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ABSTRACT
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Master of Philosophy

CLUSTER ANALYSIS IN PATTERN RECOGNITION

by Paul William Warren

A comparison is made of most of the major types of clustering algorithm.
Particular attention is paid to their applicability to the pattern
recognition problem. Because of the size of the data set typically
encountered in pattern recognition, the comparison includes a detailed
study of the computational efficiency of the various techniques. A number
of these technigues were used to try to cluster a data set composed of time
domain descriptors describing an electroencephalographic waveform taken
from a sleeping human. None of the techniqués experimented with succeeded

in revealing any significant cluster structure for this particular data set.



ACKNOWLEDG!

The suthor acknowledges the help given %o him by his former

*

colleagues in the Electronics Department at Southampton University.

In parbticular the zuthor is grateful to Dr D. W. Thomas, who read and
commented on the manuscripty +to Mr G. Smith, who is chiefly vesponsidle
for what little understanding the avihor has of the B.BE.G.; and to

Mr D. Hand, with whom the suthor has enjoyed many stimulating discussions
on the theoretical nature of the problem. In addition, the author
would like to record his appreciation for the staff of the Computer
Advisory Service at Southampton University, without whose help the com-
putational part of this work would have been impossible. Finally,

thanks are due to his wife for typing the bulk of this thesis.



CHAPTER

CHAPTER

CHAPTER

1
1.1

132

1-3

2.1

2.2

2.3

2.4

3.1
3.2
3.3
3.4

3.5
3.6

INTRODUGT ION

The aim of Cluster Analysis
Comparison with the Discrimination
Problem in Pattern Recognition

Plan of the Thesis

LINKAGE TECHNIGQUES

Introduction

Nearest Neighbour or Single Link
Cluster Analysis

Furthest Neighbour or Complete
Linkage Cluster Ansglysis

Clustering Using a Similarity leasure
Based on Shared Near Neighbours

Uze of the Hinimal Bpanning Tres

Comments

OPTIMIZATION~PARTITIONING TECHNIGUES
Intrcduction

The 'Error Sum of Squares Criterion®
An Cptimigation Algorithm

The Invariant Criteria of Friedman
and Rubin

Further Invariant Criteria

The Statistical Significance of the

W Criterion

P

0

ge No.

11

12

17

19
19
20
21

24

28
29



"y

a3

st
s
=

l

:??1‘ »CJJ»&

CHAPTER

CHAPTER

CHAPTER

L
»
—~3

4

4.1
4e2

i A\ | A\
& ° @
st DN and

A2 U1
>
Ex

1
T.1

Determination of the Optimum Value

TLCHNIGUES HELATED TO THE CONCERT
FP.D.
Wishart's ilode Analysis

Gitman and Levina's

Technique

A Valley-Seeking Technique

The Algorithm of Sebestyen and Edie

Multivariaste Mixture Analysis

A Simple Comparizson

MAPPINGS
Introduction

Principal Components Analysis

¥,

Sammon's Nonlinear Mapping

A Relaxation Method for Nonlinear Mapping

MIBCELLANEQUS TECHNIQURS
HBODAT A
IB0DATA

MAXTMINDIST

A

Centroid Cluster Anslysis and Median

Cluster Anelysis

'Dynamical® Clustering

SLEEP AND THE E.E.G.

. 3 >
Introduction

31

31
33

37
42
48
51

70

11
71



CHAPTER

CHAPTER

T2
7.3
7.4
Te5
T.6

1.7

8.1

86‘2

8.3

804 ’

807

9
9.1
9.2

Pattern Recognition and the Sleep E.E.G.
Normalised Slope Descripiors

Tha Relationship beiween the Normalised
Slope Descriptors and the Power Spectirunm

Details of the Data Set Used

AN EXPERIMENTAL CCMPARISQON
Introduction

Bingle Link Cluster Analysie Using the
Minimal Spanning Tree

The Algorithn of Jarvis and Pafriok
HICKA

894a1 TI‘ ir'v

8.4.2 W)
8.4.3 Largest Zigenvalue of Win
8.d4.4 Tr  (W1B)

FUZZY

Nonlinear Mapopings

8.6.1 Sammon's Progran
8.6.2 The Program of Chang and Les
Conclusions

CONCLUSTIONS
Parametric Cluster dnalysis

Nonpsrametric Cluster Analysis

81

83
83
84

102
104

104

109
109

111



W

tr W

| |

ag b

GLOSSARY OF LZSS CCALION MATHEMATICAL
SYMBOLS AND NOTATION USED IN THIS THRESIS

The expectation of ths random variable x.

The expectation of the random vector x.

The natural logarithm of x, i.e. log, (x).

This is used to describe a function of N, £(IN).

'£(N) = O(F)* is a shorthand notation for ! ;;ggl
N

tends to a constant value as N tends to infinity'.

The transpose of the matrix W.

The trace of the (square) matrix W. Forannxn

matrix this is defined by:
tr W o= ; Wii

The detexminant of the matrix W.

This denotes that the number a is very much smaller
than the number b.

This denctes that the set 4 iz contained in the set B.

It includes the case where the two sets are identical.

The product of all the fterms ajy apy sewe ape
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1.1 The Aim of Cluster Aralvsis

ot

Cluster analysis studies the problem of how to divide a set of

to a number of subsets such that all the members of one subset
are similar and yet differ significantly from the members of the other
subsets. MNormally there is no a priori knowledge of the number of sub-
sets. There are two basic reasons for wishing to cluster a set of
objects. On the one hand one might wish to discern 'a true typology'.
That is, one méy ish to know whether the objects under study can be

regarded as examples of a relatively smzll number of different kinds of

1

objects. Alternatively, one may be concerned with data reduction. The

1

an be divided

S
et

i
¢

set may contain too many objects to handle. If the s
into a manareable number of subsets, one object can be taken from each
subset. The result is a sample more representative of the original
objects than a random sample would be.

Many different disciplines make use of cluster analysis. Con-
sequently, the subject has been develoved by workers in a variety of dif--
ferent fields. As a result, some techniques have been independently
discovered several times over. The first development of the subject was
in botany and zoology, where it is referred to as taxonomy.  Here the aim
is the finding of a true typology. The objective is to divide the animal
and plant kingdom into genera, species, etc. The first problem here is
how to measure the similarity (or dissimilarity) between objects. Con-
sequently, much of the taxonomic literature is less about clustering
techniques than about measures of dissimilarity (called dissimilarity
coefficients). A good introduction to taxonomy is given by Sckal and
Sneath (1963). DMore recently, the social sciences have made use of clus-
ter analysis. Here again the objective is that of finding a true typ-

ology and the problem of measurement of dissimilarity is of great
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importance. The problem is that the observations are largely gualitative
and they must be made quaniitative belore the cluster analysis can
proceed.

In pattern recognition the situation is rather cifferent. The

3

descriptors are typically guantitative in nature and consequently it is

natural to regard the objects under study as points in a high-dimensional

space. The dissimilarity between two objects can then be defined as the

}

distence in the vector space between the points representing them.
Mormally the distance used is some special case of the Minkowski distance
defined by ,%»
Y r
d; 2 X =Xl
k=l

Here, dij is the distance in a g-dimensional space between the i'th

I

and j'tn points. Xik represents the value of the k'th variable for the

i'th point. When r=1, this is called the city block metric. Whien r=2,
it is the Buclidean distance.

Furthermore, in pattern recognition the data sets frequently contain
hundreds or even thousands of objects. Although this is sometimes the
case in taxonomy, notably in microbiology, it is much less likely to be
so. Consequently, in pattern recognition one needs to be much more con-
cerned with the computational efficiency of an algorithm than in tax-
onomy .

There is a further important difference between the situation in
pattern recognition and that in taxonom&. Congider the classification
of animals. A typical descriptor might be the answer to the question,
‘does the animal have a tail?'. Within any particular species (cluster)
of animal the answer will be the same. In pattern recognition, because
one normally deals with quantitative measurements, the same descriptor

will frequently not possess exactly the same value for two co-classed



objects. Rather, the measurement will be characterised by a probability

[oF
ot

18

ribution. Thus, in taxonomy one
in pattern recognition one has a sta
In texonomy, the aim is usually to co”"t & hieravchy. At the
lowest level, say that of species, only one sample is needed from sach
object. The goal is to construct a dendrogram showing how the species
are grouped to form genera and the genera are grouped to form families.
This is illustrated for five nypothetical species (A, B, €, D, B) in

flgure 1.1, A, B and C are members of one genus, D and E are members of

18

h

another. Ali five species are members of the same fanily.

In pattern recognition, a typical procblem is that of analysing a
large number of noisy signzls. One may believe that each signal can be
expressed as 'pure signal plus noise', where the number of different
'pure signals' is quite few in number. Then cluster anzlysis would be
uspa to attempt to determine the number and nature of these pure signals.

In view of what has been said it is hardly surprising that the
subject has recently attracted the attention of statisticians. Rather
it is surprising that this did not happen earlier. This is probably
partly because classical statistics depends upon making assumptions about
the probability distribution of the population from which the data set
ccmes. In cluster analysis this is often not possible.  Perhaps it is
also because the multi-dimensional aspect of the problem necessitates a
considerable use of the digital computer, the full potentizl of which was

probably apparent earlier to engineers than to statisticians.

1.2 Comparison witn the Discrimination Problem in FPattern Recognition

It may be helpful to compare cluster analysis with the classical
pattern recognition problem, supervised learning or 'learning with a

teacher'. Here, one is given a set of objects which come from a known
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species

PIGURE 1.1



number of classes. In addition, the correct classification of each
object is known. The problem is to determine the classification of a
future (unclassified) point. This has been much studied,bboth from a
statistical standpoint and from a 'geometrical' one. In statistical
supefvised learning, assumptions are made about the probability dis-
tritutions of the various classes. In geometriéal pattern recognition,
no such assumptions are made. Instead error-correcting algorithms (such
as the perceptron algorithm) are used. All that is required is that it
is possible to separate the classes with a limited number of hyperplanes,
hyperspheres, etc.

The term 'unsupervised learning' is also used in the pattern recog-
nition literature. This can be a synonym for cluster analysis, but it
seems to be more often restricted to the particular case where the number
of clusters is known and some assumptions about the underlying prob-—

ability distribution are made. For a review of both supervised and

unsupervised learning see Nagy (1968).

1.3 Plan of the Thesis

For the purposes of this thesis the techniques of cluster analysis
have been divided into five categories. Although this classification is
in places rather arbitrary, it is believed that it does reflect real
distinctions between the techniques. Bach type of approach is discussed
in one of Chapters 2 to 6.

Chapter 2 deals with linkage technigues. Here, the set of objects
is divided into a partition on the basis of the dissimilarity matriz.
This is the matrix whose i,j'th element is the dissimilarity cocefficient
between the i'th and j'th objects. Linkage techniques solely depend upon
the dissimilarity matrix. Hence, once this matrix has been calculated

the actual descriptor values can be discarded.
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with a mamber of techniques

{

'optimization-pariitioning' ftechnigques (Everitt,

the object is %o maximize (or minmimize) some funciion determined by the
data set and ithe partition under considers

Chapter 4 considers techniques whose origine stem from the concept

of a proba®bility density function.
Chapter 5 deals with itechnigues which attempt to map a multi-
dimensional data set into two dimensions. The data set can then be

T

displayed visually and use made of the human observer's ability to

erform 'Gestalt' clustering.

el

Chapter 6 discusses a number of miscellaneous approaches. Some of
these are 'one-off' techniques, bearing little relation to any others.
Some of them represent general categories which the author feels are of
little significance in pattern recognition.

In comparing the techniques a number of gquestions will be asked.
Four in particular apply fto all the techniques.

'Does the procedure produce a hieraréhy of objects?'. As has been
noted taxonomic clustering is usually of this form.

'Are the results invariant under non-singular linear transformations

of the data space?'. TFrequently, invarisnce will apply under orthogonal

+

<

transformations (i.e. pure rotaitions), but rarely does it apply under
eneral non-singular linear transformations (i.e. when the scale of each
axis is altered). When the fuli invariance property does not apply it is
usual to first normalize each dimension to zero mezn and unit variance in
order that no one variable unduly influences the analysis.

'Does the technique depend upon some a priori assumptions about the
probability distribution of the population of which the objects represent

a sample?'. Techniques which depend upon such assumptions are termed

parametric. As will be seen later, totally misleading results may be
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oroperty called cnaining. This means that the metho
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inked by chains of intermediates. This is illustrasicd
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torether object

in Pigure 2.1. Here the presence of points A, B and € will cause

link cluster analysis to give a one cluster so

would ¢

deterministic cluster analysis. In »attern recognition it certainly is
g0, For in the statistical situation, there is always the probesbility of
'noise points' occurring between clusters. Thus the resvlts of the
analysis can be critically dependent on the particular sample used. This

is a serious disadvantage.

etermination of what value of h to uze. In

o
o

Another problem is the
taxonomy, this is generally overcome by producing a dendrogram siructure.
Such a structure was illustrated diagramatically
dendrogram, one can observe the cluster structure at 211 levels (i.c. for
all values of h). Mathematically a dendrogram can be defined (Sibson,
197%) as a function ¢ which maps from the range of values of h {i.e. O to
o) into the set of all equivalence relations on the data set. Further,
¢ must satisfy three conditions.

(1) ne<h' implies c(h)gc(h')

(2) When h is very large all objects become equivalent.

(3) cln+§ )=c(h) for all small enough & >0

If there are N objects in the data set the dendrogrem can contain up
to (N-1) different splitting levels.

The problem of how to construct such a dendrogram in the most
efficient manner has been solved (Sibson, 1973). Sibzon describes an

algorithm capable of clustering 1000 objects on the Cambridge University
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It is still necessary to display the dendrogram and make some sence

of it. &
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or data sets of many hundreds, or even thousands of objects,
this will not be an easy matier. Remembering that in pattern recognition
one is not normally interested in obtaining a hierarchical structure, it

can be seen that the dendrogzram is not the ideal form for the results to

?.% Furthest Neishbour or Complete Linkege Cluster Analysis

This differs from the previous technigue in that for an object to
join a particular cluster its dissimilarity coefficient with each object
in that clustef mist be less than or equal to some value, h. This
completely overcomes the chaining problem and produces compact clusters.
“hile this eliminates the problem of spurious results due fo noise points

it has the disadvantsge that an elongated cluster will appear as a number

of clusters.
In practice the technique has the same disadvantages as single
linkage cluster analysis. Either one has some criterion for choosing h,

or one must outou, a dpnaro Tram.
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proximity. Nearest is here defined with resvect to scme conventional
dissimilarity measure (e.g. Buclidean distance). A number of possible

by

definitions can then be used to calculate a new similarity matrix from

¥

these lists, The simplest approach is to make the i,j'th element of ¢

matrix egqual the number of members common to the nearest neighbour list
for the i'th and j'th objects. This similarity matrix can then be input
to any linkage technique. In particular, Jarvis and Patrick use the
single link approach with one modification. They suggest that an object
X should join a cluster if there exists in that cluster an object Y such
that two sets of conditions are satisfied. Firstly, the number of shared
elements in the lists belonging to X and Y must be greater than or equal
td some value, kT. This is the single link criterion when applied to the

similarity matrix defined above. Secondly, X must be in Y's list and
vice-versa. As in single link analysis, if there are points Y and Y' in
two distinct clusters but both satisfying the zbove conditions, then the
clusters are coalesced and X joins the cluster so formed.

