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THE DETERMINATION OF INTER-STAGE STOCK LEVELS AND OUTFUT
POTENTIALS OF UNPACED ASSEMBLY LINES

by William George Wild

The stock level required between two stages of an urpeced

assembly line to ensure 100% utilisation of the fed stage

in each of a series of fixed time intervals is a function

of the time interval and the operation time distributions

of the fed and feeding stages. In the case of balanced

lines having Erlang operation times, shape parameter =

1,2, 3 or L4 simulation indicates that a negative binomial
distribution may be used to describe the variations in the
inter-stage stock level requirement. Regression relationships
obtained enable the distribution parameters to be estimated
for time intervals in the range 20 to 1370 time units.

If inter-stage stock levels are such that there is a high
chance of zero idle time then all stages in a line may be
considered to operate independently of each other. The short
term output potential of such a line is then equivalent to
the output potential of the line's final stage. For Erlang
operation times the short term output distribution is
general Poisson.

If the chance of zero idle time is to remain constant from
one intervel to another the inter-stage stock must be the
same at the end of a given period as it was at the beginning.
Therefore the long term output potential is described by
the distribution of the minimum value in a sample of size n
(equals number of stages) from the output distribution of an
individual stage.

If inter-stage stock levels and output potential are
considered in the way described the interactions between
planning period, inter-stage storage capacity, nurber of
stages, output schedules and chance of zero idle time can be
taken into account when a line is being designed. Examples

of such interactions are discussed,



CHAPTER 1

GENERAL, CONSIDERATIONS

A Definition of an 'assembly line!

This thesis considers the scheduling of assembly lines where:-

e

b.

Co

€,

an assembly line is considered to be a manufacturing
process designed to produce a single product on a
continuous basis over & significant period of time by
means of a predetermined set of operations.

operation stages may be in series and/or in parallel.
each stage specialises in one particular aspect of
the total process necessary for converting raw materials
components and/or sub assemblies into finished
products.

once the line manager has defined, laid down and
commissioned a line his prime objective is to meet
planned finished goods production schedules for
successive planning periods without +ying up
excessive amounts of stock between stages,

no alterations to the mode of operation of the

line are foreseen.,



Two basic problems associated with the assembly line

mnager's nrime objective

Problem l: What constitutes ‘excessive'’ stock?

The experienced line menager has an instinctive
appreciation of what do and do not constitute excessive
inter-stage stocks. However, few scientifically developed
vardsticks are available, and to date Operational Research
and associated disciplines have provided little practical
guidance on this problem.

A common basis by which stock levels are Jjudged is the
'current' financial investment involved versus previous
financial investment levels. As a result, by implication,
it is often an organisation's financial personnel who Have
the final say as to what stock levels should be. However,
line menagers recognise stocks as a 'lubricant' for
providing for the smooth rumning of a line. But in the
absence of any absolute measures of what protection (or
degree of lubrication) a given inter-stage stock level will
provide, the line menager finds it difficult to argue ageinst
the finencial experts on any basis other than that of
precedence,

The identification of the implications of given inter-
stage stock levels is an essential first stage in any
investigation aimed at helping the line manager to achieve
his prime objective., This problem is discussed in some

detail in Chapters 4 and 6.

2.



Froblem 2; How do veriations in operation times affect the

probability that a given output schedule will be met?

In practice assembly lines tend to be planned on the basis
of output versus time requirements and to be planned and
controlled as though they opersate in a deterministic menner,
In particular the capacity of a line is usually stated in
terms of 2 single figure e,ge line X can produce LO sets per
day, Ail planning and control is then based on this figure.
But the output per week, month, or other time period used for
planning and control purposes is a stochastic variable and its
statistical characteristics must be taken into account if
fully effective planning and control are to be achieved,
Findings relating to the implications of given inter-stage
stock levels have been taken as a starting point for
investigations into the effect on output potential of

operation time variation.

The precise férm of assembly line investigated

An assembly line contains 4 major elements:-
l. operation stages.
2, operatives and/or machines.
3. stock at operation stages i.e. items being
worked on.
L, inter-stage stock i.e. items weiting in front of

a stage prior to being worked on by that stage.

3y



A basic assembly line is here considered to be ones -

2. which is made up of any configuration of strings of
stages in series and/or in parallel, a string being
one or more stages feeding each other in series
(See Figures 1A - 1E, pages 5 - 9)

b. in which there is one machine (or operative) per
stage and no machine or operative is used in more
than one stage.

C. in which a stage can only operate on one item at
a time.

d. in which inter-stage storage capacity is,
theoretically, infinite,

€. which is balanced i.e. the means of the operation
time distributions are identical for all stages.

f. which will be required to produce exactly the
same product in exactly the same way for all of
the foreseeable future,

g+ which is planned and controlled on the basis of
fixed, consecutive, time periods of equal length.

he in which operatives are unmpaced but operation
times are statistically consistent over time.

i. in which operation times are independent.



PIGURE 1A: A two stage, single string assenbly line.

Stage 1

Inter-stage stock, Stages 1-2.

Stage 2

Raw material for Stage 2.



FIGURE 1B: A complex, 9 stage, 3 string assembly linc.

Stage 1
Inter~stage Inter-stage
stock, stock,
Stages 1 - 2 Stages 1 - 3
Stage 2 Stage 3
Inter-~stage Inter-stage
stock, stock,
Stages 2 ~ 7 Stages 3 -~ L
Stage 7 Stage L
Raw material Inter-stage Inter-stage
for Stage 7 stock, gtock,
Stages 4 - 5 Stages 3 - 6
Stage 5 Stage 6
Inter-stage Inter-~stage
' stock, ' stock,
Stages 5 - 8 Stages 6 - 9
Stage 8 Stage 9
Raw material Raw material
for Stage 8 for Stage 9



FIGURE 1C: A 3 stage, single string, assembly line.

Stage 1

Inter-stage stock,
Stages 1 - 2

Stage 2

Inter stage stock,
Stages 2 - 3

Stage 3

Raw material
for Stage 3



FIGURE 1D: A complex 5 stage, 3 string, assembly line.

Stage 2

Stage 1

Inter-stage Inter-stage Inter-stage

stock, stock, stock

Stages 1 - 2 Stages 1 ~ 3 Stages 1 - L
Stage 3 Stage L

Raw material Inter-stage Raw material

for stock, for

Stage 2 Stages 3 - 5 Stage 4
Stage 5

Raw materdial
for
Stage 5



FIGURE 1E: A 4 stage, single string, assenbly line.

Stage 1

Inter-stage
stock,
Stages 1 =~ 2

Stage 2

Inter-stage
stock,
. Stages 2 - 3

Stage 3

Inter-stage
stock,
Stages 3 = L

Stage L

Raw material
for Stage 4




The results presented in this thesis are based upon
investigations into the operations of assembly lines
complying with a < d and £ -~ 1 above. Point e was assumed to
apply but in addition operation times were assumed to follow
an Erlang distribution. (The factors leading to the assumption
of Erlang operation times are discussed in Chapter 2, pages
18-21).

The type of line thus defined will be referred to
subsequently as a ‘'perfectly balanced line'. Literature on
the subject of line balancing (Freemen (1964), Ignall (1965))
tends to refer to lines in which all mean stage operation
times are the same as being 'balanced'. 'Perfectly' is used
here to draw attention to the fact that not only are means
identical but so too are all other distribution parameters.

The type of line considered is Jjust one of the very
large number of possible abstractions of line thet might be
studied. However the basic ideas and concepts put forward in
this thesis are of general applicability. The form specified
was gimply 2 convenient vehicle for the purposes of the

investigations carried out.

Accounting of output

It is assumed (g, page L) that scheduling is based on
fixed, consecutive, time periods of equal length. In the
short term i,e. the next planning period, the output can

reasonably be taken to be that of the final stage. This will

10



be implied when future reference is made to ‘short term
output'.

In the long term if, as will be shown to be the case,
it is possible to specify initial inter-stage stock levels
that provide an high, constant, chance of successive planning
period output requirements being met then the output figure
accredited to a given planning period must be such that the
inter-stage stocks are left the same at the end of a period
as they were at the begimning. This being so it is the output
of the slowest stage in a given period that determines the
output for that period and the distribution of the output of
the slowest stage in successive periods that governs the
overall output potential of the line,

Short and long term output potentials are discussed

more fully in Chapters 6 and 7.

1L



CHAPTER 2

OUTLINE OF AP ROACH USED

It was stated in Chapter 1 (page 1) that a line manager's
prime objective is cousidered to be to mect plamned finished
goods production schedules for successive planning periods without
tying up excessive amounts of stock between stages. The research
described here concenbtrated upon the first part of this objective
i.e. 'a line manager's (prime) objective is to meet planned
finished goods production schedules for successive planning periods',

It was assumed that production schedules are imposed by an
external agency e.g. a sales department. Such schedules could
be assumed to be reasonable i.e. not in excess of the basic
production capacity, but beyond the control of the line menager.,
It was further assumed that the line had no finished goods storage
facilities available to it and that accounting of output was
independent from one planning period to the next. Thus a 6
month's schedule for a line with a mean capacity of 100 items
per month might be:

Month Jan. Peb. Mar., Aprl. lay. June.

Schedule 80 90 100 100 100 90

The line manager's aim would be to meet each of these figures
exactly, considering each one independently.

It is considered that the procedure developed and the
results obtained provide a sound basis for a subsequent
investigation into line economics referred to in the second

part of the objactive.



Inter-stage stocks and the mexiuisation of a line's output potential

Different lines are scheduled in different wavs, but schedules
are normally based on a convenient calendar interval c.Z. day,
week, month or quarter. Meeting such schedules presents difficulties
when there are mechanical failures on the line, breakdowns in the
supply of components and/or raw meterials to the line, changes of
output schedules as a result of changes in merketing policy or
demand,etc; but even if the truly unexpected does not occur a
fundamental problem is always present i.e. how to set about meeting
an output schedule when a foreseeable degree of variability is
inevitable, A '(foreseeable) degree of varizbility' is inevitable
because operation times are subject to variation. Therefore the
output from a stage per unit time interval will “end to vary too.

If a schedule calls for an output during the planning period
from a2 1 stage line equal to (planning period/mean operation
time) there is 2 50% chance (approximately) of meeting the
schedule - the exact chance depending upon the relationship
between the mean and median of the outvut distribution. Zven
this 507 figure can only be approached if the stage can be fed
continuously with raw materials and or sub/assemblies and thus be
usefully occupied for the whole of the planning period. For a
single stage line, or the first stage in each string of a complex
line, this is normelly assumed to be so. But in general, in
multi-stage lines, each 'non-end~of-string' stage is fed by
another stage and if two adjacent stages are not in complete
synchronization or there is not a significant amount of stock

between them then the fed stage will tend to be idle on oceasions,

13



Since operation times are variable and it is assumed here,
indepondent, synchronization is not possible and inter-stage
stock must be used if a high degree of utilisation of the fed
stage is to be ensured and thus the chance of meeting schedules

maximised,

Illustrative operations of a 2 stage line

Table I shows the operations of a 2 stage line over a
planning period of 20 time units. It is assumed that the fed and
feeding stages each have 1 item available for commencing work on

at time O, but that there is no initial inter-stage stock (IISS).

TABLE I: Omerations of a 2 stage line with no initial inter-stage

stock.
Item Fecding |Operation|Feeding [Item Fed Oper=-| Fed
rcfor- stago time stage |refer-| stage ation .stagc
ence commences finigshes lence |[commeunces|time flnisnes
work on with work on 1tep at
item at item at item at times
times times times
B 0.0 2.9 2,9 A 0.0 0.9 | 0.9
c 3.0 La 9 749 B 3.0 0.9 | 3.9
D 8,0 2,9 10.9 c 8,0 .91 9.9
o 11.0 3.9 14,9 D 11,0 3.9 | 14.9
7 15.0 0.9 15.9 E 15.0 1.9 | 16.9
el 16,0 0.9 16.9 | T 17.0 1.9 | 18.9
i 17.0 L9 21.9 G 19.0 3.9 | 22.9




The line output during the planning period of 20 time units is
seen to be 6 items ~ item G not being counted since it was completed
after the end of the plamming period.

The feeding stage had no idle time since it wes assumed to
be fed from an infinite stock of raw meterials. The fed stage
was idle for 2 time units from 1 to 2.9, L time units from 4 to
7.9 and 1 time unit from 10 to 10, 3.

Assuming that the fed and feeding stage operation times
follow random independent distributions, output and idle time will
vary from planning period to planning period. The line's output
is a function of the fed stage's idle time and a reduction of such
idle time will tend to lead to an improvement in output, Tor
maximum output no idle time should occur. This can be achicved
by having 'sufificient' inter-stage stock available at the
beginning Of‘thﬁ planning period. This initial inter-stage stock

can be used in two ways:

i. output from the feeding stage goes to the end
of the 'queue' formed by the initial inter-stage
stock and previous items completed by the feeding
stage.

ii.  the two tyvnes of stock - those items produced
by the feeding stage during the planning period
and those items making up the initial inter-stage
stock-are kept sepsrate and when the fed stage
requires an item it takes it from the feeding
stage's output stock whenever possible, Only
when there is no such stock is initial inter-stage

stock used.

15



Examples of movements for each of these models are given in

Tables II and III.

3 is sufficient to ensure 100% utilisation of the fed stage.

In both cases an initial inter-stage stock of

(Due

TABLE II: Operations of a 2 stage line assuming thet the three
items - reference IISSl, 2 and 3 - meking up the
initial inter-stage stock are used by the fed stage
before any items produced by the feeding stage.

