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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

ELECTRICAL ENGINEERING 

Doctor of Philosophy 

COMPUTATION OF MAGNETIC FIELDS IN SATURATED IRON STRUCTURES WITH 

SPECIAL REFERENCE TO THE COMPUTATION OF SHORT CIRCUIT PERFORMANCE 

OF INDUCTION MACHINES WITH WOUND ROTORS 

by Ivan Mandic 

The thesis is principally concerned with the solution of non-

linear field problems with particular reference to the computation 

of the magnetostatic field in magnetically saturated electrical 

machines. The field is divided into a core region for which a two-

dimensional solution is obtained and an end region, the analysis of 

which takes account of the three-dimensional geometry using the 

method of images. 

The influence of saturation in the core region is explored by 

solving the non—linear partial differential equation in terms of 

vector potential-. The magnetic field in the core region can 

therefore be described by a two—dimensional mildly non—linear 

elliptic partial differential equation. This equation can be solved 

approximately by different discretization techniques in which the 

problem is transformed into one of solving a set of non—linear 

equations. Different possibilities for discretization have been 

compared and it has been found that the discretization mesh 

consisting of triangles and having free topology has advantages 

over some other types of discretization. The necessary number of 

mesh nodes for given accuracy has been found by numerical experimentation. 

Several methods for the solution of the set of non—linear algebraic 

equations arising from discretization are compared. Numerical 



VI1 

experimentation shows that two-step line iteration is superior 

to some other methods. 

The computation of the inductance associated with the end 

region allows for the practical shape of end windings and the 

influence of the steel core. 

The possibilities for the practical application of the 

proposed method to the computation of short circuit performance 

of induction machines with wound rotors is illustrated with the 

detailed computation of an example. 
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IX 

LIST OF PRINCIPAL SYMBOLS 

Unless otherwise stated in the text, the symbols used in this 

work have the following meaning; 

A z-component of the magnetic vector potential 

A magnetic vector potential 

B magnetic flux density 

2 magnetic flux density vector 

2 electric flux density vector 

d differential operator 

electric field strength vector 

H magnetic field strength 

H magnetic field strength vector 

unity vectors in the direction of x and y coordinate axes, 
respectively 

J electric current or current density 

J electric current or current density vector 

L inductance 

M total number of triangles in the mesh 

n total number of nodes in the mesh 

R resistance 

s slip 

S area 

t time 

V volume 

X reactance 

y 

z 

Cortesian coordinates 



X 

e permittivity 

y permeability 

permeability of free space 

relative permeability 

V reluctivity 

ir 3.14 159 ... 

p electric charge density 

3 partial differential operator 

V Hamilton's operator 
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CHAPTER 1 

INTRODUCTION 

The induction motor is today one of the most common electrical 

devices. It is used in homes and in industry, and there is hardly 

a branch of technology that does not use the induction motor as a 

source of mechanical power. It is built in sizes ranging from a 

fraction of a Watt to several Megawatts, and the total number of 

induction motors is constantly increasing. 

A constant desire of the designer of the induction machine to 

produce a lighter, cheaper and better motor has caused a dramatic 

increase in power rating per volume (Ref. 1.1). A part of this 

increase is due to the development of new and better materials, but 

a good deal of it is due to better and more efficient use of these 

materials, i.e. to the design of the machine. The trend towards 

higher power ratings for the same size of the machine has pushed 

the utilisation of materials to the limits and this has produced 

new problems. 

One of these problems is the non—linear characteristic of the 

induction machine due to the non-linear magnetic properties of the 

iron. The behaviour of the machine depends on the distribution of 

magnetic field in the machine, which in turn depends on the prop— 

Gfties of the magnetic steel laminations used in the machine. As 

the magnetic flux density increases, the non-linearities become 

more pronounced, the designing process more complicated and less 

accurate. 

In this thesis we shall try to predict the behaviour of the 

machine more accurately by more accurate computation of the 
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magnetic field distribution in the machine. We shall restrict our 

analysis to non—skewed induction machines with wound rotors and to 

the locked rotor condition only. Non-linear magnetic properties of 

iron will be fully considered. 

In section 1.1 we give the usual equivalent circuit and 

explain the common method of evaluating the magnitude of the 

magnetic flux in the machine. 

Section 1.2 deals with the behaviour of the induction motor 

with locked rotor. It is explained that increased current at 

short circuit may cause saturation of some parts of the magnetic 

circuit at a much lower voltage than at full load conditions or at 

synchronism. 

In section 1.3 we present a brief survey of some earlier 

attempts for the computation of short circuit current. 

1.1 The Equivalent Circuit of the Induction Machine 

In this section we shall briefly explain the usual equivalent 

circuit of the induction motor with wound rotor. 

The common approach in the analysis of the induction machines 

is through so-called equivalent circuits. A simplified equivalent 

circuit for one phase of the machine is represented in Fig. 1.1. 

and represent stator winding resistance and stator leakage 

reactance, Rg' and Xg' rotor winding resistance and rotor leakage 

reactance referred to the stator. The value of R2'(l-s)/s repre-

sents the load, Rq losses in the iron core and X^ the magnetising 

reactance. 

In the analysis of the induction machine one of the funda-

mental problems is the computation of inductances associated with 
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Fig. 1.1 The Equivalent Circuit 
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Xj, Xg' and X^. These inductances depend on the distribution of 

the magnetic field in the machine and in order to determine them it 

is necessary to know the magnetic field distribution. In the 

design process it is usually assumed that the total flux in the 

machine can be split into several parts and the magnitudes of these 

partial fluxes are calculated by relatively simple formulae. 

Different authors define different partial fluxes, but usually the 

following are considered (Ref. 1.2): 

main flux 

rotor and stator end-winding flux 

rotor and stator slot leakage flux 

leakage due to skew 

differential leakage flux. 

These partial fluxes are themselves often calculated as sums, and 

stator slot leakage, for example, would consist of flux crossing 

the stator slot plus tooth-tip leakage flux. The differential 

leakage flux represents in principle an infinite sum of all higher 

harmonics, but usually only first harmonics caused by phase-belts 

and slots are considered. 

The equivalent circuit of Fig. 1,1 represents the voltage 

relations in the machine very crudely. The representation can be 

improved by the addition of elements representing the influence of 

higher harmonics. To a certain extent the influence of saturation 

can also be dealt with by the addition of branches representing 

this influence (see, for example, Ref. 1.3). However, the accuracy 

that can be achieved by this simplified analysis is limited by the 

accuracy of the elements of the equivalent circuit, and if this 

accuracy is not improved, the accuracy of the method cannot be 

improved beyond a certain limit. 
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1.2 The Induction Machine on Short Circuit 

The equivalent circuit diagram of Fig. 1.1 is valid in 

principle for any working condition. However, if some parts of the 

magnetic circuit are saturated, the effects of non-linearities 

introduced in this way may be much stronger at short circuit, and 

the accuracy of computation lower. 

The usual values of stator and rotor resistances and Rg' 

are of the order of 0*01 to 0*05 per unit, and the magnetizing 

reactance is of the order of 2 to 4 per unit (Ref. 1.4). With 

the rotor at standstill, the load resistance R2'(l~s)/s is zero, 

and the starting current will be largely determined by the leakage 

reactances Xj and X2'. As these have to be kept small if a high 

power factor is sought at nominal working conditions, the short 

circuit current is large, usually about six times the nominal 

current (Ref, 1.4). Hence the leakage fluxes will be high too. 

If the flux densities in some parts of the equivalent circuit are 

high enough to saturate the iron, the leakage reactances will be 

reduced, resulting in even higher starting current. This effect 

may occur at much lower voltage than the saturation effects at the 

nominal working point. 

As virtually all modern machines are built with flux densities 

in the knee of the B—H curve, the influence of saturation on 

starting current may be very high, on average increasing the magni-

tude of starting current by about 30% (Ref. 1.5). High starting 

currents represent difficulties regarding the supply, and the 

designer is presented with the problem of limiting starting cur-

rents to an acceptable level, and of computing these currents 

accurately. The simplest approach is to adjust the results by some 
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empirical coefficients, but this may fail to produce acceptable 

results (Ref. 1.7), and more sophisticated methods are necessary. 

In the following section we shall briefly describe some earlier 

solutions. 

1.3 Note on the Work Carried Out by Previous Researchers 

The decrease in reactance of induction motors at short circuit 

due to the saturation of magnetic paths in the machine was recog-

nised in the late 1920 (Ref. 1.8). Consequently, numerous attempts 

have been made to develop methods which would enable predictions to 

be made of the drop in reactance and an accurate evaluation of the 

short circuit current. In principle, this problem can be solved by 

three different means: by experiment, by mathematical modelling 

and by statistical analysis. 

The use of statistics is probably the simplest way of achie-

ving the goal, because it does not require a complete understanding 

of the physical phenomena. However, the degree of saturation is a 

function of many parameters and difficulties may be encountered in 

attempting the solution of a problem by purely statistical means. 

In addition, such methods have only a limited value if applied to 

new designs. 

Experimental investigations of the effect of saturation 

require a physical model of the machine. This is a major drawback 

of such methods, as the only accurate model of the machine is the 

machine itself. Hence, this method is not suitable for prediction 

of short circuit currents in new designs, although measurements of 

flux distribution on real machines or models (Refs. 1.5, 1.9) can 

help in understanding of the physical phenomenon. 
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The most suitable method for the prediction of short circuit 

current of induction machines is mathematical modelling. The 

majority of published reports on the subject belong to this group 

(Refs. 1.4, 1.6, 1.10-1,16). In some cases, however, the mathe-

matical modelling and statistical analysis are combined, the pre-

diction based on a mathematical model being corrected by 

statistical means (Ref. 1.17). A short survey of most of the 

early findings can be found in Ref. 1.14, and we shall restrict our 

consideration to a few more recent papers. 

We have mentioned in section 1.2 that the leakage reactances 

of rotor and stator are determined as a sum of different parts 

corresponding to slot-leakage flux, tooth-tip leakage flux, etc. 

The partial fluxes are determined by relatively simple expressions, 

which are derived on the basis that the flux pattern of partial 

fluxes is known. This basic procedure is unchanged in all papers 

dealing with saturated values of short circuit current (Refs. 1,4, 

1.6, 1.10-1.17). The difference is in the introduction of 

saturation factors' which are applied to different parts of 

leakage reactances. Different authors derive these factors in 

different ways. 

The paper by Chang and Lloyd (Ref. 1.11) presents a semi-

empirical method for the computation of saturated values of short 

circuit leakage reactances. The authors assumed that only zig-zag 

leakage flux and tooth-tip leakage flux are affected by saturation. 

In their method minimum iron areas are found in magnetic paths for 

zig-zag and tooth—tip fluxes. The values of tooth—tip and zig-zag 

flux are determined as if there were no saturation. Then the 

saturation factors for corresponding parts of leakage reactances 

are determined from the universal saturation curve. 
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Agarwal and Alger also consider only the influence of tooth-

tip and zig-zag leakage fluxes in their paper (Ref. 1.4). In their 

method tooth-tip and zig-zag leakage fluxes are combined in order 

to determine the iron area which will saturate. A step-function 

approximation for B—H curve is used to determine the maximum value 

of flux through the saturated area. The saturation factor obtained 

as a ratio of current at which saturation occurs and the actual 

current is applied to either both zig-zag and tooth-tip reactance, 

or to tooth-tip reactance only, depending on the position of the 

saturated area. 

Angst in his paper (Ref, 1.6) used basically the method of 

Agarwal and Alger and extended it by considering skew leakage flux 

also. 

A series of papers by Ciganek are all related (Refs. 1.12-

1.15). His method consists of an iteration procedure. In the 

first step the magnetic flux densities in teeth and tooth-tips of 

the machine are determined with the assumption of constant perme-

ability. The fictitious value of flux density in the teeth 

obtained in such a way is used to determine the saturated value by 

a graphical method using the actual B-H curve. The decrease in 

reactance is computed, new value of current determined and the 

whole procedure repeated. According to Ref. 1.13, two iteration 

steps give adequate accuracy. 

In a later paper by the same author (Ref. 1.14) a similar 

method was applied for the determination of the influence of satu-

ration in teeth. The influence of saturation of tooth-tips is 

taken into account as the effective increase of slot openings. 

This increase is computed from geometrical dimensions of tooth-tips 
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and maximum value of current in the slot. A separate correction 

factor obtained in this way is applied to tooth-tip reactance only. 

In Ref. 1.15 the saturation in the tooth body was neglected. 

It was shown in one example that the flux in tooth-tips does not 

depend on the overall flux distribution, and that adequate satura-

tion factors can be obtained by considering tooth-tip flux only. 

The B-H curve was represented by an exponential function, and 

graphical integration along the flux paths in the tooth-tip areas 

of stator and rotor was used in order to determine saturation 

factors for tooth-tip flux. 

Of all published reports on the evaluation of short circuit 

current of induction machines, only Chalmers and Dodgson presented 

a method primarily intended for use on the computer (Ref. 1.16), 

Consequently, their method could employ more complex computation as 

compared with methods intended for manual computation. Their 

method is related to methods by Agarwal and Alger (Ref, 1,4) and 

Angst (Ref, 1,6), Like these authors, Chalmers and Dodgson also 

use the step-function approximation for the B-H curve. In their 

method they distinguish between several magnetic paths for 

different partial fluxes corresponding to tooth-tip leakage, zig-

zag leakage, etc. Different flux paths coincide partially with 

each other. Partial fluxes are computed as if there were no satu-

ration in per unit values and superimposed to each other. The 

total flux could be said to pass through a certain number of 

critical areas v̂ here the flux densities will have the highest 

value. The area with the highest flux density is found, and all 

partial fluxes passing through that area fixed to the value deter-

mined by the maximum flux density from the step function B-H curve. 
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If the magnetomotive forces are not in balance with the flux, the 

area which will saturate next is found, etc. The process is 

repeated until the balance between magnetomotive forces and flux is 

reached. Then the total reactance of the machine is found by sum-

ming the contributions of all partial fluxes. This method used as 

a part of an iteration procedure will give a starting current at a 

specified voltage. 

Correlation of the results of this method and measurements on 

actual machines depends on the choice of the maximum flux density 

in steel laminations. No other method than statistical analysis 

can provide the best value of this flux density, and this method 

must also be regarded as semi-empirical to a certain extent. 

Although the methods described by these different authors 

differ from each other, they also have several common points. They 

are all based on an approximate magnetic field solution of the 

linear problem. This approximate solution is obtained by super-

position of a number of partial fluxes, which are computed assuming 

that the reluctance of different parts of magnetic circuit (air-gap, 

tooth body, etc.) is constant and can be computed from geometrical 

dimensions only. The different parts of the reactance obtained in 

this way are later adjusted by factors depending on the saturation 

level in the machine. The accuracy that can be reached by any of 

these methods is limited by the accuracy of the basic field solu-

tion, and it may be expected that the accuracy is lower as the flux 

density increases, because the flux pattern will differ more from 

the flux pattern obtained by the usual computation if the relucit-

vity of steel is higher. 
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Hence, the key to the more accurate starting current is more 

accurate field distribution. In the following chapters we shall 

try to find a method which will enable us to solve the magnetic 

field in the machine more accurately, and which can be used to 

determine the short circuit current more accurately than is 

possible by means of the methods previously described by other 

authors. 
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CHAPTER 2 

COMPUTATION IN THE END-REGION 

This chapter is concerned mainly with the computation in the 

end-region of the machine. 

In section 3.1 we point out the basic characteristics of 

different regions of the machine and suggest different approaches 

for the computation in the end-region and in the core region. 

Necessary simplifications of the geometry of the end-region 

are introduced and explained in section 2.2. 

Section 2.3 is concerned with the field distribution in the 

end-region, and it is pointed out that the method of images, 

which is dealt with in some detail, can form a basis for the com-

putation of end-winding inductance. 

The formulae for the computation of the inductance, based on 

the method of images, are derived in section 2.4, while in section 

2.5 we give a brief description of the computer program developed 

on the basis of these formulae. 

In the final section of this chapter we give a short discus-

sion of some recently published papers dealing with the same 

problem, and we also point out some limitations and possibilities 

of our method. Some possibilities for further development are 

also mentioned. 

2.1 Splitting of the Machine into Regions 

An induction machine is a complex three-dimensional struc-

ture. Its behaviour under working conditions depends on the 

distribution of the electromagnetic field in it. This field is a 
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a single entity; all active parts of the machine will have an 

influence on the distribution of the electromagnetic field in 

different parts of the machine. Strictly, an attempt to solve the 

field in one part of the machine only, cannot give the correct 

answer. Yet, from the practical point of view it is desirable to 

analyse the field in different regions of the machine separately. 

This simplifies the problem significantly and allows for the use 

of different computational techniques in different regions. 

In our analysis we shall distinguish two different regions in 

the machine: the end-winding region and the core region. The end-

winding region is characterised by the complex three-dimensional 

geometry of the coils which are situated in the air. The core 

region is characterised by the much simpler geometry of the wind-

ings which are embedded in the steel lamination. In the core 

region the pattern of the magnetic field distribution is basically 

two-dimensional and is greatly influenced by the magnetic proper-

ties of the steel, which are generally non-linear. In the end-

winding region the field pattern is three-dimensional, but the 

influence of the surrounding steel is not so dominant as in the 

core region. 

These basic differences suggest different approaches to the 

problem of field solution: in the core region it will be a two-

dimensional analysis which will take non-linear properties of 

steel into account while in the end-winding region it will be a 

three-dimensional analysis, which will take only the basic influ-

ence of the surrounding eteel into account. 
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2.2 Simplification of the Geometry of the Region Assumptions 

Fig, 2.1 represents a sketch of a wound rotor induction 

machine end-winding region. In the analytical approach it is 

usual to represent the end-coils by some simple shape and ignore 

the three-dimensional character of the region. The influence of 

the magnetic core is taken into account either by assuming zero or 

infinite permeability (Ref. 2.1 - 2.3) and using the method of 

images. 

If the field distribution is to be solved by a numerical 

method, some of the simplifications may be abandoned. Some assump-

tions on the magnetic properties of the core and geometry of the 

region are still necessary. In this work we have made the follow-

ing assumptions: 

a) The permeability of iron core is constant. 

b) The influence of slots and air gap on the field distri-

bution in the air is negligible. 

c) The influence of the shaft on the field distribution is 

negligible. 

d) The iron core surface is of infinite extent, i.e. there 

is no influence of the edge of the core on the magnetic 

field distribution in the air. 

e) Except in their immediate vicinity the coils are repre-

sented by single, infinitely thin conductors. 

2.3 Magnetic Field Distribution in the Air 

Under the assumptions of the previous section the magnetic 

field distribution in the end-winding region can be solved by the 

method of images. 
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Fig. 2,1 Tha End-Region 
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The magnetic field in the air due to current J in a closed 

loop near a permeable surface (Fig, 2.2a) can be calculated by 

replacing the surface by the image of the loop carrying current 

(Fig. 2.2b): 

li - 1 

J' - ^ J (2.1) 

This result has been given as early as 1898 (Ref. 2.4), More 

recently image systems of circuits partially embedded in iron have 

been derived (Ref. 2.2, 2.5). Carpenter (Ref. 2.2) gives a parti-

cularly clear and simple approach using superposition. 

The circuit on Fig. 2.3a can be constructed from a pair of 

infinitely long straight conductors (Fig. 2.3b) and a semi-

infinite circuit (Fig. 2.3c). The field in the air due to current 

in infinitely long conductors is two-dimensional and it is unaffec-

ted by the presence of iron (has no image), while the field due to 

current in circuit on Fig. 2.3c can be evaluated from that circuit 

and its image (Fig. 2.3d). The circuits on Figs. 2.3b and 2.3d 

are now superimposed giving the final image system (Fig. 2.3e) for 

the calculation of the field in the air. 

The influence of the air gap and slots can also be taken into 

account (Ref. 2.2). As the air gap in induction machines is 

short, its influence on the field distribution in the air is 

small. The influence of slots and air gap has been ignored in our 

calculations. 

2.4 Inductance Calculation 

A convenient method for the calculation of inductance is in 

terms of vector potential. The mutual inductance between two 
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Fig. 2,3 The Image System of an End-Coil 
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current carrying loops, Jlj and (Fig, 2.4) is given by 

(Ref. 2.6); 

J, Ai.d&g (2.2) 

where is magnetic vector potential due to current in loop . 

In our case integration will take place along the contour of the 

coil. It is therefore convenient to divide the integration path 

into three parts; one corresponding to the core region and two 

corresponding to two end-coils. It follows that for the calcula-

tion of end-winding inductance the integration path has to include 

only the contour of the end-coil, i.e. the loop should not be 

closed but include path ABCDE on Fig. 2.3a only. 

In free space, the vector potential A due to current filament 

dJ at distance r from the filament will be (Ref. 2.7): 

dJ 
A - 7^ — Air 

(2.3) 

Consider now two end-coils represented on Fig. 2,5* The 

influence of the iron has been replaced by the image of the coil; 

therefore we can write for their mutual inductance: 

'12- Air J J 

( 

ABCDE 

d&,,dl. 

dJ,, .dl^ 
= L = 1 + J. 

GHIJKLM 

I ^ 
d£..d£ 1 

-1 ) 
FG MN 

N-mo 

r d& .d£ 
=Ll=l + (J + J.) 

GPM 

(2.4) 

An analogue expression would have been obtained for the cal-

culation of self-inductance. A certain caution is necessary in 
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Fig. 2.5 On the Mutual Inductance of Two End Coils 
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that case, as some parts of inner and outer integration paths 

would coincide yielding an infinite result. We shall return to 

this point later in this section. 

For practical purposes it is convenient to replace the end-

coil contours and their images by a finite number of straight 

lines. Any shape of coil can be represented to any desired 

accuracy in this way. Then the integrals in Eq. (2.4) may be 

obtained as a sum of the integrals of type (Fig. 2.6); 

B b 

N cos <J) dl. 
d£. 

(2.5) 

The value of this integral for two lines in a general posi-

tion is (Ref. 2.8); 

N = cos <{) • CB'&n 
ab + bB + ab 

- CA'&n 
aA bA + ab 

aB + bB - ab aA + bA - ab 

+ cb'&n 
bA 

bA + bB - AB 

AB bB 
- ca'&n 

aA + aB + AB 

aA + aB - AB 

- |Cc| . ctg * 
, Cc ^ cb . CB . . 

arctg ( -J L. . ctg * + . sin a) 
iBbl IcZl.lBbI 

arctg ( . ctg 4> + *' . sin <j)) - arctg ( -ctg 6 + 
IbAl IcZl.lbAl liBl 

+ . sin 4)) + arctg ( 1 2 ^ . ctg <j> + ' . sin <f)) 
Cc . aB aA Cc . aA 

(2.6) 

Overlined letters represent the geometrical distance between 

corresponding points on Fig. 2.6. Distance Cc is a common perpen-

dicular to both lines 2^ and If Cc is zero, Eq. (2.6) does not 
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Fig, 2.6 On the Mutual Neumann Integral Between Two Straight Line 
Segments 
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give a definite result; the expression is finite, however, and 

may be readily evaluated, except in the case where AB and ab 

overlap each other. 

If either AB or ab is infinitely long (as for example lines 

FG or MN on Fig. 2.5), Eq. (2.6) will not give a finite result. 

In our case lines FG and MN will always be parallel and carry 

opposite currents. The value of (2.5) for that case is (see 

Appendix): 

N » cos <J>-(-ĉ b̂ -J'n 
b2A + bgB + AB 

Ib^Al+lb^Bl-lAB] 
- c^a^«&n 

a^A + a^B + AB 

!ajAl+|a^Bl-|ABl 

+ Cĵ B'Jln 
bgB -C2B cos -c^b^ 

a^B -CjB cos V "c^a^ 
+ C^A'&n 

la^A|-C^A cos 4" +Cĵ â  

|b2A|-C2A cos (j) -C2b2 

^Z^^'SgB'Cos 4) -Cgbg 

bgAj-C^A'COS (p -C2b2 
)- Ic^c^ I. ctg <!> arctg ( 

CjB 

IClCi 

.sin <|)) -

- arctg ( 
C^A 

IClCi 

•sin 41)- arctg ( 
C^c^ 

|a^B| 
•ctg <l> + 

^1^1* C ̂  B 
•sin <j>) + 

|C^cJ.|ajB| 

+ arctg ( 
IClCi 

iâ Al 
•ctg * + 

c^a^ . CjA 

I Cj Cĵ  1. 1 aĵ A I 

• sin <&) + IC2C2I. Ctg <l> . 

arctg ( 
CgB 

IC2C2I 

. sin ($1)- arctg ( 
C2A 

IC2C2I 

• sin (J))- arctg ( 
I V 2 

iF ; : i 

^2^2 • C^B 
.ctg 4" + — — — .sin 4')+ arctg ( 

IC2C2I 

IbgAl 

^2^2 * C2A 
•Ctg (t> sin <l>) 

Ivll.lvl 
(2.7) 

Again, overlined letters represent distances between corres-

ponding points on Fig. 2.7. Distances on a certain straight line 

are always measured in the direction from a to b or A to B. 
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Fig. 2.7 On the Mutual Neumann Integral Between One Finite and 
Two Semi-Infinite Straight Lines 
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The most convenient way of calculating the mutual inductance 

between end-coils 1 and 2 on Fig. 2.5 seem to be to obtain it as a 

sum of three parts which correspond to mutual inductance between 

end-coil 1 (line ABODE) and; line GHIJKLM (L^); line GPM (Lg); 

lines FG and MN (Lg). The total mutual inductance is then: 

1-y 2y 

• "-i • TJir '•a * u i r H (2.») 

The self-inductance of the coil is obtained in a similar way. 

For the parts of the contours which would overlap, Eq, (2^6) is 

used with lines of integration parallel but separated by the 

radius of the coil thickness (corresponding to external induct-

ance). Internal inductance is evaluated by the formula (Ref. 2.9); 

S - ^ i (2.9) 

where t is the length of the part of end—coil in consideration, 

and added to Lj in (2,8). 

The direction of forces on end-coils will depend on the 

direction of the current; i.e. on the shape of the end-coil. For 

small low voltage induction machines these forces will contribute 

little to the torque of the machine. This may not be so with 

large high voltage machines where there is a considerable current 

flowing in the direction of the shaft in the end-winding region. 

