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ABSTRACT 

The complete knowledge of the aerodynamic forces during the flight 

of mhella and misstles is essential to the study of the flight mechanics 

of these objects. One of the most complicated type of aerodynamic force 

to predict, in a general case, is that produced whenever the spinning 

is at an angle of incidence to the free stream velocity vector. 

This phenomenon is commonly known as the Magnus effect. The only 

tbaoriea developed to date, assume small angles of incidence and are tamed 

on a laminar boundary layer development around the body which has not 

separated. This study is an attempt to produce more information concern-

ing quantitative estimates of the Magnus effect. 
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Free stream velocity 

Cartesian coordinate system 

Velocity component in x, y and z direction 

Fondimensional velocity components u/H, v/n and w/U 

Magnus force component 

Aerodynamic force, complex potential 

Aft, fore and drag current 
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Pitching moment coefficient referring to the nose 

Magnus moment component referring to body nose 

^f1*^f2'^f3*"'' Magnus force coefficient 

K .,K " moment " M ./q Sd 
ml mZ ml' (D 

Op pressure coefficient 

Z,Z^,Z2 Complex coordinate 

3^ Centre of pressure 

P Complex potential 

w potential velocity in z direction 

Total Magnus force and moment 

Magnus force coefficient F^/q^^S 

K .,E " moment " M,/q Sd 
mt' m t' CD 

r, I Cylindrical polar coordinate 

ax/v ,V2, velocity component in r, # and x direction 

h(i,z) boundary layer edge 

u , * velocity component at the edge of the boundary layer 

8^, Bg position of boundary layer separation 

e ^ of incidence 

m angular velocity 

w spin rate wa/U 

p density 

boundary layer thickness in x and z directione 

A boundary layer displacement thickness 

V kinematic viscosity 

^ Blasius similarity parameter 

$ Stream function 

aaparation poaltlon angle 

8 angle 

8 forward stagnation point angle 
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r, r^, Fg Vortex strength 

f Skin friction 

_bL 
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( )' first derivative 
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partial derivative 

4-4-4 
hx hy hz 

hi— hy ̂  hz 
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CHAPTER I 

IntrodT'- on and Historical Background 

1.1 Introduction: 

A Bide force is developed on rotating bodies of revolution such as 

spinning sheila and missiles whenever the axis of spin is at an angle to 

the direction of motion. This force and its moment are the result of 

what is known as the "Magnus effect". This effect is aerodynamic in 

origin and is the direct result of the flow of air over the body. The 

interaction between rotation and the cross flow velocity produces an 

agymmetric flow field. The Magnus force acts perpendicular to the plane 

containing the spin axis and the fnee stream velocity vector. The con-

vention for the force, spin direction and incidence is shown in fig (l.l). 

The asymmetry in the boundary layer thickness distribution alters the 

effective aerodynamic shape of the body and this is one of the factors 

giving rise to the production of the side force and moment. 

- D j 

Measurements show that the variation of the nondimensional Magnus 

force and moment coefficients with spin rate and incidence are of similar 

form, for each body length to diameter ratio ((/d). The local Magnus 

force loading coefficient is a function of the axial position but is 

independent of the overall length of the body. At angles of Incidence 

up to 10° the variation of the side force and moment coefficient with 

spin rate is approximately linear in agreement with theoryC^G , The 

IKagnus force is in the positive direction and is of order between 5 to 

of the lift f o r c e for Reynolds numbers(based on body diameter) of 

the order 2 . 10 . The theoretical slender body lift is, however, 

* Bibliography mentioned after the References. 



wwffeoted l%r the spin even allowing for the vlsooua effects. The 

effeote of the body Bpin on the normal force and pitching moment are 

mall enough to be refrlected. for an angle of incidence up to about 10°. 

At Iwpger incidences the effect of spin becomes noticeable and is a 

AWAOtloa of the boAy length to diameter ratio ((/d). 

The Magnus force and moment can be important in the prediction of 

projectile behaviour in flight. The aerod^ynamic stability and fliĝ it 

trajectories of - nntng shells and missiles are both sensitive to the 

magnitude and direction of the Magnus force and moment. 

The pirediction of the Magnus force amd moment is veiy complicated. 

Early attempts to elop a satisfactory theoryC^J assumed email values 

of non-dimensional spin rate ma/? (see ITotation) and small angle of 

incidenoe * such that cr̂ /d < < 1.0. This theory assumed a laminar 

tmeeparated boundary layer. The corresponding predicted Magnus force 

varies linearly with twa/n, a and is inversely proportional to the square 

root of Reynolds number and acts in the positive direction, in 

agreement with experiment a-"J. It was found that the Magnus force and 

Its moment could be correlated with the distortion of the boundary layer 

displacement thickness distribution remiltiag from the body spin. 

At angles of incidence greater than 10° measurements!.^J show that 

the Magnus force and moment variations with spin parameter m become 

highly non-linear. At this incidence the flow in each cross flow plane 

is analogous to that of the flow over a two dimensional circular cylinder 

impulsively started from rest whilst rotating. The effect of the inci-

dence on vortex formation as the spin is increased have been visualized 

using smokeL'̂ ]. For angles of incidence between zero and 4°, it was 

noticed that the vortices which develop on the leeward side merge with 

.[3] 



the boundary layer may be regarded as an Integrated part of it; 

a definite hump was preaent on the advancing side of the body and there 

is a minimum boundary layer thickness on the retreating side. This 

boundary layer local thickness. rotates around the body as it spina up. 

This agrees veil with the computation of the boundary layer displacement 

thickness and a complete analysis is presented in chapter II. As the 

angle of incidence increases, the boundary layer separates as two vortei 

eheets which roll into two vortices on the lee side of the cylinder 

as illustrated in fig. (l.2) for the rotating and non-rotating oases. 

The presence of the vortices modifies the pressure distribution around 

the cylinder in the cross flow plane and consequently the boundary layer 

charaoterlsties. It is this aspect of the flow phenomenon which is con-

eldered in this thesis. A comparison is made between the different 

contributions to the Magnus force and moment which result from the 

boundary layer displacement thickness distortion, in order to predict 

which dominates at small angles of incidence. At large angles of incidence 

It Is the generation of the asymmetric vortex pair that controls the 

Magnus force and moment. The vortex flow features will be discussed 

in detail in chapter III. 

1.2 Historical BackxTound: 

In 1671 Wa J described the deviation of the sliced tennis ball 

and he was followed by Rabin in 1736 who explained the dispersion of a 

spinning canon ball. The first crude experiment was carried out by 

G. Magnus in 1852, after whom the phenomenon of the production of a side 

force resulting from spinning was named. G. Magnus related the drift 

of a spinning projectile to the aerodynamic force produced by the inter-

action between the body rotation and the flight velocity, through the 



m,«ymm*trio pressure distribution. In a paper published by Lord Rayleigh 

in 1877 on "The irregiilar flight of a tennis ball" the ideal flow re-

presentation of the classical potential flow field around a circular 

oylinder with circulation was used as a mathematical model for the 

development of the required circulation. However, the relationship 

between Magnus force and spin rate could not be determined from this 

theory. In the case of a uniform flow of a real fluid past a spinning 

two dimensional circular cylinder a lift is developed which is the 

Magnus force in the case of three dimensional flow. 

Qualitative data and negative Magnus force at low rotational speed 

were first obtained by Lafay in the period between I9IO and I912. The 

firat practical application in producing lift was the Flettner rotor 

developed in Gottingen. The long range flight of dimpled golf ball 

was also explained qualitatively ir terms of the generation of a turbu-

lent boundary layer, delayed separation and a consequent reduction in 

drag. An attempt to employ the spinning cylinder as a part of a high 

lift wing was unsuccessful in the early days of aviation although it has 

been Incorporated in recent times with more success in an experimental 

NASA aircraft. 

In recent work Martin considered a flow in which no wake is 

formed on the leevard side of the body. A laminar boundary layer 

analysis, on a cylindrical portion of a slender body of revolution having 

a small angle of incidence and small spin rate, showed that the boundary 

layer displacement thickness distortion could cause a Magnus force of 

the proper direction. In 1954 Kelly discussed Martin's theory and 

proposed an improved coordinate system to permit a more exact solution. 

Be also criticised the numerical values obtained by Martin and their 

lack of numerical accuracy. Kelly and Thacker L^] extended the theory 



to include additional terms in higher order spin rate. Plato^^^ 

suggested && emnirical method based oa lift force, of a ci-

rcular cylinder in a cross flow, as a treatment for the case of 

high angle of im ce. Power^^^ followed Kelly a procedure &&d 

Included the effect of the axl^l circulation distribution* 

Magnus force moment measuremente have been carried out 

many people and recently a number of extensive testa^^an^^^have 

beea made In Australia using a model with ogive no$e on a cylind-

rical body. These tests covered a wide range of incidence and gpin 

for different Reynolds numbers and body length to diameter ratios 

(//d)* Measurements of the boundary layer separation positlona 

showed that it is dependent on the spin rate and independent of 

the vortex core locations over a given range of Reynolds number. 

The negative Magnus force was explained using an impulsive flow 

analogy at a critical Reynolds number range between 10^ to 5 . 10^, 

based on body diameter. This negative Magnus force was shown to be 

dependent on the asymmetric growth of the boundary layer around 

the body cross section in the cross flow plajie. 

The role of the boundary layer in producing Magnus force is 

dominant only when the flow around the body is fully attached. 

When the boundary layer separates, the rwo feeding vortex sheets 

are convected downstream to form the wake and these control the 

production of Magnus force. The boundary layer development Im then 

of less importance in the generation of Magnus force. 

