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ABSTRACT
FACULTY OF ENGINEERING AND APPLIED SCIENCE
ELECTRICAL ENGINEERING

Doctor of Philosophy

COMPUTATION OF MAGNETIC FIELDS IN SATURATED IRON STRUCTURES WITH
SPECTAL REFERENCE TO THE COMPUTATION OF SHORT CIRCUIT PERFORMANCE
OF INDUCTION MACHINES WITH WOUND ROTORS

®

by Ivan Mandic

The thesis is principally concerned with the solution of non-
linear field problems with particular reference to the computation
of the magnetostatic field in magnetically saturated electrical
machines. The field is divided into a core region for which a two-
dimensional solution is obtained and an end region, the analysis of
which takes account of the three-dimensional geometry using the
method of images.

The influence of saturation in the core region is explored by
solving the non-linear partial differential equation in terms of
véctor potential. The magnetic field in the core region can
therefore be described by a two-dimensional mildly non-linear
elliptic partial differential equation. This equation can be solved
approximately by different discretization techniques in which the
problem is transformed into one of solving a set of non-linear
equations. Different possibilities for discretization have been
compared and it has been found that the discretization mesh
consisting of triangles and having free topology has advantages
over some other types of discretization. The necessary number of
mesh nodes for given accuracy has been found by numerical experimentation.
Several methods for the solution of the set of non-linear algebraic

equations arising from discretization are compared. Numerical .



experimentation shows that two-step line iteration is superior'
to some other methods.

The computation of the inductance associated with the end
region allows for the practical shape of end windings and the
influence of the steel core.

The possibilities for the practical application of the
proposed method to the computation of short circuit performance
of induction machines with wound rotors is illustrated with the

detailed computation of an example.
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LIST OF PRINCIPAL SYMBOLS

Unless otherwise stated in the text, the symbols used in this

work have the following meaning:

A z-component of the magnetic vector potential -
A magnetic vector potential

B magnetic flux density

B magnetic flux density vector

b electric flux density vector

d differential operator

E electric field strength vector

H magnetic field strength

H magnetic field strength vector

i unity vectors in the direction of x and y coordinate axes,
. respectively

RE

J electric current or current density

J electric current or current density vector
L inductance

M total number of triangles in the mesh

n total number of nodes in the mesh

R resistance

s slip =
S area

t time

\Y volume

X reactance

X

y Cortesian coordinates



permittivity

permeability

permeability of free space
relative permeability
reluctivity

3.14 159 ...

electric charge density
partial differential operator

' Hamilton's operator

'l.'



CHAPTER 1

INTRODUCTION

The induction motor is today on; of the most common electrical
devices. It is used in homes and in industry, and there is hardly
a branch of technology that does not use the induction motor as a
source of mechanical power. It is built in sizes ranging from a
fraction of a Watt to several Megawatts, and the total number of
induction motors is constantly increasing.

A constant desire of the designer of the induction machine to
produce a lighter, cheaper and better motor has caused a dramatic
increase in power rating per volume (Ref. 1.1). A part of this
increase is due to the‘development of new and better materials, but
a good deal of it is due to better and more efficient use of these
materials, i.e. to the design of the machine. The trend t;wards
higher power ratings for the same size of the machine‘has pushed
the utilisation of materials to the limits and this has produced
new problems,

One of these problems is the non-linear characteristic of the
induction machine due to the non-linear magnetic properties of the
iron. The behaviour of the machine depends on the distribution of
magnetic field in the machine, which in turn depends on the prop-
erties of the magnetic steel laminations used in the machine., As
the magnetic flux density increases, the non-linearities become
more pronounced, the designing process more complicated and less
accurate.

In this thesis we shall try to predict the behaviour of the

machine more accurately by more accurate computation of the



magnetic field distribution in the machine. We shall restrict our
analysis to non-skewed induction machines with wound rotors and to
the locked rotor condition only. Nop-linear magnetic properties of
iron will be fully considered.

In section 1.1 we give the usual equivalent circuit and
explain the common method of evaluating the magnitude of the
magnetic flux in the machine.

Section 1.2 deals with the behaviour of the induction motor
with locked rotor. It is explained that increased current at
short circuit may cause saturation of some parts of the magnetic
circuit at a much lower voltage than at full load conditions or at
synchronism. .

In section 1.3 we present a brief survey of some earlier

attempts for the computation of short circuit current.

1.1 The Equivalent Circuit of the Induction Machine

In this section we shall briefly explain the usual equivalent
circuit of the induction motor with wound ;otor.

The common approach in the analysis of the induction machines
is through so-called equivalent circuits. A simplified equivalent
circuit for one phase of the machine is represented in Fig. 1.1.
R, and X, represent stator winding resistance and stator leakage
reactance, R,' and X,' rotor winding resistance and rotor leakage
reactance referred to the stator, The value of R,'(1-s)/s repre-
sents the load, R, losses in the iron core and X, the magnetising
reactance.

In the analysis of the induction machine one of the funda-

mental problems is the computation of inductances associated with
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X Xz' and X,. These inductances depend on the distribution of

the magnetic field in the machine and in order to determine them it
is necessary to know the magnetic field distribution. In the
design process it is usually assumeé that the total flux in the
machine can be split into several parts and the magnitudes of these
partial fluxes are calculated by relatively simple formulae.
Different authors define different partial fluxes, but usﬁally the
following are considered (Ref. 1.2):

main flux

rotor and stator end-winding flux

rotor and stator slot leakage flux

leak;ge due to skew

differential leakage flux.

These partial fluxes are themselves often calculated as sums, and
stator slot leakage, for example, would .consist of flux crossing
the stator slot plus tooth-tip leakage flux. The differential
leakage flux represents in principle an infinite sum of all higher
harmonics, but uéually only first harmonics caused by phase-belts
and slots are considered,

The equivalent circuit of Fig. 1.1 represents the voltage
relations in the machine very crudely. The representation can be
improved by the addition of elements representing the influence of
higher harmonics. To a certain extent the influence of saturation
can also be dealt with by the addition of branches representing
this influence (see, for example, Ref, 1.,3). However, the accuracy
that can be achieved by this simplified analysis is limited by the
accuracy of the elements of the equivalent circuit, and if this
accuracy is not improved, the accuracy of the method cannot be

improved beyond a certain limit,



1.2 The Induction Machine on Short Circuit

The equivalent circuit diagram of Fig, 1.1 is valid in.
principle for any working condition, However, if some parts of the
magnetic circuit are saturated, the effects of non-linearities ‘
introduced in this way may be much stronger at short circuit, and

the accuracy of computation lower.

The usual values of stator and rotor resistances R; and R,'

)

are of the order of 0¢0l1 to 0+05 per unit, and the magnetizing

- reactance X is of the order of 2 to 4 per unit (Ref. 1.4). Wiﬁh
the rotor at standstill, the load resistance R,'(1-s)/s is zero,
and the starting current will be largely determined by the leakage
reactances X; and X,'. As thése have to be kept small if a high
power factor is sought at nominal working conditions, the short
circuit current is large, usually about six times the nominal
current (Ref., 1.,4)., Hence the leakage fluxes will be high too.

If the flux densities in some parts of the equivalent circuit are
high enough to saturate the iron, the leakage reactances will be
reduced, resulting in even higher starting current. This effect
may occur at much lower voltage than the saturation effects at the
nominal working point,

As virtually all modern machines are built with flux densities
in the knee of the B-H curve, the influence of saturation on
starting current may be very high, on average increasing the magni-
tude of starting current by about 30% (Ref. 1.5). High starting
currents represent difficulties regarding the supply, and the
designer is presented with the problem of limiting starting cur=
rents to an acceptable level, and of computing these currents

accurately. The simplest approach is to adjust the results by some



empirical coefficients, but this may fail to produce acceptable
results (Ref. 1.7), and more sophisticated methods are necessary.
In the following section we shall briefly describe some earlier

solutions.

1.3 Note on the Work Carried Out by Previous Researchers

The decrease in reactance of induction motors at short circuit
due to the saturation of magnetic paths in the machine was recog—
nised in the late 1920 (Ref. 1.8). Consequently, numerous attempts
have been made to develop methods which would enable predictions to
be made of the drop in reactance and an accurate evaluation of the
short circuit current., In principle, this problem can be solved by.
three different means: by experiment, by mathematical modelling
and by statistical analysis.

The use of statistics is probably the simplest way of achie-
ving the goal, because it does not require a complete understanding
of the physical phenomena. However, the degree of saturation is a
function of many parameters and difficulties may be encountered in
attémpting the solution of a problem by purely statistical means.
In addition, such methods have only a limited value if applied to
new designs,

Experimental investigations of the effect of saturation
require a physical model of the machine., This is a major drawback
of such methods, as the only accurate model of the machine is the
machine itself. Hence, this method is not suitable for prediction
of short circuit currents in new designs, although measurements of
flux distribution on real machines or models (Refs. 1.5, 1.9) can

help in understanding of the physical phenomenon.



The most suitable method for the prediction of short circuit 
current of induction machines is mathematical modelling. The
majority of published reports on thg subject belong to this group
(Refs. 1.4, 1.6, 1.10-1,16). In some cases, however, the mathe=
matical modelling and statistical analysis are combined, the pre-
diction based on a mathematical model being corrected by
statistical means (Ref, 1.17). A short survey of most of the
early findings can be found in Ref. 1.14, and we shall restrict our
consideration to a few more recent papers,

We have mentioned in section 1.2 that the leakage reactances
of rotor and stator are determined as a sum of different parts
corresponding to slot-leakage flux, tooth-tip leakage flux, etc.
The partial fluxes are determined by relatively simple expressions,
which are derived on the basis that the flux pattern of partial
fluxes is known. This basic procedure is unchanged in all papers
dealing with saturated values of short circuit current (Refs, 1.4,
1.6, 1.10-1.17), The difference is in the introduction of
'saturation factors' which are applied to different parts of
leakage reactances. Different authors derive these factors in
different ways.

The paper by Chang and Lloyd (Ref. 1.11) presents a semi-
empirical method for the computation of saturated values of short
circuit leakage reactances. The authors assumed that only zig-zag
leakage flux and tooth-tip leakage flux are'affected by saturation,
In their method minimum iron areas are found in magnetic paths fof
zig-zag and tooth-tip fluxes. The values of tooth-tip and zig-zag
flux are determined as if there were no saturation. Then the
saturation factors for corresponding parts of leakage reactances

are determined from the universal saturation curve.



Agarwal and Alger also consider only the influence of tooth-
tip and zig-zag leakage fluxes in their paper (Ref. 1.4). In their
method tooth-tip and zig-zag leakage fluxes are combined in order
to determine the iron area which will saturate. A step~function
approximation for B-H curve is used to determine the maximum value
of flux through the saturated area. The saturation factor obtained
as a ratio of current at which saturation occurs and the actual
current is applied to either both zig-zag and tooth-tip reactance,
or to tooth-tip reactance only, depending on the position of the
saturated area,

Angst in his paper (Ref, 1.6) used basically the method of
Agarwal and Alger and extended it by considering skew leakage flux
also.

A series of papers by Ciganek are all related (Refs., 1.12~
1.15). His method consists of an iteration procedure. In the
first step the magnetic flux densities in teeth and tooth-tips of
the machine are determined with the assumption of constant perme=
ability. The fictitious value of flux density in the teeth
obtained in such a way is used to determine the saturated value by
a graphical method using the actual B-H curve., The decrease in
reactance is computed, new value of current determined and the
whole procedure repeated. According to Ref. 1.13, two iteration
steps give adequate accuracy.

In a later paper by the same author (Ref. 1.14) a similar
method was applied for the determination of the influence of satu=-
ration in teeth., The influence of saturation of tooth-tips is
taken into account as the effective increase of slot openings.

This increase is computed from geometrical dimensions of tooth-tips:



and maximum value of current in the slot. A separate correction
factor obtained in this way is applied to tooth-tip reactance only,

In Ref., 1.15 the saturation in.the tooth body was neglected.
It was shown in one example that the flux in tooth-tips does not |
depend on the overall flux distribution, and that adequate satura-
tion factors can be obtained by considering tooth-tip flux only,
The B-H curve was represented by an exponential function, and
graphical integration along the flux paths in the tooth-tip areas
of stator an&‘rotor was used in order to determine saturation
factors for tooth-tip flux.

Of all published reports on the evaluation of short circuit
current of induction machines, only Chalmers and Dodgson presented
a method primarily intended for use on the computer (Ref. 1.16).
Consequently, their method could employ more complex computation as
compared with methods intended for manual computation, Their
method is related to methods by Agarwal and Alger (Ref. 1.4) and
Angst (Ref, 1.6). Like these authors, Chalmers and Dodgson also
use the step-function approximation for the B-H curve. In their
method they distinguish between several magnetic paths for
different partial fluxes corresponding to tooth-tip leakage, zig-
zag leakage, etc. Different flux paths coincide partially with
each other, Partial fluxes are computed as if there were no satu-
ration in per unit values and superimposed to each other., The
total flux could be said to pass through a cértain number of
critical areas where the flux densities will have the highest
value., The area with the highest flux density is found, and all

partial fluxes passing through that area fixed to the value deter-

mined by the maximum flux density from the step function B-H curve.
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If the magnetomotive forces are not in balance with the flux, the
area which will saturate next is found, etc. The process is
repeated until the balance between qagnetomotive forces and flux is
reached, Then the total reactance of the machine is found by sum-;
ming the contributions of all partial fluxes., This method used as
a part of an iteration procedure will give a starting current at a
specified voltage.

Correlation of the fesults of this method and measurements on
actual machines depends on the choice of the maximum flux density
in steel laminations. No other method than statistical analysis
can provide the best value of this flux density, and this method

.must also be regarded as semi-empirical to a certain extent,.

| Although the methods described by these different authors
differ from each other, they also have several common points. They
are all based on an approximate magnetic field solution of the
linear problem. This approximate solution is obtained by super=-
position of a number of partial fluxes, which are computed assuming
that the reluctance of different parts of ﬁagnetic circuit (air-gap,
tooth body, etc.) is constant and can be computed from geometrical
dimensions only. The different parts of the reactance obtained in
this way are later adjusted by factors depending on the saturation
level in the machine. The accuracy that can be reached by any of
these methods is limited by the accuracy of the basic field solu-
tion, and it may be expected that the accuracy is lower as the flux
density increases, because the flux pattern will differ more from
the flux pattern obtained by the usual computation if the relucit-

vity of steel is higher.
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Hence, the key to the more accurate starting current is more
accurate field distribution. In the following chapters we shall
try to find a method which will enable us to solve the magnetic
field iﬂ the machine more accurately, and which can be used to
determine the short circuit current more accurately than is
possible by means of the methods previously described by other

authors.
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CHAPTER 2

COMPUTATION 1IN THE END-REGION

-
-

This chapter is concerned mainly with the computatioﬁ in the
end-region of the machine,

In section 3.1 we point out the basic characteristics of
different regions of the machine gnd suggest different approaches
for the computation in the end-region and in the core region.

Necessary simplifications of the geometry of the end-region
are introduced and explained in section 2,2,

Section 2,3 is concerned with the field distribution in the
end-region, and it is pointed out that the method of images,
which is dealt with in some detail, can form a basis for the com-
putation of end-winding inductance,

The formulae for the computation of the inductance, based on
the method of images, are derived in section 2.4, while in section
2,5 we give a brief description of the computer program developed
on the basis of these formulae.

In the final section of this chapter we give a short discus~-
sion of some recently published papers dealing with the same
problem, and we.also poipt out some limitations and possibilities
of our method., Some possibilities for further development are

also mentioned.

2.1 Splitting of the Machine into Regions

An induction machine is a complex three-dimensional struc-
ture, Its behaviour under working conditions depends on the

distribution of the electromagnetic field in it. This field is a
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a single entity; all active parts of the machine will have aﬂ
influence on the distribution of the electromagnetic field in
different parts of the machine. Strictly, an attempt to solve thev
field in one part of the machine only, cannot give the correct
answer. Yet, from the practical point of view it is desirable to
analyse the field in different regions of the machine separately.
This simplifies the problem significantly and allows for the use
of different computational techniques in different regions.

In our analysis we shall distinguish two different regions in
the machine: the end-winding region and the core region. The end-
winding region is characterised by the complex three-dimensionali.'
geometry of the coils which are situated in the air. The core
region is characterised by the much simpler geometry of the wind= |
ings which are embedded in the steel lamination. In the core
region the pattern of the magnetic field distribution is basically
two-dimensional and is greatly influenced by the magnetic proper-.
ties of the steel, which are generally non-linear. In the end-
winding region the field pattern is thtee-ﬂimensional, but the
influence of the surrounding steel is not so dominant as in the
core region.

These basic differences suggest different approaches to the -
problem of field solution: in the core region it will be a two-
dimensional analysis whi;h will take non-linear properties of
steel into account while in the end-winding region it will be a
three-dimensional analysis, which will take only the‘basic influ-

ence of the surrounding gteel into account,
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2.2 Simplification of the Geometry of the Region ... Assumptions

Fig. 2.1 represents a sketch of a wound rotor induction
machine end-winding region. 1In the.analytical approach it is
usual to represent the end-coils by some simple shape and ignore
the three-dimensional character of the region. The influence of

the magnetic core is taken into account either by assuming zero or

-
-

infinite permeability (Ref. 2.1 = 2.3) and using the meth;d of
images.

If the field distribution is to be solved by a numerical -
method, some of the simplifications may be abandoned., Some assump=
tions on the magnetic properties of the core and geometry of the
region are still necessary. In this work we have made the follow=-

ing assumptions:

a) The permeability of iron core is constant,

b) The influence of slots and air gap on the field distri-
bution in the air is negligible.

¢) The influence of the shaft on the field distribution is
negligible,

d) The iron core surface is of infinite extent, i.e, there
is no influence of the edge of the core on the magﬁetic
field distribution in the air. |

e) Except in their immediate vicinity the coils are repre=-

sented by single, infinitely thin conductors.

2.3 Magnetic Field Distribution in the Air

Under the assumptions of the previous section the magnetic
field distribution in the end-winding region can be solved by the

method of images.
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Fig. 2.1 = The End-Region
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The magnetic field in the air due to current J in a closed
loop near a permeable surface (Fig. 2.2a) can be calculated by

replacing the surface by the image of the loop carrying current

(Figo 2.2b):

JU - X _ g (2.1)

This result has been given as early as 1898 (Ref. 2.4). More
recently image systems of circuits partially embedded in iron have.
been derived (Ref. 2.2, 2.5). Carpenter (Ref. 2.2) givegia paftif
cularly clear and simple approach using superposition. ‘

The circuit on Fig. 2.3a can be constructed from a pair of
infinitely long straight conductors (Fig. 2.3b) and a semi-
infinite circuit (Fig. 2.3c). The field in the air due to current
in infinitely long conductors is two~dimensional and it is unaffec=
ted by the presence of iron (has no image), while the field due to
current in circuit on Fig. 2.3c can be evaluated from that circuit
and its image (Fig., 2.3d). The circuits on Figs. 2.3b and 2.3d
are now superimposed giving the final image system (Fig. 2.3e) for -
the calculation of the field in the air.

The influence of the air gap and slots can also be taken into
account (Ref, 2,2). As the air gap in induction machines is
short, its influence on the field distribution in the air is
small, The influence of slots and air gap has been ignoredvin our -

calculations,

2.4 Inductance Calculation

A convenient method for the calculation of inductance is in

terms of vector potential. The mutual inductance between two
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current carrying loops, £; and %,, (Fig. 2.4) is given by

(Ref, 2.6):

[

1 g, ——

2

where A, is magnetic vector potential due to current in loop ;.
In oug—:;se integration will take place along the contour of the
coil, It is therefore convenient to divide the integration path
into three parts; one corresponding to the core region and two
corresponding to two end-coils. It follows that for the calcula-
tion of end-winding inductance the integration path has to include -
only the contour of the end-coil, i.e. the loop should notvbe
closed but include path ABCDE on Fig. 2.3a only.

In free space, the vector potential A due to current filament

dJ at distance r from the filament will be (Ref. 2.7):

M, dJ
A = by . — (2. 3)
- 4n r

Consider now two end-coils represented on Fig. 2.,5. The
influence of the iron has been replaced by the image of the coilj;

therefore we can write for their mutual inductance:

Mg dg,.de, dg .ds
- . —_———t ' —_— .
le_ ] I J " +J I . + (J +JY)
ABCDE GHIJKLM GPM
.g!.'.l'g.&z .}.1'2&2 ‘. ' ‘
= [ _.___)} | 2.4)
r r
FG MN : ‘
Foo N

An anélogue expression would have been obtained for the cal-

culation of self-inductance. A certain caution is necessary in
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that case, as some parts of inner and outer integration paths
would coincide yielding an infinite result. We shall return to
this point later in this section.

For practical purposes it is convenient to replace the end-
coil contours and their images by a finite number of straight
lines. Any shape of coil can be represented to any desired
accuracy in this way. Then the intégrals in Eq. (2.4) may be
obtained as a sum of the integrals of type (Fig. 2.6):

B b

d2.2
N = cos ¢ J dml I R (2.5)
A a r

The value of this integral for two lines in a general posi=-

tion is (Ref. 2,8):

N = cos ¢'[EB_‘2:'R lﬂ|+|fl+!ﬁ| E‘A’ Lfﬁ[+‘i‘+lfﬁl

| |aB|+|bB]-ab]| |aa|+|5al-|ab]
PO VP43 3 RN - P
|5 |+ |58 -| 2Bl |24 | +|a8]-| 58]

|EZ| . ctg ¢-[arctg ( lgéi . ctg ¢ + —Eg—Légé-. sin ¢) =
Bb | |cel. |55]

arctg ( lggl . ctg ¢ + —ég}i—égé- . sin ¢) = arctg ( lgéi-ctg ¢ +
N |ce|. |pA] | 28|

+ TEE—;—EET . sin ¢) + arctg ( %gg% . ctg ¢+ ngf;_géT . sin ¢) (2.6)
Ccl.|aB ahA Cc|.|aa] -

Overlined letters represent the geometrical distance between
corresponding points on Fig. 2.6. Distance Cc is a common perpen-— \

dicular to both lines ll and 22. 1f Cc is zero, Eq. (2.6) does not



-22 -

Fig. 2.6 On the Mutual Neumann Integral Between Two Straight Line
Segments-
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give a definite result; the expression is finite, however, and
may be readily evaluated, except‘in the case where AB and ab
overlab each other,

If either AB or ab is infiﬁiteiy long (as for example lines
FG or MN on Fig. 2.5), Eq. (2.6) will not give a finite result.
In our case lines FG and MN will always be parallel and carry

opposite currents. The value of (2.5) for that case is ?Eee

Appendix):
b,A|+|b,B|+|AB a Aj+|a B|+|AB
P L o i N .
|5, +|b,B|-|AB| |a,&]+|a B|-|4B]
- |_;-l-CZB cos ¢ —c,b, IETKTJE;K cos ¢ +c;a,
+ ClBoln — + CIA'ln ————
a;B -C}B cos ¢ -c,a; |b,A]=C,A cos ¢ -c,b,
]S—EW—E_gocos ) -c2b2 EIE
*C2°1°9~“ )- lClc1 . ctg ¢-{arctg ( .sin ¢) -
lb A! -C.A Aocos ¢ =c,b, Cycy
C.A [ c,a,. C,B
. 1 .
- arctg ( ~———:sin ¢)= arctg ( —:::l—nctg o + i E__.-sin ) +
Ciel |a 8] ' C,c,l.laB]
: 1yl cja; - C)A
+ arctg ( ———-ctg é + ——-sin ¢) +[C2c2 . ctg 9 ,
alAl (Clcll.[alAl
C;B . CA [y
+ |arctg ( =—— ., sin ¢)- arctg ( ————-sin ¢)- arctg ( — .
lCzczl iczczl 'Isz[
c,b, . C3B |C,c,| cyby o CoA
.ctg ¢ + 2 2 _:i_ .sin ¢)+ arctg ( -:::;i—-ctg % - — sin ¢)
IT,¢c,1.15,B] 15,41 IC,c, 1. 15,41
2.7)

Again, overlined letters represent distances between corres-—
ponding points on Fig. 2.7. Distances on a certain straight line

are always measured in the direction from a to b or A to B,
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Fig. 2.7 On the Mutual Neumann Integral Between One Finite and
Two Sem1-Inf1n1te Straight anes
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The most convenient way of calculating the mutual inductance
between end-~coils 1 and 2 on Fig. 2.5 seem to be to obtain it as a
" sum of three parts which correspond to mutual inductance between
end-coil 1 (line ABCDE) and: line éHIJKLM (Ll); line GPM (Ly)s

lines FG and MN (L3). The total mutual inductance is then:

l-ur Zur
L = L, TTu: LZ + -ﬁT‘-; L3 (2.8)

The self-inductance of the coil is obtained in # similar way.
For the parts of the contours which would overlap, Eq. (g£6) is
used with lines of integration parallel but separated by the
radius of the coil thickness (corresponding to external induct-

ance). Internal inductance is evaluated by the formula (Ref. 2.9):

where £ is the length of the part of end-coil in consideration,
and added to L, in (2.8).

The direction of forces ‘on end-coils will depend on the
direction of the current; i.e. on the shape of the end-coil. For‘
small low voltage induction machines these forces will contribute
little to the torque of the machine, This may not be so with
large high voltage machines where there is a considerable current
flowing in the direction of the shaft in the end-winding region.
If necessary, the contribution to the torque of the forces on end= °
coils may be evaluated by differentation of the magnetic énergy by
the angle. For the contribution of two end-coils, one on rotor

and one on stator, we havet

9 ' - 1=n ' 2y '
T =3 5 [sz.1 Tog Y2 L2+ g '+ J)) L3] (?-10)
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and the overall contribution to the torque is obtained as a double
sum, of (2.10) over all stator and rotor end-coils. The differ=.
entiation is most easily carried out numerically,

2.5 Computer Program and Results

In the previous section we havé derived the formulae for the
computation of end-winding inductance under the assumptions listed
in section 2.2, The computation of the mutual inductance between
two end-coils involves numerous evaluation of expressions given by
Eqns. (2.6) and (2.7). These two expfessions are too complicated
for paper and pencil computation and the automatic computation is
the only practical solution.

