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ABSTRACT
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Master of Philosophy

CLUSTER ANALYSIS IN PATTERN RECOGNITION

by Paul William Warren

A comparison is made of most of the major types of clustering algorithm. 

Particular attention is paid to their applicability to the pattern 

recognition problem. Because of the size of the data set typically 

encountered in pattern recognition, the comparison includes a detailed 

study of the computational efficiency of the various techniques. A number 

of these techniques were used to try to cluster a data set composed of time 

domain descriptors describing an electroencephalographic waveform taken 

from a sleeping human. None of the techniques experimented with succeeded 

in revealing any significant cluster structure for this particular data set.
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GLOSSARY OP LESS COMuON MATHEMATICAL
SYMBOLS AND NOTATION USED IL THIS THESIS

The expectation of the random variable x.

The expectation of the random vector ,x.
The natural logarithm of x, i.e. log^(x).

This is used to describe a function of N, fO^)'
'f(N) = 0(K^^' is a shorthand notation for 'fCN^ 

tends to a constant value as N tends to infinity'.
The transpose of the matrix W.
The trace of the (square) matrix W. For an n x n

matrix this is defined by* 
i = n

tr W e Wii
1 = 1

The determinant of the matrix W.

This denotes that the number a is very much smaller 

than the number b.

This denotes that the set A is contained in the set B. 

It includes the case where the two sets are identical.

n
The product of all the terms a%, a2, n'



CHAPTER 1 INTRODUCTION

1.1 The Aim of Cluster Analysis

Cluster analysis studies the problem of how to divide a set of 

objects into a number of subsets such that all the members of one subset 

are similar and yet differ significantly from the members of the other 

subsets. Normally there is no a priori knowledge of the number of sub­

sets. There are two basic reasons for wishing to cluster a set of 

objects. On the one hand one might wish to discern 'a true typology'. 

That is, one may wish to know whether the objects under study can be 

regarded as examples of a relatively small number of different kinds of 

objects. Alternatively, one may be concerned with data reduction. The 

set may contain too many objects to handle. If the set can be divided 

into a manageable number of subsets, one object can be taken from each 

subset. The result is a sample more representative of the original 

objects than a random sample would be.

Many different disciplines make use of cluster analysis. Con­

sequently, the subject has been developed by workers in a variety of dif­

ferent fields. As a result, some techniques have been independently 

discovered several times over. The first development of the subject was 

in botany and zoology, where it is referred to as taxonomy. Here the aim 
is the finding of a true typology. The objective is to divide the animal 

and plant kingdom into genera, species, etc. The first problem here is 
how to measure the similarity (or dissimilarity) between objects. Con- 

sequently, much of the taxonomic literature is less about clustering 
techniques than about measures of dissimilarity (called dissimilarity 

coefficients). A good introduction to taxonomy is given by Sokal and 

Sneath (1963). More recently, the social sciences have made use of clus­

ter analysis. Here again the objective is that of finding a true typ­

ology and the problem of measurement of dissimilarity is of great



importance. The problem is that the observations are largely qualitative 

and they must be made quantitative before the cluster analysis can 

proceed.

In pattern recognition the situation is rather different. The 

descriptors are typically quantitative in nature and consequently it is 

natural to regard the objects under study as points in a high-dimensional 

space. The dissimilarity between two objects can then be defined as the 

distance in the vector space between the points representing them. 

Normally the distance used is some special case of the Minkowski distance 

defined by

j

r

Here, d.. is the distance in a q-dimensional space between the i'th 

and j'th points. X.^ represents the value of the k'th variable for the 

i'th point. When r-1, this is called the city block metric. When r=^, 

it is the Ehclidean distance.
Furthermore, in pattern recognition the data sets frequently contain 

hundreds or even thousands of objects. Although this is sometimes the 

case in taxonomy, notably in microbiology, it is much less likely to be 

so. Consequently, in pattern recognition one needs to be much more con­

cerned with the computational efficiency of an algorithm than in tax- 

onomy.
There is a further important difference between the situation in 

pattern recognition and that in taxonomy. Consider the classification 

of animals. A typical descriptor might be the answer to the question, 
'does the animal have a tail?'. Within any particular species (cluster) 

of animal the answer will be the same. In pattern recognition, because 

one normally deals with quantitative measurements, the same descriptor 

will frequently not possess exactly the same value for two co-classed



objects. Rather, the neasurenent will be characterised by a probability 

distribution. Thus, in taxonomy one has a deterministic situation whilst 

in pattern recognition one has a statistical situation.

In taxonomy, the aim is usually to construct a hierarchy. At the 

lowest level, say that of species, only one sample is needed from each 

object. The goal is to construct a dendrogram showing how the species 

are grouped to form genera and the genera are grouped to form families. 
This is illustrated for five hypothetical species (A, B, C. B, E) in 

Figure 1.1. A, 3 and C are members of one genus, D and E are members of 

another. All five species are members of the same family.

In pattern recognition, a typical problem is that of analysing a 

large number of noisy signals. One may believe that each signal can be 

expressed as 'pure signal plus noise', where the number of different 

'pure signals' is quite few in number. Then cluster analysis would be 

used to attempt to determine the number and nature of these pure signals.

In view of what has been said it is hardly surprising that the 

subject has recently attracted the attention of statisticians. Rather, 

it is surprising that this did not happen earlier. This is probably 

partly because classical statistics depends upon making assumptions about 

the probability distribution of the population from which the data set 

comes. In cluster analysis this is often not possible. Perhaps it is 

also because the multi-dimensional aspect of the problem necessitates a 

considerable use of the digital computer, the full potential of which was 

probably apparent earlier to engineers than to statisticians.

1.2 Comparison with the Discrimination Problem in Pattern Recognition

It may be helpful to compare cluster analysis with the classical 

pattern recognition problem, supervised learning or 'learning with a 

teacher'. Here, one is given a set of objects which come from a known
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number of classes. In addition, the correct classification of each 

object is known. The problem is to determine the classification of a 
future (unclassified) point. This has been much studied, both from a 

statistical standpoint and from a 'geometrical' one. In statistical 

supervised learning, assumptions are made about the probability dis­

tributions of the various classes. In geometrical pattern recognition, 
no such assumptions are made. Instead error-correcting algorithms (such 

as the perceptron algorithm) are used. All that is required is that it 

is possible to separate the classes with a limited number of hyperplanes, 

hyperspheres, etc.
The term 'unsupervised learning' is also used in the pattern recog­

nition literature. This can be a synonym for cluster analysis, but it 

seems to be more often restricted to the particular case where the number 

of clusters is known and some assumptions about the underlying prob- 
ability distribution are made. For a review of both supervised and 

unsupervised learning see Nagy (1968).

1.3 Plan of the Thesis
For the purposes of this thesis the techniques of cluster analysis 

have been divided into five categories. Although this classification is 

in places rather arbitrary, it is believed that it does reflect real 

distinctions between the techniques. Each type of approach is discussed 

in one of Chapters 2 to 6.

Chapter 2 deals with linkage techniques. Here, the set of objects 

is divided into a partition on the basis of the dissimilarity matrix.

This is the matrix whose i,j'th element is the dissimilarity coefficient 

between the i'th and j'th objects. Linkage techniques solely depend upon 

the dissimilarity matrix. Hence, once this matrix has been calculated 

the actual descriptor values can be discarded.



chapter ^ deale with a nrmber of techniques which have been termed 
'optimization-partitioning' techniques (Rveritt, 1974, Chapter 2). Here 

the object is to maximize (or minimize) come function determined by the 

data set and the partition under consideration.

Chapter 4 considers techniques whose origins stem from the concept 

of a probability density function.

Chapter 9 deals with techniques which attempt to map a multi­

dimensional data set into two dimensions. The data set can then be 

displayed visually and use made of the human observer's ability to 

perform 'Gestalt' clustering.
Chapter 6 discusses a number of miscellaneous approaches. Some of 

these are 'one-off techniques, bearing little relation to any others. 

Some of them represent general categories which the author feels are of 

little significance in pattern recognition.

In comparing the techniques a number of questions will be asked.

Four in particular apply to all the techniques.

'Does the procedure produce a hierarchy of objects?'. As has been 

noted taxonomic clustering is usually of this form.

'Are the results invariant under non-singular linear transformations 

of the data space?'. Frequently, invariance will apply under orthogonal 
transformations (i.e. pure rotations), but rarely does it apply under 
general non-singular linear transformations (i.e. when the scale of each 

axis is altered). When the full invariance property does not apply it is 

usual to first normalize each dimension to zero mean and unit variance in 

order that no one variable unduly influences the analysis.

'Does the technique depend upon some a priori assumptions about the 

probability distribution of the population of which the objects represent 

a sample?'. Techniques which depend upon such assumptions are termed 

parametric. As will be seen later, totally misleading results may be



obtained when incorrect aeeumptionn are ^ade.

'Can the technique be applied the large data eetc found in 

pattern recognition?', A data eet ^ay contain thousands of objects. As 

a result, the memory and time requirements of each algorithm have to be 

considered more carefully than is usual in, say, taxonomy.

Chapter 7 describes a typical pattern recognition data ser which is 

of significance in the understanding of sleep.

Chapter 6 discusses the results of applying some cluster analysis 

techniques to the data set of Chapter 7.

Finally, Chapter 9 is concerned with the future of cluster analysis 

in pattern recognition. In particular, some questions are posed. It is 

hoped that the solutions to these will lead to further developments in 

the subject.



LP.ICAGE TECB!ljU!'A!

2.1 Introduction

All the techniques described in this chapter can be used to produce 

a hierarchical structure, or dendrograu. As already rsentioned they all 
work from a similarity (or dissimilarity) matrix. In eheory, one could 

first calculate this matrix and then discard the original variables. In 

practice, this is rarely done in pattern recognition. A dissimilarity 
matrix on N objects will require •|-1J(K-1) words of storage. The C.D.C. 

7600 used in the work described in Chapter 8 has approximately lOOK words 

of available core storage. Consequently if a clustering program stores 

the dissimilarity matrix it is limited to data sets of about 500 objects. 

Most machines are smaller than this. As a result, a dissimilarity 

coefficient is normally calculated when needed.

2.2 Nearest Neighbour or Single Link Cluster Analysis

This is probably the oldest clustering technique. In essence 

objects are co-classed whose dissimilarity coefficient is less than or 
equal to some threshold value (li). To illustrate this definition, 

consider one possible implementation. Start with one cluster, containing 

the first object. Then consider the dissimilarity coefficient between 

first and second objects. If it is less than or equal to h, put the 

second object also in the first cluster. Otherwise create a new cluster 

containing the second object. As each new object is introduced, consider 

all the objects with which its dissimilarity coefficient is less than or 

equal to h. If these objects occur in a number of different clusters, 

coalesce these clusters and put the new object in the resultant cluster. 

If the objects all occur in the same cluster, put the new object in this 

cluster. If no such objects occur, then create a new cluster containing



the new object.

A principal objection to Ihis method is that it pmves rise to a 

property called chaining. This means that the method tends to cluster 

together objects linked by chains oi intermediates. This is illustrated 

in Figure 2.1. Here the presence of points A, B and C will cause single 

link cluster analysis to give a one cluster solution when otherwise it 

would suggest three clusters. Chaining may or say not bo a defect in 

deterministic cluster analysis. In pattern recognition it certainly is 

so. For in the statistical situation, there is always the probability of 

'noise points' occurring between clusters. Thus the results of the 

analysis can be critically dependent on the particular sample used. This 

is a serious disadvantage.

Another problem is the determination of what value of h to use. Tn 

taxonomy, this is generally overcome by producing a dendrogram structure. 

Such a structure was illustrated diagramatically on page 4' From a 
dendrogram, one can observe the cluster structure at all levels (l.o. for 

all values of h). Mathematically a dendrogram can be defined (Sibson, 

1973) ss a function c which maps from the range of values of h (i.e. 0 to 
co) into the set of all equivalence relations on the data set. Further, 

c must satisfy three conditions.

(1) h*@h' implies c(h)i^c(h')
(2) When h is very large all objects become equivalent.
($) c(h+5)=c(h) for all small enough ^ !>0

If there are N objects in the data set the dendrogram can contain up 
to (N-l) different splitting levels.

The problem of how to construct such a dendrogram in the most 
efficient manner has been solved (Sibson, 1973)' Sibson describes an 

algorithm capable of clustering 1000 objects on the Cambridge University
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Computer Laboratory TITAN in ICO seconds, excluding the reading or 

generation of the dissimilarity coefficients. The time dependence of the 
algorithm is O(N^) and it requires storage of 0(N). The lov storage is

achieved by using ^he dissimilarity coefficients a part-row at a time.
2This avoids the 0(L ) storage requirement necessary to store all the 

dissimilarity coefficients. Sibson suggests generating the part-rows of 

dissimilarity coefficients when necessary. Alternatively they could be 

stored on disc in the order in which they are required, i.e. 2-1; 3-1,

A-2, 4-3; 5-1 etc. However this can result in a program which 

spends almost all its time reading dissimilarity coefficient values.

It is still necessary to display the dendrogram and make some sense 

of it. For data sets of many hundreds, or even thousands of objects, 

this will not be an easy matter. Remembering that in pattern recognition 

one is not normally interested in obtaining a hierarchical structure, it 

can be seen that the dendrogram is not the ideal form for the results to 

take. This problem will be returned to later in the chapter.

2.3 Furthest Neighbour or Complete Linkage Cluster Analysis

This differs from the previous technique in that for an object to 

join a particular cluster its dissimilarity coefficient with each object 

in that cluster must be less than or equal to some value, h. This 

completely overcomes the chaining problem and produces compact clusters, 

khdle this eliminates the problem of spurious results due to noise points 

it has the disadvantage that an elongated cluster will appear as a number 

of clusters.
In practice the technique has the same disadvantages as single 

linkage cluster analysis. Either one has some criterion for choosing h, 

or one must output a dendrogram.



2.4 Clustorin^' Uainr a Sinilarity Moasnre Based or

Beirhbours
A technique has recently bean suggested vhich makes use of a rad­

ically new definition of similarity coefficient (Jarvis and Patrick, 

197^). The algorithm first establishes a nearest neighbour table. For 

each object a list is made of its k nearest neighbours, in order of 

proximity. Nearest is here defined with respect to some conventional 
dissimilarity measure (e.g. Euclidean distance). A number of possible 

definitions can then be used to calculate a new similarity matrix from 

these lists. The simplest approach is to make the i,j'th element of the 

matrix equal the number of members common to the nearest neighbour lists 
for the i'th and j'th objects. This similarity matrix can then be input 

to any linkage technique. In particular, Jarvis and Patrick use the 

single link approach with one modification. They suggest that an object 

X should join a cluster if there exists in that cluster an object Y such 

that two sets of conditions are satisfied. Firstly, the number of shared 

elements in the lists belonging to X and Y must be greater than or equal 

to some value, k_. This is the single link criterion when applied to the 

similarity matrix defined above. Secondly, X must be in Y's list and

vice-versa. As in single link analysis, if there are points Y and Y' in

two distinct clusters but both satisfying the above conditions, then the 

clusters are coalesced and X joins the cluster so formed.

The philosophy underlying this algorithm can be understood by 

regarding the objects as points in hyperspace. Then two points close 

together should only be co-clustered if they come from the same con­

tinuous region of high point density. This will mean they share a large 
number of near neighbours. This is illustrated in Figure 2.2(a) and (b). 
In (a) there are two close points (X and Y) which share many near neigh­

bours and should obviously be co-clustered. In (b) X and Y, although
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aaito close, ccr^ from different clusters (l.c. -onions oL ni.

density). 'hese uoints do not possess so many near ne: Tnus tno

is an attemnt to ovorenme tho defects o:

Not only can one vary k and repeat the analysis, one can also vary

Having established the nearest neirhbour lii for some value of k
k^, one can use these lists for any value of k less than k_ merely by 

forgetting about their final elements. The time to establish the lists 
will be proportional to N^(q+c(kj); where N is the number of objects and 

q is the number of descriptors. c(k) is a relatively small factor to 

allow for testing for all k near neighbours for each point. The time 
taken to use the table for cluster analysis will be (neglecting zero and 

first-order terms in h) proportional to N (k+l)' at most. The actual 

time-dependence will be significantly dependent on the value of k^.

