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ABSTRACT-

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

MECHANICAL ENGINEERING 

Master of Philosophy 

PERFORMANCE COMPARISONS BETWEEN GROOVED AND 

UNGROOVED SQUEEZE-FILM GAS BEARINGS 

David Desmond Cooke. 

Squeeze-film gas bearings are investigated from the point 

of view of determining the effect of extra ambient pressure 

boundaries taking the form of deep, narrow grooves and, in 

order to accommodate all the bearing geometries normally 

encountered, the governing equations are set up in terms of 

generalised curvilinear co-ordinates. The possibility of 

slip-flow conditions is allowed for, as is vibratory 

excitation at a frequency small compared with that assocc-

iated with the squeeze motion. 

If conditions are such that slip-flow occurs, it is shown 

that the load capacity suffers typically to the extent of 

about 5/0 in thrust bearings and about 10% in journal 

bearings. 

It is found that the steady state static bearing force in 

journal bearings can be considerably improved by the presence 

of ambient boundaries, because circumferential leakage flow 

is reduced. The steady state dynamic response to forced 

vibration in both thrust and journal bearings is strongly 

dependent on the number of grooves, which can be used to 

advantage in suppressing otherwise large dynamic compliance 

resonance peaks which might occur. 

Experimental work is suggested for testing the validity 

of the theoretical results , and for exploring the effect on 

bearing performance of the groove cross-sectional geometry. 
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1. INTRODUCTION 

Unlike the better known classes of gas bearings, 

externally-pressurised and self-acting, the squeeze-film 

gas bearing relies for its load carrying capacity on the 

vibratory squeezing action of one surface relative to 

another. The compressibility of the gas film is essential 

as it is responsible for the non-linearity in the pressure-

volume relationship which leads to a net film pressure 

being developed in excess of the ambient which can then be 

used to support a load. 

This class of gas bearing has not received much 

attention commercially, possibly because of the low load 

carrying capacity and the small number of applications 

where the same job cannot be adequately performed by a 

suitably designed externally-pressurised bearing with its 

reduced number of manufacturing tolcrance problems. The 

squeeze-film bearing really cones into its own when there 

is insufficient room to accommodate the ancillary equipment 

required by the externally-pressurised bearing, or where 

turbine torques are prohibited, such as in inertial 

navigation instruments. Because the load carrying capacity 

is low, comparatively large projected areas of bearing 

surface are required to support a given load, leading in 

turn to relatively large transducer systems to provide 

the necessary vibratory motion. In aircraft instrument 

applications especially it is of the utmost importance to 

keep the instrument bulk to a minimum, so it is highly 

desirable to improve the load carrying capacity as much as 

possible to reduce both bearing and transducer size, and in 



turn to reduce the power requirement. 

26 

This study was stimulated by Beck and Strodtnian's 

conclusion that the very short squeeze-film journal bearing 

has a much greater load carrying capacity per unit length 

than the very long journal, This immediately suggested a 

way of improving the load capacity of cylindrical bearings 

by segmenting them by means of narrow, deep circumferential 

grooves held at ambient pressure, and as grooves running 

axially from end to end of the bearing appeared easier to 

manufacture in certain instances it was wondered whether 

the same sort of effect on load capacity would also be 

achieved in this case, 

A further possible advantage of grooving is that it 

should improve the performance of bearings where the 

squeeze vibration amplitude is non-uniform. This especially 

covers all of the present cylindrical transducer designs, 

and is an area in which the practical benefits are likely 

to be felt most. 

The object of this study is to investigate thoroughly 

the effect of introducing grooves into bearings of the 

various geometries commonly encountered, taking into account 

both static and dynamic behaviour. Because of the writer's 

interest in small bearings aimed at inertial navigation 

instruments where the film-thicknesses tend to be reduced 

as the design work develops, it is felt that slip flow 

effects might become appreciable some day, so this has been 

built into the governing equations so that it can be 

included if required in future work, and estimates have 

been made for the magnitude of the loss in load capacity 



to be expected in two typical cas.es where analytic 

solutions can be obtained. 

The layout of the thesis is quite straightforward, 

starting with a survey of the literature in approximately 

chronological order to give some feel for the way the 

field has developed and to provide a background for the 

subsequent sections. Then comes an extended discussion 

on squeeze-film bearings in general in which the concept 

of 'local flat thrust plate' behaviour is developed and 

used repeatedly to obtain simple analytic solutions for 

various bearing configurations, leading up to the idea of 

placing grooves in one of the bearing surfaces. Once the 

concept of grooving has been justified by simple analyses, 

the dynamic behaviour is discussed, and local squeeze 

effects in the grooves and bearing segments investigated. 

In order to perform more rigorous analyses the governing 

equations are then sot up in terms of generalised curvi-

linear co-ordinates so that smooth and grooved bearings 

can be compared, taking into account slip flow and dynamic 

behaviour, and discussing assumptions made and methods of 

solution. Slip-flow is briefly considered in terms of 

simple thrust and journal bearings where analytic solutions 

are possible, providing estimates of how important the 

effect is likely to be in reducing load capacity. This 

is followed by a long section in which the main bearing 

geometries, grooved and ungrooved, are analysed and 

typical performance curves presented for their static and 

forced dynamic behaviour, and we end with some suggestions 

for experimental work followed by a discussion of the main 

conclusions to arise out of tho theoretical treatment. 



To avoid confusion it may perhaps be advisable to 

point out that in this thesis the terra 'damping' is used 

in a rather unorthodox manner. One normally thinks of 

damping as referring to a 'force per unit velocity'; in 

other words, as being the coefficient of the velocity 

term appearing in the equation of motion. In this report, 

for brevity, 'damping' will often refer to the quadrature 

component of the dynamic stiffness, and so will be taken 

to mean the 'dynamic resistive force per unit deflection' 

of the system. 

It may also avoid confusion if the expressions 

'circumferential' and 'axial' arc defined in their context 

with grooving. In cylindrical journal bearings a circum-

ferential groove is taken to be a rotationally symmetric 

groove passing around the circumference of the bearing at 

a particular axial location, Tn other words, the plane 

containing a very narrow groove is orthogonal to the bearin; 

axis of symmetry. An axial groove, on the other hand, 

extends from end to end of the cylinder along a generator 

at a particular orientation of the circumferential co-

ordinate 0. In conical and hemispherical bearings an 

axial groove lies parallel to a generator, while a circum-

ferential groove lies at right angles to this direction. 

In thrust bearings we will refer to concentric annular 

segments, being the axial projection of a circumfercntially 

grooved conical bearing. 



2. SURVEY OF THE LITERATURE . 

Squeeze-film gas bearings in their oim right have been 

studied in depth for the relatively short period of about 

twelve years, apart from some isolated papers which appeared 

in the 1950's. The lack of interest, compared with that 

shown in externally-pressurised and self-acting gas bearings, 

can probably be attributed to the fact that only a limited 

number of applications have come to light where the pure 

squeeze-film bearing can be used to advantage. It becomes 

an attractive alternative to the externally-pressurised 

bearing in situations where relative tangential motion of 

surfaces is too small to provide an acceptable bearing 

force by self-acting or hydrodynamic means, and where the 

necessary vibratory drive for the squeeze-film can be 

accommodated in preference to the rather bulky compression 

equipment and plumbing required for the externally-

pressurised bearing. Examples are journal bearings for the 

support of low speed rotors, slider bearings operating at 

low speeds, and bearings for reciprocating devices. Smooth 

surfaced hemispherical, conical, or parallel flat plate 

thrust bearings cannot support a thrust load by self-acting 

means, so squeeze-film support would be an alternative to 

external pressurisation under suitable conditions. 

Examples of where only squeeze-films appear to be capable 

of providing the necessary support are to be found in 

inertial navigation equipment, in the gimbal bearings of 

gyroscopes, and in the support of the proof mass in 

accelerometers. This is because there is no rotation to 



enable a self-acting bearing to be used, and externally-

pressurised bearings would almost certainly introduce 

spurious flow effects in sensitive directions which would 

appear directly as errors in the outputs of the instruments * 

It is not surprising, therefore, that the main workers in 

the field of squeeze-film bearings have been associated with 

the development of inertial navigation sensors, although 

much of the early work was in connection with slider bearings 

aimed at the computer industry. 

1\fo centres in the USA are closely associated with work 

on squeeze-film lubrication: 

(i) MTI (New York), where Pan and his co-workers have 

exhaustively covered theoretical and practical problems 

associated predominantly with the application of squeeze-

film support to gimbal bearings for inertial navigation 

gyroscopes, mainly on the strength of NASA contracts. 

(ii) Strodtman et al of Lear Siegler (Michigan) have 

contributed much to the theory of squeeze-films, and have 

been concerned in practice with the development of inertial 

quality accelerometers of various types, employing squeeze-

film bearings for the support of the proof mass. Another 

branch of Lear siegler (California) has developed a gyro-

compass for the US Army which uses an almost flat squeeze-

film thrust bearing (l4 inch radius of curvature) to support 

the sensitive element. 

In the UK there are also two centres actively engaged 

in squeeze-film bearing studies: 

(i) RAE (Farnborough), where the present writer is 

working in connection with gyro gimbal and accelerometer 
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proof mass support for inertial navigation instruments 

used in military aircraft. 

(ii) AGO (Slough), who are interested mainly in the 

possibilities of using a squeeze-film to reduce the starting 

friction in the rotor of the relatively massive SINS gyro-

scopes used by the Royal Navy. 

In this section it is proposed to outline, in approx-

mately chronological order, the known literature on compress-

ible squeeze-film lubrication* This will show how the 

subject has developed, provide a background for the present 

study, and indicate how some of the conclusions have 1cd to 

the concept of placing grooves in squeeze-film gas bearing 

surfaces in order to improve the load capacity. 

2.1 Historical survey 

Although the present author has not seen a translation, 

1 2 

other workers * indicate that the first reference to squeeze-

film gas bearings appears to be in a paper by Tipei^ in 1954, 

It was not until 1957 that the next relevent paper was 

published, by Taylor and Saffman^. This was not specifically 

concerned with the lubrication aspect of a squeeze-film, 

but was motivated by an attempt to explain the result of a 

controversial experiment, purporting to indicate non-

Newtonian properties of air, demonstrated by Professor 
5 

Reiner at the Applied Mechanics Conference held in Brussels 

in 1956. The apparatus consisted of a disc 67mm in diameter 

spinning at 7OOO rpm opposite a fixed stator disc, such that 

the nominal separation between the discs was 20 microns. 
Taylor and Saffman performed a third order perturbation 
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analysis on the effects of misalignment and relative normal 

motion between the discs and showed that the normal motion 

could account for the effect which had been attributed to 

non-Newtonian behaviour. Their conclusion was that relative 

normal motion between surfaces could lead to a time averaged 

pressure in excess of that of the ambient, so inherent in 

their analysis was the possibility of a gas bearing operating 

in a pure squeeze mode, without the necessity for relative 

sliding motion of the surfaces or external pressurisation. 

Marsh, in a verbal communication, has since indicated that 

Reiner carefully repeated his experiment and again observed 

an effect which this time could not be satisfactorily 

explained by the Tay1or and Saffraan analysis, so Reiner 

remains convinced that he observed a non-Newtonian phenomenon. 

Five years elapsed before a further spate of papers 

appeared, this time specifically concerned with the lubric-

ation aspect of a squeeze-film, and instigated primarily by 

IBM's interest in the dynamic behaviour of self-acting 

slider bearings used in the computer industry. For instance, 

7 

using a numerical method. Gross investigated the growth 

and decay of pressure in both incompressible and compressible 

films between parallel flat surfaces following normal 

impulsive motions, Langlois^ gave a detailed derivation of 

the equations governing the pressure distribution in a 

parallel flat squeeze-film thrust bearing under isothermal 

conditions using a first order perturbation technique similar 

to that employed by Elrod^ in the study of a self-acting 

journal bearing operating with a constant viscosity 

incompressible fluid. This approach is convincing in that 



it avoids the necessity for many of the ad hoc order of 

magnitude assumptions usually employed in the derivation 

of Reynolds' equation. Although the governing equations 

were set up with both normal and tangential motion in mind, 

the pressure distribution was obtained for pure squeeze 

motion. Michael, another member of the IBM team, applied 

a finite difference method^ to the time dependent slider 

9 

bearing problem. In another paper he employed a perturb-

ation analysis similar to that used by Langlois , enabling 

non-periodic as well as periodic solutions to be obtained 

for the parallel flat plate squeeze-film bearing, and he 

also allowed for the possibility of flexible surfaces. Out 

of this paper comes an estimate for the characteristic time 

associated with transient effects; typically, a rect-

angular parallel f̂ .at thrust bearing of length L, breadth B, 

nominal clearance ĥ , operating in an ambient pressure p 

with a fluid of viscosity yu , a transient disturbance in the 

film following a relative normal impulsive motion of the 

surfaces will decay to 1/e of its initial magnitude in time 

12 
JL 

'LB>^ 

+6") \Trh 
(2.1) 

This theoretical work was backed up experimentally by 

2 

Salbu , demonstrating the feasibility of practical hemi-

spherical, cylindrical Journal, and flat thrust squeeze-

film bearings driven by piezoelectric and electromagnetic 

devices. He compared experimentally and theoretically 

derived results of forces present in a parallel flat disc 

bearing, using a finite difference method suggested by 
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Michael^, Rotational speeds of up to 50,000 rpm did not 

appear to change the bearing characteristics. Generally, 

agreement between theory and experiment was within 20%, and 

Salbu attributed the discrepancy primarily to experimental 

errors. On the dynamic behaviour of the parallel disc 

thrust bearing an analogue computer simulation was used, 

and there were four main conclusions (see also scction 3.3.1) 

(i) failure of the bearing will occur if the squeeze 

frequency drops below a critical value, and this critical 

frequency decreases as the nominal clearance increases; 

(ii) the bearing becomes unstable when the load reaches 

a certain value, but can be rcstabilised by a change in the 

excursion amplitude; 

(iii) at large mean clearances, a gradual reduction in 

operating frequency will cause a progressive increase in 

the response amplitude of the supported mass compared with 

the squeeze amplitude; 

(iv) at small clearances failure will be sudden, 

preceded by small changes in the response amplitude of the 

supported mass compared with the squeeze amplitude. 

In an extended discussion on Salbu's paper, Malanoski 

10 
and Pan employed a mass content rule, similar to that set 

1 1 

up by Elrod and Burgdorfer for the self-acting journal 

bearing, to remove the ambiguity of the unspecified initial 

condition which was built into Salbu's simplified Boyle's 

Law approach. A constant which occurs frequently in the 

compressible squeeze-film literature is the "squeeze number" 

C given by 

cr = (2.2) 
pa \Cj 
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where ym is the viscosity, 6J the angular frequency of the 

squeeze motion, the ambient pressure, C the nominal film 

thickness, and R is some typical bearing dimension (such as 

the radius of the disc in the circular flat plate bearing). 

The squeeze number is analogous to the compressibility 

number used in self-acting bearing theory, so that the film 

behaves incompressibly as 0 ~ — O , and more and more compress-

ibly as G~~*-00 . Ma la no ski and Pan*^ showed that an 

asymptotic approach ( C T — C O ) can be used to advantage in 

studying the steady state behaviour of the flat disc bearing, 

using the property that under suitable combinations of 

viscosity, high drive frequency, and compressibility, 

lateral flow in the bearing film is inhibited so that the 

system behaves very nearly like a nonlinear spring with no 

damping. This theory could be used to provide a good 

engineering estimate for the time averaged bearing force 

for squeeze numbers 0~ 0 • 

Lear Siegler's early interest in the possibilities of 

squeeze-films for gyroscope gimbal suspension is indicated 

12 

in a paper by Liebler , presented at an ultrasonics 

symposium, in which he describes experiments to measure 

the spurious torques in a squeeze-film journal bearing 

generated within the bearing itself and arising from geo-

metrical inaccuracies. In a bearing with length 36mm, 

diameter 33mm, nominal clearance 6.25 microns, and journal 

out of roundness approximated by an ellipticity of I.OOOOI69 

(major axis/minor axis), he found that oscillatory bearing 

torques occurred, decaying under the influence of a film 

damping coefficient of estimated magnitude 7,8 x 10~^Nm per 

rad/s. 
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At the same time MTI was actively concerned with the 

practical problems associated with designing a transducer 

suitable for producing the squeeze-film motion in a gyroscope 

13 

gimbal application. Chiang and Pan studied the longit-

udinal resonant modes of three transducer configurations, 

consisting basically of a driving section and a driven 

extension on which the squeeze-film bearing member was 

mounted. The extended section was designed to provide a 

mechanical amplification of the excursion amplitude occurring 

at the end of the driver, so reducing the power requirements. 

General and simplified analyses were presented, together 

with design data* showing that a mechanical amplification 

factor of about five could typically be attained with this 

type of transducer. 

In a design report for a gyroscope employing squeeze-

• . 1 '(t 
film bearings, Pan laid down the following guidelines: 

(i) the squeeze number should be in the range >• 100 

to avoid deterioration in load capacity (the asymptotic 

theory being fairly accurate above this limit); 

(ii) the sum of the excursion ratio and maximum 

steady state displacement ratio (eccentricity, or axial 

displacement) should not exceed 0.9, to ensure that the 

minimum instantaneous film thickness is always greater than 

0*1 in order to allow for reasonable tolerances in practical 

bearings; 

(iii) given this limitation, the maximum load capacity 

will be achieved if the excursion amplitude is approximately 

equal to half the nominal clearance. 

Orcutt, Kissinger and Pan , following on from the work 
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of reference 13j investigated an experimental axial 

excursion transducer system in which a tubular piezoelectric 

driver section was connected to conical bearing pieces 

through flexures in the form of flat annular washers. With 

a power consumption of 9 watts, a peak to peak axial 

excursion of 17.5 microns was achieved (representing a 

12.5 micron peak to peak excursion measured normal to the 

bearing surfaces, as the cone semi-angle was 45°). The 

flexure in this case provided an amplification factor of 

a bout 6 over the motion of the piezoelectric driver, which 

was excited at a frequency of 11,1 kHz. One of the 

practical difficulties which appeared out of this work was 

that the bearing cones moved in a non-rigid manner owing to 

the influence of the flexures, causing an undesirable non-

uniform excursion. 

Pan, Malanoski, Broussard and Burch*^ formulated the 

asymptotic analysis for the cylindrical squeeze-film journal 

bearing, obtaining an analytic solution for the radial 

stiffness in the case of small eccentricity and uniform 

excursion. They also established the equations in terms 

of an axially symmetric parabolic excursion distribution, 

such that the excursion amplitude is largest at the mid-

plane and decreases towards the ends. This was for effective 

comparison with experiment as the piezoelectric tubular 

transducers in use tend to have this sort of non-uniform 

vibratory motion. Experiments were performed on a double 

squeeze-film journal bearing, where a piezoelectric tube 

supported both itself and a sleeve by using both of its 

vibrating surfaces to form squeeze-films. Curves of load 
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against eccentricity were obtained and agreement with 

theory was found within 10% for most loads. However, under 

very small net loads the agreement was only within 19%, • 

2 

nearer the accuracy Salbu observed. An important conclusion 

was that the load capacity is significantly reduced by the 

axial non-uniformity of the squeeze motion. 

1 7 

In 1966 Pan presented a more general asymptotic 

theory than that suggested in reference 10, applicable to 

arbitrary bearing shapes, arbitrary modes of oscillation, 

and for hybrid bearings provided the compressibility 

number remains finite, and this has formed the basis for 

most of the more recent papers on the steady state perform-

ance of squeeze-film bearings. As an illustration he 

applied the theory to the conical squeeze-film bearing, 

obtaining various design curves. Basically, he showed 

that at high frequencies, the squeeze-film could be 

considered to consist of two regions: 

(i) the internal region, where Boyle's Law is obeyed 

subject to appropriate initial conditions; 

(ii) the edge regions, where the governing equation 

is of a diffusion type, similar to that discussed by Elrod 

and Malanoski*^ for the self-acting journal bearing. 

Where time averaged forces are concerned, the edge region 

contribution is ® ̂  compared with that of the internal 

region, so for large Cf the effects of the edge region can 

be neglected and the film considered to behave like a 

perfect non-linear spring. This theory was applied to the 
20 

case of a rotating spherical squeeze-film bearing , and 

showed that the squeeze-film and self-acting effects on the 

pressure distribution are superimposable. Also, to first 
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order in eccentricity, the axial load capacity and stiffness 

are independent of eccentricity. 

20 

Beck and Strodtman used the asymptotic theory to 

investigate the stability of an infinite length squeeze-

film journal bearing, solving the dynamic equation by both 

variational and numerical methods. The dynamics equations 

were arranged in the standard form of the Mathicu equation, 

which appears frequently in physics and engineering and has 

well known stability characteristics, and this linked to the 

variational analysis enabled stability maps to be presented, 

21 

At the Southampton Symposium in 19^7» Elrod derived 

governing equations for the dynamic performance of squeeze-

film bearings. Ho showed that for cases where the character-

istic frequency of the external disturbance is small 

compared with that of the squeeze motion itself, the effect 

of the squeeze motion can be "smoothed out", enabling the 

asymptotic theory to be extended to cover dynamic conditions. 

22 

Pan and Chiang applied this to the spherical squeeze-

film hybrid bearing, and their methods will be used in the 

present work. In their paper the boundary conditions are 

derived by boundary layer considerations, following Di 

2 3 

Prima , rather than by the mass content rule approach of 

reference 17« 
In discussing a survey of squeeze-film lubrication 

given by Pan and Broussard^^ at the 19^7 Southampton Gas 
51 

Bearing Symposium, Muijderman referred to some work 
carried out on spiral grooved self-acting flat thrust 

52 
bearings subjected to small axial vibrations . This 
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indicated that the damping component of the dynamic force 

could be increased by splitting a flat thrust bearing up 

into a number of segments separated.by ambient pressure, 

boundaries. The stiffness component of the dynamic force 

would be reduced, so the net effect is a smaller amplitude 

response than would be the case with the unsegmented 

bearing, fitting in with results given by Langlois and 

37 
Ausraan » 

5 3 

At the same meeting, Pan discussed the validity of 

the assumptions that the squeeze-film behaves isothermally 

and remains in a state of thermodynamic equilibrium at high 

squeeze frequencies, concluding that this is indeed the 

case for all situations likely to be encountered, 

In 1968, Strodtman presented several papers with various 

24 

co-authors. Beck and Strodtman considered steady-state 

operation with a spherically symmetric (radial) excursion. 

They showed that the latter case produces considerably 

more load capacity than the axial excursion case, and they 

also showed that venting an hemispherical bearing near the 

pole can increase the load capacity by about $0%. Beck, 
25 

Holliday and Strodtman described an experiment in which 

the motion of the supported mass was the main contributor 

to the generation of the squeeze-film. They performed a 

perturbation analysis and obtained good agreement with the 

experimental results. Investigating the steady state 

behaviour of the finite length journal bearing. Beck and 
26 

Strodtman found the lift per unit length to be strongly 

dependent on the length to diameter (L/D) ratio of the 

bearing. In fact, the very short bearing is 2.5 times 
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better than the very long bearing' with respect to lift per 

unit length. This conclusion, reached independently by 

27 28 
Pan J is really the starting point of the present work. 

An interesting paper from the point of view of the 

design of gyroscope gimbal bearings is that of Pan and 

'29 
Chiang , who theoretically analysed the bearing torques 

arising from geometric and material imperfections. In a 

30 

discussion of this paper, Strodtman estimated that a 

typical journal bearing for gimbal support might produce an 

error torque as large as 4 x 10 ^Nm, For the gyro to behave 

sufficiently accurately for inertial navigation purposes, 
-9 

the error torque should typically not exceed 1,2 x 10 Nm, 

which is about 3OOO times below that present in the bearing. 

However, as Pan pointed out in reply, gyroscope gimbals are 

normally maintained within a few minutes of arc of a fixed 

orientation and the error torque can be nulled by the 

application of a bias torque. The effect of bearing torques 

would become more important in applications where the bear-

ing movement is not so restrained. 

Also in reference 27, Pan and Chiang discussed the 

possibility that supported mass response might explain 

discrepancies between theory and experiment. More recently, 
31 

Chiang, Pan and Elrod followed this line of enquiry 

further by studying the motion of a mass supported between 

two opposed squeeze-film thrust bearings, and found that 

the time averaged load capacity can differ considerably from 

the steady state case. The stability of the system was 

investigated using the same Mathieu equation approach as 
20 

Beck and Strodtman . 
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At the 1969 Southampton Gas Bearing Symposium, 

34 

Constantinescu studied the influence of inertia forces 

in squeeze-films. He showed that inertia effects can lead 

to cross-film pressure gradients if the frequency of the 

squeeze motion is very high, and he derived a validity 

criterion for neglecting the effect. 

32 
Pan extended the asymptotic theory to include the 0 i C edge effects which had hitherto been ignored 

using singular perturbation techniques as discussed by Di 

2 3 

Prima , and he identified three edge-interior interaction 

e ffects related to 

(i) mean-gap taper, 

(ii) squeeze taper, 
(iii) cross-edge sliding, 

which are analogous to the boundary layer displacement 

effects in aerodynamics. With reference to the work of 
33 34 

Constantinescu he also discussed criteria for the 

validity of isothermal gas lubrication theory in terms of 

the magnitude of 0~. 

35 

Finally, Strodtman used a series expansion in terms 

of ascending powers of eccentricity for a journal bearing, 

obtaining an analytic solution agreeing well with numerical 

procedures for large values of eccentricity. Various non-

uniform excursion modes were treated, and the same config-

uration was considered in terras of optimising the clearance 

in another paper^^. However, the optimisation of clearance 

tends to be at the expense of stiffness, and this restricts 

the usefulness of such an approach. 
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2.2 Conclusions 

These references provide a background for the present 

study and lead to ways of improving the performance of • 

squeeze-film gas bearings. 

Of especial interest is the result indicated in 

references 2.5 and 28, that the journal bearing has a lift 

per unit length which is strongly dependent on L/D, and 

that in particular the very small L/D bearing has a lift 

per unit length 2.5 times as great as that having a very big 

L/D. This suggests, though to the present writer's 

knowledge it has never been hinted at anywhere else in the 

literature, that a bearing composed of a number of small 

L/D segments separated by ambient pressure boundaries will 

have a considerably greater lift per unit length than a 

smooth bearing with the same overall value of L/D. 

Because the average path lengths of the flow are 

reduced, it is also felt that the dynamic performance of 

squeeze-film bearings of arbitrary geometry should be 

improved by the presence of extra ambient boundaries. A 

larger region of the film will experience incompressible 

flow where the forces will contribute to damping, and the 

region where compressibility occurs will be reduced, so the 

net effect should be increased dynamic damping with a 

reduction in dynamic stiffness. This intuitive conclusion 

is backed up by the work on flat thrust bearings reported 

in references 1, 37 and 51* 

The improvement in static forces obtained by venting 

24 

the polar region in hemispherical bearings is another 

pointer to the desirability of suitably increasing the total 
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ambient boundary length. 

Several reports on experimental work have mentioned 

the non-uniformity of excursion arising from the stress 

distribution in the transducer used to drive the squeeze 

motion. In particular, reference l6 noted that in a 

cylindrical transducer employing a piezoelectric tube, 

the axial non-uniformity in the excursion could typically 

lead to a loss in load capacity by a factor of 2.6 . 

S ince the bearing force depends largely on the excursion 

26 
amplitude at an ambient edge , it again appears that 

improvements should be brought about by placing extra 

boundaries in regions of more favourable excursion. 

For various reasons, therefore, an investigation into 

the effects of incorporating grooves in squeeze-film gas 

bearing surfaces is needed as it promises to enable 

bearings to be designed with a performance superior to 

that attainable at present. 
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3. GENERAL DISCUSSION ON GROOVED SQUEEZE-FILM GAS 

BEARINGS 

This section takes the form of an extended discussion 

in which simple analyses will be carried out to justify an 

interest in the grooving of squeeze-film bearings, and to 

indicate what might be expected in the more rigorous" 

analysis to be described in section 6, 

Firstly, an interpretation will be given of how the 

"simple" thrust bearing works, labouring the point a little 

because it will be shown later that the grooved journal 

bearing in its limiting form behaves locally just like a 

2 

flat thrust bearing. Apart from Salbu's , most of the 

papers concerned with squeeze-films tend to immerse thein-

selves very rapidly in mathematics and it is difficult to 

extract in an easy way what is happening in the film, so it 

is hoped that it wi11 be clear from this discussion how 

the asymptotic theory fits into the picture in simple terms. 

It will be shown that the thrust bearing finds an analogy 

in the externally pressurised thrust bearing, and this may 

be helpful in determining the dynamic performance of grooved 

squeeze-film bearings. 

The discussion then moves on to consider the cylindrical 

26 

journal bearing, extending Beck and Strodtman's result , 

and investigating the pressure distribution and flow patterns, 

leading up to the idea of segmentation by circumferential 

grooving. The localised link with the flat thrust pad 

pressure distribution in the limiting case then leads to 

the suggestion of axial grooving which may have certain 

manufacturing advantages. Again, an analogy can be found 
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with externally pressurised bearings. 

