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ABSTRACT

A series of tests on a rolling rig was performed 
in the wind tunnel in order to establish the relative 
influence of basic parameters such as:

angle of heading 0^
angle of trim of the sail 6m
wind velocity VA
Strouhal Number S. 
twist of the sail 
damping due to hull action 

on the dynamic behaviour of the rig.
During these tests it was proven beyond any doubt 

that wild rolling may be induced for an aerodynamic reason.
A main-sail, when running down wind, may extract energy 
from the wind in a self-excited manner in such a way that 
the sail can be regarded as a rolling engine.

A theory has been developed which relates the model 
response to the stationary and non-stationary aerodynamic 
characteristics of the rig, and also predicts the condition 
in which the model will be dynamically stable or unstable. 
Attention was given to the problem of how to minimise or 
reverse the energy transfer to the system in order to 
prevent dynamic instability. A modification to the 
conventional rig, in the form of an anti-rolling sail, has 
been devised and this effectively eliminates the instability 
which might otherwise be induced by aerodynamic forces.
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1. DEFINITIONS AND NOMENCLATURE

The following four sets of reference axes and 
nomenclature are adopted for a study of the aerodynamic

*aspects of the unsteady motion of a yacht. (1,2,3,4,5)

1.1 The body or ship axes x,y,z, - right hand orthogonal 
system of axes fixed in the body at the origin 0 located 
on the line of intersection of the yacht centre-line plane 
and the designed water-plane at the point where the centre 
of the mast intersects the designed water-line plane.

X - the longitudinal or principal axis, 
positive towards the bow, is the line 
of intersection of the centre-line plane 
and the designed water-plane.

y - the transverse axis, positive to starboard 
is perpendicular to the centre-line plane 
y-z.

z - the normal axis, positive downwards is 
perpendicular to the designed water-line 
plane.

It is assumed that the yacht is sailing on the port 
tack so that the sail force in the + oy direction (leeward 
side) is positive, Fig.l.

1.2 The wind axes reference system
The aerodynamic forces developed by the sails are 

related to the apparent wind direction and its velocity V^. 
The apparent wind axis serves as a means of deriving the 
lift L and drag D acting on a yacht when under motion (see 
Fig.2). Referring to the wind tunnel experiments, the 
principal wind axis coincides with the centre-line of 
the wind tunnel or the direction of air flow ahead of 
the rig.

See list of references
1 -



1.3 The track axes reference system
The actual track of a yacht sailing through the 

water and oscillating along three axes - surging, swaying 
and heaving, the rotation about three axes - rolling, 
pitching and yawing, may frequently not lie along the 
x-axis. It is therefore convenient to set up a second 
rectangular system (see Fig.2) of co-ordinates in which 
the principal axis of the three coincides with the velocity 
vector representing the instantaneous direction of motion 
of the yacht. Referring to the towing tank experiments, the 
principal track axis Vg coincides with the centre line of 
the tank or the direction of tow.

The track of a boat is defined as a trace of her 
motion (point of origin of the co-ordinate system) in the 
horizontal plane.

1.4 The fixed axes
It is convenient to have a reference or fixed system 

of co-ordinates to which the body axes can be related. This 
reference system is fixed with respect to a tangent plane at 
any point on the flat sea surface (or space) and the relevant 
axes Xq, y^, z called fixed axes, are designed as follows:

Xq - the fixed longitudinal axis lying in the 
horizontal plane, considered as positive 
in the heading direction (see Fig.2),

y^ - the fixed transverse axis, lying in the 
horizontal plane perpendicular to x , 
positive to starboard,

z^ - the vertical axis perpendicular to the 
other two, directed downward.

In the case of a yacht which is floating to her DWL in a 
flat sea the body axes x, y, z coincide with fixed axes x^, 
y^, z^. Both systems of co-ordinates have the same point 
of origin 0.



The fixed co-ordinate system x^, z^, moves with 
the mean forward speed of the boat and the boat oscillates 
in various ways with respect to this system.

Velocities, forces and moments relative to the fixed
axes x^, y^. are designated as:

u, V, w components of velocity of origin 0 
of the co-ordinate system along the 
fixed axes xo' ^o' z respectively.

P/ q, r - components of angular velocity about 
the fixed axes x^, y^, z^ - rolling, 
pitching and yawing respectively.

XA' 'A' Z. - aerodynamic force components referred 
to as longitudinal, lateral (or 
transverse) and vertical (or keelward)

K M N,A' "A" "A

forces along fixed axes x_, y_, z^.o o o
aerodynamic moment components referred 
to as rolling, pitching and yawing
moments about the x
respectively (see sign convention in 
Fig.l).

A boat sailing obliquely relative to the direction 
of wave crests may exercise six possible degrees of freedom 
involving three translational and three rotational oscillations. 
The translational motions are surging along the x -axis, side- 
swaying along the lateral or y -axis and heaving along the
vertical z -axis The rotations about x^, y , z_ axes are o
rolling, pitching and yawing. The table 1 and Figs.l and 
3 give further details concerning these motions.

1.5 General terms used
Angle of heel 6 is measured about the longitudinal fixed (space) 
axis x^, between a steady-state or mean inclined position of 
the centre-line plane x-y and the vertical fixed axis z .



TABLE 1

Axes
Displacement Velocities

Translational
(Linear)

Rotational
(Angular)

*Translational
(Linear)

Rotational
(Angular)

Longitudinal X surging 4> rolling U, u P
Oy^ Transverse y swaying 8 pitching V, V q

Vertical z heaving yawing W, w r

Axes Forces Moments Moments of Inertia

Longitudinal rolling "x

°yo Transverse ML pitching

°ZO Vertical "a N yawing "z

Angle of roll ± * is measured about the longitudinal fixed 
axis X , between the instantaneous position of the centre­
line plane x-y when the boat is rolling and the vertical 
fixed (space) axis z . A multitude of starboard and port 
rolling angles usually average out to zero.
Rolling is the angular component of the oscillatory motion 
of a boat about her longitudinal or principal fixed axis 
Xq. In the case of small angle of yaw ip the angle of roll (fi 
can, with reasonable degree of accuracy, be measured relative 
to either system of axes, i.e. the body axes or fixed (space) 
axes. As a matter of fact the investigation of rolling

Upper case symbols are used for steady velocities and 
lower case symbols for varying velocities or for 
perturbation velocities.

- 4



motion presented in this thesis is restricted to one degree 
of freedom, i.e. the effects of coupling with yawing and 
pitching motion are not considered.
Angle of pitch ± 6 is the angle measured about the horizontal 
or fixed axis y , between the instantaneous position of the 
longitudinal body axis x when pitching and the horizontal 
fixed (space) axis x^.
Pitching is the angular component of the oscillatory motion 
of a boat about her transverse fixed axis y .
Trim, the steady-state longitudinal angular position of a 
boat to be distinguished from pitching, which is an oscillatory 
motion. The sense of the trim angle is defined as bow up (trim 
by stern) - positive.
Angle of leeway is defined as the angle between the principal
track axis which coincides with instantaneous velocity vector

and the horizontal axis x^. The direction of this horizontal s o
line is termed the yacht heading. The arrangement and adequate 
nomenclature are illustrated in Figs.2 and 3.
Angle of yaw is measured about a vertical axis z^, between 
the instantaneous longitudinal fixed axis x of the boat and 
her mean heading (see Fig.3a).
Yawing is the angular component of the oscillatory motion of 
a boat relative to the mean heading. Change of heading is 
a change in the forward direction of the longitudinal axis 
or the bow of a boat in the horizontal plane.
Heading refers to the direction of the longitudinal axis of 
a boat with respect to the apparent wind direction, V^.
Course of a boat refers to the direction of the path of her 
centre of gravity G reckoned by its direction of motion.
The difference in an angle between the course and heading 
is the leeway angle.
The path (or track) of a boat, is defined as a trace of its 
moving centre of gravity G in the horizontal plane.



Controllability as distinguished from manoeuvrability, is 
that quality of a boat and her appendages, both fixed and 
moveable, which demonstrates the effectiveness of the 
controls in producing any desired uniformity or any change, 
at a specified rate, in the attitude, position or motion of 
a moving boat. For these operations, the equilibrium of a 
boat may be stable, unstable or neutral, and it may or may 
not possess dynamic stability.
Manoeuvrability as distinguished from controllability is 
an expression of the degree or rate at which a boat can 
change her course or attitude.

The motion of a boat can be regarded as steady with 
respect to a given axes if all aspects of her motion remain 
constant with time, otherwise it is unsteady.

1.6 The definitions concerning static and dynamic stability '

Equilibrium is a state of balance between opposing forces or 
moments. The equilibrium of a boat is said to be stable if, 
after being displaced, the new orientation of forces or 
moments is such that they tend to bring the boat to her 
original equilibrium (or trimmed) attitude. It is unstable 
if the forces and moments act to increase the initial 
displacement from this attitude.
Stability is a boat property which causes her, when 
equilibrium is disturbed, to develop forces or moments 
acting to restore her to the original condition of 
equilibrium. If the boat possesses instability, she 
deviates further from her original condition when disturbed.
Static stability is that property of a boat which causes her 
to maintain her steadiness or stability by reason of her 
angular displacement. In a static stability discussion it 
follows that the complete motion is not considered at all 
and when a boat is said to be statically stable it means 
only that, after being disturbed, the static forces and 
moments tend to restore the boat to her equilibrium (or

- 6 -



trimmed) state. It is assumed that the accelerations set 
up are small and inertia forces introduced by oscillatory 
acceleration or deceleration are negligible.
Dynamic stability is that property of a boat which causes 
her to maintain her steadiness or stability only by reason 
of her motion. This general term is not to be confused 
with what is known in some quarters as dynamic metacentric 
stability, involving the righting energy available to bring 
a heeled boat back to her initial upright or trimmed 
position. In dynamic stability we consider the motion of 
a boat (system) following a disturbance from the equilibrium 
state, taking into account inertia forces and damping forces, 
as well as static forces or moments.

A statically stable system may oscillate about the 
equilibrium condition without ever remaining in it. In 
such a case the system although statically stable may be 
dynamically unstable.
Metacentric stability is that property of a boat by which 
the action of the buoyancy and weight forces cause her to 
return to her original position if her equilibrium about a 
given axis is disturbed. This occurs when the metacentre 
M lies above the centre of gravity G.

If a ship is stable against a disturbance in heel 
she has transverse metacentric stability; if against a 
disturbance in trim, she has longitudinal metacentric 
stability. If the centre of buoyancy B and metacentre M 
are above the centre of gravity G, the boat is said to have 
pendulum stability.

1.7 Symbols
A Subscript for aerodynamic symbols 
A^ Lateral area (underwater part of the hull)
AR Aspect ratio = p /SA

Coefficient of damping term in diff. eq. of motion

- 7



B

®MAX
C
C

^TA
^XA
^YA
CE
CLR
D
D
DM
DWL
E
E
f
F

g
G
GM

GM^
GZ
H
H
I

Centre of buoyancy 
Maximum beam 
Chord length of the sail 
Coefficient = Force/g.S.
Drag coefficient 
Lift coefficient
Total force coefficient (aerodynamic)
Coefficient of force in direction of x-axis 
Coefficient of force in direction of y-axis 
Aerodynamic centre of effort 
Centre of lateral resistance 
Rated depth of the hull
Aerodynamic drag, component of in direction of 
Maximum depth of the hull 
Design water line 
Energy in general
Length of the foot of the main sail (Intern. Formula) 
Frequency in general (f = 1/T)
Force in general
Acceleration due to gravity (9.806 65 = 9.81m/s^) 
Centre of gravity
Metacentric height = distance from the centre of 
gravity G to the transverse metacentre M
Longitudinal metacentric height
Righting arm
Horizontal lateral water force component of T 
Subscript for hydrodynamic symbols 
Moment of inertia in general

H



J
K

K

L

La
Lo
LOA
LWL
m
M
M
^A
MH

n
^A
0
P
P
P/q^r
q
Q
R

Height of the foretriangle
Moments of inertia relative to x, Yt z axes 
Base of the foretriangle
Coefficient of restoring term in differential 
equation of motion, also reduced frequency
UiC
2U
Radius of gyration
Aerodynamic heeling or rolling moment
Lift, aerodynamic component of in direction 
normal to
Actual lift
Stationary lift
Length over-all
Load water line
Mass in kg
Metacentre
Moment in general
Aerodynamic pitching moment
Mast height i.e. distance from x-axis to top of 
sail plan
Scale factor (full size/model size)
Aerodynamic yawing moment 
Origin of co-ordinate systems 
Static pressure, force per unit area 
Length of the mainsail hoist
Components of angular velocity relative to x , y , z
Dynamic pressure 
Torque

2g

Hydrodynamic resistance i.e. component of T„ in 
direction of
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Re
Sa

<j) / 0
'A

VA
V]
Vc

w
W
X

MG

Radius in general, also the ratio = actual
lift/quasi-static lift

VcReynolds number =
Sail area 
Wetted area 
Strouhal Number =

f

OlC
V,

Time in seconds
Period of time for complete cycle (roll, pitch, yaw)
Total aerodynamic force measured in horizontal 
plane
Total hydrodynamic force measured in horizontal 
plane
Velocity in general 
Apparent wind velocity 
Speed made good to windward 
Boat velocity 
True wind velocity 
Weight density = p.g 
Weight in general in N
Body axis through 0 in design water plane and hull 
symmetry plane
Aerodynamic force component along x-axis
Body axis through 0 in design water plane, normal 
to x-axis
Aerodynamic force component along y
Body axis through 0 in perpendicular direction 
to the design water plane
Aerodynamic force component along z

a Angle of incidence i.e. angle between and the 
boom
Relative wind angle, between and Vg; $ = 6^ +

10



'A

Y
r
6

6,

m

5 ■ 
n 
A 
V

r
0

*o
P

(1)

w

w

Apparent wind angle, between and x-axis 
Leeway angle, between Vg and x-axis 
True wind angle, between and Vg 
Circulation
Damping coefficient, logarithmic decrement
Foresail trim angle, between a line joining the 
tack and the clew and boat symmetry plane
Mainsail trim angle, between the boom and symmetry 
plane of the boat
Trim angle of the anti-rolling sail 
Aerodynamic drag angle, arc tan D/L 
Hydrodynamic drag angle, arc tan R/H 
Damping ratio b/bc 
Phase angle (forcing function)
Displacement weight (N)

-5 m /s (0,145 /g)
Displacement volume (mr)
Kinematic viscosity air - 1,45.10

2water - 1,01.lo"^ ^ /g (0,0101 

Pitch angle or longitudinal trim angle 
Heel angle or rolling angle 
Maximum or initial angle of heel 
Mass density of water or air per unit volume

= 1030 kg/m (sea), p = 1.22 kg/m
Yaw angle
Natural circular frequency in general
Natural circular frequency for rolling

2ttNatural circular frequency for pitching ^'/t,
2?Natural circular frequency for yawing /t

- 11 -



w.
0),

(Oq

Natural circular frequency of undamped motion 
Natural circular frequency of damped motion 
Frequency of forcing function 
Tuning ratio

12



TABLE 2

The following basic International System of Units 
(SI) was adopted. The primary units are boxed.

Quantity Unit Symbol Remarks

Time second s

Length metre m Im = 100 centimetres

Mass kilogramme kg
Force newton N(kg m/s^)

Velocity metre per 
second

m/s

Acceleration metre per 
second squared m/s^ Acceleration due to 

gravity = 9.807 ^7^2

Angular displacement dimensionless rad.

Angular velocity radian per 
second

rad./s

Angular acceleration radian per 
second squared

rad./s^

Moment of force newton metre N m

Moment of inertia kilogramme
metre squared

kg m^ May be expressed in
N m sec2 j

Work, energy joule J(Nm)

Power
rate of doing work watt W(J/s)

Tortional
damping constant (b)

newton metre 
seconds per 
radian

Nm/(rad/sec)
Nms/rad

Restoring moment 
coefficient 
/constant/ - k

newton metre 
per radian Nm/rad k = — for rolling9
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2. INTRODUCTION

In contrast with "normal" weather conditions when 
moderate winds and relatively flat seas facilitate a 
steady character of yacht motion along a straight line, 
heavy weather sailing is associated to a large extent with 
unsteadiness. Then stability and controllability, or 
steering problems, become pre-eminent factors.

For example, when running before a fresh wind, the 
rhythmic rolling and broaching tendency becomes an almost 
inevitable characteristic of all sailing crafts, not just 
of small racing dinghies. It is not uncommon nowadays to 
see heavy keelboats involved in a spectacular and very 
unpleasant rolling.