We have developed a computer program for the computation of
end-winding inductance by the described method. A simplified
self-explanatory flow chart is represented in Fig. 2.8. The pro~
gram has been written in FORTRAN (extended version for ICL 1900
series computers). The novel feature of this program, as compared
with other currently used methods, is the use of Eqn. (2.7), which
enables us to compute the inductance for any felative permeability
of steel core. |

Although the program has been written for computation of
stator end-winding inductance, it can be easily adapted for the
computation of mutual inductance between rotor and stator end-
windings.

Results of the compuéation by this program for two typical
examples are presented on Figs. 2,9 and 2.10. The diagrams
represent the mutual inductance ‘between two end-coils for a six~—
pole and a two-pole machine for relativevpermeabilities v, " 0 and

Up = 10000,
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START

Y

Read in geometrical dimensions,
angle between two nearest slots ¢,

number of coils, relative perme-
ability M

Set ¥ to O

Compute co-ordinates of the points
of the first end-coil

Y

Compute co-ordinates of the points of
the second end-coil in the position ¥
relative to the first coil. Compute
co-ordinates of the points of its image

/

A

Compute Ll’ Lz, L3 in Eq. (2.8)

Add ¢ to ¥ st Y=r ?
=
Compute L from Eq. (2.8) for
all coils
Y
. Print results
Y
YES ——— More data?
E Y NO
STOP
?ig.'2.8 The flow~chart of the program for computation of the

end-winding inductance
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For the purpose of comparison we have plotted the results
obtained by the method of Carpenter (Ref. 2.2) on Fig. 2.9 (dotted
line), He also used the method of images, but assumed that all
end-coils lie in the same plane and.the end coils were represented.
by two mutually perpendicular straight line segments, The relative
permeability was assumed to be zero, thus his curve should be com=
pared with our curve for u.= O, Our curve shows the same basic
pattern, although the discrepancies are quite large, particularly,
our curve decreases much faster with the increasing mutual distance
between the two 'coils, The discrepancies are mainly due’ to the
fact that the end-coils do not actually lie in the same plane. The
influence of the better representation of the coil shape on these
discrepancies is probably much smaller, because our representatipn‘
was fairly simple, the end=-coils being répresented by 5 straight
line segments (Fig. 2.1),

Another example of the use of this program may be found in
Chapter 7, where it is used to compute the end-winding inductancegw
of a wound rotor induction machine used as our sample problem,

The computation time depends, of course, on the type of
computer and compiler used. As a rough guide it can be estimated |
from T = 10* s n n?, where 8 is cémputer access timg, n is
number of coils and m is a number of straight line segments used
for representation of the end-coil.’ For our case (8 = 2+4 u sec,"
n= 28, m = 5), this formulac gives‘computation time of about 17

seconds, which corresponds well with the observed value.

°

J
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1
2.6 Discussion

The most commonly used methods for the computation of end=-
winding inductance are based either on some drastic simplifica-;A“
tions of the geometry of the end-region (Ref. 2.1) or make
extensive use of empirical coefficients (Ref. 2.10, 2.11),

The solution of the problem has been an object of many
researchers in the past. The most complete list of references
can be found in Ref, 2,15, with the exception of some later
papers. Until recently, virtually all work on this problem has
been based on an analytical solution of the field distribution in
the end-region of the‘machine, although current filaments have
been used for the computation of forces on end-coils of large
turbogenerators. The analytical approach is complex and often
requires ignoring the three~dimensional character of the region.

In 1959 Honsinger (Ref. 2.3) has published a paper on the
subject which took the three-dimensional geometry into account..

He assumed fhat infinitely permeable boundaries surround the end=-
winding consisting of elliptic end-coils. His results are not
suitable for computer use because of extensive use of graphs.

Carpenter (Ref. 2.2) developed the method of images and used
it in the same paper for the calculation of induction machine end=
winding inductances, He simplified the geometry by assuging that.
all end-coils have a simple V-shapé and all lie in the plane,
Further assuming zero permeability be obtained a very simple
expression for the overall end-wiﬁding inductance.

When the method described here had been developed, Laﬁrenson o
published a paper (Ref. 2.12) on the use of a numerical method for

-the computation of end-winding inductances similar to our method.
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Similarly as in our method the three-dimensional geometry was
fully taken into account, but the methods differ in several other
points. Lawrenson assumed that the vector potential due to
current filament ab (Fig. 2.6) is constant along the integration
line AB, and the resulting formula in his method is much simpler
than Eqn. (2.6). Unlike us, he took into account the effect of
other conducting surfaces in the vicinity (shaft and casing) but
assumed the permeability of all surrounding metal surfaces to be
zero. If his methéd is simplified so that only the influence of
the steel core is taken into account, both his method and our
method (with wo= 0) will probably give similar results. Compu-
tation times are alsoblikely to be similar, because, although his
formulae are simpler than ours, his method will generally require
more inteération steps than ours in order to achieve the same
accuracy.

| Recently, attempts have been made to solve the end Field by
direct numerical solution of the three-dimensional vector potén-
tial equation (Ref. 2,13-2.14). This method will allow the non=-
linear magnetic properties of iron to be taken into account,
although it cannot deal with the effect of eddy currents. The
- possibilities of the method have not yet been fully exploited.

It is likely to make very high demands on computer store and com—
putation times, which can, at present, be hardly justified for the’
use with induction machines and fields.
Our method for the computation of end-winding inductances

takes into account the influence of permeable iron core and the
complex three-dimensional geometry of the end region. The

accuracy of the method can be improved by considering other
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permeable and/or conducting surfaces in the vicinity, representing
the end-coil more accurately by splitting it into single conduc=
tors #nd by considering the effect of slots and the air gap.

The limitations of our method lie in the uncertainty of the
permeability of the steel core. As the core is both permeable and
conducting, the alternating magnetic field will cause eddy currents
which will reduce its effective permeability. The influence of
this effect on the inductance will depend on the applied frequen=
cies. Our method does not allow for this effect. However, it-can ‘
be used to determine upper and lower bounds for the end-winding
inductance, by computing its magnitude for the two extreme cases,
i.e. zero permeability (ideally conducting surface) and the value
of permeability bbtained for ldﬁ flux densities and DC excitation.v
The influence of different permeability of thé core on the mutual
inductance of two end-coils can’be quite large, as it can be
readily seen from Figs. 2.9 and 2.10, and for some rela;ive posi-
tions of the coils different permeability can even result in the
opposite sign of the mutual inductance. .

The magnitude of the end~winding inductance is iﬂfluenced by
many factors, some of which are not easily considered. We believe -
that our method of computation presents an improvement over the
most methods in current use, particularly as it can supply upper . -
and lower bounds for the value of inductance. We also think that
any further research in this field should include a considerable
amount of measurements on models and real machines. Experimental
work in this field would be extremely valuable, as it could pro=
vide such information as the influence of finite core diametet,

‘ etc., and it could probably also indicate the value of the
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'effective' permeability of the core. Unfortunately, due to the

lack of time, we were unable to do any experiments in this field.
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CHAPTER 3

THE CORE REGION

In this chapter the problem of‘the field solution in the core
region is discussed.

In the first section the necessary assumptions and simplifi-
cations are made'and discussed., On the basis of these assumptions
the problem is reduced to the two-dimensional one, and the partial
differential equation of the magnetic vector potential is derived,

In section 3.2 a short account ofvdifferent possibilities for
the solution of linear and non-linear field problems is given.

The methods are divided into four groups: analytical, anoiogue,
graphical and numerical. The basic advantages, disad&antages and
limitations are pointed out.

In section 3.3 different possibilities for the discretization -
of the region are presented in order to obtain a mesh for use with.
finite difference or finite element methods. ]

Section 3.4 discusses the difference between the finite
difference and finite element methods. Some definitions of these
methods, if a partial differential equation is considerea as the
source equation, are explained. It is also pointed out that it is
justified to consider Maxwell's equations as the source equations
for the problem in hand, in which case”both methods follow the:
same process. Finally, a historical note on the use of these
methods is given, with the emphasis on the use of triangular mesh,
which is often associated with the finite element method,

Section 3.5 briefly discusses two possibilities for the field

approximation by piecewise polynomials in the triangulated continuum,

-
-
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In section 3.6 requirements for the method of solution are
listed and the choice of the method is made.

In section 3.7 two possibilities for the derivation of
equations for the approximate solution are presented and it is
shown that these yield identical results. Both approaches are
based on a concept of the elimination of a suitably defined error
of the approximate solution. The definition of error is different
in the two approaches. Some other possibilities for the deriva= -
tion of equations are also mentioned.

Finally, sections 3.8 and 3.9 briefly discuss boundary

X conditions and derivation of torque and induced volﬁage from ;he

field distribution.

3.1 Magnetic Field Considerations in the Core Region -
Assumptions

The magnetic field in the machine is governed by Maxwell's

equations:
‘ GE ‘ ' .
ap | |
Vx_}l = _J; + -a—t-:- i e (3.2)
VE = 0 k. (3.3)
VD = p S B

and the subsidiary relations:

*

B =up =g @S

D = ¢E B };.’ (3.6)
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It would be extremely difficult to solve the field distribu=~
tion in the core region exactly, even under the assumption made in
section 2.1 that the end region has no influence on the field

distribution in the core. It is therefore necessary to introduce

some additional simplifications:

a) The magnetization curve of the core material is a single
valued function; i.e. there is no hysteresis effect,

b) The permeability p outside the machine is zero.

c) The permeability p of the shaft material is zero,

d) Eddy current effect in the core lamination is ignored.

e) The effect of changes of eleétric charge distribution is

ignored.

Assumption a) simplifies the problem significantly, Strictly, ,T

it would not be possiblé to take hysteresis effect into account
completely; for this purpose we would have to know not only the’
properties of the material, but also its magnetic history. Even
if the effect of previous magnetizations is ignored (which is
justified for most practical purposes), the problem would remain
very complex due to complexity of the magnetic field in ;ﬁe
machine. In some parts of the magnetic circuit the field is
mainly oscillating in magnitude; in others it is rotating as well,
For these reasons it is necessary to ignore the hysteresis effect.
The relative influence of the hysteresis on the field distribution
decreases as flux density increases, because the saturation effect:
becomes predominant. |
Asgumption b) simplifies the boundary conditions and
restricts our calculations to the interior of the machine only.

The flux distribution at short circuit is mainly influenced by fhe‘ ,
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air-gap area, and the magnetic flux outside the machine has‘little
influence on the behaviour of the machine.

Assumption c¢) may be easily removed. It is believed,
however, that this represents the r;ality reasonably well, because
the penetration of the flux into the shaft will be damped by eddy
currents, |

Assumption d) is also made in order to simplify the problem.
The eddy current phenomena in saturable material is a very compleg
problem itself, even in the much simpler cases. Modern mild
magnetic materials have high electric resistiQity and laminations
are thin, so that the eddy currents are limited by high resistance,
and the magnetic field due to eddy currents can be neglected for 7*'
-frequencies of up to a few hundred Hz (Ref., 3.1).

Assumption e) is constantly made for the computation of
electric machines based on magnetic principles, although ﬂﬁt
always explicitly. It is fully justified, because thé effect of
electric charges on the behaviour of the machine is completely
- negligible inlcomparison with other effects.

With the definition of magnetic vector potential A:
B = VxA (3.7)

we get from Equations (3.2) and (3.5) (second term of the right=

hand side of Eq. (3.2) is zero according to assumption e)):
vx[v(@xa] = 3 (3.8)

Fig. 3.1 represents a sketch of a part of a cross-section of .
a machine, The z-axis is directed out of the paper, so the

~ current density J has-only a z-component. Hence the vector on the .
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 Fige 3.1 A Cross-Section of an Induction Machine
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left-hand side of Eq. (3.8) may have only a z-component as well,

which is:

) 3A_ A g [. 3, 3A ,
7 [" 3?:“5;"] Yy [" ‘a‘y"a—z‘)] " G9)

The assumption that there is no end effect is equivalent to the

pl

statement that all partial derivations in z~direction are zero, so

that finally we have:

9 aAz ] aAz '
v (v -a-x—-) + 3-)7 (v gy—-) = Jz (3.10)

The problem is therefore reduced to a scalar one, and is
equivalent to the solution of a second order mildly non-linear
(or quasi~linear) partial differential equation of elliptic type,

As vectors A and J have only z-component, the subscript z
will be omitted in future.

‘Reluctivity v is constant for air regions; for iron regions
it can be expressed as a function of the absolute value of fiux

density IEJ which is (from Eqn. (3.7)):

2 2 |
2l = 8] =q/B2+B2 - \/(- 3 * G Gan

Equation (3.10) describes the magnetic field in the core

region completely and it can be coﬁsidered as the source equation
for our computation. It should be emphasized, however, that this
equation is derived from Maxwell's equations., It is therefore
immaterial whether we derive our algorithms for the field solution
from Eq. (3.10) or from some other equation obtained from

Maxwell's equations, or from the Maxwell's equations directly,
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either in their differential (Eqns. (3.1)-(3.4)) or some other
form. In other words we can define as 'the source equation' any

other suitable expression derived from Maxwell's equations.

3.2 Short Account on Different Methods for Field Problems

All presently available methods for the electromagnetic

field problems may be classified in several groups:

l. Analytical methods

These field computational methods give the direct solution of
the field equations in a suitable algebraic form., The most often
used method from this group is probably the method of conformal
mapping. It was originated by Christoffel (Ref. 3.2) and Schwartz
(Ref. 3.3) more than a century ago and used for the first time for
electromagnetic field problems by Carter (Refs. 3.4 and 3.5). 'The
problems that could be solved by this ﬁethod were limited to simple
geometry., More recently, the class of problems for which this
method is applicable has been widened to more complex geometry by
the use of numerical integration techniques (Refs. 3.6-3.8), The
major disadvantage of the method is that it cannot be used for non=
homogeneous or non-linear media.b |

Another well-known analytiéal method for the Poisson differ—
ential equation is a method of separation of variables. This |
method is also restricted to simple geometries and homogeneous -
1inear‘media. The solution is often represented in a form of
infinite series, which may converge slowly (Ref. 3.9).

In principle, non-linear partial differential equations can o
‘be solved analytically by different tran;formation methods. The‘ 

best known of these are the Kirchoff transformation (Ref, 3.10),
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and the hodograph transformation (Ref, 3.11). The hodograph
transformation has been successfully applied to the problems of.
compressible flow. It has been also applied to simple cases of
magnetic flux distribution in non-linear media (Ref. 3.12), but
like the Kirchoff transformation it is not suitable for non;
homogeneous regions of complex geometry.

Integration methods also belong to the group of analytical
methods. Although very powerful for linear media (use of an
integration method has been made in Chapter 2), their use for non=
linear regions is not very practical (though possible). For
non-homogeneous regions of complex geometry numerical integration

is essential (Refs., 3.12 and 3.13).

2, Analogue methods

Are based on the fact that many different natural phenomena
may be described by the Poisson type differential equation., Some
of these phenomena are more easily modelled, or more easily |
measured, than the magnetic field distribution and they can be
used to determine magnetic flux by measurement of the analogue
quantity. The best known analogue model is the electrolytic tank,
based on the analogy between the magnetic field and the current
density field. The conducting sheet analogue is based on the same
principle. Both models can treat complicated geometry and
inhomogenity, and both models have been used successfully for the.
solution of linear magnetic field probiems (Ref, 3.14-3.16).
Unfortunately, the methods cannot be used for non-linear problems.,

Another analogue method that has been used for linear

magnetic field problems is based on the similarity of the magnetic



field and the laminar flow of incompressible fluids (Ref. 3.,17),
It can be used also for non-homogeneous, but not non-linear
problems,

Elastic membrane analogy can bé used also for magnetic field“
problems (Ref. 3.18). It is possible to extend its use to non-
linear media (Ref., 3.19) if the magnetization curve is simplified.‘
Its use is restricted to simple geometry, particularly for non-
linear problems,

Network analogues have been also used for the determination -

of the magnetic field problems. Here the magnetic field problem«viu .

is replaced by a resistor network, and a flux distribution is
obtained by measurements of current and voltage distributions on
the model. These models have been used widely. Very high

accuracy has been claimed (Ref., 3,20), and several ways of dealing

with non-isotropic and non-linear media have been presented (Refs.f'“'

3.21 and 3,22). The main disadvantages of the method arexzthe high 
cost of the model, particularly for the non-linear type models,

and very elaborate modelling preparation, when large problems are :f
considered.

This list of analogue methods is not complete. There are
several other analogues (heat-conduction analogue, mechanical
stress analogue, sand-heap analogue), that might be, at least in
principle, used for the determination'of magnetic field distribu=
tion. However, their use seems to bé more complex than the
analogués described, and they probably‘arefnoﬁ‘suitable for non~

linear non-homogeneous problems,
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3. Graphical methods (Method of curvilinear squares)

These are methods in which use is made of the property of
orthogonality of flux lines and constant scalar potential lines.
The method was originated by Richard;on (Ref. 3.23) and Léhman
(Ref. 3.24) at the beginning of the century, The use of graphicali
field computation methods has been extended to non-linear cases
(Refs. 3.25 and 3.26), but its general inaccuracy and computa= .

tional effort limits its use to simple problems.

4, Numerical methods

Is a term usually used for a wide group of methods, which

.. could be, perhaps, better described as 'approximative algebraic

methods', since they are essentially not more numerical than, say;”T'

conformal mapping. Basically, they consist of three steps:

a) approximating the exact solution by (a set of) suitablei
functions;

b) substituting this approximate solution into the source
equations; and

c) minimising (or-eliminating) the error by adjustiﬂg the

coefficients associated with the approximating functions. -

The most useful approximating functions are polynomials, and
the last step leads to a solution of (a set of) algebraic
(possibly non-linear) equations. Some of the best known of these
methods are: Finite Differences, Finite Elements, Raleigh-Ritz,
'. Galerkin, Method of Moments, Collocation, Point Matching, WEighted‘i{‘
Residuals, Reaction Method, Least Squares ... etc. All these
methods can be closely related on .a more formal basis using the  ;

geometrical interpretation in function space'(Ref; 3.27). The &
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last step, the solution of algebraic equations, is most e;sily
performed by a digital computer, and at this point these methods
become numerical. It is possible, however, to solve these equa=
tions by analogue computers. In fa;t, the well-known network
analogues mentioned earlier are methods that belong to this group,
because unlike the other analogues, they do not represent the |
field directly, but its approximation by a set of piecewise
linear functions. Hybrid computing methods have been also used
for the solution of a final set of equations (Ref. 3.28).

A complete survey of the literature on these methods‘would be
a formidable task. The same, or closely related methods have been :
used for the solution of other technical problems in civil engin=
eering, structural mechanics, mechanics of fluids, etc., and a
number of papers and books published on the theoretical aspects of
the methods, on the related numerical methods for the solution of
equations and on the application to different technical problems
is enormous, (For example, Rosenbloom, (Ref. 3.29) quotes more
than 700 references on linear partial differential equations
only). We shall not attempt to make such a survey, but shall
concentrate 6# fhe two meth;ds which appear to be most suitable
for two-dimensional field problems: finite difference and finite .
element methods, although a complete survey is virtually impos~-
sible even fof these, For both methods it is necessary to divide
a region into a number of sub-regions; the methods could both

- therefore be called 'discretization~methods'..'
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3.3 Discretization of the Continuum

In this section we shall describe some of the possibilities - -
for the discretization of the region of our particular problem, tfﬁ
The resulting division into sub-regions we shall call a mesh,

Most of the meshes described have been used for practical prob=-:

lems, and some references are given.

Regular square mesh (Fig. 3.2) has the advantage of

geometrical regularity and simplicity of resulting approximating
formulae, It cannot represent the complicated geometry faith='
fully, unless either a large number of mesh nodes is used, or,

it is decided for material interfaces not to be mesh lines, which 3
complicates the approximating formulae. This mesh has been used
for electromagnetic field problems, usually for relatively simple‘ ‘

- geometries (Refs., 3.30 and 3.31). Its use becomes complex when\l}

’ "~ periodicity boundary conditions on domains of circular sector -

-
-

shapes (e.g. a pole pitch of a rotational machine) have to be
satisfied, because generally the mesh patterns along two bounda=-

ries with periodicity condition do not coincide.

Regular square mesh with variable mesh density (Fig. 3.3)

may be used for problems where more detailed information about the T»
flux distribution is néeded in certain areas of the total flux"vi
. plot., Special interpolating formulae have to be developed for
nodes on and near the border lines where fine and coarse meshes"  
meet (Refs, 3.30 & 3,32)., The mesh is also not convenient for

interpreting periodicity boundary conditions.

Irregﬁlar rectangular mesh (Fig. 3.4) 1is probably the f ;;“

most extensively used type of mesh for electromagnetic field
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problems in electric machines (Ref, 3.33)., 1Its advantage is that
it is more general than the two previous types, thus allowing more
flexibility in representing complicated geometry and inhomogenity.‘
Similar difficulties with periodicity boundary conditions would
h;ve been encountered as with the previous two types. In works
published so far this has been avoided by replacing the rotational
geometry by rectangular geometry, distorting the true geometrical

picture.

Topologically.irregular rectangular mesh (Fig. 3.5) has

been introduced in order to deal with difficulties encountered
when fitting rotor and stator meshes for doubly slotted machines.
The number and dimensions of rotor and stator teeth are not
generally the same. As the change of material is allowed on mesh
lines only, rotor and stator mesh lines necessary for the repre-
sentation of teeth'geometry will not be the same., In a topologi-
cally regular mesh, mesh lines stretch from one boundary to
another, almost doubling the number of nodes. This is avoided by
constructing the rotor and stator mesh separately and introducing
topological -irregularities, covered by special interpplating

formulae for the 'joint' (Ref. 3.34).

Polar co—-ordinate mesh (Fig. 3.6) was introduced in order

to avoid distortion of geometry when representing a part of the
machine by rectangularvmesh. Regular polar mesh, with equal A¢
and Ar throughout the mesh is the simplest casé, analogous to a
'rectangular mesh., More flexible is the mesh where A¢ and Ar are
allowed to vary throughout the mesh (Ref. 3.35). Topologically

irregular polar mesh may also be used.



-50-

Fig. 3.5 Topologically Irregular Rectangular Mesh

Fig. 3.6 Polar Co-Ordinate Mesh



- 5] =

Combined meshes Polar and rectangular meshes can be

combined. Different types of mesh may be used to represent faith= .
fully different local geometrical features. This approach is
flexible, but complex. However, it has been used for the solution

of - field problems in electrical machines (Ref. 3.36).

Hexagonal mesh (Fig. 3.7) This type of mesh has been used

very rarely (Ref. 3.37). It offers few advantages over the regu-
lar square mesh, although it may be found useful for certain types

- of geometries,

Regular triangular mesh (Fig. 3.8) 1is an alternative to

regular square mesh. It has not been used so widely as the regu= -

lar square mesh, because the final equations are more complicated i

(Ref. 3.37).

Irregular triangular mesh with fixed topology (Fig. 3.95~f;5_:“
is very flexible. It allows faithful representation of complex ‘ .
'geometry, because triangles can vary in size and shape. The
topological regularity is an advantage for computer programming
purposes, but it is a disadvantage regarding number of mesh nodes.‘;'
This type of mesh has been used for computing the field of

- particle accelerator magnets (Ref. 3.38).

Free topology irregular triangle mesh (Fig. 3.10) allows -

changes in shape and size of triangles more freely than fixed
topology triangle mesh. This is an advantage, as careful use may ;
result in significant reduction of the number of nodes. This type
of mesh has been in use for structural mechanics aroblems for some -
time (Ref. 3.39) and, although suggested for électromagnetic field a

~ problems as early as 1949 (Ref, 3,40), it has not been used for
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electric machine problems until relatively recently (Ref, 3.41).’Nv
The mesh is very flexible and allows faithful representation‘of ,'
different geometrical featureé; different boundary conditions

represent no principal difficulties,

Curvilinear meshes Any type of mech described so far can '

be refined by using 'curvilinear polygons'. Curvilinear triangles ‘
and curvilinear quadrilaterals have been described in the litera-;:t
ture (Refs. 3.42 and 3.43). Meshes constructed from curvilinea; |
polygonal cells can describe complex geometry with fewer mesh

nodes than meshes constructed of normal polygons. The main dis;

| advantage of such meshes is their complexity, which results in |
complexity of algebraic expressions in the final set of equations .
. and high requirements of computer core storage per node,

The number of different types of meshes that could be con-‘
structed is virtually unlimited. It would be possible to generaf‘:
lise by defining a 'general curvilinear polygonal' mesh., Such
. generalisation would have feQ practical advantages, because
' derivation of formulae that would cover such a general case would

f not have been'easy, and hardly very useful, _ .

3.4 Finite Difference and Finite Element Methods

These two methods are the most éommonly used in the recent
technical literature. The difference between them depends on the
. definition of either of them; these ére not consistent in litera=-
ture., The definition of finite difference methodzgiven by |
- J. Walsﬁ (Ref, 3.44) is that 'in the finite difference method the  5
algebraic equations>are obtained by direct approximﬁtion of the.

differential equation at mesh points ...' and '... if we-zrequi-r,e"'_ﬁ.‘lf‘fl?
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the solution at all points of the regioﬁ, it is obtained by inter-b
polating between the mesh values'.

In the same paper tﬁe definition of the finite element method
reads: 'In the finite element method the region is divided into
sub-regions, and the approximate solution is represented by a
polynomial over each sub-region, with matching conditions on the
boundary between them. Each polynomial is defined by a number of o
coefficients, or equivalently by values of the function and its |
derivatives at certain points. The algebraic eqﬁation for deter- -
mining these values areiobtained either from a variational prin-‘
ciple (Ritz's method), or by the method of Galerkin.'

This definition of the finite difference method does not'seem'rw
to éover a number of methods described as 'finite differerfce
| methods' where algebraic equations are obtained by integrat?onl
(Galerkin's method), (Refs. 3.45-3.46, 3.12). Also, for non-
linear magnetic field problems the non-linear reluctance is
usually defined over the mesﬁ cells surrounding a particular mesh ‘
nodé; therefore the values of the vector potential A between the
mesh nodes appear in the final set of algebraic equations implié :5
citly,

However, these definitions seem justified if a partial
differential equation is considered as the source equation.
Following them, the finite difference approximation for our prob-
lem would be obtained by substituting ﬁhe differeﬁtial operator ofii
© Eq. (3.10) by a difference operator., The solution is then :
obtained by a point matching prqcédure applied to the approxima-‘}gip

ting difference equations,.where these will be satisfied exactlyf5[‘“

',i; at a certain number of points. The difference operators are
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usually obtained by developing the function into a Taylor series b
and neglecting the members of the series of higher order.