The philosophy underlying this algorithm csn be understood by
regarding the objects as points in hyperspace. Then two points close
together should only be co-clustered if they come from the same con-
tinuous region of high point density. This will mean they share a large
number of near neighbours. This is illustrated in Figure 2.2(2) and (b).
In (a) there are two close points (X and Y) which share many near neigh-

bours and should obviously be co-clustered. In (b) X and Y, although
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ot eonly can one vary ¥, and repegt the analysis, one can also vary

“. Having established the nearest neighbour lists Tor some value of Xk,

ko,

forgetting zbout their final elements., The time to establish the lists

2 \
will be provortionzl to ¥ (g+C(k)), where Il is the number of objects and
q is the number of descriptors. C(k) is a relatively small factor to

allow for testing for 21l ¥k near neighbours for each point. The time

taken to use the table for cluster analysis will be (neglecting zero and

6]

first-order terms in M) proportional to Ng(k+1)2 at most. The actual
time~dependence will be significantly dependent on the value of k
The problem of the correct choice of parasmeter value is grester for

this algorithm than for the two previously discussed. Now there are two
parameters which may be varied, k and kT. Some light mzy be thrown on
this problem by considering the philosophy of the algorithm. As
=xplained, the aim is to locate continuous regions of high point density
The point density can be regarded as an estimate of the probability
density of the p 1aulon from which the sample was drawn. Thus the real
objective of the algorithm is to divide the space into contimuocus regions
£ high probability density. Now Loftsgaarden and Quesenberry (1965)
have shown that ¢ k'th nesrest neighbour approsasch can be used to
estimate the probability density function (p.d.f.) at a point. Let R be
the distance from an arbitrary point X in the data space to the k'th

n

nearest data point. Any choice of metric can be used. Then Loftsgaarden

and Quesenberxry have proved that one consistent estimate of the p.d.f. at

jo
fd
[

(k=1)

NV
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Heve ¥V 1s the volume of a X and of redius R. Thus
there is a relationship bebwesn this clustering technioue and one form of
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p.d.f, estiration. The exact nature of this relationshivy is an open
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considered the problem of what value of k to take. They suggest that

about ¥ 'aprears to give goond resulits'. I% would ceem reasonable that

oy

2 value for k of the same ovder of magnitude should give good resulis in

the clustering algorithm. 1In practice, the value of k may be limited by

the available storage anyway.

Fad
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Having decided on a suitable value (or values) for k it is still
necessary to decide on values for k.. As with ordinary single-linkage
cluster snalysis, one possibility is to produce a dendrogram, but again

this is probably not suitable for large values of M.

2.5 Use of the Minimal Spanning Tree in Single Linkasge Cluster Analysis

v

The problen of determining reasonable values for h in single linkage
cluster analysis has recently been attacked by the use of concepts from

graph theory. Before describing this avproach 1t is necessary to define

=

the concept of 'minimal spanning tree' (M.3.T.). Consider a set of 1
objects and a dissimilarity matrix on these objects. Then a spanning
tree is a set of edges joining the objects such that all objects are
connected but containing no closed paths. Consequently the sﬁcr ing tree
will contain (1~1) edges. To each edge a weight is assigned. For the
purposes of cluster analysis this will be the dissimilarity cecefficient
between the objects defining the edge. The weight of a tree is then
defined to be the sum of the weights of the edges in the tree. Then a
minimal spanning tree will be a spanning tree whose weight is minimal
smongst all spanning trees. It can be shown that clusters at any level

h can be obtained from the M.S.T. by deleting zll segments of weight



greater than h (Gower and Ross, 1969). Consequently having once prod-
veed an M.S8.7. it is a relatively simple matter computationally to vary h
snd obtain a single linkage analysis that the observer regards as sig-
nificant. In Chapter 8 an example is given where an M.5.T. was obtained
from 2119 points in 8-space in approximately 60 seconds on a C.D.C. 7600
(using Fueclidean distance as the measure of dissimilarity). To produce a
single linkage cluster analysis at any given level from the M.5.T. took
of the order of 10 seconds on an I.C.L. 1907, a machine which is at least
40 times slower than the C.D.C.‘7600.

The algorithm used to construct the M.5.T. is due to Prim (1957).
The advantage of this algorithm, as Gower and Ross point out, is that it
only makes use of each dissimilarity coefficient once. Thus it is not
necessary to store the dissimilarity matrix. Rather, each dissimilarity
coefficient can be calculated when necescsary. As a result, the storage
requirements of the algorithm are only O(N) and consequently it can be
used on very large data sets. The time dependency of the algorithm is
o(w%).

As previously stated, h can now be varied until a reasonable level
of clustering is achieved. A more systematic altermative has recently
been suggested (Zahn, 1971). Zahn suggests taking each edge of the
M.S.T.'in turn and determining the average weight of the neighbouring
M.S.T. edges. If the edge under consideration has weight greater than
this average edge weight multiplied by some factor, then it is termed
inconsistent. The M.S5.T. can then be 'disconﬁected' at a2ll the incon-
sistent edges. This is not quite the same thing as true single linkage
cluster analysis, since it takes into account local variations in average
edge-weight. Thus of two identically weighted edges one may be incon-

sistent and the other not.
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Lee (1974) has suggested using an approximate M.S.T. in cluster

analysis., His technique is simils

.

> o a technique to be discussed in
Chapter 5 for non~linear mapping. Lee constructs a 'sub-minimal spanaing
tree', i.e. a spanning tree which, although not actually an M.S.T., is
(hovefully) quite close to being one. TFirst, an M.5.7. (T%) is con-
structed for I objects taken from the N in the data set. The remaining
(N-11) objects are joined to the tree by minimizing the sum of weights of
edges between objects in T* and objects not in T*. The weights of edges
between objects not in T* are ignored. The total number of dissimilarity
coefficients required will be HI(M-1)+11(W-1), rather then the ZW(N-1)
needed to form the true M.S.T. Lee believes the final spanning tree will
be sufficiently nearly minimal to obtain useful clustering results.
Unfortunately difficulties arise if the members of T* zre nbt represent-
ative of all the clusters. Lee believes this should be immediately
discernible from the tree but in this author's opinion there is a danger
that a valid cluster might be missed and regarded as merely a collection
of outliers (i.e. isolated objects apparently not members of any signif-
icant cluster of objects). However, if care is taken to sample the N

objects at random so as to obtain the initial M frame points, this

technique may be valuable in the analysis of very large data sets.

2.6 Comments

All the techniques discussed in this chapter are non-parametric in
nature. If the dissimilarity coefficient is taken to be Fuclidean
Distance the resvlts will be invariant under orthogonal rotations of the
data space. They will not be invariant under general non-singular linear
transformations.

It is interesting to compare the Jarvis and Patrick algorithm with

single linkage cluster analysis as performed by constructing an M.S.T.
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Both procedures have similar objectives in that they attempt to define
continuous regions of space of high point density without meking assum-
ptions about the shape of these regions. Both procedures have time

. N . 2 . . . '
requirements given by O(N®). Assuming that k is approximately ~/N, the

: . . : . 34

storage requirements of the Jarvis and Patrick algorithm will be O(H ).
This compares unfavourably with the M.S.T, approach which has storage
requirements O(N). The M.S.T. allows far greater precision in the choice
of a clustering level. As will be seen later, it is quite possible, by
changing kT by unity, to go from a situastion where only one cluster is
apparent to a situation where very many (e.g. hundreds) of small clusters
are found. 1In between one has completely missed the level of clustering

which would probably significant to the user of the technique.



CUAPTER % OPTIMT ZATION-PARTITICHING TECHNIQUES

3.1 Introduction

The techniques discussed in this chapter attempt to find that
partition of the data set vwhich optimizes some criterion. In theory,
given the number (g) of clusters required, one needs merely %o consider
all the possible partitions of the N data points and choose that one
which optimizes the criterion., However, for any realistic value of N
this will be computationally impossible. TFor example, for g=2 there will
be (ZN-l—l) partitions to be considered. Consequently an exhaustive
search is impossible. Instead heuristics are used in an attempt to
achieve a good value for the criterion.

All the criteria discussed in this chapter are functions of the
scatter matrices defined below. Consequently they do not make use of the
dissimilarity matrix but work directly with the data set.

Before discussing each criterion separately it is necessary to
introduce some notation. Let the data be represented by z set of N
g~dimensional column vectors gl,.gz, ve s KN . The object is to
divide this data set into g groups Gl’ 02, N Gg with populations
Nl’ NZ’ cenn
following 'scatter matrices' can then be defined (Fukunaga, 1970).

Ng. The Ni are not, of course, known a priori. The

Total scatter:

Intragroup scatter:

A . ‘ T _ ;
Wj._ E (ékfgj)(zkﬁgj) where C.f;% E X,
X, &G



Thus C. is the centroid of the j'th group. W. is related to the covar-—
-J J
iance matrix for the j'th group. Eer B consistent, unbiased estimate of
this covariance matrix will be given by
W,
il
N,~1
J

Total intragroup scatter:

The superscript T denotes transposition. It can easily be shown

that

T=W+B

3,2 The '"Error Sum of Sguares Criterion'

The first criterion to be suggested was the 'error sum of squares'.
The philosophy underlying its first use was one of data reduction
(e.g. Thorndike, 1953). Imagine attempting to represent a set of N data
points by g points (g <« N) with minimum loss of information. One pos-—
sible approach is to partition the data set into g groups and then
replace each partition by its centroid (i.e. the gj). Then a suitable
measure of the error will be
J.= d(gk,gj)
where d<§kﬁgj> represents the distance between the points X and_gj in

the hyperspace. Using squared Euclidean distance this becomes
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This is known as the trece of W (tr W). Clsarly, minimum loss of infor—

mation will be zschieved when JO iz minimised.

6]

In zddition to its use in data reduction, the criterion may b
applicable in the 'true tyvology' problem. If the clusters are spherical
and anproximately equal in size the use of this criterion will probably
separate them. However, if these assumptions do not hold, the technique

may give completely misleading results (see Wishart, 1969).

3.3 An Optimization Algorithm

Vacqueen (1966) has suggested and analysed an algorithm for obiain-
ing a suitable partition. Similar algorithms have appeared at several
other places in the literature (e.g. Sebestyen, 1962, Chapter 4,
section 5; Ball, 1965). The version of the a 2lgerithm presented here is
as descrited in Fukunaga and Koontz (1970).

Firstly g initial group centres are chosen by some (possibly random)
initialisation process. These may or may not correspond to actual data
points. Each data point is considered as belonging to that cluster whose
centre is nearest, in the Euclidean distance sense. When each data point
has been allocated to a cluster the group centres are re-calculated as

the centroids of the data points in each grovup. The algorithm is shown

diagrammatically in Figure 3.1. 'The algorithm can be regarded as comnosed
@ 2 =) &

of two parts. In the first part the grovp membership is varied for each

e i inimize (X 7 T fo

dzta point lkk) so as to minimize Ay~01) (kacé), which is the contrib-
A Dy Ay

vtion of that point to JO. In the second part the C, are re-computed for
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a fized partition. As is well-known, the centroid of a set of data
points is the point in the hyperspace about which there is & minimum
scatter. Thus in each part of the algorithm JO will be minimized. As a
result the error sum of sguares will be reduced until eventually con-
vergence 1is achieved. This will not necessarily represent the absolute
minimum of JO but will probably be merely a localyminimum.

For data reduction, as long as a low value of JO is achieved, it
does not matter too much if that value is not close to the true minimum.
This is not so when trying to find a true typology. Here convergence to
a local minimum far from the true minimum is an unsatisfactory result.
Consequently several authors have suggested elaborations of the algorithm
(Macqueen 1966; Friedman and Rubin, 1967). Since the suggestions of
Friedman and Rubin have been incorporated into a program (McRae, 1971)
which has been used in the work described in Chapter 8, their approach is
outlined here.

In addition to the iterative technique already mentioned, which they
term 'reassignment passes', Friedman and Rubin also describe 'hill-
climbing passes' and 'forcing passes'. In a hill-climbing pass every
data point in turn is moved from its own group into each other group. If
no move decreases JO’ the point is left where it is. Otherwise it is
moved so as to achieve the maximum decrease in JO. When each point has
been considered, the program has performed one 'hill-climbing pass'.
After several such passes, a stage is reached at which no move of a
single point will further decrease JO. A 'foréing pass' is then begun.
Considering one group at a time, each data point in the group is placed
into the outside group with the nearest centre of gravity; At each stage
the point considered is that one nearest to an outside group. After the

first re-assignment JO must increase, since otherwise the re-assignment



would have been achieved by.the previous hill-climbing pass. Eventually,
bowever, JO may decrease again. After processing‘all the objectskof one
group, the best partition yet found is restored, and the program passes
on to the next group. When each group has been considered, one forcing
pass has been completqd. Forcing passés are repeated until they produce
no impiovement. At this stage the re-assignment pass already described
is begun. Thais is also repeated until no further reduction in J0 is
achieved. The three stages are then repeated until convergence‘is
reached. The final partition is then assumed to be the optimal one.

As a check, Friedman and Rubin suggest repeating the procedure with
different initial partitions. The computation which leads to the lowest
final value of J, is the one whose results are used.

It is difficult to analyse the time requirement of this algorithm
theoretically because of its complexity. It would appear to be O(N).
However, it also seems to be very dependent upon g and upon the structure
of the data. In Chapter 8 some times will be quoted for the use of this
program with a real data set. The storage requirements of the algorithm

certainly are O(N).

3.4 The Invariant Criteria of Friedman and Rubin

The results, obtained by the use of JO’ are invariant only under
orthogonal transformations, since Jo is invariant only under these
transformations. In the same paper in which they described the algoritbm
of section 3.3, Friedman and Rubin reported some experiments on the use
of two criteria which are invariant under all non-singular linear trans-
formations. DBefore describing these criteria it is helpful to prove the

following theorem. The proof is taken from Anderson (1958), page 222.
Theorem

The eigenvalues of W“IB are invariant under all non-singular linear

a5



transformations.

Proof

Consider a typical ﬁon—singular linear transformation, A. In the
following, all transformed vectors and matrices are denoted by the

superscript '. Then

L -4k

Consequently
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Now the eigenvalues of W T B are the solutions of the equation

|[B-A¥|= O,
However

|B* = A%'] o |aB&T - A aWal)
- |A(B - 2W)AT
- 1a[1B=Aw]| 4T

Thue the solutions of |[B -~ AW| « O are also the solutions of

|B* - AW'| =« 0. By repeating the argument using the reverse trans-
formation, A’l, the converse is true. Thue the eigenvalues of W"l B are
invaeriant under non-singular linear transformations.

The two invariant criteria used by Friedman and Rubin are defined as

Is|

J W]

1

3, = tx(W! )

The invariance of these two criteria can now most easily be demon~
strated by showing that they are both functions of the eigenvalues of

vl B, denoted by Al’ 22, ceee ﬂq. For
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= tr(w"l B)

J2 =
= t2(d" pwt B)
= tr(D vl B DT)
a
=TTA
i=1
Here D is the (orthogonal) transformation which diagonalizes
Wt B,

Both criteria are to be maximised, However since S is fixed for any
given data set maximizing %%% is equivalent to minimizing |[W| . For
simplicity, the first of these two criteria will be referred to as the
minimization of |W| . |

No easily visualised significance can be attached to Jl' Eowever,
it has an importance in terms of statistical theory which will be
explzained in a later section. J2 is more easily interpreted. Assume
that all the clusters have the same covariance matrix (i.e. the Wj differ
only by a multiplicative factor). Then a transformation which transforms
W to the identity matrix will produce spherical clusters and will trans-

form the intergroup scatter (B) to Wt

B. Thus maximizing tr(w'l B) is
equivalent to maximizing the scatter of the centres of a number of
spherical clusters.

After a series of experiments on real data of‘biological signif~
icance, Friedmzn and Rubin were of the opinion that Jl gave better
results than J2, in addition to being computationally easier.