Another example of unsteady motion which is coupled 
with rolling, and which appears to be exagerated in some 
modern yacht designs, is a directional instability which 
leads occasionally to vicious broaching. In particular, it 
seems to affect those boats which have a short heel (of high 
aspect ratio) and reduced wetted area of the hull.

It was reported from the U.S.A. that a yacht with a
shorter keel, of about 29 ft. DWL, which had been tank
tested and performed well to windward, proved unmanageable
down wind. In one race, on the leeward leg, she could not
be kept on course and broached thirty-three times in three *hours.

When sailing close-hauled in a head sea, the performance 
of any water-borne craft is more or less affected by a 
sustained oscillation in pitch. In some circumstances the 
pitching amplitude builds up to such an extent that it may 
effectively stop all head-way.

SNAME No.3 1967, P.Spens, P.De Saix, P. Brown, 
Experimental Studies of the Sailing Yacht.

Some Further

- 14



These three different types of oscillatory or unsteady 
motion, rolling, broaching and pitching, to which some yachts 
are prone, apart from affecting overall performance, may also 
become potentially dangerous.

Sailing yachts are normally designed in such a way 
that they are statically stable and yacht designers are 
usually content when the boat has a degree of transverse 
static stability, which is measured by the restoring moment, 
determined by the amount of leeward shift of the centre of 
buoyancy B relative to the centre of gravity G, or the 
equivalent metacentric height GM. This in turn limits the 
boat's "power to carry sail" and also her performance.

The Dellenbaugh Angle Method or the Wind Pressure7Coefficient Method might be used to check whether a sail­
boat will be 'tender* in response or 'stiff. This rather 
empirical criterion of yacht stability may be justifiable, 
since the presence of some degree of static stability usually 
ensures that the sailing craft, after being disturbed, will 
return towards the equilibrium position in some oscillatory 
manner. The word "usually" is used because as will be seen 
it is not always so; a yacht which is statically stable is 
not necessarily dynamically stable. There are both 
aerodynamic as well as hydrodynamic reasons for dynamic 
instabilities in yacht behaviour.

The object of this work is to determine and investigate 
the aerodynamic parameters on which the dynamic character of 
yacht motion depends. The complementary hydrodynamic aspects 
of boat motion are purposely discussed here in broad terms 
only, since they are objects of separate investigations.

On the assumption that safety at sea is of primary 
importance relative to performance considerations, priority 
was given to rolling, when planning the experiments in the 
wind tunnel.

- 15



3. PLAUSIBLE EQUATION OF ROLLING MOTION
OF THE BOAT IN SMOOTH WATER

As a result of the combined action of the aerodynamic, 
hydrodynamic, gravitational, inertial and buoyancy forces 
the attitude of a sailing boat, while under way, can vary 
simultaneously relative to all three reference axes x , y^, 
z^. For example, when a boat sails in rough water the 
rolling, pitching, heaving, swaying and yawing are almost 
invariably all imposed on the boat in addition to the forward 
motion.

In order to avoid unnecessary mathematical complications 
inseparable when dealing with a system of many degrees of 
freedom, it became advisable to reject the rigorous consideration 
of coupling effects and mutual interaction between various kinds 
of motion.

In the case of rolling the theoretical and experimental 
methods of studying this type of unsteady motion were reduced 
to one degree of freedom.

This first assumption is justifiable since from the 
experience of many investigators in the past it appears to 
be legitimate.to treat each component of boat motion 
separately, in so far as for each component motion the 
circumstances in which maximum effects are developed are 
not substantially affected by the simultaneous existenceg
of other component motions.

The second assumption, which largely simplified the 
design of the physical model of a yacht for wind tunnel 
testing and also facilitated the analysis of the results, 
was that the hydrodynamic action of the hull, when executing
rolling, can be represented by a linear differential
equation.

Bearing in mind that the primary purpose of this work 
was an investigation of aerodynamic aspects of unsteady motion

- 16



of sailing craft, the linearization of hydrodynamic response 
of a boat seemed to be highly desirable since it helps to 
trace nonlinear effects which might be imposed on the rolling 
boat by the aerodynamic action of the rig.

An example of resisted rolling in smooth water given 
below and an examination of basic factors involved in hull 
motion should indicate to what extent the second assumption 
may be acceptable.

A yacht without sails hoisted may be given a rolling 
motion by the action of external moments or forces which 
are periodic in character. It could be accomplished by 
rocking the hull by means of a halyard when a boat is moored 
in harbour, by the crew sallying back and forth across the 
deck.

Let us assume that the disturbing force or moment is 
suddenly removed when the mast has reached an angle of heel - 
6q to port. Fig.4a. The boat will tend to return towards 
the upright equilibrium position due to the action of the 
righting moment AGZ. The gravitational potential energy 
stored in the heeled position

Ep = AGM(1 - coS(f>) *o/ AGZd*
<|)=0

where A = pgv is displacement weight, is converted into the 
kinetic energy of rotary motion. When the mast reaches the 
upright position and the angular velocity p is at maximum, 
the kinetic energy accumulated is also at maximum.

= ^I.p^

where I is the moment of inertia about a longitudinal axis 
through the centre of gravity.

Approximate expression valid for centroid hull with fixed 
GM. Round-bottomed hull of wine glass section is very close 
in shape to centroid.

- 17 -



The hull and the mast, therefore, continue their 
rotation to starboard. However, not all of this kinetic 
energy is converted into potential energy as the yacht 
heels to starboard; a portion is drained away by the work 
done against the resistance offered by the water. The 
yacht is therefore brought to rest at a smaller angle of 
heel 4-4)2 than that from which the rolling was started.
The cycle of rotary motion begins again and the yacht will 
perform a series of successive rolls to port and back to 
starboard, each being less than the previous one until, due 
to the damping action of the water, until it finally comes 
to rest in the upright position.

The energy dissipation AE in one roll is given by

AE = - *2^)

*0 ^ *1AGM( ' 2 " *1)

= A GM(j) 6 <j) 3A

*0 ^ *1where ---=--- is mean amplitude of roll

6 4) is angular decrrem^f\b/osciU(Lhor,
The reduction in amplitude 6 4) can be called decrement per 
roll. In the limit it equals the slope of roll decrement 
curve plotted against number of swings (^) shown in Fig.4b.

As the rate of energy dissipation due to damping is 
a measure of the actual forces resisting the roll, the 
comparison of damping efficiency can conveniently be made 
on a basis of energy transfer.

Such damped oscillations are graphically represented 
in Fig.4b. Since the amplitude of roll decays with time.

- 18 -



the hull in rolling motion is dynamically stable. The 
rate (6^) at which the initial perturbation dies with 
time is a measure of the dynamic stability of the hull, 
which in contrast with static stability is a time dependent 
quality.

Once a metacentric height GM and a moment of inertia 
or radius of gyration K are known, the natural rolling 
period

•R 2tt/Zf gGM ( AGM

(where K - radius of gyration about a longitudinal axis 
through the centre of gravity) of this so-called natural 
oscillation can be shown to be a characteristic which is 
fairly constant for each boat. It might be about 2-3 seconds 
for a small dinghy and about 6-8 seconds for a heavy keelboat.

If within the angles of roll the slope of the statical 
stability curve (expressed by GM* as a function of *) is 
constant, the periodic time T is the same whatever be the 
initial angle of roll. In that case the rolling is said to 
be isochronous_8,9,10

Pure rolling without swaying is possible only if the 
inclinations of the hull are equivolumetric and the axis of 
equivolumetric inclinations passes through the centroid of 
the water line area and the centre of gravity G lies in the 
plane of the flotation water line.

If the centre of gravity G is located above or below 
the area bounded by the load water line then the inclinations 
will obviously be not equivolumetric. It can be shown^^, 
however, that the departure from eguivolumetric inclination, 
in the case v/hen G is not located in the plane of flotation 
line, is negligible and may be ignored under the admitted 
accuracy of this study.
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Ignoring sail action, the character of the damped 
rolling of the hull, its period and the rate of decay depend 
on three fundamental factors:

1. Moment of inertia of the boat; a large amount of 
inertia serves to increase the periodic time T^.

2. Stability of the hull (GM), which affects the 
oscillation so that a stiff hull, of high stability, 
performs faster oscillations than a tender one.

3. Damping forces, which are responsible for the 
gradual extinguishing of rolling motion. They arise as 
a result of:

a) the presence of frictional forces 
between the wetted surface of the hull 
and the surrounding water,

b) the expenditure of energy in the 
generation of water waves,

c) the dissipation of energy due to the 
hydrodynamic action of the swinging 
appendages: fin-keel and rudder.

These components of hydrodynamic damping are not 
equally significant. In the case of the keel-boat, the 
predominant role may be played by the action of appendages - 
the fin proper or centreboard and rudder, and also their 
configuration. Of course, high damping efficiency is desirable, 
since rolling, apart from bringing discomfort to the crew, is 
also potentially dangerous.

At the moment there is little known about fin-keel 
or centreboard efficiency as damping or antirolling devices. 
However, there is at least a certain theoretical foundation 
for believing that the modern tendency to reduce the length 
of the keel and cutting down the wetted area in order to 
improve the windward performance of the boat may lead to a 
reduction in the hydrodynamic damping in rolling.
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Due to a lack of information correlating the 
geometry of the appendages and the damping characteristics, 
it was assumed that hydrodynamic damping is linear and 
proportional to angular velocity ^ .

Assuming further, according to Eg.2, 3 (Appendix), 
that within an amplitude of roll of the order of 30 degrees 
rolling motion can be regarded as isochronous, the equation 
of motion, for the hull rolling in still water, can be 
derived by writing equilibrium relation between the moments 
applied (taking the centre of gravity G as the origin of the 
co-ordinate system Fig.4a).

1^-4 + b^ + AGM* 
dt^ at 0

Designating AGM = R the Eq.5 can be written in the form:

I • (j) + b({) + R(j) = 0

where b - damping coefficient (in Nms/rad)
R - stability or stiffness coefficient (in Nm/rad).
The motion of the rolling hull therefore can be 

analysed as a dynamic non-conservative system (see Appendix 
Eq.l6) having two different forms of energy storage, the 
kinetic energy and the potential energy, and also a form of 
energy dissipation. With reservations already listed the 
Eq.6 may be recognised as a linear, second order equation 
with time invariant or constant coefficients.

Natural motion of such a system will always be made 
up of some combination of two elementary motion patterns

a) sinusoidal motion which, in a way, represents 
the variation of kinetic and potential energy, and
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b) exponential decay which gives a rate of energy 
dissipation with time as represented in Fig.4b.

When such a system is disturbed by some forcing 
function (it can be aerodynamic moment due to sail action) 
the resultant motion will be the sum of the two distinct
components 11

a) natural motion whose character depends entirely 
on the physical parameters of the system itself (inertia, 
stability, damping) and not upon the forcing function,

b) excited motion which resembles in character the 
forcing or exciting function.

Thus with a single degree of freedom the plausible 
equation of motion for a complete yacht including the 
driving function due to aerodynamic action of the rig can 
be written:

^x^ + b<|) + K<j) KA

where K. is the disturbing aerodynamic heeling or rolling 
moment, and is not constant.

The object of direct wind tunnel testing was twofold, 
firstly to determine the fundamental parameters which affect 
the exciting or driving moment K., and secondly to establish 
the influence of as a function of some parameters (course 
sailed, trim, wind velocity, etc.) on the stability of the 
rolling yacht.
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4. PHYSICAL MODEL OF THE ROLLING BOAT

4.1 Test Apparatus and Similarity Problem
The diagrammatic sketch in Fig.5 together with 

Photographs 1 and 2 show the apparatus used during • 
preliminary tests before it was put into the special tank 
recessed below the wind tunnel floor in order to reduce 
possible blockage effect. Photo 2 depicts the apparatus 
situated in the wind tunnel and also some details of the 
arrangement inside the tank. The apparatus, based on 
pendulum stability, incorporates:

- an airbearing support, permitting almost friction 
free oscillations about horizontal axis.

- variable and controllable magnetic damping 
(viscous in character) produced by an 
aluminium disc swinging between the poles of 
an electro-magnet.

- a flexure combined with a differential 
transformer to measure the variation in the 
drag component D due to rolling.

- a rotary pick-off to measure the amplitude
of rolling versus time, with linear response 
up to + 30°.

- recording facilities, linear recording of 
angular displacement 4), and drag D versus time 
by means of an ultraviolet galvanometer 
recorder.

A semi-rigid una-rig model of a l/5th scale 'Finn' type sail 
made of "Melinex" was used for a series of initial tests.
The 'Finn' rig was chosen bearing in mind its apparent 
simplicity; there is only a single sail which is rigged on 
a mast unsupported by any shroud. Further the 'Finn' is 
well known as a very bad and dangerous "roller" and therefore 
worthy of investigation.
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When designing the oscillating part of the apparatus, 
including mast and sail, special attention was given to the 
problem of dynamic similarity. From a mechanical point of 
view, the two systems, model and full-scale, must not only 
be geometrically similar in shape (form) but also in mass 
distribution (moment of inertia) and stiffness (stability).

Assuming that the total mass of the full scale 'Finn'
is 250 kg and taking the geometric scale factor n = 5, the

250mass of the model should be —= 2 kg. It was not. possible 
to satisfy this condition wi^kout reducing the strength of 
the structure below a practical limit, in fact the actual 
mass of the model was 3.49 kg. There was also another 
factor of primary importance which interfered to a certain 
extent with mechanical similarity demand, this was the 
Strouhal number - or the so called 'reduced frequency'.
In order to satisfy this condition it would require a 
relatively short period of oscillation which for some 
practical reasons could only be achieved by increasing the 
mass of the pendulum.

The Strouhal number, which can be expressed nondimension- 
ally in the form:

w • c 
V 8

was regarded as the most natural and fundamental parameter in 
considering unsteady aerodynamic forces. An interesting 
interpretation of the Strouhal number was given by Karman. 
Consider that a disturbance occurs at a point on an airfoil 
and oscillates together with the airfoil. The air (fluid) 
influenced by the disturbance moves downstream with mean 
velocity V. If the frequency of the oscillation of the 
airfoil and the disturbance is w, then the spacing, or wave 
length of the disturbance, defined as a state of disturbance 
which is propagated from one place to another at finite 
speed is 2^Vy . Therefore, the ratio

c OJ- c
2TrV
0)

27rV
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which is proportional to the Strouhal number - shows 
that represents a ratio of the characteristic length of 
the airfoil (in our case the mean chord c of the sail) to 
the wave length of the disturbance. In other words, the 
Strouhal number characterizes the way a disturbance (it can 
be a vortex shed by the airfoil) is felt at other points of 
the airfoil. Since every point of an oscillating airfoil 
disturbs the flow, one may say that the Strouhal number 
characterizes the mutual influence between the motion at 
various points of the oscillating airfoil.^®’

Observation indicates that rolling instability, in 
the case of the full scale 'Finn', clearly occurs at a 
wind velocity of the order of = 10 m/sec which corresponds 
to a fresh breeze, or force 5 on the Beaufort scale and that 
the period of oscillation T is approximately 2.5 sec. The 
mean chord of the sail is c = 1.95 m so that one can calculate 
the appropriate Strouhal number:—

St = ^ = 0.49

where w % ^ ~ 2,5 radians/sec,

Since the period of model oscillation selected for

2it

some practical reason is of the order T = 1.45 sec., the wind 
tunnel velocity which will satisfy the Strouhal number condition 
should be of the order:

''m = = 3.46'"/3 = 11.3*V.

where 2tt
m = Y~45 ~ (radians per sec)

= 0.39m - mean chord of the model sail.
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when planning the experiments in the wind tunnel it was 
decided to cover a range of Strouhal numbers corresponding
to wind tunnel velocities V
4.27^/s). The corresponding full-scale wind velocities

m 10, 12, 14 ft/s (3.05, 3.66,

would then be Vf.s. 2.9 = 8.85, 10.6, 12.4^/s or 17.2,s.

20.6, 24.0 knots respectively. The appropriate values of 
the Strouhal number are:

= 0.55, 0.46, 0.39 respectively.