The purpose of the work presented here Is to extend the 

existing theory of Martin and Kelly to allow for higher angles 

of incidence and higher spin rates. The work concentrates on the 



preaeace of the potential flow vortices oa the leeward aide 

Of the cylinder and how they affect the boundary layer cha-

racteristics and consequently the Magnue force* The model for 

flow separation Is a simplified extension of those methoda 

uaed In the prediction of the effect of leading edge aeparation 

on slender wing plan formP-^'^°\n the case of the wing, the sep-

aration points in the cross flow plane are well-defined and^ on 

tramaforming the potential flow to that about a cylinder, euch 

points become stagnation points of the crosa flow plane, the stre-

agtha of the standing vortices are such as to maintain the locations 

of these points. In applying these ideas to the body of revolution 

at least three major differences can arise 

1. Stand-; distances are not so great and at low anglea 

of attack the vortices merge with the boundary layer and are weak. 

2. With increasing incidence the vortices form sets reminie-

cent of the vortigx street of the two-dimensional cylinder flow. 

However, the leading vortex is by far the strongest of the set 

and a reasonable simplification is achieved by assuming a single 

vortex on each side, 

3* The 1( ans of the separation points are no longer 

well-defined but require a full understanding of the three-

dimensional boundary layer separation behaviour on spinning bodlea 

of revolution. 

To overcome these difficulties a semi-empirical model was developed 

having the follovr^.ng features:-



A single pair of potential flow vortices of unknown strength 

aad location. 

b. The stand-off distances are large compared with the bonndary 

layer thickness. 

c. At the edge of the boundary layer and at the separation lines 

the total circumferential velocity component of the external potent-

ial flow is zero and axial velocity components are discontinuous 

giving rise to the feeding vortex sheets. 

The vortex strengths con again be determined by ensuring stagnation 

point* in the cross flow plane coincident with the actual separation 

points at that axial station. This is consistent with observed strea-

mline patterns on non-spinning bodies, at moderate to large angl^of 

attack. To avoid the complexities and innaccuraciea Inherent in the 

prediction of the separation points,the measured locations derived 

from wind tunnel are used to givo an empirical variation with 

incidence, spin ratio and Reynolds number. One limitation of this 

approach la the limited amount of data available. 

In the slender wing theorleP^^*^^\hich take accounts of lea-

ding edge separation, it is found necessary to Include the effect of 

the feeding sheet in the cross-flow boundary conditions. In the pre-

sent application, bo^y shapes tend to be much iMXM slender with large 

portions of the length having constant cnoss section area. The fee-

ding sheets will therefore be much weaker and the axial variation 

of tba vortex strengths will be slower. It la therefore assumed that 

the cross-flow is dominated by the standing vortices, that the det-

ailed feeding sheet geometry need not be considered and that the 

force-free boundary condition need be applied to the concentrated 

vortices alone. 

# 
The assumption that the separation and cross-flow stagnation points coincide is 
not the only possibility. Other criteria for the location of the separation 
points may prove to be more valid. 
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The contribution.^ of the present work fall into two dlatinct sec-

tions. In Chapter II and ,ipendix A, the analyaia of the aaymme-

trlc boundary layer growth for low Incidence attached flow la 

extended to include higher order terme in the incidence and ^^In 

ratio. In Chapter III a%d Appendix B, the high Incidence case la 

analysed using the vortex model introduced above. From theae results 

±he various Magnus force components have been calculated. The 

conatituent parts of the Magnus force that have been included are 

as follows:-

1. Normal pressure distribution arising from: 

a. asymietric boundary layer growth, 

b. asymmetric potential flow outside the boundary 

layer. 

c. the centrifugal field in the boundary layer. 

2. Skin friction components. 

The relative magnitudes of these contributions over the incidence 

r*w#e are considered in Chapter IV and the theoretical result* are 

compared wltk measured values. 



CEAPTER II 

Boundary Layer Characteristics of a Rotating 

Body of Revolution 

II.1 EquationB pf r ,ton: 

The steady vi-cous incompressible flow about a rotating cylinder 

of length e and constant diameter d is considered for the case when it 

Is placed at a i incidence o^to a uniform stream. The uniform flow 

haa a speed, n, the cylinder rotates with an angular velocity which 

is taken ae positive in the clockwise direction when facing the nose of 

the cylinder. The apin parameter is defined as w - ma/U. 

The noBe portion of the cylinder is assumed to have a negligible 

effect on the ^ layer development beyond a certain distance down-

stream of the nose. Thus, the detailed boundary layer growth on the nose 

and any separation ^ reattachment downstream of the nose are not con-

sidered in this ana.ysig. A rough method to include these effects is 

based on the assumntton that the length of the main cylindrical body [^3 

is effectively inc eased by an amount equal to the half length of the 

noee* The flow at a small angle of attack is assumed to be attached over 

the entire length of the body, and for this case the Reynolds number is 

assumed to be in a range such that laminar boundary layer flow exists 

everywhere. 

A set of non-rotating axes, fixed in the body, is used in this 

analysis and is illustrated in fig. (ll.l). The Navier Stokes equations 

of motion and the continuity equation are first written in cylindrical 

polar coordinates, the y-%%i8 coincident with the cylinder axis. 

The corresponding ̂ randtl boundary layer equations are developed with 

the appropriate boundary conditions at the body surface and in the free 
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stream outside the boundary layer. The inviscid. flow outside the 

boundary layer is obtained from slender body theory. The Navier-Stokes 

equations for the radial, circumferential and axial directions are 

respectively: 

hr + r bp + ^ hlT + 

(n.i) 

The oontinuity equation is 

^ x .!E 1 
"" _L. """"" "• + = 0 (II.2) hr ' r " r h? ^ &x 

where v^, v and are the velocity components in r, * and x directions. 

The Prandtl boundary layer assumptions are used i.e. the boundary 

layer thickness 6 is small compared with both the body length 2 and the 

body radius a. Rence the following orders of magnitude may be written: 

T 
= 0(1) 

V 
r _/R% 

r— = 
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^6 
' 0(w a) 

A -1 
" 0(& ^ 

Ax 

a * 0(6 ^ 

7 i r " 

It i* assumed that the spin ratio wa/v is 0(1) and terms of 

this order are retained. Terms involving w&/U will be 0(&/a) but it 

i# not assumed that these will dominate since 2/a may have modest values 

for some body shapes of practical interest. 

Equations (II.1) and (II.2) reduce to:-

1 3p 
^r 3r a 3* * " pa 5 1 * ^ T"?"' 

or 

3v V 3v 3v . . 3^v 

i f * "y-TT " ~ 3^ *" < " • ' > 

lE 0 
dr 

3v ^ 3v 3v 
â id — + i?̂  # 0 

3r a 3* 3x 
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Because of Che modest values of spin ratio (wa/U) permitted in these 

equations, the centrifugal term v^/r has a negligible contribution and, 

to this order the pressure is constant in the radial direction. However, 

.<lf,es the Magnus force depends on higher order asymmetries in the boundary layer 

distribution and the radial variation of pressure has a small but significant 

effect on the normal pressure at the surface. The corresponding effect 

on the MagnuB force can be readily estimated once the solution for has 

been obtained. Equation set (11.3) applies to both axi-symmetric and non-

axisymmetric flows and can be used for the case of a body set at incidence = 

to the free stream direction. 

Provided the boundary layer thickness is everywhere very small 

compared with the local cross-section radius, the cylindrical coordinates 

r, and x can be replaced by a set of curvi-linear surface coordinates 

X, y and z such that:-

3 _ a 
3x 3x 

3y 

' 3 1 9 
" • a M 
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Then equations are replaced by: 

hu hu 
U 'T— + V '— ^ W 

Ax Ay 

1 
p Ay 

hu hv hw 
A% + hy + hz -

hy 

0 (II.4) 

where u, v and. w are the velocity components in the directions x, y and. 

* shown in fig. Equations (11.4) the general three dimen-

eional laminar boundary layer equations. 

11,2 Boundary Conditions: 

In solving the boundary layer equations (II.4) the boundary condi-

tions on the cylinder surface and at the outer edge of the boundary layer 

have to be satisfied. The velocity components on the body surface are 

u * V m 0 and * = wa. The velocity components outside the boundary layer 

depend on the inviscid outer flow. Using slender body theory, it is found 

that 

u = n cos m 

w = 2n sin # 8in(z|a) 

and the pressure gradients are given by 

and 

P hz 
4n^(sin 8in(z|a) co8(zla)/a 
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%I,3 Solution of Boundary Layer Equations: 

The solution of the boundary layer equations (II.4) may be developed 

to include higher order terms In the spin parameter w and Incidence *. 

Ualng perturbation analysis, the velocity components are assumed to 

have the following form: 

u 
u 
n 

V 

U 
* 

9 

% + + Ug + Uj + u^ + 

^o + + ^2 + + 

-̂| + Wg + + ... 

(II.5) 

where u^ and v^ are the velocity components for zero incidence and zero 

epin, Bubacripts 1, 2 and 3 correspond to the order of perturbation 

tltleardU&c* aad/borw.Th* details of the solution are given in appendix A, 

The expressions for the velocity components which satisfy the differen-

tial equations (II.4) and the boundary conditions are given by: 

u fo'(^) +a4x/a f^(n) co8(z/a) + a w (2^ f^f^) 8in(z/a) 

+ » (^^' fg(^) co8(z/a) + a (2^^ f 8ln(z/a) 

2 

(f\(") + f^(^) cos(2a/a))_ f + ,,, 

+ 

M - fo(^) + X <o(T0 cosCVa) + 

» w (%) 
a' 'l(^) 8in(z/a) + # (3^ g^(^) co8(z/a) + 

Of (I) 
r3 /X 

Or) KcCn) 8in(z/a) + ( f vgg + g] co8(2z/a)) 

- » /4 (n f^'(r) _ fc(TO)}+ ... 
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where 

w(l - + 2& sin(z/a) + & m . cos (z/a) -

e sin(z/a) + ^ si* (2z/a) + 

e (-^ h_(^) cos(z/a) 
(II.6) 

2 /gx 
^ X V V 

ana and h are perturbation functions which satisfy the ordinary 

differential equations developed in Appendix A. The numerical values of 

the perturbation functions are tabulated in Appendix A. 