The problem of the correct choice of parameter value is greater for 

this algorithm than for the two previously discussed. Now there are two 

parameters which may be varied, k and k^. Some light may be thrown on 

this problem by considering the philosophy of the algorithm. As 

explained, the aim is to locate continuous regions of high point density. 

The point density can be regarded as an estimate of the probability 

density of the population from which the sample was drawn. Thus the real 

objective of the algorithm is to divide the space into continuous regions 
of high probability density. Now Loftsgaarden and Quesenberry (1965) 

have shown that the k'th nearest neighbour approach can be used to 
estimate the probability density function (p.d.f.) at. a point. Let R be 

the distance from an arbitrary point X in the data space to the k'th 

nearest data point. Any choice of metric can be used. Then Loftsgaarden 

end Qpesenberry have proved that one consistent estimate of the p.d.f. at 

X is
(k-1)
NV



Eere T is the volume of a hyporsphore ceukred on ^ and of radius R. Thus 

there is a relahionship between this clustering technique and one form of 

p.d.f. estimation. The exact nature of this relationship is an open 

question posod by Jarvis and Patrick. Loftsgaarden and Quesenberry have 

considered khe problem of what value of k to take. They suggest that 
about ,/N 'appears to give good results'. It would seem reasonable that 

a value for k of the same order of magnitude should give good results in 

the clustering algorithm. In practice, the value of k may be limited by 

the available storage anyway.
Having decided on a suitable value (or values) for k it is still 

necessary to decide on values for k^. As with ordinary single-linkage 

cluster analysis, one possibility is to produce a dendrogram, but again 

this is probably not suitable for large values of N.

2.6 Use of the Minimal Spanning Tree in Single Linkege Cluster Analysis

The problem of determining reasonable values for h in single linkage 

cluster analysis has recently been attacked by the use of concepts from 

graph theory. Before describing this approach it is necessary to define 
the concept of 'minimal spanning tree' (M.S.T.). Consider a set of N 

objects and a dissimilarity matrix on these objects. Then a spanning 

tree is a set of edges joining the objects such that all objects are 

connected but containing no closed paths. Consequently the spanning tree 
will contain (H-l) edges. To each edge a weight is assigned. For the 

purposes of cluster analysis this will be the dissimilarity coefficient 

between the objects defining the edge. The weight of a tree is then 

defined to be the sum of the weights of the edges in the tree. Then a 

minimal spanning tree will be a spanning tree whose weight is minimal 

amongst all spanning trees. It can be shown that clusters at any level 

h can be obtained from the M.S.T. by deleting all segments of weight



greater than h (Gower and Ross, 19o9). Consequently having once prod­

uced an M.S.T. it is a relatively simple matter computationally to vary h 

and obtain a single linkage analysis that the observer regards as sig­

nificant. In Chapter 8 an example is given where an M.S.T. was obtained 

from 2119 points in 8-space in approximately 60 seconds on a C.D.C. 76OO 
(using Euclidean distance as the measure of dissimilarity). To produce a 

single linkage cluster analysis at any given level from the M.S.T. took 
of the order of 10 seconds on an I.C.L. 1907, a machine which is at least 

40 times slower than the C.D.C. 7^00-
The algorithm used to construct the M.S.T. is due to Prim (1957).

The advantage of this algorithm, as Gower and Ross point out, is that it 

only makes use of each dissimilarity coefficient once. Thus it is not 

necessary to store the dissimilarity matrix. Rather, each dissimilarity 

coefficient can be calculated when necessary. As a result, the storage 
requirements of the algorithm are only 0(N) and consequently it can be 

used on very large data sets. The time dependency of the algorithm is 
O(N^).

As previously stated, h can now be varied until a reasonable level 

of clustering is achieved. A more systematic alternative has recently 

been suggested (Zahn, 1971). Zahn suggests taking each edge of the 

M.S.T.'in turn and determining the average weight of the neighbouring 

M.S.T. edges. If the edge under consideration has weight greater than 

this average edge weight multiplied by some factor, then it is termed 

inconsistent. The M.S.T. can then be 'disconnected' at all the incon­
sistent edges. This is not quite the same thing as true single linkage 

cluster analysis, since it takes into account local variations in average 

edge-weight. Thus of two identically weighted edges one may be incon- 

sistent and the other not.
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Lee (1974) has suggested using an approximate M.S.T. in cluster 
analysis. His technique is similar to a technique to be discussed in 

Chapter 9 for non-linear mapping. Lee constructs a 'sub-minimal spanning 

tree', i.e. a spanning tree which, although not actually an M.S.T., is 
(hopefully) quite close to being one. First, an M.S.T. (T*) is con­

structed for M objects taken from the N in the data set. The remaining 
(H-M) objects are joined to the tree by minimizing the sum of weights of 

edges between objects in T* and objects not in T*. The weights of edges 

between objects not in T* are ignored. The total number of dissimilarity 
coefficients required will be iM(M-l)+M(N-M), rather then the ^H(H-l) 

needed to form the true M.S.T. Lee believes the final spanning tree will 

be sufficiently nearly minimal to obtain useful clustering results. 

Unfortunately difficulties arise if the members of T^ are not represent­

ative of all the clusters. Lee believes this should be immediately 

discernible from the tree but in this author's opinion there is a danger 

that a valid cluster might be missed and regarded as merely a collection 
of outliers (i.e. isolated objects apparently not members of any signif- 

icant cluster of objects). However, if care is taken to sample the N 

objects at random so as to obtain the initial M frame points, this 

technique may be valuable in the analysis of very large data sets.

2.6 Comments

All the techniques discussed in this chapter are non-parametric in 

nature. If the dissimilarity coefficient is taken to be Euclidean 

Distance the results will be invariant under orthogonal rotations of the 

data space. They will not be invariant under general non-singular linear 

transformations.

It is interesting to compare the Jarvis and Patrick algorithm with 

single linkage cluster analysis as performed by constructing an M.S.T.



Both procedures have similar objectives in that they attempt to define 

continuous regions of space of high point density without making assum­
ptions about the shape of these regions. Both procedures have time 
requirements given by O(N^). Assuming that k is approximately the

storage requirements of the Jarvis and Patrick algorithm will be 

This compares unfavourably with the M.S.T. approach which has storage 
requirements 0(N). The M.S.T. allows far greater precision in the choice 

of a clustering level. As will be seen later, it is quite possible, by 

changing k^, by unity, to go from a situation where only one cluster is 

apparent to a situation where very many (e.g. hundreds) of small clusters 

are found. In between one has completely missed the level of clustering 

which would probably significant to the user of the technique.



CHAPTER 3 OPTIMTZATIOH-PARTITIOHINC TECHNIQUES

3.1 Introduction

The teohniquee discussed in this chapter attempt to find that 

partition of the data set which optimizes some criterion. In theory, 
given the number (g) of clusters required, one needa merely to consider 

all the possible partitions of the N data points and choose that one 

which optimizes the criterion. However, for any realistic value of N 

this will be computationally impossible. For example, for g=2 there will 
be (2^ ^-l) partitions to be considered. Consequently an exhaustive 

search is impossible. Instead heuristics are used in an attempt to 

achieve a good value for the criterion.

All the criteria discussed in this chapter are functions of the 

scatter matrices defined below. Consequently they do not make use of the 

dissimilarity matrix but work directly with the data set.

Before discussing each criterion separately it is necessary to 

introduce some notation. Let the data be represented by a set of N 

q-dimensional column vectors X^, .... X^ . The object is to

divide this data set into g groups G^, .... G with populations

Ng, .... N . The are not, of course, known a priori. The 
following 'scatter matrices' can then be defined (Fukunaga, 1970).

Total scatter:

H
'I T

k=l

Intragroup scatter:

W, T where C.= l
N
y 4

3 4^=0



Thus C. is the centroid of the j'th group. W\ is related to the cover-J J
iance matrix for the j'th group. FerR consistent, unbiased estimate oJ 

this covariance matrix will be given by
V/.

N.-l

Total intragroup scatter:

g

"j
j=l

Intergroup scatter:

g
BA Z— J-J-J

j=l

The superscript T denotes transposition. It can easily be shown

that

T=W+B

3.2 The 'Error Sum of Squares Criterion'

The first criterion to be suggested was the 'error sum of squares'. 
The philosophy underlying its first use was one of data reduction 
(e.g. Thorndike, 1953). Imagine attempting to represent a set of N data 

points by g points (g N) with minimum loss of information. One pos- 

sible approach is to partition the data set into g groups and then 

replace each partition by its centroid (i.e. the C^). Then a suitable 

measure of the error will be

0
g
Z

r" I I—iii.i.

J=1 X, 6 0.

where d(X.,C.) represents the distance between the points ^ and C. inJ —k —j
the hyperspace. Using squared Euclidean distance this becomes



g
zz
j=l X, GG.
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This is known as the trace of W (tr W). Cloarly, minimum Toss of infor­

mation will be achieved when is minimised.

In addition to its use in data reduction, the criterion may be 

applicable in tne 'true typology' problem. If the clusters are spherical 

and approximately equal in size the use of this criterion will probably 

separate them. However, if these assumptions do not hold, the technique 

may give completely misleading results (see Wishart, 196$).

3.3 An Optimization Algorithm
Macqueen (1966) has suggested and analysed an algorithm for obtain- 

ing a suitaole partition. Similar algorithms have appeared at several 

other places in the literature (e.g. Sebestyen, 1962, Chapter 4, 

section 9; Hall, 1969). The version of the algorithm presented here is 

as described in Fukunaga and Koontz (1970).

Firstly g initial group centres are chosen by some (possibly random) 

initialisation process. These may or may not correspond to actual data 

points. &ach data point is considered as belonging to that cluster whose 

centre is nearest, in the Euclidean distance sense. When each data point 

has been allocated to a cluster the group centres are re-calculated as 

L-ne centroias of the data points in each group. The algorithm is shown 
diagrammatically in Figure 3'i' The algorithm can be regarded as comuosed 

of two parts. In the first part the group membership is varied for each 

ua,ua point (X^) so as to minimize iXpZ^) ), wnich is the contrib­

ution of that point to J^. in the second part the _C^ are re—computed for
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a fixed partition. As is well-known, the centroid of a set of data 

points is the point in the hyperspace ahont which there is a minimum 

scatter. Thus in each part of the algorithm will be minimized. As a 

result the error sum of squares will be reduced until eventually con­

vergence is achieved. This will not necessarily represent the absolute 

minimum of but will probably be merely a local minimum.

For data reduction, as long as a low value of is achieved, it

does not matter too much if that value is not close to the true minimum.

This is not so when trying to find a true typology. Here convergence to

a local minimum far from the true minimum is an unsatisfactory result.

Consequently several authors have suggested elaborations of the algorithm 

(Macqueen I966; Friedman and Rubin, I967). Since the suggestions of 

Friedman and Rubin have been incorporated into a program (McRae, I971) 

which has been used in the work described in Chapter 8, their approach is 
outlined here.

In addition to the iterative technique already mentioned, which they 

term 'reassignment passes', Friedman and Rubin also describe 'hill- 

climbing passes' and 'forcing passes'. In a hill-climbing pass every 

data point in turn is moved from its own group into each other group. If 

no move decreases J^, the point is left where it is. Otherwise it is 

moved so as to achieve the maximum decrease in J_. When each point has 

been considered, the program has performed one 'hill-climbing pass'.

After several such passes, a stage is reached at which no move of a 

single point will further decrease J^. A 'forcing pass' is then begun. 

Considering one group at a time, each data point in the group is placed 

into the outside group with the nearest centre of gravity. At each stage 

the point considered is that one nearest to an outside group. After the 

first re-assignment must increase, since otherwise the re-assignment



would have been achieved by the previous hill-climbing pass. Eventually, 

however, Jq may decrease again. After processing all the objects of one 

group, the best partition yet found is restored, and the program passes 

on to the next group. When each group has been considered, one forcing 

pass has been completed. Forcing passes are repeated until they produce 

no improvement. At this stage the re-assignment pass already described 

is begun. This is also repeated until no further reduction in Jq is 

achieved. The three stages are then repeated until convergence is 

reached. The final partition is then assumed to be the optimal one.

As a check, Friedman and Subin suggest repeating the procedure with 
different initial partitions. The computation which leads to the lowest 

final value of Jq is the one whose results are used.

It is difficult to analyse the time requirement of this algorithm 

theoretically because of its complexity. It would appear to be 0(H). 

However, it also seems to be very dependent upon g and upon the structure 

of the data. In Chapter 8 some times will be quoted for the use of this 

program with a real data set. The storage requirements of the algorithm 
certainly are 0(H).

3»4 The Invariant Criteria of Friedman and Rubin

The results, obtained by the use of Jq, are invariant only under 

orthogonal tzransformations, since Jq is invariant only under these 

transformations. In the same paper in which they described the algorithm 

of section 3.3, Friedman and Subin reported some experiments on the use 

of two criteria which are invariant under all non-singular linear trans­

formations. Before describing these criteria it is helpful to prove the 
following theorem. The proof is taken from Anderson (1958), page 222.

Theorem

.-1The eigenvalues of W B are invariant under all non-singular linear
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transformations.

Proof
Consider a typical non-singular linear transformation, A. In the 

following, all transformed vectors and matrices are denoted "by the 
superscript '. Then

% -

Consequently

-j ” N. XI % ■
%e G.

A h

W 4 
3

T

°.i

T.T

- A W A
g

T

g
W* z w,)/
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g
■ r-.
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How the eigenvalues of W""^ B are the solutions of the equation 

|B - A W| . 0.

However

|b* - . lABuf . AAWA^j
« 1a(b->w)a'^|

« |a|{ B - Aff { I A^J

Thus the solutions of j B — ^ W 1 » 0 are also the solutions of 
fB’ - AW'j • 0. By repeating the argument using the reverse trans­

formation, A the converse is true. Thus the eigenvalues of W"^ B are

invariant under non—singular linear transformations.

The two invariant criteria used by Friedman and Eubin are defined as

T JlL 
1 * IW|

Jg . tr(W-^ B)

The invariance of these two criteria can now most easily be demon­

strated by showing that they are both functions of the eigenvalues of 

B, denoted by .... For

■1 - I w I f Sj 

. I w“^ I 1 s I

- I w“^ sI

- |w“^ (W+B)|

- 1I+W*^B I

:.-l

V '2'



J. = tr(W"^ B)

tr(D^ D B) 

tr(B B D^)

= m

i=l
Here B is the (orthogonal) transformation which diagonalizes

B.

Both criteria are to be maximised. However since S is fixed for any
Isi
VIgiven data set maximizing is equivalent to minimizing |W| . For

simplicity, the first of these two criteria will be referred to as the 
minimization of I W| .

No easily visualised significance can be attached to J., However, 

it has an importance in terms of statistical theory which will be 

explained in a later section. Jg is more easily interpreted. Assume 
that all the clusters have the same covariance matrix (i.e. the W. differ 
only by a multiplicative factor). Then a transformation which transforms 

W to the identity matrix will produce spherical clusters and will trans- 
form the intergroup scatter (B) to W ^ B. Thus maximizing tr(W ^ B) is 

equivalent to maximizing the scatter of the centres of a number of 

spherical clusters.
After a series of experiments on real data of biological signif- 

icance, Friedman and Rubin were of the opinion that gave better 

results than Jp, in addition to being computationally easier.

