.2 Let design d G GPBDS, with 0, as a g-inverse of its A-matrix as
given in (5.10), then we have:

Iq <S> {x5lp + (xi + x6 - 2x2)Jp} + Jq <g> {y5lp + (2/1 + ye- 2y2)Jp},

C2nC2 = (5.13)

IP ® {x5lq + (x-i + y5- 2x4)Jq} + Jp® {xelq + (2/3 + Ve- 2y4)«/g},

where C\ and C2 are given in (5.2).

Proof: If we premultiply and postmultiply f2 respectively by C\ and its trans-
pose, and apply Lemma 5.1, we obtain

{ }1^Al(-Iq®l^) + D1E', (5.14)

where

A l = {(x2-Xl)Iq + (y2-yi)Jg}®lP,

and

Di = -Up <g> (x2lq + y2jq) ®lp
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E{IP ® (xslq + y5Jg) + JP

Substituting from these into (5.14) we obtain the required expression in (5.12).
Similarly

c2nc2 = {A2 B2 D2}C2 = B2(-IP ®I^) + D2, (5.15)

where

A2 = I , ® {z2J, + (y2 - z) J ,} ,

-52 = {(x4 - x3)Ip + (2/4 -

and

D2 = Ip® {x5lq + (y5 - xA)Jq) + JP® (x6lq + (y6 -

Substituting from these into (5.15) we obtain the required expression for (5.13).J|fc

Corollary 5.2 / / we have an n x m CFBD(OO) design d, in which one of the

g-inverse of its A-matrix is given in (5.10), then:

tr(CnC) = (5.16)

pq {xi + x3 + yx + 2/3 + 2(x5 + x6 + y5 + ye) - 2(x2 + xA + y2 + y4)} .

Proof: It is not difficult to show that:

tr(CnC) - tr{C^C[) + tr{C2nC!
2) (5.17)

where C\ and C2 are given in (5.2). But from Theorem 5.2 we have:

'J = pq{Xl + y i + x 5 + y5 + x 6 + y 6 ~ 2(x2 + y 2 ) } , (5.18)

and

tr(C2nC2) = pq{x3 + y3 + x5 + y5 + x6 + y6- 2{x4 + y4)}. (5.19)

Hence the result follows.Jk

In the following we give a corollary whose proof follows directly from Theorem

5.2.

Corollary 5.3 A necessary condition for a design to have structures (5.12) and

(5.13) for the variance-covariance matrices for the estimators of the dual versus

B contrasts and the dual versus A contrasts respectively, is that the design belongs

to the GPBDS class.
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5.4 Towards A-optimal n x m Designs with k > t :

In Section 3.2 of Chapter 3 we applied Wu(1980) to obtain bound b\ on the

total variance of estimators of the contrasts for the dual versus single factor. In

Corollary 3.2 we showed that this bound can be achieved if N'r~sC = 0.

Now we are in position to characterize a series of overall A-optimal designs.

This is a generalization of Theorem 4.8 in Chapter 4.

Theorem 5.3 Let n = 2p\ + 1 and m = 2q\ + I, where pi and q\ are positive

integers. Suppose a design for block size k = 0 mod{2piqi(pi + qi + 2piqi)}

has the following respective numbers of replications of any treatment combination

belonging to sets B, A and D in each block:

nB =

2Pi(pi + qi + 2piqi)

and
k

nD =

(Pi + <7i "

(5.20)

where sets A, B and D were defined on page 70. Then the resulting design is

overall A-optimal.

Proof: For any d <= n x m CFBD(OO) if N'r-sC = 0, then from Wu(1980) we

have:

) = tr(Cr-sC) = p ^ J - + g ^ - l . + 2 ^ ^ — , (5.21)
r ,=i rAi i = 1 i = 1 rDij

where rsji r^i and r/j.-j were defined on page 70.

But we have

') = tr(Cr-sc) - 2{p\ E — + ? i E — + E E — )• (5-22)^ q\ E ^ E E

The problem is to minimize:
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subject to the condition:

£ rBj + J2rAi + EE rDiJ = bk = fixed. (5.24)
j = l 1=1 1=1 j=l

Applying a Lagrange Multiplier, A, we obtain the required result. Jl»

Example 5.3 For m=n=3 we have px = qx = 1, Theorem 5.3 gives overall A-

optimal designs for k = 0mod(8). If k=8, then the design with n^ = n# — rip =

I (i.e. a randomized block design) with any number of blocks is A-optimal. Also

if k—16, the design with n^ = ns = rijj = 2 in each block is overall A-optimal.

Example 5.4 For m—3 and n=9 we have px = 2 and qx = 1. To employ the

theorem we require k = 0moJ(28). Ifk=28, then ns = 2, XIA = no = 1 and the

resulting design is A-optimal.

Comment : The series of overall A-optimal designs given by Theorem 5.3 has

limited practical application because the block sizes quickly become large, as is clear

from Examples 5.3 and 5.4. For instance, for m=3 and n=9 the theorem does not

give A-optimal designs for k < 28 or for 29 < k < 56. Even for small values of m

and n, as in Example 5.3, the designs for which A-optimality is established have block

sizes of 8, 16, 24 and so on.

5.5 Some Methods of Constructing GPBDS De-

signs:

In this section we give two construction methods which produce two series of

designs, one for block size 2 and the other for block size 3. The performance of

these designs can be assessed by the bound bm, given in Section 3.5 of Chapter 3.

It should be noted here that, as for n x 2 experiments, we can use the same

approach as Chapter 4, Section 4.7, to construct GPBDS designs for k=2 and 3.

The difficulty with this approach is that we cannot get a simple expression for

the total variance of the contrast estimators. We therefore consider a different

approach.

5.5.1 Constructing GPBDS designs for k=2:

Since we are interested in contrasts r,j — r,o and r,j — To_/, a natural way is to

accommodate in each block either ij and iO or ij and Oj, for i=l,2,...,n-l and
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j=l,2,...,m-l. Such a design will have b=2pq blocks, and replications of 2, q and

p for treatment combinations ij, iO and Oj respectively, where p=n-l and q=m-l.

If we require more replication of the treatments and a greater number of blocks

we might consider using duplicates of the above set of blocks. The application of

this method is recommended for small values of b, in particular, when b=2pq.

Suppose our design consists of u replicates of the given design, then it can be

shown that:

{qlq ® (plp + Jp) + Jq® (plp - JP)}, (5.25)
pqu

and

C2£IC'2 = —IP1? ® (<?7? + Jq) + Jp® (qlq - Jq)}- (5-26)

Therefore for the designs of this kind:

1. For the dual versus B, i.e. contrasts r,j — TQJ, we have:

. , , . . s mn — 2
a - foj) =

pqu

Tij - fOj , Tlj - TOj) = , (5.27)
pqu

Cov(fij - fOj, hi - To;) =

—— if i ^ k and j

for k, i(i / 0 = 1,2,...,p and j=l,2,...,q(/ ^ j).

2. For the dual versus A contrasts, i.e. r,j — r,o, we have:

mn — 2
ra - f,o) =

pqu

n — 2
tij - f,-0, Tu - f,o) = , (5.28)

pqu

m - 2 if i=k and j
pqu

ij ~ Ti0i Tkl — Tk0) =

—— if i ^ k and j
pqu I •>
pq

for fc, i(i + 0=1,2,...,p and j=l,2,...,q(/ ^ j).
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3. The trace of the variance-covariance matrix which gives the sum of the

variances of the estimators of the dual versus single treatment contrasts is

2(mn-2)/u.

A critical assessment of these designs can be summarized as follows:

Advantages:

1. connectedness,

2. highly efficient for small b(u=l),

3. all the required contrasts are made within each block,

4. the designs estimate all the contrasts of interest with equal precision,

5. easy to run practically, since one of the factors is kept at a constant

level throughout each block.

Disadvantages:

1. iO and jO are replicated a large number of times, especially for u > 2,

2. the number of blocks is large,

3. the designs are less efficient for large b(u > 2).

The following two examples illustrate these advantages and disadvantages.

Example 5.5 For m=n=3 and b=8(u=l) we obtain the following design:

Blockl Block! Block3 Blocki Blockb Blocks Block! Blocks

11 12 21 22 11 12 21 22

01 02 01 02 10 10 20 20

For this design

A =

•

- 0

h
o2

•512 ® Jh - o

02

h
.5/2 (g>ia

-0.51 ' 2

-0 .5 / 2

/2 ®

®

®

/ 2

/ 2

1'2

which illustrates the structure (5.9). Each of the treatments 01, 02, 10, 20, 11,

12, 21 and 12 is replicated twice. The variance-covariance matrix of the contrasts

of interest is given below showing the structure of the variance-covariance matrix

of a GPBDS design.
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V =
W X
X' W

where W = I2 ® (72 - 0.5J2) + J2 <g> (0.5/2 - 0.25J2)

0.25 -0.25 -0.25 0.25

-0.25 0.25 0.25 -0.25

-0.25 0.25 0.25 -0.25

0.25 -0.25 -0.25 0.25

The trace of this matrix which equals the sum of the variances of the contrasts

estimators of interests is 14- The bound bm is 12.637 and the discrepancy between

bm and the trace is 11% of the bound. This is the most efficient design which can

be generated by JE.

Example 5.6 For m=n=3 and b=16(u=2), two copies of the design given in

Example 5.5 give value 7 for the total of the variance of the contrasts of inter-

est with 4 replications of each treatment combination. As an assessment of this

design, we can compare it with the the most efficient design generated by JE, viz:

Blockl
Block!

BlockZ

Blocki

Blockb

BlockQ

Blockl

Blocks

01

01

02

02

10

10

20

20

11

21

12

22

11

12

21

22

Block9
BlocklO

BlockU

BlockU

Blockl?,

BlockU

Blocklb

BlockW

01

01

02

02

11

11

12

21

10

20
10

20

12

21

22

22

which also has each treatment combination replicated 4 times, but is not a GPBDS

design. The trace of the variance-covariance matrix is 6.761905 which is slightly

better than the value 7 achieved by using two copies of the design given in Example

5.5.

Table 5.1 demonstrates that for u=l the designs with b < 18 obtained by this

approach are very efficient through a comparison with the bound from JE. Note

that the high discrepancy with bound bm is due to the poor performance of bm for

k=2(see Section 3.4). For b > 18, it is not practical to use JE for comparisons.
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For 3 x 3 designs with u=2 the discrepancy with JE indicates that the designs

constructed are less efficient for u=2 than u=l . Therefore, the application of this

method is recommended only for small values of u, in particular, when u=l .

Table 5.1: Assessment1 of designs for k=22.

n x m

3 x 3

3 x 4

4 x 4

3 x 5

4 x 5

u = l

bm

11.0%

11.7%

11.5%

13.0%

18.5%

JE

0%

0%

0%

0%

0%

u=2

bm

11.0%

11.7%

11.5%

13.0%

18.5%

JE

4.2%

t
t
t
t

5.5.2 Constructing GPBDS Designs with k=3:

Since we are interested in contrasts r,j — T,0 and r,j — rOj, a natural construction

method is to accommodate in each block treatment combinations ij, iO and Oj,

for i=l,2,...,n-l and j = l,2,...,m-l. Such a design will have b=pq blocks, and

replications of 1, q and p for treatment combinations ij, zO and Oj respectively,

where p=n-l and q=m-l. If we require more replication of the treatments and a

greater number of blocks we might consider using duplicates of the above set of

blocks.

Suppose our design consists of u replicates of the given design, then it can be

shown that:

I

and

2pqu

1

2pqu

{qlq ® (3plp + Jp) + Jq ® (p/p - J p)} ,

{p/p ® (3^/? + Jg) + Jp £

(5.29)

(5.30)

Therefore for the designs of this kind:

1. For the dual versus B, i.e. contrasts r,j — TQJ, we have:

3mn — 2m — In
V(Ti: - TOj) =

2pqu

: JE denotes the discrepancy between the total variance of the design and the minimum value
of tr(CQC) obtained by the algorithm of Jones and Eccleston(1980).

2fdenotes that the design has more than 18 blocks.
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ij - fOj, Tlj - TOj) = — , (5.31)
Zpqu

n~2 if i=k and j ^ /

if i =£ k and j ^ I

for fc, i(t ^ /)=l,2,...,p and j=l,2,...,q(/ ^ j ) .

2. For the dual versus A contrasts, i.e. T{j — r!0, we have:

3mn — 2777 — In
T{j - f l 0) =

2pqu

7 7 — 2
iij - f t0, f,-/ - f,-0) = , (5.32)

Zpqu

m-2
2pqu

Cov(Tij - f,-0, tkl -

if i=k and j

for fc,t(t ^ /)=l,2,...,p and j=l,2,...,q(/ + j).

3. The trace of the variance-covariance matrix which gives the sum of the

variances corresponding to the dual versus single treatment contrasts is

(3mn-2m-2n)/u.

These designs have the following advantages and disadvantages:

Advantages:

1. connectedness,

2. highly efficient for small b(u=l),

3. all the required contrasts are made within each block,

4. the designs estimate all the contrasts of interest with the same preci-

sion,

5. easy to run practically since, within each block, one level for A and

one level for B are used alone and in combination.



Chapter 5 144

Disadvantages:

1. treatment combinations iO and jO are replicated a large number of

times, especially for u > 2,

2. the number of blocks is large,

3. the designs are less efficient for large b(u > 2).

The following two examples show these advantages and disadvantages.

Example 5.7 For m~n—3 and u=l the trace of the variance-covariance matrix

is 15. This design is the most efficient design which can be generated by using

JE. The variance-covariance matrix is:

V = 2x
W Y

0.56
-0.06

-0.06

0.06

-0.06
0.06

0.56

0.06

-0.06
0.56

0.06

-0.06

0.06
-0.06

-0.06

0.56

where W = 72 ® (0.76/2 + 0.12J2) + J2 ® (0.12/2 - 0.06J2) and

Y =

Example 5.8 For u—2 in Example 5.7, the method gives the value 7.5 for tr(C

Q C ) . Yt^hile the most efficient design generated by JE gives the value 6.75 for

the tr(CQ,C). The discrepancy between tr(CflC) of the constructed design and

that of JE is 11%.

Table 5.2 shows that for u=l the designs obtained by this approach are highly

efficient. As it is clear from the table the designs are poorer for u=2 and it appears

that for bigger values of u the discrepancy with the bound given by JE becomes

worse. Therefore, the application of this method is recommended for small values

of u only, in particular, when u=l .
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Table 5.2: Discrepancies3 of designs for k=34 .

n

3

3

4

3

4

X

X

X

X

X

X

m

3

4

4

5

5

u = l

0%

0%

0%

0%

0%

u=2

11.0%
15.0%

21.0%

21.0%

31.%|

5.6 Designs for Symmetric Factorial Experiments:

We now consider the case when m=n. We obtain a simplification of Theorem

5.1 which leads to a simpler evaluation of a bound on the trace of the variance-

covariance matrix for the contrasts of interest.

To establish this we can apply the permutation method using a larger set of

permutations on A. This is equivalent to operating on the matrix A denned in

(5.6) in the following way.

Let A be the average of the A-matrix over all permutation matrices as de-
scribed in (5.6). Then define

(5.33)

where E is given in

M

(5.3)

0 Ip

I, 0
0 0

, and define

0

0

E .

A
0

h
0

h
0

0

0

0

E

A2 = -{A + AX).

Observe that tr(A\) = tr(A) = tr(A2).

Corollary 5.4 For any connected design, when n=m,

(5.34)

(5.35)

Proof: If we define $ as in (5.8), then by the convexity of $(Majumdar, 1986),

we obtain the required inequalities.^

3Compared with JE.
4fThis design has more than 18 blocks. The bound shown is 6m.
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This corollary gives a simplification of Theorem 5.1, when n=m. The structure

of A21 as we will show in the following lemma, is much simpler than the structure

of A and the evaluation of tr(CQ.2C') is much easier than that of tr(C£lC).

Lemma 5.3 Matrix A2 given in (5.34) has the following structure

a\Ip + b\Jp c'Jpxp i ; ® (a*Ip + b\Jp)

a\Ip + b\Jp (a*2Ip + b\Jp) ® Vp

Ip ® (a*5Ip + b*5Jp) + JP® (bllp + b*eJp)
(5.36)

where
a* = (ai + a3)/2 6; = (h + 63)/2,

b* = (b2 + 64)/2, ( 5 3 ? )

C = c b*6 = b6

Proof: The result follows directly from Lemma 5.1 and from evaluating ^ in

(5.33).*

Example 5.9 For m=n=3, b=8 and k=3, Example 5.1 shows how the design

with the A-matrix similar to the structure of A2 is a very efficient design.