In adepting the algorithm of section %.3 to optimize Jl and J2, the

definition of distance used is the Mahalanobis Euclidean distance. The

Mahalanobis distance between two points, gi and.zj, is defined as

(x.fgj) W (X, =X.)



This distence will be invariant under any non-singular linear
transformation, It stands in the szme relation to JT as the Fuclidean
distance does to JO. That is to say, to minimize Iw] at ezch step
during a 'reassignument pass', one assigns each pointlzk to the cluster

. \ T~1 /v -~ . _
with centre Cj such that (ﬁkﬁgj) W (ékfgj) is a minimum
(Marriott, 1971). Clearly the use of J, and J, will necessitate con-

siderably longer execution times than the use of JO.

3.5 Further Invariant Criteria

Two further invariant criteria have been suggested in the liter-
ature. Fukunaga and Koontz (1970) first normalise the data space so as

to transform the total scatter matrix to become the identity matrix.

S —eATAY =1

As a consequence

C.—=prC, 2 1,
-J =j =j

W —=AW AL A p
B —=A BAL 2 g .

J . ——tr P 27

'
0 0

The eigenvalues of P"IQ are of course :xl’ )2, ceen ;xl’ the
eigenvalues of w_lB. Let {)*5} represent the eigenvalues of P. Then
the eigenvalues of P“1 are/#-;l. The relationship S = W+B transforms

to I = P+Q. Hence
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Consequently Jé is also an invariant criterion, since

= tr P

Coy

O -

i
5

By anzlogy with JO, Jé is to be minimized. Jé is computationally
cheaper than Jl and J2 since after normalising the data space Euclidean
distance is used, rather than the more complex Mahalanobis distance.

Thus a considerable computational saving is achieved. When g = 2,

y J, and J! are all equivalent

Fukunaga and XKoontz have shown that J 5 0

1
criteria,
McRae (1971), in his program MICKA, makes use of (in addition o J4»

J, and J2) a further invariant criterion defined by
i : ool
J3 = largest eigenvalue of W = B

This criterion is to be maximized. In the two-cluster case J3 also
becomes equivalent to the other invariant criteria. It is apparent from
the experiments in Chapter 8 that the execution time for the optimization
of this criterion is greater then for JO and Jl and agpproximately the
same as for J2. To the author's knowledge, J3 possesses no advantage

over the other invariant criteria.

3.6 The Statistical Significance of the |Wl Criterion

Scott and Symons (1971) have shown that the criterion |W| has a
special significance when the data consists of a number of independent
observations from a mixture of multivariate normal distributions with

equal covariance matrices. In this case the maximum likelihood partition



of the data set into g subsets is that partition which mininizes [W] .
This result seems to ve dependent upon the assumption that there is

fact is not exp-

197

negligible overlap between the distributions. Thi
licitly mentioned in the paper, Scott and Symons also voint out that
this result can be extended to the case of a mixture of normal distrib-
utions with uneqgual covariance matrices. Here the criterion to be

&
e . N,
minimized is E IW.’ j. To the author's knowledge no-one has as yet
=1 Y
attempted to use this criterion.

2.7 Determination of the Ootimum Value for g

So far the problem of determining the optimum value fer g has not
been considered. One cannot merely optimize the ecriterion as g varies.
To see this consider Jo(tr W). TIn the extreme case when g = N, each
cluster will contain one data point. Hence JO will be zero. No other
partition will do this, unless some of the N points are identical.
Consequently, the optimum partition would always be into single point
clusters, which is certainly not the desired result.

Some authors. including Friedman and Rubin (1967), have suggested
plotting the optimum value of the criterion against g. It is hoped that
a sharp increase or decrease in the criterion will occur at the 'correct'
value of g. This procedure has been shown to be unsatisfactory for JO
(e.g. Thorndike, 1953). Friedman and Rubin report reasonable results by
plotting log max( IS] / Wl ) against g. Marriott (1971) has shown that
the optimumvsubdivision into g groups of a unirvrmly distributed pop-
ulation reduces [W | by a factor gz. This led him to suggest finding
that value of g which minimizes gzmin Wi .

In the next chapter, another technique will be discussed which rests
upon the assumption that the data consists of a number of independent

observations from a mixture of multivariate normal distributions. This

technique gives rise to significance tests for g.
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Wishart's Mode Analysis

Wishart (1969) discusses the failure of an error sum of squares
technique (see last chapter) when applied to a particular problem in
astronomy. The data is two-dimensional and was first plotted by
H. N. Russel in 1914. It shows temperature against luminosity for a
large number of stars. According to Russel, and to most other observers,
the data divides naturally into two elongated clusters, one considerably
longer than the other. The members of the longer cluster have come to be
known as 'dwarf stars'; the members of the other clusier are referred to
as 'giants'. All astronomers seem agreed that this is the 'correcth!
classification for their purposes. However, when an error sum of squares
technique is applied to this data set quite different results are
obtained. The final classification into two groupings divides the dwarfs
into two clusters and places most of the giants into one of these clus-
ters. In view of what was said in the last chapter, it is not surprising
that such unsatisfactory results should be obtained from an error sum of
squares technique.

Wishart then goes on to give a review of some thirteen different
cluster analysis techniques and points out that they all share the 'min-
imum variance' property. That is, they all attempt to minimize the
within-group sum of squares. Wishart seems unaware of the work of
Friedman and Rubin in extending the optimization-partitioning approach.
Of course he was writing before the publications of Marriott and Scott
and Symons. Consequently he concludes that this approach is unsatis-
factory for many real problenms.

He then discusses single-linkage cluster analysis and points out the
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problem presented by noise points. This leads him to suggest a modif-
. ication of single link analysis in which the clﬁstering is perfonméd only
on those data points at which the estimated p.d.f. is above a certain
level. The algorithm re@uires selectiné a distance threshold Ty and
frequency (or density) threshold k. Any definition of distance could be
used, but Wishart uses Euclidean distance. The number of points, ki’
within a distance r of each data point is then calculated. The points
for which ki<:k are regarded as ‘noise points' and discarded. Single-
linkage cluster analysis is then performed on the remaining points.
Finally each noise point is allocated to the cluster containing its
nearest dense point.

The avoid the problem of having to choose two parameter values,
Wishart suggested a second algoritbhm, called 'hierarchical mode anal-
yeis'. This algorithm requires only a density threshold, k. The dis-
tances from each point to its k'th nearest neighbour are computed and then
ordered, with the smallest first. The points are considered in order of
increasing k'th nearest neighbour distance. As each new point is intro-
duced, a parameter PMIN is set to the value of that point's k'th nearest
neighbour distance. The algorithm then tests to determine which of the
following three possibilities holds.

(1) The new point does not lie within PMIN of another dense point
(1.e. a point already considered), in which case it initialises a new
cluster mode.

(2) The point lies within PMIN of dense points from one cluster
only, in which case it joins that cluster.

(3) The point lies within PMIN of dense points from sevefal clusters,
in which case they are coalesced and the point joins the newly-formed
cluster.

Finally, because the value of PMIN has been changed, the algorithm

checks whether the nearest-neighbour distance of any two clusters is now
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less than PMIN, in which case these clusters are coalesced.
As the algoritnm proceeds the number of clusters will vary. Wishart

suggests outputting information about the clusters immediately before any

@

are coalesced. The maximum number of clusters can be taken as indicating
the most significant level of clustering. Having found this level, each
noise point can be attached %o the cluster containing its nearest dense
point.

The algorithm has an execution time O(Nz) and storage requirements
0(N). Wishart claims that it performs well and is relatively insensitive
to the choice of k. It is a pity, however, that he does not tell us how
the algorithm performs on the data set that originally inspired it, i.e.
the zstronomical data of Russel.

Clearly the co-ordinates of the modes transform in the same way as
the co-ordinates of the data points. Consequently any mode-seeking
technique must be invariant under non-singular linear transforrations.
For a finite data set this is not absolutely true. To a certain extent
any mode~seeking technique must be approximate and the accuracy of the
result may depend on the scales chosen for each varizble. However the
results of the subsequent single-linkage cluster analysis are completely
dependent on the particular definition of distance used. If Euclidean
distance is used the results will only be invariant under orthogonal
transformations. The same is true for the allocation of the noise
points. As a consequence the resultent partition is invariant only under

orthogonal transformations.

4.2 Gitman and Levine's Mode-Seeking Technigue

Gitman and Levine (1970) describe a very similar mode-seeking
technique. Their paper is presented in the language of fuzzy sets

developed by Zadeh (1965). The approach is more mathematical than
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Wishart's and they are able to show that the technique possesses some
nice properties in the limit as the size of the data set tends to infin-
ity. TUnfortunately it is no? clear to the author just how many points
are nacessary for any given data structure to cbtain reasonsble results.

Given a large enough data set, the technigue will detect a2ll the
nodes of point density. Clusters will then be formed around each mode.
The algorithm derives the optimal partition in the sense of maximum
separation as adopted by Zadeh. This means essentizlly that the cluster
boundaries will lie in the valleys, i.e. regions of low point density.

The storage requirement is (208 + CH + S) words, where C is a
constant whose size will depend upon the number of modes present in the
data set, and § is the number of words required to store the data.
Gitman and Levine comment that 'the amount of computing time is relat-
ively small'. However they do not quote the exact relationship between
execution time and N. Because of the complexity of the algorithm the
author is unable to determine the nature of this relationship. Probably
the execution time will also be very dependent upon the number of modes
present.

Gitman and Levine also suggest two modifications to the slgorithm to
accommodate very large data sets (e.g. greater than 3%0,000 sam nples ).
Neither of these 'short-cuts' had been tested when they wrote their

paper.

&
o+

Because it achieves maximal separation in the sense of Zadeh, the
algorithm is (in the limiting case of an infinite data set) fully invar-

iant wnder non-singular linear transformations

4.3 JSPACE

(g

HSPACE is a mode-secking technigue proposed by Eigen, Fromm and

Northovuse (1974). For each dimension a histogram is constructed to



represent the marginal v».d.f. An algorithm is then used %o find the
modes of each histogram. The results of this algorithm are dependent
upon two parameters, cf and O, S is the number of intervals into which
the range of each dimension is divided and © is a threshold parameter
used to define a mode. Assume that the i'th dimension oontains‘ﬁi modes,

» ’V“r Tﬁ S ~ - » ‘ - 3 .
situated at Mil’ Mins oenve “iQi. it Qj 0 the J'th dimension is

ignored. The marginal p.d.f. in this dimension will be approximately
uniform over the range considered. Ceonsequently this dimension has no
ﬁalue in cluster anaslysis. In all, there will be }gTai 'potential!’
modes. Each potential mode will have its co»ordin;;i in the i'th dimen~
sion equal to one of the Nik (k =1, 2, .... ai). In reality, there will
probably be a smaller number of actual modes, as can be seen from the
two~dimensional example in Figure 4.1. Here ngai equals 4, but in fact
there are only two modes. Now each data poinifﬁ (:(Xl, Xps wens Xq)) is
considered in turn and for each dimension the nearest mode (ﬂi) is found.
Nearest here means 'so as to minimize ,Xi»Mijl '. The point is alloc-
ated to the cluster centred around the mode at (Mi, Mhy wues Mé). By the
end of the algorithm, some of the TETE% potential modes will have points
allocated to them, others may not.l:%hus the result is a partition of the
N data points into g classes where g =< min(]grég,N).

Eigen et al. regard their technique as t;:lfirst part of a 'global~-
local scheme'. That is, they regard its results as an approximation to
the clustering structure which can improved on by more complex, and hence
slower, techniques.

The paper describing NSPACE is made unnecessarily obscure by an
excess of mathematical symbolism. The author is unclear about the
rationale behind the details of the particular mode~-seeking algorithm

used. From the example given the modes appear to be positioned in the

valleys, i.e. in the regions of low p.d.f.! There is in addition an
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erroneous comment concerning the algorithm of Sebestyen and Edie, which

e that at certain

o5

will be described in section 4.,5. Figen et al. sta
stages in the Sebestyen and ©®die procedure some of the cells may split
into two. As will be seen later, this is not so.

NSPACE appears to be both fast and economical of storage. Both its
time and storage requirements are O(N). However it is sensitive to the
choice of control parameters (i.e. § and ©). Furthermore NSPACE is
probably the least invariant of all the techniques discussed in this
chapter. BEven the number of potentisl modes may vary as the axes are
rotated. An example of this is shown in Figure 4.2, Here there are
three actusl modes. 1In Figure 4.2(a) there are 9 potential modes, whilst
in Figure 4.2(b) there are just 3, corresponding to the actual modes. I%
can also be seen that the point X will be allceated quite differently in

both situations.

4.4 A Valley-Seeking Techniaue

All the schemes outlined so far in this chapter have been mode-
seeking. However Koontz and Fukunaga (1972a) have suggested a technique
which does the opposite. Their technique finds the valleys and part-
itions the data set so that the cluster boundaries lie in these valleys.

As in their other paper (Fukunaga and Koontz, 1970), discussed in
the last chapter, they define the clustering problem as consisting of the
definition of a clustering criterion and the construction of a clustering
algorithm. This time they discuss a radically different criterion from
those based on scatter matrices. Their initial criterion, J, is an
attempt to measure the error involved in mapping from the set of data
points to the set of clusters. J is of a very general form. However the
bulk of the paper discusses the properties of one specific example of J,

known as the 'fixed neighbourhood penalty rule! znd dencted by J2R' This
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ig defined as 'the total nuwber of distinct pairs of vectors separated by

than R znd assigned to different classes!',

[
o
D
5]
69}

a (Buclidean) distanc
Thus in minimizing Jzﬁ one ensurss that there ig little overlap between
clusters. As ¥oontz and Fukunaga point out, any metric could be used to
define distance. In their examples, they use Euclidean distance after
first normalising to zero mezan snd unit covariance matrix. Unlike the
more usual normalisation to zerc mean and unit standard deviation, this
normalisation involves rotation. This is equivalent to using the
Mzhalenobis distance defined on the whole data set.

The clustering algorithm is originally defined for the general
criterion J. Whnen applied to JZR Koontz and Fukunaga restate it as a
sequence of four steps.

Step 1: Choose an initial classification.

Step 2: For each vector, count how many vectors within a distance R

are assigned to each class,
/

Step 3%: Reclassify the vector to the class with the largest number

of members within a distance R from it.

Step 4: If any vector is placed in a new class, repeat from Step 2.

Otherwise, stop.

This differs from the 'hill-climbing pass' of Friedman and Rubin,
mentioned in the last chapter, in that during Step 2 no account is taken
of any reclassification already achieved in that particular pass through
the data set. As a result, a boundary can only move by a distance R in
any one pass.

Koontz and Fukunaga first use a2 verbal argument to convince their
reader that what they have described is a valley-seeking technique.

'Consider vectors along the boundary separating class Si from class
82 at the k'th iteration. Suppose there is a heavier concentration of

vectors on the S? side of the boundary. Then vectors near the boundary



are re~clagsified into S?. Hence the ooundary moves into the region

previously assigned to class S.. Therefore, the boundary moves away from

1

the higher concentrations and towards the valleys in the distribution.!

Once a valley of width greater than 2R has 'ecaptured' a boundary it
cannot escape, since a boundary moving towards a valley can overshoot by
no more than R.

Koontz and Fultunaga then give a2 mathematical treatment to show that,
in the limit as the data set becomes infinite, the only stationary
boundaries are everywhere perpendicular to the gradient of the prob-
ability density function. TFurthermore, the only stable boundaries (in
the sense of tending to return to their original positions after a slight
verturbation) correspond to 'valleys'. Unfortunately it is not clear how
closely the algorithm will correspond to thisg behaviour for a finite
number of data points.