The dynamic behaviour of squeeze-film bearings is then 

considered, defining two areas of interest: 

(i) what will be referred to as "self-induced 

response", arising from the forcing action of the squeeze 

motion itself; 

(ii) The "forced response", arising from external 

disturbances superimposed upon the squeeze motion, 

3*1 Steady state behaviour of the squeeze-film thrust 

bearing 

Simple Boyle's Law model 

Consider a parallel flat disc thrust bearing of radius 

R where the lower surface vibrates sinusoidally about the 

mean clearance C with an amplitude e C as indicated in 

Fig.1. The instantaneous film thickness is 

(i - C (' I +" 1̂ cot ) (3.1) 

where w is the angular frequency of the squeeze motion, e^ 

the excursion ratio, and t is the time. At low frequencies, 

the gas is alternately squeezed out and sucked into the 

film as the gap varies, so the system behaves like a 

viscous damper with a damping force proportional to the 

velocity of the moving surface, h. As the frequency is 

raised, some of the gas near the centre of the film is 

"trapped by its oim viscosity" as the viscous shearing 

forces preventing flow begin to become appreciable. 

Consequently, in the central region the gas is alternately 

compressed and expanded by the squeeze motion, while 



nearer the ambient boundary flow .in and out of the film 

takes place incompressibly as before. The film begins to 

stiffen because of the increased compressibility, while.the 

damping decreases, At high frequencies, the restrictive 

viscous shearing forces are considerable and virtually the 

whole film is compressed and expanded, while viscous 

damping is confined to a very narrow region near the ambient 

boundary still experiencing incompressible flow. Under 

these circumstances the film behaves like an almost perfect 

non-linear spring. It can be shown that the film in 

5 3 

general remains isothermal^^, so if the effect of the edge 

region is ignored, the interior compressibility region can 

be expected to obey Boyle's Law, 

U A constant - |d^CA (3.2) 

where p is the instantaneous pressure, p the ambient 

pressure, and A the area of the bearing disc. Normalising 

as follows, pressure P = p/p , film thickness H = h/C, 

time = Cot, we obtain 

- D _ I 

" ( I + e, C O S T ) ' 

The time averaged film pressure, averaging over a cycle 

c4 
of the squeeze motion, is then 

I ? = 
Zrr 

_ ej" (3-4) 

so that the bearing force is given in non-dimensional 
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terras by 

I 

F - F ' 
p»TrR» 

2 f C P - l ) c l r = T = = r - ' (3.5) 
J l - e ' 

where r = r/R is the normalised radial co-ordinate. For 

small values of the excursion ratio, ' 

IP = I + (3'G) 

and 

F cz ^e, X. 
(3,7) 

showing that the load supported is proportional to the 

square of the excursion ratio. 

The non-linear behaviour of the pressure indicated by 

equation (3.3) can be demonstrated with the aid of Pig, 2. 

The full curves show how Boyle's Law curvature reflects an 

asymmetric pressure change following a symmetric volume 

change, so that the mean pressure during a squeeze cycle is 

greater than ambient by an amount A P which can be used to 

support a load. This simple model is not valid as e ^ — ^ 1, 

where an infinite film pressure is predicted, because 

other effects occur to prevent this happening, but it does 

serve to indicate the essential behaviour of the high 

frequency squeeze-film even though the edge region had been 

ignored, 

3*1.2 Inward pumping edge effect 

2 
Salbu observed experimentally that Boyle's Law is a 
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good approximation to what happens in practice, but the 

film behaves as if the external pressure were p^ rather 

than p , where p. > p . In other words, Boyle's Law is ' 

obeyed in the form 

(3.8) 

or 

P 
p ' 

( 1 + e, cos T ) (3.9) 

where P. = p./p . The effect of this is indicated by the 
1 1 a 

broken line curves in Fig. 2, and results in a higher time 

averaged pressure distribution, 

„ p 
P = <3.10) 

than was the case with the true ambient pressure initial 

condition. Salbu estimated that has a value of I.l5 

for e^ = 0.5* 

The implication is that, in order to sustain an interior 

pressure higher than the ambient edge pressure, there must 

be a transient inward pumping action through the edge 

region until the interior compressibility forces create a 

balanced steady state situation. Such an effect can be 

discussed qualitatively in terms of Fig, 3 where the phase 

relationships are shoifn schematically for the compressible 

interior region pressure, the incompressible edge region 

pressure, and the film thickness during a cycle of the 
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squeeze motion. 

At 'T = 0, the gap is a maximum so gas flows relatively 

easily into the film because the edge pressure exceeds 

that of the interior. As the gap closes, increasing the 

resistance to flow, the interior pressure increases above 

that of the edge and flow into the film stops. By the time 

the interior pressure has reached its maximum value above 

the edge pressure, the gap is a minimum at TT = TT and 

presents a considerable resistance to flow, so that there 

is little leakage of gas out of the film. Soon after the 

gap begins to open again the interior pressure drops below 

that of the edge and once again there is a relatively easy 

path for gas to flow into the film. In other words, gas 

flows into the film when there is relatively little re-

striction to flow, and out when the restriction is consider-

able. The net effect is a transient flow into the film 

which pressurises the interior until a time averaged flow 

balance is achieved, 

3*1*3 The asymptotic theory and mass content rule 

The asymptotic theory developed by Pan*^, upon which 

most squeeze-film analyses are based, consists basically 

of setting up boundary conditions to evaluate the (at 

present) ambiguous in such a way that Boyle's Law in 

the form of equation (3.10) remains a fair description of 

the bearing film behaviour. To do this use is made of a 

mass content rule similar to that applied to self-acting 

11 
bearings . 

Defining the squeeze number 0~ for the parallel flat 
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disc thrust bearing, 

cr == 
Pa. lev 

(3.11) 

where jj. is the viscosity, the governing Reynolds' 

equation for the film pressure in non-dimensional 

2 
quantities is , 

f afV Ar/ (3.12) 

In the limit CT" —>- 00 , 

= o (3.13) 

implying that PH = constant, the familiar Boyle's Law. 

A dilemma now presents itself. If Boyle's Law holds, 

then the pressure P oC. l/H is time dependent, in which 

case it cannot satisfy the true boundary condition 

(P = 1 at r = l) which is time independent, so some more 

suitable boundary condition has to be found. 

The derivation of such a boundary condition, using 

the mass content rule approach, follows on from equations 

(3.12) and (3.13) , 

( f f ) = <= • 
r J (3.14) 

Remembering that this is the radial flow component of the 

continuity equation modified by the equation of state for 

a perfect gas, a measure of the radial mass flow rate of 
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gas i n t o the f i l m i s ob ta ined by i n t e g r a t i n g w i t h r espec t 

t o r and r e a r r a n g i n g , namely , 
_ constant 

The p ressure must change smoothly f rom one ambient edge 

t o the o the r across a d iameter t h rough the f i l m , so the 

p ressure g r a d i e n t a t the c e n t r e w i l l v a n i s h . Consequent ly 

hZ' 
^ f 

= 0 a t r = 0 , the cons tan t becomes z e r o , and 

H ^ „ O . ( 3 .16 ) 

I n t e g r a t i n g t h i s over one c y c l e o f the squeeze mot ion 

y i e l d s a measure o f the mass o f gas s t o r e d i n the f i 1m 

d u r i n g the c y c l e as a r e s u l t o f the inward pumping a c t i o n 

a t the ambient edge, 

Zrr ^ 

= o (3.17) 

O 

which i s zero under s teady s t a t e c o n d i t i o n s because f i l m 

e q u i l i b r i u m e x i s t s . As no ne t f l o w i s e n t e r i n g or l e a v i n g , 

t h e r e must be a cons tan t mass o f gas con ta ined i n the f i l m . 

I f f i l m e q u i l i b r i u m i s d i s t u r b e d f o r some reason; f o r 

example, the mean gap might change as a r e s u l t o f a change 

i n the l oad suppor ted by the b e a r i n g ; the r i g h t hand s ide 

o f e q u a t i o n (3 .1? ) w i l l no l onge r v a n i s h , but w i l l a c q u i r e 

a p o s i t i v e or n e g a t i v e va lue i n d i c a t i n g a net t r a n s f e r o f 

gas across the ambient boundary u n t i l f i l m e q u i l i b r i u m i s 

r e s t o r e d under the new c o n d i t i o n s . Under dynamic c o n d i t i o n s 
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f i l m e q u i l i b r i u m might never be e s t a b l i s h e d , and the 

c o n t i n u a l t r a n s f e r o f gas i n and out o f the f i l m w i l l 

c o n t r i b u t e t o the dynamic damping o f the system and 

d e t r a c t f rom the dynamic s t i f f n e s s . 

To o b t a i n u s e f u l boundary c o n d i t i o n s f o r the asympto t i c 

t h e o r y ( CF —^ oO ) , e q u a t i o n (3*17) i s i n t e g r a t e d once more 

w i t h respec t t o r f rom a p o s i t i o n r = ( 1 - 5 ) j u s t i n s i d e 

the i n t e r i o r r e g i o n ad jacen t t o the i ncompress ib le edge 

r e g i o n , t o the ambient boundary a t r - 1 where P = 1, g i v i n g 

ZTT 

(3.l8) 

ZTT 

j dT = o 

or 

2n-

(PH) H d T 

%Tr 

H JT = O 
(3.19) 

Now PIT = cons tan t ( independent o f X ) , so ( P H ) can be 

t a k e n o u t s i d e the i n t e g r a t i o n s i g n o f the f i r s t term and, 

s ince 6 can be made ve ry sma l l i f CT-^OO , equa t i on 

(3.19) p rov ides a pseudo-boundary c o n d i t i o n f o r PH i n t h a t 

i t i s r e a l l y f o r a "boundary" an i n f i n i t e s i m a l d i s t a n c e S 

i n s i d e the t r u e boundary a t r = 1. We o b t a i n 

(PH)' = 
H 

at f ? I ( 3 . 2 0 ) 

where 
irr 

( 3 . 2 1 ) 
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and 

Oivr 

H = 2^^ (3.22) 

o 

are time averaged values. Remembering equation (3.1), 

it can then be shown that 

( F H ) - I 4- ^ e, at F - I . (3.23) 

When H = 1 (squeeze motion passing through the mean gap 

position), equation (3*9) indicates that 

? = ?,== J \ + (3.24) 

so the time averaged pressure distribution, equation 

(3*10), for the parallel flat disc thrust bearing becomes 

e, 
I T ( 3 . 2 5 ) 

and the load supported, equation (3.5) is 

_ F' r + & , 

^ = JTI-IF - ' 

which for small excursion ratios becomes 

F = £ e r + o [ e ^ } . (3.27) 

Comparing this with the unmodified Boyle's Law model, 

equation (3.7)» it can be seen that the bearing with edge 
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effect included has 2.5 times the load capacity of the 

bearing without the edge-pumping effect. This will have 

important consequences when grooved bearings are discussed 

at a later stage, 

3*1*4 Analogy with externally pressurised thrust 

bearings , '• 

Apart from the basic pressure rise above ambient due 

to the Boyle's Law behaviour in the interior, the squeeze-

film bearing behaves somewhat like an externally-pressurised 

bearing with pressure sources distributed evenly around the 

ambient boundary, so in this respect there is a direct 

analogy with that region of the externally pressurised 

thrust bearing contained by a circular feeding groove, 

where the pressure distribution is constant and equal to 

some value lying between that of the supply and that of the 

ambient (see Pig.4). In the squeeze-film the pressure must 

drop sharply from its interior value given by equation (3,2$) 

to the ambient through the edge region, which on the basis 

of the asymptotic theory can be shown to be of non-dimen-

sional width 0 ^ * This analogy may be useful 

in indicating what might be expected under dynamic conditions, 

3*2 Steady state behaviour of the squeeze-film journal 

bearing 

26 
Beck and Strodtman showed that for a small eccentric-

2 

ity Og and small e^ the non-dimensionalised lift per unit 

length of a squeeze-film journal bearing depends on the 

L/D ratio as follows 

v/, = . ^ = (3.28) 



where the non-dimensionalised film thickness is assumed 

to have an instantaneous value 

(-{ = i = I - COS e +• e, COS T (3.29) 

such that a negative value of eccentricity e results in 

a positive bearing force in the direction @ = 0 as 

indicated in Fig.5 • From the structure of equation 

(3.28) it can be seen that for long bearings the second 

term in the parentheses becomes negligible, so that 

(3.30) 

while for very short bearings the second term tends to a 

value of 1,5, so 

• (3.31) 

Thus the very short bearing has 2.5 times the load 

capacity per unit length of the very long bearing. It is 

worth noting that this improvement is reminiscent of that 

brought about by the edge effect in the thrust bearings 

as discussed in section 3.1,3, and leads one to conjecture 

that the edge effect might also be responsible for the 

improvement in the journal bearing case. That this is 

indeed the case will be shown later. In general, normal-

ising with respect to the very long bearing behaviour, 

Y' , = 1 ^ = I + ISUNHK , . , 3 , 
2U D (3.32) 
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and this is shown in Fig. 6 , 

By investigating the flow and pressure distributions 

in the journal bearing, the reason for this L/D dependence 

will be explained, and this will lead to the concept of 

grooved squeeze-film bearings. 

3.2.1 Mass flow c ens id e ra t i ons 

17 
Applying the asymptotic theory of Pan , Beck and 

26 2 
Strodtnian derived an analytic solution for Q - (PH) 

which can be rearranged in the form 

Q(G)Z) ~ ^ ̂ ^ Cos ® ̂  ^ — Coik 1 + Sink Z t&nk 
(3.33) 

where Z - Z/R is the axial co-ordinate. The time 

averaged non-dimensional mass flow rate per unit width in 

the axial direction is 

M - -
' ̂  - % a z (3.34) 

where the time averaged film thickness is 

an-

^ = I - cos 8 (3.35) 

so that 

Mg (e, % ) = K (e) ( SmA Z - cosh % tanli k ) (3.36) 

where 

K(&) = -I ef Cos G 
^ (3.37) 
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2 

for small values of and e^. The mass flow rate per 

unit width crossing the ambient boundary at E = 0 at 

some particular orientation Q is then 

= - Kfe) bmk L (3.38) 

from which it can be seen that the axial flow is small and 

proportional to L/D for short bearings, and tends asymp-

totically to a maximum value ~K (6 ) as the bearing length 

becomes large. Also, because of the cos © dependence of 

K(© ) the axial mass flow rate is a maximum at 0 = 0 and 

© = TT , and vanishes at Q ~ IZ and © = , while 

there are sign changes in the flow rate at Q ~ ^ and 

© = . The tota1 mass flow rate crossing the ambient 

boundary at 2 = 0 in the region tr/z. ^ S-rr/z is 

c: - fonk ̂  j !<(̂ o) de = ~ 3 ^ (3.39) 

rr/x 

while that crossing the remainder of the same ambient 

boundary is 

tt/Z 

M _ = -tank ̂  
^ '/ K(^6 - 3 tofik ~ . (3«4O) 

Remembering that is negative for a radial displacement 

in the direction 0 =TT , then >• 0 and <1 0, 

implying that there is a net flow of gas into the film in 

the small clearance region and out of the film in the large 

clearance region. Also, since | ) = | | , the same 

mass of gas enters the film as leaves it, which is hardly 

surprising under steady conditions with no sources or sinks. 
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The axial penetration of this- flow into the film can 

be studied by considering the structure of equation 

(3*36), from which it is clear that the axial flow 

plotted as a function of , where = L/R is the non-

dimensional length of the bearing, will be a curve whose 

shape.depends on the function (sinh z - cosh z tanh L/D), 

modified only by the muItiplicativc factor K ( Q ) for 

different orientations around the bearing. So, removing 

the effect of the © - dependence, the axial distribution 

of the axial mass flow rate per unit width is conveniently 

expressed in terms of the ambient edge value by the function 

(sinl Z - cosk z tank 

fiz ( 8 , 0 ) (3.41) 

which is plotted against in Fig.7 • Because of 

axial symmetry, only half the bearing length need be 

shown. 

The circumferential mass flow rate per unit width is 

r 3 5 IN 6 (̂ COSF\ I - SINKI TANFI-^) 
(3,42) 

(3.43) 

2 

for small e^ and e^, and is evidently a maximum at 

0 = ̂  and 0 = , vanishing at 8 = 0 and TT . The 

maximum values are . 

) z) = e, z — smK 2 tank 

and 

cosk 5 - E 

(3.44) 
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where the difference in signs merely indicates that the 

flows in the sectors 0 ^ 0 ^ " ^ and TT G -6 ZTT are 

in opposite directions, the flow in either case being 

directed from the small clearance (high pressure) to 

large clearance (low pressure) region of the bearing. 

Again, it is convenient to remove the Q - dependence by 

normalising the axial distribution of the circumferential 

flow in terms of its ambient edge value, 

= (cask z - smi, z tan/it) 
Me(e,o) <3-45) 

which is plotted in Fig.8 as a function of axial position 

Z/Zl for various values of L/D. Note that the total 

circumferential mass flow rate through the film at @ ="^^1 

is 

ZL 

j = 3 e ? - e i U ^ 
^ (3.46) 

which is the same as that which enters the film in the 

regions "n/Z^ 6 C TT , Z = 0 and Z = , and leaves 

the film in the regions 0-^ 6 < ""/Z , Z = 0 and "E = . 

The result of all this is that it would appear that 

the overall flow pattern in the bearing region 0 ̂  < TT , 

0 6 %L is as shown schematically in Fig.9 . The 

flow enters the film predominantly at Q = TV across the 

ambient boundaries at 1 = 0 and Z = Ẑ . , turning circum-

fereatially to flow from the small clearance to the large 

clearance region, and finally diverging to leave the film 

predominantly at 8 = 0 , Z = 0 and Z = Ẑ ^ . In other 
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words, there is a net flow of gas- through the film in a 

circumferential sense and the bearing acts like a pump. 

In a very short bearing ( ^ « I ) the axial mass flow 

rate is very small ioC L/D) but has a linear axial dis-

tribution (see Fig. 7) implying that the axial pressure 

distribution is constant at any orientation @ , The. 

circumferential flow (Fig. 8) is also small and has the 

same value throughout the bearing length at any particular 

orientation Q , 

As the bearing length increases to give a moderate 

value for L/D, the axial flow rate distribution tends to 

lose its linearity implying an axial pressure gradient 

which is greatest near an ambient edge and decreases with 

penetration into the film. The circumferential flow also 

exhibits a deviation away from the constant distribution 

Implying a greater circumferential flow near the boundaries 

than in the centre of the bearing. The absolute magnitude 

of the flow is increased over that of the very short 

bearing, as given by equations (3.38) and (3.42). 

In very long bearings ( L / D » I ) the magnitude of the 

flow is a maximum, and both the axial and circumferential 

flows tend to be concentrated near the ambient ends of the 

bearing with negligible flow in the interior. This again 

implies a constant axial pressure distribution in the 

interior, but it can be expected to have a markedly 

different value from that of the short bearing. 

Turning now to the time averaged pressure distribution, 

2n-

o 
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where Q and H are given by equations (3»33) and (3.29) 

2 
respectively, for small e^ and e^, 

? = l + fe,^+- ele, cos e] I + ^(co%ki - smkz 
^ I 2 ^ ' (3.48) 

Remembering once again that e^ 0 for a positive force in 

the 8 = 0 direction, it can be seen that, as is to be 

expected, the pressure is a maximum at Q = TT and minimum 

at 6 = 0 . The axial pressure distribution at these two 

orientations is given in Fig.10 . The very short bearing 

has a constant axial pressure distribution 

f(L/D ^-o) = 1 + COS e (3.49) 

while the very long bearing has this same value at the edge, 

but in the interior the pressure is 

p(L/D-»co) = I + + efei(as8 . 
4- (3.50) 

The axial pressure gradient at the ambient edge is 

= - I cos e tanli L (3.51) 

Z^o 

which is seen to be proportional to tanh ̂  at any orien-

tation © . This is consistent with the increases in total 

axial and circumferential flows observed earlier, since 

the mass flow rate is proportional to the pressure gradient, 

This constant axial pressure distribution in short 

bearings is reminiscent of the thrust plate discussed in 



39 

section 3,1.2, and leads one to observe that for L/D I 

the journal bearing behaves locally (at a particular 

orientation 6 ) like a flat thrust bearing, so that a 

pressure distribution given by equation (3.10) can be 

expected, where in this case 

= cos e) 4- (3.52) 

to take account of the local film thickness, That is 

P = j(l — 6j. cos ©) + % 6, 

e%cos ey 
I "f" ̂  6, "f" Q.. 6, Cos 0 

4- 7. ^ 
(3.53) 

for small and e , agreeing with equation (3.49) which 

was derived from the full asymptotic theory for the journal 

bearing. 

In the long bearing (L/D I ) the edge pressure will 

again be given by equation (3.53), but because of circum-

ferential flow the differential pressurising effect of the 

ambient boundaries following a non-zero eccentricity will 

be lost and the interior will behave as though the ambient 

pressure were 

(3.54) 

as would be the case with = 0. This results in a local 

"flat plate" behaviour in the interior of the fo rm 

p -
I + 

(\ - cos e)^ - e,' 
4- cos 6 

(3.55) 
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which agrees with equation (3.50)'. 

All this implies that the idea of "local flat plate" 

behaviour might be useful in performing simple estimates 

for journal bearings. In long bearings, circumferential 

leakage reduces the bearing pressure differential below 

that of the ideal local flat plate constant value, so 

reducing the load capacity, as indicated in Fig.11 . 

3.2.2 Externally-pressurised bearing analogy 

This loss of pressure differential because of circum-

ferential leakage is similar to that which occurs in 

externally pressurised journal bearings, if one considers 

the region between the feeding planes in a double feeding 

38 

plane bearing (see p.Il6 of Grassam and Powell ). Fig.12 

shows the similarity in the pressure profiles occurring at 

6 = 0 and Q = TT . The dependence on L/D of the amount of 

circumferential leakage in the two cases is qualitatively 

similar in that reducing the magnitude of L/D improves the 

situation and restores the pressure profiles nearer to the 

flat plate distributions. 

This analogy may prove useful in predicting the dynamic 

behaviour of the squeeze-film journal bearing. 

3.2.3 Circumferential grooving 

The result that a short bearing has negligible circum-

ferential leakage flow compared with a long bearing, and 

that consequently the load capacity per unit length is 

nearer the ideal "flat plate" value, suggests that it 

should be possible to almost totally remove the circum-

ferential leakage in a long bearing by introducing circum-

ferential ambient boundaries. In this way any desired 
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bearing length could be operated with optimum load capacity 

by making it in the form of a number of short segmental 

journal bearings, mutually separated by deep narrow grooves 

maintained at ambient pressure. 

If one looks at Fig.6 in conjunction with equation 

(3*28), it can be shown that a journal bearing segment of 

L/D 0,2 will provide a lift per unit length within 1 

of the maximum that would be attained with an infinitesimally 

short segment, indicating that only 5 segments per unit 

overall value of L/D is required for a practical bearing. 

This has the advantage of keeping the segment length as 

large as possible so that the local squeeze number for the 

segment does not become small enough to cause appreciable 

loss in load capacity and violate the asymptotic theory 

assumption of large Cf . By doing this a typical improvement 

of lift to be expected is 66% for L/D = 3. Alternatively, 

the overall bearing size can be reduced if a certain load 

is being designed for, and typically a circumferentially 

grooved bearing of L/D = 1.8 would give the same lift as a 

smooth bearing of L/D =3. 

3*2,4 Axial grooving 

The developed film cross-section of a squeeze-film 

journal bearing is shown in Fig,13 where the circumferential 

leakage flow within the film is indicated by arrows, while 

the axial pressure profiles are given in Fig,10 , One is 

inclined to observe that if the ideal load capacity is 

given when the film behaves locally like a parallel flat 

plate bearing, then this ideal could be approximated by 
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making one of the surfaces out of- a large number of flat 

strips, each separated by an ambient line boundary which 

runs from end to end of the bearing, as indicated in the 

developed view of Fig.l4 « The strips nearest 6 = 0 and 

Q - TT are totally isolated from eachother by the inter-

vening ambient boundaries, so there is no circumferential 

leakage flow to produce an undesirable drop in pressure 

differential 1eading to reduced load capacity. Where there 

is circumferential flow locally because of mean gap taper, 

it has little effect on lift because it is a maximum in 

the strips centred at Q and © = 3jr where the 

pressure forces act at right angles to the load line. 

Consider such a squeeze-film journal, with deep narrow 

axial grooves running axially from end to end centred at 

circumferential positions given by 

0 = 0^ == ^ k (3*56) 

as shown in Fig.15, where w is the number of grooves, and 

k = l,2,...,w . If each strip bearing is approximated by 

a parallel flat plate, the shaft will take the form of a 

w-sided polygonal prism. Suppose each groove has a non-

dimensional width (where o < « { ) , so that the width 

of each bearing strip is G|„2.c< * Suppose further that 

the k'th bearing strip has an instantaneous film thickness 

= I - e* cos + e, cos T ( 3 . 5 7 ) 

•where e^ is the eccentricity and e^ the excursion ratio as 
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before. The time averaged film thickness in the k'th 

strip will therefore be 

2tr 

H 
^ ' ITC = I - ^2 COS 8^-2 • (3.58) 

Using equation (3»53) for the local flat thrust plate 

behaviour, the time averaged pressure in the k'th segment 

X s 

P. = z 

H, (3.59) 

so the lift per unit length contributed by the k'th 

segment is 

Vli 
w . 

~ ( PL - 0 (3.60) 
I—2L0C 

or 

w,. 
( 3 . 6 1 ) 

(I - ej. Cos - e 

which can be expanded as a power series in eccentricity 

Gg. For small eccentricities, ignoring terms , 

W. 
M + |e,'-

I — ef-
' cos 6. , 

£ efei coŝ  Gk_. ( 3 . 6 2 ) 

6 -

The first term is the contribution arising from a centred 

bearing (e^ = 0), while the second term is the first order 
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contribution arising from the nonr-zero eccentricity. The 

total lift per unit length of the bearing is 

w = - ^ 

pa.T̂  Ql-2e( 

, ^ ^ w f : % (3.63) 

I l l W - I j o c o s e , , , - W . 
1 - ef- fk=i J s T Y ^ 

58 
Using the relationship 

^ Cos{o( + (k-OAj = cos I c< 4- ~.J.) A J • ^ (3.64) 
kZl ' ̂  ^ ^ ' S.n^ 

it can be shown that 

cos 6|̂ _̂  t= o ( w > I ) { 3 . 6 5 ) 

kci ^ 

and 

k = i * '«•=•' > 2 ) . 

Thus, for w _ ^ 2 the total lift per unit length is 

At present W is normalised with respect to p R 0. _., A 
a i-2o< 

more suitable normalisation foi- the total lift would be 

with respect to p^D, so that 

^ ^ • 

pa^ ^ (l-ef) ^ Jl 
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Assuming that the grooves are really ambient line 

boundaries ( o( = 0), and that the excursion ratio is small 

( e ^ ^ « 1 ) so that terms can be ignored, the lift 

per unit length finally reduces to 

p<̂  D 4-

which is precisely the same as that obtained by Beck and 

Strodtman for the very short smooth journal (see equation 

(3.28)), dealt with earlier. This simple approach seems 

to justify the assumption that a journal bearing with a 

number of narrow deep axial grooves tends to approximate 

the optimum local "flat plate" behaviour. Note that 

equation (3*69) is independent of the number of grooves, 

so the same result would, be obtained if as few as three 

grooves were used. 

Referring back to the analogy drawn between squeeze-

film and externally-pressurised bearings, one would as a 

result of the above argument expect the externally press-

urised bearing to also benefit from axial grooving. It is 

39 

found that this is indeed the case in that the load 

capacity is increased if a few axial grooves are incorp-

orated. However other factors, such as increased power 

consumption, extra machining costs, and possible lack of 

symmetry due to manufacturing tolerances, all tend to 

preclude the use of axial grooves in this context. It is 

more usual for the bearing to have a few circumferential 

grooves. 

A possible practical attraction of axial compared 
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with circumferential grooves for squeeze-film journals is 

that the former are automatically connected to ambient 

pressure at the ends of the bearing, whereas the latter 

might require vent-holes which would considerably complicate 

their manufacture. One way of effectively introducing 

circumferential grooves would be to have a single helical 

groove starting at one ambient boundary and spiralling 

towards the other end of the bearing, such that the pitch 

of the helix divided by the diameter of the bearing is 

about 0.2 to be within 1% of the optimum load capacity-

condition. The lack of rotational symmetry of such a 

bearing might well tend to limit its use, however, in 

applications where self-induced bearing reactions are a 

problem, 

3.2.5 Non-uniform excursion 

It has been shown that for a squeeze-film journal 

bearing with an axially uniform excursion amplitude , it is 

desirable to include extra ambient boundaries in the form 

of circumferential or axial grooves maintained at ambient 

pressure in order to remove the undesirable effects of 

circumferential leakage flow. There is also a more 

practical reason for using grooves, which we shall lead 

up to by considering once again the flat thrust plate 

with pressure distribution given by equation (3.10), 

^ ^ (3.70) 

where is effectively an amplification factor modifying 

the interior pressure given by equation (3*4) which would 
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have been ob ta ined w i t h B o y l e ' s Law based on the t r u e 

ambient p ressure = 1» I n o the r words = 1 g ives the 

p ressure d i s t r i b u t i o n wh ich would occur i n an i n f i n i t e 

r a d i u s p a r a l l e l f l a t d i s c b e a r i n g i n wh ich the f i l m 

p ressure was i n i t i a l l y a t ambien t . Remembering the r e s u l t 

o f the mass con ten t r u l e f o r a f i n i t e r a d i u s bea r i ng 

( e q u a t i o n 3 .24) P^ = J j + , equa t i on (3 .70 ) becomes 

p = l l j l j l l L ( 3 .71 ) 

- e;" 

2 
which can be expanded f o r sma l l e ̂  t o g i ve 

I + ^ (3.72) 

so t h a t the e f f e c t i v e pressure p roduc ing the bea r i ng 

f o r c e i s 

P - I = i e,'" -F e,'" . (3.73) 

These two terras have been d e l i b e r a t e l y separa ted i n o rde r 

t o show the c o n t r i b u t i o n -|e^^ a r i s i n g from the i n t e r i o r 

B o y l e ' s Law b e h a v i o u r , and the c o n t r i b u t i o n ^e^^ represen t -

i n g the inward pumping or p r e s s u r i s i n g edge e f f e c t . I t 

can f u r t h e r be seen t h a t the edge e f f e c t i s the dominant 

t e r m , c o n t r i b u t i n g 50% more t o the l o a d c a p a c i t y t han the 

i n t e r i o r r e g i o n . I t f o l l o w s t h a t i t i s d e s i r a b l e t o p lace 

ambient boundar ies i n reg ions o f l a r g e e x c u r s i o n amp l i t ude . 