In the following section, we give two methods of constructing GPBDS designs

for m=n. The first method is similar to the method when k=2 or k=3. The

second approach is based on group divisible designs.

5.6.1 Designs Arranged in Blocks of Size k=n:

When n=m GPBDS designs with block size n can be constructed by taking the

union of the following two sets of blocks:

SET 1 : Accommodate ij(j=O,l,.. .,p) in the ith block for i=l,2,...,p.

SET 2 : Accommodate ij(i=0,l,.. .,p) in the jth block for j=l,2,...,p.

The resulting design will be a GPBDS design.
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Example 5.10 For m=n=k=3 the design consists of:

SET 1 SET 2

10 11 12 and 01 11 21

20 21 22 02 12 22

has concurrence matrix:

NN' =
I

0

I ® / I

V

> I I®J + J®I_

showing that it is a GPBDS design.

This design is the most efficient design which can be generated by JE. The

total variance for this design is 15.04- The structure of the variance-covariance

matrix is very similar to the structure of the A-matrix of the design and it is

totally variance-balanced.

For n=3, the combination of the blocks in Example 5.10 with those in the

design for k=3 in Section 5.5.2 gives the following highly efficient GPBDS design

whose variance properties was discussed in Example 5.1:

Example 5.11 For m=n=k=3 and b—8, the following design which consists of

two sets each of 4 blocks; one set is constructed by the approach in Section 5.5.2

and the other set is given in Example 5.10, is a GPBDS design and the most

efficient design which can be obtained by JE. The design is:

SET 1

11 10 01

12 10 02

21 20 01

22 20 02

SET 2

10 11 12

20 21 22

01 11 21

02 12 22

The total variance for the resulting design is 6.429 which is less than half of the

total variance for each SET 1 and SET 2 which both give the value 15.04(15.04/2=

7.52). The discrepancy between bm and this value is 1.3% of the bound which

shows that the design is very efficient.

Numerical computations shows that for m=n=k=3 and b=4u, where u is an

integer, then if u is even, the design composed of u/2 copies of each of the above
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SETS 1 and 2 is very efficient. If u is odd, then [u/2] copies of SET 1 together

with [u/2] + l copies of SET 2 is very efficient, where [.] denotes "integer part of

". A design of equal efficiency is obtained from [u/2]+l copies of SET 1 together

with [u/2] copies of SET 2. The results for u= l , 2, 3 and 4 are given in Table

5.3.

Table 5.3 Designs and their discrepancies.

u

1

2

3

4

design

1 copy of Set 1 or 1 copy of Set 2

1 copy of Set 1 + 1 copy of Set 2

1 copy of Set 1 + 2 copies of Set 2

or

2 copies of Set 1 + 1 copy of Set 2

2 copies of Set 1 + 2 copies of Set 2

discrepancy

JE

0%

0%

0%

0%

0%

bm

19%

1.7%

3.3%

1.7%

5.6.2 Designs Arranged in Two Group Divisible Designs:

Suppose there exists a Group Divisible design with the parameters t=n(n-l), b, k,

r, mi=n-l, m2=n, Aj and A2. Then if we construct the following two sets of blocks

and combine them together, the resulting design is totally variance-balanced and

belongs to the GPBDS class of designs:

SET 1 : Let i0,il, i2,...,ip be the first associates and the other treatment com-

binations, excluding {0j;j=l,2,...,p}, be the second associates(i=l,2,...,p).

SET 2 : Let 0j,lj,2j,...,pj be the first associates and the other treatment combi-

nations, excluding {iO;i=l,2,...,p}, be the second associates(j=l,2,...,p).

Example 5.12 For n=3, t=6, b—12, k=4, using the group divisible design R94

of Clatworthy(1973,p200) we obtain a design with total variance of 3.504- The

discrepancy between this and bm given in Section 3.5 of Chapter 3 is 25% of

the bound. The design has totally variance-balanced property. However, a better

design generated by JE is not totally variance-balanced and has total variance of

2.904 with discrepancy 4%.

The variance-covariance matrix of the design consisting of SETS 1 and 2 is:

V = 2 x
W Z
Z' W
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where W = I2 ® (0.066/2 + 0.136J2) + J2 <g> (0.003/2 + 0.014J2) and

Z =

0.047 -0.017 0.017 -0.014

-0.017 -0.014 0.047 -0.017

-0.017 0.047 -0.014 -0.017

-0.140 -0.017 -0.017 0.047

We have considered Clatworthy(1973) to find how many designs can be con-

structed by this approach. There are 39 designs which can be generated from

Clatworthy. The following table gives these GD designs and their discrepancies

with the bound bm(see Chapter 3, Section 3.5). For only four designs constructed

by this technique, JE can be applied(fc < 18). The discrepancy of these designs

with the bound obtained by the algorithm is given as a second value in Table 5.4.

Table 5.4 : Assessments of designs constructed from

group divisible designs of Clatworthy5.

n Design reference and corresponding discrepancies

SR6(50,40) SR7(50), SR8(50), R20(23), R25(20),

R43(25), R45(23), R47(21), R49(20), R52(31),

R53(19), R94(25,21), R95(25).

S53(26,21), S54(28,21), S55(28), S56(28), S57(28),

SR26(46), SR27(46), SR68(39), R38(46), R72(32),

R76(29), Rlll(39), R143(29), R146(29), R167(31),

R174(3O), R193(28).

S106(33), S1O7(34), S1O8(34), SR46(48), SR47(48),

R124(38), R179(41).

SR88(54).

9 SR98(100).

Comment : As is clear from Table 5.4, these designs are not very efficient com-

pared with bm and are not recommended. However their construction is very easy

and all the contrasts of interest are estimated with the same precision.

5SR6 is the reference from Clatworthy and 50 denotes the percentage discrepancy between
bm and the design constructed from SR6 by the above method.
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Conclusions: In this chapter we have given a series of overall A-optimal

designs when each of the two factors has more than two levels and k > t and

00 cannot be used. Our attempt to find general results on A-optimal designs

included the case k < t, but it was not successful due to calculation difficulties

described in Section 5.3. Pursuit of this general problem is a topic for future

work. However, for the sake of practical needs we have given some construction

methods producing designs in the GPBDS class some of which are shown to be

highly efficient.

^



C h a p t e r 6

C o m p l e t e l y R a n d o m i z e d D e s i g n s

a n d W e i g h t e d A - o p t i m a l

D e s ig n s :

6.1 Introduction:

In previous chapters we considered block designs which are efficient for estimating

the dual versus single treatment contrasts. In the present chapter we first consider

the A-optimal completely randomized design for the contrasts of interest for a

general nxm censored factorial experiment in which treatment combination 00 is

excluded from the experiment. Then we consider completely randomized designs

and block designs which are efficient for cases in which the two sets of contrasts

dual versus A and dual versus B are not of equal interest. Finally, we establish

a design-dependent bound on the weighted sum of the total variances of each set

of these contrasts.

6.2 A-optimal Completely Randomized Designs

for nxm Censored Factorial Experiments:

In this section we consider an n x m censored factorial experiment conducted in

a completely randomized design and characterize A-optimal designs in terms of

the numbers of replications of each treatment combination involved in the design.

151
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6.2.1 Contrasts and Goal of Experiments:

Suppose an n x m censored factorial experiment is conducted in a completely

randomized design consisting of N homogeneous units with treatment combina-

tion 00 being excluded or censored. Suppose that the contrasts of interest are the

dual versus A and the dual versus B contrasts defined in Chapter 1(1.12). Then

we want to characterize those designs which minimize

n — 1 m—1

among all possible competing designs.

Let D(t,N) denotes the class of all possible completely randomized designs

with t=mn-l treatments arranged in N units. Also let:

A={10,20,...,pO},

(6.2)

where p = n — 1 and q = m — 1.

Also for d £ D(t,N), let n ,̂-, TIBJ and njoij denote the respective number of

replications of treatment combinations iO, Oj and ij in the design, where i=l,2,...,p,

j = l,2,...,q, and Tg, TA and To denote the total numbers of units receiving treat-

ments from sets B, A and D respectively in the design d, i.e.

B = £ j= i n-Bj, J-A = Ei=i nAi and 1D = J2i=i Lj=i nDij-

6.2.2 Sum of the Variances of the Contrasts:

It can be shown that for a completely randomized design:

1 1 ^
t=l i=l j=l nBJ ,=1 j

where p=n-l and q=m-l. Our aim is to find those designs which minimize (6.3).

6.2.3 Towards A-optimal Designs:

In this section we characterize A-optimal completely randomized designs for the

estimators of the contrasts of interest, in terms of the replications of the treatment
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combinations involved in the design. In other words by, (6.3), a design d (E

D(t, N) is A-optimal if it minimizes the function:

i i p i i p i

j=l nBj ,=1 nAi j=i ,=i nDij

over all possible designs in D(t,N).

Assume the total number of units of the design, N, is fixed. Then the problem

is to minimize the expression in (6.4) subject to the condition:

E nBj + J2nAi + EE nDij = N. (6.5)
J=l i=l j=l i=l

Now we can prove a theorem which enables us to find A-optimal designs.

Theorem 6.1 If for d 6 D(t,N), IB, ^A and try are fixed integers denoting

the total number of units receiving a B alone, a A alone and a dual treatment

respectively such that ts + t^ + tr> = N, then minimizing the expressions

(i) HjLl1 ;r~ subject to the condition that ts is fixed,

(ii) Yy?~i ;r~ subject to the condition that IA is fixed, (6.6)

("0 SjLl1 YX=i ^r~ subject to the condition that tf) is fixed,

is equivalent to minimizing:

i 1 P i i P 1+2SSw (6-7)
subject to condition (6.5).

Proof: If tB, tA and to are fixed then (i)-(iii) can be regarded as independent.

Therefore the global minimum of (6.5) under the given condition will be obtained

by minimizing each expressions in (i)-(iii) individually. Hence minimizing (i)-(iii)

independently subject to the required condition is equivalent to minimizing:

EE (
j=11=1 nDij

Hence the Theorem is proved.£

Now we give a theorem which characterizes A-optimal designs in terms of

and tr).
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Theorem 6.2 For d £ D(t,N), let TB) TA and TD denote the total numbers

of units in d which are assigned to treatment combinations in sets B, A and D

respectively. Then design d is A-optimal if:

f(TB,TA,TD) = min f(tB,tA,tD), (6.9)

for all (tB,tA,tc>) € E, where

ff. , . N p(2gfB + q - tB) q(2pfA + p-tA) ,
f{tB, tA, tD) = —-——r 1 —n——r h

rB[rB + 1) rA(rA + 1)

2{2pqfD +pg- tD)

fn(fD +1) ' l ' '

where f,- = [-̂ -] for i—B, A and D, mB = q, mA = p, mo = pq, [•] denotes "the

integer part of " and

E = {(tB, tA,tD); tB > q,tA> p, tD > pq; tB + tA + tD - N}.

Proof: By assuming tB, tA, and to fixed and by applying Theorem 6.1 and

Lemma 3.2 on page 72, we will get the required expression for f(tB,tA,tD). Then

if we let tB, tA and to vary over all E, the global minimum of f(tB,tA, to) will be

f(TB, TA, To), which is the minimum value for the total variance of the contrasts

of interest. Since design d achieves this minimum value, d is A-optimal.X

The following theorem gives a particular series of A-optimal completely ran-

domized designs for the contrasts of interest, by establishing the number of units

to be allocated to each of the (t-1) treatment combinations.

Theorem 6.3 Consider a completely randomized design d£ D(t,N), where N =

0 mod{2p1qi(pi+qi + 2p1qi)} for p\ = J(n — l) /2 and qi = J(m — l ) /2 integers.

Then if the numbers of replications in d of each treatment combination belonging

to the respective sets B, A and D are:

N
nB = - — ; :

nA = (6.11)
2pi{pi + qi + 2piqi)

A N

and tin =

then d is overall A-optimal.
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Proof: For any d£ D(t,N) with excluded treatment combination 00, by ex-

pression (6.3) we have:

P m-l 1 p 1 7 P 1

+ £ + 2 EEt=l 7 j=l "Bj ,=1 nAi j=\ t=l

But under the given condition we have:

i - Tio) + V(rtJ - rOj)} = ± J £

(6.13)

Then the problem is to minimize (6.13) subject to the condition:

E nBj + £ nM + E E nDy = JV. (6.14)
i=i «=i j - \ t=i

Employing a Lagrangian Multiplier, A , we obtain us , n^ and no as in the

theorem.Jfr

Example 6.1 For m=n=3 we have px = qx — 1. Hence for N = 0(mod8), i.e.

N — 8u(u > 1), the design with TIB = n^ = no = u is A-optimal. Thus, for

example, the A-optimal design for a 3 X 3 experiment in 16 units with 00 excluded

has every treatment combination replicated twice.

A computer algorithm in Fortran has been written to find those values of

(TB,TA,TD) £ E which minimize / ( ^ B , ^ , ^ )
 o v e r all possible ( ^ s , ^ , ^ ) G E.

This algorithm is given in Appendix B at the end of the thesis.

To illustrate the use of this algorithm a selection of A-optimal designs is given

in Table 6.1 at the end of this chapter. The designs selected are all those having

parameter values in the range 3 < m,n < 10 and iV < 100 and which have

equal treatment replication within sets A, B and D. It should be noted that, in

general, the A-optimal designs are not equi-replicate. The algorithm can be used

to provide designs for parameter values leading to nonequi-replicate A-optimal

designs, but these have not been tabulated here.

6.3 Weighted A-optimal Designs:

So far we have considered those designs which are efficient for the cases in

which the estimation of both sets of contrasts, dual versus A and dual versus
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B, were of equal of importance. However, experiments are often carried out in

which one set of contrasts is more important than the other. Different criteria

will, therefore, be needed for choosing designs appropriate for such experiments.

Pearce(1975) proposes maximizing the weighted mean of the efficiency factors of

interest. Freeman( 1976b) suggests minimizing the weighted mean(sum) given by

Y2i=i wiV(Cii.)> where C\r_ represents a contrast of interest and W{ > 0 is the

weight to be attached to this contrast. In other words if w6 denotes a diagonal

matrix with weights on its diagonal and C is the contrast matrix of interest, the

criterion is one of minimizing

tr(ws/2CnCws^) = tr(nCwsC). (6.15)

The difficulty is choosing appropriate weights, as the choice in practice is most

likely to be a highly subjective one. Jones and Eccleston(1980) have given a

computer algorithm to derive optimal block designs using criterion (6.15). We will

use the criterion suggested by Freeman(l976b), since it has statistical meaning

in our case.

Let WA and WB denote the weights (representing the degrees of importance)

for the dual versus A and dual versus B contrast estimators respectively, then the

sum of the weighted variances is:

AV{fii - fio) + wBV{ri0 - fo j)}. (6.16)
«=i i=i

Definition 6.1 If a design d has minimum value for

J ^ ( ^ - r,-o) + WBVifa - foi)} (6.17)

over all possible designs, where WA and WB > 0, then d is Weighted A-optimal

with respect to the weights WA and wB and will be denoted by W A ^ , ^ ) -

optimal.

In the next section we derive results which enable the overall WA(WA,WB)-

optimal completely randomized design to be specified for a limited selection of

weights. In the later sections we investigate the same problem for block designs.
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6.3.1 WA(WA, ws)-optimal Design Arranged in a Completely

Randomized Design:

For any completely randomized design it can be shown, by expanding (6.16),

that the sum of the weighted variances of the estimators of the dual versus single

treatment contrasts is:

1 9 P

J2Y,' ()
jT{ t = 1 nDij

where p=n-l, q=m-l and UBJ, n ,̂- and nuij are defined in Section 6.2.1.

The following theorem specifies the treatment replications for WA-optimal

completely randomized designs.