A set of the velocity profiles defined by equations (II.6) have 

been obtained using the ICI I907 digital computer for given values of 

e, m and x/a. Details of computation are given In appendix A. Some 

examples of these velocity profiles are shown In fig. (II.2). 

II.4 Boundary Layer Characteristics: 

MooreC^^- has derived an expression for the boundary layer dis-

placement thickness A for a three dimensional flow over a non rotating 

surface. This expression is also valid for moving surfaces. It is 

given by the following partial differential equation, the derivation of 

which is described in Appendix C:-

w 

p 
(A - \r) + (A - 6.) = 0 (II.7) 

where 6 is the boundary layer displacement thickness. 
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( 1 - — ) dy 

6 
r 
(1 - 'f-) dy w 

* = 20 sin » sln(z/a) 

and n m n COS& 
P 

(II.8) 

Substitutingjbxmequations (II.8) into (II.7) gives:-

6 6 

(A _ j (1 _ ̂ L) dy) 
0 n 

hi (A - ̂  (1 - dy) ̂ 2) - 0 
O ? n 

(II.9) 

Finally, by substituting equations (II.6) into (II.9) and integrating 

along the body axis, the displacement thickness is obtained in the form 

A " f Fo - IT COS (z/a) Pi _ a w (2)^ (p _ 2 % ) 8in(z/a) _ 

-2 ,x\3 
a (^) (Fg + ̂  co8(z/a) _ * (Z)* (p^ _ i 8ln(z/a) + 

2 2 

IT (^5 - ̂  - Fo) - * (%) (P3 + (F3 + § Hg _ 4 F^) oos(2z/a))l+ 

(11.10) 
where P^, P^, P^, ... and 

Hg, involve integrals of the perturbation functions 

and are defined in appendix A. 

The details of the boundary layer displacement thickness calculations 

can be found in Appendix C. A typical boundary layer displacement thick-

ness distribution for given values of e, m and x/a is presented in fig. 

(II.4),for a particular value of Reynolds number 
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CHAPTER III 

Vortex Plow Analysig 

III.1 Introduction 

At angles of attack about 5° the origin of Magnue force differs 

from that used in the analysis of Martin aeeumptlon of an 

att&ohed thin boundary layer devolopment abound the body no longer 

applleB. A boundary layer separation exists with vortex sheets rolling up 

1%) fozm zwaaeymmetrlc vortex pair located above the body. The flow 

around a slender body of revolution was described by Allen Kelly 

and others as being similar, in each cross flow plane, to the flow around 

a two dimensional circular cylinder. Buford ^nd Platou have 

suggested that the Magnus force on a given cross section of the spinning 

body is related to that of a spinning circular cylinder with its axis 

normal to the free stream direction. However the relevant force, on 

each cross section, is not the steady force but is the force on a rotating 

cylinder Impulsively started from rest. 

The flow over an impulsively started circular cylinder leads to an 

axial circulation u .itribution dominated by the net circulation of the 

vortex pair. The ; ical study of the early phases of the fluid motion 

around a body which is started Impulsively from rest was first considered 

by Blasius. It was found th^t after a lapse of time the boundary layer 

separates from the cylinder surface. The time and location of the separ-

ation depends on the Reynolds number and the axial position. The separa-

tion points move rapidly around the cylinder until at large values of 

time they coincide with the points of laminar separation for steady flow. 

Kelly and Bryson have adapted the model illustrated in fig. (lll.l) 
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for th6 d-GTelopment of the cross flow oirculation with distazics along an 

Inclined, body of uniform diameter for a symmetric aheddlng of olrmlatlon. 

III.2 Development of Clrculatlon:-

In V18C0U8 fluid flow the boundary layer is a region adjacent to 

the surface whose motion is governed hy the fluid viacosity. This layer 

can be thought of a* a thin sheet of vorticity being convected along and 

diffused away from the surface. This vorticity is shed into the outer 

flow at the position of the separation of the boundary layer from the 

body eurfaoe. Similarly the effect of the eurface movement is transmitted 

through the boun r layer into the external potential flow. Fig. (III.1) 

shows the positions of the boundary layer separation and the formation 

of the separated vortex sheets which convect downstream and form the wake. 

The Giroulation strength at any Instant is equal and opposite to the net 

vorticity that has been shed in a manner similar to the growth of circu-

lation around an airfoil. The amount of circulation developed about the 

whole cylinder reflects on the pressure distribution over it, producing 

a lift force and, whenever the body is rotating, a side force is generated. 

The separated flow vortex sheets, being unstable, roll up into spiral 

vortices. Hence, after diffusion has taken place, the vorticity is con-

oentrated largely the vortex core. Tbrticity is fed into the vortex 

core continuously through the feeding separated flow vortex sheets which 

connect to the attached boundary layer at the separation lines. 

In the case of high fineness ratio bodies of revolution % 

side force can be developed without due to the asymmetric pattern of 

vortices shed alternatively from either side of the cylinder. Near the 

body nose the boundary layer is thin and attached but farther downstream 

two symmetric vortices are shed from the leeward side of the body. At a 

sufficient distance along the body these vortices detach and move down-
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stream at an angle relative to the free stream. Further dowiatream 

other vortex ahaets form and. detach from both sides of the body. Eence 

at any cross flow plane, the wake has the appearance of, at least, part 

of a Vortex street as illustrated in fig.(ill.2). When spin is intro-

duced, a similar pattern exists although the position of the separated 

Tortei sheets and the corresponding rolled up vortices are different. 

The development of separated vortex sheets is governed by two approx— 

Imate conditions. First, there must be a force balance on the concen-

trated Vortex and its feeding sheets i.e. zero net force on the system 
* 

composed of the vortex and the feeding sheet. This derives frcm the 

physical requirement that the fluid pressure ^ould be continuous through-

out the flow field. The second condition is that the separated vortex 

sheets start from the boundary layers at their points of separation. The 

condition for boundary layer separation depends on the pressure distribu-

tion outside the bn ry layer near the separation. The pressure dis-

tribution itself depends on the positions and strength of the rolled up 

vortex ^eets. This Interdependence between the viscous boundary layer 

flow, its separation and the potential flow arising from the separated 

vortex sheets is complex and it is necessary to resort to a simple flow 

model. The model used here is shown in fig. (lll.l) and is composed of 

two vortices located in the leeward side of the cylinder. Initially a 

potential flow is assumed and a solution is formed for the body and 

concentrated vortices satisfying the approximate boundary conditions at 

infinity and on the body surface. As part of the solution the position 

and strength of the concentrated vortices will be found for given separ-

ation points. In the case of the body of revolution, the position of the 

boundary layer separation is complex to predict being dependent on the 

flow Reynolds ni and bo-undary conditions on the body surface. The 

As discuseed In the Introduction, the feeding sheet strength will 

be email and for the present model Its for^e contribution la neglegted. 
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posltioneof the separation lines also depend on the condition of the 

boundary Isyer )f separation. For the above mentioned flow model, 

the position of to be determined empirically for a g^ven 

configuration and olds number, and the slender body potential 

flow solution then < The body rotation affects the solution 

through the position of the separation lines, which are assumed to form 

the junction of the feeding vortex sheets. In slender body theory, the 

flow over the bo^v * ' on finding the velocity potential in each 

cross flow plane which satisfies the boundary conditions in that plane. 

In the cross flow plane the junction of the feeding vortex sheets with 

the body will be stagnation points. Their location and the axial distance 

at which flow separates must be obtained either from experiment or from 

empirical formulation for each Reynolds number, body Incidence and spin 

rate. The axial distance at which the vortices became well defined is 

known to move forwai the body as the angle of incidence increases. 

The effect of spin rateboundary layer separation is very complex. 

At moderate to high angles of incidence, the effect of vortices on 

the flow field can be evaluated for the different 'sources of . force* 

INUrst, the position a / the strength of all vortices in the cross flow 

plane of the body are calc d and used to estimate the corresponding 

forces and moments usin% Lagally's theorem. In this case the effects 

of viscosity are ignored except Insofar as they control the position of 

separation.,For cnu force, the velocity field due to all vortices 

in the cross flow plane is calculated and in particular the velocity 

distribution around the body surface. The velocity outside the boundary 

layer is thus known and the boundary layer characteristics can be deter-

mined. The distortion of the boundary layer due to the external flow 

field enables the force and moment on the new aerodynamic shape to be 
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In this second method allowance is made both for the effects of the 

boundary layer and for the separated vortices. A hybrid method is used 

in the present work. The accuracy of the results depends critically on 

obtaining a complete set of experimental data to cover a given range of 

Reynolds number, angle of attack, spin rate and body fineness ratio. 

Only a modest amount of such data is generally available. 

III.3 Mathematical Model: 

The model described and illustrated in fig. (III.l) where and r 

are the vortex strengths located at and Zg. The separation angles 

are and Th^ complex potential in the cross flow plane is given 

by: 

a? IT 2 
P . * sin * (Z + (In (Z-Z^) _ ln(Z - %-) + In Z) 

Z^ 

ir_ _2 
+ (In (Z-Zg^ - ln(% - + In (lll.l) 

where Z, 2^ and Z^ are complex coordinates 

r^, Fg positive whenever the circulation is clockwise. 

