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ABSTRACT

The complete knowledge of the aerodynamic forces during the flight
of shells and missiles is essential to the study of the flight mechanics
of these objects. One of the most complicated type of aerodynamic force
to predict, in a general case, is that produced whenever the spinning
axis is at an ang & of incidence 4o the ffee stream velocity vector,

This phenomenon is commonly known as the Magnus effect. The only
theories developed to date assume small angles of incidence and are bamed
on a laminar boundary layer development around the body which has not

- separated. This study is an attempt to produce more information concern-

ing quantitative estimates of the Magnus effect.
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A Constant
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M Wagnus moment component referring to body nose

m1’Mm2’Mm3’Mm4

Magmuis force fficient ¥
Kf1,Kf2,Kf3,... ¥agnus force coefficient me/qcus""
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r, ®, X Cylindrical polar coordinate
ur;v¢,vi velocity component in r, o and x direction
h(x,2) houndary layer edge
up, w? velocity component at the edge of the boundary layer
849 82 position of boundary layer separation
& zogle of incidence
m angular velocity
» | spin rate wa/U
P density
5, Gx’ Gz houndary layer thiclmess in x and z directions
A roundary layer displacement thickness
v kinematic viscosity
m Rlasius similarity parameter -g FAE:
SRV AN
W Stream function
s $2 aseparation nosltion angle
e angle
e forward stagnation point angle



Vortex strength

Skin friction
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first derivative
second "
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CHAPTER T

Introduction and Historical Backeground

1.7 Introduction:

A side force is developed on rotating bodies of revolution such as
gpinning shells and missiles whenever the axis of spin is at an angle to
the direction of motion. This force and its moment are the result of
what is known as the "Magnus effect". This effect is aerodynamic in
origin and is the direct result of the flow of air over the body. The
interaction between rotation and the cross flow velocity produces an
agymmetric flow field. The Magnus force acts perpendicular to the plane
containing the spin axis and the fmee stream velocity vector. The con-
vention for the force, spin direction and incidence is shown in fig (I.1).
The agymmetry in the boundary layer thickness distribution alters the
effective aerodynamic shape of the body and this is one of the factors
giving rise to E?;ggroducﬁion of the side force and moment.

M&asurementsL;how that the variation of the nondimensional Magnus
force and moment coefficients with spin rate and incidence are of similar
form, for each body length to diameter ratio (£/d). The local Magnus
force loading coefficient is a function of the axial position but is
independent of the overall length of the body. At angles of incidence
up to 10° the variation of the side force and moment coefficient with
s8pin rate is approximately linear in agreement with theoryﬂz] . The
Magnus force is in the positive direction and is of order between 5 to
40% of the 1ift fo-oe for Reynolds numbers{based on body diameter) of

5

the order 2 . 107, The theoretical slender body 1ift is, however,

* Bibliography mentioned after the References,



unaf fected by the spin even allowing for the viscous effects., The
effects of the bocy snin on the normal force and pitching moment are
small enough to he neglected for an angle of incidence up to about 100,
At larger incidences the effect of spin becomes noticeable and is a
function of the body length to diameter ratio (£2/4).

The Magnus force and moment can be important in the prediction of
projectile behaviour in flight. The aerodynamic stability and flight

trajectories of srinning shells and misailes are both seﬁsitive to the
magnitude and direction of the Magnus force and moment.

The prediction of the Magnus force and moment is very complicated.
Barly attempts to dewvelop & satisfactory theoryEQJ assumed small values
of non-dimensional spin rate wa/U (see Notation) and small angle of
incidence & such that of/d < < 1,0, This theory assumed a laminar
unseparated boundary layer, The corresponding predicted Magnus force
varies linearly with wa/U, o and is inversely proportional to the square

root of Reynolds rumber (Uf/v) and acts in the positive direction, in

M
agreement with experiments-"-, It was found that the Magnus force and

its moment could be correlated with the distortion of the boundary layer
displacement thickness distribution resulting from the body aspin.

At anglés of ‘ncidence greater than 10° measuraments{')’1 show that
the Magnus force and moment variations with spin parameter ® become
highly non-linear. At this incidence the flow in each cross flow plane
is analogous to that of %he flow over a two dimensional circular cylinder
impul sively started from rest whilst rotating. The effect of the inci-
dence on vortex formation as the spin 18 increased have heen visualized
using smokeg4}. For angles of incidence between zero and 40, it was

noticed that the vortices which develop on the leeward side merge with



the boundary layer z:d may be regarded as an integrated part of it

a definite hump was present on the advancing side of the body and there
is a minimum boundary layer thickness on the retreating side., This
boundary layer local thickness: rotates around the body as it spins up.
This agrees well with: the computation of the boundary layer displacement
thickness and a comnlete analysis is presented in chapter II. As the
angle of incidence increases, the houndary layer separates as two vortex
sheets which roll wn into two vortices on the lee side of the cylinder
as illustrated in fig. (I.2) for the rotating and non-rotating cases.

The presence of the vortices modifies the pressure distribution around
the cylinder in the cross flow plane and consequently the boundary layer
‘characteristics. It is this aspect of the flow phenomenon which is con-
sidered in this thesis. A comparison is made between the different
contributions to the Magnus force and moment which result from the
boundary layer displacement thickness distortion, in order to predict
which dominates at small anglesof incidence. At large angles of incidence
it is the generation of the asymmetric vortex pair that controls the

Magnus force and moment. The vortex flow features will be discussed

in detail in chapter ITT,

1.2 Historical Background:

e

In 1671 WalkerﬂDg degcribed the deviation of the sliced tenmnis ball
and he was followed by Rabin in 1736 who explained the dispersion of a
apinning canon ball, The first crude experiment was carried out by
G. Magnus in 1852, after whom the phenomenon of the production of a side

force regulting from spinning was named., . Magnus related the drift

action between *he body rotation and the flight velocity, through the



asymmetric pressure distribution. In a paper published by Lord Rayleigh [63
in 1877 on "The irregular flight of a tennis ball" the ideal flow re-
presentation of the classical potential flow field around a cireular
cylinder with circulation was used as a mathematical model for the
development of the required circulation. However, the relationship
between Magnus force and spin rate could not be determined from this
theory. In the case of a uniform flow of a real fluid past a spinning
two dimensional circular cylinder a 1ift is developed which is the
Magnus force in the case of three dimensional flow.

Qualitative dnta and negative Magnus force at low rotational speed
were first obtained by Lafay in the period hetween 1910 and 1912, The
'first practical application in producing 1ift was the Flettner rotor
developed in Gottingen. The long range flight of dimpled golf ball
wag also explained qualitatively ir terms of the generation of a turbu~
lent boundary layer, delayed separation and a consequent reduction in
drag. An attempt to employ the spinning cylinder as a part of a high
1ift wing was unsuccessful in the early days of aviation although it has
been Iincorporated ir recent times with more success in an experimental
NASA alrcraft.,

In recent work Yartin 523 considered a flow in which no wake is
formed on the leeward side of the body. A laminar boundary layer
analysis, on a cylindrical portion of a slender body of revolution having
a small angle of incidence and small spin rate, showed that the boundary
layer displacement thickness distortion could cause a Magnus force of
the proper direction. In 1954 Xelly [7] discugsed Martin's theory and
proposed an improved coordinate system to permit a more exact solution,
He also criticised the numerical values obtained by Martin and their

oo

8
lack of numerical accuracy. ¥Xelly and Thacker LJ] extended the theory



to include additional terms in higher order spin rates Plato&él

suggested an empirical method based on the 1ift force, of a ci~
reular cylinder in a eross flow, as a treatment for the case of
high angle of incidence, Powe%zezfallawad Kellyt's procedure and .
imeluded the effect of the awial circulation distribution.

Magnua force and moment measurements have been carried out
by many people and recently a number of exXtensive testgllangE]haVe
been made in Australia using a model with ogive nose on a cylind-
rical body. These tests covered a wide range of incidence and spin
for different Reynolds numbers and body length to dliameter ratios
(£/d4). Measurements of the boundary layer separation positions
. showed that 1t is dependent on the spin rate and independent of
the vortex core locations over a gilven range of Reynolds number.
The negative Magnus force was explalned using an impulsive flow
analogy at a critical Reynolds number range between 105 to 5 . 105,
based on bhody diameter. This negative Magnus force was shown to he
dependent on the asymmeiric growth of the houndary layer arcund
the body cross section in the cross flow plane.

The role of the boundary layer in producing Magnus force is
dominant only when the flow around the body is fully attached.
When the boundary layer separates, the rwo feeding vortex sheets
are convected downstream to form the wake and these control the
production of Magnus force., The boundary layer development is then
of less importance in the generation of Magnus force.

The purpose of the work presented here is to extend the

existing theory of Martin and Xelly to allow for higher angles

of incidence and higher spin rates. The work concentrates onm the



presence of the potential flow vortices om the leeward side

of the cylinder and how they affect the boundary layer cha=
racteristlics and consequently the Magnus force. The model for

the flow separation is a simplified extemsion of those methods
used in the prediction of the effect of leading edge separation

on slender wing plan formgl9’203iﬂ the case of the wing, the sep~
aration points in the cross flow plane are well-defimed and, on
transforming the notential flow to that about a cylinder, such
points become stagnation points of the cross flow plane. the stre-
ngthae of the standing vortices are such as to maintain the locations
‘af these points. "n applying these ideas to the body of revolution
at least three major differences can arlse:-

1. Stand-of7 distances are not so great and at low angles
of attack the vortices merge with the boundary layer and are weak.

2e With increasing incidence the vortices form sets remini g~
cent of the vortéx street of the two~dimensional cylinder flow.
However, the leading vortex is by far the strongest of the get
and a reasonable simplification ig achleved by assuming a single
vortex on each sicde,

Be The}loamﬁioms of the separation points are no longer
well-~defined but require a full understanding of the three—
dimensional boundary layer separation behaviour on spinning bodlies
of revolution.

To overcome these difficulties a semi~emplirical model was developed

having the following features:-



as. A single palr of potentlal flow vortices of unknown strength
and location.

b. The stand-off Jistances are large compared with the boundary
layer thickness.

€. At the edge of the boundary layer and at the separation lines
the total circumferential velocity component of the external potent-
1al flow is zero and the axlal velocity components are discontinuous
giving rise to the feeding vortex sheets,
The vortex strengths can again be determined by ensuring stagnation
points in the cross flow plane colmcident with the actual separation
points at that axial staiioﬁ% This is consistent with observed strea-
mline patterns on non-~sninning bodies at moderate to large angles of
attack. To avoid the complexities amd innaccuracies inherent in the
prediction of the separatlon points,the measured locations derived

from wind tunnel tests cre used to give an empirlcal variation with

ineidence, spin ratio and Reynolds number. Ome limitation of this
approach is the limifed amount of data available,

In the slender wing theorieglg’aogwhich take accounts of lea~
ding edge separation, it is found necessary to include the effect of
the feeding sheet in the cross~flow boundary conditions. In the pre-
sent application, body shanes tend to be much more slender with large
portions of the length having constant cross section area. The fee-
ding sheets will therefore bhe much weaker and the axial variation
of the vortex strengths will be slower. It ism therefore assumed that
the cross-flow is dominated by the standing vortices, that the det-
alled feeding sheet geometry need not be considered and that the

force-free boundary condltion need be applied to the comcentrated

vortlces alone.

