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ABSTRACT-

~FACULTY OF ENGINEERING AND APPLIED SCIENCE ~

MECHANICAL ENGINELRING

Master of Philosophy

PERFORMANCE COMPARISONS BETWEEN GROOVED AND

UNGROOVED SQUEEZE-TILM GAS BEARINGS
David Desmond Cooke,

Squeeze-film gas bearings are investigated from the point

of view of determining the effect of extra ambient'pressure
Eoundaries taking the form of deep, narrow grooves and, in
order to accommodate all the bearing geometries normally
encountered, the governing equations are set up in terms ofv
generalised curvilinear co-ordinates. The possibility of
slip-flow conditions is allowed for, as is vibratory
excitation at a frequency small cowmpared with that assocc-

iated with the squeeze motion.,

If conditions are such that slip-flow occurs, it is shown
that the lcad capacity suffers typically to the extent of
about 5% in thrust bearings and about 10% in journal

bearings.

It is found that the steady state static bearing force in
journal bearings can be considerably improved by the presence
of ambient boundaries, because circumferential leakage flow
is reduced. The steady state dynamic response to forced
vibration in both thrust and journal bearings is strongly
dependent on the number of grooves, which can be used to
advantage in suppressing otherwise large dynamic compliance

resonance pealks which might occur.

Experimental work is suggested for testing the wvalidity
of the theorectical results, and for exploring the effect on

bearing performance of the groove cross-scctional geometry.
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1. INTRODUCTION

Unlike the better known classes of gas bearings,
externally-pressurised and self-acting, the squeeze~L{ilm
gas bearing relies for its load carrying capacity on the
vibratory squeezing action of one surface relative to
another. The compressibility of the gas film is essential
as it is respoﬁsible for the noh~lincarity in the pressure-
volume relationship which leads to a net film pressure
being developed in excess of thé ambient which can then be

used to support a load.

This class of gas bearing has not received much
attention commercially, possibly becausec of the low load
carrying capacity and the small number of applications
where the same job cannot bLe adcaguately performed by a
suitably designed externally-pressurised bearing with its
reduced number of manufacturing tolerance problems. The
squeceze~film bearing rcally comes into its own when there
is insufficient room to accommodate the ancillary equipment
required by the externally-pressurised bearing, or where
tufbine torques are prohibited, such as in inertial
navigation instruments. Because the load carrying capacity‘
is low; comparatively large projected areas of bearing
surface are required to support a given load, leading in
turn to relatively large transducer systems to provide
the necessary vibratory motion. In aircraft instrument
applications especially it is of the utmost importance to
keep the instrument bulk to a wminimum, so it is highly
desirable to improve the load carrying capacity as much as

possible to reduce both bearing and transducer size, and in
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turn to reduce the power requirement.

This study was stimulated by Beck and Strodtman‘52
conclusion that the very short squeeze-film jourmnal bearing
has a much greater load carrying capacity per unit length
than the very long jourmal. This immediately suggested a
way of iwproving the load capacity of cylindrical bearings
by segmenting them by means of narrow, deep circumferential
grooves held at ambient pressure, and as grooves running
axially from end to end of the bearing appeared casier to
manufacture in certain instances it was wondered whether

the same sort of effect on load capacity would also be

achieved in this case.

A further possible advantage of grooving is that it
should improve the performance of bearings where the
squecze vibration amplitude is non-uniform. This especially
covers all of the prescnt cylindrical transducer designs,
and is an area in which the practical benefits are likely

to be felt most.

The object of this study is to investigate thoroughly
the effect of intreducing grooves into bearings of the
various geometries commonly encountered, taking into account
both static and dynamic behaviour. Because of the writer's
interest in small bearings aimed at inertial navigation
instruments where the film-thicknesses tend to be reduced
as the design work develops, it is felt that slip flow
effects might become appreciable some day, so this has been
built into the governing equations so that it can be
included if required in future work, and estimates have

been made for the magnitude of the loss in load capacity



to be expected in two typical cases where analytic

solutions can be obtained.

The layout of the thesis is guite straightforward,
starting with a survey of the literaturevin approximately
chronological order to give some feel for the way the
field has deve}oped and to provide a background for the
subsequent sections., Then comes an extended discussion
on squeeze~film bearings in general in which the concept
of 'local flat thrust plate' behaviour is developed and
used repeatedly to obtain simple.analytic solutions for
various bearing configuratiqns, leéding up to the idea of
placing grooves in one of the bearing surfaces. Once the
concept of grooving has been justified by simple analyses,
the dvnamic behaviour is discussed, and local squecze
effects in the grooves and heaying segments investigated,
In order to perform more ricofous analyses the governing
equations are then set up in terms of generalised curvi-
lincar co~ordinates so that smooth and grooved bearings
can be compared, taking into account slip flow and dynamic
behaviour, and discussing assumptions made and methods of
solution, Slip~flow is briefly considered in terms of
simple thrust and Jjournal bearings where analytic solutions
are possible, providing estimates of how important the
effect is likely to be in reducing load capacity. This
is followed by a long section in which the main bearing
geometries, grooved and ungrooved, are analysed and
typical performance curves presented for- their static and
forced dynamic behaviour, and we end withvséme sugcestions
for experimental work followed by a discussion of the main

conclusions to arise out of the theoretical treatment.



To avoid confusion if may perhaps be advisable to
point out that in this thesis the term 'dawping'® is used
in a rather unorthodox manner. One normally thinks of
damping as referring to a 'force per unit velocity'; in
other words, as being the coefficient of the velocity
term ;ppearing in the equation of motion. In this report,
for brevity, 'damping! will often refer to the quadr;ture
component of the dynamic stiffness, and so will be taken

to mean the 'dynamic resistive force per unit deflection!

of the system,

It may also avoid confusion if the expressions
'civecumferential' and faxial'! are defined in their context
with grooving., In cylindrical Jjournal bearings a circum-
ferential grecove is taken to be a yotationally svmmetric
croove passing around the circumference of‘the bearing at
a particular axial location. In other words, the plane
containing a very narrow groove is orthogonal to the bearing
axis of symmetry. An axial groove, on the other hand,
extends from end to end of the cylinder along a generator
at a particular orientation of the circumferential co-
ordinate ©. TIn conical and hemispherical bearingcs an
axial groove lies parallel to a genecrator, while a circum-
ferential groove lies at right anzles to this direction.

In thrust bearings we will refer to concentric annular
segments,.being the axial projection of a circumferentially

grooved conical bearing.



2. SURVEY OF THE LITERATURE

Squeeze~-film gas bearings in their own right have been
studied in depth for the relatively short period of about
twelve years, apart from some isolated papers which appeared
in the 1950’5.. The lack of interest, compared with that
shown in exterpallynpressurised and self-acting gas -bearings,
can probably be attributed to the fact that only a limited
nunmber of applications have come to light where the pure
squeeze~film bearing can be used to advantage. It becomes
an attractive alternative to the externally-pressurised
bearing in situations where relative tangential motion of
surfaces is too small to provide an acceptable bearing
force by self-acting or hydrodynamic means, and where the
necessary vibratory drive for the squeeze~film can be
accommodated in preference to the rather bulky compression
equipment and plumbing required for the externally-
pressurised bearing. Examples are journal bearings for the
support of Jow speed rotors, slider bearings operating at
low speeds, and bearings for reciprocating devices. Smooth .
surfaced hemispherical, conical, or parallel flat plate
tbyust bearings cannot support a thrust load by self-acting
means, so squeceze-~film support would be an alternative to
external pressurisation under suitable conditions.

Examples of where only squeeze-films appear to be capable
of providing the necessary support are to be found in
inertial navigation equipment, in the gimbal bearings of
gyroscopes, and in the support of the proof mass in

accelerometers. This is because there is no rotation to
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enable a self-acting bearing to bg used, and extermnally-
pressurised bearings would almost certainly introduce
spurious flow effects in sensitive directions which wou%d
appear dirgctly as errors iﬁ the outputs of the instruments.
It is not surprising, therefore, that the main workers in
the field of squeeze-film bearings bhave been associated with
the development of inertial navigation sensors, althéugh
much of the early work was in connection with slider bearings

aimed at the computer industry.

Two centres in the USA are closely associated with work
on squeeze~film lubrication:

(i) MTI (New York), where Pan and his co-workers have
exhaustively covered theoretical and practical problems
associated predominantly with the application of squeeze-
film support to gimbal bearings for inertial navigation
gyroscopes, mainly on the strength of NASA conitracts.

(ii) Strodtman et al of Lear Sicgler (Michigan) have
contributed much to the theory of squeeze-films, and have
been concerned in practice with the development of inertial
quality accelerometers of various types, employing squecze-
fiim bearings for the support of the proof mass. Another
branch of Lear siegler (California) has developed a gyro-
compass for the US Army which uses an almost flat squeeze-
film thrust bearing (14 inch radius of curvature) to support

the sensitive element.

In the UK there are also two centres actively engaged
in squeeze-film bearing studies:
(i) RAE (Farnborough), where the present writer is

working in conmection with gyro gimbal and accelerometer



proof mass support for inertial mnavigation instruments
used in military aircrafte.

(ii) ACO (Slough), who are interested mainly in the
possibilities of using a squeeze-~film to reduce the starting
friction in the rotor of the relatively massive SINS gyro-

scopes used by the Royal Navy.

In this section it is proposed to outline, in approx-
mately chronological order,; the known literature on compress-
ible squeeze-film lubricatiom. This will show how the
subject has developed, provide a background for the present
study, and indicate how some of the conclusions have led to
the concept of placing grooves in squeeze~film gas bearing

surfaces in order to improve the load capacity.

2.1 Historical survey

Although the present author has not seen a translation,
12
other workersi’“ indicate that the first reference to squeeze-

3 in 1954,

filwm gas bearings appears to be in a paper by Tipei
It was not until 1957 that the next relevent paper was
published, by Taylor and SaffmanQ. This was mnot specifically
concerned with the lubrication aspect of a squeeze-film,

but was motivated by an attempt to.explain the result of a
controversial experiment, purporting to indicate non-
Newtonian properties of air, demonstrated by Professor

5

Reiner” at the Applied Mechanics Conference held in Brussels
in 1956. The apparatus consisted of a disc 67mm in diameter
spinning at 7000 rpm opposite a fixed stator disc, such that

the nominal separation between the discs was 20 microns.

Taylor and Saffman performed a third order perturbation



analysis on the effects of misalignment and relative normal
motion between the discs and showed that the normal motion
could'éccount for the effect which had been attributed to
non-Newtonian behaviour. Their conclusion was that relative
normal motion between surfaces could lead to a time averaged
pressure in excess of that of the ambient, so inherept in
their analysiséwas the possibility of a gas bearing operating
in a pure squeeze mode, without the necessity for relative
sliding motion of the surfaces or extermnal pressurisation.
Marsh, in a verbal communication, has since indicated that
Reiner carvefully repeated his experiment and again observed
an effect which this time could not be satisfactorily
explained by the Tavlor and Saffman analysis, so Reiner

remains convinced that he observed a non-Newtonian phenomenocon.

