The University of Southampton
University of Southampton Institutional Repository

Deconvolution techniques for adaptive equalisation and image processing

Deconvolution techniques for adaptive equalisation and image processing
Deconvolution techniques for adaptive equalisation and image processing

This thesis examines the application of recent advances in estimation theory to the problems of adaptive equalisation and image processing. In particular the algorithms described herein are based on Kalman filtering and dynamic programming techniques.It is well known that the Kalman filter provides the minimum mean square error (MMSE) solution to a wide range of filtering problems in which the data can be modelled as the output of a linear filter excited by a gaussian input. In data transmission systems the signal is generally binary so that improved performance at the removal of intersymbol interference can be obtained from non-linear processors exploiting this property and such filters are derived from modified Kalman equalisers and from simplified implementations of the Viterbi algorithm.In two dimensions the MMSE criterion is used to derive recursive algorithms based on Kalman filtering for the deconvolution of images blurred by camera/image motion or defocussing effects, and for optimum filtering of images heavily corrupted by white gaussian noise. Since the filters are applied in the space rather than the frequency domain they can be used for the removal of both spatially variant and invariant blurs.As an extension of the one-dimensional case, non-linear filters are derived for the processing of noise corrupted binary fields. A comprehensive collection of simulation results is presented demonstrating the performance of the algorithms.

University of Southampton
Hart, Colin Graham
Hart, Colin Graham

Hart, Colin Graham (1976) Deconvolution techniques for adaptive equalisation and image processing. University of Southampton, Doctoral Thesis.

Record type: Thesis (Doctoral)

Abstract

This thesis examines the application of recent advances in estimation theory to the problems of adaptive equalisation and image processing. In particular the algorithms described herein are based on Kalman filtering and dynamic programming techniques.It is well known that the Kalman filter provides the minimum mean square error (MMSE) solution to a wide range of filtering problems in which the data can be modelled as the output of a linear filter excited by a gaussian input. In data transmission systems the signal is generally binary so that improved performance at the removal of intersymbol interference can be obtained from non-linear processors exploiting this property and such filters are derived from modified Kalman equalisers and from simplified implementations of the Viterbi algorithm.In two dimensions the MMSE criterion is used to derive recursive algorithms based on Kalman filtering for the deconvolution of images blurred by camera/image motion or defocussing effects, and for optimum filtering of images heavily corrupted by white gaussian noise. Since the filters are applied in the space rather than the frequency domain they can be used for the removal of both spatially variant and invariant blurs.As an extension of the one-dimensional case, non-linear filters are derived for the processing of noise corrupted binary fields. A comprehensive collection of simulation results is presented demonstrating the performance of the algorithms.

This record has no associated files available for download.

More information

Published date: 1976

Identifiers

Local EPrints ID: 462636
URI: http://eprints.soton.ac.uk/id/eprint/462636
PURE UUID: 280dbad1-5108-4239-a391-d72f6ecdce7b

Catalogue record

Date deposited: 04 Jul 2022 19:34
Last modified: 04 Jul 2022 19:34

Export record

Contributors

Author: Colin Graham Hart

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×