Item | Feeding |Oper-| Feeding| Item Fed Oper- Ted
refer-| stage |ation| stage |refer-| stage |ation| stage
ence |commences| time |finishes| ence |commences| time|finishes
work on with work on item at
item at item at itewm at time:
times time: times
B 0.0 2.9 2.5 | a 0.0 |09 | 0.9
c 3.0 4.9 7.9 1I8S1 1.0 0.9 1.9
D 8.0 2,9 | 10.9 |rIss2 2.0 1.9 3.9
B 11.0 3.9 | 1.9 |IIss3 40 3.9 7.9
P 15,0 | 0.9 | 15.9 | B 8.0 | 15| 9.9
G 16.0 0.9 | 16.9 | ¢ 10,0 1.9 | 11.9
B 17.0 4.9 21.9 D 12.0 349 15.9
B 16.0 2.9 18.9
7 15.0 1.9 | 20.9

to the different rules used for drawing on initial inter-stage

stock the movements of individual items differ but the net result

is the same - zero idle time and 8 items ~ compared with 6 when

IISS = 0 =~ produced within the planning period).
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During subsequent, independent, planning periods the initial
inter-stage stock requirement (IISSR) for 1004 utilisation of the

fed stage will vary - will in fact follow some statistical distribution.

TABLE III: Operations of a 2 stage line assuming that the three
items - refercnce IISS1, 2 and 3 - making up the
initial inter-stage stock are only used when feeding

stage outout is not available,

Item | Peeding |Oper~-| Peeding| Item Fed Oper- PFed
refer-| stage |ation| stage |[refer-| stage |ation stage

ence lcommences| time!finishes| ence lcommences! time Ifinishes
work on with worlk on item at

item at item  at item at time:

time; time: time:

B 0.0 2.9 2,9 | & 0.0 0.9 0.9

c 3.0 | 4.9 7.9 lrzasi 1.0 0.9 1.9

D 8.0 | 2.8 | 109 fzsse | 2.0 | 1.9 | 3.9

E 11.0 39 | 1.9 | B 4.0 3.9 749

P 15.0 0.9 | 15.9 c 8.0 1.9 9.9

G 16.0 0.9 | 16.9 [rss3 | 10.0 1.9 | 11.9

H 17.0 49 | 21.9 D 12,0 3.9 | 15.9

E 16,0 2,9 | 18.9

P 19.0 1.9 | 20.9

The parameters of this distribution e.g., the mean, will depend
upon the planning period. If en IISS level having only a given
chance of rumning out - and thus of idle time ocecuring - is to be
quoted then this IISSR distribution for the planning period

concerned must be known,
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Various conceptual models suggest themselves as a basis for
seeking an identification of IISSR distributions analytically.
However a consideration of such models, even for the most basic
of assumptions e.g. operation time disiribution for fed and feeding
stages negative exponential with identical means, has so far failed
to provide an answer. The alternative of a simulation apvroach was
therefore adopted. Simulation has the important advantage that
even if the simpler cases do subsequently vield an analytical
solution it is unlikely that more complex, more realistic, models
would do so. Simulation on the other hand can be used to investigate

models of any degree of complexity.

Operation time distributions

Hicks and Young (1962), iurrell (1962), Dudley (1955, 1958
1962, 1963) and Sury (1967) have showm that the distributions of
operation (or cycle) times tend +to be positively skewed. Since
the procedure presented here is based on simulation it can be used
for any type of operation time distribution. However in order to
develop the procedure it was convenient to assume a standard family
of distributions.

In addition to the above quoted evidence that shows that
operation time distributions tend to be positively skewed, practical
considerations further suggest that such distributionss-

i. will be continous
ii. will have 'completion rates' which increase as time
increases, 'completion rates' being analagous to

'failure rates' of Reliability heory.
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Relevant cheracteristics of standard continuous distributions

that might be considered are given in Table IV,

TABLE IV: Skewness and completion rates of common continuous

distributions.

Distribution Skermess Completion rate

as time from
commencement of
operation increases

1 -
Negative Positive Constant
exponential
Normal Symmetrical Increases
Log normal Positive Decrezses at

extreme values

Weibull Positive konotonically increas-
*t
or ing, constant or
Kegative decreasing
Gamma Positive Asymptoticelly increas-
ing, constant or
decreasing
2
Erlang Positive Asymptoticelly increas-

ing or constant

Notes 1. The negative exponential is a member of the Weibull,

gamma and Erlang distribution families.
2. The Erlang distribution forms a sub-set of the gemma

distribution familr.

The negative exponential distribution has a constant completion
rate »nd is therefore unlikely to apply to operation times (despite
which many investigations e.g. Buzacott (1971) and Hillier and
Boling (1966), have assumed such operation times). It does
however occur as a2 special case of both the Weibull and gamma

distributions {see below) and has the atiraction of being one of
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the simplest distributions to deal with analytically. Of the
other distributions listed in Teble IV the normal and log

normal distributions appear unlikely candidates for operation
time distributions. The Weibull distribution is of considerable
importance in Reliability Theory but has not. oftcn boer hissociated
with operations times or, in the wider sense, Queucing situations.
On the other hand gemma distributions hove been applied to a

wide variety of problems and the Lrlang subset has found
extensive application in the Queueing field., It was decided
therefore to assume Irlang operation times in the simulation
investigations. (A small, independent, investigation into the
effect of assuming Weibull rather than Erlang operation times

was carried out. The results are summarised in Appendix A ).

The Erlang probability density function (p.d.f.) is:-

X XK K-l -Kt/m'
)t e

erl(t;K,m') for t 20

(x-1)!
=0 elsewhere

where m' = the mean.
K the shape parameter.

U

For K = 1 this reduces to the negative exponential distribution's
p.d.f. Despite the fact thnt overation times are unlikely +to
follow a negetive exponentisl distribution in practice,it was
included in the investigation as a particular case of the Erlang
distribution because the results could provide a useful first
check of any analytical anproach that might subsequently be

developed,
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Secondary advantages to be had by assuming Erlang operation

times vere: -

ae the family covers a wide range of positively skewed
distributions from exponential through to deterministic.

b, Erlang distributions are analyticully tractable and
convenient to handle in simulation work.

C. research in the more general field of Queues and
Queueing has shovm that service times are frequently
Erlang (Sasty 1957). This hes been justified in
practice and in theory. The assembly line presents
a special form of QJueueing problem and operation
times are obviously specific examnles of service
times. It might be that the results presented here
have application outside the assembly line field
since there are almost certainly analogous problems

elsewhere, e.g. dams for water storage.

Implications of the TISSR distribution approach

If (as is the case) it is possible to specify an IISS level
which in conjunction with output from the feeding stage has a
required chance of keeping the fed stage 1007 utilised during a
given planning weriod then in practice - when a high chance of
100% utilisation will tend to be specified ~ three important
consequences follow:

i. each stage mav be considered to operate independently

of all other stages.
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ii. the short term output potential of the line (sce
Accounting of output, page 10) may be considered to
be the outout potential of the final stage - which
will be 100% utilised.

iii. the long term output potential of the line may be
considered to be the output of the slowest stage in
a given planning period (since IISS for each stage
must always be left at the same level at the end of
a planning period as it was at the begiming if the
chance of 100% utilisation is %o remain constant
from planning period to plamning period).
Not only will the chence of meeting a given schedule be moximised
but both the long and short term scheduling problems will be
simplified to the extent that the output distribution of a stage
operating independently of all other stages will in general be
easier to define than the output distribution of a non-

independent stage (which might be the case if IISS is sot too low).
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Summary of apnrosch used

i. in practice the first priority of a line manager was

ii.

considered to be the mesting of oubput schedules.

a major influence on his ability to meet schedules
are inter-stage stock levels. For maximum likelihood
of success initial inter-stage stocks should be
infinite. In practice this is impossible and
unnecessary. The distribution of IISSR for 1007
utilisstion of a fed stage during a given planning
period was investigated therefore,

if actual IISS is sc¢t at a level that gives a high
chance of 100% utilisstion of a fed stage then for
practical purposes all stsges in a line mav be
considered to be independent. The output wotential
of a line was deterimined therefore on the basis of

stages 100% utilised.

ive Erlang operztion times were assumed. In practice

a variety of operation time distributions might be
involved in a given line, ranging from Erlang through
to unique distributions defined only bv a given set

of Work Study observations. In the light of their
place in Queueing Theory Erlang operation times could
have a particular value, but the general procedure
developed could be used for any operation time
distributions. ZErlang operation times simply provided
e convenient and relevant set of operation time
distributions with which to develop the basic

procedure,
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CHAPTER3

REVIEW O DUBLISHED PAPERS

luech rescarch has been directed at gaining an understanding
of the meny problems associated with the design, planning, and
control of unpaced assembly lines. Research papers that are
directly relevant to the present thesis may be conveniently

considered under two headings:

i, those which consider the effects on a line's output
potential of given inver~stage storage capacities
and, where opeération time parameters vary from
stage to stage, of the ordering of stages within
a line.

ii. those which deal with the characteristics of

operation time distributions for unpaced operations.,

The more important papers are reviewed under cach of the
above headings and, where considered aporopriate, parallels are

dravm with the present author's approach (as outlined in the

previous chapter).



Papers which concentrate upon the effect on output potential of

inter~stage storage capacity and of the ordering of stages Within

a lineo

Almost without exception inter-stage storage capacity is
considered in previously published papers rather than, as is
the case here, the actual initial inter-stage stock rcequircment
(IISSR). The difference is important since the capacity approach
immediately imposes a restriction on the way the line may operate
i.e. that when an inter-stage storage space is full the feeding
stage cannct pass any more completed items on. Thus a feeding
stage can be idle for want of storage space as well as shortage
of items to work on., The assumption of limited storage capacity
mekes investigation of the uprer limit of output potential of a
line impossible. In contrast the IISSR anoroach enables maximum
output potential to be determined first and then for inter-stage
storage capacity requirements for a given chance of achieving
maximum output potential to be specified.

Anderson and Moodie (1969) staoted that 'All production lines
have a certain amount of ivbalance and service time variability
at different stages. Thus a problem arises: how to calculate
the minimum in-process inventor needed between stages to
prevent delays.' They developed models which'will aid the production
line designer to determine ths best buffer inventory size for
given menufacturing and facilit coustraints'. They considered
the best buffer inventory size ('size' and 'capzcity' apparently
being synonymous in their paper) to be a function of average

delav (idle time), average in-process inventory, storsge spaces,
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delay cost per unit time, inventory cost per unit per unit time,
storage space cost per unit per unit time and nunbsr of stages.,
Emphzsis was on a 'best' buffer capacity, and empircial formulae,
developed by applying analvsis of variance and regression analysis
to simulation results for lines with normal and exponential
operation times, were presented. Both steady state and transient
conditions were considered and it was concluded that 'minimum cost
operation occurs when buffer inventory limits are maintained at
their best steady state level during the entire production run.
There is no cost advantage in controlling the inventory during the
transient period'. ('Transient period'was considered in the context
of a line stopping and starting - perhapns to change production
models),

Barten (1962) discussed the effect of limited (0 to 6 items)
inter-stage storage capacities on the overall output rate of single
strings of up to 10 operations, operation times assumed to be
normal with a range of coefficients of variation. Barten
commented that 'Infinite storage is the ideal, from the point of
view of time, but nevsr exists in reality, and hence is of little
interest. Under this circumstance every operation would operate
indevendently of every other one, regardless of the average times
required to perform each operation, the diztribution and
variations of these times, and the total number of operations,

The output of such a system would be determined by the vroduction
rate of the last operation'. With regard to the development of
analytical solutions to line storage and output problems Barten
said 'In the sequential storage problem, so long as the capacity

of a storage area is extremely large, perinitting it to hold a
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virtually infinite quantity of material, the arrival rate of items
into the storage is in fact independent of the rate with which it
is removed (the service rate). However, if the storage is limited
and can become filled to this limited capacity, the arrival rate
becomes dependent upon the service rate and, with the storage
becoming and remaining filled, the rate of material arriving

can never exceed the rate with which items are removed. It is
clear from the foregoing, that the present status of queueing
models does not permit the general solution of storage problems

in sequential production processes', His investigations were
therefore based on the simulation of (relatively simple) lines
having normal operation times, for which numerical results were
given.

Buzacott (1971) considered the role of inventory banks in
flow line production systems. Whilst the effects of fixed and
variable operation times were considered the greater part of the
paper related to the effect of machine breakdowns and repairs. In
the introduction he stated that 'Many managers feel that the level
of their inprocess inventories is too high; however they lack
guidance on what the level of such inventories should be; indeed
they are often uncertain of the precise function of inventories
and storage'. The effect of exponential operation time distributions
on production caepacity were discussed and, in the case of two
identical stages (exponential operation times) it was concluded
that 'inveniory banks with capacity no greater than 4 or 5 give
a significant improvement in the system production capacity'.