I n p r a c t i c e the v i b r a t o r y component o f a c y l i n d r i c a l 

s q u e e z e - f i l m b e a r i n g u s u a l l y takes the form o f a t h i n -

w a l l e d p i e z o e l e c t r i c ceramic tube o p e r a t i n g i n a r a d i a l 
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thickness, or hoop mode. Because, of two dimensional 

stress effects in the piezoelectric material, the excurs-

ion amplitude is by no means uniform along the length of 

the tube, but tends to be a maximum at the mid-plane and 

tails off to a lower value at the two ends. Typically, 

the excursion at the ends might be 6O/0 less than that at 

16 • 

the centre , so there is a significant reduction in lift 

27 

(typically by a factor of 2.6) when the ambient bound-

aries are sited near the ends of the transducer, as they 

normally are, compared with that which could be achieved 

with a uniform excursion equal to that of the mid-plane. 

The situation is aggravated by the fact that the lift 

depends on the square of the excursion ratio (equation 

(3.28)). In one particular commercial design of accelero-

meter employing a squeeze-film bearing the mounting 

constraints were such that the piezoelectric tube used did 

not vibrate at all at its ends, while the region covered 

by the bearing was such that the ambient boundary excursion 

was only a third of that at the mid-plane. 

It follows, though it has not as far as is known been 

discussed in the literature, that considerable improvements 

in lift should be possible in bearings using this kind of 

transducer if extra ambient boundaries are placed in 

positions of favourable excursion amplitude. Further work 

will be required in order to ascertain which of axial or 

circumferential grooving provides the greatest benefit, but 

it is felt that an immediate improvement would be seen if 

even a single circumferential groove were placed at the mid-

plane where the excursion is a maximum. 
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Another example of where extra boundary length should 

be beneficial is in a hemispherical bearing with its 

excursion in the axial direction as shown in Fig.l6 . It 

is very difficult to construct a transducer which will 

produce an excursion which is spherically symmetrical, so 

all practical designs of hemispherical bearings so far 

have relied on vibrating one of the surfaces in the axial 

direction only. This results in a large local excursion 

ratio in the polar region, and a very small local excurs-

ion ratio near the equator. In the case of a full hemi-

spherical bearing therefore, it will have to rely for its 

lift totally on the interior Boyle's Law contribution, 

unless the bearing is vented by a hole at the pole to 

provide some edge effect amplification from the favourable 

excursion occurring there. Again, it would appear that 

grooving should improve the situation by increasing the 

amplifying effect as a result of extra boundary length in 

relatively high excursion ratio regions near the pole, 

24 

This is to some extent verified by Beck and Strodtman , 

who found that they could optimise the lift by varying the 

size of the polar vent-hole until a balance was achieved 

between loss of bearing area and increased edge effect. 

3•3 Dynamic performance 

Where the dynamic behaviour of squeeze-film gas bearings 

is concerned, there are two main areas of interest. The 

first is the response of the supported mass to the forcing 

effect of the time dependent squeeze force itself, referred 

to as the "self-induced response", and the second is the 

response of the system to some external disturbance, called 
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the "forced response". This latter case is usually 

typified by frequencies which are considerable lower than 

that of the squeeze motion itself, a property which is 

21 
used to advantage in analyses . 

3.3.1 Self-induced response 

20 

Beck and Strodtman investigated the self-induced 

response in: the infinitely long journal bearing, assuming 

that both the response frequency and the squeeze frequency 

were large so that PH was effectively constant over a 

squeeze cycle and the asymptotic theory could be used. 

They used both a variational analysis, employing the 

Mathieu equation, and a numerical technique which enabled 

them to predict stability boundaries. Their general 

conclusions were that the system would remain stable for 

a given excursion ratio provided the load was kept below, 

and the diinensionless mass above, certain critical values. 

When instability does occur, the response is at half the 

frequency of the squeeze motion. 
41 

Pan pointed out that this is analogous to the 

magnetic excitation of an AC motor or generator, and 

contrasts with half speed whirl in self-acting bearings 

where the stability threshold is governed by a lower limit 

on load and an upper limit on rotor mass. He also pointed 

out that this type of instability is likely to be of 

concern in the design of accelerometers using squeeze-

films, where the specific weight of the proof mass might be 

quite low. 

31 
Chiang, Pan and Elrod performed a similar analysis 
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on a mass supported between two opposed squeeze-film 

thrust plates, finding that the response is essentially 

synchronous with the squeeze motion, and that the behaviour 

is that of a forced undamped spring-mass system. For a 

given supported mass there is a critical drive frequency 

at which resonance will occur in the mass response. .Above 

this critical frequency the response is l80° out of phase 

with the motion of the nearer squeeze surface, enhancing 

the squeeze action and leading to greater load capacity 

and stiffness. When the frequency is below the critical 

value the response is in phase with the nearer surface, 

degrading the squeeze action and impairing the performance. 

In terms of diraensionless mass M, where 

M = , (3.74) 

P-
A 

•m is the supported mass, and A is the bearing area, the 

critical mass is 

where e^ is the steady state displacement of the supported 

mass. If M the performance is improved and if 

M <C the performance is impaired. 

This paper is of immediate interest as it gives an 

indication of what to expect in the case of the axially 

grooved journal bearing. Dynamically, this should behave 

in a similar fashion to the rather peculiar double thrust 
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bearing of Fig.17, which consists, of a number of long 

bearing strips, each corresponding with the projection 

in the direction of the load line of one of the bearing , 

strips in the axially grooved journal. The width of the 

strips and the local excursion ratio decrease in a cos Q 

fashion, while the mean film thickness varies in a (sec @ 

- e^) fashion away from the centre. All the bearing 

strips are considered to be driven together in phase at 

the same angular frequency cj . If the number of strips 

is large, it has already been shown that the steady state 

lift produced by such a bearing is, on modifying equation 

(3.69), 

P = 
4 
^ e, 61 ( 3 . 7 6 ) 

for small e and where 0 represents a positive 

upward force. The steady state lift produced by an 

equivalent double flat plate bearing, using equation 

(3.53), is 

FP 

P-
LD 

(1 -

which for small e 

(1 - - q! 

2 

y 3 t 
(1 + eO + -3:̂ 1 

0 4. - e,' 

and e^ becomes 

(3.77) 

FP ( 3 . 7 8 ) 

It follows that 

f' _ 4-A p' 
" TTLD f 

(3.79) 
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so the double flat plate bearing Kill be equivalent in 

steady state lift to the strange bearing of Fig,17, and 

hence to that of the axially grooved journal if it has an 

effective area 

A = — LP . (3.80) 
,4-

The dimensionless mass, equation (3.74), will be 

M - (3.81) 

and the response becomes unbounded when 

C 

The lift will be improved if M >• and degraded if M 

The same result should be true for the circumferentially 

grooved bearing, or a very short journal bearing, as it 

has been shown that they have the same pressure distribution 

as the axially grooved journal under steady state conditions. 

Circumferential flow in the journal segments should be 

negligible under dynamic as well as static conditions 

because the axial path lengths are relatively short, so the 

same equivalent double flat thrust bearing should be 

applicable as in the axially grooved case. 

31 
The paper by Chiang, Pan and Elrod also produces 

the following condition for marginal stability, using a 

20 

Mathieu equation approach like Beck and Strodtman which 

should also be applicable to the grooved journal bearing, 
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where 

and 

a, = i - l a ^ (3.83) 

a , = 

= jZf'f _jbL_ + ^4 1 (3.85) 
M Ul+e,") ( l ~ e , n 

w 
. _ .i 

Q-l. - I 4- Y 
"'- =1' (3.87) 

For given values of e^ and e^, equation (3.83) can be 

solved for M, and the bearing will be stable for values of 

M greater than this. Damping of the squeeze motion, which 

takes place in the incompressible edge regions, has been 

ignored because the asymptotic theory (CT"—^OO) was used to 

derive the pressure distribution, so the stability result 

will be conservative, 

3.3.2 Forced response 

It is of considerable interest to the designer to know 

how the bearing will respond to external disturbances. 
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For instance, in the field of inertia] navigation instru-

ments one is interested in the response to small amplitude 

simple harmonic motions in the frequency range 20Hz to 

2kHz, which is well below the driver frequency normally 

associated with a squeeze-film bearing. 

For such a case, where the squeeze frequency is con-

siderably larger than that of the external disturbance, 

21 
Elrod formulated governing equations in terms of the 

asymptotic theory so that the effect of the high frequency 

22 

squeeze motion could be "smoothed out". Pan and Chiang 

then applied this theory to the spherical squeeze-film 

hybrid bearing using a perturbation technique for small 

eccentricity and small vibration amplitude, to obtain the 

dynamic stiffness, damping, frequency response, and stability 

of the system. The conclusions reached in this paper are 

especially important as they may be relevent to other 

bearing geometries: 

(i) the dynamic axial stiffness increased steadily 

with the frequency of the external disturbance, asymptotically 

levelling off at a value about one decade larger than the 

static stiffness; 

(ii) the dynamic axial damping coefficient (propor-

tional to the damping force divided by the frequency) 

decreases steadily with frequency, although it is always 

positive; 

(iii) the spherical bearing is inherently stable with 

respect to both axial and radial modes for frequencies 

which are low compared with the squeeze frequency; 

(iv) for most supported masses, the dynamic axial 
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compliance at resonance is less than the static compliance, 

but for very large or very small masses the reverse is true; 

(v) the value of axial resonance frequency estimated 

using the static axial stiffness can be as much as three 

times too small. 

All of these points should be applicable to flat-thrust 

and conical bearings, while the radial aspect of (iii) is 

probably true for cylindrical bearings in addition. 

However, because of our conclusion that grooved journal 

bearings behave essentially like combinations of flat thrust 

bearings, it can also be inferred that Pan and Chiang's 

results are broadly valid for them as well, 

3.4 Local squeeze-number in a bearing segment 

A point that requires investigation is the magnitude 

of the local squeeze number in a bearing segment. It can 

be seen that this would become quite small if the number of 

grooves is very large, leading to reduced load capacity 

and violation of the asymptotic theory. It has already 

been shown that only five segments per unit L/D are required 

in a circumferentially grooved bearing. The squeeze number 

for a smooth journal bearing is the same as that given in 

equation (3.II), where in this case R is the radius of the 

shaft. If the segment length is ^, in a circumferentially 

grooved bearing of diameter D = 2R, the local squeeze 

number for the segment will be 

If //D < 0.2, 
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0 7 
— - ^ ^"'6 ' (3.89) 

h O 

Typically 0~—'10 , so it can be seen OJ will be ^ 10 , 

which is well within the bounds of validity for the asym-

ptotic theory. The same sort of comparison is required 

for the axially grooved case, and a more rigorous analysis 

is required than that given in section 3*3*4, so that an 

idea can be obtained of how many axial grooves are actually 

required to be within, say, 1% of the maximum attainable 

load capacity. 

3.5 Comments regarding grooves 

In this rather lengthy discussion simplified analyses 

have been used to show that, at least for small values of 

2 

e^ and e^, quite considerable improvements in load capacity 

should be obtained in squeeze-film journal bearings by 

incorporating narrow, deep grooves maintained at ambient 

pressure. The finite width of the grooves represents a 

loss of bearing area, so care must be taken to ensure that, 

not more than (say) 1% of the bearing area is taken up by 

grooves so that the load capacity reduction from this 

source will be no more than l/o. Setting a criterion for 

the groove depth is not so easy and study is required to 

see how deep the grooves should be in order to behave like 

proper ambient boundaries. For instance, the local squeeze 

number in the grooves should be low enough for compressibil-

ity effects to be negligible, and the groove cross-sectional 

area should be sufficiently large so as to present a 
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negligible restriction to flow under all conditions of 

operation of the bearing. In particular, for circum-

ferential grooves it is not easy to say for certain that 

they need be specially connected to ambient via vent holes, 

as a simple argument can be put forward which indicates 

that over many cycles of the squeeze motion there will be 

a transient flow of gas through the film to equalise the 

groove and ambient edge pressures, but whether or not this 

is so requires further analysis, and possibly experiment. 

Some of these points arc amplified in the next two sub-

sections, 

3.5»1 Groove depth limitations 

It is necessary to ascertain how deep the grooves 

in squeeze-film bearings should be made in order to avoid 

compressibility effects. A groove is there to behave as 

an ambient boundary, and the gas in the groove must be 

able to move about freely in an incompressible fashion so 

that adjustments to changes in eccentricity can take place 

quickly. If the groove is too shallow, the local squeeze-

film action in the groove could produce compressibility 

effects to detract from the edge pressurising effect, 

which has been shown to be all important. 

Suppose that the local squeeze number in a groove is 

% - <3.90) 

where h is the mean film thickness in the groove. The o • 

effective squeeze number in a bearing segment is as given 

in equation (3,88), where Z is the length of the segment 
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in the circumferentially grooved bearing, or is the 

•width of a segment in the axially grooved bearing. 

Supposing that there will be negligible compressibility 

in the groove if OC <C 1, equations (3,88) and (3.90) 

can be combined to give 

In the circumferentially grooved bearing it is desirable 

to set l/R^ 0,4, while at present there is no estimate 

for l/R in the axially grooved case, so using l/R = 0.4 

in equation»(3,91) to provide an estimate for h^, its use 

for the axially grooved case will be justified later. 

Thus 

% " ( i t H < ' • (3.92) 

3 
Since is typically of the order 10 , 

Y < 0 013 (3.93) 
n. 

so, as a rough guide, 

> \ 0 0 C (3.94) 

which means that for C ^ 2 microns, we should have 

h > 0.2mm. 
o ^ 
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3•5•2 Effect of trapped volume in circumferential 

grooves 

In circumferentially grooved bearings it may or may 

not be necessary to physically vent each groove to the 

ambient by means of small holes in the groove bottoms* 

It would be desirable to avoid this for manufacturing 

reasons, and one can give a qualitative argument to show 

that vent holes are not necessary to produce an ambient 

pressure in the grooves. There should be a net leakage 

flow of gas through the bearing from the outer ambient 

boundaries which will gradually adjust the groove pressure 

to the same value. 

If there are no vent-holes, then under dynamic cond-

itions each groove will tend to behave as a trapped 

volume which could feasibly resonate in an analogous 

manner to pneumatic hammer in externally-pressurised 

bearings. If the cross-sectional area of a groove is too 

small, then the gas might meet a considerable restriction 

when it tries to flow circumferentially from one side of 

the bearing to the other following rapid changes in eccen-

tricity under dynamic conditions. This would cause a 

sudden build-up of pressure in the groove on the small 

clearance side of the bearing, and a corresponding drop 

in pressure in the large clearance region. This now alters 

the boundary conditions locally round the groove edge of 

a segment, leading to changes in the pressurising edge 

effect locally in the segment. One can then envisage a 

situation where the natural resonance condition of the 

bearing might be augmented because the differential dynamic 
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film forces are increased, and under certain circumstances 

this might cause the bearing surfaces to touch, 

3*6 Possibility of entrance losses 

In the edge region, gas flows in and out of the bearing 

film in response to the squeeze-motion. If the ambient 

boundary, approached from the interior of the film, is 

marked by a sharp discontinuity in the film thickness, 

there is the possibility that during the suction stroke 

gas entering the film round the sharp corner will over-

shoot due to its inertia and form a transient eddy inside 

the film immediately adjacent to the sharp edge. This 

v.-ould alter the boundary conditions and tend to restrict 

the flow into the film during the suction stroke, so 

reducing the load capacity of the bearing. 

A vaguely similar situation occurs in externally-

pressurised gas bearings, whore the flow entering the film 

from an orifice may experience the effects of inertia, 

separation, and shock, depending on the circumstances 

prevailing. McCabe et al^ ̂  indicate that a loss coefficient 

can be defined embracing all three of these effects in 

terms of the Reynolds' number of the entrance flow, the 

loss coefficient increasing monotonically with the 

Reynolds' number. For squeeze-film gas bearings, a measure 

of the transient Reynolds' number for the edge regions is 

2 

<̂A3C /jj. , and for typical values 

p = 1 kgAv (density) 

^ = 2 X 10 ^ N s/m^ (viscosity) 

Co = 4tT X 10 * rad/s (squeeze angular frequency) 

C = 2 yum (nominal clearance) 
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we have 
-2 

w C P ^ ^ - 0 024-

r 
This very small value is several orders of magnitude 

below the threshold value associated with transition to 

turbulent flow, and implies that the film is substantially 

free from effects producing entrance losses. 

Even if the transient Reynolds' number were appreciable 

it is highly unlikely that entrance losses would occur due 

to flow separation, as recent unpublished work at Queen 

Mary College (London) indicates that there is a minimum 

size of eddy that can exist, and that this minimum size is 

larger than the nominal film thickness C normally encountered 

in squeeze-film bearings. In any case, sharp edges to the 

boundaries are unlikely to occur in practice as manufacturing 

processes will tend to round off corners, enabling the 

entrance flow to be gradually introduced into the film 

without abrupt changes of direction. 

That the edge flow velocity u is typically small 

compared with the sonic velocity 'a' can be shown quite 

easily, A measure of velocity in the edge region is 

" = <3-95> 

•where R is a typical bearing dimension and O" is the 

squeeze number. The velocity of sound is related to the 

density p and pressure p of the gas thus 

a = 
(3.96) 



63 

where ( Csi 1.4 for air) is the ratio of the specific 

heats at constant pressure and constant volume. The 

effective Mach number of the edge flow is then 

" a ° ° 

Ai 
1 2 ^ 1 (3-97) 

which is seen to be proportional to the square root of 

the transient Reynolds' number of the edge region. 

Typically, , /-w 0.04, so there should be no threat 
^ edge 

of transient shock waves and choking to interfere with 

flow through the edge region since M , <Z<C 1 . o edge 
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4. GOVERNING EQUATIONS 

On the basis of the previous discussion it was decided 

to investigate theoretically the effect of both axial aiid 

circumferential grooving in the common configurations 

applied to a squeeze-film gas bearing, namely cylindrical^ 

conical, and hemispherical, taking into account both static 

and dynamic behaviour. We are concerned here primarily 

with the forced dynamic response rather than self-induced 

motion, because it has not yet received much attention in 

the literature and the pointers of reference 22 require 

verification for geometries other than hemispherical. To 

obtain fair comparison, the analysis must also include 

smooth bearings of the same geometries. The most convenient 

way to do all this is to derive governing equations in 

terms of generalised curvilinear co-ordinates, covering 

both the static and forced dynamic behaviour, so that any 

particular problem within the framework outlined above can 

be studied by inserting the appropriate co-ordinates. 

As it has not been tackled by any other author in this 

context, the effect of slip-flow will be included in these 

generalised equations, rather than as a separate study, 

so that the equations are set up if use is required at a 

later stage. Estimates of the effect of a non-negligible 

molecular mean free path can then be obtained for simple 

geometries where analytic solutions can be found. 

There follows a discussion of some of the assumptions 

to be made in setting up the generalised equations, 

followed by a derivation of the equations and a study of 

available solution methods. 
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4,1 Assumptions 

In deriving Reynolds' equation it would be more 

satisfactory to use the kind of perturbation approach 

employed by Elrod^ and Langlois^, but since only minor 

alterations are being made to include slip flow, and the 

derivation of Reynolds' equation appears in many textbooks 

/jL 2 

(see for example Chapters 3 and 4 of Cameron ), we will 

restrict our attention to an outline of the main assumptions 

used in deriving the governing equations for the generalised 

asymptotic theory; these governing equations for an ideal 

compressible lubricant being really an amalgamation of the 

Navier-Stokes equations, the continuity equation, the 

energy equation, and the equation of state. 

Our particular interest is in high frequency operation 

of squeeze-films (CT00) , and normally we would expect 

high frequency changes in volume of a gas to take place 

adiabatically. However, the film thickness is so small 

compared with the other dimensions of the bearing that 

heat transfer between the gas and the surfaces maintains 

5 3 

the film in a virtually isothermal state . This makes the 

energy equation redundant, and the equation of state for a 

perfect gas simply results in 

P 1° (4.1) 

where p and p are respectively the film pressure and 

density. 

42 

In the Navier-Stokes equations the film is taken 

to lie in the x,y plane with the film thickness extending 

in the 2 -direction. The pressure is assumed constant 
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through the film thickness, and a. criterion for this 

32,34 xs 

^ «' 
where w is the angular frequency of the squeeze motion 

and C the nominal film clearance. It is assumed that the 

inertia terms can be ignored compared with the viscous 

32 
shear forces, and a criterion for this is 

« ' (4.3) 

32 

where jj. is the viscosity. Pan interprets the inequal-

ities (4.2) and (4.3) as limiting respectively the square 

of the Mach number and the transient Reynolds number of 

the squeeze motion. 

Velocities in the x and y directions are assumed 

large compared with that in the z direction, A measure of 

the velocity in the z direction is ^ , where R is a 
iZ/xK^ 

typical measure of the bearing dimensions. A measure of 

the velocity in the edge region, where the lateral flow 

takes place , is , so a criterion for neglecting 
IZyuR 

the velocity component in the z direction compared with 

the other components is 

y ? ^ « 1 . (4.4) 
R 

A further assumption is that velocity gradients in the 

X and y directions are small compared with that in the z 
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direction. Respective measures for the former and latter 

are 
IZ/AR^ IZiuR 

again ' 

^ P*" ̂  and J^^a. ̂  , so the required criterion is 

C « I 

Gas at the relatively low pressures encountered in 

gas bearings has a viscosity virtually independent of 

pressure and dependent mainly on temperature, so under 

isothermal conditions the viscosity can be assumed 

constant. Keeping these criteria in mind, the full 

asymptotic governing equations will now be derived, 

including the dynamic behaviour and slip-flow, in terms 

of generalised curvilinear co-ordinates. The derivation 

1 7 2 2 21 43 
is based on papers by Pan ' , Elrod , and Burgdorfer , 

and is given in full to show particularly how the intro-

duction of slip flow terms changes the governing equation 

and its boundary conditions. 

4.2 Generalised asymptotic governing equations 

including time-dependence and slip flow 

4,2.1 Navier-Stokes equation 

Assuming that the effects of fluid inertia and external 

forces (e.g. gravitational) are negligible compared with 

viscous shearing forces, the Navier-Stokes equations 

reduce to the vector form 

= i V - ( V y ) 4 - V ' v (4.6) 

where is the gradient vector, jx is the viscosity 
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(assumed constant), p the film pressure, and v = (v , , 
— 1 6 

) is the velocity vector of the flow referred to a set 

of generalised orthogonal curvilinear co-ordinates , 

in directions given by the unit vectors x^, x^, x^. 

The fundamental magnitudes are s , s„, s„ such that a 
X. ^ J 

typical elemental volume element is s &x . s„^x„. s_6x_. 

The direction is through the film thickness h = h(x^, 

x_, t) which is contained between the two surfaces x = a 
3 

and x^ = b such that h =(b-a). If it is assumed that 

velocity gradients in the x and x^ directions are small 

compared with that in the , and that v ^ » v and 

v^, the Navier-Stokes equations become in terms of 

these generalised co-ordinates, 

ss ^ ^ (h. \ (4.7) 
^X, S ̂  ^Xj/ 

<&X:i !)3 Si, Sis 

& o 

^Xi 
(4.9) 

3̂ 

equation (4.9) representing the further assumption that 

the pressure remains constant throughout the film thickness 

in the x^ direction. If it is finally assumed that s^, 

Sg, are independent of x^, the Navier-Stokes equations 

become simply 

i t = (4.10) 

Sg ^Xj 
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^x. 
(4.11) 

O 
^X, (4.12) 

4.2,2 Introduction of slip flow 

Double integration of equations (4.10) and (4.11) 

with respect to gives the velocity components 

V, = 
s, 3x, 

X. + C,Xg + C; (4.13) 

L i ^ 4- C j XJ 4- C2/ (4.14) 

where C^ to are constants to be evaluated from boundary 

4 3 

conditions yet to be specified. Burgdorfer showed that 

the following boundary conditions become appropriate when 

the molecular mean free path of the gas is appreciable 

compared with the nominal film thickness: 

V, (x, = a) = 
5,^X3 

(4.15) 

Xa = b 

(4.16) 

V,(X3 = a ) = 
S3 3X; 

X3 = 0. 

(4.17) 
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(X) = k) - - 4'^^^ (4.18) 

3 

where X is the molecular mean free path of the gas. 

Using these, the velocity components become 

" 2yri ^ ~ (b+ci)Xg + (4.19) 

Vj. - 2 ^ s ̂  (b +• a)x3 - - a) + . (4.20) 

The volumetric rates of flow of gas in the x and Xg 

directions are respectively 

V = I + | T 

(4.21) 

^2yuLS^^X^\ S ^ U (4.22) 

4,2.3 Continuity equation 

In terms of the generalised co-ordinates, the con-

tinuity equation takes the form 

° (4.23) 

where p is the density. Equation (4.23) can easily be 

derived by considering the mass flow rates entering and 

leaving opposite faces of a column of gas of height h and 
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base area and it expresses the fact that in 

the absence of sources and sinks the mass of gas contained 

in the column must remain constant. The two terms within 

the curly bracket take account of the gas flow in the 

directions and , while the time derivative term 

allows for the squeezing action arising from the time 

dependence of the film thickness h. 

Substituting for and q^ from equations (4,21) and 

(4.22), the continuity equation (4.23) becomes 

s.s. 4- e * 

(4.24) 

Assuming that the film behaviour is isothermal, the 

density and pressure are related through the equation of 

state for an ideal gas 

I 

C 

= constant 
(4.25) 

For all the bearing geometries usually considered, s^ = 1, 

and this fact together with equation (4.25) can be used to 

simplify equation (4.24) so that it finally becomes the 

modified Reynolds' equation, 

+ 
^x, } = • V • 

(4.26) 

4.2.4 Non-dimensionalisation of the governing equation 

It is convenient to non-dimensionalise this equation so 

as to make it applicable to all sizes and shapes of bearing 

likely to be encountered. To this end the spatial inde-
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pendent variables are non-dimensionalised with respect to 

some typical bearing dimension, R say, so that in terms of 

the new non-dimensionalised generalised co-ordinates u and 

Ug a typical element of area is 

are now the fundamental magnitudes in the u^ and u^ 

directions. The other non-dimensionalised variables are 

"P » (pressure) 

^ * p/f«- (density) 

J1 •=. I* (viscosity) (4,2?) 

H = H / C (film thickness) 

X =• (mean free path) 

where ambient conditions are expressed by the subscript 'a', 

C is the nominal film thickness, (J is the angular frequency 

of the squeeze motion, and p. ~ \ under isothermal conditions. 

Now X OC -4 , so X 

Reynolds' equation becomes 

and the non-dimensionalised form of 

L/,\ PH/ 
4- = 2-.4(PH) 

w at 

where use has been made of the Knudsen number, 

(4.28) 

m = Af-
C 

(4.29) 

and squeeze number 

c r )2jti CJ 

p. v c y F -
(4.30) 

Again, it is convenient to define the dependent variable 

= PH, in terms of which the governing equation (4.28) 
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becomes 

_ i _ J L 
2;,4\^U, t\ ^/vyu, 

:f, (̂1 ̂  6m 
^ A K 

i (Hip 9 

iij> •^H 
^U. I 'J 

5^1. w §T 

(4.31) 

Supposing that ambient boundaries occur at u^ = a and 

u. b, equation (4.31) can be solved for subject to 

the following boundary conditions 

= = H(u., =;a,Ui) 

6 ̂ 1 - ̂ ^ H = b j u.%̂  . 
(4.32) 

4.2.5 Separation of scales of time-dependence 

In addition to the angular frequency OJ of the squeeze 

motion, the bearing might experience some relatively long 

term transient behaviour following some external disturbance 

such that characteristic times for the transient and 

squeeze motions are respectively 

T - v t 

X = w f 
(4.33) 

where v is some angular frequency characteristic of the 

21 

transient behaviour. Elrod showed that if the motion 

due to the external disturbances were quasistatic compared 

with the squeeze motion, V « 6 J , then the two time scales 

T and t can be separated and the behaviour of the film 

can be found in a time averaged sense with respect to the 
2 2 • 

squeeze motion. Pan and Chiang applied this treatment 

to the case of small amplitude harmonic motions in spherical 
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hybrid squeeze-film bearings, and" the intention of the 

present work is to generalise Pan and Chiang's approach 

so as to be applicable to all squeeze film bearing geom-

etries, and to include the effect of slip flow. 

