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ABSTRACT

A series of tests on a rolling rig was performed
in the wind tunnel in order to establish the relative

influence of basic parameters such as:
angle of heading BA
angle of trim of the sail Gm
wind velocity VA
Strouhal Number St
twist of the sail
damping due to hull action

on the dynamic behaviour of the rig.

During these tests it was proven beyond any doubt
that wild rolling may be induced for an aerodynamic reason.
A main-sail, when running down wind, may extract energy
from the wind in a self-excited manner in such a way that

the sail can be regarded as a rolling engine.

A theory has been developed which relates the model
response to the stationary and non-stationary aerodynamic
characteristics of the rig, and also predicts the condition
in which the model will be dynamically stable or unstable.
Attention was given to the problem of how to minimise or
reverse the energy transfer to the system in order to
prevent dynamic instability. A modification to the
conventional rig, in the form of an anti-rolling sail, has
been devised and this effectively eliminates the instability
which might otherwise be induced by aerodynamic forces.
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1. DEFINITIONS AND NOMENCLATURE

The following four sets of reference axes and
nomenclature are adopted for a study of the aerodynamic
aspects of the unsteady motion of a yacht. (1,2,3,4,5)*

1.1 The body or ship axes X,vy,z, — right hand orthogonal

system of axes fixed in the body at the origin O located
on the line of intersection of the yacht centre-line plane
and the designed water-plane at the point where the centre

of the mast intersects the designed water-line plane.

X - the longitudinal or principal axis,
positive towards the bow, is the line
of intersection of the centre-line plane

and the designed water-plane.

y - the transverse axis, positive to starboard
is perpendicular to the centre-line plane
y-z. ‘

z - the normal axis, positive downwards is
perpendicular to the designed water-line

plane.

It is assumed that the yacht is sailing on the port
tack so that the sail force in the + oy direction (leeward

side) is positive, Fig.l.

1.2 The wind axes reference system

The aerodynamic forces developed by the sails are
related to the apparent wind direction and its velocity VA'
The apparent wind axis serves as a means of deriving the
lift L and drag D acting on a yacht when under motion (see
Fig.2). Referring to the wind tunnel experiments, the

principal wind axis V, coincides with the centre-line of

A
the wind tunnel or the direction of air flow ahead of

—— - — -t

*
See list of references



1.3 The track axes reference system

The actual track of a yacht sailing through the
water and oscillating along three axes - surging, swaying
and heaving, the rotation about three axes - rolling,
pitching and yawing, may frequently not lie along the
x-axis. It is therefore convenient to set up a second
rectangular system (see Fig.2) of co-ordinates iﬁ which
the principal axis of the three coincides with the velocity
vector representing the instantaneous direction of motion
of the yacht. Referring to the towing tank experiments, the
principal track axis VS coincides with the centre line of

the tank or the direction of tow.

The track of a boat is defined as a trace of her
motion (point of origin of the co-ordinate system) in the

horizontal plane.

1.4 The fixed axes

1 It is convenient to have a reference or fixed system
of co-ordinates to which the body axes can be related. This
reference system is fixed with respect to a tangent plane at
any point on the flat sea surface (or space) and the relevant

axes x_, Y

o r Zg called fixed axes, are designed as follows:

o
Xy the fixed longitudinal axis lying in the
horizontal plane, considered as positive

in the heading direction (see Fig.2),

Yo ~ the fixed transverse axis, lying in the
horizontal plane perpendicular to X1
positive to starboard,

z_~ the vertical axis perpendicular to the

other two, directed downward.
In the case of a yacht which is floating to her DWL in a
flat sea the body axes x, y, z coincide with fixed axes X1
Yor Zo° Both systems of co-ordinates have the same point
of origin O.



The fixed co-ordinate system Xy Yor Zgr MOVeEs with
the mean forward speed of the boat and the boat oscillates
in various ways with respect to this system.

Velocities, forces and moments relative to the fixed

axes X, , Y, r 2z, are designated as:

u, v, w - components of velocity of origin O
of the co-ordinate system along the

fixed axes x z respectively.

of Yor %o

P, 9, T - compenents of angular velocity'about
the fixed axes Xor Yor 24 - rolling,
pitching and yawing respectively.

Xpr Yps Z, - aerodynamic force components referred

A A
to as longitudinal, lateral (oxr
transverse) and vertical (or keelward)
forces along fixed axes X yo, Zqe
KA, MA’ NA - aerodynamic moment components referred

to as rolling, pitching and yawing
of Yor 2, axes
respectively (see sign convention in

Fig.l).

moments about the x

A bcat sailing obliquely relative to the direction
of wave crests may exercise six possible degrees of freedom
involving three translational and three rotational oscillations.
The translational motions are surging along the xo-axis, side~
swaying along the lateral or yo-axis and heaving along the

vertical z _=-axis. The rotations about x axes are

o of Yor %o
rolling, pitching and yawing. The table 1 and Figs.l and

3 give further details concerning these motions.

1.5 General terms used

Angle of heel ¢ is measured about the longitudinal fixed (space)

axis Xy between a steady-state or mean inclined position of

the centre-line plane x-y and the vertical fixed axis Zg-



TABLE 1

Displacement Velocities
Axes
*
Translational Rotaticnal Translational Rotational
(Linear) (Angular) (Linear) (Angular)
o Longitudinal X surging ¢ rolling U, u P
o Transverse y swaying 8 pitching vV, v
o Vertical z heaving Y yawing W, w r
Axes Forces Moments Moments of Inertia
Oxo Longitudinal xA KA rolling
Oyo Transverse YA MA pitching
OzO Vertical ZA NA yawing

Angle of roll

+ ¢ is measured about the longitudinal fixed

axis Xy between the instantaneous position of the centre-

line plane x-y when the boat is rolling and the vertical

fixed (space) axis z

Oo

rolling angles usually average out to zero.

A multitude of starboard and port

Rolling is the angular component of the oscillatory motion

of a boat about her longitudinal or principal fixed axis

X . In the case of small angle of yaw ¥ the angle of roll ¢

O

can, with reasonable degree of accuracy, be measured relative

to either system of axes, i.e. the body axes or fixed (space)

axes.

Upper case symbols are used for steady velocities and

lower case symbcls for varying velocities or for
perturbation velocities.

As a matter of fact the investigation of rolling




motion presented in this thesis is restricted to one degree
of freedom, i.e. the effects of coupling with yawing and

pitching motion are not considered.

Angle of pitch * 8 is the angle measured about the horizontal

or fixed axis Yor between the instantaneous position of the
longitudinal body axis x when pitching and the horizontal

fixed (space) axis X -

Pitching is the angular component of the oscillatory motion

of a boat about her transverse fixed axis Yo-

Trim, the steady-state longitudinal angular position of a
boat to be distinguished from pitching, which is an oscillatory
motion. The sense of the trim angle is defined as bow up (trim

by stern) - positive.

Angle of leeway By is defined as the angle between the principal

track axis which coincides with instantaneous velocity vector
VS and the horizontal axis X The direction of this horizontal

line is termed the yacht heading. The arrangement and adequate

nomenclature are illustrated in Figs.2 and 3.

Angle of vaw ¢ is measured abouf a vertical axis Zgr between
the instantaneous longitudinal fixed axis X of the boat and
her mean heading (see Fig.3a).

Yawing is the angular component of the oscillatory motion of
a boat relative to the mean heading. Change of heading is

a change in the forward direction of the longitudinal axis

or the bow c¢f a boat in the horizontal plane.

Heading refers to the direction of the longitudinal axis of
a boat with respect to the apparent wind direction, VA'
Course of a boat refers to the direction of the path of her
- centre of gravity G reckoned by its direction of motion.
The difference in an angle between the course and heading

is the leeway angle.

The path (or track) of a boat, is defined as a trace of its
moving centre of gravity G in the horizontal plane.



Controllability as distinguished from manoeuvrability, is

that quality of a boat and her appendages, both fixed and
moveable, which demonstrates the effectiveness of the
controls in producing any desired uniformity or any change,
at a specified rate, in the attitude, position or motion of
a moving boat. For these operations, the equilibrium of a
boat may be stable, unstable or neutral, and it may or may

not possess dynamic stability.

Manoeuvrability as distinguished from controllability is

an expression of the degree or rate at which a boat can

change her course or attitude.

The motion of a boat can be regarded as steady with
respect to a given axes if all aspects of her motion remain
constant with time, otherwise it is unsteady.

1.6 The definitions concerning static and dynanic stabilityz’6

Equilibrium is a state of balance between opposing forces or

moments. The equilibrium of a boat is said to be stable if,
after being displaced, the new orientation of forces or
moments is such that they tend to bring the boat to her
original equilibrium (or trimmed) attitude. It is unstable
if the forces and moments act to increase the initial

displacement from this attitude.

Stability is a boat property which causes her, when
equilibrium is disturbed, to develop forces or moments
acting to restore her to the original condition of
equilibrium. If the boat possesses instability, she
deviates further from her original condition when disturbed.

Static stability is that property of a boat which causes her

to maintain her steadiness or stability by reason of her
angular displacement. In a static stability discussion it
follows that the complete motion is not considered at all
and when a boat is said to be statically stable it means
only that, after being disturbed, the static forces and

moments tend to restore the boat to her equilibrium (or



trimmed) state. It is assumed that the accelerations set
up are small and inertia forces introduced by oscillatory
acceleration or deceleration are negligible.

Dynamic stability is that property of a boat which causes

her to maintain her steadiness or stability only by reason
of her motion. This general term is not to be confused

with what is known in some quarters as dynamic metacentric
stability, involving the righting energy available to bring
a heeled boat back to her initial upright or trimmed
position. 1In dynamic stability we consider the motion of

a boat (system) following a disturbance from the equilibrium
state, taking into account inertia forces and damping forces,
as well as static forces or moments.

A statically stable system may oscillate about the
equilibrium condition without ever remaining in it. In
such a case the system although statically stable may be
dynamically unstable.

Metacentric stability is that property of a bcat by which

the action of the buoyancy and weight forces cause her to
return to her original position if her equilibrium about a
given axis is disturbed. This occurs when the metacentre
M lies above the centre of gravity G.

If a ship is stable against a disturbance in heel

she has transverse metacentric stability; if against a

disturbance in trim, she has longitudinal metacentric

stability. If the centre of buoyancy B and metacentre M
are above the centre of gravity G, the boat is said to have

pendulum stability.

|

.7 8 ols
Subscript for aerodynamic symbols

Lateral area (underwater part of the hull)

5o ¥

Aspect ratio = pz/sA

b Coefficient of damping term in diff. eqg. of motion
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GM

My,

GZ

Centre of buoyancy
Maximum beam

Chord length of the sail
Coefficient = Force/q.sA
Drag ccefficient

Lift coefficient

Total force coefficient (aerodynamic)

Coefficient of force in direction of x-axis
Coefficient of force in direction of y-axis
Aerodynamic centre of effort

Centre of lateral resistance

Rated depth of the hull

Aerodynamic drag, component of TA in direction of VA
Maximum depth of the hull

Design water line

Energy in general

Length of the foot of the main sail (Intern. Formula)
Frequency in general (£ = 1/T)

Force in general |

Acceleration due to gravity (9.806 65 = 9.81m/s2)
Centre of gravity

Metacentric height = distance from the centre of
gravity G to the transverse metacentre M

Longitudinal metacentric height
Righting arm
Horizontal lateral water force component of TH

Subscript for hydrodynamic symbols

Moment of inertia in general



I
Ix'Iy’Iz
J

K

La
Lo

LOA

Qg = =B B

te]

=]

w ™ O

P:9,x

Height of the foretriangle

Moments of inertia relative to x, y, z axes

Base of the foretriangle

Coefficient of restoring term in differential

equation of motion,

we
2U

Radius of gyration

also reduced frequency

Aerodynamic heeling or rolling moment

Lift, aerodynamic component of T
normal to VA

Actual 1lift

Stationary lift

Length over-all

Load water line

Mass in kg

Metacentre

Moment in general
Aerodynamic pitching moment

Mast height i.e. distance from x—-axis to top of
sail plan

A

in direction

Scale factor (full size/model size)

Aerodynamic yawing moment

Origin of co-ordinate systems

Static pressure, force per unit area

Length of the mainsail hoist
Components of angular velocity relative to x

Dynamic pressure

Torgque

Hydrodynamic resistance i.e. component of TH in
direction of V

S

_ pv?
- &

ol

..O'



Radius in general, also the ratio La/
lift/quasi-static lift
ve

T

Lo = actual

Reynolds number =
Sail area
Wetted area

Strouhal Number

i

wC
v

>

Time in seconds
Period of time for complete cycle (roll, pitch, yaw)

Total aerodynamic force measured in horizontal
plane

Total hydrodynamic force measured in horizontal
plane

Velocity in gerneral
Apparent wind velocity
Speed made good to windward
Boat velocity

True wind velocity

Weight density = p.g
Weight in general in N

Body axis through O in design water plane and hull
symmetry plane

Aerodynamic force component along x-axis

Body axis through O in design water plane, normal
to x-axis

Aerodynamic force component along y

Body axis through O in perpendicular direction
to the design water plane

Aerodynamic force component along z
Angle of incidence i.e. angle between Va and the
boom

Relative wind angle, between Va and Vgi; B = Bp + By

....lo..



Apparent wind angle, between V., and x-axis

A

Leeway angle, between VS and x—axis

True wind angle, between Vi and VS
Circulation
Damping coefficient, logarithmic decrement

Foresail trim angle, between a line joining the
tack and the clew and boat symmetry plane

Mainsail trim angle, between the boom and symmetry
plane of the boat

Trim angle of the anti-rolling sail

Aerodynamic drag angle, arc tan D/L

Hydrodynamic drag angle, arc tan R/H

Damping ratio g/bc | .

Phase angle (forcing function)

Displacement weight (N)

Displacement volume (m3)

Kinematic viscosity air - 1,45.10 ° ™ /g (0,145 ™ / )
water - 1,01.107° m2/s (0,0101 cmzfs_

Pitch angle or longitudinal trim angle

Heel angle or rolling angle

Maximum or initial angle of heel

Mass density of water or air per unit volume

= 1030 kg/m> (sea), = 1.22 kg/m>

P QA
Yaw angle
Natural circular frequency in general

Natural circular fregquency for rolling 2“{T¢
Natural circular frequency for pitching\zw/Ta

Natural circular frequency for yawing 2H/Tw

- 11 -
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Q = £
Wo

Natural circular frequency of undamped motion
Natural circular frequency of damped motion
Frequency of forcing function

Tuning ratio

- 12 -



TABLE 2

The following basic International System of Units

(SI) was adopted.

The primary units are boxed.

Quantity Unit Symbol Remarks

1 Time second s

!Lengthl metre m 1m = 100 centimetres

kilogramme kg

Force newton N (kg m/sz)

Velocity metre per m/s
second

Acceleration metre per 2 Acceleration due to
second squared m/s gravity = 9.807 m/s2

Angular displacement dimensionless rad.

Angular velocity radian per rad./s
second

Angular acceleration radian per rad./52
second squared

Moment of force newton metre Nm

Moment of inertia kilogramme kg m? May be expressed in
metre squared N m sec

Work, energy joule J (Nm)

Power

rate of doing work watt W(J/s)

Tortional newton metre Nm/ (rad/sec)
damping constant (b) sec?nds per Nms/rad
radian
Restoring moment newton metre KA .
coefficient per radian Nm/rad k = jg-for rolling

/constant/ - k




2. INTRODUCTION

In contrast with "normal" weather conditions when
moderate winds and relatively flat seas facilitate a
steady character of yacht motion along a straight line,
heavy weather sailing is associated to a large extent with
unsteadiness. Then stability and controllability, or )

steering problems, become pre-eminent factors.