In the conclusions it was stated that: 'If, with a given
inventory capacity, production capacity is inadequate then the
manager must investigate the relative merits of increasing inventory
capacity.
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Davis (1975) described an 'Intersctive Similatbiewt approsch
to helping 2 line menager meet his primary objective, i.e. 'The
primary objective of a production line menager is to meet
production demsnds, both volume and time, while controlling
production costs and inventories.' (Compare with the independently
arrived at 'prime objective' given in Chapter 1, pege 1, d.) The
interactive simulation system presented in the paper enables the
line manager to investigate ways of reducing existing inter-stage
stocks to 'desired' levels without Jeopardizing the attainment
of a required output rate. But it was assumed that a line manager
can specify the 'desired' levels; no indication was given of how
to arrive at such levels,

Hillier and Boling (1966) discussed the effect thet the
nunber of work stations, storage capacity and unbalancing of
two, three and four station lines with exvonentially distributed
operation times, has on the production rate. Only small/éimple
lines were considered e.g. ximum of four stations in series
with a maximum buffer storage capacity of /. units. On the basis
of their results they introduced the concept that 'in some cases
unbalancing a production line with variable operation times can
increase its efficiency.' They suggested that the 'bowl phonomena !
they had found indicated that a suitable basis for mximizing a
system production rate was the assigning of lower than average
operation times to intermediate stations rather than to stations
at either end. This idea has been referred to frequently by
other authors e.g. Payne, Slack & Wild (1972) and Wild and

Slack (1973).
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Hillier and Boling (1967) investigated queueing systems with
N service chamnels in series with limited inter-stage storage
capacity and Erlang operation times. They were particularly
interested in the mean output rate of the final stage - taking
into account the effects of blocking (the inability of an item
finished with by one stage moving into the queue in front of the
next operation, due to that queue - of limited capacity - being
full) and the mean number of items in the system. They presented
extensive theoretical, approximate and numerical results in support
of their approach,

Kala and Hitcihings (1973) investigated the operations of a
four station, balanced, unpaced assembly line using simulation.
Their paper included details of the production rate and build-up
of inter-stage stock measured against a wide range of operation
time variances. Their results and conclusions were similar to
those of the present author but, as with most other rescarchers
they assumed that a significant amount of idle time is inevitable.
They then concentrated upon ways of assigning operations within
2 line with a view to minimising the 'inevitable' idle time and
thus maximising output.

Knott (1970) presented an empirical basis for determining
the output potential of a series queue system and compared his
results with those of Hillier and Boling (1967). Output was
considered to be a function of the number of stations, queue
capacity and operation time distributions. A range of operation
time distributions, including Erleng, were considered and
empirically derived formulse, coupled with theoretical rationale,

were presented. Inter-stage capacities were emphasised throughout.
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Patterson (1964) consider:d the optimal ordering of stages in
2 string and the mean output rate of such strings., Attention was
concentrated upon the effect of unequal stage mean operation
times, the cmphasis being upon the line balancing problem,

Payne, Slack and .ild (1972) investigated +the onersation of
a 20 station balanced flow line working with unlimited inventory
or queue capacities between stations. The initial objeciives of
the investigation were to determine the idle time of cach station
and the maximum gueue before esch station for various (normal)
work time distributions over a specific time period, All
simulations started with an empty flow line. It was found that
although the linus wore balanced as regards the nature of the
station work time distributions, stations towards the end of the
line incurred more idle time than those at the beginning because
each station was dependent upon all predecessors for the supply
of ~ork; hence the more predecessors the greater the probability
of a station being starved of work.

Payne et al argued that the simulation of a line with zero
initial inter-stage stock and operating over a fixed time period
(5000 time units, which in conjunction with the constent work time
distribution mean of 10 time units meant less than 500 units of
production) produced results of practical significance since few
practical flow lines operate in a steady state condition. In their
final discussion they raised 2 questions:-

1. is it satisfactory to consider line balance %o be
a valid objective of flow line design?

2, is it valid to attempt to establish methods for
determining the single oontimum buffer stock capacity

for all stations on particular flow lines?
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Question 1 was prompted by their results which showed that in order
to reduce total station idle time, operations should be allocated
to stations so that those towards th: end of the line have higher
station time means.

The dismissal of the balanced line objective would seem
intuitively wrong. But if the balznced line objective is
rejected then the answer to question 2 must be 'no! - an optimam
buffer stock capacity for each station must then be sought. The
resulting complications scem well worth avoiding if at all
possible. As has becen previously stated the research reported
on herc concentrated on initial inter~-stage stock levels
necessary to reduce the probability of any idle time at all to
an acceptably low figure. Buffer stock capacity requirements
are then obtained as a by ~product. The determination of an
optimum inter-stage stock level can subsequently be approached
via the stock-out-risk level to be used. The intuitive appeal
of comoletely balanced lines is then no longer challenged since
idle time cen be made to occur at a controlled rate and a
single gtock level can be sought.

Wild and Slack (1973) considered a related aspect of assembly
lines but not one of direct concern here, namely 'single'versus
'double' lines ~ a single line having one operator per stage and
a double line heving two operators per stugc. Nevertheless it is
of interest to note that they used a simulation approach, assumed
'a given meximum capacity' (between each stage) - limited to 1,2,
3 and 4 inter-stage buffer capacity units per operator and assumed
the line to be perfectly balanced, all operation times normsl

with common mean and veriance.
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Papers relsting to operstion time distribution characteristics

Hicks and Young (1962) investigated various aspects of elemental
time distributions. Their studies suggestod that whilst such
distributions might tend to be positivel, skewed, for many purposecs
an assumption of normality of overation times was reasonable,

Murrell (1962) considered the effccts of operator variability
and fatigue. The paper is of interest for its discussion of the
cycle time distributions for repetitive tasks. The casc is argued
for positivels skewed distributions as opposed to a symmetrical
(normal) modcl.

Much research has been carried out at the University of
Birmingham, Department of Engineering Production, into the
characteristics of cycle (operation) times of unpsced assembly
tasks, In particular Dudley (1955, 1958, 1962, 1963) and Sury
(1967) have shown that the distribution of such cyele times is
invariably positively skewed.

Mensoor and Ben~Tuvia (1966) concerned themsclves with +the
line balancing aspect of assembly lines but made several relevant
points Cug'vssesn. o . .the basic assunption in (the previously
mentioned heuristic line balsncing solutions) is that work clement
times are deterministic., In practice this is never so, the work
element time is a random variable and experience shows that the
distribution closely follows the normal distribution (Hicks and
Young (1962) and thus if the average work element time, denoted
by u,is us.d for line balancing then on thc ayerage 50 per cent
of the items will not be finished within +he crele time, causing

scrious hold up of the linec. Clearly the cyele time must be set
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at some figure coulioodic and Young (1965) consider an assenbly
line consisting of n stations, They show that if the variability
of the work element time is taken into account then it is possible
to ensurc that a certain high percentage of units arc completed
without a hold-up of the line. Clearly this percentage is
dependent on c,' The paper assumed no inventories were allowed
between stages.,

Davis (1966) described results obtained in a simulation of
an assembly line with and without pacing of operatives. He
confirmed Conrad's (1955) conclusion that unpacced operations are
superior to paced owerations., He gave ag a definition of an
unpaced operation' (an operation) taking place with an infinite
queus at each station so that the opverator is insulated from
arrivals from prior stations (stages).' It is interesting to note
in connection with the comment on page 25 with regard to the
concentration of previous investigators on inter-stage capacity
rather than inter-stage stock that Davis did not distinguish
clearly between the two. At onc point he stated that an assembly
line cannot perform at meximum efficiency (in terms of operation
idle time and units completed) unless queues are provided before
each work station. Here 'queues' might reasonably be taken to
imply inter-stage stock ac considered in this thesis, but at
another point (in a table heading) he referred to'lMaximum
allowable queue at cach station'- clearly a referencc to storage
capacity., He concluded that infinitc queues at each station

gave bettor performance than lesscr or no queues,
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Slack and 1ild (1975) in a comparison of flow lincs and
collective working as production svstems represented operator
work time distributions by a ¥Weibull distribution. They Justified
this on the basis of Slack's (1972) finding that published
histograms of manual work mav be represented by Weibull
distributions,

liuth (1973) in considering the offcct of variability on the
lower bound of the production rate of work stations discusscd the
possible failure rate characturistics of operation time
distributions. He suggested that in practice it would be more
reasonable to assume fixed operation times rather than exponential
operation times. IHo went on to imply that distributions with
complotion rates thet increase as time from cosmencement of work
on an item incrcases  would be more appropriate than distributions

with decrcasing completion rates.



CHAPTER 4

LVITTAL INTER-STAGE STOCK REQUIREMENTS OF PERFECTLY BALANCED

ERLANG LINES

Figure 2, page 36,rcpresonts the simplest form of perfectly
balanced line with Erlang opcration times. The output of finished
goods from Stage 1 during a given planning period is dependent
upon the operation time distribution parameters (assumed to be the
same for stages 1 and 2) and the inter-stage stock at the
beginning of the plamning poriod, It will vary, according to some
statistical law, from one planning pcriod to another. The higher
the initial intcr-stage stock the less will Stage 1's idle time
tond to be and the higher will be the probability of a given
scheduled output figurc being achieved, the highest probability
being achieved with infinite initial inter-stage stock.

The problem considcred is the determination of the initial
inter-stage stock level which, if present at the beginning of a
given planning period, will have an (acceptably) high chance of
proving sufficicnt to kecp the fed stage 1007 utilised. This
stock level is 2 function of the planning period and of both the
fed and feeding stage operation time distributions.

The determination of what comstitutes an taccoptably high
chance' should be based on cconomic 2nd mepagerial con-~iderations.
Economic considerations would involve determination of, amongst
other things, cost of stage idie time, cost of not mceting
production schedules and cost of inter-stage storage.

Managerial considerations would take account of +he psychological
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PIGURE 2:¢ Perfectly balanced 2 stage assembly line,
operation times Erlang, mean = 1,0 time
U.n.it, K = l-
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effect of idlc time on opcrators, the cffect on supplier/customer
relations of non-compliance with delivery schedules,ctc, These
cconomic and managerial aspccts arc not comsidered herc but it
scems reasonable to assume that a chance of sufficient stock
being available (equals chance of zero idle time) in the range
90 - 99.9% might apply in practice. Examples presented here
tend to be bascd on this preconception. But should figures
outside this range be more aporopriate no changes of principle
would be required: only numerical valucs would change. Once
the initial inter-stage stock rcquirement (IISR) figurc is
established (for a given chance of zero idle time) and made
available, Stage 1 will onerate, for the majority of planning
periods as though it is being fed from an infinite intcr-stage
stock and thercforc as though it is entirely independent of the
fecding stage, Stage 2,

A simulation bascd proccdurc for investigating initial inter-

stage stock requircments

A line mey be considered to be made up of a number of
stock points, A stage i fed oy §; other stages will 'contribute!
9; independent stock puints. Thus in Figure 1D, page 8, Stage 1
is fed by three other stages. Therefore %1 = 3 and Stage 1
contributes 3 inter-stage stock points to the line total of L -
the fourth being botween Stages 3 and 5.

Sinee IISSR is a function of both fed and feeding stage
operation time distributions cach inter-stage stock point's
requircment will, in principle, have to be investigated

separatcly., Where however two or more inter-stage stock points
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are identical in terms of their fed and feeding stage operation
times the results obtained for one may be used dircetly for the
others. Thus in the case of a perfectly balanced line only one
case need be investigated.
For a stock point within a line scheduled on the basis
of a specified planning period, the IISSR for a given chance
of 1005 utilisation of the fed stage can be determined as follows:
i. simulate the operations of the two stages concerned
over a numbcr of independent planning periods -
independent that is in terms of the operation
times that occur within them.

ii, from the simulation results detcrmine the
distribution of initial inter-stage stock
necessary to ensure that the fed stage did not run
short of worki during any of the planning periods
simulated,

iii. determine, cither directly from the simulation
results or from a standard distribution fitted to
the simulation results, that value of initial
inter-stage stock that has the required probability
of proving sufficient to kecp the fed stage fully
occupicd,

An investigation bascd on the above nrocedure

The computor programme of Appendix B was uscd to simulate
the opcrations of two stage asscmbly lines having Erlang operation

times, mean = 1.0, K (shape paramcter) = 1,2, 3 and 4.
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In order to cover a reasonable range of valucs of planning
period (PP) the ratio of successive values of plarning period
simulated was set equal to /2, The first planning period
simulated was 8 /2 and thus subsequent valucs were 16, 16 /2,

32, 32./2, 64, 6l /2, 128, 128 /2, 256, 256 /2, 512, 512 /2,
102k, and 1024 ,/2 time units.

The first objective in carrying out the simulations wes to
gain a general insight into the IISSR distribution., A simblation
sample size of 100 for each (FP,K) combination used proved adequate
for this purpose and required computer runs of an aceptable
duration., The programme of Appendix B simulated the basic
operations of two stage lines and identified t he level of initial
inter-stage stock nccessary to keep the fed stage 1004 utilised
during each of the planning periods simulated for a given (FP,K)
combination. The programmec summerised the results for each
combination in the form of an initial inter-stage stock requirement

frequency distribution.

Results

Details of the IISSR frequency distributions are given in
Tables VA - VD, pages 40,- 46. Each colum in the body of the
table gives the results for the (PP,K) combination indicated at
the top.