* . \ . . . .
The assumption that the separation and cross~flow stagnation points coincide is
not the only possibility. Other criteria for the location of the separation
points may prove to be more valid.



The comtributions of the nresent work fall into two distinct sec—
tioms, In Chapter II and . npendix A, the analysis of the asymme -
tric boundary layer growth for low incidence attached flow is
extended to include higher order terms in the incidence and spin
ratio. In Chapter III and Appendix B, the high incidence case is
analysed using the vortex model introduced above. From these results
the various Magnus force components have heen calculated. The
constituent parts of the Magnus force that have been included are
ae followss-
t. Normal pressure distribution arising from:
a. asymmetric boundary layer growth,
b. asymmetric potential flow outside the boundary
layer,
¢ the centrifugal field in the boundary layer.
2« Skin friction components.
The relative magnitudes of these contributions over the incidence
renge are comsidersd in Chapter IV and the theoretical resulis are

compared with measured values,
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Boundary laver Characteristics of a Rotating

Body of Revolution

IT.1 Bguations of ¥oition:

The steady viucous incompressible flow about a rotating cylinder
of length  and constant diameter d is considered for the case when it
is placed at a sma’ ) incidence of to a uniform stream. The uniform flow
has a speed U, the cylinder rotates with an angular velocity w, which
is taken as positive in the clockwise direction when facing the nose of
the cylinder. ™he spin parameter is defined as @ = wa/ll,

The nose portion of the cylinder is assumed to have a negligible
effect on the bour »v layer development beyond a certain distance downe
stream of the nose. Thus, the detailed boundary layer growth on the nose
and any separation :nd reattachment downstream of the nose are not COn-
sidered in this ans’ysis. A rough method to include these effects is
based on the assumr“ion that the length of the main cylindrical body [23
is effectively inc-eased by an amount equal to the half length of the
nose. The flow at a small angle of attack is assumed to be attached over
the entire length of the body, and for this case the Reynolds number is
assumed to be in & range such that laminar boundary layer flow exists
everywhere.

A set of non-rotating axes, fixed in the body, is used in this
analysis and is illustrated in fig. (II.1). The Navier Stokes equations
of motion and the continuity eguation are first written in cylindrical
polar coordinates, with the y-~yis coincident with the cylinder axis.
The corresponding “randtl boundary layer equations are developed with

the appropriate boundary conditions at the body surface and in the free



stream outside the boundary layer. The inviscid flow outside the
boundary layer is obtained from slender body theory. The Navier-Stokes

equations for the radial, circumferential and axial directions are

regpectively:
2
OV v v AV v
v—Ef,2 X, E__o _ _12P
r hr r h X A% ke p BT
2 2 2
v[bvr+1hxr if£+ihvr+bvr %hv«g
- ~ ~ -
br?} T AT 1‘2 I‘(* ?)md ?)XQ r e _E
bv v bw v v rok's hzv dv
—2 0 _ P O 2 U o) 4 o 1 @
v& Br T h@x%? T, + vx ap ¢ pr nen T+ V( 6r2 T hr
v D Hv 62v
o 1 w 2T o
5+ TS TN AT Y TS )
r r b v Ax”
2 2 2
vbv Lth+ ff" z@ﬁ+v(bvx+lhv+*b\rx+bv
r Ar b X hx by hx? AT r2 hw? -
(11.1)
The continuity equation is
sh's v AV Av
L, 1l e x
el N + 5% = 0 (11.2)

where Vf, Vé and v, are the velocity components in r, o and x directions.

The Prandtl boundary layer assumptions are used i.e. the boundary
layer thickness § is small compared with both the body length £ and the

body radius a. Hence the following orders of magnitude may be written:

VX
Pt (A
= = 0o(1)
v

A
~E L ol

10
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3 ~1
— = 00 ©
py (CA
-1

3 = 06 )
3r

1 3 -1

[ ST

r 50 Cla )

It is assumed that the spin ratio wa/v is 0(1) and terms of
this order are retained. Terms involving wf/U will be 0(2/a) but it
is not assumed that these will dominate since %/a may have modest wvalues

" for some body shapes of practical interest,

Equations (II,1) and (I1.2) reduce to:~

2
v v, oV v 37v
v~—~$+ »-2—1-4‘2-.-0-\1 --q(-?- ] -—-};- -?-E—"‘\) ¢
r Jor a S X B pa ¢
ar
2
v v av avx 13 3" v
cm+ d) " X"é"v -—Xm-”""m-;-ma"'\) X (11»3)
Y oy a ad X 3% 0oadx%
3r
Oméﬁ.
37
8 s '\"".,
Vr 1 3v¢ 3 .




e

L

{ies,

12

Because of the modest values of spin ratio (wa/U) permitted in these
equations, the centrifugal term_v;/r has a negligible contribution and,

to this order the pressure is constant in the radial direction. However,
the Magnus force devernds on higher order asymmetries in the boundary layer
distribution and the radial variation of pressure has a small but significant
effect on the normal »ressure at the surface. The corresponding effect

on the Magnus force can be veadily estimated once the solution for v¢ has
been obtained. Equation set (11.3) applies to both axi-symmetric and non-
axisymmetric flows and can be used for the case of a body set at incidence «

to the free stream direction.

Provided the boundary layer thickness is everywhere very small
compared with the local cross-section radius, the cylindrical coordinates
r, and x can be replaced by a set of curvi-linear surface coordinates

%, v and z such that:-

I
ax 3%
3 - 3

3y 3r

2

and — =

o

a0
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Then equations (I1.3), are replaced by:

-
o
du M A 18P »
U T o VO e WO m e e e g g e
X Ay By e ?
0 B Ny
5 » 1 2
w¥ 2, o 12 bW
Bx Dy bz p bz 2
. by y
oY
S hy = 0 (11.4)
du A aw
dax hy‘* g J

where u, v and w are the velocity components in the directions x, y and
%z shown in fig. (I7.71). FEouations (II1.4) form the general three dimen-

sional laminar boundary layer equations.

IT.2 Boundary Conditions:

In solving the noundary layer equations (II1.4) the boundary condi-
tions on the cylinder surface and at the outer edge of the boundary layer
have to be satisfied. The velocity components on the body surface are
W=V=0andw=wa. The velocity components outside the boundary layer
depend on the inviscid outer flow. Using slender body theory, it is found
that

u = 1T cog g

2U sin o sin{zla)

E
i

e

<

and the pressure grad

=
D

nts are given hy

1P 2, . 2 .
- ;-%? AU (sin &) sin{zl!a) cos(zla)/a
sl
and 22 o
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IX.3 Solution of Boundary Laver Zouations:

The solution of the boundary layer equations (I1.4) may be developed
to include higher order terms in the spin parameter m and incidence o,
Using perturbation analysis, the velocity components are assumed to

have the following form:

w o= U 4+ u, + U u u con
To= Uty ot Uyt Uy 4+

<1
i
!

Tom Vot Vit Vp 4 Vak V4 L. y (11.5)

4

=1}
i

W
Uzw1+w2+w?}+w4+... J

where u and v, are the velocity components for zero incidence and zero

4apin, subscripts 1, 2 and 3 correspond to the order of perturbation quan-

tities im ot and/or@.The details of the solution are given in appendix A

L]

The expressions for the velocity components which satisfy the differen-

tial equations (II.4) ani the boundary conditions are given by:

0= fo'(n) +olx/a £,(1) cos(z/a) + o w (-*zi-')2 fz(n) sin(z/a)
-2 %3 v 4
‘o ae (3;') f6('ﬂ) cos(z/a) + o &3 (ii} f7(‘m sin(z/a) +

2
2 ' 2
TE) (507 4 £ (0) cos(28/) - 07/2 £50() 4 ..

- ) X
Vo= Jgh Bre () -5 (M) + 82 g (1) cos(z/a) +

o o (25)2 g “Z X 3
a 4(M) sin(z/a) + o 0° (=) g,(") cos(z/a) +
H L +

..3 X
o (3‘

4 2
) g5(’n) sin(z/a) + o {33) (g2 + 8y cos(2z/a))

- /4 (0 50 (7) = £ (M ..
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w = w(1- fo‘(ﬂ)} + 2o fO’(ﬂ} sin(z/a) + o E'E ho(ﬂ) . cos (z/a) +

-2 %, ? 2 x
oW (2) h,(n) sin(z/a) + o = hQ(ﬂ) sin (2z/a) +

- 3
o n (E} h,(m) cos(z/a)
’ (11.6)

where
-
n o= ¥ [IX
X v

and fn, &, and hn are perturbation functions which satisfy the ordinary
differential equations developed in Appendix A. The numerical values of
the perturbation functions are tabulated in Appendix A.

A set of the velocity profiles defined by equations (IT.6) have
been obtained using the ICL 1907 digital computer for given values of
o, ® and x/a. Details of computation are given in appendix A, Some

examples of these velocity profiles are shown in fig, (II.2).

IT1.4 Boundary Layer Characteristicsa:

Moore£1og has derived an expression for the boundary layer disge-
placement thickness A for a three dimensional flow over a non rotating
surface. This expression is also valid for moving surfaces., It is
given by the following partial differential equation, the derivation of

whiech is described in Appendix C:w

w

o) ) D
i (n - sx) + 5 (h=8,) ﬁ: = 0 (11.7)

where A is the boundary layer displacement thickness.
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\
8
{ u
& = (1 « ==Y gy
x 3 Up
)
b, = g (1 -9 ay
é P }
(11.8)
v, = U sin o sin{z/a)
and U_ = U coso
p /

Substituting from equations (II.8) into (IT.7) gives:-

5 5
w
R (YR T L AR X By
px (8 s U W -1 -P P - o
P © P P (11.9)

Finally, by substituting equations (I1.6) into (I1.9) and integrating

along the body axis, the Aisplacement thickness is obtained in the form
bow JEr o s (o) 7, — a5 (B (P, - 20 ) sin(a/a)
- |5 o — cos g - (S > - T H,) sin -

- 3 - 4
o wl (i) (F6 + % Hy) cos(z/a) - « 53 (g) (F7 - g HB) sin(z/a) +

Qz 2,x 2 2 4
= (F5 - T - FO} - ¥ (g) (FB + (F3 + %-Hz -5 F1) cos(2z/a) Vs ...