If necessary, the contribution to the torque of the forces on end-

coils may be evaluated by differentation of the magnetic energy by 

the angle. For the contribution of two end-coils, one on rotor 

and one on stator, we have: 

"̂ 1 W ^ ^2*^2 + (Jz' + J2> Lg (2.10) 
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and the overall contribution to the torque is obtained as a double 

sum, of (2.10) over all stator and rotor end-coils. The differ-

entiation is most easily carried out numerically. 

2.5 Computer Program and Results 

In the previous section we have derived the formulae for the 

computation of end—winding inductance under the assumptions listed 

in section 2.2. The computation of the mutual inductance between 

two end-coils involves numerous evaluation of expressions given by 

Eqns. (2.6) and (2.7). These two expressions are too complicated 

for paper and pencil computation and the automatic computation is 

the only practical solution. 

We have developed a computer program for the computation of 

end-winding inductance by the described method. A simplified 

self-explanatory flow chart is represented in Fig. 2.8. The pro-

gram has been written in FORTRAN (extended version for ICL 1900 

series computers). The novel feature of this program, as compared 

with other currently used methods, is the use of Eqn. (2.7), which 

enables us to compute the inductance for any relative permeability 

of steel core. 

Although the program has been written for computation of 

stator end-winding inductance, it can be easily adapted for the 

computation of mutual inductance between rotor and stator end-

windings . 

Results of the computation by this program for two typical 

examples are presented on Figs. 2.9 and 2.10. The diagrams 

represent the mutual inductance between two end—coils for a six-

pole and a two-pole machine for relative permeabilities v " 0 and 

Wg • 10000, 
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Read in geometrical dimensions, 
angle between two nearest slots 
number of coils, relative perme-
ability li 

YES 

NO 

STOP 

START 

More data? 

Set Y to 0 

Add 6 to Y 

Print results 

Confute L from Eq. (2,8) for 
all coils 

Compute co-ordinates of the points 
of the first end-coil 

Compute co-ordinates of the points of 
the second end-coil in the position ip 
relative to the first coil. Compute 
co-ordinates of the points of its image 

Fig, 2,8 The flow-chart of the program for computation of the 
end-winding inductance 
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For the purpose of comparison we have plotted the results 

obtained by the method of Carpenter (Ref. 2.2) on Fig, 2,9 (dotted 

line). He also used the method of images, but assumed that all 

end-coils lie in the same plane and the end coils were represented 

by two mutually perpendicular straight line segments. The relative 

permeability was assumed to be zero, thus his curve should be com-

pared with our curve for = 0. Our curve shows the same basic 

pattern, although the discrepancies are quite large, particularly, 

our curve decreases much faster with the increasing mutual distance 

between the two toils. The discrepancies are mainly due to the 

fact that the end-coils do not actually lie in the same plane. The 

influence of the better representation of the coil shape on these 

discrepancies is probably much smaller, because our representation 

was fairly simple, the end-coils being represented by 5 straight 

line segments (Fig. 2.1). 

Another example of the use of this program may be found in 

Chapter 7, where it is used to compute the end-winding inductances 

of a wound rotor induction machine used as our sample problem. 

The computation time depends, of course, on the type of 

computer and compiler used. As a rough guide it can be estimated 

from T a 10*̂  s n mf, where s is computer access time, n is 

number of coils and m is a number of straight line segments used 

for representation of the end-coil. For our case (s = 2*4 w sec, 

n - 28, m - 5), this formulae gives computation time of about 17 

seconds, which corresponds well with the observed value. 
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2.6 Discussion 

The most commonly used methods for the computation of end-

winding inductance are based either on some drastic simplifica-

tions of the geometry of the end-region (Ref, 2.1) or make 

extensive use of empirical coefficients (Ref. 2.10, 2.11)._ 

The solution of the problem has been an object of many 

researchers in the past. The most complete list of references 

can be found in Ref, 2.15, with the exception of some later 

papers. Until recently, virtually all work on this problem has 

been based on an analytical solution of the field distribution in 

the end-region of the machine, although current filaments have 

been used for the computation of forces on end-coils of large 

turbogenerators. The analytical approach is complex and often 

requires ignoring the three-dimensional character of the region. 

In 1959 Honsinger (Ref. 2.3) has published a paper on the 

subject which took the three-dimensional geometry into account. 

He assumed that infinitely permeable boundaries surround the end-

winding consisting of elliptic end—coils. His results are not 

suitable for computer use because of extensive use of graphs. 

Carpenter (Ref. 2.2) developed the method of images and used 

it in the same paper for the calculation of induction machine end-

winding inductances. He simplified the geometry by assuming that 

all end-coils have a simple V-shape and all lie in the plane. 

Further assuming zero permeability be obtained a very simple 

expression for the overall end—winding inductance. 

When the method described here had been developed, Lawrenson 

published a paper (Ref. 2.12) on the use of a numerical method for 

the computation of end-winding inductances similar to our method* 
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Similarly as in our method the three-dimensional geometry was 

fully taken into account, but the methods differ in several other 

points. Lawrenson assumed that the vector potential due to 

current filament ab (Fig. 2.6) is constant along the integration 

line AB, and the resulting formula in his method is much simpler 

than Eqn. (2.6). Unlike us, he took into account the effect of 

other conducting surfaces in the vicinity (shaft and casing) but 

assumed the permeability of all surrounding metal surfaces to be 

zero. If his method is simplified so that only the influence of 

the steel core is taken into account, both his method and our 

method (with • 0) will probably give similar results. Compu-

tation times are also likely to be similar, because, although his 

formulae are simpler than ours, his method will generally require 

more integration steps than ours in order to achieve the same 

accuracy. 

Recently, attempts have been made to solve the end field by 

direct numerical solution of the three-dimensional vector poten-

tial equation (Ref. 2.13-2.14). This method will allow the non-

linear magnetic properties of iron to be taken into account, 

although it cannot deal with the effect of eddy currents. The 

possibilities of the method have not yet been fully exploited. 

It is likely to make very high demands on computer store and com-

putation times, which can, at present* be hardly justified for the 

use with induction machines and fields. 

Our method for the computation of end-winding inductances 

takes into account the influence of permeable iron core and the 

complex three-dimensional geometry of the end region. The 

accuracy of the method can be improved by considering other 
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permeable and/or conducting surfaces in the vicinity, representing 

the end-coil more accurately by splitting it into single conduc-

tors and by considering the effect of slots and the air gap. 

The limitations of our method lie in the uncertainty of the 

permeability of the steel core. As the core is both permeable and 

conducting, the alternating magnetic field will cause eddy currents 

which will reduce its effective permeability. The influence of 

this effect on the inductance will depend on the applied frequen-

cies. Our method does not allow for this effect. However, it can 

be used to determine upper and lower bounds for the end-winding 

inductance, by computing its magnitude for the two extreme cases, 

i.e. zero permeability (ideally conducting surface) and the value 

of permeability bbtained for low flux densities and DC excitation. 

The influence of different permeability of the core on the mutual 

inductance of two end-coils can be quite large, as it can be 

readily seen from Figs. 2.9 and 2.10, and for some relative posi-

tions of the coils different permeability can even result in the 

opposite sign of the mutual inductance. 

The magnitude of the end-winding inductance is influenced by 

many factors, some of which are not easily considered. We believe 

that our method of computation presents an improvement over the 

most methods in current use, particularly as it can supply upper 

and lower bounds for the value of inductance. We also think that 

any further research in this field should include a considerable 

amount of measurements on models and real machines. Experimental 

work in this field would be extremely valuable, as it could pro-

vide such information as the influence of finite core diameter, 

etc., and it could probably also indicate the value of the 
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'effective' permeability of the core. Unfortunately, due to the 

lack of time, we were unable to do any experiments in this field. 
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CHAPTER 3 

THE CORE REGION 

In this chapter the problem of the field solution in the core 

region is discussed. 

In the first section the necessary assumptions and simplifi-

cations are made'and discussed* On the basis of these assumptions 

the problem is reduced to the two-dimensional one, and the partial 

differential equation of the magnetic vector potential is derived. 

In section 3.2 a short account of different possibilities for 

the solution of linear and non-linear field problems is given. 

The methods are divided into four groups: analytical, anologue, 

graphical and numerical. The basic advantages, disadvantages and 

limitations are pointed out. 

In section 3.3 different possibilities for the discretization 

of the region are presented in order to obtain a mesh for use with 

finite difference or finite element methods. 

Section 3.4 discusses the difference between the finite 

difference and finite element methods. Some definitions of these 

methods, if a partial differential equation is considered as the 

source equation, are explained. It is also pointed out that it is 

justified to consider Maxwell's equations as the source equations 

for the problem in hand, in which case both methods follow the 

same process. Finally, a historical note on the use of these 

methods is given, with the emphasis on the use of triangular mesh, 

which is often associated with the finite element method. 

Section 3.5 briefly discusses two possibilities for the field 

approximation by piecewise polynomials in the triangulated continuum. 
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In section 3.6 requirements for the method of solution are 

listed and the choice of the method is made. 

In section 3.7 two possibilities for the derivation of 

equations for the approximate solution are presented and it is 

shown that these yield identical results. Both approaches are 

based on a concept of the elimination of a suitably defined error 

of the approximate solution. The definition of error is different 

in the two approaches. Some other possibilities for the deriva-

tion of equations are also mentioned. 

Finally, sections 3.8 and 3.9 briefly discuss boundary 

conditions and derivation of torque and induced voltage from the 

field distribution. 

3»1 Magnetic Field Considerations in the Core Region -

Assumptions 

The magnetic field in the machine is governed by Maxwell's 

equations: 

3B 
V X E « -

— at 

3D 
7 X H = J + - Z 

— — 3t 

(3.1) 

(3.2) 

V B « 0 (3.3) 

9 D . p (3.4) 

and the subsidiary relations: 

B - M H - i H (3.5) 

eE (3.6) 
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It would be extremely difficult to solve the field distribu-

tion in the core region exactly, even under the assumption made in 

section 2.1 that the end region has no influence on the field 

distribution in the core. It is therefore necessary to introduce 

some additional simplifications; 

a) The magnetization curve of the core material is a single 

valued function; i.e. there is no hysteresis effect. 

b) The permeability jj outside the machine is zero. 

c) The permeability u of the shaft material is zero. 

d) Eddy current effect in the core lamination is ignored. 

e) The effect of changes of electric charge distribution is 

ignored. 

Assumption a) simplifies the problem significantly. Strictly, 

it would not be possible to take hysteresis effect into account 

completely; for this purpose we would have to know not only the 

properties of the material, but also its magnetic history. Even 

if the effect of previous magnetizations is ignored (which is 

justified for most practical purposes), the problem would remain 

very complex due to complexity of the magnetic field in the 

machine. In some parts of the magnetic circuit the field is 

mainly oscillating in magnitude; in others it is rotating as well. 

For these reasons it is necessary to ignore the hysteresis effect. 

The relative influence of the hysteresis on the field distribution 

decreases as flux density increases, because the saturation effect 

becomes predominant. 

Assumption b) simplifies the boundary conditions and 

restricts our calculations to the interior of the machine only. 

The flux distribution at short circuit is mainly influenced by the 
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air-gap area, and the magnetic flux outside the machine has little 

influence on the behaviour of the machine. 

Assumption c) may be easily removed. It is believed, 

however, that this represents the reality reasonably well, because 

the penetration of the flux into the shaft will be damped by eddy 

currents. 

Assumption d) is also made in order to simplify the problem. 

The eddy current phenomena in saturable material is a very complex 

problem itself, even in the much simpler cases. Modem mild 

magnetic materials have high electric resistivity and laminations 

are thin, so that the eddy currents are limited by high resistance, 

and the magnetic field due to eddy currents can be neglected for 

frequencies of up to a few hundred Hz (Ref, 3.1). 

Assumption e) is constantly made for the computation of 

electric machines based on magnetic principles, although not 

always explicitly. It is fully justified, because the effect of 

electric charges on the behaviour of the machine is completely 

negligible in comparison with other effects. 

With the definition of magnetic vector potential A: 

B - V X A (3.7) 

we get from Equations (3.2) and (3.5) (second term of the right** 

hand side of Eq. (3.2) is zero according to assumption e))s 

V X [v (7 X A)] - J (3.8) 

Fig, 3.1 represents a sketch of a part of a cross-section of 

a machine. The z-axis is directed out of the paper, so the 

current density £ has only a z-component. Hence the vector on the 
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Stator slots 

Stator core 

Air gap 

Rotor slots 

Rotor core 

Shaft 

Fig. 3.1 A Cross-Section of an Induction Machine 
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, left—hand side of Eq, (3*8) may have only a z—cwnponent as well, 

which is: 

_8 
3x 

3A 3A 
d 

3y (3.9) 

The assumption that there is no end effect is equivalent to the 
) 

statement that all partial derivations in z-direction are zero, so 

that finally we have: 

3 3A 
^ (V a;-) + if "Bf-) = -̂ z (3.10) 

The problem is therefore reduced to a scalar one, and is 

equivalent to the solution of a second order mildly non—linear 

(or quasi-linear) partial differential equation of elliptic type. 

As vectors A and J have only z-component, the subscript z 

will be omitted in future. 

Reluctivity v is constant for air regions; for iron regions 

it can be expressed as a function of the absolute value of flux 

density |^| which is (from Eqn, (3.7)): 

B V V * • V * O' (3-11) 
Equation (3.10) describes the magnetic field in the core 

region completely and it can be considered as the source equation 

for our computation. It should be emphasized, however, that this 

equation is derived from Maxwell's equations. It is therefore 

immaterial whether we derive our algorithms for the field solution 

from Eq. (3.10) or from some other equation obtained from 

Maxwell's equations, or from the Maxwell's equations directly, 
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either in their differential (Eqns. (3.1)-(3.4)) or some other 

form. In other words we can define as 'the source equation* any 

other suitable expression derived from Maxwell's equations. 

3.2 Short Account on Different Methods for Field Problems 

All presently available methods for the electromagnetic 

field problems may be classified in several groups: 

1. Analytical methods 

These field computational methods give the direct solution of 

the field equations in a suitable algebraic form. The most often 

used method from this group is probably the method of conformal 

mapping. It was originated by Christoffel (Ref. 3.2) and Schwartz 

(Ref. 3.3) more than a century ago and used for the first time for 

electromagnetic field problems by Carter (Refs. 3.4 and 3.5). The 

problems that could be solved by this method were limited to simple 

geometry. More recently, the class of problems for which this 

method is applicable has been widened to more complex geometry by 

the use of numerical integration techniques (Refs. 3.6-3.8). The 

major disadvantage of the method is that it cannot be used for non-

homogeneous or non-linear media. 

Another well-known analytical method for the Poisson differ-

ential equation is a method of separation of variables. This 

method is also restricted to simple geometries and homogeneous 

linear media. The solution is often represented in a form of 

infinite series, which may converge slowly (Ref. 3.9). 

In principle, non-linear partial differential equations can 

be solved analytically by different transformation methods. The 

best known of these are the Kirchoff transformation (Ref* 3.10), 
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and the hodograph transformation (Ref. 3.11). The hodograph 

transformation has been successfully applied to the problems of 

compressible flow. It has been also applied to simple cases of 

magnetic flux distribution in non-linear media (Ref, 3.12), but 

like the Kirchoff transformation it is not suitable for non-

homogeneous regions of complex geometry. 

Integration methods also belong to the group of analytical 

methods. Although very powerful for linear media (use of an 

integration method has been made in Chapter 2), their use for non-

linear regions is not very practical (though possible). For 

non-homogeneous regions of complex geometry numerical integration 

is essential (Refs. 3.12 and 3.13). 

2. Analogue methods 

Are based on the fact that many different natural phenomena 

may be described by the Poisson type differential equation. Some 

of these phenomena are more easily modelled, or more easily 

measured, than the magnetic field distribution and they can be 

used to determine magnetic flux by measurement of the analogue 

quantity. The best known analogue model is the electrolytic tank, 

based on the analogy between the magnetic field and the current 

density field. The conducting sheet analogue is based on the same 

principle. Both models can treat complicated geometry and 

inhomogenity, and both models have been used successfully for the 

solution of linear magnetic field problems (Ref, 3.14-3.16). 

Unfortunately, the methods cannot be used for non-linear problems* 

Another analogue method that has been used for linear 

magnetic field problems is based on the similarity of the magnetic 
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field and the laminar flow of incompressible fluids (Ref. 3,17). 

It can be used also for non-homogeneous, but not non-linear 

problems. 

Elastic membrane analogy can be used also for magnetic field 

problems (Ref. 3.18). It is possible to extend its use to non-

linear media (Ref. 3.19) if the magnetization curve is simplified. 

Its use is restricted to simple geometry, particularly for non-

linear problems. 

Network analogues have been also used for the determination 

of the magnetic field problems. Here the magnetic field problem 

is replaced by a resistor network, and a flux distribution is 

obtained by measurements of current and voltage distributions on 

the model. These models have been used widely. Very high 

accuracy has been claimed (Ref. 3.20), and several ways of dealing 

with non-isotropic and non-linear media have been presented (Refs. 

3.21 and 3.22). The main disadvantages of the method are^the high 

cost of the model, particularly for the non-linear type models, 

and very elaborate modelling preparation, when large problems are 

considered. 

This list of analogue methods is not complete. There are 

several other analogues (heat-conduction analogue, mechanical 

stress analogue, sand-heap analogue), that might be, at least in 

principle, used for the determination of magnetic field distribu-

tion. However, their use seems to be more complex than the 

analogues described, and they probably are not suitable for non-

linear non-homogeneous problems. 
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3. Graphical methods (Method of curvilinear squares) 

These are methods in which use is made of the property of 

orthogonality of flux lines and constant scalar potential lines. 

The method was originated by Richardson (Ref. 3.23) and Lehman 

(Ref. 3.24) at the beginning of the century. The use of graphical 

field computation methods has been extended to non-linear cases 

(Refs. 3.25 and 3.26), but its general inaccuracy and computa-

tional effort limits its use to simple problems. 

4. Numerical methods 

Is a term usually used for a wide group of methods, which 

could be, perhaps, better described as 'approximative algebraic 

methods', since they are essentially not more numerical than, say, 

conformal mapping. Basically, they consist of three steps: 

a) approximating the exact solution by (a set of) suitable 

functions; 

b) substituting this approximate solution into the source 

equations; and 

c) minimising (or-eliminating) the error by adjusting the 

coefficients associated with the approximating functions. 

The most useful approximating functions are polynomials, and 

the last step leads to a solution of (a set of) algebraic 

(possibly non-linear) equations. Some of the best known of these 

methods are; Finite Differences, Finite Elements, Raleigh-Ritz, 

Galetkin, Method of Moments, Collocation, Point Matching, Weighted 

Residuals, Reaction Method, Least Squares ... etc. All these 

methods can be closely related on a more formal basis using the 

geometrical interpretation in function space.(Ref. 3.27). The 
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last step, the solution of algebraic equations, is most easily 

performed by a digital computer, and at this point these methods 

become numerical. It is possible, however, to solve these equa-

tions by analogue computers. In fact, the well-known network 

analogues mentioned earlier are methods that belong to this group, 

because unlike the other analogues, they do not represent the 

field directly, but its approximation by a set of piecewise 

linear functions. Hybrid computing methods have been also used 

for the solution of a final set of equations (Ref. 3.28). 

A complete survey of the literature on these methods would be 

a formidable task. The same, or closely related methods have been 

used for the solution of other technical problems in civil engine 

eering, structural mechanics, mechanics of fluids, etc., and a 

number of papers and books published on the theoretical aspects of 

the methods, on the related numerical methods for the solution of 

equations and on the application to different technical problems 

is enormous. (For example, Rosenbloom, (Ref. 3.29) quotes more 

than 700 references on linear partial differential equations 

only). We shall not attempt to make such a survey, but shall 

concentrate on the two methods which appear to be most suitable 

for two-dimensional field problems: finite difference and finite 

element methods, although a complete survey is virtually impos-

sible even for these. For both methods it is necessary to divide 

a region into a number of sub-regions; the methods could both 

therefore be called 'discretization methods'. 
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3.3 Discretization of the Continuum 

In this section we shall describe some of the possibilities 

for the discretization of the region of our particular problem. 

The resulting division into sub-regions we shall call a mesh. 

Most of the meshes described have been used for practical prob-

lems, and some references are given. 

Regular square mesh (Fig. 3.2) has the advantage of 

geometrical regularity and simplicity of resulting approximating 

formulae. It cannot represent the complicated geometry faith-

fully, unless either a large number of mesh nodes is used, or, 

it is decided for material interfaces not to be mesh lines, which 

complicates the approximating formulae. This mesh has been used 

for electromagnetic field problems, usually for relatively single 

geometries (Refs. 3.30 and 3.31). Its use becomes complex when 

periodicity boundary conditions on domains of circular sector 

shapes (e.g. a pole pitch of a rotational machine) have to be 

satisfied, because generally the mesh patterns along two bounda-

ries with periodicity condition do not coincide. 

Regular square mesh with variable mesh density (Fig. 3.3) 

may be used for problems where more detailed information about the 

flux distribution is needed in certain areas of the total flux 

plot. Special interpolating formulae have to be developed for 

nodes on and near the border lines where fine and coarse meshes 

meet (Refs. 3.30 & 3.32). The mesh is also not convenient for 

interpreting periodicity boundary conditions. 

Irregular rectangular mesh (Fig. 3.4) is probably the 

most extensively used type of mesh for electromagnetic field 
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Fig, 3,2 Regular Square Mesh 
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Fig, 3.3 Regular Square Mesh with Variable Density 

Fig. 3.4 Irregular Rectangular Mesh 
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problems in electric machines (Ref. 3.33). Its advantage is that 

it is more general than the two previous types, thus allowing more 

flexibility in representing complicated geometry and inhomogenity. 

Similar difficulties with periodicity boundary conditions would 

have been encountered as with the previous two types. In works 

published so far this has been avoided by replacing the rotational 

geometry by rectangular geometry, distorting the true geometrical 

picture. 

Topologically irregular rectangular mesh (Fig. 3.5) has 

been introduced in order to deal with difficulties encountered 

when fitting rotor and stator meshes for doubly slotted machines. 

The number and dimensions of rotor and stator teeth are not 

generally the same. As the change of material is allowed on mesh 

lines only, rotor and stator mesh lines necessary for the repre-

sentation of teeth geometry will not be the same. In a topologi-

cally regular mesh, mesh lines stretch from one boundary to 

another, almost doubling the number of nodes. This is avoided by 

constructing the rotor and stator mesh separately and introducing 

topological irregularities, covered by special interpolating 

formulae for the 'joint' (Ref, 3.34). 

Polar co-ordinate mesh (Fig. 3.6) was introduced in order 

to avoid distortion of geometry when representing a part of the 

machine by rectangular mesh. Regular polar mesh, with equal A(̂  

and Ar throughout the mesh is the simplest case, analogous to a 

rectangular mesh. More flexible is the mesh where A* and Ar are 

allowed to vary throughout the mesh (Ref. 3.35). Topologically 

irregular polar mesh may also be used. 
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Fig, 3.5 Topologically Irregular Rectangular Mesh 

Fig. 3.6 Polar Co-Ordinate Mesh 



- 51 -

Combined meshes Polar and rectangular meshes can be 

combined. Different types of mesh may be used to represent faith-

fully different local geometrical features. This approach is 

flexible, but complex. However, it "has been used for the solution 

of field problems in electrical machines (Ref. 3.36). 

Hexagonal mesh (Fig. 3.7) This type of mesh has been used 

very rarely (Ref. 3.37). It offers few advantages over the regu-

lar square mesh, although it may be found useful for certain types 

of geometries. 

Regular triangular mesh (Fig. 3.8) is an alternative to 

regular square mesh. It has not been used so widely as the regu-

lar square mesh, because the final equations are more complicated 

(Ref. 3.37). 

Irregular triangular mesh with fixed topology (Fig. 3.9) 

is very flexible. It allows faithful representation of complex 

geometry, because triangles can vary in size and shape. The 

topological regularity is an advantage for computer programming 

purposes, but it is a disadvantage regarding number of mesh nodes* 

This type of mesh has been used for computing the field of 

particle accelerator magnets (Ref. 3.38). 

Free topology irregular triangle mesh (Fig. 3.10) allows 

changes in shape and size of triangles more freely than fixed 

topology triangle mesh. This is an advantage, as careful use may 

result in significant reduction of the number of nodes. This type 

of mesh has been in use for structural mechanics problems for some 

time (Ref* 3.39) and, although suggested for electromagnetic field 

problems as early as 1949 (Ref* 3*40), it has not been used for 
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Fig. 3.7 Hexagonal Mesh 

Fig, 3.8 Regular Triangular Mesh 
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Fig. 3.9 Irregular Triangular Mesh with Fixed Topology 

Fig. 3.10 Irregular Triangular Mesh with Free Topology 
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electric machine problems until relatively recently (Ref. 3.41). 

The mesh is very flexible and allows faithful representation of 

different geometrical features; different boundary conditions 

represent no principal difficulties. 

Curvilinear meshes Any type of mech described so far can 

be refined by using 'curvilinear polygons'. Curvilinear triangles 

and curvilinear quadrilaterals have been described in the litera-

ture (Refs. 3.42 and 3.43). Meshes constructed from curvilinear 

polygonal cells can describe complex geometry with fewer mesh 

nodes than meshes constructed of normal polygons. The main dis-

advantage of such meshes is their complexity, which results in 

complexity of algebraic expressions in the final set of equations 

and high requirements of computer core storage per node. 

The number of different types of meshes that could be con-

structed is virtually unlimited. It would be possible to genera-

lise by defining a 'general curvilinear polygonal' mesh. Such 

generalisation would have few practical advantages, because 

derivation of formulae that would cover such a general case would 

not have been easy, and hardly very useful. 

3.4 Finite Difference and Finite Element Methods 

These two methods are the most commonly used in the recent 

technical literature. The difference between them depends on the 

definition of either of them; these are not consistent in litera-

ture. The definition of finite difference method given by 

J. Walsh (Ref. 3.44) is that 'in the finite difference method the 

algebraic equations are obtained by direct approximation of the 

differential equation at mesh points ...* and ... if we require 



- 55 -

the solution at all points of the region, it is obtained by inter-

polating between the mesh values'. 