Reynolds number was regarded as a factor of secondary 
importance relative to the Strouhal number, and within the 
range of used wind tunnel velocities, 3.06 - 4.27'^/s, 
covered the region

^m'^m 3.06 x 0.39 x 10^ 4.27 x 0.39 x 10^ _ ^
to YT45 -

to 1.15*10'

The corresponding values of Re for the full scale rig would be

R.
V. ^ *1.95*10- _ 1.2 X 10^ - 1.7 X 10^

4*2 The Quasi-static approach to unsteady motion and static
tests on the 'Finn* sail

Attempting to answer the question of "why and when" 
the rolling oscillations might be aerodynamically excited, 
a classical quasi-static approach seemed to be justified 
and promising as a preliminary approximation. This was 
based on the assumption that forces acting on the oscillating 
sail are the same as if the sail was in steady motion under 
the given conditions, i.e. that the flow about the 
oscillating sail and corresponding forces were determined
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by the instantaneous incidence and velocity which are the 
controlling factors in uniform motion.

All we need when applying a quasi-static approximation 
is the static Lift and Drag characteristics of the rig. These 
two forces were measured using the balance system in the large 
wind tunnel section.

The model of a l/5th scale 'Finn' type sail, made of 
"Melinex” and designed for the dynamic experiments, was 
tested over a range of static incidence from 15° to 180°.
These angles cover all possible sailing courses. Since the 
twist of a sail is a function of wind velocity and this was 
quite high in relation to the rigidity of the model (V = 7.63^/s 
= 25 ft/sec), the actual twist of the sail model was rather 
large. A series of similar tests was therefore carried out 
on 2/5th scale Finn sail in order to establish the influence 
of the twist on the aerodynamic properties of the rig.

Figs.6, 7, 8 and Tables III, IV, V represent the 
geometry of the sail and some results. As would be expected 
for the twisted sail sections with a mast along the leading 
edge, both the L and the D curves are unsymmetrical relative 
to a line drawn through 90 degrees of incidence(a)measured 
between the boom of the sail and the wind direction. When 
the twist was reduced, both the L and the D curves were bodily 
shifted to the left (see Fig.8) towards the lower values of 
incidence a. It is worth noting that this shift is associated 
with increased negative slope of the L curve.

These facts, as will be seen later, are of importance 
as far as the stability in rolling is concerned. The results 
presented in Figs.7, 8 have not been corrected for blockage 
effects; in fact the test on the 2/5 scale model of the 'Finn' 
sail gave unusually high values of the drag coefficient, of 
the order 2.2. The test on the 1/5 scale model gave quite 
realistic values of drag coefficient close to the expected
Cdmax 1.2.
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4.2.1 wind rolling
Using the information provided by these tests, we may 

now examine the conditions in which rolling instability dm2
to aerodynamic action of a sail may occur. If a una-rigged 
yacht is running down wind (Fig.9a) the course sailed relative 
to the apparent wind 6. is 180 degrees and the angle of 
incidence a of the sail to the wind direction is about 90°.
The total aerodynamic force T^ generated by the sail is more 
or less steady and acts very nearly along the course sailed.

If now by some means (it might be wave action) a 
small rolling motion is induced in the boat's hull, and the 
sail swings to say port, acquiring an angular velocity p, 
then the resultant wind, its incidence and aerodynamic force 
vectors L and D change both in magnitude and direction. This 
is shown in Fig.9b which refers to a narrow, horizontal strip 
of sail cut at some distance, z, from the axis of rotation.

As the sail swings to port the apparent wind is
modified by the velocity v.induced by the swing. The
resultant wind V_ which is, at any instant, the sum of the
two wind vectors V. and v will increase in magnitude and the
instantaneous angle of incidence relative to the sail chord
will be less than 90 degrees by an amount When the sail^Aswings to starboard the whole situation is reversed and as 
a result, the instantaneous angle of incidence a will be 
greater than 90°, see Fig.10a,b. Under these conditions, the 
force component Y may act in ^re Scu^ direction as the 
rolling velocity (see Fig.9b) and can be expressed as

-Y^ " cosaj^ + D sina^

Since aj = 90-a
Then

Y^ = L cos(90 - a) - D sin(90 - «)

Y_ = L sina - D COSO



The actual magnitude and direction of action of the Y. 
component will depend on the relative magnitudes of the 
L and D components at given instantaneous incidence a 
which is modified by the velocity induced by rolling-

Differentiating with respect to a gives the 
rate of change of Y^ due to rolling in qualitative sense, 
Thus

9Yif = sine. (|^ + D) + cose (L - 10

when a = 90 and the amplitude of oscillation is small then 
sina ->■ 1 and cosa -*■ 0, therefore the second term of Eg. 10 
is negligible, and

BYA
Ba Ml

da + D 11

Since the drag D is always positive there are three possib­
ilities to consider, namely

5
Ba 0; - Ba'

rolling motion is
= D 11a therefore not affected

by the aerodynamic forces

II fa
Ba < 0; I 3LI

Ba I
instability may be 

> D 11b induced by the
aerodynamic forces

III fa
Ba > 0; itiBa I

a stabilizing effect of 
< D 11c aerodynamic forces can 

be expected.

Note I I means numerical value.
Thus positive — means a stabilizing effect in any case.
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Let us analyse in some detail the physical meaning8Ijof case II when — is negative and its numerical value is
greater than D. In Fig.7/ which presents the static
aerodynamic characteristics of the 1/5th scale Finn sail, 9La graph of 8a is plotted together with L and D curves againsi
incidence a. One can see two regions of potential 
instability where is negative and, at the same time, its 
numerical value is greater than the D component, which can 
be regarded as being a positive damping factor. In order topjrfacilitate immediate comparison of -r— and D values the graph3Li ^of — is plotted with the negative values above the abscissa.

These results are modified in Fig.11. It can be 
seen that besides the original L, D and — curves, there is 
drawn a hypothetical shift of the above mentioned curves 
which could be expected due to the reducing the twist in 
the sail. This prediction is based on results of experiments 
presented in Fig.8 on the 2/5th scale model of the same type 
of rig; the set of curves shown clearly indicate such a 
tendency.

It is evident that sail twist may exert a significant 
effect on dynamic stability by shifting the region of 
instability (marked in Fig.7 and 11 by the shaded areas) 
relative to the angle of incidence a of the sail.

A modification of the original results as presented 
in Fig.11 was made bearing in mind the fact that it was 
anticipated that the subsequent dynamic tests would be 
performed at a lower wind speed (3.05 - 4.27 m/sec) to 
satisfy the appropriate Strouhal number- Therefore the 
effect of the twist of the sail had to be taken into 
consideration. In further discussion reference will be 
made to the modified set of curves.

Fig.10a,b depicts configurations of wind and force 
vectors for the case when the initial incidence a is 
90 degrees and the yacht is running down wind; as before the 
two drawings refer to a narrow horizontal strip of sail some
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distance from the axis of roll. When the sail, being 
disturbed for some reason, acquires an angular velocity 
swinging to port so that a decreases, the flow pattern 
round the sail changes quite drastically from that when 
there is no rolling. A circulation appears (marked by 
the dotted line) which in turn affects the instantaneous 
lift and drag in such a way that the total aerodynamic 
force is inclined towards the direction of the sail
motion. This total force can be resolved into two
components as shown in Fig.9a.

1) component acting along the axis of rolling
2) component acting perpendicular to X..

The boat is now rolling to port under the action of a sail 
force component induced by the velocity of roll. As the 
heel angle increases the righting moment due to the lateral 
stability of the hull, and the damping due to the combined 
action of the hull and appendages increasingly oppose the 
rolling and finally start to return the boat to the upright 
position. The sail now swings to starboard and the flow 
pattern is reversed. This is shown in Fig.9b. The 
circulation is opposite to that in the previous swing and 
the aerodynamic force component is again directed towards 
the motion pushing the sail to starboard. Because of the 
action of these alternating forces operating in phase with 
roll velocity, the amplitude of rolling may be magnified 
progressively. Fig.11 represents, in a way, a potential 
ability of the system to develop divergent oscillations in 
which amplitude of roll grows progressively. The initial 
experiments in the wind tunnel have shown that the model 
responded dynamically according to the prediction based on 
an analysis of Eq.lO. Fig;12 depicts a typical behaviour 
of the model when the rig way set at S, = 180° and the angle
of trim of the sail = 85m

A(a = 95°). The rolling
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amplitude * builds up even in the absence of any obvious 
external disturbances, i.e. even in a completely flat sea.

This type of yacht behaviour clearly manifests 
dynamic instability. Refering to Fig.4b and 12 we can say 
that in both cases the boat is statically stable, since a 
certain tendency to return to an upright position is 
maintained; however in the second case there is a divergence 
superimposed on the oscillation. This is due to the lack 
of energy balance - energy lost due to damping and energy 
taken from the wind.

This test proved beyond any doubt that wild rolling 
may be induced by a sail for an aerodynamic reason. When 
running down wind, a sail can extract energy from the wind 
in a self-exciting manner by its own periodic motion in such 
a way that the sail can be regarded as a rolling engine.
When studying the self-excited rolling of a yacht, one should 
focus one's attention on two opposing elements of the rolling 
motion: namely, the excitation element and the dissipation 
element. The character and magnitude of these two factors 
determine whether or not, and to what extent, the boat will 
be able to roll. The process of magnification of rolling 
amplitude will continue until the rate of wind energy input 
due to the sail action is matched by the rate of dissipation 
of energy in damping due to the action of the underwater part 
of the hull.

4.2.2 Rolling when sailing close hauled
The quasi-static approach, which proves to be most 

helpful in grasping the principles of down wind rolling 
conditions of stability, seems to be equally suitable for 
investigating rolling stability when sailing to windward.
Fig.13 which refers to a narrow, horizontal strip of sail 
cut at a certain distance, z, from the axis of rolling, 
depicts force and wind vectors as well as some geometrical 
relations between them. When, for example, due to wave
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action, the sail swings to port, the apparent wind is 
being modified by the wind v = p. Z.induced by the swing. 
The instantaneous angle of incidence of the sail a will 
be affected by the variation in direction of the resultant 
wind V^, which is the sum of the two wind vectors and v. 
Assuming that v is small relative to V^, the aerodynamic 
force component which affects rolling can be expressed
at any instant as;

A = L COS (3 ^ ± Ag ) + D sin ^ ^ ± A3 ) 12

= L co^ ^ + D sirg ^ 12a

A differentiation of Eq.l2a with respect tog^ will give us 
a rate of change of Y_ due to rolling which might be imposec 
on the system by the action of an external moment.

BY,
A

L sinB^ + 3̂D + D COSg,
A

- sin6^(L - 13

Since the variation in L and D with g_ are equivalent to 
variations due to changes in a (see Fig.13), the Eq.l3 can 
be rewritten in the form:

BCy, 3CiP = + V - - —i 14

which is more convenient to analyse, having already at hand 
the characteristics of the rig expressed in standard form
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of and coefficients plotted against a. They are 
shown in Fig.14 which presents the variation of and C„li D
of the Finn rig with incidence angle a of the sail. The
boom was pulled vertically downward to four different 
positions with the mainsheet (17). The various sail shapes^ 
with their associated twist and camber changes resulting 
from the four boom positions, produced different aerodynamic 
characteristics. They can be used to assess Eg.14 numerically.

Let us assume that g, = 30
curves , i.e. the value of L

The slope of all 
is more or less constant

within the practical limits of'^“incidence a = 10-20 
(typical for close hauled sailing). The value of ■59cx (a

Thebeing expressed in radians),^equals approximately 2.86.
relevant average value of , for the drag curve VIII is
approximately 0,98. Assuming further that a = 15° we can 

9CyAestimate —-— substituting relevant numerical data from 9a
Pig.14 (run VIII). Thus

9C ac 9CD,
Sa

0.866(2,86 + 0.2) - 0,5(0,95 - 0,98) .4a

One can see that the first term in the equation is positive 
and much greater than the second one, which for other values 
of a might be negative but still negligible in comparison 
with the first one. Substituting appropriate values of 8a
do , L and D in Eg.14 for other values of g, and a we find

that in a close hauled condition 8CYA A
3a - is always positive

Referring back to Eg.11c it would mean that when sailing to
windward, one should expect a stabilizing or damping effect 
from the aerodynamic forces on the rolling motion of the boat 
in the case when rolling occurs for hydrodynamic reasons.

Experiments in the wind tunnel on the model shown in 
Fig.15 and observations of the full scale boat behaviour
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clearly indicate that the theoretical conclusion drawn from 
Eg.13 are correct. During tests in the wind tunnel the Finn 
type rig was set at 3^ = 30° and the angle of trim of the sail 
5^ was about 15°. At the wind speed = 3m/s an average 
angle of heel was about 8 degrees to starboard and the model 
oscillated about this mean angle in a random way + 2° due to 
unsteadiness in the air stream. After a certain time the 
model was displaced to 20° of heel, and kept there for a 
while, then left free. The return to the mean angle of heel 
(j) = 8° was immediate without overshot. The model responded 
in the same way when the heel was reduced to 0°, and then 
released. In both cases the magnetic damping was zero. The 
results recorded in Fig.15 indicate that the positive damping 
generated by the sail is very great indeed. In fact the 
system is over damped (see Appendix Eqs.20-21). When watching 
a large fleet of racing yachts on a windward leg, one is 
easily struck by the steadiness of all the yachts in maintaining 
a constant angle of heel even in strong, gusty winds. This fact 
was surely discovered through trials and errors by fishermen 
who hoisted a sail on motor driven vessels when sailing to 
windward, not as a driving device but as a rolling stabilizer.

Referring to Fig.11 one can conclude that the same 
aerodynamic forces and process which may translate energy
taken from the air into incipient rolling can also act as a
suppressor. All is dependent upon whether the aerodynamic
forces generated by the system after disturbance are related
to the negative or positive slope of the CL - a curve. The 
system, after being disturbed, may develop instability in 
rolling when the aerodynamic forces and the arising moments 
are related to the negative slope of the L (or C,) curve.
The steeper the negative slope, the greater will be the energy 
transfer from the air to the system and the instability 
response in rolling motion will be more conspicuous. Vice- 
versa, the aerodynamic forces related to the positive slope 
of the L (or C,) curve should certainly stabilize or damp 
any rolling motion induced by hydrodynamic forces.



There is, however, a certain degree of uncertainty 
left in the conclusions just derived. This is because the 
quasi-static method does not take into account the time 
factor required for the build-up of circulation around an 
oscillating airfoil, and subsequently there is a time lag 
between the forces actually generated and the forces 
expected on the quasi-static basis. This might yield an 
inaccuracy in the prediction of the degree of stability or 
instability. Therefore a certain correction to the quasi­
static approach should be introduced to check whether and 
to what extent conclusions already derived are correct in 
a quantitative sense.

The accepted theories of non-uniform or oscillatory 
motion developed by H. Wagner (19), Th. Theodorsen (20),
Th. Karman (18,21,22), Glauert (23), and others takes into 
consideration two effects which are absent from uniform or 
quasi-stationary motion. One arises from non-uniform 
acceleration and deceleration of the mass of fluid taking 
part in circulation round the oscillating airfoil,ie. in 
the direction normal to that of the translatery motion.
The other originates in the velocities induced in the 
vicinity of the airfoil (or hydrofoil) by the wake of 
transverse vortices discharged when the variation in 
circulation takes place. The actual flow about an 
oscillating airfoil thus depends not only upon the angle 
of incidence and local velocity, which are controlling 
factors in uniform motion, but also upon the instantaneous 
acceleration or deceleration and past history of the motion.

4.3 The non-stab-onary forces developed on an oscillating
airfoil

In order to define the basic difference between the 
stationary and non-stationary aspects of the flow around the 
airfoil a short review of the circulatory theory for the 
simple case of two-dimensional foil operating in the range
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of incidence angles related to the rising slope of the 
curve i.e. below the stall angle, is essential.