For example, when running before a fresh wind, the
rhythmic rolling and broaching tendency becomes an almost
inevitable characteristic of all sailing crafts, not just
of small racing dinghies. It is not uncommon nowadays to
see heavy keelboats involved in a spectacular and very

unpleasant rolling.

Another example of unsteady motion which is coupled
with rolling, and which appears to be exagerated in some
modern yacht designs, is a directional instability which
leads occasionally to vicious broaching. In particular, it
seems to affect those boats which have a short heel (of high

aspect ratio) and reduced wetted area of the hulil.

It was reported from the U.S.A. that a yacht with a
shorter keel, of about 29 ft. DWL, which had been tank
tested and performed well to windward, proved unmanageable
down wind. In one race, on the leeward leg, she could not
be kept on course and broached thirty-three times in three

*
hours.

When sailing close-hauled in a head sea, the performance
of any water-borne craft is more or less affected by a
sustained oscillation in pitch. In some circumstances the
pitching amplitude builds up to such an extent that it may
effectively stop all head-way.

P

* .
SNAME No.3 1967, P.Spens, P.De Saix, P. Brown. Some Further
Experimental Studies of the Sailing Yacht.

- 14 -



These three different types of oscillatory or unsteady
motion, rolling, broaching and pitching, to which some yachts
are prone, apart from affecting overall performance, may also
become potentially dangerous.

Sailing yachts are normally designed in such a way
that they are statically stable and yacht designers are
usually content when the boat has a degree of transverse
static stability, which is measured by the restoring moment,
determined by the amount of leeward shift cof the centre of
buoyancy B relative to the centre of gravity G, or the
equivalent metacentric height GM. This in turn limits the
boat's "power to carry sail" and also her performance.

The Dellenbaugh Angle Method or the Wind Pressure
Coefficient Method7 might be used to check whether a sail-
boat will be 'tender' in response or 'stiff'., This rather
empirical criterion of yacht stability may be justifiable,
since the presence of some degree of static stability usually
ensures that the sailing craft, after being disturbed, will
return towards the equilibrium position in some oscillatory
maﬁner. The word "usually" is used because as will be seen
it is not always so; a yacht which is statically stabile is
not necessarily dynamically stable. There are both
aerodynamic as well as hydrodynamic reasons for dynamic

instabilities in yacht behaviour.

The object of this work is to determine and investigate

the aerodynamic parameters on which the dynamic character of

yacht motion depends. The complementary hydrodynamic aspects
of boat motion are purposely discussed here in broad terms

only, since they are objects c¢f separate investigations.

On the assumption that safety at sea is of primary
importance relative to performance considerations, priority
was given to rolling, when planning the experiments in the

wind tunnel.

- 15 -



3. PLAUSIBLE EQUATION OF ROLLING MOTION

OF THE BOAT IN SMOOTH WATER

As a result of the combined action of the aerodynamic,
hydrodynamic, gravitational, inertial and bucyancy forces
the attitude of a sailing boat, while under way, can vary
simultaneously relative to all three reference axes Xor Yor
zg- For example, when a boat sails in rough water the
rolling, pitching, heaving, swaying and yawing are almost
invariably all imposed on the boat in addition to the forward

motion.

In order to avoid unnecessary mathematical ccmplications
inseparable when dealing with a system of many degrees of
freedom,‘it became advisable to reject the rigorous consideration
of coupling effects and mutual interaction between various kinds

of motion.

In the case of rolling the theoretical and experimental
methods of studying this type of'unsteady motion were reduced

to one degree of freedom.

This first assumption is justifiable since from the
experience of many investigators in the past it appears to
be legitimate.to treat each component of boat motion
separately, in so far as for each component motion the
circumstancés in which maximum effects are developed are
not substantially affected by the simultaneous existence

of other component motions.8 ‘

The second assumption, which largely simplified the
design of the physical model of a yacht for wind tunnel
testing and also facilitated the analysis of the results,
was that the hydrodynamic action of the hull, when executing

rolling, can be represented by a linear differential

eguation.

Bearing in mind that the primary purpose of this work

was an investigation of aerodynamic aspects of unsteady motion

- 16 =~



of sailing craft, the linearization of hydrodynamic response
of a bocat seemed to be highly desirable since it helps to
trace nonlinear effects which might be imposed on the rolling
boat by the aerodynamic action of the rigqg.

An example of resisted rolling in smooth water given
below and an examination of basic factors involved in hull
motion should indicate to what extent the second assumption
may be acceptable.

A yacht without sails hoisted may be given a rolling
motion by the action of external moments or forces which
- are periodic in character. It could be acccmplished by
rocking the hull by means of a halyard when a boat is moored
in harbour, by the crew sallying back and forth across the
deck.

Let us assume that the disturbing force or moment is
suddenly removed when the mast has reached an angle of heel -
90 to port, Fig.4a. The boat will tend to return towards
the upright equilibrium position due to the action of the
righting moment AGZ. The gravitational potential energy

stored in the heeled position

* %0
Ep = AGM(L1 - cos¢) = f AGZdd 1
$=0

where A = pgV is displacement weight, is converted into the
kinetic energy of rotary motion. When the mast reaches the
upright position and the angular velocity p is at maximum,
the kinetic energy accumulated is also at maximum.

where I is the moment of inertia about a longitudinal axis

through the centre of gravity.

o - o 2

*

Approximate expression valid for centroid hull with fixed
GM. Round-bottomed hull of wine glass section is very close
in shape to centroid.

- 17 -



The hull and the mast, therefore, continue ;heir
rotation to stafboard. However, not all of this kinetic
energy is converted into potential energy as the yacht
heels to starboard; a portion is drained away by the work
done against the resistance offered by the water. The
yacht is therefore brought to rest at a smaller angle of
heel +¢4 than that “6r from which the rolling was started.
The cycle of rotary motion begins again and the yacht will
perform a series of successive rolls to port and back to
starboard, each being less than the previous one until, due
to the damping action of the water, until it finally comes
to rest in the upright position.

The energy dissipation AE in one roll is given by

_ 2 _ 2
4’o + ¢l
= AGM(——5—=) (¢, = ¢)

= AGM¢S ¢ ‘ | 34

d’o ¥ o1
where —s is mean amplitude of roll

- 8¢ is angular Gecrement/cscillation

The reduction in amplitude §¢ can be called decrement per
roll. 1In the limit it equals the slope of roll decrement
curve plotted against number of swings (%%) shown in Fig.4b.

As the rate of energy dissipation due to damping is
a measure of the actual forces resisting the roll, the
comparison of damping efficiency can conveniently be made

on a basis of energy transfer.

Such damped oscillations are graphically represented
in Fig.4b. Since the amplitude of roll decays with time,

- 18 -



the hull in rolling motion is dynamically stable. The
rate (8¢) at which the initial perturbation dies with .
time is a measure of the dynamic stability of the hull,
which in contrast with static stability is a time dependent

gquality.

Once a metacentric height GM and a moment of inertia
or radius of gyration K are known, the natural rolling

period

/ % Jx? /I
TR=21T m=2"@36*—éﬁ=21¥ Kffﬁ 4

(whére K - radius of gyration about a longitudinal axis
through the centre of gravity) of this so-called natural
oscillation can be shown to be a characteristic which is
fairly constant for each boat. It might be about 2-3 seconds
for a small dinghy and about 6-8 seconds for a heavy keelboat.

If within the angles of roll the slope of the statical
stability curve (expressed by GMé¢ as a function of ¢) is
constant, the periodic time TR is the samne whatever be the
initial angle of roll. 1In that case the roclling is said to

be isochronous.s'g’lo

Pure rolling without swaying is possible only if the
inclinations of the hull are equivolumetric and the axis of
equivolumetric inclinations passes through the centroid of
the water line area and the centre of gravity G lies in the
plane of the flotation water line.

If the centre of gravity G is located above or below
the area bounded by the load water line then the inclinations
will obviously be not eguivolumetric. It can be shownlo,
however, that the departure from equivolumetric inclination,
in the case when G is not located in the plane of flotation
line, is negligible and may be ignored under the admitted

accuracy of this study.



Ignoring sail action, the character of the damped
rolling of the hull, its period and the rate of decay depend
on three fundamental factors:

1. Moment of jinertia of the boat; a large amount of

inertia serves to increase the periodic time TR.
2. Stability of the hull (GM), which affects the
oscillation so that a stiff hull, of high stability,

performs faster oscillations than a tender one.

3. Damping forces, which are responsible for the

gradual extinguishing of rolling motion. They arise as
a result of: )

a) the presence of frictional forces
between the wetted surface of the hull
and the surrounding water,

b) the expenditure of energy in the

generation of water waves,

c) the dissipation of energy due to the
hydrodynamic action of the swinging
appendages: fin-keel and rudder.

These components of hydrodynamic damping are not
egually significant. 1In the case of the keel-boat, the
predominant role may be played by the acticn of appendages -
the fin proper or centreboard and rudder, and also their
configuration. Of course, high damping efficiency is desirable,
since rolling, apart from bringing discomfort to the crew, is

also potentially dangerous.

At the moment there is little known about fin-keel
or centreboard efficiency as damping or antirolling devices.
However, there is at least a certain theoretical foundation
for believing that the modern tendency to reduce the lenath
of the keel and cutting down the wetted area in order to
improve the windward performance of the boat may lead to a

reduction in the hydrodynamic damping in rolling.
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Due to a lack of information correlating the
geometry of the appendages and the damping characteristics,

it was assumed that hydrodynamic damping is linear and
d¢ ,
dt °

Assuming further, according to Eg.2, 3 (Appendix),

proportional to angular velocity

that within an amplitude of roll of the order of 30 degrees
rolling motion can be regarded as isochronous, the equation
of motion, for the hull rolling in still water, can be
derived by writing equilibrium relation between the moments
applied (taking the centre of gravity G as the origin of the

co~ordinate system Fig.4a).

2
1-3——%+bg—%+AGM¢=O
t

Designating AGM = R the Eq.5 can be written in the form:
I-¢ + bo + Ko = O

where b - damping coefficient (in Nms/rad)
K - stability or stiffness coefficient (in Nm/rad).

The motion of the rolling hull therefore can be
analysed as a dynamic non-conservative system (see Appendix
Eq.16) having two different forms of energy storage, the
kinetic energy and the potential energy, and also a form of
energy dissipation. With reservations already listed the
Eq.6 may be recognised as a linear, second order equation
with time invariant or constant coefficients.

Natural motion of such a system will always be made

up of some combination of two elementary motion patterns:-

a) sinusoidal motion which, in a way, represents

the variation of kinetic and potential energy, and
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b) exponential decay which gives a rate of energy

dissipation with time as represented in Fig.4b.

When such a system is disturbed by some forcing
function (it can be aerodynamic moment due to sail action)
the resultant motion will be the sum of the two distinct

components:ll

a) natural motion whose character depends entirely
on the physical parameters of the system itself (inertia,
stability, damping) and not upon the forcing functibn,

b) excited motion which resembles in character the

forcing or exciting function.

Thus with a single degree of freedom the plausible
equation of motion for a complete yacht including the
driving function due to aerodynamic action of the rig can

be written:

I¢ +Db¢ + ke = K,
where KA is the disturbing aerodynamic heeling‘or rolling
moment, and is not constant.

The object of direct wind tunnel testing was twofold,
firstly to determine the fundamental parameters which affect
the exciting or driving moment KA’ and secondly to establish
the influence of K, as a function of some parameters (course
sailed, trim, wind velocity, etc.) on the stability of the
rolling yacht.
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4., PHYSICAL MODEL OF THE ROLLING BOAT

4.1 Test Apparatus and Similarity Problem

The diagrammatic sketch in Fig.5 together with
Photographs 1 and 2 show the apparatus used during
preliminary tests before it was put into the special tank
recessed below the wind tunnel floor in order to reduce
possible blockage effect. Photo 2 depicts the apparatus
situated in the wind tunnel and also some details of the
arrangement inside the tank. The apparatus, based on
pendulum stability, incorporates:

- an airbearing support, permitting almost friction
free oscillations about horizontal axis.

- variable and controllable magnetic damping
(viscous in character) produced by an
aluminium disc swinging between the poles of

an electro-magnet.

- a flexure combined with a differential
transformer to measure the variation in the

drag component D due to rolling.

~ a rotary pick-off to measure the amplitude
of rolling ¢ versus time, with linear response
up to + 30°.

- recording facilities, linear recording of
angular displacement ¢, and drag D versus time
by means of an ultraviolet galvanometer

recorder.

A semi-rigid una-rig model of a 1/5th scale 'Finn' type sail
made of "Melinex" was used for a series of initial tests.

The 'Finn' rig was chosen bearing in mind its apparent
simplicity; there is only a single sail which is rigged on

a mast unsupported by any shroud. Further the 'Finn' is

well known as a very bad and dangerous "rcller" and therefore

worthy of investigation.
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When designing the oscillating part of the apparatus,
including mast and sail, special attention was given to the
problem of dynamic similarity. From a mechanical point of
view, the two systems, model and full-scale, must not only
be geometrically similar in shape (form) but also in mass
distribution (moment of inertia) and stiffness (stability).

Assuming that the total mass of the full scale 'Finn'
is 250 kg and taking the geometric scale factor n = 5, the
mass of the model should be g%§_= 2 kg. It was not possible
to satisfy this condition without reducing the strength of
the structure below a practical limit, in fact the actual
mass of the model was 3.49 kg. There was also another
factor of primary importance which interfered to a certain
extent with mechanical similarity demand, this was the
Strouhal number - St or the so called 'reduced frequency'.
In order to satisfy this condition it would require a
relatively short period of oscillation which for some
practical reasons could only be achieved by increasing the

mass of the pendulum.

The Strouhal number, which can be expressed nondimension-

ally in the form:

was regarded as the most natural and fundamental parameter in
considering unsteady aerodynamic forces. An interesting
interpretation of the Strouhal number was given by Karman.
Consider that a disturbance occurs at a point on an airfoil
and oscillates together with the airfoil. The air (fluid)
influenced by the disturbance moves downstream with mean
velocity V. If the frequency of the oscillation of the
airfoil and the disturbance is w, then the spacing, or wave
length of the disturbance, defined as a state of disturbance
which is propacated from one place to another at finite
speed is 2wv/m. Therefore, the ratio

C — we*C
27V 27wV
®
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which is proportionél to the Strouhal number - St shows
that St represents a ratio of the characteristic length of
the airfoil (in our case the mean chord c of the sail) to
the wave length of the disturbgnce. In other words, the
Strouhal number characterizes the way a disturbance (it can
be a vortex shed by the airfoil) is felt at other points of
the airfoil. Since every point of an oscillating airfoil
disturbs the flow, one may say that the Strouhal number
characterizes the mutual influence between the motion at

various points of the oscillating airfoil.ls'

Observation indicates that rolling instability, in
the case of the full scale 'Finn', clearly occurs at a
wind velocity of the order of VA = 10 m/sec which corresponds
to a fresh breeze, or force 5 on the Beaufort scale and that
the period of oscillation T is approximately 2.5 sec. The
mean chord of the sail is ¢ = 1.95 m so that one can calculate

the appropriate Strouhal number: -—

w*Cc _ 2.5 x.1.95

S5, = v o) = 0.49
T o_ 2T .
where =TT = 5E o 25 radians/sec.

Since the period of model oscillation selected for
some practical reason is of the order Tm = 1.45 sec., the wind
tunnel velocity which will satisfy the Strouhal number condition
should be of the order:

w_-C ’
m m 4.35 x 0.39 m ft
= = = 4 =
Vﬁ St W) 3.46 /S 11.3 /s
_ 27 .
where ®m = T.485 ° 4.33 (radians per sec)
c.. = 0.39m - mean chord of the model sail.

n
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When planning the experiments in the wind tunnel it was
decided to cover a range of Strouhal numbers corresponding
to wind tunnel velocities Vm = 10, 12, 14 ft/s (3.05, 3.66,
4.27m/s). The corresponding full-scale wind velocities V.
would then be V. _ = 2.9.V = 8.85, 10.6, 12.4™/5 or 17.2,
20.6, 24.0 knots respectively. The appropriate values of
the Strouhal number are:

S¢ = 0.55, 0.46, 0.39 respectively.