The complex velocity F is given by: 

9 i r 
dF ^ -'1 / 1 1 1 \ 

= n sin * : + Y-; ( zlTz; 2 + Z ) 
1 z.a-

+ T : ! ( 

Z-' 

"'2 

wher* and Zg are complex conjugates. 
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The vortioes are considered to be fed from the points and Sg on the 

body Burface where the flow separates away from the body. The vortex 

strength at ven location is determined from the condition that the 

fluid, velocity vant^hes at the aeparation points &nd la defined by 

" 0 (III.3) 

Equation (ill.3) yields two equations in and Tg after Bubetitutio" 

usinp equation (ITT.2), with the vortex locations aad aepara^ 

tion poeitions derived from experimental data C^3.These vortex core 

locatlona were obtained by probing the wake of the cylinder using a Kell 

tube. The position of the minimum total pressure was Identified as the 

centre of the vortex cores. The cross flow separation positions were 

meaoured by means of a hot wire anemometer with its aiis parallel to the 

cylinder axis. For a symmetric wake development of a non rotating 

circular cylinder, the vortex strength T was expressed as a function 

of aiial distance and the angle of incidence at Mach number M - .1 as 

0.14 x/a (III.4) 
2nna 

For the asymmetric case, the following form is sought for the 

vortex strehgth&r-

" 2 x , - -2 
Fa - " l/T a ^ ^ "i + ""i (1 + b. w + c. w + ... ) 

i . 1,2 (III.5) 

wh^^e a., b., c. are constants defending on the flow conditions, R and 
1 1 1 - n 

t. M. Analysis of further experimental data ^ ' u yields:-

r 
^ . 0.115 x/a (1.0 +1.65W + 0.95 + ...) (ill.6) 

2nna 
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2n%L " + (III.7) 

valid over a range o' from 6 . 10'' to 2 . 10"̂ ; baeed on "body diameter 

jk 

and free stream velocity. The circumferential velocity diatribution 

using equation (III.2) is Illustrated roughly in fig. (ill.3), which can 

be ooneidered in ttunsa distinct regiona. The first region ia on the 

windward side of the cylinder between the forward stagnation point and 

the separation point 4^,. The second region lies between and Sg in 

the leeward side of the cylinder. Lastly there is the region between ŝ  

and the forward stagnation point. The velocity distribution is given 

by the following equation 

0 - 0 
W - a d, sin n for 8 < 8 < 

1 - 8 o 1 

5 -

* *2 for O-C *2 

* 

8 — it p 
" a d^ sin n — r — = - - - for Q-C 2n + 8 

j 8 - 2 o 
O <: 

(III.8) 

where d^, dg and are obtained from equation (III.2) for a particular 

axial station and they are described more fully in Appendix B. 

Neglecting any pressure changes along the body axis, equation (ill.8) 

is used with the appropriate boundary conditions to solve the boundary 

layer equations (ll.4) for each of the regions. The details of the solu-

tion are presented in Appendix B together with the numerical values of 

the perturbation functions. The boundary layer characteristics are 

obtained in the same way as described in Appendix C. 

Equations (III.6) and (III.7) are empirical fits and do not exactly satisfy 
bg = and c^= c^. However, the resultant numerical error in the Magnus 

coefficients is small. 
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CHAPTER IV 

B Effect 

17.1 ]Method of AD^'y^ a. 

The evaluatlc lus force and its moment Involves oontrlbutions 

from different gources. The boundary layer displacement thlckneaa 

asymmetry arises from the angle of incidence and spin rate combination. 

A radial pressure gradient is formed by the centrifugal force acting 

wlthtn the boundary layer. The skin friction and the circulation dis-

tributlon also provide contributions to the Magnus force and moment. 

The asymmetry of the boundary layer displacement thickness distri-

bution with respect to the angle of incidence plane produces a side 

force component. This force is calculated by solving the inviscid flow 

about a new surface resulting from adding the displacement thickness at 

the body surface. is the major contribution to the Magnue force 

and moment whenever the angle of incidence and spin rate are email enough 

to ensure a boundary layer attached to the body surface over its whole 

length. It then represents 70 - 80^ of the total Magnus force. The 

aeoond contribution arises from the surface shear stress which is also 

an agymmetric function and its integration over the whole cylinder surface 

provides an additional term in the total Magnus force. According to the 

calculations, Ln . is about 5^ of the total ]Wagnus force. Another 

contribution is that due to the radial pressure gradient through the 

boundary layer thickness. It arises from the centrifugal action in the 

boundary layer f l o w . The radial pressure asymmetry, with respect to the 

angle of incidence plane, adds about 15 - 2^^ to the total Magnus force. 

The final and most c^' licated term which contributes tolMagnus force and 
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moment reaulcs from the free vorticity. The effect of circulation 

increases with increase in incidence having negligible effect for 

attached flow conditions. Whenever separation takes place* the standing 

vortices dominate th" contribution to Magnus force. It will be shown 

here that, at high angles of incidence, the asymmetric orientation of the 

separated vortices is the source of a large part of the total Magnus force. 

Consequently the boundary layer displacement thickness contribution to 

Magnus effect may then be neglected. The vortex strengths build up due 

to the vorticity shed into the wake in the cross flow plane. The existence 

of vorticity in the flow field modifies the pressure distribution in the 

inviscid flow and will modify the boundary layer characteristics. 

IV,2 Magnus Effect Form*, ation: 

The major contribution to Magnus force and moment is due to the 

normal pressure distribution asymmetry. The effective aerodynamic shape 

will consist of the original shape and the boundary layer displacement 

thickness distorted by body rotation. The velocity potential of the 

cross flow plane at any station along the body axis is given by 

4 - 4, + * (IV.1) 

where is the inviscid potential and * is the perturbation potential 

a 2 
due to the displacement thickness. Assuming is a small quantity, the 

3x 
perturbation potential will satisfy the two dimensional Laplace equation 

9^* " 0 at any station x. The boundary conditions are " 0 and 
dy ym* 

y_0 " U where is the slope of the effective body shape.^ 

The required solution for,the perturbation potential at the surface can 

•f-
The cross flow component in the surface velocity condition has not 
been included because the resultant # component does not contribute 
to the Magnus force. 
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be shown to include the term (see Appendix C, section C.3). 

* * (IV.2) 
dx a 

where Ag is the amplitude of the sin(z/a) component of the displacement 

thickness A. 

The pressure coefficient neglecting second order terms is given by 

2 ^ 
p U 

and hence at the surface (a is constant with x) 

2 
c = 2a ̂  (IV.3) 
^ 3x 

The only terms which contribute to Magnus force are the sin(z/a) ones 

and, the Magnus force component is given by 

& 2TT 
f f 

F = - i I a n c sin(z/a) d(z/a) dx (IV.4) 
ml j J m p 

o o 

The Magnus moment coefficient referrring to the body leading edge is 

given by 
I 2Tr 

M 
ml J J 

o o 

a q c X sin(z/a) d (z/a) dx (IV,5) 
m p 

Substituting equations (11.10) and (IV.3) into equations (IV.4) and 

(IV.5), the Magnus force and moment coefficients reduces to 

'̂ fl 
{ 5 a w(l)2(F_ - 0.4H ) + 9 a w^(-)^.(F_-^ H_)} (IV.6) 

/ U£ a / o a / 9 J 

K . - { 3 a (F_ - 0.4H ) +7 a 0^(1)4 (F_-0.222H_)} (IV.7) 
ml V u£ a 2 o a / J 

and represent the major contribution to Magnus force and moment. 

The radial pressure gradient is given by 

F I? - - 7 

Equations (IV.3) and (IV.8) can be used to produce a modified surface 

pressure coefficient in the form:-
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o 

The extra force component due to the radial pressure gradient term, 

after substituting from (II.6) into (IV.8a), is given by 

2 

where 

and ig = j hg (n) (1 - f^'Cn)) dn 

The force and moment coefficients are given by 

2 2 
4 _ -2,&, 

Kf2 = /ul 2 " <!' [3=. - 7 ^2 " y ] "V'lO) 

and 

The third component of the Magnus force is that due to skin friction, 

which is given by 

[ ^ 

^ ^ I 3y ; y-o (IV.12) 

The force and moment coefficients are obtained by integrating the appropriate 

component of t after substituting for w:-

r - _ ^ / _ 4 
^ ^ ^o' * f ] (IV. 13) 
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and 

K 
m3 

4 -/P 
* h '(o) h •(o)] ( IV.14) 

The total Magnus force and. moment for small incidence and amall spin 

parameter developing attached flow all over the length of the cylinder 

are given 

*f - Of (Fg _ .4H^) + 9 a (Fy _ 2 

+ 4 * w(̂ C (§ Ig + Y Ig ) + 

4 a ho'to) + e h'^fo) 

(IV.15) 

*m * jnt [ 3 * (Fp - '4H_) + 7 e M^(^0 (F7 - % H.) 
a/ ' 7 9 3' 

+ * ;o!)'(| lo + 1 1 2 + 

ho'(o) 4. * -(i) +-^Ye + .. ( IV.16) 

It has already been stressed that the sources of Magnus force at 

large angles of incidence are different from those at small angles of 

incidence and are due to the existence of two skewed vortices in the 

cross flow plane. The vortex wake changes the whole flow field around 

the cylinder and consequently the forces acting on it. The mathematical 

model illustrated and explained in chanter III produces a Magnus force 

due to the resultant normal pressure distribution around the cylinder. 
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The MllnefThomBon circle theorem produces the complex potential solution 

in equation (III.U. The foroea acting on a two dimenBlonal clroular 

oylin&er In the presence of a specified number of aingularitiea Mtn be 

calculated from either the generalized Blasius or Lagally theorems.Qie 

component on a three dimenaional body of revolution o&n be 

obtained ae;-
P m 
r 

'm4 P-x = - P I X TiCO - Ui)dx (IV. 17) 

where m ia the ] of vortices in the flow field, is the strength 

of ith vortex rotating clockwise and u^ is the velocity of the vortex i 

due to all the other real vortices in the flow field. Using equation 

(III.5), equation (17.17) becomes 

2 
Fm4 - na^ p n? ̂ 2(2^ 3^(1 + w b, + c^) (IV. 18) 

io*1 

Subetltuting for the values of a^, and c, from equations (III.6) aad 

(ill.7), and using F^u^ = ̂ 2^2' Magnus force and moment;. 

due to circulation can be expressed as 

3 ^ 

^f4 " 
K*, = 2 (i) aj(l + w b, + (IV.I?) 

and 

3 2 

*m4 " 3 + w b^ + c^) (IV.20) 

1=1 

Strictly, equatlonsdV.l^) aad(IV.l6) are modified at high Incidence 

b? the effect of the parameter A, introduced In equatlon(B»5), wkldk 

la a measure of the dlffereace between the external potential flow field 

In the tmaeparated and separated 8tates*JSowever,the nu merlcal modification 

to Magnus force 1::: small because the Infliaence of the vortices ('ylata 

mainly at the surface In their Immediate vicinity and there Is little 
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% 
effect on the gross asymmetry in boimdqry layer growth. 