(11.10)
where FO, F1; Foy ves and
Eﬁ, H1, Hg, H3 involve integrals of the perturbation fimetions

and are defined in appendix A.

The details of the houndary layer displacement thickness calculations
can be found in Appendix C. A typical boundary layer displacement +thick.
ness distribution for given values of o, = and ¥/a is presented in fig.

(II. L) gfor a particular value of Reynolds number (%? .
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Vortex Flow Analvysis

IIT.1 Introduction

At angles of nitack about 5% the orlgin of Magmis force differs

o

L2

from that used in the analysis of Martin «“<., The assumption of en
attached thin boundary layer development around the body no longer
applies. A boundary layer separation exists with vortex sheets rolling up
te form anasymmetric vortex pair located above the body. The flow

around a slender body of revolution was described by Allen [111, Kelly [12]
and others as being similar, in each cross flow plane, to the flow around
a two dimensional circular cylinder. Buford {133 and Platou [6] have
suggested that the Magnus force on a given cross section of the spinming
body is related to that of a spinning circular cylinder with its axis
normal to the free siream direction. However the relevant force, on

each cross section, s not the steady force but is the force on a rotating
cylinder impulsively started from rest.

The flow over an impulsively started circular cylinder leads to an
axial circulation ¢ stribution dominated by the net circulation of the
vortex pair. The ans’viical study of the early phases of the fluid motion
around a body which is started impulsively from rest was first considered
by Blasius. It was found that after a lapse of time the boundary layer
separates from the cylinder surface. The time and location of the separ-
ation depends on the Reynolds number and the axial position., The separa-
tion points move rapidly around the cylinder until at large values of
time they coincide with the points of laminar separation for steady flow.

e,

o
'~ have adapted the model illustrated in fig. (III.1)

T4

Kelly [121 and Bryson -
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for the development of the cross flow circulation with distance along an

inclined bedy of uniform diameter for a symmetric shedding of cireulation.

IIT.2 Development of Circulation:-

In viacous fluid flow the boundary layer is a region ad jacent to
the surface whose motion is governed by the fluid viscosity. This layer
can be thought of as a thin sheet of vorticity being convected along and
diffused away from the surface, This vorticity is shed into the outer
flow at the position of the separation of the boundary layer from the
body surface. Similarly the effect of the surface movement is transmitted
through the boundsry layer into the external potential flow. Fig. (111.1)
shows the positions of the boundary layer separation and the formation
of the separated vorisr sheets which convect‘downstream and form the wake.
The circulation strength at any instant is equal and opposite to the net
vorticity that has been shed in a manner similar to the growth of circu-
lation arownd an airfoil. The amount of circulation developed about the
whole cylinder reflects on the pressure distribution over it, producing
a 1ift force and, whenever the body is rotating, a side force is generated.
The separated flow vortex sheets, being unstable, roll up into spirél
vortices., Hence, after diffusion has taken place, the vorticity is con-
centrated largely n the vortex core. Vorticity is fed into the vortex
core continuousgly through the feeding separated flow voriex sheets which
conmnect to the attached boundary layer at the separation lines,

In the case of high fineness ratio bodies of revolution £153 a
side force can be developed without snin due to the asymmetric pattern of
vortices shed alternatively from either side of the cylinder. Near the
body nose the boundary layer is thin and attached but further downstream
two symmetric voriices are shed from the leeward side of the Body. At a

sufficient distance along the body these vortices detach and move down-
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stream at an angle relative %o the free stream, Further downstream
other vortex sheets form and detach from both sides of the body. Hence
at any cross flow plane, the wake has the appearance of, at least, part
of a vortex street as illustrated in fig.(II1.2). When spin is intro-
duced, a similar pattern exists although the position of the separated
vortex gheets and the corresponding rolled up vortices are different.

The development of separated vortex sheets is governed by two approx-
imate conditions. Tirst, there must be a force balance on the concen-
trated vortex and its feeding sheets i.e. zero net force on the system
composed of the vortex and the feeding sheet? This derives from the
physical requirement that the fluid pressure should be continuous through-
out the flow field. The second condition is that the separated vortex
sheets start from the boundary layers at their points of separation. The
condition for boundary layer separation depends on the pressure distribu-
tion outside the bour ary layer near the separation. The pressure disg-
tribution itself dapends on the positions and strength of the rolled up
vortex sheets. This interdependence hetween the viscous boundary layer
flow, its separation and the potential flow arising from the separated
vortex sheets is complex and it is necessary to resort to a simple flow
model. The model used here is shown in fig. (I11.1) and is composed of
two vortices located in the leeward side of the cylinder., Initially a
potential flow is assumed and a solution is formed for the body and
concentrated vortices satisfying the approximate boundary conditions at
infinity and on the body surface. As part of the solution the position
and strength of the roncentrated vortices will be found for given separ-
ation points. In the case of the bhody of revolution, the position of the
boundary layer separation is complex to predict being dependent on the

flow Reynolds numner and boundary conditions on the body surface, The

As discussed in the Imtroduction, the feeding sheet strength will
he small and for the nresent model its force contribution is neglegteds
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positionsof the sepa on lines also depend on the condition of the

boundary layer ahe:: of separation, TFor the above mentioned flow model,

the position of sen.v “on is to be determined empirically for a given
configuration and oo eynolds number, and the slender body potential
flow solution then oh i 'red. The body rotation affects the solution
through the position ~f the separation lines, which are assumed to form

the junction of the ferding vortex sheets. In slender body theory, the
flow over the body <=nsris on finding the velocity potential in each
cross flow plane whicn satisfies the boundary conditions in that plane,

the junction of the feeding vortex sheets with

In the cross flow ol
the body will be stagnation points., Their location and the axial distance
at which flow separztes must be obtained either from experiment or from
empirical formula®icn for each Reynolds number, body fncidence and spin
rate. The axial distance at which the vortices become well defined is
known to move forwards = rng the body as the angle of incidence increases,
The effect of spin rate or houndary layer separation is very complex,

At moderate to high angles of incidence, the effect of vortices on

the flow field can be evaluated for the different sources of force.

First, the position s+ the strength of all vortices in the cross flow

plane of the body are calculsted and used to estimate the corresponding potemti:

forces and moments using Lagally's theorem. In this case the effects
of viscosity are ignored except insofar as they control the position of
separation. For tne ssoond force, the velocity field due to all vortices
in the cross flow plare is calculated and in particular the velocity
distribution around the hody surface. The velocity outside the boundary
layer is thus lmown and *he boundary layer characteristics can be deter-

mined. The distortion of the boundary layer due to the external flow

field enables the force and moment on the new asrodynamic shape to be



In this second method allowance is made both for the effects of the
boundary layer and for the separated vortices., A hybrid method is used
in the present work, The accuracy of the resgults depends critically on
obtaining a complets set of experimental data to cover a given range of
Reynolds number, angle of attack, gpin rate and body fineness ratio.

Only a modest amount of such data is generally available.

IIT.3 Mathematical Model:

The model described and illustrated in fig. (III.1) where T1

are the vortex strengtis located at Z, and 22' The separation angles

are m1 and mg. Trne complex potential in the cross flow plane is given
by
a2 iF1 a2
F = Usineo (2 +=~) + 57z (In (2-2,) - 1n(Z - =) + 1n Z)
A L& i i Z
1
iré a‘2
+ == (1n (2-7.) = 1n(7 = =) 4 1n Z) (111.1)
2mn 2 7
442

where 7, Z1 and 7, are complex coordinates

2

F1, FZ are poaitive whenever the circulation is clockwise.

The complex welocity T is glven by:

2 ir
L Tsine (7R A ( 1 1 l.)
dz - ASNSAN " r! + 5 7;“21 2+ >
z ! a
Z-»:m
Al
iT
2 1 1 4
* 3w (7T, 5+ ) (111.2)
2 a
Ziom
2"2

where 21 and 22 are complex conjugates.

21

i T
ang o
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The vortices are considered 4o he fed from the points 84 and 8, on the
body surface where the flow separates away from the body. The vortex
gtrength at & siven location is determined from the condition that the

fluid velocity vanishes at the separation points and is defined by

W
55 w 0 (111.3)

B ﬂ?

Bquation (I1I1.3) yields two equations in T1 and Fz after substitution
using eguation (%TT.Z?, with the vortex locations and separa-
tion positions derived from experimental data EBJ.These vortex core
locations were obtuined by probing the wake of the cylinder using a Keil
‘ tube, The position of the minimum total pressure was identified as the
centre of the vortex cores. The cross flow separation positions were
measured by means of a hot wire anemometer with its axis parallel to the
eylinder axig. For a symmetric wake development of a non rotating
circular cylinder, the vortex strength I' was expressed £163 as a function
of axial distance and the angle of incidence at Mach number M = .1 as

™
2vUa

= 0,14 QQ x/a (111.4)

For the asymmetric case, the following form is sought for the

vortex strengthsr-

qEEn» = - W2 E (1 B e =2 )
i = o, 2T+ Do el w4 el )

i= 1,2 (111.5)

where a,, b,, c. are constants depending on the flow conditions, R and
i’ it i : - n
T,Sj

) , v r
M. Analysis of further experimental data - yvieldsg; -

Iy
2nlUa

= 0.115 02 x/a (1.0 4 1.650 + 0.95 B + voe) (111.6)
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—_ 14 2 {4 T 45 o 11 =2
LT ~0.115" x/al1.0 % 1.5 o + 1.15 n° + ...) (171.7)
pil
valid over a range of 8 from 6., 107 o 2, ?05; based on body diameter

and free stream v&lQCity?F The circumferential velocity distribution
using equation (III.2} is illustrated roughly in fig, (III.3), which can
be considered in three¢ digtinct regions. The first region is on the
windward side of the cylinder between the forward stagnation point and
the separation point By . The second region lies between 84 and s, in

2

the leeward side of the cylinder. Lastly there is the region between s

1

and the forward stagnation point. The velocity distribution is given

by the following equation

0 -0
- ; 0
¥ = cvdL1 Smﬂ’*’?"@o for @O<®<¢;1
Do~y
=y d2 . g;w:~$z for hy < o< ¢2
@-—»'ﬁx?
5= - < 0
o d3 sin ™ St @O -, for mz Q< 2 o4 GO

(1171.8)

where d,, d, and d, are obtained from eguation (III.2) for a particular

2 3
axial station and they are described more fully in Appendix B,

Neglecting any pressure changes along the body axis, equation (II1I1.8)
is used with the appropriate boundary conditions to solve the boundary
layer equations (I7.4) for each of the regions. The details of the solu-
tion are presented in Avpendix B together with the numerical values of

the perturbation functions. The boundary layer characteristics are

obtained in the same way as described in Appendix C.

* Equations (III.6) aund (III.7) are empirical fits and do not exactly satisfy

b2 = --b1 and ¢1= Cy- However, the resultant numerical error in the Magnus

coefficients is small.