Although this will normally lead to a rectangular (or polar) mesh, f
it is possible to apply this basic p;ocedure to a general triangu-:~
lar mesh (Ref. 3.47).

The finite element method would consist of transforming Eq;"
(3.10) into some 'other form (for example this can be done by
applying the Euler tﬁeorem of the calculus of variations to Eq.
(3.10)), defining the approximate solution as a piecewise poly-.
nomial over the cells of a chosen mesh, and applying some error
minimisation procedure to this approximation, employing the trans-
formed equatioh. | ‘

For our problem it seems more logical to consider'Eqns. (3.1)-,;~

(3.6) as the source equations. In that case both finite element

~method and finite difference method follow the same basic pattern;“f,”

a) transformation of the source equations;
b) definition of the error; and
.vc) elimination (or miniﬁisation) of the error.
Indeed, if the variables are the same (i.e. vector-potential A),
the mesh chosen is the same, and the order of approximation is the
same, both methods maf yield identical sets of equations in some

cases, (For Laplace's equation even the mesh does not have to be'f‘
the same, see for example Ref. 3.48). “' | e

Often, different names may be found in the literature for
very closely Telated (if not the same) methods; names being

chosen to describe a different approach, or a different problem

- adequately. (For example, while the 'finite element method' seemé;;“~,ﬂ.~>

adequate for structural engineering problems, 'discretization

-
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method' might be a better choice for magnetic field problems; on
the other hand, if the method is based on a variational principle,"
it could also be named 'functional approximation method').
Historically, finite differencé methods can be traced back to
Gauss (Ref. 3.49). The work of Courant (Ref. 3.39) is usually
considered as the first on the finite element techniques, although
the term 'finite element' has started being used much later, first
in structural engineefing. Irregular triangular mesh, which is
often associated with finite element method was also used for the
first time by Courant, although the régular triangular mesh was

considered before (Ref. 3.37). Southwell also uses triangular mesh

cells as means of charging mesh density in otherwise regular ortho- =

gonal mesh (Ref. 3.50). Prager and Synge use triangular-mesh for -
approximate solution of boundary value problems (Ref., 3.51). Their
method is generally known as 'the hypercicle method' (Ref. 3.52) ‘;_
and is based on a geometric representation in function space. In o
1949 irregular triangular mesh was suggested for electromagnetic
fieid problems, The equations were derived from the conducting
sheet analogy, and the possibilities for the use for non-~linear
' magnetic field problems were pointed out (Ref. 3.40).
Hand computationllimited the use of triangular meshes to simp}e‘
- cases, In 1953, McNeal published a paper on the use of irregular,
A;q topologically free triangular mesh for electromagnetic field prob=-
lems., He used integration as a means of derivation of the equations
- and an#logue solution of equations (Ref. 3.45). The same type of

” ‘: . meéﬁ has been used for the neutron.diffusion equation (Ref.J3.53).jv;_ :
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The use of fixed topology triangular mesh for non-linear
magnetostatic problems was reported in 1965 (Ref. 3.38), when
Zienkiewicz and Cheung also publisheq their paper on the use of
triangular finite elements for the solution of field problems
(Ref, 3.48). They considered linear cases only. Since 1965 the
methods emfloying discretization by triangles, or more’complex
polygons have been more widely used, and a number of papers have
appeared in the technical literature. Most of them have been in
connection with structural mechanics problems. Recently, work on
the use of triangular meshes for electrical machines problems has

also been reported (Refs. 3.41, 3.54).

3.5 Representation of the Approximate Solution in the Discretized

Continuum

‘In section 3.3 we have described several pos;}bilities for the
discretization‘of the region in consideration. Different mesh |
types will yield 'different' methods. The vast number of methods
that result is further widened by the possibility of definihg
different approximating functions and/or different error criteria
that are to be minimised or eliminated. Again, the choice is
virtually unlimited. 'However, although special approximating
functions have been considered in order to deal with singularities‘
(Refs., 3.55 and 3.56), the most useful approximating functions are,
for practical purposes, polynomials, particularly low order poly~-
nomials. We shall briefly examine two different possibilities for

fitfing'a low order polynomial surface on a triangular mesh cell

(similar approach may be used for other polygons):



;ifﬂ) | Use of additional nodes. This type of approximation has'been f"
k discussed by Silvester (Ref. 3.57). It consists of dividing a

triangle into a number of smallgr triangles, in a regular
pattern (Fig. 3.11), so that the number of nodes in such a
triangle corresponds to the degrees of freedom of a poly-
nomial. The coefficients of a polynomial expression are then
obtained from the value of the function at all the nodes of
the triangle. This appfoach is general and it is basically o
the same for a polynomial of any order.

 ~b).f Alternatively, coefficients of the approximating polynomial ’; 5

may be determined from the value of the function and its

e

:‘5;{ derivatives at triangle vertices. This approach is discussed = = -

vin Ref. 3.58. It may be necessary to add some nodes inside
the triangle in order to obtain the complete polynomial

(e.g. for a complete cubic it is necessary to add one node in:i
the middle of the triangle in order to obtain ten coeffici-
ents). The complete polynomial is necessary in order to keepU :3‘
the approximation independent of the rélative position of thé ;;5

triangle.

The approach in a) has the disadvantage that it will not give5{ f"
~a 'smooth' approximation on the intertriangle interfaces, :
S Generally, it will yield a continuous derivative in the direction
- of the interface only. (In our case it would correspond to contif’? 
nuous normal andvdiscontinuous tangential flux density).
The approach in b) will yield a smooth surface, but.it is
generally more complex to use, particularly in the non-homogeneou3~fA  

_region where smoothness will not always be desirable. For the  ~;L;‘;,
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 simplest polynomials, i.e. linear functions, both approximations ff*ff
reduce to the same, non-smooth surface.
In structural engineering problems these two approximations
- are often referred to as non-conforming and conforming solutions
(Ref. 3.59). The whole problem is also closely related to app?oxi-A,
mation techniques and the recently developed theory of spline -
functions (Ref. 3.60), which will probably provide the answers, ? ‘;f“"

about general accuracy and applicability of the method,

- 3,6 Choice of a Mathematic Model

In previous sections we have briefly discussed several methods j~5;

for the solution of the magnetic field problem in an induction

machine, We may summarise in saying that none of the methods,
. except the numerical ones, have been successfully used for large‘}ffi,g

and complex non-linear problems of which induction machine is a

typical example. Without further discussion we shall éiscard all ?gi
the methods except the numerical ones as unsuitable for our .
problem,

In order to make a proper choice of the wide variety of

" numerical methods, we must summarise the necessities that the

- method must fulfil:

a) It must represent the geometry accurately, particularlyl ;;_;

in the air-gap region,

© . b) It must deal with the periodicity conditions easily.

iy

"VVf'c) It must provide means for checking the accuracy of phg Q

final results,

~.d) It must provide results from relatively little Aata .

5 (i.e. B-H curve, geometry and current distributipn)-'
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e) It must be efficient.

In addition, it is necessary to take into account limitations
imposed by the finite store and accuracy of the computer.
Generally, the demands and limitations will oppose each other. It
is necessary to compromise. Our choice is triangular discretiza=-
tion with free topology and linear approximation of the vector
potential A.

This choice is somewhat arbitrary. It has been made on the
basis of limited experience of the use of different methods accu-
mﬁlated so far in the technical literature and because it is
possible to develop a corresponding computer program to fulfil most
" of ﬁhe demands a) - e) satisfactorily. We note that this choice
corresponds to most of the work published so far on the use of

finite element method.

3.7 Derivation of the Algebraic Equations Representing the Field

Solution

In the'previous section we have chosen the type of our
approximate solution. We may represent it graphically (in terms of
the vector potential A) as a surface consisting of a number of
triangle shaped parts of planes which match together at the mutualr
boundaries (Fig. 3.12). To obtain the solution we seek the values
of vector potential A at the mesh nodes; the approximate solution |
at all‘points of the region is obtained from the approximating
functions for corresponding triangles, In ofder to obtain n values
of vector potential A (f?r the problem with n mesh nodes) we need n
equations. As mentionedyin section 3.2, these are to be obtained

by substituting our approximate solution into the source equations,
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~+. and by minimising (or eliminating) the error. The error criterion

has yet to be defined; before that we consider again the source i

.fij equations (3.1)-(3.6).

.

As we have reduced our problem to the magnetostatic one, our

... system (Eqs. (3.1)-(3.6)) is reduced to three equations: (3.2),}f'pu

© (3.3) and (3.5). We write Eq. (3.2) (without the time dependent

;,memher) and Eq. (3.3) again in their integral form:

Due to the nature of our approximate solution, Eq. (3.13),

x‘ﬁf which is reduced to a two-dimensional line integral, is already S
o satisfied for anyvintegration area chosen; it is therefore clear)‘f
that we must derive our error criteria either from Eq. (3.12) e
(or Eq. (3.2)), or some equatién that includes Eq. (3.12) impli~- e

. citly. Our approximation is differentiable only piecewise, insidefgv

the triangle areas, and not on the intertriangle boundaries,

o~ Furthermore, its second derivative is identically equal to zero

. over the entire area in consideration (except on the triangle

. boundaries where it is not defined). The choice of equation for. P
* the derivation of our error criterion is therefore further limited ~ =

- to integral type equations (in terms of vector potential A).

. Consideration of the field energy provides one such equation.

' The magnetic field energy in linear media is given by (Ref. 3.61):

(=1
[ ]
N
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which can be transformed into (in this transformation we make use

of Eq. (3.2)):

U - 2 I 4.3 dv (3.15)

Eq. (3.15) can also be obtained through the assembly work of
current carrying circuits. Eqns. (3.14) and (3.15) yield the same
amount of energy. Furthermore, if, due to some imaginary current
distribution gfdv the value of the vector potential changes by gﬁf.
then the additional ;ork dW corresponds to the change of energy dU.

The additional work is:

S x .
dW = (I A.J dv) dA o (3.16)
v

and the change of energy from Eq. (3.14):

9 1 .
w = 2} Iy_._ng) dA (3.17)

v

 which, combined gives:

- = 2 (2 I H.B dV - I,_A_.:_I_dv) dA* = 0 (3.18)
v

or

—?- 4

1 - |
5x (7 I H.B dV =~ I AJ dv) = 0 - Ga9)

v v

This equation is often regarded as the statement that the total
potential energy of the system must be stationary.
Different distributions of the vector potential A will-not

satisfy Eq. (3.19); we may define our error as:
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2

1

and seek the distribution of A which minimises, for example, the
mean square error over the region, or which eliminates error
defined by Eq. (3.20) completely. (Indeed these two approaches
would, in our case, give two equivalent sets of equations).

From geometrical considerations the vector potential A(e)

inside the triahgle 'e' is (Fig. 3.13):

RGN 'z'sle {A§e>[x(y< ye)y, y(xé«»_x(e)),, <)y (e) x‘ﬁe’yf’] .

+ AJ{e) x(y(e)_y( )ys y(x(e)__xée))+ xée)yge) - xée)yée) +

o

v 2l Ly ). y(x‘e) x(®)+ 1y () - J.‘e)yi‘ef} (3.21)

The flux density E‘e) is obtained from (3.7):

z(e) A8 (e)_ (e))+ A(e)(x(e)

.1 (e) (e) (e)
£ Sl o sl b

RS
.1[ (e)(y(e)-yée))*' A<e) (7$8)-y {34 aL®) (y§e>-y§e>)]} (3.22)

The value of (Efe))Z = [B(e)|2 can be obtained readily from Eq.
(3.22). S(e) denotes the area of the triangle,

As the number of triangles is finite, we may substitute the
integrals in Eq. (3.20) by finite sums of the contributio;;:to Eq.‘

(3.20) of all triangles m :
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k{ Fig. 3.13 A Typical Triangle of the Discretized Continuum -
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% I u(®) (&) ggle)_
(e) .

2,1 [ . o
e‘——(—I .BdV-IA..IdV)-
9A ‘2 —_
v e=] 3A

- é('e) .i(e) dS(E)
(e)

) (3.23)
g :

(e)

As vector potential A inside the triangle is a function of

the nodal values of vector potential AL’ tﬁis expression represents
an n-dimensional vector function of Az, the nodal values of vector
potential, By substituting E(e).g(e) = v(e)(_li(e))2 and Eqn. (3.21)
for A(e) into Eqn. (3.23), integrating over the triangle area, and
differentiating n times we obtain n components of € which we all
set equal to zeroj; we have the set of n equations of which the
typieal one is:

(e)
v (e) (e)_ (e) 2 (e) (e) (e) (e) e) (e)
——?——- ( )4 +(y. ) + A ( ) (x.
48

% 0 © .

x

e=]1
+(yJ(e)_yke))(y(e) (e)) . Al(e) (xée) (e))(x(e) (e))+(y(e) (e))(y(e) (e)
(e) (e)
-2 = .o (3.24)

where summation is taken over all the triangles adjacent “ko a
certain node. For non-linear media, Eqns. (3.14) and (3.15) do noe-
represent the field energy, but the relation (3.19) should still
hold. The only difference is that Eq. (3.24) becomes non-linear,’
due to non-linear reluctivity v, which may be now expressed as a
function of flux density B, or, more convenient for computation
purposes as a function of B2, As in our appfoximation B2 is cons- -
tane over the triangle area, the most logical choice is a constant

v = £(B2) inside the triangle.
: !
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The approach described is known in technical literature as
the 'Ritz's method', 'Rayleigh-Ritz method', 'variational formu;
lation', 'energy approach' or simplx 'the finite element method'.

(3.19) is usually derived by applying the Euler theorem of the
calculus of variations to Eq. (3.10), which justifies naming the
approach 'variationallformulation', if Eq. (3.10) is taken as the ; 
source equation. If Eq. (3.19) is taken as the source equation,‘;[;b
the approach could be also described as 'érthogonality method',
or, more particular 'Galerkin's method’'.

Another poséibility for the derivation of our equations is

the direct use of Eq. (3.12). In the current carrying region this

equation is not satisfied for any integration loop which does not °

include at least one mesh node (because our approximation is.curl
' free inside the triangle area), and in the current free area it is
satisfied regardless of the distribution of A. This is not so if"
the integration loop includes a mesh node. We may therefore |
choose a number of integration loops, for which we can app}y Eq;

-+ (3.12), and define our error vector as:

e} = { Jg.y_,_ - I J.d8 4 (3.25) -

L : S :

The number of components of this vector is equal to thé number of
integration loops chosen and, generally, we can minimise it in the~L'
least square sense by adjusting the nodal values of A, However,  fé‘
if the number of loops:-is equal to the number of nodes, we may‘ -
| eliminate ¢ defined Eq. (3 25) complecely by solvxng the corres-{€¢$  

ponding equations.
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An integration loop may be set in an infinite number of ways.
A logical way is to choose the integration line around a mesh
node so that it is symmetrical and that the line includes one
third of the triangle area (Fig. 3.i4). In that case integratioq
around several, or just one mesh node will yield an equivalent
system of equations,

Since the field is curl free inside the triangle the value of
J H.d% will depend on the position of starting and finishing point

only., By substituting H = vB and using Eq. (3.22) (Fig. 3.14):

— e 1 2

[ (&) (1 (o), (e)__(e)v., (), (e)_ ()., (e), ()__(e) %
v e e e e e e e e e .
[ H,df = ;s_z-T { [A h (xk -xj )*Aj (xi - ) +Ak (xj -xi )] -————l—.—. +

(e)__(e)

y. b4
[ (e)(y(e) (e))+A(e)(y(e) e))+Aée) (e)_yée))] 'J"T?fls" } (3.26)

The integration of JdS over the corresponding third of the triangle
area gives:
f Jds = i% (3.27)

If the integration is carried out around one mesh node only we have:

p (e)
(e)_ (e) (e) (e) (e)(, (e)__(e),, Ce)_ (e)
[0 B o e

e=]

+ 3 -9fN {7} (1 x{) x4 (7{-yi)

5(e) g(e) |
(y(e) (e))}] :;S, _,_} = 0 (302108)

' where summation is taken over all the triangles surrounding the node
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. in consideration and which is exactly the same as Eq. (3.24). 1f
we choose n integration loops around n mesh nodes we sha}l get the
set of n equations, identical to th? set obtained by variational
approach applied to the same approximation,

This approach is known in the literature as 'integration
method', 'orthogonality method' (or Galerkin's method, as a sub=
group of orthogonality methods) or 'small field appfoximation'.

Although these two approachés are not the only possibility of
obtaining the final set of algebraic equafions (in Ref, 3.40 anf |
approach that derives the equations from the analogy with'a
current carrying sheet has been presented, and in Ref. 3.47 a
possibility for the use of Taylor expansion, i.e. finite differfv
ence method for arbitrary mesh has been presented), they are
probably the most convenient ones. The integration method has the
advantage of being simple, but it is not quite clear how it can bé 
exténded to three-dimensional vector field problems, unlike the |
energy method, which is, in this sense, more general,

As it is‘clearly seen from the integration method, our
approximafion will satisfy Eq. (3.12) only for specially chosen
integration loops. The continuity conditions on the inter-
element boundaries will generally be violgted for the tangential
component of the magnetic field strength, This is most easily
seen for an integration .of I,E,q& along the loqp which includes
only the intertriangle boundary (Fig. 3.15) between two triangles
in which the flux lines are not parallel. This violation is due

to our approximation. The question therefofe arises, whether it
is possible to derive an approximation which will not violate the

continuity conditions, without increasing the order of

PR
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approximation, The answer is clearly negative if the definitiom
of the vector potential as a continuous function is to be képt.

If vector potentials are allowed to be discontinuous at tfiangle
boundaries, the continuity of tangeﬁtial component of magneticv
field strength may be preserved (but normal component of flux
density will be discontinuous). This approach will give a
slightly different set of equations, and a slightly different
resulting field. Indeed, there are several possibilities for
slightly different approximations and error criterion definitiqﬁs.‘-
These are known as '"minimum complementary energy modél',
'Reissner's variational principle model', 'hybrid model', etc.
Some of these models will give overestimation (e.g. minimum com-
plementary energy model), and some -underestimation (e.g. potential
energy model, which we used) of the function A - a useful feature
~ for the practical assessment of accuracy (Ref..3.62). Unfortuna-i.’
tely, all these models are more complex, and more difficult to use

than the minimum potential energy model,

3.8 Boundary Conditions

The use of Eq. (3.24) fof the computation of vector potential
is valid only for the internal nodes.  For nodes on the boundary »
another formulae are necessary, depending on the type of the
boundary condition.,

In our problem we have combined boundary conditions that
could be described as Dirichlet plus periddiﬁity boundary condi-
tions. Due to assumptions b) and c) made in section 3.1 there is
no magnetic flux outside the machine and in the shaft, This is

equivalent to the statement that these two boundaries are flux
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lines (or equipotential lines), i.e. we have Dirichlet boundary
conditions. An arbitrary constant value of vector potential A maf
be prescribed to the mésh nodes on these two boundaries, instead
of using Eq. (3.24). The simplest choice is A = 0.

Due to the symmetric electromagnetic structure of the
machine, the magnetic field in it will Be periodical with the
period of two pole pitches and.symmetric in two adjacent poles.
The compufafion can be therefore limited to only one pole pitch. o
The values of vector potential on two sides of the pole will have
the same magnitude, but opposite sign. If the distribution of
mesh nodes on these two boundaries are the same, Eq. (3.24)Imay
still be used for the nodes on the boundaries. The summation will
be partially carried out on one, and partially on the other side
of the pole pitch, with the negative sign for vector potential A.‘
.Although this complicates computer program, it can be solved

satisfactorily.

3.9 Torque and Induced Voltage Computations

The desirable result of ouf computation would be torque and
impedance of the machine for a given current. As the medium is
non-linear it is not safe to talk about impedance (or reactance
or inductance), before the definition of these values. The situ-
ation is much clearer if we limit ourselves to instantaneous |
torque, linked flux and induced voltage; these can be also
readily evaluated from the field.

The simplest way of torque computation is by the surface
ihfegtal method (Ref., 3.63). The tangential and'normal surface

component are given respectively by: .
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Ft' = u, Hn Ht | ' (3.28)

Fa ™ 32

8 2 - H.2) (3.29)
Integration of the tangential component along the air gap and
multipiication by rotor radius will give the instantaneous torque
per unit axial length of the machine. This integration is eaéily
carried out for our finite element approximation, as the value of’
Fn and Ft are constant inside the given triangle and are readily
obtainable from the vector potential. Any integration line inside
the air gap should yield the same result.

The flux linked by the coil may be evaluated from the vector

-
-

potential, If we define the value of vector potential as zero at
infinity, the value of vector potential A at any point represents
the total flux ¥ as it would be obtained by integration of B.dS
over the surface extending from infinity to the point in considef-
ation (in our case the surface integral would degenerate to line
iﬁtegral and the result would have been obtained for unit axial
length)., It follows that the total flux linked by the coil is |
~ obtained by simple subtraction of the value of vector pdtential
at the incoming aqd outcoming side of the coil, multiplied by the
numﬂer of turns, |

From the known value of the instantaneously linked flux '] the'

induced voltage u in the coil is obtained from:

0 ' :
R . G

For the approximate solution, the differential operator miy be

replaced by the difference operator, thus:
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u = - = (3.31)

It is therefore necessary to evaluate a number of field distribu=-

tions in order to obtain the induced voltage for a given current,
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CHAPTER 4

NUMERICAL SOLUTION OF LARGE SPARSE SYSTEMS

OF NON-LINEAR EQUATIONS

This chapter is concerned with some possibilities for the
numerical solution of equations arising from discretization of
non-linear magnetic field problems.,

In section 4.1 we discuss several possibilities for the con=
structioh of the triangle mesh and give basic guide-~lines on the
construction of this mesh, Section 4.2 deals with the,app:o#ima-
tion of the magnetisation curve. Several possibilities are dis=-
cussed and the method of piecewise linear approximation is
selected. |

Section 4,3 discusses the structure of the resulting system
of equations. The basic structure of the system is pointed out,
.which in turn suggests several possibilities for the solution of
this system. In section 4.4 we discuss several possibilities for
the solution of such systems in the linear case. All available
- methods are divided in two groups, direct and indireét (iterative)
methods and a brief account is given of each of them.

In section.é.S several methods for the solution of non—lineaf
equations having a single variable are described, and in the next
section it is shown how some of these methods can be generalised
to apply.to systems of equations. It is also shown how these
methods can be combined with direct or indirect methods for linear
systems, and several known methods of this type are described.
Some modifications of these methods are also suggested. Section

4.6 contains a review of the literature of numerical solutions of
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non-linear systems related to our prbblem. The conclusion of this
section is that althougﬁ numerous results have been published, no
indirect method of solution has ever been used for non-linear sys=
tems arising from free topology triangular meshes, and although
these methods seem to be very attractive, some numerical experi=-
mentation is thought necessary.

Finally, section 4,8 describes two methods fofnthé‘acéelerg¥‘l
" tion of the convergencé of iterative mgthods for linear and non-

linear problems,

4,1 Construction of the Triangle Mesh

In the previous chapter we have discussed several possibili= -

-

‘ties for discretization of the cross-section of an induction
machine. We have chosen a free topolégy triangular mesh for our
problem. This mesh is very flexible, but complex. ' In order to
avoid some of the practical difficulties which would have been

" encountered in a completely topologically free mesh (organisation =~
of data in the computer core, block iteration techniques), a mild
restriction was imposed regarding the topology of the mesh; i.e.
it was decided that all mesh nodes must lie on a certain_numbet :
of lines that stretch from one boundary to another (boundaries.

with periodicity condition imposed on them, Fig. 4.1). These

" lines must not intersect each other, but their shape, number and

" number of nodes on each line is left free, Linés are numbered in
the radial direction and nodes are numbered from left to right
(of, rather, in the clockwise direction) on each line. Triangles

~are formed by linking the nodes on the two neighbouring lines,
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A typical mesh node for this type of mesh is represented on
Fig. 4.2. The number of triangles in the mesh is equal to
P=2n-m- 2, vhere n is the total number of nodes and mAis the .
number of nodes on the periphery. Regarding the organisation of
data in the computer core it is conveniént to associate two tri-
angles with every node 'i' i.e. triangles 'a' and 'b' of Fig. 4.2
and also two nodes (A and B) by which the corresponding triang1e§
are formed. When corresponding equations are formed, necessary
_data include also current densities and permeabilities (relucti-
vities) for different regions as well as geometry. Seven data for

each node are necessary in order to describe the mesh to the

computer:

X
co~ordinates

Y .

v(a)
reluctivities of triangles a and b

v(b) ¥
serial numbers of nodes A and B

NB ’

J node current

The accuracy of the field solution depends not only on the
mesh, but on the field distribution itself. If, for example, flux
denéity is constant in a certain part of the machine, the vector
potential A will change linearly and an accurate representation
may be achieved by only few triangles. As the complexity of the
field distribution increases, number of nodes must increase as
well if the same accuracy of the solution is expected. This
demand is more pronounced in non-linear cases, where it is neces-

sary .to repreSeﬁt the varying permeability more accurately, In



v

Fige 4.2 A Typical Mesh Node
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practical terms this means finer division into triangles of air gap
and tooth-tip areas than that of teeth and yokes, and also finer
division of iron parts than that of‘air (or copper).

This conclusion is'supported by two more cqnsiderations:

a) the field distribution in the air gap and tooth tip area has
more influence on the performance of the machine; and

b) the complex geometry of the tooth tips can be better repre=
sented by a finer mesh,

The shape of triangles should be kept as near to equilatérals
“as possible. Equilateral triangles have the best properties
régarding the field and reluctivity approximation, and the result-
ing equations can usually be solved with less difficulties than if
triangles with small angles are used.

The basic guide lines for the construction of the triangle
mesh ére therefore as follows:

The mesh may be relatively coarse in the yokes, but its den=-
sity should increase towards the air gap. The mesh should be
finer in iron (teeth) than in non-magnetic areas (slots). ‘Triangles
with small angles should be avoided.