17.Resiiltg and Comparison 

The nimerlcal values of the integrals can be found In Appendix A 

and are need to calemulate the following Magnus force and moment coeffic-

ients neglecting terms of higher order as o- then 

^f1 " 13.72 (Y m 
0 

r - 0 2 CI I V - / '53 (y m (^) 

The numerical value of equation (IV.15) is given by 

/— 2 
Kjp » 14.96 a m ('̂ ) (IV.21) 

by including hi^er terms in m equation (17.15) is:-

f—" 2 ̂  2 
rv r-—^ ^ 1/ Q A «, 1 ni K f - V M (y (0 W ' 14.9f) - 7.03 w (t) I 

a )_ a J 

The Magnus moment coefficient expressed in equation (17.16) is written 

as follows: 

J— ^ 

(17.22) 

or for higher order in m as 

^ (d) ""8.99 - 5.46 (^)' + . . . 1 

The centre of pressure position (measured from nose) expressed as a 

function of the body length is; 

"* y ' ^ ' 
This applies at low incidence when the vortices are weak and close to 

the surface, and asymmetry arises from the spin. At higher incidences, 
the Magnus force is dominated by the asymmetry in normal pressure distribution. 
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4 
- .365 + 

The evaluation of K, 
m4 by using equations (ill.6,7) with connec-

tion to equation ( I V . K and are given as follows: 

K 
f4 

and K 
m4 

c^isi 2 
O.D^O' Ml 

"d 

0121 ^ n 3 _ 
O'l* '15 9" Ml 

The total Magnus force and moment coefficients including the effect of 

flow separation are:-

K 

and 

ft 

mt 

- /P\ 
2 p— j ' • • ••'••• O'l&l 

+ + 

a ; (i)' 8.99 
0121 

- 1 

(IV.23) 

The results obtained may be compared with those obtained by Martin C^] 

and Kelly for unaeparated flowi-

2 
Martin K, in I V 

a m (7) 

Kelly K_ = 12.2? a m (j) 
2 

Present work K 
f 14.96 Of U) f—^ 

(17.24) 

Equations (IV.24) show the linear behaviour of Magnus force coefficient 

Twith a and w for particluar P/d and Reynoi^.s number Rp. The different oozustauita 

iRdtca,t@d, in equationx^)pcc)ii" bocauds^)firstly^ because Martin 

neglected the effect of both skin friction and the radial pressure gradient 

on Magnus force and, p idly the present work has been carried out 
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uaing a better numerical techzilque (four polata RuQge-Kutta) 

ae well ae more ac :e computing facilities. 

fbr comparison with the theoretical results la equatloa* 

(17,21) and (IV.2^), measurements of Magnus force were tdkaa 

from two eourceP'^7]^ ^ conventional wind tunnel 

mechanical sting support was used. In the aecon^^?^, 

aetlc system was employed to support the model without aerodynamic 

Interference. Since the use of magnetic suspension for Magnus 

measurements Is so novel, it was felt desirable to give a brief 

account here of the system and the data acquisition techniques* 

This la contained In Appendix D and concentrates on the prelimi-

nary work with the non-splnnlng model to obtain the calibration 

constants and static aerodynamic data. The technique with the 

spinning model is similar-^'". The model used as the baseline for 

the experiments and theoretical calculations is shown In Pig.(D.l). 

The detailed behaviour of Magnus force with Incidence and 

spin ratio dependes very much on Reynolds number, tunnel flow and 

model surface states. A selected comparison is made he:^ between 

theory and measurements to Indicate the significant general points 

of agreement and disagreement. In Fig.(IV.l), good agreement exists 

awst incidences. The theory predicts that, at this spin ratio 

and Reynolds number, the non-linear contribution is significant at 

quite low angles of attack (about 3 degrees) and is dominant above 

10 degrees . When the boundary layer Is essentially turbulent, it 

Is anticipated that the separation points (and hence stagnation 

points) Kill d e p e n d to a l a r g e e x t e n t o n l y o B Incld. nee and apin 

ratio. The s e m i - e m p i r i c a l n o n - l i n e a r n o d e l w i l l therefore give 

good agreement at the higher Reynolds numbers . 
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At reduced Reynolds number and low incidence (<10°), the boundary 

layer state has an all-important effect on Magnus force as can be 

(17) 

seen in Fig. (IV.2). Results are given for a clean model and 

with a roughness band added on the nose shape. In both cases, negative 

force coefficients are present which cannot be predicted by the present 

theory. With the clean model, the boundary layer is essentially 

laminar although there is a possibility of laminar separation and 

turbulent reattachment. The theoretical prediction shows poor agreement 

over the incidence range covered (0° to 7°) indicating that the simple 

attached boundary layer model is not applicable. When an attempt is 

made artificially to increase the turbulence level, then the negative 

Magnus force mechanism at very low incidence is greatly reduced and the 

theory shows good agreement at incidences greater than 4°. At typical 

full scale Reynolds numbers it is expected that the theory for the non-

linear part of the Magnus force will show reasonable agreement at moderate 

and high incidences, because the empirical data on which the theory relies 

will be less sensitive to Reynolds number. The availability and analysis 

of interference free data over a wide range of Reynolds numbers is 

required to justify this in full. At low incidence, the small Magnus 

force present will be less sensitive to features such as laminar 

separation and reattachment (which is one mechanism for a negative 

Magnus force) but will remain sensitive to detailed base shape. The 

present laminar boundary layer theory for the linear part of the Magnus 

force is not adequate to deal with the low incidence range but the 

method should be capable of extension to the turbulent case. 
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CHAPTER 7 

Conclualona 

The prediction of the Magnus force of the @plnal&g circular 

cylinder has been studied by many people. Martln^^aad 

predicted for the spinning body a linear variation of Magnw* 

force with both spin rate ajid angle of iRCidence* Thie predlctioh 

ia applicable only for a very email incidence a&d a low apin rate, 

4^ la^ge incidence, the flow separates and etaadiag vortices for* 

ta produce the non-linear behaviour of the J&ypwie force ae illu#-

trated in Pig.(IV.1). A method has been developed here to predict 

this behaviour and the results show good agreement with the expe-

rimental data. Accurate wind tunnel meaeurementa are very diffic-

ult to obtain, since the Magnus force i» much smaller than the other 

aerodynamic forces acting on the cylider. Negative Magnus force ia 

not predicted by the theory but measurement)!;^^^indicate ita preaence 

at low incldencee^low Reynolds numbera an(* low apia ratioa. 

The magnetic suspension balance reeult^^^^are presented in Fig.(IV.2) 

and compared with the non-linear theory. 

This study of Magnus force production has led to the following 

conclusions:-

1. The uffect of the boundary layer displacement thickneaa i# 

dominant only whilst the flow is attached to the body surface* i®©» 

for small and w . 

2. The contribution to Magnus force from the extra aaymmetry ia 

boundary layer displacement thickness c&uaed by the vorticea in the 
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outer iaviscid flow is much smaller than that due to the normal 

preseure diatributton or th. xnln offeet when the flow la uneeparated, 

3- The vortlcwo 'hjvuloi in thu Invlfjcld outer flow from vort-

Iclty ehwd In the wake o^ tj t: cylindrical body at angles of Izicldence 
o 

greater than ^ . 

4. At IwrgL, ,uiglu8 uf fibtack the ^agnu8 force la produced lar-

gely by the normal presMure distribution aaeoclated with the aaymm-

etrlc potential f^o* field of the stanrlng vortices. 

!). More exnurlmentul work la required especially In flow vlsu-

allzaLlon at umaLJ angluu an In the muasurements of separation pos-

Itlone and vortex locations. 

Ihe major iLmltatlons ( i the method used are!-» 

1. Negative Magnus t'orcus cannot be predicted at any incidence, 

Reynolds number or spin ratio. 

2. The model uses the assumption that the cross-flow stagnation 

points coincide with the separation points. 

The method is 8cn(ii-.empirlcal in that measured positions pf 

separation points nre required, 

aowever, agreement between predicted and measured overall Magnus for-, 

ces is good, particularly at the higher Incidences, 

The contribution of the present work towards the prediction of 

Magnus forces may be summarlBed ae:-

a. An extension of Lhe attached flow contrlbutioQ tq include 

higher order terms in Incidence amd z%^&0. 

b. The development of a ueml-emplrical non-linear method for 

the contribution of separated flow vortices at, moderate to high 

incidences. 
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Appendix A 

Boundary Layer Equations 

Caminaz Plow. 