In adapting the algorithm of section to optimize and the

definition of distance used is the Mahalanobis Euclidean distance. The

Mahalanobis distance between two points, X. and X., is defined as-1 -j
(x.-x.)^^ (x.-x.)—1 ~J —1 —J



This distance will be invariant under any non-singular linear 

transformation. It stands in the same relation to J. as the Euclidean 
distance does to J . That is to say, to minimize |w| at each step 

during a 'reassignment pass', one assigns each point to the cluster 
with centre C. such that (X,-C.)^ (X -C.) is a minimum

—j
(Marriott, 1971). Clearly the use of J. and Jg will necessitate con­

siderably longer execution times than the use of

3.5 Further Invariant Criteria
Two further invariant criteria have been suggested in the liter­

ature. Fukunaga and Koontz (1970) first normalise the data space so as 

to transform the total scatter matrix to become the identity matrix.

S —T = I 

As a consequence
C.'
~3

W

B

-A C.-J D.-J
-A W A^ A P 

A B A^ A Q

tr P =

The eigenvalues of P Q are of course .... /\ , the
eigenvalues of W Let ^ ^

-1 -1 the eigenvalues of P are .

to I = P+Q. Hence

represent the eigenvalues of P. Then 

The relationship S = W+B transforms

P"^ = I+P"^Q

/i
1 +

1+^.1
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Consequently J' is also an Invariant criterion, since

■ t
'0

H/*:
i=l

y.

i=l

By analogy with Jg, is to he minimized. J' is computationally 

cheaper than and since after normalising the data space Euclidean 

distance is used, rather than the more complex Mahalanobis distance.

Thus a considerable computational saving is achieved. When g = 2, 

Fukunaga and Koontz have shown that J^, and are all equivalent 

criteria.
McRae (1971), in his program MICKA, makes use of (in addition to J', 

and Jg) a further invariant criterion defined by

= largest eigenvalue of W"^ B

This criterion is to be maximized. In the two-cluster case J also
3

becomes equivalent to the other invariant criteria. It is apparent from 

the experiments in Chapter 8 that the execution time for the optimization 

of this criterion is greater then for and and approximately the

same as for J^. To the author's knowledge, possesses no advantage 

over the other invariant criteria.

3.6 The Statistical Significance of the Iwl Criterion

Scott and Symons (l97l) have shown that the criterion |w| has a 

special significance when the data consists of a number of independent 

observations from a mixture of multivariate normal distributions with 

equal covariance matrices. In this case the maximum likelihood partition



of the data set into g subsets is that partition which minimizes Iw) . 

This result seems to be dependent upon the assumption that there is 

negligible overlap between the distributions. This fact is not exp­

licitly mentioned in the paper. Scott and Symons also point out that 
this result can be extended to the case of a mixture of normal distrib­

utions with unequal covariance matrices. Here the criterion to be 
minimized is y |^h| j. To the author's knowledge no-one has as yet

j=l ^
attempted to use this criterion.

^.7 Determination of the Optimum Value for g

So far the problem of determining the optimum value for g has not 

been considered. One cannot merely optimize the criterion as g varies. 

To see this consider J_(tr W), In the extreme case when g - N, each 
cluster will contain one data point. Hence J will be zero. No other 

partition will do this, unless some of the N points are identical. 

Consequently, the optimum partition would always be into single point 

clusters, which is certainly not the desired result.

Some authors, including Friedman and Rubin (I967), have suggested 
plotting the optimum value of the criterion against g. It is hoped that 

a sharp increase or decrease in the criterion will occur at the 'correct' 

value of g. This procedure has been shown to be unsatisfactory for J_ 

(e.g. Thorndike, 1953)- Friedman and Rubin report reasonable results by 
plotting log max( Isly/lwf ) against g. Marriott (1971) has shown that 

the optimum subdivision into g groups of a uniformly distributed pop­
ulation reduces |W| by a factor g^. This led him to suggest finding

2that value of g which minimizes g min |W] .

In the next chapter, another technique will be discussed which rests 

upon the assumption that the data consists of a number of independent 

observations from a mixture of multivariate normal distributions. This 

technique gives rise to significance tests for g.
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CEAPTER 4 TECHNIQUES RELATED TO THE CONCEPT OP P.D.P

4.1 Wishart's Mode Analysis
Wishart (1969) discusses the failure of an error sum of squares 

technique (see last chapter) when applied to a particular problem in 

astronomy. The data is two-dimensional and was first plotted by 

H. H. Russel in 1914. It shows temperature against luminosity for a 

large number of stars. According to Russel, and to most other observers, 

the data divides naturally into two elongated clusters, one considerably 

longer than the other. The members of the longer cluster have come to be 

known as 'dwarf stars'; the members of the other cluster are referred to 

as 'giants'. All astronomers seem agreed that this is the 'correct' 

classification for their purposes. However, when an error sum of squares 

technique is applied to this data set quite different results are 

obtained. The final classification into two groupings divides the dwarfs 

into two clusters and places most of the giants into one of these clus­

ters. In view of what was said in the last chapter, it is not surprising 

that such unsatisfactory results should be obtained from an error sum of 

squares technique.

Wishart then goes on to give a review of some thirteen different 

cluster analysis techniques and points out that they all share the 'min­

imum variance' property. That is, they all attempt to minimize the 

within-group sum of squares. Wishart seems unaware of the work of 

Friedman and Rubin in extending the optimization-partitioning approach.

Of course he was writing before the publications of Marriott and Scott 

and Symons. Consequently he concludes that this approach is unsatis- 

factory for many real problems.

He then discusses single-linkage cluster analysis and points out the
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problem presented by noise points. This leads him to suggest a modif­

ication of single link analysis in which the clustering is performed only 

on those data points at which the estimated p.d.f. is above a certain 

level. The algorithm requires selecting a distance threshold r, and 
frequency (or density) threshold k. Any definition of distance could be 

used, but Wishart uses Euclidean distance. The number of points, k^, 

within a distance r of each data point is then calculated. The points 

for which k^<k are regarded as 'noise points' and discarded. Single- 

linkage cluster analysis is then performed on the remaining points.

Finally each noise point is allocated to the cluster containing its 

nearest dense point.

The avoid the problem of having to choose two parameter values, 

Wishart suggested a second algorithm, called ' hierarchical mode anal­

ysis' . This algorithm requires only a density threshold, k. The dis­

tances from each point to its k'th nearest neighbour are computed and then 

ordered, with the smallest first. The points are considered in order of 
increasing k'th nearest neighbour distance. As each new point is intro­

duced, a parameter PMIH is set to the value of that point's k'th nearest 

neighbour distance. The algorithm then tests to determine which of the 

following three possibilities holds.
(1) The new point does not lie within PMIN of another dense point 

(i.e. a point already considered), in which case it initialises a new 

cluster mode.

(2) The point lies within PMIN of dense points from one cluster 

only, in which case it joins that cluster.

(3) The point lies within PMDT of dense points from several clusters, 

in which case they are coalesced and the point joins the newly-formed 

cluster.

Finally, because the value of PMIN has been changed, the algorithm 

checks whether the nearest-neighbour distance of any two clusters is now



less than PMIN, in which case these clusters are coalesced.

As the algorithm proceeds the number of clusters will vary. Wishart 

suggests outputting information about the clusters immediately before any 

are coalesced. The maximum number of clusters can be taken as indicating 

the most significant level of clustering. Having found this level, each 

noise point can be attached to the cluster containing its nearest dense 

point.
The algorithm has an execution time O(N') and storage requirements 

0(N). Wishart claims that it performs well and is relatively insensitive 

to the choice of k. It is a pity, however, that he does not tell us how 

the algorithm performs on the data set that originally inspired it, i.e. 

the astronomical data of Russel.
Clearly the co-ordinates of the modes transform in the same way as 

the co-ordinates of the data points. Consequently any mode-seeking 

technique must be invariant under non-singular linear transformations.

For a finite data set this is not absolutely true. To a certain extent 

any mode-seeking technique must be approximate and the accuracy of the 

result may depend on the scales chosen for each variable. However the 

results of the subsequent single-linkage cluster analysis are completely 

dependent on the particular definition of distance used. If Euclidean 

distance is used the results will only be invariant under orthogonal 

transformations. The same is true for the allocation of the noise 

points. As a consequence the resultant partition is invariant only under 

orthogonal transformations.

4.2 Citman and Levine's Mode-Seeking Technique
Citman and Levine (1970) describe a very similar mode-seeking 

technique. Their paper is presented in the language of fuzzy sets 

developed by Zadeh (19^5). The approach is more mathematical than



Wishart's and they are able to show that the technique possesses some 

nice properties in the limit as the size of the data set tends to infin­

ity. Unfortunately it is not clear to the author just how many points 

are necessary for any given data structure to obtain reasonable results.

Given a large enough data set, the technique will detect all the 
modes of point density. Clusters will then be formed around each mode. 

The algorithm derives the optimal partition in the sense of maximum 

separation as adopted by Zadeh. This means essentially that the cluster 

boundaries will lie in the valleys, i.e. regions of low point density.

The storage requirement is (20N + CM + s) words, where C is a 

constant whose size will depend upon the number of modes present in the 

data set, and S is the number of words required to store the data.
Gitman and Levine comment that 'the amount of computing time is relat­

ively small', however they do not quote the exact relationship between 
execution time and M. Because of the complexity of the algorithm the 

author is unable to determine the nature of this relationship. Probably 

the execution time will also be very dependent upon the number of modes 
present.

Gitman and Levine also suggest two modifications to the slgorithm to 

accommodate very large data sets (e.g. greater than ^0,000 samples). 

Neither of these 'short-cuts' had been tested when they wrote their 
paper.

Because it achieves maximal separation in the sense of Zadeh, the 

algorithm is (in the limiting case of an infinite data set) fully invar­

iant under non-singular linear transformations.

Aal NSPACE

NSPAC3 is a mode-seeking technique proposed by Eigen, Fromm and 
Northouse (1974). For each dimension a histogram is constructed to



represent the marginal p.d.f. An algorithm is then used to find the

modes of each histogram. The results of this algorithm are dependent
upon two parameters, and ^ is the number of intervals into which

the range of each dimension is divided and is a threshold parameter

used to define a mode. Assume that the i'th dimension contains modes,

situated at .... • If Qj - 0 the j*th dimension is
ignored. The marginal p.d.f. in this dimension will be approximately

uniform over the range considered. Consequently this dimension has no
q _value in cluster analysis. In all, there will be iTlQ. 'potential'

i=l ^
modes. Each potential mode will have its co-ordinate in the i'th dimen­

sion equal to one of the (k = 1, 2, .... Q^). In reality, there will

probably be a smaller number of actual modes, as can be seen from the
q _two-dimensional example in Figure 4.1. Here T TQ- equals 4, but in fact

i=l ^
there are only two modes. Now each data point _X (=(X^, Xg, .... X )) is 

considered in turn and for each dimension the nearest mode is found.
Nearest here means 'so as to minimize | '. The point is alloc­

ated to the cluster centred around the mode at (M', .... M'). By the
q __ I q

end of the algorithm, some of the Tl^Q. potential modes will have ooints
i=l

allocated to them, others may not. Thus the result is a partition of the
q _N data points into g classes where g agmin(]j[Q.,N).

i=l ^
Eigen et al. regard their technique as the first part of a 'global- 

local scheme'. That is, they regard its results as an approximation to 

the clustering structure which can improved on by more complex, and hence 

slower, techniques.

The paper describing NSPAGE is made unnecessarily obscure by an 

excess of mathematical symbolism. The author is unclear about the 
rationale behind the details of the particular mode-seeking algorithm 

used. From the example given the modes appear to be positioned in the 

valleys, i.e. in the regions of low p.d.f.I There is in addition an
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erroneous comment concerning the algorithm of Sebestyen and Edie, which 

will be described in section 4.5. Eigen et al. state that at certain 
stages in the Sebestyen and Edie procedure some of the cells may split 

into two. As will be seen later, this is not so.

NSPACE appears to be both fast and economical of storage. Both its 
time and storage requirements are 0(N). However it is sensitive to the 
choice of control parameters (i.e. ^ and ()). Furthermore NSPACE is 

probably the least invariant of all the techniques discussed in this 

chapter. Even the number of potential modes may vary as the axes are 

rotated. An example of this is shown in Figure 4.2. Here there are 
three actual modes. In Figure 4.2(a) there are 9 potential modes, whilst 
in Figure 4.2(b) there are just 3, corresponding to the actual modes. It 

can also be seen that the point X will be allocated quite differently in 

both situations.

4.4 A Valley-Seeking Technique

All the schemes outlined so far in this chapter have been mode­
seeking. However Koontz and Fukunaga (l972a) have suggested a technique 

which does the opposite. Their technique finds the valleys and part- 

itions the data set so that the cluster boundaries lie in these valleys.

As in their other paper (Fukunaga and Koontz, 1970), discussed in 

the last chapter, they define the clustering problem as consisting of the 

definition of a clustering criterion and the construction of a clustering 

algorithm. This time they discuss a radically different criterion from 

those based on scatter matrices. Their initial criterion, J, is an 

attempt to measure the error involved in mapping from the set of data 

points to the set of clusters. J is of a very general form. However the 

bulk of the paper discusses the properties of one specific example of J, 

known as the 'fixed neighbourhood penalty rule' and denoted by J This



(a) The full circles represent the actual modes of point density for a 

data set. The dotted circles represent the other potential modes.

(b) The modes of the same data set as in (a) after the axes have been
rotated through 45° i^ a clockwise direction. This time there are no

other potential modes.

FIGURE 4.2



is defined ns 'the total number of distinct pairs of vectors separated by 

a (Euclidean) distance less than R and assigned to different classes'. 

Thus in minimizing one ensures that there is little overlap between 

clusters. As Koontz and Fukunaga point out, any metric could be used to 

define distance. In their examples, they use Euclidean distance after 

first normalising to zero mean and unit covariance matrix. Unlike the 

more usual normalisation to zero mean and unit standard deviation, this 

normalisation involves rotation. This is equivalent to using the 

Kahalanobis distance defined on the whole data set.

The clustering algorithm is originally defined for the general 

criterion J. When applied to Eoontz and Fukunaga restate it as a 

sequence of four steps.

Step 1: Choose an initial classification.

Step 2: For each vector, count how many vectors within a distance & 

are assigned to each class.

Step 3: Reclassify the vector to the class with the largest number 

of members within a distance R from it.

Step 4: If any vector is placed in a new class, repeat from Step 2. 

Otherwise, stop.

This differs from the 'hill-climbing pass' of Friedman and Rubin, 

mentioned in the last chapter, in that during Step 2 no account is taken 

of any reclassification already achieved in that particular pass through 

the data set. As a result, a boundary can only move by a distance R in

any one pass.

Koontz and Fukunaga first use a verbal argument to convince their 

reader that what they have described is a valley-seeking technique.
'Consider vectors along the boundary separating class S. from class 

Sp at the k'th iteration. Suppose there is a heavier concentration of 

vectors on the Sp side of the boundary. Then vectors near the boundary



are re-classified into Sp. Hence the boundary moves into the region 

previously assigned to class S^. Therefore, the boundary moves away from 

the higher concentrations and towards the valleys in the distribution.*

Once a valley of width greater than 2R has 'captured' a boundary it 

cannot escape, since a boundary moving towards a valley can overshoot by 

no more than R.

Koontz and Fukunaga then give a mathematical treatment to show that, 

in the limit as the data set becomes infinite, the only stationary 
boundaries are everywhere perpendicular to the gradient of the prob­
ability density function. Furthermore, the only stable boundaries (in 

the sense of tending to return to their original positions after a slight 
perturbation) correspond to 'valleys'. Unfortunately it is not clear how 

closely the algorithm will correspond to this behaviour for a finite 

number of data points.

Three problems remain. What value should R be given? How do we 
determine the optimum number of clusters? To what extent are the results 

dependent upon the initial partition?