In the same paper the definition of the finite element method 

reads: 'In the finite element method the region is divided into 

sub-regions, and the approximate solution is represented by a 

polynomial over each sub-region, with matching conditions on the 

boundary between them. Each polynomial is defined by a number of 

coefficients, or equivalently by values of the function and its 

derivatives at certain points. The algebraic equation for deter-

mining these values are obtained either from a variational prin-

ciple (Ritz's method), or by the method of Galerkin.' 

This definition of the finite difference method does not seem 

to cover a number of methods described as 'finite difference 

methods' where algebraic equations are obtained by integration 

(Galerkin's method), (Refs. 3.45-3.46, 3.12). Also, for non-

linear magnetic field problems the non-linear reluctance is 

usually defined over the mesh cells surrounding a particular mesh 

node; therefore the values of the vector potential A between the 

mesh nodes appear in the final set of algebraic equations impli-

citly. 

However, these definitions seem justified if a partial 

differential equation is considered as the source equation. 

Following them, the finite difference approximation for our prob-

lem would be obtained by substituting the differential operator of 

Eq. (3.10) by a difference operator. The solution is then 

obtained by a point matching procedure applied to the approxima-

ting difference equations, where these will be satisfied exactly 

at a certain number of points. The difference operators are 
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usually obtained by developing the function into a Taylor series 

and neglecting the members of the series of higher order. 

Although this will normally lead to a rectangular (or polar) mesh, 

it is possible to apply this basic procedure to a general triangu-

lar mesh (Ref. 3.47). 

The finite element method would consist of transforming Eq. 

(3.10) into some 'other form (for example this can be done by 

applying the Euler theorem of the calculus of variations to Eq. 

(3.10)), defining the approximate solution as a piecewise poly-

nomial over the cells of a chosen mesh, and applying some error 

minimisation procedure to this approximation, employing the trans-

formed equation. 

For our problem it seems more logical to consider Eqns. (3.1)-

(3.6) as the source equations. In that case both finite element 

method and finite difference method follow the same basic pattern: 

a) transformation of the source equations; 

b) definition of the error; and 

c) elimination (or minimisation) of the error. 

Indeed, if the variables are the same (i.e. vector-potential A), 

the mesh chosen is the same, and the order of approximation is the 

same, both methods may yield identical sets of equations in some 

cases. (For Laplace's equation even the mesh does not have to be 

the same, see for example Ref. 3.48). 

Often, different names may be found in the literature for 

very closely related (if not the same) methods; names being 

chosen to describe a different approach, or a different problem 

adequately. (For example, while the 'finite element method' seems 

adequate for structural engineering problems, 'discretization 



- 57 -

method' might be a better choice for magnetic field problems; on 

the other hand, if the method is based on a variational principle, 

it could also be named 'functional approximation method'). 

Historically, finite difference methods can be traced back to 

Gauss (Ref. 3,49). The work of Courant (Ref. 3.39) is usually 

considered as the first on the finite element techniques, although 

the term 'finite element' has started being used much later, first 

in structural engineering. Irregular triangular mesh, which is 

often associated with finite element method was also used for the 

first time by Courant, although the regular triangular mesh was 

considered before (Ref. 3.37). Southwell also uses triangular mesh 

cells as means of charging mesh density in otherwise regular ortho-

gonal mesh (Ref. 3.50). Prager and Synge use triangular^esh for 

approximate solution of boundary value problems (Ref. 3.51). Their 

method is generally known as 'the hypercicle method' (Ref. 3.52) 

and is based on a geometric representation in function space. In 

1949 irregular triangular mesh was suggested for electromagnetic 

field problems. The equations were derived from the conducting 

sheet analogy, and the possibilities for the use for non-linear 

magnetic field problems were pointed out (Ref. 3.40). 

Hand computation limited the use of triangular meshes to simple 

cases. In 1953, McNeal published a paper on the use of irregular, 

topologically free triangular mesh for electromagnetic field prob-

lems. He used integration as a means of derivation of the equations 

and analogue solution of equations (Ref. 3.45). The same type of 

mesh has been used for the neutron diffusion equation (Ref. 3.53). 
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The use of fixed topology triangular mesh for non-linear 

magnetostatic problems was reported in 1965 (Ref. 3.38), when 

Zienfciewicz and Cheung also published their paper on the use of 

triangular finite elements for the solution of field problems 

(Ref. 3.48). They considered linear cases only. Since 1965 the 

methods employing discretization by triangles, or more complex 

polygons have been more widely used, and a number of papers have 

appeared in the technical literature. Most of them have been in 

connection with structural mechanics problems. Recently, work on 

the use of triangular meshes for electrical machines problems has 

also been reported (Refs. 3.41, 3.54). 

3*5 Representation of the Approximate Solution in the Discretized 

Continuum 

A 

In section 3.3 we have described several possibilities for the 

discretization of the region in consideration. Different mesh 

types will yield 'different* methods. The vast number of methods 

that result is further widened by the possibility of defining 

different approximating functions and/or different error criteria 

that are to be minimised or eliminated. Again, the choice is 

virtually unlimited. However, although special approximating 

functions have been considered in order to deal with singularities 

(Refs. 3.55 and 3.56), the most useful approximating functions are, 

for practical purposes, polynomials, particularly low order poly-

nomials. We shall briefly examine two different possibilities for 

fitting a low order polynomial surface on a triangular mesh cell 

(similar approach may be used for other polygons): 
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a) Use of additional nodes. This type of approximation has been 

discussed by Silvester (Ref. 3.57). It consists of dividing a 

triangle into a number of smaller triangles, in a regular 

pattern (Fig. 3.11), so that the number of nodes in such a 

triangle corresponds to the degrees of freedom of a poly-

nomial. The coefficients of a polynomial expression are then 

obtained from the value of the function at all the nodes of 

the triangle. This approach is general and it is basically 

the same for a polynomial of any order. 

b) Alternatively, coefficients of the approximating polynomial 

. may be determined from the value of the function and its 

derivatives at triangle vertices. This approach is discussed 

in Ref. 3.58. It may be necessary to add some nodes inside 

the triangle in order to obtain the complete polynomial 

(e.g. for a complete cubic it is necessary to add one node in 

the middle of the triangle in order to obtain ten coeffici-

ents). The complete polynomial is necessary in order to keep 

the approximation independent of the relative position of the 

triangle. 

The approach in a) has the disadvantage that it will not give 

a 'smooth' approximation on the intertriangle interfaces. 

Generally, it will yield a continuous derivative in the direction 

of the interface only. (In our case it would correspond to conti-

nuous normal and discontinuous tangential flux density). 

The approach in b) will yield a smooth surface, but it is 

generally more complex to use, particularly in the non-homogeneous 

region where smoothness will not always be desirable. For the 
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Fig. 3.11 Subdivision of a Ttiangle 
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simplest polynomials, i.e. linear functions, both approximations 

reduce to the same, non-smooth surface. 

In structural engineering problems these two approximations 

are often referred to as non-conforming and conforming solutions 

(Ref. 3.59). The whole problem is also closely related to approxi-

mation techniques and the recently developed theory of spline 

functions (Ref. 3.60), which will probably provide the answers 

about general accuracy and applicability of the method. 

3.6 Choice of a Mathematic Model 

In previous sections we have briefly discussed several methods 

for the solution of the magnetic field problem in an induction 

machine. We may summarise in saying that none of the methods, 

except the numerical ones, have been successfully used for large 

and complex non-linear problems of which induction machine is a 

typical example. Without further discussion we shall discard all 

the methods except the numerical ones as unsuitable for our 

problem. 

In order to make a proper choice of the wide variety of 

numerical methods, we must summarise the necessities that the 

method must fulfil: 

a) It must represent the geometry accurately, particularly 

in the air-gap region. 

b) It must deal with the periodicity conditions easily. 

; c) It must provide means for checking the accuracy of the 

final results. 

d) It must provide results from relatively little data 

(I.e. B-H curve, geometry and current distribution)« 
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e) It must be efficient. 

In addition, it is necessary to take into account limitations 

imposed by the finite store and accuracy of the computer. 

Generally, the demands and limitations will oppose each other. It 

is necessary to compromise. Our choice is triangular discretiza-

tion with free topology and linear approximation of the vector 

potential A. 

This choice is somewhat arbitrary. It has been made on the 

basis of limited experience of the use of different methods accu-

mulated so far in the technical literature and because it is 

possible to develop a corresponding computer program to fulfil most 

of the demands a) - e) satisfactorily. We note that this choice 

corresponds to most of the work published so far on the use of 

finite element method. 

3.7 Derivation of the Algebraic Equations Representing the Field 

Solution 

In the previous section we have chosen the type of our 

approximate solution. We may represent it graphically (in terns of 

the vector potential A) as a surface consisting of a number of 

triangle shaped parts of planes which match together at the mutual 

boundaries (Fig. 3.12). To obtain the solution we seek the values 

of vector potential A at the mesh nodes; the approximate solution 

at all points of the region is obtained from the approximating 

functions for corresponding triangles. In order to obtain n values 

of vector potential A (for the problem with n mesh nodes) we need n 

equations. As mentioned in section 3.2, these are to be obtained 

by substituting our approximate solution into the source equations, 
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Fig* 3.12 The Approximate Solution in Discretized Continuum 
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and by minimising (or eliminating) the error. The error criterion 

has yet to be defined; before that we consider again the source 

equations (3.1)-(3.6). 

As we have reduced our problem to the magnetostatic one, our 

system (Eqs. (3.1)-(3,6)) is reduced to three equations: (3.2), 

(3.3) and (3.5)• We write Eq. (3.2) (without the time dependent 

member) and Eq. (3.3) again in their integral form: 

^ H'ii - I i'dS (3.12) 

S 

^ hi 
.ds - 0 (3.13) 

S 

Due to the nature of our approximate solution, Eq, (3.13), 

which is reduced to a two-dimensional line integral, is already 

satisfied for any integration area chosen; it is therefore clear 

that we must derive our error criteria either from Eq. (3.12) 

(or Eq. (3.2)), or some equation that includes Eq. (3.12) impli-

citly. Our approximation is differentiable only piecewise, inside 

the triangle areas, and not on the intertriangle boundaries. 

Furthermore, its second derivative is identically equal to zero 

over the entire area in consideration (except on the triangle 

boundaries where it is not defined). The choice of equation for. 

the derivation of our error criterion is therefore further limited 

to integral type equations (in terms of vector potential A), 

Consideration of the field energy provides one such equation. 

The magnetic field energy in linear media is given by (Ref* 3.61): 

n - ^ I H.B dV (3.14) 
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which can be transformed into (in this transformation we make use 

of Eq. (3.2)): 

" - ? j 4-J dV (3.15) 

Eq. (3.15) can also be obtained through the assembly work of 

current carrying circuits. Eqns. (3.14) and (3.15) yield the same 

amount of energy. Furthermore, if, due to some imaginary current 

distribution J*dV the value of the vector potential changes by dA*, 

then the additional work dW corresponds to the change of energy dU. 

The additional work is: 

dW " (j A.J dV) dA* (3.16) 

V 

and the change of energy from Eq. (3.14): 

dU - ( J j H.B dV) dA* (3.17) 

V 

which, combined gives: 

dU - dW - ^ (i I H.B dV - I A.J dV) dA* - 0 (3. 18) 

or 

^ ( Y j dV - I A.J dV) - 0 (3.19) 

This equation is often regarded as the statement that the total 

potential energy of the system must be stationary. 

Different distributions of the vector potential A will-not 

satisfy Eq, (3*19); we may define our error as: 
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H.B dV - A.J dV) (3.20) 

and seek the distribution of A which.minimises, for example, the 

mean square error over the region, or which eliminates error 

defined by Eq. (3.20) completely. (Indeed these two approaches 

would, in our case, give two equivalent sets of equations). 

From geometrical considerations the vector potential 

inside the triangle 'e' is (Fig. 3.13): 

(e). 

2S W 4') 
* 

J 

y(xj*)-x(*))+ x(*)y( _ x(e)y(e) Xj y^ (3.21) 

The flux density is obtained from (3.7): 

B 
(e) 

2S T^\-

Aj*)(y(^)-yf*))+ A(^)(y(*)-y(*))]l (3.22) 

The value of (^^ ^) = |b^®^| can be obtained readily from Eq. 

(3.22). denotes the area of the triangle. 

As the number of triangles is finite, we may substitute the 

integrals in Eq. (3.20) by finite sums of the contributions to Eq. 

(3.20) of all triangles m : 
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Fig. 3.13 A Typical Triangle of the Discretized Continuum 
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(e) 

(e) ^(e) jg(e) 
) (3.23) 

S 

As vector potential inside the triangle is a function of 

the nodal values of vector potential A^, this expression represents 

an n-dimensional vector function of A^, the nodal values of vector 

potential. By substituting and Eqn. (3.21) 

for A^®^ into Eqn. (3.23), integrating over the triangle area, and 

differentiating n times we obtain n components of e which we all 

set equal to zero; we have the set of n equations of which the 

typical one is: 

I 14"' V . A(') . 

j(e)g(e) 
- 5 - 0 (3.24) 

where summation is taken over all the triangles adjacent to a 

certain node. For non-linear media, Eqns. (3.14) and (3.15) do not 

represent the field energy, but the relation (3.19) should still 

hold. The only difference is that Eq. (3.24) becomes non-linear, 

due to non-linear reluctivity v, which may be now expressed as a 

function of flux density B, or, more convenient for computation 

purposes as a function of B^. As in our approximation B^ is cons-

tant over the triangle area, the most logical choice is a constant 

V • f(B^) inside the triangle. 
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The approach described is known in technical literature as 

the 'Ritz's method', 'Rayleigh-Ritz method', -'variational formu-

lation', 'energy approach' or simply 'the finite element method'. 

Eq. (3.19) is usually derived by applying the Euler theorem of the 

calculus of variations to Eq. (3.10), which justifies naming the 

approach 'variational formulation', if Eq. (3.10) is taken as the 

source equation. If Eq. (3.19) is taken as the source equation, 

the approach could be also described as 'orthogonality method', 

or, more particular 'Galerkin's method'. 

Another possibility for the derivation of our equations is 

the direct use of Eq. (3.12). In the current carrying region this 

equation is not satisfied for any integration loop which does not 

include at least one mesh node (because our approximation is curl 

free inside the triangle area), and in the current free area it is 

satisfied regardless of the distribution of A. This is not so if 

the integration loop includes a mesh node. We may therefore 

choose a number of integration loops, for which we can apply Eq. 

(3*12), and define our error vector as: 

{e} - { I H . ^ - I J . ^ J (3.25) 

a S 

The number of components of this vector is equal to the number of 

integration loops chosen and, generally, we can minimise it in the 

least square sense by adjusting the nodal values of A. However, . 

if the number of loops-is equal to the number of nodes, we may 

eliminate e defined Eq. (3.25) completely by solving the corres-

ponding equations. 
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An integration loop may be set in an infinite number of ways* 

A logical way is to choose the integration line around a mesh 

node so that it is symmetrical and that the line includes one 

third of the triangle area (Fig. 3.14). In that case integration 

around several, or just one mesh node will yield an equivalent 

system of equations. 

Since the field is curl free inside the triangle the value of 

H . ^ will depend on the position of starting and finishing point 

only. By substituting H = and using Eq. (3.22) (Fig. 3.14): 

^ (e) rr m 

2S' 

fa-

(e)_^(e) 

(3.26) 

The integration of JdS over the corresponding third of the triangle 

area gives: 

JS 
JdS (3.27) 

If the integration is carried out around one mesh node only we have: 

P 

I 
e"l 

.(e) 

4S 

j(e)^g(e) 
(3.24a) 

where summation is taken over all the triangles surrounding the node 
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y L 

Fig. 3.14 Integration Lines Inside a Triangle 
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. in consideration and which is exactly the same as Eq» (3.24). If 

we choose n integration loops around n mesh nodes we shall get the 

set of n equations, identical to the set obtained by variational 

approach applied to the same approximation. 

This approach is known in the literature as 'integration 

method', 'orthogonality method' (or Galerkin's method, as a sub-

group of orthogonality methods) or 'small field approximation'. 

Although these two approaches are not the only possibility of 

obtaining the final set of algebraic equations (in Ref. 3,40 an 

approach that derives the equations from the analogy with a 

current carrying sheet has been presented, and in Ref. 3,47 a 

possibility for the use of Taylor expansion, i,e, finite differ-

ence method for arbitrary mesh has been presented), they are 

probably the most convenient ones. The integration method has the 

advantage of being simple, but it is not quite clear how it can be 

extended to three-dimensional vector field problems, unlike the 

energy method, which is, in this sense, more general. 

As it is clearly seen from the integration method, our 

approximation will satisfy Eq. (3,12) only for specially chosen 

integration loops. The continuity conditions on the inter-

element boundaries will generally be violated for the tangential 

component of the magnetic field strength. This is most easily 

seen for an integration of | H,d^ along the loop which includes 

only the intertriangle boundary (Fig. 3.15) between two triangles 

in which the flux lines are not parallel. This violation is due 

to our approximation. The question therefore arises, whether it 

is possible to derive an approximation which will not violate the 

continuity conditions, without increasing the order of 
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Integration loop 1 

Flux lines 

Fig, 3*15 Integration of j H.d& Along the Intertriangle Boundary 
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approximation. The answer is clearly negative if the definition 

of the vector potential as a continuous function is to be kept. 

If vector potentials are allowed to be discontinuous at triangle 

boundaries, the continuity of tangential component of magnetic 

field strength may be preserved (but normal component of flux 

density will be discontinuous). This approach will give a 

slightly different set of equations, and a slightly different 

resulting field. Indeed, there are several possibilities for 

slightly different approximations and error criterion definitions. 

These are known as 'minimum complementary energy modal', 

'Reissner's variational principle model*, 'hybrid model', etc. 

Some of these models will give overestimation (e.g. minimum com-

plementary energy model), and some underestimation (e.g. potential 

energy model, which we used) of the function A - a useful feature 

for the practical assessment of accuracy (Ref. 3.62). Unfortuna-

tely, all these models are more con^lex, and more difficult to use 

than the minimum potential energy model. 

3.8 Boundary Conditions 

The use of Eq. (3.24) for the computation of Vector potential 

is valid only for the internal nodes. .For nodes on the boundary 

another formulae are necessary, depending on the type of the 

boundary condition. 

In our problem we have combined boundary conditions that 

could be described as Dirichlet plus periodicity boundary condi-

tions. Due to assumptions b) and c) made in section 3.1 there is 

no magnetic flux outside the machine and in the shaft. This is 

equivalent to the statement that these two boundaries are flux 
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lines (or equipotential lines), i.e. we have Dirichlet boundary 

conditions. An arbitrary constant value of vector potential A may 

be prescribed to the mesh nodes on these two boundaries, instead 

of using Eq, (3.24). The simplest choice is A « 0. 

Due to the symmetric electromagnetic structure of the 

machine, the magnetic field in it will be periodical with the 

period of two pole pitches and symmetric in two adjacent poles. 

The computation can be therefore limited to only one pole pitch. 

The values of vector potential on two sides of the pole will have 

the same magnitude, but opposite sign. If the distribution of 

mesh nodes on these two boundaries are the same, Eq. (3.24) may 

still be used for the nodes on the boundaries. The summation will 

be partially carried out on one, and partially on the other side 

of the pole pitch, with the negative sign for vector potential A* 

Although this complicates computer program, it can be solved 

satisfactorily. 

3.9 Torque and Induced Voltage Computations 

The desirable result of our computation would be torque and 

impedance of the machine for a given current. As the medium is 

non-linear it is not safe to talk about impedance (or reactance 

or inductance), before the definition of these values. The situ-

ation is much clearer if we limit ourselves to instantaneous 

torque, linked flux and induced voltage; these can be also 

readily evaluated from the field. 

The simplest way of torque computation is by the surface 

integral method (Ref. 3.63). The tangential and normal surface 

component are given respectively by: , 
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't " "o \ "t (3-2B) 

• I (3.29) 

Integration of the tangential component along the air gap and 

Multiplication by rotor radius will give the instantaneous torque 

per unit axial length of the machine. This integration is easily 

carried out for our finite element approximation, as the value of 

^n ^t constant inside the given triangle and are readily 

obtainable from the vector potential. Any integration line inside 

the air gap should yield the same result. 

The flux linked by the coil may be evaluated from the vector 

potential. If we define the value of vector potential as zero at 

infinity, the value of vector potential A at any point represents 

the total flux as it would be obtained by integration of B.dS 

over the surface extending from infinity to the point in consider-

ation (in our case the surface integral would degenerate to line 

integral and the result would have been obtained for unit axial 

length). It follows that the total flux linked by the coil is 

obtained by simple subtraction of the value of vector potential 

at the incoming and outcoming side of the coil, multiplied by the 

number of turns. 

From the known value of the instantaneously linked flux iji the 

induced voltage u in the coil is obtained from: 

u - - |i (3.30) 

For the approximate solution, the differential operator may be 

replaced by the difference operator, thus: 
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M 

" " • At (3.31) 

It is therefore necessary to evaluate a number of field distribu-

tions in order to obtain the induced voltage for a given current. 
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CHAPTER 4 

NUMERICAL SOLUTION OF LARGE SPARSE SYSTEMS 

OF NON-LINEAR EQUATIONS 

This chapter is concerned with some possibilities for the 

numerical solution of equations arising from discretization of 

non-linear magnetic field problems. 

In section 4,1 we discuss several possibilities for the con-

struction of the triangle mesh and give basic guide-lines on the 

construction of this mesh. Section 4.2 deals with the approxima-

tion of the magnetisation curve. Several possibilities are dis-

cussed and the method of piecewise linear approximation is 

selected. 

Section 4.3 discusses the structure of the resulting system 

of equations. The basic structure of the system is pointed out, 

which in turn suggests several possibilities for the solution of 

this system. In section 4.4 we discuss several possibilities for 

the solution of such systems in the linear case. All available 

methods are divided in two groups, direct and indirect (iterative) 

methods and a brief account is given of each of them. 

In section 4.5 several methods for the solution of non-linear 

equations having a single variable are described, and in the next 

section it is shown how some of these methods can be generalised 

to apply to systems of equations. It is also shown how these 

methods can be combined with direct or indirect methods for linear 

systems, and several known methods of this type are described. 

Some modifications of these methods are also suggested. Section 

4.6 contains a review of the literature of numerical solutions of 
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non-linear systems related to our problem. The conclusion of this 

section is that although numerous results have been published, no 

indirect method of solution has ever been used for non-linear sys-

tems arising from free topology triangular meshes, and although 

these methods seem to be very attractive, some numerical experi-

mentation is thought necessary. 

Finally, section 4.8 describes two methods for the accelera-

tion of the convergence of iterative methods for linear and non-

linear problems. 

4.1 Construction of the Triangle Mesh 

In the previous chapter we have discussed several possibili-

ties for discretization of the cross-section of an induction 

machine. We have chosen a free topology triangular mesh for our 

problem. This mesh is very flexible, but complex. In order to 

avoid some of the practical difficulties which would have been 

encountered in a completely topologically free mesh (organisation 

of data in the computer core, block iteration techniques), a mild 

restriction was imposed regarding the topology of the mesh; i.e. 

it was decided that all mesh nodes must lie on a certain number 

of lines that stretch from one boundary to another (boundaries 

with periodicity condition imposed on them. Fig. 4.1). These 

lines must not intersect each other, but their shape, number and 

number of nodes on each line is left free. Lines are numbered in 

the radial direction and nodes are numbered from left to right 

(or, rather, in the clockwise direction) on each line. Triangles 

are formed by linking the nodes on the two neighbouring lines. 
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Mesh Lines 

Boundaries with 
periodicity boundary 
condition y 

Fig, 4.1 The Mesh Lines 
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A typical mesh node for this type of mesh is represented on 

Fig. 4.2, The number of triangles in the mesh is equal to 

p = 2n - m - 2, where n is the total number of nodes and m is the 

number of nodes on the periphery. Regarding the organisation of 

data in the computer core it is convenient to associate two tri-

angles with every node 'i' i.e. triangles 'a' and 'b* of Fig. 4.2 

and also two nodes (A and B) by which the corresponding triangles 

are formed. When corresponding equations are formed, necessary 

data include also current densities and permeabilities (relucti-

vities) for different regions as well as geometry. Seven data for 

each node are necessary in order to describe the mesh to the 

computer: 

X 

Y 

v(a)i 

co-ordinates 

reluctivities of triangles a and b 

serial numbers of nodes A and B 

J node current 

The accuracy of the field solution depends not only on the 

mesh, but on the field distribution itself. If, for example, flux 

density is constant in a certain part of the machine, the vector 

potential A will change linearly and an accurate representation 

may be achieved by only few triangles. As the complexity of the 

field distribution increases, number of nodes must increase as 

well if the same accuracy of the solution is expected. This 

demand is more pronounced in non-linear cases, where it is neces-

sary to represent the varying permeability more accurately* In 
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line j+1 

line j-1 

0 

Fig. 4.2 A Typical Mesh Node 
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practical terms this means finer division into triangles of air gap 

and tooth-tip areas than that of teeth and yokes, and also finer 

division of iron parts than that of air (or copper). 

Thig conclusion is supported by two more considerations; 

a) the field distribution in the air gap and tooth tip area has 

more influence on the performance of the machine; and . 

b) the complex geometry of the tooth tips can be better repre-

sented by a finer mesh. 

The shape of triangles should be kept as near to equilaterals 

as possible. Equilateral triangles have the best properties 

regarding the field and reluctivity approximation, and the result-

ing equations can usually be solved with less difficulties than if 

triangles with small angles are used. 

The basic guide lines for the construction of the triangle 

mesh are therefore as follows: 

The mesh may be relatively coarse in the yokes, but its den-

sity should increase towards the air gap. The mesh should be 

finer in iron (teeth) than in non-magnetic areas (slots). Triangles 

with small angles should be avoided. 

Even for relatively small practical problems the number of 

nodes will often be as high as several hundred. As seven data for 

each node are necessary for the complete description of the mesh, 

the total number of data will usually be about several thousands. 

Preparing these data by hand would be cumbersome and liable to 

errors. Some degree of automation in the construction of mesh and 

preparation of data is imperative if anything but very simple and 

very few problems are to be solved* 
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Several works on the automatic generation of triangle meshes 

have been reported and several different ideas have been exploited. 