Five vears elapsed before a further spate of papers
appeared, this time specifically concerned with the lubric-
ation aspect of a squeeze-film, and instigated primarily by
IBM's interest in the dynamic behaviour of self-acting
slider bearings used in the computer industry. For instance,

7 jnvestigated the growth

using a numerical method, Gross
and decay of pressure in both incompressible and compressible
films between parallel flat surfaces following normal
impulsive motions, Langlois1 gave a detailed derivation of
the equations governing the pressure distribution in a
parallel flat squeeze-film thrust bearing under isothermal
conditions using a first order perturbation technique similar
to that employed by Elrod6 in the study of a self-acting

Journal bearing operating with a constant viscosity

incompressible fluid. This approach is convincing in that



it avoids the necessity for many of the ad hoc order of
magnitude assumptions usually eumployved in the derivation
of Reynolds' equation. Although the governing equations
were set up with both normal and tangential motion in mind,
the pressure distribution was obtained for pure squeeze
motion. Michael, another mémber of the IBM team, applied
a finite diffe#enoe method8 to the time dependent slider

? he employved a perturb-

bearing pfoblem. In another paper
ation analysis siwmilar to that used by Langloisi, enabling
non-periocdic as well as periodic solutions to be obtained
for the parallel flat plate squeeze~film bearing, and he
alsoc allowed for the possibility of flexible surfaces. Out
of this paper comes an estimate for the characteristic time
associated with transient effects; typically, for a rect-
angular parallel flat thrust bearing of length L, breadth B,
nowinal clearance Q, operating in an ambient pressure P,
with a fluid of viscosity /L, a transient disturbance in the

film following a relative normal impulsive motion of the

surfaces will decay to 1/e of its initial magnitude in time

i2p LBV

P (L? +B%) \rch,) (2-1)

This theoretical work was backed up experimentally by
Salbuz, demonstrating the feasibility of practical hemi-
spherical, cylindrical Jjournal, and flat thrust squeeze-
film bearings driven by piezoelectric and electromagnetic
devices. He compared experimentally and theoretically
derived results of forces present in a parallel flat disc

bearing, using a finite difference method suggested by
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Michaelg. Rotational speeds of up to 50,000 rpm did not

appear to change the bearing characteristics. Generally,

agreement between theory and experiment was within 20%,'and

Salbu attributed the discrepancy priﬁarily to experimental
errors., On the dynamic behaviour of the parallel disc

thrust bearing an analogue computer simulation was used,

and there were four main conclusions (sce also SCCﬁién 3.3.1):

(i) failure of the bearing will occur if the squeeze
fregquency drops below a critical value, and this critical
frequency decreases as the nominal clearance increases;

(ii) the bearing becomes unstable when the load reaches
a certain value, but can be festagilised by a change in the
excursion amplitude;

(iii) at large mean clearances, a gradual reduction in
operating frequency will cause a progressive increasc in
the response amplitude of the supported mass compared with
the sqgueeze amplitude; |

(iv) at small clearances failure will be‘sudden,
preceded by small changes in the response amplitude of the
supported mass compared with the squeeze amplitude.

In an extended discussion on Salbu's paper, Malanoski
and Panio employéd a mass content rule, similar to that set
up by Elrod and Burgdorfer11 for the self-acting journal
bearing, to remove the ambiguity of the unspecified initial
condition which was built into Salbu's simplified Boyle's
Law approach. A constant which occurs frequently in the

compressible squeeze-film literature is the '"squeeze number!

O~ given by

2
o = l’:,/iﬁ’.(ﬂ) - (2.2)
R \C
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where /x is the viscosity, w thé angular frequency of fhe
squeeze motion, P, the ambient pressure, C the nowinal film
thickhess, and R is some typical bearing dimension (such as
the radius of the disc in the circular flat plate bearing).
The squeeze number is analogous to the compressibility
number used inAself-acting bearing theory, so that -the film
behaves incompressibly as O — (0, and wmore and more compress-
ibly as O -+00. Malanoski and Panio showed that an
asymptotic approach (O 00 ) can be used to advantage in
studying tﬁe steady state behaviour of the flat disc bearing,
using the property that under suitable combinations of
viscosity, high drive frequency, and compressibility,

lJateral flow in the bearing filwm is inhibited so that the
system behaves very nearly like a nonlinear spring with no
damping. This theory could be used to provide a good
engineering estimate for the time averaged bearing force

for squeeze numbers CY’;Z o .

Lear Siegler's early interest in the possibilities of
squeeze-films for gyroscope gimbal suspension is indicated
in a paper by Liebleriz, presented at an ultrasonics
symposium, in which he describes experiments to measure
the spurious torques in a squeeze-film journal bearing
generated within the bearing itself and arising from geo-
metrical inaccuracies. In a bearing with length 36mm,
diameter 33mm, nominal clearance 6.25 microns, and journal
out of roundness approximated by an ellipticity of 1.0000169
(major axis/minor axis), he found that oscillatory bearing
torques occurred, decaving under the influence of a film
damping coefficient of estimated magnitude 7.8 x 10-6Nm per

rad/s.
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At the same time MTI was actiwely concerned with the
practical problems associated with designing a transducer
suitablé for producing the squeeze-film motion in a gyroscope
gimbal application. Chiang and Panl> studied the longit-
udinal resonant modes of three transducer configurationmns,
consisting basically of a driving section and a driven
extension on wﬁich the squeeze-film bearing member was
mounted. The extended section was designed to provide a
mechanical amplification of the excursion amplitude occurring
at the end of the driver, so reducing the power reduirements.
General and simplified analyses were presented, together
with design data® showing that a mechanical amplification
factor of about five could typically be attained with this

type of transducer,

In a design report for a gyroscope employing squeeze-
film bearings, Panié laid down the following guidelines:

(i) the squeeze number should be in the range G > 100
to avoid deterioration in load capacity (the asymptotic
theory being fairly accurate above this limit); )

(ii) the sum of the excursion ratio and maximum
steady state displacement ratio (eccentricity, or axial
displacement) should not exceed 0.9, to ensure that the
minimum instantaneous film thickness is always greater than
0.1 in order to allow for reasonable tolerances in practical
bearings;

(iii) given this limitation, the maximum load capacity
will be achieved if the excursion amplitude is approximately
equal to half the nowminal clearan&e.

15

Orcutt, Kissinger and Pan"~, following on from the work



13

of reference 13, investigated an experimental axial
excursion transducer system in which a tubular piezoelectric
driver section was connected to conical bearing pieces
through flexures in the form of flaﬁ annular washers. With
a power consumption of 9 watts, a peak to peak axial
excursioh of 17.5 microns was achieved (representing a

12.5 micron peak to peak excursion measured normal t; the
bearing surfaces, as the cone sewmi-angle was &50). The
flexure in this case provided an amplification factor of
about 6 over the motion of the piezoelectric driver, which
was excited at a frequency of 11;1“kHz. One of the
practical difficulties which appéared out of this work was
that the bearing cones moved in a non-rigid manner owing to
the influence of the flexures, causing an undesirable non-

uniform excursion.

Pan, Malanoski , Broussard‘and Burch16 formmulated the
asymptotic analysis for the cylindrical squeeze~film jourmal
bearing, obtaining an analytic solution for the radial
stiffness in the case of small eccentricity and uniform
excursion. They also established the equations in terms
of an axially symmetric parabolic excursion distribution,
such that the excursion amplitude is largest at the mid-
plane and decreases towards the ends. This was for effective
comparison with experiment as the piezoelectric tubular
transducers in use tend to have this sort of non-uniform
vibratory motion. Experimenis were performed on a double
squeeze-film journal bearing, where a piezoelectric tube
supported both itself and a sleeve by usihg both of its

vibrating surfaces to form squeeze-films. Curves of load
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against eccentricity were obtained and agreement with
theory was found within 10% for most loads. However, under
very small net loads the agreement was only within 19%, -
nearer the accuracy Salbu2 observed. An important conclusion

was that the load capacity is significantly reduced by the

axial non-uniformity of the squeeze motion.

In 1966 Pan17 presented a more general asymptotic
theory than that suggested in reference 10, applicable to
arbitrary bearing shapes, arbitrary modes of oscil}ation,
and for hybrid bearings provided the compressibility
number remains finite, and this has formed the basis for
most of the more recent papers on the steady state perform~b
ance of squeeze-film bearings. As an jillustration he
applied the theory to the conical squeeze-film bearing,
obtaining various design curves., Basically, he showed
that at high frequencies, the squeeze-film coﬁld be
considered to consist of two regions:

(i) the internal region, where Boyle's Law is obeyed
subject to appropriate initial conditions; '
(ii) the edge regions, where the governing equation

is of a diffusion type, similar to that discussed by Elrod
and Malanoski18 for the self-acting journal bearing.

Where time averaged forces are concerned, the edge region
contribution is O{I%E} compared with that of the intermnal
region, so for large O the effects of the edge region can
be neglected and the film considered to behave like a
perfect non-linear spring. This theory was applied to the
case of a rotating spherical squeeze-film bearingzo, and
showed that the squeeze-film and self-acting effects on the

pressure distribution are superimposable., Also, to first
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order in eccentricity, the axial load capacity and stiffmness

are independent of eccentricity.

Beck and Strodtmanzo used the asymptotic theory to
investigate the stability of an infinite length squeeze-
film journal bearing, solving the dynamic equation by both
variational and numerical methods. The dynamics equations
were arranged in the standard férm of the Mathicu equation,
which appears freguently in physics and engineering and has
well known stability characteriétics, and this linked to the
variational analysis enabled stability maps to be presented.

21 derived

At the Southampton Symposium in 1967, Elrod
governing equations for the dynamic performance of squeeze-
f£ilm bearings. He showed that for cases where the character-
istic frequency of the external disturbance is small
compared with thatlt of the squeeze motion itself, the effect
of the squeeze motion can be "smoothed out', enabling the
asymptotic theory to be extended to cover dynamic conditions.
Pan and Chiang22 applied this to the spherical squeeze-
£ilm hybrid bearing, and their methods will be used in the
present work., In their paper the boundary conditions are
derived by boundary layer considerations, following Di

23

Prima“”, rather than by the mass content rule approach of

" reference 17.

In discussing a survey of squeeze-film lubrication
given by Pan and Broussardso at the 1967 Southampton Gas
51

Bearing Symposium, Muijderman referred to some work
carried out on spiral grooved self-acting flat thrust

bearings subjected to small axial vibrationssz. This



indicated that the dawmping compdnent of the dynamic force
could be increased by splitting a flat thrustvbearing up
into a number of segments separafediby ambient pressure.
boundaries. The stiffuness component of the dynamic force
would be reduced, so the net effect is a smaller amplitude
response than would be the case with the unsegmented.
bearing, fittiﬁg in with results given by Langloi51 and

37

Ausman” ',

At the same meeting, Pan53 discussed the validity of
the assumptions that the squeeze*film behaves isothermally
and remains in a state of thérmodyﬁamic equilibrium at high
squeezc frequencies, concluding that this is indeed the

case for all situations likely to be encountered.

In 1968, Strodtman presented several papers with various
co~authors. DBeck and Strodtmanzq considered steady-state
operation with a spherically symmetric (radial) excursion.
They showed that the latter case produces considerably
more load capacity than the axial excursion case, and they

.also showed that venting an hemispherical bearing near the
pole can increase the load capacity by about 50%. Beck,
Holliday and Strodtman25 described an experiment in which
the motion of the supported mass was the main contributor
to the generation of the squeeze-film. They performed a

perturbation analysis and obtained good agreement with the
experimental results, Investigating the steady state
behaviour of the finite length journal bearing, Beck and
Strthman26 found the 1lift per unit‘lengih to be strongly
dependent on the length to diameter (L/D) ratio of the

bearing. In fact, the very short bearing is 2.5 times
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better than the very long bearing with respect to 1lift per

unit length. This conclusion, reached independently by

Pan27’28, is really the starting point of the present work.

An inféresting paper from the point of view of the
design of gyroscope gimbal bearings is that of Pan and
Chian§29, who theoretically analysed the bearing torques
arising from geometric and material impeffections. In a
discussion of this paper, Strodtman30 estimated that a
typical journal bearing for gimbal support might produce an
error torque as large as 4 x 10_6Nm. For the gyro to behave
sufficiently accurately for inertial navigation purposes,
the error torque should typically not exceed 1.2 x 10-9Nm,
which is about 3000 times below that present in the bearing.
However, as Pan pointed out in reply, gyroscope gimbals are
normally maintained within a few minutes of arc of a fixed
orientation and the error torque can be nulled by the
application of a bias torque. The effect of bearing torques
would Become more important in applications where the bear-

.

ing movement is not so restrained.

Also in reference 27, Pan and Chiang discussed the
possibility that supported mass response might explain
discrepancies between theory and éxperiment. More recently,
Chiang, Pan and Elrod31 followed this line of enquiry‘
further by studying the motion of a mass supported between
two opposed squeeze-~film thrust bearings, and found that
the time averaged load capacity can differ considerably from
the steady state case. The stability of the system was
investigated using the same Mathieu equation approach as

Beck and Strodtman=0.



18

At the 1969 Southampton Gas Bearing Symposium,
Constantinescu34 studied the influence of inertia forces
in squeeze~films. He showed that incrtia effects can lgad
to cross—film pressure gradients if the frequemncy of the
squeeze motion is very high, and he derived a validity

criterion for neglecting the effect.

Pan32 exteﬁded the asymptotic theory to include the
0{jé2}' edge effects which had hitherto been ignored,
using singular perturbation techniques as discussed by Di
Primazj, and he identified three edge~interior interaction
effects related to |

(i) mean-gap taper,

(ii) squeeze taper,

(iii) cross-~edge sliding,
which are analogous to the boundary laver displacement
effects in aerodynamics. With reference to the work of
Constantinescu33’34 he also discussed criteria for the
validity of isothermal gas lubrication theory in terms of
the magnitude of Q.