The answers to the first two questions appear to be related. The 

paper reports a series of experiments in two dimensions on data consist­

ing of 99 points from three normal clusters. Five initial classes were 

defined and R was varied from 0.1 to ^.O. When R was small no converg- 

ence occurred after twenty iterations, when the process was stopped. It 

was found that most of the data points fell in one class. For large R 

convergence occurred after a small number of iterations with nearly all 

the samples in a single class. However there appeared to be an inter­

mediate range of values of R for which the 'correct' results were found. 

That is, there were three large clusters plus two empty, or nearly empty, 

clusters. The experiments were repeated with 198 and 300 samples, and 

similar results were found. Koontz and Fukunaga suggest that these very



satisfactory results are caused by the 'unwanted' boundaries moving 

downhill to the edge of the data set. Therefore it would apr^^^ that as 

long as there are enough initial classes the actual number does not 

matter. In fact, Koontz and Fukunaga comment that it may be wise to take 

more initial classes than are thought necessary in case some boundaries 

are lost by diverging to the edge of the data set.

The problem of how to define the original partition is not really 

treated. Presumably it was not found to be critical.

In the author's opinion these experiments exhibit two major defects. 

Firstly, the experiments are limited to two dimensions. Secondly, all 

three clusters have unit covariance matrices. The author wonders whether 
the algorithm could separate high-dimensional ellipsoidal clusters with 

differing covariance matrices?

Since several different values are taken for R, the most obvious 

implementation is to first calculate the dissimilarity matrix (using
Euclidean distance) and store it for re-use. This produces a program

2with storage requirements 0(N ). The time requirement for the calcul­

ation of the dissimilarity matrix will be but for the bulk of the
algorithm will be only 0(N). If there is not enough available storage 

space for the dissimilarity matrix the simplest alternative is to cal­

culate each interpoint distance when needed. This reduces the storage
requirements to 0(N) at the expense of increasing that part of the

2algorithm whose time requirement is 0(N ).

However, there is a third possible implementation which is optimum 

irrespective of whether or not there is enough storage space for the 

dissimilarity matrix. First create for each data point a list containing 

all the points within a distance equal to the maximum value of R to be 
used. Markers can be inserted to partition the list and thereby indicate 

how much of the list is relevant for any particular choice of R. For



large vordlength machines it should, be possible to achieve a further 

economy of storage by packing more than one element of each list into 

each word. The result will be a program faster than the previous two and 

with less storage requirements than the first. This is because the 

optimum value of R appears, from the experiments, to fall as N increases. 

Consequently the length of each list will probably not be as much as 

proportional to N, and hence the storage requirements will increase at a 
rate less than 0(H").

Valleys, like modes, are invariant under non-singular linear trans­

formations. That is, each point along the line of a valley will trans­

form in the same way as the data points. Consequently this technique, 

like Gitman and Levine's, is fully invariant under such transformations.
In a later paper, Kbontz and Fukunaga (l972b) have extended their 

analysis to a more general form of criterion. The paper seems to suffer 

from most of the defects of the earlier one. In particular, it is not 

clear how many data points are necessary for reasonable results. Also 

the experiments they quote are once again limited to two-dimensional data 

composed of three normal distributions, each with unit covariance matrix. 

As before, the criterion depends upon a parameter which has to be varied 

to obtain good results. However the paper contains a heuristic argument 

which suggests a value for this parameter. This requires considerably 

less computer time than the trial-and-error method previously suggested.

4-3 The Algorithm of Sebestyen and Bdie
Sebestyen and Edie (1966) describe an algorithm which they believe 

can be used to provide an economic representation of a multivariate 

p.d.f. Before explaining the relevance of this algorithm in cluster 

analysis, it will be necessary to describe it in some detail. The p.d.f. 

is represented as a mixture of multivariate normal distributions. Each



of these constituent distributions is constrained to have a diagonal 

covariance matrix. Thus each of the normal distributions can be thought 

of as being centred on an ellipsoidal cell with axes parallel to the axes 

of the data space.

Assume there are M normal distributions in a space of q dimensions.

Let S , reuresent the k'th co-ordinate of the mean of the m'th distri- mx
button. Let , represent the standard deviation of the m'th distri- mk
button in the k'th dimension. Let X, be the k'th co-ordinate of an 

arbitrary vector, X. Finally o is a positive weighting factor such that

M

m=l

Then the probability density at X will be

(2T1)'iq) q
Ln

exp(-iQ, (X))

m=lk=l
mk

where the quadratic form 0 (X) is given by

(A)

^k-^mk^
C3C

k=l
mk

The object of the algorithm is to establish the number and nature of 

these distributions. In what follows the S , and (T , no longer rep- 

resent the true means and standard deviations but rather the values in 

use at any particular stage of the algorithm. Each distribution is

regarded as being centred on a cell given by

where TZ is a parameter that must be defined before the beginning of the



algorithm. Another parameter, , is used to define a 'guard-zone' 

around each cell thus

Q (x)!== (m—'
The algorithm begins by establishing a cell centred on the first 

data point. Initially each(^.^ is equated to a pre-determined constant 
CT (o). As each new data point. is presented the Q^(X) are cal­

culated. The minimum of these quadratic forms is found. Assume this is 

Q (X^. Then there are three possibilities.

(1)

In this case, the point falls in the m.'th cell. Estimates of the 

mean and standard deviation are kept for all the points which have fallen 

each cell. Consequently, these estimates for the m^'th cell must bein

modified to include the new point X. The S . are equated to the estim-— m.k
ates of the co-ordinates of the mean. Each O" ^ is equated to them^k
maximum of and the estimate of the standard deviation in the k'th

dimension.

(2)
In this case, the point falls in the guard-zone. It is stored and

re-considered at a later stage.

(3) (X)

In this case, the point falls outside the guard-zone. A new cell is 
formed, centred on X and with its equated to cr^(O).

Assume c^ cells have been created after data points have been 

considered. Then when equals c^*^ , where W is another pre-determined 
parameter, the stored data points (i.e, the points that fell in guard 

zones) are allocated to the 'nearest' cell (in the sense of minimizing



Q (X^). This allocation of stored points will re-occur for the q'th time

wnen

P =q q
Obviously, determining the values of the control parameters 

(i.e. and is a major problem. The reason for having a

minimum value for the is to prevent a very large number of cells

being established. Consequently, it is at least possible to guess an 

order of magnitude for the ^^is not too much of a problem

because the results of the algorithm are not critically dependent upon 
it. Sebestyen and Edie in fact suggest that a suitable value for CJ ig 
4. However, slight changes in and 6) quite seriously affect the 

performance of the algorithm. Sebestyen and Edie suggest that Z: should 
be approximately l,4(q+2)^. Their only comment about is that it 

should be greater than unity'.

While Sebestyen and Edie were primarily concerned with representing 
multivariate p.d.f.'s, Nucciardi and Cose (1972) have considered the 

algorithm as a clustering algorithm. For, as Sebestyen and Edie pointed 

out, the cells will tend to stabilize around the modes of the distrib­

ution. Hopefully the algorithm will produce a few cells containing a 

large number of points, plus some additional nearly empty cells. The 

dense cells can be regarded as clusters, and each of the other cells can 

be coalesced with its nearest dense cell, using nearest in the same sense 

as before.

Mucciardi and Gose found Sebestyen and Edie's suggestions for 
evaluating unsatisfactory in high dimensions (i.e. greater than 
three). .Instead they suggest that TC and be chosen so that the : 
initial cells (i.e. with (3^^ equal to ^^^Xo)) contain, on average, three 

data points, whilst the guard-zones contain two. They also suggest a



second pass through the data set. This starts with the cells formed at

the end of the first pass. In general the are re-initialized to
j ^

However if, for some j and k, has remained at the value
(T(o) the initial value for that CT. is reduced to some fraction of k^ ^ jk
cr (o). The largest cr., for the cell in question is then re-initialized 

so as to maintain the same initial volume for the cell.

The result of all this is an algorithm which is undoubtedly fast. 

Assuming that the number of cells formed is dependent only upon the data 
structure (and not upon the number of points in the sample) the time 

requirement will be 0(H). Whether the initialization techniques of 

Nucciardi and Gose work well over a wide range of data sets is still an 

open question.

The limitation to diagonal covariance matrices will clearly have 

severe consequences when dealing with ellipsoidal clusters whose axes are 

not parallel to the axes of the data space. The extension of this 

technique to employ cells with non-diagonal covariance matrices would 

increase the execution time for the algorithm by a factor of the order of 
^Xq+l). This is because so much of the execution time is spent in 

calculating the Q (X). In Sebestyen and Edie's original algorithm each 

quadratic form is the sum of q terms. However in the modified algorithm 
each quadratic form is the sum of ^(q+l) terms.

All the algorithms presented in the first four sections of this 

chapter are non-parametric. The algorithm in the next section is para­

metric. However this algorithm seems to occupy a half-way position. It 

will probably work best where each cluster comes from a multivariate 

normal population. However, because the algorithm is essentially a 

mode-seeking one, it will fail to distinguish two normal distributions 

when the means of the distributions are very close. A truly parametric



technique should continue distinguishing the two distributions until 

their means actually coincide. On_the other hand, because the technique 

is a mode-seeking one, it will probably achieve reasonable results for 

ellipsoidal clusters possessing a distribution other than Gaussian.

l^ell-separated normal distributions remain well-separated and normal 

after non-singular linear transformations. Consequently, if these 
assumptions are valid the results of this technique (when adapted to 

include non-diagonal covariance matrices) should be invariant under such 

transformations. However, unlike all the other procedures discussed in 

this chapter, the results of this technique may depend upon the order of 

presentation of the data points. It is important that they should be 

randomly ordered. If this is not so, quite misleading results may occur.

It is interesting to note that, given the validity of the assum­

ptions of normality, the allocation of data points to clusters does not 

follow strict Bayesian decision theory. On the basis of decision theory, 

a point will be allocated to that cluster which makes the most contri­
bution to the sum in (A). That is, the point is allocated to the m_'th 

cluster where m^ is that value of m which maximizes

m
q exp(-^Q,^^X)) (B)
rr<
k=l mk

c is the proportion of points in the m'th cluster. Assume that, of 

n points so far allocated, n have been allocated to the m'th cell. Thenm
c can be estimated by m

%
n

Substituting for c and taking natural logarithms (B) becomes



In - in n - 2., 
k=l

Since n is independent of m, the requirement is to maximize

q
1„ ^ ln( cr^) -

k=l
(C)

Clearly, this is not equivalent to minimizing Q (X^. The difference 

will become particularly evident when the cells differ either in size or 

in point density. The question naturally arises whether the adoption of 
the criterion given in (C) would give better or worse results than the 
original criterion. A criterion similar to (C) can, of course, also be 

determined for the case when non-diaaonal covariance matrices are used.

4.6 Multivariate Mixture Analysis

This technique makes use of the maximum likelihood method, the 
properties of which were first deduced by Fisher (1922). The maximum 

likelihood technique is a way of estimating the parameters of a distri­

bution given the general form of the distribution and a sample of indep­

endent observations from the population. The assumption made in this 
section is that the probability distribution, f(Xj, of the data space is 

a mixture of g multivariate normal distributions.

Let there be N sample points, X_, 

function is defined by

N

Then the likelihood

L = |f(x )
j=l

The exact shape of f(X^ is defined by a number of parameters. These 

are the mean vectors and covariance matrices of the g normal distribu- 

tions plus the proportion of each component distribution in the resultant 

mixture distribution. The maximum likelihood method regards these



parameters as variables and finds those values which maximize h.

Having estimated these parameters, one can regard each distribution 

as defining a cluster. The data set can then be partitioned amongst the 

g clusters by using Bayesian decision theory, as outlined in the last 

section.

Wolfe (1970) gives a brief review of some previous attempts to use 

the maximum likelihood approach for special cases of the above problem 
(e.g. when the distribution is univariate). He then goes on to develop 

the theory for the general case. Whilst it is easy to set up the maximum 

likelihood equations by differentiating In L with respect to the 

various parameters, the solution of these equations is much more dif­

ficult. A large part of Wolfe's paper is concerned with the description 

of an iterative numerical technique to solve this problem.

Wolfe has written a program implementing his ideas. This program 

contains two options. NOHMIX is the general case option whilst NORMAP is 

for the special case where each normal distribution is assumed to have 

equal covariance matrices. As Wolfe points out, 'NOHMAP could be con­

sidered a continuous version of the discrete partitioning procedure of 

Friedman and Rubin. The two methods tend to coincide in the limiting 

case of widely separated types.' Similarly, NORMIX is a continuous
version of the IT lw.| ^^i criterion suggested by Scott and Symons. 

i=l ^
In view of what has just been said, it is not surprising that NORMIX 

and NORNAP share a difficulty with the optimization-partitioning tech­

niques. The results of the analysis are dependent upon the initial 

partition. Wolfe's iterative technique will even diverge for some 
initial partitions. In both cases, the solution to the difficulty 

appears to be to take a number of different initial partitions and 

compare the results. In the case of the optimization-partitioning tech­

niques, the best overall result will be that which gives the optimum



value for the criterion. In the case of Wolfe's program, the best 

overall result will he that which gives the largest value for L. How­

ever, to have to repeat the analysis a number of times is clearly very 

expensive in computer time.

Wolfe's technique has one interesting property not really shared, by 

any other technique described in this report. It allows a much more 

definite answer to the question, 'what is the best value for g?' Con­

sider the two alternatives g = r and g = r'. Let L and L , be ther r'
2maximum values of L for the two cases. Consider the quantity defined 

by

= -2 ln(L^/L^,)
2In the limit, as the number of data points tends to infinity, % 

will have a chi-squared distribution with degrees of freedom equal to the 

difference in the number of parameters to be estimated in the two cases 

(Wilks, 1962). This enables a simple test of the two hypotheses to be 

constructed. Such a test is known as a likelihood ratio test. As Scott 

and Symons point out, the necessary conditions are not fulfilled to 

enable this test to be used in the case of the optimization-partitioning 
criterion they discuss (this is because of the assumption of non- 

overlapping distributions).

Wblie gives a number of examples of the use of and NOEMAP.

In one example, three clusters were artificially generated consisting of 

100, 75, and 50 points in two dimensions. The clusters each had multi-
2variate normal distributions with different covariance matrices. The'X 

likelihood ratio test applied to the results of NORMIX indicated the 

existence of more than three types in the data. However, it was found 

that the fourth cluster contained only seven points. The chi-squared 

approximation is, anyway, inaccurate for this sample size.
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In addition, Wolfe quotes an example employing the Iris data pub­
lished by Fisher (l9$6) and also used by Friedman and Rubin. The results 

obtained from NORMAP were found to be identical to those obtained by 

Friedman and Rubin with the |w| criterion. Unfortunately, on the basis 

of the published results it is impoosible to make a comparison of the two 

procedures from the computational standpoint. Because of the complexity 

of NORMAP and RORMIX, the author is unable to deduce the relationship 

between execution time and number of data points. It is clear, however, 
that the storage requirement of the program is 0(N).

A mixture of multivariate normal distributions remains a mixture of 

multivariate normal distributions after a non-singular linear trans­

formation. Furthermore, if the covariance matrices are equal before the 

transformation they remain equal afterwards. Consequently the results of 

both NORMIX and NORMAP are invariant under such transformations. This of 

course also follows from their equivalence with the optimization­

partitioning techniques of Scott and Symons.

4.7 A Simple Comparison

A simple one-dimensional example may help to illustrate the dif­

ferences between the various techniques discussed in this chapter.

Consider an equal mixture of two univariate normal distributions, each
2with variance . When the means coincide, the distribution is normal. 

As they separate the distribution does not become bimodal until they 
differ by 2cr(Marriott, 1971).

One would not expect any of the non-parametric mode or valley­
seeking algorithms to separate the two distributions in the case when the 

means are separated by less than 2cr. Nor would one expect the Sebestyen 
and Edie algorithm to separate the two distributions, since it also is 

essentially a mode-seeking one. However HORMIX and HORMAP ought to be
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successful in separating these distributions.