CHAPTER TV

Yoamgmis  Effect
IV.1 Method of Analvysig:
The evaluvatior -7 “npnus force and its moment involves contributions

from different sources. The boundary layer displacement thickness
agymmetry arises from the angle of incidence and spin rate combination.
A radial pressure gradient is formed by the centrifugal force acting
within the boundary layer. The skin friction and the circulation dis-
tribution also provide contributions to the Magnus force and moment.
The agymmetry of the boundary layer displacement thickness distri-
bution with respect to the angle of incidence plane produces a side
force component. This force is calculated by solving the inviscid flow
about a new surface resulting from adding the displacement thickness at
the body surface. This iz the major econtribution to the Magnus force
and moment whenever the angle of incidence and spin rate are small enough
to ensure a boundary layer attached to the body surface over its whole
length. It then represents 70 - 80% of the total Magmis force, The
second contribution arises from the surface shear stress which is also

an asymmetric function and its integration over the whole cylinder surface

it
i

provides an additional term in the total Magnus force. According to the
calculations, thi- “arm is about ¥ of the total Magnus force. Another
contribution is that due to the radial pressure gradient through the

boundary layer thickrness., It arises from the centrifugal action in the
boundary layer flow. The radial pressure asymnetry, with respect to the

angle of incidence plans. adds about 15 - 29 to the total Magnus force,
& P ; f ag

The final and most cownlicated +term which contributes to Magnus force and
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moment results from the free vorticity. The effect of circulation
increases with increase in incidence having negligible effect for

attached flow conditions. Whenever separation takes place, the standing
vortices dominate :h¢ sontribution to Magnus force. It will be shawn‘

here that, at high angles of incidence, the asymmetric orientation of the
separated vortices is the source of a large part of the total Magnus force.
Consequently the boundary laver displacement thickness contribution to
Magnus effect may then be neglected. The vortex strengths build up due

to the vorticity shed into the wake in the cross flow plane. The existence
of vorticity in the flow field modifies the pressure distribution in the

inviscid flow and will modify the boundary layer characteristics.

IV,2 Magnus Effect Formulation:

The major contribution to Magnus force and moment is due to the
normal pressure distribution asymmetry. The effective aerodynamic shape
will consist of the original shape and the boundary layer displacement
thickness distorted by body rotation. The velocity potential of the

cross flow plane at any station along the body axis is given by

+ 6 (1v.1)

where ¢i is the inviscid potential and ¢ is the perturbation potential

2
. . . 3 . .
due to the displacement thickness, Assuming mwg i8 a small quantity, the
Ix

erturbation poten:ial will satisfy the two dimensional Laplace equation
p P y Pr

V2¢ = 0 at any station x. The boundary conditions are %%‘tY"m = O and
3 £ an ., .
22 = | 24 where Tﬁ is the slope of the effective body shape.+

by

~

[

3y |y=0 ax

The required solution for.the perturbation potential at the surface can

+ . . L.

The cross flow component in the surface velocity condition has not
been included because the resultant ¢ component does not contribute
to the Magnus force.
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be shown to include the term (see Appendix C, section C.3).

e ann dhs .oz
¢ Ua = 31n(a) (Iv.2)

where Ag is the amplitude of the sin(z/a) component of the displacement

thickness A,

The pressure coefficlent neglecting second order terms is given by

= 22 3¢
“p T T Ox
and hence at the surface (a is constant with x)
2
c = 2a i-g. (1V.3)
P Ix

The only terms which contribute to Magnus force are the sin(z/a) ones

and, the Magnus force component is given by

= - ( { aq_ cp sin(z/a) d(z/a) dx (1IV.4)
O

The Magnus moment coefficient referrring to the body leading edge is

given by
L 2n
M = - ( ( aq c¢ x sin(z/a) d(z/a) dx (Iv.5)
ml N © P
(8] 8]

Substituting equations (I7.10) and (IV.3) into equations (IV.4) and

(IV.5), the Magnus force and moment coefficients reducees to

/ﬁ»{ 5 & w(»—-) (F, = 0.48) + 9 a 3(5-)" F -§—H Y} (1V.6)
v - 0.3 -3 2.4 .
K = /T:Q——{ 30 507 (7, - 041 ) 47 0 T (2 (r,-0.2220)) (10.7)

le and Mml represent the major contribution to Magnus force and moment.

The radial pressure gradient is given by

2
1 dp _ W
5Ty T 7% (1v.8)

Equations (IV.3) and (IV.8) can be used to produce a modified surface

pressure coefficient in the form:-
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_ 32A 2 5
C 2a A2 P £ W< dy (1IV.8a)

The extra force component due to the radial pressure gradient term,

after substituting from (II1.6) into (IV.8a), is given by

2 2
- 2 JY &2, 5 2o &
sz = 4 q, ma 5i (a) ( 70w IO t 5 ow (a) 12) (1v.9)
where ?
— ' o
I = f h () (1= £ "(n)) dn
O
= ) - f 1
and L, f by (M) (1= £ ") dn
(@]
The force and moment coefficients are given by
2 2
v — R 2 4 ~2 .2 -]
Ke, = TR 2 0 Cg) [510 + 7~12 w (g) J (1v.10)
and
3 2
e N LY ey A (IV.11)
Km2 N 2o w (a) 510 * 12 w (a :

The third component of the Magnus force is that due to skin friction,

which is given by

=

A ——

( \
T
L3y y=0 (1v.12)

The force and moment coefficients are obtained by integrating the appropriate

component of 1T after substituting for w:-

2
2 4
N 4 — (<) 4L =38
Key = /—~U£ [3-(1 woal h ot g e e’ h3'(o)] (IV.13)
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and
3 5 -
fra -,0.- A -39
= X, R S Y A LN T 13~ { e '
Km3 5 | o w(=) h '(o) + 5o \&) h3 (o) (1v.14)

The total Magnus force and moment for small incidence and small spin
parameter developing attached flow all over the length of the cylinder

are given

, 4
N rr,‘ f'i/fﬂ, ; ; -3 .{), I .%
Ke =i 00 @D Py - )« 90 D) (7 - § 8y

-2, 8
+ 4 o o= (& IO + % IQ s (g} Y o4
L2 4
RN ORE R RN
(1v.15)
s 3 5
£ X g- m~‘é' " - A ‘;“3 _& - 2
Km Tp i} (s 2 ( 2 wa-HC)) + T o <€1.} (F7 9 H?))
3 >
IS S S N
+ o m(“a"f) (i Io *3 I, w (&} Yo+
3 5
- Py ] -3 D
h (o) '?‘W e AN fﬁsB(*ﬁ"’-) h,'(o) -g o (1V.16)
(4} P e 11: A 3 j

It has already been stressed that the sources of Magnus force at
incidence and are due to the existence of two skewed vortices in the
cross flow plane. The vortex wake changes the whole flow field around
the cylinder and conszquently the forces acting on it. The mathematical
model illustrated and explained in chanter TIT produces a Magnus force

due to the resultant wormal pressure digtribution around the cylinder.
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The Milne?Thomson circle theorem produces the complex potential solution
in equation (IIT.k). The forces acting on a two dimensional circular
eylinder in the presence of a specified number of singularities can be
calculated from eithwer the generalized Blasius or Lagally theorems., The
‘slide force  component on a three dimensional body of revolution can be

obtained ag:-~

13 m

F "N

ma = "0 >J Ji(H - ui)dx (rv.17)
[» jmz

where m is the number of vortices in the flow field, Fi is the strength
of ith vortex rotating clockwise and u, is the velocity of the vortex i
.due to all the other real vortices in the flow field., Using equation

(111.5), equation (IV.17) becomes

2 &
5 2 2.0 R 2
Fm4 = ma“p U% o E} ?J ai{z + W bi 4w ci) (1v.18)
Fat

Substituting for the values of a,, b, and ¢, from equations (III.6) and

e

(111.7), and using Fqu1 = Fguz, the Magnus force and moment goefflielents
due to circulation can be expressed as

2

5 0.5 T - -2
Kf4 = 2 (éﬁ }J ai(7 +w b+ ow Ci} (1v.19)
’ 'Lz‘ts
and
R 2
Ky = F0° () Yot B e n o) (1V. 20)
1=

Sﬁrictly? equations(IV.15) and(IV.16) are modified at high incidence

by the effect of the parameter A, introduced in equation(B.5), which

is a measure of the difference between the external notential flow field
in the unseparated and separated S%ates,ﬂmwgver,thevuvmericai modification

te Magnus force 1o small because the influence of the vortices e¥ists

mainly at the surface in thelr immecdlate vicinity and there is little
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effect on the gross asymmetry in boundgry layer gmwth.‘

IV.3 Results and Comparison

The numerical values of the integrals can be found in Appendix A
and are used to calciulate the following Magnus force and moment coeffic-

. -2
ients neglecting terms of higher order as & v, then

T -2

B 2

/ - 0
Kep = 177 [ o5 (D

P
Key = - .53 = o n ()

The numerical value of equation (IV.15) is given by

2
-
Ke = 14.96 é%’ o w QE) (1v.21)

by including higher terms in m equation (IV,15) is:-
2 -

P : -2,0
Kp = /é% o (g} 2?4,96 - 7.03 5" (=) %

The Magnus moment coefficient expressed in equation (IV.16) is written

as follows:
2

- D"
Ky = 8.99055 05 () (1V.22)

or for higher order in m as

3 2
. AR ” ﬂ g. Q- :? {ﬁ
K. J;; ) (d §8o9/ 5.46 w ad} Foaes

| IS— |

The centre of pressure position (measured from nose) expressed as a

function of the body length is:

This applies at low incidence when the vortices are weak and close to
the surface, and asymmetry arises from the spin. At higher incidences,
the Magnus force is dominated by the asymmetry in normal pressure distribution,
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X 2
ip = ﬁf = - . 365 wzQ%5 e

The evaluation of K, arno % by using equations (II11.6,7) with connec-

tion to equation (IV.19,20%, XK. and Km4 are given as follows:

Ky
- 181 5 p 2
Keg = o3 o= "

o121 o 3
and X = Q-.—-lg‘} oy /\' - i1y

mé

The total Magnus force and moment coefficients including the effect of

flow separation are:~

)

X = o m (%) 14.96 =% + 23d o+ ...

ft 1 JYe
(1v.23)
- 000 v o2 }
: - OGO I Y 1
and L o Q %“.9 Tt oo+ ... |

2]

The results obtained may be compared with those obtained by Martin [ -t

and Kelly E71 for unseparated flow:-

~ - 0.2

Martin K, = 10.7: mroewn () \
" _ P 2

Kelly Ko = 12,29 {#%‘ oo (=) (1V.24)

B (WA . 7
4'”'":‘ - f? 2
Present work K. = 14.96 % oG (=)
b G

P

Equations (IV.24) show the linear behaviour of Magnusg force coefficient
with o and ® for particluar £/d and Reypolds number Re. The different constants

-

¢y firstly, because Martin [2]

indicated im equation(IV.2h)occur becau
neglected the effect of both skin friction and the radial pressure gradient

on Magnus force anc, scrondly , +the present work has been carried out
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using a better numerical technigue (four points Runge~Kutta)
ag well as more aceurate computing facilities.