Winslow (Ref. 4.1) solved the problem by mapping the geome-

trical picture approximately on to a regular equilateral triangle 

array, and then found the real node co-ordinates by solving 

Laplace's equation for the region, where mesh lines are considered 

as equipotentials. Cardew (Ref. 4.2) used the same idea in his 

program. Akyuz (Ref. 4.3) introduced a concept of natural co-

ordinate system and used it for an automatic mesh generation pro-

gram. Reid (Ref. 4.4) constructed a triangle mesh by covering the 

region with a regular triangle mesh and then adjusted the shape of 

triangles on the boundary to represent the boundary more accura-

tely, Jensen (Ref. 4.5) defined only the node co-ordinates, and 

the mesh was then generated automatically by linking the nearest 

nodes. 

These are just a few of the publications in which automatic 

mesh generation is discussed. The property of all these methods 

(except the method of Jensen) is that they produce mildly irregu-

lar meshes, i.e. the mesh cell size changes slowly throughout the 

mesh, and triangles are almost equilateral. Unfortunately, these 

methods are really suitable only for problems with simple internal 

geometry, and could hardly be applied to our problem because of 

the complex geometry of slots and teeth. 

For this reason a computer program has been developed which 

generates the triangle mesh for our particular problem of doubly 

slotted machines. The mesh generation is based on guide lines 

given earlier in this section. The program is strictly user-

oriented and is not intended for general application* It is 
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general, however, in the sense that different relative positions 

of rotor to stator, as well as different geometrical dimensions 

and number of slots on rotor and stator can be dealt with. 

For control purposes a plotting routine has been written 

which enables graphical display of a generated mesh. Some of the 

automatically generated meshes for a small model problem of three 

slots on stator and two slots on rotor are represented on Figs, 

4,3-4,5, 

4,2 Representation of the Magnetisation Curve 

As the reluctivity v of iron is dependent on the local flux 

density B in a non-trivial way, v • f(B), it is necessary to rep-

resent this dependence for use in the computer, A graphical 

representation which is often used for hand computation cannot be 

used, and the magnetisation curve must be presented in some form 

of algebraic or transcendental function. 

Fisher and Moser (Ref, 4,6) discussed several possibilities 

for the representation of magnetisation curves by simple formulae. 

Although some of their formulae are quite simple and represent the 

actual magnetisation curve fairly well, their use is not quite 

adequate for our purpose. The reason for this is that a very 

simple formula cannot represent the magnetisation curve accurately 

in the whole range of flux densities necessary for our computation 

(0 - 2*5 T), and it becomes necessary to use some testing device , 

in order to use different formulae for different parts of the 

curve. 

Once a decision has been made to represent the curve by sec-

tions, any number of sections can be used without increase in 
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Fig. 4.3 Computer Generated Mesh 
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\ 

\ 

Fig, 4,4 Computet Generated Mesh 
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Fig. 4.5 Computer Generated Mesh 
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computation time. The curve can therefore be represented to any 

accuracy by the use of very simple expressions, such as piecewise 

linear approximation. This type of approximation was used by 

Trutt; Erdelyi and Hopkins (Ref. 4.7). 

If non-linear iteration is to be used for the solution of the 

final equations (see section 4.6) representation of the first deri-

vative, 3v/3B = f(B) may also be necessary. If v • f(B) is repre-

sented as a piecewise linear function, its derivative is clearly a 

step function (Fig. 4.6), a point also discussed by Reppe 

(Ref. 4.8). Obviously, this is a very crude approximation to the 

actual 3v/3B «• f(B), which is a smooth, continuous function. 

However, it can be used in our computations, as the values of 9v/3B 

do not have influence on the final result and are used in the 

iteration process only. 

In the actual computer program the functions that have been 

used were v • f(lOB^) and 3v/3(10B^) • f(lOB^). This is more con-

venient as it saves several arithmetic operations for every mesh 

cell in every iteration. The curves were represented by 80 linear 

sections and the values of 108% were used as indices as to which 

section of the curve was to be used. The curve v - f(lOB^) as 

derived from the B-H curve supplied by the manufacturer is repre-

sented on Fig, 4.7. 

4.3 Some Properties of the Resulting System of Equations 

As we have shown in Chapter 3, our problem has been trans-

formed into a problem of solution of n simultaneous non-linear 

equations, of which the representative one is Eqn. (3.24). For the 

purpose of programming it is convenient to introduce the flotation 
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Fig. 4.6 Piecewise Linear Approximation of Reluctivity and 
its Differentiation as a Function of Flux Density 
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(see Fig, 4. g and 4.9) i 

' fj-fk ' j - V i bk - yi-fj 

c. 
i " v ^ j -j • *i-*k \ " *j"*i (4.1) 

S • area of the triangle (4.2) 

and (4.3) 

With this notation Eqn. (3.24) can now be written as: 

f.(A)-A^ •" * ' * ,2\ ' •v"^* ... 
1 1 1 1 

4S 
(T) 

b(*)b(m)+c(m) (m) ^ 

4S (m) 
> . . + 

b(P)b(P)+c(P)c(P) 
1 1 1 1 

4S TpT 

* *i.i (1) 4s(P) 4S' 

* *i,2 

b(2)b(2).c(:).(2) bf»b">«f"c,<" 

j j .v">» ri 
4sr^J 4S 

" .v<" ' 

+ A. 
i,m 

bf">b<">+c?°'cf"> , (m-1) (m-1) (m-1) (m-1) 

* 4 . P 

b(P)b(P)+c<P)c<P) , , b(P-l)b(P-l)+c(P-l).c(P-l) 
1 J 1__ .v(p)+ ^ k 1 Tc ..(p-1) 

4S 4S 
(p-1) 

- - 0 (4.4) 

or shorter: 
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Fig, 4.8 A Typical Triangle 

0 

Fig. 4.9 A Mesh Node with the Adjacent Triangles 
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AiS, * Ai.lCl * + A. C + 
i,m m 

+ A. C - J. 
i,p p 1 (4.5) 

Following Winslow (Ref. 4.1) we call coefficients coupling 

coefficients. Formally, we can write Eqns. (4.5) in a matrix form: 

[C]{A} - {J} (4.6) 

where the elements ^ of matrix [c] are the coupling coeffici-

ents. In a non—linear case, these coefficients are functions of 

the vector {A}, because of the non-linear reluctivity v. As can 

be easily seen from Eqn. (4.4) and Fig, 4.11, coupling coefficient 

for two mesh nodes (k and H) depends only on the properties of the 

two triangles for which the line k-A is a common side. They are 

also symmetrical, i.e. Coupling coefficient for the 

node itself depends on the properties of all surrounding triangles. 

The matrix [c] is therefore symmetrical. It is also sparse, as in 

average less than seven entries in every row will be different from 

zero. As the numbering of nodes is done in an ordered manner, line 

after line in our mesh, matrix [c] is also tri block-diagonal, i.e. 

it has a form: 

[c]. 

K , l ] [^1,2] 

[S.l] [^2,2] 1^2,3] 

[ S . 2 I [ S . 3 ] [ S , 4 ] 

[^n-l,n-2] [^n-l,n-l] [^n-l,n] 

[̂ n-l,.n] [^n,n] 

(4.7) 
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where n+2 is the number of lines in our mesh. All diagonal mat-

rices in (4,7) are square and have m-1 rows where m is a number of 

nodes on a corresponding mesh line. 

As the matrix elements are functions rather than constants, 

we cannot discuss the numerical properties of matrix (4.7). If, 

however, a linear case is considered, i.e. if the reluctivity v is 

fixed (although it may vary from one triangle to another), then it 

can be shown that the matrix (4.7) is diagonally dominant (Refs. 

4.2, 4.9). In the next section we shall briefly examine some 

possibilities for the solution of (4.6) for the linear case. 

4.4 On the Solution of Large Sparse Sets of Linear Equations 

In this section we shall briefly examine some possibilities 

for the solution of Eqn. (4.6) for the linear case, i.e. for prob-

lems with constant permeability. We seek: 

{A} = [C]'^ {J} (4.8) 

where [c] is constant, large, sparse, symmetric, diagonally domin-

ant, tri block-diagonal matrix. The product [c] ^{J} may be found 

in a number of different ways. Basically, we shall differentiate 

two groups of methods for the solution of linear systems: direct 

and indirect methods. In direct methods the exact solution is 

found (theoretically) after a finite number of arithmetic opera-

tions. In indirect methods the exact solution would be found after 

an infinite number of arithmetic operations. In indirect methods 

one starts from a suitable approximate solution and improves the 

values of unknowns step by step. In practice neither direct nor 

indirect taethods will give the exact solution, since to achieve 
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this it would be necessary to compute to an infinite number of 

decimal places. 

We shall consider some direct methods first. One standard 

direct method is, for example, Cramer's rule. It is however com-

pletely impractical for anything but very small systems, Gaussian 

elimination is another well known direct method, and it can be 

used for large systems very successfully. 

As pointed out in section 4 . 3 , matrix [c] is symmetric, 

sparse and tri-block-diagonal. Simple application of the Gaussian 

. elimination procedure for general matrices in our problem would 

not be very suitable, as it would result in waste of computer time. 

A number of algorithms, based on Gaussian elimination, have been 

developed, which are more suitable for either sparse, or symmetric, 

or tri-block-diagonal, or band structured matrices. A detailed 

analysis of all these algorithms would take us too far, and we 

mention only two of them, which seem to be most suitable for our 

problem. 

A compact storage scheme originated by Jennings (Ref. 4.10) 

is very effective for general band-structured matrices. A Gholesky 

reduction sequence may be used in a similar manner (Ref. 4 . 1 1 ) , 

which may help in the solution of ill-conditioned systems. 

Another method, which is known as group or block elimination 

and which makes use of the tri-block-diagonal structure of matrix . 

[c] has been described, for example, by Zienkiewicz and Cheung 

(Ref. 4 . 1 2 ) . It is in principle also Gaussian elimination, but 

sub-matrices play the role of elements of standard Gaussian elimi-

nation. 
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The efficiency of block elimination and compact storage 

scheme cannot be compared for systems arising from general tri-

angulation, but simple analysis shows that block elimination is 

more effective for matrices derived for the model problem of 

Fig, 4,10 for large n (n > 20, i,e, order of [c] larger than 400), 

and would probably be faster for our problem. More detailed 

analysis shows that the necessary computation time for block 

elimination can be further reduced (Ref, 4.13). 

Another possibility for the solution of Eqn, (4.8) is an 

indirect method. The situation with indirect methods is much 

more complicated than with direct ones, as there are numerous 

indirect techniques and the comparison of the efficiency of these 

is no simple matter. We shall differentiate two groups of 

indirect methods, namely relaxation and iteration. The term 

relaxation is due to Southwell (Ref. 4.14), and by it we mean a 

routine which improves the values of unknowns in Eqn. (438) in a 

non-systematic way. Relaxation is suitable for hand computation, 

and skill gained in the use of it may improve the efficiency of 

the procedure significantly. It cannot easily be programmed for 

an automatic digital computer, and is used in automatic computa-

tion only rarely. We shall not consider this technique in any 

detail. The term 'relaxation' is used often nowadays for a 

different group of techniques which we shall call 'iteration'. 

In an iteration procedure the unknowns are improved in an orderly, 

systematic manner. All the methods we shall discuss are iteration 

methods, and we shall use the term relaxation only to keep to the 

established terminology. 
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n 

3 . n 

Fig. 4.10 A Regular Triangulatlon of a Square 
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An iteration for Eqn. (4.8) can often be described by a 

sequence: 

{A)^. [N]-l([p]{A)^_jt{J))- [M]{A)^_J+[N]-'{J) 

k - 1,2,3 ... (4.9) 

where {A}^ is a suitable starting approximate solution, and 

matrices [N] and [p] are formed by a suitable splitting of matrix 

[C]: 

[c] - [N] + [p] (4.10) 

Matrix [c] can be split in an infinite number of ways, and in 

this sense the number of different iteration techniques is 

infinite. In order to carry out iteration effectively, Eqn, (4.9) 

must have certain properties. First, the iteration must be 

convergent, i.e. consecutive estimates of {A}^ must approach the 

solution of Eqn. (4.8) as k increases. Additionally, operations 

on the right-hand side of Eqn. (4.9) must be carried out easily. 

Whether an iteration is convergent depends, among other things, on 

the properties of the matrix [ c ] . 

A number of convergent iteration procedures has been devel-

oped for the solution of systems of equations arising from dis-

cretization techniques applied to linear partial differential 

equations. Some of the best known of these iteration techniques 

are: 

Jacoby iteration. 

Gauss or Gauss-Seidel (Liebmann) iteration. 

Successive over-relaxation or extrapolated Gauss-Seidel 

iteration (SOR). 
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Successive line over-relaxation (SLOR). 

Alternating direction implicit method (ADI). 

Many of these methods have several different versions (for 

example 2 line successive over-relaxation (S2L0R), or so-called 

semi-iterations with the use of Chebysheev polynomials, etc.), and 

there are also a number of iteration techniques which we have not 

listed (e.g. method of conjugate gradients). A full comprehensive 

analysis of these methods is virtually impossible, as new methods 

(or variations of the old ones) are introduced constantly. The 

task would be even more difficult if comparisons for the actual 

computer time had to be made, as it would be necessary to take 

into account the size and type of computer, etc. 

It is therefore essential to select only some of these 

methods and to consider them in detail. Our system is non-linear, 

and none of these methods can be used directly. However, they can 

form a basis for some non-linear iteration methods. We have 

chosen SOR as a representative of point iteration techniques and 

SLOR as a representative of block iteration techniques. This 

choice is based on the fact that SOR is superior to both Jacoby 

and Gauss-Seidel iteration, and SLOR is superior to line Jacoby 

and line Gauss-Seidel. The programming for SOR, Jacoby and Gauss-

Seidel iteration are similar, and the same is true when their line 

versions are compared. The ADI method can be used only for meshes 

with regular topology, and it is not suitable for our problem. 

Use of some more sophisticated or recently developed methods like 

S2L0R, the method of conjugate gradients (Refs. 4.15, 4;16), 

dynamic programming solutions (Ref. 4.17) or the peripheral block 

relaxation method (Ref. 4*18) have not been considered in much 
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detail, but it is likely that they would require complex programs 

for a free topology of triangular meshes. Limited practical 

experience with these methods does not indicate that significant 

computer time saving would result from the use of them. 

As almost all these iterative methods have been specially 

developed for systems arising from rectangular meshes, a question 

arises whether these methods will converge for our equations. 

Diagonal dominance of matrix [c] ensures convergence for SOR, 

SLOR is normally faster than SOR for rectangular meshes, and 

the use of it is very attractive. As our search in literature did 

not produce a single reference where this method is used for free 

topology meshes, and as yet there is no theoretical proof that 

this method will converge for semi-free topology triangular meshes 

(indeed, recent results by Cardew, Ref, 4.2, suggest that there 

never will be such a proof, as he had experienced divergence for 

some cases of the use of SLOR for fixed topology triangular 

meshes), it was decided that the suitability of these two methods 

for our particular problem should be checked on examples (see 

Chapter 5). 

An important item is a comparison of the efficiency of direct 

and indirect methods. This comparison is difficult to make 

because of the many parameters involved (for example: is the use 

of backing store on the computer necessary for the problem in hand 

or not, accuracy of the result, etc.). In the literature usually 

only one group of methods is discussed in detail, while the other 

group is often avoided completely. An interesting fact can be 

obseirvedt In papers dealing with the finite element method, i.e. 

problems connected closely with structural mechanics, the solution 
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of the final set of equations is rarely dealt with in detail. 

Presumably a direct solution is assumed. On the other hand, 

papers dealing with field problems often discuss an iterative 

method of solution. This seems to indicate that the experience 

gained from the use of a particular method might play an important 

role in the decision whether a direct or indirect method is to be 

used. 

Different methods for the solution of systems of linear 

equations described in this section can form a basis for the solu-

tion of non-linear systems. We shall describe several methods for 

non—linear systems in section 4.6. In the next section, however, 

we shall turn our attention to non-linear equations having a single 

variable. 

4.5 An Account on the Solution of Non-Linear Equations 

In this section we shall briefly describe some methods for the 

solution of the non-linear equation having a single variable: 

f(x) - 0 (4.11). 

Generally, this equation cannot be solved directly. Its numerical 

solution is possible by the use of different iteration techniques. 

An iteration probedure for Eqn. (4.11) can be usually described as 

a sequence: 

" 8(*ĵ » •••» ^ ••• (4.12) 

using a suitable function g and an initial estimate x^. Similarly 

to the iterative solution of linear systems the iteration is said 

to converge when the consecutive estimates of Xĵ  approach the root 
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of the equation as k increases. An analogue procedure can be 

described for non-linear systems by the use of matrices. Some of 

the better known iteration methods for Eqn. (4.11) are the chord 

method, Newton's method, the method of false position, Muller's 

method, Aitken's method, Steffensen's method, etc. We shall 

not discuss the theoretical basis of these methods nor their con-

vergence, but a brief description of some of them follows. 

Chord Method (Whittaker's method) (Ref. 4.19, 4.20) 

consists of a sequence: 

\ k - 0,1,2 ... (4.13) 

where m is a constant. 

Newton's Method (Newton-Raphson method) (Ref. 4.19, 4.21) 

is obtained when the constant m of the chord method is replaced by 

1 _ 

\ 
, thus: 

f(x,) 

V i • " k " 

The method of false position (Regula falsi) (Ref. 4.20, 

4.22) is obtained by approximating the derivative in Eqn* (4.14) 

by a difference quotient: 

\ W i 

resulting in a recursion formula: 

f(x,) _ 
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*k+l " *k ~ f(x^)-f(x^_^) ^ ••• (4'16) 

In this method two initial estimates, and have to be made, 

^ Muller's method (Ref, 4.23, 4.24) The method of false 

position is equivalent to approximating the function by a straight 

line in the neighbourhood of the root. In Muller's method the 

function is approximated by a low order (quadratic) polynomial. 

As quadratic polynomial has normally two zeros, the working algo-

rithm is somewhat more complicated than algorithms already des-

cribed. It also needs three initial estimates, x^, x^ and Xg. 

Aitken's method (Ref. 4.25, 4.26) was originally 

proposed to accelerate convergence of any sequence of numbers. 

It therefore can be used to accelerate the convergence of any of 

the methods already described. If the sequence of numbers is a 

sequence formed by, for example, chord iteration (Eqn, 4.13), then 

Aitken's method consist of forming a new sequence: 

which will normally converge faster than the original sequence x^. 

The new estimate x^ may now be used as a starting value for two 

more steps of chord iteration, after which Eqn. (4.12) is applied 

again. This method is known as diagonal Aitken's A^ procedure, or 

also Steffensen's method. 

Basically, all these methods can be generalised for the solu-

tion of non-linear systems. A disadvantage of simple generalisation 
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is that every iteration step requires a solution of a linear 

system of the same order. Such methods have been used, however, 

for the solution of non-linear systems arising from general tri-

angulation of non-linear magnetic field problems. 

We shall discuss some of these methods and also look at some 

other possibilities for the solution of non-linear systems of 

equations in the next section. 

4.6 On the Solution of Simultaneous Non-Linear Equations 

In the previous two sections we have described some of the 

possibilities for the solution of large linear systems and also 

some methods for non-linear equations having a single variable. 

In this section we shall discuss some methods for non-linear sys-

tems. 

Our system of equations may be symbolically written: 

F(A) - 0 (4.18) 

where is an n-dimensional column vector of which a typical 

element is given by Eqn. (4.4). Analogously to single non-linear 

equation, Eqn. (4.18) cannot be solved directly for a general 

case. An iteration procedure for system (4.18) can be described 

by an equation which is analogous to Eqn. (4.12): 

6k+i " — A k - 1 » • • •» ^ (4.19) 

An infinite number of iteration procedures can be defined by a 

choice of function £. We cannot discuss these methods in the 

general case, but must restrict ourselves to methods which are 

either in common use, or are obvious extensions of some other 



- 1 1 0 -

well-known methods. Even so, we can hardly do more than briefly 

describe the basic procedure for different methods, as detailed 

analysis would be too complex and too lengthy. 

We shall differentiate two main groups of methods for systems 

of equations, direct and indirect methods. In direct methods one 

iteration step will normally require solution of a linear system 

of order n in each iteration. In indirect methods the iteration 

is performed by the solution of smaller linear or non-linear sys-

tems. Analogously to a single equation, we can define a chord 

method for systems, which can form a basis for several direct and 

indirect methods: 

Method A (Chord method for systems, Ref, 4.27) is defined by 

a sequence: 

- {A}^ - [B].{F(A)}J^ k - 1,2, ... (4.20) 

where [B] is a constant square matrix of order n. 

Method B (Linearised iteration). In this iteration matrix 

[B] is replaced by matrix [c{A}^]~l of Eqn. (4.6) in eve-ey itera-

tion: 

(Al^+i - {A}^ - [c{A}J'"l.{F(A)}j^ k - 1,2, ... (4.21) 

Method C (Newton's method, Newton-Raphson method) is defined 

similarly, but matrix [B] of Eqn. (4 ,20) is replaced by the 
% 

inverse of the Jacobian matrix: -

J (A) 
3Aj 

(4.22) 
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and we have: 

{A} - {A}, - [j(A)]r* .{F(A)}. k - 1,2, ... (4.23) 

Convergence theorems for these methods can usually be proved 

only locally, i.e. for the initial vector ̂  in the neighbourhood 

of the root. In this case method C shows the property of quadra-

tic convergence, similar to Newton's method for a single equation. 

Methods B and C both require a solution of a linear system of 

order n in each iteration. This solution may be carried out either 

by a direct method (e.g. Gaussian elimination) or by an indirect 

method (e.g. SOR). In the latter case we may talk about indirect 

(two-step, nested, two-level) iteration as every step of Eqn. 

(4.21) or (4.23) consist of an iteration process itself. 

Two-step iterative methods of this kind offer an attractive 

possibility. Namely as one iteration step in Eqn. (4.21) or 

(4.23) gives only an approximation of the root of Eqn. (4.18), the 

solution of a linear system need not be accurate. This means that 

the inner iteration may consist of only a few iteration steps. 

However, the total number of outer iterations may be significantly 

larger than in the case where Eqns. (4.21) or (4.23) are solved 

accurately. 

Method B forms a basis for several two-step iterative methods 

of this kind. The outer iteration in these methods consists of 

evaluating the elements of matrix [c{A}]by the formula: 

(C. (4.24) 

where {A}* is an estimate of vector A at the end of inner iteration 
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cycle, and g is an acceleration factor. Depending on the choice 

of inner iteration we have: 

Method B1 Two step linearised point Jacobi iteration. 

Two step linearised point Gauss-Seidel iteration. 

Two step linearised point SOR (alternating 

iteration, alternating relaxation, small field 

approximation). 

Method B4 Two step linearised line Jacobi iteration. 

Two step linearised line Gauss-Seidel iteration* 

Two step linearised line SOR (alternating itera-

tion, alternating relaxation). 

Method B2 can be considered as a special case of Method B3, 

and B5 as a special case of B6. Methods B3 and B6 have been used 

successfully. 

Analogously to methods B1-B6 we could define another group of 

methods where Method C would serve as a basis. We are not aware 

of any attempts of considering these methods either theoretically 

or in practice. Instead of these we shall consider another group 

of two step iterations for which method C also serves as a basis. 

We have mentioned that Method C converges quadratically, but 

its use requires a solution of a large linear system in each 

iteration. Convergence of Method A for a given system (4.18) will 

depend on the matrix [B] in Eqn. (4.20). By analogy between Eqn. 

(4.20) and (4.23) we can expect fast convergence with Method A, if 

[B] = [J(A)]-1 (4.25) 

One possibility for approximation of the Jacobian matrix is 

to neglect some or all off-diagonal elements of this matrix. If all 
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off-diagonal elements are neglected, then the inversion of a 

matrix is replaced by simple division, in fact, a point iteration 

technique results. Similarly, if a Jacobian matrix is reduced to 

a tri-diagonal strip, then a line iteration technique results* 

These techniques can be put on a firm theoretical basis (Ref. 

4.28). 

Analogously to methods B1-B6 two-step iteration techniques -

can be defined in this case as well. We shall call these tech-

niques two-step non-linear iteration. The outer iteration con-

sists of recalculating the elements of the Jacobian matrix which 

have not been neglected (diagonal elements for point iteration and 

elements of the tri-diagonal strip for line iteration) by the 

formula: 

3f\(A) 3f.(A) 

^ IT. )k " ( IT )k-l 
J J 

r 3f.(A) 3f.(A). 1 

( -5%:-- )%_! - --SAT-S .B k " 1.2,... 
J ^ J •* 

(4.26) 

where 3 is an acceleration factor. Depending on the choice of 

inner iteration we have: 

Method CI Two-step non-linear point Jacobi iteration. 

The outer iteration is defined by (4.26) and the inner iteration 

by a sequence: 

^ -1— ' • 
( aA. )k 

(4.27) 

K is a number of inner iterations per outer iteration. 

K 
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Method C2 Two-step non-linear point Gauss-Seidel iteration. 

The outer iteration defined by Eqn. (4.26) and the inner by: 

A - A _ T,A. ^ , A. * » » » A - P 
*i,l 3f.(A) ' 

^ 9A. 

i - l...n, I - 1...K (4.28) 

Method C3 Two-step non-linear point SOR, 

The outer iteration is defined by Eqn. (4.26) and the intter by: 

-

i - l...n, A - 1...K (4.29) 

where w is the over-relaxation factor. 

Two-step line iteration methods of this kind are also obtained 

by using Eqn. (4.26) for outer iteration, but line iteration for 

inner iterations. We quote the following methods without expli-

citly writing the exact procedure; 

Method C4 Two-step non-linear line Jacobi iteration. 

Method C5 Two-step non-linear line Gauss-Seidel iteration. 

Method C6 Two-step non-linear line SOR. 

Basically, every outer iteration of methods B1-B6 and C1-C6 

contains several inner iterations. An extreme in the use of these 

schemes is only one inner iteration per outer iteration. It is 

possible, of course, to. construct iteration schemes in which the 
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outer iteration as defined for methods B1-B6 and C1-C6 contains 

less than one iteration. Non-linear point iteration of this type 

will consist of the use of any of Eqns. (4.27)-(4.29), but the -

coefficient 3if\(A)/3A^ is recalculated as soon as any new estimate 

of Aj, is known. As the procedure reduces to a single-step itera-

tion, we shall call these methods one-step iteration. Linearised 

iteration of this type can be defined, but we consider only non-

linear iteration of this type. 