Reynolds number was regarded as a factor of secondary
importance relative to the Strouhal number, and within the
range of used wind tunnel velocities, 3.06 - 4.27m/s,

covered the region:-

n - "m°m _ 3.06 x 0.39 x 10° . 4.27 x 0.39 x 10° _ [ 410
e =¥ T.45 1.45 =0

5

to 1.15-10°

The corfesponding values of Re for the full scale rig would be

+1.95-10°

1.45

f.s 6

= 1.2 x 10° - 1.7 x 10

Rg =

4.2 The Quasi-static approach to unsteady motion and static

tests on the 'Finn' sail

Attempting to answer the question of "why and when"
the rolling oscillations might be aerodynamically excited,
a classical gquasi-static approach seemed to be justified

and promising as a preliminary approximation. This was

based on the assumption that forces acting on the oscillating
sail are the same as if the sail was in steady motion under
the given conditions, i.e. that the flow about the
oscillating sail and corresponding forces were determined
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by the instantaneous incidence and velocity which are the

controlling factors in uniform motion.

All we need when applying a quasi-static approximation
is the static Lift and Drag characteristics of the rig. These
two forces were measured using the balance system in the large
wind tunnel section.

The model of a 1/5th scale 'Finn' type sail, made of
"Melinex" and designed for the dynamic experiments, was
tested over a ranée of static incidence from 15° to 180°.
These angles cover all possible sailing courses. Since the
twist of a sail is a function of wind velocity and this was
guite high in relation to the rigidity of the model (V = 7.63%/s
= 25 ft/sec), the actual twist of the sail model was rather
large. A series of similar tests was therefore carried out
on 2/5th scale Finn sail in order to establish the influence

of the twist on the aerodynamic properties of the rig.

Figs.6, 7, 8 and Tables III, IV, V represent the
geometry of the sail and some results. As would be expected
for the twisted sail sections with a mast along the leading ‘
edge, both the L and the D curves are unsymmetrical relative
to a line drawn through 90 degrees of incidence (a¢)measured
between the boom of the sail and the wind directicon. When
the twist was reduced, both the L and the D curves were bodily
shifted to the left (see Fig.8) towards the lower values of
incidence a. It is worth noting that this shift is associated

with increased negative slope of the L curve.

These facts, as will be seen later, are of importance
as far as the stability in rolling is concerned. The results
presented in Figs.7, 8 have not been corrected for blockage
effects; in fact the test on the 2/5 scale model of the 'Finn'
sail gave unusually high values of the drag coefficient, of
the order 2.2. The test on the 1/5 scale model gave quite
realistic values of drag coefficient close to the expected

CDmax = 1.2,

._27 -



4.2.1 Down wind rclling

Using the information provided by these tests, we may
now examine the conditions in which rolling instability due
to aerodynamic action of a sail may occur. If a una-rigged
vyacht is running down wind (¥ig.9a) the course sailed relative
to the apparent wind BA is 180 degrees and the angle of
incidence o of the sail to the wind direction is about 90°.
The total aerodynamic force TA generated by the sail is more

or less steady and acts very nearly along the course sailed.

If now'by some means (it might be wave action) a
small rolling motion is induced in the boat's hull, and the
sail swings to say port, acquiring an angular velocity p,
then the resultant wind, its incidence and aerodynamnic force
vectors L and D change both in magnitude and direction. This
is shown in Fig.9b which refers to a narrow, horizontal strip

of sail cut at some distance, z, from the axis of rotation.

As the sail swings to port the apparent wind VA is
modified by the velocity v .induced by the swing. The
resultant wind VR which is, at any instant, the sum of the
two wind vectors VA and v will increase in magnitude and the
instantaneous angle of incidence relative to the sail chord
will be less than 90 degrees by an amount %i. When the sail
swings to starboard the whole situation is reversed and as
a result, the instantaneous angle of incidence o will be
greater than 900, see Fig.lOa,b. Under these conditions, the

force component Y, may ect in the same direction as the

A
rolling velocity (see Fig.9%b) and can be expressed as

--YA = -1 COSal + D 51nal
Since aq = 50~a;
Then
YA = L cos{30 - ¢} - D sin(90 ~ «a)
Y, = L sina - D cosu i

o X o .
A



The actual magnitude and direction of action of the YA
component will depend on the relative magnitudes of the
L and D components at given instantaneous incidence «

which is modified by the velocity induced by rolling.

Differentiating YA with respect to a gives the
rate of change of YA due to rolling in qualitative sense.
Thus

Y
A _ _._ 3L _ 3D
e = snm(aa + D) + cosao(L Ga) | 10

when o = 90° and the amplitude of oscillation is small then
sina =+ 1 and cosa =+ O, therefore the second term of Eg.1l0
is negligible, and

—=2 = % 4 p 11

Since the drag D is always positive there are three possib-

ilities to consider, namely:-

E{A 3Ly rolling mction is
I —= =0; |~ == =D 1lla  therefore not affected
by the aerodynamic forces
aYA aL instability may be
II ,—- < 0; |- =51 > D 1lb  induced by the
¢ aerodynamic forces
Y ST a stabilizing effect of
IIT 5 > O; ]— =l < D llc aerodynamic forces can
: be expected.
Note | | means numerical value.

Thus positive %% means a stabilizing effect in any case.
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Let us analyse in some detail the physical meaning

of case II when %% is negative and its numerical value is

greater than D. 1In Fig.7, which presents the static
aerodynamic characteristics of the 1/5th scale Finn sail,

a graph of %% is plotted together with L and D curves against

incidence a. One can see two regions of potential

instability where %% is negative and, at the same time, its

numerical value is greater than the D component, which can
be regarded as being a positive damping factor. 1In order to

facilitate immediate comparison of %% and D values the graph

of %% is plotted with the negative values above the abscissa.

These results are modified in Fig.ll. It can be

-

seen that besides the original L, D and ;i curves, there is

drawn a hypothetical shift of the above mentioned curves
which could be expected due to the reducing the twist in

the sail. This prediction is based on results of experiments
presented in Fig.8 on the 2/5th scale model of the same type
of rig; the set of curves shown clearly indicate such a

tendency.

It is evident that sail twist may exert a significant
effect on dynamic stability by shifting the region of
instability (marked in Fig.7 and 11 by the shaded areas)
relative to the angle of incidence o of the sail.

A modification of the original results as presehted
in Fig.ll was made bearing in mind the fact that it was
anticipated that the subsequent dynamic tests would be
performed at a lower wind speed (3.05 - 4.27 m/sec) to
satisfy the appropriate Strouhal number. Therefore the
effect of the twist of the sail had to be taken into
consideration. In further discussion reference will be

made to the modified set of curves.

Fig.l0a,b depicts configurations of wind and force
vectors for the case when the initial incidence o« is
90 degrees and the yacht is running down wind; as before the

two drawings refer to a narrow horizontal strip of sail some



distance from the axis of roll. When the sail, being
disturbed for some reason, acquires an angular velocity
swinging to port so that o decreases, the flow pattern
round the sail changes quite drastically from that when
there is no rolling. A circulation appears (marked by
the dotted line) which in turn affects the instantaneous
lift and drag in such a way that the total aerodynamic
force T, is inclined towards the direction of the sail

A

motion. This total force TA can be resolved into two

components as shown in Fig.9a.

1) X, component acting along the axis of rolling XO

2) YA component acting perpendicular to XO‘
Thé boat is now rolling to port under the action of a sail
force component YA induced by the velocity of roll. As the
heel angle increases the righting moment due to the lateral
stability of the hull, and the damping due to the combined
action of the hull and appendages increasingly oppose the
rolling and finally start to return the boat to the upright
position. The sail now swings to starboard and the flow
pattern is reversed. This is shown in Fig.9b. The
circulation is opposite to that in the previous swing and

the aerodynamic force component Y, is again directed towards

the motion pushing the sail to stirboard. Because of the
action of these alternating forces operating in phase with
roll velocity, the amplitude of rolling may be magnified
progressively. Fig.ll represents, in a way, a ?otential

ability of the system to develop divergent oscillations in

which amplitude of roll grows progressively. The initial
experiments in the wind tunnel have shown that the model
responded dynamically according to the prediction based on
an analysis of Eg.10. Fig:12 depicts a typical behaviour
of the model when the rig way set at.sA = 180° and the angle
of trim of the sail§ = 85° (a = 95°). The rolling
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amplitude ¢ builds up even in the absence of any obvious

external disturbances, i.e. even in a completely flat sea.

This type of yacht behaviour clearly manifests
dynamic instability. Refering to Fig.4b and 12 we can say
that in both cases the boat is statically stable, since a
certain tendency to return to an upright position is
maintained; however in the second case there is a divergence

superimposed on the oscillation. This is due to the lack
of energy balance - energy lost due to damping and energy
taken from the wind.

This test proved beyond any doubt that wild rolling
may be induced by a sail for an aerodynamic reason. When
running down wind, a sail can extract energy from the wind
in a self-exciting manner by its own periodic motion in such

a way that the sail can be regarded as a rolling engine.

When studying the self-excited rolling of a yacht, one should
focus one's attention on two opposing elements of the rolling
motion: namely, the excitation element and the dissipation
element. The character and magnitude of these two factors
determine whether or not, and to what extent, the boat will
be able to roll. The process of magnification of rolling
amplitude will continue until the rate of wind energy input
due to the sail action is matched by the rate of dissipation
of energy in damping due to the action of the underwater part
of the hull.

4.2.2 Rolling when sailing close hauled

The quasi-static approach, which proves to be most
helpful in grasping the principles of down wind rolling
conditions of stability, seems to be equally suitable for
investigating rolling stability when sailing to windward.
Fig.13 which refers to a narrow, horizontal strip of sail
cut at a certain distance, z, from the axis of rolling,
depicts force and wind vectors as well as some geometrical

relations between them. When, for example, due to wave
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action, the sail swings to port, the apparent wind VA is
being modified by the wind v = p. %z induced by the swing.
The instantaneocus angle of incidence of the sail o will

be affected by the variation in direction of the resultant
wind VR' which is the sum of the two wind wvectors VA and v
Assuming that v is small relative to V,, the aerodynamic
force component YA which affects rolling can be expressed

at any instant as:

YA=Lcos(8AtAB)+Dsin(8AiA3) 12

L]
=Lc0$'+DsirBA l12a

Y A

A

A differentiation of Eq.l2a with respect tosA will give us
a rate of change of YA due to rolling which might be imposed

on the system by the action of an external moment.

oY

A oL . oD
— = e——— 083, — L sinf + —— 4+ D co0sB
83A BBA A A asA A
= cos8, (=2 + D) - sing, (L - —2) 13
A BSA A BBA

Since the variation in L and D with BA are edquivalent to
variations due to changes in o (see Fig.l13), the Eg.1l3 can
be rewritten in the form:

oC aC BCD

YA _ e . _%p
—5a = ©088p (55 * Cp) -~ osing, (Cy 5% ) 14

which is more convenient to analyse, having already at hand

the characteristics of the rig expressed in standard form
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of CL and CD coefficients plotted against a. They are

shown in Fig.14 which presents the variation of C_. and CD

L
of the Finn rig with incidence angle o of the sail. The

boom was pulled vertically downward to four different
positions with the mainsheet (17). The various sail shapes,
with their associated twist and camber changes resulting

from the four boom positions, produced different aerodynamic
characteristics. They can be used tc assess Eg.l4 numerically.

Let us assume that By = 30°. The slope of all CL

e
curves , i1.e. the value of ‘'L is more or less constant

5 o
oC

(typical for close hauled sailing). The value of *5% {a

being expressed in radians) .equals approximately 2.86. The
(o)

within the practical limits of°%ncidence o« = 10-20

relevant average value of vl for the drag curve VIII is

approximately 0.98. Assuming further that o = 15° we can
ol

estimate substituting relevant numerical data from

aa
Fig.1l4 (run VIII). Thus

oC C. oC
YA _ n_ﬁ ) _ . _ -2
S cosBA( = + CD) 51nBA(CL aa)
= 0.866(2,86 + 0.2) - G,5(0,95 - 0,98) l4a

One can see that the first term in the equation is positive
and much greater than the second one, which for other values
of o might be negative but still negligible in comparison

oC1,
wéth the first one. Substituting appropriate values of ol
3Cp

o

that in a close hauled condition

y L and D in Eg.1l4 for other wvalues of BA and o we f£ind
e
O s
o is always positive.

Referring back to Eg.lic it would mean thet when sailing to

windward, one shculd expect a stabilizing or damping effect
from the aerodynamic forces on the rolling motion of the boat

in the case when rolling occurs for hydrodvnamic reasons.

Experiments in the wind tunnel on the model shown in

Fig.1l5 and obsexvations of the full scale boat behaviour



clearly indicate that the theoretical conclusion drawn from
Eg.13 are correct. During tests in the wind tunnel the Finn
type rig was set at BA = 30° and the angle of trim of the sail
Sm was about 15°. At the wind speed VA = 3m/s an average

angle of heel was about 8 degrees to starboard and the model
oscillated about this mean angle in a random way + 2° due to
unsteadiness in the air stream. After a certain time the

model was displaced to 20° of heel, and kept there for a

while, then left free. The return to the mean angle of heel

b = 8° was immediate without overshot. The model responded

in the same way when the heel was reduced to OO, and then
released. in both cases the magnetic damping was zero. The
results recorded in Fig.1l5 indicate that the positive damping
generated by the sail is very great indeed. In fact the

system is over damped (see Appendix Egs.20-21). When watching

a large fleet of racing yachts on a windward leg, one is

easily struck by the steadiness of all the yachts in maintaining
a constant angle of heel even in strong, gusty winds. This fact
was surely discovered through trials and errors by fishermen
who hoisted a sail on motor driven vessels when sailing %o

windward, not as a driving device but as a rolling stabilizer.

Referring to Fig.ll one can conclude that the sawe

aerodynamic forces and process which may translate enexrgy

taken from the air into incipient rolling can also act as a

suppressor. All is dependent upon whether the asrodynamic

forces generated by the system after disturbance are related

to the negative or positive slope of the C; - o curve. The

system, after being disturbed, may develop instability in
rolling when the aerodynamic forces and the arising moments
are related to the negative slope of the L (ox CL) curve.

The steeper the negative slope, the greater will be the energy
transfer from the air to the system and the instability
response in relling motion will be more conspicuous. Vice-
versa, the aerodynamic forces related to the positive slope

cf the L (orx CL) curve should certainly stabilize or damp

any rolling motion induced by hydrodynamic forces.



There is, however, a certain degree of uncertainty
left in the conclusions just derived. This is because the
quasi-static method does not take into account the time
factor required for the build-up of circulation around an
oscillating airfoil, and subsequently there is a time lag
between the forces actually generated and the forces
expected on the quasi-static basis. This might yield an
inaccuracy in the prediction of the degree of stability or
instability. Therefore a certain correction to the quasi-
static approach should be introduced to check whether and
to what extent conclusions already derived are correct in

a quantitative sense.

The accepted theories of non-uniform or oscillatory
motion developed by H. Wagner (19), Th. Theodorsen (20),
Th. Karman (18,21,22), Glauert (23), and others takes into
consideration two effects which are absent from uniform or
quasi-stationary motion. One arises from non-uniform
acceleration and deceleration of the mass of fluid taking
part in circulation round the oscillating airfoil,ie. in
the direction normal to that of the translatory motion.
The other originates in the velocities induced in the
vicinity of the airfoil (or hydrofoil) by the wake of
transverse vortices discharged when the variation in
circulation takes place. The actual flow about an
oscillating airfoil thus depends not only upon the angle
of incidence and local velocity, which are controlling

factors in uniform motion, but also upon the instantaneous

acceleration or deceleration and past history of the motion.