35

Finally, Strodtman used a series expansion in terms
of ascending powers of eccentricity for a journal bearing,
obtaining an analytic solution agreeing well with numerical
" procedures for large values of eccentricity., Various non-
uniform excursion modes were treated, and the same config-
uration was considered in terms of optimising the clearance
. 36 - .

in another paper” . However, the optimisation of clearance

tends to be at the expense of stiffness, and this restricts

the usefulness of such an approacﬁ.
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2.2 Conclusions

These references provide a background for the present
study and lead to ways of improving the performance of

squeeze-film gas bearings.

Of especial interest is the result indicated in
references 25 and 28, that the jourmal bearing has a-1ift
per unit length which is strongly dependent on L/D, and
that in particular the very small L/D bearing has a 1lift
per unit length 2.5 times as great as that having a very big
L/D. This suggests, though to the present writer's
knowledge it has never been hinted at anywhere else in the
literature, that a bearing composed of a number of small
. L/D segments separated by ambient pressure boundaries will
have a considerably greater 1ift per unit length than a

smooth bearing with the same overall wvalue of L/D.

Because the average path lengths of the flow are
reduced, it is also felt that the dynamic performance of
squeezé»film bearings qf arbitrary geometry should be
improved by the presence of extra ambient boundaries. A
larger region of the film will expefience incompressible
flow where the forces will contribute to damping, and the
region where compressibility occurs will be reduced, so the
net effect should be increased dynamic damping with a
reduction in dynamic stiffness. This intuitive conclusion
is backed up by the work on flat thrust bearings reported

in references 1, 37 and 51.

The improvement in static forces obtained by venting
the polar region in hemispherical bearing524 is another

pointer to the desirability of suitably increasing the total
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ambient boundary length.

Several reports on experimental work have mentioned
the non-uniformity of excursion arising from the stress
distribution in the transducer used to drive the squeeze
motion. In particular, reference 16 noted that in a
cylindrical transducer employing a piezocelectric tube,
the axial non~ﬁniformiﬁy in thekexcursion could typically
lead to a loss in load capacity by a factor of 2.6 .
Since the bearing force depends.largely on the excursion
amplitude at an ambient edge26, it again appears that

improvements should be brought about by placing extra

boundaries in regions of more favourable excursion.

For various reasons, therefore, an investigation into
the effects of incorporating grooves in squeeze-film gas
bearing surfaces is needed as it promises to c¢nable
bearings to be designed with a performance superior to

that attainable at present.
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3. GENERAL DISCUSSION ON GROOVED SQUEEZE-FILM GAS
BEARINGS '

This section takes the form of én extended discussién
in which simple analyses will be carried out to justify an
interest in the grooving of squeeée—film bearings, and to
indicate what might be expected in the more rigorous’

analysis to be described in section 6,

Firstly, an interpretation will be given of how the
fsimple! thrust bearing works, labouring the point a little
because it will be shown later thatrthe grooved Jjournal
bearing in its limiting form behéves locally Jjust like a
flat thrust bearing. Apart from Salbu'sz, most of the
papers concerned with squeeze~films tend ﬁo immerse thém-
selves very rapidly in mathematics and it is difficult to
extract in an easy'way what is‘happening in the film, so it
is hoped that it will be clear from this discussion how
the asymptotic theory fits into the picture ih simple terms.
It will be shown that the thrust bearing finds an analogy
in the externally pressurised thrust bearing, and this may
be helpful in determining the dynamic performance of grooved

squeeze-film bearings.,

The discussion then moves on to consider the cylindrical
journal bearing, extending Beck and Strodtman's result26,
and investigating the pressure distribution and flow patterns,
leading up to the ideé of segmentation by circumferential
grooving. The localised link with the flat thrust pad
pressure distribution in the limiting case then leads to

the suggestion of axial grooving which may have certain

manufacturing advantages. Again, an ahalogy can be found



with externally pressurised bearings,

The dynamic behaviour of squeeze-film bearings is then
consi&ered, defining two areas of interest:

(i) ﬁhat will be referred to as '"self-induced
response'", arising from the forcing action of the squeeze
motion itself;

(ii) The '"forced respounse!", arising from external

disturbances superimposed upon the squeeze motion,

3.1 Steady state behaviour of the squeeze~film thrust

bearing

3:1.14 Sdimwmple Bovle's Law model

Consider a parallel flat disc thrust bearing of radius
R where the lower surface vibrates sinusoidally about the
mean clearance C with an amplitude elc as indicated in

Fig.1. The instantaneous film thickness is

h=c(l+ e coswt) (3.1)

where W is the angular frequency of the squeeze motion, ey
the excursion ratio, and t is the time. At low frequencies,
the gas is alternately squeezed out and sucked into the
film as the gap varies, so the system behaves like a
viscous damper with a damping force proportional to the
velocity of the moving surface, h. As the frequency is
raised, some of the gas near the centre of the film is
"trapped by its own viscosity'" as the viscous shearing
forces preventing flow begin to become appreciable.
Consequently, in the central region the gas is alternately

compressed and expanded by the squeeze motion, while



nearer the ambient boundary flow .dn and out of the film
takes place incompressibly as before. The film begins tc
stiffen because of the increased compressibility, while. the
damping decreases, At high frequencies, the restrictive
viscous shearing forces are considerable and virtually the
whole film is compressed and expanded, while viscous_
damping is confined to a very nérrow region mnear the ambient
boundary still experiencing incompressible flow. Under
these circumstances the {ilm beﬁaves like an almost perfect
non-linear spring. It can be shown that the film in
general remains isothermalsB, 50 if the effect of the edge
region is ignored, the interior compressibility region can

be expected to obey Boyle's Law,
P"’\A = constant = PO'CA (3.2)

where p is the instantaneous pressure, P, the awbient
pressure, and A the area of the bearing disc. Normalising
as follows, pressure P = p/pa, film thickness H = h/C,

time T = Wwt, we obtain

|
T (i + e cosT)

T)

(3.3)

The time averaged film pressure, averaging over a cycle

54

of the squeeze motion, is then

I

| - e‘z (3.4)

2
P =L —
P mePar =
o

so that the bearing force is given in non-dimensional



terms by

F-—-—piﬁ—;:JZF(ﬁ——l)AF'—“-—"*—f - | (3.5)

wvhere ¥ = r/R is the normalised radial co-ordinate. TFor

4

small values of the excursion ratio,

P=1+ zel + O{e,‘*} (3.6)

and

-
R
»i-
n

(3.7)

showing that the load supported is proportional to the

square of the excursion ratio.

The non-linear behaviour of the pressure indicated by
equation (3.3) can be demonstrated with the aid of Fig. 2.
The full curves show how Boyle's Law curvature reflects an
asymmetric pressure change following a symmetfic volume
change, so that the mean pressure during a squeeze cycle is
greater than ambient by an amount [XP which can be used to

support a load. This sinple model is not valid as e, —p 1,

1
where an infinite film pressure is predicted, because
other effects occur to prevent this happening, but it does
serve to indicate the essential behaviour of the high

frequency squeeze-film even though the edge region had been

ignored,

3.1.2 Inward pumping edge effect

Salbu2 observed experimentally that Boyle's Law is a



good approximation to what happens in practice, but the
film behaves as if the external pressure were p1 rathexr
than Pa’ where p1:> pa. In other words, Boyle's Law is’

obeyed in the form

FL‘A, = P‘CA (3.8)

or

_ P
’(l+ e, cos T) (3.9)

'P

where P1 = pi/pa. The effect of this is indicated by the
broken line curves in Fig. 2, and results in a higher time
averaged pressure distribution,

R

P =T er (3.10)

than was the case with the true ambient pressure initial
condition., Salbu estimated that P1 has a value of 1.15

for e1 = 0.5.

The implication is that, in order to sustain an interior
pressure higher than the ambient edge pressure, there must
be a transient inward pumping action through the edge
region until the interior compressibility forces create a
balanced steady state situation. Such an effect can be
discussed qualitatively in terms of Fig. 3 where the phase
relationships are shown schematically‘for the compressible
interior region pressure, the incompressible edge region

pressure, and the film thickness during a cyéle of the



squeeze motion.

At T = 0, the gap is a maximum so gas flows relatively
easily into the film because the edge pressure exceeds
that of the interior. As the gap closes, increasing the
resistance to flow, the interior préssure increases above
that of the edge and flow into the film stops. By the time
the interior pressure has reached its wmaximum value above
the edge pressure, the gap is a~minimum at T =10 and
presents a considerable resistance to flow, so that there
is little leakage of gas out of the film, Soon after the
gap begins to open again the interior pressure drops below
that of the edge and once again there is a relatively casy
path for gas to f{low into the filw., In other words, gas
flows into the film when there is relatively little re-
striction to flow, and out when the restriction is consider-
able. The net effect is a transient flow into the film
which pressurises the interior until a time averaged flow

balance is achieved,

3.1.3 The asymptotic theory and mass content rule

The asymptotic theory developed by Pan18, upon which

most squeeze-film analyses are based, consists basically
of setting up boundary conditions to evaluate the (at
present) amwbiguous P1 in such a way that Boyleis Law in
the form of equation (3.10) remains a fair description of
the bearing film behaviour. To do this use is made of a
mass content rule similar to that applied to self-acting

bearingsil.

Defining the squeeze number O  for the parallel flat
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disc thrust bearing,
_\2mw (R > _ g
o = ”‘#“‘(g> , (3.11)

where /L is the viscosity, the governing Reynolds'
equation for the film pressure in non-dimensional

- L2
quantities is”™ ,

H ;_(Fpgf) _ G-ag.%(PH) : (3.12)

v OF\ of
In the liwmit O ~> 00,

d -
S’ZEG)H) =0 . (3.13)

implying that PH = constant, the familiar Boyle's Law.

A dilemma now presents itself. aIf Boyle's Law holds,
then the pressure P o 1/H is time dependent, in which
case it cannot satisfy the true boundary condition

(P =1at ¥ = 1) which is time independent, so some more

suitable boundary condition has to be found.

The derivation of such a boundary condition, using
the mass content rule approach, follows on from equations
(3.12) and (3.13),

H3§,(_r‘:él?1 - 5.
T oF >"O

2or (3.14)

Remembering that this is the radial flow component of the
continuity equation modified by the equation of state for

a perfect gas, a measure of the radial mass flow rate of
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gas into the film is obtained by integrating with respect

to r and rearranging, namely

L4

H3 3P _ constant «
5% - F (3.15)

The pressure must change smoothly from one ambient edge
to the other across a diameter through the film, so the
pressure gradient at the centre will vanish. Consequently

2
éE_ = 0 at ¥ = 0, the constant becomes zero, and
* (3‘16)

Integrating this over omne cycle of the squeeze motion
yields a measure of the mass of gas stored in the film
during the cycle as a result of the inward pumping action
at the awbient edge,

rais

J g‘%d | (3.17)

I
O

which is zero under steady state conditions because film
equilibrium exists. As no net flow is entering or leaving,
there must be a constant mass of gas contained in the film,.
If film equilibrium is disturbed for some reason; for
example, the mean gap might change as a result of a change
in the load supported by the bearing; the right hand side
of equation (3.17) will no longer vanish, but will acquire
a positive or negative value indicating a net transfer of
gas across the ambient boundary until film equilibrium is

restored under the new conditions. Under dynamic conditions
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£ilm eqguilibrium might never be established, and the
continual transfer of gas in and out of the film will
contribute to the dynamic dawmping of the system and

detract from the dynamic stiffness.