When a symmetrical airfoil shown in Fig.16a set at 
incidence a = 0° moves steadily with a velocity U relative 
to the air at rest only the drag could be measured. This 
would consist mainly of skin friction plus a small contribution 
of profile drag. The wake left behind is relatively small and 
insignificant. When the airfoil is suddenly set at an angle 
of incidence a (Fig.16b) a circulation is being developed 
of sufficient strength to shift and hold the rear stagnation 
point at the trailing edge, T.E. At the same time, according 
to the theorem of conservation of the moment of momentum, a 
counter-circulation develops, called the "starting vortex".
At the initial stages of the transition period, before the 
circulation round the airfoil is fully developed, the 
"starting" or cast-off vortex-sheet begins to operate in 
a form of concentrated vortex between the trailing edge T.E. 
and the rear stagnation points situated on the upper surface 
upstream at a small distance from the trailing edge. When, 
during this transition period, the starting vortex has 
developed to a certain strength, it breaks away from the 
airfoil and passes down stream in the wake followed by a 
sheet of small vortices. In the course of time the starting 
vortex travels further and further downstream where it can 
finally no longer influence the flow round the airfoil, and 
the airfoil is then in steady motion with a fairly fixed 
magnitude of circulation and associated steady lift. One 
can say that a physical role of the starting vortex is to 
shift the rear stagnation point S towards the trailing edge.
In a way the starting vortex serves as a kind of "prolonged 
ignition" or stimulus for circulation. In this way the 
elegant and famous Kutta-Joukowski theorem and condition 
are fulfilled. Fulfilment of this condition is necessary 
in order to exclude the possibility of an infinite velocity 
around the sharp trailing edge of the airfoil.

- 37



An assumption that the starting vortex is so far 
behind the airfoil that it does not influence the flow in 
the vicinity of the airfoil and a and U are constant, leads 
to the so-called stationary flow theory of airfoils according 
to which the circulation is given by:

%c Ua aCh
3a 15

and is constant (incidence angle a is measured from the no 
lift angle). The lift, L, per unit span can be expressed 
as

L = p • u* r 16

and

2T
c-U 17

In fact the magnitude of the fully developed 
circulation is subject to a small fluctuation (24). When 
the vorticity of the boundary layer passes downstream in 
a vortex wake it develops into a Karman vortex street and, 
to maintain this system, vortices of opposite sign are shed 
alternately from the upper and lower surfaces of the airfoil. 
Since the sum of the circulation round the airfoil and of 
the strengths of all the vortices of the wake must be zero, 
it follows that the circulation round the airfoil will 
oscillate between the limits r ± %y, where r is the mean 
circulation and y is the strength of the vortex street. For 
a good aerofoil section at a small incidence the vortex wake 
is narrow and weak, and the circulation round the airfoil is 
sensibly constant. However, when the angle of incidence 
increases, approaching stall angle, the oscillation in the 
magnitude of the circulation and associated lift may become
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an important fraction of the mean values. Tests performed 
by Page and Johansen (25) below and above the stalling 
angle proved beyond any doubt that the velocity fluctuations 
in the wake due to the presence of vorticity shed from the 
airfoil are function of the Strouhal Number.

Referring back to an early stage of circulation 
being developed when the angle of incidence was suddenly 
changed from 0 to a one should realise that the circulation 
pattern around an airfoil does not spring into being without 
a certain time lag. Therefore the lift normally associated 
with the changed angle of incidence a does not reach its 
nominal value immediately but only a fraction is reached, 
the remaining value being developed in the time taken to 
travel a certain number of chords. This is shown in the 
graph on the right side of Fig.16, which presents the rate 
of growth of lift and circulation with time. For example, 
about 0.9 of the steady state value of the lift is 
reached after a time t = ■^ . A half of the L value is 
reached almost immediately. This fact was first discussed 
by Wagner (19), who gave the theoretical reason for this 
behaviour of the lift, and the phenomenon on this account 
is usually referred to as the "Wagner effect". His theory 
was experimentally verified by Walker (19), who found that 
the actual measured circulation at any stage in the early 
motion of the airfoil was approximately the same fraction 
of its final value as that deduced from Wagner's theory. 
Wagner's theory may, therefore, be considered to account 
for the initial motion to the same extent that the classical 
theory accounts for steady motion.

Studies of unsteady aerodynamics indicate that the 
lift build-up has the nature, but not the exact shape of an 
exponential as indicated by the graph in Fig.16. A reasonable 
approximation of actual lift L at a given time is:

18
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where = stationary lift at incidence a
o = f(^/u)
c = average surface chord
U = forward velocity

When an airfoil performs translatory oscillations within an 
amplitude +y, as shown in Fig.16c, the instantaneous angle 
of incidence a = tan ^ (where v is the instantaneous
velocity in y direction), will vary and, according to Eg.15, 
every change of the state of motion must be accompanied by 
a change of the circulation r around the airfoil.

It appears that for every change of r, and likewise 
for every change in the angle of incidence, a vortex must 
leave the trailing edge of the airfoil. The strength of 
this vortex is equal to the change of the circulation and 
the rate at which vorticity is deposited in the wake in the 
vicinity of the T.E. is given by

3r
3t ^C U 3a

3a 19

Hence the vorticity shed per unit movement forward is:

3r
3X

1
U 20

In the case of a continuously changing circulation a band of 
vortices develops behind the airfoil. Physically, the 
generation and shedding of each vortex, as shown in Fig.16c, 
is somewhat similar to the process described earlier when 
discussing the "starting vortex" mechanism depicted in Fig.16b. 
Continuous shedding of the vortices into the wake is 
accompanied by simultaneously occuring shifts of forward 
and rear stagnation points and therefore subsequent
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oscillations in local pressure. The vortices being shed 
affect also the downward velocity at the airfoil and hence 
alter the flow pattern and circulation.

VThen analysing Eqs.l9 and 20, one can say that if the 
changes of circulation are very slow, the vortex intensity 
in the wake is very small. The flow around the airfoil is 
then almost the same as in the steady state, and a quasi­
static approach is therefore justifiable. However, in 
general, the forces on the airfoil will depend upon the 
vortex intensity in the wake and the influence of this wake 
must be taken into account.

On the assumptions of an infinite aspect ratio 
airfoil, a small amplitude of motion and some other 
restrictions, Karman and Sears (22,26) presented a theory 
of non-uniform motion which very much aids the prediction 
of lift characteristics for the case of sinusoidal motion. 
This is applicable both for oscillating sail and hydrofoil 
as a fin-keel.

According to this theory the actual lift developed 
by the oscillating airfoil is the sum of three components:

- the "quasi-static" lift
- the "apparent mass" lift

and - the "wake effect" i.e. modification
to the actual lift due to velocity 
induced by vorticity within the 
wake.

Hence

- ^o + ^1 + ^2 21

If we take, for example, the case of an aerofoil set at some 
angle of incidence and oscillating in translatory motion 
perpendicular to the undisturbed stream, the lift
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characteristics predicted by the theory include:
a) the actual lift which varies in a 

sinusoidal manner,
b) a variation in lift which may be either 

greater or less than that which would 
occur if the oscillations were infinitely 
slow, i.e. if at each angle of incidence 
the lift were that corresponding to the 
steady motion,

c) a variation of lift which may either lead 
or lag that angle of incidence,

d) a phase angle and amplitude of the 
variation of lift which will depend on 
the so-called "reduced frequency", or in 
other words the Strouhal number divided 
by two.

These predictions are illustrated diagramatically in Fig.17. 
The broken line sine curve shows the hypothetical variation 
of lift which would occur if at each instantaneous angle 
of incidence a the lift value was that corresponding to 
steady state motion. The solid-line represents the actual 
variation of lift The physical significance of Eg.21
may be clarified by means of a "vector diagram" as shown in 
Fig.18, which presents the phase relationships of the 
quantities involved L^, L^, and as well as their 
magnitudes (22) , plotted in complex plane.

Unsteady lift function can be defined as:

Lg^t) = Pe^"^{f^("/^) + if2(^/^)} 22

where L (t) represents lift as a function of time; F is a
tj2constant involving only the dynamic pressure p-y and the 

amplitude of the oscillation y; and f^ and fg are real

42



functions. The real part of this expression which is the 
actual lift may be written as

Re|L^(t)| = F(f^coscot + f^sinwt)

p/f ^ + fL^ COS (oit + X) 23

where X 1tan ( /fi).
Thus, in vector representation, the lift vector has the

y 2 2magnitude F/ f^ + f^ and leads the vector of the velocity 
of oscillation, v, by a phase angle X as shown in Fig.18, 
which depicts how the total lift vector is composed for a 
certain value of The quasi-steady part, L^, being in
phase with the velocity of oscillation, v, appears as a 
horizontal vector, while the vector tends to diminish the 
lift and cause it to lag behind the velocity. The apparent- 
mass lift, L^, being proportional to the acceleration, is 
directed vertically i.e. leads the velocity by 90°. The 
total actual lift, is the sum of these three vectors
and has the phase angle X.

A curve plotted in Fig.19 gives the magnitudes of 
the lift together with their phase angles X for various values 
of the Strouhal number (or reduced frequency). The length 
r of the vector drawn from the origin to the appropriate
value of the reduced frequency w • c

2U on the curve gives the
ratio of the total actual lift L , to the corresponding 
quasi-steady lift, L^. The X angle between r and the 
horizontal axis gives the phase angle relative to the 
velocity of oscillation v. It is seen that within the limits 
of the Strouhal number investigated in the wind tunnel tests 
on Finn sail model i.e. 0.39-0.55, the maximum value of the 
lift, L^, slightly decreases and the lift vector lags slightly 
behind the velocity v.
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4.3.1 Aerodynamic damping when sailing to windward
Yacht oscillation can be called aerodynamically 

unstable if the effect of an initial transient rolling 
disturbance imposed on the sail, say, by wave action is 
magnified as time increases. In such a case the sail 
extracts the energy from the wind in completing a swing 
(cycle). If the reverse is true, i.e. the effect of an 
initial transient disturbance dies out as time increases, 
it means that the sail dissipates energy in a full cycle of 
oscillatory motion. One may say that such oscillation is 
aerodynamically stable, or, in other words, aerodynamic 
damping is positive. In this case the work done by a sail 
is negative, i.e. energy is given or lost to the airstream.

On the basis of the theory of non-uniform motion 
presented in (4.3) let us consider work done Aw by the 
unsteady lift produced by a strip element of the sail area 
AS- at some distance Z from the axis of roll X^. For that 
unit area which is horizontal strip of the sail, we can 
regard its oscillatory motion in close-hauled conditions as 
the translatory one when considering amplitude:

y = y^eiwt 24

If oscillations are small, a certain difference in magnitude 
between velocity vectors and can be ignored (see Fig.13). 
Hence V, = V_ = U. We shall concentrate attention on the 
lift only, since, according to Eqs.l4 and 14a, the contribution 
of this component of Y_ force will be dominating as far as 
damping moment due to Y. action is concerned.

The velocity induced by a swing of the sail to 
windward can be expressed as:

dt rwy^eiwt 25
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If ^ were a constant, the windward swing will induce a 
lift force on the sail

2:'o = ^ 26

The actual instantaneous lift would be

iX 27

where r, according to Fig.19 represents the ratio of the 
actual value of the instantaneous lift to that of the 
quasi-steady lift L^, and X is the phase angle by which 
the actual lift leads or lags the quasi-steady value.

When a sail moves through a distance dy the work 
done by the lift is

dW = •L^dy = ■^a at at 28

since, by definition, work can be expressed as

W L-y cosX

where X is an angle between the force and displacement, if 
X = 180° cosX = -1.

It must be recognized that when and ^ are given 
in the complex form as in Eqs.25 and 27, the physical 
quantities of and ^ are represented only by the real 
parts.

Therefore Eg.28 can be rewritten as
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dW = -Re * Re [^] dt 29

Substituting Eqs.25 and 27 into 29 yields

iwt
dW = -Re[%pU^ASA 8a U r*e^ ]Re[icoy^e^“ jdt

8CUAS^^ Re[iwy^re^(^^ ^ ^))Re[iwy^e^^^jdt 30

Taking only the real parts of Eq.30 and integrating over the 
complete cycle of oscillation 2it (whole period T) , we obtain 
the total work done AW by the wind on the unit area of the
sail, AS_y

. 8C wy r
AW = -/ I ^2 —rr" ' —Fi— cos (wt + X) • uy^cosut I dt8a u

2^
AW = —^ UAS. —r— (wy ) r/ cos(wt + X)coswtd(wt)

6 W A. oCt O ^

8C
AW = -2 pUAS^^ L 2wy_ r cosX o 31

We can see that the tapping of energy AW by the sail from the 
wind is proportional to (-cosX) therefore if < X < y work 
is negative i.e. the oscillating sail will lose energy to 
the airstream. The system will be stable or, in other words, 
aerodynamic damping will be positive.

Referring to actual tests and Fig.19, it is seen that 
the condition of stability < X < y in close hauled 
conditions is satisfied. Within the limits of the Strouhal
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number investigated in the wind tunnel and met in practice, 
the phase angle X is not very far from 0. So, the expected 
stabilizing effect of the sail on the rolling motion should 
be strong; this was confirmed by experiments. Analysing 
Eq.31 one may anticipate that the higher AR, shorter period 
of oscillation, greater sail area, stronger wind, the more 
effective will be the sail as a damping device.

This conclusion, as deduced from Eq.31, is in
agreement with the previous one based on the static tests
incorporated in Figs.11, 14 and also with Eqs.ll and 14.
The work done by an oscillating rig will be negative if
the forces developed by the sail are related to the rising

9CL ,slope of the C_ - a curve i.e. 3a is positive.

4.3.2 Some remarks about damping efficiency of the fin-keel
and rudder
In down-wind sailing conditions, when a large 

amplitude of rolling can be induced for aerodynamic reasons, 
the hydrodynamic damping efficiency of the hull becomes an 
important factor limiting the degree of instability. High 
damping efficiency is desirable. It is justified to assume 
that the predominant role in producing positive damping is 
played by the action of appendages, the fin-keel proper or 
centreboard and rudder and also their configuration.

At the moment there are no experimental data 
facilitating an estimation of damping efficiency of the 
appendages. However, Eq.31 may provide some clue to the 
problem.

The total work done on an oscillating aerofoil or 
hydrofoil by the stream, as expressed in Eq.31 can be 
estimated by integration of the unit work done by the 
lift on a strip element (AW) over the total area of the 
hydrofoil. The area of the appendages is therefore an 
important factor affecting damping and one can say that the 
modern tendency to reduce the wetted area of the fin in
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order to improve the boat's performance might lead to a 
drastic reduction of damping efficiency of the hull. This 
tendency is illustrated in Fig.20, which shows a typical 
modern One Ton Cup contender. The traditional shape of the 
underwater part of the hull is illustrated by a broken line.

Since the aspect ratio of the 'shark's fin' is bigger3CTjthan the traditional one, the value of , which enters 
Eg.31, should be affected advantageously. So losses in 
damping efficiency due to reduced wetted area may be 
compensated to a certain extent by the effect of increased 
slope of the - a curve. However, the higher the aspect 
ratio of the fin-keel, the more probable it is that the tip 
will reach a stalling condition at the extreme angle of 
rolling thus giving rise to a large hysteresis effect.

Hysteresis may be defined as a lagging or retardation 
of an effect (in this case lift) behind a change in the 
influencing mechanism which causes the effect. In general 
the hysteresis phenomenon is exhibited by a system whose 
state (i.e. the forces developed) depends on its previous 
history. This is clearly shown by Photo 3, in which it can 
be seen that fully separated flow persists even when the 
angle of incidence is being reduced to zero.

Assuming that the total lift generated by the
oscillating hv^rofoil is related to the rising slope of the
L curve, so —^ is positive, one can expect that the work dot
done on the system will be negative, as shown in Fig.21.
This negative work, -W, would correspond to positive damping 
or positive stability. If an oscillating hydrofoil or a 
part of it approaches or exceeds the stalling angle and 
becomes negative, one should expect a hysteresis loop with 
positive work, +W (shown in Fig.21). This corresponds to 
negative damping. In such circumstances one may expect 
that the total damping efficiency of the hydrofoil will be 
reduced, depending on the area of the hydrofoil affected 
by the stalling conditions.
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Assuming that for the yacht shown in Fig.20a the 
maximum depth of the fin-keel is 6.2 feet, the period of 
rolling oscillation T = 3,5 sec., the boat speed = 1.2/lwl 
1.2/26,7 = 6,2 knots = 10,5 ft/sec, one can calculate the 
approximate instantaneous maximum angle of incidence at the 
tip of the fin-keel for the angle of roll <{) = 30°.