For compariscn with the theoretical results in equations
(IV.2l) and (IVe23), measurements of Magnus force were taken

£3,17] N .
from two sources « In the first, a conventional wind tunnel
et 5171

with mechanical sting support was used, In the second s & mage
netic system was employed to support the model without aerodynamic
imterference. Since the use of magnetic suspension for Magnus
measurements is so novel, it was felt desirable to give a brief
account here of the system and the data acquisition techniques,
This is contained in Appendix D and concentrates on the prelimi-
'nary workk with the norn-spinning model to obtain the calibration
constants and static aerodynamic data. The technique with the

. by 7]
spinning model is similar !

o The model used as the baseline for
the experiments and theoretical calculatlions is shown in Fig,(D.1).
The detailed behaviour of Magnus forece with*incidence and

spin ratio dependes very much on Reynolds number, tunmel flow and
model surface states. A selected comparison is made here between
theory and measurements to indicate the significant general points
of agreement and disagreement, In Fige (IVal), good agreement exists
at most incid@nces¢ The theory predicts that, at this spin ratio
and Reynolds number, the non-linear contribution is slgnificant at
quite low angles of attack (about 3 degrees) and is dominant above

10 degrees . When the boundary layer is essentially turbulent, it
is anticipated that the separatlion points (and hence stagnation
points) will depend to a large extent only om incid .nce and spin
ratio. The semi-empirical non~linear model will therefore glve

£00d agreement at the higher Reynolds numbers -
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At reduced Reynolds number and low incidence (<10°), the boundary
layer state has an all-important effect on Magnus force as can be

a7 are given for a clean model and

seen in Fig. (IV.2). Results
with a roughness band added on the nose shape. In both cases, negative
force coefficients are present which cannot be predicted by the present
theory. With the clean model, the boundary layer is essentially

laminar although there is a possibility of laminar separation and
turbulent reattachment, The theoretical prediction shows poor agreement
over the incidence range covered (0° to 7°) indicating that the simple
attached boundary layer model is not applicable., When an attempt is

made artificially to increase the turbulence level, then the negative
Magnus force mechanism at very low incidence is greatly reduced and the
theory shows good agreement at incidences greater than 4°, At typical
full scale Reynolds numbers it is expected that the theory for the non~
linear part of the Magnus force will show reasonable agreement at moderate
and high incidences, because the empirical data on which the theory relies
will be less sensitive to Reynolds number. The availability and analysis
of interference free data over a wide range of Reynolds numbers is
required to justify this in full. At low incidence, the small Magnus
force present will be less sensitive to features such as laminar
separation and reattachment (which is one mechanism for a negative

Magnus force) but will remain sensitive to detailed base shape, The
present laminar boundary layer theory for the linear part of the Magnus
force is not adequate to deal with the low incidence range but the

method should be capable of extension to the turbulent case,
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CHAPTER ¥

Conclusions

The prediction of the Magnus force of the spinning clrcular

cylinder has been studied by many people, Martlﬁaland Kell§7]
predicted for the spinning body a linear variation of Magnus

force with both spin rate and angle of incldence. This prediction

1s applicable only for a very small incidence and a low spln rate.
At large incidence, the flow separates and standing vortices form

to produce the nom-linear behaviour of the Magnus force as illus~
ktrated in Fig.(IV.1). A method has been developed here to predict
this behaviour and the results show good agreement with the expe-
rimental data. Accurate wind tunnel measurements are very diffic~
wlt to obtain, since the Magnus force ig much smaller than the other
aerodynamic forces acting on the cylider. Negative Magnus force is
not predicted by the theory but maasurementél7)indlcate lts presence
at low incldenceg,low Reynolds numbers and low spin ratios.

The magnetic suspension balance resultgl73are presented in Fig.(IV.2)
and compared with the non-linear theory.

This stﬁdy of Magnus force production has led to the following
conclusioﬁs:»

1. The offect of the boundary layer displacement thickness is
dominant only whilst the flow is attached to the body surfacey l.e.
for small e« and w

2. The contribution to Magnus force from the extra asymmetry in

boundary layer displacement thickness caused by the vortices in the



outer inviscid flow is much smaller than that due to the normal

pressure distribution or th: +nin effect when the flow im unseparated,
5« The vortices develor  in the inviscid outer flow from vort-
lelty shed in the wake of tie cylindrical body at angles of incidence
(&}

greater than 4 .

he AL large sngles of cttack the Fagnus force 18 produced lar-
goly by the normal pressure distribution agsoclated with the asymm-
etric potential fow fiecld of the standing vortices,

e More exporimental work 1s required especially in flow visu~-
allizatlon at small angles an in the moasurements of separation pos-
itions and vortex locations.

The major limitations ¢! the method used are: ~

le Negative Mapnus forces cannot he predicted at any incidence,
Reynolds number or spin fatio.

2. The model uses the assumption that the cross-flow stagnation
points coincide with the senaration polnts.

5+ The method is scmi-cempirical in that measured posltions of
separation points are required,

However, agrecment between predicted and measured overall Magnus for=
ces 1s good, particularly at the hlgher incidences,

The contribution of the present work towards the prediction of
Magnus forces may be summarisecd as;-

a&e An extension of the attached flow contribution to include
higher order terms in “ncildence and spin ratio.

be The development of a temli~-omplrical non-linear method for
the contribution of separated flow vortices at, moderate to high

incidences.
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Appendix A

Sulution ¢f Boundary Layer FEquations

Laminar Flow,

The three dimensional boundary layer equations (A.1) for semi-
infinite circular cylinder usging the Cartesian coordinate system illus-

trated in fig. (I1.1) are given by

B

| 2
L o1 A K O A 1 by
N poax T VTS
N
?
wWE oy hw o hw 1P oo
px TV Ay YR, = 0 oAz TVYTTE
Oy
) (4.1)
P
()
Ny
du by hwo
Ty taz T )

The boundary layer characteristics are obtained by solving equations

A.1) whilst satisfying the followin boundary conditiong: -
= Y

o= v o= 0 and w W a aty = O

i

wo= Deoso andw = 27 sine (z/a) at Vv =

: e . 2
For small angles of incidence such +that S o= o and cos o &= 1 - a /2,

the above boundary conditions reduce +o

u o= 1 - 02/2} and w = 20 o sin(z/a) at y = o

5

The pressure gradients are given by
AP
I L o
%

: 1
and %g = ~ 4 o &f~ sin (z/a) cos(z/a)
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It is assumed that *he velocity profiles in the boundary layer may he

expressed as following

U o= y 0 1 u vas
)] R g U }
= v, V., o+ owes .
v Vo Vv, s Vot Y, E (A.2)
W o= w W, w, + W, 4 L., j
1t oy A

where ﬁ, v and w are velocities non-dimensionalised with respect to the
free stream velocity U, v, Vo oare the non-dimensional velocity COmMPoOn=-
ents for zero spin and zero incidence and the subscripts 1,2,3,4 refer
to the perturbations in the first, second, third and fourth order in o
and/or ®w. The bounary layer equations for the zero order perturbation

are given by:-

2
du hu A
9., 90 _N 0 :
o Ny Y Ny i %y”
(4.3)
hu
- = 0
mx
Assuming a stream function ¢ as follows
o= Ux £ (7
v vix o(‘)
where [
"o N {Jﬁ
- 5.4 VF S|
The velocity componernts are
1 = 1 “(’n'}
0 o g
(A.4)
and 7o j
Yo = 2 gk (e - g ()

The boundary conditiions are v, o=V, o= Oat y = 0 and u, = Tat vy = w.

Substituting equations (A.4) into (A.3) results in an ordinary differ-

ential equation in the function fo(m} as following



Ll

Fadi i 8 1 - e
£y = = & £ () £ (4.5)
The solution to eguution (A.5) must satisfy the boundary conditions

fo(o) = fo'(m} =0 ant £ () =1,

G

The boundary layer equations for the first order perturbation in

o Orw is given by

du Au Au A ?»21)_
u ’ + u S v —1 v, =2 . X !
o dx 1 ax T Vo Ay T T TRy 2 g 2
A Ny
bw, Hw, ?)gw1
u + v - . : (4.6)
o hx o Dy i 2 A.
Ay
dbuy hv, dw, . )
ax T Ay T TRz T ¢
The velocity profiles take the forms given below
oX LT P
uy o= = £,(7) cos(z/a) 1
N ox
Vi = |55 = 8,(M) cos(z/a) k (A.7)
- )
W, = w1 - 3‘”0’(7‘\)> + 2 o f_‘o“<'ﬂ) sin(z/a)
where u, =v, = 0 und w, =m at y = 0 and
uy =0 and W, = 2 o sin(z/a) aty = o

This leads to f‘j(o) = (go(o) = 0 and .f',f( o) = 0,

wE

Substituting equation (A.7) into (A.6) gives two simultaneous ordinary

differential equations in £,(1) and gg;o(ﬂ) as follows: =~
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1 M
£ = £ () oy () = () £0m) £ ) (g (M) -5 £,0m) )

" (A.8)

-

The second order perturbation in o w or az leads to the boundary layer

equations: -~

bu2 hu? Ay B, hu hu
uomb+vo~mhy+u? el A hy+112~~—~~~~h+v2 x N
2
. hu,g B ‘\—)‘hu?
]
1 hz i hy2
A 2 /
O IO SO N I
o T M xRy T Vo Thy T T T p 2zt U ?ﬁyz
V4
bu2 _?,)u2 hw2 o,
dx t oy T TRz T
(4.9)

Appropriate forms for the velocity profile in the boundary layer are

given by:-

2 2
w, = on () () sin(z/a) + o (X) (£(N) + £,(N) cos(z/a)) \
2 A 2 =2 3 4
2
- 95- f5'{’;ﬂ:§
"y - X 2 2, X 2
v, = o Lo i(E) a(n) sin(a/a) 5 o () ()M + gy(1) cos(z/2))
2
e (m o (Y Lo (M)
4 5 ° J 5L />,
and
w, = o & Zn (") cos(s/a) + (0° x/a) n (M) sin(2z/a)
(a.10) 7
where 112 = V? o W? = 0O at Y o= 0O and



112 =

2

e . B . N
- % and W?~O at y =

The above boundary conditions lead to +he followi
ng,

(o)

£,(o)

Substituting

= ho{‘\’f‘\‘ = 0 and h,l(O\ = h,!( (D) = 0

= g, (o) =« 0 and f?( ®) = 0

= gg(o} = 0 and f3( ®) = 0

= gB(o) = 0 and f4( ®») = 0

= fS'(o\, = 0 and fS'( ®) = 1

equations (A,10) into (A.7) gives a set of ordinary differ-

ential equations in f_, £, £ , f , as follows:~
27 737 T4 75

h(n) =
£,0(n) =
g'(M) =
ht(n) =
£arm) =
g, (1) =

£ (M) B (M) = 3 n 1(1) £+ £ (MG £4(n) - g (1))

25,0 (0) (1= 1 (1) (8.11)

26501 £, (1) = 3 (1) £,7 (M) + £ (M (g (M) - F £,(m) -

M1 = 1 1 (m))

. 5
5 IH(m) - 2 (m) 4 h () lg
(A,12)

2
£,0(M) h(m) = & nyt(m) £(1) 4 2(£ " (m) - 1)

n . .