Thus in the 100 simlations for PP = 8./2, K = 1 therc were
13 (indcpendent) planning periods when no initial intcr-stage
stock was required - it being assumed that the fed and feeding
stages cach had one item available for commencing work on at the

begining of the planning period; a zoro IISSR indicatos
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that the fecding stage finished at least one item in cach time period
that it took the fed stage to complete one item. Similarly there
were 23 occasions when en initial intor-stage stock of 1 was
required, 13 occasions when thc requircment was 2, 9 occasions

when the requirement was 3, ete. This comparcs with corresponding
figures for K = 1, PP = 16 of 7 occasions when the requirement was

0, 14 occasions when the requirement wes 1, 1k occasions when the
requirement was 2, 16 occasions when the requiremecnt was 3, etec.,

the column total equalling 100 (simulations),

The results of Tables VA - VD could be uscd directly to
determine the IISSR for the specific combinations of K and PP
simulated, Thus if a two stage line's planning period = 32 time
units and the fed and feeding stage opcration times are Erlang,
mean = 1 time unit, X = 3 then the IISSR could be detcrmined on
the basis of the figurcs of Table VI which is derived from Table VA.
TABLE VI: IISSR for a stock point in a line scheduled on the basis

of a plamming period of 32 time units, fed and feeding

stage operation times Erlang, mean = 1 time unit, X = 3,
Figurcs bascd on the simulation results of Table VA

Chance of fed stage IISSR
being 100% utilised.
%)
100 13
99 12
98 11
96 10
95 9
92 8
85 7

L7



With regard to the 100% IISSR figure in Table VI theorectically
IISSR must be infinite.‘ However the simlation results only indicate;
that therc is 2 less than approximately 1 in 100 chance of more then
13 items being required,

Using the simulations results dircctly as indicated above
presents certain practical problems such as the difficulty of
interpolation over IISSR figures that do not occur in the
similations Cege for K = 2, FP = 16 /2 interpreting the difference
between an IISSR of 13 compared with an IISSR of 10,

Such problems could be alleviated if a standard distribution
could be found to describe the data, Ideally this should be
identif’igad by analysis but as has bcen stated previously (Chapter 2,
pege 18) this has not proved poséible to date, Therefore an
empirical approach was used.

The underlying distribution must be discretc and have an
infinite range. The Poisson distribution - being one of the
simplest and most commonly encountered discrete distributions -
was tried first but as the examples in Table VII show it did not
provide a uniformally good fit to the data.

TABLE VII: Example chi2 values for Poisson distributions fitted
to the data of Table VA

K=1|K=2 |K=3 K=1§4
Chi~ af| Chi af|chi 4af|Cchi arf
8 /2 59.0 5| 3.0 L| 0,8 3 3.4 3
16 33,0 6| 506 5| 7.3 L|14.8 4
16 /2 I153.7 7] 36.7 5|3k 5/12.2 4




Table VITI gives the chi® valucs obtained by fitting nogative
binomial distributions to the data of Table V. Only the threc values
indicated are significant at a 5% level. In the absence of any
greater insight into the problem the negative binomial distribution
appears to provide a reasonable description over the range of

planning periods and K's investigated.

2
TABLE VIII: Chi values for necgative binomial distributions fitted
to the data of Table V. The marked values are significant

at a 55 level,

K=1] X=2 K=3 K=&

Planning Period Ch5.2 af Chi.2 ar Chi2 af Chi2 daf
8 /2 663 6| 3.0 3| 0.8 2| 0.9 2
16 L4eO 6 1029 L| 3.2 L] 5.2 4
16 /2 Le9 8] 6.5 6| 6.5 5| 2.7 L
32 35 81 Bely 7| 5.8 7| 4e5 5
32 /2 9.2 10| 11,1 8| 9.6 5| 2,3 5
6l 9 11| 8e9 10| 7.3 B8] LO 6
6L /2 16.8 12| 11,5 10{10.7 11| 3.5 9
128 21,0 12| 13,6 12]19,1 11| 6,4 10
128 /2 81 11| 16,7 13|13.,1 11| 6.2 10
256 17 13| 12,2 12{14.9 13{13.1 11
256 /2 19.5 14| 749 13|20.8 132,213
512 9¢1 13 | 11.3 13(11.6 11{14.2 13
512,/2 18.1 14 | 18,5 14|13.,6 13| 7,7 12
1024 23,1 1 | 11,0 14| 6,0 13[12.8 12
1024 /2 15.1 14 18,7 14| 6.0 14{10.3 14
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The negative binomial distribution may be defined in terms
of its mean m'y and shape paramcter p' (See Appendix C). Table IX
gives the sample means and meximum likelihood estimates of p' for
the data of Table V. (Table VIII gives the ohi® values obtained
when negative binomial distfibutions with the paramecter values of

Table IX are fitted to the frequency distributions of Table V),

TABIE IX: Sample means and negative binomial meximm likelihood
estimates of p' for the initial inter-stage stock
requirement data of Table V.

K=1 K=2 K=3 K =4
Planning | Sample P Sample P Sample P Sample P
period mean mean mean mean
82 3629 L4148 | 2,46 1.,0000] 1,90 1.0000 | 1l.7hk 8558
16 Le02  o5052 | 2482  ¢53LL| 2437 #79L9 | 235 6995
162 | 4a73  o2579| 358  WUTA5| 2492 G4168 | 2.46 L6678
32 519 42297 | L4e05  oL1BL| 3.91 G412 | 3.02 599
32 /2 7010 .2010 | 5.61 3232 | Le03 L6197 | 3.59 5513
6L 9.0k WILBO | 6435 1924 | 5.10 L3506 | 3.75 3724
6l /2 990  JIWL3 | 7410 42300 | 6,73  o2267 | 5.82 o277k
128 11,55  o1153 | 9413 #2271 832 42926 | 6u31 2577
128 /2 | 170 40996 | 12,48 41276 | 9420 L1767 | 7e9%  +2159
256 19498 #0635 | 13,27  .0974 | 11.57 1620 | 9,15 1776
256 /2 | 21.42 .0586 | 13,03 ,0980 | 11,90 L1219 |1l.32 ,1458
512 21,08  ,0566 | 19.82 .0825 | 14.32 1053 |12.05 .1196
512/2 | 26,82 ,042L | 214k L0900 | 19.00 0761 |17.02 ,1148
102 37483  +0290 | 24.5L 060k | 19.38 L0776 |16.86 L0721
1024 /2 | Lhe63  o0303 | 3L.11 40359 | 22,91 = 0733 | 22,05 .0795




For X = 2, PP = 16 /2 the sample mean = 3,58 and the maximum
likelihood estimatc of p' = 0.4745. Table X gives the individual

and cumulative probabilities for such a negative binomial distribution.

TABLE X: Negative binomizl distribution fitted to X = 2, FP = 16 /2
data of Table V. m'y = 3,58, p' = O.L4745

Initial | Probability | Probability x | Theorcetical Observed
inter- exactly is sufficient | frequency frequency
stage X used to keep fed for a in a
stock stage 1006 | sample of sample of

(x) utilised 100 100
(simulations)

0 0,0898 0,0898 8098 10
1 0.,1526 Oe 2420 15.26 17
2 001697 004121 16497 16
3 0.1555 0.5677 15.55 1
L 001274 0.6950 12.74 6
5 0.0968 0.7918 9.68 12
6 0,0698 0.8616 6.98 10
7 0,048L 0.9100 L, 8L 7
8 0,0325 0. 9425 3625 3
9 0.,0213 0.9639 2.13 L
10 0.0137 0.9776 1.37 0]
il 0,0087 0, 9862 0.87 0
12 0, 0054 09916 0e5L 0
13 0.0033 0.9950 0633 0
1L 0.0020 049970 0.20 1
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On the basis of these figures it can be said that if initial
inter-stage stock equals 10 therc is a 97.76% chance of 100%
utilisation of the fed stage whereas if initial inter~stage stock
equals 13 there is a 99.5% chance of 100% utilisation. Thus the
fitting of a standard distribution emables scnsible interpolation
within simulation results to be carried out.

An extension of the negative binomial results.

The procedurc uscd to devclop the negative binomial stock
requirement model involved simulating two stage lines with planning
periods sct at specific convenient values, It will be shown later
that irrespéctive of the complexity of a line or the particular
operation time distribution involved, if assembly line scheduling
is carried out on the basis of the concepts advanced in this thesis
then such simulations as nced to be carried out have only to be for
appropriate 2 stage lines, On the other hand the results obtained
for a given planning period eamnot be used directly to determine
the IISSR distribution for another planning period,

If (regression) relationships could be established for the
m and p cstimetes of Table IX i.e. eight relationships altogether -
four for sample means (one for cach value of K) and four for p
estimates, then it would be possible, by intcrpolation, to specify
the ncgative binomial IISSR parameters for plamning periods other
than thosc simulated,

Figures 3A ~ 3D and LA ~ LD, pages 53 ~ 60, show that the
relationships between the planning period and m s and planning period
and p are non-linear. The data of Table IX was used to identify
transformations that would yicld linear relationships - linear
relationships meking subsequent interpolation or extrapolation

S implel".
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The following transformations were trieds

m v 1oglo P
1og10ms v loglO Pp
1°g10ms v P
mg /PP
PV ]oglo PP

10 P ¥ 108, FF

loglcpv PP
PV /FP

where ms = sample mean used as an estimate of the negative

<

log

binomial distribution mean.
p = meximum  likelihood estimate of negative binomial
distribution parameter p!
It was found that usings:
m v J/FP
and logyob ¥ 1og10 PP
relationships that could reasonably be assumed to be linear over the
range of planning periods investigated were obtained. (See Figures
54 ~ 5D and 64 - 6D, pages 62 - 69),

The data of Table IX was used to identify the above
relationships. Further, independent, simulations were carried out
with the specific aim of determining the regression coefficients for
these relationships. The most efficient experimental method for
determining a slope parameter requires all experimentation
(simulation here) to be carried out at two extreme values of the

independent variable since the variance of least squares slope
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parameter estimates is:

2
8 /%

-2
(%5 = x)
Where szy Jx = the variance of the scatter, in the vertical (y;
direction, of the observed points about the regression line.

the 1%h independent observation value,

U

%5
X = the mean of the independent observation values.
Concentrating the observations at the two extreme points
maximises the denominator of the above expression thus minimising
slope parameter estimation variance, Such additional simulations
were carried out at'extreme' planning periods of 20 end 1370 time
units.
The programme of Appendix B was used to generate 15, independent,
IISSR samples for each of the eight K:PP combinations i.e. 1:20,
2:20, 3520, 4220, 1:1370, 231370, 3:1370, and 4:1370. For FP = 20
combinations 2 sample size of 100 was used for each of the 15
samples and for PP = 1370 combinations a sample size of 10 was used =

theso sample sizes requiwing computer runs of an acceptable duration.



TABLE XIA: Sample means of 15 samples generated for each (planning
period = 20 time units: K = 1, 2, 3 and 4)conbination .
Sample size = 100.

Samplc mcans, plamning
period = 20 time units

K =
1 2 3 L

Le72 | 3.27 | 2.82 | 2.29
LeBL | 3.30 | 2,66 | 2.46
4e20 | 3,28 | 3,02 | 2,34
4e59 | 3476 | 2.73 | 2423
4,10 | 3.37 | 2.68 | 2,28
Le52 | 2483 | 2,90 | 2.84
Le36 | 3674 | 2,77 | 230
4e23 | 3420 | 2,53 | 2.33
5002 | 3423 | 2,97 | 2463
Lek7 | 4e27 | 2,79 | 2.31
Labl | 3,29 | 2,70 | 235
Le36 | 3470 | 3.03 | 2,40
Leh8 | 2,90 | 2.70 | 2438
Le55 | 3616 | 2461 | 2455
Le38 | 337 | 2,80 | 2.51
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TABLE XIB: Sample means of 15 samples generated for each (planning
period = 1370 time unitss K = 1, 2, 3 and 4) combination,
Sample size = 10, |

Sample means, planning
poriod = 1370 tire units,

K=
1 2 3 L

2947 | 2he3 | 22.3 | 19i6
3103 | 4509 | 1846 | 22:1
2346 | 22,0 | 18.4 | 1942
3728 | 2246 | 2Us1 | 19.7
18e2 | 1743 | 2267 | 2747
3167 | 18e7 | 902 | 1942
29.0 | 371 | 214 | 13.3
L7eh | 3Ll | 2643 | 1640
415 | 4942 | 204k | 17,0
L766 | 2948 | 2hel | 1345
57¢5 | 2203 | 2746 | 23.6
40e2 | 3348 | 2heb | 2702
5303 | 2347 | 266k | 20,2
38el | 1607 | 269 | 21k
48,7 | 22,0 | 27.5 | 23.1




TABLE XIC: Maximum likelihood estimete of p' of 15 samples
generated for each(plenning period = 20 time units:
K=1, 2, 3 and L) combination. Sample size = 100.