Three problems remain. What value should R be given? How do we
determine the optimum number of clusters? To what extent are the results
dependent upon the initial partition?

The answers to the first two questions appear to be related. The
paper reports a series of experiments in two dimensions on data consist-
ing of 99 points from three normal clusters. TFive initial classes were
defined and R was varied from 0.1 to 7.0. When R was small no converg-
ence occurred after twenty iterations, when the process was stopped. Tt
was found that most of the data points fell in one class. For larze R
convergence occurred after a small number of iterations with nearly all
the samples in a single class. However there appeared to be an inter-
mediate range of values of R for which the 'correct' results were found.
That is, there were three large clusters plus two empty, or nearly empty,
clusters. The experiments were repeated with 198 and 300 samples, and

similar results were found. Koontz and Fukunagz suggest that these very



satisfactory results are caused by the 'unwanted' boundaries woving
downhill fto the edge of the data set. Therefore it would anpear that as
long as thewre are encugh initial classeg the actual number does not
matter. In fact, Koontz and Fulunzga comment that it may be wise to take
more initial classes than are thought necessary in case some boundaries
are lost by diverging to the edge of the data set.

The problem of how to define the original parbtition is not really
treated. Presumably it was not found to be critical.

In the author's opinion these experiments exhibit two major defects.
Firstly, the experiments are limited to two dimensions. Secondly, all
three clusters have unit covariance matriges. The author wonders whether
the algorithm could separate high~dimensionzl ellipsoidal clusters with
differing covariance matrices?

Since several different values are taken for R, the most obvious
implementation is to first calculate the dissimilarity matrix (using
Fuclidean distance) and store it for re-use. This produces a program
with storage requirements O(Nz). The time requirement for the calcul-
ation of the dissimilarity matrix will be O(Hz), but for the bulk of the
algorithm will be only O(N). If there is not enough available storage
space for the dissimilarity matrix the simplest alternative is to cal-
culate each interpoint distance when needed. This reduces the storage
requirements to O(¥) at the expense of increasing that part of the
algorithm whose time requirement is O(NQ).

However, there is a third possible implementation which is optimum
irrespective of whether or not there is enoughvstorage space for the
dissimilarity matrix. TFirst create for each data point a list containing
all the points within a distance equal to the maximum value of R to be

used. Markers can be inserted to partition the list and thereby indicate

how much of the list is relevant for any particular choice of R. For



large wordlength machines it should be possible to achieve a further

economy of storage by packing more than one element of each list into

[

each word. The resuld will be a program faster than the previous two and

Y

with less storage requirenments than the fivst., This ig because the

.

N

]

increases.

st

all as

Hy

optimum value of R appears, from the exveriments, to
Consequently the length of each list will probably not be as much as
proportional to N, and hence the storage requirements will increase at a
rate less than O(Ng).

Valleys, like modes, are invariant under non-singular linear trans-
formations. That is, each point along the line of a valley will trans-
form in the same way as the data points. Consequently this technique,
like Gitman and Levine's, is fully invariant under such transformations.

In a later paper, Koontz and Fukunaga (1972b) have extended their
analysis to a more general form of criterion. The paper seems to suffer
from most of the defects of the earlier one. In particular, it is not
clear how many data points are necessary for reasonable results. Also
the experiments they quote are once again limited to two-dimensional data
composed of three normal distributions, each with unit covarisnce matrix.
As before, the criterion depends upon a parameter which has to be varied
to obtain good results. However the paper contains a heuristic argument
which suggests a value for this parameter. This requires considerably

less computer time than the trial-and-error method previously suggested.

4.5 The Algorithm of Sebestyen and Bdie

Sebestyen and Edie (1966) describe an algorithm which they believe
can be used to provide an economic representation of a multivariate
p.d.f. Before explaining the relevance of this algorithm in cluster
analysis, it will be necessary to describe it in some detail. The p.d.f.

is represented as a mixture of multivariate normal distributions. Each



of these congtituent distridbutions is constrained %o have a diagonal
covariance matrix, Thus each of the normsl distributions can be thought
of 2s being centred on an ellipsoidal cell with axes parallel to the axes
of the data space,

Assume there azre M normal distributions in a space of q dimensions.
Let Smk represent the k'th co~ordinzte of the mean of the m'th distri-

bution. TLet Cfm represent the standard deviation of the m'th dstri-

k
bution in the k'th dimension. Let Xk be the k'th co-ordinate of an
arbitrary vector, X. Finally c, is a positive weighting factor such that

M

o,
m

me=1

Then the probability density at X will be

M
1 m__ exp(-2Q (X)) (4)
Y !
(2TT)aq q
’ i I mk
k=l

where the quadratic form Qm(z) is given by

The object of the algorithm is to establish the number and nature of
these distributions. In what follows the Smk and Crmk no longer rep~
resent the true means and standard deviations but rather the values in

use at any particular stage of the algorithm. FEach distribution is

regarded as being centred on a cell given by

0K < T

where C is a parameter that must be defined before the beginning of the



algorithm, Another parameter, G? , is vsed to define o 'guard-zone!

around each cell thus
2 . 2
TE = Qp(ig) == (OT)

The algorithm begins by establishing a cell centred on the first

determined constant

i

data point. Initially each© L 1s equated to a pre
CTk(O). As each new data point. X, is presented the § _(X) are cal-
culated. The minimum of these guadratic forms is found. Assume this is

Q (X). Then there are three possibilities,
"0

(1) o (1) =<

In this case, the point falls in the mo’th cell. ZHestimates of the
mean and standard deviation are kept for all the points which have fallen
in each cell. Consequently, these estimates for the mO'th cell must be

modified to include the new point X. The Sm . are equated to the estim-~
0
ates of the co-ordinates of the mean., FEach Cjﬁ X
JO

maximum of CTk(O) and the estimate of the standard deviation in the k'th

is equated to the

dimension.
2 2
(2) T =X =(o7)

In this case, the point falls in the guard-zone. It is stored and

re~considered at a later stage.

(3) (0T)°<a_ (%)
0

In this case, the point falls outside the guard-zone. A new cell is
formed, centred on X and with its Cfsk

Assume ¢, cells have been created after P1 data points have been

equated to O'k(O) .

el

considered. hen when P. equals ¢

1

parameter, the stored data points (i.e., the points that fell in guard

lUO, where O is another pre-~determined

zones) are allocated to the 'nearest' cell (in the sense of minimizing
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Q (X)). This allocation of stored points will re~occur for the q'th time
SRS
when

P = 261"‘10 E8
q q

Obviously, determining the values of the control pzrameters
(i.e. T,O ,w ang CYk(O)) is a major problem. The reason for having a
minimum value for the Crmk is to prevent a very large number of cells

i

being established. Consequently, it is at least posszible to guess an
order of magnitude for the Cfk(O). L is not too much of a problem
because the results of the algorithm are not critically dependent upon
it. Sebestyen and Edie in fact suggest that a suitable value for W ig
4. However, slight changes in T and & quite seriously affect the
performance of the algorithm. Sebestyen and Edie suggest that T should
be approximately 1.4(q+2)%. Their only comment about © is that it
should be greater than unity!

While Sebestyen and Edie were primarily concerned with representing
multivariate p.d.f.'s, Mucciardi and Gose (1972) have considered the
algorithm as a clustering algorithm. For, as Sebestyen and Edie pointed
out, the cells will tend to stabilize around the modes of the distrib-
ution. Hopefully the algorithm will produce a few cells containing a
large number of points, plus some additional nearly empty cells. The
dense cells can be regarded as clusters, and each of the other cells can
be coalesced with its nearest dense cell, using nearest in the same sense
as before,

Mucciardi and Gose found Sebestyen and Edie's suggestions for
evaluating T unsatisfactory in high dimensions (i.e. greater than
three). .Instead they suggest that T and & be chosen so that the . 4w
initial cells (i.e. with C75k equal to Crk(O)) contain, on average, three

data points, whilst the guard-zones contain two. They also suggest a



the end of the first pass. In general the Cf;k are re~initialized to
u“
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Crk(O). However if, for seme j and X, erk has remain

£

(5%(0) the initial value for that erk is reduced to some fraction of
ka(O). The largest erk for the cell in question is then re-initialized
so as to maintain the same initial volume for the cell.

The result of all this is an algorithm which is undoubtedly fast.
Assuming that the number of cells formed is dependent only upon the data
atructure (and not upon the number of points in the sample) the time
requirement will be O(¥). Whether the initialization techniques of
Mucciardi and Gose work well over a wide range of data sets is still an
open question,

The limitation to diagonal covariance matrices will clearly have
severe consequences when dealing with ellipsoidal clusters whose axes are
not parallel to the axes of the data space. The extension of this
teéhnique to employ cells with non-diagonal covariance matrices would
increase the execution time for the algorithm by a factor of the order of
%(q+1). This is because so much of the execution time is spent in
calculating the Qm(z). In Sebestyen and Edie's original algorithm each
quadratic form is the sum of q terms. However in the modified algorithm
each quadratic form is the sum of %q(q+l) terms.

All the algorithms presented in the first four sections of this
chapter are non-parametric. The slgorithm in the next section is'para—
metric. However this algorithm seems to occupy a half-way position. It
will probably work best where each cluster comes from a multivariate
normal population. However, because the algorithm is essentially a
mode~seeking oﬁe, it will fail to distinguish two normal distributions

when the means of the distributions are wvery close. A truly parametric



technique should continue distinguishing the two distributions until

their means actually coincide. On the other hand. because the technigue

sohieve reasonable results for

Well=gseparated normal distributions remain well-sepsrated and normal
after non~singular linear transformations. Consequently, if these
assumptions are valid the results of this technique (when adapted to
include non-diagonal covariance matrices) should be invariant under such
transformations. However, unlike all the other vprocedures discussed in
this chapter, the results of this technigue may depend upon the order of
presentation of the data points. It is important that they should be
randonly ordered. If this is not so, guite misleading results may occur,

It is interesting to note that, given the wvalidity of the assum-
ptions of normality, the allocation of data points to clusters doess not
follow strict Bayesian decision theory. On the basis of decision theory,
g point will be allocated to that cluster which makes the most contri-
bution to the sum in (A). That iz, the point is allocated to the m.'th

0

cluster where mo is that value of m which maximigzes

I (20, (X)) (2)
g%k

c, is the proportion of points in the m'th cluster. Assume that, of
n points so far allocated, n have been allocated to the m'th cell. Then
¢, can be esgtimated by
n
m
c = =
m n

Substituting for cn and taking natural logarithms (B) becomes
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mk
K=l
Since n is independent of m, the requirement is to maximize

q
nn - (o) - 40, (%) (c)
k=1
Clearly, this is not equivalent to minimizing Qm(z). The difference
will become particularly evident when the cells differ either in size or
in point density. The question naturally arises whether fthe adoption of
the eriterion given in (C) would give better or worse results than the

original criterion. A criterion similar to (C) can, of course, also be

determined for the case when non-diagonal covariance matrices are used.

4.6 Multivarizte Mixture Analysis

This technique makes use of the maximum likelihood methed, the
properties of which were first deduced by Fisher (1922), The maximum
likelihood technique is a way of estimating the parameters of a distri-
bution given the general form of the distribution and a sample of indep-
endent observations from the population. The assumption made in this
section is that the probability distribution, f£(X), of the data space is
a mixture of g multivariate normal distributions.

Let there be N sample points, X

X e XV' Then the likelihood
- =i

17 =2’
function is defined by
N
L = ﬂf(_)_{_j)
j=1

J

The exact shape of f(ﬁ) ig defined by a number of parameters. These
are the mean vectors and covariance matrices of the g normal distribu-~
tions plus the proportion of each component distribution in the resultant

mixture distribution. The maximum likelihood method regards these



Having estimated these paramsters, one can regard each distribution
as defining a cluster. The data set can then be partitioned zmongst the
g clusters by using Bayesian decision theory, as outlined in the last
section.

Wolfe (1970) gives a brief review of some vrevious attempts to use
the maximum likeliheod approach for special cases of the above problem

e.g. vhen the distribution is univariate). He then goes on to develop
the theory for the general case. Whilst it is easy to set up the maximun
likelihood equations by differentiating In L with respect to the
various parameters, the solution of these equations is much more dif-
fieult. A large part of Wolfe's paper is concerned with the description
of an iterative numerical technique to solve this problem.

Wolfe has written a program implementing his ideas. This program
contains two options. HORMIX is the general case option whilst NORMAP is
for the special case where each normal distribution is assumed to have
equal covarisnce matrices. As Wolfe points out, 'NORMAP could be con-
sidered a continuous version of the discrete partitioning procedure of
Friedman and Rubin. The two methods tend to coincide in the limiting
case of widely separated types.' Similarly, NORMIX is s continuous

g N
version of the.| | lwil i ecriterion suggested by Scott and Symons.
i=1

In view of what has Jjust been said, it is not surprising that NORMIX
and NORMAP share a difficulty with the optimization-partitioning tech~-
niques. The results of the analysis are dependent upon the initial
partition. Wolfe's iterative technique will even diverge for some
initial partitions. In both cases, the solution to the difficulty
appears to be to take a number of different initial partitions and

compare the results. In the case of the optimization-partitioning tech-

niques, the best overall result will be that which gives the optimum



value for the criterion. In the case of Wolfe's program, the best
“overall result will be that which gives the largest value for L. THow-
ever, e have to repeat the analysis a number of times ig clearly very
expensive in computer time.

Wolfe's technique hés one interesting property not reslly shared by
any other ﬁechni@ue described in this report. It allows a much more
definite answer to the question, 'what is the best value for g?' Con-
sider the two alternatives g =71 and g =71'. Let Lr and Lr' be the
maximum values of L for the two cases. Consider the quantity ?Kg defined
by

7(2 = =2 ln(Lr/Lr,)

In the limit, as the number of data points tends to infinity, 7(2
will have a chi-squared distribution with degrees of freedom equal to the
difference in the number of parameters to be estimated in the two cases
(Wilks, 1962). This enables a simple test of the two hypotheses to be
constructed. Such a test is known as a likelihecod ratio test. As Scott
and Symons point out, the necessgary conditions are not fulfilled to
enable this test to be used in the case of the optimization-partitioning
criterion they discuss (this is because of the assumption of non-
overlapping distributions).

Wolfe gives a number of examples of the use of NORMIX and NORMAP.

In one example, three clusters were artificially generated consisting of
100, 75, and 50 points in two dimensions. The clusters each had multi-
variate normal distributions with different covariance matrices. The X 2
likelinood ratio test applied to the results of NORMIX indicated the
existence of more than three types in the data. However, it was found
that the fourth cluster contained only seven points. The chi-squared

approximation is, anyway, inaccurate for this sample size.
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In addition, Wolfe quotes an example employing the Iris data pub-
lished by Fisher (19%6) and also used by Friedman and Rubin. The resulis
obtained from NORMAP were found tb be identical to those obtained by
Friedman and Rubin with the IWI criterion. Unfortunately, on the basis
of the published results it is impoosible to meke a comparison of the two
procedures from the computational standpoint. Because of the complexity
of NORMAP and NORWMIX, the author is unable to deduce the relationship
between execution time and number of data points. It is clea~, however,
that the storage requirement of the program is O(X).

A mixture of multivariate normal distributions remains a mixture of
multivariate normal distributions after a non-singular linear trans-
formation. Furthermore, if the covariance matrices are equal before the
transformation they remain egual afterwards. Conseguently the results of
both NORMIX and NORMAP are invariant under such transformations. This of
course also follows from their eguivalence with the optimization-

partitioning techniques of Scott and Symons.