The time scales are separated by writing the film 

thickness in the form 

H (^1 4-

where is quasi-static with reference to the squeeze 

motion (associated with Hg ) such that 

ZTT) •= Hg ^ Ux y % ) (4.35) 

and 

T+atr 

° (4.36) 

r 

where T' is a dummy variable for T . Assuming that it is 

possible to write 

(4.37) 

the right hand side of the governing equation (4.3l) can 

be written 

W y r ^ J r (4.38) 

where 
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_ V Y = = JLCT 
p* \C/ W 

(4.39) 

22 is called the "vibration number" by Pan and Chiang , so 

that 

^i\ ^/\oU, 3 v., 

+ 
I, 

- 1 ^ + cr~ 
hr 

(4.4o) 

4.2.6 Asymptotic governing equation 

Equation (4.40) implies that 

R = °lo-
' • ^ 1 

(4.41) 

so for large (T , 0 since — < % 1 , and 
(j CJ 

cr-->oo 
(2.42) 

The governing equation for the asymptotic solution is 

obtained by integrating equation (4.4o) over one cycle of 

the squeeze motion, and following the same sort of argument 

22 
as Pan and Chiang , it becomes 

(4.43) 

i 
L )T 
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4.2.7 Asymptotic boundary conditions 

Equation (4.43) is now in terms only of quantities 

which vary slowly relative to the squeeze motion. The 

solution (independent of X ) cannot satisfy the 

present boundary conditions (4.32) since H is specifically 

T-dependent, so more appropriate boundary conditions must 

be derived. Near an ambient boundary the vanishing of the 

right hand side of equation (4.4l) must be prevented in 

the asymptotic limit CT"-*- 00 , in which case there is a 

requirement for 

^ i (4.44) 0{J^} 

near u^ = a and u^ = b. Thus the boundary regions are 

appropriately characterised by the stretched co-ordinates 

(4.45) 

(u., - b)| . 

Only quantities involving Vp will vary appreciably in the 

boundary region, so that in terms of the edge co-ordinates 

equation (4.40) can be approximated by 

(4.46) 

C ̂  2̂  / 

where 

H, = H (u, = a , -r) 
_ ^ (4.47) 

Hz - H ( b , ,-r, -r) 

and 
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^ '-t-i =• o. ) '^x } "T" J T' ̂  

, I / T T- \ (4.48) 

are boundary values. Time averaging equation (4.46) over 

one squeeze cycle, 

* (4.49) 

vj/l is periodic in X within 0 ^ , so for large 0~~ the 

right hand side of equation (4.49) can be neglected, and 

T+ITT 

= 0 . (4.50) J_ 
XTT 

T 

Boundary conditions in terms of the stretched co-ordinates 

are 

= = W. i= i,z 

\K ,, 
(4.51) 

- 4m = y ) -

Equation (4.50) can be double integrated with respect to 

to give 

T+'Z-rr 

^ c/r' = c / t . + Ci (4 .52) 
t ' 

and when .̂ = 0, equations (4.51) give 

T+2tr 
I 

2 T T 

T 

1 2^1 i2v«Hj) Jt' tr Cj . (4.53) 

As 00 , must vanish to ensure that the left hand 
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side of equation (4.52) remains finite, and 

X+trr t + 2ir 

Iv: 
+IZmHi)<iT'. (4,54) 

The left hand side represents conditions just outside the 

boundary region at ^oo , and so becomes 

T+ltr 

^oo(^oo +" = 2Trj (4,55) 

or 

= A (4.56) 

"oo 

where 

T+2w 

" zL ( ' c= ijZ . (4.57) 

T 

Solving the quadratic equation for at the two boundaries, 

(jy (̂ u,= a ) = — 6*^ -i- |36t*)̂ +- -̂ 1 (4.58) 
a/ HOO 

^U,-ls^ — — 6 lrv\ 4- |36»Vl 4- —* 

^ (4.59) 

where the positive root has been taken, since the negative 

one has no physical significance. Equations (4.58) and 

(4.59) now provide the required boundary conditions on the 

governing equation (4.43) for the asymptotic solution . 

In the absence of the externally imposed disturbing 
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frequency ( \ = 0), the right hand side of equation (4.43) 

vanishes and it reduces to the normal steady state equation 

17 

formulated by Pan , modified by the slip flow factor 

( 1 + . In the additional absence of slip flow (m = 0) 

the governing equation and its boundary conditions (4.58) 

and (4,59) reduce precisely to the expressions derived by 

Pan*?. 

4.2,8 Governing equations for the edge region 

Damping in the film due to the squeeze motion is 

confined to the boundary region where incompressible flow 

in and out of the film takes place, and it is interesting 

to see if the presence of slip flow modifies the situation 

in this respect. To do this, it is assumed that 

^ (̂ 1 ; f) = 4co(^l ^ ; T ) (4,60) 

i •= (_, 2. 

where the edge correction 1^ only assumes an appreciable 

magnitude near a boundary. In other words, varies 

with the stretched edge co-ordinate near boundaries 

i = 1,2 while does not vary with , Thus 

^ (4.61) 
au, du, as-

and 

4- c r ^ . 
iu,' W f !l?" (4.62) 

Equation (4,46) becomes 
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W t t W r + 2 (4.63) 

From equation (4.62) 

^ Y | = 

so equation (4.63) in the limit of r̂-»00 becomes 

H; 

subject to boundary conditions 

Oj - O ) - N; — 4'eQ (t: -

= o 

(4.65) 

^•(•=1,2. (4.66) 

The diffusion type equation (4.65) is exactly the same as 

that derived by Pan*^, but the value of at = 0 will 

be modified in the boundary conditions (4.66) through the 

relationships (4.58) and (4.59) which involve the Knudsen 

number m. So the damping will be affected by slip floir, 

although its magnitude will remain . 

Equation (4,43) together with the boundary conditions 

(4,58) and (4.59) now formulates any forced dynamic or 

static squeeze-film problem satisfying the criteria for 

validity discussed in section 4.1, and allows for the effect 

of slip flow. Any particular problem can be treated by 

substituting the appropriate non-dimensional co-ordinates 

in place of the generalised co-ordinates u^ and u^, and 

specifying the film thickness H^. 
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4.3 Discussion on solution methods 

Equation (4,43) is not in general easy to solve, even 

with no slip flow (m = 0), but the presence of the slip 

flow terms complicates the issue considerably. Formally, 

under slip flow conditions the gas behaves as if the 

viscosity has an effective non-dimensional value 

\ % / 

(4.6?) 

so that equation (4,43) can be more conveniently written 

in the form 

I n 

+ 
[ / i , ( k ' " - " " ' -

(4.68) 

where for no slip flow yu = 1, This equation is similar 

to that for the dynamic operation of the self-acting 

44 

bearing, and Hsing and Chiang discussed a special finite 

difference scheme for solving the equation numerically 

for the case of a high speed tilting pad bearing. However, 

apart from mentioning that numerical solution methods do 

exist, it is not proposed to pursue slip flow effects in 

depth in this work and most of the time we will be 

concerned with the case = i. An analytic solution will 

be obtained for the flat disc squeeze-film bearing to show 

the magnitude of the effect of slip flow, and this will 

be used to estimate the effect in grooved journal bearings, 

but otherwise we will neglect it and design experiments 

to avoid it. 
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Equation (4,68) with yM = 1 (!nio slip flow) and ^ = 0 

(static conditions), subject to the boundary conditions 

(4.58) and (4,59) has been used to obtain static solutions 

for all the commonly used smooth bearing geometries, 

namely the cylindrical journal*^' , conical*^, 

hemispherical^^' ^", and flat thrust plate^^, Most-of 

these solutions use small perturbation analyses on 

displacements away from the nominal centred position, and 

finite difference numerical methods for larger displacements, 

The dynamic equation (4,68) with yu = i and ^ 0 has 

21 22 
only been treated in two papers to date ' , but the 

22 

perturbation solution method of reference would seem to 

be appropriate to the present work. Before Elrod's 

extension of the asymptotic theory to cover dynamic 
21 

operation , the dynamic behaviour investigated was mainly 

of the self-induced variety (references 20 and 25 and, more 

recently, 31)• These, again, employed small perturbation 

techniques, and use was made of the Mathieu equation in 

references 20 and 30 to obtain stability boundaries, 

45 

Castelli and Pirvics , in a review of modern numerical 

methods, presented a variety of solution techniques, each 

having particular advantages depending on the application. 

For the time-independent problem ( ̂  = 0), the column-wise 

influence coefficients method of Castelli^^ appears to be 

most suitable, involving considerable savings in computation 

time over relaxation methods, and considerable savings in 

computer storage compared with direct inversion methods. 

One of the main advantages of the method is in the 

exactness of the solution, and although numerical 
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instabilities can occur because of a mismatch between the 

finite difference equations and the differential equations 

they are meant to approximate, the situation can normally 

be improved by increasing the number of finite difference 

grid points, at the cost of increased computer storage and 

time requirements. The method is also widely applicable to 

problems outside the field of gas lubrication. Although 

differing in detail, the column method is to all intents 

and purposes the same as a matrix product method which has 

been in use at RAE (Farnborough) for some years^^, and 

which was used by Faddy^^ in his investigation of spiral 

grooved conical self-acting gyroscope spin bearings. 

The present writer had already gained a certain amount of 

confidence and familiarity with this version of the method, 

and had developed computer subroutines, so it was decided 

to retain the matrix product method in dealing with the 

static behaviour of squeeze-film bearings. 

For the forced dynamic performance it was decided to 

use the semi-analytic perturbation treatment of Pan and 

22 

Chiang for small eccentricities and small vibration 

amplitudes which are of interest in inertial navigation 

instruments. This method reduces the amount of computer 

time needed by treating the static performance analytically 

and leaving the complex dynamic equation to be dealt with 

numerically. The static solution provides a valuable check 

for the numerical solution obtained by the matrix product 

method discussed above. Attempts to solve the dynamic 

equation analytically are usually foiled by the complexity 

of the coefficients required to satisfy the boundary 
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c o n d i t i o n s , so one i s f o r c e d t o r e s o r t t o the computer t o 

o b t a i n the e f f e c t i v e dynamic s t i f f n e s s and damping i n the 

b e a r i n g . I t has been found t h a t the complex dynamic 

e q u a t i o n can be reduced t o a system o f two s imul taneous 

o r d i n a r y d i f f e r e n t i a l equat ions wh ich can be so l ved by a 

m a t r i x method t o be desc r i bed l a t e r . Th i s s e m i - a n a l y t i c 

t r e a t m e n t i s e s p e c i a l l y s u i t a b l e f o r grooved b e a r i n g s , 

where each segment has t o be d e a l t w i t h s e p a r a t e l y and the 

r e s u l t s summed t o o b t a i n the t o t a l dynamic b e a r i n g f o r c e . 

By c o n f i n i n g the computa t ion t o the t ime-dependent aspect 

o f t he s o l u t i o n , c o n s i d e r a b l e sav ings i n computer s to rage 

and t ime are ach ieved . 

To dea l w i t h dynamic behav iour a t l a r g e e c c e n t r i c i t i e s 

t h e s tep- jump method has c o n s i d e r a b l e a t t r a c t i o n s i n the 

c o n t e x t o f the p resen t work . A l though i t has no t p r e v i o u s l y 

been a p p l i e d t o s q u e e z e - f i l m gas b e a r i n g s , i t was used t o 

t r e a t the s e l f - a c t i n g j o u r n a l b e a r i n g by means o f an o r b i t 

46 
program , and f l e x i b l y mounted e x t e r n a l l y - p r e s s u r i s e d 

4? 

bea r i ngs by means o f a growth f a c t o r , t o s tudy s t a b i l i t y . 

The g rea t b e n e f i t i n t r e a t i n g grooved s q u e e z e - f i l m bear ings 

l i e s i n the f a c t t h a t the gas f i l m d e t a i l s are so lved on l y 

once f o r a p a r t i c u l a r e c c e n t r i c i t y , and t h e r e a f t e r the 

dynamic parameters (mass and f o r c i n g f requency) can be 

v a r i e d over and over a g a i n w i t h o u t hav ing t o r e - s o l v e 

Reyno lds ' e q u a t i o n on each occas ion , thus sav ing a l a r g e 

amount o f computer t i m e . The drawback o f the s tep- jump 

method i s t h a t the assumpt ion o f l i n e a r i t y o f the response 

w i t h r espec t t o the a p p l i e d s t i m u l u s means t h a t the 

s o l u t i o n must s t i l l be r e s t r i c t e d t o s m a l l amp l i t ude 

m o t i o n s , a l t h o u g h the e c c e n t r i c i t y i s n o t r e s t r i c t e d . I t 
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is also difficult to separate out' directly the stiffness 

and damping components of the dynamic force if these 

are explicitly required. 

Both the semi-analytic perturbation and step-jump 

methods are amenable to stability and vibration response 

investigations, while the step-jump method is quite 

flexible in that extra perturbation effects, such as 

angular degrees of freedom, can be introduced without 

excessive programming complications. 
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5. ESTIMATES OP SLIP-FLOW EFFECT 

When the molecular mean free path of the gas becomes 

comparable with the film thickness C, the Poiseuille flow 

between two surfaces (as in the edge region of the squeeze-

film) takes on the structure indicated in Fig.l8 * The 

laminar flow region, away from the surfaces, is character-

ised by a Maxifellian mass distribution, while in the 

boundary layer slip flow regions near the surfaces the mass 

distribution is no longer Maxwellian because collisions 

between gas molecules and the surfaces involve a different 

reflection coefficient from that which occurs when trfo gas 

molecules collide. Normally, in total laminar flow when 

X C the slip flow regions are so narrow that their 

presence can be disregarded and the flow takes on its 

parabolic velocity distribution with zero velocity at the 

two surfaces (Fig,19), When the molecular mean free path 

becomes significant, X ~ C , the velocity distribution is 

still parabolic, but slip occurs at the surfaces and the 

velocity distribution behaves as if the velocity drops to 

zero some small distance outside the film (Fig,19), 

Velocity gradients through the thickness of the film are 

reduced, so the shear forces opposing flow are reduced and 

the bearing cannot sustain as great a film pressure as in 

the case without slip flow. Consequently the load capacity 

is impaired. 

As far as is knoifn, slip-flow in squeeze-film gas 

bearings has not been treated in the literature. The 

intention here is not to explore the effect in any great 

detail, but to obtain an indication of its importance by 
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considering relatively simple cas.es where analytic 

solutions are possible. 

5.1 Circular flat thrust bearing 

To obtain an estimate for the amount of degradation 

in load capacity to be expected in squeeze-film bearings, 

the flat disc thrust bearing will be investigated, as the 

simple geometry results in an analytic solution being 

found. 

Consider, then, a flat disc of radius R supported on 

a film of mean thickness h driven by a surface vibrating 
o 

with an angular frequency w under static loading 

conditions ( ̂  = 0). The instantaneous film thickness is 

given by 

k - C ) ( 5 . 1 ) 

where C is some reference dimension, and e^ the excursion 

ratio. In non-dimensionalised terms 

H = A = +- e, cos t ) ^ ; (5.2) 

where T = W t, and the time averaged film thickness is 

Zrr 

~ Zxv' ^ H j-T = K , (5.3) 
C 

It is appropriate to use polar co-ordinates (r, 6 ), 

such that an element of area is r&0.6r . Normalising 

distances in the radial and circumferential directions 

with respect to R, the normalised elemental area becomes 
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rSe.Sr, where r = r/R, so in the generalised governing 

equation (4.43) we use u^ = r, = G , h^ = 1, h^ = r. 

Since the discs are parallel and the excursion is uniform, 

all film effects will be independent of 8 , so the 

governing equation reduces to 

which is subject to the boundary condition given by 

equation (4.58), 

^ = 0 = — 6m 4- js^m^ 4- (5.5) 

00 

together with the symmetry condition 

= O (5.6) 

f-o 

where 

2tr 

A ( r ) = 2^'^j ( H ^ + 4 - 4 > v , ) ( 5 , 7 ) 

so that equation (5.5) becomes 

+ , (5.8) 

To solve equation (5.4), integrate with respect to r, 

and rearrange to give 

{^00 6rv\) = constant ^ (5,9) 
d r r 
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The only way in which condition ($.6) can be satisfied 

is if the constant vanishes, so 

+ 6m) _ o . (5.10) 
dr 

In general ( +- 6m ) 9̂  0 , so 

r*, _ 0 

and consequently 

(1/ = constant. 
(5.12) 

Hence, in order to satisfy boundary condition (5.8), 

~ - 6m - f - 4 - , (5.13) 

To show that slip flow (m>0) always results in a 

loss of bearing pressure, expand ^ for small excursion 

ratios ( e « l) so that 

+ l ( T ^ ) e ' + 0{ef} (5.14) 

where = 1 for simplicity. The time averaged film 

pressure is 

Zir Iv 

P = = z l j (5.15) 

which can in turn be expanded in terms of e^^ to give 



90 

f == I + o R l ' (5.16) 

When m = 0 we immediately recognise the expression derived 

in equation (3.72) when non-uniform excursion was being 

discussed, so it can be seen that when m ^ 0 slip flow 

alters the dominant edge effect term. This is not surpris-

ing as the slip flow will be confined to the edge region 

where incompressible Poiseuille type flow occurs in and 

out of the film. The interior Boyle's Law behaviour will 

not be changed. Since 

/ \ 4-

\ I 4- / 
4* I (5.17) 

it follows that, if terms are ignored, the pressur-

ising effect of the boundary will be reduced for and 

the overall load capacity will suffer. 

Typically, a squeeze-film thrust bearing might have a 

nominal clearance of C ~ 2 microns, operating with helium 

gas at a pressure of one atmosphere, in which case the mean 

free path will be X^'^O.lS micron, so an estimate for the 

Knudsen number is m = 0,1, The effective mean pressure 

generated in the film is 

^ I = , ^ - I ( 5 . 1 8 ) 
J' -

where is given by equation (5.13) with = 1. For 

m = 0.1 and e^ = 0.5 the effective pressure is (P - l) = 

0.336, compared with (P - l) = 0.35^ when m = 0, so it can 

be seen that in this case there will be about 5% loss in 
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load capacity because of slip flow, 

5.2 Grooved journal bearing 

The influence of slip flow in squeeze-film journal 

bearings can be investigated with the help of the previously 

derived solution for the thrust bearing, provided the 

journal is sufficiently grooved for the pressure to behave 

locally like the ideal "flat plate" distribution. 

Assume a film thickness as given by equation (5.2), but 

this time let 

Hg, = I - cos 8 (5.19) 

where e is the eccentricity. Using this, the time 

averaged pressure distribution will be 

F (5..0) 

where is given by equation (5.13). The time averaged 

non-dimensional lift per unit length of the bearing will be 

u' T -
- = 4- I (P 0 0 do . (5. 21) 

2 J 
o 

2 

For small values e^ and e^, the pressure can be expanded 

in the form 

(5.22) 
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Using this expression, the lift per unit length becomes 

If this is compared with the Beck and Strodtman result^^, 

equation (3.28), where the term involving L/D represents 

the edge pressurising effect, it can be seen that the 

presence of slip flow again affects the pressurising 

effect of the edge and does not change the interior 

behaviour of the film. Since 

( I 4- 4- 24- ̂  

I + IZm-h 36»vt̂  / (5.24) 

it follows that the edge pressurising effect will be 

degraded, as in the case of the thrust bearing. 

Taking a typical example of nominal clearance 0 ^ 2 

microns, employing helium gas at pressure of one atmosphere 

0.l8 micron), so that m « 0.1, we obtain 

^ - 2-25-4e.'-ej,) 

compared with 

W,̂  2'S" 

when m = 0, from which it can be seen that there is a 

9.4% loss in load capacity when the excursion ratio and 

eccentricity are small. This estimate will probably also 

be representative for the journal aspect of conical and 

hemispherical squeeze-film bearings. 
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5.3 Comments on slip-flow 

These two cases show that the load capacity of squeeze-

film gas bearings can be substantially reduced if they are 

operated under conditions where the molecular mean free 

path of the gas is appreciable compared with the nominal 

film thickness. The presence of slip-flow is seen to 

diminish the edge pressurising effect, while the interior 

Boyle's Law behaviour remains unaffected, so we can expect 

degraded performance particularly in journal bearings where 

the edge effect is the dominant source of the load capacity. 

This occurs when the circumferential leakage flow is a 

minimum and the full value of the edge pressure is 

experienced along the entire axial length of the bearing, 

as when L/D is small or there are a sufficient number of 

grooves. It appears that a round figure of 10% might be 

typical of the loss in load capacity to be expected in 

grooved journal bearings unless care is taken, and this 

would probably apply to the journal aspect of grooved 

hemispherical and conical bearings as well. The thrust 

aspect of the load capacity in the latter two types of 

bearing will be degraded by about 5%, 

Having shoim that slip flow constitutes an appreciable 

problem which should be taken account of in design work, 

it is not intended to pursue the effect further and in the 

rest of this work it will be assumed that m •«. 1, or more 

specifically, that m ^^0,01. 
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6. THEORETICAL ANALYSES 

Using the asymptotic theory set up in section 4, we 

will now perform more rigorous analyses on segmented 

squeeze-film bearings so that the simplified treatment of 

section 3 can be more confidently accepted. 

The flat disc bearing will be considered first. 

Although the static performance will not be affected to any 

great extent by the introduction of ambient line boundaries, 

the forced response should change considerably as the number 

of segments is increased. 

This is followed by the infinite length axially grooved 

journal bearing, which is shown to be a good approximation 

to the finite length axially grooved journal for L/D 1, 

and the finite length ungrooved journal, which also embraces 

the circumferentially grooved journal bearing. 

Most of the analysis will depend on perturbation theory 

for small eccentricity and small vibration amplitude, 

depending on the context, as this covers the bulk of 

applications of interest to the present writer, but methods 

are outlined for treating large values of eccentricity and 

vibration amplitude, 

6.1 Flat annular thrust segment 

While the static behaviour of flat squeeze-film thrust 

bearings is well known^'^'^^, and the self-induced response 

2 31 
has been investigated ' , the forced response has not 

been treated explicitly, although certain broad statements 

22 5 2 

have been made in other contexts . The forced response 

of an annular squeeze-film bearing segment is of interest 
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in the present work as one can envisage a thrust bearing 

composed of a number of concentric annular segments 

separated by circular ambient line boundaries. Such a 

bearing would be relatively easy to manufacture compared 

with a journal bearing, and would lend itself to empirical 

investigations.of the effect of grooving on dynamic 

behaviour. 

Consider, then, an annular region 0 - ^ 6 ^ 2TT , 

r.^ r ̂  r^, expressed in terms of polar co-ordinates (r,0 ), 
1 

with ambient pressure boundaries at r = r, and r = r„. If 
1 6 

the spatial variables are normalised with respect to the 

radial width of the annulus, the normalised polar co-

ordinates are r = t/(t^ - r^) and Q . The normalised film 

thickness is 

H = ^ + e, Cos (6.1) 

•where is quasi-static relative to the squeeze motion, 

2.tr 

j H dt = Real"[l 4- (6.2) 

and where T = cot and T = Vt, W and are the angular 

frequencies respectively of the squeeze motion and of the 

forced response, e^ is the excursion ratio, and S is the 

forced response amplitude. 

Setting = r* = 6 , /g = 1, Ug = f, ^ = 1 in 

equation (4,68) , and noting that both and are 

independent of 0 (for a parallel film), the governing 

equation becomes 
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^ (6-3) 

where is the local vibration number for the annular 

segment, based on the radial width (r^ - r^), 

Here, Y is a global vibration number based on some 

arbitrary radius R such that r <'r„^R. 

Applying perturbation theory for small response 

amplitudes ( 6 < < l) , we expand in terms of S , 

'pJCr) = Q „ + Se'"^Q^ + o{S'} . (6.5) 

The boundary conditions (equations (4.58) and (4.59)) 

at r = = r^/Crg - r^) and r = r^ = are 

= H* + = 1 + l e ^ + ZSeT^ (6.6) 

so that 

Qo = »+ I e,'" 
at r = r^ and r = r^ . 

= 2 J (6.7) 

Using the expressions (6.2) and (6.5) for and 

in equation (6.3) and ignoring terms 0{S*} , the following 

perturbation equations result : 
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4̂ ^̂  = o (6'G) 
dr\ dr / 

subject to boundary conditions (6,7)* 

The zero-order equation (6.8) has the well knotm 

solution 

= ' + i « r (6.10) 

which can be used to obtain the static pressure distribution 

in the absence of the forced vibration ( S = 0). 

By writing 

^ (6 .12 ) 

the first order equation (6,9) can be reduced to 

o (6.13) 
dz'- ? dz 

which is a Bessel equation whose general solution is the 

cylinder function 

W = A + BX,rz) (6.14) 
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where ( 3 ) and ( % ) are respectively Bessel 

functions of the first and second kinds. However, 

evaluation of the constants A and B so as to satisfy th6 

boundary conditions (6,7) results in exceedingly complicated 

expressions when one attempts to separate out the real and 

imaginary components of , rendering this solution . 

virtually useless. 

A more helpful approach is to resort to a numerical 

method. By writing K_= iK ^ and 

= u + (T/ (6.15) 

equation (6.9) can be reduced to a system of two 

simultaneous second-order ordinary differential equations 

dr' F d r 

J V I c(v 

ir 
z + p JZ ~ K^a = O 

(6.17) 

subject to the boundary conditions u = 2 and v = 0 at 

r = r^ and r = fg. This system of equations can then be 

approximated by finite difference equations and solved by 

the matrix method given in Appendix A. 

The film pressure is 

p = A 

H (6.18) 
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which, time averaged over a cycle of the squeeze motion, 

becomes 

o / r (6.19) 

Substituting for and from equations (6.2) .and 

(6,5), to first order in S we have 

I + S cos T 
u I 

O-G,") 
S sin T. "I 

ZQ* J (6.20) 

6.1,1 Force in segment 

The force generated by the film pressure is 

Tx 

F' (^ " Oĵ A. • Zirrdr (6 .21) 

which, for convenience, will be normalised with respect 

to , 

F = = ( ^ T i 2 ( P - 0 r d r . (6.22) 
r, 

On inserting the expression (6.20) for ? the force can 

be separated into three components, 

F ~ + Fj Cos T 4- sm T ( 6 . 2 3 ) 

where 

F' 
- • } (6.24) 
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a 

F, = 

^ R' - i(^fM i 
n 

F is the familiar static force which would be observed in 
o 

the absence of any externally applied disturbance { S = O), 

the bearing force per unit area being a constant for a 

given value of e^. and F^ are respectively the in-

phase and quadrature components of the dynamic force 

arising from a non-zero value for S • 

6,1,2 Dynamic stiffness of segment 

By dividing the dynamic force components by (-S ), the 

in-phase (S^) and quadrature (S^) components of the dynamic 

stiffness may be obtained, namely 

s. = _ c 
{ ( ^ ^ ) - (6 .27) 

r 

n. 

. (6.28) 

6 , 1 , 3 Dynamic behaviour of segmented thrust bearing 

By adding together a number w of such segments we are 

able to construct a complete thrust bearing composed of 

concentric annular segments separated by ambient line 

boundaries, 
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Consider such a bearing with,-for discussional purposes, 

an inner to outer radius ratio of R. = 0,2 , Let the outer 

radius be and define the basic smooth bearing as 

consisting of a single segment (w = l). This will be 

compared with a bearing of the same overall geometry but 

having different numbers of segments, as shown in Fig.20 « 

If and Sg now refer to the stiffness components of 

the combined bearing, rather than to the contributions of 

a particular segment, their variation with the vibration 

number ^ is shown in Fig.21 for w = 1,2,4,8 and = 0.5 , 

For brevity, S^ will be refered to as the 'damping', 

although it is really the 'damping force per unit displace-

ment'. The stiffness is seen to increase monotonically 

from the static value, levelling off asymptotically for 

large Y to a value approximately twice that of the static 

stiffness, while the 'damping' increases linearly with ^ 

for small \ , reaches a peak, and then decreases gradually 

as Y becomes large. The effect of segmenting the bearing 

is to delay the increase in dynamic stiffness, and to shift 

the peak in damping to higher values of Y • fact, for 

w = 8 , the peak damping occurs at the extreme top end of the 

scale of interest for \ , and the dynamic stiffness has only 

reached half its asymptotic rise. The peak value of damping 

is independent of the number of segments since the assumption 

of line boundaries separating segments implies that the 

total bearing area is the same in all cases. The shift in 

the peak damping towards higher values of ^ for increasing 

w is understandable in that a reduction in the segment 

radial width allows higher radial velocities to be 
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accommodated in the film before limiting compressibility 

effects begin to dominate. In the region to the left of a 

damping peak, the radial flow in the film as a result of a 

non-zero value of 6 is predominantly incompressible, with 

damping increasing linearly with X » The damping peak 

represents the region where compressibility has increased 

to a significant level and the film is stiffening rapidly. 

To the right of the damping peak compressibility dominates 

and a second squeeze-film bearing effect becomes super-

imposed on the basic squeeze-film associated with O"* The 

"incompressible" edge regions of this second squeeze-film, 

where the damping takes place, have a radial extent 0 "{jrl ' 

so as ^ becomes large the damping shrinks to zero and the 

dynamic stiffness levels off to add to the CP- dependent 

basic static stiffness of the film, 

6 , 1,4 Vibration response 

To observe the response of a supported mass m to an 

externally imposed vibrational force 

êxf- = (6.29) 

it is convenient to use the method employed by Pan and 

22 

Chiang in their work on the spherical squeeze-film hybrid 

bearing. If the dynamic force in the film is 

'"in " (6.30) 

and the response displacement amplitude of the supported 
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mass xs 

y = C . "Reat ^ . ( 6 . 3 1 ) 

The equation of motion of the system is 

+ fjy,. = C t . • (6.32) 

Substituting for x, and from equations(6,29), 

(6,30), and (6,31) in equation (6,32), and defining the 

dimensionless mass by 

the following expression for the dimensionless dynamic 

compliance can be obtained; 

where the amplitude and phase are 

C b.TT R* f ' I 
S. (6.35) 

and 

s tan — ^ 
' (6.36) 

The vibration number % is as defined in equation (4.39). 