Theorem 6.4 The design d£ D(t,N) is WA(wA,WB)-optimal if yfpwB ,yfqw~A.

and y/wA + WB are integer values, N = 0(modNi) and

nBj =

where Ni = q^/p~WB + P\Zq~WA + pqVwA + WB and nBj> nAi and nDij give the
replications of the treatment combinations Oj, iO and ij respectively(i=l,2,...,p;

Proof: The problem is to find integer values UBJ, nAi and nrjij which minimize

the function:

(6-20)j2 ( ^ B ) E E
~{nAi i = 1 ,-=1 nDij

subject to the condition that

i p

7 = 1 t ' = l

By applying a Lagrange Multiplier, (6.20) is minimized if:

nBj = —
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nAi =

and
wB

for i = 1,2, ...,p and j = 1,2, ...,q.+

The following corollary is a special case of Theorem 6.4.

Corollary 6.1 For WB = p, WA = q and p + q = x2, where x > 0 is an integer,

the treatment replications which minimize the sum of the weighted variances(6.18)

in a completely randomized design of size N, where N = 0{modpq(2 + x)}, are

obtained by substituting Wg = p, WA = q-

Example 6.2 For a 3 x 3 experiment, p=q=2 giving x—2 and N\ — 16. / / we

let N=16l. for I any positive integer, then the values UBJ = nAi = nuij — 21 give

the WA (2,2)-optimal design. The same numbers of replications have been given

in Table 6.1 for the A-optimal completely randomized designs for these parameter

values, since in this example WA

Example 6.3 For a 6 x 5 experiment, p—5 and q=4 giving x2 = p + q = 9 and

x=3. If N=100, then UBJ = 5, n ,̂- = 4 and npij = 3 give the replications for the

WA (4,5)-optimal design.

For the same parameter values ifwA = WB then TIBJ = 4, riAi = 5 and n^j = 3

give the A-optimal replications (see Table 6.1).

6.3.2 WA(u^4, u;5)-optimal n x 2 Censored Factorial Exper-
iments Arranged in Block Designs:

As we have seen in Chapter 5, a characterization of the unweighted A-optimal

design in a general n x m censored factorial experiment arranged in blocks with

treatment combination 00 censored is very complicated. However, for big values of

k compared with t=mn-l , there are cases in which we can characterize a family of

A-optimal designs for comparing dual treatments with single treatments. In this

section we first consider weighted A-optimal block design for the n x 2 factorial

experiment. Then a general n x m censored factorial experiment arranged in

block designs will be considered for some specific circumstances.
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6.3.2.1 Weighted A-optimal Designs for n x 2 Factorial Experiments:

Let M denote the information matrix for the estimators of the dual treatment

versus single treatment contrasts as defined in Chapter 2(2.12) and M denote the

average of M over all permutations given in (4.3) in Chapter 4. Also let

) , (6.22)
^ 0 wAIp J

where p=n-l.

Now we are in a position to give a theorem which leads us to characterize

WA-optimal designs in our context. But first we need to give some lemmas.

Lemma 6.1 IfY — alm + bJm is a nonsingular matrix, then

Proof: It can be shown that Y has eigenvalues a+mb and a with multiplicities

1 and m-1 respectively. Also we have

t = i

where A,- is the eigenvalue of Y. The proof follows immediately from here.Jfr

Lemma 6.2 Let

v
—

be a nonsingular matrix. Also let

+ yiJm X2Im +

+ 2/2Jm

X11 X12

X21 X22

where X21 = X'12.

Then we have

and
2 2tr{A ) =

where d\ = Xi + myi, d2 =

— x\

-f
— X2 0,10,3 — 0,2

and d3 = x3 + my3.
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Proof: Let Xu = x\Im + y\Jm, X\2 = x2lm + 2/2̂ m and

Then we have(Ref: Graybill,1983,pl84)

(X ) X2\.

But

x2y2d3

y3Jm.

On substitution after some algebra we obtain

where

a =

By applying Lemma 6.1 we get the required expression for tr^X11). The proof of

the second part follows similarly.^

Theorem 6.5 Suppose M is the average of M over all permutations as given

in Chapter 4(4-3) and its elements are as given in Lemma 4-2. Then for the

partition

M'12 M22 (6.24)

we have

tr(M22) = ( n ~

- dz
AD qAqB - qAB

dp - 2dAD) + qB

(6.25)

dAdp — d2
4D

where dA, dp, dA£>, qA, qB and qAB were given in Chapter 4(4-15)-

Proof: Since M has the same structure as X in Lemma 6.2, by using Lemmas

6.2 and 4.2, we obtain
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X\ = d,A + do - Id AD,

d\ = qA + qD —

( 6 2 6 )

dz = qA-

From here by using Lemma 6.2 and some algebra we get the required expressions.^

Theorem 6.6 Let ws be as defined in (6.22), then for any design d € n x 2

CFBD(OO) we have:

(n - 2){(WA + UB)dA + wAdD - 2wAdAD} |

dAdD - d\v

wBqA +

qAB

where dA, dp, dAD, qA, ?B and qAB were given in Chapter

Proof: Let for any positive definite matrix, X, define $(X) =

then $ is a convex functin, i.e.

where M is defined in (4.3). But we have

since if we partition M~l as follows

Mu M12

M21 M22

then from (6.22) we obtain

(wBWAy/2PiMi2
P't

WAPiM22p\

This implies that

= wBtr{Mn) + wAtr(M22) = tr(
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Also we have

= wBtr(Mn) + wAtr{M22).

Applying Lemma 6.2 we will get the required expression in (6.27). Hence the

result follows.X

Corollary 6.2 If in the statement of the Theorem 6.6, M denotes the information

matrix of the contrasts of interest in a PBDS design, the inequality in (6.27)

changes to equality.

Proof: If the design is PBDS, then M = M, and the proof follows.4»

6.3.2.2 Weighted A-optimal Designs for n x m Factorial Experiment:

In this section we try to characterize WA(tu.4, ̂ B)-optimal designs for a general

n x m censored factorial block design with 00 censored.

The generalization of Theorem 6.6 to m > 2 is very complicated because, as in

Theorem 5.1, it is very difficult to calculate the bounds. However, there are cases

in which the problem can be simplified. This simplification normally happens for

those cases in which k > t = mn — 1. In this section we utilize all the notation

which has been used so far, especially the notation of Chapter 3. The matrix of

weights for this case is:

f
0 wA

where &=(n-l)(m-l), wA and WB are positive real values.
Theorem 6.7 For an n x m CFBD(OO) design we have

tr(wsCnC) > pwB J2 — + q*>A E — + ( ^ + WB) E E — ' (6-29)
r r rD

J2 q E
j=\ rBj i=\ rAi

where ws is given in (6.28) and C is defined in Chapter 1(1.12).

Proof: If r5 denotes the diagonal replication matrix as given in (3.3) in Chapter

3, then by Lemma 3.1 there exists a g-inverse, 17, such that 17 —r5 is non-negative

definite. Then by Graybill(1983,p396) wsC(Q - r~s)C' is also a non-negative

definite matrix. This implies that
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tr{wsCVtC) > tr(wsCr~5C) = tr(C'wsCr-s).

It can be shown that

C'wsC =

Therefore we can show that

0

qwAIp

-wAIp ®

-wBl'p
-wAIp

(6.30)

(6.31)

tr{C'wsCr-s) = pwBtr(r-B) + qwAtr(r-A) + (wA + wB)tr(r-D), (6.32)

where rB , rA and rD were defined in Chapter 3(3.3) and r~x denotes the inverse

of rx. The result follows immediately from here.&

Corollary 6.3 If d is an n x m CFBD(OO) design, such that N'r~sC' = 0, then

the inequality (6.29) becomes equality.

Proof: Since N'r-6C = 0, it follows that

^C = C. (6.33)Ar~sC' = (rs - jNN')r-sC = C - ^-

On premultiplying (6.33)by C17 and using the estimability condition CQA =

C, we obtain:

cnc = cnAr~sc = cr-
5c.

Thus wsCnC = wsCr-sC The result follows immediately.*

(6.34)

Theorem 6.8 In an n x m CFBD(OO) design, let TB = £,?=i rBi, TA = E L i rAi

and To = X2?=i S]=i rr>tj te regarded as fixed and such that TB > q, TA > p,

TD > pq and TA + T& < bk — q. Also let fA = [TA/p], fB = [TB/q] and fD =

], then

tr{wbCr bC )>pwB
I fB(frB

qwA

2pfA+p-TA

, rA(rA + l)

(wA + wB)
2pqrD +pq-TD (6.35)
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Proof: Follows from the fact that if TA and Tp are regarded as fixed, then

TB = bk — TA — To is fixed, and the minimization of tr(w6Cr~sC) follows from

Lemma 3.2.J|b

The minimum value for tr(wsCr~sC) in Theorem 6.8 is a function in terms

of TA and Tn only since p and q are fixed and TA, fs and fp are functions in

terms of TA, TB and To respectively. Therefore let

2pfA+p-TA\
| +

pq - TD \ . .

+ i ) r ( >
Let TB = ?rB + as , where 0 < as < q, To — pqfo + an', 0 < a£> < pq and

^A = pr^ + aA; 0 < aA < p. Then if we substitute TA, TB and To from here into

F{TA, TJD; WA, WB), we will obtain the function in terms of a A, TA, O-B, TB and ap,

rD, viz

F(TA,TD;wA,wB)

wA wA + wBs \ pwBaB , qwAaA {wA + wB)aD\

^+^D—)-\¥BWTT)+JAFA-n)+ ?D(r-D + i) ) •

For given weights wA and WB a simple computer algorithm could be used

to obtain weighted A-optimal designs with equal replication for the treatment

combinations within each set in each block, by the following steps:

STEP 1 : Finding those values of TA and TB which minimize (6.37).

STEP 2 : Checking that TA/p, TD/pq and (bk - TA - TD)/q are integers.

STEP 3 : Checking that riAij = TU/6p, nouj — To/bpq and nBij = (bk — TA —

Ta)jbq are integers.

STEP 4 : Checking that the incidence matrix N with nB(j, nAij and TIDUJ satis-

fies the condition N'r~sC — 0. Then, if this condition is satisfied the design

is weighted A-optimal.

The following theorem characterizes a family of weighted A-optimal designs.

Theorem 6.9 Consider a design for an n x m experiment with block size k =

0{mod pq(2 -f x)}, where p=n-l, q=m-l and p + q = x2, for x > 0 an integer.
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/ / the design has the following numbers of replications within each block for any

treatment combination belonging to sets B, A and D respectively:

k
nB =

kx
and nu =

then the design is WA(q,p)-optimal.

Proof: For any d € n x m CFBD(OO) if N'r~sC = 0, then from Wu(1980) we

have:

tr(wsCnC) = tr(Cr-sC) = pwB £ — + qwA £ — + (wA + w
r ,=1 rAi

(6.39)

The problem is to minimize (6.39) subject to the condition:

rBj + J2rM + J2E rDH = bk, (6.40)

where bk is the fixed total number of units.

Applying a Lagrange Multiplier, A, we will get the required result. For those

designs with n^, nB and no given in (6.38) as the respective number of replica-

tions for any treatment combination belonging to sets A, B and D, the condition

N'r~sC = 0 is satisfied. Hence the theorem is proved. Jft

Example 6.4 For a 2 x 4 experiment, we have p=l, q=3 and hence x=2. Then

for k=12, the design which accommodates the following set of treatments in each

block is WA (3,1)-optimal:

01 02 03 10 10 10 11 11 12 12 13 13

Example 6.5 For a 3 x 3 experiment we have p=q=2 and hence x=2. Then for

k=16, the design with the following set of treatments in each block is WA(2,2)-

optimal:

01 01 02 02 10 10 20 20 11 11 12 12 21 21 22 22
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6.4 Conclusions:

In this chapter sufficient conditions are established for a completely randomized

design to be A-optimal for the estimation of the dual versus single contrasts. It

is found that a completely randomized design is optimal if the treatment combi-

nations within each of the sets A and D are replicated equally often throughout

the design. A selection of A-optimal designs which have this property are sum-

marized in Table 6.1 for 3 < n,m < 10 and a total number of units at most

100.

The result is then generalized to establishing conditions for a completely ran-

domized design to be weighted A-optimal in the sense of minimizing a weighted

sum of the variances of the estimators of the dual versus single contrasts.

Finally, the problem of finding block designs which are weighted A-optimal is

considered. A design-dependent bound on the weighted sum of the variances is

derived for given weights. This could be used to find a bound, which is not design-

dependent via the approach of Chapter 4 and hence could lead to characterizing

weighted A-optimal designs.
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Table 6.1: Number of replications r#, T\ and TD

of the treatment combination belonging to the

respective sets B, A and D in an A-optimal

completely randomized design of N units.

n

3

m

3

4

N

8

10

14

16

24

32

34

40

42
46

48

56

64

72

78

80

88

90

94

96

98

11

13

19

22

24

33

35

44

46

TB

1

1

1

2

3

4

4

5

5

5

6

7

8

9

9

10

11

11

11

12

12

1

1

1

2

2

3

3

4

4

TA

1

2

2
2

3

4

5

5

6

6

6

7
8

9

10

10

11

12

12

12

13

1

2

2

2

3

3

4

4

5

1

1

2
2

3

4

4

5

5

6

6

7

8

9

10

10

11

11

12

12

12

1

1

2

2

2

3

3

4

4

n

3

m

4

5

6

N

57

59

65

68

70

79

81

87

90

92

14

16

24

28

30

44

46

54

58

60

72

74
76

84

88

90

98

17

19

29

TB

5

5

5

6

6

7
7

7

8

8

1

1

1

2

2

3

3

3

4

4

5

5

5

5

6

6

6

1

1

1

TA

6

7
7

7
8

8

9

9

9

10

1

2

2

2

3

4
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C h a p t e r 7

R e l a t e d P r o b l e m s a n d

C o n e l u s i o n s

7.1 Introduction:

In this chapter two problems related to those of the earlier chapters are discussed,

and issues for future work are described. In Sections 7.2 and 7.3 we consider the

estimation of factorial effects in completely randomized and randomized block

designs when a particular treatment combination is excluded from the experiment

and some of the effects are assumed to be negligible. We concentrate on the

case when the treatment combinations are equally replicated, and show that

the greater the dependence of the set of negligible contrasts on the excluded

treatment combination, the smaller the increase in variance due to excluding it.

Also it is shown that low involvement of the excluded treatment combination

in the contrasts to be estimated leads to low loss of precision in estimating the

contrasts. Further, a linear combinations of the set of negligible contrasts which

maximizes the precision of the estimators of the contrasts of interest is found.

The main practical application of this work is when it is possible only to use a

single replicate of the treatment combinations due to cost constraints.

In Section 7.4 we consider briefly how to generalize the results to choose

the possibly unequal replications in a completely randomized design so that the

factorial contrasts of interest can be estimated with high precision.

In Section 7.5 we consider for a variety of problems, the similarity between the

structure of C"C(the coefficient matrix corresponding to the contrasts of interest),

and the structure of the A-matrix of the class of designs which is sought to be a

172
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source of efficient designs.

7.2 Estimation of Factorial Effects:

We again consider experiments with a single excluded treatment combination,

but now investigate the estimation of the factorial effects, in particular the main

effects and low order interactions. We consider n factors Fi, F2,...,Fn at mi,

m2,...,mn levels respectively giving t — n™=i rni treatment combinations in all.

Suppose the particular treatment combination which is not allowed in the exper-

iment is i\i2...ini in which factor Fj has level labelled ij(ij = 0 ,1 ,2 , . . . , nij — 1).

For example i^-.-in could be an unsuitable treatment in a medical trial.

We restrict consideration to the following classes of designs:

1. Completely randomized designs under an additive model for treatments and

errors.

2. Block designs in which treatments are orthogonal to blocks and an additive

model is assumed for treatments, blocks and errors.

In general for an experiment in which iii2...in is excluded it will not be possible to

estimate each factorial contrast separately, and a quantity calculated to estimate,

for example, a particular main effect will in general depend also on the true value

of one or more other factorial contrasts. An appropriate design is one which

estimates each main effect and, if possible, each low-order interaction, in such a

way that these effects are entangled or aliased only with high-order interactions. If

it is valid to assume these high order interactions are negligible then estimation of

the main effects and low order interactions is possible. In addition, assumptions

of negligible high order interactions are sometimes made in order to estimate

error in fractional factorials. This practice also arises in single replicate factorial

experiments but needs to be used with caution(see Cochran and Cox,1953,pl89).