Maximum likelihood estimate of p',
planning period = 20 time units

X =

1 2 3 4

02996 | 43695 |.6207 | 6705
02799 | #6065 |,5689 | 5683
02528 | #5013 | 46930 | #5776
02936 | 44950 |.5233 | .5872
03275 | o5077 | e5L85 | 6599
02327 | 45672 |e6311 | o7741
o37h1 | J4T730 | 46392 | .705L
o281 | JU465 | 46733 | 6359
e2410 | 45086 | JL4B5L | 5664
e240L | 4512 |4533h | o6264
02857 | #4878 |e5LL2 | 5759
e2521 | 3647 |o4676 | 6388
0290k | 45290 |.6060 | 6731
#3158 | o4120 |.5776 | +661%
3579 | o4316 |.4891 | .8528
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TABLE XID: Meximum likelihood estimate of p'of 15 samples
generated for each (planning period = 1370 time units:
K=1, 2, 3 and ) conbination. Sample size = 10,

Maximum likelihood estimate of p',
planning period = 1370 time units

K =
1 2 3 L
.0801 | 0438 | 0521 | ,0682
00339 | 1218 | 154 | 1246
<024 | 20629 | 41007 | 40999
«0330 | ,0407 | ,0887 | +0790
sOL15 | «0739 | 0842 | 061k
0703 | ,0821 | 0811 | .O44

20552 | 0432 | ,1021 | ,0587
«0278 | 41263 | 51105 | .1561
«0310 | .0634 | ,0528 | .1215
00307 | 0350 | ,2208 | 4096l
SOU36 | 40607 | 40796 | 41093
SOL6L | 40415 | 40191 | 41001
<0211 | 21342 | 0276 |.1212
<0430 | ,0781 | ,0887 | .0685
+0236 | L0546 | 40639 | 1057
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Tables XIA - D show the sample mean and meximum likelihood
estimate of p' values obtained, Thus for FP = 20, X = 1,Table
XTA shows that the first of the 15 semples had a sample mean of
Lo72 and Teble Y¥IC shows thet it had a maximum likelihood estimate
of p' of 0,2996; the second sample for PP = 20, K = 1,had a sample
mean of L,51 and & maximum likelihood estimate of p' of 062799
Table XIB shows that for FP = 1370, K = 2 the first of the 15
samples had a sample mean of 2443 and Table XID siaows that it had
& meximum likelihood estimate of p' of 0,0438; the second samnle
for PP = 1370, K = 2 had a sample mean of 45,9 and a moximum
likelihood estimate of p' of 0.1218.

The regression parameters obtained from the results of Tables

XIA - D are given in Table XII.

TABLE XII: Regression parameters estimated from the deta of Tables
XIA - D for the relationships:

m's 38.K /PP+b.,

1 t . -
and *oglop o, 1oglo P+ dK
Operation Correlation Correlation
time coefficient coefficient
shape 8y by for mean e QK for »
perameter > -
K (211
means =
1.0 time
units)
1 1.1038 | -0.4631 0.9352 ~0.479% | 0.0777] -069631
2 0.7495 | 0,0263 0.8728 ~C.4704 | 0.2862 | -0,9542
3 0.,6121 | 0,0432 0.9497 ~0.,4820 | 0,3826] ~0.9267
L 065462 | -0,0292 0.950Lh  |-0.4682 | 0.4202] =0.9697

In the light of the good visual fit shown in Tigures BA - 5D

and 6A - 6D and th:s highly significant correlation coefficients given
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in Table XITI it would seem reasonable to use the relationships
defined in Table XIT to determine the parameters of the negative
binomial IISSR distribution for a perfectly balanced Erlang line,

K = 1 to 4, scheduled according to a planning period in the range

investigated,



CHAPTER 5

TESTING OF HYPOTHESES

A composite test of the following hypotheses was carried out:

Hypothesis 1: The distribution of initial inter-stage stock
required to keep the fed stage of a two stage Erlang
line 100% utilised over a planning period in the
range 20 to 1370 time units is negative binomial.

Hypothesis 2: The relationships of Table XII, page 75, may be
used to estimate the mean and shape parameter of
the negative binomial initial intcr-stage stock
requirement distribution of Hypothesis 1.

The design of the test

A factorial experiment was set up involving the simulation of
the operations of two stage, perfectly balanced Erlang lines, mean
operation time = 1,0 time units.

Three factors were varied:

Factor 1 Operation time shape
parameter K

Pactor 2 Planning period

Factor 3 Stock~out-risk

Factor 1 was applied at four levels i.e. K = 1,2, 3 and L.

Factor 2 was applied at three levels i.e. 20, 695 and 1370 time
units.

Pactor 3 was applied at three levels i.e. Osl, 0e3 and 05
but differing merginally from these values because of the discrete

nature of the negative binomial IISSR distribution.
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Changing factors 1 and 2 (K and planning period) was straight
forward. Factor 3 was varied by fixing IISS at levels predicted as
necessary, by the negative binomial and regression hypotheses, to
achieve stock-out-risks as near 0.1, 0.3 and 0,5 as possible. For
example for K = 1 the regression relationships of Table XII are:

m'y = 1,1038 /PP - 0.4631
loglop' 3*CM479410g1dEP + 0.0777
Thus for PP = 20 time units:

m'y = hel7

1

0.28LJ; (0,284410 when calculated on a computer
using unrounded regression parameters).

i

Y

Table XIII gives details of the negative binomial distribution

m's = Lali7, p' = 0,284,410

TABLE XIII: Negative binomial IISSR distribution - nt = Lel7,
P' = 0,284410 ~ for perfectls balanced Eri.ng line
K=1, PP = 20 timc units

Initial | Probability | Probability X
Inter Exactly is sufficient
Stage X used to keep fed
Stock stage 100%

X utilised
0 0.1069 0.1069
1 0.1361 06 2430
2 O.1352 0. 3782
3 0.1219 005001
L O.1042 0.6043
5 0.0861 0.690L
6 0.0696 0. 7600
7 0,055, 0.8154
8 0. 0435 0.8589
9 0,0338 0.8927
10 0,0261 0.9187
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This shows that if hypotheses 1 and 2 are correct then for a

0.1073 stock-out-risk IISS should be 9, for a 0.3096 stock=-out-risk

5 and for a 0,4999 stock-out-risk 3.

IISS levels were cstablished by this procedure for each of the

combinations of factors. The IISS levels arrived at are given in Tables

XVa-D, colum L, pages 8l~,Details of the m's and p' values used

are given in Table XIV

TABLE XIV:

Negative binomial mﬁs and p' values for (K:PP) combinations

on the basis of the regression relationships of Teble XII,
page 75. (Values calculated on a computer using
unrounded regression parameter estimates).

X Planning m's p'
period

1 20 LeLi7 0. 284410
1 695 28,64 Q,051910
1 1370 40,39 0,037,482
2 20 3438 0.L7232L
2 695 19,79 0,088988
2 1370 27.77 0,064675
3 20 2,78 0.569507
3 695 16,18 0.102982
3 1370 22,70 0.074257
A 20 241 0.647288
L 695 1he 37 0.122909
L 1370 20.19 0.089473

Having determined the factor values to be used the operations

of each of the 36 (two stage) lines %hus specified were simulated

using the simulation programme of Appendix D. Two replications

were carried out for each of the 3¢ lines. An individusl similation

was terminated immediately the fed stage became idle because of a
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stock-out. If the hypotheses being tested were correct then the
proportion of stock-outs for each of the 36 factor combinations

should, allowing for random variations, be in line with the stock-out-
risks built in by the IISS levels specified. An analysis of variance
was applied to the differcnce between the observed number of stock-outs
in each simulation set i.c. simulatiounsfor given combination of factors,
and that predicted by the hypotheses for the IISS level specified.

For an analysis of variance to be strictly applicable it is
necessary, amongst other things, that the variables concerned come
from normal distributions with equal variances, In order to mect
these requirements as far 2s possible the sample (simulation) size
was fixed according to the predicted stock-out-risk. The distribution
of the number of stock-outs occurring in a sample of size N must be
binomial, parameters N and S, the stock-out-risk value., Values of N
were chosen so that each mumber of stock-outs'distribution tended
towards a normal distribution with a variance of approximately 9.5

The resulting sample sizes and variances are given in Tables
XVA-D pages 81 =~ 8lL.

Analysis of variance is generally considered to be a robust
technique and it is undoubtedly used in situations where far less is
known about the underlying structure of the data. It was considered
reasonable therefore to use it to analyse the simulation results thus

obtained.
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TABLE XVII Analysis of variance applied to the 'observed minus

§§E§cted nymber of stock-outs® data of Table
A-XVID, pages 85~88.

Source Degrees Sum Mean F 7]
of of Square Significance
freedom | Squares value
of
F
greater than:
Erlang shape
parameter K 3 19.45 618 10:57 248l
Plamning
period 2 2,55 | 12,28 | 1.08 3623
Stock-out
risk 2 6.12 3,06 | 0,27 3623
Interaction
between K and
planning J 55442 | 9424 | 0,81 23k
period
Interaction
between K and
stock~out-~risk |6 99,59 | 16,60 | lel4b5 263l
Interaction
between planning]
period and '
stock~out-risk |4 3o 9k 8.73 | 076 2,61
Interaction
between K
planning period
and stock~out-
risk 12 247.71 | 20,64 | 1.81 2,00
Within
replicates 36 L11.04 | 11.42
Total 71 898,82
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Results and Analvses

Tables XVIA-D, pages 85-88, give the observed number of
stock-outs, expected number of stock-outs and their difference
for each of the 72 simulation samples. Table XVII, page 89,
gives the results of an analysis of variesnce applied to the 72
differences, No F value in Table XVII is significant at a %
level,

Test of the overall sample mean

A test was applied to the difference between the overall
mean of the 72 differences and the predicted mean difference of

zero. Details are given in Table XVIII, (The use of the predicted

TABLE XVIII: Sample statistics and t and F values for the
differences of Tables XVIA-D, pages 85-88, t values
based on sample means, predicted variance of 9.5
and predicted mean of zero. F values based on
sample variances and predicted variance of 9.5

K Sample Sample Sample t P
size mean variance

1,2,3 plus
L

72 0.9132 12,66 2.51 |1.33
5 plus L | 36 1.2342 17,16 2.40 |1.81

variance of 9.5 instead of the sample variance in calculating t
provided the more stringent test), The t value of 2,51 is
significant at a 1% level thus casting doubt on the negative
binomial/regression hypotheses.

Test of normality of the differences

i

If the experimental design is valid then the differences
should be normally distributed - with & variance of 9.5 and 2
mean of zero, A normal distribution with these parameters

fitted to the 72 differences gives a chi? value that would be
significant only at a 20% level (see Appendix G). Thus
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considered collectively the differences might reasonably be
assumed to follow a normel distribution.

F tests applied to the differences

An F test of the sample variance against the predicted
variasnce of 9.5 gives an F value of 1.33. The 956 point for the
F distribution with 71/infinity degrees of freedom is less than
1.33 Thus there is reason to doubt that the true variance is
9.5

Considering the 72 differences in two groups gives an F
of 0,87 (seec Table XVIII, page 90) for the K=l plus K=2
differences asnd an F of 1.81 for the K=3 plus K=, differences.
This second value is above the 99.F% point of the 35/infinity
F distribution. Thus it appears that the deviation from the
planned variance of 9.5 may be largely accounted for by the
¥=3 and F=4 samples. Further the t value for the K=3 plus
K=l differences (see Table XVIII) is significant at the 1%
level whilst the K=1 plus K=2 value is unexceptional.
Conclusions

The most likely explanation of the above results is that
the regression parameters used for estimeting m'S and p'
for K=3 and 4 are inaccurate. However the possibility that
the negative binomial distribution is only a reasonable
description for K=1 and 2 and becomes less adequate for higher
values of K camnot be discounted.

Despite the test results the general degree of correspondence

between the observed and expected number of stock-outs in

Table XVIA-D, pages 85-88, provides some encouragement and the
hypotheses might, in the absence of any alternative be considered

to provide a reasonable first approximation to the solution of

the problem of defining inter-stage stock levels.
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CHAPTER 6
USING INITIAL INTER-STLGE STOCK REQUIREMENT DISTRIBUTIONS

In Chapter 4 a general basis for determining the initial inter-

stage stock requirement (IISSR) distribution for any given line was
discussed and results for perfectly balanced Erlang lines were
presented,

If the IISSR distribution relative to a given line can be
identified then for each fed stage/feeding stage pair in the line it
is possible to state an initial stock level that has 2 required |
probability of keeping each fed stage 1006 utilised during a plamning
period. In general the higher the required probability, the higher
the IISSR figure,

If initial inter-stage stocks are set at a level such that the
probability of one or more of the fed stages running short of work is
small then for the majority of planning periods each stage, being 100%
utilised, will operate as though entirely independent of all other
stages. It is then possible to consider the output potential of each

stage as being governed only by its own operation time distribution.

An exsmple of the use of an initisl inter-stage stock requirement
distribution.

Determining the IISSR for = given line

In Chapter 5 it was shovm that for perfectly balanced Erlang

lines, K = 1 to 4, the IISSR distribution for 100% utilisation of a

fed stage might reasonably be assumed to be negative binomial. Further,
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it was shown that relationships of the form:

t —
my = ag /PP + by

and Logygp' = Cr logyg FP + dK

with parameter values as per Table XII, page 75,could be used to

obtgin estimates of this negative binomial distribution's parameters.
Figure 7, page 9. , represents a perfectly balanced four stage

Erleng line, planning period = 124 time units, operation time mean

= 100 time units, XK = L.