Because the clearance ratio C/R appears raised to the 
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fifth power in equation (6.33) th-e dimensionless mass is 

usually a very small number. Typically, a bearing might 

have the following characteristics: 

R 0.05m. 

m 1 kg 

-6 
C cd 5 X 10 m 

c 2 
p^ 10 N/m 

yu 2 X 10~^ Ns/m^ . 

- 6 
These values result in a dimensionless mass 10 . 

Resonance occurs when ^ - J , in which case 

(6,37) 

resonance 5z 

and 

U 
resonance ll (6.38) 

Curves of (M^ fixed) are superimposed on those 

of in Fig.21, and the intersection of these two 

families of curves gives the values of \ where resonance 

- 6 

occurs. Since is typically of the order of 10 it can 

be seen that resonances will appear at the top end of the 

spectrum near ^ = 1000. 

Fig.22 shows how the dynamic compliance Sj varies with 

^ in a bearing with two segments ( w = 2). For a given 

dimensionless mass the compliance remains independent of 

^ for small ^ , increases to a peak as the resonance 

condition is approached, and then drops sharply away for 

higher values of \ . It can be seen that the value of 
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at resonance varies with , being a minimum for the 

particular dimensionless mass which results in a resonance 

coinciding with a condition of maximum 'damping'. In the . 

case of a bearing with v = 2 this occurs for 0£. 230 x 10 

when the peak value of is about 2,05 times the static 

compliance. Away from this minimum condition, for values 

- 6 

of both smaller and larger than 230 x 10 , the peak 

compliance increases rapidly, its locus being indicated by 

the broken line in Fig.22 . 

The situation with w = 8 is shown in Fig.23, where in 

this case the minimum peak compliance appears at the top 

end of the % -spectrum for a non-dimensional mass of 

—6 
about 1 X 10 

The value of Y at resonance, ^ x-es ' normalised with 

respect to the ̂ static' resonance value = /M ̂  , 

is plotted against in Fig.24 . It can be seen that a 

resonance frequency calculated on the basis of the static 

stiffness S^( \ = 0) can be as much as 50% too low, the 

discrepancy becoming smaller as the number of segments is 

increased. 

Fig.25 shows the resonance compliance normalised with 

respect to the static compliance, as a function of . 

For each value of w the dynamic compliance at resonance 

goes through a minimum value coinciding with a condition 

of maximum damping. Away from the minimum, the compliance 

increases rapidly and care would be needed in design to 

avoid unacceptably large response amplitudes of the 

supported mass. 

Fortunately, given a particular value for , one can 
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carefully choose the number of segments, so as to position 

the resonance peak at a value of ^ close to maximum 

damping, in which case the peak compliance exceeds the 

static compliance by not much more than a factor of two. 

For instance, if -2=̂  10 ^ one would choose w = 8, in 

which case the peak compliance would occur at \ ^ 1000 and 

over most of the range of interest, 0 ^ ^ ̂  1000, the dynamic 

compliance would not differ substantially from the static 

value, 

6,1.5 Stability 

22 

Following Pan and Chiang , a state of neutral 

stability of the system exists if ( V ) = 0, If the 

angular frequency at which this occurs is then a 

critical mass may be defined as 

. (6.39) 
ON, C 

The condition for instability to set in following a small 

65 
change from the state of neutral stability is 

> o (6,40) 

V=Vo 

where Sm is an incremental mass change from m^. From 

Fig.21 it can be seen that = 0 only when V = 0 (that is, 

when \ = 0), so 

- o . (6.4l) 

Since S^ does not vanish at , equation (6.39) implies 

that 
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m. = oO . (6.42) 

Thus, any real mass must be less that the critical mass, 

and 

<; O . (6.43) 

Also 

V =V-

> O 

v=v. 

Inequalities (6.43) and (6.44) together result in 

(6.44) 

3"v 
Sm O (6.45) 

so (6,40) does not hold, and the system is always stable. 

6.1.6 Comments on the flat thrust bearing 

The above analysis has shown that the flat thrust 

bearing benefits from segmentation by ambient line 

boundaries in that the vibration response can be limited 

by careful choice of the number of segments. Provided the 

total bearing area remains the same, the static load 

capacity will not be affected by the presence of the extra 

boundaries, to within 0 ^ . The thrust bearing, 

whether segmented or unsegmented, is inherently stable with 

respect to forced vibration. 

In general, large resonance compliance peaks occur 

unless the combination of w , and results in a 

resonance vibration number near that associated with 
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maximum damping. In the example given, the best that 

could be achieved was a minimum compliance resonance 

value of about twice the static compliance. This appears 

22 

to disagree with the general findings of Pan and Chiang , 

who state that for a wide range of mass the dynamic 

compliance at resonance is less than the static one, 

implying this to be true for flat thrust bearings as well 

as fox" hemispherical bearings. However, their particular 

case never exceeded a value = 0,1, Equation (6,37) of 
section 6.1.4 above then implies that the dynamic compliance 

= 10. at resonance must always exceed a value of resonance 

This is contradicted by Fig,7 of reference 22, which thus 

appears to be in error. 

6,2 Infinite length axially grooved journal bearing 

At first sight the study of an infinite length bearing 

appears to be somewhat academic, as real bearings are 

manifestly not infinitely long. However, it will be shown 

that the axially grooved journal bearing is a remarkably 

good approximation to a finite length bearing having the 

same cross-sectional geometry for L/D 1, and this 

considerably simplifies the analysis, 

6,2,1 Perturbation solution for pressure distribution 

Consider a long journal bearing of radius R with deep 

narrow grooves running axially from end to end in one of the 

surfaces, so that the cross sectional geometry is as shown 

in Fig,26 , The grooves are sited circumferentially in 

positions given by 

k= 1)1," ' (6,46) 
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where w is the number of grooves. The width of a groove 

is ((/« I) , so that the width of a bearing strip is 

R6,_2c( • In particular the k'th bearing strip extends 

circumfei-entially from to , and the film 

thickness in the bearing segment is given by 

H = — - I + 62 cos 6 + S cos 6 cosT + e, cos T (6.4?) 
0 

where the following non-dimensibnalised quantities have 

been used; T = V t for the time scale of the forced 

response, and T = to t for the time scale of the squeeze 

motion, where V and 60 are angular frequencies associated 

with the external disturbance and the squeeze motion 

respectively, such that » 

Non-dimensionalising spatial variables with respect to 

R, the governing equation (4.43) reduces to the rearranged 

form 

where 

2xc 

^ H JIt - I + e* cos © + S cos Q cos T (6,49) 

is the film thickness time averaged with respect to the 

squeeze motion. 

With m = 0, the boundary conditions (4.58) and (4.59) 

reduce to 
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at an ambient boundary, where is a time averaged 

quantity 

Ztt 

I ? = 
(6.51) 

o 

Expressing the film thickness in the form 

= I + fij cos © +- S COS 8 e ( 6 , 5 2 ) 

and expanding in terms of small eccentricity e^ and 

vibration amplitude 6 , 

4- ( 6 . 5 3 ) 

so that 

- i ^ { I + j e z f ; + (6.54) 

the governing equation (6.48) can be separated into three 

ordinary second order differential equations representing 

the steady state static, first order perturbation in 

eccentricity, and first order perturbation in vibration 

amplitude, effects, 

_ O (6.55) 

die'-

2 ^ ' 4- sin 6 + ZQg cos 6 = 0 ( 6 , 5 6 ) 
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—J ^ -f- sin Q — - f Z0.O 6 — Qj (6.57) 
OI0 d6 JQ, 

while for small and S the boundary condition (5,29) 

separates into the following for , and , 

Q * = I + | e f 

Q, = Q.X 2. cos 6, 
' at 0= ®k-,+c( Gk-* (6.58) 

where we are seeking solutions for , and in the 

k'th bearing segment. 

Equation (6.55) subject to the boundary condition 

(6,58) simply leads to the static zero eccentricity 

('flat plate') solution 

Qo - constant = ^ ' (6,59) 

Equation (6.56) then simplifies to the form 

4- ZQo COS 6 - o (6,60) 

having the solution 

Q, - 2Qo cos © + C| © + (6,61) 

which satisfies the boundary conditions at 6 = ®k-i+-o^ 

and Q = if 

c, = - cos + (6.62) 

/ f 

\c 
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Equation (6,57) simplifies to. the form 

+• COS Q = (6,64) 
a® JQc 

An analytic solution has been obtained in the form 

= A 4- Be -f cos e (6.65) 
0 + K*) 

where = i —=• , and A and B are rather cumbersome 
Vol 

constants involving trigonometric expressions, but it does 

not prove easy to use in the long run because the complex 

constant K results in a very complicated expression for 

dynamic stiffness and damping. A less involved way of 

solving equation (6,64) is to let 

<3^ = u + iV C6.66) 

so that equation (6,64) can be separated by equating real 

and imaginary parts, 

+ jL V + cos G ^ o 
do" /ol 

subject to boundary conditions 

u. = z cos e 

(6.67) 

I ® ' Gk-. + c v . ; • (6.68) 
"V - o 

This system of second-order ordinary differential equations 

can then be solved numerically for u and v using standard 
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techniques. For instance, equations (6,67) can be 

reduced to a system of four first-order differential 

equations which can be solved using a Runge-Kutta technique^^, 

Alternatively, a matrix method similar to that employed 

in section 6.1 for the thrust bearing seems to work well, 

and this is described in Appendix B. 

Having obtained solutions for Q^, and and Q we are 

in a position to find the T —wise time averaged pressure 

distribution in the k'th bearing segment, given by 

2tt 

p , ' ,clr = 
J + e, OS-r) _ gi ' (6.69) 

This in tui n can be expanded for small e^ and ^ in the form 

f = p. + + Se.'^P, (6.70) 

where 

? = I 
^ JTZir: (6.71) 

'I 

P - p / A _ 
(6.72) 

p 5 fQi Cos 0 •) 
(6.73) 
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6.2.2 Static force at small .eccentricities 

The steady state static ( ̂  = O) non-dimensional 

force per unit length contributed by the k'th segment is 

then 

W ' 

^ T I T " - 4 j " I + <^5 6 c/6 . <6.74) 

k̂-i +6( 

On performing the integrations, one finds after a 

considerable amount of tedious trigonometric manipulation, 

(6.75) 
40o 

The total static lift per unit length of the bearing 

will then be the sum of all the segment contributions 

w, . : £ w, . <6-76) 
k=, 

At first sight this looks a formidable proposition, but if 

58 
use is made of the relationships 

^ •= Sin $ 0/+(S«r-i).̂  ? — — 

(6.77) 

COS = Cos I V -f (fw-0.̂  1 
k=l Sm-jS 

it is quite straightforward to show that 
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. cos e , ^ o (̂ w > (") 
1 ^ : k-t 

( 6 . 7 8 ) 

^ COS I =0 (^ > z) (6.79) 
k« I 

"W 
^ ^ ( w > 2 ) 

k,, 
(6 .80) 

•while 

•w. 

^ ^ Z-rr Cl - . 
k = t 

( 6 . 8 1 ) 

Thus, for w>-2, 

( 6 , 8 2 ) 

for small , where at present there is no restriction on 

2 

the excursion ratio e^, and for small e^ the expression 

can be simplified to 

W 4. ( 6 . 8 3 ) 

If the number of grooves is such that Tr>>Tr(l - 2o<), 

W E TT 0 • " ( 6 , 8 4 ) 

which, rather gratifyingly, agrees with the result given 

by the simplified analysis in section 3.2.4. We see that 

2 

for small e^ the lift per unit length of the infinitely 

long axially grooved squeeze-film bearing is directly 
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proportional to the eccentricity and the bearing area, 

and proportional to the square of the excursion ratio, so 

that the groove width should be kept as small as possible. 

Comparing equations (6.83) and (3.73), the first term 

can be identified as being the interior Boyle's Law 

contribution, and the second terra as the edge pressurising 

effect. Thus as the number of grooves increases, the edge 

effect augments the basic Boyle's Law behaviour more and 

more, tending asymptotically to the limit given by equation 

(6.84) for large w. Physically, this is because the 

circumferential leakage flow, which is appreciable when 

only a few grooves are present, is reduced to negligible 

proportions as the number of grooves is increased. This 

can be shown quite easily by going back to the governing 

equation (6.48) and extracting the normalised circum-

ferential mass flow rate per unit length, 

' - ( M i " - (6-85) 

2 
which, for small and becomes in the k'th segment 

5 m . (6.86) 

liHien w»"rt (l - 2o( ) this reduces to 

sinEak-O (6.87) 

which vanishes as w becomes large. For a given number of 

grooves, the sinusoidal structure of equation (6,87) 

indicates that the circumferential flow is greatest in 
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the segments near G =25 and 6 =1%% , and least near 

e = 0 and e = TT . This is to be expected, as the mean 

gap taper is a maximum at © = ̂  and 9 = ̂  , whxle the 

gap is uniform at G = 0 and 9 = TT . 

This infinite length bearing solution is not merely 

of academic interest, because numerical solutions for the 

finite length bearing indicate that for small values of 

e ^ and e the lift per unit length is very closely 
1 6 

approximated to by equation (6.82) for L/D ^ 1 

6.2.3 Static force at large eccentricities 

While the perturbation solution obtained in section 

6.2.1 was valid only for small values of e^, the numerical 

procedure described here is used to accommodate large 

eccentricities. 

Concerning ourselves only with static behaviour (^ — ' 

for the k'th bearing strip equation (6.48) must be solved, 

namely 

° " (6.M) 

where Q = ij/ , subject to boundary conditions (6.50), 

Q = +• (6.89) 

at 6 = 0%*! 0 = ' where the film thickness is 

now 

= I + 6% COS 6 . (6.90) 
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Expanding equation (6.88), 

(6,91) 

The non-dimensional width of the k'th bearing strip is 

' so if. 

A © = 
(m-0 

(6,9%) 

•where m is an integer, finite difference grid points can 

be defined by 

6j - + + ^i-OA© i - ijZj.. . J . (6,93) 

The following finite difference approximations can then be 

used for i = 2, 3 > • • • 1 

Hf 

de 8=6-
266^% 

-

(6.94) 

0 « 

while the boundary conditions (6,89) are given by 

+• 1; . 

(6.95) 

Equation (6.91) can now be written in the finite difference 
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form 

( 6 . 9 6 ) 

vrher e, for a regular field point (i 1 and i ̂  ra), yu. = o, 

0< = 5 4- Sin 6-
ZA0 

p. := % { Hi (l - - I j 
(6.97) 

sin 

ZAe 

and, at the ambient boundaries i = 1 and i = m, 

o( J = o^- — o 

p'i - I 
( 6 . 9 8 ) 

yû - = Hf 4- l-eT . 

The system of equations (6.96) is written in the matrix 

form 

= f (6.99) 

where A is the (m x m) matrix 

Pt 
O/j, 

(Sj 0̂1 

A \ \ 
\ \ 

\ 
\ 

\ \ 
\ \ 

\ 

\ \ \ 
\ \ 
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while g and f are the (m x l) column vectors 

f -

r-

t' 

The required solution is then simply 

"V = A " f . (6.100) 

Having achieved a numerical solution for Q in the form 

of equation (6.100), the time-averaged pressure distribution 

is given by equation (6,6$), 

? = 
Q (6 .101) 

from which the force per unit length contributed by the 

k'th bearing strip can be calculated, namely 

w, = w. 
®k-.< 

k b D Z 
( f - i) cos e Je . (6 .102) 

The integral is readily evaluated numerically by means of 

a Simpson's rule routine, and the total lift per unit 

length of the bearing is given by equation (6.76). 
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6.2.4 Comparisons of the static forces in ungrooved 

and axially grooved infinite length .journal bearings 

The above numerical method has been used to obtain the 

static force per unit length of the axially grooved squeeze-

film bearing of infinite length and the results were 

compared with those for th;e corresponding ungrooved bearing. 

Fig.27 shows in full lines the lift per unit length 

as a function of eccentricity for various values of 

excursion ratio in a bearing with 20 infinitesimally 

narrow grooves ( = O), For comparison is shown the 

corresponding set of curves (broken lines) for the smooth 

bearing as derived from reference l6. It can be seen that 

both sets are characterised by an approximately constant 

stiffness (gradient of the curves) at low eccentricities, 

but which increases rapidly at high eccentricities. The 

grooved bearing,however, exhibits much greater lift, 

especially at low values of eccentricity and excursion 

ratio. For example, the improvement in load capacity is 

87% when e^ = 0.4 and e^ = 0.5. 

The percentage improvement in lift of the grooved 

bearing over the smooth one is shown in more detail in 

Fig 28 as a function of eccentricity for various excursion 

ratios, and it can be seen immediately that the best 

improvement occurs for low values of e^ and, to a lesser 

2 

extent, of e^. In the limit of W-+-00 and e^ , eg<.< 1 the 

improvement is 150%, as predicted by the analytic treatment 

of section 6.2.2 . 

Fig.29 compares the analytically and numerically 
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derived solutions obtained in sections 6,2,2 and 6,2,3 

for various values of e and when w = 20 and o( = 0. 

Agreement is very good at low eccentricities, but the 

curvature seen in the numerical results is lost in the 

analytic case because the perturbation theory extended 

only to first order in e^. However, the discrepancy is 

only 3*4% at e^ = 0,1, so the analytic solution does'give 

a good, if pessimistic, idea of what is happening at low 

eccentricities, and provides a reliable check on the 

numerical results. 

Fig.30 shows the dependence of lift per unit length 

on the number of grooves for various excursion ratios 

and groove widths when the eccentricity is 0,1, using the 

analytic approach. The lift increases monotonically with 

w, levelling asymptotically at quite moderate numbers. 

No appreciable increase in lift is apparent if the number 

of grooves is taken beyond l8 or 20, and as few as 3 or 4 

grooves gives quite a signficant improvement in lift 

compared with that of the smooth bearing shown in broken 

lines to the left of the figure. This latter result is 

analagous to the sort of improvement observed in the 

externally pressurised journal bearing reported in 

reference 39, Increasing the groove width, represented 

by the parameter o(, results in a proportionate loss in 

lift. 

Note that if ^ = 2.Tr R f t - lo<) is the circumferential 
w 

width of a bearing segment, so that i/R = ( I - 2.ô ) , it 

is found that //R ^ 0,3 for w ^ 20, justifying our 

premature acceptance of the criterion governing groove 
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depth, inequality (3*9'±)» in section 3.5.1 • 

6,2.5 Dynamic force at small eccentricities 

Assuming that a solution has been obtained for , as 

expressed by equation (6.66), the steady state dynamic 

force contribution per unit length from the k'th bearing 

segment is 

/ . 

Wj> = j (6.103) 

where is given by equation (6.73). Retaining the real 

part, equation (6.103) becomes 

Gk-d ®k-«( 

9k'<K 

-{- i S.'hT A . ) V cos G de . 
4 Q j 

Gk., + k 

Performing the integration of the first terra, and 

manipulating, 

(6.104) 

s ^ Cos 

-

T I ^ ® z k - i I u tos 6 do j-

-

•f £ Sm T. ^ 1 v Cos 4 ol6 . 
4 Q. J 

®k-i+d 

(6.105) 

The total dynamic force per unit length is then 

Wp - ^ (6.106) 

lc,l ^ 

so that, on using equations (6.79) and (6,8l), for w > 2 
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*k.< 

4- £ sin T \ V cos 6 J© . 
4 Q. 

The coefficients of cos T and sin T respectively 

constitute the stiffness and damping components of the 

dynamic force. 

Before going on to consider the vibration response, 

we will discuss the finite length axially grooved journal 

bearing, showing that the infinite length bearing is a 

very good approximation to the finite length bearing for 

L/D ^ 1 with respect to the static behaviour. 

6.3 Finite length axially grooved journal bearing 

The infinite length axially grooved bearing succumbed 

relatively easily to analytic solution by perturbation 

theory because it involved a single spatial variable. In 

the finite length bearing, however, the axial flow cannot 

immediately be ignored so the problem contains two 

dimensions in the spatial variables. This makes an 

analytic solution much more difficult, and it is easier to 

turn again to numerical methods. 

6.3.1 Numerical solution for T = Q 

To obtain the static force, we expand the governing 

equation (4.43), with ^ = 0, bearing in mind the structure 

of equation (6.49) when G = 0, s6 that 

+ 2CH«-o<5 - o 
(6.108) 
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•where Q = (PH)^, and z = z/R is the normalised axial 

co-ordinate, such that z^ = L/R is the non-dimensional 

length of the bearing. Because of symmetry, only the 

domain , 0 6 z ̂  ^ need be considered, so that 

for an even number of grooves the Ic'th segment covers the 

region ^ 8 ̂  * 0 ̂  Z ̂  ^ . If there is an odd 

number of grooves, the segments of interest occupy the 

regions 8 ̂  0k_< , 0^ (w + l)/2 and 

^ ^ 0 6 TT , 0 4 Z ̂  ^ . On an ambient boundary, 

equation (4,58) holds in the form 

Q = + & G,'' (6.109) 

while at the mid-plane, z = •ẑ /̂2, 

H = 

= o ' (6 .110) 

z 

To solve equation (6.IO8) in the k'th segment, a uniform 

grid is used with m and n points respectively in the 

circumferential and axial directions, so that the grid 

spacing is 

_ A e = 
<fm-0 

(6,111) 

= -J'-' —• 

2Cn-0 

such that the i,j'th grid point has co-ordinates 

G; = ( ^ + ( I ~ I ) A © ), z j = ( j - l ) A z , where 

i = 1,2,,,,, m and j = 1,2,..,, n. Using the following 

finite difference approximations, 
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2A6^^'+'J ~ 1''-'o'̂  

18:, ij) 

C®c > 2j; 

(6.112) 

= H, 

equation (6.108) can be represented in finite difference 

terms at the i,j'th grid point in the generalised form 

= / v (6.113) 

where, for a regular field point, 

d" = 
) Ae'- ZAe 

3 . = _ e. 
Ae"" Z^e 

(3- = 7(H;-0 - 2H,- (sg* + 

(6.ii4) 

' h = 

/'•i - o • 

For all bearing segments, other than k = where w is 

odd, the boundary condition (6.109) reduces to the following 

finite difference form at i = l , i = m , j = l 

z: wfjy t= Sy -C S.j - o • 

P-'i ' ' 

fx.- , H;' + | e r (6.115) 
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and equation (6,110) is represented by (6,ll4) at j = n, 

with the exception that 

= o 

- ^ ^ (6.116) 

If w is odd, the segment k = is a special case 

where equation (6.109) holds on the boundaries z = 0" and 

0 = ©c-vj-o V » equation (6,110) holds on the boundary 

Z = Z 1 . / 2 , and we have the extra condition at 9 = TT , 

© = tr 
" ° ' (6.117) 

These conditions are all represented by equations (6,115) 

at i = 1 and j = 1, equations (6.II6) at j = n, together 

with the following: equations (6.114) at i = m, exccpt 

that (/ . = 0, c/ . = 2i!lw\ ; equations (6,ll4) at the 
mj mj AQJ-

corner (i = ni, j = n) except that 0^^ = &mn " 

, S = , 

mn ^0% mn 

In this awkxfard segment the grid spacing in the ©-direction 

is halved in order to retain the same number of grid points, 

in which case A© = in this segment. 
iCw^- I ) 

A matrix solution of the general two-dimensional finite 

difference equation (fe.113) is given in Appendix C, By 

using the symmetry properties of the bearing, the 

computation can be confined to a quarter of the total 

bearing region, permitting quite a considerable saving in 

time, n need be only half as large as would be required 

for the total bearing region, and.summation for the total 

force need only be taken over half the segments. 
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Having solved for Q, the time- averaged pressure 

distribution is once more given by equation (6.101), and 

this integrated over the area of the segment leads to its 

contribution to the total lift of the bearing, obtained by 

summing over all such contributions. The necessary 

integrations can be performed numerically by means of a 

two-dimensional Simpson's Rule routine. 

6.3.2 Discussion on static force 

Results of the numerical analysis given in section 

6,3,1 indicate that for most L/D ratios the lift per unit 

length of finite length axially grooved squeeze-film 

bearings is virtually indistinguishable in behaviour from 

the full curves of Fig.2? . This is true to all intents 

and purposes for L/D ^ 1 , so the infinite length case is 

of especial interest because it can be used to predict the 

load carrying capacity of most axially grooved bearings of 

finite length. This is because each bearing segment is in 

the form of a relatively long strip, where the dominant 

boundaries are the axial ones even in quite short bearings. 

The short circumferential boundaries at the ends contribute 

only a small proportion of the total edge pressurising 

effect, unless the bearing is very short and the lengths 

of the circumferential and axial boundaries become 

comparable in magnitude. In other words, the infinite 

length case is a good approximation for the finite length 

bearing if 

^ » w . (6,118) 

Investigation of the improvement in lift to be obtained 
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by axially grooving finite length" bearings is complicated 

by the basic L/D dependence of the ungrooved bearing. 

However, a typical example is furnished by considering the 

case where L/D = 3. The ungrooved bearing has a lift per 

2 
and eg 

2 
unit length given by equation (3,28) for small e and e„, 

resulting in 

W , = TT ef . . 
ungrooved 4. (6.119) 

If the bearing is sufficiently axially grooved, the 

2 

infinite length solution for small e^ and e^, given by 

equation (6.84), will be a good approximation, and 

W 
axially grooved = f ' 

The percentage improvement in lift arising from the 

grooving is thus 67% for 0̂  = 0. 

Remembering that in the limit of large numbers of 

grooves we have shown that the circumferentially and 

axially grooved bearings are performing basically the same 

task of eliminating circumferential leakage flow, we can 

obtain a limiting curve for the effect of axial grooving 

on lift for various L/D by studying the limiting circum-

ferentially grooved behaviour, as given by equations ( 3 . 2 8 ) 

and (3*3l)» On this basis it is found that 

^grooved _ ^ 

^ungrooved ^ +• tank 
( 6 .121 ) 

where ¥ , is the lift of the smooth bearing with a 
ungrooved 
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given L/D ratio, and ^grooved fhe lift of the same 

bearing with a large number of circumferential or axial 

grooves. This function is plotted in Fig.31 as a function 

of L/D, showing that the improvement due to grooving 

increases rapidly for moderate values of L/D, and would 

level off asymptotically at a figure of 2.5 for large L/D 

if the curve had been carried far enough. The improvement 

is just under 50% for L/D = 2, 6?% for L/D = 3, 100% for 

L/D = 6. The improvement for short bearings, L/D<^1 is 

largely nullified by the fact that the circumferential 

leakage flow $s inherently low anyivay, so grooving will not 

significantly change the lift, although even for L/D = 1 

there is about l8% improvement to be gained from grooving. 

Of course, although the improvement curve of Fig.31 increases 

with L/D, the actual lift per unit length of the grooved 

bearing remains independent of L/D because we have removed 

the circumferential leakage flow. 

6.4 Dynamic response of axially grooved journal bearings 

As the static behaviour of most finite length axially 

grooved journal bearings is indistinguishable from that of 

the infinite length bearing of the same cross-section, we will 

also restrict our attention to the latter when considering 

the dynamic response of the system. The case of small 

eccentricity (eg<<. l) and small forced vibration amplitude 

( 5 <C<Z l) is of especial interest to manufacturers of 

inertial navigation instruments, so this will be investigated 

in detail, but a method for treating large eccentricities 

will be suggested for use elsewhere if the need arises. 
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6.4.1 Dynamic stiffness at small eccentricities 

The steady state dynamic force per unit length in an 

infinitely long axially grooved journal bearing was given 

by equation (6,107) in section 6,2.5i and this can be 

expressed in the form 

Wp = ^ = Rea^{ Se'"^(U - iV)} (6.122) 
P*-

where 

k-i 

and 

e 

"W. 
Y = Sl-s/' = JL. ^ I V CX5S 0 d© 

(6.124) 

1 + "̂  

respectively constitute the in-phase and quadrature 

components of the dynamic stiffness per unit length of the 

bearing. 

The ^ -dependence of U and V is shown in Fig,32 for 

various numbers of grooves, w. The dynamic stiffness 

increases monotonically with ^ from the static value 

tJ( "J" = 0) , reaching a higher constant value for large Y • 

The dynamic 'damping' increases linearly with ^ for small 

^ , levels off, and then decreases gradually to zero for 

large ^ , As in the case of the thrust bearing (section 

6.1,4), increasing the number of bearing segments pushes 

the damping peak to higher values of ^ , and delays the 

onset of the asymptotic rise in the dynamic stiffness. 
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However, there are slight differences to be seen in 

comparing Figs.21 and 32 which can be explained 

qualitatively with the help of our 'flat plate' model. 

The static stiffness of the thrust bearing is independent 

of the number of segments, while that of the axially 

grooved journal bearing increases to an asymptotic value 

for large numbers of segments. ¥e have already accounted 

for this by showing that circumferential leakage flow 

reduces the load capacity (and stiffness) as the number 

of grooves is decreased, and that as the number of grooves 

increases the behaviour tends more closely to that of the 

ideal local flat plate. For large w (no circumferential 

leakage flow) the bearing behaviour fits the ideal flat 

plate model locally, and so the dynamic damping curves 

appear very similar to those for the thrust bearing in 

Fig.21 with the peak damping having a constant value as 

w varies. The vibration number at which the peak damping 

occurs increases with w, as the decreasing width of the 

bearing strips allows higher circumferential velocities to 

exist in the film before limiting compressibility effects 

begin to dominate. In the relatively wide strips associated 

with a small value of w, there is a certain amount of 

circumferential leakage superimposed on the flow arising 
\ 

from the forced response, so the damping peak is boosted 

slightly. 