The three dimensional boundary layer equations (A.l) for semi-

infinite circular cylinder using the C&rtesian coordinate system illus-

trated in fig. (ll.l) are given by 

Ax + + * hz 

w 
h w 

1 bZ 
n bx . 2 

by 

J hP 
+ V"—z P Az 

+ flY . hw 
hx hy 

(A.I) 

The boundary layer characteristics are obtained by solving equations 

(A.1) whilst satisfying the following boundary conditi* '.ons: -

u - V _ 0 and w = wa at y = 0 

u = n cus # and w = 2 n sin e (z/a) at y CD 

For small angles of incidence such that 

the above boundary conditions reduce to 

sin esK a and cos e % 1 - * /2, 

u 2 

u(l - # /2) and w = 2n # sin(z/a) at y = (D 

The pressure gradients are given by 

±2 
Ax 

0 

and 
,2 2 pn' 

4 m sin (z/a) cos(z/a) 
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It is assumed that le velocity profiles in the boundary layer may be 

expressed as following 

^ + Ug + + ... ^ 

V = + ... j (A.2) 

w = + ... 

where u, v and w are velocities non-dimensionalised with respect to the 

free stream velocity U. u^, v^ are the non-dimensional velocity compon-

ents for zero spin and zero incidence and the subscripts 1,2,3,4 refer 

to the perturbaklony in the first, second, third and fourth order in # 

and/or The boun ary layer equations for the zero order perturbation 

are given by:-

p 
6u hu h u 

u - ^ + V — S = o 
O hy o Ay u . 2 

hu %v 
o o 

hx + = 0 

Assuming a stream function $ as follows 

* = /vHi f (^) 

where ,— 

X ^ V 

The velocity components are 

u = f '(n) 
o o \ ' 

v. = i (T, fg'(^) - f^f^)) 

(A. 3) 

(A.4) 

The boundary conditjons are u = v = 0 at y = 0 and u = 1 at y = co. 
o 

Substituting equal ions (A.4) into (A.3) results in an ordinary differ-

ential equation in the function f (n) as following 



4 4 

f (A.5) 

The solution to equation (A.5) must satisfy the boundary conditions 

fgfo) = fo'(o) = 0 anu f^'fcD) = 1. 

The boundary layer equations for the first order perturbation in 

CK Or (u is given by 

hu, hu^ ^ ^ 

*o hx + hx ^ ^O hy + hy U ^ 2 
hy 

o hx O hv 
V 

hy' 

hx hy Az 

(A.6) 

The velocity profiles take the forms given belo* 

u^ = f^( i; cos(z/a) 

= 'u;: IT eo(^) cos(z/a) (A.7) 

= m(l - f^'fn)) + 2 » fg'(^) 8in(z/a) 

where u^ = v^ = 0 and m at y = 0 and 

u^ = 0 and = 2 ̂  8in(z/a) at y = co 

This leads to f^(o) - %o(o) = 0 and. fi((D) = 0. 

Substituting equation (A.7) into (A.6) gives two simultaneous ordinary 

differential equations in f^(n) and g (m) as follows:-
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fl"(TO - (8o(^) - 2 fl(TO) 

*o' 
(^) - i f\'(TO - f\(^) - 2f "(TO 

(A.8) ) 

2 

The second order perturbation In a w or leads to the boundary layer 

equatlona:-
bUn hu_ hUi &Ui hu 2 o 

*0 lb;; + ^O Ay + hx + hy + %y ̂  ^2 h% 
+ 

w 

2 
hu, h u. 

I _ ^ / 

1 0% = % hyZ 

h* h*1 h*1 h*2 h*i 1 hP V 

"o hx + hy + hy + *1 hz - p hz + n ^y2 

bUg bUg bWg 
-biE + -b7 + "A; = ° 

( A . 5 0 

Appropriate forms for the velocity profile in the boundary layer are 

given by:-

2 9 ^ 2 
Ug = a w (^0 8in(z/a) + # (^0 cos(z/a)) 

a 
2 -5''"^ 

j ~ ( ry sin(z/a) + + gi(T) C03(z/a)) V 
2 fU% a/ \G2\ 

2 &_ 

4 

and 

Wg = # ^ co9(z/a) + (&" x/a) h^(^) sin(2z/a) 

(A.10) 

where = v? = = 0 at y = 0 and 
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cy 
and w 2 = 0 at y CD 

The above boundary condi 

^o(°) = = 

fgCo) g\lo 

fjCo) = ggfo) 

^4(0) = g^(o) 

and f^(o) = f "(ol 

ions lead to the following, 

0 and h^(o) = h (co) = 0 

0 and fgtco) = 0 

0 and f^(cD) = 0 

0 and f ( 00) = 0 

0 and f ' ( oo) = 1 

Substituting equations (A.IC^ into (A.?) gives a set of ordinary differ-

ential equations in fg, f^, f^, f^, as follows;-

= fo'(T^ ^^(70 - i h^;(TO fofn) + f fi(TO - g (TO) 

+ 2 (1 _ f^'f^)) (A.11) 

f2"(n) zfrX^) fo'(TO - ifo(^) fg'C^) + fo'Cn)(gi(n) 

fi(n)(i - f '(?)) 

I y^,)) 

gl'(?) = 2 fg'fn) - 2f (n) + h (^) 

hi"(m) = fo'(^) hi(T) - i hi'(^) f (TO + 2(f '2(n) _ 1) 

(A.12) 

+ fo"Cn)(^ fi(^) - go(TO) (A.13) 

f "(TO -3 2fj(m) f^'fn) _ & f^(^) + fg"Cn)(g2(^) 

+ & go(^) fi'(T) - f^'(^) f^(T 

+ ^ fi(^)(fi(T) f^' 

^ fj'(^) - 2 f (^) 

? 3 f3(n)) 

(A.14) 



47 

i ^ fi'(TO) + * go(^) fi'(T) +;fQ'(?) fi(TO 

gj(^) = ^ fj/flO - 2 f\(Tn _ 2 (A.15) / 

and. 

2f^"' + f^"(n) + f^(T) = 0 (A.16) 

_2 
The perturbatioi of order # m yields the boundary layer equations: 

hu^ &u^ hu 
u -r* + u- V 2 _ 
*o &i ^ hx ' 'o hy * ^3 hy ^ U ^ 2 

&Wr h^w-h*T hw^ hw^ w"2 ^ I, 

^O hx + "̂ 2 + v? "F;: + *i "ly;: = ii ̂ ^2* 

hu_ hv^ hw 

hx hy hz 
J (A.17) 

The following are appropriate forms for the velocity profiles in the 

boundary layer. 

U -

V 

m C;! fc(TO cos (z/a) a ^ 

w (%) gc(^) cos (z/a) 
3 JUx 

(^) hgt^) sin (z/a) 

> (A.18) 

where u^ = = 0 at y = 0 and 

11-, = w_ = 0 
J J 

at y = 00 

This yields f^(o) = g^(o^ = 0 f^((D) 0 and h2(o) = h2((D) = 0 
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Substituting equations into (A.I/) g^ves th^ following ordinary 

differential equations 

hgWfn) = 2 + fa"(m)(_gi(^) + 3 

ho(n)( f '(TO) (A.19) 

emd 

f6"(T0 = 3 f^Cn) fQ'(TO i fo(^) ^ fo"(^) fo(n) 

( A . 2 0 ) 

Consideration of perturbation quantities of order cc mĵ  leads to the 

boundary layer equatlons:-

^ On; 
u ^ ' + u ^ 4 ^"6 

+ V_ ^ ' + Vj ^ o hx - "4 bx " 'o hy + "4 hy + "1 

.2 

^ X 2 
hy 

hw. h* 
u_ -r- + v_ -r^- + u 

2 
0*3 h ". 

o 6x ' -o hy - "3 hx + V] lY; + *i -"g" 

&X * hy hz ( A . 2 1 ) 

The required boundary conditions to be satisfied are: 

4 

a' ^7' 
u 

4 e (2) f (T^ sin (%/&) 

4 Ux sin (z/a) 
X\ 

and (-̂ ^ b^(^) cos (z/a) 

> (A .22) 

where u^ = = O at y = 0 and u^ = 0 = 0 at y = co 
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The above boundary conditions yield, fy(o) = 0 and = 0, 

h^(o) = h^(cD) - 0 

Substituting equations (A.22) into (A.21) gives:-

(A.23) 

= 4 ^^(TO + ̂ fQ"(n)f2Xn) + ̂  

g^(n) f^"(^) + fg(^)(l - fo'(n)) 

= 2 - 4 fyC^) + (A.24) 

The total velocity profile to oader 4 in the boundary layer is given by 

u fo'(^) + fi(^) fi(^) C03(z/a) + # W (2^ fp(n) sin (z/a) 
a/ 2̂  

+ (l^O (f](TO + fj(^) cos(2z/a)) -

-2 ,x T - X \ 4 
* ^ (%) cos(z/a) + a (̂ 0 8in(z/a) 

JL 
nx 1 + IT &o(^) cos(z/a) + 

2 2 

e W g^Cn) sLn(z/a) + + g^(^) co8(2z/a)) 

2 3 ^ 
- f^'(^) - f^(TO) + & 0*0 g^(^) cos(z/a) + a 

g^(^) 8in(z/a)j+ ... 

and 



* = uXl - + 2 n 3ln(z/a) + e co8(z/a) 

n 

+ % hi(^l 8in(2z/a) + # (2^ hgfn) 3in(z/a) + 

# cos(z/a.) + ... 

(A.25) 

The velocity compcnenta in the boundary layer are functions of the per-

turbation function f , f and h . 
n' "n n 

The perturbation function equations (A.5), (A.8), (A.11) through 

(A.16), (A.19),(A.20) and (A.23,24) were solved numerically by digital 

computer using the ICL standard routines P4RUNK. This routine solves a 

system of first order differential equations using the Runge-Kutta four 

point method. It integrates the equations as an initial value problem. 

The boundary layer equations are, however, of the two point boundary 

value type. For this reason guesasof the unknown initial value are 

made and then the differential equations are integrated from the body 

surface to the edge of the boundary layer. If the conditions are not 

then satisfied, the _nitial values are adjusted and the integrations 

repeated. This process continues until the solutions satisfy the outer 

edge boundary conditions. Figures (A.?) through (A.12) show the results 

of these calculations. The integrals of the perturbation functions are 

given by 
OD 
r 

F = t (1 _ f '(^))dm = 1.72106 
o J \ o 

o 

(D 

?! = r f^tn) dT = 1.72612 
6 

OD 

FV = r f an _ 1.486063 
6 

OD 

F3 f^(^) dn . -.269982 



^4 

^5 

^6 

^7 

H o 

E = 
d 

00 
r 

J 
f^(n) d^ = +3.1203 

(D 

I ^ 
0 

d? - 7.87324 

CD 

r 1 "gtm) d^ . -1.08521 "gtm) d^ 

00 

j = - .62773 
0 

00 

f 
0 

hg(^) dr » -2.7469 

CD 

1 

m 

Eg = f 
hgCn) d^ 

0 
CD 

H = f 
s 

hj(n) d^ 

00 

^0 = r 
J (1 
0 

CD 

Ig = f 
6 

hgfn) (1 

hi(m) dT = 4.96995 

= -1.8395 

.663836 

.70909 

The above integrais were evaluated using the University of Nottingham 

Subroutines 'NAG' DOTADP. This routine estimates the values of definite 

Integrals using Gaussian quadratures with a specified number of points. 