The p' and m's relationships for K = 4 are, from Table XII:~

E‘.
W

0.5462 /PP = 040292
= -O.%BZlOgloPP + 0-::4202

"d“
k

Thus for PP = 124 time units:

m! = 6Q05
S

p' = 0.2755

Details of the negative binomial distribution mﬁs = 6,05,
p' = 02755 are given in Teble XIX, page 95. Table XIX enables the
probability of a given level of initial inter-stage stock (IISS)
keeping a fed stage 100% utilised during a plamming pericd of 124 time
units to be determined e.g. if IISS = 6, probability of 100%

utilisation = 0.6249, Conversely Table XIX can be used to determine

IISS for a required chance of 1006 utilisation of a fed stage e.g. if
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FIGURE 7: Perfectly balanced L stage line, operation times
Erlang, mean = 1,0 time unit, X = 4.
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TABLE XIX: Negative binomial IISSR distribution for the line of
Figure 7, page 9l . m's = 6,05, p' = 0,2755

Initial] Probability |Probability X
inter exzctly is sufficient
stage X used to keep fed
stock stage 1006

X utilised
o] 0.0515 0,0515
1 0,0859 Col37h
2 0. 1027 062401
3 0, 1066 06 3467
4 0. 1024 Os 414190
5 0.0935 065425
6 0,0824 0,6249
7 0.0708 0.6957
8 0,0596 0a 7553
9 0. 0L 9L 00 8047
10 0.0405 0.8452
11 0.0328 0.,8780
12 0,0263 09043
13 00,0210 009253
1 0.0166 0.9419
15 0,0131 009550
16 0.0102 0.9653
17 0.0080 0.9733
18 0.0062 0.9795
19 0.0048 0,984.3
20 0.0037 0, 9880
21 0.0029 0. 9908
22 00,0022 0. 9930
23 0.0017 00 9947
2 0.0013 0. 9960
25 0.0010 0.9970
26 00007 069977
27 0. 0006 049983
28 0. 0004 0.9987
29 0,0003 0.9990
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a 90 chance is required then an IISS of 12 is nececssary. Because of
the discrete nature of the distribution it is generally only possible
to approximete to a required probability figure., Thus in this case
90.4%% is possible as opposed to the 9% specified,

Table XIX relates to the stock between any two adjacent (fed and
feeding) stages in the line. The implications of a given common
probability of 100% utilisation for the line as a whole would neced to
be considered in practice. Thus for the line of Figure 7 there are 3
inter-stage stocks. If each of the threc initiasl inter-stage stocks
is set at 12 then, since the probability of an individual IISS proving
sufficient is 0,9043, the probability of all three proving sufficient
in & given planning period is 0.9043° = 07395 i.6. there is a 73.95%
chance that no stage will become idle,

The stock used to feed the initial stage (Stage L) has been
ignored in the foregoing. Because it is not fed from an earlier
operation stage the distribution of stock required will not
(necessarily) be négative binomial. If, as is often the case in
practice, this stock comes from a store then provided the store is run
efficicntly it is reasonable to assume that the probability that this
initial stage runs short of stock will be smrll, If however it is
considered desirable to specify a stock level in front of the initial
stage that gives the same level of protection as the initial inter-
stage stocks then a different model must be used,

For 100% utilisation of the initisl stage as meny items must be
available in the feeding store as are completed by the stage during
the plamning period. Thus the distribution of stock requirement is
the same as the distribution of output from a 100% utilised stage

having an Erlang operation time distribution.
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Por exponential service times mean = m' a standard result is that
the output per fixed (planning) period PP is Poisson, mean = FP/m'
(Burke, 1956). Further it can be shown (Cox, 1962) that if the
operation time is Erlang, parameters K and m', then the distribution
of output will be general Poisson, parameters K and PP/m'. (See
Appendix F for further details of the general Poisson distribution) .

Table XX, page 98, gives thc output distribution for a 1oq%
utilised stage, planning period = 124 time units, operation time Erleng,
mean = 1 time wnit, K = L, The main use of this table in this thesis
is to determine the short term output potential of the line of Figure 7
but from the foregoing it can be scen that the table might be used to
determine the stock level necessary to give a 90% chance of stage 4
being 1006 utilised i.e. it shows that a stock level of 131 would be

requircd.

Determining the output potential of the line of Figure 7

Two methods of reckoning output during a given period were
outlined in Chapter 1, page 5. The output potential of a line (in
terms of an output per plamning period distribution) will be different
for the short term and long term accounting methods.

Short term output potential

If all initial inter-stage stocks are maintained at a level that
will provide a high probebility of keeping fed stages fully occupied,
Stage 1 will effectively be decoupled from the rest of the line. The
short term output distribution is then that of a 100% utilised Stage 1.

Ls has been stated above in connection with determining an initial

stock level for Stage 4 the output distribution of a 1006 utilised stage
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TABLE XX: Short term output distribution (general Poisson, K =
PP/m' = 124) for the line of Figure 7, page Ol

Output Probability output Probability output
X = X X
110 - 0.0029 0.0070
111 0.0045 0.0115
112 0.0069 0,018
113 0.0101 0.0285
114 0,014 3 0,0429
115 0.019 0.0624
116 0.0259 ©.0883
117 0.0330 001213
118 0.0407 0,1620
119 0, 0486 0, 2106
120 0.0560 0.2666
121 0.0625 043291
122 0.0675 0. 3966
123 0.0706 0.4672
124 0,071 0.5387
125 0.0700 0.6087
126 0,0665 0.6752
127 0.0612 0, 7361
128 0.0546 0.7909
129 0.0472 0.8381
130 0.0395 0.8776
131 8.07a1 0.9098
132 0,025 0.9351
133 0.019% 049545
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having an Brlang operation time distribution is general Poisson,
parameters K and PP/m'.

The general Poisson probebility moss function is:-
K
gp(x5K,u) = | et il

( ng+5.-—1):

d=1

where K = shape paramcter

u

1)

PP/m' here = location paramcter,

With K = 1 the Poisson distribution is obtained. u then equals
the mean.

Thus the short term output potential of the line of Figure 7 is
governed by the general Poisson distribution gp(x;4,124). The
probability mass function and cumulative distribution function are
evaluated in Table XX, This table shows that there is a 9.02% chance
of an output of 132items or more in a planning period of 124 time units
since the probability of 131 or less is 0.9098. Similarly there is:~

a 20.9%% chance of 129 or more items,
2 3913 6hence of 126 or more items,
a 46,136 chance of 125 or more items,
a 53.28% chance of 124 or more items,
& 91.17% chance of 117 or more items,

and a 99.306 chance of 111 or more items.

The difference between the expected output figure (expected by
a production planner using a deterministic approach) of 124 items and
a figure that hos a reasomable chance of being achieved e.g. 99.3%

chance of producing 111, could well be significant in practice,
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Long term output potential

It has been pointed out (Chapter 1 page 10) that if it is assumed
that from a long term point of view it is desirable +o maintain the
probability of meeting any given output figure at a constant level over
all foreseeable plannihg periods then it is necessary to keep initial
inter-stage stock constant. If this is to be so then only the output
of the slowest stage i.e. the stage producing the smllest number of
items during a given plaming period can be 'counted!.

Thus in the case of perfectly balanced Erlang lines the long
term output potential is governed by the distribution of the minimum
value in successive semples of n (n = number of stages) from the
general Polsson output distribution that applies to each of the n
stages,

In general an extreme (minimum) velue distribution for = sample
of n may be derived as follows:

Let X15 X5 Xgyeeoeorooarnec Xy

be a random sample of discrete variables independently distributed
according to the same probability density function p(x).

Le-t Zn = min(Xl, X2, x}, .oqu.-n.%)

Let probability x, grenter than x = S(x)

. plaln x; greater than z) = (s(zN)"

and p (2ll x; greater than (z~1)) = (8(z-1))"

Sz, =) = (8(2-1))P - (s(2))"
(s(2) + p(2))® - (8(=))"

ngﬁ (p(=))" (s(2))" "

o

i

]

o plz, = 2)

where (n) = ni/i} (n~i)?
i
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In the ea
balanced Erlang
oz, = z)

This will be wr

Z =

K P

u =

n =

p(z) =

s(z) =

Thus S(z) =
gpmin( z;

Table XXT page

of an output of

se of the long term output distribution for perfectly
liness -
= probability minimum output of n siages = =z
itten as gpmin(z; X, u, n) Thus:
minimum output figure
operation time shape parameter
ratio of planning period to mean operation time
i.e. PP/m'
number of stages
output distribution of individual stoages i.ee. general
Poisson distribution
probability output of an individusl stage is greater

than Zia

e ‘fi, ”§;~u a Kx+i-1
L, L{o+ i)t

x=0 i=1

Ly 124, k) for the line of Figure 7 is evalusted in
102, This table shows that there is an 8,06% chance

12}, items or more. Similarly there is (corresponding

short term figures in brackets):

a 20.26%
a 38.8.%
a L9.31%
a 89.07%

and a 99. 08%

chance of 122 or more items (20.91%:129),
chance of 120 or more items (39.1%%:126),
chance of 119 or more items (L46.1%:125, 53.28%6;124),
chance of 114 or more items (91.17%:117),

chonce of 109 or more items (99.306:111).

Reference has already been made to the difference botween the

'expected' output figure of 124 items per planning period and any short

term output figure that has a good chance of being achicved. The

difference between the expected figurc and any reasonably certain long
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TABLE XXI: Long term output distribution gpmin(z;i,124,% ) for the
line of Figure 7, page 9.

Outpﬁt Probability output Probability output
z = 2 4z
0L 0, 0004 0.0007
105 0,0007 0.0014
106 0.0013 0.0027
107 0.,002% 0,0051
108 0.00L2 0.0092
109 0.0070 0,0162
110 0.0114 0.0276
111 0,0177 0.,0452
112 0,026 0.0716
113 0.0377 0.1093
114 0.0514 0. 1607
115 0,0666 0.2273
116 0,0818 00 3091
117 0e 0947 0.4039
118 0.1030 005069
119 0, 1047 0,6116
120 0.,0990 0. 7107
121 0.,0867 0s 7974
122 0.Q700 0.8675
123 0.,0520 0+ 919%L
12}, 0.,0353 0. 9547
125 0.0218 0. 9766
126 0.0123 0.9889
127 0.,0063 0.9952
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term output figure is even greater. The contrast is perhaps even more
morked when it is considered that TableXXI shows that since the
probability of 123 or less is 0.9194, there is only an 8,06% chance of
achieving the long term output figure of 12 items.

Interest in the short term output potentisl of a line is likely
to arise in emergency situations. At such times the main concern will
probably be centered around getting as mich output as possible or even
simply getting any output. Whilst a knowledge of the probability of a
given output figure being achieved would almost certainly be useful
on such occasions the precise magnitude of a probability would tend
not to be of great importance.

From the long term point of view however effective planning and
control of a line require that schedules be based on output figures that
do have a high chance of being achieved., The approach to long term
output potential presented above provides a basis for determining such
figures. In addition it enables the vital role that inter=-stage stocks

play in meximising a line's output potential to be quantified,
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CHAPTER 7
SOME DESIGN IMPLICATIONS OFF THE IISSR AMND OUTFUT

POTENTIAL CONCEPTS

The approach to inter-stage stock and output potential
put forward has important implications at the line design
stage. In particular it provides a basis for considering the
effects of:

i, desired or implied chance of zero line idle time
i.ce chance of no stage being idle.

ii., desired or implied chance of zero stage idle time
i.c. chance of an individual stage having zero
idle time.

iii. planning period.
ive initial inter-stage stock
v. inter-stage storage capacity.

vi. desired chance of meeting an output schedule.

viie number of stages.

viii. financial limits on stock investment.

Some examples of the way in which such factors act
follow. The discussions tend to be based on the line of
Pigure 7, pege 94 but whereas in Chapter 6 a planning period
of 124 time units was assumed here it will be assumed that
the planning period must be a multiple of 31 time units i.e.

31, 62, 93, 124, etc.
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Chonce of zero line idle time versus chance of zero stage

idle time,

There are three inter-stage stock points in the line
of Figure 7. The ncgative binomial/regression analysis
results of Chapter I emable the chance of zero idle time
at an individual stage to be controlled by the setting of
an appropriate initial inter~stage stock level. The chance
of zero stage idle time could be the same for all stages or
could vary from stage to stage. This latter approach might
be desirable because perhaps certain stages need higher
utilisation levels than others for their efficient operation.
Here however it will be assumed that a common figure is to be
adopted. Given such a common figure the necessary initial
inter-stage stock level can be determined from the appropriate
ITSSR distribution defined by Table XII, page 75

If however the chance of zero line idle time is given

thens
if the chance of zero line idle time = C,
chance of zero stage idle time = S
and number of inter-~stage stock points=D
then C = SD
and thus 3 =:01/D

Tables XXII, page 106, and XXIII, page 107, illustrate
the effect of this relationship for a range of 'chance of
zero line idle time' and 'number of inter-stage stock points',
These tables are based on the assumption that the chance of
zero line idle time is specified and that the above
relationship is then used to determine the 'implied' chance of

zero stage idle time.
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TABLE XXIT: Initial inter-stage stock versus possible planning
periods for given chance of zero line idle time for
the line of Figure 7, page 94. PFigures in brackets
based on negative binomial regression hypotheses
using the X = 4 relationships of Taeble XII, page 75.

Required | Implied
chance chance
of zero of zero
line stage
idle idle Initial inter=gtage stock for a planning
time time period of:
during during
planning | planning
period period
31 62 93 120
o5 « 7937 I 6 8 9
(e77u2) | («7875) | (.8170) | (.80L7)
o6 <8L3) 5 7 9 10
(.8583) | («8467) | (.8604) | (+8L52)
.7 +8879 5 8 10 11
(48583) | (+8909) | (.8943) | (.8780)
«8 «9283 6 9 11 13
(o9136) | (+9232) | (09205) | (.9253)
9 « 9655 8 11 i 16
(.9701) | (+9629) | («9672) | (+9653)
.95 »9830 9 13 16 19
(«9828) | (29826) | (49822) | (+9843)
.98 ¢ 9933 11 15 19 22
(+9946) | (.9920)| (+9931) | («9930)
«99 « 9967 12 17 21 25
(29970) | (29964) | (+9964) | (£9970)
« 995 . 9983 13 19 23 o7
(+9984) | (.9984)| (.9981) | (+9983)
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TABLE XXIIIs Effect of number of stages on inter-stage stock
requirements. Stock requirements based on
negative binomial regression hypothescs using the
K = L relationships of Table XII, page 75.