4.3 The non-staionary forces developed on an oscillating

airfoil

In order to define the basic difference between the
stationary and non-stationary aspects of the flow around the
airfoil a short review of the circulatory theory for the

simple case of two-dimensional foil operating in the range
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of incidence angles related to the rising slope of the CL
curve i.e. below the stall angle, is essential.

When a symmetrical airfoil shown in Fig.l6a set at
incidence « = 0° moves steadily with a velocity U relative
to the air at rest only the drag could be measured. This
would consist mainly of skin friction plus a small contribution
of profile drag. The wake left behind is relatively small and
insignificant. When the airfoil is suddenly set at an angle
of incidence o (Fig.1l6b) a circulation is being developed
of sufficient strength to shift and hold the rear stagnation
point. at the trailing edge, T.E. At the same time, according
to the theorem of conservation of the moment of momentum, a
counter-circulation develops, called the "starting vortex".
At the initial stages of the transition period, before the
circulation round the airfoil is fully developed, the
"starting" or cast-off vortex-sheet begins to operate in
a form of concentrated vortex between the trailing edge T.E.
and the rear stagnation points situated on the upper surface
upstream at a small distance from the trailing edge. When,
during this transition period, the starting vortex has
developed to a certain strength, it breaks away from the
airfoil and passes down stream in the wake followed by a
sheet of small vortices. 1In the course of time the starting
vortex travels further and further downstream where it can
finally no longer influence the flow round the airfoil, and
the airfoil is then in steady motion with a fairly fixed
magnitude of circulation and associated steady 1lift. One
can say that a physical role of the starting vortex is to
shift the rear stagnation point S towards the trailing edge.
In a way the starting vortex serves as a kind of "prolonged
ignition" or stimulus for circulation. In this way the
elegant and famous Kutta-Joukowski theorem and condition
are fulfilled. Fulfilment of this condition is necessary
in order to exclude the possibility of an infinite velocity
around the sharp trailing edge of the airfoil.

- 37 -~



An assumption that the starting vortex is so far
behind the airfbil that it does not influence the flow in
the vicinity of the airfoil and « and U are constant, leads
to the so-called stationary flow theory of airfoils according
to which the circulation is given by:

I = 3¢ Un —/— ' 15

and is constant (incidence angle o is measured from the no
lift angle). The 1lift, L, per unit span can be expressed
as

and

c, = 2L 17
_ In fact the magnitude of the fully developed
circulation is subject to a small fluctuation (24). When
the vorticity of the boundary layer passes downstream in

a vortex wake it develops into a Karman vortex street and,

to maintain this system, vortices of opposite sign are shed
alternately from the upper and lower surfaces of the airfoil.
Since the sum of the circulation round the airfoil and of
the strengths of all the vortices of the wake must be zero,
it follows that the circulation round the airfoil will
oscillate between the limits TI' + %y, where I' is the mean
circulation and y is the strength of the vortex street. For
a good aerofoil section at a small incidence the vortex wake
is narrow and weak, and the circulation round the airfoil is
sensibly constant. However, when the angle of incidence
increases, approaching stall angle, the oscillation in the
magnitude of the circulation and associated lift may become
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an important fraction of the mean values. Tests performed
by Fage and Johansen (25) below and above the stalling

angle proved beyond any doubt that the velocity fluctuations
in the wake due to the presence of vorticity shed from the
airfoil are function of the Strouhal Number.

Referring back to an €arly stage of circulation
being developed when the angle of incidence was suddenly
changed from O to o one should realise that the circulation
pattern around an airfoil does not spring into being without
a certain time lag. Therefore the lift normally associated
with the changed angle of incidence o does not reach its
nominal value immediately but only a fraction is reached,
the remaining value being developed in the time taken to
travel a certain number of chords. This is shown ih the
graph on the right side of Fig.1l6, which presents the rate
of growth of 1lift and circulation with time. For example,
about 0.9 of the steady state value of the lift Lo is
%? . A half of the LQ value is
reached almost immediately. This fact was first discussed

reached after a time t =

by Wagner (19), who gave the theoretical reason for this
behaviour of the lift, and the phenomenon on this account

is usually referred to as the "Wagner effect". His theory
was experimentally verified by Walker (19), who found that
the actual measured circulation at any stage in the early
motion of the airfoil was approximately the same fraction

of its final value as that deduced from Wagner's theory.
Wagner's theory may, therefore, be considered to account

for the initial motion to the same extent that the classical

theory accounts for steady motion.

Studies of unsteady aerodynamics indicate that the
lift build-up has the nature, but not the exact shape of an
exponential as indicated by the graph in Fig.1l6. A reasonable
approximation of actual lift La at a givep time is:

-t
/ ) 18

La = LO(l - e
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where Lo = stationary lift at incidence a
= £(%/y)
¢ = average surface chord

U = forward velocity

When an airfoil performs tfanslatory oscillations within an
amplitude +y, as shown in Fig.l6c, the instantaneous angle
of incidence o = tan»l V/U, (where v is the instantaneous
velocity in y direction), will vary and, according to Eg.l5,
every change of the state of motion must be accompanied by

a change of the circulation I' around the airfoil.

It appears that for every change of I', and likewise
for every change in the angle of incidence, a vortex must
leave the trailing edge of the airfoil. The strength of
this vortex is equal to the change of the circulation and
the rate at which vorticity is deposited in the wake in the
vicinity of the T.E. is given by

oC

ar [ole L
LI ]
3£ - U 3 i 19
Hence the vorticity shed per unit movement forward is:
L _ L3 .. 38 > 20
P> e U ot ot  3a

In the case of a continuously chaﬂging circulaticn a band of
vortices develops behind the airfoil. Physically, the
generation and shedding of each vortex, as shown in Fig.léc,

is somewhat similar to the process described earlier when
discussing the "starting vortex" mechanism depicted in Fig.lé6b.
Continuous shedding of the vortices into the wake is
accompanied by simﬁltaneously occuring shifts of forward

and rear stagnation points and therefore subsequent
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oscillations in local pressure. The vortices being shed
affect also the downward velocity at the airfoil and hence
alter the flow pattern and circulation.

When analysing Egs.19 and 20, one can say that if the
changes of circulation are very slow, the vortex intensity
in the wake is very small. The flow around the airfoil is
then almost the same as in the steady state, and a quasi-
static approach is therefore justifiable. However, in
general, the forces on the airfoil will depend upon the
vortex intensity in the wake and the influence of this wake

must be taken into account.

On the assumptions of an infinite aspect ratio
airfoil, a small amplitude of motion and some other
restrictions, Karman and Sears (22,26) presented a theory '
of non~uniform motion which very much aids the prediction
of 1ift characteristics for the case of sinusoidal motion.
This is applicable both for oscillating sail and hydrofoil

as a fin-keel.

According to this theory the actual 1lift La developed
by the oscillating airfoil is the sum of three components:

Lo -~ the "quasi-static" 1lift
L; - ‘the "apparent mass" 1lift
and L2 - the "wake effect” i.e. modification

to the actual 1lift due to velocity
induced by vorticity within the
wake.

Hence

La = LO + Ll + L2 21

If we take, for exémple, the case of an aerofoil set at some
angle of incidence and oscillating in translatory motion
perpendicular to the undisturbed stream, the 1lift
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characteristics predicted by the theory include:

a) the actual 1lift which varies in a
sinusoidal manner,

b) a variation in 1ift which may be either
greater or less' than that which would
occur if the oscillations were infinitely
slow, i.e. if at each angle of incidence
the lift were that corresponding to the

steady motion,

c) a variation of lift which may either lead

or lag that angle of incidence,

d) a phase angle and amplitude of the
variation of 1lift which will depend on
the so-called "reduced frequency", or in
other words the Strouhal number divided
by two. '

These predictions are illustrated diagramatically in Fig.17.
The broken line sine curve shows the hypothetical variation
of 1lift which would occur if at each instantaneous angle

- of incidence o the 1lift value was that corresponding to
steady state motion. The solid-line represents the actual
variation of 1lift L, . The physical significance of Eg.21
may be clarified by means of a "vector diagram" as shown in
Fig.18, which presents the phase relationships of the
quantities involved Lo' Ll' and L2 as well as their

magnitudes (22), plotted in compléx plane.
Unsteady lift function can be defined as:
int

L, (t) = Fe " {£, (°/) + if,(*/ ) 22

where La(t) represents lift as a function of tige; F is a
constant involving only the dynamic pressure p%; and the
amplitude of the oscillation y; and fl and f2 are real
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functions. The real part of this expression which is the
actual lift La may be written as

Re|L_(t)| = F(fjcosut + f,sinut)

2

2 2
1 + fz cos (wt + A) 23

FYy £

-1 2
where A = tan l( /fl).

Thus, in vector representation, the 1lift vector has the
magnitude F//fl2 + f22 and leads the vector of the velocity
of oscillation, v, by a phase angle A as shown in Fig.18,
which depicts how the total 1lift vector is composed for a
certain value of w/U. The quasi-steady part, Lo’ being in
phase with the velocity of oscillation, v, appears as a
horizontal vector, while the vector L2 tends to diminish the
lift and cause it to lag behind the velocity. The apparent-
mass 1lift, Ll’ being proportional to the acceleration, is
directed vertically i.e. leads the velocity by 90°. The
total actual 1lift, La'
and has the phase angle .

is the sum of these three vectors

A curve plotted in Fig.19 gives the magnitudes of
the 1ift together with their phase angles A for various values
of the Strouhal number (or reduced fregquency). The length
r of the vector drawn from the origin to the appropriate
value of the reduced fregquency %ﬁ% on the curve gives the
ratio of the total actual 1lift La’ to the corresponding
quasi-steady lift, Lo. The A angle between r and the
horizontal axis gives the phase angle relative to the
velocity of oscillation v. It is seen that within the limits
of the Strouhal number investigated in the wind tunnel tests
on Finn sail model i.e. 0.39-0.55, the maximum value of the
lift, La’ slightly decreases and the lift vector lags slightly
behind the velocity v.
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4.3.1 Rerodynamic damping when sailing to windward

Yacht oscillation can be called aerodynamically
unstable if the effect of an initial transient rolling
disturbance imposed on the sail, say, by wave action is
magnified as time increases. In such a case the sail
extracts the energy from the wind in completing a swing
(cycle). If the reverse is true, i.e. the effect of an
initial transient disturbance dies out as time increases,
it means that the sail dissipates energy in a full cycle of
oscillatory motion. One may say that such oscillation is
aerodynamically stable, or, in other words, aerodynamic
damping is positive. 1In this case the work done by a sail
is negative, i.e. energy is given or lost to the airstream.

On the basis of the theory of non-uniform motion
presented in (4.3) let us consider work done Aw by the
unsteady lift produced by a strip element of the sail area
ASA at some distance Z from the axis of roll xo’ For that
unit area which is horizontal strip of the sail, we can
regard its oscillatory motion in close-hauled conditions as

the translatory one when considering amplitude:

int 24

If oscillations are small, a certain difference in magnitude
between velocity vectors Va and VR can be ignored (see Fig.1l3).
Hence VA = VR = U. We shall concentrate attention on the

lift only, since, according to Egs.l14 and l4a, the contribution
of this component of YA force will be dominating as far as

damping moment due to YA action is concerned.

The velocity induced by a swing of the sail to

windward can be expressed as:

_ 4y _ . iwt '
\'4 at ilwy e 25
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if %% were a constant, the windward swing will induce a

lift force Lo on the sail

L

C
ool

|

_ 2
L, = %0U“aS,

The actual instantaneous lift would be

where r, according to Fig.l9 represents the ratio of the
actual value of the instantaneous lift La to that of the
quasi-steady 1lift Lo’ and A is the phase angle by which
the actual lift leads or lags the quasi-steady value.

When a sail moves through a distance dy the work
done by the 1lift is

- - = -1 Y
dw = -L_dy = -L_ & dt

since, by definition, work can be expressed as
W = L.y cosi

where ) is an angle between the force and displacement, if
A = 180° cosx = ~1.

It must be recognized that when La and %% are given
in the complex form as in Egs.25 and 27, the physical
quantities of La and %% are represented only by the real
parts.

Therefore Eq.28 can be rewritten as
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aw = -Re[L_]‘Re [g-%] dt 29

Substituting Egs.25 and 27 into 29 yields

wt
L

. i
oC, iwy e . .
aw = -Re[%pUzASA — OU r-e”] Re[imyoel“’t]dt

oC

= ~p/2 UASA _L Re[iwyore

i{wt + A)
o .

JRre[iwy _e™*Jat 30

Taking only the real parts of Eg.30 and integrating over the
complete cycle of oscillation 2m (whole period T), we obtain
the total work done AW by the wind on the unit area of the
sail, AS,. |

21r/
oC wy r
o w f(p 2 L, o . v
AW = cf) [ /y USAS, — 2 cos (ut + A)-wy cosut]at
0 BCL 2 27
AW = 5= UASA v (wyo) ré cos (wt + A)coswtd(wt)
oC
_ _T L 2
AW = 5 pUASA o WYST cos 31

We can see that the tapping of energy AW by the sail from the
wind is proportional to (-cosi) therefore if —% < A < % work
is negative i.e. the oscillating sail will lose energy to

the airstream. The system will be stable cr, in other words,

aerodynamic damping will be positive.

Referring to actual tests and Fig.l1l9, it is seen that
the condition of stability -% < A < % in close hauled

conditions is satisfied. Within the limits of the Strouhal
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number investigated in the wind tunnel and met in practice,
the phase angle X is not very far from O. So, the expected
stabilizing effect of the sail on the rolling motion should
be strong; this was confirmed by experiments. Analysing
Eg.31 one may anticipate that the higher AR, shorter period
of oscillation, greater sail area, stronger wind, the more

effective will be the sail as a damping device.

This conclusion, as deduced from Eg.31, is in
agreement with the previous one based on the static tests
incorporated in Figs.ll, 14 and also with Egs.ll and 14.
The work done by an oscillating rig will be negative if
the forces developed by the sail are related to the rising

oC

slope of the CL ~ o curve i.e. ~§%-is positive.

4.3.2 Some remarks about damping efficiency of the fin-keel

and rudder

In down-wind sailing conditions, when a large
amplitude of rolling can be induced for aerodynamic reasons,
the hydrodynamic damping efficiency of the hull becomes an
important factor limiting the degree of instability. High
damping efficiency is desirable. It is justified to assume
that the predominant role in producing positive damping is
played by the action of appendages, the fin-keel proper or
centreboard and rudder and also their configuration.

At the moment there are no experimental data
facilitating an estimation of damping efficiency of the
appendages. However, Eqg.31 may provide some clue to the

problem.

The total work done on an oscillating aerofoil or
hydrofoil by the stream, as expressed in Eg.31 can be
estimated by integration of the unit work dcne by the
lift on a strip element (AW) over the total area of the
hydrofoil. The area of the appendages is therefore an
important factor affecting damping and one can say that the

modern tendency to reduce the wetted area of the fin in
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order to improve the boat's peiformance might lead to a
drastic reduction of damping efficiency of the hull. This
tendency is illustrated in Fig.20, which shows a typical
modern One Ton Cup contender. The traditional shape of the
underwater part of the hull is illustrated by a broken line.

Since the aspect ratio of the 'shark's fin' is bigger
than the traditional one, the value of 3;? , which enters
Eq.31l, should be affected advantageously. So losses in
damping efficiency due to reduced wetted area may be
compensated to a certain extent by the effect of increased
slope of the CL ~ o curve. However, the higher the aspect
ratio of the fin-keel, the more probable it is that the tip
will reach a stalling condition at the extreme angle of

rolling thus giving rise to a large hysteresis effect.