4.7 A Simple Comparison

A simple one~dimensional example may help to illustrate the dif-
ferences between the various techniques discussed in this chapter
Consider an equal mixture of two univariate normsl distributions, each
with variance CSQ. When the means coincide, the disiribution is normal.
As they separate the distribution does not become bimodal until thev
differ by 2o (Marriott, 1971).

One would not expect any of the non-parametric mode or valley
seeking algorithms to separate the two distributions in the case when the
means are scparated by less than 2¢°. Nor would one expect the Sebestyen

and Bdie slgorithm to separate

essentially a mode-seeking one.,
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suceessful in separating these distributions.

Wnen the means are separated by rather more than 2¢ and two well-
defined modes exist, all the techniques ought to give a two-cluster
solution. The way the data set is partitioned amongst the two clusters
v11l depend on the particular technique used.

As the means are separated the Scott and Symons criteria should give
a one~cluster solution until the degree of overlap becomes 'negligible!'.
What negligible means in this context is an open question. Presumably

two distinct modes will have to exist and be quite well-separated.
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CHAPTER 5

5.1 Introduction

iscussed in this chapter differ from the others in
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this report in that they do not themselves output the cluster struchure
of a data set. These technigues map each data point in the original
g~dimensional data space into a point in an r-dimensional space, where

r =Zg. This reduction in dimensionality is sometimes termed feature

extraction. There are two principal objectives. Firstly, by mapping

o
}u

from a space of high dimensicnality to one of low dimensionality one
achieves a data set which can be more economically manipulated. This was

particularly the motivation behind the linear technigue discussed in

tion 5.2, In addition, by mapping into a 1, 2, or 3-dimensional space

(€]
D

one can ¢isplay the data zet visually. This was the main motivation
behind the non-linear techniques discussed in sections 5.3 and 5.4. I%
is also the objective which is of interest in this chapter. Tor having
so displayed the data it may bve possible to cluster it visually. The
humen observer is able to achieve a global (or 'gestalt') clustering
.which is not sensitive to the presence of noise points. As a disad-
vantage, clusters which are distinct in the gq-dimensional space may

overlap in the r-dimensional space, thereby obscuring the data structure.

5.2 Princival Components Analysis

This is by far the oldest of the mapping techniques to be considersd
in this chapter. The procedures in general use today are due to
Hotelling (1933) but the method was effectively suggested by Pearson
(1901).

Let the N data points be represented by column vectors Xl’ Xé,...;ﬂ.

Consider the expansion of each such vector

% Yy ®
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et of g orthonormal vectors. By ignoring 211 but

Here the u, are a
-3
r of the terms in the summation in (A) cne cbtains a reduction in dimen-
sionality from q to r. The other (q-r) terms must be approximated by
vectors independent of the choice of X.. This will give a vector_zi

which is an approximation to Ki'

r q
Y., = . L. " bLu. B
=i Zylfia i Z 3 ()
=1 |

J=r+l
Here the bj are constants. One measure of the error involved in the

approximation (B) will be given by

N
K = > d(Xi,Yi)
i=1

1f d( , ) represents the squared Buclidean distance, X is termed the
'mean-square error'. The objective of principal compenents analysis is
to find an approximation of the form of (B) which minimizes this mean
square error.

It can be shown (e.g. Fukunaga, 1972, Chapter 8) that such a mapping
is defined in the following way. Let the Bj be the eigenvectors of the
covariance matrix of the data set. Let the eigenvalues be arranged in
order of magnitude, with the largest first. Assume that‘gj is the
eigenvector associated with the j'th eigenvalue. Finally define the bj
by

| bj = Eg B(X)
Here the superscript T denotes transposition whilst the operator E
denotes expectation.
By equating r to 2, one arrives at a set of two-dimensional vectors
with co~ordinates (yil’ yi2> given by (B) which can be plotted and

inspected visually. Frequently each of the two dimensiona is normalised
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to unit variance before the data is vlotted. Hopefully the two-
dimensional plot will now allow the observer to clusier the dats.
Unfortunately there are several disadvantages. Plrstly, the results are
invariant only under orthogonal transformations. Clearly they will be
completely altered by a change of scale, Secondly. two clusters may
overlap completely in 2-space when they are well-separated in g-space.
All that is necessary for this to happen is that the clusters overlap in
the subspace spanned bY.El and.32. The point heré is that the criterion
wnich is being minimized (i.e. mean-square error) bears no natural
relationship to the clustering problem. There is no real reason why it
should give satisfactory results in clustering.

Computationally the algorithm is cheaper than the nonlinear tech-
niques to be considered later. TBoth storage and time requirements are
0(N). As a result principal components analysis can be used on far
larger data sets than the nonlinear techniques can handle. The procedure
is iterative only to the extent that the algorithm for finding the
eigenvectors is iterative. Furthermore it is not necessary to find all
the eigenvectors but merely those associated with the two largest eigen-

values.

5.3 Sammon's Nonlinear Mapning

Sammon (1969) has attempted to overcome the deficiencies of prin-
cipal components analysis by using a radically different criterion from
the mean~square error. Sammon's algorithm attempts to maintain as
unchanged as possible the relationship between each data point and those
points close to it. This approach should be specially suitable for
cluster analysis. He first defines a criterion which represents the
extent to which the distances between each data point and its neighbours

are altered by the mapping. The aim of his algorithm is to find a



mapping which minimizes this criierion.

Let d%, and 4., represent ths i¢s+ ces between the 1'th and j'th
points in the g~ and r-~spaces respectively. Any definition of distance
could be used but Sammen uses Buclidean distance. Then the error
involved in the transformation &i,w—~§ d.. can be revresented by

: -
(ax, - dij)z. This error must be summed over all possible combinations
of i and j. However it is required to minimize this error chiefly fowr
those points close together, if need be at the expense of those far
apart. Consequently the i,j'th term in the summation is weighted by

T o s .
d¥, 7. This gives

ij

i<]
Finally a normalisation is performed by dividing the criterion by
zz: d* . This renders the criterion dimensionless. It does not affect
zngalgorithm but it does mean that when the final configuration has been
achieved a number can be attached to it which measures the success of the

mapping in preserving inter-neighbour dissimilarity. Thus the final

criterion is given by

¢ - }:(a - .j>2
Zd*

qu' ied

X can now be regarded as a function of the co-ordinates of each of the
points in the r-space. Thus if there are N data points, K is a function
of Nr variables. Sammon then uses an iterative steepest descent pro-
cedure to‘minimize K. "The initial r-space configuration can be chosen at
random. Alternatively Sammon suggests finding those r of the original
axes along which there are the largest variances. The original config-
uration can then be taken as the projection of the data points in the

sub~gpace spanned by these r dimensions. The final result of the
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algorithm is a set of wvalues for the Nr co-ordinates (and thus a config-
vration in r=space) which minimizes X.

Sammon's paper contains the resultsy of a number of experiments, both
on artificial and on real data. He shows that in some cases his algo-
rithm will produce a mapping which allows 'correct' clustering when this
is not possible from the results of a principal components analysis. The
algorithm appears to be particularly useful when the data points are
highly structured but in a very nonlinear way, e.g. when they lie along a
helix in g-space. It is clear at once from the 2~space plot that there
is a very definite structure. As with all dimensionality reducing
mappings, there is no unigue g-space structure corresponding to any given
r~space structure. Furthermore, because the mapping cannot be repres-
ented in a simple mathematical form it does not seem to be possible to
make many comments about the g-space structure.

Apart from the number of clusters present the only other definite
piece of information one may obtain is the intrinsic dimensionality of
the data. Assume that the original data points in gq-space lie on (or in
practice close to) a surface which is defined by a minimum of p para-—
meters. Clearly p will be less than or equal to q. Then the data is
said to possess an intrinsic dimensionality p. TFor example, in a three-
dimensional problem all the data points may lie very close to a helix.
Then although the dimensionality of the data space is 3, the intrinsic
dimensionality of the data is 1. Each point on the helix can be defined
by one parameter alone (e.g. the distance from one fixed point on it).
Then if the mapping is performed from g-space into spaces of steadily
increasing dimensionality (e.g. l-space, 2-space, etc.) there should be a
considerable reduction in the final wvalue of X when the correct intrinsic

dimensionality is chosen.
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In practice the author susvects that data wery rarely follows these
highly non~linear but very well-defined forms. 4 typical pattern recog-
nition clustering problem is the 'pure signal plus noise'! situation
outlined in Chapter 1. Here each pure signal would be represented by a
point in hyperspace and the noise would cause the data points to be
clustered around this point. Possibly if the statistics of the signal
are continuously varying in a non-random way one might find the data
points to be clustered around a line. However this would seem to be an
exceptional situation.

One disadvantage of the algorithm is that, as with many iterative
search techniques, one can never be sure that the solution obtained is
not just a local minimum of X. One possibility is to reveat the analysis
with a number of different starting configurations. In actual fact it
may not matter that the overall minimum has not been found if the loecal
minimun value for K is sufficiently small (say, == 0.1). As long as one
has obtained a 'good' mapping the fact that it is not the best is irrel-
evant.

Another disadvantage is shared with principal components analysis.
The results of the mapping will not be invariant under non-singular
linear transformations. Because the algorithm depends upon the use of a
distance measure the final configuration will depend upon the initial
choice of scale. Consequently the clustering performed by the human
observer will also be sensitive to the choice of scale.

Computationally, the algorithm will be more expensive than principal
components analysis. The time requirement is O(XN®). However it will
also depend ﬁpon the data structure, that is how easily (in how few
iterations) X éan be minimized. Both the dij and the dij are each used

more than once. Consequently to calculate them more or less when needed



will produce a very slow algorithm. In particular the dij are unchanged
throughout the algorithm. As a result Sammon recommends storing both

. . 12
dissimilarity matrices. Conseguently the s*torage requirement is O(H7)
and this imposes a definite limit on the size of data set which can be
handled. To overcome this vroblem Sammon suggests using a clustering
algorithm to reduce the data set to a2 manageable size, say 250 vectors.
For data reduction the choice of clustering algorithm is not critical.
As was pointed out in Chapter 1 there is no uvnique solution to the data

reduction problem but rather a multiplicity of acceptable solutions.

5.4 A Relaxation lMethod for Honlinear Mavping

Chang and Lee (1973) make use of the same criterion as Sammon. The
only difference is that they use squared Euclidean distance rather than
ordinary FBuclidean distance. However a relaxation method is then used to
minimize K. Ihstead of modifying the whole r-space configuration in one
step they take a pair of points at a time. A gradient method is then
used to alter the co-ordinates of these two points to minimize XK. A
heuristic has to be introduced to ensure that if the points are close
together they are affected more than if they are far apart. After all
the pairs of points have been considered the algorithm has performed one
iteration. Further iterations are repeated until convergence is reached.

Chang and Lee call this algorithm 1. As it stands it possesses much
the same advantages and disadvantages as Sammon's algorithm. In algo-
rithm 1 there is no need to store the interpoint distances in the r-space
since they are essentially needed only once. However the interpoint
distances in the g-space are used at every iteration and so by storing
them the execution time of the algorithm is significantly reduced. Thus
both the storage and time requirements are also O(Ng).

Chang and Lee then suggest a modification to this algorithm,



algorithm 1%, This is known as the frame methed and is sirilar to the
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frame method for forming a sub-minimal spanning tree sug
and discussed in Chapter 2. Tirstly M peints are chosen as frame points
from the ¥ original data points. Let the data peoints be represented by
vectors El’ EZ’ cess 3%. Assume that the first M of these are chosen as

frame points. Then algorithm 1 is applied ftc these M points to produce M

Lol

oints in the r-space denoted by_zj, ) IM' Algorithm 1% then

ttempts to find (¥-l) points in the r-space (denoted by~§l’ §2, .o ?N x)

o]

so tha% the distances between each frame voint and each non-frame point
are minimally distorted by the mapping. That is, each distance of the
form d(Yi,Zj) is computed in turn and compared with the original distance

). Z. is then modified so as to minimize

i 3 -space, i1.e, d X 2
in the g-space, (X % L1s Z;

K. The extent of this modification is a monotonically decreasing fun-~

ction of 4(X,,X

. Thus this stage of the algorithm is concerned with
Lo (=]
l 1 H‘J .

the relationships between the frame points and non-frame points. The
relationships amongst the frame points has already been considered whilst
the relationships amongst the non-frame voints are ignored.

A complete pass through the M(N-M) distances of the form d(giagj) is
termed one iteration. The iterations are repeated until convergence
occurs or a fixed number of iterations has been used up. Thus the first
part of algorithm 1% reguires the storage of #(M-1l) interpoint distances
whilst the second part requires the storage of M(N-M) distances. The
storage used for the first set of distances could be used for the second
set, since the intra-frame distances are not needed in the second stage
of the algorithm. They are needed, however, if it is desired to evaluate
K for the final configuration. Because of the reduced storage require-
ments of algorithm 1%, it can be used on much larger data sets than
either algorithm 1 or Sammon's algorithm. Furthermore, since less

interpoint distances need to be calculated, algorithm 1* will be faster



than algorithm 1 and Sammon's algerithn.

Apart from the computational differences algorithm 1 and algorithm
1% share the properties of Sammon's algorithm. Chang and Lee claim that
for one particular example, algorithm 1% gives better results than
Sammon's method, Whether this would tend %o be so in general ox whether
it is a functicn of the particular data set is an oven question. The
comments made in Chapter 2 about the choice of frame voints for Lee's
sub~minimal spanning tree are also relevant here. A frame set chosen
totally, or even largely, from one cluster could give quite misleading

results.



CEAPIER 6 HISCELIANROUS TECENIQUES

6.1 ISODATA

A number of iterative techniques have been described in the litera-
ture which share the proverty of allowing the number of clusters to vary
during the course of the algorithm. The most famous of these techniques
has been developed by Ball and Hall (1967) and is called ISODATA. 1In the
form given in the reference, the algorithm is appliczble to binary-valued
data. This is because Ball and Hall are social scientists and socio-
logical data seems to be mainly of this form. However the modification
to real-valued data is trivial and Ball and Hall claim they have devel-
oped a program for this case.

The algorithm can most easily be described as a number of steps.

(1) A 'typical' set of data points are chosen as initial 'cluster

points’'.

(2) Bach data point is allocated to a group centred on the nearest

cluster point. Euclidean distance is used here.

(3) For each group the centroid and 'within-group variability' are

calculated. The centroids now become the new cluster points.
The term 'within~-group variability' is not defined in the paper
but presumably it refers to something like the trace of the
covariance matrix for each group. If any group's within-group
variability exceeds a threshold 9 tne algorithm proceeds to
step 4. Otherwise it stops and the results are output.

(4) Fach group whose within-group variability is greater than €>E
is split into two. Firstly, the varisble with greatest var-
iance for this group is found. Two new cluster poinits are then
formed identical in all but this variable to the centroid of

the group being split, OCne of the cluster points takes the



irum-varisnce dimension; the other takes the

value +1 in the
valvue ~1. This is because the algorithm was designed for
binary variables which can only take these two values., Clearly
this step could easily be adapted for continuous variables.
(5) The data points are now re-allocated to thelr nearest cluster
points and the centroids of each group are computed.
(6) The distances between each pair of centroids are calculated.
(7) All groups whose centroids are closer together fthan a threshold
value €9C are combined. The algorithm then returns to step 2.
Clearly this a2lgorithm is looking for compact spherical clusters.
In this respect it resembles the error sum of squares techniques dis-
cussed in chapter 3. In fact, the algorithm is another elaboration of
the basic algorithm shown in Figure 3.1. Consequently it suffers from
the same disadvantages. The results will not be invariant under non-~
singular linear transformations and the algorithm will tend to split wp
elongated clusters. Ball and Hall describe it as a data-reducing algo-
rithm and do not make any claims as to its value in finding 2 true
typology. Like the basic algorithm of Figure 3.1 the storage and time
requirements are O(N). One of the difficulties of this algorithm is the
choice of EaE and.€9cr. It may be necessary to change one or both of
these paramseters and re~-run the program until a suitable level of clus-
tering has been found. Northouse and Fromm (1973) have suggested heur-
istics for computing reasonable values for these parameters but no really
convineing proof of the general efficacy of these algorithms exist. In
the opinion of the author ISODATA is likely to achieve results only a
little superior to the results of the algorithm of Figure 3.1 at the cost

of a much~increased execution time.