These integrals are used in evaluating the boundary layer displacement 

thicknesses and also the Magnus force. The following values are also 

required for the evaluation of the skin friction, 

ho'(o) = - .794160 

hg'fo) = .430109 
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A.rmeadix B 

The Solution of the Boundary Layer Equations 

including the Effect of Vortices 

The three dimensional boundary layer equations for the 

semi-infinite circular cylinder using a Cartesian coordinate 

system have been derived in Appendix A. The boundary layer cha-

racteristics v/cre obtained by solving the boundary layer equatiL' 

ions and satisfying the boundary conditions on the body surface 

at tho inviscid outer flow obtained from slender body theory. 

For the model of the standing vortices discussed in the Introduction, 

g.similar approach to the boundary layer calculation as In Appe-

ndix A is possible because the vortices are assumed to lie well 

outside the viscous l^yer and therefore result only in a modifi-

cation to the ex^^ornal potential flow field.. Whilst a simplified 

representation of the true flow, it does afford an analytic math-

ematical form capable of predicting closely the type of streamline 

flow observed on bodies of revolution at moderate Incidences.Such 

streamline flow is consistent with the assumption that the potent-

ial cross-flow stagnation points coincide with the real separation 

points. Cross-flow velocity components tend small compared 

with the free stream velocity even in the presence of the vortices 

and the boundary layer growth remains dominated by the axl-symmetric 

zero order contribution, except in the immediate vicinity of the 

separation lines. Since the main contribution to the Magnus force 

at moderate to high incidence is shown to arise from the normal 

pressure distribution produced by vortex asymmetry, it is felt 

that little error results from neglecting details of flow In the 
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region of separation. Usiag the mathematical model illustrated 

In fig. (III.i), the complex potential in the cross flow plane 

can be obtained in the form:-

1 ir, i 
f = n (Z + + - y - ^ ( In (Z -Z]) - la(z - + ]nZ) 

Ifl %-
* T̂T ( ln(Z " ln(Z — —) + In^ (B#l) 

Tha vor tex s t r eng th i s p o s i t i v e r o t a t i n g clockwise. 

Ttm complex v-elocity i s given by 

3 

z: ' 2TT ^z-z^ - I T 
z- ^ 

+ — f 1 \ 
2TT ^ZrZ^" ? * Z ) (B.2) 

Z--&. 
z. 

The vortices and are considered to be fed from the separation 

points and s^ on the body surface. The vortex strength at a 

given vortex location is determined from the condition that the 

velocity at the separation points vanishes. 
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(B.3) 

Equation (B.3) supplies two equations in and Tg which may be solved 

by an iterative method. The velocity distribution can be expressed 

^ 0 •— 0 
* = a d^ sin n for 8 -< G-C 

I * ̂  - iw o 1 
1 o 

8 - 4^ 
. * dg sin n for * < @ < * (%, ) 

2 1 

Q - *2 
- " S ™ " 2n+ 8̂^ — "2< e < 2" + 

Where d^ is the value of w evaluated at 0 = + Q /2 etc. Reneral 

form for w is expressed as 

w = w (8) 

The required solution of the boundary layer equations uses the boundary 

conditions u = v = 0 aid w = ma on the body surface and u = U(1 -

and w = w n at the edge of the boundary layer. A iwoa 

function Is assumed in the form:-

A = w(8)/(^3in(GX) (%.5) 

Neglecting the axial pressure gradient ^hG same procedure is used 

as in Appendix A to obtain the perturbation functions in different orde# 

in # or/ m as:-

f^fm) f̂ wfT) + 2 fQ"'(T) = 0 (B.6) 

with the boundary conditions f^fo) = = 0 and f'(en) = 1. 
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fl"(TO - fg'(n) fi(^) - i - 3 f^^(TO fi(%) + g^(%) f^"(TO 

go'(TO - ^ - fi(m) - fo'(^) 

( B . 7 ) 

*lth the boundary conditions f^(o) - ^0(0) = 0 and ^((o) - 0. 

4o"(T0 * fo'(TO h y / ' ^ f o ( T ^ hQ'(TO + ̂  fi(%) 

- fo(^0 + fo'(T0(1 - fo'(TO) (B.8) 

with h (o) - h ( m) - 0 . 

hi(%) - hi(%) . i f^/TO hi'(TO - ̂  fi(TO - & 

+ i - & go(^) (B.9) 

*nd h^Co) - h^((n) - 0 

fgMfTO - 2 f^'fTO + fo"(TO(gi(^) - 3 - .5 , 

fg'Cn) - fiCnifi _ f^'(TO) 

gi'Cn) - § 2 (B.10) 

where fgfo) fg( oo) . g^(o) . 0 

- 2 f^'fTO - i fo(^) f^'Cn) - % fQ"(^) + 

fo"(TO cgCn) + i i fi(m) + 

gg'Cn) - i f^'Cn) - 2 (B.11) 

with the appropriate ooundary conditions " &2(°) " - 0 
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. 2 f̂ (-

+ ^ f 

+ 

fo(TO - ̂  fo"(̂ ) f,(TO 

"0 - 3 fi'(TO) + & gL(^) f.'fn) 

g\(%) 

where 

2 4 

'(̂ 0 + i fi(TO f '(^) 

2 f . ( ^ ) - 2 hi(TO 
(3.12) 

f^(o) a K-/,. u 0 and f^(cD) = 0 

2fc"'(T0 + fc" (^) + fc(^) f "(TO - 0 (B.13) 

with 

f^(o) - f^'(o) = 0 and. f^'(cD) - 1 

. 2 f^'(TO hg'Cn) + 3 

ei(^) fo"(TO - hx(TO(l - f_'(TO) 
(B.14) 

and " hgtco) = 0 

fgMfTO - 3 fgC^) i fg(^) fg'(^) + 3 fjn) 

+ g^(T) fo"(TO + 

where 

fg(o) = gy(o) = 0 and fg((D) « 0 

= 3 h^On) i h^'Cn) fo(m) - 3 f^"(^) + fg(T^ 

(B.15) 

fo"(T) + h2(^)(i - (B.16) 

where 

hj (o) - h^((D) a 0 
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and 

fy'Cn) - 4 fy(^) ^ ^ 

+ g6(^) fo"(n) + fg(^)(l - fo't^)) 

gg'Cn) - ^ fy'(TO - 4 + hjCn) 

with the boundary condltiona 

(%.17) 

fy(o) - gg(o) - 0 and f-^o) = 0 

.h„e 

Equations (b.6) through (B.I?) are ordinary differential equations in 

n , and h^ similar to those described in Appendix A. The velocity 

components In the boundary layer are given by:-

u * fo'(^) + IT A C08 0 fi(TO + a m (2) A fgCn) sin 8 + 

A2(fj(T^ + cos (29)) _ 2^ + a w^(2) 

fg(n) + a ^̂ (Z.) A f (^) sin 0 

V /ui ^o'(^) " ^o(^)) + ^ Go^^) ^ * 

_ 2 2 

A g^(TO sin 8 + (2^^ A-fegX^) + ^0) 

- 4 - f^(^)) + * ^ 8^(^) COS @ 

4 
* #3(2^ A g'g(TO%+ ... 

and 



5 8 

* " w(l - + & A fg'(^) Bin 8 + a A h (T^ cos 0 + 

2 
» ^2 h^(^) sin 28 + a A sin 8 + 

3 
3 -y^ 

a m A COB 8 

(B.18) 
where 

8 - z/a and A Is evaluated from equation (B.5) 

The perturbation functions have similar behaviour to those mentioned in 

Appendix A. The nr.̂ ierical values of the Integrals are given by:-

00 

" [ (1 - dm - 1.72D16 

00 

^1 [ f^Cn) dm . -.86306 

0 

CD 

*2 " I ^2(^3 = .773063 

o 

m 
*3 " I *3(^) " +.299221 

0 

CD 

^4 " I dm . -1.596147 

o 

00 

Fr J dm - 7.87329 

o 

00 

Fv - [ fv(m) = -.524311 6 J 6̂̂  
0 
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(D 

I " 
O 

H 

a. 

m 

r h (71) an J o 
o 

CD 

h^Cn) 

-.311284 

-1.02114 

\2939O85 

H. 

00 

j hgCn) -.799268 

E. 

00 

h](^) an 

0 

00 

.539085 

J fo'(^)(l - fo'(T)) .66383 

OD 

* -.3012703 

The numerical values of the above integrals have been estimated in the 

same way as described in Appendix A, and the values of 

h '(o) - -. 312781 

hj'(o) - .190277 

will be required in estimating the skin friction. 
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Appendix C 

Boundary Layer Dlaplacement Thickness 

C.I Method of derivation 

rici 

Moore L u has derived an expression for the calculation of the 

boundary layer displacement thickness for the three dimensional flo* 

over a non rotating surface. It has been suggested that this 

expression is also valid for rotating surfacea. The solution of the 

boundary layer equations yields a certain velocity distribution v(x,z) 

normal to the body surface at the outer edge h(x,z) of the boundary 

layer. Outside the boundary layer the flow is assumed inviscid. If 

2 la the velocity vector %iven by 

a = 1" + iy + ky, (C.I) 

where 

i^ and ,k are the unit vector in x, y and z directions respect-

ively. 