Hysteresis may be defined as a lagging or retardation
of an effect (in this case 1lift) behind a change in the
influencing mechanism which causes the effect. In general
the hysteresis phenomenon is exhibited by a system whose
state (i.e. the forces developed) depends on its previous
history. This is clearly shown by Photo 3, in which it can
be seen that fully separated flow persists even when the

angle of incidence is being reduced to zero.

Assuming that the total lift generated by the
oscillating %gdrof01l is related to the rising slope of the
L curve, so ~§r is positive, one can expect that the work
done on the system will be negative, as shown in Fig.21.
This negative work, =W, would correspond to positive damping
or positive stability. If an oscillating hydrofoil or a

aC
part of it approaches or exceeds the stalling angle and =L

becomes negative, one should expect a hysteresis loop w1t§t
positive work, +W (shown in Fig.2l). This corresponds to
negative damping. In such circumstances one may expect
that the total damping efficiency of the hydrofoil will be
reduced, depending on the area of the hydrofoil affected

by the stalling conditions.
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Assuming that for the yacht shown in Fig.20a the
maximum depth of the fin-keel is 6.2 feet, the period of
rolling oscillation T = 3,5 sec., the boat speed V_ = 1.2/IWL =
1.2v26,7 = 6,2 knots = 10,5 ft/sec, one can calculate the
approximate instantaneous maximum angle of incidence at the

tip of the fin-keel for the angle of roll ¢ = 30°.

The maximum angular velocity induced by the roll will
be

_ 21 , 30-m
P = 180

= 0,94 rad/sec

The maximum linear velocity v at the tip will be

v=pzx©6.2=5,8 ft/sec

so that the instantaneous maximum angle of incidence would

be in the order of

= Vo 22 .
a = tan Vs 5.5 = 29 degrees.

Whether or not the tip of the oscillating fin-keel reaches
stalling conditions at so large angle of incidence cannot ke
answered without tests. The experiments described in (27,
28) suggest that the hydrodynamic forces developed on a
hydrofoil oscillating sinusoidally at or near the stall vary
in a periodic but nonsinuscidal manner. The form of the
periodic variations of the fundamental 1lift component and
the subsequent damping efficiency depends on the Strouhal
number, the amplitude of oscillation, the shape of the

hydrofoil, and the Reynolds number.



Apart from damping efficiency considerations of
the fin-keel proper, there is also another aspect of the
same problem, namely the interaction effect between the
fin-keel and the separated rudder. When the fin-keel is
swinging continuously from port to starboard as shown
schematically in Figs.l6c and 20b, relevant eddies are
being detached alternately from the trailing edge of the
fin at a practically constant rate for a given velocity of
the flow VS (U). The double row of vortices and the velocity
fluctuation induced by them within the wake will affect the
oncoming flow relative to the rudder and subsequently the
forces generated by the rudder. 1In some critical conditions,
depending on vortex spacing and vortex intensity, the
effectiveness of the rudder may be reduced, both as a steering
device and as a roll damper. One might even anticipate a
possibility that the oscillating velocity within the wake
may set up a component of rudder force in phase with the
rolling velocity. 1In this extreme but quite probable case
the rudder may work as a roll magnifier.

Due to the very peculiar and complicated character of
unsteady aerodynamic and hydrodynamic reactions being
generated on a rolling boat, and their mutual interactions
and setback effects, in some sailing conditions, an energy
gap or energy deficit may occur. 1In other words, the energy
. input to the system cannot be matched by the energy
dissipation; the amplitude of rolling will then build up
rapidly.

4.3.3 Flow behind a stationary and an oscillating cambered

plate. Water-channel experiments

When a flat or cambered plate or a cylinder, moves
through a fluid with its length normal to the flow direction,
vortices are shed into the wake periodically forming the
well-known Karman vortex trail. This phenomenon, which has
been observed by various investigators through centuries:-
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Leonardo da Vinci (see Fig.22), Strouhal, Bernard, Karman
and many others, is still far from being completely under-
stood. However, the basic mechanism explained in a way by
Karman (1911), who made a stability analysis of the vortices
being formed in a certain geometrical pattern, is fairly
well known, at least for a stationary or non-oscillating
body. Each time a vortex is released into the wake, an
unbalanced transverse force Y acts on the body (see Fig.23),
apart from the normal force component X. Whether the
surrounding fluid is air or water does not change the basic
physical principles nor the mathematical relations involved
in the theory. The generation of vortices alternately on
either side of the cambered plate, as shown in Fig.23,
proceeds in accordance with a basic theorem of aerodynamics
which states that the circulation around any closed curve

within a fluid must remain constant with time (21, 24, 30).

With a vortex swirling in the direction shown in
Fig.23, close behind an edge of the cambered plate, there
is instantaneous circulation developed round the plate. An
enlarged picture of this edge vortex being formed is presented
in Photo 4, (32) which depicts the process of growth of the
vortex:~ small scale undulations which form a kind of
vortex sheet are rolled up and superimposed upon a big-scale
circular vortex. The presence of this vortex and the induced
circulation produces a differential static pressure component
resulting in a transverse force Y pushing the plate in the
direction Y perpendicular to the basic flow direction X.
The circulation around the unit span of the plate varies
continuously from +I' to -T.

An oscillating transverse force +Y¥ in a direction
away from the last vortex has a frequency equal to the eddy
formation rate. For two-dimensional flow and a stationary
plate, it was found (25,29) that the frequency, £, with which
the vortices are shed from one side, is determined by the
trouhal number expressed as:
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_ f-c
St =G

= 0.15 - 0.18

where £ - vortex shedding frequency is given in cycles/sec.
¢ - width of the body in (m)
U - undisturbed flow in (m/sec) - or any consistent

units.

Recent experiments (33,34) revealed that the vortex shedding
behaviour is not uniform in the spanwise direction and the
complete correlation based on the Strouhal number can be
assumed only over a small portion of a blunt body in two
dimensional flow. It was found that the velocity
fluctuations within the wake recorded simultaneously at

two different points Z1r 24 along the span P resembled each
other in character and period but were out of phase at a

large separation (z, = z9).

_ Records of velocity fluctuation (measured by hot-wire
anemometers) presented in Fig.24, taken from Fage, Johansen
work (25), show that even for the same point in the wake the
velocity fluctuations do not appear to be harmonic, although

they are periodic in character.

The random velocity fluctuations at various points
zq and z, along the plate, being a function of spanwise
position and time, will of course affect the total transverse
force Y as well as the moment acting on the entire plate.

Letting Y be a total instantaneous force acting on
a plate of length P and AY be a local instantaneous force
acting on a segment dz, the total force Y can be expressed

P
JY(E) = 71 AY(z)t)dz
. e :

The integration cannot, however, be performed easily
since AYl(zlt) and AYz(zzt) at two different points along the



span, apart from being complicated functions due to fully
separated flow conditions, do not depend on zq and Z 4 only,
but also on the difference Az = zZy = 2. This in turn is a
function of many variables the significance of which will

become clear later, on the basis of experiments.

The mechanism affecting the magnitude of the force
and also the spanwise phase lag in vortex development within
the three-dimensional wake becomes more complicated when the
plate, being free to oscillate with its own frequency, begins
to oscillate under the influence cof the periodic transverse
force Y (Fig.23). Once set in motion, the plate appreciably
modifies its wake of vorticies, their intensity and

distribution.

With the hope of gaining a better understanding of
the factors which determine the influence of the wake on
the aerodynamic (or hydrodynamic) reaction of the oscillating
plate (airfoil), two dimensional, water-channel experiments
were carried out. In a way the experiments and the idea of
the apparatus shown in Photo 5 were inspired by the drawing
shown in Fig.22. A cambered plate of 2" chord was given a
controlled oscillatory motion across 12" width water channel
by means of a slider-crank mechanism. The movement of the
plate being 1" either side of the centreline of the water
channel. 1In order to make visibkble the vortex pattern being
formed behind the plate, aluminium powder was scattered
upstream on the water surface. Photo 5 and 6 show several
pictures taken by the camera situated above the oscillating
plate, at two different velocities of water flow 4,0 inch/sec
and 8,0 inch/sec. The amplitude of oscillation was constant
= 2 inches, and the period T = 2.5 sec. The angle of
incidence of the plate relative to the flow was 90° which
corresponds to BA = 180 in the case of a boat sailing

downwind.

From photographs and direct observation of the wake
pattern it appears that the oscillating plate imposes its
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own frequency on the vortex shedding and modifies the phase
relationship relative to its own oscillation. The wake
consists of a more or less orderly series of vortices, as
shown in Fig.23, which alternate in position about the X
axis. Between the two rows of vortices there is a velocity
induced in the negative X direction indicated in Fig.23 by
the arrows and a broken line. The part of the wake affected
by this velocity oscillates from one side of the X axis to
the other as the vortices alternately form and detach from
the plate edges. As the plate swings from one side to the
other it passes close to the vortex left in the previous
swing, and this vortex can have considerable effect on the

circulation round the plate and also on the phase relations.

The higher the velocity of the flow, the more vigorous is the
circulation and induced velocity within the wake and the more
pronounced should be the modifying influence of the wake on

the circulation round the plate and subsequently on the forces

and moments arising from the motion.

A similar situation, but a much more complicated one,
might be observed in the case of a rolling sail, when the
amplitude of oscillation is not constant but increases
continuously. The sail, keing a three-dimensional, tapered
airfoil oscillating in a rotary manner, is bound to develop
a nonuniform wake. The wind tunnel investigation of the
wake behind the rolling sail by means of a grid tufted at
2 inch intervals revealed that the vortex wake in a plane
parallel to the sail plan is spiral or helical in character
and circulates clock~wize or anti-clock-wise, depending on

the direction of sail swing.

The wind tunnel and water channel experiments suggest
that the cscillations identified with vortex shedding at the
beginning of the motion of the sail can be classified as
forced oscillations. In this case the alternating forces
associated with vortex freguency w, that initiate the

cscillation can be related to the Strouhal number and the

H
w
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wake itself may be regarded as a "fluid oscillator" which

in a way is responsible for "ignition" of the oscillatory

motion. Once the system is set in motion, the alternating
forces that amplify and sustain the oscillation are created
and controlled by the oscillating system itself. Since

the periodic aerodynamic force is automatically resonant with

the natural frequency of the system, w_ we can distinguish

o
this kind of oscillation from a forced one as 'self-excited!

Unstable oscillation occuring in the case of a rolling boat
may therefore be defined as self-excitation.

Fig.12, which presents a record of behaviour of a
1/5 scale Finn rig, illustrates this point; the system,
initially in equilibrium begins to oscillate, being forced
to do so by the "fluid oscillator" i.e. wake, which produces
an unbalanced transverse force independently of the motiocn

of the systemn.

Referring to the rolling instability of sailing boats,
one should realise that the basic characteristic of self-
excited systems, which make them difficult to handle
mathematically, is that the forcing function KA in Eq.7 ;-

Ix6 + bé + ko = K,

is of a very complex nature, being affected by a number of
parameters such as the course sailed 8pr the angle of trim
Snﬁ the twist of the sail, the aspect ratio, and so on.
Therefore at this stage it does not seem to be practical

to search for the direct, purely analytical solution to

the Eq.7. It can be done experimentally using the apparatus
as designed and shown in Fig.5, which incorporates the
essential features of the real system and allows systematic
investigation of the most important factors which can be

held under close control, measured and compared.
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5. THE WIND TUNNEL EXPERIMENTS

The crucial questions to be answered by the wind
tunnel experiments were:

1. in which conditions is the "Finn" type rig, as
shown in Photo 1 and Fig.6, stable in rolling; in which does
it become unstable and to what extent is the theory
incorporated in Egs.ll, 14 and 31 in agreement with the

model behaviour.

2. what is the relative influence of basic parameters
such as:
angle of heading BA
angle of trim of the sail 5m
wind velocity Va (Strouhal number St)
twist of the sail
damping
on the rolling behaviour of the rig.
Since most of the parameters listed above (BA, sm,
twist and damping) are in fact controlled to some extent by
the helmsman, it is believed that a better understanding

of the essential factors and phenomenae involved in rolling

instability should be of some practical value.

5.1 The test procedure and results

5.1.1 Calibration and magnetic damping tests

The angle of roll or angle of heel ¢ measured by
means of a rotary pick-off (see Photo 2) was recorded by
an ultraviolet galvanometer recorder. Fig.25 gives the
results of calibration tests, angular displacement ¢
against the response of the recorder. Linearity error or
departure from the ideal straight line expressed as a
percentage of the output for a given angle of heel ¢ was
of the order #4%.
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Figs.26, 26a and 26b present the records of damped
oscillations for various degrees of magnetic damping, with
the rig attached to the apparatus and no wind. The magnetic
damping is based on the effect of eddy-currents which are
generated when the aluminium plate swings back and forth
between the poles of an electromagnet (see Fig.5). As the
aluminium disc moves through the gap of the electromagnet
a current is induced in the disc producing a force which
opposes the motion in such a way that the retardation is
proportional to the angular velocity, or in other words,
is viscous in character. By changing the current or the
width of the gap between the poles, one can change the
intensity of damping. The period of oscillation T = 1,45 sec.
was not noticably affected by the changes in damping
introduced in the course of the experiments. This is in
agreement with Eq.33 discussed in the Appendix.

Fig.26c shows the relation between the amount of
magnetic damping (m.d.) expressed in arbitrary units 1, 2,
v3‘and the logarithmic decrement § calculated on the basis
of Egs.28 and 30a (Appendix) used to analyse records in
Figs.26, 26a and 26b. Zero magnetic damping (m.d. = O)
means that the recorded damping (Fig.26) was due to air
friction generated on the sail and the mast only. As
expected, the damping actually recorded was basically
~ viscous in character, however a certain departure from
linearity was observed due to the fact that the oscillating
sail (without wind) manifests a fluttering tendency. This
was, of course, absent during "normal" experiments with |

the wind on.

5.1.2 The influence of the heading angle 80D rolling

Figs.27a,b,c,d,e, give examples of rolling
oscillations for various angles BA from 145° - 200°. The
tests were performed at constant wind velocity VA = 3,05m/sec,
constant angle of trim of the sail 5m = 85° and constant
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magnetic damping m.d. = 1,0 which corresponds to the
-logarithmic decrement § = 0.078 i.e. the system was only
slightly damped. At the beginning of each run for the
selected BA the rig was given an initial displacement

¢ = -5° and then released.

Within the scope of BA = 145 - 180 degrees the recorded
oscillations are divergent and the model clearly manifests
instability in rolling due to the action of aerodynamic
forces. It is apparent that the energy input to the system
is not matched by the energy dissipation (limited in a way
by the amount of available positive damping), therefore the
amplitude of rolling grows continuously.

In Figs.27 and 27a the exponential envelopes are
plotted so that they fit the linear egquation:

-(5 /2%w)wt

¢ = ¢0e coswt

(see Appendix Egs.24 and 31) in the best possible way.

The oscillation represented by this equation is made
up of the product of two terms or curves, the cosine curve
defined by wt and the exponential curve defined by the
logarithmic decrement §. One can notice that the actual
behaviour of the system, which is basically non-linear,
differs from the linearised one by less than 10 per cent.