In a factorial experiment involving n factors let Cxj_ denote a set of nx in-

dependent normalized contrasts within a particular factorial effect. Let Cyr_ be

a set of ny independent normalized contrasts which can be assumed negligible

and which belong to a different factorial effect. Further let both CXT_ and Cyr_

involve the effect of iii2...in. It is possible to estimate CXT_ from the design by

using the fact that any linear combination of the contrasts in Cyz, say YCyJi,

can be assumed zero and hence can be used to eliminate the effect of ti
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from CXT_. This is analogous to the estimation of contrasts in classical fractional

factorial experiments. Thus we obtain the following set of contrasts which can

be estimated from the data on the (t-l) treatment combinations alone:

Cx'r = (Cx — f ® VCy)T (7 1)

where f is an nx x 1 vector defined in (7.2) below. By assuming the negligibility

of VCyr_, it follows that in the design with only (t-l) treatments Cx"'r* can be

used as an estimator of CXT_ even though one of the treatment combinations has

not been observed, where Cx" is Cx* after eliminating the column involving the

excluded treatment combination, r* is obtained from j_ by removing the effect of

the excluded treatment combination and r_* is the least squares estimator of r*.

The vector of real numbers, / , must be chosen in such a way that the coefficient

involving the excluded treatment combination in CX*T_ is zero. This is achieved

by giving the ith element of f the following value:

r _ 'l'l'2-'n) |"T 2)
Jt — ,/^y 1 K'-^J

for i — 1,2, ...,nx, where Q>tiI-2 t- * denotes the coefficient of the effect of the

excluded treatment combination iii-2...in in the ith contrast belonging to set CXT_,

and CP-ii2 in is an ny x 1 vector whose entries are the coefficients of the excluded

treatment combination of the contrasts belonging to the set Cyr_. The set of

the contrasts CX'T_ will be called the contrasts of interest adjusted for VCyz.-

Without loss of generality, we restrict consideration to a normalized vector /,

that is having VI— 1.

Example 7.1 In an 3 x 3 factorial experiment, let treatment combination 00 be

excluded and suppose we want to compare the first and the third levels of the first

factor, i.e. we want to estimate the single contrast:

1
CXT = - = ( - 1 - 1 - 1 0 0 0 1 1 1 )r.

We assume the following contrasts from the interaction are negligible:

_ _ L _ - 1 0 1 2 0 - 2 - 1 0 1

~~ y/Vl - 1 2 - 1 0 0 0 1 - 2 1 ~

As an illustration we use the linear combination VCyji = ( l / \ /5)( l — 2)Cyr to

facilitate the estimation ofCxj_, giving:

VCy = -==( 1 - 4 3 2 0 - 2 - 3 4 - 1 ) .
V60
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Since the values of the coefficients of the excluded treatment combination in CXT_

and Cyr_ are given by

C?(oo) = - V ^ and C^ = -

respectively, it follows from (7.2) that f = (- l />/6)/( l / \ /60) = - \ / IO. Hence,

on substituting in (7.1), we obtain

Cx' - - 7=( 0 - 5 2 2 0 - 2 - 2 5 0 )
V6

and Cx'' T_ estimates CXT_.

7.3 Experiments Arranged in a Completely Ran-

domized Design and in a Randomized Block

Design:

In practice there is often a choice of negligible interactions, CyT_, which can be

used for estimation purposes. In addition we can also choose the particular linear

combination VCy to employ in (7.1). In order to decide on the best choices for any

particular experiment in a completely randomized design or a randomized block

design we consider the loss of information due to the exclusion of the particular

treatment combination and how it depends on / and Cy. We assume that a2 is

the same in the experiment with the treatment combination excluded and the

hypothetical experiment with the treatment combination included.

Definition 7.1 In a factorial experiment, let Cxr_ and Cvr_, be the set of con-

trasts. Then tr [V{Cx"z) - V(Cxt)] will be called the total loss of informa-
tion on the contrasts CXT_, due to excluding treatment combination i\i2...in &

nd

assuming V_CVT_ = 0.. We assume that a2 is the same for the experiment with

the excluded treatment combination as it is in the hypothetical experiment em-

ploying all the treatment combinations, and, for simplicity, we take a2 = 1. Thus

tr | V(CX"T*) — V(CXT_) | represents the loss in precision per unit variance due to

the excluded treatment combination It will be denoted by Loss(Cx\i\i2---iml-,Cy).

Example 7.2 Suppose Example 7.1 is conducted in a completely randomized de-

sign, in which each allowable treatment combination is replicated r times . Then

V(Cxt) = r-lCx(Cx)' = r~\ Also, V(Cx't) = r-lCx\Cx')' = llr~l. Therefore,

by Definition 7.1, loss = (11 - I)?-"1 = lOr"1.
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In the remainder of this section we examine the conditions on Cy and / which

give minimum loss of information in the estimation of CXT_ when one treatment

combination is excluded. In order to do this we require the following definition

and lemma.

Definition 7.2 Let v. be an n x 1 vector in RJ1. The norm of v_, ||t;||, is defined

by:

Il22.ll = to)1'2. (7-3)

Lemma 7.1 For any non-negative definite matrix X of the form x x_'; where x

is a column vector having at least one of its elements non zero, the maximum

eigenvalue of X is \\x_\\2, with corresponding eigenvector z_ = ax_(for any a ^ 0).

Proof: Since x_ ̂  (), it follows that r(X) = r(x) — 1. The matrix has

only one non-zero eigenvalue which is positive. Because the matrix is non-

negative definite, the other eigenvalues are zero, and the non-zero eigenvalue

equals tr(X) — tr(x_ x.') = ||^||2- Let 5, be the eigenvector corresponding to this

eigenvalue, then we must have:

Z.rfs = \\x\\2s. (7.4)

Clearly vector s. — ctx_ satisfies the above equation for any a ^ 0. Therefore

s_ = ax_ is the eigenvector corresponding to the unique non zero eigenvalue of X.

Hence the Lemma is proved.X

Lemma 7.2 (Rao,1973,page 62) Let X be a m x m matrix, Xi > A2 > . . . > Am

be its eigenvalues, then for any vector w.^ Q_,

n/Xw ,
max = Ai.

Theorem 7.1 Consider an equireplicate completely randomized design or a ran-

domized block design under an assumed additive model for the observations. If

we assume that \\l\\ = 1 and that a2 is the same for the hypothetical experiment

involving all treatment combinations and for the experiment with a single excluded

treatment combination, then

l^^j (7.5)
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where (2fll2 ,-n is an nx x 1 vector in which its ith element is the coefficient of

the excluded treatment combination of the ith contrast belonging to the set CXT_

and Cflt-2...tn is an ny x 1 vector in which its jth element is the coefficient of the

excluded treatment combination of the jth contrast belonging to the set Cyz.-

Proof: In an equireplicate completely randomized design or a randomized

block design with member of the full set of t treatment combinations replicated

r times:

V(CXT) = r-lCxC'x. (7.6)

When all replications of iii2...in are excluded, we have:

i_) = r-lCx'C'x\ (7.7)

where Cx' is denned in (7.1). It can be shown that:

Cx C'x = CXCIX + / / ' ® {WyC'yD - Cx{f ® C'y[} - ( / <g> VCy)C'x. (7.8)

Since Cx and Cy are contrast matrices for different factorial effects, we know that

CxC'y = 0. Hence (7.8) becomes

CX'C'X' - CXC'X + (HCyClyl)l /'. (7.9)

Therefore by assuming a2 is the same in both included and excluded cases,

we have:

where:
\\C II

f ' f - l l^L ' i '2- ' "1 1

LL ypy piy f

L^i1i2...in^i1i2...inL

We can find the maximum value of the denominator by taking x, = CJli2 in

and applying Lemmas 7.1 and 7.2. This maximum is tr(C_y
ii2 inC!y

ii2 in) =

Corollary 7.1 If in the statement of Theorem 7.1 the rows of Cyr_ are orthogo-

nal, then

Loss(Cx;ili2...in,lC
y) > r-1!!^11'2-'"!!', (7.11)
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and the minimum is achieved when

Proof: From Theorem 7.1, we have:

Loss{Cx\ili2...in,l_,Cy) > r-^/'CC""/)

On substituting CyC /y = I, the result follows, since /'/ = 1 . *

Example 7.3 In Example 7.1, ||C£ol|2 = ||£Z£ol|2 = 1/6. In order to obtain the

minimum loss for the particular choice of CVT_ we should take { — ( l / \ /2) I ,

giving loss = r~l which is very small compared with the loss in Example 7.2.

Discussion 7.1 Corollary 7.1 tells us that to obtain the minimum increase in

variance on sets of orthogonal contrasts within the factorial effects of interest,

we should choose that matrix Cv which has maximum value for HC ,̂̂ ...,-,,!!2 and

use this, together with the consequent I, for all the factorial effects. Further

||CJit-2 ,-J|2 is a maximum when the absolute values of the elements of CJi:-2,..,-„

are as big as possible. This simply means that the greater the dependence on the

excluded treatment combination in the set of negligible contrasts, the smaller the

increase in variance due to excluding it.

From Corollary 7.1 we can also see which factorial effects will suffer the least

loss in precision due to excluding the treatment combination as follows:

The minimum value for the loss function is minimized if ||(Zf,- t-J| is min-

imized, that is if the absolute values of the elements of C.fll2...,n are as small as

possible(in the sense of small absolute coefficients). This simply means that low

involvement of the excluded treatment combination in the contrasts to be esti-

mated leads to low loss of precision on them. In the extreme case when a set of

contrasts does not include the effect of the excluded treatment combination the

variance of the estimator does not change, whether the treatment combination,

i-\.i2---in is involved in the design or not.

Corollary 7.2 Let Cwr_ be the maximal set of neglected factorial effects with the

properties that:

1. for each Cvr_ C C°T_, C l̂t-2...,n contains nonzero elements only,
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2. rows of Cy are orthogonal,

and let Cv be a proper subset of Cw, then

min Loss(Cx; iii2...in,L min

Proof: From Corollary 7.1, we have:

min Loss(Cx; i\ii---in,L, = r
\cw

But by definition:

(7.13)

(7.14)

where Cs is a set of contrasts which is not in Cv and it is a non-empty subset of

Cro. Therefore

and the result followTs.J|i

Corollary 7.2 shows that in order to minimize the loss on factorial contrasts

of interest, we should use a linear combination of as large a number of negligible

factorial effects as possible. The following two examples illustrate the gains to be

made.

Example 7.4 If in Example 7.1 let :

\/3 0 - A / 3 0 0 0 -v /3 0 y/3
1

VT2
- 1 0 1 2 0 - 2 - 1 0 1
- 1 2 - 1 0 0 0 1 - 2 1

and

Then

and

- 1 0 1 2 0 - 2 - 1 0 1

- 1 2 - 1 0 0 0 1 - 2 1

min Loss(Cx; i\i2---in,L Ca) = OAr'1.

min Loss(Cx;iii2...in,[,Cv) = r"1.

r .
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Example 7.5 An 3 x 4 experiment is conducted in a completely randomized de-

sign, in which each treatment combination is replicated r times except for the

treatment combination 00 which is excluded from the experiment. Our aim is

to estimate the orthogonal polynomial contrasts within the main effects and the

linearxlinear interaction, by assuming that all the other interactions are negligi-

ble. Therefore

Ca = {Cy; Cy^consists of all the interactions except linearxlinear}.

Then (see Lindman,1974,page 325 for coefficients)

C£o = (l/\/l20)( -VI5 - 3

and

= (l/\/l20)( -y/IS VE -3^2 \/l0 -y/2 3v"3 )'.

For this case

mm

Now, let

Cvj_— { linearx cubic, quadraticx quadratic and quadraticx cubic interactions}.

Then clearly C v C Cro. It can be shown that

min loss(Cx, 00, Cv) = 8.55r~1.

which is greater than 2.33r-1.

7.4 Loss Function in Designs with Unequal Repli-

cation:

So far in this chapter we have considered designs which are equreplicate. One

application of these findings is in single replicate factorial experiment in which

each treatment combination is replicated once in the entire design. Now we

consider unequal replicate designs. Suppose that, in a completely randomized

design, rt- denotes the number of replication of treatment combination i in the

design for i=l,2,...,t, and

rs - diag(ri,r2,...,rt).
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Our aim is to estimate CXT_ under the condition that the treatment combination

labelled u is excluded from the experiment and Cyr_ is assumed to be negligible.

If there is no exclusion we have

tr{V(Cxt)} = tr(Cxr-sCx>) = £ £ ^ , (7.15)
t=i j=i r i

where nx denotes the number of rows of Cx, and Cfj denotes the coefficient cor-

responding to the jth treatment combination in the ith row of Cx. Now if we

assume that the treatment combination labelled u is excluded from the experi-

ment and Cyr_ is negligible, then as in Section 7.2 we can estimate Cxr_ by C"xr_

in a design with u excluded, where C**r_ is defined in (7.1). Therefore

tr{V(C'xf}} = tr{C*xr-sC*x>) = f^ £ ' ij . (7.16)
i=i y=i ri

Hence, by definition

nx t ln*x\2 nx t tnx\^

i=\ j = l ' 3 i=l j=l

After some algebra we obtain

";«,l,Cy) = } j £ ^ ^ — ^ ^ — 1 X luJ " y—-^-. (7.18)
1=1 j=i ri

It is obvious that (7.18) is not necessarily minimized when the rj's are made

equal, unless the condition

{n 3 ^Z^} (7.19)
is satisfied for j ^ u; j=l,2,...,t. Under this condition equireplicate designs give

small loss in precision on the contrasts of interest. More work is needed to ex-

plore which choice of linear combination of negligible factorial contrasts gives the

smallest loss in precision on the contrasts of interest.

7.5 Similarity of C'C and A-matrix Structure:

In this section we consider the general problem of how to locate a class of de-

signs which contains highly efficient(including A-optimal) designs for estimating
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a specified set of treatment contrasts. This is often a valuable short cut to find-

ing good designs since it is easier and quicker to search through a subclass rather

than to consider all possible designs. By a further application of Theorem 3.2

on page 76, we show how the structure of the A-matrix of a class of designs for

estimating contrasts Cr_ can be linked to the structure of C'C.

It should be noted here that the idea of this section comes from Section 3.3 of

Chapter 3. Therefore we shall refer to that section whenever it is needed without

mentioning the chapter.

The designs have the following property.

Definition 7.3 A design has property S with respect to a contrast matrix
C if the A-matrix of the design and C'C have the following features in common:

1. a set of orthonormal eigenvectors,

and

2. the multiplicities of the corresponding eigenvalues.

Corollary 7.3 If there exists a design with property S with respect to the matrix

C, then

tr(CnC) = £ Y-, (7.20)

where C, #,- and A,- are defined in the statement of Theorem 3.2.

Proof: From (3.20), tr(CnC') = YliZl K%C'C^.. If £. = /£., where JX. is the

\th normalized eigenvector of C'C with corresponding eigenvalue #,-, then

Therefore we have tr(CnC') = £ j - j 0,-A,"1.*

This corollary simply says that property S designs with respect to C can

achieve the bound in Theorem 3.2. However this bound is design-dependent and

is not an overall bound for all possible designs. Therefore, for a specific contrast

matrix C a design known to have property S will not necessarily be efficient

because the bound achieved in (7.20) might be very poor.

However Corollary 7.3 can enable us to find an A-optimal design by the fol-

lowing procedure
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1. Calculate 62 = min YL^il^i o v e r a n possible designs.

2. Search through the class of designs with structure S to locate a design

achieving 62, if one exists.

If a design is located in this way then, by Theorem 3.2, it is A-optimal. If a

design cannot be found to achieve 621 then we can consider that design in the

class which has a value for tr(CSlC) closest to 62- However, in general, we have

no guarantee that this design will be highly efficient. Nevertheless, for a range

of practical problems, that is specific contrast matrices, the best design having

property S turns out to be highly efficient. We illustrate this approach through

considering the following 3 problems.

• Dual versus single treatment contrasts.

• Test treatments versus

1. a set of control treatments,

2. a single control treatment,

• A full set of orthonormalized contrasts.