The maximum angular velocity induced by the roll will 
be

P = 2tt 30- TT
180 0,94 rad/sec

The maximum linear velocity v at the tip will be

V p X 6.2 = 5,8 ft/sec

so that the instantaneous maximum angle of incidence would 
be in the order of

tan ^ ^ ^ = 29 degrees

Whether or not the tip of the oscillating fin-keel reaches 
stalling conditions at so large angle of incidence cannot be 
answered without tests. The experiments described in (27, 
28) suggest that the hydrodynamic forces developed on a 
hydrofoil oscillating sinusoidally at or near the stall vary 
in a periodic but nonsinusoidal manner. The form of the 
periodic variations of the fundamental lift component and 
the subsequent damping efficiency depends on the Strouhal 
number, the amplitude of oscillation, the shape of the 
hydrofoil, and the Reynolds number.
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Apart from damping efficiency considerations of 
the fin-keel proper, there is also another aspect of the 
same problem, namely the interaction effect between the 
fin-keel and the separated rudder. When the fin-keel is 
swinging continuously from port to starboard as shown 
schematically in Figs.16c and 20b, relevant eddies are 
being detached alternately from the trailing edge of the 
fin at a practically constant rate for a given velocity of 
the flow Vg (U). The double row of vortices and the velocity 
fluctuation induced by them within the wake will affect the 
oncoming flow relative to the rudder and subsequently the 
forces generated by the rudder. In some critical conditions, 
depending on vortex spacing and vortex intensity, the 
effectiveness of the rudder may be reduced, both as a steering 
device and as a roll damper. One might even anticipate a 
possibility that the oscillating velocity within the wake 
may set up a component of rudder force in phase with the 
rolling velocity. In this extreme but quite probable case 
the rudder may work as a roll magnifier.

Due to the very peculiar and complicated character of 
unsteady aerodynamic and hydrodynamic reactions being 
generated on a rolling boat, and their mutual interactions 
and setback effects, in some sailing conditions, an energy 
gap or energy deficit may occur. In other words, the energy 
input to the system cannot be matched by the energy 
dissipation; the amplitude of rolling will then build up 
rapidly.

4.3.3 Flow behind a stationary and an oscillating cambered 
plate. Water-channel experiments
When a flat or cambered plate or a cylinder, moves 

through a fluid with its length normal to the flow direction, 
vortices are shed into the wake periodically forming the 
well-known Farman vortex trail. This phenomenon, which has 
been observed by various investigators through centuries
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Leonardo da Vinci (see Fig.22), Strouhal, Bernard, Karman 
and many others, is still far from being completely under­
stood. However, the basic mechanism explained in a way by 
Karman (1911), who made a stability analysis of the vortices 
being formed in a certain geometrical pattern, is fairly 
well known, at least for a stationary or non-oscillating 
body. Each time a vortex is released into the wake, an 
unbalanced transverse force Y acts on the body (see Fig.23), 
apart from the normal force component X. Whether the 
surrounding fluid is air or water does not change the basic 
physical principles nor the mathematical relations involved 
in the theory. The generation of vortices alternately on 
either side of the cambered plate, as shown in Fig.23, 
proceeds in accordance with a basic theorem of aerodynamics 
which states that the circulation around any closed curve 
within a fluid must remain constant with time (21, 24, 30).

With a vortex swirling in the direction shown in 
Fig.23, close behind an edge of the cambered plate, there 
is instantaneous circulation developed round the plate. An 
enlarged picture of this edge vortex being formed is presented 
in Photo 4, (32) which depicts the process of growth of the 
vortex:- small scale undulations which form a kind of 
vortex sheet are rolled up and superimposed upon a big-scale 
circular vortex. The presence of this vortex and the induced 
circulation produces a differential static pressure component 
resulting in a transverse force Y pushing the plate in the 
direction Y perpendicular to the basic flow direction X.
The circulation around the unit span of the plate varies 
continuously from +r to -r.

An oscillating transverse force +Y in a direction 
away from the last vortex has a frequency equal to the eddy 
formation rate. For two-dimensional flow and a stationary 
plate, it was found (25,29) that the frequency, f, with which 
the vortices are shed from one side, is determined by the 
Strouhal number expressed as:
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f • c 
. U = 0.15 0.18

where f - vortex shedding frequency is given in cycles/sec. 
c - width of the body in (m)
U - undisturbed flow in (m/sec) - or any consistent 

units.
Recent experiments (33,34) revealed that the vortex shedding 
behaviour is not uniform in the spanwise direction and the 
complete correlation based on the Strouhal number can be 
assumed only over a small portion of a blunt body in two 
dimensional flow. It was found that the velocity 
fluctuations within the wake recorded simultaneously at 
two different points z^, z. along the span P resembled each 
other in character and period but were out of phase at a 
large separation (z^ - z^).

Records of velocity fluctuation (measured by hot-wire 
anemometers) presented in Fig.24, taken from Page, Johansen 
work (25), show that even for the same point in the wake the 
velocity fluctuations do not appear to be harmonic, although 
they are periodic in character.

The random velocity fluctuations at various points
Zg along the plate, being a function of spanwise 

position and time, will of course affect the total transverse 
force Y as well as the moment acting on the entire plate.

Letting Y be a total instantaneous force acting on 
a plate of length P and AY be a local instantaneous force 
acting on a segment dz, the total force Y can be expressed

.Y(t) /
o

AY (z j t) dz

The integration cannot, however, be performed easily 
since AYj^(Zj^t) and AY2 (Z2t) at two different points along the
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span, apart from being complicated functions due to fully 
separated flow conditions, do not depend on and Z2 only.
but also on the difference Az z^. This in turn is a
function of many variables the significance of which will 
become clear later, on the basis of experiments.

The mechanism affecting the magnitude of the force 
and also the spanwise phase lag in vortex development within 
the three-dimensional wake becomes more complicated when the 
plate, being free to oscillate with its own frequency, begins 
to oscillate under the influence of the periodic transverse 
force Y (Fig.23). Once set in motion, the plate appreciably 
modifies its wake of vorticies, their intensity and 
distribution.

With the hope of gaining a better understanding of 
the factors which determine the influence of the wake on 
the aerodynamic (or hydrodynamic) reaction of the oscillating 
plate (airfoil), two dimensional, water-channel experiments 
were carried out. In a way the experiments and the idea of 
the apparatus shown in Photo 5 were inspired by the drawing 
shown in Fig.22. A cambered plate of 2" chord was given a 
controlled oscillatory motion across 12" width water channel 
by means of a slider-crank mechanism. The movement of the 
plate being 1" either side of the centreline of the water 
channel. In order to make visible the vortex pattern being 
formed behind the plate, aluminium powder was scattered 
upstream on the water surface. Photo 5 and 6 show several 
pictures taken by the camera situated above the oscillating 
plate, at two different velocities of water flow 4,0 inch/sec 
and 8,0 inch/sec. The amplitude of oscillation was constant 
= 2 inches, and the period T = 2.5 sec. The angle of 
incidence of the plate relative to the flow was 90° which
corresponds to 8
downwind.

A 180 in the case of a boat sailing

From photographs and direct observation of the wake 
pattern it appears that the oscillating plate imposes its
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own frequency on the vortex shedding and modifies the phase
relationship relative to its own oscillation. The wake 
consists of a more or less orderly series of vortices, as 
shown in Fig.23, which alternate in position about the X 
axis. Between the two rows of vortices there is a velocity 
induced in the negative X direction indicated in Fig.23 by 
the arrows and a broken line. The part of the wake affected 
by this velocity oscillates from one side of the X axis to 
the other as the vortices alternately form and detach from 
the plate edges. As the plate swings from one side to the 
other it passes close to the vortex left in the previous 
swing, and this vortex can have considerable effect on the 
circulation round the plate and also on the phase relations.
The higher the velocity of the flow, the more vigorous is the 
circulation and induced velocity within the wake and the more 
pronounced should be the modifying influence of the wake on 
the circulation round the plate and subsequently on the forces 
and moments arising from the motion.

A similar situation, but a much more complicated one, 
might be observed in the case of a rolling sail, when the 
amplitude of oscillation is not constant but increases 
continuously. The sail, being a three-dimensional, tapered 
airfoil oscillating in a rotary manner, is bound to develop 
a nonuniform wake. The wind tunnel investigation of the 
wake behind the rolling sail by means of a grid tufted at 
2 inch intervals revealed that the vortex wake in a plane 
parallel to the sail plan is spiral or helical in character 
and circulates clock-wise or anti-clock-wise, depending on 
the direction of sail swing.

The wind tunnel and water channel experiments suggest 
that the oscillations identified with vortex shedding at the 
beginning of the motion of the sail can be classified as 
forced oscillations. In this case the alternating forces 
associated with vortex frequency w, that initiate the 
oscillation can be related to the Strouhal number and the



wake itself may be regarded as a "fluid oscillator" which 
in a way is responsible for "ignition" of the oscillatory
motion. Once the system is set in motion, the alternating 
forces that amplify and sustain the oscillation are created 
and controlled by the oscillating system itself. Since 
the periodic aerodynamic force is automatically resonant with 
the natural frequency of the system, w we can distinguish 
this kind of oscillation from a forced one as 'self-excited: 
Unstable oscillation occuring in the case of a rolling boat 
may therefore be defined as self-excitation.

Fig.12, which presents a record of behaviour of a 
1/5 scale Finn rig, illustrates this point; the system, 
initially in equilibrium begins to oscillate, being forced 
to do so by the "fluid oscillator" i.e. wake, which produces 
an unbalanced transverse force independently of the motion 
of the system.

Referring to the rolling instability of sailing boats, 
one should realise that the basic characteristic of self- 
excited systems, which make them difficult to handle 
mathematically, is that the forcing function in Eq.7

I„({) + b^ + R({) KA

is of a very complex nature, being affected by a number of 
parameters such as the course sailed the angle of trim 
5 the twist of the sail, the aspect ratio, and so on. 
Therefore at this stage it does not seem to be practical 
to search for the direct, purely analytical solution to 
the Eq.7. It can be done experimentally using the apparatus 
as designed and shown in Fig.5, which incorporates the 
essential features of the real system and allows systematic 
investigation of the most important factors which can be 
held under close control, measured and compared.
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5. THE WIND TUNNEL EXPERIMENTS

The crucial questions to be answered by the wind 
tunnel experiments were:

1. in which conditions is the "Finn" type rig, as 
shown in Photo 1 and Fig.6, stable in rolling; in which does 
it become unstable and to what extent is the theory 
incorporated in Eqs.ll, 14 and 31 in agreement with the 
model behaviour.

2. what is the relative influence of basic parameters 
such as:

angle of heading
angle of trim of the sail 5^
wind velocity (Strouhal number S^)
twist of the sail
damping

on the rolling behaviour of the rig.
Since most of the parameters listed above (3^, 5 , 

twist and damping) are in fact controlled to some extent by 
the helmsman, it is believed that a better understanding 
of the essential factors and phenomenae involved in rolling 
instability should be of some practical value.

5.1 The test procedure and results
5.1.1 Calibration and magnetic damping tests

The angle of roll or angle of heel 9 measured by 
means of a rotary pick-off (see Photo 2) was recorded by 
an ultraviolet galvanometer recorder. Fig.25 gives the 
results of calibration tests, angular displacement * 
against the response of the recorder. Linearity error or 
departure from the ideal straight line expressed as a 
percentage of the output for a given angle of heel was 
of the order +4%.
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Figs.26, 26a and 26b present the records of damped 
oscillations for various degrees of magnetic damping, with 
the rig attached to the apparatus and no wind. The magnetic 
damping is based on the effect of eddy-currents which are 
generated when the aluminium plate swings back and forth 
between the poles of an electromagnet (see Fig.5). As the 
aluminium disc moves through the gap of the electromagnet 
a current is induced in the disc producing a force which 
opposes the motion in such a way that the retardation is 
proportional to the angular velocity, or in other words, 
is viscous in character. By changing the current or the 
width of the gap between the poles, one can change the 
intensity of damping. The period of oscillation T = 1,45 sec. 
was not noticably affected by the changes in damping 
introduced in the course of the experiments. This is in 
agreement with Eg.33 discussed in the Appendix.

Fig.26c shows the relation between the amount of 
magnetic damping (m.d.) expressed in arbitrary units 1, 2,
3 and the logarithmic decrement 5 calculated on the basis 
of Eqs.28 and 30a (Appendix) used to analyse records in 
Figs.26, 26a and 26b. Zero magnetic damping (m.d. = 0) 
means that the recorded damping (Fig.26) was due to air 
friction generated on the sail and the mast only. As 
expected, the damping actually recorded was basically 
viscous in character, however a certain departure from 
linearity was observed due to the fact that the oscillating 
sail (without wind) manifests a fluttering tendency. This 
was, of course, absent during "normal" experiments with 
the wind on.

5.1.2 The influence of the heading angle 8^ on rolling
Figs.27a,b,c,d,e, give examples of rolling 

oscillations for various angles from 145° - 200°. The 
tests were performed at constant wind velocity = 3,05m/sec, 
constant angle of trim of the sail 5m 85 and constant
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magnetic damping m.d. = 1,0 which corresponds to the 
logarithmic decrement 5 = 0.078 i.e. the system was only 
slightly damped. At the beginning of each run for the 
selected 8 the rig was given an initial displacement 
(j) = -5° and then released.

Within the scope of = 145 - 180 degrees the recorded 
oscillations are divergent and the model clearly manifests 
instability in rolling due to the action of aerodynamic 
forces. It is apparent that the energy input to the system 
is not matched by the energy dissipation (limited in a way 
by the amount of available positive damping), therefore the 
amplitude of rolling grows continuously.

In Figs.27 and 27a the exponential envelopes are 
plotted so that they fit the linear equation:

d) = (f) eT Tq
- ^ /2tt ) wt coswt

(see Appendix Eqs.24 and 31) in the best possible way.
The oscillation represented by this equation is made 

up of the product of two terms or curves, the cosine curve 
defined by wt and the exponential curve defined by the 
logarithmic decrement 5. One can notice that the actual 
behaviour of the system, which is basically non-linear, 
differs from the linearised one by less than 10 per cent.

It was regarded, for practical reasons, that such a 
linear approximation of the system response as shown by 
the exponential envelopes can be accepted in order that 
the linearised logarithmic decrement 5 may be used as a 
convenient index of system instability. This is shown in 
Fig.27f. The negative value of 5 is associated with 
instability, and when substituted into the equation given 
above produces divergent oscillation.
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The degree of instability being a maximum at 
= 165°, decreases when increases. By setting the 

sail model in the position of a boat sailed slightly "by 
the lee" (g^ = 200°), the rig becomes dynamically stable 
and rolling has a definite tendency to die out with time.
This behaviour is recorded in Fig.27e which shows the rate 
of rolling decay when the initial displacement was 5 degrees 
and 20 degrees. When g_ is greater than 180° the excitation 
element predominates only until a certain amplitude is 
reached and then an energy balance occurs between the self­
excitation and the dissipation elements. In a condition 
when damping is capable of balancing the energy input due 
to the sail action, the system reaches a limit cycle steady- 
state motion of finite amplitude. This type of behaviour 
shown in Figs.27b, c, might be regarded as a transition 
from negative to positive stability. The system is unstable 
at small amplitudes but becomes stable at larger ones. The 
magnitude of amplitude * at which the limit cycle is reached 
decreases when g. increases. Fig.27f depicts the relationship 
between g_ and the logarithmic decrement 5 used as an index 
of stability.

5.3.1 The influence of trim angle 5^ on rolling
Figs.28a and b show records of oscillations for various 

angles of the sail 5 measured between the boom and the axis
of rotation. The tests were performed at constant wind
velocity V, 3,05 m/s, constant 3^ ^ ill, o ,
magnetic damping m.d. = 1.0.

A 180 and constant

The rolling instability was most spectacular at a 
large angle of trim 5^ = 85°. By gradually hauling in the 
mainsheet and decreasing 5 , the degree of instability was 
drastically reduced. At 6^ = 70° the rig reaches a kind of 
neutral stability in rolling. Further pulling in the boom 
encouraged a positive stability, i.e, the aerodynamic force 
developed on the sail acted as a suppressor of rolling.
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producing positive damping. The curve plotted in Fig.28c 
shows that the damping efficiency of the rig increases very 
rapidly when the sail setting 5^ is reduced below 70 degrees.

The aerodynamic positive damping is quite profound, 
particularly when the initial amplitude of rolling is 
large (see Fig.28b, 5 = 65°). The recorded response
indicates clearly the existence of a certain randomness in 
the rolling motion. The rate of amplitude decay, which is 
a measure of positive damping, is not uniform or linear 
but passes through cycles during which damping efficiency 
increases and decreases periodically.

Fig.28d shows the rolling oscillation for 5m 85'
recorded in the same conditions as before (i.e. = 180°,
V, = 3.05 m/s and m.d. = 1.0), but the twist of the sail was 
increased by easing the tension in the kicking strap. One 
can see that the initial instability at the beginning of 
the rolling motion is much higher than in the case when the 
twist was relatively small (see Fig.28a) and the rig behaves 
differently. After several swings, during which the amplitude 
increases rapidly, the rig reaches a limit cycle with steady- 
state motion of finite amplitude of about 22 degrees.