To obtain useful boundary conditions for the asymptotic
theory (0 =» 0O ), equation (3.17) is integrated once more
with respect to r from a position ¥ = (1-§ ) just inside
the interior region adjacent to the incompressible edge
region, to the ambient boundary at ¥ = 1 where P = 1, giving

yAig

> (P*=1) dv =0 (3.18)

or

™ T

2 2

2
J(PH) Hdr - J Hdt = o (3. 10)
o o

Now PH = constant (independent of T), so (PH)2 can be
taken outside the integration sign of the first term and,
since 6 can be made very small if O =00, equation
(3.19) provides a pseudo-boundary condition for PH in that

it is really for a "boundary" an infinitesimal distance §

inside the true boundary at ¥ = 1. We obtain
2 H - ‘
(PH) = =— at T=1 (3.20)
H
where
2w

(3.21)



and
H= - jHoh—' L (3.22)
) | .

are time averaged values. Remembering equation (3.1),

it can then be shown that

2
3 A% =
(PH> = | + *2—8, at v =1, (3.23)
When H = 1 (squeeze motion passing through the mean gap

position), equation (3.9) indicateé that

kN

P = P' = } o+ %e. , (3.24)

so the time averaged pressure distribution,; equation

(3.10), for the parallel flat‘disc thrust bearing becomes

(3.25)

and the load supported, equation (3.5) is
- | ) (3.26)

which for small excursion ratios becomes
F = %e? +O{e.’*} : (3.27)

Comparing this with the unmodified Boyle'é Law model,

equation (3.7), it can be seen that the bearing with edge

30
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effect included has 2,5 times the-load capacity of the
bearing without the edge-pumping effect., This will have

important consequences when grooved bearings are discussed

at a later stage.

3.1.4 Analogy with externally pressurised thrust

bearings

Apart from the basic pressure rise above ambient due
to the Boyle's Law behaviour in the interior, the squeeze-~
film bearing behaves somewhat like an externally~pressurised
bearing with pressure sources distributed evenly around the
ambieﬁt boundary, so in this respect there is a direct
analogy with that region of the externally pressurised
thrust bearing contained by a circular feeding groove,
where the pressure distribution is constant and equal to
some value lying between that of the supply and that of the
ambient (see Fig.4). In the squeeze-film the pressure must
drop sharply from its interior value given by equétion (3.25)
to the ambient through the edge region, which on the basis
6f the asymptotic theory can be shown to be of non-dimen-
sional width O {Jjﬁ;~} « This analogy may be useful

o

in indicating what might be expected under dynamic conditions.

3.2 Steady state behaviour of the squeeze-~film journal

bearing

Beck and Strodtman26 showed that for a small eccentric-
ity e, and small e12 the non-dimensionalised 1lift per unit
length of a squeeze-film journal bearing depends on the

L/D ratio as follows

) ;
W, = = - X e;‘ez(l-&-» 3D tanlw% (3.28)



where the non~dimensionalised film thickness is assumed

to have an instantaneous value

H = = | -~ e,¢058 + € Cs T (3.29)

C
such that a negative value of eccentricity e, results in
a positive bearing force in the direction @ = 0 as
indicated in Fig.5 . From the structure of equation
(3.28) it can be seen that for long bearings the second

term in the parentheses becomes negligible, so that
L.
—= - 00 A
WL(D ) 2 2 (3:30)

while for very short bearings the seccond term tends to a

value of 1.5, so

L ~ — 2 wete, .
WL(’S“”O) - 4 T T? ©(3.31)

Thus the very short bearing has 2.5 times the load
capacity per unit length of the very long bearing. It is
worth noting that this improvement is reminiscent of that
brought about by the edge effect in the thrust bearihgs

as discussed in section 3.1.3, and leads one to conjecture
that the edge effect might also be responsible for the
improvement in the journal bearing case. That this is
indeed the case will be shown later. In general, normal-

ising with respect to the very long bearing behaviour,

W, _ W = | + 3D tanhL (3.32)
WG Fee 0 o
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and this is shown in Fig.6 .
By investigating the flow and pressure distributions

in the Jjournal bearing, the reason for this L/D dependernce
will be ekplained, and this will lead to the concept of

grooved squeeze-~-film bearings.

Mass flow considerations
7 Beck and

3.2.1
Applying the asymptotic theory of Pan1
derived an analytic solution for Q = (PH)2

k]

Strodtmanz
which can be rearranged in the form

3

_ 2 3 _2f) _ = -z L
QCe,2) = ‘+'£e' — 2e, cos e{l t3e (I cosh ¥ + Sml\ztant\b}?(3-33)

Z /R is the axial co-ordinate. The time

where Z =
averaged non-dimensional wmass flow rate per unit width in

the axial direction is

v . - 30
r = Z 5% (3.3%4)
where the time averaged film thickness is
2
- !
H:-&SHA'C = l~e,_Cose (3.35)
o
so that
Mi(e)i) = K(@)(S(n}\i - COS}\i th;\ —lﬁ-) (3.36)
where
(3.37)

K(e) = %efez Cos @



34

for small values of e12 and €, - The mass flow rate per
‘unit width crossing the ambient boundary at Z = 0O at

some particular orientation € is theh
Mz(e,()) = — K (o) tanh -—% : (3.38)

from which it can be seen that the axial flow is small and
proportional to L/D for short bearings, and tends asymp-
totically to a maximum value -K (68 ) as the bearing length

becomes large. Also, because of the cos € dependence of

K(© ) the axial mass flow rate is a maximum at © = 0 and
& =1 , and vanishes at e'=2%. and & :‘%g , while

there are sign changes in the flow rate at 6 = %} and
6 = %g- . The total mass flow rate crossing the ambient

boundary at Z= 0 in the region /2 L o< 3w/2 is

3v/2
Mo -toh | K@ do = =3eletuhs (g
/2 V ‘

while that crossing the remainder of the same ambient

boundary is
/2

M, = ~tok %j K(e)ds = 3ele, tanh L. (3.40)

S
-/

Remembering that e, is negative for a radial displacement
in the direction @ =7 , then My >0 and M, <o,
implying that there is a net flow of gas into the film in
the small clearance region and out of the_film in the large
clearance region., Also, since ’thl = lthl , the same
mass of gas enters the film as leaves it, which is hardly

surprising under steady conditions with no sources or sinks.



The axial penetration of this. flow into the film can
be studied by considering the structure of equation
(3.36),.from which it is clear that the axial flow
plotted as.a function of i/%L y where % _ = L/R is the non-
dimensional length of the bearing, will be a curve whose
shape .depends on the function (sinh z - cosh z tanh,;/D),
wodified only Qy the multiplicative factor K(© ) for
different orientations around the bearing. So, removing
the effect of the 6 - dependence, the axial_distribution
of the axial mass flow rate per unit width is conveniently

expressed in terms of the ambient edge value by the function

.

Mz(e>i> _ (sinh 2 ~ cosh Z tanh%)
M, (6,0) tanh & (3.41)

which is plotted against E/EL in Fig.7 + Becausc of
axial sywmetry, only half the bearing length need be

shown.

The circumferential mass flow rate per unit width is

Mg (0,%) = —(%%% ~Q%%)

it

3 g2 i 7 — sinhZ L
Zee, sin©® (Cosh nzfanBD) (3.42)

for small e 2 and €5 and is evidently a maxiuum at

1
<] =7% and @ = }Ef y vanishing at © = 0 and Ww . The
maximum values are o

- ok
Me(%,Z) = %e'zel (COS‘I Z - Sl.ﬂl'\ F tanl\ %) (3.43)

and

Me(%",i> = - ?Ze,‘ez (c_os"\ 3 — sinh Z fan‘w%)
(3.44)



where the difference in signs merely indicates that the
flows in the sectors 0< @< W and w< 64 2w are
in oppoéite directions, the flow in either case being
directed from the small clearance (high pressure) to
large clearance (low pressure) region of the bearing.
Again,; it is convenient to remove the @ - dependence by
normalising the‘axial distribution of the circumferential

flow in terms of its awmbient edge value,

w = (cosh 3 - sinh % tanh -115:)

ok
Me(é)o) (3 5)

which is plotted in Fig.8 as a function of axial position
i/EL for wvarious values of L/D. Note that the total
circumferential mass flow rate through the film at © = T/

is

Z,
M (E,i) di = 3e’e, lah &
o\ v 2 D
o (3-1‘}6)
which is the same as that which enters the film in the
regions n/2.4£ 6 £ 1 , Z= 0 and % =%, , and leaves

the film in the regions 0€ 6 < ™/2 |, ¥= 0 and EZ =%, .

The result of all this is that it would appear that
the overall flow pattern in the bearing region 0< e £ w
0€ % €2,  is as shown schematically in Fig.9 . The
flow enters the film predominantly at 6 =T across the
ambient boundaries at Z = 0 and Z =%, , turning circum-
fereatially to flow from the small clearance to the large
clearance region, and finally divé;ging to leave the film

predominantly at © =0, Z=0and Z =%« In other
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words, there is a net flow of gas. through the film in a

circumferential sense and the bearing acts like a pump.

In a very short bearing (%«G(l ) the axial mass flow
rate is very small (o L/D) but has a linear axial dis-
tribution (see Fig., 7) implying that the axial pressure
distribution is constant at any orientation @ . The.
circumferential flow (Fig. 8) is also small and has the
same value throughout the bearing length at any particular

orientation 0O .

As the bearing length increases to give a moderate
value for L/D, the axial flow rate distribution tends to
lose its linearity implying an axial pressure gradient
which is greatest near an ambient edge and decreases with
penetration into the film. The circumferential flow also
exhibits a deviation away from the constant distribution
implying a greater circumferential flow near the boundaries
than in the centre of the bearing. The absolute magnitude
of thevflow is increased over that of the very short

‘bearing, as given by equations (3.38) and (3.42).

In very long bearings (L/D>> 1| ) the magnitude of the
flow is a maximum, and both -the axial and circumferential
flows tend to be concentrated near the ambient ends of the
bearing with negligible flow in the interior. This again
implies a constant axial pressure distribution in the
interior, but it can be expected to have a markedly

different value from that of the short bearing.,

Turning now to the time averaged pressure distribution,

21

Ja j dt

(3.47)
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where Q and H are given by equations (3.33) and (3.29)

respectively, for small 612 and €5

:FB = l+€e:' + e.lel cos 6{ | + %((,oshi — sinh % t’ank%)}-

b (3.48)

Remembering once again that é2'< 0 for a positive force in
the © = O direction, it can be seen that, as is to be
expected, the pressure is a maximum at @ =7 and minimum
at © = 0. The axial pressure distribution at these two
orientations is given in Fig.10 . The very short bearing

has a constant axial pressure distribution

—_ & 2 &
‘P(L/.D —+0) = l+—1;€. + —{e.zez cos © (3.49)

while the very long bearing has this same value at the edge,

but in the interior the pressure is

P(t/p+c0) = \+.’Ee,"+ ee, s O .

(3.50)
The axial pressure gradient at the ambient edge is
B—YS 3 2
o =~———e|e7_CoSGtanlr\.‘:; (3.51)
Z=o0

which is seen to be proportional to tar&L%. at any orien-
tation © . This is consistent with the increases in total
axial and circumferential flows observed earlier, since

the mass flow rate is proportional to the pressure gradient.

This constant axial pressure distribution in short

bearings is reminiscent of the thrust plate discussed in
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section 3.1.2, and leads one to observe that for L/D <L |
the journal bearing behaves locally (at a particular
orientation €& ) like a flat thrﬁstibearing, so that a
pressure distribution given by eduation (3.10) can be

expected, where in this case

. x .
_—__J(x—— e, cos e) + %-6.L (3.52)

to take account of the local film thickness. That is

l(l e, cos &) +§ﬂez 2
L o~ |+§eI +§ezezc.ose
J(‘ e, cos ) —~ 4 2
(3.53)

for small e12 and €5 agreeing with equation (3.49) which
was derived from the full asymptotic theory for the journal

bearing.

In the long bearing (L/D>> | ) the edge pressure will
again be given by equation (3.53), but because of circum-
ferential fl9w the differpntial pressurising effect of the
ambient boundaries following a non-zero eccentricity will
be lost and the interior will behave as though éhe ambient

pressure were

- 3 .z '
b= 1+ 3. (3.54)

as would be the case with e2 = 0., This results in a local

"flat plate" behaviour in the interior of the form

= |+ Sel +ee1cose
‘/(—-e cose) 1 4 i

(3.55)
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which agrees with equation (3.50).

All this implies that the idea of "leocal flat plate"
behaviour might be useful in performing simple estimateé
for journal bearings. In long bearings, circumferential
leakage reduces the bearing pressure differential below
that of the ideal local flat plate constant value, s0

reducing the load capacity, as indicated in Fig.11 .

3.2.2 Externally-pressurised bearing analogy

This loss of pressure differential because of circum-
ferential leakage is similar to that which occurs in
externally pressurised journal bearings, if one considers
the region between the feeding planes in a double feeding
plane bearing (see p.116 of Grassam and Powe1138). Fig.12
shows the similarity in the pressure profiles occurring at
8 = 0 and & =Tr . The dependence on L/D of the amount of
circumferential leakage in the two cases is qualitatively
similar in that reducing the magnitude of L/D improves the
situation and restores the pressure profiles nearer to the

flat plate distributions.