Even for relatively small practical problems the number of
nodes will often be as high as several hundred. As seven data for
each node are necessary for the complete description of the mesh,
the total number of data will usually be about several thousands,
Preparing these data by hand would be cumbersome and liable to
~errors., Some degree of automation in the construction of mesh and
preparétion of data is imperative if anything but very simple and

very few problems are to be solved.
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Several works on the automatic generation of triangle meshes
have been reported and several different ideas have been exploited. 
Winslow (Ref. 4.1) solved the problem by mapping the'geome-

trical picture approximately on to ; regular equilateral triangle
array, and then found the real node co-ordinates by solving
Laplace's equation for the region, where mesh lines are considered
as equipotentialé. Cardew (Ref. 4.2) used the same idea in his
program. Akyuz (Ref. 4.3) introduced a concept of natural co-
ordinate system and used it for an automatic mesh generation pro- |
gram. Reid (Ref. 4.4) constructed a triangle mesh by covering the =
region with a regular triangle mesh and then adjusted the shépe of
triangles on the boundary to represent the boundary more accura-
tely. Jensen (Ref. 4.5) defined only the node co-ordinates, and
the mesh was then generated automatiéally by linking the nearest
nodes.

These are just a few of the publications in which automatici
mesh generation is discussed. The property of all these methods
(except the method of Jensen) is that they produce mildly irregu-
lar meshes, i.e. the mesh cell size changes slowly throughout the
mesh, and triangles are almost gquilateral. Unfortunately, these
methods are really suitable only for problems with simple internai
geometry, and could hardly be applied to our problem because of
the complex geometry of slots and teeth.

For this reason a computer program has been developed which -
generates the triangle mesh for our particular problem of doubly
slotted machines. The mesh gene?ation is based on guide lines
.given‘earlier in this section. The program is strictly user-

oriented and is not intended for general application., It is
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general, however, in the sense fhat-different relative positions
of rotor to stator, as weil as different geometrical dimensions‘
and number of slots on rotor and stator can be dealt with,

For control puyposes‘a plottiné routine has been written
which enables graphical &isplay of a generated mesh, 'Some of the
automatically generated meshes for a small model problem of threei

slots on stator and two slots on rotor are represented on Figs.

: 4.3-4050

4.2 Representation of the Magnetisation Curve

As the reluctivity v of iron is dependent on the local flux
density B in a non-trivial way, v = £(B), it is necessary to rep~
resent this dependence for use in the computer. A graphical
representation which is often used for hand computation cannot be
used, and the magnetisation curve must be presented in some form
of algebraic or transcendental function,

Fisher and Moser (Ref. 4.6) discussed several possibilities
for the representation of magnetisation curves by simple formulae.
Although some of their formulae are quite simple and represent the
actual magnetisation curve fairly well, their use is not quite.
adequate for our purpose. The reason for this is that a very
simplé formula cannot.represent the magnetisation curve accurately
in the whole range of flux densities necessary for our computation
(0O - 2.5 T), and it becomes’necessary to use some testing device ; » ‘
~in order to use different formulae for different parts of the |
curve, i

_ Once a decision has been made to represent the curve by sec=

tions, any number of sections can be used without increase in
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Fig. 4.4

Computer Generated Mesh



Figo 4.5

- Computer Generated Mesh



computation time. The curve can therefore be represented to any
accuracy by the use of very simple expressions, such as piecewise 
linear approxima;ion. This type of approximation was used by
Trutt, Erdelyi and Hopkins (Ref. 4.7).

If non-linear iteration is to be used for the solution of the
final equations (see section 4.6) representation of the first deri=-
vative, 3v/3B = %(B) may also be necessary., If v = f(B) is repre-
sented as a piecewise linear function, its derivative is clearly a
-step function (Fig. 4.6), a point also discussed by Reppe.

(Ref. 4.8). Obviéusly,,this is a very crude approximation to the
actual 3v/3B = f(B), which is a smooth, continuous functiop;
However, it can be used in our computations, as the values of'avlaB
do not have influence on the final result and are used in the
iteration process only.

In the actual computer program the functions that have been
used were v = f(10B2) and 3v/3(10B2) = £f(10B2), This is more con-
venient as it saves several arithmetic operations for every mesh
cell in every iteration. The cur;es were represented by 80 linear
sections and the values of 10B2 were used as indices as to which
section of the curve was to be used. The curve v = f(lOB2) as
derived from the B-H curve supplied by the manufacthrer is repre-

sented on Fig. 4.7.

4,3 Some Properties of the Resulting System of Equations

As we have shown in Chapter 3, our problem has been trans=
formed into a problem of solution of n simultaneous non-linear
equations, of which the representative one is Eqn. (3.24). For the

purpose of programming it is convenient to introduce the_gotation‘, o
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Figs 4.6  Piecewise Linear Approximation of Reluctivity and
o its Differentiation as a Function of Flux Density
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(see Fig., 4. 8 and 4.9)

PLT Y e BTN B Ty
c; = xk-xj : cj = XX . ™ xj-xi (4.1).
S(e) = area of the triangle - (4.2)
P (e) (e) ' '
and )) is . J, : - (4.3)
e=] 3 . 1 ‘

‘With this notation Eqn. (3.24) can now be written as:

. (1), (1), (1) (1) (2), (2), (2) (2)
b. b 4ct e, b, b, "+,
- i i i i (1), "i "i i i (2) :
fi(A) Ai{ 48(1) VAR As(z) VI e
b {™p (M, () (m) PP P )y ‘-
. S | i i .v(m)+ I i i i i .
' 45 ™ 4sP)
ON (1) (1) ) (), (@), () (p)
b J .v(1)+ bi bk +ci S v(p .
S(1) 4s‘P)
(2), (), (2) (2) (1), (1), (1) (1)
by "bs i N ¢ T s B L,
(2) * 45D : :
+
. (m), (m) <m) (m) (m-1), (m-1), (m=1) (m-1)
; b ¢ MON biw by ey ey (m-1)}
as(“‘) 45D
+ ‘ :
. (p) (p) (p) (p) (p-1), (p~1), (p-1) _(p=1)
i A J .v(p?+ bi. bk +ci ack. (p-l)
43(9) 4sP~D)
- Ji =0 . , A (4f4)

or shorter:
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Fig. 4.8 A Typical Triangle

0

Fig. 4.9 A Mesh Node with the Adjacent T:iangies Q

, -
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AC+ Ai’lc1 + e *+ Ai’mcm *aea ¥ Ai,pcp -J, =0 (4.5)
Following Winslow (Ref. 4.1) we call coefficients Cm coupling

coefficients, Formally, we can write Eqns. (4.5) in a matrix form:

[c]{A} = {1} (4.6)

where the elements Ck 2.of matrix [C] are the coupling coeffici-

]
ents. In a non-linear case, these coefficients are functions of
the vector {A}, because of the non=linear reluctivity v, As can

be easily seen from Eqn. (4.4) and Fig. 4.11, coupling coefficient

for two mesh nodes (k and £) depends only on the properties of the ~ =

two triangles for which the line k=% is a common side. They are
also symmetrical, i.e. C, ,=C, .. Coupling coefficient for the
k,2 "%,k

node itself depends on the properties of all surrounding triangies.
The matrix [C] is therefore symmetrical. It is also sparse, as in
average less than seven entries in every row will be different from
zero, As the numbering of nodes is done in an ordered manner, line
after line in our mesh, matrix [C] is also tri block-diagonal, i.e.

it has a form:
r ‘- T ' -y
[01:1] 01:24 , '

' [Czol],’ :Cz’zj, [C2’3] ' | 9‘

R R




.= 00

where n+2.is the number of lines in our mesh. All diagonal mat-
rices in (4.7) are square and have m~l rows where m is a numbet of
nodes on a corresponding mesh line.,

As the matrix elements are functions rather than constanté,
we cannot discuss the numerical properties of matrix (4.7). If, T
however, a linear.case is considered, i.e. if the reluctivity v is.
fixed (although it may vary from one triangle to another), then it
can Be shown that the matrix (4.7)‘18 diagonally dominant (Refs.

4.2, 4.9), 1In the next section we shall briefly examine somé

‘possibilities for the solution of (4.6) for the linear case.

4.4 On the Solution of Large Sparse Sets of Linear Equations

In this section we shall briefly examine some possibilities
for the solution of Eqn. (4.6) for the linear case, i.e., for prob-

lems with constant permeability. We seek:

-~

{ay = [c]"t 3y (4.8)

where [C] is constant, large, sparse, symmetric, diagonally domin-
ant, tri block-diagonal @atrix. The product [C]-I{J} may be found
in a number of different ways., Basically, we shall differentiate °
two groups of methods for the solution of linear systems: direct
and indirect methods. In direct methods the exact solution is
found (theor;tically) after a finite number of arithmetic opera-
tions; In indirect methods the exacf solution would be found after
an infinite number of arithmetic operations. In indirect ﬁethods
one starts from a suitable approximate solution and improves the -
values of.an§owns step by step. In-practice_neither diregt nor

indirect methods will give the exact solution, since to achieve
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this it would be necessary to compute to an infinite number of
decimal places.

We shall consider some direct methods first. One standard
direct method is, for example, Cramer's rule. It is however com-
pletely impractical for anything but very small systems. Gaussiaq
elimination is another well known direct method, and it can be
used for large systems very successfully.

As pointed out in section 4.3, matrix [C] is symmetric,
sparse and tri-block-diagonal. Simple application of the Gaussian
elimination procedure for general matrices in our problem would
not be very suitable, as it would result in waste of computer time.
A number of algorithms, based on Gauséian elimination, have been
developed, which are more suitable for either sparse, or symmetric,
or tri-block-diagonal, or band structured matrices. A detailed
analysis of all these algorithms would take us too far, and we
mention only two of them, which seem to be most suitable for our

problem.

A compact storage scheme originated by Jennings (Ref. 4.10)

is very effective for general band-structured matrices. A Cholesky
reduction sequence may be used in a similar manner (Ref. 4.11),
which may help in the solution of ill-conditioned systems.

Another method, which is known as group or block elimination .

and which makes use of the ;ri-blockfdiagonal structure of matrix .
[C] has been described, for example, by’Zienkiewicz and Cheung
(Ref. 4,12). It is in principle also Gaussian elimination, but
sub-matrices play the role of elements of stan&ard Ggusaian elimié

nation,
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The efficiency of block elimination and compact storage
scheme cannot be compared for systems arising from general tri-
angulation, but simple analysis shows that block elimination is
more effective for matrices derived for the model problem of
Fig. 4.10 for large n (n > 20, i.e. order of [C] larger than 400),
and would probably be faster for our problem. More detailed
analysis shows that the necessary computation time for block
elimination can be further reduced (Ref. 4.13).

Another possibility for the solution of Eqn. (4.8) is an
indirect method. The situation with indirect methods is much
more complicated than with direct ones, as there are numerous
indifect techniques and the comparison of the efficiency of theée‘
is no simple matter. We shall differentiate two groups of

indirect methods, namely relaxation and iteration. The term

relaxation is due to Southwell (Ref. 4.14), and by it we mean a
routine which improves the values of unknowns in Eqn. (438) in a
non-systematic way. Relaxation is suitable for hand computation,
and skill gained in the use of it may imprové the efficiency of
the procedure significantly. It cannot easily be programmed for
an automatic digital computer, and is used in automa;ic computa=
tion only rarely. We shall not consider this technique in any
dgtail. The term 'relaxation' is used often nowadays for a
different group of techniques which we shall call ‘'iteration'.

In an iteration procedure the unknowné are improved in an orderly,
systematic manner. All the methods we shall discuss are iteration
methods, and we shall use the term relaxgtion only to keep to the

established terminology.
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Figs 4,10 A Regular Triangulation of a Square
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An iteration for Eqn. (4.8) can often be described by a

sequence:
(Y, = [N=1([PlHA), _ +3h) = [M]{A}, _ +[N]71(0)

k=1,2,3 ... (4.9)

where {_A}o is a suitable starting approximate solution, and
matrices [N] and [P] are formed by a suitable splitting of matrix
[c]: |

[c] = [8] + [¢] (4.10)

Matrix [C] can be split in an infinite number of ways, and in
this sense the number of different iteration techniques is
infinite, In order to carry out iteration effectively, Eqn. (4.9)
must have certain properties. First, the iteration mustibe
convergent, i.e. consecutive estimates of'{A}k must approach the
solution of Eqn. (4.8) as k increases. Additionally, operations
on the right-hand side of Eqn. (4.9) must be carried out easily,
Whether an iteration is convergent depends, among other things, on
the properties of the matrix [C].

A number of convergent iteration procedures has‘been devel=-
oped for the solution of systems of equations arising from dis;b
cretization techniques applied to linear partial differential
equations. Some of the best known of these iteration techniques
are: -

Jacoby iteration.

Gauss or Gauss-Seidel (Liebmann) iteration.

Successive over-relaxation or extrapolated Gauss-Seidel

iteration (SOR).
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Successive line over-relaxation (SLOR).

Alternating direction implicit method (ADI).

Many of these methods have several different versions (for
example 2 line successive over-relaxation (S2LOR), or so-called
semi-iterations with the use of Chebysheev polynomials, etc.), and.
there are also a number of iteration techniques which we have not :
listed (e.g. method of conjugate gradients). A full comprehensive
analysis of these methods is virtually impossible, as new methodé
(or variations of thé old ones) are introduced constantly., The
‘task would be even more difficult if comparisons for the actual
computer time had to be made, as it would be necessary to tﬁke
into account the size and type of computer, etc.

It is therefore esseqtial to select only some of these
methods and to consider them in detail, Our system is non-linear,
and none of these methods can be used directly. However, they can
form a basis for some non-linear iteration methods. We have
chosen SOR as a representative of point iteration techniques and  »‘
SLOR as a representative of block iteration techniques. This
choice is based on the fact that SOR is superior to both Jacoby
and Gauss-Seidel iteration, and SLOR is superior to line Jacoby
and line Gauss-Seidel. The programming for SOR, Jacoby and Gauss=-
Seidel iteration are similar, and the same is true when their ling
versions are compared. The ADI method can be used only for meshes
with regular topology, and it is not suitable for our problem,

Use of some more sophisticated or recently developed methods like
SZLOR, the method of conjugate gradients (Refs. 4.15, 4.16),
dynamic programming solutions (Ref. 4.17) or the peripheral block

relaxation method (Ref. 4.18) have not been considered in much
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detail, but it is likely that they would require complex programs"
for a free topology of triangular meshes, Limited practical
experience with these methods does not indicate that significant
computer time saving would result from the use of them.‘

As almost all these iteratiﬁe methods have been specially
developed for systems arising from rectangular meshes, a question
arises whether these methods will converge for our equations.
Diagonal dominance of matrix [C] ensures convergence for SOR.

SLOR is normally faster than SOR for rectangular meshes, and
the use of it is'very attractive. As our search in literature did
not produce a single reference where this method is used for free‘
topology meshes, and as yet there is no theoretical proof that
this method will converge for semi~free topology triangular meshes
(indeed, recent results by Cardew, Ref. 4.2, suggest that Fhere
never will be such a proof, as he had experienced divergence for
some cases of the use of SLOR for fixed topology triangular
meshes), it was decided that the suitability of these two methods
for our particular problem should be checked on examples (see
Chapter 5).

An important item is a comparison of the efficiency of direct
and indirect methods. This comparison is difficult to make
because of the many parameters involved (for example: 1is the use »
of backing store on the compdter necessary for the problem in hand‘
or not, accuracy of the result, etc.). In the literac;re usually
only one group of methods is discussedﬁin detail, wﬁile theéothet ;
group is often’avoided completely. An interestiﬁg fact can be
observeds In papers dealing with the finite element method, i.e,

problems connected closely with structural mechanics, the solution
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of the final set of equations is rarely dealt with in detail.
Presumably a direct solution is assumed. On the other hand,
papers dealing with field problems often discuss an iterative
method of solution. This seems to indicate that the experience
gained from the use of a particular method might play an important
role in the decision whether a direct or indirect method is to be
used.

Different methods for the solution of systems of linear
equations described in this section can form a basis for the solu-
tion of non-linear systems. We shall describe several methods for
non-linear systems in section 4.6, In the next section, however,
we sh#ll turn our attention to non~linear equations having a single

variable,

4.5 An Account on the Solution of Non-Linear Equations

In this section we shall briefly describe some methods for the

solution of the non-linear equation having a single variable:
f(x) =0 (4.11).

. Generally, this equation cannot be solved directly. Its numerical
solution is possible by the use of different iteration techniques.,
An iteration protedure for Eqn. (4.11) can be usually described as

a sequence:!
xk+1 - 8(’%) xk"]., eececy xo) k = 0,1,2 e (10012)

using a suitable function g and an initial estimate X e Similarly
to the iterative solution of linear systems the iteration is said

to converge when the consecutive estimates of x approach ghe root
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of the equation as k increases, An anaiogue procedure can be
described for non-linear systems by the use of matrices., Some of
the better known iteration methods for Eqn; (4.11) are the chord
method, Newton's method, the method of false position, Muller's.
method, Aitken's A2 method, Steffensen's method, etc. We shall
not discuss the theoretical basis of these methods nor their con=

vergence, but a brief description of some of them follows,

A}

Chord Method (Whittaker's method) (Ref, 4.19, 4,20)

consists of a sequence:
Kepl = %K mf(xk) k =0,1,2 ,.. q '(4.13)-

where m is a constant,

Newton's Method (Newton-Raphson method) (Ref. 4,19, 4.21)

is obtained when the constant m of the chord method is replaced by

_ af(xk)

%; - axk » thus:
fx) | | L

The method of false position (Regula falsi) (Ref, 4,20,

4.22) is obtained by approximating the derivative in Eqn. (4.14)

bf a difference quotient:
‘§f(xk) £ )=E(x )

/ (4a15)
¢ *x k-1

resulting in a recursion formula:
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X Fe=1
:ﬁ('{-l - xk - f(xk) f(xk)-f(xk_l) k - 1,2,3 eee . (4016) }

In this method two initial estimates, X, and X; have to be made,

1

Muller's method (Ref. 4.23, 4.24) The method of false °
position is eqﬁivalent to approximating the function by a straight"r
line in the neighbourhood of the root. In Muller's method the
‘function is approximated by a low order (quadratic) polynomial.

As quadratic polynomial has normally two zeroé, the working algb-‘
rithm is somewhat more complicated than algorithms already des--

cribed. It also needs three initial estimates, X s ¥; and Xge

Aitken's A2 method (Ref, 4.25, 4,26) was originally

proposed to accelerate convergence of any sequence of numbers,

It therefore can be used to accelerate the convergence of‘any of
the methods already described. If the sequence of ﬂumbers is a
sequence formed by, for example, chord iteration (Eqn. 4.13), then

Aitken's A2 method consist of forming a new sequence:

* (xk-t-l-xk)2
g , "k xk+2-2xk+1-xk

k=1,2... (4.17)

which will normally converge faster than the original sequence Xee

The new estimate x; may now be used as a starting value for two

more steps of chord iteration, after which Eqn. (4.12) is applied‘

again, This method is known as diagonal Aitken's A% procedure, or

also Steffensen's method.

Basically, all these methods can be generalised for the solu=

‘tion of non-linear systems, A disadvantage of simple generalisation
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is that every iteration step requires a solution of a linear
system of the same order. Such methods have been used, however,
for the solution of non-linear systems arising from general tri-
angulation of non-linear magnetic field problems.

We shall discuss ﬁome of these methods and also look at some
other possibilities for the solution of non-linear systems of

equations in the next section.

4.6 On the Solution of Simultaneous Non-Linear Equations

In the pievious two sections we have described soméﬁif“the
possibilities for the solution of large linear systems and algo
some methods for non-linear equations having a single variable.
In this section we shall discuss some methods for non-lineafvsys-
tems.

Our system of equations may be symbolically written:
F(A) =0 (4.18)

where F is an n-dimensional column vector of which a typical
element is given by Eqn. (4.4). Analogously to single non-linear
equation, Eqn. (4.18) cannot be solﬁed directly for a general
case. An iteration procedure for system (4.18) can be described

by an equation which is analogous to Eqn. (4.12):
» &(‘_1 = E(ﬁ‘, ék-l’ eeey 'A'O) k = 1,2’ see (40192

An infinite number of iteration procedures can be defined by a
choice of function G. We cannot discuss these methods in the .
general case, but must restrict ourselves to methods which are

either in common use, or are obvious extensions of some other
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well-knbwn methods. Even so, we can hardly do more than briefly
describe the basic procedure for different methods, as detailed
analysis would be too complex and too lengthy,

We shall differentiate two mai; groups of methods for systems
of equations, direct and indirect methods. In direct methods one .
iteration étep will normally require solution of a linear system
of order n in each iteration. In indirect methods the iteration
is performed by the solution of smaller linear or non-linear sys=
tems. Analogously to a single equatiqn, we can define a chord .
method for systems, which can form a basis for several direct and

indirect methods:

Method A (Chord method for systems, Ref, 4.,27) is defined by

a sequence:

{a} ,, = (A} - [B];{F(A)}k k= 1,2, ¢us (4.;0);

where [B] is a constant square matrix of order n.

Method B (Linearised iteration). In this iteration matrix
[B] is replaced by matrix [C{A}k]"1 of Eqn. (4.6) in eveey itera=-

tion:
- - -1 - .
(A, = (A} - [cay ] (r)}, k= 1,2, woo (4.21)
Method C (Newton's method, Newton-Raphson method) is defined -

similarly, but matrix [B] of Eqn. (4.20) is replaced by the

inverse of the Jacobian matrix: -

T of. (a) ‘
1 k
[J(A)]k - [ A, - (4.22)
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and we have:

(Ahp = Wy - DWIT r@) k=12, w0 @y

Convergence theorems for these methods can usually be proved
only locally, i.e. for the initial vector éo in the neighbourhood
of the root. Iq this case method C shows the property of quadra=
tic convergence, similar to Newton's method for a single equation,
Methods B and C both require a solution of a iinear system of
order n in each iteration. This solution may be carried out either '
by a direct method (e.g. Gaussian elimination) or by an in&irecg ‘
"method (e.g. S0R). In the latter case we may talk about inairect
(two-step, nested, two-level) iteration as every step' of Eqn.
(4.21) or (4.23) consist of an iteration process itself,

Two-step iterative methods of this kind offer an attractive
possibility. Namely as one iteration step in Eqn. (4.21) or
(4.23) gives only an approximation of the root of Eqn. (4.18), the
solution of a linear system need not be accurate. This means that
the inner iteration may consist of only a few iteration steps.
However, the total number of outer iterations may be significantly
larger than in the case where Eqns. (4.21) or (4.23) are solved
accurately.

Method B forms a basis for several two-step 'iterative metﬁods
. of this kind. The outer iteration in these methods consists of

evaluating the elements of matrix [C{A}]by the formula:

(Ci.j{A})k - [Ci’j{A}* --(ci,J.{A})k_l].s3+(ci’j{A})k__'1 (4.24)

where {A}* is an estimate of vector A at the end of inner iteration

-
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cycle, and B is an acceleration factor. Depending on the choice

of inner iteration we have:

Method Bl Two step linearised point Jacobi iteration,
Method B2 Two step linearised point Gauss-Seidel iteration.
Method B3 Two step linearised point SOR (alternating

iteration, alternating relaxation, small field

approximation),

" Method B4 Two step linearised line Jacobi iteration.
Method BS Two step linearised line Gauss-Seidel iteration.
" 'Method B6 Two step linearised line SOR (alternating itera-

tion, alternating relaxation).

Method B2 can be considered as a special case of Method B3,
and B5 as a special case of B6. Methods B3 and B6 have been used
successfully,

Analogously to methods Bl-B6 we could define another group of
methods where Method C would serve as a basis, Wé are not a%are‘
of any attempts of considering these methods either theoretically
or in practice. Instead of these we shall consider another groﬁp
of two step iterations for which method C also serves as a basis,

We have mentioned that Method C converges quadratically, but
its use requires a solution of a large linear system in each
iteration., Convergence of Method A for a given system (4.18) will
depend on the matrix [B] in Eqn. (4.20). By analogy between Eqn.

(4.20) and (4.23) we can expect fast convergence with Method A, if

[B] = [3(a)]™1 (4.25)

One possibility for approximation of the Jacobian matrix is

to neglect some or all off-diagonal elements of this' matrix. if‘a}l
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-
-

off-diggonal elements are neglected, then the inversion of a
matrix is replaced by simple division, in fact, a point iteration‘
technique results, Similarly, if a Jacobian matrix is reduced to
a tri-diagonal strip, then a line iteration technique results,
These techniques can be put on a firm theoretical basis  (Ref,
4,28),

Analogously to methods Bl-B6 two-step iteration techniques -
- can be defined in this case és well, We shall call these tech-v
_ niques two-step non-linear iteration. The outer iteration con=
sists of recalculating the elements of the Jacobian matrix which
have not been neglected (diagonal elements for point iteration and

elements of the tri-diagonal strip for line iteration) by the

formula:

. f. (A) 9f . (A) af. (A) of, (A)

(e (i [y -t |8 k= 12,
- jow i ke j -

(4.26)

where B is an acceleration factor. Depending on the choice of

inner iteration we have:

Method Cl Two-step non-linear point Jacobi iteration,
The outer iteration is defined by (4.26) and the inner iteration

by a sequence:

A . A _ fi(Al,l‘l’ Az’g‘_ll eoeoy An,z_l) i - 1...n ,‘ - 1...K
i 2~ Mi,e-1 ' ot (A) eoelh
' ( aAi )k

(4.27)

K is a number of inner iterations per outer iteration,
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Method C2 Two=step non~linear point Gauss-Seidel iteration.

The outer iteration defined by Eqn. (4.26) and the inner by:

A. >. A fi(Al,l,Az,l"..’Ai-liz’Ai,l-l’Ai+152—19!'ﬂDAn’L_l)

i, " Cie-1 " . “OE_(A)
( 9A. )k
i
i . 1...11, 2 = 1...K (4.28)
" Method C3 Two-step non-linear point SOR.

The outer iteration is defined by Eqn. (4.26) and the inrfer by:

A. = A. - fi(AlDz’Azhz’...’Ai.-l_,ﬂ,’Ai’!_—l’Ai’L—]_"‘”An,z_;l) o
1,4 il 3T_(A) .
i = loo.n’ L = 1...K (4.29)

where w is the over-relaxation factor.

Two-step line iteration methods of this kind are also obtained
by using Eqn. (4.26) for outer iteration, but line iteration for
inner iterations. We quote the following methods without expli-

citly writing the exact procedure:

‘Method C4 Two-step non-linear line Jacobi iteration,
Method C5 Two-step non-linear line Gauss-Seidel iteration,
" 'Method C6 Two—-step non-linear line SOR.