5.1.4 The influence of wind velocity on rolling
Figs.29a, b and c represent the records of divergent

oscillations for three different wind velocities, V, 3.05,
3.66 and 4.27 m/sec, which correspond to the Strouhal numbers 
0.55, 0.46 and 0.39 respectively. During the tests 3^ = 180°, 
5 ^ = 85° and m.d. = 1.0 were kept constant.

Applying the same method of linearization of the 
system response as before (§5.1.2), one can find that the 
instability expressed by the logarithmic decrement 5 is 
greater at lower wind velocity. This rather surprising 
result shown by the curve plotted in Fig.29c indicates 
that the Strouhal number is an important parameter indeed.
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5.1.5 The influence of damping on rolling
Figs.30a, b, c represent the records of rolling 

instability affected by damping of various intensity, 1.0-3.0 
(see Fig.26c). During the tests = 3.05 m/sec, = 180° 
and 5 = 80° were kept constant. As expected, the combination 
of resisted rolling due to the action of viscous damping and 
self-excitation due to sail action must produce different 
response, depending on the amount of positive damping 
introduced to the system. The higher the degree of magnetic 
damping, the less rapidly the amplitude of rolling builds up 
and the lower is the final amplitude reached in limit cycle 
steady state motion. There is a certain critical damping 
which makes the system dynamically stable. This is shown 
in Fig.30d.

5.2 Anti-rolling sail
An attempt was also made to devise an anti-rolling 

rig which could produce a positive aerodynamic damping.
Fig.31 and Photo 7 show some details concerning the anti­
rolling sail- It is a tall and narrow sail, much shorter 
in the foot than any head sail would be, and its area is 
about 20 per cent of that of the mainsail. The tack can be 
taken to a point on the gunwale or a spreader (strut) on the 
opposite side to the mainsail. It seems to be essential for 
the damping efficiency of the anti-rolling sail that there 
should be no excessive gap between the mast and the "leach" 
of the sail, which is attached to the foreside of the mast. 
The damping characteristics of the rig depend on the angle 
of trim of the anti-rolling sail 5 ^ relative to the centre­
line of the hull (or axis of rotation X^). This is shown 
in Figs.32a, b, c, d. When 5^ is greater than 45 degrees 
and less than 110 degrees, the rig becomes dynamically stable 
even in the absence of magnetic damping. The tests were 
performed at = 3.05 m/sec, g^ = 180° and 5^ = 85°. The 
damping efficiency of the rig represented in Fig.32d is
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greatest when the angle of trim of the anti-rolling sail 
S r = 65 - 70 degrees. The effectiveness of the anti-rolling 
sail is greater at a large amplitude and this tendency is 
shown in Fig.32b (upper records) by the two linearized 
exponential envelopes plotted in the sine curves representing 
actual response of the system to the initial displacement 
<}>Q = -20°. Experiments with the anti-rolling sail attached 
to the "Dragon" type rig plus spinnaker (see Photo 7) show 
the same pattern of behaviour. When the wind was switched 
on, the whole rig stood firm and upright, with scarcely any 
tendency to oscillate.
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6, DISCUSSION OF RESULTS

An inspection of the recorded behaviour of the 
rolling rig presented in Fig.27a, b, c, d and e clearly 
suggests that the nature of the forcing function in 
Eg.7:

I + b* + R* =

plays a key role in determining the type of stability of the 
physical model of a sailing boat. In fact one can distinguish 
three basic types of model behaviour. They are shown in 
Fig.33. The curve A depicts dynamic instability, the 
oscillations being self-excited. The curve B shows typical 
damped oscillations when the system becomes dynamically stable, 
so the rolling has a definite tendency to die out with time.
The third, a boundary case between the two A and B, occurs 
when the rolling oscillations initiated by the external 
moment neither grow nor decay with time, being of constant 
amplitude. Such a type of model behaviour, which we will 
call C, is very close to the marginal case shown in Fig.27d.
A certain modification to this type of stability, a 
combination between A and C patterns, very interesting from 
the mathematical point of view, is shown in Fig.27b, where 
after a certain period of time during which the system 
manifests dynamic instability, a limit cycle steady state 
motion of constant amplitude is reached.

All the other recorded oscillations described in §5.1 
and shown in subsequent Figs.28-32 can be classified as 
belonging to one of the basic types. A, B, C, so that the 
discussion of all experimental results can be reduced to 
these fundamental patterns of model response.

The physical model of the rolling rig can be represented 
in the form of a block diagram in which parts of the system, 
including the wind as a source of energy, are denoted simply 
by blocks as follows:-
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K, b ^A' ^ A' ^t' ^ m
K,

Non-oscillatory 
steady flow 
of velocity V

The mutual interaction or causes and effects are marked by 
arrows 1, 2, 3, 4, indicating the direction of action.

The rolling hull as a damping part of the system fixes 
the frequency of oscillation cod which is a function of the 
moment of inertia I , the stability factor k, and the 
hydrodynamic damping factor b. The solution of form

bt
(j) = (j)^e 21^ coscodt 32

describes the natural behaviour of this part of the system 
(see Eg.24 in the Appendix). Since, for moderate damping, 
the differences in the frequencies co^ and co^ are negligible 
(see Appendix Eg.32 and 33) we can assume that w = w..

The sail as a resonant part of the system affects the 
amplitude of rolling which in turn is dependent on the internal 
constraints of the system, or interaction, marked by the 
arrows 1 and 2. The aerodynamic forcing function K_ in Eg.7, 
being dependent on a number of factors:- sail area S^, 
course sailed 3^, Strouhal number S^, angle of trim 5 and 
so on, is such in character that it may transfer energy from 
the external source, i.e. the wind, to the system, as 
indicated by the arrows 1 and 3, or, it can extract energy 
from the system and dissipate it into the airstream as 
indicated by the arrows 2 and 4. Therefore there is a 
"feed back" between the hull and sail.

Let us assume as a working basis for discussion that 
the "driving" moment or forcing function in Eg.7 (which
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may be positive or negative) is proportional to the angular 
velocity <j) and, for the time being, is positive

K, 33

Positive means that the aerodynamic driving moment K_ is 
directed in accordance with the angular velocity * of the 
sail increasing the initial amplitude of swing.

Substituting Eq.33 into Eq.7 yields

+ (b b^) (|) + R(f> 0 34

or

I + b^* + R<j) = 0 34a

where the resultant coefficient b^ of the damping term is the 
sum of two parts: hydrodynamic damping coefficient b related 
to the action of hull and appendages (simulated by magnetic 
device in physical model) and an aerodynamic coefficient b_. 
Depending on the relative values of b and b. the resultant
coefficient b^^ can be negative or positive, 
to the linear Eq.34a is of the form

The solution

35

(see Eqs.21b and 24 in Appendix). The typical, actual non­
linear response of the system investigated and recorded in 
Fig.34 may be expressed by:

s t4 = (fi^e + c sinw^t 36
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where the second term, with modulating frequency being 
random in character, contributes on average less than 10% 
to the linearized response expressed by Eq.35. Since in 
our discussion the question of most interest is that of 
stability or instability, that is under what conditions 
the system manifests the oscillations with ever increasing 
amplitude as time proceeds, we will ignore the relatively 
negligible, non-linear term in Eq.36 and concentrate our 
attention on linearized response expressed by Eq.35 in 
Fig.34.

6.1 Linear type of system behaviour
Referring to Eqs.34, 34a and 35 we can find that the 

solution will be sinusoidal and damped i.e. system dynamically 
stable if |bp = (b - b^)| > 0 with positive resultant damping 
coefficient b_ (which indicates that hydrodynamic damping 
predominates), the damping moment does negative work, always 
opposed to the angular velocity of the hull appendages. 
Positive coefficient b_ when substituted in Eq.35 will produce 
oscillation in which each successive rolling has less 
amplitude ^ and less kinetic energy. This is shown by the
curve B in Fig.33. If lbR (b < 0 the solution will
be sinusoidal and divergent i.e. the system will be dynamically 
unstable. Negative damping coefficient b^ indicates that the 
aerodynamic excitation predominates and the self-excited 
oscillation shown in Fig.33 by the curve A will develop and 
grow in amplitude with time.

In the case of negative damping the damping moment 
which is now a driving moment does positive work on the 
system, extracting energy from the external source i.e. wind. 
The effect of the negative damping term in Eq.34a may be
interpreted physically as an energy input term. If b^ = (b b,) —O,
the solution is simple harmonic, i.e. the rolling is of constant 
amplitude. This indicates that an energy balance between the 
dissipation and excitation elements is being reached, as 
shown by a sine curve C in Fig.33.
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These three cases discussed above and the resulting
linear pattern of model behaviour B, A and C shown in Fig.33
can be represented graphically in another way - on energy
dissipation-input basis. Assuming that the system is a
linear one, the dissipation of energy due to the damping
action of the appendages will, according to Eg.3, follow
a parabolic curve - when the energy lost per cycle is
plotted against the amplitude as in Fig.35. The energy2lost is a function of amplitude squared (f) and the
damping coefficient b. If the negative damping moment due 
to sail action (defined by b^) is also linear, another 
parabola will designate the energy input cycle.
The system will behave as self-excited or possibly damped 
according to which parabola lies higher; this in turn 
depends on relative values of b and b_ coefficients.

6.2 Non-linear type of system behaviour
In some cases, as illustrated in Figs.27b and 27c, 

the energy input to the system may not be linear and therefore 
one can expect that the energy input and the energy dissipation 
curves intersect. This is shown in Fig.36. If an initial 
amplitude happens to be , more energy is put into the 
system, due to sail action, than is dissipated in damping, 
due to hull action ^ ^-(b)^ so the amplitude grows.
On the other hand, if the initial displacement happens to 
be 4)2, there is more hydrodynamic damping than aerodynamic 
self-excitation i.e. E_^^^ > E^^^ ^ and the rolling amplitude 
will decrease. In both cases the^amplitude tends towards 4^, 
where energy equilibrium exists. The rolling rig thus 
executes harmonic or steady-state limit cycle oscillations.
This trend is clearly seen in Figs.27c and 27b. The actual 
relation between the aerodynamic damping coefficient b^ 
and the amplitude varies from case to case, as shown in 
Figs.27b, 27c, 28d, 30a and so on, however the basic reason 
for that type of behaviour is the same - the resultant
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coefficient of damping term of Eg.34a must be negative at 
small amplitudes and becomes positive for larger ones. If 
we locate this kind of non-linearity in the aerodynamic term 
of the equation of motion only, the simplest mathematical 
expression covering the case will be:

Ka = A A" 37

when substituted into Eg.7 gives:

I^(f> + b<J) (b^ - b^4)^)(j) + K(|) = 0 38

or

+ (b b^ + bA^^)i + h(j) = 0 38a

" , 2An instability will occur if |-b^J > b + b^*

Putting

39

where b^ is a function of angular velocity 4> only, one can 
find that the system will be unstable at small amplitude if

b < O o and -b^l > b%*^

The Eg.38a can now be written:

.. 2 •+ (~b^ + b^<J) ) (j) + R(j) =0 40
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The damping term coefficient (-b^ + ) as a function of
(j) is shown in Fig. 37. The damping parabola cuts ({> axis 
and zero damping occurs at a certain critical amplitude

o
cr /hi

II 2For (|) < i|» the resultant damping (-b^ + b^i{) ) is less than 
zero, therefore unstable oscillations will be induced. Mhen 
({> > (})^^ damping becomes positive so the oscillations will 
tend to die out with time.

Referring to Fig.37 and Eg.40, one can notice that 
by changing the magnitude of damping coefficient b , which 
is the sum of hydro and aero coefficients b and b^ 
respectively, a series of damping parabolas may be drawn in 
such a way that they are bodily shifted up or down. For 
example, by gradually increasing the value of positive 
hydrodynamic coefficient b i.e. reducing b^, one can plot 
several parabolas shifted bodily upwards as indicated by the 
dashed curves. This, of course, will affect both the critical 
amplitude ij) at which a balance between positive and negative 
damping is reached and also a final amplitude at which limit 
cycle steady state oscillation occurs. The experiments 
depicted in Figs.30a, b, c and d confirm such a conclusion.
By increasing the magnetic damping from 1,0 to 3,0 (every 
0,5 unit of damping), the system initially unstable within 
the limits of amplitude being investigated (Fig.30a), 
manifests less and less instability when damping increases, 
(reaching the limit cycle at a smaller and smaller amplitude 

<j) = 17°, 14°, 9°) , and finally becomes stable. The last 
record in this series shown in Fig.30c suggests that the 
damping parabola drawn in Fig.37 must cut the ordinate above

Ithe origin of coordinates, and therefore b^ = b - b^ is 
positive i.e. the system is positively damped from the 
beginning of the motion.
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6.3 Generalization
From the analysis of the approximate solution to Eq.40, 

given by Eg.41 (see Appendix §A4, Van der Pol Equation)

(j) =
2/ " • sin(w^t + n)

/ 1 + e-e (wot + c)
41

where

e = ^x ^o
negative damping moment 

stability moment

one may infer that in the case of non-linear damping (described 
by the second term in Eq.40), the degree of system instability 
might be measured in two different ways.

• Firstly, it can be measured by the final amplitude 4) 
at which the limit cycle steady state oscillation is reached- 
This final amplitude given by the numerator in Eg.41 is 
twice as large as the critical amplitude

cr Vb!

at which negative and positive damping just balance (see 
Fig.37). The greater the absolute value of the aerodynamic 
coefficient b. (negative damping) relative to the hydrodynamic 
coefficient b (positive damping) i.e. the greater the
negative value of b b - b_f the larger will be the final
amplitude. This signifies the importance of both aerodynamic 
and hydrodynamic factors contributing towards dynamic 
instability. In this particular respect, the hydrodynamic 
factor means mainly a damping due to the action of appendages.

- 70 -



Secondly, the degree of system instability can be 
measured by the rate of growth of the amplitude (logarithmic 
increment 6) before the steady final amplitude is reached. 
This rate, being determined by ratio e = located in the
denominator of Eg.41, exposes clearly the significance of 
the moment of inertia of the system. The lower the moment 
of inertia, other factors being equal, the higher will be 
the rate of growth in amplitude during that period before 
the final amplitude is reached.

One may make a justifiable generalization by saying 
that basically the physical model of the rolling rig 
investigated can be considered as a non-linear system. The 
mathematical model expressed by a non-linear Equation 38a 
represents with reasonable accuracy the physical model 
covering both the linear type of model behaviour and non­
linear as well. This point will become clear if we compare 
the two Equations: the linear 34 with the non-linear 38a 
written for convenience one under the other:

+ (b - b^) (j) + K(j) 0 34

+ (b - b^ + + R* = 0 38a

„ 2The contribution of the non-linear term b^* in Eg.38a 
towards the "shape" of the oscillations depends on the 
magnitude of b" relative to b'. If b. is negligible, theA A ^
influence of the non-linear term b^<|) will only be noticable 
at a large amplitude, which for practical reasons was not 
investigated. There was no point in investigating the 
behaviour of the system much beyond a realistic amplitude 
({» = +25°, at which the boom of a full scale boat touches 
the water. The non-linear Eq.38a may be regarded as a 
reasonable mathematical representation of the actual
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behaviour of the physical model with sufficient accuracy.
This becomes evident when the maximum experimental amplitude 
is large enough to make the non-linear response noticeable.
A comparison of actual model response depicted in Figs.12 
and 27b with a graphical representation of the solution to 
the Eg.38a (expressed in non-dimentional amplitude, see 
Appendix Eg.47) shown in Fig.38 should clarify further this 
point. One may further expect that if the hydrodynamic 
damping b is small relative to aerodynamic excitation 
coefficient b' the critical amplitude may become too 
large, to be recorded in experiments. The maximum 
experimental amplitude permitted in the course of tests 
was + 30 degrees.

Figs.30a and b, which are in fact regarded as self 
explanatory, may lead to a general conclusion that stable 
oscillations of final amplitude in a non-conservative system
are possible only if the system is a non-linear one.