6.4.2 Vibration response 

A treatment similar to that of section 6.1.4 for the 

thrust bearing can be used to investigate the forced 

response of the system when a mass m per unit length is 
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supported by the bearing. An external force per unit 

length 

{ f & ^ } 
Oct L •' (6.125) 

is supposed to act, generating a dynamic film force per 

unit length 

Vv/̂  ~ ReaC - i V ) | (6,126) 

•which causes a supported mass response displacement of 

magnitude 

X - C ReaC { 6 e j . 
(6.127) 

The equation of motion for the system is thus 

m x -f- (6.128) 

resulting in a dynamic compliance 

- G, 6 (6,129) 

where is the dimensionless mass per unit length, 

" ' 23%/.^ iR j (6-13°) 

and Y is the vibration number defined in equation(4.39), 

The amplitude and phase of the unit dynamic compliance are 
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( k D /•' _ I 

A resonance condition occurs when ^ = Jv/M^ , in which 

case 

• resonance V 
__ (6 .132 ) 

- -J ' 
resonance Z 

Curves of (M^ fixed) are superimposed on those of 

U in Fig,32, and the intersections of the two families give 

the values of at which resonance occurs. 

In Fig,33, the dynamic compliance 5, is plotted as a 

function of Y various values of dimensionless mass 

per unit length when w = 10, For a given mass, the 

compliance at low Y differs little from the static value. 

As the resonance condition (6,132) is approached, the 

compliance increases rapidly up to a peak, and then drops 

sharply away to zero for large Y , The peak value of 5, 

varies with , being a minimum for that value of which 

results in a resonance which coincides with maximum 

damping. For w = 10, this occurs for a mass per unit 

length Oi 0,0025, in which case the dynamic compliance 

at resonance is just under twice the static compliance. 

For masses both greater and smaller than this, the peak 

compliance increases rapidly. For very small masses, the 

resonance occurs above our scale of interest (at Y 1000) 

and over most of the range 0 ̂  Y ^ 1000 the dynamic 
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compliance is less than the static value. 

Pig.34 is a similar graph for w = 40. The maximum 

damping in this case occurs at "J <1^500, so the minimum 

peak compliance is pushed to a higher value of ^ than in 

the last example where w = 10. The mass which results in 

the minimum peak compliance is reduced by a factor of 

about 250 compared with that when w = 10. 

As for the thrust bearing (Fig.24), it is useful to 

observe the ratio ^res^ ^o (value of ^ at resonance, 

divided by ^ U(3 = 0)/M^), and this is plotted in 

Fig*35 . Again, it can be seen that a resonance frequency 

calculated from the combination of U ( ^ = 0) and can be 

as much as 50% too low . It is not surprising that this 

value is similar to that obtained for the thrust bearing, 

because the grooved journal bearing behaves locally like a 

flat thrust bearing. 

Fig.36 shows the peak compliance normalised with 

respect to the static compliance as a function of . The 

behaviour is qualitatively similar to that of the thrust 

bearing (Fig.25), except that the increased damping in the 

journal bearing for small w results in a slightly reduced 

peak compliance at the point of maximum damping compared 

with that at large values of w. 

In inertial navigation instruments, the following might 

be typical: 

R sr 20 mm 

m = 2.5 kg/m 

- 6 

C t= 2 .5 X 10 m 

p = 10^ N/m^ 
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/I = 2 X 10"^ N s/m^ 

leading to a typical ditnensionless mass per unit length 

M. lOT? . 
1 

Such a value for would produce a resonance well above 

the upper limit of ^ for which we are interested, so the 

dynamic compliance can be expected to be less than the 

static value over most of the ^ -spectrum, regardless of 

the number of grooves. However, if it is wished to suppress 

this resonance, one should choose a large number of grooves, 

w ^ 6o say, so as to make the resonance coincide with the 

condition of maximum damping. Making such a large number 

of grooves, without at the same time losing a significant 

amount of bearing area, would prove difficult in practice. 

In a situation where the bearing axis is intended to 

operate vertically, much larger values of could be met, 

and in such a case it would be perfectly feasible to choose 

the number of grooves carefully so as to ensure maximum 

available damping at resonance, and so limit the response 

amplitude. 

6.4.3 Stability 

An argument similar to that for the thrust bearing in 

section 6.1.5 can be used to show that, at least for 

small eccentricities and small forced response amplitudes, 

the axially grooved journal bearing is always stable with 

respect to external vibration when ^ « CT" . 

The external exciting force per unit length is 

suddenly removed, so that the equation of motion (6.128) 

becomes 
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/ * 

mx + = o . (6.133) 

A state of neutral stability is supposed to exist if 

V = 0, in which case equations (6,126), (6,127) and (6,133) 

define a critical mass per unit length 

= jilL. ufvj = - J — ucv^) (6.134) 
C v / 

where \ is the angular frequency at which V = 0. As in 

section 6.1.5, the condition for instability to ensue from 

a slight change away from the state of neutral stability is 

v«v. 

Sm O 
(6.135) 

O 

where Gwi is an incremental change in mass from m^. 

Once again we have V = 0 only when V = 0 (or ^ = 0), 

in which case 

= o ( 6 . 136 ) 

and, since U does not vanish at V = , equation (6,134) 

results in 

• (6.137) 

The same argument as in section 6.1.5 then shows that 

condition (6.135) cannot be satisfied, and hence the 

bearing is always stable with respect to forced vibration 

when the eccentricity and response amplitude are small. 
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6,5 Finite length ungrooved journal bearing 

So that proper comparisons can be made with grooved 

bearings, the finite length ungrooved journal bearing must 

be analysed. The static behaviour is well documented 

, and the stability of the self-induced response has 

20 

been treated for the infinite length case , but the 

forced response has not been dealt with in the literature. 

As in section 6.4 , we will mainly concern ourselves with 

small eccentricities and small vibration amplitudes 
(e < < 1 and 6 l) , as these are specifically of 

1 

interest to the writer. 

6.5,1 Pressure distribution at small eccentricities 

Consider an ungrooved journal bearing of radius R, 

length L, nominal clearance C such that the normalised 

film thickness is 

H = — = 1 + e , cos© + ScosQ cosT + e, cos X 
C (6.138) 

where T = v t and f = tot are time scales associated 

with respectively the forced response and the squeeze 

motion; e^ is the eccentricity, e^ the excursion ratio, 

and S the amplitude of the forced response. The film 

thickness, time-averaged with respect to the squeeze 

motion, is 

JTT 
_ . ( ;& c r . 

j (6.139) 

2K 

Hgg = H dt = I + I + -|-

o 

:^e-T) KQ+T)' 
e + e 

Normalising the spatial variables with respect to R, 
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so that the circumferential and axial non-dimensional 

co-ordinates are © and z , on setting ~ ^2 ~ 

= © , Ug = Z , m = 1 (no slip flow), the governing 

equation (4,43) becomes 

(6.i4o) 

subject to the boundary conditions (4.58) at H = 0 and 

Z = Zi = L/R in the form 

Hjo4'oo = Hgd + (6,l4l) 

and the symmetry conditions at 6 = 0 and 0 = TT , 

= o • (6.142) 

If both Bg and S are small, perturbation theory can 

be used to obtain a solution for , To first order in 

Cg and G , let 

(6.143) 

+ I 

where Sg(Z ) and g* (z ) are a complex conjugate pair, 

= uCf) +• lv(t) 

(6.144) 
= uY%) - iv(5) . 

Using expansions (6,139) and (6,l43) in the governing 

equation (6,l40), the following set of perturbation 

equations arise: 
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- o (6.145) 

diV 
jd' - %, + 3%. = ° 

(6.146) 

^ - a — K^v 4- 3a. = o 

^ _ V + K,LI - 3j|: = o J (6.147) 

where K„ = -̂ =r . The ambient boundary conditions (6,l4l) 

become 

%. = 1 

%, = 3(1 + 7 % = %L. (6.148) 

V = o 

The symmetry boundary conditions (6,l42) are automatically 

satisfied by assuming an expansion having the structure of 

equation (6.14]), which involves only a cosine dependence 

on © . 

The solution of the zero order equation (6.14$),subject 

to the boundary conditions (6.l48), is simply 

•Jo = 1 +• I e,'' . (6.149) 

The first order equation in eccentricity, (6.l46), has 

a solution of the form 

= A cos A % 4- B z + 3%, (6.150) 
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which satisfies the boundary conditions (6,l48) if 

A - - Sef" 

g = ^ ,(6.151) 

(where L/D = 2i_/2). Thus 

- 3{^<, - e^CcosKi - smX z ) j ' (6.152) 

The simultaneous equations (6.14?) must be solved to 

obtain the first order solution in vibration amplitude, 

gg, subject to boundary conditions (6,l48). The numerical 

method discussed in Appendices A and B once again proves 

useful, and is described fully in Appendix D, 

Having achieved solutions for g^, g^, u, v we can 

determine the T -wise time averaged pressure distribution 

P, given by equation (6,69). This, for small values of 

Cg and S can be expressed in the form 

? = + Rea£'[ Se''"̂ Ĉ a. - 1^3) I (6.153) 

where 
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cose I (6.156) 

?, = 
V cos O 

* ZS'. (6.157) 

6,5*2 static force 

The steady state static force at small eccentricities 

is 

T TT 

I e •-Je <1̂  • (6.158) 
O O 

Substituting for from equation (6.155), this becomes 

v. 

(6.159) 
o 

where is given by equation (6.152), so that 

K = ^ t 1 ' (6.160) 

This expression has no restriction on the excursion ratio 

2 2 
e^ . If e^ is assumed small (e^ <C<C l), equation 

(6,160) reduces to Beck and Strodtman's result , given 

in equation (3.28), and discussed in section 3*2 , 

6,5*3 Static stiffness 

The static stiffness, expressed in terms of L/D = z^/2, 

is 
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s' = (6,161) 

so 

''" H o - ® ' 

3 D tank -k 1 (6.162) 

where and are given by equations (6.154) and (6.l49)» 

For purposes of comparison, it is convenient to discuss 

the static stiffness per unit length, 

(L/D) 
= 2 e 4-» 

3 tank ( l / D ) } 
2 ^ ; (L/D) J " (6.163) 

Since tanh (L/D) L/D for small L/D, the infinitesimally 

short journal bearing has a stiffness per unit length 

( L / D ) 
L / D « I 

At the other extreme, 

2e 4} 

tank (L/I>) 

(L/D) 
L / D » I 

so for large L/D, 

(6.164) 

(6,165) 

(L/D) 
L / D » \ 0 - e') 

(6.166) 

We see that the very short bearing has a stiffness per 

unit length which exceeds that of the very long bearing 

by an amount 3 cf' , 

to 
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The function expressed in equation (6.163) is shown in 

Fig*37 for various values of e^ . Normalisation with 

respect to the behaviour of the very long bearing, 

equation (6,l66), has been used so as to make all the 

curves of the same order of magnitude for simple comparison. 

On this basis it can be seen that, for small e^, the-very 

g h o r t bearing has almost g , $ times the stiffness of the 

very l€>ng bearing, agreeing with the findings of Beck and 

Strodtman^^ (see section 3,2, and Fig,6). As L/D increases 

the stiffness drops until, for large L/D, the improvement 

arising from the edge-pressurising tanh (L/D) term is lost 

completely because of circumferential leakage flow. With 

increasing excursion ratio e^ the improvement in stiffness 

26 28 

at small values of L/D is not so marked ' , because the 

interior 'Boyle's Law' term in », * t begins to dominate 
u-er; 

over the edge-pressurising term in tanh (L/D), and 

circumferential leakage becomes large even in quite short 

bearings. The improved stiffness in short bearings is 

reduced from about for = 0,1 to 13% for e^ = 0,9» 

At the more representative condition e^ = 0,5, the 

improvement is 8o%. 

Thig dependence on e^ is ghown perhaps more clearly in 

where a curve for L/D = 0 has been included as a 

limiting case, even though it is not strictly valid 

recording to the theory given in section 4, 

6,5,4 Dynamic stiffness 

The dynamic spring and damping forces are respectively 

1 

_ t i F, s 
p. 

cos O jQ.eif (6,167) 

e> o 
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Va TT 

^ = E' -rr-R' IT 
R COS 6. Je.Ji ( 6 . 1 6 8 ) 

o o 

where and were given in equations (6.156) and (6.157). 

The in-phase and quadrature components of the dynamic 

stiffness are thus 

IT 

s = s! = - A:\ 1 R C O S e .de. 
& pjrR" ' 4 1 

o o 

-

f " 
Pj Cos 6. de. di 

(6.169) 

(6.170) 
£) o 

so that 

s. = p. 
f . 

J . d ? } (6.171) 

and 

S = - _o_ I vc/z 

9'J 
(6.172) 

where u and v were solutions of the simultaneous 

equations (6.147). 

is plotted as a function of the vibration number 

^ in Fig.39 , showing a general rise from the static 

value for a given L/D, and levelling off at a higher 

constant value for large \ . With increasing L/D, the 

onset of the rise in is displaced towards smaller 

values of Y » the overall increase in stiffness with L/D 
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being attributable to the general- increase in bearing 

projected area which follows an increase in length of a 

bearing when the diameter is kept constant. 

A similar set of curves for is given in Fig.40, 

where it can be seen that the peak 'damping' is displaced 

towards the lower end of the ^ -scale with increasing 

L/D, reaching a constant value of ^ for large L/D when 

the bearing is effectively 'infinitely' long (in that the 

edge-pressurising effect is, to all intents and purposes, 

lost). 

Bearings with different values of L/D can more easily 

be compared with the help of Pig.4l, where the functions 

S, 2c S,' 

^ (6 .173) 

s. _ 2c s: 
(L/D) L 

have been plotted, being the dynamic stiffness components 

per unit length of the bearing. For small ^ the damping 

is negligible, and the stiffness tends to the static 

behaviour discussed in section 6.5.3 • For larger ^ , it 

can be seen that the peak damping component of the stiffness 

per unit length increases to some limiting value for 

large L/D, about 50% larger than the peak damping for L/D 

= 0 . 2 . Physically, this is because in the large L/D 

bearing the flow in response to the forced vibration is 

mainly circumferential, being associated with much larger 

path lengths than in the case of the predominantly axial 

response flow in very short bearings. The constant value 
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of Y at peak damping for large L/D is understandable in 

that the almost exclusively circumferential flow in such 

cases results in a limiting flow velocity amplitude being 

set up because the same effective path length ( —' TT R) 

occurs regardless of the size of L/D, The shift in peak 

damping to higher values of ^ for small L/D is because 

higher film velocities can be associated with the shorter 

path lengths before viscous shear forces rise to a level 

where the compressibility of the gas limits the process. 

6.5,5 Vibration response 

22 

Once again we use the approach of Pan and Chiang . 

Suppose the bearing supports a mass m per unit length, so 

that an externally applied vibrational force per unit 

1ength 

(6.174) 

causes a dynamic film force per unit length 

^ ReaC^Se (S, - i (6.175) 
L L-

and a mass response displacement amplitude 

X = C . Reai I (6.176) 

such that the equation of motion is 

+ Fj^ = . (6.177) 
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Using equations (6,174) to (6.177), and remembering that 

the vibration number is 

% 

(6.178) 

the dynamic compliance of the system can be written in 

the form 

where the amplitude and phase are 

C ; " ' ' ' * — 

(6.180) 

y = t< aun 
-I S % 

These expressions are exactly the same as those for the 

axially grooved journal bearing, section 6.4.2, except 

that the normalisation for is different, and this 

time the dimensionless mass per unit length is 

M , = . 

144-TryU.̂ R \ R / 
(6.181) 

Once more, resonance occurs when = J S , in 

which case 

resonance 

resonance 

Sz 

- JL 
Z 

( 6 . 1 8 2 ) 
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. 2 

Curves of J (M^ fixed), superimposed on those of 

in Fig.39, enable the resonance values of ^ to be 

determined. 

The dynamic compliance 6, is shown as a function of 

Y in Fig,42 for the case L/D = 0.2, and the behaviour is 

seen to be qualitatively similar to that of Fig.33 for 

the infinite length axially grooved journal bearing. 

Again there is an optimum value for which results in a 

resonance coinciding with the condition of maximum 'damping', 

thus limiting the response. For very small normalised 

masses, resonance occurs outside the range of interest 

(at ^ ">1000) so, assuming that excitations resulting in 

vibration numbers in excess of 1000 are highly attenuated 

in practice, the dynamic compliance will be smaller than 

the static compliance over most of the range of ^ . If it 

is necessary to swamp an unwanted peak compliance in the 

range ^ "> 1000, this can be accomplished by making a small 

reduction in L/D so as to shift the peak damping to coincide 

with the resonance condition. It can be seen that the peak 

compliance at maximum damping is about twice the static 

compliance when L/D = 0.2. The locus of the peak damping, 

shown in Fig.42, indicates that the peak compliance 

achieves large values when the normalised mass deviates far 

from the optimum value of 8 x 10 

A family of such loci is shown in Fig.43 as a function 

of M . The peak compliance S, has been normalised 
I ' resonance 

with respect to the static compliance S,( Y = 0 ) so that 

curves for different values of L/D appear of the same order 

of magnitude. This shows clearly how the large peak 
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damping for large L/D results in an optimum dynamic 

compliance differing little from the static value, while 

the decreased peak damping in shorter bearings leads to , 

optimum dynamic compliances nearer twice the static value. 

The value of at which the optimum peak compliance ' 

occurs is very sensitive to small changes in L/D for short 

bearings, so the system can be 'tuned' for optimum conditions 

relatively easily by making slight adjustments to the size 

of L/D during design work. Of course this can only be done 

if the specified static loading conditions can also be met. 

Fig.44 shows how the resonance value of ^ differs 

from the value ^ = 0)/M^ when is varied. 

It can be seen that the estimate ^ based on the static 

stiffness can be as much as 80% too low for large L/D, 

while the discrepancy at small values of L/D ( ci 0.2) is 

about 30%, 

6.5.6 Stability 

Exactly the same argument as used in section 6.4.3 for 

the axially grooved journal bearing shows that the finite 

length ungrooved bearing is always stable with respect to 

forced vibration when the eccentricity e^ and vibration 

amplitude G are small. 

6.6 Circumferentially grooved journal bearing 

The static force in a circumferentially grooved journal 

bearing was discussed in section 3.2.3; for dynamic 

behaviour, we can draw on the results of section 6.5 if 

L/D is taken to refer to a bearing segment rather than to 

the overall bearing. 
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6.6.1 Static stiffness 

A circumferentially grooved bearing, composed of 

bearing segments each of length-diameter ratio ^/D, will 

have a static stiffness per unit length given by equation 

(6.163), namely 

- 2e, {(1- ef) U / ^ ) J (6.183) ( ( / # 

where and g^ are defined in equations (6.154) and 

(6.l49). If there are w such bearing segments, mutually 

separated by ambient line boundaries, the total length-

diameter ratio will be 

L 
I T = ar (6.184) 

and the segmented bearing will have a projected area equal 

to that of the ungrooved bearing of length-diameter ratio 

L/D, which has a static stiffness per unit length given 

directly by equation (6.163), The maximum possible 

stiffness is obtained when there are a large number of 

segments in the circumferentially grooved bearing, in which 

case 

s. 

( f / D ) 
2-®? Po j ' (6.185) % 

/ / D O 

This quantity, normalised with respect to the behaviour of 

the ungrooved bearing, equation (6.163), is shotm in 

Fig. 45 . If i/V) ^ 0 . 2 there will be at most a 1% discrepancy 

in using these curves. The benefits to be obtained from 
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grooving are seen to be most marked for small values of 

excursion ratio, with the improvement decreasing rapidly 

with increasing e^. This is shown more obviously if the 

same information is presented in the form of Fig.46 . 

A realistic value for e^ is 0.5, in which case the improve-

ment due to grooving is about 30% for L/D = 2, ^0% for 

L/D = 4, 60% for L/D = 6, 

6.6.2 Dynamic stiffness components 

The dynamic stiffness of a circumferentially grooved 

journal bearing of arbitrary length-diameter ratio L/D can 

be obtained from Fig.4l if the curve for L/D = 0.2 is 

scaled by the arbitrary value of L/D. For instance, a 

grooved bearing with L/D = 3 will have a dynamic stiffness 

as shown in Fig.47* Also shown is the dynamic stiffness 

of the ungrooved bearing having L/D = 3, obtained by 

scaling by a factor of 3 the L/D = 3 curve in Fig.4l. 

Similar curves for the'damping'are given in Fig.48. 

The segment length-diameter ratio of i/B = 0,2 in the 

grooved bearing ensures that the static performance is 

within 1% of the best attainable. 

The effect of grooving can be seen to increase the 

static stiffness and to delay the onset of the asymptotic 

increase in dynamic stiffness by about two decades of the 

vibration number . The peak damping is shifted from 

^ = 1.6 to ^ = 75, and reduced in magnitude by 

approximately 25%. 

6.6,3 Vibration response 

The effect of circumferential grooving on the vibration 

response in the typical case of L/D = 3 is shoxm in 
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Fig.49 * The dynamic compliance," given by equation 

(6.180), has been normalised with respect to the static 

stiffness of the ungrooved ^bearing' so as to make comparison 

more easy. Because the peak damping occurs at a low 

vibration number ( ̂  = 1.6), the ungrooved bearing has 

small peak compliances when the non-dimensional mass, per 

unit length is relatively large, the minimum peak 

compliance being very close to the static value when 

"Sf 2.6 . The grooved bearing, on the other hand, has 

small peak compliances higher up the ^ -scale near 

\ = 75, the minimum value being about 1.4 times that of 

the ungrooved bearing static compliance and occurring 

when Csc O.OO13. Grooving the bearing results in a 

reduction in static compliance of nearly 30%, 

It can be seen that very large dynamic compliances 

can result if M is such that a peak compliance is 

associated with a value of ^ insufficiently close to the 

condition of maximum damping. The normalised mass per 

unit length, equation (6.181), can be written 

• (6.186) 

Typical values for a bearing required to support a mass 

under full gravitational loading might be 

L/D = 3 

C/R = 1.25 X 10"^ 

m ss 2.5 kg/m 

P ^ - 10^ N/m^ 

^ = 2 X 10"^ N s/mf 
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resulting in ^ 5 x 10 This produces a peak 

compliance well outside the range of interest of ^ , so 

both the grooved and ungrooved bearing will have a 

dynamic compliance smaller than or equal to the appropriate 

static value in the range 0 ^ ^ 1000. However, if 

the bearing axis is vertical and the gravitational load 

is not directly taken by the bearing, can take on much 

larger values and resonance peaks in the compliance 

curves will occur for ^ 1000, In such cases care 

must be taken in design work to avoid unacceptably large 

response displacements. For L/D = 3, when differs 

from 2.6 by more than (say) an order of magnitude, 

circumferential grooving would be desirable with a value 

of -f/D for the bearing segments chosen so as to make the 

peak resonance coincide with maximum damping. For ^ 

0.02 one should choose ^/D in the range //D > 0,2, which 

means that the static stiffness will no longer be 

optimised, although large dynamic responses would be 

avoided. For 0,02, -̂ /D should lie in the range 

t/D ^ 0.2 in which case both the static and dynamic 

compliance can be optimised to an acceptable degree. 

6 , 6 . 4 Stability 

For the same argument as used in section 6.4.3 the 

circumferentially grooved journal bearing should a1%rays 

be stable with respect to forced vibration at small 

amplitudes near zero eccentricity. 



156 

6,7 Step-jump method for dynamical analysis 

The foregoing dynamic results have only been valid 

for small eccentricities and small Vibration amplitudes, 

•which are of interest to the writer in their application 

to inertial navigation instruments. For other applications, 

where it might be necessary to investigate large 

eccentricity performance, perturbation theory becomes of 

little use and the step-jump method has certain advantages 

•which make it attractive in the context of the present 

work. Detailed results have not been obtained, as interest 

is particularly aimed at small eccentricity behaviour, but 

the method will be outlined so as to be useful if required 

in future study. Although it has not been used in the 

treatment of squeeze-film bearings, the step-jump method 

has been applied to stability investigations in self-

46 , 5 7 47 "5 7 
acting and externally-pressurised ' ' bearings, 

and to the vibration response of externally pressurised 

gas bearings^^ and oil and grease self-acting bearings^^. 

The step-jump procedure computes the response of the 

film to sudden jumps of the shaft in each of its degrees 

of freedom, and stores the information in the form of 

polynomial expansions. These time-dependent responses 

can then be used repeatedly in the equations of motion of 

the system as the dynamic parameters are varied, avoiding 

the time-consuming necessity for re-solving the governing 

equation for each case. This is the real advantage in the 

present work where an axially grooved bearing might 

require twenty solutions of the governing equation per 

single value for the total bearing force, because the 
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contribution from each of the bearing segments must be 

summed. This then has to be repeated for many time steps 

to obtain the film response information, so if there are 

twenty-five time steps the governing equation must be 

solved 500 times. If in addition, it is necessary to 

repeat this process again each time a parameter in the 

dynamic equations is varied, it is easy to see that the 

cost would be prohibitive. Using the step jump method 

the film response is stored once and for all, and there 

is no necessity to use the governing equation again while 

a family of dynamic results is obtained centred on the 

original equilibrium situation. 

In outline, one assumes that the bearing system has 

two degrees of translational freedom (in a reference 

direction, and at right angles to it). One could also 

include two angular degrees of freedom to give conical 

motion but, for simplicity, we will restrict ourselves to 

simple translation. The bearing is allowed to take up an 

equilibrium position at some eccentricity e^, and the 

steady state static force is computed from the initial 

distribution Q = = (PH)^, using the governing 

equation (4.43) and its boundary conditions (4.58) and 

(4.59) with ^ = 0 and G = 0. The bearing is then given 

an instantaneous step shaft displacement in one of its 

degrees of freedom so that under isothermal conditions 

Q = (PH) remains constant during the jump. In other words, 

just after the jump the value of Q is the same as for the 

original equilibrium condition, but the film thickness 

distribution H is now different. Consequently the film 



158 

pressure changes abruptly to a nejv value, as does the 

static force. Writing the governing equation in the form 

§Cct-) = 1 (6.187) 

where ^(Q) represents the left hand side of equation 

(4.43)» one can express the time derivative in backward 

difference form, 

^ - A t (6-188) 

where Q is evaluated at time t in terms of the value 

^init obtained at time (t-At). Using this new value for 

(PH) , the static force is computed and stored, while 

(PH) is stored in ready for the next time step. 

This is repeated over and again, so that a record is 

obtained of the transient behaviour of the static force 

until a new equilibrium situation is reached, ¥e thus 

have a response curve like that shown in Fig.50 where 

F..(t) is the force in the j direction arising from a 
X J 

displacement Sx- in the i direction, or alternatively i 

and j represent respectively the »cause' and 'effect' 

directions. Dimensionless responses are expressed in the 

form 

where Fj(0) is the original equilibrium force in the j 

direction, then these responses are stored conveniently in 

the form of the Laguerre polynomial expansion 
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^ L„ (5.190) 
tis O 

•where R^j(oo) is the response after equilibrium has once 

more been restored, and is an attenuation constant. 

The series is truncated at some value n = m^, such that 

by trial and error adjustment of o( and one obtains as 
XJ 

close a fit of the polynomial expansion to the response 

curve as is desired. This procedure is also carried out 

for a step jump in the other degree of freedom j so that 

we end up with a set of four responses, the ii, ij, ji, 

and jj responses, all stored in the same form as equation 

(6.190). 

Information is now stored about dimensionless film 

forces which will always apply for small deviations from 

the original equilibrium conditions, regardless of what 

other forces are affecting the shaft. 

6.7*1 Stability 

To investigate stability, the approach is to subject 

the bearing, initially in some static state of equilibrium, 

to some sudden small disturbance, and to observe the 

response. If the response decays the system is stable, 

but if it grows then an unstable situation is indicated. 