This analogy may prove useful in predicting the dynamic

behaviour of the squeeze-~-film journal bearing.

3.2.3 Circumferential grooving

The result that a short bearing has negligible circum-
ferential leakage flow compared with a long bearing, and
that consequently the load capacity per unit length is
nearer the ideal '"flat plate'" value, suggests that it
should be possible to almost totally remove the circum-
ferential leakage in a long bearing by introducing circum-

ferential ambient boundaries. In this way any desired
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bearing length cculd be operated with optimum load capacity
by making it in the form of a number of short segmental
Jjournal bearings, mutually separated by deep narrow grooves

maintained at ambient pressure,

If one looks at Fig.6 in conjunctidn with equation
(3.28), iﬁ can be shown that a journal bhearing segment of
L/D =~ 0.2 will provide a 1ift per unit length within 1%
of the wmaximum that would be attained with an infinitesimally
short segment, indicating that only 5 segments per unit
overall value of L/D is required for a practical bearing.
.This has the advantage of keeping the segment length as
large as possible so that thé lJocal squeeze number for the
segment does mnot become small enough to cause appreciable
loss in load capacity and violate the asymptotic theory
assumption of large 0 . By doing this a typical improvement
of 1ift to be expected is 66% for L/D = 3. Alternatively,
the overall bearing size can be reduced if a certain load
is being designed for, and typically a circumferentially
grooved bearing of L/D = 1.8 would give'the same lift as a

smooth bearing of L/D =3.

3.2.4 Axial grooving

The developed film cross-section of a squeeze-film
Journal bearing is shown in Fig.13 where the circumferential
leakage flow within the film is indicated by arrows, while
the axial pressure profiles are given in Fig.10 . One is
inclined to observe that if the ideal load capacity is
given when the film behaves locally like a parallel flat

plate bearing, then this ideal could be approximated by
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making one of the surfaces out of'a large number of flat
strips, each separated by an ambient line boundary which
runs from end to end of the bearing, as indicated in the
developed view of Fig.1% . The strips nearest © = 0 and

©& =7 are totally isolated from eachother by the inter-
vening ambient boundaries, so there is no circumferential
leakage flow to produce an undesirable drop in pressure
differential leading to reduced load capacity. Where there
is circumferential flow locally because of mean gap taper,
it has littie effect on 1lift because it is a maximum in

the strips centred at € =

wid

and © = 3_]'2." where the

pressure forces act at right angles to the load line.

Consider such a squeeze-film journal, with deep narrow
axial grooves running axially from end to end centred at

circumferential positions given by
e =9, =k (3.56)

as shown in Fig.15, where w is the nuwmber of grooves, and
k = 1,2,...,w . If each strip bearing is approximated by
a parallel flat plate, the shaft will take the form of a
w~sided polygonal prism. Suppose each groove has a non-
dimensional width 6, (where oA<LL | ), sc that the width
of each bearing strip is el~2d + Suppose further that

the k'th bearing strip has an instantaneous film thickness
H:He = }—e,cos0 , + € CosT .
k ( k_%) 2 k’i . (3.57)

is the eccentricity and e, the excursion ratio as

where e 1

2
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before. The time averaged film thickness in the k'th

strip will therefore be

2w

o _ |
H, _;J Hk dt = |l - e, ws O-L - (3.58)

o

Using equation (3.53) for the local flat thrust plate
behaviour, the time averaged pressure in the k'th segment

is

_ A+ 3e
k =~
JHE ~ & (3.59)

so the 1ift per unit length contributed by the k'th

segment is

W, =k - (B, - 1) cos By, (3.60)
Pa R 6 2x :

oxr

(i - €, Cos ek_%)z +%e,"

wk = ~ | peos @
(1 - e, Cos ek,.a)l - e"' *

(3.61)

which can be expanded as a power series in eccentricity

ez. For small eccentricities, ignoring terms O{Gﬁ?} R

% elre, cos™ Oy (3.62)

O—e?fiﬁ+%ef.

The first term is the contribution arising from a centred

bearing (e, = 0), while the second term is the first order

2
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contribution arising from the non-zero eccentricity. The

total 1lift per unit length of the bearing is
WI
PR O,
w

(3.63)
z w 'Y 2 2
b tede’ S'wse,, - -,_—e.ezé;as 6y
I——e?‘ 5 k=t k‘i .

(-e)* [V+ Ze

Using the relationship 58

W

J sin "
< e+ (k-1)p) = cos{O(+(W;')[5}- "% (3.64)
k=1 Sc'n-%
it can be shown that
w
é cos © _, = © (w>1) (3.65)
2
=
and
w w "
% -
2 ete, =32 (v ) =g
=\ =\

(w>2).

Thus, for w_ >2 the total l1ift per unit length is

Lwele,
- 3/ ) (3067)
(1 - ey ’1+.§_-e,l

At present VJ is normalised with respect to paR‘Ghzx.

the total l1lift would be

W =

A
more suitable normalisation for

with respect to paD, so that

2
W W 6 _  zmere;(1-2<)

= * s b (3.68)
Fa.D PR ©1_2y 2 (1 - ef‘)g/2 /H%e,"
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AsSuming that the grooves are reaily ambient line
boundaries (A = 0), and that the excursion ratio is small
(e12<< | ) so that terms o{e,‘*} can be ignored, the 1lift

per unit length finally reduces to

]
w ~ - 5—1‘(‘6.’"62
p.D

(3.69)

which is precisely the same as that obtained by Beck and
Strodtman26 for the very short smooth journal (see equation
(3.28)), dealt with earlicr. Thiénsimple approach seems

to Jjustify the assumption thét a ‘journal bearing with a
number of narrow deep axial grooves tends to approximate
the optimum local "flat plate'" behaviour. Note that
equation (3.69) is independent of the number of grooves,

so the same result would be obtained if as few as three

grooves were used.,

Referring back to the analogy drawn between squceze-
film and externally-pressurised bearings, one would as a
result of the above argument expect the externally press-
urised bearing to also benefit from axial grooving. It is
found that this is indeed the case39 in that the load
capacity is increased if a few axial grooves are incorp-
orated. However other factors, such as increased power
consumption, extra machining costs, and possible lack of
symmetry due to manufacturing tolerances, all tend to
preclude the use of axial gr&oves in this context. It is
more usual for the bearing to have a few.circumferential

grooves,

A possible practical attraction of axial compared
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with circumferential grooves for §queeze-film journals is
that the former are automatically connected to ambient
pressure at the ends of the bearing, whereas the latter'
might require vent-holes which would considerably complicate
their manufacture. One way of effectively introducing
circumferential grooves would be to have a single helical
groove starting at one ambient boundary and spiralliﬁg
towards the other end of the bearing, such that the pitch
>of the helix divided by the diameter of the bearing is
about 0.2 to be within 1% of the optimum load capacity
condition. The lack of rotational symmetry of such a
bearing might well tend to limit its use, however, in
applications where self~ihduced bearing reactions are a

problem,

3.2.5 Non-uniform excursion

It has been shown that for a squeeze-film Jjournal
bearing with an axially uniform excursion amplitude, it is
desirable to include extra ambient boundaries in the form
of circumferential or axial grooves maintained at ambient
pressure in order to remove the undesirable effects of
circumferential leakage flow. There is also a more
practical reason for using grooves, which we shall lead
up to by considering once again the flat thrust plate

with pressure distribution given by equation (3.10),

P

| - e

P = (3.70)

whereAP1 is effectively an amplification factor modifying

the interior pressure given by equation (3.%4) which would
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have been obtained with Boyle's Law based on thé true
ambient pressure P1 = 1. In other words P1 = 1 gives the
pressure distribution which would occur in an infinite
radius parallel flat disc bearing in which the film
pressure was initially at ambient. Remembering the result

of the mass content rule for a finite radius bearing

(equation 3.24) P1 = ,l+ %ef , equation (3.70) becomes

P = (3.71)
which can be expanded for small ey to give

D P 2

P =1+ ze + %e. (3.72)

so that the effective pressure producing the bearing

force is
""___ I 3 2 .
P-1 = ze + Le (3.73)

These two terms have been deliberately separated in order
to show the contribution %elz arising from the interior
Boyle's Law behaviour, and the contribution %912 represent-
ing the inward pumping or pressurising edge effect. It
can further be seen that the edge effect is the dominant
term, contributing 50% more to the load capacity than the

interior region. It follows that it is desirable to place

ambient boundaries in regions of large excursion amplitude,

In practice the vibratory component of a cylindrical
squeeze-film bearing usually takes the form of a thin-

walled piezoelectric ceramic tube operating in a radial
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thickness, or hoop mode., Because, of two dimensional
stress effects in the piezoelectric material, the excurs-
ion amplitude is by no means uniform along the length of
the tube, but tends to be a maximum at the mid-plane and
tails off to a lower value at the two ends. Typically,
the excursion at the ends might be 60% less than that at
the centre16, so there is a significant reduction in 1ift
(typically 27 by a factor of 2.6) when the ambient bound-
aries are sited near the ends of the transducer, as they
normally are, compared with that which could be achieved
with a uniform excursion equal to that of the mid-plane.
The situation is aggravated by the fact that the 1lift
depends on the square of the excursion ratio (equation
(3.28)). 1In one particular commercial design of accelero-
meter employing a squeeze-film bearing the mounting
constraints were such that the piezoelectric tube used did
not vibrate at all at its ends, while the region covered
by the bearing was such that the ambient boundary excursion

was only a third of that at the wmid-plane.

It follows, though it has not as far as is known been
discussed in the literature, that considerable improvements
in 1lift should be possible in bearings using this kind of
transducer if extra ambient boundaries are placed in
positions‘of favourable excursion amplitude. Further work
will be required in order to ascertain which of axial or
circumferential grooving provides the greatest benefit, but
it is felt that an immediate improvement would be seen if
even a single circumferential groove were placed at the mid-

plane where the excursion is a maximum.
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Another example of where extra boundary length should
be beneficial is in a hemispherical bearing with its
excursion in the axial direction as shown in Fig.16 . It
is very difficult to construct a transducer which will
produce an excursion which is spherically symmetrical, so
all practical designs of hemispherical bearings so far
have relied on vibrating one of the surfaces in the axial
direction only. This results in a large local excursion
ratio in the polar region, and a very small local excurs-
ion ratio ﬁear the equator. In the case of a full hemi-
spherical bearing therefore, it will have to rely for its
1ift totally on the interior Boyle's Law contribution,
unless the bearing is vented by a hole at the pole to
provide some edge effect amplification from the favourable
excursion occurring there. Again, it would appear that
grooving should improve the situation by increasing the
awmplifying effect as a result of extra boundary length in
relatively high excursion ratio regions near the pole.
This is to some extent verified by Beck and Strodtmaan,
who found that they could optimise the 1ift by varying the

size of the polar vent-hole until a balance was achieved

between loss of bearing area and increased edge effect.

3.3 Dynamic performance

Where the dynamic behaviour of squeeze-film gas bearings
is concerned, there are two main areas of interest. The
first is the response of the supported mass to the forcing
effect of the time dependent squeeze force itself, referred
to as the "self-induced response”", and the second is the

response of the system to some external disturbance, called



the "forced response'", This latter case 1is usually
typified by frequencies which are considerable lower than
that of the squeeze motion itself, a property which is

used to advantage in analyseszi.

3.3.1 Self-induced response

Beck and Strodtmanzo investigated the self-induced
response in the infinitely long journal bearing, assuming
that both the response frequency and the squeeze frequency
were large so that PH was effectively constant over a
squeeze cycle and the asymptotic theory could be used.
They used both a variational analysis, employing the
Mathieu equation, and a numerical technigue which enabled
them to predict stability boundaries. Their general
conclusions were that the system would remain stable for
a given excursion ratio provided the load was kept below,
and the dimensionless mass above, certain critical values.
When instability does occur, the response is at half the
frequency of the squeeze motion,

l
Pan&1

pointed out that this is analogous to the
magnetic excitation of an AC motor or generator, and
contrasts with half- -speed whirl in self-acting bearings
where the stability threshold is governed by a lower limit
on load and an upper limit on rotor mass. He also pointed
out that this type of instability is likely to be of
concern in the design of accelerometers using squeeze-

films, where the specific weight of the proof mass might be

quite low.