Batchelor (1968). The compound classifier algorithm is an error-

for learning with a teacher which uses hyperspheres
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as discriminant suznfaces. Batchelor and Wilkins define the word cluster
in a wagy which corresponds exactly to the ukage of the word in complete
linkage analysis (see Chapter 2).

The algorithm takes from the set of data points X, EP’ ceee Xy a

set of cluster points B,, B ... B, wvhere normally M is much less than
& __,,_ ’ <~_29 ""M ;

-

. Firstly 21 is set equal to El' 22 is then equated to that data point

furthest from By. Euelidean distence is used. To findg3 the minimum of

d(§1'~l) and d( X, B?) is calculated for i=3 to N. The maximum of this
set of (N~2) distances is then found. The data point which produces the
meximum value becomes 23. Hence the name MAXIMINDIST. The algorithm
proceeds in this fashion until M cluster points have been found. This is
equivalent to performing a complete linkage analysis with a threshold set
at a level which gives exactly M clusters. Any data point in an unrep-
resented cluster will always be further away from its nearest cluster
point than any data point in a represented cluster. Thus if there are
exactly M clusters (in the complete linkage sense) one cluster point must
come from each one. Since in complete linkage analysis all intracluster
distances are less than all intercluster distances it is now a trivial
matter to construct the complete partitién by assigning each data point
to the cluster centred on its nearest cluster point. However MAXIMINDIST
has the advantage that one does not need to know what threshold value to

choose to give the desired value for M. Furthermore the algorithm may

also give an indication of what is the most significant level of



clustering. That is to szay, if there ig a level 2
cluster distances are much smaller then the intercluster distences this
will be apparent. When all the clusters at this level have been found
the maximunm of the minimum dietances from each remaining data point to
the cluster points will drop drastically,

Clearly MAXTMINDIST possesses all the defects of complete linkage
analysis. The main objections are that it is invariant only under
orthogonal transformations and that, since it is looking for compact
spherical clusters, it will tend to break up any elongated clusters
prasent. This makes it suitable for finding a true itypology in only a
limited number of cases. However it does seem very useful in data
reduction. In the author's opinion it has one considerable advantage
over the algorithm of Figure 3.1 and ISODATA, when a large number of
points is to be represented by a smaller number. If these last two

.

algorithms are initialised by selecting a random sample from the data set

it may be possible to leave unre sented a small number of data points
well separated from the bulk of points. Consider the situation of Figure
6.1. Here the circles indicate the boundaries of clusters. Assume that

the emall cluster A contains only 10 points whilst the other two contain
100 each. Imagine that the objective is to pick out three points to
repraesent the sample. Assume that three points are chosen at random to
initialice the algorithm of Figure 3.1. Then if twe of these initial
voints come from cluster B the algorithm could easily produce cluster
points as shown by crosses in Figure 6.1(a). However MAXIMINDIST will
pick one point from each of the three clusters, as shown in Figure
6.1(v). The cluster points in C and B will each repreéent 100 voints
whilst the cluster point in A will represent ten. It seems, then, that
MAXIMINDIST will be specislly useful as a data~reduction algerithm when

the number of cluster points is very much less than the number of data
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points. MAXIMINDIST is thus a superior alternative to random sampling.
Tt iz interesting to compare MAXTVMINDIST and the ususl complete
linkage algorithm from the computational standpoint. Consider first the
latter. As each data point is introduced its distance from the data
points so far considered must be compufed., Thus each interpoint distance
is used once only. Consequently there is no need to store the dissim-
ilarity matrix and the storage requirements will be 0(N). Since for a
high~dimensional example almost 2ll the execution time of the program
will be taken up in computing distances the execution time will be
zpproximately proportionai to 2M(N-1). MAXIMINDIST, on the other hand,
continually re-uses the same interpoint aistances. Congider d(gl,zN).
This will be needed (M-1) times. Consequently much time can be saved by
storing the d(giﬁﬂj) as calculated, This involves the storage of
(N=M=1)(V=2) dis tances. Consider searching for Em' One needs to know
the distances between Bl’ Byy ween §m~1 and the (N-m+l) remaining data
points, i.e. (H-m+1l)(m-1) distances. The (m-1) distances from the
cluster points to the data point that becomes Em will not be used again.
Hence one needs to store only (N-m)(m-1) distances. This is a mono-
tonically increasing function of m for m=< 4(N+1). Consequently it
will be meximum for m=M, given M == £(N+1). However any distances
computed during the search for EM will never be re-used since the algo-

ithm does not search for B Consequently the maximum number of

=M+l
distances in storage at any time will be after BM~1 has been found,
(N-M+1)(M~2) distances. The execution time will be approximately
proportional to this number. Consequently MAXIMINDIST is the faster of
the two algorithms. This bzcomes more emphasised when one remembers that
the complete linkage analysis may have to be repeated several fimes to

find the required level of clustering.

If the amount of mainframe memory available does not permit



number of distances the argzument becomes

cluster weints have besn found. Then the
distances from eazch of these cluster points to each of the remaining
(11=n) data voints is needed to find D RE This will be m(¥wn)

irst of the two terms on the right-hand side is simply an arithmetic
series and eauals SM(M-1)¥. The second term can be evaluated by the

formula

This gives

For 1 KM<KY +this can be approximated by SN, The ordinary complete
linkage algorithm computes ZW(1-1) distances. Assume that I different
7zlues of the threshold are necessary to find the desired clustering
level. Then the total number of distances computed will be approximately
410%, Cimparing the execution time of the two algorithme gives the ratio

M7 ¢ IN., Thus for M<(IN)? VAXIMIEDIST is the algorithm to use. Tor

the veual complete linkape algorithm should be used. The
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epends upon the way one attempts to find the 'correct' thresh-
0ld. Presumably some goal-seeking heuristic could be used, and a reason-
able value for I should be less than ten, say. In fact the advantage of
this aporoach in data reduction will really arise only when M K. For

it is in this case that the problem illustrated in Figure 6.1 becomes
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appreciable. Conseguently MAXIMINDIST would normally be the al

ey

i5e .

Centroid cluster anzlysis was originally proposed

o

Michener (1958). It is interesting beczuse it is a technigue whieh

~

produces a dendrogram and yet it iz not a linkage technique in the same
way as those discussed in Chapter 2. Croups are represented by their
centroids. The distance between two groups is caleculated as the
(Buclidean) distance between the centroids. At every stage in the
analysis those two groups closest together are merged. The procedure
starts with one data point in each group and proceeds until 211 the data
points are in the same group. Thus the procedure differs from the
techniques of Chapter 2 in that distances other then the original inter-
point distances are wvsed.

The technique is of course invariant only under orthogonal trans-
formations. Furthermore the results have to be output as a dendrogram~
like siructure. Both the time and storage requirements will be O(Ng).
The storage requirements could be reduced to O(N) only at the expense of
continually re-calculating the same distances. However tnis would make
the time requirement O(N2).

The centroid method also has the disadvantage that if two groups of
very different size are combined the properties of the smaller group will
virtually be swamped by those of the larger group. To overcome this
deficiency, Gower (1967) has suggested another technique called median ey
cluster analysie. This is identical to centroid cluster anzlysis except
that when two groups are merged the new group is represented by 2 point
mid-way between the points representing the two original groups. The

name of the technique derives from the fact that if two points X and Y



are merged, and then a third point 7 is joined to the resultant cluster,

the point resenting the whole group will lie along a median of the
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triangle defined by X, Y and Z.
Neither of these techniques are suited to finding a true typology.

For data reduction they seem in no sense superior to the algorithm of

Figure 3.1, which would be cheaper to implement.

6.4 'Dvnanmical! Clustering
3 »)

called 'dynamical cluster analysis' (Sneath, 1967; VYatanabe and Harada,
1974). The data points are assumed to move around the data space in a
manner similar to the motion of point masses in physical space. The
algorithm simulates a force between the voints similar to gravitational
attraction. The points are supposed to collapse on each other. In doing
so they coalesce to form clusters. Neither of the algorithms in the two
papers quoted has (to the knowledge of the author) actually been imple-
mented. Sneath's algorithm is particularly elaboraste and he goes so far
as to admit the difficulty being experienced in programming it. The
author is suspicious whether these algorithms will give the expected
behaviour. The analogy with dynamics used to defend them is in no sense
an exact one., Consequently the predictions made on the basis of this
analogy must be suspect. The real fault of the algorithm seems to be
that they do not proceed from a rigorous definition of what the clus—~
tering algorithm should zchieve but instead argue in terms of a vague and

unconvineing analogy.
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7.1 Introduction

The purpose of this

next

o

behind the data set used in +th

algorithms. In Chapter 1 it was

ses three

recognition data set posses
variables are usually continuous; or

very small compared with the range.

chapter is to give a

pointed out that the typical

the background

chapter to compare some clustering
pattern
chief characteristics. TFirstly the
rather the gquantization level is

Secondly the data sets are very

large. Thousands of data points per sample is not uncommon. Thirdly

there is an element of randomness in the data far excecding that due to

the error in measurement. The electroencephalographic (B.E.G.) data

described in this chapter possesses 211 three of these characteristics.

For this reason, and because of its availability, it was chosen as an

example, However, throughout this and the following chapter it should be

borne in mind that the primary objective here is not to achieve any new

nsight into the nature of the E.E.G. That is far beyond the scope of

this thesis. The primary objective is to compare the behaviour of some

clustering algorithms when applied to real data.

7.2 The Nature of the E.E.C.

For a detailed description of the nature and measurement of B.E.G.

activity see Cooper, Osselten and Shaw (1969). Briefly, an E.RE.G. can be

defined as a recording from the scalp of the spontaneous electrical
Thisg is

activity of the brain. measured as the electrical potential

difference between two electrodes attached to two points on the secalp of
itselfl g difficult

some animal or human. Taking these measurements is

technical problem which is described by Cooper et 21l The measurements

are of the order of tens of microvolts and most of the energy of the



megnitude of the E.RE.G. The result is a2 trace of the B.BE.G. waveforn on

the paper.

The experienced clinician is able to use these waveforms as a tool

f epilensy and in the location of tumours. The E.E.G.

e

o]

in the diasnosis
waveform possesses a rhythmical nature. Consequently at any given time
it can be characterised by its chief frequency components. It has been
found convenient to classify the B.E.G., frequencies into the following
ranges or bands.

Less than 4 Hz. (but not including any d.c. component): delta

4 to less than 8 Hz.: theta
8 to 13 Hz. inclusive: alpha
Greater than 13 Hz.: beta

Recently computers have come to be used in the analysis of E.E.G.'s.
For this purnose the waveform is sampled and input to a computer by use
of znalogue-to-digital converters. Signal znalysis technigues are t
used to produce descriptors which characterize *the datz. This is more
fully discusced in sections 7.4 and 7.5.

y

Some attempts have been made to explain the origin of the I

=

E,G. in
terms of a model of neurone-functioning. For a brief discussion of this
subject see Hjorth (1973). However the subject is not yet sufficiently

"

developed to be able to influence the analysis of real E.E.G.'s.

7.% The B.E.GC. during Sleep

Moet clinicians divide sleep into two categories, 'maradoxical’

sleep and 'orthodox' sleep. The former is characterized by rapid eye
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movements, For this reason 1t is also ftermed REM sleep and most dreaming
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probably occurs during this paradoxical slesp, Orthodox

non~REM sleep (MAEM). It was originally thought that orthodox sleep was
much 'deever' than paradoxical sleen, However this is not so. A4is =z

proof of this it has been shown that the muscles of the larynx are
actually more relaxed during paradoxical sleep than during orthodox
sleep. Oswald (1966) gives an interesting lavman's zecount of this and
many other aspects of sleep research.
Dement and Kleitman (1957) have classified E.B.G. patterns found in
orthodox sleep into the feollowing four 'stages':
Stage 1. Low voltage signal with irregular frecuency.
Stage 2. 13 to 15Hz. sleep 'spindles' and 'K-complexes' in a low voltage
background., A spindle is defined by Cooper et al. as a
ence of sinusoidal~like waves lasting a second or two and
of gradual onset and decay'. A K-complex is defined as a
'transient complex waveform consisting of slow waves sometimes
assoclated with sharp components and often followed by a
sequence of waves at about 14Hz.!'
Stage 3. Sets of large delta waves appear frequently.
Stage 4. E.E.G, composed almost entirely of delta waves.
In addition to these four stages of orthodox sleep, a human subject
spends some time in paradoxical sleep. During paradoxical sleep a low
voltage irregular waveform appears, not unlike that found during drow-
siness, This is referred to as stage REM and constitutes the fifth of

the five stages of sleep.

7.4 Pattern Reccgnition and the Sleep E.E.G.

The classification of the E.E.G. of a sleeping person into stages

has been found to be useful in sleep research. However the inspection of



an B.10.6. record takes a considerable azmount of a gkilled encephalo-

-+
i

learning problem, One possesses g number of waveforme which have already
been classified and one attempts to use them to design a machine (or
computer program) for classifying 'unknown' waveforms.

Firstly each waveform is sampled and digitised and a frequency
analysis is performed. For this purpose the waveform is divided into
16.4 second intervals. The waveform in ezch interval is Fourier itrans-—
formed by use of a computer algorithm called the Fast Fourier Transform
(Tukey and Cooley, 1955). The resultant spectrum is represented as 1024
frequency components covering the band frem zero to 62.5 Hz., The quan~
tity of information is then reduced by en aversging of approximately

"

three agdjacent values. This gives 312 frequency components covering the
same range. Of these, the first 130 are used in the patiern recognition
algorithm, This represents the range of interest (zero to 26 Hz.).
Viglione then uses a technique called DAID (Discriminant Analysis-~
Tterative Desizn) to eliminate those deseriptors which contribute little
to clasgifying the waveform and to dstermine the discriminate boundaries
in the resultanit sub-space. The resultant classifier was then tested on
waveforms some of which were not presenf in the training set. The
results obtained seem quite promising.

The problem under consideration in this thesis is rather more
radical than that discussed by Viglione. He was content to accept the
already existing classification of the sleep E.E;G. and merely automate
the discrimination process. The question here is whether cluster anal-
ysis can be used to provide a significant classification of the sleep

E.E.G. with no prior knowledge of the classification used by clinicians.
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would have to be Judged on the basis of how it helps the ¢linician and
neurophysioclogist to formulate new hypothesis about the functioning of

the brain.