It was regarded, for practical reasons, that such a
linear approximation of the system response as shown by
the exponential envelopes can be accepted in order that
the linearised logarithmic decrement § may be used as a
convenient index of system instability. This is shown in
Fig.27f. The negative value of § is associated with
instability, and when substituted into the equation given

above produces divergent oscillation.
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The degree of instability being a maximum at
Bp = 1650, decreases when B increases. By setting the
sail model in the position of a boat sailed slightly "by
the lee"” (BA = 200°), the rig becomes dynamically stable
and rolling has a definite tendency to die ocut with time.
This behaviour is recorded in Fig.27e which shows the rate
of rolling decay when the initial displacement was 5 degrees
and 20 degrees. When B is greater than 180° the excitation
element predominates only until a certain amplitude is
reached and then an energy balance occurs between the self-
excitation ané the dissipation elements. In a condition
when damping is capable of balancing the energy input due
to the sail action, the system reaches a limit cycle steady~
state motion of finite amplitude. This type of behaviour
shown in Figs.27b, ¢, might be regarded as a transition
from negative to positive stability. The system is unstable
at small amplitudes but becomes stable at larger ones. The
magnitude of amplitude ¢ at which the limit cycle is reached
decreases when 34 increases. Fig.27f depicts the relationship
between BA and the logarithmic decrement § used as an index

of stability.

5.3.1 The influence of trim angle §, on rolling

Figs.28a and b show records of oscillaticns for various
angles of the sail Sm measured between the boom and the axis
of rotation. The tests were performed at constant wind
velocity Vo = 3,05 m/s, constant By = 180° and constant

magnetic damping m.d. = 1.0.

The rolling instability was most spectacular at a
large angle of trim § = 85°. By gradually hauling in the
mainsheet and decreasing § ., the degree of instability was
drastically reduced. At §p0 = 70° the rig reaches a kind of
neutral stability in rolling. Further pulling in the boom
encouraged a positive stability, i.e. the aerodynamic force

developed on the sail acted as a suppressor of rolling,



producing positive damping. The curve plotted in Fig.28c
shows that the damping efficiency of the rig increases very

rapidly when the sail setting $ is reduced below 70 degreés.

The aerodynamic positive damping is quite profound,
particularly when the initial amplitude of rolling 95 is
large (see Fig.28b, sm = 650). The recorded response
indicates clearly the existence of a certain randomness in
the rolling motion. The rate of amplitude decay, which is
a measure of positive damping, is not uniform or linear
but passes through cycles during which damping efficiency
increases and decreases periodically.

Fig.28d4 shows the rolling oscillation for 80 = 85°

recorded in the same conditions as before (i.e. BA = 1800,
VA = 3.05 m/s and m.d. = 1.0), but the wist of the sail was
increased by easing the tension in the kicking strap. One

can see that the initial instability at the beginning of

the rolling motion is much higher than in the case when the
twist was relatively small (see Fig.28a) and the rig behaves
differently. After several swings, during which the amplitude
increases rapidly, the rig reaches a limit cycle with steady-

state motion of finite amplitude of about 22 degrees.

5.1.4 The influence of wind velocity VA on rolling

Figs.29a, b and c represent the records of divergent
oscillations for three different wind velocities, VA = 3.05,
3.66 and 4.27 m/sec, which correspond to the Strouhal numbers
0.55, 0.46 and 0.39 respectively. During the tests 8p = 1800,

Gm_= 85° and m.d. = 1.0 were kept constant.

Applying the same method of linearization of the
system response as before (§5.1.2), one can find that the
instability expressed by the logarithmic decrement § is
greater at lower wind velocity. This rather surprising
result shown by the curve plotted in Fig.29c¢ indicates

that the Strouhal number is an important parameter indeed.
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5.1.5 The influence of damping on rolling

Figs.30a, b,lc represent the records of rolling
instability affected by damping of various intensity, 1.0-3.0
(see Fig.26c). During the tests V, = 3.05 m/sec, BA = 180°
and § = 80° were kept constant. As expected, the combination
of resisted rolling due to the action of viscous damping and
self-excitation due to sail action must produce different
response, depending on the amount of positive damping
introduced to the system. The higher the degree of magnetic
damping, the less rapidly the amplitude of rolling builds up
and the lower is the final amplitude reached in limit cycle
steady state motion. There is a certain critical damping
which makes the system dynamically stable. This is shown
in Fig.304d. ’

5.2 Anti-rolling sail

An attempt was also made to devise an anti-rolling
rig which could produce a positive aerodynamic damping.
Fig.31 and Photo 7 show some details concerning the anti-
rolling sail. It is a tall and narrow sail, much shorter
in the foot than any head sail would be, and its area is
about 20 per cent of that of the mainsail. The tack can be
taken to a point on the gunwale or a spreader (strut) on the
opposite side to the mainsail. It seems to be essential for
the damping efficiency of the anti-rolling sail that there
should be no excessive gap between the mast and the "leach”
of the sail, which is attached to the foreside of the mast.
The damping characteristics of the rig depend on the angle
of trim of the anti-rolling sail sr relative to the centre-~-
line of the hull (or axis of rotation Xo). This is shown
in Figs.32a, b, ¢, d. When §_ is greater than 45 degrees
and less than 110 degrees, the rig becomes dynamically stable
even in the absence of magnetic damping. The tests were
performed at VA = 3.05 m/sec, By = 180° and §n = 85°. The
damping efficiency of the rig represented in Fig.32d is
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greatest when the angle of trim of the anti-rolling sail

Sr = 65 - 70 degrees. The effectiveness of the anti-rolling
sail is greater at a large amplitude and this tendency is
shown in Fig.32b (upper records) by the two linearized
exponential envelopes plotted in the sine curves representing
actual response of the system to the initial displacement

9o = -20°. Experiments with the anti-rolling sail attached
to the "Dragon" type rig plus spinnaker (see Photo 7) show
the same pattern of behaviour. When the wind was switched
on, the whole rig stood firm and upright, with scarcely any

tendency to oscillate.
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6. DISCUSSION OF RESULTS

An inspection of the recorded behaviour of the
rolling rig presented in Fig.27a, b, ¢, d and e clearly
suggests that the nature of the forcing function K, in
Eq.7:

A

IX'¢ + b + k¢ = KA 7

plays a key role in determining the type of stability of the
physical model of a sailing boat. 1In fact one can distinguish
three basic types of model behaviour. They are shown in
Fig.33. The curve A depicts dynamic instability, the
oscillations being self-excited. The curve B shows typical
damped oscillations when the system becomes dynamically stable,
so the rolling has avdefinite tendency to die out with time.
The third, a boundary case between the two A and B, occurs
when the rolling oscillations initiated by the external

moment neither grow nor decay with time, being of constant
amplitude. Such a type of model behaviour, which we will

call C, is very close to the marginal case shown in Fig.274.

A certain modification to this type of stability, a
combination between A and C patterns, very interesting from
the mathematical point of view, is shown in Fig.27b, where
after a certain pericd of time during which the system '
manifests dynamic instability, a limit cycle steady state
motion of constant amplitude is reached.

All the other recorded oscillations described in §5.1
and shown in subsequent Figs.28-32 can be classified as
belonging to one of the basic types, A, B, C, so that the
discussion of all experimental results can be reduced to

these fundamental patterns of model response.

The physical model of the rolling rig can be represented
in the form of a block diagram in which parts of the system,
including the wind as a source of energy, are denoted simply

by blocks as follows:-
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Hull (pendulum 1 Sail 3 Wind

hefffrrmemenrearneamd ot
Damping part 2 Resonant part 4 Source of energy
P Emm—
I, K, b S,rB,s 5./ 8 Non-oscillatory
* \\A _é;-,t i steady flow
wd Ky of velocity Va

The mutual interaction or causes and effects are marked by

arrows 1, 2, 3, 4, indicating the direction of action.

The rolling hull as a damping part of the system fixes
the frequency of oscillation wd which is a function of the
<! the stability factor k, and the
hydrodynamic damping factor b. The solution of form

moment of inertia I

bt
¢ = ¢ 2Ix coswdt 32

describes the natural behaviour of this part of the system

(see Eg.24 in the Appendix). Since, for moderate damping,

the differences in the frequencies W, and wq are negligible
(see Appendix Eg.32 and 33) we can assume that Wy * Wg-

The sail as a resonant part of the system affects the

amplitude of rolling which in turn is dependent on the internal
constraints of the system, or interaction, marked by the

arrows 1 and 2. The aerodynamic forcing function X, in Eqg.7,

being dependent on a number of factors:- sail area QA’
course sailed BA' Strouhal number St’ angle of trim Sm and
so0 on, is such in character that it may transfer energy from
the external source, i.e. the wind, to the system, as
indicated by the arrows 1 and 3, or, it can extract energy
from the system and dissipate it into the airstream as
indicated by the arrows 2 and 4. Therefore there is a

"feed back" between the hull and sail.

Let us assume as a working basis for discussion that

the "driving" moment or forcing function Kp in Eq.7 (which
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may be positive or negative) is proportional to the angular
velocity ¢ and, for the time being, is positive

KA = bA¢ 33
Positive means that the aerodynamic driving moment KA is
directed in accordance with the angular velocity & of the
sail increasing the initial amplitude of swing.
Substituting Eq.33 into Eq.7 yields
I ¢+ (b-—bA)¢ + Rp¢ = O 34
or
I ¢ & bp¢ + kK =0 34a

where the resultant coefficient bR of the damping term is the
sum of two parts: hydrodynamic damping ccefficient b related
to the action of hull and appendages (simulated by magnetic
device in physical model) and an aerodynamic coefficient bA‘
Depending on the relative values of b and bA the resultant
coefficient bR can be negative or positive. The solution

to the linear Egq.34a is of the form

.-._.ft
$ = ¢ e = ¢ e COSmdt 35

(see Egs.21lb and 24 in Appendix). The typical, actual non-
linear response of the system investigated and recorded in

Fig.34 may be expressed by:

_ st . '
¢ = ¢oe + c 51nwmt 36
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where the second term, with modulating frequency W being
random in character, contributes on average less than 10%
to the linearized response expressed by Eg.35. Since in
our discussion the question of most interest is that of
stability or instability, that is under what conditions

the system manifests the oscillations with ever increasing
amplitude as time proceeds, we will ignore the relatively
negligible, non-linear term in Eg.36 and concentrate our
attention on linearized response expressed by Eg.35 in
Fig.34.

6.1 Linear type of system behaviour

Referring to Egs.34, 34a and 35 we can find that the
solution will be sinusoidal and damped i.e. system dynamically

stable if |b, = (b - b,)| > O with positive resultant damping
coefficient bR (which indicates that hydrodynamic damping
predominates), the damping moment does negative work, always
opposed to the angular velocity of the hull appendages.
Positive coefficient bR when substituted in Eg.35 will produce
oscillation in which each successive rolling has less

amplitude ¢ and less kinetic energy. This is shown by the
curve B in Fig.33. If |bp = (b - b,)| < O the solution will

be sinusoidal and divergent i.e. the system will be dynamically

unstable. Negative damping coefficient bR indicates that the
aerodynamic excitation predominates and the self-excited
oscillation shown in Fig.33 by the curve A will develop and

grow in amplitude with time.

In the case of negative damping the damping moment

which is now a driving moment does positive work on the

system, extracting energy from the external source i.e. wind.

The effect of the negative damping term in Eg.34a may be
interpreted physically as an energy input term. If‘bR = (b ~ bA)=O,
the solution is simple harmonic, i.e. the rolling is of constant
-amplitude. This indicates that an energy balance between the
dissipation and excitation elements is being reached, as

shown by a sine curve C in Fig.33.
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These three cases discussed above and the resulting
linear pattern of model behaviour B, A and C shown in Fig.33
can be represented graphically in another way - on energy
dissipation-input basis. Assuming that the system is a
linear one, the dissipation of energy due to the damping
action of the appendages will, according to Eg.3, follow
a parabolic curve - when the energy lost per cycle is
plotted against the amplitude as in Fig.35. The energy
lost E~(b) is a function of amplitude squared ¢2 and the
damping coefficient b. If the negative damping moment due
to sail action (defined by bA) is also linear, another

parabola will designate the energy input E per cycle.

+(bA)
The system will behave as self-excited or possibly damped
according to which parabola lies higher; this in turn

depends on relative values of b and bA coefficients.

6.2 Non-linear type of system behaviour

In some cases, as illustrated in Figs.27b and 27c,
the energy input to the system may noct be linear and therefore
one can expect that the energy input and the energy dissipation
curves intersect. This is shown in Fig.36. If an initial
amplitude happens to be ¢l’ more energy is put into the
system, due to sail action, than is dissipated in damping,
due to hull action E+(bA) > E~(b)’ so the amplitude grows.
On the other hand, if the initial displacement happens to
be Py there is more hydrodynamic damping than aerodynamic
self-excitation i.e. E-(b) > E+(bA) and the rolling amplitude
will decrease. In both cases the amplitude tends towards ¢3,
where energy equilibrium exists. The rolling rig thus
executes harmonic or steady-state limit cycle oscillations.
This trend is clearly seen in Figs.27c and 27b. The actual
relation between the aerodynamic damping coefficient bA
and the amplitude varies from case to case, as shown in
Figs.27b, 27c, 284, 30a and so on, however the basic reason

for that type of behaviour is the same - the resultant
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coefficient of damping term of Eg.34a must be negative at
small amplitudes and becomes positive for larger ones. If
we locate this kind of non-linearity in the aerodynamic term
of the equation of motion only, the simplest mathematical

expression covering the case will be:

&

| L B
Ky = (by - bA¢ )¢ 37

when substituted into Eg.7 gives:

38

Ix; +bé = (by - brg’) + K¢ = O
or
Ix; + (b - b, + b£¢2)$ + k¢ =0 38a
An instability will occur if |-b.| > b + bye?
Putting
b - b =b | 39

where bO is a function of angular velocity é only, one can
find that the system will be unstable at small amplitude if

. " 2
b, <O and {—bO] > byd
The Eq.38a can now be written:
I ; + (-b_ + b"6%)é + K6 = O \ 40
X o A

- 68 -~



The damping term coefficient (—bO + b;¢2) as a function of
¢ is shown in Fig.37. The damping parabola cuts ¢ axis
and zero damping occurs at a certain critical amplitude

/ b
= o/bx .

For ¢ < ¢cr the resultant damping (--bO + b;¢2) is less than
zero, therefore unstable oscillations will be induced. When

¢cr

¢ > ¢cr damping becomes positive so the oscillaﬁions will

tend to die out with time.

Referring to Fig.37 and Eg.40, one can notice that
by changing the magnitude of damping coefficient bo’ which
is the sum of hydro and aero coefficients b and bA
respectively, a series of damping parabolas may be drawn in
such a way that they are bodily shifted up or down. For
exampie, by gradually increasing the value of positive
hydrodynamic coefficient b i.e. reducing bo' one can plot
several parabolas shifted bodily upwards as indicated by the
dashed curves. This, of course, will affect both the critical
amplitude ¢cr at which a balance between positive and negative
damping is reached and also a final amplitude at which limit
cycle steady state oscillation occurs. The experiments
depicted in Figs.30a, b, ¢ and d confirm such a conclusion.
By increasing the magnetic damping from 1,0 to 3,0 (every
0,5 unit of damping), the system initially unstable within
the limits of amplitude being investigated (Fig.30a),
manifests less and less instability when damping increases,
(reaching the limit cycle at a smaller and smaller amplitude
¢ = 170, 140, 90), and finally becomes stable. The last
record in this series shown in Fig.30c¢ suggests that the
damping parabola drawn in Fig.37 must cut the ordinate above
the origin of coordinates, and therefore bO = b - b; is
positive i.e. the system is positively damped from the

beginning of the motion.
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6.3 Generalization

From the analysis of the approximate solution to Eq.40,
given by Eg.41 (see Appendix §A4, Van der Pol Equation)

2/ bO/b" * sin(u_t + n)
6 = A 41
/1 + e (w0t €

where

o _ hegative damping moment
I w stability moment

one may infer that in the case of non-linear damping (described
by the second term in Eg.40), the degree of system instability

might be measured in two different ways.