Method D1 One-step non-linear point Jacobi iteration 

(Jacobi-Newton Process, J-N-P) is defined by a sequence: 

A . - A . -
i,k i,k-l (Aj.k'^Z.k ^i-1 .k'^i ,k-l '^i+l.k-l \.k-l) 

3A, 

i • l...n, k = 1,2... (4.30) 
9 

Method D2 One-step non-linear point Gauss-Seidel iteration 

(Gauss-Seidel-Newton-Process, G-S-N-P) is defined by; 

A - A - • • • 'Ai-l.k'Aj.k-l'Aj+l.k-l'''' '^.k-l* 

^^i ̂ ^1 .k *^2 .k *' • • 'Aj-l .k '^i .k-1 'Aj+l .k-1 * '' .k-l* 
3A. 

1 

i - l...n, k - 1,2... (4.31) 

Method D3 One-step non-linear point SOR (Extrapolated-

Gauss-Seidel-Newton-Process, E-G-S-N-P, Generalised Newton's 

method. Non-linear Over-relaxation, Non-linear Successive Over-

relaxation) is defined by: 
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^ - A. - ^i^^l.k'^2,k'--"Vl.k'^i.k-l'^ifl.k-l'-*"^n.k-l^ _ 

(^1 .k'^Z.k' • • • 'Aj-l .k'Aj .k-1 'Aj+l .k-1 \.k-l) 

i " l.,.n, k = 1,2... (4.32) 

Analogously to methods D1-D3, we have corresponding one-step 

non-linear line iteration techniques: 

Method DA One-step non-linear line Jacobi iteration. 

Method D5 One-step non-linear line Gauss-Seidel iteration. 

Method D6 One-step non-linear line SOR. 

These methods are analogous to methods D1-D3, but line itera-

tion techniques are used instead. 

In the indirect iteration methods listed so far the basic 

procedure is to use an algorithm for one equation (or group of 

equations). In doing so a very inaccurate solution of a non-

linear equation corresponding to a certain node is usually found. 

Another group of methods can be defined in which an accurate solu-

tion of (for point methods) a non-linear equation in a single 

variable A^ is found assuming the remaining values A^...A^_^, 

^1+1'"'^n constant. Any method for non-linear equation in a 

single variable can be used, and normally several steps of, for 

example, Newton's method will be necessary until another equation 

is dealt with. These methods can also be called two-step itera-

tion, but to differentiate these methods from two-step methods 

defined earlier, we shall call them non-linear iteration. This 

group of methods is wide, and only as an example we define: 
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Method E2 Non-linear Newton point Gauss-Seidel iteration 

(non-linear Gauss-Seidel (Liebmann) Process, G-S-P, extended 

Liebmann iteration, Liebmann method). 

\,k,£ " Ai,k,l-1 

_ ^i(^1 .k.K'^2,k,K*• • • 'Aj-l.k.K*\.k.A-l'^i+l.k-l,K'''' '^n.k-1 .K̂  

^^i (^1 .k.K*^2.k,K' • • • 'Aj-l ,k.K*\ .k.A-1 'Aj+l .k-l.K \.k-l .K̂  
3A. 

I = 1...K, i - l...n, k - 1,2,... (4.33) 

where n is a number of nodes, K is a number of steps of non-linear 

iteration to be carried out for every node. K need not be fixed 

but may vary from node to node and from iteration to iteration, 

and the inner iteration can be stopped when a certain accuracy is ' 

reached. 

In this section we have briefly described a number of differ-

ent iteration techniques for non-linear systems. Some possibili-

ties have only been mentioned, and it is also clear that numerous 

additional related iteration techniques can be defined. This vast 

number of available methods makes the choice for the method for 

our system very difficult. Although some methods are closely 

related it is by no means true that their rate of convergence will 

be similar, nor is it simple to say which method will be faster. 

The situation is even more complex if actual computation times are 

considered. As a comprehensive analysis of all these methods is 

virtually impossible, either theoretically, or by practical com-

parison of the efficiency of different methods, we shall make a 
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brief survey of published results on the use of different itera-

tion techniques for the solution of non-linear systems obtained by 

discretization techniques applied tp quasilinear elliptic partial 

differential equations. 

4,7 Review of Literature on the Numerical Solutions of Quasi-linear 

Elliptic Partial Differential Equations 

In principle, the methods described in section 4.6 can be 

used to solve any system of non-linear equations. Our equations 

have some special properties, and if an efficient method is sought 

we must restrict our consideration to the use of published methods 

applied to systems arising from discretization. 

The paper by Bers (Ref. 4.29) has become a classic in this 

field. He discussed a general quasilinear partial differential 

equation of the elliptic type and showed that a normal finite 

difference approximation (rectangular mesh) exists, is unique and 

converges to the true solution as the mesh size decreases. He 

also showed that non-linear point Jacobi and non-linear point 

Gauss-Seidel methods converge for this case (method E2 is an 

example of this iteration, where Newton iteration is used as inner 

iteration). Douglas (Ref. 4.30) considered a somewhat simpler 

case, namely the equation: 

- F(x,y,A) (4.34) 
3x2 gy2 

and the application of the ADI iteration in a form of a two-step 

linearised iteration. However, the outer iteration was set up 

differently from that one described by Eqn. (4.24). The possibility 
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of the use of SOR instead of ADI for inner iteration was also 

pointed out, with the remark that the total computation time is 

likely to be significantly larger, but no detailed analysis was 

given. 

Greenspan and Yohe (Ref, A,31) considered the three-

dimensional case of Eqn. (4.34) and the application of one-step 

linearised SOR (called by them non-linear over-relaxation, or 

Method D). A comparison with method E2 of section 4.6 was also 

given, and it was stated that method E2 was inferior for that 

particular problem, 

Greenspan and Parter (Ref. 4.32) considered theoretical 

aspects of several direct iterative methods and their indirect 

(point type) counterparts for Eqn, (4.34). The iterations were 

set up differently, but are related to our linearised iteration 

and Newton-Raphson iteration. Two examples were given, and it was 

shown that different problems may favour direct or indirect itera-

tion techniques, respectively. Although SOR was used for the 

solution of the linear system in their direct method, it is likely 

that this conclusion will stand even if a direct method of solu-

tion is chosen - unless the number of equations is very large. 

Ortega and Rockoff (Ref. 4.33) compared the rate of conver-

gence of methods Dl, D2, D3, E2 and non-linear Newton point SOR 

(which is analogous to E2 except that an over-relaxation factor is 

used). Method D3 showed superior performance for the problems 

they examined (usual difference equations for Eqn. 4.34). 

Greenspan, in another paper (Ref. 4.34), considered Method D3 

and also two modifications of the same method where the basic non-

linear iteration is applied to an enlarged system of equations. 



- 120 -

This enlarged system is introduced in order to simplify equations 

of the original system. Several one- and two-dimensional examples 

are given, and in most cases Method.D3 gives the shortest computa-

tion time. 

Meis and TGrnig (Ref, 4.35) gave the convergence theorems for 

Method D3 and also linearised ADI (introduced by Douglas). No 

comparison of these methods was given. 

These are only some of the publications dealing with non-

linear systems arising from discretization. They have been chosen 

almost randomly, and the list of quoted references is by no means 

complete. A number of other works are quoted in, for example, 

Ref. 4.35. Most of the papers quoted here discuss a solution of 

Eqn. (4.34), and the results cannot be directly applied to our 

problem. This is the main reason why we did not include more 

papers into this review. None of these papers give 'the best 

method* for a general case, rather, they suggest that different 

problems may favour different methods, even where only the mesh 

size is changed (Ref. 4.32). Thus, if we want to chose the method 

which is most suitable for our particular problem, we must 

restrict our attention to works which deal with non-linear magneto-

static problems. 

As far as we are aware, the first published results on the 

numerical solution of non-linear magnetic fields appeared in 1963, 

(Refs. 4.36-4.38). This was followed by a series of publications 

by several authors, mainly in collaboration with Erdelyi, in which 

the basic technique introduced in Refs. 4.36-4.38 was refined or 

applied to different problems (Refs. 4.39-4.61). In all these 

papers, the authors use regular or semiregular meshes and with 
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few exceptions consider problems arising in rotating electrical 

machines. 

Another group of reports has been published in connection 

with several programs developed mainly for the purpose of compu-

tation of electromagnets for particle accelerators. Several 

laboratories have been developing these programs: Lawrence 

Radiation Laboratory, University of California; Aragone National 

Laboratories, Midwestern Universities Research Association; 

Brookhaven National Laboratory; Stanford Linear Accelerator 

Center, Stanford University and also European CERN. In the 

literature these programs are often referred to by their names, 

and we quote names of some of these programs for future reference; 

LINDA, TRIM, POISSON, NUTCRACKER, MARE, GRACY, SYBIL. The litera-

ture on these programs is extensive and consists mainly of inter-

nal reports. However, several papers have been published in 

periodicals (Ref. 4.1, A.62-4.65). Further references can be 

found in quoted literature. Some of these programs differ con-

siderably from each other. Problems for which they were developed 

have relatively simple geometry, but the accuracy required is 

high. The mesh used i^ regular or mildly irregular, rectangular 

or triangular. 

Recently, several reports have been published on the use of 

irregular triangular meshes for non-linear magnetic problems. 

Although the problems considered are closely related to problems 

in Refs. 4.36-4.61, (i.e. mainly rotating electrical machines), 

methods of computation differ from those in Refs. 4*36-4.61 to a 

considerable degree (Refs. 4,66-4.69). 
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Direct comparison of the efficiency of different methods used 

in these reports is virtually impossible for several reasons. The 

problems considered by different authors are different, the dis-

cretization mesh is different, and different computers have been 

used. Data given in these reports about the efficiency of a 

particular method used differ from paper to paper. While some 

authors use mathematical terms like rate of convergence, others 

simply quote actual computation time, sometimes without specify-

ing computer or compiler. A number of papers, moreover, do not 

give any details about the efficiency of the numerical method 

used for computation. We shall therefore consider different 

groups of reports separately, because otherwise the conclusions 

could be quite misleading. 

A common feature in Refs. 4.36-4.61 is the use of mildly 

irregular meshes of rectangular or polar type, resulting in a 

large number of equations (up to several thousand). In their 

first paper, Trutt, Erdelyi and Jackson (Ref. 4.36) introduce 

Method B3 of section 4.6. Other methods are not considered but no 

details about the efficiency of this method are given. In Ref. 

4.45, Ahamed and Erdelyi describe a block-acceleration technique 

(see section 4.8), but continue to use two-step point SOR as a 

basic numerical procedure. Reichert (Ref. 4.51) compared the 

performance of Method B3, and linearised two-step ADI for a simple 

problem with square mesh and 255 mesh nodes. He also used a 

block-acceleration technique, and the results do not bear a direct 

relationship to the efficiency of the same methods without accele-

ration. However, the results indicate very slightly better pert 

fommance of the two-step linearised point SOR (Method B3)* In 
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another paper, (Ref. 4.52), the same author advocates the use of 

two-step linearised SLOR (method B6) for meshes with more than 

about 500 nodes and two-step linearised SOR (method B3) for 

smaller meshes. In Ref. 4.58, Erdelyi and Fuchs describe Method 

B6 in more detail. An example is given in Ref. 4.59. The total 

average computer time is quoted, and although there is no compari-

son with other methods, the results suggest that B6 converges 

faster than Method B3 for large meshes. Von Zweygbergk and Hultin 

state in their paper (Ref. 4.55) that Method B2 did not converge 

for any example they tried, and they developed another two-step 

linearised procedure which is closely related to direct methods, 

but iteration is used as means for the solution of the linear 

system. No discussion of the rate of convergence is given, except 

the statement that the method is fast and reliable. Trying to 

summarise these results we can say that for this type of mesh 

methods B3 and B6 can be considered as reliable. Comparisons, as 

well as the recent trend towards the use of Method B6 indicate 

Method B6 is faster for meshes with more than about 500 mesh 

nodes. 

Methods used in another group of reports (Refs. 4.1, 4.62-

4.65) differ from one another, and some of these programs use 

rather special techniques. So programs MARE, SYBIL and LINDA 

evaluate the field separately in air and iron regions and then 

combine these solutions in an iteration scheme. A rectangular 

discretization mesh was used. Programs GRACY and NUTCRACKER use 

rectangular or polar meshes and Method B3 for the solution of the 

equations. In this respect they do not differ from methods of the 

first group. Of special interest to us is program TRIM. The 
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discretization mesh used is a topologically regular triangular 

mesh. Although the mesh in our program is more general, this is 

the only program that uses a triangular mesh and indirect methods 

of solution. It is believed that basically the same methods can 

be used successfully for both type of meshes. The basic iteration 

procedure used in program TRIM is Method B3. However, tests have 

been carried out with non-linear Newton point SOR and non-linear 

Aitken's point SOR (both called non-linear over-relaxation) 

which both showed inferior performance as compared with two-step 

linearised iteration (Ref. 4.1). All these programs are intended 

for use with large meshes (e.g. a version of NUTCRACKER program 

can solve problems of up to 22500 mesh nodes (Ref. 4.64)). 

A third group of reports are Refs. 4.66-4.69. They are 

characterised by the use of free-topology irregular meshes. The 

number of nodes is relatively small (a few hundred) and the 

resulting systems were solved by direct methods. The procedure 

consists of a few steps of chord iteration (Method A), which 

generate the initial values of the vector potentials, followed 

by Newton-Raphson iteration (Method C). Comparison of Method A 

and C is given, and Method C is about 3 to 4 times faster. Com-

parison with indirect methods was not attempted. 

Finally, we consider two reports in which comparison of the 

efficiency of several different methods for a particular problem 

(or problems) have been presented. In his paper, Concus (Ref. 

4.70) compared the performance of Methods B3, D3 and two versions 

of Method C, where point SOR and line SOR was used for the solu-

tion of the resulting linear system. A rectangular mesh was used 

and results for two problems with 90 and 870 nodes were compared* 
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For the small problem Method B3 was marginally superior to the 

other three methods, but for the larger problem Method D3-gave the 

shortest computation time. Another report due to Reichert was 

published as his discussion to Ref. 4.67. He compared Method B6, 

D3, D6 and C (direct solution of the linear system in Method C was 

used). A rectangular mesh with 224 mesh nodes was used, and his 

results show superior performance of Method D6. 

On the basis of this reviipw no definite conclusion may be 

drawn as to which method will be most suitable for our problem. 

The only practical computations that use a non-uniform free-

topology mesh use direct iterative methods, but the number of mesh 

nodes is rather small. The indications are that for large meshes 

indirect iterative methods might be superior. 

Of indirect iterative methods two-step linearised point SOR 

has shown better performance when compared with non-linear Newton 

point SOR for a mildly non-uniform triangular mesh. This is also , 

true for other types of regular meshes. 

For mildly irregular rectangular meshes different two-step 

linearised iteration methods and one-step non-linear ite^tion 

methods have been compared. In most cases non-linear type itera-

tions have been shown to be superior to two-step linearised 

iteration. Block (line) type iterations have always shown better 

performance than their point—type counterparts. Finally, a number 

of methods that are obvious modifications of some well-known 

methods have never been tested on systems arising from discretiza-

tion. 

We have therefore decided to compare some of these methods, 

namely Methods B3, B6, D3, C3, C6. Results of this comparison 
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will be given in Chapter 5. Before that, in the next section we 

consider some block-acceleration techniques that have been suc-

cessfully used for various problems. 

4.8 On Block-Methods for Acceleration of Convergence 

Unlike the over-relaxation, in which the acceleration of con-

vergence is achieved by extrapolating the new estimates of vector 

potential, but the basic iteration procedure is unchanged, block 

methods for acceleration of convergence consist of altering the 

basic iteration procedure by adding one or more equations which 

are iterated alongside with the basic system. This type of acce-

leration is suitable for indirect iterative methods and so far it 

has been used only for linearised two-step iteration techniques. 

The basic idea in block acceleration techniques is due to 

Southwell (see for example Ref. 4.71) and in principle it consists 

of altering the values of vector potential at more than one mesh 

node by some simple procedure (e.g. increasing the values of a 

group of unknowns by the same amount, a method which Southwell 

called block relaxation, but this term is used nowadays in another 

sense). If an area on our mesh, containing more than one mesh 

node is encircled by a closed contour C (Fig. 4.11) and if all 

equations (4.4) corresponding to the enclosed nodes are added, the 

coefficients of in Eqn. (4.4) will partially cancel out. The 

resulting equation will be satisfied if all Eqns. (4.4) are satis-

fied, i.e. when the solution has converged. The converse is not 

valid. However, if this resulting equation is not satisfied, the 

values of all vector-potentials inside the contour can be changed 

in such a way that this equation becomes satisfied, The_J.dea can 
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also be given a physical meaning, namely the equation obtained by 

adding several basic equations (4.4) is equivalent to the equation 

which would be obtained by integrating 0 H d£ along the contour C. 

On these grounds the method is sometimes called 'acceleration 

based on physical grounds'. Another common name for this process 

is 'non-stationary methods'. 

The first modern use of this method as far as we are aware of 

is due to Ahamed (Ref. 4.72). The method consists of choosing the 

contour C so that it encircles the entire mesh except the nodes on 

the boundaries. The ratio: 

J.d£ 

K - (4.35) 

(I H.d& 

is found using appropriate difference approximation after every 

iteration and the entire array of vector potentials is multiplied 

by this ratio. The performance of this method is remarkable for 

both linear and non—linear problems and concentrated excitation. 

Results published by Ahamed show that the total computation time 

can be reduced ten times. However, the method does not behave so 

well with distributed excitation (indeed in cases where 

J'dS » 0 it cannot be used) and modifications of the method 

were necessary, which unfortunately complicate the basic method a 

good deal (Ref. 4.49). The method can be used only when at least 

some of the boundary potentials are zero, and although modifica-

tions can be made to include other types of boundaries, or cases 

when the integration contour encloses only part of the entire area, 

(Ref. 4.53), another method, due to de La Vallee Poussin and Lion 

is then more suitable. 
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De La Vallee Poussin and Lion have found (Ref. 4.73) that one 

of the causes for poor convergence of linear magnetic field prob-

lems is the existence of 'windows' or 'quasiwindows' of low perme-

ability in highly permeable area (slots of the machine). The rate 

of convergence can be improved if such windows are enclosed by an 

integration contour and the value: 

J.d£+(>H-d£ 

AA - - (4.36) 

is added to the vector potentials internal to the contour after 

every iteration. Similarly to the method by Ahamed the finite 

difference approximation to Eqn. (4.36) is used. This method 

corrects the value of (i H'd^ by adding AA to the nodes interior 

to the integration contour, while Ahamed's method does the same by 

multiplication. These methods are sometimes also called 'additive' 

or'multiplicative' acceleration, respectively. 

Although these methods have been used only with rectangular 

meshes, corresponding algorithms for triangular meshes can readily 

be developed. Both these methods can be said to be linear. For 

non-linear problems, if these are solved by some non-linear 

indirect technique, modifications which convert these two methods 

into non-linear ones suggest themselves. However, practical 

application of these non-linear versions might become lengthy and" 

increase the total computation time. 

These block-acceleration methods are also related to variar 

tional methods of Wachspress, (Ref, 4.74), which were developed 

for the neutron diffusion equation. 
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CHAPTER 5 

COMPARISON OF DIFFERENT ITERATION METHODS 

In Chapter 4 we have defined several iteration schemes for 

the solution of our non-linear system of equations. In this 

chapter we shall describe the computer program in more detail and 

also present some results from the use of different iteration 

schemes in one example. 

In section 5.1 we give the basic flow charts for different 

iteration methods. Section 5.2 describes the overall computer 

program. The program consists of three main parts corresponding 

to mesh generation, solution of equations and output. 

In section 5.3 different iteration methods are compared. The 

section consists of four sub-sections. In sub-section 5.3.1 we 

describe the model problem for which comparison is made and also 

made some general remarks on the usefulness of such comparison. 

In sub-section 5.3.2 criteria for convergence are defined, while 

in 5.3.3 we discuss the problem of the estimation of iteration 

parameters. A trial and error method was adopted. In the final 

sub-section the number of iterations for different iteration 

schemes as well as the computation times are compared for differ* 

ent schemes. 

Section 5.4 is concerned with convergence as a function of 

iteration parameters. 

5.1 Algorithms for Different Iteration Schemes 

In Chapter 4 we have defined several iteration schemes. In 

this section we shall describe the algorithms and flow charts for 
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several different methods in more detail. On the basis of these 

algorithms the actual computer program was written. 

Method B3 (see section 4.6) ' The basic flow chart for this 

method is represented on Fig. 5.1. The computation is started 

with prescribed constant values of reluctivities v for iron parts. 

With these values the coupling coefficients of Eqn. 4.5 are compu-

ted using corresponding expressions of Eqn. 4.4 for all nodes n 

(box 2). Since the coupling coefficients are symmetrical, it is 

necessary to compute only four coefficients for every node: 

coefficient C. ., which corresponds to the node itself and also 

three coefficients that correspond to three linking lines with 

nodes A, B and i+1 (Fig. 5.2), C. ., C. ^ and C. ... Some of 
1 ^ b Xy1+1 

these coefficients are not defined for boundary nodes and the 

computation of these is bypassed. 

Now the system of equations is completely defined and box 3 

of the program is entered. This box solves approximately the 

system of equations by a standard point SOR technique. The pro-

cedure can be easily described as follows; Assuming all values of 

vector potential constant, except for node 'i', the linear equa-

tion 4.5 is solved for A^; the value obtained we call A*. The 

new value of A. , is then extrapolated (overrelaxed) to: 
1 ,K 

*i,k • *i.k * <** - *i,k' • " (5-1) 

The sub-script k denotes the iteration number, and w is the 

acceleration factor. This procedure is repeated systematically 

for all nodes k times. A periodicity boundary condition is main-

tained by setting A^ ^ » - A^ ^ where A^ is the vector potential 
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Fig. 5.1 Basic Flow Chart for Linearised Iteration 
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Fig. 5.2 Coupling Coefficients for Node 'i' 
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of the last node on a certain mesh line and is the vector 

potential of the first node on the same line. This procedure is 

carried out in every iteration for every mesh line as soon as all 

vector potentials on that line are estimated. 

Every cycle of inner iterations needs an estimate for initial 

values of A. The first cycle is usually started with all A-0, 

although in the program provision is made to start computation 

from any other starting vector {A}, generated, for example, by 

previous iteration with a different current distribution. The 

consequent iteration cycles are started with {A} as at the end of 

the previous cycle. 

After K iteration steps box 4 of the program is entered in 

which new values of reluctivities for iron parts are computed on 

the basis of new values of vector potential. In terms of vector 

potential the flux density is: 

|B| - / ( II )^ + ( II (5.2) 

and for a triangle 'e' with nodes i, j, k (Fig. 5.3) the value 

10(B^®^) is readily evaluated: 

4(s(e))2 [ 1 1 J J k "k ' 

A(®) + cj®) A(®) + A(®))' (5.3) 

where is the triangle area and b^®^ and c^^^ are constants 

defined in Eqn. (4.1). This value of 10(B^®^)^ is used to evalu-

ate the new value of reluctivity v^®^ from v - f(lOB^) as 
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Fig. 5.3 A Mesh Triangle 
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explained in section 4.2, This value we call v* and the relucti-

(e) 
vity V is then set to 

Xe) .(e) + (V '•* - %(*)) . g (5.4) 

(e) 

where is the previous estimate for v for that triangle. 6 is 

an acceleration factor. This computation is repeated for all tri-

angles in iron. Computation in the air gap and slots is bypassed. 

After that convergence of the process is checked (box 5). If 

the convergence criteria are not satisfied the control is trans- . 

ferred again to box 2, Otherwise the iteration is stopped and 

output follows. 

Method B6 The flow chart for this method is the same as for 

method B3, but block iteration is used in box 3. The block of 

nodes corresponds to one mesh line. In this technique all vector 

potentials are assumed constant except those on a particular mesh 

line. The system of equations is reduced to a form 

[C],{A}. 

'1.1 

'2,1 

n,l 

Cl,2 0 ' 

S,2 ^2,3 

^3,2 S , 3 

0 

'3,4 

c c 
n-l,n-2 n-l,n-l 

'n,n-l 

'l,n 

n-l,n 

n , n J 

(A\ - {G} (5,5) 

This system is symmetric, but not strictly tri-diagonal, due 

to periodicity boundary conditions. The usual Thomas algorithm 

cannot therefore be used for the solution of Eqn. (5,5), Solution 
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can be achieved in two ways; either the system (5.5) is reduced 

to strictly tri-diagonal form by transferring the products C, .A, 
l,n 1 

and n'^n right—hand side by the use of previous esti-

mates of {A} or, alternatively, the algorithm is adapted to suit 

Eqn, (5.5). The first approach is described in detail in Ref. 5.1. 

We have chosen the second approach, in which Eqn. (5.5) is solved 

exactly for each mesh line. We do not give the precise details of 

the algorithm, but it consists of simple recursion formulae, and 

was derived from Jenning's compact data storage solution (Ref. 

5.2). Full advantage was taken of a special form of the matrix 

[C] in Eqn. (5.5). 

Method C3 (see section 4.6) The flow chart for this 

method is represented in Fig. 5.4. Similarly as in B3 and B6 the 

computation is started with prescribed reluctivities v for iron 

parts and these values are used in the computation of the coupling 

coefficients (box 2). In addition to the coupling coefficients, 

values of 3f(Ai)/3A^ are also computed for all nodes. The expres-

sion for 3f(A^)/3A^ is easily evaluated from Eqn. (4.4): 

'*i 

X 1 

. . / 1 1 1 1 1 ^ 1 1 1 1 1 . ^ 

1,1 4Sp^ ®^i,i 4s(2) 

b^)b^)+c^)c^) b(P)b(P)+c(p)c(p) 3v(P) 
, 1 1 ^ 1 1 . 1 , , 1 1 1 1 . 1 \ , 

4sf™) ^^i,i " 4s(") *A.,i -
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1 

V 
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compute vector potentials A. ,, i-l...n 
1 ,K 

k=l...K 

1 ' 

compute reluctivities ^ 
(e) 

3A. 

e=l...M, i»l...n 

NO 
converged? 