When the means are separated by rather more than 2gr and two well- 

defined modes exist, all the techniques ought to give a two-cluster 

solution. The way the data set is partitioned amongst the two clusters 

will depend on the particular technique used.

As the means are separated the Scott and Symons criteria should give 

a one-cluster solution until the degree of overlap becomes 'negligible'. 

What negligible means in this context is an open question. Presumably 

two distinct modes will have to exist and be quite well-separated.



CHAPTER 5 i-lAPPinCS

5.1 Introduction

The techniques discussed in this chapter differ from the others in 

this report in that they do not themselves output the cluster structure 

of a data set. These techniques map each data point in the original 

q-dimensional data space into a point in an r-dimensional space, where 

r «C[q. This reduction in dimensionality is sometimes termed feature 

extraction. There are two principal objectives. Firstly, by mapping 

from a space of high dimensionality to one of low dimensionality one 

achieves a data set which can be more economically manipulated. This was 

particularly the motivation behind the linear technique discussed in 

section 5'2. In addition, by mapping into a 1, 2, or 3-d±mensional space 

one can display the data set visually. This was the main motivation 

behind the non-linear techniques discussed in sections &nd $.4" It 

is also the objective which is of interest in this chapter. For having 

so displayed the data it may be possible to cluster it visually. The 
human observer is able to achieve a global (or 'gestalt') clustering 

which is not sensitive to the presence of noise points. As a disad­

vantage, clusters which are distinct in the q-dimensional space may 

overlap in the r-dimensional space, thereby obscuring the data structure.

5.2 Principal Components Analysis

This is by far the oldest of the mapping techniques to be considered 

in this chapter. The procedures in general use today are due to 
Hotelling (1933) but the method was effectively suggested by Pearson 

(1901).
Let the N data points be represented by column vectors , X_,...X^. 

Consider the expansion of each such vector

X.
—1

q.
IZ^ij-j
1=1

(A)



Here the are a set of q orthonormal vectors. By ignoring all bat 
r of the terms in the summation in (A) one obtains a reduction in dimen­

sionality from q to r. The other (q-r) terms must be approximated by 

vectors independent of the choice of X_. This will give a vector 

which is an approximation to

b .U .J-J (B)
j=l j=r+l

Here the b. are constants. One measure of the error involved in the 
approximation (b) will be given by 

N
K :^d(x.,yi)

i=l
If d( , ) represents the squared Euclidean distance, K is termed the

'mean-square error'. The objective of principal components analysis is 
to find an approximation of the form of (B) which minimizes this mean 

square error.
It can be shown (e.g. Eukunaga, 1972, Chapter 8) that such a mapping 

is defined in the following way. Let the u_ be the eigenvectors of the 

covariance matrix of the data set. Let the eigenvalues be arranged in 

order of magnitude, with the largest first. Assume that u_ is the 

eigenvector associated with the j'th eigenvalue. Finally define the b.
by

b. = u: E(X)

Here the superscript T denotes transposition whilst the operator E 

denotes expectation.

By equating r to 2, one arrives at a set of two-dimensional vectors 
with co-ordinates (y\^, y^g) given by (b) which can be plotted and 

inspected visually. Frequently each of the two dimensiona is normalised



to unit variance before the data is plotted. Hopefully the two- 
diaensional pj,ot will now allow the observer to cluster the data. 

Unfortunately there are several disadvantages. Firstly, the results are 

invariant only under orthogonal transfornations. Clearly they will be 

completely altered by a change of scale. Secondly, two clusters may 

overlap completely in 2-space when they are well-separated in q-space. 

All that is necessary for this to happen is that the clusters overlap in 

the subspace spanned by u^ and u^. The point here is that the criterion 

which is being minimized (i.e. mean-square error) bears no natural 

relationship to the clustering problem. There is no real reason why it 

should give satisfactory results in clustering.

Computationally the algorithm is cheaper than the nonlinear tech- 

niques to be considered later. Both storage and time requirements are 
0(N). As a result principal components analysis can be used on far 

larger data sets than the nonlinear techniques can handle. The procedure 

is iterative only to the extent that the algorithm for finding the 

eigenvectors is iterative. Furthermore it is not necessary to find all 

the eigenvectors but merely those associated with the two largest eigen- 
values.

5.3 Sammon's Nonlinear Mapping

Sammon (I969) has attempted to overcome the deficiencies of prin­
cipal components analysis by using a radically different criterion from 

the mean-square error. Sammon's algorithm attempts to maintain as 

unchanged as possible the relationship between each data point and those 
points close to it. This approach should be specially suitable for 

cluster analysis. He first defines a criterion which represents the 

extent to which the distances between each data point and its neighbours 

are altered by the mapping. The aim of his algorithm is to find a



mapping which minimizes this criterion,

Let df. and d.. represent the distances between the i'th and j'th 

points in the q- and r-spaces respectively. Any definition of distance 

could be used but Sammon uses Euclidean distance. Then the error

involved in the transformation d^.1.3 d.. can be reoresented by ij
(df. - d..) . This error must be summed over all possible combinations

of i and j. However it is required to minimize this error chiefly for

those points close together, if need be at the expense of those far

apart. Consequently the i,j'th term in the summation is weighted by 
1

% This gives

- "1.3'
"id

i<j
Finally a normalisation is performed by dividing the criterion by

This renders the criterion dimensionless. It does not affect

the algorithm but it does mean that when the final configuration has been 

achieved a number can be attached to it which measures the success of the 

mapping in preserving inter-neighbour dissimilarity. Thus the final 

criterion is given by

,2
K 1

iv^j i«rj

(":d' "id)'
"fd

K can now be regarded as a function of the co-ordinates of each of the 

points in the r-space. Thus if there are N data points, K is a function 

of Nr variables. Sammon then uses an iterative steepest descent pro- 

cedure to minimize K. The initial r-space configuration can be chosen at 

random. Alternatively Sammon suggests finding those r of the original 

axes along which there are the largest variances. The original config- 

uration can then be taken as the projection of the data points in the 

sub-space spanned by these r dimensions. The final result of the



algorithm is a set of values for the Hr co-ordinates (and thus a config­

uration in r-space) which minimizes, K.

Sammon's paper contains the results of a number of experiments, both 

on artificial and on real data. He shows that in some cases his algo­

rithm will produce a mapping which allows 'correct' clustering when this 

is not possible from the results of a principal components analysis. The 

algorithm appears to be particularly useful when the data points are 

highly structured but in a very nonlinear way, e.g. when they lie along a 

helix in q-space. It is clear at once from the 2-space plot that there 

is a very definite structure. As with all dimensionality reducing 

mappings, there is no unique q-space structure corresponding to any given 

r-space structure. Furthermore, because the mapping cannot be repres­

ented in a simple mathematical form it does not seem to be possible to 
make many comments about the q-spaoe structure.

Apart from the number of clusters present the only other definite 

piece of information one may obtain is the intrinsic dimensionality of 

the data. Assume that the original data points in q-space lie on (or in 
practice close to) a surface which is defined by a minimum of p para­

meters. Clearly p will be less than or equal to q. Then the data is 

said to possess an intrinsic dimensionality p. For example, in a three- 

dimensional problem all the data points may lie very close to a helix. 

Then although the dimensionality of the data space is 3, the intrinsic 

dimensionality of the data is 1. Each point on the helix can be defined 

by one parameter alone (e.g. the distance from one fixed point on it). 

Then if the mapping is performed from q-space into spaces of steadily 

increasing dimensionality (e.g. l-space, 2-space, etc.) there should be a 

considerable reduction in the final value of K when the correct.intrinsic 
dimensionality is chosen.



In practice the anther suepects that data very rarely follows these 

highly non-linear hnt very well-defined forms. A typical pattern recog­

nition clustering problem is the 'pure signal plus noise' situation 

outlined in Chapter 1. Here each pure signal would be represented by a 

point in hyperspace and the noise would cause the data points to be 

clustered around this point. Possibly if the statistics of the signal 

are continuously varying in a non-random way one might find the data 

points to be clustered around a line. However this would seem to be an 

exceptional situation.

One disadvantage of the algorithm is that, as with many iterative 

search techniques, one can never be sure that the solution obtained is 

not just a local minimum of K. One possibility is to repeat the analysis 

with a number of different starting configurations. In actual fact it 

may not matter that the overall minimum has not been found if the local 
minimum value for K is sufficiently small (say,0.1). As long as one 

has obtained a 'good' mapping the fact that it is not the best is irrel- 
evant.

Another disadvantage is shared with principal components analysis. 

The results of the mapping will not be invariant under non-singular 

linear transformations. Because the algorithm depends upon the use of a 

distance measure the final configuration will depend upon the initial 

choice of scale. Consequently the clustering performed by the human 

observer will also be sensitive to the choice of scale.

Computationally, the algorithm will be more expensive than principal
pcomponents analysis. The time requirement is 0(H"). However it will 

also depend upon the data structure, that is how easily (in how few 
iterations) K can be minimized. Both the di. and the d. . are each used 

more than once. Consequently to calculate them more or less when needed



will produce a very slow algorithm. In particular the d*. are unchanged 

throughout the algorithm. As a result Sammon recommends storing both
pdissimilarity matrices. Consequently the storage requirement is O(H') 

and this imposes a definite limit on the size of data set which can be 

handled. To overcome this problem Sammon suggests using a clustering 

algorithm to reduce the data set to a manageable size, say 2^0 vectors. 

For data reduction the choice of clustering algorithm is not critical.

As was pointed out in Chapter 1 there is no unique solution to the data 

reduction problem but rather a multiplicity of acceptable solutions.

5.4 A Relaxation Method for Nonlinear Mapping
Chang and Lee (197^) make use of the same criterion as Sammon. The 

only difference is that they use squared Euclidean distance rather than 

ordinary Euclidean distance. However a relaxation method is then used to 

minimize K. Instead of modifying the whole r-space configuration in one 

step they take a pair of points at a time. A gradient method is then 

used to alter the co-ordinates of these two points to minimize K. A 

heuristic has to be introduced to ensure that if the points are close 

together they are affected more than if they are far apart. After all 

the pairs of points have been considered the algorithm has performed one 

iteration. Further iterations are repeated until convergence is reached.

Chang and Lee call this algorithm 1. As it stands it possesses much 

the same advantages and disadvantages as Sammon's algorithm. In algo­

rithm 1 there is no need to store the interpoint distances in the r-space 

since they are essentially needed only once. However the interpoint 

distances in the q-space are used at every iteration and so by storing 

them the execution time of the algorithm is significantly reduced. Thus 
both the storage and time requirements are also 0(N ).

Chang and Lee then suggest a modification to this algorithm,



algorithm 1^. This is known as the frame method and is similar to the 

frame method for forming a sub-minimal spanning tree suggested by Lee 

and discussed in Chapter 2. Firstly M points are chosen as frame points 

from the F original data points. Let the data points be represented by

vectors X,, X^. Assume that the first M of these are chosen as-2' ''
frame points. Then algorithm 1 is applied to these M points to produce M 

points in the r-space denoted by_Y,, .... Algorithm 1* then
attempts to find (N-M) points in the r-space (denoted by Z , JZg, 

so that the distances between each frame point and each non-frame point 

are minimally distorted by the mapping. That is, each distance of the 
form d(Y.,Z^) is computed in turn and compared with the original distance 

in the q-space, i.e. d(X^,,X^^.). Z. is then modified so as to minimize 

K. The extent of this modification is a monotonically decreasing fun­
ction of d(X^,X^^.). Thus this stage of the algorithm is concerned with 

the relationships between the frame points and non-frame points. The 

relationships amongst the frame points has already been considered whilst 

the relationships amongst the non-frame points are ignored.
A complete pass through the M(N-M) distances of the form d(Yy,_Z.) is 

termed one iteration. The iterations are repeated until convergence 

occurs or a fixed number of iterations has been used up. Thus the first 
part of algorithm 1* requires the storage of ^M(M-l) interpoint distances 
whilst the second part requires the storage of M(N-M) distances. The 

storage used for the first set of distances could be used for the second 

set, since the intra-frame distances are not needed in the second stage 

of the algorithm. They are needed, however, if it is desired to evaluate 

K for the final configuration. Because of the reduced storage require- 

ments of algorithm 1*, it can be used on much larger data sets than 

either algorithm 1 or Sammon's algorithm. Furthermore, since less 

interpoint distances need to be calculated, algorithm 1* will be faster



than algorithm 1 and Sammon's algorithm.

Apart from the computational differences algorithm 1 and algorithm 

1* share the properties of Sammon's algorithm. Chang and Lee claim that 

for one particular example, algorithm 1* gives better results than 

Sammon's method. Whether this would tend to be so in general or whether 

it is a function of the particular data set is an open question. The 

comments made in Chapter 2 about the choice of frame points for Lee's 

sub-minimal spanning tree are also relevant here. A frame set chosen 

totally, or even largely, from one cluster could give quite misleading 

results.



CHATTER 6 HISCELHAI'ROHS TECmTIOUES

6.1 ISODATA
A number of iterative techniques have been described in the litera­

ture which share the property of allowing the number of clusters to vary 

during the course of the algorithm. The most famous of these techniques 

has been developed by Ball and Hall (I967) and is called ISODATA. In the 

form given in the reference, the algorithm is applicable to binary-valued 

data. This is because Ball and Hall are social scientists and socio­

logical data seems to be mainly of this form. However the modification 

to real-valued data is trivial and Ball and Hall claim they have devel­

oped a program for this case.

The algorithm can most easily be described as a number of steps.
(1) A 'typical' set of data points are chosen as initial 'cluster 

points'.
(2) Each data point is allocated to a group centred on the nearest 

cluster point. Euclidean distance is used here.
(3) For each group the centroid and 'within-group variability' are 

calculated. The centroids now become the new cluster points. 

The term 'within-group variability' is not defined in the paper 

but presumably it refers to something like the trace of the 

covariance matrix for each group. If any group's within-group 
variability exceeds a threshold 8^ the algorithm proceeds to 

step 4. Otherwise it stops and the results are output.

(4) Each group whose within-group variability is greater than

is split into two. Firstly, the variable with greatest var- 

iance for this group is found. Two new cluster points are then 

formed identical in all but this variable to the centroid of 

the group being split. One of the cluster points takes the



value +1 in the maximum-variance dimension; the other takes the 

value -1. This is because the algorithm was designed for 

binary variables which can only take these two values. Clearly 

this step could easily be adapted for continuous variables.

(5) The data points are now re-allocated to their nearest cluster 

points and the centroids of each group are computed.

(6) The distances between each pair of centroids are calculated.

(7) All groups whose centroids are closer together than a threshold 

value are combined. The algorithm then returns to step 2.

Clearly this algorithm is looking for compact spherical clusters.

In this respect it resembles the error sum of squares techniques dis­

cussed in chapter 3- fact, the algorithm is another elaboration of 

the basic algorithm shown in Figure 3'i' Consequently it suffers from 

the same disadvantages. The results will not be invariant under non­

singular linear transformations and the algorithm will tend to split up 

elongated clusters. Ball and Hall describe it as a data-redueing algo- 

rithm and do not make any claims as to its value in finding a true 

typology. Like the basic algorithm of Figure 3'i the storage and time 

requirements are 0(N). One of the difficulties of this algorithm is the 
choice of 6)^ and It may be necessary to change one or both of

these parameters and re-run the program until a suitable level of clus- 

tering has been found. Northouse and Fromm (1973) have suggested heur­

istics for computing reasonable values for these parameters but no really 

convincing proof of the general efficacy of these algorithms exist. In 
the opinion of the author ISODATA is likely to achieve results only a 

little superior to the results of the algorithm of Figure 3*1 at the cost 

of a much-increased execution time.