Basically, every outer iteration of methods Bl-B6 and C1~-C6
contains several inner iterations. An extreme in the use of these
schemes is only one inner iteration per outer iteration. It is

possible, of codrse, to construct iteration schemes in which the
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outer iteration as defined for methods B1-B6 and Cl1-C6 contains
less than one iteration. Non-linear point iteration of this type
will consist of the use of any of Egns, (4.27)-(4.29), but the -
coefficient afi(A)laAi is recalculated as Qoon as any new estimate
of Ai‘is known., As the procedure reduces to a single-step itera=
tion, we shall call these methods one-step iteration. Linearised
iteration of this type can be defined, but we consider only non=

linear iteration of this type.

Method D1 One-step non-linear point-Jacobi iteration

(Jacobi-Newton Process, J-N-P) is defined by a sequence:

N - £i Ay .
Lk Tiykml Af (A 1Ay aeeenBy ) oA 1A e 1000 0Ay 1)
aAi
i=1leeen, k = 1,2000  (4.30)
] .
Method D2 One-step non-linear point Gauss—Seidel iteration

(Gauss=Seidel-Newton-Process, G-S-N-P) is defined by:

f A A

AR L R s R e A S L T R e LA N

.Bfi(A

A = A

ik

ik=1 )
122,100 A1k k=121 k=10 70 2 oAy k1)
3A
1

i=1l.,en, k = 1,2,,. (4.31)

Method D3 One-step non-linear point SOR (Extrapolated=-
Gauss-Seidel-Newton-Process, E-G-S-N-P, Generalised Newton's
method, Non=-linear Over-relaxation, Non~linear Successive Over=

relaxation) is defined by:
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A R N i N e T L T RS LIy
of, (A

Aik A k-1

1,202,170 811 1008 k-17P i1 k170002 k1)

9A;

3

i=lien, k=1,2.00 (4.32)

Analogously to methods Di-D3, we have corresponding one-step

non-linear line iteration techniques:

Method D4 One-step non-linear line Jacobi iteration.
Method D5 One-step non-linear line Gauss-Seidel iteration,

Method D6 One-step non-linear line SOR,

These methods are analogous to methods D1-D3, but line itera=-
tion techniques are used instead.

In the indirect iteration methods listed so far the basic
procedure is to use an algorithm for one equation (or group'of
equations)., In doing so a very inaccurate solution of a non-
linear equation corresponding to a certain node is usually found.
Another group of methods can be defined in which an accurate solu='
tion of (for point methods) a non-linear equation in a single

variable Ai is found assuming the remaining values A, ...A,

1 i-1’
Ai+1°'°An constant, Any method for non-linear equation in a
single variable can be used, and normally several steps of, for
example, Newton's method will be necessary until another equation -
is dealt with, These methods can also be called two-step iteiaf

‘tion, but to differentiate these methods from two-step methods

defined earlier, we shall call them non-linear iteration, JThis~ 'v

group of methods is wide, and only as an example we define:_"
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Method E2 Non-linear Newton point Gauss-Seidel iteration
(non-linear Gauss-Seidel (Liebmann) Process, G-S-P, extended

Liebmann iteration, Liebmann method).

Akt = Ak, T

AR AR G AR G RN R R A R Y
3. (A
1

1,1,K 22,10, K7 7 A1k, k2 K, 2-1025 41, k=1, K P k-1,K)
3h.
1

L = loooK, i.- 1...n, k= 1,2,00. (1‘033)

where n is a number of nodes, K is a number of steps of non-linear
iteration to be-carried out for every node. K need not be fixed
but may vary from node to node and from iteration to iteration,
and the inner iteration can be stopped when a certain accuracy is *
reached.

In this section we have briefly described a number of differr‘
ent iteration techniques for non-linear systems. Some possibili=
ties have only been mentioned, and it is also clear that numerous
additional related iteration techniques can be defined. This vast
number of available methods makes the choice for the method for
our‘system very difficult. Although some methods are closely
related it is by no means true that their rate of convergence will
be similar, nor is it simple to say which method will be faster.
The situation is even more complex if actual computation times are
considered. As a comprehensive analysis of all these methods is
virtually impossible, either theoretically, or by practical com=—

parison of the efficiency of different methods, we shall make a
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brief survey of published results on the use of different itera-
tion techniques for the solution of non-linear systems obtained by
discretization fechniques applied to quasilinear elliptic partial

differential equations.

4,7 Review of Literature on the Numerical Solutions of Quasi-linear .

Elliptic Partial Differential Equations

In pri;ciple, the methods described in section 4.6 can be
used to solve any system of non-linea: equations. Our equations
have some special properties, and if an efficient method is sought
we must restrict our consideration to the use of published methods
applied to systems arising from discretization.

The paper by Bers (Ref. 4.29) has become a classic in this.
field. He discussed a general quasilinear partial differential -
equation of the elliptic type and showed that a normal finite
difference approximation (rectangular mesh) exists, is unique and
converges to the true solution as the mesh size decreases., He.
also showed that non-linear point Jacobi énd non-linear*poin;
Gauss—~Seidel methods converge for this case (method E2 is én
example of this iteration, where Newton iteration is used as inner
iteration). Douglas (Ref. 4.30) considered a somewhat simpler

case, namely the equation:

2 2 :
%A, 3TA . p(x,y,A) - (4434)
ax2 3y2 '

and the application of the ADI iteration in a form of a two—-step
linearised iteration., However, the outer iteration was set up

differently from that one described by Eqn. (4.24). The possibility
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of the use of SOR instead of ADI for inner iteration was also
pointed out, with the remark that the total computation time is
likely to be significantly larger, Put no detailed analysis was
given.

Greenspan and Yohe (Ref. 4.31) considered the three-
dimensional case of Eqn. (4.34) and the application of one-step-
linearised SOR (called by them non-linear over-relaxation, or’
Method D). A comparison with method E2 of section 4.6 was also
given, and it was staged that method E2 was inferior for that
particular problem,

‘Greenspan and Parter (Ref. 4.32) considered theoretical
aspects of several direct iterative methods and their indirect
(point type) counterparts for Eqn. (4.34). The iterations were
set up differently, but are related to our linearised iteration
and Newton-Raphson iteration., Two examples were given, ana it was”
shown that different problems may favour direct or indirect itera-
tion techniques, respectively. Although SOR was used for the'
-solution of the linear system in their direct method, it is likely
that this conclusion will stand even if a direct method of solu~=
tion is chosen -~ unless the number of equations is very large.

Ortega and Rockoff (Ref. 4.33) compared the rate of conver=
gence of methods D1, D2, D3, E2 and non-linear Newton point SOR
(which is analogous to E2 except that an over-relaxation factor is
used)., Method D3 showed superior performance for the problems
they examined (usual difference equations for Eqn. 4.34).

Greenspan, in another paper (Ref. 4.34), considered Method D3
and also two modifications of the same method where the basic non=

linear iteration is applied to an enlarged system of equations.
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This enlarged system is introduced in order to simplify equations
of the original system. Several one- and two-dimensional examples
are given, and in most cases Method, D3 gives the shortest computa=
tion time. |

Meis and T8rnig (Ref, 4.35) gave the convergence theorems for
Method D3 and also linearised ADI (introduced by Douglas). No
comparison of these methods was given.

These are only some of the publications dealing with non=
linear systems arising from discretization. They have been chosen
almost randomly,'and the list of quoted references is by no means
compléte. A number of other works are quoted in, for example,
Ref. 4.35. Most of the papers quoted here discuss a solution of
Eqn. (4.34), and the resul;s cannot be directly applied to our
problem, This is the main reason why we did not iﬁclude more
papers into this review., None of these papers give 'the best
method' for a general case, rather, they suggest that different
problems may favour different methods, even where only the mesh
size is changed (Ref., 4.,32). Thus, if we want to chose the method
which is most suitable for our particular problem, we must
restrict our attention to works which deal with non-linear magne:p-
static problems,

As far as we are aware, the first published results on the
numerical solution of non-linear magnetic fields appeared in 1963,
(Refs. 4.36-4.38). This was followed by a series of publications
by several authors, mainly in collaboration with Erdelyi, in which
the basic technique introduced in Refs. 4.36-4.38 was refined or
applied_to different problems (Refs, 4.39-4.61). In all éhesev

papers, the authors use regular or semiregular meshes and with
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few exceptions consider problems arising in rotating electrical
machines,

Another group of reports has been published in connection
with several programs developed mainly for the purpose of compu-
tation of electromagnets for particle accelerators., Several .
laboratories have been developing these programs: Lawrence
Radiation Laboratory, University of California; Aragone National
Laboratories, Midwestern Universities Research Association;
Brookhaven National Laboratory; Stanford Linear Accelerator
Center, Stanford University and also European CERN. In the
literature these programs are often referred to by their names,
and we quote names of some of these programs for future referenceé»
LINDA, TRIM, POISSON, NUTCRACKER, MARE, GRACY, SYBIL, The litera=-
ture on these programs is gxtensive and consists mainly of inter=-
nal reports. However, several papers have been published in
periodicals (Ref; 4.1, 4.62-4.65). Further references can be
found in quoted literature. Some of these programs differ con-
siderably from each other. Problems for which they were developed
have relatively simple geometry, but the accuracy required is
high., The mesh used ip regular or mildly irregular, rectangular
or triangular,

Recently, several reports have been published on the use of
irregular triangular meshes for non-linear magnetic problems.
Although the problems considered are closely related to problems
in Refs. 4,36-4,61, (i.e., mainly rotating electrical machiﬁes),
methods of computation differ from those in Refs. 4.36-4.61 to a

?

conside:able degree (Refs., 4.66-4.69).
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Direct comparison of the efficiency bf different meﬁhods used
in these reports is virtually impossible for several reasons. The
problems considered by different au?hors are different, the dis=-
cretization mesh is different, and different computers have been
used. Data given in these reports about the efficiency of a
particular method used differ from paper to paper. Whilé some
authors use mathematical terms like rate of convergence, others
simply quote actual computation time, sometimes without specify=-
ing computer or compiler. A number of papers, moreover, do not
give any details about the efficiency of'the numerical method
used for computation. We shall therefore consider different
groups of reports separately, because otherwise the conclusions
could be quite misleading.

A common feature in Refs, 4.36-4.61 is the use of mildly
irregular meshes of rectangular or polar type, resulting in a
large number of equations (up to several thousand). 1In their
first paper, Trutt, Erdelyi and Jackson (Ref. 4.36) introduce
Method B3 of section 4.6; Other methods are not considered but no
details about the efficiency of this method are given. In Ref.
4.45, Ah;med and Erdelyi describe a block—acceleration technique
(see section 4.8), but continue to use two-step point SOR as a
basic numerical procedure. Reichert (Ref. 4.51) compared the
performance of Method B3, and linearised two-step ADI for a simple
problem with square mesh and 255 mesh nodes. He also used a
block-acceleration technique, and the results do not bear a direct
relationship to the efficiency of the same methods without accele-
ration. However, the results indicate very slightly better per=

formance of the two-step linearised point SOR (Method B3), 1In
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. another paper, (Ref. 4.52), the same author advocates the use of
~ two-step linearised SLOR (method B6) for meshes with more than

about 500 nodes and two-step linearised SOR (method'B3) for
smaller meshes., In Ref, 4,58, Erdelyi and Fuchs describe Method
B6 in more detail., An example is given in Ref. 4.59. The total
average computer time is quoted, and although there is no compari-
sonlwith other methods, the results suggest that B6 converges
faster than Method B3 for large meshes. Von Zweygbergk and Hultin
state in their paper (Ref. 4.55) that Method B2 did not converge :
for any example they tried, and they developed another two-step
linearised procedure which is closely related to direct methods,'..
but iteration is used as means for the solution of the linear
system. No discussion of the rate of convergence is giveﬁ, except
the statement that the method is fast and reliable. Trying to
summarise these results we can say that for this type of mesh
methods B3 and B6 can be considered as reliable. Comparisons, as
well as the recent treﬁd towards the use of Method B6 indicate
Method B6 is faster for meshes with more than about 500 mesh
nodes.

Methods used in another group of reports (Refs. 4.1, 4.62-
4.65) differ from one another, and some of these programs use
rather special techniques, So programs MARE, SYBIL and LINDA
evaluate the field separately in aig and iron regions and then
combine these solutions in an iteration scheme. A rectangular

discretization mesh was used. Programs GRACY and NUTCRACKER use

rectangular or polar meshes and Method B3 for the solution of the

equations. In this respect they do not differ from methods of the

first group. Of special interest to us is program TRIM. The
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discrgtization mesh used is a topoiogically regular triangular
mesh. Although the meéh in our program is more géneral, this is
the only program that uses a triangular mesh and indirect method#
of solution., It is believed that basically the same methods can
be used successfully for both type of meshes. The basic iterétion
procedure used in program TRIM is Method B3. However, tests have
been carried out with non-linear Newton point SOR and n;;-linearA
Aitken's A2 point SOR (both called non-linear over-relaxation)
which both showed inferior performance as compared with two-step
linearised iteration (Ref. 4.1). All these programs are intended
for use with large meshes (e.g. a version of NUTCRACKER program
can solve problems of up to 22500 mesh nodes (Ref. 4.64)). |

A third group of reports are Refs. 4.66-4.69. They are
characterised by the use of free-topology irregular meshes. The
number of nodes is relatively small (a few hundred) and the
resulting systems were solved by direct methods. The procedure
consists of a few steps of chord iteration (Method A), which
generate the initial values of the vector potentials, followed
by Newton-Raphson iteration (Method C). Comparison of Method A
and C is given, and Method C is about 3 to 4 times faster. Com=
parison with indirect methods was not attempted.

Finally, we consider two reports in which comparison of the
efficiency of several different methods for a particular problem
(or problems) have been presented. In his paper, Concus (Ref.
4,70) compared the performance of Methods B3, D3 and two versions.
of Method C, where point SOR and line SOR was used for the solu=~
tion of the resulting linear system. A rectangular mesh was used

and results for two problems with 90 and 870 nodes were compared.
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For the small problem Method B3 was marginally superior to the
other three methods, but for the larger problgm Method D3 .gave the
shortest computation time. Another report due to Reichert was
published as his discussion to Ref. 4.67. He compared Method B6,
D3, D6 and C (direct solution of the linear system in Method C was
used). A rectangular mesh with 224 mesh nodes was used, and his
results show superior performance of Method Dé6.

On the basis of this review no definite conclusion may be
drawn as to which method will be most suitable for our problem.
The only practical computations that use a non-uniform free-
topology mesh use direct iterative methods, but the number of mesh
nodes is rather small., The indications are that for large meshes |
indirect iterative methods might be superior.,

Of indirect iterative methods two-step linearised point SOR
has shown better performance when compared with non-linear Néwton‘
point SOR for a mildly non-uniform triangular mesh. This is also .
true for other types of regular meshes.

For mildly irregular rectangular meshes different two?step
linearised iteration methods and one-step non-linear itemation
methods have been compared. In most cases non-linear type itera=
tions have been shown to be superior to two-step linearised
jiteration. Block (line) type iterations have always shown better
performance than their point-type counterparts. Finally, a number.A
of methods that are obvious modifications of some well-known
methods have never been tested on systems arising from discretiza=
tion. |

We have therefore decided to compare some of these methods,

namely Methods B3, B6, D3, C3, C6. Results of this comparison
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will be given in Chapter 5. Before that, in the next section we
consider some block—acceleration techniques that have been suc-

cessfully used for various problems.

4,8 On Block—-Methods for Acceleration of Convergence

Unlike the over-relaxation, in which the acceleration of coﬁ-
vergence 1s achieved by extrapolating the new estimates of vector
potenﬁial, but the basic iteration procedure is unchanged, block
methods for acceleration of convergence consist of altering the
basic iteration procedure by adding one or more equations which
are iterated alongside with the basic system. This type of acce-
leration is suitable for indirect iterative methods and so far it
has been used only for linearised two—-step iteration techniques,

The basic idea in bléck acceleration techniques is due to
Southwell (see for example Ref. 4.71) and in principle it consists
of altering the values of vector potential at more than one mesh
node by some simple procedure (e.g. increasing the values of a
group of unknowns by the same amount, a method which Southwell
called block relaxation, but this term is used nowadays in another
sense). If an area on our mesh, containing more than one mesh
node is encircled by a closed contour C (Fig. 4.11) and if all
equations (4.4) corresponding to the enclosed nodes are added, the
coefficients of A; in Eqn. (4.4) will partially cancel out. The
reéulting‘equation will be satisfied if all Eqns. (4.4) are satis=
fied, i.e. when the solution has converged. The converse is not
valid. However, if this resulting equation is not'satisfied, the -
4Va1ues éf all vector-potentials inside the contour can be changed -

in such a way that this equation becomes satisfied, The_idea can
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y A

Fig. 4.11 Several Mesh Nodes Enclosed by a Closed Contour C
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also be given a physical meaning, namely the equation obtained by
adding sevgral basic equations (4.4) is equivalent to the equatioh
which would be obtained by integrating § H df along the contour C,
On these grounds the method is sometimes called 'acceleration
- based on physical grounds'. Another common name for this process ‘
is 'non-stationar& methods'.

The first modern use of this method as far as we are aware of
is due to Ahamed (Ref, 4.72). The method consists of choosing the
contour C so that iﬁ encircles the enti;e mesh except the nodes on

the boundaries. The ratio:

Sy
T
|~
o,
]

(4.35)
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is found using appropriate difference approximation after every
iteration and the entire array of vector potentials is multiplied:
by this ratio. The performance of this mgthod is remarkable for
both linear and non-linear problems and concentrated excitation..
Reéults published by Ahamed show that the total computation time
can be reduced ten times., However, the method dqes not behave so -
well with distributed excitation (indeed in cases where

JI J:dS = 0 it cannot be used) and modifications of the method
wgre necessary, which unfortunately»complicate the basic method a
good deal (Ref. 4.49). The method can be used only when at least
some of the boundary potentials are zero, and although modifica-
tions can be made to include other types of boundaries, or cases
when the integration contour encloses only part of the entire area,
(Ref. 4.53), another method, due to de La Vallée Poussin and Lion

is then more suitable,
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De La Vallée Poussin and Lion have found (Ref. 4,73) that one
of the causes for poor convergence of linear‘magnetic field prob=-
lems is the existence of 'windows' or 'quasiwindows' of low perme= .
ability.in highl; permeable area (slots of the machine)., The rate
of convergence can be improved if such windows are enclosed by an
integration contour and the value:

1o fna

aa o= 2 e - (4.36)

oH
&m-d&
C

is added to the vector potentials internal to the contour after"
every iteration. Similarly to the method by Ahamed the finite
difference approximation to Eqn. (4.36) is used. This method
corrects the value of § Hedf by adding AA to the nodes interiof
to the integration contour, while Ahamed's method does the same by
multiplication. These methods are sometimes also called 'a&ditive'
| or'multiplicative' acceleration, respectively.

Although these metho&s have been used only with rectangular
meshes, corresponding algorithms for triangular meshes can readily
be developed. Both these methods can be said to be linear. For
non-linear problems, if these are solved by some non-linear
indirect technique, modifications which convert these two mgthods
into non-linear ones suggest themselves. However, practical
application of these non-linear versions might become lengthy and -
increase the total computation time. -
These block~acceleration methods are also related to varia=

tional methods of Wachspress, (Ref. 4.74), which were developed

for the neutron diffusion equation,
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CHAPTER 5

COMPARISON OF DIFFERENT ITERATION METHODS

In Chapter 4 we have defined séveral iteration schemes for
the solution of our non-liﬂear system of equations. In this
chapter we shall describe the computer program in more detail and |
also present some results from the use of different iteration
schemes in one example.

In section 5.1 we give the basic fiow charts for different
iteration methods. Section 5.2 describes the overall computer
program. The program consists of three main parts corresponding

to mesh generation, solution of equations and output.

In section 5.3 different iteration methods are compared. The

section consists of four sub-sections. In sub-section 5.3.1 we
describe the model problem for which comparison is made and also
made some general remarks on the usefulness of such comparison.
In sub-section 5.3.2 criteria for convergence are defined, while
in 5.3.3 we discuss the problem of the estimation of iteration
parameters. A trial and error method was adopted. In the final
sub—-section the number of iteratioﬁs for different iteration
schemes as well as the computation times are compared for differ=
ent schemes,
'
Section 5.4 is concerned with convergence as a function of

iteration parameters.

5.1 Algorithms for Different Iteration Schemes

In Chapter 4 we have defined several iteration schemes. In

this section we shall describe the algorithms and flow charts for
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several different methods in more detail. On the basis of these

algorithms the actual computer program was written.

Method B3 (see section 4,6) ' The basic flow chart for this -

method is represented on Fig., 5.1. The computation is started
with prescribed constant values of reluctivities v for iron parts,
With these valueé the coupling coefficients of Eqn., 4.5 are compu-
ted using corresponding expressions of Eqn. 4.4 for all nodes n
(box 2). Since the coupling coefficients are symmetrical, it is
necessary to compute only four coefficients for every node:
coefficient Ci,i’ which corresponds to the node itself and also

three coefficients that correspond to three linking lines with

nodes A, B and i+l (Fig. 5.2), C and C, .

i,A’ Ci,B i,i+1°

these coefficients are not defined for boundary nodes and the

Some of

computation of these is bypassed.

Now the system of equations is completely defined and box 3
of the program is entered. This box solves approximately the
system of equations by a standard point SOR technique. The pro=-
cedure can be easily described as follows: Assuming all values of
vector potential constant, except for node 'i', the linear equa=- |
tion 4.5 is solved for A;3 the value obtaiﬁed ve call A*. The

new value of Ai K is then extrapolated (overrelaxed) to:
. ? :

= *-
Ai,k Ai,k + (A Ai,k) . w - (5.1)

The sub=script k denotes the iteration number, and w is the
acceleration factor. This procedure is repeated systematically
for all nodes K times. A periodicity boundary condition is main=

tained by setting A == A where A, is the vector potential
. L,k f,k L
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ENTRY 1

Y

c i 1 - » . * . - .- L N
ompute coefficients C1,1’ CJ.,A’ C1,1+1’ C1,B’ i=l...n

{

compute vector potentials Ai K i=l,..n, k=1l,,.K
9 .

Y

compute reluctivities v(e), e=l, M

Y
NO
- converged? 5
Y YES
IEXIT 6
Fig. 5.1 Basic Flow Chart for Linearised Iteration
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Fig. 5.2  Coupling Coefficients for Node 'i'
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of the last node on a certain mesh line and Af is the vectbr
potential of the first node on the same line. This procedure is
carried out in every iteration for every mesh line as soon as alli
vector potentials on that line are estimated.

Every cycle of inner iterations needs an estimate for initial
values of A, The first cycle is usually started with all A=0,
although in the program provision is made to start computation
from any other starting vector {A}, generated, for example,.by
previous iteration with a different current distributipn; The -
consequent iteration cycles are started with {A}.as at the end of‘
thé previous cycle.

After K iteration steps box 4 of the program is entered in
which new values of reluctivities for iron ﬁarts are computed on
the basis of new values of vector potential. In terms of vector

potential the flux density is:

A \2 .., %A \2
|B] = V/( T Yo+ ( 3y (5.2)1.

and for a triangle 'e' with nodes i, j, k (Fig. 5.3) the value

2
10(B(e)) is readily evaluated:

102 - --—-z—.)——10 [(bi(e) ale) . lb.(e) Aj(.e) + b]fe) {\lﬁe))z .

4(s'®”y? 1 j
(e) ,(e) (e) ,(e) (e) ,(e)2 ‘
(ci A+ c; Aj o AL ) . (5.3)
where S(e) is the triangle area and b(e) and c(e) are constanfs

defined in Eqn. (4.1). This value of 10(B(e))2 is used to evaiu- 

ate the new value of reluctivity v(e)'from v = £(10B2) as
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Fig. 5.3

~ A Mesh Triangie

% {
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explained in section 4.2. This value we call v* and the relucti-

vity v(e) is then set to
V(e) - \’(e) + (\)* - \)(e)) . B . (5.4)
p P
where v;e) is the previous estimate for v for that triangle, B8 is

an acceleration factor., This computation is repeated for all tri-

angles in iron. Computation in the air gap and slots is bypassed.

After that convergence of the process is checked (box 5). If J

the convergence criteria are not satisfied the control is trans= .

ferred again to box 2, Otherwise the iteration is stopped and

output follows,

" 'Method B6 The flow chart for this method is the same as for

method B3, but block iteration is used in box 3. The block of
nodes corresponds to one mesh line. In this technique all vector
potentials are assumed constant except those on a particular mesh

_line. The system of equations is reduced to a form

rcl,l g, O G e f S ]
€2,1 %,2 ©,3 0 0
° €32 %,3 %4 :

[etm=li T -
f 0 ) ) o |
0 cn-l,n-Z cn--l,n--l . Cn--l,n
_cn,l O vmr mmm e Cn,n-l Cn,n

o

This system is symmetric, but not strictly tri-diagonal, due
to periodicity boundary conditions. . The usual Thomas algorithm

cannot. therefore be used for the solution of Eqn. (5.5). Solution

(5.5)
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can be achieved in two ways: either the system (5.5) is reduced

to strictly tri-diagonal form by transferring the products C, .A

l,n

. and C1 n.An on the right-hand side‘by the use of previous esti-
? .

1

mates of {A} or, alternatively, the algorithm is adapted to suit
Eqn. (5.5). The first approach is described in detail in Ref. 5.1.
We have chosen the second approach, in which Eqn. (5.5)'1; solved
exactly for each mesh line. We do not give the precise details of
the algorithm, but it consists of simple recursion formulae, and
was derived from Jenning's compact data storage solution (Ref. -
5.2). Full advantage was taken of a special form of the matrix

[C] in Eqn. (5.5)0

Method C3 (see section 4.6) The flow chart for this
method is represented in Fig. 5.4. Similarly as in B3 and B6 the
computation is started with prescribed reluctivities v for iron
parts and these values are used in the computation of the coupling
coefficients (box 2). In addition to the coupling coefficients,‘
values of af(Ai)/BAi are also computed for all nodes. The expres=

sion for Bf(Ai)/BAi is easily evaluated from Eqn. (4.4):

(1), (1), (1) (1) (2), (2), (2) (2)
BE(;) by b e ey IO e L@,
A, 45tV 1 4s$2) i
1 1
(m), (m), (m) (m) (r), (p), (P) _(p)
by by e ey (m) b b T ke ey o)
+ eV, +eot oV, +
45 1 45 L
1 . 1
bgl) Sl)+c$1)csl) avfl) bgz)b$2)+c$2)c§2) avfz)
+ A, .( 1 1 b 8 1 . 1 + 1 1 1 1 . 1 O
i,i 45D 9 4 452 oA 4
1 . 1
bgm)bgm)+cgm)cgm) avgm) bfp)bfp)+c§p)cfp) ngp) .
+ 1 1 1 1 . PO 1 1 1 1 . a 1.4;~ ) +
4s ™ % i 4s{™ Ai -
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ENTRY 1

PE(A,)
compute C; v Cia® Ci,ie1 G4m0 o

i=l,,.n’

!

compute vector potentials Ai K i=l,..n
»

k=1,,.K
A |
(e)
~ compute reluctivities V(e). E%K—-
i

e=1,., .M’ i.-lo eeN

Y

NO
- converged? | - - 5
Y YES
EXIT 6

Fig. 5.4 | Plow Chart for Two Step Nonlinear Point SOR
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bWl 5 (1) @) ), @) () ()
RN i e 00w e S Wt w s
DL s My 4si(P) M, 1
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i,m as{™ %1 4s ™D %, .1
. b @ ) @) LB LoD 6D, -1 -1 , e-1)
ta (oiiliSS S i % iy
1,p 4P % v 4s @7V oA i
(5.6)

In this expression values of av(e)/aAi are necessary, These
values are all set to zero before the first iteration cycle. For
consecutive iterations values of 3v/3A are computed in box 4.