YES 

EXIT 

Fig. 5.4 Plow Chart for Two Step Nonlinear Point SOR 
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3V<1> b(P)b(P).c(P)c(P) 
+ A fi J ^ J 1 + 1 k 1 k 1 \ , 

1,1 4s(l) 4sfP) ^\,i 

;%(*) (m-l) ,^(m-l) 
—i J . ̂  J — -. - ̂  k . 1 K 1 

^ ^ 4S(*) 3A.,i ^ 3A, , > + 
1,1 

: b(P)b(P)+c(P)c(P) av!*) 3v(p-^) 
+ A / 1 -1 1 J 1 + _1 k 1 1( 1 V 

M p ) »\.p As!'-" '*i.i 
1 

In this expression values of are necessary. These 

values are all set to zero before the first iteration cycle. For 

consecutive iterations values of 3v/3A are computed in box 4. 

After the computation of the coupling coefficients and values 

3f(A^)/BA^ for all nodes, control is transferred to box 3« The pro-

cess in box 3 is described by Eqn. (4.29), i.e. with the values of 

coupling coefficients and 3f(A^)/3A^ fixed, new values of vector 

potential are estimated by the formula: 

f(A.) 

^i " ^i " 3f(A.)/3A. • " 
1 1 r" 

where A^ is the previous estimate of the vector potential of node 

'i' and w is the acceleration factor. In the evaluation of f(A^) 

the latest known estimates of {A} are always used. Eqn. (5.7) is 

applied systematically for all nodes. The periodicity boundary 

condition is preserved in a similar manner as in B3, i.e. the last 

node on a mesh line is assigned the negative value of the vector 

potential of the first node on that line after the computation of 

all vector potentials on the line. 

(5.6) 
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After Eqn. (5.7) has been applied for all nodes K times box 4 

of the program is entered. Similarly to the two methods already 

described, new values of reluctivity v are computed in this box. 

The procedure is exactly the same as described in B3. However, in 

addition to the reluctivity values for 3v/8A are also computed. 

For non-magnetic regions these values are zero. For a triangle 

'e' in the iron region simple differentiation gives (Fig. 5.3): 

1 1 

(5.8) 

where 3 is the acceleration factor used for reluctivities and 

b(lOB^) is a slope of a corresponding section of v •» f(lOB^) 

approximation. As it can be easily seen three values of 3v/9A are 

necessary for every triangle. 

After box 4 convergence is checked and if necessary control 

returned to box 2. 

Method C6 (see section 4.6) (version A) The flow chart 

for this method is given on Fig. 5.5. The basic structure is the 

same as for method C3 and consists of three main blocks* 

In box 2 coupling coefficients as well as values 3f(A^)/3A^ ^ 

and 3f(Ai)/3A^ for all nodes are computed. Formula (5.6) is 

used for 3f(A.)/3A. .. The values of 3f(A.)/3A. . . are computed 
X X ̂  X X X ̂  X* X 

from (we set A. . , » A. .); 
1,1+1 1,1 
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ENTRY 
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3A, 
i+1 

i=l 

Fig. 5.5 Flow Chart for Two-Step Nonlinear Line SCR 
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3f(A.) avf?) 
1 1 1 1 1 1 ^ 1 1 1 1 1 -=j\. . , + 

^^i,l 4sjl) ^^,1 4sj") ^^1,1 

4sfl> • i 4S(P) i 
1 1 

b<l>b<».c<»c,"> 9V»> bWb('').cWc(p) 3vfP> 

This expression is obtained from Eqn. (4.4) by direct compu-

tation. It is easily shown by direct computation that these 

coefficients are symmetrical, i.e. 3f(A^)/3A^^^ = 9f(A^^^)/3A^. 

After the computation of the coupling coefficients and the 

quantities given by Eqns. (5.6) and (5.9) for all nodes box 3 of 

the program is entered. In this box new estimates of {A} are 

made. By the definition in section 4.6, method C6 is obtained 

from Eqn. (4.23) by approximating the Jacobian maxtrix by its tri-

diagonal strip. If periodicity conditions are to be maintained, 

it is more convenient to include into the reduced Jacobian matrix 

also the off-diagonal coefficients that are due to periodicity 

condition, similarly as in method B6. Thus, the diagonal sub-

matrices of the Jacobian matrix have the same form as matrix [c] 

in Eqn. (5.5), and the reduced Jacobian matrix is also symmetrical. 

By the definition one inner iteration step can be described 

by 

{A} = {A} - [j]~^ . {F(A*)} .to (5.10) 
k+1 k 

where A* is a latest known estimate of {A}. Due to the block 

structure of [j] , [j]~̂ ' {F(A*)} can be evaluated block by block 
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(blocks correspond to mesh lines). The elements of the vector 

{F(A*)} are evaluated as they are required, i.e. line by line. 

The latest known estimate of the vector potential is always used, 

and vector {A*} consists partially of values of A from (k-l)th 

and k-th iteration. The procedure is repeated K times for all 

lines. 

In box 4 the newly estimated values of vector potential are 

used to recalculate reluctivities and values 3v/9A for all 

triangles in iron. Formulae 5.4 and 5.8 are used. After that 

convergence is checked and control transferred again to box 2 if 

necessary. 

Method D3 (see section 4.6) The flow chart for this 

method is shown on Fig. 5.6. The computation is started from some 

approximate solution of A and distribution of v. These approximate 

values are used to evaluate new values of reluctivities v of the 

surrounding triangles of nade 'i' by the Eqn. (5.4) and 3v/3A by 

Eqn. (5.8)., These values are then used to compute f(A^) and 

9f(A^)/3A^ and the new approximation of A^ is obtained from: 

f(A.) 

^i,k+l • ^i,k " 3f(A^) ' (5.11) 

317" 
1 

w is the acceleration factor. The new values of A are always used 

in computing f(A^) and 3f(A^)/3A^. The procedure is applied sys-

tematically to all nodes, which is followed by a convergence check. 

This process differs from the one described by Eqn. (4.32) in the 

use of the acceleration factor 6 for reluctivities. Introduction 

of this factor was necessary in order to achieve convergence^ 
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Fig. 5.6 Flow Chart for One-Step Nonlinear SOR 
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Method C6 (version B) The similarity between two-step and 

one-step non-linear methods suggests that it might be possible to 

define convergent methods which do not belong.to either of these 

groups, but lie between them. In these methods elements of the 

reduced Jacobian matrix are recalculated in every step on the basis 

of new estimates of A, but reluctivities are not computed in every 

step. Acceleration factors for both vector potentials and relucti-

vities can be used. 

A program for line iteration of this type was written. It is 

basically a two-step procedure and the flow chart on Fig. 5.5 was 

followed, except that the values of 3f(A£)/3A^ and 3f(A^)/3A^^^ 

were computed in box 3, alongside with the values of f(A^). The 

latest known estimates of A were always used. 

In the next section we shall briefly describe the computer 

program which was written on the basis of the different iteration 

methods described here. 

5.2 The Computer Program 

The block diagram of the computer program is shown on 

Fig. 5.7. The program consists of three main blocks. The first 

block contains subroutines for data preparation, i.e. subroutines 

for reading in and checking data, mesh generation and generation of 

initial values of vector potential. 

The second block of the program contains six subroutines for 

computation of vector potentials. These six subroutines correspond 

to the six different methods described in the previous section. 

The last block contains output subroutines. 
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distribution of reluctivities, 
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linked flux. 

Graph output. 

Fig. 5.7 Block Diagram of the Computer Program 
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The entire program has been written in FORTRAN (extended 

version for ICL 1900 series computers). The source program con-

tains about 7,000 statements. While the program was being 

written, emphasis was put on the efficiency of the code, parti-

cularly of the iteration subroutines. Preliminary tests showed 

that both available compilers (XFAT and XFEW) produce object codes 

which are rather slow in dealing with integers. This imposed 

severe limitations on the use of multi-dimensional arrays, and 

these were used only rarely. The result was a program much more 

complex than originally expected which was, however, reasonably 

efficient. We wish to emphasize, however, that really fast com-

putation can be achieved only by writing a program in machine code. 

In the next section we shall give some results on the use of 

our program. Although the total computation time can be further 

reduced by writing the program in machine language, we believe 

that the comparison of the efficiency of different methods has 

general relevance, 

5.3 Performance of Different Iteration Methods 

5.3.1 The model problem 

In Chapter 4 we have pointed out that the convergence of a 

particular numerical method for non-linear problems depends on the 

problem itself. Practical investigations into the convergence of 

numerical methods are usually carried out on so called 'model 

problems' which often have very simple geometry (e.g. a unit 

square with a hole in the middle). Unfortunately, results 

obtained from such simple problems cannot always be easily extra-

polated to more complex problems. An illustration of thâ g 
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difficulty could be the multiplicative acceleration introduced by 

Ahaiaed (see section 4.8). This method shows excellent performance 

for a simple geometry and concentrated excitation, but results for 

distributed excitation are rather poor. It is therefore necessary 

for a model problem to be representative of a class of problems 

for which a particular computer program is intended. This cannot 

be achieved easily with programs intended for general use, where a 

class of problems may not even be known. 

We are in a somewhat better situation as our program is 

intended for computation of magnetic field distribution of doubly 

slotted electrical machines. Thus, we can choose our model prob-

lem to represent a pole pitch of a doubly slotted machine, with 

combined periodicity and Dirichlet boundary conditions and with a 

current distribution corresponding to real problems. The magnet-

ization curve for the model problem can be the same as for the 

actual problem. The size of problem regarding both number of 

slots (i.e. geometry) and number of nodes (i.e. mesh density) can 

also be chosen, in principle, to match real problems. Hence good 

correlation can be expected between the performance of a particular 

method for a model problem and for real problems. Unfortunately, 

the size of such a model problem would impose severe limitations 

on numerical experimentation with different iteration schemes, 

different parameters, etc., because computation would tend to be 

lengthy and costly. Thus it becomes necessary to restrict the size 

of the model problem, in order to carry out numerical experiments, 

with the danger that the results of such experiments may not always 

indicate the best method for large, real problems. 
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The model problem we have chosen for our experiments is a 

doubly slotted structure with two slots on the rotor and three 

slots on the stator. The boundary conditions are periodicity plus 

Dirichlet boundary conditions, which correspond to the natural 

boundary conditions in electrical machines. The current distribu-

tion in slots has been chosen to correspond roughly to short 

circuit conditions. The mesh for this problem is represented on 

Fig. 4.3. The mesh has 87 nodes and 145 triangles of which 84 

cover iron parts and the rest the slots and the air gap. As some 

of the nodes lie on the boundaries, the number of equations genera-

ted from this mesh is 68. This is a rather small system and the 

number of equations for practical problems can be expected to be 

about ten times higher. It was believed, however, that some basic 

features of several numerical methods that were to be tested could 

be established even on this small model. Such features include 

the question whether the method is convergent or not, the depend-

ence of the convergence on the choice of iteration parameters, and 

to a certain extent also the relative efficiency of different -

iteration methods. 

5.3.2 Initial conditions and convergence criteria 

In order to compare the convergence of different iteration 

schemes, as well as the influence of different parameters, it is 

necessary to determine initial values of vector potential and 

reluctivity of the iron parts. In all cases the starting values 

of reluctivity were chosen to be = 1000 ~ 795) over 

the entire iron region. The initial values of vector potential 

were obtained by approximate solution of this linear problem. 

Point SCR was used in order to obtain this approximation. 
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50 iterations were performed and these values of vector potential 

were used as the initial vector {A} . 
o 

One important problem in iterative solutions is when to stop 

the iteration process. Ideally for this purpose we should examine 

the error vector 

= {A}^ - {A} (5.12) 

where {A}^ is the approximate solution after k iterations and {A} 

is the exact solution. Unfortunately, vector {A} is generally not 

known, and theoretical investigations of {e} are possible only in 

special cases. Thus, some other quantities have to be used. Two 

sets of quantities are easily monitored during computation: the 

displacement vector {d}; 

(5-13) 

and the change in reluctivity 

\ - V l 

We decided to monitor the displacement vector's first power norm 

||d||, maximum norm | |d| |" and also the maximum absolute 

and relative changes in reluctivity at any one place in the 

iron region. For our tests the prescribed values were 

||d|| = 1-0 X 10-6 ]wb| 

||d|1" = I'O X 10-7 IMb) 

y = 1 0 * 0 lm/H| 
max 

y , = 1.0 X 10-2 
^rel 
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The iteration was carried on until all the corresponding values in 

our iteration process had fallen below these prescribed values. 

The iteration was then stopped. We shall return to the question 

of convergence criteria in section 6.3 when we discuss errors 

associated with our iteration process. In the next sub-section we 

shall turn our attention to the problem of the estimation of 

iteration parameters. 

5.3.3 Estimation of iteration parameters 

In all the iteration schemes described in section 5.2 it is 

necessary to determine the acceleration factors w for inner itera-

tion and 6 for outer iteration, and for two-step methods also K, 

the number of inner iterations per outer iteration. This is not a 

simple problem if optimum parameters are sought. An adequate 

choice of iteration parameters is necessary even if iteration time 

is not critical, because the wrong choice may cause prolongation 

of iteration time by more than one order of magnitude, or even 

divergence. 

This problem has not been completely solved even for much 

simpler linear cases where only one iteration parameter, u, is 

necessary, and only in the simplest cases is it possible to deter-

mine an optimum w in advance. For the majority of practical prob-

lems Id cannot easily be determined in advance. However, the 

underlying theory is well developed and several techniques have 

been developed in which iteration is started with a value of w 

expected to be in the neighbourhood of the optimum value and this 

value is then adjusted during iteration. 

Estimation of iteration parameters for non-linear problems is 

more complicated, because not only are there more than one 
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parameter to be determined, but there is also hardly any theore-

tical background. In practical applications a 'trial and error' 

method is often adopted, i.e. several short runs are performed 

with different iteration parameters, and then parameters which 

appear to give the fastest convergence are used for actual,compu-

tation. Another possibility that has also been exploited 

(Ref. 5.3-5.5) is to keep some of the parameters constant during 

iteration, and change others. Usually 3 and K are fixed, and w is 

changed on the basis of linear theory. Although linear theory is 

not strictly valid, both Anderson (Ref. 5.3) and Winslow (Ref. 5.4) 

have reported good performance by means of this method. 

Such methods are very valuable if numerous different problems 

have to be solved. It was felt, however, that for our problem a 

'trial and error' method would be more suitable. The reason for 

this is that it makes possible the choice of optimum values of all 

necessary parameters, unlike the methods described by Anderson or 

Winslow. Also, solution of our problem requires several magnetic 

field solutions with slightly different current distributions, 

other physical parameters being unchanged. Thus, the optimum 

iteration parameters for one field distribution could be expected 

to give also good convergence for the others. In section 5.4 we 

shall give some results which show that the choice of iteration 

parameters is not very critical, which supports this assumption. 

Before giving these results we shall, in the next sub-section, 

compare the performance of different iteration schemes for our 

model problem. 
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5.3.4 Comparison of computation times for different methods 

In sub-section 5.3.1 we have described a model problem for 

which different iteration schemes have been tested, and in 5.3,2 

we have given the convergence criteria. As explained in 5.3.3, a 

'trial and error' method was adopted for the estimation of itera-

tion parameters. Such a method can never give the optimum values 

with 100% security. However, the number of trials was large, and 

it is believed that these parameters are fairly near to the opti-

mum values. 

Optimum iteration parameters as well as total number of 

iterations and computation times for different iteration methods 

are given in Table 5.1. Methods correspond to those described in 

section 5.1. 

TABLE 5.1 Comparison of Different Iteration Methods 

Column 1 2 3 4 5 6 7 8 

Method w e K iterations 
to converge 

time 
(sec) 

Convergence to 
three significant 
digits t 

Method w e K iterations 
to converge 

time 
(sec) 

iterations sec 

B3 1*63 0.18 4 267 48.0 150 27.0 

B6 1.76 0.29 4 113 24.4 52 11.0 

C3 1.92 0.205 4 157 34.0 76 16.0 

C6 (A) 1.83 0.25 1 61 30.0 39 19.0 

C6 (B) not convergent 

D3 1.75 0.04 — 171 105.6 91 56.0 

B3 with 
block * 
acceleration 

1'70 0.15 4 280 69*6 117 29.0 

Newton 
Raphson ** 
iteration 

- - - 8 20.0 5 12.5 

Additive acceleration of Poisson type (see section 4.8 ) was used 

after every 4 iterations* Iteration parameters u, 3 and K are not 
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optimum values, but are fairly near to the optimum. The number of 

iterations without block acceleration with these parameters was 282 

with running time of 50«4 sec. 

The values given are estimated, not measured. The computation 

time was estimated on the assumption of use of block elimination 

scheme (see section 4.4). 

The values represent the number of iterations and the computation 

time if other convergence criteria are applied. These values are 

more realistic than the values in columns 5 and 6 if computation is 

carried out with the purpose of short circuit current estimation 

(see section 6.3). 

Column 6 in Table 5.1 represents time measured by the internal 

computer clock, and it includes also some printing time. These 

times were obtained by the use of XFAT compiler on ICL 1907 compu-

ter, Use of optimising compiler XFEW reduces the computation time 

by about 10%, Thus, the indicated times must not be considered as 

absolute values, but should be used only for comparison with each 

other. 

The times given in Table 5,1 indicate the better efficiency of 

line iterative methods compared with point interaction methods 

(methods B6 versus B3 and C6(A) versus C3), This follows a pattern 

recognised in the literature for other types of meshes (see section 

4,7), Two-step non-linear point iteration (method C3) was signifi-

cantly faster than two-step linearised point iteration (method B3). 

However, two-step non-linear line iteration (method C6(A)) was 

slower than two-step linearised line iteration (method B6) which 

showed the best performance of all tested methods. 
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Method D3 (one-step non-linear point iteration) showed very 

inferior performance and so did method C6(B) (a version of two-

step non-linear line iteration, see section 5.1), which did not 

converge at all for any combination of iteration parameters tried. 

We do not know the reason for this, and among other things a pos-

sible error in the program cannot be positively excluded, although 

the program was tested most carefully. It was originally planned 

to write two more subroutines, one for method D6 (one-step non-

linear line iteration) and also B version of method C3, which 

would correspond to a point version of method C6(B), However, 

after the very discouraging results shown by methods C6(B) and D3, 

it was decided not to do so, as it is believed that the computation 

speed of these methods would be inferior to that of method B6. 

The block acceleration method was tested only with two-step 

linearised point iteration (method B3). The result shown in Table 

5.1 was typical for this method. In some cases (i.e. for some 

combinations of iteration parameters) the total number of itera-

tions was slightly increased, in other cases it decreased by 

several iterations. In all cases the total computation time was 

longer than computation with the same iteration parameters but 

without acceleration. Use of Ahamed's type (multiplicative) acce-

leration showed similar results. The increase in computation time 

is due to the considerable amount of computation which is neces-

sary in order to carry out the procedure. The amount of computa-

tion for triangular meshes is much higher than for rectangular 

meshes to which this type of acceleration has been applied success-

fully by others. 
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The last row in table 5.1 represents an estimation. The 

number of the iterations was based on results published by 

Silvester and Chari (Ref. 5.6), and computation time was obtained 

by assuming that a block elimination scheme was used for the solu-

tion of a linear system. The time necessary for one arithmetic 

operation was assumed to be about 50v sec, which corresponds to 

measured values if all variables are stored in one-dimensional 

arrays. 

The conclusions that can be drawn from these results are as 

follows: 

All tested methods (except method C6(B)) have converged for 

our model problem and have reached the solution to the required 

accuracy in a reasonable computation time. We believe that all 

these methods can be used with some confidence for the computation 

of other magnetostatic problems in connection with the use of 

irregular triangular meshes. Two-step linearised line iteration 

has shown the best performance of all tested methods. Although it 

cannot be said with complete confidence without any further tests, 

we believe that this method will be even more superior to point 

methods (B3, C3 and D3) for larger meshes as normally used in 

linear problems and regular meshes. As regarding the two-step non-

linear line iteration (method C6(A)), we know of no reason why the 

relative efficiency of this method would increase over than one of 

method B6 for larger meshes. We can therefore expect method B6 to 

be superior to all other tested methods for larger meshes as well* 

Use of block acceleration techniques is not expected to improve 

the performance of any of the tested methods. Use of direct itera-

tive methods, like Newton Raphson method will probably be inferior 



— 162 -

to method B6 for larger meshes because the necessary computation 

time is approximately proportional to n^ for direct iterative 

methods where n is the number of nodes, while for indirect itera-

tive methods the computation time is increasing more slowly than 

n^ (computation time for one iteration is proportional to n, while 

the necessary number of iteration increases more slowly than n. 

Even systems of several thousand unknowns require usually only 

several hundred iterations, see for example Ref. 5.3). 

A further insight into the behaviour of different iteration 

schemes can be obtained by the analysis of the displacement vector 

as a function of the number of iterations, or for the purpose of 

comparison as a function of computation time. The curves in Fig, 

5.8 represent the first power norm for different iteration methods 

plotted against computation time. (Since with some methods these 

curves show quite large irregular oscillations, the diagrams were 

obtained by computing the average norm for 4 consecutive itera-

tions, and by plotting these values). 

As it can be readily seen from the diagram, almost all tested 

methods show acceleration of convergence as iteration progesses. 

The degree of acceleration varies for different methods, but they 

all fall between virtually linearly convergent method B6 and vir-

tually quadratically convergent method C6(A), With this informa-

tion we can say that method B6 would be even faster compared with 

other methods if the accuracy required were lower. As we shall 

see in section 6.3, the accuracy for practical computation can 

indeed be much lower which puts method B6 even further ahead. 

Before arriving at a final conclusion as to which method is 

to be used for the computation of our real problem, we shall 
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Fig. 5.8 First Power Norm of the Displacement Vector for Different 
Iteration Schemes 
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briefly examine in the next section the sensitivity of different 

iteration schemes to the choice of iteration parameters. 

5.4 Dependence of Convergence on the Choice of Iteration 

Parameters 

As already mentioned in section 5.3.3, the wrong choice of 

iteration parameters can result in severe penalties in terns of 

computation time. In this section we shall examine the dependence 

of the convergence of different iteration schemes on the choice of 

iteration parameters for our model problem. This is a very impor-

tant question if a 'trial and error' method is used for the esti-

mation of the parameters. Namely, if a method converges fast with 

optimum parameters, but is very sensitive to the choice of itera-

tion parameters, then the trial and error method will normally 

require many trials before a combination of parameters cdn be 

found which gives fast convergence. 

It was therefore decided to carry out tests which will give 

some insight on the computation speed as a function of the itera-

tion parameters. It was soon realised that the best choice for a 

number of inner iterations per outer iteration K lies between 3 

and 4 for methods B3, B6 and C3 for virtually any choice of w and 

3, while the fastest convergence for method C6(A) was achieved 

with K=l. This fact simplified the tests, as for all two-step 

methods K could be fixed and only 3 and w changed, in the same way 

as in tests for method D3. Figs. 5.9-5.13 represent the results 

of these tests in a form of curves in the w-g co-ordinate system. 

The position of the best combination of these parameters is indi-

cated on all figures. If the combination of parameters is chosen 
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to be on the inner curve, the computation time is increased by 

25%, while the outer curve gives an increase of 50%, 

All tests for diagrams on Figs. 5,9-5.13 were carried out for 

our model problem described in section 5,3,1, The diagrams are 

approximate, because, due to long computation time it was not 

possible to carry out extensive tests. However, the value of more 

accurate diagrams is doubtful, due to another phenomenon which we 

observed. Namely, the computation time as a function of the 

iteration parameters w and 3 is not a smooth function in the 

neighbourhood of the optimum values of w and 3, Several local 

minima can usually be found, and as an example we give the diagram 

on Fig, 5.14, This diagram represents a number of iterations as a 

function of w for a two-step linearised line iteration. 3 and K 

were fixed (3 = 0.24, K = 4). The oscillations appear to be quite 

irregular, with an amplitude of as much as 25% of the total compu-

tation time. We observed these oscillations for all iteration 

methods we tested, except for method D3 (one-step non—linear point 

iteration). 

These results indicate that it may be extremely difficult to 

find the overall optimum values of iteration parameters, either 

with an automatic routine, or with a trial and error method. On 

the other hand, it seems reasonably easy to find the combination 

of parameters which gives the computation time within about 125% 

of the optimum value as the diagrams 5.9-5.13 show. On these 

grounds there seems to be no reason why we should not chose two-

step linearised line iteration (method B6) as a method for the 

computation of fields for our problem. This method is the fastest 

of all tested methods (see table 5,1), and the diagram on Fig. 5.10 
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does not indicate that there will be any great difficulties in 

finding the combination of iteration parameters which gives the 

computation time within the range of 125% of the optimum value, 

although, of course these parameters will generally be different 

from those obtained for our model problem. 

With this choice we conclude this chapter. In the next chap-

ter we shall turn our attention to different errors that are 

present in our analysis. 
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CHAPTER 6 

ERROR ANALYSIS 

In this chapter we shall examine the errors which are present 

in our analysis. 

Our analysis of the machine can be split into two steps: 

1. definition of a perfect machine (neglection of eddy currents, 

hysteresis, etc); and 

2. definition and solution of a mathematical model. 

Both steps involve the introduction of several types of errors. 

In section 6.1 different types of errors are listed according 

to their origin. In section 6.2 the errors of the first group are 

examined, while in section 6.3 the errors of the second group are 

analysed. The analysis of different types of errors is not 

detailed, but an attempt was made to determine the orders of mag-

nitude of different types of errors, although in some cases it is 

merely a guess. 

The conclusion of this chapter is that the overall accuracy 

in the computation of voltage with prescribed currents by our 

method lies in the range of 10% - 15%. 

6.1 Types of Errors 

Our analysis of the machine can be considered to consist of 

several steps'. Every step introduces some uncertainties, which 

cause discrepancies between computed results and the actual physi-

cal phenomenon. These discrepancies we shall call the 'error'. 

Hence, the error will be defined as: 
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G » - A (6.1) 

where A^ is our approximate solution and A represents the numeri-

cal value of the actual physical phenomenon. The magnitude of the 

error may be quite different for different quantities (e.g. local 

flux densities and induced voltage), and we shall always state in 

what terms the error is expressed. In most cases we shall examine 

the error in the effective value of total flux for prescribed 

values of currents. 

We shall differentiate two basic steps in our analysis of the 

machine: 

1. definition of the ideal machine; and 

2. definition and solution of the mathematical model. 