(5.2 MAXIMI^TIST
This technique, due to Batchelor and Wilkins (196$), was originally 

designed for initialising the compound classifier algorithm invented by 
Batchelor (19^8). The compound classifier algorithm is an error- 

correcting procedure for learning with a teacher which uses hyperspheres 

as discriminant surfaces. Batchelor and Wilkins define the word cluster 

in a way which corresponds exactly to the d&age of the word in complete 
linkage analysis (see Chapter 2).

The algorithm takes from the set of data points .... a

set of cluster points B., B^, .... B_. where normally M is much less than

M. Firstly is set equal to ,X^. ,Bg is then equated to that data point

furthest from B.. Euclidean distance is used. To find B^ the minimum of -1 -3
d(X.,,B.) and d(X_,.Bg) is calculated for i=3 to H. The maximum of this 

set of (N-2) distances is then found. The data point which produces the 

maximum value becomes BL. Hence the name MAXIMINDIST. The algorithm 

proceeds in this fashion until M cluster points have been found. This is 

equivalent to performing a complete linkage analysis with a threshold set 

at a level which gives exactly M clusters. Any data point in an unrep­

resented cluster will always be further away from its nearest cluster 

point than any data point in a represented cluster. Thus if there are 

exactly M clusters (in the complete linkage sense) one cluster point must 

come from each one. Since in complete linkage analysis all intracluster 

distances are less than all intercluster distances it is now a trivial 

matter to construct the complete partition by assigning each data point 

to the cluster centred on its nearest cluster point. However MAXIMIHDIST 

has the advantage that one does not need to know what threshold value to 

choose to give the desired value for M. Furthermore the algorithm may 

also give an indication of what is the most significant level of



clustering. That is to say, if there is a level at which all the intra­

cluster distances are much smaller than the intercluster distances this 

will be apparent. When all the clusters at this level have been found 

the maximum of the minimum distances from each remaining data point to 

the cluster points will drop drastically.

Clearly MAXIMINDIST possesses all the defects of complete linkage 

analysis. The main objections are that it is invariant only under 

orthogonal transformations and that, since it is looking for compact 

spherical clusters, it will tend to break up any elongated clusters 

present. This makes it suitable for finding a true typology in only a 

limited number of cases. However it does seem very useful in data 

reduction. In the author's opinion it has one considerable advantage 

over the algorithm of Figure 3.1 and ISODATA, when a large number of 

points is to be represented by a smaller number. If these last two 

algorithms are initialised by selecting a random sample from the data set 

it may be possible to leave unrepresented a small number of data points 

well separated from the bulk of points. Consider the situation of Figure 
6.1. Here the circles indicate the boundaries of clusters. Assume that 

the small cluster A contains only 10 points whilst the other two contain 

100 each. Imagine that the objective is to pick out three points to 

represent the sample. Assume that three points are chosen at random to 
initialise the algorithm of Figure 3.1. Then if two of these initial 

points come from cluster B the algorithm could easily produce cluster 
points as shown by crosses in Figure 6.1(a). However MAXIMINDIST will 

pick one point from each of the three clusters, as shown in Figure 
6.1(b). The cluster points in C and B will each represent 100 points 

whilst the cluster point in A will represent ten. It seems, then, that 

MAXIMINDIST will be specially useful as a data-reduction algorithm when 

the number of cluster points is very much less than the number of data
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points. MAXIMINDIST is thus a superior alternative to random sampling.

It is interesting to compare MAXIMINDIST and the usual complete 

linkage algorithm from the computational standpoint. Consider first the 

latter. As each data point is introduced its distance from the data 

points so far considered must be computed. Thus each interpoint distance 

is used once only. Consequently there is no need to store the dissim­
ilarity matrix and the storage requirements will be 0(N). Since for a 

high-dimensional example almost all the execution time of the program 

will be taken up in computing distances the execution time will be 
approximately proportional to ^^^N-l). MAXIMINDIST, on the other hand, 
continually re-uses the same interpoint distances. Consider d(BL,.%^). 

This will be needed (M-l) times. Consequently much time can be saved by 

storing the ae calculated. This involves the storage of

(N-M-l)(K-2) distances. Consider searching for . One needs to know

the distances between B_, .... B ^ and the (N-m+1) remaining data—i —P —m~±
points, i.e. (M-m+l)(m-l) distances. The (m-l) distances from the

cluster points to the data point that becomes B will not be used again.—m
Hence one needs to store only (N-m)(m-l) distances. This is a mono- 

tonically increasing function of m for m-cC.^{N+l). Consequently it 

will be maximum for m=N, given M <C^^N+1). However any distances 

computed during the search for will never be re-used since the algo­

rithm does not search forConsequently the maximum number of 

distances in storage at any time will be afterhas been found, 
i.e. (N-M+l)(M-2) distances. The execution time will be approximately 

proportional to this number. Consequently MAXIMIHDIST is the faster of 

the two algorithms. This becomes more emphasised when one remembers that 
the complete linkage analysis may have to be repeated several times to 

find the required level of clustering.

If the amount of mainframe memory available does not permit



MAXIMINDIST to store a large number of distances the argument becomes 

more complex. Assume that m cluster points have been found. Then the 

distances from each of these cluster poinks to each of the remaining 
(N-m) data points is needed to find This will be m(N-m) distances.

Summing this for m = 1 to m = M-1 gives

y-1 M-1 M-l
y m(H-m) = \ mil - \

m-1 m=l m=l

The first of the two terms on the right-hand side is simply an arithmetic 
series and eauals 4M(M-l)N. The second term can be evaluated by the 

formula

.2 3k +k

This gives

M-1
^ 'm(lT-m) = MCM-1)N - 2M^-3M^+M 

2 6
m=l

For 1 this can be approximated by *M^N. The ordinary complete

linkage algorithm computes iN(N-l) distances. Assume that I different 

values of the threshold are necessary to find the desired clustering 

level. Then the total number of distances computed will be approximately 

Cimparing the execution time of the two algorithms gives the ratio
O 1FT : IH. Thus for M<C(lN)^ MAXIMIMDIST is the algorithm to use. For

1
the usual complete linkage algorithm should be used. The 

factor I depends upon the way one attempts to find the 'correct' thresh­

old. Presumably some goal-seeking heuristic could be used, and a reason­

able value for I should be less than ten, say. In fact the advantage of 

this approach in data reduction will really arise only when M For

it is in this case that the problem illustrated in Figure 6.1 becomes



appreciable. Consequently MAXIMINDIST would normally be the algorithm to

use.

.3 Centroid Cluster Analysis and Median Cluster Analysis

Centroid cluster analysis was originally proposed by Sokal and 
Michener (1958). It is interesting because it is a technique which 

produces a dendrogram and yet it is not a linkage technique in the same 

way as those discussed in Chapter 2. Groups are represented by their 

centroids. The distance between two groups is calculated as the 
(Euclidean) distance between the centroids. At every stage in the 

analysis those two groups closest together are merged. The procedure 

starts with one data point in each group and proceeds until all the data 

points are in the same group. Thus the procedure differs from the 

techniques of Chapter 2 in that distances other than the original inter­

point distances are used.

The technique is of course invariant only under orthogonal trans­

formations. Furthermore the results have to be output as a dendrogram­
like structure. Both the time and storage requirements will be O(N^).

The storage requirements could be reduced to 0(N) only at the expense of 

continually re-calculating the same distances. However this would make 
the time requirement O(H^).

The centroid method also has the disadvantage that if two groups of 
very different size are combined the properties of the smaller group will 

virtually be swamped by those of the larger group. To overcome this 
deficiency, Gower (196?) has suggested another technique called median x 

cluster analysis. This is identical tc centroid cluster analysis except 

that when two groups are merged the new group is represented by a point 
mid-way between the points representing the two original groups. The 

name of the technique derives from the fact that if two points X and Y
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are merged, ana tnen a bnird point Z is joined to the resnltant cluster, 

the point representing the whole group will lie along a median of the 

triangle defined by X, Y and Z.

Neither of these techniques are suited to finding a true typology. 
For data reduction they seem in no sense superior to the algorithm of 

Figure 3.I, which would be cheaper to implement.

6.4 'Dynamical' Clustering

At least two papers have appeared on the subject of what might be 

called 'dynamical cluster analysis' (Sneath, 1967; Watanabe and Harada, 

1974). The data points are assumed to move around the data space in a 
manner similar to the motion of point masses in physical space. The 
algorithm simulates a force between the points similar to gravitational 

attraction. The points are supposed to collapse on each other. In doing 

so they coalesce to form clusters. Neither of the algorithms in the two 

papers quoted has (to the knowledge of the author) actually been imple­
mented. Sneath's algorithm is particularly elaborate and he goes so far 

as to admit the difficulty being experienced in programming it. The 

author is suspicious whether these algorithms will give the expected 

behaviour. The analogy with dynamics used to defend them is in no sense 

an exact one. Consequently the predictions made on the basis of this 
analogy must be suspect. The real fault of the algorithm seems to be 

that they do not proceed from a rigorous definition of what the clus- 

tering algoritnm should acnieve but instead argue in terms of a vague and 

unconvincing analogy.



CHAPTER 7 SLEEP AND THE E.E.G,

7.1 Introduction

The purpose of this chapter is to give a, little of the background 

behind tne data set used in tne next chapter to compare some clustering 

algorithms. In Chapter 1 it was pointed out that the typical pattern 

recognition data set possesses three chief characteristics. Firstly the 

variables are usually continuous; or rather the quantization level is 

very small compared with the range. Secondly the data sets are very 

large. ihousands of data points per sample is not uncommon. Thirdly 

thej.e is an element of randomness in the data far exceeding that due to 

the error in measurement. The electroencephalographic (E.E.G.) data 

described in this chapter possesses all three of these characteristics. 
For this reason, and because of its availability, it was chosen as an 

example. However, throughout this and the following chapter it should be 
borne in mind that the primary objective here is not to achieve any new 

insight inuo tne nature of the E.E.G, That is far beyond the scope of 

this thesis. The primary objective is to compare the behaviour of some 

clustering algorithms when applied to real data.

7.2 The Nature of the E.E.G.

For a detailed description of the nature and measurement of E.E.G. 

activity see Cooper, Osselton and Shaw (1969). Briefly, an E.E.G. can be 

defined as a recording from the scalp of the spontaneous electrical 
activity of the brain. This is measured as the electrical potential 

difference between two electrodes attached to two points on the scalp of 
some animal or human. Taking these measurements is itself a difficult 

technical problem wnich is described by Cooper et al. The measurements 
are of the order of tens of microvolts and most of the energy of the



signal is below Kz. The most coT^on way of recording E.E.G.'s is by 

use of a pen recorder. In this instranent a long strip cf paper is moved 

past a pen which is being deflected in a direction perpendicular to the 

direction of motion of the paper and to an extent proportional to the 

magnitude of the E.E.G. The result is a trace of the E.E.G. waveform on 

the paper.

The experienced clinician is able to use these waveforms as a tool 

in the diagnosis of epilepsy and in the location of tumours. The E.E.G. 

waveform possesses a rhythmical nature. Consequently at any given time 

it can be characterised by its chief frequency components. It has been 

found convenient to classify the E.E.G. frequencies into the following 

ranges or bands.
Less than 4 Hz. (but not including any d.c. component): delta 

4 to less than 8 Hz.: theta

8 to 1^ Hz. inclusive: alpha

Greater than 13 Hz.: beta

Recently computers have come to be used in the analysis of E.E.G.'s. 

For this purpose the waveform is sampled and input to a computer by use 

of analogue-to-digital converters. Signal analysis techniques are then 

used to produce descriptors which characterize the data. This is more 

fully discussed in sections 7.4 and 7.5.
Some attempts have been made to explain the origin of the E.E.G. in 

terms of a model of neurone-functioning. For a brief discussion of this 
subject see Hjorth (1973)- However the subject is not yet sufficiently 

developed to be able to influence the analysis of real E.E.G.'s.

7.5 The E.E.G. during Sleep

Most clinicians divide sleep into two categories, 'paradoxical' 
sleep and 'orthodox' sleep. The former is characterized by rapid eye



movements. For this reason it is also termed RFM sleep and most dreaming 

probably occurs during this paradoxical sleep. Orthodox sleep is called 
non-REM sleep (NREM). It was originally thought that orthodox sleep was 

much 'deeper' than paradoxical sleep. However this is not so. As a 

proof of this it has been shown that the muscles of the larynx are 

actually more relaxed during paradoxical sleep than during orthodox 

sleep. Oswald (I966) gives an interesting layman's account of this and 
many other aspects of sleep research.

Dement and Kleitman (1957) have classified E.E.G. patterns found in 

orthodox sleep into the following four 'stages':

Stage 1. Low voltage signal with irregular frequency.

Stage 2. 1^ to 15Hz. sleep 'spindles' and 'E-complexes' in a low voltage

background. A spindle is defined by Cooper et al. as a 

'sequence of sinusoidal-like waves lasting a second or two and 
of gradual onset and decay'. A K-complex is defined as a 

'transient complex waveform consisting of slow waves sometimes 

associated with sharp components and often followed by a 

sequence of waves at about 14Hz.'
Stage 5" Sets of large delta waves appear frequently.

Stage 4. E.E.G. composed almost entirely of delta waves.

In addition to these four stages of orthodox sleep, a human subject 

spends some time in paradoxical sleep. During paradoxical sleep a low 

voltage irregular waveform appears, not unlike that found during drow­
siness. This is referred to as stage REM and constitutes the fifth of 

the five stages of sleep.

7.4 Pattern Recognition and the Sleep E.E.G.

The classification of the E.E.G. of a sleeping person into stages 

has been found to be useful in sleep research. However the insuection of



an E.R.G. record takes a considerable aaonnt of a skilled encephalo- 
grapher's time. Consecnently Viglione (l970) has attempted to use 

pattern recognition to automate this process. This is the supervised 

learning problem. One possesses a number of waveforms which have already 
been classified and one attempts to use them to design a machine (or 

computer program) for classifying 'unknown' waveforms.

Firstly each waveform is sampled and digitised and a frequency 

analysis is performed. For this purpose the waveform is divided into 

16.4 second intervals. The waveform in each interval is Fourier trans­

formed by use of a computer algorithm called the Fast Fourier Transform 

(Tukey and Cooley, 1965)' The resultant spectrum is represented as 1024 

frequency components covering the band from zero to 62.5 Hz. The quan­

tity of information is then reduced by an averaging of approximately 
three adjacent values. This gives $12 frequency components covering the 

same range. Of these, the first 1^0 are used in the pattern recognition 
algorithm. This represents the range of interest (zero to 26 Hz.). 

Vlglione then uses a technique called DAID (Discriminant Analysis- 

Iterative Design) to eliminate those descriptors which contribute little 

to classifying the waveform and to determine the discriminate boundaries 

in the resultant sub-space. The resultant classifier was then tested on 

waveforms some of which were not present in the training set. The 
results obtained seem quite promising.

The problem under consideration in this thesis is rather more 

radical than that discussed by Viglione. He was content to accept the 

already existing classification of the sleep E.E.G. and merely automate 

the discrimination process. The question here is whether cluster anal- 

ysis can be used to provide a significant classification of the sleep 

E.E.G. with no prior knowledge of the classification used by clinicians.



Such a classification may vindicate the previously used classification. 

Alternatively it might he a radically different classification which 

would have to he judged on the basis of how it helps the clinician and 

neurophysiologist to formulate new hypothesis about the functioning of 

the brain.

7.5 Normalised Slope Descriptors

In order to avoid the cost of computing a Fourier transform, Hjorth 

(1970) has suggested a set of waveform descriptors called normalised 

slope descriptors. Once again the E.E.G. waveform is divided into 

intervals called epochs. However instead of Fourier transforming the 

waveform in each epoch, Hjorth defines his parameters in terms of the 

time domain. Hjorth's original paper describes three parameters: 

activity, mobility and complexity. However more recently he has re-named 

the third parameter 'form factor' and adopted the name complexity for a 

new parameter. All four parameters are present in the data set used in 
Chapter 8. The four parameters are:

Activity This is the mean power in the signal during any particular 

epoch. Assume the epoch under consideration runs from t = 0 to t = T. 
Let f(t) represent the signal. Then the activity is defined as

T
jrf^(t)

0
dt

Mobility Whilst the activity is a measure of the amplitude of the 

signal, the activity is a measure of its variability. The definition is



As a consequence of this definition mobility has units of frequency. 