M ¥ tt ’D
209(n) £ (M) - % £ () £37(m) + £ (g,lM) -5 £3(M)

v/

v g (M) £, (0) - £ (1) £ (n)

(a]
" 7
3 M) =5 £, (M)
7 £3(m =2 £.(m) L4
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tt = my ofoe(mYy Lk £ imy o s (m £ n{m "y ___'D
B L (MY =5 0N+ F g (M) £,0(0) 4480 (n) £4(1)
T . .
= - m -2 0(m -2 /
gy(M = 51,0 = 25 (m) - 2 ny(n) (8.15)
and
" Yy £ MY o f(m)y £ = 0
2010 4 (1) £,(N) + £5(7) £ (M) = (2.16)
The perturbatic: of order o 52 yields the boundary layer equations:-
2
. buz . huO . hu?) Y buo . ?‘Jug oy o} u; R
o »x T 3 ax 0 o Ay 3 hy+ 1 ha i} hy?
2
) -
u iﬁi u iﬁl v Eﬁé v ifi + W ‘ng = 2 i W3 >
o ax t "2 e T Y0 ?wy+ 2 ny 1oy U hyg
du dv nw
3 J 2 _ n 1
ax T Ty T Tz T ~ (A7)

The following are appropriate forms for the velocity profiles in the

boundary layer.

-2 X 3
uy o= o0 ("{) f5('ﬂ‘) cos (z/a) 3
N " 3
V. - L
V3 = jjﬁ‘;{ W ”:'} pjs(m> cos (7/3} (A"IB)
- 2
Wi o= amw (=) %?(’“} sin (z/a) p
where u3 =V, = W, = 0 at v = 0 and
) A
u3 F-3 VJB =3 O a,t y = B
This yields £,(0) = g.(0) = 0 and f.{®) = 0 and h. (o) = h (@) =0
y F\ ) N
6 5 5 2 2
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Substituting equations (A.1%) into (A,17) gives the following ordinary

differential equations

hy(M) = 2 ny(n) £ () myt () 4 £ (M) (-my(M) + B £ (m))

= (M1 = £,1(M) (.19)

and

£6" (1) = 3 £6(0) £,0(M) = & £ () £0(m) + T () £ ()

+ gg(M) £,7(1) £ (M(1 - £t (N))

g5 () = 3 £,0(n) = 3 £n) - h(m) (a.20)

Consideration of perturbation quantitiecs of order o :'933 leads to the

boundary layer equations:

du bu Hu hu M » N
u "‘*"44— T "“““6"+ v '”"'-{';r'+ v "--§+ w -—--3~ P 2 fl
o Ox 4 Bx o Ay 4 Ay 1 bz U mfff
du dW hw hw hw hzw
u “""4;+V e 1L ';""i+ v .1+ w . ‘3 E ~\-)-~——-———4« 7
o hx o Ay 3 Ax 3 Ay 1 hz U hy2
du BV hw
4 4 4
dx * hy* neoo 0 J (A.21)

u = o ® ({j)ﬁ 57{’“} sin (z/a) z
EZ -3 X A ) §
Vo =[Gy oo :) g(){ﬂ} sin (z/a) f (A.22)
) |
and W = o w” (“:) hB(”ﬂ,} cos {z/a) B
where U‘4:v4 :w4 = 0 at v = 0 and u4 = 0 w4 =0aty=



The above boundary conditions yield, f7(o) = gé(o) = 0 and f7Qn) = 0,

h3(0> & h3( CD) = O

Substituting equations (4.22) into (A.21) gives:-
. il
1" - [N ;? ] - — [
(M) = 3np(m) L0070 = AL (1) hyt(n) = 5 £.0() £4(M) +

g5(M) £,(M) 4 hy(m)(1 = £ () (A.23)

£2"(M) = 4 £,(0) £,0() = 3 £(ME () + e (e, () + )
g8(M) £, + £,M(1 - £ 1(n) ]
{

gt (M) = 3 £ - 4 () 4 (M) | (a.22)
%
P

The total velocity profile to omder 4 in the boundary layer is given by

2
o= £+ SF 2N £4(1) coa(z/a) + o w0 (B) ,(m) sin (2/a)

5 2
N (%E) (£3(M) + £,(n) cos(22/a)) - & £or (M)

- 3 -3 *
v ol CE) f){ﬂ} ens(z/a) + o m” (%) f7(“) sin( z/a)

- N . ox
Vo= gz (B e () - £ (M) + 2= g (1) cos(z/a) +

2 2
o o (i) g?(ﬂ) sin{z/a) + (%;) (gz(ﬂ} + gB(ﬂ) cos{2z/a))

2 3
-2 % -3 %
oo MY - (MY . % ( x
7 (mn f5 (m) f5\ﬂ)) P (&) gs\ﬂ) cos(z/a) + o o (a)

g™ sin(z/a) b ...

and

49



50

w o= o1 - fo'(ﬂ§} + 20 fo‘(ﬁ) sin(z/a) + o o() ho(ﬂ) cos(z/a)
5 2
+ o % hy(M) sin(2z/a) + o 2 (%} h?(HS sin(z/a) +
3

o &3(§}W ho (M) cos(z/a) + ...
(A.25)

turbation function fn, £ and hn.

The perturbation function equations (A.5), (A.8), (A.11) through
(A.16), (A.19),(A.20) and (A.23,24) were solved numerically by digital
computer using the ICL standard routines FARUNK, This routine solves a
system of first order differential equations using the Runge-Kutta four
point method. It integrates the equations as an initial value problem,
The boundary layer equations are, however, of the two point boundary
value type. For this reason guesses of the unknown initial value are
made and then the differential equations are integrated from the body
surface to the edge of the boundary layer. TIf the conditions are not
then satisfied, the .nitial values are adjusted and the integrations
repeated. This process contimies until the solutions satisfy the outer
edge boundary conditions. Figures (A.7) through (A.12) show the results

of these calculations. The integrals of the perturbation functions are

given by
[5.0]
,
Fo = o (1 =f(mM)an = 1,72106
0"
(O
Py o= g f1(ﬂ} an = 1,726712
o
®
Py = [ £,(n) am = 1.4B6063
o

= -, 269980

=i
ad
N,
}—'3
L

o~
N
joR
=3



¢}

P, - cg £, an = 43,3203
(6]

F f for(m) an = 7.87324

5 )

(4]
an

Fe f f6{ﬂ) dan = ~1,085211
8
a

oo = - 62773
S

a
H = r ho('ﬂ> an w =2, 7469
é

[}
(¢ 5}
H, = (J hy(m) dn = 4.96995
(€3]
q [ hy(n) an = -1.8395
2 s
(€3]
- I _
H3 = g h3(ﬂ) an = 1.1489
¢}
f ' ' -
I, = (§ £, (my (1 - £ (MYan = .663836
@®
r \ , B
I, = h hy (M) (1 = £ r(M)dn = -.70909

The above integrals were evaluated using the University of Nottingham
Subroutines 'NAG® DOTADF. This routine estimates the values of definite
integrals using Gaussian quadratures with a specified number of points.
These integrals are used in evaluating the boundary layer displacement
thicknessges and also the Magnus force. The following values are also

required for the evaluation of the skin friction,

i

h, ' (o) - .794160

hy' ()

it

430709
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Avvendix B

The Solution of the Boundary Layer Equations

including the Effect of Vortices

The three dimensional boundary layer equations for the
semi-infinite circular cylinder using a Cartesian coordinate
system have been derived in Appendix A. The boundary layer cha-
racteristics were obtained by solving the boundary layer equatm
ions and satisfying the boundary conditions on the pody surface
and at tho inviscid outer flow obtained from slender body theory.
For the model of the standing vortices discussed in the Introduction,
a. #imilar approach to the boundary layer calculatiocn as in Appe-
ndix A 1s possible because the vortices are assumed to lie well
outside the viscous layer and therefore result only in a modifi-
cation to the external potential flow field, Whilst a simplified
representation of the true flow, it does afford an analytic math-
ematical form capable of predicting closely the type of streamline
flow observed on hodies of revolution at moderate incidences.Such
streamline flow i1s consistent with the assumption that the potent-
ial cross-flow stagnation points coincide with the rcal separation
pointse. Cross~flow velocity components tend to be small compared
with the free stream velocity even in the presence of the vortices
and the boundary layer growth remsailns dominated by the axi-symmetric
zero order contribution, except in the immediate vicinity of the
separation lines. Since the main contribution to the Magnus force
at moderate to high incidence is shown to arise from the normal
pressure distribution produced by vortex asymmetry, it is felt

that 1little error results from neglecting details of flow in the



region of separation. Using the mathematical model i1llustrated

in fig. (III.1), the complex potential in the cross flow plane

can be obtained in the form: -~
az T a?
- BT, - - -
F=U o (2 + e ( In (7 Zl) In(Z - ——) + 1nz )
2y
ﬁi 3 v aL In2 )
+ rx {(In(7 “ZZ') - In(7 - W:—) + ' (B.1

%y

The vortex strength is positive rotating clockwise.