The major causes of error in the first step are: 

1. Mechanical inaccuracy. 

2. Inhomogeneous magnetic properties of steel laminations. 

3. Approximation of the B-H curve by single valued function* 

4. Neglect of influences of non-active parts of the 

machine (casing, bearings, etc.). 

By neglecting all these influences we have defined the 

'perfect' machine. Our mathematical model is based on this 

perfect machine. However, it does not represent the perfect 

machine exactly, because several simplifications were introduced 

in order to carry out the computation effectively. These simpli-

fications introduced further errors. Also, the numerical solution 

of our mathematical model causes errors. The major causes of 

errors of this step are; 
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6. Approximation of the B-H curve by piecewise linear 

functions. 

7. Neglect of end effects, 

8. Discretization. 

9. Iterative solution of equations. 

10. Truncation of numbers in the computer core. 

The border line between these two groups of causes of errors 

is not sharp. The common feature of the first group is that the 

causes are not known exactly and some additional data or measure-

ments would be necessary in order to determine the errors exactly, 

even in principle (e.g. in order to determine the effect of eddy 

currents the resistivity of the laminations must be known). 

The causes of the second group are known exactly (e.g. we 

know that the numbers in the computer are represented only to a 

certain number of decimal places). 

There is also a third group of errors caused by measurements. 

The computed results can only be compared with the results of 

measurements, not with the machine itself. Although these errors 

do not belong to either of the groups mentioned above, their mag-

nitude must be considered if the validity of a certain method of 

computation is assessed by comparison of computed and measured 

results, hence we have: 

11. Measurement errors. 

An analysis of all these errors in detail would be very com-

plicated. Fortunately, the computation of the short circuit 

current need not be particularly accurate (the accuracy of 10% can 

be considered as fairly good; for example, various national 
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standards allow tolerances in short circuit current of 15%-20% of 

their nominal value), so that the error analysis need not .be very 

accurate either, and only major causes of errors must be considered 

in more detail. If the computation is used in order to determine 

for example the influence of different designs of tooth tips, etc., 

only errors 8-10 have to be considered, and these are dealt with 

in more detail. 

In the next section we shall first examine the errors of the 

first group. 

6.2 Errors Due to Idealisation of the Machine 

The exact estimate of errors of this gorup is not possible 

even in principle, because this would require some additional data 

that can be obtained only by measurements, which are themselves 

liable to errors. Due to the lack of such measurements our analy-

sis of error will be only qualitative and can, at the very best, 

indicate only the orders of magnitude of the errors involved. We 

shall now examine briefly different influences listed in section 

6.1. ^ 

Mechanical inaccuracy of the machine can cause serious dis-

crepancies between computed results and measurements on the actual 

machine. The main cause of these discrepancies is a non-uniform 

air-gap. The largest portion of this non-uniformity is caused by 

the eccentric position of rotor in the stator bore. The air-gap 

in induction machines is short and tolerances in the positioning 

of bearings are often as high as 10% of the air-gap length. This 

eccentricity causes unbalanced magnetic pull. If the winding is 

connected in series, and the tolerances of ± 10% of the air-gap 
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length are allowed, then the flux density may be expected to vary 

also ± 10% (assuming relative permeability of iron = « and 

the machine without slots). The forces on the magnetised iron 

parts are proportional to where B is the flux density, hence 

the forces on the rotor may be expected to vary approximately ± 

20% along the rotor periphery, and a large unbalanced radial force 

may result. 

The influence on the total flux will probably be much smaller, 

due to the fact that the total flux will depend on the average air-

gap length. The average air-gap length is not influenced by the 

eccentric position of the rotor, but only on the actual dimensions 

of stator bore and rotor, which are manufactured with lower toler-

ances. 

However, different levels of flux density will have some 

influence on total flux because of saturation, which will be 

uneven as the flux rotates in the machine. Simple analysis of the 

influence of non-uniform air-gap was carried out under the follow-

ing assumptions: 

a) Air-gap length has a tolerance of ± 10%. 

b) The stator and rotor core backs of the machine are 

infinitely permeable (this is allowed for short circuit 

computation as the main flux is low). 

c) The flux density is constant along the pole pitch. 

d) The ratio of flux path length through iron and air is 

r " 200 (this is realistic since the paths through the 

rotor and stator cores have been neglected). 

c) The leakage fluxes represent about 50% of the total flux, 

and they are not affected by the non-uniform air-gap. 
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The maximum error may be expected to occur with four-pole 

machines and with working point in the knee of the B-H curve. The 

flux density was chosen to be 1.5T,.and even in this most unfavour-

able case our analysis showed that the relative error in computa-

tion of total flux lies in the range 0*01 > e > 0. The leakage 

flux is hardly affected at all by the non-uniform air-gap, so that 

the error in computation of total flux will probably lie well 

under 1%, unless the eccentricity is higher than ± 10% of the air-

gap length. If the winding has parallel branches, these will 

probably further reduce the influence of the non-uniform air-gap. 

Errors listed in 2, 3 and 4 in section 6.1 can together be 

called errors due to imperfect steel laminations. Of these, 

errors due to non-homogeneous material will probably be quite 

small because the steel sheets with different magnetic properties 

will be randomly distributed in the machine and the influence of 

different permeability of different sheets on the machine charac-

teristics will be small. We expect these errors to be about ± 1% 

in terras of the total flux, although they may cause larger varia-

tions in local flux densities. It must also be emphasized that 

different batches of magnetic steel with the same nominal B-H 

curve may differ from each other to some extent, and that it is 

important that the analysis is carried out with the actual B-H 

curve for the material used in the machine. 

The problem of hysteresis is a complicated one and to account 

for it fully it would be necessary to know the magnetic history of 

the material. Modern magnetic materials intended for use in elec-

trical machines have relatively narrow hysteresis loops. The 

hysteresis data are often not given by the manufacturers, but the 
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order of magnitude of its influence can be established by simple 

analysis. The losses in steel laminations are always given and 

for usual laminations of 0*5 mm they vary between 3.0 - 8.0 W/kg 

at 50 Hz and flux density 1.5T, depending on the type of material. 

Approximately one half of these losses is due to hysteresis, the 

other half to eddy currents (Ref. 6.1). This corresponds to the 

area of hysteresis loop of about O'S x 10^ Ws/m^. Assuming 

furthermore a rectangular hysteresis loop (Fig. 6.1) and flux 

density ± I'ST, it gives the width of hysteresis loop of 166 A/m 

(= ± 80 A/m). This means that the necessary field strength for 

given flux density lies in the range ± 80 A/m, as computed from 

B-H curve as single valued function, depending on the branch of 

the loop. The maximum values of flux densities will not greatly 

be affected by the hysteresis, we can therefore say that in the 

first approximation the effect of hysteresis will be a time lag 

between excitation current and flux. This time lag can easily be 

determined, and from our data its value is about 2.5° (el). The 

induced voltage will show similar time lag. If the errors of the 

instantaneous values of total flux are considered, then these may 

be presented as the percentage values of the maximum value of 

flux. In this case the maximum error is about ±4%. The influ-

ence of hysteresis on the effective value of total flux will be 

lower, we expect it to be about ± 2%. 

Eddy currents will cause a similar effect as the hysteresis. 

Study of eddy currents in non-linear media is not simple. One of 

the basic concepts in the study of eddy currents is the skin depth; 
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H 

Fig, 6.1 A Rectangular Hysteresis Loop 
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where p is the resistivity of the material, f the applied frequ-

ency and p the permeability of the material. In order to simplify 

the matter we have assumed y to be Constant with a value of 

V " Wj. . UQ = 600 X 4m x 10"? H/m, which corresponds approximately 

to the flux density of 1*5T. With p = 0«4 x 10~® Hm (usual 

material, see for example Ref. 6.1), and f = 50 Hz the skin depth 

is 6 = 1*8 X 10~^m. As the sheets are only 5 x I c V thick, it 

can be assumed that the eddy current density and the phase shift 

of eddy currents change linearly across the sheet, without making 

any significant error. The maximum eddy current density occurs at 

the surface of the sheet and for our data its value is about 

1 X 10® A/m^. The maximum field strength due to eddy currents 

occurs in the middle of the sheet and its value is about 250 A/m, 

which is about 12% of the excitation current for 1'5T. The aver-

age flux density is reduced by about 10%. The maximum phase shift 

of eddy currents occurs in the middle of the sheet and it corres-

ponds to about 60° (el). The average phase shift of eddy currents 

is about 10° (el), which will cause a time lag between excitation 

current and flux of about 1° (el). 

Although the eddy currents damp the flux significantly, this 

will not cause a significant error, because usually B-H curves 

supplied by the manufacturers give the maximum flux density versus 

the effective value of alternating excitation current, thus the 

damping is already allowed for. However, the influence of the 

phase shift remains and if expressed as the percentage of the 

maximum value of total flux for given current its value is E = ± 

2%. The influence of eddy currents on the effective value of 

total flux will be lower. We expect it to be about ± 1%. 
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Influence of non-active parts of the machine will depend on 

r 

the construction of the machine. Influence of other non-active 

parts except the casing and the shaft on the flux distribution 

will probably be quite negligible. We expect this error to be 

about one order of magnitude smaller than the errors caused by, 

for example, eddy currents. 

The influence of the casing and shaft must be examined 

separately for the core region and the end region. In our compu-

tation of end-winding inductances in Chapter 2 we have assumed 

that the core extends to infinity and that the shaft and the 

casing have no influence on the flux distribution. The influence 

of the casing on the end-winding inductance can amount to about 

25% of the total end-winding inductance (Ref. 6.2) for ideally 

permeable (or ideally non-permeable) material. The sign of the 

error will depend on the permeability, and for ferromagnetic 

materials the flux will be underestimated, while for non-magnetic 

conducting material the flux will be overestimated. Most medium 

power machines have casings made of cast iron, for which material 

the relative permeability is about = 200, but due to eddy 

currents it is effectively much lower. However, it is still well 

above = 1, and in this case the error of about e • -20% can be 

expected in terms of the end-winding flux. The influence on the 

total flux will be approximately by one order of magnitude lower 

because the end flux represents only about 10% of total flux. 

The flux in the core region will be affected in a s^pilar 

way. Assuming the area of the cross-section of the casing to be 

about one fifth of the area of the cross-section of the stator 

core, relative permeability of the casing = 50 and relative 
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permeability of the core = 500 (corresponds to flux density of 

1«5T), the casing will take about 2% of the flux. However, the 

influence on the total flux will be about one order of magnitude 

lower, because the stator core contributes only marginally towards 

the total magnetic resistance. The influence of the shaft will be 

similar, and except probably with two-pole machines, it need not be 

taken into account. We can therefore say that the combined errors 

due to casing and shaft will be about - 2«5% in terms of the 

effective value of total flux. 

In this section we have examined different errors due to 

idealization of the machine. We have determined the orders of 

magnitude of these errors, and to a certain extent we were also 

able to determine the direction in which these errors are likely 

to influence our results. In the next section we shall turn our 

attention to errors caused by imperfections of our mathematical 

model. 

6.3 Errors Due to Imperfections of the Mathematical Model 

The errors of this group are listed under 6-10 in section 6.1. 

Some of these errors can be simply reduced by improving our mathe-

matical model or solution methods. So for example the influence 

of truncation error can be greatly diminished by the use of double 

precision arithmetic in the computer. Such improvements will 

generally be costly because they would reduce computation speed. 

We have therefore to make a compromise; i.e. reduce these errors 

to the level acceptable from the engineering point of view, but 

not any further because of the severe penalties in the computation 

cost. 
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Approximation of B-H curve (or, better, approximation of the 

function v = fCB^)) causes only negligible error. The approxima-

tion of V = f(B^) by 80 straight line segments gives the average 

error of less than 1%. This error is further reduced by at least 

one order of magnitude during computation due to the fact that v 

will be sometimes overestimated and sometimes underestimated. 

End effects must be examined in two ways. First, there is an 

influence of the magnetic core on the flux in the end region. 

This influence amounts to about 10% of the end-winding flux 

(Ref. 6.2). However, this influence has been taken into account, 

and we can expect the remaining error to be of the order of ± 1% 

of the end-winding flux, or ± 0.1% of the total flux, because the 

end-winding flux contributes only about 10% towards the total flux. 

The influence of the finite core length on the core flux will 

depend largely on the size of the air gap, and can be taken into 

account by increasing the effective core length by approximately 

one air-gap length on both sides of the machine (Ref. 6.3). The 

air-gap of induction machines is of the order of 6 = 0•002D where 

D is rotor diameter, and if the core length is & = D, the error 

would be e - 0*002D x 2/D = 0«004. If the increase of the effec-

tive core length is taken into account, the error will be reduced 

by approximately one order of magnitude. High level of flux 

density will increase the error, because of saturation but we 

believe that it will still remain under ± 0.5% in terms of the 

total flux. 

Discretization may be expected to be one of the major causes 

of error in our analysis. In linear cases and regular rectangular 
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discretization the magnitude of error can be determined from 

(Ref. 6.4): 

• - S ' S - S ' 

where 'h' is the mesh cell size. In non-linear cases and irregu-

lar discretization the error is larger. For rectangular meshes 

de La Vallee Poussin and Lion have verified that the error is 

(Ref. 6.5); 

e = 0(h2) (6.2) 

For irregular triangular meshes the error is also influenced 

by the degree of irregularity (triangles with small angles may 

cause large errors). The problem of discretization error is by no 

means completely solved and we refer the reader to Ref. 6.6, in 

which several other works on the subject are quoted. 

Being unable to find a reliable practical method for deter-

mination of the discretization error for non-linear problems and 

irregular triangulation We have decided to find this error by 

experiments. The mesh density for our model problem was increased 

in several steps, so that the finest mesh contained 392 nodes and 

721 triangles, i.e. the finest mesh contained approximately four 

times as many nodes as the coarsest mesh. Seven different mesh 

grades were used in all. The meshes for three different grades 

(corresponding to 87, 234 and 392 mesh nodes) are represented on 

Figs. 4.3-4.5, and the corresponding flux plots are given on 

Figs. 6.2-6.4. 
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We shall start our error analysis from the diagram on Fig. 

6.5. This diagram represents the computed values of vector poten-

tial at four different points of our model problem (points are 

marked on Fig. 4,3) as a function of a number of nodes. (Total 

number of mesh nodes was chosen for the abscissa for this and 

several subsequent diagrams, rather than the mesh cell size, 

definition of which would be rather vague for irregular meshes). 

The first obvious conclusion is that coarse mesh gives under-

estimated values of vector potential (the theory predicts this for 

linear problems, see section 3.7 and Ref. 3.62, but the generali-

sation of this result to non-linear cases is not quite obvious). 

The values of vector potential converge well as the number of 

nodes increases, and for the purpose of an error estimate we shall 

assume the values obtained from computation in the finest mesh as 

exact. The largest discrepancies between results for coarser and 

finer meshes shows curve B on Fig. 6.5. The numerical values of 

errors for this curve are: 

°"°*nodeS 8' 132 171 235 299 352 

error (Wb) 12.0x10-^ y-VxlQ-^ 3-7x10-4 1.6x10-4 1.2x10-4 1.0x10-4 

These values are larger than O(h^) if the dimension of the 

smallest triangle is used as h, but smaller than O(h^) if the 

largest triangle is used. Thus. EqA. (6.2) is valid for our model 

problem if h is,defined as the average value of mesh cell size. 

The vector potential itself is not our final result. We are 

interested in the linked flux and the torque. The linked flux is 

obtained by integration of vector potential over the slot area. 
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In a certain sense it represents the average value of vector 

potential and it could be expected that the computation of it is 

only marginally less sensitive to mesh cell size than the vector 

potential, because the vector potential shows systematic errors. 

Fig. 6.6 represents the linked flux for three different coils of 

our model problem. The relative errors for different mesh densi-

ties are virtually the same as for curves on Fig. 6.5. 

In our program the torque is computed from the flux densities 

in the air gap, and the flux densities are obtained as the first 

order differences from the vector potential. Due to the nature of 

this computation the flux densities are much less accurate than 

the vector potential. As an illustration we give Figs. 6.7-6.9 

which represent the radial flux density for three different meshes 

with 87, 235 and 391 mesh nodes respectively. Position of rotor 

and stator teeth are also sketched for reference. The discrepan-

cies between these diagrams are large and obvious. So for example 

the differences in local maxima for meshes with 235 and 391 nodes 

(Figs. 6.8 and 6.9) are more than 15% in comparison with about 1% 

discrepancies in vector potential. Fig. 6.7 which corresponds to 

a mesh with 87 mesh nodes hardly represents more than a rough 

guess of the actual flux density distribution. 

The computation of torque is somewhat less critical because 

this computation involves integration along the air gap. However, 

computation of the torque is still much less accurate than the 

computation of linked flux as Fig. 6.10 shows. The diagram repre-

sents the computed torque versus number of mesh nodes. The errors 

are about one order of magnitude larger than the corresponding 

errors on Fig. 6.6. 
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We can now answer the very important question of the minimum 

necessary number of nodes. For our model problem it is the mesh 

with 235 mesh nodes. This mesh produces the linked flux with an 

accuracy of about 1% of its maximum value and torque to about 5%. 

The local flux densities are much less accurate and the errors of 

up to 25% can be expected. This is the accuracy which is adequate 

for most practical purposes. We can conclude that meshes with 40— 

50 mesh nodes per slot pitch (stator plus rotor slots of the sector 

of the machine considered) for doubly slotted machines will give 

results which are acceptable from the engineering point of view. 

Iterative solution of equations. As an iterative solution of 

equations requires an infinite number of arithmetic operations to 

reach the exact solution, our solution will be only approximate. 

Similarly as with discretization error we can improve the. accuracy 

at the expense of more lengthy and more costly computations. As 

discretization and other factors are likely to cause errors of up 

to 5%, there is not much point in continuing the iteration after 

the vector potentials have reached the accuracy of about 1%. 

Without the exact solution we do not know the error at any 

stage of computation. The quantity which can be easily evaluated 

is the displacement vector d (Eqn. 5.13). In section 5.3 we have 

used the magnitude of the first power norm of the displacement 

vector as one of convergence criteria. However, the displacement 

vector bears no direct or simple relation to the error vector, and 

the magnitude of some norm of this vector should not be Tised as 

criterion for terminating the iteration. 

Without going into any theoretical details, we state that the 

rate of decrease of error vector is equal to the rate of decrease 
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of displacement vector (see for example Ref, 6,7) for linear prob-

lems. Thus, in linear cases we know that, for example, the error 

vector is reduced to 1% of its initial value at the same time when 

the displacement vector is reduced to 1% of its initial value. We 

have no theoretical proof of this for non-linear problems. 

However, practical tests on our model problem with different iter-

ation schemes and different mesh grades have shown that this rela-

tion holds for our problems as well. This enables us to define a 

very simple practical criterion as to when the iteration process 

can be terminated. Namely, although we do not know the error 

vector, we know that it is reduced at the same rate as the dis-

placement vector, and we can stop the iteration when the displace-

ment vector is reduced to 1% of its initial value, under the 

assumption that the initial error was 100%, As it is likely that 

the starting error will be in most cases of the order of magnitude 

of 10% (supposing that initial A-vector is obtained by the solu-

tion of a linear problem), this criterion should give us a good 

safety margin. 

Any norm of the displacement vector can be used for this 

purpose. The first power norm is suitable because it does not 

require a lot of computation and it oscillates less than the maxi-

mum norm. For practical application it is useful to take the 

average value of ||d|| for several consecutive iterations in order 

to smooth the oscillations further. 

Although this convergence test has no firm theoretical basis 

for the time being, it has proved valid for all cases we have 

tried, using different mesh densities and different iteration 

schemes. When this test was applied the errors were under 1% of 
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the final values of vector potentials, the vector potentials being 

accurate in approximately three decimal digits. The 'final values' 

were obtained by long runs in which the first power norm of the 

displacement vector was reduced to less than 0*0001 of its initial 

value. 

We can now determine the computation time for our model prob-

lem from Chapter 5 on the basis of this convergence test. Points 

where different iteration processes could be terminated are 

denoted with asterisks on Fig. 5.8 and corresponding numbers of 

iterations and computation times are listed in Table 5.1 in 

columns 7 and 8. It is clear that this criterion favours Method 

B6 even more than the criteria defined in subsection 5.3. 

It should be emphasized that even with linear problems this 

test would be strictly valid only after a large number of itera-

tions. It may therefore be necessary to increase the ratio 

between initial and final values of displacement vector for some 

cases, namely if convergence speed is decreased after a certain 

number of iterations (i.e. if the slope of the curve representing 

||d|| plotted against iteration number becomes less steep after a 

certain number of iterations, as for example the curve for Method 

B3 with acceleration on Fig. 5.8), but we believe that the ratio 

10^:1 should suffice for virtually all practical purposes. On the 

other hand, the iteration can be terminated earlier if it is known 

that the initial error is small. 

This error is of course in terms of the vector potential. As 

with the discretization errors, local flux densities show larger 

discrepancies than the vector potentials. However, the influence 

on the computed torque is considerably smaller than on the flux 
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densities because errors due to inaccurate solution are much more 

randomly distributed than errors due to discretization, which are 

usually systematic. The same is valid for computation of linked 

flux, which is generally more accurate than the computation of 

vector potentials. 

Truncation error. In the iteration processes we use the 

truncation error does not accumulate from iteration to iteration. 

This is probably the reason why the analysis of it is completely 

avoided in virtually all published work. However, although we do 

not expect this error to be of any significant amount, it is use-

ful to know its order of magnitude. If the vector potentials are 

truncated with the error A, and the mesh cell size is d, then the 

first order differences which we basically use are computed with 

the accuracy 26/d. Computation on the ICL 1907 computer in single 

precision corresponds to approximately 10 decimal digits, or 

relative error of 10""̂ °. The order of magnitude of vector poten-

tials for medium size induction machines is about 0«1 Tra which 

results in the absolute error of lO"** Tm. Minimum d is about 

0*1 mm for our mesh and the truncation error is £ = 2 x 10"^^ Tm/ 

10-4 m = 2 X lOr? T. This error is below our required accuracy by 

several orders of magnitude. Its influence can be observed as 

slowing down of convergence if the iteration is carried on long 

enough. This happens when some of the components of displacement 

vector are reduced to the order of magnitude of the truncation 

error. Again, flux densities are more influenced than the vector 

potentials. 

We have now examined all errors listed in section 6.1 except 

the errors due to measurements. In the next section we shall 

briefly examine errors due to measurements and we shall 
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also make a summary of all the errors involved in order to predict 

the likely correspondence between our computed results and the 

results obtained by measurements on.the actual machine. 

6.4 Errors Due to Measurements .«. Summary 

The prediction of measurement errors is important because the 

computed results can only be compared with the results of measure-

ments. Measurement errors must therefore be carefully determined, 

and they must not be attributed to the computation. Different 

quantities can be measured with different accuracy, but unfortuna-

tely hardly anything can be said about the accuracy of a particular 

type of measurement without knowing details on the equipment used. 

The choice of equipment depends partially on the speed the measure-

ments have to be taken. We must therefore first determine whether 

the quantities to be measured can be considered as static or time 

dependent. 

We are interested in steady-state and we must ensure that the 

transient currents are damped enough to be negligible. With the 

power factor of 0*25 at 50 Hz, which is a realistic value for 

usual machines at short circuit, the time constant is only about 

0*012 sec and the transient currents will be below 0*1% of their 

initial value after about 0*085 sec. 

Another factor we have to consider is the increase of resis-

tance due to the increase of the temperature of the winding. 

Assuming windings to be of copper, and with the current density of 

15A/mm^, the heat dissipated in the winding is about 4 x 10® W/m^. 

With the specific heat for copper of 7»86 x 10^ W sec/m^°C the 

temperature rise of copper is about 5°C per second. The 
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corresponding rise in resistivity is about 3*5 x 10"^° nm per 

second, or about 2%. Due to the low power factor this increase in 

resistance will influence the current only by less than 0»3%, but 

the test cannot last longer than a few seconds because of over-

heating problems. Thus the readings of instruments should be 

taken preferably during the first second of the test. 

This is a fairly short period of time and some sort of 

recording instrument is essential. Digital recording instruments 

are very accurate, but they tend to be very expensive. We have 

already seen that the accuracy of our computation is not very 

high, and that errors of several percent can be expected. Hence, 

an analogue recording instrument can be used. The accuracy of 

such instruments is usually within few percent, but unfortunately 

no more can be said without details of the particular instrument 

used. 

In the previous two sections we have discussed different 

errors introduced during our analysis of the machine. The rela-

tion between different errors is not simple and in mathematical 

terms it depends on the type of mathematical operation that link 

different quantities which are in error. However, unless the 

errors form a substantial part of the quantities involved, in most 

circumstances it can be assumed that the errors are not related, 

i.e. that the magnitude of the error induced by one cause does not 

influence the magnitude of the error induced by the other cause. 

In this case the total error is simply obtained by summation of 

all the errors. 

Any cause of error can have very different influence on the 

accuracy of different quantities (e.g. accuracy of local flux 
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densities will always be lower than the accuracy of total magnetic 

flux), and this accuracy will depend on the type of mathematical 

operation that link different quantities. In most cases systema-

tic errors will be linearly related (i.e. the percentage value of 

the error will be the same in all related quantities), but randomly 

distributed errors may be increased by several orders of magnitude 

if the value of some quantity is obtained by differentiation of 

another quantity in error, or by subtraction of two quantities in 

error. On the other hand, integration will tend to reduce randomly 

distributed errors. 

Most of the causes listed in section 6.1 will produce a sys-

tematic error which will have similar influence on all computed 

quantities. However, iterative solution of equations and trunca-

tion will produce randomly distributed errors, and these may cause 

difficulties. In section 6.3 and 6.4 we have mostly expressed the 

error in terms of total flux, or linked flux. The linked flux is 

only an intermediate quantity, which will give induced voltage by 

differentiation in time. Hence, in order to keep the error of the 

computed voltage as low as possible, the values of linked flux 

obtained by several consecutive field computation must be suitably 

smoothed (for examply by approximating the curve by a polynomial 

fitted by the least squares method). In that case the errors in 

computed voltage will be similar to the errors in the computed 

linked flux. 