Assume y = A(x,z) is a fictitious impermeable surface which, in a 

completely inviscid flow, would produce a velocity 7 (normal to the 

real surface) at y = h(x,z) equal to the normal velocity component V_ 
D 

which exists as a result of the boundary layer presence. The velocities 

V. and 7 are related by:-b n 

hv 
= 4 . graa A + (h - 6) (^-2^ (C.2) 

' y=o 

The mass flow defects are given by 
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iLEJL 
hy 

hou h o * 
hx h 2 (C.3) 

At y - h, the equation (C.3) become: 

2211 . &(P*) 
+ Oz 

Ay (C.4) 

If the flow is Incompressible (p . constant) equations (C.2) through 

( 0 . 4 ) , using Cartesian coordinate, gives 

(A - A ) + __ (A _ g J ^ 0 hi x' hz Hp - z (C.5) 

wheire 

6% - j ( T - ̂ ^)&y 

(1 - f - ) d y (C.6) 

u TI(1 - 0//2) 

an& * = 20 a 8ln(z/a) 

C.2 Method of analysis: 

The evaluation of the boundary layer displacement thickness A depends 

on the solution of the boundary layer equations. This solution has been 

explained in Appendix A. It is assumed that the displacement thickness 

could be given by 

A — Ag + + Ag + A^ + A^ + ... (C.7) 

where the subscripts denote the order of the perturbation quantities in 
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w and/or &. 6^ la the displacement thickness for zero spin and aero 

incidence. Substituting for the velocity profile equations into (C.6), 

5^ and 6 become; 

" s/lT ̂ ^o " a co8(z/a) - a w(-̂ ) 8ln(z/a) -

—2 X ^ ~ ̂  4 
* m (-) Fg 00B(z/a) - * F? 8ln(z/a) 

'a/ "7 

2 
F_ — F nnp/?%/a^^ ^ - 0^(2^ (p^ _ F oos(2z/a)) + ̂ ^^F^ - ^ + F )1 + .. 

and 

" jn - 2 * i m 2 cos(z/a) _ 

-2,x 2 
& W (—) 8ln(z/a) Hg - ̂  ̂  co8(z/a) 

3 
- i m (%) cot(z/a) 1 + ... 

(C.9) 

Substituting equations (C.6) through (C.9) into (C.5) gives a system 

of partial differential equations of successive orders in the pertur-

bation quantities m and » 

(Ao -.j%F Fo) - 0 (C.10) 

^1 co,(z/a)) + sin(z/a)(AQ _ ̂  F^) . 0 (C.11) 

^2 *ln(z/a) + (F^ + F^ cos 2z/a ) 

^ + FQ)j ) + 2& 8ln(z/a)(A^ + H ^ot z/a 8^) . 0 

(C.12) 



' + r^T (# cos(z/a)){ hi L 3 JO hz 2 e sln(z/a) (A^ + 

.for C;) 8in(z/a))] - 0 (C.13) 

and 

JL 
&x 64 (* fg 8ln(z/a))|+ 2 Of 8ln(z/a) (A^ + 

""3 3 
if cot(z/a) Hj) (C.I4) 

Solving equations (C.IO) through (C.14) gives:-

% • f - a (C.I5) 

VX CMC 
U a 1 P. co8(z/a) (C.16) 

^ f o- »<f) aln(z/a)(P2 - I + ( ^ ) "3 + ("4 + 

.4(Hi - 2F^)) co8(2z/a) _ 2_ (p _ ^ ^ (C.I7) 

A. m j " ^ (^6 + Y Hp) G08(z/a) (C.18) 

and. 

A . m 
4 

jvx " , ? 1 
" jn n w (-) (^- — H^) 8in(z/a) (C.I9) 

The displacement thlckneas Is thus given by: 

63 
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jyp fpQ cos(z/a) - a (Fg - '4HQ) 8ln(z/a) -

(»x/a)2(p^ + (p^ + ,4(%^ _ 2?^)) sin 2z/a) + (F^-^ + Fo) -

a (Fg ^2^ co9(%/a) - » ^ 8in(z/a)l + . 

(0.20) 

where P , P^, ... H , H^, ... are the integrals of the perturbation 

functlona whose numerical values are presented in Appendices A and B. 

C.3. Modified Boundary Condition arid Velocity Potential 

In the cross flow plane (r,^) in fig= (II.1) the boundary layer 

displacement thickness produces an effective increment A(*,x) on the 

radius a of the cylindrical surface, where A « a. The normal to the 

modified surface therefore makes the following small and approximate 

angles relative to the normal to the solid surface at the same (|> and x: 

1 3A . ^ , 
Y ~ T "ST in the r-(j) plane 

2 

a 9(j) 

9x in the (f)-x plane. 

The normal velocity boundary condition to be satisfied by the velocity 

potential becomes 

= -Usin a cos(<j)-Y) + U 

This can be satisfied by expanding A as a Fourier series in (j> and using 

the velocity potential solutions in polar coordinates. In the calculation 

of Magnus force, it is found that only the sin (j) part of contributes. 

The corresponding part of the velocity potential is;-
2 dA 

„ a s . , 
- U — — — sin 0 

r dx ^ 

where A^ is the amplitude of the sin <{) term in A, Thus using the surface 

coordinate system defined in fig. (II.1), the surface velocity potential 

becomes;-

n • 
- Ua ̂  sin 

z 
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Appendix D 

Measurements of Forces and Moments on a Body 

of Revolution 

D.I Introduction and description of the balance 

The measurement of the steady aerodynamic forces and moments on a 

tody of revolution at incidence was performed as an initial stage towards 

the measurement of Magnus force . The University of Southampton 

magnetic suspension balance system was used. The balance and the eus-

penslon system was built and developed in the Aeronautics department 

for the measurement of aerodynamic stability derivatives. However, static 

data can be extracted without modification of the system. The magnetic 

balance Is used with an induced flow closed circuit tuanel, the working 

section having a nominal size of 8" by 6" and an atmospheric stagnation 

pressure. The six component magnetic balance incorporates integral 

feedback control so that the model remains in a fixed spatial position 

as the aerodynamic loads change. 

D.2 Calibration and data reduction 

Magnetic field interactions occur due to the simultaneous applica-

tion of steady external forces and moments. Porce/current and moment/ 

current calibrations are obtained using direct application of loads for 

vertical forces and moments, and a system of harnesses and pulleys for 

the drag force. Calibrations are repeated over a range of model attitude 

and with different combinations of the applied loads. The model 

position sensors are calibrated using a jig with Vernier adjustment and 

positive location with respect to the working section. The currents in 



the various coils can be expressed as follows: 

- V ' «. ") 
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If - D, M, #) (D . I ) 

Id - D, M, *) 

where I^, and are the currents in the aft, fore and drag colls 

respectively and F, D, M and # are the lift, drag, pitching moment and 

incidence respectively. Equations (D.l) cam he edpanded in terms of 

their derivatives:-

51 
G^a hia hi* 

6M + 5 
Ac 

5 # + 
a /^2 

hP 
OF + - + 

hD 

^ *a Z.2 ^ ̂ a r 2 
=- Or 6M c + 

hM h CY aPbe + r=rr 6M6* + ... hDh, 

(D.2) 

If *nd can be expressed in similar way and combined in a matrix form 

given by:-

[l] . [A] + * [B] [?] (D.3) 

where [l] and [F] are column matrices, [%] and [A] are square matrices 

given by:-

[ I ] and [F] 

r 1 
I F I 
i 

I 3 

I M 
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a 

[A] 

5 

5 
AF 

5 
AP 

61, 

AM 

5 

7)D 

6D 

a 

f 

and 

W 

-a a a 
hPh* 

nc hDbo' 

2, 2 
^ ^d ^ Id 

hMhof 
L 

The elements of [A] and [s] have been obtained by two different methods;-

a) point by point using a digital voltmeter readout. 

b) Tape-recorded signals with subsequent digital computer analysis. 

Method (a) has been used extensively. Even though digital voltmeter 

readout greatly simplifies the process of taking measurement, a complete 

calibration run is a long process. Method (b) has a shorter calibration 

time but requires more complicated analysis. The applied force and reading 

voltage whilst the moment, dra# and Incidence were held oonstant to give 
hi 

. By putting the model at another setting and repeating the force 

variation, the second derivatives, such that were obtained. 

The same procedure was used to ob-aln all the derlvatlvea. The numerical 

values for the model tested are:-
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[ A ] 

[B] 

- .42 11.16 2.85 

11.13 -9.667 - .42 

.95 3.5 25.5 

in FA"] are millivolts per 

- .08 .13 - .345 

- .07 .104 .19 

- .027 0 0 

where Is measured in millIvolt/gram/degree. 

The applied force a and moments are related to the currents by:-

- 1 

W [ A ] + Of [I] (D.4) 

The increase of the matrix must be evaluated at each _[A] + a [B] 

incidence a. The aerodynamic forces and moments are obtained by evalua-

ting equation (D.4) with the elements of | l"| corresponding to the 

increments between wind-on and wind-off readings at the same incidence. 

The data was fed to the ICL 1907 computer to carry out the matrix 

arithmetic ajid typical results shown in fig-uz-es (D.2) through (D.7). 

D.3 Results and comparison 

The model was a 7 calibre AN spinner, the dimensions and construction 

of which are shown in fig. (D,l). Tests were carried out at a tunnel 

Mach number of M = 0.2 and at a Reynolds number of 1.2 x 10^ when baaed 

on body diameter. 

The results obtained are illustrated in fig. (D.2) throu^ (D.7). 

These results are in good agreement with data from conventional wind 



tunnel8 . The aerodynamic forces and. pitching moment coefficienti 

definea, 

°L - S 

and c^ = M/q 

OD 

O 
OD 

where the moment coefficient ia referring to the tail <MP the body. 
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