Clearly location of subclasses containing efficient designs must proceed by sepa-

rate consideration of the different C-matrices of interest. This is seen from (7.20)

since the eigenvalues of C'C are involved in the bound. Hence there will not be

a single subclass of designs which hit the design-dependent bound (7.20) for all

C-matrices.

For each of the four problems we adopt the same strategy, namely identifying

a set of eigenvectors of the C'C matrix and then specifying the structure of the

A-matrix in terms of the eigenvectors so that (7.20) is satisfied. We require the

following lemma.

Lemma 7.3 Suppose x_lt x_2, ..., a^_i is a set of orthonormalized column vectors

of order £ x 1, such that x^l=0 for i = 1,2,..., £ — I, then we have:

!>*:• =//--U- (7-22)
1 = 1 l
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Proof: Let y = £~x^\j.-, then the vectors y, x_i, :c2, . . . , xj_i form a basis for

the £ x £ vector space. This implies that:

e-i

' = It- (7.23)
t = i

But yj/ = £ 1Ji and the result follows.4k

7.5.1 Dual versus Single Treatment Comparisons:

In this section for simplicity we consider only n x 2 CFBD(OO) experiments and

prove that the class of designs having structure S is a subset of the PBDS class.

From (2.4), we have:

C'C = 0 Ip -Ip

-1, -Ip 2 / p

(7.24)

The eigenvalues of this matrix which are given in Table 7.1 have been deduced

from Table 3.1 by taking q=l .

Table 7.1: Eigenvalues of C'C matrix.

Eigenvalues^,-)

n+2+-v/(n+2)2-4(2n-l)
2

n+2-v/(n+2)2-4(2n-l)
2

3+\/5
2

3-y/5
2

0

multiplicities

1

1

n-2

n-2

1

Lemma 7.4 The eigenvectors of the C'C matrix given in (7.24) for an n x 2

CFBD(OO) experiment are:

1. £'. = c\ 0; y'. , (1 — 6i)y'.\ for i=l,2,...,n-2, corresponding to 6\ = (3 —

\/5)/2, such that y. 's are (n — 1) X 1 contrast vectors in which j/.y_. = 8'i,

where 8'i=1 if i = j and 0 if i ̂  j .

2- I.!- = C2 [° i yLn+2 ' (X ~ 6)2)y)_n+2] for i=n-l,n,...,2n-4, corresponding to
92 = (3 + v/5)/2,

3- i L - 3 = C3 [l, ( x Z ^ n l p r , (n ~ 1 - ^)(n - l)"1!'] corresponding to 03 =

[n + 2 -
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[ra + 2 + y/(n-2)2-4(2n- 1) ] /2,

i'] corresponding to 6A =

5. (f = i ^ , corresponding to 85 = 0, where Cj 's(j=l,2,3,4) are normal-

izing coefficients.

Proof: The proof follows by showing that C'C^. = #,£. in each case.Jfr

As we have shown in Chapter 2, an n x 2 CFBD(OO) design is PBDS design if

and only if it has the A-matrix of the structure W given in (2.20) of Chapter 2.

Now we are in a position to give a theorem which specifies the structure of

the A-matrix for a design with property S with respect to the dual versus single

treatment contrasts.

Theorem 7.2 If a design has property S for the dual versus single treatment

contrasts, then it is a PBDS design.

Proof: Let

where the £.'s are given in Lemma 7.4.

Suppose design d has property S, then we have

02/71-2

(7.25)

a4

0 0

(7.26)

where the Q,'S are the distinct eigenvalues of the A-matrix. Since the columns of

F form an orthonormal basis for a t x t vector space, F is a nonsingular matrix

such that FT = FF' = It. Therefore from (7.26) we have:

a4

r.
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By applying the spectral decomposition(see Mardia, Kent and Bibby,1979, p469)

we obtain:

n-2 2n-4

t'=l i = n - l

Then by substituting for £.'s from Lemma 7.4 and applying Lemma 7.3 it

follows that the A-matrix has structure W. Therefore design d is a PBDS design.

This completes the proof.Jfr

Discussion 7.2 Theorem 7.2 illustrates how identifying property S designs leads

us to a class which contains highly efficient designs. We have established in

Chapter 2 that the PBDS class contains efficient designs. It also includes some

A-optimal designs (as was shown in Chapter 4)-

7.5.2 All Sets of (t-1) Orthogonal Contrasts:

In some experiments a specific set of contrasts for investigation is not known

prior to the experiment; for example if we want to identify the treatment giving

the 'best' response in some sense we analyse the experiment by using multiple

comparison tests. In these circumstances a design is required which is efficient

for estimating any set of orthogonal contrasts. We now identify the S property

designs for this problem. First we consider the bound.

Corollary 7.4 If Cj_ is any set of t-1 orthonormalized contrasts, then we have

^ 1
j:y (7.28)

where the A,- 's were given in the statement of Theorem 3.2.

Proof: Let Q is the Moore-Penrose g-inverse of the A-matrix of the design,

then

tr{cnc) = tr{ncc).

By Lemma 7.3 we have C'C = It — l/tJt. Therefore

tr(cnc') = tr(n(it - i/ut) = tr(n) - tr(i/mjt).

But the second term in the RHS of the above expression is zero and by the

property of Q, the first term in the RHS gives the required expression in (7.28).J|k
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T h e o r e m 7.3 A design has property S for any set of t-1 orthonormalized con-

trasts between the treatments if and only if it is a BIBD or BBD design.

Proof: In this case C is a set of t-1 orthonormal contrasts, therefore by Lemma

7.3 we have C'C — It — (l/t)Jt. It can be shown that the columns of F =

(^i)^2) • • • >-£i-i)^~1/'2I) a r e eigenvectors of C'C matrix, where the z;'s are < x l

column vectors such that, (a): x!{x_j = 6t:>, where (5JJ = 1 if i=j and 0 otherwise,

and (b): x(I = 0 for i=l,2, . . . , t- l , then

1. Suppose the design is BIBD or BBD, i.e. its A-matrix can be denoted by

A = alt + bJt, then

T'Ar = aT'T + bT'JtT. (7.29)

But by Lemma 7.3 we have TT = It and T'JtT = diag(0,0,..., 0, t). Substi-

tuting from here into above expression we obtain

(7.30)
0 0 V '

This means that the columns of Y are eigenvectors of the A-matrix of design

d. This gives the proof of the first part.

2. Suppose we have a design d with A-matrix satisfying the condition (7.30),

then we show that this design is either a BIBD or a BBD design. In other

words we show that the A-matrix of the design has structure c/< + djt. By

the spectral decomposition we have:

A = X^2xtx!t + (O^Jt = \{It - \jt). (7.31)
i=i t

This completes the proof of the second part. Hence the theorem is proved.Jft

Discussion 7.3 From Corollary 7.4 it is clear that the bound in (7.28) is achieved

by those designs with equal eigenvalues. The class of BIBD or BBD have this

property. Therefore the corollary simply says that if the contrasts among all the

treatments involved in the design are of equal importance, then if for the given

parameter values a BIBD or BBD does exist, it will be the most efficient de-

sign within the entire class of designs(the A-optimality criterion). This is the

well-known property which was derived by Kiefer(1958).
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Note that even if a specific set oft-1 orthogonal contrasts of interest is defined

then by applying the above arguments the S-property designs with these specified

contrasts are still BIBD or BBD. This is because C'C is invariant to the particular

C-matrix, provided its rows form a complete set of orthogonal contrasts.

7.5.3 Test Treatments versus Control Treatment(s):

In this section we first consider the general problem of comparing a set of w test

treatments with a set of u controls. Without loss of generality we assume that

u < w. We identify the structure S designs and show that these are the same as

the class of designs identified by Majumdar(I986) via the permutation method

as containing A-optimal or highly efficient designs. This class of designs has been

characterized by their A-matrix as having the following structure:

alu + bju eJu

The contrast matrix C, is given by:

For this case we have:

C'C =

The eigenvalues of C'C are given in Table 7.2.

Table 7.2: Eigenvalues of C'C matrix.

(7.32)

(7.33)

(7.34)

Eigenvalues^,-)

u+w
w

u

0

multiplicities

1

u-1

w-1

1

Lemma 7.5 The eigenvectors of the C'C matrix given in (7.34) for w test treat-

ments versus u controls are:
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1. £' = 1/ Juw(u + to)( —wl̂  , uVJ), corresponding to 6 — u + w,

2. £'. = (xj , (?w), for i=2,3,...,u, corresponding to 9 = w, where Xj's are ux l

vectors such that x^x_j = <">tJ anc? xjl.u = 0.

3. £' = (£^ , j / ' _ ), /or i=u+l,u+2,...,u+w-l, corresponding to 0 = u, where

y.'s are wxl vectors such that y[y. = 6^ and x^l_w = 0, where £=l,2,...,w.

and

4- £ = t~ll2\_t, corresponding to 8 = 0, where t=u+w.

Proof: The proof is straightforward by showing that C'C(. = 0i^..JI»

We now identify the S-property designs for this problem. First we consider

the bound.

Corollary 7.5 If Cr is a set of uw contrasts which compare each of w test treat-

ments with each of u control treatments, then

t u 1 i~1 1

/ \ 1 n /A* • 1 1 /A 1
1 t=2 * J=U+1 *

where t=u+w.

Proof: The result follows from Table 7.2 by applying Theorem 3.2 and assum-

ing u < w.Jjt

Theorem 7.4 A design has property S for comparing a set of w test treatments

with a set of u controls if and only if its A-matrix has the structure given in

(7.32).

Proof: Let

r = (£ i '£ 2 > • • • . £ ) > ( 7 - 3 6 )
where £.'s are given in Lemma 7.5. Then

1. suppose design d has A-matrix with structure (7.32), then it can be easily

shown that:

VAT =

x

; x = a + c-\-ub-\- wd. (7.37)
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This simply says that the eigenvectors of the A-matrix of design d with

structure given in (7.32) are the same as those of C'C given in Lemma 7.5

and have same multiplicities of eigenvalues. This proves the first part.

2. From equation (7.37) by the spectral decomposition we have:

U + til—1

i'=2 t'=u+l

Then by applying Lemma 7.3, we have:

(a)

uw
u -f w ~ ,,,,<AuXu

3-u+W—u+w

1 J
'uw u

J_ 7
. .o *s in

(7.38)

(7.39)

t'=2

«+«;—1 ou

V U u X u ,

0^

UuXiu

0

c
0u

i
"" u °
UlXU

;Xu

Tu Uuxui

o^

JuXw

Ul

This shows that the structure of the A-matrix of design d is the same as the

structure given in (7.32). This completes the proof of the second part. Hence the

theorem is proved.Jf»

A special case of the above problem is when u=l . This problem is known as

the test treatments versus control problem in the literature.

Discussion 7.4 Theorem 7.J again illustrates how identifying property S designs

leads us to a class of designs containing highly efficient designs. The class of par-

tially balanced designs with the structure (7.32) for their A-matrices has been

identified by Majumdar(1986) as containing efficient designs for u > 2. For u=l,

the theorem leads us to the BTIB or the BTB designs. These designs were iden-

tified by Bechhofer and Tamhane(1981) and shown by Majumdar and Notz(1983)

to contain highly efficient and some A-optimal designs.
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Conclusion: From this section we concluded that for a specific sets of con-

trasts of interest, CT, the structure of the A-matrix of the observed class of

designs having efficient designs, is linked to C'C. This includes three well-known

problems. Generalization of this link to consider a general contrast matrix is a

topic for further research.

7.6 Conclusions and Directions for Further Re-

search:

In the final section, there are two questions which might be answered. Firstly,

what conclusions can be drawn from the research presented in this thesis and

secondly, how might this research be improved and extended? We shall start by

summarizing the main results of the thesis.

7.6.1 Conclusions:

The aim of conducting an experiment is to estimate or test hypotheses about

some specified unknown parameters. Different considerations leads us to different

criteria for the choice of an "efficient" design.

Our experiment involves two factors, namely A and B at n and m levels

respectively, where treatment combination 00 is excluded from the experiment.

Our aim is to consider whether the effects of using both factors together is better

than using only a single factor. In order to do this we need designs which estimate

these contrasts with the highest precision; that is we employ the A-optimality

criterion. To find such designs we have done two things: Firstly, a tight lower

bound has been derived on the total variance of the estimators of the contrasts

which enables us to assess the performance of the designs. Secondly, designs

with high performance have been characterized by determining a class of designs

which is a source of good designs, in the sense of giving small total variance on

the estimators of the contrasts of interest.

In Chapter 1 we briefly reviewed the literature related to our problem as well

as giving related concepts and definitions. Our considerations concentrated on

2 x 2 experiments for which series of A-optimal and highly efficient designs have

already been tabulated. A successful attempt was made to fill the gaps in the

practical range of parameter combinations. The results are given in Tables 1.1
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and 1.2.

Then we considered n x 2 factorial experiments and introduced a class of

designs which contain efficient designs and give equal precision within the dual

versus A contrasts and within the dual versus B contrasts. These designs are

called PBDS designs and were studied in Chapters 2-4. In Chapter 2 we in-

troduced a method of constructing PBDS designs based on the group divisible

designs, called RGDD, which can be constructed easily. Further, we investigated

some properties of these designs and characterized the most efficient. Designs

having total balance, that is giving equal variance for all the estimated contrasts

of interest were studied. It was concluded that, due to combinatorial restrictions,

the designs were not useful in practice.

Establishment of two bounds on the total variance of the estimators of the

contrasts of interest is the main topic of Chapter 3. This two different bounds were

found by applying different methods. It was shown numerically that in the designs

with k > t one bound(6i) is uniformally tighter than the other(62)- However, for

the cases wrhere k < t this is not true and one bound is not uniformally tighter

than the other. Therefore we take the maximum value of these bounds as a lower

bound(6m). The performance of the RGDD's which can be constructed via the

catalogue of Clatworthy was assessed at the end of Chapter 3.

In Chapter 4 it was shown that the most efficient designs in the PBDS class

are highly efficient in the entire class of designs by utilizing the permutation tech-

nique. The efficient designs were characterized by the number of units which is as-

signed to each set of treatment combinations A, B and D within each block. Some

methods of constructing PBDS designs (excluding RGDD's) were introduced. Fi-

nally, efficient designs for 3 < n < 6 , 2 < k < 9 and 2 < b < 10, which covers

most practical cases arising in clinical trials, are summarized in Table 4.2.

In Chapter 5 nxm experiments were considered by using a more general per-

mutation technique than employed in Chapter 4. A generalization of PBDS

designs was specified, called GPBDS designs. We obtained a design-dependent

bound for the total variance of the estimators of the contrasts of interest but

failed to calculate it in terms of the elements of the concurrence matrix of the

design. However, a series of overall A-optimal designs were obtained for the cases

when k > t. Some methods of constructing GPBDS designs were introduced with

emphasis on the practical cases arising in clinical trials, that is 3 < n,m < 5.

The performances of these designs were assessed and recommendations made on
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their use.

In Chapter 6 we considered experiments conducted in a completely random-

ized designs and characterized those designs which are A-optimal. A series of A-

optimal designs obtained from these results was summarized in Table 6.1. Later

we allowed different sets of contrasts to have different degrees of importance and

defined a Weighted A-optimal criterion. Then, we characterized those completely

randomized designs which are weighted A-optimal designs for specific weights on

the dual versus A and the dual versus B contrasts. The idea of weighted A-

optimal design was then generalized to block designs and a design-dependent

bound on the weighted total variance of the contrasts of interest was established.

In Chapter 7, firstly we considered one way of estimating a specific set of

factorial effects when a certain treatment combination is excluded from the ex-

periment and another set of factorial effects was assumed to be negligible. This

has been done in randomized block designs and completely randomized designs

with equal treatment replications via assuming the negligibility of a linear com-

bination of the negligible factorial effects. Next we established a rule to enable

us to choose the particular linear combination of negligible factorial effects which

enables the factorial effects of interest to be estimated with maximum precision.

Consideration of completely randomized designs with unequal treatment replica-

tions proved more difficult than the equireplicate cases.

We examined, through Theorem 3.2, the similarity between the structure of

the A-matrix of the class of designs which is a source of efficient designs and the

structure of C'C, where C is the contrast matrix corresponding to the contrasts

of interest. We observed, for three types of problem that Theorem 3.2 provides

the structure of the A-matrix of a class of designs which have been shown to be

a source of efficient designs for example balanced block designs.