After the computation of the coupling coefficients and values |
8f(Ai)/aAi for all nodes, control is transferred to box 3. The p?o-
cess in box 3 is described by Eén. (4.29), i.e, with thé values of
coupling coefficients and af(Ai)/aAi fixed, new values of vector
potential are estimated by the formula:

f(Ai)

= %* - - .
Ay A BE(A,) /3R, w (5.7)

-
/

where A: is the previous estimate of the vector potential of node

i' and w is the acceleration factor. In the evaluation of f(Ai)
the latest known estimates of {A} are always used. Eqn. (5.7) ig
applied systematically for all nodes. The periodicity boundary
condition is preserved in a similar manner as in B3, i.e, the last
node on a mesh line is assigned the negative value of the vector

potential of the first node on that line after the computation of .

all vector potentials on the line.
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After Eqn. (5.7) has been applied for all nodes K times box 4
of the program is entered. Similarly to the two methods already
described, new values of reluctivity v are computed in this box,
The procedure is exactly the same as described in B3. "However, in
addition to the relucti?ity values for 3v/3A are also computed.

For non-magnetic regions these values are zero., For a triangle

e' in the iron region simple differentiation gives (Fig. 5.3):
o (e) (e) (e) 2 : o
IV v 3(10(B* 7)) (e) 2, 10
- . = 8,2b(10(B Y7) . w .
2102 o ®) | oy(s O
(b%?B;e) + éf?Bie)) (5.8)

where B is the acceleration factor used for reluctivities and
b(10B2) is a slope of a corresponding section of v = f(10B2)
approximation, As it can be easily seen three values of 3v/3A are
necessary for every triangle.

After box 4 cénvérgence is checked and if necessary control

returned to box 2.

Method C6 (see section 4.6) (version A) The flow chart
for this method is given on Fig. 5.5. The basic structure is the
same as for method C3 and consists of three main blocks.

In box 2 coupling coefficients as well as values af(Ai)/aAi i
. 1 4

and 8f(A1)/BAi’i+1

used for af(Ai)/aAi,i’ The values of 3f(Ai)/aAi’

for all nodes are computed, Formula (5.6) is_

. are computed
i+1 . put

f?om (we set Ai,i+1 = Ai’l):
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Fige 5.5

ENTRY 1
Yy
compute Ci,i’ Ci,A’ Ci,i+1’ Ci,B’
> Bf(Ai) Bf(Ai)
9A X » 8A 9 i‘l.oon
1,1 i+l
Y
compute vector potentials
Ai,k, 1‘1...“, ksl...K
A ,
(e) ,
compute v(e), EXT;Y , 1=1,2,3
BAi ' e=l,. .M |
Y
NO
- converged? 5
Y YES
EXIT 6
Flow Chart for Two-Step Nonlinear Line SOR
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1 1 L

This expression is obtained from Eqn. (4.4) by direct compu~
tation. It is easily shown by direct computation that these

coefficients are symmetrical, i.e. Bf(Ai)/BAi+1 = 3f(A.

1+1)/3Ai'

After the computation of the coupling coefficients and the
quantities given by Eqns. (5.6) and (5.9) for all nodes box 3 of
the program is entered. In this box new estimates of {A} are |
made. By the definition in section 4.6, method C6 is obtained
from Eqn. (4.23) by approximating the Jacobian maxtrix by its tri=-
diagonal strip. If periodicity conditions are to be maintained,
it is more convenient to include into thé reduced Jacobian matrix.
also the off-diagonal coefficients that are due to periodicity
condition, similérly as in method B6. Thus, the diagonal sub-
matrices of the Jacobian matrix have the same form as matrix [C]
in Eqn. (5.5), and the reduced Jacobian matrix is also sgmmetrical.

By the definition one inner iteration step can be described
by

_ -1 *
a {A}k (0177 . (F@AH) w0 ($.10)

where A* is a latest known estimate of {A}. Due to the block

structure of [J], [J]-l-{F(A*)} can be evaluated block by block
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: (bldcks correspond to mesh lines). The elements of the vector

» {F(A*)} are evaluated as they are required, i.e. line by line,
The latest known estimate of the vector potential is always used,
and vector {A*} consists partially of values of A from (k-1)th
and k-th iteration. The procedure is repeated K times for all
lines.

In box 4 the newly estimated values of vector potential are
used to recalculate reluctivities and values 3v/9A for all
triangles in iron. Formulaé 5.4 and 5.8 are used. After that
convergence is checked and control transferred again to box 2 if

necessary.

Method D3 (see section 4,.6) The flow chart for this
method is shown on Fig. 5.6. The computation is started from some
approximate solution of A and distribution of Ve These approximate
values are used to evaluate new values of reluctivities v of the
surrounding triangles of node 'i' by the Eqn. (5.4) and 3v/3A by
Eqn. (5.8). . These values are then used to compute f(Ai) and

af(Ai)/aAi and the new approximation of Ai is obtained from:

el T Ak T owEay ¢ O

%A,
i

A

w is the acceleration factor. The new values of A are always used
in computing f(Ai) and 3f(Ai)/3Ai. The procedure is applied sys- ‘
tematically to all nodes, which is followed by a convergence check.
This process differs from the one described by Eqn. (4.32) in the
use of the acceleration factor B for reluctivities. Introduction

of this factor was necessary in order to achieve convergence:
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ENTRY 1

compute vector potentials Ai’

i=l...n

NO
- 1 converged? -3

Y YES

EXIT l 4

#

"Fig. 5.6 Flow Chart for One-Step Nonlinear SOR
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Method C6 (version B) The similarity between two-step and
one-step non-linear methods suggests that it might be possible to
define convergent methods which do not belong.to either of these
groups, but lie between them. In these methods elements of the
reduced Jacobian matrix are recalculated in every step on the basis
of new estimates of A, but reluctivities are not computed in every
step. Acceleration factors for both vector potentials and relucti-
vities can be used.

A program for line iteration of this type was written. It is
basically a two—-step procedure and the flow chart on Fig, 5.5 was
followed, except that the values of 9f(A;)/3A; and ¥£(A;)/3A,,,
were computed in box 3, alongside with the values of f(Ai)' The .-
latest known estimates of A wefe always used.

In the next section we shall briefly describe the computer
program which was written on the basis ofvthe different iteration

.methods described here.

5.2 The Computer Program

The block diagram of the computer program is shown on
Fig. 5.7. The progrém consists of three main blocks., The first
block contains subroutines for data preparation, i.e. subroutines
for reading in and checking data, mesh generation and generation of
initial values of vector potehtial.

The second block of the program contains six subroutines for
computafion of vector potentialé. These six subroutines correspond -
to the six different methods descfibed in the previous section.

The last block contains output subroutines.

’
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START
1 Read, print and check 2 Compute node coordinates,
data’ — construct the mesh and
compute geometrical constants
|
\
"3{ Compute load vector and -t
initial A and v arrays
BLOCK 1
- ! —
4
Linearised two-step
> point iteration P = >~ — —
(Method B3)
5[.. . .
. |Linearised two-step line| | < :
iteration - (Method B6) T
6 10
»{ionlinear two-step pointl | ]
iteration (Method C3) Block metbods for
' acceleration of
. convergence
_ [Nonlinear two-step line :
" literation (Method C6-A)|" |1 ¢ > =
8 3
Nonlinear two-step line
"literation (Method C6=B)[™ | ~ > —
BLOCK 2
9 : - .
Nonlinear one-step point
iteration (Method D3) [™]~ <« >—~-
N
BLOCK 3 11 ‘ ; ;
Compute and print final results
from vector potential distribution:
12 vector potentials, flux densities,
YES distribution of reluctivities,
s More data? -t air-gap flux densities, stress
distributicn in the air-gap, torque,
Y 5O linked flux.
Graph output.
STOP P P

Fig. 5.7

Block Diagram of the Compuﬁer Program
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The entire program has been written in FORTRAN (extended
version for ICL 1900 series computers)., The source program con=
tains about 7,000 statements, Whil? the program was being
written, emphasis was put on the efficiency of the code, parti-
cularly of the iteration subroutines. Preliminary tests showéd
that both available c;mpilers (XFAT and XFEW) produce object codes
which are rather slow in dealing with integers. This imposed
severe limitations on the use of multi~dimensional arrays, and
these were used only rarely. The result was a program much more -
complex than originally expected which was, however, reasonably -
efficient, We wish to emphasize, however, that really fast com=-
putation can be achieved only by writing a program in‘machine code,

In the next section we shall give some results on the use of
our program. Although the total computation time can be further
redﬁced by writing the program in machine language, we believe
that the comparison of the'efficiency of different methods has

general relevance,

5.3 Performance of Different Iteration Methods

5.3.1 The model problem

In Chapter 4 we have pointed out that the convergence of a .
particular numerical method for non~linear ﬁroblems_depends on the
problem itself, Practical investigations into ﬁhe convergence of
numerical methods are usually carried out on so called 'model
problems' which often have very simple geometry (e.g. a unit
square with a hole in the middle)., Unfortunately, results’
obtained from such simple problems cannot always be easily‘excra- ‘

polated to more complex problems. An illustration of thig
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difficulty could be the multipiicative acceleration introduced by
Ahamed (see section 4.8). This method shows excellent performance
for a simple geometry and concentrated excitation, but results for
distributed excitation are rather poor. It is therefore necessary
for a modél problem to be representative of a class of problems
for which a particulér computer program is intended. This cannot
be achieved easily with programs intended for general use, where a
class of problems may not even be known,

We are in a somewhat better situation as our program is
~intended for computation of magnetic field distribution of doubly
slotted electrical machines. Thus, we can choose our model prob=
" lem to represent a pole pitch of a doubly slotted machine, witﬁ
combined periodicity and Dirichlet boundary conditions and with a
current distribution corresponding to real problems. The magnet=-
izafidn curve for the model problem can be the same as for the
actual problem. The size of problem regarding both number of
slots (i.e. geometry) and number of nodes (i.e. mesh density) can
also be chosen, in principle, to match real problems. Hence good
correlation can be expected between the performance of a particular
method for a model problem and for real problems. Unfortunately,
the size of such a model problem would impose severe limitations
on numerical experimentation with different iteration schemes,
different parameters, etc., because computation would tend to Be
lengthy and costly. Thus it becomes necessary to restrict the size
of the model problem, in order to carry out numerical experiments,
with the danger that the results of such experiments may not always

indicate the best method for large, real problems.
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The model problem we have chosen for our experiments is a
doubly slotted structure with two slots on the rotor and three
slots on the stator. The boundary conditions are periodicity plus
Dirichlet boundary conditions, whicg correspond to the natural
boundary conditions in electrical machines. The current diétribu-
tion in slots has been chosen to correspond roughly to shﬁrt
circuit conditions. The mesh for this problem is represented on
Fig. 4.3. The mesh has 87 nodes and 145 triangles of which 84
cover iron parts and the rest the slo;s and the air gap. As some
of the nodes lie on the boundaries, the number of equations genera~
ted from this mesh is 68, This is a rather small system and the‘
number of equations for practical problems can be expected to bé
about ten times higher, It was believed, however, that some basic
features of several numerical methods that were to be tested could -
be established even on this small model. Such features include
the question whether the method is convergent or not, the depend=-
ence of the convergence on the choice of iteration parameters, and
to a certain extent also the relativé efficiency of different- '

iteration methods.

5.3.2 Initial conditions and convergence criteria

In order to compare the convergence of different iteration |
schemes, as well as the influence of different parameters, it is
necessary to determine initial values of vector potential and
reluctivity of the iron parts. In a11.cases the starting values
of reluctivity were chosen to be Viron = 1000 (urel = 795) over
the entire iron region. The initial values of vector potential
were obtained by appréximate solution of this linear problem.‘v .

Point SOR was used in order to obtain this approximation.
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50 iterations were performed and these values of vector potential
were used as the initial vector {A}o.

One important problem in iterative solutions is when to stop
| the iteration process. Ideally for this purpose we should examine

the error vector

{e}, = {A}, - {a} (5.12)

where {A}k is the approximate solution after k iterations and {A}
is the exact solution. Unfortunately, vector {A} is generally not
known, and theoretical investigations of {e} are possible only in
special cases, Thus, some other quantities have to be used, Two
sets of quantities are easily monitored during computation: the -

displacement vector {d}:

{a}, = {a} - A{ah (5.13)

k

and the change in reluctivity

(5.14)

We decided to monitor the displacement vector's first power norm
||d]}, maximum norm Ildllm and also the maximum absolute (umax)

and relative (urel) changes in reluctivity at any one place in the

iron region. For our tests the prescribed values were

1]} = 1.0 x 1076 ||

[1d]1” = 1.0 x 1007 |wp|

W= 10:0 |m/H|
u = 1.0 x 1072

rel
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The iteration was carried on until all the corresponding values in:
our iteration process had fallen below these prescribed values.
The iteration was then stopped. We shall return to the question
of convergence criteria in section 6.3 when we discuss errofé
associated with our iteration process. In the next sub-section we

shall turn our attention to the problem of the estimation of

iteration parameters,

5.3.3 Estimation of iteration parameters

In all the iteration schemes described in section 5.2 it is
necessary to determine the acceleration factors w for inner itera=-
tioﬂ and B for outer iteration, and for two-step methods also K,
the number of inner itergtions per outer iteration. This is not a
simple problem if optimum parameters are sought. An adequate
choice of iteration parameters is necessary even if iteration time
is not critical, because the wrong choice may cause prolongation
of iteration time by more than one order of magnitude, or even
divergence.

This problem has not been completely solved even for much
simpler linear cases where only one iteration parameter, w, is
necessary, and only in the simplest cases is it possible to deter=-
‘mine an optimum w in advance. For the majority of practical prob=-
lems w cannot easily be determined in advance. However, the |
underlying theory is well developed and several techniques have
been developed in which iteration is started with a value of w
expected to be in the neighbourhood of the optimum value and this
value is then adjusted during iteration.

Estimation of itefation parameters for non-linear problems is

‘more complicated, because not only are there more than one
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parameter to be determined, but there is also hardl& ahy théore;.
tical background. In practical applications a 'trial and error'
method is often adopted, i.e. severql short runs are performed
with different iteration parameters, and then parameters which
appear to give the fastest convergence are used for actual . compu=

tation. Another possibility that has also been exploited

-

(Ref. 5.3-5.5) is to keep some of the parameters constant during
iteration, and change others., Usually B and K are fixed, and w is
changed on the basis of linear theory. Although linear theory is
not strictly valid, both Anderson (Ref. 5.3) and Winslow (Ref. 5.4)
have reported good performance by means of this method,

Such methods are very valuable if numerous different problems
have to be solved. It was felt, however, that for our problem a
‘trial and error' method would be more suitable, The reason for
this is that it makes possible the choice of optimum values of all
necessary parameters, unlike the methods described by Anderson or
Winslow. Also, solution of our problem requires several‘magnetié
field solutions with slightly different current distributions,
other physical parameters being unchanged. Thus, the optimum
iteration parameters for one field distribution could be expected
to give also good convergence for the others. In section 5.4 we
shall give some results which show that the choice of iteratioﬁ
parameters is not very critical, which supports this assumption.
Before giving these results we shall, in the next sub-sectionb‘
compare the performance of different iteration schemes for our

model problem,
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5.3.4 Comparison of computation times for different methods

In sub-section 5.3.1 we have described a model problem for
which different iteration schemes have been tested, and in 5.3.2
we have given the convergence criteria. As explained in 5.3.3, a
'trial and error' method was adopted for the estimation of itera-
tion parameters. Such a method can never give the optimum values
with 100% security. However, the number of trials was large, and
it is believed that these parameters are fairly near to the opti-
mum.values.

Optimum iteration parameters as well as total number of

iterations and computation times for different iteration methods

are given in Table 5.1, Methods correspond to those described in

section 5.1,

TABLE 5.1 Comparison of Different Iteration Methods
Column 1 2 3 4 5 6 7 | s
Convergence to
three significant
digits +
" iterations time . .
Method W B K to converge | (sec) iterations sec
B3 163} 0-18 4 267 480 150 27.0
B6 1.76 | 029 4 113 2444 52 11.0
Cc3 1.92 | 04205 4 157 34.0 - 76 16.0
c6 (A) 1.8310.25 1 61 30.0 39 19.0
cé6 (B) not convergent
D3 1.75 | 0.04 - 171 105.6 91 5640
B3 with
block * 170 | 0-15 4 280 69+6 117 29.0
acceleration ~ »
Newton
Raphson  #% - - - 8 20.0 5 12-5
iteration

* ‘ . . . '
Additive acceleration of Poisson type (see section 4.8 ) was used

after every 4 iterations. Iteration parameters w, B and K are not
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optimum values, but are fairly near to the optimum., The number of.
iterations without block acceleration with these parameters was 282
with running time of 50.4 sec.

»

%k . . .
The values given are estimated, not measured. The computation

time was estimated on the assumption of use of block elimination

scheme (see section 4.4).

t The values represent the number of iterations and the computation
time if other convergence criteria are applied. These values are
more'realistic than the values in coluﬁns S and 6 if computation is
carried out with the purpose of short circuit current estimation

(see section 6.3).

Column 6 in Table 5.1 represents time measured by the intefnal
computer clock, and it includes also some printing time. These
times were obtained by the use of XFAT compiler on ICL 1907 compu—
ter. Use of optimising compiler XFEW reduces the computétion time
by about 10%Z. Thus, the indicated timeg must not be considered as
absolute values, but should be used only for comparison with‘each 4
~other,

The times given in Table S.i indicate the better efficiency of
line iterative methods compared with point interation methods
(methods B6 versus B3 and C6(A) véfsus C3). This follows a pattern
recognised in the literature for other types of meshes (see section
4.7). Two-step non-linear point iteration (method C3) was signifi=
cahtly.faster than two-step linearised point iteration (method B3).
However, two-step non-linear line iteration (methode6(A)) was
slower than two-s;ép linearised line iteration (method B6) which

showed the best performance of all tested methods.
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Method D3 (one-step non-linear point iteration) showed very
inferior performance and so did method C6(B) (a version of two-
step non-linear line iteration, see section 5.1), which did not
converge at all %or any combination of iteration parameters tried..
We do not know the reason for this, and among other things a pos-
sible error in Ehe'program cannot be positively excluded, although:
the program was tested most carefully., It was originally planned
to write two more subroutines, one for method D6 (one-step non-
linear line iteration) and also B version of method C;, which
would correspond to a point version of method‘C6(B). However,
after the very discouraging results shown by methods C6(B) and D3,
it was decided not to do so, as it is believed that the computation
speed of these methods would be inferior to that of method B6.

The block acceleration method was tested only with two-step
linearised point iteration (method B3). The result shown in Table
5.1 was typical for this method. In some cases (i.e. for some
combinations of iteration parameters) the total number of itera-
tions was slightly increased, in other cases it decreased by
several iterations. In all cases the total computation time was
longer than computation with the same iteration parameters but
without acceleration. Use of Ahamed's type (multiplicative) acce=-
leration showed similar results. The increase in computation time
is due to the considerable amount of computation which is neces=
sgry in order to carry out the procedure. The amount of computa=
tion for triangular meshes is much higher than for rectasmgular
meshes to which this type of acceleration has been applied succesé-

fully by others.
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The last row in table 5.1 represents an estimation. The
bnumber of the iterations was based on results published by
Silvester and Chari (Ref. 5.6), and computation time was obtained
by assuming that a block elimination scheme was used for the solu=
tion of a linear system. The time necessary for one arithmetic
operation was assumed to be about 50u sec, which corresponds to
measured values if all variables are stored in oné-dimensional
arrays. |

The conclusions that can be drawn from these results are As
follows:

All tested methods (except method C6(B)) have converged for’
our model problem and have reached the solution to the required
accuracy in a reasonable computation time. We believe that all
these methods can be used with some confidence for the computation
of other magnetostatic problems in connection with the use of
irregular triangular meshes. Two-step linearised line iteration
has shown the best performance of all tested methods. Although it
cannot be said with complete confidence without any further tests,-‘
we believe that this method will be even more superior to point
methods (B3, C3 and D3) for larger meshes as normally used in
linear problems and regular meshes. As regarding the two-step non=
linear line iteration (method C6(A)), we know of no reason wh& the
relative efficiency of this method would increase over than one of
method B6 for larger meshes. We can therefore expect method B6 to
be superior to all other tested methods for larger meshes as well.‘
Use of block acceleration techniques is not expected to improve
the perfdrmance of any of the tested methods. Use of direct itera=-

tive methods, like Newton Raphson method will probably be inferior
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to method B6 for larger meshes because the necessary computation
time is approximately proportional to n3 for direct iterative
methods where n is the number of nodes, while for indirect itera-
tive methods the computation time is increasing more slowly than
n? (computation time for one iteration is proportional to n, while
the necessary number of iteration increases more slowly than n.
Even systems of several thousand unknowns require usually only
several hundred iterations, see for example Ref. 5.3).

A further insight into the behaviour of different iteration
schemes can be obtained by the analysis of the displacement vector
as a function of the number of iterations, or for the purpose of
comparison as a function of computation time. The curves in Fig.
5.8 represent the first power norm for different iteration methods
plotted against computation time. (Since with some methods thesg
curves show quite large irregular oscillations, the diagrams were
obtained by computing the average norm for 4 consecutive itera-
tions, and by plotting these values).

As it can be readily seen from the diagram; almost all tested
methods show acceleration of convergence as iteration progesses.
The degree of acceleration varies for different methods, but they
all fall between virtually linearly convergent method B6 and vir-"
tually quadratically convergent method C6(A). With this informa-‘
tion we can say that method B6 would be even faster compared with
other methods if the accuracy required were lower. As we shallv
see in section 6.3, the accuracy for practical computation can
. indeed be muéh lower which puts method B6 even further ahead.
Before arriving at a final concIUSioﬁ as to which method is

to be used for the computation of our real problem, we shall
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Fig. 5.8 First Power Norm of the Displacement Vector for D1fferent

Iteration Schemes
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briefly examine in the next section the sensitivity of different

iteration schemes to the choice of iteration parameters.

5.4 Dependence of Convergence on the Choice of Iteration

Parameters

As already mentioned in section 5.3.3, the wrong choice of
ite?ation parameters can result in severe penalties in terms of
computation time. In this section we shall examine the dependence’
of the convergence of different iteration schemes on the choice of
iteration parameters for our model problem. This is a very impor-
tant question if a 'trial and error' method is used for the esti-
mation of the parameters. Namely, if a method converges fast with
optimum parameters, but is very sensitive to the choice of itera-
tion parameters, then the trial and error method will norﬁally
require many trials before a combination of parameters can be-
found which gives fast convergence.

It was therefore decided to carry out tests which will give
some insight on the computation speed as a function of the itera-
tion parameters, It was soon realised that the best choice for a
number of inner iterations per outer iterapion K lies between 3
and 4 for methods B3, B6 and C3 for virtually any choice of w and .
B, while the fastest convergence for method C6(A) was achieved
with K=1, This fact simplified the tests, as for all two-step
methods K could be fixed and only B and d changed, in the same way
as in tests for method D3. Figs. 5.9-5.13 represent the results
of these tests in a form of curves in the w—B co-ordinate system;
The position of the best combination of these parameters is indi-

‘cated on all figures. If the combination of parameters is chosen -
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to be on the inner curve, the computation time is increased by
25%, while the outer curve gives an increase of 50%.

- All: tests for diagrams on Figs, 5.9-5.13 were carried out for
our model problem described in section 5.3.1. The diagramsvare
approximate, because, due to long computation time it was not
possible to carry out extensive tests. However, the value of more
accurate diagrams is doubtful, due to another phenomenon which we
observed. Namely, the computation time as a function of the
iteration parameters w and B is not a smooth function in the
neighbourhood of the optimum values of w and B. Several local
minima can usually be found, and as an example we give the diagram
on Fig. 5.14, This diagram represents a number of iterations as a.
function of w for a two-step linearised line iteration. B and K
were fixed (B = 0.24, K= 4), The oscillations appear to be quite
irregular, with an amplitude of as much as 257 of the total compu?
tation time. We observed these oscillations for all iteration
methods we tested, except for method D3 (one-step non-linear point
iteration).

These results indicate that it may be extremely difficult to
fiqd the overall optimum values of iteration parameters, either
with an automatic routine, or with a trial and error method. On
the othér hand, it seems reasonably easy to find the combination
of parameters which gives the computation time within about 125%
of the optimum value as the diagrams 5;9-5;13 show. On these
grounds there seems to be no reason why we should ﬁot chose two-
step linearised line iteration (method B6) as a method for.the
computation of fields for our problem. This method is the fastest

of all tested methods (see table 5.1), and the diagram on Fig. 5.10
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does not indicate that there will be any great difficulties in
finding the combination of iteration parameters which gives the
computation time within the range of 1257 of the optimum value,
although, of course these parameters will generally be different
from those obtained for our model problem.

With this choice we conclude this chapter. In the next chap;y
ter we shall turn our attention to different errors that are’

present in our analysis.
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- CHAPTER 6

ERROR ANALYSIS

In this chapter we shall examine the errors which are present
in our analysis,
Our analysis of the machine can be split into two steps:
1. definition of a perfect machine (heglection offeddy‘cdrrents,
hysteresis,'etc);' and
2, definition and solution of a mathematical model,
Both steps involve the introduction of several types of errors.