The guestion which might be answered now is:- why the 
damping due to sail action being negative at a small amplitude 
may become positive at a large one? The discussion incorporated 
in §§4.2.1 and 4.2.2 leads to a conclusion that the rolling 
rig will be dynamically unstable if the negative slope of the 
L ~ a curve is greater than the ordinate of the drag curve.
Such a conclusion was supported by the aerodynamic 
characteristic of the rig shown in Fig.11. Another 
conclusion derived on the same basis was that the same 
aerodynamic forces and process which may translate energy 
taken from the wind into incipient rolling can also act as 
a suppressor.

Let us consider in detail some geometrical relations 
which may serve as a clue, assuming that the rolling rig is 
set at g_ = 180°, a = 90° and apparent wind = 3,05 m/s.
This simple case is shown in Fig.39. The model set in such 
a condition is dynamically unstable. Any departure from 
initial static eguilibrium will immediately encourage an
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alternating aerodynamic force (or moment) which will 
magnify the amplitude during a series of subsequent swings 
to port and starboard. Rolling will, of course, modify 
both the instant and local angle of incidence a of various 
sections along the sail span by an amount +Aa, depending on 
amplitude ({), velocity and a distance z from the axis of 
rolling.

Assuming further that w. = 4,35 rad/sec and ^ = 10°,
let us estimate the corresponding maximum variations in a
for two sections of the model sail A and B, which are 0,5
and 1,0 metre above the axis of rolling. Calculations ,
based on relations, written for convenience next to Fig.39,
show that Aa = 7° for section A and Aa = 14° for max max
section B, i.e. the maximum variation in a for the lower
section A will be 90° + Aa = 83° - 97°:— lu and 76° - 104° for
the upper section B.

. According to Fig.11 such a variation in the angle of
incidence a is still within the instability limit signified
by the shaded area. One can therefore expect that there
will be an energy input during the full cycle (swing). This
increases the amplitude of oscillation, and the increase will
continue until there is an excess of energy being tapped from
the air stream. At some large amplitude, say +30°, the
maximum variation in a for lower and upper sections of the
sail A and B are 90° + 17° and 90° + 37° respectively. The
upper part of the sail is now working in such a condition
that near the end of each swing, or in one side swing, the
energy is extracted from the wind, but in the middle of the
swing, or in the course of swing to the other side, the
energy may be taken away. This is due to the fact that 
JL 
8a + D is positive at a sufficiently small and sufficiently
large angle of incidence. Therefore, there must be a 
certain critical amplitude when the energy balance is 
reached, i.e. the energy extracted from the wind is equal 
to the energy dissipated into the airstream.
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In this example, which gives a rough physical 
insight into the mechanisms of non-linearity in aerodynamic 
excitation, an emphasis was put on the significance of the 
instantaneous angle of incidence a in order to relate the 
rolling motion to the aerodynamic characteristics of the 
sail as represented in Figs.7 and 11. Changing the range 
of variation of instantaneous angles of incidence a by 
altering, say, course 3^ or angle of trim 6 , one may affect 
the rolling instability. The experiments clearly confirmed 
such a possibility.

Of course, according to Fig.39 the variation in 
Vr (AVr) also matters, however, its significance is of 
secondary importance as compared with the effect of 
variation in incidence a.
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7. CONCLUSION

Concentrating attention on the possible practical 
application of the experimental results on the rolling rig 
to a full scale yacht, the conclusions may be summarized 
as follows. The rolling instability induced by aerodynamic 
forces can be reduced or eliminated in various ways. Some 
factors affecting a boat's behaviour and her tendency towards 
rolling instability can be directly controlled to some extent 
by the crew; some other factors being predetermined on the 
designer's desk may be beyond the command of even the best 
crew. More specifically:

1. The heading angle (see Fig.27f) has considerable
effect on rolling. The degree of instability, being a 
maximum at = 165°, decreases when increases. By 
applying a technique of sailing "by the lee" (g = 200°) 
the rig becomes dynamically stable and rolling will die out 
in time.

Sailing "by the lee" is always considered to be a 
cardinal sin on the part of a helmsman. Yet, according to 
wind tunnel findings, it may eliminate rolling. The danger 
of an unintentional gybe can be excluded by using a 
combination of foreguy and preventer, or kicking-strap, to 
effectively lock the mainsail boom.

2. The angle of sail trim 6 also acutely affects 
the rolling behaviour of the rig (see Fig.28c). The unstable 
rolling, being most spectacular at a large angle of trim, 
can be drastically reduced by hauling in the mainsail and
decreasing 6m Pulling in the boom to 5 = 65 encourages
a positive stability, i.e. the aerodynamic force developed 
on the sail acts as a suppressor of rolling in the case 
where the rolling is induced by wave action.

3. Wind velocity (or Strouhal number 
influences the instability in such a way (see Fig.29c)^ 
that there seems to be a critical wind speed for a given
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rig configuration which produces most conspicuous rolling 
(high logarithmic increment). In other words, heavy 
rolling may not necessarily occur in very "strong" winds, 
but rather in "moderate" winds. This problem is related 
to the sail area.

Certainly, carrying more sail area than is prudent 
when running vastly increases the aerodynamic input coming 
from a sail - a "rolling engine". When coupled with low 
inertia (light displacement) and inefficient hydrodynamic 
damping, such a combination of factors may stimulate wild 
and occasionally disastrous rolling. An inspection of these 
factors incorporated in Eqa.38a, 40 and 41 clearly suggests 
such a consequence. This point may be illustrated further 
by an example described by Adlard Coles in his book "Heavy 
Weather Sailing" (p.111-112)

"When we came to race Cohoe II in 1952, which was 
a season of fresh and strong winds, we found her 
fast in light or moderate breezes but she proved 
to be overmasted and overcanvassed in strong winds, 
and the world's champion rhythmic roller. This 
was partly due to her being designed to carry a 
lead keel, but having had an iron one substituted, 
as lead reached a peak price in the year she was 
built.

Accordingly, in consultation with her 
designer I had the sail plan reduced the 
following winter by cutting the mast at the 
jumpers and cutting the mainsail. The reduction 
in sail area was drastic, being equivalent to
two reefs .... the alteration greatly improved
the yacht. From being a tender boat she became 
a stiff one .... gone was the rhythmic rolling."
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4. Positive hydrodynamic damping seems to be of 
essential importance. Fig.SOd suggests that there is a 
certain critical damping which makes the system dynamically 
stable. The experiments justify the already expressed view 
that the modern tendency to reduce the wetted surface of 
the hull by cutting down the area of appendages in order
to improve the boat's speed performance, may lead to a 
reduction of hydrodynamic damping below an acceptable 
minimum imposed by the dynamic stability requirements.

One can expect that the energy input per cycle and 
subsequent rolling instability due to aerodynamic excitation, 
may under certain conditions reach its maximum. The actual 
hydrodynamic damping of the hull may not be viscous in 
character, i.e. proportional to the velocity of roll but, 
for one reason or another, its damping efficiency is a 
non-linear function of such parameters as amplitude, boat's 
velocity, configurations of appendages, etc. It may happen 
that in some unfavourable conditions the maximum aerodynamic 
input is far greater than the hydrodynamic damping. In 
such circumstances, the rolling amplitude will build up 
into one of those nightmarish affairs that both cruising 
and regatta sailors know only too well.

5. Anti-rolling sail effectiveness (see Fig.32d) has 
been proved beyond any doubt in the course of wind tunnel 
tests. Experiments with anti-rolling sail together with a 
spinnaker of "Dragon" type (see Photo 7) and a mainsail 
show the same pattern of behaviour as manifested by low 
aspect ratio "Finn" type rig.

The device could be quite easy to fit to a full size 
cruising yacht and there is nothing in the International 
Rule to prevent its use while racing.

If full scale tests confirm the wind tunnel finding, 
one can expect that the hazard of being knocked down by a 
rolling spinnaker, a real danger almost all yachtsmen face, 
would be greatly reduced.
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WATER CHANNEL EXPERIMENTS 
LOWER VELOCITY 0 = 180“)

Photo 5



WATER CHANNEL EXPERIMENTS 
HIGHER VELOCITY (10=180°)

Photo 6
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figure 1
Sailboat nomenclature. The fixed and body axes 
(Sign convention)
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©

Fig 3 Sailboat nomeciaturc
Pure yawing and swaying motion, 
(Sign convention)



upright0 position

View from astern

W- weight 
GZ- righting arm 
B - centre of buoyancy 
Gi- centre of gravity 
M - metecenter 

GM- metecentric Might

Pig. 4. Statically and lically .e rolling motion.
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V/ind^direction
Differjintial transducer

Xo

Rotary pick off ^

Flexure

V
Preload

Airbearing^ A'lllClpm. f Center of gravity -G 
Aluminium disc

------- Switch
-CriA The whole model can rotate about

Zo axisIZo
Weight of the rig -W=3./i9 9.81(N)=3A2N.
Distance OG = 0.115m
Moment of inertia relative to 0.
Ix = W:0G= 34.2 ■ 0.115 = 0.44 N.m.sec'

Fig. 5 ^ind tunne! model of the rolling rig.



J

Fi( 6 Finn type Sail Model used in rolling experiments
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L.D,-dL 
lbs d(X

Figure 7-
Run VII Small model, 1/5 Scale (Melinex).

Wind velocity = 7.26 m/sec = 25 ft/sec
Re ^bused on ^^an chord C - 0.39 = 2.05-10^
Note : In order to facilitate an immediate comparison of ^nd D0 L c)cCvalues the ^raph of %— is plotted with the negative values above
the abscissa, c)oC
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Figure 8
Runs VUI and IX Big model, 2/5 Scale (Terylene).



Xo

Fig. 9 Diegram of forces and velocities ; running before 
the wind, without and with swinging motion.

y :)



lA XA

\

XA TA

Wind Wmd

Fig. 10 Illustration of circulation reversal due to 
swinging motion.
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LD-jL Ik da

Fij. 11 Modified aerodynG^ic properties of the small mod
^see Fi^.7^ sc incidence = 70 - 110 degrees.

Note r In order to facilitaLe the immediate comparison of
B) B L^ and D values the ^raph of ^— is olotLed ^^th the

negative ibotc the abscissa.
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Fi5 • Recorded oscillation of the 1/5 scale Finn rig, 
Dynanhcally unstable rolling motion.

= 3.05 m/sec
^t 0.55

IGO'
6 m

I --S'.,'.-;' *. ^ - > (J..O/ l-xC L6



R0LL;N(4

13 Geometry of forces and wind velocities in 
close-hauled rolling condition.
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Fig. 14 Close houled force characteristics of Finn ri^ 
with different vertical positions of the boom.
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Fig. 15 Rolling in e close henled condition.

5rs=Apy State Lift-Lo
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:, .. l ' ' VELOCITY INDUCED

XT:, r-'. Jj-.'-'111-©-' c ©"'/ BY \ORTiCirY WiTHiF
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/WAKE CEXAg,6EXATEDl.
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Fig. 17 Ph85e Pv and Lift relations in a case oj 

oscillating airfoil.

Li (AFPAREVT HASS COriTfO&UnoH)

Lo(Quasi-srAVic lipt) 
-
La^WAKE iktluehce)

8 Vector dianram for ■hf Lift of an oscillat: ng airlo^

r(cosx + LsinA)
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lift ( translator^ oscillation \



Rolling 

'Vortex shed due to rolUng

Fig. 20



:V' !■

1

Pig. 22. Vortex ohedding studies by Leonardo da Vinci,

Fi f6:/ ' ^3. ^atcr channel experiments.
wake behind the oscillating plate and vortex 
distribution in t^o dimensional flow.
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Fig.24. Velocity fluctuation in the wake behind
the plate ('measured by hot-wire anemometer).
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Fig.26.Decrement curves for various degrees of magnetic 
damping m.d.(in arbitrary units^.
cTm =65° , no wind , ^L(initial displacement) = -20°
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Note: Calculation of the logarith­
mic decrement is based on 
Eq. 28 , Appendix.
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Fig. 27a Recorded oscillations of the 1/5 scale Finn rig.
= 3.05 m/scc - 10 ft/sec ^

St = 0.55 Abased on mean chord of the sai^^ constant

Magnetic damping = 1.0 ____ ___
A variable
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Recorded oscillations of the I/p scale Finn ri,
10 ft/sec \

constant
^ 1.0^ m/8(

St = 0.5^
nO

J\

I,1a,r-not: . i ,j X 1 .0
^ " variable
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Fig 28c
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29 a. Recorded oscillations of the 1/9 Finn rig, 
= 160° 1

(5 n
Ill 65-0 constant

Magnetic darling = 1.0 /
- variable



Fig 29b

Fig 29c
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Fi^. 30 b
03 m/sac

'lA
0.33
80^ / constont



Fig 30c

Fig 30 d
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31 ^nti-rolling ssil configuration
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Fi:: 32 b Anti-rollin- sail.
^ 3.05 m/sGc)

O -j-

is6r
100°
c5"
'Hriobie

^constant

20



20
C0OjQns
^ 10

c*&
cn"O
-e
o

c<

-10

o(L -20

C)r =110'

Fic. 3:

Fig 32d



Fig 34





5T%&LEfviMir

STABLE, STEADY 
5Ty\YE O^CfJUkATlOrf

Pig.38. Graphical representation of the solution to the Eq.47, 
(Appendix - non-dimensional amplitude) 
showing the non-linear oscination reaching its 
final amplitude.

Circular frequency of 
damped motion

Maximum angular velocity 
at 0= 10°

% 0.76 '-‘<^560.

Maximum linear velocity 
due to roll
v= = OUAS/i

Maximum variation in

Instant incidence angle
o(:± 41
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APPENDIX

The following brief summary of the chief ideas and 
formulae of the linear theory of oscillation serves as a
reference when analyzing the behaviour of a physical model
of the rolling yacht. Although the aerodynamic forcing 
function, self-excited in character, is in many cases under 
investigation, non-linear at large amplitudes the solution 
to the rolling phenomenon can be made on the basis and 
sequence of linear approximations. The non-linear 
Van der Pol equation is also introduced as a plausible 
mathematical representation of the combined, hydro-aerodynamic 
system simulated by the physical model investigated in the 
wind tunnel. (Refs.11-15) .

A.1. Conservative second order system
A compound pendulum swinging back and forth, shown 

in Fig.lA, performs sinusoidal oscillations which, with some
reservations expressed earlier in §3, may represent the 
dynamic behaviour of the rolling hull in still water. It 
can also be used to study the dynamic behaviour of linear 
systems.

If the damping term and the forcing function are
zero, the differential equation of motion for a "free" 
oscillation is:

-W"A sin^ = I<j) 1

or

I<|) + W* £ sin^ = 0

For small values of 6, say less than ^ radian, one may 
approximate sin^ by the first term in its series expansion
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sin* = *- ^ + — - ^ +

with an error less than 4 per cent.
Letting W-1 = k, equation 2 can be written as:

I* + R* = 0

The constant coefficient of the restoring moment (or 
stiffness) k is defined by the equation

k = M

where M is the moment (in Newton metre) necessary to produce 
an angular deflection of the pendulum of * radians. The 
units of k are therefore Newton metre per radian.

Eq.3 may be arranged in the form:

* + Y* = 0

The solution to this equation is given by:

* = Acoso) t + Bsinw^t ^ o o

where A and B are constants of integration which can be 
established from initial conditions.

(rad/s)
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is called natural circular frequency of the undamped free 
oscillation, measured in radians per second.

The period of oscillation is given by:

T_ = — = 2ir/^ (seconds)
O I

The frequency f^ is the reciprocal of the period:-

1 n1 “o J. JL= ^ ^ (cycles/seconds)O Z IT Z IT K.

If at the beginning of counting time (t = 0), the starting 
conditions are ^ ai
equation of motion is:-
conditions are * = ^ and * = 0, then the solution to the

6 = 6_cosw_t o o

One can find that by giving the pendulum an initial 
angular velocity when t = 0 and * = 0, the solution
is

— sinw^tOo

A more general starting condition is to let the pendulum have 
both angular displacement i|) and angular velocity <|) when 
t = 0. The solution:

$ = *QCOSw^t + sinw^t
o

is graphically represented in Fig.2A.
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A Study of Fig.2A suggests that the motion of the pendulum 
can also be expressed by the equation

* = $ cog(u t - n) 10

where $ and n are the constants which describe the starting 
conditions.

These constants are obtainable directly from the 
geometry of Fig.2A.

= y* ^ ; n = tan"^
“o^o

The angle n, called the phase angle, denotes the angular 
lag of the motion with respect to the cosine function.