Furthermore, if a signal is linearly amplified the mobility remains 

unchanged.

Form Factor This is the parameter which was originally referred to as 

complexity by Hjorth. It measures how rapidly the slope varies. It is 

defined as

This is, in fact, the mobility of the first derivative of f divided by 

the mobility of f itself. It is dimensionless. Like the mobility it is 

not altered by linear amplification. In addition it is unchanged by a 

linear transformation of the time scale, i.e. a transformation of the 
form

t' = A t

where A is some constant. For a sine wave it takes its minimum value of 

unity. All other continuous real signals give larger values.

Complexity This parameter also measures the manner in which the slope

varies. It is defined as

Complexity has units of frequency. It is unchanged by linear ampli-

fication. Like the form factor it takes its minimum value, zero, for a



sine wave. After saae algebra it becomes apparent that mobility, form 

factor, and complexity are related Igr
2 tcomplexity « mobility x ( (form factor) -l)®

Clearly the three parameters mobility, form factor and complexity 

are not independent. Given any two of these the third can be calculated. 
Figure 7.1, adapted from Ejorth (1970), illustrates the significance of 

the four normalised slope descriptors.

7«6 The Relationship between the normalised Slope Descriptors and the

Power Spectrum

Although defined and computed in the time domain, the normalised 
slope descriptors have an interesting interpretation in terms of the 
power spectrum. Let P(co ) represent the Fourier transform of a function
identical to f(t) in the interval[0,T][ and zero elsewhere. I.e. 

F(u )m f(t)e dt where j
J 0

Then the energy spectrum will be
F(w) P*(cu )

The superscript denotes complex conjugation. The power spectrum, 
represented by S(u>), can be obtained by dividing by the length of the 

interval, T. I.e.
S(g>) - P(w) F*((o)/T

Furthermore the n'th moment of the power spectrum is defined by
m"n " jo''s(u )dw

As a result the activity is equivalent to ™o.
1 2activity « sr I f dt

For

T
0400m f F(W ) F*(ClS ) jw (Parseval*s Theorem)

dci

How the Fourier transform of is oo F(oo). Consequently the power 

spectrum of the derivative of f is given



Arbitrary Reference

Increased. Activity

Increased Mobility

Increased Form Factor and Complexity

FIGURE 7.1



Applying Parseval's Theorem gives

,T 21 at
T I \dt;^ 0

oO
2Lu" dLo

—

Consequently the mobility is equivalent to

rn^

The Fourier transform of is Co^F(&^). Consequently the power
2

spectrum of is S(CJ). Applying Parseval's theorem again gives

1
T

dt

r'

0

ff\'
at^

(at s(D) a

m.

Therefore the form factor is equivalent to

Similarly the complexity is

mg/rn^

,T n 2
at

afA ^at
!4_:2 
m^ m^



The Courier transform of a real signal is symnetrio about the 

origin, i.e.
F(0J) = F(-(0)

Consequently the power spectrum is also symmetric about the origin,

3 (w ) = S (-CJ )
As a result all the odd order moments of the power speckrum are zero. 

Thus knowing the activity, mobility, and form factor or complexity is 

equivalent to knowing the zeroth to fifth moments of the power spectrum.

It is now a relatively simple matter to show that the form factor 

and complexity take their minimum values for the pure sine wave.

Firstly,

(mobility)
s(w) dc^i 

J^S(uo) duo

to 2 S(w) d(«3

(Co' is merely a dummy variable her#)

p(Go) dco

Here p(h^) is a density function whose integral is unity. Since p(^) ii 

symmetric about the origin the mean of the power spectrum is zero. 

Consequently the above expression is the variance of the power spectrum 

and the mobility is the standard deviation of the power spectrum, cr\. 

Now
1

can be regarded as the mobility of and hence as the standard



deviation of the power spectrum of Consequently

form factor

comnlexity

GTi 

f Cr 2 O'. 2\i
2 1 "

When a signal is differentiated with respect to time, the proportion of 

high frequency components is increased. Consequently the standard 

deviation of the power spectrum of is greater than the standard 

deviation of the power spectrum of f, except when only one frequency is 

present in the spectrum. It is for this reason that the form factor and 

complexity take their minimum values for a pure sine wave.

7.7 Details of the Data Set Used

The data set used in the next chapter is eight dimensional. The 

first four descriptors are the activity, mobility, form factor and 

complexity for the E.E.G. of a sleeping human. The waveform measured is 

the potential difference between an electrode attached to the vertex of 

the head and an electrode attached to a point on the mid-line at the back 

of the head. The second four descriptors are the normalised slope 

descriptors for a waveform representing the potential difference between 

a point to the left of the left eye and a point to the right of the right 

eye. This waveform contains some E.E.G. signal. However mostly it is 

determined by the movement of the eyeballs. There is a potential dif­

ference of about 100 mV between the aqueous and vitreous humours of the 

eyeball. A movement of the eyeballs causes a change in potential field 

that will affect electrodes in their vicinity. The use of these four 

parameters is an attempt to include the same information as is available 

to a clinician when discriminating between paradoxical and orthodox 

sleep.



In all there are 2119 vectors. Since the epoch length is ten 

seconds this represents about six hours of sleep. The measuring instrum­

entation has upper and lower half-power points at about 17.5 and

2 Hz. respectively. Prior to any other computation being performed, the 

data set was normalised to zero mean and unit variance in each dimension.



CmiPTER 8

8.1 Introduction

Tbie chapter describes an experimental comparison of some of the 

techniques discussed previously. Once again it must be stressed that the 

primary objective of the work was to gain Insight into the nature of the 

clustering techniques, rather than to reach any new conclusions about the 
sleep E.E.G. The clustering techniques are being compared as techniques 

for finding a true typology. From what has been said in the past chapters 

it will be clear that the choice of an algorithm for data reduction is not 

very critical. There are a number of algorithms that will do the job quite

satisfactorily. The determination of a true typology is a much harder 

problem. However the most important aspect of this comparison is probably 

the information about execution times that it has produced. The theoretical 

arguments of the preceding chapters often gave the form of the relationship 

between execution time and number of data points, but these arguments were 

never sufficiently detailed to indicate the actual magnitude of execution 
time.

Most of the computation involved in this work was performed on the 
C.D.G. 7600 at the University of London Computing Centre (U.L.G.C.). Jobs 

were input to this machine via a telephone link from Southampton. The 

central processor for this machine has a 27,^ nanosecond clock period. The 
wordlength of the machine is 60 bits. The mainframe memory contains approxi­

mately 280 K words. However only about 124 K words of mainframe storage 

are available to an individual program, the rest being taken up by the 

operating system, etc. In addition, a small amount of computation has been 

performed on the I.C.L. 1907 at the University of Southampton Computing 

Centre. This is a 24 bit wordlength machine. Depending upon the structure 

of the program, it is between 40 and 80 times slower than the C.D.C. 76OO.



8.2 Single Link Cluster Analysis Using the Minimal SnanningT re 8

The M.S.T. of the 211$ vectors in the data set was computed on the 

C.D.G. 7600. The squared Euclidean distance between each pair of data 

points was used as the dissimilarity coefficient. A program to compute 

the M.8.T. is available at the U.L.C.C. It was modified slightly by the 

author to accommodate the large E.E.G. data set. The program is a FOBTBAN 
version of the Algorithm of Ross (196^), which uses the method of Prim 

(1957)' Approximately 66 seconds were taken to compute the M.s.T. and 
output a description of it on to punched cards.

The M.S.T. was used to perform a single link cluster analysis for a 
number of values of the threshold (h). Because of the expense of sending 

the information describing the M.S.T. along the telephone link, the I.C.L. 

1907 was used for this part of the computation. Table 8.1 shows the number 

of clusters obtained, plus the number of points in the largest four clusters, 

for each value of b. It can he seen that for large values of h, one large 

cluster was obtained plus a number of smaller clusters. This situation 

continued down to h equal to O.l^. For h equal to 0.12, however, there 

were two moderately large clusters. Since the larger of these two con^ 

tained only about 15^ of the data points, most of the points fell in the 

small clusters. For h equal to 0.11 there were three moderately large 

clusters, hut most of the points were outside these three. The time taken 

on the I.C.L. 1$07 to perform the analyses for all the values of h shown 

from 0.9 to 0.2 was approximately $0 seconds. The time taken to perform 

the analyses for the remaining values of h was about 69 seconds.
The failure of the data to fall neatly into a small number of large 

clusters seems to suggest a one-cluster situation. However it may he due 
to the presence of a small number of noise points between clusters.

8.3 The Algorithm of Jarvis and Patrick

The algorithm of Jarvis and Patrick was programmed, by the author, in



dumber of Clusters Number of points in Four Largest Clusti

0.9 96 1986 10 9 5

0.8 109 1978 10 8 5

0.7 134 1871 90 4 3

0.6 158 1852 86 7 3

0.5 188 1829 83 7 3

0.4 240 1774 71 7 6

0.3 346 1661 37 17 6

0.2 595 1321 13 10 10

0.19 636 1267 13 10 10

0.18 678 1225 11 10 10

0.17 732 1161 9 7 7

0.16 781 1095 11 9 7

0.15 835 1036 11 11 8

0.14 907 926 19 16 11

0.13 993 753 35 15 4

0.12 1067 327 281 51 32

0.11 1172 177 148 112 32

TABLE 8.1



FORTRAN. The program consists of three subroutines. The first and last 

are relatively trivial. The first subroutine takes each data point and 

constructs a list of the k nearest neighbours, in order of proiimity. The 

final subroutine merely counts the number of clusters, counts the number of 

points in each cluster, and then outputs this information. The second 

subroutine actually performs the cluster analysis.

Because the second subroutine is more complex than the other two, a 

flowchart is given for it in Figure 8.1. Although not showing the detailed 

steps of the algorithm, the flowchart illustrates the major factors which 
help to improve the computational efficiency of the subroutine. The first 

feature to note is that it is necessary to compare each data point only 

with those points contained in its nearest neighbour list. Secondly, one 

must be careful not to compare two points twice. For this reason the I'th 

point is compared only with those whose index is greater than I, Thirdly, 

there is nothing to be gained in comparing two points if they have already 

been co-clustered by having been both successfully compared with a third 

point. A further economy can be achieved if, for a given value of k, the 

subroutine is repeated for a number of values of kp. Assume that each 

value of kp is greater than the previous value. Then if two points have 

not been oo—clustered for the previous value of k^* they will not be oo— 

clustered for the current value. Consequently there is no use in comparing 

them. The l*th element of the array LABEL used in the flowchart contains 

the minimum of the indices referencing all the points which have so far 
been co-clustered with the I'th point. Consequently, when the I'th and 
J'tb points are successfully compared, all those elements of T.ABEL con­
taining the maximum of LABEL (l) and LABEL (j) are changed so as to contain 

the minimum of these two quantities. Thus the array LABEL keeps a check 

on which points have so far been co-clustered.

The program was used with four different values of k. For each value 

of k several values of kp were used. The results are shown in Tables 8.2
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and, 8.3, For each value of k and k^ the number of clusters is given 
plus the number of points in the four largest clusters. As can be seen 

the results are very similar to those for single link analysis described 

in the last section. For small values of k^ there is one large cluster 

plus a number of very small clusters. Then when km reaches a certain 

size, a large number of relatively small clusters appear. As with 

single link analysis the results seem to suggest that the data forms one 

cluster. The time taken to analyse the date for k = 20, k^ = 0 to 13 

was 130 seconds on the C.D.C. 76OO. Thus the amountcf computation time 

required is approzimatsly twice that needed to compute the M.5.T.

8.A MICKA

MICKA is the name given by McRae (l$7l) to a POBTEAR program he has 

written which attempts to optimize one of four criteria. Tbasa criteria 
are (in the notation of Chapter 3) :

(1) tr W (to be minimized)
(2) |w| (to be minimized)

(3) Largest eigenvalue of W (to be maximized)
(A) tr (W ^B) (to be mazimized)

The optimization algorithm is rather like that suggested by Friedman 

and Rubin (I967) and described in Chapter 3 of this thesis. The program 

provides a choice of three distance measures. These are :

(1) Squared Euclidean distance

(2) Weighted Euclidean distance. Let and Yj be the

i'th co-ordinates in a q-dimensional space of the vectors X and Y, Let

be an estimate of the standard deviation in the I'tb dimension. Then 

the weighted Euclidean distance between X and ^ is given by :
^ (Xi - Y^)2

d(X^l) »
1=1

(3) Mabalanobis distance.



Number of
k ^rn Clusters Number of Points in Four Largest Clusters

5
"fl

0 111 1814 91 22 15

5 1 188 1499 81 41 27

5 2 794 22 16 16 16

10 0 31 ZIO85 2 2 2

10 1 32 2084 2 2 2

10 2 36 2079 2 2 2

10 3 55 1915 106 26 12

10 4 122 1822 105 18 11

10 5 452 96 95 83 79

15 0 15 2105 1 1 1

15 1 15 2105 1 1 1

15 2 15 2105 1 1 * 1

15 3 16 2104 1 1 1

15 4 18 2102 1 1 1

15 5 24 2094 2 2 1

15 6 38 2068 11 2 2

15 7 102 1863 93 26 17

15 8 278 1111 282 56 45

15 9 642 88 80 77 51

TABLE 8.2



Humbar of
k Clusters Bumber of Points in Poor Largest Clu8t(

20 0 9 2111 1 1 1

20 1 9 2111 1 1 1

20 2 9 2111 1 1 1

20 3 9 znio 1 1 1

20 4 10 2110 1 1 1

20 5 11 2109 1 1 1

20 6 12 2108 1 1 1

20 7 13 2106 2 1 1

20 8 18 2101 2 1 1

20 9 36 1970 110 2 2

20 10 79 1913 110 7 5

20 11 18$ 1962 109 33 21

20 12 406 191 177 161 130

20 13 743 79 63 63 56

TABLE 8.3



McRae's program is available on the C.D.C. 76OO at the U.L.C.G,

As with the M.S.T. program it was necessary for the author to modify it 

slightly to cope with the large E.EhG. data set.

8.4.1 Tr ',7

The program was run using tr W as the criterion. Squared Euclidean 

distance was used. As explained in Chapter 3 Euclidean distance (or 
squared Euclidean distance) is the best distance measure to use when 

attempting to minimize this criterion. About I4OO seconds were needed 

on the C.D.G. 76OO to try to find the optimum partition for g (the number 

of clusters) equal to 2 to I4* Figure 8.2 shows the minimum value of 
the criterion for each value of g. The value for g = 1 is simply the 
trace of the total scatter matrix (i.e. tr 8). As can be seen the graph 

is alarmingly smooth and there is no discontinuity to suggest a definite 

number of clusters. This is presumably because the data does not fall 

into compact spherical clusters.

8.4.2 Iwl

The program was next run using |W| as the criterion. Mahalanobis 

distance was used for the reason explained in section 3.4. This time 

about 1600 seconds were needed to try to find the optimum partitions for 
g = 2 to g = 13. Figure 8.3 shows minimum |w| for the various values of 

g. Figure 8.4 shows log^g (ls|/min |W|), as suggested by Friedman and 
Rubin, As oan be seen neither graph has any discontinuity. Figure 8.$ 
shows g^minlWl. It will be recalled that Marriott suggested looking for 

the minimum value of g^^minlwl to find the correct value for g (see section 

3.7). However, as can be seen, gMminIwI is almost a monotonically 

decreasing function of g and certainly seems to be tending to zero as g 
increases. The rather high values of g^min[W| for g » 2 and g « 12 

probably occur because the true optimum partition has not been found.
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This is also reflected in the rather low value of logiQ (ls|/min fw|) 

for g = 12. Once again no obvious clustering has. been revealed.