In section 6.1 different types of errors are listed according

to their origin, In section 6.2 the errors of the first group are

—y .
-

examined, while in section 6.3 the errors of the second gioup.are
analysed. The analysis of different types of errors is not
~ -detailed, but an attempt was made to determine the orders of mag=-
nitude of different types of errors, although in some cases it is
merely a guess,

The conclusion of this chapter is that the overall accuracy
in the computation of voltage with prescribed currents by our

method lies in the range of 10% - 15%.

6.1 Types of Errors

Our analysié of the machine can be considered to consist of -
several 'steps'., Every step introduces some uncertainties, which
cause discrepancies getween computed results and the actual physi=
cal phenomenon. These Aiscrepancies we shall call the ‘error',

Hence, the error will be defined as:

i
!
i
¢
¥
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e = A -A - (6.1)

where Aa is our approximate solution and A represents the numeri=-
cal value of the actual physical phénomenon. The magnitude df the
error may be quite different for different quantities (e.g; local
flux densities and induced voltage), and we shall always state in
what terms the error is expressed. In‘most éases we shall examine:
the error in the effective value of total flux for prescribed

values of currents,

We shall differentiate two basic steps in our analysis of the

machine:

1, definition of the ideal machine; and

2, definition and solution of the mathematical model.
The major causes of error in the first step are:

l. Mechanical inaccuracy.

2, Iﬂhomogeneous magnetic properties of steel laminations,
3. Approximation of the B-H curve by single valued function.
4, Neglect of influences of non-active parts of the

machine (casing, bearings, etc.).

By neglecting all these influences we have defined the
'perfect' machine. Our mathematical model is based on this
perfect machine, However, it does not represent the perfect
machine exactly, because several simplifications were introduced
in order to carry out the computation effectively., These simpli~-
fications introduced further errors. Also, the numerical solution
“of our mathematical model causes errors. The major causes of

errors of this step are:
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6. Approximation of the B~H curve by piecewise linear
functions.

7. Neglect of end effects, .

8. Discretization.

9. Iterative solution of equations.

10, Truncation of numbers in the computer core.

The border line between these two.groups of causes of errors
is not sharp. The common feature of the first group is that the
causes are not known exactly and some additional data or measure=
ments would be necessary in order to determine the errors exactly,
even in principle (e.g. in order to determine the effect of eddy
currents the resistivity of the laminations must be known).

The causes of the second group are known exactly (e.g. we
know that the numbers in the computer are represented only to a
certain number of decimal places).

| There is also a third group of errors caused by measurements.,
The computed results can only be compared with the results of
measurements, not with the machine itself. Although these errors
do not belong to either of the groups mentioned above, their mag-
nitude must be considered if the validity of a certain method of
computation is assessed by comparison of computed and measured

results, hence we have:
11. Measurement errors..

An analysis of all these errors in detail would be very com—
plicated. Fortunately, the computation of the short circuit
current need not be particularly accurate (the accuracy of 10% can

be considered as fairly good; for example, various national
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standards allow tolerances in short circuit current of 157-20% of
their nominal value), so that the error analysis need not be very
accurate either, and'only major causes of errors must be considered
in more detail. If the computation is used in order to determine
for example the influence of different designs of tooth tips, etc.,
only errors 8-10 have té be considered, and thes; are dealt with

in more detail.

In the next section we shall first examine the errors of the

first group.

6.2 Errors Due to Idealisation of the Machine

" The exact estimate of errors of this gorup is not possible
even in‘principle, because this would require some additional data
that can be obtained only by measurements, which are themselves
liable to errors., Due to the lack of such measurements our analy=-
sis of error will be only qualitative and can, at the very best,
indicate only the orders of magnitude of the errors involved. We
shall now examine briefly different influences listed in section

6.1. ' ‘ -

Mechanical inaccuracy of the machine can cause serious dis=-

crepancies between computed results and measurements on the actual
machine. The main cause of these discrepancies is a non-uniform
air-gap. The largest portion of this non-uniformity is caused by
the eccentric position of rotof in the stator bore. The air-gap
in induction machines is short and tolerances in the positioning
of‘bearings are often as high as 107 of the air-gap length. This
eccentricity causes unbalanced magnetic pull.~ If the winding is

connected in series, and the tolerances of % 107 of the air-gap
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length are allowed, then the flux density may be expected to vary
also * 107 (assuming relative permeability of iron “rei = o and
the machine without slots). The forces on the magnetised iron
parts are proportional to B2 where B is the flux density, hence
the forces on the rotor may be expected to vary approximately *
207 along the rotor periphery, and a large unbalanced radial force
may result,

The influence on the total flux will probably be much smaller,
due to the fact that the total flux will depend on the average air-
gap length. The average air-gap length is not influenéed by the
eccentric position of the rotor, but only on the actual dimensions
of stator bore and rotor, which are manufactured with lower toler=
ances,

However, different levels of flux density will have some
influence on total flux because of satﬁration, which will be
uneven as the flux rotates in the machine. Simple analysis of the
influence of non-uniform air-gap was carried out under the follow=

ing assumptions:

a) Air-gap length has a tolerance of * 10%.

b) The stator and rotor core backs of the machine are
infinitely permeable (this is allowed for short circuit
computation as the main flux is low).

c) The flux density is constant ‘along the pole pitch.

d) The ratio of flux path length through iron and air is
r = 200 (this is realistic since the paths through the
rotor and stafor cores have been neglected),

¢) The leakage fluxes represent about 50% of the total flux,

and they are not affected by the non-uniform air-gap.

R
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The maximum error may be expected to occur with four-pole
machines and with working point in the knee of the B-H curve. The
flux density was chosen to be 1.5T,.and even in this most unfavour-
able case our analysis showed that fhe relative error.in computa-
tion of total flux lies in the range 0¢01 > € > O, The leakage
flux is hardly affected at all by the non-uniform air-gap, so tha; '
the error in computation of total flux will probably lie well
under 1%, unless the eccentricity is higher than * 10%Z of the air=-
gap length. If the winding has parallel branches, these will
probably further reduce the influence of the non-uniform air-gap,

Errors listed in 2, 3 and 4 in section 6.1 can together be
called errors due to imperfect steel laminations. Of these,

errors due to non-homogeneous material will probably be quite

small because the steel sheets with different magnetic properties
will be randomly distributed in the machine and the inflﬁence of
different permeability of different sheets on the machine charac-
teristics will be small. We expect these errors to be about % 17
in terms of the total flux, although they may cause larger varia-
tions in local flux densities. It must élso be emphasized that
different batches of magnetic steel with the same nominal B-H
curve may differ from each other to some extent, and that it is
important that the analysis is carried out with the actual B-H
curve for the material used in the machine.

The problem of hysteresis is a complicated one and to account
for it fully it would be necessary to know the magnetic history of
the material. Modern magnetic materials intended for use in elec-
trical machines have relatively.narrow hysteresis loops. The

hysteresis data are often not given by the manufacturers, but the
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order of magnitude of its influence can be established by simple
analysis., The losses in steel laminations are always given and
for usual laminations of 0.5 mm they vary between 3.0 - 8.0 W/kgtl
at 50 Hz and flux density 15T, depending on the type of material,
Approximately one half of these losses is due to hysteresis; the
other half to eddy currents (Ref. 6.1). This corresponds to the
area of hysteresis loop of about 0+5 x 103 Ws/m3. Assuming
furthermore a rectangular hysteresis loop (Fig. 6.1) and flux
density * 1.5T, it gives the width of hysteresis loop of 166 A/m
(= £ 80 A/m). This means that the necessary field strength for
given flux density lies in the range * 80 A/m, as computed from
B-H curve as single valued function, depending on the branch of
the loop. The maximum values 6f flux densities will not greatly
be affected by the hysteresis, we can therefore say that in the
first approximation the effect of hysteresis will be a time lag
between excitation current and flux., This time lag can easily be
determined, and from our data its value is about 2.5° (el). The
induced voltage will show similar time lag. If the errors of the
instantaneous values of total flux are considefed, then these may
be presented as the percentage values of the maximum value of
flux, 1In this case the maximum error is about * 4%, The influ=
ence of hysteresis on the effective value of total flux Will be
lower, we expect it to be about * 27,

Eddy currents will cause a similar effect as the hysteresis.

Study of eddy currents in non-linear media is not simple. One of

the basic concepts in the study of eddy currents is the skin depth:

/ p
§ = ;\'_f-i (6.2)
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Fig. 6.1

A Rectangular Hysteresis Loop

)

Y
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where p is the resistivity of the material, f the applied frequ-
ency and u the permeability of the material. In order to simplify
ﬁhe matter we have assumed M to be tonstant with a value of

W= Ul e U= 600 x 47 x 107 H/m, which corresponds approximately
to the flux density of 1¢5T. With P ='0-4 x 1076 qm (usual
material, see for exaﬁple Ref., 6.1), and £ = 50 Hz the skin depth
is 6 =~ 1°8 x 1073m, As the sheets are only 5 x 10™"m thick, it
can be assumed that the eddy current density and the phase shift
of eddy currents change linearly across the sheet, without making
any significant error. The maximum eddy current density occurs at
the surface of the sheet and for our data its value is about

1 x 10° A/m?. The maximum field strength due to eddy currents
occurs in the middle of the sheet and its value is about 250 A/m,
which is about 127 of the excitation current for 1:5T. The aver-
age flux density is.reduced by about 10%, The maximum phase shift
of eddy currents occurs in the middle of the sheet and it corres-
ponds to about 60° (el). The average phase shift of eddy currents
is about 10° (el), which will cause'a time lag between excitation
current and flux of about 1° (el).

Although the eddy currents damp the flux significantly, this
will not cause a significant error, because usually B-H curves
supplied by the manufacturers give the maximum flux density versus
the effective value of alternating excitation current, thus the
damping is already allowed for. However, the influence.of the
phase shift remains and if expressed as the percentage of the
maximum valﬁe of gotal flux for given current its value is € = %

2%. The influence of eddy currents on the effective value of

total flux will be lower. We expect it to be about + 17%.
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Influence of non—active parts of the machine will depend on
-
the construction of the machine., Influence of other non-active

parts except the casing and the shaft on the flux distributionm
will probably be quite negligible. We expect this error to be
about one order of magnitude smaller than the errors caused by,
for example, eddy currents.

The influence of the casing and shaft must be examined
separately for the core region and the end region. In our compu-
tation of end-winding inductances in Chapter 2 we havg assumed
that the core extends to infinity and that the shaft and the
caéing have no influence on the flux distribution. The influence
of the casing on the end-winding inductance can amount to about
25% of the total end-winding inductance (Ref. 6.2) for ideally
permeable (or ideally non—-permeable) material. The sign of the
error will depend on the permeability, and for ferromagnetic
materials the flux will be underestimated, while for non-magnetic
conducting material the flux will be overestimated. Most medium
power machines have casings made of cast iron, for which material
the relative permeability is about u . = 200, but due to eddy
currents it is effectively much lower. However, it is still well
.above Moo= 1, and in this case the error of about € = -20% can be .
’expected in terms of the end-winding flux. The influence on the
total flux will be approximately by one order of magnitude lower
because the end flux represents only about 107 of total flux,

The flux in the core region will be affected in a sipmilar
way. Assuming the area of the cross—section of the casing to'be
about one fifth of the area of the cross—section of the stator

cdre, relative permeability of the casing W = 50 and relative
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éermeability of the core M, = 500 (corresponds to flux density of
1+5T), the casing will take about 2% of the flux. However, the.
influence on the total flux will be about one order of magnitude
lower, because the stator core contributes only marginally towards
the total magnetic résistance. The influence of the shaft will be
similar, and except probably with two-pole machines, it need not be
taken into account. We can therefore say that the combined errors
due to casing and shaft will be about = 2.5% in terms of the |
effective value of total flux.

In this section we have examined different errors due to
idealization of the machine. We have determined the orders of
magnitude of these errors, and to a certain extent we were also
able to determine the direction in which these errors are likely
to influence our results. In the next seqtion we shall turn our .
attention to errors caused by imperfecfions of our mathematical

model.

6.3 Errors Due to Imperfections of the Mathematical Model

The errors of this group are listed under 6-10 in section 6.1,
Some of these errors can be simply reduced by improving our mathe=-
matical model or solution methods. So for example the influence
of truncation error can be greatly diminished by the use of double
precision arithmetic in the computer. Such improvements will
generally be costly because they would reduce computation speed.
We have therefore to make a compromise; i.e. reduce these errors
to the level acceptable from the engineering point of view, but
not any further because of the severe penalties in the computation

cost,
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Approximation of B-H curve (or, better, approximation of the

function v = £(B2)) causes only negligible error. The approxima=-
tion of v = f(B2) by 80 straight line segments gives the average
error of less than 17. This error is further reduced by at least 2
one order of magnitude during computation due to the fact that v
will be sometimes overestimated and sometimes underestimated.
End effects must be examined in two ways. First, there is an
influence of the magnetic core on the flux in the end region.,
This influence amounts to about 107 of the end-winding flux
(Ref. 6.2)., However, this influence has been taken into account,
and we can expect the remaining error to be of the order of * 1%
of the end-winding flux, or * 0.17 of the total flux, because the
end-winding flux contributes only about 10% towards the total flux,‘
The influence of tﬁe finite core length on the core flux will
depend largely on the size of the air gap, and can be taken into
account by increasing the effective core length by approximately
one air-gap length on both sides of the machine (Ref. 6.3). Tﬁe
air-gap of induction machines is of the order of § = 0+002D where
D is rotor diameter, and if the core length is % = D, th;éerror
would be € = 0-002D x 2/D = 0.004., If the increase of the effec-
tive core length is taken into account, the error will be reduced
by approximately one order of magnitude. High level of flux
density will increase the error, because of saturation but we
believe that it will still remain under * 0.57 in terms of the:
total flux,

Discretization may be expected to be one of the major causes

of error in our analysis. In linear cases and regular rectangular
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discretization the magnitude of error can be determined from

(Ref. 6.4): | :

Y byt I
€ = }2-1—4 (2——1}. + B—A ) (6.1)
oxt ay“ o

where 'h' is the mesh cell size. In non-linear cases and irregu=-
lar discretization the error is larger. For rectangular meshes
de La Vallée Poussin and Lion have verified that the error is

(Ref, 6.5):

e = 0(h?) - (6.2)

For irregular triangular meshes the error is also influenced
by the degree of irregularity (triangles with small angles may
cause large errors). The problem of discretization error is by no
means completely solved and we refer the reader to Ref. 6.6, in
which several other works on the subject are quoted.,

_ Being unable to find a reliable practical method for deter=-
mination of the discretization error for non-linear problems and
irregular triangulation we have decided to find this errsr by
experiments., The mesh density for our model problem was increased
in several steps, so that the finest mesh contained 392 nodes and
721 triangles, i.e. the finest mesh contained approximately four
times as many nodes as the coarsest mesh. Seven different mesh‘
grades were used in all. The meshes for three different grades:
(corresponding to 87, 234 and 392 mesh nédes) are‘represented on
Figs. 4.3-4.5, and the qorresponding flux plots are given on

Figs. 6.2'_-6.4.
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We shall start our error analysis from the diagram on Fig;
6.5. This diagram represents the computed values of vector poten~—
~tial at four different points of our model problem (points ére
‘marked on Fig, 4,3) as a function of a number of nodes. (Total
number of mesh nodes wés chosen for the abscissa;for’this and
severél subsequenf diagrams, rather than the mesh cell size,
definition of which would be rather vague for irregular meshes).
The first obvious conclusion is that coarse mesh gives under-

estimated values of vector potential (the‘theory predicts this for -

— .
- *

linearbproblems, see section 3.7 and Ref. 3.62, but the géner§li-
sation of this result to non-linear cases is not quite obvious),
‘The values of vector potential converge well as the number of
nodes incrgases; and for the purpose of an error estimate we shail‘
assume the values obtained from computatiop in the finest mesh as
exact, The largest discrepancies between results for coarser and
finer meshes shows curve B on Fig. 6.5. The numerical values of

errors for this curve are:

number of mesh

87 132 171 235 299 352
nodes .

error (Wb) 12.0x10™% 7-7x10-“ 3.7x10"% 1.6x10~% 1.2x10"% 1.0x10"“

These values are larger than 0(h?) if the dimension of the
smallest triangle is used as h, but smaller than O(h2) if the
largest triangle is used. Thus. Eqn. (6.2) is valid for bur model
pr§b1em if h is.defined as the average value of mesh cell size.
The vector potential itself is not our final result, We are
interested in the linked flux and the torque. The linked flux is

obtained by integration of vector potential over the slot area.
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In a certain sense it represents the average value of vector
potential and it could be expected that the computation of it is
only marginally less sensitive to mesh cell size than the vector
potgntial, because the vector potential shows systematic errors.
Fig. 6.6 represents the linked flux for three different coils of
our model problem. The relative errors for different mesh densi-
ties are virtually the same as for curves on Fig. 6.5.

In our program the torque is computed from the flux densities
in the air gap, and the flux densities are obtained as the fifst
order differences from the vector potential., Due to the nature of
thié computation. the flux densities are much less accurate than
the vector potential. As an illustration we give Figs. 6.7-6.9
which represent the radial flux density for three different meshes
with 87, 235 and 391 mesh nodes respectively. Position of rotor
and stator teeth are also sketched for reference. The discrepan-
cies between these diagrams are large and obvious. So for example
the differences in local maxima for meshes with 235 and 391 nodes
(Figs. 6.8 and 6.9) are more than iSZ in comparison with about 17
discrepancies in vector potential. Fig. 6.7 which corresponds to
a mesh with 87 mesh nodes hardly represents more than a rough
guess of the actual flux density distribution.

The computation of torque is somewhat less critical because
this computation involves integration along the air gap. However,
computation of the torque is still much .less accurate than the
computation of linked flux as Fig. 6.10 shows. The diagram repre-
sents the computed torque versus number of mesh nodes. The errors
are about one order of magnitude larger than the ;orresponding

errors on Fig. 6.6,
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We can now answer the very important question of the minimum
neceséary number of nodes. For our model problem it is the mesh
with 235 mesh nodes. This mesh produces the linked flux with an
accuracy of about 1% of its maximum value and torque to about 5Z.
The local flux densities are much less accurate gnd the errors of
up to 25% can be expected. This is the accuracy which is adequate
for most practical purposes. We can conclude that meshes with 40=- -
50 mesh nodes per slot pitch'(stator plus rotor slots of the sector

of the machine considered) for doubly slotted machines will give

results which are acceptable from the engineering point of view.

Iterative solution of equations. As an iterative solution of
equations reqﬁires an infinite number of arithmetic operations to
reach the exact solution, our solution will be only approximate.
Similarly as with discretization error we can improve the,accuracy‘
at the expense of more lengthy and more costly computations. As
discretization and other factors are likely to cause errors of up
to 5%, there is not much point in continuing the iteration after
the vector potentials have reached the accuracy of about 17,

Without the exact solution we do not know the error at any
stage of computation. The quantity which can be easily evaluated
is the displécement vector d (Eqn. 5.13). 1In section 5.3'we have
used the magnitude of the first power nomm of the displacement
vector as one of convergence criteria. However, the'displacement‘
vector bears no direct or simple relation to the error vector, and
the magnitude of some norm of this vector should not be wsed as
criterion for terminating the iteration.

Without goiﬁg into any theoretical details, we state that the

rate of decrease of error vector is equal to the rate of decrease
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of displacement vector (see for example Ref. 6.7) for linear prob-
lems. Thus, in linear cases we know that, for example, the error
vector is reduced to 17 of its initjal value at the same time when
- the displacement vector is reduced to 17 of its initial value. We
| have no theoretical proof of this for.non-linear problems,
However, practical tests on our model problem with different iter=
ation schemes and different mesh grades have shown that this rela=-
tion holds for our problems as well. This enables us to define a
very simple practical criterion as to when the iteration process 
can be terminated. Namely, although we do not know the érror
vector, we know that it is reduced at the same rate as the dis-
placement vector, and we can stop the iteration when the displace=
~ment vector is reduced to 17 of its initial value, under the
assumption that the initial error was 100%. As it is likely that
the starting error will be in most cages of the order of magnitude
of 10Z (supposing that initial A-vector is obtained by the solu~-
tion of a linear problem), this criterion should give us a good
safety margin.

Any norm of the displacement vector can be used for this
putpose.v The first power norm is suitable because it does not
require a lot of computation and it oscillates less than the maxi=
mum norm. For practical application it is useful to take the
average value of ||d]| for several consecutive iterations in order
to smooth the oscillations further.

Although this convergence test has no firm theoretical basis
for the time being, it has proved valid for all cases we have
tried, using different mesh densities and different iteration

schemes. When this test was applied the errors were under 17 of
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the final values of vector potentials, the vector potentials being
accurate in approximately three decimal digits. The 'final values'
were obtained by long runs in which the first power norm of the
displacement vector was reduced to less than 0+0001 of its initial
value.

We can now determine the computation time for our model prob-
lem from Chapter 5 on the basis of this convergence test. Points
where different iteration processes could be terminated are
deﬁoted with asterisks on Fig. 5.8 and corresponding numbers of
itergtioﬁs.and computation times are listed in Table 5.1 in
columns 7 and 8. It is clear that this criterion favours Method
B6 even more than the criteria defined in subsection 5.3.

It should be emphasized that even with linear problems this
test would be strictly valid only after a large number of itera=-
tions. It may therefore be necessary to increase the ratio
between initial and final values of displacement vector for some
cases, namely if convergence speed is decreased after a certain
number of iterations (i.e. if the slope of the curve representing‘
||d]| plotted against iteration number becomes less steep after a
certain number of iteraéions, as for example the curve for Method
B3 with acceleration on Fig. 5.8), but we believe that the ratio
103:1 should suffice for virtually all practical purposes. On the
other hand, the iteration can be terminated earlier if it is knowp
that the initial error is small,

This error is of course in terms of the vector potential. As
with the discretization errors, local flux densities show larger
discrepancies than the vector potentials. However, the iﬂfiuence

on the computed torque is considerably smaller than on the flux
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densities because errors due to inaccurate solution are much more
randomly distributed than errors due to discretization, which are
usually systematic. The same is va}id for computation of linked
flux, which is generally more accurate than the computation of
vector potentials,

Truncation error. In the iteration processes we use the

truncation error does not accumulate from iteration to iterétion.b
This is probably the reason why the analysis of it is completely
avoided in virtually all published work, However, although we do
not expect this error to be of any significant amount, it is use=-
ful to know its order of magnitude. If the vector potentiais'are
tfuncated with the error‘A, and the mesh cell size is d,.then the
first order differences which we basically use are computed with
the accuracy 2A/d. Computation on the ICL 1907 computer in single
- precision corresponds to approximately 10 decimal digits, or
relative error of 10710, Tﬁe order of magnitude of vector poten=-
tials for medium size induction machines is about O+1 Tm which
results in the absolute error of 107}! Tm, Minimum d is about
0+1 mm for our mesh and the truncation error is € = 2 x 10711 Tm/
10~% m = 2 x 107 T. This error is below our required accuracy by -
several orders of magnitude. Its influence can be observed as
slowing down of convérgence if the iteration is carried on long
enough. This happens when some of the components of displacement
vector are reduced to the order of magnitude of the truncation |
error. Again, flux densities are more influenced than the vector
/potentials.

We have now examined all errors listed in section 6.1 except
the errors due to measurements. In the next section we shall

briefly examine errors due to measurements and we shall
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also make a summary of all the errors involved in order to predict
the likely correspondence between our computed results and the .

results obtained by measurements on, the actual machine.

6.4 Errors Due to Measurements ... Summary

The prediction of measurement errors is important because the
computed results can only be compared with the results. of measure-
ments, Measurement errors must theréfore be carefully determined,
and they must not be attributed to the computation. Different
quantities can be measured with different accuracy, but unfortuna-
tely hardly anything can be said about the accuracy of a particular
type of measurement without knowing details on the equipment used;l
The choice of equipment depends partially on the speed the measure-
ments have to be taken. We must therefore first determine whether
the quantities to be measured can be considered as static or time
dependent.

We are interested in steady-state’ and ﬁe must ensure that the
transient currents are damped enough to be negligible, With the
poﬁer factor of 025 at 50 Hz, which is a realistic value for
usual machines at short circuit, the time constant is only about
0°012 sec and the transient currents will be below 0:1% of their
initial value after about 0-085 sec. .

Another factor we have to consider is the increase of resis—
tance due to the increase of the temperature of the winaing.
Assuming windings to be of copper, and with the current density of
15A/mm?, the heat dissipated in the winding is about 4 x 108 W/m3.

With the specific heat for copper of 7.86 x 105 W sec/m3°C the

temperature rise of copper is about 5°C per second. The
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corresponding rise in resistivity is about 35 x 1010 Om per
second, §r about 2%. Due to the low power factor this increase in
resistance will influence the current only by less than 0.37%, but
the test cannot last longer than a few seconds because of over=
heating problems. Thus the readings of ins;ruments should be
taken preferably during the first second of the test,

This is a fairly short period of time and some sort of
recording instrument ig essential, Digital recording instruments
are very accurate, but they tend to be very expensive; We have
already seen that the accuracy of our computation is not very
high, and that errors of several percent can be expected. Hence,;
an analogue recording instrument can be used. The accuracy of‘
such instruments is usually within few percent, but unfortunately
no more can be said without details of the particular.iﬁstrument
used. '

In the previous two sections we have discussed different
~errors introduced during our analysis of the machine. The rela=
tion between different errors is not simple and in mathematical:
terms it depends on the type of mathematical operation that link
different quantities which are in error. However, unless the
errors form a substantial part of the quantities involved, in most
circumstances it can be assumed that the errors are not related,

" i.e. that the magnitude of the error induced by one cause does not
influence the magnitude of the error induced by the other cause. -
In this case the total error is simply obtained by summation of
ali the errors.

Any cause of error can have very different influence on the

accuracy of different quantities (e.g. accuracy of local flux
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densities will always be lower than the accuracy of total magnetic
flux), and this accuracy will depend on the type of mathematical
operation that link different quantifies. In most caseslsystema- '
tic errors will be linearly related.(i.e. the percentage value of
the error will be the same in all related quantities), but randomly
distributed errors may be increased by several orders of magnitude
if the value of some quantity is obtained by differentiation of |
another quantity in error, or by subtraction of two quantities in
error., On the other hand, integration will tend to reduce randomly
distributed errors.