The eg.10 may be rewritten in another form:

=<j) = y + (^)^cos(a3^t - n) = 'i>^(cosa)^t - n) 
o

11

The motion as represented in Fig.2A can also be expressed 
using a complex number notation

$ = $ 6^^°^ = #^(cosw t + isinoi.t) o o o o 12

Fig.3A explains, in a "complex plane", the relationship 
between the exponential function and the relevant
trignometrical representation of motion.

If the system performs oscillatory motion of the 
form given by Eg.11, the analysis can be carried out using 
exponential function taking the real part Re of the solution. 
The correlation between Eg.11 and 12 is given by:
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$^cos(w^t “ n) = Rej$^ei (w^t - n^i 13

If the initial conditions are such that the phase angle 
n = 0/ i.e. no initial velocity is given, then Eqs.ll and 
13 take forms

* = *^cosw^t 11a

and

*^cosw^t = Re|(j)^eiuot I 13a

When Eg.7 is substituted into 3, it yields

I (-<j>o0)o cosWot) - k(^^cosw^t) = 0

or

Iw^ = k*^ 14

This shows that the first term, which is the maximum 
acceleration moment, is equal to the maximum restoring 
moment.

In a conservative system represented by Eg.2 (without 
dissipative moments acting), the total energy must be 
constant, i.e. the total energy = = ^p^ax ~ const

- %k^^

15
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The term designates maximum angular displacement.

A.2. Nonconservative second order system
By adding the damping term, which is proportional 

to the angular velocity 9, to the Eg.3 the following equation 
is obtained:

1(f) + + k({) = 0 16

The constant damping coefficient b (in Newton-metre-second 
per radian) is defined by:

M

where M is a moment necessary to produce an angular 
velocity (f).

The dissipation function of the system due to 
damping b has the dimension of energy per unit time and is 
given by %b(f) .

Following the classical mathematical routine, by
assuming that the solution to the homogeneous Eg.16 is of 

s tform (f, = (|) e one obtains:

I(*^s^e^^) + b(*^se^^) + k(*^e^^) = 0

sCancelling out the common factor (f) e the characteristic 
equation of the system is derived:

Is + bs + k = 0 17
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The roots s (eigenvalues) of this characteristic equation 
may be given in two forms:

'1,2 21 / k
I for I < (i) 17a

or

1,2 “ 21
f i/ 17b

± i /o
21 " ^o “ ^21^

depending on the relative values of I, b, and k. It is 
convenient to maintain the .expression under the radicals 
in a more lucid form by factoring out = i.

The value of the damping coefficient b, which makes 
the radical of Eg.17a,b zero, is significant and is called 
the critical damping (b^). Substituting b^ for b yields:

21
k
I or be = 16

Introducing for convenience shorthand symbols:-

; Cj = 5 *

= t/(S ^ J \

b CS 19

the Eg.16 can be expressed:
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<(> + + u) 6 = 0o o 20

The corresponding roots (Eg.17a and b) may be 
modified as follows:

^1,2 -= (-E ± ± / - 21a

which is applicable in the case when the actual damping b 
is larger than the critical b^, so C > 1 and the system is 
overdamped; or

2 - ("C ± iy1 - = -d ± iw_/ 1 - 21b

which is applicable when damping is less than critical and 
g < 1, i.e. the system is underdamped.

Since the rolling yacht, considered as a dynamic 
system, is never overdamped, one may limit attention to the 
underdamped motion, including the marginal case when the 
damping ratio 5=^=1

The standard solution to Eg.16 can also be written

* = Ae^l^ + Be^Zt 22

where s^ and S2 are the two roots given by Eg.21b and A and 
B are two constants depending on the initial conditions of 
motion. A substitution of the roots to Eg.22 and a simple 
transformation give:

* = $_e o
cos(/cos(/ 1 - 5 w^t - n) 22a

if n = 0
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<!> = *^6 cos/l - 23

or
. t<}) = 4i_e ^ cos(i),t = <f) e cosw.t o do d 24

The damped oscillation is therefore made up of the product 
of two terms or curves as shown in Fig.4A.

The frequency of the damped system is less than 

factor vl -
that of 0^, of an undamped system, and is given by the

1. e.

/7 /F 25

Fig.SA indicates the manner in which the frequency ratio 
varies with damping ratio ^/b = g.
The natural period of damped oscillation is

2ir
w r 26

Damping is thus seen to have the effect of reducing the 
circular frequency and lengthening the period of motion.
These effects are however very small as long as the damping 
is not too severe.

The values of roots given in Eg.21b for an underdamped 
system may graphically be represented in the complex plane 
known as s- plane (Fig.SA).

The length of the complex s-vector (phasor) is w 
and the angle between the phasor and i-axis is the angle 
whose sine is g = — . One can see that ^ is a number 
related to s by Re|sj = -(Sand similarly w^ is related to
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by 3^1 sI = +iwd. In other words, in the case of an undamped
Stsystem, the solution of the form e^^" produces characteristic 

equation whose roots s = -d ± iw^ are complex numbers. The 
real part d specifies the damping rate and is the damped 
frequency in radians per sec.

The corresponding relationship between the s-plane 
and the time response for various damping is illustrated in 
Fig.7A. It is seen that the damping ratio ^ is a very 
convenient index of system stability. If K is negative the 
system is unstable and the amplitude grows without bound.
When 5 is zero, the system is just neutrally stable (the 
amplitude neither growing nor decaying) and as C is increased 
towards 1, the relative damping of the system increases.
The quantity indicates the time required for the motion
to damp to ^/gth its original value. This time

1

is known as the damping time constant of the system. Fig.8A 
represents a plot in which miniature pictures of time 
response are spotted on the s-plane, each at the coordinates 
of its characteristics. On the real axis the motion is 
always a pure exponential; the further from the origin the 
faster is the response (2, 3, 4). In the right half-plane 
the motion grows, therefore the system is unstable (5).
Thus, the fundamental criterion of stability in a linear 
system is that the roots of the characteristic equation
(Eq.27) have a negative real part, thereby producing 
decaying oscillation.

Along the imaginary axis the motion is always an 
undamped oscillation, the further from the origin, the 
higher the frequency (6, 7, 12). A constant distance from

Fig.7A and 8A adopted from "Dynamics of Physical Systems" 
by R.H. Cannon - MacGraw Hill - 1967.
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the real axis (12, 13, 14, 15) means a constant frequency 
w, but variable decay time or, in the right half-plane 
(11) growth time.

A constant distance from the imaginary axis (3, 9,
14) means a constant decay time but variable frequency. 
Along the straight 5 line (8, 14) the number of cycles 
required to damp the oscillation is constant, but in 
general, the further from the origin, the faster the whole 
response.

The rate of decay of the damped free oscillation can 
be determined from the amplitudes of any two consecutive 
peaks. This rate may be measured by the ratio between the 
maximum displacement . at the time - t and the displacement 
^t+T(j l^ter when the cycle has been completed.

Modifying Eq.23 one can write:

5“ob.cosw,t
*^^^d -cos(t + T^)

since wT = 2?
and cos (a + 2Tr) = cosa
then

and
t+Td

5o)oTd

&n V+T,-^-) = in(e^^o^^) = gw^T^ = ^ 28

Logarithmic decrement of motion denoted by cT can be expressed 
by:

s =
2TTg

/I - g'
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therefore

t+T,
29

Since the period of damped oscillation is given by;

T. 2tt

/ 1 - C‘

then

S = 2ttC 30

For the oscillating system which has small damping, {Fig.4A) 
there is another way of determining the logarithmic decrement 
from the time response curve namely:

(5 = log --- ) = logd + 1^) = -^ + ^ (^) + 4('^) +....
*t ^t *t ^t ^ ^t

If ^ is small, the higher order terms may be dropped and 
9+.

6 = ^ 30a

Thus the logarithmic decrement is approximately equal to 
the fractional decrease (or increase in case increment) in 
amplitude during one cycle of the oscillation; with better 
approximation:

2A<()
^ 30b
t + 2r

According to Eg.15 the total energy of the system, in one of
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its extreme positions with zero angular velocity:-

One cycle later this energy will be:

E,̂  - A*)

Therefore energy loss per cycle is

A Eg, = Eg,^ - Eg, = + R*^A* - ^(A*)^

This energy loss can be expressed as a fraction of the total 
energy of the system as follows:-

ffl . 2 At _
Et ♦t

If the damping is small the square term can be dropped. 
Hence:-

30c

Thus for small damping the fraction of energy lost per cycle 
is approximately equal to twice the logarithmic decrement.

Introducing logarithmic decrement into Eq.23 yields:

4, = *^e- ^ /2TT ) Wr,t° cosw^t 31
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If we assume that the ratio of the two consecutive peaks 
of amplitude of a rolling yacht is

t+T = 2,0

i.e. the yacht reduces the rolling amplitude in a round 
swing by two, then:

5 = &n 2,0 = 0.693

Therefore the damping ratio

^ 0,693
2 IT 2Tr = 0.11

and

^ = 0.5*t

The effect of damping on frequency and period is given by 
the following equations:

"d =
^ ^

32

’’a = 1 33

For the case given above.(5 =0,693) the relevant values
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of and are:

W 0}
" 0'994w^

and

■a = i-oo6T^

Since the magnitudes of and differ from to^, less 
than 1 per cent, the influence of a moderate amount of damping 
on the frequency and period of oscillation can be neglected 
in rolling investigation.

A.3. Excited Oscillation
The oscillation considered in §A1 and A2 can be defined 

as being "free", i.e. controlled only by the moments arising 
from inertia, stability and damping incorporated internally 
in the system. If such a free or "natural" oscillation is 
interfered with forces or moments external to the system, 
the resultant oscillations are usually defined to be 
"excited" or "forced".

In the simplest case, the exciting moments are 
independent of the natural behaviour of the system, and 
are functions of time alone. By adding a forcing non- 
homogeneous moment to the homogeneous Eg.16 the equation 
of motion becomes:

I(J> + b(j) + cif) = M(t) 34

An external moment does not prevent the system from oscillating 
in its own natural way, but gives the system supplementary
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displacement represented by an independent additive term 
in the solution to the Eq.34.

The complete solution is thus made up of term if,, 
which represents the solution of the homogeneous part of 
Eq.34 and of a term if* - the particular solution which 
supplements i|). in such a way that

satisfies completely Eq.34, i.e. with the non-homogeneous 
part present. If the forcing function M(t) is harmonic in 
character, of type Mcosw^t, where is forcing frequency, 
the complete solution to Eq.34 can be written as: 
(transient part) + (permanent part)

* = + ^p -<?t*^COSWdt + 35

where * is the maximum amplitude of forcing function and 
X is the phase angle in an exciting term.

— 1tan (-
bw.

K - Iw.

Or, since j and (^/R)w^ = 2(^/b^) (^)

then

36a

tan
2^/b 0) ,

c '^o 36b

Introducing shorthand notation
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and

X = tan 2sn
1 - n'

36c

Of the two parts and that make , the first, 
representing homogeneous part of oscillation with frequency 

fades out with time on account of the damping term e 
This part is therefore called transient. The second part 
(j)p represents a simple harmonic motion in the rhythm of 
excitation. This part of the motion may continue indefinitely 
without change and is accordingly called permanent.

In the case when the time dependent driving function 
M(t) of Eq.34 is not simple harmonic but periodic, it can be 
expressed in the form of Fourier's series of period T =

M(t) = + M^sin(wt + X^^) + M2sin (2wt + Xg) +

Mo + Z^M^sin(nwt + X^) 37

The frequency w is called the fundamental and the frequencies 
2tD, 3w, .... nw are harmonics.

Due to the superimposition the combine motion, as 
indicated by Eq.35, has a complicated and irregular character, 
particularly before the transient part died out. The 
amplitude of oscillation will increase when the displacements 
brought about by the "free" and "forced" oscillations have 
the same sign and decrease when their signs are opposite.
In other words, on account of the difference between 
circular frequencies and , the two oscillations pass
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through cycles of getting into the same phase and getting 
out of the phase, thus alternatingly adding to each other 
or subtracting from each other. The periodic swellings 
and subsidences through which the resultant oscillation 
passes are known as beats.

The frequency of beats f^^^^ is the frequency of one 
wave with respect to the other, or

2ir
Acj
2lT beats per sec 38

the proper sign being chosen to obtain always the positive 
beat frequency. The relevant period of beats'

Tbeat
2'rr
Aw 39

The smaller the difference Aw between the frequencies w^ 
and w£ of the two components of motion, the longer will be 
the time interval in beats.

Fig.9A represents the beat phenomenon in the forced 
oscillation starting from 'out of phase' condition for 
undamped (a) and damped (b) systems.

When damping is present the total amplitude peaks 
are never quite as high as in the absence of damping, and 
as the time goes on the peaks fall and the valleys rise on 
the envelope curve towards the amplitude level governed by 
the permanent motion 4, . This is shown in Eq. 35 and 
Fig.9A(b).

One may say that the function is, in a sense, a 
kind of cushion that carries through its transition from 
starting conditions to the ultimate steady state corresponding 
to (|) . The initial response of a system to an excitation 
is a mixture of an oscillation in the natural rhythm of the 
system and of an oscillation in the rhythm of the forcing 
function.
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A.4. Non-linear oscillation. Van der Pol equation with
non-linear damping
The Eg.41 derived in §6.2 and rewritten below:

- (b^ - + R* = 0 (rewritten) 41

can be simplified by reducing the number of coefficients.
ItThere are four, b^, b^ and k at the moment.

VIX
Dividing Eg.41 by I and introducing the notation2 ^ w yields:

“ (- p— +k<^ =0 42

Remaining three coefficients can be reduced to two by making
the variable time t relative to which the differentiation
is performed, i.e. ^ and , dimensionless. It can be

dt^done by measuring the time in terms of a unit inherent in 
the system, for example /g . Denoting the new time by t 
and the old time by t, one can write

43

The new differential coefficients can be expressed as follows

d2*
dt" dt’

2 "

44

dt = J

Substituting Egs.43 and 44 into Eg.42 and dividing the resulting
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equation by yields

(1 A 2 *4> ) <j) + (j) = 0 45

where the dots now signify the differentiation with respectIto the non-dimensional time t .
In a similar way the amplitude <J> can be made non- 

dimensional if it is measured in a unit inherent in the 
equation. Such a convenient unit is indicated in §6.2.
Fig.37, namely the amplitude * = j/ for which the
positive and negative damping moments balance each other.

Denoting the new non-dimensional amplitude by

y = 46

and substitute it into Eq.45, the well known Van der Pol 
equation is derived:-

y-e(l-y)y+y = 0 47

where the single parameter e = /_ , is in fact the ratio
between the maximum negative damping moment and the maximum 
stability moment, i.e.

G = negative damping moment
stability moment 48

This ratio has an important physical significance and can be
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derived as follows, 
assuming that (j) 
one can find that the maximum negative damping moment which

(fj^sinw^t and ((i (f)^a)^COSu)_t o o o

occurs at (* 0) is

‘>o*max ■= *’o*o“o 49

The maximum stability moment can be expressed as

’"♦max = ’"♦o = -r^ *0 ' “o^^x^o 50

Dividing Eg.49 by Eq.50 verifies Eg.48. The approximate 
solution to Eg.47 given by Van der Pol (38) may be written:

y = 2sin(t' + n) 51
/ 1 + e ■e (t' + c)

where n and c are constant depending on starting conditions.
It is assumed that e << 1.0.

An inspection of the equation reveals that the 
amplitude of oscillation increases at first with time but 
finally reaches the steady value y = 2 (the denominator, 
after a certain time, approaches 1). This conclusion derived 
from Eg.51 can be confirmed by the energy consideration. When 
amplitudes are smaller than the final one, the damping moment, 
which equals e(1 - y^)y, puts energy into the system. For 
amplitudes greater than the final one, the damping dissipated 
energy. Therefore, at the final amplitude, the energy input 
for a full cycle is zero i.e.

■2ir
f

o
e (1 - y^)y^dt 52
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Since y = y^sinw^t = y^sint' (see Eq.43)

Then

0 - f (1 - y^^sin^t')y^^cos^t dt 
o

or
2ir _/ cos^t'dt'

2'ir 2 2/ sin^t'cos t'dt' 
o

V4 53

By converting the non-dimensional amplitude y into the 
dimensional one and introducing again the dimensional time 
t instead of t', one can modify the Eg.51 into

2 /^°/b • sin (w t + n)
(|) = A 54/1 + e ■e (wnt + c)

From this one may infer that the final stable amplitude is 
twice as large as the critical amplitude

cr

at which the damping moment just becomes zero.
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TIG.2A.

FIG.3A.
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