. Firstly, it can be measured by the final amplitude ¢
at which the limit cycle steady state oscillation is reached.
This final amplitude given by the numerator in Eg.41 is

twice as large as the critical amplitude

b

_ O 1]
Ser = /bA

at which negative and positive damping just balance (see
Fig.37). The greater the absolute value of the aerodynamic
coefficient bA (negative damping) relative to the hydrodynamic
coefficient b (positive damping) i.e. the greater the

negative value of bo = b - bA, the larger will be the final
amplitude. This signifies the importance of both aerodynamic
and hydrodynamic factors contributing towards dynamic
instability. In this particular respect, the hydrodynamic
factor means mainly a damping due to the action of appendages.
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Secondly, the degree of system instability can be
measured by the rate of growth of the amplitude (logarithmic
increment &) before the steady final amplitude is reached.
This rate, being determined by ratio ¢ = Ixzo located in the
denominator of Eq.41, exposes clearly the significance of

the moment of inertia of the system. The lower the moment
of inertia, other factors being equal, the higher will be
the rate of growth in amplitude during that period before
the final amplitude is reached.

One may make a justifiable generalization by saying
that basically the physical model of the rolling rig
investigated can be considered as a non-linear system. The
mathematical model expressed by a non-linear Equation 38a
represents with reasonable accuracy the physical model
covering both the linear type of model behaviour and non-
linear as well. This point will become clear if we compare
the tyo Equations: the linear 34 with the non-linear 38a

written for convenience one under the other:

I,6 + (b -b,)¢ + Ry =0 34

A)
I, + (b - bz'\ + b;;cp?‘)& + Ké = O 38a

The contribution of the non-linear term b£¢2 in Eg.38a
towards the "shape" of the oscillations depends on the
magnitude of b; relative to bA. 1f b; is negligible, the
influence of the non-linear term b;¢2 will only be noticable
at a large amplitude, which for practical reasons was not
investigated. There was no point in investigating the
behaviour of the system much beyond a realistic amplitude
¢ = i250' at which the boom of a full scale boat touches
the water. The non-linear Eg.38a may be regarded as a

reasonable mathematical representation of the actual
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behaviour of the physical model with sufficient accuracy.
This becomes evident when the maximum experimental amplitude
is large enough to make the non-linear response noticeable.
A comparison of actual model response depicted in Figs.l1l2
and 27b with a graphical representation of the solution to
the Eg.38a (expressed in non-dimentional amplitude, see
Appendix Eqg.47) shown in Fig.38 should clarify further this
point. One may further expect that if the hydrodynamic
damping b is small relative to aerodynamic excitation
coefficient bg the critical amplitude ¢y TAY become too
large, to be recorded in experiments. The maximum
experimental amplitude permitted in the course of tasts

was + 30 degrees.

Figs.30a and b, which are in fact regarded as self
explanatory, may lead to a general conclusion that stable

oscillations of final amplitude in a non-conservative system

are possible only if the system is a non-linear one.

The question which might be answered now is:- why the
damping due to sail action being negative at a small amplitude
may become positive at a large one? The discussion incorporated
in §§4.2.1 and 4.2.2 leads to a conclusion that the rolling
rig will be dynamically unstable if the negative slope of the
L ~ o curve is greater than the ordinate of the drag curve.
Such a conclusion was supported by the aerodynamic
characteristic of the rig shown in Fig.ll. Another
conclusion derived on the same basis was that the same
aerodynamic forces and process which may translate energy
taken from the wind into incipient rolling can also act as

a suppressor.

Let us consider in aetail some geometrical relations
which may serve as a clue, assuming that the rolling rig is
set at 8, = 180°, o = 90° and apparent wind Va = 3,05 m/s.
This simple case is shown in Fig.39. The model set in such
a condition is dynamically unstable. Any departure from
initial static equilibrium will immediately encourage an
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alternating aerodynamic force (or moment) which will
magnify the amplitude during a series of subsequent swings
to port and starboard. Rolling will, of course, modify
both the instant and local angle of incidence a of various
sections along the sail span by an amount +Aa, depending on
ampiitude ¢, velocity VA and a distance z from the axis of
rolling.

. Assuming further that wgq = 4,35 rad/sec and ¢ = 107,
let us estimate the corresponding maximum variations in a
for two sections of the model sail A and B, which are 0,5
and 1,0 metre above the axis of rolling. Calculations
based on relations, written for convenience next to Fig.39,
show that Ba oo = 7° for section A and Ba o = 14° for
section B, i.e. the maximum variation in o for the lower
section A will be 90° + aa_ = 83° - 97°; and 76° - 104° for

the upper section B.

. According to Fig.ll such a variation in the angle of
incidence o« is still within the instability limit signified
by the shaded area. One can therefore expect that there |
will be an energy input during the full cycle (swing). This
increases the amplitude of oscillation, and the increase will
continue until there is an excess of energy being tapped from
the air stream. At some large amplitude, say iBOO, the
maximum variation in « for lower and upper sections of the
sail A and B are 90° + 17° and 90° + 37° respectively. The
upper part of the sail is now working in such a condition
that near the end of each swing, or in one side swing, the
energy is extracted from the wind, but in the middle of the
swing, or in the course of swing to the other side, the
energy may be taken away. This is due to the fact that
%% + D is positive at a sufficiently small and sufficiently
large angle of incidence. Therefore, there must be a
certain critical amplitude when the energy balance is
reached, i.e. the energy extracted from the wind is equal

to the energy dissipated into the airstream.
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In this example, which gives a rough physical
insight into the mechanisms of non-linearity in aerodynamic
excitation, an emphasis was put on the significance of the
instantaneous angle of incidence o in order to relate the
rolling motion to the aerodynémic characteristics of the
sail as represented in Figs.7 and 11. Changing the range
of variation of instantaneous angles of incidence o by

altering, say, course BA or angle of trim § one may affect

ml
the rolling instability. The experiments clearly confirmed

such a possibility.

Of course, according to Fig.39 the variation in
VR (AVR) also matters, however, its significance is of
secondary importance as compared with the effect of

variation in incidence «o.
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7. CONCLUSION

Concentrating attention on the possible practical
application of the experimental results on the rolling rig
to a full scale yacht, the conclusions may be summarized
as follows. The rolling instability induced by aerodynamic
forces can be reduced or eliminated in various ways. Some
factors affecting a boat's behaviour and her tendency towards
rolling instability can be directly controlled to some extent
by the crew; some other factors being predetermined on the
designer's desk may be beyond the command of even the best

crew. More specifically:

1. The heading angle BA (see Fig.27f) has considerable

effect on rolling. The degree of instability, being a
maximum at BA = 1650, decreases when BA increases. By
applying a technique of sailing "by the lee"” (BA = 2000)
the rig becomes dynamically stable and rolling will die out

in time.

Sailing "by the lee" is always considered to be a
cardinal sin on the part of a helmsman. Yet, according to
wind tunnel findings, it may eliminate rolling. The danger
of an unintentional gybe can be excluded by using a
combination of foreguy and preventer, or kicking-strap, to
effectively lock the mainsail boom.

2. The angle of sail trim & also acutely affects

the rolling behaviour of the rig (see Fig.28c). The unstable
rolling, being most spectacular at a large angle of trim,

can be drastically reduced by hauling in the mainsail and
decreasing e Pulling in the boom to 6y = 65° encourages

a positive stability, i.e. the aerodynamic force developed
on the sail acts as a suppressor of rolling in the case

where the rolling is induced by wave action.

3. Wind velocity VA {or Strouhal number St = %%9

influences the instability in such a way (see Fig.29c)zX

that there seems to be a critical wind speed for a given
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rig configuration which produces most conspicuous rolling
(high logarithmic increment). In other words, heavy
rolling may not necessarily occur in very "strong" winds,
but rather in "moderate" winds. This problem is related
to the sail area.

Certainly, carrying more sail area than is prudent
when running vastly increases the aerodynamic input coming
from a sail - a "rolling engine". When coupled with low
inertia (light displacement) and inefficient hydrodynamic'
damping, such a combination of factors may stimulate wild
and occasionally disastrous rolling. An inspection of these
factors incorporated in Ega.38a, 40 and 41 clearly suggests
such a consequence. This point may be illustrated further
by an example described by Adlard Coles in his book "Heavy
Weather Sailing" (p.111-112):-

"When we came to race Cohoe II in 1952, which was
a season of fresh and strong winds, we found her
fast in light or moderate breezes but she proved
to be overmasted and overcanvassed in strong winds,

and the world's champion rhythmic roller. This

was partly due to her being designed to carry a
lead keel, but having had an iron one substituted,
as lead reached a peak price in the year she was
built.

Accordingly, in consultation with her
designer I had the sail plan reduced the
following winter by cutting the mast at the
jumpers and cutting the mainsail. The reduction
ih sail area was drastic, being eguivalent to
two reefs ..... the alteration greatly improved
the yacht. From being a tender boat she became
a stiff one ..... gone was the rhythmic rolling."

.—76_



4. Positive hydrodynamic damping seems to be of

essential importance. Fig.30d suggests that there is a
certain c¢ritical damping which makes the system dynamically
stable. The experiments justify the already expressed view
that the modern tendency to reduce the wetted surface of
the hull by cutting down the area of appendages in order

to improve the boat's speed performance, may lead to a
reduction of hydrodynamic damping below an acceptable

minimum imposed by the dynamic stability requirements.

One can expect that the energy input per cycle and
subsequent rolling instability due to aerodynamic excitation,
may under certain conditions reach its maximum. The actual
hydrodynamic damping of the hull may not be wviscous in
character, i.e. proportional to the velocity of roll but,
for one reason or another, its damping efficiency is a
non-linear function of such parameters as amplitude, boat's
velocity, configurations of appendages, etc. It may happen
that in some unfavourable conditions the maximum aerodynamic
input is far greater than the hydrodynamic damping. 1In
such circumstances, the rolling amplitude will build up
into one of those nightmarish affairs that both cruising

and regatta sailors know only too well.

5. Anti-rolling sail effectiveness (see Fig.32d) has

been proved beyond any doubt in the course of wind tunnel
tests. Experiments with anti-rolling sail together with a
spinnaker of "Dragon" type (see Photo 7) and a mainsail
show the same pattern of behaviour as manifested by low
aspect ratio "Finn" type rig.

The device could be quite easy to fit to a full size
cruising yacht and there is nothing in the International

Rule to prevent its use while racing.

If full scale tests confirm the wind tunnel finding,
one can expect that the hazard of being knocked down by a
rolling spinnaker, a real danger almost all yachtsmen face,

would be greatly reduced.
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APPENDIX

The following brief summary of the chief ideas and
formulae of the linear theory of oscillation serves as a
reference when analyzing the behaviocur of a physical model
of the rolling yacht. Although the aerodynamic forcing
function, self-excited in character, is in many cases under
investigation, non-linear at large amplitudes the solution
to the rolling phenomenon can be made on the basis and
sequence of linear approximations. The non-linear
Van der Pol equation is also introduced as a plausible
mathematical representation of the combined, hydro-aerodynamic
system simulated by the physical model investigated in the
wind tunnel. (Refs.11-15).

A.l. Conservative second order system

A compound pendulum swinging back and forth, shown
in Fig.lA, performs sinusoidal oscillations which, with some-
reservations expressed earlier in §3, may represent the
dynamic behaviour of the rolling hull in still water. It

can also be used to study the dynamic behaviour of linear

systems.

If the damping term and the forcing function are
zero, the differential equation of motion for a "free"

oscillation is:
~W+eR €in¢ = I¢ 1

oxr

N

T¢ + W+ sing = O

For small values of ¢, say less than % radian, one may

approximate sing¢ by the first term in its series expansion



3 5 7

'sin‘¢=¢—-%T+—§—~—%—_-+.....

with an error less than 4 per cent.

Letting W-1 = k, equation 2 can be written as:-
I¢ + Ké = O

The constant coefficient of the restoring moment (or
stiffness) k is defined by the equation

o=

where M is the moment (in Newton metre) necessary to produce
an angular deflection of the pendulum of ¢ radians. The

units of k are therefore Newton metre per radian.

Eg.3 may be arranged in the form:

The solution to this equation is given by:
¢ = Acoswot + B51nwot

where A and B are constants of integration which can be

established from initial conditions.

v, =t/ 5 (rad/s)
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is called natural circular frequency of the undamped free

oscillation, measured in radians per second.

The period of oscillation is given by:

TO = 27 = Zerg {seconds)

0

The frequency fo is the reciprocal of the period:-

()]
f = 1 5% = g; /?g (cycles/seconds)

If at the beginning of counting time (t = 0), the starting
conditions are ¢ = ¢o and ¢ = 0, then the solution to the

equation of motion is:-

¢ = ¢oc03wot 7
One can find that by giving the pendulum an initial
angular velocity ¢o’ when £t = O and ¢O = 0, the solution
is
¢ = ;9 sinwot 8
(e}

A more general starting condition is to let the pendulum have
both angular displacement 9o and angular velocity ¢o when

t = 0. The solution:

) ¢o
- + JiRud 1
q>._ cpocoswot ” Slnwot

is graphically represented in Fig.2A.
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A study of Fig.2A suggests that the motion of the pendulum

~can also be expressed by the equation
¢ = @Ocos(mot - n) | 10

where @o and n are the constants which describe the starting

conditions.

These constants are obtainable directly from the
geometry of Fig.2A.

The angle n, called the phase angle, denotes the angular
lag of the motion with respect to the cosine function.

The eq.l0 may be rewritten in another form:

&) .
_/2 ~0,2 _ _ _
¢ = ¢ (wo) cos(wot n) = @O(COSmOt n) 11

The motion as represented in Fig.2A can also be expressed

using a complex number notation
= @O(COSth + 151nwot) 12

Fig.3A explains, in a "complex plane", the relationship

iwot

between the exponential function e and the relevant

trignometrical representation of motion.

If the system performs oscillatory motion of the
form given by Eg.ll, the analysis can be carried out using
exponential function taking the real part Re of the solution.
The correlation between Eg.ll and 12 is given by:
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: _ _ i(wgt = n
o cos(u t = n) = Releo e ) | 13

If the initial conditions are such that the phase angle
n = 0, i.e. no initial velocity is given, then Egs.ll and
13 take forms:-

¢ = ¢ocoswot l1la
and
¢ _cosw t = Rel|é eiwotl 13a
o o o ‘
wWhen Eg.7 is substituted into 3, it yields
I(-4 o 2cosw t) - k(¢ cosw t) = O
0”0 o o o
or
To %6 = k¢ ’ 14
o %o o

This shows that the first term, which is the maximum
acceleration moment, is egqual to the maximum restoring

moment.

In a conservative system represented by Eg.2 (without
dissipative moments acting), the total energy must be

constant, i.e. the total energy = Ex .. = = const

EPmax

2
o

it

5140 = ¥ke

2
o

BT (-0 8,)° = 4k 15
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The term ¢y designates maximum angular displacement.

A.2. Nonconservative second order system

By adding the damping term, which is proportional
to the angular velocity ¢, to the Eg.3 the following equation
is obtained:

I6 + bo + k¢ = O 16

The constant damping coefficient b (in Newton-metre-second
per radian) is defined by:

Rl

where M is a moment necessary to produce an angular
velocity ¢.

The dissipation function of the system due to
damping b has the dimension of energy per unit time and is
given by %bg¢”~.