7.6.2 Further Research:

The following questions remain unanswered and are topics for future work.

1. Is there any means of minimizing our objective function tr(CQ,C) given in

(4.5) in Chapter 4?

2. Is it possible to prove that Conjectures 4.1-4.3 are true?
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3. What are other sufficient conditions for a design to be PBDS and do these

enable further efficient designs to be obtained?

4. Can we express tr(CClC') in Chapter 5 as a function of the elements of the

concurrence matrix of the design? If we can obtain such a function which

designs minimize the value of the function?

5. Suppose our experiment is conducted in a block design other than a ran-

domized block design, then how can we estimate a set of factorial effects by

neglecting another set of factorial effects(see Section 7.3)?

6. Can we extend the idea of similarity between the structure of the A-matrix

of the class containing efficient designs and C'C from specific C's to more

general cases than those described in Chapter 7?
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Proofs of theorems and l emmas :

A.I Proofs Related to Chapter 4

A.I.I Proof of Theorem 4.5:

From the assumptions in the statement of theorem we have:

!

aAj + 1 for i = 1,2, . . . , b A j ,

aAj for i — bAj + 1 , . . . , n - 1.

{ aDj + 1 for i = 1.2, . . . , b D j ,

fox i = boj + 1 , . . . ,n — 1.

n - l

From these we obtain

n

E nAij = (n - l)a2
Aj + 2aAjbAj + bAj, (A.I)

n - l

E n£><i = (n - 1)«DJ + 2aDjbDj + bDj,
t=i

forj=l,2,...,b.
From (A.I)

E E ̂ y = (n - 1) E *% + 2 E aAlbA] +

195
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6 n - 1

E E nDij = (™ ~ *) E G ^ + 2 E aDJbDj
j=i t=i j=i j=i j=i

7% = (n - I)2 £ ^ + 2(n - 1) £ a ^ i + £ 6^, (A.2)
3=1

E ^ i = (« - I)2 E 4 , + 2(n - 1) E aDibDi + E
i = l 3 = 1 3 = 1 3 = 1

= (n - l j a ^ a c j + (aAjbDj + aDjbAj) H(n l j a ^ a c j + (aAjbDj + aDjbAj) H .
n — 1 n — 1

Substituting from (A.2) into the expression of <1A and dr> we obtain the re-

quired expressions in (4.36).

In order to obtain the required expressions for u and v, by applying Marshall

and Olkin(1979, proposition A.3,p 141), four cases have to be considered here:

(i) bDj < bAj, then

ELi 1 nAijnDij < bDj(aDj + l

aDj {(bAj - bDj){aAj + 1) + (n - 1 - bAj)aAj} (A.3)

= {aAjbDj + aDjbAj) + (n — ̂ ( a ^ a c j ) + 6 ^

(ii) bAj < bDj, then

< bAj(aDj + l)(aAj + 1)+

- bAj)(aDj + 1) + (n - 1 - &£>j)a£ij} (A.4)

+ aDjbAj) + {n — l)(a,Ajar>j) + bAj

On substitution from (A.3) and (A.4) into the expression for <1AD in (4.15) we

obtain v in (4.37).

(iii) boj + bAj — (n — 1) > 0, then

YHZl nAijnDij > ( n - 1 - bDj)aDj(aAj + 1) +

(aDi + \){bAj + bDj -n + l)(aAj + l) +

(aDj + l)(n - 1 - 6^)a^- (A.5)

= (a-AjbDj + aDjbAj) + (n — \){aAjaDj)+

{bDj + bAj-n + l)



Append ix A 197

(iv) bAj + bpj — (n — 1) < 0, then

> bAjaDj(aAj

o-Aj {(n - 1 - bDj - bAj)aDj + bDj(aDj + 1)} (A.6)

+ aDjbAj) + (n — l)(aAjdDj).

On substituting from (A.5) and (A.6) into the expression for dAo given in (4.15)

we will obtain u in (4.38). Hece the theorem is proved.£

A.1.2 Proof of Lemma 4.8:

Based on the definitions of TAj, TDJ and TBJ, we have TAj + TBJ + TQJ = k. This

implies that TDJ = k — TBJ — TAj. Therefore

T 1 '

After some algebra we obtain

qD = qA + qB -2qAB. (A.7)

Also

1 b

- TAj - TBj).

After some manipulation the expression becomes

qAD = qA- qAB- (A.8)

On substitution for qp and qAo from (A.7) and (A.8) respectively in the RHS

of (4.62) we obtain the expression in LHS. Hence the lemma is proved.^

A.1.3 Proof of Theorem 4.9:

If in each a block of design d, we change treatment combination iO by il and vice

versa, and call the resulting design d*, then in design d* we have nAij < npij- In

order to show that d* is more efficient than design d, it is enough to show that

from Conjecture 4.1, the bound which can be obtained by design d* is tighter

than that of d. Let Bd and Bd- denote the lower bound which is provided by
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applying Conjecture 4.1 on designs d and d* respectively, then we need to show

that:

Bd - Bd. > 0.

By using Lemma 4.8, it can be shown that

R R (n - 2)(dA - dp) qA-qp . .

Bd - Bd. = — j — -r 1 r—, (A.9)
dAdD -d?AD ~ - ~2

where dA, dp, dAn, qA, qu and qAu were defined in (4.15). On substitution from

(4.15) in the above expression, after some algebra, we can show that:

U - ID = ^ - p - jr^-jr Y.{TAl - TDj)(TAj + TDi).

Since TAj + Tpj < k and TAj > Tpj, then

qA - qp > n_ —

n — ._x

From (4.15)
, , TA — Tp DA — Dp , SA — SpA u n - l k(n-2) ' fc(n-l)(n-2)" v '

It can be shown that

b n-l

Since nAij + npij < TAj + Tpj and based on the assumption, n^,j — npij > 0,

hence

b n-l

DA — Dp < Y2 ^2(TAJ + Tpj){nAij — nDij) = SA — Sp. (A.14)

From (A.12) and (A.14) we obtain

i i ^ J- A -*• D 3 A ^ D *~* A 3 D J. A •*- D u / » - _ \
dAdD^l^I(^T) + k{n-l){n-2) = n-l

From (4.15), it can be shown that

: - TDJ)(TAJ + TDj).

j=1
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Since TAJ > TDJ and TAJ + TDJ < &, this implies that

SA — SD ,_,
; < 1A - ID-

kThen from (A. 17) and (A. 15) we obtain

A A ^
a A — d-D >

TA-TD

n — 1 n — 1

Hence from (A.11) and (A.18) the proof follows.•

= 0.

(A.17)

(A.18)

A.2 Proof of Lemma 5.1:

From (5.6) we have

A
D B F

B' G H

F' H' L
,say. (A.19)

We now determine the structure of A by substituting for A from (5.4). By

premultipying and postmultiplying A by TT,J and its transpose TTJ • respectively, we

obtain

qi

PjH{Pj

Then, if we let yij denote the ijth entry in matrix Y, we obtain

1.

•y- 1=1 j=l

where by Majumdar and Notz(1983):

if i = j

(A.20)

Therefore

where aa + 6j = Ja and &i = J2
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Similarly

and

G = a3lp + 63 Jp,

where a3 + 63 = g\ and 63 = 52-

3.

which gives
1 q p

b{j = — 5~̂  V] hj — b, say.
P9 ,-=i ,=i

Therefore B = bJqXp.

4.

which is
1 ql

This gives

where S = - Hi=i ^«- This can be shown as

where S = (5,j) and

1 ^ ^ 0 — — . - . .
/ • S" ^ 5i 2x 2 — 7

o ( o _ - n Z - , = i Z ^ , - = t , - - s . j — 5 2 n i T J
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Therefore

F = lp ® (a2lq + b2Jq),

where a2 + b2 = Si and b2 = I2.

5. Similarly,

qp\ j=1
 3

where after some algebra as above, we obtain

H = (a4lp + 64 Jp) ®

where
p

1=1

9 p

and i/tj is an 1 x q vector corresponding to the ith row of Hj.

6.

1 ?! p!

E X
Let

- t=i

and

Then
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But L\ =

a2lq + fc
+ ftJ,; ax + ft = /i (,-,-) and ft = /i(,-,•/)(« 7̂  *')• A l s o L2 =

+ ft = 72(i,) and ft = T2(H')(i ^ i'). From these we obtain

L = IV® (aslq + b5Jq) + Jq ® (a6/ ,

where a5 = ai — a2, b5 — ft — ft, a6 = «2 and 66 = ft.

Therefore the general structure of A is as follows:

A

a\Iq i; b2Jq)

a3lp + b3Jp (a4lp + bAJp)

IP ® (a5/, + 65 J,) (a6/,
(A.21)

In order to establish the structure of Q, notice that for any connected GPBDS

design, a g-inverse of its A-matrix, Q is obtained as (A-\-xJ)~^ for any real number

x ^ 0. A has the same rank of A because it was obtained by permutation. Hence

it is obvious that A + x J is a nonsingular matrix with the same structure as A.

Therefore without loss of generality let us assume that A is nonsingular. Now we

partition A as follows:

A n A12

where

A =

a\Iq + b\Jq cJc

b3J3Jq

i ; ® {a2lq + b2 Jq)

A21 = A'12 and
12

A22 = Ip® {a5lq + b5Jq) + Jp® (aelq + &6</,?)-

Let A"1 denote the inverse of A, and be partitioned as:

A11 A12

A21 A]22

Then by Graybill(1983,pl84);
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A22 = (A22

and

A12 = -AnA12A£.

By Graybill(1983,pl95) and Lemma 2.3 in Chapter 2, A22 and A221 have same

structure. Pre and Postmultiplying A22 by A12 and its transpose respectively,

shows that A12A22A2\ and hence A\\ — A^A^^x have the same structures as

in-
Similarly, A2\A~{YA\2 and hence A22 — A~2\A~{lA\2 have the same structures

as A22-

By the same method as two above cases we can show that A12 has the same

structure as Ai2- This completes the proof.X



A p p e n d i x B

C o m p u t e r A l g o r i t h m s

B.I Algorithms for 2x2 Factorial Experiments:

B.I.I A-optimal Designs:
PROGRAM OPTING 1

C THIS PROGRAMME GIVES THOSE VALUES OF R WHICH MINIMIZES
C THE FUNCTION F(R), THEN CHECK WHETHER FOR THIS VALUE OF
C R THE BTBD EXISTS OR NOT.
DIMENSION FU(1000)
IP=2
P=IP
DO 50 K=5,30
IF(K.EQ.5)GO TO 100
IF(K.EQ.6)GO TO 100
IF(K.EQ.8)GO TO 100
IF(K.EQ.9)GO TO 100
IF(K.EQ.11)GOTO 100
IF(K.EQ.12)GOTO 100
IF(K.EQ.15)GOTO 100
IF(K.EQ.16)GOTO 100
IF(K.EQ.18)GO TO 100
IF(K.EQ.19)GO TO 100
IF(K.EQ.23)GO TO 100
IF(K.EQ.25)GO TO 100
IF(K.NE.30)GO TO 50
IXYXY=10
100 DO 50 IB=2,50
B=IB
M=B*K/2

204
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R0=0
FMIN=999999999
DO 1 1=1, M
IR=I
R=I
NU=IR/IB
U=NU
NX=(IB*K-IR)/IP
X=NX
NY=(NX+1)/IB
Y=NY
NZ=NX/IB
Z=NZ
C=K*B-R+(P-K*B+R+P*X)*Z*(2*X-B-B*Z)+(K*B-R-P*X)*Y*(2*(X+1)-B
*-B*Y)
G=R+(2*R-B)*U-B*U**2
C=C/K
G=G/K
FU(I)=P*(P-1)**2/(P*(B*K-R-C)-(R-G))+P/(R-G)
IF(FU(I).GT.FMIN)GO TO 1
FMIN=FU(I)
R0=I
1 CONTINUE
IR0=R0
C UP TO HERE PROGRAMME FOUND R WHICH MINIMIZS F(R)
C THIS STEP IS TO DETRMINE WHETHER (BK-R)/P IS INTEGER OR NOT.
IF(IB*K-IR0-2*((IB*K-IR0)/2).NE.0)GO TO 50
C THIS STEP IS TO DETRMINE WHETHER R/B IS INTEGER OR NOT.
RR0=R0/B
NR0=IR0/IB
XR0=NR0
IF(RR0.EQ.XR0)GO TO 40
C THIS STEP CHECKS WHTHER BTBD EXISTS WHILE R/B IS NOT INTEGER
IB1=:IRO-IB*NRO
Kl=K-NR0-l
IB2=IB-IB1
K2=K-NR0
XB1=IB1
XB2=IB2
R1=XB1*K1/P
NR1=(IB1*K1)/IP
XR1=NR1
IF(R1.NE.XR1)GOTO 50
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C
R2=XB2*K2/P
NR2=(IB2*K2)/IP
XR2=NR2
IF(R2.NE.XR2)GO TO 50
C
IQ1=K1-IP*((IB1*K1)/(IP*IB1))
C PRINT *,IRO,IQ1
IF(IQ1.EQ.O)GO TO 105
IF(IQ1.EQ.2)GO TO 105
IF(IQ1.EQ.1)GO TO 130
PRINT *,' ERROR??...'
GO TO 50
130 XXX=XBl/2
NXX=IBl/2
XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
C
105IQ2=K2-IP*((IB2*K2)/(IP*IB2))
IF(IQ2.EQ.0)GO TO 110
IF(IQ2.EQ.2)GO TO 110
IF(IQ2.EQ.1)GO TO 120
PRINT *,' ERROR ???...'
GO TO 50
120 XXX=XB2/2
NXX=IB2/2
XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
110 ICODE=2
ICODE1 = 1
GO TO 101
C
40IQ=K-NR0-IP*((K*IB-IR0)/(IP*IB))
IF(IQ.EQ.0)GO TO 111
IF(IQ.EQ.2)GO TO 111
IF(IQ.EQ.1)GO TO 200
PRINT *,' ERROR???...'
GO TO 50
200 XXX=B/2.
NXX=IB/2
XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
111 ICODE=1
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ICODE1=0

NYY=(K*IB-IRO)/(IP*IB)

101 IF(IXYXY.EQ.ICODE1)GO TO 108

IF(ICODE1.NE.1)GO TO 300

PRINT *,' K B R0 CODE Bl Kl B2 K2'

GO TO 301

300 PRINT *,' K B R0 CODE (BK-R0)/TB IQ '
301 PRINT * '***•********************•*********************'

108 IF(ICODE1.EQ.1)GO TO 102

WRITE(6,7)K,IB,IR0,ICODE,NYY,IQ

IXYXY=ICODE1

GO TO 50

102 VVRITE(6,8)K,IB,IRO,ICODE,IB1,K1,IB2,K2

IXYXY=ICODE1

50 CONTINUE

7 FORMAT(5X,6I6)

8 FORMAT(5X,8I6)

2 STOP

END
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B.I.2 Near A-optimal Designs:
PROGRAM OPTING2

C
C THIS PROGRAM GENERATES A-OPTIMAL DESIGNS WITHIN BTBD
C CLASS OF DESIGNS WHEN AN OVERALL A-OPTIMAL BTBD DESIGN
C DOES NOT EXIST
DIMENSION FU(1000)
IP=2
P=IP
DO 50 K=3,30
DO 50 IB=2,50
B=IB
M=B*K/2
R0=0
FMIN=999999999
DO 1 1=1,M
R=I
NU=R/B
U=NU
NX=(B*K-R)/P
X=NX
NY=(X+1)/B
Y=NY
NZ=X/B
Z=NZ
C=K*B-R+(P-K*B+R+P*X)*Z*(2*X-B-B*Z)+(K*B-R-P*X)*Y*(2*(X+1)-B
*-B*Y)
G=R+(2*R-B)*U-B*II**2
C=C/K
G=G/K
FU(I)=P*(P-1)**2/(P*(B*K-R-C)-(R-G))+P/(R-G)
IF(FU(I).GT.FMIN)GO TO 1
FMIN=FU(I)
R0=I
1 CONTINUE
MR0=R0
IF(IB*K-MR0.EQ.2*((IB*K-MR0)/2))GO TO 50
BOU=FU(MR0)
IR1=MRO+1
IF(FU(IRl).LE.FU(MR0-l))GO TO 500
IRl=MR0-l
500 E=FU(MR0)/FU(IRl)
IR0=IRl
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R0=IR0
RR0=R0/B
NR0=IR0/IB
XR0=NR0
IF(RR0.EQ.XR0)GO TO 40
C
C THIS STEP CHECKS WHTHER BTBD EXISTS WHILE R/B IS NOT INTEGER
C
IBl=IR0-IB*NR0
Kl=K-NR0-l
IB2=IB-IB1
K2=K-NR0
XB1=IB1
XB2=IB2
R1=XB1*K1/P
NR1=(IB1*K1)/IP
XR1=NR1
IF(R1.NE.XR1)GO TO 50
C
R2=XB2*K2/P
NR2=(IB2*K2)/IP
XR2=NR2
IF(R2.NE.XR2)GO TO 50
C
IQ1=K1-IP*((IB1*K1)/(IP*IB1))
C PRINT *,IRO,IQ1
IF(IQl.EQ.0)GO TO 105
IF(IQ1.EQ.2)GO TO 105
IF(IQ1.EQ.1)GO TO 130
PRINT *,' ERROR??...'
GO TO 50
130 XXX=XBl/2
NXX=IBl/2
XXXX=NXX
IF(XXX.NE.XXXX)GO TO 50
C
105IQ2=K2-IP*((IB2*K2)/(IP*IB2))
IF(IQ2.EQ.0)GO TO 110
IF(IQ2.EQ.2)GO TO 110
IF(IQ2.EQ.1)GO TO 120
PRINT *,' ERROR???...'
GO TO 50
120 XXX=XB2/2



Appendix B 210

NXX=IB2/2

XXXX=NXX

IF(XXX.NE.XXXX)GO TO 50

110 ICODE=2

ICODE1 = 1

GO TO 101

C

40 IQ=K-NR0-IP*((K*IB-IR0)/(IP*IB))

IF(IQ.EQ.0)GO TO 111

IF(IQ.EQ.2)GO TO 111

IF(IQ.EQ.1)GO TO 200

PRINT *,' ERROR???...'