7.5 Normzlised Slove Descrintors

In order to avoid the cost of computing a Fourier transform, Hjorth
(1970) has suggesﬁed a set of waveform descripitors called normalised
slope descriptors. Once zgain the E.E.G. waveform is divided into
intervals called epochs. However instead of Fourier transforming the
waveform in each epoch, Hjorth defines his parameters in terms of the
time domain. Hjorth's original paper describes three parameters:
activity, mobility and complexity. However more recently he has re-named
the third parameter 'form factor' and adopted the name complexity for a
new parameter, All four parameters are present in the data set used in
Chapter 8. The four parazmeters are:

Activity This is the mean power in the signal during any particular
epoch., Assume the epoch under consideration runs from t =0 to + = T.
Let f(t) represent the signal. Then the activity is defined as
T
%—fi‘z(t) at
0
Mobility Whilst the activity is a measure of the amplitude of the

signal, the activity is a measure of its variability. The definition is




A of this definition mobility has units of frequency.

i

a consequence

Turthermore, if a signal is linearly =mplified the mobility remains

wchanged.,

Form Factor This is the parsmeter which was originally referred to as

It measures how rapidly the slope wvaries, It is

+
»

complexity by Hjort!

defined zs

7 T
dgf) 2 a (g) 2 a
]
at° at
0 0
T 7

——
i
Gt Ao

) 2 dt/ /f2 at
o 0

This is, in fact, the mobility of the first derivative of f divided by

the mobility of £ itself. I% is dimensionless. Like the mobility it is

not altered by linear amplification. In addition it is unchanged by a

linear transformetion of the time scale, i.e. a transformation of the

foxm
t' = A%
where A is some constant., For a sine wave it takes its minimum value of
unity. All other continuous real signals give larger values.
Complexity This parameter also measures the manner in which the slovpe

varies, It is defined as

T T
d2f> % a (g_g) 2 a
dt2 . at
0 -
T 7
2
af 2
(dt) at £~ dt
0 0

Complexity has units of frequency. It is unchanged by linear ampli-

fication., ILike the form factor it takes its minimum value, zero, for a



sine w#ve. After some élggbra it becomes apparent that mobility, fomm
factor, and complexity are related by |
complexity = mobility x ( (form factor)2 -l)%
Clearly the three parameters mobility, form factor and complexity
are not independent. Given any two of these the third can be calculated.
Figure 7.1, adapted from Hjorth (1970), illustrates the significance of

the feur normalised slope descriptors.

7.6 The Relationship between the Normalised Slope Descriptors and the

Power Spectrum

Although defined and computed in the time domain, the normalised
slope descriptors have an interesting interpretation in terms of the
power spectrum. Let F(> ) represent the Fourier transform of a function

identical to £{t) in the interval[0,T7] and zero elsewhere. I.e.

T _jtu‘t
Mlw) .[ £(t)e it . where j =/~I1
0
Then the energy spectrum will De
Flw) Frw)

The superscript * denotes complex conjugation. The power spectrum,

represented by S(w ), can be obtained by dividing by the length of the

interval, T. I.e. ’
S(w) = F(e) F(w)/T

Furthermore the n'th momentcgf the power spectrum is defined by

mn = D"S (w ) dw
~
As a result the activity is equivalent to %9. For

7
activity = ,-rl- f £2 4t

0
O

- %— fF((») F(w)dw (Parseval's Theorem)

- I:f?co) dw

-po

Now the Fourier transform of %% is w F(w). Consequently the power

- 8pectrum of the derivative of f is given by
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Avolying Parseval's Theorem gives

-]; :if‘ ds = 2 af h]
T){ (dt) = J W Sl ) dw
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Consequently the mobility is equivalent to

T N 5
(*&';D* at
0
7
f2 dt
0
2 9]
The Fourier transform of 5 is WT(G>). Consequently the powar
dgf y dt
spectrum of > is 7 3(y). Avplying Parseval's theorem again gives
dt
T -2
2. 2
-};[ (Qi) it = Wt s(W) a
1 dt?
0 ~o0
= m
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Therefore the form factor is equivalent to
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Similarly the complexity is

T deQ T " ?
dt =} at
( 4-2) (d';)
atv
0 0
T N =
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the activity, mobility, and form factor or com

equivalent to knowing the zeroth to fifth moments of the

out the

the origin,

rum are

It is now a relatively simple matter to show that the form

and complexity take thelr minirum values foxr the pure
Firstly,
(7; S(w) dw
(mobility) =
\)\‘—‘)\ dw
ot

(o' is merely a dummy varizble here)
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Here p(¢>) is a density function whose integral is unity

. Since

symmetric sbout the origin the mean of the power spectrum is zero.

Consequently the above expression is the wvariance of the power s

and the mobility is the standard deviation of the power

Now
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can be regarded as the mobility of 5% dt’ and hence as 1!
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spectrum,
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deviation of the power spectrum of =+, O
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When a signal is differentiated with respect to time, the proportion

requency components is increased. Consequently the standard

arf .
eviation of the power specirum of T is greater ths

Yy

s
high
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eviztion of the power spectrum of f, except when only one frequency is

f)..

het the form factor and

present in the spectrum. It is for this reascn %

complexity take their minisum values for a pure sine wave.
7.7 Details of the Data Set Used
The data set used in the next chapter is eight dimensional. The

first four descriptors are the activity, mobility, form factor and
complexity for the E.BE.G. of a sleeping human. The waveform measured is
the potential difference between an electrode attached to the vertex of
the head and an electrode attached to a point on the mid-line at the back
of the head. The second four descriptors are the normalised slope
descriptors for a waveform representing the potential difference between
a point to the left of the left eye and a point to the right of the right
eye. This waveform containg some E.E.G, signal. However mostly it is
determined by the movement of the eyeballs., There iz z potential dif-
ference of about 100 mV between the aqueous and vitreous humours of the

change in potential field

o

eyeball. A movement of the eyeballs causes
that will affect electrodes in their vicinity. The use of these four
parameters is an attempt to include the same information as is availsble
to a clinician wnen discriminating between paradoxical and orthodox

sleep.
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CHAPTZER O AN EXPERIEENTAL CONMPARISON

8.1 Introduction

This chapter describss an experimerntal comparison of scme of the
techniques discussed previously. Once again it must be stressed that the
primary objective of the work was to gain insight into the nature of the
clustering techniques, rather than to reach any new conclusions about the
sleep E.E.G. The clustering techniques are being compared as techniques

for finding a true typology. From what has bsen said in the past chapters

it will be clsar that the choice of an algorithn for data reduction is not

(0]

very critical. There are a numbsr of algorithms that will do the job quite
catisfactorily. The determination of a true typology is a much harder
problem. However the most important aspect of this comparison is probably
the information about execution times that it baes produced. The theoretical
argumants of the preceding chapters often gave the formm of the relationship

]

between exescution and numbsr of data pointe, but these arguments wers

never sufficlently detailed to indicate the actual magnitude of execution
time.

ozt of the computation involved in this work was performed on the
C.D.Cs TEO0 at the University of London Computing Centre (U.L.C.C.). Jobs
wers ipput to this machine vie a2 telephons link from Southampbon. The
central processor for this wach has a 27.5 nanosecond clock pericd. The
wordlength of the machine is 60 bits. The mainframe memory contalns approxie-
mately 280 K words. Howsver only about 124 K words of mainframe sltorage
are available to an individual program, the rest being taken up by the
operating systen, etc. In addition, a small amount of computation bhas bsen

performed on the I.C.L. 1907 at the University of Southampton Computing

Centre. Thi

11
fode
W

a 24 bit wordlengtn nmachine. Depending upon the structure

of the program, it is between 40 and 8O times slowsr than the C.D.C. T6QO.



8.2 BSingle Link Cluster Analysis Using the Minimal Spanning Tree

The M.5.T. of the 2119 vectors in the dats set was computed on the
C.D.C. 7600. The sguared Euclidean distance between each pair of data

polints was used gs the

L]

dissimilarity coefficient. A program to compute
the E.5.T. is available at the U.L.C.C. It was wodified elightly by the
author to accommodate the large B.E.G. dats set. The program is a FORTRAN
version of the Algorithm of Ross (19$69), which uses the method of Prim
(1957). Approximately €6 seconds were taken to compute the H.S.T. and
oubput a description of it on to punched cards.

The M.5.T. was used tc perfomm a single lirnk cluster analysis for a
number of velues of the threshold (h). Because of the expense of sending
the information describing the M.S5.T. along the telephone lirk, the I.C.L.
1507 was used for this part of the computation. Table 8.1 shows the number
of clusters obtained, plus the number of points in the largest four clusters,
for each value of h. It can be seen that for largse values of h, one large
cluster wazs obtained plus a number of smaller clusters. This situation
continued down to b equal to 0.13. For h equal te 0.12, howsver, there
were two moderately large clusters. Since the larger of thess twWo ¢one
tained only about 152 of the data pointe, most of the points fell in the
small clusters. For b equal to 0.1l there were three moderately large
clusters, but most of the points were outside these three. The time taken
on the I.C.L. 1907 to perform the analyses for all the values of h shown
from 0.9 to 0.2 was approximately 90 seconds. The time taken to perform
the analyses for the remaining values of h was about 65 seconds.

The feilure of the data to fall neatly into & small number of lerge
clusters seems to suggest a one-cluster situation. However it may be due

to the presence of a emall number of noiss points between clusters.

8.3 The Alegorithm of Jarvis and Patrick

The algoritbm of Jarvis and Patrick was progrowned, by the suthor, in



h Number of Clusters Number of noints in Four Largsst Clusters

0.9 56 1986 10 g 5
0.8 109 1978 10 8 5
0.7 134 | 1871 9 4 3
0.6 158 1852 86 7 3
0.5 138 1829 83 1 3
0.4 240 1774 11 1 6
0.3 346 1661 37 17 6
0.2 555 1321 13 10 10
0.19 636 1267 13 10 10
0.18 678 1225 11 10 10
0.17 732 1161 9 [ T
0.16 781 1095 11 9 T
0.15 835 1036 11 11 8
014 907 926 19 16 11
0.13 593 153 35 15 4
0.12 1067 327 281 51 32
0.11 1172 177 148 112 32

TABLE 8,1



FORTRAY.  The program consists of three subroutines. The first and last
are relatively trivial. The first subroutine tekes each data point and
constructs a list of the k nearest neighbours, in order of proximity. The
final gubroutine merely ccunte the number of clusters, counts the numbsr of

points in each cluster, and then outputs this information. The second

w3

subroutine actuslly performs the cluster analysis.

Because the second subroutine is more complex than the other two, =z
flowchart is given for it in Figure 8.1. Although not showing the detailed
steps of the algorithm, the flowchart illustrates the major factors which
help to improve the computational efficiency of the subroutine. The first
feature to note is that it is necessary to compare each data point only
with those points contained in its nearest neighbour list. Secondly, one
must be careful nobt to compare two points twice. Tor this reason the I'th
point is compared only with those whose index is greater than I. Thirdly,
there is nothing to be gained in comparing two points if they have already
been co-clustered by having been both successfully compared with a third
point . A further economy can be achieved if, for a given valus of k, the
gubroutine is repeated for a number of values of kp.  Assume that each
value of kp is greater than the previous valus. Then if two points have
not been co-clustered for the previous velue of Ky they will not be co-
clustered for the current valus. Consequently there is no use in comparing
theme  The I'th element of the array LABEL used in the Fflowchart contains
the minimum of the indices referencing all the points which bave so far
been ce~clustered with the I'th point. Consequently, when the I'th and
J'th points are successfully compared, all those elements of LABEL con-
taining the waximum of LABAL (I) and LABEL (J) are changed so as to contain
the minimum of these two quantities. Thus the array LABEL keeps s check
on which points have so far been co-clustered.

The program was used with four different values of k. For each value

of k several values of kT were used. The vegults are shown in Tables 8.2
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and 8.3, For each value of k and ky the number of clusters is given
plug the number of points in the four largest clusters. As can be seen
the resulie are very similar to those for single link analysis described
in the last section. For small values of kp there is one large cluster
plus a numbsr of wvery small clusters. Then when kT reaches a certain

. As with

gize, a large nuwber of relatively swmall

wn
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A -y
lusters appe
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by

a
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gt

1

4

s

single link analysis the results seem to suggest that the data forms one
cluster. The time taken to analyse the date for k = 20, kT = 0 to 13
was 130 seconds on the C.D.C. 7800. Thus the amount of computation time

required 1s approximately twice that needed to compute the M.5.T.

8.4 MICKA

MICKA is the nams given by McRae (1971) to a FORTRAN program he has
written which atteupts to optimize one of four criteria. These criteria
are {in the notation of Chapter 3)

(1) > W
(2) lul

o .
(2) Largest eigenvalue of W "B (to be maximized)

b

to bs

{

minimized)

(
(to bz mininized)

a1 _
(4) tr (W"B)  (to be maximized)
The eoptimization algorithm is rather like that suggested by Friedman
and Rubin (1967) and dezcribed in Chapter 3 of this thesis. The

Arrd A SR - T et o . ron 3% . ~ e
DIOVIGES 4 Ca0LCe OX TLNres QLBTANCS MeaBultB. L nese are

(2) VWeighted Buclidean distance. Let X and Y; be the

ol
}:.‘."-1
)‘!
@

i'th co-ordinates in a g- nsional space of the vector

4]
B
;J
a8
frg
d
o
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O, be an estimate of the standard deviation in the i'th dimension. Then
the weighted Buclidean distance between X and Y is given by

q (Xi - Yi>2

d({ia:{) = Z o 2
1 i

1 o=

(3) Mahalanobis distance.
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1814

2085
2084
2079
1915
1822

96

2105
2105
2105
2104
2102
2094
2068
1853
1111

88
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91

81

16

106

105
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11

282

80

22

41

16

26

18

83
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15
27

16

12

11

19
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20

20

20

20

20

B

20

20

20

20

10

11

12

13

Kumber of
Clusters

—

10
11
12
13

18

Numbsr of Points in Four Largest Clusters
Eill 1 1 1
2111 1 1 1
2111 1 1 1
2110 1 1 1
2110 1 1 1
2109 1 1 1
2108 1 1 1
2106 2 1 1
2101 2 1 1
1970 110 2 2
1913 110 7 >
1962 109 33 21

191 177 161 130
19 63 63 56

TABLE 8.3



Melae's program is availabls on the C.D.C. TE00 at the U.L.C.C.

Y

As with the M.5.T. program it was necessary for the author to modify it

o

slightly to cope with the large E.E.G. data set.

8.4.1 Ex W

The program was run using tr W as the criterion. Squared Euclidean
distance was used. As explained in Chapter 3 Buclidean distance (or
squared Buclidean distance) is the best distance measure to use when
attempbing to minimize this ecriterion. About 1400 seconds were neadsd
on the C.D.C. TE00 to try to find the optimum partition for g (the number
of clusters) equal to 2 to 14. Figure 8.2 shows the minimum value of
the criterion for each value of g. The value for g = 1 is simply the
trace of the total scatter matrix (i.e. %r S). As can be seen the graph
is alarmingly smooth and there is no discontinuity to suggest a definite
number of clusters. This is presumably because the dats does not fall

into compact spherical clusters.

8.4.2 Ll
The program was next run using W]l as the eriterion. Mahalanobis
distance was usad for the reason explainsd in section 3.4. This tine
about 1600 seconds were needed to try to find the optimum partitions for
g= 210 g = 13, Pigure 8.3 shows winimum %] for the various values of
g. Figure 8.4 shows logy, (181 /min [W]), as suggested by Friedman and
Rubin.  A4s can be seen neither graph has any discontinuity. Pigure 8.5
. 2 .1 . : _ .
shows g minll. It will be recalled that Marriott susgested locking for
. N 2 [ , s :
the minimum valus of g“minlW! to find the correct valus for g (see section .
. " 2, . lwl i .
3.7). However, as can be sesn, g minlWl is almozt a monctonically
decreasing function of g and certainly seems to be tending to zero as g
. v 2 .1
increases. The rather high values of gmin|W| for g« 2and g = 12

probably occur because the trus opbtimum partition hes not besen found.
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This is also reflected in the rather low valus of 10510 (lSl/min IW%)

for g = 12. Once again no obvious clustering has been revealed.
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Mahalanobis distence was used when attempting to maximize this

criterion. To the meagure doss not
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possess the same opiimal quality when used with this criterion as it does

when used to minimize W . However when g = 2 the two criteria hecoms
jidentical, as Fukunaga and Koontz (1970) have shown. Consequently
Mahalanobis distance is certainly the right distance mesasure fo use in
that one case. MICKA took about 20 minutes on the C.D.C. 7600 to try
to find the optimum partition for g = 2 to g = 5. To find the optimum
partition for 6 clusters took of the order of 10 minutes. Similar times
were taken for g = 7 and g = 8. The maximum value of the criterion
achieved is shown in Figure 8.6 for each value of g. The value for

g = 1 is eguated to zero.  Altbhough the matrix B is not really defined
for this valus of g, if it is taken to be the zero watrix this preserves

the equality T = W + B, since T = W for g = 1. The ‘eigenvalues’ of the

zero matrixr can be taken to be zero, since when this matrix is pre-multiplied

into any column vector the result is the zero vechor. Once again the
o

curve is remarkably smooth and gives no evidence of a definite clustering.