Following the classical mathematical routine, by

assuming that the solution to the homogeneous Eq.l6 is of

form ¢ = ¢OeSt one obtains:

2

st st st
I(¢os e~ ) + b(¢ose ) + k(¢oe

) =0

st

Cancelling out the common factor ¢Oe the characteristic

equation of the system is derived:

Isz,+ bs + k =0 ’ ' 17
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The roots s (eigenvalues) of this characteristic equation
may be given in two forms:

2

_ b b.,2 _k k b

81,2 = ﬁ + (—Z-—I-) -.:[-' for "f £ (ﬁ) 17a
or
2

b . ./k_ b, k b

Sl,2 = '-2—:-[- + 1 'f (ﬁ) for "f 2> (‘Q"i‘) 17b
2
_ _b . . 2 _ ,b
= T27 * l'/“’o (21)

depending on the relative values of I, b, and k. It is
convenient to maintain the-expression under the radicals

in a more lucid form by factoring out /=1 = i.

The value of the damping coefficient b, which makes
the radical of Eg.l7a,b zero, is significant and is called

the critical damping (bc). Substituting bc for b yields:

C

I I o

o
1
)
il
=

or bc = 2Iwo 18
Introducing for convenience shorthand symbols:-

G = %l i G=¢'w

I
€
[\
I
N
N
"
€
|
I
[2a
N

b o P | 19

the Eg.l16 can be expressed:
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2

¢+ 280 ¢ + 0 "¢ =0 . ; 20

The corresponding roots (Eg.l7a and b) may be
modified as follows:

= (-t + /g2 - u, = -G * u_Y £2 -1 21a

o

which is applicable in the case when the actual damping b
is larger than the critical bc, so £ > 1 and the system is
overdamped; or

s = (¢ + i/ 1 - Ez)wo = G+ iw /1 - £2 21b

1,2 o)

which is applicable when damping is less than critical and
£ <1, i.e. the system is underdamped.

Since the rolling yacht, considered as a dynamic
system, is never overdamped, one may limit attention to the
underdamped motion, including the marginal case when the

b

damping ratio § = B = 1
c

The standard solution to Eg.l1l6 can also be written

1t t

¢ = ne®1% 4 peS2 22

where S and s, are the two roots given by Eg.21b and A and
B are two constants depending on the initial conditions of
motion. A substitution of the roots to Eg.22 and a simple
transformation give:

cos(/ 1 - £2 wot'— ) 22a
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b = ¢ e”‘gwOt cosyYy 1 - 52 w_ t : 23

or

_ -4 _
$ = ¢ e coswdt = ¢0e COSwdt 24

The damped oscillation is therefore made up of the product

of two terms or curves as shown in Fig.4A.

The frequency w4 of the damped system is less than
that of w_, of an undamped system, and is given by the

factor v1 -,52 i.e.
= l“€2='k‘(£)2 ’ 25

©q o I I

Fig.5A indicates the manner in which the frequency ratio
wd/wo varies with damping ratio b/bc = .

The natural period of damped oscillation is

T, =20 = 2n 26

d U)d /TT'—E—Z

W
(o]

Damping is thus seen to have the effect of reducing the
circular frequency and lengthening the period of motion.
These effects are however very small as long as the damping

is not too severe.

The values of roots given in Eg.21b for an underdamped
system may graphically be represented in the complex plane

known as s- plane (Fig.63).

The length of the complex s-vector (phasor) is 0
and the angle between the phasor and i-axis is the angle
whose sine is £ = ;; . One can see that,d is a number
related to s by Re|[s| = -$and similarly wy is related to
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s by J|s| = #iwg. In other words, in the case of an undamped

st produces characteristic

system, the solution of the form e
equation whose roots s = -G * iwy are complex numbers. The
real part.é specifies the damping rate and wyg is the damped

frequency in radians per sec.

The corresponding relationship between the s-plane
and the time response for various damping is illustrated in

Fig.7A. It is seen that the damping ratio £ is a very

convenient index of system stability. If £ is negative the

system is unstable and the amplitude grows without bound.
When £ is zero, the system is just neutrally stable (the
amplitude neither growing nor decaying) and as £ is increased
towards 1, the relative damping of the system increases.

The quantity 145 indicates the time required for the motion

to damp to l/eth its original value. This time

1
T=g

is known as the damping time constant of the system. Fig.8A
represents a plot in which miniature pictures of time
response are spotted on the s-plane, each at the coordinates
of its characteristics.* On the real axis the motion is

- always a pure exponential; the further from the origin the
faster is the response (2, 3, 4). In the right half-plane
the motion grows, therefore the system is unstable (5).
Thus, the fundamental criterion of stability in a linear

system is that the roots of the characteristic equation

(Eq.27) have a negative real part, thereby producing

decaying oscillation.

Along the imaginary axis the motion is always an
undamped oscillation, the further from the origin, the
higher the frequency (6, 7, 12). A constant distance from

—— oo oo

* .
Fig.7A and 8A adopted from "Dynamics of Physical Systems”
by R.H. Cannon - MacGraw Hill - 1967.
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the real axis (12, 13, 14, 15) means a constant frequency
w, but variable decay time or, in the right half-plane
(11) growth time.

A constant distance from the imaginary axis (3, 9,
14) means a constant decay time 145 but variable frequency.
Along the straight £ line (8, 1l4) the number of cycles
required to damp the oscillation is constant, but in
general, the further from the origin, the faster the whole

response.

The rate of decay of the damped free oscillation can
be determined from the amplitudes of any two consecutive
peaks. This rate may be measured by the ratio between the
maximum displacement $¢ at the time - t and the displacement

¢t+Td later when the cycle has been completed.

Modifying Eg.23 one can write:

"'E(L)ot.
d)t _ ¢Oe Coswdt

$EFT

—Zug (E+1g) . L
¢oe cos(t + Td’

since wT = 27

and cos(a + 21) = cosa
then
e cEwoTd
d>‘t:'*-'l‘d :
and
¢t EwsTg ‘ »
lng% ) = 2n(e”"07d) = g Ty = 28
+T d

Logarithmic decrement of motion denoted by can be expressed

by:

6 - 2T E

Y1 -¢
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therefore

o S

3 = e 29
t+Td

Since the period of damped oscillation is given by:

then

O = 2nt 30

For the oscillating system which has small damping, (Fig.4A)
there is another way of determining the logarithmic decrement

from the time response curve namely:

¢, + B¢ 2 3
§ = log(—i—) = log(1 + %) = 48, A4)" 4 2 A8,7

If %ﬁ is small, the higher order terms may be dropped and
t

CS::A—(P- 30a

Thus the logarithmic decrement is approximately equal to
the fractional decrease (or increase in case increment) in
amplitude during one cycle of the oscillation; with better

approximation:

é 20¢
= 3Ck
¢t + ¢t + 27

According to Eg.l5 the total energy of the

0y

system, in one of
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its extreme positions with zero angular velocity:-
2

One cycle later this energy will be:

2
ET2 = %K(¢t - A¢)
Therefore energy loss per cycle is
AE, = E - E =¥K¢2-%K¢ +K¢A¢'—%(A¢)2

This energy loss can be expressed as a fraction of the total

energy of the system as follows:-

AET
.~ 2
T

>
-0~

2
Ad
- (=)
L

-

t

If the damping is small the square term can be dropped.

Hence:~
—= = 2(2%) = 2 30¢

Thus for small damping the fraction of energy lost per cycle
is approximately equal to twice the logarithmic decrement.

Introducing logarithmic decrement into Eg.23 yields:

0 72myegt

¢ = ¢o coswdt ‘ 31
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If we assume that the ratio of the two consecutive peaks
of amplitude of a rolling yacht is

¢t ’
Sy

= 2,0
d

i.e. the yacht reduces the rolling amplitude in a round

swing by two, then:
§ = 2n 2,0 = 0.693

Therefore the damping ratio

and

®t47q | ~2mE . ~0.693 _
= e = e
o

The effect of damping on frequency and period is given by

the following equations:

w
= ° 32

Y1+ (f%

®a

_ Y
T, = To/ 1 + (21T 33

For the case given above. (§ = 0,693) the relevant values
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of wg and Td are:

o O
wy = = = 0.99%u
4 Jgorz 1008 ©

and

Td = l,OO6T0

Since the magnitudes of wyg and Td differ from 0 To less

than 1 per cent, the influence of a moderate amount of damping
on the frequency and period of oscillation can be neglected

in rolling investigation.

A.3. Excited Oscillation

The oscillation considered in §Al and A2 can be defined
as being "free", i.e. controlled only by the moments arising

from inertia, stability and damping incorporated internally

in the system. If such a free or "natural" oscillation is
interfered with forces or moments external to the system,
the resultant oscillations are usually defined to be

"excited" or "forced".

In the simplest case, the exciting moments are
independent of the natural behaviour of the system, and
are functions of time alone. By adding a forcing non-
homogeneous moment to the homogeneous Eq.16 the equation

of motion becomes:
I6 + b + coé = M(t) 34

An external moment does not prevent the system from oscillating

in its own natural way, but gives the system supplementary
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displacement represented by an independent additive term
in the solution to the Eqg.34.

The complete solution ¢ is thus made up of term o1
which represents the solution of the homogeneous part of

Eg.34 and of a term ¢p - the particular solution which

supplements ¢4 in such a way that

satisfies completely Eg.34, i.e. with the non-homogeneous

part present. If the forcing function M(t) is harmonic in
character, of type Mcoswft, where we is forcing frequency,
the complete solution to Eq.34 can be written as:

(transient part) + (permanent part)

3 =Gt
$ = ¢h + 6 = e ¢oc03mdt + @m

D xcos(wft + A) 35

a

where ém is the maximum amplitude of forcing function and

ax
A is the phase angle in an exciting term.

_ buw
A = tan 1 ( £

K - Iw

2) 36a

f

. 2 b b we
Or, since 7 = w_® and (“/klwg = 2( /bc)(E;)

i

then
w
Zb/b 'J:-E-
-1 c o
A = tan ———"—-w—g—'z 36b
. 1 - (=)

Wo

Introducing shorthand noéation
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1 2&Q

1 - 02

A = tan 36¢

Of the two parts 9y and ¢p that make ¢, the first,
representing homogeneous part of oscillation with frequency

wgqr fades out with time on account of the damping term e-dt.
This part is therefore called transient. The second part

¢
P
excitation. This part of the motion may continue indefinitely

represents a simple harmonic motion in the rhythm of

without change and is accordingly called permanent.

In the case when the time dependent driving function
M(t) of Eqg.34 is not simple harmonic but periodic, it can be

expressed in the form of Fourier's series of period T = 21?/m

sin(wt + xl) + Mzsin(Zwt + 12) + ...

M(t) = Mo + Ml

o«

=M_ + I

Mn51n(nwt + An) 37

The frequency w is called the fundamental and the freguencies

2w, 3w, .....nw are harmonics.

Due to the superimposition the combine motion, as
indicated by Eq.35, has a complicated and irregular character,
particularly before the transient part died out. The
amplitude of oscillation will increase when the displacements
brought about by the "free" and "forced" oscillations have
the same sign and decrease when their signs are opposite.

In other words, on account of the difference between

circular frequencies w3 and Wer the two oscillations pass
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through cycles of getting into the same phase and getting
out of the phase, thus alternatingly adding to each other
or subtracting from each other. The periodic swellings
and subsidences through which the resultant oscillation
passes are known as beats.

The frequency of beats fb is the frequency of one

eat
wave with respect to the other, or

U)f de

* 27

_ bw
= 5 beats per sec 38

the proper sign being chosen tc obtain always the positive

beat frequency. The relevant period of beats’

= 21
Tbeat T Aw

The smaller the difference Aw between the fregquencies w4
and We of the two components of motion, the longer will be

the time interval in beats.

Fig.9A represents the beat phenomenon in the forced
oscillation starting from 'out of phase' condition for
undamped (a) and damped (b) systems.

When damping is present the total amplitude peaks
are never gquite as high as in the absence of damping, and
as the time goes on the peaks fall and the valleys rise on
the envelope curve towards the amplitude level governed by
the permanent motion ¢p' This is shown in Eq.35 and
Fig.9a (b).

One may say that the function 9y is, in a sense, a
kind of cushion that carries ¢ through its transition from
starting conditions to the ultimate steady state corresponding
to ¢p‘ The initial fespopse of a system to an excitation
is a mixture of an oscillation in the natural rhythm of the
system and of an oscillation in the rhythm of the forcing

function.
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A.4. Non-linear oscillation. Van der Pol equation with

non-linear damping

The Eg.41 derived in §6.2 and rewritten below:

I.°¢ - (bO - bA¢2)$‘+ R¢ = O (rewritten) 41

can be simplified by reducing the number of coefficients.
There are four, Ix’ bo' bA and kX at the moment.

Dividing Eq.41 by IX and introducing the notation
/Iy = moz yields:

b b, . .
(2 - 22696 +ke =0 42

¢ - (3

X X

Remaining three ccefficients can be reduced to two by making

the variable time t relative to which the differentiaticn
d¢ g &%

dt 2!
done by measuring the time In terms of a unit inherent in

is performed, i.e. dimensionless. It can be

1]
the system, for example T/zﬂ. Denoting the new time by t

and the old time by t, one can write

' t
t =
T/2n

= wot 43

The new differential coefficients can be expressed as follows:

a%s a2 &'2 o,
2 - T2 7 T % #
at at t
44
ds _
dt wo¢

Substituting Egs.43 and 44 into Eq.42 and dividing the resulting
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equation by woz yields

"

b b
o] A . 2.° .
(1-5 ¢ +¢=0 45
x%o o

¢ -3

where the dots now signify the differentiation with respect

1
to the non-~dimensional time t .

In a similar way the amplitude ¢ can be made non-
dimensional if it is measured in a unit inherent in the
equation. Such a convenient unit is indicated in §6.2.
Fig.37, namely the amplitude ¢_, “"l/bo/bz'i for which the
positive and negative damping moments balance each other.

Denoting the new non-dimensional amplitude by

y = —b 46

/Po sy

and substitute it into Eg.45, the well known Van der Pol
equation is derived:-

y-el-yh)y+y=0 47

b
where the single parameter e = O/I o ! is in fact the ratio

. . . o) .
between the maximum negative damping moment and the maximum

stability moment, i.e.

_ 0 _ negative damping moment 48
€= I o, - stability moment

This ratio has an important physical significance and can be
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derived as follows,
assuming that ¢ = ¢051nwot and ¢ = ¢omoc05wot
one can find that the maximum negative damping moment which

occurs at émax (¢ = Q) is

bé¢max = bOd)OwO 49

The maximum stability moment can be expressed as

k¢

il

o
-©-

i

max =w "I ¢ 50

Dividing Eg.49 by Eg.50 verifies Eg.48. The approximate
solution to Eg.47 given by Van der Pol (38) may be written:

4 1
y = 2sin{(t' + n) 51

Y1+ e~8(t' + <)

where n and c are constant depending on starting conditions.
It is assumed that e << 1.0.

An inspection of the equation reveals that the
amplitude of oscillation increases at first with time but
finally reaches the steady value Yo = 2 (the denominator,
after a certain time, approaches 1). This conclusion derived
from Eg.51 can be confirmed by the energy consideration. When
amplitudes. are smallér than the final one, the damping moment,
which equals ¢ (1 - y2)§, puts energy into the system. For
" amplitudes greater than the final one, the damping dissipated
energy. Therefore, at the final —-amplitude, the energy input

for a full cycle is zero i.e.

2n .
0=/ e(l-y2)ylat 52
O .



Since y = yosinmot = yosint' (see Eg.43)

Then
. 27
o=/ (1~ yozsinzt')yozcoszt'dt
O .
or
2w 5
S cos“t'dt’
2 _ o _m
Yo T o1 5 5 - T/4 - 53
J sin“t'cos“t'dt’

O

By converting the non-dimensional amplitude y into the
dimensional one ¢ and introducing again the dimensional time

t instead of t', one can modify the Eg.51 into

2 bo/b"-sin(wot + n)
A

/1 4 e €floot + )

From this one may infer that the final stable amplitude is
twice as large as the critical amplitude

6 = 7 bo/bg

cr

at which the damping moment just becomes zero.
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