If M, is the normalised mass of the shaft, the 

equations of motion for the two degrees of freedom can be 

expressed as follows: 

M, 6x. = . . + ^F. . 
' 1 XX xj 

C C (6.191) 
M, dx. = d F . . + dF.. . 
' J J J 
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If the disturbance to each degree* of freedom is assumed 

to take the form 

Gx = 6x (6.192) 

then the system will be stable if the real part of p is 

negative. Using equation (6.192), and taking the Laplace 

transform of equation (6,190), one can typically write 

SF. = { W + r j S x . e ^ (6 ,193 ) 

where 

1 
pM 

0+ p.A<) ( 6 . 194 ) 

and 

oo 

- Rf«.)}L„wt) olt 
(6.195) 

Substituting this in equations (6.191) a solution exists 

if the following polynomial equation is satisfied 

X&y;^2) 

^ ^ = o (6,196) 

where the are coefficients arising from the dynamical 

equations. The roots of this equation can then be found 

numerically, and if the real part of any of the resulting 

^ 's is positive, the system will be unstable. The 

stability threshold is then determined by trying 
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different values of mass M, until the value N is found at 

the cross-over point between positive and negative values 

of the real part of ^ , From the results of the preceding 

sections, it is anticipated that it will be found that 

M = 00 . 
o 

6.7,2 Frequency response 

To investigate the vibration response it is assumed 

that a sinusoidal displacement stimulus is applied to the 

bearing housing, having non-dimensional components 

S x f = Sxf" e'"̂  

where T = V t is the normalised time and V is the angular 

frequency of the forcing stimulus. The amplitude and 

phase of this stimulus with respect to the reference 

direction are thus 

( 6 . 1 9 8 ) 

- m 

In response to this stimulus, the bearing shaft is assumed 

to have non-dimensional displacement amplitudes 

S x f = Sx ® 
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whose amplitude and phase relative to the reference 

direction are 

= jcsxt'T + 

(6.200) 
<S) 

i = tan " ' 

Sxi<" 

The film forces depend on 

CB) (n 
&x. - = Sxj 

i x j = Sxf ̂  - Sxj"^ = Sxj 

(6.201) 

so the equations of motion for the shaft can be written 

in the normalised form 

M.t'sSl C&X; + S x f ) = GF;, + iFj, 

(6.202) 

(&X; + 

dr"-

where is the non-dimensional mass and ^ is the 

vibration number previously defined. For convenience, 

the forces on the right-hand side are written in the 

typical form 

str-- = G x % D : " r - ' 

where the are coefficients involving the Laguerre 

coefficients of equation (6.193), and ^ is defined 

in equation (6.194). Using these, equations (6.202) can 

be written in the matrix form 



163 

z c-C®> 
D 6 x = - M A ^ S x (6,204) 

where 

D = 

£ y ) 

Sx 

^x. 

Sx® = 

Sxf 

Sxj 
ft) 

The solution of equation (6,204) is then simply 

^x = - Sx'^' (6,205) 

from which the component displacements of the shaft can 

be found using equation (6,201), and then substituted into 

equations (6,200), By varying the amplitude and phase of 

the stimulus, equations (6,198), and sweeping over the 

range 0 ^ ^ 1000, the weaknesses in the bearing can be 

discovered and minimised by appropriate use of grooving. 
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6.7*3 Experience of using the step-jump method 

Detailed stability and frequency response results 

have not as yet been obtained for squeeze-film bearings 

using the step-jump method, but an outline of some of the 

work done and problems met may be of use to others 

interested in using the method at some future date. 

47 S "5 ^7 

It was noticed that other workers used a 

fixed time increment A T in equation (6,l88) in obtaining 

a response curve similar to that shown in Fig,50 . This 

was considered wasteful in computer time, as most of the 

rapid changes in response occur early in the transient and 

for most of the decay the response changes very slowly. 

A varying time-step was thought more economical, the 

requirement being a small value for A T immediately after 

the step-jump,and then a progressively lengthening time 

increment as the response decays asymptotically to the new 

state of equilibrium. It must be ensured that the short 

initial time step is sufficiently long so as to allow the 

response force to take on a time averaged value with respect 

to the basic squeeze motion. A typical squeeze frequency 

is 20kHz, having a period of 50yjts. With a nominal 

vibration number ^ = 10 (which has no significance at this 

stage, merely serving to scale the time T), the initial 

time step chosen was A T = 0.01, being equivalent to a 

real period of 250jj.% , There is thus sufficient time for 

five cycles of the squeeze motion before the first response 

force is calculated, A square law increase in A T was then 

chosen such that 25 time steps covered the whole of the 

response decay to the asymptotic equilibrium condition. 
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A typical example is shown in Fig.«5l where a full set of 
* 

four responses is given for a smooth cylindrical squeeze-

film journal bearing with L/D = 1, e^ = 0.5, initially in 

the centred position (e^ = 0), subjected to step-jumps 

- Sxj = 0.08 in the reference direction and at 

right-angles to it. The vibration number has a nominal 

value ^ = 10, After 25 time increments At the responses 

are within 0.4% of their final equilibrium values. 

These responses were then approximated by a Laguerre 

polynomial expansion of the form given in equation (6.190) 

55 

with the help of a FORTRAN subroutine used by Dewar in 

his work on grease bearings. To make the responses 

compatible with Dewar's routine, a Lagrange interpolation 

routine was written to convert the irregularly spaced 25 

point curves into a set of curves with 100 equally spaced 

points. Considerable savings in computer time were found 

using this method rather than establishing the original 

response curves by means of the equally spaced time grid. 

To solve the polynomial equation (6.196) for the roots 

of yS in the stability investigation, a subroutine by 

B.E. Taylor of RAE (Farnborough) was used based on a 

procedure due to Muller^^. A considerable amount of 

difficulty was encountered in that the first couple of 

roots found by this routine tended to be spurious, and 

much time was wasted in attempting to find a reason for 

this annoying behaviour. A more sophisticated routine 

based on the Muller method appeared later in the form of a 

UNIVAC MATH-PACK, but this too produced spurious roots. 

Further investigation showed that Elrod and Glanfield had 
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also suffered from this problem when using the Taylor 

routine in their work on flexibly mounted externally-

47 

pressurised gas bearings . The net conclusion seems to 

be that both the Miiller procedures were working quite 

correctly, but that the spurious roots were caused by the 

initial conditions used in starting the programs. This has 
57 

yet to be tested, but it is worth noting that Scowen , in 
47 

his extension of Elrod and Glanfield's work , has achieved 

sensible results in spite of several spurious roots, but 

the basis he used for doing this is not at present known 

to this writer. 

• 6*8 Conical and hemispherical bearings 

The static and dynamic performance of conical and 

hemispherical bearings will not differ substantially from 

that of the flat circular thrust bearing in the axial 

direction, and from that of the cylindrical journal bearing 

in the radial direction, so it is not intended to dwell 

on them in detail, but merely to indicate how the governing 

equations can be modified to treat these geometries. 

6.8.1 Conical bearings 

If the cone semi-angle is P and the maximum radius is 

R, a convenient co-ordinate system is (r,9 ) where r is 

measured from the apex along a generator and 6 is the 

circumferential co-ordinate such that 0 = IT is the 

direction of the radial displacement of the shaft. 

Normalising these variables with respect to R, non-

dimensionalised co-ordinates ( ̂  = T /R, 6 ) can be used 

such that an element of non-dimensional area is ^ sin F jo. , 

The governing equation is then (4.43) with u^ = © , u^ = \ , 
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- X sinP, £- = 1, and the normalised film thickness 
1 ^ ' "2 

can be expressed as 

H i +- e, Sm r COS T (6,206) 

where, as usual, e^ is the excursion ratio, TT = cot' is the 

normalised time associated with the squeeze motion, and 

Hjo is the film thickness time-averaged with respect to 

'X » namely 

^04 ~ + Cos r cos 6 (efz + easily 

(6.207) 

Here, e^ and ê ^ are the normalised axial and radial 

steady displacements, while Sj. and are amplitudes 

of the forced responses in the axial and radial directions 

respectively associated with normalised times = Vj t 

and •= Vĵ t . One can treat axial and radial forced 

vibrations separately by setting either or Sp equal 

to zero. Equation (4,43) is solved subject to ambient 

boundary conditions (4.58) and (4,59) with a = and 

b = , where = r^/R and = r^/R for ambient 

boundaries at r = and r = r^. If slip flow is not 

present, one sets m = 0 in equations (4.43), (4,58) and 

(4,59). Notice that if P = /Z , the problem reduces 

to the annular flat thrust plate considered in section 

6.1, and if P — 0 we tend towards a cylindrical journal 

bearing, so the results of a conical bearing analysis 

would not be expected to produce any surprises. 

The film pressure, time averaged with respect to T , 

is 
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p ^ ^ : 
(6.208) 

from which the axial and radial bearing forces can be 

obtained: 

L 2JV 
c' 

cr _ _ _ sm 

Fs = Sm zr 
2-Tr 

iTT (6.209) 

(̂ P - 0 ̂  cos Q, oi@. (j ̂  , 

I * 

From these, the steady state static forces and steady-^ 

state dynamic forces can be separated out as desired. 

Circumferentially grooved conical bearings can be 

treated by summing together w conical segments defined 

by ambient boundaries at ^ ? V = ^ au , ^ ~ ^3 ' 

. . . , X - • Axial grooving can be dealt with by 

considering a bearing segment region ^ ^ Yi. , 

®k-i 4-i< - ^ in section 6.3) and changing the 

limits of the integrals in equations (6.209) before 

summing over all the w segments to obtain the total 

bearing forces. 

The static performance of the ungrooved conical 

17 

bearing was discussed by Pan as an illustration of his 

asymptotic theory, but the forced dynamic response has not 

been treated in the literature. 
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6.8,2 Hemispherical bearings 

An hemispherical bearing of radius R can be described 

by the co-ordinates ( ® ^ ), such that an element of 

area is K. , and there are ambient boundaries 

near the pole at , and ne&r the equator at 

cj> = cfî  , Normalising the spatial dimensions of the 

elemental area with respect to R, the normalised 

elemental area becomes sin .dQ .d<^ so that u^ = 0 , 

Ug = ^ = sin <f) , = 1 in the governing equation 

(4,43), The normalised film thickness is 

H = — = 4- e, cos^^ cos T 
c 

* f c, 1*5 y cos L (6.210) 

where n = 1 for a purely axial excursion, and n = 0 for 

a spherically symmetric excursion. The time averaged film 

thickness is 

= I +- Cos Csg +• Sj cos~T^^ 4- sln<f CjOS & 4- cos 1^^ 

( 6 , 2 1 1 ) 

where , 6% , have the same meaning as in 

section 6,8,1 , Equation (4,43) is solved subject to 

ambient boundary conditions (4,58) and (4,59) at a = 

and ^ - 4% * 

The time-averaged pressure in this case is 

P = 
JM: - cos"j4 ^6.2.12) 

leading to axial and radial bearing forces 
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P.' _ . 

4>X2-K 

= !" •= — — \ \ — 1 Sin 2.̂  (i& c/̂  

' " " i 1 

. , (6.213) 

F ' f M _ 
~ = 5 — = — _L \ \ _ I \ Sin^d COS 6 • d©. dci) . 

pynTT ^ J J ^ 
1 4^ o 

The static and dynamic force components can be separated 

out as desired. As in the conical bearing, circumferential 

or axial grooving can be treated by redefining the ambient 

boundaries and solving equation (4,43) in each segment. 

The force contributions from each segment, obtained from 

equations (6,213) with new integration limits, can then be 

summed to obtain the total bearing forces. 

The static and dynamic behaviour of the ungrooved 

hemispherical bearing were covered in references 19 and 22, 

24 

while Beck and Strodtman investigated the effect on 

static load capacity of varying the polar angle , 

6,8,3 Grooved bearings 

The presence of ambient line boundaries in both 

conical and hemispherical bearings should make no difference 

to the axial static force but will improve the radial 

static force because circumferential leakage flow will be 

reduced. The amount of improvement cannot be expected to 

be great, as circumferential leakage in the smooth bearing 

is inherently small anyway because of the relatively 

short axial length of conical and hemispherical bearings. 

The journal aspect of most of these bearings would have 
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an effective slenderness ratio of L/D ^ 1 when approximated 

by a cylindrical journal bearing of the same radial 

projected area, and we have shotm that the best improvement 

to be expected is about ±8% for L/D = 1 when e^ and e^ 

are small (see section 6,3*2), However, even this small 

amount of improvement would be valuable in difficult 

applications such as inertial navigation equipment where 

the bearings must be made as small, and consequently as 

efficient as possible. Enhanced static performance can be 

expected to be more pronounced in conical bearings where 

the cone semi-angle r* is small and ^̂  I , such 

as might be the case where the bearing is intended mainly 

to support radial loads. 

The main benefits to accrue from grooving conical and 

hemispherical bearings should be found in the response to 

external vibration. As in flat thrust and cylindrical 

journal bearings, the placing of extra ambient boundaries 

should, displace the peak dynamic ^damping' and the increase 

in dynamic stiffness to higher vibration numbers, so that 

the number of grooves can be chosen to 'tune' the bearing 

for minimum peak compliance depending on the mass being 

supported. 
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7 SUGGESTIONS FOR EXPERIMENTAL WORK 

Experimental confirmation is desirable for the 

results of the effect of grooving obtained in section 6; 

in particular there are three main points to be tested: 

(i) forced dynamic stiffness 

(11) static stiffness of journal bearings 

(ill) the effect of groove cross-sectional 

geometry. 

The static stiffness is affected by grooving only in 

the journal aspect of squeeze-film bearings, provided there 

is no loss in total bearing area because of the finite 

•width of the grooves, so a journal bearing would be needed 

to verify the results of sections 6,3 and 6,6 . For items 

(1) and (iii) above it would be sufficient to use flat 

thrust bearings. In this section an outline will be given 

uf two proposed experimental rigs, one involving a flat 

annular thrust bearing, and the other a cylindrical 

journal bearing, 

7*1 Thrust bearing rig 

In section 6,1 we showed that the dynamic stiffness 

and damping in an annular segmented thrust bearing is 

strongly dependent on the number of segments w for a 

given value of the vibration number (see Fig,21), while 

the static stiffness remains independent of w provided 

the segments are separated by ambient line boundaries. 

A rig designed to confirm this is shown in Figs.52 - 56 . 

Three pillars , mounted on a heavy base , 

support a piezoelectric sandwich transducer assembly 
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by its centre electrode via s-tiff flexures and 

the lugs (see Fig.53)* The centre electrode carries 

high voltage to the transducer from a solder tag , 

and is insulated from the rest of the apparatus by sheet 

mica strips and polythene tubing . The transducer 

itself consists of two steel cylindrical blocks (l^ 

sandwiching two piezoelectric ceramic rings between 

them and the centre electrode. A high tensile bolt holds 

the sandwich together, being insulated from the centre 

electrode by polythene (or PTFE or polystyrene) tubing . 

Good electrical and mechanical continuity is obtained by 

placing sheets of metal gauze between the piezoelectric 

ceramic rings and the metal blocks. At the top and bottom 

of the transducer stack, thin metal shim diaphragms (2^ 

are used to ensure that movements of the transducer are 

radially symmetric and that the dominant motion is in the 

axial direction when the central flexure is displaced. 

These shims arc fixed to the upper transducer block by 

bolts passing through the lower bearing plate (see 

Fig.54), and to the lower transducer block by bolts passing 

through a ring . The diaphragms are clamped at their 

outer ends by similar rings to triangular plates 

carried on the main pillars The main framework 

constitutes the earthed electrode of the transducer, and 

the necessary electrical connection is made via the solder 

tag . The piezoelectric rings are poled in such 

a way that an A.C. voltage applied across them through 

solder tags ^7^ and causes the transducer to vibrate 

axially with a node occuring at the centre electrode. 

Maximum axial movement occurs at the surface of the bearing 
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plate and at the lower end of the bottom transducer 

block . The system has a reasonably high Q ( 10), 

so it is -worth driving the transducer at its resonance 

frequency ( 25 kHz), and this is easily accomplished by 

means of a self-tuning oscillator which locks on to the 

condition of minimum impedance. Such a transducer can 

handle tens of watts of power, and should be quite capable 

of providing an excursion amplitude of up to 10 yum. 

Each pillar (l^ carries a block at its top which 

supports one of the feet of the probe tripod . For 

clarity, in Fig,32 only the basic tripod framework is 

shotvTi, although it really carries the upper bearing 

assembly and various probes as shoim in Figs.55 and 56 . 

The tripod feet (2^ can be raised and lowered to adjust 

the bearing gap by means of tapered wedges (2^ driven by 

fine pitched screws against the clamping bolts (2^ . 

A taper of 0.5° would allow a foot to be adjusted in height 

by about 9 for each millimetre of horizontal travel of 

its wedge, and this would result in a difference in bearing 

gap of 4jj.m across the diameter of the bearing. By this 

means the bearing gap can be made both parallel and of any 

desired magnitude. After adjustment the screws can 

be clamped by means of bolts nipping the half-split 

tops of the blocks (l^ . 

In Fig.56, the top plate of the probe tripod (2^ is seen 

to carry the upper bearing plate (2^ mounted beneath a 

piezoelectric force transducer (ENDEVCO model 2103-100). 

A special capacitance probe is used to monitor movements of 

the upper bearing plate relative to the top plate , and 
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an optical probe @ (MTI FOTONIC SENSOR) measures the 

displacement of the lower bearing surface relative to the 

top plate (2^ . The holder (2^ for the optical probe is 

a modified pin vice (ECLIPSE model 121) cemented into a 

steel cylinder (3^ . Both probes (2^ and (2^ can be 

adjusted vertically in position by means of knurled nuts 

, and can be clamped by means of set screws (3^ in the 

bridging piece (3^ . Electrical leads to the probes 

are taken out through the top of the apparatus. The 

capacitance probe (2^ is of special design in that the 

probe tip has to be eccentric to the main body so as to be 

situated sufficiently close to the side of the force 

transducer to 'see' the top (or back) face of the upper 

bearing plate. The probe, used with standard WAYNE KERR 

equipment, is designed to have a full scale range of about 

iSjxm, and the probe tip diameter is about 2mm, 

To set the apparatus up, the probe tripod is slackened 

off so that the two bearing surfaces are resting against 

each other. The probe tripod is then raised until the 

desired nominal clearance is indicated by the optical 

probe (biassed so as to show static displacements rather 

than purely vibratory amplitudes). The tripod has then to 

be finely adjusted so as to give a parallel gap. To do 

this one can use the auto-collimation technique of Salbu^ 

in which light from an auto-collimator is compared with a 

direct beam from the auto-collimator. If the gap is 

parallel, the two images will be superimposed, but if the 

gap is tapered then the two images will be separated by an 

amount proportional to the tilt error and the number of 
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repeated reflections. The tripod is adjusted until the 

two images coincide, end then the auto-collimator is 

moved through 90^ and the adjustment repeated so as to 

achieve proper alignment of the bearing surfaces. 

The basic squeeze motion is obtained by exciting the 

sandwich transducer at its resonance frequency using a 

self-tuning oscillator to lock on to the resonance. The 

amplitude of the squeeze motion can be kept constant by 

passing the signal from the optical probe through a filter, 

so that only the squeeze motion is sampled, and using it 

in a feedback circuit to control the output of the self-

tuning oscillator. The static bearing force is then 

measured directly with the force transducer (SQ . 

To obtain data on the dynamic behaviour of the bearing 

films, the whole apparatus is mounted on an electro-

mechanical vibrator table (DERRITRON VP85 driven by 

amplifier 1500 V/T) which is then excited at some frequency 

small compared with that of the squeeze motion. Because 

of its inertia the sandwich transducer vibrates, through 

its flexure and diaphragms , relative to the probe 

tripod, so the squeeze motion of the bearing surface is 

modulated at the lower frequency. The amplitude of this 

modulating displacement relative to the top plate of the 

probe tripod is measured by the optical probe. Any motion 

of the upper bearing surface relative to the top plate is 

measured by the capacitance probe , so the true bearing 

gap can be monitored at all times. 

Because the probe tripod is also being vibrated there 
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is the danger that the inertia of the upper bearing 

plate will result in a contribution to the force being 

registered by the force transducer. A small accelerometer 

(ENDEVCO 2332) can be mounted on the tripod top plate to 

measure the acceleration at the top plate, while the 

output from the capacitance probe can be used to obtain 

the correction "to this acceleration for the upper bearing 

plate arising from its motion relative to the top plate. 

Knowing the bearing plate mass, its inertial force can be 

calculated and separated from the film force. 

The combination of the force transducer (2^ , the 

capacitance probe (2^ and the optical probe (28) permits 

the excursion ratio e^, vibration amplitude S , nominal 

gap C, amplitude and phase of the dynamic film force to 

be obtained, from which the in-phase and quadrature 

components S ̂  and of the dynamic stiffness can be 

separated and plotted as a function of the vibration 

number ^ , similar to Fig,21 . 

The bearing surfaces themselves should be flat to 

within one light fringe, so care has to be taken during 

assembly. The lower bearing plate should be bolted down 

to the top of the sandwich transducer and lapped after-

wards to ensure that it remains flat, while the upper 

bearing plate should have the grooves machined in and be 

securely fixed to the force transducer before it is finally 

lapped. Probably the best method for manufacturing narrow 

deep grooves in patterns like those of Fig,20 would be to 

use a spark erosion technique. 

To determine the effect of groove cross-section one 
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could use an tipper bearing plate of the construction 

shown in Fig.57 . There are two segments and 

cemented to a base plate which screws into the bottom 

of the force transducer. The bearing face is lapped flat 

after the attachment to the force transducer to avoid 

distortion of the bearing gap. A set of these bearing 

plates could be made with different combinations of groove 

width and depth,together with an ungrooved bearing, and the 

above experiment performed for a few random values of the 

vibration number ^ to see how small the grooves can be 

made without affecting the dynamic force and to see whether 

or not grooves have to be physically vented to the ambient. 

Such a provision could b@ accommodated quite simply by 

machining a vent groove in the top surfaces of the bearing 

segments before they are cemented to the plate for 

attachment to the forco transducer. 

It might in practice be difficult to achieve high values 

of ^ because the combination of the large sandwich 

transducer mass and its flexure will almost certainly 

result in a mechanical resonance well below the top end of 

the ^ - spectrum of interest when the experiment is 

performed at atmospheric pressure. The effective vibration 

number can be increased most rapidly by decreasing the 

nom3:nal clearance C, or by decreasing the ambient pressure 

^a' former approach can be used to a limited extent, 

until the gap and vibratory amplitudes become too small to 

place reliance on accuracy of measurement. Decreasing the 

ambient pressure requires the use of a sealed cover over 

the apparatus when mounted on the vibrator, while at the 

same time allowing access for electrical leads to the 
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transducer and probes. A further approach is to use a 

gas of high viscosity, which again requires the use of a 

sealed cover. However, a sealed cover is desirable in any 

case because squeeze-film bearings are very susceptable to 

condensation if the ambient humidity is appreciable, and 

the best way to avoid this problem is to run the bearing 

in a dry gas. So the answer seems to be to use a dry gas 

of high viscosity, such as neon, in a sealed container 

which can be connected to a vacuum pump so as to reduce 

the pressure to obtain data at high vibration numbers. 

Care should be taken to avoid introducing slip-flow effects 

when reducing the nominal gap C or the ambient pressure p 

(see section 5). 

7.2 Cylindrical journal bearing rig 

As a grooved journal bearing behaves locally like a 

flat thrust bearing, the thrust bearing rig results for 

dynamic stiffness should provide sufficient verification 

of the theory for journal bearings as well. A separate 

journal bearing study is required only for the static 

stiffness, to show that circumferential leakage flow in 

the film is removed by the presence of a sufficient 

number of grooves. 

Such a rig should, as far as possible, cover the whole 

range of permissible eccentricities e^ and excursion 

ratios e^, a limitation being set by the criterion 

to allow for manufacturing tolerances which might cause 
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touchdown* This criterion is indicated by the limiting 

lines superimposed on the curves of Fig.27 . It is 

desirable to compare directly ungrooved and grooved bearings 

operating under similar conditions, rather than to simply 

compare the grooved bearing performance with theory. As 

the effect of grooving is most apparent for larger values 

of L/D, an experiment should be designed taking this into 

account so that, for instance, if a bearing with L/D = 3 is 

chosen an improvement in bearing force and stiffness of 

67% should be observed in the grooved bearing compared 

with the same one without grooves. There should be at 

least 20 grooves, each as narrow as possible, in the case 

of axial grooving, while for circumferential grooving a 

density of at least 5 segments per unit value of L/D should 

be chosen, resulting in grooves for L/D = 3 (bearing in 

mind the comments of section 3*5 and the results of the 

thrust bearing tests on groove cross-section of section 7.I). 

The fact that wo are interested in relatively large 

L/D bearings poses quite a practical problem in that, as 

ive have indicated before, the piezoelectric ceramic tubes 

commonly used to drive squeeze-film journal bearings 

exhibit markedly non-uniform excursion amplitudes which, 

apart from being inefficient from the edge pressurising 

point of view, make experimental comparison with theory 

difficult unless one builds a model of non-uniform 

excursion into the equations. Because of this, and because 

of the practical importance in connection with a squeeze-

film accelerometer design being considered at RAE (Farn-

borough) it is worth attempting to design a transducer 

assembly which approximates a uniform excursion profile. 
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and which can be adapted relatively easily to provide any 

desired value of L/D, 

The following idea arose from considering ways of 

constructing a circumferentially grooved bearing. Instead 

of using a single long piezoelectric tube to generate the 

squeeze motion and then place circumferential grooves on 

the non-vibrating surface one could make each segment a 

squeeze-film bearing in its otm right by driving it with 

its own separate piezoelectric element. A schematic of the 

construction of such a transducer module is indicated in 

Fig,58, and consists of a short piezoelectric ceramic tube 

poled radially and held by shrinlc fits between inner and 

outer metal sleeves, which constitute the electrodes. 

When an alternating current is passed through the device, 

it vibrates in a radial mode, and because of the relatively 

small L/D ratio the two dimensional stress effects, which 

can cause considerable non-uniformity in the vibration 

amplitude profile for large values of L/D, are significantly 

reduced. So if a composite bearing transducer is built up 

by stacking several of these modules together on a shaft, 

the overall excursion profile will be approximately uniform 

except for a ripple having a period coinciding with the 

segment length. Such a bearing transducer is compared • 

schematically with a single unsegmented transducer in 

Fig,59 • In fact such a transducer already has its 

circumferential grooves built in to it if a small axial 

space is left between adjacent segments. 
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However, this would present an ideal series of dirt 

traps which could cause problems in operation, so the 

following modification is proposed. 

Some copper is plated on the ends of the metal sleeves so 

that when the segments are stacked together under a slight 

axial compression the copper is compressed between the 

adjacent segments, sealing the gap and providing the 

required electrical connections between adjacent sleeves. 

The whole assembly is then finished by grinding the bearing 

surface, and if necessary the copper strips are recessed 

slightly to provide a circumferential grooving or, to a 

lesser extent, to prevent excessive wear of the soft 

copper due to rubbing when the bearing is stopped and 

started. If sufficient copper is placcd between adjaccnt 

segments, it should act as a relatively low compliance 

spring material to allow axial vibration of the segments 

resulting from a non-zero Poisson's ratio to take place 

without excessively damping the motion. 

Such an assembly is highly speculative at present, 

but a single segment has been constructed at RAE (Farn-

borough) and supported a load, though the operating 

frequency in this case was very high (/sviyo kHz) owing 

to the small dimensions required in an accelerometer 

application. 

As it stands, the transducer module shown in Fig,58 

will require quite an appreciable voltage to generate an 

acceptably large electric field to produce the required 

vibratory amplitude. In instrument applications, it is 

desirable to work in terms of relatively low voltages. 
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and the following idea is an attempt to achieve large 

electric fields with low voltages. In a visit to AERE 

(Harwell), some piezoelectric ceramic material was seen 

prepared in the form of a thin tape for use in the 

manufacture of monolithic capacitors. Tv̂ o such tapes 

could be taken, and each have platinum inlt screen-printed 

on the upper surface in the offset manner indicated in 

Fig.60 . If the two tapes were then placed together and 

wound up in the form of a spiral, after firing we would 

have a laminated ring of piezoelectric material which 

could be machined on the inside and outside diameters 

with only one platinum electrode being cut into in each 

case because of the offset built in during the screen 

printing process. The ring could then be plated on the 

trued-up outside and inside diameters and shrunk into the 

metal sleeves as before. The assembly would then be 

poled so as to finally take on the form shoivn in Fig.6l . 

Because of the small lamination thickness ( - ^ 0 . 2 mm) 

it should be possible to achieve high electric field 

strengths using relatively low voltages and this makes 

the idea quite attractive for accelerometer applications. 

A rig for investigating the static stiffness of a 

journal bearing based on a composite transducer system of 

this sort is shown in Figs.62-64 . The transducer (3^ is 

assembled on a shaft supported in the pillow blocks 

which form part of the massively built frame . The 

clamps (4^ which secure the shaft to the base are 

integral with a beam passing above the bearing sleeve 

and carrying a WAYNE KERR capacitance probe (4^ 

directed at the rim of a flange (4^ forming part of the 
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bearing sleeve. At the front of the rig an optical 

probe @ (FOTONIC SENSOR), as used in the thrust 

bearing rig of section 7.1, is directed through a small. 

hole in the bearing sleeve flange so as to monitor the 

squeeze motion of the bearing shaft. Provided no component 

of the Earth's gravitational field g acts in the direction 

of the optical probe, the capacitance probe gives all the 

necessary information about the eccentricity of the bearing 

sleeve relative to the shaft, while the optical probe 

enables the excursion ratio to be determined. 

TJie rig is mounted on the face plate of an indexing 

head whose shaft is horizontal so that different static 

loads can be applied to the bearing by varying the component 

of g acting on the supported mass. By making the bearing 

sleeve sufficiently massive the eccentricity can be varied 

over the full range 0 e^ ^ 1 . The practical range of 

e^ is limited by the amount of power available to the 

transducer, though by careful tuning a reasonably large 

excursion ratio should be possible. 

The bearing sleeve can be prevented from sliding 

along the shaft by means of a system of three threads 

extending from the central flange to a metal spider 

at each end of the shaft as shown in Fig,63 . Each of 

these spiders is pivoted on a ball located in the 

hexagonal socket in the head of a cap screw fixed to 

the end of the shaft. By adjusting this cap screw, the 

tension in the threads can be made just sufficient to hold 

the bearing sleeve in a central position to suit the probes. 
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Again, because of the danger of condensation in the 

bearing gap associated with the humidity of laboratory 

air, it might be desirable to enclose the rig in a sealed 

container so that the bearing could be run in a dry gas. 