The complex velocity is given by

- .
aF a“ L 1 1 4 1
Pocma i of. o eeb— PR e et e,
a7 = U= (1 T )t oy (5 >+ 5 )
Z 1 . a
Ly e
2y
) 1 1 1
o7 (53T 5ty ) (B.2)

The vortices P7 and FP are consldered to be fed from the separation
points 5 and s? on the body surface. The vortex strength at a
given vortex location is determined from the condition that the

velocity at the separation points vanishes,.
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= 0 (B.3)

Equation (B.3) supplies two equations in Fj and F2 which may be solved

by an iterative method. The velocity distribution can be expressed

_ 0 - @O
w = o d, sinn p— for @ < &<
1 oy - i o 1
i O
6 - ¥,
=y d2 sin v - for w1~< 8 < mg (B, )
G - mz
P i <
a(% sin m P S ﬁmﬂ@ Q< ﬁr+Qo
0 2
where d1 is the value of w evaluated at 0 = ey o+ 90/2 etc. The general

form for w is exnressed as

& = W(@)

The required solution of the boundary layer equations uses the boundary
2

conditions u = v = 0 und w = wa on the body surface and u = U(1 - o“/2)

and w = WU at the edge of the boundary layer. A non dimcnsiomal .

function ig assumed in the form:—

A = w(8)/(wsin(8)) (B.5)

) . P .
Neglecting the axial pressure gradient Q_ he same procedure is used
£ 28 ) A g ]

as in Appendix A to obtain the perturbation functions in different orders

inoor/ w asi-

T tmy 2 fome =
fo( ) £ (m) + 2 o (m) 0 (B.6)

with the boundary conditions fo(o) = fo'(o) = 0 and f;((D) =1,
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£ 2y 1 ’n "
£0(N) = £ (M) £ () =B r(n) £ (m) = D n(n) £,(n) + g (M) £,"(n)

g, (M) = £ (n) - £, () - £ r(n)

(B.7)
with the boundary conditions f?(o) - .{‘O{Q) = 0 and ﬂ( ®) = 0,
ERIORERERIC) F £,(M) B () + 5 £4() £.0(n)
S 20 £,(T) % £ (W = 0 (N) (5.8)

with ho(o) - ho(<n) =0 .

(M) = £ hy(1) = £ (M) hyt(n) - 7 (D) (M) - B
RGP AR N (5.9)
and h1(o) = hi(cp) = 0

£M(M) = 2 £5(M) £ 00+ £ Mgy (M) = D E(M) - 5 £ (n)

£0(m - £, - £ 1)

g'(M = F1,(M) = 2 7,(1) + h (M) (B.10)]

where fz(o) =, fz( o) = g,(0) =0

ORI ENOENOEE EACOENOREE ERICHENC) I

£, my(M) + & g (M £ () B L () £4(n)

Ea(my(e,(m) = 5 £,0(m)
g > J

£31(m) - 2 £5(n) (3.11)

ro

gz'(“) =

with the appropriate boundary conditions f3( o) = gz(o) = 1‘3( ®) = 0




" s a . n "

13

+ 5 500 =5 £ (M) 4+ g (M) £ ()

+ oyl M+ £(n) £ ()

e e

N rn
gy(n) = 3£, 28,00 - 2n(n)

4 2(3.12)
where
3 i/{‘;\v = =
f4(o) g,(0) 0 and f4( @) =0
2,7 (M) + £,(0) 27 (1) + £5(M) £,7(n) = 0 (5.13)

with
f5(0) = f5”{o) = 0 and'fs'(cn} = 1
hyt(m) = 2 £, (N) (M) = A £ (M) By (1) 4 3 £ (M) £,(7)

O

= gy £ (M - h (M1 - £ (7))
R (B.14)

and hZ(O) = h2( o) = 0
£6"(N) = 3 £g(M) T (M) = F £ (M) £,1(n) + ] £ (M) £M)

Cwgg(M) L)+ (M1 - g () ’

gt (M) = = £.0(m) =38 (M) - n (M)
5 = 6 2 '(3.15)

where
f6(o) = gs(o) = 0 and f6< @) = 0

By"(M) = 3 hy(m) £0(M) - & npt(n) £ () I £.(M) +

(™) £m(m) + h(m(1 - £ (M) (B.16)
where

h3 (O) = h3< CD) = O

56
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and

A 1 > 8 +,_.Yl "
£0(m) =4 ga(m) 2 () = () £ () 5 f () £2(m)

+ gg(n) £0(M) 4 £ UM = £ t(n)

T
§ = javed '( - (
86 (M) = 35 £,0(n) - 4 £,(n) + hy(m) (5173

with the boundary conditions
E=3 = & d X \ E-3
f7(o) g6(0) 0 an f7(03, 0

where 1 n% }%E

Equations (b.6) through (B.17) are ordinary differential equations in
fn, g, and hn similar to those described in Appendix A. The velocity

components in the boundary layer are given by:-

2
1 = fc'(ﬂ) + %A cos @ fj(ﬂ) + o m (:E} A f2(‘n) sin 6 4+

2x2 2 0!2 -»23(3
o (E) A (f?)(‘fﬂ + f4_("ﬂ) cos (20)) - = fS'('ﬂ) + 0w (a) A

..3 b e 4
fé(ﬂ) + oo (;;) A f7(’ﬂ) sin @

- X
7 = j{%{_ {%m ng(ﬂ‘} - fo("p)> + %A go(n) cos © +

2 2
a'/«"n(i-) A gq(ﬂ) sin 0 + (Qg') Ag(gg('ﬂ) + gB('ﬂ_) cos 20)

3

2 -2, % 3
- % (m fs'('ﬂ) - F(j('ﬂ)) + @ W (=) A gs(m) cos @ +

=3

4
o m3(§) A g (M L

and
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W o= w1 - £0(M) + o4 £,0(1) sin 0 + o 3‘% A ho(n} cos @ +

2
DY n,(n) sin 20 + o 2 (i) A h (7Y sin 0 4
[=A i <.

3
o &3(§) A w3{ﬂ) cos ©

(B.18)

where

@ = z/a and A is evaluated from equation (B.5)

The perturbation functions have similar behaviour to those mentioned in

Appendix A. The nunerical values of the integrals are given by:-

o

LA f (1 - fo'(ﬂ)) an = 1.72016
Q
@

F, = { f1(n) an = -,86306
O
[+
¢

Fo o= o £(m) am = 773063
o)
(6 3]

F3 - f f3(ﬂ} an = 4+.299221
(s
6 5]
r

F4 - j f4(n) an = =1,596147
Q
[£0]

Py o= [ £g(m an - 7.87329

®
Fg = f fe(m) am = =.524311
)



4]
= r o3 -

F7 ] f7(n) an L311284
O
a

H = f hb(n) an = ~1.02114
[o]
(6]

Hy = f h1(ﬂ) an = 1.2939085
Q
@

2, = f hg(ﬂ) an = =-.799268
[}
@

H3 = j hB(ﬂ) dn = 0539085
s}
3]

LS. ‘f £ = £ () = 66383
(o]

[43]
T, = ? hg(ﬂ)(i - fo'(n) = =-,3012703
(o]

The numerical values of the above integrals have been estimated in the
same way as described in Appendix A, and the values of

ho'(o) = =, 312787

hB'(O> = L1002717

will be required in estimating the sgkin friction,
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Appendix C

Boundary Laver Dignlacement Thickness

€.T Method of derivation

Moore QKQ has derived an expression for the calculation of the
boundary layer displacement thickness for the three dimensional flow
over a non rotating surface. It has been suggested {Kj that this
expregsion is alsc valid for rotating surfaces. The solution of the
boundary layer equations yields a certain velocity distribution v(x,z)
normal to the body surface at the outer edge h(x,z) of the boundary
layer. Outside the boundary layer the flow is assumed inviscid, If

g is the velocity vector given by
gq = hi:_u + iv«;, Fw (c.1)

where

i, J and k are the unit vector in x, y and z directions respect-

ively.

Assume y = A(x,z) is a fictitious impermeable surface which, in a
completely inviscid flow, would produce a velocity Vn (normal to the
real surface) at v = h(x,z) equal to the normal velocity component Vb
which exists as a result of the boundary layer presence. The velocities

Vb and Vn are related bhy:-

hv
vy = 4. grad A + (h - 4) (333} (c.2)
Y o

The mass flow defects are given by
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dDov _ »hou ”how
pY oPs » 2 (c.3)

At y = h, the sgquation (C.3) becomes

kel
oV, = = f é bgiu) + Déiw) 1 dy (C.4)
)

If the flow is incompressible (p = constant) equations (C.2) through

(@.4), using Cartesian coordinate, gives

» y P
idharie - ‘ . oo ..,......( . ) .
e (A 5.) + %y i (A 52} 0 (c.5)
where 5
5= | (- =)ay
X ol T
o P
)
w
b, = | (1 - Dy (c.6)
P
o T
2
o= U(1 - a/2)
Y
and v, = 20 o sin(z/a)

C.2 Method of analvsis:

The evaluation of the boundary layer displacement thickness A depends
on the solution of the boundary layer equations. This solution has been
explained in Appendix 4. I% is assumed that the displacement thickness

could be given by
A = Ay + By + Ag + A3 + A4 + aea (c.7)

where the subscripts denote the order of the perturbation quantities in
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® and/or o. AO is the displacement thickness for zero spin and mero
Incidence. Substituting for the velocity profile equations into (C.6),

§_ and 8 TDbecome:
x Z

e o
X - . R
b, = \/%% fFO - %; F. cos(z/a) - a m(g) F, sin(z/a) -
3 "o 4
o (%) Ty cos(z/a) - @ #X(Z) F, sin(a/a)

]

2 Z )
2 x \ o (7 _ m
- o (a) (F3 - F4 cos(2z/a)) + g - M+ Fo)} +

L)

and

1)

X i X -
6z = T fFO -5 sin{z7a§ FO - % W " cos(z/a) Ho
-2 X 2 o X
% (g) sin(z/a) H, - 53 cos(z/a) H,

3
- % &3(§) cot(z/a) H3 |
(c.9)

Substituting equations (C.6) through (C.9) into (C.5) gives a system

of partial differential equations of successive orders in the pertur-

bation quantities o and @ ;=

-& (a, ,,\/A’Uz F) = 0 (c.10)
65255@1 + 3{% F, cos(z/a)) + S@E sin(z/a)(/,\o - /% FO) = 0 (C.11)

'"Q"(A _‘_\2225- X 2“‘ N % 2/.7( 2/,,1
yx (o + [T La w(gﬁ F, sin(z/a) + o \§7 (Fy F4 cos 2z/a )

pr——

- %(FS - T+ Fo}j V o+ Ny s;m(z/a)(/\1 +\]TT 5 cot z/a HO) = 0

(c.12)



— 3
E%E [AB + /%3-(- (ov 532(32) P c:og(Z/a) b ‘(_2 o sin(z/a) (A +

— 2
j—%’«‘- 5 sin(/a))] - o (c.13)
> G

bd

and

SQ-{'ALI + (cy m- “) Fe qfnfz/a)}‘}y o 2 o sin(z/a) (A +
/—— 9)( ) cot(z/a) HB).E = 0 (c.14)

Solving equations (C.10) through (C.14) gives:-

Ay = Fﬁ’ﬁ}?o (Cc.15)

.

by = /\{x %&% cos(z/a) (C.16)

‘ 2
A, = nj%fafﬁ?('z) sin(z/a)(F, -*““”)'*( = rp‘ + (Fy+

2
(R = 2))) cos(2o/a) | - % (r ooy 7 ) ) (c.17)
by - -J/%—?‘-( ”9/1‘» (Fg + 2 11) cos(a/a) (c.18)
and
vx | -3 % 4 2 "
by = j”’ﬁ”lL oW (j;) (}3‘7 -5 HB) sin(z/a) | (c.19)

The displacement thickness is thus given by:
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2
- _222 - g....).{.. n 3 . r” }" ( o i -
A \/;T fFO — T, cos(z/a) - o m(a) (7, .4Ho) sin(z/a)

2
(ax/a)z(p3 + (Fy v a(fy = 2P)) sin 22/a) + & (Fg=m+ B ) -

3 4
o 5(E) (7, + .g: 1) cos(z/a) - o 0 (%) (v, - -;é iy sin(z/a)l + ..
(C.20)

where FO, F1, coe HO, Hj, ... are the integrals of the perturbation

functions whose numerical values are presented in Appendices A and B.