Number of |Required|Implied
inter - chance | chance
stage of zero |of zero
gtocks line stage
idle idle Initial inter-stage stock for a
time time planning period of:
during |during
planning|planning
period | period
31 62 93 124
2 «90 « 9487 7 10 13 15
2 e 95 o ITLT 8 12 15 17
2 099 « 9950 11 16 20 23
3 $90 | 9655 8 11 | 16
3 095 « 9830 9 13 16 19
3 .99 | .99%7 12 17 21 | 25
4 +90 « 9740 8 12 15 17
b «95 .9873 10 14 17 20
L e 99 « 9975 12 18 22 26
5 «90 e 791 9 13 16 18
5 e 95 « 9898 10 14 18 21
5 «99 « 9980 13 18 23 26
6 « 90 « 9826 9 13 16 19
6 095 | 9915 10 15 18 | 21
6 «99 | #9983 13 19 23 | 27
8 .90 « 9869 10 1k 17 { 20
8 «95 9936 11 16 19 | 22
8 «99 « 9987 13 20 2 28
10 .90 » 9895 10 1L 18 21
10 «95 « 9949 11 16 20 23
10 +99 « 9990 §oTS 20 25 29

107



Interaction of chance of gzero 1ing/stgge idle time, planning

period and initial inter-stage stock

It is assumed that the line of Figure 7 can be planned
on the basis of a time interval that is a multiple of 31 time
units. Columns 1 and 2, Table XXII cover a range of chance of
zero line idle time and corresponding chance of zerc stage idle
time given that there are 3 inter-stage stock points. Columns
3-6 give the initial inter-stage stock necessary to achieve the
required chance of zero 1ina/stage idle time over the planning
period indicated at the top of each column. These IISSR
figures are based on the negative binomial distribution having
perameters defined by the K = L figures of Table XII, page 75
isCe |

m' = 0.5463/FP = 0,0292

Ioglop' = -0.468210g. PP + 0.4202

10
Thus for FP = 31 m'S = 3,01 and p' = 0,5272,
for PP = £2 m’s = 4.27 and p' = 0,3811,
for PP = 93 m‘s = 5,24 and p' = 0.3152
and for PP = 124 m’s = 6,05 and p' = 0,2755

Teble XXIV, page 109, gives details of the IISSR
distribution for PP = 31 and Table XIX, page 95, for PP = 12.
Table XXIV shows that if a planning period of 31 time units is
used then if IISS equals 4 there is a 00,7742 chance of zero
stage idle time. With three inter-stage stock points the

implied chancc of zero stage idle time for 0.5 chance of zero
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TABLE XXIV: Negative binomial initial inter-stage stock
requirement distribution for K = L, planning
periocd = 31 time units.

m', = 0s5462 /PP ~ 0,0292 = 3,01

| S .
10g,,p" = -0.4682log, ) FP + 0.4202 = 0,5272

Initial | Probability | Probability X
inter exactly is sufficient
stage X used to keep fed
stock stage 100k

X utilised
0 001166 001166
1 0.1851 0. 3017
2 061906 0.4.924
3 001609 0,6533
Iy 0,1209 0, 7742
5 00,0841 0. 8583
6 0,055 0.9136
7 0.,0350 0.9486
8 0.0214 0.9701
9 . 0.,0128 0,9328
10 0.0075 0.9903
11 0.00L3 0. 9946
12 0,002 069970
13 0,001 0. 9981
1 0.0007 0.,9991
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1/3

line idle time is 0,5 = 0,7937. Because the IISSR
distribution is discrete the nearest figure to this is the
above 0,7742. Thus 4 is the figure that appears in line 1,
column 3 of Table XXII with the achievable figure of 0,7742
in brackets beneath it. Similarly the table shows that for
a 0«5 chance of zero line idle time over a plamning period
of 62 time units an IISS of 6 is necessary, the exact chance
of zero stage idle time being C.7875.

Table X¥II shows that for a given required chance of
zero line idle time IISSR increascs as the planning period
increases and that for a given planning period as required
chance of zero line idle time increases so IISSR increases.
Such information could be used to good effect at the line
design stage.

If there was an upper limit to the IISS figure - perhaps
because of a physical limitation on inter~stage stock because
of financial constraints-Table XXII shows the alternatives
aveilable, If for instance the upper limit was 11 items then
the maximum possible chance of zero stage idle time is 0,98
in conjunction with a planning period of 31 time units, If
in addition the planning period must be 124 time units then
the maximum possible chance of zero stage idle time is 0,7

Inter-stage storage capacity

The stock figures given in the body of Table XXII refer
to the stock level that must exist at the beginning of each
planning period if the chance of zero line idle time indicated
is to be achieveds Over a given planning period physical stock

would tend to vary about this value. Thus inter-stage storage
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capacity would need to be some figure greater than this
initial figure. The research carried out did not consider
this aspect of the problem but the procedurce used could
easily bhe adapfcd to give the nccessary information. The
table does however provide an indication of the minimum inter-
stage capacity that must be provided for a given planning
period/chance of zero line idle time combination and this
alone is a significant improvement on the kind of information
ﬂntiscmwmﬁbrmmﬁaMﬁtotmahnedmﬁgmm

Financial limits on stoeck investment

Table XXII gives an insight into the financial investment
requirements of the line. In general the higher the probability
of zero line idle time and the longer the plamnning period the
greater IISSR and thus the higher the financial investment
involved. As wes stated in the previous paragraph actual
inter-stage stock will fluctuate about a stock figure quoted
in the table; but it could provide the basis for a good first
approximation to the financial investment that would have to
be made in stock and thus an indication as to whether financial
constraints are likely to be violated. Any attempt to find a
solution within such constraints could proceed on the basis of
the various references to inter-stage stock levels before and
after this paragraph,

Number of stages versus initial inter-stage stock requirement
versus planning period

A key decision at the line design stage concerns how many
stages to have. This tends to be influenced by technological

and ergonomic considerations and the required average output
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rate. Such factors are likely to be paramount but inter-stage
stock and risk of idle time implications warrant consideration.
Columns 2 and 3 of Table XXIII, page 107, show how, for a
given chance of zero line idle time, the chance of zero stage
idle time - being equal to Cl/D; C = chance of zero line idle
time, D = number of inter-stage stock points - increases as D
increases. Therefore for a given plamning period IISS must
also increase, This effect is shown in columms by 5, 6 and 7.
Twamra039c@mmcfzmwlkmi&&thmaﬁwmmg
a planmning period of 124 time units, IISSkR= 23 for a three
stage line (giving two inter-stage stock points if assumed o
be a single string). If however an eleven stage line is used -
giving ten inter ~- stage stock points - then the individual
inter-stage stock requirement increases by 6 to 29, The total
amount of stock between stages increases from 2 X 23 = 46 units
to 10 X 29 = 290 units - an increase that could have significant
financial and physical storage implications.

Effect of the choice of plaming period on output potential

Table XXII shows that if an upper limit is placed on
initial inter-stage stock then for a given risk of idle +ime
the choice of planning period may be restricted.

As has been stated previously the short term output
potential of a line would normlly be of interest in emergency
situations when the emphasis would tend to be on producing as
meny items as possible in the immediate period, If this period
equals the planning period the 'short term' output potential

as previously defined on page 10 applies. If the period is
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greater than the plamming period then there is an increased
risk of stock-outs between stages and the reckonable output
potential will tend to be reduced,

In the case of the long term output potential if the
choice of plamning period is restricted then the long term
output potential may be adversely affected - 4o an extent
that might be significant.

In the casc of the line of Figure 7 for instance if +the
preferred planmning period is 124 time units and the probability
of zero line idle time is required to be 0,90 but there is an
upper limit to initial inter-stage stock of 8 items then from
Table XXII it can be seen that o planning period of 124 camnot
be accommodated and one of 31 time units must be used, If
output schedules are to be based on a figure that is achievable
90% of tke time then Table XXI, page 102 shows that for a
planning period of 124 time units the output figure that has
only a 4e52% chance of not being achieved is 112.

If however a planning period of 31 time units is used then
the distribution of output per planning period of 31 time units
is as shown in Table XX V, page 114, and the distribution of
output per four consecutive, independent, plaming periods of
31 time units each, obtained by combining four 31 time units
output distributions is as shown in Table XXV, page 115, This
shows that with a 31 time units planning period the output
figure corresponding to the 4e526 figure of the previous

paragraph is 107/108.
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TABLE XXV: Long term output distribution per 31 time units
for the line of Migure 7, vage 9. Planning
period = 31 time units.

Output Probability Probability
X output output
=X € X
19 0001 +» 0001
20 - 0001 » 0002
21 »0006 » 0008
22 .0023 » 0030
23 -0078 » 0108
2l 0222 «0330
25 0529 .B59
26 « 1041 » 1900
4 01656 « 3556
28 22071 <5627
29 » 1970 « 7597
30 »1383 + 8980
31 0698 #9678
32 <0249 » 9927
33 #0061 - 9988
34 »0010 « 9999
35 » 0001 1.0000
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TABLE XXVI:Long term output distribution per 124 time units
for the line of Figure 7, page 4. Planning
period = 31 time units. Distribution based on
the combination of the long term output for four
consecutive, independent, planning periocds of
31 time units. (See Table XXIV, page 114).

Output Probability Probability
X output output
=X £ X

98 0001 - 0001
99 +0002 . 0003
100 + 0003 - 0006
101 « 0007 20013
102 «0015 - 0028
103 « 0029 « 0057
104 »0053 » 0109
105 0092 0201
106 20153 <0354
107 «0240 «0594
108 «0355 «0949
109 «OLI7 o 116
110 00654 02101
111 « 0809 22910
112 « 0940 « 3850
113 01022 #4872
114 » 1040 «5912
115 »0987 «6898
116 « 0873 « 7771
117 .0718 - 8489
118 <0549 » 9038
119 . 0388 « 9426
120 » 0254, . 9681
121 .0154 » 9835
122 - 0086 »9921
123 « O0L L « 9965
12 .0021 9986
125 .0009 « 9995
127 » 0001 « 9999
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Conclusion

The factors and interactions considered in this chapter
are by no means exhaustive but they help to demonstrate the
way in which the concepts developed can throw new light on
some of the problems that must be considered at the line

design stage,
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CEAPTER 8
SUMMARY

The research carried out had as its main aims:

1., the development of a procedure for determining,
for any assembly line, the initial (to a planning
period) inter-stage stock necessary to provide a
given ohance of zero idle time occuring during a
planning period.

24 assuming that an initial inter-stage stock level

giving a high chance of zero idle time could be
stated ~ definition of the output potential of a
line in terms of its short and long term output
distributions.

The results obteined have prompted consideration of the
effect of the interaction of such factors as planning period,
initial inter-stage étock, risk of idle time and number of
stages on the performence of a line.

With regord to aim 1 above, for a two stage line a method
based on simulation has been developed. This enables the
required stock level to be estimuted directly; the larger
the somple size (number of simulations) the more reliable
will the estimate be. For two stoge lines using plenning
periods in the range 8 /2 to 1024 /2 time units, and having
operation times Erlang, mean 1.0 time unit, shape parameter
=1, 2, 3 or 4, it has been shown that the distribution of
initial inter-stage stock requirement might reasonably be
assumed to be negative binomial. For lines with more than

two stages and thus more than one inter-stage stock point
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the two stage results could be used directly. However caution

must be cxerciscd since the two stage results are themselves

aporoximte and in addition the effcct of applying them to o

line with more than two stages is sensitive to the number of

inter-stage stock points.

Further research

There is = neced for further development of the concepts

put forward., In porticular the following aspects require

further investigationt

i.

ii.

iid.

ive

analytical identification of the true initial
inter-stage stock requirement distribution.
investigation of the sensitivity of initial
inter-stage stock requirements to the number of
inter-stage stock points, D, and determination of
the range of values of D for which the procedures
developed moy be applied in proctical situations.
if no alternative to the negative binomial
hypothesis is found - refincment of the regression
relationships of Table XII, page 75.
extension/testing of the results obtained for
perfectly balanced Erlang lines over o wider

range of K and plenning period.

consideration of the economic aspect of the
scheduling problem eege determination of 'economic!’
initinl inter-stage stock levels and ‘'optimum'

stock=-out-risks.
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vi. consideration of lines having more complex
characteristics than perfectly balanced Erlang
lines. For example:

oo lines with Erlang operation times having
identical means but different values of K.
b. balinced lines with non-Erlang operation times.
¢. balanced lines with unique operation time
distributions - perhops assumed to exactly
follow the results of work study investigations.
d., unbalenced lines,
¢. lines exhibiting the common characteristics
of ussembly lines e.g. pacing, incentive
schemes, operative grouping schemes,
mechanical (conveyor belt) movement of items
along a line, etc
vii. investigation of the problems involved in applying
the concepts developed in practice. c.ge the cffects
of limiting output ot stages other than the slowest
during a planning period - as implied in the long
term output model presented.
Conclusion
The results and concepts presented provide an insight
into factors crucial for effective design, planning and control
of a line, The significance of any one factor or interaction
of factors will depend upon the particular line being designed,
planned or controlled but an awareness of the implications of

decisions reloting to such factors and interactions son only
improvéd the chance of a line manager achieving his prime
objective:

to meet planned finished goods production schedules for

successive planning periods without tying up excessive

amounts of stock between stages.
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APPENDIX A

Pilot investigation into initial inter-gtage stock requirements

when operation times are Weibull

Por reasons stated in Chapter 2, pages 18-21, only'Eriang
operation times were considered in the mein investigations.
However a small independent investigation was carried out into
the possible effect on results if Jeibull operation times are
assumed,

4 Weibull distribution may be defined by two parameters

a' and b' such that the cumulative distribution function is

given bys
(nrm)a’
W(O=t2T;at ,b') = 1 - e (b'2)
ands
mean = ll 4 a'"lz
’bf
variance =]ZZ +* za'"l) - {R;?%~a’"1))2
br?