Mahalanobis distance was used when attempiting to maximize this
criterion. As with the criterion of 8.4.3 this distance measurs is, to
the author's knowledge, optimal only when g = 2. The results for g= 2

to g = 11 are shown in Figure 8.7. For reasons similar to those giver

in ssction 8.4.3, the criterion was equated 1o zero for g = 1. The progran
? q & prog

tooik 860 seconds to try to find the optimum valuve of the criterion for g =

P

to g = b. For each of %

o

e remaining values of g approximately 10 minubes

2
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It is difficult to know how to interpret these results. The curve
as drawn in Figure 8.7 suggests a T~ cluster or 10~ cluster solubtion.
Howsver it may be that the criterion values obbtained for g = 8, 9 and 11
are not the true maximam values. It could be that, if the true valuea
were known, all the points would lie on a swooth curve. This illustrates
a difficulty which is always present in intsrpreting this kind of graph.
How can one strictly define the shape of graph which would indicate a
definite cluster structure? In addition the author is reluctant to place
any faith in a cluster =structure which is revealed Dby one technique alone
and which is not apparent in any other set of results. Investigation of
the 7 and 10 - cluster structure also revealed that, as the waveform varied
with time, the majority of periods for which the waveform remained in ons
cluster were of length only one epoch, i.e. 10 seconds. Clearly to
validate the hypothesis that the waveform changes 1ts nature as frequently
as every ten seconds it would be nscessary to estimate the descriptors
over a period much less than ten seconds. It might, indeed, be interest-
ing to re-compute a set of descriptors on the basis of a wmuch smaller
epoch, and then analyze this new data set with the clustering technigues.
However; visual inspection implies that the waveform changss wuch more
slowly than every ten zeconds. Since the information present on visually
inspecting the waveform is much greater than that in the Hjorth parameters,

m oo
Medielzs SO

te1

it would be difficult to sustain an interpretaticn of the sles
radically different from clinicians' interpretation of the waveforﬁ«
8.5 FUZZYL

The program FUZZY iz also available on the C.D.C. TE00 at the U.L.C.C.

Cnce agaln minor modifications were necassary to accomuodate the very larze

data set. As explained in section 4.2 the program sesks to place the



cluster boundaries slong the valleys of the p.d.f. In order to do this
the p.d.f. at each data point iz estimated. This is done by counting the
nunber of dats points within a hypersphere of radius TZ contred on each
data poinb. Consequently bsfore the program can be used it is necessary
for the user to decids on a sultable value for T. T must be sufficiently
large that most of the hyperspheres contain enough data points to con~
fidently estimate the p.d.f. at the centre of the hypersphere. On the
other hand, if T is too large, the p.d.f. will vary considerably over tha
volume of each hypersphere. If either of these two conditions occur the
results of the cluster analysis will be invalid. Between these extremes
there may be & range of values for T which give the same cluster structurs.
This structure is then assumed to be the actual structure.

Tha results of using this program with the E.E.G. data get are shown
in Table 8.4. For T%': 0.1 only 10 of the hyperspheres containsd dats
points other than the central data point. Even in each of these 10
hyperspheres there was only one other data point. Clearly this valus of

.

T dis too smalle For

= 0.33015 the situation was very diffevent.

There were 5 hyperspheres containing 11 data points each. Many other
hyperspheres contained more than one data point. The program parbtitionsd
the data set into very wany clusters. Similar results were obiaired for
the other values of T shown. Leaving asside the first result which, as
explained, is not eigpificant, thers appears to be no simple cluster
structure. From the large number of clusters it was not possible to pick
out even a small number of very large clusters. A surprising thing aboud
the results is that, as T increases, the number of clusters does not
increase monotonically to a maximum and then decrease monotonically,; but
actually oscillates. Bven if the results from one particular choice of
T could be regarded as more significant than the other results, it would

be difficult to helieve that the physical process under investigation



3

W

0.1

1.0

3.0

4.0

‘g\ x
JUEN
in
Tf ‘2‘

Kumbsr of Clusters

sxivmum nunber of points
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4 2
54 11
47 220
41 901
60 1626
57 1913

TABLE 8.4



(i.e. the generation of the %.B.G.) can ugefully be divided into so many
categories.

0.1

§

1
The execution time for this progrem varies with T. For T=
it was approximately 400 seconds. For the other values of T it was

rather less than 200 seconds.

8.6 TFonlinear Mappings

Both Bammon's pregrem and the program of Chang and Lee are availabie
on the C.D.C. 7800 at U.L.C.C. FNeither of these prograus could easily
be modified to accommodate the very large E.B.G. data set. Consequently
the data was pre-clustered to reduce it to 250 points in 8- egpace. This
is the data ~reduction situation. MAXIMINDIST was used, followed by two
'reassignment' passes as defined in section 3.3. The whole process took
approximately 1000 seconds on the C.D.C. 7600. In retrospect this seems
a very wasteful computation. As explained in section 6.2, when the
sample being taken iz as large as 250 points out of 2119, the reassignment
passes themselves will almost cer{ainly suffice to produce a representative

sample.

8.6.1 Sammon's Program %

The 250 8~ dimensional points produced by the pre-clustering phase

described above were mapped inbto 280 2~ dimensional points by Sammon's
).p - p

o

Programa 99 iterations were used and the program tock approximately 170
seconds on the C.D.C. TECO. In fact the program had przctically converged
after 52 iterations. For after the 52nd iteration the mapping error was
0.031 and it remained at this value after all subsesquent iterationss Thei
resultant 2- zpace configuration is shown in Figure 8.8. At first the

author felt that this plot might suggest a 3- cluster siructure, as shown

by the dotted lines. However further investigation rewealed that the

% Milaa 3 5
# This program was developed at the Rome Air Development Center,
Grifiss AFB, Rome, New York.
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5 noints in the smallest 'cluster' represented only 6 of the original
Ak o

o

data points. The 28 points in the intermediate cluster represented only
30 of the originzl dats points. Thus the great majority of the original
points are represented by the main clusiter, whilst the other two clusters
are tco small to be regarded as anything but sets of outliers. This
illustrates the danger in using a data -~ reduction tecbniqué in which

each point in the reduced data set does not represent the same number of

points in the originzl date set.

8.6.2 The Precgram of Chang and Lee

This program also used the 250 8~ dimensional pointe produced by the
data reduction program. The program was run with the first 100 points
in the frame, and the result is shown in Figure 8.9. The program was also
run with all 250 points in the frame. The resultant plot is shown in
Figure 8.10. The first time approximately 28 seconds were needed for 50
iterations and the final mepping error was 0.046. The second tims the
program took approximately 75 seconds for 50 iterations apd the final
mapping error was 0.036. Thus, as might be expected, a more accurate
mapping was obtained on the sescond occasion.

The results of these mappings are very similar tc those obtained by
Semmon's zlgorithm. Once agein there appear 1o be 3 clusters present.
However further inveatigation revesled that in both wappings the majority
of points in the two smaller clusters represented only one of the original
data points each. Consequently these points can only be regarded

outlicrs.

8,7 Conclusions

None of the techniques used here gives any conclusive evidence that
he data can be divided into a sufficiently small number of clusters to be

explained in Chapter T,

w

of value in understanding the E.E.G. However, as
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clinicians feel able, with the help of information about eye wmovemsnt,

te divide the sleep B.E.G. into five shages. Figure 8.11 shows how the
period of sleep (of approximately 6 hours) represented by the data set,
can be divided between the variocus steges. But the implication of this
chapter is that the data occupies a ‘continuous' region of the data space.
There are essentially three ways of resolving this conflict. Firstly,
the lack of apparent cluster structure may be due to the inadequacies of
the clustering algorithms. However, despite the obvious failings of
many of them; it seems difficult to believe that they can all be zo bad
ags to wiss any real cluster structure. Seacondly, the houndariss betwsen
stages which exist intuitively in the wind of the clinician may have no
real significance, It could be that the divisions between the various
stages of NHEM sleep are entirely arbitrary. However the clear distinc—
tion betwsen the presence and sbsence of rapid eye movements ought to at
least lead to a 2- cluster structure. Thirdly, and (to the author's mind)

most likely, the Hjorth parameters may not contain enough of the relevant

ol

information. I% would be

interssting to repeat the analyses with a more
comprehensive set of descriptors, such as those used by Viglione (see

section T.4).
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CHAPTER 9 CORCLUSTONS

2.1 Parsmetric Cluster Analysis

Taree of the algoritbms discussed in this thesic zre truly parametric.
NOEMAP assumes thet the p.d.f. of the pbpulation frem which the data set
iz a sample is the sum of a number of normal depsity functions with equal
covariance matrices. NORMIX makes similar assumptions but removes the
restriction that the covariance matrices need be esgqual. Finally, MICKA,
when used to minimize lw}, is specially suited to the case of several
normsl distributions with equal covariance matrices.

Because NOHMAP and MICKA have the same cobjective it would be interest—
ing to compare them. There are three principal gquesiions to be answered.
Firstly, how often do the programs give the correct results when used with
data of known structure? Secondly, how do they compare from the siand-
point of computational efficiency? Thirdly, how sensitive are thedir
results to slight deviations from the assumptions of nommality and equal
covariance metrices?  Unfortunately the author has not had time to
investigate NORMAP Wolfe himself admits ﬁbat‘the program sometimes
diverges and that initialisation is a problem. Consequently there may be
room for improvement of the numerical technique used to solve the likeli-
hood equations. It may be thet NORMAP is more susceptible to a bad
initialisation than is MICKA. One important proeblem is the determination
cf the optimum value for the number clusters (g). Hove work could be
done to see how effective is the gzminlwx criterion of Marriott. How,verg

1

it would appear that whatever the other advantages of MICKA, NORMAP has
the advantage here since 1t leads to a definite statistical test to compare
two hypotheses about the value of g. Thie degree of mathematical exacti-

tude is a very rare thing in cluster analysis! It mway be that when there

is no possibility of muking a ressonable guess at the initial paramster



values, MICKA is the program to use to generate approximate values for
these parsmeters. NOHMAP could then be initialised with thesse values
and used to produce more accurate values and to give a more definite idea
of the best value for g.

It would also be interesting to modify MICKA so as to use it to

g i
minimisge the l l IW;[ criterion suggested by Scott and Symons. The
i=1

modified program could then be compared with NORMIX in the sams way as
the original program, when used to minimize |W], can be compared with
NORMAP .

Another interesting question is whether the Sebestyen and Edie
algorithm can be used successfully to separate Gsussisn clusters. For
reasons explained in Chapter 4 the aubthor hesitates to call this a para-
metric algoritha. However it does seem most suited to dealing with the
case in waich the clusters have noymal distributions. If it does work

satisfactorily it will certainly be much faster than the other thres

In addition it wight be usaful to consider now thess techniques could
be altered to deal with density functions other than the Gaussian funciion.
There are two ressons for the frequent assumption of nowmality in pattern
recognition. Firstly, the Central Limit Theorem frequently permits this

Secondlys it tends to simplify the mathemabtics! However,

y
i

.

applications may arise in which other density functions are relevant.

©
h

the same paper in which NORMAP and NORMIX are described, Wolfe briefly
refers to the 'Latent Class' model. This is applicable to binary -~ valued

ne probability of a data vector

as the sum of a number of functions of ths forms



Here the X, are the descripibor valuss, winich may be O or 1, whilst a1

iz the probability, for the s'th function of this form, that Xy = 1.

aster A ril?o’)o

¥

The great bulk of clustering

o

techniques do not make any definite

A

statistical structure of the population from which

c“r
H.

the data is drawn. In addition, until quite recently, a1l such nonparsa
metric technigues hdd only very vaguely defined objectives. Honparametric
s were designed intultively and defined operationally,

i.e. in terms of how they actually worked rather than what they were

3

attempting to achieve.  Such technigques are frequently satisfactory for
data -~ reduction. But when the problem iz to find a true typology, if

one cannot make assumpbions like those discussed in the last section, it
is not at all apparent what criterion a 'gaod‘ipartition should satisfy.

3

ne algorithms are defined opsrationally, it is

5

Furthermore, because

jo

freguently not sasy to predict how they would behave when used to analyse

a sample from a known population.  Because one cannot do this i% is
difficult to comprehend the significance of any results that the algovithms
give when used on a sample from an unknown population. One can attempt

to understand an algorithm's behaviour experimentslly by testing it with

artificial data of known structure.  But, in the aubthorfs view, this loaves

the user la

There are always nagging
questionse One can test the algorithm for only a few situations. What
will happen for some other case?  And how ars the results dependent upon
sample sigze? The only way to be confident of the results of clusiter
analysis is by understanding exactly what an algorithm will achisve in any
given zituation. To be sure of this one must either analyse fully
operationally defined algorithm or use an algoritbm which is designed with
a well-defined objective in nind. Sometimes the simpler, intuitive

&

technigues may be useful in & prelisminery investigation. Sometimen the



.,

data mey be so well clustered thet almost any technigue will illustrate
this clustering. But %o bhe fully confident of the results of an algorithm
in all situstions its properties must be fully understood.

To the knowledge of the anthor the only attempt made to define an
objective in nonparamebtric cluster analysis has bsen made by Koontsz and
Fukunaga (1972 a and b). Taeir algorithm (the fixed neighbourhood penalty
rule) partiticns the clusters alonz the wvalleys of the probability density.
It would be interesting to compars the fixed neighbourhood penalty rule
with FUZZY.  Although the objective of FUZZY is not clear}y stated in
Gitman and Levine's paper it appears to be the same as that of the fixed

k)

neighbourncod peralty rule. However FUZZY is quite a time-consuming
procedure, as has been sesn in the last Chapter. In addition it is not
at all obvious which value of the control parameter (T) gives the most
significant results. I% ds to be hoped that the fixed nsighbourhood
penalty rule will produce a faster algorithm and one with more definite
results. There may, however, be simpler ways of finding the valloys of

L,

In addition it wmight be possible to define different objectives for
a nonparametric clustering algorithm. 4An 4ttemau could then be mads to

1
nese

fad

design algorithms to achieve

D
(e
o’

<
e
e
o
s
<
<L
w0
£l

Such algorithms ought to

give results invarizant uader any chanze of scale. For what confidence

Lo

can one have in e partition which is known to be dependent upon an arbibrary

choice of scale? Furthermore,; 2s the sample size increases, the algorithm

: B

ought to achieve the desired objective with a greater probability. This

P

is a properiy analogous to consistency in the estimation of statistical

parametera, To achisve the same kind of confidence in cluster analysis
as one posgesges in more conventional statisticsl techniques it seems

ssgentlal to use algorithans satisiyving these rigorous criteriz.

1 )
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