C.3. Modified Boundary Condition and Velocity Potential

In the cross flow plane (r,$) in fig, (II.1) the boundary layer
displacement thickness produces an effective increment A($,x) on the
radius a of the cylindrical surface, where A << a, The normal to the
modified surface therefore makes the following small and approximate
angles relative to the normal to the solid surface at the same ¢ and x:-

CLY in the r-¢ plane

¢

<
R
o fr—

3A .
% in the ¢-x plane.

The normal velocity boundary condition to be satisfied by the velocity

potential becomes:~

oA

VvV = =gt - Rl
Usin a cos(¢=y) + U ™

1

This can be satisfied by expanding A as a Fourier series in ¢ and using

64

the velocity potential solutions in polar coordinates, In the calculation

of Magnus force, it is found that only the sin ¢ part of CLY contributes.

ax
The corresponding part of the velocity potential is:-—
aZ dAS
- U ;' E;” sin ¢

where AS is the amplitude of the sin ¢ term in A. Thus using the surface
coordinate system defined in fig., (I1.1), the surface velocity potential
becomes:-

dAS 2
- Ua - sin ( -J
dx a
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Appendix D

Measurements of Forces and Moments on a Body

of Revolution

D.1 Introduction and deseription of the balance

The measurement of the steady aerodynamic forces and moments on a
body of revolution at incidence was performed as an initial stage towards
the measurement of Magnus force ET?’QSE . The University of Southampton
magnetic suspension balance system was used. The balance and the sus-
pension system was built and developed in the Aeronautics department
.for the measurement of aerodynamic stability derivativesg, However, static
data can be extracted without modification of the system., The magnetic
balance is used witn an induced flow closed circuit tunnel, the working
section baving a nominal size of 8" by 6" and an atmospheric stagnation
pressure. The six component magnetic balance incorporates integral

feedback control so that the model remains in a fixed spatial position

as the aerodynamic loads change,

D.2 Calibration and date reduction

Magnetic field interactions occur due to the simultaneous applica-
tion of steady external forces and moments, Force/current and moment/
current calibrations are obtained using direct application of loads for
vertical forces and moments, and a system of harnesses and pulleys for
the drag force. Calibrations are repeated over a range of model attitude
and with different combinations of the applied loads. The model
position sensors are calibrated using a jig with Vernier adjustment and

positive location with respect to the working section. The currents in



the various coils can be expressed as follows:-
I, = L(P, D, M, 0)
Ip = I(F, D, M, @) (1.1)

I, = zd(F, D, M, o)

where Ia’ If and I@ are the currents in the aft, fore and drag coils
respectively and ¥, D, M and o are the 1ift, drag, pitching moment and
incidence respectively. REquations (D.?) can be edpanded in terms of

their derivativeg:-

bIa hIa hIa hIa hzla -0 b2Ia -9
SIaz bF8F+5D@DﬁwﬁM+”5;6(y+“~*§8F+ 26D+
aF HDh
bzla - 9 bzlaé_ 5 bgfa hzla b%a
5 M7 4 50+ e & B T, 8D5er + T Mber + ...
oM »oer
(D.2)

If and Id can be expressed in similar way and combined in a matrix form

given by:-

[1]

—
=8

| S

i

3
)
L.

Bl (D.3)

| N |

Ty

where [I] and [F] are column matrices, [B] and (A7 are square matrices

given by:-

- 7 rooT
L B e e s A I L
| Te % D |



o} 51 nE
a a a
oF Y 5D
[A] ) I I ol
e s
T
a0 Ma Mg
BF M 5D
- "
and
»°T » T
a mé a,
2 2T 2
o | g fa Ie AT £
HIhey ey A~ Dhey
2 2 2
T
o) Id é T4 & Id
dEBe HM By MDD
o o

The elements of (A7 and [B] have been obtained by two different methods:-

a) point by point using a digital voltmeter readout.

b) Tape-recorded signals with subsequent digital computer analysis,

Method (a) has been used extensively. BRven though digital voltmeter
readout greatly simplifies the process of taking measurement, a complete
calibration run is a long process. Method (b) has a shorter calibration
time but requifes more complicated analysis. The applied force and reading
voltage whilst the moment, drag and incidence were held oonstant to give
;;” « By putting the model at another aettinfzgnd repeating the force
variation, the second derivatives, such that ;5%%', were gobtained,

The same procedure was used to ob.ain all the derivatives, The numerical

values for the model +tested are:-
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~ T

- 11,16 |

CA] - .42 "Eo O 2.85 i
11.13 ~9.667 - .42

.95 .5 25,5

where the units in FA? are millivolts per gram and
| g

-’

- -
- '08 ® 13 - -345
(5] -
- .07 . 104 .19
- 027 0 0

where B~ is measured in millivolt/gram/degree.

-

'The applied forces and moments are related to the currents by:-

"
A7+ o (3] | (1] (D.4)

E ad

e -

Ty

f

e

The increase of the matrix Al + o B] | must be evaluated at each
LA b

{ -

| -

oo

incidence «. The aerodynamic forces and moments are obtained by evalua-
ting equation (D.4) with the elements of7EIE corresponding to the
increments between wind-on and wind-off readings at the same incidence.
The data was fed to the ICL 1907 computer to carry out the matrix

arithmetic and typical results shown in figures (D.2) through (D.7).

D.3 Resgults and comparison

The model was a 7 calibre AN spinner, the dimensions and construction
of which are showm in fig. (D,1). Tests were carried out at a tummel

5

Mach number of M = 0.2 and at a Reynolds rmumber of 1.2 x 10° when based
on body diameter.
The results obtained are illustrated in fig. (D.2) through (D.7).

These results are in good agreement with data from conventional wind



tunnels 98} . The aerodynamic forces and pitching moment coefficients

defined,

D = D/qm o)

c.LzsL/q 5

@®»

and G = Wa,_ o0

QL

where the moment coefficient is referring to the tail ef the body.




View looking forward

Incidenceeslis +ve nose up

\

Boundary layer thickness
+ve Fnz

p
o

?L} sinol

——

Fig(I.1l) Positive direction of Magnus force.

)
y

WSS%
——
1

+/

L/

-
\R\\%

L/

¥ A 'a”r
S 45
v "7
-3 oo

Rotating Non-Rotating

Pig(T.2) Vortex formation for rectating and

Non-rotating cylinder.



- U=10 mt/sec.
L =0.1
o~ z/a= 5T/L
= u
//
m/sec
0~
0~
o+
N
I = ! ! ! I v 1
-2 3 \ 6 8 10
...... w
Nlﬂ‘
)
<

Fig(1ll.2) Ve lorsity profiles of a rotating cylinder



m/sec

U=10 mt/sec,

b\):d,l

— ‘ h z/a=m/l

= /’”\ u |

Fig(11l.3) velocity profiles of a rotating cylinder



02

aod (p°1I)°oLd
2
Z a, .
g1 21 w |
b ~ m m ﬁ
I
e
o
o
S Er
(0=
~ JSHw 0F = 4 N
or -2 *%
s

UM/






Re =2.10
A Ref3
== Theory
®  =.25
f/d = 7
1.0
A
.8
2
Kff 0.155+2.22«
Y
A
2
0.155u(rad)
: : I L ] 1 1
0 5 10 15 20 25 30
Incidence ol deg
-8 b=

FIG. (IV.1) VARIATION OF MAGNUS FORCE COEFFICIENT WITH INCIDENCE.



ft

5

Re =1.13x 10
rd Clean mode!
Magnetic suspension [ 17] 1
O With transition strip

e Theory

& =0.25
Yd =7
0.05
0.04 I
/0.206 6 +2.220%
0.03 -
0.02

0.206 e (rad)

0.01
d
¢ S - ! L [
1 2 3 4 o} 6
d :
Incidence o¢ deg
d
-0.01 |~ o]
d
-0.02~

FIG. (IV.2) VARIATION OF MAGNUS FORCE COEFFICIENT WITH INCIDENCE.



4 x 10

4
4

0 —

A
5%,

Fig(A.1l) variation of perturbation functions fo,Sf\o with '?

14






10

14

12

Fig(h.3) variation of perturbation functions ho’h

1

12

with 1

14



-
p-
o

o

Fig(A.L) variation of perturbation functions f,58) with 7



4:{10

12 1

10

raved

Fig(A.5) variation of perturbation functions

f3

12

285 wi’th "l

14



© .

-

o~ L

0

I r I ]
2 4 6 8 10 12 79

.
b

Fig(A.6) variation of perturbation functions fb(,g*3 withvi

14



L

Figures D,1 to D.6,




154 "im

44 .
e '_ 110 1 Permenest magnet

L 66,847 mn N AM




6 Ref,
2 (&
o
- .+ Magnetic suspension data
- mo = 1.2, Su.,
j
8 |
o
[ o]
©
0..!]
& e

< . <
o +

£y o <

3] nml .

€

Lon
¢
P ] <
nu <
[
[
&~
o
o
[ ]

: Cx

-Z Z & ic 12 14 i& 18

-0.200




000

OEEQD

0.400
J

o

L
DE 600

0i800

1.000  1.200
1 I

o

~g01 teL =
B3ep worsuaxdsns oyjeudey +
(8] -zeu



o Ref., [18]
+ Magnetic suspension data

wuld.m.gom «

P

e ;J
Z 4 3 g

Fic. (D.4) V. 3iIATION OF PITCHIRG W

10 12 1 16

R —— e e g e
CIEST Wifh IRTIioniw

A0S B

16




o

[}

o Ref, |1
5 18]
+ Hagnetic suspension data

s

g |, R =1.2.10°

e (]

<

)

* g @ R 2

(e -

*

= .

[ o) .

(s} Y

| .

%
@ %

< (3

< *

< «

o .t

4 a3

[ow . e

S e

o . T *

< *

< e

<
r o i i | i f i i y i
~-¢ = D V4 4 ) 8 10 12 14 16 18

&

< o

2

2L

o

)

ey

JHC




0.200 0.400 D600 0.800 1. 000

£.000

1.200

[+

+

R
(-]

]

o

Ref. [19]
Magnetic suspension data
- 1.2, 10
! i
¢ 0