We have listed different causes of errors and their expected 

influence on different quantities in Table 6.1. Two values are 

given for every cause and the top number represents the estimated 

upper bound and the bottom number represents the estimated lower 
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bound. The bounds for the total error were obtained by summation 

of all contributions. The given figures represent the maximum 

expected error. The most probable error is lower and we believe 

that the computed effective value of induced voltage and the 

measured value of induced voltage will differ by more than 10% 

only rarely. The accuracy of the computed torque is lower and 

errors of up to 20% can be expected. 
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CHAPTER 7 

ONE EXAMPLE 

In the preceding chapters we have discussed methods for the 

solution of magnetostatic fields in the end-region (Chapter 2) and 

core region (Chapters 3-5) of induction motors. The time varying 

problem can be described as a series of magnetostatic problems and 

in section 3.9 it was shown how the non-linear field solutions can 

be used in order to determine the voltage at the terminals if the 

variations of currents with time in different windings of the 

machine are known. 

In this chapter we shall show by one example how our magneto-

static field solutions can be used to solve the more complicated 

problem where the voltage at terminals is known and the short 

circuit currents in the windings are sought. 

In section 7.1 we describe the problem and suggest two 

different methods for the solution of it. The second of these 

methods is an iterative procedure in which the magnetostatic field 

solutions form an essential part. 

In section 7.2 we describe in detail a modification of this 

basic iteration in which only a few non-linear field solutions are 

necessary, and in section 7.3 we give the results of a computation 

of a sample problem which was chosen to be that of a 15 kW, six 

pole motor with wound rotor. 
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7.1 The Time-Dependent Problem With Prescribed Voltage 

As the magnetic properties of steel in the machine are non-

linear, the inductance between different windings is a function 

of current in the windings. The terminal voltage can be simply 

obtained from a series of magnetostatic field solutions, if the 

currents in windings are known (section 3.9). 

The practical problems will be posed in this way only rarely. 

In the vast majority of practical problems the voltage at the ter-

minals will be known, and the current in different windings will be 

sought. This is a more complicated problem than the computation of 

voltage for the prescribed values of current. 

This problem can be described by a system consisting of a 

partial differential equation of the magnetic vector potential 

(Eqn. (3.10)) and a system of ordinary differential equations des-

cribing the current-voltage relation in the windings of the machine. 

The right-hand side of Eqn, (3,10) will no longer be a function of 

X and y only, but will be obtained from the solution of the system 

of ordinary differential equations. 

Consider, for example, the problem of a star-connected three 

phase wound rotor machine represented schematically on Fig, 7,1 

(the end-inductances have been omitted for clarity). The problem 

can be described by a system; 

(v ) + "57 (v ) = f(x, y, ii, ... ig) (7.1a) 
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Fig. 7.1 Schematic Representation of a Three-Phase» 
Star-Connected Wound Rotor Motor 
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ij Rj - i; R; + "i - "2 " 

S \ • S *3 + "2 - "3 ' "BC 

h + iz + is " °- '(7.1b) 

\ h ' h " 5 * - " s " ° 

•-5 "5 " ^6 "s * "5 " "6 " ° 

14 + is + is = 0 

where f(x, y, ig) is a known function that depends on the 

distribution of windings in the cross-section of the machine, 

Rj ... Rg are the resistances of the windings (which may possibly 

include any outer resistance), i^ ... ig are currents in the six 

windings, u and u are the voltages at the stator terminals and 
AD DU 

uj ... ug are voltages induced in the six windings ... W^. 

Their values are obtained by the time differentiation of the total 

flux f linked by the corresponding coil: 

dY 
"k " - -dt (7'lc) 

where is computed from the field solution in a manner explained 

in section 3.9. 

There are several possibilities for an approximate solution of 

system (7.1a - 7.1c). Eqn. (7.1a) is similar to the parabolic 

equations obtained in the solution of diffusion problems. The 

difference is in the right-hand side, which in our case is the 

function of the complete field solution. It can be expected that 

methods analogous to those in the solution of diffusion equation 

could be used. The discretization in space can be semi-regular 

triangulation as used for our magnetostatic field solutions. 

However, it would be probably more convenient to use a fixed 
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time-step corresponding to the usual finite difference method. 

Timewise our problem represents a boundary value problem with 

periodicity boundary conditions because we are only interested in a 

steady-state solution. However, by this method our problem could 

also be treated as an initial value problem, in which case it would 

also give the transient solution as a result. In either case this 

approach would require somewhat different techniques from those 

used for the magnetostatic field solutions, and the results of our 

investigations in the previous chapters would not be directly 

applicable. 

Another possibility is an iterative procedure consisting of 

alternate solutions of Eqn. (7.1a) and (7.1b). An approximate 

solution is chosen for currents ii ... ig and Eqn, (7.1a) solved 

for different instants of time by one of the methods described in 

Chapters 3-6, Then the values of induced voltage in every winding 

are computed by the finite difference approximation to Eqn, (7.1c), 

and the system (7.1b) solved (i.e. its finite-difference approxi-

mation). The new values of current at different instants of time 

are used to compute a new set of field solutions and the procedure 

is repeated until the difference of two successive current esti-

mates fall below a certain specified limit. The transient solution 

cannot be obtained by this method, but it has the advantage that it 

is based on magnetostatic field solutions which we know how to 

solve. The disadvantage of this method is that it requires 

numerous non-linear field solutions and therefore it is likely that 

the computation time will be long (although reduction in computa-

tion time can be achieved by the use of higher order differences in 

the time direction and by extrapolation of vector potentials from 
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two or more time steps in order to form starting values for the new 

field solution). Fortunately, a modification of this approach is 

possible in which it is necessary to compute only one non-linear 

field in every iteration step. This method will be described in 

detail in the following section. 

7.2 A Practical Method for the Solution of a Time-Varying Problem 

With Prescribed Voltages 

The system of equations (7,1b - 7.1c) can be written in the 

form: 

6 

- ^ " 2 - dF ttl.k \ - h.k - "AB u. 

\ ^ " S "3 ' d# \ - '•s.k • V 

i; + i; * - 0 (7.2) 

\ K - h h - 17 <\.k 'k • S.k • ° 

h % - is Re - O^.k 'k - '-e.k " ° 

I4 + i; + ^6 

where L represents the inductance between the windings W and 
m,k m 

W^. (The inductance in this context is the so-called 'apparent' 

inductance. If there is only one winding then the apparent self-

inductance is defined as a total flux linked by the winding divided 

by the current through the winding. See for example Ref. 7.1) 
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Because of saturation the inductance L , will be reduced in 

comparison with its non-saturated value. Indeed, the inductances 

are not constants, but functions of current, L = f(i,,.,.ig). 

Alternatively, they can be expressed as functions of time 

k " However, if the variations of the values of induc-

tances with time are small compared with the variations of current, 

an approximate solution of the system (7.2) can be obtained by 

setting ^ = constant, this value being smaller than the value 

for non-saturated machine. Strictly, every current distribution 

will have corresponding saturated values of inductances. In our 

approximate computation we shall compute only one set of values of 

inductances, corresponding to a current distribution at a certain 

instant of time. The saturated values of inductances L , , k = 1,6 
m,k' ' 

for the given current distribution can be obtained if firstly the 

non-linear field solution is computed for the given set of currents, 

and then with the reluctivities fixed to the values obtained in 

this non-linear field solution, a linear field solution is computed 

with the unity current in winding W . The inductance L , will 
m m,k 

then have the numerical value of the total flux linkage with the 

winding . 

The basic iteration procedure as described in section 7.1 

remains unchanged, but instead of several non-linear field solu-

tions in every interation step only one non-linear field is needed. 

This non-linear field solution provides only the saturated values 

of reluctivities of iron parts. The saturated values of induc-

tances are computed from the linear field solutions. Hence, in 

addition to one non-linear field solution, it is also necessary to 

compute several linear fields in every iteration step. In the case 
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of symmetrical three-phase windings and symmetrical supply, only 

two linear fields are needed, one for one stator current equal to 

unity and another for one rotor current equal to unity. Linear 

field solutions can be computed with much less effort than the 

non-linear ones, and it is likely that in most cases this procedure 

would result in considerable reduction of total computation time in 

comparison with the basic iteration described in section 7.1, 

This approach is based on the assumption that the variations 

of the values of inductances L , with time are small and that the 
m,K 

influence of saturation on the inductances can be approximated by 

simply reducing the values of inductances. In the case of symme-

trical windings some indication of the variation of the values of 

inductances with time can be obtained from the comparison of the 

mutual inductances of different phases. So for example Lj ^ will 

be different from 3 (both values can be obtained from the same 

linear field solution), unlike in the linear case where these two 

inductances have the same value. Variation of the values of 

inductances will be periodical with the period of T/2 where T is 

the period of the supply voltage. We can therefore approximate the 

inductances by the truncated Fourier series*. ^ = g(t) cannot 

have any sharp peaks, and it can be expected that the magnitude of 

higher harmonics in ^ = g(t) will decrease very rapidly as the 

order of harmonic increases. We believe that in most cases it will 

be sufficient to determine the magnitude of the second harmonic 

Truncated Fourier series is just one possibility for the repre-
sentation of = g(t). Polynomials, or piecewise polynomials 
(i.e. spline functions) could also be used for this approximation 
and it may well be that some other approximation would be more 
suitable than the Fourier series. 
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only, and its influence on the current, without the need for any 

further computation. 

By neglecting the higher harmonics we can represent^the value 

of inductance L , by 
ID y IC 

^m,k " = Ci + Cg s i n C ^ . t - C g ) (7.3) 

The values of the three constants ... can be computed from 

the three values of inductance which correspond to three 

different instants of time. In the case of symmetrical three-

phase windings it is not necessary to compute three non-linear 

field distributions in order to determine three values of L , . 
ra,k 

Instead, self and mutual inductances of all three phases can be 

determined from the corresponding three linear field distributions. 

The linear field distributions are computed with the values of 

reluctivities obtained in the non-linear field distribution, and 

with the unity current in windings Wj, Wg and Wg, respectively. 

The values of inductances obtained in this way will be the same as 

the values of the inductance of one phase corresponding to three 

different instants of time separated by T/6, because the flux in 

the machine is rotating and the winding is symmetrical. The induc-

tances of the rotor winding can be obtained in an analogous way. 

This computation of constants ... Cg need not be carried 

out in every iteration step, but only when the iteration has 

reached the required accuracy. Consequently, the system (7.2) has 

to be solved only once with variable values of inductances. 

The complete procedure for problem of Fig. 7.1 including ini-

tialization is presented on Fig. 7,2 in a form of a flow chart. 
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Difference 
large 

Difference 
small 

STOP 

START 

Solve system of differential equations (7.2) 

Solve system (7,2) with the latest estimates of L 
m,k 

Solve the nonlinear field problem with the latest 
estimates of current in all windings 

Compare the two latest estimates of the values of 
current in all windings. Check the difference. 

With the values of currents from box 2 determine the 
optimum relaxation factors by trial and error method 

Solve two linear field problems with unity currents 
in Wj and Wî , respectively, with the values of 
reluctivities obtained in box 4. Determine the new 
values of L , . 

m.k 

Solve two linear fields with values of reluctivities 
of iron corresponding to the Expected flux densities 
at nominal voltage. Determine the values of 

m=1...6, k=1...6 

Solve four linear fields with unity currents in Wg 
W3, W5 and Wg, respectively, and determine the 
values of all inductances. Compute the constants 
C1...C3 of Eqn. (7.3) and solve system (7.2) with 
the variable values of inductances 

Fig. 7.2 The Flow Chart for the Computation of Current With 
Prescribed Voltage 
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In the case of unsymmetrical windings it may be necessary to 

adapt this procedure to suit the problem in hand. Also, the itera-

tion need not be stopped as indicated in Fig. 7.2, instead, the 

procedure can be continued in an analogous way in order to deter-

mine the influence of harmonics of order higher than two, in which 

case more than three field solutions would be required in every 

iteration. Whether or not to continue the computation is best 

decided at the end of the process described in Fig. 7.2, when the 

influence of the second harmonic will be known. When this decision 

is being made the overall accuracy of our method must also be 

considered, as it is possible that the influence of hysteresis, 

eddy currents, etc., on the short circuit current are higher than 

t;he influence of the higher harmonics in ^ = g(t). 

The procedure suggested and described in this section was 

tested on one example. The problem and the results are given in 

the next section. 

7.3 The Sample Problem 

As our sample problem we have chosen a 15 kW, six-pole wound 

rotor machine, star connected on both stator and rotor with 54 

slots on stator and 36 on rotor. The winding was two layer with 

five turns per coil on the stator and seven turns per coil on the 

rotor, series connected, 60° phase belt spread, full pitch on 

rotor, 7/9 pitch on stator. The active length of the machine was 

I " 200 mm. The cross-section of one pole on the machine is shown 

on Fig. 7.3, and the magnetising curve of the steel laminations on 

Fig. 7.4. 
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0.15--

0.05 

0.05 O'lO 0.15 m 

Fig, 7.3 The Cross-Section of One Pole of a Machine Chosen 
as a Sample Problem • 
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The end-winding inductances were calculated by the method 

described in Chapter 2. The end-windings on both stator and rotor 

were represented by 20 straight line segments, resembling the usual 

almost elliptical shape of low voltage machines fairly accurately. 

The complete end-winding inductance matrix is given in Table 7.1, 

(The matrix is, of course, symmetrical.) 

TABLE 7.1 

The End-Winding Inductances 

(All values in H x 10 

Stator Rotor 

A B C A B C 

Stator 

A 23.19 8.75 8.75 1.90 1.52 1.10 

Stator B 23.19 8.75 1.10 1.90 1.52 Stator 

C 23.19 1.52 1.10 1.90 

Rotor 

A 20.76 7.08 7.08 

Rotor B 20.76 7.08 Rotor 

C 20.76 

A computer-constructed triangle mesh used for the computation 

of magnetic field in the core region is shown on Fig. 7.5. The 

mesh density was chosen according to the rules given in Chapter 6, 

The complete mesh contained 1505 triangles and 790 nodes resulting 

in a system of 740 equations. 

For the solution of system (7.2) a separate computer program 

was written which takes the periodicity conditions fully into 

account so that a solution over a period T/6 only is necessary, . 

First order central differences were employed. 
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Fig. 7.5 A Computer Generated Mesh 
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The computation followed the procedure described in section 

7,2. The initial values of inductances were obtained by t4ie solu-

tion of linear problems with v. = 1200 A/Tm which corresponds to 
iron . 

the flux density of 1*5 T. System (7.2) was solved with a time 

step of 5*56 X 10~^ sec (1 el. deg.) and 50 Hz, 415 volts line to 

line, which produced an initial estimate of stator current of 188 A, 

The optimum iteration parameters were found to be w = 1*80, 

3 = 0«08 and K = 4. The linear fields were computed by successive 

line over-relaxation. The optimum over-relaxation factor 

(assymptotic) was found by the well-known power method (see for 

example Ref. 7.2) and its value was about Wy = 1*956 (it varies 

slightly as the reluctivities change from iteration to iteration). 

The variations of the effective value of stator and rotor 

current in the iteration process described by boxes 4-7 of Fig. 7,2 

are shown on Fig, 7.6, Convergence appears to be fairly fast, and 

the difference between the current estimates in the 2nd and 3rd 

iteration is only about 0*5%. This figure is not directly related 

to the accuracy of our iteration process, but as the iteration con-

verges rapidly, we have reasons to believe that the error^of our 

current estimate is also of the order of magnitude of 1%. (This 

accuracy corresponds to the iteration procedure only. The error 

introduced in this way should be added to the errors introduced by 

other factors, see Chapter 6). 

This accuracy was considered to be adequate for the purpose of 

short circuit current computation, the iteration was terminated, 

and the influence of higher harmonics determined (box 8). The 

variations of the value of inductances with time is illustrated in 

Fig, 7.7. The complete matrix of core-inductances and the 
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A current 

Stator 
2 0 0 - -

Rotor 

Stator (unsaturated) 

Rotor (unsaturated) 

100 •-

3 iterations 

Fig. 7.6 Effective Value of Stator and Rotor Current 
Versus Number of Iterations 
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H X 10"2I Inductance 

1-5 

1.0 --

0*5 --

Self inductance of one rotor phase 

Self inductance of one stator phase 

Mutual inductance of two stator phases 

time 

0.01 0*02 sec 

Fig. 7.7 Variation of Inductance with Time 
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magnitudes of their 2nd harmonic is given in Table 7.2. 

TABLE 7.2 

The Core-Region Inductances 

(All values in H x 10~^) 

Stator Rotor 

A B C A B C 

Stator 

A 
1*386 

0-011 

0.641 

0.016 

0-641 

0-016 

1-334 

0.012 

0*618 

0*015 

0*612 

0-004 

Stator B 
1-386 

0*011 

0-641 

0.016 

0*612 

0.004 

1*334 

0*012 

0.618 

0.015 
Stator 

C 1*386 

0.011 

0*618 

0.015 

0*612 

0*004 

1.334 

0.012 

Rotor 

A 
1*527 

0.007 

0*574 

0*016 

0.574 

0.016 

Rotor B 
1-527 

0-007 

0.574 

0.016 
Rotor 

C 
1.527 

0.007 

Top and bottom figures represent the values of and in Eqn. 

(7.3), respectively. 

On average the magnitude of the second harmonic is about 3% of 

the value of inductance. The second harmonic of the inductance 

will in turn produce some change in the values of current. This 

value was computed and it amounts to about 3% of the effective 

value of stator current. The increased current will, of course, 

have some influence on the values of inductance, and strictly, we 

should continue the iteration with this new value of current. The 

difference of 3% was considered acceptable, however, because the 
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overall accuracy of our computation is not better than some ± 10% 

(see Chapter 6). 

As an illustration we have alsg plotted the field for the last 

step in our iteration (Fig, 7,8). The flux densities in some parts 

of the cross-section reach a value of up to 2*5 T. The relative 

permeability of iron for this high value of flux density is only 

about = 5, but the overall effect of saturation on the value of 

current is not very large. The stator current is increased by 

about 9%. This increase was determined by the computation of non-

saturated values of inductances and the corresponding value of 

current. The non-saturated values of both stator and rotor current 

are also plotted on Fig. 7.6. The torque was also computed from 

the field distribution in the last iteration and its value was 

T - 139 Nm. 

All computations were performed on the ICL 1907 computer. In 

average the non-linear field solutions required about 250 itera-

tions for the accuracy of about 1%, and the linear field solutions 

required about 150 iterations. A considerable amount of computa-

tion time was saved by the use of the estimate of the vector 

potential distribution from the preceding iteration as the initial 

values for the new field distribution. By the use of the optimis-

ing compiler XFEW the total computation time was about 1 hour. 

This figure does not include input and output operations, compila-

tion, backing store operations, etc., which can be expected to 

increase the actual computer time between 10% and 100%, depending 

on the amount of output, backing store media, etc. Hence a real-

istic figure for the total computation time for this type of 

computer is about two hours. This is about two orders of magnitude 
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Fig. 7.8 The Flux Distribution in One Pole Pitch 
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more than the computation time that can be expected from the use of 

computational methods which are not based on the solution of magne-

tic field in the machine. So for example the method of Chalmers 

and Dodgson (Ref. 7.3) would require a computation time of the 

order of one minute. 

In this example we have seen that practical computations of 

short circuit current of induction motors with wound rotors by the 

use of numerical field solutions is feasible. Our sample problem 

is relatively simple, but the method described in this chapter is 

not limited to star-connected windings, nor is it limited to 

symmetrical three-phase power supply. In fact, any type of induc-

tion machine at short circuit can be dealt with in an analogous 

way, although clearly more complex problems will require more 

computer time. In the next chapter we shall summarise some of 

the possibilities of our method and also look at some possibilities 

for future development. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

8.1 The End-Winding Inductances 

In Chapter 2 of this thesis we have described a novel method 

for the computation of end-winding inductances. Our method is an 

integration routine based on the method of images. 

In the earlier methods described by other authors the perme-

ability of the iron core could have only the values of " or 0 

(ideally permeable or ideally conductive material). In our method 

effects of both permeable and conductive properties of the steel 

laminations can be considered by choosing the 'effective' value of 

permeability which gives more accurate results. 

The accuracy of our method is limited by two major factors. 

The first one is the value of the effective permeability. This 

value could be obtained from theoretical considerations or from 

experiments, and there is room for further research in this direc-

tion. 

The other factor limiting the accuracy is the influence of 

other conducting/permeable surfaces in the vicinity of the end-

winding (casing, shaft). Their effect can be considered by an 

approach analogous to the treatment of the effect of the core, 

A method of Lawrenson is related to our method (see section 

2.6). In Chapter 2 we have suggested that both methods could 

yield similar accuracy and would probably require comparable 

computation time. This statement was not based on any detailed 

analysis, and we believe that in the search for the most accurate 
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and the most efficient method a detailed comparison of the method 

of Lawrenson and our method would be a valuable contribution. 

8,2 Field Solutions 

The major part of the thesis is concerned with the problem of , 

computation of two-dimensional non-linear magnetostatic fields. 

Several possibilities have been considered and the numerical method 

based on discretisation techniques appears to be the only feasible 

way of effective and accurate computation of field problems. Of 

different possibilities for discretisaion, triangular meshes with 

free or semi-free topology have several advantages over the other 

methods, particularly in flexibility and accurate representation 

of complicated boundaries. 

The set of algebraic equations representing the problem in a 

discretised form was derived in two different ways. Both 

approaches are based on a principle of the elimination of a suit-

ably defined error of our approximate solution. Of the two 

approaches the one based on integration is particularly simple and 

is, in this sense, more suitable than the more common approach 

based on the calculus of variations. 

The mathematical model we have chosen is commonly known as the 

'potential energy model'. Several other possibilities for a 

different type of mathematical model have only been mentioned. 

This is a field that is in need of more detailed analysis, parti-

cularly as some of these mathematical models offer better accuracy 

without the increase of the order of approximation. 'Hybrid' 

models are particularly attractive in this sense. 
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For the approximation of our field solution we have chosen 

piecewise linear functions. Although this type of approximation 

gave us a fair accuracy, a further development by the use of piece-

wise polynomials seems inevitable. Cubics offer the advantage of 

relative simplicity and greatly improved approximation in compari- . 

son with piecewise linear functions. The investigation of the use 

of piecewise cubic approximation for non-linear problems is 

recommended as one of the future topics. 

We have investigated several methods for the solution of large 

sets of non-linear algebraic equations arising from discretisation. 

Numerical experimentation has shown that different iterative 

methods can be used successfully for such problems, and that some 

of these techniques are superior to direct methods of solution. 

Two-step linearised line iteration has shown the best performance 

of all tested methods, and the use of this method is recommended 

for future work. However, the performance of this method is not 

much superior to the performance of some other iteration methods, 

and it may be that another method will be more suitable for 

another problem. This may be particularly true if higher order 

approximation is employed, for which the iteration methods will 

be less suitable than for the systems arising from low order 

approximation. ' 

Determination of optimum iteration parameters by trial and 

error method leaves a lot to be desired. This method can provide 

the best combination of iteration parameters for a particular 

problem, but its use is neither very efficient nor elegant. A 

method which does not require a prior estimate of any parameters 

and in which the iteration parameters are adjusted during iteration 
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in order to achieve the best possible convergence would be ideal 

and further theoretical investigations as well as numerical experi-

mentation in this field are necessary. 

8.3 Applications 

The aim of this research was to find a suitable method for the 

computation of magnetostatic fields in saturated induction motors 

with wound rotors, with the purpose of determination of the per-

formance of the machine with locked rotor. 

In Chapter 7 we have seen that there are several methods by 

which the performance of the machine can be determined from the 

field solutions. Consequently, a method was chosen which appeared 

to require the least amount of computation. 

The method we have selected for the computation of our sample 

problem gives the accuracy acceptable from the practical point of 

view and it is reasonably efficient. The use of our method is not. 

restricted to the computation of short circuit current of machines 

with wound rotors. We believe that our method can be successfully 

used for the computation of the performance of non-skewed squirrel 

cage induction motors in short circuit, and the application of our 

method to this problem seems to be the logical step. However, the 

total computation time for the solution of this problem can be 

expected to be considerably longer, possibly up to five times more 

than the computation time required for machines with wound rotors. 

Another problem that is also in the scope of our method is the 

short-circuit performance of machines with skewed rotors. Two 

dimensional field solutions can still serve as a basis for computa-

tion, because the axial flux can be neglected in most circumstances. 
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This problem is, nevertheless, much more complicated than the prob-

lem of unskewed machines. The total computation time for the solu-

tion of this problem may easily be by one order of magnitude higher 

than the computation time required for the solution of our sample 

problem, particularly if solutions for different relative positions 

of rotor to stator are sought. 

The behaviour of an electrical machine is determined by the 

electromagnetic phenomena in the machine. The electromagnetic 

phenomena can be suitably described by Maxwell's equations. Hence, 

any design process of the machine incorporates in itself an appro-

ximate solution of Maxwell's equations. These equations are too 

complicated to be solved exactly, and simpler mathematical models 

have to be used to represent the physical phenomena in the machine 

in order to carry out the practical computation. In the past 

these mathematical models have often been very crude, due to the 

limited possibilities of hand computation. The development of 

digital computers offers a possibility of more accurate solutions. 

The final goal is a complete numerical model of the machine, which 

will enable accurate prediction of the behaviour of the machine at 

any working conditions. This thesis represents a small contribu-

tion towards this goal. 
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APPENDIX 

A Mutual Neumann Integral Between One Finite and Two Semi-Infinite 

Anti-Parallel Straight Lines 

Referring to Fig. 2.7 and Eqn. (2.5) and (2.6) the mutual 

Neumann integral between a finite straight line AB and two mutually 

anti-parallel straight lines is given by 

N = lim 
bj->" 

|aiB|+|biB|+|aibi| |ajAl+jbiAl+la^bJ 
cos <J>.{Cĵ B.Jln - Y 2 2 2 Z — " — z m i Z , — C^A.&n + 
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After some transformation and application of L'Hospital's rule 

we get; 

|biA|+|biB|+|AB| 
lim (cj:bj.Jln -2222 ) « |AB| 

|b^A| + |biBl-| AB| 
(A. 2) 

and analogously; 

a-Al+la-Bl+lAB] 
lim (c a .&n ) = [ABj . 
a„-»̂  lagAl + lagBj-lABl 

(A. 3) 

Also, by substituting; 

CgB = Cj,B + (A.4) 

C2A =• Cĵ A + C2C1 
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and some manipulation we obtain 
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lim (Ĉ B.Jln — — — - + CgB.&n 
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By substituting these expression in Eqn. (A.l) we obtain 
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which completes the proof. 
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