Chiang, Pan and Elrod31 performed a similar analysis
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on a mass supported between two épposed squeeze-film
thrust plates, finding that the respbnse is essentially
synchronous with the squeeze motion;.and that the behaviour
is that of a forced undamped spring-mass.system. For a
given supported mass there is a cfiticai drive frequency
at which resonance will occur in the mass response. ,(Above
this critical frequency the response is 180° out of phase
with the motion of the nearer squeeze surface, enhancing
the squeeze action and leading to greater load capacity
and stiffness. When the frequency is below the critical
value the response is in phase with.the nearexr surface,
degrading the squeeze action and jmpairing the performance.
In terms of dimensionless mass M, where

C w*
M= =2, (3.74)
P A

m is the supported mass, and A is the bearing areca, the

critical mass is

M, = —2— (3.75)
° (1-e})

where e, is the steady state displacement of the supported
mass., If M >-Mo the performance is improved and if

M<L M_ the performance is impaired.

This paper is of immediate interest as it gives an
indication of what to expect in the case of the axially
grooved jourmal bearing. Dynamically, this should behave

in a similar fashion to the rather peculiar double thrust



bearing of Fig.17, which consists. of a number of long
bearing strips, each corresponding with the projection
in the diréction of the load line of‘one of the bearing,
strips in the axially grooved joﬁrnal. Tﬁe width of the
strips and the local excursion ratio decrease in a cos @
fashion, while the mean film thickness varies in a (sec @
- ez) fashion éway from the centre. All the bearing
strips are considered to be driven together in phase at
the same angular frequency «w . If the number of strips
is large, it has already been shown that the steady state

1ift produced by such a bearing is, on modifying equation

(3.69),
F; 5 2
- ~s .-...___,"Te . 6

for small elz and e, where ezzi 0 represents a positive

upward force., The steady state 1ift produced by an

equivalent double flat plate bearing, using equation

(3’53) 3 is
d 2,3 . 03 2
F - FFP — (‘ - e:.) + 3¢, _ (l + eu) + 3z €
FP T LD - 2 2 > N (3.77)
Po‘ (‘ - ez) - €, (‘ + ez) - €,

which for small e12 and e2 becomes

Fep = - Sele, . | (3.78)

It follows that

Fe = A F | (3.79)

\1

N
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so the double flat plate bearing will be equivalent in
steady state 1lift to the strange bearing of Fig.17, and
hence»fo that of the axially grooved journal if it has an
effective area

A=

D . (3.80)

ENE

The dimensionless mass, equation (3.74), will be

. |
M = ig_%g_ (3.81)
™ Do :

and the response becomes unbounded when

—

_ hmC Wl .2 .
M =", T po LD (1 —e?)

-

(3.82)

The lift will be improved if MZ>~MO and degraded if ML Mo'

The same result should be true for the circumferentially
grooved bearing, or a very short journal bearing, as it
has been shown that they have the same pressure distribution
as the axially grooved journal under steady state conditions.
Circumferential flow in the journal segments should be
negligible under dynamic as well as static conditions
because the axial path lengths are relatively short, so the
same equivalent double flat thrust bearing should be

applicable as in the axially grooved case,

The paper by Chiang, Pan and Elrod31 also produces
the following condition for marginal stability, using a
Mathieu equation approach like Beck and Strodtmanzo which

should also be applicable to the grooved journal bearing,
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{
a6, = -2; - ,‘i..a_z (3.83)
where
I (3.84)
a, = ?X (a3+-a4>
a, = Z_ﬁ’"%____..._QZ‘ r P } (3.85)
and
e > 86
- 3 (= (3.86)
@3 = |+ 7-(\+e,>
3

(3.87)

For given values of e, and e equation (3.83) can be

1 2’
solved for M, and the bearing will be stable for values of
M greater than this. Damping of the squeeze motion, which
takes plaqe in the incompressible edge regions, has been
ignored because the asymptotic theory (O"—+00) was used to

derive the pressure distribution, so the stability result

will be conservative,

3.3.2 Forced response

It is of considerable interest to the designer to know

how the bearing will respond to external disturbances.



For instance, in the field of inertial navigation instru-
ments one is interested in the response to small amplitude
simple harmonic motions in the frequency range 20Hz to
2kHz, which is well below the driver frequency normally

associated with a squeeze-film bearing.

For such a case, where the squeeze frequency is con-
siderably larger than that of the external disturbance,
Elrodz1 formulated governing equations in terms of the
asymptotic theory so that the effect of the high frequency
squeeze motion could be "smoothed out!. Pan and Chiang22
then applied this theory to the spherical squeeze-~film
hybrid bearing using a perturbation technique for small
eccentricity and small vibration amplitude, to obtain the
dynamic stiffness, damping, freqguency response, and stability
of the system., The conclusions reached in this paper are
especially important as they may be relevent to other
bearing geometries:

(i) the dynamic axial stiffness increased steadily
with the frequency of the external disturbance, asymptotically
levelling off at a value about one decade larger than the
static stiffness;

(ii) the dynamic axial damping ccefficient (propor-
tional to the damping force divided by the frequency)
decreases steadily with frequency, although it is always
positive;

(iii) the spherical bearing is inherently stable with
respect to both axial and radial modes for frequencies
which are low compared with the squeeze frequency;

(iv) for most supported masses, the dynamic axial
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compliance at resonance is less than the static compliance,

but for very large or very small masses the reverse is true;
(v) the value of axial resonance frequency estimated

using the static axial stiffness can be as much as three

times too small.

All of these points should be applicable to flat.thrust
and conical bearings, while the radial aspect of (iii) is
probably true for cylindrical bearings in addition.

However, because of our conclusion that grooved Jjourmnal
bearings behave essentially like ccmbinations of flat thrust
bearings, it can also be inferred that Pan and Chiang's

results are broadly wvalid for them as well,

3.4 Local squeeze-number in a bearing segment

A point that requires investigation is the magnitude
of the local squeeze number in a bearing segment. It can
be seen that this would become quite small if the nuwber of
grooves is very large, leading to reduced load capacity
and violation of the asymptotic theory. It has already
been shown that only five segments per unit L/D are required
in a circumferentially grooved bearing. The squeeze number
for a smooth journal bearing is the same as that given in
equation (3.11), where in this case R is the radius of the
shaft. If the segment length is f, in a circumferentially
grooved bearing of diameter D = 2R, the local squeeze

number for the segment will be

2
c'é- = ___ﬁ__.‘zp W (é) . (3.88)
o

1t d/p < o.2,

»
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»:E; < o6 . I (3.89)
c__ — o *
Typically CrﬁaiOQ, so it can be seen CT will be Qz/»'103,
which is well within the bounds of validity for the asym-
ptotic theory. The same sort of comparison is required
for the axially grooved case, and a more rigorous analysis
is required than that given in section 3.3.%4, so that an
idea can be obtained of how many axial grooves are actually
ol

required to be within, say, 1% of the maximum attainable

load capacity.

3.5 Comments regarding grooves

In this rather lengthy discussion simpiified analyses

have been used to show that, at least for small values of

2
e1 and ez,

should be obtained in squeeze-film journal beérings by

quite considerable improvements in load capacity

incorporating narrow, deep grooves maintained at ambient
pressure. The finite width of the grooves represents a

loss of bearing area, so care must be taken to ensure that,
not more than (say) 1% of the bearing area is taken up by
grooves so that the load capacity reduction from this

source will be no more than 1%. Setting a criterion for

the groove depth is not so easy and study is required to

see how deep the grooves should be in order to behave like
proper ambient boundaries. Fbr instance, the local squeeze
number in the grooves should be low.enouéh for compressibil-
ity effects to be negligible, and the groove cross-sectional

area should be sufficiently large so as to present a
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negligible restriction to flow under all conditions of
operation of the bearing. In particular, for circum-
ferential grooves it is not easy to say for certain that
they need be specially connected to ambient via vent holes,
as a simple argument can be put forward which indicates
that over many cycles of the squeeze motion there will be

a transient fléw of gas through the film to equalise the
groove and ambient edge pressures, but whether or not this
is so requires further analysis, and possibly experiment,
Some of these points are amplified in the next two sub-

sections.

3.5.1 Groove depth limitations

It is necessary to ascertain how deep the grooves
in squeeze-film bearings should be wade in order to avoid
conpressibility effects. A groove is there to behave as
an ambient boundary, and the gas in the groove must be
able to move about freely in an incompressible fashion so
that adjustments to changes in eccentricity can take place
quickly., If the groove is too shallow, the local squeeze~
film action in the groove could produce compressibility
effects to detract from the edge pressurising effect,

which has been shown to be all important.

Suppose that the local squeeze number in a groove is

_\2pw /R 2
%, = "’&‘Fa“(“g) (3.90)

where hO is the mean film thickness in the groove., The
effective squeeze number in a bearing scgment is as given

in equation (3.88), where £ is the length of the segment



in the circumferentially grooved bearing, or is the
width of a segmen£ in the axially.grooved bearing.
Supposing that there will be negligible compressibility
in the groove if C55'<: 1, equations (3.88) and (3.90).

can be combined to give

o < 1. (3.91)

RQ)2
;

o ===
4 ((ko
In the circumferentially grooved bearing it is desirable
to set L/R ~ 0.4, while at present there is no estimate
for /R in the axially grooved case, so using /R = 0.4
in equation :(3.91) to provide an estimate for ho, its use
for the axially grooved casec will be justified later.

Thus

2
_[5¢
% "‘( )O“ < | (3.92)

Since C?' ig typically of the order 103,

¢ < 0-013 (3.93)

h,

so, as a rough guide,
h, > oo C (3.94)

which means that for C ~ 2 microns, we should have

h_ > 0.2mm.
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3.5.2 Effect of trapped volume in circumferential

rooves

In circumferentially grooved bearings_it may or may ’
not be necessary to physically vent eachvgroove to the
ambient by means of small holes in the groove bottoms.

It would be degirable to avoid this for manufacturing
reasons, and one can give a qualitative argument to show
that vent holes are not necessary to produce an ambient
pressure in the grooves., There should be a net leakage
flow of gas through the bearing from the outer ambient
boundaries which will gradually adjﬁst the groove pressure

to the same value.

If there are no vent-holes, then under dynamic cond-
itions each groove will tend to behave as a trapped
volume which could feasibly resonate in an analogous
manner to pneumatic hammer in externally~pressurised‘
bearings. If the cross-sectional area of a groo#e is too
small, then the gas might meet a considerable restriction
when it tries to flow circumferentially from one side of
the bearing to the other following rapid changes in eccen-
tricity under dynamic conditions. This would cause a
sudden build-up of pressure in the groove on the small
clearance side of the bearing, and a corresponding drop
in pressure in the large clearance region. This now alters
the boundary conditions locally round the groove edge of
a segment, leading to changes in the pressurising edge
effect locally in the segment. One can fhen envisage a
situation where the natural resonance condition of the

bearing might be augmented because the differential dynamic
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film forces are increased, and under certain circumstances

this might cause the bearing surfaces to touch.

3.6 Possibility of entrance losses

In the‘edge region, gas flows in and out of the bearing
film in response to the squeeze-motion., If the ambient
boundhry, approached frowm the interior of the film, is
marked by a sharp discontinuity in the film thickness,
there is the possibility that during the suction stroke
gas entering the film round the sharp corner will over-~
shoot due to its inertia and form a transient eddy inside
the film immediately adiacent to the sharp edse. This
would alter the boundarv conditions and tend to restrict
the flow into the film during the suction stroke, so

reducing the load canacity of the bearing.

A vaguely similar situation occurs in coxternallv-
pressuriscd gas bearings, whevre the flow entering the film
from an orifice may experience the effects of inertia,
separation, and shoclk, depending on the circumstances
@revailing. McCabe et‘alsk indicate that a loss coefficient
can be defined embracing all three of these effects in
terms of the Reynolds' number of the entrance flow, the
loss coefficient increasing monotonically with the
Reynolds' number. TFor squeeze~film gas bearings, a measure
of the transient Reynolds' number for the edge regions is

eoJCZCP., and for tvpical values

F = 1 kg/m3 (density)

/l =2 x 107° N s/m° (viscosity)

W = 4w x 104 rad/s (squeeze angular frequency)
C = 2/um (nominaliclearance)
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we have -

2
,(9._‘5_2 ~ 0-024 .
/.L

This very small value is several orders of magnitude
below the threshold wvalue associated with transition to
turbulent flow, and implies that the film is substantially

free from effects producing entrance losses.