GO TO 50
200 XXX=B/2.

NXX=IB/2

XXXX=NXX

IF(XXX.NE.XXXX)GO TO 50

111 ICODE=1

ICODE1=0

NYY=(K*IB-IR0)/(IP*IB)

101 IF(IXYXY.EQ.ICODE1)GO TO 108

IF(ICODE1.NE.1)GO TO 300

PRINT *,' K B R0 CODE Bl Kl B2 K2'

GO TO 301

300 PRINT *,' K B R0 CODE (BK-R0)/TB IQ '
301 PRINT * >**********************************************'

108 IF(ICODE1.EQ.1)GO TO 102

WRITE(6,7)K,IB,IR0,ICODE,NYY,IQ,E

IXYXY=ICODE1

GO TO 50

102 WRITE(6,8)K,IB,IRO,ICODE,IB1,K1,IB2,K2,E

IXYXY=ICODE1

50 CONTINUE

7 FORMAT(5X,6I6,F12.4)

8 FORMAT(5X,8I6,F12.4)

2 STOP

END
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B.2 Algorithm for Designs with Two Factors One

with Two Levels; Another with More than

Two Levels:

B.2.1 Conjectured Bound, C- and Near C-designs:

PROGRAM SPBDS
C THIS GENERATES THE CONJECTURED BOUND AND C-DESIGNS OR
C NEAR C-DESIGNS
DIMENSION IEX(100,2)
COMMON IEX
M=2
DO 5 N= 6, 6
IP=N-1
P=IP
DO 5 K= 6, 6
XK=K
WRITE(6,22)
DO 5 IB=15,15
B=IB
NM=IB*K
F=99999999
CALL TAA1(N,NM,IP,P,K,XK,IB,B,F,F1)
PRINT *,N,K,B,F1
F2=F1
L=0
222 F=99999999
CALLTAA(N,NM,IP,P,K,XK,IB,B,F,IEX,L,F1,IIA,IIB,IID)
L=L+1
IEX(L,1)=IIA
IEX(L,2)=IID
IIRB=IIB/IB
IBB=IIB-IIRB*IB
CALLTESTA(IIRB,IBB,IIA,IB,K,IP,NN,IB1,KA1,KD1,IB2,KA2,KD2,
*IB3,KA3,KD3)
IF(NN.EQ.0)GO TO 400
CALLTESTD(IIRB,IBBIIID,IB,K,IP,NN,IB1,KA1,KD1,IB2,KA2,KD2,
*IB3,KA3,KD3)
IF(NN.EQ.1)GO TO 200
400 DD=(F1-F2 )*100/F2
KB1=K-KA1-KD1
KB2=K-KA2-KD2



Appendix B 212

KB3=K-KA3-KD3
IF(IB1.EQ.O)KB1=O
IF(IB2.EQ.0)KB2=0
IF(IB3.EQ.0)KB3=0
WRITE(6,15)N,K,IB,IB1,KB1,KA1,KD1,IB2,KB2,KA2,KD2,IB3,KB3,KA3,KD3
PRINT *,' '
GOTO 5
200 IF(L.LT.40)GO TO 222
PRINT VTHERE IS NO SOLUTION BY THIS ALGORITHM'
PRINT *,' '
5 CONTINUE
6 FORMAT(3I5,5X,3I4,2X,F9.4,F9.2,F9.4)
STOP
15 FORMAT(3I4,3X,3(4I4,2X))
22 FORMATC N K B IB1 KB1 KA1 KD1 IB2 KB2 KA2 KD2 IB3 K
*B3 KA3 KD3')
END
SUBROUTINE TAA1(N,NM,IP,P,K,XK,IB,B,F,F1)
DIMENSION IITA(100),IITD(100),IIBA(100),IIBD(100)
DIMENSION IIAA(100),IIAD(100),IITB(100)
DO 1 ITB=l,NM/2
DO 1 ITD=IP,NM-ITB-IP
ITA=NM -ITB-ITD
IF(ITA.GT.ITD)GO TO 1
IAA=ITA/IB
IBA=ITA-IAA*IB
IAD=ITD/IB
IBD=ITD-IAD*IB
IAB=ITB/IB
IBB=ITB-IAB*IB
DO 110 J=1,IB-IBB
110IITB(J)=IAB
DO 120 J=IB-IBB+1,IB
120 IITB(J)=IAB+1
DO 101 J = 1,IBA
101 IITA(J)=IAA+1
DO 102 J=IBA+1,IB
102 IITA(J)=IAA
SA=0
SB=0
SD=0
SAB=0
SAD=0
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DO 130 J=1,IB
IITD(J)=K-IITA(J)-IITB(J)
SA=SA+IITA(J)**2
SB=SB+IITB(J)**2
SD=SD+IITD(J)**2
SAB=SAB+IITA(J)*IITB(J)
130 SAD=SAD+IITD(J)*IITA(J)
DO 105 J=1,IB
IIAA(J)=IITA(J)/IP
IIAD(J)=IITD(J)/IP
IIBA(J)=IITA(J)-IP*IIAA(J)
105 IIBD(J)=HTD(J)-IP*IIAD(J)
DA=0
DD=0
IDADMI=0
IDADMA=0
DO 106 J=1,IB
DA=DA+HBA(J)*(IIAA(J)+1)+IIAA(J)*IITA(J)
DD=DD+IIBD(J)*(IIAD(J)+1)+IIAD(J)*IITD(J)
INF=IIAA(J)*IITD(J)+IIAD(J)*IIBA(J)+
*MAX(O,IIBA(J)+IIBD(J)-IP)
IDADMI=IDADMI+INF
ISUP=IIAA(J)*IITD(J)+IIAD(J)*IIBA(J)+
*MIN(IIBA(J),IIBD(J))
IF(IIAA(J)+IIAD(J)+2.GT.K)GO TO 116
IDADMA=IDADMA+ISUP
GO TO 106
116 IDADMA=IDADMA+INF
106 CONTINUE
Y1=K*(N-1)
Y2=Yl*(N-2)
Y3=K*(N-2)
TA=ITA
TD=ITD
TB=ITB
D1=TA/P-DA/Y3+SA/Y2
D2=TD/P-DD/Y3+SD/Y2
Q1=TA/P-SA/Y1
Q2=TB/P-SB/Y1
Q3=SAB/Y1
DO 1 J=IDADMI,IDADMA
QQ=J
D3=QQ/Y3-SAD/Y2
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YY=D1*D2-D3**2
IF(YY.EQ.0)GO TO 1
TR1=(P-1.)*(2.*D1-2.*D3+D2)/YY
IF(TR1.LT.O)GOTO 1
YY=Q1*Q2-Q3**2
IF(YY.EQ.0)GO TO 1
TR2= (Q1+Q2)/YY
IF(TR2.LT.0)GO TO 1
TR=TR1+TR2
IF(F.LE.TR)GO TO 1
F=TR
IIB=ITB
IIA=ITA
IID=ITD
1 CONTINUE
F1=F
RETURN
END
SUBROUTINE TAA(N,NM,IPIP,K)XK)IB)B)F)IEXILIF1)IIA,IIB,IID)
DIMENSION IITA(100),IITD(100),IIBA(100),IIBD(100)
DIMENSION IIAA(100),IIAD(100),IITB(100),IEX(100,2)
DO 1 ITB=l,NM/2
DO 1 ITD=IP,NM-ITB-IP,IP
ITA=NM -ITB-ITD
IF(ITA.GT.ITD)GO TO 1
IF(ITA.NE.IP*(ITA/IP))GO TO 1
IF(L.EQ.0)GO TO 200
DO 500 I=1,L
IF(ITA.EQ.IEX(I,1).AND.ITD.EQ.IEX(I,2))GO TO 1
500 CONTINUE
200 IAA=ITA/IB
IBA=ITA-IAA*IB
IAD=ITD/IB
IBD=ITD-IAD*IB
IAB=ITB/IB
IBB=ITB-IAB*IB
DO 110 J=1,IB-IBB
110 IITB(J)=IAB
DO 120 J=IB-IBB+1,IB
120 IITB(J)=IAB+1
DO 101 J=1,IBA
101 IITA(J)=IAA+1
DO 102 J=IBA+1,IB
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102 IITA(J)=IAA
SA=0
SB=0
SD=0
SAB=0
SAD=0
DO 130 J=1,IB
IITD(J)=K-IITA(J)-IITB(J)
SA=SA+IITA(J)**2
SB=SB+IITB(J)**2
SD=SD+IITD(J)**2
SAB=SAB+IITA(J)*IITB(J)
130 SAD=SAD+IITD(J)*IITA(J)
DO 105 J=1,IB
IIAA(J)=IITA(J)/IP
IIAD(J)=IITD(J)/IP
IIBA(J)=IITA(J)-IP*IIAA(J)
105 IIBD(J)=IITD(J)-IP*IIAD(J)
DA=0
DD=0 IDADMI=0
IDADMA=0
DO 106 J=1,IB
DA=DA+IIBA(J)*(IIAA(J)+1)+IIAA(J)*HTA(J)
DD=DD+IIBD(J)*(IIAD(J)+1)+IIAD(J)*IITD(J)
INF=IIAA(J)*IITD(J)+IIAD(J)*IIBA(J)+
*MAX(O,IIBA(J)+IIBD(J)-IP)
IDADMI=IDADMI+INF
ISUP=IIAA(J)*HTD(J)+IIAD(J)*IIBA(J)+
*MIN(IIBA(J),IIBD(J))
IF(IIAA(J)+IIAD(J)+2.GT.K)GO TO 116
IDADMA=IDADMA+ISUP
GO TO 106
116 IDADMA=IDADMA+INF
106 CONTINUE
Y1=K*(N-1)
Y2=Yl*(N-2)
Y3=K*(N-2)
TA=ITA
TD=ITD
TB=ITB
D1=TA/P-DA/Y3+SA/Y2
D2=TD/P-DD/Y3+SD/Y2
Q1=TA/P-SA/Y1
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Q2=TB/P-SB/Y1
Q3=SAB/Y1
DO 1 J=IDADMI,IDADMA
QQ=J
D3=QQ/Y3-SAD/Y2
YY=D1*D2-D3**2
IF(YY.EQ.0)GO TO 1
TR1=(P-1.)*(2.*D1-2.*D3+D2)/YY
IF(TR1.LT.O)GO TO 1
YY=Q1*Q2-Q3**2
IF(YY.EQ.0)GO TO 1
TR2= (Q1+Q2)/YY
IF(TR2.LT.0)GO TO 1
TR=TR1+TR2
IF(F.LE.TR)GO TO 1
F=TR
IIB=ITB
IIA=ITA
IID=ITD
1 CONTINUE
F1=F
RETURN
END
SUBROUTINE TESTA(IIRBIIBB,IIA,IB,K,IP,NN,IB1,KA1,KD1,IB2,KA2
.,KD2,IB3,KA3,KD3)
NN=0
IIRA=IIA/IB
KB1=IIRB+1
KB2=IIRB
IBA2=IIA-IIRA*IB
KA2=IIRA+1
IBA1=IB-IBA2
KA1=IIRA
IB1=MIN(IBB,IBA1)
IB2=IB-MAX(IBB,IBA1)
IB3=MAX(IBB,IBA1)-IB1
KD1=K-KA1-KB1
KD2=K-KA2-KB2
KB3=KB1
KA3=KA2
IF(IBB.EQ.MIN(IBB,IBA1)) THEN
KB3=KB2
KA3=KA1
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END IF

KD3=K-KB3-KA3

IF(IBl.EQ.O) GO TO 201

IIB=IB1

IRD=(IB1*KD1)/IP

IF(IB1*KD1.NE.IRD*IP)GO TO 200

IRA=(IB1*KA1)/IP

IF(IB1*KA1.NE.IRA*IP)GO TO 200

KA=KA1

KD=KD1

CALLCHECK(IIB,IP,IRA,IRD,KA,KD,NN)

IF(NN.EQ.1)GO TO 200

GO TO 203

201 KAl=0

KDl=0

203 IF(IB2.EQ.O) GO TO 202

IIB=IB2

IRD=(IB2*KD2)/IP

IF(IB2*KD2.NE.IRD*IP)GO TO 200

IRA=(IB2*KA2)/IP

IF(IB2*KA2.NE.IRA*IP)GO TO 200

KA=KA2

KD=KD2

CALL CHECK(IIB,IP,IRA,IRD,KA,KD,NN)

IF(NN.EQ.1)GO TO 210

GO TO 204

202 KA2=0

KD2=0

204 IF(IB3.EQ.O) GO TO 205

IIB=IB3

IRD=(IB3*KD3)/IP

IF(IB3*KD3.NE.IRD*IP)GO TO 200

IRA=(IB3*KA3)/IP

IF(IB3*KA3.NE.IRA*IP)GO TO 200

NN=0

KA=KA3

KD=KD3

CALL CHECK(IIB,IP,IRA,IRD,KA,KD,NN)