The operation time distributions used in generating the
results of Tables VA - D,pages 4O-46, were Erlang, mean m' =
1 time unit, K = 1,2,3 and 4, variance = 1/X.

The simulations carried out with Erlang operations times,
K =2, 3 and k4, planning period = 16, 16 /2, 32,32./2 and 6l
time units were repeated using Weibull operation times with
corresponding means and variances. The required values of
a' and b', identified by means of the above Weibull mean and
variznce expressions are given in Table AI, page 128.

An example of comparable distributionsis given in Table

AIII, page 129.
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TABLE A I: Weibull distribution parameters to give
operation time distributions equivalent to

those used in the simulations that produced

the results of Tables VA-VD, pages 40-46

Erlang Erlang Equivalent Weibull
mean shape digtribution defined
parameter by

K at bt
1.0 2 1.44 0.9075
1.0 3 1.79 0.8896
1.0 L 2,10 0.8857

The IISSR frequency distributions obtained using
Weibull distribution operation times were compared with the
corresponding Erlang results using the Kolmogorov-Smirnov
two sample test. The maximum differences in cumulative

frequencies-focused upon by the test - are given in Tsble A IT,

The 10% significance level for the test is in general given

1 and. n2

sizes (Seigal (1956)). Here n sndn, = 100 giving & 10%

Thus the figures of Table A II indicate no

by l.22, (nl + n2) / nyn, where n are the sample
valuc of 0.1725.
significant difference between the distributions - which
cover the range of plenning periods 16 to 64 time units.
TABLE A IT: Maximum observed differences between the cumulative

IISSR frequency distributions for Erlang and Weibull
operation times,

K =

Plamming 2 3 4
period

16 .05 .12 .12

16/2 .06 .12 .11

32 «09 .09 .09

32/2 .08 <10 .06

6l .12 .13 013
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This is not to say however that for longer planning periods,
when the increasing completion rate of the Weibull
distribution might have more effect, the distributions might

not diverge significoently.

TABLE A III: Comparable initial inter-stage stock requirement
frequency distributions obtained by simulating
the operations of a two stage line first with
Erlang and then with Weibull operation times,
mean = l.0 time units, variance = 0,5 i.e.

K=2, a' = 1,44, b' = 0,9075. Planning period
= 16 time units.

ITSSR Erlang line Veilbull
frequency 1line
frequency
o 16 16
1 15 18
2 25 17
3 L 1L
L 6 U
5 5 3
6 9 10
7 8 3
8 2 2
9 2
10 1
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Example of output from the programme of Appendix B

“*Wf:Mﬁﬂﬂﬁﬁﬂaﬁﬂﬁgﬁﬁ;ﬂULTI?ﬁIEﬁ =.2893, = =

e ***ﬂ*’**’******* *****’** AR o K e K o N o Sl R o N e s o ol ol ok R R e K *****«“* T
RANDOM NUMBER SEED = 2191034

THIS nUTPUT-PRODUCED 575276= T —
FIRST OF THE 15 PP=20 SAMPLES USED TO ESTIMATE REGREQSION PARAMS

e e ReE WA T L0 TINE UNITSE = ==
PLAHNING PERIOp 20.00 TIME UNITS.

',%Wm '{}El ,SIMUL kTI Oﬁis" - .I:Q a' e L S T i s

LAST RANDOM NUMBER = 219103u - o
DISTRIBUTION OF ITss REQUIRED BY FED STAGE

o1 2 3 &% 5 ¢ 7 3 5

0 10 12 1z 14 L 9 9 6 8 3
ST B 3 e Ee Ol Ve B | E V Sy z T e e

£ ) 2L ee——rXn Q«Q;:“ MERI\I“- i

AR =HT200 EEE
VARIANCE = 18,1528 STANDARD DEVIATION = 3.7580
=—stm OF THE X 2 472;“ ”suwmbp THE x SQUAREb'ﬁ 3626, -

LAST RANDOM HUMBER = 740858
i R ER R R R REIRR CE EER N RN KA AR R R KL KB AR KRR R R R AR R R




APPENDIX C

Negative Binomial or Pascal Distribution

& Negative Binomial distribution mey be defined by two parameters

p' and k such that the probability mass function is given by:

pk

i

ub(0;p' ,k)
and:

PE {k(k + 1) (k + 2) vevee (K +x = 1) (1 - p)¥

x!

nb(x;p*,k)

i

for x > 1e
The population mean = k (1 - p')/p'
and population

k(1 - p' Pspr?

i

variance

(mean < variance)

Least squares estimetes for p' and k may be obtained from the

sample mean ¥ and variance s2 as;-
%/s°
% 2/(s%- %)

t

i

k

i

Maximum likelihood estimetes of p' and k mey be obtained froms -

L lo '+Ifz Yo 1 1 =0
8e P i®atl \k T E+T) V) m
where: -
L = sample size
number of zeros in sample
x ' /(1 - p')
An iterative procedure may be used to solve the above maximum

likelihood relationship.

a

i

k

i

References~ Bissell (1970)
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Example of output from the programme of Appendix D

TomETEE——— FH*?:QQ%EU*E?R§E§€E§§??ZS7Z§ipN?756&02?16?0}'W*"”

' LASTNO INPUT ON A CARD

K1 PLANNING PERIOD = 20.0 STOCK=OUT=RISK = -
_ANITIAL INTER-STAGE STOCK. =79 SAMPLE SIZE = 99 B

~_RANMDOM MUMBER SLEN:: 8023750

- PREVEEIE YIME 5516 ,94 NEXT =
& PREV FIN TIME = 18,60 NEXT
S RTATTETTIUPREVEFING = 1548 NEXT

4 AT = 8 25 NEXT

T 17.7% LASTNO
19,22 LASTND =
16,66 LASTNG = -

" T8.35 LASTNO =
5,55 LASTNO = 34201407
13,46 LASTNO = 7937612

7524954 -
7R28132
3000420

Ir 51 NEXT
15519 NEXT: ™
14,31 NEXT
= 15.75 NEXT.

" 15,36 LASTNO = 3011812+~
15,55 LASTNO = 717%124“‘“‘w
=15,80 LASTNYO = . 8368204 -
15,19 LASTNO = 627571
';;5%05hm§xJ =5 63 LASTNO == =80S44767
739 8432 LASTNO = 499092
TT19.07NEXT == 19,79 LASTNO = 1980652
T8I NEXT =7 14,71 LASTNO = 5188260
= 14,01 LASTND = 705568

83 PREV FIN TINE
15 AT =E93:PREVERINSTIME==—" 12,99 NEXT




APPENDIX B

Erlang Distributions

The Brlang family of distributions has the probability density

functions:

-.‘- o I )“
erl(t;K,m') = (K/m')KﬁK le Kb/
(x-1)t

wheres -
X, an integer, = a shape paramecter
m' = the mean
e = 2,7183
(k-1)/(X/m")

and the variance = m! 2/K

The mode is at %

]

For K = 1 erl(4;K,m') = e -t/m’ /m', the probability density
function of the negative exponential distribution.
For K =cothe mode is at m' and the variance is zero.
Erlang distributions form a subset of the gamma distribution
familys
gama(t;at,b') = (a'/ﬁ')a‘ta' -1 - a’ t/b"

(at=- 1)

a' ¥ 0
bt positive
In the Brlang subset a' is a positive integer,
The Erlang distribution is identified as a special case of the
gamma distribution family because of its importance in Queueing Theory

where it is frequently encountered as a service time distribution (Saaty

1957) .

L5



In general the gamma cumulative distribution:

L3
GAMMA (O%teT ja' ,b') [(a'/b‘\a g2 ~lgme ¥/ 2

(at-1)t

must be evaluated by numerical methods but if a' is & positive integer,
as in the case of the Erlang family then:

GAMMA (O%£t2 Tia' ,b') = ERL(O€t€T;K,m')

=1- flemt +1 (we)e1 o) 1 (wa)R K
Koo2aTET P (x-1): () ¥

References: -
Sasieni, Yaspan & Friedman (1959)

Mood & Graybill (1963)



APPENDIX ¥

The General Poisson Distribution

4 stonderd result (Haight (1967), Cox (1962), Morlat
(1952)) is that if the intervals between arrivals at a point
follow a negative exponential distribution then the output per
unit time is Poisson.

A generalisation of this result can be obtained by allowing
the interval between arrivals to be Erlang(negative exponential
intervals then being a particular case).Haight (1967) refers to

two possibilitiess~

i, synchronous counting - when counting commences
immediately after an arrival,
ii, asynchronous counting =~ when counting commences

at a time independent of any arrival time,

The synchronous counting model is relevant to the fixed
planning period situation. Goodmen (1952), Morlat
(1952), Haight (1959) and Jewell (1960) give the probability

mess function for the output distribution for this model

ass K
gp(x;Kyu) = | et Jfoti-l
(Rx#i-1)t
i=]

where K = shape parameter,
and u = location parameter.
This distribution has been referred to as the general,

or generalized, Poisson distribution,

W7



To fit a general Poisson distribution to data Haight
(1959) suggested trying different values of K until 2 minimum
chi2 value is obtained. To do so u should be set equal to
K% + 05K = 0.5 where ; = the sample mean. This is a
procedure which Haight found to work in practice and

experience during the course of the present research

confirms this.



APPENDIX G

Tests of the normality of the differences of Tables XVIA-D,
pages B85-80

In order to test the assumption that the 72 differences

are normally distributed the three 'versions' of normel
distribution indicated in Table GI were considered. 0.9132
and 3,5580 are the sample mean and standard deviation
respectively. O and /9.5 are the predicted mean and
standard deviation under the negative binomial/regression

hypotheses of page 77.

TABLE GI: Goodness~of-fit results f or normal distributions
fitted to the 72 differences of Tables XVIA-D,

pages 85-88.
Moan Standard | Chi® | ar Significant
deviation at (% level)
0.9132 3.5580 11.11 7 20
0 345580 9.59 7 25
0 /9.5 8485 5 20

Table GI shows that the observationé could reasonably
be assumed to come from any of the three normal distributions

testeds
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GLOSSARTY

Key abbreviations and symbols

K

b
X

™

IISS

slope parameter of regression relationship for
negative binomial initial inter-stage stock
requirement distribution mean,(See Table XII,
page 75).

intercept parameter of regression relationship
for negative binomial initial inter-stage stock
requirement distribution mean.(Seec Table XII,
page 75).

number of combinations of n items taken 1 at

a time.

chance of zero line idle time i.e. of all
stages in 2 line being 100% utilised.

slope parameter of regression relationship for
negative binomial initial inter-stage stock
requirement distribution parameter p';(aee
Table XII, page 75).

intercept parameter of regression relationship
for negative binomial initial inter-stage stock
requirement distribution parameter p‘,(see Table
XIT, page 75).

number of inter-stage stock points in a line,
initial inter-stage stock. Equals stock present
between two stages at the beginning of a

planning period.
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IISSR

initial inter-stage stock requirement. Equals the
stock that must be present between two stages at
the beginning of a planning period if a given
chance of the fed stege being 1006 utilised is
to be achieved.

Erlang operation time shape parameter,

mean of an operation time distribution.

TISSR sample mean,

true or assumed (on basis of regression
relationships of Table XII, page 75) meen of
an TISSR distribution.

number of stages in a line.

sample size uscd in factorial experiment of
Chapter 5.

TISSR sample shape parameter.(Distribution
assumed to be negative binomial).

true or assumed (on basis of regression
relationships of Table XII, page 75) IISSR
distribution shape parameter. (Distribution
assumed to be negative binomial).

planning period. A line is assumed to be
plamned, scheduled and controlled on the basis
of consecutive time intervals of constant and
predetermined duration i.e. on the basis of the
planning period.

number of independent stock points in front of
stage .

chance of zero stage idle time i.e. of an

individual stage being 1006 utilised.
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u location parameter of general Poisson
distribution. Equals planning period/mean
operation time in the output distribution
context.,

Distribubtion notation used

Probability density functions (p.d.f.) and probability mass
functions (p.m.f.) are indicated by one or more descriptive
letbers - in lower case - followed in brackets by a symbol
representing a random variable, a semicolon and then parameter
symbols separated by commas:
erl($;K,m') = Erlang pedef.
gamma (t3a',b') = gamma p.d.f.
gp(x;K,u) = general Poisson penef.
gpmin (x;K,u,n) = pem.f. of minimum value in a
sample of size n from a general
Poisson distribution.
ob(x;p',k) = negative binomial pemsfe
Cumalative distribution functions (c.d.f.) are indicated
in a related fashion, capital letters being used instead of
lower case for the descriptive letters and the sense of the
accumulation appearing before the semicolon:
ERL( 0£t2T;K,m' ) = Erlang ce.defs
GAMMA(OQtﬁT;a',b') = gammd CeGefe

W(0£t£T;at ,b') = Weibull cedef.
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