Even if the transient Reynelds!'! number were appreciable
it is highlyv unlikely that entrance losses would occur due
to flow separation, as recent unpublished work at Queen
Mary College (London) indicates that there is a minimum
size of eddy that can exist, and that this minimum size is
larger than the nominal film thickness C normally encountered
in saqueere-film bearings. In any case, sharp edges to the
boundaries are unlikely to occur in practice as manufacturing
processes will tend to round off corners, enabling the
entrance flow to be gradually introduced into the film

without abrupt changes of direction.

That the ecdge flow VQlocify u is typically small
compzred with: the sonic velocity 'a' can be shown quite

easily. A wmeasure of velocity in the edge region is

wR

Jo

0w = O (3-95)

where R is a typical bearing dimension and ¢~ is the
squeeze number, The wvelocity of sound is related to the

density f> and pressure p of the gas thus

¥ ,
a= 2P (3.96)
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where ¥ (2~ 1.4 for air) is the ratio of the specific
heats at constant pressure and constant volume. The

effective Mach number of the edge flow is then

M =~“—‘~=o{4°—“—’—2'}

ed%e a ;Z/L (3.97)

which is seen to be proportional to the square root of
the transient Reynolds' number of the edge region.

Typically, M 0.0%4, so there should be no threat

~
edge

of transient shock waves and choking to interfere with

flow through the edge region since Nd

dee <L 1.
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4, GOVERNING EQUATIONS

On_the basis of the previous discussion it was decided
to inﬁestigate theoretically the effect of both axial and
circumferéhtial grooving in the common configurations
applied to a squeeze-~film gas bearing, namely cylindrical
conical, and hemispherical, taking into account both-static
and dynamic behaviour. We are concerned here primarily
with the forced dynamic response rather than self-induced
motion, because it has not yet received much attention in
the literature and the pointers of reference 22 require
verification for geometries other than hemispherical. To
obtain fair comparison, the analysis must also include
smooth bearings of the same geometries., The most convenient
way to do all this is to derive governing equations in
terms of generalised curvilinear co-ordinates, covering
both the static and forced dynamic behaviour, so that any
particular problem within the framework outlined above can

be studied by inserting the appropriate co-ordinates.

As it has not been tackled by any other author in this
context, the effect of slip-flow will be included in these
generalised.equations, rather than as a separate study,
so that the equations are set up if use is required at a
later stage. Estimates of the effect of a non-negligible
molecular mean free path can then be obtained for simple

geometries where analytic solutions can be found.

There follows a discussion of some of the assumptions
to be made in setting up the generalised equations,
followed by a derivation of the equations and a study of

available solution methods,



4,1 Assumptions

In deriving Reynolds' equation it would be more
satisfactory to use the kind of perturbation approach
employed by Elrod6 and Langloisi, but since only minotr
alterations are being made to include slip flow, and the
derivation of Reynolds' equation appears in many textbooks
(see for exampie Chapters 3 andbq of Cameroan), we will
restrict our attention to an outline of the main assumptions
used in deriving the governing équations for the generalised
asymptotic theory; these governing equations for an ideal
compressible lubricant being really an amalgamation of the
Navier-Stokes equations, the continuity equation, the

energy equation, and the equation of state.

Our particular interest is in high frequency operation
of squeeze-films (0 ~+00), and normally we would expect
high frequency changes in volume of a gas to take place
adiabatically. However, the film thickness is so small
compared with the other dimensions of the bearing that
heat transfer between the gas and the surfaces maintains
the film in a virtually isothermal stateSB. This wakes the

energy equation redundant, and the equation of state for a

perfect gas simply results in

pecp (4. 1)

where p and P are respectively the film pressure and
density.

In the Navier-Stokes equaﬂtionsl12 the film is taken
to lie in the x,y plane with the film thickness extending

in the Z -direction. The pressure is assumed constant



through the film thickness, and a.criterion for this

/]

2 2 |
P C o | ;
p (4.2)

where w is the angular frequency of the squeeze motion
‘and C the nominal film clearance. It is assumed that the

inertia terms can be ignored compared with the viscous

shear forces, and a criterion for this is 32
c? .
LLY- << | , : i

where /J is the viscosity. Pan32 interprets the inequal-
ities (4.2) and (4.3) as limiting respectively the square
of the Mach number and the transient Reynolds number of

the squeeze wmotion,

Velocities in the x and y directions are assumed

large cowpared with that in the z direction. A measure of

the velocity in the z direction is {%;é%%:, where R is a
typical measure of the bearing dimens{:ns. A measure of
the velocity in the edge region, where the lateral flow
takes place, is l§iE%§? , S0 a criterion for neglecting
the velocity compgiﬁ;t in the z direction ccocmpared with

the other components is
C
./O‘—ﬁ <L | . (4.4)

A further assumption is that velocity gradients in the

x and y directions are small compared with that in the =z

66
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direction. Respective measures for the former and latter

2 r—
are Sijhil_ and _EZI@fE , so the required criterion is
12 o R* IZ/u R

again

<< 1 . ) (k.5)

Jo

pole)

Gas at the relatively low pressures encountered in
gas bearings has a viscosity virtually independent of
pressure and dependent mainly on temperature,; so under
isothermal conditions the wviscosity can be assumed
constant. Keeping these criteria in mind, the full
asymptotic governing equations will now be derived,
including the dynamic behaviour and slip-flow, in terms
of generalised curvilinear co-ordinates. The derivation

2
17’2“, Elrod21, and BurgdorferQB,

is based on papers by Pan
and is given in full to show particularly how the intro-

duction of slip flow terms changes the governing equation

and its boundary conditions.

L,2 Generalised asymptotic governing equations

including time~dependence and slip flow

4,2,1 Navier-Stokes equation

Assuming that the effects of fluid inertia and external
forces (e.g. gravitational) are negligible compared with
viscous shearing forces, the Navier-Stokes equations

reduce to the vector form
L = | 2, .
/*VF = iV (W) + Vv (4.6)

where ‘7 is the gradient vector, /4 is the viscosity
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(assﬁmed constant), p the film pressure, and v = (Vl’ vé,

v,) is the velocity vector of the flow referred to a set

3 .

of generalised orthogonal curvilinear co-ordinates x X

1’ 727
s . - . . A N A
¥, in directions given by the unit vectors Xy X5y X

30
1? s2, 53 such that a

typical elemen?al volume element is slaxi. széxz. 536x3-

3

The fundamental magnitudes are s

The ) direction is through the film thickness h = h(xi,

%o t) which is contained between the two surfaces x,. = a

3

and x3 = b such that h =(b-a). If it is assumed that

velocity gradients in the §1 and‘§2 directions are small

39 and that v1>> v3 and

v2>>'v’, the Navier-Stokes equations become in terms of

compared with that in the %

these generalised co-ordinates,

%o L 3 <S.Sz.§x.> (4.7)
xl

1
I

/"l é <$.32,5V7,> (11.8)

sz 535| AX3 S3 5X3

Eﬁi = 0 (4.9)
dXs

equation (4.9) representing the further assumption that

the pressure remains constant throughout the film thickness

3 17

s2, 53 are independent of x3, the Navier-Stokes equations

in the % direction. If it is finally assumed that s

become simply

3 . pS OV (k. 10)

dX, 55 X3




BP - /u'sz’ézvz.

%, Sy ox} . (he11)

5P

X4 ' | (k.12)

i
o

4,2,2 Introduction of slip flow

Double integration of equations (4.10) and (4.11)

with respect to x

3 gives the velocity components
2 : .
v, = >3 _é_E. x; + Cx, + C, (4.13)
kas,éxl
Sz b 2 C
3 ‘
Vv, = 9P %2 4 C,x, + b 14
2 2#51 axz 3 373 4 (%, 14)

where C1 to CQ are constants to be evaluated from boundar
conditions yet to be specified. BurgdorforéB'showed that
the following boundary conditions become appropriate when
the molecular mean free path of the gas is appreciable

compared with the nominal film thickness:

‘ A v
l( 3 53 5)(3
Xa-:.d.
V,
Vi(x3=b) = "é‘%‘; (4.16)
3 3
>\ évz '
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Y A v |
Va (Xs = h) = ‘g’g’ 5%, (4.18)
X3‘=b

where )\ is the molecular mean free path of the gas.

Using these, the velocity components become

v, :555 %%{M ~ (b+a)x —-A(b a)+ab} (4 19)

- 2/43 __P_ x; ~(b+a)x, *l—z‘ga(b-a) +ab}- (4.20)

The volumetric rates of flow of gas in the Ql and Qz

directions are respectively

b

9 =jv,clx3 = - _S.L__zkg._éﬁ_ l+é’>\> (k.21)
A \2 s, 3%, s, h
b

it

(4.22)

- sih® dp ék)
I2 "fvzdxf" \zﬁs 3%, )

a

b,2.3 Continuity equation

In terms of the generalised co-ordinates, the con-

tinuity equation takes the form
. Sz.{ ((037.3,) + X-(es%)} ét((ok) =0 (k. 23)

where f) is the density. Equation (4.23) can easily be
derived by considering the mass flow rates entering and

leaving opposite faces of a column of gas of height h and
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base area slszst éxz, and it expresses the .fact that in
the absence of sources and sinks the wmass of gas contained
in the column must remain constant. The two terms within
the curly bracket take account of the gas flow in the

. . A A . . . .
directions X, and Xoo while the time derivative term

1
allows for the squeezing action arising from the time

dependence of the film thickness h.

Substituting for q, and q, from equations (k.21) and

(4.22), the continuity equation (4.23) becomes

f“{ [ 53€h<‘+6%)axj +_,_[st ip (;+$5‘1 é?]}-- ‘?/‘ fk)

(Lk.24)

Assuming that the film behaviour is isothermal, the
density and pressure are related through the equation of
state for an ideal gas

*;— = constant, (k.25)
For all the bearing geometries usually considered, 53 = 1,
and this fact together with equation (4.25) can be used to
simplify equation (%4.2%) so that it finally becomes the

modified Reynolds' equation,

SR8 B B2 - o

(4.26)

k,2,4 Non-dimensionalisation of the governing equation

Jt is convenient to non-dimensionalise this equation so
as to make it applicable to all sizes and shapes of bearing

likely to be encountered. To this end the spatial inde-
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pendent variables are non-dimensionalised with respect to
some typical bearing dimension, R say, so that in terms of
the new non-dimensionalised genefalised co-ordinates ui.and
u, a typical element of area is [16u1.€26u2 where [1 and

22 are now the fundamental magnitudes in the u_, and u

1 2
directions. The other non-dimensionalised variables.are
P= F/Pa_ (pressure)
? = F/P“ (density)
/21 ‘-'-/"//‘a (viscosity) (4.27)
H=h/C (film thickness)
X = X/Aa (méan free path)

where ambient conditions are expressed by the subscript 'a',
C is the nowminal film thickness, W is the angular frequency

of the squeeze motion, and /I = 1 under isothermal conditions.

-

Now Xoc%, S0 X::%w and the non-dimensionalised form of
Reynolds' eqguation becowes

A G R AT A IS

PH S
(4.28)
where use has been made of the Knudsen number,
m = ..>_\_.°~ (4.29)
C

and squeeze number

2
O—- = .‘_z_l:é—:a.)-(_B_> . ([’:.30)

Again, it is convenient to define the dependent variable

41 = PH, in terms of which the governing equation (4.28)
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Lire) 3o -ap ) o g

Supposing that ambient boundaries occur at u1 = a and

u, = b, equation (4.31) can be solved for %l subject to

elq

the following boundary conditions

~

-.: )
i1
o
c

»

~
]

H(L‘-«=a,“z)
— (%.32)
H (u|=b) U.z) .

(g
£
1t
o
<
»
~/
!

L,2,5 Separation of scales of time-dependence

In addition to the angular frequency w of the squeeze
motion, the bearing might experience some relatively long
term transient behaviour following scme extermnal disturbance
such that characteristic times for the transient and

squeeze motions are respectively

T = vt
.t (4.33)

wvhere v is some angular frequency characteristic of the
transient behaviour. Elrod21 showed that if the motion
due to the external disturbances were quasistatic compared
with the squeeze motion, Vv<<w , then the two time scales
T and T can be separated and the behaviour of the film
can be found in a time averaged sense with respect to the
squeeze motion. Pan and Chiangzz.applied this treatment

to the case of small amplitude harmonic motions in spherical



hybrid squeeze-film bearings, and the intention of the
present work is to generalise Pan and Chiang's approach
so as to be applicable to all squeeze film bearing geom-

etries, and to include the effect of slip flow.