186 

8. CONCLUDING DISCUSSION 

We have shown by simplified analyses (section 3) that 

the static performance of the journal aspect of squeeze-

film gas bearings can be improved by incorporatimg extra 

ambient boundaries to reduce the deleterious effect of 

circumferential leakage. This simple approach has been 

strengthened by the more rigorous treatment of section 6 

•which shows that quite moderate numbers of grooves are 

required to restore the static force to within 1% of the 

maximum which would be attained in the complete absence of 

circumferential leakage. In particular, for circum-

ferential grooving a density of five bearing segments 

per unit value of L/D is sufficient, while for axial 

grooving there is no virtue in exceeding twenty grooves. 

The reduction in bearing force arising from the finite 

width of the grooves is directly proportional to the 

total bearing area lost because of the grooves. 

The film pressure has been sho-sm to consist of two 

components contributing to the static force: the Boyle's 

Law interior contribution, and the edge-pressurising 

effect.; of which the latter exceeds the former by a 

factor of 1,5 for small values of e^ and e^. In grooved 

bearings full advantage is taken of the edge-pressurising 

term, but in ungrooved bearings circumferential leakage 

flow within the film tends to prevent the edge pressure 

from penetrating deep into the interior to augment the 

basic Boyle's Law behaviour. This is especially true for 

long cylindrical bearings where the edge pressure has 

virtually no effect at all on the interior behaviour. 
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The improvement in static force to be expected from 

grooving in cylindrical bearings is about 30% for L/D = 2, 

50/0 for L/D = 4, 6o% for L/D = 6 when e^ = 0.5 for small 

eccentricities. The improvement is greatest for small 

2 _ s 
values of e^ and e^. Conical and hemispherical bearings 

•will not benefit quite so much from grooving as far as 

static performance is concerned because in general the 

effective L/D cannot be expected to exceed unity, in which 

case the best improvement will be of the order of 20% at 

small eccentricities and excursion ratios. 

The forced dynamic behaviour was shown in section 6 to 

be considerably affected by the introduction of extra 

ambient boundaries. In the case of the flat thrust bearings 

increasing the number of segments displaced the peak 

damping towards the higher end of the \ -spectrum, while 

similarly displacing the onset of increased dynamic 

stiffness. Investigation of the vibration response 

Indicated that very large resonance compliance peaks can 

occur if the supported mass is insufficiently clo$e to a 

value which results in a resonance coinciding with 

maximum film damping. For a given supported mass, the 

number of grooves can be chosen so as to minimise the peak 

compliance to a value about twice that of the static 

compliance. The latter, incidentally, is unaffected by 

the number of grooves provided the total bearing area 

remains the same. Typical supported masses result in a 

resonance condition near the extreme top end of the 'y-

spectrum of interest, in which case 8 bearing segments 

would minimise the peak compliance while for most values of 

^ the dynamic compliance would not differ substantially 
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from the static value. The reson-ance frequency estimated 

from the supported mass and static stiffness can be 

too low by as much as 30% for the tinsrooved thrust 

bearing, with the discrepancy reducing as grooves are 

added. 

Forced dynamic performance in journal bearings follows 

much the same pattern, with the changes in dynamic 

stiffness and 'damping' being shifted towards higher values 

of Y 5S the number of grooves increases in both 

circumferentially and axially grooved bearings. On a 

logarithmic Y - scale the effect of the number of grooves 

w is most sensitive for moderate values of \ in axially 

grooved bearings, while for circumferential grooves w 

is most sensitive for large values of \ , It follows 

that axial grooving would be the better choice for a 

bearing operating with its axis vertical and supporting 

a large mass, as it would be relatively easy to choose w 

so as to arrange for maximum film damping to coincide with 

the resonance condition. For horizontally mounted bearings 

supporting small masses circumferential grooving might be 

more appropriate as any resonance will tend to occur for 

large values of ^ where a small change in the segment 

length could be used to minimise the peak compliance. 

In between these two choices lies an area where either 

circumferential or axial grooving could be used, and the 

final decision probably ha.'* to bo made on the basis of 

relative ease of manufacture. 

Conical and hemispherical bearings can be expected to 

behave in substantially the same way as comparatively 

short journal bearings. 
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In the absence of results from the thrust bearing 

experiment proposed in section 7» it is difficult to make 

definite statements about the size of the grooves to be. 

used other, than that they should be deep and narrow. So as 

not to lose more than 1% of the bearing area, a 

circumferentially grooved journal bearing with i/T) = 0.2 

would require a groove width ^ 0.002D, which might be 

difficult in small bearings. In an axially grooved 

bearing with 20 grooves, the groove width should be 

^ O.OOlnH , which is roughly the same value as for 

circumferential grooves. However, using spark erosion 

techniques it is possible to machine very narrow slots 

provided they are not required to be very deep. In our 

case an estimate of about one hundred times the nominal 

film thickness was obtained for the groove depth in section 

3,5*1 J and this results in a typical groove-depth-to-

width ratio of at least four, which is quite within the 

capabilities of spark erosion methods. 

Segmentation of the bearing surface should lead to 

marked improvements in performance in situations 

involving non-uniform excursion, and this will apply to 

all existing designs of cylindrical squeeze-film bearings. 

To ease future design work it would be desirable if 

the dynamic stiffness and 'damping' results of the numerical 

solutions for the various bearing types could be approxi-

mated by simple formulae using multiple regression 

techniques, such as were applied to self-acting thrust 

) gene] 

,6l, 62 

bearings by Brockwell, Ettles and Stokes^^, More general 

treatments appear in many textbooks on statistics 
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and several algorithms have been written for use with 

computers. It appears that provided one avoids regions 

of curves where points of inflection occur it should be 

possible to fit a relatively simple formula to cover 

limited ranges of the various parameters of interest. 

Larger ranges might be covered by successively applying 

the technique to different regions of the curves. 

Although many of the performance curves are for the 

realistic case e^ - 0.5 it should be mentioned that 

considerable variations will occur if e^ is markedly 

different from this value. Changes will be non-linear 

with e^, but the overall behaviour given in the diagrams 

should be the same qualitatively, although the ordinate 

scale will need adjustment. 

Unfortunately, for various reasons,it was not found 

possible to undertake the experimental work sketched in 

section 7, although a fair amount of preliminary design 

study was carried out. Patent action has been taken on 

the laminated piezoelectric transducer concept. 
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Appendix A 

MATRIX SOLUTION OP FIRST ORDER PERTURBATION EQUATION 

IN SECTION 6.1 

In section 6.1 we wish to solve the system of 

simultaneous equations 

1 ofa 
+ K^v 

• 

3?-- + Trdr 
+ K^v = o 

(A.l) 

1 dv 
r A ? 

- KiU. •s O 

u = 2 and V = 0 at r = r and r = r^. The interval 

of interest is r r ^ r^, so defining 

(A.2) 

where ra is an integer, the interval can be covered by the 

•grid points' , where 

= f, + (j-')AR j - 1,1, (A.3) 

The following finite difference approximations can thus 

be made for grid points at j = 2,3,..., m-l: 

u ^ = u-j (A. 4) 

vCr = Vj (A.5) 

<ju 
cif 

•citv 

dr 

j'u 

r= •?. 
2&R 

(Vj+, -

cir' 

dir'̂  f=?. 

= "j-' ) 

= ^ - Zvj +Vj.,). 

(A.6) 

(A.7) 

(A.8) 

(A.9) 
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The boundary conditions are given by 

a(r = = = Z 

V (r = = v(*' = ~ o . 
(A. 10) 

Using these approximations, at a regular field point 

j = 2,3,..., m-1 equations (A.l) can be expressed in the 

finite difference form 

- 2uj + u-j-.) (uj + , -

ZiRt ZSjZiR 

- Zvj + Vj-.) = 
(A.11) 

A R 
=. o 

Equations (A.ll), together with boundary conditions (A.10), 

are then embraced by the simultaneous matrix equations 

M u +• K v = & 

M v - K a = - a 
(A. 12) 

where M is the (m x m) tri-diagonal matrix 

M 

1 O 

(AR^ 2|^AR) (AR^ + 

\ \ 
\ 

\ 
\ 

\ 
\ 

\ \ 
\ 

\ \ 
\ \ 

o I 
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K is the (tn x m) diagonal matrix 

K = 

K, 

k. 

and u, V , a, are the (m x l) column vectors 

u = 

u. 

u. 

u„ 

V = 

V. m 

a = 

2 

o 

0 

1 

The required solutions of equations (A.12) are then 

U = [M + K M - ' K r ' [ K M " ' + I ] a 

Y = M - ' L K U - a ] 

(A.13) 
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Appendix B 

MATRIX SOLUTION OF EQUATION (6.6?) 

In section 6,2 a solution is required for the 

simultaneous second-order ordinary differential equations 

(6.67), 

4- KjV +• 2Qc 6 « o 

,a (B.l) 
D V ^ 
^ - Kju s o 

subject to the boundary conditions (6.68) at 6 = 

and e = 8%-* » 

U - Z COS © 

(B.2) 
V s: O 

where 

K. = 
^ (B.3) 

The following solution method is similar to that given in 

Appendix A for the flat annular thrust bearing. 

The region of interest ®k-i+o<^ ® ̂  ®k-»< is partitioned 

into (m - l) equal intervals of length 

(B.4) 

(m an integer), so that the value of 6 at the j'th point 

xs 

Gj = J + Dt ~0 AO I a • • • > w . 
(B,5) 
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Defining X = , the following finite difference 

approximations can then be made; 

UCGJ) = aj 

= Vj 

d\ 

die'-

d V 

= - 2uj + Uj_,).X (B.6) 
8=6; 

d6' 
6; 

- (Vĵ , - 2Vj + Vj_,).X 

Using these, at a regular field point j = 2,3,..., m-1, 

equations (B.l) can be expressed in the finite difference 

form 

X Ĉ j+-i - 2uj + Uj_/) + + ZQg Cos Gj = O 

X.(v- + j - 2Vj 4-Vj_,) - K)Uj = O 

while boundary conditions (B.2) become 

Li, = 2 cos 6, 

Wrv» = 2 cos 

V, = = O . 

This system of m finite difference equations is more 

concisely expressed in the matrix form 

M u + k V =s a 

M V — K u. - k 

(B.7) 

(B.8) 

(B.9) 

where M and K are (m x m) matrices, and u, v, a, b are 

(m X l) column vectors, 



M 

-ZX X 
X -2X X 

\ \ \ 
\ \ \ 
\ \ \ 

\ \ ^ 

\ \ \ 

\ \ \ 

X -ZX X 
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K 

K, 

K, 

\ 

\ 

\ 

\ 

\ 

a = 

u-

a„ 

V. 

V, 

V = a 

2 cos 6, 

- Z(^ cos Gj 

•2<5„cos9a 

-26?ocosê ., 
2 cos G_ 

• 2 cos 0, 

O 

O 

—2 cos 0 
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Straightforward manipulation of equations (B.9) provides 

the required solutions 

a = [M + KM-'K]"' [ & - KM-'k] 

.r . (B.io) 
y = M " [ K a + b] 

•which can be evaluated numerically. 
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Appendix C 

MATRIX SOLUTION OF EQUATION (6.113) 

A second order two-dimensional partial differential. 

equation with real coefficients can be expressed in the 

general finite difference system of equations (6.113), 

namely 

^ = / y (c.l) 

where i = l,2,...,m and j = l,2,...m. 

The j'th column of these equations can be collected 

together in the matrix equation 

Aj^j + - fi (C.2) 

where the A., B ., C. are (m x m) matrices, 

\ \ 

\ \ \ 
\ \ 

\ \ 

\ 

\ 

\ 
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^'j 

\ 

Cj = 

I 

and the g. and f. are (m x l) column vectors 

1.' 

r-i 

V" 

A j 
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The elements and in A^ take account of the 

possibility of a cyclic boundary condition in the 

i-direction, such as might occur in ungrooved cylindrical 

bearings if the computation were taken completely around 

the bearing in the 9 -direction. In the context of the 

present work, = 0 . 

The system of equations (C.2) then reduce to 

M •v = i (C.3) 

where M is an (n x n) matrix, and g and f are (n x l) 

column vectors: 

H 

A. B. 

Cz 5^ 

C3 Aj E>3 

\ 
\ \ 
\ \ 

\ \ \ 

\ \ \ 

\ 
\ 

\ 
\ 
\ 

\ 

\ 
\ \ 
\ 

n-l 

1 

J, 
% 

% 

i 

Expressing M as the product of a lower triangular matrix 

L with an upper triangular matrix U, where 

L ^ 

I 

Lz 1 

L, 1 

\ 
\ 

\ \ 
\ \ 

\ \ 
\ \ 

\ \ 
\ \ 

\ \ 

Ln I 

U = 

U, D, 

\ 
\ 
\ \ 

\ \ 

\ \ 

\ \ 

\ 

\ 
\ 
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and I is the unit (m x m) matrix," it is found that 

U, = A, 

L - = C j Uj_, 

Uj - Aj — LjBj-i 

Dj = — ^ ^ > 

n 

' . ̂  M — I 

(C.4) 

Equation (C.3) can now be expressed in the form 

M cy = L U = L r - f (C.5) 

where 

Uq. » r (C.6) 

and r is an (n X l) column vector 

r = 

& 

r* 

Equation (C.6) is first solved for r, finding that 

r. = £ 
Tj = fi - Lj rj_, j= 2,3, 

(C.7) 
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and this is used in equation (C.6) to obtain the required 

solution g: 

% -

(C.8) 

%-i~ (Cj_, - n,n-i, • • .,Z . 

This procedure is readily programmed as a FORTRAN 

subroutine and can be used for any problem expressible in 

the form of equation (C.l). Notice that matrix inversion 

occurs n times on each occasion the routine is traversed, 

so m should be made as small as possible in order to keep 

computing times down to a reasonable level, as the time 

3 
involved is proportional to n x m , 
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Appendix D 

MATRIX SOLUTION OF EQUATIONS (6.14?) 

In section 6.5,1 , a solution = u + iv is required 

satisfying the simultaneous equations (6,147) 

ol"u 
^ G 

^ - V + K3 u - = o 

subject to boundary conditions (6,l48), 

u = 3(14-le^) 

V =: O 

(D.l) 

E •=^ O OJnJ Z = 
(D.2) 

The solution procedure discussed here is similar to that 

described in Appendix A for the thrust bearing, and to that 

in Appendix B for the axially grooved journal bearing. 

Since, because of symmetry, we only need consider the 

interval 0 Z 2^/2 , the boundary conditions (D.2) 

can be modified so as to become 

U = 3 ̂ 1 4-
at "E = o (D.3) 

V- -=: O 

"̂V" f- zz 7 _— _ — — ~ O At H = _£i 
d% clz 2. 

where the condition (D.4) represents the mid-plane 

situation 

(D.4) 

(D.5) 
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in section 6.5.1 . Note that this latter condition is 

satisfied by the solutions and already obtained. 

We proceed by partitioning the interval 0 ̂  Z 2^/2 

into (m - l) equal intervals of length 

A z = — ^ 
l) (D.6) 

(m an integer) such that the value of z at the j'th 

point is 

— 0 • 
(D.7) 

The following finite difference approximations are made: 

= U; 

=: V: 

c(u 

dz 

dv 

d% 

2A% 
(uj + i - uj-i) 

At 

A?" 

.(s+i ~ 

- Zv. 4- V;.,) 

(D.8) 

Defining X, = "1 ~ ' equations (D.l) can be written in the 

following finite difference form at a regular field point 
j — ® > 

- uj — KjVj 4- = o 

Cv;,+t -2y^. -Vj + = o . (D.9) 
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The ambient boundary conditions (D.3) become 

U, =: 3 ^ e*) 

V , - O 
(D.IO) 

and the mid-plane condition (D.4) is 

I 
ZAz^ »n + 

(D.ll) 

These latter equations are used to eliminate and 

( which lie outside the range of the grid) from 

equations (D,9) when at the mid-plane (j = m). 

This system of m finite difference equations is 

collected together in the matrix form 

M u — — g. 

M V 4- Ku. =. b 
(D.12) 

where, 

X. 4- 2.x,") . 
(D.13) 

M and K are (m x m) matrices, u and v are (m x l) column 

vectors, 

Xz X, 

X. x 

M 

\ \ \ 
\ \ \ 

\ ^ 

\ 
\ 

\ 

\ 

\ 
\ 

\ 
\ 

\ 
\ \ \ s 
\ 

\ 
\ 

X, X, 
2x, x ^ 
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K, 
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K 
\ 

K, 

While a and b are (m x l) column vectors 

a = 

-23" 

s O + ie,'-) 

'^S¥ 

The required solutions are then 

u = [m + KK-'k]' [a + KM''b] 

Y - M'' [ b - K u ] 
(D.l4) 

which can be evaluated numerically. By considering half 

the bearing length, instead of the whole length, computer 

storage and central processor time are saved because 

fewer grid points are needed to achieve the same accuracy. 
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LIST OF SYMBOCS 

a Boundary value of ; velocity of sound, 

a^, a^, Defined in equations (3.84) to (3*87)» 

a Ambient boundary value of u^. 

a (m X l) column vector. 

A Area; parameter used in the boundary 

condition (5.5); (m x m) matrix in 

equation (6,99). 

Aj (ni X m) tri-diagonal matrix. 

•S Â "̂  Laguerre polynomial of degree n associated 

with F. . . 
xj 

A^, Ag Parameters in the boundary conditions 

(4.58) and (4.59). 

b Boundary value of x . 

b Ambient boundary value of u^ . 

b (m X l) column vcctor. 

n Breadth of rectangular thrust bearing, 

section 2,1 . 

Bj (m X m) diagonal matrix. 

C Reference value of the film thickness. 

Cj (ni X m) diagonal matrix. 

C^, Cg, C^, Integration constants. 

Coefficients of the polynomial expansion 

(6,196), 

D Diameter, D = 2R, 

D j Elements of the matrix U. 

D^J Coefficients in equation (6.203), n 

D Matrix in equation (6,204), 

Cjj, Normalised radial and axial displacements. 

Excursion ratio. 
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eg Eccentricity ratio, 

f Amplitude of 

f (n 3C l) column vector. 

fj (m X l) column vector. 

F, F' Non-dimensional and actual bearing forces. 

^dyn' ^dyn Normalised and actual dynamic film forces. 

^ext' ^ext Normalised and actual externally imposed 

vibrational forces. 

Fpp, Fpp Non-dimensional and actual bearing forces 

produced by a double opposed thrust bearing, 

section 3.3.1 . 

F. . Dimensionless force in the j direction 
J-J 

following a step jump displacement in the 

i direction, 

Fj Original equilibrium force in the j 

direction before the step-jump. 

Fj» Fj Non-dimensional and actual bearing forces 

of the axially grooved journal bearing of 

section 3.3*1 . 

Normalised and actual radial forces. 

Normalised and actual axial forces. 

^2' ^3 Perturbation components of the normalised 

force F . 

FQI Pg, Perturbation components of the force F' . 

g Acceleration due to gravity. 

Sqi Sj, Sg Perturbation components of . 

£* Complex conjugate of g^ . 

h Instantaneous film thickness, 

bg Mean film thickness. 

"R 

"z 

^0' •'l 

H Non-dimensional film thickness, II = h/C. 

Value of 

grid point. 

Value of at the i • th finite difference 
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H, Non-dimensional film thickness in the k'th 
k 

bearing strip, defined in equation (3.57)* 

Component of H associated with the squeeze 

motion. 

, Hg Boundary values of H. 

Quasi-static non-dimensional film thickness. 

H • Time averaged non-dimensional film thickness. 

Time average of . 

H Time average of H . 

i Integer, or . 

I Unit matrix. 

j Integer. 

JQ Bessel function of the first kind, 

k Integer. 

K Factor defined in equation (3.37); (m x m) 

diagonal matrix. 

Constant defined in equation (6.11) . 

Kg Constant, = iK^^ . 

Kg Constant appearing in equations (6.l47). 

K Complex constant appearing in equation (6.65). 

Length of bearing segment in circum-

ferentially grooved bearings, or width of 

bearing strip in axially grooved bearings. 

, ^2 Fundamental magnitudes of u^ and u^ . 

L (n X n) lower triangular matrix; length of 

bearing, 

Lj Elements of matrix L. 

Laguerre polynomial of degree n. 

tn Mass or mass per unit length; Knudsen 

number, equation (4.29); number of finite 

difference grid points in circumferential 

direction. 
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Highest degree of the truncated Laguerre 

polynomial expansion. 

"o Critical mass,or critical mass per unit 

length. 

M (n X n) tri-diagonal matrix; dimensionless 

mass. 

^edge Mach number of edge flow. 

Non-dimensional axial mass flow rate per 

unit width. 

Non-dimensional total axial mass flow rates, 
1 2 

defined in equations (3*39) and (3.40). 

MQ Non-dimensional critical mass, section 3*3.1. 

Dimensionless mass, or dimensionless mass 

per unit length (depending on context), 

MQ Non-dimensional circumferential mass flow 

rate per unit width. 

Value of MQ contributed by the k'th segment 

of the axially grooved journal bearing, 

n Integer; number of finite difference grid 

points in the axial direction. 

p Pressure. 

P^ Ambient pressure. 

Pj Initial pressure in Boyle's Law model, 

P Non-dimensional pressure, P = p/p . 

Non-dimensional initial pressure, P^ - p / p . 
1 1 ^a 

P Time averaged non-dimensional pressure. 

Time averaged non-dimensional pressure in 

k'th bearing strip, defined in equation 

(3.59). 

PQI PJ, Pg, P^ Time averaged perturbation components of 

non-dimensionalised pressure. 

q V a l u e of Q at the i' th finite difference 

grid point. 



211 

j Value of Q at i , j ' th finite difference 

grid point, 

1 Qg Volumetric flow rates per unit width, 

q (n X l) column vector, 

gj (m X l) column vector, section 5.3,1 , 

Q . Dependent variable, Q = (PH)^, 

^init Value of Q at previous time step, 

1 Qg Zero'th, first order perturbation in 

eccentricity, and first order perturbation 

in vibration amplitude components of Q, 

r Radial co-ordinate, 

ri Elements of column vector r, 
J — 

r^, r^ Ambient boundary values of r, 

r Non-dimensional radial co-ordinate. 

R Reference dimension of the bearing (radius 
in disc and journal bearings). 

Dimensionless response in the j direction 

following a stop jump displacement in the 

i direction. 

^0 Inner to outer radius ratio of annulus. 

®1' '̂ 2' Fundamental magnitudes of the curvilinear 

co-ordinates x , , x . 

SQ, Dimensionless and actual static stiffness. 

^ N o r m a l i s e d and actual in-phase components 

of the dynamic stiffness. 

®2' ^2 Normalised and actual quadrature components 

of the dynamic stiffness, often called'damping 

t Time, 

T Non-dimensional time associated with the 

forced response, T = Vt, 

Tĵ , Tg Dimensionless times associated with and 

•Vj , 



212 

u 

. / 

Real part of or ; film velocity. 

"j Value of u at the j'th finite difference 

grid point, 

«2 Non-dimensional generalised orthogonal 

curvilinear co-ordinates® 

u (m X l) column vector. 

U ' (n X n) upper triangular matrix; effective 

dimensionless dynamic stiffness per unit 

length. 

Uj Diagonal elements of matrix U. 

u' Dynamic stiffness per unit length. 

V Imaginary part of or g^ . 

Vj Value of v at the j'th finite difference 

grid point, 

. Vg, v^ Components of the velocity vector v . 

V Velocity vector, section 4 . 2 . 1 ; (m x l) 
column vector. 

V* V' Effective dimension]ess and actual quadrat e 

component of the dynamic stiffness per unit 

length. 

Number of grooves. 

w Non-dimensional and actual bearing forces 
per unit length. 

Total non-dimensional and actual dynamic 

forces per unit length of axially grooved 

journal bearing. 

1 Mp Non-ainensional and actual dynamic forces 
k k . , , 

per unit length contributed by the k'th 

segment of the axially grooved journal. 

Ngxt' ^^xt Dimensionless and actual external disturbing 

force per unit length. 

^grooved Dimensionloss force per unit length of 

grooved journal bearing. 



Dimensionless and actual bearing forces 

per unit length contributed by the k'th 

bearing strip, equation (3.6O). 

W- , w' Dimensionless and actual bearing forces • 
L JU 

per unit length. 

¥g, Wg Total dimensionless and actual static 

forces per unit length of the axially 

grooved journal bearing, 

¥„ , w' Dimensionless and actual static forces per 
k k 

unit length contributed by the k'th segment 

of the axially grooved journal. 
\'i , Dimensionless force per unit length of the 
ungrooved ^ 

2 ' ^ 3 

ungrooved journal bearing. 

X Shaft displacement response; cartesian 

co-ordinate. 

, Xg, x^ Generalised orthogonal curvilinear co-

ordinates. 

x^, x_, x_ Unit vectors of the curvilinear co-ordinates 

X g , X g 

y Cartesian co-ordinate, 

YQ Bessel function of the second kind. 

z Axial co-ordinate in journal bearings; 

cartesian co-ordinate; complex co-ordinate 

defined in equation (6.12). 

z, Dimensionless length of the bearing, 

= z/R. 

z Dimensionless axial co-ordinate, z = z/R. 

zj Value of z at the j'th finite difference 

grid point. 

cK Half the fraction of the total circum-

ferential length of an axially grooved 

journal bearing occupied by grooves; step 

jump attenuation constant; phase of 

normalised dynamic compliance. 



2l4 

o(. , . Coefficients of q. . and q . ^ in 
1 X ^X+1 ^ 1-1 

equation (6.96). 

Coefficients in the finite difference 

equations (6.113). 

P Growth factor. 

Coefficient q^ in equation (6,96). 

• Coefficient in the finite difference 

equations (6,113), 

V Phase associated with the dynamic 

compliance; ratio of specific heats, 

r* Cone semi-angle. 

S • Dimensionless response amplitude; small 

dimensionless distance into bearing interior 

from an ambient boundary, section 3,1.3 , 

Normalised amplitudes of the forced 

response in the radial and axial directions. 

& i j Coefficients in the finite difference 

equations (6.II3). 

SF. . Defined in equation (6,193), 
1 J 

6 

Su, , Su-Ĵ  Elements of the normalised co-ordinate 

Incremental mass change from m^. 

s 

"l' "2 ' 

step jump displacement in the i direction. 

Sx, 1 Elements of the generalised co-ordinates. 

I Dimensionless and actual amplitudes of the 

dynamic compliance. 

Amplitude of step-jump displacement stimulus, 

^ Column vectors in equation (6,204), 

Element of the angular co-ordinate 9 , 

AP Effective non-dimensional pressure arising 

from Boyle's Law model. 

A u Defined in equation (A.2), 
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Time increment. 

A z Finite difference grid spacing in the 

axial direction. 

Aft Finite difference grid spacing in the 

circumferential direction, 

Y Vibration number, defined in equation (4.39). 

^ , Local vibration number, equation (6.4). 

Value of Y at resonance. 

Y Resonance value of Y calculated on the 

basis of the combination of supported mass 

and static stiffness. 

6 Circumferential angular co-ordinate. 

Abbreviated way of expressing angles, 

defined in equation (3.56). 

Value of Q at the i'th finite difference 

grid point. 

X Molecular mean free path of the gas. 

Value of X under ambient conditions. 

X Dimensionless mean free path, X = A / X . 

Viscosity. 

Ambient viscosity. 

Right hand side of equation (6.96). 

j Coefficient in the finite difference 

equations (6.113). 

Dimensionless viscosity, = yw / 

V Angular frequency associated with the 

forced response. 

Angular frequencies of forced vibrations 

in the radial and axial directions. 

Value of V for which the quadrature 

component of dynamic stiffness vanishes. 

9. 



2l6 

^ Parameter defined in equation (6.194); 

normalised edge co-ordinate; radial co-

ordinate in conical bearings. 

Value of r at the j'th finite difference 

grid point, 

^ ^ ^ g Stretched co-ordinates for the boundary-

layers. - . 

^ Density. 

p Ambient densitv. 
fa 
jo Dimensionless density, ^ = |0/ 

CT Squeeze number, defined in equation (2.2). 

CT or Local squeeze numbers in a bearing segment, 

equation (3.58), and in a groove, equation 

(3.90). 

Defined in equation (6.203). 

IT Dimensionless time associated with the 

squeeze notion, T = OJ t. 

tr' Dummy variable for f . 

^ Phase of step-jump displacement stimulus; 

spherical polar co-ordinate. 

^ Operator representing the left-hand-side 

of equation (4.43). 

y/ Dependent variable, ^ - PH. 

Edge correction component of 

^1' ^ 2 Ambient boundary values of . 

Asymptotic value of ^ for large CT. 

(jj Angular frequency associated with the 

squeeze motion. 

OJQ Critical value of OJ , section 3*3*1 . 

\y Gradient vector operator. 
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Pig,26 Cross-soction of axially grooved journal bearing 
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Fig,52 Soction through thrust bearing ri# 



FiC.53 

© © 

© 

© 

Pi6«53 Scrap view looklm^ down on. centre electrode 

assembly 



Fig.54 

© © 
(5) 

© 
© 

© © © © 
© © 

© © 

© © 

PiS,54 View looking down on the lower boarin% plate 

with the probe tripod and feet removed 
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PiS*55 Plam view of thrust bearing ri^ 
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Pig,57 Upper bearing plate for investigating the effect 

of groove cross-section 
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Fig.58 Piezoelectric transducer module 
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Pig.60 Piezoelectric tapes before coiling 
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Fig,6l Transducer modulo with twin spiral laminations 

of piezoelectric material 
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