8.4.3 Largest eigenvalue of W B

Mahalanobis distance was used when attempting to maximize this 

criterion. To the author's knowledge this distance measure does not 

possess the same optimal quality when used with this criterion as it does 

when used to minimize W . However when g - 2 the two criteria become 
identical, as Pdkunaga andKoontz (l970) have shown. Consequently 

Mahalanobis distance is certainly the right distance measure to use in 

that one case. MICKA took about 20 minutes on the C.L.C. 76OO to try 

to find the optimum partition for g = 2 to g = $. To find the optimum 

partition for 6 clusters took of the order of 10 minutes. Similar times 

were taken for g = 7 and g = 8. The maximum value of the criterion 
achieved is shown in Figure 8.6 for each value of g. The value for 

g m 1 is equated to zero. Although the matrix B is not really defined 

for this value of g, if it is taken to be the zero matrix this preserves 
the equality T = W + B, since T = W for g « 1. The 'eigenvalues' of the 

zero matrix can be taken to be zero, since when this matrix is pre-multipliec 

into any column vector the result is the zero vector. Once again the 

curve is remarkably smooth and gives no evidence of a definite olustering.

Mahalanobis distance was used when attempting to maximize this 

criterion. As with the criterion of 8.4.3 this distance measure is, to 

the author's knowledge, optimal only when g = 2. The results for g = 2 

to g a 11 are shown in Figure 8.7. For reasons similar to those given 

in section 8.4.3, the criterion was equated to zero for g , 1. The program 

took 860 seconds to try to find the optimum value of the criterion for g = 2 

to g = 6. For each of the remaining values of g approximately 10 minutes
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needed.

It is difficult to know bow to interpret these results. The curve 

as drawn in Figure 8.7 suggests a 7- cluster or 10- cluster solution. 
However it may be that the criterion values obtained for g = 8, $ and 11 

are not the true maximum values. It could be that, if the true values 

were known, all the points would lie on a smooth curve. This illustrates 

a difficulty which is always present in interpreting this kind of graph.

How can one strictly define the shape of graph which would indicate a 
definite cluster structure? In addition the author is reluctant to place 

any faith in a cluster structure which is revealed by one technique alone 

and which is not apparent in any other set of results. Investigation of 

the 7 a^d 10 - cluster structure also revealed that, as the waveform varied 
with time, the majority of periods for which the waveform remained in one 

cluster were of length only one epoch, l.e. 10 seconds. Clearly to 

validate the hypothesis that the waveform changes its nature as frequently 

as every ten seconds it would be necessary to estimate the descriptors 

over a period much less than ten seconds. It might, indeed, be interest­

ing to re-compute a set of descriptors on the basis of a much smaller 

epoch, and then analyze this new data set with the clustering techniques. 

However, visual inspection Implies that the waveform changes much more 

slowly than every ten seconds. Since the Information present on visually 
inspecting the waveform is much greater than that in the Hjorth parameters, 

it would be difficult to sustain an interpretation of the sleep 2.E.G. so 

radically different from clinicians* interpretation of the waveform.

8.5 RJZZY

The program FUZZY is also available on the C.D.C. 7600 at the U.L.O.G. 
Once again minor modifications were necessary to accommodate the very large 

data set. As explained in section 4*2 the program seeks to place th^



cluster boundaries along the valleys of the p.d.f. In order to do this 

the p.d.f. at each data point is estimated. This is done by counting the
i-number of data points within a hypersphere of radius centred on each 

data point. Consequently before the program can be used it is necessary 

for the user to decide on a suitable value for T, T must be sufficiently 

large that most of the hyperspheres contain enough data points to con^ 

fidently estimate the p.d.f. at the centre of the hypersphere. On the 

other hand, if T is too large, the p.d.f. will vary considerably over the 

volume of each hyparsphere. If either of these two conditions occur the 

results of the cluster analysis will he invalid. Between these extremes 

there may be a range of values for T which give the same cluster structure. 
This structure is then assumed to be the actual structure.

The results of using this program with the E.E.O. data set are shown 
in Table 8.4« For T^ = 0.1 only 10 of the hyperspheres contained data 

points other than the central data point. Even in each of these 10 

byparspheres there was only one other data point. Clearly this value of 

T is too small. For T^ = 0.3301$ the situation was very different.

There were $ hyperspheres containing 11 data points each. Many other 

hyperspheres contained more than one data point. The program partitioned 

the data set into very many clusters. Similar results were obtained for 

the other values of T shown. Leaving aside the first result which, as 
explained, is not significant, there appears to be no simple cluster 

structure. Prom the large number of clusters it was not possible to pick 

out even a small number of very large clusters. A surprising thing about 

the results is that, as T increases, the number of clusters does not 

increase monotonically to a maximum and then decrease monotonically, but 

actually oscillates. Even if the results from one particular choice of 

T could be regarded as more significant than the other results, it would 

he difficult to believe that the physical process under investigation



Number of Clusters

Maximum number of points 
ig^ a byperspbere of radius 

and centred on a data 
point*

0.1

0.33015 54 11

1.0 47 220

2.0 41 901

3.0 60 1626

4.0 57 1913

TABLE 8.4



(l.e. the generation of the E.E.G.) can usefully he divided into so many 

categories.

The execution time for this program varies ^^th T. For = 0.1 

it was approximately 400 seconds. For the other values of T it was 
rather less than 200 seconds.

8.6 Nonlinear Mannings

Both Gammon's program and the program of Chang and Lee are available 

on the C.D.C. 7600 at U.L.C.G. Neither of these programs could easily 

he modified to accommodate the very large E.E.G. data set. Consequently 

the data was pre-clustered to reduce it to 2^0 points in 8- space. This 

Is the data -reduction situation. MAXI^INDIST was used, followed hy two 
'reassignment' passes as defined in section 3.3. The whole process took 

approximately 1000 seconds on the C.D.C. 76OO. In retrospect this seems 

a very wasteful computation. As explained in section 6.2, when the 

sample being taken is as large as 2^0 points out of 211$, the reassignment 

passes themselves will almost certainly suffice to produce a representative 
sample.

8.6.1 Gammon's Program *

The 250 8- dimensional points produced hy the pre-clustering phase 
described above were mapped into 2^0 2- dimensional points hy Gammon's 

program. 99 iterations were used and the program took approximately I70 

seconds on the C.D.G. 76OO. In fact the program had practically converged 

after $2 iterations. For after the 52nd iteration the mapping error was 

0.031 and it remained at this value after all subsequent iterations. The 
resultant 2- space configuration is shown in Figure 8.8. At first the 

author felt that this plot might suggest a 3- cluster structure, as shown 

hy the dotted lines. However further investigation revealed that the

* This program was developed at the Rome Air Development Center, 
Grifiss AFB, Rome, New Yorki



103

PIGUaS 8.8



5 points in the smallest 'cluster' represented only 6 of the original 

data points. The 28 points in the intermediate cluster represented only 

30 of tbe original data points. Thus the great majority of the original 

points are represented hy the main cluster, whilst the other two clusters 
are too small to he regarded as anything hut sets of outliers. This 

Illustrates the danger in using a data - reduction technique in which 

each point in the reduced data set does not represent the same number of 

points in the original data set.

8.6.2 Tbe Program of Chang and lee

This program also used the 2^0 8- dimensional points produced hy tbe 

data reduction program. The program was run with the first 100 points 
in the frame, and the result is shown in Figure 8.$. The program was also 

run with all 2^0 points in tbe frame. Tbe resultant plot is shown in 
Figure 8.10. The first time approximately 28 seconds were needed for $0 

iterations and the final mapping error was O.O46. The second time the 

program took approximately 7$ seconds for 50 Iterations and the final 

mapping error was 0.036. Thus, as might he expected, a more accurate 

mapping was obtained on the second occasion.

The results of these mappings are very similar to those obtained by 

Sammon's algorithm. Once again there appear to he 3 clusters present. 

However further investigation revealed that in both mappings the majority 

of points in the two smaller clusters represented only one of tbe original 

data points each. Consequently these points can only he regarded as 

outliers.

8.7 Conclusions

Hone of the techniques used here gives any conclusive evidence that 

the data can be divided into a sufficiently small number of clusters to be 

of value in understanding the E.E.G. However, as explained in Chapter 7;
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ollniciaAS feel able, with the help of information about eye movement, 
to divide the sleep E.E.G. into five stages. Figure 8.11 shows how the 
period of sleep (of approximately 6 hours) represented by the data set, 

can be divided between the various stages. But the implication of this 

chapter is that the data occupies a 'continuous* region of the data space. 

There are essentially three ways of resolving this conflict. Firstly, 

the lack of apparent cluster structure may be due to the inadequacies of 

the clustering algorithms. However, despite the obvious failings of

many of them, it seems difficult to believe that they can all be so bad 

as to miss any real cluster structure. Secondly, the boundaries between 
stages which exist intuitively in the mind of the clinician may have no 

real significance. It could be that the divisions between the various 

stages of HHEM sleep are entirely arbitrary. However the clear distinc­

tion between the presence and absence of rapid eye movements ought to at 
least lead to a 2- cluster structure. Thirdly, and (to the author's mind) 

most likely, the Hjorth parameters may not contain enough of the relevant 

Information. It would be Interesting to repeat the analyses with a more 
comprehensive set of descriptors, such as those used by Viglione (see 
section 7*4).
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CHAPTER 9 CONCLUSIONS

9.1 Parametric Cluster Analysis

Three of the algorithms discussed in this thesis are truly parametric. 

NORMAP assumes that the p.d.f, of the population from which the data set 

is a sample is the sum of a number of normal density functions with equal 

covariance matrices. NORWIX makes similar assumptions but removes the 

restriction that the covariance matrices need be equal. Finally, MIGKA, 
when used to minimize Iwl, is specially suited to the case of several 

normal distributions with equal covariance matrices.

Because NORMAP and MIGKA have the same objective it would be interest­

ing to compare them. There are three principal questions to be answered. 

Firstly, how often do the programs give the correct results when used with 

data of known structure? Secondly, how do they compare from the stand­

point of computational efficiency? Thirdly, how sensitive are their 

results to slight deviations from the assumptions of normality and equal 

covariance matrices? Unfortunately the author has not had time to 

investigate NOEWAP. Wolfe himself admits that the program sometimes 

diverges and that initialisation is a problem. Consequently there may he 

room for improvement of the numerical technique used to solve the likeli­

hood equations. It may be that NORMAP is more susceptible to a bad 

initialisation than is KICKA. One important problem is the determination 
of the optimum value for the number of clusters (g). More work could be 
done to see how effective is the g^minlWj criterion of Marriott. However, 

it would appear that whatever the other advantages of MICKA, NORMAP has 

the advantage here since it leads to a definite statistical test to compare 

two hypotheses about the value of g. This degree of mathematical exacti­

tude is a very rare thing in cluster analysis! It may be that when there 

is no possibility of making a reasonable guess at the Initial parameter



values* MIOKA is the program to use to generate approximate values for 

these parameters. KOEMAP could then he initialised with these values 

and used to produce more accurate values and to give a more definite idea 

of the best value for g.

It would also be interesting to modify MICKA so as to use it to
minimise the | | |Wjt criterion suggested by Scott and Symons, The

j = 1
modified program could then be compared with NOEMIX in the same way as 
the original program* when used to minimize |W|* can be compared with 

NOEMA?.

Another interesting question is whether the Sebestyen and Edie 

algorithm can be used successfully to separate Gaussian clusters. For 

reasons explained in Chapter 4 the author hesitates to call this a para^ 

metric algorithm. However it does seem most suited to dealing with the 

case in which the clusters have normal distributions. If it does work 

satisfactorily it will certainly be much faster than the other three 
algorithms discussed in this section.

In addition it might be useful to consider how these techniques could 

he altered to deal with density functions other than the Gaussian function. 

There are two reasons for the frequent assumption of normality in pattern 

recognition. Firstly, the Central Limit Theorem frequently permits this 

assumption. Secondly* it tends to simplify the mathematics! However* 
applications may arise in which other density functions are relevant. In 
the same paper in which HORHAP and HORKIX are described, Wolfb briefly 

refers to the 'Latent Glass' model. This is applicable to binary - valued 
data. The assumption here is that the probability of a data vector 

occupying a given point in a q - dimensional data space can be represented 

as the sum of a number of functions of tbs form*

iCX. 5 = !, 1,



Hera the are the descriptor values, wbicb may be 0 or 1, whilst 

is the probability, for tbe s'tb function of this form, that X^ = 1.

9.2 Konparamstric Cluster Analysis

Tbe great bulk of clustering tecbniques do not make any definite 

assumptions about tbe statistical structure of tbe population from which 

tbe data is drawn. In addition, until qudte recently, all such nonpara- 

metric tecbniques bad only very vaguely defined objectives. Honparametric 

clustering algorithms were designed intuitively and defined operationally, 

l.e. in terms of bow they actually worked rather than what they were 

attempting to achieve. Such tecbniques are frequently satisfactory for 

data - reduction. But when tbe problem is to find a true typology, if 

one cannot make assumptions like those discussed in tbe last section, it 

is not at all apparent what criterion a 'good' partition should satisfy. 

Furthermore, because tbe algorithms are defined operationally, it is 

frequently not easy to predict bow they would behave when used to analyse 

a sample from a known population. Because one cannot do this it is 

difficult to comprehend tbe significance of any results that tbe algorithms 

give when used on a sample from an unknown population. One can attempt 

to understand an algorithm's behaviour experimentally by testing it with 

artificial data of known structure. But, in tbe author's view, this loaves 

tbe user lacking confidence in tbs technique. There are always nagging 

questions. One can test tbe algorithm for only a few situations. What 

will happen for some other case? And bow are tbe results dependent upon 

sample size? Tbe only way to be confident of tbe results of cluster 

analysis is by understanding exactly what an algorithm will achieve in any 

given situation. To be sure of this one must either analyse fully an 

operationally defined algorithm or use an algorithm which is designed with 

a well-defined objective in mind. Sometimes tbe simpler, intuitive 

tecbniques may be useful in a preliminary investigation. Sometimes the



data may be so well clustered that almost any technique will illustrate 

this clustering. But to he fully confident of the results of an algorithm 

in all situations its properties must he fully understood.

To the knowledge of the author the only attempt made to define an 

ohjective in nonparametric cluster analysis has been made by Koonts and 
Pukunaga (1972 a and b). Their algorithm (the fixed neighbourhood penalty 

rule) partitions the clusters along the valleys of the probability density. 

It would be interesting to compare the fixed neighbourhood penalty rule 

with FUZZY. Although the objective of FUZZY is not clearly stated in 

Gitman and Levine's paper it appears to be the same as that of the fixed 

neighbourhood penalty rule. However FUZZY is quite a time-consuming 

procedure, as has been seen in the last Chapter. In addition it is not 
at all obvious which value of the control parameter (T) gives the most 

significant results. It is to be hoped that the fixed neighbourhood 

penalty rule will produce a faster algorithm and one with more definite 

results. There may, however, be simpler ways of finding the valleys of 
probability density.

In addition it might be possible to define different objectives for 

a nonparametric clustering algorithm. An attempt could then be made to 

design algorithms to achieve these objectives. Such algorithms ought to 

give results Invariant under any change of scale. For what confidence 
can one have in a partition which is known to be dependent upon an arbitrary 

choice of scale? Furthermore, as the sample sise Increases, the algorithm 

ought to achieve the desired objective with a greater probability. This 

is a property analogous to consistency in the estimation of statistical 

parameters. To achieve the same kind of confidence in cluster analysis 

as one possesses in more conventional statistical techniques it seems 

essential to use algorithms satisfying these rigorous criteria.
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