GO TO 210

205 KA3=0

KD3=0

GO TO 210

200 NN=1
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210 RETURN
END
SUBROUTINE TESTD(IIRB,IBB,IID,IB,K,IP,NN,IB1)KA1,KD1,IB2)KA2
.,KD2,IB3)KA3,KD3)
NN=0
IIRD=IID/IB
KB2=IIRB
IBD=IID-IIRD*IB
IB1=MIN(IBB,IBD)
KB1=IIRB+1
KD1=IIRD+1
KA1=K-KB1-KD1
IB2=MAX(IBB,IBD)-IB1
KB2=KB1-1
KD2=KD1
IF(IBD.EQ.IBl) THEN
KB2=KB1
KD2=KD1-1
END IF
KA2=K-KB2-KD2
IB3=IB-IB1-IB2
KB3=KB1-1
KD3=KD1-1
KA3=K-KB3-KD3
IF(IBl.EQ.O) GO TO 201
IIB=IB1
IRD=(IB1*KD1)/IP
IF(IB1*KD1.NE.IRD*IP)GO TO 200
IRA=(IB1*KA1)/IP
IF(IB1*KA1.NE.IRA*IP)GO TO 200
KA=KA1
KD=KD1
CALL CHECK(IIB,IP,IRA,IRD,KA,KD,NN)
IF(NN.EQ.1)GO TO 200
GO TO 203
201 KAl=0
KDl=0
203 IF(IB2.EQ.O) GO TO 202
IIB=IB2
IRD=(IB2*KD2)/IP
IF(IB2*KD2.NE.IRD*IP)GO TO 200
IRA=(IB2*KA2)/IP
IF(IB2*KA2.NE.IRA*IP)GO TO 200
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KA=KA2
KD=KD2
CALL CHECK(IIB,IP,IRA,IRD,KA,KD,NN)
IF(NN.EQ.1)GO TO 200
GO TO 204
202 KA2=0
KD2=0
204 IF(IB3.EQ.O) GO TO 205
IIB=IB3
IRD=(IB3*KD3)/IP
IF(IB3*KD3.NE.IRD*IP)GO TO 200
IRA=(IB3*KA3)/IP
IF(IB3*KA3.NE.IRA*IP)GO TO 200
NN=0
KA=KA3
KD=KD3
CALL CHECK(IIB,IP,IRA,IRD,KA,KD,NN)
GO TO 210
205 KA3=0
KD3=0
GO TO 210
200 NN=1
210 RETURN
END
SUBROUTINE CHECK(IIB,IP,IRA,IRD,KA,KD,NN)
I1=IRA/IIB
I2=IRD/IIB
K1=KA-IP*I1
K2=KD-IP*I2
IF(Kl.EQ.0.AND.K2.EQ.0)GO TO 2
IF(Kl.EQ.O) THEN
IR2=(IIB*K2)/IP
IF(IP*IR2.NE.IIB*K2)GO TO 1
L2=(IR2*(K2-1))/(IP-1)
IF(L2*(IP-1).NE.IR2*(K2-1))GO TO 1
ELSE IF(K2.EQ.0) THEN
IR1=(IIB*K1)/IP
IF(IP*IR1.NE.IIB*K1)GO TO 1

IF(L1*(IP-1).NE.IR1*(K1-1))GO TO 1
ELSE
IF(K1.NE.K2)GO TO 1
IR1=(IIB*K1)/IP
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IF(IP*IR1.NE.IIB*K1)GO TO 1

IF(L1*(IP-1).NE.IR1*(K1-1))GO TO 1
IR2=(IIB*K2)/IP
IF(IP*IR2.NE.IIB*K2)GO TO 1
L2=(IR2*(K2-1))/(IP-1)
IF(L2*(IP-1).NE.IR2*(K2-1))GO TO 1
END IF
GOTO 2
1 NN=1
2 RETURN
END
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B.3 A-optimal PBDS Designs for k=2,3:

B.3.1 A-optimal PBDS Designs for k=2
PROGRAM K2PB

C THIS PROGRAM GENERATES A-OPTIMAL PBDS DESIGN FOR K=2
INTEGER A,B,C,D,E,F
DO 100 N=3,10
N1=N-1
N2=N-2
M=(Nl*N2)/2
X1=N1
X2=N2
Y=M
DO100IB=2,10
FF=9999999
DO 1 NA=O,IB/N1
ID1=IB-NA*N1
IF(IDl.LT.0)GO TO 1
DO 1 NB=O,ID1/N1
ID2=ID1-N1*NB
IF(ID2.LT.0)GO TO 1
DO 1 NC=O,ID2/N1
ID3=ID2-N1*NC
IF(ID3.LT.0)GO TO 1
DO 1 ND=0,ID3/M
ID4=ID3-M*ND
IF(ID4.LT.0)GO TO 1
DO 1 NE=0,ID4/M
ID5=ID4-M*NE
IF(ID5.LT.0)GO TO 1
NF=ID5/(N1*N2)
LL=1
IF(ID5.NE.NF*N1*N2)GO TO 1
LL=0
DA=NA+NC+N1*ND+N2*NF

DA=DA/2.0
DD=NB+NC+N1*NE+N2*NF
DD=DD/2.0
DAD=NC-NF
DAD=DAD/2.0
XX=DA*DD-DAD**2
IF(XX.EQ.0)GO TO 1
QA=NA+NC+N2*NF
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QA=QA/2.0
QD=NB+NC+N2*NF
QD=QD/2.0
QAD=NC+N2*NF
QAD=QAD/2.0
YY=QA*QD-QAD**2
IF(YY.EQ.0)GO TO 1
TR=X2*(2*DA+DD-2*DAD)/XX+(2*QA+QD-2*QAD)/YY
IF(FF.LT.TR)GO TO 1
FF=TR
A=NA
B=NB
C=NC
D=ND
E=NE
F=NF
1 CONTINUE
IF(LL.EQ.1)GO TO 100
WRITE(6,20)N,IB,A,B,C,D,E)F,FF
100 CONTINUE
20 FORMAT(2I4,5X,6I4,6X,F11.5)
STOP
END
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B.3.2 A-optimal PBDS Designs for k=n=3:
PROGRAM K3PBN3

C THIS PROGRAM GENERATES A-OPTIMAL PBDS DESIGN FOR K=3, N=3
INTEGER A.B.C.D.E.F.G.HJ.J.K.L
N=3
DO 100 IB=2,10
FF=9999999
DO 1 NA=0,IB
ID1=IB-NA
DO 1 NB=0,IDl/2
ID2=ID1-2*NB
IF(ID2.LT.0)GO TO 1
DO 1 NC=0,ID2
ID3=ID2-NC
IF(ID3.LT.0)GO TO 1
DO 1 ND=0,ID3/2
ID4=ID3-2*ND
IF(ID4.LT.0)GO TO 1
DO 1 NE= 0.ID4/2
ID5=ID4-2*NE
IF(ID5.LT.0)GO TO 1
DO 1 NF=0,ID5/2
ID6=ID5-2*NF
IF(ID6.LT.0)GO TO 1
DO 1 NG=0,ID6/2
ID7=ID6-2*NG
IF(ID7.LT.0)GO TO 1
DO 1 NH=0,ID7/2
ID8=ID7-2*NH
IF(ID8.LT.0)GO TO 1
DO 1 NI=0,ID8/2
ID9=ID8-2*NI
IF(ID9.LT.0)GO TO 1
DO 1 NJ=0,ID9/2
ID10=ID9-2*NJ
IF(ID10.LT.0)GO TO 1
DO 1 NK=0,ID10/2
ID11=ID1O-2*NK
IF(IDll.LT.0)GOTO 1
NL=IDll/2
LL=1
IF(ID11.NE.2*NL)GOTO 1
LL=0
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TA=2*(NA+NB+NE+NF+NI+2*NG+2*NH+3*NK)
DA=2*(NA+NB+NE+NF+NI+2*NG+4*NH+5*NK)

SA=2*(2*NA+NB+NE+NF+NI+4*NG+4*NH+9*NK)
TD=2*(NC+ND+NE+NF+2*NI+NG+2*NJ+3*NL)
DD=2*(NC+ND+NE+NF+2*NI+NG+4*NJ+5*NL)
SD=2*(2*NC+ND+NE+NF+4*NI+NG+4*NJ+9*NL)
DAD=2*(NE+NG+NI)
SAD=2*(NE+NF+2*NG+2*NI)
Dl=TA/2.-DA/3.+SA/6.
D3=TD/2.-DD/3.+SD/6.
D2=DAD/3.-SAD/6.
Ql=TA/2.-SA/6.
Q3=TD/2.-SD/6.
Q2=SAD/6.
XXX=D1*D3-D2**2
YYY=Q1*Q3-Q2**2
IF(XXX.EQ.0)GO TO 1
IF(YYY.EQ.0)GO TO 1
TR=(2*D1-2*D2+D3)/XXX+(2*Q1-2*Q2+Q3)/YYY
IF(TR.LT.0)GO TO 1
IF(FF.LT.TR)GO TO 1
FF=TR
A=NA
B=NB
C=NC
D=ND
E=NE
F=NF
G=NG
H=NH
I=NI

L=NL
ITA=TA
ITD=TD
ITB=IB*3- TA- TD
ISA=SA
ISD=SD
IDAD=DAD
ISAD=SAD
1 CONTINUE
IF(LL.EQ.1)GO TO 100
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WRITE^OJN.IB.A.B.C.D.E.FAH^J.K.L.FF
100 CONTINUE
20 FORMAT(2I4,3X,12I4,3X,F9.3 )
STOP
END
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B.3.3 A-optimal PBDS Designs for k=3 and n > 4:

PROGRAM K3PB
C THIS PROGRAM GENERATES A-OPTIMAL PBDS DESIGN FOR K=3
C AND N>3.
INTEGER A,B,C,D,E,F,G,H,I,J,K,L,M,NU,O,P,Q,R,S,T
DO 100 N=4, 9
N1=N-1
N2=N-2
N3=N-3
Ml=(Nl*N2)/2
M2=(N2*N3)/2
M3=(Nl*N2*N3)/2
M4=(Nl*N2*N3)/6
X1=N1
X2=N2
Y1=M1
DO 100 IB=2 ,10
FF=9999999
DO 1 NE=0,IB/Nl
ID1=IB-NE*N1
IF(IDl.LT.0)GO TO 1
DO 1 NA=0,IDl/Ml
ID2=ID1-M1*NA
IF(ID2.LT.0)GO TO 1
DO 1 NB=O,ID2/N1
ID3=ID2-N1*NB
IF(ID3.LT.0)GO TO 1
DO 1 NC=O,ID3/M1
ID4=ID3-M1*NC
IF(ID4.LT.0)GO TO 1
DO 1 ND=O,ID4/N1
ID5=ID4-N1*ND
IF(ID5.LT.0)GO TO 1
DO 1 NF=O,ID5/(2*M1)
ID6=ID5-2*M1*NF
IF(ID6.LT.0)GO TO 1
DO 1 NG=O,ID6/(2*M1)
ID7=ID6-2*M1*NG
IF(ID7.LT.0)GO TO 1
DO 1 NH=0,ID7/M3
ID8=ID7-M3*NH
IF(ID8.LT.0)GO TO 1
DO 1 NI=O,ID8/(2*M1)
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ID9=ID8-2*M1*NI
IF(ID9.LT.0)GO TO 1
DO 1 NJ=0,ID9/M3
ID10=ID9-M3*NJ
IF(ID10.LT.0)GO TO 1
DO 1 NK=0,ID10/M4
ID11=ID1O-M4*NK
IF(ID11.LT.O)GOTO 1
DO 1 NL=O,ID11/M4
ID12=ID11-M4*NL
IF(ID12.LT.0)GO TO 1
DO 1 NM=O,ID12/N1
ID13=ID12-N1*NM
IF(ID13.LT.0)GO TO 1
DO 1 NN=O,ID13/N1
ID14=ID13-N1*NN
IF(ID14.LT.0)GO TO 1
DO 1 NO=0,ID14/N1
ID15=ID14-N1*NO
IF(ID15.LT.0)GO TO 1
DO 1 NP=O,ID15/(N1*N2)
ID16=ID15-N1*N2*NP
IF(ID16.LT.0)GO TO 1
DO 1 NQ=O,ID16/N1
ID17=ID16-N1*NQ
IF(ID17.LT.0)GO TO 1
DO 1 NR=O,ID17/(N1*N2)
ID18=ID17-N1*N2*NR
IF(ID18.LT.0)GOTO 1
DO 1 NS=O,ID18/(N1*N2)
ID19=ID18-(N1*N2)*NS
IF(ID19.LT.0)GO TO 1
NT=ID19/(N1*N2)
LL=1
IF(ID19.NE.N1*N2*NT)GOTO 1
LL=0
TA=Nl*(NB+NE)+2*Ml*(NA+NF+NI+2*NG)+2*M3*(NJ+NK+2*NH)/2
DA=TA+N1*(4*NM+4*NO+NQ+N2*(4*NP+NR+5*NS))
TA=TA+N1*(2*NM+2*NO+NQ+N2*(2*NP+NR+3*NS))
SA=N1*(NB+NE)+2*M1*(2*NA+NF+NI+4*NG)+M3*(NJ+3*NK+4*NH)
SA=SA+N1*(4*NM+4*NO+NQ+N2*(4*NP+NR+9*NS))
TD=N1*(ND+NE)+2*M1*(NC+NF+2*NI+NG)+M3*(2*NJ+NL+NH)
DD=TD+N1*(4*NN+NO+4*NQ+N2*(NP+4*NR+5*NT))
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TD=TD+N1*(2*NN+NO+2*NQ+N2*(NP+2*NR+3*NT))
SD=N1*(ND+NE)+2*M1*(2*NC+NF+4*NI+NG)+M3*(4*NJ+3*NL+NH)
SD=SD+N1*(4*NN+NO+4*NQ+N2*(NP+4*NR+9*NT))
DAD=N1*NE+2*M1*(NG+NI)
DAD=DAD+2*N1*(NO+NQ)
SAD=N1*NE+2*M1*(NF+2*NI+2*NG)+2*M3*(NJ+NH)
SAD=SAD+2*N1*(NO+NQ+N2*(NP+NR))
D1=TA/X1-DA/(3*X2)+SA/(6*Y1)
D3=TD/X1-DD/(3*X2)+SD/(6*Y1)
D2=DAD/(3*X2)-SAD/(6*Y1)
Q1=TA/X1-SA/(3*X1)
Q3=TD/X1-SD/(3*X1)
Q2=SAD/(3*X1)
XXX=D1*D3-D2**2

IF(XXX.EQ.0)GO TO 1
IF(YYY.EQ.0)GO TO 1
TR=X2*(2*D1-2*D2+D3)/XXX+(2*Q1-2*Q2+Q3)/Y^^'
IF(TR.LT.0)GO TO 1
IF(FF.LT.TR)GO TO 1
FF=TR
A=NA
B=NB
C=NC
D=ND
E=NE
F=NF
G=NG
H=NH
I=NI
J=NJ
K=NK
L=NL
M=NM
NU=NN
O=NO
P=NP
Q=NQ
R=NR
S=NS
T=NT
ITA=TA
ITD=TD
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ITB=IB*3- TA- TD
ISA=SA
ISD=SD
IDAD=DAD
ISAD=SAD
1 CONTINUE
IF(LL.EQ.1)GO TO 100
WRITE(6,20)N,IB)A,B,C,D1E,F,G,H,I,J)K,L,M,NU,O,P,Q,R,S,T,FF
100 CONTINUE
20 FORMAT(2I4,1X,20I3,1X,F7.2 )
STOP
END
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B.4 A-optimal Completely Randomized Designs:

PROGRAM NMCR
C THIS PROGRAM GENERATES A-OPTIMAL DESIGN IN THE CLASS
C OF COMPLETELY RANDOMAIZED DESIGN FOR ANY N AND M AND
C GIVEN FIXED UNITS AVAILABLE IN THE EXPERIMENT, NN.
PRINT * ' **•**********•********************•**'

PRINT *,' N M NN RB RA RD TRACE'
PRINT * ' *********************•***************'

DO 5 N=3 ,10
DO 5 M=N,10
IP=N-1
IQ=M-1
P=IP
Q=IQ
DO 5 NN=N*M-l,100
Fl=9999999
DO 1 ITB=IQ,NN-IP*IQ-IP
DO 1 ITD=IP*IQ,NN-ITB-IP
ITA=NN -ITB-ITD
IF(ITA.LT.IP)GO TO 1
IRB=ITB/IQ
IRD=ITD/(IP*IQ)
IRA=ITA/IP
TB=ITB
TD=ITD
TA=ITA
DB=IRB*(IRB+1)
DD=IRD*(IRD+1)
DA=IRA*(IRA+1)
DBB=IP*(2*IQ*IRB+IQ-TB)
DBD=2*(2*IP*IQ*IRD+IP*IQ-TD)
DBA=IQ*(2*IP*IRA+IP-TA)

DDB=DBB/DB
DDD=DBD/DD
DDA=DBA/DA
TR=DDB+DDD+DDA
IF(F1.LE.TR)GO TO 1
F1=TR
IIB=ITB
IID=ITD
IIA=ITA
BR=F1
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1 CONTINUE
IB=IIB/IQ
IF(IIB-IQ*IB.NE.0)GO TO 5
ID=IID/(IP*IQ)
IF(IID-IP*IQ*ID.NE.0)GO TO 5
IA=IIA/IP
IF(IIA-IP*IA.NE.0)GO TO 5
WRITE(6,6)N,M,NN,IB,IA,ID
5 CONTINUE
6 FORMAT(10X,3I5,3I5)
STOP

END
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