The time scales are separated by.writing the film

thickness in the form

H(Un>u1)T; T) = HN(“'>“1;T) + HS (u,)uz,"f) (4. 34)

where H,, is quasi-static with reference to the squeeze

motion (associated with He } such that

Hs(u.,uz’T+2W) = Hs(ul)uL,T) ‘ (4.35)
and
TH+2w
| '
T

where 7' is a dummy variable for T . Assuming that it is

possible to write

\}/(u,,uz)t) = ‘P(u,)uz,'r,‘t) (4.37)

the right hand side of the governing equation (4.31) can

be written
3T | (4.38)

where
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_ V2u VRV - v
T = ™ (——> ool (4.39)

is called the "vibration number" by Pan and Chiangzz, so

that

N L (TS

() (YT REYS C) | R T

3
+ &[

h,2.6 Asymptotic governing equation

Equation (4.40) implies that

3 'T} | 4.k

X{—’OB:’F (h.k1)
so for large O, é;-ﬂro since £%<3C1, and

j ‘P (u"ul}j') ‘ (2.42)

>0

The governing equation for the asymptotic solution ¢& is
obtained by integrating equation (4.40) over one cycle of
the squeeze motion, and following the same sort of argument

as Pan and Chiangzz, it becomes

21',13,,{%.[%<l+ @;X%(Hw% "34'“15”00)} (4.43)
35,5 (10 )3 v - 3+;§DH -y .
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4,2,7 Asymptotic boundary conditions

Equation (4.43) is now in terms only of quantities
which vary slowly relative to the squeeze motion. The
solution 4& (independent of T ) cannot satisfy the
present boundary conditions (4.32) since H is specifically
T -dependent, so more appropriate béundary conditions must
be derived. Near an ambient boundary the vanishing of the
right hand side of equation (4.41) must be prevented in
the asymptotic limit 0 - 00, in which case there is a

requirement for

%\‘5‘. = O{‘[o-:} TR

near u1 = a and u, = b. Thus the boundary regions are

appropriately characterised by the‘stretched co-ordinates
,/O"“(ux“‘ a>l
.’0— l ((-L,"'E)l L)

Only quantities involving #/ will vary appreciably in the

i

%,
%

(4.45)

u

boundary region, so that in terms of the edge co-ordinates

5: equation (4.40) can be approximated by

M, (99 é:f) RS SR
zl.‘(éff RAIYTY R v oz ’c—}[mﬂ) (k.46)

where

H, =H(“-=a)“L»T>T)
_ (4.47)
Hz =H(u‘l=b) Yy ,T,T)

and
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g = Y (w=a,u,T,T)

- oAU
b = $(w=b,u,T, ) (449

are boundary values. Time averaging equation (4.,46) over

one squeeze cycle,

T

| (4.49)
4/ . NP s 3 }
. is periodic in T within O Coud , S0 for large 0 the

right hand side of equation (4.49) can be neglected, and
T+2

SEICTS SR

Boundary conditions in terws of the stretched co-ordinates
are

\-!/‘: (?;:O) H, L=

q/| (El""w) = l//oo(u.-:&)
V. (fz"*‘”)

it

(k.51)

il

4& <u0=.g) .

Equation (4.50) can be double integrated with respect to
Ei to give

T+ 270

| H;
'i"'ﬁs '2"’2‘2_(\1/{14"'29”\[/;)47' = Cﬁf‘-‘ + Cz (4.52) °
- '
and when ? 0, equations (4.51) give
T+2mr
| H;
“{;5 ZE*(H ri2mH) dx' = C, . (4.53)
T

As §i~roo, C, must vanish to ensure that the left hand
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side of equation (4.52) remains finite, and
T+ 2w Tiew
L He (2 o VR rur 20 de
i T .
The left hand side represents conditions Jjust outside the
boundary region at E-»oo, and so becomes

T4k

Ho (Yo +12m i) = ‘z‘%ic“?*‘z'“”il) de (4.55)
: T .
or
A.
(q,m"- + ’ZMLl/oo>i = = (4.56)
Heo
where
T4+2w
Ai = zl“.g (H? + lZ-W\H:)d'"C" L= l)z o (l_{,.57)
T

Solving the quadratic equation for \k; at the two boundaries,

Pr——

\[/m(u,;—.a.) = —bm + J36mz+ él (4.58)

o

\[Jw(u,=ﬁ) = —bm +J36mz+-'32
® (4.59) .

l

where the positive root has been taken, since the negative
one has no physical significance. Equations (4.58) and
(4.59) now provide the required boundary conditions on the

governing equation (4.43) for the asymptotic solution .

In the absence of the externally imposed disturbing
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frequency ( ¥ = 0), the right hand side of equation (4.43)
vanishes and it reduces to the normal steady state equation

formulated by Pan17

, modified by the slip flow factor

(L+éfl). In the additional absence of slip flow (m = 0)
(-]

the governing equation and its boﬁndary conditions (4.58)

and (4.59) reduce precisely to the expressions derived by

Pan17.

k,2,8 Governing equations for the edge region

Damping in the film due to the squeeze motion is
confined to the boundary region Qhere incompressible flow
in and out of the film takes plaée, aﬁd it is dnteresting
to see if the presence of slip flow modifies the situation

in this respect, To do this, it is assumed that

\I/':(“-v)“‘l)-r)'c') = k/jm'»(“">“7-«"T.) + 4/3(("")“"‘)7:) (4,60)

t= 2

where the edge correction L%, only assumes an appreciable
magnitude near a boundary. In other words, 4@ varies
with the stretched edge co-ordinate Ei near boundaries

i = 1,2 while 4& does not vary with ¥, . Thus

M M 2% 4.6

Bu, - éu. * Jazbf; (~. Y
and

AR A P

Yor - e 77 N | (4.62)

Equation (4,46) becomes



o

He {9 3’%}=§_"i¢ BN SIIE SR
ﬂ%{ S-g:. +Z(k{Jw+]ZW\)S—§?‘ )T +O{o_>o__,o__? ( 3)

From equation (4.62)

>, 0{ g | ‘(4664)

!
3%; -

so equation (4.63) in the limit of 0>t becomes

He Y W -
—t LS = e L,6
20% Y+ 3T (8.65)

subject to boundary conditions
%(Ei"c) Hi = o (k=0)
%(Ei--b*oo) = O

The diffusion type equation (4.65) is exactly the same as

|

(.’-3',2. (11066)

that derived by Panl?, but the value of J,, at }C = 0 will
be modified in the boundary conditions (%4.66) through the
relationships (4.58) and (4.59) which involve the Knudsen
hUmber m. So the damping will be affected by slip flow,
although its magnitude will remain O{j%;} .

Equation (4.43) together with the boundary conditions
(4.58) and (4.59) now formulates any forced dynamic or
static squeeze-film problem satisfying the criteria for
validity discussed in section 4,1, and allows for the effect
of slip flow. Any particular problem can be treated by
substituting the appropriate non—dimensional co-~ordinates
in place of the generalised co-ordinates u_, and u,, and

1
specifying the film thickness H, .
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L,3 Discussion on solution methods

Equation (4.43) is not in general easy to solve, even
with no slip flow (m = 0), but the presence of the slip-
flow terms complicétes the issue considefably. Formally,
under slip flow conditions the gas behaves as if the

viscosity has an effective non-dimensional value

Fo= (;_:z_qj;‘; ‘ (5.67)

so that equation (4.43) can be more conveniently written

in the form

s [ (i - 540 3]

+ %ﬁx[é’z (é CRASES 34J1AH ﬂ - Ké—k_f-‘i" (L.68)

where for no slip flow /ﬁ = 1, This equation is similar
to that for the dynamic operation of the self-acting
bearing, aand Hsing and Chianglili discussed a special finite
difference scheme for solving the equation numerically

for the case of a high speed tilting pad bearing. However,
apart from mentioning that numerical solution methods do
exist, it is not proposed to pursue slip flow effects in
depth in this work and most of the time we will be
concerned with the case‘fiz 1., An analytic solutioh‘will
be obtained for the flat disc squeeze~film bearing to show
the magnitude of the effect of slip flow, and this will

be used to estimate the effect in grooved journal bearings,
‘but'otherwise we will neglect it and design experiments

to avoid it.
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Equation (4.68) with /: = 1 (no slip flow) and § = 0
(static conditions), subject to the boundary conditions
(4.58) and (4.59) has been used to obtain static solutions
for all the commonly used smooth bearing geometries,
namely the cylindrical journa116’ 26, 28, 29, 36, conica117,
hemisphericall®' 2% and flat thrust plate2l., Most.of
these solutions use small perturbation analyses on
displacements away from the mominal centred position, and
finite difference numerical methods for larger displacementse.

The dynamic equation (4.68) with /I = 1 and 3:# 0 has
only been treated in two papers to dategi’ 22, but the
perturbation solution method of referencezz would seem to
be appropriate to the present work. Before Elrod's
extension of the asymptotic thecry to cover dynamic
operation21, the dynamic behaviour investigated was mainly
of the self-induced variety (references 20 and 25 and, more
recently, 31). These, aéain, cmploved small perturbation
techniﬁues, and use was made of the Mathieu equation in

references 20 and 30 to obtain stability boundaries.

5

Castelli and Pirvics ~, in a review of modern numerical
methods, presented a variety of solution techniques, each
having particular advantages depending on the application.
For the time-independent problem ( T = 0), the column-wise

63

influence coefficients method of Castelli appears to be
most suitable, involving considerable savings in computation
time over relaxation methods, and congiderable savings in
coﬁputer storage compared with direct inversion methods.

One of the main advantages of the method is in the

exactness of the solution, and although numerical
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instabilities can occur because of a mismatch between the
finite difference equations and the differential equations
they are meant to approximate, the situation can normally
be improved by increasing the number of finite difference
grid points, at the cost of increased computer storage and
time requirements. The method is also widely applicgble to
problems outside the field of gés Jubrication. Although
differing in detail, the column method is to all intents
and purposes the same as a matrix product method which has
been in use at RAE (Farnborough) for some yearng, and
which was used by Faddy49 in his investigation of spiral
grooved conical self-acting gyroscope spin bearings.

The present writer had already gained a certain amount of
confidence and familiarity with this version of the methed,
and had developed computer subroutines, so it was decided
to retain the matrix product method in dealing with the

static behaviour of squeeze-film bearings.

For the forced dynamic performance it was decided to
use the semi~analytic perturbation treatment of Pan and
Chiang22 for small eccentricities and small vibration
amplitudes which are of interest in inertial navigation
instruments. This method reduces the amount of computer
time needed by treating the static performance analytically
and leaving the complex dynamic equation to be dealt with
numerically. The static solution provides a valuable check

for the numerical solution obtained by the matrix product
method discussed above., Attempts to solve the dynamic
equation analytically are usually foiled by the complexity

of the coefficients required to satisfy the boundary
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conditions, so one is forced to resort to the computer to
obtain the effective dynamic stiffness and damping in the
bearing. It has been found that»thé‘compiex dynamic
equation can be reduced to a system‘of two simultaneous
ordinary differential equations which can be solved by a
matrix method to be described later. This semi-analytic
treatment is especially suitable for grooved bearingé,
where each segment has to be dealt with separately and the
results summed to obtain the total dynamic bearing force.
By confining the computation to the time-~dependent aspect
of the solution, considerable saVings in computer storage

and time are achieved.

To deal with dynamic behaviour at 1arge eccentricities
the step-jump method has considerable attractions in the
context of the present work. Although it has not previously
been applied to squeeze-film gas bearings, it was used to
treat the self-acting journal bearing by ﬁeans of an orbit
program46, and flexibly wmounted externally—préssurised
bearing847 by means of a growth factor, to study stability.
The great benefit in treating grooved squeeze-film bearings
lies in the fact that the gas film details are solved only
once for a particular eccentricity, and thereafter the
dynamic pérameters (mass and forcing frequency) can be
varied over and over again without having to re-solve
Reynolds' equation on each occasion, thus saving a large
amount of computer time. The drawback of the step~jump
method is that the assumption of linearity of the response
with respect to the applied stimulué means that the
solution must still be restricted to small amplitude

motions, although the eccentricity is not restricted. It



is also difficult to separate out directly the stiffness
and damping components of the dynamic force if these

are explicitly required.

Both the semi-