Most of the causes listed in section 6.1 wiil produce a sys-
tematic error which will have similar influence on all computed
quantities. However, iterative solution of equations and trunca-
tion will produce randomly distributed errors, and these may cause
difficulties. In section 6.3 and 6.4 we have mostly expressed the
error in terms of total flux, or linked flux., The linked flux is
only an intermediate quantity, which will give induced voltage by
differentiation in time. Hence, in order to keep the error of the
computed voltage as low as possible, the values of linked flux
obtained by several consecutive field computation must be suitably
smoothed (for examply by approximating~the‘curve by a polynomial |
fitted by the least squares method). In that case the errors in
computed voltage will be similar to the errors in the computed
linked flux.

We have listed different causes of errors and their expected
influence on different quantities in Table 6.1. Two values are
given for every cause and the top number represents the estimated

upper bound and the bottom number represents the estimated lower
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bound. The bounds for the total error were obtained by summation
"of all contributions., The given figures represent the maximum
expected error. The most probable error is lower and we believe
that the computed effective value of induced voltage and the
méasured value of induced voltage will differ by more than 107
only rarely. The accuracy of the computed torque is lower and

errors of up to 207 can be expected.
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CHAPTER 7

ONE EXAMPLE ,

.

In the preceding chapters we have discussed methods for the
solution of magnetostatic fields in the end-region (Chapter 2) and
core region (Chapters 3-5) of induction motors. The time varying
problem can be described as a series of magnetostatic problems and
in section 3.9 it was shown how the non-linear field solutions can .
be used in order to determine the voltage at the terminals if the
variations of currents with time in different windings of the
machine are known.

Invthis chapter we shall show by one example how our magneto-
static field solutions can be used to solve the more complicated -
problem where the voltage at terminals is known and the short
circuit currents in the windings are sought.

In section 7.1 we describe the problem and suggest two
different methods for the solution of it. The second of these
methods is an iterative procedure in which the magnetostatic field
solutions form an essential part.

In section 7.2 we describe in detail almodification of this
basic iteration in which only a few non-linear field solutions are
necessary, and in section 7.3 we give the results of a computation
of a sample problem which was chosen to be that of a 15 kW, six

pole motor with wound rotor.
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7.1 The Time-Dependent Problem With Prescribed Voltage

As the magnetic properties of steel in the machine are non-
linear, the inductance between different windings is a function
of currént in the windings. The. terminal voltage can be simply
obtained from a series of magnetostatic field solutions, ifvthe
curfents in windings are known (section 3.9).

The practical probiems will be posed in this way only rarely.
In the vast majority of practical problems the voltage at the ter-
minals will be known, and the current in different windings will be
sbught. This is a more complicated problem than the computation of
 voltage for the prescribed values of current,

This_problem can be described by a system consisting of a
partiai differential equation of the magnetic vector potential
(Eqn. (3.10)) and a system of ordinary differential equations des- -
cribing the current-voltage relation in the windings of the machine,
The right-hand side of Eqn. (3.10) will no longer be a function of
x and y only, but will be obtained from the solution of the system
of ordinary differential equations. |

Consider, for example, the problem of a star—connected three
phase wound rotor machine represented schematically on Fig. 7.1
(the end-inductances have been omitted for clarity). The problem

can be described by a system:

-3-}-(. (V'a_A' + '5'}?,' (V‘g'%) = .f(x:.}': il: soy i—s) ‘ (7-13?
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u, (t) u, . (t)
a, M B B¢ ¢

R R, Ry
i,(® i,(t) i (c)

Wy g Wy ; W3

Wy Ws We
i,(t) i(t) i, (t)

R, Rg Rg

Fig. 7.1 Schematic Representation of a Three-Phase,

Star-Connected Wound Rotor Motor
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i, Ry =i, R, + u; - u, = ug

iz R2 - i3 R3 + u, T u; = g,

ftia iy =0 (7.1)
i, Ru - is RS tu o= u, = 0

1g R5 - 1g R6 + Ug = ug = 0

i, +ig+ig = O

where f(x, v, i;, «.» ig) is a known function that depends on the
distribution of windings in the cross-section of the machine,

Ry «e« Ry are the resistances of the windings (which may possibly
include any outer resistance), i; ... ig are currents in the six
windings, Upn and Uy~ are the voltages at the stator terminals and

U] +.. Ug are voltages induced in the six windings Wy oo Weo
Their values are obtained by the time differentiation of the total
flux ¥ linked by the corresponding coil:

de

W = - — | (7.1¢)

where Wk is computed from the field solution in a manner explained
in section 3.9.

There are several possibilities for an approximate solution éf
system (7.la = 7.1c). Eqn. (7.la) is similar to the parabolic
equations obtained in the solution of diffusion problems. The
difference is in the right—hand side, which in our case is the
function of the complete field solution. It can be expected that
methods analogous to those in the solution of diffusion equation
could ﬁe used, The discretization in space can be semi-regular
triangulation as used for our magnetostatic field solutions.,

However, it would be probably more convenient to use a fixed
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time-step corresponding to the usual finite difference method.
Timewise our problem represents a boundary value problem with
periodicity boundary conditions because we are only interested in a
steady-state solution. However, by this method our problem could
also be treated as an initial value problem, in which case it would
also give the transient solution as a result. In either case this
approach would require somewhat different techniques from those
used for the magnetostatic field solutions, and the results of our
investigations in the previous chapterg would not be directly
applicéble.

Another possibility is an iterative procedure consisting of
alternate solutions of Eqn. (7.la) and (7.1b). An approximate
~solution is chosen for currents i) ... i6 and Eqn. (7.13) solved
for different instants of time by one of the methods described in
Chapters 3-6., Then the values of induced>voltage in every winding
are.computed by the finite difference approximation to Eqn. (7.lc),
and the system (7.1b) solved (i.e. its finite-difference approxi-
mation). The new values of current at different instants of timel
are used to compute a new set of field solutions and the procedure
"is repeated until the difference of two successive current esti-
mates fall below a certain specified limit. The transient solution
cannot be obtained by this method, but it has the advantage that it
is based on magnetostatic field solutions which we know how to
solve, The disadvantage of this method is that it requires
numerous non-linear field solutions and therefore it is likely that
the computation time will be long (although reduction in computa-
tion time can be achieved by the use of higher order differences in

the time direction and by extrapolation of vector potentials from
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two or more time steps in order to form starting values for the new
field solution). Fortunately, a modification of this approach is
possible in which it is necessary to compute only one non-linear
_ field in every iteration step, This method will be described in

detail in the following section.

7.2 A Practical Method for the Solution of a Time-=Varying Problem
With Prescribed Voltages ’

The system of equations (7.1b = 7,1c) can be written in the

form:
q4 &
11 Ry =1, Ry - 'cﬁkzl (Ll.,klk'l‘z,k L) = uy
6 .
i R -i R - =2 V ( . i =L, i) =
272 T3ts At L Yok kT T3k Mk 8¢
i i +1i = 7.2
1, + i, +1, 0 | (7.2)
d 6
by Ru'lsRs-EEkzl Coe e ™ By 10 0
: 6
icRg =i Re= == J (L., i =L . i) = 0
5 Rg 6 Re It 5.k “k 6,k "k
k=1 ’ wo
1, + 1g + 1, = 0
where Lm x represents the inductance between the windings wm and
» .
wk. (The inductance in this context is the so-called 'apparent'

inductance. If there is only one winding then the apparent self-
inductance is defined as a total flux linked by the winding divided

by the current through the winding. See for example Ref, 7.1)
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Because of saturation the inductance Lm K will be reduced in
14

comparison with its non-saturated value. Indeced, the inductances
are n;t constants, but functions of.current, Lm,k = f(i],eeelg)s
Alternatively, they can be expressed as functions of time
Lm,k = g(t). However, if the variations of the values of induc-
tances with time are small compared with the variations of current,
an approximate solution of the system (7.2) can be obtained by
setting Lm,k = constant, this value being smaller than the value
for non-saturated machine, Strictly, every current distribution
will have corresponding saturated values of inductances. In our
approximate computation we shall compute .only one set of values of
inductances, corresponding to a current distribution at a certain
instant of time. The saturated values of inductances Lm,k’ k =1,6
for the given current distribution can be obtained if firstly the
non-linear field solution is computed for the given set of currents,
and then with the reluctivities fixed to the values obtained in
this non-linear field solution, a linear field solution is computed
with the unity current in winding Wm. The inductance Lm,k wi11 
then have the numerical value of the total flux linkage with the
winding Wk.
The basic iteration procedure as described in section 7.1
remains unchanged, but instead of several non-linear field solu-
tions in every interation step only one non-linear field is needed.
This non-linear field solution provides only the saturated values
of reluctivities of iron parts. The saturated values of induc-
tances are computed from the linear field solutions. Hence, in‘

addition to one non-linear field solution, it is also necessary to

compute several linear fields in every 1teration step, In the case
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of symmetrical three-phase windings and symmetrical supply, only
two linear fields age needed, one for one stator current equal to
unity and another for one rotor current equal to unity. Linear
field solutions can be computed with much less effort than the
non-linear ones, and it is likely that in most cases this procedure
would result in considerable reduction of total computation time in
comparison with the basic iteration described in section 7.1,

This approach is based on the assumption that the variations
- of the values of inductances Lm,k with time are small and that fhe
influence of saturation on the inductances can be approximated by
simply reducing the values of inductances. In the case of symme-
trical windings some indication of the variation of the values of

inductances with time can be obtained from the comparison of the

mutual inductances of different phases. So for example Ll,z will
be different from L1’3 (both values can be obtained from the same
linear field solution), unlike in the linear case where these two
inductances have the same value. Variation of the values of

. inductances will be periodical with the period of T/2 where T is
the period of the supply voltage. We can therefore approximate the
inductances by the truncated Fourier series®. Lm,k = g(t) cannot
have any sharp peaks, and it can be expected that the magnitude of
higher harmonics in Lm,k = g(t) will decrease very rapidly as the

order of harmonic increases. We believe that in most cases it will

be sufficient to determine the magnitude of the second harmonic

* : . L4 . . . . . .
Truncated Fourier series is just one possibility for the repre-

sentation of L = g(t). Polynomials, or piecewise polynomials
(i.e. spline fuActions) could also be used for this approximation
and it may well be that some other approximation would be more
suitable than the Fourier series,
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only, and its influence on the current, without the need for any -
further computation.

By neglecting the higher harmonics we can represent_ the value

of inductance Lm,k by
L = g(e) = ¢, +cC, sin (4.t -c.) (7.3)
m, k 5 1 2 T 30 .

The values of the three constants C1 cee C3 can be computed from
the three values of inductance Lm,k’ which correspond to three
different instants of time. In the case of symmetrical three-
phase windings it is not necessary to compute three non-linear
field distributions in order to determine three values of Lm,k'
Instead, self and mutual inductances of all three phases can be
determined from the corresponding three linear field distributions.
The linear field distributions are computed with the values of
reluctivities obtained in the non-linear field distribution, and
with the unity current in windings Wi, W, and Wy, respectivgly.
The values of inductﬁnces obtained in this way will be the same as
the values of the inductance of one phase corresponding to three
different instants of time separated by T/6, because the flux in
the machine is rotating and the winding is symmetrical. The induc=
tances of the rotor winding can be obtained in an anal&gous way.

This computation of constants C, ++. C; need not be carried
out in every iteration step, but only when the iteration has
reached the required accuracy. Consequently, the system (7.2) has
to be solved only once with variable values of inductances.

The complete procedure for problem of Fig. 7.1 including ini=

tialization is presented on Fig. 7.2 in a form of a flow chart.
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START

Solve two linear fields with values of reluctivities
of ‘iron corresponding to the éxpected flux densities
at nominal voltage. Determine the values of
L K? m=1l...6, k=1...6 '

I

m’
Solve system of differential equations (7.2)

With the values of currents from box 2 determine the
optimum relaxation factors by trial and error method

\

Solve the nonlinear field problem with the latest
/ estimates of current in all windings

Y

Solve two linear field problems with unity currents
in W; and W,, respectively, with the values of
reluctivities obtained in box 4. Determine the new
values of L_ ..

m,k

-
-

Y

Solve system (7.2) with the latest estimates of Lm K
]

)

Compare the two latest estimates of the values of
current in all windings. Check the difference.

-l

Difference
large

Difference
small

Solve four linear fields with unity currents in W,,
W3, Ws and Wg, respectively, and determine the
values of all inductances. Compute the constants
CyeesCq of Eqn. (7.3) and solve system (7.2) with
the variable values of inductances

STOP

Fig. 7.2 The Flow Chart for the Computation of Current With
: Prescribed Voltage
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In the case of unsymmetricél windings it may be necessary to
adapt this procedure to suit the problem in hand. Also, the itera=-
tion need not be stopped as indicatgd in Fig. 7.2, instead, the
procedure can be continued in an analogous way in order to deter-
mine the influence of harmonics of order higher than two, in which
case more than three field solutions would be required in eQery
iteration. Whether or not to continue the computation is best
decided at the end of the process described in Fig. 7.2, when the
influence of the second harmonic will be known. When this decision
is being made the overall accuracy of our method must also be
considered, as it is possible that thevihfluence of hysteresis,
eddy currents, etc., on the short circuit current are higher than
the influence of the higher harmonics in Lm,k = g(t).

The procedure suggested and described in this section was
testéd on one example. The problem and the results are given in

the next section.

7.3 The Sample Problem

As our sample problem we have chosen a 15 kW, six-pole wound
rotor machine, star connected on both stator and rotor wigh 54
.slots on stator and 36 on rotor. The winding was two layer with
five turns per coil on the stator and seven turns per coil»on the
rotor, series connected, 60° phase belt spread, full pitch on
rotor, 7/9 pitch on stator., The active length of the machine was
£ = 200 mm, The cross—section of one pole on the machine is shown
on Fig., 7.3, and the magnetising curve of the steel laminations on

Fig. 7.4.
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Fig. 7.3

0.05 0+10

The Cross—Section of One Pole of a Machine Chosen .

as a Sample Problem
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The end-winding .inductances were calculated by the method
described in Chapter 2, The end~windings on both stator gnd rotor
were represented by 20 straight ling segments, resembling the usual
almost elliptical shape of low voltage machines fairly accurately,
The complete end-winding inductance matrix is given in Table 7.1,

(The matrix is, of course, symmetrical.)

TABLE 7.1

The End-Winding Inductances

(All values in H x 10 9)

Stator Rotor
A B C A B C
A | 23.19 8.75 8.75 1.90 1.52 1.10
Stator B 23.19 8.75 1.10 1.90 1.52
c ' 23,19 1.52 1.10 1.90
A 20.76 7.08 7.08
Rotor B 20,76 7.08
C . 20,76

A computer-constructed triangle mesh used for the computatioﬁ‘
of magnetic field in the core region is shown on Fig. 7.5. The
mesh density was chosen according to tﬁe rules given in Chapter 6.
The complete mesh contained 1505 triangiesvand 790 nodes resulting
in a system of 740 equatioms,

For the solution of system (7.2) a separate computer program
was written which takes the periodicity conditions fully into
account so that a solution over a period T/6 only is necessary. .

First order central differences were employed.
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Fig. 7.5 A Computer Generated Mesh
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The cbmputation followed the procedure described in section
7.2. The initial values of inductances were obtained by thé solu=
tion of linear problems with Viron = IZOQ A/Tm which corresponds to
the flux density of 1*5 T. System (7.2) was solved with a time
step of 5°56 x 107> sec (1l el. deg.) and 50 Hz, 415 volts line to
line, which produced an initial estimate of stator current of 188 A,
The optimum iteration parameters were found to be w = 1-80,

B = 008 and K = 4, The linear fields were computed by successive
line over-relaxation. The optimum over-relaxation factor
(assymptotic) was found by the well-known power method (see for
example Ref. 7.2) and its value was about Wy = 1956 (it varies
slightly as the reluctivities change from iteration to iteration).

The variations of the effective value of stator and rotor
current in the iteration process described by boxes 4=7 of Fig.,7.2
are shown on Fig, 7.6, Convergence appears‘to be fairly fast, and
the difference between the current estimates in the 2nd and 3rd
iteration is only about 0-57%. This figure is not directly related
to the accuracy of our iteration process, but as the iteration con=- -
verges rapidly, we have reasons to believe that the error=of our
current estimate is also of the order of magnitude of 17. (This
accuracy corresponds to the iteration procedure only. The error
introduced in this way should be added to the errors introduced by

-ocher factors, see Chapter 6).

This accuracy was considered to be adequate for the purpose of
short circuit current computation, the iteration was terminated,
and the‘influence of higher harmonics determined (box 8). The
variations of the value of inductances with time is iilustrated in

Fig. 7.7. The complete matrix of core-inductances and the
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H x 10‘21&Inductance

Self inductance of one rotor phase

15 L
Self inductance of one stator phase
1.0 +
Mutual inductance of two stator phases
0¢5 -+
‘time
t i T F—
0 0.01 0+02 sec

Fig. 7.7 Variation of Inductance with Time
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magnitudes of their 2nd harmonic is given in Table 7.2.

TABLE 7.2

The Core-Region Inductances

(A1l values in H x 1072)

Stator Rotor
A B C A B C
1386 0-641 0+641 1334 0618 0612
0.011 0016 0-016 0.012 0°015 0004
Stator 1-386 0-641 0612 1.334 0+618
0-011 0.016 0004 0012 0:015
1-386 0.618 0-612 1.334
0.011 0015 0004 0:012
1527 0574 0.574
0.007 0-016 0:016
Rotor 1.527 0+574
0.007 0.016
1.527
0.007

Top and bottom figures represent the values of C1 and C2 in Eqn.

(7.3), respectively.

On average the magnitude of the second harmonic is about 37 of

the value of inductance.

will in turn produce some change in the values of current.

The second harmonic of the inductance

This

value was computed and it amounts to about 37 of the effective

value of stator current., The increased current will, of course,

have some influence on the values of inductance, and strictly, we

should continue the iteration with this new value of current. The

difference of 37 was considered acceptable, however, because the
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overall accuracy of our computation is not better than éome + 107
. (see Chapter 6).

As an illustration we have alsq plotted the field fgf the last
sfep in our iteration (Eig. 7.8). The flux densities in some .parts
of the cross-section reach a value of up to 25 T. The relative
permeability of iron for this high value of flux density ié oniy
about B o= 5, but the overall effect of saturation on the value éf
current is not very large. The stator current is increased by
about 97%. This increase was determined by the computation of non-
saturated values of inductances and the corresponding value of
current. The non-saturated values of both stator and rotor current
are also plotted on Fig. 7.6, The torque was also computed from
the field distribution in the last iteration and its value was
T = 139 Nm,

All computations were performed on the ICL 1907 computer. In
average the non-linear field solutions required about 250 itera-
tions for the accuracy of about 12, and the linear field solutions
required about 150 iterations. A considerable amount of'computa-
tion time was saved by the use éf the estimate of the vector
potential distribution from the preceding iteration as the initial
values for the new field distribution. By the use of the optimis-
ing compiler XFEW the total computatioﬁ time was about 1 hour,

This figure does not include input and output operations, cémpila-
tion, backing store operations, etc., which can be expected to |
increase the actual computer time between 107 and 100%, depending
on the amount of output, backing store media, etc. Hence a real-
istic figure for the total computation time for this type of

computer is about two hours. This is about two orders of magnitude
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Fig. 7.8 - The Flux Distribution in One Pole Pitch
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more than the computation time that can be expected from the use of
computational methods which are not based on the solution of magne=-
tic field in the machine. So for example the method of Chalmers
andiDodgson (Ref. 7.3) would require a computation time of the
order of one minute, .

In this example we have seen that practical‘compytations of
short circuit current of induction motors with wound rotdrs by the
use of numerical field solutions is feasible. Our sample problem
is relatively simple, but the method described in this chapter is
not limited to star—connected windings, nor is it limited to
symmetrical three-phase power supply. In fact, any type of induc-
tion machine at short circuit can be dealt with in an analogous
‘way, although clearly more complex problems will require more
computer time. In the next chapter we shall summarise some of

the possibilities of our method and also look at some possibilities

for future development.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

8.1 The End-Winding Inductances

In Chapter 2 of this thesis we have describgd a novel ﬁethod‘
for the computation of end-winding inductances. Our method is an,’
integration routine based on the method of images.

In the earlier methods described by other authors the perme=-
ability of the iron core could have only the values of ® or O
(ideally permeable or ideally conductive material). In our method
effects of both permeable and conductive properties of the steel
laminations can be considered by choosing the 'effective' value of
permeability which gives more accurate results.

The accuracy of our method is limited by two major factors.
The first one is the value of the effective permeability. This
Qalue could be obtained from theoretical considerations or from
experiments, and there is room for further research in this direc-
tion.,

The other factor limiting the accuracy is the influence of
other conducting/permeable surfaces in the vicinity of the end-
winding (casing, shaft). Their effect can be considered by an
approach analogous to the treatment of the effect of the core.

A method of Lawrenson is related to our method (see section
2.6). 1In Chapter 2 we have suggested that both methods could -
yield similar accuracy and would probably require comparable
coﬁputation time., This statement was not based on any detailed

analysis, and we believe that in the search for the most accurate
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“and the most efficient method a detailed cdmparison‘of the method

of Lawrenson and our method would be a valuable contribution.

8.2 TField Solutions

The major part of the thesis is concerned with the problem of .

computation of two-dimensional non-linear magnetostatic fields.,

=
-

Several possibilities have been considered and the numeriéal method
based on discretisation techniques appears to be the only feasible
way of effective and accurate computation of field problems., Of
different possibilities for discretisaion, triangular meshes with
free or semi-free topology have several advantages over the other
methods, particularly in flexibility and accurate representation

of complicated boundaries.

The set of algebraic equations representing the problem in a
discretised form was derived in two different ways. Both
approaches are based on a principle of the elimination of a suit=-
ably defined error of our approxiﬁate solution. Of the two
approaches the one based on integration is particularly simple and
is, in this sense, more suitable than the more common approach
- based on the calculus of variationms.

The mathematical model we have chosen is commonly known as the
'potential energy model'. Several other possibilities for a
different type of mathematical model have only been mentioned.

This is a field‘that is in need of more detailed analysis, parti=-
cularly as some of these mathematical models offer better accuracy
" without the increase qf the order of approximation. 'Hybrid'

models are particularly attractive in this sense.
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For the approximation of our field solution we have chosen
piecewise linear functions. Although this type of approximation
gave us a fair accuracy, a further Qeveiopment by the use of piece=-
wise polynomials seems inevitable. Cubics offer the advantage of
relative simplicity and greatly improved approximation in compari= .
son with piecewise linear functions. The investigation of the use
of piecewise cubic approximation for non-linear problems is
reéommended as one of the future topics.

We have investigated several methods for the solution of large
sets of non-linear algebraic equations arising from discretisation.
Numerical experimentation has shown that different iterative
methods can be used successfully for such problems, and that some
of these techniques are sqperior to direct methods of solution,
Two-step linearised line iteration has shown the best performance
of all tested methods, and the use of this method is recommended
for future work. However, the performance of this method is not
much superior to the performance of some other iteration methods,
and it may be that another method will be more suitable for
another problem., This may be particularly true if higher order
approximation is employed, for which the iteration methods will
be less suitable than for the systems arising from low order
approximation. ‘ ?

Determination of obtimum iteration parameters by trial and
error method leaves a lot to be desired. This method can provide
the best combination of iteration parameters for a particular
problem, but its use 1is neither very efficient nor elegant. A

method which does not require a prior estimate of any parameters

and in which the iteration parameters are adjusted during iteration



- 231 -

in order to achieve the best possible éonvergence-would be ideal
and further theoretical investigations as well as numerical experi-
mentation in this field are necessary.

>

8.3 Applications

‘The aim of this research was to find a suitable method for the
computation of magnetostatic fields in saturated inducti;: motoré
with wound rotors, with ;he purpose of determination of the per-
foimance of the machine with locked rotor.

In Chapter 7 we have seen that there are several methods by.
which the performance of the machine can be determined from the
field.solutions. Consequently, a method was chosen which appeared
to require the least amount of computation.

‘The method we have selected for the computation of our sample
problem gives the accuracy acceptable from the practical point of
view and it is reasonably efficient, The use of our method is not.
restricted éo the computation of short circuit current of machines
with wound rotors. We believe that our method can be successfullyA
used for the computation of the performance of non-skewed squirrel
cage induction motors in short circuit, and the application of our
method to this problemyseems to be the logical step. However, the
total computation time for the solution of this problem can be
expected to be considerably longer, possibly up to five times more
than the computation time required for machines with wound rotors.

Another proﬁlem that is also in the scope of our method is the
short-circuit performance of machines with skewed rotors. Two

dimensional field solutions can still serve as a basis for computa=-

tion, because the axial flux can be neglected in most circumstances.
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This,broblem is, nevertheless, much more compliéated than the prob=
lem of unskewed machines., The total comﬁutation time for the solu=-
tion of this problem may easily be py one order of magnitude higher
than the computation time required for the solution of our sample
problem, particularly if solutions for different relative positions
of rotor to stator are sought. .

The behaviour of an electrical machine is determined by the
electromagnetic phenoména in the machine. The electromagnetic
phenomena can be suitably described by Maxwell's equations. Hence,
any design process of the machine incorporates in itself an appro-
ximate solution of Maxwell's equations. These equations are too
complicated to be solved exactly, énd simpler mathematical modelsA
have to be used to represent the physical phenomena in the machine
in order to carry out the practical computation., In the pasf
these mathematical models have often been very crude, due to the
limited possibilities of hand computation. The development of
digital computers offers a possibility of more accurate solutions.
The final goal is a complete numerical model of the machine, which
will enable accurate prediction of the behaviour of the machiﬁe at
any working conditions. This thesis represents a small contribu-

tion towards this goal.
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APPENDIX

- A Mutual Neumann Integral Between One Finite and Two Semi-Infinite

Anti-Parallel Straight Lines

Referring to Fig. 2.7 and Eqn. (2.5) and (2.6) the mutual
Neumann integral between a finite straight line AB and two mutually

anti-parallel straight lines is given by

|a,B|+|b 8| +|aypy| —
N = lim |cos ¢.{C;B.2n - C;A.%n
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a_2+oo i
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+
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After some transformation and application of L'Hospital's rule

we get:
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Aléo, by substituting:
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and some manipulation we obtain
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which completes the proof.
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